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OBJECTIVES:

To study the basic concepts of orbital Mechanics with particular emphasis on
interplanetary trajectorie
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Approach.

UNIT - IV INTERPLANETARY TRAJECTORIES

Two Dimensional Interplanetary Trajectories —Fast Interplanetary Trajectories — Three
Dimensional Interplanetary Trajectories — Launchif Interplanetary Spacecraft —
Trajectory about the Target Planet.

UNIT - V BALLISTIC MISSILE TRAJECTORIES AND MATERIALS

The Boost Phase — The Ballistic Phase —Trajectory Geometry- Optimal Flights — Time of
Flight — Re — entry Phase — The Position of the Impact Point — Influence Coefficients. Space
Environment — Peculiarities — Effect of Space Environment on the Selection of Spacecraft
Material.
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UNIT
Introduction

To develop an understanding and a basic description of any dynamical system, a physical model

of that system must be constructed which is consistent with observations. The fundamentals of
orbital mechanics, as we know them today, have evolved over centuries and have continued to
require improvements in the dynamical models, coordinate systems and systems of time. The
underlying theory for planetary motion has evolved from spheres rolling on spheres to precision
numerical integration of the equations of motion based on general relativity. Time has evolved
from using the motion of the Sun to describe the fundamental unit of time to the current use of
atomic clocks to define the second. As observational accuracy has increased, models have
generally increased in complexity to describe finer and finer detail.

To apply the laws of motion to a dynamical system or orbital mechanics problem, appropriate
coordinate and time systems must first be selected. Most practical problems involve numerous
reference frames and the transformations between them. For example, the equations of motion of
a satellite of Mars are normally integrated in a system where the equator of the Earth at the

BealathAT foreds 2908idh 18) Tpdipstid Ql@fteBbsitornfilhe ER rdviar® 418 NegRBESHal
system. Planetary ephemerides (Section 2.5) are usually referred to the ecliptic, so inclusion of
solar or Jovian gravitational forces require transformations between the ecliptic and the equator.
The correct development of these transformations is tedious and a prime candidate for
Implementation errors.

Likewise, there are usually numerous time systems in a problem. Spacecraft events might be time
tagged by an on board clock or tagged with the universal time that the telemetry is received at the
tracking station. In the latter case, tracking station clocks must be synchronized and the time
required for the telemetry signal to travel from the s/c to the tracking station must be calculated
using the s/c orbit. Depending on the precision desired, this time difference might require special
and general relativistic corrections. The independent variable for the equations of motion is called
ephemeris time or dynamical time which is offset from universal time. By international
agreement, atomic time is the basis of time and is obtained by averaging and correctingnumerous
atomic clocks around the world. Finally, the location of the zero or prime meridian and the
equator are defined by averaging observations of specified Earth "fixed" stations. The
understanding of these and other coordinate systems and time systems is fundamental to
practicing orbital mechanics.

In this chapter only first order effects will be discussed. This book will also limit coverage to the
classical mechanics approach, i.e. special and general relativistic effects might be mentioned but
will not be included in any mathematical developments. Calculation for precise orbital mechanics
and spacecraft tracking must however include many of these neglected effects. The definitive



reference for precise definitions of models and transformations is the Explanatory Supplement to

The first issue that must be addressed in any dynamics problem is to define the relevant
coordinate systems. To specify the complete motion of a spacecraft, a coordinate system fixed in

the spacecraft at the center of mass is usually selected to specify orientation and a coordinate
system fixed in some celestial body is used to specify the trajectory of the center of mass of the
spacecraft. The interest here is primarily in the latter system.

Coordinate systems are defined by specifying
1. the location of the origin,

2. the orientation of the fundamental plane,and
3. the orientation of the fundamental direction or line in the fundamental plane.

Theorigin isthe (0,0,0) pointinarectangular coordinate system. Thefundam ental plane passes
through the origin and is specified by the orientation of the positive normal vector, usually the z-
axis. The fundamental direction is a directed line in the fundamental plane, usually specifying
the +x-axis. The origin, fundamental plane and fundamental line are defined either relative to
some previously defined coordinate system or in operational terms. The definitions are usually
specified inaseemingly clear statement like: “The origin isthe center of mass of the Earth, the
fundamental plane (x-y) is the Earth equator and the x-axis points to the vernal equinox.” Leftas
details are subtle issues like the fact that the center of mass of the Earth “moves” within the Earth,
that the Earth is not a rigid body and the spin axis moves both in space and in the body, and that
the vernal equinox is not a fixed direction. Some of these details are handled by specifying the
epoch at which the orientation is defined, i.e. Earth mean equator of 2000.0 is frequently used.
Further, it must be recognized that there is no fundamental inertial system to which all motion can
be referred. Any system fixed in a planet, the Sun, or at the center of mass of the solar system is
undergoing acceleration due to gravitational attraction from bodies inside and outside the solar
system. The extent to which these accelerations are included in the dynamical model depends on
accuracy requirements and is a decision left to the analyst.

Like many other fields, conventions and definitions are often abused in the literature and this

abuse will ¢ nt nue in this text. So "the e% uator" r!qarpon for the more req;s tatement "tr
plane through the center of mass wit itive nor along the spin a Likewise, angles

should always be defined as an angular rotation about a specified axis or as the angle between two
vectors. The angle between a vector and a plane (e.g. latitude) is to be interpreted as the
complement of the angle between the vector and the positive normal to the plane. The angle
between two planes is defined as the angle between the positive normals to each plane. The more
precise definitions often offer computational convenience. For example, after checking the
orthogonality of the direction cosines of the positive unit normal (usually +z axis) and the
direction cosines of the fundamental direction in the plane (usually +x), the direction cosines of
the +y axis can be obtained by a vector cross product. Thus, the entire transformation or rotation
matrix is defined by orthogonal x and z unitvectors.



Common origins for coordinate systems of interest in astrodynamics include:

1. Topocentric: at an observer fixed to the surface of a planet,

2. Heliocentric, Geocentric, Areocentric, Selenocentric etc.: at the center of mass of the
Sun, Earth, Mars, Moon, etc.

3. Barycentric: at the center of mass of a system of bodies, i.e. the solar system, Earth-
Moon system, etc.

Astronomical observations were traditionally referred to topocentric coordinates since the local
vertical and the direction of the spin axis could be readily measured at the site. For dynamics
problems, topocentric coordinates might be used for calculating the trajectory of a baseball or a
launch vehicle. For the former case, the rotation of the Earth and the variation in gravity with
altitude can be ignored because these effects are small compared the errors introduced by the
uncertainty in the aerodynamic forces acting on a spinning, rough sphere. For the latter case, these
effects cannot be ignored; but, gravitational attraction of the Sun and Moon might be ignored for
approximate launch trajectory calculations. The decision is left to the analyst and is usually base
on "back of the envelope" calculations of the order of magnitude of the effect compared to the
desired accuracy.

Heliocentric, areocentric, etc. coordinates are traditionally used for calculating and specifying the

orbits of both natural and artificial satellites when the major gravitational attraction is due to the
body at the origin. During calculation of lunar or interplanetary trajectories, the origin is shifted
from one massive body to another as the relative gravitational importance changes; however, the
fundamental plane is often kept as the Earth equator at some epoch. Often in what follows only
Earth geocentric systems are discussed, but the definitions and descriptions generally apply to
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either the equator or the ecliptic as the fundamental plane and the vernal equinox as the
fundamental direction.

1.2.1 Spherical trigopnometry

Transformations of position and velocity vectors between coordinate systems are represented in
matrix notation and developed by vector outer and inner products as mentioned above. However,
the understanding of the basic concepts of spherical trigonometry is also a necessity when dealing
with orbital mechanics. It is convenient to introduce the concept of the celestial sphere . The
celestial sphere is a spherical surface of infinite radius. The location of the center of the celestial
sphere is therefore unimportant. For example, one can think of the center as being simultaneously



apart, the great circle is unique.

The distance or length between two points on
the surface is the central angle subtended by

the Romts which is also the shorter arc length
on the great circle connecting the points. ree

points, not on the same great circle, form the

vertices of a spherical triangle. The three
sides are the great circle arcs connecting each ‘
pair of vertices (O<a,b,c<Tt in Figure 1-1). The
length of a side of a spherical triangle is often »

referred to as simply the “side.” With each
vertex IS associated an “angle”

(0 <a, B Yy <) that is, the angle between the
planes that form the adjacent sides. A spherical

triangle has the following properties: Figure 1-1. Spherical triangle

T<a+B+y<3m
0<a+b+c<2m
a+b>c,etc.

Exercise 1-2. Draw a spherical triangle where both a+b+c is nearly zero and a+ [+ is nearly 1.

Draw a spherical triangle where both a+b+c is nearly 2 and a+[f+Yy is nearly 3m. Check
equation (1-5) using the latter triangle.

Like plane trigonometry, spherical trigonometry relations involve four parts of the triangle. When
three parts are known, the following four formulae are generally sufficient to obtain a solution for
the fourth part (refer to Figure 1-1).

As in plane trigonometry there is the law of sines;

gn a _ _Sln_b.._ g’n c (1-1)
sina. sinB  siny

For spherical triangles there are two laws of cosines. The first is used when three sides and one
angle are involved

cosa = cosbcosc + sinbsinc ¢ 0s @ (1-2)
and the second is used when three angles and one side are involved

cosa = —cosPcosy + sinfsinycosa (1-3)



[2] provides proofs of some spherical trigonometry formulae using vector analysis.

The solid angle subtended by the triangle is a+B+y-Tt steradian, so if the sphere has radius R, the
area of the spherical triangle is given by

Area = R*(a+ B +y—) (1-5)



A right spherical triangle has either a side or
anangle of 90° and equations (1-1) to(1-4) can
be reduced to two rules and Napiek's Cikcle .
Consider the latter case and wolog assume y =

900. Napier's Circle, shown in Figure 1-2, is
created by putting the side opposite to the 90°
angle at the top and proceeding around the
triangle in the same direction to fill in the four
remaining parts of the circle. The upper three
parts are subtracted from 90°. Now consider Figyre 1-2. Napier’s circle.

any three parts of the triangle. The three parts

will either be (1) “adjacent” parts, ¢.g. b, o and

¢ in which case a would be called the “middle” part, or (2) two parts will be opposite the third
part, e.g. b, a and [3 and [3 would be called the “opposite” part. Napiet's Rules of Circular Parts
are then:

1. The sine of the middle part equals the product of the tangents of the adjacent parts.
2. The sine of the middle part equals the product of the cosines of the opposite parts.

As stated above, the first equation is used when the three parts of interest in the triangle are
adjacent, e.g. a, B and c are related by cos(f)=tan(a)cot(c), which can be verified using
equation (1-4). Jhe segond equation is used when one of the parts is opposite the other two, e.qg.
with b, & and P: cosg )=cos(b)sin® ), which can be verified using equation (1-3). Note that the
guadrant is not always determined from the basic equation. Since all parts are less than T,
guadrant can not be determined from sine but can be determined from tangent or cosine.
Therefore, care must be exercised in determining the quadrant.

Visit  http://mathworld.wolfram.com/Spherical Trigonometry.html  for additional spherical
trigonometry relations.

1.2.2 Celestial coordinate systems

The two conventional celestial coordinate system [1,95], projected onto the celestial sphere, are
shown in Figure 1-3. The two great circles or fundamental planes of interest are the equator of the
the time of the vernal equinox. This convention is one of the few remaining concepts from
Ptolemy. The angle between the equator and the ecliptic is known as the obliquity (g). The
obliquity for the Earth is approximately 23.45° [1,171] and changes about 0.013° per century. The

two intersections of the ecliptic and the equator on the celestial sphere are known as the
equinoctial points. When the Sun appears to move southward through the node, it is the autumnal
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equinox. The vernal equinox occurs within a day of March 21 and the autumnal occurs within a
day of September 21. At either equinox, the length of the day and night are equal at all points on
the Earth and the Sun rises (sets) due east (west). When the Sun has maximum northerly
declination it is summer solstice in the northern hemisphere and winter solstice in the southern
hemisphere, and conversely. At summer solstice in the northern hemisphere, the longest day
occurs and the Sun rises and sets at maximum northerly azimuth. Nevertheless, due to the
eccentricity of the orbit of the Earth, neither the earliest sunrise nor latest sunset occurs at summer
solstice. A fact that, when properly phrased, has won small wagers from non-celestial
mechanicians.

N.F. of Equator

Ecliptic System Equatorial System

Figure 1-3. Celestial coordinate systems.

It must be recognized that neither the ecliptic nor the equator are fixed planes. Variations in the
vernal equinox due to the motion of these planes are termed precession and nutation. Precession

[1,99] is the secular component that produces a westward change in the direction of Y that is

linear with time. Nutation [1,109] is the quasi-periodic residual that averages to zero over many
years. The mean equator or ecliptic refers to the position that includes only precession. The true
equator or ecliptic refers to the position that includes both precession and nutation. The Earth



the Sun. If the equator was fixed, the planetary precession of the ecliptic would cause Y to move

along the equator about 12" of arc per century and the obliquity would decrease by 47" per
century. To eliminate the need to consider precession and nutation in dynamics problems, the
coordinate system is usually specified at some epoch, i.e. mean equator and Mean equinox of
2000.0, otherwise, known asJ¥2000. In this case, Earth based observations must be corrected for
precession and nutation. Transformations between the J2000 coordinates and the twe or
apparent systems are then required [1,145].

Another plane that is use in the celestial system is the invariant plane. The positive normal to the
invariant plane is along the total angular momentum (i.e. rotational plus orbital) of the solar
system. In Newtonian mechanics, only gravitational attraction from the distant stars and
unmodeled masses can cause this plane to change orientation.

Consider some point P in the geocentric

reference system of Figure 1-4. The position of N
point P is projected onto each fundamental plane. v

In the equatorial system the angle from y to this \
projection is call “right ascension (0 <0t <21)

and the angle between the point P and the equator
is called the declination (—m |2 <5< m[2). In \
the ecliptic system the corresponding angles are ‘
the celestial Io1¥?itug%(£ Tﬁ)\ < 21t ) and celestial ‘

latitude (— 2 2 ). The “celestial”

qualifier is to assure no confusion with traditional

terrestrial longitude and latitude. When the

context is clear, the qualifier is often omitted.

“Celestial” 1is also sometimes replaced with
“ecliptic.” The rotation matrix from the ecliptic

system to the equatorial system is a single

Figure 1-4. Transforming between celestial
coordinate systems



rotation about the x axis by the obliquity €. As the following example illustrates, solving
spherical trigonometry problems often involves drawing numerous spherical triangle
combinations until the proper combination of knowns and unknowns appears.

123 Terrestrial coordinate systems

Astrodynamics problems are generally framed in either the ecliptic or equatorial celestial
coordinate system. The locations of observers, receivers, transmitters, and observation targets are
usually specified in one of the terrestrial coordinate systems. Ateirestrial coordinate System
[1,199] is “fixed” in the rotating Earth and is either geocentric or topocentric. Transformations
between terrestrial and celestial coordinates are an essential part of orbital mechanics problems
involving Earth based observations. These transformations are defined by the physical

B RREEARH SBFiLRse ludti ARFO hs MGSE SHANIRN A sfie BeladeeAyqn 339 tha ieelonal LaleRtgiaRk
tectonics [1,249], motion of the spin axis in the Earth [1,238], and numerous other effects. The
largest of these effects is polar motion which produces deviations between the instantaneous and
mean spin axis of order 10 meters. Pole location is determined by numerous observation stations
and published by international agreement. Irregularities in the rotational rate of the Earth can
change the length of the day by a few milli-seconds over time scales of interest for orbital

The fundamental terrestrial coordinate system has the origin at the center of mass and the
equatorasthe fundamental plane. The intersectionofthereference meridianwiththeequatoris
the fundamental direction. The origin, the equator, and reference meridian [1,223] are defined
operationally by measurements made at a number of “fixed” stations on the surface. In the
past, the prime meridian was the Greenwich meridian and was defined by the center of a plaque at
Greenwich. The phrase “reference meridian” is used to clearly distinguish the fundamental
difference in definitions. Nevertheless, the reference meridian is often referred to as the
Greenwich meridian, and that practice will be used herein. For remote solid planets, prime
meridians are still defined by easily observed sharp surface features. An observer’s local
meridian is defined by the plane through the observer that also contains the spin axis of the Earth.
An observer's longitude (A) is the angle between the reference meridian and the local meridian,
more precisely referred to as “terrestrial longitude.” Since the spin axis moves in the Earth, an
observers true longitude deviates from the mean longitude.

specify the convention. For example, 75°W = 285°E longitude. Colatitude is the angle between
the position vector and the normal to the equator and is unambiguous, but latitude is sometimes
specified by using a sign convention e.g. -37.5°=37.5°S. Also note that geocentric latitude is often

denoted by , i.e. the “prime” is omitted when the meaning is Clear .

Geodetic coordinates are generally limited ~ local vertical and the equator. The local
to points near the surface of the Earth. vertical is determined by the local “gravity”
Geodetic latitude is the angle between the force which is the combination of gravity and a



centrifugal contribution due to rotation. An
equipotential surface for the two terms is z
nearly an ellipsoid of revolution. Hence it is
convenient to define a reference ellipsoid —]

(spheroid) for the mean equipotential surface h
ich.i i b
01 he Fart HYO G| 3RE R DA R X UG Teti ' P
about the -equator and has rotational 4
symmetry about the pole, is defined by the 5 U 5 X

Figure 1-5. Geodetic and geocentric latitude
equatorial radius (a) and the flattening (f). The polar radius is given by b =a(1-f). Reference
values [1,223] are a=6378137m and 1/f=298.25722. Figure 1-5 shows a cross section of the
reference ellipsoid with greatly exaggerated flattening. For the figure, it is assumed that the cross
section contains the x-axis, so the equation 3f thezelliptical cross-section is

( ) X z

fxz = 5+ --1=0 (1-7)

Exercise 1-4. The gradient of f, Vk, when evaluated at a point on the surface of the reference
ellipsoid (h=0 in Figure 1-5) is a vector normal to the surface (B-2) and pointing outward. From
this vector develop the following relationship bet(ve\en geodetic and geocentric latitude [3,78]

, 2
tang = tan@’_ = g tang’ (EE) (1-8)

(1-1)°

Geodetic longitude and geocentric longitude are equal. For a point above the reference ellipsoid,
the geodetic altitude (h in Figure 1-5) is defined as the closest distance to the reference ellipsoid
and the geodetic latitude (¢ in Figure 1-5) is defined as the angle between the normal to the
ellipsoid and the equator at this closest point. Points with the same geodetic altitude are nearly on
the same equipotential surface. Global atmospheric models, often used to calculate drag on a
satellite Section 5.5.1, generally assume hydrostatic equilibrium and geodetic altitude is often an



x=rcos@ = ncosy +hcos(

z =rsing’ = nsinys+hsi ng

(1-9)

tam = (1—f)2 tan(

These equations can be solved by Newton-Raphson iteration or successive substitution for
geodetic altitude and geodetic latitude and s, noting that 1 is a known function of {s. Or ys can be

eliminated by that

C = [cos’p + (1 —f)zsinz(p]_ll2

noting

necosP=aCcosp and msinP=a(1-f)’Csingp=aSsing, where

and S=(1-f)>*C. The transformation from geodetic to

geocentric is obtained directly from equations (1-9).

Topocentric coordinate systems are also of
interest. The origin of the system is fixed on the
surface of the planet. For example, the location
of a satellite relative to a ground based tracking
system utilizes this frame. The fundamental
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topocentric) or tangent to the reference
ellipsoid (geodetic topocentric). In both cases
the fundamental plane is called the horizon.
The points directly overhead and directly
beneath the origin or observer are called the
zenith and the nadir, respectively. The plane,
formed by zenith and the north pole, is called
the meridian and where it intersects the
horizon is usually the fundamental line.
Coordinates of points in the topocentric frame
are specified by range (p),azimuth (A) and

elevation (a). Range is the distance from the
origin to the point. Azimuth is specified as

Zenith
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Figure 1-6. Topocentric coordinate system.



either east or west of North. Sometimes “east” is taken as the fundamental direction and azimuth
Is given as north or south of east. It is best to be explicit, e.g. 32.5° E of N. The elevation angle is
zero for points on the horizon and 90° for points at zenith. The zenith angle is the complement of
the elevation. Be aware that astronomers call elevation “altitude” and in Sonnet 116, Shakespeare
calls it “height.”

1.3 Time Systems

The above descriptions of the various spatial coordinate systems may initially leave the reader in
a confused state of mind. The situation is only slightly better for time systems. St.
Augustineand (2) the zero value or epoch i.e. like any well defined line, a slope and an intercept. In
celestial

mechanics problems, three time systems are used. These are

Universal timae or civil clock time which accounts for both the rotation and orbital motion of
the Earth with respect to the Sun and is generally the independent variable for measurements.

Sidereal time which is a measure of the rotation of the Earth relative to the vernal equinox
and locates the Earth based observer in the celestial coordinate system.

Ephemeris time or dynam ical time which is the independent variable for orbit calculations
and locates spacecraft, planets, etc. in the celestial coordinate system.

All of these times are related to the atomic time which is fundamental by international agreement.
The following description of these four systems are short versions of and in some places
approximations to the detailed descriptions given in Reference 1.

1.3.1 Atomictime

The fundamental unit of atomic time [1,40] is the Systeme International second or Sl second.
This is defined as the duration of 9,192,631,770 periods of the radiation from the transition

between two levels of the ground state of the cesium-133 atom. This duration was adopted to be
consistent with ephemeris time (Section 1.3.3). Within our current understanding of physics, the
Sl second is a fixed number. However, the definition is operational so measurements are required
to determine atomic time. Further, relativistic corrections must be made to these Earth based
measurements. The time standard that most closely follows the definition is the International
Atomic Time or Temps Atomique International (TAI). TAIl is supplied by the Bureau
International des Poids et Measures in Séveres, France. To obtain TAI an intermediate time scale
is determined by combining data from a number of high-precision atomic standard clocks. This
intermediate time scale is available in real time. After the fact, corrections are made for known
effects to achieve a time as close as possible to atomic time. This adjusted time scale is published



as the TAI.

1.3.2 Dynamical time

The independent variable in the equations of planetary motion [1,41] is dynamical time. Theories
of relativity states that this value depends upon the reference coordinate system as well as the
particular theory. Toreduce periodic contributionsand produce anearly constant duration, the
origin of the reference system is taken at the barycenter of the solar system and is called
barycentric dynamical time (TDB). On the other hand, terrestrial dynamical time (TDT) is a
theoretical time scale constructed from apparentgeocentric ephemeridesof bodies inthe solar
system.Dynamictimeinothersystemsarethenavailable by transformationsand conversely.

S



1.3.3 Ephemeristime

Ephem exis time (ET) was developed as the independent variable for Newton’s laws of motion
and theory of gravitation. ET is a uniform time scale to depict observations of bodies in the solar
system. There are three different forms of ET (ETO, ET1, and ET2), each based on more complex
models of lunar motion. There is no detectable rate difference between ET and UTC
(Section 1.3.6), but the epoch difference is updated with leap seconds. Although ephemeris time
has been formally replaced by dynamical time the two are often used synonymously.

1.3.4 Juliandate
TheJuliandate is simply a means of continuously counting the number of days from an epoch
sufficiently far in the past to precede the historical record of astronomical observations. This
continuous count is done with Julian day numbers. The first Julian day number (0) is defined as
GreenwichmeannoononJanuary 1,4713 BC inthe Julian proleptic calendar or Nov. 24,4713
BC in the modern calendar. Note: JD starts at noon! Julian dates can be expressed in UT or
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For convenience, the modified Julian date (MJD) was defined as the value of JD minus
2400000.5. MJD starts at midnight! There are a number of formula for converting from a
GregoriandatetoJuliandate. Theissueisof course howtohandlethe leapyears. Ayearisaleap
year ifitnotacentury year andisdivisible by 4. Ifthe yearisa century year, itisaleap year only
iIfitisdivisible by 400 (e.g. 1600 and 2000 are leap years while 1700, 1800, 1900 are not).The

algorithm[3,61]

A = (Y/100) B=2-A+(A]4)
1-10
JD = (365.25(Y +4716)) + (30.6001(M +1)) + D + B — 1524.5 (1-10)

is valid for all positive JD, Y is Gregorian year, M is month (3 to 14), D is day of the month

iReiuid necrexsb@ejonad. pre OVsterthiab maentbrif i cerasesfbly JI2 diartdanguanyod riahelfenyoand
addition is to assure largest integer operator performance. The symbol { x) is the largest integer

operator which is the largest integer less than or equal to x. In MATLAB use the “floor” operator.
The following inverse transformation is valid only for JD>2299161.

z=(JD+0.5) f=JD+05-z
a = ((z-1867216.25) | 36524.25) b=z+a— (a/4)+1525
Cc = ((b—122.1) / 365.25) d= ( 365.250) e = ((b — d) / 30.6001)
D=b—d-—(30.6001e) +f (1-11)
If e <14, M=e-1 else M =e-13

If M> 2, Y =c —4716 else Y = ¢c—-4715
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DOY = ((275M)|9) —-2((M+9)[12) + D30 non — leap — year

DOY = ((275M)/9) - (M +9)/12) + D-30 leap — year (1-12)

(tependseiha epiEtHbmM T RIb dHaph icanefRsMations can be found in Reference 3 (Note that this
13,5 Sidereal time

Sideveal time [1,48] is defined as the hour angle of the vernal equinox. An observers hour angle
Is the angle from the vernal equinox, measured eastward, to the observers meridian. As such,
sidereal time is a measure of the diurnal rotation of the Earth. Apparent sidereal time is the hour
angle of the true equinox as defined by the true equator and true ecliptic of date, i.e. apparent
sidereal time includes the nutation in Y and therefore includes periodic inequalities. Mean

sidereal time is the hour angle of the mean equinox and includes only the precession of Y and
therefore only secular inequalities. Apparent sidereal time minus mean sidereal time is the
equation of the equinoxes.

Sidereal time on the Greenwich meridian is called Greenwich sidereal time (Section 1.3.8).
Local sidereal time is the Greenwich sidereal time added to the local east longitude. Sidereal
time is traditionally stated in hours, minutes, and seconds with one hour corresponding to fifteen
degrees of rotation relative to the vernal equinox. A sidereal day is defined as the period of

consecutive passes of the equinox. Due to precession in Y the mean sidereal day is shorter than the
period of rotation of the Earth by about 0.0084 seconds. The sidereal day begins with the first
transit of the vernal equinox (sidereal noon) and ends with the second transit.

1.3.6 Universal time

The basis for all civil time-keeping [1,50] is known as Universal Time (UT). Universal Time is
derived from the mean djurnal motion of the Sun_and incorporates the rotational and orbital
motion ofo mer\gartﬁ Wltl‘l respect to the Sun. UTO IS rc]llete mine wectiy Iprom measurements of
fixed stellar radio sources and depends on the observer location. UTO accounts for variations in
pole location and non-uniform rotation. These effects must be considered in precision orbital
mechanics problems requiring tracking station location or any other geo-location to a few meters.

UT1 is obtained when UTO is corrected for the shift in longitude caused by the motion of the pole
relative to the surface of the Earth. UT1 is global because it is based on a mean pole location. UT1
Is not a uniform time scale due to variations in the rotational rate of the Earth. The current
definition of UT1 was created to fulfill the following conditions [1,51]:

1. UTL is proportional to the angle of rotation of the Earth in space, reckoned around the true
position of the rotation axis,



UT2 is UT1 corrected for variations in the Earth rotation rate and has a uniform rate but not the
same as TAI. The final form of universal time, Coordinated Universal Time (UTC) is used by
broadcast time services. UTC differs from TAI by an integer number of seconds and is kept
within 0.9 seconds of UT1 by the use of leap seconds generally at the end of June or December.

By definition, UTC and TAI run at the same rate.

Figure 1-7 shows a graphical description of the UTe
relevant times scales. The reference is TAI on the x- /
axis. TAl vs. TAI has a slope of 1 and intercept at D

zero. TDT or ephemeris time has an observed slope
of one but an offset of 32.184 seconds. UT1 on
average has a slope less than 1 because of a rate
difference between the rotation of the Earth and TAL.
UTC is kept within 0.9 seconds of UT1 by
introduction of a “leap second” (http:/
hpiers.obspm.fr/webiers/general/earthor/utc/ TDT=TAI+32.184s
UTC.html) as appropriate. There was a “leap

second” at the beginning of 1999 and during the rest
of the year there was a constant offset between TDT
and UTC of 64.184 seconds. This is a critical
number in celestial mechanics problems because Figure 1-7. Summary of time scales.
the ephemerides are integrated in TDT

(ephemeris time) and observations are time tagged inUTC.

TAI

uT1l

In 1999 TDT=UTC+64.184s

TAI

1.3.7 UT1, UTC and Pole Location for 1998

Recall that UT1 is determined operationally by 03
satellite tracking, lunar laser ranging and very
long baseline radio interferometry (VLBI) data
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of about 0.00005 seconds when averaged over
one day [1, 62]. Figure 1-8 shows the measured
difference between UT1 and UTC during 1998.
Since the difference between UT1 and UTC
did not approach 0.9 seconds, there was no
“leap second” in 1998. Recent leap seconds B e ————
were Jan. 1, 1999, July 1, 1997, Jan. 1, 1996. Day of the year
There have been 22 leap seconds from 1972 Figure 1-8. UT1 - UTC for 1998.

through 2005 or about every 18 months. Leap

seconds were included every year since 1972
except for 1984, 1986, 1987, 1989, 1995 and 1998-2005. A leap second will occur at the
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http://hpiers.obspm.fr/webiers/general/earthor/utc/UTC.html
http://hpiers.obspm.fr/webiers/general/earthor/utc/UTC.html
http://hpiers.obspm.fr/webiers/general/earthor/utc/UTC.html

riy aue to the 10Cation ot the pole, but continen-
tal drift and other small effects contribute to the

time difference. If the surface features of the
Earth at some instant of time are considered
fixed, then the instantaneous axis of rotation of
this surface defines the pole of the Earth. Even if
there were no external torques on the Earth, the
pole would move with respect the surface due to

— H H ; i
—4=2U240

natural precession of a torque free, rotationally IR

- - = - - X, meters .
symmetric, rigid body, as discussed in most os-sep-200oD3Y O the year
dynamiCS book. For the Earth this motion is Figure 1-9. Pole location for 1998’ X is

called the Chandler wobble after the person who  31ong the Greenwich meridian, v is west.
provided an explanation in 1891 of the observed

variation in latitude. If there were no external torques, the amplitude of this motion would be
expected to damp to zero over long periods of time due to friction in the oceans and the elastic
Earth. However continual excitation is provided by external torques due to lunar and solar gravity
and internal motions of the Earth due to seasonal variations in atmospheric and ocean mass distri-

BHtA0REre WHSHHSRH ARY AMpRIRS RN TAIRRR ST GaEE/EIARRIAPGS ImdDENEPF Hipffia. The
Exercise 1-5. Visit http://maia.usno.navy.mil and http:/hpiers.obspm.fr. Write a two page paper

on what you discovered about UT1-UTC, pole location and anything else related to this chapter.
E.g. make a plot of x vs. y pole location in meters and/or UT1-UTC for the last full year. Check
the figures above.

ichand local idereal ti

Greenwich mean sidereal time (GMST) is the angle between the Greenwich meridian and the
mean vernal equinox and would be sensitive to the same variations in rotation as UT1. Due to the
three conditions above, there is now a defined relationship between the two at midnight:

GMST1-0hUT1 = 24110.54841sec+8640184.812866T+0.093104T° — 6.2x10 °T° (1_13)
= 100.4606184° + 36000.77005T + 0.00038793T - 2.6x10 ' T°


http://hpiers.obspm.fr/webiers/general/earthor/polmot/PMOT.html
http://maia.usno.navy.mil/
http://hpiers.obspm.fr/
http://hpiers.obspm.fr/

where in the first equation the coefficients are in seconds of time, T = d/36525 is the number of
Julian centuries and d {£0.5, +1.5...} is the number of days of UT elapsed since Julian Date
2451545.0 UT1 (Jan. 1, 12h, 2000). In the second form of the equation, GMST1 has been
converted to degrees of rotation from Yy to the Greenwich meridian by multiplying the first
equation by 360/86400. The “1” at the end of GMST notates that the value is based on UT1 and
correction to UTO may be required for local observers.

Some consequences of these relationship are discussed in Reference 1. It is readily shown that the
ratio of mean sidereal rate to UT1 rate is r'=1.002737909350795 plus secular terms that affect the

now in place. Refer to Figure 1-7 where
“GM” represents the Greenwich meridian
and “LM” represents the local meridian.

Given year, month, day and clock time or
UTC in hours h, e.g. h=17.5678395 hrs:

1. Correct UTC to UT1 if necessary.
This is only required if geographic
locations to better than a few meters
are required.

2. Use equation (1-11) to calculate the

Julian date (JD) at 0 hours. Figure 1-10. Local and Greenwich sidereal time

3. Calculate T = 9D 242700
36525

Julian centuries from noon of Jan. 1, 2000.
4. Calculate the GMST1,° at 0 hours using equation (1-13).
5. Calculate the change in GMST1 since 0 hours using AGMST1°=15r'h.

6. Finally GMST1°=GMST,° + AGMST1° gives the angle from the mean equinox to the
Greenwich mean meridian.

The local mean sidereal time at east longitude A is MST(A°) = GMST1° + A°; thereby providing
the final information necessary to transform between the mean celestial and geocentric, Earth
fixed coordinate systems. Transformations to J2000 [1,99] would have to include precession
(50.290966"/year) and nutation.






UNIT I
Introduction

The description of the motion of a system of n bodies due to their mutual gravitational attraction
Is the fundamental problem in orbital mechanics. Applications range from the stability of the solar
system to the formation of galaxies. No closed form solution exists for the general n-body
problem when n is greater than two. However, it was shown by Lagrange that solutions do exist
for special cases of the three-body problem, all of which require that the motion of the bodies
takes place in the same plane. These special cases will be discussed in Chapter 4.

Before discussing the n-body problem, some of the fundamental principles of mechanics will be
reviewed. Among these are: Newton’s laws of motion, the concepts of work and energy, and the
concept of angular momentum. It is also useful to be aware of the theory of general relativity
equations of motion for the n-body problem.

2.1 Newtonian Mechanics

Newton formalized the physical laws which determine the dynamics of massive bodies. Based on
earlier work of Galileo, Kepler and others, he established three laws of mechanics and one for
gravitational attraction. These laws were adequate to predict the dynamical motion of the planets
and terrestrial objects for hundreds of years. Only after significant increases in observational
precision was it necessary to seek modifications. The laws were formulated for particles and
integration over the volume is required for application to finite bodies. The laws are only valid in
an inertial frame. It is often said that such a frame is at “rest” or moving with constant velocity.
Such a statement implies the existence of some absolute frame to which such motion can be
referred. It might be said that an inertial system is at rest or moving with uniform velocity relative
to the fixed stars. The problem has now been transformed to defining the “fixed” stars. An equally
acceptable definition is to say a system is inertial if Newton's laws of motion are valid in that
system. For practical applications, the analyst can pick a system moving through space with
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Earth s surface as inertial, provided the accelerations resulting from the translatlon and rotation of
the system are negligible compared with the acceleration of the body under consideration. The
choice of coordinate systems is purely an issue of the accuracy desired in the prediction of the
motion, there is no system that is exact and the choice is left to the analyst.

211 Laws of motion

Newton’s three classic laws can be stated as follows:



First Law: If there are no forces acting on a particle, the particle will move in a straight line with
or can be considered to be a particle if the physical dimensions are small compared to the distance

to other bodies. In Newtonian mechanics, force and position are also fundamental notions
requiring no definition. Denote by f the force vector and by v the velocity (i.e. the time derivative
of position) in an inertial space.

Second Law: A particle acted upon by a force moves so that the force is equal to the mass times
the time rate of change of the velocity.

In equation form

f=m gt = ma (2-1)

If “force” is fundamental, then “mass” is just the proportionally constant and conversely. Force
and mass can not be defined independently. The first law, which Galileo discovered by rolling
spheres down incline planes, is a special case of the second law.

Third Law: When two particles exert forces upon one another, the forces are of equal magnitude

and in opposite directions.

This law is often called the law of action and reaction. Denoting by fj; the force exerted by
particle j upon particle i, then the law states fj j = -fj ;.

2.1.2 Law of universal gravitation

Newton's law of universal gravitation was based on Kepler's laws of planetary motion

[Section 3.2] and is the force model required to satisfy the condition that the orbital period is
proportional to the 3/2 power of the semi major axis. The universal gravitation law is stated as:
two particles of mass mq and m» attract each other with a force along the line joining the two

particles and with a magnitude proportional to the product of the masses and inversely

PﬁOé‘aortionf'Tj| to the sqﬁare of the distance between the particles. Following the notation above,
IS IS mathematica 4

Iy (2-2)



Where e;; and r;;are the unit vector and position vector from m; to mj, and G is the universal

gravitational constant (6.672><1O'11 m3/kg/32). The law is known as the inverse square law. In
practice G is almost never used because observations determine the product GM to much higher
precision than G can be determined. For the Earth GM=398600.5 km3/s.

As shown in Figure 2-1, the mass m; isata

distance R from the shell center. From
equation (2-2), m . IS attracted with a force

r
r

Due to the symmetry of the problem, all
components of f normal to the line between m;  Figure 2-1. Attraction of a homogeneous

and the center of the shell will cancel, so the spherical shell
direction of the resulting force is along the line
between m; and the center of m,. By

integration it can be shown that the magnitude is

Gm;m
f= L2 (2-3)
R

Thus, the inverse square law holds for homogeneous spheres as well as for particles. This is one
example where a finite mass can be considered a particle.

Exercise 2-1. Fill in the steps to verify equation (2-3).

2.1.3 Kinetic and potentialenergy

The concepts of work, kinetic energy and potential energy are also important in celestial
mechanics. Work isascalar quantity definedasthe lineintegral of force alongaparticular path

Wy,= [f-dr (2-4)



between positions r; and ry. Note that the definition has nothing to do with dynamics, particles or
time, and implicit in the definition is the assumption that f depends only on position. The concept
can be extended to work performed by the force that produces the motion of a particle by using
Newton’s second law to eliminate f in the integral and set dr=vdt. In this case, it can be shown
that the work done on particle m is just the change in kinetic energy between the end pointsW
2 2

= (V' -v)(25)
the work defined by equation (2-4) is independent of the path from r; and rp. The work and
change in kinetic energy are functions of the end points only.

Exercise 2-3. Using only the definition, show that for a conservative force the work performed in
moving between two points is independent of the path taken to get from one point to the other.

The concept of potential energy at a point V/(r) can now be introduced as the negative of the
work done by a conservative force in going from a reference point r, to an arbitrary point r

V(r) = - Jf-dr +V(rp) (2-6)

Within an additive constant, a scalar potential can therefore be uniquely associated with every
point in space. So that the work done in going from r; to ro given by equation (2-5) can be

expressed in terms of the potential as

This implies that

rz rz
j fodr = — j dv
r r
or since ry and r, are arbitrary
f-dr = —dV

which permits the force to be expressed as the negative gradient (B-2) of the potential

f=-VV(r) (2-7)



The force is called a conservative force because total energy is conserved during the motion due
to such a force. That is, if along the trajectory r; and vj are the position and velocity at time t; and

T; and Vj are the corresponding kinetic and potential energies, then

T,+V, = T,+V,

2.1.4 Linear and angular momentum

The linear momentum of a particle is the mass times the velocity
p=mv. (2-8)

Newton’s second law is often stated as the time rate of change of linear momentum equals the
force. The moment of momentum or angular momentum is another important concept in
mechanics. For a particle of mass m at position r and with linear momentum p=mv. The angular
momentum about the origin from which r is measured is defined by

h=r X mv (2-9)

Often no distinction is make between angular momentum and specific angular momentum, 1i.e.
angular momentum per unit mass. Even though two satellites of the Earth can have significantly
different masses, if they are in the same orbit they will be said to have the same angular
momentum. This is done because, as will be seen in Section 3.3, the orbital characteristics are
determined by the sum of the masses of the Earth and the satellite and the latter is generally of
negligible mass compared to the former.

2.2 Equations of Mation

While the two body problem discussed in Chapter 3 can be applied to many cases, and has the
advantage of having a closed form solution, certain problems cannot be modeled with sufficient
accurately using this assumption, and must be solved as a general system of n bodies. Consider a
system of n bodies where each body is either spherical symmetry or sufficiently far from other
bodies that each can be regarded as a point mass. It will be assumed that the only forces acting
upon the system are due to the mutual Newtonian gravitational attraction. Let the mass and the
position of each body in the system be denoted by mass mj and rj and the vector from mass m j to

mass mj by rjj=rj-r j. From Newton's second law and law of universal gravitation, for each mass



JFI rij

where the notation j#i means the sum over all values of j excluding i.

2.3 Integrals of the Motion

Equations (2-10) are a set of n second order, non-linear, coupled, ordinary differential equations
and the solution will require 6n independent constants of integration. The constants of integration
are usually determined from the n position vectors and the n velocity vectors at some epoch. Of
the 6n required integrals of the motion only 10 are known. The relationships between these
integrals and the physical assumptionsare

1. No external forces and "action and reaction" assures conservation of total linear momen-
tum,

2. Mutual force along the line between bodies and no external torques assures conservation
of total angular momentum, and

3. Conserv%tlve fPrce field and no external energy transfer assures conservation of total sys-
tem mechanical energy.

Each of these conservation laws will now be demonstrated from the equations of motion (EOM).

2.3.1 Conservation of total linear momentum

The location of the center of mass (CM) of the system is given by

1 n
R = MZmiri
e

where M is the total mass. Since this equation is true for any time, it can be differentiated with
respect to time to get the EOM of the CM location. Performing this operation and eliminating the

r; using equation (2-10) yields R =0 . Integrating twice yields

R(t) = Vo(t—tg) + Ry
Thus the CM of the system or barycenter of the system moves with constant linear velocity V,,.
The vectors V, and R, represent six integrals of the equations of motion.

The total linear momentum, P is defined as the sum of all the individual linear momenta, i.e.
n

P Ez myv; = MR = MV, . So that the total system linear momentum is conserved.



The total angular momentum, H is the sum of the individual angular momenta. As usual, to test
for conservation ofangular momentum, each EOM is pre-crossed with the corresponding position

vector and the result is summed over all bodies. Since &(i—(rx ) =rXr, ry =—r; and

rix rii =rix ri the resultis
dH  d[ " -
T rrXmr| =0 (2-11)
dt | QX min

which represents the statement of the conservation of the total angular momentum. The three
constant components of H constitute three additional integrals of the motion. Equation (2-11)
implies that both the magnitude and direction of vector H are constant. The constant direction of
H can be used to define a plane through the center of mass of the system. This plane was called
the invariant plane by Laplace. For the solar system the invariant plane is inclined at about 1°35'
with respect to the ecliptic, between the orbital planes of the two most massive planets Jupiter and
Saturn. Except for the attraction of mass outside the solar system, the invariant plane is inertial in
Newtonian mechanics.

Exercise 2-6. Fill in the steps to verify equation (2-11).

2.4.3 Conservation ofenergy

The total mechanical energy, E is the sum of the individual kinetic and potential energies. To test

for conservation of energy, use the equations of motion to form an expression that looks like the

rate at which the forces are doing work. This is accomplished by forming the dot product of v

with each EOM and Pummmg the I’eSiﬂ&S over all bodies to get the total rate at which work is
--=1d 2 F+r) = r-r  the sum can be written as

r —
being done. Since it 2dt() 2dt(

dl1a o \
S (r - --(T+V) 0 ;
i=1

i=1j=#i



Where the first term is recognized as the total kinetic energy and the second term as the total
potential energy. Thus total mechanical energy is conserved, i.e. T+V=E=constant.

2.4 Planetary Ephemerides

An ephemeris Is a tabular representation of the motion of some body. A planetary ephemeris is
a tabulation of the motion or trajectory of a planet and a satellite ephemeris is a tabulation of the
motion or orbit of a satellite. Prior to modern computer technology and the GPS constellation, the
planetary ephemerides were published annually as a listing of the position of the planets
throughout the year. This information was very useful to astronomers and navigators. These tables
were of sufficient accuracy for most optical observations. Early tables were recorded on paper and
generally included the position and difference tables at uniform time intervals. Lagrange or other
interpolation polynomials were used to determine intermediate positions. Current ephemerides
are in a similar format but of course recorded on computer compatible media. Ephemerides can be
defined with various levels of accuracy. The most accurate ephemerides are generated using the
equations of motion from general relativity. Less accurate ephemerides are generated by omitting
various terms from the equations of motion.

24.1 General relativity

The theory of general relativity is thought to completely describe the gravitational interaction of
bodies [2]. However, the interaction is so complicated that even the one body problem, i.e. a
particle with negligible mass being attracted by a body of finite mass, has not been solved.
Approximations must be made to even write the equations of motion. For a body in the solar

system the equation of motion is given to order 1/c? as:

er vi  vf VitVi 3 rij'vj\/
[ 22 22 _+2__4 A

ri= rij ck=iij ¢ k=#jjk C ! Z(é _ (2-13)
VA + 1 [r (4v —3v v + 7 VL A Lm.
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where the last term includes the Newtonian effects of the five largest asteroids. Note that the
acceleration depends on the position, velocity and acceleration of the other bodies. Observe that

most of the general relativistic terms are of the form (v/c)2. Also note that the right hand side
includes accelerations, a phenomena that can not occur in Newtonian mechanics. This equation is
included just to demonstrate the complexity of calculating precision ephemerides.

elements. Over a century, errors in these simple models can be millions of kilometers for the outer
planets and somewhat less for the terrestrial planets. Nevertheless, they are generally adequate for
mission analysis studies and optical observations. Listed below are the orbital elements for
Venus, Earth and Mars at J2000. The complete listing is given in [3,316].

Table 2-1. Planetary Orbital Elements

Planet a e i Q) =W+ ) A,
Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973
Earth-Moon

Barycenter 1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435
Mars 1.52366231 0.09341233 1.85061 49 57854 336.04084 355.45332

The orbits elements are from left to right, semi-major axis in astronomical units [3,696] (1 AU=
149,597,870.66 km), eccentricity, inclination to the mean ecliptic (Section 1.2.2) of J2000,
longitude of the ascending node relative to the mean equinox of J2000, longitude of perihelion,
and mean longitude at J2000=JED 2451545.0 (Section 1.3.4). The argument of perihelion is (o

and }\0 = M,+® where M, is the mean anomaly at J2000. The four angles are in degrees. Note



UNIT 1i

Introduction

The relative motion of two particles under their mutual gravitational attraction is the corner stone
of the planetary ephemerides, lunar motion, the motions of planetary moons, and artificial satellite
theories. Almost all interpretations of the effects of other forces, such as non-spherical gravity
fields (Section 5.4.2), N-body gravitational attraction (Section 2.3), atmospheric drag
(Section 5.5.1), and solar pressure (Section 5.4.5), are described in terms of perturbations, i.e.
small or slowly varying changes to the two body solution [Chapter 5].

3.1 Kepler’s Laws

Using the relatively precise measurements of his mentor, Tycho Brahe, the essentials of two body
motion were determined empirically by Kepler and captured in the three simple laws:

1. Elliptic motion law: The heliocentric orbit of each planet is in a fixed plane and elliptical
with the Sun at one focus (1609).

2. Equalarealaw: The line from the sun to the planet sweeps out equal area in equal time
(1609).

3. Orbital period law: The square of a planetary period is proportional to the cube of the mean
distance from the Sun (1619).

Kepler tried for a number of years to fit variations of moving circles and ovals to the observations
of Mars, at that time the only planet with an observable eccentric orbit. It was on the verge of
quitting that he tried an ellipse with the Sun at a focus [1,141].

3.2 Integrals of the Two Body Problem

The equations of motion for two particles are given by equations (2-10) with n=2
~Gmymy(r;—rp) Mof, = ~Gmym,(r—ry)

3 ) 22 ~ 3 )

r r
where r = ry - rp defines the relative position of m; with respect to m,. With M=m4+m,, the

mlr-l =

equation of relative motion of m; with respect to m, is obtained by forming r and substituting
from the equations above to obtain the fundamental equation of motion for the two body
problem



321 Angular momentum.

From Section 2.4.2, the total system angular momentum is conserved. The specific relative
angular momentum (simply referred to as angular momentum) h = rX v is also conserved. To
test for conservation of angular momentum, it is natural to form the cross product of r with

equation (3-1) toobtainr X v. = h = 0. Clearly angular momentum is conserved for any
central force system. Since h is a vector, it represents three constants of integration and one
iImmediate implication is that the relative position and velocity vectors must lie in the plane
normal to h and through the center of mass of the reference body. This plane is called the orbit
plane. Both bodies move in the same plane which contains the barycenter of the system. Kepler's
observation that the planetary motion is planar is thus a result of the conservation of angular
momentum. The second of Kepler's laws is also derived from this result as follows. Let 0 be the
angular position in the orbital plane measured from an arbitrary reference line. The magnitude of
the angulgr momentum is the radial distance times the angular component of the veloc:|ty, I.e.

h=r di But, from elementary calculus the area sweep out in time dt is Yar de Thus,

conservation of angular momentum implies that the orbital motion will sweep out equal
area in equal time. This is a verification to Kepler's equal area law (Section 3.2.). Angular
momentum can also be written as h = rvcosy wherey is the flight path angle or angle between
the velocity and the local horizontal.

2.2  Energy.

Total system energy is conserved as seen in Section 2.4.3. The test for relative conservation of

mechanical energy is to form the rate at which the system forces aré doingworki.e. W = v-F.

Forming the dot product of the velocny with equation (3-1) ylelda
VERVAR 19_(\,,\/) _A(r-v) B

=

2 dt r3 dt'\r

sincer = r -v (B-2). This leads immediately to the energy integral

Vv
-—-=E (3-2)
2



be negative. Specifically, if initially rv" < 2 then the energy is negative. In this case, the energy
integral alone limits the motion to the bounded, spherical region r < Bl| (-E) . This spherical sur-

face is called a zero velocity surface because it is a surface that can not be crossed once the
energy is known. If, on the other hand, E =0 there are no spatial limit to the motion provided by

the energy integral. When E>0 equation (3-2) is often written as v2 = ve? + E-: Voo? + Vg2, to

show that there is a non-zero velocity as the particle approaches an infinite distance. The velocity
at infinity 1S Vo, Which is zero if E=0 corresponding to an infinite radius for the surface of zero

velocity. The escape velocity or parabolic velocity IS Ve, Which is the minimum velocity at dis-
tance r that will provide “escape” from the central body.

Exercise 3-1. Use the energy integral to show that if the initial conditions are such that r Vo = )
then the maximum distance between the bodies is 2r

323 In-plane orbit geometry

Equation (3-1) describes the three dimensional motion; but, from above it is known that the
motion is in the plane normal to h. If h=0then rand v are co-linear and the motion is a straight
line toward or away from the center of attraction. This case will be considered later. Otherwise, it
Is desirable to have a form of the EOM that only describes the motion in the plane. To this end,
cross h(#0) with equation (3-1) to get

vxh = ~E(rxn)
;
Recalling that h and r are orthogonal and using the magnitude of h from above gives

d Zé : d
= - = |?]| -
i (vXh) r3r(r ed = 1Be 4 d?[ r

de. 0O

since dt_r = eg(B-2). Straight forward integration yields

vXh= [(e +c) (3-3)

where ¢ is the vector constant of integration. It is seen that ¢ lies in the orbit plane, is
dimensionless and was obtained by the integration of a vector equation. Since cis in the orbital
plane, it does not provide three new constants of integration. As shown below c¢ provides the
direction of the line of apsides of the conic orbit and thus c only provides the fifth of the necessary
integrals. This can be seen by reducing equation (3-3) to a scalar equation by forming the dot



r= P (3-4)
1 + ecosf

where the semi-latus rectum is p:h2/, the eccentricity e = ¢ =0 and the true anomaly fisthe

angle from the line defined by the minimum r (periapsis) to the current value of r. Note that p is
completely determined by the angular momentum. For an ellipse p=a(1-e ) where a is the length

of the semi-major axis of the ellipse. Equation (3-4) is called the equation of the orbit and is the
mathematical statement of Kepler’s elliptic motion law (Section 3.2).

Exercise 3-2. Starting with the equation of an ellipse with origin at the center, £%/a2 + 1°/b? = 1,

show that equation (3-4) is the equation of the ellipse with origin at a focus and that p:bZ/a where
b is the length of the semi-minor axis.

If p#£0, the type of conic section is determined by the eccentricity. The minimum radius occurs
when the denominator of equation (3-4) is @ maximum i.e. when f=0. When e=0 the radius is a

constant so the motion is in a circle. If e<1 there is a maximum radius at f=1t, and the motion is

elliptical, If ps£0 and e=1 the motion is parabolic and the radius is infinite at f=r. Finally, if e>1
the motion is hyperbolic and the asymptotes correspond to values of true anomaly (f . ) that make
-1

the denominator zero, where f,, = cos (-1/e). There is thus a range of forbidden values of
true anomaly for hyperbolic motion. For hyperbolas, the geometric definition of p is a(e2-1) with

a>0. In orbital mechanics it is convenient to set p:a(l-ez) and let a<0 for hyperbolic motion. It is
generally clear by inspection which convention is being used. However, computers do not have
such reasoning capability, so care must be exercised in computer programs to pick a convention
and use it throughout all procedures.

Figure 3-1 shows the orbit geometry for the

elliptical case. The periapsis distance is r ,=a(1-e),
apoapsis distance ra=a(l+e), semi-latus rectum T

2 L . [ 2
p=a(1-e ) and semi-minor axisis b= ayl1-e. |
The distance from the center to the focus is ae. .

vglocity must be normal to the radius so
he=r v2:p. From above, r =a(1-e) and p=a(l- a
p P p p

e?) for elliptic and hyjperbolic motion, so fa
2 l+e

vV, = - -

P a'l—el

Regardless of the type of conic, at periapsis the
ae N r

rp>0 Figure 3-1. Elliptical orbit geometry
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Exercise 3-3. Fill in the steps from equation (3-2) to equation(3-5).

By comparing equation (3-3) and the vis-viva integral at periapsis, it can be seen that c=ee,, i.e. c
points toward periapsis and has magnitude equal to the eccentricity. So c is redesignated as e, the
eccentricity vector and is given by

e v X h

= -—e

r (3'6)

Note that the eccentricity vector is NOT a unit vector. It is well defined for all cases withe #+ 0.
Since r can never be zero, e, isalways defined. If h = r X v = 0 the conic is degenerate and the
motion is rectilinear, i.e. a straight line either toward or away from the center of attraction. In
either case e = -e;, and as would be expected the periapsis is in the opposite direction of the
position vector.

Exercise 3-4. Derive equation (3-6) starting with equation (3-3).

Exercise 3-5. Draw and annotate a sketch like Figure 3-1 for the parabolic and hyperbolic cases.
Show the asymptotes for the latter case.

3.24  Orbital plane orientation

The orientation of the orbit plane in three dimensional space and the location of the line of apsides

in the orbit plane are usually defined by the [3,1,3] Euler rotation angles [£2, i, ®]. These angles
are illustrated in Figure 3-2 and can be calculated from the angular momentum vector and

eccentricity vector. Like all three parameter representations there is a singularity, i.e. a situation is
which the angles are not unique. With latitude and longitude the singularity is at the pole where

longitude is undefined. For the [3,1,3] rotation, the singularity is when i=0 or 1t and neither {) nor
w are uniquely defined. However, the longitude of periapsis, @=£+w may still be well defined if
e #0 even though it is not an angle in the usual sense.

If h # 0, the orbital inclination is given by

h
cosi= e, e,= hZ 0<ism  (3-7)

where the h=0 case is discussed iIn
Section 3.11. Anorbitwithi<Ttt/2 issaidtobea
direct orbit. An orbit with i=1t/2 is called a
polar orbit and if i>Tt/2 the orbit is said to be a




retrograde orbit.
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e, X &

= (3-8)
|eZ X eh|

€n

The cases where this definition does not provide a unique vector (i.e. h=0 or h=he,) are discussed
in Section 3.11. The longitude of the ascending node is given by

h —h
0= X R X _ — . - y < -
sinQl= e, X eq * & T cos{)= e, eq e 0<Q<2m (3-9)
ATTX y J‘u'l X y
Which can also be written as
h, = hsinisin(} hy = —hsini ¢ os( h,= hcosi (3-10)
and provide the tradition means of determining both inclination and longitude of the node.
If e # 0 define a unit vector toward periapsis e, = e |e. The argument of periapsis is then
given by
sinw =e, - (e, Xeq) COSW =g, - eq 0<w<2m (3-11)

Equations (3-5) through (3-11) can be evaluated from the initial conditions r(t;) and v(t,) to

determine the five Keplerian elements a, e, i, £}, and w as five constants of integration. The sixth
orbital element, and last integration constant, is developed in the next section.

None of the above five integrals of the motion explicitly involve time, i.e. given a time there is no
relation above that will provide the position and velocity of the body. One approach to developing
a relation between time and position in orbit can be derived from the vis-viva integral and

conservation of angular momentum in the form )
2 2 ap o0 2 1
v =r +rf =r +

2 r a
;
giving as the differential equation for r
dr )
-= 1 L |'I_r—-+ 2@r —h* (3-12)
dt rv.a

This integral involves the square root of a quadratic polynomial and can therefore be integrated in
terms of elementary functions to yield r as a function of time. The form of the solution depends on

the sign of the coefficient of r? yielding regular trigonometric functions if the coefficient is
negative (elliptical motion, a>0), hyperbolic functions if the sign is positive (hyperbolic motion,
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for the elliptic and hyperbolic cases:

r=a( 1-ecosE) a>0 e<1 0<E<2m

(3-13)
r=a( 1-ecoshF) a<0 e>1 ~00 <F <00

A0E S WRUE TS AL PRt by S SERAMRSF NS LA YATRR'S R TRIHNEIE RuAMATe
O<E<Tt then 0<f<Tr and likewise if TI<E<2T then Tt<f<21r. Similarly for the hyperbolic eccentric
anomaly F.

From this point, only the elliptical case will be developed in detail. Since E is well defined, the

definition above can be differentiate with respect to time to yield r* = aesinEE . After this
expression and the definistion are substituted into equation (3-12) a little algebra leads to

] ] ] ] ] ] Kepler's
1-ecosEE = 4 a. This equation can be immediately integrated to yield

equation forthe elliptical case
M=n(t- T) =E-—esinE (3-14)
which provides the sixth and final constant of integration T, the time of periapsis passage. The

mean motion is denoted n = 4[] a. The time from one periapsis passage to the next is the

period, P. Since E would change by 21t during this time, P = ZrF = 21w, which is Kepler's
orbital period law (Section 3.2). In practical orbital analysis itis notuncommon for t-t to be larger
than the orbital period. Thus the analyst must be prepared for |E| > 21t. The mean anomaly Is
defined by M=n(t-T) and describes an angle that evolves linearly with time. The mean anomaly
permeates orbital mechanics but is purely for notational convenience as a surrogate for time.
From Kepler's equation, the difference between mean anomaly and eccentric anomaly is periodic

and Is never greater than the eccentricity.
Exercise 3-6. Make the substitution (3-13) in (3-12) to verify equation (3-14).

Following the same steps for the hyperbolic case and recalling that a<0 and e>1, Kepler's
equation for hyperbolic motion can be shown to be

M=n(t- T) =esinhF-F (3-15)

where n = -0 a> and if t<T then F<0. The concept of orbital period is of course meaningless
for this case, nevertheless the notation M=n(t-T) is still used. Most text do not associate Kepler
with this equation since he did not derive it. Nevertheless, to shorten terminology, both elliptic
and hyperbolic forms will be referred to as Kepler’sequation.



1+cosf 2 2 2dt

can be integrated to yield Barker’s equation
M= s
2

I = _tan

: ; (3-16)

N1 =h

1
+ _tan
|
N p 2
For notational continuity, M is also defined for parabolic motion, but the functional form is
different than in Kepler’s equation.

Exercise 3-7. Perform the elementary integration to derive equation (3-16).

In equations (3-14) through (3-16) the time of periapsis is an ephemeris time (Section 1.3.3)
epoch often defined in either Julian day (Section 1.3.4) or YYMMDDHHMNSS.SS notation.
Time must generally be carried to the microsecond level and is often represented by two numbers
to maintain such accuracy. Typical representations are (1) modified Julian date (1.3.4) and
seconds into the day, (2) year and seconds from beginning of the year, (3) YYYYMMDDHHMM
and SS.SSS form and (4) year and day of the year.

This completes the development of the classical Keplerian orbital elements for the two body
problem. For elliptical and hyperbolic motion a, e, i, ), w and T are utilized. For parabolic motion

a and e are replaced by the single parameter p. Parabolic motion has only 5 independent
parameters to define the orbit since it is known that e=1.

The trigonometric relationships between the true and eccentric anomalies can be derived directly
from the equation of the orbit, equation (3-4), and (3-13), giving for f(E) and f(F)

cosf = ©5 —% cosf = €-cosh.F.
1—-ecosE ecoshF -1
[ 2 v (3-17)
sinf = v1-e snE sinf = ~ & 1sinhF
1 —ecosE ecoshF -1

Exercise 3-8. Invert equations (3-17) to obtain E(f) and F(f) as given in Table 3-1

3.3 Orbital Elements from Initial Position and Velocity

The calculation of the classical Keplerian orbital elements (a, e, i, £, w, T) givenrand v at time t
is relatively straight forward using the equations above. Modern tracking accuracies require that
double precision calculations be performed for most orbits. The issues in calculating the orbital

elements are (1) when to assume a non-degenerate orbit is parabolic (e = 1), and any special
considerationfor (2) the circularorbitcase (e = 0), (3) thelow inclinationcase (i= 0, Tt ) and(4)



the degenerate conic case (h = 0). One approach to these issuesis given in Section 3.11. For the



major axis. The reciprocal IS used since It IS well detined even Tor parabolic orpits.

2. Calculate angular momentum and related variablesh = r X v, h,and p = hZ/ a.
3. Use equation (3-7) to determine inclination, i.

4. Use equations (3-9) or (3-10) to determine ascending node longitude, ().

5. Utilize equations (3-6) and (3-11) to determine argument of periapsis, w.

6. Finally, T, the time of periapsis is calculated using either equation (3-14), (3-15) or (3-16)
depending on the sign of z. Quadrants are determined usingrand rr’ = r -v along with

either:
2 . 1

a. sinE = L cosE = e—(l—zr) for e lliptical 0) motion.
ne

b. sinf = I'| P- cosf = P-—1 for parabolic (z=0) motion.
N0 r
Z2rr- 1

c. sinhF = . coshF = e(l—Zr) for hyperbolic <0) motion.

Return z, p, i, {), ® and T as the element set.

Exercise 3-9. From equations in Section 3.3, develop the expression for sinE in part a. and sinf in
part b.

Numerous other sets of six elements have been developed. Some of these are combinations of
Kepler elements utilized to eliminate a singularity for a particular problem. For examples,
P=esinw and Q=ecosw have been used for low eccentricity orbits, while R=sinisin{) and
S=sinicos{) have been used for low inclination orbits. Various sets of “universal variables” have

flsrethens diflived inhesasass el sitkoseplbdiireeaypes nf terbitsoft dbstieRmaOfrabtiod YTing Tievt
simply branching and using the equations above. However, the classical elements provide
physical insight into orbit geometry and are adequate with careful handling of degenerate or
nearly-degenerate cases as discussed in Section 3.11.

3.4 Solution of Kepler's and Barker's Equations

If the position and velocity are given at some time t, then either Kepler's or Barker's equation can
be used to calculate the time of periapsis. On the other hand, these equations are transcendental
functions of the anomalies. So if the orbital elements are given and position and velocity at time t



Referring to (o-16) letb =5 | 3:(t— T)= oM A=l \|:’> F 417D / then the solution
Np
to Barker's equation is

tan éf-: N (3-18)

1+A+A
Exercise 3-10. Verify that equation (3-18) is a solution by substitution into (3-16).

For the elliptical motion case there are two popular approaches to solving Kepler's equation. The
first is successive substitution

Ey . 1= M+esinEy (3-19)

and the second is Newton iteration

E M —E, + esinE,

cr1 =Bt (3-20)

1 —ecos Ey
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Newton iteration. Colwell [4] provides a history of solving this equation. Successive substitution
IS easiest to implement but can require 10 or more iterations even for e<0.1 and may not converge
for e>0.8. The traditional starting value is E; = M, but Newton’s method can become unstable due

to the denominator being small when |M|<m/6 and 0.95<e<1. However, with the proper starting
condition Newton’s method will converge in less than five iteration for all M and any e<1 [3,181].
Danby [2,152] suggest an initial guess of E; = M+0.85 e sign(sin(M)) which will converge in six

or less Newton iterations to eleven decimal placesfor0 <e < 1.

Exercise 3-11. Implement both equation (3-19) and equation (3-20) with different starting
conditions and evaluate the convergence properties for 0<M<2Tt and 0.05<e<0.95. Write a 2-3

page paper on the results. Use the starting values above and consider equation (3-23).

For the hyperbolic case e>1 so that successive sub1 itl(Jtion )must ke the form
n(t—-1)+F,

e
to assure convergence. Recall that inverse/hyperbolic functions can be written in terms of
1 ' 2

x = log\x + J1+x/|.

Fn+1: Slnh

logarithms, for example, sinh

3.5 Position and Velocity from Orbital Elements




b.) Determine the eccentricity from p and z.

c.) Solve Barker’s or Kepler’s equation for the anomalies, -t < f, E < Tt or F as appropriate.

d.) Calculater, r andr©

e.) Determine the position vector using the [3,1,3] rotation [(), i, w+f] starting with (r,0,0)

f.) Determine the velocity vector using the [3,1,3] rotation [(), ® _ .
I, +f] starting with (r ,E) ,0)

The explicit transformations are

cosBcos() — sinBsin{)cosi
r=re. = rlcosOsinf) + sinBcoscosi (3-21)
sinOsini

. . : . .| — sin@cos () — cosP sin().cosi
r=re+r0Bey= "&" r0]_sind sin Q + cosBcosQcosi (3-22)

cosOsini

de
where 6=w+f corresponds to the third rotation. Note that eg = P E)r :

3.6 Expansions for Elliptic Motion

In the era of analytic solutions it was often necessary to make approximations to arrive at any
solutions at all. Taylor series expansions are a familiar tool. For periodic orbital motion the
Fourier series representations are generally more useful and there are numerous such
representations in the two body problem. These are developed in detail in a number of reference
books [1,206], [5,33], [6, Chapter Il] and will not be developed here. Such expansions are useful
for making initial estimates for iterative solutions, for obtaining approximate solutions, for
making order of magnitude estimates, and in orbit perturbation problems (Section 5.4.1). A few of
these expansions are given below to terms through eccentricity cubed. The inversion of Kepler's
equation yields

® sinkM
E=M+2 J (K -
kz_:l k( e) K

where Ji. are Bessel functions of the first kind of order k. Bessel invented these functions for the
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In this equation and those below, any term in square brackets [] is a truncated infinite series.
Within the radius of convergence, the complete expansion could be used to solve Kepler's
equation without iteration. But, this is impractical since iteration is faster. Nevertheless, the first
fewtermscanbe usedtoobtainafirstestimate for the iterative solution. Itisto be noted that this
series does not converge rapidly for large eccentricity. A similar expansion for r

2 2

3
r e 3e e 3e 4
- =1+ -—[ — -]cosM—[ -}cosZM—[ -}cosSM +0(e 3-24
a 72 A 2 8 (€) (3-24)

can be used to directly estimate r(t) without solving Kepler's equation. Since integration of M

over 2Tt is the same as integrating over an orbital period, note that the mean value of r over an
orbit in not a. The expansion for true anomaly is also a double infinite sum [1,212]

’ 56 13¢> 4
f=M+ |26 ﬂsinlvl + [ 4-} Sin2M + [ 1;-]sinswwo(e ) (3-25)

If e <0.01, as is common for LEO and many other satellites, the last two equations can be used to
calculate the position and veloci(tjy to six significant figures without solving Kepler's equation.
[

Two additional series will be used in Chapter 5.
.3 3 2 £ cos2M+r 2 ®) (3-26)
cosf——-e+[1_ e}cosM+[] [e}cosBM+Oe
a 2 8 2 8
r 5 2 32
Zinf = [1_ e }sinM " [ﬂ sin2M + [ée }sin 3M + 0(e) (3-27)
a

3.7 F and G Functions

The solution of equation (3-1) can be written as a Taylor series expanded about some time t, with

: 1.
initial conditions ro and v, ie. r(t) = r(t)+r(t)(t—t)+ —Zr(to)(t—to) + ... Second and

higher order derivatives can be eliminated using (3-1). Following Danby [2,163], let o = [ 3
r0

3
and € = ry[r,, then ¥y = — and it can be shown that ?’L{ = 30¢er ,—0Ov, etc. So the
or, dt”|,
series can be written [2,437] in terms of r and v and constants o, € and & = (v /r ).
0] 0 00

0] 3

() = [1—§(t—t0)2+(:§(t—t0)3+ --]ro+ [(t_to)_é(t— L) + ...]VO



of convergence. Thus the position and velocity can be written as
r(t) = F(tty)ry+ G(tty)v, v(t) = F(tt)r, + G(tty)v, (3-28)

Since r(t) X v(t) = r(t,) X v(t,) = h, FG—GF =1 andalso note that these equations are

valid component wise, i.e. X(t)=F(t,t;)X, + G(t,t,)Xo. Because of slow convergence, this form has
had limited utility except as a basis for analytic approximations over short times. A more useful
form can be obtained by first introducing the orbital coordinate system (€, 1, (). The origin of
this system is the center of attraction and the fundamental plane is the orbit plane, i.e. the C axis is

along h. The & axis points to periapsis to define the fundamental direction and the 1} axis
completes the right hand system pointing in the direction of the velocity at periapsis. The
following relations can be developed from the above

¢ =rcosf = a(cosE-e) d§ _—nasinf _ na® SinE
dt ,\;!1 62 r
E— 2 [T 2 (3-29)
J o2 dn na(cosf+e) na“y1-e” cosE
n=rsinf = a 1-e sinE = f— 2= + -
Nl—e

Equations (3-28) are independent of the particular coordinate system chosen and so are equally
applicable to the orbital system, i.e.

&= F(t,t,)E,+G(t t.)o N.= F(tt,)n,+ Gt t, )Mo (3-30)

If )¢ and &; are considered as being known, then these equations can be thought of as two
equations in the two unknowns F and G so that

F(tt) = l[Etr'lo—nt%o] G(tt) =

M& -&n | (3-31)
0 h t o t o

> I

where it is noted that the determinant of the coefficients of F and G is the angular momentum,
h>0. Similar arguments can be made for the velocities. The states in the orbital coordinate system

can be eliminated in favor of either the true or eccentric anomaly using equations (3-29) to yield

Ftt)=1—"[1—cos(f—f )] =1+*cos(E-E )—1]
0 p 0 rO 0
", 1
Gltty) = | -sin(f—f,) = (t—t))+ -[sin(E-Ey) - (E-E,)]

2
. h —na
Ft,t,) = pz-[sin(f—fo)+e(sinf—sinfo)] = rro'Sin(E_Eo)

(3-32)



at the respective times to obtain E and E,. The orbit position can then be propagated from any

time t, to any time t using (3-28). The three Euler angles (£}, w, i) are not required in this
approach.

Exercise 3-12. Utilize equations (3-29) through (3-31) to derive the first line of equations (3-32).

3.8 Coordinate System Rotation

The (3,1,3) rotation matrix & from the orbital coordinate system p = (§,1m,¢) to the r=(x,y,z)
system(r = ®p), where

cos{lcosw — sin{)sinwcosi —cos{)sinw — sin{)cosw cosi sin{)sini
® = |sinQcosw + cosQsinmwcosi  —sinfsinw + cosQcosweosi  —cos Qsini|  (3-33)
sinwsini coswsini COoSI

can be determined directly using the spherical trigonometry relations given in Section 1.2.1 or

from the multiplication of the three rotation matrices (B-1).
3.9 State Propagation

Mapping or propagating the state at time t, to some other time t is one of the most common
problems in orbital mechanics. For two body motion, two common approaches are

1. Transform the state at time t, to orbital elements at t, and then transform the orbital ele-
ments to the state at time t. This process would use the X20RB and ORB2X procedures
developed for the toolbox. This approach will also permit inclusion of secular and long
period variations in the orbital elements due to perturbations to be discussed in Chapter 5.

2. Determine only a, e, T an d E° from the state at time to. Solve Kepler's equation at time t for
E, evaluate F, G, F and G, then use equations (3-28) or the parabolic or hyperbolic equiv-

alents to determine the mapped position and velocity. Unless orbital elements are specifi-
cally desired or orbital perturbations must be included, this approach is the preferred
method and utilizes the X2X procedure developed for the toolbox.

3.10 Degenerate, Circular and Nearly Parabolic Orbits

Numerical calculations will generally not exactly satisfy the conditions for determining the orbital
elements for degenerate, low inclination, zero eccentricity, or parabolic orbits. When the



. The zero inclination case has a similar problem in that the line of nodes is poorly defined by (3-
9) because hy and hy are nearly zero. Finally, degenerate conics, i.e. h=0 can occur for elliptical,
parabolic and hyperbolic orbits. As seen from (3-6), all degenerate orbits have unit eccentricity
and the eccentricity vector is in the opposite direction of the position vector. For degenerate
orbits, (3-4) is not valid and true anomaly is undefined. However equations (3-13) through (3-15)
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these cases. The tolerance parameter “tol” is analyst supplied and depends on the accuracy
requirements of the problem and the computer. For double precision 1e-8< tol < 1e-10 might be
considered.

» If |zr| < tol the semi-major axis is very large compared to the initial position so set z=0to
assure parabolic motion.

« If e <tol, put periapsis at the initial position i.e. set e= e,and T=time of the initial conditions.

If p/r < tol, set e =-e,, f = -m, and p = 0. For parabolic motion, use the results of Problem 3-1 to

determine T; otherwise, use E or F calculated from equation (3-13). Use r to remove ambiguities.
There are a number of options for ascending node and inclination for rectilinear orbits. One option

is to set eQ= ex and select e"to assure the orbit plane passes through e". Another option is to set
i=Tt/2 and tan{)=y/x.

« If1-|cos(i)| <tol, seti=0or Tt and eq= €xOren= ¢&.



Some of the following relations are not valid if p=0. For hyperbolic orbits a<0.

Table 3-1. Two-body Problem Relationships

Variable Ellipge a>0) e<1 Parabola z=0, e=1 Hyperbola a<0, b<0, e>1
71 20 1 20 2
5 7| - -— - = -+ VOO
v r a r ra r
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| I 3
\ a3 Np W aS
_ 1 f 1 Jf _
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cos fsinf COSE—e_ 1-esinE, cos f, sif e-CoshF_ e —1sinhF
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3-1.

3-2.

3-3.
3-4.

3-5.

Starting with equation (3-12), derive a form of Barker's equation (3-16) for degenerate
parabolic motion.

Show that for small [t-t,|, equation (3-32) reduces to the expected limit.
Develop the equivalent of equations (3-32) for parabolic orbits.
Develop the equivalent of equations (3-32) for hyperbolic orbits.

Verify the ®(2,2) term in equation (3-33) using spherical trigonometry relations.

3.14 Astronautics Toolbox

Write a procedure that returns the rotation matrix (3 by 3) for an arbitrary [3,1,3] set of rota-
tions [a,3,y], P=Rotate313(a,[3,y,ichk).

Write a procedure to solve Barker's equation (3-16), f=Barker(t,t ,p,,ichk). Assume t is (n by
1).

Write a procedure to solve _Keﬁ er's equation (3-14) for elliptic motion using Newton-Raphson
iteration, E=Kepler(M,e,tol,ichk) . Assume Mis (n'by 1) and “tol” is the relative error in E for

convergence.

Write a procedure to solve Kepler's equation (3-15) for hyperbolic motion using Newton-

Raphson iteration, F=KeplerH(M,e,tol,ichk) . Assume M is (n by 1) and “tol” is the relative
error in F for convergence.

Write a procedure to transform from rectangular coordinates to orbital elements for any type
of motion. [OE]=X20rb(t,r,v,Z,ichk), where r and v are given at a single time t and OE is the
six vector (z,p,i,{2,w,T).

Write a procedure to provide position and velocity at an array of times for any type of orbit.
[r,v]=0rb2X(t,OE,Btol,ichk) where t is (n by 1), OE is the six elements used above, and "tol"
is the relative accuracy for convergence of Kepler’s equation. Output position and velocity are
both (n by 3).

Write a procedure, using the F and G function approach, to transform from an initial state at
time t; to states at an array of times t. [r,v]=X2X(t,t;,r1,v4,Bltol,ichk), where, t (n by 1) and
adv are (n by 3).



UNIT IV

Introduction

The three body problem has been of considerable interest for centuries because the Earth-Moon-
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Earth and the Moon. Even for this system, requiring 18 integrals, a closed-form solution of the
general problem does not appear feasible and there are no known integrals beyond those
discussed in Chapter 2. The three body problem was recognized by Poincare as being what we
now call a chaotic system, i.e. the characteristics of the motion are very sensitive to the initial
conditions. There exist, however, particular solutions of the three-body problem obtained by
Lagrange in 1772, which will be discussed later.

4.1 Restricted Problem

Of interest in the problem of three bodies is the special case in which the mass m of one of the
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problem and can be assumed to be known. The problem is further restricted by considering the
case in which m; and m, move in circular orbits about their barycenter with constant angular

velocity w whereas the infinitesimal mass m moves under the combined gravitational attraction of
both m; and m,. Under these circumstances, the problem is reduced to the investigation of a 3-

degree of freedom (DOF) system. This problem is called the restricted problem of three bodies.
If m is further restricted to the plane of motion of m; and my, there is a 2-DOF system.

The classical coordinate system has the origin at the barycenter and the fundamental plane is the
plane of motion of the two finite bodies. From equations (2-10) the equations of motion are

p_pl c p_pz -1
L= - 1.Gm2 - -
P Gm 1 Po1 Po2



where pgj is the distance from m to m; and p;j is
the position vector of m;. Select as the unit of y y
length the constant distance between mq and
m, and the unit of mass so that m{+m,=1. It is

readily shown (Section 3.3.5) that the mean
motion of the two finite masses is unity, i.e.

n=w=1.

Now transform to a rotating coordinate system
so that the two finite masses remain on the X
axis. Let r be the position vector in the rotating
system, then the transformation is

costx —_SIZr;/t :Ox ) [E]_ m[ -‘

y+2x =y—(1- 1) 5— 3 (4-2)
rnn
y y
= _ _ —|? 3
Z (1 )rﬁl rz

where wolog i < 0.5 is the normalized mass of my, x;=- is the location of m; and x,=1- is the
location of m, on the x axis, and rjis the distance from m to m;. These equations can be written as

._0du
x -y =9 y'+zx-:g_‘yJ 7= (4-3)

where the pseudo-force function is definedby

Xy 1o
-+ -+ - (4-4)
2 r rs

U =

The latter two terms come from the gravity potential and the first term comes from the
“centrifugal potential.”

Exercise 4-1. Fill in the steps from equation (4-1) to equation (4-2) for the x-component
Exercise 4-2. Verify that equations (4-3) and (4-4) are equivalent to equation (4-2)

The only integral of this system is an energy type integral discovered by Jacobi. To seek an



energy integral, multiply each of equations (4-2) by the corresponding velocity component and
add the three equations. The sum is integrable and leads to Jacobi's integral
2 .2 .2 2 2 2 2(1-B) 20
X +y +z =v =2U-C=x +y + -+ --C (4-5)
ri r2



The constant C is called Jacobi's constant. Although this is the only known integral of the six
required, ithas proven very useful instudying orbital motion in systems that can be approximated
by the restricted problem.

Exercise 4-3. Fill in the steps to develop equation (4-5) starting with equation (4-2).

411 Jacobi’s integral and Tisserand's criteria

It is believed that the Oart cloud is the source of observed comets. This cloud is well outside the
subsequently escape the solar system. Observed periodic comets will therefore be in orbits with
eccentricities near unity and large semi-major axes. Most of the orbital period is spent in the outer
part of the solar system, otherwise the comet would have long ago been destroyed by the Sun's
radiant energy.

If the elliptical orbit of a comet is unperturbed by one of the planets, subsequent appearances of
the comet can be identified by the two body orbital elements about the Sun. On the other hand, if
the comet is perturbed by a single planet then Jacobi's integral can be applied to the Sun, the
perturbing planet, and the comet three body system so that the comet can be identified by Jacobi's
constant. Tisserand found a simple way of relating Jacobi's constant to the Keplerian heliocentric
orbital elements. Transform Jacgbi's|integrdl back to th? non-rotating (§,1,() system to get

dg|z {dnf? (dC|> | dnq dE| 2(1- @), 20

AU AU -— -] = -— 4-6
Vil el A\l 2\ g Nl P Pos (4-6)
where pg; is defined above. For planets p<<1 so that the first three terms can be interpreted as the

velocity relative to the Sun and the next two terms as the ¢ component of angular momentum
relative to the orbital plane of the planet about the Sun.

Exercise 4-4. Fill in the steps to develop equation (4-6) starting with equation (4-5)

Using the vis-viva integral equation (3-5) and h® = a(1- e2) reduces Jacobi's integral to

2-—1-—2N,fa(1_e2).cosi = 2.4 2—C

Pop @ Por  Po2

where 1-u has been set to unity on both sides of th7 equat\on. If Jacobi's constant is evaluated

\2

when the comet is far from the perturbing planet 8 -« :-[
2

| this equation becomes

1 f N
-+ 24/a(1-€")cosi= C
a



Evaluating this relation before and after the encounter with the perturbing planet yields
Tisserand's criteria

zil-+ 2, /a1 (1-¢*)cosi = 5;1-+ 2,[32(1-€") cosi (4-7)

1 2



for the identification of comets that have been perturbed by a single planetary encounter. Based on
the before and after heliocentric orbits, the planet at which the close encounter occurred can
generally be identified. If not, since the semi-major axis and inclination in the equation
areThe value of C in equation (4-5) can be determined from a set of initial conditions. If C>0
equation (4-5) places a constraint on the possible spatial locations of the trajectory. In particular,

motion can only occur in regions where v = 0. Recall that equation (3-2) limits the possible
spatial locations for the two body problem. For a given C the surface defined by v?=0 is called the
zero velocity surface. Motion can only occur on one 'side' of the zero velocity surface.

From analytic geometry, a single equation relating the three spatial coordinates x, y, and z defines
a two dimension subspace. For example, x>+y°=R? defines the surface of an infinite circular

cylinder of radius R with the z-axis along the center of the cylinder, while x2+y2<R 2 defines the
2 2 2

three dimensional space inside the cylinder. Similarly, XZ- + y2_ +Z

a b ¢

ellipsoid with principal axes a, b, and c along x, y and z.

= 1 defines the surface of an

Moulton [1,281] provides methods for calculating and an extensive discussion of the zero velocity
surfaces. Figure 4-1 shows some of the zero velocity contours in the plane z=0 for p=0.25 and

From equation (4-5) it is seen that motion can only occur in a region where

2 2 2(1-0@) 20 4-8
X+y+ ( 2+ - >C (4-8)
r rs

For example, if the initial conditions have

z=z =0 and result in C=5, then motion is
confined to the x-y plane in the nearly
circular region about either mass or to the
region outside the C=5 outer contour. If
one wanted to design a trajectory that _
goes from a point near mp to mp, then C 0
must be less than about 3.87. Similarly, if
the 2-d motion of m is initiated near either -1}
mass and C>3.56 then m can never
escape from the figure-eight region _ ; . ;
defined by the C=3.56 contour. Finally, Z3 -2 -1 0 1
applications of Jacobi's integral like the

=10

=

\
/

Cirvitro 1 1 7orvn yvalarityr rontntire 11—N 2K



above are most useful for defining where

motion cannot occur. There is no

guarantee, that for a specified value of C, an actual trajectory exists between every two points in
the region bounded by the C contour.



Lagrange discovered that there were five equilibrium points for the restricted three body problem.
These positions correspond to solutions (X, y, z) to equations (4-2) when the velocity and
acceleration terms are zero. In the inertial system, the particle at such an equilibrium point, would
be in a circular orbit about the center of mass of m; and m,. At an equilibrium point,

equations (4-2) can be written as

e NN AR x.\l g, 17(1)¥ 1-) - 0

3 3 3 3 3
rq I rn\N; g Iy
1- ‘
y -+ 5—1 = O (4-9)
3
n I
—
z‘ -+ -1 =0
3 3
rrn

The first equation is factored in two ways for later use. The third of these equations implies that
all equilibria must be in the x-y plane. The second equation admits to two types of solutions, y=0

and ry=ro=1. Solutions with y=0 must therefore be on the x-axis and satisfy the condition

X—X X—X
fx)= x-(1- @) - --B7 72

5=0 (4-10)
|X—X1|3 |X_X2|

The zeros or roots of f(x) are the equilibrium points. Note that f(x)>0 for sufficiently large and
positive X. As x becomes smaller and approaches x,, the gravity potential term for m, dominates

and f(x,")<0. Thus there is exactly one equilibrium point with x>x,=1-p denoted L,. When Xis
slightly less than x this potential term still dominates but is now positive so f'(x 7)>0. But as x
2 2

. . . + .
becomes smaller and approaches my, this potential dominates so that f(x, )<O. Thus there is
exactly one equilibrium point between the two masses called L. By the same arguments, there is

exactly one equilibrium point with x<x;=-p called L3. These three equilibria are called the
straight line solutions since all three masses remain in a line. Moulton [1] provides power series

expansions in 321 for calculating the locations along the x axis for L1 and L2. Retaining only the

first term in the series, the distance from m, to L1 and L2 is p, = 3»J/3. Likewise, if

«1, p; = 1—p, is the distance from m; to L3. Newton-Raphson iteration works effectively for
finding the roots of equation (4-10) if 2l has a numerical value.



x-equation for equilibrium. These two points, | % B, +"~*2-, 0/, are called the equilateral triangle

solutions and denoted L4 and Ls. In Figure 4-1, L; is where the C=3.87 contour crosses itself
between the masses, L, is where the C=3.56 contour crosses near x=1.2, and L3 is located where
the C=3.25 contour crosses near x=-1. L and L are inside the C=2.82 contour.

4 5

The Lagrange solutions of the restricted three-body problem are of more than purely academic
interest. If the Sun-Earth system is considered, satellites have been located at L4 [2] to permit

measurements of the solar wind before it arrives at the Earth and produces changes in the
ionosphere and the geomagnetic field. The ionosphere is important for low frequency radio
transmission and over-the-horizon radar. Disruptions in the ionosphere can be very dramatic
during solar storms. Further, the electrical power distribution system, on numerous occasions, has
had major black outs over large geographical areas when the geomagnetic field has changed
drastically during a solar storm. One astrophysical phenomena which has been attributed to these
solutions is the Gegenschein (counterglow). The Gegenschein is a faint glow observed at night in
a position exactly opposite the sun and may result from reflection of sunlight off dust that is near
the Earth-Sun equilibrium position L.

For the Sun and Jupiter system, there are a number of asteroids, called the Trojan asteroids,
oscillating about L4 or Lg. For the Earth-Moon system there have been numerous studies of

placing a relay satellite near L, but sufficiently far away that the satellite could be seen from the

Earth. Though not at the equilibrium point, the unbalanced forces acting on the satellite would be
small and this position would require limited station keeping propulsion. There are “halo orbits”
about these equilibria that have been exploited for various scientific purposes [2]. There was also
a report in the early 1960's that clouds of dust were observed near L 4. This dust was attributed to a
contemporary meteor impact on the back side of the Moon. Though these observation were never
independently confirmed, numerous simulations were performed to study the possibility.

4.2.4 Stability of Lagrangepoints

After determining the existence of equilibrium points, the next issue is to determine the stability
of each point. Only linearized stability will be considered here so that no conclusions will be

drawn about global stability. Let (Xo, Yo, Zo) be an equilibrium point and (§, 1, ) be small

deviations from equilibrium, i.e. x=+x,, y=m+y, and z=(+z,=C. Linearizing equations (4-3)
about the equilibrium point yields

E_Zf] = Uxxz + nyT] + szZ
N+28 = U, &+ Uy, M+ UL (4-11)



so the solution is a sum of exponentials. The characteristic equation, which completely defines

the dynamics of this system, is obtained by substituting £(t)=E.e™ n()=1.e™, {(t)=CeM into
equation (4-11) and seeking non-trivial solutions. Before performing this operation, note that U
has continuous derivatives (except at two uninteresting points) and is symmetric in z, therefore
U,x and U,y vanish in the x-y plane. In this case, equations (4-11) shows that the perturbed

motion in the z direction is uncoupled from the motion in the x-y plane and reduces to

¢=¢ +‘”iz =0 (4-12)

zz|Z=0

21—
where w, = hh 3> 0. At all five equilibrium points, motion in the z direction is uncoupled
. n
and harmonic. Also note that at L, and Ls w,=1, which is the same as the mean motion of m; and
m,, so that z-only linearized motion produces a closed orbit in 3-d inertial space as well as in the
rotating system. In the inertial system, the motion describes a nearly circular orbit with a small

inclination to the x-y plane.
Exercise 4-8. Starting with equations (4-3) develop the & component of equations (4-11)

The characteristic equation for perturbed motion in the x-y plane is obtained from the first two of
equations (4-11) and reduces to the bi-quadratic

4 2 2 _
AT+ (4—UXX—Uyy)?\ +Uxnyy_ny =0 (4-13)
(4-14)
where all of the coefficients are evaluated at the particular equilibrium point under study. For
2 2

staRlfigolutionsas. must be pure imaginary so that A  must be negative. Let y=A  and write

v2+bv+c:0

From the quadratic formula it is clear that the roots will be negative only if b>0, ¢>0 and b 2>4c¢.
For any of the straight line solutions y=z=0 and by symmetry U,,=U,,=U,,=0. Unfortunately,

symmetry arguments are not applicable to the two remaining terms and analysis must be
performed to show that U,, = 1+ 2w, and Uy, = 1- w2, s0b=2-w,?andc= (1+2(1)22)(1—(1)22).
The sign of ¢ is determined from the sign of 1- oozz, which from the second form of the first of



2 (1-BE 1 1|
1- w, = x |13 3
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For L; and L,, x>0 and both points are closer to m, than m4 so ¢ will be negative at these two

goint%. At L3 x<q.and L3is ctog?r to m1 than m2 so c is also negative at this point. Thus allof the
traighit lin€ solutions are unstable.

Exercise 4-9. Starting with equations (4-11) develop equation (4-13)

At L4 and Lg, w,=1 and the x-y characteristic equation (4-13) reduces to

vV +V
4 4

24492 +27(1— @) V2 +27(1— _): .

By Descartes rule of signs there are no positive roots and either 0 or 2 negative roots for v. So if
there are real roots they must be negative. Using the notation above, the condition for stable

motion is b2>4c which reduces to 1

1 o3
<= |
_ T 2003852
274108 25.96

Thus, the trianale equilibrium points are stable if the primary to secondary mass ratio is greater
than about 24.96. All Sun/planet and planet/moon pairs in the solar system satisfy this criteria
except for Pluto/Claron. Finally, it must be remembered that any particular Lagrange point may
not be stable when other forces are included in the equations of motion or the motion of the
primaries is not circular.

~ - -
~

4.2 Finite Mass Particular Solutions
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all three bodies occurs in the same plane but the distance between all three of the bodies can vary
with time. From equations (2-10) the equations of motion for three bodies are

?
3j

= _Z sy 17123 (4-15)

i Tij

where pi=Gm;. Wolog let the origin be at the barycenter so that



The generalization of the L, and L5 equilateral triangle

solution is to seek solutions where the three finite mass m;
bodies form the vertices of an equilateral triangle at all

times. However, the length of a side of the triangle is

Bofutltic SRt SO0 be th Bt tidtandt b¥tibed

the bodies as shown in Figure 4-2. Further let

M=H1+Mo+H3. Then the center of mass relation can be m,
written as BIr; = Bl(r,-r,) + Bls(r; - r5). Using this
expression in equation (4-15) and to determine ry (p) Figure 4-2. Equilateral triangle
yields the equation of motion for m; solution configuration.
. 'y
r

3/2
+EE + B
where M1 = € 2 l% 3 - Is a reduced gravitational mass. Equations of motion for the
other two masses can be obtained by cyclic permutation. This is of course the equation of motion
for a particle about a center with gravitational attraction M; and located at the origin. Thus the

motion is a conic as studied in Section 3.3.3. The rest of the development assumes elliptical
motion, but the conclusions are equally applicable for parabolic or hyperbolic motion for the three
bodies.

Exercise 4-10. Verify equations (4-16)

For the three bodies to remain in an equilateral triangle configuration the initial conditions must
be chosen so that the masses have the same period, i.e.

Ml _ M2 - 3

3 3 3

ap dp dg
Hence, if the period of one mass is specified, the semi-major axis for each orbit can be calculated
from the above. Also the angular rate must be the same so that the angles between the masses as

measured at the center of mass remain constant, i.e.
h, h, _ hs

2 2
where h? = Mp. This condition requires each mass to have the same true anomaly at any
| 11

specified time. Thus all masses are at the periapsis of their respective orbits at the same time. At



where P is the orbital period common to all masses. The multiplier of P on the right is a monotone
function of eccentricity on the interval (0,1), so the eccentricity of all three orbits is the same.

In summary, the dynamics of three finite bodies in an equilateral triangle configuration is
completely defined by three mass values, an orbital period, an orbital eccentricity, a time of

peUapM® Ressadgtidie i drdaii e ebtnel erbiiplaten JndtBEardddDamis(ef 2BE1apsis that differ by

4.3.2 Straight linesolution

To investigate the conditions for planar, straight line solutions, assume wolog that the plane of

motion of the three masses is the x-y plane and the barycenter is at the origin. Let O define the

location of the line of centers in the plane, r;define the location of each mass along the line of

centers relative to the barycenter, and r ? be the location at the initial time t,. For the barycenter to

remain fixed, variations in position along the line must keep the ratio of distances from the center

of mass constant. So introduce the time dependent variable p such that ri(t) = p(t)r °. Withe being
1 r

the unit vector along the line of centers, r; = pr % . By direct differentiation the familiar
I r

expression )

: ' 2.0 1 © 0

rn=_Cp-pH )rier+"?p é)fiee
pdt

Is derived. Substituting into equations (4-15) gives for mq

2 g Gpor) B(r-r)]1 M
p-pb = S0 03% 0o oépiz_ z
£ PR L P p (4-17)

d, 2
C(0%0) -
dt(P ) = 0

These are of course the equation of motion for the two body problem; Since P Is dimensionless,
M has dimensions of an angular rate squared, so denote M; = w; . Angular momentum for
each mass is again preserved. The equivalent mass or mean motion in the radial equation must be
the same regardless of which mass is used to derive the equation of motion for p, i.e. M1=M,=M3

and w;=w, 1=1,2,3. If three initial positions are specified consistent with the barycenter location,
then the period of the motion and the initia(l) veI(c)Jcity for M can be obtained from

0 — _
wr’- [ r2-r15—3 rs r13_ 0
G O| . (J)J_
ro—r4 rg—r

and the other two initial velocities can be obtained by cyclic permutation. Multiplying each




X T Xy T ld3Xg = U

X=X
2 1 3 _
I3 -
Xy —X
r23

where for notational simplification x = ° _
i I';. Wolog let x1<x,<X3 and select the unit of length such

that r{,=1 then equations (4-18) reduce to
Byx; + By(1+x;) + Boxg = 0

B, + % §+w2x1:0
(X3—X1)
_m,+ 5 -2+oo2(1+x1):0
(X3—x;-1)

Using the first equation to eliminate x3 from the second and third equations and then eliminating
w? between the remaining two equations yields

2 2
(Xl + B, + 3) (Xl + 2) [2 + (1 + Z)Xl] (4-19)

2 3
B (1+x,)(Bx + B, + 1) - [x 4 (Bxy + 7,)?=0

where p=p+Ho+3 IS the total gravitational constant. A little algebra will show that this quintic
equation for x; has all positive coefficients. By Descartes rule of signs there are no positive roots
and one, three or five negative roots. This result does not provide much new information since it

is already known that x1 must be negative. However, if x1 is eliminated from equation (4-19) in
favor of X4, = X5 — X, Using
Ax, + B, + B + Blyxg, = 0

then it can be shown that x3, must satisfy

5
(B, + 2)X322

— (B +3@)
2 3" X32

4
+ (30, + 20, )x4, + (30, + 2,)x3

(20 +38)x (B +B) =0 (4-20)
o 2 3 32 2 3



value oT (0 can be obtained by elther the secona or third of equations (4-13). I'hree solutions to
equation (4-20) can be obtained by cyclic permutation; but, these are the same as simply
rearranging the mass values. After the x; are found, the solution can be scaled to real dimensions.

Initial velocities can be calculated from the equations above. Perhaps the simplest approach is to
selectr°= a sothat (1 -e) < p < (1+e) and calculate the velocities at periapsis, i.e. p=1-e. The
| |

.'
|

velocity at periapsis is given by vi = (+ai)g jqu' 1-+&, Where the sign is selected depending on the

location of m; with respect to the center of mass.

4.3 Problems..

4-1.  Use the Matlab meshdom, mesh and contour functions to generate zero velocity surfaces
and contour plots in the (x-y), (x-z) and (y-z) planes for the Earth-Moon system. Same
scale as Figure 4-1. Compare to Figure 4-1 and interpret results.

4-2.  Write a Matlab procedure using ODE 45 to solve equations (4-2). Apply to motion near L,
or Ls in the Earth-Moon system. Provide five example plots of the trajectories in the x-y

lane for five dif erent initial conditions with z=z- =0. Vary initial conditions to show the
ransition from bound motion to unbound motion. At least one case should verify that your

solution at the libration point is correct. Interpret results.

4-3.  Provide a semi-log or log plot of the period of oscillation for the two solutions to
equation (4-13) over the range of mass ratios from 0.001 to 0.5. Interpret results.

4.4 Astrodynamics Toolbox

1. Write a function x=XLn([],n,tol,ichk) that returns the x location of the n-th (n=1,2,3) Lagrange
point for mass ratio [ to an accuracy specified by tol.

2. Write a function f=LnFreq(B],n,ichk) that returns the two frequencies of oscillation at
Lagrange point n (n=1:5) for mass ratio 2.
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Chapter 5 - Orbital Perturbations

5.1 Introduction

The motion of planets and natural or artificial satellites can be approximated by modeling both
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in Chapter 3. There are numerous additional forces affecting the relative motion. Both the
additional forces and the deviations from the two body motion are called perturbations. When
these forces are small compared to the central gravitational attraction, they may cause only small
and/or slow deviations from two body motion and might be addressed analytically. The analytic
solutions can be used as computationally efficient approximations to the motion or perhaps more
importantly, can provide insight into the effects of the perturbations. By adding a disturbing force
onto equation (3-1), the equation for the motion of m; relative to m, can be written as

. r
r+Bs =g (5-1)
r
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motion. The relative acceleration is the acceleration produced on m; minus the acceleration
produced on m,. In addition to the gravitational attraction of other masses presented in Chapter 2,
these perturbations can come from numerous sources and their effects on the orbit vary greatly.
Perturbing forces include aerodynamic interaction with the atmosphere, electromagnetic
Interactions with the magnetic field and charged particle belts, and gravitational forces due to the
non-spherical gravity field of the central body. Perturbations are produced by the momentum flux
of electromagnetic energy from the Sun called radiation pressure and particle flux called the
solar wind . Reflected and radiated flux from the Earth can also produce significant perturbations
on low Earth orbit (LEO) satellites.

When a numerical solution is sought to (5-1) or an equivalent form of the EOM, the approach is
called the method of special pevturbations. Special perturbation methods will only be discussed
briefly in Section 5.6. If an analytic solution is sought, the approach is called the method of
general perturbations. General perturbation methods are usually based on a form of (5-1) that is
derived using the variation of parameters method from the theory of ordinary differential
equations.

5.2 Variation of Parameters

As a basis for developing Lagrange’s planetary equations (5-18), the variation of parameters



method for solving differential equations is reviewed by applying the approach to a harmonic



Letting p = x,v = X gives the first order form

p =V \Y :—u)zp—ap3 (5-3)
For £=0 the solution is harmonic motion with period 21t/w, amplitude A, and phase @
p(t A @) = Asin(wt+¢) V(t, A @) = Awcos(wt+ ¢) (5-4)

where A and ¢ are determined from the initial conditions.

The variation of parameters method can be thought of as nothing more than a change in variables.
In this case the dependent variables p and v are replaced by A and @. It is clear from (5-4) that the
transformation is well defined in both directions, except for the trivial solution A=0. To derive the
equations of motion for the new dependent variables, (5-4) are differentiated with respect to time
to yield

p = Awcos(wt+ @) + sin(wt +¢) s(wt+¢)@
A + Aco
: 2 : - (5-5)
V = _Aw sin(wt+ @)+ wcos(wt + ) A—Awsin(wt + ()¢
Using (5-4) and (5-5) to eliminate p and v from (5-3) yields
sin(wt + 9)9A + Acos(wt +¢)d?% = 0
dt dt
dA dep - A 3 (5-6)
cos(wt + @) dt——Asm(wt + ) g = S (wt+ )
Using the fact that the coefficient matrix of the derivatives is non-singular along with a few
trigonometry identities, (5-6) can be written as
da A’ 3 N |
- = -cos (ot + @)sin (wt+ @) = -[2sin2(wt + ¢) + sind(wt + ¢)]
dt OV 8w
(5-7)
do EA® 4 3eA” eA’

4= o (ot+g) = 8w- — 8ur[4cos2(pt+ ¢)—cosd(wt+ ¢)]

These equations are exact. That is, let A(t) and g(t) be solutions to (5-7). When these functions are
substituted into (5-4) the results will be solutions to (5-3). Since (5-7) are much more complicated
than (5-3), it might be said that nothing has been gained. Certainly, implementing a numerical
solution to equation (5-2) would be less error prone than implementing a numerical solution to
equation (5-7). But consider the case when g€<<1. In this case, from (5-7) both A and g will
change slowly with time. Assume that over one period of oscillation A and g change so little that
they can be considered constants on the right hand side of (5-7). The equations can then be
integrated to show that over one period the net change in A is AA=0 and the net change in g is Ag
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a small amount each period of oscillation and this secular drift increases with amplitude.

Note that the secular drift in phase is equivalent to an amplitude dependent frequency of
oscillation.

If a new variable @’=@—A is defined, then ¢’ will only have periodic variation. This is the
standard approach for dividing the P_erturbations into secular and periodic terms and isthe =
approach for describing the motion of the vernal equinox as precession and nutation in
Section 1.2.2.

Such insights into the motion are difficult to discern from (5-3). Second and higher order effects
can be obtained by using the first order solutions as approximate solutions to equation (5-7) and
performing another variation of parameter procedure. The next section applies the variation of
parameters approach to the perturbed two body problem.

5.3 Lagrange’s Planetary Equations

To study the effects of n-body perturbations on the motion of a planet, Lagrange applied the

method of variation of parameters to equation (2-10) in the form of equation (5-1). It is for this
reason that the results are given the name Lagrange’s planetary equations. If the perturbing

force f is derivable from a force function R then f=V R. This is of course the case for all
gravitation perturbing forces. Both forms will be carried in the development. The equation
numbers in brackets {} refer to the similar equation in Section 5.2. To begin, write equations (5-1)
in the first order form with the non-perturbing force derivable from a potential V {(5-3)}

r_ \

= v ~+ VW) =f(r,vt)  or  VR(r) (5-8)
dt dt
where V=-p/r and the argument indicates the coordinate system to which the gradient operator
applies.

The solution to these equations can be formally written as {(5-4)}
r(t) = r(t, c) v(t) = v(t,c) (5-9)

where c is the six vector of Kepler orbital elements or any other six independent constants of
integration. Because neither the position nor the velocity can be written explicitly as a function of
time (recall equations (3-14), (3-15), and (3-16)) one must be careful with the explicit and implicit
derivatives required below. The solution for rand v are given as implicit functions of time by
equations (3-21) and (3-22) in which r and f are the terms that are functions of time.

Applying the variation of parameter approach to ttbe first of equations (5-8) yields three equations



where it is now assumed that r is a function of tand ¢ {(5-5)}. But, %f = v since the explicit
t

dependence of r on time satisfies the equations of motion. Likewise, the second of equations (5-8)

yields three more equ%tionsa Ay de
L= LT 2 V() +for —VV(r) + VR(r)

d¢ Ot Jdcdt
égain the partial time derivative must satisfy the unperturbed equations of motion. So

- = —VV. The six differential equations of motion for c are therefore {(5-6)}

dat

orde _o MO ¢ o YR() (5-10)

Jdcdt Jdc dt

This form of the equations of perturbed motion are not convenient because the 3 by 6 coefficient
matrices on the left are functions of time. Lagrange noted that this problem can be circumvented

T T
by multiplying the first equation by B’} and the second by [gr} and then subtracting to get
C C

Lde = [.Tf(c,t) or  VR(c) (5-11)
dt dc

T T

where L= |dr| |0v|_ dv| | Or] Is a 6 by 6 skew symmetric coefficient matrix, R(r) has been
dc| |Odc| |0c| |Oc

replaced by R(c) using equation (5-9), and the gradient operator on the right creates a six vector of

partials of R wrt each component of c.

The most important property of L is that it is not an explicit function of time, that is, it can be
evaluated at any point in the orbit and the same numerical values will result. To show this
independence

- E T e Gy e

where the partials with respect to t and ¢ have been commuted in each term. The first and fourth
r
terms cancel since ,-=V from above. The second term is the transpose of the third term and

il
dv
substituting a£ = —VV(r) into the third term yields

r 9 r 1 7 T T



whnicn IS a symmetric 6 by 6 matrix. I'nus, wnenine rorce ariving ine unpertyroea moronis

derivable from a potential, all terms cancel and L is not an explicit function of time. To emphasize
this result, equation (5-11) might be written as

T
L(c) C;(;-Z [gj f(c, t) or VR (¢c) (5-13)

Exercise 5-1. Write explicitly every term in the first row of equation (5-13) for both the fand R
cases.

53.1 Lagrange brackets

The individual components of L are called Lagrange brackets and denoted [ c;, ¢ ] , i.e.
0rTov Ov' or

Li = [c, ci] =
dc, 0C; dc; dc;

] j (5'14)

As seen from this definition, the Lagrange brackets satisfy

[cicl=0 [cicjl = —[cjeil %[Circj]zo
which means there are no more than 30 non-zero brackets and only 15 have to be evaluated. Since
all types of two body motion have a periapsis, L is traditionally evaluated at periapsis.

532 Rectangular coordinates

To compute the Lagrangian brackets, an appropriate ¢ must be chosen. One set that results in the
simplest forms of L is to chose the rectangular position and velocities at some epoch as the
constants of integration. Though not usually thought of as constants of the motion, it is clear that
they satisfy the necessary conditions of linear independence and are certainly sufficient to
determine the state at any time. Wolog, let the epoch be t , and specify the conditions at epoch as

the six vectorc =[x, Yy, ...’ O]T . From equation (5-14) the non-zero Lagrange brackets above
the diagonal ofL are

[Xo' X.O] = [yo' yo] = [ Zo Z.O] =1

. . 0 | . .
and the remaining 12 brackets are zero. Thus L = L 33733 | and the equations of motion (5-
33 O3x3

11) in terms of the force function reduce to the canonical form



with similar expressions Tor the other two coorainates. Ihere are numerous sets or choices ot ¢
that will lead to the canonical form; in particular, Lagrangian generalized coordinates and
conjugate momenta lead to this form.

533 Keplerian orbital elements
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must be written in terms of these elements. Equations (3-21) and (3-22) provide the necessary
relationships. These equations provide the explicit dependence of position and velocity on {2, w,

and i. The dependence on a, e, and A are implicit through r, f, r and f. There are numerous
methods for evaluating the brackets and the most extensive discussions are given in Battin[5],
Fitzpatrick[ 3], and Moulton[7]. The development below is typical.

First equations (3-21) and (3-22) are written in the orbital coordinate system (Section 3.8) using
the direction cosines from equation (3-33) and relations from Table 3-1

T
r = (I)p = (D[a( cosE—e),bSin E,O]

o T (5-19)
v==0p = q)[—nazsinE r]  nabcosE|r, 0}

where @ is a function only of the orientation angles ({2, w, i) and the position and velocity in the
orbital system (Section 3.8) are functions only of a, €, and A. Note that some of the partials of the
@ matrix yield terms in @, e.g.

0P, 09,

an - Pn 5y T w0

It is convenient to identify the columns of @ as vectors

Ll ¢’ ‘r]B
The Lagrange brackets will be evaluated at periapsis, t = T. Since @ is independent of time, for
any orientation angle a = {), w or i

or.

0CI>p(T) ov.
60(

- 0Pp(71)
da 60(

da

But at periapsis, p(T) = [r 0 O-| and p(t [0 nab | 0-[ so it is straight forward to
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L
dr
3 =2
Or N
- = Iy St NWQ3
di

Oov__ _a_b_ |

0, [—q)zz ®,,
dv ab

o " 619
dv nabcosw

- = -(p3
di rp

Exercise 5-2. Starting with equation (5-15) verify the first line of equations (5-16) and (5-17)

It remains to take the partials with respect to a, e and A. The rotation matrix @ is not a function of

these variables. So in equations (5-15), a and e appear explicitly and a, e and A appear implicitly
through E. The implicit relationship is defined purely by Kepler's equation (3-14)

nt+ A = E —esinE

where of course n is a function of a only. From which it is easy to show that when evaluated at

periapsis

E_ 0 OE_, dE_

de oA 1

da 2

p p

Combining the implicit and explicit derivatives leads to

Or "p  3bA Ov 3na’A bn
N T TR
da a 2r da 2r§ 2,
3
ar N av na .
= L= - 5-17
P aQ1 3 = br p(Pz (5-17)
dr ab- ov na »
a-}\- = .Fp.(pZ _}\_ = _ F’;-(pl

When the expression from equations (5-16) and (5-17) are substituted into equation (5-14) it is
found that there are only 6 non-zero Lagrange brackets and these are [5,482]



Equations (5-13) in terms of the non-zero Lagran&e brackets are

_ OR

[' Q] dt di

0R

[7\ ]dt ax
[wa] OR
R
[e Q] dt [e ‘*’] it de

d)\ GR

ﬁl a:l-_ + l:fl e‘l -—+ Q - 5R

dt dt )
This is a set of linear algebraic equations with constant coefﬁments, so as long as the matrix of
coefficients is not rank deficient, these equation can be easily solved to have only time derivatives

on the left. The equations of motion for a and () can be found by division. Time derivatives for
elements e and w can then be obtained by elimination. Finally, the equation of motion for i and A

are also obtained by elimination to yield the Lagrange’s planetary equations {(5-7)}[5,483]

da _ 20R
dt  nadA
de b OR 2 OR

di-= 3907 4 “0A
na e na e

di _ 1 _OR_ cosi OR

dt nabsinid() nabsinidw
dQ 1 0R (5-18)
dt ~ nabsini Oi

w= — o8- gR+  -b -gR

A 3
dt nabsini 0i naeae

dA = 20R p° 9R
Y .40
dt nada na e
These are exact equations of motion and equivalent to equation (5-8). Even if other parameters
are chosen for the orbital elements, the resulting EOM are called Lagrange’s planetary
equations. Other choices might depend on the particular orbit being analyzed. For example, to
derive equations (5-18) division by e and sin(i) has been performed, hence application to orbits



where either of these terms is zero or nearly zero must be done with care or the non-singular



5.4 Perturbations Derivable from aPotential

The two typical perturbations derivable from a potential function are the contributions due to
other point masses as in the n-body problem (Chapter 2) and the contributions due to the gravity
field of the primary being non-central. The former is discussed briefly in Section 5.5.2 and the
latter is developed below.

54.1 Non-spherical gravity potential

The external gravity field of most bodies can not be represented as arising from a point mass.
However sufficiently large, slowly rotating bodies will closely approximate a sphere because
internal shear stresses due to self gravity cannot be supported. The external gravity field potential

2
for any body satisfies Laplace's equation, V.V = 0. For nearly spherical bodies, it is natural to
represent the potential in spherical coordinates V(r,A,). Solution by separation of variables leads
to the spherical harmonic representation, which is used here in the form

w n

V(r,@,A) = GMy R (C,mcosmA+S, sinmA)P, - (sing) (5-19)

r N1\ mgo0
where A is longitude, @ is geocleic Iatitué, and R is a reference radius usually taken as the mean
equatorial radius. Py, is the associated Legendre polynomial of degree n and order m [1].

The terms cosmA P, (sing) and sinmA P, (sing) are called surface spherical harmaonics of
degree n and order m. The C,,,, and S, are called the spherical harmonic coefficients and are

the unknowns that would be selected to fit the boundary conditions to obtain the solution to
Laplace's equation. The reference model in the Explanatory Supplement [2,226] is actually a
force function and is the negative of equation (5-19). Some representations also change the sign
between the '1' and the double sum. Thus care must be exercised by the analyst to check sign

conventions. The expansion above is also “unnormalized” in that the relative importance of the

9

erms on the orpit i notgirectl related to the numerical value. Yarious normaliza%io approaches
ave been [2,226] used so that the numerical value 1s a direct measure of the “average

acceleration produced by the term. The complete set of surface spherical harmonics are divided
into three sub classes:

1. zonal harmonics with m=0 are rotationally symmetric about the pole and have n zero
crossings from pole to pole. Note that S,,p=0. The zonal coefficients are often represented

by J's, i.e. J,= - C0. Here the minus sign is used, but some authors will use a plus sign. Jo
is the “oblateness” and Jg IS the “pear shape” parameter. For planets with rotational rates
sufficiently large to significantly affect the surface shape, J, is greater than zero and is the



Po(x)=1 P1(X)=x P,(X)=(3%%-1)/2

where subsequent terms can be obtained from the recursion relation

(n + 1)Pn + 1(X) = (Zn + l)XPn(X) o I’]Pn— 1(X)

Note this is not a particularily useful recursion formula since errors in P, produce errors
that could be twice as large in Pp.4.

2. sectorial harmonics with n=m have no zero crossings from pole to pole since

P, cos ¢, but have 2m zeros in longitude due to the sinmA and cosmA terms.

3. tesseral harmonics with n#m>0 have n-m zeros from pole to pole due to P,, and 2m

zeros in longitude due to the sinmA and cosmA terms. Recursion relations can be used [1]
to increase the order so that all tesseral harmonics can be generated once the zonal
harmonics are known from the recursion equation above.

In summary,.all of the surface spherical harmonics have n-m zerqgs pole to pole and 2m zero
in longitu e.yChobotov, Dan%y and other oorEs presents graphica rgpresenpatlon of some o?

these functions. In trajectory packages the gradient of the spherical harmonic functions are
required. The gradient can be related to other harmonics and are also calculated recursively [1].

The spherical harmonic coefficients can be related to the inertia integrals of the body [3]. An
inertia integral is a generalization of the traditional moments of inertia. The general inertial
integral is defined by

logr = J”p(x,yz XPy7 dxdyd z

where the integral is taken over the physical limits of the body and p is density. The moment of
inertia about the x-axis is ly = lgoptlgpp. Coefficients of degree n can be written as linear
1
' E(IXX *lyy)
combinations of inertia integrals with p+q+r=n, for example J, = 5 - where M is
MR
the total mass and R is the mean radius of the body used in equation (5-19). From this form it is

easier to see that J; is positive for oblate spheroids, i.e. most planets and other large, rotating

ooy = Z
MR R’
this result, all the first degree coefficients are zero if the origin is taken at the center of mass. In

precision Earth satellite orbit determination programs, the center of mass of the Earth is permitted

bodies. Now J; = where Z  is the z component of the center of mass location. From



is “pear shaped,” came from the orbital perturbation in eccentricity caused by Czq [Section 5.4.4].
The recommended [2,227] model of the gravity field is (36,36), i.e. Npa=36 and Mp,=36.

Larger models are used for precision orbit calculations. High order models for Mars and Venus
have obtained from numerous orbiting missions to these planets. Generally, accuracy of the
coefficients decrease with increase in degree and order. Exceptions correspond to coefficients of
potential terms that produced a resonance with the orbital motion of a particular satellite.

4.2  Non-spherical gravity perturbations

To apply the planetarxequatlﬁps to the non-central part of the field, write the gravity potential
functionas V(r, @, R( @, A) . Substitution of the complete disturbing function R

into equations (5-18) generally has little practical value. The general approach is to divide the
perturbations to the orbital elements into secular perturbations, long pexiod perturbations, and
short period perturbations. The secular variations result from averaging the equations of motion
over one orbital period by assuming constant, mean values of the elements over that time. Recall
the variation of parameter results of Section 5.2. The result generally is that some of the angular
variables (£2, w and A) will change linearly with time. Inclusion of the slow change in these
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effects have periods no longer than the orbital period.
543 Oblateness Perturbations

As an example of this process, consider the J, term and the equation of motion for () for the
elliptical orbit case
2
d () J,0 0r1R §Sin2(pl'/
¢ nabsinidi | r'r/ 12 2

since P,( x) = §x2 ~1 70 take the partial derivative r and @ must be replaced in favor of the

2 2
orbital elements and time. Either the E or f forms could be used for r, so that r is only a function of

time and the in-plane elements a, e and A. For ¢, write sinq = sinisi n(w+f) from the law of

sines, equation (1-1). Thus, the only dependence of this disturbing term on inclination is explicitly
through sin(i). The final, exact equation of motion for £ is

3021 2
di} _ _“5RLR cosisin?(w + f) (5-20)
dt nab rt'r



elements are constant on the right hand side. For this case, the independent variable in

h
equation (5-20) is changed from time to f using d-tf-: -5 yielding
r

d ()
df 22 (1- e2)
The change in ) in one orbit is obtained by integrating with respect to f from 0 to 21t to give
2

2
3J,R cosi. 2(oo +f)

2(1 + ecosf 3in

AQ = —-3MJ,Ccosi{ R

(1—e2)2 a

Using the value of J, given above leads to about 0.5° per orbit change for low inclination, LEO
satellites. The secular rate per orbit is obtained by dividing by the period to give
2

AQ = —3nJ; Z-R cosi
2(1—e2) a

yielding about 8° per day change for low inclination, LEO satellites.

An alternate approach is to average the disturbing function over one orbital period before
evaluating the partials on the right hand side of equations (5-18). The resulting disturbing
function for the J, term is

1 PB),|R 2/3 2 1
R, = —-J -sin ¢ — -/ dt

Poor r 2

2 R232

Again switching to f as the independent variable yields after somf\algebra
R,= - - % -sinil/

(5-21)
2 3/2 2
2a(1-¢e )

Exercise 5-3. Perform the integration over one period to arrive at equation (5-21)

Thus the mean disturbing function for J, depends only on the orbital elements a, e and i. In view

of equations (5-18) itis clear that there are no secular variations in a, e and i. Thus the mean orbit
shape (a, e) is invariant and the mean inclination is constant. Physically this means that the
average energy and z-component of angular momentum are preserved. The former should have
been expected from the fact that the disturbing force is derivable from a potential function and the

latter by the rotational symmetry of the potential due to J,. The three secular variations due to J,
are



2
dQ§ - _Jn 'R] cosi
dt - 22\p/
dog 3, ([ ( ? (5-22)
dt 4 0 5cos 1-1

dA, 3 [R|2 [ 2 2
N
-O-t-= 4nJ2\p/ 1-e€ (3sin i-2)

Exercise 5-4. Begin with equation (5-18) and equation (5-21) and verify the second of
equations (5-22)

Interpretation of these equations shows that u)'s =0 ifcosi = i,:li?s_ , Or i=63.43° or 116.56°.

This angle is called the critical inclination. Since the argument of periapsis shows no secular
variation at the critical inclination, the latitude of periapsis remains the same from orbit to orbit.
The Molniya orbits in Section 7.3 are at the critical inclination so as to keep the periapsis at the
latitude of the USSR. Below the critical inclination, periapsis regresses so that the time from one

periapsis to the next is less than the “orbit period.” The last equation suggest that the mean motion

is biased by J, since M = n+ A similar to the phase change for the non-linear spring example in
Section 5.2.

The perturbations discussed above are typical of those caused by all even zonal harmonics e.g. J4,

Je, €tc. When calculating accurate values for critical inclination or secular variations in £}, w or A,
these additional terms must be considered.

Because of these types of perturbation to the orbit, a number of “periods™ are in use. The nodal
period is the time between successive ascending node passages. The anom dlistic period is the
time between successive periapsis passages based on the change in mean motion due to J, and
other perturbations.

544 Odd-Zonal Perturbations

5

In a similar manner, the mean disturbing function for the/hird zonal harmonic is [4,349],

5 2

3M5e| R|3 3
1-e sinw (5-23)

R3= g, "\ (4sini —5sin i)

Referring to equations (5-18) it is again seen that there is no change in mean energy due to Js, but



unlike J , there will be variations in inclination and eccentricity from the mean values. The



de 3 R .3
_ = -ndy  -(5sin i—4sini)cosw (5-24)
d 8 ap2

If all the terms on the right side were considered to be constant, this equation would suggest a
secular variation in eccentricity. However, due to the J, effects, w is varying linearly with time

unless the orbital inclination is critical, i.e. cos?i=1/5. Assuming that w is the linear function of
time given in equation (5-18) leads to the integral for the change in eccentricity from time t, to

time t / \
J3| R

Aes(t to) = ;J- \e:/sini[sinw(t)—sinw(to)] (5-25)
2

The maximum amplitude for the variation in eccentricity occurs for polar orbits. Since
J3]J,~0.002 for the Earth, the maximum change in eccentricity for a LEO is about 0.001. This
would produce a maximum variation in periapsis altitude of about 7 km with a period of 21| w.
For the Moon J2:2.03x10'4, so the node and periapsis for a low altitude lunar orbiter (LLO) will
precess 1/5 of the rate per orbitas a LEO satellite. Also the lunar J3:6x10'6, yielding theratio

J3[J2% 0.03 . Thus, the change in eccentricity due to J3 is about 15 times larger. For LLO the
effect of J3 is @ major consideration for orbit lifetimes.

Exercise 5-5. Derive equation (5-25) from equation (5-24).

There is also a long period variation in inclination which is of interest

193| R
Aig(tt) = - -\ -/ecosi[sinw —sin(t,)] (5-26)
23, p

The perturbations discussed above are typical of those caused by all odd zonal harmonics e.qg. Js,
J7, etc. When calculating long term variations in i or e, these additional terms must be considered.

Additional long period variations due to J3 as well as secular, long period and short period terms
for J, through Js are given in Koelle[8,8-26] through terms of order J 2

545 Radiation pressure

Radiation pressure on an orbiting body occurs when photons strike the surface. These photons can
be radiation directly from the sun (most of the energy is in the visible wavelengths), can be

reflected from another body, or can be radiation, usually in the infrared, emitted fromanother
body. Earth reflected radiation is particularly important for LEO satellites because of the high
albedo of the Earth. The Earth has an albedo of about 0.3 at middle latitudes and 0.8 at the poles.



shadowing is ignored, solar pressure can be analyzed using Lagrange’s planetary equations as will
be demonstrated below.

Solar pressure has been proposed as a propulsion system for a satellite. Solar sails can be
constructed to “catch” photons and reflect them in a manner to produce thrust. This method needs
a very high effective area to produce a substantial thrust.

Radiation from a body is normally specified in energy flux. For example, the energy flux from the

Sun at 1 AU is about 1340 watts/m?. The momentum flux, from which pressure can be calculated,
is the energy flux divided by the speed of light. Hence, the solar momentum flux P is about
4.5%x10°° N/m?. The interactions of a photon with a surface ranges from passing through without
any absorption (transparent material), having a probability greater than zero of being absorbed
(translucent), completely absorbed (black body) and reflected (mirror). The solar pressure psis

modeled as
ps = aP (5-27)

where 0 < oo < 2. Transparent materials have =0 and mirrors have @x=2, i.e. transparent materials
absorb none of the momentum flux and mirrors reverse the direction of the momentum flux,
effectively reacting to twice the incoming flux. The total force is obtained by integrating
equation (5-27) over the exposed area of the body. Note that in addition to producing a net force
on the satellite, solar pressure can also produce significant torques on unsymmetrical satellites
which must be considered for attitude control.

Exercise 5-6. Show that a 100 kg satellite with a cross sectional area of 2 m 2 and albedo of 1
would experience about 1 micro-g of acceleration due to radiation pressure.

Now consider a spherical satellite of the Earth that is not passing through the shadow of the Earth.
Assume a homogeneous reflecting surface so that the solar pressure is constant and away from the

Sun. The radiation force is therefore -atPAes, where e is the unit vector from the central body to
the Sun and A is the effective cross sectional area. Assuming that the Sun does not move over one

orbital period, this is a constant force and hence derivable from the disturbing function
R = —aPAe, - r= Pe - r where r is the position vector and in terms of the orbital elements is
given by equation (3-21). The average of R over an orbit can be obtained using equations (3-26)
and (3-27) to yield the disturbing potential for long period and secular variations R = Kae ' e

where e is the eccentricity vector and k=-3[/2. Hence, the eccentricity and the angle between the
direction to the Sun and the major axis of the ellipse completely determine the perturbations.

Referring to the planetary equations (5-18), it is seen that there is no secular variation in energy
because the work done by solar pressure as the satellite approaches the sun is equal to the work



Evaluating equations (5-18) for these two variables and then letting inclination become zero so
that the Sun is in the orbit plane yields
. Kb : Kb
e = 2-3|n(oo +()) W = 2-cos(u)+Q)
na nea
These equations show that if solar pressure is the only perturbing force, the argument of periapsis
will precess until cos(w+£2)=0 and the precession is very rapid for small eccentricity. When the

sun is along the semi-latus rectum, the precession stops, then e will either increase until the
satellite hits the planet or decrease until a circular orbit is achieved. Though the equations here are
not applicable when e=0, it can be shown that a circular orbit will become increasingly elliptical

with the major axis at right angles to the sun line. For most satellites the J, secular variation in )

and w will dominate the solar pressure precession in , so the eccentricity will undergo a long
period variation. Recall again that these results are for the no shadowing case.

Exercise 5-7. Use the toolbox to plot the 24 hour ground track of the LEO satellite a=7000,

e=0.05, i=55°, 2=60°, w=45°, T=July 4, 2000, 13 hrs, 55 min, 34.56 sec. Compare tracks with and
without J, precession.

5.5 Gauss' Form of the Perturbation Equations

Drag and some other forces can not be formulated as potential functions. It is therefore of interest
to have the analog of the planetary equations in a form where the perturbing force or acceleration
appear explicitly. There are numerous approaches to arrive at these equations. The direct method

Isto stgrt with equation (5-10) and substitute the results from equations (5-13) and (5-14) directly
I

into [ 06] Another method is to consider the effect of an impulse or instantaneous change in v

applied at some point in the orbit. Since the motion before and after the impulse is pure two body
motion, the change in the elements across the impulse can be obtained by applying differential
calculus to any two body equation. For example, from the vis-viva integral

2

o = a = A _ .
2v Qv liz = oa v Sv

where the fact that an impulse does not change r has been utilized. Interpretation of this equation
shows that the most effective location in orbit to change the energy is to apply an impulse at
periapsis (where v has the maximum value) along the velocity vector. Energy is not af ected by an
impulse normal to the velocity vector. If instead of an impulse, it is assumed that the v occurred
over a finite but small time t, then taking the limit leadsto

2
2va



The complete set, given below, is from [5,489] for the case where the perturbation acceleration is
projected along orthogonal axes that are along the orbit tangent (a;), normal to the orbit plane (ap)
and normal to the velocity vector in the orbit plane (a,). In the Euler form of the perturbation

equations, it is not convenient to utilize A or T as an orbital element for reasons discussed in [5].
Instead the last equation is given for M explicitly. Danby [4] and many other books present the
equations of motions for perturbations that are projected in the radial, normal to the orbit, and

circumferential directions.

e _ /

gt - B \
e-1t 2(e +cosf) r /

g v at—asmfan

di rcoso
1 _ 3
dt = h (5-28)
dQ_ rsind
dt mmih\

dw 1[ M [ / ] dQ

-d-t- = yl2sinfat 4 \2e + alcosf/ and — cosi -d-t-

2
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dM b
-/ sinfa; — -cosfan}
p a

-=n- {21+
dt eav

Interpretation of equations (5-28) can lead to an understanding of where to apply impulses to
achieve maximum change in an orbit parameter. Changing energy or semi-major has already been
discussed. Changing orbital inclination is often a mission requirement. It is seen that only an
Impulse normal to the orbit plane will change inclination and that the most effective location is
where rcos(w+f) is a maximum/minimum. The cosine reaches an extremum when the satellite is
on the node line, so this is the most efficient location for a circular orbit. For the high eccentricity
transfer orbits from LEO to GEO the optimal location for a single impulse would clearly be near
apoapsis. Similar arguments can be made for (), but the other variables are not so obvious. Since
there are three components to the impulse, at most three elements can be controlled with one
maneuver. Of course, the remaining three elements may also change. For a particular orbit, the
optimal location for performing an impulse can be formulated as a constrained optimization
problem and the solution found by searching numerically around the orbit.

251 Drag

Any planetary atmosphere experienced by an orbiting body will cause drag and perhaps other
forces and moments on the satellite. In the free molecular flow region that is usually associated



1 | Ca
d=—pv| v (5-29)

where A is the satellite reference area, m is the mass, Cy is the drag coefficient, v is the velocity

vector, v is the speed, p is the atmospheric density, and C4A/m = [ is the ballistic coefficient.
Atmospheric density can vary with altitude, planet-sun distance, day/night, latitude, local solar
time, solar activity, etc. and models of these variations are not precise. As a result the analyst must
be careful in modeling drag phenomena. Letting A be the cross-section of the spacecraft exposed
to free molecular flow, C42 2. Cy4=2 if the linear momentum of all incoming molecules is

completely absorbed by the satellite. This situation occurs if the satellite surface has a
momentum accommodation coefficient of unity. However, these gas-surface interactions are
very complicated. Simple models assume that some fraction of the incoming molecules are not
absorbed by the surface and that most absorbed molecules are quickly emitted from the surface

after coming into thermal equilibrium with the surface. This generally leadsto C 4 = 2.2.

Drag is generally the dominate force that defines a satellite’s orbital lifetime and requires
propulsive capability for orbit maintenance. The definitive study of drag effects is given by King-
Hele [6]. On the other hand, atmospheric drag has been used for aerobraking which is the
process of reducing orbital energy to a desired level by dipping into an atmosphere. This process
can significantly reduce propulsive requirements. In any case, if latitudinal and longitudinal
variations in density are significant, the usual approach is to numerically integrate the equations
of motion in rectangular coordinates using equation (5-29) for the perturbing force. If such
variations are negligible or to gain insight into the effects of drag on orbit parameters, density can
be assumed to only be a function of altitude.

From equations (5-28) it is seen that only a, e, @ and M are perturbed by a tangential drag force.
For orbit lifetimes, the perturbations to a and e are of particular interest because r ,=a(l-e).
Referring to the first two of equations (5-27), change the independent variable from time to
eccentric anomaly using Kepler’s equation (3-14) and use the vis-viva integral (3-5) to write

2 \1+ e Ccos E/
1—e eosk/ tofinally yield

V = &
3/2
da_ = —Ba’p(L+ecosE) _ de. = BppcosE [1+ecosE (5-30)
dE (1—ecosE)1s“2 dE N'1-ecosE

If density is modeled as only a function of altitude, density can be written as a function of E.
Further, if a and e can be assumed to be constant during a single pass through the atmosphere,
these equations can be integrated numerically to yield the change in a and e during one orbit.

Exercise 5-8. Derive equations (5-30) following the directions above.



cosE .'T"'_emﬁE = \9+ y l\ 3° / cosE+\9+ ...yc032E+
+

1+ e +
-’u'l 1 — ecosE 2 8 2

The coefficients are infinite power series in eccentricity. For analytic solutions, atmospheric
density is modeled by an exponential in altitude; i.e.

h—h,
p = poexp\— Hs- (5-31)

where p,, is the density at reference altitude h, and Hg is the density scale height. For the Earth,

Hs may range from 30 to 100 km depending on altitude, solar cycle, and other geophysical
parameters. The reference altitude is usually taken as the periapsis altitude, h,=h,. To utilize this
model for density in equations (5-30), note that h—h, =r—r, =ae( 1-ecosE) . With this
substitution and the Fourier series expansions, the right hand sides can be integrated over one

orbit. The results are infinite series of Bessel functions with coefficients that are infinite series in
eccentricity[Reference 6, Chapter 4]. Reference 6 provides numerous approximations to

equations (5-30) based on the values of e and ax=ae/H,. Only one of the expansions is given here
as it applies to many LEO satellites and is applicable if 0.02<e<0.2 and a>3

Aa = -2 tfa’p o (—oc)[lo +2el+3e2(1,+1,) +1e3(31, + 15) + O(e4)] (5-32)
4 4

where the argument of the modified Bessel functions is «, i.e. 1,=1,(c).

552 N-Body Perturbations

To obtain the equation of relative motion of m; with respect to m, including the effects of the
remaining n-2 bodies, subtract equation (2-10) with i=2 from the same equation with i=1,

: G(m,; +m,)r _ Nj 1o
i G t 2)-62[ L 3—} (5-33)
r o
i=3 1 2

Even though the perturbation term on the right is derivable from a disturbing function, obtaining
an average disturbing function, to study secular and long period variations, is difficult because the
other bodies are in motion. Prior to the development of high speed computers, these equations
were used as the basis for planetary theories. Generally, the approach is to consider a single
disturbing body at a time. Double averaging is done over the two orbital periods to obtain the
averaged disturbing function. The interested reader can consult Reference 9 for details. For LEO
satellites, secular and long period variations due to the Moon and Sun are several orders of
magnitude smaller than the J, secular terms, but can be substantial for high eccentricity orbits.



consideration is the selection of a method for numerical integration. The most efficient methods

are

second order, multi-step, constant step size which are very efficient for low to moderate

eccentricity orbits. Reference 4 provides an introduction to the numerical procedures used in
orbital mechanics including interpolation, extrapolation, differentiation and integration.

5.7 Problems

5-1.  Apply the planetary equations to equation (5-23) to derive equation (5-25).

5-2.  Apply the planetary equations to equation (5-23) to derive equation (5-26)

5-3.  Derive an expression for the first order dw/dt due to J; similar to equation (5-22).

5.8 Astronautics Toolbox

Develop a function [wdot, Wdot, Lamdot]=J2Precess(a,e,i,J2,mu,R) that will return the pre-
cession rates in radians per unit of time.

Modify the Orb2X routine (Section 3.14) so that £, @ and X due toJ are included to

change Q, w and A in the orbit propagation. Call the new routine Orb2X%2 and add J2 and R to
the input set. Use J2Precess.

Write a function that will plot ground tracks for a LEO satellite given the orbital elements in
the J2000 equatorial system, (Section 1.2.2). Time of periapsis is in ymdhms format
(Section 1.6) and time interval for the plot starts at periapsis and stops an input time in days
later. Include an option for turning J, precession on or off. An option is to also limit applica-
bility to years near 2000 so that precession of the vernal equinox does not have to be consid-
ered in the terrestrial longitude calculation using sidereal time (Section 1.3.5). Make
maximum use of existing toolbox functions. It is recommended that a considerable design
effort precede implementation of this function.

Develop a function that will integrate equations (5-30) over one orbital period. Assume an
exponential atmosphere. [da,de]=dragl(a,e,Cd,A,m,rho0,h0,Hs,ichk).

Develop a function, [da,de]=dragKH(a,e,Cd,A,m,rho0,h0,Hs,ichk), that will evaluate
equation (5-32)

Write a test program that will compare the relative error in da between dragkH and dragl over
the applicable range of eccentricities using a=6800 km and Hs=40 km.
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Questions

The satellite of Ecuador which was damaged on collision with Russian debris in space?
The Indian Space Research Organization (ISRO) Navigation centre was set up at

The first cosmonaut to spend about 17% days in space endurance flight

In which year do the first indian satellite Aryabhatta was launched ?

MIRV stands for

Which one of the following is an Air to Air missile?

What was the name of the space shuttle that landed man on the moon?

Who propounded the possibility of placing communications satellites in geosynchronous satell
At what height geosynchronous orbit is located?

What is supernova?

Which of the following is the first missile which has been developed in India?

What is INS Virat which serves the Indian Navy?

The first person to enter into space was,

An astronaut in outer space will observe sky as.

What is the name of the light combat aircraft developed by Indian indigenously?

What is the range of AGNI III test fierd by India?

Nuclear explosive devices were tested in indiaat____

From where was india's multi purpose tele communication satellite INSTAT-IIE launched?
Goestationary satellite revolves at____

What is the name given to Met Sat launched in 2003?

The first ever robot spacecraft to probe planet venus was named

Which one of the following correctly describes AGNI?

The messenger satellite launched by NASA is to steady_____

Which launched the worlds first satellite dedicated to monitoring GGE in 2009?

Which one of the following is the surface - air missile?

Where is the first integrated solar combined cycle power project proposed to be setup?
Which city recieves the highest cosmic radiation?

ISRO launched the worlds first satellite dedicated to education EDUSAT in the month of
Bhabha Atomic Research Center is situated in

Saha Instituite of Nuclear Physics is situated at _

Which of the following is a stealth aircraft virtually undetectable even by radar?

The Name of India's research station at the North Pole is

A geostationary satellite revolves round the earth from

In which year was the ISRO founded?

The first explosion of an atomic device in India was carried out in the State of

Name the country which launched the first Satellite into the space.

Where is INS Ashwini anchored off?

The Headquarters of MCF the nerve centre of the entire space craft operations in India is at
The rear side of the moon was photographed by
What is the india's first micro wave satellite?
Which one the following is not a galilean satellite of jupiter?
The Vikram sarabhai space centre is located at ___

What is the name given to india's lunar mission?

Who developed ballistic missile ?

ISRO 's master control facility is in.

The largest circular storm in our solar system is on the surface of which of the following planet:

The biggest asteroid known is:

Rounded to the nearest day, the Mercurian year is equal to:

One of the largest volcanos in our solar system-if not the largest-is named Olympus Mons.
This volcano is located on:

One Jupiter day is equal to which of the following?
The time interval between two successive occurrences of a specific type of alignment of a
planet (or the moon) with the sun and the earth is referred to as:

During the period between 1979 and 1998, what is the farthest planet from the sun?

Of the following four times, which one best represents the time it takes energy generated in
the core of the sun to reach the surface of the sun and be radiated?
The sunspot cycle is:
The Hertzsprung-Russel Diagram of stars DIRECTLY compares what TWO of the following
properties of stars?

The andromeda Galaxy is which of the following types of galaxies?
About how many light years across is the Milky Way?
Which unlucky Apollo lunar landing was canceled after an oxygen tank exploded?
Heliocentric (pron: he-lee-o-sen-trik) means around:

optl
Pegasus
karnataka
Adrin Nikolayev
1974

Multi dimensional independent

reentry vehicle
Astra
Eagle
Edwin P.Hubble
6KM
ablack hole
AKASH
submarine
valentina
black
BrahMos
2250km
sriharikota
thumba
any height
vikram I
challenger
along range gun
jupiter
USA
agni
patna
delhi
Jun-04
Delhi
New Delhi
B-2 Spirit
Maitri
East to West
1967
Rajasthan
Japan
Goa

Hyderabad----Andhra Pradesh

Ariner 11
RISATI
deimos
chennai
kalpana Il
wernher Von Braun
orissa
w) Jupiter
w)Vesta
w) 111 days

w) Jupiter's moon Callisto

w) 30 hrs 40 min

w) a conjunction
Jupiter

w) Three minutes
3 years

w) size

w) elliptical
w) 1,000
APOLLO 13
w) Jupiter

opt2
lunar
Byalalu
Neil amstrong
1975
Multi directional

Independently Reoriented

Vehicle
Akash
Columbia
William Herschel
1000KM
a dying star
PRITHIVI
gunboat
Edward H.White
white
Chetak
3500km
bangalore
baikanour
fixed height
baskara I
newton
along range missile

saturn
BRAZIL
brahmos
jaipur
kolkata
Jul-04
Mumbai
Mumbai
B1-B Lancer
Himadri
West to East
1969
Nagaland
England
Kochi
Hassan ------ Karnataka
Lunall
GSAT 12
calisto
bangalore
vikram |
Edward H.White
karnataka
x)Venus
x)carus
x)88 days

x) Venus
x)9 hrs 50 min

X) an opposition
Neptune

x) Thirty days
x) 11 years

X) temperature
x) spiral

x) 10,000
APOLLO 12

x) the Moon

opt3
aryabatta
cuttack
Samuel
1976

Multiple Independtly
targetable Rentry Vehicle
Becquerel
Challenger
Arthur C Clarke
3600KM
an astroid
AGNI
aircraft carrier
Yuri Gagarin
blue
Astra
5000km
pokharan
kourou
height above the pole
kalpana |
magellan
aversatile tank

venus
JAPAN
trishul
cuttack
mumbai
Aug-04
Chennai
Kolkata
FA-18 Homets
Dakshin Gangotri
North to South
1970
Manipur
Soviet Union
Mumbai
Thumba ---- Kerala
Viking [
ROHINI
europa
trivandrum
chandrayan I
Samuel
gujarat
y)Uranus
y) Ceres
y)50 days

y) Saturn's moon Titan
y)3 hrs 20 min

y) asidereal period
Uranus

y) One thousand years
y) 26 years

y) luminosity
y) barred-spiral
y) 100,000
APOLLO 11

y) the Sun

optd
suptnik
jaipur
Allen shepard
1977

Multi purpose Integrally targeted
revolutionary vehicle
Prithivi
Apollo
Pierre ;Laplace
36000KM
acomet
TRISHUL
fighter aircraft
Allen shepard
red
Tejas
1000km
kanchipuram
sriharikota
height which depends upon its mass
aryabatta [
galileo
a fighter plane

mercury
INDIA
k15
jodhpur
chennai
Sep-04
Hyderabad
chennai
B-52 Stratofortrees
None of these
South to North
1972
Jammu and Kashmir
USA
Vishakhapatnam
Sriharikota ---- Andhra Pradesh
Viking I1
MEGHA TROPIQUIES
ganymede
sriharikota
INSATV
J Robert
andhara pradesh
z)Earth
z) Eros
z)25 days

z) Mars
2)52 hrs 10 min

z) asynodic period.
Earth

z) One million years
49 years

z) density
z) irregular
1,000,000
APOLLO 15
z) Neptune

o} o Answer
Pegasus
Byalalu
Adrin Nikolayev
1975

Multiple Independtly targetable Rentry
Vehicle
Astra
Apollo
Arthur C Clarke
36000KM
a dying star
PRITHIVI
aircraft carrier
Yuri Gagarin
black
Tejas
3500km
pokharan
kourou
fixed height
kalpana [
magellan
along range missile

mercury
JAPAN
trishul
jodhpur
chennai
Sep-04
Mumbai
Kolkata
B-52 Stratofortrees
Himadri
West to East
1969
Rajasthan
Soviet Union
Mumbai
Hassan ------ Karnataka
Lunall
RISATI
deimos
trivandrum
chandrayan I
wernher Von Braun
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x)88 days
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x)9 hrs 50 min
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z) One million years
x) 11 years

X) temperature
x) spiral

y) 100,000
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y) the Sun



Triton, Neptune's moon, has an ocean made of a liquid. What is this liquid?
Who was the first man to classify stars according to their brightness?

w)nitrogen
w) Aristarchus

x)hydrogen
x) Pythagorus

z) helium
z) Hipparchus

x)NITROGEN
z) Hipparchus

y)oxygen
y) Copernicus

For what reason was the Schmidt telescope specially built? w) asky camera x) aradio telescope y) anoptical telescope  z) asolar telescope w) asky camera

What is the star nearest to the sun? ALPHA CENTAURI x) Icarus y) Ceres w) Vesta ALPHA CENTAURI

The greatest distance of a planet from the sun is called what? w) aphelion x) perihelion y) helix z) eccentricity w) aphelion

Multiple Choice: How is the atmospheric pressure of Mars as compared to the atmospheric w) about the same as the x) about 100 times as great  y) about 1/200th that of

pressure of the earth? earth's as the earth's the earth's z) half as much as that of the earth's y) about 1/200th that of the earth's
What gas is the main component of the atmosphere of Mars? 02 Co2 N He Co2

y) equal to the combined
masses of Saturn,
Neptune and Uranus

w) equal to the combined
masses of the earth and Mars

x) equal to the combined
masses of Saturn and Pluto

z) greater than the combined masses
of all of the planets

z) greater than the combined masses of

The planet Jupiter has a mass that is: all of the planets

Which one of the following moon features is named Copernicus? w) sea X) crater y) mountain range z) rill x) crater

On which day of the year does the summer solstice usually occur? 21-Jun 21-Jul 21-Sep 21-Oct 21-Jun

When the earth if farthest from the sun, what season is it in the Northern Hemisphere? summer winter spring autumn summer

A typical galaxy, such as our Milky Way galaxy, contains how many billion stars? w) 10 billion x) 40 billion y) 200 billion z) 800 billion y) 200 billion
Refracting telescopes always contain which one of the following? w) mirrors x) lenses y) television systems z) film x) lenses

y) behind the cometin

A comet's tail points in which direction? w) toward the sun x) toward the earth its orbit z) away from the sun z) away from the sun

y) only one rotates

w) both rotate faster than x) both rotate slower than  rapidly while the other  z) their periods of rotation are

Which of the following statements is true for BOTH Saturn and Jupiter? the Earth the Earth rotates very slowly linked to their period of revolution w) both rotate faster than the Earth
w) the brightest star in the y) the name givento a

Which of the following is true for ORION? sky x) a constellation NASA spacecraft z) an asteroid x) a constellation

Which of the following men wrote the book "On the Revolutions of the Heavenly Spheres"? w) Kepler x) Euclid y) Copernicus z) Newton y) Copernicus

Beads of light visible around the rim of the moon at the beginning and end of a total solar eclips w) Lunar Beads x) Solar Beads y) Baily's Beads z) Rim Beads
Whereas latitude and longitude are the coordinates of places on earth, the coordinates used

y) Baily's Beads

for star locations are two of the following, choose two. w) ascension x) right ascension y) altitude z) declination x) right ascension
The 2.7 Kelvin cosmic background radiation is concentrated in the: w) radio wavelengths x) infrared y) visible z) ultraviolet w) radio wavelengths
In which spectral region is it possible for astronomers to observe through clouds? w) visual x) radio y) ultraviolet z) x-ray x) radio
The Magellanic Clouds are w) irregular galaxies x) spiral galaxies y) elliptical galaxies z) large clouds of gas and dust w) irregular galaxies
The VISUAL aurora consists of luminous arcs, rays or bands in the night sky, usually confined
to high latitudes and located in the: w) troposphere x) stratosphere y) ozonosphere z) ionosphere z) ionosphere
When two heavenly bodies occupy the same longitude, the bodies are said to be in: w) sympathy X) conjunction y) parallel z) series X) conjunction
The study of the origin and evolution of the universe is known as: w) tomography X) cystoscopy y) cryology z) cosmology z) cosmology
What percentage of the Sun's mass has been converted to energy? w) 50% x) 1% y) 2% z) .001% z) .001%
According to Kepler's Laws, all orbits of the planets are: w) ellipses x) parabolas y) hyperbolas z) square w) ellipses
z) fourth power of the mean
According to Kepler's Laws, the cube of the mean distance of a planet from the sun is proportio; w) area that is swept out x) cube of the period y) square of the period  distance y) square of the period
1. The largest circular storm in our solar system is on the surface of which of the following planets? Jupiter Venus Uranus Earth Jupiter
2. The biggest asteroid known is: Vesta Icarus Ceres Eros Ceres
3. Rounded to the nearest day, the Mercurian year is equal to: 111 days 88 days 50 days 25 days 88 days
4. One of the largest volcanos in our solar system-if not the largest-is named Olympus Mons. This volcano is
located on: Jupiter's moon Callisto Venus Saturn's moon Titan Mars Mars
5. One Jupiter day is equal to which of the following? 30 hrs 40 min 9 hrs 50 min 3 hrs 20 min 52 hrs 10 min 9 hrs 50 min

6. The time interval between two successive occurrences of a specific type of alignment of a planet (or the
moon) with the sun and the earth is referred to as:
7. Of the following four times, which one best represents the time it takes energy generated in the core of

a conjunction

an opposition

a sidereal period

a synodic perio

a synodic perio

the sun to reach the surface of the sun and be radiated? Three minutes Thirty days One thousand years One million years One million years

8. The sunspot cycle is: 3years 11 years 26 years 49 years 11 years

9. The Hertzsprung-Russel Diagram of stars DIRECTLY compares what TWO of the following properties of

stars? size temperature luminosity density temperature

10. The andromeda Galaxy is which of the following types of galaxies? elliptical spiral barred-spiral irregular spiral

11. About how many light years across is the Milky Way? Is it: 1,000 10,000 100,000 1,000,000 100,000
12. Heliocentric located around_____ Jupiter the Moon the Sun Neptune the Sun

13. Who was the first man to classify stars according to their brightness? Aristarchus Pythagorus Copernicus Hipparchus Hipparchus

14. For what reason was the Schmidt telescope specially built?

15. How is the atmospheric pressure of Mars as compared to the atmospheric pressure of the earth? Is it:

16. The planet Jupiter has a mass that is:
17. Which one of the following moon features is named Copernicus? Is it a:

a sky camera

about the same as the earth's

aradio telescope
about 100 times as great as the
earth's

equal to the combined masses of equal to the combined masses

the earth and Mars

sea

of Saturn and Pluto
crater

an optical telescope

about 1/200th that of the
earth's

equal to the combined
masses of Saturn, Neptune
and Uranus

mountain range

a solar telescope
half as much as that of the earth's

greater than the combined masses of all

of the planets

rill

a sky camera

about 1/200th that of the earth's

greater than the combined masses of all of the

planets
crater



18. A typical galaxy, such as our Milky Way galaxy, contains how many billion stars? Is it approximately:
19. Refracting telescopes always contain which one of the following?

20. A comet's tail points in which direction?
21. Spectral line splitting due to the influence of magnetic fields is called:

22. Which of the following statements is true for BOTH Saturn and Jupiter?
23. Which of the following is true for ORION? Orion is:
24. Which of the following men wrote the book "On the Revolutions of the Heavenly Spheres"?

25. Which of the following is TRUE for Retrograde motion? Retrograde motion is:

6. Beads of light visible around the rim of the moon at the beginning and end of a total solar eclipse are
called:

27. Whereas latitude and longitude are the coordinates of places on earth, the coordinates used for star
locations are two of the following, choose two.

28. The 2.7 Kelvin cosmic background radiation is concentrated in the:

N

29,
30,
31
32,

. If you were watching a star collapsing to form a black hole, the light would disappear because it:

. In which spectral region is it possible for astronomers to observe through clouds?

. The Magellanic Clouds are

. The VISUAL aurora consists of luminous arcs, rays or bands in the night sky, usually confined to high

latitudes and located in the:

33,
34

. Which star ranks second in apparent brightness among the stars ?
. When two heavenly bodies occupy the same longitude, the bodies are said to be in:

35. The study of the origin and evolution of the universe is known as:

36. What percentage of the Sun's mass has been converted to energy?

37. According to Kepler's Laws, all orbits of the planets are:

38. According to Kepler's Laws, the cube of the mean distance of a planet from the sun is proportional to
the:

39. What type of visible star is the coolest?

40. Which type of star is maintained by the pressure of an electron gas?

41. In our solar system, which planet has a moon with a mass closest to its own?

42. lo, Europa, Ganymede and Callisto are satellites of what planet?

43. The universe is estimated to be between ten and twenty billion years ol This estimate is based on the
value of which constant?

44, Which of the following first hypothesized that the Earth orbited the sun?

45. The LAST manned moon flight was made in what year?

46. The cosmic background radiation, a remnant of the Big Bang, is at what temperature?

47. A planet is said to be at aphelion when it is:

48. At any time we may describe the position of an inferior planet by the angle it makes with the sun as seen
from the earth. This angle is called the:

49. Which of the following planets has the greatest eccentricity?

50. The largest moon in our solar system has an atmosphere that is denser than the atmosphere of Mars.
The name of this moon is:

1) On which of the following planets would the sun rise in the west?

2) Which planet seems to be turned on its side with an axis tilt of 98 degrees?

3) The angle that the full moon takes up in the night sky is equal to which of the following values?
4) The period from one full moon to the next is:

5) When a superior planet is at opposition it is making an angle of how many degrees with the sun?

6) The word Albedo refers to which of the following?

7) Galileo discovered something about Venus with his telescope that shook the old theories. Which of the fol

8) Cassini's division is described by which of the following?

9) Name the phase that the moon is in for each type of eclipse, lunar and solar:

10) The orbital plane of the moon is how many degrees inclined from the ecliptic?

11) In the lowest level of the photosphere of the Sun, the temperature is:

12) A Galactic year is the length of time that it takes our sun to orbit the galaxy. In Earth years, how longis a ¢
13) A first magnitude star is how many times brighter than a second magnitude star?

14) Which of the following constellations has more bright stars than any other constellation?
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15) A line through the three stars in Orion's belt points toward which one of the following stars?
16) A pulsar is actually a:

17) In the Milky Way there are approximately

18) Which of the following words best describes the shape of our galaxy?

19) On February 9, 1991, ROSAT, an orbiting observatory, finished the first ever all-sky survey of:

20) The ring nebula is an example of a planetary nebul Itis:

21) A black hole with the mass of the earth would be the size of

22) Whose paradox asks why the sky is not ablaze with starlight if the universe is infinite in extent and unifori
23) Most stars are cooler than the sun. These stars, the planets, interstellar clouds and star-forming regions e
24) Astronomers use cepheids principally as measures of what? Is it:

25) Where are most asteroids located? Is it between:

26) Of the following phases of the moon, which is the one at which a spring tide occurs? Is it

27) A white dwarf has a mass of roughly one solar mass but a size of about:

28) Which of the following can be used to see through Venus's clouds?

29) Primary cosmic radiation is characterized by:

30) Globular clusters in our galaxy are primarily found:

31) The phenomenon that causes the Moon's rotation about it's own axis to be equal to the Moon's period of
32) The Sun rotates about its own axis approximately:

33) PRESENTLY, what is the farthest planet from the sun?

34) Andromeda, the nearest galaxy which is similar to the Milky Way, is how far from the Earth? Is it:

35) The precession of the Earth refers to the:

36) The angular position of the sun at solar noon with respect to the plane of the equator is the definition of:
37) Which of the following men was the first to make systematic use of a telescope?

38) The Magellanic cloud is a:

39) The comet known as Halley's Comet has an average period of:

40) Which one of the following planets has no moons?

41) In kilometers, the earth's average distance from the sun is roughly which of the following distances?

42) The gravity on the moon is what fraction of the gravity on the earth?

What is the name given to india's lunar mission?

Who developed ballistic missile ?
ISRO 's master control facility is in,

1) The Phythagoreans appear to have been the first to have taught that the Earth is:

2) The light-gathering power of a reflecting telescope depends on which of the following?
3) Who first used Tycho Brahe's observational data on the planet Mars to determine that Mars actually
traversed an elliptical orbit, the sun being located at one of the foci?

4) Approximately how many times could a beam of light travel around the earth in one second?
5) The diameter of the earth is approximately:

6) The average density of the earth is approximately:

7) Of the following colors, which is bent least in passing through a prism?

8) In a reflecting telescope where in the tube is the objective mirror placed?
9) What is the approximate age of our sun?

10) What does it mean when someone says that comets have eccentric orbits? Does it mean
11) Which of the following planets has the lowest density?
12) What causes the gas tail of a comet to always point away from the sun?

13) What are Saturn's rings composed of?
14) Of the following, which is the only planet which CANNOT be seen with the unaided eye?

15) Accretion is:

16) If we look at a galaxy that is moving AWAY from us, we find that the wavelengths of light coming from
this galaxy are:

17) The age of the Universe in billions of years is approximately

18) The reason we call an astronomical body a black hole is that
19) A blue shift means a Doppler shift of light from a(an)
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5,000 kilometers
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completely connected solid
masses

Jupiter
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to gravity.
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itis a huge star which appears

black at its center.
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white dwarf

100 million stars
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the Moon
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speed
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radar
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distributed throughout the disk
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Landow Effect
once every 24 hours.
Neptune
2,000,000 light years

Earth's motion around the sun.
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galaxy
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vikram |
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lengthened

its gravity is so high that it absorbs its own

photons.
approaching star.



20) The first and largest asteroid discovered was:
21) Which of the following Saturnian satellites is known to possess an atmosphere?
22) The Crab Nebula consists of the remnants of a supernova which was observed by:

23) The atmosphere of Venus contains mostly

24) What causes a planet to have a magnetic field?

25) On the celestial sphere, the annual path of the Sun is called

26) The angular distance between a planet and the Sun, as viewed from the Earth, is called
27) Which of the following has the greatest density?

28) Mercury and Venus are said to be inferior planets because:
29) Galileo made many astronomical discoveries. Which of the following was NOT one of his discoveries?
30) Identify the ripples in the overall geometry of space produced by the acceleration of moving objects.

31) Which one of the following planets has less mass than the Earth?
32) Which of the following planets is NOT a terrestrial planet?

33) Why do we see lunar eclipses much more often than solar eclipses?
34) A starlike object with a very large redshiftis a
35) The apparent magnitude of an object in the sky describes its

36) The Van Allen belts are:

37) A coordinate system based on the ecliptic system is especially useful for the studies of
38) When originally discovered, how were planets such as Pluto distinguished from the multitude of stars in

the sky?

39) The moon was closer to earth in March 1993 than it has been for a dozen years. This near distance was

about

40) What is the name of the spacecraft that recently used Jupiter's gravitational field to redirect its course

toward the Sun's polar regions?
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