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28. 1 Galerkin approach, Stress calculation, Temperature effects T [2] 334-356, R [1] 214-227

KARPAGAM ACADEMY OF HIGHER EDUCATION

Page 4



FINITEELEMENT METHOD

29. 1 Tutorial 5: Derive element stiffness matrix for two-dimensional continuum | R [1] 228-250
30. 1 Solving Problems fromtwo-dimensional constant strain triangular elements | T [2] 356-380, R [1] 241-253
31 1 Solving Problems fromtwo-dimensional constant strain triangular elements | T [2] 356-380, R [1] 241-253
32. 1 Solving Problems fromtwo-dimensional constant strain triangular elements | T [2] 356-380, R [1] 241-253
33. 1 Solving Problems fromtwo-dimensional constant strain triangularelements | T [2] 356-380, R [1] 241-253
34. 1 Solving Problems fromtwo-dimensional constant strain triangular elements | T [2] 356-380, R [1] 241-253
35, 1 Tutorial 6: Problems from two-dimensional constant strain trianguler | - [2] 356-380, R [1] 241-253
elements
36. 1 Discussionon University previous year questions
Total No. of Hours Planned for Unit - 111 12
IEI:).. ngi c;)c];s Topics to be Cowered Support Materials
UNIT - IV: AXISYMMETRIC CONTINUUM
37. 1 Axisymmetric formulation — Element stiffness matrixand force vector T [2] 452-474, R [1] 258-266
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UNIT |
UNIT1

INTRODUCTION
1.1.2. Methods of Engineering Analysis
= There are three different approaches to achieve the above mentioned objectives. They are:
1. Experimental methods.
). Analytical methods.
3. Numerical methods or approximate methods.

1. Experimental Methods

In this methods, prototypes can be used. If we want to change the dimensions of the
prototype, we have to disassemble the entire prototype and reassemble it and then testing

should be carried out. It needs man power and materials. So, it is time consuming and costly
process.

2. Analytical Methods or Theoretical Analysis

In these methods, problems are expressed by mathematical differential equations. It gives

quick and closed form solutions. It is used only for simple geometries and idealized support
and loading conditions,

3. Numerical Methods

Analytical solutions can be obtained only for certain simplified situations. For Pmb"f’ms
involving complex material properties and boundary conditions, the engineer pﬂ; ers
, . ; e
numerical methods that gives approximate but acceptable solutions. The following thre

methods are coming under numerical solutions.
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(/) Functional Approximation. ;
(i) Finite Difference Method (FDM). ’

(iii) Finite Element Method (FEM).

(i) Functional Approximation:
v The classical methods such as
Galerkin methods (weighted residual methods) are based on

but vary in their procedure for evaluating the unknown parameters.
structural problems, encountereq

Rayleigh-Ritz methods (variational approach) andi
functional approximatio,

v Rayleigh-Ritz method is useful for solving complex
in finite element analysis.
v Weighted residual method is useful for solving non-structural problems.

(ii) Finite Differential Method (FDM):

v Finite difference method is useful for solving heat t
structural mechanics problems. It is a general method. It is applicable to any
phenomenon for which differential equation along with the boundary conditions are

ble. It works well for two dimensional regions with boundaries parallel to the

ransfer fluid mechanics and

availa
coordinate axes.

v The starting point in the finite difference method is that the differential equation must
be known before solving. After that, the region is subdivided into a convenient number
of divisions. The differential equation is applied successively at the various points of
the subdivided region, a set of simultaneous equations are generated which upon
solving lead to approximate solution to the problem. This is the essence of finite

difference method.
v This method is difficult to use when regions have curved or irregular boundaries and it

is difficult to write general computer programs.

(iii) Finite Element Method (FEM) or Finite Element Analysis (FEA):
v Finite element method is a numerical method for solving problems of Engineering and

Mathematical Physics.

v In this method, a body or a structure in which the analysis to
subdivided into smaller elements of finite dimensions called finite elements. The
body is considered as an assemblage of these elements connected at a finite number 0
joints called ‘Nodes’ or Nodal points. The properties of each type of finite element i
obtained and assembled together and solved as whole to get solution.

be carried out is
n the

v In other words, in the finite element method, instead of solving the problem for the
entire body in one operation, we formulate the equations for each finite element 3
combine them to obtain the solution of the whole body. :
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v Finite element method is used to solve physical problems involving complicated
geometrics, loading and material properties which cannot be solved by analytical
method. This method is extensively used in the field of structural mechanics, fluid
mechanics, heat transfer, mass transfer, electric and magnetic fields problems.

v" Fig.1.1 shows the finite element discretization of spur geér teeth.

[

Finite
element

Nodes or
Nodal points

Fig. 1.1. Finite element discretization of spur gear teeth
v Based on application, the finite element problems are classified as follows: .
() Structural problems. .

(ii) Non-structural problems.
(i) Structural problems:

In structural problems, displacement at each nodal point is obtained. By using these
displacement solutions, stress and strain in each element can be calculated.

(ii) Non-structural problems:

In non-structural problems, temperature or fluid pressure at each nodal point is obtained.
By using these values, properties such as heat flow, fluid flow ezc., for each element can be

calculated/.7

1.2. HISTORICAL BACKGROUND OF FEM

v’ Basic ideas of the finite element analysis were developed by aircraft engineers in the
early 1940s. These were primarily the matrix methods of analysis.
v’ The modern development of the finite element method began in the year of 1945 in the
N field of structural engineering with the work by Hrennikoff. o
v In 1947 Levy introduced. the flexibility or force method and in 1953 }.n,e sugg:::'y
stiffness method which could be a promising alternative for use in analysing sta
redundant aircraft structures.
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. analysis
v’ By using energy principles, Argyris and Kelsey developed matrix structural rincn})’les
methods in 1954. This development illustrated the important role that energy p
would play in the finite element method.

v’ The term finite element was first introduced by Clough in 1960 in the Plaﬂe stress
analysis and he used both triangular and rectangular elements in that analysis.

v" Most of the finite element work upto early 1960s dealt with small strains and small
displacements, elastic material behaviour and static loadings. In 1961, Turner
considered large deflection and thermal analysis problems. In 1962, Gallagher
introduced material non-linearities problems, whereas buckling problems were initially
treated by Gallagher and Padlog in 1963. In 1968, Zinkiewicz extended the method to
visco elasticity problems.

v Weighted residual methods was first introduced by Szabo and Lee in 1969 for
structural analysis and then by Zinkiewicz and Parekh in 1970 for transient field
problems.

v" During the decades of the 1960s and 1970s, the finite element method was extended to
applications in shell bending, plate bending, heat transfer analysis, fluid flow analysis
and general three dimensional problems in structural analysis.

v From the early 1950s to present, enormous advances have been made in the application
of finite element method to solve complicated engineering problems. It is curious to
note that the present day finite element method does not have its root in one discipline.
The mathematicians continue to put the finite element method on sound theoretical
ground whereas the engineers continue to find interesting extensions in various

branches of engineering. These concurrent developments have made the finite element
method as one of the most powerful approximate methods.

1.3. GENERAL STEPS OF THE FINITE ELEMENT ANALYSIS
v" This section presents the general procedure of finite element an
B sake, we will consider only the structural problems.

v" The following two general methods are associated with the finite element analysis.
They are:
(7)) Force method.
(if) Displacement or stiffness method.
v" In force method, internal forces are considered as the unknowns of the problem. In
displacement or stiffness method, displacements of the nodes are considered as the
unknowns of the problem.

v Among these two approaches, displacement method is o
formulation is simp'ler for most structural analysis problems, So, a vagt majority of
general purpose finite element programs have used the displacement formulation for
solving structural problems.

alysis. For simplicity’s

desirable because its
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Step 1: Discretization of Structure

The a ividi . ;
' rt of subdividing a structure into a convenient number of smaller elements is known
as discretization.

Smaller elements are classified as follows:

(i) One dm.lensmnal elements. (if)y Two dimensional elements.
(iii) Three dimensional elements. (iv) Axisymmetric elements.

. (i) Qne dimensional elements: A bar and beam elements are considered as one
dimensional elements. The simplest line element also known as linear element has two nodes,
one at each end as shown in Fig.1.2,

1 JZ

Fig. 1.2. Bar element
(i) Two dimensional elements: Triangular and rectangular elements are considered as
two dimensional elements. These elements are loaded by forces in their own plane. The
simplest two dimensional elements have corner nodes as shown in Fig.1.3.

3 4 3
1 2 1 2
Triangular element Rectangular element

Fig. 1.3. Simple two dimensional elements

(iii) Three dimensional
elements: The most common 4
three dimensional elements are
tetrahedral  and hexahedral a
(Brick) elements. These
elements are used for three
dimensional  stress analysis )

problems. The simplest three 1 2 - | s
elements ~have Tetrahedral element Haxakedral sloment

b

.............. L--56

e -

~
N

\

(9]

dimensional /
corner nodes as shown in
Bgla Fig. 1.4. Simple three dimensional elements
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(iv) Axisymmetric elements: The axisymmetric

element s developed by rotating a triangle or z
Quadrilateral about a fixed axis located in the plane of the
element through 360°. 1t is shown in Fig.1.5. When the -

geometry and loading of the problems are axisymmetric,
these elements are used.

.....
-
prs
e

~o L —3"/\
Step 2: Numbering of Nodes and Elements Wy, o *""1A ~

~
~.
-
had N
——————

The nodes and elements should be numbered after

-------
-
-
-

discretizaton process. The numbering process is most
important since it decide the size of the stiffness matrix
and it leads the reduction of memory requirement. While

numbering the nodes, the following condition should be
satisfied.

{ Maximum } { Minimum }_ .
node number | ~ | node number | = Minimum

It is explained in the Fig.1.6(a) and (b).

Longer Side Numbering Process:

19 20 21 22 23 24<+- Node
@ @ @« Element
13 14 15 16 17 18
®lO|®
7 8 9 10 11 12
OI|60|®|6G
1 2 3 4 5 6

Fig. 1.6. (a)

Fig. 1.5. Axisymmetric element

[Note: Number with circle denotes element.
Number without circle denotes node]

Considering element (3),

9 10

3 4

. Maximum node number = 10
Minimum node number = 3
Difference = 7

KARPAGAM ACADEMY OF HIGHER EDUCATION
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Shorter Side Numbering Process:

4 8 12 16 20 24
® @ ® @®
3 7 1 15 19 23
®
2 6 10 14 18 22
1 5 9 13 17 21
Fig. 1.6. (b)
Considering the same element (3).
10 14
9 13
Maximum node number = 14 !
Minimum node number = 9 :
Difference = 5 s K 12)

From equation (1.1) and (1.2), we came to know, shorter side numbering process is
followed in the finite element analysis and it reduces the memory requirements.

Step 3: Selection of a Displacement Function or Interpolation Function
v It involves choosing a displacement function within each element. Polynomial of

linear, quadratic and cubic form are frequently used as displacement functions because
they are simple to work within finite element formulation.

¢ (x) ¢ (x)
4 1 Exact solution
Exact solution
Eae o(x)=ag +aq X
-»> X » X
j———Element — fe——— Element —
B (a) Linear approximation (b) Quadratic approximation

Fig. 1.7. Polynomial approximation in one dimension
v’ The polynomial type of interpolation functions are mostly used due to the following
reasons.
1. It is easy to formulate and computerize the finite element equations.
2. Itis easy to perform differentiation or integration.

3. The accuracy of the results can be improved by increasing the order of the
polynomial.
Fig.1.7 shows the polynomial approximation in one dimension.

Let us consider ¢(x) is a field variable.

Case (i): Linear Polynomial:
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[n compact matrix form as,
(Fe} = [ke] {ue)

where, e isa Ele.ment, {F }'is the vector of element nodal forces, [ £ ] is the
element stiffness matrix and { 4 } is the element displacement vector.

This equation can be derived by any one of the following methods.

(f Darexs Equilibrium Method: This method is much easier to apply for line or one
Jimensional elements.
(i) Variational Method: This method is most easily adaptable to the determination of

element equations for complicated elements (i.e., element having large number of degrees of

freedom) like axisymmetric stress element, plate bending element and two or three
dimensional solid stress element. :

(iij) Weighted Residual Method: This method is (Galerkin’s method) useful for
developing the element equations in thermal analysis problems. They are especially useful
when a functional such as potential energy is not readily available.

Step 6: Assemble the element equations to obtain the global or total equations:

The individual element equations obtained in step 5 are added together by using a method
of superposition i.e., direction stiffness method. The final assembled or global equation which
is in the form of

{F} = [K]{u} ... (1.5)
where, {F} — Global force vector. »
[K] — Global stiffness matrix.

{u} — Global displacement vector.

Step 7: Applying boundary conditions: .

From equation (1.5), we know that, global stiffness matrix [K] is a singular matrix
because its determinant is equal to zero. In order to remove this singularity problem, certain
b.oundary conditions are applied so that the structure remains in place instead of moving as a
rigid body. The global equation (1.5) to be modified to account for the boundary conditions
of the problem. "

Step 8: Solution for the unknown displacements:
A set of simultaneous algebraic equations formed in step 6 can be written in expanded
Matrix form as follows: -
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These equation can be solved and unknown displacements { # } are calculated by using
Gaussian elimination method or Gauss-Seidel method.

Step 9: Computation of the element strains and stresses from the nodal displacements, {u}:

~In structural stress analysis problem, stress and strain are important factors. From the
solution of displacement vector {  }, stress and strain value can be calculated.

- In case of one dimensional deformation, the strain-displacement relationship is given by,

Strain, e = Z—: [From equation (1.3)]

0y
*2 ¥
where, u; and u, are displacement at node 1 and 2.
X, —x; = Actual length of the element.
From that, we can find the strain value.
By knowing the strain, stress value can be calculated by using the relation,
Stress, 6 = Ee
where, E — Young’s Modulus.
e — Strain.

Step 10: Interpret the results (Post Processing):

graphical form.

Steps 1 to 10 are summarized as follows:
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Discretization

i Preprocessing

Numbering of
nodes and elements

Selection of
displacement function

v

Define the material
behaviour

Derivation of element
stiffness matrix and equations

v

Assemble the element
equations

v

Applying boundary
conditions

v

Solution of unknown
displacements

v

Computation of the element | |
stresses and strains

v

Interpret the results —> Post processing

—>» Analysis
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1.4.2. Discretization

The art of subdividing a structure into a convenient number of smaller components is

known as Discretization. These smaller components are then put together. The process of
uniting the various elements together is called Assemblage. The assembl

age
then represents the original body. ge of such elements

Discretization can be classified as follows:
(¢) Natural.

(i) Artificial (continuum),

KARPAGAM ACADEMY OF HIGHER EDUCATION Page 18
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1.4.3. Natural Discretization
In structural analysis, a truss is Ry
considered as a natural system. The

various members of the truss constitute the .
elements. These elements are connected at > :"2::":"!

various joints known as$ nodes.

Nodal Points: Each kind of finite v
R2

—» Node

¥

element has a specific structural shape and
is interconnected With the adjacent
elements by nodal points or nodes. Fig. 1.10. Natural discretization of truss

Nodal forces: The forces that act at each nodal point are called nodal forces.

Degrees of freedom: When the force or reaction act at nodal point, node is subjected to
deformation. This deformation includes displacements, rotations, and/or strains. These are
collectively known as degrees of freedom or simply we can say nodal displacement is called
degrees of freedom.

In Fig.1.10, the truss consists of 9 elements and 6 nodes. There are four freely moving and
two extreme constrained nodes. The truss is a natural system as there is no possibility either
to increase or decrease the number of elements and the nodes.

'1.4.4. Artificial Discretization (Continuum)
Continuum is generally considered to be a single mass of material as found in a forging,

concrete dam, deep beam, plate and so on.
Unlike the truss element which is physically present in the truss, in a continuum, the

following three elements exist only in our imagination.
1. Triangular element.
- 2. Rectangular element.
3. Quadrilateral element.

They are shown in Fig.1.11.

3 4 3 3
4
1 2 1 4 k 2
1. Triangular element 2. Rectangular element 3. Quadrilateral element

Fig. L.11.
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1.4.5. Discretization Process

The following points to be considered while analysing the discretization process.
(i) Type of elements: '

v The type of elements to be used will be evident from the physical problem.
v A structure, shown in Fig.1.18 is discretized by using line or bar elements.

Fq
F2 . l \
F3
. L . . (@ On'gim!l. structure (b) Discretization using bar elements A_J

Fig. 1.18.

¥ The finite element idealization can be done by using three dimensiong

o C. = Cctap
element in stress analysis of short beam problem which 1s shown in Fig.1 19 %4,

L[/ : ‘ \
F2 ”'1’ A "’4 )
----’-’.o-----’-’-’— ----- Y B
: : D 1.
Fa N ! ' G /,!'

}* : : ’I' )
N Y N e ] L !

N et " -+ !

J ! E| F A

=N
N N 1 1 B
N N [] ] H
R y : : ,
N N
S c 1D
N G4) _____
A . - g
A (a) Short beam (b) Discretization using L

three-dimensional elements F

Fig. 1.19. (a) Short beam ' (b) Discretization using three-dimensional elements
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v’ The choice of the element to be used for discretization depends upon the following
factors.
(/) Number of degrees of freedom needed.
(i) Expected accuracy.
(iii) Necessary equations required,
v’ However, in certain problems, the given structure cannot be discretized by using only

one type of elements. In such cases, we can use two or more types of elements for
discretization.

Example: Air craft wing.
(i) Size of elements: _
v The size of elements influences the convergence of the solution of the problem
directly. So, it should be chosen with more care.
v If the size of the element is small, the final solution is more accurate. But the
computational time for the smaller size element is more when compared to larger size
element.

v Another characteristic related to the size of elements that affects the finite element
problem solution is the “Aspect ratio” of the elements.

v’ Aspect ratio is defined as the ratio of the largest dimension of the element to the
smallest dimension. The conclusion of many researchers is that the aspect ratio should
be close to unity as possible. For a two dimensional rectangular element, the aspect

ratio is conveniently defined as length to breadth ratio. Aspect ratio closer to unity
yields better results.

(iii) Location of nodes:

v' If the structure has no abrupt changes in geometric, load, boundary conditions and
material properties, the structure can be divided into equal subdivisions. So, the
spacing of the nodes are uniform.

v If there are any discontinuities in geometric, load, boundary conditions and material
properties of the structure, nodes should be introduced at these discontinuities as
shown in the following figures.

] ¢ o J‘, : : «— Node

Fig. 1.21. Geometric discontinuities

]
Hl;HHHHL
\Node

LLLLLLL gLl slls

Fig. 1.22. Discontinuity in loading
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\W
‘ Node
N
. / Ode
b ¢
: : :: Material 1 (Steel)
- T )

UNITI

1 >
= 1 |
< : o—o0—0—0—0—0—0—9
P o Material 2 (Aluminium)
—>»
—
Cracked plate under loading \‘
. . o ———
Fig. 1.23. Discontinuity of boundary conditions Fig. 1.24. Material disc ntinuigy

(iv) Number of elements:

The number of elements to be selected for discretization depends upon the following
factors:

1. Accuracy desired.
2. Size of the elements.

3. Number of degrees of freedom involved.

v’ If the number of element in the structure is increased, the fi
is expected to be more accurate. But the use of large num

large number of degrees of freedom, it leads the storage problem in the available
computer memory.

nal solution of the problem

1.5. WEIGHTED RESIDUAL METHODS
\
1.5.1. Introduction

(Y) Point collocation method,
(if) Subdomain collocation method,
(iii) Least squares method,

(iv) Galerkin’s method,

Among these four methods, the Galerkin appy, has the wigesy h e mrrd sed it
finite element analysis. o ¢ Otce and is use™

Page 22
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1.5.2. General Procedure

Our interest is to find y, which is the solution for the differential equation. If it is not
possible to find a solution, we assume an approximate function for y. When we substitute the
approximate solution in the differential equation, we can get residual and that residual can be
expressed as,

R (xi > a, az, a3) =
where a,, a, are unknown parameters present in assumed trial function.

The assumed trial function can be expressed as follows:

y = f(x;a|,a2,a3, ...... ,a,,)
Trial function y must exactly satisfy the boundary conditions.
The method of weighted residuals needs the parameters a,, a,, as, ...... , a, to be
determined by satisfying the following equation.
fw,.R(x;al,az,a3, ...... ,a,)dx = 0 ‘ ... (1.6)

D

where, w; is a function of x and known as weighting function.

D is a domain; R is a residual.

1.5.3. Point Collocation Method

In the collocation method, also called point collocation, residuals are set to zero at n
different locations X, and the weighting function w; is denoted as 8(x —x).

= w; = 3(x-x,)
Substituting w; value in equation (1.6),

= [8(x-x)R(x; ap,azas,......a)dx = 0 (17
D

The x s are referred to as‘ collocation points and are selected by the discretion of the
analyst, ‘ ‘

|
—

In equation (1.7), term f d(x-x) =
D
So, R(x; a,ay ay, ...... sd,) =0

1.6.4. Subdomain Collocation Method

In this method, the weighting functions (w,) are chosen to be unity over a portion of the
domain and zero elsewhere. It is given as follows:
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1 forx in D,
wy = {0 for x not in D,

1 forxinD,
Wy T {0 for x not in D,

n_

. 1 forx inD,
Yn = 10 forx notin D,

where D is a domain.

1.5.5. Least Squares Method

In this method, the integral of the weighted square of the residual over the domaj
required to be minimum.

i‘e.’ ] = f[R (x; al,az, a3, ...... a")]2 dx = millimum
D
where, 1 = f(a;, a,...... a,)
The requirement is 6%:— = 1=1,2.3, .ovue n

i

1.5.6. Galerkin’s Method
In this method, the trial function, N(x),

that is,

itself is considered as the weighting functions

. Wi = Nx)
Substitute w; value in equation (1.6),

= fN/(x) UGS T —— a
D

=
N’
S
-
[
o

(8
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Substitute the equation (6) in equation (5),

_ 1690 12(1-v2)
L= T2 E K3 (

el
ay = =0 202 | (%)]
=]

16 g, 12(1—u[
a, -

7!2
4qpa* [12(1-v2)
a =2 [ a- s

Result: Parameter, by using Galerkin technique for rectangular plate,

W arm]

a

I

Parameter, a (for rectangular)

4q90a* M12(1-2
Parameter, a, (for square) = 0 [ (1 =v4) ]

, n6 E K3
1.8. VARIATIONAL (WEAK) FORM OF THE WEIGHTED RESIDUAL STATEMENT
We know that the general weighted residual statement is,

[wrax = 0 s O

In this variational method, integration is carried out by parts. It reduces the continuity
requirement on the trial function assumed in the solution. So, it is referred to as the weak
form. In this method, it is possible to have a wider choice of trial functions.

1.9. COMPARISON OF DIFFERENTIAL EQUATION, WEIGHTED RESIDUAL STATEMENT
AND WEAK FORMULATION OF WEIGHTED RESIDUAL STATEMENT

1.9.1. Differential Equation

Consider a uniform rod subjected to uniform axial load 9o as shown in Fig.1.25.

Qo

WITIIIIIIIIIIg

f‘r

/ =]
N CRUROp—
F:g 1.25. Umform rod

The deformation of the bar is governed by the differential equation,
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d‘u
AE 72 = 0 .o (1.12)
With the boundary conditions,
u@) = 0
du
AE 5= =
dx | _, = B s (L13)

1.9.2. Weighted Residual Statement

In order to find the solution for the above mentioned problem, the weighted residual
statement can be developed as follows:

/

%
fw(x) AE 15 +qo | dx = 0 . (1.14)
0
With the boundary conditions,
u@) = 0
du
AES L P, ... (1.15)

1.9.3. Observations on the Weighted Residual Statement
v" Weighted residual statement can be developed for any form of differential equations
like linear, non-linear, ordinary, partial, etc.
v' The weighted residual statement is developed only for differential equation and it is not
suitable for boundary conditions.

v The trial solution should satisfy all the boundary conditions and it should be
differentiable as many times as needed in the original differential equation.

1.9.4. Weak Form of Weighted Residual Statement
By performing integration by parts, the weak form of weighted residual statement of the
above mentioned problem is obtained as follows:

I / /
d
[w(x)AE%-’f] - fAE%-'al:'-dx+ fw(x)qu =0 ... (1.16)
% 1o A 2
With the boundary conditions,
u@) = 0
du 4
= = P
AE dx =l /
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1.13. RAYLEIGH-RITZ METHOD (VARIATIONAL APPROACH)

1.13.1. Introduction

v Rayleigh-Ritz method is a integral approach method which is useful for solving
complex structural problems, encountered in finite element analysis. This method is
possible only if a suitable functional is available, otherwise Galerkin’s method of

weighted residual is used. By using this method stiffness matrices and consistent load
vector can be assembled easily. This method is mostly used fo

i r solving solid
mechanics problems. olving s

v’ The phrase “Variational methods” refers to methods that make -
principles, such as the principles of virtual work and the ri e of var.la.tlona
potential energy in solid and structural mechanics, to dete:n."mple of minimum
solutions of the problems. ? ine the approximate

/n Rayleigh-Ritz method for continuous system we deal with the following functional.
. x2
Potential energy, m = f fo,y',y'") dx e (1:22)

|

/ n our terminology, a functional is an integral expression that implicitly contains the
goveming differential equations for a particular problem.

/ Total potential energy of the structure is given by,

Internal - [ External
potential ¢ — { potential

n =
energy energy
= Strain energy — Work done by external forces
n = U-H

v In this method, the approximating functions must satisfy the boundary conditions and
should be easy to use. Polynomials are generally used and sometimes sine and cosine
terms are also used as approximating function.

v In general any exact function can be represented as a polynomial or trigonometric
series with undetermined constants as shown below.

y = ggtapx+ a2 +a3xd*
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or
. X ;
y = apsm7 ta;sinT

The constants a,, a,, a, are unknowns known as Ritz parameters of the curve. When the
Parameters are infinite, the particular polynomial tends to match the exact value. So, the

accuracy depends upon the number of parameters chosen.
Y The following two conditions must be fulfilled by the approximating function.
1. It should satisfy the geometric boundary conditions.

2. The function must have atleast one Ritz parameter.

V' In general, a Rayleigh-Ritz solution is rarely exact except in some special simple cases,
but it becomes more accurate with the use of more parameters.

Y This method can be understood clearly by solving the following examples.

1.15. MATRIX ALGEBRA

1.15.1. Introduction

A matrix is an m x n array of numbers written in the form,

[ ay ap a3 ... ap, ]

@1 Gp Ay ... ay,

A s a3 axp az; .. as,
= aml amz am3 S amn _

The a;;’s are real or complex numbers, They are said to be the elements of the matrix. The

above matrix have m rows and n columns, Thjs 5
3 . matrix is sai 4 a
rectangular matrix of the order m x n. If m = e —" said to be a m x n matrix Of

the order N. & € matrix is called a square matrix of
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is a 3 x 3 matrix; [7 9}isa3x2matrix;
4 2

| Examples:

L
W wk N
—_— N W
L

5
is a2 x 3 matrix; {7}isa3 x 1 matrix.
9
Equal Matrices: Two matrices A and B are called equal matrix, if they are of the same
order and the corresponding elements are equal. In that case, we can write A = B.
P q 3 2
Example: IfA=[ , s],B=[3 4—JandA=B,
wecanwritep =5,9=2,r =3,5s=4,

W W
v QA

[ 1
| 2

-~

Diagonal Matrix: A diagonal matrix is a square matrix in which all the elements other
than the diagonal are zero.

500
Example: | 0 3 0

002

Scalar matrix: A diagonal matrix in which all the diagonal elements are equal is known as
scalar matrix.

500
Example: | 0 5 0

005

Unit matrix: A square matrix in which all the diagonal elements are unity and other
elements are zero is known as unit matrix. It is denoted by I.

10
Examples: 2 x 2 unit matrix. I,,, = ( 0 1)

100
3 x 3 unitmatrix. Ij,;=|0 10
001

Row matrix: A matrix containing only one row is known as row matrix.

A = [ay,ay a3, ...,a,] isarow matrx.
Column matrix: A matrix containing only one column is called a column matrix.
by
b,
B = 4 b3 p isacolumn matrix.

b

n
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partial differentiation of U with respect to x and y yields,
ou _
ox
au
Ox
au
dy
au
oy

1
2lan2x+2a,y+0)

apx+tagy

1
5[0+2a,2x+2a22y]

alzx +022y

We can write equation (1.47) and (1.48) in the matrix form.

uy
ox | _ [011 012] {x}
oy ap apjly
Oy
A general form of equation (1.49) is,
ou
oz = [al {X}
{

where x; denotesx and y.

1.15.9. Matrix Integration

A matrix is integrated by integrating each element in the matrix by conventional manner.

4x

Example: A

|

IA dx

= fAdx_ =[

In our finite element analysis, we often integrate an expression, which is in the form of |

| JItxy 1A (X} dxdy
The term { X }T[ A ] { X } is in quadratic form.

, 235 *)
Forexample, [A] =|1 4 2|and {X} =1X;
321 ™

KARPAGAM ACADEMY OF HIGHER EDUCATION
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x4 3x.2x2
x5 x3 3x
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1.156.2. Matrix Operation _— .
(i) Scalar multiplication: In scalar multiplication, each elemen © matrix t
multiplied by the scalar.

35 2 9 15 6
Example: A = 410:|=> 3A=|12 30
, 231 6 9 3

_ (ii) Addition and subtraction of matrices: Matrices can be added and subtracted only it
they are of the same order.

2 41 15 2 3]
Example: A=[3 1 2]; B—[4 2 3

A is 2 x 3 matrix and B is also 2 x 3 matrix. So, these matrices can be added or subtracteg,

2+5 4+2 l+3]
34+4 1+2 2+3

[
avn=[764]
[

A+B =

1735
2-5 4-2 1—3]
3-4 1-2 2-3

3 2 2
A-B = [—1 1 —1]

A-B =

(iii) Multiplication of two matrices: Two matrices A and B can be multiplied only if the
number of columns in A is equal to the number of rows in B.

35
L 3 2
Example: A = [2 4 3]; B=|2.3
13
Ais 2 x 3 matrix; B is 3 x 2 matrix.
A B AB
2x3 3x2 = 2x2

Here, the number of columns in A matrix is equal to the number of rows in B matrix. 50
the matrices A and B can be multiplied.

i 357

132
a=1243) B‘[z 3}
13

[ 1x3+3%2+2x 1] 1x5+3x3+2><3
L2x3+4X2+3XI 2x5+4x3+3x3]

AB
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3+6+2 5+9+6
AB =[

6+8+3 10+12+9

[11 20]
AB = 1|17 31

In general, AB # BA

1.15.3. Transpose of a Matrix
Any matrix, whether a row, column, or rectangular matrix,
operation is frequently used in finite element equation formulations. The tr?nspose of a
matrix A is commonly denoted by AT.If A is a m x n matrix, AT is an x m matrix.
: '3 5.2
Examples: A = P l]
(3 27

can be transposed. This

AT

w
]
—_ NV W NN WV

L

35 ]
BT = 3 2
Properties of Transpose: If A and B are two matrices of the same order then,

(A+B)T = AT+BT
If A and B are conformed for multiplication, then (AB)T= BT. AT

-

Symmetric Matrices )
If a square matrix is equal to its transpose, it is a symmetric matrix.

212
A=|140
(2 0 3]
21 27
AT =140
(2 0 3]

So, A is a symmetric matrix.

1.15.4. Determinant of a Matrix
Consider the 2 x 2 matrix.

ag ap
R = [
a 4apxp
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‘Wecancheckthat, =
AAT=1
‘. (1 0 0)
ie. AA—]: 010
e - \oo01/
(312), (1238
AA—l = 1 4 0 'l_ -3 5 2
T l203/ s 21
/3 12\(12 3 -8
=Ll1ao||3 5 2
17{5 03/\8 211
F36-3-16 -9+5+4 —24+2+22
- Lil2-12-0 3+20+0 -8+8+0
17| 24-0-24 —6+0+6 -16+0+33
]1 17 0 0
| L 0 017
100
CAA1T =010
» _0}0 1
So, our answer is correct.

If the determinant of a matrix is zero, i.e., | A | = 0, then the matrix is called singular. A

singular matrix does not have an inverse. The stiffness matrices used in the finite elemen
method are singular until sufficient boundary conditions are applied.

1.16.7. Row Reduction Method (Gauss Jordan Metho

. e of
a Matrix d) to Determine the Invers

The inverse of a non-singular square matrix can be found by row reduction method

(Gauss-Jordan Method). The following example illustrate the procedure for determining the

inverse of a matrix. _
| 220
A=1210
111
We know that, 3 x 3 unit matrix is,

100
I=010]
001

KARPAGAM ACADEMY OF HIGHER EDUCATION
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We start by writing matrix A and unit matrix I side by side as follows:

[220§1 00 ‘
210010/ . | ,
T 1100 ¢ 1] | .. (143)

R,

Step 1: Divide the first row of equation by 2. ’i.e.; R - 5.

1
0: 2
2 10i0
1 11:0
Step 2: Multiply the first row by —2 and add the result to the second row.
ie, Ry - -2R;+R,.
vl

| 1 10 ) 00

0 -10 :—1 10

1 11:001

Step 3: Subtract the first row from the third row. ie., R;->R;-R;..

1 1 0 1 00

0-105-110

i.e., Rz ot g Rz .

_0 01%’2—0]

Step 4: Multiply the second row by —1,

p 1
1105 00

01031—10

LOOIZI 01

Step 5: Subtract the second row from the first row, ie, Rj > Rl R,.
-1

100: ) 10 |

010i1-10 ... (1.44)

-1

LO 0 1; ) 0 1

From equations (1.43). and (1.44), we know that, the replacement of matrix A by the
inverse matrix is completed.
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The inverse of matrix A is the right side of equation (1.44).

- ?10

Al = 1 -10
-1
201

1.16.8. Matrix Differentiation
A matrix is differentiated by differentiating each element in the matrix by conventiopy
- : ‘ [3x3 2x x*
Examples: - A =| x x2 x’]
L 5x x3 2x
dA [9x2 2 4x3)
-1 2x 5 x4
- L 5 3x2 2
[ x2 xy xz
IfA = | xz yz yz]
ny 22 xz

Partial derivative of a matrix %’:‘ is given by,

2x y z
-aaé-s[zOOjl
" y 0z

In structural analysis problem, we differentiate an expression, which is in the form of

an ap | (x
Lx y][alz azz] {y}

where, U is a strain energy.

U.=

N |

[x y] isarow matrix.
%
"{y } is column matrix.

By mgmx multiplication of equation (1.45), we get

1 [5 ) [a,,x tapy
2 y a|2x+a22y

V)

2 [a), x apxyta,xy +ay, )7

1
U - -2'[aux2+201'2xy+a22y2]
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MULTIPLE CHOICE QUESTIONS AND ANSWERS
S.N Questions Optl Opt2 Opt3 Opt4 Answer
0
Finite element Approximate | Boundary Differential | All of these All of these
1. analysis deals with | numerical value equations
solution problem
Indentify the In finite A discrete Continuous | The end Continuous
wrong statement | element model is function is points of the | function is
method a composed of | not divided | finite element | notdivided
continuous | one or more | in to finite are called in to finite
2 functioncan | interpolation | elements nodes. elements
' be polynominal
approximate | s
d using a
discrete
model
Shape function is The Writtenfor | Interchanged | All of these All of these
usually coefficient each with the
3 that appears | individual terminology
' in the node of finite | interpolation
interpolation | element polynomial
polynomial
The behavior of the | Stiffness Interpolation | Displacemen | Shape Interpolation
4 element between | matrix function t vector function function
' the node points is
described by
Essential boundary | Mixed Dirichlet Natural None of these | Dirichlet
5. conditions are also | boundary boundary boundary boundary
called as condition condition condition condition
The boundary Geometric Essential Mixed None of these | Essential
conditions usually | boundary boundary boundary boundary
specified on the condition condition condition condition
6. surface at each end
of the one
dimensional
domain is called
The boundary Neuman Essential Mixed None of these | Neuman
condition specified | boundary boundary boundary boundary
for the first condition condition condition condition
7. o
derivative of the
problem is called
as
Natural boundary | Dirichlet Neuman Displacemen | None of these | Neuman
8. condition is also boundary boundary t boundary boundary
called as condition condition condition condition
9 A vector is defined | Single Multiple Single All Single
' as physical magnitude magnitude magnitude magnitude
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quantity thatcan | and single and single and Multiple and single
be described by direction direction direction direction
Which one of the | ANSYS ALGOR NASTRAN | GAMBIT GAMBIT

10. following is not an
analysing software
11 Shape function is Blending Stiffness Polynomial | None of these | Blending
' also called as function matrix equation function
In FEA the Field Shape Material Interpolation | Field
continuous variable function property equation variable
variation of the ----
12. .
———————————— 1n terms
of discrete values
at the finite
element nodes
The termused to | Shape Degree of Stiffness Differential Shape
describe the function freedom matrix equations function
13. behavior of the
node in an element
is called as *
The weight of the | Surface Body force | Concentrated | Uniformly Body force
14 body ,magnetic traction load distributed
' force are example load
for
The force acts Body force | Surface Concentrated | Uniformly Body force
entire volume of traction load distributed
15. .
the element is load
called as
The force per unit | Body force | Surface Concentrated | Uniformly Surface
area and acts over traction load distributed traction
16. the outer surface of load
the body is called
as
Pressure is the Body force | Surface Concentrated | Uniformly Surface
17. example for traction load distributed traction
load
The pointload is | Body force | Surface Concentrated | Uniformly Concentrated
18. the example for traction load distributed load
load
The art of sub Interpolation | Isoparametri | Discretizatio | Approximatio | Discretizatio
dividing the formulation | c formulation| n n n
structure into a
19. convenient
number of smaller
elements is known
as
20 In the force Constant Unknown Zero None of these | Unknown
' method internal value value value
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forces are
considered as
In the stiffness Displacemen | Material Force Element Displacemen
ol method whichone | t property length t
' of the following is
an unknown value
The processes Post Pre Discritization | Polynomial Pre
involves processing processing process processing
preparation of data
2 like type of loading
’ ,material
properties &
boundarycondition
s is called as
Post processing is a | Preparing Initialization | Setting of Setting of Preparing the
23. process of the results boundary operating results
conditions conditions
The processes Post Pre Processing Polynomial Processing
involves the processing processing processing
stiffness
o4 generation, stiffness
’ modification and
gives the solution
of the equation is
called as
Identify the wrong | The The three The Use of The
statement displacement | moment displacement | computersis | displacement
method is equation and | method is required for | method is not
often slope not used to these methods | used to solve
25 referred toas | deflection solve for the f0.1‘ the
' the stiffness | method were | displacement displacement
method fore runners | sand slopes s and slopes
of the at each end at each end
displacement | of the beam of the beam
method
Displacements and | Force Bending Both force Shear stress Both force
rotations at theend | reactions moment reactions & reactions &

26. , .

of the beam are bending bending
accompanied by moment moment
Any beam thatis | Fixed at both | Subjected to | Fixed at both | Not loaded at | Fixed at both
to be analysed is ends anexternal | ends & all ends &

27. applied load | subjected to subjected to
an external an external
applied load applied load

08, The truss element | Axial force Shearforce Both a&b Bending Axial force

transmits moment
Total degree of 1 2 3 4 4
29. freedom of the

truss element
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Beam, plate,shell Transitional | Transitional | Only Only Transitional
elements & axial & rotational | transitional | rotational & rotational
30. transmits---—-—— -—
———————— - type of
forces
The load is Consistent lumped Vector Stiffness Consistent
distributed matrix matrix matrix matrix matrix
31. accurately through
the element is
represented by
The load is Consistent lumped Vector Stiffness lumped
distributed matrix matrix matrix matrix matrix
32. accurately through
the Node is
represented by
Which plays a Discritization | Interpolation | Numerical All of these Numerical
33 significant role in integeration integeration
' the isoparametric
formulation
Identify the wrong | Numerical Elementary | Gauss The term Gauss
statement integeration | integration | quadratureis | quadrature quadrature is
is used formulas,suc | not an means not an
extensivesly | has accepted numerical accepted
in finite trapezoidal | numerical integration numerical
34. element rule, often integration integration
analysis assume scheme in s.ch.eme in
equally finite finite
spaced data. | element elem.ent.
applications applications
The gauss points in | Null points | Sampling Weights Sampling Sampling
35 numerical points points points
' intageration is &weights &weights
called as
Identify the wrong | Shape Area The number | All of these Area
statement function for | coordinates | of nodesand coordinates
triangular depend on | placement of depend on
finite the number | the nodes for the number
elements of | of nodes higher order of nodes
36. any order used to elements used to
can be define the must satisfy d(?fine the
derived triangular certain triangular
using the element. requirements element.
area
coordinates.
The four node Using alocal | Not using Not using All of these Using alocal
rectangular coordinate local global coordinate
37. .
elements were systemthat | coordinate system system that
derived was identical | system was identical
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to the global to the global
system system

When fewer nodes | Isoparametri | Sub Super None of these | Sub
are used to define | c parametric parametric parametric
the geometry than | formulation | element element element
38. are used to define
the shape function
the element is
called
Identify the wrong | The cubic Two The order of | A single The order of
statement element dimensional | integration integration integration
without lagrange using point is using
interior cubic Gaussian satisfactory Gaussian
39 nodes would | element will | quadrature for linear quadrature
' probably be | have 12 need not quadrilateral | need not
amore exterior dependson | and triangles | dependson
efficient nodesand 4 | order of o.rd.er of
choice. interior finite finite
nodes. element element
Continuity in finite | The Continuity of | The None of these | The
element analysis continuity of | the continuity of continuity of
refers to the solution | derivatives | the solution the solution
along of the shape | along along
element functions element element
boundaries | being used to | boundaries bounde.lrie.s
model the &Continuity &Continuity
40. physical of the of the
problem derivatives of derivatives of
the shape the shape
functions functions
being used to being used to
model the model the
. physical
physical
problem problem
The element have a | Bar Triangle Rectangle Isoparametric | Isoparametri
41. curved boundaries c
is called as
In ISO parametric | Natural co- | Global Natural co- | Natural co- Natural co-
element ordinate to | coordinate to | ordinate to ordinate to ordinate to
42. formulation global co- natural spherical co- | serendipity global co-
concept of ordinate coordinate ordinate co-ordinate ordinate
mapping means system system system system system
In isoparametric | Equal Not equal Greater than | None of these | Equal
element shape or equal to
43 function used for

defining the
geometry and
displacement are
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44,

When more nodes
are used to define
the geomentry
than are used to
define the shape
function the
element is called

Isoparametri
c
formulation

Sub
parametric
element

Super
parametric
element

None of these

UNITI

Super
parametric
element

45.

Which one of the
following is not to
be representated as
an isoparametric
element

Beam

Rectangular

Triangle

All of these

Beam

46.

In higher order
elements the field
varible variation is

Linear

Non-linear

Curvilinear

Rectilinear

linear
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UNIT 2
ONE DIMENSIONAL PROBLEMS

2.1. INTRODUCTION

Bar and beam elements are considered as one dimensional elements. These elements are
often used to model trusses and frame structures.

A bar is a member which resist only axial loads, whereas a beam can resist axial, lateral
and twisting loads. A truss is an assemblage of bars with pin joints and a frame is an
assemblage of beam elements.

In this chapter, one dimensional elements and step-by-step procedure for the analysis of
bars, trusses and beams are discussed. The total potential energy, stress-strain and strain-
displacement relationships are used in developing the finite element method for a one
dimensional problems. The basic one dimensional procedure is same for two and three
dimensional problems.

2.2. STRESS, STRAIN, DISPLACEMENT AND LOADING

In one dimensional problems, stress (o), strain (e), displacement (#) and loading depends
only on the variable x. So, the vectors u, c and e can be written as,

u = u(x) PIIIIIIIIIIIIIII IS I IV A
B vyl T
c = o(x)
! volri ¢
e = e(x) 4 Jv '
The stress-strain relationship is given by, v i P i i
v '
c = Ee
where, © —> Stress, N/mm?2. Il
e — Strain.
E — Young’s modulus, N/mm?2. Fig. 2.1. A bar is subjected to loading
The strain-displacement relationship is given by,
_ du
€7 dx
The differential volume can be written as,
dV = Adx

There are three types of loading acts on the body. They are:
(7)) Body force (f).
_(#) Traction force (T).
“(#ii) Point load (P).
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Body Force (f)
A body force is a distributed force acting on every elemental volume of the body.
Unit: Force per unit volume.
Example: Self weight due to gravity.
Traction Force (T) .
A traction force is a distributed force acting on the surface of the body.
Unit: Force per unit area but for one dimensional problems, unit is force per unit length,
Examples: Frictional resistance, viscous drag, surface shear, ezc.
Point Load (P)
Point load is a force acting at a particular point which causes displacement.

2.3. FINITE ELEMENT MODELLING

A" Finite element modelling consists of the following:
(i) Discretization of structure.
(i) Numbering of nodes.

(i) Discretization

The art of subdividing a structure into a convenient number of smaller components is
known as discretization.

Consider a bar as shown in Fig.2.2. The first step is to model the bar as a stepped shaft.
Let us model the bar using 5 finite elements, each having a uniform cross section as shown in

Fig.2.3. Every elements connects two nodes. Five element, six node model element is shown
in Fig.2.4.

I777777777777777777 22720207000 77777
. O 1
-. = @ I
Ui e I

\
\ : ®© |
A ] |°
x \ £ °
L\ A\
Fig. 2.2 Fig. 2. —
The element numbers are circled to distinguish the i

. m fro 5
sectional area, traction forces and body forces are constant w;:;fnode numbers. The crosse
are differ in magnitude from element to element. Better results " eac_h element. But: thehe
number of finite elements. are obtained by increasing !
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(ii) Numbering of nodes
In one dimensional problem, each node is allowed to move only in +x direction. So, each

node has one degrees of freedom. (Degrees of freedom is nothing but a nodal displacement).
A six node finite element model is shown in Fig.2.5. It has six degrees of freedom. Load is

considered as positive if it is acting along the +x direction.

Element /@ @ @ @ @ X

° >

Node -t > = ; 5 6 J

1 2 3 4

Fig. 2.5.
In the element connectivity table, the heading 1 and 2
element and the corresponding node numbers on the structure are ca
Connectivity thus establishes the local-global correspondence.

®
' K

2

refer to local node numbers of an
lled global numbers.

1
Local numbering

Fig. 2.6. (a)

—

Nodes

Element
1 2 =

| Local numbers

N\

« Global numbers

9

@OEOB|®

Fig. 2.6. (b) Connectivity table )

2.4. CO-ORDINATES
The co-ordinates are generally classified as follows:

() Global co-ordinates.

(i) Local co-ordinates.

(#ii) Natural co-ordinates.
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. ?-
4.1, Global Co-ordinates |

oo . S . em is knowp .
The points in the entire efined using co-ordinate syst as glop, -

. structure are d Al
Co-ordinate system. ‘

§

Example: |
N
Element
o @ O ® ® t
/'L ° P ° bt j \)
Node 1 2 3 4 5 6

Fig. 2.7. One dimensional bar

v A

Y

1@3@5 %

Fig. 2.8. Two dimensional triangular element
2.4.2. Local Co-ordinates

In finite element method, separate co-ordinate is used for each element. It is very useful

for deriving element properties. But the final equations are to be formed only by global co
ordinate systems.

Yy A
2 Node

élement
o/ | \&~

For element (1): For element (2):

3 A *1 |
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For element (3): For element (4):
hf y ?
v o~
®
@ —e——> X
. 3 4
< ™
L3
For element (5):
2
)
4 \
2+

Fig. 2.9. Local co-ordinates system
2.4.3. Natural Co-ordinates '

A natural co-ordinate system is used to define any point inside the element by a set of
dimensionless numbers whose magnitude never exceeds unity. This system is very useful in

assembling of stiffness matrices.

(1) Natural Co-ordinates in One Dimension

! —|
B5d °
° a3 ®
Node 1 P Node 2
X4 X X2
(1,0) (L1, L2) (0.1)

Fig. 2.10. Natural co-ordinates for a line element

Consider a two noded line element as shown in Fig.2.10. Any point p inside the line
element is identified by two natural co-ordinates L; and L, and the cartesian co-ordinate x.
Node 1 and node 2 have the cartesian co-ordinates x, and X, respectively.
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We know that,
Total weightage of natural co-ordinates at any point is unity.
ie., L i+L, = 1 - (21)

Any point x within the element can be expressed as a linear combination of the nody) &
ordinates of nodes 1 and 2 as,

Ll xl +L2x2 = X ' ..,(2_2)

Arrange equation (2.1) and (2.2) in matrix form,
1 1] L, {1}
X) X L, X
of=laal 1)
= L2 X1 Xy X
1 Xy 1 {1}
T opmx) [x ] ¥
an alz)" B 1 [ a "alz]
Note: az 4n (a - axp)—(ay-ay) —ay ay
1 Xy —X
1 {xz—x
XX x—-x

1 JX2—Xx :
I {x =X [ X3 =X is the length of the element, ]

1

I
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L
The yariation of Ly and. L, is shown in Fig.2.12 and Fig.2.13. L, is one at node 1 and it is
oat node 2 whereas L, 1s one at node 2 and it is zero at node 1.

‘76

| ek ;

1

Fig. 2.11. Fig. 2.12. Variation of L, Fig. 2.13. Variation of L,

Integration of polynomial terms in natural co-ordinates can be performed by using the

simple formula,

*2
[P dx = s x b @3

¥
where, a! is the factorial of a..
Natural Co-ordinate, €
In one dimensional problem, the following type of natural co-ordinate is also used.

Consider a one dimensional element as shown in Fig.2. 14.

In the local number scheme, the first node will be numbered 1 and the second node 2. ¢ is

the centre of nodes 1 and 2 and p is the point referred.

The natural co-ordinator & for any point in the element is defined as,

(5

2
c V4
14 X1 L] Jx 2
Xe= "3
L ! >|
)
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CANLFETN 22 B B ]
2 [ (x2+x1)7
= x-U2 )l
2 | (xz—x1+2x|)]
= 'I_X Lx = 2
2 T (l+2x,)]
ST L* T 2
- (v =)
€ = 7‘ x - '2‘+ b
gl _ 1
= 5 T X —5—X
el I _
= 2 Y27 XX
l
= 5(e+1) = x-x (24
Applying boundary conditions,
Atnode 1, x = X
l
24) = 5(1+s) =0
= 1+ = @
=
At node 2, X = X%
l
24) = ’2‘(l+e) = X-x
-é'(l+a) =]
= l+e = 2
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X

X
‘e
N

1¢
X1

o

Fig. 2.15. Variation of natural co-ordinate, &

Natural Co-ordinates in Two Dimensions
Consider a triangular element having 3 nodes as shown in Fig.2.16.

Let p is the point inside the element and it has 3 co-ordinates L, L, and L,

From the definition of natural co-ordinates, we know that,

Li+L,+L; =1 us (2:3)
Lixj+tLyx+L3x; = x & (2.6)
Liy+tlyntlyy =y s (s )

Assemble the above equations in matrix form,
1 1 1 LI\ 1
X Xy X3 L2 > = X
N Y2 Vs L; ) y
Iy = 1T T
Lyp =| X1 X2 % x ...(2.8)
L3J T P4
— 4+ -+
1 1 1
- 4+ -
Let D=1 x x x
+ - +
) V2 V3 -
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CcT ,
D—l = lDl -..(4
}Hr
Coefficients of matrix D: ey =t g ¥ =XHY3—X3)2
2 V3
X X3
g T T 2 X5 = - y3—x3)) = By —X);
X X
en =+, | =GR
1 1
€a = " |y, y| T =0y
1 1
2 =7 Y1 I3 BRERRY
1 1
€3 = ~ i Yy =-02-y) =y -»
11
G = X x| T BTR
_ 1 1
e P S R
c33 xl x2 = xz_xl
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[ (X33 —%3) Cesyy—x133) Gy ya—=%)1)
C = Y2—)3 V3= 1=

X3 =X Xp—X3 Xy = X|

[ X% y3—xXy, »-y; x-x

= CT =| X33V1—X1)3 V3=Y X—X3 ... (2.10)
L X1 a=%0 =) X%—X%

1 1 1

B=|%f % %

=¥ o ¥

ID| = 10oy3—x309) =10 y3=x39) + 1 (x; ), =% 1) ell@ll)

Substitute CT and | D | values in equation (2.9),

1
i D1 =
29 = D o y3—X37)— @ Y3 =X ) + (5 V=% 31)

X V3—=X3)2 V2—)3 X3—X
BN —X1y3 V3= X1—X
Xy Va—=X% Y1 V1= Xp—X

Substitute D! value in equation (2.8),

(L, 1 4 1% ry
=% . Lyp=]X% %2 % x
L L3 i Y2 )3 y
le ]
= q L. = X
» tz (e 3 —=X35) — () y3 = X3 y1) + (X Y, — X2 Y1)
(L3 ;

X2Y3=X3)y Va—)3 X3—X |
X3V = X1V3 V3= X X3 x are s L)
X=XV 1= X=X Y

_ The area of the triangle ABC can be expressed as a function of the x, y co-ordinates of the
nodes 1, 2 and 3.
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1 x
A= % 1 x »n
1 x3 53
= % (1 (xpy3=X352) =% 03—yt (x3—x2)]
- % [x2y3—x3y2—x,y3+x,y2+x3y,—;2y|]

A = %[xzys"sz’z—(xl}’s—xayl)*(xl)’2‘x2}’|)]

= Y3 —X30) - —Xy) @ pn-xny) = 2A - (2.13)

Substitute (2.13) value in equation (2.12),

L, XoY3—X3Y, YVa—)V3 X3—X% 1

1
= L, p = Fx | BOTHYE B MR x
L X1 V2= %)y V1= V2 X%—X y

Integration of polynomial terms in natural co-ordinates for two dimensional elements can
be performed by using the formula,

1 B! y!
f (L2 (LP (LyYdA = w—f‘g%x 2A (214
A

2.6.1. Introduction

If the values of the field variable are computed only at nodes, how are values obtained at
other nodal points within a finite element? This is a most important point of finite element
analysis.

The values of the field variable computed at the nodes are used to approximate the values
at non-nodal points by interpolation of the nodal values.

Non nodal points

> Nodal points

Fig. 2.17.
Consider the three noded triangular element as shown in Fig.2.17
The nodes are exterior and at any point within th e T
€ eleme . g y
by the following approximate relation. nt the field variable is described
where ¢, ¢,, ¢ 3 are the values of the field variable at the node > 3
interpolation functions. N;, N, and N, are also calle S, and Ny, N, and N, are the
used to express the geometry or shape of the element. Sha,
nodal point and zero value at other nodal poings, .
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In one dimensional problem, the basic field variable is displacement.
So, u = XNju, where u — Displacement.

For two noded bar element, the displacement at any point within the element is given by,
where, u; and u, are nodal displacements.

p
1¢ X1 92
U4 Uz

Fig. 2.18.
In two dimensional stress analysis problem, the basic field variable is displacement.
So, u = ZN,u;
v = ZN,v;
For three noded triangular element, the displacement at any point within the element is
given by,

u = ZN;u; = Nyuy+Nyu, + Ny
v = ZN;v; = Ny v+ Ny v, + N3y
where, u,, uy, u3, v}, v, and v; are nodal displacements.
In general, shape functions need to satisfy the following:
1. First derivatives should be finite within an element.
2. Displacement should be continuous across the element boundary.
The characteristics of shape function are:
1. The shape function has unit value at its own nodal point and zero value at other
nodal points.
2. The sum of shape function is equal to one. _
3. The shape functions for two dimensional elements are zero along each side that the
node does not touch.

4. The shape functions are always polynomials of the same type as the original
interpolation equations.

2.6.2. Polynomial Shape Functions
Polynomials are generally used as shape function due to the following reasons.
1. Differentiation and integration of polynomials are quite easy.
2. Itis easy to formulate and computerize the finite element equations.

3. The accuracy of the results can be improved by increasing the order of the
polynomial.

. The approximation of a non-linear one dimensional function by using polynomials of
different order is shown in Fig.2.19.
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L)
= u = [l.x]7[_] 1 ty
IRIEH M
=7[1x] |:—1 1 20)

-1 {al
=—I-[1..x 0+x] ",

[+ Matrix multiplication (1 x 2) (2x2) =(1x 2]

L

UNIT 11

u = [l—;ﬁ ﬂ {:} . 220)
4
= NN {uz}
Displacement function, » = N, u; +N, %, - (221)
where, Shape function, N, = I—;—l; Shape function, N, = Z;‘

We may note that N, and N, obey the definition of shape function, i.e., the shape function
will have a value equal to unity at the node to which it belongs and zero value at other nodes.
Checking: Atnodel, x=0.

I-x [-0
= B =5 ="1
N]=1
x 0
N, =0
Atnode2, x = |/
I-x -]
N, =0
x i
:>N2—'1‘=7
N2=l
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2.7. STIFFNESS MATRIX [K] |
In order to get an expression for the stiffness matrix in finite element method, let us
review the strain energy expression in structural mechanics.

Consider ®;, @y ....-. ®, are nodal displacement parameters or otherwise known as
degrees of freedom, W, W5, ...... W, are the corresponding nodal loads acting at degrees
of freedom. { ® } and’{ W } are column matrix.

e W]
W,
(W) = 4 W,
W,

o,

L)

{0} =19

k 0)”

We know that, {W} = [K] {o*} ... (2.22)

where, W = Nodal loads.
K Stiffness matrix.
o* Degrees of freedom.
From equation (2.22), we know that, nodal loads and the corresponding degrees of

freedom are linked through stiffness matrix.
We know that,
Work done, P = Strain energy

= P = %W,co,+';' W2m2+% Wity susvanas +y W,0,
We can write this equation in matrix form,
5y
ie., P = % [W, Wy W3 ... W, ] 0?3
(D."
P = %{W}T{m*} avi (2:23)

[Note: [ ] & Row matrix; { } — Column matrix]
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Substitute equation (2.22) in equation (2.23),
= P = %{[K]{m*'}}T {o*}
o L (a3t ()
P =5 (0"T[KI{0"}]| - 24

[ -+ K is a symmetric matrix. So, [K]T=[g 3

Equation (2.24) is a strain energy equation for a structure.

Our aim is to find the expression for stiffness matrix [K]. Let us consider ope
dimensional element. Uy, Uy, Uy , u,, are the degrees of freedom of that element.

We know that,
Strain, {e} = [B] {u*) .+ (225)
= [{e}T = [B]T {u*}T] -+ (2.26)

where, {e} isa strain matrix [Column matrix].
[B] is astrain-displacement matrix [Row matrix].
{u*} isadegree of freedom [Column matrix].

We know that,
Stress {c} = [E]{e}
[{c} = [D] {e}] .. 220)

where, [E] = [D] = Young’s modulus,
Strain energy expression is given by,

1 .
U= [7(e)T (o} av . 228)

Substitute { e }T and { o } values,

1 o
= U= [3(B] {#*}T[D] {e} av

v

| |
5 {u*)T f[B]T[D]{e}dv
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substitute { € } value,
1
= U= 5 {u*}T f[B]T[D][B]{u*'} dv
1
LA 5{u*}T[f[B]T[D][B]dv]{u*} ... (2.29)
From equation (2.24), we know that,
ey
P =7 {o*}T[K] {o*} .. (2.24)
Comparing equation (2.29) and (2.24),
= {o*}T = {u*}T
{o*} = {u*}
(K] = [[BIT[D][Bldv
So, | Stiffness matrix, [K] = f [B]T[D][B]dv ... (2.30)

where, [B] —> Strain displacement relationship matrix.

[D] — Elasticity matrix or Stress-strain relationship matrix.

In one dimensional problem,

) du
Strain, e = ;&‘

where, u —> Displacement function.
[D] = [E]~= E = Young’s modulus.

l du
1 Beam problem, Strain, e = Curvature = ;3

[E1] = Flexural rigidity.

[D]
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2.7.1. Properties of Stiffness Matrix

It is a symmetric matrix.

The sum of elements in any column must b
It is an unstable element. So, the determina
The dimension of the global stiffness matrix [
nodes. This follows from the fact that each nod
The diagonal coefficients are a
the off-diagonal values in the same row.

e equal to Zero-
nt is equal to zero-
K ]isN X N,
e has only one

= R o=

-2.7.2. Derivation of Stiffness Matrix for One Dimension
" Consider a one dimensional bar element with nodes 1 and 2 as
and u, be the nodal displacement parameters or otherwise known as

Iways positive and relatively lar

al Linear Bar Element

UNIT 11

where N is the numbe;
degree of freedom,

ge when compareq to

shown in Fig.2.21. Let u,
degrees of freedom.

X

1€ 92
uq u2
I N
I* ! !

Fig. 2.21. A bar element with two nodes
We know that,

Stiffness matrix [ K]

\4

In one dimensional bar element,

Displacement function, # = N, u; +N, U,
where, N, = l;lx_
x
We know that,
Strain-Displacement matrix, [B] = [ﬁ'- d&
dx dx

- [3 1]
:l
= [B]T = Il
7

[IBIT[DI[B] dv [From equation no.(230)

[From equation no.(2.21)]

@30
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In one dimensional problems, [D] = [E] = E = Young’s modulus .. (233)

Substitute [ B ], [ B ] and [ D ] values in stiffness matrix equation. [Limit is 0 to /].
| m i =]
l 3 / _ s
/ = 2 2
J % B [T ] dv = | Lo B
’ oL p

~|—

= [K]

~|—

[ Matrix multiplication (2 x 1) x (1 x2) = (2x2)]
—

|

e
i~ f 1 E Adx [+ dv = Adx]
o L7 =
1L -l 1o
- AE T L 2 2 §
N 4 1 fax = AE S|,
2 1210 2 J2
- ! 1l -1
2 2 2
= AE| _, , |0-0 = AE[|
7 P 7 op
_ AEI[ 1 —1]
B LN I |
AE [ 1 -1]
= 7 o

The properties of a stiffness matrix are satisfied.

v

7

1. Itis symmetric.
2. The sum of elements in any column is equal to zero.

2.8. DERIVATION OF FINITE ELEMENT EQUATION FOR ONE DIMENSIONAL LINEAR

BAR ELEMENT

We know that, General force equation is,
{F} = [K] {u}
{F} is aelement force vector [Column matrix].

... (235)

where,

[ K] is a stiffness matrix [Row matrix].
{u} isanodal displacement [Column matrix].
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For one dimensional bar element, stiffness matrix [ K ] is gven by.

AE
(K] =7
For two noded bar element,
Fy
{F} =
AT ™

F,

1 -l
-1 1

2]

!
}

(From equation “0-(2.34)]

Substitute [ K ] { F } and { u } values in equation (2.35),

Fl
F,

—

-3

-

R

. (2.36)

This is a finite element equation for one dimensional two noded bar element.

2.9. ASSEMBLING THE STIFFNESS EQUATIONS OR GLOBAL EQUATIONS

\

)

Consider a bar as shown in Fig.2.22(a). This bar can be equally divided into 4 elements as

shown in Fig.2.22(b).

PIIIIIP777777777777774

————

W IIIIIIIII7III PP 774

---------------

Fig. 2.22. (a)

Now the bar has 4 elements with 5 nodes.

Fig. 2.22. (b)

[Note: A number with circle denotes element and without circle denotes nodes]

We know that,

Finite element equation for two noded bar element is,

Fy
Fy

{

_ AE
B

U

L)
-]l 1

I

u
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For element (1) (Nodes 1, 2):
L ////'/1//// g A
2
Finite element equation is,
F, 2 ]n “112 u
AE -
= 55 | g o ... (237
) -1 1 Uy
For element (2) (Nodes 2, 3):
2
8
Finite element equation is,
F, a3y, 4% u,
AE| 1 -l
= 5| ayp o ... (2.38)
F3 -1 1 U
For element (3) (Nodes 3, 4):
3
2
Finite element equation is,
F3 a 133 ‘7314 u;
AE -
=7 | a au ars {239
(Fy -1, -1 Uy
For element (4) (Nodes 4, 5):
4
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Finite element equation is,
F4 auy 945 Uy
_AE 1 -1 -+ (2.40)
T 0| asa 955
Fs "'1 1 u5

Assembling the equations (2.37), (2.38), (2.39) and (2.40),

15 Y Uy
( F, ~ay app 413 914 1
1 1 -1 o 0 O
F, ay] axp 923 924 925 Uy
-1 141 -1 0 0
AE|l 931 932 933 a4 935 n
T A T I I B I B
a4 a4 as3  d44 945
F, 0 0 -1 1+1 -1 Uy
asy 4sy as3 as4 4ass
| Fs o 0 0 -1 1 Us
2 . J \ J
[(Fy ) 1 -1 0 0 ) (%)
B3 -1 2 -1 0 )
AE
1Br=T10-1 2 < o |]uyl
F, 0 0 -1 ¥ ] u,
. FS J L 0 0 0 —] ‘l . uS J

[Note: The bar has 5 nodes and each node has one degree of freedom. So

iffness
matrix size is 5 x 5] the global stiffn

— 1 -1 0 0 ¢o—
-1 21 0 9
[Klgoba =| 0 -1 2 1 o
0 01 2

— 00 0

2.10. THE LOAD OR FORCE VECTOR{F} —

Consider a vertically hanging bar of length 7, yp —

h ; p if
young’s modulus E. This bar is subjected to self weigh orm cross-

txb. section A, density p and
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//////////////1/
X
Y,
Fig. 2.23. Vertically hanging bar with self weight
The element nodal force vector is given by,
{F}, = [IN]T X, .. (2.41)
We know that,
Self weight due to loading force, X, = p Adx ... (2.42)
For one dimensional bar element, the displacement function is given by,
u = Nyu+Nyu, [From equation no.(2.21)]
] —
where, N, = "71
x
N, = 7
I-x x
[—x
/
= [N]' =19 |, ... (2.43)
7

Substitute X, and [ N ]T values in equation (2.41),

l—x , l—x
/ /
= {F}, = f X pAdx = pAf . dx
o 7 0 7
! 1-7 / dx—ild—x
=pAf X dx = pAf v dx
0 7 0 /
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Substitute the equation (2.49) in equation (2.50) and (2.51),
Equatidn (2-50) = Uy = ul * a; J az 12 ) ces (2.52)
al / azl
Equation (2.51) = uy = upt 5 T ... (2.53)
Equation (2.52) = uy—u; = a;l+a,l? ...(2.54)
a;l ayl?
Equation (2.53) = w-—u = 5t v (259
Arranging the equation (2.54) and (2.55) in matrix form,
[ 127
Uy — Uy {- a,
{asa) = |t 2){e)
u3 = ul i E -4—' } a2
a; & = U =4
= =1 I2
az i 5 Z-J u3 o~ ul
2,
1 4 U =4
- (1_3 _B ) :!_ ] Us—u
4 2 2
ap ap |1 1 [ az ‘012]
C o - & Ik
(Note: [021 022] (@nap-apay) " [ -ay ay ]
2
! L {uz—u'} 2.56)
=5 gl (__13) L 4, _— v (2
4 2
412 .
= a, = _l— _4- (uz—u])—l (u3“‘ul) ...(2.57)
-4 [ =1
= a=T|3 (uy—uy) + 1 (u3 —uy) ... (2.58)
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43 T 4B T T
e . W et
YT S
_ w4
| 4 =T Ry L : - (2.59)
“Equation (2.58) =
4| -lu, :
az = 73- _2—+5 u|+lu3—lu]
_Mwy 41 41 4l
T 2B T2t p wt oy
_2%m 2 4. 4
ST TpRpw-pwktnpy
o2 2 4
a = 12 u1+ 12 —'I'§u3 ) ...(2.60)
Arranging the equation (2.49), (2.59) and (2.60) in matrix form,
! 0 0 7
“0 =3 1 4 ™ .
al = | I l l u2 . .“(2'61)
a 2 2 -4
S P e e
Substitute the equation (2.61) in equation (2.48),
‘ : -1 0 0 A
| 23zl | (M)
(uy =00 x 2| 1T T 1 iy e®
2 2 -4 |
B R O
Uy
_ 3 2x2 -x 2x2 4 2
o= [0-be) (2 (5 2) ] [
Uy
{u}' = [Nl N2 N3] u2
_ ‘ Uy
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2.20. THE’POTENTlAL—ENERGY.APPROACH.', 2 ) s
We know that,
The general expression for the potential energy is given by,

T = %che'Adx—fquAdx"f"Tde_ z u; P,
/ / t ’
where, ¢ — Stress, N/mm?

— Strain

— Area, mm?2

— Displacement, mm
— Body force, N

—> Traction force, N

W - N R D> o

—> Point load, N ‘
When the continuum has been discretized into finite elements, the expression for g
becomes as follows:

1
=235 cheAdx - fquAdx - fuTde -2 QP
e @ e é e & i
The above equation can be written as,

m=3XU -3 [uTfAdx-3 [uTTdx-32QP, .09

4 1
where, Strain energy, U, = 5 J' oTe A dx

Stiffness matrix for a bar element:
We know that,
. : .
Strain energy, U, = 5 IO’T e Adx , .. @29

From equation (2.25), we know that,
| Strain, e = Bu |’

Stress

Stress, o = Ee [ Young’s modulus, E = Gyain,¢

- rStress, c = Ex B?]
Substitute o and e values in equation (2.93),

a l 1 >
= U, =3 I(EBu)T (Bu) Adx =-;- IEBT uTBuAdx
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Element stiffness matrix in global co-ordinates.
[K] = [LIT[K'][L] e
Substitute [ L ] value from equation (2.81) and [ K’ ] value from equation (2.85),
/I 0
m 0 AeEe[l—l][lmOO]
= KI1=| 0 ;17 La 1llo o 1 m
0 m
I 077
I m 0 O:l m (
. - : T =
- [L] {OOlm’[L] 0/
0 md
/] 07
:>[K]=A3Ee m 0 I:l—l}l:lmOO]
l, 0 7 |L-1 1JLo 0 Im
0 m.J
-7 0-
_AE im0 [ I-0 m-0 0-1 O—m}
I, 0 !/ ~1+0 —m+0 0+/ 0+m
L0 m

[ (2x2) x 2x4)=2x4

[2~0 Im-0 —p2+g —im+0

= ZeZe| Im-0 m2-0 _py+0 —m2+0
le 0-22 0-tm o+p2 0+1Im

~0=Im 0-m2 04pm  0+m?

[ (@x2) x (2x4) =4

KARPAGAM ACADEMY OF HIGHER EDUCATION



FINITEELEMENT METHOD
UNIT 11

uT [EBTBu Adx

N =

-

!
uT AEBTBufdx
L 0 ol

N |

uT [ AEBTBu[x] |
L 0

—_— N =

U, = 54" [AEBTBu ()] - .. (2.94)

From equation (2.31), we know that,

-.|_|_
~ |
| PSSR |

Strain—-Displacement matrix, [ B] = [

= [B]T =

Substitute B, BT values in equation (2.94).

-1
| Tl{ra 1
= U, =%uT-AE }[T T]ul

|
N |—

=

I Il
N |— N | =

B *

-3 -
- >
& ~I%
-1 —A—
. F

The above equation is in the form of

.
U 2u[K]u

e

where, Stiffness matrix, [ K ] i ... (2.95)

Il
|>
m
—
LI

|

—tt .
I
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uT [EBTBu A dx
B !
uT AEBTBufdx
0 =

N |—

N |

uT [ AEB™Bu[x] |
L. 0

U, = 5 uT [AEBTBu (/)] ' ... (2.94)

e

= =

From equation (2.31), we know that,

~|—
| IS

Strain—Displacement matrix, [ B] = [

=5 [B]T={

Substitute B, BT values in equation (2.94).

U
=
]
|+ —
AN
-1
>
(sl
~|.L
%K_J
| —
~|L
~ |-
e J
b
-~

N |—

|

N | —
E
-

N |—

U =

The above equation is in the form of

S
U 2u[K]u

e

Pk

AE 1 -1
where, Stiffness matrix, [ K] = T [_1 1 :I - ... (2.95)
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uT [EBTB u A dx

N |—

—

I
ul AEBTBufdx
o

N |

uT [ AEBTBu[x] |
L 0

U, = 5 uT [AEBTBu ()] - ... (2.94)

e

V= =

From equation (2.31), we know that,

~}—
| PSS

Strain—-Displacement matrix, [ B] = [

-1

l
:[B]T={1
1

Substitute B, BT values in equation (2.94).

I

N |— N | —
Q
=

o=
|
N~
a—a
ng ~|
1 ——

The above equation is in the form of

= T
U 2u[K]u

e

... (2.95)

Il
|>
&
| —|
& wa
|
p—
| I— |

where, Stiffness matrix, [ K ] i
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Multiple Choice Questionsand Answers
S.No Questions Optl Opt2 Opt3 Opt4 Answer
Secondary nodes are . .
1 located at------------- Mid side Corner Interior gilr(]jtzlr(ijoer g:(rj]tilr??)r
———————— of the element
. Polynomial Polynomial
5 ::rl]ekr]r:ggtesrr?trjdrrelt;er of Polynomial | Degree of coefficients & | None of coefficients &
nodes are equal to coefficients | freedom degree of these degree of
q freedom freedom
3 Ionrdcesr-(l)—feli)rlmnn(: rtnh :I Linear adratic Cubic Linear & Linear
is polynomi : Qu ' ubl Quadratic '
In LST element the _ _ _ Linear & _
4 ?srderof polynomial | Linear Quadratic Cubic Quadratic Quadratic
The magnitude of
5 | thenaturalco- lto-1 0.1to-0.1 0.01to-.01 m%gg of 1to-1
ordinate systemis
The relation between
the derivatives of
natural coordinate Jacobian . Stiffness Triangular Jacobian
6 and global matrix [B] matrix matrix matrix matrix
coordinate systemis
given by
igﬁg&;ﬂ:ﬁ:ﬁe Global Cartisiean Natural Spherical Natural
7 for variables coordinate | coordinate coordinate coordinate | coordinate
specified in system system system system system
Gauss quadrature None of
8 method limits ranges | 1to-1 0.1to-0.1 0.01to-.01 these 1to-1
to
Number of nodesin
9 CST element 1 2 3 4 3
Numberof nodesin
10 QST element 1 2 6 10 10
A graphical method
of depicting
1 complete two Pascals Pascals Pascals Pascals Pascals
dimensional pyramid triangle rectangle circle triangle
polynomialis called
as
The interior node is Interiornode | Interiornode lc\lc?r;[nected None of Not connected
12 connected with g:; ?Tr;ontther ge?enrﬁ with any these ‘é\fggq;?{
element
Which one ofthe
following method Ravleiah Area Weighted Area
13 | usedtoderivethe me¥h og Ritz method coordinates residual coordinates
shape function for method method method
Triangularelement
Totaldegree of
freedomofthe
14 rectangular element 1 2 3 4 4
is equalto
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The choice of
polynoimals for 8
noded rectangular
elementis

Quadratic

Cubic

Incompleted
cubic

Quartic

Incompleted
cubic

The extension of
triangular elements
in 3-dimensional
elements is called as

Quadratic

Quadrilateral

Tetrahedrons

Brick

Tetrahedrons

The extension of
rectangular elements
in 3-dimensional
elements is called as

Quadratic

Cubic

Tetrahedrons

Brick

Brick

The magnitudeof
jacobian is -----------

--area of the element

Equalto

Twicethe

One third of
the

One half

Twice the

In the triangular
element
N1+N2+N3=

2

3

01

1

[B] matrix is
represents

Stress-strain
relation ship

Strain-
displacement
relationship

Stress-
displacement
relationship

None of
these

Strain-
displacement
relationship

Thedistributedload
acting on the surface
of the body s called
as

Body force

Surface force

Traction force

Drag force

Traction force

22

The material
property ofthe
triangularelement is

BAT

23

The product of
arbitary nodal
displacement
matrix*force vector
is called as

Internal
virtual work

External
virtunal work

Potential
work

None of
these

External
virtunal work

24

The product of DBqg
is called as

Stress

Strain

Displacement

None of
these

Stress

25

When dividing the
domain by triangular
elements which one
of the parameter
have major
preference

Length

Width

Aspect ratio

Height

Aspectratio

26

Atthe notchesand
fillets the size ofthe
element become

Increased

Decreased

Not varied

Equally
spaced

Decreased

27

Coarse elementsare
recommended for

Initial trials

Filleted
corners

Fluid flow
analysis

Fordynamic
analysis

Initial trials

28

Forthe quadrilateral
elements the
numbering ofnodes
donein ------------—--
-------- direction

Clockwise

Anticlockwise

Opposite

None of
these

Anticlockwise
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The representation
of quadrilateral
elements in to
triangular elements
is called as

Convergent

Divergent

Degenerate

None of
these

Degenerate

Degenerationwill
increasesthe

Accuracy

Error

Computing
time

Computing
cost

Error

Which one ofthe
following element
will gives thebetter
results foranalyzing
the tubes

4 noded
rectangular
element

8 noded
rectangular
element

9 noded
rectangular
element

QST
element

9 noded
rectangular
element

If the interiornode is
not properly located
than the jacobian
matrix becomes

It not effects
the matrix

None of
these

The order of
stiffness matrix for
CST element

6*6

™7

4*4

8*8

8*8

The polynomial
function forthree
noded isoparametric
barelement is

Linear

Quadratic

Cubic

Quatric

Quadratic

35

The gauss
quadrature method
recommened for
develop the stiffness
of an 8 noded
quadrilateral elerrent
is

One point
method

Two point
method

Three point
method

Fourpoint
method

Three point
method

36

The number of
nodes at hexahedral
elemrntis equalto

10

37

The gauss
guadrature method
recommened for
develop the stiffness
of an hexahedral
elemrntis equalto

One point
method

Two point
method

Three point
method

Fourpoint
method

Two point
method

38

Which type of
elements are usedto
analyze the arch
dams ,forged parts

1_
dimensional

2-dimesional

3-dimensional

Multi
dimensional

3-dimensional

39

Which one ofthe
following method of
numerical
integeration is more
suitable analysis for
FEA analysis

Newtons
cotes
gudrature

Simpsons rule

Trapezoid
rule

Gauss
quadrature

Gauss
quadrature

40

The locatin of
sample point taken
for gauss quadrature
one point method

-1

None of
these

41

The locatin of
sample point taken

+.8888888888

+.577350

+.3339

+.577350
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for gauss quadrature
two point method

The number of
sample point taken
for gauss quadrature
two point method

The number of
sample point taken
for gauss quadrature
fourpoint method

The orderofbody
force vectorfor4
nodedisoparametric
quadrilateral element

2*2

8*1

4*4

3*4

8*1
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UNIT3
TWO-DIMENSIONAL CONTINUUM

34. INTRODUCTION

This chapter considers the two dimensional finite element. Two dimensional elements are
defined by three or more nodes in a two dimensional plane (i.e., x, y plane). The basic
element useful for two dimensional analysis is the triangular element. The simplest two
dimensional elements have corner nodes as shown in Fig.3.1. A quadrilateral (special forms
of rectangle and parallelogram) element can be obtained by assembling two or four triangular
elements, as shown in Fig.3.2. They are often used to model a wide range of Engineering
problems.

2
2
~ 3 1 2 3
3
3 =
1 1 4 4 1 4
Triangle Rectangle Quadrilateral Parallelogram
Fig. 3.1. Two dimensional elements

node 4 4 ‘
= |

)

1)
, _ : '
nOde 1 1 1 oG T i ‘
node 3 ‘5‘ ------- 3!
: !
: !
node 2 2 |

Fig. 3.2. A quadrilateral element as an assemblage of two or four triangular elements

The two dimensional analysis of hydraulic cylinder rod end with plane strain triangular
elements is shown in Fig.3.3.
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A
NS
E"

y L
L X
Applied loads

Fig. 3.3. Two dimensional analysis of hydraulic cylinder rod end _
The two dimensional finite element formulation follows the same steps which is used jy

the one dimensional problems. The displacements and distributed body force values g,
functions of the position indicated by (x, y).

A

——

u
The displacement vector u is givenby, u = { v }

where u and v are the x and y components of u respectively.
The stresses and strains are given as,

N
X
Tny
N
ex
e = ey ?
'nyJ

where, — Normal stress

c
T —> Shear stresg
¢ — Normal strain.
Y — Shear strain.

F

F
Body force is given by, F = { x}
y

3.2. PLANE STRESS AND PLANE STRAIN

The two dimensional element is extremely important for the following two analysis:
(/) Plane stresg analysis.

(if) Plane strain analysis,
(i) Plane Stress Analysis

: s
hich the normal stress (o) and shear sire

(t) directed perpendicular to the plane are assumed to be zerq
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Generally, n?embers that are thin (those with a small z dimension compared to the in-plane
candy dimensions) and whose loads act only in the x—-y plane can be considered to be under
plane Sess: _

plates with holes and plates with fillets are coming under plane stress analysis problems.

r"f AY Ay
720 T T
/ 5 - L. T
O o I N VI -
: = > —r—> X 2
. - ; e 7 o~
(a) Plate with hole (b) Plate with fillet

Fig. 3.4. Plane stress problems: (a) plate with hole; (b) plate with fillet

‘where, T — Surface tractions (i.e., pressure acting on the surface edge
or face of a member, unit - Force/Area — N/m?)
Normal stress, c, = 0
Shear stresses T,, and t,, = 0
(ii) Plane strain analysis ' _
Plane strain is defined to be a state of strain in which the strain normal to the xy plane and
the shear strains are assumed to be zero.
Dams and pipes subjected to loads that remain constant over their lengths are coming

under plane strain analysis problems.

Y Y VY ¥
%
~

~
~

(@) (b)

Fig. 3.5. Plane strain problems: (a) dam subjected to horizontal loading;
(b) pipe subjected to a vertical load
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o

Here, Normal strain, €, =

Shear stresses y,, and Yy, =

3.3. FINITE ELEMENT MODELLING

Finite element modelling consists of the following:
(i) Discretization of structure.
(i1) Numbering of nodes.

(i) Discretization 7
The art of subdividing a structure into a convenient number of smaller componens i
known as discretization. In two dimensional problems, three kinds of finite elements are ugeq
They are:
(i) Triangular element.
(if) Rectangular element.
(iéii) Quadrilateral element.
In truss, the above three elements are physically present. But in a continuum, the above
three elements exist only in our imagination.

The continuum shown in Fig.3.6 is discretized into eight triangular element as shown in
Fig.3.7. The points where the corners of the triangles meet are called nodes. Each triangle
formed by three nodes and three sides is called an element. '

Fig. 3.6. Continuum

elements.
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In Fig.3.7, the triangular elements fill the entire region except a small region at the

poundary. This unﬁ]}ed region can be eliminated by choosing smaller elements or elements
with curved boundaries.

(i) Numbering of Nodes

In one dimensional problem, each node is allowed to move only in + x direction. But in
two dimensional problem, each node is permitted to move in the two directions i.e., x and y.

Hence each node has two degrees of freedom (Nodal displacements). A three node finite
element model is shown in Fig.3.8 has six degrees of freedom.

V1

1

Fig. 3.8. Triangular element

The element connectivity table is given for Fig.3.7. The heading 1 and 2 refer to the local
node numbers of an element and the corresponding node numbers on the body are called
global numbers. Connectivity thus establishes the local-global correspondence.

Element (¢) I;Io:e: l Local numbers
123 J\
23
43
53
6 3
73
83

93

> Global numbers

clciclelclelcle

— o R |||
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3.4. CONSTANT STRAIN TRIANGULAR (CST) ELEMENT

A three noded triangular element is known as constant strain triafntgular (CST)
which is shown in Fig.3.9. It has six unknown displacement degrees of freedom (y, 12

u3 v3). The element is called CST because it has a constant strain throughout it.

v3

v2

u2
V4 2

Uq
1

Fig. 3.9. Constant strain triangular element

3.5. SHAPE FUNCTION DERIVATION FOR THE CONSTANT STRAIN TRIANGULAR
- ELEMENT (CST)

We begin this section with the development of the shape function for a basic tw
dimensional finite element, called constant strain triangular element (CST).

We consider this CST element because its derivation is the simplest among the availabl
two dimensional elements.

YA

v3

(x3,¥3) 3

Vi

U

1
(x4, y1)

Fig. 3.10. Three noded CST element
Consider a typical CST element with nodes 1,2 and

da
displacements be uy, uy, u3, v, vy and v, . s shown in Fig.3.10 L
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Displacement {u} = <

\V3)

Since the CST element has got two degrees of freedom at each node (u, v), the total
degrees of freedom is 6. Hence it has 6 generalized coordinates.

Let, u = ayta,x+ayy s (3el)

vV = agtasxtagy s (3d)
where, a,, a,, a;, a4, a5 and ag are global or generalized co-ordinates. ‘
= u = aytayx tazy

w = aytayxtazy,

U3 = a;ta,x3tazy,

Write the above equations in matrix form,

(u; ) REEEE
S =|1x%n L)
Lu3, | 1 x3 y31 (&
(a;) 1oy ] (w
= Ra, p = 1 % » u i (3:3)
L a5 J [ 1 x3 y3 Uy
= L b
1 x »
-+ -
Let D = 1 x ¥
+ - +
1 x3 Y34
CT
We know, D! = ‘_D_I- ...(34)

Find the co-factors of matrix D.

Xy V2

= (% y3-%3),)
_— 23 X352

ey = F
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e =—-(0s-Y) =N"V3
‘2= |y, S
1 X2
X1 N
€21 = -~ = - y3=%)1) = BV~
X3 )3
1y
sz = + 1 y3 = }’3-yl
1 x,
C23 S 1 X3 = —(xB_xl) = xl—x3
XN
€3 = + X ¥ =X~ Q)
1y
€ = ~ |, ¥, = -0-») =yi-»n
1 x
c3 = * | ol R
(2 ¥3—=%3%) 02-y3) (%3 = x5)
= C = (31— X1 »3) (§Z b 2)) () = x3)
12 =%3) O1-») (p-x)
(xz}’s*x3Y2) (3 y1=%1¥3) (xy 3, =2, 1) g
= CT = 0n-13) 03 -y) O =-») o
’ (x3 - xZ) (x] = X3) (xz - .xl)
1 ox oy
We know that, D = 1 x 5,
1 x3 y3

ID| = 10 —=X3) =X (1 =YDty (%3 -xy)
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Substitute CT and D values in equation (3.4),

X2 ¥3=%3 ) = x; (3= y,) +, (55 —x7) =

(x2Y3—x3.Vz) (X351 =%, ¥3) 1y, =% 1)

=

=y V3= Y1=0
x3—x2 xl —X3 xZ—xl
Substitute D1 value in equation (3.3),
| (a;) Lxy » 770 (o
L a3 ) 1 X3 y3 u3
4 al N
:> < a2 > = 1 X
(2 ¥3 = %3 32) = x; (3= yp) + ¥y (x5 —x,)
\ a3 J

(3 —x330) (391-x13) (6 ¥,-%)) Uy
Fare V3N M= L) ...3.7
X3—X%y X —X3 Xy — X Uy
The area of the triangle can be expressed as a function of the x, y co-ordinates of the
nodes 1, 2 and 3.

1 % y
1 x3 3
1
|A] = 2 [1(xyy3=%335) =% 03=1)) + 3, (x5 —x,)]
= 2A = (5 y3—X300)—% (13-02) +y; (%3 —x,) ... (3.9)

Substitute 2A values in equation (3.7),

a; (2 y3=%352) 3y1=%13) (%) y,—-%3) u,
1
N4 = A YVa—Y3 Y3=N 4 U v (3.9)
a, X3~ X X1~ X3 %=X 4

KARPAGAM ACADEMY OF HIGHER EDUCATION Page 84



FINITEELEMENT METHOD

UNIT 11
~N
a ) P\ P2 P3 “
1 u
= a = — X 2
) SA | D 92 93 (3.10)
a3 rl rz r3 u3
where, D1 = Xpy3—X3)2 Dy = X3 )] —X1 )35 Py = xl)’z—xzyl
91 = V2—V3 92 = ¥V3~Wv B = N17n
ro= X — Xy r, = % —X3 s = *—%
From equation (3.1), we know that,
We can write this equation in matrix form.
a;
u=[1xy]ly %
as
a
Substitute | @  value, from equation no.(3.10)
as
, Py Py P3 w
= u=[lxy]lxsx| 91 92 93 U
Fy Py 73 U3
, Py Py D3 Uy
='2‘X[1xy] 91 92 43 u,
ry Ty 73 U
U

S2AlPtaixtny ptgyxtny pitgixtry] x| b
us

[ (1x3)x@x3) =11
= 1]

— I:P1+q1x+rly Pytgrx+ry By ¥ i i ry U
2A 2A oA :l U
The above equation is in the form of ?
| B
u = [N} N, N3] § % ...(3'11)
Us
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Similarly, v = [N; N, N;] | 2

Prtqx+ry

]

where, Shape function, N;

2A
_Dtgxtny
Ny = 2A
+qg.x+r
N, = P374q;3 3)

2A

Assembling the equations (3.11) and (3.12) in matrix form,

Displacement function, # = {

u(x’ y)} _ [Nl 0 N2
v (x,y)

0 N, 0 N,

0 N
0 N,

NERe:

UNIT I

.. (3.12y

ful\
Y

Uz
. V3 J
... (3.13)

3.6. STRAIN-DISPLACEMENT MATRIX [B] FOR CST ELEMENT

Displacement function for CST element is given by,

u(x,y)}

[Nl 0 N, 0 N;
v(x,y)

ulx,y) = {

Or we can write
u = N1u1+N2u2+N3u3
vV = N1V1+N2V2+NBV3

The strain components for CST element are,

Normal strain, e, = %f
oN, N, oN
=l T T T o B
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UN I T
£ ov
Normal strain, e, = r
oN, oN, ON;
. _ou v
Shear strain, Yoy = ay ¥ ox
L[, o N TN Ny Ny N
T T oy M T T gy M e 1T ox 2 _ox
Arranging the strains e, , e, and Yx, in matrix form,
~ N, 0N, oN, (%)
e, Ox Ox Ox 0 41
‘e = 2& a_NZ_ 0 a_Né u2 > |
y - ay ) ay ay v2 --.(3.1‘
Yxy ON; ON; 0N, ON, ON; ON;. u;
L oy ox 9y ox o9y ox d\UwJ
From equation (3.11) or (3.12), we know that,
: prtq xtr
Shape function, N; = ] q; A B4
N, = Prtgrxtny
B - 2A
N, = Biasxtny
3 2A
Partial differentiation,
oby o N, g, oN; 43
ox  2A° ox ~ 2A° ox  2A
_a_rq_l = —ﬁ- % r2 6N3 T3 !
oy 2A oy ~ 2A; By | 2A
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6N1 aN2 aN3 aNl aNz 5N3
qbstitte By Ox * Ox > dy > gy and 3y Vvalues in equation (3.14),
(ex ) V —QI0920q3 0 (ul\
3|
1
oy i— u ’
w= O[T On0n o T
\ Yxy / Lroqy gy g | B
kV3J
The above equation is in the formof {e} = [B]{u}
, 791 0 g, 0 g3 0
where, [B] = Strain-Displacement matrix = ‘;X 0 rp 0 r, 0 131, (3.15
i 4y s 93 73 43
where, ¢, = y,—y; N
92 = V3=
43 = N1 - [From equation no. (3.10)]

rL= X3—X >

r, = X1—X3

rg = X=Xy J

11.STRESS.-STRAIN RELATIONSHIP MATRIX OR CONSTITUTIVE MATRIX [D] FOR
TWO DIMENSIONAL ELEMENT ,
Consider a three dimensional body which is subjected to the stresses o, , o, and o,

"ependently as shown in Fig.3.11.

Fig. 3.11.
s law states that when a material is loaded within its elastic limit, the stress is
Y Proportional to the strain.

: H°0ke’
dll‘ec
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Le., Stress oc Strain
c x e
c = Ee
g
€ T E
where. e = Strain

o = Stress, N/mm?
E = Young’s modulus or Modulus of elasticity, N/mm2

The stress in the x direction produces a positive strain in x direction as shown in Figln

Strain e, = E AL

Fig. 3.13.

" . o . o S € ' . M I
Fig.3.13 shows the positive stress in the y direction produces a negative strail in ¢
direction as a result of Poisson’s effect which is given by,

- VGO
“e = |
= e;' - %’2 3 (3'11)

where, v — Poisson’s ratio.
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gimilarly, the stress in the z direction produces a negative strain in the x direction as
' shown in Flg.3l4

Fig. 3.14.
" v GZ
" =y GZ
& = TE ... (3.18)
By applying superposition principle to the equations (3.16), (3.17) and (3.18), we get
f ok Gl @ - B
e, = % - VE -V = ‘ ... (3.19)
This i a strain equation in x direction.
Similarly, the strains in y and z directions can be calculated as follows:
o, O, VO '
Strain in y direction, e, = —V 'EE + Ex s Ez ... (3.20)
c o, O
Strain in z direction, e, = —V | — vy + z ..(321)

Solving equations (3.19), (3.20) and (3.21) for the normal stresses (0, , G, and o,), we get

v E
o = Tevy(-2v) [ax(l—v)+ve’y+v ]  «.(322)
. ) ‘E ‘ . £ %A
c, = ﬁ+v)(1—2V) [ve,+(1-V)e,+V e, s (B323)
E
o, = d+v)(=2v) [v ex+vey+(_l—v)ez] ... (3.29)

The shear stress and shear strain relationship is given by,
t = Gy
where, t© — Shear stress
¥ — Shear strain

G — Modulus of rigidity or Shear modulus
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The expressions for the three different sets of shear stresses are,

(1—2v

E

(1—2v
2

2 )x L

) 1,0

Ty = Gyw
tyz = Gsz
Tap = Oy
where, G — Modulus of rigidity = 2 (1+v)
B
= T T 2(1+v) v
T (1+v)(1-2v)
_ _E
= T T 21+v) N
_ B . E y
vz T 1+v)(1-2v)
__E
= T T 2(1+v) X Yex
E
t —3

zx

(1+v)(1-2v) "~

(I—ZV
2

)xyzx

UNIT I

- (3.25)

.. (326

. (32)

Assembling the equations (3.22), (3.23), (3.24), (3.25), (3.26) and (3.27) in matrix form,

(65 ) = ¥
v (l-v)
9y 5 5
(o] E o
q “p=
= rxy> A+vyi-2v)| O .9
T, 0. 0.
\Tzx/ - 0 0

The above equation is in the form of

"{c} = [D] {e}

v

\Y

(Lesv)
0
0

0

0
0
0

0

0

.

(e,

\YzX}

ey

e

The above equation (3.28) gives a three dimensional stress-strain relationshiP for ¥

isotropic body,

where, [ D ] is a stress-strain relationship matrix or constitutive matrix.
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/ P
1-v 0 0 0
v v 1l-v 0 0 0
= E 0 0 1—2V $ 329
[D] = (@ +v)(1-2v) 0 — 0 0 ... (3:29)
1-2v
0 0 o 0 0 - i

where, E = Modulus of Elasticity or Young’s modulus
v = Poisson’s ratio
374. Plane Stress |
For two dimensional plane stress problems, the normal stress, ¢, and shear stresses 1T,
1,, are Z€r0.

ie.,

ie., Yo = Py = 0
Substitute o, =0 in equation (3.19),
= e, =F —V 5 ... (3.30)

Substitute o, = 0 in equation (3.20),

e
= e, = —.vf+—Ez ...(3.31)

Solving equation (3.30) and (3.31),

5 _vo,
¢~ E~ E
%, % |
Ve = —v2 'Ex +VE [Equation (3.31) x v]
va vio,
e,tve, = E - E
. c
= e dve = Ex (1-v?)
= G, = a 2) (ex+vey) ... (3.32)
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™
Solving equation (3.30) and (3.31), o
e 2 X : i
ve, = V- vz 3 [Equation (3'3O)Xv]
o O
e, = =Y EE
y E E
o (0}
Ve te, = -V —I*iz : —EX
c.
v ex+ey = _E‘:X (l —v2)
_ E
= 1% T a-vy (ves+e,) - (33)
We know that, Shear stress, 1,, = G v,,
where, G — Modulus of rigidity = 5 ('1E+ v)
Yoy => Shear strain.
v — Poisson’s ratio
- —E
= Ty = 2(1+v) Y=y
_ E d-v)
: 4
T I-w X 2 X Ty
_ E l-v
T ~v2) ~ ( 2 ) X Yxy g
Arranging equations (3.32), (3.33) and (3.34) in matrix form
% i I v o e,
_ v
=1%r= 1-v2 boo €y -6
Txy 0 0 1 ;V ny
The above equation is in the form of
{o} = [D]¢e }
The equation (3.35) gives the twq g; i
Wl lmensxonal stress-strain relationship for plan®:
where, [D] = |
[D] Stress-Strain relationship matrix or
Constitutive matrix

KARPAGAM ACADEMY OF HIGHER EDUCATION Page 93



FINITEELEMENT METHOD

UNIT 111
S

1 v 0

E 1 0 :

= v (330

= [D] = 1735 I v (3.36)
0 0 )

where, E = Modulus of Elasticity or Young’s modulus
v = Poisson’s ratio

37.2. Plane Strain
Jane strain, we assume the following strains to be zero.

Forp
€ = Yes = Ypr =0

The shear stresses T,, =T,, =0, but o, #0.
From equation (3.28), we know that,

(6, —1-v v 0 0 0 (e,
v 1-v 0 0 0 &
% Y v 1l-v 0 0 0 ey
' z
Sk 8 E 0o 0 0 1'22" 0 0 < . f
Tay 1+v)(1-2v) - -
T 0 0 0 > 0 Yy:
d 1-2v
o I 0 5 1 ki d

In the above equation, e, = 0. So, delete third row and third column of [ D ] matrix.
Ty, =0, so, delete fifth row and fifth column of [ D ] matrix. y,, = 0, hence, delete sixth row
and sixth column of [ D ] matrix. The final reduced equation is,

o, (1-v) v g e,
o, b = E v (d-v) e, ..(337)
g (1+v)(1-2V) o l=2v
Xy 2 ny
The above equation is in the form of
{c} = [D]{e} o .
. The €quation (3.37) gives the two dimensional stress-strain relationship for plane strain
Toblems,
where, [D] = Stress—strain\relationship or Constitutive matrix
A-v) v 0
E v (1-v) 0
= ...(3.38
[D] = G+vya-2v . (3.38)
¢ 2
where, E — Young’s modulus.
v — Poisson’s ratio.
Page 94
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-~

3.8. STIFFNESS MATRIX EQUATION FOR TWO DIMENSIONAL ELEMENT

(CST ELEMENT) —
We know that,
Stiffness matrix, [K] = f [BIT[D] [B]dV [From Chapter
[K] = [BIT[D][B]V .
= [K] = [B]" [D] [B] At [ V=axg
[ Stiffness matrix, [K] = [B]' [D] [B] At | | - (33
1 X y
1
where, A — Area of the triangular element = > 1 % 5
1 X3 3

t — Thickness of element
[B] = Strain— Displacement matrix

g, 04q, 04953 0
[B] = EIK 0r, 0r, 0rg [From equation no.(3.15)

rr 9y r; 492 73 43

where, g, = y,—)3; 42 = Y3—YVis 43 = N1 —N
ry = X3~ X, Fp = X —X35 r3

X =%
[D] = Stress-Strain relationship matrix

For plane stress problems,

1 v 0
‘ E v 1 0 :
[D] =717V 1—v [From equation no. (336)
00 )
For plane strain problems,
I-v) v 0
= 2 v (1-v) 0
[D] =
(A+v)(1-2v) 12w
f 2

)
[From equation 1% (3

where, E = Young’s modulus or Modulus of elasticity

v = Poisson’s ratio
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39 TEMPERATURE EFFECTS
when the distribution of the change in temperature (AT) is known, the strain due to this.
change i temperature c.an be considered as an initial strain e,. For plane stress problem, the
initial strain e can be given by,

a AT

{eg} = | AT ... (3.40)
0

where, a. — Coefficient of thermal expansion
AT — Change in temperature
For plane strain problem,

a AT
Initial strain {ey} = (1+v) { o AT ... (341)
0

where, v — Poisson’s ratio
The stresses and strains are related by,

6 = D(e-ep | [we=Bu] .

6 = DBu-ey)

where, [D] — Stress-strain relationship matrix.
[B] — Strain-displacement relationship matrix
{u} — Displacement
The element temperature force can be represented by,
{6} or {F} = [B]T[D] {ep}?A .. (3.42)
Where, A — Area

t — Thickness

=T GALERKIN APPROACH

A virtual displacement field is given by,
i { ¢x}
L2
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and corresponding virtual strain,
86, )
ox
29
i 8
e(d) = ) oy >
o0 , 9y
( oy Ox /

Galerkin’s variational form for the two dimensional elasticity problem is given by,

foTe(q))tdA - [fq)TFtdA + f¢TTtdl + Z¢TP] =14 - (34
A L

A
We know that,  Stress, c = De

Substitute, ¢ value in the above equation,

= [eTDe(@)tdA - ( [¢TFtdA + [¢TTrdl + Z¢TP ) =0 - (4
In the above equation, the first term represents the internal virtual work.
ie., [eTDe($)tdA = Internal virtual work .. (349
We know that, ¢ = Ny

e(p) = By

' where, y = Arbitrary nodal displacement of element.
Substitute e(¢) value in equation (3.45),

S JerDe@)rdA = [eTDByraA = cTDBy: [aA
= eTDByrA | Strain, ¢ = ¥5)
= u"xBTDBtAxy |

- feTDe(¢)tdA = uTxK, xy

e

where, K, is element stiffness matrix, which js given by
K. = BTDBrA
| Stiffness matrix [K ], [BIT[D) [B]rA “_(3-46)
Force vector is given by, {F}, = [K], () .64
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71 POISSON EQUATION AND LAPLACE EQUATION

Consider a tWo dimensional plane region have volume V, boundary S in the xy plane and
unit thickness in the z direction.

For steady state conditions, the governing heat conduction equation is given by,
9 92
'a;(kx 0 * dy (ky ¢y)+Q = 9 ... (3.48)
If k= ky = k, a constant, equation (3.48) becomes the Poisson equation.

ie, | K(V29)+Q = 0] ... (3.49)

[Poisson equation]
It k=k= k = constant and Q = 0, equation (3.48) becomes Laplace’s equation.

ie, k(V2d) = 0

= ... (3.50)

[Laplace equation]

312, LINEAR STRAIN TRIANGULAR (LST) ELEMENT : :
A six noded triangular element is known as Linear Strain Triangular (LST) element whic
is shown in Fig.3.15. It has twelve unknown displacement degrees of freedom. The

displacement functions of the element are quadratic instead of linear as in the CST.

v A

(rain triangular element

Fig. 3.15. Linear s . )
i ffness matrix equations for the LST element

The ment of the sti
Ollowy tﬁ;o:;:l:ets e;(:a: etzzl;pused for the CST element. But the number of equations used
S .

or deVelo;)in hift matrix equation is 12 instead of 6. It is a tedious process to solve those
shi h .
luationg Heﬁce we will use 8 computer t0 solve many of the mathematical equations.
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~
LST element is preferred than the CST element for plane stress applicationS

relatively small numbers of nodes are used. LST element is not Preferred when large Ny Ve
of nodes are used since the cost of formation of the el_ement stiffnesses, equatiop, bandw.e“
are high compared to CST element. Computer modelling for\ large number of noge i

. 5 are als(
difficult for LST element.

3.13. FORMULAE USED il e

1. For constant strain triangle (CST) element,
Shape function, N; +N, +N; = 1

Co-ordinate, x = N, x; +Nyx; + N3 x;

Co-ordinate, y = N;y; +Ny», + N3 y;
| or
Co-ordinate, x = (x; —x3) N; +(x; —x3) N, + x5
Co-ordinate, y = (y;—y3) N+ (0 —y3) Ny +y;
_ 1 x »
2.  Area of the triangular element, A = ';' 1 x »
1 x3 3
3. Strain—Displacement matrix for CST element is,
9, 0 g, 0 g3 0
[B]=2_1A: 0 0 r, 0 g
't 91 T3 95 Ty 93
where, ¢, = y,-y; gy = y3-y; g3 = nh
Fp = X3—Xp; ry = Xp—Xa ry = %Hh
4. Stress-Strain relationship matrix for plane stress problem,

1 v 0
E
[D]=1 - v 1 0
- 1-v
0 0 )

where, v — Poisson’s ratio

E — Young’s modulus
5. Stress-Strain relationship matrix for plane strain problem

A E ‘1—v
D = \%
[P] (1+v)(1-2v) . 1 -2
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6. Element stiffness matrix for CST element,
[K] = [BIT[D][B]A?
7. Elementstress, {c} = [D] [B] {u}
(1“4 )
o 3 Y1
)
= Y S ( = [DI[B]Yy ¢
v
Ty
43
L V3 J
where, o©,, o, — Normal stresses
Txy —> Shear stress
u, v — Nodal displacements
o ,+o o,— o, |2
8. Maximum normal stress, G,, = o, = —"—2—1 -+ \/ P ) +‘l:2y
o, +0o c,— o, \2
Minimum normal stress, G, = G, = —F5— 5 - ‘\/ (———zx 5 + ‘t:y
9. Principal angle, tan 20, =
C,— O,
4 u,
vlw
u, L
10. Element strain, {e} = [B] {«#} = [B] ﬁ vy
A "
L V3 J
1. Temperature effects
) a AT
Initial strain, { eq } } _ dgAT
(For plane stress problems) o
] a AT
Initial strain, { e} } — (1+v) ] aAT
(For plane strain problems) "

~ where, o — Coefficient of thermal expansion
v — Poisson’s ratio

2. Element temperature force, {F} = [B]T [D] {ey,}tA
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Multiple Choice Questionsand Answers:
S
. uestions t t t t nswer
N Q [ Optl Opt2 Opt3 Opt4 A
0
Heat .
1 The example for non structural transfer Fluid flow | Magneto Allof [ All of
problems in FEA is analysis analysis statics these | these
2 | (-k6T/6x is equation for (nZonducno (nlonvect|o Radiation ;::exat Sonducno
the non linear heat transfer Conductio | Conwectio i Heat I
3 problems occurs due to n n Radiation flux Radiation
Single
o Steady Unsteady : Steady
o | T emperaute st ach pone | stateone | stateone | POTUSISe | Bone | Sireone
; L dimesiona | dimesional | . . dimesiona
coordinate axis is called as | analysis | analysis g:ggs;&nal these | analysis
Conwective
The values of the boundary
5 | conditions normally specified in the Ireemperat Heatflux R:ﬁtsf or :tAh”egIe f[AhILgfe
heat transfer analysis coefficent
The elements normaly used to solve Ilr;a:r:g? Triangular
6 | the two dimensional heat transfer Triangular | Linear Rectangle rectan &
analysis is gl rectangle
The example for one dimensional : . Heatexcha | All of :
! heat transfer problem is Fins Chimmney ngers these Fins
3 In unsteady state problem which Conductio | Conwectio | Capacitanc ;?;St Capacitan
elemet matrix is addionaly added n matrix n matrix e matrix matrix | & matrix
The order of polynomial used for Linear
one dimesional heattransfer Py Linear &
9 | analysis when the domain is Linear Quadratic | Algebric Ladr uadratic
discritisized by the triangular gtic q
element
1 | Which one of the following is called | Temperat Heatflux Igﬁ;nagtlivit Allof | Temperat
0 | Dirichlet boundary condition ure y these | ure
. L Thermal
1 | Which one of the foIIowmg is called | Temperat Heatflux conductivit All of Heatflux
1 | neuman boundary condition ure y these
1 | The effect of heat flux wil appears Stiffness | Load Both a&b l(;lfone Load
2 |(on matrix vector vector
these
. Stiffness
1 | The effect of convective heat Stiffness | Load itgtfnisg l(;lfone matrix &
3 | transfer effect wil appears on matrix vector load vector | these load
vector
. Transient
1 | The unsteady state problem is also Transient Propagatio T:gngle;lti f‘ gfone &
4 | called as------------------- problem n bropag propagati
n these on
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1 The temperature of the hole body Ss’ttaet%dgn e Two hggﬁtped %Cna hggltped
5 fhhsgggﬁggt]}%mloyr with time. This is dimesiona g::;?ss'%nal capacity analys | capacity
| analysis y system is system
The ratio between the conduction -
1 | resistance with in the body to the Rayleigh Igﬁgnc?tlivit Reynolds Elh?rgbe Biot
6 | convective resistance in the surface | number number N number
of the hot body is known as y
Navier .
1 | The gowerning equation for fluid Fourier FFT Reynolds stroke Nawer
7 | dynamics problem are equation | equation transport equati stroke
y P q q equation oﬂ equation
Due to variation
1 | the fluids are differensiated as ViSCosi Densit Igﬁg??tlm All of Densit
8 | compressible fluid and Y y these y
incompressible fluids y
Which method of describing the .
é motion of fluid is suitable for fluiid rI;agrangla Euleraian | Euler Iéaplac Euleraian
flow analysis
The particle maintains the same Ravlei
2 | orientation every where along the Rotational | Streamline | Laminar h y Rotational
0 | stream line with rotation is called----- flow flow flow ﬁ oW flow
————————— flow
2 Potential function will gives the ------- Densit
1| T value inthe perticular | Velocity | Viscosity | Pressure Velocity
direction y
. P Inviscid& None | Inviscid&
g Zggrgu'loel ?gp"_’_f‘?ﬁ'ﬂﬁﬂ‘ff%vr\flo'l 'S Inviscid Isnigf)empres incompress | of incompre
P ible these | ssible
The choice of velocity potential and Initial
2 : L Reynolds : : Boundary ... | Boundary
stream function formulation in FEA Viscosity L conditi L
3 analysis is depends on number conditions ons conditions
. . oo None ,
2 (Okd@/dx is equation based on Foungr Darcy's Contmmty of Darcy's
4 equation | law equation these law
The flow with small velocity,inertia
2 | terms are negligible when Viscous Intertia Laminar Storke | Storkes
5 | comparing the viscous effects than | flow flow flow s flow | flow
the flow is called as
2 | Most of the fluid flow problems the . . . Temperatur | Discha | .
6 | unkown value tobe find is Viscosity | Density e rge Discharge
. . Stress
The resistance to due to the pipe . Lumped : . .
2 e n T X Stiffness Discharge | -strain | Stiffness
7 frictioniis reflected in -----------------o- matrix mas.s vector relatio | matrix
------------- matrix .
nship
. . - . . . Ponte ;
2 | Irrorational flow of ideal fluid is Viscous Intertia Laminar ntial Pontential
8 | called as flow flow flow flow
flow
. . , o None
2 | The stream function and potential Darcy's Laplace Continuity of Laplace
9 | function is governed by equation | equation equation these equation
3 | The flow perpencular to the Have Zero Minimum Nfone Zero
0 | streamline maximum elocity pressure 0 velocity
velocity these
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UNIT 111
The reformulation of constraind
3 | problem by finding the stationary Penalt Lagrangia | Potential Raylei | Lagrangia
1 | points of unconstrained functional is y n energy gh n
called--------------- method
3 ]Icnten? force_z+damp|ng fc_)rqe+elast|c Free Equation . None Equation
> orce=Applied force. This is vibration of motion Rotation of of motion
gowverning equation for these
Rayleigh None Rayleigh
3 : Rayleigh | Modal damping & damping
3 The damping methods are damping | damping Modal of & Modal
. these X
damping damping
. . L Contin
3 MUIt'pIelr?]g't?]%'ds Op}ot“:';‘bsﬁézt """""" Direct Modal Discrete ous Modal
4 . method damping damping dampi | damping
response analysis ng
. S o Contin
3 i'f‘_?_l_ef_lr?qde'phgog &O'[Srzfseiéﬂt """"""" Direct Modal Discrete ous Direct
5 : method damping damping dampi | method
response analysis ng
3 Direct method of trasient response
6 analysis allows------------------ type of | Shock Periodic Constant Heaw | Shock
loading
3 | In the mass matrix which property of Viscosity | Densit Pressure gfone Densit
7 | the material is constant y these y
3 | The order of mass matrix for simple | . . . N
8 | struss element 212 33 44 88 44
3 | The order of mass matrix for simple . " . " .
9 | bar element 212 33 4t 88 212
. . Consisten | Lumped None | Lumped
g T.?.EET_IE?I;QE??ne;tsril:(se """""" t mass mass Stiffness of mass
matrix matrix these | matrix
4 _ Consisten | Lumped Stiffness None [ Consisten
1 The accurate results are given by t mass mass : of t mass
) ) matrix ;
matrix matrix these | matrix
4 | The eigen value will gives the -------- Displace Frequency Mass Force Crgfquenc
2 | - value ment of vibration Vibration
The eigen value-eigen vector will Character
4 ives '% the ue-elg Wi stic Vector Tansformat | Allof | All of
3 ?nethody polynomia | ietration ion these | these
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431.

Introduction

UNIT IV

AXISYMMETRIC CONTINUUM

UNIT |

In previous chapters, we have been concerned with one dxmensxonal elements and two
~ dimensional elements. In this chapter, we consider a special two dimensional element called

the axisymmetric element.

Many three dimensional problems in engineering exhibit symmetry. about an axis of
-rotation. Such types of problems arc known as axisymmetric problems. These problems can
be solved by using two dimensional finitc elements. These.elements are most conveniently
described in cylindrical (, 6, z) co- ordmates T he requnred condmons for a problem to be

axlsymmetrxc are as follows:

1. The problem domain must be symmetric about the axis of revolution, which is

conventionally taken as the z-axis,

2. All boundary conditions must be symmetric about the axis of revolution.

3. All loading conditions must be symmetric about the axis of revolution.

An axisymmetric solid is generated by revolving a plane figure about an axis in the plane.

Finite elements for axisymmetric solids are pictured as triangular element or quadrilateral
clement as shown in Figd.3 and 4.4. But these shapes are actually cross-sections of ring

¢lements.
Z
]
............... J'.-.-......-
,&"- g
4 -t
4 ‘\‘~.. (
ML R !
" ‘ .......... r --------
4 S D ., | E—
’/' .,-o)\- ......... '! ------------
P \
’ . !
(',d Y (]
¥ \ s
o \ v
\~ A
-~ \ ¢
) s \ !
-~
< ‘~,~ ‘\ :
~
‘\s -~\\‘ -------- : ------ e
& ’,
Sy “si' al. (r 2
‘n,,‘- \‘ | 1 1
SN —— bl T 1' ------
............ Eamunm——e
v
)

LYY
~aa
-
-

-
------

-
-——
......

n[mltL m

21 (fz\ 2))

Prass

Fig. 4.3. Three-node axisymmetric triangular element
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We begin with the development of the stiffness matrix for the simplest axisymmetri,
element, the triangular torus, whose vertical cross-section is a plane triangle.

4.3.2. Axisymmetric Formulation
Consider a typical axisymmetric triangular element with nodes 1, 2 and 3 as shown i,
Fig.4.5. ’

Fig. 4.5. Typicul axisymmeiric element
In two dimensional problems, the displacements and distributed body force values arc
indicated by x-y plane. But in case of axisymmetric problems, these values are indicaied by
r~z plane as shown in Fig.4.5.
For two dimensional problem, the displacement vector  is given by,

u
u(x,y) = {v}

where, « and v are the x and y components of u respectively.
In case of axisymmetric problems, the displacement vector u is given by,

u(r,z) = {::}

where, u and w are r and z components of u respectively.
The stresses and strains for two dimensional element are given by,

!

(cx

Stress, {o} = | O,

Strain, {e} = { ¢,
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UNIT |

In case of axisymmetric element, stresses and strains are given by.

, : Stress, {c } =

where, o, — Radial stress
o, — Longitudinal stress
og — Circumferential stress

1,, —> Shear stress
el'
g i
Strain, {e} = p
YI‘Z

where, e, — Radial strain
e, — Longitudinal strain
eg —> Circumferential strain
Y,, — Shear strain

For two dimensional problem, body force is given by,
FX
F = F,

FI’
[n case of axisymmetric problem, F = { P }

4

4.3.3. Derivation of SQape Function for Axisymmetric Element
(Triangular Element)

Consider an axisymmetric triangular element with nodes 1,2 and 3 as shown in Fig.4.3
Let the nodal displacements be u; w), u, w,, and Uz Wy,

r ul\

Displacement, {u} = <
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UNIT |

Since the triangular element has two degrees of freedom at each node, it has 6 generalized
- co-ordinates.
Displacement functions, u = a ta,r+ayz ... {4.14)
w = aqatasrtagz .. (4.15)
where, a,, a,, as, a,, as and ag are global or generalized co-ordinates.
Let ul = al+a2r,+a3zl
u, = ajta,ry,+tayz,
W = aytayrtasz,
Write the above equations in matrix form,
'-ul\ -1 rl zl— a]'
Twp=|lnaltia
[ #3 ) [ 1 3 z3 ] ay
(a) ) 1 7 z,”*l u;
T@pr=|1nazn U o (410,
Aay) L1 rn oz uy J
—+ - + 7]
I "l Zl
- % e
Let, D = 1 2z
+ - 4+
1y oz ]
CT
D} = —
ID| «..(4.17)
Find the co-factors of matrix D.
T LR
- = (ryzy—ryz
" ry oz 223-r32p)
5o oz ;
L S = ~(z3-29) = (25— 2z3)
& 1 r,
= + = 4 -
13 I 7 (ry~ry)
roz .
Ca = - ry z3 = -tizmnz) =rz-nz
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UNIT |

Since the triangular element has two degrees of freedom at each node, it has 6 generalized

- co-ordinates.
Displacement functions, u = a ta,r+ayz ‘ .. (4.14)

w = agtasrtagz . (4.195)
where, a,, a,, as, a,, as and ag are global or generalized co-ordinates.
Let Uy = ayta,rtasz;

u, = ay+tayrytazz,

uy = ayta,rytazz,

Write the above equations in matrix form,

u ) 1 r oz 7] a;
uz P = 1 r2 Zy b 02
U3 J | 17y oz | ay
& - —-1
a i rozZ . U
He=|1nzn Uy .. (4.10;
a3 -_1 r3 23__ U3
F+ -
Iz
-  + e,
Let, D =] 1 ry 2y
+ - +
_I 7 Zq
CT
] = ——
D- ID] < (4.17)
Find the co-factors of matrix D.
Ry IED)
Cy, = + = (Fyz7—=ra2
11 I‘3’Z3 (2 3 3 2)
" J z g
= — .- - — z o 3 "~ i N
12 12| ™ (z3-2)) = (2y-23)
o 1 rpl
= + = 4 oy
13 1 r (?‘3 rZ)
rl le ' .
Ca == |y, | T CiBnz) =gz
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UNIT |

I 2z, .
CZZ =+ 1 2 = (Z3°'Z|)
i
I s
Cyu = - [ ==(r-n)=(-n)
r z
Gy = + r 2, =z -z
1 z, .
Cn = -1, 5l " —(23-2)) = (z1-2y)
, 1 r
= + = —_
Cs3 f o (ra—r)

(rp23-r323) (23-23) (r3~ry)

= C = | (nz-rz) @-z)) (n-n)

(r123-r22)) (z;-2)) (r—r)

F2z23=132; "32)=rjz; riz;-rnz

CT = Zy—2; z3~2, zZ)-2y ... (4.18)

‘Ve know that,
1 r z
D=}|1nr 2z
1 r3 ZJ_J
I r z
ID] = |1 rn 2
1 r3 23

ID| = 1(y23-r32))—r1(z3-2)) t 2z, (r3~1rp) o (4.19)
Substitute CT and D values in equation (4.17),
l i
T (nz3—rz)-r(zs-z)+zi(n-ry) =

417 = D!

T223=7r32y 13z ~riz3 riz;-nz
%2723 43 =Fy 2y ~2y

Fy=Ty Fy—r Fy =y
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UNIT |

Substitute D-! value in equation (4.16),

al ] r] Zl ' lll
@iy =|1nrz )
as 1 r z3 Uy

1
= X
(rnz3=ryzy)-ri(z3-2)) +2,(r3-r)

Fp23—=r3z; N3z —ryz; rz;—-nz u)
zy)~ 23 Z3-2, Z)~-2, x g\ ¥ ... (4.20)
Fy=ry n—-n Fo—r U3

The area of the triangle can be expressed as a funétion of the r, z co-ordinates of the nodes
1,2 and 3.

' I ry z
‘i‘ \ "2 Zz
1 "3 23

1
A= 5[l nz3-rz)-r(zy-z)+z,(r;-ry)]

:>|2A

(r223“‘"322)"r1(23‘22)+31(’3*"le . (4.21)

Substitute equation (4.21) in equation (4.20),

a, [ ry23-r32y mzi =z Frzy—rz Uy
(420) >\ @ p = ﬁ 5 Z3—z) s ] XN 4 (...(4.22)
a3 L 3N Fy—r3 Fy=ry Uy
a, oy 0y o U
=» Q= '2’1;: Bi B2 B3 {x 9 u ... (4.23)
! LY TV i
where, o, = 22370325 Oy T nzi-enzy oy = rzy-rnz
By = zp-2; [3_2 = Ay—2h By = z1"‘22
h = B~y n- "= 3= n=n

' From equation (4.14), we know that, -

u = al+azr+a32
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UNIT I
- We can write this equation in matrix form,
al\
u={lrz] yar,
as )
i [ o, o u
Sralxopl BBy By |x9n [From equation (4.23)]
Lh ' % U3
Oy @ oy u

1
2A [(1rz)] B By By | x U
N N2 7 3

1
2A [+ Bir+yz 4By r+y,z GtPyrtyzz] x | %

[Note: (1x3)x(3x3) = (I x3))

= g = [a'+ﬁl"+712 GFtByrtyz a+Byr+yyz o
2A 2A 2A ] 3 %
The above equation is in the form of b
4,
v= [N N, Ny {1 ... (424)
\ U
N (W,
Similarly, w= NN, Ny g wyp . (425)
\ W3

O By r+y z.
2A
CatByrty,z
2A

Ay +Byr+y,z.
N, = SatBr

where, Shape function, N, =

N, =
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We can writs equations (4.24) and (4.25) as follows:
u = Nyu +Nyuy + Ny
w = Njpwp +Nyw, + Ny
Assembling the equations (4.26) and (4.27) in matrix form,

_Displacement function,

'(”1\
¥i
u(rz)={"("’z)}=|:Nl 0N, 0Ny 0}< ]
’ w(r, z) 0 Ny 0N, 0Ny Wo r
\ u3
LW;;J

UNIT |

.. (4.26)

. (42

.. (428)

4 g
Mtrain-msplacement Matrix [B] for Axisymmetric Triangular Element

Displacement function for axisymmetric triangular element is given by,

u(r’ 2) } 3 [Nl 0 Nz 0 N3

Displacement function, u(r,z) = {w(r 2 1o N o N o
E) ] 2

We ca_ll Wl‘itc, u = Nl ul + N2 uz + N3 U3
w = Nw+N,w +N3 W,
The strain components are, '

v ON, ON ON
Radial strain, e, = %!:- = -87‘"‘ + -gr-%uz % —é-;?. u,

N, N,  oN,
= e”. = a-r ul + uz +

Circumferential strain, e,
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0
1)

()
w 1
Uy
W,
U3

\ W3 A

.. (4.29)
... (430)

. (431

.. (4.32)
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s g . ow
Longitudinal strain, ¢, = —
0z
D W -
P MM T M 9 ™ s 38
. ou ow
Shear strain, y,, = 2 T3
ON; 9N,  9N; oN oN oN
Yo = oM F w2 (4.34)
rz oz 1 8z 2 5 3 or Wy Br Wy Br Wy .o (4.
Arranging equations (4.31), (4.32), (4.33) and (4.34) in matrix form,
(Y] oy N ()
or or ar 0 W,
e N N N
% _r_l 0 —~ 0 -r—3 0 Uy
= ﬁ r = N oN N < > ... (4.35)
0 .__._1 22 3 [ H’z
e dz Oz oz
ON, ON; 0N, ON, OJN; 0N, u |
_7,, J | 0z Or 0z oOr 0z or J-\w J
From equation (4.24) or (4.25), we know that,
oy +Byrty 2
Shape function, N; = 2A
a,tB,r+y,z
N = 2A
o3 tByr+yyz
N; = 7oA
AR N _ B
Partial differentiation = 2 = 2A
Ny _ B
or  2A
L
or  2A
N (e Y2
T T2 (T*Bl e
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UNIT I
N, 1 (az ¥, 2
F T 2a 7 ThtTT
N3 1 [ Y3 )
r - 2A (r Byt
N _n
9z 2A
o _ T
oz 2A
| B i b,
9z  2A
ON oN N N N ON ON ON.
. 1 2 3 N Ny I 1 9Ny 91Ny .
Substitute or " rc or r 7 7 B oz and P values in
equation (4.35). ‘
B 0 B, 0o B 07 (™)
o (o4 ¥, Z o Y, 2 a Y "1
e ! ne =2 22 b od
@329 . =34 7 R A R
0 Yl . 0 ‘ Y2 0 Y3 £
Yrz Uy
, _ Y1 B T2 B, Y3 B;-J Lw3,
The above equation is in the form of,
{e} = [B] {u}
where,
(B} = Strain-Displacement matrix
B ﬁl 0 Bz 0 B:, 0 ™
o Y2 a Y, 2 a :
_ L TR o0 g o 2epilE g
2A r F . (4.36)
| 0 Y1 0 Y; 0 Y
s Y B, Y 'Bz Y3 ' B;-_
where, o) = ryz; - ryz,; LGy = rzy -2y .a3 = rlzz—ﬁ?:
By = z3~12; Py = z3-2; By = z,~2,
Yi T r-ry Yo = r=ry Y3 = ry-r

' (Fr"om equation no. (4.23)]
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UNIT |

4.3.5. Stress-Strain Relationship Matrix {D] for Axisymmetric Triangular Element
By using Hooke’s {aw, we derived the following normal stresses equations. [Refer
Chapter 3].

E
= T ey (-2y) &0

o, = (l+v)l(51—2v) [ve,#(1-v)e,+ve]

-v)tve,tve)]

E ,
S = Uswny(l-2v) Vertvetl-vie]

- (l+v)l(31—2v) . (1—22\’) X Yez

Substitute x = and y' = 8 in the above equations,
B

ad
3]

= Radial stress, o, = m [e,(1-V)+vegtve)] ... (437)
L . E _ :
Circumferential stress, o = m [ve,+(1-Vv) eg+ve,] ... (438)
. E.
Longitudinal stress, o, = m [ve,+veg+(l—~v) e] ... (439)
E 1-2v
Shear stress, 1,, = T+ (1-2v) X ( 3 ) X Y, .. (4.40)

Arranging the above equations, (4.37), (4.38), (4.39) and (4.40) in mgtrix form,

T l-v v v 0 ,
:r E v l-v v 0 e;
ci ~amasan| vy v 0 e, [ - (@a)
T _' 0 0 0 ,1_:52_! | Yy
The abgVe €quation is in the form of, '
{e} = (D1Y{e} -
where, [D] = Stress-Straitt ¥élationship matrix
| fl-v v v 0 ]
B v.: I=v v 0 i
2N @ (L+v)(1=2V) v v 1-v 0 ... (4.42)
' i 1-2v
o 0 o S
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'4.3.6. Assemblage of the Element Stiffness Matrix [ K ]

We know that,

Stiffness matrix, [K ]

I

J1BIT (D) (BIav = I (0)(B) [av

= [B]"[D] [B] V
| Stiffness matrix, [K] = 2nr A [B]T [D] [B] |
where,
Fybrgtr
Co-ordinate, r = —l—":f—“z

A =

[B] =
_ L
2A
where, o
By
F 4

and

By 0

&4 Y12
r B+ 7 2

0 Y1
Y1 ﬁl

= ryzy - P32y
&= 22"23;

= Fg—Iy

Co-ordinate z =

(D]

It

Area of the triangular element = % bxh) "

Strain-Displacement matrix

B, 0 Bs
ou? | Nz &3 Y32
P S A et S
0 : Y, 0
Y2 B, Y3
Q; = Rz ~nz; 03 =
By = z3-2z; By =
Y2 = nN—ry e
2tz 2
3

Stress-Strain relationship matrix

E

T (1 +v)(1-2v)

where, E — Young's modulus

v > Poisson’s ratio
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I-v v
[~v

v Y

0 0

UNIT |

v

... (4.43)
[V =2nrAj
0 -
0
Ys
By
rlZZ‘—rzz!
21—z
rz—l'l
v 0
v 0
l~v 0
1-2v
¢ 7
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4.3,7. Temperature Effects

UNIT |

When the free expansion is prevented in a axisymmetric element, the change in

temperature causes stresses in the element.

Let AT be the rise in temperature and o be the coefficient of thermal expansion. The

thermal force vector due to rise in temperature is given by,
{F}, = [B]'[Dl{e},x2nrA

For axisymmetric triangular element,
e Flu N

Fw

Fou
(F}, = 3 F;w >

Fiu
\ Faw J

o AT
a AT
0
a AT

Strain {e },

4.3.8. Galerkin Approach
Virtual displacement field is given by,

{ }
IZ
( a¢, Y

or
8

r
!, f
0z .
a¢l’ a¢z
\—6.; * —5;‘-)

For axisymmetric problems, Galerkin’s variational form is given by,

2 foTe(¢)rdA—[2n'f¢TFrdA+21t fqﬂ. Trdl+2¢"P, ],: 0
A A L

It

Virtual strain is given by, e()

In the above equation, the first term representjng the internal virtual work,
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1

2n ch e(¢) r dA
A

Internal virtual work

!

It

27 f{u }T(B]T [DJT x e($) x r dA
A

[~ Stress {o } = {u}[B][D]]

il

2 [ (u)TBIT(D] x e(@) x rdA [ [D]T=[D]
A

2 f{u}T[B]T[D] x [B] x { y} xrdA
A ‘
[+ e($) = [B] [w] where, y = Arbitrary nodal displacement]

= 21 x {u)T [B]T[D)(B] {vy}r [dA
= 2nx {u)7 [BIT[DI(B] {w}r x A

Internal virtual work, W, = {u }T x 2nrA [B)T[D][B]x { v} ... (4.46)
The above equation is in the form of,
W, = {u}Tx[K]x{y} ... (4.47)

Comparing equations (4.46) and (4.47),
Stiffness matrix, [K ] = 2arA [B]T [D] [B]
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Multiple Choice Questionsand Answers

S

N Questions Optl Opt2 Opt3 Opt4 Answer

0
Large value ofeigen value is

1 | evaluated by power Inverse Subspace | Allofthese | Power
--------- method
Subspaceiteration method is -

2 | suitable for small scale | Largescale Sl?/lcgldlum 311222 of Largescale
type of problem

3 Transformation of marix in QR Jacobian Modal gRa?gmgg gﬁaﬁm;ﬁ
dynamic analysis is doneby method method method ) )

method method
Which one ofthe followingis the :

4 | reductionmethodfor DOFin guyan Jacobian Modal Both a&b Guyan
dynamic analysis method method method method
The governingequation for bar -

S .| Wave Poissons Euler None of Wave

5 ?Slement in time dependentanalysis equation equation equation these equation
The free vibration decay Small Large eigen . None of .

6 expoentially to zero ofthe effectof | eigenvalue | value Damping these Damping

Nodal
L . . Nodal Nodal Shape Nodal

7 | Damping is linearly propotional to ﬁgplaceme velocities eigen value | function velocities
When there is areduction in

8 amplitude overeverycycle of Free Forced Damped None of Damped
vibration, thenthebody is said to vibration | vibration vibration | these vibration
have

Both
Longitudinalvibratipnsare saidto Perpe_ndicu parallel to In acir_cle gre:g?trédlcul parallel to
9 (r)ncocuerswhen theparticles ofabody Lar_;o its its axis :b_chut its axXis & its axis
v X X parallel to
its axis

1 :/r\glzil\ql:rgé)\(/j?/blrztsig?sze%egsttcr)ess Shear Tensile Compressi | Longitudin | Tensile

0 induced in abodywill be stress stress vestress | al stress stress

1 | Thefactorwhich affectsthecritical | Diameter | Spanofthe | Eccentricit

1 | speedofashaftis of thedisc | shaft y Allofthese [ All of these
The equation of motion fora
vibrating systemwith viscous Both over

1 [ dampingis Over Under criticaly damped & | Over

2 | da/dtz+c/m(dx/dt)+sx¥m=0if the damped damped damped under damped
roots ofthis equationare real, then damped
the systemwill be
The ratio of the maximum Logarithmi

1 [ displacement ofthe forced vibration | Damping Damping c g Magnificati | Magnificati

3 | tothe deflectiondue tothe static factor coefficient decrement on factor on factor
force is known as
In vibration isolationsystem, if

1 | W/Whnis less than\8 then forall Lessthan | Equalto Greater Zero greaterthan

4 | values ofthe damping factorthe unity unity than unity unity
transmissibility will be
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FINITEELEMENT METHOD

UNIT |

Atamodal pointin ashaft the

None of

1 . .

5 | amplitude oftorsional vibration is Zero Minimum Maximum these Zero

1 [ Ashaftcarryingtwo rotors as its Three

6 | ends will have No node Onenode Two node nodes Two node
If the periodic motion continuous

1 | afterthe causeoforiginaldistance | Natural Forced Damped Undamped | Natural

7 | isremoved thenthebodyis saidto | vibration | vibration vibration | vibration vibration
beunder

1| nflence of snemalorce then e | NetUral | Forced | Damped | Undamped | Forced

8 body is said to be under vibration vibration vibration | vibration vibration
If no energy is lost ordissipated in

1 | friction orotherresisting force Natural Forced Damped Undamped | Undamped

9 | during vibrationsuchvibrationis vibration | vibration vibration | vibration vibration
known as

2 | Amotion which repeats itselfafter | Periodic Time period cle None of Periodic

0 | equalinterval of time is kown as motion Ime peri Cy these motion

2 | Theresistance to themotion ofa Time . . None of .

1 [ vibrating body is period Damping Amplitude these Damping
When theparticles of the shaft or S N

g disc moves parallel to the axis shaft Llongltudln Transverse | Torsional L\'l]one of ILongltudlna
then the vibration knownas a ese

2 If the load applied on theassembly Both None of
is shared by two or more springs, Parallel Series parallel & Parallel

3 . . . these
then the springsare in series

2 | Damping force perunit velocity is Damping 'g‘acr;lﬂ] gco c?erllrtr:;?ri g None of Damping

4 | known as coefficient efficient coefficient these coefficient
The natural frequency ofthe free .

2 L S Newton's | Energy Ray leigh's

5 Ik?;gltudlnalwbratlon canbefound method method method All of these | All of these
A shaft fixed at one end and Single .

g carrying arotarand the free endis rotar 'SFV\;?err(T)]tar 'Srh;teeer;otar SFo;Jter?]tar flr;%:;:otar
known as system y y y y
When theshaft is twisted & o

2 tjonrti\s,\:losrtlgcli:r:teea:?:#::?ggfe induced I;IO ngitudin Transverse | Torisional | Damped Torisional

7 this twisting &untwistingmoments: vibrations vibrations vibration | vibration vibration
are known as

2 | The point at which the amplitude of . -

8 | vibration is maximum is known as Node No node Antinode | Twonode | Antinode

2 | The volume of fluid flowing across . . Accelarati .

9 | the section persecond is Discharge | Velocity on All of these | Discharge

Q1=Q2 & -

3 Continuity equation is Q1=Q2 alvl=a2v2 | ql/q2 alvl= Ql_Q_Z &

0 aov2 alvl=a2v2

3| Itisaproductofmass densityand | Mass Specific Specific Specific Specific

1 | gravitationalacceleration density weight volume gravity weight

3 | When fluid mechanics is appliedto | Fluid Fluid Both(a)&( | None of Fluid statics

2 | fluid atrestis statics dynamics b) these

3 | Thevolume of fluid flowing across . . Accelarati | None of None of the

3 | the sectionpersecond is Density Velocity on theabove | above

3 Newton’s second law F=m/a m=f x a F=m.a None of F=m.a

4 ' these '
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FINITEELEMENT METHOD

UNIT |

None of

3 .
5 Unit for power Newton Watt Joule these Watt
g One pascalis N/ N/min? KN/m? KN/mmn? N/m?
Is Is
incompress | Has . .
. - . | Is Is : . incompressi
3 | Anidealfluid is defined as the fluid . - ible and negligible
2 | which gmpressml gompresmbl non- surface S:ESQSSnon—
viscous tension. Lo
(inviscid) (inviscid)
SSSE: is Shearstress fthr 22; is Shearstress | Shearstress
, . . : is directly - is directly | is directly
3 | Newton’s law of viscosity states directly proportional directly proportiona | proportional
8 | that proportion ) proportion .
al to the to velocity al to shear | to the to velocity
velocity gradient strain viscosity. gradient
:rslcom ress Obeys Is Obeys
3 | A Newtonian fluid is defined as the ible an% Newton’s Is highly compressib | Newton’s
9 | fluid which non- law of viscous le and non- | Law of
VISCOUS viscosity viscous viscosity
. - o . Dynamic Dynamic Dynamic dynamic
3 E'BZTE“C viscosity is defined as viscosity x | velocity/den | viscosity x gg?]sssitj rex velocity/den
g density sity pressure y sity
4 | The expressionweightperunit Mass Specific Relative None of Specific
1 [ volumeis density weight density these weight
g The symbol for viscosity p u ] ) u
4 | Theexpressioninverseofmass Mass Specific Specific None of Specific
3 | densityis density gravity volume these volume
4 | Itisaproductofmass densityand | Mass Specific Specific Specific Specific
4 | gravitationalacceleration density weight volume gravity gravity
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FINITEELEMENT METHOD

UNITV

Isoparametric Derivation of Bar(Truss) Element Stiffness Matrix

Y

X X, Y : global coord

U LU r :natural coord

Fa=1 rm+l

X= ifeJ.Yf, where } = %l{l—r}, By = %{I +r) :shape functions

=1

Also U= kU, =21{1—a-}b’] +%|[| e,

=1

dv  U,-T,
_dU g 2 U U L e
it s o A —L[I 1]U: = Bii

dr 2
- _ [ pT _ gl el _AE a (-1 L, A4E[1 -1
K = [B'CBAV = [ B' CBAdX = [ B C&{|.ﬂdr—T_r_]|: | ][—1 I]Ea’r—T[_l I}

iJacobianI J= gi

Advantages of Isoparametric FE over General Coord FE

(1) Easily handle curved boundaries
. . . x=hx,y=hy.z=hz,
(2) Easily construct element disp func since

u=hu,v=hy,w=hw,

o
5f;=5(1‘4.;+“;.f}_:' \ou ov — e
S I
&z
x=filr.st)  v=filrsa) z=fi(rst)
r=fixrz) s=filvz) = f(xz)
Chain rule
8 d&d 8ds & d ddx Odv 0z
———e bt & =y
oy fdrdr Osdx Ot Ox or dxdr Sy dr gz dr
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FINITEELEMENT METHOD

Implicit Function Theorem

Let r»eR" denotes asetof coord and x €R" as Cartesian coord.
Let x =f(FLi=12--.n where f(#) are differentiable.

It can be solved for 7 as a differentiable func of x
of f(¥) is non-singular, i.e., [é_}’,-{?—)}
ér,

Theorem : If fr(T} s continuously differentiable and Jacobian matrix is

non-singular, [ FGEW = [[ FULFE N

if Jacobian matrix
=0

ol |& ¥ &)@
or ar  or Or| ox
Os ds Os Os |y or X o or
ol |&x > 20
o] Lo e oz

J7', in general, exits except for the elements such as distorted or folded.

K =[Bcpav = [[[B Bl drdsdr = [[[F drdsdt =Y @, F,
where £, isthe matrix F evaluated at the points (i;.sj,n,:l
o, weighting factors
The more integration points the more accurate.

Once we know f, then M, R, R and R, are the same as in chap.4.
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FINITEELEMENT METHOD

Example 5.5

l(1+r)(1+s]xl+ —(1=r Ml s, + = l:‘l - s )+ — {1+rIl s,

¥y= Z{l +rfl+shy + E{l_ L+ sy, + Z(l —rfl-shy, + E{l+r11 -5y,

= i[‘l+r](1+s)ul + %{1—:|-°:('1+.';)11+%l:1—r)(1—s:u3 +%{1+ rhl- sk,
(T (R T RS (T SRR B0 (B AR R3S (o

4 Node1 . .

2] [ a2 (D T B (B T
ér | dr & | dx a1
Sl |x )2 s e ==~y
ds ds  fs | oy gy | 1
& & a——;{l‘h"} 4(1"'5]) _—':1 sy + (1 shy,
T w w ay
Ezz{“"'}}] _{1 r)J’ __{1 ’}}J_z{1+rb'4
a a E__{l s, — l:l+s}u ——(l sk, + l:l she,
2 1=
ix =J air —=—{1+r}e +—{1—r}u,——[1—r]u.——{1+.-'}e4
> o @——( +s}vl——l:1+s}v ——{1 shy+ l:l shy
(':'r 4
E = E(l +rhy + E{l - - 1{1 —r - 1{1 o,

KARPAGAM ACADEMY OF HIGHER EDUCATION Page 124



FINITEELEMENT METHOD

T I_;-I I+s; 0 —{I+3J,} 0 —fl—s),} 0 I-s, 0]
‘z_“ Wr'_i’:_z ¥ I+r, 0 1-r; ] —{I—rj} ] —{l+r'),) of "
R

[

= 1[0 15, 0 “h+s,) 0 —h-s ) 0 18 7.
e L L —fi-r,) 0 -(1+r;]J"
Ley |

“'J’MJ"E’ !‘ir = [H] 'I'J i!l Tl H; 1'3 H-l ‘I-ll

ou _

S’f— . les, 0 —fles,) 0 —fi-s,) o 1-s, o ]
g=| 3 |=gA 0 1 0 1-r, 0 —f-r) 0 —fer)l
Bu "51. T+ 1+s; 1-r; —{1+s_,-} —{I—.l-_,-} —{l—sj) —fIH'J} I-s;

& A

T
F, =B CB, detJ, = K =Zrya6,F!;
Tud

on Su

For 2-D element, we need to compute —. —. @, &
o’ ey &’y

w= ngu,-, v= Z v,

@zzﬂuw ﬂzzﬁu” ﬁzzﬁvw >y,
ar e v ay e e ay oy
]
l"l
. o o O O Oh
£ & & & &
F=Bi >&=|s, L i=|LB=| 0 T o P o O o Oh
", o oy o o
& v, O Oh Oh, Oh Oh Oh 0Oh, Ohy
" Gy @ v ox dy ox v ox
_v-i_
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FINITEELEMENT METHOD

Triangular Elements

Degenerated triangle from guadrilateral

Example 5.15

x:%{l+r)(l+s}x, +%(l—r!l+s:lxt +}{1-;-}[1-51&%{1”11-5%
y= et sy LM shy + 20PN sy + 20 sy
4 4 4 4
Using the conditions x, =x, and v, =y,.
1 1 1
x= §(l+ she, + E(l_ - s+ Z(l +r)1- sk,

ye el + L A=rfi-shy + 07X,
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FINITEELEMENT METHOD

Example 5.15 (continued)

x=%(1+r)(1—srl

v=1+s

a1 a

o =5 5_0; le[{l—s) 0
L 2|-(+r) 2
s s

u=%l:‘l+sh:+%{‘l—al"xl—s}\u‘5 +}1{1+ i T

1
V==
2

1
=—u
2

Pl

Example 5.15 (continued)

LA au
& |_ 1 dr | —= dr | _
LAk du
&y s oy
o] 1 1 Uy
—|l {00 =0 = 0f:
g _ 2 2 :
alg Ly o ofm
&y 2 2 v,
so we obtain
ou 1
— 0 0 —= 0
o 2
ov 1 1
E= - =10 = n —-=
av 2 2
ou ov| |1 11
o Xl = 0 —— -2
dy  x 2 2 2

o
+I‘M
-

2P
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[0
s

b= =

(1+s}pl+%(1-f-)(1-s}p3+}1{1+f-11-5}p4
1 1 v 1 1
=‘z(1_5)43+z(1‘5}i4§ E=‘E(1_5)V3+z(1_5)"¢

1 1
2_3[1_-'")43 _Z(l'”‘}‘a;

=

=

b= =

}l J_l B

i
‘+I |tu
-

—
|
[

1 1 1
= EVL_Z{l_r)Vs_E{l"'r}"a
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FINITEELEMENT METHOD

Triangular Elements by Area Coord.

Cartesisn coordinates

4 A A o -
LL=],L:=—2=L3=E3 LD+ =1 1 11 1
x=Lx + Loy, + Lx, —|xl=lx x x|l

y=Ly+ Ly, + Ly, yono oy r L

Basic convergence requirements for Isoparameteric elements

Monotonic convergence | compatible : disp continuous with neighbor
[ complete : rigid body disp & constant strain

Compalibility is satisfied if the elements have the same nodes on the
common face and coords and disps on the common face are defined by
the same interpolation functions

Completeness requires rigid body displacements and constant strain.
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FINITEELEMENT METHOD

u=a +hx+cy+d:z u =a +hx +cy +dz,
v=a,+bhx+e,v+d,z v.=a, +bx +c,v, +d,z,
w=a,+bhx+e,y+d.z w,=a, +bx, +e,v, +d,z,

Since u=3 hu, v=>2hv, w=> hw,

U= a,Z}r,. + bIZ}r,.x,. +clz I, +dlzk,.zi,
v= aEZh! + bEZhex! +c‘iz,31'!yJ + dEZthf
w= aszfﬁi + bazbr.xr. +c'32hfy,. +(1F32',,31;.zr

i =a,Zh! +hx+eoy+dz
v= azzhi. +hx+e,y+d,z => Z h =1 :Req't for completeness
w=a3Zh! +bx+ey+dz

For general geometric shape, isoparamelric elements always have the
capability to represent the rigid body modes and constant strain stress,
Therefore convergence is guaranteed.

é é
If dimension of ¥and X are the same in ar =J o
then J is the square matrix and can be invefed. -

=J_l

I':'_‘J | ™3
[n)
|-.,’| o

in this case, the element matrix correspond directly to the global disp.

If the order of global coordination system is higher than the other of
natural coord system such as truss or plane element, transformation to
the global coordinate should be included in the formulation.
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FINITEELEMENT METHOD

Ex 5.22
I, 7,
2 [T,
Y
el |
Xy Xla X u X
Figure E5.22 Truss element in global coordinale svstem
u=|La-n La+n v
v 2 2 U,
U, U, U
——————
» 1 T 1 .
I X —ﬂ.—i"){;l+5(1+i")[’1

=[cose sina

b

1
—(1=rW +=(1+nrV,
2{ w 2( W,

(x5, 15) 44=n'r5{5-ﬂ)(5-5)(5-c) !S=%(ﬂ+b+‘3)
™,
a b | B |
E A=i5x3 ¥l
[EE c (x,.0.) x,v 1
u ZZ’;";”;: V:Zhﬂ’r = X = Zh,x“ yzzhfyf thy =1,
5
(0.1 h=1-r—s
3\\
©0  ay " r hy=s
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FINITEELEMENT METHOD

UNIT
Ex 5.23 Shear Stress Energy

r, actual stress (17/ 4,)
11=Llrayd‘4=‘[ L ay {

2 V=Lfadfl
= dA, A, =k4
4, 26{4) '
- From Elemetary Beam Theory
k= 3V[i2y-y 5
2 — | = k==
A, ridd fa= ZA[ /27 } 6
CEle(dpY ,  Gdk oo
n_?jﬂ [E] dx+TI {——,3) di— [ pwabx—["mfdx
"W_"

f=8

= if(dBY | GAkpr(dw Y

O=[|="|dv+— [ | =--p|dx
P L)

(r = o & h— ()= zero shear deformation (@ = ff)

Ex 5.25
L .
—
- - b=10
n‘) - ..
L dw dwidr  w, l+4r
=1+ +x =—fi= —— .
PR o P avar T 2
5= I+r 0, For applied moment
2 ot ler
v,z”T"v,., L 2 ¢
1 141/43
L 3 wy|_[0 C_a_ shear locking
2 Gauss pts e lf\f_[ ] [}—}w;_ &, ﬂi[stiffbehaviur
L 2
1 Gauss pts (reduced integration )
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FINITEELEMENT METHOD

Reissner & Mindlin Plate

0 —z— 0
ox
= zﬂr,v_—zﬂ wW=w 0 0 _ZE
T B=|0 z_— z_—|:7=C
bend rransevers shear @ Py = =
d
8=|6, 8, 7y Vel | su=bv BBl £ -1 0
A
PYw Loy ]

hi2

dzd4+kj_|.“2 [yf" ;Jf[iz]dzcbi:ja;pﬂ

hiz

T

xy

n%y_’:;[sw e (A [ S R

General Cross-Section Isoparametric Beam with Offset

Offset A Shear center axis

GA Nodal axis
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FINITEELEMENT METHOD

General Cross-Section Isoparametric Beam with Offset

— L % %
8 (2,,.2,) = [ 1EL, 2, (2,070, (2,) + L 2, (2,) 75, (7))

+ GA;PJ,}P (ZP )}7;}’? (E; ) + GA;J ;Vzp (Zp )77;:; (E; )

—% —%
+ EAz LpZip GJz4,1pz4,1p Jdx

-1 5 -1
) 1 GL* . 1 GL”
Aa {kwAJruEIJ ” [k,pA 12E1
ow ov
- P =_ P _
T}-p - 6}( +9¥'P ]rzp 3}( sz

General Cross-Section Isoparametric Beam with Offset

¥ T=T,T,T,
(0 < Meutral axis (a,y_qpi:_nhj — R"h 0 I T‘* R 0
0 R,,|0 I|0 R
Offset A Shear eenter axis ri
JofisetB T, : the global to local transformation
z O edw e T, : the nonprincipal to principal transformation
L 2" principal 1o princip
- T, : the translational transformation due to offset
X
1 0 0

R, =[0 cosb, sin0,

0 —si.uElp cosBp
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FINITEELEMENT METHOD

General Cross-Section Isoparametric Beam with Offset

The translational matrix for I'he translational matrix for
displacement in calculating strain displacement in calculating kinetic
enerey bilinear form : energy bilinear form
0 &A_.\m _'ﬂﬁn_.\m [ 0 Ea_m - ﬁ?a_m
T, = _Az.-\_sc 0 fm—(,-\__\l.a. TA = —ﬁfﬁ_h—_.g_ 0 ﬂi.-\_.\l.'\
L ‘b‘ya_sc _‘&iﬁ_b{h 0 L ﬂ?g_h‘_& _ﬁp._.\m 0
0 AEB_.\IA _ﬁya_m [ 0 Ain_m 'ﬁyn_m
T, = _5'513_5(: 0 AEB_M T, = "En_m 0 HB_M
L ﬁ?n_sc _ﬁB_NA 0 L ﬂ?s_b‘_& _MB_.\IA 0
Bilinear Isoparametric Plate with Warping
4
- E S X x07 ; Cowx
lod| fxxoT]
' h=0Aez
tean plane .
f, = Bf,
7 x B warped plane “E = BTua

f, : general forces (i.e. forces and moments) applied in the actual plane
f, : general forces applied in the mean plane

u, : general displacements occurred in the actual plane
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FINITEELEMENT METHOD

Plate Checking

) T

la] Aspect ratio i) Skew

o Hﬂ:_L 5
.-‘-‘”’ _T
x _J
T
f Tl
T
By
2
el Taper in y-direction {d] Taper in x-direction

Fig. . Shape parameters,

Numerical Integration

K= j F(r.s.0)drdsdr - when F=B"CB detJ
., : weighting factor
NIy S L
ik R, : Error matrix (practically not evaluated)

¢ Polynomina ls — Lagrange interpolation

Trapezoidal rule
» Newton - Cotes — — equal space

Simpson's rule

¢ Gauss Quadrature — nonequal space
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FINITEELEMENT METHOD

Gauss Quadrature

Gauss Quadrature(Internal is not known)— Optimize
[ Frydr=Y aFr)+R,

EF(r}dr =3'F, [J‘b / (r)dr] +
=

r > pr(r)rkdr= 0 :k=0~n-1

>4

i=0

a—a, =I_llfj{r)dr tj=1-n
tables for Gauss- Legendre(T5.6)

Integrationsin 2-Dand3-D
1 el
LL F(r,s)drds= ZaffajF(r},sj)
i

(position of sampling pts weights)

[Lb r p(r)dr:l

_[_11_[_11 I_ll F{rp 8, r)drdef= foffrjfx,cF{r;,s‘r ,f‘_}

Gauss Quadrature

TABLE 5.6 Sampling points and weights in Gauss-Legendre
numerical integration (interval =1 10 +1)

n Ty o
1 0. (15 zeros) 2. (15 zeros)
2 *+0.57735 02691 89626 1.00000 00000 00000
3 *0.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 (0.88888 88888 88889
4 *+0.86113 63115 94053 0.34785 48451 37454
+0.33998 10435 84856 0.65214 51548 62546
5 *+0.90617 98459 38664 0.23692 68850 56189
0.53846 93101 05683 047862 86704 99366
0.00000 00000 00000 (.56888 88888 88889
6 +0.93246 95142 03152 0.17132 44923 79170
*0.66120 93864 66265 0.36076 15730 48139
+0.23861 91860 83197 046791 39345 72691
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FINITEELEMENT METHOD

Gauss Quadrature

TABLE 5.7  Guowuss numerival imtegrations ever gieadriluteral dooaing

Intagraticn Degree of Location of integratien
arder pracision points
¥
2w 3 =057 ... -
k4
3x3 5

Gauss Quadrature

TABLE 5.8 Garness numerical integrations over triangrlar domains [ F dr ds = § 2w, Flr, 5)]

Integration | Degree of Integration . . .
ordar precision poinits r-coordinates s-coordinates Waights.
f.s
, 1 = 016666 GB6E6 B67 s1=ny wy = 033333 33333 333
F-point 2 1y = D.6BEBE 65656 667 S=r W = Wy
nen s=r wy =Wy
\ r
f’ 1= 0,10128 65073 235 f1=n wy = 012533 51805 448
rs =0.79742 69853 531 B=n Wy = Wy
) ra=h 8=n W=
T-point 5 7y = 0.47014 20641 051 =g wy = 0.13239 41527 885
fs=n E=0n W= Wy
s = 0.05371 58717 898 s=r we = ¥y
. ry = 033333 33333 313 5= wy = 0.225
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FINITEELEMENT METHOD

Polynomial

w(ry=a,+ar+-+ayr"

n

2
F, Ly rg ooy ay
Fln | (umqua solution

F=V i
L=ra- since |V |# 0

‘F:'r 1 F, }"”2 v P’r:l aﬂ
Lagrangian Interpolation

| ()= (r=r)r—=n)(r=r, ) —r.)--r)
’ (ry =)y = 1) (ry =1 )y =)oy = 1,)

w(ry=Fl,(n+FEL(r)+--+F 1 (r)

mnon

:IJ(}]):(}‘#

Newton-Cotes
Newton - Cotes (I: F(r)dr)

b-a

Sampling pts are spaced at equal distance h=——
n

n

_‘:F(r)dr = Z:“;.t'J (i").c."J'*]Ff +R,

i=0

= (b—a)ZC,"F, +R, . C:N-Cconstants
i=0

e

—_—

a b—a
J‘b F(r)dr = — o (Fy+F+F)
1

6

cwln—rMIl—-grz

O | b | =

1. higher - order N - C formula
To improve accuracy 1 2.lower - order formula in a repeated manner
{composite formula)
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FINITEELEMENT METHOD

UNIT

Multiple Choice Questionsand Answers

S
N Questions Optl Opt2 Opt3 Opt4 Answer
0
The ratio of specific
weight of liquid to Specific Specific Specific All of these Specific
specific weight of water | gravity weight volume gravity
1]is
. L T Dynamic Dynamic Dynamic
5;?;?322 \élslfz;igy 1S viscosity x | velocity/press | viscosity x None ofthese | None ofthese
2 g density ure pressure
5 iSspecmc gravity of water 1000 1 0810 9.81 1
Relative density of
4 | mercury is 136 13600 1 9.8 136
5 ll(r: ng%ﬁgj}génog :][;} iosf Poise Stokes Mach number | All of these | Stokes
Standard atmospheric
ﬁsfci“r;e o terms of 136 760mm 10.3mm None ofthese | 760mm
6
, Iggﬂﬂj‘;?; g‘l‘ Lkn | pa-s kg/m-s Allofthese | N/m?
8 ;hgluunr:titoiz mass density | /2 pa-s kg/m? All of these | kg/m®
9 \I/r:s(é(c);;t;)gtemumt of Poise Stokes Mach number | All of these | Poise
The ratio of volume to . o o .
L Compressibil | Specific Specific Specific
(1) ?;ilrsnség];tsheflmd is ity volume weight None ofthese volume
The ratio of mass to . o o
L Compressibil | Specific Specific Mass .
1 }[/eorl#en(;eaosftheﬂmd is ity volume weight density Mass density
The compressibility of
1 | thefluid is the reciprocal | Density Viscosity Bulk modulus | None ofthese | Bulk modulus
2 | of
1 | The bulkmodulus ofthe | Compressibil . Compressibilit
3 | fluid is the reciprocalof | ity P Viscosity Pressure None ofthese y P
It is a productofmass o o o
) Specific Specific Specific
i :ihe:;{%andvolumof Mass weight volume gravity Mass
The ratio of density of e - - L
1 | liquid to density of water Spec_lflc Sp?C'f'C Specific All of these Spec_lflc
5 | is gravity weight volume gravity
L is oneof
the causesofthe upward | Surface . Vapour
1 | flow ofwaterinthgsoil tension Viscosity preisure None ofthese | None ofthese
6 | andinplants
When the pressure
1 23?3:;%22? g\r/gssure it ngghﬂze Static pressure :)/?e(;it?; None ofthese | None ofthese
7 | is called
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In capillary rise the
. ?r%?(':‘i‘?; ‘;‘r’]gtgf; Deteen | 128 60 None ofthese | 128
8 |is
Is Has Is
. s ] Is incompressibl . incompressibl
e | s | Teomoresb | eandnon- | 8D | eandnon
1 P e viscous tension viscous
9 (inviscid) ' (inviscid)
_she_arstress Shearstress S 1 shearstress _She_arstress S_hearstress is
Newton’s law of is directly directly is directly is directly directly
viscosity states that proportional | proportional ronortional proportional | Proportional
2 y tothe to velocity 'E)o srr:earstrain tothe to velocity
0 velocity gradient Viscosity. gradient
. L - dynamic Dynamic Dynamic Dynamic
2 (I;é?i?]r:gt:; \é'slf;igy 1S viscosity x | velocity/densit | viscosity x Sﬁsssif rex velocity/densit
1 g density y pressure y y
It two fluids at different
2 :gg]gt?]?rtuhrs;&ggﬁd Conduction | Convection Radiation Mass transfer | Convection
2 | occurs by
Fluid motion occurs by
2 gﬁ(n)\sl\%yadslﬁerence 1S Conduction | Convection Radiation Mass transfer | Convection
3
Density difference in .
. Temperature | Pressure Viscosity Flow Temperature
Z fluid may occurdueto difference difference difference variation difference
Fluid motion may occur
by density differences Natural Forced - . Natural
2 | causedby temperature convection | convection Boiling Condensation convection
5 | differences is knownas
2| hednitofheattiansfer | vy pry | wimk W W2k | wimrek
2l 1he d“u”C'ttiSift;hgrma' wim2 | wimk W WK | Wimk
Nota
A property Nota property
Heat transfer coefficient, | of the A property of property of Depends on of the surface
"h' is surface the fluid the surface flow material and
2 material materialand | condition of the fluid
8 : of the fluid ul
The property of the
systemis constant with Steady state Unsteady Solid state Liquid state | Steady state
2 | respecttotime is known state
9| as
The property of the
systemis varying with Unsteady . -
3 | respect totime is known Steady state state Solid state Liquid state | Unsteady state
0] as
Steady state, Steady state,
Fourier’s lawis defined | one Steady state One Unsteady one
3| for dimensional y dimensional | state dimensional
1 heat flow heat flow
‘Z’ g;;ﬁgbsligls Solid Liquid Gaseous Allof these | Solid
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- _states of
matter.
Material .

Thermal conductivityof | structure & cl\cglr?tlzrgl:;id Temperature | All of these | Allof these
3 | materials dependsupon | density of P
3 material pressure

Heat treatment of pure
3 | metals___ thevalueof | Increases Decreases aDner f[]fgz thave All of these | Decreases
4 | thermal conductivity y

Thermal conductivity of
3 | alloy generally __as Increases Decreases Does not have Allof these | Increases

. any effect
5 | temperature increases
W Theability | e apility of | 1" 30UY OF | e apility of | The ability of

Thermal diffusivity of the the material to the material the material | the materialto
3 | indicates material to store heat to withstand to reiect heat | store heat
6 conduct heat heat J

A wall made up of

different thermal Composite Brick wall Insulation Guard wall of | Composite
3 | conductivity materialis | wall wall these wall ofthese
7 | known as

Temperature

Temperature distribution Temperature Temperature | atany Temperature Temperature
3 | isusedtofind out ofthe of material location in the | of medium atany location
8 atmosphere material in the material
3 | Theunitofoverallheat
9 | transfer coefficient is W/m2K Wimk Wim Wik Wim2K

If the insulation material

radius onapipeis less . . Loss is Will be .
4 | than critical radius then loss is more | Loss s less constant generated Loss is more
0 | theheat

Extended surface is used Increasethe | Decreasethe Increase the
4 to heattransfer | heattransfer | Generate heat | Absorb heat | heattransfer
1 surfacearea | surfacearea surface area

The ratio ofenergy

transferred by Stanton Nusselt . Preclet .
4 | convectionto that by number number Biot number number Biot number
2 | conduction is called

Free convectionfloe . o
4 | dependson allofthe Density Sgiglsﬁt'em of %rfc\gtatlonal Velocity Density
3 | following except y
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