
B.E -COMPUTER SCIENCE AND ENGINEERING 2019-2020

End Semester Exam:3 Hours

(i) Theory

COURSE OBJECTIVES:

 To Study the basic concepts and functions of operating systems.

 To understand the structure and functions of OS.

 To Learn about Processes, Threads and Scheduling algorithms.

 To understand the principles of concurrency and Deadlocks.

 To learn various memory management schemes.

 To Study I/O management and File systems.

COURSE OUTCOMES:

Upon completion of this course the student will be able to:

 Understand the different concepts and functions of Operating Systems.

 Design various Scheduling algorithms.

 Apply the principles of concurrency.

 Design deadlock, prevention and avoidance algorithms.

 Compare and contrast various memory management schemes.

 Design and Implement a prototype file systems.

 UNIT 1: (9)

Introduction: Concept of Operating Systems, Generations of Operating systems, Types

of Operating Systems, OS Services, System Calls, Structure of an OS - Layered,

Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX

and WINDOWS Operating System. Processes: Definition, Process Relationship, Different

states of a Process, Process State transitions, Process Control Block (PCB), Context

switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of

multithreads,

Instruction Hours/week: L:3 T:0 P:4 Marks: Internal:40 External:60 Total:100

SEMESTER IV

16BECS501 OPERATING SYSTEMS 7H-5C

UNIT 2: (9)

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling

criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time;

Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor

scheduling: Real Time scheduling: RM and EDF.

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion,

Hardware Solution,Strict Alternation, Peterson’s Solution,The Producer\Consumer Problem,

Semaphores, Event Counters, Monitors,Message Passing, Classical IPC Problems: Reader’s

& Writer Problem, Dinning Philosopher Problem etc.

UNIT 3: (9)

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock

Prevention, Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

Memory Management: Basic concept, Logical and Physical address map, Memory

allocation: Contiguous Memory allocation – Fixed and variable partition–

Internal and External fragmentation and Compaction; Paging: Principle of

operation – Page allocation – Hardware support for paging, Protection and sharing,

Disadvantages of paging.

UNIT 4: (9)

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality

of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page

Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not

recently used (NRU) and Least Recently used (LRU).

UNIT 5: (9)

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O

Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software,

Secondary-Storage Structure: Disk structure, Disk scheduling algorithms

File Management: Concept of File, Access methods, File types, File operation, Directory

structure, File ,free space management (bit vector ,linked list ,grouping)directory

implementation (linear list ,hash table)efficiency and performance.

 Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk

 reliability, Disk formatting, Boot-block, Bad blocks

Total Hours:45

TEXT BOOKS:

1. D M Dhamdhere, “Operating Systems: A Concept-based Approach”, Second Edition,

Tata McGraw-Hill Education, 2007.

 2.William Stallings, “Operating Systems: Internals and Design Principles”, Seventh

Edition, Prentice Hall, 2011.

REFERENCES:
1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, “Operating System Concepts Essentials”,

John Wiley & Sons Inc., 2010.
2. D M Dhamdhere, “Operating Systems: A Concept-Based Approach”, Second

 Edition, Tata McGraw-Hill Education, 2007.

3. Charles Crowley, “Operating Systems: A Design-Oriented Approach”, Tata

McGraw Hill Education”, 1996.

WEBSITE:

1. http://nptel.ac.in/.

http://nptel.ac.in/

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 Faculty of Engineering

Lecture Plan

Faculty

Name
Subject

Code : 16BECS501

 Subject

Name Operating Systems Class : III B.E CSE B Section

S.No Topic Name
No.of

Periods

Teaching

Aids
Books

Page No. of

Text Book

Unit - I Introduction

1 Introduction to OS concepts 1 BB/PPT T1

2 OS Structures ,Kernal and Shell 1 BB/ PPT T1 Pg.No. 55

3
Evolution of operating systems -Mainframes systems-Desktops systems-multiprocessor systems 1 BB/ PPT T1 Pg.No. 7-12

4
Distributed systems-Clustered systems-Real time systems-Handheld systems 1 BB/ PPT T1 Pg.No. 12-19

5
Hardware protection-System Components-Operating System services 1 BB/ PPT T1 Pg.No. 42

6 System Calls-System Programs-Process concepts 1 BB/ PPT T1 Pg.No. 63

7 Process Scheduling 1 BB/ PPT T1 Pg.No. 99

8 Operations on Processes 1 BB/ PPT T1 Pg.No. 103

9 cooperating Processes 1 BB/ PPT T1 Pg.No. 107

10 Interprocess communication 1 BB/ PPT T1 Pg.No. 109

11 Tutorial 1: Interprocess Communication 1 BB/ PPT T1 Pg.No. 109

 Total 11

Unit - II Scheduling

12 Threads-Overview 1 BB/ PPT T1 Pg.No. 129

13 Threading Issues-CPU Scheduling 1 BB/ PPT T1 Pg.No. 135

14 Basic concepts-Scheduling Criteria 1 BB/ PPT T1 Pg.No. 155

15 Scheduling Algorithms 1 BB/ PPT T1 Pg.No. 157

16 Multiple Processor Scheduling-Real time scheduling 1 BB/ PPT T1 Pg.No. 169

17 The critical section problem 1 BB/ PPT T1 Pg.No. 191

18 Synchronisation Hardware 1 BB/ PPT T1 Pg.No. 197

19 Semaphores 1 BB/ PPT T1 Pg.No. 201

20 Classic problems of sychronisation 1 BB/ PPT T1 Pg.No. 206

21 Critical Regions 1 BB/ PPT T1 Pg.No. 211

22 Monitors 1 BB/ PPT T1 Pg.No. 216

 Total 11

Unit - III Deadlocks

23
System Model-Deadlock Characterization

1
BB/ PPT T1

Pg.No243-

245

24 Methods of Handling Deadlocks 1 BB/ PPT T1 Pg.No-248

25 Deadlock Prevention 1 BB/ PPT T1 Pg.No-250

26 Deadlock Avoidance 1 BB/ PPT T1 Pg.No-253

27
Deadlock detection-Recovery from deadlocks

1
BB/ PPT T1

Pg.No-260-

264

28 Storage Management-Swapping 1 BB/ PPT T1 Pg.No-280

29 Contiguous Memory Allocation 1 BB/ PPT T1 Pg.No-283

30
Paging-Segmentation

1
BB/ PPT T1

Pg.No-287-

303

31 Segmentation and paging 1 BB/ PPT T1 Pg.No-309

 Total 9

Unit - IV Virtual Memory

32 Virtual Memory 1 BB/ PPT T1 Pg.No-317

33 Demand Paging 1 BB/ PPT T1 Pg.No-320

34 Process Creation 1 BB/ PPT T1 Pg.No-328

35 Page Replacement 1 BB/ PPT T1 Pg.No-330

36 Allocation of Frames 1 BB/ PPT T1 Pg.No-344

37 Thrasing 1 BB/ PPT R3 Pg.No-348

38 File concept-Access Methods 1 BB/ PPT T1 Pg.No-371

39 Directory Sturcture 1 BB/ PPT R3 Pg.No-383

40 File sharing 1 BB/ PPT T1 Pg.No-395

41 Protection 1

 Total 10

Unit - V File Systems

42 File system Structure 1 BB/ PPT T1 Pg.No-411

43 File system Implementation 1 BB/ PPT T1 Pg.No-413

44 Directory Implementation 1 BB/ PPT T1 Pg.No-420

45 Allocation methods-Free space management 1 BB/ PPT T1 Pg.No-421

46 Kernal I/O subsystems 1 BB/ PPT R2 Pg.No-472

47 Disk Sructure-Disk Scheduling 1 BB/ PPT T1 Pg.No-491

48 Disk management-Swap space management 1 BB/ PPT T1 Pg.No-498

49 Case study :The Linux system 1 BB/ PPT w1

50 Windows 2000 1 BB/ PPT T1 Pg.No-743

51 Seminar-Introduction -UNIX 1 PPT

 Total 10

 Total Hours 51

 Hours Allocated

 Number of hours allocated for Lecture 45

 Number of hours planned for Lecture 51

 Text Books:

 T1: Abraham Silberschatz,Peter Baer Galvin and Greg Gagne"Operating systems concepts"John WILEY &Sons(ASIA) Pvt.Ltd,2009

References:

 R1 Harvey M. Deitel Operating Systems Pearson Education Pvt.

 R2 Andrew S Tanenbaum"Modern operating Systems",Prentice Hall of India Pvt Limited
 R3 William Stallings "Operating systems" Prentice Hall of India 2009

 LECTURE NOTES

UNIT- I INTRODUCTION

Introduction - Mainframe systems – Desktop Systems – Multiprocessor Systems – Distributed Systems – Clustered Systems – Real

Time Systems – Handheld Systems - Hardware Protection - System Components – Operating System Services – System Calls –

System Programs - Process Concept – Process Scheduling – Operations on Processes – Cooperating Processes – Inter-process

Communication.

 1.1 Introduction :
What is an Operating System?

• An operating system is a program that manages the computer hardware.

• It also provides a basis for application programs and acts as an intermediary between a user of a computer and the computer

hardware.

• The purpose of an operating system is to provide an environment in which a user can execute programs.

Goals of an Operating System
• The primary goal of an operating system is thus to make the computer system convenient to use.

• The secondary goal is to use the computer hardware in an efficient manner.

Components of a Computer System
• An operating system is an important part of almost every computer system.

• A computer system can be divided roughly into four components.

i. Hardware

ii. Operating system

iii. The application programs

iv. Users

• The hardware - the central processing unit (CPU), the memory, and the Input/output (I/O) devices-provides the basic computing

resources.

• The application programs- such as word processors, spreadsheets, compilers, and web browsers- define the ways in which these

resources are used to solve the computing problems of the users.

• An operating system is similar to a government. The OS simply provides an environment within which other programs can do useful

work.

Abstract view of the components of a computer system.
• Operating system can be viewed as a resource allocator.

• The OS acts as the manager of the resources (such as CPU time, memory space, file storage space, I/O devices) and allocates them to

specific programs and users as necessary for tasks.

• An operating system is a control program. It controls the execution of user programs to prevent errors and improper use of computer.

1.2 Mainframe Systems
• Early computers were physically enormous machines run from a console.

• The common input devices were card readers and tape drives.

• The common output devices were line printers, tape drives, and card punches.

• The user did not interact directly with the computer systems.

• Rather, the user prepared a job - which consisted of the program, the data, and some control information about the nature of the job

(control cards)-and submitted it to the computer operator.

• The job was usually in the form of punch cards.

• The operating system in these early computers was fairly simple.

• Its major task was to transfer control automatically from one job to the next.

• The operating system was always resident in memory

Memory layout for a simple batch system.

A batch operating system, thus normally reads a stream of separate jobs.

• When the job is complete its output is usually printed on a line printer.

• The definitive feature of batch system is the lack of interaction between the user and the job while the job is executing.

• Spooling is also used for processing data at remote sites.

Multiprogrammed Systems
• A pool of jobs on disk allows the OS to select which job to run next, to increase CPU utilization.

• Multiprogramming increases CPU utilization by organizing jobs such that the CPU always has one to execute.

• The idea is as follows: The operating system keeps several jobs in memory simultaneously. This set of jobs is a subset of the jobs kept

in the job pool.

The operating system picks and begins to execute one of the jobs in the memory.

The operating system picks and begins to execute one of the jobs in the memory.

Memory layout for a multiprogramming system.

Time-Sharing Systems
• Time sharing (or multitasking) is a logical extension of multiprogramming. The CPU executes multiple jobs by switching among

them, but the switches occur so frequently that the users can interact with each program while it is running.

• A time-shared operating system allows many users to share the computer simultaneously. Since each action or command in a time-

shared system tends to be short, only a little CPU time is needed for each user. As the system switches rapidly from one user to the

next, each user is given the impression that the entire computer system is dedicated to her use, even though it is being shared among

many users.

1.3 Desktop Systems
• As hardware costs have decreased, it has once again become feasible to have a computer system dedicated to a single user. These

types of computer systems are usually referred to as personal computers(PCS). They are

microcomputers that are smaller and less expensive than mainframe computers.

• Operating systems for these computers have benefited from the development of operating systems for mainframes in several ways.

1.4 Multiprocessor Systems
• Multiprocessor systems (also known as parallel systems or tightly coupled systems) have more than one processor in close

communication, sharing the computer bus, the clock, and sometimes memory and peripheral devices.

• Multiprocessor systems have three main advantages.

o Increased throughput.

o Economy of scale.

o Increased reliablility.

• If functions can be distributed properly among several processors, then the failure of one processor will not halt the system, only slow

it down. If we have ten processors and one fails, then each of the remaining nine processors must pick up a share of the work of the

failed processor. Thus, the entire system runs only 10 percent slower, rather than failing altogether. This ability to continue providing

service proportional to the level of surviving hardware is called graceful degradation. Systems designed for graceful degradation are

also called fault tolerant.

• Continued operation in the presence of failures requires a mechanism to allow the failure to be detected, diagnosed, and, if possible,

corrected.

• The most common multiple-processor systems now use symmetric multiprocessing (SMP), in whch each processor runs an identical

copy of the operating system, and these copies communicate with one another as needed.

• Some systems use asymmetric multiprocessing, in which each processor is assigned a specific task. A master processor controls the

system; the other processors either look to the master for instruction or have predefined tasks. This scheme defines a master-slave

relationship. The master processor schedules and allocates work to the slave processors.

1.5 Distributed Systems
• In contrast to the tightly coupled systems, the processors do not share memory or a clock. Instead , each processor has its own local

memory.

• The processors communicate with one another through various communication lines, such as high speed buses or telephone lines.

These systems are usually referred to as loosely coupled systems, or distributed systems.

Advantages of distributed systems
• Resource Sharing

• Computation speedup

• Reliability

• Communication

1.6 Clustered Systems

 Clustering allows two or more systems to share storage.

 Provides high reliability.

 Asymmetric clustering: one server runs the application while other servers standby.

 Symmetric clustering: all N hosts are running the application.

1.7 Real-Time Systems
• Systems that control scientific experiments, medical imaging systems, industrial control systems, and certain display systems are real-

time systems. Some automobile-engine fuel-injection systems, home-appliance controllers, and weapon systems are also real-time

systems. A real-time system has well-defined, fixed time constraints.

• Real-time systems come in two flavors: hard and soft.

• A hard real-time system guarantees that critical tasks be completed on time. This goal requires that all delays in the system be

bounded, from the retrieval of stored data to the time that it takes the operating system to finish any request made of it. Such time

constraints dictate the facilities that are available in hard real-time systems.

• A less restrictive type of real-time system is a soft real-time system, where a critical real-time task gets priority over other tasks, and

retains that priority until it completes.

• Soft real-time systems, however, have more limited utility than hard real-time systems. They are useful, in several areas, including

multimedia, virtual reality, and advanced scientific projects.

1.8 Handheld Systems

 Personal Digital Assistants (PDAs)

 Cellular telephones

 Issues:

 Limited memory

 Slow processors

 Small display screens.

1.9 Hardware Protection

 Dual-Mode Operation

 I/O Protection

 Memory Protection

 CPU Protection

Dual-Mode Operation

 Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute

incorrectly.

 Provide hardware support to differentiate between at least two modes of operations.

 1. User mode – execution done on behalf of a user.

 2. Monitor mode (also kernel mode or system mode) – execution done on behalf of operating

 system.

 Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1).

When an interrupt or fault occurs hardware switches to monitor mode.

 Interrupt/fault

 set user mode

Privileged instructions can be issued only in monitor mode.

Use of A System Call to Perform I/O

Memory Protection

 Must provide memory protection at least for the interrupt vector and the interrupt service routines.

 In order to have memory protection, add two registers that determine the range of legal addresses a program may access:

 Base register – holds the smallest legal physical memory address.

 Limit register – contains the size of the range

 Memory outside the defined range is protected.

Use of A Base and Limit Register

Hardware Address Protection

 When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory.

 The load instructions for the base and limit registers are privileged instructions.

CPU Protection

 Timer – interrupts computer after specified period to ensure operating system maintains control.

 Timer is decremented every clock tick.

 When timer reaches the value 0, an interrupt occurs.

 Timer commonly used to implement time sharing.

 Time also used to compute the current time.

 Load-timer is a privileged instruction.

1.10 System Components
There are eight major operating system components.They are :

o Process management

o Main-memory management

o File management

o I/O-system management

o Secondary-storage management

o Networking

o Protection system

o Command-interpreter system

(i) Process Management
• A process can be thought of as a program in execution. A batch job is a process. A time shared user program is a process.

• A process needs certain resources-including CPU time, memory, files, and I/O devices-to accomplish its task.

• A program by itself is not a process; a program is a passive entity, such as the contents of a file stored on disk, whereas a

process is an active entity, with a program counter specifying the next instruction to execute.

• A process is the unit of work in a system.

• The operating system is responsible for the following activities in connection with process management:

•

(ii) Main – Memory Management
• Main memory is a large array of words or bytes, ranging in size from hundreds of thousands to billions. Each word or byte has

its own address.

• Main memory is a repository of quickly accessible data shared by the CPU and I/O devices.

• To improve both the utilization of the CPU and the speed of the computer's response to its users, we must keep several

programs in memory.

• The operating system is responsible for the following activities in connection with memory management:

•

(iii) File Management
• File management is one of the most visible components of an operating system.

• The operating system is responsible for the following activities in connection with file management:

pporting primitives for manipulating files and directories

(iv) I/O System management
• One of the purposes of an operating system is to hide the peculiarities of specific hardware devices from the user. This is done

using the I/O subsystem.

• The I/O subsystem consists of

-management component that includes buffering, caching, and spooling

-driver interface

ific hardware devices

(v) Secondary storage management
• Because main memory is too small to accommodate all data and programs, and because the data that it holds are lost when

power is lost,the computer system must provide secondary storage to back up main memory.

• The operating system is responsible for the following activities in connection with disk management:

• -space management

(vi) Networking
• A distributed system is a collection of processors that do not share memory, peripheral devices, or a clock.

• Instead, each processor has its own local memory and clock, and the processors communicate with one another through

various communication lines, such as high-speed buses or networks.

• The processors in the system are connected through a communication network, which can be configured in a number of

different ways.

(vii) Protection System
• Various processes must be protected from one another's activities. For that purpose, mechanisms ensure that the files, memory

segments, CPU, and other resources can be operated on by only those processes that have gained proper authorization from the

operating system.

• Protection is any mechanism for controlling the access of programs, processes, or users to the resources defined by a computer

system.

• Protection can improve reliability by detecting latent errors at the interfaces between component subsystems.

(viii) Command-Interpreter System
• One of the most important systems programs for an operating system is the command interpreter.

• It is the interface between the user and the operating system.

• Some operating systems include the command interpreter in the kernel. Other operating systems, such as MS-DOS and UNIX,

treat the command interpreter as a special program that is running when a job is initiated, or when a user first logs on (on time-

sharing systems).

• Many commands are given to the operating system by control statements.

• When a new job is started in a batch system, or when a user logs on to a time-shared system, a program that reads and

interprets control statements is executed automatically.

• This program is sometimes called the control-card interpreter or the command-line interpreter, and is often known as the

shell.

1.11 Operating-System Services
The OS provides certain services to programs and to the users of those programs.

1. Program execution: The system must be able to load a program into memory and to run that program. The program must be able to

end its execution, either normally or abnormally (indicating error).

2. I/O operations: A running program may require I/O. This I/O may involve a file or an I/O device.

3. File-system manipulation: The program needs to read, write, create, delete files.

4. Communications : In many circumstances, one process needs to exchange information with another process. Such communication

can occur in two major ways. The first takes place between processes that are executing

on the same computer; the second takes place between processes that are executing on different computer systems that are tied together

by a computer network.

5. Error detection: The operating system constantly needs to be aware of possible errors. Errors may occur in the CPU and memory

hardware (such as a memory error or a power failure), in I/O devices (such as a parity error on tape, a connection failure on a network,

or lack of paper in the printer), and in the user program (such as an arithmetic overflow, an attempt to access an illegal memory

location, or a too-great use of CPU time). For each type of error, the operating system should take the appropriate action to ensure

correct and consistent computing.

6. Resource allocation: Different types of resources are managed by the Os. When there are multiple users or multiple jobs running at

the same time, resources must be allocated to each of them.

7. Accounting: We want to keep track of which users use how many and which kinds of computer resources. This record keeping may

be used for accounting or simply for accumulating usage statistics.

8. Protection: The owners of information stored in a multiuser computer system may want to control use of that information. Security

of the system is also important.

1.12 System Calls

• System calls provide the interface between a process and the operating system.

• These calls are generally available as assembly-language instructions.

• System calls can be grouped roughly into five major categories:

1. Process control

2. file management

3. device management

4. information maintenance

5.Communications

Process Control
• end,abort

• load, execute

• Create process and terminate process

• get process attributes and set process attributes.

• wait for time, wait event, signal event

• Allocate and free memory.

File Management
• Create file, delete file

• Open , close

• Read, write, reposition

• Get file attributes, set file attributes.

Device Management
• Request device, release device.

• Read, write, reposition

• Get device attribtues, set device attributes

• Logically attach or detach devices

Information maintenance
• Get time or date, set time or date

• Get system data, set system data

• Get process, file, or device attributes

• Set process, file or device attributes

Communications
• Create, delete communication connection

• Send, receive messages

• Transfer status information

• Attach or detach remote devices

Two types of communication models

(a) Message passing model

(b) Shared memory model

1.13 System Programs
• System programs provide a convenient environment for program development and execution.

• They can be divided into several categories:

1. File management: These programs create, delete, copy, rename, print, dump, list, and generally manipulate files and directories.

2. Status information: The status such as date, time, amount of available memory or diskspace, number of users or similar status

information.

3. File modification: Several text editors may be available to create and modify the content of files stored on disk or tape.

4. Programming-language support: Compilers, assemblers, and interpreters for common programming languages are often provided

to the user with the operating system.

5. Program loading and execution: The system may provide absolute loaders, relocatable loaders, linkage editors, and overlay

loaders.

6. Communications: These programs provide the mechanism for creating virtual connections among processes, users, and different

computer systems. (email, FTP, Remote log in)

7. Application programs: Programs that are useful to solve common problems, or to perform common operations.

Eg. Web browsers, database systems.

1.14 Process Concept
• A process can be thought of as a program in execution.

• A process is the unit of the unit of work in a modern time-sharing system.

• A process generally includesthe process stack, which contains temporary data (such as method parameters,return addresses, and local

variables), and a data section, which contains global variables.

Difference between program and process

• A program is a passive entity, such as the contents of a file stored on disk, whereas a process is an active entity, with a program

counter specifying the next instruction to execute and a set of associated resources.

Process States:
• As a process executes, it changes state.

• The state of a process is defined in part by the current activity of that process.

• Each process may be in one of the following states:

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur (such as an I/O completion or reception of a signal).

Ready: The process is waiting to be assigned to a processor.

Terminated: The process has finished execution.

Process Control Block
• Each process is represented in the operating system by a process control block (PCB)-also called a task control block.

• A PCB defines a process to the operating system.

• It contains the entire information about a process.

• Some of the information a PCB contans are:

Process state: The state may be new, ready, running, waiting, halted, and SO on.

Program counter: The counter indicates the address of the next instruction to be executed for this process.

CPU registers: The registers vary in number and type, depending on the computer architecture.

CPU-scheduling information: This information includes a process priority, pointers to scheduling queues, and any other

scheduling parameters.

Memory-management information: This information may include such information as the value of the base and limit registers,

the page tables, or the segment tables, depending on the memory system used by the operating system.

Accounting information: This information includes the amount of CPU and real time used, time limits, account numbers, job or

process numbers, and so on.

Status information: The information includes the list of I/O devices allocated to this process, a list of open files, and so on.

1.15 Process Scheduling

Scheduling Queues
There are 3 types of scheduling queues .They are :

1. Job Queue

2. Ready Queue

3. Device Queue

• As processes enter the system, they are put into a job queue.

• The processes that are residing in main memory and are ready and waiting to execute are kept on a list called the ready queue.

• The list of processes waiting for an I/O device is kept in a device queue for that particular device.

• ched).

• Once the process is assigned tothe CPU and is executing, one of several events could occur:

 I/O request, and then be placed in an I/O queue.

 interrupt, and be put back in the ready Queue.

• A common representation of process scheduling is a queueing diagram.

Schedulers
• A process migrates between the various scheduling queues throughout its lifetime.

• The operating system must select, for scheduling purposes, processes from these queues in some fashion.

• The selection process is carried out by the appropriate scheduler.

There are three different types of schedulers.They are:

1. Long-term Scheduler or Job Scheduler

2. Short-term Scheduler or CPU Scheduler

3. Medium term Scheduler

• The long-term scheduler, or job scheduler, selects processes from this pool and loads them into memory for execution. It is invoked

very infrequently.It controls the degree of multiprogramming.

short-term scheduler, or CPU scheduler, selects from among the processes that are ready to execute, and allocates the CPU to

one of them. It is invoked very frequently.

• Processes can be described as either I/O bound or CPU bound.

• An I\O-bound process spends more of its time doing I/O than it spends doing computations.

• A CPU-bound process, on the other hand, generates I/O requests infrequently,using more of its time doing computation than an I/O-

bound process uses.

• The system with the best performance will have a combination of CPU-bound and I/O-bound processes.

Medium term Scheduler
• Some operating systems, such as time-sharing systems, may introduce an additional, intermediate level of scheduling.

• The key idea is medium-term scheduler, removes processes from memory and thus reduces the degree of multiprogramming.

• At some later time, the process can be reintroduced into memory and its execution can be continued where it left off. This scheme is

called swapping.

Context Switch
• Switching the CPU to another process requires saving the state of the old process and loading the saved state for the new process.

• This task is known as a context switch.

• Context-switch time is pure overhead, because the system does no useful work while switching.

• Its speed varies from machine to machine, depending on the memory speed, the number of registers that must be copied, and the

existence of special instructions.

1.16 Operations on Processes

1. Process Creation

• A process may create several new processes, during the course of execution.

• The creating process is called a parent process, whereas the new processes are called the children of that process.

• When a process creates a new process, two possibilities exist in terms of execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

• There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

• In UNIX, each process is identified by its process identifier, which is a unique integer. A new process is created by the fork system

call.

2. Process Termination
• A process terminates when it finishes executing its final statement and asks the operating system to delete it by using the exit system

call.

• At that point, the process may return data (output) to its parent process (via the wait system call).

• A process can cause the termination of another process via an appropriate system call.

• A parent may terminate the execution of one of its children for a variety of

reasons, such as these:

1. The child has exceeded its usage of some of the resources that it has been allocated.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the operating system does not allow a child to continue if its parent terminates. On such systems, if a

process terminates (either normally or abnormally), then all its children must also be terminated. This phenomenon, referred to as

cascading termination, is normally initiated by the operating system.

1.17 Cooperating Processes
• The concurrent processes executing in the operating system may be either independent processes or cooperating processes.

• A process is independent if it cannot affect or be affected by the other processes executing in the system.

• A process is cooperating if it can affect or be affected by the other processes executing in the system.

• Benefits of Cooperating Processes

1. Information sharing

2. Computation speedup

3. Modularity

4. Convenience

Example

Producer – Consumer Problem
• A producer process produces information that is consumed by a consumer process.

• For example, a print program produces characters that are consumed by the printer driver. A compiler may produce assembly code,

which is consumed by an assembler.

• To allow producer and consumer processes to run concurrently, we must have available a buffer of items that can be filled by the

producer and emptied by the consumer.

o unbounded-buffer: places no practical limit on the size of the buffer.

o bounded-buffer : assumes that there is a fixed buffer size.

Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

The shared buffer is implemented as a circular array with two logical pointers: in and out. The variable in points to the next free

position in the buffer; out points to the first full position in the buffer. The buffer is empty when in == out ; the buffer is full when ((in

+ 1) % BUFFERSIZE) == out.

Producer Process
while (1)

{

while (((in + 1) % BUFFER_SIZE) == out);

/* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

Consumer process
while (1)

{

while (in == out);

/* do nothing */
nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

}

1.18 Interprocess Communication
• Operating systems provide the means for cooperating processes to communicate with each other via an interprocess communication

(PC) facility.

• IPC provides a mechanism to allow processes to communicate and to synchronize their actions.IPC is best provided by a message

passing system.

Basic Structure:
• If processes P and Q want to communicate, they must send messages to and receive messages from each other; a communication link

must exist between them.

• Physical implementation of the link is done through a hardware bus , network etc,

• There are several methods for logically implementing a link and the operations:

1. Direct or indirect communication

2. Symmetric or asymmetric communication

3. Automatic or explicit buffering

4. Send by copy or send by reference

5. Fixed-sized or variable-sized messages

Naming

• Processes that want to communicate must have a way to refer to each other. They can use either direct or indirect communication.

1. Direct Communication

• Each process that wants to communicate must explicitly name the recipient or sender of the communication.

• A communication link in this scheme has the following properties:

i. A link is established automatically between every pair of processes that want to communicate. The processes need to know only each

other's identity to communicate.

ii. A link is associated with exactly two processes.

iii. Exactly one link exists between each pair of processes.

• There are two ways of addressing namely

• In symmetry in addressing, the send and receive primitives are defined as:

• In asymmetry in addressing , the send & receive primitives are defined as:

ken

place

2. Indirect Communication

• With indirect communication, the messages are sent to and received from mailboxes, or ports.

• The send and receive primitives are defined as follows:

 mailbox A.

• A communication link has the following properties:

i. A link is established between a pair of processes only if both members of the pair have a shared mailbox.

ii. A link may be associated with more than two processes.

iii. A number of different links may exist between each pair of communicating processes, with each link corresponding to one mailbox

3. Buffering

• A link has some capacity that determines the number of message that can reside in it temporarily. This property can be viewed as a

queue of messages attached to the link.

• There are three ways that such a queue can be implemented.

• Zero capacity : Queue length of maximum is 0. No message is waiting in a queue. The sender must wait until the recipient receives

the message. (message system with no buffering)

• Bounded capacity: The queue has finite length n. Thus at most n messages can reside in it.

• Unbounded capacity: The queue has potentially infinite length. Thus any number of messages can wait in it. The sender is never

delayed

4. Synchronization

• Message passing may be either blocking or non-blocking.

1. Blocking Send - The sender blocks itself till the message sent by it is received by the receiver.

2. Non-blocking Send - The sender does not block itself after sending the message but continues with its normal operation.

3. Blocking Receive - The receiver blocks itself until it receives the message.

4. Non-blocking Receive – The receiver does not block itself.

UNIT -II SCHEDULING

Threads Overview – Threading issues - CPU Scheduling – Basic Concepts – Scheduling Criteria – Scheduling Algorithms – Multiple-

Processor Scheduling – Real Time Scheduling - The Critical-Section Problem – Synchronization Hardware – Semaphores – Classic

problems of Synchronization – Critical regions – Monitors.

2.1 Threads Overview

• A thread is the basic unit of CPU utilization.

• It is sometimes called as a lightweight process.

• It consists of a thread ID ,a program counter, a register set and a stack.

• It shares with other threads belonging to the same process its code section , data section, and resources such as open files and signals.

A traditional or heavy weight process has a single thread of control.

• If the process has multiple threads of control,it can do more than one task at a time.

Benefits of multithreaded programming
•

User thread and Kernel threads

User threads
• Supported above the kernel and implemented by a thread library at the user level.

• Thread creation , management and scheduling are done in user space.

• Fast to create and manage

• When a user thread performs a blocking system call ,it will cause the entire process to block even if other threads are available to run

within the application.

• Example: POSIX Pthreads,Mach C-threads and Solaris 2 UI-threads.

Kernel threads
• Supported directly by the OS.

• Thread creation , management and scheduling are done in kernel space.

• Slow to create and manage

• When a kernel thread performs a blocking system call ,the kernel schedules another thread in the application for execution.

• Example: Windows NT, Windows 2000 , Solaris 2,BeOS and Tru64 UNIX support kernel threads.

Multithreading models
1. Many-to-One

2. One-to-One

3. Many-to-Many

1. Many-to-One:
-level threads mapped to single kernel thread.

2.One-to-One:
-level thread maps to a kernel thread.

- Windows 95/98/NT/2000

- OS/2

One-to-one Model

3.Many-to-Many Model:
llows many user level threads to be mapped to many kernel threads.

Many-to-Many Model

2.2 Threading Issues:

1. fork() and exec() system calls.

A fork() system call may duplicate allthreads or duplicate only the thread that invoked fork().

If a thread invoke exec() system call ,the program specified in the parameter to exec will replace the entire process.

2. Thread cancellation.

It is the task of terminating a thread before it has completed .

A thread that is to be cancelled is called a target thread.

There are two types of cancellation namely

1. Asynchronous Cancellation – One thread immediately terminates the target thread.

2. Deferred Cancellation – The target thread can periodically check if it should terminate , and does so in an orderly fashion.

3. Signal handling

1. A signal is a used to notify a process that a particular event has occurred.

2. A generated signal is delivered to the process.

a. Deliver the signal to the thread to which the signal applies.

b. Deliver the signal to every thread in the process.

c. Deliver the signal to certain threads in the process.

d. Assign a specific thread to receive all signals for the process.

3. Once delivered the signal must be handled.

a. Signal is handled by

i. A default signal handler

ii. A user defined signal handler

4. Thread pools

Creation of unlimited threads exhaust system resources such as CPU time or memory. Hence we use a thread pool.

In a thread pool , a number of threads are created at process startup and placed in the pool. When there is a need for a thread the

process will pick a thread from the pool and assign it a task.

After completion of the task,the thread is returned to the pool.

5. Thread specific data

Threads belonging to a process share the data of the process. However each thread might need its own copy of certain data known as

thread-specific data

 2.3 CPU Scheduling

2.4.Basic Concepts
• CPU scheduling is the basis of multi programmed operating systems.

• The objective of multiprogramming is to have some process running at all times, in order to maximize CPU utilization.

• Scheduling is a fundamental operating-system function.

• Almost all computer resources are scheduled before use.

CPU-I/O Burst Cycle
• Process execution consists of a cycle of CPU execution and I/O wait.

• Processes alternate between these two states.

• Process execution begins with a CPU burst.

• That is followed by an I/O burst, then another CPU burst, then another I/O burst, and so on.

• Eventually, the last CPU burst will end with a system request to terminate execution, rather than with another I/O burst.

CPU Scheduler

•

• The selection process is carried out by the short-term scheduler (or CPU scheduler).

• The ready queue is not necessarily a first-in, first-out (FIFO) queue. It may be a FIFO queue, a priority queue, a tree, or simply an

unordered linked list.

Preemptive Scheduling
• CPU scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state

2. When a process switches from the running state to the ready state

3. When a process switches from the waiting state to the ready state

4. When a process terminates

• Under 1 & 4 scheduling scheme is non preemptive.

• Otherwise the scheduling scheme is preemptive.

Non-preemptive Scheduling
• In non preemptive scheduling, once the CPU has been allocated a process, the process keeps the CPU until it releases the CPU either

by termination or by switching to the waiting state.

• This scheduling method is used by the Microsoft windows environment.

Dispatcher
• The dispatcher is the module that gives control of the CPU to the process selected by the short-term scheduler.

• This function involves:

1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program to restart that program

2.5 Scheduling Criteria
1. CPU utilization: The CPU should be kept as busy as possible. CPU utilization may range from 0 to 100 percent. In a real system, it

should range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used system).

2. Throughput: Itis the number of processes completed per time unit. For long processes, this rate may be 1 process per hour; for short

transactions, throughput might be 10 processes per second.

3. Turnaround time: The interval from the time of submission of a process to the time of completion is the turnaround time.

Turnaround time is the sum of the periods spent waiting to get into memory, waiting in the ready queue, executing on the CPU, and

doing I/O.

4. Waiting time: Waiting time is the sum of the periods spent waiting in the ready queue.

5. Response time: It is the amount of time it takes to start responding, but not the time that it takes to output that response.

2.6 CPU Scheduling Algorithms
1. First-Come, First-Served Scheduling

2. Shortest Job First Scheduling

3. Priority Scheduling

4. Round Robin Scheduling

First-Come, First-Served Scheduling
• The process that requests the CPU first is allocated the CPU first.

• It is a non-preemptive Scheduling technique.

• The implementation of the FCFS policy is easily managed with a FIFO queue.

Example:
Process Burst Time

P1 24

P2 3

P3 3

• If the processes arrive in the order PI, P2, P3, and are served in FCFS order, we get the result shown in the following Gantt chart:

Gantt Chart

P1 P2 P3

0 24 27 30

Average waiting time = (0+24+27) / 3 = 17 ms

Average Turnaround time = (24+27+30) / 3 = 27 ms

• The FCFS algorithm is particularly troublesome for time – sharing systems, where it is important that each user get a share of the

CPU at regular intervals.

Shortest Job First Scheduling
• The CPU is assigned to the process that has the smallest next CPU burst.

• If two processes have the same length next CPU burst, FCFS scheduling is used to break the tie.

Example :

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Gantt Chart

P4 P1 P3 P2

0 3 9 16 24

Average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.

Average turnaround time = (3+9+16+24) / 4 = 13 ms

• Preemptive & non preemptive scheduling is used for SJF

Example :

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive Scheduling

P1 P2 P4 P1 P3

0 1 5 10 17 26

Average waiting time :

P1 : 10 – 1 = 9

P2 : 1 – 1 = 0

P3 : 17 – 2 = 15

P4 : 5 – 3 = 2

AWT = (9+0+15+2) / 4 = 6.5 ms

• Preemptive SJF is known as shortest remaining time first

Non-preemtive Scheduling

P1 P2 P4 P3

0 8 12 17 26

AWT = 0 + (8 – 1) + (12 – 3) + (17 – 2) / 4 = 7.75 ms

Priority Scheduling
• The SJF algorithm is a special case of the general priority-scheduling algorithm.

• A priority is associated with each p

highest priority).

Example :

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5 P1 P3 P4

0 1 6 16 18 19

SJF is a priority scheduling where priority is the predicted next CPU burst time.

• Priority Scheduling can be preemptive or non-preemptive.

• Drawback – low priority processes may never execute.

• Solution – It is a technique of gradually increasing the priority of processes that wait in the system for a long time.

Round-Robin Scheduling

• The round-robin (RR) scheduling algorithm is designed especially for timesharing systems.

• It is similar to FCFS scheduling, but preemption is added to switch between processes.

• A small unit of time, called a time quantum (or time slice), is defined.

• The ready queue is treated as a circular queue.

Example :
Process Burst Time

P1 24

P2 3

P3 3

Time Quantum = 4 ms.

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Waiting time

P1 = 26 – 20 = 6

P2 = 4

P3 = 7 (6+4+7 / 3 = 5.66 ms)

• The average waiting time is 17/3 = 5.66 milliseconds.

• The performance of the RR algorithm depends heavily on the size of the time–quantum.

• If time-quantum is very large(infinite) then RR policy is same as FCFS policy.

• If time quantum is very small, RR approach is called processor sharing and appears to the users as though each of n process has its

own processor running at 1/n the speed of real processor.

Multilevel Queue Scheduling
• It partitions the ready queue into several separate queues .

• The processes are permanently assigned to one queue, generally based on some property of the process, such as memory size, process

priority, or process type.

• There must be scheduling between the queues, which is commonly implemented as a fixed-priority preemptive scheduling.

• For example the foreground queue may have absolute priority over the background queue.

Example : of a multilevel queue scheduling algorithm with five queues

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

Each queue has absolute priority over lower-priority queue.

Multilevel Feedback Queue Scheduling

•

• The idea is to separate processes with different CPU-burst characteristics.

• If a process uses too much CPU time, it will be moved to a lower-priority queue.

• This scheme leaves I/O-bound and interactive processes in the higher-priority queues.

• Similarly, a process that waits too long in a lower priority queue may be moved to a higher-priority queue.

• This form of aging prevents starvation.

Example:

• Consider a multilevel feedback queue scheduler with three queues, numbered from 0 to 2 .

• The scheduler first executes all processes in queue 0.

•

• Similarly, processes in queue 2 will be executed only if queues 0 and 1 are empty.

• A process that arrives for queue 1 will preempt a process in queue 2.

• A process that arrives for queue 0 will, in turn, preempt a process in queue 1.

1. The number of queues

2. The scheduling algorithm for each queue

3. The method used to determine when to upgrade a process to a higher priority queue

4. The method used to determine when to demote a process to a lower-priority queue

5. The method used to determine which queue a process will enter when that process needs service

2.7 Multiple Processor Scheduling
• If multiple CPUs are available, the scheduling problem is correspondingly more complex.

• If several identical processors are available, then load-sharing can occur.

• It is possible to provide a separate queue for each processor.

• In this case however, one processor could be idle, with an empty queue, while another processor was very busy.

• To prevent this situation, we use a common ready queue.

• All processes go into one queue and are scheduled onto any available processor.

• In such a scheme, one of two scheduling approaches may be used.

1. Self Scheduling - Each processor is self-scheduling. Each processor examines the common ready queue and selects a process to

execute. We must ensure that two processors do not choose the same process, and that processes are not lost from the queue.

2. Master – Slave Structure - This avoids the problem by appointing one processor as scheduler for the other processors, thus creating

a

master-slave structure.

2.8 Real-Time Scheduling
• Real-time computing is divided into two types.

1. Hard real-time systems

2. Soft real-time systems

• Hard RTS are required to complete a critical task within a guaranteed amount of time.

• Generally, a process is submitted along with a statement of the amount of time in which it needs to complete or perform I/O.

s

impossible.This is known as resource reservation.

• Soft real-time computing is less restrictive. It requires that critical processes recieve priority over less fortunate ones.

• The system must have priority scheduling, and real-time processes must have the highest priority.

• The priority of real-time processes must not degrade over time, even though the priority of non-real-time processes may.

• Dispatch latency must be small. The smaller the latency, the faster a real-time process can start executing.

• The high-priority process would be waiting for a lower-priority one to finish. This situation is known as priority inversion.

2.9 The Critical-Section Problem:
• There are n processes that are competing to use some shared data

• Each process has a code segment, called critical section, in which the shared data is accessed.

• Problem – ensure that when one process is executing in its critical section, no other process is allowed to execute in its critical

section.

Requirements to be satisfied for a Solution to the Critical-Section Problem:
1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing in their critical

sections.

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then

the selection of the processes that will enter the critical section next cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before that request is granted.

General structure of process Pi

do {

entry section

critical section

 exit section

exit section

remainder section

} while (1);

exit section

Two Process solution to the Critical Section Problem

Algorithm 1:
do {

while (turn != i) ;

critical section

turn =j;

remainder section

 } while (1);

CONCLUSION: Satisfies mutual exclusion, but not progress and bounded waiting

Algorithm 2:
do {

flag[i]=true;

while (flag[j]) ;

critical section

flag[i]=false;

remainder section

} while (1);

CONCLUSION: Satisfies mutual exclusion, but not progress and bounded waiting

Algorithm 3:
do {

flag[i]=true;

turn = j;

while (flag[j]&& turn==j) ;

critical section

flag[i]=false;

remainder section

} while (1);

CONCLUSION: Meets all three requirements; solves the critical-section problem for two processes.

Multiple –process solution or n- process solution or Bakery Algorithm :
• Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section.

• If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served first.

• (a,b) < (c,d) if a < c or if a = c and b < d

• boolean choosing[n];

int number[n];

Data structures are initialized to false and 0 respectively

do {

flag[i]=true;

turn = j;

while (flag[j]&& turn==j) ;

flag[i]=false;

do {

choosing[i] = true;

number[i] = max(number[0], number[1], …, number [n – 1])+1;

choosing[i] = false;

for (j = 0; j < n; j++)

{

while (choosing[j]) ;

while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

critical section

number[i] = 0;

remainder section

} while (1);

1.Mutual Exclusion is satisfied.

number[i] = 0;

2.Progress and Bounded waiting are also satisfied as the processes enter the critical section on a FCFS basis.

2.10 Synchronization Hardware:
 Test and modify the content of a word atomically

.

boolean TestAndSet(boolean &target)

{

boolean rv = target;

tqrget = true;

return rv;

}

Mutual Exclusion with Swap

 Shared data (initialized to false):

 boolean lock;

 boolean waiting[n];

 Process Pi

 do {

 key = true;

 while (key == true)

 Swap(lock,key);

 critical section

 lock = false;

 remainder section

2.11 Semaphores

 Synchronization tool that does not require busy waiting.

 Semaphore S – integer variable

 can only be accessed via two indivisible (atomic) operations

 wait (S):

 while S 0 do no-op;

 S--;
 signal (S):

 S++;

Critical Section of n Processes

 Shared data:

 semaphore mutex; //initially mutex = 1

 Process Pi:

do {

 wait(mutex);

 critical section

 signal(mutex);

 remainder section

} while (1);

Semaphore Implementation

 Define a semaphore as a record

 typedef struct {

 int value;

 struct process *L;

 } semaphore;

 Assume two simple operations:

 block suspends the process that invokes it.

 wakeup(P) resumes the execution of a blocked process P.

Implementation

 Semaphore operations now defined as

wait(S):

S.value--;

if (S.value < 0) {

add this process to S.L;

block;

}

signal(S):

S.value++;

if (S.value <= 0) {

remove a process P from S.L;

wakeup(P);

Semaphore as a General Synchronization Tool

 Execute B in Pj only after A executed in Pi

 Use semaphore flag initialized to 0

 Code:

 Pi Pj

  

 A wait(flag)

 signal(flag) B

Deadlock & starvation:

Example: Consider a system of two processes , P0 & P1 each accessing two semaphores ,S & Q, set to the value 1.

P0 P1

Wait (S) Wait (Q)

Wait (Q) Wait (S)

Signal(S) Signal(Q)

Signal(Q) Signal(S)

 executes wait(Q), it must wait until P1 executes

signal(Q).Similarly when P1 executes wait(S), it must wait until P0 executes signal(S). Since these signal operations cannot be executed,

P0 & P1 are deadlocked.

 situation where a process wait indefinitely within the

semaphore. Indefinite blocking may occur if we add or remove processes from the list associated with a semaphore in LIFO order.

Types of Semaphores

 Counting semaphore - any positive integer value

 Binary semaphore - integer value can range only between 0 and 1

 Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded Buffer Problem

Shared data

semaphore full, empty, mutex;

// initially full = 0, empty = n, mutex = 1

Structure of Producer Process

do {

…

produce an item in nextp

…

wait(empty);

wait(mutex);

…

add nextp to buffer

…

signal(mutex);

signal(full);

} while (1);

Structure of Consumer Process

do {

wait(full)

wait(mutex);

…

remove an item from buffer to nextc

…

signal(mutex);

signal(empty);

…

consume the item in nextc

…

} while (1);

Readers-Writers Problem

Shared data

semaphore wrt, mutex;

// initially wrt=1, mutex = 1,readcount=0

Structure of Writer Process

do{

wait(wrt);

…

writing is performed

…

signal(wrt);

}while(1);

Structure of Reader Process

do{

wait(mutex);

readcount++;

if (readcount == 1)

wait(rt);

signal(mutex);

…

reading is performed

…

wait(mutex);

readcount--;

if (readcount == 0)

signal(wrt);

signal(mutex);

}while(1);

Dining-Philosophers Problem

Shared data

semaphore chopstick[5];

// Initially all values are 1

Structure of Philosopher i

do {

wait(chopstick[i]);

wait(chopstick[(i+1) % 5]);

…

eat

…

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

…

think

…

} while (1);

Critical Region

The problems with semaphores are :

•Correct use of semaphore operations:

o signal (mutex) …. wait (mutex)

 Several processes may be executing in their critical sections simultaneously, violating the mutual-exclusion requirement

o wait (mutex) … wait (mutex)

 A deadlock will occur

o Omitting of wait (mutex) or signal (mutex) (or both)

 Either mutual exclusion is violated or a deadlock will occur

 Hence we use high level synchronization construct called as critical region.  A shared variable v of type T is declared

as

o v: shared T

 Variable v is accessed only inside the statement

o region v when B do S

where B is a Boolean expression.

 While statement S is being executed no other process can access variable v.

 Regions referring to the same shared variable exclude each other in time.

 When a process tries to execute the region statement , the Boolean expression B is

evaluated. If B is true ,statement S is executed. If it is false, the process is delayed until B becomes true and no other process is in the

region associated with v.

2.12 Monitors

 A high-level abstraction that provides a convenient and effective mechanism for process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure body P1 (…) { …. }

…

procedure body Pn (…) {……}

{

initialization code

}

}

 To allow a process to wait within the monitor, a condition variable must be declared as condition x, y;

 Two operations on a condition variable:

 x.wait () -a process that invokes the operation isuspended.

 x.signal () -resumes one of the suspended processes(if any)
Schematic view of a monitor

Solution to Dining Philosophers Problem

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ; condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

UNIT- III DEADLOCKS

System Model – Deadlock Characterization – Methods for handling Deadlocks -Deadlock Prevention – Deadlock avoidance – Deadlock

detection – Recovery from Deadlocks - Storage Management – Swapping – Contiguous Memory allocation – Paging – Segmentation –

Segmentation with Paging.

3.1 System Model

Definition:

A process requests resources. If the resources are not available at that time ,the process enters a wait state. Waiting processes may never

change state again because the resources they have requested are held by other waiting processes. This situation is called a deadlock.

A process must request a resource before using it, and must release resource after using it.

1. Request: If the request cannot be granted immediately then the requesting process must wait until it can acquire the resource.

2. Use: The process can operate on the resource

3. Release: The process releases the resource.

3.2 Deadlock Characterization

Four Necessary conditions for a deadlock

1. Mutual exclusion: At least one resource must be held in a non sharable mode.That is only one process at a time can use the resource. If

another process requests that resource, the requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire additional resources that are currently being held by

other processes.

3. No preemption: Resources cannot be preempted.

4. Circular wait: P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by P2...Pn-1.

Resource-Allocation Graph

•It is a Directed Graph with a set of vertices V and set of edges E.

• V is partitioned into two types:

1. nodes P = {p1, p2,..pn}

2. Resource type R ={R1,R2,...Rm}

• Pi -->Rj - request => request edge

• Rj-->Pi - allocated => assignment edge.

• Pi is denoted as a circle and Rj as a square.

• Rj may have more than one instance represented as a dot with in the square.

Sets P,R and E.

P = { P1,P2,P3}

R = {R1,R2,R3,R4}

E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3 } • Resource instances

One instance of resource type R1,Two instance of resource type R2,One instance of resource type R3,Three instances of resource type R4.

Process states

Process P1 is holding an instance of resource type R2, and is waiting for an instance of resource type R1.Resource Allocation Graph with

a deadlock

Process P2 is holding an instance of R1 and R2 and is waiting for an instance of resource type R3.Process P3 is holding an instance of R3.

P1->R1->P2->R3->P3->R2->P1

P2->R3->P3->R2->P2

3.3 Methods for handling Deadlocks

1. Deadlock Prevention

2. Deadlock Avoidance

3. Deadlock Detection and Recovery

3.4 Deadlock Prevention:

• This ensures that the system never enters the deadlock state.

• Deadlock prevention is a set of methods for ensuring that at least one of the necessary conditions cannot hold.

• By ensuring that at least one of these conditions cannot hold, we can prevent the occurrence of a deadlock.

1. Denying Mutual exclusion

• Mutual exclusion condition must hold for non-sharable resources.

• Printer cannot be shared simultaneously shared by prevent processes. • sharable resource - example Read-only files.

• If several processes attempt to open a read-only file at the same time, they can be granted simultaneous access to the file.

• A process never needs to wait for a sharable resource.

2. Denying Hold and wait

• Whenever a process requests a resource, it does not hold any other resource.

• One technique that can be used requires each process to request and be allocated all its resources before it begins execution.

• Another technique is before it can request any additional resources, it must release all the resources that it is currently allocated.

• These techniques have two main disadvantages :

o First, resource utilization may be low, since many of the resources may be allocated but unused for a long time.

o We must request all resources at the beginning for both protocols. starvation is possible.

3. Denying No preemption

• If a Process is holding some resources and requests another resource that

cannot be immediately allocated to it. (that is the process must wait), then all

resources currently being held are preempted.(ALLOW PREEMPTION)

• These resources are implicitly released.

• The process will be restarted only when it can regain its old resources.

4. Denying Circular wait

• Impose a total ordering of all resource types and allow each process to request for resources in an increasing order of enumeration.

• Let R = {R1,R2,...Rm} be the set of resource types.

• Assign to each resource type a unique integer number.

• If the set of resource types R includes tapedrives, disk drives and printers.

F(tapedrive)=1,

F(diskdrive)=5,

F(Printer)=12.

• Each process can request resources only in an increasing order of enumeration.

3.5 Deadlock Avoidance:

• Deadlock avoidance request that the OS be given in advance additional information concerning which resources a process will request

and use during its life time. With this information it can be decided for each request whether or not the process should wait.

• To decide whether the current request can be satisfied or must be delayed, a system must consider the resources currently available, the

resources currently allocated to each process and future requests and releases of each process.

• Safe State

A state is safe if the system can allocate resources to each process in some order and still avoid a dead lock.





 A deadlock is an unsafe state.

 Not all unsafe states are dead locks

 An unsafe state may lead to a dead lock

• Two algorithms are used for deadlock avoidance namely;

1. Resource Allocation Graph Algorithm - single instance of a resource type.

2. Banker’s Algorithm - several instances of a resource type.

Resource allocation graph algorithm
• Claim edge - Claim edge Pi---> Rj indicates that process Pi may request resource Rj at some time, represented by a dashed directed edge.

• When process Pi request resource Rj, the claim edge Pi -> Rj is converted to a request edge.

• Similarly, when a resource Rj is released by Pi the assignment edge Rj -> Pi is reconverted to a claim edge Pi -> Rj

• The request can be granted only if converting the request edge Pi -> Rj to an assignment edge Rj -> Pi does not form a cycle.

• If no cycle exists, then the allocation of the resource will leave the system in a safe state.

• If a cycle is found, then the allocation will put the system in an unsafe state.

Banker's algorithm

•Available: indicates the number of available resources of each type.

•Max: Max[i, j]=k then process Pi may request at most k instances ofresource type Rj

•Allocation : Allocation[i. j]=k, then process Pi is currently allocated Kinstances of resource type Rj

•Need : if Need[i, j]=k then process Pi may need K more instances ofresource type Rj

Need [i, j]=Max[i, j]-Allocation[i, j]

Safety algorithm

1. Initialize work := available and Finish [i]:=false for i=1,2,3 .. n

2. Find an i such that both

a. Finish[i]=false

b. Needi<= Work

if no such i exists, goto step 4

3. work :=work+ allocationi;

Finish[i]:=true

goto step 2

4. If finish[i]=true for all i, then the system is in a safe state

Resource Request Algorithm

Let Requesti be the request from process Pi for resources.

1. If Requesti<= Needi goto step2, otherwise raise an error condition, since the process has exceeded its maximum claim.

2. If Requesti <= Available, goto step3, otherwise Pi must wait, since the resources are not available.

3. Available := Availabe-Requesti;

Allocationi := Allocationi + Requesti
Needi := Needi - Requesti;

• Now apply the safety algorithm to check whether this new state is safe or not. • If it is safe then the request from process Pi can be granted.

3.6 Deadlock detection

(i) Single instance of each resource type

• If all resources have only a single instance, then we can define a deadlock

detection algorithm that use a variant of resource-allocation graph called a wait for

graph.

Resource Allocation Graph

`

Wait for Graph

(ii) Several Instance of a resource type

Available : Number of available resources of each type

Allocation : number of resources of each type currently allocated to each process Request : Current request of each process

If Request [i,j]=k, then process Pi is requesting K more instances of resource type Rj.

1. Initialize work := available

Finish[i]=false, otherwise finish [i]:=true

2. Find an index i such that both

a. Finish[i]=false

b. Requesti<=work

if no such i exists go to step4.

3. Work:=work+allocationi

Finish[i]:=true

goto step2

4. If finish[i]=false

then process Pi is deadlocked

3.7 Deadlock Recovery

1. Process Termination

1. Abort all deadlocked processes.

2. Abort one deadlocked process at a time until the deadlock cycle is

 eliminated.

After each process is aborted , a deadlock detection algorithm must be invoked to determine where any process is still dead locked.

2. Resource Preemption

Preemptive some resources from process and give these resources to other processes until the deadlock cycle is broken.

i. Selecting a victim: which resources and which process are to be preempted.

ii. Rollback: if we preempt a resource from a process it cannot continue with its normal execution. It is missing some needed

resource. we must rollback the process to some safe state, and restart it from that state.

iii. Starvation : How can we guarantee that resources will not always be preempted from the same process. ‘

3.8 Storage Management: Background

• In general, to rum a program, it must be brought into memory.

• Input queue - collection of processes on the disk that are waiting to be brought into memory to run

 the program.

• User programs go through several steps before being run

• Address binding: Mapping of instructions and data from one address to another address in memory.

Three different stages of binding:

1. Compile time: Must generate absolute code if memory location is known in prior.

2. Load time: Must generate relocatable code if memory location is not known at compile time

3. Execution time: Need hardware support for address maps (e.g., base and limit registers).

 Multistep Processing of a User Program

Logical vs. Physical Address Space

• Logical address - generated by the CPU; also referred to as “virtual address“

• Physical address - address seen by the memory unit.

• Logical and physical addresses are the same in ―compile-time and load-time address-binding schemes

• Logical (virtual) and physical addresses differ in ―execution-time address-binding scheme

Memory-Management Unit (MMU)

• It is a hardware device that maps virtual / Logical address to physical address

• In this scheme, the relocation register‘s value is added to Logical address generated by a user process.

• The user program deals with logical addresses; it never sees the real physical addresses

• Logical address range: 0 to max

• Physical address range: R+0 to R+max, where R—value in relocation register

Note: relocation register is a base register.

Dynamic relocation using relocation register

Dynamic Loading

• Through this, the routine is not loaded until it is called.

o Better memory-space utilization; unused routine is never loaded

o Useful when large amounts of code are needed to handle infrequently occurring cases

o No special support from the operating system is required implemented through program design

Dynamic Linking

• Linking postponed until execution time & is particularly useful for libraries • Small piece of code

 called stub, used to locate the appropriate memory-resident library routine or function.

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system needed to check if routine is in processes‘ memory address

• Shared libraries: Programs linked before the new library was installed will continue using the older library

Overlays:

• Enable a process larger than the amount of memory allocated to it.

• At a given time, the needed instructions & data are to be kept within a memory.

3.9 Swapping

• A process can be swapped temporarily out of memory to a backing store (SWAP OUT)and then brought back into memory for continued

execution (SWAP IN).

• Backing store - fast disk large enough to accommodate copies of all memory images for all users & it must provide direct access

to these memory images

• Roll out, roll in - swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority

process can be loaded and executed

• Transfer time :

 Major part of swap time is transfer time

 Total transfer time is directly proportional to the amount of memory swapped.

 Example: Let us assume the user process is of size 1MB & the backing store is a standard hard disk with a transfer rate of 5MBPS. Transfer time

 = 1000KB/5000KB per second= 1/5 sec = 200ms

(i) Memory Protection:

o It should consider;

a) Protecting the OS from user process.

b) Protecting user processes from one another.

o The above protection is done by “Relocation-register & Limit-register scheme ―

o Relocation register contains value of smallest physical address i.e base value.

o Limit register contains range of logical addresses - each logical address must be less than the limit register

A base and a limit register define a logical address space

HW address protection with base and limit registers

3.10 Contiguous Memory Allocation

•Each process is contained in a single contiguous section of memory.

•There are two methods namely :

 Fixed - Partition Method

 Variable - Partition Method

• Fixed - Partition Method :

o Divide memory into fixed size partitions, where each partition has exactly one process.

o The drawback is memory space unused within a partition is wasted.(eg.when process size < partition size)

• Variable-partition method:

o Divide memory into variable size partitions, depending upon the size of the incoming process.

o When a process terminates, the partition becomes available for another process.

o As processes complete and leave they create holes in the main memory.

o Hole - block of available memory; holes of various size are scattered throughout memory.

Solution:

o First-fit: Allocate the first hole that is big enough.

o Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size. Produces the smallest leftover hole.

o Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover hole.

NOTE: First-fit and best-fit are better than worst-fit in terms of speed and storage utilization

•Fragmentation:

o External Fragmentation - This takes place when enough total memory space exists to satisfy a request, but it is not contiguous i.e,

storage is fragmented into a large number of small holes scattered throughout the main memory.

oInternal Fragmentation - Allocated memory may be slightly larger thanrequested memory.

Example: hole = 184 bytes Process size = 182 bytes.

We are left with a hole of 2 bytes.

oSolutions:

1. Coalescing : Merge the adjacent holes together.

2. Compaction: Move all processes towards one end of memory, hole towards other end of memory, producing one large hole of available

memory. This scheme is expensive as it can be done if relocation is dynamic and done at execution time.

3. Permit the logical address space of a process to be non-contiguous. This is achieved through two memory management schemes namely

paging and segmentation.

3.11 Paging

• It is a memory management scheme that permits the physical address space of a process to be noncontiguous.

• It avoids the considerable problem of fitting the varying size memory chunks on to the backing store.

(i) Basic Method:

o Divide logical memory into blocks of same size called “pages”.

o Divide physical memory into fixed-sized blocks called “frames”

o Page size is a power of 2, between 512 bytes and 16MB.

 Address Translation Scheme

o Address generated by CPU(logical address) is divided into:

 Page number (p) - used as an index into a page table which contains base address of each page in physical memory

 Page offset (d) - combined with base address to define the physical address i.e., Physical address = base address + offset

Paging Hardware

Paging model of logical and physical memory

Paging example for a 32-byte memory with 4-byte pages

Page size = 4 bytes
Physical memory size = 32 bytes i.e (4 X 8 = 32 so, 8 pages)

Logical address ‗0‘ maps to physical address 20 i.e ((5 X 4) +0)

Where Frame no = 5, Page size = 4,Offset= 0

Allocation

o When a process arrives into the system, its size (expressed in pages) is examined.

o Each page of process needs one frame. Thus if the process requires ‗n‘ pages, at least ‗n‘ frames must be available in memory.

o If ‗n‘ frames are available, they are allocated to this arriving process.

o The 1
st
 page of the process is loaded into one of the allocated frames & the frame number is put into the page table.

 Repeat the above step for the next pages & so on.

 (a) Before Allocation (b) After Allocation

Frame table: It is used to determine which frames are allocated, which frames are available, how many total frames are there, and so on.(ie) It

contains all the information about the frames in the physical memory.

(ii) Hardware implementation of Page Table

o This can be done in several ways :

1. Using PTBR

2. TLB

o The simplest case is Page-table base register (PTBR), is an index to point the page table.

o TLB (Translation Look-aside Buffer)

 It is a fast lookup hardware cache.

 It contains the recently or frequently used page table entries

  It has two parts: Key (tag) & Value.

 More expensive.

 Paging Hardware with TLB

oWhen a logical address is generated by CPU, its page number is presented toTLB.

oTLB hit: If the page number is found, its frame number is immediatelyavailable & is used to access memory

oTLB miss: If the page number is not in the TLB, a memory reference to thepage table must be made.

oHit ratio: Percentage of times that a particular page is found in the TLB.

 For example hit ratio is 80% means that the desired page number in the TLB is 80% of the time.

o Effective Access Time:

 Assume hit ratio is 80%.

 If it takes 20ns to search TLB & 100ns to access memory, then the memory access takes 120ns(TLB hit)

 If we fail to find page no. in TLB (20ns), then we must 1
st
 access memory for page table (100ns) & then access the desired byte in memory

(100ns).

Therefore Total = 20 + 100 + 100 = 220 ns(TLB miss).

Then Effective Access Time (EAT) = 0.80 X (120 + 0.20) X 220. = 140 ns.

(iii) Memory Protection

o Memory protection implemented by associating protection bit with each frame

o Valid-invalid bit attached to each entry in the page table:

 “valid (v)” indicates that the associated page is in the process‘ logical address space, and is thus a legal page

 “invalid (i)” indicates that the page is not in the process‘ logical address space

(iv) Structures of the Page Table

a) Hierarchical Paging

b) Hashed Page Tables

c) Inverted Page Tables

a) Hierarchical Paging

o Break up the Page table into smaller pieces. Because if the page table is too large then it is quit difficult to search the page number.

Example: “Two-Level Paging “

Address-Translation Scheme

Address-translation scheme for a two-level 32-bit paging architecture

It requires more number of memory accesses, when the number of levels is increased.

(b) Hashed Page Tables

o Each entry in hash table contains a linked list of elements that hash to the same location.

o Each entry consists of;

(a) Virtual page numbers

(b) Value of mapped page frame.

(c) Pointer to the next element in the linked list. o Working Procedure:

 The virtual page number in the virtual address is hashed into the hash table.

 Virtual page number is compared to field (a) in the 1
st
 element in the linked list.

 If there is a match, the corresponding page frame (field (b)) is used to form the desired physical address.

 If there is no match, subsequent entries in the linked list are searched for a matching virtual page number.

Clustered page table: It is a variation of hashed page table & is similar to hashed page table except that each entry in the hash table refers to

several pages rather than a single page.

(c)Inverted Page Table

o It has one entry for each real page (frame) of memory & each entry

consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page. So, only one page table is in the system.

o When a memory reference occurs, part of the virtual address ,consisting of <Process-id, Page-no> is presented to the memory sub-system.

o Then the inverted page table is searched for match:

(i)If a match is found, then the physical address is generated.

(ii)If no match is found, then an illegal address access has beenattempted.

o Merit: Reduce the amount of memory needed.

o Demerit: Improve the amount of time needed to search the table when a page reference oocurs.

(v) Shared Pages

o One advantage of paging is the possibility of sharing common code. o Shared code

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical address space of all processes

o Reentrant code (Pure code): Non-self modifying code. If the code is reentrant, then it never changes during execution. Thus two or more

processes can execute the same code at the same time.

 o Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear anywhere in the logical address space

Drawback of Paging - Internal fragmentation

o In the worst case a process would need n pages plus one byte.It would be allocated n+1 frames resulting in an internal fragmentation of

almost an entire frame.

3.12 Segmentation

o Memory-management scheme that supports user view of memory

o A program is a collection of segments. A segment is a logical unit such as: Main program, Procedure, Function, Method, Object, Local

variables, global variables, Common block, Stack, Symbol table, arrays

 User’s View of a Program

Segmentation Hardware

o Logical address consists of a two tuple :

<Segment-number, offset>

oSegment table - maps two-dimensional physical addresses; each table entry

has:

 Base - contains the starting physical address where the segmentsreside in memory

 Limit - specifies the length of the segment

oSegment-table base register (STBR) points to the segment table‘s locationin memory

oSegment-table length register (STLR) indicates number of segments usedby a program;

Segment number‗s‘ is legal, if s < STLR

oRelocation.

 dynamic

 by segment table

oSharing.

 shared segments

 same segment number

oAllocation.

 first fit/best fit

 external fragmentation

o Protection: With each entry in segment table associate:



 read/write/execute privileges

oProtection bits associated with segments; code sharing occurs at segmentlevel

oSince segments vary in length, memory allocation is a dynamic storage allocation problem

oA segmentation example is shown in the following diagram

o Another advantage of segmentation involves the sharing of code or data.

o Each process has a segment table associated with it, which the dispatcher uses to define the hardware segment table when this process is

given the CPU.

o Segments are shared when entries in the segment tables of two different processes point to the same physical location.

3.13 Segmentation with paging

o The IBM OS/ 2.32 bit version is an operating system running on top of the Intel 386 architecture. The 386 uses segmentation with

paging for memory management. The maximum number of segments per process is 16 KB, and each segment can be as large as 4 gigabytes.

o The local-address space of a process is divided into two partitions.

 The first partition consists of up to 8 KB segments that are private to that process.

Where s designates the segment number, g indicates whether the segment is in the GDT or LDT, and p deals with protection.

The offset is a 32-bit number specifying the location of the byte within the segment in question.

o The base and limit information about the segment in question are used to generate a linear-address.

o First, the limit is used to check for address validity. If the address is not valid, a memory fault is generated, resulting in a trap to the operating

system. If it is valid, then the value of the offset is added to the value of the base, resulting in a 32-bit linear address. This address is then translated

into a physical address.

o The linear address is divided into a page number consisting of 20 bits, and a page offset consisting of 12 bits. Since we page the page

table, the page number is further divided into a 10-bit page directory pointer and a 10-bit page table pointer. The logical address is as follows.

 The second partition consists of up to 8KB segments that are shared among all the processes.

o Information about the first partition is kept in the local descriptor table (LDT), information about the second partition is kept in the

global descriptor table (GDT).

o Each entry in the LDT and GDT consist of 8 bytes, with detailed information about a particular segment including the base location and

length of the segment. The logical address is a pair (selector, offset) where the selector is a16-bit number:

o To improve the efficiency of physical memory use. Intel 386 page tables can be swapped to disk. In this case, an invalid bit is used in the

page directory entry to indicate whether the table to which the entry is pointing is in memory or on disk.

o If the table is on disk, the operating system can use the other 31 bits to specify the disk location of the table; the table then can be brought

into memory on demand.

UNIT- IV VIRTUAL MEMORY

Virtual Memory – Demand Paging – Process creation – Page Replacement – Allocation of frames – Thrashing - File Concept – Access

Methods – Directory Structure – File System Mounting – File Sharing – Protection

4.1 Virtual Memory

o It is a technique that allows the execution of processes that may not be completely in main memory.

o Advantages:

 Allows the program that can be larger than the physical memory.  Separation of user logical memory from physical memory

 Allows processes to easily share files & address space.

 Allows for more efficient process creation.

o Virtual memory can be implemented using

 Demand paging

 Demand segmentation

Virtual Memory That is Larger than Physical Memory

4.2 Demand Paging

o It is similar to a paging system with swapping.

o Demand Paging - Bring a page into memory only when it is needed

o To execute a process, swap that entire process into memory. Rather than swapping the entire process into memory however, we use ―Lazy

Swapper‖

o Lazy Swapper - Never swaps a page into memory unless that page will be needed.

o Advantages

 Less I/O needed

 Less memory needed

 Faster response

 More users

Transfer of a paged memory to contiguous disk space

Basic Concepts:

o Instead of swapping in the whole processes, the pager brings only those necessary pages into memory. Thus,

1. It avoids reading into memory pages that will not be used anyway.

2. Reduce the swap time.

3. Reduce the amount of physical memory needed.

o To differentiate between those pages that are in memory & those that are on the disk we use the Valid-Invalid bit

Valid-Invalid bit

o A valid - invalid bit is associated with each page table entry. o Valid  associated page is in memory.

In-Valid 

 invalid page 

 valid page but is currently on the disk

Page table when some pages are not in main memory

Page Fault

 Access to a page marked invalid causes a page fault trap.

Steps in Handling a Page Fault

1. Determine whether the reference is a valid or invalid memory access

2. a) If the reference is invalid then terminate the process.

 b) If the reference is valid then the page has not been yet brought into main memory.

3. Find a free frame.

4. Read the desired page into the newly allocated frame.

5. Reset the page table to indicate that the page is now in memory.

6. Restart the instruction that was interrupted .

Pure demand paging

o Never bring a page into memory until it is required.

o We could start a process with no pages in memory.

o When the OS sets the instruction pointer to the 1
st
 instruction of the process, which is on the non-memory resident page, then the process

immediately faults for the page.

o After this page is bought into the memory, the process continue to execute, faulting as necessary until every page that it needs is in memory.

Performance of demand paging

o Let p be the probability of a page fault 0 p o Effective Access Time (EAT)

EAT = (1 - p) x ma + p x page fault time. Where ma  memory access, p  Probability of page fault (0≤ p ≤ 1)

oThe memory access time denoted ma is in the range 10 to 200 ns.

oIf there are no page faults then EAT = ma.

oTo compute effective access time, we must know how much time is neededto service a page fault.

oA page fault causes the following sequence to occur:

1. Trap to the OS

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check whether the reference was legal and find the location of page on disk.

5. Read the page from disk to free frame.

a. Wait in a queue until read request is serviced.

b. Wait for seek time and latency time.

c. Transfer the page from disk to free frame.

6. While waiting ,allocate CPU to some other user.

7. Interrupt from disk.

8. Save registers and process state for other users.

9. Determine that the interrupt was from disk.

7. Reset the page table to indicate that the page is now in memory.

8. Wait for CPU to be allocated to this process again.

9. Restart the instruction that was interrupted .

4.3 Process Creation

o Virtual memory enhances the performance of creating and running processes: - Copy-on-Write

- Memory-Mapped Files

a) Copy-on-Write

o fork() creates a child process as a duplicate of the parent process & it worked by creating copy of the parent address space for child,

duplicating the pages belonging to the parent.

o Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory. These shared pages are

marked as Copy-on-Write pages, meaning that if either process modifies a shared page, a copy of the shared page is created.

o vfork():

 With this the parent process is suspended & the child process uses the address space of the parent.

 Because vfork() does not use Copy-on-Write, if the child process changes any pages of the parent‘s address space, the altered pages will be

visible to the parent once it resumes.

 Therefore, vfork() must be used with caution, ensuring that the child process does not modify the address space of the parent.

(b)Memory - mapped files:

o Sequential read of a file on disk uses open() , read() and write()

o Every time a file is accessed it requires a system call and disk access. o Alternative method: “Memory - mapped files”

• Allowing a part of virtual address space to be logically associated with file

• Mapping a disk block to a page in memory.

4.4. Page Replacement

o If no frames are free, we could find one that is not currently being used & free it.

o We can free a frame by writing its contents to swap space & changing the page table to indicate that the page is no longer in memory.

o Then we can use that freed frame to hold the page for which the process faulted.

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame - If there is a free frame , then use it. - If there is no free frame, use a page replacement algorithm to select a victim frame

- Write the victim page to the disk, change the page & frame tables accordingly.

3. Read the desired page into the (new) free frame. Update the page and frame tables.

4. Restart the process

Note: If no frames are free, two page transfers are required & this situation effectively doubles the page- fault service time.

Modify (dirty) bit:

o It indicates that any word or byte in the page is modified.

o When we select a page for replacement, we examine its modify bit.

 If the bit is set, we know that the page has been modified & in this case we must write that page to the disk.

 If the bit is not set, then if the copy of the page on the disk has not been overwritten, then we can avoid writing the memory page on the

disk as it is already there.

Page Replacement Algorithms

1. FIFO Page Replacement

2. Optimal Page Replacement

3. LRU Page Replacement

4. LRU Approximation Page Replacement

5. Counting-Based Page Replacement

o We evaluate an algorithm by running it on a particular string of memory references & computing the number of page faults. The string of

memory reference is called a ―reference string‖.The algorithm that provides less number of page faults is termed to be a good one.

o As the number of available frames increases , the number of page faults decreases. This is shown in the following graph:

(a) FIFO page replacement algorithm

o Replace the oldest page.

o This algorithm associates with each page ,the time when that page was brought in.

Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3 (3 pages can be in memory at a time per process)

Drawback:

o FIFO page replacement algorithm ‗s performance is not always good. o To illustrate this, consider the following example:

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

o If No.of available frames -= 3 then the no.of page faults =9

o If No.of available frames =4 then the no.of page faults =10

o Here the no. of page faults increases when the no.of frames increases .This is called as Belady’s Anomaly.

Drawback:

o It is difficult to implement as it requires future knowledge of the reference string.

(b) Optimal page replacement algorithm

o Replace the page that will not be used for the longest period of time. Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 No.of available frames =3

(c) LRU(Least Recently Used) page replacement algorithm

o Replace the page that has not been used for the longest period of time.

Example: Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 No.of available frames =3

o LRU page replacement can be implemented using

1. Counters

 Every page table entry has a time-of-use field and a clock or counter is associated with the CPU.

 The counter or clock is incremented for every memory reference.  Each time a page is referenced , copy the counter into the time-of-use

field.

 When a page needs to be replaced, replace the page with the smallest counter value.

2. Stack

 Keep a stack of page numbers

 Whenever a page is referenced, remove the page from the stack and put it on top of the stack.

 When a page needs to be replaced, replace the page that is at the bottom of the stack.(LRU page)

Use of A Stack to Record The Most Recent Page References

(d) LRU Approximation Page Replacement

o Reference bit

 With each page associate a reference bit, initially set to 0  When page is referenced, the bit is set to 1

o When a page needs to be replaced, replace the page whose reference bit is 0 o The order of use is not known , but we know which pages

were used and which were not used.

(i) Additional Reference Bits Algorithm

o Keep an 8-bit byte for each page in a table in memory.

o At regular intervals , a timer interrupt transfers control to OS.

o The OS shifts reference bit for each page into higher- order bit shifting the other bits right 1 bit and discarding the lower-order bit.

Example:

o If reference bit is 00000000 then the page has not been used for 8 time periods.

o If reference bit is 11111111 then the page has been used atleast once each time period.

o If the reference bit of page 1 is 11000100 and page 2 is 01110111 then page 2 is the LRU page.

(ii) Second Chance Algorithm

o Basic algorithm is FIFO

o When a page has been selected , check its reference bit.

 If 0 proceed to replace the page

 If 1 give the page a second chance and move on to the next FIFO page.

 When a page gets a second chance, its reference bit is cleared and arrival time is reset to current time.

 Hence a second chance page will not be replaced until all other pages are replaced.

(iii) Enhanced Second Chance Algorithm

o Consider both reference bit and modify bit

o There are four possible classes

1. (0,0) - neither recently used nor modified  Best page to replace

2. (0,1) - not recently used but modified  page has to be written out before replacement.

3. (1,0) - recently used but not modified  page may be used again

4. (1,1) - recently used and modified  page may be used again and page has to be written to disk

(e) Counting-Based Page Replacement

o Keep a counter of the number of references that have been made to each page

1.Least Frequently Used (LFU)Algorithm: replaces page withsmallest count

2.Most Frequently Used (MFU)Algorithm: replaces page withlargest count

 It is based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Page Buffering Algorithm

o These are used along with page replacement algorithms to improve their performance

Technique 1:

o A pool of free frames is kept.

o When a page fault occurs, choose a victim frame as before. o Read the desired page into a free frame from the pool

o The victim frame is written onto the disk and then returned to the pool of free frames.

Technique 2:

o Maintain a list of modified pages.

o Whenever the paging device is idles, a modified is selected and written to disk and its modify bit is reset.

Technique 3:

o A pool of free frames is kept.

o Remember which page was in each frame.

o If frame contents are not modified then the old page can be reused directly from the free frame pool when needed

4.5 Allocation of Frames

 There are two major allocation schemes

  Equal Allocation

 Proportional Allocation

o Equal allocation

 If there are n processes and m frames then allocate m/n frames to each process.

 Example: If there are 5 processes and 100 frames, give each process 20 frames.

o Proportional allocation

 Allocate according to the size of process Let si be the size of process i.

Let m be the total no. of frames Then S = ∑ siai = si / S * m where ai is the no.of frames allocated to process i.

Global vs. Local Replacement

o Global replacement - each process selects a replacement frame from the set of all frames; one process can take a frame from another.

o Local replacement - each process selects from only its own set of allocated frames.

4.6 Thrashing

o High paging activity is called thrashing.

o If a process does not have ―enough‖ pages, the page-fault rate is very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of multiprogramming

 another process is added to the system

o When the CPU utilization is low, the OS increases the degree of multiprogramming.

o If global replacement is used then as processes enter the main memory they tend to steal frames belonging to other processes.

o Eventually all processes will not have enough frames and hence the page fault rate becomes very high.

o Thus swapping in and swapping out of pages only takes place. o This is the cause of thrashing.

o To limit thrashing, we can use a local replacement algorithm. o To prevent thrashing, there are two methods namely ,

 Working Set Strategy

 Page Fault Frequency

1. Working-Set Strategy

o It is based on the assumption of the model of locality.

o Locality is defined as the set of pages actively used together.

o page references o







 o D WSSi

 Where WSSi is the working set size for process i.  D is the total demand of frames

o if D > m then Thrashing will occur.

2. Page-Fault Frequency Scheme

o If actual rate too low, process loses frame

o If actual rate too high, process gains frame

Other Issues

o Prepaging

 To reduce the large number of page faults that occurs at process startup

 Prepage all or some of the pages a process will need, before they are referenced

 But if prepaged pages are unused, I/O and memory are wasted

oPage Size

Page size selection must take into consideration:

o fragmentation

o table size

o I/O overhead

o locality

oTLB Reach

 TLB Reach - The amount of memory accessible from the TLB  TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB. Otherwise there is a high degree of page faults.

 Increase the Page Size. This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes. This allows applications that require larger page sizes the opportunity to use them without an increase in

fragmentation.

oI/O interlock

 Pages must sometimes be locked into memory

 Consider I/O. Pages that are used for copying a file from a device must be locked from being selected for eviction by a page

replacement algorithm.

4.7 File Concept

A file is a named collection of related information that is recorded on secondary storage.

• From a user’s perspective, a file is the smallest allotment of logical secondary storage; that is, data cannot be written to secondary storage

unless they are within a file.

Examples of files:

• A text file is a sequence of characters organized into lines (and possibly pages). A source file is a sequence of subroutines and functions, each

of which is further organized as declarations followed by executable statements. An object file is a sequence of bytes organized into blocks

understandable by the system’s linker. An executable file is a series of code sections that the loader can bring into memory and execute.

File Attributes

• Name: The symbolic file name is the only information kept in human

readable form.

• Identifier: This unique tag, usually a number identifies the file within the file system. It is the non-human readable name for the file.

• Type: This information is needed for those systems that support different types.

• Location: This information is a pointer to a device and to the location of the file on that device.

• Size: The current size of the file (in bytes, words or blocks)and possibly the maximum allowed size are included in this attribute.

• Protection: Access-control information determines who can do reading, writing, executing and so on.

• Time, date and user identification: This information may be kept for

creation, last modification and last use. These data can be useful for

protection, security and usage monitoring.

File Operations

• Creating a file

• Writing a file

• Reading a file

• Repositioning within a file

• Deleting a file

• Truncating a file

File types

File Structure

• All disk I/O is performed in units of one block (physical record) size which will exactly match the length of the desired logical record.

• Logical records may even vary in length. Packing a number of logical records into physical blocks is a common solution to this problem.

• For example, the UNIX operating system defines all files to be simply a stream of bytes. Each byte is individually addressable by its

offset from the beginning (or end) of the file. In this case, the logical records are 1 byte. The file system automatically packs and unpacks bytes into

physical disk blocks -say, 512 bytes per block - as necessary.

• The logical record size, physical block size, and packing technique determine how many logical records are in each physical block. The

packing can be done either by the user’s application program or by the operating system.

4.8 Access Methods

1. Sequential Access

The simplest access method is sequential access. Information in the file is

processed in order, one record after the other. This mode of access is by far the most common; for example, editors and compilers usually

access files in this fashion.

The bulk of the operations on a file is reads and writes. A read operation reads the next portion of the file and automatically advances a

file pointer, which tracks the I/O location. Similarly, a write appends to the end of the file and advances to the end of the newly written

material (the new end of file). Such a file can be reset to the beginning and, on some systems, a program may be able to skip forward or back

ward n records, for some integer n-perhaps only for n=1. Sequential access is based on a tape model of a file, and works as well on

sequential-access devices as it does on random - access ones.

2. Direct Access

Another method is direct access (or relative access). A file is made up of fixed length logical records that allow programs to read and

write records rapidly in no particular order. The direct- access methods is based on a disk model of a file, since disks allow random access to any

file block.

For direct access, the file is viewed as a numbered sequence of blocks or records. A direct-access file allows arbitrary blocks to be read

or written. Thus, we may read block 14, then read block 53, and then write block7. There are no restrictions on the order of reading or

writing for a direct-access file.

Direct - access files are of great use for immediate access to large amounts of information. Database is often of this type. When a

query concerning a particular subject arrives, we compute which block contains the answer, and then read that block directly to provide the

desired information.

As a simple example, on an air line - reservation system, we might store all the information about a particular flight (for example,

flight 713) in the block identified by the flight number.

Thus, the number of available seats for flight 713 is stored in block 713 of the reservation file. To store information about a larger set,

such as people, we might compute a hash function on the people’s names, or search a small inmemory index to determine a block to read

and search.

3. Other Access methods

Other access methods can be built on top of a direct - access method these methods generally involve the construction of an index for the

file. The index like an index in the back of a book contains pointers to the various blocks in find a record in the file. We first search the index,

and then use the pointer to access the file directly and the find the desired record.

With large files, the index file itself may become too large to be kept in memory. One solution is to create an index for the index

file. The primary index file would contain pointers to secondary index tiles, which would point to the actual data items.

4.9 Directory Structure

There are five directory structures. They are

1. Single-level directory

2. Two-level directory

3. Tree-Structured directory

4. Acyclic Graph directory

5. General Graph directory

1. Single - Level Directory

• The simplest directory structure is the single- level directory. • All files are contained in the same directory.

• Disadvantage:

 When the number of files increases or when the system has more than one user, since all files are in the same directory, they must have

unique names.

2. Two - Level Directory

• In the two level directory structures, each user has her own user file directory (UFD).

• When a user job starts or a user logs in, the system’s master file directory (MFD) is searched. The MFD is indexed by user name or

account number, and each entry points to the UFD for that user.

 • When a user refers to a particular file, only his own UFD is searched.

• Thus, different users may have files with the same name.

• Although the two - level directory structure solves the name-collision problem

• Disadvantage:

 Users cannot create their own sub-directories.

3. Tree - Structured Directory

• A tree is the most common directory structure.

• The tree has a root directory. Every file in the system has a unique path name.

• A path name is the path from the root, through all the subdirectories to a specified file.

• A directory (or sub directory) contains a set of files or sub directories. • A directory is simply another file. But it is treated in a special way. •

All directories have the same internal format.

• One bit in each directory entry defines the entry as a file (0) or as a subdirectory (1).

• Special system calls are used to create and delete directories.

• Path names can be of two types: absolute path names or relative path names.

• An absolute path name begins at the root and follows a path down to the specified file, giving the directory names on the path.

• A relative path name defines a path from the current directory.

4. Acyclic Graph Directory.

• An acyclic graph is a graph with no cycles.

• To implement shared files and subdirectories this directory structure is used.

• An acyclic - graph directory structure is more flexible than is a simple tree structure, but it is also more complex. In a system where sharing is

implemented by symbolic link, this situation is somewhat easier to handle. The deletion of a link does not need to affect the original file;

only the link is removed.

• Another approach to deletion is to preserve the file until all references to it are deleted. To implement this approach, we must have some

mechanism for determining that the last reference to the file has been deleted.

4.10 File System Mounting

• Just as a file must be opened before it is used, a file system must be mounted before it can be available to processes on the system.

• The mount procedure is straightforward. The operating system is given the name of the device, and the location within the file structure at

which to attach the File system (or mount point).

• A mount point is an empty directory at which the mounted file system will be attached.

• For instance, on a UNIX system, a file system containing user’s home directories might be mounted as /home; then to access the directory

structure within that file system , one could precede the directory names with /home, as in /home/jane.

• Mounting that file system under/user would result in the pathname/users/jane

• The operating system verifies that the devices contain a valid file system.

• It does so by asking the device driver to read the device directory and verifying that the directory was the expected format.

• Finally, the operating system notes in its directory structure that a file system is mounted at the specified mount point.

4.11 File Sharing

1. Multiple Users:

• When an operating system accommodates multiple users, the issues of file sharing, file naming and file protection become preeminent.

• The system either can allow user to access the file of other users by default, or it may require that a user specifically grant access to the files.

• These are the issues of access control and protection.

• To implementing sharing and protection, the system must maintain more file and directory attributes than a on a single-user system.

• The owner is the user who may change attributes, grand access, and has the most control over the file or directory.

• The group attribute of a file is used to define a subset of users who may share access to the file.

• Most systems implement owner attributes by managing a list of user names and associated user identifiers (user Ids).

• When a user logs in to the system, the authentication stage determines the appropriate user ID for the user. That user ID is associated with all

2. Remote File System:

• Networks allowed communications between remote computers.

• Networking allows the sharing or resource spread within a campus or even around the world.

• User manually transfer files between machines via programs like ftp.

• A distributed file system (DFS) in which remote directories is visible from the local machine.

• The World Wide Web: A browser is needed to gain access to the remote file and separate operations (essentially a wrapper for ftp) are used

to transfer files.

a) The client-server Model:

• Remote file systems allow a computer to a mount one or more file systems from one or more remote machines.

• A server can serve multiple clients, and a client can use multiple servers, depending on the implementation details of a given client -server

facility. • Client identification is more difficult. Clients can be specified by their network name or other identifier, such as IP address, but

these can be spoofed (or imitate). An unauthorized client can spoof the server into deciding that it is authorized, and the unauthorized client could be

allowed access.

b) Distributed Information systems:

• Distributed information systems, also known as distributed naming service, have been devised to provide a unified access to the information

needed for remote computing.

• Domain name system (DNS) provides host-name-to-network address

translations for their entire Internet (including the World Wide Web).

• Before DNS was invented and became widespread, files containing the same information were sent via e-mail of ftp between all networked hosts.

c) Failure Modes:

• Redundant arrays of inexpensive disks (RAID) can prevent the loss of a disk from resulting in the loss of data.

• Remote file system has more failure modes. By nature of the complexity of networking system and the required interactions between remote

machines, many more problems can interfere with the proper operation of remote file systems.

d) Consistency Semantics:

• It is characterization of the system that specifies the semantics of multiple users accessing a shared file simultaneously.

• These semantics should specify when modifications of data by one user are observable by other users.

• The semantics are typically implemented as code with the file system.

• A series of file accesses (that is reads and writes) attempted by a user to the same file is always enclosed between the open and close operations.

• The series of access between the open and close operations is a file session.

(i) UNIX Semantics:

The UNIX file system uses the following consistency semantics:

1. Writes to an open file by a user are visible immediately to other users that have this file open at the same time.

2. One mode of sharing allows users to share the pointer of current location into the file. Thus, the advancing of the pointer by one user

affects all sharing users.

(ii) Session Semantics:

The Andrew file system (AFS) uses the following consistency semantics:

1. Writes to an open file by a user are not visible immediately to other users that have the same file open simultaneously.

2. Once a file is closed, the changes made to it are visible only in sessions starting later. Already open instances of the file do not reflect this

change.

(iii) Immutable -shared File Semantics:

• Once a file is declared as shared by its creator, it cannot be modified. • An immutable file has two key properties:

 Its name may not be reused and its contents may not be altered.

4.12 File Protection

(i) Need for file protection.

• When information is kept in a computer system, we want to keep it safe from physical damage (reliability) and improper access

(protection).

• Reliability is generally provided by duplicate copies of files. Many computers have systems programs that automatically (or though

computer-operator intervention) copy disk files to tape at regular intervals (once per day or week or month) to maintain a copy should a

file system be accidentally destroyed.

• File systems can be damaged by hardware problems (such as errors in reading or writing), power surges or failures, head crashes, dirt,

temperature extremes, and vandalism. Files may be deleted accidentally. Bugs in the file-system software can also cause file contents to be lost.

• Protection can be provided in many ways. For a small single-user system, we might provide protection by physically removing the floppy

disks and locking them in a desk drawer or file cabinet. In a multi-user system, however, other mechanisms are needed.

(ii) Types of Access

• Complete protection is provided by prohibiting access. • Free access is provided with no protection.

• Both approaches are too extreme for general use.

• What is needed is controlled access.

• Protection mechanisms provide controlled access by limiting the types of file access that can be made. Access is permitted or denied

depending on several factors, one of which is the type of access requested. Several different types of operations may be controlled:

1. Read: Read from the file.

2. Write: Write or rewrite the file.

3. Execute: Load the file into memory and execute it.

4. Append: Write new information at the end of the file.

5. Delete: Delete the file and free its space for possible reuse.

6. List: List the name and attributes of the file.

(iii) Access Control

• Associate with each file and directory an access-control list (ACL) specifying the user name and the types of access allowed for each

user.

• When a user requests access to a particular file, the operating system checks the access list associated with that file. If that user is listed for the

requested access, the access is allowed. Otherwise, a protection violation occurs and the user job is denied access to the file.

• This technique has two undesirable consequences:

 Constructing such a list may be a tedious and unrewarding task, especially if we do not know in advance the list of users in the system.

 The directory entry, previously of fixed size, now needs to be of variable size, resulting in more complicated space management.

• To condense the length of the access control list, many systems recognize three classifications of users in connection with each file:

 Owner: The user who created the file is the owner.

 Group: A set of users who are sharing the file and need similar access is a group, or work group.

 Universe: All other users in the system constitute the universe.

UNIT- V FILE SYSTEMS

File System Structure – File System Implementation – Directory Implementation – Allocation Methods – Free-space Management. Kernel I/O

Subsystems - Disk Structure – Disk Scheduling – Disk Management – Swap-Space Management. Case Study: The Linux System, Windows –

UNIX-Security

5.1 File System Structure

• Disk provide the bulk of secondary storage on which a file system is maintained.

• Characteristics of a disk:

1. They can be rewritten in place, it is possible to read a block from the disk, to modify the block and to write it back into the same place.

2. They can access directly any given block of information to the disk.

• To produce an efficient and convenient access to the disk, the operating system imposes one or more file system to allow the data to be

stored, located and retrieved easily.

• The file system itself is generally composed of many different levels. Each level in the design uses the features of lower level to create new

features for use by higher levels.

Layered File System

• The I/O control consists of device drivers and interrupt handlers to transfer information between the main memory and the disk system .

• The basic file system needs only to issue generic commands to the appropriate device driver to read and write physical blocks on the disk. Each

physical block is identified by its numeric disk address (for example, drive -1, cylinder 73, track 2, sector 10)

• The file-organization module knows about file and their logical blocks, as well as physical blocks. By knowing the type of file allocation used

and the location of the file, the file organization module can translate logical block address to physical block addresses for the basic fie system to

transfer . The file-organization module also includes the free-space manager, which tracks unallocated blocks and provides these blocks to the file-

organization module when requested.

• The logical file system manages metadata information. Metadata includes all of the file-system structure, excluding the actual data (or

contents of the files). The logical file system manages the directory structure to provide the file-organization module with the information the

latter needs, given a symbolic file name. It maintains file structure , via file control blocks. A file control block (FCB) contains information

about the file , including ownership, permissions, and location of the file contents. The logical file system is also responsible for protection and

security.

5.2 File System Implementation

•Several-on-disk and in-memory structures are used to implement a filesystem

•The on-disk structures include:

1. A boot control block can contain information needed by the system to boot an operating from that partition. If the disk does not contain

an operating System, this block can be empty. It is typically the first block of a partition. In UFS, this is called the boot block; In NTFS, it

is partition boot sector.

2. A partition control block contains partition details such as the number of blocks in the partition, size of the blocks, free-block count and

free block pointers and free FCB count and FCB pointers. In UFS this is called a super block; in NTFS, it is the Master File Table.

3. A directory structure is used to organize the files.

4. An FCB contains many of the files details, including file permissions , ownership, size and location of the data blocks. IN UFS this called

the inode. In NTFS, this information’s actually stored within the Master File Table, which uses a relational database structure, with a row per file.

 • The in-memory structures include:

1. An in-memory partition table containing , information about each mounted partition.

2. An in-memory directory structure that hold s the directory information of recently accessed directories.

3. The system-wide open-file table contains a copy of the FCB of each open files, as well as other information.

4. The per-process open-file table contains a pointer tot eh appropriate entry in the systems-wide open file table, as well as other information.

5.3 Directory Implementation

1. Linear List

• The simplest method of implementing a directory is to use a linear list of file names with pointer to the data blocks.

• A linear list of directory entries requires a linear search to find a particular entry.

• This method is simple to program but time- consuming to execute. To create a new file, we must first search the but time - consuming to execute.

• The real disadvantage of a linear list of directory entries is the linear search to find a file.

2. Hash Table

• In this method, a linear list stores the directory entries, but a hash data structure is also used.

• The hash table takes a value computed from the file name and returns a pointer to the file name in the linear list.

• Therefore, it can greatly decrease the directory search time.

• Insertion and deleting are also fairly straight forward, although some provision must be made for collisions - situation where two file

names hash to the same location.

• The major difficulties with a hash table are its generally fixed size and the dependence of the hash function on that size.

5.4 Allocation Methods

• The main problem is how to allocate space to these files so that disk space is utilized effectively and files can be accessed quickly .

• There are there major methods of allocating disk space:

1. Contiguous Allocation

2. Linked Allocation

3. Indexed Allocation

1. Contiguous Allocation

• The contiguous - allocation method requires each file to occupy a set of contiguous blocks on the disk.

• Contiguous allocation of a file is defined by the disk address and length (in block units) of the first block. If the file is n blocks long and

starts at location b, then it occupies blocks b,. b+1, b+2,….,b+n-1.

• The directory entry for each file indicates the address of the starting block and the length of the area allocated for this file.

Disadvantages:

1. Finding space for a new file.

• The contiguous disk space-allocation problem suffer from the problem of external fragmentation. As file are allocated and deleted, the free

disk space is broken into chunks. It becomes a problem when the largest contiguous chunk is insufficient for a request; storage is fragmented

into a number of holes, no one of which is large enough to store the data.

2. Determining how much space is needed for a file.

• When the file is created, the total amount of space it will need must be found an allocated how does the creator know the size of the file to be

created?

• If we allocate too little space to a file, we may find that file cannot be extended. The other possibility is to find a larger hole, copy the

contents of the file to the new space, and release the previous space. This series of actions may be repeated as long as space exists,

although it can be time consuming. However, in this case, the user never needs to be informed explicitly about what is happening ; the

system continues despite the problem, although more and more slowly.

• Even if the total amount of space needed for a file is known in advance pre-allocation may be inefficient.

• A file that grows slowly over a long period (months or years) must be allocated enough space for its final size, even though much of

that space may be unused for a long time the file, therefore has a large amount of internal fragmentation.

To overcome these disadvantages:

• Use a modified contiguous allocation scheme, in which a contiguous chunk of space called as an extent is allocated initially and then, when that

amount is not large enough another chunk of contiguous space an extent is added to the initial allocation.

• Internal fragmentation can still be a problem if the extents are too large, and external fragmentation can be a problem as extents of varying

sizes are allocated and deallocated.

2. Linked Allocation

• Linked allocation solves all problems of contiguous allocation.

• With linked allocation, each file is a linked list of disk blocks, the disk blocks may be scattered any where on the disk.

• The directory contains a pointer to the first and last blocks of the file. For example, a file of five blocks might start at block 9, continue at

block 16, then block 1, block 10, and finally bock 25.

• Each block contains a pointer to the next block. These pointers are not made available to the user.

• There is no external fragmentation with linked allocation, and any free block on the free space list can be used to satisfy a request.

• The size of a file does not need to the declared when that file is created. A file can continue to grow as long as free blocks are available

consequently, it is never necessary to compacts disk space.

 Disadvantages:

1. Used effectively only for sequential access files.

• To find the ith block of a file, we must start at the beginning of that file, and follow the pointers until we get to the ith block. Each aces to a

pointer requires a disk read, and sometimes a disk seek consequently, it is inefficient to support a direct- access capability for linked allocation files.

2. Space required for the pointers

• If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being used for pointers, rather than for information.

• Solution to this problem is to collect blocks into multiples, called clusters, and to allocate the clusters rather than blocks. For instance, the file

system may define a clusters as 4 blocks, and operate on the disk in only cluster units.

3. Reliability

• Since the files are linked together by pointers scattered all over the disk

 hardware failure might result in picking up the wrong pointer. This error could result in linking into the free- space list or into

another file. Partial solution are to use doubly linked lists or to store the file names in a relative block number in each block; however, these

schemes require even more over head for each file.

File Allocation Table(FAT)

•An important variation on the linked allocation method is the use of a fileallocation table(FAT).

•This simple but efficient method of disk- space allocation is used by the MS-DOS and OS/2 operating systems.

•A section of disk at beginning of each partition is set aside to contain thetable.

•The table has entry for each disk block, and is indexed by block number.

•The FAT is much as is a linked list.

•The directory entry contains the block number the first block of the file.

•The table entry indexed by that block number contains the block number ofthe next block in the file.

•This chain continues until the last block which has a special end - of - filevalue as the table entry.

•Unused blocks are indicated by a 0 table value.

• Allocating a new block file is a simple matter of finding the first 0 - valued table entry, and replacing the previous end of file value with the

address of the new block.

• The 0 is replaced with the end - of - file value, an illustrative example is the FAT structure for a file consisting of disk blocks 217,618, and

339.

3. Indexed Allocation

• Linked allocation solves the external - fragmentation and size- declaration problems of contiguous allocation.

• Linked allocation cannot support efficient direct access, since the pointers to the blocks are scattered with the blocks themselves all over the

disk and need to be retrieved in order.

• Indexed allocation solves this problem by bringing all the pointers together into one location: the index block.

• Each file has its own index block, which is an array of disk- blockaddresses.

• The ith entry in the index block points to the ith block of the file. • The directory contains the address of the index block .

• To read the ith block, we use the pointer in the ith index - block entry to find and read the desired block this scheme is similar to the paging scheme

.

• When the file is created, all pointers in the pointers in the index block are set to nil. when the ith block is first written, a block is obtained from

the free space manager, and its address is put in the ith index - block entry.

• Indexed allocation supports direct access, without suffering from external fragmentation, because any free block on the disk may satisfy a

request for more space.

Disadvantages

1.Pointer Overhead

• Indexed allocation does suffer from wasted space. The pointer over head of the index block is generally greater than the pointer over head of

linked allocation.

2. Size of Index block

If the index block is too small, however, it will not be able to hold enough

pointers for a large file, and a mechanism will have to be available to deal with this

issue:

• Linked Scheme: An index block is normally one disk block. Thus, it can be read and written directly by itself. To allow for large files, we

may link together several index blocks.

•Multilevel index: A variant of the linked representation is to use a first levelindex block to point to a set of second - level index blocks.

•Combined scheme:

o Another alternative, used in the UFS, is to keep the first, say, 15 pointers of the index block in the file’s inode.

o The first 12 of these pointers point to direct blocks; that is for small (no more than 12 blocks) files do not need a separate index block

o The next pointer is the address of a single indirect block.

 The single indirect block is an index block, containing not data, but rather the addresses of blocks that do contain data.

o Then there is a double indirect block pointer, which contains the address of a block that contain pointers to the actual data blocks. The

last pointer would contain pointers to the actual data blocks.

 o The last pointer would contain the address of a triple indirect block.

5.5 Free-space Management

• Since disk space is limited, we need to reuse the space from deleted files for new files, if possible.

• To keep track of free disk space, the system maintains a free-space list.

• The free-space list records all free disk blocks - those not allocated to some file or directory.

• To create a file, we search the free-space list for the required amount of space, and allocate that space to the new file.

• This space is then removed from the free-space list.

• When a file is deleted, its disk space is added to the free-space list.

1. Bit Vector

• The free-space list is implemented as a bit map or bit vector.

• Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

• For example, consider a disk where block 2,3,4,5,8,9,10,11,12,13,17,18,25,26 and 27 are free, and the rest of the block are allocated. The free

space bit map would be001111001111110001100000011100000 …

• The main advantage of this approach is its relatively simplicity and efficiency in finding the first free block, or n consecutive free blocks

on the disk.

2. Linked List

• Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to the first free block in a special

location on the disk and caching it in memory.

• This first block contains a pointer to the next free disk block, and so on.

• In our example, we would keep a pointer to block 2, as the first free block. Block 2 would contain a pointer to block 3, which would point to

block 4, which would point to block 5, which would point to block 8, and so on.

 • However, this scheme is not efficient; to traverse the list, we must read each block, which requires substantial I/O time.

• The FAT method incorporates free-block accounting data structure. No separate method is needed.

3. Grouping

• A modification of the free-list approach is to store the addresses of n free blocks in the first free block.

• The first n-1 of these blocks are actually free.

• The last block contains the addresses of another n free blocks, and so on.

• The importance of this implementation is that the addresses of a large number of free blocks can be found quickly.

4. Counting

• We can keep the address of the first free block and the number n of free contiguous blocks that follow the first block.

• Each entry in the free-space list then consists of a disk address and a count.

• Although each entry requires more space than would a simple disk address, the overall list will be shorter, as long as the count is generally

greater than

Recovery

• Files and directories are kept both in main memory and on disk, and care must be taken to ensure that system failure does not result in loss of

data or in data inconsistency.

1. Consistency Checking

• The directory information in main memory is generally more up to date than is the corresponding information on the disk, because cached

directory information is not necessarily written to disk as soon as the update takes place.

• Frequently, a special program is run at reboot time to check for and correct disk inconsistencies.

• The consistency checker—a systems program such as

• chkdsk in MS-DOS—compares the data in the directory structure with the data blocks on disk and tries to fix any inconsistencies it

finds. The allocation and free-space-management algorithms dictate what types of problems the checker can find and how successful it will be

in fixing them.

2. Backup and Restore

• Magnetic disks sometimes fail, and care must be taken to ensure that the data lost in such a failure are not lost forever. To this end, system

programs can be used to back up data from disk to another storage device, such as a floppy disk, magnetic tape, optical disk, or other hard disk.

• Recovery from the loss of an individual file, or of an entire disk, may then be a matter of restoring the data from backup.

A typical backup schedule may then be as follows:

Day 1: Copy to a backup medium all files from the disk. This is called a full backup.

Day 2: Copy to another medium all files changed since day 1. This is an incremental backup.

Day 3: Copy to another medium all files changed since day 2.

Day N: Copy to another medium all files changed since day N— 1. Then go back to Day 1.

Log-Structured File Systems

• Computer scientists often find that algorithms and technologies originally

used in one area are equally useful in other areas.

•These logging algorithms have been applied successfully to the problem ofconsistency checking.

•The resulting implementations are known as log-based transaction-oriented (or journaling) file systems.

•Fundamentally, all metadata changes are written sequentially to a log.

•Each set of operations for performing a specific task is a transaction.

•Once the changes are written to this log, they are considered to becommitted, and the system call can return to the user process, allowing

it tocontinue execution.

•As the changes are made, a pointer is updated to indicate which actions havecompleted and which are still incomplete.

•When an entire committed transaction is completed, it is removed from thelog file, which is actually a circular buffer.

• A circular buffer writes to the end of its space and then continues at the beginning, overwriting older values as it goes. If the system crashes,

the log file will contain zero or more transactions.

5.6 Kernel I/O Subsystem

Kernels provide many services related to I/O.

 One way that the I/O subsystem improves the efficiency of the computer is by scheduling I/O operations.

 Another way is by using storage space in main memory or on disk, via techniques called buffering, caching, and spooling.

Services include;

I/O Scheduling:

To determine a good order in which to execute the set of I/O requests. Uses:

a) It can improve overall system performance,

b) It can share device access fairly among processes, and

c) It can reduce the average waiting time for 1/0 to complete. Implementation: OS developers implement scheduling by maintaining a ―queue of

requests‖ for each device.

1. When an application issues a blocking I/O system call,

2. The request is placed on the queue for that device.

3. The I/O scheduler rearranges the order of the queue to improve the overall system efficiency and the average response time experienced by

applications.

Buffering:

Buffer: A memory area that stores data while they are transferred between two devices or between a device and an application.

Reasons for buffering:

a) To cope with a speed mismatch between the producer and consumer of a data stream.

b) To adapt between devices that have different data-transfer sizes.

c) To support copy semantics for application I/O.

Copy semantics: Suppose that an application has a buffer of data that it wishes to write to disk. It calls the write () system call, providing a pointer

to the buffer and an integer specifying the number of bytes to write.

After the system call returns, what happens if the application changes the contents of the buffer? With copy semantics, the version of the data

written to disk is guaranteed to be the version at the time of the application system call, independent of any subsequent changes in the

application's buffer. A simple way that the operating system can guarantee copy semantics is for the write() system call to copy the application data

into a kernel buffer before returning control to the application. The disk write is performed from the kernel buffer, so that subsequent changes to

the application buffer have no effect.

5.3.3. Caching

A cache is a region of fast memory that holds copies of data. Access to the cached copy is more efficient than access to the original Cache vs

buffer: A buffer may hold the only existing copy of a data item, whereas a cache just holds a copy on faster storage of an item that resides

elsewhere.

When the kernel receives a file I/O request,

1. The kernel first accesses the buffer cache to see whether that region of the file is already available in main memory.

2. If so, a physical disk I/O can be avoided or deferred. Also, disk writes are accumulated in the buffer cache for several seconds, so that large

transfers are gathered to allow efficient write schedules.

5.3.4. Spooling and Device Reservation:

Spool: A buffer that holds output for a device, such as a printer, that cannot accept interleaved data streams. A printer can serve only one job at a

time, several applications may wish to print their output concurrently, without having their output mixed together

The os provides a control interface that enables users and system administrators ;

a) To display the queue,

b) To remove unwanted jobs before those jobs print,

c) To suspend printing while the printer is serviced, and so on. Device reservation - provides exclusive access to a device

 System calls for allocation and de-allocation

 Watch out for deadlock

Error Handling:

• An operating system that uses protected memory can guard against many kinds of hardware and application errors.

• OS can recover from disk read, device unavailable, transient write failures • Most return an error number or code when I/O request fails

• System error logs hold problem reports

5.7 Disk Structure

 Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer.

 The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.

 Sector 0 is the first sector of the first track on the outermost cylinder.

 Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from

outermost to innermost.

5.8 Disk scheduling:

One of the responsibilities of the operating system is to use the hardware efficiently. For the disk drives,

1. A fast access time and

2. High disk bandwidth.

• The access time has two major components;

 The seek time is the time for the disk arm to move the heads to the cylinder containing the desired sector.

 The rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.

• The disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion

of the last transfer. We can improve both the access time and the bandwidth by disk scheduling.

Disk scheduling: Servicing of disk I/O requests in a good order.

FCFS Scheduling: The simplest & fastest form of disk scheduling.

SSTF (shortest-seek-time-first)Scheduling

Service all the requests close to the current head position, before moving the head far away to service other requests. That is selects the

request with the minimum seek time from the current head position.

SCAN Scheduling

The disk head starts at one end of the disk, and moves toward the other end, servicing requests as it reaches each cylinder, until it gets to the other

end of the disk. At the other end, the direction of head movement is reversed, and servicing continues. The head continuously scans back and

forth across the disk.

Elevator algorithm: Sometimes the SCAN algorithm is called as the elevator algorithm, since the disk arm behaves just like an elevator in a

building, first servicing all the requests going up, and then reversing to service requests the other way.

C-SCAN Scheduling

Variant of SCAN designed to provide a more uniform wait time. It moves the head from one end of the disk to the other, servicing requests

along the way. When the head reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests

on the return trip.

5.9 Disk Management:

Disk Formatting:

Low-level formatting or physical formatting:

Before a disk can store data, the sector is divided into various partitions. This process is called low-level formatting or physical formatting. It fills

the disk with a special data structure for each sector.

The data structure for a sector consists of

 Header,

 Data area (usually 512 bytes in size), and

 Trailer.

The header and trailer contain information used by the disk controller, such as a sector number and an error-correcting code (ECC).

This formatting enables the manufacturer to

1. Test the disk and

2. To initialize the mapping from logical block numbers

To use a disk to hold files, the operating system still needs to record its own data structures on the disk. It does so in two steps.

(a) The first step is Partition the disk into one or more groups of cylinders. Among the

partitions, one partition can hold a copy of the OS‘s executable code, while another holds user files.

(b) The second step is logical formatting .The operating system stores the initial file-system data structures onto the disk. These data structures

may include maps of free and allocated space and an initial empty directory.

Boot Block:

For a computer to start running-for instance, when it is powered up or rebooted-it needs to have an initial program to run. This initial

program is called bootstrap program & it should be simple. It initializes all aspects of the system, from CPU registers to device controllers and the

contents of main memory, and then starts the operating system.

To do its job, the bootstrap program

1. Finds the operating system kernel on disk,

2. Loads that kernel into memory, and

3. Jumps to an initial address to begin the operating-system execution. The bootstrap is stored in read-only memory (ROM).

Advantages:

1. ROM needs no initialization.

2. It is at a fixed location that the processor can start executing when powered up or reset.

3. It cannot be infected by a computer virus. Since, ROM is read only.

The full bootstrap program is stored in a partition called the boot blocks, at a fixed location on the disk. A disk that has a boot partition is

called a boot disk or system disk.

The code in the boot ROM instructs the disk controller to read the boot blocks into memory

and then starts executing that code.

Bootstrap loader: load the entire operating system from a non-fixed location on disk, and to start the operating system running.

Bad Blocks:

The disk with defected sector is called as bad block. Depending on the disk and controller in use, these blocks are handled in a variety of ways;

Method 1: Handled manually

If blocks go bad during normal operation, a special program must be run manually to search for the bad blocks and to lock them away as

before. Data that resided on the bad blocks usually are lost.

Method 2: “sector sparing or forwarding”

The controller maintains a list of bad blocks on the disk. Then the controller can be told to replace each bad sector logically with one of

the spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

1. The operating system tries to read logical block 87.

2. The controller calculates the ECC and finds that the sector is bad.

3. It reports this finding to the operating system.

4. The next time that the system is rebooted, a special command is run to tell the controller to replace the bad sector with a spare.

5. After that, whenever the system requests logical block 87, the request is translated into the replacement sector's address by the controller.

Method 3: “sector slipping”

For an example, suppose that logical block 17 becomes defective, and the first available

spare follows sector 202. Then, sector slipping would remap all the sectors from 17 to 202,

moving them all down one spot. That is, sector 202 would be copied into the spare, then sector 201 into 202, and then 200 into 201, and so on,

until sector 18 is copied into sector 19. Slipping the sectors in this way frees up the space of sector 18, so sector 17 can be mapped to it.

5.10 Swap-Space Management

Swap-space — Virtual memory uses disk space as an extension of main memory The main goal for the design and implementation of

swap space is ―to provide the best throughput for the virtual-memory system

Swap-Space Use

Swap space is used in various ways by different operating systems, depending on the implemented memory-management algorithms.

1. The systems that implement swapping may use swap space to hold the entire process image, including the code and data segments.

2. Paging systems may simply store pages that have been pushed out of main memory. The amount of swap space needed on a system can therefore

vary depending on

(a) The amount of physical memory,

(b) The amount of virtual memory it is backing and

(c) The way in which the virtual memory is used.

It can range from a few megabytes of disk space to gigabytes.

Some operating systems, such as UNIX, allow the use of multiple swap spaces.

Estimation of swap space: Note that it is safer to overestimate than to underestimate swap

space, because if a system runs out of swap space it may be forced to abort processes or may crash entirely. Overestimation wastes disk space that

could otherwise be used for files, but does no other harm.

Swap-Space Location

A swap space can reside in two places:

1. Swap space can be carved out of the normal file system, or

2. It can be in a separate disk partition.

(I) Normal file system:

If the swap space is simply a large file within the file system, normal file-system routines can be used to create it, name it, and allocate its space.

This approach, though easy to implement, is also inefficient.

(-) Finding the directory structure and the disk-allocation data structures takes time and extra disk accesses.

(-) External fragmentation can greatly increase swapping times by forcing multiple seeks during reading or writing of a process image.

We can improve performance

(a) By caching the block location information in physical memory and

(b) By using special tools to allocate physically contiguous blocks for the swap file (II) Separate disk partition:

In this a separate swap-space storage manager is used to allocate and de-allocate the blocks. This manager uses algorithms optimized for

speed, rather than for storage efficiency.

(-) Internal fragmentation may increase, but this tradeoff is acceptable.

(+) Data in the swap space generally live for much shorter amounts of time than do files in the file system

(+) The swap area may be accessed much more frequently.

This approach creates a fixed amount of swap space during disk partitioning. Adding more swap space can be done only via

1. Repartitioning of the disk or

2. Adding another swap space elsewhere.

Swap-Space Management: An Example

• BSD allocates swap space when process starts; holds text segment (the program) anddata segment.

• Kernel uses swap maps to track swap-space use.

• Solaris 2 allocates swap space only when a page is forced out of physical memory, not when the virtual

 memory page is first created.

Data Structures for Swapping on Linux Systems

OPERATING SYSTEMS

QUESTION BANK

UNIT – I

TWO MARKS

1. What is an Operating System?

An operating system is a program that manages the computer hardware. It also provides a basis for application programs and act as an

intermediary between a user of a computer and the computer hardware. It controls and coordinates the use of the hardware among the

various application programs for the various users.

2. Why is the Operating System viewed as a resource allocator & control program?

A computer system has many resources – hardware & software that may be required to solve a problem, like CPU time, memory space,

file-storage space, I/O devices & so on. The OS acts as a manager for these resources so it is viewed as a resource allocator. The OS is

viewed as a control program because it manages the execution of user programs to prevent errors & improper use of the computer.

3. What is the Kernel?

A more common definition is that the OS is the one program running at all times on the computer, usually called the kernel, with all

else being application programs.

4. What are Batch Systems?

Batch systems are quite appropriate for executing large jobs that need little interaction. The user can submit jobs and return later for the

results. It is not necessary to wait while the job is processed. Operators batched together jobs with similar needs and ran them through

the computer as a group.

5. What is the advantage of Multiprogramming?

Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one to execute. Several jobs are placed in

the main memory and the processor is switched from job to job as needed to keep several jobs advancing while keeping the peripheral

devices in use. Multiprogramming is the first instance where the Operating system must make decisions for the users. Therefore they

are fairly sophisticated.

6. What is an Interactive Computer System?

Interactive computer system provides direct communication between the user and the system. The user gives instructions to the

operating system or to a program directly, using a keyboard or mouse, and waits for immediate results.

7. What do you mean by Time-Sharing Systems?

Time-sharing or multitasking is a logical extension of multiprogramming. It allows many users to share the computer simultaneously.

The CPU executes multiple jobs by switching among them, but the switches occur so frequently that the users can interact with each

program while it is running.

8. What are Multiprocessor Systems & give their advantages?

Multiprocessor systems also known as parallel systems or tightly coupled systems are systems that have more than one processor in

close communication, sharing the computer bus, the clock and sometimes memory & peripheral devices. Their main advantages are,

9. What are the different types of Multiprocessing?

Symmetric multiprocessing (SMP): In SMP each processor runs an identical copy of the OS & these copies communicate with one

another as needed. All processors are peers.

Examples are Windows NT, Solaris, Digital UNIX, and OS/2 & Linux.

Asymmetric multiprocessing: Each processor is assigned a specific task. A master processor controls the system; the other processors

look to the master for instructions or predefined tasks. It defines a master-slave relationship. Example: SunOS Version 4.

10. What is Graceful Degradation?

In multiprocessor systems, failure of one processor will not halt the system, but only slow it down. If there is ten processors & if any

one fails then the remaining nine processors pick up the work of the failed processor. This ability to continue providing service is

proportional to the surviving hardware is called graceful degradation.

11. What is Dual- Mode Operation?

The dual mode operation provides us with the means for protecting the operating system from wrong users and wrong users from one

another. User mode and monitor mode are the two modes. Monitor mode is also called supervisor mode, system mode or privileged

mode. Mode bit is attached to the hardware of the computer in order to indicate the current mode. Mode bit is ‘0’ for monitor mode and

‘1’ for user mode.

12. What are Privileged Instructions?

Some of the machine instructions that may cause harm to a system are designated as privileged instructions. The hardware allows the

privileged instructions to be executed only in monitor mode.

13. How can a user program disrupt the normal operations of a system?

A user program may disrupt the normal operation of a system by,

14. How is the protection for memory provided?

The protection against illegal memory access is done by using two registers. The base register and the limit register. The base register

holds the smallest legal physical address; the limit register contains the size of the range. The base and limit registers can be loaded

only by the OS using special privileged instructions

15. What are the various OS Components?

The various system components are,

-memory management

-system management

-storage management

-interpreter system

16. What is a Process?

A process is a program in execution. It is the unit of work in a modern operating system. A process is an active entity with a program

counter specifying the next instructions to execute and a set of associated resources. It also includes the process stack, containing

temporary data and a data section containing global variables.

17. What is a Process State and mention the various States of a Process?

As a process executes, it changes state. The state of a process is defined in part by the current activity of that process. Each process

may be in one of the following states:

18. What is Process Control Block (PCB)?

Each process is represented in the operating system by a process control block also called a task control block. It contains many pieces

of information associated with a specific process. It simply acts as a repository for any information that may vary from process to

process. It contains the following information:

-scheduling information

-management information

19. What is the use of Job Queues, Ready Queues & Device Queues?

As a process enters a system, they are put into a job queue. This queue consists of all jobs in the system. The processes that are residing

in main memory and are ready & waiting to execute are kept on a list called ready queue. The list of processes waiting for a particular

I/O device is kept in the device queue.

20. What is meant by Context Switch?

Switching the CPU to another process requires saving the state of the old process and loading the saved state for the new process. This

task is known as context switch. The context of a process is represented in the PCB of a process.

21. What is Spooling?

Spooling means Simultaneous Peripheral Operations On Line. It is a high-speed device like a disk is interposed between a running

program and a low –speed device involved with the program in input/output. It disassociates a running program from the slow

operation of devices like printers.

22. What are System Calls?

System calls provide the interface between a process and the Operating system. System Calls are also called as Monitor call or

Operating-system function call. When a system call is executed, it is treated as by the hardware as software interrupt. Control passes

through the interrupt vector to a service routine in the operating system, and the mode bit is set to monitor mode.

23. List the services provided by an Operating System?

e-System manipulation

24. What are the two types of Real Time Systems?

25. What is the difference between Hard Real Time System and Soft Real Time System?

A hard real time system guarantees that critical tasks complete on time. In a soft real time system, a critical real-time task gets priority

over the other tasks, and retains that priority until it completes. Soft real time systems have more limited utility than do hard real-time

systems.

26. Write the difference between Multiprogramming and Non - Multiprogramming?

The operating system picks and begins to execute one of the jobs in the memory. Eventually, the job may have to wait for some task,

such as a tape to be mounted, or an I/O operation to complete. In a non-multiprogrammed system, the CPU would sit idle. In a

multiprogramming system, the operating system simply switches to and executes another job. When that job needs to wait, the CPU is

switched to another job, and so on. Eventually, the first job finishes waiting and gets the CPU back. As long as there is always some

job to execute, the CPU will never be idle.

27. What are the design goals of an Operating System?

The requirements can be divided into two basic groups: User goals and System goals. Users desire that the system should be

convenient and easy to use, easy to learn, reliable, safe and fast. The Operating system should be easy to design, implement, and

maintain. Also it should be flexible, reliable, error free and efficient. These are some of the requirements, which are vague and have no

general solution.

28. What are the five major categories of System Calls?

-management

-management

29. What is the use of Fork and Execve System Calls?

Fork is a System calls by which a new process is created. Execve is also a System call, which is used after a fork by one of the two

processes to replace the process memory space with a new program.

30. Define Elapsed CPU time and Maximum CPU time?

Elapsed CPU Time: Total CPU time used by a process to date.

Maximum CPU Time: Maximum amount of CPU time a process may use.

14 MARKS

1. What are the system components of an Operating System and explain them?

Common System Components,

-Interpreter System

2. Define System Calls. Write about the various System Calls.

Introduction

Types of System Calls

3. What is a Process? Explain the Process Control Block and the various Process States.

Introduction

f programs:

– jobs

-shared systems – user programs or tasks

– a program in execution; process execution must progress in sequential fashion.

es:

cess.

4. Explain Process Creation and Process Termination

Process Creation

Parent process creates children processes, which, in turn create other processes, forming a

tree of processes.

 Parent and children share all resources.

te of parent.

Process Termination

Process executes last statement and asks the OS to decide it (exit).

Parent may terminate execution of children processes (abort).

signed to child is no longer required.

Operating system does not allow child to continue if its parent terminates.

5. Explain about Inter Process Communication.

direct Communication

UNIT – II

TWO MARKS

1. What is a Thread?

A thread otherwise called a lightweight process (LWP) is a basic unit of CPU utilization, it comprises of a thread id, a program counter,

a register set and a stack. It shares with other threads belonging to the same process its code section, data section, and operating system

resources such as open files and signals.

2. What are the benefits of Multithreaded Programming?

The benefits of multithreaded programming can be broken down into four major categories:

3. Compare User Threads and Kernel Threads.

4. Define Thread Cancellation & Target Thread.

The thread cancellation is the task of terminating a thread before it has completed. A thread that is to be cancelled is often referred to as

the target thread. For example, if multiple threads are concurrently searching through a database and one thread returns the result, the

remaining threads might be cancelled.

User threads Kernel threads

User threads are supported above the kernel and are implemented by a thread library at the user level Kernel threads are supported

directly by the operating system Thread creation & scheduling are done in the user space, without kernel intervention. Therefore they

are fast to create and manage Thread creation, scheduling and management are done by the operating system. Therefore they are slower

to create & manage compared to user threads Blocking system call will cause the entire process to block

If the thread performs a blocking system call, the

kernel can schedule another thread in the

application for execution

5. What are the different ways in which a Thread can be cancelled?

Cancellation of a target thread may occur in two different scenarios:

Asynchronous cancellation: One thread immediately terminates the target thread is called asynchronous cancellation.

Deferred cancellation: The target thread can periodically check if it should terminate, allowing the target thread an opportunity to

terminate itself in an orderly fashion.

6. Define CPU Scheduling.

CPU scheduling is the process of switching the CPU among various processes. CPU scheduling is the basis of multiprogrammed

operating systems. By switching the CPU among processes, the operating system can make the computer more productive.

7. What is Preemptive and Non - Preemptive scheduling?

Under non - preemptive scheduling once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU

either by terminating or switching to the waiting state. Preemptive scheduling can preempt a process which is utilizing the CPU in

between its execution and give the CPU to another process.

8. What is a Dispatcher?

The dispatcher is the module that gives control of the CPU to the process selected by the short-term scheduler. This function involves:

9. What is Dispatch Latency?

The time taken by the dispatcher to stop one process and start another running is known

as dispatch latency.

10. What are the various scheduling criteria for CPU Scheduling?

The various scheduling criteria are,

se time

11. Define Throughput?

Throughput in CPU scheduling is the number of processes that are completed per unit time. For long processes, this rate may be one

process per hour; for short transactions, throughput might be 10 processes per second.

12. What is Turnaround Time?

Turnaround time is the interval from the time of submission to the time of completion of a process. It is the sum of the periods spent

waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing I/O.

13. Define Race Condition.

When several process access and manipulate same data concurrently, then the outcome of the execution depends on particular order in

which the access takes place is called race condition. To avoid race condition, only one process at a time can manipulate the shared

variable.

14. What is Critical Section problem?

Consider a system consists of ‘n‘processes. Each process has segment of code called a critical section, in which the process may be

changing common variables, updating a table, writing a file. When one process is executing in its critical section, no other process can

allowed executing in its critical section.

15. What are the requirements that a solution to the Critical Section Problem must satisfy?

The three requirements are,

16. Define Entry Section and Exit Section.

The critical section problem is to design a protocol that the processes can use to cooperate. Each process must request permission to

enter its critical section. The section of the code implementing this request is the entry section. The critical section is followed by an

exit section. The remaining code is the remainder section.

17. Give two hardware instructions and their definitions which can be used for

implementing Mutual Exclusion.

Test And Set

boolean TestAndSet (boolean &target)

{

boolean rv = target;

target = true;

return rv;

}

Swap

void Swap (boolean &a, boolean &b)

{

boolean temp = a;

a = b;

b = temp;

}

18. What is a Semaphore?

A semaphore ‘S’ is a synchronization tool which is an integer value that, apart from initialization, is accessed only through two

standard atomic operations; wait and signal. Semaphores can be used to deal with the n-process critical section problem. It can be also

used to solve various synchronization problems.

The classic definition of ‘wait’

wait (S)

{

while (S<=0)

S--;

}

The classic definition of ‘signal’

signal (S)

{

S++;

}

19. Define Busy Waiting and Spinlock.

When a process is in its critical section, any other process that tries to enter its critical section must loop continuously in the entry code.

This is called as busy waiting and this type of semaphore is also called a spinlock, because the process while waiting for the lock.

20. How can we say the First Come First Served scheduling algorithm is Non Preemptive?

Once the CPU has been allocated to the process, that process keeps the CPU until it releases, either by terminating or by requesting I/O.

So we can say the First Come First Served scheduling algorithm is non preemptive.

21. What is Waiting Time in CPU scheduling?

Waiting time is the sum of periods spent waiting in the ready queue. CPU scheduling algorithm affects only the amount of time that a

process spends waiting in the ready queue.

22. What is Response Time in CPU scheduling?

Response time is the measure of the time from the submission of a request until the first response is produced. Response time is amount

of time it takes to start responding, but not the time that it takes to output that response.

23. Differentiate Long Term Scheduler and Short Term Scheduler

The long-term scheduler or job scheduler selects processes from the job pool and loads them into memory for execution. The short-

term scheduler or CPU scheduler selects from among the process that are ready to execute, and allocates the CPU to one of them.

24. Write some classical problems of Synchronization?

-Buffer Problem

-Writers Problem

25. When the error will occur when we use the Semaphore?

 the semaphore mutex.

26. What is Mutual Exclusion?

A way of making sure that if one process is using a shared modifiable data, the other processes will be excluded from doing the same

thing. Each process executing the shared data variables excludes all others from doing so simultaneously. This is called mutual

exclusion.

27. Define the term Critical Regions?

Critical regions are small and infrequent so that system through put is largely unaffected by their existence. Critical region is a control

structure for implementing mutual exclusion over a shared variable.

28. What are the drawbacks of Monitors?

29. What are the two levels in Threads?

Thread is implemented in two ways.

 and Kernel level

30. What is a Gantt Chart?

A two dimensional chart that plots the activity of a unit on the Y-axis and the time on the X-axis. The chart quickly represents how the

activities of the units are serialized.

31. Define Deadlock.

A process requests resources; if the resources are not available at that time, the process enters a wait state. Waiting processes may

never again change state, because the resources they have requested are held by other waiting processes. This situation is called a

deadlock.

32. What is the sequence in which resources may be utilized?

Under normal mode of operation, a process may utilize a resource in the following sequence:

until it can acquire the resource.

33. What are conditions under which a deadlock situation may arise?

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

-emption

34. What is a Resource-Allocation Graph?

Deadlocks can be described more precisely in terms of a directed graph called a system resource allocation graph. This graph consists

of a set of vertices V and a set of edges E. The set of vertices V is partitioned into two different types of nodes; P the set consisting of

all active processes in the system and R the set consisting of all resource types in the system.

35. Define Request Edge and Assignment Edge.

A directed edge from process Pi to resource type Rj is denoted by PiàRj; it signifies that process Pi requested an instance of resource

type Rj and is currently waiting for that resource. A directed edge from resource type Rj to process Pi is denoted by RjàPi, it signifies

that an instance of resource type has been allocated to a process Pi. A directed edge PiàRj is called a request edge. A directed edge

RjàPi is called an assignment edge.

36. What are the methods for Handling Deadlocks?

The deadlock problem can be dealt with in one of the three ways:

 deadlock state.

r in the system.

37. Define Deadlock Prevention.

Deadlock prevention is a set of methods for ensure that at least any one of the four necessary conditions like mutual exclusion, hold

and wait, no pre-emption and circular wait cannot hold. By ensuring that that at least one of these conditions cannot hold, the

occurrence of a deadlock can be prevented.

38. Define Deadlock Avoidance.

An alternative method for avoiding deadlocks is to require additional information about how resources are to be requested. Each

request requires the system consider the resources currently available, the resources currently allocated to each process, and the future

requests and releases of each process, to decide whether the could be satisfied or must wait to avoid a possible future deadlock.

39. What are a Safe State and an Unsafe State?

A state is safe if the system can allocate resources to each process in some order and still avoid a deadlock. A system is in safe state

only if there exists a safe sequence. A sequence of processes <P1,P2,….Pn> is a safe sequence for the current allocation state if, for

each Pi, the resource that Pi can still request can be satisfied by the current available resource plus the resource held by all the Pj, with

j<i. if no such sequence exists, then the system state is said to be unsafe.

40. What is Banker’s Algorithm?

Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a resource allocation system with multiple instances of each

resource type. The two algorithms used for its implementation are:

Safety algorithm: The algorithm for finding out whether or not a system is in a safe state.

Resource-request algorithm: if the resulting resource-allocation is safe, the transaction is completed and process Pi is allocated its

resources. If the new state is unsafe Pi must wait and the old resource-allocation state is restored.

41. Define Logical Address and Physical Address.

An address generated by the CPU is referred as logical address. An address seen by the memory unit that is the one loaded into the

memory address register of the memory is commonly referred to as physical address.

42. What are Logical Address Space and Physical Address Space?

The set of all logical addresses generated by a program is called a logical address space; the set of all physical addresses corresponding

to these logical addresses is a physical address space.

43. What is the main function of the Memory-Management Unit?

The runtime mapping from virtual to physical addresses is done by a hardware device called a memory management unit (MMU).

44. What are the methods for dealing the Deadlock Problem?

together, and pretend that deadlocks never occur in the system.

45. Differentiate Deadlock and Starvation.

A set of processes is in deadlock state when every process in the set is waiting for an event that can be caused only by the other process

in the set. Starvation or indefinite blocking is a situation where processes wait indefinitely within the semaphore.

14 MARKS

1. Write about the various CPU Scheduling Algorithms.

-Come, First-Served (FCFS) Scheduling

-Job-First (SJF) Scheduling

2. Explain the classical problem on Synchronization.

Classical Problems are,

-Buffer Problem

-Philosophers Problem

3. Explain about Monitors.

Introduction

High-level synchronization construct allows the safe sharing of an abstract data type among concurrent processes.

monitor monitor-name

{s

hared variable declarations

procedure body P1 (…) { . . . }

procedure body P2 (…) { . . . }

procedure body Pn (…) { . . . }

{i

nitialization code

}}

4. Monitor Implementation Using Semaphores

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next-count = 0;

wait(mutex);

…

body of F;

…i

f (next-count > 0)

signal(next)

else

signal(mutex);

ion variable x, we have:

semaphore x-sem; // (initially = 0)

int x-count = 0;

x-count++;

if (next-count > 0)

signal(next);

else

signal(mutex);

wait(x-sem);

x-count--;

 as:

if (x-count > 0) { next-count++;

signal(x-sem);

wait(next);

next-count--; }

5. Give a detailed description about Deadlocks and its Characterization

se a resource.

 resources held by other processes.

 that process has completed its task.

for a resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for a resource that is held by Pn,

and P0 is waiting for a resource that is held by P0.

6. Explain about the methods used to Prevent Deadlocks

– not required for sharable resources; must hold for non-sharable resources.

– must guarantee that whenever a process requests a resource, it does not hold

 any other resources.

– impose a total ordering of all resource types, and require that each process

 requests resources in an increasing order of enumeration.

7. Write in detail about Deadlock Avoidance.

ount of time.

-Request Algorithm for Process Pi

UNIT –III

TWO MARKS

1. Define Dynamic Loading.

To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All

routines are kept on disk in a relocatable load format. The main program is loaded into memory and executed. If the routine needs

another routine, the calling routine checks whether the routine has been loaded. If not, the relocatable linking loader is called to load

the desired program into memory.

2. Define Dynamic Linking.

Dynamic linking is similar to dynamic loading, rather that loading being postponed until execution time, linking is postponed. This

feature is usually used with system libraries, such as language subroutine libraries. A stub is included in the image for each library-

routine reference. The stub is a small piece of code that indicates how to locate the appropriate memory-resident library routine, or how

to load the library if the routine is not already present.

3. What are Overlays?

To enable a process to be larger than the amount of memory allocated to it, overlays are used. The idea of overlays is to keep in

memory only those instructions and data that are needed at a given time. When other instructions are needed, they are loaded into space

occupied previously by instructions that are no longer needed.

4. Define Swapping.

A process needs to be in memory to be executed. However a process can be swapped temporarily out of memory to a backing store and

then brought back into memory for continued execution. This process is called swapping.

5. What do you mean by Best Fit?

Best fit allocates the smallest hole that is big enough. The entire list has to be searched, unless it is sorted by size. This strategy

produces the smallest leftover hole.

6. What do you mean by First Fit?

First fit allocates the first hole that is big enough. Searching can either start at the beginning of the set of holes or where the previous

first-fit search ended. Searching can be stopped as soon as a free hole that is big enough is found.

7. How is memory protected in a paged environment?

Protection bits that are associated with each frame accomplish memory protection in a paged environment. The protection bits can be

checked to verify that no writes are being made to a read-only page.

8. What is External Fragmentation?

External fragmentation exists when enough total memory space exists to satisfy a request, but it is not contiguous; storage is

fragmented into a large number of small holes.

9. What is Internal Fragmentation?

When the allocated memory may be slightly larger than the requested memory, the difference between these two numbers is internal

fragmentation.

10. What do you mean by Compaction?

Compaction is a solution to external fragmentation. The memory contents are shuffled to place all free memory together in one large

block. It is possible only if relocation is dynamic, and is done at execution time.

11. What are Pages and Frames?

Paging is a memory management scheme that permits the physical-address space of a process to be non-contiguous. In the case of

paging, physical memory is broken into fixed-sized blocks called frames and logical memory is broken into blocks of the same size

called pages.

12. What is the use of Valid-Invalid Bits in Paging?

When the bit is set to valid, this value indicates that the associated page is in the process’s logical address space, and is thus a legal

page. If the bit is said to invalid, this value indicates that the page is not in the process’s logical address space. Using the valid-invalid

bit traps illegal addresses.

13. What is the basic method of Segmentation?

Segmentation is a memory management scheme that supports the user view of memory. A logical address space is a collection of

segments. The logical address consists of segment number and offset. If the offset is legal, it is added to the segment base to produce

the address in physical memory of the desired byte.

14. A Program containing relocatable code was created, assuming it would be loaded at address 0. In its code, the program

refers to the following addresses: 50,78,150,152,154. If the program is loaded into memory starting at location 250, how do

those addresses have to be adjusted?

All addresses need to be adjusted upward by 250.So the adjusted addresses would be 300, 328, 400, 402, and 404.

15. What is Virtual Memory?

Virtual memory is a technique that allows the execution of processes that may not be completely in memory. It is the separation of user

logical memory from physical memory. This separation provides an extremely large virtual memory, when only a smaller physical

memory is available.

16. What is Demand Paging?

Virtual memory is commonly implemented by demand paging. In demand paging, the pager brings only those necessary pages into

memory instead of swapping in a whole process. Thus it avoids reading into memory pages that will not be used anyway, decreasing

the swap time and the amount of physical memory needed.

17. Define Lazy Swapper.

Rather than swapping the entire process into main memory, a lazy swapper is used. A lazy swapper never swaps a page into memory

unless that page will be needed.

18. What is a Pure Demand Paging?

When starting execution of a process with no pages in memory, the operating system sets the instruction pointer to the first instruction

of the process, which is on a non-memory resident page, the process immediately faults for the page. After this page is brought into

memory, the process continues to execute, faulting as necessary until every page that it needs is in memory. At that point, it can

execute with no more faults. This schema is pure demand paging.

19. Define Effective Access Time.

Let p be the probability of a page fault (0£p£1). The value of p is expected to be close to 0; that is, there will be only a few page faults.

The effective access time is, Effective access time = (1-p) * ma + p * page fault time. ma : memory-access time

20. Define Secondary Memory.

This memory holds those pages that are not present in main memory. The secondary memory is usually a high speed disk. It is known

as the swap device, and the section of the disk used for this purpose is known as swap space.

21. What is the basic approach of Page Replacement?

If no frame is free is available, find one that is not currently being used and free it. A frame can be freed by writing its contents to swap

space, and changing the page table to indicate that the page is no longer in memory. Now the freed frame can be used to hold the page

for which the process faulted.

22. What is the various Page Replacement Algorithms used for Page Replacement?

23. What are the major problems to implement Demand Paging?

The two major problems to implement demand paging is developing,

24. What is a Reference String?

An algorithm is evaluated by running it on a particular string of memory references and computing the number of page faults. The

string of memory reference is called a reference string.

14 MARKS

1. Explain Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough.

Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered

 by size. Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover hole. First-fit and best-fit is better

than worst-fit in terms of the speed and storage utilization.

2. Explain about Fragmentation

Fragmentation

– total memory space exists to satisfy a request, but it is not

 contiguous.

– allocated memory may be slightly larger than requested memory; this size difference is memory internal to

a partition, but not being used.

on is dynamic, and is done at execution time.

3. Explain the concept of Paging

Basic method

 physical memory whenever the latter is available.

mory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes).

-

mes and load program.

Address Translation Scheme

Address generated by CPU is divided into:

– used as an index into a page table which contains base address of each page in physical memory.

– combined with base address to define the physical memory address that is sent to the memory unit.

4. Explain the types of Page Table Structure

ted Page Tables

5. Explain about Segmentation in detail.

Basic method

-management scheme that supports user view of memory Segmentation Architecture

-table base register (STBR)

-table length register (STLR)

Sharing

Allocation

Protection With each entry in segment table associate:

cute privileges

Protection bits associated with segments; code sharing occurs at segment level. Since segments vary in length, memory allocation is a

dynamic storage-allocation problem. A segmentation example is shown in the following diagram.

UNIT – IV

TWO MARKS

1. What is a File?

A file is a named collection of related information that is recorded on secondary storage. A file contains either programs or data. A file

has certain “structure” based on its type.

 appending, renaming

2. List the various File Attributes.

A file has certain other attributes, which vary from one operating system to another, but typically consist of these: Name, identifier,

type, location, size, protection, time, date and user identification.

3. What are the various File Operations?

The basic file operations are,

Creating a file

4. What is the information associated with an Open File?

Several pieces of information are associated with an open file which may be:

File pointer

5. What are the different Accessing Methods of a File?

The different types of accessing a file are:

cess: Information in the file can be accessed without any particular order.

 (ISAM) etc.

6. What is Directory?

The device directory or simply known as directory records information- such as name, location, size, and type for all files on that

particular partition. The directory can be viewed as a symbol table that translates file names into their directory entries.

7. What are the operations that can be performed on a Directory?

The operations that can be performed on a directory are,

8. What are the most common schemes for defining the Logical Structure of a

Directory?

The most common schemes for defining the logical structure of a directory

-Level Directory

-level Directory

-Structured Directories

-Graph Directories

9. Define UFD and MFD.

In the two-level directory structure, each user has own user file directory (UFD). Each UFD has a similar structure, but lists only the

files of a single user. When a job starts the system’s master file directory (MFD) is searched. The MFD is indexed by the user name or

account number, and each entry points to the UFD for that user.

10. What is a Path Name?

A pathname is the path from the root through all subdirectories to a specified file. In a two-level directory structure a user name and a

file name define a path name.

11. What is Access Control List (ACL)?

The most general scheme to implement identity-dependent access is to associate with each file and directory an access control unit.

12. Define Equal Allocation.

The way to split ‘m’ frames among ‘n’ processes is to give everyone an equal share, m/n frames. For instance, if there are 93 frames

and 5 processes, each process will get 18 frames. The leftover 3 frames could be used as a free-frame buffer pool. This scheme is called

equal allocation.

13. What is the cause of Thrashing? How does the system detect thrashing? Once it

detects thrashing, what can the system do to eliminate this problem?

Thrashing is caused by under allocation of the minimum number of pages required by a process, forcing it to continuously page fault.

The system can detect thrashing by evaluating the level of CPU utilization as compared to the level of multiprogramming. It can be

eliminated by reducing the level of multiprogramming.

14. If the average page faults service time of 25 ms and a memory access time of 100ns.Calculate the effective access time.

Effective access time = (1-p)*ma + p*page fault time = (1-p)*100+p*25000000

= 100-100p+25000000*p = 100 + 24999900p

15. What is Belady’s Anomaly?

For some page replacement algorithms, the page fault rate may increase as the number of allocated frames increases.

16. What are the different types of Access?

Different types of operations may be controlled in access type. These are,

17. What are the types of Path Names?

Path names can be of two types.

Absolute path name: Begins at the root and follows a path down to the specified file, giving the directory names on the path.

Relative path name: Defines a path from the current directory.

18. What is meant by Locality of Reference?

The locality model states that, as a process executes, it moves from locality to locality. Locality is of two types.

.

19. What are the various layers of a File System?

The file system is composed of many different levels. Each level in the design uses the feature of the lower levels to create new

features for use by higher levels.

ystem

-organization module

20. What are the Structures used in File-System Implementation?

Several on-disk and in-memory structures are used to implement a file system

-disk structure include

ntrol block

-memory structure include

-memory partition table

-memory directory structure

-wide open file table

-process open table

21. What are the Functions of Virtual File System (VFS)?

It has two functions,

-system-generic operations from their implementation defining a clean VFS interface. It allows transparent access to

different types of file systems mounted locally.

 value for a network-wide unique file .The

kernel maintains one vnode structure for each active file or directory.

22. Define Seek Time and Latency Time.

The time taken by the head to move to the appropriate cylinder or track is called seek time. Once the head is at right track, it must wait

until the desired block rotates under the read- write head. This delay is latency time.

23. What are the Allocation Methods of a Disk Space?

Three major methods of allocating disk space which are widely in use are

24. What are the advantages of Contiguous Allocation?

The advantages are,

25. What are the drawbacks of Contiguous Allocation of Disk Space?

The disadvantages are,

26. What are the advantages of Linked Allocation?

The advantages are,

27. What are the disadvantages of Linked Allocation?

The disadvantages are,

 of files.

28. What are the advantages of Indexed Allocation?

The advantages are,

-fragmentation problem

-declaration problems

29. How can the index blocks be implemented in the Indexed Allocation Scheme?

The index block can be implemented as follows,

30. Define Rotational Latency and Disk Bandwidth.

Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head. The disk bandwidth is the total

number of bytes transferred, divided by the time between the first request for service and the completion of the last transfer.

31. How free-space is managed using Bit Vector Implementation?

The free-space list is implemented as a bit map or bit vector. Each block is represented by 1 bit. If the block is free, the bit is 1; if the

block is allocated, the bit is 0.

32. Define Buffering.

A buffer is a memory area that stores data while they are transferred between two devices or between a device and an application.

Buffering is done for three reasons,

h between the producer and consumer of a data stream

-transfer sizes

14 MARKS

1. Explain the File System Structure in detail

- sequence of words, bytes

 characters.

ting system

2. Discuss the File System Organization and File System Mounting.

A file system must be mounted before it can be accessed. An unmounted file system is mounted at a mount point.

3. Explain about File Sharing.

– Remote File Systems

– Failure Modes

– Consistency Semantics

4. Explain about the File System Implementation.

y Implementation

-Space Management

-Structured File Systems

5. Explain about various Allocation Methods.

An allocation method refers to how disk blocks are allocated for files:

UNIT – V

TWO MARKS

1. Define Caching.

A cache is a region of fast memory that holds copies of data. Access to the cached copy is more efficient than access to the original.

Caching and buffering are distinct functions, but sometimes a region of memory can be used for both purposes.

2. Define Spooling.

A spool is a buffer that holds output for a device, such as printer, that cannot accept interleaved data streams. When an application

finishes printing, the spooling system queues the corresponding spool file for output to the printer. The spooling system copies the

queued spool files to the printer one at a time.

3. What are the various Disk-Scheduling Algorithms?

The various disk-scheduling algorithms are,

-SCAN Scheduling

4. What is Low-Level Formatting?

Before a disk can store data, it must be divided into sectors that the disk controller can read and write. This process is called low-level

formatting or physical formatting. Low-level formatting fills the disk with a special data structure for each sector. The data structure for

a sector consists of a header, a data area, and a trailer.

5. What is the use of Boot Block?

For a computer to start running when powered up or rebooted it needs to have an initial program to run. This bootstrap program tends

to be simple. It finds the operating system on the disk loads that kernel into memory and jumps to an initial address to begin the

operating system execution. The full bootstrap program is stored in a partition called the boot blocks, at fixed location on the disk. A

disk that has boot partition is called boot disk or system disk.

6. What is Sector Sparing?

Low-level formatting also sets aside spare sectors not visible to the operating system. The controller can be told to replace each bad

sector logically with one of the spare sectors. This scheme is known as sector sparing or forwarding.

7. What are the techniques used for performing I/O.

8. Give an example of an application in which data in a file should be accessed in the following order:

Sequentially - Print the content of the file.

Randomly - Print the content of record i. This record can be found using hashing or index techniques

9. What problems could occur if a system allowed a file system to be mounted simultaneously at more than one location?

There would be multiple paths to the same file, which could confuse users or encourage mistakes. (Deleting a file with one path deletes

the file in all the other paths.)

10. Why must the bit map for file allocation be kept on mass storage rather than in main memory?

In case of system crash (memory failure), the free-space list would not be lost as it would be if the bit map had been stored in main

memory.

11. What criteria should be used in deciding which strategy is best utilized for a particular file?

Contiguous - File is usually accessed sequentially, if file is relatively small.

Linked - File is usually accessed sequentially, if the file is large.

Indexed - File is usually accessed randomly, if file is large.

12. What is meant by RAID?

"RAID" is now used as an umbrella term for computer data storage schemes that can divide and replicate data among multiple hard

disk drives. The different schemes architectures are named by the word RAID followed by a number, as in RAID 0, RAID 1, etc.

RAID's various designs involve two key design goals: increase data reliability and/or increase output performance. When multiple

physical disks are set up to use RAID technology, they are said to be in a RAID array.

13. What is meant by Stable Storage?

Stable storage is a classification of computer data storage technology that guarantees atomicity for any given write operation and

allows software to be written that is robust against some hardware and power failures. To be considered atomic, upon reading back a

just written-to portion of the disk, the storage subsystem must return either the write data or the data that was on that portion of the disk

before the write operation.

14. What is meant by Tertiary Storage?

Tertiary storage or tertiary memory provides a third level of storage. Typically it involves a robotic mechanism which will mount

(insert) and dismount removable mass storage media into a storage device according to the system's demands; this data is often copied

to secondary storage before use.

15. Write a note on Descriptor?

UNIX processes use descriptors to reference I/O streams. Descriptors are small unsigned integers obtained from the open and socket

system calls.. A read or write system call can be applied to a descriptor to transfer data. The close system call can be used to deallocate

any descriptor. Descriptors represent underlying objects supported by the kernel, and are created by system calls specific to the type of

object. In 4.4BSD, three kinds of objects can be represented by descriptors: files, pipes, and sockets.

16. Write short notes on Pipes?

A pipe is a linear array of bytes, as is a file, but it is used solely as an I/O stream, and it is unidirectional. It also has no name, and thus

cannot be opened with open. Instead, it is created by the pipe system call, which returns two descriptors, one of which accepts input

that is sent to the other descriptor reliably, without duplication, and in order. The system also supports a named pipe or FIFO. A FIFO

has properties identical to a pipe, except that it appears in the file system; thus, it can be opened using the open system call. Two

processes that wish to communicate each open the FIFO: One opens it for reading, the other for writing.

14 MARKS

1. Explain the allocation methods for disk space?

2. What are the various methods for free space management?

3. Write about the kernel I/O subsystem.

4. Explain the various disk scheduling techniques

-SCAN

-LOOK

5. Write notes about disk management and swap-space management.

6. Explain in detail the allocation and freeing the file storage space.

7. Explain the backup and recovery of files.

8. Discuss with diagrams the following three disk scheduling: FCFS, SSTF, CSCAN.

9. Compare and contrast the FREE SPACE and SWAP SPACE management.

10. Explain the disk scheduling algorithms

11. Describe the most common schemes for defining the logical structure of a

Directory.

12. Explain the life cycle of an I/O request with flowchart.

13. Discuss about the UNIX file system in detail.

14. Discuss briefly about Memory Management in UNIX.

15. Explain the process management under LINUX OS.

16. In what ways the directory is implemented?

17. Explain linked allocation in detail.

18. Write the indexed allocation with its performance.

19. Explain the I/O hardware.

20. Explain in detail about Raid

ONLINE QUESTIONS

UNIT-I

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

Operating system is
referred as

Control
program

Resource
allocator

Resource
manager All of these All of these

Systems have more
than one processor in
close communication
are called

Tightly coupled
system

Loosely
coupled
systems

Co-operative
system All of these

Tightly coupled
system

The system, which
takes task’s priority over
other tasks is

Soft real
system

Co operating
system

Multiprocessor
System

Hard real
time

Soft real
system

The system which
provide a file-system

Compute-
Server system

File server
system

Client server
system All of these

File server
system

interface where clients
can create, update,
read, and delete files.

The system which has a
small amount of
memory include slow
processors and feature
small display screens is
referred as Mainframe Desktop Multiprocessor Hand held Hand held

Which of the following is
a not Symmetric
Multiprocessing system Windows NT OS/2 UNIX

Sun OS
version 4

Sun OS
version 4

Privileged instructions
can be executed by User kernel

Both kernel &
user

None of the
above kernel

How is the protection for
memory provided

Using Physical
& Logical
address

Using index
register

Using base &
limit register

Using
program
counter

Using base &
limit register

Mechanism used for
processor allocation is
called

Disk
scheduling

CPU
scheduling

Job
scheduling

None of
these

CPU
scheduling

PCB holds the
information about I/O Memory Process All of these All of these

The process which
spend more time in
processor is called Bound process

CPU Bound
process

I/O bound
process

None of
these

CPU Bound
process

A process does not
affect or affected by the
other processes
executing in the system
is called Sharing system

cooperating
system

Independent
process

None of
these

Independent
process

Fork return 0 to create Parent process Child process
Separate new
process All of these Child process

The scheduler selects
processes from the job
pool and loads them
into memory for
execution is called

Short-term
scheduler

Long-term
scheduler

Medium term
scheduler All of these

Long-term
scheduler

Which of the following is
NOT an operation on
process

Copy the
process

Change a
process priority

Block a
process

Wake up a
process

Copy the
process

The state that the
process is waiting to be
assigned to a processor
is called as New Running Waiting Ready Ready

Sender never blocks in -
-------------- Buffering
method Zero capacity

Bounded
Capacity

Unbounded
capacity All of these

Unbounded
capacity

The module that gives
control of the CPU to
the process selected by
the short-term
scheduler.

Long-term
scheduler

Medium term
scheduler Dispatcher All of these Dispatcher

The user who read
information from buffer
is called as Producer Consumer Reader

None of
these Consumer

Execlp system call is
used to________

Replace the
process

Execute the
command

Invoke the
specified file All of these

Replace the
process

memory space memory space

Which system is a
collection of loosely
coupled processors
interconnected by a
communication
network?

Clustered
system

Distributed
system

Mainframe
system

Real time
system

Distributed
system

A fault-tolerant system
should continue to
function, perhaps in a
degrade form, when
faced with failures such
as ___________

Communication
faults

Storage-device
crashes

Machine
failures All of these All of these

The capability of a
system to adapt to
increased service load
is its ____________ Scalability Reliability Flexibility Atomicity Scalability

A _________ consists
of a set of machines
under a dedicated
cluster server. Cross cluster Networking Cluster

None of
these Cluster

A ________ is a
software entity running
on one or more
machines and providing
a particular type of
function to a priori
unknown clients. Server Interface Client Service Client

A __________ DFS
facilitates user mobility
by bringing the user’s
environment to
wherever a user logs in. Trparent Conventional Dependent Independent Trparent

Which problem is the
major drawback of
caching? Cache update

Cache-
consistency Buffer cache Page cache

Cache-
consistency

In __________, the
name of a file does not
reveal any hint of the
file’s physical storage
location.

Location
independence

Location
trparency

Location
dependence

None of
these

Location
trparency

Which is the smallest
set of files that can be
stored in a single
machine, independently
from other units? Physical unit Logical unit FCB

Component
unit

Component
unit

A _______ is a file
service system whose
clients, servers, and
storage devices are
dispersed among the
sites of a distributed
system. AFS NFS DFS RPC DFS

 In event ordering, if two
events A and B, are not
related by the ? relation,
then they will be Sequentially Independently Monotonically Concurrently Concurrently

executed _______.

In fully distributed
approach of mutual
exclusion, a number of
messages per critical
section entry is
________. 2 * (n-1) 4 * (n-1) 2 * (n-2) 4 * (n-2) 2 * (n-1)

A _______ is a special
type of message that is
passed around the
system. File Request Token Release Token

Which one of the
following is an
advantage of Single-
Coordinator approach? Bottleneck

Simple
implementation Vulnerability

None of
these

Simple
implementation

The __________
includes a multitude of
components, some
written from scratch,
others borrowed from
other development
projects. Linux kernel

Linux
distribution Linux system

Linux
licensing Linux system

The _________
standard document is
maintained by the Linux
community as a me of
keeping compatibility
across the various
system components. Slackware

File trfer
protocol Public domain

File system
hierarchy

File system
hierarchy

One of the difficulty
faced with deadlock
prevention scheme is
the possibility of
__________ Semaphore Starvation

Mutual
exclusion All of these Starvation

Which of the following
is/are the components
of Linux system? Kernel

System
libraries

System
utilities All of these All of these

The algorithms that
determine where a new
copy of the coordinator
should be restarted are
called__________

Election
algorithms

Stack
algorithm

Local
replacement
algorithms

Elevator
algorithm

Election
algorithms

________ represent
separate, concurrent
execution contexts
within a single process
running a single
program. Fork Kernel Threads Exec Threads

____________manages
the execution of user
programs to prevent
errors and improper use
of the computer

control
program CPU process thread

control
program

The user view of the
computer varies by the
_________obeing used system interface terminal

None of the
above interface

The primary goal of efficient increased convenience None of the convenience

operating system is
__________for the user

throughput above

To speed up the
processing, operators
__________together
the jobs with similar
needs delete time share transfer batched batched

______ were the first
computers used to
tackle many
commercial & scientific
applications.

Mainframe
systems

Desktop
systems

Real time
systems

Distributed
system

Mainframe
systems

__________ increases
CPU utilization by
organizing jobs so that
the CPU always has
one to execute.

Mainframe
systems

Desktop
systems

Real time
systems

Multi
programmed
systems

Multi
programmed
systems

A process is a program
in _________ Compilation execution Memory Stack execution

_________ is one of the
advantage of
multiprocessor systems Self replicating

Decreased
overhead

Increased
reliability

Worm
protection

Increased
reliability

A _____ network exists
within a room a, floor
or a building WAN MAN LAN SAN LAN

Compute receiver
systems provide an
______to which clients
can send requests to
perform an action. cable interface server client interface

Distributed systems is
also known as
____________.

Tightly coupled
systems

Loosely
coupled
systems

None of the
above Both a & b

Loosely
coupled
systems

___________ gather
together multiple CPUs
to accomplish
computational work.

Distributed
systems

real time
systems

clustered
systems

None of the
above

clustered
systems

systems has well
defined ,fixed time
constraints

Distributed
systems

real time
systems

clustered
systems

None of the
above

real time
systems

In _________ real time
system ,a critical real
time tasks gets priority
over other tasks.

Hard real time
systems

Soft real time
systems Both

None of the
above

Soft real time
systems

_______ denotes the
current activity of a
process state stack program registers state

PCB is expanded as

program
control block

process
control block

producer
consumer

None of the
above

process
control block

block

When a process enters
a system ,it is put into
_____queue ready queue job queue device queue

None of the
above job queue

When a process is
ready and waiting to
execute is kept in
________ queue. ready queue job queue device queue

None of the
above ready queue

Each device has its own
______queue. ready queue job queue device queue

None of the
above device queue

_______scheduler
selects from among the
processes that are
ready to execute &
allocate CPU to them.

Long time
scheduler

Short time
scheduler

None of the
above Both a & b

Short time
scheduler

UNIT-II

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

The process is also
known as Program section Code section Text section None of these Text section

The temporary data in
a process is stored in
the List Stack Queue Memory Stack

The global variables
of a process is stored
in the Program section Text section Data section None of these Data section

The program is also
known as Active entity Process entity Code entity Passive entity Passive entity

The process is also
known as Active entity Process entity Code entity Passive entity Active entity

The process shifts
from the running to
ready state when Exit I/O event occurs Interrupt occurs None of these Interrupt occurs

The process shifts
from waiting state to
running state after the

I/O event
completion Exit I/O event occurs Interrupt occurs I/O event completion

The process control
block is also known
as

Code control
block Task control block

Program control
block None of these Task control block

The ready queue is
implemented as Queue Stack List Graph List

Which queue has its
header pointing to first
and the final PCB? Job queue I/O queue Ready queue None of these Ready queue

Which of the following
queues are found in
Queuing diagram Device queue

Ready queue and
device queue

Job queue and
ready queue

Device and job
queue

Ready queue and
device queue

The selection of a
process is carried out
by the Enqueuer Dequeuer Selector Scheduler Scheduler

The long term
scheduler is also
known as CPU scheduler Job scheduler

Short term
scheduler

Medium
scheduler Job scheduler

The short term
scheduler is also
known as CPU scheduler Job scheduler

Short term
scheduler

Medium
scheduler CPU scheduler

The long term
scheduler controls the
degree of Consistency Processing Multiprogramming None of these Multiprogramming

Which scheduler
should select the
good mix of I/O and
CPU bound process CPU scheduler

Medium term
scheduler

Short term
scheduler Job scheduler Job scheduler

The time sharing
scheduler has CPU scheduler

Medium term
scheduler

Short term
scheduler Job scheduler

Medium term
scheduler

The phenomenon of
stopping the process
temporarily and
reintroducing it into
the memory and
executing it from
where it left off Shifting Controlling Swapping None of these Swapping

Switching the CPU to
another process
requires saving the
state of the old
process and loading
the saved state for the
new process is called
as Swapping Shifting Context switching Switching Context switching

Which of the following
are not found in the
PCB? Context Process counter Register None of these None of these

Which system call is
used to create child
process?

Create process
system call Fork system call Execlp system call Wait system call Fork system call

The process identifier
returned by the fork
system call for the
new child process is Non zero value Zero is returned Void None of these Zero is returned

The process identifier
returned by the fork
system call for the
parent process is Non zero value Zero is returned Void None of these Non zero value

Which system call is
used to replace the
process memory
space with a new
program? Signal Wait Fork Execlp Execlp

The phenomenon of
terminating the child
process when the
parent process
terminates is called

Parallel
termination Process termination

Controlled
termination

Cascaded
termination

Cascaded
termination

Which module
gives control of
the CPU to the
process selected
by the short-term
scheduler? dispatcher interrupt scheduler

none of the
mentioned dispatcher

The interval from
the time of
submission of a
process to the
time of completion
is termed as waiting time turnaround time response time throughput turnaround time

Which scheduling
algorithm
allocates the CPU
first to the process
that requests the
CPU first?

first-come,
first-served
scheduling

shortest job
scheduling

priority
scheduling

none of the
mentioned

first-come, first-
served
scheduling

In priority
scheduling
algorithm

CPU is
allocated to the
process with
highest priority

CPU is allocated to
the process with
lowest priority

equal priority
processes can
not be
scheduled

none of the
mentioned

CPU is allocated to
the process with
highest priority

In priority
scheduling
algorithm, when a
process arrives at
the ready queue,
its priority is
compared with the
priority of all process

currently running
process parent process init process

currently running
process

Time quantum is
defined in

shortest job
scheduling
algorithm

round robin
scheduling
algorithm

priority
scheduling
algorithm

multilevel
queue
scheduling
algorithm

round robin
scheduling
algorithm

Process are
classified into
different groups in

shortest job
scheduling
algorithm

round robin
scheduling
algorithm

priority
scheduling
algorithm

multilevel
queue
scheduling
algorithm

multilevel queue
scheduling
algorithm

In multilevel
feedback
scheduling
algorithm

a process can
move to a
different
classified ready
queue

classification of
ready queue is
permanent

processes are
not classified
into groups

none of the
mentioned

a process can
move to a different
classified ready
queue

Which one of the
following can not
be scheduled by
the kernel?

kernel level
thread user level thread process

none of the
mentioned user level thread

CPU scheduling is
the basis of

multiprocessor
systems

multiprogramming
operating
systems

 larger memory
sized systems

None of
these

multiprogramming
operating
systems

With
multiprogramming,
______ is used
productively. time space money All of these time

The two steps of a
process execution
are : (choose two) I/O Burst CPU Burst Memory Burst OS Burst a and b

An I/O bound
program will
typically have :

a few very
short CPU
bursts

many very short
I/O bursts

many very
short CPU
bursts

a few very
short I/O
bursts

many very short
CPU bursts

A process is
selected from the
______ queue by
the ________
scheduler, to be
executed.

blocked, short
term wait, long term

ready, short
term

ready, long
term ready, short term

In the following
cases non –
preemptive
scheduling occurs :
(Choose two)

When a
process
switches from
the running
state to the
ready state

When a process
goes from the
running state to the
waiting state

When a process
switches from
the waiting state
to the ready
state

When a
process
terminates

When a process
terminates

The switching of
the CPU from one
process or thread
to another is
called

process
switch task switch context switch All of these All of these

Dispatch latency
is

the speed of
dispatching a
process from
running to the
ready state

the time of
dispatching a
process from
running to ready
state and keeping
the CPU idle

the time to stop
one process
and start
running
another one

None of
these

the time to stop
one process and
start running
another one

Scheduling is
done so as to :

increase CPU
utilization

decrease CPU
utilization

keep the CPU
more idle

None of
these

increase CPU
utilization

Scheduling is
done so as to

increase the
throughput

decrease the
throughput

increase the
duration of a
specific amount
of work

None of
these

increase the
throughput

Turnaround time
is :

the total
waiting time
for a process
to finish
execution

the total time
spent in the ready
queue

the total time
spent in the
running queue

the total time
from the
completion till
the
submission of
a process

the total time from
the completion till
the submission of
a process

Scheduling is
done so as to

increase the
turnaround
time

decrease the
turnaround time

keep the
turnaround
time same

there is no
relation
between
scheduling
and
turnaround
time

decrease the
turnaround time

Waiting time is

the total time in
the blocked and
waiting queues

the total time spent
in the ready queue

the total time
spent in the
running queue

the total time
from the
completion till
the submission
of a process

the total time spent
in the ready queue

Scheduling is
done so as to

increase the
waiting time

keep the waiting
time the same

decrease the
waiting time

None of
these

decrease the
waiting time

Response time is

the total time
taken from the
submission
time till the
completion
time

the total time
taken from the
submission time
till the first
response is
produced

the total time
taken from
submission
time till the
response is
output

None of
these

the total time
taken from the
submission time
till the first
response is
produced

Scheduling is
done so as to :

increase the
response time

keep the
response time the
same

decrease the
response time

None of
these

decrease the
response time

Concurrent
access to shared
data may result in

data
consistency data insecurity

data
inconsistency

None of
these

data
inconsistency

A situation where
several processes
access and
manipulate the
same data
concurrently and
the outcome of the
execution
depends on the
particular order in
which access
takes place is
called

data
consistency race condition aging starvation race condition

The segment of
code in which the
process may
change common
variables, update
tables, write into
files is known as program critical section

non – critical
section synchronizing critical section

Mutual exclusion
implies that

if a process is
executing in
its critical
section, then
no other
process must
be executing
in their critical
sections

if a process is
executing in its
critical section,
then other
processes must
be executing in
their critical
sections

if a process is
executing in its
critical section,
then all the
resources of
the system
must be
blocked until it
finishes
execution

None of
these

if a process is
executing in its
critical section,
then no other
process must be
executing in their
critical sections

Bounded waiting
implies that there
exists a bound on
the number of
times a process is
allowed to enter
its critical section

after a
process has
made a
request to
enter its
critical section
and before the
request is
granted

when another
process is in its
critical section

before a
process has
made a request
to enter its
critical section

None of
these

after a process
has made a
request to enter
its critical section
and before the
request is
granted

A minimum of
_____ variable(s)
is/are required to
be shared
between
processes to solve
the critical section
problem one two three four two

In the bakery
algorithm to solve
the critical section
problem

each process is
put into a
queue and
picked up in an
ordered
manner

each process
receives a number
(may or may not be
unique) and the
one with the lowest
number is served
next

each process
gets a unique
number and the
one with the
highest number
is served next

each process
gets a unique
number and
the one with
the lowest
number is
served next

each process
receives a number
(may or may not be
unique) and the
one with the lowest
number is served
next

A monitor is a type
of semaphore

low level
synchronization
construct

high level
synchronization
construct

None of
these

high level
synchronization
construct

A monitor is
characterized by

a set of
programmer
defined
operators an identifier

the number of
variables in it All of these

a set of
programmer
defined operators

Dispatch latency
is

the speed of
dispatching a
process from
running to the
ready state

the time of
dispatching a
process from
running to ready
state and keeping
the CPU idle

the time to stop
one process
and start
running
another one

None of
these

the time to stop
one process and
start running
another one

UNIT-III

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

In the resource
allocation graph Pi-
>Rj is the

Assignment
edge Process edge Request edge None of these Request edge

In the resource
allocation graph Ri-
>Pj is the

Assignment
edge Process edge Request edge None of these

Assignment
edge

The resource
allocation graph is
allocation is
applicable for

Single user
system

Multi user
system

Single instance
of a single
resource

Multiple
instance of
single
resource

Multiple
instance of
single resource

Which of these is
not a dead lock
prevention
mechanism

Mutual
exclusion Hold and wait Safe sequence No preemption Safe sequence

The resource
allocation graph
algorithm has
additional edge
called Request edge Resource edge Claim edge

Assignment
edge Claim edge

The data structures
like available,
maximum,
allocation and need
are available in

Resource
allocation

graph

algorithm
Banker’s
algorithm None of these

graph

algorithm
Which of these is
not a disadvantage
of the deadlock
prevention
method?

Low resource
utilization Starvation Unsafe state None of these Unsafe state

What is the
reusable
resource?

that can be
used by one
process at a
time and is
not depleted
by that use

that can be
used by
more than
one process
at a time

that can be
shared
between
various
threads

none of the
mentioned

that can be
used by one
process at a
time and is
not depleted
by that use

Which of the
following
condition is
required for
deadlock to be
possible?

mutual
exclusion

a process
may hold
allocated
resources
while
awaiting
assignment
of other
resources

no resource
can be
forcibly
removed
from a
process
holding it

all of the
mentioned

all of the
mentioned

A system is in
the safe state if

the system
can allocate
resources to
each
process in
some order
and still
avoid a
deadlock

there exist a
safe
sequence

both (a) and
(b)

none of the
mentioned

both (a) and
(b)

The circular
wait condition
can be
prevented by

defining a
linear
ordering of
resource
types using thread using pipes

all of the
mentioned

defining a
linear
ordering of
resource
types

Which one of the
following is the
deadlock
avoidance
algorithm?

banker’s
algorithm

round-robin
algorithm

elevator
algorithm

karn’s
algorithm

banker’s
algorithm

What is the
drawback of
banker’s
algorithm?

in advance
processes
rarely know
that how
much
resource
they will
need

the number
of processes
changes as
time
progresses

resource
once
available
can
disappear

all of the
mentioned

all of the
mentioned

For effective
operating
system, when to
check for
deadlock?

every time a
resource
request is
made

at fixed time
intervals

both (a) and
(b)

none of the
mentioned

both (a) and
(b)

A problem
encountered in
multitasking
when a process
is perpetually
denied
necessary
resources is
called deadlock starvation inversion aging starvation
Which one of the
following is a
visual (
mathematical)
way to determine
the deadlock
occurrence?

resource
allocation
graph

starvation
graph

inversion
graph

none of the
mentioned

resource
allocation
graph

To avoid
deadlock

there must
be a fixed
number of
resources to
allocate

resource
allocation
must be
done only
once

all
deadlocked
processes
must be
aborted

inversion
technique
can be used

there must
be a fixed
number of
resources to
allocate

The number of
resources
requested by a
process

must always
be less than
the total
number of
resources
available in
the system

must always
be equal to
the total
number of
resources
available in
the system

must not
exceed the
total number
of resources
available in
the system

must
exceed the
total
number of
resources
available in
the system

must not
exceed the
total number
of resources
available in
the system

The request
and release of
resources are

command
line
statements interrupts system calls

special
programs system calls

Multithreaded
programs are :

lesser prone
to deadlocks

more prone
to deadlocks

not at all
prone to
deadlocks

none of the
mentioned

more prone
to deadlocks

For Mutual
exclusion to
prevail in the
system

at least one
resource
must be held
in a non
sharable
mode

the processor
must be a
uniprocessor
rather than a
multiprocessor

there must be
at least one
resource in a
sharable
mode All of these

at least one
resource
must be held
in a non
sharable
mode

For a Hold and
wait condition to
prevail

A process
must be not
be holding a
resource,
but waiting
for one to be
freed, and
then request
to acquire it

A process
must be
holding at
least one
resource and
waiting to
acquire
additional
resources
that are
being held by
other
processes

A process
must hold at
least one
resource
and not be
waiting to
acquire
additional
resources

None of
these

A process
must be
holding at
least one
resource
and waiting
to acquire
additional
resources
that are
being held
by other
processes

Deadlock
prevention is a
set of methods

to ensure
that at least
one of the
necessary
conditions
cannot hold

to ensure
that all of the
necessary
conditions do
not hold

to decide if
the
requested
resources
for a
process
have to be
given or not

to recover
from a
deadlock

to ensure
that at least
one of the
necessary
conditions
cannot hold

For non
sharable
resources like a
printer, mutual
exclusion must exist

must not
exist may exist

None of
these must exist

For sharable
resources,
mutual
exclusion is required

is not
required

None of
these

is not
required

To ensure that
the hold and
wait condition
never occurs in
the system, it
must be
ensured that

whenever a
resource is
requested
by a
process, it is
not holding
any other
resources

 each
process must
request and
be allocated
all its
resources
before it
begins its
execution

a process
can request
resources
only when it
has none All of these All of these

The
disadvantage of
a process being
allocated all its
resources before
beginning its
execution is

Low CPU
utilization

Low resource
utilization

Very high
resource
utilization

None of
these

Low resource
utilization

To ensure no
preemption, if a
process is
holding some
resources and
requests
another
resource that
cannot be
immediately
allocated to it

then the
process
waits for the
resources
be allocated
to it

the process
keeps
sending
requests until
the resource
is allocated
to it

the process
resumes
execution
without the
resource
being
allocated to
it

then all
resources
currently
being held
are
preempted

then all
resources
currently
being held
are
preempted

One way to
ensure that the
circular wait
condition never
holds is to

impose a
total
ordering of
all resource
types and to
determine
whether one
precedes
another in
the ordering

to never let a
process
acquire
resources
that are held
by other
processes

to let a
process wait
for only one
resource at
a time All of these

impose a
total
ordering of
all resource
types and to
determine
whether one
precedes
another in
the ordering

Given a priori
information
about the

number of
resources of
each type that
maybe
requested for
each process, it
is possible to
construct an
algorithm that
ensures that the
system will
never enter a
deadlock state. minimum average maximum approximate maximum

A deadlock
avoidance
algorithm
dynamically
examines the
__________, to
ensure that a
circular wait
condition can
never exist.

resource
allocation
state

system
storage state

operating
system resources

resource
allocation
state

A state is safe,
if

the system
does not
crash due to
deadlock
occurrence

the system
can allocate
resources to
each process
in some
order and
still avoid a
deadlock

the state
keeps the
system
protected
and safe All of these

the system
can allocate
resources to
each
process in
some order
and still
avoid a
deadlock

A system is in a
safe state only if
there exists a

safe
allocation

safe
resource

safe
sequence All of these

safe
sequence

All unsafe
states are : deadlock not deadlock fatal

none of the
mentioned

not
deadlock

If no cycle
exists in the
resource
allocation graph
:

then the
system will
not be in a
safe state

then the
system will
be in a safe
state either a or b

None of
these

then the
system will
be in a safe
state

The resource
allocation graph
is not applicable
to a resource
allocation
system

with multiple
instances of
each
resource
type

with a single
instance of
each
resource
type

Both a and
b

None of
these

with multiple
instances of
each
resource
type

The Banker’s
algorithm is

than the
resource
allocation graph
algorithm less efficient

more
efficient

None of
these less efficient

The content of
the matrix Need
is :

Allocation –
Available

Max –
Available

Max –
Allocation

Allocation –
Max

Max –
Allocation

The wait-for
graph is a
deadlock
detection
algorithm that is
applicable when

all resources
have a
single
instance

all resources
have multiple
instances both a and b

all resources
have a
single
instance

An edge from
process Pi to Pj
in a wait for
graph indicates
that :

Pi is waiting
for Pj to
release a
resource
that Pi
needs

Pj is waiting
for Pi to
release a
resource that
Pj needs

Pi is waiting
for Pj to
leave the
system

Pj is waiting
for Pi to
leave the
system

Pi is waiting
for Pj to
release a
resource
that Pi
needs

If the wait for
graph contains
a cycle :

then a
deadlock
does not
exist

then a
deadlock
exists

then the
system is in
a safe state either b or c

then a
deadlock
exists

If deadlocks
occur frequently,
the detection
algorithm must
be invoked
________. rarely frequently

none of the
mentioned frequently

The
disadvantage of
invoking the
detection
algorithm for
every request is

overhead of
the
detection
algorithm
due to
consumption
of memory

excessive
time
consumed in
the request
to be
allocated
memory

considerable
overhead in
computation
time All of these

considerable
overhead in
computation
time

A deadlock
eventually
cripples system
throughput and
will cause the
CPU utilization
to ______. increase drop stay still

None of
these drop

A computer
system has 6
tape drives, with
‘n’ processes
competing for
them. Each
process may
need 3 tape
drives. The
maximum value
of ‘n’ for which
the system is
guaranteed to
be deadlock
free is : 2 3 4 1 2

A system has 3
processes
sharing 4
resources. If
each process
needs a
maximum of 2
units then,
deadlock :

can never
occur may occur has to occur

None of
these

can never
occur

‘m’ processes
share ‘n’
resources of the
same type. The
maximum need
of each process
doesn’t exceed
‘n’ and the sum
of all their
maximum
needs is always
less than m+n.
In this setup,
deadlock :

can never
occur may occur has to occur

None of
these

can never
occur

Physical
memory is
broken into
fixed-sized
blocks called
________. frames pages

backing
store

None of
these frames

Logical memory
is broken into
blocks of the
same size frames pages

backing
store

None of
these pages

called _______

The
__________ is
used as an
index into the
page table frame bit page number page offset frame offset

page
number

The _____ table
contains the
base address of
each page in
physical
memory. process memory page frame page

The size of a
page is typically : varied power of 2 power of 4

None of
these power of 2

If the size of
logical address
space is 2 to
the power of m,
and a page size
is 2 to the
power of n
addressing
units, then the
high order
_____ bits of a
logical address
designate the
page number,
and the ____
low order bits
designate the
page offset. m, n n, m m – n, m m – n, n m – n, n

With paging
there is no

fragmentation. internal external

either type
of

None of
these external

The operating
system
maintains a
______ table
that keeps track
of how many
frames have
been allocated,
how many are
there, and how page mapping frame memory frame

many are
available

Paging
increases the
______ time. waiting execution

context –
switch All of these

context –
switch

Smaller page
tables are
implemented as
a set of
_______. queues stacks counters registers registers

The page table
registers should
be built with
_______.

very low
speed logic

very high
speed logic

a large
memory
space

None of
these

very high
speed logic

For larger page
tables, they are
kept in main
memory and a

points to the
page table.

page table
base
register

page table
base pointer

page table
register
pointer

 page table
base

page table
base
register

For every
process there is
a _________ page table

copy of page
table

pointer to
page table All of these page table

UNIT-IV

Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer

Because of virtual memory,
the memory can be shared
among

processes threads instructions none of the
mentioned

 processes

_____ is the concept in
which a process is copied
into main memory from the
secondary memory
according to the
requirement. Paging

Demand
paging Segmentation Swapping Demand paging

The pager concerns with
the

individual
page of a
process entire process entire thread

first page of
a process entire process

Swap space exists in
primary
memory

secondary
memory CPU

none of the
mentioned

secondary
memory

When a program tries to
access a page that is
mapped in address space
but not loaded in physical
memory, then

segmentation
fault occurs fatal error occurs

page fault
occurs

no error
occurs

page fault
occurs

Effective access time is
directly proportional to

page-fault
rate hit ratio

memory
access time

none of the
mentioned page-fault rate

In FIFO page replacement
algorithm, when a page
must be replaced

oldest page is
chosen

newest page is
chosen

random page
is chosen

none of the
mentioned

oldest page is
chosen

Which algorithm chooses
the page that has not been
used for the longest period
of time whenever the page
required to be replaced?

first in first out
algorithm

additional
reference bit
algorithm

least recently
used
algorithm

counting
based page
replacement
algorithm

least recently
used algorithm

A process is thrashing if

it is spending
more time
paging than
executing

it is spending
less time
paging than
executing

page fault
occurs

swapping
can not take
place

it is spending
more time
paging than
executing

Working set model for page
replacement is based on
the assumption of modularity locality globalization

random
access locality

Error handler codes, to
handle unusual errors are :

almost never
executed

executed very
often

executed
periodically

None of
these

almost never
executed

In virtual memory. the
programmer __________ of
overlays.

has to take
care

does not have
to take care None of these

does not have to
take care

The instruction being
executed, must be in :

physical
memory logical memory None of these

physical
memory

Virtual memory is normally
implemented by ________.

demand
paging buses virtualization All of these demand paging

Segment replacement
algorithms are more
complex than page
replacement algorithms
because :

Segments are
better than
pages

Pages are
better than
segments

Segments
have variable
sizes

Segments
have fixed
sizes

Segments have
variable sizes

A swapper manipulates
___________, whereas the
pager is concerned with
individual _______ of a
process.

the entire
process, parts

all the pages of
a process,
segments

the entire
process,
pages

None of
these

the entire
process, pages

Because of virtual memory,
the memory can be shared
among processes threads instructions

none of the
mentioned processes

_____ is the concept in
which a process is copied
into main memory from the
secondary memory
according to the
requirement. Paging

Demand
paging Segmentation Swapping Demand paging

The pager concerns with
the

individual
page of a
process entire process entire thread

first page of
a process

individual page
of a process

Swap space exists in
primary
memory

secondary
memory CPU

none of the
mentioned

secondary
memory

When a program tries to
access a page that is
mapped in address space
but not loaded in physical
memory, then

segmentation
fault occurs

fatal error
occurs

page fault
occurs

no error
occurs

page fault
occurs

Effective access time is
directly proportional to

page-fault
rate hit ratio

memory
access time

none of the
mentioned page-fault rate

In FIFO page replacement
algorithm, when a page
must be replaced

oldest page is
chosen

newest page is
chosen

random page
is chosen

none of the
mentioned

oldest page is
chosen

Which algorithm chooses
the page that has not been
used for the longest period
of time whenever the page
required to be replaced?

first in first out
algorithm

additional
reference bit
algorithm

least recently
used
algorithm

counting
based page
replacement
algorithm

least recently
used algorithm

A process is thrashing if

it is spending
more time
paging than
executing

it is spending
less time
paging than
executing

page fault
occurs

swapping
can not take
place

it is spending
more time
paging than
executing

Working set model for page
replacement is based on
the assumption of modularity locality globalization

random
access locality

When using counters to
implement LRU, we replace
the page with the :

smallest time
value

largest time
value greatest size

None of the
mentioned

smallest time
value

There is a set of page
replacement algorithms that
can never exhibit Belady’s
Anomaly, called :

queue
algorithms

stack
algorithms

string
algorithms

None of the
mentioned stack algorithms

Increasing the RAM of a
computer typically improves
performance because:

Virtual
memory
increases

Larger RAMs
are faster

Fewer page
faults occur

None of the
mentioned

Fewer page
faults occur

The essential content(s) in
each entry of a page table
is / are :

Virtual page
number

Page frame
number

Both virtual
page number
and page
frame number

Access right
information

Page frame
number

The minimum number of
page frames that must be
allocated to a running
process in a virtual
memory environment is
determined by :

the instruction
set
architecture page size

physical
memory size

number of
processes in
memory

the instruction
set architecture

The reason for using the
LFU page replacement
algorithm is :

an actively
used page
should have a
large
reference
count

a less used
page has more
chances to be
used again

it is extremely
efficient and
optimal

All of the
mentioned

an actively used
page should
have a large
reference count

The reason for using the
MFU page replacement
algorithm is :

an actively
used page
should have a
large
reference
count

a less used
page has more
chances to be
used again

it is extremely
efficient and
optimal

All of the
mentioned

a less used
page has more
chances to be
used again

The implementation of the
LFU and the MFU algorithm
is very uncommon because
:

they are too
complicated

they are
optimal

they are
expensive

All of the
mentioned

they are
expensive

The minimum number of
frames to be allocated to a
process is decided by the :

the amount of
available
physical

Operating
System

instruction set
architecture

None of the
mentioned

instruction set
architecture

memory

When a page fault occurs
before an executing
instruction is complete :

the instruction
must be
restarted

the instruction
must be
ignored

the instruction
must be
completed
ignoring the
page fault

None of the
mentioned

the instruction
must be
restarted

Consider a machine in
which all memory reference
instructions have only one
memory address, for them
we need atleast _____
frame(s). one two three

None of the
mentioned two

The maximum number of
frames per process is
defined by :

the amount of
available
physical
memory

Operating
System

instruction set
architecture

None of the
mentioned

the amount of
available
physical
memory

The algorithm in which we
split m frames among n
processes, to give
everyone an equal share,
m/n frames is known as :

proportional
allocation
algorithm

equal
allocation
algorithm

split allocation
algorithm

None of the
mentioned

equal allocation
algorithm

The algorithm in which we
allocate memory to each
process according to its
size is known as :

proportional
allocation
algorithm

equal
allocation
algorithm

split allocation
algorithm

None of the
mentioned

proportional
allocation
algorithm

With either equal or
proportional algorithm, a
high priority process is
treated ___________ a low
priority process. greater than same as lesser than

None of the
mentioned same as

_________ replacement
allows a process to select a
replacement frame from the
set of all frames, even if the
frame is currently allocated
to some other process. Local Universal Global Public Global

_________ replacement
allows each process to only
select from its own set of
allocated frames. Local Universal Global Public Local

One problem with the
global replacement
algorithm is that :

it is very
expensive

many frames
can be
allocated to a
process

only a few
frames can
be allocated
to a process

a process
cannot
control its
own page –
fault rate

a process
cannot control
its own page –
fault rate

________ replacement
generally results in greater
system throughput. Local Global Universal Public Global

A process is thrashing if :

it spends a lot
of time
executing,
rather than
paging

it spends a lot
of time paging,
than executing

it has no
memory
allocated to it

None of
these

it spends a lot of
time paging,
than executing

Thrashing _______ the
CPU utilization. increases keeps constant decreases

None of
these decreases

A locality is :

a set of pages
that are
actively used
together

a space in
memory

an area near
a set of
processes

None of
these

a set of pages
that are actively
used together

When a subroutine is
called,

it defines a
new locality

it is in the
same locality
from where it
was called

it does not
define a new
locality b and c

it defines a new
locality

A program is generally
composed of several
different localities, which
_____ overlap. may must do not must not may

In the working set model,
for :
2 6 1 5 7 7 7 7 5 1 6 2 3 4 1
2 3 4 4 4 3 4 3 4 4 4 1 3 2 3
if DELTA = 10, then the
working set at time t1 (….7
5 1) is : {1, 2, 4, 5, 6} {2, 1, 6, 7, 3} {1, 6, 5, 7, 2} {1, 2, 3, 4, 5} {1, 6, 5, 7, 2}

The accuracy of the
working set depends on the
selection of :

working set
model

working set
size memory size

number of
pages in
memory working set size

If working set window is too
small :

it will not
encompass
entire locality

it may overlap
several
localities

it will cause
memory
problems

None of
these

it will not
encompass
entire locality

If working set window is too
large :

 it will not
encompass
entire locality

it may overlap
several
localities

it will cause
memory
problems

None of
these

it may overlap
several localities

If the sum of the working –
set sizes increases,
exceeding the total number
of available frames :

then the
process
crashes

the memory
overflows

the system
crashes

the
operating
system
selects a
process to
suspend

the operating
system selects a
process to
suspend

Which principle states that
programs, users and even
the systems be given just
enough privileges to
perform their task?

principle of
operating
system

principle of
least privilege

principle of
process
scheduling

none of the
mentioned

principle of least
privilege

_______ is an approach to
restricting system access to
authorized users.

Role-based
access control

Process-based
access control

Job-based
access
control

none of the
mentioned

Role-based
access control

For system protection, a
process should access

all the
resources

only those
resources for
which it has
authorization

few resources
but
authorization
is not
required

all of the
mentioned

only those
resources for
which it has
authorization

If the set of resources
available to the process is
fixed throughout the
process’s lifetime then its
domain is static dynamic

neither static
nor dynamic

none of the
mentioned static

Access matrix model for
user authentication
contains

a list of
objects

a list of
domains

a function
which returns
an object’s
type

all of the
mentioned

all of the
mentioned

UNIT-V

Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer

______ is a unique
tag, usually a number,
identifies the file within
the file system.

File identifier File name File type none of the
mentioned

 File identifier

To create a file

allocate the
space in file
system

make an entry
for new file in
directory both (a) and (b)

none of the
mentioned

both (a) and
(b)

By using the specific
system call, we can open the file read the file

write into the
file

all of the
mentioned

all of the
mentioned

File type can be
represented by file name file extension file identifier

none of the
mentioned file extension

Which file is a sequence
of bytes organized into
blocks understandable
by the system’s linker? object file source file executable file text file object file

What is the mounting
of file system?

crating of a
filesystem

deleting a
filesystem

attaching
portion of the
file system into
a directory
structure

removing
portion of the
file system
into a directory
structure

attaching
portion of the
file system into
a directory
structure

Mapping of file is
managed by file metadata page table virtual memory file system file metadata

Mapping of network
file system protocol to
local file system is
done by

network file
system

local file
system

volume
manager remote mirror

network file
system

Which one of the
following explains the
sequential file access
method?

random
access
according to
the given byte
number

read bytes
one at a time,
in order

read/write
sequentially by
record

read/write
randomly by
record

read bytes one
at a time, in
order

file system
fragmentation occurs
when

unused space
or single file
are not
contiguous

used space is
not
contiguous

unused space
is non-
contiguous

multiple files
are non-
contiguous

unused space
or single file
are not
contiguous

Management of
metadata information
is done by

file-
organisation
module

logical file
system

basic file
system

application
programs

logical file
system

A file control block
contains the
information about file ownership

file
permissions

location of file
contents

all of the
mentioned

all of the
mentioned

Which table contains
the information about
each mounted
volume? mount table

system-wide
open-file table

per-process
open-file table

all of the
mentioned

all of the
mentioned

To create a new file
application program
calls

basic file
system

logical file
system

file-organisation
module

none of the
mentioned

logical file
system

When a process closes
the file

per-process
table entry is
removed

system wide
entry’s open
count is
decremented both (a) and (b)

none of the
mentioned

both (a) and
(b)

What is raw disk?
disk without
file system empty disk

disk lacking
logical file
system

disk having file
system

disk without
file system

The data structure
used for file directory
is called mount table hash table file table process table hash table

In which type of
allocation method
each file occupy a set
of contiguous block on
the disk?

contiguous
allocation

dynamic-
storage
allocation

linked
allocation

indexed
allocation

contiguous
allocation

If the block of free-
space list is free then
bit will 1 0 Any of 0 or 1

none of the
mentioned

1

Which protocol
establishes the initial
logical connection
between a server and
a client?

transmission
control
protocol

user
datagram
protocol mount protocol

datagram
congestion
control
protocol mount protocol

The directory can be
viewed as a
_________, that
translates file names
into their directory
entries. symbol table partition swap space cache symbol table

In the single level
directory :

All files are
contained in
different
directories all
at the same
level

All files are
contained in
the same
directory

Depends on the
operating
system None of these

All files are
contained in
the same
directory

In the single level
directory :

all directories
must have
unique names

all files must
have unique
names

all files must
have unique
owners All of these

all files must
have unique
names

In the two level
directory structure :

each user has
his/her own
user file
directory

the system
has its own
master file
directory both a and b None of these both a and b

The disadvantage of
the two level directory
structure is that :

it does not
solve the
name
collision
problem

it solves the
name collision
problem

it does not
isolate users
from one
another

it isolates
users from
one another

it isolates
users from one
another

In the tree structured
directories,

the tree has
the stem
directory

the tree has
the leaf
directory

the tree has the
root directory All of these

the tree has
the root
directory

The current directory
contains, most of the files
that are :

of current
interest to the
user

stored
currently in
the system

not used in the
system

not of current
interest to the
system

of current
interest to the
user

 An absolute path name
begins at the : leaf stem

current
directory root root

A relative path name
begins at the : leaf stem

current
directory root

current
directory

In tree structure, when
deleting a directory that is
not empty :

The contents
of the
directory are
safe

The contents
of the
directory are
also deleted None of these

The contents
of the directory
are also
deleted

When two users keep a
subdirectory in their own
directories, the structure
being referred to is : tree structure

cyclic graph
directory
structure

two level
directory
structure

acyclic graph
directory

acyclic graph
directory

A tree structure ______ the
sharing of files and
directories. allows may restrict restricts None of these restricts

The operating system
_______ the links when
traversing directory trees,
to preserve the acyclic
structure of the system. considers ignores deletes None of these ignores

The deletion of a link,
________ the original file. deletes affects does not affect None of these does not affect

When keeping a list of all
the links/references to a
file, and the list is empty,
implies that :

the file has no
copies

the file is
deleted

the file is
hidden None of these

the file is
deleted

When a cycle exists, the
reference count maybe
non zero, even when it is
no longer possible to refer
to a directory or file, due to
_______.

the possibility
of one hidden
reference

the possibility
of two hidden
references

the possibility
of self
referencing None of these

the possibility
of self
referencing

In contiguous allocation :

each file must
occupy a set
of contiguous
blocks on the
disk

each file is a
linked list of
disk blocks

all the pointers
to scattered
blocks are
placed together
in one location None of these

each file must
occupy a set
of contiguous
blocks on the
disk

In linked allocation :

each file must
occupy a set
of contiguous
blocks on the
disk

each file is a
linked list of
disk blocks

all the pointers
to scattered
blocks are
placed together
in one location None of these

each file is a
linked list of
disk blocks

In indexed allocation :

each file must
occupy a set
of contiguous
blocks on the
disk

each file is a
linked list of
disk blocks

all the pointers
to scattered
blocks are
placed together
in one location None of these

all the pointers
to scattered
blocks are
placed
together in one
location

On systems where there
are multiple operating
system, the decision to
load a particular one is
done by : boot loader boot strap

process control
block

file control
block boot loader

The VFS (virtual file
system) activates file
system specific operations
to handle local requests
according to their _______. size commands timings

file system
types

file system
types

The real disadvantage of a
linear list of directory
entries is the :

size of the
linear list in
memory

linear search
to find a file it is not reliable All of these

linear search
to find a file

One difficulty of contiguous
allocation is :

finding space
for a new file inefficient costly time taking

finding space
for a new file

A device driver can be
thought of as a translator.
Its input consists of _____
commands and output
consists of _______
instructions.

high level, low
level

low level, high
level

complex,
simple Both a and c

high level, low
level

The file organization
module knows about : files

logical blocks
of files

physical blocks
of files All of these All of these

Metadata includes :

all of the file
system
structure

contents of
files Both a and b None of these Both a and b

For each file their exists a
___________, that
contains information about
the file, including
ownership, permissions
and location of the file
contents. metadata

file control
block

process control
block All of these

file control
block

For processes to request
access to file contents,
they need to :

they need to
run a
seperate
program

they need
special
interrupts

implement the
open and close
system calls None of these

implement the
open and
close system
calls

During compaction time,
other normal system
operations _______ be
permitted. can cannot is None of these cannot

When in contiguous
allocation the space cannot
be extended easily :

the contents
of the file
have to be
copied to a
new space, a
larger hole

the file gets
destroyed

the file will get
formatted and
loose all its
data None of these

the contents of
the file have to
be copied to a
new space, a
larger hole

There is no __________
with linked allocation.

internal
fragmentation

external
fragmentation starvation All of these

external
fragmentation

The major disadvantage
with linked allocation is that
:

internal
fragmentation

external
fragmentation

there is no
sequential
access

there is only
sequential
access

there is only
sequential
access

If a pointer is lost or
damaged in a linked
allocation :

the entire file
could get
damaged

only a part of
the file would
be affected

there would not
be any
problems None of these

the entire file
could get
damaged

FAT stands for :
File Attribute
Transport

File Allocation
Table Fork At Time None of these

File Allocation
Table

By using FAT, random
access time is
__________. the same increased decreased not affected decreased

If the extents are too large,
then the problem that
comes in is :

internal
fragmentation

external
fragmentation starvation All of these

internal
fragmentation

The FAT is used much as
a _________. stack linked list data pointer linked list

A section of disk at the
beginning of each partition
is set aside to contain the
table in : FAT

linked
allocation

Hashed
allocation

indexed
allocation FAT

Each _______ has its own
index block. partition address file All of these file

Indexed allocation
_________ direct access. supports

does not
support is not related to None of these supports

