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Scope: This is a continuation of Quantum Mechanics – I. More detailed study of problems

like scattering problem, relativistic quantum mechanics, quantum electrodynamics etc.  are

added in this paper.

Objectives: To make the students capable of analyzing theoretical problems like interaction

of particles, scattering of particles etc.

UNIT - I

Angular momentum: Angular momentum operators – Angular momentum commutation

relations – Eigen values and Eigen functions of L2 and Lz – General angular momentum –

Eigen values of J2 and Jz – Ladder operators (J+ and J-) – Angular momentum matrices –

Matrices for J2, Jz, J+, J-, Jx and Jy – Spin angular momentum – Spin ½ systems – Spin vectors

for spin ½ systems – Addition of angular momentum – Clebsh-Gordan coefficients.

UNIT -II

Scattering: Scattering cross-section – Scattering amplitude – Partial waves – Scattering by a

central potential: partial wave analysis – Significant number of partial waves – Scattering by

an attractive square-well potential – Briet-Wigner formula – Scattering length – Expression

for phase shift – Integral equation – The Born approximation – Scattering by screened

coulomb potential – Validity of Born approximation - Laboratory and center of mass co-

ordinate systems.

UNIT - III

Many Electron Problem: Indistinguishable particles, Pauli principle – Inclusion of spin –

Spin functions for two electrons – Spin functions for three electrons – The Helium atom –

Central field approximation – Thomas-Fermi model of the atom – Hartree equation –

Hartree-Fock equation – Molecular orbital theory: Hydrogen molecule ion H2
+- Valence bond

theory

UNIT - IV
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Relativistic quantum mechanics: Klein-Gordan equation – Interpretation of the Klein-

Gordan equation – Particle in a coulomb field – Dirac’s equation for a free particle – Dirac

matrices – Covariant form of Dirac equation – Probability density – Negative energy states –

Spin of the Dirac particle – Magnetic moment of the electron – Spin-orbit interaction –

Radial equation for an electron in a central potential – Hydrogen atom – Lamb shift.

UNIT - V

Field theory: Introduction – Classical approach to field theory – Relativistic Lagrangian and

Hamiltonian of a charged particle in an electromagnetic field – Field: Lagrangian and

Hamiltonian formulations – Quantum equation for the field – Second quantisation –

Quantisation of non-relativistic Schroedinger equation – Creation, annihilation and number

operators.
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UNIT-I

S No Lecture
Duration (Hr)

Topics to be covered Support materials

1. 1Hr Angular momentum: Angular
momentum operators - Angular
momentum commutation relations

T1-170-171

2. 1Hr Eigen values and Eigen functions of L2

and Lz General angular momentum
T1-172-173

3. 1Hr Eigen values of J2 and Jz - Ladder
operators (J+ and J-)

T1-173-176

4. 1Hr Angular momentum matrices - Matrices
for J2, Jz, J+, J-, Jx and Jy

T1-176-179

5. 1Hr Spin angular momentum , Spin ½ systems T1-179
6. 1Hr Spin vectors for spin ½ systems - Addition

of angular momentum
T1-179-180

7. 1Hr Clebsh-Gordan coefficients. T1-180-182
8. 1Hr Revision
9. 1Hr Discussion of possible 2 mark question
10. 1Hr Discussion of possible 8 mark question
11. 1Hr Test in 2 mark question
12. 1Hr Test in 8 mark question

Total no of hours

Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi.

Reference Book
R1:.Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22nd edition, Jaiprakash nath & Co,

Meerut
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UNIT-II

S No Lecture
Duration (Hr)

Topics to be covered Support materials

1. 1Hr Scattering: Scattering cross-section-
Scattering amplitude , Partial waves -
Scattering by a central potential:

T1 - 283-290

2. 1Hr partial wave analysis - Significant number
of partial waves

T1 - 290-291

3. 1Hr Scattering by an attractive square-well
potential

T1 – 291

4. 1Hr Briet-Wigner formula, Scattering length T1 - 292-294
5. 1Hr Expression for phase shift - Integral

equation
T1 - 295-298

6. 1Hr The Born approximation - Scattering by
screened coulomb potential

T1 – 298-300

7. 1Hr Validity of Born approximation -
Laboratory and center of mass co-ordinate
systems

T1- 300-303

8. 1Hr Revision
9. 1Hr Discussion of possible 2 mark question
10. 1Hr Discussion of possible 8 mark question
11. 1Hr Test in 2 mark question
12. 1Hr Test in 8 mark question

Total no of hours 12

Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi.

Reference Book
R1:.Gupta, Kumar and sharma ,2002, Quantum Mechanics, 22nd edition, Jaiprakash nath & Co,

Meerut
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UNIT-III

S No Lecture
Duration (Hr)

Topics to be covered Support materials

1. 1Hr Many Electron Problem:
Indistinguishable   particles, Pauli
principle ,Inclusion of spin -
Spin functions for three electrons

T1-260-265

2. 1Hr Spin functions for three electrons - The
Helium atom

T1-266-269

3. 1Hr Central field approximation T1-269- 270
4. 1Hr Thomas-Fermi model of the atom -

Hartree equation , Hartree-Fock equation
T1-270- 276

5. 1Hr Molecular orbital theory: Hydrogen
molecule ion H2

+-
R2-433- 444

6. 1Hr Valence bond theory , Heitler-London
theory of hydrogen molecule.

R2-457

7. 1Hr Revision
8. 1Hr Discussion of possible 2 mark question
9. 1Hr Discussion of possible 8 mark question
10. 1Hr Test in marks 2
11. 1Hr Test in 8 mark question

Total no of hours 11

Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi.

R2:Satya Prakash, 2003, Quantum Mechanics, New Edition Kedar Nath & Ram Nath & Co,
Meerut.

Reference Book
R1:Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22nd edition, Jaiprakash nath & Co,
Meerut
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UNIT-IV

S No Lecture
Duration (Hr)

Topics to be covered Support materials

1. 1Hr Relativistic quantum mechanics: Klein-
Gordan equation - Interpretation of the
Klein-Gordan equation

T1 -310-312

2. 1Hr Particle in a coulomb field - Dirac’s
equation for a free particle - Dirac
matrices , Covariant form   of Dirac
equation

T1-312-318

3. 1Hr Probability density ,Negative energy states T1-318-322
4. 1Hr Spin of the Dirac particle, Magnetic

moment of the electron - Spin-orbit
interaction - Radial equation for an
electron in a central potential

T1 322-331

5. 1Hr Hydrogen atom , Lamb shift T1-331-333
6. 1Hr Revision
7. 1Hr Discussion of possible 2 mark question
8. 1Hr Discussion of possible 8 mark question
9. 1Hr Test in 2 mark question
10. 1Hr Test in 8 mark question

Total no of hours 10

Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi.

Reference Book
R1:Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22nd edition, Jaiprakash nath & Co,

Meerut



PG Programme                             Lesson Plan Quantum Mechanics (16PHP301)

Dr.A.Saranya Karpagam Academy of Higher Education Page 5 of 5
Department of Physics Coimbatore- 21

UNIT-V

S No Lecture
Duration (Hr)

Topics to be covered Support materials

1. 1Hr Field theory: Introduction , Classical
approach to field theory

R2-410

2. 1Hr Relativistic Lagrangian and Hamiltonian
of a charged particle in an electromagnetic
field

R2-412

3. 1Hr Lagrangian - Hamiltonian formulations R2-413-414
4. 1Hr Quantum equation for the field - Second

quantisation
R2-414-418

5. 1Hr Quantisation of          non-relativistic
Schroedinger equation

R2-419-420

6. 1Hr Creation, annihilation and number
operators.

R2-420-422

7. 1Hr Revision
8. 1Hr Old question paper discussion
9. 1Hr Old question paper discussion
10. 1Hr Old question paper discussion
11. 1Hr Test in Unit 1 & 2
12. 1Hr Test in Unit 3 & 4
13. 1Hr Test in Unit 5
14. 2Hr Full portion test

Total no of hours 15

Text Book
R2:.Satya Prakash, 2003, Quantum Mechanics, New Edition Kedar Nath & Ram Nath & Co,

Meerut.

Reference Book
R1:Gupta, Kumar and Sharma, 2002, Quantum Mechanics, 22nd Edition, Jai Prakash Nath & Co,

Meerut.
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Angular momentum: Angular momentum operators – Angular momentum commutation

relations – Eigen values and Eigen functions of L2 and Lz – General angular momentum –

Eigen values of J2 and Jz – Ladder operators (J+ and J-) – Angular momentum matrices –

Matrices for J2, Jz, J+, J-, Jx and Jy – Spin angular momentum – Spin ½ systems – Spin vectors

for spin ½ systems – Addition of angular momentum – Clebsh-Gordan coefficients.

ANGULAR MOMENTUM OPERATORS

The Angular Momentum Operator:

In classical physics the angular momentum of a particle with momentum pand position r is

defined by

L =r × p = (ypz- zpy) i +  (zpx–xpz) j + (xpy- ypx) k

The orbital angular momentum operator L can be obtained at once by replacing r

and p by the corresponding operators in the position representation, R and P = -ihΔ  where q

is the coordinate expression  for the operators of  Lx ,Ly , Lz.

The Cartesian components  of L are

Lx = -iħ(y d/dz-z d/dy)

Ly= -iħ(z d/dx-x d/dz)

Lz= -iħ(x d/dz-y d/dx)

Clearly, angular momentum does not exist in a one-dimensional space. We should mention

that the components

L2 = -ħ2[1/sinθ d/dθ(sinθd/dθ)+1/sin2θ d2/dφ2]

ANGULAR MONENTEUM COMMUTATION RELATION:
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The commutation relation of the component of L can easily be obtained in Cartesian

coordinates

[Lx ,Ly]=[(ypz- zpy),(zpx–xpz)]

=[ypz,zpx] – [ypz,xpz ] – [zpy , zpx] + [zpy , xpz]

in these commutations pqstants for –iħd/dq.In the second and third teems on the right side of

the equation  all the variables involved commute with each other. Hence both of them vanish.

Since y and px commute with z and pz

[(ypz- zpy] = ypx[pz,z]= -iħypx

based on similar arguments  , we get

[zpx–xpz] = pyx [z,pz] = -iħxpy

Hence

[Lx,Ly]=iħ(xpy-ypx)=iħLz

the commutators [Ly,Lz] and [Lz,Lx] can be obtaioned in the same way and we have

[Lx,Ly]=iħLz,,[Ly,Lz]=iħLx ,[Lz,Lx]=iħLy

that is the components of angular momentum do not commute with one another and therefore

they are not measurable simultaneously. In other words if the system is an eigenstate of one

angular momentum component, it will not be simultaneously in an eigenstate of either of the

others. These commutations relation hold for the components of total angular momentum

L=Σ Li of a system of particle also. The commutation relation in can be written in a compact

form as

L×L=iħL

In the usual sence the vector product of a vector with itself is zero . Hence we have to

consider L as a vector  operator and not as a usual vector. the left hand side to be consider as

a determinatedans has to be expanded before the term by term comparison with the

commutator of L2 with the component of L

[L2, Lx]=[Lx2,Lx]+[Ly2 ,Lx]+[Lz2 ,Lx]

=0+Ly[Ly,Lx]+[Ly,Lx}Ly+Lz[Lz,Lx]+[Lz,Lx]Lz
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=Ly(-iħLz)+(-iħLz)Ly+_iħLzLy+iħLyLz

Hence we conclude that

[L2, Lx]=[L2,Ly]=[L2,Lz]=0

the square of the angular momentum commutes with its components, That is the total angular

momentum can be measured by simultaneously with any one component. As the components

among themselves are noncommuting one cannot measure L2, Lx,Ly,Lz simultaneously.

Therefore we cannot have a representations in

which all the four are diagonal.

L+ =Lx+ iLy , L- =Lx-iLy

The operator L+ is called the rasing operator and L-,the lowering operator.

the reason for the names would be clear in section.

[L2, L+]=0, [L2,L-]=0

and

[Lz,L+] = [Lz,Lx]+i[Lz,Ly]

=iħLy+ ħLx

=ħL+

the other commutators can alsoi be evaluated in the same way and we have the relations

[Lz,L-]=-ħL-

[Lx,L+]=-ħLz

[Lx,L-]=ħLz

[Ly,L+]=-ħLz

[Ly,L-}=iħLz

we also have

[L+,L-]=2ħLz

and

L+L-=L2 –Lz2+ħLz ,L-L+ =L2-Lz2-ħLz

EIGENVALUES AND EIGENFUNTIONS OF L2 AND LZ:

The eigen value equation for  L2 in spherical polar coordinates can be written as

-ħ[1/sinθ d/dθ(sinθ d/dθ)+1/sin2θ d2/dφ2]Y=λħ2Y
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where λħ2 is the eigen value of L2 and Y is the corresponding eigen function rearranging we

get

[1/sinθ(d/dθsin d/dθ)+1/sin2θ d2/dφ2]Y+λY=0

which is the same as the as angular part of the schrodinger equation of a system moving in a

potential V(r).The solution gives λ=l(l+1) with eigenfunction

Y=Ylm(.θ,φ)=έ[2l+1/4π (l-ImI)! / (l+lml)!]1/2 p1
lml(cosθ)eimφ

where

l=0,1,2,3,… and  m=0,±1,±2,±3…±l

and έ=(-1)mfor m> 0 and έ=1 for m ≤0. The form of Lz ,

immediately gives

L zY lm=-I ħ d/dθYlm(θ,φ) =mħYlm(θ,φ)

thus the spherical harmonic Ylm(θ,φ) are eigenfunction of L2 and Lz with eigen value l(l+1)ħ2

and mħ respectively

GENERAL ANGULAR MOMENTUM:

Number of experimental result such as spectra of alkali metals anomalous

zeeman effect , stern gerlach experiment  ,etc,…could be explained only by invoking the

concept that the electron  in an atom possesses an additional intrinsic angular momentum

involving half integral quantum numbers. However the definition of angular momentum

based on classical physics let to the 2l+1integral values

mħ,m=0,±1,±2,…,±l for the z component of angular momentum . In other words the

difinision of angular momentum L=r×p is not general enough to include half integral

quantum number and therefore one may take the definition of general angular momentum as

the commutation relation given by

[Jx,Jy]=iħJz,       [Jy,Jz]=iħJx,       [Jz,Jx]=iħJy

where the J symbol is used  for the general angular momentum.

EIGEN VALUES OF J2 AND JZ:
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The square of the general angular momentum J commutes with its components Jx,Jy,Jz

.However the components among themselves are noncommutting. Therefore J2 and one

component, say Jz can have simultaneous eigenkets at a time.Denoting the simultaneous

eigenkets by  lλm> the eigenvalue equation for J2

is given by

J2 lλm>=λlλm>

and

Jzlλm>=mlλm>

equation 1 can be written as

Jx2 + Jz2 lλm> + m2lλm>=λlλm>

multiplying from left by bra <λml and rearranging

<λml J2 lλm> + <λml J2 lλm>=(λ-m2)

since Jx and Jy are hermitian their eigenvalues must be real and therefore the left side of must

be positive. Hence

λ-m2 ≥0 or λ≥m2

operating eq 1 from left byu J+, we get

J+J2lλm> = λJ+lλm>

that is lλm>and J+lλm> are eigenkets of J2 with the same eigenvalues λ premultiplying by J+

we have

J+Jzlλm> =mJ+ lλm>

but [Jz ,J+] =ħJ+ or J+Jz=JzJ+ -ħJ+.replacing J+Jz in the above equation

we get

(JzJ+ -ħJ+) lλm> =mJ+lλm>

or

JzJ+ lλm>=(m+ħ)J+ lλm>

thus J+ lλm> is an eigenkets of Jz with the eigenvalue (m+ħ) and of J2 with the same

eigenvalue λ. Since operatation by J+ generatesa a state with the same magnitude of angualr

momentum but with z component higher by ħ, it is called raising operator .

Repeated operation by J+ increases the eigenvalue of Jz in steps.This has to be stoped at

some point otherwise the condition eq 4 be µ. Then

Jz lλµ> = µlλµ>

operation by J+ from left gives

JzJ+ lλµ> =(µ + ħ)J+ lλµ>
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eigenvalue  of (µ + ħ) is not possible since µis the highest eigenvalue. Hence,

J+lλµ> = 0

premultiplying by J- and usiong the result

J_J+ = J2 -Jz2-ħJz

we get

J_J+lλµ>=0 or (J2 -Jz2-ħJz) lλµ> =0

therefore

(λ-µ2-ħµ) lλµ>=0

as

(λ-µ2-ħµ)=0 so

λ=µ(µ+ħ)

operating eq Jz lλµ> = µlλµ> from left by J_,we get

J_Jz lλµ> =µJ_ lλµ>

or

JzJ_lλµ> = (µ-ħ) J_lλµ>

For the maximum eigenvalue  µ we have

j2 lλµ> = λ lλµ>

that is J_lλµ>eigenkets of  j2 and jz with the eigenvalues λ and  µ-ħ respectively.

Hence J_ is called a lowering operator.J+ and J_together is often reffered to as ladder

operator.repeating the lowering operation by J_,n times we get

JzJ_n+1 lλµ> =(µ-(n+1)ħ]j_n+1 lλµ> =0

again there must be a cut off value of m without violating the condition λ≥m2 be

µ-nħ then

JzJ_n+1 lλµ> =[µ-(n+1)ħ]J_n+1 lλµ>=0

since [µ-(n+1)ħ] ǂ0

J_n+1 lλµ> =0

or

J_Jn_ lλµ>=0

or

J+J_J_n lλµ>=0

Replacing J+J_,we have

(J2-Jz2 +ħJz)Jn_lλµ> =0
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or

[λ-(µ-nħ)2+ħ(µ-nħ)]Jn
- lλµ> =0

As Jn
- lλµ> ǂ 0 ,λ -(µ-nħ)2+ħ(µ-nħ)=0,substituting the value of λ from

we find

(n+1)(2µ-nħ)=0

since (n+1)ǂ0

2µ-nħ=0 or µ=nħ/2

where n is the number of steps from the maximum eigenvalue µto the manimum eigenvalue

µ-nħ. The number of steps n is always an integer including zero.Writting j for n/2 the

maximum and minimun eigenvalues of Jz are jħ and –jħ respectively  . In other words for a

given value  of j the integer the possible value of j are 0, ½, 1,3/2, …thus half integral

quantum number have emerged automatically from the general treatment of angular

momentum a result we have been looking for denoting the simultaneous eigenvector of the

operator J2 and Jz with eigenvalues j(j+1)ħ22 and mħ by ljm> we get

J2 ljm> =j(j+1)ħ2 ljm>

and

J2 ljm> =mħ ljm>

where  j=0,1/2,1,3/2,…     and m=-j,-j+1,….j

ANGULAR MOMENTUM MATRICES:

The states I jm> form a complete orthonormal set and they can be used as a basis for matrix

representation of an angular momentum .In this representation of angular momentum

components can be represented matrix with elements <j’m’IFIjm>.The rows of the matrix

will be labelled by the j’ and m’ values and the column by the j,m values.

Matrices for J2 and Jz:

As J2commute with Jz the matrices for J2and Jz will be diagonal. In that representation  Jx

and Jy. Multiplication of eqJ2 ljm> =j(j+1)ħ2 ljm> and J2 ljm> =mħ ljm> from left by <j’m’l

gives

<j’m’lJ2ljm> =j(j+1)ħ2ᵟjj,ᵟmm

and

<J’m’lJzljm>  =mħᵟjj.ᵟmm
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the presence of the factor ᵟjj. and ᵟmm indicate that the matrices are given they are of infinite

dimentions

Matrices for J+,J_,Jx and Jy:

JzJ+ ljm> =  (m+1)ħJ+ljm>

this implies that J+ ljm> is an eigenvalue of Jz ,the eigen vectores can differ at the most by a

multiplicative constant  say am

J+ ljm> =am lj,m+1>

similar we get

J_ ljm>=bmlj,m-1>

where

am =<j,m+1lJ+ljm>      or      a*m =<jm lJ_lj,m+1>

bm=<j,m-1lJ_ ljm>      or      b*m+1 =<jm lJ_lj,m+1>

compare the two equations  gives

a*m = bm+1

operating of eq  from left by J_,we have

J_J+ ljm> =am J_lj,m+1>

replacing J_J+ we get

(J2-Jz2–ħJz> =am bm+1 ljm>

or

[j(j+1))-m2-m]ħ2ljm> =lam l2ljm>

or

am =[j(j+1) –m(m+1)]1/2 ħ

with the value of am

J+ ljm> =[J(j+1)-m(m+1)]1/2 ħ lj,m+1>

or

<j’m’lJ+ljm> =[j(j+1)- m(m+1)]1/2ħᵟjj’.ᵟm’m+1

similarly

<j’m’lJ_ ljm>=[(j(j+1)-m(m-1)]1/2 ħᵟjj’.ᵟm’m+1

last two give equation give the matrix element for J+ and J_ they are infinte dimentisional

matrices like the j2 and Jz matrices.The nature of the kronecker deltas in last two equation

indicates that all nonvanishing element occure  in bloges along the diagonal corresponding to

j’=j.The block matrices corresponding to j=0,1/2 and are given below .The rows are labelled
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by the value of m’ and the columns by the values of m .the nonvanishing matrixes for Jx and

Jy are evaluated using the relation

Jx=1/2(J++J_) and Jy=1/2i(J+-J_)

for j=0

J+=0,        J_=0,          Jx=0,         Jy=0

for j=1/2

J+ =ħ( 0   1)                     J_ =(0   0)

( 0   0),                           (1   0),

Jx=1/2ħ(0    1)                 Jy=1/2ħ(0 -i)

(1    0)                               (i 0)

for j=1

J+=ħ (0   √2   0)               J_=ħ(0   0   0)

(0    0 √2) (√2 0   0)

(0    0   0 )                        (0 √2 0)

Jx=1/√2 ħ(0    1    0)          Jy=1/√2 ħ(0 -i    0)

(1    0    1)                           (i     o -i)

(0    1    0) (0     I -i)

without a word about the eigenvector the disscussion would not be complete .The eigenvector

with respect to the ljm> basis will be the column vector would be used for perticular cases:

j=0,j=1/2,j=1,…

SPIN ANGULAR MOMENTUM:

To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in

1925 that an electron in an atom possesses an intrinsic angular momentum in addition to

orbital angular momentum. This intrinsic angular momentum S is called the spin angular

momentum whose projection on the z axis  can have the value

sz =msħ, ms=±1/2. the maximum measurable component of spin angular momentum in units

of ħ is called the spin of the particle and is usually denoted by s .They also suggested that the

spin angular momentum  gives rise to an intrinsic magnetic moment µ s gives by
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µ s= - e/m S

assuming that all the stable and unstable particles to have spin angular momentum

S , we expect its components Sx, Sy and Sz to obey the general commutation relation and

S2and Sz to have the eigen values s(s+1)ħ2 and msħ, ms= -s, -s+1,…s respectively

spin –(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this

category.the matrices  representing Sx, Sy and Sz are obtained from the Jx, Jy,and Jz matrices

by taking the part corresponding to j=1/2,hence

Sx=1/2ħ ( 0   1)        Sy=1/2 ħ (0 -i)           Sz=1/2ħ(1    0)

(1    0)                       (I    0)                          (0 -1)

often it is convinient to work with a matrix ϭ defined by

S=1/2ħϭ

where

ϭx=( 0   1) ϭy= (0 -i) ϭz=(1    0)

(1    0)               (I    0)                (0 -1)

the ϭx,ϭy and ϭz matrices are called the pauli’s spin matrices.From the difinition it is obvious

that their eigenvalues are +1.These matrices satisfy the relation

ϭx
2=ϭy

2 =ϭz
2=1

ϭxϭy=iϭz, ϭyϭz=iϭx , ϭxϭz =iϭy

ϭxϭy + ϭy ϭx = ϭy ϭz + ϭz ϭy = ϭz ϭx + ϭx ϭz =0

pauli was the first to recognize the necessity of two component state vectors explain certain

observed features to atomic spectra.

spin vectors for spin –(1/2) system:

Including spin the spin –(1/2)system has how four degree of freedom,the three

position coordinates (x,y,z) and another observable pertaining to spin.Taking the z

component Sz as the fourth observable the electron wave function can be written  as φ(r,Sz)

or φ(r,ms) the coordinate m takes the values +1/2 or -1/2. When the interaction between the

spin and space parts is negligible the wave function

φ(r,ms )=ϕ(r) χ(ms, )
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where ϕ(r) represented that depends on the space coorinates and χ(ms, ) the part the depends

on the spin  coordinates

The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the

eigenvalue equation.Since the matrices are 2x2 the eigenvectors must be column vector with

two components. the eigenvalue equation for Sz with eigenvalue ħ/2 is

1/2ħ(1   0)(a1) =1/2ħ(a1)

(0 -1)(a2)(a2)

it is evident that a2=0 the normalization condition gives

la2l
2=1 or a1 =1

the eigenvector of thr matrix Sz corrsponding to eigenvalue ħ/2 is than

(1)

(0)

processing on similar lines the eigenvector for the eigenvalue -ħ/2  is

(0)

(1)

these eigenvector are denoted by α and βand are usually called the spin up and spin down

states respectively

α=(1)                        β=(0)

(0) (1)

the two component eigenvectors of spin –(1/2) particles are sometimes called spinors.

Eigenvectors of Sx and Sy can also be found in the same way. the spin materials of a spin –

(1/2) system along with eigenvalue and eigenvectors.

Addition of Angular momentum

The operators,  Jˆ1 , Jˆ2 , Jˆ3  which satisfy the “standard angular  momentum

commutation relations”

Jˆj , Jˆk   = i jkl Jˆl  ,        j, k, l = 1, 2, 3 or x, y, z ,

and all results  will be equally. in which Jˆ3  points  is called the “quantization axis”, and its

choice is arbitrary. This ‘axis’ makes  sense as a direction  in the  usual  space only if Jˆ  is an

actual  angular  momentum vector  operator—orbital, spin or a combination.

Clebsh – Gordon Coefficient
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For the total angular momentum vector  J= + ,

J× J= iħJ

Also , it follows  that

[ , = 0] ,  [ , ] = [ , ]=0

The orthonormal eigenkets of and be ⃓jm>.Since ℎ , and they

form another complete set and their simultaneous  eigenkets will be⃓ + jm>.⃓jm> =∑ , ⃓ >

The coefficient of this linear combination are called Clebsh- Gordon coefficient or Wigner

coefficients or  vector coupling coefficients.

< ⃓jm>=

Substituting this value of the coefficient in eqution (3)⃓jm>∑ ⃓ ><, ⃓ >⃓ > =∑ < ⃓ > ⃓ >,
Where the summation over m is form –j and j is form⃓ − ⃓ to − .The unitary of

Clebsh Gordon coefficients is expressed by the equation∑ <, ⃓jm>< ′ ′>=< ⃓ ′ ′ > = ′ ′
And

<jm⃓ >=< ⃓jm>*

Second rules

Operating eq from left by ,we have⃓ >=∑ ( + )⃓ >< ⃓ >
mħ ⃓ >=∑ ( + )ħ⃓ >< ⃓ >
replacing ⃓ > using eq and rearranging , we get∑ ( − − ) ⃓ >< ⃓ >=0

Which is valid only if the coefficient of each term vanishes separately.This leads to one of the

rules of vector atom model , that is

m= +
we shall next find out how the various m and j values arise from the values of .

For given values of , can have values from − and − , in

integral step.

The smallest value w of j occurs for
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= − or = −( + ), ( + − 1), ( + − 2),… , ⃓ − ⃓
which is the triangle rule of the vector atom model.
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Possible Questions

PART B ( 4 Marks each)

1. State the commutation relations obeyed by the components of angular momentum and

express them in vector notation.

2. What are ladder operators and why are they so called?

3. The definition of angular momentum given by L= r x p is not a general one.  Why?

Define a general angular momentum operator.

4. Explain spin-up and spin-down states.  What are spinors?

5. What are Clebsh-Gordon coefficients?  Explain their significance.

6. Write a short note spin of an electron

7. if J1 and J2 are angular momentum operators, are J1 + J2 and J1 – J2 angular momenta?

Explain.

8. State the eigen value-eigen vector relations for the operators J2 and Jz.  Hence obtain

the matrices for J2 and Jz.

9. Show that the raising and lowering operators J+ and J- operators are Hermitian

conjugates.

10. Prove that the spin matrices Sx and Sy are ħ/2 eigen values.

Part C (10 marks each)

1. What are angular momentum operators?  Derive the commutation relations between

the different components of the angular momentum.

2. a. Explain the difference between the orbital angular momentum L and general

angular momentum J.  Write down the commutation relations between the

components of general angular momentum. (5 Marks)

b. Derive the eigen values of J2 and Jz. (5 Marks)

3. Explain the matrix formulation of angular momenta.  Derive the matrix forms of J+, J-,

Jx and Jy

4. Explain how concept of spin was introduced and how spin angular momenta

contributes to the total angular momentum of the atom.  Obtain the spin angular

momenta in terms of matrices.  What are Pauli matrices?
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5. Discuss the various aspects of addition of angular momenta.  What are Clebsh-

Gordon coefficients and how are they determined?
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Equation of Linear momentum ………. P= mv  P= dv P= md  P= m2v P= mv  

Torque τ ………. r x F  r 2 x F  r 2 x r x F2 r x F  

Angular momentum is defined as 

moment of inertia x 

angular velocity torque x velocity acceleration x force force x mass

moment of inertia x 

angular velocity 

Total angular momentum  is equal to

orbital angular momentum 

+ spin angular momentum . spin angular momentum linear angular momentum torque

orbital angular momentum 

+ spin angular momentum

Angular momentum =…………. h(r  x∆) ћ/I r x ∆  h(r2  x∆) ћ/i r x ∆ ћ/i r x ∆

L x L=……………  ihL iћL  iћL2 iћ 2L iћL

Total angular momentum is defined by J2 = Jx
2 +Jy

2 +Jz
2  J3 = Jx

3 +Jy
3+Jz

3 J2 = Jx
 +Jy

 +Jz J = Jx
2 +Jy

2 +Jz
2 J2 = Jx

2 +Jy
2 +Jz

2  

Commutative law [Jx ,Jy] ia equal to iћJx.   iћJz iћJy iћJz+x+y iћJz 

.[ J2 , Jy ] =…………………… 1 2 0 3 0

.J+  =……………….. Jx + iJy  Jx  iJy  Jx
2

 + iJy
2  Jx

2
  iJy

2  Jx + iJy  

J  =……………….. Jx + iJy  Jx  iJy  Jx
2

 + iJy
2  Jx

2
  iJy

2  Jx  iJy  

[ Jx
2 ,Jx

 ] =……………….. Jx [Jx Jx ] + Jx  Jx Jx [Jx Jx ] + [Jx Jx ] Jx   Jx
2 Jx [Jx Jx ] + [Jx Jx ] Jx  

.[ Jz , J+ ] =………………………….. ћJ+  ћJx   ћJz   ћJxJy ћJ+  

.[ J2 , J+ ] is equal to 1 2 4 0 0

[ J+ , J ] is equal to ћJ ћJz   ћJ2  hJ ћJ 

Torque is defined as moment of force moment of inertia rate of change of force rate of change of distance moment of force 

Momentum is  a  ……………  vector scalar dimensionless

product of vector and 

scalar  vector 

In quantum mechanics operator   associated  with linear momentum is ћ/i r x ∆  ћ/i  ∆ ћ/i r  ћ/i (r x ∆)2 ћ/i r x ∆  
The operator that increases or decreases eigen value another operator is 

called . Hamilton operator Ladder operator  Hermitian operator 

angular momentum 

operator Ladder operator  

[ Jx
2 ,Jx

 ] =……………….. 1 2 4 0 0

The operator for energy is ____ iħ∂/∂t iħ∂/∂t iħ∂/∂x –iħv iħ∂/∂t

Operation on a ket vector from left with an operator A produces Another ket vector A bra vector Another operator Phase vector Another ket vector

Operation on a bra vector from right with an operator A produces A ket vector Another operator Another bra vector Phase vector Another bra vector
When an eigen function is not normalizable in a free domain, we can 

resort to _____ box normalization plane normalisation total normalisation any of the above box normalization

The orbital corresponding to l = 0 is called s orbital p orbital d orbital f orbital s orbital

The orbital corresponding to l = 1 is called s orbital p orbital d orbital f orbital p orbital

The orbital corresponding to l = 2 is called s orbital p orbital d orbital f orbital d orbital

The orbital corresponding to l = 3 is called s orbital p orbital d orbital f orbital f orbital
The quantum numbers required to explain the position of an electron in 

hydrogen atom are ____ n and l l and m n, l and m n and m n, l and m

The value of the magnetic quantum number can be 0,1,2,3, … 1,2,3,4, … ±1, ±2, ±3, ±4, ±5 …. 0, ±1, ±2, ±3, ±4 … 0, ±1, ±2, ±3, ±4 …

Which of the following statements is correct?

A linear combination of 

degenerate eigenfunctions 

of a degenerate level is no 

an eigen function

A linear combination of 

degenerate eigenfunctions 

of a degenerate level is also 

an eigen function, with the 

same eigen value.

A linear combination of 

degenerate eigen functions 

of a degenerate level is also 

an eigen function but with 

different eigen value

A linear combination of 

degenerate eigen functions 

of a degenerate level is not 

an eigen function, but the 

eigen values are the same.

A linear combination of 

degenerate eigenfunctions 

of a degenerate level is also 

an eigen function, with the 

same eigen value.
The correct form of the angular momentum for quantum number l is 

____ lh lћ [l(l+1)ћ] [l(l+1)]1/2 ћ. [l(l+1)]1/2 ћ.



The quantum number l is referred to as _____

angular momentum 

quantum number

spin angular momentum 

quantum number

orbital angular momentum 

quantum number any of the above

orbital angular momentum 

quantum number
An energy level with orbital angular momentum quantum number l, is 

_____ fold degenerate. 2fold 3fold (2l+1) fold lfold (2l+1) fold

The potential involved outside the nucleus is ____ gravitational electromagnetic nuclear Coulombic Coulombic
The probability of finding the electron of the hydrogen atom at a 

distance r from the nucleus is called as ____ probability function probability density radial probability density any of the above radial probability density

For the ground state of the hydrogen atom, a maximum probability 

density P10 exists at a radial position given by

P10 = 2a, where a is the 

radius of the first shell dP10/dr = 0 dP10/dr = a constant none of the above dP10/dr = 0

For the ground state of the hydrogen atom, a maximum probability 

density occurs at a radial distance from the origin, equal to ___ the Bohr radius twice the Bohr radius half the Bohr radius

No relation with Bohr 

radius. the Bohr radius

The binding energy of deuteron is ____ 2.226 MeV 2.226 eV 2.226 keV Zero 2.226 MeV

The eigen value of ground state of helium atom is Z2EH/n2 in which EH 

is 13.5 eV 2.75 eV 12.75 eV 3.5 eV 13.5 eV
The energy value of two electrons relative to axes with the nucleus at 

the origin, in ground state of helium atom is 2Z2EH 2ZEH –  2ZEH – 2Z2EH – 2Z2EH

For n = 1, l = 0, m = 0, the wave function for He atom becomes (Z/πa0)
1/2 eρ/2 (Z3/πa0

3)1/2 eρ/2 (Z/πa0)
3/2eρ/2 (Z/πa0

3)1/2eρ/2 (Z3/πa0
3)1/2 eρ/2

The secular equation in which all the elements are zero, except principal diagonal lower diagonal upper diagonal lower and upper diagonal principal diagonal

The perturbation H(1) which is the extra energy of nucleus and electron 

due to external field in H atom is eEr cosθ er cosθ – eEr cosθ – er cosθ – eEr cosθ

The ground state for H atom is nondegenerate state, the wave function 

ψ100 is given by (1/πa0
3

 )
1/2 exp(r/a0) (1/πa0

3
 )

1/2 exp(r/a0) (1/πa0
3

 )
3/2 exp(r/a0) (1/πa0

3
 )

3/2 exp(r/a0) (1/πa0
3

 )
1/2 exp(r/a0)

The behaviour of hydrogen atom in first excited state is like a 

electric quadrupole 

moment electric dipole moment Zeeman effect Magnetic dipole moment electric dipole moment

The Bohr radius of the first orbit is 5.267 Å 0.05267 Å 0.5267 Å 52.67 Å 0.5267 Å

By expansion theorem ψ may be expanded in terms of a complete set of 

orthonormal functions φo, φ1, φ2, …… if ψ = 1 ψ = 0 ψ = ψ0 ψ ≠ ψ0 ψ ≠ ψ0

The orientation of the splitting of energy levels in first excited state of 

hydrogen atoms, with external electric field is parallel perpendicular antiparallel none of the above antiparallel
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Scattering: Scattering cross-section – Scattering amplitude – Partial waves – Scattering by a

central potential: partial wave analysis – Significant number of partial waves – Scattering by

an attractive square-well potential – Briet-Wigner formula – Scattering length – Expression

for phase shift – Integral equation – The Born approximation – Scattering by screened

coulomb potential – Validity of Born approximation - Laboratory and center of mass co-

ordinate systems.

Scattering by an attractive square well potential

The Schrodinger equation for the perturbed system  can be written as

(Ĥ0 + γĤp )|φi = E|φi (1)

where Ĥ0 is the Hamiltonian of the unperturbed system whose solution is known,

and γĤp is due to the small perturbation where γ is a small parameter. Here, Ĥ0 can

be the Hamil- tonian of the infinite potential well, for instance. In the above equation,

|φi and E are both

Figure 1: The triangle functions for a piecewise linear approximation of a

function. This is a basis that is not orthogonal but yet can be used to seek

approximate solutions .
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Figure 2: The infinite potential well on the left represents the unperturbed problem.

The middle figure represents a perturbation due to a tiny electric field. The right figure

represents a perturbation due to imperfection in fabrication or impurities.

unknowns, but we can write them in a perturbation series or expansion, namely

|φi =|φ(0) i + γ|φ(1) i + γ2 |φ(2) i+ . . . (2)

E = E(0) + γE(1) + γ2 E(2) + . . . (3) ,(4)

Upon substituting the above series into (1), we obtain The left-hand side of (4) can

be expanded and rewritten on a power series in γ

a0 + a1 γ + a2 γ2 + ... (5)

while the right-hand side is similarly written as

b0 + b1 γ + b2 γ2 + ... (6)

These two power series in γ are equal only if ai = bi , i = 0, 1, ...,∞.2

Equating the coefficients of the power series on both sides of (4) we have the following

equations:

Zeroth Order:

Ĥ0 |φ(2) i + Ĥp |φ(1) i = E(0) |φ(2) i + E(1) |φ(1) i + E(2) |φ(0) i

We assume that the zeroth order equation is known in terms of an eigenstate |ψm i with

energy

Em . In other words

|φ(0) i = |ψm i, E(0) = Em (7)

We will use this knowledge to solve the first order equation (7) above.
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Before we proceed further, a note is in order regarding the uniqueness of the

eigenvalue problem (1). An eigenvector is known only within a multiplicative

factor. Hence, its length is indeterminate. This non-uniqueness in its length

manifests in the non-uniqueness of the value of the perturbation series (2) as we

shall see later. To achieve uniqueness, it is best  to pin down the length of the

total eigenvector given by (2). We fix the length of

the eigenvector |φi by requiring that

hψm |φi = 1 (8)

With this requirement, we substitute (2) into the above. Since hψm |φ(0) i = 1,

because

|φ(0) i = |ψm i, it is easy to show that hψm |φ(i) i = 0, i > 0. As a

consequence, |φ(i) i is orthogonal to |ψm i. The perturbation series is not

necessarily normalized, but it can be

normalized later after the series has been calculated.

Next, to find the first order corrections to the eigenvalue and the eigenvector, we

move the unknowns |φ(1) i to the left of (8). We then have

Ĥ0  Em |φ(1) i = E(1) |ψm i  Ĥp |ψm i (9)

where we have made use of (6.3.10). Notice that the above equation is non-unique

since the operator Ĥ0  Em has a null space with a null space vector |ψm i.

Testing the above equation with hψm |, we

have

hψm |Ĥ0  Em |φ(1) i = E(1)  hψm |Ĥp
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|ψm i (10)

the first order correction to the energy of the perturbed system.

First, testing the equation (10) with hψi |, we have

hψi |Ĥ0  Em |φ(1) i = E(1) hψi |ψm i  hψi |Ĥp |ψm i (11)

Upon substituting (11) into the above, the left-hand side evaluate

We choose a(1) = 0 for a number of m reasons: It makes the correction term

unique since |ψ(1) i is orthogonal to |ψ(0) i. It makes the normalization of the

eigenvector |φi accurate to second order even though the correction is first order. It

will also make the second order corrections much simpler to find.

To find the second order corrections, we rewrite (9) with the unknown |φ(2) i on the

left hand side. Then (9) becomes

Ĥ0  Em |φ(2) i = E(1) |φ(1) i + E(2) |ψm i  Ĥp |φ(1) i (12)

Testing the above with hψm |, the left hand side becomes zero as before.3 Since

we have made |φ(1) i orthogonal to |ψm i, on the right-hand side, only the last

two terms remain.

Consequently,

0 = E(2)  hψm |Ĥp |φ(1) i (13)

E(2) = hψm |Hˆ p |φ(1) i                        (14)

The above procedure can be generalized to arbitrary order. By induction, we notice

that the equivalence of to p-th order is
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Ĥ0 |φ(p) i + Ĥp |φ(p1) i = E(0) |φ(p) i + E(1) |φ(p1) i+ E(p) |φ(0) i (15)

The above can be rewritten as

Ĥ0  E(0) |φ(p) i = E(1) |φ(p1) i + E(p) |φ(0) i  Ĥp |φ(p1) i (16)

It  is to be noted that with modern advent of computer technology, and given

the avail- ability of numerical methods, the calculation of perturbation theory to

very high  order is laborious and not necessary. However, a perturbation correction can

give us insight on how a small change in the Hamiltonian can change the solution.

The  tight binding  model can be used to find the  approximate eigenstates of two quantum

wells that are weakly coupled to each other.

Breit-Wigner formula

There is a significant exception to the independence of the cross-section on energy mentioned

above. Suppose that the quantity is slightly less than . As the
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Ĥ0 |φ(p) i + Ĥp |φ(p1) i = E(0) |φ(p) i + E(1) |φ(p1) i+ E(p) |φ(0) i (15)

The above can be rewritten as
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incident energy increases, , which, can reach the value . In this case,

becomes infinite, so we can no longer assume that the right-hand side is small. In fact, it

follows from  that at the value of the incident energy when then we also

have , or (since we are assuming that ). This

implies that

(1)

Note that the cross-section now depends on the energy. Furthermore, the magnitude of the

cross-section is much larger than that given in Eq. (1) for (since ).

The origin of this rather strange behaviour is quite simple. The condition

(2)

is equivalent to the condition that a spherical well of depth possesses a bound state at

zero energy. Thus, for a potential well which satisfies the above equation, the energy of the

scattering system is essentially the same as the energy of the bound state. In this situation, an

incident particle would like to form a bound state in the potential well. However, the bound

state is not stable, since the system has a small positive energy. Nevertheless, this sort

of resonance scattering is best understood as the capture of an incident particle to form a

metastable bound state, and the subsequent decay of the bound state and release of the

particle. The cross-section for resonance scattering is generally much larger than that for non-

resonance scattering.

We have seen that there is a resonant effect when the phase-shift of the -wave takes the

value . There is nothing special about the partial wave, so it is reasonable to
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assume that there is a similar resonance when the phase-shift of the th partial wave is .

Suppose that attains the value at the incident energy , so that

(3)

Let us expand in the vicinity of the resonant energy:

(4)

Defining

(5)

we obtain

(6)

that the contribution of the th partial wave to the scattering cross-section is

(7)

Thus,

(8)
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This is the famous Breit-Wigner formula. The variation of the partial cross-section with

the incident energy has the form of a classical resonance curve. The quantity is the width

of the resonance (in energy). We can interpret the Breit-Wigner formula as describing the

absorption of an incident particle to form a metastable state, of energy , and

lifetime .

THE BORN APPROXIMATION:

The wave function ϕ(r’) is required the evaluate the equation. Born used an interaction

procedure for its evaluation. In the first born approximation ϕ(r’)  in the integral equation is

replaced by the incoming plane wave exp  (iK.r’). This leads to an improved value for the

wave function ϕ(r) which is used the integral in the second born approximation. This

interactive procedure is continued till both the input and output ϕ’ s are almost equal . As

higher order approximation are complicated  we shall restrict our discussion only to first born

approximation

replacing ϕ(r’)  in the integral the equation by exp (iK.r’) ,we get

f(θ) = -1/4π∫ exp [(i(k-k’).r’]U(r’) d θ      (1)

where k and k’ are the wave vector in the incident and scattered direction respectively. The

quantity (k-k’)ħ=qħ is then the momentum transfer from the incident particle to the scattering

potential. In other words the change in momentum qħ due to collision is given by

qħ = (k-k’)ħ or │q│ =2 │k│ sin θ/2           (2)

replacing  (k-k’) by q in eq 1 we get

f(θ) = - 1/4π∫exp (iq.r’) U(r’) d θ’                                                  (3)

the angular integration in equation 3 can easily be carried out by talking the direction of q

and r’ by θ as the polar axis. Denoting the angle between q and r’ by θ’

f(θ) = -1/4π∫0∞∫0π∫02π exp (iq r’ cos θ’)U(r’) r’2sin θ’ dφ’ dθ’ dr’               (4)
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integration over φ gives 2π. The θ integral can easily be evaluated by writing

-cos θ’ =x   or -sin θ’ dθ’ =dx

we get

∫0πexp (iqr’ cosθ’ ) sin θ’ dθ’ = ∫1
-1 exp  (iqr’x)dx

=exp(iqr’)-exp(-iqr’) (5)

substitiutibg the value of the angular part in equ (4)

f(θ) = -2µ/ħ2∫0∞ sin (qr’)/qr’ V(r’)r’2 dr’

from which ϭ(θ) can be calculated. It may be noted from eq  (5)  that the only variable

parameter in f(θ) is magnitude of the momentum transfer qħ where q is given by eq (2)  thus

the scattering cross section depends on the momentum of the incident particle kħ and the

scattering angle θ through  the combination q= 2k sin (θ/2)

Laboratory and centre of Mass co-ordinate system

Unlike the two-body case, there is no gain in simplicity if we use relative coordinates

for the -body system in general. For two bodies, there is only one set of relative

coordinates, while there are two sets of particle coordinates, one for each particle. For three

bodies, there are three combinations of separations between individual particles, just as there

are three sets of particle coordinates. For all higher values of , the number of relative

separations is always larger than the number of particles (six versus four for , for

example). In conclusion, from onward, it makes more sense to define the positions

and velocities with respect to a given coordinate system.

Although not necessary, it is often convenient to use the center of mass system for our orbit

calculations. The center of mass is defined in any coordinate system as

(1)
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where is the total number of particles, and are the mass and the position of

particle , and is the total mass of the system. We can interpret the right

hand side as a type of lever arm equation. In a one-dimensional system of weights hanging

from a beam in the Earth's gravitational field, the left and right parts of the beam will be in

equilibrium if we support the beam exactly at the center of mass. The same is true for a two-

dimensional plank with masses.

With three dimensions, we have no room left in an extra dimension for external support, but

an analogous result still holds: the motion of the center of mass is the same as if the entire

mass of the system was concentrated there and acted upon by the resultant of all external

forces. See any textbook on classical dynamics for a derivation of this property. In the case of

an isolated -body system, there are no external forces, and therefore the center of mass

will move in a straight line.

Starting with a given coordinate system, and subtracting the center of mass position

vector from all particle positions allows us to construct a representation of the -body

system in its c.o.m. system (a short hand for `center of mass'). Subtracting the c.o.m. position

is not enough, however. While this causes a momentary centering, it is still quite possible that

the -body will start drifting off soon thereafter. To keep the system in place, at least on

average, we also have to subtract the velocity of the c.o.m. from all particle velocities.

Differentiation of Eq. 1 gives:

(2)

This shows, incidentally, that the total momentum of all particles is zero in the c.o.m.

coordinate system. Since the c.o.m. moves in a straight line.
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Possible Questions

Part B (4 Marks each)

1. Write a note on Scattering Amplitude.

2. Briefly explain Neutron Proton scattering with relevant expression.

3. Describe scattering cross section.

4. What is the difference between differential scattering cross section and total scattering

cross section?  Explain.

5. Write a short note on partial waves.

6. Define scattering length.  How is related to zero energy cross-section?

7. Discuss the validity conditions for Born approximation.

8. What is phase shift?  Explain the nature of phase shift in the case of repulsive and

attractive potentials.

9. Discuss about the scattering by screened Coulomb potential.

10. Write a short note on laboratory coordinate system and centre of mass coordinate

system.

Part C (10 marks each)

1. Explain scattering amplitude and scattering cross section.  Derive expressions for

them.

2. Discuss in detail about the scattering by a central field, using partial wave analysis

and obtain equations for scattering cross section an scattering amplitude.

3. Deduce optical theorem

4. What is meant by Ramsaur-Townsend effect?

5. Discuss the theory of scattering by an attractive square well potential well.

6. Derive Breit-Wigner formula for resonant cross sections.

7. Explain phase shift during a scattering.  Obtain relation for Born approximation for

phase shift.

8. Derive integral equation for wave function.
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9. Derive Born approximation.

10. Discuss the validity of Born Approximation.

11. Explain the difference between laboratory coordinate system and centre of mass

coordinate system.
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In ____________ a beam of particle is allowed to pass 
close to a scattering material scattering target energy wave scattering
Scattering material is called _______ dicrete particles frquency energy target
In bound states the energy of eigen values are 
________ positive negative infinty zero negative
The angular distribution of the scattered particles are 
related to ____________ light energy particle  wave function wave function
The study of scattering is important in studying the 
properties of  ____________atom energy spectral line material atom
The angle between the initial and final straight line 
paths ia called _____________scattering angle polarization spectral line scattering scattering angle
Cross- sections are usually measured in __________ barn cm mm ampere barn

The probability that a particle will be scattered as it 
traverses a given thickness of matter can be expresses 
in terms of a quantity called the ___________.

     Total scattering 
cross-section

     Differential 
scattering cross-
section

    Scattering cross-
section        scattering

    Scattering cross-
section

If the energy of the incident particles does not change, 
then such scattering are called ____________.      elastic scattering     inelastic scattering

      Compton 
scattering   differential scattering      elastic scattering

If the energy of the incident particles changes after 
collision, then such scattering are called 
_____________.      elastic scattering       inelastic scattering    Compton scattering       b and c       b and c
In wave mechanics, an incident beam of particles is 
represented by a _________ wave.   Longitudinal     Stationary wave ordinary    Longitudinal
The scattering of a particle of mass m by a central 
potential V(r), such that V(r) tends to zero when r 
tends to ___________.      zero        constant value   infinity  finite value   infinity
The complete time dependent solution of the 
schroedinger equation for central potential V(r) is 
____________.       y(r,t) = y(r) eiEt/ ћ       y(r,t) = -y(r) e-iEt/ ћ        y(r,t) = -y(r) eiEt/ ћ        y(r,t) = y(r) e-iEt/ ћ       y(r,t) = y(r) eiEt/ ћ

The Schroedinger equation for central potential V(r) is 
written as __________.

      [-(ћ2/2m)C2+V(r)]y 
= Ey

      [-(ћ2/2m)C2+V(r)]y 
= Ey

     [-(ћ2/2m)C2-V(r)]y 
= Ey

   [-(ћ2/2m)C2-V(r)]y = 
Ey

   [-(ћ2/2m)C2-V(r)]y = 
Ey

____________ is a solution of the scattering problem 

for a source of unit strength at point r’.       Bessel’s function .       Green’s function
      Legendre’s 
function     Hermite’s function

      [-(ћ2/2m)C2+V(r)]y 
= Ey



The delta function of Green’s function is __________ 
everywhere except at r=0.        zero        finite        infinite     constant       Bessel’s function

 Green’s function has proper _______________ form.     differential       integral        asymptotic        none of the above        asymptotic
 The scattering amplitude f(q,f) for the scattering 
problem of stationary wave is given by 
_____________.

   (m/2p ћ2)ò e-ik.r V(r) 
Y(r) di

   (m/2p ћ2)ò eik.r V(r) 
Y(r) di

    (m/4p ћ2)ò e-ik.r V(r) 
Y(r) di

       -(m/2p ћ2)ò e-ik.r 

V(r) Y(r) di
       -(m/2p ћ2)ò e-ik.r 

V(r) Y(r) di
 Born approximation is applicable for the scattering 
centres which are _________.    strong      Weak        moderate none of the above      Weak

 In the equation Y(r) = eikr + f(q) eikr/r, the first term 
represents the __________.

    scattered wave 
function

     re-scattered wave 
function

     incident wave 
function

     recoiled wave 
function

     incident wave 
function

The first Born approximation is given by

    Y = eikr - (m/2p ћ2)ò 

G(r,r’) V(r’) eik.r’ di’

     Y = -eikr - (m/2p 

ћ2)ò G(r,r’) V(r’) eik.r’ 

di’

       Y = eikr + (m/2p 

ћ2)ò G(r,r’) V(r’) eik.r’ 

di’

Y = -eikr + (m/2p ћ2)ò 

G(r,r’) V(r’) eik.r’ di’

     Y = -eikr - (m/2p 

ћ2)ò G(r,r’) V(r’) eik.r’ 

di’

 The first Born approximation scattering amplitude is 
____________.

f(q,f) = (m/2p ћ2) ò ei (k-

k’) r’V(r’) di’

      f(q,f) = (m/2p ћ2) ò 

-ei (k-k’) r’V(r’) di’

   f(q,f) = -(m/2p ћ2) ò -

ei (k-k’) r’V(r’) di’

f(q,f) = -(m/2p ћ2) ò ei 

(k-k’) r’V(r’) di’

f(q,f) = -(m/2p ћ2) ò ei 

(k-k’) r’V(r’) di’

The scattering of high energy particle by the square 
well potential well of radius ‘a’ and V0 , V0<<E, this 

condition gives_____________.

    √(m/2p ћ2E) V0 a 

>> 1

      √(m/2p ћ2E) V0 a = 

0

    √(m/2p ћ2E) V0 a 

<< 1 √(m/2p ћ2E) V0 a = a

    √(m/2p ћ2E) V0 a 

<< 1

The ordinary coloumb potentail is V(r) = 
_____________.        (1/4pe0) (Zze2/r)       -(1/4pe0) (Zze2/r)  (1/4pe0) (Z

2 ze2/r)       (1/4pe0) (Zz 2e2/r)       -(1/4pe0) (Zze2/r)

The screened coloumb potential is _______________.       (-Zze2/4pe0) e
-r/r

0 Zze2/4pe0) e
-r/r

0   (-Zze2/4pe0) e
r/r

0        (Zze2/4pe0) e
r/r

0 Zze2/4pe0) e
-r/r

0

The method of partial waves is mainly applicable to 
___________.       Coloumb potential

  Screened coloumb 
potential     Weak potential

  Spherically 
symmetric potential

  Spherically 
symmetric potential

In higher perturbation theory, a plane wave is 
equivalent to ___________.     transverse waves      longitudinal waves

      number of 
spherical waves     radial waves

    number of spherical 
waves

 In the case of scattering problem having high 
scattering potentila will have the solution for Y as 
_____________.       R(r) Ä(q) j (f)      r q f        eikr       eikz       R(r) Ä(q) j (f)
If the incident wave travels along Z-axis, the value of j 
(f) = ___________.  differentiable      infinite      finite    constant    constant
In the method of partial wave, the Legendre ploynmial 
is ___________. .       -Pl ( Cos q)       Pl ( Cos q)        Pl ( Sin q) Pl ( Sin q)       Pl ( Cos q)

A plane wave is equivalent to the superposition of a 
number of __________.       Stationary    Transverse      Spherical     Longitudinal      Spherical



The phase between the asymptotic form of the actual 
radial function R(r) and the radial function jl (kr) in the 

absence of scattering potential v=0 will be ________. .       minimum     Constant .       infinite .       maximum .       maximum
 The Green’s function has a singularity at r = 
________      finite       infinity        0    none of the above        0
The Born approximation simply accounts neglecting 
the rescattering wave of the scattered waves provided 
the scattered wave is _________ compared with the 
incident wave.        large      small     damped   none of the above      small

 If V1 and V2 are spherically symmetric, the distorted 

Born approximation of the phase shift dl that are 

associated with ____________.     V1 and V2      V2       V1      None of the above       V1

 Born approximation is poor for the ______________.    alkali       c and d     lighter    heavier    heavier
Green’s function is ___________ in nature.    asymptotic       differentiable       symmetrical    antisymmetrical    asymptotic
 If r represents the number of particles present in unit 
volume and v represents the velocity of the incident 
particles, then J= __________.        -rv        -rv2      rv      rv2      rv

  The plane wave term eikr represents a wave unit 
density and of current density ____________.      Ћk/m        -Ћk/m      Ћk/m2       –Ћk2/m      Ћk/m
 d(r) satisfies the first requirement of a delta function 
i.e., it is zero everywhere except at r=_________.     1    –1 infinity      0      0
 The born approximation will be good only when the 
scattered wave function is not much different from 
_________ wave function.        recoiled      incident      rescattered     none of the above      incident

If the high energy particles are scattered by the 
spherical potential well of radius a and depth V0 then it 

means that V0 ________ E.      <<         >>      >=  <=      << 

Green’s function is a solution of the scattering 
problem for a source of _________ strength at point r.       maximum        minimum        unit     none of the above        unit

    ______________ has proper asymptotic form.
       Legendre’s 
function      Green’s function  Hermite’s function      Bessel’s function      Green’s function

The method of __________ waves is mainly 
applicable to spherically symmetric potential.       polarized        unpolarised        circular  partial  partial
In _________ perturbation theory, a plane wave is 
equivalent to number of spherical waves.       Higher      Lower   Linear       Spherical       Higher
  ___________ approximation is poor for heavier 
atoms.       Maclaurin’s       Rolle’s    Born’s       Lagrangian’s    Born’s



An angular momentum is also called ________ spin half spin  eigen value momemtum spin
In study of angular momentum the commutation 
relations obeyed by the _________ operator soin momentum spin operator
The classical particle do not  get scattered if 
_________ l>kr˳ l=0 l>k l<k l>kr˳
If the cross-section of the scattering reaches the value 
is called ______ absorbance  phase shift function resonance resonance
The concept of scattering length is extensively used in 
the investigations relating to the scattering of thermal 
__________ positrons electrons neutrons protons neutrons
The scattering cross-section depends on the 
momentum of the incident _________ particle wave light energy particle
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Many Electron Problem: Indistinguishable particles, Pauli principle – Inclusion of spin –

Spin functions for two electrons – Spin functions for three electrons – The Helium atom –

Central field approximation – Thomas-Fermi model of the atom – Hartree equation –

Hartree-Fock equation – Molecular orbital theory: Hydrogen molecule ion H2
+- Valence bond

theory

Indistinguishable Particles

These basis functions does not solve the Schrodinger equation yet, but they have to

satisfy certain symmetry conditions depending on the kind of particles they represent.

1. Non-identical Particle Case:

Let us assume that we have N particles, and M modes to fit this N particles. We can

construct a state for non-identical particles that looks like

|ψdiff i = |1, ai |2, bi |3, ci ... |N, ni

In terms of basis function, we may express the above as

|ψab···n i = |1, ai|2, bi|3, ci · · · |N, ni (1)

Or

ψab···n (r1 , r2 , · · · , rN ) = ψa (r1 )ψb (r2 ) · · · ψn(rN ) (2)

We can fit the N particles in n modes, and these n modes  can be repeating or non-

repeating. For non-repeating case, it is necessary for M > N .

However,  the above wavefunction cannot be used for bosons and fermions, as we will

get a new wavefunction when we swap the positions of two particles. But bosons and

fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:

For the N boson particle case, we can write the legitimate wavefunction, which can be

used as a basis function, as

|ψidentical-bosons i ∝
X

P̂ |1, ai|2, bi|3, ci · · · |N, ni (3)

where P̂ is a permutation operator, and  the  above summation is over all possible per-
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mutations of the coordinate ri over the one-particle eigenstates a, b, c, · · · , n. The

above

wavefunction remains unchange when we permute the positions of two particles, because

for every |1, ai · · · |i, li · · · |j, pi · · · |N, ni, there is a |1, ai · · · |j, li · · · |i, pi · · · |N, ni in

above summation. Hence, swapping of i and j will not change the sign of the above

wavefunction. The above can also be written as a basis function as

|ψab···n i ∝
X

P̂ |1, ai|2, bi|3, ci · · · |N, ni                   (4)

3.  Fermion Case:

For  the  N  fermion  case, we can write  the  wavefunction, which can be used as a

basis function,  as

where the “+” sign is chosen for even permutation while the “” sign is chosen for odd

permutation. A permutation involves a unique pairwise exchange of two particles  . The

permutation is even or odd depending  on the  number  of pairwise exchanges  that have taken

place.

Therefore,  given a term |1, ai · · · |i, li · · · |j, pi · · · |N, ni, there always exists another  term:

|1, ai · · · |j, li · · · |i, pi · · · |N, ni in the  above  summation since they  differ by one per-

mutation. If i = j, the two terms cancel each other  implying that they cannot  be in the

same position.  Likewise all the terms in the sum cancel each other since every term that

contains  i and j can be paired up with every other terms in the sum.  Moreover, If l = p, all

terms  in the  summation above  cancel as well implying  that they  cannot  be in the same

mode or state.  Therefore,  the above is a legitimate basis function  that represents the

fermions as it obeys Pauli’s  exclusion principle.   Also, there  is a sign change  when the

position  of two particles  are swapped.

Pauli exclusion principle

The inter- actions between electrons and only consider  their Coulomb

repulsion by empirical rules.

Consider two identical particle system (e.g., two electrons in a Helium atom).
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Suppose their wavefunction is ψ (x1 , x2) , where xi is the coordinate of the ith

particle, e.g., x = (r, σ) with r the spatial position and σ =↑, ↓ the spin of the particle,

etc.

Consider the exchange operation P̂ : exchanging the coordinates of the two

particles,

P̂1↔2ψ (x1 , x2 ) = ψ (x2 , x1 ) .

If we choose ψ (x1 , x2 ) as an eigenstate of P̂1↔2 with eigenvalue p, then the

eigen equation is

P̂1↔2ψ (x1 , x2) = pψ (x1 , x2) .

Acting P̂1↔2 second time we get back to the original state,

p2ψ (x1 , x2) = ψ (x1 , x2) , or p2 = 1

Therefore, p can only has two values

p = ±1.

The quantum particles with p = 1 are referred to as Boson particles, or simply

Bosons; The quantum particles with p = −1 are referred to as Fermion particles, or

simply Fermions. A more general analysis shows that with integer spin are always

Bosons, and particles with half-odd-integer  spins are always Fermions. For

example, electrons and protons are Fermions, and photons (light quanta) are Bosons;

Helium-4 is Boson because its spin is zero, but Helium-3 atom is Fermion with spin 1/2.

For a general quantum many-body wavefunction, the exchange operation is

P̂n↔mψ (· · · , xn , · · · , xm, · · ·) = ±ψ (· · · , xm , · · · , xn , · · ·) ,

where + corresponds to Boson system, and − to Fermion system. This  is a

exact property of a quantum many-body system.

Now let us consider its consequence. A general Hamiltonian of N -particle system

is

N

Ĥ =
X

Ĥi + V̂



M.Sc Physics Unit III Quantum Mechanics  16PHP301
2017-2018 Odd Many Electron Problem

Dr.A.Saranya Karpagam Academy of Higher Education
Department of Physics                 Coimbatore -21

Page 4 of 15

i=1

where v is the interaction potential.

Spin function for two electrons

Spin  is a special property of atomic or subatomic particles that has no

classical analogue. Electron has spin. We can think of it as being due to the self

spinning of the electron, but we should not  let our imagination run further than that.

Spin of an electron gives it a spin angular momentum in addition to the orbital angular

momentum it possesses.  The spin also endows an electron with a magnetic dipole

moment that causes it to interact with a magnetic field.

The spin of some particles is found to have binary values of “spin  up” and “spin

down” experimentally by the famous Stern-Gerlach experiment. This binary nature, as

we shall see, fits nicely in the mathematical structure of angular momentum in

quantum mechanics, but it cannot be described by a wavefunction or wave mechanics.

Instead, it can be represented by matrix mechanics.

Spin functions for three electrons

The  z component  of the  orbital  angular  momentum, represented by the

operator Lˆz , is quantized to be m~ where −l 6 m 6 l, l being an integer  related  to the

total

angular  momentum square operator Lˆ2  with eigenvalue  l (l + 1)~2 .

It can be shown that the relationship between the total  angular  momentum number  l

and the  z-component of the  angular  number  m is not  restricted to orbital  angular

momenta.  It can be established for all quantum mechanical  angular  momenta, as is

shown in Appendix  A. A more general framework for angular  momentum is that for

Jˆ2  = Jˆ2 + Jˆ2 + Jˆ2 , an operator  x       y          z that represents the  square  of the

total  angular  momentum, and  Jˆx , Jˆy , Jˆz , operators that represent the x, y, and z

components  of angular  momenta, then

Jˆ2 |L, M i = L (L + 1) ~2 |L, M i                             (1)

Jˆz |L, M i = M ~2 |L, M i , −L 6 M 6 L                          (2)

The  above  results for orbital  angular  momentum by using wave mechanics

and wavefunctions,  but they can be proven for general angular  momentum by using
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rotational symmetry of 3D coordinate  space, and mathematics of raising and lowering

operators. Spin angular  momentum operators also fit under  the  framework  of general

angular  momentum operator, and  can be thought  of as a special case of the  above

framework. For spins, we let Sˆ represent the  total  angular  momentum operator, while

Sˆz   represents the  z  component  of the  spin  angular  momentum. As a result,  the

corresponding  z component of the  spin angular  momentum, represented by the

operator Sˆz , has only two eigenvalues  and  two eigenstates: an up state  with  angular

momentum.

The corresponding  x and y components  of the spin angular  momentum can be

represented

by operators Sˆx  and Sˆy . Together with Sˆz , they satisfy the following commutation

relations,

hSˆx , Sˆy i = i~Sˆz ,        hSˆy , Sˆz i = i~Sˆx ,        hSˆz , Sˆx i = i~Sˆy

The  above  is similar  to the  commutation relations  satisfied  by Lˆx , Lˆy , and  Lˆz ,

where they have been motivated by wave mechanics.  That if an operator is to represent

an angular  momentum, then  their  x, y, and z components  have to satisfy the above

commutation relations  by rotational symmetry of the 3D coordinate space.

The Helium atom

The essence of this approximation is to keep the quantum nature of

particles but ignoring their dynamic interactions (later, we will include some corrections

due to Coulomb repulsion by empirical Hund’s rule). Assume that we have solved the

single-particle Schrödinger eq.

Ĥ1Φk (x1 ) = Ek Φk (x1 )

the total wavefunction may be written as

Ψ (x1 , x2, · · ·, xN ) ∝ Φk1 (x1 ) Φk2 (x2 ) · · ·ΦkN (xN )

not taking  the exchange symmetry into account. In order to include this

important quantum symmetry, consider first a 2-particle system, N = 2, 1

ψB (x1 , x2 ) = √
2

[ϕn1 (x1)ϕn2 (x2 ) + ϕn1 (x2 )ϕn2 (x1 )] for Boson
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[or ϕn1(x1)ϕn1(x2) etc.] and 1

ψF (x1 , x2) = √
2

[ϕn1 (x1 )ϕn2 (x2) − ϕn1 (x2)ϕn2 (x1 )] for Fermions

so that ψB (x1 , x2) = ψB (x2, x1 ) for Bosons and ψF (x1 , x2) = −ψF

(x2 , x1 ) for Fermions. One can also construct a symmetric wavefunction for two

Bosons by a single wavefunction as ψB (x1 , x2 ) = ϕn1 (x1 )ϕn1 (x2), or ϕn2 (x1)ϕn2

(x2 ).

Notice that  if k1  = k2, ψF  (x1, x2 ) = 0, but  not ψB  (x1 , x2).  This indicates  that

two Fermions cannot  occupy the same state,  but it two bosons are allowed to occupy the

same state.  It can be extended  to a more general statement:

A state can only be occupied by at most a single Fermion; But it can be occupied by

any number of Bosons.

The first above statement is Pauli exclusion principle.  The  second statement is the

property  that  leads to the so-called Bose-Einstein  condensation  of bosons at low

temperature.  As active  ingredients  in atoms  and  molecules are electrons which are

fermions, we will mainly use Pauli  principle.  It is obvious that  in the independent- particle

approximation (e.g.,  ignoring particle  interactions), the ground  state  of an N -electron

system  is given by the  Slater  determinant  constructed from the  lowest N  single particle

states.   For  atoms,  these  single particles  states  are  naturally  the eigenstates  of

hydrogenlike  atoms  as we discussed previously.   For molecules, these single particle  states

are  constructed by a linear  combinations  of atomic  states  at different nuclear

configurations.  We will discuss QM of molecules in the last chapter. Sometimes  it  is

convenient to  separate  total  wavefunction  as discussed  above  into product  of spatial  and

spin parts  of wavefunctions, namely

Ψ(x1 , · · · , xN ) = ψ(r1, · · · , rN)χ(σ1 , · · · , σN ).

Hence, if spin wavefunction  χ is antisymmetric, the spatial  wavefucntion  ψ must be

symmetric in order for the total  wavefunction Ψ to be antisymmetric, vice versa.
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[or ϕn1(x1)ϕn1(x2) etc.] and 1

ψF (x1 , x2) = √
2
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same state.  It can be extended  to a more general statement:

A state can only be occupied by at most a single Fermion; But it can be occupied by

any number of Bosons.

The first above statement is Pauli exclusion principle.  The  second statement is the

property  that  leads to the so-called Bose-Einstein  condensation  of bosons at low

temperature.  As active  ingredients  in atoms  and  molecules are electrons which are

fermions, we will mainly use Pauli  principle.  It is obvious that  in the independent- particle

approximation (e.g.,  ignoring particle  interactions), the ground  state  of an N -electron

system  is given by the  Slater  determinant  constructed from the  lowest N  single particle

states.   For  atoms,  these  single particles  states  are  naturally  the eigenstates  of
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Now we apply this simple analysis to atoms, the elements on the periodical table,

where the identical fermions are electrons with spin-1/2.  We will qualitatively discuss the

ground states  of the atoms.  In the next section, we will attempt to calculate  the ground-state

energy value of the two electron system,  helium atom.  By solving the Schro¨dinger equation

of hydrogenlike atoms in the previous section, we know the elec- tron’s states  in an atom can

be characterized  by four quantum numbers (n, l, m, ms ): n - principle quantum number

specified main energy levels (shells), l - (orbital)  angu- lar momentum  quantum number,

and m - (orbital)  magnetic  quantum number and - spin magnetic  quantum number.   We

extend  this  to many-electron’s  state  ig- noring the interactions, spin-orbit  couplings, etc.,

by using the independent-particle approximation. Using notation

l = 0→ s state,     1→ p state,     2→ d state · ··

and noticing  m and ms   are degenerate  quantum numbers,  we conclude that  s shell

can take up to two electrons (single orbital with m = 0 but one electron with spin up ms   =

1/2, the other  electron with spin down ms   = −1/2); p shell can take  up to 6 electrons (three

states  specified by m = 1, 0, −1, each can take one electron with spin

up and  one electron  with  spin down);  d shell can take  up to 10 electrons  (5 states

with m = 2, 1, 0, −1, −2, each can take  two  electrons),  etc.  These energy levels are

ordered as,

orbitals (shells) : 1s 2s 2p 3s 3p 4s 3d 4p 5s · · ·

electron no. : 2 4 10 12 18 20 30 36 38 · · ·

In the above table,  we also list total  possible maximal number  of electrons.

In this independent-particle picture,  the  way each electron  of an atom  occupies a

particular hydrogen state  is called electron configuration. As we are mainly in- terested  in

the ground state,  the electron configuration of an atom is given by filling these hydrogen

orbitals  from the lowest, in the ordered series as

(1s)(2s)(2p)(3s)(3p)(4s)(3d)(4p)(5s) · · · .

We notice that  a given electron configuration will not uniquely determine  some basic
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properties  (such as total  angular  momentum,  spins etc.) of the corresponding  atom. More

information  can be specified by using the  so called atomic  spectral  term  (or atomic term)

to represent states of an atoms.  Some correction to independent-particle approximation for

the  ground-state atomic  term  due to Coulomb  repulsion  will be considered by the

empirical rules.

Atomic spectral terms. We use notation  (2S+1) LJ to denote a particular atomic

state  where S is its total  spin, L its total  orbital angular momentum  and J the total

angular  momentum (spins and orbitals).   We use capital  Latin  letters  for each

value of orbital  quantum number  as

L = 0 1 2 3 4 5 6 7 8 9 10 · · ·

S P D F G H I K L M N · · ·

For example, 2 P3/2  denotes levels with L = 1, S = 1/2 and J = 3/2.  The difference in

energy  between  atomic  levels having  different  L  and  S  but  the  same  electron

configuration  is due repulsive Coulomb interaction between electrons.  These energy

differences are small. We have the following empirical Hund’s rules (F.Hund,  1925)

concerning relative position of levels with the same configuration but different L and S:

(i)  For a given shell (configuration),  the term with greatest  possible value of S gives

the lowest energy;

(ii)  The greatest  possible value of L (for this S) has the lowest energy;

(iii)  For half or less than  half filling shell, J = |L − S| gives lowest energy; For more

than  half-filling shell, J = L + S gives lowest energy.

The origin of the first rule is obvious: the largest total spin corresponds to symmetric

(parallel) spin wavefunction and antisymmetric orbital wavefunction, the later reduces

electron-electron  repulsive interaction energy.

Example. Helium (Z  = 2) has a simple configuration  (1s)2.  Hence S = 0 and

L = 0. The ground state  term is 1S0  with J = 0. We will use this term  to construct an

approximate  wavefunction to calculate its ground-state energy in the next section.

Example. Carbon  (Z = 6) has electron configuration  as (1s)2(2s)2(2p)2.  There are
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three  p orbitals  with m = 1, 0, −1 as l = 1.  Two electrons with both  spin equal to 1/2

(corresponding  to total  largest spin S = 1) are in orbital  m = 1, 0 with total maximal  M  = 1

+ 0 = 1, corresponding  to L = 1.  Hence the ground  state  term  is 3P0 .  It is less than  half-

filling, J = |L − S| = 0.  The other  two  possible terms  are 1S and 1D.  They correspond  to

higher energies.

Example.  Nitrogen  (Z  = 7):  He(2s)2 (2p)3.   Three  electrons  with  total  spin S  =

3/2  are  in states  m  = 1, 0, −1 with  total  maximal  M  = 0 corresponding  to L = 0. Ground

state  term is therefore 4 S3/2 . Other  terms are 2 P  and 2 D.

Example. Oxygen (Z = 8): He(2s)2(2p)4.  Equivalent to two holes (two missing

electrons  for filled shell) in 2p orbitals.   Its  ground  state  term  is therefore  same as

carbon,  3P . However, as it is more than  half-filling, J = L + S = 2. So we have 3 P2 for its

ground state.

Example. Boron (Z = 5) and fluorine (Z = 9) have similar term but different J values,

due to electron-hole symmetry.

The  Hartree-Fock method

The kinetic energy term and the nucleus-electron interaction term are sums

of single-particle operators, each of which act on a single electronic coordinate. The

electron-electron interaction term on the other hand is a pair interaction and acts on pairs

of electrons. To facilitate the upcoming math, let’s make the following definition

Ĥe =
X

ĥ1(~xi)

where ~xi is now a generalized coordinate that includes spatial as well as spin

degrees of freedom.

The Hartree-Fock method is a variational, wavefunction-based approach.

Although it is a many-body technique, the

approach followed is that of a single-particle picture, i.e. the electrons are

considered as occupying single-particle orbitals making up the wavefunction. Each electron

feels the presence of the other electrons indirectly through an effective potential.

Each orbital, thus, is affected by the presence of electrons in other orbitals.

The starting point of the Hartree-Fock method is to write a variational

wavefunction, which is built from these single- particle orbitals. Once we make a suitable

ansatz to the wavefunction, all that is left is the application of the variational principle .
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The simplest wavefunction that can be formed from these orbitals is their direct product

Φ(~x1 , · · · , ~xN ) = φ1 (~x1 )φ2 (~x2 ) · · · φN (~xN ).

(1)

This is the Hartree approximation and it is a straightforward task to calculate the

variational lowest energy from Eq. 1.

However, the Hartree wavefunction has a very important shortcoming, which is that

it fails to satisfy antisymmetry, which states that a fermion wavefunction changes sign

under odd permutations of the electronic variables. The permutation

operator is defined by its action on the wavefunction

P̂ij Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) = Φ(~x1 , · · · , ~xj , · · · , ~xi , · · · , ~xN ) = −Φ(~x1

, · · · , ~xi , · · · , ~xj , · · · , ~xN ) (2)

If an odd number of such permutation operators are applied to the wavefunction, it

picks up a minus sign while no change

in sign occurs under an even number of permutations. In order to satisfy the

antisymmetry condition, a more sophisticated form than that of the Hartree wavefunction

is needed.

II. THE SLATER DETERMINANT

If, for example, we have a two-electron system with orbitals φ1 (~x1 ) and φ2 (~x2 ),

the following variational wavefunction satisfies the antisymmetry condition, at the same

time preserving the single-particle picture

Φ(~x1 , ~x2 ) = c [φ1 (~x1 )φ2 (~x2 ) − φ1 (~x2 )φ2 (~x1 )] (3)

where c is the normalization constant. For three electrons, the equivalent

antisymmetrized wavefunction would be

Φ(~x1 , ~x2 , ~x3 ) = c
h
φ1 (~x1 )φ2 (~x2 )φ3 (~x3 ) − φ1 (~x1 )φ2 (~x3 )φ3 (~x2 ) + φ1

(~x3)φ2 (~x1 )φ3 (~x2 )

−φ1 (~x2 )φ2 (~x1 )φ3 (~x3 ) + φ1 (~x3 )φ2 (~x2 )φ3 (~x1 ) − φ1 (~x2 )φ2 (~x3 )φ3 (~x1 ) (4)
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where ~xi  is now a generalized coordinate that includes spatial as well as

spin degrees of freedom.

The Hartree-Fock  method  is a variational,  wavefunction-based

approach.   Although  it  is a many-body technique,  the

approach followed is that of a single-particle picture, i.e.  the electrons are

considered as occupying single-particle orbitals making up the wavefunction.

Each electron feels the presence of the other electrons indirectly through an

effective potential.

Each orbital, thus, is affected by the presence of electrons in other

orbitals.

The starting point of the Hartree-Fock method is to write a variational

wavefunction, which is built from these single- particle orbitals.  Once we make

a suitable ansatz to the wavefunction, all that is left is the application of the

variational principle as described in Lecture 1. The simplest wavefunction that

can be formed from these orbitals is their direct product

Φ(~x1 , · · · , ~xN ) = φ1 (~x1 )φ2 (~x2 ) · · · φN (~xN ).

(4) This is the Hartree  approximation and it is a straightforward task to calculate

the variational lowest energy from Eq. 4.

However, the Hartree wavefunction has a very important shortcoming,

which is that it fails to satisfy antisymmetry, which states that a fermion

wavefunction  changes sign under odd permutations  of the electronic  variables.

The  permutation

operator is defined by its action on the wavefunction

Pˆij Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) = Φ(~x1 , · · · , ~xj , · · · ,

~xi , · · · , ~xN ) = −Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN )         (5)

If an odd number of such permutation operators are applied to the

wavefunction, it picks up a minus sign while no change

in sign occurs under an even number of permutations.  In order to satisfy

the antisymmetry condition, a more sophisticated form than that of the Hartree

wavefunction is needed.
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THE  HARTREE-FOCK EQUATIONS

The variational principle that we will apply here is rather different from the

linear variation. There the form of our approximate wavefunction was written as an

expansion over a collection of predetermined functions and we minimized the expectation

value (at the same time obeying the normalization constraint) with respect to the

coefficients of the basis functions. Here however we employ a much more general

treatment where we minimize with respect to the basis functions themselves! Needless to

say, this requires functional differentiation where any change affected in the expectation

value in Eq. 1 due to an infinitesimal change in any of the orbitals φk should be zero

φk → φk + δφk ⇒ δhΦ|Ĥ e |Φi = 0 (1)

In addition, we demand through Lagrange multipliers that the set of oritals φk

remain orthogonal throughout the minimization process.

where the first and the second term are straightforward, single-body operators and

the third term is an integral operator. This is now a set of interdependent single-particle

eigenvalue equations. The operator Ĵ corresponds to the classical interaction of an

electron distributions given by |φi |2 and |φk |2 and is called the direct term while K̂ ,

called the exchange term, has no classical analogue and is a direct result of the

antisymmetry property of the wavefunction. The Fock operator

F̂ = ĥ1 +
X

(Ĵi − K̂i) (2)

i

and using this definition Eq. 2 takes the simple form

N

F̂φk =
X

λkiφi (3)

i=1

There are several different solutions to the equations in Eq. 3 each corresponding to

a different set of λki . We have the freedom to concentrate upon those λki which satisfies

λki = δkiǫk (4)
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where ǫk is essentially a new name for the Lagrange multipliers[1]. With this, Eq.4

may be written as

F̂φk = ǫkφk . (5)

In this form, Eq. 5 is a traditional eigen value equation. For each k there is an

equivalent equation defining a system of Schrödinger-like, one-particle equations.

Although it’s tempting to interpret the eigen values ǫk as the energy levels of an

interacting system, this is in fact not justified because the single-electron picture is not

correct. However, if interpreted correctly the Hartree-Fock eigen values do correspond to

certain physical entities.

Valence bond Theory

The two-electron system with orbitals φ1 (~x1 ) and φ2 (~x2 ), the following

variational wavefunction satisfies the antisymmetry condition, at the same time preserving

the single-particle picture

Φ(~x1 , ~x2 ) = c [φ1 (~x1 )φ2 (~x2 ) − φ1 (~x2 )φ2 (~x1 )] (1)

where c is the normalization constant. For three electrons, the equivalent antisymmetrized

wavefunction would be

Φ(~x1 , ~x2 , ~x3 ) = chφ1 (~x1 )φ2 (~x2 )φ3 (~x3 ) − φ1 (~x1 )φ2 (~x3 )φ3 (~x2 ) + φ1

(~x3 )φ2 (~x1 )φ3 (~x2 ) −φ1 (~x2 )φ2 (~x1 )φ3 (~x3 ) + φ1 (~x3 )φ2 (~x2 )φ3 (~x1 ) −

φ1(~x2 )φ2 (~x3 )φ3 (~x1 )i.                                 (2)

Upon closer inspection, we notice that the same permutations of orbitals with matching signs

are obtained by the following determinant

φ1 (~x1 )  φ2 (~x1 )  φ3 (~x1 )                                                               (3)

φ1 (~xN )  φ2 (~xN )  • • •  φN (~xN )

where the factor in front ensures normalization.  For an arbitrary number of electrons the
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wavefunction can be shown to satisfy the desired antisymmetry condition.  The determinant,

referred to as a Slater determinant in literature, has N ! terms each multiplied by -1 or 1

depending on the parity of the permutation.  Each term has each orbital φi  only once and

each of the arguments ~xi  only once. Thus, each term may be written as follows where the

indices i1 , i2, • • • take values between 1 and N and the exponent of -1 in front refers to the

order of appearance of the orbital indices in the term. The term picks up a -1 in front if the

corresponding permutation is odd and +1 if it is even. For ease of notation, we replace P (i1 ,

i2 , • • • , iN ) by the shorthand notation P (i),  where i now refers to a particular arrangement

(or sequence) of the N  indices. The Slater determinant may then be written as

where the sum i runs over the N ! terms. Nothing has been said so far about the form of the

orbitals φi (~xj ) and they are left to be found as a result of the minimization procedure

associated by the variation.  In order to achieve that we now calculate the expectation value

of the Hamiltonian for this variational wavefunction

EH = hΦ|Hˆ e |Φi.                                                              (4)
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Possible Questions

Part B (4 Marks each)

1. What is particle exchange operator? What are its eigen values?  Show that it is a

constant of motion.

2. Illustrate exchange degeneracy with examples.

3. What is Slater determinant? How does it incorporate Pauli principle?

4. Explain Fermi hole and Fermi heap.

5. What are orthohelium and parahelium?

6. Explain why the ground state of helium exists in the para form whereas the excited

states come in both forms.

7. Explain central field approximation.

8. How did Hartree obtain the central field in his theory of many electron atom?

9. Explain self consistent potential.

Part C (10 marks each)

1. a. Explain what is meant by indistinguishable particles. (5 marks)

b. Explain symmetric and antisymmetric wave functions (5 marks)

2. a. Using symmetric and antisymmetric wave functions explain Pauli’s exclusion

principle. (5 marks)

b. Discuss the inclusion of spin of electrons. (5 marks)

3. Using the theory of indistinguishable particles, explain the ground state and first

excited state of Helium atom.  Distinguish between parahelium and orthohelium.

4. a. Explain central field approximation. (5 marks)

b. Discuss Thomas-Fermi model of the atom. (5 marks)

5. a. Derive Hartree equation and obtain expression for total energy of the system.

(5 marks)

b. Derive Hartree Fock equation. (5 marks)
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 The central field approximation is applicable 

on all atoms except the _________ atom. . heavier  alkali  lighter none of the above  lighter
Every atomic electron moves in a _______ 

potential energy V(r) that is produced by the 

nucleus and all other electrons

 Spherically 

symmetric Assymmetric . Radially symmetric . None of the above

Spherically 

symmetric
The fluctuating potential due to each nearby 

electron varies slowly with the ________ 

distance. equal infinite separation finite separation
 The potential energy v (r) for a neutral atom 

has the coloumb form ________ at a great 

distance r from the nucleus.  –e2/r  e2/r  –2e2/r 2e2/r  –e2/r
 The state of an electron in a central field is 

specified by the quantum numbers _______.  n and l ml and ms  n, l and ms  n, l, ml and ms  n, l, ml and ms

   According to ThomasFermi statistical 

model v(r) varies slowly enough in an 

_______ wavelength. proton neutron electron none of the above electron

At normal temperture, the thermal energy KT 

is very small in comparison with ________ 

everywhere except at the edge of the atom.  kinetic energy potential V(r)  a and b  none of the above  potential V(r)
The number of electron states in a cube of 

edge length L at the walls of which the wave 

functions obey periodic boundary condition is 

________.  (L/2p)3 dkxdkydkz  (L/2p)3 dkxdkydkz (L/2p)3 dkxdky  (L/2p)3 dkxdkz  (L/2p)3 dkxdkydkz

 The relation between volume density of 

electron n(r) and the potentail energy is 

_________.

 n(r) = 

(2mV(r)/3p2ћ3)1/2

n(r) = 

(2mV(r)/3p2ћ3)3/2

n(r) = (

2mV(r))3/2/3p2ћ3

 n(r) = 

(2mV(r)/3p2ћ3)3/2

 n(r) = (

2mV(r))3/2/3p2ћ3

As r→a. there is no net charge inside the 

sphere of radius r, so that  V falls off more 

rapidly than ________. a. 1/r a. 1/r
2

a. –1/r  r
2

a. 1/r



If m becomes infinite and e becomes zero in 

such a way that m
3
e

4 
remains constant, then 

the electron wavelength becomes _________. . Infinite . zero . finite . none of the above . zero
 According to Hartree’s method, the charge 

density associated with an electron is 

_________ times its position probabililty 

density. e 1/e –1/e –e –e
According to Hartree’s method, the entire 

wave function for all the electrons is a simple 

product of _________ functions. oneelectron all electron

each individual 

electron wave none of the above oneelectron
The theory of complex spectra consists in 

determining the linear combination of suitably 

___________ wave function. symmetrical normalised a and b antisymmetrical antisymmetrical
When the electrostatin perturbation is 

included and spinorbit energy neglected, then 

the total orbital angular momentum L and the 

total spin angular momentum S are separtely 

___________ of the motion. equations symmetrical constants antisymmetrical constants
 When the spinorbit energy is neglected, the 

electrostatic energy separates states of 

different ____________. S L J a and b L
energy state can be specified by the quantum 

numbers ______________. J, L, S, M J, L, ML, MS J, L, S J, L, S, M, ML, MS J, L, S, M, ML, MS
 For given L and S, the states specified by J 

and M are linear combinations of those 

specified by ________ and _________. ML and MS J and S J and L J, L and S ML and MS

 If spinorbit energy is included, then L and S 

are not ___________ of motion. equations symmetrical constants antisymmetrical symmetrical
In JJ coupling, the spinorbit energy is 

_________ in comparison with the 

electrostatic energy. Small Large Finite Infinite Infinite
JJ coupling takes place in _________ atoms 

where the large V(r) makes the spinorbit 

energy heavy light alkali none of the above heavy



 In alkali atom, a single electron moves in a 

spherically symmetric ________ potential 

energy V(r). excitation coloumb noncoloumb none of the above noncoloumb
The configuration of an alkali atom can be 

specified by a single pair of quantum numbers 

____________. n, l n, l, ml n, l, ml, ms n, l, ms n, l

The configuration of an alkali atom can be 

specified by a single pair of quantum numbers 

____________. infininity 1 1 and 2 0 0
The doublet structure characterizes all the 

moderately excited levels of the alkali atom 

except those for which l= _________. negative zero positive infinite positive
The pair of states having j  either l+1/2 or l

1/2 has attractive potential energy V(r) which 

is ____________. L + S LS (L+1) (S+1) (L+1) (S+1/2) L + S
The total angular momentum J = 

___________. s n and l j and s l l
The absolute value of doublet separation 

depends on ____________ different proportional same

inversely 

proportional same

 The doublet intensity of two lines can be 

found by assuming the radial wave functions 

are ___________ for two excited 2P states. diagonal dipole square unity dipole
The observed intensities if the two P states are 

equally likely to be occupied are proportional 

to the squares of the ___________ matrix 

elements. LS JJ LS and JJ None of the above LS
The equality of total intensities from each 

state formed from a given L and S is a general 

property of __________ coupling. 3:01 2:04 1:02 2:01 2:01
The two lines of the doublet have intensities 

in the ratio ___________. 2:04 2:01 1:02 3:01 2:01
The lowest doublets of the alkalis are in the 

ratio __________. 6 12 6

The sum of the intensities of all the lines that 

originates on each of the four 2P3/2 states is 

equal to ___________. 8 4 4 12 8



The total intensity from each of the two 2P1/2 

states is equal to _____________. 6 8 2 1 2
 For higher doublets the intensity ratio 

exceeeds __________. 4 6 radial function radial function
 In higher doublets the intensity ratio exceeds 

2 due to the difference to __________. energy state

electron wave 

function a and b (j+1) ћ2 energy state

J2=___________. j(j+1) ћ2 j(j+1) ћ2 J.J j(j+1) ћ2 J.J
 The states of different j have ___________ 

fold degeneracy.       Proportional     Same     Different        (2j+1)     Different
 The states of different j with (2j+1) fold 

degenracy is due to ___________. –(j+1)     –(2j+1)       (j+1)  j and s  j and s
 The state of different j with (2j+1) fold 

degeneracy is due to _________.   m      l        l and s 0 m
The method of partial wave is an elegant 

procedure for the analysis of _______ 

scattering elastic  inelastic compton differential elastic
The sparticle wave will be _________ of the 

angle θ dependent  independent perpendicular parallel independent
The sparticle wave will be __________ 

symmetric spherically  circullarly elastically a spherically
The phenomenon with out scattering is called 

_________

Ramsaur  Townsend 

effect tuindall effect raman effect bohr model

Ramsaur  Townsend 

effect
The small scattering cross section for 

electrons of rare gas atoms at a bombarding 

energy of __________ 0.7 ev 15 eV 35 eV 1.2 eV 0.7 eV

lħ = ________ kħb 0 αb ρλ kħb
The interaction between two particles is 

uasually screened by the atomic electrons 

surrounding the _________ electrons neutrons protons nucleus
The quantum mechanics does not satisfy the 

requirement of special theory of _______ resistivity permitivity permiability conductivity relativity
Kleingordan equation does not say anything 

about __________ particle wave energy space particle

□ is the ____________ operator de alembertian schrodinger wave  dirac de alembertian
Klein and gordan were not able to give a 

explanation of ___________ energy positive negative zero neutral negative



_____________ was resolved by pauli and 

weisskopf in 1934 dilemma charge density lamda surface energy dilemma
coulomb field is described by a potential of 

the type ____________ V( r) =0 V( r)=KB v( r)= Ze²/r v( r)=ih v( r)= Ze²/r
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Relativistic quantum mechanics: Klein-Gordan equation – Interpretation of the Klein-

Gordan equation – Particle in a coulomb field – Dirac’s equation for a free particle – Dirac

matrices – Covariant form of Dirac equation – Probability density – Negative energy states

– Spin of the Dirac particle – Magnetic moment of the electron – Spin-orbit interaction –

Radial equation for an electron in a central potential – Hydrogen atom – Lamb shift.

KLEIN – GORDON  EQUATION

The  non relativistic  Schrodinger equation was obtained by replacing  P by - iħ∇ and E

by iħ in the classical energy expression of a free particle E= 2 and allowing the

resulting operator equation to operate on the wave fuction.The corresponding relativistic

energy relation is: = + ..........(1)

Where m is the rest mass of the particle . For convenience , rest mass will be denoted by m

in this chapter . Replacing E and P by the respective operators, we get the operator eqution

-ħ = − ħ ∇ + ........(2)

Allowing this operator equation to operate on the wave function Ψ (r.t)

-ħ ( , )
=−ħ ∇ ( , ) + Ψ(r , t) ........(3)

Which is Klein – Gordon equation or Schrodinger’s relativistic equation

Rearranging , we get

(∇ − ) ( , ) =
ħ

( , ) .......... (4)

( , )=
ħ

( , )
⃞ =∇ − ..........(5)

Where ⃞ is the de Alembertian operator  which is  relativistically  invariant. Therefore

eq(5) is relativistically  invariant  if  Ψ  transforms like a scalar
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Plane  Wave  Solution

The plane wavw represented by( , ) =exp [i ( k . r- )]                                     .........(6)

Is an eigenfunction of both energy and   momentum operator with eigenvalues ħ and kħ

respectively. Substitution of  Eq (6)  in Eq (4) gives

(ħ )  =   ( ħ + )
(ħ )  = ± ( ħ + ) /

This  means  that the energy  eigenvalue can have both  positive and negative values . Klein

– Gordon were not able to give a consistent explanation  for the negative energy .

Dirac Equation.

Dirac attempted to overcome some of the problems of relativistic  quantum mechanics

by introducing  a first-order wave equation.1

iγµ ∂µ ψ − mψ = 0.                                                      (1)

Here, the γµ  are some suitably  chosen operators  acting locally on the wave function ψ.

This wave equation  can be viewed as a factorisation  of the second-order Klein–Gordon

equation  as follows:

(iγν ∂ν  + m)(iγµ∂µ − m)ψ = (−γν γµ∂ν ∂µ − m2)ψ = 0.                 (2)

The latter  form becomes the Klein–Gordon equation  provided that  the γ’s satisfy

the Clifford algebra 2   3

{γµ , γν } = γµ γν  + γν γµ  = −2ηµν .                                      (3)

This means that  every solution of the Dirac equation  also satisfies the

Klein–Gordon  equation  and thus  describes a particle  of mass m.
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The Dirac equation  is a relativistic  wave equation.  Translational invariance  is evident,

but  we have not yet shown its Lorentz covariance (although  the resulting Klein–Gordon

equation  certainly  is covariant).

Dirac Matrices

Consider a Lorentz transformation

x0 = Λ−1 x with Λ(ω) = exp(ω).  Suppose ψ is a solution of the Dirac equation.  It is

not sufficient to use the transformation rule for scalar fields ψ0(x0) = ψ(x).  In

analogy to vectors we should also transform  spinors.  We make the ansatz

ψ0(x0) = S(ω)ψ(x),                                             (1)

where S(ω) is a matrix  that  acts on Dirac spinors.  We then  substitute

ψ0(x) = Sψ(Λx) into the Dirac equation

0 =  iγµ ∂µ − m  ψ0(x) =  iγµ ∂µ − m  Sψ(Λx)

=  iγν SΛµν ∂µψ − Smψ  (Λx)

= S iS−1 γν SΛµ ν ∂µ ψ − iγµ ∂µψ  (Λx)

= iS  Λµν S−1γν S − γµ  (∂µψ)(Λx).                                      (2)

So the term in the bracket  must vanish for invariance  of the Dirac equation. Indeed, the

canonical Lorentz transformation of gamma-matrices

γ0µ  = (Λ−1)µν  Sγν S−1,                                           (3)

where not only the vector index is transformed  by Λ−1, but  also the spinor matrix is

conjugated  by the corresponding  spinor transformation S.8   In analogy to the

invariance  of the Minkowski metric, η0 = η, the Dirac equation  is invariant if the

gamma-matrices are invariant

γ0µ  = γµ.                                                       (4)
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2

24

This condition relates S to the Lorentz transformation Λ. The infinitesimal form of the

invariance  condition reads

[δS, γµ ] − δωµ ν γν  = 0.                                          (5)

This implies that  δS must be proportional  to δωµν . The latter carries two vector indices,

while δS carries none. The only possibility is to contract  the vector indices by S from the

left, co-spinors by the S−1   from the right.

to gamma-matrices, and we make the ansatz  δS = 1 αδωµν γµγν . Substituting this

into the invariance  condition and using

[γργσ , γµ ] = γρ{γσ , γµ} − {γρ, γµ }γσ ,                             (6)

we arrive at (2α − 1)δωµν γν  = 0. We conclude that  a Lorentz transformation for spinors is

given by the matrix

the Dirac spinor ψ = (ψL , ψR ) transforms  in the direct sum of two (irreducible)

representations of the Lorentz group.  The 2-spinors ψL  and ψR  are called left-chiral and

right-chiral  spinors.  The massive Dirac equation,  however, mixes these two

representations

iσµ∂µψR − mψL  = 0,

iσ¯ µ ∂µψL − mψR  = 0.                                           (7)

It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless

spinor particles can also be formulated  using 2-spinors; we shall discuss the massless case

later on.

The decomposition into chiral parts  is not just valid in the Weyl representation of the

Clifford algebra.  More abstractly, it is due to the existence of the matrix

γ5  = i εµν ρσ γµγν γργσ   = iγ0γ1γ2γ3.                          (8)
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In the Weyl representation it reads γ5  = diag(−1, +1),  it therefore measures the chirality

of spinors.  In general, it anti-commutes  with all the other

gamma-matrices,

{γ5, γµ} = 0. (9)

This property  implies that  a single gamma-matrix maps between opposite chiralities,  i.e.

it inverts chirality.  The property  is also sufficient to prove commutation with M µν .

Alternatively, it follows by construction  of γ5  as a (pseudo)-scalar  combination  of

gamma-matrices.

Magnetic moment of the electron

The electron is a charged particle of charge −1e, where e is the unit of elementary

charge. Its angular momentum comes from two types of rotation: spin and orbital motion.

From classical electrodynamics, a rotating electrically charged body creates a magnetic

dipole with magnetic poles of equal magnitude but opposite polarity. This analogy holds as

an electron indeed behaves like a tiny bar magnet. One consequence is that an

external magnetic field exerts a torque on the electron magnetic moment depending on its

orientation with respect to the field.

Spin-orbit interaction

The spin–orbit interaction for an electron bound to an atom, up to first order

in perturbation theory, using some semiclassical electrodynamics and non-relativistic

quantum mechanics. This gives results that agree reasonably well with observations. A

more rigorous derivation of the same result would start with the Dirac equation, and

achieving a more precise result would involve calculating small corrections from quantum

electrodynamics.

Hydrogen atom

Spectral lines of H found to be composed of closely spaced doublets.

Splitting is due to interactions between electron spin s and the orbital angular momentum l

H line is single line according to the Bohr or Schrödinger theory. occurs at 656.47

nm for Hydrogen and 656.29 nm for Deuterium (isotope shift,∆~0.2 nm).

Spin-orbit coupling produces fine-structure splitting of ~0.016 nm corresponds to an
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internal magnetic field on the electron of about 0.4 Tesla.

Orbital and spin angular momenta couple together via the spin-orbit interaction

Internal magnetic field produces torque which results in precession of l and s

about their sum, the total angular momentum:

This kind of coupling is called L-S coupling or Russell-Saunders coupling

The  Hydrogen Atom

The energy eigenvalues of hydrogen atom . For hudrogen atom, V(r) = - 4
.

It is convenient  to introduce numerical substitutions defined by= ( ) /
ħ

= (
ħ

) / (
ħ

) / = / /
=

ħ
, =

ħ

Introducing a new variable defined by=
We  can be reduced to

− − ( + ) G=0   , =
ħ

+ − ( − ) F=0

As in the  nonrelativistic  case let us look for solution of the form

F( ) =∑∞ , ≠0

And

G( ) = ∑∞ , ≠0
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Substituting these equation in Eqs(4) and (5) and equating the coefficients of

to zero, we get( s + n – k ) − − − = 0

( s + n – k ) - + - = 0

When  n = 0

( s – k ) - = 0       ( s  + k ) - = 0

For eqn to have  nonvanishing  solution , the determinant

− −+ =0       or     s=±( − ) /
The negative  solution is not acceptable as it would make F and G diverge at the

origin .Hence the positive sign is the only acceptable  solution.When n> 0, a

relation between obtained by multiplyed by and by and

substituting

[( s + n + k ) + γ] = [ α ( s + n – k ) − ]
Where  we  have  used the relation = . As in the nonrelativistic case

regular solution are possible only if  both  the  series terminate . Let this occurs  at

n=n’ so that ′ = ′ = 0. Replacing n by  (n’+1) in eq we have

( s + n’ + 1 – k ) ′ - ′ - ′ - ′=0

In view of the condition ′ = ′ =0  reduce to

′=- ′
′ = 0,1,2 … ..
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Equation also gives the same condition between ′ ′ . The energy levels can

be

Obtained   by  setting   n=n’ in eq and− ′ [( s + n′ + k ) + γ] = ′[ α ( s + n′ – k ) − ]
2 ( + ′) = ( )
Substituting the values of , , and squaring, we get

( − ) (s+n’) =

E = [ 1+
′
] /

Expending in power of and retaining terms of order

E = [ 1- − ( ⃓ ⃓− )]

Where n=n’+⃓k⃓=n’+j+ is the total quantum number of hydrogen atom and ⃓k⃓
takes the

value 1,2,.....,n. To label the energy levels by l the orbital angular momentum

quantum

number  we have  to extend the discussion to nonrelativistic  limit .When this is

done, the

values  of l in terms of k are

l =⃓k⃓ = j + for  k<0

l = k−1 = j - for k> 0
the complete degeneracy of  the energy level  for a given n in the nonrelativistic one is

partly lifted by relativistic effect. The energy level given below

n=3 , k=3  3 /
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n=3 , k=2 3
n=3 , k=-2  3 /

n=3 , k=1   3 / n=3 , k=-1 3 /
n=2 , k=2 2 /

n=2 , k=1 2 / n=2, k=-1 2 /
n=1 , k=1 /

this is the scheme of hydrogen atom n=1,2,3

Lamb Shift in  Atomic Hydrogen

To  measure the Lamb shift in the Balmer α transition of atomic hydrogen.

The Lamb shift cannot be explained by the Schrödinger or Dirac formulations of

quantum mechanics. It can be explained by a theory known as quantum

electrodynamics—a theory whose development was intimately linked to experimental

observation of the Lamb shift.

The spectrum  of the hydrogen  atom  was the first to be described quantitatively

and modeled from first  principles.   In 1885 Balmer  discovered  that the wavelengths  of

the  then  known  lines in the hydrogen  spectrum.

In 1890 Rydberg  discovered  a more general form of Balmer’s formula

which, when applied  to the hydrogen  spectrum. In 1887 Michelson, using his

interferometer to investigate the shape of spectral lines, discovered that the  Balmer α

line consisted of not a single line but of two lines separated by a fraction of an

angstrom. Bohr’s simple model of the atom had no means of accounting for this

feature.

In 1916 Arnold Sommerfeld presented a model of the hydrogen atom  allowing

for the possibility of elliptical in addition to strictly circular electron orbits.

Applying  relativistic corrections to these elliptical orbits, Sommerfeld’s model

predicted the Balmer α line to consist of more than one com- ponent, just as

Michelson had observed. But, being an ad hoc combination of classical and quantum
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physics, the Sommerfeld model was restricted in scope and left much to be desired.

Quantitatively it was unable to account for features such  as magnetic effects or the

different intensities of the components of the Balmer α line.
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

1. Derive Klein-Gordon equation for a relativistic particle

2. Explain how Klein-Gordon equation leads to positive and negative probability

density values.

3. Derive Dirac’s relativistic equation for a free particle.

4. Explain the concept of negative energy states and Dirac’s explanation for it.

5. Write a short note on Lamb shift.

6. Prove that the operator cα, where α is the Dirac’s matrix, can be interpreted as the

velocity operator.

7. Give the energy spectrum of a free Dirac particle and explain pair production and

pair annihilation

8. Give the physical interpretation of Dirac’s α-matrix.

9. Starting from Klein-Gordon equation, obtain the equation of continuity.

10. Derive expressions for probability density and probability current density in the

Dirac theory.

PART C ( 10 Marks each)

1. Discuss the relativistic motion of a particle in a Coulomb field and derive

expression for energy.

2. a. Obtain Dirac’s equation for a free particle, and deduce the co-variant form of the

Dirac equation. (5 Mark)

b. Explain Dirac matrices for α and β. (5 Mark)

3. a. Discuss the magnetic moment of an electron. (5 Mark)

b. Explain spin-orbit interaction. (5 Mark)
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4. Derive the radial equation for a relativistic electron in a central potential.

5. Using the radial equations in a central potential, derive the energy eigen values of a

hydrogen atom.
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CLASS:II M.Sc PHYSICS

QUANTUM MECHANICS-II (16PHP301)

      The basis of all molecular approximation is the large ratio of 

_________.

      electron mass to 

nuclear mass

    electron mass to 

neutron mass

      electron mass to 

atomic mass

     nuclear mass to 

electron mass

nuclear mass to electron 

mass

 The energy associated with the motion of then nuclei is much 
______ than the energy associated with the motion of electron 

about the nuclei.

larger smaller varied none of the above smaller

  The period of nuclear motion is of the order of _________ 

divided by its energy.
ђ e –ђ –e ђ

     The nuclear periods are _________ than the electronic 

periods.
smaller stable longer a and b longer

    The nuclear motion are classified into translation and 
rotational motion of the ______ equilibrium arrangement and 

internal vibrations of the nuclei about the equilibrium.

quasi-rigid stable unstable neutral quasi-rigid

Molecular energy levels are classified into _____________ 
vibrational and rotational energy levels

static rigid translational electronic electronic

The energy Ee associated with the motion of a valence is of 

order of ______, where m is the electronic mass
–ђ2/ma2 –ђ2/ma2 –ђ2/ma2 + 1 ђ2/ma2 + 1 –ђ2/ma2

    The only nuclear coordinates Rj of the hydrogen molecule is 

the magnitude, ______ of the distance between the two 
hydrogen nuclei.

R  r –R R2 R

The linear combination of unperturbed degenerate wave 

function which gives lower energy than the separate wave 
function is the basis of ___________ binding molecules

heteropolar nuclei homopolar atomic homopolar

   The property of degeneracy is known as ______________. resonance doublet separation doublet intensity none of the above resonance

 An interaction between two resonant (degenerate) states in 

quantum mechanics give rise to a lower energy 
________________.

eigen function eigen value wave wave function eigen value

The wave function based on a simple product of two ground 

state _________ functions gives good result.
alkali atom helium atom hydrogen molecule hydrogen atom. hydrogen atom.

In case of hydrogen molecule, the equilibrium value for rAB is 

theoretically calculated as _____________.
0.74 Aº 0.8 Aº 1.06 Aº 1.32 Aº 0.8 Aº

The ground state of a hydrogen molecule is ___________ a triplet state
a mixture of single and 

triplet state

neither a singlet nor a 

triplet state
a singlet state a singlet state

The interaction between valence electrons give rise to _______ 
forces between atom which hold the atoms together in molecule

bonding electrostatic coloumbic repulsive bonding

Heitler and London theory of hydrogen molecule helps us to 
develop the picture of __________ bond.

covalent chemical ionic    none of the above chemical

The spin functions of two electrons are a(1) and a(2), then the 
total spin wave function is the product of ___________ such 
spin functions.

either one wavelength with a and b two two



 The complete wavefunction of  an electron is the product of 

___________ wave function multiplied by one of the spin 
function.

unperturbed orbital perturbed orbital orbital none of the above. orbital

The symmetric orbital functions of an electron will be 
associated with _________ spin function.

skew symmetric symmetric a and b antisymmetric antisymmetric

The antisymmetric orbital function will be associated with 
_______ spin function.

symmetric skew symmetric antisymmetric b and c symmetric

If r12 is the distance between two electrons, then the interaction 

between these electrons 1 and 2 is given
–e2/r12

2 –e2/r12 –2e2/r12
2 –3e2/r12

2 –e2/r12

If the system consists of two hydrogen nuclei ‘a’ and ‘b’ and 
two electrons 1 and 2 separated by distance r12, then the 

potential energy or two nuclei is V=___________.

e2/rab + e2/r12+ e2/ra1+ 

e
2
/rb1+ e

2
/ra2+ e

2
/rb2

e2/rab + e2/r12+ e2/ra1+ 

e
2
/rb1+ e

2
/ra2- e

2
/rb2

e2/rab + e2/r12- e
2/ra1+ 

e
2
/rb1+ e

2
/ra2+ e

2
/rb2

e2/rab + e2/r12- e
2/ra1- 

e
2
/rb1- e

2
/ra2- e

2
/rb2

e2/rab + e2/r12- e
2/ra1- 

e
2
/rb1- e

2
/ra2- e

2
/rb2

  ___________theory is also an approximation method for 

explaining bonding between H-atom in H2 molecule.
vander walls valence bond scattering theory partial wave. valence bond

 The attraction of two hydrogen atom give rise to the formation 
of _______ molecule.

stable unstable colloidal suspension stable

If we assume both the hydrogen atom are in ground state, then 
both the wave function are _____________.

imaginary integer real none of the above real

 The schroedinger equation for hydrogen molecule is given by 
___________.

Ñ1
2
y + Ñ2

2
y + (2m/ ђ

2
) 

(E-V) y = 0

Ñ1
2
y + Ñ2

2
y + (2m/ ђ

2
) 

(E-V) y = 1

Ñ1
2
y + Ñ2

2
y + (2m/ ђ

2
) 

(E-V) y = H y

Ñ1
2
y + Ñ2

2
y - (2m/ ђ

2
) 

(E-V) y = H y

Ñ1
2
y + Ñ2

2
y + (2m/ ђ

2
) 

(E-V) y = 0

   If the co-ordinates of 1st electron is (x1,y1,z1) and of 2nd 

electron is (x2,y2,z2), then r12 = ___________________.

√(x2-x1)
2 + (y2-y1)

2 + (z2-

z1)
2

(x2-x1)
2 + (y2-y1)

2 + (z2-

z1)
2

√(x2-x1)
2 - (y2-y1)

2 - (z2-

z1)
2

√(x2-x1)
2 + (y2-y1)

2 - (z2-

z1)
2

√(x2-x1)
2 - (y2-y1)

2 - (z2-

z1)
2

 The SP3 hybridisation leads to ________________ equivalent 

bonds.
3 4 6 2 3

  The ground state of a hydrogen atom is ____________. a triplet
a mixture of singlet and 
triplet

neither singlet nor a 
triplet

singlet singlet

If the spins of electron in two atoms are parallel then the atoms 

_________ each other
singlet       attract coagulate none of the above singlet

If the spins of the electrons in two atoms are antiparallel, then 
two atoms _______ each other

repel       attract coagulate none of the above  attract

If two spins S1 and S2 of the electron combine to give a resultant 

spin S=0, then it will give rise to ___________ state
doublet triplet multiplet singlet singlet

 If two spins S1 and S2 of the electron combine to give a 

resultant spin S=1, then it will give rise to _________ state.
triplet doublet singlet multiplet triplet

Hartree-Fock method incorporates the effect of _________ 
symmetry.

skew anti exchange none of the above exchange

The molecular wave function as a linear combination of atomic 
orbitals is called ________________ method.

LCAO Exchange MO none of the above LCAO

  The effect of exchange symmetry has been incorporated in 
____________.

Hartree-Fock method
Hartree’s self consistent 
method

Thomas – Fermi model None of the above
Hartree’s self consistent 
method

 The effect of exchange symmetry has been incorporated in 

____________.
109°28’ 180° 0° 120° 109°28’



  In case of hydrogen molecule ion, the minimum potential 

energy equivalent to dissociation energy is theoretically 
calculated as ____________.

2.78 eV 4.72 eV 3.14 eV 1.76 eV 1.76 eV

Resonance is the property of __________ degeneracy doublet singlet triplet degeneracy

The symmetric spin function will be associated with 
__________ orbital function.

skew symmetric hermitian antisymmetric triplet antisymmetric

Dirac require the equation must be of _______ order in time and 
space

first second zero none first

Diracs equation is relativistically ___________ invarient varient covairent all the above invairent

Lorentz is convariant from ________ µ δ Ω ψ ψ

The spin of an electron carries no _________ energy particle time wave function energy

The empty space is called __________ hole spintron neutron positron hole
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CLASSICAL THEORY OF ELECTROMAGNETIC FIELDS

The classical electrodynamics is based on Maxwell’s equations for the electric and

magneticfields E and B .In rationalised units ,also called Hearyside Lorentz units, these

equations can be written as:

= ......(1)

......(2)

......(3)

+ j                                                  ......(4)

Here is the charge density and current density j(x,t) is the current density.Instead of E

and B, the field equations can also be expressed in terms of a vector potential A  and a scalar

potential . Equation (3) implies

B = ......(5)

With  this definition of B, Equation (2) takes the form :

.....(6)

Since the curl of the gradient of a scalar function is zero, from Equation (6) We have

E+ ( )

E=- - ....(7)
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Which gives the electric field in terms of the potential A and .

The other twon equations, Eqs (1) and (4) can also be expressed in terms A and .

Substituting the value of E in Eq(1)

( )= - .....(8)

Substituting Eqs (5) and(7) in Eq (4), we have

+ =j

+ + =j

- =-j               .....(9)

The solution of Maxwell’s equations is thus reduced to solving the coupled equation (8) and

(9) for A and .

A A’= A+ .....(10)

.......(11)

Where ^ an arbitrary scalar function leaves B and E unchanged.The fact that

leaves   B unchanged by the transformation .The electric field E , Eq (7)

E= (A+ )-

=-

=0 (12)
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The freedom available in the definition of Eqs (10) and (11) together is called gauge

transformation and  the condition in Eq (12) is known as Lorentz gauge condition. Eqn(12)

can we written as:

+ + + =0

+ + + =0

=0  or .......(13)

It can easily be shown that the three components of vector j and charge density from the

four vector

j=(j,ic )                                                        ........(14)

The  components of the vector potential  A and the scalar  potential form the  four-vector

potential:

A= (A,i )                                                          .......(15)

From  eq we have

= - ......(16)

= - .........(17)

= - .......(18)

From  eq

= - or    i = -
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i = - = .......(19)

i = - = .....(20)

i = - = ......(21)

In general

= - , =- ......(22)

=-i , .......(23)

=0 if two indices are equal

=1 if i,j,k are distinct and in cyclic order

= -1 if i,j,k are distinct and not in cyclic order.

These are component of the anti symmetric  tensor defined by

[ 0      ]

Which is the electromagnetic  field four tensor.

Second Quantization: Creation and Annihilation Operators

A basis state can be completely specified in terms of the occupation number nα

for each member of a complete set of orthonormal single-particle states, {|αi, α = 1, 2,
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α

a†
α 1 2 α 1 α α+1

α

a†

3, . . .}. The set of occupation numbers  contains all the information necessary to

construct an appropriately symmetrized or antisymmetrized basis vector, denoted

|Φi = |n1 , n2 , . . . , nα , . .

.i.

For bosons, nα must be a non-negative integer; for fermions, the Pauli exclusion prin-

ciple restricts nα to be either 0 or 1.

The vector space  spanned by the set of all such basis states is called the Fock

space. A feature  of the Fock space is that the total number of particles is not a fixed

parameter, but rather is a dynamical variable associated with a total number operator

N =
X

nα.
α

There is a unique vacuum or no-particle state:

|0i = |0, 0, 0, 0, . . .i.

The single-particle states can be represented

|αi = |0, 0, . . . , 0, nα = 1, 0, . . .i ≡ |01, 02, . . . , 0α−1, 1α, 0α+1, . . .i.

Bosonic operators. Let us define the bosonic creation operator a† by

α|n1, n2 , . . . , nα−1, nα, nα+1, . . .i =
√

n +1 |n , n , . . . , n , n +1, n , . . .i, (1)

and the corresponding annihilation operator aα by

aα|n1, n2 , . . . , nα−1, nα, nα+1, . . .i =
√

nα |n1 , n2 , . . . , nα−1, nα−1, nα+1, . . .i. (2)

Equations (1) and (2) allow us to define the number operator Nα = a† aα, such that

and

Nα|n1, n2 , . . . , nα, . . .i = nα|n1 , n2 , . . . , nα, . . .i

N =
X

Nα.
α

The simplest application of the creation and annihilation operators involves the
single-particle states:

α|0i = |αi, aα|βi = δα,
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1 a α

α

c†

n1

να

When applied to multi-particle states, the properties of the creation and annihila-

tion operators must be consistent with the symmetry of bosonic states under pairwise

interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single

particle state,

The properties described in the preceding paragraph can be summarized in the

commutation relations

One consequence of these commutation relations  is that any multi-particle basis state

can be written

|n1, n2, . . . , nα, . . .i = a† † n2

2 . . . a† nα
. . . |0i, (3)

or equally well, as any permutation of the above product of operators acting on the

vacuum.

Equations (1)–(3) define the key properties of bosonic creation and annihilation

operators. Note the close formal similarity to the properties of the harmonic oscillator

raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one

because we have to enforce antisymmetry under all possible pairwise interchanges. We

define the fermionic creation operator c† by

c† να

α|n1, n2 , . . . , nα−1, 0α, nα+1, . . .i = (−1)

α|n1, n2 , . . . , nα−1, 1α, nα+1, . . .i = 0,

and the annihilation operator cα by

cα|n1, n2 , . . . , nα−1, 1α, nα+1, . . .i = (−1)

cα|n1, n2 , . . . , nα−1, 0α, nα+1, . . .i = 0.

In both Eqs. (4) and (5),

|n1 , n2 , . . . , nα−1, 1α, nα+1, . . .i,

|n1 , n2 , . . . , nα−1, 0α, nα+1, . . .i,

(4)

(5)
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β

α

1
c α

n1

να =
X

Nβ , where Nβ = c† cβ , (6)
β<α

measures the total number of particles in single-particle states having an index β < α.

It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that

with the phase factor (−1)να as defined above,

Nα|n1 , n2 , . . . , nα, . . .i = nα|n1 , n2 , . . . , nα, . . .i for nα = 0 or 1. (7)

αcα|Ψi = 0 = −cαcα|Ψi. Similarly, cαcβ |Ψi = −cβ cα|Ψi for α = β, and cαcα

|Ψi = 0.

ny c†

basis state |Φi, whereas cαc† |Φi

†

= (1 −
†

nα)|Φi.

Thus,for any |Ψi in the Fock space.

The properties above can be summarized in the anticommutation relations where

{A, B} = AB + BA is the anticommutator of A and B. These anticommutation

properties fundamentally distinguish the fermionic operators  from their commuting

bosonic counterparts. The (−1)να phase factors entering Eqs. (4) and (5) were

chosen specifically to ensure that Eqs. (7) are satisfied. Alternative phase

conventions can be adopted, so long as the anticommutation relations are

preserved.

Given the anticommutation relations, any multi-particle basis state can be written

|n1, n2, . . . , nα, . . .i = c† † n2

2 . . . c† nα
. . . |0i,

or equally well, as any permutation of the above product of creation operators with a

sign change for each pairwise interchange of adjacent operators. For example,

|

Equations (4)–(7) define the key properties of fermionic creation and annihilation

operators.

Basis transformations.

The creation and annihilation operators defined above were constructed for a
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α̃

σ σ

particular basis of single-particle states {|αi}. We will use the notation b† α

nd bα to represent these operators in situations where it is unnecessary to

distinguish between the bosonic and fermionic cases.

Consider an alternative single-particle  basis {|α̃i}, which—like {|αi}—is complete

and orthonormal. The Fock space can be spanned by many-particle basis states of the

form

|Φ̃i = |ñ1, ñ2, . . . , ñα̃, . . .i,

and one can define operators b̃†
and b̃α̃ by analogy with those for {|αi}. It is important

to note that the vacuum state |0i can (and will) be chosen to be the same in both the

original and new bases.

all consistent with the unitary transformation

b̃† †
α̃ =

X
hα|α̃ibα, b̃α̃ =

X
hα̃|αibα. (8)

α α

An important special case of a basis transformation involves single-particle basis

states of well-defined position r and spin z component σ: {|α̃i} = {|r, σi}, where

hr, σ|r0, σ0i = δ(r − r0)δσ, σ0 .

The corresponding  operators  are called the field creation and annihilation  operators, and

are given the special notation  Ψ† (r) and Ψσ (r).  For bosons or fermions,

Ψσ (r) =
X

hr, σ|αi bα =
X

ψα(r, σ) bα,
α α

where ψα(r, σ) is the wave function of the single-particle state |αi. The field operators

create/annihilate a particle of spin-z σ at position r:

σ (r)|0i = |r, σi, Ψσ (r)|r , σ i = δ(r − r δσ, σ0 |0i.The total number operator can be written

N =
X Z

dr Ψ† (r)Ψ (r).
(9)

Dynamical variables.
Now we consider how to represent dynamical variables in terms of the

creation and annihilation operators introduced above.
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Ω =
P

α

The simplest dynamical variables are additive one-particle operators of the form

n

j=

1

Ωj , where Ωj acts just on the j’th particle. Examples of one-

particle

quantities include the  momentum P =
P

j Pj , the kinetic energy K =
P

j Kj ,

where

Kj = |Pj |2/2m, and the external potential V =
P

j Vj , where Vj = v(rj ).

If we choose a single-particle basis {|α̃i} in which Ωj is diagonal (e.g., momentum

eigenstates in the cases of Pj and Kj , position eigenstates for Vj ), then the

total operator can be represented Ω =
P

α̃ ωα̃ Ñα̃ .

In any other basis {|αi}, related to {|α̃i} by Eq. (8), the most general form of an

additive one-particle operator is

Ω =
X

hα|Ω1|βi b† bβ .
α,β

We will also consider additive two-particle operators, most commonly encountered

as a pairwise interaction potential U =
P

i<j u(ri , rj ).

Note the reversal of the order of the operators bγ and bδ in Eq. (9), which allows

the same expression to be used for bosons and fermions.

We are now in a position to consider applications of the formalism outlined above

to many-boson and many-fermion systems.

QUANTIZATION  OF THE  FIELD

To quantize the field ,we regard the field variables and as operator functions. Just as the

quantum conditions.
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[qi,qj] = [Pi,Pj]=0;    [qi,qj] = i ij                      ............ (1)

Were used for the transition from classical to quantum particle mechanics , we achieve the

transition from classical to quantum field theory by requiring that

......... (2)

Assuming the cell volumes  are very small, Eq. (2) can be rewritten in terms of and in

the following  forms:

[ , ] = [ ] = 0         ............ (3)

[ , ] = iħ .............(4)

Where if r and r’ are in the same cell and zero otherwise in the limit, the cell

volume approach zero , can be replaced by the three dimensional Dirac

(r-r’). The quantum conditions for the canonical field variables

[ , ] = [ ] = 0         ............ (5)

[ , ] = iħ .............(6)

By making non –commuting operators, we convert H, L etc.., also into operators

which have  eigenvalues , eigenstates , etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing

the Poisson bracket by the  commutater  bracket  divided by iħ or from Eq.

+ [F,H]                                                   ..............(7)

Equations  (5) and (7) completely describe the behaviour of the quantized   field specified by

the Hamiltonian.
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Quantization Of Schrodinder Equation

As  an example of the field quantization technique ,we shall consider the quantization

of the non-relativistic Schrodinger equation inthis section. The name Schrodinger field is

used for a field (r , t) satisfying the Schrodinger equation.

Iħ = - + V ..............(1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a

potential V. Here is thought of as a classical field , which can be quantized by

converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density taken in the form:

ℒ = iħ ........(2)

Reduce the classical field equation  to the familiar Schrodinger equation , Eq (1). and

can be considered as independent fields giving the Lagrange’s equations of

motion. The variation with respect to gives Eq(1) while variation with

respect in gives the complex conjugate of Eq(1).

-iħ + V ..............(3)

The momentum canonically conjugate to is :

= iħ .................(4)

Where we have used the expression for ℒ given in Eq 2.Using Equation (2) and(4),the

Hamiltonian densityℋ now becomes

ℋ = Ψ - ℒ = . + V (r ,t) ..........(5)
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= - . V - V(ih )

Using Eq (5), the Hamiltonian H is given by

H= r = . + V ) r

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

Ψ= = - . .......(7)

=- = -( - )        ......(8)

These  equations can be expressed  in the familiar form by substituting  the value of from

equ now

Ψ = - VΨ+ .........(9)

Multiplying by iħ,

Iħ = - + VΨ

Replacement of in eq this equation

= V -

Since =iħ this equation becomes

-iħ = - ........(10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian  density .
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Since Ψ is now an operator , is to be interpreted as the Hamiltonian adjoint of Ψ rather

than its complex conjugate and its usually denoted by .

[Ψ(r,t), ] = (r-r’).

QUANTIZATION  OF THE  FIELD

To quantize the field ,we regard the field variables and as operator functions. Just as the

quantum conditions.

[qi,qj] = [Pi,Pj]=0;    [qi,qj] = i ij                      ............ (1)

Were used for the transition from classical to quantum particle mechanics , we achieve the

transition from classical to quantum field theory by requiring that

......... (2)

Assuming the cell volumes  are very small, Eq. (2) can be rewritten in terms of and in

the following  forms:

[ , ] = [ ] = 0         ............ (3)

[ , ] = iħ .............(4)

Where if r and r’ are in the same cell and zero otherwise in the limit, the cell

volume approach zero , can be replaced by the three dimensional Dirac

(r-r’). The quantum conditions for the canonical field variables

[ , ] = [ ] = 0         ............ (5)

[ , ] = iħ .............(6)
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By making non –commuting operators, we convert H, L etc.., also into operators ;

which have  eigenvalues , eigenstates , etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing

the Poisson bracket by the  commutater  bracket  divided by iħ or from Eq.

+ [F,H]                                                   ..............(7)

Equations  (5) and (7) completely describe the behaviour of the quantized   field specified by

the Hamiltonian.

QUANTIZATION OF  THE  SCHRODINDER  EQUATION

As  an example of the field quantization technique ,we shall consider the quantization of the

non-relativistic Schrodinger equation inthis section. The name Schrodinger field is used for a

field (r , t) satisfying the Schrodinger equation.

Iħ = - + V ..............(1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a

potential V. Here is thought of as a classical field , which can be quantized by

converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density taken in the form:

ℒ = iħ ........(2)

Reduce the classical field equation  to the familiar Schrodinger equation , Eq (1). and

can be considered as independent fields giving the Lagrange’s equations of
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motion. The variation with respect to gives Eq(1) while variation with

respect in gives the complex conjugate of Eq(1).

-iħ + V ..............(3)

The momentum canonically conjugate to is :

= iħ .................(4)

Whrere we have used the expression for ℒ given in Eq 2.Using Equation (2) and(4),the

Hamiltonian densityℋ now becomes

ℋ = Ψ - ℒ = . + V (r ,t) ..........(5)

= - . V - V(ih )

= -

Using Eq (5), the Hamiltonian H is given by

H= r = . + V ) r

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

Ψ= = - . .......(7)

=- = -( - )        ......(8)

These  equations can be expressed  in the familiar form by substituting  the value of from

eq  now
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Ψ = - VΨ+ .........(9)

Multiplying by iħ,

Iħ = - + VΨ

Replacement of in eq this equation

= V -

Since =iħ this equation becomes

-iħ = - ........(10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian  density .

Since Ψ is now an operator , is to be interpreted as the Hamiltonian adjoint of Ψ rather

than its complex conjugate and its usually denoted by .

[Ψ(r,t), ] = (r-r’).
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

1. State and explain the classical field equation in Hamiltonian form.

2. State the classical field equation and explain the quantities involved therein.

3. What is meant by a conjugate field? Explain.

4. What are creation, annihilation and number operators?  Why are they called so?

Explain.

5. What is meant by second quantization?  Why is it called so?  Explain

6. Explain quantization of non-relativistic Schrodinger equation.

7. Write a short note on Lagrangian density

8. Explain what is meant by functional derivative.

9. Explain the need of quantization of fields.  What is the necessity of quantizing fields?

In what context is it important?

10. For a system of fermions, define the number operator Nk and show that its eigen

values are zero and one.

PART C ( 10 Marks each)

1. Derive the classical field equation in the Hamiltonian form, and explain quantization

of fields. Explain the terms Hamiltonian density, functional density and conjugate

field.

2. Explain quantization of Schrodinger equation.  Explain creation and annihilation

operators and their significance.

3. Explain in detail Dirac field.

4. Explain classical theory of electromagnetic fields.

5. Explain quantization of electromagnetic fields.
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A system of particles is specified by the __________ co-ordinates and their dependence on 

the time.
momentum space positional phase-space positional

The field lagrangian is expressed as the integral over all space of a _________ density. Lagrangian Hamiltonian Volume Surface Lagrangian
      The Hamiltonian equation for the time rate of change of a functional F of y and p is 

given by ______________.

 dF/dt = ∂F/∂t – {F, 

H}

    dF/dt = ∂F/∂t + 

{F, H}

   dF/dt = ∂F/∂x – 

{F, H}

     dF/dt = ∂F/∂x + 

{F, H}

   dF/dt = ∂F/∂t + 

{F, H}

    In the equation dF/dt = ∂F/∂t + {F, H}, H represents the __________ energy of the field. total partial kinetic none of the above total

The Lagrangian L(qi , , t) is a function of time and a functional of the possible paths of 

____________ of the system.
y(t) dy/dt qi(t) none of the above qi(t)

 The field lagrangian is a function of the field amplitude___________. Ñy dy/dt q(r,t) y(r,t) y(r,t)
The appearance of Ñy is a continuous dependence  of y on r i.e., continuously _______ 

number of degrees of freedom.
finite infinite constant a and c infinite

 The variational principle for the lagrangian is given by__________. d∫L dt = 0 d∫L dt = 1 d∫L dt = -1 d∫L dt = y(r,t) d∫L dt = 0
The momentum canonically conjugate to  can be defined to be the ratio of dL to the 

infinitesimal change �  when all the other �  and all the _________ are zero.
y L Ñy dy dy

The functional density F(y, p, t) is assumed not to depend explicity on  time momentum space co-ordinate none of the above none of the above
 The dF/dt = __________. -∂F/∂t + {F, H} -∂F/∂t – {F, H} ∂F/∂t + {F, H} ∂F/∂t – {F, H} ∂F/∂t + {F, H}

  If H does not depend on explicity on the time, then H is a _________ of motion. equation constant lagrangian equation
Hamiltonian 

equation
constant

According to quantum equation for the field, the wave field from a real numerical function 

can be converted to a hermitian operator in the __________ picture.
quantum classical skew hermitian Heisenberg Heisenberg

According to quantum equation for the field, [yi, yj] = [Pi, Pj] =  1 -1 0 2 0

The function d(r, r
’
) has the property that _________ is equal to the average value of f for 

the cell in which r’ is situated.
∫ f(r) d(r, r’) d3r -∫ f(r) d(r, r’) d3r -∫ f(r) d(r, r’) d2r ∫ f(r) d(r, r’) d2r ∫ f(r) d(r, r’) d3r

The equation of motion for any quantum dynamical variable F is given by 
dF/dt = -∂F/∂t + 

1/iħ [F, H]

dF/dt = ∂F/∂t - 1/iħ 

[F, H]

dF/dt = ∂F/∂t + 1/iħ 

[F, H]

dF/dt = -∂F/∂t - 1/iħ 

[F, H]

dF/dt = ∂F/∂t + 1/iħ 

[F, H]

 The field quantization is often called as ___________. wave quantisation second quantisation
wave function 

quantisation
none of the above second quantisation

If the commutation relations for the operators ak and ak
*
 are solved, then __________ is 

diagonal, consists of matrices.
ak*ak3 ak*ak2 ak*ak ak

*
ak ak

*
ak

 The sates of the quantized field in the representation in which each Nk is diagonal, are the 

kets given by ____________.

 ,n1, n2, n3 ׀       

……..nk,….>

 ,n1, n2, n3 ׀-    

……..nk,….>

 ,n1, -n2, -n3- ׀       

……..-nk,….>

 ,N1, N2, N3 ׀     

……..Nk,….>

 ,n1, n2, n3 ׀    

……..nk,….>

The ak
* is called ________ operator for the state k of the field.    none of the above   creation      number   destruction number

The spin of the electron carreis no _________ charge particles energy density energy

The Nk is called _________ operator for the state k of the field. number creation destruction none of the above number

The number operator need not be a ____________. equation of motion constant of motion lagrangian motion Hamiltonian motion constant of motion

  The rate of change of Nk is given by ___________.
dNk/dt = iħ [ak

*, a, 

H]

dNk/dt = -iħ [ak
*, a, 

H]
dNk/dt = [ak

*, a, H]
iħ dNk/dt = [ak

*, a, 

H]

iħ dNk/dt = [ak
*, a, 

H]

 The necessary and sufficient condition that Nk to be a constant of the motion is that all off-

diagonal elements that involve the state Uk be ___________.
0 –1 1 none of the above 0



    If Uk and Ek are the eigen function and eigen value, then the field hamiltonian 

becomes____________.
H = Σ Nk Ek

2 H = Σ Nk Ek
3 H = Σ Nk Ek H = Σ Nk Ek

4 H = Σ Nk Ek

     According to anticommutation relation, [ak, al] = _____________. ak al + al ak = 1 ak al + al ak = 0 ak al + al ak = -1 ak al - al ak = 0 ak al + al ak = 0

  If the eigenvalues of each Nk are 0 and 1, then the particles obey the __________ principle. variational lagrangian Hamiltonian Exclusion Exclusion

  The eigen values of H can be found by the linear combination of the ______ wave 

amplitudes
spherical polarized plane circular plane

 H is formally equivalent to the sum of the energies of a number of _________ oscillators. harmonic simple harmonic sinusoidal none of the above harmonic
 The momentum density of an electromagnetic field is the pointing vector _________ 

divided by c
2
.

–(c/4p) E(r,t) X 

H(r,t)
(c/p) E(r,t) X H(r,t) –(c/p) E(r,t) X H(r,t) (c/4p) E(r,t) X H(r,t) (c/4p) E(r,t) X H(r,t)

According to quantized field, the energy and momentum of each plane wave are quantized 

in 
–ħkc and ħK ħkc and ħK –ħkc and -ħK ħkc and –ħK ħkc and ħK

According to Planck’s quantum hypothesis, the energy associated with each plane 

electromagnetic wave is an integer multiple of the fundamental quantum ________.
ħK  –ħK hn h hn

 The quantized electromagnetic field propagates with the ________ speed of light. classical quantum a and b none of the above classical
The Hamiltonian density is given by H= _____________. -p p 0 p p
A physical system with ___________ degrees of freedom is referred as a field. finite infinite constant none of the above infinite
A transition from classical particle mechanics to quantum mechanics is ________ 

degenerage.
doubly triply singly none of the above doubly

The electromagnetic wave travels in free space with the velocity of ________. sound ultrasonic wave ultrasonic wave infrasonic wave ultrasonic wave
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PART-A (20x1=20Marks)

Answer all questions

1. Equation of Linear momentum ____________

a.P= mv b. P= dv  c. P= md  d. P= m2v

2. Total angular momentum  is equal to ___________

a.orbital angular momentum + spin angular momentum

b. spin angular momentum c. linear angular momentum  d. torque.

3. J- ___________
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a.Jx + iJy b. Jx - iJy c. Jx
2 + iJy

2 d. Jx
2 - iJy

2

4. [ Jx
2 ,Jx ] ____________

a.Jx [Jx Jx ] + Jx b. Jx c. Jx [Jx Jx ] + [Jx Jx ] Jx d. Jx
2

5. [ Jz , J+ ] =______________

a.ћJ+ b. ћJx c.. ћJz d. ћJxJy

6. The scattering amplitude f(,) for the scattering problem of stationary wave is given by _____________.

a.(m/2 ћ2) e-ik.r V(r) (r) d b.(m/2 ћ2) eik.r V(r) (r) d

c.(m/4 ћ2) e-ik.r V(r) (r) d d.-(m/2 ћ2) e-ik.r V(r) (r) d

7. Born approximation is applicable for the scattering centres which are _________.

a.Strong b.weak c. moderate d. none of the above

8. In the equation (r) = eikr + f() eikr/r, the first term represents the __________.

a.scattered wave function b. re-scattered wave function

c.incident wave function d. recoiled wave function

9. Every atomic electron moves in a _______ potential energy V(r) that is produced by the nucleus and all other electrons.

a.Spherically symmetric b.Assymmetric  c.Radially     symmetric d.None of the above
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10. The state of an electron in a central field is specified by the quantum numbers _______.

a.n and l   b.ml and ms c.n, l and ms d.n, l, ml and ms

11. The basis of all molecular approximation is the large ratio of _________.

a.electron mass to nuclear mass b.electron mass to neutron mass c.electron mass to atomic mass d.nuclear mass to electron

mass

12. The probability that a particle will be scattered as it traverses a given thickness of matter can be expresses in terms of a

quantity called the ___________.

a.Total scattering cross-section b. Differential scattering cross-section Scattering cross-section c. Coulomb scattering d.

Partial wave analysis

13. In wave mechanics, an incident beam of particles is represented by a _________ wave.

a.Transverse b. Plane c. Longitudinal d. Stationary wave

14. Born approximation is applicable for the scattering centres which are _________.

a.Strong b.weak c. moderate d. none of the above

15. In the equation (r) = eikr + f() eikr/r, the first term represents the __________.

a.scattered wave function b. re-scattered wave function c.incident wave function d. recoiled wave function

16. In alkali atom, a single electron moves in a spherically symmetric ________ potential energy V(r).

a.Excitation b. coloumb c. noncoloumb d. none of the above
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17. The configuration of an alkali atom can be specified by a single pair of quantum numbers ____________.

a.n, l b. n, l, ml c. n, l, ml, ms d. n, l, ms

18. The doublet structure characterizes all the moderately excited levels of the alkali atom except those for which l= _________.

a.Infininity b. 1 c. 1 and 2 d. 0

19. The central field approximation is applicable on all atoms except the _________ atom.

a.heavier    b.alkali c.lighter d.smaller

20. Every atomic electron moves in a _______ potential energy

V(r) that is produced by the nucleus and all other electrons.

a.Spherically symmetric b.asymmetric c. Radially symmetric d.None of the above

PART-B (3x2=6 Marks)

Answer all the questions

21.Write a short note on angular momentum.

The angular momentum of a particle with momentum p and position r is defined by

L =r × p = (ypz- zpy) i +  (zpx–xpz) j + (xpy- ypx) k

22.What are ladder Operators ?

In linear algebra application to quantum mechanics, the raising and lowering operator collectively called ladder operators.
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J+ = Jx+iJy

J- = Jx-iJy

23.Write a short note on scattering.

In scattering a beam of particles pass to scattering material called target.

Target remains orginial state – elastic

Target remains different state – in elastic

PART-C (3x8=24 Marks)

Answer all the questions

24. a. For a spin-½ system, obtain the matrices for Sx, Sy and Sz.  What are their eigen values and eigen vectors?

To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in 1925 that an electron in an atom possesses

an intrinsic angular momentum in addition to orbital angular momentum. This intrinsic angular momentum S is called the spin

angular momentum whose projection on the z axis  can have the value

sz =msħ, ms=±1/2. the maximum measurable component of spin angular momentum in units of ħ is called the spin of the particle

and is usually denoted by s .They also suggested that the spin angular momentum  gives rise to an intrinsic magnetic moment µs

gives by

µ s= - e/m S

assuming that all the stable and unstable particles to have spin angular momentum

S , we expect its components Sx, Sy and Sz to obey the general commutation relation and S2and Sz to have the eigen values

s(s+1)ħ2 and msħ, ms= -s, -s+1,…s respectively
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spin –(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this category.the matrices  representing Sx, Sy

and Sz are obtained from the Jx, Jy,and Jz matrices by taking the part corresponding to j=1/2,hence

Sx=1/2ħ ( 0   1)        Sy=1/2 ħ (0 -i)           Sz=1/2ħ(1    0)

(1    0)                       (I    0)                          (0 -1)

often it is convinient to work with a matrix ϭ defined by

S=1/2ħϭ

where

ϭx=( 0 1) ϭy= (0 -i) ϭz=(1    0)

(1    0)               (I    0)                (0 -1)

the ϭx,ϭy and ϭz matrices are called the pauli’s spin matrices.From the difinition it is obvious that their eigenvalues are +1.These

matrices satisfy the relation
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ϭx
2=ϭy

2 =ϭz
2=1

ϭxϭy=iϭz, ϭyϭz=iϭx , ϭxϭz =iϭy

ϭxϭy + ϭy ϭx = ϭy ϭz + ϭz ϭy = ϭz ϭx + ϭx ϭz =0

pauli was the first to recognize the necessity of two component state vectors explain certain observed features to atomic spectra.

spin vectors for spin –(1/2) system:

Including spin the spin –(1/2)system has how four degree of freedom,the three position coordinates (x,y,z) and another

observable pertaining to spin.Taking the z component Sz as the fourth observable the electron wave function can be written  as

φ(r,Sz) or φ(r,ms) the coordinate m takes the values +1/2 or -1/2. When the interaction between the spin and space parts is

negligible the wave function

φ(r,ms )=ϕ(r) χ(ms, )

where ϕ(r) represented that depends on the space coorinates and χ(ms, ) the part the depends on the spin  coordinates

The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the eigenvalue equation.Since the

matrices are 2x2 the eigenvectors must be column vector with two components. the eigenvalue equation for Sz with eigenvalueħ/2

is

1/2ħ(1   0)(a1) =1/2ħ(a1)

(0 -1)(a2)(a2)
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it is evident that a2=0 the normalization condition gives

la2l
2=1 or a1 =1

the eigenvector of thr matrix Sz corrsponding to eigenvalue ħ/2 is than

(1)

(0)

processing on similar lines the eigenvector for the eigenvalue -ħ/2  is

(0)

(1)

these eigenvector are denoted by α and βand are usually called the spin up and spin down states respectively

α=(1)                        β=(0)

(0) (1)

the two component eigenvectors of spin –(1/2) particles are sometimes called spinors. Eigenvectors of Sx and Sy can also be found

in the same way. the spin materials of a spin –(1/2) system along with eigenvalue and eigenvectors.

b. (i) What are Clebsh-Gordon Coefficients?  Explain their significance.
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(ii) Obtain the matrix of Clebsh-Gordon coefficients for j1 = 1, j2 = 1.

For the total angular momentum vector  J= + ,

J× J= iħJ

Also , it follows  that

[ , = 0] ,  [ , ] = [ , ]=0

The orthonormal eigenkets of and be ⃓jm>.Since ℎ , and they form another complete set and

their simultaneous  eigenkets will be⃓ + jm>.⃓jm> =∑ , ⃓ >

The coefficient of this linear combination are called Clebsh- Gordon coefficient or Wigner coefficients or  vector coupling

coefficients.

< ⃓jm>=

Substituting this value of the coefficient in eqution (3)⃓jm>∑ ⃓ ><, ⃓ >

⃓ > =∑ < ⃓ > ⃓ >,
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Where the summation over m is form –j and j is form⃓ − ⃓ to − .The unitary of Clebsh Gordon coefficients is

expressed by the equation∑ <, ⃓jm>< ′ ′>=< ⃓ ′ ′ > = ′ ′
And

<jm⃓ >=< ⃓jm>*

Second rules

Operating eq from left by ,we have⃓ >=∑ ( + )⃓ >< ⃓ >
mħ ⃓ >=∑ ( + )ħ⃓ >< ⃓ >
replacing ⃓ > using eq and rearranging , we get∑ ( − − ) ⃓ >< ⃓ >=0

Which is valid only if the coefficient of each term vanishes separately.This leads to one of the rules of vector atom model , that

is

m= +
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we shall next find out how the various m and j values arise from the values of . For given values of

, can have values from − and − , in integral step.

The smallest value w of j occurs for= − or = −( + ), ( + − 1), ( + − 2),… , ⃓ − ⃓
which is the triangle rule of the vector atom model.

25. a.Write in detail about Partial waves

b.Explain The Born approximation and Validity of Born approximation.

The wave function ϕ(r’) is required the evaluate the equation. Born used an interaction procedure for its evaluation. In

the first born approximation ϕ(r’)  in the integral equation is replaced by the incoming plane wave exp  (iK.r’). This leads to

an improved value for the wave function ϕ(r) which is used the integral in the second born approximation. This interactive

procedure is continued till both the input and output ϕ’ s are almost equal . As higher order approximation are complicated  we

shall restrict our discussion only to first born approximation

replacing ϕ(r’)  in the integral the equation by exp (iK.r’) ,we get

f(θ) = -1/4π∫ exp [(i(k-k’).r’]U(r’) d θ      (1)
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where k and k’ are the wave vector in the incident and scattered direction respectively. The quantity (k-k’)ħ=qħ is then the

momentum transfer from the incident particle to the scattering potential. In other words the change in momentum qħ due to

collision is given by

qħ = (k-k’)ħ                          or               │q│ =2 │k│ sin θ/2           (2)

replacing  (k-k’) by q in eq 1 we get

f(θ) = - 1/4π∫exp (iq.r’) U(r’) d θ’ (3)

the angular integration in equation 3 can easily be carried out by talking the direction of q  and r’ by θ as the polar axis.

Denoting the angle between q and r’ by θ’

f(θ) = -1/4π∫0∞∫0π∫02π exp (iq r’ cos θ’)U(r’) r’2sin θ’ dφ’ dθ’ dr’               (4)

integration over φ gives 2π. The θ integral can easily be evaluated by writing

-cos θ’ =x   or -sin θ’ dθ’ =dx

we get

∫0πexp (iqr’ cosθ’ ) sin θ’ dθ’ = ∫1-1 exp  (iqr’x)dx

=exp(iqr’)-exp(-iqr’)                  (5)

substitiutibg the value of the angular part in equ (4)
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f(θ) = -2µ/ħ2∫0∞ sin (qr’)/qr’ V(r’)r’2 dr’

from which ϭ(θ) can be calculated. It may be noted from eq  (5)  that the only variable parameter in f(θ) is magnitude of the

momentum transfer qħ where q is given by eq (2)  thus the scattering cross section depends on the momentum of the incident

particle kħ and the scattering angle θ through  the combination q= 2k sin (θ/2)

26.a. Explain the principle of Central Field. Explain Hartree’s theory of many electron atom using central field

approximation.

The kinetic energy term and the nucleus-electron interaction term are sums of single-particle operators, each of which act on a

single electronic coordinate.  The electron-electron interaction term on the other hand is a pair interaction and acts on pairs of

electrons.  To facilitate the upcoming math, let’s make the following definition

Hˆ e  = X hˆ 1 (~xi )

where ~xi  is now a generalized coordinate that includes spatial as well as spin degrees of freedom.

The Hartree-Fock  method  is a variational,  wavefunction-based  approach.   Although  it  is a many-body technique,  the

approach followed is that of a single-particle picture, i.e.  the electrons are considered as occupying single-particle orbitals

making up the wavefunction.  Each electron feels the presence of the other electrons indirectly through an effective potential.

Each orbital, thus, is affected by the presence of electrons in other orbitals.

The starting point of the Hartree-Fock method is to write a variational wavefunction, which is built from these single- particle

orbitals.  Once we make a suitable ansatz to the wavefunction, all that is left is the application of the variational principle . The

simplest wavefunction that can be formed from these orbitals is their direct product

Φ(~x1 , · · · , ~xN ) = φ1 (~x1 )φ2 (~x2 ) · · · φN (~xN ).                                                (1)
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This is the Hartree  approximation and it is a straightforward task to calculate the variational lowest energy from Eq. 1.

However, the Hartree wavefunction has a very important shortcoming, which is that it fails to satisfy antisymmetry, which

states that a fermion wavefunction  changes sign under odd permutations  of the electronic  variables.  The  permutation

operator is defined by its action on the wavefunction

Pˆij Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) = Φ(~x1 , · · · , ~xj , · · · , ~xi , ·  ·  ·  , ~xN ) = −Φ(~x1 , · · · , ~xi , · · · , ~xj , · ·

·  , ~xN )         (2)

If an odd number of such permutation operators are applied to the wavefunction, it picks up a minus sign while no change

in sign occurs under an even number of permutations. In order to satisfy the antisymmetry condition, a more sophisticated

form than that of the Hartree wavefunction is needed.

(OR)

b. Derive  Hartree-Fock equation

THE  HARTREE-FOCK EQUATIONS

The variational  principle that we will apply here is rather different  from the linear variation.  There the form of our

approximate wavefunction was written as an expansion over a collection of predetermined functions and we minimized the

expectation value (at the same time obeying the normalization constraint) with respect to the coefficients of the basis functions.

Here however we employ a much more general treatment where we minimize with respect to the basis functions themselves!

Needless to say, this requires functional differentiation where any change affected in the expectation value in Eq. 1 due to an

infinitesimal change in any of the orbitals φk  should be zero

φk → φk  + δφk ⇒ δhΦ|Hˆ e |Φi = 0                                                             (1)
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In addition, we demand through Lagrange multipliers that the set of oritals φk  remain orthogonal throughout the minimization

process.

where the first and the second term are straightforward, single-body operators and the third term is an integral operator. This is

now a  set of interdependent single-particle eigenvalue equations.   The  operator Jˆ corresponds to the classical interaction of

an electron distributions given by |φi |2  and |φk |2  and is called the direct term while Kˆ , called the exchange term, has no

classical analogue and is a direct result of the antisymmetry property of the wavefunction.  The Fock operator

Fˆ = hˆ 1 + X(Jˆi − Kˆ i)                                                            (2)

i

and using this definition Eq. 2 takes the simple form

N

Fˆφk = X λki φi (3)

i=1
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There are several different solutions to the equations in Eq. 3 each corresponding to a different set of λki . We have the

freedom to concentrate upon those λki which satisfies

λki = δki ǫk                                              (4)

where ǫk  is essentially a new name for the Lagrange multipliers[1].  With this, Eq.4 may be written as

Fˆφk = ǫk φk .                               (5)

In this form, Eq. 5 is a traditional eigen value equation.  For each k there is an equivalent equation defining a system of

Schr¨odinger-like, one-particle equations.  Although it’s tempting to interpret the eigen values ǫk as the energy levels of an

interacting system, this is in fact not justified because the single-electron picture is not correct.  However, if interpreted

correctly the Hartree-Fock eigen values do correspond to certain physical entities.
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PART-A (20x1=20Marks)

Answer all questions

1. The nuclear motion are classified into translation and rotational motion of the ______ equilibrium arrangement and internal

vibrations of the nuclei about the equilibrium.

a. quasi-rigid b. stable c. unstable d.rigid

2. A system of particles is specified by the __________ co-ordinates and their dependence on the time.

a. Momentum b. space  c. positional d. phase-space

3. The field lagrangian is expressed as the integral over all space of a _________ density.

a. Lagrangian b. Hamiltonian c. Volume d. Surface

4. In the equation dF/dt = ∂F/∂t + {F, H}, H represents the __________ energy of the field.
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a. Total b. partial c. kinetic d. none of the above

5. The Lagrangian L(qi ,


iq , t) is a function of time and a functional of the possible paths of ____________ of the system.

a. (t) b. d/dt c. qi(t) d. none of the above

6. The field lagrangian is a function of the field amplitude___________.

a.  b. d/dt c. q(r,t)  d. (r,t)

c.(m/4 ћ2) e-ik.r V(r) (r) d d.-(m/2 ћ2) e-ik.r V(r) (r) d

7. As r→. there is no net charge inside the sphere of radius r, so that  V falls off more rapidly than ________.

a.1/r b.1/r2 c. –1/r d. r2

8. Molecular energy levels are classified into _____________ vibrational and rotational energy levels.

a.Static b. rigid c. translational d. electronic

9. The energy Ee associated with the motion of a valence is of order of ______, where m is the electronic mass.

a.–ђ2/ma2 b. ђ2/ma2 c. –A2/ma2 + 1 d. ђ2/ma2 + 1

10. The only nuclear coordinates Rj of the hydrogen molecule is the magnitude, ______ of the distance between the two hydrogen

nuclei.

a.R b.  r c. –R d. R2

11. The linear combination of unperturbed degenerate wave function which gives lower energy than the separate wave function is

the basis of ___________ binding molecules.

a.Heteropolar b. nuclei c. homopolar d. atomic
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12. The property of degeneracy is known as ______________.

a.Resonance b. doublet separation c. doublet intensity d. none of the above

13. A __________ oscillator emits radiation spontaneously.

a.Quantum b.classical c.sinusoidal d. damped

14. A __________ oscillator emits radiation spontaneously.

.a.Quantum b.classical c.sinusoidal d. damped

15. If the spins of electron in two atoms are parallel then the atoms _________ each other.

a.Repel b. attract c. coagulate d. none of the above

16. If the spins of the electrons in two atoms are antiparallel, then two atoms _______ each other.

a.Repel b. attract c. coagulate d. none of the above

17. If two spins S1 and S2 of the electron combine to give a resultant spin S=0, then it will give rise to ___________ state.

a.Doublet b. triplet c. multiplet d. singlet

18. The quantum analogue of _________ density function is known as the density operator.

a.Particle b.momentum c.quantum d.classical

19. A________ state can be described by a non-negative density function.

a.classical b.statistical c. quantum d. none of the above
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20. The doublet structure characterizes all the moderately excited levels of the alkali atom except those for which l= _________.

a.Infininity b. 1 c. 1 and 2 d. 0

PART-B (3x2=6 Marks)

Answer all the questions

21.Write a short note on particle in a coulomb field.

A coloumb field is a vector field can be associated with each point in space for the coloumb force of the electric charge.

22.What are quantization?

To quantize the field ,we regard the field variables and as operator functions. Just as the quantum conditions.

[qi,qj] = [Pi,Pj]=0;    [qi,qj] = iħ ij                      ............ (1)

were used for the transition from classical to quantum particle mechanics , we achieve the  transition from classical to

quantum field theory by requiring that

23.Write a short note on creation.

The creation and annihilation should be a add (or) remove the particle for the many system of the body. This operates lies a

core for each second quantization.

PART-C (3x8=24 Marks)

Answer all the questions

24. a. Describe Klein-Gordon field and  Klein-Gordon field equation

The  non relativistic  Schrodinger equation was obtained by replacing  P by - iħ∇ and E by  iħ in the classical energy
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expression of a free particle E= 2 and allowing the resulting operator equation to operate on the wave fuction.The

corresponding relativistic energy  relation is:= + ..........(1)

Where m is the rest mass of the particle . For convenience , rest mass will be denoted by m in this chapter . Replacing E and P

by the respective operators, we get the operator eqution

-ħ = − ħ ∇ + ........(2)

Allowing this operator equation to operate on the wave function Ψ (r.t)

-ħ ( , )
=−ħ ∇ ( , ) + Ψ(r , t)   ........(3)

Which is Klein – Gordon equation or Schrodinger’s relativistic equation

Rearranging , we get (∇ − ) ( , ) =
ħ

( , ) .......... (4)( , )=
ħ

( , )⃞ =∇ − ..........(5)

Where ⃞ is the de Alembertian operator  which is  relativistically  invariant. Therefore  eq(5) is relativistically  invariant  if

Ψ  transforms like a scalar

Plane  Wave  Solution

The plane wavw represented by( , ) =exp [i ( k . r- )]                                     .........(6)
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Is an eigenfunction of both energy and   momentum operator with eigenvalues ħ and kħ respectively. Substitution of  Eq (6)

in Eq (4) gives

(ħ )  =   ( ħ + )
(ħ )  = ± ( ħ + ) /
This  means  that the energy  eigenvalue can have both  positive and negative values . Klein – Gordon were not able to give a

consistent explanation  for the negative energy .

b. Derive Dirac’s relativistic equation.

Dirac attempted to overcome some of the problems of relativistic  quantum mechanics by introducing  a first-order wave

equation.1

iγµ ∂µ ψ − mψ = 0.                                                      (1)

Here, the γµ  are some suitably  chosen operators  acting locally on the wave function ψ. This wave equation  can be viewed as

a factorisation  of the second-order Klein–Gordon  equation  as follows:

(iγν ∂ν  + m)(iγµ∂µ − m)ψ = (−γν γµ∂ν ∂µ − m2)ψ = 0.                 (2)

The latter  form becomes the Klein–Gordon equation  provided that  the γ’s satisfy the Clifford algebra 2   3

{γµ , γν } = γµ γν  + γν γµ  = −2ηµν . (3)

This means that  every solution of the Dirac equation  also satisfies the

Klein–Gordon  equation  and thus  describes a particle  of mass m. The Dirac equation  is a relativistic  wave equation.

Translational invariance  is evident, but  we have not yet shown its Lorentz covariance (although  the resulting Klein–Gordon

equation  certainly  is covariant).

Dirac Matrices

Consider a Lorentz transformation x0 = Λ−1 x with Λ(ω) = exp(ω).  Suppose ψ is a solution of the Dirac equation.  It is
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not sufficient to use the transformation rule for scalar fields ψ0(x0) = ψ(x).  In analogy to vectors we should also transform

spinors.  We make the ansatz

ψ0(x0) = S(ω)ψ(x),                                             (1)

where S(ω) is a matrix  that  acts on Dirac spinors.  We then  substitute

ψ0(x) = Sψ(Λx) into the Dirac equation

0 =  iγµ ∂µ − m ψ0(x) =  iγµ ∂µ − m  Sψ(Λx)

=  iγν SΛµν ∂µψ − Smψ  (Λx)

= S iS−1 γν SΛµ ν ∂µ ψ − iγµ ∂µψ  (Λx)

= iS  Λµν S−1γν S − γµ  (∂µψ)(Λx).                                      (2)

So the term in the bracket  must vanish for invariance  of the Dirac equation. Indeed, the canonical Lorentz transformation of

gamma-matrices

γ0µ  = (Λ−1)µν  Sγν S−1,                                           (3)

where not only the vector index is transformed  by Λ−1, but  also the spinor matrix is conjugated  by the corresponding  spinor

transformation S.8   In analogy to the

invariance  of the Minkowski metric, η0 = η, the Dirac equation  is invariant if the

gamma-matrices are invariant

γ0µ  = γµ.                                                       (4)

This condition relates S to the Lorentz transformation Λ. The infinitesimal form of the invariance  condition reads

[δS, γµ ] − δωµ ν γν  = 0.                                          (5)

This implies that  δS must be proportional  to δωµν . The latter  carries two vector indices, while δS carries none. The only

possibility is to contract  the vector indices by S from the left, co-spinors by the S−1   from the right.
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2
to gamma-matrices, and we make the ansatz  δS = 1 αδωµν γµγν . Substituting this

into the invariance  condition and using

[γργσ , γµ ] = γρ{γσ , γµ} − {γρ, γµ }γσ ,                             (6)

we arrive at (2α − 1)δωµν γν  = 0. We conclude that  a Lorentz transformation for spinors is given by the matrix

the Dirac spinor ψ = (ψL , ψR ) transforms  in the direct sum of two (irreducible)  representations of the Lorentz group.  The 2-

spinors ψL  and ψR  are called left-chiral and right-chiral  spinors.  The massive Dirac equation,  however, mixes these two

representations

iσµ∂µψR − mψL  = 0,

iσ¯ µ ∂µψL − mψR  = 0. (7)

It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless spinor particles can also be

formulated  using 2-spinors; we shall discuss the massless case later on.

25. a. Obtain the relativistic Lagrangian and Hamiltonian of a  charged particle in electromagnetic field.

To quantize the field ,we regard the field variables and as operator functions. Just as the quantum conditions.

[qi,qj] = [Pi,Pj]=0;    [qi,qj] = iħ ij ............ (1)

Were used for the transition from classical to quantum particle mechanics , we achieve the  transition from classical to

quantum field theory by requiring that[ , ] = [ , ] = 0 [ , ] = ħ ......... (2)

Assuming the cell volumes  are very small, Eq. (2) can be rewritten in terms of and in the following  forms:

[ ( , ), ( ′, )] = [ ( , ), ( ′, )] = 0         ............ (3)
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[ ( , ), ( ′, )] = iħ ( , ′) .............(4)

Where ( , ′) = if r and r’ are in the same cell and zero otherwise in the limit, the cell volume approach zero , ( , ′) can be

replaced by the three dimensional Dirac δ− function (r-r’). The quantum conditions for the canonical field variablesand π the become
[ ( , ), ( ′, )] = [ ( , ), ( ′, )] = 0         ............ (5)

[ ( , ), ( ′, )] = iħ ( , ′) .............(6)

By making non –commuting operators, we convert H, L etc.., also into operators which have  eigenvalues ,

eigenstates , etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing the Poisson bracket by the

commutater  bracket  divided by iħ or from Eq.

= +
ħ
[F,H]                                                   ..............(7)

Equations  (5) and (7) completely describe the behaviour of the quantized   field specified by the Hamiltonian.

b.Explain classical theory of electromagnetic fields, and obtain the electromagnetic field four-tensor.

The classical electrodynamics is based on Maxwell’s equations for the electric and magneticfields E and B .In rationalised

units ,also called Hearyside Lorentz units, these equations can be written as:∇. = ......(1)
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∇ × = − ......(2)

∇. = 0 ......(3)∇ × B = + j                                                  ......(4)

Here ( , ) is the charge density and current density j(x,t) is the current density.Instead of E and B, the field equations can

also be expressed in terms of a vector potential A  and a scalar potential . Equation (3) implies

B =∇ × ......(5)

With  this definition of B, Equation (2) takes the form : ∇ × ( + ) = 0
.....(6)

Since the curl of the gradient of a scalar function is zero, from Equation (6) We have

E+ = −∇ ( )

E=- -∇ ....(7)

Which gives the electric field in terms of the potential A andϕ.

The other twon equations, Eqs (1) and (4) can also be expressed in terms A and . Substituting the value of E in Eq(1)

∇ + (∇. )= - .....(8)
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Substituting Eqs (5) and(7) in Eq (4), we have

∇ × (∇ × )+ ( + ∇φ)=j

∇(∇. ) − ∇ + +∇ =j

∇ − -∇(∇. + ) =-j               .....(9)

The solution of Maxwell’s equations is thus reduced to solving the coupled equation (8) and (9) for A and .

A→ A’= A+∇^ .....(10) → ′ = −^
.......(11)

Where ^ an arbitrary scalar function leaves B and E unchanged.The fact that ∇ × ∇^ = 0
leaves   B unchanged by the transformation .The electric field E , Eq (7)

E= (A+∇^)-∇(φ− ^)
=- − ∇

∇. + =0                                              (12)

The freedom available in the definition of Eqs (10) and (11) together is called gauge transformation and  the condition in Eq (12) is

known as Lorentz gauge condition. Eqn(12) can we written as:
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+ + +
( )( )=0

+ + + =0

=0  or = 0 .......(13)

It can easily be shown that the three components of vector j and charge density from the four vector

j=(j,ic )                                                        ........(14)

The  components of the vector potential  A and the scalar  potential form the  four-vector potential:

A= (A,i ) .......(15)

From  eq we have

= - ......(16)

= - .........(17)

= - .......(18)

From  eq

=− - or    i = ( ) -
( )
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i = - = .......(19)

i = - = .....(20)

i = - = ......(21)

In general

= - , =- ......(22)

=-i , ∈ .......(23)∈ =0 if two indices are equal∈ =1 if i,j,k are distinct and in cyclic order∈ = -1 if i,j,k are distinct and not in cyclic order.

These are component of the anti symmetric  tensor defined by

= 0 /− − /− 0 − /
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[ / / / 0      ]

Which is the electromagnetic  field four tensor.

26.a. Discuss Quantisation of non-relativistic Schroedinger equation

As  an example of the field quantization technique ,we shall consider the quantization of the non-relativistic Schrodinger

equation inthis section. The name Schrodinger field is used for a field (r , t) satisfying the Schrodinger equation.

Iħ = - ∇ + V ..............(1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a potential V. Here ( , ) is thought of as

a classical field , which can be quantized by converting it into an operator using the procedure described earlier. Since it is the

second time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density taken in the form:

ℒ = iħ ∗ − ħ ∇ ∗. ∇ − ( , ) ∗ ........(2)

Reduce the classical field equation  to the familiar Schrodinger equation , Eq (1). and ∗ . (2) can be considered as

independent fields giving the Lagrange’s equations of motion. The variation with respect to Ψ∗ in Eq directly gives Eq(1)

while variation with respect in gives the complex conjugate of Eq(1).

-iħ
∗ = − ħ ∇ ∗+ V ∗ ..............(3)
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The momentum canonically conjugate to is :

= ℒ
= iħ ∗ .................(4)

Where we have used the expression for ℒ given in Eq 2.Using Equation (2) and(4),the Hamiltonian densityℋ now becomes

ℋ = Ψ - ℒ =
ħ ∇ ∗ . ∇ + V (r ,t) ∗ ..........(5)

= -
ħ ∇( ħ ∗) . V -

ħ
V(ih ∗)

= -
ħ ∇π. ∇Ψ− Vπ ……… . . (6)

Using Eq (5), the Hamiltonian H is given by

H=∫ ℋ d r =∫ ( ħ ∇ ∗ . ∇ + V ∗ ) r

The classical field equation in the Hamiltonian form are given by eq it follow from the discussed on function derivation eq

Ψ= =
ℋ

- .
ℋ(∇ ) .......(7)

=- = -(
ℋ
Ψ

-∇. ℋ∇Ψ
)        ......(8)

These  equations can be expressed  in the familiar form by substituting  the value of from eq  now

Ψ = - VΨ+ ħ ∇ Ψ .........(9)
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Multiplying by iħ,

Iħ Ψ
= - ∇ Ψ+ VΨ

Replacement of in eq this equation

= V -
ħ ∇

Since =iħ ∗ this equation becomes

-iħ
∗

= -
ħ ∇ ∗ + ∗ ........(10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the Schrodinger field. This validates the

expressed for Lagrangian  density .

Since Ψ is now an operator , ∗ is to be interpreted as the Hamiltonian adjoint of Ψ rather than its complex conjugate and its

usually denoted by ∗.
[Ψ(r,t), ∗( ′, )] = (r-r’).

b. Discuss second Quantisation

A basis state can be completely specified in terms of the occupation number nα for each member of a complete set of

orthonormal  single-particle states,  {|αi, α = 1, 2, 3, . . .}. The set of occupation  numbers  contains  all the information

necessary to construct  an appropriately symmetrized  or antisymmetrized basis vector, denoted
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|Φi = |n1 , n2 ,..., nα ,.. .i.

For bosons, nα must be a non-negative  integer; for fermions, the Pauli exclusion prin- ciple restricts  nα to be either 0 or 1.

The  vector  space  spanned  by  the set  of all such  basis  states  is called  the Fock space.  A feature  of the Fock space is that

the total  number  of particles  is not a fixed parameter, but rather  is a dynamical variable associated with a total number

operator

N = X nα .

α

There is a unique vacuum  or no-particle  state:

|0i = |0, 0, 0, 0,.. .i.

The single-particle states  can be represented

|αi = |0, 0,..., 0, nα = 1, 0,.. .i ≡ |01 , 02 ,..., 0α−1 , 1α , 0α+1 ,.. .i.

Bosonic operators.  Let us define the bosonic creation operator a†  by

α|n1 , n2 ,..., nα−1 , nα , nα+1 ,.. .i =

√ n  +1 |n , n ,..., n     , n  +1, n     ,.. .i,    (1)

and the corresponding  annihilation  operator  aα by

aα|n1 , n2 ,..., nα−1 , nα , nα+1 ,.. .i = √nα |n1 , n2 ,..., nα−1 , nα −1, nα+1 ,.. .i.    (2) Equations  (1) and (2) allow us to define

the number operator  Nα = a† aα , such that
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and

Nα|n1 , n2 ,..., nα ,.. .i = nα |n1 , n2 ,..., nα ,.. .i

N = X Nα.

The  simplest  application  of the creation  and  annihilation  operators  involves the single-particle  states:

α |0i = |αi,       aα|βi = δα,

When applied to multi-particle states,  the properties  of the creation  and annihila- tion operators  must be consistent with the

symmetry  of bosonic states  under pairwise interchange  of particles.  It is clear from Eqs. (1) and (2) that for any pair of

single particle state,

The  properties  described  in the preceding  paragraph can  be summarized  in the commutation relations
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