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SEMESTER I11 LTPC
16PHP301 QUANTUM MECHANICS-1I 4 - -4
Scope: This is a continuation of Quantum Mechanics — |. More detailed study of problems

like scattering problem, relativistic quantum mechanics, quantum electrodynamics etc. are
added in this paper.

Objectives. To make the students capable of analyzing theoretical problems like interaction

of particles, scattering of particles etc.

UNIT -1

Angular momentum: Angular momentum operators — Angular momentum commutation
relations — Eigen values and Eigen functions of L? and L,— General angular momentum —
Eigen values of J* and J, — Ladder operators (J: and J.) — Angular momentum matrices —
Matrices for %, J,, Ji, J, J and J, — Spin angular momentum — Spin ¥z systems — Spin vectors
for spin %2 systems — Addition of angular momentum — Clebsh-Gordan coefficients.

UNIT -11

Scattering: Scattering cross-section — Scattering amplitude — Partial waves — Scattering by a
central potential: partial wave analysis — Significant number of partial waves — Scattering by
an attractive square-well potential — Briet-Wigner formula — Scattering length — Expression
for phase shift — Integral equation — The Born approximation — Scattering by screened
coulomb potential — Validity of Born approximation - Laboratory and center of mass co-

ordinate systems.

UNIT - I11

Many Electron Problem: Indistinguishable particles, Pauli principle — Inclusion of spin —
Spin functions for two electrons — Spin functions for three electrons — The Helium atom —
Central field approximation — Thomas-Fermi model of the atom — Hartree equation —

Hartree-Fock equation — Molecular orbital theory: Hydrogen molecule ion H,™- Vaence bond

theory

UNIT -1V
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Relativistic quantum mechanics. Klein-Gordan equation — Interpretation of the Klein-
Gordan equation — Particle in a coulomb field — Dirac’s equation for a free particle — Dirac
matrices — Covariant form of Dirac equation — Probability density — Negative energy states —
Spin of the Dirac particle — Magnetic moment of the electron — Spin-orbit interaction —

Radia equation for an electron in acentral potential — Hydrogen atom — Lamb shift.

UNIT -V

Field theory: Introduction — Classical approach to field theory — Relativistic Lagrangian and
Hamiltonian of a charged particle in an electromagnetic field — Field: Lagrangian and
Hamiltonian formulations — Quantum equation for the field — Second quantisation —
Quantisation of non-relativistic Schroedinger equation — Creation, annihilation and number

operators.
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PG Programme Lesson Plan Quantum Mechanics (16PHP301)

UNIT-I
SNo Lecture Topicsto be covered Support materias
Duration (Hr)
1. 1Hr Angular momentum: Angular T1-170-171
momentum  operators - Angular
momentum commutation relations
2. 1Hr Eigen values and Eigen functions of L? T1-172-173
and L, Generd angular momentum
3. 1Hr Eigen values of J* and J, - Ladder T1-173-176
operators (J, and J.)
4. 1Hr Angular momentum meatrices - Matrices T1-176-179
for ¥, 3, 3., J, J and J,
5. 1Hr Spin angular momentum , Spin ¥2 systems T1-179
6. 1Hr Spin vectors for spin %2 systems - Addition T1-179-180
of angular momentum
7. 1Hr Clebsh-Gordan coefficients. T1-180-182
8. 1Hr Revision
9. 1Hr Discussion of possible 2 mark question
10. 1Hr Discussion of possible 8 mark question
11. 1Hr Test in 2 mark question
12. 1Hr Test in 8 mark question
Total no of hours
Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2™ Edition, Prentice-Hall of India, NewDelhi.
Reference Book
R1:.Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22™ edition, Jaiprakash nath & Co,
Meerut
Dr.A.Saranya Karpagam Academy of Higher Education Pagelof 5
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UNIT-II
SNo Lecture Topicsto be covered Support materials
Duration (Hr)
1 1Hr Scattering:  Scattering  cross-section- T1-283-290
Scattering amplitude , Partial waves -
Scattering by a central potential:
2. 1Hr partia wave analysis - Significant number T1-290-291
of partia waves
3. 1Hr Scettering by an attractive square-well T1-291
potential
4, 1Hr Briet-Wigner formula, Scattering length T1-292-294
5. 1Hr Expression for phase shift - Integral T1-295-298
equation
6. 1Hr The Born approximation - Scattering by T1-298-300
screened coulomb potentia
7. 1Hr Validity of Born approximation - T1- 300-303
Laboratory and center of mass co-ordinate
systems
8. 1Hr Revision
9. 1Hr Discussion of possible 2 mark question
10. 1Hr Discussion of possible 8 mark question
11. 1Hr Test in 2 mark question
12. 1Hr Test in 8 mark question
Total no of hours 12
Text Book
T21:Aruldhas. G, 2008, Quantum Mechanics, 2" Edition, Prentice-Hall of India, NewDelhi.
Reference Book
R1:.Gupta, Kumar and sharma ,2002, Quantum Mechanics, 22™ edition, Jaiprakash nath & Co,
Meerut
Dr.A.Saranya Karpagam Academy of Higher Education Page2of 5

Department of Physics

Coimbatore- 21



PG Programme

Lesson Plan Quantum Mechanics (16PHP301)

UNIT-I1
SNo Lecture Topicsto be covered Support materials
Duration (Hr)

1 1Hr Many Electron Problem: T1-260-265
Indistinguishable particles, Pauli
principle ,Inclusion of spin -
Spin functionsfor three electrons

2. 1Hr Spin functions for three electrons - The T1-266-269
Helium atom

3. 1Hr Central field approximation T1-269- 270

4. 1Hr Thomas-Fermi model of the atom - T1-270- 276
Hartree equation , Hartree-Fock equation

5. 1Hr Molecular orbital theory: Hydrogen R2-433- 444
moleculeion Hy'-

6. 1Hr Vaence bond theory , Heitler-London R2-457
theory of hydrogen molecule.

7. 1Hr Revision

8. 1Hr Discussion of possible 2 mark question

9. 1Hr Discussion of possible 8 mark question

10. 1Hr Test in marks 2

11. 1Hr Test in 8 mark question

Total no of hours 11
Text Book

T21:Aruldhas. G, 2008, Quantum Mechanics, 2" Edition, Prentice-Hall of India, NewDelhi.

R2:Satya Prakash, 2003, Quantum Mechanics, New Edition Kedar Nath & Ram Nath & Co,
Meerut.

Refer ence Book
R1:Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22nd edition, Jaiprakash nath & Co,

Meerut
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UNIT-IV

SNo Lecture Topicsto be covered Support materials
Duration (Hr)
1. 1Hr Relativistic quantum mechanics: Klein- T1-310-312
Gordan equation - Interpretation of the
Klein-Gordan equation
2. 1Hr Particle in a coulomb field - Dirac’s T1-312-318
equation for a free particle - Dirac
matrices , Covariant form of Dirac
eguation
3. 1Hr Probability density ,Negative energy states T1-318-322
4. 1Hr Spin of the Dirac particle, Magnetic T1322-331
moment of the electron - Spin-orbit
interaction - Radial equation for an
electron in a central potential
S. 1Hr Hydrogen atom , Lamb shift T1-331-333
6. 1Hr Revision
7. 1Hr Discussion of possible 2 mark question
8. 1Hr Discussion of possible 8 mark question
9. 1Hr Test in 2 mark question
10. 1Hr Test in 8 mark question
Total no of hours 10
Text Book
T1:Aruldhas. G, 2008, Quantum Mechanics, 2™ Edition, Prentice-Hall of India, NewDelhi.
Reference Book
R1:Gupta, Kumar and sharma ,2002,Quantum Mechanics, 22™ edition, Jaiprakash nath & Co,
Meerut
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UNIT-V

SNo Lecture Topicsto be covered Support materials
Duration (Hr)
1. 1Hr Field theory: Introduction , Classica R2-410
approach to field theory
2. 1Hr Relativistic Lagrangian and Hamiltonian R2-412
of acharged particle in an electromagnetic
field
3. 1Hr Lagrangian - Hamiltonian formulations R2-413-414
4, 1Hr Quantum equation for the field - Second R2-414-418
quantisation
5. 1Hr Quantisation of non-relativistic R2-419-420
Schroedinger equation
6. 1Hr Creation, annihilation and  number R2-420-422
operators.
7. 1Hr Revision
8. 1Hr Old question paper discussion
9. 1Hr Old question paper discussion
10. 1Hr Old question paper discussion
11. 1Hr TestinUnit1& 2
12. 1Hr TestinUnit3& 4
13. 1Hr TestinUnit5
14. 2Hr Full portion test
Total no of hours 15
Text Book
R2:.Satya Prakash, 2003, Quantum Mechanics, New Edition Kedar Nath & Ram Nath & Co,
Meerut.
Reference Book
R1:Gupta, Kumar and Sharma, 2002, Quantum Mechanics, 22™ Edition, Jai Prakash Nath & Co,
Meerut.
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Angular momentum: Angular momentum operators — Angular momentum commutation
relations — Eigen values and Eigen functions of L? and L, — General angular momentum —
Eigen values of J¥ and J, — Ladder operators (J; and J) — Angular momentum matrices —
Matrices for %%, J,, &, J,, J and J, — Spin angular momentum — Spin %2 systems — Spin vectors

for spin 2 systems — Addition of angular momentum — Clebsh-Gordan coefficients.

ANGULAR MOMENTUM OPERATORS
The Angular Momentum Oper ator:

In classical physics the angular momentum of a particle with momentum pand position r is
defined by

L=rxp=(ypr zZ0y) i + (Z0XP7) | + (Xpy- Ypx) Kk

The orbital angular momentum operator L can be obtained at once by replacing r
and p by the corresponding operators in the position representation, R and P = -ihA where g
is the coordinate expression for the operatorsof Ly,Ly, L..

The Cartesian components of L are
Ly = -ih(y d/dz-z d/dy)

L,=-ih(z d/dx-x d/dz)
L= -ih(x d/dz-y d/dx)

Clearly, angular momentum does not exist in a one-dimensional space. We should mention
that the components
L%= -h?[1/sind d/dB(sin6d/dB)+1/sin’0 d*/dp?]

ANGULAR MONENTEUM COMMUTATION RELATION:

Dr.A.Saranya Karpagam Academy of Higher Education
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The commutation relation of the component of L can easily be obtained in Cartesian

coordinates

[Lx.Ly]=[(yP- Zpy).(Z0x—XP)]

=[YPzzpx] — [YPXP2] = [20y , Z0d] + [Z0y , XPd]

in these commutations pgstants for —ihd/dq.In the second and third teems on the right side of
the equation al the variables involved commute with each other. Hence both of them vanish.
Sincey and px commute with z and p,
[(Yp Zpy] = Yl p2,Z]= -iNypy
based on similar arguments , we get
[20x-Xp7] = pyX [2,p7] = -iNxpy
Hence
[Lx,Ly]=ih(xpy-ypx)=ihLz
the commutators [Ly,Lz] and [Lz,Lx] can be obtaioned in the same way and we have

[Lx,Ly]=ihLz, [Ly,Lz]=ihLx ,[Lz,Lx]=ihLy
that is the components of angular momentum do not commute with one another and therefore
they are not measurable simultaneoudly. In other words if the system is an eigenstate of one
angular momentum component, it will not be simultaneously in an eigenstate of either of the
others. These commutations relation hold for the components of total angular momentum
L=% Li of a system of particle also. The commutation relation in can be written in a compact

form as

LxL=ihL
In the usual sence the vector product of a vector with itself is zero . Hence we have to
consider L asavector operator and not as a usual vector. the left hand side to be consider as
a determinatedans has to be expanded before the term by term comparison with the

commutator of L? with the component of L

[L? LX]=[LX?Lx]+HLy? Lx]+[LZ*'LX]

=0+Ly[Ly,LX]+[Ly,Lx}Ly+Lz[Lz,Lx]+[Lz,Lx]Lz
Dr.A.Saranya Karpagam Academy of Higher Education
Department of Physics Coimbatore-21 Page 2 of 15
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=Ly(-ihLz)+(-ihLz)Ly+_ihLzLy+ihLyl z
Hence we conclude that
[L? Lx]=[L%Ly]=[L?LZ]=0
the square of the angular momentum commutes with its components, That is the total angular
momentum can be measured by simultaneously with any one component. As the components
among themselves are noncommuting one cannot measure L? Lx,Ly,Lz simultaneously.
Therefore we cannot have arepresentationsin
which all the four are diagonal.
L+ =Lx+iLy, L- =Lx-iLy
The operator L+ is called the rasing operator and L-,the lowering operator.
the reason for the names would be clear in section.
[L?L+]=0, [L%L-]=0
and
[Lz,L+] =[LzLx]+i[LzLy]
=ihLy+ hLx
=hL+
the other commutators can alsoi be evaluated in the same way and we have the relations
[Lz,L-]=-hL-
[Lx,L+]=-hLz
[Lx,L-]=hLz
[Ly,L+]=-hLz
[Ly,L-}=ihLz
we also have
[L+,L-]=2hLz
and
L+L-=L?"LZ%hLz L-L+=L*LZ*-hLz

EIGENVALUESAND EIGENFUNTIONSOF L? AND L:

The eigen value equation for L?in spherical polar coordinates can be written as

-h[1/sind d/dB(sin® d/d8)+1/sin0 d*/dp?]Y=Ah?Y

Dr.A.Saranya Karpagam Academy of Higher Education
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where A\h? is the eigen value of L? and Y is the corresponding eigen function rearranging we
get
[1/sin6(d/dsin d/d6)+1/sin%0 d*/dp?]Y+AY=0

which is the same as the as angular part of the schrodinger equation of a system movingin a
potential V(r).The solution gives A=I(I+1) with eigenfunction

Y=Y im(.0,0)=¢[21+1/41 (I-Imi)! / (1I+Im1)1] ¥ p,™(cosB)e™?

where

1=0,1,2,3,... and m=0,+1,+2,+3.. .

and €=(-1)"for m> 0 and £=1 for m <0. The form of Lz ,

immediately gives

L .Y im=-1 1 d/dBY m(8,9) =mhYm(8,0)

thus the spherical harmonic Y (6,¢) are eigenfunction of L? and Lz with eigen value I(I+1)h?
and mh respectively

GENERAL ANGULAR MOMENTUM:

Number of experimental result such as spectra of alkali metals anomalous

zeeman effect , stern gerlach experiment etc,...could be explained only by invoking the
concept that the electron in an atom possesses an additional intrinsic angular momentum
involving half integral quantum numbers. However the definition of angular momentum
based on classical physicslet to the 2|+1lintegral values

mh,m=0,£1,£2,...,£l for the z component of angular momentum . In other words the
difinison of angular momentum L=rxp is not general enough to include half integral
guantum number and therefore one may take the definition of general angular momentum as

the commutation relation given by
[IX,Jy]=ihJz, [Jy,Jz]=ihJx, [Jz,Ix]=ihJy
where the J symbol isused for the general angular momentum.

EIGEN VALUES OF J? AND J;:

Dr.A.Saranya Karpagam Academy of Higher Education
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The square of the general angular momentum J commutes with its components Jx,Jy,Jz
However the components among themselves are noncommutting. Therefore J* and one
component, say Jz can have simultaneous eigenkets at a time.Denoting the simultaneous
eigenkets by IAm> the eigenvalue equation for J?
isgiven by

F IAm>=\Am>
and

JzIAm>=mIAm>
equation 1 can be written as

I+ IZ2 IAm> + m’IAm>=NAm>
multiplying from left by bra <Aml and rearranging
<Aaml 32 Idm> + <aml J2 Am>=(\-m?)
since Jx and Jy are hermitian their eigenvalues must be real and therefore the left side of must
be positive. Hence

A-m? 20 or A>m?
operating eq 1 from left byu J+, we get

F+FIAm> = AJ+Iam>
that is IAm>and J+IAm> are eigenkets of J> with the same eigenvalues A premultiplying by J+
we have
HJIzZIAm> =mJ+ IAm>
but [Jz ,J+] =hJ+ or J+Jz=JzJ+ -hJ+.replacing J+Jz in the above equation
we get

(Jz3+ -hJ+) IAm> =mJ+IAm>
or
JzJ+ IAm>=(m+h)J+ IAm>
thus J+ IAm> is an eigenkets of Jz with the eigenvalue (m+h) and of J? with the same
eigenvalue A. Since operatation by J+ generatesa a state with the same magnitude of angualr
momentum but with z component higher by h, it is called raising operator .
Repeated operation by J+ increases the eigenvalue of Jz in steps.This has to be stoped at
some point otherwise the condition eq 4 be i. Then
Jz IAp> = plap>

operation by J+ from left gives

JzJ+ IAp> =(u + h)J+ IAp>
Dr.A.Saranya Karpagam Academy of Higher Education
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eigenvaue of (u + h) is not possible since pis the highest eigenvalue. Hence,
JHIAL> =0
premultiplying by J- and usiong the result
J W =F Iz

we get
J FAu>=0 or (FIz%-hz) IA\u> =0
therefore

(A\-p-hp) Mu>=0
as

(A\-p2-hp)=0 so

A=p(p+h)
operating eq Jz IAu> = plAp> from left by J_,we get

J Jz I\u> =pd_ >
or

JzJ_IA\pu> = (p-h) J_IAp>
For the maximum eigenvalue 1 we have

2> = A >
that is J_IAp>eigenkets of j2and jz with the eigenvalues A and p-h respectively.
Hence J_is called a lowering operator.J+ and J together is often reffered to as ladder
operator.repeating the lowering operation by J_,n times we get

JzJ "> =(p-(n+1)h]j_ " IAp> =0
again there must be a cut off value of m without violating the condition A=m? be
p-rh then

JzJ ™ > =[p-(n+1)h]_" IAp>=0
since [p-(n+1)h] 0

J ™ > =0
or

JJ" I\p>=0
or

JJ J "INu>=0

Replacing J+J_,we have

(P-J322 +hJz)I" IAp> =0
Dr.A.Saranya Karpagam Academy of Higher Education
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or

[A-(p-nh) 2+h(p-nh) 3™ IA\p> =0
As J"IAp># 0 A-(p-nh)2+h(p-nh)=0,substituting the value of A from
we find

(n+1)(2u-nh)=0
since (n+1)i0

2u-nh=0 or p=nh/2
where n is the number of steps from the maximum eigenvalue pto the manimum eigenvaue
p-rh. The number of steps n is always an integer including zero.Writting j for n/2 the
maximum and minimun eigenvalues of Jz are jh and —jh respectively . In other words for a
given value of j the integer the possible value of j are 0, %2, 1,3/2, ...thus half integral
guantum number have emerged automatically from the general treatment of angular
momentum a result we have been looking for denoting the simultaneous eigenvector of the
operator J and Jz with eigenvalues j(j+1)h?2 and mh by ljm> we get
Fljm> =j(j+1)h? ljm>
and

F 1jm> =mh ljm>

where j=0,1/2,1,3/2,... and m=-j,-j+1,....j

ANGULAR MOMENTUM MATRICES:

The states | jm> form a complete orthonormal set and they can be used as a basis for matrix
representation of an angular momentum .In this representation of angular momentum
components can be represented matrix with elements <j’m’IFljm>.The rows of the matrix

will be labelled by the j” and m” values and the column by the j,m values.

Matricesfor J?and Jz:

As Fcommute with Jz the matrices for Jand Jz will be diagonal. In that representation Jx
and Jy. Multiplication of eqd ljm> =j(j+1)h? ljm> and F |jm> =mh ljm> from left by <j’m’l
gives

<A m> =+ )7 S

and

<I’'m’Nzljm> =mh;.5mm
Dr.A.Saranya Karpagam Academy of Higher Education
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the presence of the factor ¢;. and 3mm indicate that the matrices are given they are of infinite

dimentions

Matricesfor J+,J_,Jx and Jy:
Jz3+ [jm>= (m+1)hJ+ljm>
thisimplies that J+ Ijm> is an eigenvalue of Jz ,the eigen vectores can differ at the most by a
multiplicative constant say an
H ljm> =g, lj,m+1>
similar we get
J_ljm>=bplj,m-1>
where
an=<|,m+lHjm> or a,n=<mlIlj,m+1>
b=<j,m-1UJ_Ijm> or b*pg=<mlI_|j,m+1>
compare the two equations gives
a8 m = bme1
operating of eq from left by J_,we have
J HIjm>=a,J |j,m+1>
replacing J_J+ we get
(F-J2°-hJz> =am bt ljm>
or
[i(+1))-m*m]h%jm> =lan1?jm>
or
an=[j(j+1) -m(m+1)]"*h
with the value of an,
J+ ljm> =[J{+1)-m(m+1)]¥? fr 1, m+1>
or
<p’m’l3+jm> =[j(j+1)- mm+1)]"2hdj S
similarly
< l3_ m>=[(G+1)-m(m-1)] Y2 1 S
last two give equation give the matrix element for J+ and J_ they are infinte dimentisional
matrices like the j? and Jz matrices.The nature of the kronecker deltas in last two equation
indicates that all nonvanishing element occure in bloges along the diagonal corresponding to

j’=).The block matrices corresponding to j=0,1/2 and are given below .The rows are labelled
Dr.A.Saranya Karpagam Academy of Higher Education
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by the value of m’ and the columns by the values of m .the nonvanishing matrixes for Jx and
Jy are evaluated using the relation

X=1/2(F++J ) and Jy=1/2i(3+-J )

for j=0
H=0, J =0, Jx=0, Jy=0
for j=1/2
J+=h(0 1) J_=(0 0)
(0 0), (1 0),
X=U2(0 1) Jy=1/2h(0  -i)
@ o i 0
forj=1
H=h (0 V2 0) J=h(0 0 0)
(0 0+2) (V20 0)
(0 0 0) (0 v20)

X=1N2h(0 1 0) Jy=1N2h(0 -i 0)
a 0 1 i o -i)
(0 1 0 © 1 -
without aword about the eigenvector the disscussion would not be complete . The eigenvector
with respect to the [jm> basis will be the column vector would be used for perticular cases:
j=0,j=1/2,j=1,...

SPIN ANGULAR MOMENTUM:

To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in
1925 that an electron in an atom possesses an intrinsic angular momentum in addition to
orbital angular momentum. This intrinsic angular momentum S is caled the spin angular
momentum whose projection on the z axis can have the value
s, =md, ms=x1/2. the maximum measurable component of spin angular momentum in units
of h is called the spin of the particle and is usually denoted by s .They also suggested that the

spin angular momentum gives rise to an intrinsic magnetic moment s gives by
Dr.A.Saranya Karpagam Academy of Higher Education
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M=-€mS

assuming that all the stable and unstable particles to have spin angular momentum

S, we expect its components Sx, Sy and Sz to obey the general commutation relation and
S%and Sz to have the eigen values s(s+1)h? and mdh, me= -s, -s+1, ... respectively

spin —(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this
category.the matrices representing Sx, Sy and Sz are obtained from the Jx, Jy,and Jz matrices
by taking the part corresponding to j=1/2,hence

Sx=1/2 (0 1) Sy=1/2h (0 -i) Sz=1/H(1 0)
1 0 (I 0 (0 -1)
often it is convinient to work with amatrix 6 defined by
S=1/%he

where

6x=(0 1) 6y=(0 -i) 6~=(1 0)
1 0 (I 0 (0 -1)

the 6, 6y and 6, matrices are called the pauli’s spin matrices.From the difinition it is obvious
that their eigenvalues are +1.These matrices satisfy the relation
6x°=6,"=6,"=1

6x6y=16;  6y6,=I6x,  6x6; =iGy
6x6y + 6y Gy =6y 6, +6; Gy =6; 6x +6x 6; =0
pauli was the first to recognize the necessity of two component state vectors explain certain
observed features to atomic spectra.
spin vectorsfor spin —(1/2) system:

Including spin the spin —(1/2)system has how four degree of freedom,the three
position coordinates (x,y,z) and another observable pertaining to spin.Taking the z
component Sz as the fourth observable the electron wave function can be written as ¢(r,Sz)
or @(r,ms) the coordinate m takes the values +1/2 or -1/2. When the interaction between the

spin and space parts is negligible the wave function
O(r,ms)=0(r) x(ms )

Dr.A.Saranya Karpagam Academy of Higher Education
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where ¢(r) represented that depends on the space coorinates and x(ms, ) the part the depends
on the spin coordinates

The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the
eigenvalue equation.Since the matrices are 2x2 the eigenvectors must be column vector with
two components. the eigenvalue equation for Sz with eigenvalueh/2 is

V(1 0)(a1) =Uh(ay)
(0 -1)(2)(2)

it is evident that a=0 the normalization condition gives

lagl®=1 or &, =1
the eigenvector of thr matrix Sz corrsponding to eigenvalueh/2 is than
(1)
)
processing on similar lines the eigenvector for the eigenvalue -h/2 is
)
(1)
these eigenvector are denoted by a and Band are usually called the spin up and spin down
states respectively
a=(1) B=(0)
) (1)

the two component eigenvectors of spin —(1/2) particles are sometimes called spinors.
Eigenvectors of Sx and Sy can aso be found in the same way. the spin materials of a spin —

(1/2) system aong with eigenvalue and eigenvectors.

Addition of Angular momentum

The operators, J'1, J2 , J73 which satisfy the “standard angular momentum
commutation relations”
Jj, Ik =ijklJl hk1=1,230rx,y,z,

and all results will be equally. in which J°3 points is called the “quantization axis”, and its
choice is arbitrary. This ‘axis’ makes sense as a direction inthe usual space only if J° is an
actual angular momentum vector operator—orbital, spin or a combination.

Clebsh — Gordon Coefficient
Dr.A.Saranya Karpagam Academy of Higher Education
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For the total angular momentum vector J=/;+/, ,
Jx J=ihJ
Also , it follows that

%]z =01, U%JF] = % J51-0
The orthonormal eigenkets of /2 and J;be 1jm>.Since J?commutes with ], J# and JZ they
form another complete set and their simuitaneous eigenkets wiii be | J;+], jm>.

jm>=),, m; Cimmym, ImMimy>
The coefficient of this linear combination are called Clebsh- Gordon coefficient or Wigner
coefficients or vector ¢oup!ing coefficients.
<mymy 1jM>=Cipmm m,
Substituting this value of the coefficient in eqution (3)

im>Ym, m, IMymg ><mym, |jm>

Imym, > =), <jm mm; > |jm>
Where the summation over m is form —j and j is form Ij; — j, | to j; — j;.The unitary of
Clebsh Gordon coefficients is expressed by the equation
Yim <mum, ljm><jm m;'my,>=<mym, Im;'m,’ > =m;m,'dmym,’
And

<gm Imymy>=< mym, |jm>*
Second rules
Operating eq from left by J, we have
Jz Jm >=Fm m,U1z + J2z) Imymy ><mym, Ijm >

mh jm >=Y,, . (my + myh Imym, ><mym, ljm >

replacing | jm > using eq and rearranging , we get
Ywm, M—my—my) Imm, ><mym, |jm >=0
Which is valid only if the coefficient of each term vanishes separately. This leads to one of the
rules of vector atom model , that is

m=m, + m,
we shaii next find out how the various m and j values arise from the values of m; and m, .
For given values of jjand j,, m;can have vaues from j;to — j; and j,to — j,m, in
integral step.
The smallest value w of j occurs for

Dr.A.Saranya Karpagam Academy of Higher Education
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ji-k =—jior j, k=—j

Gr+j2) Gi+je =1, G +j2—2), 0, 1 —J2 |
which isthe triangie rule of the vector atom model.
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Possible Questions
PART B (4 Marks each)

State the commutation relations obeyed by the components of angular momentum and

express them in vector notation.

2. What are ladder operators and why are they so called?

3. The definition of angular momentum given by L=r x p is not a general one. Why?

N o g s

10.

Define a general angular momentum operator.

Explain spin-up and spin-down states. What are spinors?

What are Clebsh-Gordon coefficients? Explain their significance.

Write a short note spin of an electron

if J; and J, are angular momentum operators, are J; + J, and J; — J, angular momenta?
Explain.

State the eigen value-eigen vector relations for the operators J* and J,. Hence obtain
the matrices for J* and J,.

Show that the raising and lowering operators J. and J. operators are Hermitian
conjugates.

Prove that the spin matrices S, and S, are £h/2 eigen values.

Part C (10 marks each)

What are angular momentum operators? Derive the commutation relations between
the different components of the angular momentum.

a. Explain the difference between the orbital angular momentum L and genera
angular momentum J.  Write down the commutation relations between the
components of general angular momentum. (5 Marks)

b. Derive the eigen values of ¥ and J,. (5 Marks)

Explain the matrix formulation of angular momenta. Derive the matrix forms of J., J.,
Jcand J,

Explain how concept of spin was introduced and how spin angular momenta
contributes to the total angular momentum of the atom. Obtain the spin angular

momentain terms of matrices. What are Pauli matrices?

Dr.A.Saranya Karpagam Academy of Higher Education
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5. Discuss the various aspects of addition of angular momenta. What are Clebsh-

Gordon coefficients and how are they determined?
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Equation of Linear momentum .......... P=mv P=dv P=md P=m’v P=mv
Torquet.......... rx F r’xF r’x rxF rx F

moment of inertia x moment of inertia x
Angular momentum is defined as angular velocity torque x velocity acceleration x force force x mass angular velocity

orbital angular momentum

orbital angular momentum

Total angular momentum is equal to + spin angular momentum |. spin angular momentum |linear angular momentum [torque + spin angular momentum
Angular momentum =............. h(r xA) hIrxA h(r’ XA) h/irx A hirxA
LxL=oie, ihL ihL ihL? ih’L ihL
Total angular momentum is defined by P=12 +]y2 +12 P=32 +Jy3+]z3 7=, +1,+], 1=12 +Jy2 e P=j2 +Jy2 11,2
Commutative law [J, ,J,] ia equal to ihl,. ihJ, ihJ, ihl, .y ihJ,

I 0= 1 2 0 3 0
o= I+, Jo-il, 12+ 12-17 I+,
o= I+ il Jo-il, 12+ 121 Jo-il,

B [ Tl J 1+ 1 Jx Sk J I+ U ] Iy N Sl 1+ D Je 1k

[1 T = hl, hl, hlJ, hJJ, hl,
1P, J.]1is equal to 1 2 4 0 0
[1,,1.]is equal to hJ hJ, Ky’ hJ hJ
Torque is defined as moment of force moment of inertia rate of change of force rate of change of distance |[moment of force

product of vector and

Momentumis a ............... vector scalar dimensionless scalar vector
In quantum mechanics operator associated with linear momentumis |h/irx A h/i A hir hi(rx A)2 hirxA
The operator that increases or decreases eigen value another operator is angular momentum
called . Hamilton operator Ladder operator Hermitian operator operator Ladder operator
(1205, 1 2 4 0 0
The operator for energy is iho/ot -iho/ot iho/0x —ihv iho/ot
Operation on a ket vector from left with an operator A produces Another ket vector A bra vector Another operator Phase vector Another ket vector
Operation on a bra vector from right with an operator A produces A ket vector Another operator Another bra vector Phase vector Another bra vector

When an eigen function is not normalizable in a free domain, we can
resort to

box normalization

plane normalisation

total normalisation

any of the above

box normalization

The orbital corresponding to 1= 0 is called s orbital p orbital d orbital f orbital s orbital

The orbital corresponding to 1= 1 is called s orbital p orbital d orbital f orbital p orbital

The orbital corresponding to 1=2 is called s orbital p orbital d orbital f orbital d orbital

The orbital corresponding to 1= 3 is called s orbital p orbital d orbital f orbital f orbital

The quantum numbers required to explain the position of an electron in

hydrogen atomare nand! land m n, land m nand m n, land m

The value of the magnetic quantum number can be 0,1,2,3, ... 1,234, ... +1,4£2, 43, £4,4£5 ... 0,+1,+£2, 43, +4 ... 0,£1,42,+3,+4 ...

Which of the following statements is correct?

A linear combination of
degenerate eigenfunctions
of a degenerate level is no
an eigen function

A linear combination of
degenerate eigenfunctions
of a degenerate level is also
an eigen function, with the
same eigen value.

A linear combination of
degenerate eigen functions
of a degenerate level is also
an eigen function but with
different eigen value

A linear combination of
degenerate eigen functions
of a degenerate level is not
an eigen function, but the
eigen values are the same.

A linear combination of
degenerate eigenfunctions
of a degenerate level is also
an eigen function, with the
same eigen value.

The correct form of the angular momentum for quantum number 1 is

lh

lh

[1(1+1)h]

[1(+1)]" h.

[1(+1)]"* h.




The quantum number 1 is referred to as

angular momentum
quantum number

spin angular momentum
quantum number

orbital angular momentum
quantum number

any of the above

orbital angular momentum
quantum number

An energy level with orbital angular momentum quantum number 1, is

fold degenerate. 2-fold 3-fold (21+1) fold 1-fold (21+1) fold
The potential involved outside the nucleusis gravitational electromagnetic nuclear Coulombic Coulombic
The probability of finding the electron of the hydrogen atom at a
distance r from the nucleus is calledas probability function probability density radial probability density  |any of the above radial probability density
For the ground state of the hydrogen atom, a maximum probability Pyo=2a, where a is the
density Py, exists at a radial position given by radius of the first shell dP,,/dr=0 dP,,/dr = a constant none of the above dPyy/dr=0

For the ground state of the hydrogen atom, a maximum probability

No relation with Bohr

density occurs at a radial distance from the origin, equalto the Bohr radius twice the Bohr radius half the Bohr radius radius. the Bohr radius
The binding energy of deuteronis 2.226 MeV 2.226 eV 2.226 keV Zero 2.226 MeV
The eigen value of ground state of helium atom is ZZEH/n2 in which Ey

is 13.5eV 2.75eV 12.75 eV 3.5eV 13.5eV

The energy value of two electrons relative to axes with the nucleus at

the origin, in ground state of helium atom is 27°Ey 27Ey — 27ZEy —27°Ey —27°Ey

Forn=1,1=0, m=0, the wave function for He atom becomes

@ /T[ao)l/Z o2

(Z3 /na03)”2 o2

(Z/mag) 2™

@ /na03)1/26-p/2

(Z3 /mos)l/z o2

The secular equation in which all the elements are zero, except

principal diagonal

lower diagonal

upper diagonal

lower and upper diagonal

principal diagonal

The perturbation H™" which is the extra energy of nucleus and electron

due to external field in H atom is eEr cosf er cosd — eEr cosf — er cosf — eEr cosf
The ground state for H atom is non-degenerate state, the wave function
Vg0 1S given by (l/ftao3 )1/2 exp(-1/a,) (1/11:2103 )”2 exp(r/ag) (1/7[303 )3/2 exp(-1/a,) (1/11:2103 )3/2 exp(r/ag) (1/7[303 )l/2 exp(-1/a,)

The behaviour of hydrogen atom in first excited state is like a

electric quadrupole
moment

electric dipole moment

Zeeman effect

Magnetic dipole moment

electric dipole moment

The Bohr radius of the first orbit is 5267 A 0.05267 A 0.5267 A 52.67 A 0.5267 A
By expansion theorem y may be expanded in terms of a complete set of

ortho-normal functions ¢, @1, @s, -..... if y=1 y=0 Y=y, \ETA \ET

The orientation of the splitting of energy levels in first excited state of

hydrogen atoms, with external electric field is parallel perpendicular anti-parallel none of the above anti-parallel
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Scattering: Scattering cross-section — Scattering amplitude — Partial waves — Scattering by a
central potential: partial wave analysis — Significant number of partial waves — Scattering by
an attractive square-well potential — Briet-Wigner formula — Scattering length — Expression
for phase shift — Integral equation — The Born approximation — Scattering by screened
coulomb potential — Validity of Born approximation - Laboratory and center of mass co-

ordinate systems.
Scattering by an attractive square well potential

The Schrodinger equation for the perturbed system can be written as

(Ho +yHp)loi = E|oi (1)

where HQ is the Hamiltonian of the unperturbed system whose solution is known,

and yﬁp is due to the small perturbation where y is a small parameter. Here, HQ can

be the Hamil- tonian of the infinite potential well, for instance. In the above equation,

lpi and E are both

Figure 1. The triangle functions for a piecewise linear approximation of a
function. This is a basis that is not orthogonal but yet can be used to seek

approximate solutions .
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Figure 2: The infinite potential well on the left represents the unperturbed problem.

(=] (e 4] [we]

0 i A 0

The middle figure represents a perturbation due to atiny electric field. The right figure
represents a perturbation due to imperfection in fabrication or impurities.

unknowns, but we can write them in a perturbation series or expansion, namely

01 =l0O i +yje(D i +y2|pDi+. .. )
E=E0) +yED +2E@ 4+, ) .4

Upon substituting the above series into (1), we obtain The left-hand side of (4) can
be expanded and rewritten on a power seriesiny

a0 +aly +a2y2 + .. (5)

while the right-hand side is similarly written as
bo + b1y +b2y2 + .. (6)
These two power seriesiny are equal only if & =bj,i =0,1, ..., 00 2

Equating the coefficients of the power series on both sides of (4) we have the following
equations:

Zeroth Order:
Hole@ i +HpleDi =@ 9D i+ED|p(Di + e |e0)j

We assume that the zeroth order equation isknown in terms of an eigenstate [m i with

Em. In other words

0i =|ymi, EO =Egm 7)

We will use this knowledge to solve the first order equation (7) above.
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Before we proceed further, a note isin order regarding the uniqueness of the
eigenvalue problem (1). An egenvector is known only within a multiplicative
factor. Hence, its length is indeterminate. This non-uniqueness in its length
manifests in the non-uniqueness of the value of the perturbation series (2) as we
shall see later. To achieve uniqueness, it is best to pin down the length of the
total eigenvector given by (2). We fix the length of

the eigenvector |@i by requiring that
hymlei =1 (8

With this requirement, we substitute (2) into the above. Since hym|p(Di = 1,

because
|(p(0)i = |gm i, it is easy to show that hym |(p(i)i =0 i >0 Asa
consequence, (1) i is orthogonal to |gm i. The perturbation series is not

necessarily normalized, but it can be
normalized later after the series has been calculated.

Next, to find the first order corrections to the eigenvalue and the eigenvector, we

move the unknowns |(p(1)i to the left of (8). We then have
Ho - Em loDi =ED jymi - Hplumi (9)

where we have made use of (6.3.10). Notice that the above equation is non-unique

since the operator HQ — Em has a null space with a null space vector |[Ymi.

Testing the above equation with hym

, we

have

hymIHo — EmleDi=E@D - hymHp

Dr.A.Saranya Karpagam Academy of Higher Education Page 3 of 12
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[Ymi (10)

the first order correction to the energy of the perturbed system.

First, testing the equation (10) with hyj |, we have

i [Ho — Emle® i = EMhyi [ymi — hyi [Hp [ymi (12)
Upon substituting (11) into the above, the left-hand side evaluate

We choose a(l) = 0 for a number of mreasons. It makes the correction term
unique since NJ(]-) I is orthogonal to NJ(O) I. It makes the normalization of the
eigenvector |@i accurate to second order even though the correction is first order. It

will also make the second order corrections much simpler to find.

To find the second order corrections, we rewrite (9) with the unknown I(p(z)i on the
left hand side. Then (9) becomes
Ho —Em (9@ i =W oM +E@) |ymi - HploD)i (12)

Testing the above with hyym |, the left hand side becomes zero as before3  Since

we have made |9(1) i orthogonal to |Wmi, on the right-hand side, only the last

two terms remain.

Consequently,
0=E®@ —hym|ApleDi (13)

E(2) =hym |H p (1) | (14)

The above procedure can be generalized to arbitrary order. By induction, we notice

that the equivalence of to p-th order is
Dr.A.Saranya Karpagam Academy of Higher Education Page 4 of 12
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Hole(Pi + Hp 0P~ D =ED |p(Pj + EMD [P~ D) j+ EMP) |9(D)§ (15)

The above can be rewritten as

Ho - EO o=@ |p(P~1)i+EM 9O - Hple(P~D)i (16)

It is to be noted that with modern advent of computer technology, and given
the avail- ability of numerica methods, the calculation of perturbation theory to
very high order islaborious and not necessary. However, a perturbation correction can

give us insight on how a small change in the Hamiltonian can change the solution.

Veﬂ
0
YN
E1 \“:‘==-_
Vight
0
LN
E|
L ]
A it | === ————
"'\-..._______'_/
w| T
e QSR po SO

The tight binding model can be used to find the approximate eigenstates of two quantum
wells that are weakly coupled to each other.

Breit-Wigner formula

There is a significant exception to the independence of the cross-section on energy mentioned

2
\/2m Vg a2 /R "2
above. Suppose that the quantity isdlightly lessthan . Asthe

Dr.A.Saranya Karpagam Academy of Higher Education Page 5 of 12
Department of Physics Coimbatore -21



M.Sc Physics Unit I Quantum Mechanics 16PHP301
2017-2018 Odd Scattering

/2 tan(k’ a)
incident energy increases, k’ a, which, can reach the value . Inthis case,

becomes infinite, so we can no longer assume that the right-hand side issmall. In fact, it

Ka=mx/2
follows from that at the value of the incident energy when then we also
ka—|—§g=?r/2 60271/2 ka<kl
have , or (since we are assuming that ). This
implies that
dr . |
Oie =—5'm6=47ra2< — 1. (1)
botal L2 0 L2 ag)

Note that the cross-section now depends on the energy. Furthermore, the magnitude of the

k'a # w/2 ka <1
cross-section is much larger than that given in Eq. (1) for (since ).

The origin of thisrather strange behaviour is quite simple. The condition

[2mlGla® = @
72 2

Vo
IS equivalent to the condition that a spherical well of depth possesses abound state at

zero energy. Thus, for a potential well which satisfies the above equation, the energy of the
scattering system is essentially the same as the energy of the bound state. In this situation, an
incident particle would like to form a bound state in the potential well. However, the bound
state is not stable, since the system has a small positive energy. Nevertheless, this sort
of resonance scattering is best understood as the capture of an incident particle to form a
metastable bound state, and the subsequent decay of the bound state and release of the
particle. The cross-section for resonance scattering is generally much larger than that for non-
resonance scattering.

We have seen that there is a resonant effect when the phase-shift of the S-wave takes the
w2
value . There is nothing special about the I = 0 partial wave, o it is reasonable to
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/2
assume that there is a similar resonance when the phase-shift of the Ith partial waveis
Supposethat  attains the value at theincident energy , SO that
s
0i(Eq) = 5 3)
cot (55
L et us expand in the vicinity of the resonant energy:
d cot 6;
Cl(JtJ;(E] = CUJG(S,{{EQJ-I- L {E_Eﬂ]_l_
dE E—E,
1 dé
= | —== E—E SO
(sinz 7 dE) g, BT @
Defining
déy( E 2
[ ;153 ]) = (5)
E=FEy
we obtain
2
that the contribution of the [th partial wave to the scattering cross-section is
4 4 il
= —(2141) ¢in’dy= —(20141) ——. 7
=gz QUL dsh = 5 QU oy Y
Thus,
4dn F2/4
~ — ) 8
(g 2 (2£+1] (E—Eﬂjz—kl"g/-fl (8)
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This is the famous Breit-Wigner formula. The variation of the partial cross-section . with
the incident energy has the form of a classica resonance curve. The quantity 1’ isthe width
of the resonance (in energy). We can interpret the Breit-Wigner formula as describing the
Enq
absorption of an incident particle to form a metastable state, of energy , and

T = iﬁ/lﬁ

lifetime

THE BORN APPROXIMATION:

The wave function ¢(r’) is required the evaluate the equation. Born used an interaction
procedure for its evaluation. In the first born approximation ¢(r’) in the integral equation is
replaced by the incoming plane wave exp (iK.r’). This leads to an improved value for the
wave function ¢(r) which is used the integral in the second born approximation. This
interactive procedure is continued till both the input and output ¢’ s are almost equal . As
higher order approximation are complicated we shall restrict our discussion only to first born

approximation
replacing ¢(r’) in the integral the equation by exp (iK.r’) ,we get
f(0) = -1/4nf exp [(i(k-K*).r'JU(r)de (1)

where k and k’ are the wave vector in the incident and scattered direction respectively. The
guantity (k-k”)h=gh is then the momentum transfer from the incident particle to the scattering

potential. In other words the change in momentum gh due to collision is given by

gh = (k-k")h or |q| =2 | k| sin6/2 )
replacing (k-k’) by gineq 1 we get

f(0) = - 1/4nfexp (iq.r’) U(r’) d 6’ (3)

the angular integration in equation 3 can easily be carried out by talking the direction of q
and r’ by 0 as the polar axis. Denoting the angle between g and r’ by 6’

f(8) = -1/4nfo”fo"fo™" exp (iq r* cos 87)U(r") r’’sin 6’ dg’ d6” dr’ 4)
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integration over @ gives 2m. The 6 integral can easily be evaluated by writing
-cos 8’ =x or -sin 6’ d@’ =dx
we get
Jo"exp (igr’ cosd’ ) sin 8 d6” = [~ exp (iqr’x)dx
=exp(iqr’)-exp(-iqr’) ()
substitiutibg the value of the angular part in equ (4)
£(8) = -2u/h™ sin (qr’)/qr’ V(r)r? dr’

from which 6(0) can be calculated. It may be noted from eq (5) that the only variable
parameter in f(8) is magnitude of the momentum transfer gh where q is given by eq (2) thus
the scattering cross section depends on the momentum of the incident particle kh and the
scattering angle 6 through the combination g= 2k sin (6/2)

L aboratory and centre of Mass co-ordinate system

Unlike the two-body case, there is no gain in simplicity if we use relative coordinates
for the INV-body system in general. For two bodies, there is only one set of relative
coordinates, while there are two sets of particle coordinates, one for each particle. For three
bodies, there are three combinations of separations between individual particles, just as there
are three sets of particle coordinates. For all higher values of IV, the number of relative
separations is always larger than the number of particles (six versus four for N = 4, for
example). In conclusion, from N = 3 onward, it makes more sense to define the positions

and velocities with respect to a given coordinate system.

Although not necessary, it is often convenient to use the center of mass system for our orbit

calculations. The center of massis defined in any coordinate system as

1 N
= T, 1
R i Zm,r, (1)
i=1
Dr.A.Saranya Karpagam Academy of Higher Education Page 9 of 12

Department of Physics Coimbatore -21



M.Sc Physics Unit I Quantum Mechanics 16PHP301

2017-2018 Odd Scattering
my I
where N is the total number of particles, and are the mass and the position of
N
M = E—:l LeL
particle i, and is the total mass of the system. We can interpret the right

hand side as a type of lever arm equation. In a one-dimensional system of weights hanging
from a beam in the Earth's gravitational field, the left and right parts of the beam will be in
equilibrium if we support the beam exactly at the center of mass. The same is true for a two-

dimensional plank with masses.

With three dimensions, we have no room left in an extra dimension for external support, but
an analogous result still holds: the motion of the center of mass is the same as if the entire
mass of the system was concentrated there and acted upon by the resultant of all external
forces. See any textbook on classical dynamics for a derivation of this property. In the case of
an isolated IV -body system, there are no external forces, and therefore the center of mass

will movein astraight line.

Starting with a given coordinate system, and subtracting the center of mass position
vector R from al particle positions allows us to construct a representation of the [V -body
system in its c.0.m. system (a short hand for “center of mass). Subtracting the c.0.m. position
is not enough, however. While this causes a momentary centering, it is still quite possible that
the NN -body will start drifting off soon thereafter. To keep the system in place, at least on
average, we also have to subtract the velocity of the c.om. V from al particle velocities.

Differentiation of Eq. 1 gives:

LN
— N 2
Y Vi ;_1 MV, 2

This shows, incidentaly, that the total momentum of all particles is zero in the c.o.m.

coordinate system. Since the c.0.m. movesin astraight line.
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Possible Questions

Part B (4 Marks each)

1
2
3.
4

. What is the difference between differential scattering cross section and total scattering

o N o O

0.

. Write anote on Scattering Amplitude.

Briefly explain Neutron Proton scattering with relevant expression.
Describe scattering cross section.

cross section? Explain.

Write a short note on partial waves.

Define scattering length. How isrelated to zero energy cross-section?

Discuss the validity conditions for Born approximation.

What is phase shift? Explain the nature of phase shift in the case of repulsive and
attractive potentials.

Discuss about the scattering by screened Coulomb potential.

10. Write a short note on laboratory coordinate system and centre of mass coordinate

system.

Part C (10 marks each)

1.

8.

Explain scattering amplitude and scattering cross section. Derive expressions for

them.

Discuss in detail about the scattering by a central field, using partial wave analysis

and obtain equations for scattering cross section an scattering amplitude.
Deduce optical theorem

What is meant by Ramsaur-Townsend effect?

Discuss the theory of scattering by an attractive square well potential well.
Derive Breit-Wigner formulafor resonant cross sections.

Explain phase shift during a scattering. Obtain relation for Born approximation for
phase shift.

Derive integral equation for wave function.
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Department of Physics Coimbatore -21



M.Sc Physics Unit I Quantum Mechanics 16PHP301
2017-2018 Odd Scattering

9. Derive Born approximation.
10. Discussthe validity of Born Approximation.

11. Explain the difference between laboratory coordinate system and centre of mass

coordinate system.
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In a beam of particle is allowed to pass
close to a scattering material scattering target energy wave scattering
Scattering material is called dicrete particles frquency energy target
In bound states the energy of eigen values are
positive negative infinty Zero negative
The angular distribution of the scattered particles are
related to light energy particle wave function wave function
The study of scattering is important in studying the
properties of atom energy spectral line material atom
The angle between the initial and final straight line
paths ia called scattering angle polarization spectral line scattering scattering angle
Cross- sections are usually measured in barn cm mm ampere barn
The probability that a particle will be scattered as it Differential
traverses a given thickness of matter can be expresses Total scattering scattering cross- Scattering cross- Scattering cross-
in terms of a quantity called the cross-section section section scattering section
If the energy of the incident particles does not change, Compton
then such scattering are called elastic scattering inelastic scattering |scattering differential scattering | elastic scattering

If the energy of the incident particles changes after

collision, then such scattering are called

. elastic scattering inelastic scattering | Compton scattering bandc bandc
In wave mechanics, an incident beam of particles is
represented by a wave. Longitudinal Stationary wave ordinary Longitudinal
The scattering of a particle of mass m by a central
potential V(r), such that V(r) tends to zero when r
tends to Zero constant value infinity finite value infinity

The complete time dependent solution of the
schroedinger equation for central potential V(r) is

y(r,t) = y(@) ™"

y(r,) = -y ™"

yt,t) = -y ™"

yt) =y ™"

y(r,t) = y@) ™"

The Schroedinger equation for central potential V(r) is
written as

[-(h*/2m)C*+V(1)]ly
Ey

[-(h*/2m)C*+V(1)]y
Ey

[-(h*/2m)C>-V(r)]y
Ey

[-(h*/2m)C>-V(r)]y =
Ey

[-(h*/2m)C>-V(r)]y =
Ey

is a solution of the scattering problem
for a source of unit strength at point r.

Bessel’s function

Green’s function

Legendre’s
function

Hermite’s function

[-(h%/2m)C*+V(1)]y
=Ey




The delta function of Green’s function is
everywhere except at r=0.

Z€ro

finite

infinite

constant

Bessel’s function

Green’s function has proper form.

differential

integral

asymptotic

none of the above

asymptotic

The scattering amplitude f(q,f) for the scattering
problem of stationary wave is given by

(m/2p b0 e™ V(r)
Y(r) di

(m/2p h%)o € V(r)
Y(r) di

(m/4p h%)o e™ V(r)
Y(r) di

_(m/zp h2)€) e-ikA r
V(r) Y(r) di

-(m/2p h2)€) e-ikA r
V(r) Y(r) di

Born approximation is applicable for the scattering

centres which are . strong Weak moderate none of the above Weak
In the equation Y(r) = e+ f(q) ¢™/r, the first term scattered wave re-scattered wave incident wave recoiled wave incident wave
represents the function function function function function

Y =-¢"- (m/2p Y=¢"+ (m/2p Y =-¢"- (m/2p

The first Born approximation is given by

Y =" - (m/2p h%)o
G(r,r) V() e* di

1?0 G(r,r)) V(') e* ©
di

7))o G(r,r)) V(') e* ©
di

Y = -+ (m/2p h%)o

G(r,r’) V(r) e 'di

1%)o G(r,r)) V(') e* ©
di

The first Born approximation scattering amplitude is

f(q.f) = (m/2p h)oe®
V) di

f(q,H) = (m/2p 1) &
i(k-k)r N o1
-€ V() di

f(q,H) = -(m/2p 1) o -
i(k-k)r N o1
e V() di

f(q.f) = -(m/2p h*) o '
V) dif

f(q.f) = -(m/2p h*) o '
V) dil

The scattering of high energy particle by the square

well potential well of radius ‘a’ and V,, V,<<E, this V(m/2p th) V,a V(m/2p th) Voa=| (m/2p th) V,a V(m/2p th) V,a
condition gives >> 1 0 <<1 Vm2p W’E) Vya=a [<<1
The ordinary coloumb potentail is V(r) =

(1/4pey) (Zze'/r) (1/4pey) (Zzelr) | (1/4pey) (Z* ze*r) (1/4pey) (Zz *e*/r) ~(1/4pey) (Zze'/r)
The screened coloumb potential is (-Zz&*/apey) €™y |Zze*/4pey) €™ (-Zz&*/4pe,) ™'y (Zze*/4pey) €™y |Zze*/apey) e
The method of partial waves is mainly applicable to Screened coloumb Spherically Spherically

Coloumb potential

potential

Weak potential

symmetric potential

symmetric potential

In higher perturbation theory, a plane wave is
equivalent to .

transverse waves

longitudinal waves

number of
spherical waves

radial waves

number of spherical
waves

In the case of scattering problem having high
scattering potentila will have the solution for Y as

: R A@Q)j (D rqf " " R A@)j (B
If the incident wave travels along Z-axis, the value of j
H= . differentiable infinite finite constant constant
In the method of partial wave, the Legendre ploynmial
s 1R Cos q) P (Cos q) P, (Sin q) PL(Sinq) P (Cos q)
A plane wave is equivalent to the superposition of a
number of Stationary Transverse Spherical Longitudinal Spherical




The phase between the asymptotic form of the actual
radial function R(r) and the radial function j; (kr) in the

absence of scattering potential v=0 will be minimum Constant infinite maximum maximum
The Green’s function has a singularity at r =
finite infinity 0 none of the above 0
The Born approximation simply accounts neglecting
the rescattering wave of the scattered waves provided
the scattered wave is compared with the
incident wave. large small damped none of the above small
If V, and V, are spherically symmetric, the distorted
Born approximation of the phase shift d, that are
associated with V,and V, v, A\ None of the above A\
Born approximation is poor for the alkali candd lighter heavier heavier
Green’s function is in nature. asymptotic differentiable symmetrical antisymmetrical asymptotic
If r represents the number of particles present in unit
volume and v represents the velocity of the incident
particles, then J= -Iv v’ rv v’ v
The plane wave term e represents a wave unit
density and of current density Hk/m -RAk/m hk/m’ —Rk*/m hk/m
d(r) satisfies the first requirement of a delta functlon
i. e. ,itiszero everywhere except at = 1 -1 infinity 0 0
The born approximation will be good only when the
scattered wave function is not much different from
wave function. recoiled incident rescattered none of the above incident
If the high energy particles are scattered by the
spherical potential well of radius a and depth V, then it
means that V,, E. << >> >= <= <<
Green’s function is a solution of the scattering
problem for a source of strength at point r. maximum minimum unit none of the above unit
Legendre’s
has proper asymptotic form. function Green’s function Hermite’s function Bessel’s function Green’s function
The method of waves is mainly
applicable to spherically symmetric potential. polarized unpolarised circular partial partial
In perturbation theory, a plane wave is
equivalent to number of spherical waves. Higher Lower Linear Spherical Higher
approximation is poor for heavier
atoms. Maclaurin’s Rolle’s Born’s Lagrangian’s Born’s




An angular momentum is also called spin half spin eigen value momemtum spin
In study of angular momentum the commutation
relations obeyed by the operator soin momentum spin operator
The classical particle do not get scattered if
I>kr, 1=0 1>k 1<k I>kr,
If the cross-section of the scattering reaches the value
is called absorbance phase shift function resonance resonance
The concept of scattering length is extensively used in
the investigations relating to the scattering of thermal
positrons electrons neutrons protons neutrons
The scattering cross-section depends on the
momentum of the incident particle wave light energy particle
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Many Electron Problem: Indistinguishable particles, Pauli principle — Inclusion of spin —
Spin functions for two electrons — Spin functions for three electrons — The Helium atom —
Central field approximation — Thomas-Fermi model of the atom - Hartree equation —
Hartree-Fock equation — Molecular orbital theory: Hydrogen molecule ion H,™- Vaence bond

theory

I ndistinguishable Particles

These basis functions does not solve the Schrodinger equation yet, but they haveto

satisfy certain symmetry conditions depending on the kind of particles they represent.

1. Non-identical Particle Case:
Let us assume that we have N particles, and M modes to fit this N particles. We can
construct a state for non-identical particles that looks like
Wdiffi =11, ai|2,bi[3,ci... N, ni
In terms of basis function, we may express the above as
Wab---ni =11,a2, bi3,ci--|N, ni (1)
Or
Yab---n(r1,r2,:--,rN) = ya(ri)vb (r2) - vn(rN) 2

We can fit the N particles in n modes, and these n modes can be repeating or non-

repeating. For non-repeating case, it is necessary for M > N.

However, the above wavefunction cannot be used for bosons and fermions, as we will
get a new wavefunction when we swap the positions of two particles. But bosons and
fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:

For the N boson particle case, we can write the legitimate wavefunction, which can be

used as a basis function, as

X _
|Yidentical-bosonsi © P|1,ai|2, bi|3,ci- - |N,ni ©)

where P is a permutation operator, and the above summation is over all possible per-
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mutations of the coordinate rj over the one-particle eigenstates a, b, c,- -+ ,n. The
above

wavefunction remains unchange when we permute the positions of two particles, because

forevery |L,ai---[i,li--|j,pi-++|N,ni, there isa|l,ai - |[j,li--|i,pi - |N,niin

above summation. Hence, swapping of i and j will not change the sign of the above

wavefunction. The above can also be written as a basis function as

>
[Wab---ni <~ P|1,ai|2 bi|3,ci [N, ni (4

3. Fermion Case:
For the N fermion case, we can write the wavefunction, which can be used as a

basisfunction, as

where the “+” sign is chosen for even permutation while the “—" sign is chosen for odd

permutation. A permutation involves a unique pairwise exchange of two particles . The

permutation is even or odd depending on the number of pairwise exchanges that have taken

place.
Therefore, givenaterm|[1,a - - - |i,li - - -], pi - - - [N, ni, there always exists another term:
—|1,a - - f,li---i,pi ---|N,niinthe above summation sincethey differ by one per-

mutation. If i =], the two terms cancel each other implying that they cannot bein the

same position. Likewise al the terms in the sum cancel each other since every term that
contains i and j can be paired up with every other terms in the sum. Moreover, If | = p, al
terms in the summation above cancel as well implying that they cannot be in the same
mode or state. Therefore, the above is a legitimate basis function that represents the
fermions as it obeys Pauli’s exclusion principle. Also, there is a sign change when the

position of two particles are swapped.

Pauli exclusion principle

The inter- actions between electrons and only consider their Coulomb
repulsion by empirical rules.

Consider two identical particle system (e.g., two electrons in a Helium atom).
Dr.A.Saranya Karpagam Academy of Higher Education
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Suppose their wavefunction is § (X1 , X2) , where Xj is the coordinate of the ith
particle, e.g., x = (r,0) with r the spatial position and o =1, | the spin of the particle,
etc.

Consider the exchange operation P : exchanging the coordinates of the two
particles,

P12y (x1,%x2) =y (x2,x1).

If we choose I (X1, X2 ) as an eigenstate of P1.2 with eigenvalue p, then the
eigen equation is

P12y (x1,x2) = py (x1,X2) .

Acting P1 ., 2 second time we get back to the origina state,

P2 (X1,X2) = Y (x1,x2), orps=1

Therefore, p can only has two values

p=z=1.

The quantum particles with p = 1 are referred to as Boson particles, or ssimply
Bosons, The quantum particles with p = -1 are referred to as Fermion particles, or
simply Fermions. A more general analysis shows that with integer spin are aways

Bosons, and particles with half-odd-integer spins are aways Fermions. For
example, electrons and protons are Fermions, and photons (light quanta) are Bosons,
Helium-4 is Boson because its spin is zero, but Helium-3 atom is Fermion with spin 1/2.

For a general quantum many-body wavefunction, the exchange operation is

l’:\}-](—»ml-p ("'!an"')xm) "') =qu("'1Xm|"'!Xn)"') y
where + corresponds to Boson system, and - to Fermion system. This is a
exact property of a quantum many-body system.

Now let us consider its consequence. A general Hamiltonian of N -particle system

IS
N
~ X . .
H="Hi+V
Dr.A.Saranya Karpagam Academy of Higher Education
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i=1

wherevV is the interaction potential.

Spin function for two electrons

Spin is a specia property of atomic or subatomic particles that has no
classicd analogue. Electron has spin. We can think of it as being due to the sdf
spinning of the electron, but we should not let our imagination run further than that.
Spin of an electron gives it a spin angular momentum in addition to the orbital angular
momentum it possesses. The spin also endows an electron with a magnetic dipole
moment that causes it to interact with a magnetic field.

The spin of some particles is found to have binary values of “spin up” and “spin
down” experimentally by the famous Stern-Gerlach experiment. This binary nature, as
we shall see, fits nicely in the mathematical structure of angular momentum in
quantum mechanics, but it cannot be described by a wavefunction or wave mechanics.
Instead, it can be represented by matrix mechanics.

Spin functionsfor three electrons

The z component of the orbital angular momentum, represented by the
operator Lz , is quantized to be m~ where =1 6 m 6 |, | being an integer related to the
total
angular momentum square operator L"2 with eigenvalue | (I + 1)~2.

It can be shown that the relationship between the total angular momentum number |
and the z-component of the angular number m is not restricted to orbital angular
momenta. It can be established for all quantum mechanical angular momenta, as is
shown in Appendix A. A more general framework for angular momentum is that for
J2 =J2+J2+J2,an operator X y z that represents the square of the
total angular momentum, and J°x, Jy, J'z , operators that represent the x, y, and z
components of angular momenta, then

J2IL,Mi=L(L+1)~2]|L, Mi (1)

JzZILLMi=M~2|L,Mi, -L6M6L )

The above results for orbital angular momentum by using wave mechanics

and wavefunctions, but they can be proven for general angular momentum by using
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rotational symmetry of 3D coordinate space, and mathematics of raising and lowering
operators. Spin angular momentum operators also fit under the framework of genera
angular momentum operator, and can be thought of as a special case of the above
framework. For spins, we let S” represent the total angular momentum operator, while
S°z represents the z component of the spin angular momentum. As a result, the
corresponding z component of the spin angular momentum, represented by the
operator Sz , has only two eigenvalues and two eigenstates: an up state with angular
momentum.

The corresponding x and y components of the spin angular momentum can be

represented

by operators S"x and S"y . Together with S°z , they satisfy the following commutation
relations,

hS"x , Sy i = i~Sz , hSy , Sz i = i~S°x , hSz , S'x i = i~Sy

The above is similar to the commutation relations satisfied by L"x, Ly ,and Lz,
where they have been motivated by wave mechanics. That if an operator is to represent
an angular momentum, then their x, y, and z componénts have to satisfy the above
commutation relations by rotational symmetry of the 3D coordinate space.

TheHdium atom

The essence of this approximation is to keep the quantum nature of
particles but ignoring their dynamic interactions (later, we will include some corrections
due to Coulomb repulsion by empirica Hund’s rule). Assume that we have solved the

single-particle Schrodinger eq.
H1®k (x1) = Ek ®k (x1)

the total wavefunction may be written as
W(x1,%x2, XN ) * ®k1 (X1) Pk2 (x2) - - PkN (XN )

not taking the exchange symmetry into account. In order to include this

important quantum symmetry, consider first a 2-particle system, N =2, 1
UB (X1,X%2) = \/2 [dn1 (X1)Pn2 (x2) + dn1 (x2)dn2(x1)]  for Boson
Dr.A.Saranya Karpagam Academy of Higher Education
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[or dn1(X1)dn1(x2) etc.] and 1
UF (x1,x2) = \/2 [dn1 (X1)Pn2 (x2) — dn1 (X2)Pn2 (x1)] for Fermions

so that YB (x1,x2) = WB (x2,x1) for Bosons and WF (X1,x2) = —UYF
(x2 ,x1) for Fermions. One can aso construct a symmetric wavefunction for two
Bosons by asingle wavefunction as B (x1,x2) = dn1 (x1)dn1 (x2), of dn2 (X1)dn2
(x2).

Notice that if k1 =k2, yF (x1,x2) =0, but not YB (x1, x2). This indicates that

two Fermions cannot occupy the same state, but it two bosons are allowed to occupy the

same state. It can be extended to amore genera statement:

A state can only be occupied by at most a single Fermion; But it can be occupied by

any number of Bosons.

The first above statement is Pauli exclusion principle. The second statement is the
property that leads to the so-called Bose-Einstein condensation of bosons at low
temperature. As active ingredients in atoms and molecules are electrons which are
fermions, we will mainly use Pauli principle. It isobviousthat in the independent- particle
approximation (e.g., ignoring particle interactions), the ground state of an N -electron
system is given by the Slater determinant constructed from the lowest N single particle
states. For atoms, these single particles states are naturaly the eigenstates of
hydrogenlike atoms as we discussed previously. For molecules, these single particle states
are constructed by a linear combinations of atomic states at different nuclear
configurations. We will discuss QM of molecules in the last chapter. Sometimes it is
convenient to separate total wavefunction asdiscussed above into product of spatia and

spin parts of wavefunctions, namely
WL, -, xN)=y(r1, - - -, rN)x(o1, - - -,0N).

Hence, if spin wavefunction x is antisymmetric, the spatial wavefucntion (¢ must be
symmetric in order for the total wavefunction W to be antisymmetric, vice versa.
Dr.A.Saranya Karpagam Academy of Higher Education
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Now we apply this simple analysis to atoms, the elements on the periodical table,
where the identical fermions are electrons with spin-1/2. We will qualitatively discuss the
ground states of the atoms. In the next section, we will attempt to calculate the ground-state
energy value of the two electron system, helium atom. By solving the Schro dinger equation
of hydrogenlike atoms in the previous section, we know the elec- tron’s states in an atom can
be characterized by four quantum numbers (n, I, m, ms): n - principle quantum number
specified main energy levels (shells), | - (orbital) angu- lar momentum quantum number,
and m - (orbital) magnetic quantum number and - spin magnetic quantum number. We
extend this to many-electron’s state ig- noring the interactions, spin-orbit couplings, etc.,

by using the independent-particle approximation. Using notation

|=0—sdstate, 1—pdstate, 2—>dstate - -

and noticing mand ms are degenerate quantum numbers, we conclude that s shell
can take up to two electrons (single orbital with m = 0 but one electron with spinup ms =
1/2, the other electron with spin downms = —1/2); p shell can take up to 6 electrons (three
states specified by m =1, 0, —1, each can take one electron with spin

up and one electron with spin down); d shell can take up to 10 electrons (5 states
withm =2, 1, 0, —1, —2, each can take two electrons), etc. These energy levels are
ordered as,

orbitals (shells) : 1s 2s 2p 3s 3p 4 3d 4p b5s
electron no. : 2 4 10 12 18 20 30 36 38

In the abovetable, we aso list total possible maximal number of electrons.

In this independent-particle picture, the way each electron of an atom occupies a
particular hydrogen state is called electron configuration. As we are mainly in- terested in
the ground state, the electron configuration of an atom is given by filling these hydrogen
orbitals from the lowest, in the ordered series as

(15)(25)(2p)(39)(3p) (45)(3d)(4p)(S9) - - - .

We noticethat agiven electron configuration will not uniquely determine some basic
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properties (such astotal angular momentum, spinsetc.) of the corresponding atom. More
information can be specified by using the so called atomic spectral term (or atomic term)
to represent states of an atoms. Some correction to independent-particle approximation for
the ground-state atomic term due to Coulomb repulsion will be considered by the
empirical rules.

Atomic spectral terms. We use notation (25+1) LJ to denote a particular atomic

state where Sisitstotal spin, L itstotal orbital angular momentum and J the total

angular momentum (spins and orbitals). We use capital Latin letters for each

value of orbital quantum number as

L=0 1 2 3 4 5 6 7 8 9 10
S p D F G H | K L ™M N

For example, 2 P3/2 denoteslevelswithL =1, S=1/2 and J= 3/2. Thedifferencein
energy between atomic levels having different L and S but the same electron
configuration is due repulsive Coulomb interaction between electrons. These energy
differences are small. We have the following empirical Hund’s rules (F.Hund, 1925)

concerning relative position of levels with the same configuration but different L and S:

(i) For agiven shell (configuration), the term with greatest possible value of S gives
the lowest energy;

(i) The greatest possiblevalue of L (for this S) has the lowest energy;

(iii) For haf or lessthan haf filling shell, J=|L — S| gives lowest energy; For more
than half-filling shell, J=L + S giveslowest energy.

The origin of the first rule is obvious: the largest total spin corresponds to symmetric
(pardlel) spin wavefunction and antisymmetric orbital wavefunction, the later reduces
electron-electron repulsive interaction energy.

Example. Helium (Z = 2) hasasimple configuration (1s)2. Hence S=0 and

L =0. The ground state termis1S0 with J=0. We will use thisterm to construct an
approximate wavefunction to calculate its ground-state energy in the next section.

Example. Carbon (Z = 6) has electron configuration as (15)2(2s)2(2p)2. There are
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three p orbitals withm =1, 0, —1as| = 1. Two electrons with both spin equal to 1/2
(corresponding to total largest spin S=1) arein orbital m =1, 0 with total maximal M =1
+0=1, corresponding to L =1. Hencetheground state term is3P0. Itislessthan half-
filling, J=|L — S| =0. The other two possibleterms are 1S and 1D. They correspond to
higher energies.

Example. Nitrogen (Z =7): He(2s)2 (2p)3. Three electrons with total spin S =
3/2 are instates m =1, 0, —1 with total maximal M =0 corresponding to L = 0. Ground
state term istherefore 4 S3/2 . Other termsare2 P and 2 D.

Example. Oxygen (Z = 8): He(2s)2(2p)4. Equivalent to two holes (two missing

electrons for filled shell) in 2p orbitals. Its ground state term istherefore same as
carbon, 3P . However, asitismorethan half-filling, J=L + S= 2. So we have 3 P2 for its
ground state.

Example. Boron (Z = 5) and fluorine (Z = 9) have similar term but different J values,
due to electron-hole symmetry.
The Hartree-Fock method

The kinetic energy term and the nucleus-electron interaction term are sums

of single-particle operators, each of which act on a single eectronic coordinate. The
electron-electron interaction term on the other hand is a pair interaction and acts on pairs

of electrons. To facilitate the upcoming math, let’s make the following definition

~ X
He = hi(xi)

where Xj is now a generalized coordinate that includes spatial as well as spin
degrees of freedom.

The Hartree-Fock method is a variationa, wavefunction-based approach.
Although it is a many-body technique, the

approach followed is that of a single-particle picture, i.e. the eectrons are
considered as occupying single-particle orbitals making up the wavefunction. Each eectron
feelsthe presence of the other electronsindirectly through an effective potential.

Each orbita, thus, is affected by the presence of electrons in other orbitals.

The starting point of the Hartree-Fock method is to write a variationa
wavefunction, which is built from these single- particle orbitals. Once we make a suitable
ansatz to the wavefunction, al that is left is the application of the variationa principle.
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The smplest wavefunction that can be formed from these orbitals is their direct product
®(x1 , - - -, XN ) = 01 (X1 )92 (X2 ) - - - ON (XN ).

(1)

This is the Hartree approximation and it is a straightforward task to calculate the
variational lowest energy from Eq. 1.

However, the Hartree wavefunction has a very important shortcoming, which is that
it fails to satisfy antisymmetry, which states that a fermion wavefunction changes sign
under odd permutations of the electronic variables. The permutation

operator is defined by its action on the wavefunction
Isij ‘D(Xl,---,Xi,---,Xj ,"','XN):(I’('X].,"',‘XJ- v X, XN ) = —P(x1
lll.lxil...lle..l)XN) (2)

If an odd number of such permutation operators are applied to the wavefunction, it
picks up a minus sign whileno change

in sign occurs under an even number of permutations. In order to satisfy the
antisymmetry condition, a more sophisticated form than that of the Hartree wavefunction
is needed.
[I. THE SLATER DETERMINANT

If, for example, we have a two-electron system with orbitals @1 (%1) and @2 (%2 ),
the following variational wavefunction satisfies the antisymmetry condition, at the same

time preserving the single-particle picture
(%1, %2) = c[Q1(%1)92 (%2) 91 (x2)92 (x1)] (3)
where ¢ is the normalization constant. For three electrons, the equivaent
antisymmetrized wavefunction would be
h
(%1, %2, %3) = C 01 (X1 )92 (x2)93 (X3) ~ @1 (x1 )92 (X3 )93 (x2) + @1
(x3)92  (x1)03 (%2)
—01(%x2)02 (x1)93 (%3 ) + 91 (%3)92 (%2)93 (%1) 01 (x2)92 (x3)93 (x1) (4)
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where ~xi is now a generalized coordinate that includes spatial as well as
spin degrees of freedom.

The Hartree-Fock method is a variational, wavefunction-based
approach. Although it isamany-body technique, the

approach followed is that of a single-particle picture, i.e. the electrons are
considered as occupying single-particle orbitals making up the wavefunction.
Each electron feels the presence of the other electrons indirectly through an
effective potential.

Each orbital, thus, is affected by the presence of electrons in other
orbitals.

The starting point of the Hartree-Fock method is to write a variational
wavefunction, which is built from these single- particle orbitals. Once we make
a suitable ansatz to the wavefunction, all that is left is the application of the
variational principle as described in Lecture 1. The simplest wavefunction that
can be formed from these orbitalsis their direct product

d(~x1 , - - -, ~xXN ) = @1 (~x1 )p2 (~x2 ) - - - N (~xN ).
(4) Thisisthe Hartree approximation and it is a straightforward task to calculate
the variational lowest energy from Eq. 4.

However, the Hartree wavefunction has a very important shortcoming,
which is that it fails to satisfy antisymmetry, which states that a fermion
wavefunction changes sign under odd permutations of the electronic variables.
The permutation

operator is defined by its action on the wavefunction

PAiqu("‘Xl, "',"“Xi,'","“Xj,"',““XN):CD("X].,'","“Xj,"',
"'Xi,”’,"‘XN):*q)("'Xl,' . ',"‘Xi,”’,"‘Xj,' . ',"‘XN) (5)

If an odd number of such permutation operators are applied to the
wavefunction, it picks up a minus sign while no change

in sign occurs under an even number of permutations. In order to satisfy
the antisymmetry condition, a more sophisticated form than that of the Hartree
wavefunction is needed.
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THE HARTREE-FOCK EQUATIONS

The variational principle that we will apply here is rather different from the
linear variation. There the form of our approximate wavefunction was written as an
expansion over a collection of predetermined functions and we minimized the expectation
vaue (at the same time obeying the normalization constraint) with respect to the
coefficients of the basis functions. Here however we employ a much more genera
treatment where we minimize with respect to the basis functions themselves! Needless to
say, this requires functional differentiation where any change affected in the expectation

valuein Eq. 1 due to an infinitesimal change in any of the orbitals gk should be zero
ok — @k +dgk = OShd/Heldi=0 (1)
In addition, we demand through Lagrange multipliers that the set of oritas @k
remain orthogona throughout the minimization process.

where the first and the second term are straightforward, single-body operators and
the third term is an integra operator. This is now a set of interdependent single-particle

eigenvalue equations. The operator J corresponds to the classical interaction of an
electron distributions given by |0j |2 and |pk |2 and is called the direct term while K |

called the exchange term, has no classica analogue and is a direct result of the

antisymmetry property of the wavefunction. The Fock operator

F=h+ (J-K) ©

and using this definition Eq. 2 takes the ssmpleform

N
X

Fok = A6 ()
i=1
There are severa different solutions to the equations in Eq. 3 each corresponding to

a different set of Akj . We have the freedom to concentrate upon those Aki which satisfies

Aki = Oki Ok 4
Dr.A.Saranya Karpagam Academy of Higher Education
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where gk is essentialy a new name for the Lagrange multipliers[1]. With this, Eq.4
may be written as

Fok = k- ©)

In this form, Eq. 5 is a traditional eigen value equation. For each k there is an
equivalent equation defining a system of Schrodinger-like, one-particle equations.
Although it’s tempting to interpret the eigen values gk as the energy levels of an
interacting system, this is in fact not justified because the single-electron picture is not
correct. However, if interpreted correctly the Hartree-Fock eigen values do correspond to

certain physical entities.

Valence bond Theory

The two-electron system with orbitals @1 (~x1 ) and @2 (~x2 ), the following
variational wavefunction satisfies the antisymmetry condition, at the same time preserving

the single-particle picture

O(~x1,~x2)=c el (~x1)2 (~x2) — @1 (~x2 )92 (~x1)] Q)

where c is the normalization constant. For three electrons, the equivalent antisymmetrized
wavefunction would be

®O(~x1, ~x2, ~x3 ) = ch@l (~x1 )@2 (~x2 )3 (~x3 ) — @1 (~x1 )2 (~x3 )3 (~x2 ) + @1
(~x3 )02 (~x1)@3 (~x2 ) =01 (~x2 )2 (~x1 )3 (~x3 ) + @1 (~x3 )2 (~x2 )3 (~x1) -
O1(~x2)@2 (~x3)@3 (~x1)i. (2

Upon closer inspection, we notice that the same permutations of orbitals with matching signs

are obtained by the following determinant

@1 (~x1) 92(~x1) @3 (~x1) ©)
@1 (~XN) @2 (~XN) ¢ee @N (~xN)

where the factor in front ensures normalization. For an arbitrary number of electrons the
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wavefunction can be shown to satisfy the desired antisymmetry condition. The determinant,
referred to as a Slater determinant in literature, has N ! terms each multiplied by -1 or 1
depending on the parity of the permutation. Each term has each orbital @i only once and
each of the arguments ~xi only once. Thus, each term may be written as follows where the
indices i1, i2, « take values between 1 and N and the exponent of -1 in front refers to the
order of appearance of the orbital indices in the term. The term picks up a -1 in front if the
corresponding permutation is odd and +1 if it is even. For ease of notation, we replace P (i1,
i2, ¢+ iN) by the shorthand notation P (i), where i now refers to a particular arrangement
(or sequence) of the N indices. The Slater determinant may then be written as

where the sum i runs over the N ! terms. Nothing has been said so far about the form of the
orbitals @i (~xj ) and they are left to be found as a result of the minimization procedure
associated by the variation. In order to achieve that we now calculate the expectation value

of the Hamiltonian for this variational wavefunction

EH = h®|H" e |Pi. (4)
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Possible Questions

Part B (4 Marks each)

1. What is particle exchange operator? What are its eigen values? Show that it is a
constant of motion.

Illustrate exchange degeneracy with examples.

What is Slater determinant? How does it incorporate Pauli principle?

Explain Fermi hole and Fermi heap.

What are orthohelium and parahelium?

o g b~ WD

Explain why the ground state of helium exists in the para form whereas the excited
states come in both forms.

7. Explain centra field approximation.

8. How did Hartree obtain the central field in his theory of many electron atom?

9. Explain self consistent potential.

Part C (10 marks each)

1. a Explain what is meant by indistinguishable particles. (5 marks)
b. Explain symmetric and antisymmetric wave functions (5 marks)

2. a. Using symmetric and antisymmetric wave functions explain Pauli’s exclusion
principle. (5 marks)
b. Discuss the inclusion of spin of eectrons. (5 marks)

3. Using the theory of indistinguishable particles, explain the ground state and first
excited state of Helium atom. Distinguish between parahelium and orthohelium.

4. a Explain centra field approximation. (5 marks)
b. Discuss Thomas-Fermi model of the atom. (5 marks)

5. a Derive Hartree equation and obtain expression for total energy of the system.

(5 marks)

b. Derive Hartree Fock equation. (5 marks)
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The central field approximation is applicable

on all atoms except the atom. . heavier alkali lighter none of the above lighter
Every atomic electron moves in a
potential energy V(r) that is produced by the | Spherically Spherically
nucleus and all other electrons symmetric Assymmetric . Radially symmetric |. None of the above |symmetric
The fluctuating potential due to each nearby
electron varies slowly with the
distance. equal infinite separation finite separation
The potential energy v (r) for a neutral atom
has the coloumb form at a great
distance r from the nucleus. —e’/r e’/r —2¢’/r 2e’/r —e’/r
The state of an electron in a central field is
specified by the quantum numbers nandl m, and m; n, landm n, 1,;amd m, n, 1, amd m,

According to Thomas-Fermi statistical
model v(r) varies slowly enough in an

wavelength. proton neutron electron none of the above electron
At normal temperture, the thermal energy Kl
is very small in comparison with
everywhere except at the edge of the atom. kinetic energy potential V(r) aand b none of the above potential V(r)
The number of electron states in a cube of
edge length L at the walls of which the wave
functions obey periodic boundary condition is
(L2p)’ dkdk,dk, | -(L/2p)’ dk,dk,dk, |(L/2p)’ dk,dk, (L2p)’ dk.dk, (L/2p)’ dk,dk,dk,
The relation between volume density of
electron n(r) and the potentail energy is n(r) = n(r) = n(r) = (- n(r) = - n(r) = (-
. CmVD)3ph)"”?  |emvoBp)?  [2mV(r)3p’h’ CmV(@®)/3ph’)Y?  |2mvV()’*3p’h’

As r—a. there is no net charge inside the
sphere of radius r, so that V falls off more
rapidly than a. 1/r a. 1/r° a.—1/r r’ a. 1/r




If m becomes infinite and e becomes zero in

3 4 .
such a way that m’e” remains constant, then

the electron wavelength becomes . |. Infinite . Zero . finite . none of the above |. zero
According to Hartree’s method, the charge
density associated with an electron is
times its position probabililty
density. e 1/e —1/e —e —e

According to Hartree’s method, the entire
wave function for all the electrons is a simple
product of functions.

one-electron

all electron

each individual
electron wave

none of the above

one-electron

The theory of complex spectra consists in
determining the linear combination of suitably
wave function.

symmetrical

normalised

aandb

antisymmetrical

antisymmetrical

When the electrostatin perturbation is

included and spin-orbit energy neglected, the

the total orbital- angular momentum L and the

total spin angular momentum S are separtely
of the motion.

equations

symmetrical

constants

antisymmetrical

constants

When the spin-orbit energy is neglected, the
electrostatic energy separates states of
different

S

L

aand b

L

energy state can be specified by the quantum
numbers

J, L, S, M

J9 L> LD/I_lyI

J9 L> S5 M» M_

J9 L> s5 M” M_

For given L and S, the states specified by J
and M are linear combinations of those
specified by and

M; and Mg

Jand S

Jand L

J, LandS

M; and Mg

If spin-orbit energy is included, then L and §

are not of motion.

equations

symmetrical

constants

antisymmetrical

symmetrical

In JJ coupling, the spin-orbit energy is
in comparison with the
electrostatic energy.

Small

Large

Finite

Infinite

Infinite

JJ coupling takes place in atoms
where the large V(r) makes the spin-orbit

energy

heavy

light

alkali

none of the above

heavy




In alkali atom, a single electron moves in a
spherically symmetric potential
energy V(r).

excitation

coloumb

noncoloumb

none of the above

noncoloumb

The configuration of an alkali atom can be
specified by a single pair of quantum numbers

n, L, mm

The configuration of an alkali atom can be
specified by a single pair of quantum numbers

infininity

1 and 2

The doublet structure characterizes all the
moderately excited levels of the alkali atom
except those for which 1= .

negative

Z€1o

positive

infinite

positive

The pair of states having j either 1+1/2 or I-
1/2 has attractive potential energy V(r) which
is

L+S

LS

(L+1) (S+1)

(L+1) (S+1/2)

L+S

The total angular momentum J =

nandl

jands

1

The absolute value of doublet separation
depends on

different

proportional

same

inversely
proportional

same

The doublet intensity of two lines can be
found by assuming the radial wave functions

are for two excited *P states.

diagonal

dipole

square

unity

dipole

The observed intensities if the two P states are
equally likely to be occupied are proportional
to the squares of the matrix
elements.

LS

1]

LS and JJ

None of the above

LS

The equality of total intensities from each
state formed from a given L and S is a general
property of coupling.

3:01

2:04

1:02

2:01

2:01

The two lines of the doublet have intensities
in the ratio

2:04

2:01

1:02

3:01

2:01

The lowest doublets of the alkalis are in the
ratio

12

The sum of the intensities of all the lines that
originates on each of the four 2P3 1 states is
equal to

12




The total intensity from each of the two 2P1 P

states is equal to 6 8 2 1 2

For higher doublets the intensity rat10

exceeeds 4 6 radial function radial function

In higher doublets the intensity ratio exceeds electron wave

2 due to the difference to energy state function aand b G+D) h’ energy state

7= i(j+1) -(+1) B’ JJ i(j+1) JJ

The states of dlfferent j have

fold degeneracy. Proportional Same Different (2j+1) Different

The states of different j with (2j+1) fold

degenracy is due to —(G+1) —(2j+1) G+1) jands jands

The state of different j with (2J+1) fold

degeneracy is due to . m 1 land s 0 m

The method of partial wave is an elegant

procedure for the analysis of

scattering elastic inelastic compton differential elastic

The s-particle wave will be of the

angle 6 dependent independent perpendicular parallel independent

The s-particle wave will be

symmetric spherically circullarly elastically a spherically

The phenomenon with out scattering is called [Ramsaur - Townsend Ramsaur - Townsend
effect tuindall effect raman effect bohr model effect

The small scattering cross section for

electrons of rare gas atoms at a bombarding

energy of 0.7 ev 15eV 35eV 1.2 eV 0.7eV

Ih = khb 0 ab pA khb

The interaction between two particles is

uasually screened by the atomic electrons

surrounding the electrons neutrons protons nucleus

The quantum mechanics does not satisfy the

requirement of special theory of resistivity permitivity permiability conductivity relativity

Klein-gordan equation does not say anything

about particle wave energy space particle

O is the operator de alembertian schrodinger wave dirac de alembertian

Klein and gordan were not able to give a

explanation of energy positive negative Zero neutral negative




was resolved by pauli and

weisskopf in 1934 dilemma charge density lamda surface energy dilemma
coulomb field is described by a potential of
the type V(r)=0 V(r)=KB v( r)=-Zer v( r)=ih v( 1)=-Z¢e%/r
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Relativistic quantum mechanics. Klein-Gordan equation — Interpretation of the Klein-
Gordan equation — Particle in a coulomb field — Dirac’s equation for a free particle — Dirac
matrices — Covariant form of Dirac equation — Probability density — Negative energy states
— Spin of the Dirac particle — Magnetic moment of the electron — Spin-orbit interaction —

Radial equation for an electron in acentral potential — Hydrogen atom — Lamb shift.
KLEIN - GORDON EQUATION
The non relativistic Schrodinger equation was obtained by replacing P by - ihV and E

by ih% in the classical energy expression of a free particle E:PZ/Zm and allowing the

resulting operator equation to operate on the wave fuction.The corresponding relativistic

energy relationis:
FP=cp*+m?ct* = (1)
Where m is the rest mass of the particle . For convenience , rest mass will be denoted by m
in this chapter . Replacing E and P by the respective operators, we get the operator eqution
-hzgz= —c2r*V2+m2ct (2)

Allowing this operator equation to operate on the wave function W (r.t)

-hz% =—h2c2y2 Y(r,t) +m2c*P(r,t) ... 3

Which is Klein — Gordon equation or Schrodinger’s relativistic equation

Rearranging , we get

(vz__l_iz_) W(r,t) = %lep(r, 1) J 4

c? at?

2.2
¥(r, t)—x¥(r,t)

o gt
=V -5 e (5)

Where [7]isthe de Alembertian operator which is relativistically invariant. Therefore
eq(5) is relativistically invariant if W transforms like a scalar
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Plane Wave Solution
The plane wavw represented by
Y(r,t)=exp[i(k.rrwt)] ... (6)

Is an eigenfunction of both energy and momentum operator with eigenvalues hw and kh

respectively. Substitution of Eq (6) in Eq (4) gives
(ﬁwz) — (czhzkz + mzc‘*)
hw) = £ (c2h*k? +m2c*) 12

This means that the energy eigenvalue can have both positive and negative values . Klein

— Gordon were not able to give a consistent explanation for the negative energy .
Dirac Equation.

Dirac attempted to overcome some of the problems of relativistic gquantum mechanics

by introducing afirst-order wave equation.1

iYL Op @ —my = 0. 1)

Here, the yu are some suitably chosen operators acting locally on the wave function (.
This wave equation can be viewed as a factorisation of the second-order Klein—-Gordon

equation asfollows:

(iyv v + m)(iynop — m)y = (=yv ypov op — m2)y = 0. (2)

Thelatter form becomes the Klein-Gordon equation provided that the y’s satisfy
the Clifford algebra2 3

{YH, YW }=yuyv +yvyu =-2npuv. 3)

This meansthat every solution of the Dirac equation also satisfies the

Klein-Gordon equation and thus describes aparticle of mass m.
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The Dirac equation is arelativistic wave equation. Trandationa invariance is evident,
but we have not yet shown its Lorentz covariance (although the resulting Klein—Gordon

equation certainly iscovariant).
Dirac Matrices
Consider a Lorentz transformation
X0 = A—1 x with A(w) = exp(w). Suppose Y is a solution of the Dirac equation. It is
not sufficient to use the transformation rule for scalar fields $0(x0) = ¢(x). In
analogy to vectors we should also transform spinors. We make the ansatz
PO(x0) = S(w)y(x), 1)
where S(w) is a matrix that acts on Dirac spinors. We then substitute
PO(x) = SY(AXx) into the Dirac equation

0= iyhop—m Yo(x) = iyp op —m SY(AX)

iyv SApV o — Smy (AX)

SiS1yvSARUVIUY —iyu o (AX)
=1iS AWV S-1yv S—yp (OpP)(AX). (2)

So the term in the bracket must vanish for invariance of the Dirac equation. Indeed, the

canonical Lorentz transformation of gamma-matrices
yOp = (A-1)pv Syv S-1, ©)

where not only the vector index is transformed by A—1, but aso the spinor matrix is

conjugated by the corresponding spinor transformation S.8 In anaogy to the
invariance of the Minkowski metric, N0 = n, the Dirac equation is invariant if the

gamma-matrices are invariant

yOop = yp. (4)
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This condition relates S to the Lorentz transformation A. The infinitesimal form of the

invariance condition reads
[0S, yu ] —dwpvyv =0. 5)

This implies that S must be proportional to dwuv . The latter carries two vector indices,
while 3S carries none. The only possibility is to contract the vector indices by S from the

left, co-spinors by the S-1 from the right.

to gamma-matrices, and we make the ansatz 6S =1 aécguv YUYV . Substituting this

into the invariance condition and using

[vpyo , yu1=yp{yo, yu} —{yp, YU }yo, (6)

we arrive at (2a — 1)dwpuv yv = 0. We conclude that a Lorentz transformation for spinors is

given by the matrix

the Dirac spinor ¢ = (YL , YR ) transforms in the direct sum of two (irreducible)
representations of the Lorentz group. The 2-spinors YL and YR are called left-chiral and
right-chiral  spinors. The massive Dirac equation, however, mixes these two

representations
IOMOUYR —myL =0,
i0 popuYL —myR =0. @)

It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless
spinor particles can also be formulated using 2-spinors; we shall discuss the massless case

|ater on.

The decomposition into chiral parts is not just valid in the Weyl representation of the
Clifford algebra. More abstractly, it is due to the existence of the matrix

Y5 = i €MV po ypyv ypyo = iy0yly2y3. ©))
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In the Weyl representation it reads y5 = diag(—1, +1), it therefore measures the chirality

of spinors. In general, it anti-commutes with all the other

gamma-matrices,

{v5, yu} = 0. 9)

This property implies that a single gamma-matrix maps between opposite chiralities, i.e.
it inverts chirality. The property is also sufficient to prove commutation with M pv .
Alternatively, it follows by construction of y5 as a (pseudo)-scalar combination of

gamma-matrices.
M agnetic moment of the electron

The electron is acharged particle of charge —1e, where eis the unit of elementary
charge. Its angular momentum comes from two types of rotation: spin and orbital motion.
From classical electrodynamics, a rotating electrically charged body creates a magnetic
dipole with magnetic poles of equal magnitude but opposite polarity. This analogy holds as
an electron indeed behaves like a tiny bar magnet. One consequence is that an
external magnetic field exerts atorque on the electron magnetic moment depending on its
orientation with respect to the field.

Spin-orbit interaction

The spin-orbit interaction for an electron bound to an atom, up to first order
in perturbation theory, using some semiclassical electrodynamicsand non-relativistic
quantum mechanics. This gives results that agree reasonably well with observations. A
more rigorous derivation of the same result would start with the Dirac equation, and
achieving a more precise result would involve calculating small corrections from guantum

electrodynamics.
Hydrogen atom

Spectra lines of H found to be composed of closely spaced doublets.
Splitting is due to interactions between electron spin s and the orbital angular momentum |
H{ lineissingle line according to the Bohr or Schrédinger theory. occurs a 656.47
nm for Hydrogen and 656.29 nm for Deuterium (isotope shift, [1A~0.2 nm).

Spin-orbit coupling produces fine-structure splitting of ~0.016 nm corresponds to an
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internal magnetic field on the electron of about 0.4 Tesla.
Orhital and spin angular momenta couple together viathe spin-orbit interaction
Internal magnetic field produces torque which results in precession of | and s
about their sum, the total angular momentum:
Thiskind of coupling is called L-S coupling or Russell-Saunders coupling

The Hydrogen Atom

The energy eigenvalues of hydrogen atom . For hudrogen atom, V(r) = -Zez/ 4me,r

It is convenient to introduce numerical substitutions defined by

B (m2c*-E%) 12 ( mcz+E) 1/2 ( mcz+E) 1/2 :a1/2a1/2
ch ch ch 1 2

a

o = mec2+E _ me?—E
k cii e i ch

Introducing a new variable p defined by

p=ay
We can be reduced to

dF KkF @y Y _ _
Pral il L N 4

E kF (i) Y
dp P a P

As in the nonrelativistic case let us ook for solution of the form

Flp) =Xm-0 anp’t" e, ay #0
And

G(p) = Xn=o bpp**™e P, by #0
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Substituting these equation in Eqs(4) and (5) and equating the coefficients of

pSt1 to zero, we get

(s+n-Kk)ay — ag—y — yby — %bn—1=0

(s+n=K)by-bny+yan -7t ay1=0

When n=0

(s—Kk)ag -ybp=0 (s +k)by -yas=0

For eqn to have nonvanishing solution , the determinant

s—k -y |_

= 20 a2 1/2
. ik 0 o s=x(k°—y°)

The negative solution is not acceptable as 't would make F and G diverge at the
origin .Hence the positive sign is the only acceptable solution.When n> 0, a
relation between a, and b,, can be obtained by multiplyed by « and by a,and

substituting

by [(s + n+ K)a+ a;y] = ag[d (s+n-k)—ay |

Where we have used the relation o = a,a,. As in the nonrelativistic case
regular solution are possible only if both the series terminate . Let this occurs at
n=n’so that a,,, = b,',; = 0. Replacing n by (n’+1) in eq we have

(s+1 +1-K) @4y~ ap -Ybyyy-—2bn=0

In view of the condition a,,",; = b,;,,=0 reduceto

(14

bn:-&: Ay n=012...
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Equation aso gives the same condition between b,,- and a,, . The energy levels can

be
Obtained by setting n=n’ ineqand
~Za, (s + 0+ Ka+ a1l = a/[0 (s+0'-k) —ay |
2a (s +n) =y (1)
Substituting the values of a; a,, @ and squaring, we get
(m?c* — E?) (s+n’) 2=E2%y?
E=mc? | l+y—2,] 1/2
s+n
Expending in power of y# and retaining terms of order y*
- I L o
E=mc® [ 1 2n? ﬁ( Ik | 4)]
Where n=n’+ 1k I:n’+j+% is the total quantum number of hydrogen atom and K |
takesthe
value 1,2,.....,n. To label the energy levels by | the orbital angular momentum
quantum
number we have to extend the discussion to nonrdativistic limit .When this is
done, the

values of | intermsof k are

|=1k1=j+- for k<0

the complete degeneracy of the energy level for a given n in the nonrelativistic one is

partly lifted by relativistic effect. The encrgy level given below

n=3, k=3 3Ds,
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n=3,k=2 3P:

n=3, k=-2 3D; /2

n=3,k=1 35, n=3, k=-13P,/,

n=2, k=2 2Ps,
n=2,k=1 2, n=2,k=-1 2P,
n=1,k=1S8;,,

this is the scheme of hydrogen atom n=1,2,3

Lamb Shift in Atomic Hydrogen

To measure the Lamb shift in the Bamer a transition of atomic hydrogen.
The Lamb shift cannot be explained by the Schrodinger or Dirac formulations of
quantum mechanics. It can be explained by a theory known as quantum
el ectrodynamics—atheory whose development was intimately linked to experimental
observation of the Lamb shift.

The spectrum of the hydrogen atom was the first to be described quantitatively
and modeled from first principles. In 1885 Bamer discovered that the wavelengths of
the then known linesin the hydrogen spectrum.

In 1890 Rydberg discovered a more general form of Balmer’s formula
which, when applied to the hydrogen spectrum. In 1887 Michelson, using his
interferometer to investigate the shape of spectra lines, discovered that the Balmer o
line consisted of not a single line but of two lines separated by a fraction of an
angstrom. Bohr’s simple model of the atom had no means of accounting for this
feature.

In 1916 Arnold Sommerfeld presented a model of the hydrogen atom allowing
for the posshility of eliptica in addition to strictly circular €electron orbits.
Applying relativistic corrections to these dliptical orbits, Sommerfeld’s model
predicted the Bamer a line to consist of more than one com- ponent, just as
Michelson had observed. But, being an ad hoc combination of classica and quantum
Dr.A.SARANYA Karpagam Academy Of Higher Education
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physics, the Sommerfeld model was restricted in scope and left much to be desired.
Quantitatively it was unable to account for features such as magnetic effects or the

different intensities of the components of the Balmer o line.
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

1

8.

9.

Derive Klein-Gordon equation for arelativistic particle

Explain how Klein-Gordon equation leads to positive and negative probability

density values.

Derive Dirac’s relativistic equation for afree particle.

Explain the concept of negative energy states and Dirac’s explanation for it.
Write a short note on Lamb shift.

Prove that the operator ca, where a is the Dirac’s matrix, can be interpreted as the

velocity operator.

Give the energy spectrum of a free Dirac particle and explain pair production and

pair annihilation
Give the physical interpretation of Dirac’s a-matrix.

Starting from Klein-Gordon equation, obtain the equation of continuity.

10. Derive expressions for probability density and probability current density in the

Dirac theory.

PART C ( 10 Marks each)

1

2.

3.

Discuss the reativistic motion of a particle in a Coulomb field and derive

expression for energy.

a. Obtain Dirac’s equation for a free particle, and deduce the co-variant form of the

Dirac equation. (5 Mark)
b. Explain Dirac matrices for a and 3. (5 Mark)

a. Discuss the magnetic moment of an electron. (5 Mark)

b. Explain spin-orbit interaction. (5 Mark)
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4. Derivetheradial equation for arelativistic electron in acentral potential.

5. Using theradial equations in a central potential, derive the energy eigen values of a

hydrogen atom.
Dr.A.SARANYA Karpagam Academy Of Higher Education
Department of Physics Coimbatore -21

Page 12 of 12



DEPARTMENT OF PHYSICS
CLASS:II M.Sc PHYSICS
QUANTUM MECHANICS-1I (16PHP301)

The basis of all molecular approximation is the large ratio of’

electron mass to
nuclear mass

electron mass to
neutron mass

electron mass to
atomic mass

nuclear mass to
electron mass

nuclear mass to electron
mass

The energy associated with the motion of then nuclei is much

than the energy associated with the motion of electron |larger smaller varied none of the above smaller
about the nuclei.
The period of nuclear motion is of the order of

divided by its energy. b © b - b

The nuclear periods are than the electronic smaller stable Jonger aand b Jonger
periods.

The nuclear motion are classified into translation and
rotational motion of the equilibrium arrangement and  |quasi-rigid stable unstable neutral quasi-rigid
internal vibrations of the nuclei about the equilibrium.
I\/'Iolec'ular Cnergy leYels are classified into static rigid translational electronic electronic
vibrational and rotational energy levels
The energy E, associated with the motion of a valence is of
order of , where m is the electronic mass _52/ma2 _52/ma2 _52/ma2 +1 hZ/maZ +1 _hZ/maZ

The only nuclear coordinates R; of the hydrogen molecule is
the magnitude, of the distance between the two R r -R R’ R
hydrogen nuclei.
The linear combination of unperturbed degenerate wave
function which gives lower energy than the separate wave heteropolar nuclei homopolar atomic homopolar
function is the basis of binding molecules

The property of degeneracy is known as resonance doublet separation doublet intensity none of the above resonance

An interaction between two resonant (degenerate) states in
quantum mechanics give rise to a lower energy

eigen function

eigen value

wave

wave function

eigen value

The wave function based on a simple product of two ground
state functions gives good result.

alkali atom

helium atom

hydrogen molecule

hydrogen atom.

hydrogen atom.

In case of hydrogen molecule, the equilibrium value for r,p is
theoretically calculated as

0.74 A°

0.8 A°

1.06 A°®

1.32 A°

0.8 A°

The ground state of a hydrogen molecule is

a triplet state

a mixture of single and
triplet state

neither a singlet nor a
triplet state

a singlet state

a singlet state

The interaction between valence electrons give rise to

forces between atom which hold the atoms together in molecule bonding electrostatic coloumbic repulsive bonding
Heitler and Lf)ndon theory of hydrogen molecule helps us to covalent chemical ionic none of the above chemical
develop the picture of bond.

The spin functions of two electrons are a(1) and a(2), then the

total spin wave function is the product of such either one wavelength with aandb two two

spin functions.




The complete wavefunction of an electron is the product of

wave function multiplied by one of the spin unperturbed orbital perturbed orbital orbital none of the above. orbital
function.
The symmetric orbital functions of an electron will be . . . . . .

: . . . skew symmetric symmetric aand b antisymmetric antisymmetric
associated with spin function.
The antisymmetric orbital function will be associated with . . . . .
. . symmetric skew symmetric antisymmetric bandc symmetric
spin function.
If ), is the distance between two electrons, then the interaction | , , 2 2, 2 2, 2 2
—€ /rlz —€ /rlz —2e /rlz —3e /rlz —€ /rlz

between these electrons 1 and 2 is given

If the system consists of two hydrogen nuclei ‘a’ and ‘b’ and
two electrons 1 and 2 separated by distance r,,, then the
potential energy or two nuclei is V=

ez/rab + ez/r12+ ez/ral+

2 2 2
ety t e/rpt e/,

ez/rab + ez/r12+ ez/raﬁr

2 2 2
e/ryt €7/ € /1y,

2 2 2
e /ry, + €7/ €7/t

2 2 2
ety t e/rpt e/,

2 2 2
e /ry, T €7/r)5- €7/ry -

2 2 2
e/t~ € /1= €7/

2 2 2
e /ry, T €7/r)5- €71y -

2 2 2
e /1y~ € /1~ €7/1yy

theory is also an approximation method for

e )m ding between H-atom in H, molecule. vander walls valence bond scattering theory partial wave. valence bond
The attraction of two hydrogen atom give rise to the formation stable unstable colloidal suspension stable
of molecule.
If we assume both the hydrogen atom are in ground state, then |. . .
. imaginary integer real none of the above real
both the wave function are .
The schroedinger equation for hydrogen molecule is given by [N %y + N,y + 2m/ 5% [Ny + Ny + 2/ ) [Ny + Ry + v ) [Ny +Riy-em/p) [Ny + N2y + 2m/ §%)
(E-V)y=0 E-V)y=1 (E-V)y=Hy (E-V)y=Hy (E-V)y=0

If the co-ordinates of 1% electron is (x,,y;,z;) and of 2™
electron is (X,,Y»,2,), then ry, =

Vxox,)* + (Y2'Y1)2 + (2

2
7))

(x))" + (Y2'Y1)2 + (2

2
7))

\/(Xz'xl)z - (Y2'Y1)2 - (2-

2
7))

Vxox,)* + (Y2'Y1)2 - (2-

2
7))

\/(Xz'xl)z - (Y2'}’1)2 - (2-

2
z)

3 g . .
The SP” hybridisation leads to equivalent 3 4 6 2 3
bonds.
. . i f singlet ither singlet . .
The ground state of a hydrogen atom is a triplet a mlxture of singlet and neiLuer singlet nor a singlet singlet
triplet triplet
If the spins of electron in t t llel then the at . .
© Spins O efectron i two atoms are parafiet then the afoms singlet attract coagulate none of the above singlet
each other
If the spins of the electrons in t 1t tiparallel, th
© spms ot the electrons In two atoms are antiparaticl, then repel attract coagulate none of the above attract
two atoms each other
If two spins S; and S, of the electron combine to give a resultant . . . .
. ey doublet triplet multiplet singlet singlet
spin S=0, then it will give rise to state
If two spins S; and S, of the electron combine to give a
o sl ! P e triplet doublet singlet multiplet triplet
resultant spin S=1, then it will give rise to state.
Hartree-Fock method i tes the effect of .
artree-Fock method incorporates the effect o skew anti exchange none of the above exchange
symmetry.
Th lecul functi li ination of atomi
e molecular wave function as a linear combination of atomic LCAO Exchange MO none of the above LCAO

orbitals is called method.

The effect of exchange symmetry has been incorporated in

Hartree-Fock method

Hartree’s self consistent
method

Thomas — Fermi model

None of the above

Hartree’s self consistent
method

The effect of exchange symmetry has been incorporated in

109°28°

180°

0°

120°

109°28°




In case of hydrogen molecule ion, the minimum potential

energy equivalent to dissociation energy is theoretically 2.78 eV 4.72 eV 3.14eV 1.76 eV 1.76 eV
calculated as .
Resonance is the property of degeneracy doublet singlet triplet degeneracy
The symmetric spin function will be associated with skew symmetric hermitian antisymmetric triplet antisymmetric
orbital function.
Dirac require the equation must be of order in time and
first second zero none first
space
Diracs equation is relativistically invarient varient covairent all the above invairent
Lorentz is convariant from u [ Q \ \
The spin of an electron carries no energy particle time wave function energy
The empty space is called hole spintron neutron positron hole
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Field theory: Introduction — Classical approach to field theory — Relativistic Lagrangian and
Hamiltonian of a charged particle in an electromagnetic field — Field: Lagrangian and
Hamiltonian formulations — Quantum equation for the field — Second quantisation —
Quantisation of non-relativistic Schrodinger equation — Creation, annihilation and number

operators.

CLASSICAL THEORY OF ELECTROMAGNETIC FIELDS

The classical electrodynamics is based on Maxwell’s equations for the electric and
magneticfields E and B .In rationalised units ,also called Hearyside Lorentz units, these

equations can be written as:

V.E=p L. Q)

V><£=—‘;—f’ ...... )

v.B=0 (3)
JE .

va=E+J ...... (4)

Here p(x, t) isthe charge density and current density j(x,t) is the current density.Instead of E

and B, the field equations can aso be expressed in terms of a vector potential A and a scalar
potential ¢. Equation (3) implies

B=vxa L. 5)

With this definition of B, Equation (2) takes the form :

Vx(E+EH=0 L (6)
Since the curl of the gradient of a scalar function is zero, from Equation (6) We have

E+Z_il = =V¢ (¢ is scalar potential)

E=-

dA
2 v o(7)
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Which gives the electric field in terms of the potential A and ¢.

The other twon equations, Egs (1) and (4) can also be expressed in terms A and <.
Substituting the value of E in Eq(1)

Vip+o(V.A=p e (8)
Substituting Egs (5) and(7) in Eq (4), we have

VX (VX A+ (G + Vo)

v A—— vvA+E=j .. 9)

The solution of Maxwell’s equations is thus reduced to solving the coupled equation (8) and
(9) for A and .

A=A=A+VA (10)

. an
Q=@ =@ —E ....... (11)

Where " an arbitrary scalar function leaves B and E unchanged.The fact that V< V* =0
leaves B unchanged by the transformation .The electric field E , Eq (7)

E——(A+w) V(e— —'

=- o Vg
de
V.A+2-=0 (12)
Dr.A.SARANYA Karpa%am Academ 3/ Of Higher Education
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The freedom available in the definition of Eqs (10) and (11) together is called gauge
transformation and the condition in Eq (12) is known as Lorentz gauge condition. Eqn(12)

can we written as:

gﬂ;+§£&+§§£+é§f£:0
dx, Ox, Odx; (it

Eﬂi+§££+gf§+gﬂi:0
dx, x, Oxg Ox,

24,
—— —
M-o orgaA,=0 (13)

It can easily be shown that the three components of vector j and charge density @ from the

four vector
i=G,ice) L (14

The components of the vector potential A and the scalar potential ¢ form the four-vector

potential:
A=Ajiey L (15)
From eqwe have
94, 84
Tom Tom e (16)
94, B4,
ox Tam. e a7
34, 24
e e e (18)
From eq
__ 84 dp o _ 84, Blig)
E== S o O BT om
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. _BA,  8A, _

|51:ai; - % =F; . (19)

i 04T 84

IEZ_ax4 3, F4: ..... (20)

. 843 84, _

|53=ai - a‘js_ B (21)

In general
_BAV  dau _
W ox, " 2ay’ A (22)
Fes=E, , Fi- €5 B, (23)

€., =0if two indices are equal
€ =1if i,jkaredistinct and in cyclic order
€., =-1if i,k aredistinct and not in cyclic order.

ijk

These are component of the anti symmetric tensor £, defined by

0 B, By _ig.
E,=|-B. o B, —iEy,
B, —B, 0—iE,,

[ iE,;, iE,. 1E,, O ]

Which is the electromagnetic field four tensor.

Second Quantization: Creation and Annihilation Operators

A basis state can be completely specified in terms of the occupation number ng

for each member of a complete set of orthonormal single-particle states, {|ai, a =1, 2,

Dr.A.SARANYA

Karpagam Academy Of Higher Education
Department of Physics pa% [ 3/1 J

oimbatore- Page 4 of 17



M.Sc Physics Unit VvV Quantum Mechanics
2017- 2018 Odd Field Theory (16PHP301)

3, ...}. The set of occupation numbers contains al the information necessary to

construct an appropriately symmetrized or antisymmetrized basis vector, denoted

|®i =|n1,n2,...,Nq,..
g
For bosons, ng must be a non-negative integer; for fermions, the Pauli exclusion prin-
ciple restricts ng to be either 0 or 1.

The vector space spanned by the set of all such basis states is called the Fock
gpace. A feature of the Fock space is that the total number of particles is not a fixed
parameter, but rather isadynamica variable associated with a total number operator

There is a unique vacuum or no-particle state:
|0i =10,0,0,0,...i.
The single-particle states can be represented

|O(i = |0,0,...,O,na: 1,0,| = |01,02,...,Oa_l,la,oa+1,...i.

Bosonic operators. Let us define the bosonic creation operator a by
ag|n,No, ..y Ngog, Ny Nty - = #1001, 1, Ng +1, Ngqy -, (D)
and the corresponding annihilation operator a, by
aq|N, Ny, ..., Nee1, Ny Nty -+ -l = Ng N, Moy ee, Neer, Ng—1, Ngia, .. 0. (2)
Equations (1) and (2) allow us to define the number operator Ny = aT(gq, such that
Ng|N, Mo, .oty Nyl = NNy, N, Lo, Ny,

and =<

The simplest application of the creation and annihilation operators involves the
single-particle states:
8|01 = |ai,  ay|Pi=d,
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When applied to multi-particlestates, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Egs. (1) and (2) that for any pair of single
particle state,

The properties described in the preceding paragraph can be summarized in the

commutation relations

One consequence of these commutation relations is that any multi-particle basis state

can be written

.t n
|n1,n2,...,na,...|— al M1 ag nz... a alOI, (3)

or equally well, as any permutation of the above product of operators acting on the

vacuum.

Equations (1)-(3) define the key properties of bosonic creation and annihilation
operators. Note the close forma similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c, by

CT Va
a|n1,n2,...,na_l,Oa,naﬂ,.. i = (—1) |n1,n2,..., no(_]_,lo(,na+1,...i, (4)
chlny, Nz, ..., Ng-1, 14, Ngs1,s .- -1 = 0,

and the annihilation operator c, by
CalN, N2y ooy Nty Loy Neser, - i = (=D)V Ny, Ny, ..., Noe1s O, Nt - -
ColN1, N2, . oy Ng—1, Oy N1, .. .1 = 0. ®)

In both Egs. (4) and (5),
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= r
Va=  Np, where Ng =cgs, (6)
P<a

measures the total number of particles in single-particle states having an index f < a.
It is straightforward to check that Egs. (4)—(6) are self-consistent, in the sense that

with the phase factor (—1)VX as defined above,

Ng|ni,No, ooy Ny oo = Ng Ny, Ny, Ny, . forng = 0 or 1. (7
oCol Wi = 0 = —c,c,|Wi. Similarly, cqCa|Wi = —Cyco|Wi for a =, and c4Cq
|Wi =0.

basis state |®i, whereas coC{®i = (1 — ny)|®i.

Thus,for any |Wi in the Fock space.
The properties above can be summarized in the anticommutation relations where
{A, B} = AB + BA isthe anticommutator of A and B. These anticommutation
properties fundamentally distinguish the fermionic operators from their commuting
bosonic counterparts. The (—1)' phase factors entering Egs. (4) and (5) were
chosen specifically to ensure that Egs. (7) are satisfied. Alternative phase
conventions can be adopted, so long as the anticommutation relations are
preserved.

Given the anticommutation relations, any multi-particle basis state can be written

. nz Na
Ny, Mo, ...\ Ny, .. i = ch moc, ... C

or equally well, as any permutation of the above product of creation operators with a

sign change for each pairwise interchange of adjacent operators. For example,

Equations (4)-(7) define the key properties of fermionic creation and annihilation

operators.
Basis transfor mations.

The creation and annihilation operators defined above were constructed for a
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particular basis of single-particle states {|ai}. We will use the notation b o
nd bg to represent these operators in situations where it is unnecessary to
distinguish between the bosonic and fermionic cases.

Consider an alternative single-particle basis {|Gi}, which—like {|ai}—is complete
and orthonormal. The Fock space can be spanned by many-particle basis states of the
form

i = |fig, o, . .., i, - . .,
and one can define operators BTG and by by analogy with those for {|ai}. It isimportant
to note that the vacuum state |Oi can (and will) be chosen to be the same in both the
original and new bases.

al consistent with the unitary transformation

- X I
by =  haldiby, bg =  hd|aibg. (8)
a o
An important special case of a basis transformation involves single-particle basis
states of well-defined position r and spin z component o: {|ti} = {|r,oci}, where
hr,a|r, a'i = 3(r — r)d, o
The corresponding operators are called the field creation and annihilation operators, and
are given the special notation W7 (r) and Wo (r). For bosons or fermions,
> _ >
LPG (r) = hr! 0'|C(I bC( = l‘IJC((r! 0) b(X!
a a

where Yq(r, 0) isthe wave function of the single-particle state |ai. The field operators

create/annihilate a particle of spin-z ¢ at position r:

The total number ;4pH@icF Bawibe writtetr)|r ,0 i =3(r — r &, o0 |Oi.
< Z
N = dr W(NW 4(n).
©)

Dynamical variables.
Now we consider how to represent dynamical variables interms of the

creation and annihilation operators introduced above.
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The simplest dynamical variables are additive one-particle operators of the form

Q = n Qj, where Qj acts just on the j’th particle. Examples of one-
= particle
1
L P N P .
quantities include the momentum P =" Pj, the kinetic energy K =" j Kj,
where
Kj =[P |2/2m, and the external potential V = Pj Vj , where Vj = v(rj ).

If we choose a single-particle basis {|Gi} in which Qj isdiagonal (e.g., momentum
eigenstates in the cases of Pj and Kj, position eigenstates for Vj), then the
total operator can be represented Q = Pd- wg NG .

In any other basis {|ai}, related to {|Gi} by Eq. (8), the most general form of an

additive one-particle operator is

X
Q=" ha|Qy|Bibipg .
a,B

We will also consider additive two-particle operators, most commonly encountered

as a pairwise interaction potential U = Pi<j u(ri, rj).
Note the reversal of the order of the operators by and by in Eq. (9), which alows

the same expression to be used for bosons and fermions.

We are now in a position to consider applications of the formalism outlined above

to many-boson and many-fermion systems.

QUANTIZATION OF THE FIELD

To quantize the field ,we regard the field variables ¥ and 7 as operator functions. Just as the

quantum conditions.
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[ai,q] =[P,P]=0; [qgi,q]=iRd&] ... (1)

Were used for the transition from classical to quantum particle mechanics, we achieve the

transition from classical to quantum field theory by requiring that
[wi, %j] = [Pi,Pj] =0 and [¥i,Pj]= ik &ij ... (2)

Assuming the cell volumes are very small, Eg. (2) can be rewrittenintermsof ¥ and i in

the following forms:
[#(r,t), ®(r,t)] = [ n(r.t), n(r, )] =0 .o 3
(¥ (r,t)m(r,t)] =iRS (rr) (4)

Where 8(r,r) = 1 5z if r and r’ are in the same cell and zero otherwise in the limit, the cell

volume approach zero , & (r, ) can be replaced by the three dimensional Dirac & — function

d(r-r’). The quantum conditions for the canonical field variables ¥ and n the become
[¥(r.t), ¥(r,t)] =[n(nt),n(>,)]] =0 ., (5)
[¥(rt)m(r,t)] =ihé (rr) L (6)

By making ¥ and = non —commuting operators, we convert H, L etc.., also into operators

which have eigenvalues, eigenstates, etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing
the Poisson bracket by the commutater bracket divided by ih or from Eq.

ar_2r 1
— == +JIFH] 7

dt

Equations (5) and (7) completely describe the behaviour of the quantized field specified by

the Hamiltonian.
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Quantization Of Schrodinder Equation

As an example of the field quantization technique ,we shall consider the quantization
of the non-relativistic Schrodinger equation inthis section. The name Schrodinger field is
used for afield ¥(r, t) satisfying the Schrodinger equation.

hE=-Eyrweve 0

Equation (1) is the quantized equation of motion of a particle of mass m moving in a

potential V. Here ¥ (r,t) is thought of as a classical field , which can be quantized by

converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density £ taken in the form:
inhw*ﬂp—% Ve Ve —V(r )%y ... 2

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). ¥ and
¥* in Eq.(2) can be considered as independent fields giving the Lagrange’s equations of
motion. The variation with respect to ¥* in Eq directly gives Eq(1) while variation with
respect in ¥ gives the complex conjugate of Eq(1).

. OE" e 2
de Zm

The momentum canonically conjugateto # is:

- =25 _ s
;‘[_aw_m‘}-’ ................. (4)

Where we have used the expression for £ given in Eq 2.Using Equation (2) and(4),the

Hamiltonian density H now becomes

H=aW-L=VE VEV () FE e (5)
Dr.A.SARANYA Karpa%ar_n Academgl Of Higher Education
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=- V(). VE V(h ) @
Using Eq (5), the Hamiltonian H is given by
Hef s dr=[ (L v . ve+ve ¥ )i

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

_8H _8X a5

i == T @)
__3H_ 8K . 8K
== (G Vo) e 8)

These equations can be expressed in the familiar form by substituting the value of H from

equ now
= SVWHVEE (9)
Multiplying by ih,
IhS =2 vwr vy

Replacement of H' in eq this equation

I:. i.ﬁ >
n=—Vn- —V°n
R Im

Since m=ih#¥" this equation becomes
-ihaa—"‘i' =. "’—m Vit v (10)
Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian density .
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Since W is now an operator , ¥* isto beinterpreted as the Hamiltonian adjoint of W rather

than its complex conjugate and its usually denoted by ¥".
[W(rY), & (rit)] = &(r-r).
QUANTIZATION OF THE FIELD

To quantize the field ,we regard the field variables ¥ and ™ as operator functions. Just as the

guantum conditions.

(iG] = [P,PI=0; [aigi] =i"%f @

Were used for the transition from classical to guantum particle mechanics, we achieve the

transition from classical to quantum field theory by requiring that

[wi, %] = [Pi,Pj] = 0 and [¥i Pj] = ik &ij )

Assuming the cell volumes are very small, Eq. (2) can be rewritten in terms of Fand in

thefollowing forms:

(¥nt) ®(r.t) o nlrnt)a(r.th=q . ©)
Ferar.y_pydery) 4)
S(rr) =161 . . -
Where if r and r’ are in the same cell and zero otherwise in the limit, the cell
volume approach zero , 9077 ) can be replaced by the three dimensional Dirac © ~ function

9(r-r"). The quantum conditions for the canonical field variables ¥ 37d ™ the become

w i -, —_r7T , ) T '-, —_

[ (’."“ f)' ‘P[r t)] _[ TCT t') T(I‘ t)] =0 (5)

(Fr .y pyd@ry ©)

Dr.A.SARANYA Karpa%ar_n Academgl Of Higher Education

Department of Physics oimbatore-21 Page 13 of 17



M.Sc Physics Unit VvV Quantum Mechanics
2017- 2018 Odd Field Theory (16PHP301)

¥andn

By making non —commuting operators, we convert H, L etc.., aso into operators;;

which have eigenvalues, eigenstates, etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing
the Poisson bracket by the commutater bracket divided by ih or from Eqg.

dF _ 8F 1

de 8t 4 E[F,H] .............. (7)

Equations (5) and (7) completely describe the behaviour of the quantized field specified by
the Hamiltonian.

QUANTIZATION OF THE SCHRODINDER EQUATION

As an example of the field quantization technique ,we shall consider the quantization of the
non-relativistic Schrodinger equation inthis section. The name Schrodinger field is used for a

field {P(r , 1) satisfying the Schrodinger equation.

¥ R
2 vy
hee=_2m " +v¥ )

Equation (1) is the quantized equation of motion of a particle of massm movingin a

¥(r

potential V. Here ') isthought of asaclassical field , which can be quantized by

converting it into an operator using the procedure described earlier. Sinceit is the second

time the equation is being quantised , it is referred to as the second quantization.
To start with, we note that the Lagrangian density £ taken in the form:

w B ogye yw_y(r e
L=ih m T (2

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). ¥ and

¥ in Eq.(2) can be considered as independent fields giving the Lagrange’s equations of

Dr.A.SARANYA Karpa%am Academgllof Higher Education
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¥ in Eq directly

motion. The variation with respect to gives Eq(1) while variation with

respect in ¥ gives the complex conjugate of Eq(1).

aw* B Trrrs
= —_—— v‘q}" =
qher  om wvE ©)
The momentum canonically conjugate to ¥ is:
T = E &
o =in ¥ (4)

Whrere we have used the expression for £ givenin Eq 2.Using Equation (2) and(4),the
Hamiltonian density ' how becomes
;12

ih i
= VP W Gyn P P

i 1

Using Eq (5), the Hamiltonian H is given by
j}Z
3 — . . 3
H:-r;-_.‘ Hd r:'fu (vaqj .V‘P+qu o )d r

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

8H 8%  OX
W= éx =8= Vawm (7)

9H  9H o 0H
T— gw= (3% . '3y (8)

These equations can be expressed in the familiar form by substituting the value of H trom

eq now

Dr.A.SARANYA Karpagam Academy Of Higher Education
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Y=-2VYPtim L 9

Multiplying by ih,

% W

Ihdt = -2m vLL]:J+ AVAY

Replacement of Hin eq this equation

ih 7
TL’_; V.H ) E Vin

since "=ih?" this equation becomes
- d'P' f_‘vzipr + '[J'i}/*
-hée =-2m (20

Quantum Mechanics
(16PHP301)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian density .

Since W is now an operator , v

than its complex conjugate and its usually denoted by

W, ¥ B =50,

Dr.A.SARANYA
Department of Physics

Karpa%am Acad
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

A w0 DpRE

© © N o O

State and explain the classical field equation in Hamiltonian form.

State the classical field equation and explain the quantitiesinvolved therein.

What is meant by a conjugate field? Explain.

What are creation, annihilation and number operators? Why are they called so?
Explain.

What is meant by second quantization? Why isit called so? Explain

Explain quantization of non-relativistic Schrodinger equation.

Write a short note on Lagrangian density

Explain what is meant by functional derivative.

Explain the need of quantization of fields. What is the necessity of quantizing fields?

In what context isit important?

. For a system of fermions, define the number operator Nx and show that its eigen

values are zero and one.

PART C ( 10 Marks each)

1

Dr.A.SARANYA Karpa%am Academgl Of Higher Education
Department of Physics 1

Derive the classical field equation in the Hamiltonian form, and explain quantization
of fields. Explain the terms Hamiltonian density, functional density and conjugate
field.

Explain quantization of Schrodinger equation. Explain creation and annihilation

operators and their significance.
Explain in detail Dirac field.
Explain classical theory of electromagnetic fields.

Explain quantization of electromagnetic fields.
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A system of particles is specified by the
the time.

co-ordinates and their dependence on

momentum

space

positional

phase-space

positional

The field lagrangian is expressed as the integral over all space of a density.

Lagrangian

Hamiltonian

Volume

Surface

Lagrangian

The Hamiltonian equation for the time rate of change of a functional F of y and p is
given by

dF/dt = OF/ot — {F,
Hj

dF/dt = OF/ot +
{F, Hj

dF/dt = oF/ox —
{F, H}

dF/dt = oF/ox +
{F, H}

dF/dt = oF/ot +
{F, H}

In the equation dF/dt = 0F/ot + {F, H}, H represents the energy of the field. |total partial kinetic none of the above |total

The Lagrangian L(q;, , t) is a function of time and a functional of the possible paths of ¥(t) dy/dt a0 none of the above  |qi(t)
of the system.
The field lagranglan is a function of the field amplitude Ny dy/dt q(r,t) y(1,t) y(r,t)
The appearance of Ny is a continuous dependence of yonri.e., contlnuously finite infinite constant aand ¢ infinite
number of degrees of freedom.
The variational principle for the lagrangian is given by . dlLdt=0 dlLdt=1 dlLdt= dIL dt = y(r,t) dlLdt=0
The momentum canonically conjugate to can be defined to be the ratio of dL to the L N g d
infinitesimal change [| when all the other [ and all the are zero. y Y Y Y
The functional density F(y, p, t) is assumed not to depend explicity on time momentum space co-ordinate  [none of the above  |none of the above
The dF/dt = -OF/ot + {F, H} -OF/ot — {F, H} OF/ot + {F, H} oF/ot— {F, H} OF/ot + {F, H}
If H does not depend on explicity on the time, then H is a of motion. equation constant lagrangian equation iﬁ;r;ltlil;(l)lman constant
According to quantum equation for the field, the wave field from a real numerical function . . . .
. . . quantum classical skew hermitian Heisenberg Heisenberg

can be converted to a hermitian operator in the picture.
According to quantum equation for the field, [y; y;] = [P;, Pj] = 1 -1 0 2 0

The function d(r, r') has the property that
the cell in which r’ is situated.

is equal to the average value of f for

| f(r) d(x, ry) &r

-[ f(r) d(r, ry) &r

J @) d(x, 1) &r

[ ) d@r, r) dr

| f(r) d(r, r’) &r

The equation of motion for any quantum dvnamical variable F is given b dF/dt = -0F/ot + dF/dt = 0F/ot - 1/ih  |dF/dt = OF/ot + 1/ih |dF/dt = -0F/ot - 1/ih |dF/dt = OF/ot + 1/ih
1 Y " gy 1/ih [F. H] [F. H] [F. H] [F. H] [F. H]

The field quantization is often called as wave quantisation |second quantisation wave ‘fun.c tion none of the above  |second quantisation

quantisation

If. the commute.mon relatlo.ns for the operators a, and a; are solved, then is ak*ak3 ak*ak2 ak*ak ak*ak ak*ak
diagonal, consists of matrices.

The sates of the quantized field in the representation in which each Ny is diagonal, are the | ny, ny, 03, -l ny, ny, n3, | -ny, -ny, -n3, I Ny, Np, N3, I ny, ny, 03,
kets givenby ny,...> | T S (T Ng,....> | ny,....>
The ak* is called operator for the state k of the field. none of the above | creation number destruction number
The spin of the electron carreis no charge particles energy density energy
The Ny is called operator for the state k of the field. number creation destruction none of the above  [number

The number operator need not be a

equation of motion

constant of motion

lagrangian motion

Hamiltonian motion

constant of motion

The rate of change of N, is given by

dN/dt=ih [a,, a,
H]

dN/dt = -ih [a, , a,
H]

dN/dt=[a,, a, H]

ih dN/dt = [a, , a,
H]

ih de/dt [ak ,a,
H]

The necessary and sufficient condition that N, to be a constant of the motion is that all off-
diagonal elements that involve the state U be

-1

none of the above




If Uy and E; are the eigen function and eigen value, then the field hamiltonian

becomes

H=3N,E?

H=2N,E’

H=3N,E,

H==N,E*

H=3N,E,

According to anticommutation relation, [ay, a;] =

akal+alak:1

aka1+a1ak:0

akal+alak:-1

akal-alak:0

akal+alak:0

If the eigenvalues of each Ny are 0 and 1, then the particles obey the principle. |variational lagrangian Hamiltonian Exclusion Exclusion
The eigen values of H can be found by the linear combination of the wave . . .
. spherical polarized plane circular plane

amplitudes

H is formally equivalent to the sum of the energies of a number of oscillators.  |harmonic simple harmonic sinusoidal none of the above  |harmonic

The momentum density of an electromagnetic field is the pointing vector —

. . Y & pomme v (AP EEOX o) B X H(n) |(c/p) Ewt) X H(r.0|(c/dp) E(r,t) X H(r)|(c/4p) E(r) X H(r,)
divided by c”. H(r,t)
ﬁlccordmg to quantized field, the energy and momentum of each plane wave are quantized _hke and hK hke and hK hke and -hK hke and —hK hke and hK
According to Planck’s quantum hypothesis, the energy associated with each plane

. . . . hK -hK hn h hn

electromagnetic wave is an integer multiple of the fundamental quantum .

The quantized electromagnetic field propagates with the speed of light. classical quantum aand b none of the above  [classical
The Hamiltonian density is given by H= . -p p 0 p p
A physical system with degrees of freedom is referred as a field. finite infinite constant none of the above [infinite
A transition from classical particle mechanics to quantum mechanics is doubly iriply singly none of the above | doubly
degenerage.
The electromagnetic wave travels in free space with the velocity of sound ultrasonic wave ultrasonic wave infrasonic wave ultrasonic wave
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Answer all questions

1. Equation of Linear momentum
aP=mv b.P=dv c. P=md d. P=m?

2. Tota angular momentum isequal to

a.orbital angular momentum + spin angular momentum

b. spin angular momentum c. linear angular momentum d. torque.
3.3
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ak+id b.Jx-idy ¢ J2+id% d. J2-id?

4. [32.%]
ad [k ]+ b. I c. I[IxIx] +[IxIx] Ik d. sz

5 [%,1]=
ahd, b. hl, c. hl, d. hdJ,

6. The scattering amplitude f(0,¢) for the scattering problem of stationary wave is given by
a(m/i2e 1) €™ V() W(r) dv b.(m/2z h?)] € V() ¥(r) du

c.(m/4n h?)] ™ V(r) W(r) di d.-(m/2p h?)oe™ V(r) Y (r) di

7. Born approximation is applicable for the scattering centres which are

a.Strong b.weak c. moderate d. none of the above

8. Inthe equation ¥(r) = € + f(0) €"Ir, the first term represents the

a.scattered wave function b. re-scattered wave function
c.incident wave function d. recoiled wave function
9. Every atomic electron movesin a potential energy V() that is produced by the nucleus and all other electrons.

a.Spherically symmetric b.Assymmetric c.Radially symmetric d.None of the above
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10. The state of an electron in acentral field is specified by the quantum numbers

anandl b.mandms c.n,l and ms d.n, |, m and mg

11. The basis of al molecular approximation is the large ratio of
a.electron mass to nuclear mass b.electron mass to neutron mass c.electron mass to atomic mass d.nuclear mass to electron

mass

12. The probability that a particle will be scattered as it traverses a given thickness of matter can be expressesin terms of a
guantity called the

a.Total scattering cross-section b. Differential scattering cross-section Scattering cross-section c. Coulomb scattering d.

Partial wave analysis
13. In wave mechanics, an incident beam of particlesis represented by a wave.
aTransverse b. Plane c. Longitudinal d. Stationary wave
14. Born approximation is applicable for the scattering centres which are

a.Strong b.weak c. moderate d. none of the above

15. In the equation W(r) = € + f(0) € /r, the first term represents the

a.scattered wave function b. re-scattered wave function c.incident wave function d. recoiled wave function

16. In alkali atom, a single electron movesin a spherically symmetric potential energy V(r).
a.Excitation b. coloumb c. noncoloumb d. none of the above
Dr.A.Saranya Karpagam Academy of Higher Education
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17. The configuration of an alkali atom can be specified by asingle pair of quantum numbers

anlb.nl mecnl m,msd n, I, mg

18. The doubl et structure characterizes all the moderately excited levels of the alkali atom except those for which |=
alnfininityb.1c.1and2d.0

19. The central field approximation is applicable on al atoms except the atom.
aheavier b.akali clighter d.smaller
20. Every atomic electron movesina___ potential energy
V(r) that is produced by the nucleus and all other electrons.
a.Spherically symmetric b.asymmetric c. Radially symmetric d.None of the above

PART-B (3x2=6 Marks)
Answer all the questions
21.Write a short note on angular momentum.

The angular momentum of a particle with momentum p and position r is defined by

L=rxp=(ypr z0y) i + (ZpXPz) j + (Xpy- YP) K
22 What are ladder Operators ?

In linear algebra application to quantum mechanics, the raising and lowering operator collectively called ladder operators.

Dr.A.Saranya Karpagam Academy of Higher Education
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J = X+Jy
J =XX-idy
23.Write a short note on scattering.
In scattering a beam of particles pass to scattering material called target.
Target remains orginia state — elastic
Target remains different state— in elastic
PART-C (3x8=24 Marks)

Answer all the questions
24. a. For a spin-¥2 system, obtain the matricesfor S,, Sy, and S,. What aretheir eigen values and eigen vectors?
To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in 1925 that an €l ectron in an atom possesses

an intrinsic angular momentum in addition to orbital angular momentum. Thisintrinsic angular momentum Sis called the spin

angular momentum whose projection on the z axis can have the value

s, =mdh, m=+1/2. the maximum measurable component of spin angular momentum in units of h is called the spin of the particle
and is usually denoted by s .They aso suggested that the spin angular momentum gives rise to an intrinsic magnetic moment s

gives by
H=-€mS
assuming that all the stable and unstable particles to have spin angular momentum

S, we expect its components Sx, Sy and Sz to obey the general commutation relation and S’and Sz to have the eigen values

s(s+1)h? and mh, me= -s, -s+1,...s respectively

Dr.A.Saranya Karpagam Academy of Higher Education
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spin —(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this category.the matrices representing Sx, Sy

and Sz are obtained from the Jx, Jy,and Jz matrices by taking the part corresponding to j=1/2,hence

Sx=1/2 (0 1) Sy=12h (0 -i) Sz=UH(1 0)
1 0 (I 0 0 -1)
often it is convinient to work with a matrix 6 defined by
S=12he

where

6x=(0 1) 6y=(0 -i) 6,~(1 0)

(1 0 (I 0) (0 -1

the 6, 6, and 6, matrices are called the pauli’s spin matrices.From the difinition it is obvious that their eigenvalues are +1.These
matrices satisfy the relation

Dr.A.Saranya Karpagam Academy of Higher Education
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6x2:6y2 =622=1
6x6y=I6;  6,6,=I6x,  Gx6; =iGy
6x6y + Gy Gy =Gy 6, +6; Gy =6, 6x +6x 6, =0
pauli was the first to recognize the necessity of two component state vectors explain certain observed features to atomic spectra.
spin vectorsfor spin —(1/2) system:

Including spin the spin —(1/2)system has how four degree of freedom,the three position coordinates (x,y,z) and another
observable pertaining to spin.Taking the z component Sz as the fourth observable the el ectron wave function can be written as
¢(r,Sz) or @(r,mg) the coordinate m takes the values +1/2 or -1/2. When the interaction between the spin and space partsis

negligible the wave function
@(r,ms)=¢(r) x(Ms,)
where ¢(r) represented that depends on the space coorinates and x(ms ) the part the depends on the spin coordinates

The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the eigenval ue equation.Since the
matrices are 2x2 the eigenvectors must be column vector with two components. the eigenvalue equation for Sz with eigenvalueh/2

is
1/2h(1 0)(ay) =1/2h(ay)
(0 -D(a)()

Dr.A.Saranya Karpagam Academy of Higher Education
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it is evident that a=0 the normalization condition gives
lapl®=1 or ;=1
the eigenvector of thr matrix Sz corrsponding to eigenvalueh/2 is than
1)
(0)
processing on similar lines the eigenvector for the eigenvalue-h/2 is
(0)
1)
these eigenvector are denoted by a and Band are usually called the spin up and spin down states respectively
a=(1) B=(0)
(0) (1)

the two component el genvectors of spin—(1/2) particles are sometimes called spinors. Eigenvectors of Sx and Sy can also be found

in the same way. the spin materials of a spin—(1/2) system aong with eigenvalue and eigenvectors.

b. (i) What are Clebsh-Gordon Coefficients? Explain their significance.
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(ii) Obtain the matrix of Clebsh-Gordon coefficients for j;=1, j, = 1.

For the total angular momentum vector J=/;+/, ,
Jx J=ihJ

Also , it follows that

U2z =01, U%JF] = /%3170

The orthonormal eigenkets of /2 and J;be Ijm>.Since J?commutes with ], J? and J2 they form another complete set and

their smulteneous eigenkets will be | J;+/, jm>.
jm> =, vmy Cimmym, Imimy;>

The coefficient of this linear combination are called Clebsh- Gordon coefficient or Wigner coefficients or vector coupling

coefficicnts.

<mymy JM>=Cirpm, m,

Substituting this value of the coefficient in eqution (3)
Jm>Y, m, IMimy; ><mym; ljm>

lmym, > =%, <jm mym; > |jm>

Dr.A.Saranya Karpagam Academy of Higher Education
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Where the summation over misform—j and j isform 1j; — j, 1 to j; — j,.The unitary of Clebsh Gordon coefficientsis

expressed by the equation

Yin <mumy [jm><jm Im;'my>=<mym, Im;'m," > =6mym,'dmym,’
And

<gm Imymy>=< mym, [jm>*

Second rules

Operating eq from left by J; we have

Jz Jm >=¥m m, U1z + J22) Imymy; ><mym, Ijm >

mh 1jm >=Y,, . (Mg +my)h Imym, ><mym, Ijm >

replacing | jm > using cq and rearranging , we get

Yrm, M—my—my) Immy ><mym, Ijm >=0

Which isvalid only if the coefficient of each term vanishes separately. This leads to one of the rules of vector atom mode , that

is
m=m, + m,
Dr.A.Saranya Karpagam Academy of Higher Education
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we shall next find out how the various m and j values arise from the values of m; and m, . For given values of

jiand j,, mycan have valuesfrom j;to — j; and jto — j, m, inintegral step.
The smallest value w of j occursfor

ji-k = —jyor jo_k=—];

Gi+j2) Gi+jz2 =D, (r+j2—2), 0, i —J2 |

which isthe triangle rule of the vector atom model.

25. aWritein detail about Partial waves

b.Explain The Born approximation and Validity of Born approximation.

The wave function ¢(r’) is required the evaluate the equation. Born used an interaction procedure for its evaluation. In
the first born approximation ¢(r’) in the integral equation is replaced by the incoming plane wave exp (iK.r’). This leads to
an improved value for the wave function ¢(r) which is used the integral in the second born approximation. This interactive
procedure is continued till both the input and output ¢’ s are almost equal . As higher order approximation are complicated we

shall restrict our discussion only to first born approximation
replacing ¢(r’) in the integral the equation by exp (iK.r’) ,we get

f(8) = -1/4nf exp [(i(k-k).r'JUE) dB (1)
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where k and k” are the wave vector in the incident and scattered direction respectively. The quantity (k-k”)h=gh is then the
momentum transfer from the incident particle to the scattering potential. In other words the change in momentum gh due to

collision is given by

qh = (k-k’)h or lq| =2 | k| sine/2 (2)
replacing (k-k’) by g in eq 1 we get

f(0) = - 1/4nfexp (iq.r’) U(r’) d e’ 3

the angular integration in equation 3 can easily be carried out by talking the direction of g and r’ by 6 as the polar axis.
Denoting the angle between g and r’ by 6’

f(8) = -1/41fo"fo"fo™ exp (iq 1’ cos 87)U(r’) r’’sin 8’ de’ d6’ dr’ (4)
integration over @ gives 2m. The 6 integral can easily be evaluated by writing
-cos 8’ =x or -sin©’ d@’ =dx
we get
Jo"exp (igr’ cosd’ ) sin 87 d6” = [*; exp (iqr’x)dx
=exp(iqr’)-exp(-iqr’) ()
substitiutibg the value of the angular part in equ (4)
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£(8) = -2uh,” sin (qr’)/qr’ V(r)r? dr’

from which 6(8) can be calculated. It may be noted from eq (5) that the only variable parameter in f(8) is magnitude of the
momentum transfer gh where q is given by eq (2) thus the scattering cross section depends on the momentum of the incident

particle kh and the scattering angle 6 through the combination g= 2k sin (6/2)

26.a. Explain the principle of Central Field. Explain Hartree’s theory of many electron atom using central field
approximation.
The kinetic energy term and the nucleus-electron interaction term are sums of single-particle operators, each of which act on a
single electronic coordinate. The e ectron-electron interaction term on the other hand is a pair interaction and acts on pairs of
electrons. To facilitate the upcoming math, let’s make the following definition
H e =Xh"1(~xi)
where ~xi isnow a generalized coordinate that includes spatial as well as spin degrees of freedom.
The Hartree-Fock method isavariational, wavefunction-based approach. Although it isamany-body technique, the
approach followed is that of asingle-particle picture, i.e. the electrons are considered as occupying single-particle orbitals
making up the wavefunction. Each electron feels the presence of the other electronsindirectly through an effective potentid.
Each orbital, thus, is affected by the presence of electronsin other orbitals.
The starting point of the Hartree-Fock method isto write a variational wavefunction, which is built from these single- particle
orbitals. Once we make a suitable ansatz to the wavefunction, all that isleft is the application of the variational principle . The
simplest wavefunction that can be formed from these orbitalsis their direct product
D(~x1, -+, ~XN) =01 (~x1)92 (~x2) - - - @N (~xN). (1)
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Thisisthe Hartree approximation and it is a straightforward task to calculate the variational lowest energy from Eq. 1.
However, the Hartree wavefunction has a very important shortcoming, which isthat it fails to satisfy antisymmetry, which
states that a fermion wavefunction changes sign under odd permutations of the electronic variables. The permutation
operator is defined by its action on the wavefunction

PijOd(~xL, -, ~Xi, -, ~Xj, , XN)=P(~x1, -, ~Xj, =, ~Xi, oo, ~XN)==O(~XL, -, ~Xi, -, ~X], -
S xXN) ()

If an odd number of such permutation operators are applied to the wavefunction, it picks up a minus sign while no change
in sign occurs under an even number of permutations. In order to satisfy the antisymmetry condition, a more sophisticated
form than that of the Hartree wavefunction is needed.
(OR)
b. Derive Hartree-Fock equation
THE HARTREE-FOCK EQUATIONS

The variationa principle that we will apply here israther different from the linear variation. There the form of our
approximate wavefunction was written as an expansion over a collection of predetermined functions and we minimized the
expectation value (at the same time obeying the normalization constraint) with respect to the coefficients of the basis functions.
Here however we employ a much more general treatment where we minimize with respect to the basis functions themsel ves!
Needless to say, this requires functiona differentiation where any change affected in the expectation value in Eg. 1 dueto an

infinitesimal change in any of the orbitals ¢k should be zero
ok - gk +dpk = dh®dH e|Pi=0 (@)
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In addition, we demand through Lagrange multipliers that the set of oritals gk remain orthogonal throughout the minimization

process.

where the first and the second term are straightforward, single-body operators and the third term is an integral operator. Thisis
now a set of interdependent single-particle eigenvalue equations. The operator J” corresponds to the classical interaction of
an electron distributions given by |¢i |2 and |pk |2 and is called the direct term while K™, called the exchange term, has no

classical analogue and is adirect result of the antisymmetry property of the wavefunction. The Fock operator

FF=h"1+X@J -K"i) (2)

and using this definition Eqg. 2 takes the ssmple form

N
F ok = X Aki @i (3
i=1
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There are several different solutions to the equations in Eq. 3 each corresponding to a different set of Aki . We have the

freedom to concentrate upon those Aki which satisfies

Aki = 3ki ok &)

where Qk is essentially a new name for the Lagrange multipliers[1]. With this, Eq.4 may be written as

F ok = ok @k . 5)

Inthisform, Eq. 5isatraditional eigen value equation. For each k there is an equiva ent equation defining a system of
Schr”odinger-like, one-particle equations. Although it’s tempting to interpret the eigen values gk as the energy levels of an
interacting system, thisisin fact not justified because the single-electron picture is not correct. However, if interpreted

correctly the Hartree-Fock eigen values do correspond to certain physical entities.
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PART-A (20x1=20Marks)

Answer all questions

1. The nuclear motion are classified into trans ation and rotational motion of the equilibrium arrangement and interna
vibrations of the nuclel about the equilibrium.
a. quas-rigid b. stable c. unstable d.rigid

2. A system of particlesis specified by the co-ordinates and their dependence on the time.
a. Momentum b. space c. positional d. phase-space
3. Thefield lagrangian is expressed as the integral over all space of a density.
a. Lagrangian b. Hamiltonian c. Volume d. Surface
4. Inthe equation dF/dt = oF/at + {F, H}, H represents the energy of the field.
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a. Total b. partial c. kinetic d. none of the above

5. TheLagrangian L(q;, qi , 1) isafunction of time and afunctional of the possible paths of of the system.

a. Yy (t) b.dy/dtc. q(t) d. none of the above
The field lagrangian is afunction of the field amplitude
a Ny b.dy/dtc.q(r,t) d.y(r,t)
c.(m/4p h)oe™ V(1) Y (1) di d.-(m/2p h?)oe™ V(1) Y (r) di

o

7. Asr - a. thereisno net charge inside the sphere of radiusr, so that V falls off more rapidly than
allrb.lUr?c. -Urd.r

8. Molecular energy levels are classified into vibrational and rotational energy levels.
aStatic b. rigid c. trandational d. electronic

9. Theenergy E¢ associated with the motion of avalenceis of order of , where mis the el ectronic mass.
a—h?/ma’ b. h?/ma’ c. ~A%ma’ + 1 d. H/ma’ + 1
10. The only nuclear coordinates R; of the hydrogen molecule is the magnitude, of the distance between the two hydrogen
nuclei.

aRb. rc.-Rd. R?

11. The linear combination of unperturbed degenerate wave function which gives lower energy than the separate wave function is
the basis of binding molecules.
a.Heteropolar b. nuclei c. homopolar d. atomic
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12. The property of degeneracy is known as

a.Resonance b. doublet separation c. doublet intensity d. none of the above
13. A oscillator emits radiation spontaneously.
a.Quantum b.classical c.sinusoidal d. damped

14. A oscillator emits radiation spontaneously.

.aQuantum b.classical c.sinusoida d. damped

15. If the spins of electron in two atoms are parallel then the atoms each other.

a.Repdl b. attract c. coagulate d. none of the above

16. If the spins of the electrons in two atoms are antiparallel, then two atoms each other.
a.Repd b. attract c. coagulate d. none of the above

17. 1f two spins S; and S; of the electron combine to give aresultant spin S=0, then it will giveriseto stete.
a.Doublet b. triplet c. multiplet d. singlet

18. The quantum analogue of density function is known as the density operator.

a.Particle b.momentum c.quantum d.classica

19.A state can be described by a non-negative density function.

aclassical b.statistical ¢. quantum d. none of the above
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20. The doublet structure characterizes all the moderately excited levels of the alkali atom except those for which 1=
alnfininityb.1c.1and2d.0

PART-B (3x2=6 Marks)
Answer all the questions
21.Write a short note on particle in a coulomb field.
A coloumb field is avector field can be associated with each point in space for the coloumb force of the electric charge.
22 \What are quantization?

To quantize the field ,we regard the field variables ¥ and m as operator functions. Just as the quantum conditions.

[ai,q] =[P,Fj]=0; [qi,q] =ihéy . (1)

were used for the transition from classical to quantum particle mechanics, we achieve the transition from classical to

guantum field theory by requiring that

23.Write a short note on creation.
The creation and annihilation should be a add (or) remove the particle for the many system of the body. This operateslies a
core for each second quantization.
PART-C (3x8=24 Marks)
Answer all the questions
24. a. Describe Klein-Gordon field and Klein-Gordon field eguation

The nonrelativistic Schrodinger equation was obtained by replacing P by - ihV and E by ih% in the classical energy
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. . 2 , , : .
expression of afree particle E=F / 2m a@nd allowing the resulting operator equation to operate on the wave fuction.The

corresponding relativistic energy relation is:
E=cp*#mi> = e (1)
Where m isthe rest mass of the particie . For convenience , rest mass will be denoted by m in this chapter . Replacing E and P

by the respective operators, we get the operator eqution
208 au2en 2 4
harz_ ch°Vétmeer L 2

Allowing this operator equation to operate on the wave function ‘V (r.t)

20%¥(rt) _
at?

Which isKlein — Gordon equation or Schrodinget’s relativistic equation

-h —h2e2V2 W(r, t) +mZct(r ,b) ... (3)

Rearranging , we get

1 92 22
(V2 - E&E) lp(r] t) = mh; [P(T‘, t) .......... (4)
2.2
lp(rr t)_mh; lp(rl t)
1 92
D :VZ —Eza; .......... (5)

Where [_]isthe de Alembertian operator whichis relativistically invariant. Therefore eq(5) isrelativistically invariant if

Y transforms like a scalar

Plane Wave Solution
The plane wavw represented by
Y(r,t)=exp[i(k.rrwt)] . (6)
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Is an eigenfunction of both energy and momentum operator with eigenvalueshw and kh respectively. Substitution of Eq (6)
in Eq (4) gives

(w?) = (c?hk*+m?c*)

hw) = +( C2h2K2 + m2c?) 1/2

This means that the energy eigenvalue can have both positive and negative values . Klein — Gordon were not ableto give a
consistent explanation for the negative energy .

b. Derive Dirac’s relativistic equation.

Dirac attempted to overcome some of the problems of relativistic quantum mechanics by introducing afirst-order wave
eguation.1

iyl ol g = my =0. )

Here, the yu are some suitably chosen operators acting locally on the wave function (. This wave equation can be viewed as

afactorisation of the second-order Klein-Gordon equation asfollows:

(iyv ov + m)(iypop — m)y = (=yv yuov op - m2)y = 0. 2
Thelatter form becomes the Klein-Gordon equation provided that the y’s satisfy the Clifford algebra2 3
{YH, W}=ypuyv +yvyp =-2nuv. ©)

Thismeansthat every solution of the Dirac equation also satisfies the

Klein—-Gordon equation and thus describes a particle of massm. The Dirac equation isarelativistic wave equation.
Trandational invariance is evident, but we have not yet shown its Lorentz covariance (although the resulting Klein-Gordon
equation certainly iscovariant).

Dirac Matrices

Consider a Lorentz transformation X0 = A-1 x with A(w) = exp(w). Suppose Y is a solution of the Dirac equation. It is
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not sufficient to use the transformation rule for scalar fields 0(x0) = @(x). In analogy to vectors we should aso transform
spinors. We make the ansatz
PO(x0) = S(w)w(x), 1)
where S(w) is a matrix that acts on Dirac spinors. We then substitute
PO(X) = SY(AX) into the Dirac equation
0= iypop —m Yo(x) = iyp op —m SP(Ax)
= iyv SApv opd — Smy (AX)
=SiS-1yv SApvou Y — iypopd (Ax)
=iS APV S=1yv S -y (OUY)(AX). 2
So theterm in the bracket must vanish for invariance of the Dirac equation. Indeed, the canonical Lorentz transformation of
gamma-matrices
yop = (A-1)pv Syv S-1, 3)
where not only the vector index is transformed by A-1, but also the spinor matrix is conjugated by the corresponding spinor
transformation S.8 In anaogy to the
invariance of the Minkowski metric, n0 = n, the Dirac equation is invariant if the

gamma-matrices are invariant

yOu =y 4)
This condition relates S to the Lorentz transformation /. The infinitesimal form of the invariance condition reads
[0S, yu] - dwpvyv =0. (5)

This implies that dS must be proportional to dwpv . The latter carries two vector indices, while 8S carries none. The only

possibility isto contract the vector indices by S from the left, co-spinors by the S-1 from the right.

Dr.A.Saranya Karapagam Academy of Higher Education
Department of Physics Page 7 of 18



M.Sc Physics CIA 1 Quantum Mechanics (16PHP301)
2017-2018 Odd

to gamma-matrices, and we make the ansatz 6S =1 0dwuv YUyv . Substituting this

into theinvariance condition and using

[yeyo , yu1=yp{yo , yu} - {vp, yu }yo, (6)
we arrive at (2o — 1)owpv yv = 0. We conclude that a Lorentz transformation for spinors is given by the matrix

the Dirac spinor ¢ = (L , YR ) transforms in the direct sum of two (irreducible) representations of the Lorentz group. The 2-
spinors YL and YR are called left-chiral and right-chiral spinors. The massive Dirac equation, however, mixes these two
representations
iIOUOpYR — myL =0,

i0 popwL - myR =0. (7)
It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless spinor particles can also be
formulated using 2-spinors; we shall discuss the massless case later on.
25. a. Obtain therelativistic Lagrangian and Hamiltonian of a ¢harged particlein electromagnetic field.

To quantize thefield ,we regard thefield variables ¥ and m as operator functions. Just as the quantum conditions.
[gi,q] =[P,Fj]=0; [qi,q]=ihdij . (@)

Were used for the transition from classical to quantum particle mechanics, we achieve the transition from classical to

quantum field theory by requiring that
[Wi, ]| = [Pi,Pj] = 0 and [¥Wi, Pj] = ihij ........(2)
Assuming the cell volumes are very small, Eq. (2) can be rewritten in terms of ¥ and m in the following forms:

Y@, 0), Y, O)]=[n@t),n(,t)]=0 ... (3
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[W(r,t)a(@,O)]=ihs (r,7) (4

Where§(r,r) = L 5ti if rand r” are in the same cell and zero otherwise in the limit, the cell volume approach zero , 6 (r,r") can be

replaced by the three dimensional Dirac & — function  &§(r-r’). The quantum conditions for the canonical field variables

Y and © the become
[P (r, ), P, O)]=[n(rt),x@,)]=0 ... (5)
[W(r, t)a@,O)]=ihs (r,r) (6)

By making ¥ and m non —commuting operators, we convert H, L etc.., aso into operators which have eigenvalues,

eigenstates, eic.

The equation of motion for any quantum dynamical variable F is obtained from by replacing the Poisson bracket by the
commutater bracket divided by ih or from EQ.

dF _9F | 1
= +E[F’H] .............. @)

Equations (5) and (7) completely describe the behaviour of the quantized field specified by the Hamiltonian.

b.Explain classical theory of electromagnetic fields, and obtain the electromagnetic field four-tensor.
The classical electrodynamics is based on Maxwell’s equations for the electric and magneticfields E and B .In rationalised

units ,also called Hearyside Lorentz units, these equations can be written as:

VE=p L. Q)
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dB
VXE:—E ...... (2)

v.B=0 . 3)

9E | .
VXB—E+1 ...... 4

Here p(x, t) is the charge density and current density j(x,t) isthe current density.Instead of E and B, the field equations can
also be expressed in terms of a vector pctential A and ascalar potentia ¢. Equation (3) implies

B=vx4 .. (5)

With this definition of B, Equation (2) takes the form : VX (E+ %) =0

Since the curl of the gradient of ascalar function is zero, from Equation (6) We have
94 ; ;
E+-a = —=V¢ (¢ is scalar potential)
__ 04
E=-—-V¢ (7)

Which givesthe electric field in terms of the potential A and ¢.

The other twon equations, Egs (1) and (4) can also be expressed in terms A and ¢. Substituting the value of E in Eq(1)

Vo+(V.A=p .. (8)
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Substituting Egs (5) and(7) in Eq (4), we have

9 04 _
VX (VX At (5 + V)]

8% de .
V(V.A) — Vzw +V E_‘]

0%

2h—
VA e

dp, .
V(V.A + 779 A BRSNS (9)
The solution of Maxwell’s equations is thus reduced to solving the coupled equation (8) and (9) for A and ¢.

Ao A=A+VA (10) p=>@ =¢-—

Where ” an arbitrary scalar function leaves B and E unchanged.Thefact that V XV = 0

leaves B unchanged by the transformation .The electric field E , Eq (7)
2 NY(o — L
E=H(A+V")-V(p — —

:-a_t_v(p

dp
V'A+E_ (12

The freedom available in the definition of Eqgs (10) and (11) together is called gauge transformation and the condition in Eq (12) is
known as Lorentz gauge condition. EqQn(12) can we written as:
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aAl | aAZ . 6A3 ‘a(igo)_g
dx, 0x; axs d(it)

o, 04y 0%y 04y
Hxl aJC2 aJC3 0x4

oA, N
%, 0 or aﬂA” =0

It can easily be shown that the three components of vector j and charge density p from the four vector

j=(@.icp) ceenn(14)

The components of the vector potential A and the scalar potential ¢ form the four-vector potential:

A=(Aji@) (15)
From eqwe have
1=g_1: Sj ...... (16)
z_g_ii N g_iz ......... (17)
3%? g_j_ ....... (18)

From eq
__oa 9 o _ 04 0(ip)
Ey=— ax, T By a(ity  ox
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iEl"Si: -g—‘:l‘: e (19)
2~2—;‘j -z—i;t— e (20)
Eg=g—f§ -%31— | e (21)
In general
e s EoFu e (22)
FoiiBy » FinCpp Be = . (23)

€k =0 if two indices are equal

€, =1if i,j,k aredistinct and in cyclic order

€;jx = -1if i,j,k are distinct and not in cyclic order.

These are component of the anti symmetric tensor F,,, defined by

0 B, By B
» = |—Bz 0 B, — LEy/c
B, —By 0— iE;
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[ iExjc iEyje iEzye 0 ]

Which is the electromagnetic field four tensor.

26.a. Discuss Quantisation of non-relativistic Schroedinger equation
As an example of the field quantization technique ,we shall consider the quantization of the non-relativistic Schrodinger
equation inthis section. The name Schrodinger field isused for afield ¥(r, t) satisfying the Schrodinger equation.

2
|h‘2—“:=-2"—mv2w+vw .............. 1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in apotential V. Here ¥(r, t) is thought of as
aclassica field , which can be quantized by converting it into an operator using the procedure described earlier. Sinceit isthe

second time the equation is being quantised , it is referred to as the second quantization.
To stert with, we note that the Lagrangian density £ taken in the form:

2
LY — = WYY -V YY )

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). ¥ and W™ in Eq. (2) can be considered as
independent fields giving the Lagrange’s equations of motion. The variation with respect to W* in Eq directly gives Eq(1)

while variation with respect in ¥ gives the complex conjugate of Eq(1).

L e, .
-IFI?—-—%VLP+VLP .............. (3)
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The momentum canonically conjugateto ¥ is:

oL _ . *
n_ﬁ_]hlp ................. (4)

Where we have used the expression far £ given in Eq 2.Using Equation (2) and(4),the Hamiltonian density H now becomes
_ I ‘ .
}[—-H‘I*HL:—Z;V‘P VYV )Py (5)

N p— PP
= V(@R W) . VY V(h ) W

—_ 2 _1
=-— VLV —-Vny B ()

Using Eq (5), the Hamiltonian H is given by

B e '
H=f, H dr=[ (ZV¥" . V¥+V¥" ¥ )d*r

m
The classical field equation in the Hamiltonian form are given by eq it follow from the discussed on function derivation eq

_O0H _0H V 0K
=k o am @)

OH_ M _ K

o v V- ovw)

These equations can be expressed in the familiar form by substituting the value of H from egq now

_ & RUE)
W= VWV 9)
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Multiplying by ih,
R = 1 prg vy
at 2m

Replacement of Hin eg this equation

Since m=ihy* this equation becomes

L AW* W
_Ih_ == -?_

Y * *
el L bl 4 e — (10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the Schrodinger field. This validates the
expressed for Lagrangian density .

Since W is now an operator , ¥ * is to be interpreted as the Hamiltonian adjoint of W rather than its complex conjugate and its

usually denoted by ¥™*.
[W(r.t), P (r, )] =8(-r).

b. Discuss second Quantisation
A basis state can be completely specified in terms of the occupation number na for each member of a complete set of
orthonormal single-particle states, {|ai, a=1, 2, 3,...}. Theset of occupation numbers contains all the information

necessary to construct an appropriately symmetrized or antisymmetrized basis vector, denoted
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|®i=|nl,n2,..,na,..i.

For bosons, na must be a non-negative integer; for fermions, the Pauli exclusion prin- ciple restricts na to be either O or 1.
The vector space spanned by theset of all such basis states iscalled the Fock space. A feature of the Fock spaceis that
thetotal number of particles isnot afixed parameter, but rather isadynamical variable associated with atotal number

operator
N=Xna.
a

There is aunique vacuum or no-particle state:

0i =[0,0,0,0,.. .i.

The single-particle states can be represented
lai =10,0,...,0,na=1,0,..i=]01,02,.. 00-1, 1a, Oo+1 .. .i.

Bosonic operators. Let us define the bosonic creation operator at by

ajpl,n2,..,no-1,na,no+l,..i=

vn+ljn,n,..,n ,n+Ln ,..i (1)
and the corresponding annihilation operator aa by
aanl,n2,..,no-1,na,no+l,..i=vna|nl,n2,..na-1,na -1, na+l,...i. (2) Equations (1) and (2) allow usto define

the number operator Na = at aa, such that
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and
Najnl,n2,.,na,..i=na|nl,n2,..,na,..i
N = X Na.
The ssmplest application of the creation and annihilation operators involves the single-particle states:
a|0i=|ai, aa|fi=0daq,
When applied to multi-particle states, the properties of the creation and annihila- tion operators must be consistent with the
symmetry of bosonic states under pairwise interchange of particles. Itisclear from Egs. (1) and (2) that for any pair of

single particle state,

The properties described in the preceding paragraph can be summarized in the commutation relations
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