
17BECS304 Object-Oriented Programming with Java L T P C

COURSE OBJECTIVES:
 3 0 0 3

 Understand the concepts of object-oriented, event driven, and concurrent

Programming paradigms .

 Develop skills in using these paradigms using Java.

 Analyze and compare the efficiency of algorithms.

 Possess the ability to design efficient algorithms for solving computing problems.

LEARNING OUTCOMES:

 Able to use a simple Java programming environment, compile programs and

interpret compiler errors.

 Able to understand and use the fundamental data types.

 Able to design classes and organise them into packages.

 Able to test programs to ensure that they perform as intended.

UNIT I Fundamentals of Object-Oriented Programming with JAVA
(9)

Introduction to Object oriented programming – Benefits and Applications of OOP- structural

programming versus object oriented programming - Simple Java Program - Data Types –

Operators – Expressions - Decision Making and Loop control Statements - The? : Operator -

Arrays-Strings – Getting input in java.

UNIT II Classes, Objects and Methods
(9)

Defining a Class-Creating Objects-Accessing Class Members-Constructors-Methods
Overloading-Static Members-Nesting of Methods-Final Variables and Methods- Final Classes-
Finalize Methods-Visibility Control

UNIT III Inheritance and Interfaces

(9)

Motivation - Inheritance: Extending a Class – Types of Inheritance - Overriding Methods -

Interfaces in Java (Interface and Implement) - Multiple inheritance – Examples

UNIT IV Managing Errors and Exception Handling

(9)

Motivation – Exception handling – Exception hierarchy – Throwing and Catching exceptions -

Syntax of Exception Handling Code - Types of Errors -Multiple Catch Statements - Using

Finally Statement -User defined Exceptions - Using Exceptions for Debugging.

UNIT V Input /Output Streams

(9)

Motivation - I/O Streams - Concept of Streams- Stream Classes- Byte Stream Classes-

Character Stream Classes-Using Streams-Other Useful I/O Classes- Using the File Class- Input

/Output Exceptions-Creation of Files-Reading/Writing Characters-Reading/Writing Bytes -

Handling Primitive Data Types - Concatenating and Buffering Files-Random Access Files-

Interactive Input and Output-Other Stream classes.

Total

Hours: 45

TEXT BOOKS:

1. Herbert Schildt “Java: The Complete Reference”, 9th Edition, Mcgraw-Hill, 2014.

2. D.T. Editorial Services ,“Java 8 Programming: Black Book”,Dreamtech Press, 2015.

3. Yashawant Kanetkar, “Let Us Java”, 1
st

 Edition, PBP Publications, 2012 .
4. C. Thomas Wu, “An Introduction to Object-Oriented programming with Java”, 5

th

Edition Tata McGraw-Hill Publishing company Ltd 2010.

REFERENCES:

1. Cay S. Horstmann and Gary Cornel, “Core Java: Volume I – Fundamentals”, 8th Edition,

Sun
Microsystems Press, 2011

2. Timothy Budd “Understanding Object-oriented programming with Java” Pearson

Education,2nd edition, 2006

3. Herbert Schildt, “Java The Complete Reference”, Oracle Press, 8
th

 edition, 2011

WEBSITES:

1. http://java.sun.com.

KARPAGAM UNIVERSITY

Faculty of Engineering

Lecture Plan

Name of the Faculty : Vijay A

Subject code
: 16BECS304

 Name of the Subject : OOP with JAVA

Class
: II BE CSE

S.No. Duration Topic Name Teaching Aids
Page no. of Text

book

Unit - I - Fundamentals of Object-Oriented Programming

1 1
Introduction to Object

oriented programming
BB

T1->3-8

2 1
Benefits of OOP-Applications

of OOP
VIDEO LEC & PPT

T2->7-8

3 1

Structural programming

versus object oriented

programming

PPT

W1

4 1 Tutorial : OOP Concepts -

5 1 Simple Java Program BB T2->24-26

6 1 Data Types – Operators PPT T1->33-39

7 1
Expressions - Decision

Making and Loop control

Statements
PPT

T1->77-103

8 1
Tutorial - Datatypes and

operators
-

9 1

The? : Operator - Arrays-

Strings – Getting input in

java

BB

T1->48-75

Unit - II - Classes, Objects and Methods

10 1
Defining a Class-Creating

Objects-Accessing Class

Members
EXE

T1->105-109

11 1 Constructors BB T1->117-118

12 1 Methods Overloading PPT T1->125-128

13 1
Tutorial - method

overloading
-

14 1
Static Members-Nesting of

Methods
PPT

T1->141-143

15 1
Final Variables and Methods-

Final Classes
PPT

T1->182-183

16 1 Finalize Methods EXE T1->121-122

17 1 Tutorial - Static Members -

18 1 Visibility Control PPT T1->138

Unit - III - Inheritance and Interfaces

19 1 Inheritance - Motivation PPT T1->159

20 1
Inheritance: Extending a

Class
EXE

T2->176

21 1 Types of Inheritance EXE T1->177

22 1 Tutorial - Inheritance -

23 1 Overriding Methods PPT T1->173

24 1
Interfaces in Java (Interface

and Implement)
PPT

T1->194-196

25 1 Multiple inheritance EXE T1->179-180

26 1
Tutorial - Interfaces in

Java
-

27 1 Inheritance Examples BB T1->178

Unit - IV -Managing Errors and Exception Handling

28 1
Motivation - Exception

handling
EXE

T1->205

29 1 Exception hierarchy PPT T1->206

30 1
Throwing and Catching

exceptions
EXE

T1->208

31 1
Tutorial - Throwing and

Catching exceptions
-

32 1
Syntax of Exception Handling

Code
EXE

T1->205-206

33 1
Types of Errors -Multiple

Catch Statements
EXE

T1->221

34 1
Using Finally Statement -

User defined Exceptions
BB

T1->216

35 1
Tutorial -Using Finally

Statement
-

36 1
Using Exceptions for

Debugging
EXE

T1->-219

Unit - V - Input /Output Streams

37 1
Motivation - I/O Streams -

Concept of Streams
BB

T1->285

38 1
Stream Classes- Byte Stream

Classes- Character Stream

Classes
BB

T1->286

39 1
Using Streams-Other Useful

I/O Classes
BB

T1->287-288

40 1 Tutorial - I/O Streams -

41 1
Using the File Class- Input

/Output Exceptions-Creation

of Files
BB

T1->290-292

42 1
Reading/Writing Characters-

Reading/Writing Bytes
BB

T1->293

43 1
Concatenating and Buffering

Files-Random Access Files BB T1->568-569

44 1 Tutorial - Inheritance -

45 1
Interactive Input and Output-

Other Stream classes. BB T1->286-288

46 1
Previous year question papers

discussion
-

 Total Hours allocated : 46

 TEXT BOOKS:

1. Herbert Schildt “Java: The Complete Reference”, 9th

Edition, Mcgraw-Hill, 2014.

2. D.T. Editorial Services ,“Java 8 Programming: Black

Book”,Dreamtech Press, 2015.

3. Yashawant Kanetkar, “Let Us Java”, 1
st

 Edition, PBP
Publications, 2012 .

4. C. Thomas Wu, “An Introduction to Object-Oriented
programming with Java”, 5

th

Edition Tata McGraw-Hill Publishing company Ltd 2010.

Reference Books:

R1->Cay S. Horstmann and Gary Cornel, “Core Java: Volume I – Fundamentals”, 8th

Edition,

 Sun Microsystems Press, 2011

 R2-> Timothy Budd “Understanding Object-oriented programming with Java” Pearson Education,

 2nd edition, 2006

 R3-> Yashawabt Kanetkar, “Let Us Java ”, 1 st Edition, BPB Publications 2012

 Web pages:

 1. http://www.javatpoint.com

 2. http://www.javatutorialpoints

 3. www.w3schools.com/

 Staff-incharge

HOD / CSE

UNIT I OVERVIEW

Why Object-Oriented Programming in C++ – Native Types and Statements –Functions and

Pointers- Implementing ADTs in the Base Language.

1.Object–Oriented Programming Concepts:

The important concept of OOPs are:

Objects

Classes

Inheritance

Data Abstraction

Data Encapsulation

Polymorphism

Overloading

Reusability

Objects:

Object is the basic unit of object-oriented programming. Objects are identified
by its unique name. An object represents a particular instance of a class. There can be

more than one

instance of an object. Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known
as methods.

Classes:

Classes are data types based on which objects are created. Objects with similar properties

and methods are grouped together to form a Class. Thus a Class represent a set of individual

objects. Characteristics of an object are represented in a class as Properties. The actions
that can be performed by objects becomes functions of the class and is referred to as Methods.

For example consider we have a Class of Cars under which Santro Xing, Alto and
WaganR

represents individual Objects. In this context each Car Object will have its own, Model,
Year of Manufacture, Colour, Top Speed, Engine Power etc., which form Properties of the Car
class and the associated actions i.e., object functions like Start, Move, Stop form the

Methods of Car Class.

No memory is allocated when a class is created. Memory is allocated only when an object
is created, i.e., when an instance of a class is created.

Inheritance:

Inheritance is the process of forming a new class from an existing class or base class. The
base class is also known as parent class or super class, The new class that is formed is called

derived class. Derived class is also known as a child class or sub class. Inheritance helps in
reducing the overall code size of the program, which is an important concept in object-oriented

programming.

Data Abstraction:

Data Abstraction increases the power of programming language by creating user defined

data types. Data Abstraction also represents the needed information in the program without

presenting the details.

Data Encapsulation:

Data Encapsulation combines data and functions into a single unit called Class. When using

Data Encapsulation, data is not accessed directly; it is only accessible through the functions present

inside the class. Data Encapsulation enables the important concept of data hiding possible.

Polymorphism:

Polymorphism allows routines to use variables of different types at different times. An

operator or function can be given different meanings or functions. Polymorphism refers to

a single function or multi-functioning operator performing in different ways.

Overloading:

Overloading is one type of Polymorphism. It allows an object to have different

meanings, depending on its context. When an exiting operator or function begins

to operate on new data type, or class, it is understood to be overloaded.

Reusability:

This term refers to the ability for multiple programmers to use the same written and
debugged existing class of data. This is a time saving device and adds code efficiency to
the language.

Additionally, the programmer can incorporate new features to the existing class, further

developing the application and allowing users to achieve increased performance. This time

saving feature optimizes code, helps in gaining secured applications and facilitates
easier maintenance on the application.

#include <iostream>

class employee // Class Declaration

{

private:

char empname[50];

int empno;

public:

void getvalue()

{

cout<<"INPUT Employee Name:";

cin>>empname;

cout<<"INPUT Employee Number:";

cin>>empno;

}

void displayvalue()

{

cout<<"Employee Name:"<<empname<<endl;

cout<<"Employee Number:"<<empno<<endl;

}

};

main()

{

employee e1; // Creation of Object

e1.getvalue();

e1.displayvalue();

}

2.Programming Concepts:

Encapsulation

It is a mechanism that associates the code and the data it manipulates into a single unit to and

keeps them safe from external interference and misuse. In C++ this is supported by construct called

class. An instance of an object is known as object which represents a real world entity.

Data Abstraction

A data abstraction is a simplified view of an object that includes only features one is

interested in while hides away the unnecessary details. In programming languages, a data

abstraction becomes an abstract data type or a user-defined type. In OOP, it is implemented as
a class.

Inheritance:

Inheritance is a means of specifying hierarchical relationships between types C++
classes can inherit both data and function members from other (parent) classes. Terminology:

"the child (or derived) class inherits (or is derived from) the parent (or base) class".

Polymorphism:

Polymorphism is in short the ability to call different functions by just using one type of

function call. It is a lot useful since it can group classes and their functions together. Polymorphism

means that the same thing can exist in two forms. This is an important characteristic of true

object oriented design - which means that one could develop good OO design with data

abstraction and inheritance, but the real power of object oriented design

seems to surface when polymorphism is used.

Multiple Inheritance

The mechanism by which a class is derived from more than one base class is known as

multiple inheritance. Instances of classes with multiple inheritance have instance variables

for each of the inherited base classes.

Basic c++:

A class definition begins with the keyword class.

The body of the class is contained within a set of braces, { } ; (notice the semi-
colon). class class_name

{

….

….

….

};

Within the body, the keywords private: and public: specify the access level of the
members of the class.

–

the default is private.

Usually, the data members of a class are declared in the private: section of the class and the

member functions are in public: section.

class class_name

{

private:

…

…

…

public:

…

…

…

};

Example:

This class example shows how we can encapsulate (gather) a circle information into
one package (unit or class)

class Circle

{

private:

double radius;

public:

void setRadius(double r);

double getDiameter();

double getArea();

double getCircumference();

};

Member access specifiers:

Access specifiers are used to identify access rights for the data and member functions of
the class. There are three main types of access specifiers in C++ programming language:

private

public

protected

A private member within a class denotes that only members of the same class have
accessibility. The private member is inaccessible from outside the class.

Public members are accessible from outside the class. .

A protected access specifier is a stage between private and public access. If member
functions defined in a class are protected, they cannot be accessed from outside the class but can

be accessed from the derived class.

Data Members :

Data members include members that are declared with any of the fundamental types, as
well as other types, including pointer, reference, array types, bit fields, and user-defined types.

You can declare a data member the same way as a variable, except that explicit
initializers are not allowed inside the class definition. However, a const static data member of

integral or enumeration type may have an explicit initializer.

A class X cannot have a member that is of type X, but it can contain pointers to X,
references to X, and static objects of X. Member functions of X can take arguments of type X
and have a return type of X. For example:

class X

{

X();

X *xptr; X
&xref; static X

xcount; X
xfunc(X);

};

Static members:

Class members can be declared using the storage class specifier static in the class
member list. Only one copy of the static member is shared by all objects of a class in a program.

When you declare an object of a class having a static member, the static member is not
part of the class object.

You access a static member by qualifying the class name using the :: (scope resolution)

operator. In the following example, you can refer to the static member f() of class type X as

X::f() even if no object of type X is ever declared:

struct X {

static int f();

};

int main() {

X::f();

}

Function:

Functions are building blocks of the programs. They make the programs more modular

and easy to read and manage. All C++ programs must contain the function main(). The
execution of the program starts from the function main(). A C++ program can contain any

number of functions according to the needs. The general form of the function is: -

return_type function_name(parameter list)

{

body of the function

}

The function of consists of two parts function header and function body. The function
header is:-

return_type function_name(parameter list)

The return_type specifies the type of the data the function returns. The return_type can be
void which means function does not return any data type. The function_name is the name of the
function. The name of the function should begin with the alphabet or underscore. The

parameter list consists of variables separated with comma along with their data types. The
parameter list could be empty which means the function do not contain any parameters. The
parameter list should contain both data type and name of the variable. For example,

int factorial(int n, float j)

is the function header of the function factorial. The return type is of integer which means

function should return data of type integer. The parameter list contains two variables n and j of type

integer and float respectively. The body of the function performs the computations.

Member functions are operators and functions that are declared as members of a class.

Member functions do not include operators and functions declared with the friend

specifier.

These are called friends of a class. You can declare a member function as static; this
is called a static member function. A member function that is not declared as static is called a

nonstatic member function.

The definition of a member function is within the scope of its enclosing class. The body
of a member function is analyzed after the class declaration so that members of that class can be
used in the member function body, even if the member function definition appears before the

declaration of that member in the class member list. When the function add() is called in
the following example, the data variables a, b, and c can be used in the body of add().

class x

{

public:

int add() // inline member function add

{return a+b+c;};

private:

int a,b,c;

};

Special type of member function:

Constructor:

–

Public function member

–

called when a new object is created (instantiated).

–

Initialize data members.

–

Same name as class

–

No return type

–

Several constructors

Function overloading

class Circle

{

private:

double radius;

public:

Circle();

Circle(int r);

void setRadius(double r);

double getDiameter();

double getArea();

double getCircumference();

};

Default arguments:

#include<iostream>

#include<iomanip>

using namespace std;

long int sum(int n,int diff=1,int first_term=1)

{

long sum=0;;

for(int i=0;i<n;i++)

{

cout<<setw(5)<<first_term+ diff*i;

sum+=first_term+diff*i;

}

return sum;

}

int main()

{

cout<<endl<<Sum=<<setw(7)< <sum(10)<<endl;
//first term=1; diff=1,n=10

//sums the series 1,2,3,4,5………10

cout<<endl<<Sum=<<setw(7)< <sum(6,3,2)<<endl;
//first term=1; diff=2,n=10 //sums the series
2,5,8,11,14,17

cout<<endl<<Sum=<<setw(7)< <sum(10,2)<<endl;
//first term=1; diff=2,n=10

//sums the series 1,3,5………..19

return 1;

}

all the parameters with default values should lie to the right in the signature list i.e.
the default arguments should be the trailing arguments—those at the end of the list.

when a function with default arguments is called, the first argument in the call statement
is assigned to the first argument in the definition, the 2nd to 2nd and so on.

This becomes more clear from the last call to sum() in the above example where value 10
is assigned to n and 2 is assigned to diff and not first_term.

the default argument values appear in the prototype as well as definition.

You still may omit variable names in the prototypes.

The syntax then being

int xyz(int =2,char=5);

Function Overloading:

*C++ supports writing more than one function with the same name but different
argument lists. This could include:

–

different data types

–

different number of arguments

*The advantage is that the same apparent function can be called to perform similar
but different tasks. The following will show an example of this . void swap (int *a, int
*b) ;

void swap (float *c, float *d) ;

void swap (char *p, char *q) ;

int main ()

{

int a = 4, b = 6 ;

float c = 16.7, d = -7.89 ;

char p = 'M' , q = 'n' ;

swap (&a, &b) ;

swap (&c, &d) ;

swap (&p, &q) ;

}

void swap (int *a, int *b)

{

int temp; temp = *a; *a = *b; *b = temp; }

void swap (float *c, float *d)

{

float temp; temp = *c; *c = *d; *d = temp;

}

void swap (char *p, char *q)

{

char temp; temp = *p; *p = *q; *q = temp;

}

Friend Function:

*A friend function of a class is defined outside the class‘s scope (I.e. not
member functions), yet has the right to access the non-public members of the class.

*Single functions or entire classes may be declared as friends of a class.

*These are commonly used in operator overloading. Perhaps the most common use of

friend

functions is overloading << and >> for I/O.

*Basically, when you declare something as a friend, you give it access to your private
data members.

*This is useful for a lot of things – for very interrelated classes, it more efficient (faster)

than using tons of get/set member function calls, and they increase encapsulation by allowing

more freedom is design options.

*A class doesn't control the scope of friend functions so friend function declarations are
usually written at the beginning of a .h file. Public and private don't apply to them.

Example pgm//

class someClass

{

friend void setX(someClass&, int);

int someNumber;

… rest of class definition
}

// a function called setX defined in a program
void setX(someClass &c, int val) {

c.someNumber = val; }

// inside a main function

someClass myClass;
setX (myClass, 5);

//this will work, since we declared

// setX as a friend

Const Functions :

If you declare a class method const, you are promising that the method won't change the

value of any of the members of the class. To declare a class method constant, put the

keyword const after the parentheses but before the semicolon. The declaration of the

constant member functionSomeFunction() takes no arguments and returns void. It looks like this:

void SomeFunction() const;

Access or functions are often declared as constant functions by using the const modifier

Declare member functions to be const whenever they should not change the object

Volatile Functions:

The volatile keyword is a type qualifier used to declare that an object can be modified
in the program by something such as the operating system, the hardware, or a concurrently

executing thread. If your objects are used in a multithreaded environment or they can be
accessed asynchronously (say by a signal handler), they should be declared volatile. A
volatile object can call only volatile member functions safely. If the program calls a

member function that isn't volatile, its behavior is undefined. Most compilers issue a warning if a
non-volatile member function is called by a volatile object:

struct S

{int f1();

int f2() volatile;

}

Static Members:

Object Oriented Programming in C++. A class member is either a property or a method.
A static member of a class is a member whose value is the same for every object instantiated.

This means that if one object changes the value of the static member, this change will be

reflected in another object instantiated from the class. The change (or the resulting value) will be
the same in all the instantiated objects. You can also access a static member using the class name
without instantiation. In this part of the series, we look at static members in C++

classes. You can have a static member along side other members in your class.

Static Property

A static property is also called a static data member.

Declaring a Static Property

You declare a static property just as you declare any other attribute, but you precede the
declaration expression with the keyword, static and a space. The syntax is:

static Type Ident;

Despite this simple feature, you have to learn how to use the static member. You do not
use it in the straightforward way.

Example

The following class illustrates the use of a static property member:

#include <iostream>

using namespace std;

class MyClass

{

public:

static int sameAll;

};

int MyClass::sameAll = 5;

int main()

{

MyClass myObj;

myObj.sameAll = 6;

cout << MyClass::sameAll;

return 0;

}

In the code, you have a class called MyClass. This class has just one member, which is
the static data member. You initialize the static member outside the class description as shown

above. You begin with the return type of the static property. This is followed by a space and then
the name of the class. After that you have the scope operator, then the identifier of the static

property. Then you have the assignment operator and the value.

You instantiate an object form the class that has the static member in the normal way. Line

1

in the main function illustrates this. You access the static property of an instantiated object in

the normal way. The second line in the main function illustrates this. However, changing the value as

this line has done means changing the value for the class (description) and any

instantiated object and any object that is still to be instantiated.

The third line in the main function displays the static property value. It uses the class

name; it did not use the object name. To use the class name to access the static attribute, you

begin with the class name. This is followed by the scope operator and then the identifier of the

static property. This shows how you can access a static attribute with the class name directly and

without using an object; this is like accessing the property in the class description. The static

member is a kind of global object.

Objects:

In object-oriented programming language C++, the data and functions (procedures to

manipulate the data) are bundled together as a self-contained unit called an object. A class

is an extended concept similar to that of structure in C programming language, this class

describes the data properties alone. In C++ programming language, class describes both the
properties (data) and behaviors (functions) of objects. Classes are not objects, but they are used

to instantiate objects.

Creation of Objects:

Once the class is created, one or more objects can be created from the class as objects
are instance of the class.

Juts as we declare a variable of data type int as:

int x;

Objects are also declared as:

class name followed by object name;

exforsys e1;

This declares e1 to be an object of class exforsys.

For example a complete class and object declaration is given below:

class exforsys

{

private:

int x,y;

public:

void sum()

{

………

………

}

};

main()

{

exforsys e1;

……………

……………

}

The object can also be declared immediately after the class definition. In other words the

object name can also be placed immediately before the closing flower brace symbol } of the
class declaration.

Pointers and Objects:

#include <iostream>

using namespace std;

class myclass {

int i;

public:

myclass(int j) {

i = j;

}

int getInt() {

return i;

}

};

int main()

{

myclass ob(88), *objectPointer;

objectPointer = &ob; // get address of ob

cout << objectPointer->getInt(); // use -> to call getInt()

return 0;

}

Constant objects:

We've already seen const references demonstrated, and they're pretty natural: when you

declare a const reference, you're only making the data referred to const. References, by

their very nature, cannot change what they refer to. Pointers, on the other hand, have two ways
that you can use them: you can change the data pointed to, or change the pointer itself.

Consequently, there are two ways of declaring a const pointer: one that prevents you
from changing what is pointed to, and one that prevents you from changing the data pointed to.

The syntax for declaring a pointer to constant data is natural enough:

const int *p_int;

You can think of this as reading that *p_int is a "const int". So the pointer may be
changeable, but you definitely can't touch what p_int points to. The key here is that the
const appears before the *.

On the other hand, if you just want the address stored in the pointer itself to be const, then
you have to put const after the *:

int x;

int * const p_int = &x;

Personally, I find this syntax kind of ugly; but there's not any other obviously better way
to do it. The way to think about it is that "* const p_int" is a regular integer, and that the value

stored in p_int itself cannot change--so you just can't change the address pointed to. Notice, by

the way, that this pointer had to be initialized when it was declared: since the pointer itself is
const, we can't change what it points to later on! Them's the rules.

Generally, the first type of pointer, where the data is immutable, is what I'll refer to as a

"const pointer" (in part because it's the kind that comes up more often, so we should have a

natural way of describing it).

Nested Classes:

§

A class can be declared within the scope of another class. Such a class is called a

"nested class." Nested classes are considered to be within the scope of the enclosing class
and are available for use within that scope. To refer to a nested class from a scope other than its

immediate enclosing scope, you must use a fully qualified name value class Outside { value
class Inside { }; }; In the same way, you can nest as many classes as you wish in another class

and you can nest as many classes inside of other nested classes if you judge it necessary.

Just as you would manage any other class so can you exercise control on a nested

class. For example, you can declare all necessary variables or methods in the nested class or in

the nesting class. When you create one class inside of another, there is no special programmatic

relationship between both classes: just because a class is nested doesn't mean that the nested

class has immediate access to the members of the nesting class. They are two different classes

and they can be used separately.

§

The name of a nested class is not "visible" outside of the nesting class. To access a
nested class outside of the nesting class, you must qualify the name of the nested class

anywhere you want to use it. This is done using the :: operator. For example, if you want
to declare an Inside variable somewhere in the program but outside of Outside, you must qualify
its name. Here is an example:

Local classes:

A local class is declared within a function definition. Declarations in a local class can
only use type names, enumerations, static variables from the enclosing scope, as well as external
variables and functions.

For example:

int x; // global variable

void f() // function definition

{

static int y; // static variable y can be used by

// local class

int x; // auto variable x cannot be used by

// local class

extern int g(); // extern function g can be used by
// local class

class local // local class

{

int g() { return x; } // error, local variable x

// cannot be used by g

int h() { return y; } // valid,static variable y

int k() { return ::x; } // valid, global x

int l() { return g(); } // valid, extern function g

};

}

int main()

{

local* z; // error: the class local is not visible

// ...}

Member functions of a local class have to be defined within their class definition, if they
are defined at all. As a result, member functions of a local class are inline functions. Like all
member functions, those defined within the scope of a local class do not need the keyword inline.

A local class cannot have static data members. In the following example, an attempt to
define a static member of a local class causes an error:

void f()

{

class local

{

int f(); // error, local class has noninline

// member function

int g() {return 0;} // valid, inline member
function static int a; // error, static is not allowed
for // local class

int b; // valid, nonstatic variable

};

}

//

UNIT II BASIC CHARACTERISTICS OF OOP 9

Data Hiding and Member Functions- Object Creation and Destruction- Polymorphism data abstraction:

Iterators and Containers.

A Real Programming Example

we want to program a card deck for a simple blackjack game we are programming.

Remember containership and inheritance? Let's think about the types of parts that make up

a deck -- and those are the cards. Since all of the cards are very similar in structure, we could use
a struct to represent a single card:

enum Suit = {Clubs, Spades, Diamonds, Hearts};

struct Card {

Suit suit;

char digit;

};

A note on the digit. If digit <= 10, then it is a number, else it is the letter of the card (J, Q,
K, A). You could also use it as a number 1(ace) through 13(king) as well, perhaps if you were

using the card value in additions or such.

A simple object, the card deck only has one type of item. Now let's think about the types
of actions you can perform on the deck, and then make a class declaration out of this list, as well
as using the previously declared data.

class Deck {

public:

void CreateDeck();//Fills array with legal cards

void Shuffle(); //Shuffles those cards

Card DrawCard(); //Gets a card from the deck

private:

Card cards[52];

};

Now we have considered all of the things we may need to use a card deck. The programmer first
sets up the deck with CreateDeck(), then whenever needed can Shuffle() the deck, and when the

dealer deals a card, it can be picked up using DrawCard(), and then perhaps placed in the

players hand (which could also could be a class too) or whatever the programmer needs to do
with it.

Constructors and Destructors

In object-oriented programming, a constructor (sometimes shortened to ctor) in a class
is a special type of subroutine called at the creation of an object. It prepares the new object for
use, often accepting parameters which the constructor uses to set any member variables

required when the object is first created.

What is the use of Constructor

The main use of constructors is to initialize objects. The function of initialization is

automatically carried out by the use of a special member function called a constructor.

General Syntax of Constructor

Constructor is a special member function that takes the same name as the class name. The

syntax generally is as given below:

<class name> { arguments};

The default constructor for a class X has the form

X::X()

In the above example the arguments is optional.

The constructor is automatically named when an object is created. A constructor is named
whenever an object is defined or dynamically allocated using the "new" operator.

I'm not going to write all of the code for this class. Instead I'll leave it open as an exercise
to practice on working with classes. But let's focus on the CreateDeck() function for now. You

may have already noticed that variables aren't being properly pre-initalized. In C this was easy

since all variables were public, and you could simply zero them out, but in classes, some of the
members are private. Now what? The programmer could call the CreateDeck()

function, but even so, if the programmer forgets to do this the rest of the functions could

crash the program. C++'s solution to this is called the constructor. A constructor is the function

which allocates memory for the object as well as initalizing it. Every variable in C++ has a

constructor, even the basic types, but the compiler takes care of these issues for you. However

with classes, even though the compiler can allocate memory for you, it will not initalize them, so

the remain undefined, as with any other variable. Also, when the variable goes out of scope, the

memory needs to be deleted, requireing the constructors counterpart, the destructor.

A constructor is declared by creating a function by the same name as the class. The
destructor has the same name, except with a ~ (the tlide key, next to the 1) in front of it. Below

is the modified Deck class which takes advantage of C++ constructors and destructors. The array

change to a pointer is to allow for dynamic memory allocation using the new command,

to show a very common use of the constructor and destructor: class Deck {

public:

Deck(); //Constructor

~Deck(); //Destructor

void CreateDeck();//Fills array with legal cards

void Shuffle(); //Shuffles those cards

Card DrawCard(); //Gets a card from the deck

private:

Card* cards;

};

Notice that obviously the constructor does not return anything, since it is an "invisible
function" which is automatically called when you make the statement Deck MyCardDeck;.

The same is true for the destructor, which is called when the variable goes out of scope.

Below is an example of how to define and code a constructor, where the array is allocated

and the data is initalized, and the destructor compliment, which cleans up what
the constructor did:

Deck::Deck() {

cards = new Card[52];//Allocate memory

CreateDeck(); //Set up the deck

}

Deck::~Deck() {

delete[] cards; //Deallocate memory

}

Some of the differences between constructors and other Java methods:

Constructors never have an explicit return type.

Constructors cannot be directly invoked (the keyword ―new‖ must be used).

Constructors cannot be synchronized, final, abstract, native, or static.

Constructors are always executed by the same thread.

Some important points about constructors:

A constructor takes the same name as the class name.

The programmer cannot declare a constructor as virtual or static, nor can the
programmer declare a constructor as const, volatile, or const volatile.

No return type is specified for a constructor.

The constructor must be defined in the public. The constructor must be a public
member.

Overloading of constructors is possible. This will be explained in later sections of this
tutorial.

How do you differentiate between a constructor and normal function?

Latest Answer : A constructor is a member function of a class that is used to create
objects of that class. It has the same name as the class itself, has no return type, and is invoked

using the new operator. An ordinary member function has its own name, a return type ...

Default Constructor

Default Constructor

The deafual constructor is a constructor. It may be contains arguemnets
(default arquemnets) or It may not be contains arquemnet

Example

class A

{

public:

A(){/*body*/} //Deafult constructor without arquemnet

or

A(int a 0 int b 0){/*body*/} //Default constructor with default
arquement };

if you did not write any constructor within class A. The implicit constructor or inline
constructor A::A() /*[without no body] */ will be called when you create object for
class A

Note: you can't use both constructor in same class. Confilict occur when you create
object of class A that whether to call first one or second one (ambiguity)

This constructor has no arguments in it. Default Constructor is also called as no argument
constructor.

For

class Exforsys

example:

{

private:

int a,b;

public:

Exforsys();

...

};

Exforsys :: Exforsys()

{

a=0;

b=0;

}

In C++, default constructors are significant because they are automatically invoked
in certain circumstances:

When an object value is declared with no argument list, e.g. MyClass x;; or allocated
dynamically with no argument list, e.g. new MyClass; the default constructor is used
to initialize the object

When an array of objects is declared, e.g. MyClass x[10];; or allocated dynamically, e.g.
new MyClass [10]; the default constructor is used to initialize all the elements

When a derived class constructor does not explicitly call the base class constructor in
its initializer list, the default constructor for the base class is called

When a class constructor does not explicitly call the constructor of one of its object-valued

fields in its initializer list, the default constructor for the field's class is called In the

standard library, certain containers "fill in" values using the default constructor when the value is
not given explicitly, e.g. vector<MyClass>(10); initializes the vector with 10

elements, which are filled with the default-constructed value of our type.

In the above circumstances, it is an error if the class does not have a default constructor.

The compiler will implicitly define a default constructor if no constructors are explicitly

defined for a class. This implicitly-declared default constructor is equivalent to a
default constructor defined with a blank body.

(Note: if some constructors are defined, but they are all non-default, the compiler will not
implicitly define a default constructor. This means that a default constructor may not exist for a
class.).

Parameterized Constructor – Class Interface

These are access specifiers for class data members and member methods.

1.

Public: The data members and methods having public as access specifier can be

accessed by the class objects created outside the class.

2.

Protected: The data members and methods declared as protected will be accessible to the

class methods and the derived class methods only.

3.

Private: These data members and methods will be accessible from the class methods

only not from derived classes and not from objects created outside the class.

4.

Internal: Some languages define internal as an access specifier which means the data

member or method is available to all the classes inside that particular assembly.

5.

Friend: A friend class or method can access all data of a class including private
and protected data.

// A parameterized constructor.

using System;

class MyClass {

public int x;

public MyClass(int i) {

x = i;

}

}

public class ParmConsDemo {

public static void Main() {

MyClass t1 = new MyClass(10);

MyClass t2 = new MyClass(88);

Console.WriteLine(t1.x + " " + t2.x);

}

}

Constructor with Dynamic Allocation

Dynamic memory allocation (also known as heap-based memory allocation) is
the allocation

of memory storage for use in a computer program during the runtime of that program.

A process of obtaining access to additional memory during program execution.

void YourClass::deleteAll()

{

delete ptr1; ptr1 = 0;

delete ptr2; ptr2 = 0;

delete ptr3; ptr3 = 0;

}

YourClass::YourClass():

ptr1(0), ptr2(0), ptr3(0)

{

try

{

ptr1 = new whatever;

ptr2 = new whatever;

ptr3 = new whatever;

}

catch(...)

{

deleteAll();

}

}

YourClass::~YourClass()

{

deleteAll();

}

What is static memory allocation and dynamic memory allocation?

Static Memory Allocation: Memory is allocated for the declared variable by the compiler.

The address can be obtained by using ‗address of‘ operator and can be assigned to a

pointer.

The memory is allocated during compile time. Since most of the declared variables have

static memory, this kind of assigning the address of a variable to a pointer is known as

static memory allocation.

Dynamic Memory Allocation: Allocation of memory at the time of execution (run time)
is known as dynamic memory allocation. The functions calloc() and malloc() support

allocating of dynamic memory. Dynamic allocation of memory space is done by using
these functions

when value is returned by functions and assigned to pointer variables.

Copy Constructor

This constructor takes one argument. Also called one argument constructor. The main use

of copy constructor is to initialize the objects while in creation, also used to copy an

object. The copy constructor allows the programmer to create a new object from an existing one
by initialization.

For example to invoke a copy constructor the programmer writes:

Exforsys e3(e2);

or

Exforsys e3=e2;

Copy constructor is

1. a constructor function with the same name as the class
2. used to make deep copy of objects.
There are 3 important places where a copy constructor is called.

1. When an object is created from another object of the same type
2. When an object is passed by value as a parameter to a function
3. When an object is returned from a function.

If a copy constructor is not defined in a class the compiler itself defines one. This
will ensure a shallow copy. If the class does not have pointer variables with dynamically

allocated memory then one need not worry about defining a copy constructor. It
can be left to the compiler's discretion.

For Example:

#include <iostream.h>

class Exforsys()

{

private:

int a;

public:

Exforsys()

{ } Exforsys(int

w)

{

a=w;

}

Exforsys(Exforsys& e)

{

a=e.a;

cout<<‖ Example of Copy Constructor‖;

}

void result()

{

cout<< a;

}

};

void main()

{

Exforsys e1(50);

Exforsys e3(e1);

cout<< ―=‖;e3.result();

}

In the above the copy constructor takes one argument an object of type Exforsys which is
passed by reference. The output of the above program is

Example of Copy Constructor

e3=50

difference between copy constructor and constructor

Constructor is called when an object is created.Copy constructor is called when the
copy of an object is made. For e.g. passing parameter to function by value function

returning by value. Copy constructor takes the parameter as const reference to the

object.

A copy constructor is called whenever an object is passed by value, returned by value or
explicitly copied.

Destructors

The destructor of an automatic object is called when the object goes out of scope.
The destructor itself does not actually destroy the object, but it does perform
termination housekeeping before the system reclaims the object‘s.

What is the use of Destructors

Destructors are also special member functions used in C++ programming language.

Destructors have the opposite function of a constructor. The main use of destructors is to

release dynamic allocated memory. Destructors are used to free memory, release resources and to

perform other clean up. Destructors are automatically named when an object is destroyed.

Like constructors, destructors also take the same name as that of the class name.

General Syntax of Destructors

~ classname();

The above is the general syntax of a destructor. In the above, the symbol tilda ~
represents a destructor which precedes the name of the class.

Some important points about destructors:

Destructors take the same name as the class name.

Like the constructor, the destructor must also be defined in the public. The destructor
must be a public member.

The Destructor does not take any argument which means that destructors cannot
be overloaded.

No return type is specified for destructors.

For example:

class Exforsys

{

private:

……………

public:

Exforsys()

{ }

~ Exforsys()

{ }
}

What is defference between constructor and destructor

Like constructor the destructor is a member function whose name is the same as the
class name but is preceded by a tilde. For example the destructor of a class integer

can be define as :-

~integer(){}

A destructor never takes any argument nor does it return any value. It will invoked
implicitly by the compiler upon exit from the program to clean up storage that is no
longer accessible.

Re: What is role of constructor and destructor in C++?

The constructor's job is to set up the object so that it can be used.Destructors are less

complicated than constructors. You don't call them explicitly (they are called automatically for

you), and there's only one destructor for each object. The name of the destructor is the name of
the class, preceeded by a tilde.

Operator Overloading

Operator Overloading in two Parts, In Part I of Operator Overloading you will learn about

Unary Operators, Binary Operators and Operator Overloading – Unary operators.

Operator overloading is a very important feature of Object Oriented Programming. Curious

to know why!!? It is because by using this facility programmer would be able to create new

definitions to existing operators. In fact in other words a single operator can take up
several functions as desired by programmers depending on the argument taken by the operator by

using the operator overloading facility.

After knowing about the feature of operator overloading now let us see how to define
and use this concept of operator overloading in C++ programming language.

We have seen in previous sections the different types of operators. Broadly
classifying operators are of two types namely:

Unary Operators

Binary Operators

Unary Operators:

As the name implies takes operate on only one operand. Some unary operators are namely

++

called as Increment operator, -- called as Decrement Operator, ! , ~, unary minus.

Binary Operators:

The arithmetic operators, comparison operators, and arithmetic assignment operators
all this which we have seen in previous section of operators come under this category.

Both the above classification of operators can be overloaded. So let us see in detail each of

this.

Operator Overloading – Unary operators

As said before operator overloading helps the programmer to define a new functionality
for the existing operator. This is done by using the keyword operator.

The general syntax for defining an operator overloading is as follows:

return_type classname :: operator operator symbol(argument)

{

…………..

statements;

}

Thus the above clearly specifies that operator overloading is defined as a member
function by making use of the keyword operator.

In the above:

return_type – is the data type returned by the function

class name - is the name of the class

operator – is the keyword

operator symbol – is the symbol of the operator which is being overloaded or

defined for new functionality

:: - is the scope resolution operator which is used to use the function definition outside the
class. The usage of this is clearly defined in our earlier section of How to define class members.

For example

Suppose we have a class say Exforsys and if the programmer wants to define a operator
overloading for unary operator say ++, the function is defined as

Inside the class Exforsys the data type that is returned by the overloaded operator is defined

as

Class Exforsys

{

Private :

4. … … .
Public :

void operator++();

… … … .
};

So the important steps involved in defining an operator overloading in case of
unary operators are namely:

Inside the class the operator overloaded member function is defined with the return data

type as member function or a friend function. The concept of friend function we will define in
later sections. If in this case of unary operator overloading if the function is a member function

then the number of arguments taken by the operator member function is none as

seen in the below example. In case if the function defined for the operator overloading is
a friend function which we will discuss in later section then it takes one argument.

The operator overloading is defined as member function outside the class using the scope
resolution operator with the keyword operator as explained above

Now let us see how to use this overloaded operator member function in the program

#include<iostream.h>

classExforsys

{

private:

int

x;

public:

Exforsys()

{x=0;

}

//Constructor
void display();

void

Exforsys++();

};

Void Exforsys::display()

{

cout<<‖

of

x

is:―<<x;

}

void Exforsys::operator ++()//Operator Overloading for operator

++ defined

{

++x;

}

Void main()

{

Exforsys e1,e2; //Object e1 and e2 created

cout<<‖Before

Increment‖

cout<<‖:‖<<e1.display();

cout<<‖

e2:‖<<e2.display();

++e1; //Operator

overloading applied

++e2;

cout<<‖

After Increment‖

cout<<‖

e1:‖<<e1.display();

cout

<<‖e2:

‖<<e2.display();

}

The output of the above program is:

Before Increment

Object e1:

Value of

x

is:0

Object e1:

Value of

x

is:0

Before Increment

Object e1:

Value of

x

is:1

Object e1:

Value of x is: 1

In the above example we have created 2 objects e1 and e2 f class Exforsys. The operator
++ is overloaded and the function is defined outside the class Exforsys.

When the program starts the constructor Exforsys of the class Exforsys initialize the values as

zero and so when the values are displayed for the objects e1 and e2 it is displayed as zero.

When the object ++e1 and ++e2 is called the operator overloading function gets applied
and thus value of x gets incremented for each object separately. So now when the values are

displayed for objects e1 and e2 it is incremented once each and gets printed as one for
each object e1 and e2.

This is how unary operators get overloaded. We will see in detail how to overload
binary operators in next section.

Overloading through Friend Functions

Need for Friend Function:

when a data is declared as private inside a class, then it is not accessible from outside
the class. A function that is not a member or an external class will not be able to access the
private data. A programmer may have a situation where he or she would need to access

private data from non-member functions and external classes. For handling such cases,
the concept of Friend functions is a useful tool.

What is a Friend Function?

A friend function is used for accessing the non-public members of a class. A class can

allow non-member functions and other classes to access its own private data, by making them

friends. Thus, a friend function is an ordinary function or a member of another class.

How to define and use Friend Function in C++:

The friend function is written as any other normal function, except the function
declaration of these functions is preceded with the keyword friend. The friend function must
have the class to which it is declared as friend passed to it in argument.

Some important points to note while using friend functions in C++:

The keyword friend is placed only in the function declaration of the friend function and
not in the function definition.

It is possible to declare a function as friend in any number of classes.

When a class is declared as a friend, the friend class has access to the private data of
the class that made this a friend.

A friend function, even though it is not a member function, would have the rights to
access the private members of the class.

It is possible to declare the friend function as either private or public.

The function can be invoked without the use of an object. The friend function has its
argument as objects, seen in example below.

Example to understand the friend function:

#include

class exforsys

{

private:

int a,b;

public:

void test()

{

a=100;

b=200;

}

friend int compute(exforsys e1)

//Friend Function Declaration with keyword friend and with the object of

class exforsys to which it is friend passed to it };

int compute(exforsys e1)

{

//Friend Function Definition which has access to private data

return int(e1.a+e2.b)-5;

}

main()

{

exforsys e;

e.test();

cout<<"The result is:"<<COMPUTE(E);

//Calling of Friend Function with object as argument.

}

The output of the above program is

The result is:295

The function compute() is a non-member function of the class exforsys. In order to make
this function have access to the private data a and b of class exforsys , it is created as a friend

function for the class exforsys. As a first step, the function compute() is declared as friend in the

class exforsys as:

friend int compute (exforsys e1)

The keyword friend is placed before the function. The function definition is written as a

normal function and thus, the function has access to the private data a and b of the class exforsys.
It is declared as friend inside the class, the private data values a and b are added, 5

is subtracted from the result, giving 295 as the result. This is returned by the function
and thus the output is displayed as shown above.

Friend Function Overload

The concept operator overloading and friend function are supported by Java by
defaault only + operator is overloaded over string .

For example ---

String abc ;

String s1 Hello ;

String s2 Geek Interview ;

abc s1+s2;

Sop(abc);

would print Hello Geek Interview

Overloading the Assignment Operator

The operators available in C++ programming language are:

Assignment Operator denoted by =

Arithmetic operators denoted by +, -, *, /, %

Compound assignment Operators denoted by +=, -=, *=, /=, %=, >>=, <<=, &=, ^=,
|=

Increment and Decrement operator denoted by ++, --

Relational and equality operators denoted by ==, !=, >, <, >=, <=

Logical operators denoted by !, &&, ||

Conditional operator denoted by ?

Comma operator denoted by ,

Bitwise Operators denoted by &, |, ^, ~, <<, >>

Explicit type casting operator

sizeof()

Assignment Operator

This is denoted by symbol =. This operator is used for assigning a value to a variable.
The left of the assignation operator is known as the lvalue (left value), which must be a variable.

The right of the assignation operator is known as the rvalue (right value). The rvalue can be a
constant, a variable, the result of an operation or any combination of these.

For example:

x = 5;

By following the right to left rule the value 5 is assigned to the variable x in the
above assignment statement.

Arithmetic operators

The operators used for arithmetic operation sin C++ are:

+ For addition

- For subtraction

* For multiplication

/ For division

% For modulo

Compound assignment Operators

This operator is used when a programmer wants to update a current value by
performing operation on the current value of the variable.

For example:

Old

+=

new

is

equal to

Old = old + new

Compound assignment operators function in a similar way the other operators +=, -=, *=,

/=,

%=, >>=, <<=, &=, ^=, |= function.

Increment and Decrement Operator

The increment operator is denoted by ++ and the decrement operator by --. The function
of the increment operator is to increase the value and the decrement operator is to decrease the

value. These operators may be used as either prefix or postfix. A Prefix operator is written before
the variable as ++a or –a. A Postfix operator is written after the variable as a++ or a--.

The Functionality of Prefix and Postfix Operators

In the case that the increment or decrement operator is used as a prefix (++a or –a), then
the value is respectively increased or decreased before the result of the expression is evaluated.

Therefore, the increased or decreased value, respectively, is considered in the outer

expression. In the case that the increment or decrement operator is used as a postfix (a++ or

a--), then the value stored in a is respectively increased or decreased after being evaluated.

Therefore, the value stored before the increase or decrease operation is evaluated in
the outer expression.

For Example:

y=3;

x=++y; //Prefix : Here Value of x becomes 4

But for the postfix operator namely as below:

y=3 //Postfix : Here Value of x is 3 and Value of y is 4
x=y++;

Relational and Equality Operators

These operators are used for evaluating a comparison between two expressions. The
value returned by the relational operation is a Boolean value (true or false value). The
operators used for this purpose in C++ are:

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

we can overload assignment operator as a normal...

If the operation modifies the state of the class object it operates on it must be a

member function not a friend function Thus all operator such as * + etc are naturally

defined as member functions not friend functions Conversely if the operator does not

modify any of its operands but needs only a representation of the object it does not

have to be a member function and often less confusing. This is the reason why binary

operators are often implemented as friend functions such as + * - etc..

Why friend function cannot be used to overload the assignment operator?

A friend function is a non-member function of the class to which it has been

defined as friend.Therefore it just uses the functionality(or the functions and data) of the
class so. it wont consists the inplementation for that class.(any)

we can overload assignment operator as a normal function.But we can not

overload assignment operator as friend function why?

Because assignment operator is one of the default method provided by the class.

Type Conversion

What is Type Conversion

It is the process of converting one type into another. In other words converting
an expression of a given type into another is called type casting.

How to achieve this

There are two ways of achieving the type conversion namely:

Automatic Conversion otherwise called as Implicit Conversion

Type casting otherwise

called as Explicit Conversion

Automatic Conversion otherwise called as Implicit Conversion

This is not done by any conversions or operators. In other words value gets automatically
converted to the specific type in which it is assigned.

Let us see this with an example:

#include

<iostream.h>

void

main()

{

Short x=6000;

int

y;

y=x;

}

In the above example the data type short namely variable x is converted to int and is
assigned to the integer variable y.

So as above it is possible to convert short to int, int to float and so on.

Type casting otherwise called as Explicit Conversion

Explicit conversion can be done using type cast operator and the general syntax for doing

this is

datatype (expression);

Here in the above datatype is the type which the programmer wants the expression to gets
changed as

In C++ the type casting can be done in either of the two ways mentioned below namely:

C-style casting

C++-style casting

The C-style casting takes the synatx as

(type) expression

This can also be used in C++.

Apart from the above the other form of type casting that can be used specifically in

C++ programming language namely C++-style casting is as below namely: type
(expression)

This approach was adopted since it provided more clarity to the C++ programmers rather

than

the

C-style casting.

Say for instance the as per C-style casting

(type) firstVariable * secondVariable

is not clear but when a programmer uses the C++ style casting it is much more clearer
as below

type (firstVariable) * secondVariable

Let us see the concept of type casting in C++ with a small example:

#include

<iostream.h>

void

main()

{

int

a;

float

b,c;

cout<< ―Enter the value of a:‖;

cin>>a;

cout<< ―n Enter the value of b:‖;

cin>>b;

c=float(a)+b;

cout<<‖n

The

value of

c

is:‖<<c;

}

The output of the above program is

Enter the

value of

a:

10

Enter the

value of

b:

12.5

The value of c is: 22.5

In the above program a is declared as integer and b and c are declared as float. In the type
conversion statement namely

c = float(a)+b;

The variable a of type integer is converted into float type and so the value 10 is converted as

10.0 and then is added with the float variable b with value 12.5 giving a resultant float variable

c with value as 22.5

Explicit Constructor

Explicit Constructor

Explicit constructor is actually a parameterized constructor which takes
some parameters in order to create instance of a class.

E.g. Class Sample

Sample [a b]

The explicit keyword in C++ is used to declare explicit constructors. Explicit
constructors are simply constructors that cannot take part in an implicit conversion. Consider the
following example:

class Array

{

public:

Array(size_t count);

// etc.
};

explicit B (const A& aObj)

But explicit on a constructor with multiple arguments has no effect, since such
constructors cannot take part in implicit conversions. However, explicit will have an effect if a
constructor has multiple arguments and all but one of the arguments has a default value.

For Example:

The code

Code: Cpp

#include<iostream.h>

class A

{

int data1;

int data2;

char* name;

public:

A(int a, int b=10, char* c = "mridula"):data1(a), data2(b), name(c)

{

cout<<"A::Construcor... ";

};

friend void display(A obj);

};

void display(A obj)

{

cout<<"Valud of data1 in obj := "<< obj.data1<<endl;
cout<<"Valud of data2 in obj := "<< obj.data2<<endl;

cout<<"Valud of name in obj := "<< obj.name<<endl;
}

int main()

{

//Call display with A object i.e. a1

display(100);

return (0);

}

Output:

./a.out

A::Construcor...

Valud of data1 in obj := 100

Valud of data2 in obj := 10

Valud of name in obj := mridula

In this example, though we have multiple argument constructor

A(int a, int b=10, char* c = "mridula") (all defaulted argument but one), but still
there seems to be an implicit conversion happening from type int to A's object.

As said above, it is better to use explicit for such constructor declaration too to avoid any
such implicit conversions.

Declare the multiple argumented constructor in the above example as below to
avoid implicit conversion:

explicit A(int a, int b=10, char* c = "mridula");

Part-A (2 - Marks)

1. What is a Constructor?
2. Define Copy constructor.
3. Define Destructor.
4. What is Operator Overloading?
5. Define default constructor.
6. What is the difference between Explicit and Implicit casting?
7. What is use of Assignment Operator?
8. What is the use of Constructor with Dynamic allocation?
9. Define Explicit constructor.
10. What is meant by Typecasting?

11. What is meant by virtual destructors?
12. Difference between overloading and overriding?
13. What is function overloading?
14. List out the limitations of function overloading.
15. What is overloaded constructor?

Part-B

1. a. Write a program to overload assignment operator. (8)

b. Write a program to convert int to double using typecasting operator. (8)

2. Write a program to overload arithmetic operators through friend function. (16)

3. Write a program to implement Constructor, Copy constructor and
Destructor. (16)

4. a. Write a program to demonstrate the use of Explicit Constructor. (8)
b. Write a program for function overloading. (8)

5. Write a program for overloading new and delete operators. (16)

UNIT III ADVANCED PROGRAMMING 9

Templates, Generic Programming, and STL-Inheritance-Exceptions-OOP Using C++.

INHERITANCE:

Let us start by defining inheritnace. A very good website for finding computer science

definitions is http://www.whatis.com. The definitions in this article are stolen from

that website.

Definition: Inheritance

Inheritance is the concept that when a class of object is defined, any subclass that is

defined can inherit the definitions of one or more general classes. This means for the

programmer that an object in a subclass need not carry its own definition of data and

methods that are generic to the class (or classes) of which it is a part. This not only

speeds up program development; it also ensures an inherent validity to the defined

subclass object (what works and is consistent about the class will also work for
the subclass).

The simple example in C++ is having a class that inherits a data member from its parent

class.

class A

{

public:

integer d;

};

class B : public A

{

public:

};

The class B in the example does not have any direct data member does it? Yes, it
does. It

inherits the data member d from class A. When one class inherits from another, it

acquires all of its methods and data. We can then instantiate an object of class B and
call

into that data member.

void func()

{

B b;

b.d = 10;

};

TYPES OF INHERITANCE:

1. Single Inheritance
2. Multiple Inheritance
3. Multilevel Inheritance
4. Hierarchial Inheritance

1. Single Inheritance - One base class and one derived class.

2. Multiple Inheritance - A class is derived from more than one base classes
3. Multilevel Inheritance - A sub class inherits from a class which inherits from another

class.

4. Hierarchical Inheritance - More than one subclass inherited from a single base class.

Multiple inheritance (C++ only)

You can derive a class from any number of base classes. Deriving a class from
more than one direct base class is called multiple inheritance.

In the following example, classes A, B, and C are direct base classes for the
derived class X:

class A { /* ... */ };

class B { /* ... */ };

class C { /* ... */ };

class X : public A, private B, public C { /* ... */ };

The following inheritance graph describes the inheritance relationships of the above
example. An arrow points to the direct base class of the class at the tail of the arrow:

The order of derivation is relevant only to determine the order of default initialization by
constructors and cleanup by destructors.

A direct base class cannot appear in the base list of a derived class more than once:

class B1 { /* ... */ }; // direct base class

class D : public B1, private B1 { /* ... */ }; // error

However, a derived class can inherit an indirect base class more than once, as shown

in the following example:

class L { /* ... */ }; // indirect base class

class B2 : public L { /* ... */ };

class B3 : public L { /* ... */ };

class D : public B2, public B3 { /* ... */ }; // valid

In the above example, class D inherits the indirect base class L once through class B2 and
once through class B3. However, this may lead to ambiguities because two subobjects

of class L exist, and both are accessible through class D. You can avoid this ambiguity by
referring to class L using a qualified class name. For example:

B2::L

or

B3::L.

You can also avoid this ambiguity by using the base specifier virtual to declare a
base class, as described in Derivation (C++ only).

VIRTUAL BASE CLASSES (C++ ONLY)

Suppose you have two derived classes B and C that have a common base class A, and you

also have another class D that inherits from B and C. You can declare the base class A

as virtual to ensure that B and C share the same subobject of A.

In the following example, an object of class D has two distinct subobjects of class L,

one through class B1 and another through class B2. You can use the keyword virtual
in front of the base class specifiers in the base lists of classes B1 and B2 to indicate that only
one subobject of type L, shared by class B1 and class B2, exists.

For example:

class L { /* ... */ }; // indirect base class

class B1 : virtual public L { /* ... */ };

class B2 : virtual public L { /* ... */ };

class D : public B1, public B2 { /* ... */ }; // valid

Using the keyword virtual in this example ensures that an object of class D inherits only
one subobject of class L.

A derived class can have both virtual and nonvirtual base classes. For example:

class V { /* ... */ };

class B1 : virtual public V { /* ... */ };

class B2 : virtual public V { /* ... */ };

class B3 : public V { /* ... */ };

class X : public B1, public B2, public B3 { /* ... */
};

In the above example, class X has two subobjects of class V, one that is shared by classes

B1

and B2 and one through class B3.

VIRTUAL FUNCTIONS:

C++ matches a function call with the correct function definition at compile time

known as static binding

the compiler can match a function call with the correct function definition at run

time known as dynamic binding.

declare a function with the keyword virtual if you want the compiler to use dynamic

binding for that specific function.

Example:

class A {

public:

virtual void f() { cout << "Class A" << endl; }

};

class B: public A {

public:

void f(int) { cout << "Class B" << endl; }

};

class C: public B {

public:

void f() { cout << "Class C" << endl; }

};

―Pure‖ly Virtual: A virtual function declared with no definition

base class contains no implementation at all

class containing a pure virtual function is an abstract class
similar to Java interfaces

cannot instantiate from abstract classes

enforces a design through inheritance hierarchy

inherited classes must define implementation

Example:

class A {

public:

virtual void f() = 0; // pure virtual

};

class B: public A {

public:

void f() { cout << "Class B" << endl; }

};

class C: public B {

public:

void f() { cout << "Class C" << endl; }

};

Run Time Type Information (RTTI)

Always exists in OOP: a prerequisite for dynamic

binding Accessible to programmer?

Not necessarily in statically typed languages

Many things can be done without it!

Almost always in dynamically typed languages

Without it, it is impossible to be sure that an object will recognize a message!

In LST, RTTI is the information accessible from the instance_of pointer

Dynamic binding and casting:

Dynamic Typing: no constraints on the values stored in a variable.

– Usually implies reference semantics

•

Run‐time type information: dynamic type is

•

associated with the value.

–

–

};

Dynamic casting:

•

Casting operator is for polymorphic object casting ,so that it can cast from one object
to another object.

•

Dynamic cast is also called as safe cast.it succeeds only when the pointer or
reference being cast is an object of the target type or derived type from it.

•

The syntax is written as dynamic cast<ToobjectptrOr ref>(FromobjectPtrOrRef)

•

If we have a base class and a derived class,casting from derived pointer to base

pointer always succeeds.The casting from base pointer to derived can be succeed only

if base is actually pointing to an object of derived one. Rtti and templates:

•

If we want to test the type of the actual variable and try to provide validations
according to the type we can use RTTI for that.

Cross casting:

It refers to casting from derived to proper base class when there are multiple
base classes in case of multiple inheritance.

The dynamic_cast feature of C++ affords another kind of solution -- cross casting.

Consider the following code.

class A {public: virtual ~A();};

class C : public A, public B {};

A* ap = new C;

B* bp = dynamic_cast<B*>(ap);

Notice that classes A and are completely unrelated. Now when we create an

instance of C we can safely upcast it to an . However, we can now take that pointer to A

and it to a pointer to a B. This works because the A pointer ‗ ap ‘ really points at

a C object; and C derives from B Thus, we have cast accross the inheritance
hierarchy between completely unrelated classes. It should be noted that this will

not work with regular casts since they will not be able to do the address arithmetic to

get the pointer to B correct.

For example:

B* bp = (B*)ap;

While this will compile without errors , it will not generate working code. The value
of ‗ bp ‘ will not actually point to the B part of C. Rather it will still point at the A
part of C.

This will lead to undefined behavior

Down casting:

rectangle::rectangle(float h, float w, int c, int l):pr(c, l)

{

height = h;

width = w;

xpos = 0;

ypos = 0;

};

void main()

{

rectangle rc(3.0, 2.0, 1, 3);

C++ statements;

}

Part-A (2-Marks)

1. State Inheritance.
2. Write the advantages of multiple Inheritance?
3. Define Polymorphism and also list the types of polymorphism.
4. What are Virtual Functions?
5. What are Virtual members?
6. What is meant by pure virtual function?
7. Give the syntax for pure virtual function?
8. What is meant by RTTI?
9. What is upcasting?
10. What is downcasting?
11. What is cross casting?
12. Give the use of typeid operator?
13. Give the use of dynamic_cast operator?
14. Mention the limitations of RTTI.

Part-B

1. Explain a multilevel, Multiple and Multipath inheritance. (16)
2. Describe about RTTI in detail. (16)
3.Explain

a.Single Inheritance (8)

b.Run time polymorphism (8)

4.Define

Object Oriented Programming 4

SCAD College Of Engineering

(i)Down casting (8)

(ii)Cross casting (8)

5. a. Write a program for pure virtual function. (8)

b. Write a program to implement dynamic casting. (8)

UNIT IV OVERVIEW OF JAVA 9

Data types, variables and arrays, operators, control statements, classes, objects, methods – Inheritance

IOSTREAM LIBRARY

-

In Module 5 you have learned the formatted I/O in C by calling various

standard functions. In this Module we will discuss how this formatted I/O implemented in

C++ by using member functions and stream manipulators. -

The header files used for formatted I/O in C++ are:

Header file

iostream.h

• Provide basic information required for all stream I/O operation such as cin, cout,
cerr and clog correspond to standard input stream, standard output stream, and

standard unbuffered and buffered error streams respectively.

iomanip.h

• Contains information useful for performing formatted I/O with parameterized stream

manipulation.

fstream.h

• Contains information for user controlled file processing
operations. strstream.h

• Contains information for performing in-memory formatting or in-core formatting.

This resembles file processing, but the I/O operation is performed to and from character
arrays rather than files.

stdiostrem.h

• Contains information for program that mixes the C and C++ styles of I/O.
iostream library

- The compilers that fully comply with the C++ standard that use the template

based header files won‘t need the .h extension. Please refer to Module 23 for more
information.

- The iostream class hierarchy is shown below. From the base class ios, we have
a derived class:

Class

istream

•

Class for stream input operation.

ostream

•

Class for stream output operation.

ios derived classes

-

So, iostream support both stream input and output. The class hierarchy
is shown below.

Left and Right Shift Operators

- We have used these operators in most of the Modules in this Tutorial for C++ codes.

- The left shift operator (<<) is overloaded to designate stream output and is called
stream insertion operator.

- The right shift operator (>>) is overloaded to designate stream input and is
called stream extraction operator.

-
These operators used with the standard stream object (and with other
user defined stream objects) is listed below:

Operators

cin

•

Object of istream class, connected to the standard input device, normally the
keyboard.

cout

•

Object of ostream class, connected to standard output device, normally the display

screen.

- For file processing C++ uses (will be discussed in another Module) the following classes:

Class

•

ifstream

To perform file input operations.

•

ofstream

For file output operation.

•

fstream

For file input/output operations.

Stream output program example:

//string output using <<

#include <stdlib.h>

#include <iostream.h>

void main(void)

{

cout<<"Welcome to C++ I/O module!!!"<<endl;

cout<<"Welcome to ";

cout<<"C++ module 18"<<endl;

//endl is end line stream manipulator

//issue a new line character and flushes the output buffer

//output buffer may be flushed by cout<<flush; command

system("pause");

}

get() and getline() Member Functions of Stream
Input - For the get() function, we have three versions.

1. get() without any arguments, input one character from the designated streams

including whitespace and returns this character as the value of the function call. It will
return EOF when end of file on the stream is encountered. For example:

2. cin.get();

3. get() with a character argument, inputs the next character from the input stream
including whitespace. It return false when end of file is encountered while returns a

reference to the istream object for which the get member function is being invoked. For example:

4. char ch;
5. cin.get(ch);

7. get() with three arguments, a character array, a size limit and a delimiter (default
value ‗‘). It reads characters from the input stream, up to one less than the specified

maximum number of characters and terminates or terminates as soon as the

delimiter is read.

For example:

char namevar[30];

...

cin.get(namevar, 30);

//get up to 29 characters and inserts null

//at the end of the string stored in variable

//namevar. If a delimiter is found,

//the read terminates. The delimiter

//is left in the stream, not stored

//in the array.

4. getline() operates like the third get() and insert a null character after the line

in the character array. It removes the delimiter from the stream, but does not store it in
the character array.

Program examples:

//End of file controls depend on system
//Ctrl-z followed by return key - IBM PC
//Ctrl-d - UNIX and MAC

#include <stdlib.h>

#include <iostream.h>

void main(void)

{

char p;

cout <<"Using member functions get(), eof() and put()"

<<"---"<<endl;

cout<<"Before any input, cin.eof() is "<<cin.eof()<<endl;

cout<<"Enter a line of texts followed by end of file control: "<<endl; while((p = cin.get())

!=EOF)

cout.put(p);

cout<<"some text input, cin.eof() is "<<cin.eof()<<endl; system("pause");

}

Program example:

//Using read(), write() and gcount() member functions

#include <stdlib.h>

#include <iostream.h>

const int SIZE = 100;

void main(void)

{

char buffer[SIZE];

cout<<"Enter a line of text:"<<endl;

cin.read(buffer,45);

cout<<"The line of text entered was: "<<endl;

cout.write(buffer, cin.gcount());

//The gcount() member function returns www.tenouk.com

//the number of unformatted characters last extracted

cout<<endl;

system("pause");

}

Stream Manipulators

-

Used to perform formatting, such as:

▪ Setting field width.
▪ Precision.
▪ Unsetting format flags.
▪ Flushing stream.
▪ Inserting newline in the output stream and flushing the stream.

▪ Inserting the null character in the output stream.
▪ Skipping whitespace.
▪ Setting the fill character in field.

Stream Base

-

For stream base we have:

Operator/function

•

hex

To set the base to hexadecimal, base 16.

•

oct

To set the base to octal, base 8.

•

dec

To reset the stream to decimal.

•

setbase()

Changing the base of the stream, taking one integer argument of 10, 8 or 16 for decimal,
base 8 or base 16 respectively. setbase() is parameterized stream manipulator by taking

argument, we have to include iomanip.h header file.

Table 18.5: Stream base operator and function.

Program example:

//using hex, oct, dec and setbase stream manipulator

#include <stdlib.h>

#include <iostream.h>

#include <iomanip.h>

void main(void)

{

int p;

cout<<"Enter a decimal number:"<<endl;

cin>>p;

cout<<p<< " in hexadecimal is: "

<<hex<<p<<''

<<dec<<p<<" in octal is: "

<<oct<<p<<''

<<setbase(10) <<p<<" in decimal is: "

<<p<<endl;

cout<<endl;

system("pause"); www.tenouk.com

}

Floating-point Precision

- Used to control the number of digits to the right of the decimal point.
- Use setprecision() or precision().

- precision 0 restores to the default precision of 6 decimal points.
//using precision and setprecision

#include <stdlib.h>

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

void main(void)

{

double theroot = sqrt(11.55);

cout<<"Square root of 11.55 with various"<<endl;

cout<<" precisions"<<endl;

cout<<"---------------------------------"<<endl;

cout<<"Using 'precision':"<<endl;

for(int poinplace=0; poinplace<=8; poinplace++)

{

cout.precision(poinplace);

cout<<theroot<<endl;

}

cout<<"'setprecision':"<<endl;

for(int poinplace=0; poinplace<=8; poinplace++)

cout<<setprecision(poinplace)<<theroot<<endl;

system("pause");

}

Field Width

- Sets the field width and returns the previous width. If values processed are smaller than
the field width, fill characters are inserted as padding. Wider values will not be truncated.

- Use width() or setw(). For example:
cout.width(6); //field is 6 position wide

Program example:

//using width member function

#include <iostream.h>

#include <stdlib.h>

void main(void)

{

int p = 6;

char string[20];

cout<<"Using field width with setw() or
width()"<<endl; cout<<"--------------------------------------
--"<<endl; cout<<"Enter a line of text:"<<endl;

cin.width(7);

while (cin>>string)

{

cout.width(p++);

cout<<string<<endl;

cin.width(7);

//use ctrl-z followed by return key or ctrl-d to exit

}

system("pause");

}

Stream Format States

- Format state flag specify the kinds of formatting needed during the stream operations.
- Available member functions used to control the flag setting are: setf(), unsetf() and

flags().

- flags() function must specify a value representing the settings of all the flags.

- The one argument, setf() function specifies one or more ORed flags and ORs them with
the existing flag setting to form a new format state.

- The setiosflags() parameterized stream manipulator performs the same functions as the
setf.

- The resetiosflags() stream manipulator performs the same functions as the unsetf()
member function. For parameterized stream manipulators you need iomanip.h header file.

- Format state flags are defined as an enumeration in class ios.

Format state flags

ios::skipws

Use to skip whitespace on input.

ios::adjustfield

Controlling the padding, left, right or internal.

ios::left

Use left justification.

ios::right

Use right justification.

ios::internal

Left justify the sign, right justify the magnitude.

ios::basefield

Setting the base of the numbers.

ios::dec

Use base 10, decimal.

ios::oct

Use base 8, octal.

ios::hex

Use base 16, hexadecimal.

ios::showbase

Show base indicator on output.

ios::showpoint

Shows trailing decimal point and zeroes.

ios::uppercase

Use uppercase for hexadecimal and scientific notation values.

ios::showpos

Shows the + sign before positive numbers.

ios::floatfield

To set the floating point to scientific notation or fixed format.

ios::scientific

Use scientific notation.

ios::fixed

Use fixed decimal point for floating-point numbers.

ios::unitbuf

Flush all streams after insertion.

ios::stdio

Flush stdout, stderr after insertion.

- skipws flags indicates that >> should skip whitespace on an input stream. The

default behavior of >> is to skip whitespace. To change this, use the unsetf(ios::skipws). ws
stream manipulator also can be used for this purpose.

Trailing Zeroes and Decimal Points

- ios::showpoint – this flag is set to force a floating point number to be output with its

decimal point and trailing zeroes. For example, floating point 88.0 will print 88 without
showpoint set and 88.000000 (or many more 0s specified by current precision) with

showpoint set.

///Using showpoint

//controlling the trailing zeroes and floating points

#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

void main(void)

{

cout<<"Before using the ios::showpoint flag"

<<"------------------------------------"<<endl;

cout<<"cout prints 88.88000 as: "<<88.88000

<<"prints 88.80000 as: "<<88.80000

<<"prints 88.00000 as: "<<88.00000

<<"using the ios::showpoint flag"

<<"-----------------------------------"<<endl;

cout.setf(ios::showpoint);

cout<<"cout prints 88.88000 as: "<<88.88000

<<"prints 88.80000 as: "<<88.80000

<<"prints 88.00000 as: "<<88.00000<<endl;

system("pause");

}

Justification

- Use for left, right or internal justification.
- ios::left – enables fields to be left-justified with padding characters to the right.
- ios::right – enables fields to be right-justified with padding characters to the left.
- The character to be used for padding is specified by the fill or setfill.

- internal – this flag indicates that a number‘s sign (or base if ios::showbase flag is set)

should be left-justified within a field, the number‘s magnitude should be right-justified and the
intervening spaces should be padded with the fill character.

- The left, right and internal flags are contained in static data member ios::adjustfield, so

ios::adjustfield argument must be provided as the second argument to setf when setting the
right, left or internal justification flags because left, right and internal are mutually exclusive.

//using setw(), setiosflags(), resetiosflags() manipulators
//and setf and unsetf member functions #include
<iostream.h>

#include <iomanip.h>

#include <stdlib.h>

void main(void)

{

long p = 123456789L;

//L - literal data type qualifier for long...

//F - float, UL unsigned integer...

cout<<"The default for 10 fields is right justified:"

<<setw(10)<<p

<<"member function"

<<"---------------------"

<<"setf() to set ios::left:"<<setw(10);

cout.setf(ios::left,ios::adjustfield);

cout<<p<<"unsetf() to restore the default:";

cout.unsetf(ios::left);

cout<<setw(10)<<p

<<"parameterized stream manipulators"

<<"---------------------------------------"

<<"setiosflags() to set the ios::left:"

<<setw(10)<<setiosflags(ios::left)<<p

<<"resetiosflags() to restore the default:"

<<setw(10)<<resetiosflags(ios::left)

<<p<<endl;

system("pause");

}

Padding

- fill() – this member function specify the fill character to be used with adjusted field. If
no value is specified, spaces are used for padding. This function returns the prior padding

character.

- setfill() – this manipulator also sets the padding character.

//using fill() member function and setfill() manipulator

#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

void main(void)

{

long p = 30000;

cout<<p

<<" printed using the default pad character"

<<"for right and left justified and as hex"

<<"with internal justification."

<<"--";

cout.setf(ios::showbase);

cout<<setw(10)<<p<<endl;

cout.setf(ios::left,ios::adjustfield);

cout<<setw(10)<<p<<endl;

cout.setf(ios::internal,ios::adjustfield);

cout<<setw(10)<<hex<<p<<"";

cout<<"Using various padding
character"<<endl; cout<<"---------------------------
----"<<endl; cout.setf(ios::right,ios::adjustfield);

cout.fill('#');

cout<<setw(10)<<dec<<p<<'';

cout.setf(ios::left,ios::adjustfield);

cout<<setw(10)<<setfill('$')<<p<<'';

cout.setf(ios::internal,ios::adjustfield);

cout<<setw(10)<<setfill('*')<<hex<<p<<endl;

system("pause");

}

Scientific Notation

- ios::scientific and ios::fixed flags are contained in the static member ios::floatfield
(usage similar to ios::adjustfield and ios::basefield).

- These flags used to control the output format of floating point numbers.

- The scientific flag – is set to force the output of a floating point number to display a
specific number of digits to the right of the decimal point (specified by the precision member

function).

- cout.setf(0, ios::floatfield) restores the system default format for the floating number
output.

Program example:

//Displaying floating number in system
//default, scientific and fixed format
#include <iostream.h>

#include <stdlib.h>
void main(void)

{

double p = 0.000654321, q = 9.8765e3;
cout<<"Declared variables" <<"--------
----------"

<<"0.000654321"<<''<<"9.8765e3"<<""; cout<<"Default format:"
<<"---------------"

<<p<<''<<q<<''<<endl;

cout.setf(ios::scientific,ios::floatfield);
cout<<"Scientific format:" <<"--------
----------"

<<p<<''<<q<<'';

cout.unsetf(ios::scientific);

cout<<"format after unsetf:" <<"---

-------------------------"

<<p<<''<<q<<endl;

cout.setf(ios::fixed,ios::floatfield);

cout<<"fixed format:" <<"----------

------" <<p<<''<<q<<endl;

system("pause");

}

File Handling

Opening a File: fopen

• We're able to create, modify, and access files easily from PHP.

Files are used to store customer data, store page hit counts, remember end-user
preferences, and a plethora of other things in web applications.

• The fopen function opens a file for reading or writing.

fopen (string filename, string mode,

[, int use_include_path

[, resource zcontext]])

filename - name of the file including path

mode - how the file will be used read, write, etc

use_include_path - optional parameter that

can be set to 1 to specify

that you want to search for

the file in the PHP include

path

zcontext - not covered in these notes

File Modes

•'r' - open for reading only

•'r+' - open for reading & writing

•'w' - open for writing only, create file if

necessary

•'w+' - open for reading and writing, create file

if necessary

•'a' - open for appending, (start writing at

end of file)

•'a+' - open for reading and writing

•'x' - create and open for writing only, if file

already exists fopen will fail

•'x+' - create and open for reading and

writing

•Note -------

different operating systems have different

line-ending conventions. When inserting a line-break into a text file you need to use the
correct line-ending character(s). Windows systems use , unix based systems use .

PHP has a constant PHP_EOL which holds the correct one for the system you are using.

File Open Examples

•In Windows, you can use a text-mode translation flag ('t'), which will translate to when

working with the file. To use this flag specify 't' as the last character of the mode parameter,
i.e.; 'wt'.

•Examples

-- open the file /home/file.txt for reading

$handle = fopen("/home/file.txt", "r");

after this you'll refer to the file with the variable

$handle -- open a file for writing

$handle = fopen("/home/wrfile.txt","w");

the file will be created if it doesn't exist,

if it does exist you will overwrite whatever is currently in the
file File Open Examples

•open a file for binary writing

$handle = fopen("/home/file.txt", "wb");

•In Windows you should be careful to escape any backslashes used in the path to the file

$handle = fopen("c:\data\file.txt", "r");

•you can open files on another system

$handle = fopen("http://www.superduper.

com/file.txt", "r");

•can use ftp

$handle = fopen("ftp://user:password@

superduper.com/file.txt",

"r");

Reading Lines of Text: fgets

•The fgets function reads a string of text from a file.

fgets (resource handle [, int length]);

Pass this function the file handle to an open file, and an optional length. Reading ends
when length - 1 bytes have been read, on a newline (which is included in the return value), or on

encountering the end of file, whichever comes first. If no length is specified, the default length is
1024 bytes. (file.txt below)

Here

is

the

file.

$handle = fopen("file.txt","r");

while (!feof($handle))

{

$text = fgets ($handle);

}

fclose($handle);

Reading Characters: fgetc

•The fgetc function let's you read a single character from an open file.

Here's

the file

contents.

$fhandle = fopen("file.txt", "r");

while ($char = fgetc($fhandle))

{

if ($char == "")

{

$char = "
";

}

echo "$char";

}

fclose($fhandle);

•Binary Reading: fread

•Files don't have to be read line by line, you can read a specified number of bytes (or until
the end-of-file is reached). The file is treated as a simple binary file of bytes.

fread (resource handle, int length);

Bytes are read up to the length specified or EOF is reached. On Windows systems, you

should open files for binary reading (mode 'rb') to work with fread. Adding 'b' to the mode

does no harm on other systems, it can be included for portability.

$handle = fopen("file.txt","rb");

$text = fread($handle, filesize("file.txt");

// the filesize function returns the no. of bytes
// in the file.

you can convert line endings to

$br_text = str_replace("", "
", $text);

•Reading a Whole File: file_get_contents

•The file_get_contents function will read the entire contents of a file into a string. No
file handle is needed for this function.

$text = file_get_contents("file.txt");

$br_text = str_replace("","
",$text);

echo $br_text;

Careful with this function, for very large files, it can be a problem since the entire file
must be memory resident at one time.

Parsing a File

To make it easier to extract data from a file, you can format that file (using, for example,
tabs) and use fscanf to read your data from the file.

In general -----

fscanf (resource handle, string format);

•Parsing a file: fscanf (cont.)

•This function takes a file handle, handle, and format, which describes the format of the
file you're working with. You set up the format in the same way as with sprintf, which was

discussed in Chapter 3. For example, say the following data was contained in a file names

tabs.txt, where the first and last names are separated by a tab.

George Washington

Benjamin Franklin

Thomas Jefferson

$fh = fopen("tabs.txt", "rb");

while ($names = fscanf($fh, "%s%s"))

{

list($firstname,$lastname) = $names;

echo $firstname, " ", $lastname, "
";

}

fclose ($fh);

Writing to a File: fwrite

•Write to a file with fwrite.

fwrite (resource fh, string str [, int length]);

The fwrite function writes the contents of str to the file stream represented by fh.
The writing will stop after length bytes have been written or the end of the string is reached.

fwrite returns the number of bytes written or FALSE if there was an error. If

you're working on a Windows system the file must be opened with 'b' included in the
fopen mode parameter.

$fh = fopen("text.txt","wb");

$text = "Here.";

if (fwrite($fh, $text) == FALSE)

{

echo "Cannot write to text.txt.";

}

else {

echo "Created the file text.txt.";

}

fclose($fh);

Appending to a File: fwrite

•In this case open the file for appending, using the file mode 'a':

$fh = fopen("text.txt","ab");

Append this to text.txt:

And here is

more text.

$text = "here istext.";

if (fwrite($fh, $text) == FALSE)

{

echo "Cannot write to text.txt.";

}

else {

echo "Appended to the file text.txt.";

}

fclose($fh);

Writing a File at Once: file_put_contents

•This function writes a string to a file, and here's how you use it in general:

file_put_contents (string filename, string data

[, int flags

[,resource context]]);

$text = "Here.";

if (file_put_contents("text.txt",$text) ==

FALSE)

{

echo "Cannot write to text.txt.";

}

else {

echo "Wrote to the file text.txt";

}

Random Access

This lesson is about using random access files in C and the following lesson will look at

working with text files. Apart from the simplest of applications, most programs have to read or
write files. Maybe it's just for reading a config file, or a text parser or something more

sophisticated. The basic file operations are

fopen - open a file- specify how its opened (read/write) and type (binary/text)

fclose - close an opened file

fread - read from a file

fwrite - write to a file

fseek/fsetpos - move a file pointer to somewhere in a file.

ftell/fgetpos - tell you where the file pointer is located.

There are two fundamental types of file: text and binary. Of these two, binary are generally

the simpler to deal with. As doing random access on a text file isn't something you need to do too

often, we'll stick with binary files for the rest of this lesson. The first four operations listed above are

for both text and random access files. The last two just for random access.

Random access means we can move to any part of a file and read or write data from it

without having to read through the entire file. Back thirty years ago, much data was stored

on large reels of computer tape. The only way to get to a point on the tape was by reading all the

way through the tape. Then disks came along and now we can read any part of a file directly.

Object Serialization

The C++ language provides a somewhat limited support for file processing. This is probably

based on the time it was conceived and put to use. Many languages that were developed after C++,

such as (Object) Pascal and Java provide a better support, probably because their

libraries were implemented as the demand was made obvious. Based on this, C++ supports

saving only values of primitive types such as short, int, char double. This can be done by

using either the C FILE structure or C++' own fstream class.

Binary Serialization

Object serialization consists of saving the values that are part of an object, mostly the
value gotten from declaring a variable of a class. AT the current standard, C++ doesn't inherently
support object serialization. To perform this type of operation, you can use a technique

known as binary serialization.

When you decide to save a value to a medium, the fstream class provides the option to

save the value in binary format. This consists of saving each byte to the medium by aligning
bytes in a contiguous manner, the same way the variables are stored in binary numbers.

To indicate that you want to save a value as binary, when declaring the ofstream
variable, specify the ios option as binary. Here is an example:

#include <fstream>

#include <iostream>

using namespace std;

class Student

{

public:

char FullName[40];

char CompleteAddress[120];

char Gender;

double Age;

bool LivesInASingleParentHome;

};

int main()

{

Student one;

strcpy(one.FullName, "Ernestine Waller");

strcpy(one.CompleteAddress, "824 Larson Drv, Silver Spring, MD 20910");

one.Gender = 'F';

one.Age = 16.50;

one.LivesInASingleParentHome = true;

ofstream ofs("fifthgrade.ros", ios::binary);

return 0;

}

Writing to the Stream

The ios::binary option lets the compiler know how the value will be stored. This
declaration also initiates the file. To write the values to a stream, you can call the
fstream::write() method.

After calling the write() method, you can write the value of the variable to the medium.

Here is an example:

#include <fstream>

#include <iostream>

using namespace std;

class Student

{

public:

char FullName[40];

char CompleteAddress[120];

char Gender;

double Age;

bool LivesInASingleParentHome;

};

int main()

{

Student one;

strcpy(one.FullName, "Ernestine Waller");

strcpy(one.CompleteAddress, "824 Larson Drv, Silver Spring, MD 20910");

one.Gender = 'F';

one.Age = 16.50;

one.LivesInASingleParentHome = true;

ofstream ofs("fifthgrade.ros", ios::binary);

ofs.write((char *)&one, sizeof(one));

return 0;

}

Reading From the Stream

Reading an object saved in binary format is as easy as writing it. To read the value, call
the ifstream::read() method. Here is an example:

#include <fstream>

#include <iostream>

using namespace std;

class Student

{

public:

char FullName[40];

char CompleteAddress[120];

char Gender;

double Age;

bool LivesInASingleParentHome;

};

int main()

{

/*

Student one;

strcpy(one.FullName, "Ernestine Waller");

strcpy(one.CompleteAddress, "824 Larson Drv, Silver Spring, MD 20910");

one.Gender = 'F';

one.Age = 16.50;

one.LivesInASingleParentHome = true;

ofstream ofs("fifthgrade.ros", ios::binary);

ofs.write((char *)&one, sizeof(one));

*/

Student two;

ifstream ifs("fifthgrade.ros", ios::binary);

ifs.read((char *)&two, sizeof(two));

cout << "Student Information";

cout << "Student Name: " << two.FullName << endl;
cout << "Address: " << two.CompleteAddress << endl;

if(two.Gender == 'f' || two.Gender == 'F') cout <<
"Gender: Female" << endl;

else if(two.Gender == 'm' || two.Gender == 'M')

cout << "Gender: Male" << endl;

else

cout << "Gender: Unknown" << endl;

cout << "Age: " << two.Age << endl;

if(two.LivesInASingleParentHome == true)

cout << "Lives in a single parent home" << endl;

else

cout << "Doesn't live in a single parent home" << endl;

cout << "";

return 0;

}

NAMESPACE:

• Namespace: a naming context
• Conflicts are bad
• Make names unique within a namespace, make namespaces unique
• AC ++ namespace: contains classes, variables, constants, functions, etc.
• Names in a namespace are visible outside the namespace
• Example: a class is a namespace
class Example {

public:

void PublicFunction ();

private:

void PrivateFunction ();

};

• Both PublicFunction() and PrivateFunction() are visible outside the class, as
Example::PublicFunction() and Example::PrivateFunction()

• Need to distinguish between different items with the same name
• Example: two libraries both have a String class
• C solution: make the names different (Library1String and Library2String)
• Requires vendors to cooperate, and makes all names longer (kThemeWidgetCloseBox)
• Bad C++ solution: use dummy classes or structs to group names
struct Library1 {

static void Function1 ();

};

struct Library2 {

static void Function1 (int);

};

• Requires the entire library to be in one header file (or included from it)
• Everything not in a class or in a function has to be global
Namespace syntax

namespace MyNamespace {

void Function1 ();

void Function2 ();

typedef UInt32 MyInt32;

MyInt32 gVariable;

}

• Very similar to class syntax
• No access specification (public, private, protected)
• No trailing semicolon

• Namespaces are open – they can be in several independent header
files Library1String.h:

namespace Library1 {

class String;

}

Library1List.h:

namespace Library1 {

class List;

}

Using a namespace

namespace Library1 {

class String;

class List;

}

• Explicit qualification
void DoSomething ()

{

Library1::String string;
Library1::List list;

// ...

}

• using declaration

void DoSomething ()
{

using Library1::String;

using Library1::List;

String string;

List list;
// ...

}

• using directive
void DoSomething ()

{

using namespace Library1;

String string;

List list;

}

Nested namespaces

namespace Library1 {

namespace Part1 {

class String;

class List;

}

namespace Part2 {

class String;

class List;

class Array;

}

}

Ansi string objects

§

The ANSI string class implements a first-class character string data type that avoids

many problems

§

associated with simple character arrays ("C-style strings"). You can define a string object

very

§

simply, as shown in the following example

#include <string>

using namespace std;

...

string first_name = "Bjarne";

string last_name;

last_name = "Stroustrup";

string names = first_name + " " + last_name;

cout << names << endl;

names = last_name + ", " + first

" + first_name;

cout << names << endl;

Member functions

§

The string class defines many member functions. A few of the basic ones are

described below:

§

A string object may defined without an initializing value, in which case its initial

§

value is an empty string (zero length, no characters):

§

string str1;

§

A string object may also be initialized with

§

� a string expression:
§

string str2 = str1;

§

string str3 = str1 + str2;

§

string str4 (str2); // Alternate form

§

� a character string literal:
§

string str4 = "Hello there";

Standard Template Library

§

The standard template library (STL) contains

§

Containers

§

Algorithms

§

Iterators

§

A container is a way that stored data is organized in memory, for example an array
of elements.

§

Algorithms in the STL are procedures that are applied to containers to process their data,
for example search for an element in an array, or sort an array.

§

Iterators are a generalization of the concept of pointers, they point to elements in a
container, for example you can increment an iterator to point to the next element in an array

Part-A (2-Marks)

1. Define Stream.

2. What is meant by namespaces?
3. Define setf().
4. Give the use of putback() and peek() function.
5. Define Fileobject.
6. What is meant by STL?
7. Define Object Serialization.
8. Name some File Modes?
9. Define Manipulators.
10. What are the types of Manipulators?
11. Give the use of ios::showbase.
12. What is meant by ifstream?
13. Write the syntax for File open and close.
14. What is the need of STL?
15. List out the advantages and disadvantages of STL.
16. List out the STL Containers.

Part-B

1.Explain in detail about Formatted IO in C++. (16)

2.Explain about STL in detail with necessary example. (16)

3. a. Write a program in C++ to perform binary serialization using file streams.
(8) b. Write a program in C++ to demonstrate the use of std namespaces. (8)

4.Explain in detail about Manipulators. (16)

5. Explain the hierarchy of File Stream Classes. (16)

6. a. Write a program to read and write a File.
(8) Object Oriented Programming 5

Kings College Of Engineering, Punalkulam.

b.Write a program to use set precision and precision manipulators. (8)

UNIT V EXCEPTION HANDLING 9

Packages and Interfaces, Exception handling, Multithreaded programming, Strings, Input/Output

1.Function and Class Templates:

C++ Class Templates are used where we have multiple copies of code for different data
types with the same logic. If a set of functions or classes have the same functionality for
different data types, they becomes good candidates for being written as Templates.

One good area where this C++ Class Templates are suited can be container classes. Very
famous examples for these container classes will be the STL classes like vector, list etc.,

Once code is written as a C++ class template, it can support all data types. Though very

useful, It is advisable to write a class as a template after getting a good hands-on
experience on the logic .

Declaring C++ Class Templates:

Declaration of C++ class template should start with the keyword template. A parameter
should be included inside angular brackets. The parameter inside the angular brackets, can be
either the keyword class or typename.

This is followed by the class body declaration with the member data and
member functions. The following is the declaration for a sample Queue class.

//Sample code snippet for C++ Class Template

template < typename T>

class MyQueue

{

std::vector<T> data;

public:

void Add(T const &d);

void Remove();

void Print();

};

The keyword class highlighted in blue color, is not related to the typename. This is a
mandatory keyword to be included for declaring a template class.

Defining member functions - C++ Class Templates:

If the functions are defined outside the template class body, they should always be
defined with the full template definition. Other conventions of writing the function in C++ class
templates are the same as writing normal c++ functions.

template < typename T> void MyQueue<T> ::Add(T const &d)

{

data.push_back(d);

}

template < typename T> void MyQueue<T>::Remove()

{

data.erase(data.begin() + 0,data.begin() + 1);

}

template < typename T> void MyQueue<T>::Print()

{

std::vector <int>::iterator It1;

It1 = data.begin();

for (It1 = data.begin() ; It1 != data.end() ; It1++)

cout << " " << *It1<<endl;

}

The Add function adds the data to the end of the vector. The remove function removes
the first element. These functionalities make this C++ class Template behave like a normal
Queue. The print function prints all the data using the iterator.

Full Program - C++ Class Templates:

//C++_Class_Templates.cpp

#include <iostream.h>

#include <vector>

template <typename T>

class MyQueue

{

std::vector<T> data;

public:

void Add(T const &);

void Remove();

void Print();

};

template <typename T> void MyQueue<T> ::Add(T const &d)

{

data.push_back(d);

}

template <typename T> void MyQueue<T>::Remove()

{

data.erase(data.begin() + 0,data.begin() + 1);

}

template <typename T> void MyQueue<T>::Print()

{

std::vector <int>::iterator It1;

It1 = data.begin();

for (It1 = data.begin() ; It1 != data.end() ; It1++)

cout << " " << *It1<<endl;

}

//Usage for C++ class templates

void main()

{

MyQueue<int> q;

q.Add(1);

q.Add(2);

cout<<"Before removing data"<<endl;

q.Print();

q.Remove();

cout<<"After removing data"<<endl;

q.Print();

}

Advantages of C++ Class Templates:

One C++ Class Template can handle different types of parameters.

Compiler generates classes for only the used types. If the template is instantiated
for int type, compiler generates only an int version for the c++ template class.

Templates reduce the effort on coding for different data types to a single set of code.

Testing and debugging efforts are reduced.

Exeption Handling:

Exception handling is a mechanism that separates code that detects and handles
exceptional circumstances from the rest of your program. Note that an exceptional circumstance
is not necessarily an error.

When a function detects an exceptional situation, you represent this with an object. This

object is called an exception object. In order to deal with the exceptional situation you throw the

exception. This passes control, as well as the exception, to a designated block of code in a direct

or indirect caller of the function that threw the exception. This block of code is called a handler.

In a handler, you specify the types of exceptions that it may process. The C++ run time, together

with the generated code, will pass control to the first appropriate handler that is able to process

the exception thrown. When this happens, an exception is caught. A handler may rethrow an

exception so it can be caught by another handler.

The exception handling mechanism is made up of the following elements:

try blocks

catch blocks

throw expressions

Exception specifications (C++ only)

try blocks (C++ only)

You use a try block to indicate which areas in your program that might throw exceptions
you want to handle immediately. You use a function try block to indicate that you want to
detect exceptions in the entire body of a function.

#include <iostream>

using namespace std;

class E {

public:

const char* error;

E(const char* arg) : error(arg) { }

};

class A {

public:

int i;

// A function try block with a member
// initializer
A() try : i(0) {

throw E("Exception thrown in A()");

}

catch (E& e) {

cout << e.error << endl;

}

};

// A function try
block void f() try {

throw E("Exception thrown in f()");

}

catch (E& e) {

cout << e.error << endl;

}

void g() {

throw E("Exception thrown in g()");

}

int main() {

f();

// A try
block try {

g();

}

catch (E& e) {

cout << e.error << endl;

}

try {

A x;

}

catch(...) { }

}

The following is the output of the above example:
Exception thrown in f()

Exception thrown in g()
Exception thrown in A()

The constructor of class A has a function try block with a member initializer. Function f()

has a function try block. The main() function contains a try block.

catch blocks (C++ only)

catch block syntax

>>-catch--(--exception_declaration--)--{--statements--}--------><

You can declare a handler to catch many types of exceptions. The allowable objects that a
function can catch are declared in the parentheses following the catch keyword (the

exception_declaration). You can catch objects of the fundamental types, base and
derived class objects, references, and pointers to all of these types. You can also catch const and

volatile types. The exception_declaration cannot be an incomplete type, or a reference or pointer
to an incomplete type other than one of the following:

void*

const void*

volatile void*

const volatile void*

You cannot define a type in an exception_declaration.

You can also use the catch(...) form of the handler to catch all thrown exceptions that
have not been caught by a previous catch block. The ellipsis in the catch argument indicates that
any exception thrown can be handled by this handler.

If an exception is caught by a catch(...) block, there is no direct way to access the
object thrown. Information about an exception caught by catch(...) is very limited.

You can declare an optional variable name if you want to access the thrown object in the
catch block.

A catch block can only catch accessible objects. The object caught must have an
accessible copy constructor.

throw expressions (C++ only)

You use a throw expression to indicate that your program has encountered an exception.
throw expression syntax

>>-throw--+-----------------------+----------------------------><

'-assignment_expression-'

The type of assignment_expression cannot be an incomplete type, or a pointer to
an incomplete type other than one of the following:

void*

const void*

volatile void*

const volatile void*

The assignment_expression is treated the same way as a function argument in a call or
the operand of a return statement.

If the assignment_expression is a class object, the copy constructor and destructor of
that object must be accessible. For example, you cannot throw a class object that has its copy
constructor declared as private.

Exception specifications (C++ only)

C++ provides a mechanism to ensure that a given function is limited to throwing only a
specified list of exceptions. An exception specification at the beginning of any function

acts as a guarantee to the function's caller that the function will throw only the exceptions
contained in the exception specification.

For example, a function:

void translate() throw(unknown_word,bad_grammar) { /* ... */ }

explicitly states that it will only throw exception objects whose types are
unknown_word or bad_grammar, or any type derived from unknown_word or bad_grammar.

Exception specification syntax

>>-throw--(--+--------------+--)-------------------------------><

'-type_id_list-'

The type_id_list is a comma-separated list of types. In this list you cannot specify

an incomplete type, a pointer or a reference to an incomplete type, other than a pointer to
void, optionally qualified with const and/or volatile. You cannot define a type in an

exception specification.

A function with no exception specification allows all exceptions. A function with an
exception specification that has an empty type_id_list, throw(), does not allow any

exceptions to be thrown.

Function f() can throw objects of types A or B. If the function tries to throw an object of
type C, the compiler will call unexpected() because type C has not been specified in the

function's exception specification, nor does it derive publicly from A. Similarly, function g()
cannot throw pointers to objects of type C; the function may throw pointers of type A or pointers

of objects that derive publicly from A.

A function that overrides a virtual function can only throw exceptions specified by
the virtual function. The following example demonstrates this:

class A {

public:

virtual void f() throw (int, char);

};

class B : public A{

public: void f() throw (int) { }

};

/* The following is not allowed. */

/*

class C : public A {

public: void f() { }

};

class D : public A {

public: void f() throw (int, char, double) { }

};

*/

The compiler allows B::f() because the member function may throw only exceptions of

type

int. The compiler would not allow C::f() because the member function may throw any
kind of exception. The compiler would not allow D::f() because the member function can throw
more types of exceptions (int, char, and double) than A::f().

Implicitly declared special member functions (default constructors, copy constructors,
destructors, and copy assignment operators) have exception specifications. An implicitly
declared special member function will have in its exception specification the types

declared in the functions' exception specifications that the special function invokes. If any
function that a special function invokes allows all exceptions, then that special function allows

all exceptions. If all the functions that a special function invokes allow no exceptions, then that

special function will allow no exceptions. The following example demonstrates this:

class A {

public:

A() throw (int);

A(const A&) throw (float);

~A() throw();

};

class B {

public:

B() throw (char);

B(const A&);

~B() throw();

};

class C : public B, public A { };

The following special functions in the above example have been implicitly declared:

C::C() throw (int, char);

C::C(const C&); // Can throw any type of exception, including
float C::~C() throw();

terminate() and unexpected()

Earlier in this issue the basic purposes of the terminate() and unexpected() functions
are described. In the past year the standards committee has made several refinements to these

functions.

The committee has confirmed that direct calls may be made to these functions from

application code. So for instance:

#include <exception>

if (something_is_really_wrong)

std::terminate();

This will terminate the program without unwinding the stack and destroying local (and

finally static) objects. Alternatively, if you just throw an exception that doesn't get handled, it
is implementation- dependent whether the stack is unwound before terminate() is called. (Most

implementations will likely support a mode wherein the stack is not unwound, so that you can

debug from the real point of failure).

Probably the main purpose of making direct calls to terminate() and unexpected() will be
to simulate possible error conditions in application testing, especially when the application has
established its own terminate and unexpected handlers.

The committee has changed slightly the definition of what handlers are used when

terminate() or unexpected() are called. In most cases, they are now the handlers in effect at

the time of the throw, which are not necessarily the current handlers. Usually they are one and
the same, but consider:

#include <exception>

void u1() { ... }

void u2() { ... }

class A {

public:

A() { ... }

A(const A&) { ... std::set_unexpected(u2); }

};

void f() throw(int)

{

A a;

throw a; // which unexpected handler gets called?

}

int main()

{

std::set_unexpected(u1);

f();

return 0;

}

The copy constructor for A is called as part of the throw operation in f(), so by the time
the C++ implementation determines that an unexpected handler needs to be called, u2() is the

current handler. However, based on this recent change, it is the handler in effect at the
time of the throw - u1() - which gets called. On the other hand, if a direct call to terminate() or

unexpected() is made from the application, it is always the current handler which gets called.

Some would argue that this kind of rule just adds complexity without much benefit to

already-complex C++ implementations, but others feel that if an application is going to be

dynamically changing its terminate and unexpected handlers, retaining the correct association
is important.

In the next issue we'll talk about another clarification of terminate() and unexpected(),
this time related to the uncaught_exception() library function introduced above.

Uncaught exceptions:

In the past few examples, there are quite a few cases where a function assumes its caller
(or another function somewhere up the call stack) will handle the exception. In the following

example, MySqrt() assumes someone will handle the exception that it throws — but what

happens if nobody actually does?

Here‘s our square root program again, minus the try block in main():

#include "math.h" // for sqrt() function

using namespace std;

A modular square root function

double MySqrt(double dX)

{

// If the user entered a negative number, this is an error
condition if (dX < 0.0)

}

return sqrt(dX);

throw "Can not take sqrt of negative number"; // throw exception of type char*

int main()

{

}

double dX;

cin >> dX;

cout << "The sqrt of " << dX << " is " << MySqrt(dX) << endl; cout << "Enter a number: ";

MySqrt() doesn‘t handle the exception, so the program stack unwinds and control returns
to main(). But there‘s no exception handler here either, so main() terminates. At this point, we
just terminated our application!

When main() terminates with an unhandled exception, the operating system will generally notify
you that an unhandled exception error has occurred. How it does this depends on the operating

system, but possibilities include printing an error message, popping up an error dialog,

or simply crashing. Some OS‘s are less graceful than others. Generally this
is something you want to avoid altogether!

Catch-all handlers

And now we find ourselves in a condundrum: functions can potentially throw exceptions of any
data type, and if an exception is not caught, it will propagate to the top of your program and

cause it to terminate. Since it‘s possible to call functions without knowing how they are even

implemented, how can we possibly prevent this from happening?

Fortunately, C++ provides us with a mechanism to catch all types of exceptions. This is
known as a catch-all handler. A catch-all handler works just like a normal catch block,

except that instead of using a specific type to catch, it uses the ellipses operator (…) as the type
to catch.

ONLINE QUESTIONS

UNIT-I
questions opt1 opt2 opt3 opt4 answer

Multiple inheritance
means,

one class
inheriting from
more super
classes

A private
member of a
class cannot be
accessed by
the methods of
the same class

None of the
above

(a) and (b)
above.

A private
member of a
class cannot
be accessed
by the
methods of
the same
class

Which statement is not
true in java language? static const final

none of the
above final

Which one of the
following is not true?

A class
containing
abstract
methods is
called an
abstract class

Abstract
methods
should be
implemented in
the derived
class

An abstract
class cannot
have non-
abstract
methods

A class must
be qualified
as ‘abstract’
class, if it
contains one
abstract
method

An abstract
class cannot
have non-
abstract
methods

What is byte code in the
context of Java

The type of code
generated by a
Java compiler

The type of
code generated
by a Java
Virtual Machine

It is another
name for a
Java source file

It is the code
written within
the instance
methods of a
class

The type of
code
generated by
a Java
compiler

The correct order of the
declarations in a Java
program is

Package
declaration,
import
statement, class
declaration

Import
statement,
package
declaration,
class
declaration

Import
statement,
class
declaration,
package
declaration

Class
declaration,
import
statement,
package
declaration

Package
declaration,
import
statement,
class
declaration

Mark
the incorrect statement
from the following:

 Java is a fully
object oriented
language with
strong support
for proper
software
engineering
techniques

In java it is not
easy to write C-
like so called
procedural
programs

In java
language
objects have to
be manipulated

In java
language
error
processing is
built into the
language

In java
language error
processing is
built into the
language

Which of the following is
not a component of Java
Integrated Development
Environment (IDE)? Net Beans

Borland’s
Jbuilder

Microsoft
Visual Fox Pro

Symantec’s
Visual Café

Microsoft
Visual Fox Pro

Java compiler javac
translates Java source
code into
………………………

 Assembler
language Byte code Bit code

Machine
code Byte code

In object-oriented
programming, the
process by which one
object acquires the
properties of another
object is called Encapsulation Polymorphism Overloading Inheritance Inheritance

A process that involves
recognizing and focusing
on the important
characteristics of a
situation or object is
known as: Encapsulation Polymorphism Abstraction Inheritance Abstraction

Object oriented
inheritance models the

"is a kind of"
relationship

 "has a"
relationship

 "want to be"
relationship

inheritance
does not
describe any
kind of
relationship
between
classes

"is a kind of"
relationship

The wrapping up of data
and functions into a
single unit is called Encapsulation Abstraction Data Hiding Polymorphism Encapsulation

In object oriented
programming new
classes can be defined
by extending existing
classes. This is an
example of: Encapsulation Inheritance Aggregation Interface Inheritance

Basic Java language
functions are stored in
which of the following
java package? java.lang java.io java.net java.util java.lang

What is the fundamental
unit of information of
writer streams? Characters Bytes Files Records Characters

URL stands fo
Universal reader
locator

Universal
reform loader

Uniform
resource
loader

Uniform
resource
locator Characters

Which of the following
concept is not there in
Java? Encapsulation

Operator
Overloading Data Hiding Data Hiding

Operator
Overloading

Which of the following
concept is not there in
Java? Encapsulation Data Hiding

Multiple
inheritance Abstraction

Multiple
inheritance

Which Browser supports
Java? Chrome

Internet
Explorer Hotjava All the above All the above

Which Operation system
supports Java? Sun Solaris

RedHat Linux
3.0

Windows
Server 2003 All the above All the above

Which is not part of Java
development Kit? jbc javah encoder javac encoder

Whis is not part of Java
Runtime Environment?

Java Virtual
Machine

Runtime class
livraries

User interface
toolkits decrypter decrypter

What is dynamic
Binding?

Object creation
at run time

Linking of
Procedure call
at run time

Class creation
at run time

none of the
above

Linking of
Procedure call
at run time

Which is not a benefit of
OOP?

Reduction in
complexity

Possible to
have multiple
objects

Data centered
design
approach

Not possible
to create
windows
application

Not possible
to create
windows
application

Java was developed by? Oracle Microsoft Sun Ericsson Sun

Microsystems Microsystems

Initial name given to
Java was? apple Oak foxpro access Oak

Java doesn't support? overloading Sizeof inheritance Interface Sizeof

Which preprocessor
directive cann't be used
in Java? #define #include #ifdef all the above all the above

First application written
in Java was? MSC OS Unix HotJava Sun Browser HotJava

UNIT-II

Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer

Which of these
keywords is used to
make a class?

class

struct int
None of the
mentioned

None of the
mentioned

Which of these
operators is used to
allocate memory for an
object? malloc alloc new give New

What is the return type
of a method that does
not returns any value? int float void double void

What is the process of
defining more than one
method in a class
differentiated by method
signature?

Function
overriding

Function
overloadin
g

Function
doubling

None of the
mentioned

Function
overloading

Which of the following is
a method having same
name as that of it’s
class? finalize delete class constructor constructor

Which method can be
defined only once in a
program?

main
method

finalize
method

static
method

private
method main method

Which of these access
specifiers must be used
for main() method? private public protected

None of the
mentioned public

Which of these is used
to access member of
class before object of
that class is created? public private static protected static

What is the process by
which we can control

Polymorphi
sm Abstraction

Encapsula
tion Recursion Encapsulation

what parts of a program
can access the
members of a class?

What is process of
defining two or more
methods within same
class that have same
name but different
parameters declaration?

method
overloadin
g

method
overriding

method
hiding

None of the
mentioned

method
overloading

Which of these can be
overloaded? Methods

Constructo
rs

All of the
mentioned

None of the
mentioned

All of the
mentioned

What is the process of
defining a method in
terms of itself, that is a
method that calls itself?

Polymorphi
sm Abstraction

Encapsula
tion Recursion Recursion

Which of these
keywords is used to
refer to member of base
class from a sub class? upper super this

None of the
mentioned super

A class member
declared protected
becomes member of
subclass of which type?

public
member

private
member

protected
member

static
member

private
member

Which of these is
correct way of inheriting
class A by class B?

class B +
class A {}

class B
inherits
class A {}

class B
extends A
{}

class B
extends
class A {}

class B
extends A {}

Which of these keyword
can be used in subclass
to call the constructor of
superclass? super this extent extends super

What is the process of
defining a method in
subclass having same
name & type signature
as a method in its
superclass?

Method
overloadin
g

Method
overriding

Method
hiding

None of the
mentioned

Method
overriding

Which of these
keywords can be used
to prevent Method
overriding? static constant protected final final

Which of these is
correct way of calling a
constructor having no
parameters, of
superclass A by
subclass B?

super(void)
;

superclass.
(); super.A(); super(); super();

Which of these is
supported by method
overriding in Java? Abstraction

Encapsulat
ion

Polymorp
hism

None of the
mentioned Polymorphism

Which of these class
relies upon its
subclasses for complete
implementation of its
methods?

Object
class

abstract
class

ArrayList
class

None of the
mentioned abstract class

Which of these operators
can skip evaluating right
hand operand? ! | & && &&

Which of these have
highest precedence? () ++ * >> ()

Which of these is returned
by greater than, <, and
equal to, ==, operator? Integers

Floating -
point
numbers Boolean

None of the
mentioned Boolean

class Relational_operator {
 public static void
main(String args[])
 {
 int var1 = 5;
 int var2 = 6;
 System.out.print(var1
> var2);
 }
 }

1 0 TRUE FALSE FALSE

 class Output {
 public static void
main(String args[])
 {
 int x , y = 1;
 x = 10;
 if (x != 10 && x / 0 ==
0)

System.out.println(y);
 else

System.out.println(++y);
 }
 }

1 2 Runtime
error owing
to division
by zero in if
condition

Unpredictable
behavior of
program

2

int ++a = 100 ;
System.out.println(++a) ;
What will be the output of the
above fraction of code ?

100 101 Compiler
displays
error as
++a is
not a
valid
identifier

None of
these

 Compiler
displays error
as ++a is not
a valid
identifier

What will be the output?
if(1 + 1 + 1 + 1 + 1 == 5){

System.out.print("TRUE");
}
else{

System.out.print("FLASE");
}

TRUE FALSE Compiler
Error

None Of these TRUE

Which one of the following is
the Suggested Section in
Java programming Structure

package
statement

Documentati
on Section

Import
Statement

Interface
Statement

Documentation
Section

Which one of the following is
the Essential Section in Java
programming Structure

package
statement

Documentati
on Section

Import
Statement

main method
Class

main method
Class

The first Statement allowed
in java file is a
_____________ Statement.

package
statement

Documentati
on Section

Import
Statement

main method
Class

package
statement

Which is not a type of java
token. Identifiers Literals Operatore Terminators Terminators

Whether Identifiers in java
can be of any length

TRUE FALSE Both No Answer TRUE

UNIT-III

Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer

How many primitive

data types are there in

Java? 6 7 8 9 8

In

Java byte, short, int and

long all of these are

Size of int in Java is signed unsignes all of the above

none of the

above signed

The smallest integer

type is and its

size is bits. short, 8 short, 16 byte, 8 byte, 16 byte, 8

Which of the following

automatic type

conversion will be

possible? short to int byte to int int to long long to int int to long

double STATIC = 2.5 ;

System.out.println(

STATIC); Prints 2.5

Rraises an

error as

STATIC is

used as a

variable which

is a keyword

Raises an

exception

None of

these Prints 2.5

In Java, the word true is

................

Java

keyword Boolean literal

Same as value

1

Same as

value 0

 Boolean

literal

What is the range of

data type short in Java? -128 to 127

-32768 to

32767

-2147483648

to 2147483647

None of the

mentioned

-32768 to

32767

Which of the following

are legal lines of Java

code?

 int w =

(int)888.8;

byte x =

(byte)100L;

long y =

(byte)100;

byte z =

(byte)100L;

byte z =

(byte)100L;

An expression

involving byte, int, and

literal numbers is

promoted to which of

these? int long byte float int

Which data type value

is returned by all

transcendental math

functions? int float double long double

Which of the following

can be operands of

arithmetic operators? Numeric Boolean Characters

Both

Numeric &

Characters

Both Numeric

& Characters

 Modulus operator, %,

can be applied to which

of these? Integers

Floating –

point numbers

Both Integers

and floating –

point numbers

None of the

mentioned

Both Integers

and floating –

point

numbers.

 What is the output of

relational operators? Integer Boolean Characters Double Boolean

Which of these have

highest precedence? () ++ * >> ()

What should be

expression1 evaluate to

in using ternary

operator as in this line?

expression1 ?

expression2 :

expression3 Integer

Floating –

point numbers Boolean

None of the

mentioned Boolean

Which of these

statements are

incorrect?

Equal to

operator

has least

precedence.

Brackets ()

have highest

precedence.

Division

operator, /, has

higher

precedence

than

multiplication

operator.

Addition

operator, +,

and

subtraction

operator

have equal

precedence.

Division

operator, /,

has higher

precedence

than

multiplication

operator.

Which of these is

necessary condition for

automatic type

conversion in Java?

The

destination

type is

smaller

than source

type.

The destination

type is larger

than source

type.

The destination

type can be

larger or

smaller than

source type.

None of the

mentioned

The

destination

type is larger

than source

type.

What is the prototype prototype() prototype(void) public public public

of the default

constructor of this

class? public class

prototype { }

prototype(void) prototype() prototype()

What is the error in this

code? byte b = 50; b =

b * 50;

b can not

contain

value 100,

limited by

its range.

* operator has

converted b *

50 into int,

which can not

be converted to

byte without

casting.

b can not

contain value

50.

No error in

this code

* operator has

converted b *

50 into int,

which can not

be converted

to byte

without

casting.

If an expression

contains double, int,

float, long, then whole

expression will

promoted into which of

these data types? long int double float double

What is Truncation is

Java?

Floating-

point value

assigned to

an integer

type.

Integer value

assigned to

floating type.

Floating-point

value assigned

to an Floating

type.

Integer

value

assigned to

floating

type.

Floating-point

value

assigned to an

integer type.

Which of these

selection statements test

only for equality? if switch if & switch

None of the

mentioned switch

The control expression

in an "if" statement

must be:

an

expression

with type

integer

an expression

with either the

type boolean or

integer

an expression

with either the

type boolean or

integer with

value 0 or 1

an

expression

with type

boolean

an expression

with type

boolean

Which operator is used

to invert all the digits in

binary representation of

a number? ~ >>> ^ ! ~

On applying Left shift

operator, <<, on an

integer bits are lost one

they are shifted past

which position bit? 1 32 33 31 31

Which right shift

operator preserves the

sign of the value? >> >>= <<=

none of the

above >>

 What is the output of

relational operators? Integer Boolean Characters Double Boolean

Which of these is Integers Floating - point Boolean None of the Boolean

returned by greater

than, <, and equal to,

==, operator?

numbers mentioned

Which of these

operators can skip

evaluating right hand

operand? ! | & && &&

Which of these

statement is correct?

 true and

false are

numeric

values 1

and 0.

true and false

are numeric

values 0 and 1.

 true is any non

zero value and

false is 0.

true and

false are

non

numeric

values.

true and false

are non

numeric

values.

Which of these

statements are

incorrect?

Equal to

operator

has least

precedence.

Brackets ()

have highest

precedence.

Division

operator, /, has

higher

precedence

than

multiplication

operator.

Addition

operator, +,

and

subtraction

operator

have equal

precedence.

Division

operator, /,

has higher

precedence

than

multiplication

operator.

Which of these class is

superclass of all other

classes? Math Process System Object Object

When the operators are

having the same

priority, they are

evaluated from

................. in

the order they appear in

the expression. right to left left to right

any of the

order

depends on

compiler left to right

Expression 173458 162^30 32^30 49152 49152

UNIT-IV

Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer

 Each pass

through a loop is

called a/an enumeration iteration culmination

pass

through iteration

 Which looping

process checks

the test condition

at the end of the

loop? for while do-while

no looping

process

checks the

test

condition

at the end do-while

A continue

statement causes

execution to skip

to

 the end of

the program

 the first

statement after

the loop

 the

statement

following

the

continue

statement

the next

iteration of

the loop

 In a group of

nested loops,

which loop is

executed the

most number of

times?

 the

outermost

loop

the innermost

loop

 all loops

are

executed

the same

number of

times

cannot be

determined

without

knowing

the size of

the loops

the

innermost

loop

 The

statement i++; is

equivalent to i = i + i; i = i + 1; i = i - 1; i - - ; i = i + 1;

Which looping

process is best

used when the

number of

iterations is

known? for while do-while

all looping

processes

require that

the

iterations

be known for

What's

wrong? for (int k

= 2, k <= 12,

k++)

 the

increment

should

always

be ++k

the variable

must always

be the letter i

when using

a for loop

there

should be a

semicolon

at the end

of the

statement

the

commas

should be

semicolons

 What's

wrong? while((i

< 10) && (i >

24))

 the logical

operator &&

cannot be

used in a test

condition

 the while loop

is an exit-

condition loop

 the test

condition is

always

false

 the test

condition

is always

true

 the test

condition

is always

false

If there is more

than one

statement in the

block of a for

loop, which of

the following

must be placed at

the beginning and

the ending of the

loop block?

parentheses

()

French curly

braces { } brackets []

 arrows <

>

 French

curly

braces { }

 What value is

stored in num at

the end of this

looping? for

(num = 1; num

<= 5; num++) 1 4 5 6 4

Which of these

selection

statements test

only for equality? if switch if & switch

 None of

the

mentioned switch

Which of these

are selection

statements in

Java? if() for() continue break if()

Which of the

following loops

will execute the

body of loop

even when

condition

controlling the

loop is initially

false? do-while while for

None of

the

mentioned do-while

Which of these

jump statements

can skip

processing

remainder of

code in its body

for a particular

iteration? break return exit continue continue

Which of these

statement is

correct?

switch

statement is

more

efficient

than a set of

nested ifs.

two case

constants in

the same

switch can

have identical

values.

switch

statement

can only

test for

equality,

whereas if

statement

can

evaluate

any type of

boolean

expression.

 it is

possible to

create a

nested

switch

statements.

two case

constants

in the

same

switch can

have

identical

values.

Which of the

following is one

kind of a

branching

statement?

switch

statement

 break

statement

compound

statement

for

statement

 break

statement

Which branching

statement will

cause a program

to immediately

exit a loop? break continue return

All of the

above break

Which of the

following

branching

statements is

most appropriate

for a java

method? break continue return for for

Which of the

following

branching

statements is

used to escape

current execution

(iteration) and

transfer control

back to the start

of the loop? break continue return

All of the

above continue

Which branching

statement is used

in a “switch”

loop? break continue return

None of

the above. break

A method in java

that does not

have a return

value can possess

any number of

return

statements? FALSE True Depends

Cannot be

determined True

The statement that
transfers control to
the beginning of
the loop is called

break
statement exit statement

continue
statement

goto
statement

continue
statement

UNIT-V
Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer

What is the return type of a
method that does not returns
any value? int float void double void

What is the process of defining
more than one method in a
class differentiated by method
signature?

Function
overriding

Function
overloading

Function
doubling

None of the
mentioned Function overloading

Which of the following is a
method having same name as
that of it’s class? finalize delete class constructor constructor

Which method can be defined
only once in a program? main method

finalize
method static method

private
method main method

Which of these statement is
incorrect?

All object of a
class are
allotted
memory for the
all the
variables
defined in the
class.

If a function
is defined
public it can
be accessed
by object of
other class
by
inheritance.

main() method
must be made
public.

All object of a
class are
allotted
memory for
the methods
defined in the
class.

All object of a class
are allotted memory
for the methods
defined in the class.

Which of these class is super
class of every class in Java? String class Object class Abstract class

ArrayList
class Object class

Which of these method of
Object class can clone an
object? Objectcopy() copy() Object clone() clone() Object clone()

Which of these method of
Object class is used to obtain
class of an object at run time? get()

void
getclass() Class getclass()

None of the
mentioned Class getclass()

Which of these keywords can
be used to prevent inheritance
of a class? super constant Class final final

Which of these keywords
cannot be used for a class
which has been declared final? abstract extends

abstract and
extends

None of the
mentioned abstract

Which of these class relies
upon its subclasses for
complete implementation of its
methods? Object class abstract class ArrayList class

None of the
mentioned abstract class

Which interface provides the
capability to store objects using
a key-value pair? ava.util.Map Java.util.Set Java.util.List

Java.util.Coll
ection Java.util.Map

What is the output of this
program?
class Output {
 public static void
main(String args[])
 {
 Object obj = new
Object();
 }
 } object class object

class.java.lang.o
bject

compilation
error class.java.lang.object

What is the output of this
program?
class Output {
 static void main(String args[])
 {
 int x , y = 1;
 x = 10;
 if (x != 10 && x / 0 ==
0)

System.out.println(y);
 else

System.out.println(++y);
 }
 } 1 2 Runtime Error

Compilation
Error Compilation Error

What is the output of this
program?
class equality {
 int x;
 int y;
 boolean isequal(){
 return(x == y);
 }
 }
 class Output {
 public static void
main(String args[])
 {
 equality obj = new
equality();
 obj.x = 5;
 obj.y = 5;

System.out.println(obj.isequal);
}
 } FALSE TRUE 0 1 TRUE

String in Java is a? class object variable
character
array class

Which of these method of
String class is used to obtain
character at specified index? char() Charat() charat() charAt() charAt()

Which of these keywords is
used to refer to member of
base class from a sub class? upper super this

None of the
mentioned super

Which of these method of
String class can be used to test
to strings for equality? isequal() isequals() equal() equals() equals()

Which of the following
statements are incorrect?

String is a
class

Strings in
java are
mutable

Every string is
an object of
class String

Java defines
a peer class
of String,
called
StringBuffer,
which allows
string to be
altered.

Strings in java are
mutable

Which of these function is used
to allocate memory to array
variable in Java? malloc alloc new calloc new

Which of these is necessary to
specify at time of array
initialization? Row Column

Both Row and
Column

None of the
mentioned row

What will be printed using
following code block?
int[] a = {0,1,2,3,4,5,6,7};
System.out.println(a.length); 6 7 8 9 8

Given a one dimensional array
arr, what is the correct way of
getting the number of elements
in arr.Select the one correct
answer. arr.length arr.length - 1 arr.size arr.size - 1 arr.length

Arrays in Java are
implemented as? class object variable

None of the
mentioned object

Which of the following
statements are valid array
declaration ?
(A) int number();
(B) float average[];
(C) double[] marks;
(D) counter int[]; (A) (A) & (C) (B) & (C) (D) (B) & (C)

int number[] = new int[5]; After
execution of this statement,
which of the following are true?

(A) number[0] is undefined
(B) number[5] is undefined
(C) number[4] is null
(D) number[2] is 0
(E) number.length() is 5 (A) & (E) (C) & (E) (E) (B), (D) & (E) (B), (D) & (E)

Which one of the following will
declare an array and initialize it
with five numbers.

Array a = new
Array(5);

int [] a =
{23,22,21,20,
19};

int a [] = new
int[5]; int [5] array;

int [] a =
{23,22,21,20,19};

Which three are legal array
declarations?
1.int [] myScores [];
2. char [] myChars;
3. int [6] myScores;
4. Dog myDogs [];
5. Dog myDogs [7]; 1, 2, 4 2, 4, 5 2, 3, 4

All are
correct. 1, 2, 4

Which of the following
statements are valid array
declarations?
A. int number();
B. int number[];
C. double[] marks;
D. counter int[]; A,B,C B,C C,D A,B,D B,C

