

17BECS305B Programming with Java Script

L T P C

 2 0 2 3

COURSE OBJECTIVES:

 Understand and use basic programming syntax using JavaScript

 Understand and use JavaScript to enhance HTML documents.

 Understand the Java Scripts Object Model.



LEARNING OUTCOMES:

 Describe the origins of JavaScript and list its key characteristics.

 Communicate with users using JavaScript.

 Define and call JavaScript functions.

 Control program flow.

 Identify and use the JavaScript language objects.

 Use JavaScript with HTML form controls.

 Define and utilize cookies.

 Create custom JavaScript objects.

UNIT I Programming Fundamentals
(9)
What is JavaScript? Brief history-Common use-cases-Runtime environments-Overview of
language features-Running JavaScript in the browser and at the command line-Debugging
JavaScript in the browser- Authoring and debugging code -The roles and relationships between
HTML, CSS and Javascript

UNIT II The Javascript Language
(9)

Basic data types, variables, objects, and mathematical operations- Control structures,

conditionals, looping, functions- Data and data structures : Objects -Arrays - Dates and other

built-in data objects- More data structures :Functions, objects, and data -JSON - Advanced

control structures

UNIT III Javascript and the behavior of Web pages

(9)

Making Web pages behave: manipulating the DOM- Working with Browser Events • Script

loading, responding to keyboard input or mouse activity, scrolling- Forms and AJAX- Using

Javascript Libraries for Advanced Behavior :JQuery and others • Animations, AJAX, form and

data handling

UNIT IV Javascript Libraries and Advanced Applications
(9)

Understanding How Libraries Work -Library Architecture and design patterns -Writing a JQuery

plugin- Other kinds of libraries-Media players, layout managers -Writing your own library-

Javascript and multimedia

UNIT V Security

(9)

Same-origin policy. Cross-site scripting attacks (reflected and persisted). Cookie theft and

forgery. Whitelisting and blacklisting.

 Total

Hours: 45

TEXT BOOKS:

1. Modern Javascript: Develop and Design by Larry Ullman, Peachpit Press,2012

REFERENCES:

1. Javascript Bible, 7th Edition, Danny Goodman Michael Morrison Paul Novitski Tia
GustaffRayl, Wiley India Pvt Ltd 2014

2. Web Technologies Black Book: HTML, JavaScript, PHP, Java, JSP, XML and AJAX,
Kogent Learning Solutions Inc, Dreamtech Press 2014

WEBSITES:

1. http://proquest.safaribooksonline.com.ezpprod1.hul.harvard.edu/book/programming/javas

cript/9780132905848

KARPAGAM UNIVERSITY

Faculty of Engineering

Lecture Plan

Name of the Faculty : B.Arunkumar

Subject code

:

17BECS305B

 Name of the Subject : Programming with Java Script

Class
: II BE CSE

S.No. Duration Topic Name Teaching Aids

Page no.

of Text

book

Unit - I - Programming Fundamentals

1 1 Introduction - What is JavaScript? BB T1->3

2 1 Brief history-Common use cases VIDEO LEC & PPT T1->19

3 1 use cases-Runtime PPT T1->3-4

4 1 Tutorial : Java Script usage -

5 1
environments-Overview of language

features
BB

T1->23

6 1
Running JavaScript in the browser and at

the command line
EXE

T1->3

7 1
Debugging JavaScript in the browser-

Authoring and debugging code
BB

T1->4

8 1
Tutorial - Running JavaScript in the

browser
-

9 1
The roles and relationships between

HTML, CSS and Javascript
BB

W3

Unit - II - The Javascript Language

10 1 Basic data types, variables, objects BB T1->29-31

11 1 mathematical operations BB T1->33

12 1 Control structures, conditionals, looping PPT T1->36

13 1 Tutorial - data types, variables -

14 1 Data and data structures : Objects -Arrays PPT T1->31-32

15 1
Dates and other built-in data objects

PPT
T1->174-

175

16 1
More data structures :Functions, objects,

EXE
T1->183-

184

17 1 Tutorial - Objects -Arrays -

18 1 data -JSON - Advanced control structures PPT W1,W3

Unit - III - Javascript and the behavior of Web pages

19 1
Making Web pages behave: manipulating

the DOM
PPT

T1->249

20 1 Working with Browser Events EXE T2->335

21 1 Script loading EXE T2->376

22 1
Tutorial - Working with Browser

Events
-

23 1
responding to keyboard input or mouse

activity
PPT

W1

24 1 scrolling- Forms PPT T2->424

25 1
AJAX- Using Javascript Libraries for

Advanced Behavior
EXE

W1

26 1
Tutorial - keyboard input or mouse

activity
-

27 1
JQuery and others • Animations, AJAX,

form and data handling
BB

W1

Unit - IV -Javascript Libraries and Advanced Applications

28 1
Understanding How Libraries Work

EXE
T2->490 -

492

29 1
Library Architecture and design patterns

PPT
T2->493-

498

30 1
Writing a JQuery plugin

EXE
T2->503-

506

31 1
Tutorial - Architecture and design

patterns
-

32 1
Other kinds of libraries-Media players

EXE
T2->507-

512

33 1
layout managers

EXE
T2->514-

519

34 1
Writing your own library

BB
T2->520-

521.

35 1 Tutorial -Writing your own library -

36 1 Javascript and multimedia EXE T2->-522-

525

Unit - V - Input /Output Streams

37 1 Same-origin policy BB W1

38 1 Cross-site scripting attacks - reflected BB W1

39 1 Cross-site scripting attacks - persisted BB W1

40 1 Tutorial - Cross-site scripting attacks -

41 1
Using the File Class- Input /Output

Exceptions-Creation of Files
BB

W1

42 1 Cookie theft BB W1

43 1 forgery BB W1

44 1 Tutorial - Inheritance -

45 1 Whitelisting and blacklisting BB W1

46 1 Internal question papers discussion -

 Total Hours allocated : 46

TEXT BOOKS:

2. Modern Javascript: Develop and Design by Larry Ullman, Peachpit Press,2012

REFERENCES:

3. Javascript Bible, 7th Edition, Danny Goodman Michael Morrison Paul Novitski Tia
GustaffRayl, Wiley India Pvt Ltd 2014

4. Web Technologies Black Book: HTML, JavaScript, PHP, Java, JSP, XML and AJAX,
Kogent Learning Solutions Inc, Dreamtech Press 2014

WEBSITES:

2. http://proquest.safaribooksonline.com.ezpprod1.hul.harvard.edu/book/programming/javas

cript/9780132905848

LECTURE NOTES

UNIT-I

JavaScript

History

JavaScript was designed to 'plug a gap' in the techniques available for creating web-

pages.

HTML is relatively easy to learn, but it is static. It allows the use of links to load new

pages, images, sounds, etc., but it provides very little support for any other type of

interactivity.

To create dynamic material it was necessary to use either:

 CGI (Common Gateway Interface) programs

o Can be used to provide a wide range of interactive features, but...

o Run on the server, i.e.:

 A user-action causes a request to be sent over the internet from the

client machine to the server.

 The server runs a CGI program that generates a new page, based

on the information supplied by the client.

 The new page is sent back to the client machine and is loaded in

place of the previous page.

Thus every change requires communication back and forth across the

internet.

o Written in languages such as Perl, which are relatively difficult to learn.

 Java applets

o Run on the client, so there is no need to send information back and forth

over the internet for every change, but...

o Written in Java, which is relatively difficult to learn.

Netscape Corporation set out to develop a language that:

 Provides dynamic facilities similar to those available using CGI programs and

Java applets.

 Runs on the Client.

 Is relatively easy to learn and use.

They came up with LiveScript.

Netscape subsequently teamed-up with Sun Microsystems (the company that

developed Java) and produced JavaScript.

Javascript only runs on Netscape browsers (e.g., Netscape Navigator). However,

Microsoft soon developed a version of JavaScript for their Internet Explorer browser.

It is called JScript. The two languages are almost identical, although there are some

minor differences.

Internet browsers such as Internet Explorer and Netscape Navigator provide a range of

features that can be controlled using a suitable program. For example, windows can be

opened and closed, items can be moved around the page, colours can be changed,

information can be read or modified, etc..

However, in order to do this you need to know what items the browser contains, what

operations can be carried out on each item, and the format of the necessary

commands.

Therefore, in order to program internet browsers, you need to know:

 How to program in a suitable language (e.g., Javascript/JScript)

 The internal structure of the browser.

In this course we will be using JavaScript/JScript to program browsers. However,

there are several other languages we could use should we wish to. Therefore, we shall

try to distinguish clearly between those aspects of internet programming which are

specific to JavaScript/JScript and those which remain the same regardles of which

language we choose to use.

We'll start by looking at some of the basic features of the JavaScript language.

Variables & Literals

A variable is a container which has a name. We use variables to hold information that

may change from one moment to the next while a program is running.

For example, a shopping website might use a variable called total to hold the total cost

of the goods the customer has selected. The amount stored in this variable may change

as the customer adds more goods or discards earlier choices, but the name total stays

the same. Therefore we can find out the current total cost at any time by asking the

program to tell us what is currently stored in total.

A literal, by contrast, doesn't have a name - it only has a value.

For example, we might use a literal to store the VAT rate, since this doesn't change

very often. The literal would have a value of (e.g.) 0.21. We could then obtain the

final cost to the customer in the following way:

VAT is equal to total x 0.21

final total is equal to total + VAT

JavaScript accepts the following types of variables:

Numeric Any numeric value, whether a whole number (an integer) or a

number that includes a fractional part (a real), e.g.,

12

3.14159

etc.

String A group of text characters, e.g.,

Ian

Macintosh G4

etc.

Boolean A value which can only be either True or False, e.g.

completed

married

etc.

We create variables and assign values to them in the following way:

var christianName = "Fred" (string)

var surname = "Jones" (string)

var age = 37 (numeric)

var married = false (Boolean)

Note that:

 When a new variable is created (or declared) its name must be preceded by the

word var

 The type of the variable is determined by the way it is declared:

o if it is enclosed within quotes, it's a string

o if it is set to true or false (without quotes) it's a boolean

o if it is a number (without quotes) it's numeric

 We refer to the equals sign as the assignment operator because we use it to

assign values to variables;

 Variable names must begin with a letter or an underscore

 Variable names must not include spaces

 JavaScript is case-sensitive

 Reserved words (i.e., words which indicate an action or operation in

JavaScript) cannot be used as variable names.

Operators

Operators are a type of command. They perform operations on variables and/or

literals and produce a result.

JavaScript understands the following operators:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

(If you're not sure what a modulus operator does, here are some notes and an

example)

These are known as binary operators because they require two values as input, i.e.:

4 + 3

7 / 2

15 % 4

In addition, JavaScript understands the following operators:

+ + Increment Increase value by 1

- - Decrement Decrease value by 1

- Negation Convert positive to negative,

or vice versa

These are known as unary operators because they require only one value as input, i.e.:

http://www.cs.ucc.ie/~gavin/javascript/02_JS1modulus.html
http://www.cs.ucc.ie/~gavin/javascript/02_JS1modulus.html

4++ increase 4 by 1 so it becomes 5

7-- decrease 7 by 1 so it becomes 6

-5 negate 5 so it becomes -5

JavaScript operators are used in the following way:

var totalStudents = 60

var examPasses = 56

var resits = totalStudents - examPasses

Note that by carrying out this operation we have created a new variable - resits.

There is no need to declare this variable in advance.

It will be a numeric value because it has been created as a result of an operation

performed on two numeric values.

We can also combine these operators (and the assignment operator, =) in certain

ways.

For example:

 total += price

performs the same task as:

 total = total + price

Similarly,

 total *= quantity

performs the same task as:

 total = total * quantity

Below is a full list of these 'combined' operators.

+ = 'becomes equal to itself plus'

- = 'becomes equal to itself minus'

* = 'becomes equal to itself multiplied by'

/ = 'becomes equal to itself divided by'

% = 'becomes equal to the amount which is

left when it is divided by'

You may find the descriptions helpful when trying to remember what each operator

does. For example:

5 * = 3

can be thought of as meaning:

5 becomes equal to itself multiplied by 3

 UNIT-II

Functions in JavaScript

In JavaScript, as in other languages, we can create functions. A function is a kind of

mini-program that forms part of a larger program.

Functions:

 consist of one or more statements (i.e., lines of program code that perform

some operation)

 are separated in some way from the rest of the program, for example, by being

enclosed in curly brackets, {.....}

 are given a unique name, so that they can be called from elsewhere in the

program.

Functions are used:

 Where the same operation has to be performed many times within a program.

Rather than writing the same code again and again, it can be written once as a

function and used repeatedly. For example:

request_confirmation_from_user

 To make it easier for someone else to understand your program.

Rather than writing long, rambling programs in which every single operation is

listed in turn, it is usually better to divide programs up into small groups of

related operations. For example:

set_variables_to_initial_values

welcome_user

obtain_user_input

perform_calculations

display_results

In JavaScript, functions are created in the following way:

 function name()

 {

 statement;

 statement;

 statement

 }

Note that all the statements except the last statement must be followed by semi-

colons. The last statement doesn't need one, but if you do put a semi-colon after the

last statement it won't cause any problems.

Here is an example of a simple function:

 function initialiseVariables()

 {

 itemsSold = 0;

 nettPrice = 0;

 priceAfterTax = 0

 }

When called, this function will set the three variables itemsSold,

nettPrice and priceAfterTax to zero.

To run this function from somewhere else in a program, we would simply call it by

name, e.g.:

 initialiseVariables();

Note that the name must be followed by a pair of brackets. The purpose of these will

become clear later.

Functions can be called from within other functions.

For example:

 function sayGoodbye()

 {

 alert("Goodbye!")

 }

 function sayHello()

 {

 alert("Hi, there!");

 sayGoodbye()

 }

When the function sayHello() is called, it first displays an alert on the screen. An

alert is simply box containing some text and an 'OK' button that the user can press to

make the box disappear when the text has been read. In this case the box will contain

the words "Hi, there!".

The sayHello() function then calls the function sayGoodbye(), which posts another

alert saying "Goodbye".

 Click here to see this example working.

Note that the function sayGoodbye() is written first. Browsers interpet JavaScript code

line-by-line, starting at the top, and some browsers will report an error if they find a

reference to a function before they find the function itself. Therefore functions should

be declared before the point in the program where they are used.

Passing Parameters to Functions

Some functions perform a simple task for which no extra information is needed.

However, it is often necessary to supply information to a function so that it can carry

out its task.

For example, if we want to create a function which adds VAT to a price, we would

have to tell the function what the price is.

To do this we would pass the price into the function as a parameter. Parameters are

listed in between the brackets that follow the function name. For example:

 function name(parameter_1, parameter_2)

 {

 statement(s);

 }

In this case two parameters are used, but it's possible to use more than this if

necessary. The additional parameter names would simply be added on to the list of

parameters inside the brackets, separated from one another by commas. It's also

possible to use just one prameter if that's all that is needed.

Here's an example of a simple function that accepts a single parameter:

 function addVAT(price)

 {

 price *= 1.21;

 alert(price)

 }

This function accepts a parameter called price, multiplies it by 1.21 (i.e., adds an

extra 21% to it), and then displays the new value in an alert box.

We would call this function in the following way:

 addVAT(nettPrice)

The parameter nettPrice could be either:

 a literal - for example:

addVAT(5)

 a variable - for example:

var nettPrice = 5;
addVAT(nettPrice)

Returning values from Functions

Sometimes we also need to get some information back from a function.

For example, we might want to add VAT to a price and then, instead of just displaying

the result, pass it back to the user or display it in a table.

To get information back from a function we do the following:

 function addVAT(price)

 {

 price *= 1.21;

 return price

 }

To call this function we would do the following:

 var newPrice = addVAT(nettPrice)

The value returned by the funtion will be stored in the variable newPrice. Therefore

this funtion will have the effect of making newPrice equal to nettPrice multiplied by

1.21.

UNIT-III

JavaScript Comparison Operators

As well as needing to assign values to variables, we sometime need

to compare variables or literals.

We do this using Comparison Operators.

Comparison Operators compare two values and produce an output which is

either true or false.

For example, suppose we have two variables which are both numeric (i.e., they both

hold numbers):

examPasses

and

totalStudents

If we compare them, there are two possible outcomes:

 They have the same value

 They do not have the same value

Therefore, we can make statements like these:

 They are the same

 They are the different

 The first is larger than the second

 The first is smaller than the second

... and then perform a comparison to determine whether the statement is true or false.

The basic comparison operator is:

==

(i.e., two equals signs, one after the other with no space in between).

It means 'is equal to'. Compare this with the assignment operator, =, which means

'becomes equal to'. The assignment operator makes two things equal to one another,

the comparison operator tests to see if they are already equal to one another.

Here's an example showing how the comparison operator might be used:

 examPasses == totalStudents

If examPasses and totalStudents have the same value, the

comparison would return true as a result.

If examPasses and totalStudents have different values, the

comparison would return false as a result.

Another comparison operator is:

!=

(i.e., an exclamation mark followed by an equals sign, with no space in between).

It means 'is NOT equal to'.

For example:

 examPasses != totalStudents

If examPasses and totalStudents have the same value, the

comparison would return false as a result.

If examPasses and totalStudents have different values, the

comparison would return true as a result.

Two other commonly-used comparison operators are:

<

and

>

 < means 'less than'

 > means 'greater than'

For example:

 examPasses < totalStudents

If examPasses is less than totalStudents, the comparison

would return true as a result.

If examPasses is more than totalStudents, the comparison

would return false as a result.

Another example:

 examPasses > totalStudents

If examPasses is more than totalStudents, the comparison

would return true as a result.

If examPasses is less than totalStudents, the comparison

would return false as a result.

As with some of the other 0perators we have encountered, comparison operators can

be combined in various ways.

<=

means

'less than or equal to'.

For example:

 examPasses <= totalStudents

If examPasses is less than or equal to totalStudents, the

comparison would return true as a result.

If examPasses is more than totalStudents, the comparison

would return false as a result.

Also:

>=

means

'greater than or equal to'.

For example:

 examPasses >= totalStudents

If examPasses is more than or equal to totalStudents>, the

comparison would return true as a result.

If examPasses is less than totalStudents, the comparison

would return false as a result.

To summarise, JavaScript understands the following comparison operators:

 == 'is equal to'

 != 'is NOT equal to'

 < 'is less than'

 > 'is greater than'

 <= 'is less than or equal to'

 >= 'is greater than or equal to'

If-Else Statements in JavaScript

Much of the power of programming languages comes from their ability to respond in

different ways depending upon the data they are given.

Thus all programming languages include statements which make 'decisions' based

upon data.

One form of decision-making statement is the If...Else statement.

It allows us to make decisions such as:

 If I have more than £15 left in my account, I'll go to the cinema.

 Otherwise I'll stay at home and watch television.

This might be expressed in logical terms as:

 If (money > 15) go_to_cinema

 Else watch_television

The If-Else statement in JavaScript has the following syntax:

 if (condition)

 {

 statement;

 statement

 }

 else

 {

 statement;

 statement

 };

The condition is the information on which we are basing the decision. In the example

above, the condition would be whether we have more than £15. If the condition is

true, the browser will carry out the statements within the if... section; if the

condition is false it will carry out the statements within the else... section.

The if... part of the statement can be used on its own if required. For example:

 if (condition)

 {

 statement;

 statement

 };

Note the positioning of the semi-colons.

If you are using both the if... and the else... parts of the statement, it is important

NOT to put a semi-colon at the end of the if... part. If you do, the else... part of the

statement will never be used.

A semi-colon is normally placed at the very end of the if...else... statement,

although this is not needed if it is the last or only statement in a function.

A practical If-Else statement in JavaScript might look like this:

 if (score > 5)

 {

 alert("Congratulations!")

 }

 else

 {

 alert("Shame - better luck next time")

 };

The for Loop

A for loop allows you to carry out a particular operation a fixed number of times.

The for loop is controlled by setting three values:

 - an initial value

 - a final value

 - an increment

The format of a for loop looks like this:

 for (initial_value; final_value; increment)

 {

 statement(s);

 }

A practical for loop might look like this:

 for (x = 0; x <= 100; x++)

 {

 statement(s);

 }

Note that:

* The loop condition is tested using a variable, x, which is initially set

to the start value (0) and then incremented until it reaches the final

value (100).

 * The variable may be either incremented or decremented.

* The central part of the condition, the part specifying the final value,

must remain true throughout the required range. In other words, you

could not use x = 100 in the for loop above because then the

condition would only be true when x was either 0 or 100, and not for

all the values in between. Instead you should use x <= 100 so that

the condition remains true for all the values between 0 and 100.

Here are some practical examples of for loops.

The first example is a simple loop in which a value is incremented from 0 to 5, and

reported to the screen each time it changes using an alert box. The code for this

example is:

 for (x = 0; x <= 5; x++)

 {

 alert('x = ' + x);

 }

 Click here to see this example working.

The second example is the same except that the value is decremented from 5 to 0

rather than incremented from 0 to 5. The code for this example is:

 for (x = 5; x >= 0; x--)

 {

 alert('x = ' + x);

 }

 Click here to see this example working.

The start and finish values for the loop must be known before the loop starts.

However, they need not be written into the program; they can, if necessary, be

obtained when the program is run.

For example:

 var initialValue = prompt("Please enter initial value", "");

 var finalValue = prompt("Please enter final value", "");

 for (x = initialValue; x <= finalValue; x++)

 {

 statement(s);

 }

In this example, the user is prompted to type-in two numbers which are then assigned

to the variables initialValue and finalValue. The loop then increments

from initialValue to finalValue in exactly the same way as if these values had been

written directly into the program.

The While Loop

Like the for loop, the while loop allows you to carry out a particular operation a

number of times.

The format of a while loop is as follows:

 while (condition)

 {

 statement(s);

 }

A practical while loop might look like this:

 var x = 500000;

 alert("Starting countdown...");

 while (x > 0)

 {

 x--;

 };

 alert("Finished!");

In this example, x is initially set to a high value (500,000). It is then reduced by one

each time through the loop using the decrement operator (x--). So long as x is greater

than zero the loop will continue to operate, but as soon as x reaches zero the loop

condition (x > 0) will cease to be true and the loop will end.

The effect of this piece of code is to create a delay which will last for as long as it

takes the computer to count down from 500,000 to 0. Before the loop begins, an 'alert'

dialog-box is displayed with the message "Starting Countdown...". When the user

clicks the 'OK' button on the dialog-box the loop will begin, and as soon as it finishes

another dialog-box will be displayed saying "Finished!". The period between the first

dialog box disappearing and the second one appearing is the time it takes the

computer to count down from 500,000 to 0.

To see this example working, click here.

The principal difference between for loops and while loops is:

with a while loop, the number of times the loop is to be executed need not be known

in advance.

while loops are normally used where an operation must be carried out repeatedly until

a particular situation arises.

For example:

 var passwordNotVerified = true;

 while (passwordNotVerified == true)

 {

 var input = prompt("Please enter your password", "");

 if (input == password)

 {

 passwordNotVerified = false;

 }

 else

 {

 alert("Invalid password - try again")

 }

 }

In this example, the variable passwordNotVerified is initially set to the Boolean

value true. The user is then prompted to enter a password, and this password is

compared with the correct password stored in the variable called password. If the

password entered by the user matches the stored password, the

variable passwordNotVerified is set to false and the while loop ends. If the password

entered by the user does not match the stored password, the

variable passwordNotVerified remains set to true and a warning message is displayed,

after which the loop repeats.

To try this piece of code, click here.

PS The password is CS7000 - and don't forget that the 'CS' must be capitalised.

Testing Boolean Variables

In the while loop example above we used the line:

 var passwordNotVerified = true;

and then tested this variable in a conditional statement as follows:

 while (passwordNotVerified == true)

We could also have written the conditional statement like this:

 while(passwordNotVerified)

In other words, if we don't specify true or false in a conditional statement, the

JavaScript interpreter will assume we mean true and test the variable accordingly.

This allows us to make our code a little shorter and, more importantly, to make it

easier for others to understand. The line:

 while(passwordNotVerified)

is much closer to the way in which such a condition might be expressed in English

than:

 while(passwordNotVerified == true)

Logical Operators

We have met a number of operators that can be used when testing conditions, e.g., ==

, < , > , <= , >= .

Two more operators that are particularly useful with while loops are:

 && Logical AND

 || Logical OR

These operators are used to combine the results of other conditional tests.

For example:

 if (x > 0 && x < 100)

 means...

 if x is greater than 0 and less than 100...

Placing the && between the two conditions means that the if statement will only be

carried out if BOTH conditions are true. If only one of the conditions is true (e.g., x is

greater than 0 but also greater than 100) the condition will return false and

the if statement won't be carried out.

Similarly:

 if (x == 0 || x == 1)

 means...

 if x is 0 or x is 1...

Placing the || between the two conditions means that the if statement will be

executed if EITHER of the conditions are true.

The ability to combine conditions in this way can be very useful when setting the

conditions for while loops.

For example:

 var amount = prompt ("Please enter a number between 1 and 9", "");

 while (amount < 1 || amount > 9)

 {

 alert("Number must be between 1 and 9");

 amount = prompt ("Please enter a number between 1 and 9", "");

 }

In this example, the variable amount is initially set to the value typed-in by the user in

response to the 'prompt' dialog-box. If the amount entered by the user is between 1

and 9, the loop condition becomes false and the loop ends. If the amount entered by

the user is less than 1 or greater than 9, the loop condition remains true and a warning

is displayed, after which the user is prompted to enter another value.

UNIT-IV

avaScript: Window, Document & Form Objects

JavaScript is an object-oriented (or, as some would argue, object-based) language.

An object is a set of variables, functions, etc., that are in some way related. They are

grouped together and given a name

Objects may have:

 Properties

A variable (numeric, string or Boolean) associated with an

object. Most properties can be changed by the user.

 Example: the title of a document

 Methods

Functions associated with an object. Can be called by the

user.

 Example: the alert() method

 Events

Notification that a particular event has occurred. Can be used

by the programmer to trigger responses.

 Example: the onClick() event.

Internet browsers contain many objects. In the last few years the object structure of

internet browsers has become standardised, making programming easier. Prior to this,

browsers from different manufacturers had different object structures. Unfortunately,

many such browsers are still in use.

The objects are arranged into a hierarchy as shown below:

The Document Object Model. Objects shown in green are common to both

Netscape Navigator and Internet Explorer; objects shown in yellow are found

only in Internet Explorer while objects shown in blue are found only in Netscape

Navigator.

The hierarchy of objects is known as the Document Object Model (DOM).

The Window Object

Window is the fundamental object in the browser. It represents the browser window in

which the document appears

Its properties include:

status The contents of the status bar (at the bottom of the browser window).

For example:

 window.status = "Hi, there!";

 will display the string "Hi, there!" on the status bar.

 Click here to see this line of code in operation.

location The location and URL of the document currently loaded into the

window (as displayed in the location bar). For example:

 alert(window.location);

 will display an alert containing the location and URL of this document.

 Click here to see this line of code in operation.

length The number of frames (if any) into which the current window is

divided. For example:

 alert(window.length);

will display an alert indicating the number of frames in the current

window.

 See under parent (below) for an example.

parent The parent window, if the current window is a sub-window in a

frameset. For example:

var parentWindow = window.parent;

alert(parentWindow.length);

will place a string representing the parent window into the

variable parentWindow, then use it to report the number of frames (if

any) in the parent window.

 Click here to see an example of the use of parent and length.

top The top-level window, of which all other windows are sub-windows.

For example:

var topWindow = window.top;
alert(topWindow.length);

will place a string representing the top-level window into the

variable topWindow, then use it to report the number of frames (if any)

http://www.cs.ucc.ie/~gavin/javascript/05_JS4frames.html

in the top-level window.

top behaves in a very similar way to parent. Where there are only two

levels of windows, top and parent will both indicate the same window.

However, if there are more than two levels of windows, parent will

indicate the parent of the current window, which may vary depending

upon which window the code is in. However, top will always indicate

the very top-level window.

Window methods include:

alert() Displays an 'alert' dialog box, containing text entered by the page

designer, and an 'OK' button. For example:

 alert("Hi, there!");

 will display a dialog box containing the message "Hi, there!".

 Click here to see this line of code in operation.

confirm() Displays a 'confirm' dialog box, containing text entered by the user, an

'OK' button, and a 'Cancel' button. Returns true or false. For example:

var response = confirm("Delete File?");
alert(response);

will display a dialog box containing the message "Delete File?" along

with an 'OK' button and a 'Cancel' button. If the user clicks on 'OK' the

variable response will contain the Boolean value true, and this will

appear in the 'alert' dialog-box; If the user clicks on 'Cancel' the

variable response will contain the Boolean value false and this will

appear in the 'alert' dialog-box.

 Click here to see this code in operation.

prompt() Displays a message, a box into which the user can type text, an 'OK'

button, and a 'Cancel' button. Returns a text string. The syntax is:

 prompt(message_string, default_response_string)

 For example:

var fileName = prompt("Select File", "file.txt");

alert(fileName);

will display a dialog box containing the message "Select File" along

with an 'OK' button, a 'Cancel' button, and an area into which the user

can type. This area will contain the string "file.txt", but this can be

overwritten with a new name. If the user clicks on 'OK' the

variable fileName will contain the string "file.txt" or whatever the user

entered in its place, and this will be reported using an alert dialog box.

 Click here to see this code in operation.

open() Opens a new browser window and loads either an existing page or a

new document into it. The syntax is:

 open(URL_string, name_string, parameter_string)

 For example:

var parameters = "height=100,width=200";
newWindow = open("05_JS4nw.html", "newDocument",

parameters);

will open a new window 100 pixels high by 200 pixels wide. An HTML

document called '05_JS4nw.html' will be loaded into this window.

Note that the variable newWindow is not preceded by the word var. This

is because newWindow is a global variable which was declared at the

start of the script. The reason for this is explained below.

 Click here to see this code in operation.

close() Closes a window. If no window is specified, closes the current window.

The syntax is:

 window_name.close()

 For example:

 newWindow.close()

 will close the new window opened by the previous example.

Note that the window name (i.e., newWindow) must be declared as a

global variable if we want to open the window using one function and

close it using another function. If it had been declared as a local

variable, it would be lost from the computer's memory as soon as the

first function ended, and we would not then be able to use it to close the

window.

 Click here to see this code in operation.

Window events include:

onLoad() Message sent each time a document is loaded into a window. Can be

used to trigger actions (e.g., calling a function). Usually placed within

the <body> tag, for example:

 <body onLoad="displayWelcome()">

would cause the function displayWelcome() to execute automatically

every time the document is loaded or refreshed.

onUnload() Message sent each time a document is closed or replaced with another

document. Can be used to trigger actions (e.g., calling a function).

Usually placed within the <body> tag, for example:

 <body onUnload="displayFarewell()">

would cause the function displayFarewell() to execute automatically

every time the document is closed or refreshed.

The Document Object

The Document object represents the HTML document displayed in a browser

window. It has properties, methods and events that allow the programmer to change

the way the document is displayed in response to user actions or other events.

Document properties include:

 bgColor The colour of the background. For example:

 document.bgColor = "lightgreen";

would cause the background colour of the document to change to light-

green.

 Click here to change the background colour of this document.

 Click here to change it back again.

 fgColor The colour of the text. For example:

 document.fgColor = "blue";

 will cause the colour of the text in the document to change to blue.

 Click here to change the foreground colour of this document.

 Click here to change it back again.

 (Note that this will not work with all browsers).

linkColor The colour used for un-visited links (i.e., those that have not yet been

clicked-upon by the user). For example:

 document.linkColor = "red";

 will change the colour of all the un-visited links in a document to red.

alinkColor The colour used for an active link (i.e., the one that was clicked-upon

most recently, or is the process of being clicked). For example:

 document.alinkColor = "lightred";

 will change the colour of active links in a document to light-red.

vlinkColor The colour used for visited links (i.e., those that have previously been

clicked-upon by the user). For example:

 document.vlinkColor = "darkred";

 will change the colour of all the visited links in a document to dark-red.

title The title of the document, as displayed at the top of the browser

window. For example:

 document.title = "This title has been changed";

will replace the existing page title with the text "This title has been

changed".

 Click here to see this code in operation.

(Note that some browsers do not display a title bar. On such browsers

this code will have no effect.)

forms An array containing all the forms (if any) in the document. It accepts an

index number in the following way:

 forms[index-number]

where index-number is the number of a particular form. Forms are

automatically numbered from 0, starting at the beginning of the

document, so the first form in an HTML document will always have the

index-number 0.

An example of the use of the forms property is given below, in the

section on the form object.

Document methods include:

write() Allows a string of text to be written to the document. Can be used to

generate new HTML code in response to user actions. For example:

document.write("<h1>Hello</h1> ");

document.write("<p>Welcome to the new page</p>");
document.write("<p>To return to the lecture notes,");
document.write("click here

</p>");

will replace the existing page display with the HTML code contained

within the brackets of the document.write() methods. This code will

display the text "Hi, there!" and "Welcome to the new page", followed

by a link back to this page.

Note that all the HTML code within the brackets is enclosed within

double-quotes. Note too that the link declaration ('05_JS4.html') is

enclosed within single quotes. You can use either single or double

quotes in both cases, but you must be careful not to mix them up when

placing one quoted string inside another.

 Click here to see this code in operation.

The Form Object

When you create a form in an HTML document using the <form> and </form> tags,

you automatically create a form object with properties, methods and events that relate

to the form itself and to the individual elements within the form (e.g., text boxes,

buttons, radio-buttons, etc.). Using JavaScript, you can add behaviour to buttons and

other form elements and process the information contained in the form.

Form properties include:

name The name of the form, as defined in the HTML <form> tag when the

form is created, for example:

 <form name="myForm">

This property can be accessed using JavaScript. For example, this

paragraph is part of a form that contains the example buttons. It is the

third form in the document (the others contain the buttons for the

Window and Document object examples). To obtain the name of this

form, we could use the following code:

 alert(document.forms[2].name);

This code uses the document.forms property described earlier. Since

this is the third form in the document it will have the index-number 2

(remember that forms are numbered from 0).

Thus the code above will display the name property of the example

form, which is simply "formExamples".

 Click here to see this code in operation.

method The method used to submit the information in the form, as defined in

the HTML <form> tag when the form is created, for example:

 <form method="POST">

The method property can be set either to POST or GET (see under 'forms'

in any good HTML reference book if you're not sure about the use of

the POST and GET methods).

This property can be accessed using JavaScript. For example, the

present form has its method attribute set to "POST" (even though it's

not actually going to be submitted). So the code:

 alert(document.forms[2].method);

 will display the method property of the example form, which is "POST".

 Click here to see this code in operation.

action The action to be taken when the form is submitted, as defined in the

HTML <form> tag when the form is created, for example:

 <form action="mailto:sales@bigco.com">

The action property specifies either the URL to which the form data

should be sent (e.g., for processing by a CGI script)

or mailto: followed by an email address to which the data should be

sent (for manual processing by the recipient). See under 'forms' in any

good HTML reference book for more information on the use of

the action attribute.

This property can be accessed using JavaScript. For example, the

present form has its action attribute set to "mailto:sales@bigco.com"

(even though it's not actually going to be submitted). So the code:

 alert(document.forms[2].action);

will display the action property of the example form, which is

"mailto:sales@bigco.com".

 Click here to see this code in operation.

length The number of elements (text-boxes, buttons, etc.) in the form. For

example:

 alert(document.forms[2].length);

 will display the number of elements in this form (there are 22).

 Click here to see this code in operation.

elements An array of all the elements in the form. Individual elements are

referenced by index-number.

Elements are automatically numbered from 0, starting at the beginning

of the form, so the first element in a form will always have the index-

number 0. For example:

 alert(document.forms[2].elements[0].name);

will display the name of the first element in this form, which is the

button labelled "Get Form Name". It's name is "get_form_name".

 Click here to see this code in operation.

Form methods include:

submit() Submits the form data to the destination specified in

the action attribute using the method specified in the method attribute.

As such it performs exactly the same function as a standard 'submit'

button, but it allows the programmer greater flexibility. For example,

using this method it is possible to create a special-purpose 'submit'

button that has more functionality than a standard 'submit' button,

perhaps checking the data or performing some other processing before

submitting the form.

Form events include:

onSubmit Message sent each time a form is submitted. Can be used to trigger

actions (e.g., calling a function). Usually placed within the <form> tags,

for example:

 <form onSubmit="displayFarewell()">

would cause the function displayFarewell() to execute automatically

every time the form is submitted.

Text-boxes and text-areas

Each element within a form is an object in its own right, and each has properties,

methods and events that can be accessed using JavaScript.

Text-boxes and text-areas have almost identical sets of properties, methods and

events, so they will be considered together.

Text-box and text-area properties include:

name The name of the text-box or text-area, as defined in the

HTML <input> tag when the form is created, for example:

 <input type=text name="textBox1">

The name property of a text-box or other form element can be accessed

using JavaScript in the manner shown under the section

on document.length, above.

value Whatever is typed-into a text-box by the user. For example, here is a

simple text-box:

This text-box is named textBox1. Therefore, we can obtain any text

typed into it using the following line of code:

 alert(document.forms[2].textBox1.value);

 Type something into the text-box, then click here to see this code in

operation.

Text-box and text-area events include:

onFocus Event signal generated when a user clicks in a text-box or text-area. For

example, here is a simple text-box:

 This text-box was declared using the following HTML code:

<input type=text name="textBox2"
onFocus="alertOnFocus()">

The function called alertOnFocus() displays an alert box, so clicking

in the text-box above should trigger the function and cause the alert to

appear.

onBlur Event signal generated when a user clicks outside a text-box or text-area

having previously clicked inside it. For example, here is a simple text-

box:

 This text-box was declared using the following HTML code:

<input type=text name="textBox3"

onBlur="alertOnBlur()">

The function called alertOnBlur() displays an alert box, so clicking in

the text-box above and then clicking outside it should trigger the

function and cause the alert to appear.

Buttons, Radio-buttons and Checkboxes

Buttons, Radio-buttons and Checkboxes have almost identical sets of properties,

methods and events, so they will be considered together.

Button, Radio-button and Checkbox properties include:

name The name of the button, radio-button or checkbox, as defined in the

HTML <input> tag when the form is created, for example:

 <input type=button name="button1">

The name property of a button, radio-button or checkbox can be

accessed using JavaScript in the manner shown under the section

on document.length, above.

value The value given to the button when it is created. On standard buttons the

value is displayed as a label. On radio-buttons and check-boxes the

value is not displayed. For example, here is a button:

This button is named button1 and has the value Original value,

original label. We can change the value of the button, and hence it's

label, using the following code:

document.forms[2].button1.value = "New value, new

label";

 Click here to see this code in operation.

checked This property - which is used with radio-buttons and check-boxes but

not standard buttons - indicates whether or not the button has been

selected by the user. For example, here is a checkbox:

This checkbox is named checkbox 1. We can determine whether it has

been selected or not using the following code:

if (document.forms[2].checkbox1.checked == true)
{

 alert("Checked");
}
else

{
 alert("Not checked");
};

Try clicking on the check-box to select and un-select it, then click

here to see this code in operation.

Button, Radio-button and Checkbox methods include:

focus() Give the button focus (i.e., make it the default button that will be

activated if the return key is pressed). For example, here is a button that

displays an alert when clicked:

This button is named button2 and has the value Hello. We can give it

focus using the following code:

 document.forms[2].button2.focus();

 Click here to see this code in operation. A dotted border should appear

around the label on the button, indicating that the button now has focus.

Pressing the RETURN key should now activate the button, causing it to

display the alert just as if it had been clicked.

 blur() Removes focus from a button. For example, the code:

 document.forms[2].button2.blur();

 will remove the focus (indicated by the dotted line) from the button

above. Click here to see this code in operation.

click() Simulates the effect of clicking the button. For example, below is a

button that has the following code:

 document.forms[2].button2.click();

 Clicking on this button will have the same effect as clicking directly on

the button labelled 'Hello', i.e., it will display the 'Hello to you too'

dialog box.

Button, Radio-button and Checkbox events include:

onClick Signal sent when the button is clicked. Can be used to call a function.

Probably the most frequently-used of all the button events (all the

example buttons in this document use this method).

 For example:

 This button was declared using the following code:

<input type=button name="button3" value="Click Here"
onClick="alert('onClick event received')">

The code onClick="alert('onClick event received')" will cause

an alert dialog box to appear whenever the button is pressed.

onFocus Signal sent when the button receives focus (i.e., when it becomes the

default button, the one that is activated by pressing the RETURN key).

For example:

 This button was declared using the following code:

<input type=button name="button4" value="Click Here"

onFocus="alert('This button is now the default')">

The first time you click the button it will gain focus, and the alert will

appear. However, if you click again, no alert will appear because the

button still has focus as a result of the previous click. To make the alert

appear again, you will have to remove focus from the button (e.g., by

clicking somewhere else on the document) then restore it by clicking the

button again.

 onBlur Signal sent when the button loses focus. For example:

 This button was declared using the following code:

<input type=button name="button5" value="Click Here"

onBlur="alert('This button is no longer the
default')">

Clicking the button will not cause the alert to appear because it will only

give the button focus. However, if you remove focus from the button

(e.g., by clicking somewhere else on the document) the alert will

appear.

The Select Object

Selection-boxes behave in a very similar fashion to radio-buttons: they present several

options, of which only one can be selected at a time. They also have a similar set of

properties, methods and events.

The principal difference from a programming perspective is that selection-boxes don't

have a checked property. Instead, to find out which option has been selected, you must

use the SelectedIndex property.

UNIT-V

Other Objects

In addition to the objects we have already encountered, there are a number of other

objects that form part of the JavaScript language. Among the more important and

useful of these are the Date and Math objects.

The Date object

The Date object allows us to obtain the current date and time, and to perform various

timing operations.

In order to use the Date object, we must first create a new 'instance' of it. This is done

in the following way:

var myDateObject = new Date;

This creates an object called myDateObject that contains information about the date,

time, etc., at the instant it was created. The information in myDateObject doesn't

change as time passes, so if you want to know the correct time a few minutes later you

will have to create a new instance of the Date object.

Once you have created an instance of the Date object, you can use any of the methods

below to obtain information from it:

 getFullYear() Returns the current year as a four-digit number (e.g., 2000). For example:

 var myDateObject = new Date;

 var currentYear = myDateObject.getFullYear();

 alert(currentYear);

 Click here to see this example working.

getMonth() Returns the current month as an integer from 0-11 (e.g., November = 10). For

example:

 var myDateObject = new Date;

 var currentMonth = myDateObject.getMonth();

 alert(currentMonth);

 Click here to see this example working.

 getDate() Returns the day of the month as an integer between 1 and 31. For example:

 var myDateObject = new Date;

 var currentDate = myDateObject.getDate();

 alert(currentDate);

 Click here to see this example working.

getDay() Returns the day of the week as an integer between 0 and 6, starting from

Sunday (e.g., Tuesday = 2). For example:

 var myDateObject = new Date;

 var currentDay = myDateObject.getDay();

 alert(currentDay);

 Click here to see this example working.

 getHours() Returns the hour of the day as an integer between 0 and 23. For example:

 var myDateObject = new Date;

 var currentHour = myDateObject.getHours();

 alert(currentHour);

 Click here to see this example working.

 getMinutes()
Returns the number of minutes since the beginning of the hour as an integer.

For example:

 var myDateObject = new Date;

 var currentMinute = myDateObject.getMinutes();

 alert(currentMinute);

 Click here to see this example working.

getSeconds() Returns the number of seconds since the start of the minute as an integer.

For example:

 var myDateObject = new Date;

 var currentSecond = myDateObject.getSeconds();

 alert(currentSecond);

 Click here to see this example working.

In order to use the Date object, it is often necessary to convert the data it produces,

e.g., to obtain the names of days and months rather than just numbers. To see an

example of the Date object in use, click here.

The Date object also has methods to obtain time intervals as small as milliseconds, to

convert between various time systems, to parse dates and times in various formats into

individual elements, and to perform various other time-related operations.

http://www.cs.ucc.ie/~gavin/javascript/06_DateExample.html

The Math object

The Math object allows us to perform various mathematical operations not provided by

the basic operators we have already looked at.

Its methods include the following:

 sqrt(x) Returns the square root of x. For example:

 var inputValue = prompt("Please enter a value", "");

 var squareRoot = Math.sqrt(inputValue);

 alert(squareRoot);

 Click here to see this example working.

 log(x) Returns the natural logarithm of x. For example:

 var inputValue = prompt("Please enter a value", "");

 var logOfX = Math.log(inputValue);

 alert(logOfX);

 Click here to see this example working.

 max(x,y) Returns whichever is the larger of x and y. For example:

 var inputX = prompt("Please enter a value for X", "");

 var inputY = prompt("Please enter a value for Y", "");

 var largerOfXY = Math.max(inputX, inputY);

 alert(largerOfXY);

 Click here to see this example working.

 min(x,y) Returns whichever is the smaller of x and y.

 Works in a similar way to max(x,y), above.

 round(x) Returns the value of x rounded to the nearest integer. For example:

 var inputvalue = prompt("Please enter a value", "");

 var roundedValue = Math.round(inputValue);

 alert(roundedValue);

 Click here to see this example working.

 ceil(x) Returns the absolute value of x rounded up to the next integer value.

 Works in a similar way to round(x), above.

 floor(x) Returns the absolute value of x rounded down to the next integer value.

 Works in a similar way to round(x), above.

 abs(x) Returns the absolute value of x. For example:

 var rawValue = prompt("Please enter a value", "")

 var absValue = Math.abs(rawValue)

 alert(absValue);

 Click here to see this example working.

 pow(x,y) Returns the value of x raised to the power y. For example:

var baseValue = prompt ("Please enter base value",

"");

 var expValue = prompt ("Please enter exponent", "");

 var baseToPower = Math.pow(baseValue, expValue);

 alert(baseToPower);

ONLINE QUESTIONS

UNIT-I

Questions opt1 opt2 opt3 opt4

o
p
t

o
p
t answer

5 6

 <script

type="text/ja

vascript">

x=4+"4";

document.wri

te(x);

</script>

Output------? 44 8 4 Error output 44

<script

type="text/ja

vascript"

language="ja

vascript">

var qpt =

"Qualiyt

Point

Technologies

";

var result =

qpt.split(" ");

document.wri

te(result);

</script> Quality

Q,u,a,l,i,t,y,P

,o,i,n,t,T,e,c,

h,n,o,l,o,g,i,e

,s

Qualiyt,P

oint,Tech

nologies

QualityPointTechnologie

s

Qualiyt,Po

int,Techno

logies

Is it possible

to nest

functions in

JavaScript? True FALSE True

<script>

document.wri

te(navigator.a

ppCodeName

);

</script>

get code

name of

the

browser of

a visitor

set code

name of the

browser of a

visitor

None of

the above

get code

name of

the

browser of

a visitor

Which of the

following is

true?

If

onKeyDo

wn returns

false, the

key-press

event is

cancelled

If

onKeyPress

returns false,

the key-

down event

is cancelled.

If

onKeyDo

wn

returns

false, the

key-up

event is

cancelled

.

 If onKeyPress returns

false, the key-up event is

canceled.

If

onKeyDo

wn returns

false, the

key-press

event is

cancelled

Scripting

language are

High

Level

Programm

ing

language

 Assembly

Level

programmin

g language

 Machine

level

program

ming

language

High

Level

Programm

ing

language

Which best

explains

getSelection()

?

Returns

the

VALUE

of a

selected

OPTION.

Returns

document.U

RL of the

window in

focus.

Returns

the value

of cursor-

selected

text

Returns the VALUE of a

checked radio input.

Returns

the value

of cursor-

selected

text

<script

language="ja

vascript">

function x()

{

var s= "Good

100%";

var pattern =

/\D/g;

var output=

s.match(patte

rn);

document.wri

te(output);

}

</script>
 Good %

 1,0,0

G,o,o,d,

% Error G,o,o,d,%

<script

language="ja

vascript">

var

qpt="QUALI

TY POINT

TECHNOLO

GIES";

alert(qpt.char

At(qpt.length

-1));

</script>
 P

E S Error S

 Choose the

client-side

JavaScript

object:
Database Cursor Client FileUpLoad

FileUpLoa

d

Are java and

javascript the

same?
 NO

 YES NO

Syntax for

creating a

RegExp

object:

(a). var

txt=new

RegExp(patte

rn,attributes);

(b). var

txt=/pattern/a

ttributes;

Which of the

above

mentioned

syntax will

correct?

(a) only

 (b) only

Both (a)

and (b) None

Both (a)

and (b)

<script

language="ja

vascript">

function

x(z,t)

{

alert(x.length

);

}

</script>

output:

?
 Error

1 2 3 2

What is mean

by "this"

keyword in

javascript?

 It refers

current

object

It referes

previous

object

 It is

variable

which

contains

value None of the above

 It refers

current

object

In JavaScript,

Window.pro

mpt() method

return true or

false value ?
FALSE True

None of

above FALSE

Math. round(-

20.51)=?
20 -21 19 None -21

) <script

language="ja

vascript">

function x()

{

var s =

"Quality

100%!{[!!";

var pattern =

/\w/g;

var output =

s.match(patte

rn);

document.wri

te(output);

}

</script>
 %,!,{,[,!,! Q,u,a,l,i,t,y,1

,0,0

Quality

100 Error

Q,u,a,l,i,t,

y,1,0,0

<script

type="text/ja

vascript"

language="ja

vascript">

var qpt= new

Array();

qpt[0] =

"WebDevelo

pment";

qpt[1]="Appl

icationDevelo

pment"

qpt[2]="Testi

ng"

qpt[3] =

"QualityPoint

Technologies

";

document.wri

te(qpt[0,1,2,3

]);

</script>
Error

QualityPoint

Technologie

s

WebDev

elopment

WebDevelopmnet,Applic

ationDevelopment,Testin

g,QualityPointTechnolog

ies

QualityPoi

ntTechnol

ogies

Choose the

server-side

JavaScript

object:

FileUpLoa

d Function File Date File

parseFloat(9+

10)=?
19 910 None None

<script

language="ja

vascript">

function x()

{

document.wri

te(2+5+"8");

}

</script>
 258

Error 7 78 78

keyword is

used to

declare

variables in

javascript. Var Dim String Var

 In Javascript,

Which of the

following

method is

used to

evaluate the

regular

expression?

eval(2*(3

+5))

evaluate(2*(

3+5))

evalu(2*(

3+5)) None of the above

eval(2*(3

+5))

<script

language="ja

vascript">

function x()

{

var s=

"quality

100%";

var pattern =

/\d/g;

var output=

s.match(patte

rn);

document.wri

te(output);

}

</script>
 100

 1,0,0

q,u,a,l,i,t,

y,% Error 1,0,0

<script

type="text/ja

vascript"

language="ja

vascript">

qpt=((45%2)

==0)? "hello"

: "bye";

document.wri

te(qpt);

</script> hello bye

Error in

string

handling None of the above bye

)<script

language="ja

vascript">

function x()

{

var qpt =

"QualityPoint

Technologies

";

var pattern =

new

RegExp("POI

iNT","i");

document.wri

te(qpt.match(

pattern));

}

</script> Error POIiNT Point null null

How do you

create a new

object in

JavaScript?

var obj =

{};

var obj =

Object();

var

obj=new

{}; None of the above

var obj =

{};

In Javascript,

What does

isNaN

function do ?

Return

true if the

argument

is not a

number.

Return false

if the

argument is

not a number

Return

true if the

argument

is a

number None of the above

Return

true if the

argument

is not a

number.

 If x=103 &

y=9 then

x%=y , what

is the value

of x after

executing

x%=y? 4 3 2 5 4

Choose the

external

object: Date Option Layer Checkbox Checkbox

Choose the

four symbol

pairs that

represent

RegExp

properties

lastMatch,

lastParent,

leftContext,

and

rightContext,

respectively:

$&, $+,

$`, $'

 $+, $&, $',

$`

$&, $~,

$`, $' $+, $&, $`, $'

 $&, $+,

$`, $'

Which of the

following

properties

hold the

values of the

pixels of the

length of the

width and

height of the

viewer's

screen

resolution?

screen.wid

th and

screen.hei

ght

Resolution.w

idth and

Resolution.h

eight

screen.pi

xels.widt

h and

screen.pi

xels.heig

ht

ViewerScreen.width and

ViewerScreen.height

screen.wid

th and

screen.hei

ght

ParseInt(“15”

,10)=? 15 10 151 150 15

Which

JavaScript

feature uses

JAR files?

 Object

signing Style sheets

Netcaster

channels Image rollovers

 Object

signing

How to

assign a

function to a

variable with

the

JavaScript

Function

contructor ?

 var

f=Functio

n("x","y",

"return

x+y");

var

f=Function(x

,y){ return

x+y;}

var f=

new

Function(

"x", "y",

"return x

+ y");

var f= new

Function("

x", "y",

"return x +

y");

In JavaScript,

Window.alert

() is used to

allow user to

enter

something True False None False

<script

language="ja

vascript">

function x()

{

var qpt =

"We are fast

growing

Software

Company

located in

Chennai,

India.";

var pattern =

new

RegExp("in",

"gi");

document.wri

te(pattern.exe

c(qpt) + " ");

document.wri

te(pattern.exe

c(qpt) + " ");

document.wri

te(pattern.exe

c(qpt) + " ");

}

</script>
 in in In

 in in in in in null in null null
 in in In

 Is Javascript

has any date

data type?
 Yes

 No

 No

Math. round(-

20.5)=?
-21 20 -20 21 -20

?_name is it

valid

javascript

identifier?
 Yes

 No

 No

<script

language="ja

vascript">

function x()

{

var qpt =

"First come,

first served";

var pattern =

/first/gi;

document.wri

te(qpt.match(

pattern)[1]);

}

</script> first undefined First Error first

(a). // , /*

**/

(b). / , /**

......./ , /*

(c). /*......*/ ,

//

(d). *......*\ ,

//

In javascript,

Which of the

above

Comments

lines are used

? Only (d) Only ©

 Either

(c) or (d) Only (b) Only ©

 <script

language="ja

vascript">

function x()

{

var s = "Give

100%!{[!!";

var pattern =

/\W/g;

var output =

s.match(patte

rn);

document.wri

te(output);

}

</script> ,%,!,{,[,!,! G,i,v,e,1,0,0 Give 100 Error ,%,!,{,[,!,!

Which best

describes

void?
A method A function

A

statement An operator

An

operator

<script

type="text/ja

vascript"

language="ja

vascript">

var

qpt="Quality

PointTechnol

ogies";

var result

=qpt.lastInde

xOf("l");

document.wri

te(result);

</script>
3

18 17 19 18

<script

language="ja

vascript">

function x()

{

var qpt =

"First come,

first served";

var pattern =

/first/g;

document.wri

te(qpt.match(

pattern)[1]);

}

</script> first First

undefine

d None undefined

<script

language="ja

vascript">

function

sum(x)

{

function

add(y)

{

return x+y;

}

return add;

}

function

callme() {

result=sum(5)

(5);

alert(result);

}

</script>

If you call the

function

callme(),

what will

happen ? 10

Error in

calling

Function 5 None 10

Who

invented the

javascript

programming

language?

Tennis

Ritchie

 James

Gosling

Brendan

Eich

Brendan

Eich

<script

type="text/ja

vascript">

document.wri

te("<h1>This

is a

heading</h1>

");

document.wri

te("<p>This

is a

paragraph.</p

>");

document.wri

te("<p>This

is another

paragraph.</p

>");

</script>

Can you

write HTML

tag inside the

javascript ?
 No

 Yes

Impossibl

e

 Yes

Which

feature is

supported in

MSIE 3.x? split()

document.cl

ear() join() charAt() charAt()

How to

speicfy the

color of the

hypertext

links with

JavaScript ?

document.

linkColor

="#00FF0

0";

document.L

Color="#00F

F00";

document

.LinkC="

#00FF00

";

document.hyperTextLink

="#00FF00":

document.

linkColor

="#00FF0

0";

<script

language="ja

vascript">

function x()

{

var qpt =

"QualityPoint

Technologies

";

var pattern =

/point/;

var output=

qpt.search(pa

ttern);

document.wri

te("Position:

" + output);

}

</script> Position-7 Position-1 null error Position-1

___method

returns the

number of

milliseconds

in a date

string. B54 setMinutes() parse() parse()

_________co

nverts a

string to

floating point

numbers. eval ParseInt

ParseFloa

t None ParseFloat

attempts to

evaluate a

string

representing

any javascript

literals or

variables,

converting it

to a number. eval parseFloat parseInt None eval

Which is not

an attribute of

the cookie

property? path host secure domain host

How do

substring()

and substr()

differ?

One is not

a method

of the

String

object.

substr()

takes three

arguments,

substring()

only two.

 Only one

accepts a

desired

string

length as

an

argument

.

Besides the spelling,

nothing.

 Only one

accepts a

desired

string

length as

an

argument.

Which is not

a reserved

word? interface short program throws program

 In Javascript,

Which of the

following

method is

used to find

out the

character at a

position in a

string? charAt()

CharacterAt(

)

CharPos(

) characAt() charAt()

<script

type="text/ja

vascript"

language="ja

vascript">

var qpt =

"QualityPoint

Technologies

";

var result

=qpt.substrin

g(7,8);

document.wri

te(result);

</script>
 Po yP oi P P

UNIT-II

Questions opt1 opt2 opt3 opt4
opt
5

o
p
t
6 answer

 How do you
delete an
element from
an options
array? Set it to false Set it to null.

Set it to
undefine
d

 Set it to -
1 Set it to null.

 Is javaScript
case sensitive
?

 Yes

 No Yes

JavaScript
RegExp Object
has modifier 'i'
to

Perform case-
sensitive
matching

Perform case-
insensitive
matching

Perform
both
case-
sensitive
&case-
insensitiv
e
matching

Perform case-
insensitive
matching

What are the
following
looping
structures are
available in
javascripts?

for,forecach
foreach,whilelo
op

do-while
loop,fore
ach

for ,
while
loop for , while loop

Which of
these is not a
method of the
Math object? atan() atan2() eval() acos() eval()

<script
type="text/jav
ascript">
var s =
"9123456 or
80000?";
var pattern =
/\d{4}/;
var output =
s.match(patter
n);
document.writ
e(output);
</script> 9123 91234 80000 None 9123

In javascript,
RegExp Object
Method test()
is used to
search a string
and returns
_________ true or false found value index None true or false

What property
would you use
to redirect a
visitor to
another page? document.URL

window.locatio
n.href

.docume
nt.locatio
n.href link.href

window.locatio
n.href

a.) var
qpt="Quality
Point
Technologies";

b.) var
qpt=new
String("Quality
Point
Technologies")
;

Question:
In javascript,
which of the
above
statement can
used for string
declaration ?

Either (a) or
(b) Only (a)

Neither
(a) nor
(b) Only (b) Either (a) or (b)

 <script
type="text/jav
ascript"
language="jav
ascript">
var qpt =
"QualityPointT
echnologies";
var result
=qpt.indexOf("
Tech");
document.writ
e(result);
</script> 11 12 15 13 12

<script
language="jav
ascript">
function x()
{
var s = "Eat to
live, but do
not live to
eat";
var pattern =
new
RegExp("eat$"
);
document.writ
e(pattern.exec
(s));
}
</script> Eat eat

undefine
d Eat eat eat

<script
language="jav
ascript">
function x()
{
var qpt = "We
are fast
growing
Software
Company
located in
Chennai,
India.";
var pattern =
new
RegExp("in","g
");

document.writ
e(pattern.exec
(qpt) + " ");
document.writ
e(pattern.exec
(qpt) + " ");
document.writ
e(pattern.exec
(qpt) + " ");
}

</script>

 in in In in in in

in in null

 in null
null

in in null

_________me
thod is used to
remove focus
from the
specified
object. blur() focus() None blur()

parseFloat(“FF
2”)=? 152 FF2 NaN None NaN

eval((20*4)=?
Nan 204 24 80 80

<script
language="jav
ascript">
function x()
{
var qpt =
"QualityPointT
echnologies";
var pattern =
new
RegExp("TECH
NOLOGIES","i"
);
document.writ
e(qpt.match(p
attern));
}
</script> null Technologies

TECHNOL
OGIES Error Technologies

Javascript is a

typed
language.

tightly
loosely

loosely

The
development
environment
offers which
standard
construct for
data validation

Super
controlled
loop
constructs

Case sensitivity
check

Validatio
n
construct
s

All of the
mentione
d

All of the
mentioned

The main
purpose of a
“Live Wire” in
NetScape is to

Create linkage
between client
side and
server side

Permit server
side, JavaScript
code, to
connect to
RDBMS

Support
only non
relational
database

To
interpret
JavaScrip
t code

Permit server
side, JavaScript
code, to
connect to
RDBMS

The script tag
must be
placed in head head and body

title and
head

All of the
mentione head and body

A JavaScript
program
developed on
a Unix
Machine

will throw
errors and
exceptions

 must be
restricted to a
Unix Machine
only

will work
perfectly
well on a
Windows
Machine

will be
displayed
as a
JavaScrip
t text on
the
browser

will work
perfectly well
on a Windows
Machine

JavaScript is
ideal to

make
computations
in HTML
simpler

minimize
storage
requirements
on the web
server

increase
the
downloa
d time
for the
client

None of
the
mentione
d

minimize
storage
requirements
on the web
server

Which
attribute is
used to
specify that
the script is
executed
when the page
has finished
parsing (only
for external
scripts) parse async defer type async

JavaScript
Code can be
called by using RMI

Triggering
Event

Preproce
ssor

Function/
Method

Function/Meth
od

. JavaScript
can be written

directly into JS
file and
included into
HTML

directly on the
server page

directly
into
HTML
pages

All of the
mentione
d

directly into JS
file and
included into
HTML

Which of the
following
Attribute is
used to
include
External JS
code inside
your HTML
Document . Src ext script link . Src

A proper
scripting
language is a

High level
programming
language

Assembly level
programming
language

Machine
n level
program
ming
language

Low level
program
ming
language

High level
programming
language

The type of a
variable that is
volatile is

Volatile
variable

Mutable
variable

Immutab
le
variable

Dynamic
variable

Mutable
variable

A hexadecimal
literal begins
with 0 0x 0X

Both 0x
and 0X Both 0x and 0X

The
generalised
syntax for a
real number
representation
is

[digits][.digits]
[(E|e)[(+|-
)]digits]

[digits][+digits][
(E|e)[(+|-
)]digits]

[digits][(E
|e)[(+|-
)]digits]

[.digits][d
igits][(E|
e)[(+|-
)]digits]

[digits][.digits][
(E|e)[(+|-
)]digits]

When there is
an indefinite
or an infinity
value during
an arithmetic
value
computation,
javascript

Prints an
exception
error

Prints an
overflow error

Displays
“Infinity”

Prints the
value as
such

Displays
“Infinity”

Which of the
following is
not
considered as
an error in
JavaScript? Syntax error

Missing of
semicolons

Division
by zero

All of the
these Division by zero

The escape
sequence ‘\f’
stands for

Floating
numbers

Representation
of functions
that returns a
value

\f is not
present
in
JavaScrip
t

Form
feed Form feed

The snippet
that has to be
used to check
if “a” is not
equal to “null”
is

a.
b.
c.
d. if(a!=null) if (!a) if(a!null)

if(a!==nul
l) if(a!==null)

The statement
a===b refers
to

Both a and b
are equal in
value, type
and reference
address

Both a and b
are equal in
value

Both a
and b are
equal in
value
and type

There is
no such
statemen
t

Both a and b
are equal in
value and type

Assume that
we have to
convert
“false” that is
a non-string to
string. The
command that
we use is
(without
invoking the
“new”
operator) false.toString() String(false)

String
newvaria
ble=”fals
e”

Bothfalse
.toString(
)and
String(fal
se)

Bothfalse.toStri
ng()and
String(false)

The functions
provide() and
require() of
Dojo toolkit
and Google’s
Closure library
are used for

declaring and
loading
modules

 loading and
declaring
modules

 Both a
and b

 None of
the
mentione
d

declaring and
loading
modules

The maximum
number of
global symbols
a module can
define is

2 3 1 4 1

To define each
of the set
classes as a
property of
the sets object
(namespace)
for the
module, the
statement is

sets =
sets.AbstractE
numerableSet.
extend();

sets.SingletonS
et =
sets.AbstractEn
umerableSet.ex
tend(...);

sets.Singl
etonSet =
sets.exte
nd(...);

sets =
sets.exte
nd(...);

sets.SingletonS
et =
sets.AbstractEn
umerableSet.ex
tend(...);

var Set =
sets.Set;
var s = new
Set(1,2,3);
What could be
the efficiency
quotient of
the above two
statements ?

The
programmer
imports at
once the
frequently
used values
into the global
namespace.

 There is no
efficiency
quotient, the
programmer
tries to make it
inefficient.

The
program
mer
needs to
import
the Sets
everytim
e he
wants to
use it.

 All of the
mentione
d

The
programmer
imports at once
the frequently
used values
into the global
namespace.

The scope of a
function is
also called as

The function’s
scope

Module
function

Modulat
ed
function

Private
function

Module
function

Modules that
have more
than one item
in their API
can

 Assign itself to
a global
variable

Invoke another
module of the
same kind

Return a
namespa
ce object

 Invoke
another
module
of the
same
kind

Return a
namespace
object

The provides()
function and
the
exportsobject
are used to

Register the
module’s API
and Store their
API

Store the
module’s API
and register
their API

Both
Register
the
module’s
API and
Store
their API
and Store
the
module’s
API and
register
their API

None of
the
mentione
d

Register the
module’s API
and Store their
API

Consider the
following code
snippet
var sets =
com.davidflan
agan.collectio
ns.sets;
What is the
programmer
trying to do in
the above
code snippet?

Importing a
single module

Importing a
module
partially

Importin
g a
namespa
ce

Importin
g the
entire
module

Importing the
entire module

The
properties()
method is a

Enumerable
method

Non-
enumerable
method

Operatio
nal
method

None of
the
mentione
d

Non-
enumerable
method

What can be
done in order
to avoid
creation of
global
variables in
JavaScript?

To use a
method that
defines all the
variables

To use an
object that has
the reference
to all the
variables

To use an
object as
its
namespa
ce

To use
global
functions

To use an
object as its
namespace

JavaScript is a

___ language

Object-
Oriented High-level

Assembly
-
language

Object-
Based Object-Based

The output for
the following
code snippet
would most
appropriately
be
var a=5 , b=1
var obj = { a :
10 }
with(obj)
{
 alert(b)
} 10 Error 1 5 1

A conditional
expression is
also called a

Alternate to if-
else Immediate if

If-then-
else
statemen
t

None of
the these Immediate if

Which is a
more efficient
code snippet ?
Code 1 :
for(var
num=10;num>
=1;num--)
{

document.writ
eln(num);
}
Code 2 :
var num=10;
while(num>=1
)
{

document.writ
eln(num);
 num++;
} Code 1 Code 2

Both
Code 1
and
Code2

Ca
nn
ot
Co
mp
are Code 1

A statement
block is

conditional
block

block that
contains a
single
statement

Both
condition
al block
and block
that
contains
a single
statemen
t

 block
that
combines
multiple
statemen
ts into a
single
compoun
d
statemen
t

 block that
combines
multiple
statements into
a single
compound
statement

When an
empty
statement is
encountered,
a JavaScript
interpreter

Ignores the
statement

Prompts to
complete the
statement

Throws
an error

Throws
an
exception

Ignores the
statement

The “var” and
“function” are Keywords

Declaration
statements

Datatype
s

Prototyp
es

Declaration
statements

Consider the
following
statements
switch(express
ion)
{
 statements
}
In the above
switch syntax,
the expression
is compared
with the case
labels using
which of the
following
operator(s) ?
 double equals equals equal

triple
Equals triple Equals

Consider the
following
statements
var count = 0;
while (count <
10)
{

console.log(co
unt);
 count++;
}
In the above
code snippet,
what
happens?

a. The values
of count is
logged or
stored in

particular
location or
storage.

The value of
count from 0 to
9 is displayed in
the console.

An error
is
displayed

An
exception
is thrown

The value of
count from 0 to
9 is displayed in
the console.

The
enumeration
order
becomes
implementatio
n dependent
and non-
interoperable
if :

If the object
inherits
enumerable
properties

The object
does not have
the properties
present in the
integer array
indices

The
delete
keyword
is never
used

Object.de
finePrope
rty() is
not used

If the object
inherits
enumerable
properties

UNIT-III

Questions opt1 opt2 opt3 opt4

op

t5

op

t6 answer

Consider the following

code snippet

function printArray(a)

{

 var len = a.length, i

= 0;

 if (len == 0)

console.log("Empty

Array");

 else

 {

 do

 {

console.log(a[i]);

 } while (++i <

len);

 }

}

What does the above

code result?

Prints the

numbers in the

array in order

. Prints the

numbers in

the array in

the reverse

order

Prints 0 to

the length

of the

array

Prints

“Empty

Array”

Prints the

numbers in the

array in order

What are the three

important

manipulations done

in a for loop on a loop

variable?

Updation,

Incrementatio

n,

Initialization

Initialization,

Testing,

Updation

Testing,

Updation,

Testing

Initialization,

Testing,

Incrementati

on

Initialization,

Testing,

Updation

Consider the

following code

snippet

function tail(o)

{

 for (; o.next; o =

o.next) ;

 return o;

}

Will the above code

snippet work? If not,

what will be the

error?

No, this will

throw an

exception as

only numerics

can be used in

a for loop

No, this will

not iterate

c.

Yes, this

will work

No, this will

result in a

runtime error

with the

message

“Cannot use

Linked List”

Yes, this will

work

Consider the

following code

snippet

for(var p in o)

 console.log(o[p]);

The above code is

equivalent to which

code?

a. for (var i = 0;i <

length;i++)

console.log(a[

i]);

for (int i =

0;i <

a.length;i++)

console.log(a

[i]);

for (var i

= 0;i <=

a.length;i+

+)

console.lo

g(a[i]);

 for (var i =

1;i <

a.length;i++)

console.log(a

[i]);

length;i++)

console.log(a[

i]);

One of the special

feature of an

interpreter in

reference with the for

loop is that

Before each

iteration, the

interpreter

evaluates the

variable

expression

and assigns

the name of

the property

The

iterations can

be infinite

when an

interpreter is

used

The body

of the loop

is

executed

only once

All of the

mentioned

Before each

iteration, the

interpreter

evaluates the

variable

expression

and assigns

the name of

the property

What will happen if

the body of a for/in

loop deletes a

property that has not

yet been

enumerated?

The property

will be stored

in a cache

The loop will

not run

That

property

will not be

enumerate

d

All of the

mentioned

That property

will not be

enumerated

What will be the step

of the interpreter in a

jump statement when

an exception is

thrown?

The

interpreter

stops its work

The

interpreter

throws

another

exception

The

interpreter

jumps to

the nearest

enclosing

exception

handler

None of the

mentioned

The

interpreter

jumps to the

nearest

enclosing

exception

handler

Consider the

following code

snippet

while (a != 0)

{

 if (a == 1)

 continue;

 else

 a++;

}

What will be the role

of the continue

keyword in the above

code snippet?

The continue

keyword

restarts the

loop

The continue

keyword

skips the

next iteration

The

continue

keyword

skips the

rest of the

statements

in that

iteration

None of the

mentioned

The continue

keyword skips

the rest of the

statements in

that iteration

Consider the

following code

snippet

function f(o)

{

 if (o ===

undefined) debugger;

}

What could be the

task of the statement

debugger?

It does

nothing but a

simple

breakpoint

It debugs the

error in that

statement

and restarts

the

statement’s

execution

It is used

as a

keyword

that

debugs the

entire

program

at once

All of the

mentioned

It does

nothing but a

simple

breakpoint

Among the keywords

below, which one is

not a statement? debugger with if use strict use strict

The unordered

collection of

properties, each of

which has a name

and a value is called String Object

Serialized

Object

All of the

these Object

The object has three

object attributes

namely

Class,

parameters,

object’s

extensible flag

Prototype,

class,

objects’

parameters

Prototype,

class,

object’s

extensible

flag

Native

object,

Classes and

Interfacces

and Object’s

extensible

flag

Prototype,

class, object’s

extensible flag

Consider the

following code

snippet :

var book = {

"main title":

"JavaScript",

'sub-title': "The

Definitive Guide",

"for": "all

audiences",

author: {

firstname: "David",

surname:

"Flanagan"

}

};

In the above snippet,

firstname and

surname are properties

property

values

property

names objects

property

names

A linkage of series of

prototype objects is

called as :

prototype

stack

prototype

chain

prototype

class prototypes
prototype

chain

Consider the below

given syntax

book[datatype]=assig

nment_value;

In the above syntax,

the datatype within

the square brackets

must be An integer A String An object

None of the

mentioned A String

To determine

whether one object is

the prototype of (or is

part of the prototype

chain of) another

object, one should use

the isPrototypeOf(

) method

equals()

method

 ===

operator

None of the

mentioned

isPrototypeOf(

) method

Consider the

following code

snippet

function f() {};

The above prototype

represents a Function f

A custom

constructor

Prototype

of a

function Not valid

A custom

constructor

The purpose of

extensible attribute is

to

make all of

the own

properties of

that object

nonconfigurab

le

 to configure

and bring a

writable

property

“lock

down”

objects

into a

known

state and

prevent

All of the

mentioned

“lock down”

objects into a

known state

and prevent

outside

tampering

outside

tampering

Identify the process

done in the below

code snippet

o = {x:1,

y:{z:[false,null,""]}};

s = JSON.stringify(o);

p = JSON.parse(s);

Object

Encapsulation

Object

Serialization

Object

Abstractio

n

Object

Encoding

Object

Serialization

The basic purpose of

the toLocaleString()

is to

a. return

localised

object

representation

return a

parsed string

return a

local time

in the

string

format

return a

localized

string

representatio

n of the

object

return a

localized

string

representation

of the object

UNIT-IV

Question
Opti
on A Option B Option C Option D Answer

 <script
type="text/javasc
ript">
x=4+"4";
document.write(x
);
</script>

Output------? 44 8 4 Error output 44

<script
type="text/javasc
ript"
language="javas
cript">
var qpt = "Qualiyt
Point
Technologies";
var result =
qpt.split(" ");
document.write(r
esult);
</script>

Quali
ty

Q,u,a,l,i,t,y,P,o,i
,n,t,T,e,c,h,n,o,l,
o,g,i,e,s

Qualiyt,Poi
nt,Technol
ogies QualityPointTechnologies

Qualiyt,Poi
nt,Technol
ogies

Is it possible to
nest functions in
JavaScript?

TRU
E FALSE TRUE

<script>
document.write(
navigator.appCo
deName);
</script>

get
code
nam
e of
the
brow
ser
of a
visito
r

set code name
of the browser
of a visitor

 None of
the above

get code
name of
the
browser of
a visitor

Scripting
language are

High
Level
Progr
ammi
ng
langu
age

Assembly Level
programming
language

Machine
level
programmi
ng
language

High Level
Programm
ing
language

<script
language="javas
cript">
function x()
{
var s= "Good
100%";
var pattern =
/\D/g;
var output=
s.match(pattern);
document.write(
output);
}
</script>

Good
% 1,0,0 G,o,o,d,% Error G,o,o,d,%

<script
language="javas
cript">
var
qpt="QUALITY
POINT
TECHNOLOGIE
S";
alert(qpt.charAt(
qpt.length-1));
</script> P E S Error S

 Choose the
client-side
JavaScript
object:

Data
base Cursor Client FileUpLoad

FileUpLoa
d

Are java and
javascript the
same? NO YES

<script
language="javas
cript">
function x(z,t)
{
alert(x.length);
}
</script>
output:
? Error 2 1 3 Error

What is mean by
"this" keyword in
javascript?

It
refer
s
curre
nt
objec
t

It referes
previous object

It is
variable
which
contains
value None of the above

It referes
previous
object

In JavaScript,
Window.prompt()
method return
true or false
value ?

FAL
SE TRUE

None of
above FALSE

Math. round(-
20.51)=? 20 -21 19 None 20

<script
language="javas
cript">
function x()
{
var s = "Quality
100%!{[!!";
var pattern =
/\w/g;
var output =
s.match(pattern);
document.write(
output);
}
</script>

%,!,{,
[,!,!

Q,u,a,l,i,t,y,1,0,
0

Quality
100 Error

Q,u,a,l,i,t,y
,1,0,0

<script
type="text/javasc
ript"
language="javas
cript">
var qpt= new
Array();
qpt[0] =
"WebDevelopme
nt";
qpt[1]="Applicati
onDevelopment"
qpt[2]="Testing"
qpt[3] =
"QualityPointTec
hnologies";
document.write(
qpt[0,1,2,3]);
</script> Error

QualityPointTec
hnologies

WebDevel
opment

WebDevelopmnet,ApplicationD
evelopment,Testing,QualityPoi
ntTechnologies

QualityPoi
ntTechnol
ogies

Choose the
server-side
JavaScript
object:

FileU
pLoa
d Function File Date File

parseFloat(9+10)
=? 19 910 None None

Which of the
following are the
features of
jQuery?

Effici
ent
quer
y
meth
od
for
findin
g the
set of
docu
ment
elem

Expressive
syntax for
referring to
elements in the
document

All of the
mentioned

All of the
mentioned

ents

 Which of the
following is a
single global
function defined
in the jQuery
library?

jQuer
y() Queryanalysis()

None of
the
mentioned jQuery()

Which of the
following is a
factory function? $() jQuery()

Queryanal
ysis() jQuery()

Which is the
code that asks
for the set of all
div elements in a
document?

 var
divs
=
$(div
);

var divs =
jQuery("div");

var divs =
$("div");

var divs =
$("div");

 Which is the
method that
operates on the
return value of
$()?

show
() css() click() done() css()

Consider the
following code
snippet

<script
src="jquery-
1.4.2.min.js"></s
cript>

What does the
min mean?

Mini
mise
d
versi
on Miniature

Minimised
parameter
s

Minimised
version

Which of the
following is a
heavily
overloaded
function?

jQuer
y() $() script() Both a and b

Both a and
b

Which of the
following is an
equivalent
replacement of
$(document).rea
dy(f)?

jQuer
y(f) $(f)

None of
the
mentioned $(f)

 Which of the
following is used
for parsing
JSON text?

jQuer
y.eac
h()

jQuery.parseJS
ON()

jQuery.no
Conflict()

jQuery.par
seJSON()

Which of the
following is a
utility function in
jQuery?

jQuer
y.eac
h()

jQuery.noConfli
ct()

jQuery.par
seJSON()

jQuery.no
Conflict()

Why is the total
size of the page
important?

Time
taken
to
down
load

 Size of IP
packet should
be less than
65500

Size of IP
packet
should be
less than
65535 Both a and c

 Both a
and c

The word
“document”
mainly refers to

Dyna
mic
Infor
matio
n

 Static
Information

Both a and
b

Static
Informatio
n

Which identifier
is used to
represent a web
browser window
or frame?

fram
es window location window

The setTimeout()
method is used
to

Make
the
event
sleep

Register a
function to be
invoked after a
certain time

Invoke an
event after
a certain
time

Register a
function to
be invoked
after a
certain
time

Which of the
following is a
global object?

Regi
ster Location Window Window

 Consider the
following code
snippet

function
printprops(o)
{
 for(var p in o)
 console.log(p
+ ": " + o[p] +
"\n");
}

What will the
above code
snippet result ?

Print
s the
conte
nts of
each
prop
erty
of o

Returns
undefined

Both a and
b

Returns
undefined

 When does the
function name
become optional
in JavaScript?

Whe
n the
functi
on is
defin
ed as
a
loopi
ng
state
ment

When the
function is
defined as
expressions

When the
function is
predefined

When the
function is
defined as
expression
s

 What is the
purpose of a
return statement
in a function?

Retur
ns
the
value
and
stops
exec
uting
the
functi
on

 Stops
executing the
function and
returns the
value

Stops
executing
the
function
and
returns the
value

What will happen
if a return
statement does
not have an
associated
expression?

It
retur
ns
the
value
0

It returns the
undefined value

None of
the
mentioned

It returns
the
undefined
value

A function with
no return value
is called

Proc
edur
es Method

Static
function

Procedure
s

Consider the
following code
snippet

function
hypotenuse(a, b)
{
 function
square(x)
 {
 return
x*x;
 }
 return
Math.sqrt(square
(a) + square(b));
}

What does the
above code
result?

Sum
of
squa
re of
a
and
b

 Square of sum
of a and b

Sum of a
and b
square

Sum of
square of
a and b

Which of the
following is the
correct code for
invoking a
function without
this keyword at
all, and also too
determine
whether the strict
mode is in
effect?

var
strict
=
(func
tion {
retur
n
this;
});

var strict =
(function() {
return !this; }());

mode
strict =
(function {
});

var strict =
(function()
{ return
!this; }());

 Which is an
equivalent code
to invoke a
function m of
class o that
expects two
arguments x and
y?

o(x,y
); o.m(x,y);

o.m(x) &&
o.m(y); o.m(x,y);

UNIT-V

questions opt1 opt2 0pt3 opt4 answer

 In Servlet Terminology

what provides runtime

environment for JavaEE

(j2ee) applications. It

performs many

operations that are given

below: Server Webserver Container

Application

Server Container

 The following example

shows the creation of a

import java.applet.*;

import java.awt.*;

Banner using

Applet Basic Applet Display clock

 None of the

above Basic Applet

 An applet can play an

audio file represented by

the AudioClip interface

in the java, applet

package Causes the audio

clip to replay continually

in which method?

 public void

play()

 public void

loop()

public void

stop()

None of the

above

public void

loop()

Which are the common

security restrictions in

applets?

. Applets

can't load

libraries or

define native

methods

 An applet can't

read every

system property

Applets can

play sounds Both A & B Both A & B

 From the following

statements which is a

drawback for Applet?

 It works at

client side so

less response

time Secured

It can be

executed by

browsers

running under

many platforms,

including

Linux,

Windows, and

Mac Os etc.

Plugin is

required at

client browser

to execute

applet

Plugin is

required at client

browser to

execute applet

 Applet works at client

side so less response

time. True False

depending upon

situation

Not Always

true True

The APPLET tag is used

to start an applet from

both an HTML document

and from an applet

viewer. True False

depending upon

situation

Not Always

true True

 Applets cannot make

network connection

exception to the server

host from which it

originated. True False

depending upon

situation

Not Always

true True

What invokes

immediately after the

start() method and also

any time the applet needs

to repaint itself in the

browser? stop() init() paint() init() paint()

Which method is called

only once during the run

time of your applet? stop() paint() init() init() init()

 When an applet is

terminated which of the

following sequence of

methods calls take

place?

stop(),paint(),des

troy()

destroy(),stop(),

paint()

. stop(),destroy

() . stop(),destroy()

 Applet runs inside the

browser and does not

works at client side. . True False

depending upon

situation

Not Always

true False

 Which is a special type

of program that is

embedded in the

webpage to generate the

dynamic content? . Package Applet Browser

None of the

above Applet

 What is used to run an

Applet? An html file

An

AppletViewer

tool(for testing

purpose) Both A & B

None of the

above

None of the

above

Which is the correct

order of lifecycle in an

applet?

. Applet is

started,initiali

zed,painted,d

estroyed,stop

ped

Applet is

painted,started,st

opped,initilaized,

destroyed

Applet is

initialized,starte

d,painted,stoppe

d,destroyed

None of the

above

Applet is

initialized,started

,painted,stopped,

destroyed

 Java Plug-in software is

not responsible to

manage the lifecycle of

an Applet. TRUE False False

 Which method is used to

suspend threads that

don’t need to run when

the applet is not visible? destroy() paint() stop() start() stop()

 All Applets must import

java.applet and java.awt.

init(),paint(),s

tart()

Start(),paint(),ini

t()

intit(),start(),pai

nt()

paint(),start(),i

nit()

intit(),start(),pain

t()

Which method is first

Called for any applet

when it starts its

execution? void init() void destroy()

boolean

isActive()

 None of the

above void init()

 In _________________

attacks, the attacker

manages to get an

application to execute an

SQL query created by the

attacker.

 SQL

injection SQL Direct Application SQL injection

A Web site that allows

users to enter text, such

as a comment or a name,

and then stores it and

later displays it to other

users, is potentially

vulnerable to a kind of

attack called a

attack.

Two-factor

authenticatio

n

Cross-site

request forgery

Cross-site

scripting

Cross-site

scoring

scripting

Cross-site

scoring scripting

 _________ is an attack

which forces an end user

to execute unwanted

actions on a web

application in which

he/she is currently

authenticated.

Two-factor

authenticatio

n

Two-factor

authentication

Cross-site

scripting

Multiple-site

scoring

scripting

Cross-site

scripting

 Many applications use

_________________,

where two independent

factors are used to

identify a user.

 Two-factor

authenticatio

n

 Cross-site

request forgery

Cross-site

scripting

Cross-site

scoring

scripting

Cross-site

scoring scripting

Even with two-factor

authentication, users may

still be vulnerable

to_____________attacks. Radiant Cross attack scripting

Man-in-the-

middle

Man-in-the-

middle

 A single

______________ further

allows the user to be

authenticated once, and

multiple applications can

then verify the user’s

identity through an

authentication service

without requiring

reauthentication. OpenID Sign-on system

Security

Assertion

Markup

Language

(SAML)

Virtual Private

Database

(VPD)

Virtual Private

Database (VPD)

The

is a standard for

exchanging

authentication and

authorization information

between different

security domains, to

provide cross-

organization single sign-

on. OpenID Sign-on system

Security

Assertion

Markup

Language

(SAML)

Virtual Private

Database

(VPD)

Security

Assertion

Markup

Language

(SAML)

The __________

standard is an alternative

for single sign-on across

organizations, and has

seen increasing

acceptance in recent

years. OpenID

Single-site

system

Security

Assertion

Markup

Language

(SAML)

Virtual Private

Database

(VPD) OpenID

allows a system

administrator to associate

a function with a

relation; the function

returns a predicate that

must be added to any

query that uses the

relation.

a) OpenID

Single-site

system

 Security

Assertion

Markup

Language

(SAML)

 Virtual Private

Database

(VPD)

Virtual Private

Database (VPD)

. VPD provides

authorization at the level

of specific tuples, or

rows, of a relation, and is

therefore said to be a

mechanism.

 Row-level

authorization

 Column-level

authentication

Row-type

authentication

)

Authorization

security

Row-level

authorization

. If a piece of data is

stored in two places in

the database, then

 Storage

space is

wasted

Changing the

data in one spot

will cause data

inconsistency

 In can be more

easily accessed Both a and b Both a and b

An audit trail

___________ .

Is used to

make backup

copies

 Is the recorded

history of

operations

performed on a

file Both a and b

None of the

mentioned Both a and b

 Large collection of files

are called ____________

. Fields Records Database Sectors Database

