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UNIT I 9
TYPES AND PROPERTIES OF FLUIDS: Introduction— Types of fluids- Basic properties —
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Fluid statics: Fluid pressure-various methods of measurement. Total pressure and centre of
pressure — determination on plane surface only — Equilibrium of floating bodies — conditions and

analysis.
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CE 6303 MECHANICSOF FLUIDS

UNIT I FLUID PROPERTIESAND FLUID STATICS

Fluid — definition, distinction between solid and fluid - Units and dimensions - Properties of fluids
-density, specific weight, specific volume, specific gravity, temperature, viscosity,
compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid
static pressure, absolute and gauge pressures - pressure measurements by manometers and
pressure gauges- forces on planes — centre of pressure — bouncy and floatation.

INTRODUCTION TO FLUIDS &
Definition &

1 There are three states of matter: solids, liquids and gasas. (%

"1 Both liquids and gases are classified as fluids.

] Fluids do not resist a change in shape. Therefore fluid ethe shape of the
container they occupy. %

"1 Liquids may be considered to have a fixed VOQ therefore can have a free

surface.

Liquids are almost incompressible.
1 Conversely, gasesare easily compre@d will expand to fill a container they
occupy. &
1 Wewill usually beinterested in Ilgm ther at rest or in motion.

-

Liguid showing free surface Gas filling velume
Definition
[l The strict definition of a fluid is: A fluid is a substance which conforms
continuously
under the action of shearing forces.
[l Tounderstand this, remind ourselves of what a shear forceis:
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Application and effect of shear force on a

book
Definition Applied to Static
Fluids
According to this definition, if we apply a shear force to afluid it will deform and
take up

a state in which no shear force exists. Therefore, we can say: If afluid is at rest there can
be no shearing forces acting and therefore all forces in the fluid must be perpendicular to
the planes in which they act. Note here that we specify that the fluid must be at rest.
This is because, it is found experimentally that fluids in motion can have dlight
resistance to shear force. Thisis

the source of

viscosity.

Definition Applied to Fluids in ,\‘\
Motion y
For example, consider the fluid shown flowing along afixed g@e. At the
surfacethere

will be little movement of the fluid (it will ‘stick’ to the sur@e) whilst furtheraway
from the -

surface the fluid flows faster (has greater ‘\\e
velocity): Q
u:il'!j

holile

> \
% A
If one layer of is mewigg faster than another layer of fluid, there must be shear

forcesacting between them. For example, if we have fluid in contact with a conveyor
beltthat is moving nggl I get the behaviour shown:
AN/

9

Ideal fluid Real (Viscous) Fluid

When fluid is in motion, any difference in velocity between adjacent layers has the
same effect as the conveyor belt does.

Therefore, to represent real fluids in motion we must consider the action of shear
forces

Consider the small element of fluid shown, which is subject to shear force and
has a dimension sinto the page. The force F acts over an area A = BCxs. Hence
we have a shear stress applied:
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; Force
bn'es §

Area

I

A
Any stress causes a deformation, or strain, and a shear stress causes a shear strain.
This shear strain is measured by the angle ¢ . Remember that a fluid continuously
deforms when under the action of shear. Thisis different to a solid: a solid hasa single
value of ¢ for each value of 1. So the longer a shear stressis applied to afluid, the more
shear strain occurs. However, what is known from experiments is that the rate of shear
strain (shear strain per unit time) is related to the shear stress:

-

Shear stress + Rale ol shear strain

Shear stress — Clonstant = Rate of shear strain
We need to know the rate of shear strain. From the diagram, the shear strai
= Y 0
y \

If we suppose that the particle of fluid at E moves a distance x4 1 %t, then, using
S= RO for small angles, the rate of shear strain is: \

' i I\'l
K [
LTl ._ W ,-J. ¢

Where u is the velocity of the fluid. ThIS %; also the change in velocity with
height. When we consider infinitesimally changes in height we can write this in
differential form, du/ dy . Therefore we have:

%_ﬂéglanl = ':::T
{ v
Newton’s Law of Viscosity: @

r—u—

dy
Generalized Lk ’gf VISCOSIt
We have derlved alaw for the behaviour of fluids — that of Newtonian fluids.
However, experiments show that there are non-Newtonian fluids that follow a generalized
law of viscosity:

Where A, B and n are constants found experimentally. When plotted these
fluids show much different behaviour to a Newtonian fluid:
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Behaviour of Fluids and
Solids
In this graph the Newtonian fluid is represent by a straight line, the slope of which is p .
Some of .
the other fluids ’\\
are: { \
71 Plastic: Shear stress must reach a certain minimum before fl %menc&s.
1 Pseudo-plastic: No minimum shear stress necessary and théwiscosity decreases
with rate of shear, e.g. substances like clay, milk and ¢
] Dilatant substances; Viscosity increases with rat :'e.g. guicksand.
1 Viscoelastic materials: Similar to Newtoni m there is a sudden large
change in shear they behave like plastic.  #

1 Solids: Real solids do have a dlight chan strain with time, whereas ideal
solids (those we idealise for our theori . Lastly, we also consider the ideal
fluid. Thisisa fluid which is assu 0 have no viscosity and is very
useful for developing theoreticaj\ tions. It helps achieve some practically
useful solutions. &&&

v

-
Properties A‘f&

Further Reading
Here we consider anly relevant properties of fluids for our purposes. Find out

about Y
surface tension apdit% lary action elsewhere. Note that capillary action only featuresin
pipes of ’2’*;> /

< 10 mm diamétess
FLUID PROPERTIES:

1. Density or Mass density: Density or mass density of afluid is defined as the ratio
of the mass of afluid to its volume. Thus mass per unit volume of ais called density.

Mass density [ [ _Massof

fluid

Density of fluid

The unit of density in S.I. unit is kg/m3. The value of density for water is 1000kg/m3.
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2.Specific weight or weight density: Specific weight or weight density of afluid is
the ratio between the weight of afluid to its volume. The weight per unit volume of a
fluid is called weight density.

Weght of fluid
Volume of fluid

Weight density [

Mass of fluid x g
Volume of fluid

w [ X
g ’\\

The unit of specific weight in S.I. unitsis N/m3. The value of specific @or weight

density of water is

9810N/m3,

3.)Specific Volume: Specific volume of a fluid is defin
occupied by a unit mass or volume per unit mass of a flui

@olume of a fluid

Joecific volume [ O .
fluid
M fluid O
Thus specific volume is the reciprocal OI‘% density. It is expressed as m3/kg Itis
commonly applied to gases. . § ‘.':
4.)Specific Gravity: Specifi érz%y Is defined as the ratio of the weight density of a
fluid to the weight density.o dard fluid.

V\/eqht density of liquid
eight density of water

&ggaaecmc gravity [

VISCOSIT
Viscosity is defined as the property of afluid which offers resistance

to the movement of one layer of fluid over adjacent layer of the fluid. When two
layers of afluid, a distance ‘dy’ apart, move one over the other at different velocities,
say u and u+tdu as shown in figure. The viscosity together with relative velocity
causes a shear stress acting between the fluid layers.
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COMPRESSIBILITY:

Compressibility is the reciprocal of the bulk modulus of elasticity, K
which is defined as the ratio of compressive stress to volumetric strain.

Consider a cylinder fitted with a piston as shown

infigure. Let V=Volume of agasenclosed in the

cylinder
P= Pressure of gas when volumeisV
L et the pressure isincreased to p+dp, the volume of gas decreases é;
Vad
fromV to V-dV. Then increase in pressure =dp kgf/m2 \"

-t
Decrease in volume= dV Q‘"

Volumetric Strain :;ol_ .8\
V
v S\;
- ve sign means the volume decreases wi @ of pressure.

\Increase  pressure

EHI k{‘@ Vof
_Q Volumetric Strain

\ _d
@ég ' E
P 4 { V

Compress'btg}li:ty isgiven i
K

Relationship between K and pressure (p) for a Gas:

The relationship between bulk modulus of elasticity (K) and pressure for a gas for
two different processes of comparison are as.

(1) For Isothermal Process: The relationship between pressure (p) and density (p)
of agasas
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_P_ Constant
[]

1V = Constant

Differentiating this equation, we get (p and V are variables)

PdV +Vdp=0 or pdvV=-Vdp or p=Vdp
dv

Substituting this value K =p

(i) For adiabatic process. For adiabatic process 0’\‘\\

/®

*DQ [ Constant or ka = Constahv
&

SURFACE \\,
TENSION: .Q

Surface tension is defined as the tensile f@ng on the surface of aliquid in
contact with a gas or on the surface between & o immiscible liquids such that the
contact surface behaves like a membrane u tension

CAPILLARITY O

\"\

Capillarity is defined asrg‘ me’lgon of riseor fall of aliquid surface in a small
tube relative to the adjac heral level of liquid when the tube is held vertically in
the liquid. Thewise of liquid surface is known as capillary rise while the fall of the
liquid surfaa%% as capillary depression. It is expressed in terms of cm or mm of
liquid. Itsval ends upon the specific weight of the liquid, diameter of the tube and
surface tension of the liquid.

Problem 1.

Calculate the capillary effect in millimeters a glass tube of 4mm diameter, when
immersed in (a) water (b) mercury. The temperature of the liquid is 20° C and the
values of the surface tension of water and mercury at 20° C in contact with air are
0.073575 and 0.51 N/m respectively. The angle of contact for water is zero that for
mer cury 130°. Take specific weight of water as 9790 N / m®
Given:

Diameter of tube = d =4 mm= 4x10°m

4s cosq

. - ossi h=——-
Capillary effect (rise or depression) = pxgxd

s = Surfacetension in kg f/m
www.vidyarthiplus.com
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q = Angleof contact and p = density

I Capillary effect for water

s =0.073575N/m, q=0°

pP=998kg/m* @20°¢

H_ 4x0.73575x Cos0’

- = 751x10m
998x 9.81x 4x 10~ &

=7.51 mm.
&>
t 4 \
p=sp gr x1000=13.6x1000= 13600k@

3

Capillary effect for mercury:

s =0.51N/m, q =130°

4x0.51x Cos130° &

~ 13600x 9.81x 4x10 \‘::
P \“ -

= -246x10°% m § x

= - 2.46 mm. %

ﬁ, 3
-Veindicates c%r& on.

g

Problem 2.
A cylinder of 0.6 m®in volume contains air at 50°C and 0.3 N/ mm? absolute pressure.

The air is compressed to 0.3 m® Find (i) pressure inside the cylinder assuming

isothermal process (ii) pressure and temperature assuming adiabatic process. Take K
=14

Given:
Initial volume v, =0.36m®
Pressure P; = 0.3 N/mm?

=0.3x10°N /m?
Temperature, t; = 50° C
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T,=273+50=323°K
Fina volume, V, = 0.3m°

K=14
I | sother mal Process:

% =Constant (or) pv =Constant

plvl = pzvz

4
o P _30x10°X06 o oo e &
Vi 0.3 0

=0.6 N/ mm?

e
i.  Adiabatic Process: \Q

3

i Constant or

ok pv ¥ :%
>

K K »
PV, =PV, 6:\
X%
v,K ! 4 ol4
P, =Py =3oxloﬁ@ =30x10*x 2
o
= 0.791@ 'm?® = 0.791N / mm?

N
For temper ature, vaT, pv¥ = constant
N

RT
0= and - xv* = constant
v A

RTV“* = Constant
Tv** = Constant (- Risalso constant)

Tlvlk_l — T2V2k_1

www.vidyarthiplus.com



www. Vi dyart hi pl us. comr

k-1 1.4-1.0
V. )
T,=T, [V—l) =323 (%j
2 .

=323x2%* =426.2°K

t, =426.2—273=153.2°C

Problem 3
If the velocity profile of a fluid over a plate is a parabolic with the vertex 202 cm from

the plate, where the velocity is 120 cm/sec. Calculate the velocity gra
stress at a distance of 0,10 and 20 cm from the plate, if the viscosit

poise. -
Given, \d'
Distance of vertex from plate = 20 cm.

Velocity at vertex, u= 120 cm/ sec. Q
85 NS 085.'0

Viscosity, M=28. 5pOISB— v

Parabolic velocity profile equation, U = by +C = (1)
Where, a, b and ¢ constants. Their é@&re determined from boundary conditions.
i) Aty=0,u=0 a\
i) Aty =200m, u=1200mise. \
du
iii) Aty=20cm, —=0
dy N
wbaitmggggequanon (1),C=0
Substitutif(fi) inequation (1), 120= a(20)* +b(2) = 400a + 200 ----=------ 2)

Substituting (iii) in equation (1), :—; _ 2ay+b

0=2xax20+b=40a+b ----mmrr--- (3)
solving 1 and 2, we get,
400a+20b=0
) 40a+b=0
800a+20b=0
b=-40a

120 = 400a+ 20b(-40a) = 400a—800a = 400 a
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Substituting a, b and ¢ in equation (i) U=—0.3y* +12y

M 03x2y+12=-06y+12

Velocity gradient

du
aty =0, Velocity gradient, (d—] =-0.6x0+12=12/s. |, &
V) s ~Q
\w

aty =10 cm, Velocity gradient, (—J =—O6x%—6+12 6/s.

&§ZO+12: -12+12=0

du
aty =20cm, Velocity gradient, (_j

A
Shear Stresses: ‘:’\s"\ v

Shear stgsses é:%\?n

Shearstre&at’&:O,t =”{3 ] =0.85x12.0=10.2N/m’
y=0
d

du

ii.  Shearstressaty = 10, ¢ =”{d_

=0.85x6.0=5.1IN/m’

Ul _085x0=0

u
y
nylo
iii.  Shearstressaty=20,! = j

y y=20

Problem 4
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A 15 cm diameter vertical cylinder rotates concentrically inside another cylinder of
diameter 15.10 cm. Both cylindersare 25 cm high. The space between the cylindersis
filled with a liquid whose viscosity is unknown. If atorque of 12.0 Nm isrequired to
rotate theinner cylinder at 100 rpm deter mine the viscosity of the fluid.

Solution:
Diameter of cylinder =15cm=0.15m

Diameter of outer cylinder = 15.10 cm =0.151 m

Length of cylinder = L =25cm=0.25m

Torque T=12 Nm; N = 100 rpm.
Viscosity = u ¢ é:
Vand
. . . p DN  px0.15x100 @J
Tangentia velocity of cylinder u= = = m/s
J yorey 60 60 “

Surface areaof cylinder A=pDxL =p x0.15x0, \
 J

:0.1178m2\?\'
t =mdY du:u—O:u@. 854 m/s

d
; D
0.1 50
dy = —0.0005m
& \ 2
P i< 0.7854
& ~0.0005
Shear force, F "~ Shear Stressx Area = Mx 0.1178
0.0005
Torque T =F 80
2
_mx0.7854 . oo 015
0.0005
12.0x0.0005x2  _ g oernr o2

m=
0.7854x0.1178x0.15

m= 0.864x10 = 8.64 poise.
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Problem 5

The dynamic viscosity of oil, used for lubrication between a shaft and sleeve is 6 poise.
The shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the
bearing for a sleevelength of 90 mm. Thethickness of the oil film is 1.5 mm.

6 Ns Ns
m=6poise=——=0.6—
Given, p 10 2 e
D=04m L =90mm=90x10"3m
N =190 rpm. t=15mm=15x10"°m

NT, ,.0;
60

-t
T= forcex% Nm. ‘\Q

 J
F = Shear stressx Area =t xpDL @
t _m%N/m &\‘
dy

p DN

u= 0 m/s. \&

Tangential Velocny of shaft, ﬁ? P > 02807 =3.98m/s.

60
p
du= chan odty:u—O:u:3.98 m/s.
dy=t= 3m?‘
=
t = m%: t :10><L83:1592N/m2
dy 1.5x10°

Shear force on the shaft F = Shear stress x Area

F =1592xpD x L =1592xp x 0.4x 90x10~* =180.05N

Torgue on the shaft, T = Forcex% =180.05x 0—24 =36.01 Ns.

Power logt = ZZT _® xmé)ox 3601 _ 2648w
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Problem 6
If the velocity distribution over a plateisgiven by u :%y—y2 in which U isthe velocity

in m/sat adistancey meter abovethe plate, deter mine the shear stressat

y=0andy=0.15m. Takedynamic viscosity of fluid as 8.63 poise.
Given:

-1 &
(3_;} o 22_2(0)22 \Q‘!‘f’

[%] =3—2x(o.17)=o.667—o.30.
dy y=0.15 @
. 863 e \12
m:8.63p0|sezﬁ Sl units = 0.86§ &1 m
n
N
t = m % '{:é W
~
i M‘Qggy =0isgiven by
Y

t, = d“j @ 8635 0.667 = 0.5756 N / m’

ay

3

y=0

ii. Shear stressat y = 0.15 mis given by

t ), 01 = au = 0.863x0.367 = 0.3167 N/m®
| dy y=0.15
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Problem 7

The diameters of a small piston and a large piston of a hydraulic jack at3cm and 10
cm respectively. A force of 80 N is applied on the small piston Find theload lifted by
thelarge piston when:

e Thepistonsareat the same level
e Small piston in 40 cm abovethe large piston.

The density of theliquid in thejack in given as 1000 kg/m®

Given: Diaof small piston d =3 cm. &

Areaof small piston, <’:l=pzd2 =E —70680n\.;

\Q
s

Areaof |arger piston, A_ZX (10}

Force on small piston, F =80 N &
Let the load lifted =W \‘\

o v
a When the pistons are %‘é&%\e level

Diaof large piston, D =10 cm

Pressurg intensit§ on small piston

PziéN/‘cm2
a p %

Thisistransmitted equally on the large piston.

Pressure intensity on the large piston = 80

7.068
Force onthe large piston = Pressure x area

-_ 8 L 7854N=88896N.
7.068

b. when the small piston is 40 cm above the large piston

Pressure intensity on the small piston
www.vidyarthiplus.com
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Pressure intensity of section A — A
= 2+ pressure intensity due of height of 40 cm of liquid. P = pgh.

But pressure intensity due to 40cm. of liquid

= px gxh=1000x9.81x 0.4N / m? &

L 9'481X 04 N /em? = 0.3924N / cm? .
10 g’o
Pressure intensity at section a
.Q\
80 \,

A-A=_—— 103924
7.068 &

=11.32 +0.3924 =11.71 N/em?
Pressure intensity transmitted to the Iargefq% =11.71 N/em?

Force on the large piston = Pr rAf\\“A?‘éa of the large piston

\
_11.71x A=11.712%8.54

= 910, %Ng XA
FLUID STATI P
Pressure
_Influids we use the term pressure to mean:
1 The perpendicular force exerted by a fluid per unit area.

1 Thisisequivalent to stressin solids, but we shall keep the term pressure.
] Mathematically, because pressure may vary from place to place, we have:

. AF
p=lm—
A—0 A4
Aswe saw, force per unit areais measured in N/m2 which is the same as a
pascal
(Pa). The units used in practice
vary:
1 1kPa =1000 Pa = 1000 N/m2
1 1 MPa=1000 kPa=1 x 106 N/m2
1 1bar =105Pa =100kPa=0.1MPa
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1 latim =101,325 Pa=101.325 kPa = 1.01325 bars = 1013.25 millibars
For reference to pressures encountered on the street which are often
imperial:

1 1atm=14.696 psi (i.e. pounds per square inch)

1 1psi =6894.7 Pa= 6.89 kPa= 0.007 MPa

Pressure Reference

Levels
The pressure that exists anywhere in the universe is called the absolute pressure,
abs P

.This then is the amount of pressure greater than a pure vacuum. The atmosphere onearth
exerts atmospheric pressure, atm P, on everything in it. Often when measuringpressures
we will calibrate the instrument to read zero in the open air. Any measur re, meas
P , is then a positive or negative deviation from atmospheric pr@.&éall such
deviations a gauge pressure, gauge P . Sometimes when a gauge pres@i negative it is
termed a vacuum pressure, vac P . c‘.
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The above diagram shows:

(a) the case when the measured pressure is below atmospheric pressure and so is a
negative gauge pressure or avacuum pressure;

(b) the more usual case when the measured pressure is greater than atmospheric pressure
by the gauge pressure.

Pressurein a Fluid

Statics of Definition

We applied the definition of afluid to the static case previously and determined that
there must

be no shear forces acting and thus only forces normal to asurfaceactina

fluid. For aflat surface at arbitrary angle we have: &

A curved surface can be examined in secg%‘

Se_chbu-ﬁz
And we are not restricted to actual solid-fluid interfaces. We can consider imaginary
planes through afluid:
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Pascal’s Law

Thislaw states:

The pressure at a point in afluid at rest isthe samein all directions.

To show this, we will consider avery small wedge of fluid surrounding the
point. Thiswedge is unit thickness into the page:

PR SR

Aswith al static objectsthe forcesinthex and y di re@ d balance. Hence:
 J
R e p\,-m'—psﬂsw 0

: Ay
But siné = £ . therefore:

As ‘;&:
p{’ \p” As-—=0
& A
- 23' P, Ay=p.-Ay
)

g p,=p,

R

ZF},zU: p,-Ax—p_-As-cosd=0
But cosé = E therefore:
As
P, -Ax—p, -m-g:{]
As
p,-Ax=p_-Ax
Py=Py
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Hence for any
angle:

Py, =P,=P;

And so the pressure at a point is the same in any direction. Note that we neglected the
weight of the small wedge of fluid because it isinfinitesimally small. Thisiswhy Pascal’s
Law isrestricted to the pressure at a point.

Pressure Variation with

Depth

Pressure in a static fluid does not change in the horizontal direction as t&hori zontal

forces

balance each other out. However, pressure in a static fluid does change th, due to
the extra weight of fluid on top of alayer as we move down wards. C er a column of
fluid of arbitrary cross section of area, A: N/

— = *
.
—

Pk,
£ TS ;&
SN

%
L
&

[y
— ¥ e -]

Pz
P
) tmn of Fluid Pressure Diagram
Considering thg,xf of 'the column of water, we
have: @

Obviously the area of the column cancels out: we can just consider
pressures. If we

say the height of the column is h = h2 — h1 and substitute in for the specific weight,
we see the difference in pressure from the bottom to the top of the column is:

grpr e |
Py— P — pen

This difference in pressure varies linearly in h, as shown by the Area 3 of the pressure
diagram. If we let hl = 0 and consider a gauge pressure, then pl =0 and we have:

P> =pgh
Where h remains the height of the column. For the fluid on top of the column, this isthe
source of
1 p and is shown as Area 1 of the pressure diagram. Area 2 of thepressure diagram is
this same pressure carried downwards, to which is added more pressure due to the extra
www.vidyarthiplus.com
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fluid.
The gauge pressure at any depth from the surface of a
fluidis:
p=pgh
Summar
y : :
1. Pressure acts normal to any surface in a static
fluid;
2. Pressure is the same at a point in a fluid and acts in all
directions;
3. Pressure varies linearly with depth in a
fluid.
By applying these rules to a simple swimming pool, the pressure distri @)und the
edges is as shown: Q’

Note

1. Along the bottom the pressure %smht due to a constant
depth; \

2. Along the vertical wall t essure varies linearly with depth and acts in the
horizontal dirggiien;

3. Along the dop % the pressure again varies linearly with depth but also acts
normal to the s '

4. At the jun i the walls and the bottom the pressure is the
same. _—

Problems -

Pressure

1. Sketch the pressure distribution applied to the container by the fluid:

[\
[\

2. For the dam shown, sketch the pressure distribution on line AB and on the
surface of the dam, BC. Sketch the resultant force on the dam.
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3. For the cana gate shown, sketch the pressure distributions applied @Sketch the
resultant force on the gate? If hl = 6.0 m and h2 = 4.0 m,;@ the pressure
distribution to the gate. Also, what is the value of the resultant foWn the gate and at
what height above the bottom of the gateis it applied

o 1 -..;';"-r{ "23—"?

A
Pressure Head m:;]\'
Pressure in fluids may arise many sources, for example pumps, gravity,
momentum ete:
Since p = pgh, @ heioht of liquid column can be associated with thepressure p arising
from such sour; IS height, h, isknown as the pressure head.
Example: '
The gauge pressure in 2 water mainsis 50 kN/m2, what is the pressure head?
The pressure head equivalent to the pressure in the pipeisjust:

p=pgh

pg
_50x10°
1000 x9.81

=51 m
S0 the pressure at the bottom of a’5.1 m deep swimming pool is the same as the pressure
in this pipe.
Manometers
A manometer (or liquid gauge) is a pressure measurement device which uses the
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relationship

between pressure and head to give readings.

In the following, we wish to measure the pressure of afluid in a pipe.

Piezometer

Thisis the ssimplest gauge. A small vertical tube is connected to the pipe and itstop is
left open

to the atmosphere, as shown.

R
| -t
$
The pressure at A is equal to the pressure due to @mn of liquid of
Pi=F

height h1 : Similarly, &‘}

\“ pg‘} h
\ Y

The problem with this type of/é s that for usua civil engineering applications the

pressure is large (e.g. N( /m2) and so the height of the column is

impractical(e.g.lQ m). ¥Also, obviously, such a gauge is useless for measuring gas

pressures. ¢
U-tube &3 )

M anometer

To overcome the probléms with the piezometer, the U-tube manometer seals the fluid by
using a

measuring (manometric)

liquid:
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Choosing the line BC as the interface between the measuring liquid and the fluid, we
Pressure at B. p, = Pressure at C. p,

know: For the left-hand side of the U-tube:
Py =p4+pgh

For the right hand
side:

pC’ = pmﬂn'«ghE

Where we have ignored atmospheric pressure and are thus dealing with
gauge pressures. Thus:
Ps="Pc <

p..::[ 2 J'L)gh? mm!g;} ‘

And Q
L
p pman-’_‘*
Notice that we have used the fact that in any @ous fluid, the pressure is the same

at any horizontal level.
Differential Manometer

To measure the pressure d|ffM}etween two points we use a u-tube as shown:

g N Flaid P, of

denglty 2

I

SRR

c % /) b
e,

™, Manomeatrie dguid 0

of density g, 4,

Using the same approach as before:
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p,tpga=p,+pglb-h)+p, . gh
Hence the pressure differenceis:
py—Pp=pg(b—a)+hg(ppm—P)

PROBLEM 8

A U-Tube manometer is used to measur e the pressure of water in a pipe line, which is
in excess of atmospheric pressure. The right limb of the manometer contains water
and mercury isin the left limb. Determine the pressure of water in the main line, if
the differencein level of mercury in thelimbsU. U tubeis 10 cm and the free surface
of mercury isin level with over the centre of the pipe. If the pressure of Water in pipe
line is reduced to 9810 N/m? Calculate the new difference in the I mercury.
Sketch thearrangement in both cases. .

Given, \‘.

. “’a
Difference of mercury =10cm=0.1m.
Let P, = pr of water in pipeline (ie, at point A)

The point B and C lie on the same horlzontaT Hence pressure at B should be
egual to pressure at C.

But pressure at B = Pressure at A and P@e due to 10 cm (or) 0.1m of water.

=PA+ pxgxh A\~

where, P = 1000kg/m® and h = (f:J‘\,

=P, +»1000£9.81>< 0.1
= P, #G8IN /o7° ()
Vo

Pressureat C = Pressureat D + pressure due to 10 cm of mercury

0+ PR, xgxh,

where p, for mercury = 13.6x1000kg / m”
hp=10cm=0.1m
Pressure at C = 0+ (13.6x1000)x 9.81x 0.1
= 13341.6 N (ii)

But pressure at B is=to pr @ c. Hence,
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equating (i) and (ii)
P, +981=13341.6

p, =13341.6-981=12360.6N / m’

Il part: Given p, =9810N/m?

In this case the pressure at A is 9810 N/m? which is less than the 12360.6 N/m?.
Hence the mercury in left [imb will rise. The rise of mercury in left limb widl be equal to
the fall of mercury in right limb as the total volume of mercury remains >

+Q
Let, x = Riesof mercury inleft limbin cm "?

Then fall of mercury in right limb =x cm. \
The points B, C and D show theinitial conditieg
Whereas points B*, C*, and D* show the final c@ﬁs
The pressure at B * = pressure at C* &
D
Pressure at A + pressure due to (10-)@ ’}water.

4N
= pressure at D* + pressure W( -2x) cm of mercury.

(or) P &/))
Py + pi@ﬁ ZAF;D*"‘szthz

pr-
(or)

9810 b 1000x9.81( 10— x
9.8 9.81 100

=0+

(13.6x1000)x 9.81 y [10— 2xj
9.81 100

Dividing by 9.81 , we get,
1000+100—-10x =1360—- 272x

272x—-10x =1360-1100
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262 x = 260

X= @ =0.992cm

262
New difference of mercury =10 - 2xcm
=10-2x0.992

=8.016 cm.

PROBLEM 9 &

A differential manometer is connected at the two points A and B ofm ipes a shown
in figure. The pipe A containsa liquid of sp. Gr = 1.5 while pipe ains a liquid of
sp.gr =09. The pressures at A and B are 1 kgf / cmz“regdctively. Find the
differencein mercury level in the differential manometer&

Given, OA\Q\
Sp. Gr of liquid at A, S, =15 @( p1= 1500

Sp. Gr of liquid at B, S = 0.9“ & \ p. = 900

Y

8
>
»0

]

|_\

~
Q
)

=,
A N
ol

&,

3
N

Pr at B:ggg kof / cm?
' =18x10°x981 N/m’

Density of mercury =13.6x1000kg/ m®
Pr above X — X in left limb = 13.6x1000x 9.81x h+1500x 9.81x (2 +3)+ P,
=13.6x1000x 9.81x h+ 7500 9.81x10*

Pr above X — X in theright limb =900x9.81x (h+2)+ P,

= 900x 9.81x (h+2)+1.8x10* x9.81
Equating two pressure, we get,
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13.6x1000x 9.81h+ 7500 % 93.81+ 9.81x 10

=900x 9.81x (h+2)+1.8x10* x9.81
Dividing by 1000x9.81, we get
13.6h+7.5+10=(h+2.0)x0.9+18

13.6h+17.5=0.9n+1.8+18=0.9h+19.8

(13.6-0.9h=19.8-175 or 127h=23 &

h=£:0.181m:18.10m N
12.7
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CE 6303 MECHANICS OF FLUIDS

UNIT Il FLIUD KINEMATICSAND DYNAMICS
Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and
acceleration - continuity equation (one and three dimensional differential forms)- Equation of
streamline - stream function - velocity potential function - circulation - flow net. Fluid dynamics
- equations of mation - Euler's equation aong streamline - Bernoulli’s equation — applications -
Venturi meter, Orifice meter and Pitot tube. Linear momentum equation and its application.

Fluid Action on Surfaces

Plane Surfaces ’

We consider a plane surface, PQ, of area A, totally immersed in aliquid ow@ p and inclined
at an angle ¢ to the free surface: w

%o
QD

Ligul

. / Elcment of

A x area 94
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Side Elevation
O

Element Df area

x
Ge
Total 4
area A
M

Front Elevation X
If the plane areais symmetrical about the vertical axis O 0. Wewill assume that this
isnormally the case.

Find Resultant Force:
The force acting on the small element of area, d A, |$,
S A

OR=p-64
The total force acting on the surface is the a@ | such small forces. We can integrate to get
S

not constant:

the force on the entire area, but rememl%@‘at [
< i wey-0A

y !
But fy - & Aisjust the first moment of area about the surface. Hence:

@ y R=pgdyv

Whereyisthe eto e centroid of the area (point G) from the surface.

Vertical Point W her Itant Acts:

The resultant force acts perpendicular to the plane and so makes an angle 90° —¢ to the
horizontal. It also acts through point C, the centre of pressure, a distance D below the free
surface. To determine the location of this point we know:

Sum of moments of forces
Moment of R about @ =
on all elements about O

Examining asmall element first, and sincey = ssing , the moment is:

Moment of SR about O = [pg (ssmg)- c‘}‘A] s

= pgsing(s’-54)

In which the constants are taken outside the bracket. The total moment is thus:
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Moment of R about O = pgsin¢ - [5
But [s2 .3.A isthe second moment of area about point O or just O |

2 '(j'gd.

Moment of R about O = pgsm¢- 1,

If we introduce the paralel axis theorem:

Hence we have:

pgAy xO0C = pgsing -1,

s ¢
55 o
D=2 . &an*
AV ?

M

1, =1, —_4\10%

‘1\”“

1 i‘h 5"]‘_1 |;r‘
:{T‘ 511° g.i-
d -

ol
Ay

. Hence we have:

RNy

Hence, the centre of pressure, poi $lies below the centroid of the area, G.
A

"N

Plane Surface Properties

l:uw.._

af2 a2

A wm ogp — |'-3i' “
A= ah, .Tn__ C—m.lé

a) Rectangle
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y
Curved Surf
For curved surfaces thﬁid pressure on the infinitesimal areas are not paralel and so must be
combined vectorially. It is usual to consider the total horizontal and vertical force components of
the resultant.
Surface Containing Liquid
Consider the surface AB which contains liquid as shown below:
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Horizontal Component

Using the imaginary plane ACD we can immediately see that the horlzontal onent of force
on the surface must balance with the horizontal force ACF .

Hence:

Force on projection

e
|

onto a vertical pla

F must aso act at the same level as F AC and so@rough the centre of pressure of the
projected surface.

Vertical Component *

The vertical component of force on the sur% ust balance the weight of liquid above the
surface. Hence:

®

A éiﬂn of liquud directly
F, Q .

> above the surface

Also, this comé?)n w dct through the centre of gravity of the area ABED, shown as G on the
diagram. Resu

The resultant fa us”

F=.F+F?

x )

This force acts through the point O when the surface is uniform into the page, at an angle of:

8 —=tan L

X

to the horizontal. Depending on whether the surface contains or displaces water the angle is
measured clockwise (contains) or anticlockwise (displaces) from the horizontal .
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KINEMATICSOF FLUIDS

Fluid motion observed in nature, such as the flow of waters in rivers is usually rather chaotic.
However, the motion of fluid must conform to the general principles of mechanics. Basic
concepts of mechanics are the tools in the study of fluid motion.

Fluid, unlike solids, is composed of particles whose relative motions are not fixed from
time to time. Each fluid particle has its own velocity and acceleration at any instant of time. They
change both respects to time and space. For a complete description of fluid motion it is necessary
to observe the motion of fluid particles at various points in space and at successive instants of
time.

Two methods are generally used in describing fluid motion for mathematical analysis, the
Lagrangian method and the Eulerian method.

The Lagrangian method describes the behavior of the individual fluid during its col of motion
through space. In rectangular Cartesian coordinate system, Lagrange adopted% C,andt as
independent variables. The motion of fluid particle is completely specifi e following
equations of mation in three rectangular coordinates are determined: -

x=Fla.b.c:t) %O\J

v=Fla.b.c.t)
z= Fi[a.b.c.a] \\'

uid particle at different times in

Egs. (3.1) describe the exact spatial position (X, y,z) of
terms of its initial position (xO = a y0 = b, z0 = given initia time t = t0. They are
usually referred to as parametric equations of th ﬁ f fluid particles. The attention here is
focused on the paths of different fluid particles e goes on. After the equations describing
the paths of fluid particles are determl e instantaneous velocity components and
acceleration components at any instan of‘.‘g an be determined in the usual manner by taking
derivatives with respect to time. \

'(
\
’&"% du d*x
T L4, =—=
\ dt dr dt’
) €
/ i
'\@ dy dv d°y
1 e ., =—=—
- dt TldE df
dz dw d’z
Ww=— Wl
dt R Y

In which u, v, and w, and ax, ay, and az are respectively the x, y, and z components of velocity
and acceleration.

In the Eulerian method, the individual fluid particles are not identified. Instead, a fixed position
in space is chosen, and the velocity of particles at this position as a function of time is sought.
Mathematically, the velocity of particles at any point in the space can be written,

u=filx.y.z.r)
v=T1lxy =t
w= filx.y.z.1)

Euler chose x, vy, z, and t as independent variables in his method.
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The relationship between Eulerian and Lagrangian methods can be shown. According to the
Lagrangian method, we have a set of Egs. (3.2) for each particle which can be combined with
Egs. (3.3) asfollows:

dx
— =ulx.y.z.1t
= u(x. y.z.t)

@ vix. y,z.1)

dz

dt
The integration of Egs. (3.4) leads to three constants of integration, which can
initial coordinates a, b, ¢ of the fluid particle. Hence the solutions of Egs. (3.4)
of Lagrange (Egs. 3.1). Although the solution of Lagrangian equations
description of paths of fluid particles, the mathematical difficulty enco
eguations
makes the Lagrangian method impractical. In most fluid mechani mrems knowledge of the
behavior of each particle is not essential. Rather the general t| on expressed in terms of
velocity components of flow and the change of velocity g to time at various pointsin

=wlx,y,z.t)

the complete
in solving these

the flow field are of greater practical significance. Ther the Eulerian method is generally
adopted in fluid mechanics. With the Eulerian concept bing fluid motion, Egs. (3.3) give

a specific velocity field in which the velocity at ev is known. In using the velocity field,
and noting that x, y, z are functions of time, we ablish the acceleration components ax,
ay, and az by employing the chain rule of part ‘x erentiation,

ude cudy cm dz  oudt

.a& ox dt &dr c:td'r c':rrfr

\;\ on  cu cu on
\n =lu—+v—+w— |+| —
. oy

ow ow  ow) (ow
w=filxy.z.t) La.=|lu—+v—+w— [+ —
cx cy = or 5

The acceleration of fluid particlesin aflow field may be imagined as the superposition

of two effects:

1) At agiven timet, the field is assumed to become and remain steady. The particle, under such
circumstances, is in the process of changing position in this steady field. It is thus undergoing a
change in velocity because the velocity at various positions in this field will be different at any
time t. This time rate of change of velocity due to changing position in the field is caled
convective acceleration, and is given the first parentheses in the preceding acceleration
equations.
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2) The term within the second parentheses in the acceleration equations does not arise from the
change of particle, but rather from the rate of change of the velocity field itself at the position
occupied by the particle at timet. It is called local acceleration.

UNIFORM FLOW AND STEADY FLOW

Conditions in a body of fluid can vary from point to point and, at any given point, can vary from
one moment of time to the next. Flow is described as uniform if the velocity at a given instant is
the same in magnitude and direction at every point in the fluid. If, at the given instant, the
velocity changes from point to point, the flow is described as non-uniform.

A steady flow is one in which the velocity and pressure may vary from point to point but do not
change with time. If, at a given point, conditions do change with time, the flow is described as
unsteady.

For example, in the pipe of Fig. 3.1 leading from an infinite reservoir of fixed eelevatlon
unsteady flow exits while the valve A is being opened or closed; with the val)ﬁ ing fixed,
steady flow occurs under the former condition, pressures, velocities, and th ary with time
and location; under the latter they may vary only with location. \2

t'im&x'

There are, therefore, four possible types of flow. gv
1) Steady uniform flow. Conditions do not cI'H

the same at each cross-section; e.g. flow
completely full at constant velocity. x \
2) Seady non-uniform flow. Co hénge from point to point but not with time. The
velocity and cross-sectional area of &eam may vary from crosssection to cross-section, they
will not vary with time; e.q. f aliquid at a constant rate through a conical pipe running
completely full,

3) Unsteady unifor v. At a given instant of time the velocity at every point is the same, but
this velocity will % with time; e.g. accelerating flow of a liquid through a pipe of uniform
diameter runnir such as would occur when a pump is started up.

4) Unsteady non-uniformflow. The cross-sectional area and velocity vary from point to point and
also change with time; a wave travelling along a channel.

STREAMLINESAND STREAM TUBES

If curves are drawn in a steady flow in such a way that the tangent at any point isin the direction
of the velocity vector at that point, such curves are called streamlines. Individual fluid particles
must travel on paths whose tangent is aways in the direction of the fluid velocity at any point.
Thus, path lines are the same as streamlines in steady flows.

ith position or time. The velocity of fluid is
Id through a pipe of constant diameter running
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Streamlines for a flow pattern in the xy-plane are shown in Fig. 3.2, in w@streamline
passing through the point P (X, y) is tangential to the velocity vector Vr at P, d v are the x
and y components of V' r .

\/
Vv day A
—=Tanf =— : %"

i

Where dy and dx are the y and x components of the Q}eﬂ displacement ds along the

streamline in the immediate vicinity of P. Therefore, thedi tial equation for streamlines in
the xy-plane may be written as

ﬂ:d_‘} or &(b\tvdxz{}

u
The differential equation for streamlmes in sp

¢ é‘fﬁ_;

Obvioudly, a streamline is ere tangent to the velocity vector; there can be no flow
occurring across.a strearr{ffle. In steady flow the pattern of streamlines remains invariant with
time. / .

A stream tube gﬁ-uat/shown in Fig. 3.3 may be visualized as formed by a bundle of
streamlines in y flow field. No flow crosses the wall of a stream tube. Often times in
simpler flow prob emwch as fluid flow in conduits, the solid boundaries may serve as the
periphery of asiream tube since they satisfy the condition of having no flow crossing the wall of
the tube.
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In general, the cross-sectional area may vary along a stream tube since streamlines are generaly
curvilinear. Only in the steady flow field with uniform velocity will streamlines be straight and
paralel. By definition, the velocities of al fluid particles in a uniform flow are the same in both
magnitude and direction. If either the magnitude or direction of the velocity changes along any one
streamline, the flow is then considered non-uniform.

ONE, TWO AND THREE-DIMENSIONAL FLOW

Although, in general, all fluid flow occurs in three dimensions, so that, velocity, pressure and
other factors vary with reference to three orthogonal axes, in some problems the major changes
occur in two directions or even in only one direction. Changes along the other axis or axes can,
in such cases, be ignored without introducing major errors, thus simplifying the analysis. Flow is
described as one-dimensional if the factors, or parameters, such as velogi essure and
elevation, describing the flow at a given instant, vary only along the directi low and not
across the cross-section at any point. If the flow is unsteady, these pararﬁr may vary with
time. The one dimension is taken as the distance along the streamline ¢f the“flow, even though
this may be a curve in space, and the values of velocity, pressure.an ation at each point
aong this streamline will be the average vaues across a %c'tkwslormal to the streamline
(Fig.3.4). 4}
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In two-dimensional flow it is at the flow parameters may vary in the direction of flow
and in one direction at right , SO that the streamlines are curves lying in a plane and

identical in al planes parallé to this plane.

Thus, the flow over a weir of constant cross-section (Fig.3.5) and infinite width perpendicular to
the plane of the diagram can be treated as two-dimensional. In three-dimensional flow it is
assumed that the flow parameters may vary in space, X in the direction of motion, y and z in the
plane of the cross-section.
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ENERGY EQUATION:
This is equation of motion in which the forces due to gravity and pressure are taken into consideration.
Thisis derived by considering the motion of afluid element along a stream-line as: Consider a stream-line in

which flow is taking place in S-direction as shown in figure. Consider a cylindrical element of cross-section
dA and length dS. The forces acting on the cylindrical element are:

1.Pressure force pdA in the direction of flow.

2.Pressure force (p + & ds)dA opposite to the direction of flow.

\ os )
3.Weight of element pgdAds.

Let 0 isthe angle between the direction of flow and the line of action of the wei g@t@ement.

The resultant force on the fluid element in the direction of S must be equal toﬁ mass of fluid element x

acceleration in the S direction. o

pdA — (p - % dsjdA — pgdAdS cos® = pdAdS x %QX---(D
Where & is the acceleration in the direction of S. &
Now aszy , Wherevisafunction of sand t. ¢ *
dt A

_Nds v vy v, &{ ds_,

Tosd ot o a\'W dt
& “

If the flow issteady, =Q

Substituting the value of & in equation (1) and simplifying the equation, we get

e dsdA — pgdAds cos 6 = pdAds x vey
os oS
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Dividing by pdsdA, _® —gcoso = Yoy
pos os
Qp—+goose+ Yo =0
pos os
But from the figure 00892%
ds
lQergd_Z+@=O or + gz +vdv=0
pos ~ds 0Os P
‘p+gdz+vdv=0 ................. ) ) &
P Vad

The above equation is known as Euler’s equation of motion.

Bernoulli’s equation is obtained by integrating the above Euler’ s@rof motion.

J | oz +j vav = cons?

If the flow isincompressible, p isaconstant and

§ §%+/gg +z=constant = - 3

The above equatlon is no n as Bernoulli’s equation.

P
P9

= pressure energy per unit weight of fluid or pressure Head

2

% = kinetic energy per unit weight or kinetic Head
g

Z= potentia energy per unit weight or potential Head

ASSUMPTIONS
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The following are the assumptions made in the derivation of Bernoulli’s equation:

()Thefluidisided, i.e. viscosity iszero (ii)The flow is steady
(iif)The flow isincompressible (iv)Theflow isirrotational

StatementofBernoulli’sTheorem:

It states in a steady, idea flow of an incompressible fluid, the tota energy at any point of the fluid is
constant. The totd energy consists of pressure energy, kinetic energy and potential energy or datum energy.
These energies per unit weight of the fluid are:

2
Pressure energy = & Kinetic energy = A Datum energy = z / é;
PY 29 ° 0

Thus mathematically, Bernoulli’ stheoremlswrlttenas + 3 +Z % t

RATE OF FLOW OR DISCHARGE (Q): \

It is defined as the quantity of a fluid flowing per %gh a section of a pipe or a channel. For an
incompressible fluid (or liquid) the rate of flow or oﬁe@s expressed as the volume of fluid flowing
across the section per second. For compressible flui he'rate of flow is usually expressed as the weight of
fluid flowing across the section. Thus

(i) For liquids the units of Q are m*/s OI@I i)For
gases the units of Q are kgf/s or Néﬁ(t nsider a

fluid flowing fl owi ng through' a pi pe#n which

% ss—sectlonal areaof pipe.
Average area of fluid across the section

Then discharge Q-A X V
CONTINUITY EQUATION:

The equation based on the principle of conservation of mass is called continuity equation. Thus for a
fluid flowing through the pipe at al the cross-section, the quantity of fluid per second is constant. Consider
two cross-sections of a pipe as shown in figure.

Let Vi=Average velocity at cross-section at 1-1
p 1 =Density at section 1-1

Ai=Areaof pipeat section 1-1
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And V, p2, Az are corresponding values at section 2-2

Then rate of flow at section 1-1 = V1p 1A1

Rate of flow at section 2-2 =V, p2A2

I

e = =
NG

Gn,"
According to law of conservation of mass \Q\.

. q
Rate of flow at section 1-1 = Rate of flow at sectiog@
p1A1Vi= p2A2 V2 ‘& ..... (D)
e

The above equation is applicable MOmprble as well as incompressible fluids is caled
Continuity Equation. If thefluid isi UQ\ Ié’ then p 1= p 2and continuity equation (1) reduces to

%Vl— V2

763
The dian@ a pip’g at the sections 1 and 2 are 10cm and 15cm respectively. Find the discharge
i Vi

Y

through the pipe w of water flowing through the pipe at section 1 is 5m/s. Determine the velocity
at section 2.

General Concepts

Therea behaviour of fluids flowing iswell described by an experiment carried out by Reynoldsin 1883. He
set up the following apparatus:
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Glass labe
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LAY |

e

Malwo
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The discharge is controlled by the valve and the small “‘filament’ of dye (practically astreamline) indicates the

behaviour of the flow. By changing the flow Reynolds noticed:
» At low flows/velocities the filament remained intact and almost straight. This t &w is known as
laminar flow, and the experiment looks like this: -

o

B
At higher flows the filament began to oscillate. This i@ansitional flow and the experiment looks

like: \‘

e ad & Taf E J &1 o & X & 4 ¢ K & 1 rrrxri

\
Lastly, for even higher flows ag }ament is found to break up completely and gets diffused over the

full cross-section. Thisis knowin as turbulent flow:

Reynol ds experimented with different fluids, pipes and velocities. Eventually he

found that the following expression predicted which type of flow was found:

I;_JW
e

e
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In which Re is called the Reynolds Number; p is the fluid dendgity; v is the averagevelocity; | is the
characteristic length of the system (just the diameter for pipes), and;p is the fluid viscosity. The Reynolds
Number is aration of forces and hence has nounits.

Flows in pipes normally conform to the following:
* Re < 2000: giveslaminar flow;
* 2000 < Re < 4000: transitional flow;

* Re > 4000: turbulent flow.

These values are only arough guide however. Laminar flows have been found at &
Reynolds Numbers far beyond even 4000. -

For example, if we consider a garden hose of 15 mm diameter then \/ng average velocity for

laminar flow is: Q\Q

R_ jr_'}‘l
-
’Jmm—%
? 5% 107
N 3 m's

Thisisavery low flow and hencew aé(hat in most applications we deal with turbulent flow. The
velocity below which there is no ceiscaled thecritical velocity.

..‘

Characterlstlcséﬁlmgeé

For laminar flow;

* Re < 2000; /‘

* ‘low’ velocity;

* Dye does not mix with water;

* Fluid particles movein straight lines;

* Simple mathematical analysis possible;
* Rarein practical water systems.

Transtional flow
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* 2000 < Re <4000

* ‘medium’ velocity

* Filament oscillates and mixes dightly.
Turbulent flow

* Re > 4000;

* ‘high’ velocity;

* Dye mixes rapidly and completely;

* Particle paths completely irregular; &
 Average motion isin the direction of the flow; - g
» Mathematical analysis very difficult - experimental measures are used; A \f’

“’ *
« Most common type of flow. \Q\»

Background to Pipe Flow Theory

5!
To explain the various pipe flow theories we will follow !“%devel opment

of the subject: ‘
Mare | Y & f [
=g md b 2 i | ane A maln

1330 = Titraken: flow equanec
wﬂlﬂi Dineninn bomeear leminar and nrmeent Zow
v«' ' s | Zaxn Frocher Bolor equabor or smnooch e
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Laminar Flow
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Steady Uniform Flow in a Pipe: Momentum Equation

The development that follows forms the basis of the flow theories applied to laminar flows. We remember
from before that at the boundary of the pipe, the fluid velocity is zero, and the maxi mum velocity occurs at
the centre of the pipe. Thisis because of the effect of viscosity. Therefore, at a given radius from the centre of
the pipe the velocity is the same and so we consider an elemental annulus of fluid:

ELOW OF VISCOUSFLUID THROUGH CIRCULAR PIPE:
For the flow of viscous fluid through circular pipe, the velocity distribution across a section, the ratio of

maximum velocity to average velocity, the shear stress distribution and drop of pressure for a given length is
to be determined. The flow through circular pipe will be viscous or laminar, if the Reynold’s number is less

than 2000. The expression for Reynold’s number is given by &
R, = 2 (
1)

O

Where p= Density of fluid flowing through pipe,

-
\Qw
V = Average velocity of fluid, ’8«

D = Diameter of pipe and,

W = Viscosity of fluid ‘\‘
RN

. % »

AN

dr .
;lﬂ.l’]]ﬂlfr-n‘r_]ﬁl e fifilt'h!r
i\
.5

- Y
§ -"1_'::"5" s _:H’ﬁl ,r"r o el
; ; F /

Consider a horizonta pipe of radius R. The viscous fluid is flowing from left to right in the pipe as shown
in figure. Consider a fluid element of radius r, diding in a cylindrical fluid element of radius (r+dr). Let the
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length of fluid element be AX. If ‘p’ isthe intensity of pressure on the face AB, then the intensity of pressure

. 0 . .
on the face CD will be (p+ 59 Ax). The the forces acting on the fluid element are:
X

1. The pressureforce, px nir> on face AB

0
2. The pressure force(p+ 59 Ax). nr? on face CD
X

3. The shear force, tx 2nrAx on the surface of fluid element. As there is no acceleration, hence the

summation of al forcesin the direction of flow must be zero.

3

p nrz-(p+§Xpr). nr? -tx 2nrAx =0

Q%’
— 4b AXTr? - Tx 2mrAX =0 \

aop
OX

across a section is constant. Hence shear stress

The shear stress t across tc“aries with ‘r’ as

across a section |sm1ear%1 nin figure.
y

/
(i) Vdocity: Distribuﬂ‘# To obtain the velocity distribution across a section, the value of shear stress

T=U 2—3 is substituted in equation (1)

Butintherelaiont = u% , 'y ismeasured from the pipe wall. Hence

y=R-r and dy=-dr
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o
“Hoa M

Substituting this value in equation (1)

_,GQu_ dpr
Har ™ ox 2

du_1 dp
dr 2p/8X

Integrating the equation w.r.t ‘r’ we get
JE 10 e °<;

4y OX
Where C is the constant of integration and its value is obtained from t bo aary condition that at r=R,

Q\Q

0= Q‘QRZ C
4 OX
. 1,
4 OX

Substituting this value of C in equation (2 \R‘g‘&
AN

- &@P f

4u ax gﬂp ox

R” —r?] 3)

8X/'

. \ op . . . .
In equation (3) values of ., 5 and r are constant, which means the velocity u, varies with the square of r.
X

Thus the equation (3) is a equation of parabola. This shows that the velocity distribution across the section of
apipeisparabolic. Thisvelocity distribution is shown in fig.

v

i1) Ratio of Maximum v ity to av \Vi ity:

The velocity is maximum, when r =0 in equation (3). Thus maximum velocity, Umayis obtained as
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_LQQRZ
4y, OX

The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the area
of the pipe (nR 2 ) The discharge (Q) across the section is obtained by considering the through aring element
of radius r and thickness the as shown in fig (b). The fluid flowing per second through the elementary ring

dQ=velocity at aradiusr x area of ring element

=ux 2nrdr
= _LQ‘Q[R2 - rz]x 2mrdr &
4p Ox
R L oo e '~
Q_L dQ__([ 4u8X[R2 r2]><2nrdl’ w

S.Q =l o

Average velocity, u=
« y Area nR?

Dividing equation (4) by equation (5)
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LQDRZ
8ul ox

Ratio of maximum velocity to average velocity = 2.0

iii : : Lven length (L) of & pipe:

From eguation (5), we have

U3 _I( @\I or (_—apj:@ es

8ul ox) OX R? -

Integrating the above equation w.r.t . X, we get A o

[p pz . 32MUL . Where p1 — p2 isthe drop of pressure
D?
Loss of pressure head = B, =B,
P9

P P
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Equation (6) is called Hagen Poiseuille Formula.

» DARCY - WEISBACH EQUATION (Derivation refer class notes)
» Moody diagram for friction factor:
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Development
We consider again a generd streamtube:

ES
&>
The Momentum Equ&\
5!

momentum entering — pJ, 5y,

momentum leaving = p O, &tv,

From continuity we know 1 2 Q = Q = Q . Thus the force required giving the change in momentum between
the entry and exit is, from Newton’s Second Law:
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d(mv)
elf

pOSIH(v, W)
ot
POV W)

Thisistheforce acting on afluid element in the direction of motion. The fluid exerts an equal but opposite
reaction to its surroundings.

Application — Fluid Striking a Flat Surface
Consider the jet of fluid striking the surface as shown:

The velocity of the% normal to the surfaceis:
This must be zero since thereisn : ive motion at the surface. Thisthen is aso the change in velocity that
occurs normal to %surface. 50, the mass flow entering the control volumeis:

% PQ=pAv
Hence: & /
/ rJT{P?'h'}

“ s ol

— v} vensd)
— gt eos
And if the plateis perpendicular to the flow then:
I p;]h"’
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Notice that the force exerted by the fluid on the surface is proportional to the velocity squared. Thisis
important for wind loading on buildings. For example, the old wind loading code

g=0.613 (N/m%)

Inwhich sv isthe design wind speed read from maps and modified to take account of relevant factors such as
location and surroundings.

Application — Flow around a bend in a pipe

Consider the flow around the bend shown below. We neglect changesin elevation

and consider the control volume as the fluid between the two pipejoins.

— Vad

The net external force on the control volume fl UId in th ionis:

pid— p, 4, cos6+ F
In which x F isthe force on the fluid by the pipe bend (makin
corner’). The above net force must be equa to t

nd the
e in momentum, whichis:
PO v, -,Ds

pid pidicosth ) 7 — 0:.6? V)
v, caeéi‘—xl]—pliiL A, cosd

,\ {;J(}l + py Ay JeosO—( pChy + A
Similarly, for the y-d| rection \?e @
L Siné+ F, = p0(v,sind-0)

& " F - pO(v,siné—0)+ p,4sinb
o

Hence:

» — (20, + py 4, )sin@
Theresultant is;
I ¥
F= _uu:" +F?
And which acts at an angle of:
P
§=1lan " —
15
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Thisisthe force and direction of the bend on the fluid. The bend itself must then be supported for this force.
In practice amanhole is built at abend, or else athrust block is used to support the pipe bend.

PROBLEM -1

The water is flowing through a pipe having diameters 20 cm and 10 cm at sections 1 and 2 respectively.

Therate of flow through pipeis 35 lit/sec. the section 1 is 6m above datum. If the pressure at section 2 is

4m above the datum. If the pressure at section 1 is 39.24 N/cm?, find the intensity of pressure at section 2.

Given:

At section 1,

At section 2,

D, =20cm= 0.2m &

& 11 2 _ 2 (*

A= n (0.2)° =0.314m". . \d'
o
P, = 39.24 N/cm? = 39.24 X 10 N/rnz\ow
Z,=6.0m ox
D, =0.10m &
I 2
A,=—(01° =
2= 0.3 <

Rate o?'f'l‘o %g@) = 35 lit/sec = 35/1000 = 0.035m°/s
7

- Q=A\Vi=AV;

Vi=Q/A; =0.035/0.0314 = 1.114 m/s

V,=Q/A,; =0.035/0.0785 = 4.456 nVs.

Applying Bernoulli’s Equations at sections at 1 and 2, we get

Or (39.24 X10* / 1000X9.81) + ((1.114)%2X9.81) + 6.0
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= (p2/1000X 9.81)+((4.456)%/2X 9.81)+4.0
40+0.063+6.0 = (p,/9810)+1.012+4.0
46.063 = (p,/9810) + 5.012
(p2/9810) = 46.063 — 5.012 = 41.051

P, = (41.051X9810/10% = 40.27 N/cm?

&

PROBLEM -2 &
In avertical pipe conveying oil of specific gravity 0.8, two pressure gauges h% installed at A and B
wherethe diameters are 16 cm and 8 cm respectively. A is2 m above B.“messure gauge readings have

rate. If the gauges at A and B are replaced by tubes filled

shown that the pressure at B is greater than at A by 0.981 N/cm3 N@W‘ng all losses, calculate the flow
Me liquid and connected to a U —

tube containing mercury, calculate the difference of level of.r& y in the two limbs of the U-tube.

Given: &
Sp.gr.. of ail, S0=0.8 & *

4
Density, p =08 x@%oo kg/m?®.
A
Diaat A, DQ’C}'Z 0.16m

sogpr

Areaat A, % Ay = %X(0.16)2=0.0201m2.
V 4

Dia. At B& ‘ Dg =8 cm=0.08m

#

Areaat B, Ag == — X(0.08)% = 0.005026 m*

(i). Difference of pressures, ps — pa = 0.981 N/cm?.
=0.981 X 10" N/m?. = 9810 N/n’.
Difference of pressure head (ps — pa)/ pg = (9810/ (800X9.81)) =1.25

Applying Bernoulli’s theorem at A and B and taking reference line passing through section B, we get

A Vi
&+—A+ZA :&+—B+ZB

rg 29 rg 29
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VE V2
&_&JFZA_ZB —_B_"A

rg rg 29 29
Pa—Ps 50-00= 2B A

Ve V&
29 29 rg

-125+20=

0.75 = ﬁ_ﬁ

0)

29 29
Now applying continuity equation a A and B, we get 0 5

3

VAXAl = VBXA2

‘V
Vaxa VX5 (197 \Q
M S i OQ

A2 p 2
— (.08
AL

Substituting the Vaue of Vg in equation (i), we :

2 2 2 »
0.75= %—V_Azﬁvﬁf‘xb

29 20 470N,

* y &

Va= S 25 '81=0.99m/s

N |
Rate of flow,g % Va XA,
ﬁ M/o.;g X 0.0201 = 0.01989 m®s.

N\
(ii). Difference of mercury in the U —tube.

Let h = difference of mercury level.

S
Then h= x[—g—lj
SO

Pa Ps PA—Ps
A4z, |- Btz |= Zy-Z
Whereh (rng AJ [rng BJ rg +Lp—4p

=-1.25+2.0-0=0.75.
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13.6
" 075 = X[W—l:l =x X 16

x = (0.75/ 16 ) = 0.04687 cm.

EXPRESSION FOR RATE OF FLOW THROUGH VENTURIMETER.

Venturi meter is adevice used for measuring the rate of flow of afluid flowing through a pipe. It

consists of three pats (i). A short converging part (ii) Throat and (iii). Diverging part

Let d; = diameter at inlet or at section 1

Let P; = pressure at section 1 ) &

Let V, = velocity of fluid at section 1

3

&

Let a = areaof section 1= Zd1

And d,, P, V,, & are the corresponding vaI Ues &
\‘x
P v

Applying the Bernoulli’s equation at section 1 & 2
(Pu/pg) + (V1 29) + Z, = (Palpg) + (V2° 1 20) + Z,
since the pipeis horizontal Z; = Z,

(P/pg) + (V%1 2g) = (P:/pg) + (V.*/ 20)
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rg 29 29

We know that Plr_gpz isthe difference or pressure head and is equal to h.

Vi W
29 29

I — @,

Now applying, continuity equationat 1 & 2

aVi=aV,or V= (&V,l g) -—---------—--—-- (2).
Sub (2) in equation (1) we get Qs

2
(azvzj
h= ﬁ_L = ﬁ 1_£
29 29 29| af
»

V22 =2gh (a’/ (a’-az’) \»\'
V,y= JEEH “;,

al aj 8

Discharge, Q=aV, @ \" 'Y

Q& %a Meoretlcal discharge

a,38;4/2gh
Qact CX =——

NEre

Where C,4 = co — efficient of venturi meter.
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PROBLEM 3

Water flows through a pipe AB 1.2m diameter at 3 m/s and then passes through a pipe BC 1.5 m
diameter at C, the pipe branches. Branch CD is 0.8m in diameter and carries one third of the flow in AB.
The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the
velocity in CD and the diameter of CE.

Solution. Given:

Diameter of Pipe AB, Dag=1.2m.

Velocity of flow through AB Vag = 3.0 M/s. &

Dia. of Pipe BC, Dgc=1.5m. 0
o\

Dia. of Branched pipe CD, Dcp = 0.8m. A o

Velocity of flow in pipe CE, Vcee=25m/s. Q"

Let the rate of flow in pipe AB=0Q m3/5..~Q’

Velocity of flow in pipe BC = Vgcms. @
Velocity of flow in pipe CD§D m’/s.

&‘

a3
Ql\

Diameter of pipe CE =Dc¢e

Then flow ratethrough CD=Q/3

And flow rate through CE=Q-Q/3=2Q/3

(). Now the flow rate through AB = Q = Vg X Areaof AB
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=3 X (m/4) X (Dag)?=3 X (m/4) X (1.2)
=3.393m’s.
(ii). Applying the continuity equation to pipe AB and pipe BC,
Vg X Areaof pipe AB = Ve X Areaof Pipe BC
3 X (1/4) x (Dag)? = Viac X (11/ 4) X (Dgc )?

3x(L2)% =Vgcx (15?2

Vge = (3x1.2%)/15°=1.92ms. &
(iii). The flow rate through pipe 0

CD=Q;=Q/3=3.393/3=1.131m"s

Q1= Vep X Areaof pipe Cp X (n/4)@

3

1.131=Vep x (n/4) x (0.8) 2 ®

Veo =1.131/0.5026= K‘&
(iv). Flow through CE, ‘
4 »

Q=Q- ?393 -1.131=2.262 m%s
4

K
Q&Nrea of pipe CE = Ve X (1/ 4) (Dcg) 2
o 1

- | 2263225 X (1/4) (Dce)”

@% D= %2.263 X4)/ (2.5 X 1) = 1.0735 m

-

Diameter of pipe CE = 1.0735m.

PROBLEM 4

A horizontal Venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used

to measure the flow of water. The reading of differential manometer connected to the inlet and

thethroat is 20 cm of mercury. Determine therate of flow. Take Cy4 = 0.98.

d;=30cm
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a="Fdf="F 0

= 706.85 cm?

d,=15cm

p 2_ P 2
—d ==—@15
23 4 4()

2

= 176.7 cm®

Cy=0.98 &
Reading of differential manometer = x = 20 cm of mercury. Q

/&

Difference of pressure head, h = x[i— ] 0

=20[ (13.6/1) - 1] »@ﬁ mercury.

\: 8x .85x176.7+/2x9.81x252

J 706.85° —176.72

=125.756lit / s.
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CE 6303 MECHANICS OF FLUIDS
UNIT Il FLOW THROUGH PIPES

Viscous flow - Shear stress, pressure gradient relationship - laminar flow between paralle plates - Laminar
flow through circular tubes (Hagen poiseulle's) — Hydraulic and energy gradient - flow through pipes -
Darcy -Weisbach's equation - pipe roughness -friction factor- Moody's diagram- Mgjor and minor |osses of
flow in pipes- Pipesin seriesand in paralel.

Fluid Flow in Pipes

We will be looking here at the flow of real fluid in pipes— real meaning afluid that possesses viscosity
hence looses energy due to friction as fluid particles interact with one another and the @vall

Recall from Level 1 that the shear stressinduced in afluid flowing near abounda@vven by Newton's
law of viscosity:

i s:.,*

Thistells us that the shear stress, T, in afluid is proportional t g'el ocity gradient - the rate of change
of velocity across the fluid path. For a “Newtonian” flui erte

&

where the constant of proportionality, J?l’i s@n’es the coefficient of viscosity (or simply viscosity).

Recall also that flow can be clac,sif%o one of two types, laminar or turbulent flow (with asmall

transitional region hetween two) The non-dimensional number, the Reynolds number, Re, is used
to determine whicht % OCCUrs:
Re= pud
—H—
For apipe
Laminar flow: Re <2000

Transitional flow: 2000 < Re < 4000

Turbulent flow: Re > 4000
It isimportant to determine the flow type as this governs how the amount of energy lost to friction relates
to the velocity of the flow. And hence how much energy must be used to move the fluid.
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HYDRAULIC GRADIENT AND TOTAL ENERGY LINE:

This concept of hydraulic gradient line and total energy lineis very useful in the study of flow of fluids
through pipes. They are defined as

1.Hydraulic Gradient Line: It is defined as the line which gives the sum of pressure head (p/w) and
datum head (z) of a flowing fluid in a pipe with respect to some reference line or it is the line which is
obtained by joining the top of al vertical ordinates, showing the pressure head (p/w) of a flowing fluid
in a pipe from the centre of the pipe. It isbriefly written asH.G.L (Hydraulic Gradie@]e).

2.Total Energy Line: It is defined as the line which gives the sum of pres&%'l% datum head and
kinetic head of a flowing fluid in a pipe with respect to some reference line w so defined as the line
which is obtained by joining the tops of al vertical ordinates showing &um of pressure head and
kinetic head from the centre of the pipe. It is briefly written as T.E@ nergy Line)
N

EXPRESSION FOR LOSS OF HEAD DUE TO FRICTU& IPES OR DARCY - WEISBACH

EQUATION

Consider a uniform horizontal pipe, having stewv as shown figure. Let 1 -1 and 2-2 is two
sections of pipe.
Let P, = pressure intensity at secu

Let P, = Velocity of flow 1
L = length of the pipe betw esection 1-1 and 2-2

d = diameter off pipe. "\
f* = Frictional resj lper unit wetted area per unit velocity.
hy =lessof head tlueto friction.

And P,,V, g&/@l ues of pressure intensity and velocity at section 2-2.

o~

Applying Bernoulli’s equation between sections 1-1 & 2-2
Total head 1-1 =total head at 2-2 + loss of head due to friction between 1-1& 2-2
(Pu/pg) + (V1% 1 29) + Zy = (Palpg) + (V2 | 20) + ZoHhy -=---------- (1)
but Z; = Z; [ pipeis horizonta ]
V1=V, [ diameter of pipeissameat 1-1 & 2-2]
(1) becomes,
(P/ pg) = (P2/pg)+hs
he = (Py/ pg) - (P2/pg)
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frictional resistance = frictional resistance per unit wetted area per unit velocity X
wetted area X velocity 2.
F=f'xmd;xV? [ Wetted area =1 d x L, and Velocity V = V1 = V]
SR Y A l— (2). [ d = wetted perimeter = p]
The forces acting on the fluid between section 1-1 and 2-2 are,
1) Pressureforce at section 1-1 = P.X A
2) Pressureforce at section 2-2=P, X A
3). Frictional force F;
Resolving all forces in the horizontal direction.,
PlA—PzA—F]_:O
(Pi-P)A = F, = fXPxLxV?

(P1-Po) = (F'XPxLxVZ/A).
But from (1) we get &
-Q

P1— P2 =pg h
Equating the values of (P1 — P,) we get
pg hs = (FXPXLxV?/ A).

&
he = (f*/ pg) X (PIA) X LX V? SS’
(PIA) = (md/ (t d¥4)) = (4/d) \

Hence, hy = ( 1/ pg) x (4/d) x LxV?.
Putting (f* / p) = (f/ 2), where f is the cg —

_ 4fLVv?
he 3 2gd \I
This equation is known as Darcy ach eguation. This equation is commonly used to

find loss of head due to friction in pi e‘;

4’é.; 4

» Moody diagram for friction factor:
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Minor losses: (Derivation and formulasrefer class notes) N
-
Sudden enlar gement Q
Sudden contraction Q
Sudden obstruction ’A\

Entrancein pipe v
Exit in pipe \'
L osses by bend ‘

L osses by using fittings 4

FLOW THROUGH PIPESIN SERI& \FKOW THROUGH COMPOUND PIPES:

YVVYVYVVYVYY

2 2 2

’ ' o MLV, ALY, ALY,
A

giég/ d,x2g d,x2g d,x2g
N
P N

aslLv: Lv? Lv?l

— i 1 2 2 33|

= + +
Timd; d, d,

FLOW THROUGH PARALLEL PIPES:

Loss of head for branch pipe 1= Loss of head for branch pipe 2
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ALV 4L, ,
or 111 -
d, x2g
d, x 29
Lv? LV?
If f1=f», then 11 - 2.2
d, x2g d, x2g

PROBLEM 1
The rate of flow through a horizontal pipe is 0.25 m®/s. the diameter
200mm is suddenly enlarged to 400mm. the pressure intensity in t
N/cm?. Determine (i). Loss of head due to sudden enlargement (ii)
pipe. (iii). Power lost due to enlar gement.
Given:

Discharge Q=0.25m% Q
Dia. Of smaller pipe D; = 200mm 0.2m %

Area (o 2)g=0. 314@

Diaof large pipe D,= 400mm O

Area A, = B (0.4)2 = 2566 m?.
)
Pressure in smaller pipe P = 1.7 \Nfem? = 11.772 X10* N/m?.
Now velocity V&: 15025 /0.03414 =7.96 m/s.
2>=0.25/0.12566 =1.99 m/s.

Velocity X 2}
(i). Loss of head due to su enlargement,
L (vl-vz)z/ 29=(7.96-1.99) ?/2X 9.81=1.816 m.
ensity in large pipe = p».
oulli’s equation before and after the sudden enlargement,
1°1.29) + Z1 = (Palpg) + (V2 1 29) + Zo+he
BUt?T= 7,
(Pi/pg) + (V1°/29) = (Po/pg) + (V2° / 2g) +he
Or (P/pg) + (V1*/ 29) = (P2lpg) + (V2°/ 29) + Za+hy
(P2/pg) = (P1/pg) + (V1*/ 29) - (V2° 1 29) - he
_ 11772x10" | 7.96° 1997 oo
1000X9.81 2X9.81 2X9.81
12.0+3.229-0.2018-1.8160
=15.229 - 20.178 = 13.21m of water
P =13.21 X pg = 13.21 X 100X 9.81 N/m?
= 13.21X1000X9.81X10™* N/cm?. = 12.96N/cm?.
(iii). Power lost due to sudden enlargement,
P = (pg Q he) / 1000 = (1000X9.81X0.25X 1.816)/1000 = 4.453kW.

(ii). Let the'pr
Then applyin

PROBLEM 2
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A horizontal pipeline 40m long is connected to a water tank at one end and discharges freely
into the atmosphere at the other end. For thefirst 25m of its length from the tank, the pipeis
150mm diameter is suddenly enlarged to 300mm. the height of water level in the tank is 8m
above the centre of the pipe. Considering all losses of head, which occur. Determine the rate
of flow. Takef = 0.01 for both sections of the pipe.

Given:

Tota length of pipe, L =40m

Length of 1 st pipe, L;=25m

Diaof 1% pipe dy = 150mm = 0.15m
Length of 2" pipe L, =40-25=15m
Diaof 2™ pipe d, = 300mm = 0.3m

Height of water H=8m
Co-€ffi. Of friction f =0.01
Applying the Bernoulli’s theorem to the surface of water in the ta@ outlet of pipe as

shown in fig. and taking reference line passing through the cen%g he pipe.

Nl
S

&

0+0+8 = (Pa/pg) + (V2? / 2g) +0+all losses &&
8.0 = 0+(V,? / 2g)+hi+ hiy+ het hr, ¢

Where, h; = loss of head at entrance = Q.5,V§ 2g

~ QXfXL XV,

e, = head lost due to friction i DY & o

\§ d;X2g

he = loss of head due to.sud largement = (V- V)29
' Y AXEXL, XV
hfzzhead%%@ypnm pipe 2 = d,X2g
But from coftisui y}gation, we have
A1V1 - A2V2

y o) %dzzxv2 i 2 03\

= (AVo/A)) = = =2 | XV, =| —=| XV, =4V

1 ( 2V 2 l) pd12 [dlj 2 (0.15) 2 2
4

Substituting the value of V1 in different head losses, we have
hi =0.5V¥ 2g= (0.5 X (4V)?)/ 29 = 8V,%2g
2 2 2
_ 4X0.01X25X(4V5) _ 4X0.01X25X16 X Vo _ 106.67V—2

hi="""015x2g 0.15 29 29
he= (Vi-V2)% 29 =(4V2-V2)?29=9V,/2g
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4X0.01X15X (V;) _ 4X001X15, V5 _, Vs
2= """53x2g 03 29 " 2g
Substituting the values of these losses in equation (i), we get

(VA VA2 (VA VA V.2
80="24+""2 1106672 +—2 +2X -2
29 29 29 29

V2 V2
= Y2 [ 1+8+106.67+9+2] = 126.67 2
29 29

V, = \/8.0x2xg a \/S.OX RGOy o
126.67 126.67

Rate of flow Q = A XV, = % ( 0.3)2 X 1.113 = 0.07867 m°/s = 78.67 litres/sec.

&

PROBLEM 3 &
A pipeline, 300mm in diameter amd 3200m long isused to pump g per second of an oil
whose density is 950n kg/m®.and whose Kinematic viscosity js 2.1 Stokes. The center of the
pipe at upper end is 40m above than at the lower end. m harge at the upper end is
atmospheric. Find the pressure at the lower end f&( e hydraulic gradient and the

total energy line. %

Given:

Diaof pipe d = 300mm = 0.3m @
Length of pipe L =3200m &
Mass M = 50kg/s =p. Q &
Discharge Q =50/ p = 50/95@ 20526 m*/s

Density p =950 kg/m ‘K
Kinematic viscosity v = 2.1 stq@ ch?s = 2.1 X10* m%s
Height of upper end = 40m, \

Pressure at upper end = atmmc =0

Renolds number, \/XD/v, whereV = Discharge/ Area

2 =0.0526/ (% (0.3)2) = 0.744 m/s

R, =".744X0.3O) / (2.1X1O'4) =1062.8
Co - effictent of friction, f = 16/ R. = 16/ 1062.8 = 0.015
Head lost due to friction,hs

AXIXL XV*  4X0.015X3200X (0.744)2
d X2g 0.3X2X9.81

Applying the Bernoulli’s equation at the lower and upper end of the pipe and taking datum line
passing through the lower end, we have
(Pu/pg) + (V1% 1 29) + Zy = (Palpg) + (V2° | 20) + Zo+hy
but Z; =0, Z, =40m., V1 =V, asdiameter is same.
P, =0, hy = 18.05m
Substituting these values, we have

£

=18.05mgf (j.
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= 5400997 N/m? = 54.099 N/cm?.

H.G.L.ANDT.E.L.
V?/2g = (0.744)%/2X9.81 = 0.0282 m
p1/ pg = 58.05 m of oil

p2/pg=0

Draw a horizontal line AX as shown in fig. From A draw the centerline of the pipein such way that
point C is adistance of 40m above the horizontal line. Draw avertical line AB through A such that AB =
58.05m. Join B with C. then BC isthe hydraulic gradient line.

Draw aline DE parallel to BC at a height of 0.0282m above the hydraulic gradient line. Then DE is

the total energy line. &

PROBLEM 4 ~§

A main pipe divides into two parallel pipes, which again forms one pip own. The length and
diameter for thefirst parallel pipe are 2000m and 1.0m r%pectively ibe the length and diameter
of 2" parallel pipe are 2000m and 0.8m. Find the rate of fI h-parallel pipe, if total flow in
main is 3.0 m*/s. the co-efficient of friction for each parallel Q eand equal to 0.005.

Given:

Length of Pipe 1 L,=2000m

Diaof pipel d; = 1.0m

Length of pipe 2 L, =2000m

Diaof pipe 2 d> = 0.8m &
Total flow Q=3.0ms ‘fb

f, =f, =f=0.005"° o
let Q; =dischargeinpipel « ,\\.,

let Q, = dischargein plpeﬂ
from equation, QF Qi+t Q=30 (i)

using the equation wehave
4XleL1XV12 2 2).0‘/22

d,; X 2g Wd%g

4X0.005X 2000XV,?> _ 4X0.005X 2000XV.7
1.0X2X9.81 0.8X2X9.81
10 08 ' 08
V, = Vo _ Vo
Jog 0.89%4

Now, Q, =P d12XV1— p (1)2X(V2/ 0.894)

And Q, = % d2XV, = % (0.8) (V) = % (0.64) X (V2)
Substituting the value of Q; and Q. in equation (i) we get
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% (1)2X(V,/ 0.894)+ % (0.64)X (V) = 3.0 or 0.8785 V, + 0.5026 V5 = 3.0

V ,[0.8785+0.5026] =3.00or V =3.0/ 1.3811 = 2.17 m/s.
Substituting this value in equation (ii),
Vi1 =V,/0.894=2.17/0.894 m/s

Hence Q; = % di2X V4 = % 12X 2.427 = 1.096 m°/s
Q,=Q-Q;=3.0-1.906=1.904 m%s.

PROBLEM 5
Threereservoirs A, B, C are connected by a pipe system shown in fig. Find the discharge into
or from thereservoirs B and C if the rate of flow from reservoirs A is 6Q,litres/ s. find the
height of water level in thereservoir C. takef = 0.006 for all pipes. &

Given:

Length of pipe AD, L, =1200m "'
Diaof pipe AD, d; =30cm =0.3m ’
Discharge through AD, Q. = 60lit/'s= 0.06 m*/

Height of water level in A from referenceline, Za= 40m \
For pipe DB, length L, = 600mm, Dia., d, = ZOCm = =38.0
For pipe DC, length L3 = 800mm, Dia,, d3= 30cm =

Applying the Bernoulli’s equations to point E a ngﬁ Po 4 hy

Where hy = % where V1 = Q:/ & 0006/ (& (0.3 =0848 s
1

4X0.006X1200X 0.848>
he= \518;m
0.3X2X9.81 ,(

{Z+ } 40.0 M 36.482m

et D = 36.482m. Hence water flows from B to D.
quation to point B and D

o _ 36480+
2 g“l-hfz or 38 = 36.482 + hy,

Hence pi ezOmetric

hy, =38 - 36.482 = 1.518m

AXXL, XV 4X0.006X 600XV

But hy, =
2= 4,29 0.2X2X9.81

4X0.006 X 600XV.7
0.2X2X9.81

Vo= \/1.518X0.2X2X9.81
2 4% 0.006X 600

1518 =

=0.643m/ s

Discharge Q; = vzx% (dy)% = 0.643 X %X(O.Z)z = 0.0202m%s = 20.2lit/s.
Applying Bernoulli’s equationto D and C
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{Zo + } Zcthes

AXFEXLy XVE whereV, - Q;

36.482=Zc+
293

but from continuity Q; + Q.= Q3
Qs = Q;+Q, = 0.006 + 0.0202 = 0.0802 m*/s

V, = Q% g g3ams

p 2 P 2
-d —(0.9
A )

2
36.482 = Zc + 4X0.006X800X1.134 — 7o+ 4.194
0.X2X9.81

Zc = 36.482 - 4.194 = 32.288m &

PROBLEM 6 (®
A Pipe line of length 2000 m is used for power transmission,,|f M%S kW power isto be
transmitted through the pipe in which water having pr of 490.5 N/cm? at inlet is
flowing. Find the diameter of the pipe and efficiency of ssion if the pressure drop over
thelength of pipeis 98.1 N/cm?. Takef = 0.0065. )

Given.
Length of pipe L =2000m. A\
H.P transmitted =150

Pressure at inlet, p = 490.5 N/cm? = 490@ N/m?.

Pressurehead at inlet, H = p / pg

Pressure drop =98.1 N/W X10%m?

Loss of head he = 98.1X 1 = 098.1X10% ( 1000 X 9.81) = 100m
Co - efficient of friction f z0.00

Head available at the end OMI pe=H - h; =500- 100 = 400m

L et the diameter of the pipe = d

Now power r IS given by,

ZPis[pg X Q X (H - hy)] / 1000 kW.

= [ 1000X 9.81XQX400] / 1000
Q= 110.3625 X 1000 / ( 1000X9.81X400) ] = 0.02812m°/s

But discharge Q = AXV = % P XV

/

110.3

% d? X V =0.02812

V =(0.02812 X 4) / 3.14 X d* = 0.0358 / d---------- (1)
Total head lost dueto friction,
4EXLXV 2
T dx2g
but, hs = 100m
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AXIXL XV? 4% 0.0085X 2000XV2  2.65XV 2

100 = hy =
d X2g dx2Xx9.81 d
= (2.65/ d) X (0.358/d%)? = 0.003396 / d®
from equation (1),
V =0.0358/ d?

100 = 0.003396 / d®
d = (0.00396 / 100)*® = 0.1277m = 127.7mm.
Efficiency of power transmission is given by equation

H-h .
i _SP0OE et ib o

H 500
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CE 6303 MECHANICS OF FLUIDS
UNIT V DIMENSIONAL ANALYSISAND MODEL STUDIES

Units
Fluid mechanics deals with the measurement of many variables of many different types of units.

Hence we need to be very careful to be consistent.
Dimensions and Base Units

The dimension of a measure is independent of any particular system of units. For example,
velocity may be in metres per second or miles per hour, but dimensionally, it is aways length per
time, or L /T = LT-1. The dimensions of the relevant base units of the Systéme International
(SI) system are:
Derived Units
From these we have some relevant derived units (shown on the next p.
dimensions or units of an equation is very useful to minimize errors. F i
calculating aforce and you find a pressure then you know you’ve made afi

Quantity

Velocrty

Accelerzhon

Specif Sywe: cht ML*T Nim kgm™
Avf\
é'l dencity Fato Fahao Fato
pd &.) .
e Viegrity MLT MNefm® kgm' s
Joule, T s
Energy (work) MIT? kzm s~
Hm
Watt, W
Powrer MIT- MNm's kem® s

Note: The accelerstion due to gravity will always be taken as 3.81 m's".

S| Prefixes
Sl units use prefixes to reduce the number of digits required to display a quantity. The prefixes
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and multiples

Be very particular about units and prefixes. For example:
» kN means kilo-Newton, 1000 Newtons;
» Knisthe symbol for knots — an imperia measure of speed;
» KN has no meaning;

mensional i

Dimensional homogeneity means the dimensions of each terms in an equation on both sides equal.
Thus if the dimensions of each term on both sides of an equation are the same the equati@r is known as
dimensionally homogeneous equation. The powers of fundamental dimensions (i.e.,& ) on both
sides of the equation will be identica for a dimensionally homogeneous equation 0

Vo d

Let us consider the equation v =./2¢h \"
. Ly Q
Dimensionof L H.S =V = - = 41 Q\
2
Dimensionof RH.S = /20H = /—XL @

= —— LT«*

T

Dimensionof L.H.S = Dlr@x Rﬂs LT

Equation v = 1/2g1 |sd|r§wson homogeneous.

@&Vﬁ’
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METHODS OF DIMENSIONAL ANALYJIS

If the number of variables involved in a physical phenomenon are known, then the relation among the
variables can be determined by the following two methods.

1.Rayleigh’s method, and

2. Buckingham’s 1t theorem &

1.Rayleigh’s method: -

This method is used for determining the expression for a variable which_depends upon maximum
three or four variables only. If the number of independent variables b more than four then it is
very difficult to find the expression for the dependent variable. %

Let X isavariable, which depends on X1, X» and X3 variables. according to Rayleigh’s method, X
isfunction of X1, Xz and X3 and mathematically it iswrit

X=f [Xl,
This can also bewri X = K X2 X2 Xs5°
Where K isconstant and a, b and c are ar MWers

The values of a, b and c are obtaw parlng the powers of the fundamental dimension on both
sides. Thusthe expression is obt ependent variable.

2.Buckinghar’s'm thgm
If there are @ (i pdependent and dependent variables) in a physica phenomenon and if these

variables contai ndamental dimensions (M, L, T), then the variables are arranged into (n-m)
dimensionless numbers. Each termis called m term.

Let X1, X2, X3,......... Xn are the variables involved in a physical problem. Let X1 be the dependent
variable and Xz, Xs,......... Xy are the independent variables on which X1

depends. Then X1 isafunction of Xz, Xs,......... Xnand mathematically it is expressed as

X1= f (Xz, X3 .......... Xn) (1)
The above equation can also be written as

f1 (Xl, Xz, X3, ......... Xn)=0 ------------------- (2)
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The above (2) is a dimensionally homogeneous equation. It contains n variables. If there are m
fundamental dimensions then according to Buckingham’s i theorem, equation (2) can be written on terms
of dimensionless groups or - termsis equal to (n-m). Hence equation (2) becomes as

f1 (T[l | T | T T nm)=0. ------------- (3)

Each - term is dimensionless and is independent of the system. Division or multiplication by a constant
does not change the character of the m- term. Each m- term contains m+1 variables, where m is the
number of fundamental dimensions and is aso called repeating variables. Let in the above case X2, X,

and X, are repeating variables if the fundamental dimension m (M, L,T)=8. Then each 1- termis
written as
= X8 X3P X, X, Q‘\'
o= Xzaz.X3b2.X4C2.X5 Vo d 0

T m= X2 ™ X 3P ™M XM X % .,\

Each equation is solved by the principle of dimensi geneity and values of aj, by, ¢; etc. are
obtained. These values are substituted in equation (4) eSOf M1, T2, M3eeennn.. T m are obtained.
These values of 1’s are substituted in equation (3 ina equation for the phenomenon is obtained by
expressing any one of the 1- terms as afunctlon,o@r

= O[Tz Mayurenn... Tl n\‘\
o= @[nl,ns,....w 5)

The number of repeating variables are equal to the number
of fundamental diinen 3 f the problem. The choice of repeating variables if governed by the following

considerations.
Z
1. Asfar as p&é’ﬁ]@, the'@lependent variable should not be selected as repeating variable,

2. The repeating variables should be choosen in such a way that one variable contains geometric
property, other variable contains flow property and third variable contains fluid property.

V ariables with geometric property are (i) Length, | (i) d (iii) Height H etc.
Variables with flow property are (i) Vdocity, V  (ii) Acceleration etc.
Variableswith fluid property are (i) u (i) p (iii) w etc.

3. The repeating variables sel ected should not form a dimensionless group.

4. The repeating variables together must have the same number of fundamental dimensions.
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5. No two repeating variables should have the same dimensions.

In most of fluid mechanics problems, the choice of repeating variablesmay be (i) d,v,p (i) I, v,
por (it)l,v, g or (iv) d,v, p.

MODEL ANALYSIS:

For predicting the performance of the hydraulic structures (such as dams, spill ways etc.) or
hydraulic machines (such as turbines, pumps etc.), before actually constructing or manufacturing, models
of the structures or machines are made and tests are performed on them to obtain the desired information.

The model is the small scale replica of the actua structure or machine. The actual structure or machine

is caled prototype. It is not necessary that the models should be smaller than the prot (though in
most of cases it is), they may be larger than the prototype. The study of models/of machines is
called model analysis. Model analysis is actually an experimental method of fingjp utions of complex
flow problems. \'

{%a

The followings are the advantages of the dimensional and model

1.The performance of the hydraulic structure or hydraullc can be easily predicted, in advance,
from its model.

2. With the help of dimensional anaysis, a rela&d between the variables influencing a flow

problem in terms of dimensionless parameters |s This relationship helps in conducting tests on
the model.

3. The merits of alternative deggm qoredlcted with the help of model testing. The most
&opted

economical and safe design may man

4.The tests performed on thé models be utilized for obtaining, in advance, useful information about
the performance of thevg)totypes only if a complete similarity exists between the mode and the
prototype.

ILITUDEiQI"Y‘PE IMILARITIES

Similitude is defined as the similarity between the model and its prototype in every respect, which
means that the model and prototype are completely similar. Three types of similarities must exit between
the model and prototype. They are

1. Geometric Similarity 2. Kinematic Similarity 3. Dynamic Similarity
1.Geometric Similarity:

The geometric similarity is said to exist between the model and the prototype if the ratio of all
corresponding linear dimension in the model and prototype are equal.

L= Length of model , b= Breadth of model
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D= Dismeter of model An= area of model
M = Volume of model
and Lp, By, Dp, Ap, ¥ p=Corresponding values of the prototype.
For geometric similarity between model and prototype, we must have the relation,

Lm bm Dm

r

L iscaled the scaleratio.
For area’sratio and volume’sratio the relation should be as given below. | &
QO

A

2. Kinematic Similarity : . “

*® v
Kinematic similarity é(x;[ ilarity of motion between model and prototype. Thus
kinematic similarity is said to exi een the model and the prototype if the ratios of the velocity and
acceleration at the,gprr&epondi ng points in the model and at the corresponding points in the prototype are
the same. Since'the v and acceleration are vector quantities, hence not only the ratio of magnitude
of velocity and‘ac at the corresponding points in the model and prototype should be same, but
the directions 0 ity aﬁ accelerations at the corresponding points in the model and prototype also

should be parallel.
Vp = velocity of fluid at point 1 in prototype,
Vp2= velocity of fluid at point 2 in prototype,
ap1= Acceleration of fluid at point 1 in prototype,
ap2= Acceleration of fluid at point 2 in prototype,

Vm, Ve, ami, @ = Corresponding values at the corresponding points of fluid velocity and
acceleration in the model.

For kinematic similarity, we have
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where V, isthe velocity ratio.

a
For acceleration, we have P =a
a

where & is the acceleration ratio.
Also the directions of the velocities in the model and prototype should be same

3. Dynamic Similarity: &

Dynamic similarity means the similarity of forces between the model and pe. Thus dynamic
similarity is said to exist between the model and prototype if the ratios of the ol %pondl ng forces acting
at the corresponding points are equal. Also the directions of the corresp orc& at the corresponding
points should be same. &

(Fi)p= Inertiaforce at a point in prototype, Q\
(Fv)p= Viscous force at the point in prototype,

(Fg)p= Gravity force at the point in prototype, &
F)p, (Fv)p, (Fg)p = Corresponding values of fo( the corresponding point in model.

Then for dynamic similarity, we havg

€) @}
(E)m (F

where F; isthefor

Also the directions'of the-k)rrespondi ng forces at the corresponding points in the model and prototype

should be same.
DIMENSIONLESSNUMBERS:
Dimensionless numbers are those numbers which are obtained by dividing the inertiaforce

by viscous force or pressure force or surface tension force or elastic force. As thisis aratio of one force
to the other force, it will be a dimensionless number. These dimensionless numbers are aso caled non-
dimensional parameters. The following are the important dimensionless numbers:

1. Reynold’s number 2. Froud’s number

3. Euler’s number 4. Weber’s number
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5. Mach’s number

1)Reynold’s number: It is defined as the ratio of inertia force of a flowing fluid and the viscous
force of the fluid. The expression for Reynold’s number is obtained a

:de o oVvd
v u

2.Froud’s Number (Fe) : The Froud’s Number is defined as the square root of the ratio of inertia force
of aflowing fluid to the gravitational force. Mathematically, it is expressed as

[ &

_ [pAv? _ v2 .
PALg J_ -

3. Euler’s number (Ey): It is defined as the square root of}Q inertia force of aflowing fluid

3

to the surface tension force. Mathematically, it is expressed as®

Euler’snumber E, / &

4. Weber’s number (We): It is defined asthg’&q root of the ratio of inertia force of aflowing fluid
to the surface tension force. Mathematical xpressed as
v

Weber’s number w

b o

X
n& .
5. Mach nu ): Méech number is defined as the square root of the ratio of inertia force of a

flowing fluid to the elastie force. Mathematically, it is expressed as
i F
Mach number M = we = e
Elastic force F,

M:M.
C

—

MODEL LAWSOR SIMILARITY LAWS.
1. Reynold’s model law 2. Froud’s model law
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3. Euler’s model law 4. Weber’s model law
5. Mach’s model law

1.Reynold’s modd law: Reynold’s model law is the law in which models are based on Reynold’s
number. Model based on Reynold’s number includes:

=p, AV, =p, L%V,

2.Froude Model law: Froude Model law is the law in which the models are based on Froude number
which means for dynamic similarity between the model and prototype, the Froude number for both of
them should be equal. Froude Model law is applicable when the gravity force is only pre@nant force
which controls the flow in addition to the force of inertia. Q

V=T G

m

which is the ratio of the square root of inertia force to surface . Hence where surface tension
effects predominant in addition to inertia force, the dynamicgsi ity between the model and prototype
is obtained by equating the Weber number of the model and i ype. Hence according to thislaw:

3. Weber’s Model law: Weber’s Mode law is the law in Wthh% “éba%d on Weber’s number
t

Jo/pL

(We)model = (We)prototype where Weis W{&meer =

4. Mach Modd law: Mach Model(r e I;N in which models are based on Mach number which is
the ratio of the square root of |ﬂ to elastic force of a fluid. Hence where force due to elastic
compression predoml nant inraddition to inertia force, the dynamic similarity between the model and
prototype is obtéifed by eguating the Weber number of the model and its prototype.

Hence accgr&}o this!aw:
“W

2 ]
(M ) model — (M ) prototype

PROBLEM:1
Theresisting force of (R) of a supersonic flight can be considered as dependent upon the length
of aircraft “I””, velocity “V’, air viscosity ‘y’, air density ‘p’, and bulk modulus of air ‘k’. Express
the functional relationship between these variables and theresisting for ce.
(Nov 2005.)
Solution:
Step 1. R=f(l,V,p,p k)
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®(R,1L,V,ppk =0

Number of variables, n=6
Number of primary variable, m =3
Number of mterms =n-m=6-3=3

f(my mp m3z) =0
Step 2. Assume I, V and p to be the repeating variables

m =1 VY, /iR

MOLOTO = [ L[ LT Y[ML¥?[MLT?
X1+y1-321+1 =0

E

-y1-2=0

y1:-2.

z;+1=0;
z1=-1 X1-2+3+1 =0 g;.’
Xo = -2. Q"
N

-2\ 72~-1
T[]_:| V R=
P 12V 2r

=1V pzu \1
MOLOTO = [LI*[LTYY[ML 3 [M ufb
Xoty2 -3z,-1 :‘0 b 5 -yo—1 = 0
yo=-1.

z1+1=0;
z=-1 x,-1+43-1=0 § 4

Step 3:

\
N\
Step 4. T =1"V pzK
MOLOTO =[ L[ LT Y[ML ¥ [ML™'T?
Z3+1=0; X3tYy3 -323-1=0 -Y3— 2=0
Z3=-1 X3-2+3-1=0 y2:-2.
X3=0.
no= vtk = K
? P rv?

Step 5.
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— R m K |
P (M, M2, 5) =0 ¢ [IZVZr ’W’rv2]_0

R=1?VZpo | ™ K g
P [IVr rv?

PROBLEM:2
A Ship is 300m long moves in seawater, whose density is 1030 kg/m?, A 1:100 model of this to be tested in a
wind tunnel. The velocity of air in the wind tunnel around the model is 30m/s and the resistance of the

model is 60N. Determine the velocity of ship in seawater and also the resistance of the ship in sea water.

The density of air is given as 1.24 kg/m>. Take the Kinematic viscosity of seawater and 0.012 stokes
and 0.018 stokes respectively. . &

Given: ~°

For prototype, ®

Length L, = 300m &
Fluid = Sea water Q(\
Density of water = 1030 kg/m’ .x

Kineamtic viscosity v, = 0.018 stokes = 0.018 @s

Let velocity of ship =V, &

Resitance =F, 4}
For Model ) N \

TN ¢
Length Ly, = (1/100)X35£)& j
Velocity V= : s
Resistance F., = 60N

i
Density of air % Pm=124 kg/m?
Kinematic viscosity o '*vm = 0.018 stokes = 0.018 X10™ mz/s
For dynamic similarity between the prototype and its model, the Reynolds’s number for both of them should
be equal.
(VoXLp / Vp ) = (VXL /Vin) OF (Vp, / Vin ) X (Lin/Lp) X Vi
= (0.012X10™/ 0.018X10™) X (3/300) X30 = 0.2 m/s.
Resistance = Mass X Acceleration
=p X (V/t)=p X (V/I)X(L/t)=p LV
Then Fy/ Fr = (P LV?) o/ (P L'V = (Po/ Prn) X (Lp/LM)X (Vy/ Vi)

(Po/ Pm) =1030/1.24

Fo/Fm =(1030/1.24) X (300/3)°X (0.2/30) = 369.17
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Fo=369.17 XFr, =369.17 X 60 = 22150.2 N.

PROBLEM:3
A 7.2 m height and 15m long spill way discharges 94 m*/s discharge under a head of 2.0m. If a 1:9 scale
model of this spillway is to be constructed, determine model dimensions, head over spillway model and the

model discharge. If model experience a force of 7500N (764.53Kgf), determine force on the prototype.

Given:

For prototype: height h,=7.2m

Length, L, = 15m

Discharge Q,=94 m3/s i &
Head, H,=2.0m wo

Size of model = 1/9. of the size of prototype ®

Linear scale ratio, L.=9 &
Force experienced by model F, = 7500N \
Find : (i) Model dimensions i.e., height and length of mo’d@and L)
(ii). Head over model i.e., H, v

(iii). Discharge through model i.e., Q, &&

4}

(i). Model dimensions ( h, and L, ) \ ﬂ

hp/hm,{?&&; 29
B 9='72/9=08m

L,=L,/9=15/9=1.67m.
& b/ /

(ii). Head over ‘%‘m),
o/ Ho= L, =9

- Hm = H,/ 9= 2/9=0.222 m.

(iv). Force on prototype (i.e., F,)

(iii). Discharge through model (Q,,)
Using equation we get, Q,/ Qn = L2
Qn =(Q,/L>°) =94 /9*°=0.387 m’/s.
(iv). Force on the prototype(F,)
Using Fr=F,/Fp =L
Fo = Fm X L,> 7500X9° = 5467500N.
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PROBLEM:4
A quarter scale turbine models is tested under a head of 12m. The full-scale turbine is to work under a head
of 30m and to run at 428 rpm. Find N for model. If model develops 100 kW and uses 1100 I/s at this speed,
what power will be obtained from full scale turbine assuming its n is 3% better than that of model.
Solution :
Dm/Dp=1/4;Hy=30m; N, =428 rpm.

w.k.t.

(DN/+H )= (DN/VH ),

(D’N)/ (D’N?)p = Hn/ Hp) &
S . N

2
X —1 X (N )?
ij m (N,)

Vo d
p \ H
x“!’“ .
= ‘/16X1—2X4282 -
. \
= 1082.7638 rpm. Q

*
(ii). Pry= 100 kW; Q= 1.1 m?/ s.

o) = ( P/ pg Q H),, = 100X10° / (9810X1.1X12) = 0.7722@22%.
It is given in this problem that the efficiency of t ctual turbine is 3% better than the model.
(ho)p =79.54159%

&8
We know that, . %%3
(Q/D*VH ) =(Q/D’VH ), ‘1\
0= (Q/ Y (Y )@Dp/omf.
Q= (1.1/%%)},16
=27.82

-

P, = (ho)pX(pgQ H)p
=0.7954159 X 9810 X 27.82 X 30
= 6514.2917 kW.
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