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OBJECTIVE: 

 To impart knowledge on the basics of static electric and magnetic field and the 

associated laws. 

 To give insight into the propagation of EM waves and also to introduce the methods in 

computational electromagnetic 

 To make students have depth understanding of antennas, electronic devices, Waveguides 

is possible 
 
INTENDED OUTCOMES: 
Upon completion of the course, the students would be able to 

 Analyze field potentials due to static changes and static magnetic fields. 
 Explain how materials affect electric and magnetic fields. 
 Analyze the relation between the field sunder time varying situations. 
 Discuss the principles of propagation uniform plane waves. 

 

UNITI          STATIC ELECTRICFIELD                                                                                   

Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence, Curl, 

Divergence theorem, Stokes theorem, Coulombs law,Electric field intensity,Point,Line,Surface 

and Volume charged distributions, Electric flux density,Gauss law and its applications, Gauss 

divergence theorem, Absolute Electric potential,Potential difference,Calculation of potential 

differences for different configurations.Electric dipole,Electro static Energy and Energy 

density. 
 
 
UNITII       CONDUCTORS AND DIELECTRICS                                                                        

Conductors and dielectrics in Static Electric Field,Current and current density,Continuity 

equation, Polarization,   Boundary conditions, Methodofimages, Resistance  of a 

conductor,Capacitance, Parallel plate,Coaxial and Spherical capacitors, Boundary 

conditionsfor perfect dielectric materials, Poisson’sequation,Laplace’sequation,Solution of 

Laplace equation,Application of Poisson’s and Laplace’s equations. 

 

UNITIII      STATIC MAGNETIC FIELDS                                                                                     

Biot-Savart   Law,Magneticfield Intensity,Estimation of Magneticfield Intensity for straight 

and circular conductors, Ampere’s Circuital Law,Point form of Ampere’s Circuital Law,Stokes 

theorem, Magnetic flux and magnetic flux density, The Scalar and Vector Magnetic 

potentials,Derivation of Steady magneticfield Laws. 
 
UNITIV       MAGNETICFORCES AND MATERIALS                                                                

Forceona moving charge,Force on a differential current element,Force between current 

elements, Force and torque on a closed circuit, The nature magnetic materials,Magnetization 

and permeability,Magnetic boundary conditions in evolving magnetic fields,Themagnetic 

circuit, Potential energy and forceson magnetic materials,Inductance,Basic expressions fo rself 

and mutual inductances, Inductance evaluation for solenoid, toroid,coaxial cables and 

transmissionlines,Energy stored in Magneticfields. 



 

UNITV     TIME VARYING FIELDS AND MAXWELL’S EQUATIONS                                  

Fundamental relations for Electro static and Magneto static fields,Faraday’s law for 

Electromagnetic induction, Transformers, Motional    Electromotive forces, Differential form 

of Maxwell’s equations, Integral form of Maxwell’s equations, Potential functions, 

Electromagnetic boundary conditions, Wave equations and their solutions,Poynting’stheorem, 

Time harmonic fields,Electro magnetic Spectrum. 
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UNIT-1 STATIC ELECTRIC FIELD 
 

INTRODUCTION:  

Electromagnetic theory is a discipline concerned with the study of charges at rest 

and in motion. Electromagnetic principles are fundamental to the study of electrical 

engineering and physics. Electromagnetic theory is also indispensable to the 

understanding, analysis and design of various electrical, electromechanical and electronic 

systems. Some of the branches of study where electromagnetic principles find application 

are: 

 RF communication,  

 Microwave Engineering,  

 Antennas,  

 Electrical Machines,  

 Satellite Communication,  

 Atomic and nuclear research , 

 Radar Technology, 

 Remote sensing 

 Quantum Electronics,  

 VLSI 

 

  Electromagnetic theory is a pre requisite for a wide spectrum of studies in 

the field of Electrical Sciences and Physics. Electromagnetic theory can be thought 

of as generalization of circuit theory. There are certain situations that can be handled 

exclusively in terms of field theory. In electromagnetic theory, the quantities 

involved can be categorized as source quantities and field quantities. Source of 

electromagnetic field is electric charges: either at rest or in motion. However an 

electromagnetic field may cause a redistribution of charges that in turn change the 

field and hence the separation of cause and effect is not always visible. 

 

 Sources of EMF: 

Current carrying conductors. 

Mobile phones. 

Microwave oven. 

Computer and Television screen. 

High voltage Power lines. 

 

 Effects of Electromagnetic fields: 

Plants and Animals. 
Humans. 

Electrical components. 
 

 Fields are classified as 

Scalar field 

Vector field. 
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Electric charge is a fundamental property of matter. Charge exist only in positive or 

negative integral multiple of electronic charge, -e, e= 1.60 × 10
-19 

coulombs. [It may 
be noted here that in 1962, Murray Gell-Mann hypothesized Quarks as the basic 

building blocks of matters. Quarks were predicted to carry a fraction of electronic charge 
and the existence of Quarks have been experimentally verified.] Principle of 
conservation of charge states that the total charge (algebraic sum of positive and 

negative charges) of an isolated system remains unchanged, though the charges may 
redistribute under the influence of electric field. Kirchhoff's Current Law (KCL) is an 
assertion of the conservative property of charges under the implicit assumption that 

there is no accumulation of charge at the junction. 

Electromagnetic theory deals directly with the electric and magnetic field vectors 

where as circuit theory deals with the voltages and currents. Voltages and currents are 

integrated effects of electric and magnetic fields respectively. Electromagnetic field 

problems involve three space variables along with the time variable and hence the 

solution tends to become correspondingly complex. Vector analysis is a mathematical tool 

with which electromagnetic concepts are more conveniently expressed and best 

comprehended. Since use of vector analysis in the study of electromagnetic field theory 

results in real economy of time and thought, we first introduce the concept of vector 

analysis. 

 

 Vector Analysis: 

 

The quantities that we deal in electromagnetic theory may be either scalar or vectors 

[There are other class of physical quantities called Tensors: where magnitude and 

direction vary with co ordinate axes]. Scalars are quantities characterized by magnitude 

only and algebraic sign. A quantity that has direction as well as magnitude is called a 

vector. Both scalar and vector quantities are function of time and position. A field is a 

function that specifies a particular quantity everywhere in a region. Depending upon the 

nature of the quantity under consideration, the field may be a vector or a scalar field. 

Example of scalar field is the electric potential in a region while electric or magnetic 

fields at any point is the example of vector field. 

 

 

A vector can be written as, , where, is the magnitude and is the 

unit vector which has unit magnitude and same direction as that of . 

 
Two vector and are added together to give another vector . We have 

 
…………………………………................(1.1) 

 
Let us see the animations in the next pages for the addition of two vectors, which has two 

rules: 1: Parallelogram law and 2: Head & tail rule 
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Scaling of a vector is defined as , where is scaled version of vector and is a 

scalar. 

Some important laws of vector algebra are: 

 
Commutative Law…..........................................(1.3) 
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Associative Law.......................................................(1.4) 

 
Distributive Law ..........................................................(1.5) 

 

The position vector of a point P is the directed distance from the origin (O) to P, i.e., 

= . 

 
 

Fig 1.3: Distance Vector 

 
 

If = OP and = OQ are the position vectors of the points P and Q then the distance 

vector 
 

 
 Product of Vectors 

 
When two vectors      and      are multiplied, the result is either a scalar  or a  vector  

depending how the two vectors were multiplied. The two types of vector multiplication 

are: 

 
Scalar product (or dot product)    gives a scalar. 

Vector product (or cross product) gives a vector. 

The dot product between two vectors is defined as           =|A||B|cosθAB ..................(1.6) 

Vector product 

is unit vector perpendicular to and 
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   Fig 1.4: Vector dot product 

 
The  dot  product  is   commutative  i.e., and distributive i.e., 

 

. Associative law does not apply to scalar product. 

The vector or cross product of two vectors and is denoted by . is a vector 

perpendicular to the plane containing and , the magnitude is given by 

and direction is given by right hand rule as explained in Figure 1.5. 

 

 



 

 

 
 

 

 

 

 

              ...................................................................................(1.7) 
 

 

where is the unit  vector  given by, . 

The following relations hold for vector product. 

 
 i.e., cross product is non commutative ............(1.8) 

i.e., cross product is distributive.......................(1.9) 

i.e., cross product is non associative...........(1.10) 

 

 
 

Scalar and vector triple product : 

 

 
Scalar triple product ...........................(1.11) 

 

Vector triple product .................................(1.12) 

 
 

Co-ordinate Systems 

 

In order to describe the spatial variations of the quantities, we require using 

appropriate co-ordinate system. A point or vector can be represented in a curvilinear 

coordinate system that may be orthogonal or non-orthogonal . 

 

An orthogonal system is one in which the co-ordinates are mutually perpendicular.  

Non- orthogonal co-ordinate systems are also possible, but their usage is very limited in 

practice . 

 

Let u = constant, v = constant and w = constant represent surfaces in a coordinate system, 

 

the surfaces  may be curved surfaces  in general.  Furthur, let   ,    and    be  the unit 

vectors in the three coordinate directions(base vectors). In a general right handed 

orthogonal curvilinear systems, the vectors satisfy the following relations : 



 

 

 
 

 

 

 

 

 

                       …              …………………………………………... (1.13) 
 

 

These equations are not independent and specification of one will automatically imply 

the other two. Furthermore, the following relations hold 

 

 

 
....................................................(1.14) 

             A vector can be represented as sum of its orthogonal components, 

..................................(1.15) 

 

In general u, v and w may not represent length. We multiply u, v and w by conversion 

factors h1,h2 and h3 respectively to convert differential changes du, dv and dw to 
corresponding changes in length dl1, dl2, and dl3. Therefore 

 

 
 

..................................................(1.16) 

 
In the same manner, differential volume dv can be  written as  and 

differential area ds1  normal to      is given by, . In the same manner, 

differential areas normal to unit vectors      and        can be defined. 

In the following sections we discuss three most commonly used orthogonal co- 

ordinate systems, viz: 

 

1. Cartesian (or rectangular) co-ordinate system 

2. Cylindrical co-ordinate system 

3. Spherical polar co-ordinate system 

 

Cartesian Co-ordinate System : 

 
In Cartesian co-ordinate system, we have, (u,v,w) = (x,y,z). A point P(x0, y0, z0) 

in Cartesian co-ordinate system is represented as intersection of three planes x = x0, y = 

y0 and z = z0. The unit vectors satisfies the following relation: 



 

 

 

 

Fig 1.6 Intersection of three planes 
 
 

 
 

 

 

In cartesian co-ordinate system, a vector can be written as . 

The dot and cross product of two vectors  and  can be written as follows: 

.................(1.19) 

....................(1.20) 

Since x, y and z all represent lengths, h1= h2= h3=1. The differential length, area 

and volume are defined respectively as 

................(1.21) 

 

 

.................................(1.22) 



 

 

Fig 

Cylindrical Co-ordinate System : 

 
For  cylindrical  coordinate  systems we have a point is 
determined as the point of intersection of a cylindrical surface r = r0, half plane 

containing the z-axis and making an angle ; with the xz plane and a plane parallel 

to xy plane located at z=z0 as shown in figure. 

In cylindrical coordinate system, the unit vectors satisfy the following relations 

 
 

A vector can be written as , ...........................(1.24) 

The differential length is defined as, 

 

......................(1.25) 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig 1.7 cylindrical co-ordinate system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Fig1.8 cylindrical system surface 

 

.....................(1.23) 



 

 

 
 

Transformation between Cartesian and Cylindrical coordinates: 

 
 

Let us consider is to be expressed in Cartesian co-ordinate as 

. In doing so we note that   

and it applies for other components as well. 

 

 

These relations can be put conveniently in the matrix form as: 

 

 .....................(1.30) 

themselves may be functions of as: 

 

 

 
............................(1.31) 

 

 

 

 
 

The inverse relationships are: ........................(1.32) 



 

 

 

 

 
 

Fig 1.10: Spherical Polar Coordinate System 

 

Thus we see that a vector in one coordinate system is transformed to another coordinate 

system through two-step process: Finding the component vectors and then variable 

transformation. 

 

Spherical Polar Coordinates: 

 

For spherical polar coordinate system, we have, 

represented as the intersection of 

 

(i) Spherical surface r=r0 

 
(ii) Conical surface ,and 

. A point is 

 

(iii) half plane containing z-axis making angle with the xz plane as shown in the 

figure 1.10. 

 

 

 

 

 
The unit vectors satisfy the following relationships: .............................(1.33) 

The orientation of the unit vectors are shown in the figure 1.11. 



 

 

 

 

 
 

 

A vector in spherical polar co-ordinates is written as : and 

For spherical polar coordinate system we have h1=1, h2= r and h3= . 



 

 

 
 
 

 
 

 

 

Fig 1.12(b) : Exploded view 

 

With reference to the Figure 1.12, the elemental areas are: 

 

 

 

 

 
.......................(1.34) 

 

and elementary volume is given by 

 
........................(1.35) 

 

Coordinate transformation between rectangular and spherical polar: 

With reference to the figure 1.13 ,we can write the following equations: 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

........................................................(1.36) 
 

 

 

 

 

Given a vector in the spherical polar coordinate system, its 

component in the cartesian coordinate system can be found out as follows: 

 
 

.................................(1.37) 



 

 

 

 

Similarly, 
 

 
 

 

 

.................................(1.38a) 

 

.................................(1.38b) 
 

 

 

The above equation can be put in a compact form: 

 

     .................................(1.39) 

 

The components themselves will be functions of . are 

related to x,y and z as: 

 

 

 
....................(1.40) 

 

and conversely, 

 

.......................................(1.41a) 

 

 

.................................(1.41b) 

 

.....................................................(1.41c) 

Using the variable transformation listed above, the vector components, which are 

functions of variables of one coordinate system, can be transformed to functions of 

variables of other coordinate system and a total transformation can be done. 

 
 Line, surface and volume integrals 

 

In electromagnetic theory, we come across integrals, which contain vector functions. 

Some representative integrals are listed below: 

 



 

 

 

 

In the above integrals, and respectively represent vector and scalar function of space 

coordinates. C,S and V represent path, surface and volume of integration. All these 

integrals are evaluated using extension of the usual one-dimensional integral as the limit 

of a sum, i.e., if a function f(x) is defined over arrange a to b of values of x, then the 

integral is given by 

 

 

.................................(1.42) 

 
where the interval (a,b) is subdivided into n continuous interval of lengths . 

 

 
         Line Integral: Line integral is the dot product of a vector with a specified 

C; in other words it is the integral of the tangential component along the curve C. 
 

As shown in the figure 1.14, given a vector around C, we define the integral 

as the line integral of E along the curve C. 

 
If the path of integration is a closed path as shown in the figure the line integral becomes 

a closed line integral and is called the circulation of    around C and denoted as as 
shown in the figure 1.15. 



 

 

 

 

 
 

Fig 1.15: Closed Line Integral 
 

 

 

 Surface Integral : 

 
Given a vector field , continuous in a region containing the smooth surface S, 

we define the surface integral or the flux of

 through S as 

 
as surface integral over surface S. 

 

 

Fig 1.16 : Surface Integral 

 

 
If the surface integral is carried out over a closed surface, then we write 



 

 

Volume Integrals: 

 

 
We define or as the volume integral of the scalar function f(function of 

 
spatial coordinates)  over the volume  V.  Evaluation of integral of the form can be 
carried out as a sum of three scalar volume integrals, where each scalar volume integral is 

a component of the vector 

 

The Del Operator : 

 
The vector differential operator was introduced by Sir W. R. Hamilton and later on 

developed by P. G. Tait. 
 

Mathematically the vector differential operator can be written in the general form as: 

 

 
.................................(1.43) 

 
Gradient of a Scalar function: 

 

In Cartesian coordinates: 
 

 

 

................................................(1.44) 

In cylindrical coordinates: 
 

 

 

 

...........................................(1.45) 
 

and in spherical polar coordinates: 

 

 
.................................(1.46) 

Let us consider a scalar field V(u,v,w) , a function of space coordinates. 

 
Gradient of the scalar field V is a vector that represents both the magnitude and direction 

of the maximum space rate of increase of this scalar field V. 



 

 

 

 

 
 

Fig 1.17 : Gradient of a scalar function 

 

As shown in figure 1.17, let us consider two surfaces S1and S2 where the function V has 

constant magnitude and the magnitude differs by a small amount dV. Now as one moves 

from S1 to S2, the magnitude of spatial rate of change of V i.e. dV/dl depends on the 

direction of elementary path length dl, the maximum occurs when one traverses from S1to 

S2along a path normal to the surfaces as in this case the distance is minimum. 

By our definition of gradient we can write: 

 

 
.................................................(1.47) 

 
since which represents the distance along the normal is the shortest distance between 

the two surfaces. 
 

For a general curvilinear coordinate system 
 

 

 
 

Further we can write 
 

 

Hence, 

 

..........(1.48) 

 

 
.........................................(1.49) 

 

....................................(1.50) 



 

 

 

 

 
Also we can write, 

 

 

 

 

 

 

 

 
 

............................(1.51) 
 

By comparison we can write, 

 

 
....................................................................(1.52) 

 

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the 

expressions for gradient can be written as: 

In Cartesian coordinates: 
 

 

 

...................................................................................(1.53) 

In cylindrical coordinates: 
 

 

 

..................................................................(1.54) 
 

and in spherical polar coordinates: 

 

 
..........................................................(1.55) 

The following relationships hold for gradient operator. 

 

 

 

 

 
 

...............................................................................(1.56) 

 



 

 

 

 

where U and V are scalar functions and n is an integer. 

 

 
It may further be noted that since magnitude of  depends on the direction of 

dl, it is called the directional derivative. If is called the scalar potential 

function of the vector function . 

 Divergence of a Vector Field: 

 

In study of vector fields, directed line segments, also called flux lines or streamlines, 

represent field variations graphically. The intensity of the field is proportional to the 

density of lines. For example, the number of flux lines passing through a unit surface S 

normal to the vector measures the vector field strength. 

 

Fig 1.18: Flux Lines 

 

We have already defined flux of a vector field as 
 

 

....................................................(1.57) 

For a volume enclosed by a surface, 
 

 

.........................................................................................(1.58) 

 

We define the divergence of a vector field at a point P as the net outward flux from a 

volume enclosing P, as the volume shrinks to zero. 

 

 

.................................................................(1.59) 

Here is the volume that encloses P and S is the corresponding closed surface. 



 

 

 
 

 

 
 

Fig 1.19: Evaluation of divergence in 

curvilinear coordinate 

 

Let us consider a differential volume centered on point P(u,v,w) in a 

vector field . The flux through an elementary area normal to u is 

given by , 
 

      ......................................(1.60) 
 

Net outward flux along u can be calculated considering the two elementary surfaces 

perpendicular to u . 
 

 

 
 

 

 

...............(1.61) Considering the contribution from all six surfaces that enclose the 

volume, we can write 

 

.......................................(1.62) 



 

 

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions 

for divergence ca written as: 

 

In Cartesian coordinates: 

 

 
 

................................(1.63) 

 
In cylindrical coordinates: 

 

 

....................................................................(1.64) 

 

and in spherical polar coordinates: 

 

 

......................................(1.65) 
 

In connection with the divergence of a vector field, the following can be noted 

 

 Divergence of a vector field gives a scalar. 

 

 

 ..............................................................................(1.66) 

 

 Divergence theorem : 

Divergence theorem states that the volume integral of the divergence of vector field is 

equal to the net outward flux of the vector through the closed surface that bounds the 

 
volume. Mathematically, 

 

Proof: 

 

Let us consider a volume V enclosed by a surface S . Let us subdivide the volume in large 



 

 

 

 

number of cells.  Let the  k
th  

cell has a volume and the corresponding surface is 

denoted by Sk. Interior to the volume, cells have common surfaces. Outward flux through 

these common surfaces from one cell becomes the inward flux for the neighboring cells. 

Therefore when the total flux from these cells are considered, we actually get the net 

outward flux through the surface surrounding the volume. Hence we can write: 

 

 

 

......................................(1.67) 

 
In the limit, that is when and the right hand of the expression can be 

written as . 

 

Hence we get , which is the divergence theorem. 

 

Curl of a vector field: 

 
We have defined the circulation of a vector field A around a closed path as . 

 

Curl of a vector field is a measure of the vector field's tendency to rotate about a point. 

Curl     , also written as is defined as a vector whose magnitude is maximum of the 

net circulation per unit area when the area tends to zero and its direction is the normal 

direction to the area when the area is oriented in such a way so as to make the circulation 

maximum. 

 

Therefore, we can write: 

 

 ......................................(1.68) 

To derive the expression for curl in generalized curvilinear coordinate system, we first 

compute and to do so let us consider the figure 1.20 : 



 

 

 

 

 
Fig 1.20: Curl of a Vector 

 
C1  represents the boundary of , then we can write 

 

 

 
The integrals on the RHS can be evaluated as follows: 

 

 

 

 

 

......................................(1.69) 

 

 

 
.................................(1.70) 

 

 

................................................(1.71) 
 

The negative sign is because of the fact that the direction of traversal reverses. Similarly, 

 

 

..................................................(1.72) 

 
............................................................................(1.73) 

Adding the contribution from all components, we can write: 
 

…………………………………………...............(1.74)Therefore, 

 

 ..........(1.75) 

In the same manner if we compute for and we can write, 



 

 

 

 

 
.......(1.76) 

 

This can be written as, 

 

 

 

 
 

...............................(1.77) 
 

 

 

 

 

 

In Cartesian coordinates:            .....................................(1.78) 

 

 

 

 

 
In Cylindrical coordinates,  ....................................(1.79) 

In Spherical polar  coordinates, 

 

 
 

..............(1.80)  Curl operation exhibits  the 

following properties: 
 

 

 

 
 

 

 

 

 

..............(1.81) 



 

 

Stoke's theorem : 

It states that the circulation of a vector             field  around a closed path  is  equal to  the  

integral of over the surface bounded by this path. It may be noted that this equality 

holds provided    and are continuous on the surface. 

i.e, 

 

 ..............(1.82) 

Proof:Let us consider an area S that is subdivided into large number of cells as shown in 

the figure 1.21. 
 

Fig 1.21: Stokes theorem 

 

Let k
th

cell has surface area        and is bounded path Lk while the total area is bounded by 

path L. As seen from the figure that if we evaluate the sum of the line integrals around the 
elementary areas, there is cancellation along every interior path and we are left the line 

integral along path L. Therefore we can write, 
 

 

 

 

..............(1.83) 

As 0 

 

. .............(1.84) 

which is the stoke's theorem. 



 

 

Coulomb's Law 

 

Coulomb's Law states that the force between two point charges Q1and Q2 is 

directly proportional to the product of the charges and inversely proportional to the 

square of the distance between them. Point charge is a hypothetical charge located at 

a single point in space. It is an idealised model of a particle having an electric 

charge. 

 

 

Mathematically,where k is the proportionality constant. 

 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

 

 
Force F is in Newtons (N) and ,     is called the permittivity of free space. 

 

(We are assuming the charges are in free space. If the charges are any other 

dielectric  medium,  we  will  use instead  where is called the relative 

permittivity or the dielectric constant of the medium). 

 

 
Therefore .......................(2.1) 

 
As shown in the Figure 2.1 let the position vectors of the point charges Q1and Q2 are 

given by and . Let represent the force on Q1 due to charge Q2. 

Fig 1.22: Coulomb's Law 
 

The  charges  are  separated  by  a distance of . We define the unit 

vectors as 

 

 

and ..................................(2.2) 

 

 
can be defined as . Similarly the force on Q1 



 

 

 

due to charge Q2 can be calculated and if represents this force then we can write 

 
When we have a number of point charges, to determine the force on a particular charge 
due to all other charges, we apply principle of superposition. If we have N number of 

charges    

Q1,Q2,.........QN located respectively at the points represented by the position vectors , 

,......     , the force experienced by a charge Q located at    is given by, 

 

 

 
.................................(2.3) 

 

Electric Field 

 
The electric field intensity or the electric field strength at a point is defined as the force 
per unit charge. That is 

 

 

or, .......................................(2.4) 

 

The electric field intensity E at a point r (observation point) due a point charge Q located at 

(source point) is given by: 

 

 

 
..........................................(2.5) 

 
For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric 

field intensity at point is obtained as 

 

 

........................................(2.6) 
 

The expression (2.6) can be modified suitably to compute the electric filed due 

to a continuous distribution of charges. 

In figure 2.2 we consider a continuous volume distribution of charge d(t) in the 

region denoted as the source region. 

 
For  an elementary charge , i.e. considering this charge as point charge, 

we can write the field expression as: 



 

 

 
 
 

.............(2.7) 
 

 

 

Fig 1.23: Continuous Volume Distribution of Charge 

 
When this expression is integrated over the source region, we get the electric field at the 

point P due to this distribution of charges. Thus the expression for the electric field at P 

can be written as: 

 

 

 
.......................................... (2.8) 

 
Similar technique can be adopted when the charge distribution is in the form of a line 
charge density or a surface charge density. 

 

 

 
........................................ (2.9) 

 

 

 

........................................(2.10) 

Electric flux density: 
 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the 

field at a particular point. The electric field depends on the material media in which the field 

is being considered. The flux density vector is defined to be independent of the material 

media (as we'll see that it relates to the charge that is producing it).For a linear 

isotropic medium under consideration; the flux density vector is defined as: 

 
................................................(2.11) 

 

We define the electric flux  as 



 

 

 

 

.....................................(2.12) 
 

Gauss's Law: Gauss's law is one of the fundamental laws of electromagnetism and it 
states that the total electric flux through a closed surface is equal to the total charge 
enclosed by the surface. 

 
 

 
Fig 1.24: Gauss's Law 

 

Let us consider a point charge Q located in an isotropic homogeneous medium of 

dielectric constant. The flux density at a distance r on a surface enclosing the charge is 

given by 

 
 

...............................................(2.13) 
 

If we consider an elementary area ds, the amount of flux passing through the 

elementary area is given by 

 

 
.....................................(2.14) 

 

 
But , is the elementary solid angle subtended by the area at the location of 

Q. Therefore we can write  

For a closed surface enclosing the charge, we can write 

which can seen to be same as what we have stated in the definition of Gauss's 
Law. Application of Gauss's Law 

 

 
Gauss's law is particularly useful in computing    or    where the charge distribution  

has some symmetry. We shall illustrate the application of Gauss's Law with some 

examples. 



 

 

1.15.1 An infinite line charge 

 

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. 

Let us consider a line charge positioned along the z-axis as shown in Fig. 2.4(a) (next 

slide). Since the line charge is assumed to be infinitely long, the electric field will be of 

the form as shown in Fig. 2.4(b) (next slide). 

 
If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm 
we can write, 

 

 
.....................................(2.15) 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to 

The electric field, the surface integrals for the top and bottom surfaces evaluates to zero. 

Hence we can write,  



 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 

 

 

 

 
 

Fig 1.25: Infinite Line Charge 
 

 

 

 

 

 

 

 

 

 

.....................................(2.16) 
 

 Infinite Sheet of Charge 

 
As a second example of application of Gauss's theorem, we consider an infinite 
charged sheet covering the x-z plane as shown in figure 2.5. 

 
Assuming a surface charge density of for the infinite surface charge, if we consider a 

cylindrical volume having sides placed symmetrically as shown in figure 5, we can 

write: 

 

 

 

 

 
..............(2.17) 



 

 

 

 

 
 

Fig 1.26: Infinite Sheet of Charge 

 

It may be noted that the electric field strength is independent of distance. This is true for 

the infinite plane of charge; electric lines of force on either side of the charge will be 

perpendicular to the sheet and extend to infinity as parallel lines. As number of lines of 

force per unit area gives the strength of the field, the field becomes independent of 

distance. For a finite charge sheet, the field will be a function of distance. 

 

Uniformly Charged Sphere 
 

Let us consider a sphere of radius r0 having a uniform volume charge density of v 

C/m3. To determine everywhere, inside and outside the sphere, we construct Gaussian 

surfaces of radius r < r0 and r > r0 as shown in Fig. 2.6 (a) and Fig. 2.6(b). 

For the region ; the total enclosed charge will be 

 

 
.........................(2.18) 

 



 

 

Fig 1.27:Uniformly Charged Sphere 

 

By applying Gauss's theorem, 

 

 

..............(2.19) 

 

Therefore 

 

 
..........................................(2.20) 

 
For the region ; the total enclosed charge will be 

 

 
....................................................................(2.21 

) By applying Gauss's theorem, 

 

 
.....................................................(2.22) 

 

Gauss divergence theorem: 
The gauss law can be stated in the point form by the divergence of electric 

flux density is equal to the volume charge density. 

Absolute Electric Potential and potential differences and its calculation. 

In the previous sections we have seen how the electric field intensity due to a charge or a 

charge distribution can be found using Coulomb's law or Gauss's law. Since a charge 

placed in the vicinity of another charge (or in other words in the field of other charge) 

experiences a force, the movement of the charge represents energy exchange. 

Electrostatic potential is related to the work done in carrying a charge from one point to 

the other in the presence of an electric field. 

 
Let  us  suppose that  we wish to move a  positive  test charge from a point P to 

another point Q as shown in the Fig. 2.8. 



 

 

 

 

The force at any point along its path would cause the particle to accelerate and move it out 

of  the region if  unconstrained.  Since we are dealing  with an  electrostatic  case,  a force 

equal to the negative of  that acting on the charge is to be applied while moves from P 

to Q. The work done by this external agent in moving the charge by a distance is given 

by: 

 
..........................(2.23) 

 

 

Fig 1.28: Movement of Test Charge in Electric Field 

 
The negative sign accounts for the fact that work is done on the system by the 
external agent. 

 

.....................................(2.24) 

 
The potential difference between two points P and Q , VPQ, is defined as the work 
done per unit charge, i.e. 

 

...............................(2.25) 

 

It may be noted that in moving a charge from the initial point to the final point if the 

potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference 

is negative, work is done by the field. 

 

We will see that the electrostatic system is conservative in that no net energy is 

exchanged if the test charge is moved about a closed path, i.e. returning to its initial 

position. Further, the potential difference between two points in an electrostatic field is a 

point function; it is independent of the path taken. The potential difference is measured in 



 

 

Joules/Coulomb which is referred to as Volts. 

 
Let us consider a point charge Q as shown in the Fig. 2.9. 

 

 

 
Fig 1.29: Electric Potential calculation for a point charge 

 

Further consider the two points A and B as shown in the Fig. 2.9. Considering the 

movement of a unit positive test charge from B to A , we can write an expression for the 

potential difference as: 

 

 

.............................(2.26) 

 
It is customary to choose the potential to be zero at infinity. Thus potential at any point ( 

rA = r) due to a point charge Q can be written as the amount of work done in bringing a 

unit positive charge from infinity to that point (i.e. rB = 0). 

 

..............................(2.27) 

 

Or, in other words, 

 

 

..................................(2.28) 
 

Let us now consider a situation where the point charge Q is not located at the origin 



 

 

as shown in Fig. 2.10. 
 
 

 

Fig 1.30: Electric Potential due a Displaced Charge 

 

The potential at a point P becomes 

 

 
 

..............................(2.29) 

 
So far we have considered the potential due to point charges only. As any other type 
of charge distribution can be considered to be consisting of point charges, the same 
basic ideas now can be extended to other types of charge distribution also. 

Let us first consider N point charges Q1, Q2,.....QN located at points with position 

vectors 

, ,...... . The potential at a point having position vector can be written as: 

 ...............................(2.30a) 

or, 

 

 
 

............................................(2.30b) 

 

For continuous charge distribution, we replace point charges Qn by corresponding 

charge elements       or       or       depending on whether the charge distribution is  
linear, surface or a volume charge distribution and the summation is replaced by an 

integral. With these modifications we can write: 

 

              For line charge, 



 

 

 
 
 

                                                  ..................................(2.31) 
 

 

 

For surface charge, .................................(2.32) 

 

 

 
For volume charge, .................................(2.33) 

 
It may be noted here that the primed coordinates represent the source coordinates and 
the unprimed coordinates represent field point. 

 
Further, in our discussion so far we have used the reference or zero potential at 
infinity. If any other point is chosen as reference, we can write: 

 

 
..............................(2.34) 

 

where C is a constant. In the same manner when potential is computed from a known 

electric field we can write: 

 

 .............................(2.35) 

The potential difference is however independent of the choice of reference. 

 

 

.....................(2.36) 

 

We have mentioned that electrostatic field is a conservative field; the work done in 
moving a charge from one point to the other is independent of the path. Let us consider 

moving a charge from point P1 to P2 in one path and then from point P2 back to P1 over 

a different path. 

If the work done on the two paths were different, a net positive or negative amount of 
work would have been done when the body returns to its original position P1. In a 

conservative field there is no mechanism for dissipating energy corresponding to any 
positive work neither any source is present from which energy could be absorbed in the 
case of negative work. Hence the question of different works in two paths is untenable, 

the work must have to be independent of path and depends on the initial and final 
positions. 

 
Since the potential difference is independent of the paths taken, VAB = - VBA , and 
over a closed path, 



 

 

 

 

.............................(2.37) 
 

Applying Stokes's theorem, we can write: 

 

 
.........................(2.38) 

 

from which it follows that for electrostatic field, 

 
...................................(2.39) 

 

Any vector field      that satisfies  is called an 

irrotational field. From our definition of potential, we can write 

 

 

.............................(2.40) 
 

from which we obtain, 

 
.....................................(2.41) 

 

From the foregoing discussions we observe that the electric field strength at any point is 

the negative of the potential gradient at any point, negative sign shows that is directed 

from  higher  to  lower values of . This gives us another method of computing the 

electric field, i. e. if we know the potential function, the electric field may be computed. 

We may note here that that  one scalar function contain all the information that three 

components of carry, the same is possible because of the fact that three components of 

are interrelated by the relation . 

 

Electric Dipole 

 
An electric dipole consists of two point charges of equal magnitude but of opposite sign 
and separated by a small distance. 

 

As shown in figure 2.11, the dipole is formed by the two point charges Q and -Q 



 

 

separated by a distance d , the charges being placed symmetrically about the origin. Let us 

consider a 
point P at a distance r, where we are interested to find the field. 

 
 

 

 

 

Fig 1.31 : Electric Dipole 

 

The potential at P due to the dipole can be written as: 
 

 

 

..........................(2.4 

2) 
 

 

When r1 and r2>>d, we can write and 

. Therefore, 

 

 
...............................................(2.43) 

 

We can write, 

 
.............................................(2.44) 

 
The quantity is called the dipole moment of the electric dipole. 

Hence the expression for the electric potential can now be written as: 

 

 
.............................(2.45) 



 

 

It may be noted that while potential of an isolated charge varies with distance as 1/r 

that of an electric dipole varies as 1/r2 with distance. If the dipole is not centered at the 
origin, but the dipole center lies at, the expression for the potential can be written as: 

 

 

 
......................(2.46) 

 

The electric field for the dipole centered at the origin can be computed as 

 

 

 

 

 

 

 

 

 

........................(2.47) 

 

is the magnitude of the dipole moment. Once again we note that the electric field 

of electric dipole varies as 1/r3 where as that of a point charge varies as 1/r2. 

Electrostatic Energy and Energy Density 

 
We have stated that the electric potential at a point in an electric field is the amount of 

work required to bring a unit positive charge from infinity (reference of zero potential) to 

that point. To determine the energy that is present in an assembly of charges, let us first 

determine the amount of work required to assemble them. Let us consider a number of 

discrete charges Q1, Q2,......., QN are brought from infinity to their present position one 

by one. Since initially there is no field present, the amount of work done in bring Q1 is 

zero. Q2 is brought in the 
presence of the field of Q1, the work done W1= Q2V21 where V21 is the potential at the 
location 

of Q2 due to Q1. Proceeding in this manner, we can write, the total work done 

 

..............................................(2.89) 

 
Had the charges been brought in the reverse order, 

Therefore, 



 

 

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore, 

 

…..(2.91) 
 

Or, 

 

................(2.92) 

 

If instead of discrete charges, we now have a distribution of charges over a volume v then 

we can write, 

 

..............(2.93) 

where is the volume charge density and V represents the potential function. 

 

.......................................(2.94) 
 

Using the vector identity, 

 
, we can write 

 

 

 
 

 

................(2.95) 
 

 
 

In the expression  , for point charges, since V varies as and D varies as , 

the term V varies as while the area varies as r2. Hence the integral term varies at 

least as and the as surface becomes large (i.e. ) the integral term tends to zero. 

Thus the equation for W reduces to 

 

................(2.96) 

 

, is called the energy density in the electrostatic field.



  

 

 

 

 

2-Marks and 16 Marks ELECTROMAGNETIC FIELDS 

 

 
1. State stokes theorem. 

 

The line integral of a vector around a closed path is equal to the surface integral of the 

normal component of its curl over any surface bounded by the path 

 

H.dl = (ÑxH)ds 

 
 

2. State coulombs law. 

 

Coulombs law states that the force between any two point charges is directly 

proportional to the product of their magnitudes and inversely proportional to the square 

of the distance between them. It is directed along the line joining the two charges. 
 

F=Q1Q2 / 4πεr2 ar 

 
3. State Gauss law for electric fields 

 

The total electric flux passing through any closed surface is equal to the total charge 

enclosed by that surface. 

 
 

4. Define electric flux. 

 

The lines of electric force is electric flux. 

 
 

5. Define electric flux density. 

 

Electric flux density is defined as electric flux per unit area. 

 
 

6. Define electric field intensity. 

 

Electric field intensity is defined as the electric force per unit positive charge. 
E =F/ Q 

=Q/4πεr2 
 

V/m 



  

 

 

 

 

 

7. Name few applications of Gauss law in electrostatics. 

 
Gauss law is applied to find the electric field intensity from a closed surface.e.g)Electric 

field can be determined for shell, two concentric shell or cylinders etc. 

 
 

8. What is a point charge? 

 

Point charge is one whose maximum dimension is very small in comparison with any 

other length. 

 
 

9. Define linear charge density. 

 

It is the charge per unit length. 

 
 

10. Write poisson’s and laplace ’s equations. 

 
Poisson ‘s eqn: 

Ñ2V= - ρv  / ε 

Laplace’ s eqn: 
 

Ñ2V= 0 

 
11. State the condition for the vector F to be solenoidal. 

 
Ñ·F =0 

 
 

12. .State the condition for the vector F to be irrotational. 

 
ÑxF =0 

 
 

13. Define potential difference. 

 

Potential difference is defined as the work done in moving a unit positive charge 

from one point to another point in an electric field. 



  

 

 

 

 
 
 

14. Define potential. 

 

Potential at any point is defined as the work done in moving a unit positive charge 

from infinity to that point in an electric field. 
 

V=Q / 4πεr 

 
 

15. Give the relation between electric field intensity and electric flux density. 
 

D=εE C/m2 

 
16. Give the relationship between potential gradiant and electric field. 

 

E= - ÑV 

 
 

17. What is the physical significance of div D ? 

 

Ñ·D=-ρv 

The divergence of a vector flux density is electric flux per unit volume leaving a small 

volume. This is equal to the volume charge density. 

 
 

18. Define current density. 

 
Current density is defined as the current per unit area. 

J= I/A Amp/m2 

 
19. Write the point form of continuity equation and explain its significance. 

 

Ñ·J= - ρv / t 

 

20. Write the expression for energy density in electrostatic field. 
 

W=1 / 2 εE2 

 
21. Write the boundary conditions at the interface between two perfect dielectrics. 

 

i) The tangential component of electric field is continuous i.e)Et1=Et2 

ii) The normal component of electric flux density is continuous I.e)Dn1=Dn2 



  

 

 

 

 
 

 

22. Write down the expression for capacitance between two parallel plates. 

 

C=εA / d 

 
 

23. What is meant by displacement current? 

 
Displacement current is nothing but the current flowing through capacitor. 
J= D / t 

 
 

24. State point form of ohms law. 

 

Point form of ohms law states that the field strength within a conductor is 

proportional to the current density. 

J=σE 

 
 

25 Define surface charge density. 

 

It is the charge per surface area. 

 
 

26. State amperes circuital law. 

 
Magnetic field intensity around a closed path is equal to the current enclosed by the 

path. 

 
H·dl=I 

 
 

27. State Biot –Savarts law. 

 

It states that the magnetic flux density at any point due to current element is 

proportional to the current element and sine of the angle between the elemental length 

and inversely proportional to the square of the distance between them 

dB=µ 0Idl sinθ / 4πr2 

28. Define magnetic vector potential. 
 

It is defined as that quantity whose curl gives the magnetic flux density. 

B=Ñ x A 

=µ / 4π J/r dv web/m
2

 



  

 

 

 

 
 

 

 

 

29. Write down the expression for magnetic field at the centre of the circular coil. 

 

H = I/2a. 

 
 

30. Give the relation between magnetic flux density and magnetic field intensity. 

 

B =µ H 

 
 

31. Write down the magnetic boundary conditions. 

 

i) The normal components of flux density B is continuous across the boundary. 
ii) The tangential component of field intensity is continuous across the boundary. 

 
 

32. Give the force on a current element. 

 

dF = BIdlsinθ 

 
 

33..Define magnetic moment. 

 
Magnetic moment is defined as the maximum torque per magnetic induction of 

flux density. 

m=IA 

 
 

34. State Gauss law for magnetic field. 
 

The total magnetic flux passing through any closed surface is equal to zero. 

B.ds =0 

 

35. Define a wave. 

 

If a physical phenomenon that occurs at one place at a given time is reproduced at 

other places at later times , the time delay being proportional to the space separation 

from the first location then the group of phenomena constitutes a wave. 



  

 

 

 

 

 

36. Mention the properties of uniform plane wave. 

 
i) At every point in space ,the electric field E and magnetic field H are perpendicular 

to each other. 

ii) The fields vary harmonically with time and at the same frequency everywhere in 
space. 

 
 

37. Write down the wave equation for E and H in free space. 
 

Ñ2H– µ 0ε0 
2H /  t 2 =0. 

 
38. Define intrinsic impedance or characteristic impedance. 

 

It is the ratio of electric field to magnetic field.or It is the ratio of square root of 

permeability to permittivity of medium. 

 
 

39. Give the characteristic impedance of free space. 

 

377ohms 

 
 

40. Define propagation constant. 

 

Propagation constant is a complex number 

γ =α +jβ 

where α is attenuation constant 

β is phase constant 
γ = jωµ (σ +jωε) 

 
 

41. Define skin depth 

 
It is defined as that depth in which the wave has been attenuated to 1/e or 
approximately 37% of its original value. 

∆  = 1/α = 2 / jωσ 
 

42. Define Poynting vector. 

 

The pointing vector is defined as rate of flow of energy of a wave as it propagates. 

P =E X H 



  

 

 

 

 

43. State Poyntings Theorem. 

The net power flowing out of a given volume is equal to the time rate of decrease 
of the the energy stored within the volume- conduction losses. 

 
 

44. Give significant physical difference between poisons and laplaces equations. 

 

When the region contains charges poisons equation is used and when 

there is no charges laplaces equation is applied. 

 
 

45. Give the difficulties in FDM. 

 

FDM is difficult to apply for problems involving irregular boundaries and non 
homogenious material properties. 

 
 

46. Explain the steps in finite element method. 

 

i) Discretisation of the solution region into elements. 

ii) Generation of equations for fields at each element 

iii) Assembly of all elements 

iv) Solution of the resulting system 

 
 

47. State Maxwells fourth equation. 
 

The net magnetic flux emerging through any closed surface is zero. 

 
 

48. State Maxwells Third equation 

 

The total electric displacement through the surface enclosing a volume is equal to the 

total charge within the volume. 

 
 

49. State the principle of superposition of fields. 

 
The total electric field at a point is the algebraic sum of the individual electric field at 

that point. 

 

50. Define ohms law at a point 

 
Ohms law at appoint states that the field strength within a conductor is proportional 

to current density. 



  

 

 

 

 
 
 

51. Define self inductance. 

 

Self inductance is defined as the rate of total magnetic flux linkage to the current 

through the coil. 

 
 

52. Define pointing vector. 

 
The vector product of electric field intensity and magnetic field intensity at a point is 

a measure of the rate of energy flow per unit area at that point. 

 
 

53. Give the formula to find potential at a point which is surrounded by four 

orthogonal points in FDM. 
 

V0= ¼(V1+V2+V3+V4) 

 
 

54. Give the formula to find potential at a point which is surrounded by six 

orthogonal points inFDM. 

 

V0= ¼(V1+V2+V3+V4 +V5+V6) 

 
 

55. State Lenz law. 

 
Lenz’s law states that the induced emf in a circuit produces a current which opposes the 
change in magnetic flux producing it. 

 
 

56. What is the effect of permittivity on the force between two charges? 

 

Increase in permittivity of the medium tends to decrease the force between two 

charges and decrease in permittivity of the medium tends to increase the force between 

two charges. 

 
 

57. State electric displacement. 

 
 

The electric flux or electric displacement through a closed surface is equal to the charge 

enclosed by the surface. 



  

 

 

 

 
 

 

58. What is displacement flux density? 

 
The electric displacement per unit area is known as electric displacement density or 
electric flux density. 

 
 

59. What is the significance of displacement current? 

 

The concept of displacement current was introduced to justify the production of 

magnetic field in empty space. It signifies that a changing electric field induces a 

magnetic field .In empty space the conduction current is zero and the magnetic fields are 

entirely due to displacement current. 

 
 

60. Distinguish between conduction and displacement currents. 
 

The current through a resistive element is termed as conduction current whereas the 

current through a capacitive element is termed as displacement current. 

 
 

61. Define magnetic field strength. 

 
The magnetic field strength (H) is a vector having the same direction as magnetic flux 

density. 

H=B/µ 
 

62. Give the formula to find the force between two parallel current carrying 

conductors. 
 

F=µ I I1 / 2πR 

 

63. Give the expression for torque experienced by a current carrying loop situated in 

a magnetic field. 

 

T = IABsinθ 

 
 

64What is torque on a solenoid? 

 

T = NIABsinθ 

 
 

65. Explain the conservative property of electric field. 

 

The work done in moving a point charge around a closed path in a electric field is zero. 



  

 

 

 

 
 

 

Such a field is said to be conservative. 

/ E.dl = 0 

 
 

66. Write he expression for field intensity due to a toroid carrying a filamentary 

current I 

 

H=NI / 2пR 

 
 

67. What are equipotential surfaces? 

 
An equipotential surface is a surface in which the potential energy at every point is of the 
same vale. 

 
 

68. Define loss tangent. 

 

Loss tangent is the ratio of the magnitude of conduction current density to displacement 

cuurrent density of the medium. 
 

Tan δ = σ / ωε 

 
 

69. Defie reflection and transmission coefficients. 
 

Reflection coefficient is defined as the ratio of the magnitude of the reflected field to that 

of the incident field. 

 
 

70. Define transmission coefficients. 

 
Transmission coefficient is defined as the ratio of the magnitude of the 

transmitted field to that of incident field. 

 
 

71. What will happen when the wave is incident obliquely over dielectric –dielectric 

boundary? 

 

When a plane wave is incident obliquely on the surface of a perfect dielectric part of the 
energy is transmitted and part of it is reflected .But in this case the transmitted wave will 
be refracted, that is the direction of propagation is altered. 



  

 

 

 

 
 

 

 

72. What is the expression for energy stored in a magnetic field? 
 

W = ½ LI2 

 
73. What is energy density in magnetic field? 

 

W = ½ µH2 

 
74. Distinguish between solenoid and toroid. 

 
Solenoid is a cylindrically shaped coil consisting of a large number of closely spaced 

turns of insulated wire wound usually on a non magnetic frame. 

 
If a long slender solenoid is bent into the form of a ring and there by closed on itself it 

becomes a toroid. 

 
 

75. Describe what are the sources of electric field and magnetic field? 

 

Stationary charges produce electric field that are constant in time, hence the term 

electrostatics. Moving charges produce magnetic fields hence the term magnetostatics. 

 
 

76. What are the significant physical differences between Poisson ‘s and laplace ‘s 

equations. 

 

Poisson ‘s and laplace ‘s equations are useful for determining the electrostatic potential 

V in regions whose boundaries are known. 

 

When the region of interest contains charges poissons equation can be used to find the 

potential. 
 

When the region is free from charge laplace equation is used to find the potential. 

 

77. State Divergence Theorem. 

 
The integral of the divergence of a vector over a volume v is equal to the surface integral 
o f the normal component of the vector over the surface bounded by the volume. 



  

 

 

 

 

 

78. Give the expression for electric field intensity due to a single shell of charge 

 

E = Q / 4πεr2 

 
 

79. Give the expression for potential between two spherical shells 

 

V= 1/ 4π (Q1/a – Q2/b) 

 

80. Define electric dipole. 
 

Electric dipole is nothing but two equal and opposite point charges separated by a finite 

distance. 

 
 

81. What is electrostatic force? 

 
The force between any two particles due to existing charges is known as electrostatic 

force, repulsive for like and attractive for unlike. 

 
 

82. Define divergence. 

 

The divergence of a vector F at any point is defined as the limit of its surface integral per 

unit volume as the volume enclosed by the surface around the point shrinks to zero. 

 
 

83. How is electric energy stored in a capacitor? 

 
In a capacitor, the work done in charging a capacitor is stored in the form of electric 

energy. 

 
 

84. What are dielectrics? 

 

Dielectrics are materials that may not conduct electricity through it but on applying 

electric field induced charges are produced on its faces .The valence electron in atoms of 

a dielectric are tightly bound to their nucleus. 

 
 

85. What is a capacitor? 

A capacitor is an electrical device composed of two conductors which are separated 

through a dielectric medium and which can store equal and opposite charges ,independent 

of whether other conductors in the system are charged or not. 



  

 

 

 

 

 

86. Define dielectric strength. 

The dielectric strength of a dielectric is defined as the maximum value of electric field 

that can b applied to the dielectric without its electric breakdown. 

 
 

87. What meaning would you give to the capacitance of a single conductor? 

 

A single conductor also possess capacitance. It is a capacitor whose one plate is at 
infinity. 

 
 

88. Why water has much greater dielectric constant than mica.? 

 

Water has a much greater dielectric constant than mica .because water ha a permanent 

dipole moment, while mica does not have. 

 
 

89. What is lorentz force? 

 
Lorentz force is the force experienced by the test charge .It is maximum if the direction 

of movement of charge is perpendicular to the orientation of field lines. 

 
 

90. Define magnetic moment. 

 
Magnetic moment is defined as the maximum torque on the loop per unit magnetic 
induction. 

 
 

91. Define inductance. 

 

The inductance of a conductor is defined as the ratio of the linking magnetic flux to the 

current producing the flux. 

 

L = NФ / I 

 
 

92. What is main cause of eddy current? 

 
The main cause of eddy current is that it produces ohmic power loss and causes local 
heating. 



  

 

 

 

 

 

93. How can the eddy current losses be eliminated? 

 
The eddy current losses can be eliminated by providing laminations. It can be proved 

that the total eddy current power loss decreases as the number of laminations increases. 

 
 

94. What is the fundamental difference between static electric and magnetic fild 

lines? 

 
There is a fundamental difference between static electric and magnetic field lines .The 

tubes of electric flux originate and terminates on charges, whereas magnetic flux tubes 
are continuous. 

 
95. What are uniform plane waves? 

 

Electromagnetic waves which consist of electric and magnetic fields that are 

perpendicular to each other and to the direction of propagation and are uniform in plane 

perpendicular to the direction of propagation are known as uniform plane waves. 

 

96. Write short notes on imperfect dielectrics. 

 

A material is classified as an imperfect dielectrics for σ <<ωε, that is conduction current 

density is small in magnitude compared to the displacement current density. 

 
 

97. What is the significant feature of wave propagation in an imperfect dielectric ? 

 

The only significant feature of wave propagation in an imperfect dielectric compared to 

that in a perfect dielectric is the attenuation undergone by the wave. 

 
 

98. What is the major drawback of finite difference method? 

 
The major drawback of finite difference method is its inability to handle curved 
boundaries accurately. 

 

99. What is method of images? 

 
The replacement of the actual problem with boundaries by an enlarged region or with 

image charges but no boundaries is called the method of images. 

100. When is method of images used? 

 

Method of images is used in solving problems of one or more point charges in the 
presence of boundary surfaces. 



  

 

 

 

 

 

Part-B 

 

1. Find the electric field intensity of a straight uniformly charged wire of length ‘L’m 

and having a linear charge density of +λ C/m at any point at a distance of ‘h’ m. 

Hence deduce the expression for infinitely long conductor. 

 
 

Hints: Field due to charge element is given by: 

dE = λdi/ 4πξr2 

 
Ex=λ [cos α1+cosα2] /4πεh 

Ey=λ [sin α1-sinα2] /4πεh 

For infinitely long conductor 

 

E = λl  / 4πεh 

 
2. Derive the boundary relations for electric fields. 

Hints: 

i) The tangential component of the electric field is continuous at the surface 

.Et1 = Et2 

 

ii) The normal component of the electric flux density is continuous if there is no surface 

charge density. 
 

Dn1 = Dn2 

 
3. Find the electric field intensity produced by a point charge distribution at 

P(1,1,1)caused by four identical 3nC point charges located at P1(1,1,0) 

P2(-1,1,0) P3(-1,-1,0) and P4(1,-1,0). 

 
 

Hints: 

Find the field intensity at P by using the formula 
 

Ep = 1/4επ[( Q1/r1p
2 u1p ) +(q2/r2p

2 u2p) +(q3/r3p
2 u3p)+(q4/r4p

2)u4p)] 



  

 

 

 

 
 

 

4.A circular disc of radius ‘a’ m is charged with a charge density of σC/m2 .Find 

the electric field intensity at a point ‘h’m from the disc along its axis. 
 

Hints: 

Find the field due to the tangential and normal components 

Total field is given by 

E =ρs /2ε [1-cos α] 

 
 

5. Four positive charges of 10–9 C each are situated in the XY plane at points 

(0,0) (0,1) (1,0) and (1,1).Find the electric field intensity and potential at 

(1/2 ,1/2). 

 
 

Hints: 
Find the field intensity at point using the formula 

E = Q / 4πεr2  ur 

Find the potential at point using the formula 

V = Q / 4πεr 

 

Find the field intensity at the point due to all four charges by using the superposition 

principle. 

 

6. Given a electric field E = (-6y/x2) x + 6/x y + 5 z .Find the potential difference VAB 

given A(-7,2,1) and B( 4,1,2) 

 
Hint: 

 

Find the potential using the formula v=-/E.dl and substitute the points 



  

 

 

 

 
 

 

 

7. Derive an expression for potential difference between two points in an electric 

field. 

 

Hint: 
 

The potential difference between two points r1 and r2 is 

V = V1 –V2 

V =  Q / 4πεr1 _ Q / 4πεr 2 

 

8. Find the magnetic flux density at a point Z on the axis of a circular loop of radius ‘a’ 

that carries a direct current I. 

 
 

Hints: 

The magnetic flux density at a point due to the current element is given by 

dB = µ Idl / 4π r2 

B = µ Ia2 / 2(a2 + z2)3/2 

 
9. Determine the force per meter length between two long parallel wires A and B 

separated by 5cm in air and carrying currents of 40A in the same direction. 

 
Hints: 

 
Calculate the force per metre length using the formula 

F/L = µ I1I2 / 2πd 

In the same direction force is attractive. 

 
10. Derive an expression for magnetic vector potential. 

Hint: 

magnetic vector potential is 

A = µ / 4π ///J / r dv 



  

 

 

 

 
 

11.Derive the magnetic boundary relations. 

 
 

i) The tangential component of the magnetic field is continuous across the boundary 

.Ht1 = Ht2 

 

ii) The normal component of the magnetic flux density is continuous across the boundary 

Dn1 = Dn2 

 
 

12. Find the magnetic field intensity at a distance ‘h’m above an infinite straight wire 
carrying a steady current I. 

 
 

Hints: 

The magnetic flux density is calculated starting from Biot savarts law. 

The magnetic flux density at any point due to aninfinite long conductor is given by 

B = µ I / 2πd 

13. Two conducting concentric spherical shells with radii a and b are at potentials V0 

and 0 respectively. Determine the capacitance of the capacitor. 

 
Hint: 

Derive the capacitance between concentric spheres using the formula 

C = Q /V 

= 4πε [ ab /(b-a) ] 

14State and derive an expression for Poyntings theorem. 

Hints: 

The net power flowing out of a given volume v is equal to the time rate of decrease of the 
energy stored within the volume minus the conduction losses. 

 

15.Find the forces /length between two long straight parallel conductors carrying a 

current of 10A in the same direction. A distance of 0.2m separates the conductors. 

Also find the force/length when the conductors carry currents in opposite directions. 

Hints: 

Calculate the force per metre length using the formula 

F/L = µ I1I2 / 2πd 

In opposite direction force is repulsive 



  

 

 

KAHE  

 
 

 

16 Derive an expression for torque acting on a loop. 

Hints 

:When a current loop is placed parallel to a magnetic field forces act on the loop that 

tends to rotate the tangential force times the radial distance at which it acts is 
calledtorque or mechanicl moment of the loop. 

 

T = m X B 

17. Derive an expression for energy and energy density in a electric field. 

Energy =CV2/2 

Energy density = εE2/2 

18. .Derive an expression for energy and energy density in a magnetic field. 

Energy =LI2/2 

Energy density = µH2/2 

19. Derive all the maxwells equations. 

Hints: 

i) Maxwells equation from electric Gauss law. 

ii) Maxwells equation from magnetic Gauss law. 
iii)Maxwells equation from Amperes law. 

iv) Maxwells equation from Faradays law. 

 
20. Derive an expression for displacement, conduction current densities. Also obtain an 
expression for continuity current relations 

 

Hints: 

Displacement current density Jd = εδE/δt 

Conduction current density Jcond = σE 

 
 

21. Derive the general Electromagnetic wave equation. 

Hint: 

Starting from the maxwells equation from Faradays law and Amperes law derive the 

Equation   



  

 

˘ 2 E - µ σ(δ E/ δt )-µε (δ2 E/δt2 ) 

 
22. Briefly explain reflection by a perfect dielectric when a wave is 

incident normally on a perfect dielectric and derive expression for 

reflection coefficient. 
 

Hints: 

When a plane electromagnetic wave is incident on the surface of 

aperfect dielectric part of the energy is transmitted and part of it is 

reflected. 

Er / Ei = ( 2 – 1) /( 2 + 1) 

 
23. Briefly explain reflection by a perfect dielectric when a wave is 

incident normally on a perfect conductor. 

Hints 

:When the plane wave is incident normally upon the surface of a perfect 

conductor the wave is entirely reflected. Since there can be no loss 

within a perfect conductor none of the energy is absorbed. 
 

E (x,t) = 2Ei sinβx sinω t 

 

24. Derive the relation between field theory and circuit theory for an RLC series circuit. 

 

Hints : 

 

Starting from field theory erquation for a series RLC circuit derive the 

circuit equation V= IR + L dI/dt +(1 /C) / Idt 

 

25. State and explain Faradays and Lenzs law of induction and derive maxwells 

equation. 

 
 

Hints: 

The total emf induced in a circuit is equal to the time rate of decrease 
of the total magnetic flux linking the circuit. 

 

˘ X E = -δB/ δt 
 



UNIT-2 CONDUCTORS AND DIELECTRICS 

 Boundary conditions for Electrostatic fields 

 

In our discussions so far we have considered the existence of electric field in the 

homogeneous medium. Practical electromagnetic problems often involve media with 

different physical properties. Determination of electric field for such problems requires 

the knowledge of the relations of field quantities at an interface between two media. 

The conditions that the fields must satisfy at the interface of two different media are 

referred to as boundary conditions . 

 

In order to discuss the boundary conditions, we first consider the field behavior in 

some common material media. 

 
Fig 2.1: Boundary Conditions for at the surface of a Conductor 

In general, based on the electric properties, materials can be classified into three categories: 

conductors, semiconductors and insulators (dielectrics). In conductor , electrons in the 
outermost shells of the atoms are very loosely held and they migrate easily from one atom 

to the other. Most metals belong to this group. The electrons in the atoms of insulators or 

dielectrics remain confined to their orbits and under normal circumstances they are not 

liberated under the influence of an externally applied field. The electrical properties of 
semiconductors fall between those of conductors and insulators since semiconductors  

have very few numbers of free charges. 

 

The parameter conductivity is used characterizes the macroscopic electrical property of a 

material medium. The notion of conductivity is more important in dealing with the current 

flow and hence the same will be considered in detail later on. 

 

If some free charge is introduced inside a conductor, the charges will experience a force 

due 

to mutual repulsion and owing to the fact that they are free to move, the charges will 

appear on the surface. The charges will redistribute themselves in such a manner that the 

field within the conductor is zero. Therefore, under steady condition, inside a conductor 

. 

From Gauss's theorem it follows that 



 

 

=0 

.......................(2.51) 

 
The surface charge distribution on a conductor depends on the shape of the conductor. 

The charges on the surface of the conductor will not be in equilibrium if there is a 

tangential component of the electric field is present, which would produce movement of 

the charges. Hence under static field conditions, tangential component of the electric 
field on the conductor surface is zero. The electric field on the surface of the conductor is 

normal everywhere to the surface . Since the tangential component of electric field is 

zero, the conductor surface is an equipotential surface. As = 0 inside the conductor, the 

conductor as a whole has the same potential. We may further note that charges require a 

finite time to redistribute in a conductor. However, this time is very small sec for 

good conductor like copper. 

Let us now consider an interface between a conductor and free space as shown in the figure 
2.1 

 

Let us consider the closed path pqrsp for which we can write, 

 

 .............................(2.52) 

For and noting that inside the conductor is zero, we can write 

 
=0..................................(2.53) 

 

Et is the tangential component of the field. Therefore we find that 

Et=0 ...............................................................................(2.54) 

 
In order to determine the normal component En, the normal component of   , at the 

surface of the conductor, we consider a small cylindrical Gaussian surface as shown in 

the Fig.12. Let  represent the area  of  the top  and bottom faces and   represents 

the 

height of the cylinder. Once again, as , we approach the surface of the conductor. 

Since      = 0 inside the conductor is zero, 

 
 

                       …………………………………............(2.55) 

  
                                                     ……........................................................(2.56) 

Therefore, we can summarize the boundary conditions at the surface of a conductor as: 

                                                               Et  = 0……………………………..…………….. (2.57) 



 

 
.....................(2.58) 

 

 Behavior of dielectrics in static electric field: Polarization of dielectric 

 
Here briefly describe the behavior of dielectrics or insulators when placed in static 

electric field. Ideal dielectrics do not contain free charges. As we know, all material media 

are composed of atoms where a positively charged nucleus (diameter ~ 10-15m) is 

surrounded by negatively charged electrons (electron cloud has radius ~ 10-10m) moving 
around the nucleus. Molecules of dielectrics are neutral macroscopically; an externally 
applied field causes small displacement of the charge particles creating small electric 
dipoles. These induced dipole moments modify electric fields both inside and outside 
dielectric material. 

 
Molecules of some dielectric materials posses permanent dipole moments even in 

the absence of an external applied field. Usually such molecules consist of two or more 
dissimilar atoms and are called polar molecules. A common example of such molecule is 
water molecule H2O. In polar molecules the atoms do not arrange themselves to make the 

net dipole moment zero. However, in the absence of an external field, the molecules 
arrange themselves in a random manner so that net dipole moment over a volume becomes 
zero. 

Under the influence of an applied electric field, these dipoles tend to align 
themselves along the field as shown in figure 2.15. There are some materials that can 
exhibit net permanent dipole moment even in the absence of applied field. These materials 
are called electrets that made by heating certain waxes or plastics in the presence of 
electric field. The applied field aligns the polarized molecules when the material is in the 
heated state and they are frozen to their new position when after the temperature is brought 
down to its normal temperatures. Permanent polarization remains without an externally 
applied field. 

 

As a measure of intensity of polarization, polarization vector (in C/m2) is defined as: 

 

                                              ……………..............................................(2.59) 

n being the number of molecules per unit volume i.e. is the dipole moment per unit 

volume. Let us now consider a dielectric material having polarization and compute 

the potential at an external point O due to an elementary dipole   dv'. 



 

 

 

 

 

Fig 2.2: Potential at an External Point due to an Elementary Dipole 

dv'. 

 

With reference to the figure 2.16, we can write: 
 
 

 

 
Therefore, 

..........................................(2.60) 

 

. ...................(2.61) 

 

 

 
where x,y,z represent the coordinates of the external point O and x',y',z' are the 
coordinates of the source point. 

 

From the expression of R, we can verify that 

 

.  .............................................(2.63) 

....................................(2.64) 
 

Using  the vector identity, ,where f is a scalar quantity , we 

have, 

 .....................(2.65) 



 

Converting the first volume integral of the above expression to surface integral, we can 

write 

 

 

 
.................(2.66) 

 
where    is the outward normal from  the surface element ds' of the dielectric. From 

the above expression we find that the electric potential of a polarized dielectric may 

be found from the contribution of volume and surface charge distributions having 

densities 

 

............................................................(2.67) 

 
......................(2.68) 

These are referred to as polarisation or bound charge densities. Therefore we may replace 

a polarized dielectric by an equivalent polarization surface charge density and a 

polarization volume charge density. We recall that bound charges are those charges that 

are not free to move within the dielectric material, such charges are result of displacement 

that occurs on a molecular scale during polarization. The total bound charge on the 

surface is 

 

 
..................(2.69) 

 

The charge that remains inside the surface is 

 

 
....................(2.70) 

 

The total charge in the dielectric material is zero as 

 

 
....................(2.71) 

 
If we now  consider  that  the  dielectric  region containing charge density the total 

volume charge density becomes 

 

.................(2.72) 

 

              Since we have taken into account the effect of the bound charge density, we can write 



 

 

………………………………. (2.73) 

 

 

 

              Using   the definition  of we have 

 
....................(2.74) 

 
              Therefore the electric flux density 
 

When the dielectric properties of the medium are linear and isotropic, polarisation is 

directly proportional to the applied field strength and 

 
.....................(2.75) 

 

is the electric susceptibility of the dielectric. Therefore, 

 
.......................(2.76) 

 
is called relative permeability or the  dielectric constant of  the medium.   

is called the absolute permittivity. 

 

A dielectric medium is said to be  linear when is independent of and the medium is 

homogeneous if is also independent of space coordinates. A linear homogeneous and 

isotropic medium is called a simple medium and for such medium the relative 

permittivity is a constant. 

 
Dielectric constant  may be a function of space coordinates. For an isotropic materials, 

the dielectric constant is different in different directions of the electric field, D and E are 

related by a permittivity tensor which may be written as: 

 

 .......................(2.77) 

For crystals, the reference coordinates can be chosen along the principal axes, which 
make off diagonal elements of the permittivity matrix zero. Therefore, we have 



 

 
 

 
 

.......................(2.78) 

                            
Media exhibiting  such  characteristics  are called  biaxial. Further, if  then the 

medium is called uniaxial. It may be noted that            for isotropic media, Lossy 

dielectric materials are represented by a complex dielectric constant, the imaginary part of 

which provides the power loss in the medium and this is in general dependant on 

frequency. 

 

Another phenomenon is of importance is dielectric breakdown. We observed that the 

applied electric field causes small displacement of bound charges in a dielectric material 

that results into polarization. Strong field can pull electrons completely out of the 

molecules. These electrons being accelerated under influence of electric field will collide 

with molecular lattice structure causing damage or distortion of material. For very strong 

fields, avalanche breakdown may also occur. The dielectric under such condition will 

become conducting. 

 
The maximum electric field intensity a dielectric can withstand without breakdown is 
referred to as the dielectric strength of the material. 

 Method Of Images: 

The replacement of the actual problem with boundaries by an enlarged region or with 

image charges but no boundaries is called the method of images. 
Method of images is used in solving problems of one or more point charges in the 
presence of boundary surfaces. 

 Continuity of equation: 
The relation between density and the volume charge density at a point called continuity of 
equation 

J= - ρ/ t v 

 Boundary Conditions for perfect Electric Fields: 

 

Let us consider the relationship among the field components that exist at the interface 

between two dielectrics as shown in the figure 2.17. The permittivity of the medium 1 

and  medium 2 are and respectively and the interface may also have a net charge 

density Coulomb/m. 



 

 
 

 
 
 

Fig 2.3: Boundary Conditions at the interface between two dielectrics 

 

We can express the electric field in terms of the tangential and 

normal ..........(2.79) 

where Et and En are the tangential and normal components of the electric field 

respectively. Let us assume that the closed path is very small so that over the elemental 

path length the 

variation of E can be neglected. Moreover very near to the interface, . Therefore 
 

 

.......................(2.80) 

Thus, we have, 
 

 
 

or i.e. the tangential component of an electric field is 

continuous across the interface. 

 

For relating the flux density vectors on two sides of the interface we apply Gauss’s law to a 

small pillbox volume as shown in the figure. Once again as , we can write 

 

 ..................(2.81a) 
 

i.e.,  

.................................................(2.81b) 

 
.e., .......................(2.81c) 

 

Thus we find that the normal component of the flux density vector D is discontinuous 

across an interface by an amount of discontinuity equal to the surface charge 

density at the interface. 



 

 

Example 

 
Two further illustrate these points; let us consider an example, which involves the 
refraction of D or E at a charge free dielectric interface as shown in the figure 2.18. 

 

Using the relationships we have just derived, we can write 
 
 
 

 

 
 

 
In terms of flux density vectors, 

.......................(2.82a) 
 

.......................(2.82b) 

 

 
 

.......................(2.83a) 

 

.....................(2.83b) 
 

Therefore, 

 

.......................(2.84) 

 

 

Fig 2.4: Refraction of D or E at a Charge Free Dielectric 

Interface 

 

 Capacitance and Capacitors 

 

We have already stated that a conductor in an electrostatic field is an Equipotential body 

and any charge given to such conductor will distribute themselves in such a manner that 

electric field inside the conductor vanishes. If an additional amount of charge is supplied 

to an isolated conductor at a given potential, this additional charge will increase the surface 

 

charge density       . Since the potential of the conductor is given by , the 



 

potential 

 
of the conductor will also increase maintaining the ratio same   .  Thus we can write 

where the constant of proportionality C is called the capacitance of the isolated conductor. 

SI unit of capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be 
seen that if V=1, C = Q. Thus capacity of an isolated conductor can also be defined as the 

amount of charge in Coulomb required to raise the potential of the conductor by 1 Volt. 

 
Of considerable interest in practice is a capacitor that consists of two (or more) 

conductors carrying equal and opposite charges and separated by some dielectric media 
or free space. The conductors may have arbitrary shapes. A two-conductor capacitor is 
shown in figure 2.5. 

 
 

 
Fig 2.5:Capacitance and Capacitors 

 
When a d-c voltage source is connected between the conductors, a charge transfer occurs 

which results into a positive charge on one conductor and negative charge on the other 
conductor. The conductors are equipotential surfaces and the field lines are perpendicular 

to the conductor surface. If V is the mean potential difference between the conductors, the 

 
capacitance is given by . Capacitance of a capacitor depends on the geometry of 

the conductor and the permittivity of the medium between them and does not depend on 

the charge or potential difference between conductors. The capacitance can be computed 

by assuming Q(at the same time -Q on the other conductor), first determining using 

Gauss’s  theorem  and  then  determining    . We illustrate this procedure by 

taking the example of a parallel plate capacitor. 
  
 Parallel plate capacitor 



 

- , 

 

 
 

 

Fig 2.6: Parallel Plate Capacitor 

 

For the parallel plate capacitor shown in the figure 2.20, let each plate has area A and a 

distance h separates the plates. A dielectric of permittivity fills the region between the 

plates. The electric field lines are confined between the plates. We ignore the flux 

fringing at the edges of the plates and charges are assumed to be uniformly distributed 

over the 
  and  

 

conducting plates with densities  . 

 

By Gauss’s theorem we can write, .......................(2.85) 

As we have assumed       to be uniform and fringing of field is neglected, we see that E 

is constant in the region between the plates and therefore, we can write . 

Thus,  

for a parallel plate capacitor we have,. .......................(2.86) 

 Series and parallel Connection of capacitors 

Capacitors are connected in various manners in electrical circuits; series and parallel 

connections are the two basic ways of connecting capacitors. We compute the 

equivalent capacitance for such connections. 

Series Case: Series connection of two capacitors is shown in the figure 2.21. For this 

case we can write, 

 

 

 

 
 

.......................(2.87) 



 

 
 

 
 

Fig 2.7: Series Connection of Capacitors 

 
 

Fig2.7:Parallel Connection of Capacitors 

 

The same approach may be extended to more than two capacitors connected in 

series. Parallel Case: For the parallel case, the voltages across the capacitors are the 

same. The total charge 
 

 

Therefore, .......................(2.88) 

 
Poisson’s and Laplace’s Equations 

 

For electrostatic field, we have seen that 



 

 

 

......................................................(2.97) 
 

 

Form the above two equations we can write 

 

..................................................................(2.98) 

 
Using vector identity we can write, ...............(2.99) 

For a simple homogeneous medium,  is constant and  . Therefore, 

................(2.100) 
 

This equation is known as Poisson’s equation. Here we have introduced a new 

operator, ( del square), called the  Laplacian operator. In Cartesian coordinates, 

 

...............(2.101) 

Therefore, in Cartesian coordinates, Poisson equation can be written as: 

 

...............(2.102) 

In cylindrical coordinates, 

 

...............(2.103) 

In spherical polar coordinate system, 

 

...............(2.104) 
 

At points in simple media, where no free charge is present, Poisson’s equation reduces to 

 
...................................(2.105) 

 

which is known as Laplace’s equation. 

Application of poisons and Laplace’s equations: 

 

Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic 

field problems where only the electrostatic conditions (potential and charge) at some 



 

boundaries are known and solution of electric field and potential is to be found throughout 

the volume. We shall consider such applications in the section where we deal with 

boundary value problems. 

 
 

ASSIGNMENT PROBLEMS 

1. A charged ring of radius carrying a charge of C/m lies in the x-y plane with its 

centre at the origin and  a charge C is placed at the point Determine in 

terms of and so that a test charge placed at does not experience 

any force. 
 

2. A semicircular ring of radius lies in the free space and carries a charge density 
C/m. Find the electric field at the centre of the semicircle. 

3. Consider a uniform sphere of charge with charge density and radius b , centered 

at the origin. Find the electric field at a distance r from the origin for the two cases: 

r<b and r>b . Sketch the strength of the electric filed as function of r . 

 

 

4. A spherical charge distribution is given by 

 

 

is the radius of the sphere. Find the following: 
 

i. The total charge. 

ii. 

iii 

for and . 

The  value  of where becomes 



 

5. With reference determine the potential and field at the point 
if the shaded region contains uniform charge 

density /m2 . 

6. A capacitor consists of two coaxial metallic cylinders of length , 

radius of the inner conductor      and  that of outer conductor  . A 

dielectric material having dielectric  

constant , where is the radius, fills the 

space between the conductors. Determine the capacitance 

of the capacitor. 

7. Determine whether the functions given below satisfy Laplace 's equation 

 

 
i) 

 
ii) 

 



 

UNIT III MAGNETOSTATICS 
 

 Introduction 

In previous chapters we have seen that an electrostatic field is produced by static or 
stationary charges. The relationship of the steady magnetic field to its sources is much 

more complicated. 

 

Laws governing magneto static fields 

The source of steady magnetic field may be a permanent magnet, a direct current 

or an electric field changing with time. In this chapter we shall mainly consider the 

magnetic field produced by a direct current. The magnetic field produced due to time 

varying electric field will be discussed later. Historically, the link between the electric 

and magnetic field was established Oersted in 1820. Ampere and others extended the 

investigation of magnetic effect of electricity . There are two major laws governing the 

magnetostatic fields are: 

  1.Biot-Savart Law 

 

 
  2.Ampere's Law 

 
Usually, the magnetic field intensity is represented by the vector . It is customary to 
represent the direction of the magnetic field intensity (or current) by a small circle with a 

dot or cross sign depending on whether the field (or current) is out of or into the page as 

shown in Fig. 3.1. 
 

 

 

(or l ) out of the page (or l ) into the page 

 

Fig. 3.1: Representation of magnetic field (or current) Biot- Savart Law 

This law relates the magnetic field intensity dH produced at a point due to a differential 

current element as shown in Fig. 3.2. 



 

 
 
 

 
 
 

Fig. 3.2: Magnetic field intensity due to a current element 

 
The magnetic field intensity at P can be written as, 

 

 
............................(3.1a) 

 

 
 

..............................................(3.1b) 

 
 

where is the distance of the current element from the point P. 
 

Similar to different charge distributions, we can have different current distribution such as 
line current, surface current and volume current. These different types of current densities 
are shown in Fig. 3.3. 

 

 

Line Current Surface Current Volume Current 
 

Fig. 3.3: Different types of current distributions 
By denoting the surface current density as K (in amp/m) and volume current density as J 

(in amp/m2) we can write: 



 

 

 

......................................(3.2) 
 

( It may be noted that ) 

 

Employing Biot-Savart Law, we can now express the magnetic field intensity H. In 

terms of these current distributions. 

 

 
... for line current............................(3.3a) 

 

 
for surface current ....................(3.3b) 

 

 
for volume current......................(3.3c) 

To illustrate the application of Biot - Savart's Law, we consider the following example. 

 
Example 3.1: We consider a finite length of a conductor carrying  a current  placed  

along z- axis as shown in the Fig 3.4. We determine the magnetic field at point P due to 

this current carrying conductor. 
 

Fig. 3.4: Field at a point P due to a finite length current carrying conductor 

 

With reference to Fig. 4.4, we find that 

..................................................(3.4) 

 
Applying Biot -Savart's law for the current element 



 

 

 

 

we can write, 

 

     .................(3.5) 

    

Substituting we can write, 
 
 
 

.........................(3.6) 

We find that, for an infinitely long conductor carrying a current I , and 

Therefore, .........................................................................................(3.7) 

Ampere's Circuital Law: 

 
Ampere's circuital law states that the line integral of the magnetic field        (circulation of H 

) around a closed path is the net current enclosed by this path. Mathematically, 
 

    .....................................(3.8) 

The total current I enc can be written as, 

 

......................................(3.9) 

By applying Stoke's theorem, we can write 

 

 

......................................(3.10) 

which is the Ampere's law in the point form. 

 

3.3.1 Estimation of Magnetic field intensity for straight and circular conductors: 
 

We illustrate the application of Ampere's Law with some examples. 

 

We compute magnetic field due to an infinitely long thin current carrying conductor 

as shown in Fig. 4.5. Using Ampere's Law, we consider the close path to be a circle 

of radius    as shown in the Fig. 4.5. 

 
If we consider a small current element ,         is perpendicular to the plane 

 

 

 

 



 

 

 

 

containing both         and       . Therefore only component       of that will be present is 

,i.e., . 

By applying Ampere's law we can write, 
 
 

.................(4.11) 
 
 

Therefore, which  is same as equation (3.7) 
 

Fig. 3.5: Magnetic field due to an infinite thin current carrying 

conductor 

 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor 

carrying a current I and outer conductor carrying current - I as shown in figure 3.6. We 

compute the magnetic field as a function of as follows: 

 
In the region 

 

 

......................................(3.12) 
 

............................(3.13) 

 

In the region 

 

 

 

 

 



 

 

 

 

  
......................................(3.14) 

 

 

 

 

 
currents 

 

In the region 

 

 

 

 

 

 

 

 
In the region 

Fig. 3.6: Coaxial conductor carrying equal and opposite 
 

 

 
 

......................................(3.15) 

 

........................................(3.16) 

 

 

 
......................................(3.17)



 

 

 
 

Magnetic Flux and Density: 

In simple matter, the magnetic flux density related to the magnetic field intensity as 

where called the permeability. In particular when we consider the free space 
 

where H/m is the permeability of the free space. Magnetic 

flux density is measured in terms of Wb/m 2 . 

The magnetic flux density through a surface is given by: 

 

 
Wb ......................................(3.18) 

 

In the case of electrostatic field, we have seen that if the surface is a closed surface, the 

net flux passing through the surface is equal to the charge enclosed by the surface. In 

case of magnetic field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles 

always occur in pair (as N-S). For example, if we desire to have an isolated magnetic 

pole by dividing the magnetic bar successively into two, we end up with pieces each 
having north (N) and south (S) pole as shown in Fig. 3.7 (a). This process could be 

continued until the magnets are of atomic dimensions; still we will have N-S pair 

occurring together. This means that the magnetic poles cannot be isolated. 
 

 

 

Fig. 3.7: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight 

current carrying conductor 

 
Similarly if we consider the field/flux lines of a current carrying conductor as shown in 

Fig. 3.7 (b), we find that these lines are closed lines, that is, if we consider a closed 

surface, the number of flux lines that would leave the surface would be same as the 

number of flux lines that would enter the surface. 
 

From our discussions above, it is evident that for magnetic field, 



 

 

 

 

......................................(3.19) 
 

which is the Gauss's law for the magnetic 

field. By applying divergence theorem, we 

can write: 

 

Hence, ......................................(3.20) 

 

which is the Gauss's law for the magnetic field in point form. 

 

 Magnetic Scalar and Vector Potentials: 

 
In studying electric field problems, we introduced the concept of electric potential that 
simplified the computation of electric fields for certain types of problems. In the same 
manner let us relate the magnetic field intensity to a scalar magnetic potential and write: 

 
...................................(3.21) 

 

From Ampere's law , we know that 

 

 
......................................(3.22) 

 

Therefore, ...........................(3.23) 
 
 

But  using vector identity, we find that is  valid  only where 

. Thus  the scalar  magnetic potential  is defined only in  the  region where . 

Moreover, Vm in general is not a single valued function of position. 

 
This point can be illustrated as follows. Let us consider the cross section of a coaxial line 
as shown in fig 3.8. 

 
In the region , and 



 

 

 
wherever 

 

 
 

 
 

Fig. 3.8: Cross Section of a Coaxial Line 

 

If Vm is the magnetic potential then, 

 

 
 

 

 
If we set Vm = 0 at then c=0 and 

We observe that as we make a complete lap around the current carrying conductor , we 

reach again but Vm this time becomes 

 

We observe that value of Vm keeps changing as we complete additional laps to pass 
through the same point. We introduced Vm analogous to electostatic potential V. But for 
static electric 

fields, and , whereas for steady magnetic field 

but even if along the path of integration. 
 

We now introduce the vector magnetic potential which can be used in regions where 

current density may be zero or nonzero and the same can be easily extended to time 

varying cases. The use of vector magnetic potential provides elegant ways of solving EM 

field problems. 



 

 

 

Since and we have the vector identity that for any vector , , we 

can                    written  . 

Here, the vector field  is called the vector magnetic potential.  Its SI unit is Wb/m.  

Thus  if can find  of a given current distribution,  can be found from  through a 

curl operation. 

 
We have introduced the vector function and related its curl to . A vector function is 

defined fully in terms of its curl as well as divergence. The choice of is made as 

follows. 

 
...........................................(3.24) 

 

By using vector identity, 

 
.................................................(3.25) 

 
.........................................(3.26) 

 

 
Great deal of simplification can be achieved if we choose . 

Putting ,  we  get which is vector poisson 

equation. 
In Cartesian coordinates, the above equation can be written in terms of the components 
as 

 

......................................(3.27a) 

 

......................................(3.27b) 
 

................................(3.27c) 

The form of all the above equation is same as that 

of 
 
 

..........................................(3.28) 
 

for which the solution is 

 

 

..................(3.29) 



 

 

 
 

In  case  of  time varying  fields we shall see that , which is known as 

Lorentz condition, V being the electric potential. Here we are dealing with static 

magnetic field, so . 

 

By comparison, we can write the solution for Ax 

as 
 
 

...................................(3.30) 
 

Computing similar solutions for other two components of the vector potential, the 

vector potential can be written as 

 

 

.......................................(3.31) 
 

This equation enables us to find the vector potential at a given point because of a v 

olume current density . Similarly for line or surface current density we can write 

 
 

...................................................(3.32) 

 

 

respectively. ..............................(3.33) 

 
The magnetic flux through a given area S is given by 

 

 

.............................................(3.34) 

Substitutig 
 

.........................................(3.35) 



 

 

 

Vector potential thus have the physical significance that its integral around any closed 
path is equal to the magnetic flux passing through that path. 

 

 

Boundary Condition for Magnetic Fields: 

 

Similar to the boundary conditions in the electro static fields, here we will consider the 

behavior of  and   at the interface of two different media. In particular, we determine 

how the tangential and normal components of magnetic fields behave at the boundary of 
two regions having different permeabilities. 

 
The  figure 3.9 shows the interface between two media having permeabities and , 

being the normal vector from medium 2 to medium 1. 

 

 

Figure 3.9: Interface between two magnetic media 

 
To determine the condition for the normal component of the flux density vector , we 

consider a small pill box P with vanishingly small thickness h and having an elementary 

area for the faces. Over the pill box, we can write 

 

 

  ....................................................(3.36) 

Since h --> 0, we can neglect the flux through the sidewall of the pill box. 

 
 

 ...........................(3.37) 

and   ..................(3.38) 



 

 

 
 

 

where 
 

 

 

 

 

 

 
 

 
 
 

and ………….(3.39) 
 

Since is small, we can write 

 

 
or, ...................................(3.40) 

 
That is, the normal component of the magnetic flux density vector is continuous across 
the interface. 

 

In vector form, 

 
...........................(3.41) 

 

To determine the condition for the tangential component for the magnetic field, we consider 
a closed path C as shown in figure 3.8. By applying Ampere's law we can write 

 

 

 
h -->0, 

 ............................(3.42) Since 

 
 

...................................(3.43) 
 
 

  

We have shown in figure 4.8, a set of three unit vectors , and such that they 

satisfy (R.H. rule). Here is tangential to the  interface and is the vector 

perpendicular to the surface enclosed by C at the interface 
 

The above equation can be written as 

 

 
or, ...................................(3.44) 

 

., tangential component of magnetic field component is discontinuous across the interface 
where a free surface current exists. 

 

If Js = 0, the tangential magnetic field is also continuous. If one of the medium is a 



 

 

perfect conductor Js exists on the surface of the perfect conductor. 

In vector form we can write, 

 

 

 

 

 

 
Therefore, 
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ASSIGNMENT PROBLEMS 

 
1. An infinitely long conductor carries a current I A is bent into an L 

shape and placed as shown in Fig. 3.10. Determine the magnetic 
field intensity at a point P (0,0, a). 

 

 

 

 

Figure 3.10 

 
2. Consider a long filamentary carrying a current IA in the + Z 

direction. Calculate the magnetic field intensity at point O (- a , a 

,0). Also determine the flux through 

this region described by . 
3. A very long air cored solenoid is to produce an inductance 0.1H/m. If 

the member of turns per unit length is 1000/m. Determine the 
diameter of this turns of the solenoid. 

4. Determine the force per unit length between two infinitely 
long conductor each carrying current IA and the conductor are 
separated by a distance ? d '. 

 



UNIT IV MAGNETIC FORCES AND MATERIALS 
 
           Force On A Moving Charge: 
 

In electric field, force on a charged particle is 

F=QE 

Force is in the same direction as the electric field intensity 

(positive charge) 

 

A charged particle in motion in a magnetic field force magnitude is proportional to the 

product of magnitudes of the charge Q, its velocity V and the flux density B and to the sine 

of the angle between the vectors V and B. 

 

The direction of force is perpendicular to both V and B and is given by a unit vector in the 

direction of V x B. 

 

The force may therefore be expressed as 

F=QV x B 

Force on a moving particle due to combined electric and magnetic fields is obtained by 

superposition. 

 

F=Q (E + V x B) 

 

This equation is known as Lorentz force equation. 

 

Force On A Differential Current Element: 

 

The force on a charged particle moving through a steady magnetic field may be written as 

the differential; force exerted on a differential element of charge. 

 

dF, dQ 

 

Convection current density in terms of the velocity of the volume charge density 

Differential element of charge may also be expressed in terms of volume charge density. 

dQ=v dv 

Thus,  
dF=v dvVxB 



 

 
JdV is the differential current element dF=JxBdv 
 

Jdv,Kds,IdL 

 

Lorentz force equation may be applied to surface current density. 

 
dF =KxBds 

 

Differential current element 
 

dF=IdLxB 

The magnitude of the force is given by the familiar equation 

 

F=BILsin 



 

 Force on a current-carrying conductor 
 

Charges confined to wires can also experience a force in a magnetic field. A current (I) in a 

magnetic field ( B) experiences a force ( F) given by the equation F = I l × B or F = IlB sin θ, 

where l is the length of the wire, represented by a vector pointing in the direction of the 

current. The direction of the force may be found by a right‐hand rule similar to the one shown 

in Figure . In this case, point your thumb in the direction of the current—the direction of 

motion of positive charges. The current will experience no force if it is parallel to the magnetic 

field. 

 Force and Torque on a current loop 

A loop of current in a magnetic field can experience a torque if it is free to turn. Figure (a) 

depicts a square loop of wire in a magnetic field directed to the right. Imagine in Figure (b) that 

the axis of the wire is turned to an angle (θ) with the magnetic field and that the view is looking 

down on the top of the loop. The x in a circle depicts the current traveling into the page away 

from the viewer, and the dot in a circle depicts the current out of the page toward the viewer. 
 

Figure 4.1 

(a) Square current loop in a magnetic field B. (b) View from the top of the current loop. (c) If 

the loop is tilted with respect to B, a torque results. 

 

MAGNETIC MATERIALS: 

All material shows some magnetic effects. In many substances the effects are so 

weak that the materials are often considered to be non magnetic. 

 

A vacuum is the truly nonmagnetic medium. 

 

Material can be classified according to their magnetic behavior into 

Diamagnetic 

Paramagnetic 

Ferromagnetic 

 

DIAMAGNETIC: 

In diamagnetic materials magnetic effects are weak. Atoms in which the small magnetic 

fields produced by the motion of the electrons in their orbit  and  those  produced by the 

electron spin combine to produce a net field of zero. 

 



 

The fields produced by the electron motion itself in the absence of any external magnetic 

field. 

 

This material as one in which the permanent magnetic moment m0 of each atom is zero. 

Such a material is termed diamagnetic. 

 

PARAMAGNETIC: 

 

In paramagnetic materials the magnetic moments of adjacent atoms align in opposite 

directions so that the net magnetic moment of a specimen is nil even in the presence of 

applied field. 

 

FERROMAGNETIC: 

 

In ferromagnetic substance the magnetic moments of adjacent atoms are also aligned 

opposite, but the moments are not equal, so there is a net magnetic moment. 

 

It is less than in ferromagnetic materials. 

 

The ferrites have a low electrical conductivity, which makes them useful in the cores of ac 

inductors and transformers. 

 

Since induced currents are less and ohmic losses are reduced. 

 
 

BOUNDARY CONDITIONS: 

 

A boundary between two isotropic homogeneous linear 

materials  with permeability 1 and 2. 

The boundary condition on the normal components is determined by allowing the surface to 

cut a small cylindrical gaussian surface. 

 

 
BN 1=BN 2 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 INDUCTANCE: 

 

self inductance and mutual inductance: 

  

Like  capacitance,  inductance  L  is a property  of a physical  arrangement   of conduc- 

tors.  It is a measure of magnetic flux which links the circuit  when  a  current  I flows  in  the 

circuit. It is also a measure of how much energy is stored in  the magnetic  field of an  

inductor, such as a coil, solenoid, etc. 

The definition of inductance rests on the concept of flux  linkage. It is not  a very 

precise  concept  unless  one  is willing to  introduce   a complicated  topological description. 

 
For  our  purposes  it  will be  sufficient to  define flux   linkage   A as the flux  that  links  all 

the circuit, multiplied by the number of turns N. For example, in the case of the 

solenoid shown in Fig. , flux linkage will be given by 
 

Fig 4.2 solenoid flux linkage 

A  = N¢  = N  JJ B·  dA ~ NBA Wb 

 
that  is,  only  the  flux  that  goes  through  the  inside  of  the  solenoid   and  therefore links 

all turns is used.  The  small  flux  loops  about  each  turn  are  ignored  in  a first-order 

analysis because they  link  only  one  or  two  turns  and  flow  through  a small  area.  The 

area  A  is  that  area  through   which  the  flux  that   links  all  turns flows. For  the  solenoid 

of Fig. 7.7, a good approximation to A is the cross section of the solenoid 

 

The unit of inductance  is  the  henry  (H).  Inductors  for  filter  applications  in  power 

supplies are usually wire-wound solenoids on an iron core with  inductances  in  the range  

from  1  to  10  H.  Inductors   found   in   high-frequency   circuits   are   air-core solenoids 

with values in the millihenry (mH) range.  The  definition  for  inductance,  (7.28),  even 

though it is derived for steady currents, is valid up to very high frequencies. 

Let us calculate L for some useful geometries. 

 
Solenoid 

A good approximation of the B field in a solenoid that links all turns is the  B field at  the 



 

 

center of the  solenoid;  that  is,  B  =  J10 Ni]l  from  (7.22)  or  (6.40).  There  is  some 

leakage at the  ends  of the  solenoid  (recall  that  the  value  of the  B field drops to  one-half  

at the ends), which  we will ignore  because  it occurs  mainly  at the ends. The  inductance  L 

of a solenoid is therefore 

 

L= A = NBA = J1oN2A 

 

where I is the length and A is the cross section of the solenoid. 

If we have a short solenoid of N turns, that is, one where the length I is smaller 
 

           TOROID 

For  example,  the  inductance   of  a  2000-turn  toroid   having  a cross-sectional area  of  

1 em? and mean radius of 5 em is 

L  =  (4n x  10-7 H/m)(2000)2(10-4 m2)/2n(O.05 m) = 1.6 mH 

If the toroid were filled with iron instead of air, the inductance could be increased many 

thousand fold. 
Note that we have neglected  the  variation  of B across  the  cross  section  of the toroid. 

By using an average r, as, for example, r = (a + b)/2,  we have  in  effect used an  average 
value of B in the calculation  of  inductance.  If this  is  not  sufficiently  accurate,  the 
variation of B should be considered by integrating (7.25) between a and b. 

 

Coaxial Transmission Line 

The student usually does not have any difficulty in grasping the concept of inductance  as  long 

as the geometries involve windings (such as in coils and toroids). In the following examples 

flux linkage is used in a broader sense and should clarify that  concept  further. Figure 7.8 

shows a longitudinal and transverse cross section of a coaxial line (already considered  in  Sec.  

5.5  when  the  capacitance'  per  unit  length  was  calculated).  The current I flows in the 

center conductor and returns 

We  have  ignored  the  contribution  of the  magnetic field inside the inner con- 

ductor for  several  reasons.  t First,  as  shown   in  Fig.  7.4, the  magnetic  flux  within 

the  inner  conductor (assuming  the  current   I is distributed uniformly  throughout 

the  cross  section of  the  inner   conductor, which   is  a valid  assumption  for direct 

current   and   for  current at  low  frequencies)  links   only   a  fraction  of  that con- 

ductor;  that   fraction  is proportional to (rlaf  because Iatr = (rla)2I. Second, at the 

higher  frequencies  the  current   is effectively   confined   to  a  thin   layer   (skin  depth)   at 

r  = a  for  the  inner   conductor and   at   r  = b  for the  outer.  Third, most  practical 

transmission lines  use  a small inner  conductor   and  a thin-walled outer conductor. 

Hence   the  flux  linkages   within   the  conductors can  be neglected, and (7.34) is an 
accurate expression for inductance per unit length. Fig: 4.3 coxial transmission-cross section 



 

 

 
 

We have approximated the upper  limit  d -  a  by  d because  for  practical  transmis- sion  

lines d ~ a. This approximation  also  accounts  for  the  flux  from  the  lower conductor  

which partly links the current  inside  the  upper  wire. As a matter  of fact it can  be shown  

that the replacement of d - a by a gives an exact result  for  the  flux  linkages t  The inductance 

per unit length LII. which  is  the  desired  result  and  gives  the  total  stored  magnetic   

energy   in   an inductance L carrying current I. For example, a solenoid with an inductance of 

8 H and a current of -!- A has an energy stored of W = -!-LI2 = 1 J. 
 

 

 

Inductor 
 

 

 

 

 
Fig:4.4 

 



 

 

 

 
 

4.8 ENERGY STORED INA MAGNETIC FIELD: 
 

 

 

 

 

 

 

Fig:4.5  



 

 

 



  

 

 

 

UNIT V TIME VARYING FIELDS AND MAXWELL’S EQUATIONS 
 

 Introduction: 
 

In our study of static fields so far, we have observed that static electric fields are produced 
by electric charges, static magnetic fields are produced by charges in motion or by steady 
current. Further, static electric field is a conservative field and has no curl, the static 
magnetic field is continuous and its divergence is zero. The fundamental relationships for 
static electric fields among the field quantities can be summarized as: 

 
(5.1a) 

 

 

For a linear and isotropic medium, 
 

 

Similarly for the magnetostatic case 

 

 

 

 

(5.1b) 

 

 

(5.1c) 

 

 

 
(5.2a) 

 
(5.2b) 

 
(5.2c) 

 

It can be seen that for static case, the electric field vectors and and magnetic field 

vectors and form separate pairs. 

In this chapter we will consider the time varying scenario. In the time varying case we 

will observe that a changing magnetic field will produce a changing electric field and 

vice versa. 

 

We begin our discussion with Faraday's Law of electromagnetic induction and then 

present the Maxwell's equations which form the foundation for the electromagnetic 

theory. 

 

 Faraday's Law of electromagnetic Induction 

 
Michael Faraday, in 1831 discovered experimentally that a current was induced in a 

conducting loop when the magnetic flux linking the loop changed. In terms of fields, we 

can say that a time varying magnetic field produces an electromotive force (emf) which 

causes a current in a closed circuit. The quantitative relation between the induced emf 

(the voltage that arises from conductors moving in a magnetic field or from changing 

magnetic fields) and the rate of change of flux linkage developed based on experimental 

observation is known as Faraday's law. Mathematically, the induced emf can be written 

as 



  

 

 

 

 
 

 

Emf = Volts (5.3) 

 
where is the flux linkage over the closed path. 

 

A non zero may result due to any of the following: (a) time changing flux linkage a 

stationary closed path. 

(a) relative motion between a steady flux a closed path. 

 
(b) a combination of the above two cases. 

 
The negative sign in equation (5.3) was introduced by Lenz in order to comply with the 

polarity of the induced emf. The negative sign implies that the induced emf will cause a 

current flow in the closed loop in such a direction so as to oppose the change in the 

linking magnetic flux which produces it. (It may be noted that as far as the induced emf 

is concerned, the closed path forming a loop does not necessarily have to be 

conductive). 

 
If the closed path is in the form of N tightly wound turns of a coil, the change in the 
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the 
sum of the induced emfs of the individual turns, i.e., 

 

 
Emf = Volts (5.4) 

By defining the total flux linkage as 

 

(5.5) 

The emf can be written as 

 
 

 

Emf = (5.6) 

 

Continuing with equation (5.3), over a closed contour 'C' we can 

write 

 

Emf                              (5.7) 



  

 

 

 

 

 

where is the induced electric field on the conductor to sustain the 

current. Further, total flux enclosed by the contour 'C ' is given by 

 
(5.8) 

 

Where S is the surface for which 'C' is the contour. 

From (5.7) and using (5.8) in (5.3) we can write 

 

 

By applying stokes theorem 

 

Therefore, we can write 

 

 

(5.9) 

 

 

 
 

(5.10) 

 

 

 
 

(5.11) 
 

which is the Faraday's law in the point form 

 

We have said that non zero can be produced in a several ways. One particular case is 

when a time varying flux linking a stationary closed path induces an emf. The emf 
induced in a stationary closed path by a time varying magnetic field is called a 

transformer emf . 

 

 Ideal transformers 

 

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled 

magnetically through a common core. Let us consider an ideal transformer whose 

winding has zero resistance, the core having infinite permittivity and magnetic losses 

are zero. 



  

 

 

 

 
 

 
 

 
 

Fig 5.1: Transformer with secondary open 

 

These assumptions ensure that the magnetization current under no load condition is 
vanishingly small and can be ignored. Further, all time varying flux produced by the 
primary winding will follow the magnetic path inside the core and link to the secondary 
coil without any leakage. If N1 and N2 are the number of turns in the primary and the 

secondary windings respectively, the induced emfs are 
 

 

(5.12a) 
 

(5.12b) 

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at 
the dotted end of the winding.) 

 
 

(5.13) 

 
i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their 
turns. Under ideal condition, the induced emf in either winding is equal to their voltage 
rating. 

 
 

(5.14) 
 

where 'a' is the transformation ratio. When the secondary winding is connected to a load, 

the current flows in the secondary, which produces a flux opposing the original flux. The 

net flux in the core decreases and induced emf will tend to decrease from the no load 

value. This causes the primary current to increase to nullify the decrease in the flux and 

induced emf. 
The current continues to increase till the flux in the core and the induced emfs are restored 
to the no load values. Thus the source supplies power to the primary winding and the 
secondary winding delivers the power to the load. Equating the powers 



  

 

 

 

 

 

(5.15) 

 

(5.16) 
 

Further, 

 

(5.17) 
 

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under 

ideal condition. 

 

 Motional EMF: 

 

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2. 
 
 

 

Fig 5.2 

 
If a charge Q moves in a magnetic field , it experiences a force 

 

(5.18) 

 

This force will cause the electrons in the conductor to drift towards one end and leave 

the other end positively charged, thus creating a field and charge separation 

continuous until electric and magnetic forces balance and an equilibrium is reached 

very quickly, the net force on the moving conductor is zero. 
 

 

field can be interpreted as an induced electric field which is called the motional electric 

 

 
(5.19) 



 

 

 

If the moving conductor is a part of the closed circuit C, the generated emf around the 

circuit is . This emf is called the motional emf. 

 

 Maxwell's Equation 

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static 

field. For time varying case, the relationship among the field vectors written as 

 

 
(5.20a) 

(5.20b) 

 
(5.20c) 

 
(5.20d) 

In addition, from the principle of conservation of charges we get the equation of continuity 

 

 
(5.21) 

The equation 5.20 (a) - (d) must be consistent with equation 
 

(5.21). We observe that 

 
(5.22) 

 
Since is zero for any vector . 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
 
 



 

 

Thus applies only for the static case i.e., for the scenario when 
. A classic example for this is given below . 

 

Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 
 

Fig 5.3 process of charging up a capacitor 

 
Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the 

total current passing through the loop. But if we draw a baloon shaped surface as in fig 
5.3, no current passes through this surface and hence Ienc = 0. But for non steady 

currents such as this one, the concept of current enclosed by a loop is ill-defined since it 

depends on what surface you use. In fact Ampere's Law should also hold true for time 
varying case as well, then comes the idea of displacement current which will be 
introduced in the next few slides. 

 

We can write for time varying case, 

 

 

 
(5.23) 

 

 
(5.24) 

 

The equation (5.24) is valid for static as well as for time varying case. 
 

 
 
 

 

 

 

 

 



 

 

 

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic 

 

field  even  in  the absence of . The term has a dimension of current densities 

and is called the displacement current density. 

 

 

Introduction of in equation is one of the major contributions of Jame's Clerk 
Maxwell. The modified set of equations 

 

 

 

(5.25b) 
 

(5.25c) 

 
(5.25d) 

 

is known as the Maxwell's equation and this set of equations apply in the time 

 

varying scenario, static fields are being a particular case . 

In the integral form 

 

 
 

 
 

 

 

                                       (5.26d) 

(5.26a) 

 

 

(5.26b) 

 

 
(5.26c) 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

 

 

The modification of Ampere's law by Maxwell has led to the development of a 

unified electromagnetic field theory. By introducing the displacement current term, 

Maxwell could predict the propagation of EM waves. Existence of EM waves was 

later demonstrated by Hertz experimentally which led to the new era of radio 

communication. 

 

 Boundary Conditions for Electromagnetic fields 

 

The differential forms of Maxwell's equations are used to solve for the field vectors 

provided the field quantities are single valued, bounded and continuous. At the media 

boundaries, the field vectors are discontinuous and their behaviors across the boundaries 

are governed by boundary conditions. 

The integral equations (eqn 5.26) are assumed to hold for regions containing 

discontinuous media. Boundary conditions can be derived by applying the Maxwell's 

equations in the integral form to small regions at the interface of the two media. The 

procedure is similar to those used for obtaining boundary conditions for static electric 

fields (chapter 2) and static magnetic fields (chapter 4). The boundary conditions are 

summarized as follows 

 

With reference to fig 5.3 

 

 

 

 

 
Fig 5.4 

Equation 5.27 (a) says that tangential component of electric field is continuous across 

the interface while from 5.27 (c) we note that tangential component of the magnetic 

field is discontinuous by an amount equal to the surface current density. Similarly 5.27 

(b) states that normal component of  electric flux  density vector  is discontinuous  

across the interface by an amount equal to the surface current density while normal 

component of the magnetic flux density is continuous. 



 

 

 

 

If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 

2, a surface current can exist even though is 0, 

Thus eqn 5.27(a) and (c) reduces to 

 

 
WAVE EQUATION AND THEIR SOLUTION: 

 

From equation 5.25 we can write the Maxwell's equations in the differential form as 

 

 

Let us consider a source free uniform medium having dielectric constant , 

magnetic permeability and conductivity . The above set of equations can be 

written as 

 
Using the vector identity , 

 

We can write from 5.29(b) 
 
 

 

 
or 



 

 

 
 

Substituting from 5.29(a) 

 

 
But  in  source free medium (eqn 

5.29(c)) 

 
(5.30) 

 

In the same manner for equation eqn 5.29(a) 

 

 
Since from eqn 5.29(d), we can write 

 

 

 

(5.31) 
 

These two equations 

 



 

 

are known as wave equations. 

 
It may be noted that the field components are functions of both space and time. For 

example, if we consider a Cartesian co ordinate system, essentially represents 

 

and . For simplicity, we consider propagation in free space , i.e. 

, and  . The wave eqn in equations 5.30 and 5.31 reduces to 

 

 

 

Further simplifications can be made if we consider in Cartesian co ordinate system a 

special case where are considered to be independent in two dimensions, say 

are assumed to be independent of y and z. Such waves are called plane waves. 

 

From eqn (5.32 (a)) we can 

write 

 

 

The vector wave equation is equivalent to the three scalar 

equations 

 

 

 

 
Since we have , 



 

 

 

 
 

 

As we have assumed that the field components are independent of y and z eqn 

(5.34) 
reduces to 

 

 

 
 

i.e. there is no variation of Ex in the x direction. 

(5.35) 

 

 

Further, from 5.33(a), we find that implies which requires any three of 

the conditions to be satisfied: (i) Ex=0, (ii)Ex = constant, (iii)Ex increasing uniformly 

with time. 

 
A field component satisfying either of the last two conditions (i.e (ii) and (iii))is not a 

part of a plane wave motion and hence Ex is taken to be equal to zero. Therefore, a 

uniform plane wave propagating in x direction does not have a field component (E or H) 
acting along x. 

 
Without loss of generality let us now consider a plane wave having Ey component only 

(Identical results can be obtained for Ez component) . 

The equation involving such wave propagation is given by 

 

 

The above equation has a solution of the form 

 

 

 

where 
 

Thus equation (5.37) satisfies wave eqn (5.36) can be verified by substitution. 

corresponds to the wave traveling in the + x direction while 

corresponds to a wave traveling in the -x direction. The general solution of the wave eqn 

thus consists of two waves, one traveling away from the source and other traveling back 

towards the source. In the absence of any reflection, the second form of the eqn (5.37) is 

zero and the solution can be written as 



 

 

 

(5.38) 
 

Such a wave motion is graphically shown in fig 5.5 at two instances of time t1 and t2. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.5 : Traveling wave in the + x direction 

 

Let us now consider the relationship between E and H components for the forward 

traveling wave. 

Since and there is no variation along y and z. 

 

 
Since   only   z component  of exists,   from  (5.29(b)) 

 

 
(5.39) 

 
and from (5.29(a)) with , only Hz component of magnetic field being present 

 

 

 

 
 

Substituting Ey from (5.38) 

 

(5.40) 

 

 

 
 



 

 

 

 

 
 

 

 

 

The constant of integration means that a field independent of x may also exist. However, 
this field will not be a part of the wave motion. 

 

 

Hence (5.41) 

 

which relates the E and H components of the traveling wave. 

 

 

 

is called the characteristic or intrinsic impedance of the free space 

 

 Harmonic fields 

In the previous section we introduced the equations pertaining to wave propagation 

and discussed how the wave equations are modified for time harmonic case. In this 
section we discuss in detail a particular form of electromagnetic wave propagation called 

'plane waves'. The Helmhotz Equation: 

In source free linear isotropic medium, Maxwell equations in phasor form are, 
 

 

 

 

 

 

or, 



 

 

 

or, 

 

or, where 

 
An identical equation can be derived for . 

 
i.e., 

 

These equations 

 

 

are called homogeneous vector Helmholtz's equation. 

 
is called the wave number or propagation constant of the medium. 

 

Plane waves in Lossless medium: 

 
In a lossless medium, are real numbers, so k is real. 

 

In Cartesian coordinates each of the equations 6.1(a) and 6.1(b) are equivalent to 
three scalar Helmholtz's equations, one each in the components Ex, Ey and Ez or Hx 

, Hy, Hz. 

For example if we consider Ex component we can write 

 

 
.................................................(6.2) 

 

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes 

perpendicular to the direction of propagation. It may be noted that in the strict sense a 

uniform plane wave doesn't exist in practice as creation of such waves are possible 

with sources of infinite extent. However, at large distances from the source, the 

wavefront or the surface of the constant phase becomes almost spherical and a small 

portion of this large sphere can be considered to plane. The characteristics of plane 

waves are simple and useful for studying many practical scenarios. 

 

Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z i.e., xy 

 
plane, . The Helmholtz's equation (6.2) reduces to, 



 

 

 

 

.....................................................................(6.3) 

The solution to this equation can be written as 

 

 

.........................................................(6.4) 

 
are the amplitude constants (can be determined from boundary 

conditions). In the time domain, 

............................(6.5) 

 
assuming are real constants. 

 
Here,  represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure 6.1. 

 

 

 

Figure 6.1: Plane wave traveling in the + z direction 
 

As can be seen from the figure, at successive times, the wave travels in the +z direction. 

If we fix our attention on a particular point or phase on the wave (as shown by the dot) 

i.e. , = constant 

 
Then we see that as t is increased to , z also should increase to so that 



 

 

 

 

 

Or, 

 

 
Or, 

 

When , 

 

 
we write = phase velocity . 

 

.....................................(6.6) 
 

If the medium in which the wave is propagating is free space i.e., 

 

 

 
 

Then 

 

Where 'C' is the speed of light. That is plane EM wave travels in free space with the 

speed of light. 

 
The wavelength is defined as the distance between two successive maxima (or minima 

or any other reference points). 

 

i.e.,  

or, 

 
or, 

 

 
Substituting , 



 

 

 

 

 
 

or, ................................(6.7) 

 
Thus wavelength also represents the distance covered in one oscillation of the wave. 

Similarly, represents a plane wave traveling in the -z 

direction. 

The associated magnetic field can be found as follows: 

From (6.4), 

 

 
 
 

 

 
= 

 

 

= ............(6.8) 

 

 

 
where is the intrinsic impedance of the 

medium. When the wave travels in free space 

 
 

is the intrinsic impedance of the free space. 

 

 

In the time domain, 



 

 

 

 

........... (6.9) 
 

Which represents the magnetic field of the wave traveling in the +z 

direction. For the negative traveling wave, 

 

...........(6.10) 

 
For the plane waves described, both the E & H fields are perpendicular to the 
direction of propagation, and these waves are called TEM (transverse 
electromagnetic) waves. 

 

The E & H field components of a TEM wave is shown in Fig 6.2. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.2 : E & H fields of a particular plane wave at time t. 



 

 

 

 

TEM Waves: 

 

So far we have considered a plane electromagnetic wave propagating in the z-direction. 

Let us now consider the propagation of a uniform plane wave in any arbitrary direction 

that doesn't necessarily coincides with an axis. 

 

For a uniform plane wave propagating in z-direction 

 

is a constant vector........................... 

(6.11) The more general form of the above equation is 

 
........................................... 

(6.12) This equation satisfies Helmholtz's equation 

provided, 

........................... (6.13) 

 
 

We   define   wave number  vector ........................... 

(6.14) And radius vector from the origin 

 

........................... (6.15) 

Therefore we can write 
 
 

........................... (6.16) 
 
 

Here =constant is a plane of constant phase and uniform amplitude just in the case of 

, 

 

z =constant denotes a plane of constant phase and uniform 

amplitude. If the region under consideration is charge free, 

 

 
 



 

 

Using the vector identity and noting that is constant we 



 

 

can write, 
 
 

 

 
 

......................(6.17) 

 

i.e., is transverse to the direction of the 

propagation. 

 

The corresponding magnetic field can be computed as 

follows: 

 

 

Using the vector 

identity, 

 

 
Since is constant we can 

write, 

 

 

 
.....................(6.18) 

Where is the intrinsic impedance of the medium. We observe that is perpendicular 
 

to both and . Thus the electromagnetic wave represented by and is a 

TEM wave. 



 

 

 

Plane waves in a lossy medium: 

In a lossy medium, the EM wave looses power as it propagates. Such a medium 
is conducting with conductivity and we can write: 

 

 

 

 

 
.....................(6.19) 

 
Where is called the complex permittivity. 

We have already discussed how an external electric field can polarize a dielectric and 

give rise to bound charges. When the external electric field is time varying, the 

polarization vector will vary with the same frequency as that of the applied field. As the 
frequency of the applied filed increases, the inertia of the charge particles tend to prevent 

the particle displacement keeping pace with the applied field changes. This results in 

frictional damping mechanism causing power loss. 

 
In addition, if the material has an appreciable amount of free charges, there will be 

ohmic losses. It is customary to include the effect of damping and ohmic losses in the 

imaginary part of     . An equivalent conductivity represents all losses. 
 

 

The ratio is called loss tangent as this quantity is a measure of the power loss. 
 

 

 
 

Fig 6.3 : Calculation of Loss Tangent 

 

With reference to the Fig 6.3, 



  
 

 

  

 

.......................... (6.20) 

 
where is the conduction current density and is displacement current density. The 

loss tangent gives a measure of how much lossy is the medium under consideration. For 

a  good dielectric medium is  very small  and  the  medium  is  a good 

conductor if . A material may be a good conductor at low frequencies but 

behave as lossy dielectric at higher frequencies. 

 

For a source free lossy medium we can write 

 

 ...........................(6.21) 

.................... (6.22) 
 

Where 
 

Proceeding in the same manner we can write, 

 

 

 

is called the propagation constant. 

 
The real and imaginary parts and of the propagation constant can be computed 

as follows: 
 

 

 

 

And 

 



 

 

 

 

 

 

 

 

 

 

 

................... (6.23a) 
 

 

 

 

Similarly .................. (6.23b) 

 

Let us now consider a plane wave that has only x -component of electric field and 

propagate along z . 
 

 

................................... (6.24) 

Considering only the forward traveling wave 
 

 
 

 

 

 

 
Similarly, from , we can find 

 

 

 
Where 

 

 

 

................................... (6.25) 

 

 

 

 

..................................... (6.26) 

 

 

 

 
 

..................................... (6.27) 
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From (6.25) and (6.26) we find that as the wave propagates along z, it decreases in 

amplitude by a factor . Therefore is known as attenuation constant. Further and 

 

are out of phase by an angle . 

 

 
For low loss dielectric, , i.e., . 

 
Using  the  above condition approximate expression for and can be obtained as 

follows: 

 

 

 

 

 

 

 

 

 
& phase velocity 

 

 

 

 
For good conductors 

(6.29) 

 

 ............... (6.30) 
 

 

= ............... (6.31) 
 

 

 

 

 

 

 

............. 



  

 

 

 

 

 

We have used the relation 

 

 

 

 
From (6.31) we can write 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
............... (6.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 
..................... (6.33) 

 

And phase velocity 

 

 ..................... (6.34) 
 

 Poynting Vector and Power Flow in Electromagnetic Fields: 

 

Electromagnetic waves can transport energy from one point to another point. The 

electric and magnetic field intensities asscociated with a travelling electromagnetic 

wave can be related to the rate of such energy transfer. 

 

Let us consider Maxwell's Curl Equations: 

 

 
Using vector identity 



  

 

 

 

 

 

 
 

the above curl equations we can write 
 

 

 
.............................................(6.35) 

 
In  simple medium where and are constant, we can 

write 

 

 

     and 

 

Applying Divergence theorem we can write, 

 

...........................(6.36) 



  

 

 

 

 
 

 

 

The term represents the rate of change of energy stored in 

 
the electric and magnetic fields and  the term represents the power dissipation 

within the volume. Hence right hand side of the equation (6.36) represents the total 

decrease in power within the volume under consideration. 

 

 
The  left hand side of  equation  (6.36)  can  be written as where 

(W/mt2) is called the Poynting vector and it represents the power density 

vector associated with the electromagnetic field. The integration of the Poynting vector 

over any closed surface gives the net power flowing out of the surface. Equation (6.36) 

is referred to as Poynting theorem and it states that the net power flowing out of a given 

volume is equal to the time rate of decrease in the energy stored within the volume 

minus the conduction 

losses. 

 

Poynting vector for the time harmonic case: 

 
For  time harmonic  case,  the time variation is  of the form , and we have seen that 

instantaneous value of a quantity is the real part of the product of a phasor quantity and 

when is used as reference. For example, if we consider the phasor 
 
 

 
then we can write the instanteneous field as 

 

 

.................................(6.37) 

 

when E0 is real. 
Let us consider two instanteneous quantities A and B such that 

 

 

where A and B are the phasor quantities. 

 
 

i. e, 
 



  

 

 

 

Therefore, 

 

 

 
..............................(6.39) 

 

 

Since A and B are periodic with period , the time average value of the product form 

AB, denoted by can be written as 
 

 
 

.....................................(6.40) 
 

Further, considering the phasor quantities A and B, we find that 

 

 

and , where * denotes complex  conjugate. 

 

 
..............................................(6.41) 

 
The poynting vector can be expressed as 

 
 

...................................(6.42) 

 
If we consider a plane electromagnetic wave propagating in +z direction and has only 

component, from (6.42) we can write: 
 
 

 

Using (6.41) 

 

 

 
........................................(6.43) 



  

 

 

 

 

 

where and , for the plane wave under 

consideration. For a general case, we can write 

 

 

.....................(6.44) 

We can define a complex Poynting vector 
 

 

and time average of the instantaneous Poynting vector is given by . 
 
 

5.10 Electromagnetic Spectrum: 
 

The polarisation of a plane wave can be defined as the orientation of the electric field 

vector as a function of time at a fixed point in space. For an electromagnetic wave, the 

specification of the orientation of the electric field is sufficent as the magnetic field 

components are related to electric field vector by the Maxwell's equations. 

 
Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey 
components. 

 

 ..........................................(6.45) 

The corresponding magnetic fields are given by, 

 

 

 

Depending upon the values of Eox and Eoy we can have several possibilities: 

1. If Eoy = 0, then the wave is linearly polarised in the x-direction. 

2. If Eoy = 0, then the wave is linearly polarised in the y-direction. 

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a 



  

 

 

 

 

 

linearly polarised wave  with the axis  of  polarisation inclined  at  an angle , 
with respect to the x-axis. This is shown in fig 6.4. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

emerging 

Fig 6.4:Linear Polarisation 

 

4. If  Eox  and Eoy  are complex with different phase angles, will not point to a single 

spatial direction. This is explained as follows: 

 
Let 

 

 

Then, 

 

 

and  ....................................(6.46) 

 
To keep the things simple, let us consider a =0 and . Further, let us study the nature 

of the electric field on the z =0 plain. 

 

From equation (6.46) we find that, 

 



  

 

 

 

 

 
 

 

 

 

.....................................(6.47) 
 

and the electric field vector at z = 0 can be written as 

 
 

.............................................(6.48) 

 

Assuming , the plot of for various values of t is hown in figure 

6.5. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5:Plot of E(o,t) 

 

From equation (6.47) and figure (6.5) we observe that the tip of the arrow 

representing electric field vector traces qn ellipse and the field is said to be 

elliptically polarised. 

 

Figure 6.6: Polarisation ellipse 



  

 

 

 

 

 

The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of 

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 

rotation(i.e., CW or CCW). 

 

Linear polarisation can be treated as a special case of elliptical polarisation, for which the 

axial ratio is infinite. 

 

In  our example, if , from equation (6.47), the tip of the arrow representing 

electric field vector traces out a circle. Such a case is referred to as Circular Polarisation. 

For circular polarisation the axial ratio is unity. 
 

 
 

 

 

Figure 6.7:Circular Polarisation (RHCP) 

 
Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if 
the electric field vector rotates in the direction of the fingers of the right hand when the 
thumb 
points in the direction of propagation-(same and CCW). If the electric field vector 
rotates in the opposite direction, the polarisation is asid to be left hand circular 
polarisation (LHCP) (same as CW). 

 

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the 

field vertical to the ground( vertical polarisation) where as TV signals are 

horizontally polarised waves. FM broadcast is usually carried out using circularly 

polarised waves. 

 

In radio communication, different information signals can be transmitted at the same 

frequency at orthogonal polarisation ( one signal as vertically polarised other 

horizontally polarised or one as RHCP while the other as LHCP) to increase capacity. 

Otherwise, same signal can be transmitted at orthogonal polarisation to obtain diversity 



  

 

 

 

gain to improve reliability of transmission. 

 

 Behaviour of Plane waves at the inteface of two media: 

 

We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in bounded regions 

where several values of will be present. When plane wave travelling in one 

medium meets a different medium, it is partly reflected and partly transmitted. In 

this section, we consider wave reflection and transmission at planar boundary 

between two media. 
 

 

Fig 6.8 : Normal Incidence at a plane boundary 

 

Case1: Let z = 0 plane represent the interface between two media. Medium 1 

is characterised by and medium 2 is characterized by . 

Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted 

field components respectively. 
 

The incident wave is assumed to be a plane wave polarized along x and travelling in 

medium 

 

1 along direction. From equation (6.24) we can write 

 
 

..................(6.49.a) 

 

 
......................(6.49.b) 



  

 

 

 

 

 

where and . 
 

Because of the presence of the second medium at z =0, the incident wave will 

undergo partial reflection and partial transmission. 

The reflected wave will travel along in medium 

 
1. The reflected field components are: 

 

 

...............................................(6.50a) 
 

 

.........(6.50b) 
 

The transmitted wave will travel in medium 2 along for which the field components are 

 
 

............................................(6.51a) 

 

 
............................................(6.51b) 

 

 

 

where and 
 

In medium 1, 

and 
 

and in medium 2, 

and 



  

 

 

 

 

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential 
field components and noting that incident, reflected and transmitted field 
components are tangential at the boundary, we can write 

 

 

& 
 

From equation 6.49 to 6.51 we get, 

 
..............................................................(6.52a) 

 

 

 
 

..............................................................(6.52b) 
 

Eliminating 

Eto , 

 

 
or, 

 
or, 

 

 
...............(6.53) 

is called the reflection coefficient.  

From equation (6.52), we can 

write 

 



  

 

 

 

or,



 

 

 

 

                 .      . 

 ......................................(6.54) 

 

 

is called the transmission 

coefficient. We observe that, 

 

 

 

 

 
........................................(6.55) 

 

The following may be noted 
 

(i) both and T are dimensionless and may be complex 

(ii) 



 

 

 

 

Let us now consider specific cases: 

 

Case I: Normal incidence on a plane conducting boundary 

 
The   medium   1   is perfect  dielectric and medium 2 is perfectly conducting 

. 

 

 

 

 

From (6.53) and (6.54) 

 
= -1 

 
and T =0 

 
Hence the wave is not transmitted to medium 2, it gets reflected entirely from the 
interface to the medium 1. 

 
 

 
& 

 

 .................................(6.56) 

Proceeding in the same manner for the magnetic field in region 1, we can show that, 

 

 

...............................................................................(6.57) 
 

The wave in medium 1 thus becomes a standing wave due to the super position of a 

forward  travelling wave  and  a backward  travelling  wave.  For  a  given  ' t', both and 

vary 
sinusoidally with distance measured from z = 0. This is shown in figure 6.9. 



 

 

 

 

 
 

Figure 6.9: Generation of standing wave 

 

Zeroes of E1(z,t) and Maxima of H1(z,t). 

Maxima of E1(z,t) and zeroes of H1(z,t). 

 

  .......(6.58) 

Case2: Normal incidence on a plane dielectric 

boundary 

 
If the medium 2 is not a perfect conductor (i.e. ) partial reflection will result. There 

will be a reflected wave in the medium 1 and a transmitted wave in the medium 2.Because 

of the reflected wave, standing wave is formed in medium 1. 

From equation (6.49(a)) and equation (6.53) we can write 



 

 

 

 

..................(6.59) 
 

Let us consider the scenario when both the media are dissipation less i.e. perfect 

dielectrics ( ) 

 

 

 
..................(6.60) 

 
In this case both and become real numbers. 

 

 

 

 
 

..................(6.61) 

 
From (6.61), we can see that, in medium 1 we have a traveling wave component 
with amplitude TEio and a standing wave component with amplitude 2JEio. 

The location of the maximum and the minimum of the electric and magnetic field 
components in the medium 1from the interface can be found as follows. 

 

The electric field in medium 1 can be written as 

 

..................(6.62) 

 

If i.e. >0 

The maximum value of the electric field is 

 
 

..................(6.63) 

 

and this occurs when 

 



 
   

 

 

 
 

 

 

 

 

 

or , n = 0, 1, 2, 3.......................(6.64) 

 

The  minimum value of 

is 

 

.................(6.65) 

And this occurs when 

 

 

 

 

or , n = 0, 1, 2, 
 

3.............................(6.66) For i.e. <0 

 

The  maximum value of is which occurs at the zmin locations and the 

minimum 

 

value of is which occurs at zmax locations as given by the equations (6.64) 

and (6.66). 

 
 

From our discussions so far we observe that can be written as 

 

 
 

.................(6.67) 

The quantity S is called as the standing wave ratio. 

As the range of S is given 

by 

From (6.62), we can write the expression for the magnetic field in medium 1 as 

 

 
.................(6.68) 



 
   

 

 

 
 

 
 

From  (6.68) we find that    will be maximum at locations where     is minimum and 

vice versa. 

In medium 2, the transmitted wave propagates in the + z direction. 

Oblique Incidence of EM wave at an interface 

So far we have discuss the case of normal incidence where electromagnetic wave 

traveling in a lossless medium impinges normally at the interface of a second medium. 

In this section we shall consider the case of oblique incidence. As before, we consider 
two cases 

 
1.When the second medium is a perfect conductor.  
2.When the second medium is a perfect dielectric. 

 

A plane incidence is defined as the plane containing the vector indicating the direction 

of propagation of the incident wave and normal to the interface. We study two specific 

cases  when  the  incident electric field is  perpendicular  to  the  plane  of incidence 

(perpendicular polarization) and is parallel to the plane of incidence (parallel 

polarization). For a general case, the incident wave may have arbitrary polarization but 

the same can be expressed as a linear combination of these two individual cases. 

 

Oblique Incidence at a plane conducting boundary i. Perpendicular Polarization 

The situation is depicted in figure 

6.10. 
 

Figure 6.10: Perpendicular 

Polarization 

 

As the EM field inside the perfect conductor is zero, the interface reflects the incident 

plane wave.       and        respectively represent the  unit  vector  in  the  direction  of 

propagation of the incident and reflected waves,  is  the angle of  incidence and  is 
the angle of reflection. 



 
   

 

 

 
 

 

We find 

that 

 

 
 

............................(6.69) 
 

Since the incident wave is considered to be perpendicular to the plane of incidence, 

which for the present case happens to be xz plane, the electric field has only y- 

component. 

 

 
The corresponding magnetic field is given by 

 

 

 

 

...........................(6.70) 



 

 

 

Similarly, we can write the reflected waves as 

 

 

 
...................................................(6.71) 

Since at the interface z=o, the tangential electric field is zero. 
 

...........................................(6.72) 

Consider in equation (6.72) is satisfied if we have 

 

 

..................................(6.73) 
 

The condition is Snell's law of reflection. 

 

..................................(6.74) 
 

 

 

 

 
 

 
The total electric field is given by 

 

 

..................................(6.75) 

 

 

 

 
..................................(6.76) 

 

Similarly, total magnetic field is given by 

 

............................(6.77) 

 
From eqns (6.76) and (6.77) we observe that 

 
1. Along z direction i.e. normal to the boundary 

y component of and  x component of maintain standing wave patterns 

according to and where . No average power 
propagates along z 



 

 

 

as y component of and x component of are out of phase. 
2. Along x i.e. parallel to the interface 

y component of and z component of are in phase (both time and space) and 
propagate with phase velocity 

 

 

 

 
 

.............................(6.78) 

 

 

The wave propagating along the x direction has its amplitude varying with z and hence 

constitutes a non uniform plane wave. Further, only electric field  is perpendicular to 

the direction of propagation (i.e. x), the magnetic field has component along the 

direction of propagation. Such waves are called transverse electric or TE waves. 

 

ii. Parallel Polarization: 

 
In this case also and are given by equations (6.69). Here and have only 

y component. 
 

 

Figure 6.11: Parallel Polarization 

With reference to fig (6.11), the field components can be 

written as: Incident field components: 



 

 

 

 

 

 

 

............................(6.79) 

Reflected field components: 
 

 

 

 

 

............................(6.80) 

Since the total tangential electric field component at the interface is zero. 

 

 
Which leads to and as before. 

 
Substituting these quantities in (6.79) and adding the incident and 
reflected electric and magnetic field components the total electric and 
magnetic fields can be written as 

 

...........................(6.81) 

 
Once again, we find a standing wave pattern along z for the x and y components of and 

, while a non uniform plane wave propagates along x with a phase velocity given 

 

by where . Since, for this propagating wave, 

magnetic field is in 
transverse direction, such waves are called transverse magnetic or TM waves. 

 

 
Electromagnetic spectrum: 

If the angle of incidence is larger than    total internal reflection occurs. For 

such case an evanescent wave exists along the interface in the x direction 

(w.r.t. fig (6.12)) that attenuates exponentially in the normal i.e. z direction. 

Such waves are tightly bound to the interface and are called surface waves 

and waves spreading in the field of electric and magnetic together called 

electromagnetic spectrum. 
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