

KARPAGAM ACADEMY OF HIGHER EDUCATION (Established under section 3 of the UGC Act 1956) COIMBATORE - 641021 FACULTY OF ENGINEERING **DEPARTMENT OF SCIENCE AND HUMANITIES SYLLABUS**

18BEEC301B, 18BEBME301B, 18BEEE301B

LINEAR ALGEBRA AND SPECIAL FUNCTIONS

3204

OBJECTIVES:

- To develop analytical skills for solving engineering problems 1.
- To make the students to study about linear algebra and some useful special 2. functions.

INTENDED OUTCOMES:

- Be able to acquire basic knowledge on vector spaces and linear transformations. 1.
- 2. Be able to build and solve the special functions.

UNIT I **VECTOR SPACES**

General vector spaces, real vector spaces, Euclidean n-space, subspaces, linear independence, basis and dimension, row space, column space and null space.

UNIT II LINEAR TRANSFORMATIONS (12)

Linear Transformations - The Null Space and Range - Isomorphisms - Matrix Representation of Linear Transformations -- Eigen values and Eigen vectors - Similarity, Diagonalization.

UNIT III **INNER PRODUCT SPACES**

The Dot Product on Rⁿ and Inner Product Spaces - Orthonormal Bases - Orthogonal Complements -Application : Least Squares Approximation - Diagonalization of Symmetric M - Application: Quadratic Forms

UNIT IV HYPERBOLIC FUNCTIONS, BETA AND GAMMA FUNCTIONS (12)

Hyperbolic Functions: Hyperbolic functions and Inverse Hyperbolic functions – Identities – Real and imaginary parts - solving problems using hyperbolic functions.

Beta and Gamma Functions: Definitions - Properties - Relation between beta and gamma integrals - Evaluation of definite integrals in terms of beta and gamma functions.

(12)

(12)

UNIT V BESSEL FUNCTIONS

(12)

Bessel Functions – Preliminaries – Definitions – Bessel Differential Equation – Differential recurrence relations – the pure recurrence relation – A generating function – Bessel's integral – Index half and odd integer.

Total: 60

TEXT BOOKS:

S.	AUTHOR(S) NAME	TITLE OF THE	PUBLISHER	YEAR OF
NO.		BOOK		PUBLICATION
1	Kreyszig,E	Advanced	John Wiley & Sons, New	2014
		Engineering	Delhi.	
		Mathematics		
2	ShahnazBathul	Text book of	PHI Publications, New Delhi.	2009
		Engineering		
		Mathematics(Special		
		Functions and		
		Complex Variables)		

REFERENCES:

S.	AUTHOR(S)	TITLE OF THE	PUBLISHER	YEAR OF
NO.	NAME	BOOK		PUBLICATION
1	Dr. Grewal B.S.	Higher Engineering	Khanna Publishers, New	2013
		Mathematics	Delhi.	
2	Anton and Rorres	Elementary Linear	Wiley India Edition, New	2012
		Algebra,	Delhi.	
		Applications version		
3	Jim Defranza,	Introduction to	Tata McGraw-Hill, New	2008
	Daniel Gagliardi	Linear Algebra with	Delhi.	
		Application		

WEBSITES:

- 1. www.sosmath.com
- 2. www.nptel.ac.in
- 3. <u>www.mathworld.wolfram.com</u>

KARPAGAM ACADEMY OF HIGHER EDUCATION (Established under section 3 of the UGC Act 1956) COIMBATORE – 641021 FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES

1

1

1

12

TOTAL

LECTURE PLAN

: LINEAR ALGEBRA AND SPECIAL FUNCTIONS Subject : 18BEEC301B/18BEBME301B Code Unit No. List of Topics No. of Hours VECTOR SPACES Introduction- Group, Field 1 General vector spaces 1 Real Vector Space - Problems 1 Euclidean n-space, , and row space, column space and null space. 1 Linear Algebra- Subspace of Linear Algebra 1 Linear independence - Problems 1 **Basis-** Problems 1 UNIT I Problems in Linear Independence and Basis **Dimension - Problems** 1 Row space, and. 1 Column space 1 Null space 1 TOTAL 12 LINEAR TRANSFORMATIONS Introduction - Linear Transformations 1 Linear Transformations 1 The Null Space and Range 1 Isomorphism 1 Matrix Representation of Linear Transformations 1 Problems in Matrix Representation of Linear Transformations 1 UNIT – II Eigen values and Eigen vectors 1 Eigen values and Eigen vectors - Problems 1 Similarity of matrices - Problems 1 Similarity of matrices - Problems 1 **Diagonalization of matrices - Problems** 1 Diagonalization of matrices - Problems 1 TOTAL 12 INNER PRODUCT SPACES Introduction: 1 The Dot Product on Rⁿ 1 Inner Product Spaces 1 Orthonormal Bases 1 Orthogonal Complements 1 Least Squares Approximation- Problems 1 Least Squares Approximation- Problems 1 UNIT – III Least Squares Approximation- Problems 1

Diagonalization of Symmetric M- Problems

Diagonalization of Symmetric M- Problems

Quadratic Forms- Problems Quadratic Forms- Problems

	HYPERBOLIC FUNCTIONS, BETA AND GAMMA FUNCTIONS	
	Hyperbolic functions	1
	Inverse Hyperbolic functions	1
	Identities	1
UNIT – IV	Real and imaginary parts	1
	Problems using hyperbolic functions.	1
	Problems using hyperbolic functions.	1
	Beta and Gamma Functions: Definitions	1
	Beta Functions: Properties	1
	Gamma Functions: Properties	1
	Relation between beta and gamma integrals	1
	Evaluation of definite integrals in terms of beta and gamma functions.	1
	Evaluation of definite integrals in terms of beta and gamma functions.	1
	TOTAL	12
	BESSEL FUNCTIONS	
	Bessel Functions – Preliminaries	1
	Bessel Functions – Preliminaries – Definitions	1
	Bessel Differential Equation	1
	Differential recurrence relations	1
	The pure recurrence relation	1
	The pure recurrence relation	1
$\mathbf{UNIT} - \mathbf{V}$	A generating function	1
	Bessel's integral	1
	Bessel's integral - Problems	1
	Bessel's integral - Problems	1
	Bessel's integral - Problems	1
	Index half and odd integer	1
	TOTAL	12
	TOTAL NO OF HOURS	60

STAFF IN-CHARGE

HOD

Giroup:-

A nonempty set of elements Gr & said to form a group. If in Gr there is defined a benary operation called the product and denoted by '.', such that 1. a, b & G1 > a. b & G1 2. a,b,c ∈ G => a. (b.c) = (a.b).c AEM 3. Jan element eEG1 3- a, e=e, a = a VaEG H. VaEG Ja EG Ja.a'=a.a=e. 0 18 (0D. 2 P Abelian Group:-A Group Gi is said to be abelian (or commutative) if for every a, b & Gr. apping from a.b=b.a. Field :- . A nonempty set R is said to b ring. Ring :if in R, there are defined two operations denoted by + and · respectively, such that for all a, b, c in R: The mapping. I. atb ER 1+1 mapping il coherre a, atb = bta a, (a+b)+c = a+(b+c 4, JOGR J at0 = a 5. Frack 3 atca)=0 6. a.beR 7, a. (b.c) = (a.b) · C 8, a, (b+c) = a.b+a.c

Commutative sing:-If the multiplication of R is such that a.b=b.a & a, b ER then we call & as a. commutative sing. in horizontation in Division Ling: -A ring is said to be division ring if its nonzero élements form à group urder multiplication field :-A field is a commutative division sing. Vector space:-A nonempty set Vis said to be a vector Space over a field F. If Vis an abelian group under an operation which we denote by + and of for every $\alpha \in F$, $v \in V$ there is defined an element, written av in V subject to $I \cdot \alpha(\nu + \omega) = \alpha \nu + \alpha \omega$ $2.(\alpha+\beta)v = \alpha v + \beta v$ 3, x (BV) = (xB)V = U V d,BEF, O, WEV 4, 1.19 If v is a vector space over F and if wer, Supspace :then Wisa subspace of V if under the operations of V, Witself forms a vector space over F. Will a subspace of V whenever w, wo & W RIBEF implies that aw, + BW2 EW.

If Vand Vace vector spaces over F Homomorphism :then the mapping T of U into V is said to be a homomorphism it 2. $(qu_i)T = q(u_iT) \forall u_i, u_a \in U \forall a \in F$. Rélimenzaro clamante de If Vis a gretor space over F, then Lemmal:-1. 20=0 V REFLUMMED OL LIST A 2. 0. U=0 Y UEV $3 \cdot (-\alpha)v = -(\alpha \cdot v) \forall \alpha \in F, v \in V$ A. If v = 0, then dv = 0 => d=0 are over a field F. If vir w des an eperation which we denote by + =: 10019 posievour deF, ve V then is defined an d. 0 = 0 (0+0) spare Vin un neutinos, treme = d(0 + d.0) = d(0 + d(0) = (0.5 + 0.5) = 1z (d + p) v = dv + p vx.0 = 0 3. x (Br) = (dp)v $(i) \quad OU = (0+0)U$ = 0.0+0.0 MILLIN M If V is a vector space out 0 and if way, 1 engl ender O = O io lans $(iii) D = D.V = (\alpha + (-\alpha)), U = 0, D = 0, U = 0$ = $dv + (-\alpha)v$ v $v(\alpha) + v b =$ Was-(a.v)=Ea)v. v 8° espedux o 2 W W B BOOK

(W) if
$$\alpha \cdot b = 0$$
 and $\alpha \neq b$
then $0 = \alpha^{-1} \cdot 0$
 $= \alpha^{-1} (\alpha \cdot b)$
 $= (\alpha^{-1} \alpha) \cdot b$
 $= 1 \cdot b$
 $0 = b$
Prove that the set $V = \{(a,b); a,b \in \mathbb{R}\}$ is a
vector space with to composition q addition and
vector space with to composition q addition and
scalar multiplication defined as
 $(a,b) + (c,d) = (a + c, b + d)$
 $k (a,b) = (ka, kb)$
Proof 1-
let $u \in V(a)$ $(a_1,b_1) = u \in V$
 $v \in V \Rightarrow (a_2,b_2) = v \in V$ $b_1,b_1,b_2 \in \mathbb{R}$,
 $w \in V \Rightarrow (a_2,b_2) = v \in V$
 $v \in V \Rightarrow (a_3,b_3) = w \in V$.
 $(a_1,b_1) + (a_2+b_2) = (a_1+a_2,b_1+b_2)$
 $(a_1,b_2) + (a_2+b_2) = (a_1+a_2,b_1+b_2)$
 $u + (v+w) = (u+v) + w$
 $u + (v+w) = (u+v) + w$
 $u + (v+w) = (a_1+b_2) + [(a_2,b_2) + (a_3,b_3)]$
 $= (a_1,b_2,b_3) + (a_2+a_3,b_2+b_3)$
 $= (a_1,b_2,b_3) + (a_2+a_3,b_3+b_3)$
 $= (a_1+a_2+a_3,(b_1+b_2) + w$
 $rescaling the explanation of the$

Identity:ate = eta=a ute= etu = u e = (a + b) + (-(a + b))(a,b) e - (a,b) = (a-a, b-b) 0 0 e = (0, 0) y = V is at that orace marks to con $aa^{-1}=a^{-1}a=e$. $\Rightarrow uu^{-1}=u^{-1}u=e$ Inverse :- $(a,b) + u^{-1} = (0,0)$ $u^{-1} = (0,0) - (a,b)$ = (0-9,0-b) $u' = (-a, -b) - a \in \mathcal{R}$ b. but the Et WEVEN LOW Commutative !- $(a_1, b_1) t (a_2, b_2) = (a_1 t a_2, b_1 t b_2)$ = $(a_2, b_2) + (a_1, b_1)$ > It is an Abelian Group - (0)+ (1)+ (0) To Prove Vector space (i) d(utw) = dutav $\alpha ((a_1,b_1) + (a_2,b_2)) = \alpha (\alpha_1 + \alpha_2, b_1 + b_2)$ $= (\alpha a, + \alpha a, \alpha b, + \alpha b, 2)$

$$= \alpha(a_{1},b_{1}) + \alpha(a_{2},b_{2})$$

$$= \alpha u + \alpha u$$
(Bai, b) $u = a\mu + \beta u$
(Bai, b) $+ \beta(a_{1},b_{1})$

$$= (\alpha(a_{1},b_{1}) + \beta(a_{1},b_{1})$$

$$= (\alpha(a_{1},b_{1}) + \beta(a_{1},b_{1})$$

$$= (\alpha(a_{1},b_{1}) + \beta(a_{1},b_{1})$$

$$= \alpha u + \beta u$$
(i) $\alpha(\beta v) = (\alpha\beta)^{v}$

$$= (\alpha(\beta a_{1},\alpha\beta b_{1})$$

$$= (\alpha(\beta a_{1},\alpha\beta b_{1})$$

$$= (\alpha(\beta a_{1},\alpha\beta b_{1})$$

$$= (\alpha(\beta a_{1},\alpha\beta b_{1})$$

$$= \alpha(\beta a_{1},\alpha\beta b_{1})$$
(i) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1})$

$$= \alpha(\beta a_{1},\alpha\beta b_{1})$$
(i) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1})$

$$= \alpha(\beta a_{1},\alpha\beta b_{1})$$
(j) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1}))$
(j) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1})$
(j) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1}))$
(j) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1})$
(j) $(1 \cdot (a_{1},b_{1})) = (\alpha(a_{1},b_{1}))$
(j) $(1 \cdot (a_{1},b_{1}))$
(j

Clause
(i) if
$$u, v \in V$$

 $u+v = \begin{pmatrix} a, 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix}$
 $= \begin{pmatrix} a_1+a_2 & 0 \\ 0 & b_1+b_2 \end{pmatrix}$
 $u+v \in V$
ii) Associative
 $(u+v)+w = u+(\sigma+w)$
 $\begin{pmatrix} a, 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} + \begin{pmatrix} a_3 & 0 \\ 0 & b_3 \end{pmatrix}$
 $= \begin{pmatrix} a_1+a_2 & 0 \\ 0 & b_1+b_2 \end{pmatrix} + \begin{pmatrix} a_3 & 0 \\ 0 & b_3 \end{pmatrix}$
 $= \begin{pmatrix} a_1+a_2+a_3 & 0 \\ 0 & b_1+b_2+b_3 \end{pmatrix}$
 $= \begin{pmatrix} a_1+(a_2+a_3) & 0 \\ 0 & b_1+b_2+b_3 \end{pmatrix}$
 $= \begin{pmatrix} a_1+(a_2+a_3) & 0 \\ 0 & b_1+(b_2+b_3) \end{pmatrix}$
 $= (a_1+(a_2+a_3) & 0 \\ 0 & b_1+(b_2+b_3) \end{pmatrix}$
 $= (u+(v+w)).$
(ii) Identity
 $u+e = e+u = kt$
 $\begin{pmatrix} a, 0 \\ 0 & b_1 \end{pmatrix} + e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix}$
 $e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix} + e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix}$
 $= (a_1^*, 0 \\ (a, 0) + e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix}$
 $e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix} + e = \begin{pmatrix} a, 0 \\ 0 & b_2 \end{pmatrix}$
Scanned by Comparison

(w) Inverse:

$$u+u^{-1} = u^{-1} + u = e$$

$$(a, b) + u^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; \quad (a + b) \\ u^{-1} = \begin{pmatrix} -a^{-1} & 0 \\ 0 & -b^{-1} \end{pmatrix};$$

$$u^{-1} = \begin{pmatrix} -a^{-1} & 0 \\ 0 & -b^{-1} \end{pmatrix};$$
(v) commutative:

$$u+v = v+u$$

$$u+v = \begin{pmatrix} a, a \\ 0 & b_{1} \end{pmatrix}; \quad (a + b) \\ = \begin{pmatrix} a_{1}+a_{2} & 0 \\ 0 & b_{2}+b^{-1} \end{pmatrix};$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{2}+b^{-1} \end{pmatrix};$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{2} \end{pmatrix}; \quad (a + b) \\ = \begin{pmatrix} a_{2}-a \\ 0 & b_{2} \end{pmatrix}; \quad (a + b) ;$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{2} \end{pmatrix}; \quad (a + b) ;$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{2} \end{pmatrix}; \quad (a + b) ;$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{2} \end{pmatrix}; \quad (a + b) ;$$

$$= \begin{pmatrix} a_{2}+a_{1} & 0 \\ 0 & b_{1} \end{pmatrix}; \quad (a + b) ;$$

$$= (a(b+a) + (a + b));$$

$$= (a(a+a + a + b);$$

$$= (a(a+a + a + b));$$

$$= (a(a+a + a + b);$$

$$= (a(a+a + a + b$$

Linear Combination :-Let V be a vector space over a field F. Let V., V21---, Vn E V. Then an element of the form divitarievet -- tanvn where dief is called a Linear Combination. of the vectors V, V21.... Vn. Linear Span:-Let S be a non-empty subset of a vector space V. Then the set of all linear combinations of finite sets of elements of S is called the Linear Span of S and is denoted by LCS). Anydemen element of L(s) is of the form divitazvat -- fanvn where di, dai -- dn EF. Finite Dimensional:-Let V be a vector space over a field F. Vis said to be finite demensional if there outs a finite subset Sof V such that L(S) = V. Linearly Independent:-Let V be a vector space over a field F. A finite set of vectors V, V21. Vn in V is said to be linearly independent. it $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0$ $\Rightarrow q_1 = q_2 = - - = q_n = 0$ Linearly Dependent:-If VI, V21. Vn are not linearly independent, then 26/ 10 = they are said to be linearly dependent.

If the vector
$$(0,1,7)(x,1,0), (1,7,1)$$
 of the vector
space $\mathbb{R}^{3}(\mathbb{R})$ are linearly dependent than find the
value $g(x)$.
Solution
Let $V_{2} = (0,1,x)$
 $V_{2} = (1,1,0)$
 $V_{3} = (1,2,1)$
 $d_{1}v_{1} + d_{2}v_{2} + \tau_{8}v_{3} = 0$
 $q_{1}(0,1,x) + d_{2}(2,1,0) + d_{3}(1,7,1) = 0$
 $0 + 1 + x + 2 + f + d_{3} = 0$
 $1 + 1 + 1 + x + x + d_{3} = 0 + \frac{1}{2} + \frac{1$

Basic -
A thready independent subset Sq a vertex space
V tolvich space the volot space.
Dimension-
Let V be a finite dimensional vertex space
over a field F. The number of elements in any
basic of V is called the dimensional vertex space
over a field F. The number of elements in any
basic of V is called the dimensional vertex space
over a field F. The number of elements in any
basic of V is called the dimension of V and is
denoted by dim V.
Show that the set
$$\{(1,3,1), (3,1,0), (1,-1,3)\}$$
 forms
a basic for $V_3(F)$.
Solution:
 $V_1 = (1,3,1)$ $V_2 = (2,1,0)$ $V_3 = (1,-1,2)$
let $x_1, x_2, x_3 \in F$.
Let $q_1 V_1 + q_2 V_2 + q_3 V_3 = 0$
 $q_1 (V, 0, 1) + q_2 (0,1,0) + q_3 (1,-1,2) = 0$
 $1 q_1 + 2 q_2 + 1 q_3 = 0 - 0$ q_1 q_2 q_3
 $a x_1 + 1 q_2 - 1 q_3 = 0 - 0$ q_1 q_2 q_3
 $a x_1 + 1 q_2 - 1 q_3 = 0 - 0$ q_1 q_2 q_3
 $a x_1 + 1 q_2 - 1 q_3 = 0 - 0$ q_1 q_2 q_3
 $a x_1 + 1 q_2 - 1 q_3 = 0 - 0$ q_1 q_2 q_3
 $b v_1 = (1 - 2q_1) - 1$ $a = 1$
 $q_1 = -k, q_2 = k q_3 = -k$
 $-3 k = 0 \Rightarrow k = 0$
 $\Rightarrow q_1 = q_2 = q_3 = k$
 $-3 k = 0 \Rightarrow k = 0$
 $\Rightarrow f_1 = q_2 = q_3 = 0$
 $\Rightarrow f_1 = a_2 = q_3 = 0$
 $\Rightarrow f_1 = a_3 = k$
 $d Im V_3(F) = 3$
 \Rightarrow Bis a basis for $V_3(F)$

Determine whether or not the following vectors
form a basis of
$$\mathbb{R}^3$$
. (1,1,2) (1,2,5) (5,2,4)
Solution:
let $v_1 = (1,1,a)$ $v_2 = (1,2,5)$ $v_3 = (5,3,4)$
let $d_1, d_2, d_3 \in \mathbb{R}$.
 $g = d_1, (1,1,2) + d_2(1,2,5) + d_3(5,3,4) = 0$
 $1 = 1 + 1 = 2 + 5 = 0$
 $1 = 1 + 1 = 2 + 5 = 0$
 $1 = 1 + 1 = 2 + 5 = 0$
 $1 = 1 + 1 = 2 + 5 = 0$
 $1 = 1 + 2 = 4 = 3 = 0$
 $\frac{d_1}{2} = \frac{d_2}{2} = \frac{d_3}{2} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{d_2}{2} = \frac{d_3}{1} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{d_2}{1} = \frac{d_3}{1} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{d_2}{2} = \frac{d_3}{1} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{d_2}{1} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{k}{1} = \frac{k}{1}$
 $\frac{d_1}{-7} = \frac{k}{1}$
 $\frac{d_$

Theorem 2:-

Let V be a finite dimensional vector space over a field F. Let A and B be supposed g V. Then dim (A+B)=dim A+dim B -dim (AnB).

Proof :-Given A and B are supspaces of V. Hence ANB is supspace of V. Let dim (AnB) = r. Let S={Vi, Va, --, Vr} be a basis for ANB. Since ANB is a subspace of Aand B, Sie a part of a basis for Aand B. let {V,, Vai -- Vr, U,, Vai -- Ug} be a basis for A will be a basis for Brid $\geq \dim A = r + S_{r+2+}$ Let 2 v, v, 2, - - 0, , 10, , 102, = dim B = r+t. - Wz is a basis US, 10, 1081 -Claim!-S= {V, Va --- Vr, Un, Ua --- , 1 anna for A+B (i) s' is Linearly independent. Proof J claim:empty subself Let $d_1V_1 + \cdots + d_rV_r + \beta_1U_1 + \cdots + \beta_sU_s + \beta_1W_1 + 2 \cdots + \beta_sU_s$ $= \beta_1 u_1 + \dots + \beta_s u_s = -(\eta, w_1 + \dots + \eta_1 w_1) - (\alpha_1 v_1 + \dots + \alpha_s v_s) \in B_1$ ⇒ B, U, +··· + BsUs EB Also B, u, + - - + Bs us EA.

> BIUIT -- + BSUS EADB. $\therefore B_1 u_1 + \cdots + B_s u_s = \delta_1 v_1 + \cdots + \delta_r v_r$ $\therefore \beta_i u_1 + \cdots + \beta_s u_s - \delta_i v_1 - \cdots - \delta_r v_r = 0$ $|B_1 = \cdots = B_s = \delta_1 = \cdots = \delta_r = 0$ mit Store {u,, U21 -... Up, VI, V2, -..., Vr } is L. T. Similarly $\eta_1 = \eta_2 = \dots = \eta_1 = 0$ $\therefore \alpha_1 = \alpha_2 = --- = \alpha_3 = 0$ $= R_2 = 0$ (810) mile n K. $\beta_1 = \beta_2 = \dots = \beta_S = 0$ $\gamma_1 = \gamma_2 = - - = \gamma_t = 0$ 0 clearly : 3 HENCE AMB S span's A+B -Since s' is a basis for A+B, s' spans A+B. Since ANB is a subgrace of Aard B a basis for hand B dim (A+B) = r+s+t dim (AAB) = r dim Atdim B-dim (AnB)=(rts)+(rtt)-r 2d Ein = r+s+E+r = A mile & $= \dim (A + B)$ t+r = 8 milo c H.T.P. Wig La band Lemma 2: Let V be a vector space over F. A non-1 empty subset w of V is a subspace of V its ata W is closed w.r. to rector addition and scalar i 12 4 ·, W, a+ + V + > + + , V, b a.V. C B

Scanned by CamScanner

Proof Let whe a subspace of V. > Wis globelf is a vector space. W is closed withto vector addition and scalar multiplication. m sugarona as Conversly, Let whe a non-empty subset of V ? vue wautue w new, deF => ane W To Prove : Wisa subspace & V. closure:-Since Wis non empty, 7 an element UEW. identity o.u=DEW Inverse :- uew=> (-1) uew=>-lewort month of i ... W contains O (identity) and the additive inverse (Otd) Wie an additive subgroup & V. = (utu)T of each of its element. Also, UEW EQEF = QUEW. The elements of Ware the elements of V, + > It satisfies all the properties of vector space V. Hence Wie a subspace of V. (b, a) + (d, b) + (c, d) =. (V)T+CUIT=

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
A square matrix A is said to beif the determinant value of A is zero. A square matrix A is said to beif the determinant value of A is not equal to	singular	non singular	symmetric	symmetric			singular
zero.	singular	non singular	symmetric	symmetric			non singular
A square matrix A is said to be singular if the determinant value of A is	1	2	non zero	zero			zero
A square matrix A is said to be non singular if the determinant value of A is	1	2	non zero	zero			non zero
A square matrix in which all the elements below the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular	symmetric	non symmetric			upper triangular
A square matrix in which all the elements above the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular	symmetric	non symmetric			lower triangular
A unit matrix is amatrix.	scalar	lower triangular	symmetric	non symmetric			scalar
A system of equation is said to be consistent if they have	one solution	one or more solution	no solution	infinite solution			one or more solution
If rank of A is equal to the rank of [AB] then the system of equations is	Consistent	inconsistent	symmetric	non symmetric			Consistent
If rank of A is not equal to the rank of [AB] then the system of equations is	Consistent	inconsistent	symmetric	symmetric			inconsistent
The maximum value of the rank of a 4x5 matrix is	1	5	4	3			4
A square matrix A which satisfies the relation $A^2 = A$ is called	nilpotient	idempotent	Hermitian	Skew - Hermitian			idempotent
A matrix is idempotent if	$A^{3} = A$	$A^{2} = 0$	$A^1 = A$	$A^2 = A$			$A^2 = A$
If the rank of A is 2, then the rank of A^{-1} is	3	2	4	1			2
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadratic form	eigen value	canonical form			trace of a matrix
Every square matrix satisfies its own	characteristic polynomial	characteristic equation	orthogonal transformati on	canonical form			characteristic equation
The orthogonal transformation used to diagonalise the symmetric matrix A is	$N^{T} AN$	$N^{T} A$	NAN ⁻¹	NA			$N^{T} AN$
If $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ are the eigen values of A, then $k\lambda_1, k\lambda_2, k\lambda_3, \dots, k\lambda_n$ are the eigen values of	kA	kA ²	kA ⁻¹	A ⁻¹			kA
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangular	real symmetric	scalar			real symmetric

In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse of A	eigen values of A	eigen vectors of A
If atleast one of the eigen values of A is zero, then det A = det (A- λI) represents	0 characteristic polynomial	1 characteristic equation	10 quadratic form	5 canonical form	0 characteristic polynomial
If $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ are the eigen values of A, then $1/\lambda_1, 1/\lambda_2$, $1/\lambda_3, \dots, 1/\lambda_n$ are the eigen values of	A^(-1)	A	A^n	A^p	A^(-1)
If $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ are the eigen values of A, then λ_1^p, λ_2^p , λ_n^p are the eigen values of	A^(-1)	A^2	A^(-p)	A^p	A^p
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen values	eigen vectors	quadratic form	inverse and higher powers of A
The eigen values of a matrix are its diagonal elements In an orthogonal transformation $N^T AN = D$, D refers to a matrix.	diagonal diagonal	symmetric orthogonal	skew-matrix symmetric	triangular skew- symmetric	triangular diagonal
In a modal matrix, the columns are the eigen vectors of	A^{-1}	A^2	А	adj A	А
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	$\lambda_1\lambda_2\lambda_3$	0	1	2	0
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25	6	5
The eigen vector is also known as	latent value	latent vector	column value	orthogonal value	latent vector
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	- 1,3,7	1,9,21	2,6,14	1,9,49	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	_ 1,3,4 Positive definite	2,6,8 Negative definite	1,9,16 Positive semidefinite	12,4,3 Negative semidefinite	1,3,4 Positive definite
A Square matrix A and its transpose have eigen values. The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	different characteristic polynomial	Same characteristic equation	Inverse eigen values	Transpose eigen vectors	Same eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determinant of A	Sum of minors of Main diagonal	Sum of the cofactors of A	Determinant of A
The eigenvectors of a real symmetric are	equal	unequal	real	symmetric	real

If a real symmetric matrix of order 2 hasthen the matrix is a scalar matrix	equal eigen	different eigen	equal eigen	different	equal eigen
If a real symmetric matrix of order 2 mas	vectors	vectors	values	eigen values	values
A matrix is called symmetric if and only if	A=A^T	A=A^-1	A=-A^T	A=A	A=A^T
			skew-		
If a matrix A is equal to A ^T then A is a matrix.	symmetric	non symmetric	symmetric	singular	symmetric
A matrix is called skew-symmetric if and only if	A=A^T	A=A^-1	A=-A^T	A=A	A=-A^T
			skew-		skew-
If a matrix A is equal to -A ^T then A is a matrix.	symmetric	non symmetric	symmetric	singular	symmetric
A matrix is called orthogonal if and only if	A^T=A^-1	A^T=-A^-1	A^T=A^-2	A^T=-A^-2	A^T=A^-1
			non	triangular	
A matrix is calledif and only if A^T=A^-1.	orthogonal	square	symmetric	-	orthogonal

Linear Transformation.

Homomorphim:-Let Vand W be vertor spaces over a field F. A mapping T: V > W is called a homomorphism. IZ (a) T(u+v) = T(u) + T(v) and order (b) T (au) = a T(u) where deF and u, ve V A homomorphism Top vector space is also Called a Linear Transformation. Problem !-Prove that T: R=>R² defined by T(a,b) = (2a-3b, a+46) is a Linear transformation. (we we Proof :-Let $u=(a,b) \in U=(c,d)$ and $d \in \mathbb{R}_{1}$ each of the element T(u+v) = T((a,b)+(c,d))= T (a+c, b+d) Hibbo no = (2(a+c)-3(b+d), (a+c)+4(b+d)) = (2a+ac-3b-3d, a+c+4b+4d) = (2a-3btac-3d, a+4b+c+4d) = (&a-3b, a+4b) + (&c-3d, c+4d) $= \left(\underbrace{\partial \mathcal{R}}_{a,b} \right) + \left(c, d \right)$

=T(u)+T(v)

$$T(x'u) = T(x'(a, xb))$$

$$= T(x'(a, xb))$$

$$= (x'(a, xb))$$

$$= (x'(a, xb))$$

$$= x'(a, b)$$

$$= x'(a$$

O(0,0), A(1,0), B(1,1), C(0,1) respectively Let O', A', B', C' be their Corresponding Pmage 0=T(0)-T(0,0)=(0,0) 18-081 $A' = T(n^{3}) = T(1,0) = (r,1) (d(n) T > a$ B' = T(B) = T(1,1) = (0,3) (1) The C' = T(C) = T(0,1) = (-1,8) $(0'A')^2 = [(1-0)^2 + (1-0)^2] = 2 \Rightarrow 0'A' = \sqrt{2}$ $(B'c')^{2} = (-1-0)^{2} + (2-3)^{2} = 2 \quad |B'c' = \sqrt{2}$ BE = Slope of 0'A' is $m_1 = \frac{y_2 - y_1}{\chi_2 - \chi_1} = \frac{1 - 0}{1 - 0} = 1$ Slope y ... (0,0) (1,1) is $n_1 y_1 x_2 y_2$ Slope g B'c is $m_2 = \frac{2-3}{-1-0} = \frac{-1}{-1} = 1$ $y_1 = \frac{-1}{-1-0} = \frac{-1}{-1-0} = \frac{-1}{-1-0}$ $y_2 = \frac{-1}{-1-0} = \frac{-1}{-1-0} = \frac{-1}{-1-0}$ 2 0's'2 B'c'are lle. Hence O'AB'c' forme a parallelogram. Kernal :- (11) (inba Let vand ki be vector spaces over a field Fand T: V > W be a linear transformation. Then the kernel of T is defined to be {v/vevs T(v)=0} and is denoted by kerT Jsomosphism: Tis 1-1 & Onto Dr. (Kin) Nonomosphism: Til 1-105 11-105 11-10Tr

Scanned by CamScanner

Fundamental theorem of Homomorphim! -
Let V and W be veter spaces over a field F.
and T: V > W be an epimorphim
(i) Ker T = V, is a subspace of V
ii)
$$V \cong W$$

 V_1
Proof:
(i) Given $V_1 = ker T$
 $= \{ U/U \in V \ge T(U) = 0 \}$
clearly $T(0) = 0$
Hence $0 \in ker T = V_1$
 $\therefore V_1$ is nonempty subset of V
let $u, v \in ker T$ and $d, \beta \in F$
 $\therefore T(u) = 0 \ge T(u) = 0$
 $T(du + \beta U) = T(du) + T(\beta U)$
 $= d, 0, t \beta = 0$
 $(u = 0) = (u + \beta U) = (du) + T(\beta U)$
 $= d, 0, t \beta = 0$
 $(u = 0) = (u + \beta U) = 0$
 $T(du + \beta U) = Ker T = (du) + T(U)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0)$
 $= d, 0, t \beta = 0$
 $(u = 0, t \beta = 0)$
 $U = U, t W$ to be use $U, e V$.
 $T(U) = T(U, t W) = T(U) + T(W)$
 $= T(W)$
 $P(V_1 + W) = \varphi(V_1 + W)$

Problem:
1. Obtain the mattix sequescing the linear
1. Obtain the mattix sequescing the linear
transformation T:
$$Y_3(R) \Rightarrow Y_3(R)$$
 given by
 $T(o,b,c) = (3a, a-b, aat btc)$ with the std.
basis $\{e_1, e_3, e_3\}$.
Solution:
 $T(e_1) = T(1,0,0) = (3,1,A) = 3e_1 + e_4 + ae_3$
 $T(e_3) = T(0,0,1) = (0,0,1) = -e_3 + e_3$
 $T(e_3) = T(0,0,1) = (0,0,1) = e_3$
The matrix sequescing T is $\begin{bmatrix} 3 & 1 & a \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
2. Find the linear transformation T: $V_3(R) \Rightarrow V_3(R)$
determined by the matrix $\begin{bmatrix} 1 & a & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ with std.
Solution
 $T(e_1) = e_1 + ae_2 + e_3 = (1, a, 1)$
 $T(e_3) = 0e_1 + e_2 + e_3 = (0, 1)$
 $T(e_3) = 0e_1 + ae_2 + be_3 = (-1, 3, 4)$
 $T(e_3) = -e_1 + ae_2 + be_3 = (-1, 3, 4)$
 $T(e_3) = -e_1 + ae_2 + be_3 = (-1, 3, 4)$
 $T(e_3) = -e_1 + ae_2 + e_3$
 $T(a, b, c) = T(ae_1 + be_2 + ce_3)$
 $= a T(e_1) + bT(e_2) + c T(e_3)$
 $= a (1, a, 1) + bT(e_2) + c T(e_3)$
 $= a (1, a, 1) + bT(e_2) + c T(e_3)$
 $= a (1, a, 1) + bT(e_2) + c T(e_3)$
 $= a (-c, aatb+ac, a+b+ac)$
Thus is an required Linear Transformation.

) efinition Let $T: V \rightarrow W$ be a L: TRange $\mathcal{C} T = \dim Range T = \mathcal{R}(T)$ Range $\mathcal{C} T = \dim T = 19(T)$ Definition !-Nullily of T = dim ker T = v(T) Sylvester's law: -Let T: V > W be a L.T., then OID T= (1) RankT + Nullity T = dim V (010)T = (29) 1,0,0) T = Proof:-Let {x,, xq, --, xm} be a basis of the Then {x, , xg. - - nmz is LI in ker T > 2x1, xa. - xm3 - 2 1.7 in ind the lineae It can be entended basie & V I per baringesteb dim ker T = nullity & T = M dim V = m+n To Prove: ST(U), T(U), -. T(Un) is a basis of T(eg)=0e,+e2+e3= (011) Range T. $d_1 T(v_1) + d_2 T(v_2) + \dots + d_n T(v_n) = 0$ = (2) => divi+ d2v2+ - + dn Un exerting =) $d_1v_1 + d_2v_2 + \cdots + d_nv_n = \beta_1x_1 + \beta_2x_2 + \cdots + \beta_mx_m$ =) $d_1 v_1 + d_2 v_2 + \cdots + d_n v_n - \beta_1 v_1 - \beta_2 v_2 + \cdots + d_n v_n - \beta_1 v_1 - \beta_2 v_2 + \cdots + d_n v_n = 0$ =) $d_1 = d_2 = 1 + \cdots = \beta_1 = \beta_1 = -1 = \beta_m = 0$ =) $d_1 = d_2 = 1 + \cdots = \beta_1 = \beta_1 = -1 = \beta_m = 0$

If
$$T(U) \in Range T$$
 be any element then as be V
 $V = Q_1 x_1 + \dots + a_m x_n + hv_1 + \dots + b_n v_n = a_1, b_1^{v_0} \in F$
 $T(v) : a_1 T(x_1) + \dots + a_m T(x_n) + b_1 T(v_1) + \dots + b_n T(v_n)$
 $= 0 + \dots + 0 + b_1 T(v_1) + b_1 T(v_2) + \dots + b_n T(v_n)$
 $= b_1 T(v_1) + b_2 T(v_2) + \dots + b_n T(v_n)$
 $\Rightarrow T(v) = u a linear combination of $T(v_1), \dots T(v_n)$
 $\Rightarrow T(v) = u a linear combination of $T(v_1), \dots T(v_n)$
 $\Rightarrow T(v) = u a linear combination of $T(v_1), \dots T(v_n)$
 $\Rightarrow T(v) = u a linear combination of $T(v_1), \dots T(v_n)$
 $\Rightarrow T(v) = u a basu = a_1 + vank T.$
 $H = TF$
Find Range $T = n = vank T.$
 $H = TF$
Find Range $t x_{ans}$ formations
 $a) T: R^2 \Rightarrow R^3 = t T(a, b) = (a, a+b, b)$
 $a) T: R^2 \Rightarrow R^3 = t T(a, v, v) = (u - x, v + v, w^{-x})$
 $\exists olubion = By the definition g T. elementers g Type (b, x + y, g)$
 $f(x + 0, x + y, 0 + y) = tu mage in R^2$
 $(x_1 + y, 0) + (o, y, y) = type are in Range T.$
 $= (x_1 x_1, 0) + t(o, y, y) = type are in Range T.$
 $= \pi (1, 1, 0) + ty(0, 1, 1)$
 $i = \pi (1, 1, 0) + ty_0 (D, 1, 1) = (0, 0, 3)$
 $d_1 = 0 = d_2$
 $i = 2t + i Linearly independent$
 $i = T forms a basi for Rang T$
 $i = Range T = R$.$$$$

(K,) & Ker T $= T(\mathbf{x}, \mathbf{x}) = (0, 0, 0)$ (m, x+y,y) = (0,010) Ot i toto to to $=) \chi_1 = 0, y = 0$ > Ker T = { [0,0) } + (B) T (B,) + b) T (B) + ... > Nullity T = dim kee T = 0 (ii) By the Definition of T. we find elements of the type (u-x, v+w, w-x)-have pre îmage în R4 (u-x, v+w, w-x) = (u+ov+ow-ix, out) + 100 + 10ou.ov+i.w-ix) $= \mathbf{n}(1,0,0) + \mathbf{v}(0,1,0) + \mathbf{w}(0,1,0) + \mathbf{x}(-1,0,-1)$: Fange of T spanned by $\{(1,0,0), (0,1,0), (0,1,0), (-1,0,0)\}$ Since Range Tis a subspace & R& # Es & dem ? These relements cannot form basis of Range T. These are L.D elements as (-1,0,-1) + (1,0,0) + (0,1,0) + (0,1,1) = (0,0,0)Consider 3 members (1,0,0), (0,1,0), (0,1,1) $a_1(1,0,0) \neq a_2(0,1,0) \neq a_3(0,1,1) = (0,0,0)$ =) qi=0 Vi > It is Lonearly independent >) It forms a basis of Razge T. D Pank

⇒ dim Range T = 3 = rank gT.
(-1,0,-1) = -1(1,0,0) + 1(0,1,0) -1(0,1,1)
The elements (1,0,0), (0,1,0) (0,1,1) span
Range T =
$$\mathcal{R}^{\mathcal{R}}$$
.
(4,10,10,10,2) ∈ ker T -
(4,10,10,2) ∈ ker T -
(4,10,10,2) ∈ (0,0,0)
⇒ T(0,10,10,2) = (0,0,0)
⇒ $\mathcal{U} - \mathcal{H} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} - \mathcal{H} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} - \mathcal{H} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} - \mathcal{H} = 0$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} = 1$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} = 1$ $\mathcal{U} = -\mathcal{U}$
 $\mathcal{U} + \mathcal{U} + 2$ forms a basis of ker T.
⇒ dim ker T = 1
nullity $\mathcal{G} = 1$
Problem:
Let The the linear Operator of $\mathcal{R}^{\mathcal{R}}$, the
Matin \mathcal{R} which on the standard ordered basis is
 $\mathcal{H} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and a basis for the same $\mathcal{R} = \mathcal{R}$.
Solution:
 \mathcal{D} of $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 \mathcal{D} $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 $\mathcal{H} = 1$ $\mathcal{H} = 1(4-3) - \mathcal{Q}(1) + 1 = 0$
 $\mathcal{H} = 1$ $\mathcal{H} = 1$ $\mathcal{H} = 1$ $\mathcal{H} = 1$ $\mathcal{H} = 0$ $\mathcal{H} = 1$ $\mathcal{H} = 1$ $\mathcal{H} = 0$ $\mathcal{H} = 1$ \mathcal{H}

$$(\pi_{1}, y_{1}, z) \in keq T T(\alpha_{1}, y_{1}, z) = 0 \Rightarrow T(\alpha_{1}, 0, 0) + y(0, 1, 0) + z(0, 0, 1)) = 0 xT(1, 0, 0) + yT(0, 1, 0) + zT(0, 0, 1) = 0 x(1, 0, -1) + y(\alpha_{1}, 1, 3) + z(1, 1, 4) = 0) (\pi + Qy + 2, y + 2, -x + 3y + 4z) = 0) (\pi + Qy + 2 = 0 x + Qy + 2 = 0 x + 2y + 2 = 0 x + 3y + 42 = 0 x +$$

⇒
$$\frac{1}{2}Te_{1}$$
, Te_{2}^{2} , u Linearly independent set in Range T.
⇒ dim Range T = ϑ
⇒ $\frac{1}{2}(1,0,-1)$, $(\vartheta,1),3$, $\frac{1}{2}$, u a basis of Range T.
Two marks:
Two marks:
Ishow that the following mapping is Linear
F: $\vartheta^{3} \gtrsim \vartheta^{3}$ given by $F(\alpha_{1}, y_{1}, z) = (z, \alpha + y)$.
Let $u = (\alpha_{1}y_{1}z)$, $U = (\alpha_{1}, y_{1}, z_{1})$
Then $u + U = (\alpha_{1}+\alpha_{1}, y+y_{1}, z+z_{1})$
 $ku = (k\alpha_{1}, ky_{1}, z+z_{1})$
 $ku = (k\alpha_{1}, ky_{1}, z+z_{1})$
 $= (z+z_{1}, (\alpha + y) + (\alpha_{1}+y_{1}))$
 $= (z+z_{1}, (\alpha + y) + (\alpha_{1}+y_{1}))$
 $= (z, \alpha + y) + (z_{1}, \alpha_{1}+y_{1})$
 $= F(u) + F(U)$
 $F(ku) = \frac{k(z, k(\alpha + y))}{(kz_{1}, k(\alpha + y))}$
 $= (kz_{1}, k(\alpha + y))$
 $= (kz_{2}, k(\alpha + y))$
 $= k(z, k\alpha + ky)$
 $= k(z, k\alpha + ky)$
 $= k(z, \alpha + y)$
 $= k(z, \alpha + y)$
 $= k(z, \alpha + y)$
 $= k(z, \alpha + y)$

22

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
What is the value of Gamma of one?	0	1	2		3		1
Γ (n+1)=	(n+1)! β(m,n)=Γ(n Γ (n+1) $\beta(m,n)=\Gamma($	Γ (n-1) β (m,m)= Γ (n Γ (n) $\beta(m,n)=\Gamma(m,n)=\Gamma(m,n)$			n Γ (n)
what is the relation between Pote and Commo functions?	m)1(n)/1(m)i(m)/i(m)I(m)/I(n)i(n)/i(r	n		$Q(m, n) = \Gamma(m) \Gamma(n) / \Gamma(m, n)$
what is the value of $\Gamma(1/2)$?	ni+n)	(m+n)	(m+n)	+II)			p(m,n)=1(m)1(n)/1(m+n)
Which one of the following statement is true?	$\Gamma(2) = \Gamma(1)$	$\Gamma(1/2) = (\sqrt{2})$	$T \Gamma (1/2) = 1$	$\Gamma(1/2) = 0$			$\Gamma(2) = \Gamma(1)$
Which one of the following statement is false?	$\Gamma(2) = \Gamma(1)$	$\Gamma(1)=1$	$\Gamma(1/2) = \sqrt{2}$	$\Gamma(n+1) = r$	n+1		$\Gamma(2) \Gamma(1) = n+1$
$\Gamma(1/4) \Gamma(3/4) =$	$2\pi^{(2)}$	$\pi\sqrt{2}$	$\sqrt{(2\pi)}$	(1 (11) 1	1		$\pi\sqrt{2}$
The values of $\Gamma(4)=$	1!	2!	3!	4!	-		3!
If C ' is the evolute of the curve C then C is called			radius of	centre of			
the of the curve C '	involute	curvature	curvature	curvature	e		involute
of a curve is the envelope of the normals of that			radius of				1.
curve.	involute	curvature	curvature	evolute			evolute
The parametric coordinates of the parabola x ² =4ay	x=at^2,	x=at,	x=2at,				2-++02
are	y=2at	y=at	y=at^2	x−a, y−ı			x-2at, y-at 2
The parametric coordinates of the ellipse is given by	x=acosθ,	x=asinθ,	x=atanθ,	x=asecθ,			w-accel w-hain0
	y=bsinθ	y=bcosθ	y=bsecθ	y=btanθ			x=acos0, y=bsin0
The parametric coordinates of the hyperbola is given by	x=acosθ,	x=asinθ,	x=atanθ,	x=asecθ,			w-accel w-bten
;	y=bsinθ	y=bcosθ	y=bsecθ	y=btanθ			x-aseco, y-bland
The parametric coordinates of the parabola y ² =4ax	x=at^2,	x=at,	x=2at,				
are	y=2at	y=at	y=at^2	x−a, y−t			x-at ² , y-2at
The locus of the centre of curvature for a curve is called its							
evolute and the curve is called an of its	involute	evolute	envelope	curvature	e		involute
evolute.							
The locus of the centre of curvature for a curve is called	involuto	avaluta	anvalana	oursistur			avaluta
its	involute	evolute	envelope	cuivatui	5		evolute
	$x=a(\theta+sin$	x=a(θ-	$x = (\theta + \sin \theta)$	x=(θ-			
The parametric coordinates of the cycloid is given by	θ),	sinθ),),	$\sin\theta$),			$v=o(\theta \sin \theta)$ $v=o(1 \cos \theta)$
·	y=a(1+co	y=a(1-	y=(1+cos	y=(1-			$x - a(0 - \sin \theta), y - a(1 - \cos \theta)$
	sθ)	$\cos\theta$)	θ)	cosθ)			
If $y=1/x$, then $y1=$	-1/x^2	1/x	ax	bx			-1/x^2
If $y=x^2$, then $y_1=$	x^2	1/x	2x	х			2x
If $y=x^2$, then $y^2=$	x^2	1/x	2x	2			2
If $x=2at$ then $dx/dt=$	2at	2a	2t		0		2a
If $x=at^2$ then $dx/dt=$	2at	2a	2t		0		2at
If $y=ax^2+2ax$ then dy/dx at (3,2) is	8a	4ax	2ax	6a			8a
If $y=ax^2+2ax$ then dy/dx at (2,2) is	8a	4ax	2ax	6a			6a
If $y=ax^2+2ax$ then dy/dx is	8ax+2a	4ax+2	2ax+2a	6a			2ax+2a
If y=ax^2+2ax then second derivative is	2a	4ax	6ax	6a			2a
The volume of the solid of revolution generated by revolving the							
plane area bounded by the circle $x^2+y^2=a^2$ about its diameter							
is	(4/3)πa^3	(2/3)πa^3	(1/3)πa^3	πa^3			(4/3)πa^3
The volume of the solid of revolution generated by revolving the							
plane area bounded by the circle $x^2+y^2=2^2$ about its diameter							
18	(32/3)π	$(1/3)\pi$	(2/3)π	π			$(32/3)\pi$
The volume of the solid of revolution generated by revolving the							
plane area bounded by the circle $x^2+y^2=3^2$ about its diameter	16-	0-	26-	_			26-
The Volume of a sphere of radius 'a' is	$\frac{10\pi}{2/3 \pi a^{3}}$	9π 1/3 π a^3	$1/3 \pi a^{3}$	π π o^3			$\frac{1}{3} \pi a^3$
The surface are of the sphere of radius 'a' is	2/3 π a 3 4πa^7	π ₉ ^2	3πa^2	7πa^2			4π9^7
The Volume of a sphere of radius '2' is	$16/3 \pi$	$32/3 \pi$	$\frac{3\pi a}{2}$	2 <i>π</i> α 2			$\frac{4\pi a}{2}$ 32/3 π
The surface area of the sphere of radius '3' is	36π	9π	27π	18π			36π
dx=	x+C	1	2/10	x^2			x+C
fcdx=	cx+C	0	1	x+C			cx+C
∫ 5dx=	x+C	5x+C	x^2+C	5+C			5x+C
$\int x^n dx = \dots$	x^(n+1)/ (r	n x^(n-1)/ (n	- nx^ (n-1)+	(n+1) x^ ((n+1)+ C		x^(n+1)/(n+1)+C
∫xdx=	x^2+C	x^2/2+C	x^3/2+C	x^2/2+C			x^2/2+C
$\int x^{(2)} dx = \dots$	(x^(2)/2)+0	C(x^(3)/3)+0	Cx+C	2x+C			(x^(3)/3)+C
$\int 3x^{(2)} dx = \dots$	3x^(2)+C	x+C	x^2+C	x^(3) +C			x^(3) +C
$\int (1/x) dx = \dots$	1+ C	log x+C	(-1)+C	(-log x)+	С		log x+C
$\int e^{(x)} dx = \dots$	(-e^x)+ C	$e^{(-x)} + C$	(-e^(-x))+C	$C e^{x} + C$			$e^x + C$
e^{-x}	(-e^x)+ C	e^(-x) + C	(-e^(-x))+C	$Ce^{x}+C$			(-e^(-x))+C
$\int e^{(2x)} dx = \dots$	(-e^2x)/2+	$(e^{-2x})/2 +$	(-e^(-2x))/2	$2e^{2x/2+0}$	2		$e^{2x/2} + C$
$\int e^{(-2x)} dx = \dots$	(-e^(-2x))/2	$2e^{(-2x)/2} +$	- (-e^(-2x))/2	$2e^{(-2x)/2}$	+ C		$e^{2x/2} + C$
J cosx dx=	sınx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C			sinx + C
J sinx dx=	sinx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C			(-cosx)+C
J cosmx dx=	(sinmx)/m	-(cosmx)/m	(-cosmx)/n	n (-sınmx)/ı	m+C		(sinmx)/m+ C
Unit - M Joner Product Space: fet V be a vertor space over F. An înner product on V is a function which assigns to each ordered pair of vectors 4,10 in V a scalar in. denoted by <4,0> satisfying the following conditions. $(i) \leq u + v, w > = \langle u, w \rangle + \langle v, w \rangle$ = < PINYA (C (iii) <uiv) = <v,u> where <v,u> is the complex conjucate of <u, 0> (v) (u,u)>>0 2 (u,u)=0 its u=0. A vectorspace with an inner product de then it is called an inner product space. An Inner product space is called an Euclidean Space or Unitary Space according as F is field of real numbers de complex numbers 1) Vn (R) is a real inner product space with Enample T înner product defined by actived $\langle x,y \rangle = \chi,y,+\chi_{a}y_{a}f - f$ $\chi = (\chi_1, \chi_{a_1}, \dots, \chi_n)$

y = (y, yg, --, yn) This is called the standard inner product on

Troof : Let avy, z E Vn (R) & de R write hund) $\langle n + y, z \rangle = (n + y) z_1 + (n - 1 y_2) z_2 + \dots + (n + y_1) z_1$ $= (\pi i z_1 + \pi z_2 z_3 + \dots + \pi n z_n)$ bullet $= (\pi i z_1 + \pi z_2 z_3 + \dots + \pi n z_n)$ $= (\pi i z_1 + (y_1 z_1 + y_2 z_2 + \dots + y_n z_n))$ $= (\pi i z_1 + (y_1 z_1 + y_2 z_2 + \dots + y_n z_n))$ $\hat{z}) \ \angle \langle x_1 y \rangle = \langle x_1 y_1 + \langle x_2 y_2 + \cdots + \langle x_n y_n \rangle$ $= dx_1 y_1 + dx_2 y_2 + ... + x_n y_n)$ za Za, y evenas Ku, v) = (vins 3) $< \chi_1 Y_2 + \chi_2 Y_2 + \chi_2 + \chi_1 Y_1 + \chi_2 Y_2 + \chi_2 + \chi_1 + \chi_2 Y_2 + \chi_2 + \chi_1 + \chi_2 + \chi_2 + \chi_1 + \chi_2 + \chi_2 + \chi_1 + \chi_2 + \chi_2 + \chi_2 + \chi_1 + \chi_2 + \chi_2$ rephan $= y_1 x_1 + y_2 x_2 + (y_1 + y_n x_n)$ M' vectorspace with an Sinner product space 4) $(x_1, x_2) = b x_1 x_1 + x_2 x_2 + \dots + x_n x_n + \dots$ An gried produce and Reubarg range of $\chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_1$ ·: < a, x> = 0 iff x=0 2) Let Vbe the set of all continous lead valuer functions defined on the closed interval [0,] Vis a real inner product space with som Primer product defined by extinized by 28.97= (f(t)g(t)dt (Gr, inst, r) = 1

Scanned by CamScanner

$$y < 4+g, h > -\int [f(t) + g(t)] h(t) dt$$

$$= \int f(t) f_{h}(t) dt + \int g(t) h(t) dt$$

$$= < 4_{1} h > t < g, h >$$

$$\Rightarrow < \alpha < f(t) g(t) dt$$

$$= \alpha < \int f(t) g(t) dt$$

$$= \alpha < f(t) g(t) dt$$

$$= \alpha < f(t) g(t) dt$$

$$= \alpha < f(t) g(t) dt$$

$$= (g, f) >$$

(b) $< 1, f > = \int f(t) g(t) dt \ge 0$

$$< 4, f > = \int f(t) \int^{n} dt \ge 0$$

$$< 4, f > = \int f(t) \int^{n} dt \ge 0$$

$$< 4, f > = \int f(t) \int^{n} dt \ge 0$$

$$< 4, f > = 0 \quad f f f = 0.$$

Norm:
Let V be an sinear product space and
let x e V. The next of length of x, denoted by

$$\|x\|, x defined by \|x\| = \sqrt{\langle x, x \rangle}.$$

$$x x called a unit vector of $\|x\| = 1$
Problem:-
1. Let Y be the vector space of polynomials
usith finear product given by $< f, g > = \int f(t) g(t) df_{1} = 0$
Let $f(t) = t + 2$ and $g(t) = t^{2} - 2t - 3$.
Find (i) $< f, g > f(t) If I$.$$

ner

$$\frac{\operatorname{gredultion}^{1-}}{|||} < S_{1} \otimes S = \int_{0}^{1} f(t) \otimes f(t) dt$$

$$= \int_{0}^{1} (t+3) (t^{2}-3t-3) dt$$

$$= \int_{0}^{1} (t+3) - 7t^{2} - 6t^{2} \int_{0}^{1} dt$$

$$= \int_{0}^{1} (t+3) - 7t^{2} - 6t^{2} \int_{0}^{1} dt$$

$$= \int_{0}^{1} (t+3) \otimes t dt$$

Proof:-
i)
$$\|x\| = \sqrt{\langle x, x \rangle} \geq 0$$
 and $\|x\| = 0$ iff $x = 0$
i) $\|x x\|^{q} = 2\alpha \alpha i \alpha x$
 $= \alpha \langle x, i x \rangle$
 $= |\alpha|^{q} \|x\|^{q}$
 $= \alpha \langle x, i x \rangle$
 $= |\alpha|^{q} \|x\|^{q}$
 $= |\alpha|^{q} \|x\|^{q}$
i. $\|\alpha x\|^{2} = |\alpha|^{2} \|x\|^{2}$
(ii) The inequality is bivially true when $x = 0$ of $y = 0$
Hence let $x \neq 0 \geq y \neq 0$
Consider $z = y - \frac{\langle y, x \rangle}{\|x\|^{q}}$.
Then $0 \leq \langle x, z \rangle$
 $= \langle y - \frac{\langle y, x \rangle}{\|x\|^{q}} x , y - \frac{\langle y, x \rangle}{\|x\|^{q}} x$
 $= \langle y, - \frac{\langle y, x \rangle}{\|x\|^{q}} \langle x, x \rangle - \frac{\langle y, x \rangle}{\|x\|^{q}} \langle x , y \rangle$
 $+ \frac{\langle y, x \rangle \langle y, x \rangle}{\|x\|^{q}} |x\|^{q}} \langle x, x \rangle$
 $= \|y^{2}\| - \frac{\langle y, x \rangle \langle x, y \rangle}{\|x\|^{q}} - \frac{\langle y, x \rangle \langle x, y \rangle}{\|x\|^{q}}$
 $= \|y\|^{q} - \frac{\langle x, y \rangle}{\|x\|^{q}} \langle x, y \rangle$
 $= \|y\|^{q} - \frac{\langle x, y \rangle}{\|x\|^{q}} \langle x, y \rangle$

Scanned by CamScanner

(FV) 1x + yll = <x+y, x+y> = < x , x > + < x , y > + < y , m > + < y , y = ||x||2+ Lx14>+ Lx14>+ 14112 = 11 x11 + 2 Re(x1y) + 11 y12 < 11x11 + 21<1141 + 114112 5 11x112+ 211x11 11y11 + 1412 Hence let x to $\therefore ||x+y|| \leq ||x|| + ||y||.$ ronsider Orthogonal:-Let V be an inner product space and let x, y EV. x is said to be oethogonal to y \mathbb{K} $\langle x, y \rangle = 0$ (x. W.C Orthonermal :-S is said to be an orthonormal set & if Si orthogonal and IIX II = 1 for all XES. Theorem 1:-Let S= {v, bai -- bag be an orthogonal sel- of non-Zero vectors in V. Let DEV and $U = d_1 U_1 f q_2 V_2 + \dots + q_n V_n$ Then $q_x = \langle U_1 U_2 \rangle$ $H U_2 M^2$ Proof :- $\frac{1}{2}\left(\frac{1}{2},0_{k}\right) = \left(\frac{1}{2}\left(\frac{1}{2},0_{k}\right) + \frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right) + \frac{1}$ $=q_1\langle v_1, v_x\rangle + q_2\langle v_2, v_x\rangle + q_k\langle v_k, v_k\rangle$ +... + an < 12, 02 < 1418>1 = dK (UK, UK) L. NUKI

Scanned by CamScanner

For if WK+1=0, then UK+1 is a linear Combinat We claim that, white Hence It is a linear combination of U, var - by of w, way ... wok . which is a contradiction. Since Vi, Va. -- UK+1 are linearly independe $\langle w_{k+1}, w_i^{\circ} \rangle = \langle v_{k+1}, w_i^{\circ} \rangle - \frac{k}{2} \frac{\langle v_{k+1}, w_j^{\circ} \rangle}{\|w_j^{\circ}\|^2} \langle w_j, w_i^{\circ} \rangle$ $|\omega_{k+1}, \omega_{i}\rangle = \langle v_{k+1}, \omega_{i}\rangle - \langle v_{k+1}, \omega_{i}\rangle \langle \omega_{k+1}, \omega_{i}\rangle$ $= \langle v_{k+1}, w_i^* \rangle - \langle v_{k+1}, w_i^* \rangle$ Thus, continuing in this way we ultimately obtain a non-zero orthogonal set fw, wa, ... wn J > This set is linearly independent and hencea > To Obtain an orthonormal basis we replace of RUD = KIWIGW each wi by <u>wi</u> Problem: 1. Apply Gram-Schmidth process to construct an orthonormal basis for V3(R) with standard poner product for the basis 20,, 02, 033 where U,= (1,0,1); U2=(1,3,1) & U3=(3,2,1) solution:-non bebute. Take w,= v; (1,0,1) that

Solution Theo $\|\omega\|^{2} = \langle \omega, \omega \rangle = |^{2}_{+}o^{2}_{+}|^{2} = 0$ 20, va> = 1+0+1 = & d in 101 $\omega_{a} = \nu_{a} - \frac{\langle \nu_{a}, \omega \rangle}{\| \omega_{i} \|^{a}} \cdot \omega_{i} = (1, 3, \mathbf{D} - \frac{2}{3} (1, 0, 1))$ = (0,3,0) rbrl - r= $\|w_{2}\|^{2} = 9$ Also (UDa, Uz) = 07670 = 6 $\angle \omega_{1}, \upsilon_{3} > = 3 + 0 + 1 = 4$ ous - Vocul $\omega_{3} = \nu_{3} - \frac{\langle \upsilon_{3}, \upsilon_{3} \rangle}{\| \upsilon_{1} \|^{2}} \omega_{1} - \frac{\langle \upsilon_{3}, \upsilon_{2} \rangle}{\| \upsilon_{3} \|^{2}} \omega_{2}$ $= (3,3,1) - \frac{4}{2}(1,0,1) - \frac{6}{9}(0,3,0)$ = $(3, a, D - a(1, 0, 1) - \frac{a}{3}(0, 3, 0)$ $= (1, 0, 1)^{2} = 2^{2} ((1, 0, 1)^{2})^{2} = 2^{2} ((1, 0, 1)^{2})^{2} = (1, 0, 1)^{2} = (1, 0, 1)^{2}$ The orthogonal basis is 2 (1,0,1), (0,3,0), (1,0,-1)} Hence the orthonormal basis is it Hence the only $\left(\frac{1}{\sqrt{a}}, 0, \frac{1}{\sqrt{3}}\right)$, $\left(0, 1, 0\right)$, $\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{a}}\right)$, $\left(\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{a}}\right)$ Problema Let V be the set of all polynomials of degree ≤ 2 together with the zero polynomial. V is 2 real inner product space with inner product defined real inner product space with inner product defined »nopodti O by < sig> = J f(x)g(x)dx. Starting with the baris jo {1,x, xª }, obtain an orthonormal base for V.

Solution:

$$v_{1} = 1, v_{2} = x = u_{3} = x^{2}$$

Let $w_{1} = v_{1}$
 $hwill = \sqrt{2}$
 $hwill = \sqrt{2}$
 $hwill = \sqrt{2}$
 $u_{2} = v_{2} = \frac{(v_{2}, w_{1})}{\|w_{1}\|^{2}}$
 $= x - \frac{1}{2}\int_{x}^{1}xdx$
 $= x$
 $\|w_{2}\|^{2} - \langle w_{2}, w_{2} \rangle = \int_{x}^{1}x^{2}dx = \frac{2}{7}$
 $w_{3} = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2}$
 $= x^{2} - \frac{1}{2}\int_{x}^{1}x^{2}dx - (\frac{3x}{2})\int_{-1}^{2}x^{2}dx$
 $= x^{2} - \frac{1}{3}\int_{x}^{1}x^{2}dx - (\frac{3x}{2})\int_{-1}^{2}x^{2}dx$
 $= x^{2} - \frac{1}{3}\int_{x}^{1}(x^{2} - 1)\int_{x}^{2}dx = \frac{8}{45}$
Hence the extragonal basis is $\begin{cases} 1, x, x^{2}, -\frac{1}{3} \end{cases}$
The sequired orthonormal basis is $\begin{cases} \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}x, \frac{\sqrt{10}}{4}(\frac{(3x^{2} - 1)^{2}}{2}) \\ \sqrt{2}, \frac{1}{2}\sqrt{2}x, \frac{\sqrt{10}}{4}(\frac{(3x^{2} - 1)^{2}}{2}) \end{cases}$
 $Let V be an inner product space Let S be a subset $g V$. The ofthogonal completions f s , denoted by s^{1} , is the set g all vectors V
 $which are orthogonal to every vector $g S$.$$

The material of any subset of v then
$$s^{\perp}$$
 is a subspace
of v.
Proof clearly $0 \in s^{\perp} \Rightarrow s^{\perp} \neq p$
let $\pi_{1}y \in s^{\perp} \Rightarrow \pi_{1}\beta \in F$.
Then $\langle \pi_{1}u \rangle = \langle y,u \rangle = 0 \lor u \in S$
 $\therefore \langle \pi_{1} \neq p y, u \rangle = d \langle \pi_{1}u \rangle + p \langle y,u \rangle$
 $= 0 \lor u \in S$
 $\therefore \langle \pi_{1} \neq p y \in s^{\perp}$
 $\Rightarrow s^{\perp}$ is a subspace of v.
Theorem
Let $\forall be a \neq trib dimensional innex product$
Space Lee $w be a subspace of v.$ Then $V \not a \neq the$
 $direct sum g Wand w^{\perp}$
 $ie \forall v = w \oplus w^{\perp}$
 $\frac{Proof}{2}$
 $we shall prove that$
 $i w \cap w^{\perp} = fo^{2}$
 $i w \oplus w^{\perp} = v$
 $i tet \forall e w \cap w^{\perp}$
 $\Rightarrow v \in w^{\perp} \Rightarrow v \neq i$ opthogonal to every vector in W .
In particular, $v \neq i$ opthogonal to fisch i
 $\langle v, \phi \rangle = 0$
 $\Rightarrow w \cap w^{\perp} = fo^{2}$.

D'Let Ju, Uz, -. Uz] be an extronormal basis for Let ve V. consider. - 20,02>0g 120=12-<12,12,212,- 12,12,20g-(vo, v?) = Lu, u?> - Lu, u?> <u;, u?> = (0,00) - (0,00) . Vo is orthogonal to each of V,, Var ... Us and hence is orthogonal to every vector in W. Hence boew + 20, 02 > U2 + Vo 19= 20,0,70,+ 20,02702+ E WTW $W = W \oplus W^{\perp}$ Hence the theorem. and the busies of a second 1408=d FA 101 $0 \leq r \leq 0$ mensboll prove A C B = A DA A Per twain V STV OW

Questions	opt1 Maalauri	opt2	opt3	opt4	opt5
The Taylor series of $f(x)$ shout the point 0 is	ne	Taylor	nower	hinomial	
The expansion of f(x) by Taylor series is	7070	unique	minimu	movimu	
The point of units function $f(x)$ is either maximum or	Stationar	Saddla	artranau	maximu	
minimum is known as point	Stational	noint	m	implicit	
minimum is known as point	y	point	111	implient	
A function f has $at (a') if f(a) > f(x)$ for all (x') in D	ali	ahaaluta	11	1	
where D is domain of 'f'	maximu	minimu	movimom	minimum	
where D is domain of 1.	шалтти	mmmu	палтат	an	
	an	911		ali absolute	
	ali	ali		and	
	movimu	minimu		local	
If $f(x) = x^2$ then $f(0) = 0$ is the value of f	maxiiiiu	m	local	minimu	
If $I(x) = x$, then $I(0) = 0$ is the value of I.	111 or	111 on	палтат	mmmu	
A function flog a set 'a' if there is an open interval	ali	ali			
A function I has a at c if there is an open interval Least tring (z^2 such that $f(z) > f(x)$ for all (x^2 in L	absolute		local	locam	
I containing c such that $I(c) \ge I(x)$ for all x in I.	maximu	minimu	maximam	minimum	
A function films a set (a) if them is an energy intermed		ali			
A function f has a at c if there is an open interval Least training $f_{abc}^{abc} = \frac{1}{2} \frac$	absolute	absolute	local	local	
I containing c such that $I(c) \leq I(x)$ for all x in I.	maximu	minimu	maximam	minimum	
				an	
166010000000000000000000000000000000	critical	stationar	local	absolute	
If T has a at c and if $f(c)$ exists then $f(c)=0$.	number	y point	extremum	maximu	
A function (\mathcal{O} has at (a) if $\mathcal{O}(a) < \mathcal{O}(a)$ for all (a) in	an	an			
A function 1 has at c finite $(c) \le I(x)$ for all x in	absolute	absolute	local	locam	
D, where D is domain of T. 16621 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	maximu	minimu	maximam	minimum	
If T has a local extremum at c and if $f(c)$ exists then	0	1		(1)	
$\Gamma(c) = _$.	0	1	c 2	(-1)	
Evaluate: limit x tends to $0 (x / \tan x) =$	1	2	3	0	
Evaluate: limit x tends to infinity $(x'^2 / e'x) =$	1	2	3	0	
L'Hopital's rule can be applied only to differentiable	real	indetermi	complex	extremu	
functions for which the limits are in the form		nate	1	m	
L'Hopital's rule can be applied only tofunctions for	differentia	real	complex	extremu	
which the limis are in the indeterminate form			-	m	
	einer an	neiner			
	absolute	an			
	maximu	absolute			
	absoluto	maxiiliu			
	minimu	011 1101			
$\mathbf{L} \mathbf{f} (\mathbf{r}) = -\Delta 2 + 1 + \mathbf{r} + 1 + \mathbf{f} + \mathbf{r} + 1 + \mathbf{r}$	m	ahaaluta	local	locam	
If $f(x) = x^3$, then the function has	111	absolute	maximam	minimum	
	aritical	stationar		ali	
A of a function f is a number c in the domain of f such that aither f(a) = 0 or $f(a)$ does not exist	number	stational	local	absolute	
entitier $\Gamma(c) = 0$ of $\Gamma(c)$ does not exist	number	y point	extremum	An	
	Critical	Stationar	T1	All	
are oritical numbers c in he domain of f for which $f'(c)=0$	number	v points	Local	maximu	
are critical numbers c in ne domain of 1, for which I (c)=0	number	y points	extremum	an	
	critical	stationar	1.0.001	ahsolute	
If f has a local extremum at a then a is a of f	number	v noint	avtramum	maximu	
If I has a local extremum at c, then c is a of I	number	y point	extremum	an	
	critical	stationar	local	ahsolute	
If f has aat c, then c is a critical number of f	number	v noint	evtremum	maximu	
If $f(x) = x^2 - 4x + 5$ on [0, 3] then the absolute maximum value is	number	y point	extremum	maxima	
If $f(x) = x^2 = 4x^2 = 5$ on $[0,5]$ then the absolute maximum value is	2	3	4	5	
Find the critical numbers. for the function $f(x)=x^3 - 3x^2 + 1$	(1,2)	(0,2)	(2,2)	(1,3)	
Find the critical numbers, for the function $f(x)=x^3 - 3x + 1$.	(1,1)	(-1,1)	(0,1)	(-1,-1)	
Find the critical number, for the function $f(x)=2x - 3x^2$.	(1/2)	(1/3)	(1/4)	1	
Find the critical number, for the function $f(x)=x^2 - 2x + 2$.	0	1	2	3	
Find the critical number, for the function $f(x)=1-2x-x^2$.	0	1	2	3	
Find the critical numbers, for the function $f(x)=x^3 - 12x + 1$.	(0,1)	(0,2)	(0,3)	(0,4)	
Find the stationary point of the function $f(x)=2x - 3x^2$	(1,1)	(1,2)	(1/3, 1/3)	(1/2,1)	
	(1,-1) and			(1,1) and	
Find the stationary point of the function $f(x)=x^3 - 3x + 1$	(-1,3)	(1,-1)	(-1,3)	(1,3)	
Find the absolute maximum of the function $f(x) = x^2 - 2x + 2$, [0,	31	3	5	8	

opt6

Find the absolute minimum of the function $f(x) = x^2-2x+2$,				
[0,3]	1	3	5	8
Find the absolute maximum of the function $f(x) = 1-2x-x^2$ [-				
4,1]	1	2	7	8
Find the absolute minimum of the function $f(x) = 1-2x-x^2$ [-				
4,1]	1	2	(-7)	(-8)

Answer Maclauri ns unique Stationar у an absolute maximu an absolute and local minimu local maximam local minimum local extremum an absolute minimu 1 1 0 indetermi nate differentia ble neiher an absolute maximu m nor an absolute critical number Stationar y points critical number local extremum 5 (0,2) (-1,1) (1/3) 1 1 (0,4) (1/3, 1/3) (1,-1) and (-1,3) 5

- (-7)

$$\frac{Gramma}{(n)} \frac{Function}{a} defined as the definite integral
$$\int_{0}^{n} (n) = \int_{0}^{\infty} e^{x} x^{n-1} dx.$$
Recurrence Formula:

$$\int_{0}^{n} (n+n) = \int_{0}^{\infty} e^{x} x^{n-1} dx.$$

$$= n\int_{0}^{\infty} e^{x} x^{n-1} dx.$$

$$= n\int_{0}^{\infty} e^{x} x^{n-1} dx.$$

$$\int_{0}^{n} (n+1) = n f(n).$$

$$\int_{0}^{n} (n+1) = f(n).$$

$$\int_{0}^{n} (n+1) = n f(n).$$

$$\int_{0}^{n} (n+1) = n f(n).$$

$$= -e^{x} \int_{0}^{\infty}$$

$$= -e^{x}$$$$

when n is a nightive fraction:-

$$\Gamma(n) = \frac{\Gamma(n+i)}{n}$$

$$\Gamma'(\frac{-1}{2}) = \frac{\Gamma'(\frac{-1}{2})}{-\frac{1}{2}} = -\vartheta \Gamma'(\frac{1}{2})$$

$$\Gamma'(\frac{-3}{2}) = \frac{\Gamma'(\frac{-1}{2})}{-\frac{3}{2}} = \frac{-\vartheta}{-\frac{3}{2}} C^{-2i} \Gamma'(\frac{1}{2})$$

$$= \frac{H}{3} \Gamma^{1}(\frac{-1}{2})$$

$$\Gamma'(\frac{-5}{2}) = \frac{\Gamma'(\frac{-3}{2})}{-\frac{5}{2}} = -\frac{\vartheta^{3}}{3\cdot5} \Gamma'(\frac{1}{2})$$

$$\frac{\Gamma'(\frac{-5}{2})}{-\frac{5}{2}} = \frac{\Gamma'(\frac{-3}{2})}{-\frac{3}{3\cdot5}} \Gamma'(\frac{1}{2})$$
Problem:-

$$\vartheta \text{ Find The value } \vartheta \Gamma'(\frac{1}{2}) \text{ and evaluate } \int e^{-\frac{3}{2}x}$$

$$\frac{\vartheta \log 1}{\Gamma(n)} = \int e^{\frac{1}{2}} t \frac{n^{-1}}{n^{-1}} t = t = \pi^{2}$$

$$\Gamma(n) = \int e^{\frac{1}{2}} t \frac{n^{-1}}{2n^{-1}} \frac{1}{2n^{-1}} dx$$

$$\Gamma(n) = \int e^{\frac{1}{2}} e^{\frac{1}{2}x^{-1}} \frac{2n^{-1}}{2n^{-1}} dx$$

$$\Gamma(n) = \int e^{\frac{1}{2}} e^{\frac{1}{2}x^{-1}} \frac{2n^{-1}}{2n^{-1}} dx$$

$$\Gamma(\frac{1}{2}) = \vartheta \int e^{\frac{1}{2}y^{-1}} dx$$

$$\Gamma(\frac{1}{2}) = \vartheta \int e^{-\frac{3}{2}y^{-1}} dx$$

$$\Gamma(\frac{1}{2}) = \vartheta \int e^{-\frac{3}{2}y^{-1}} dx$$

$$\Gamma(\frac{1}{2}) = \vartheta \int e^{-\frac{3}{2}y^{-1}} dx$$

and the second

Scanned by CamScanner

Hultiply
$$\widehat{O}e \widehat{O}$$

$$\begin{bmatrix} [f'(\frac{1}{2})] = h \int \int e^{-(x^2+y^2)} dy dx \\ Transforming into polar coordinates
 $\pi = \pi \cos 0$, $y = \pi \sin 0$ didy = ridido
 $f'(\frac{1}{2}) = h \int \int e^{-r^2} r dx do$
 $= a \int do \int e^{-r^2} dx do$
 $= a \int do \int e^{-r^2} dx do$
 $= -\pi \cdot e^{-r^2} \int e^{-r^2} dx do$
 $\int e^{-r^2} dx = \frac{f'(\frac{1}{2})}{2} = \frac{\sqrt{\pi}}{2}$.
Prove that $\int x^m (\log x)^n dx = \frac{(-y)^n \cdot n!}{(m+1)^{n+1}}$ where
 $n \overset{a}{a} = perturbe integer \cdot m > -1$
Solution:
 $put \log x = \frac{+y}{e^2} = \frac{\sqrt{\pi}}{2}$
 $d\pi = -e^{-2} dy$
when $\pi = 0, y = \infty$
 $\pi = 1, y = 0$
 $\Rightarrow \int x^m (\log n)^n dx = \int e^{-my} (-y)^n (-e^{-\pi} dy)$
 $= \int e^{-(m+1)y} y^n dy + \frac{\pi}{2}$$$

$$put (n+1) y = 2$$

$$dy = \frac{dz}{m+1}$$

$$\int_{0}^{1} x^{m} (\log_{g} x)^{n} dx = (-1)^{n} \int_{0}^{\infty} e^{-z} \cdot \frac{x^{n}}{(n+1)^{n}} \cdot \frac{dz}{(n+1)}$$

$$= \frac{(-1)^{n}}{(n+1)^{n+1}} \int_{0}^{\infty} e^{-z} x^{n} dz$$

$$= \frac{(-1)^{n} (n+1)}{(n+1)^{n+1}}$$

$$= \frac{(-1)^{n} \cdot n!}{(n+1)^{n+1}}$$

$$= \frac{(-1)^{n} \cdot n!}{(n+1)^{n+1}}$$

$$= \frac{(-1)^{n} \cdot n!}{(n+1)^{n+1}}$$

$$= \frac{(-1)^{n} \cdot n!}{(n+1)^{n+1}}$$

$$= \frac{(\log_{g} - \frac{1}{y})^{p-1}}{(\log_{g} - \frac{1}{y})^{p-1}} = \frac{\prod(p)}{q^{p}} \text{ where } p > pt$$

$$= \frac{\log_{g} \frac{1}{y}}{p^{q-1}} \left(\log_{g} - \frac{1}{y}\right)^{p-1} \frac{1}{q^{q}}$$

$$= \frac{(\log_{g} - 1)^{p-1}}{\log_{g} \frac{1}{y}} = 0$$

$$= \frac{1}{p} e^{-2x + x} x^{p-1} e^{-x} dx$$

$$= \int_{0}^{\infty} e^{2x} x^{p-1} dx$$

$$= \int_{0}^{\infty} e^{2x} x^{p-1} dx$$

A)
$$\int \sqrt{\pi} e^{-\frac{1}{2}} dx$$

 $p_{uv} = \frac{1}{3} = t$, $d_{uv} = 2dt$
 $p_{uv} = \frac{1}{3} = t$, $d_{uv} = \frac{1}{2}dt$
 $= 3\sqrt{3} \int \sqrt{t} e^{-\frac{1}{2}} dt$
 $= 3\sqrt{3} \int \sqrt{t} e^{-\frac{1}{2}} dt$
 $= 3\sqrt{3} \int \frac{1}{(\frac{3}{2})}$
 $= 3\sqrt{3} \frac{1}{8} \int \frac{1}{(\frac{1}{2})}$
 $= 3\sqrt{3} \frac{1}{8} \int \frac{1}{(\frac{1}{8})}$
 $= 3\sqrt{3} \frac{1}{8} \int \frac{1}{(\frac{1}{8})}$
 $= 3\sqrt{3} \frac{1}{8} \int \frac$

Transforming to polar Coordinates,

$$x = x (D \le 0, y = 2 \sin 0)$$

$$dxdy = rrdado$$

$$g(1(m)(f(n)) = 4 \int \int e^{r^2} e^{r^2} a^{m+1} e^{am+1} \cdot e^{an+1} e^{2n+1} e^{n+1} e^{$$

Prove that
$$\beta(m,n) = \beta(m+i,n) + \beta(m,n+i)$$

 $\beta(m,n) = \frac{f'(m)f'(n)}{f'(m+n)}$
 $= \frac{f'(m+i)f'(n+1)(m+n)}{mn f'(m+n+i)}$
 $= \frac{f'(m+i)f'(n)m}{m f'(m+n+i)} + \frac{f'(m)f'(n+i)}{n f'(m+n+i)}$
 $= \frac{f'(m+i)f(n)}{f'(m+n+i)} + \frac{f'(m)f'(n+i)}{f'(m+n+i)}$
 $= \frac{f'(m+i)f(n)}{f'(m+n+i)} + \frac{f'(m)f'(n+i)}{f'(m+n+i)}$
 $= \beta(m+i,n) + \beta(m,n+i)$
Show that $\beta(m,n) = \int \frac{\pi^{m-1} + \pi^{-1}}{(1+\pi)^{m+n}} dx$.
Proof:
 $put \pi = \frac{1}{1+y}$ when $\pi = 0$, $y \Rightarrow \infty$
 $\pi = 1$, $y = 0$
 $d\pi = -\frac{1}{(1+y)^2} dy - \beta(m,n) = \int \pi^{m-1} \frac{n^{-1}}{(1+x)^{m+n}} dx$.
 $\beta(m,n) = \int \frac{1}{(1+y)^{m-1}} \cdot \frac{y^{n-1}}{(1+y)^{n-1}} \cdot \frac{dy}{(1+y)^{m+n}}$
 $= \int \frac{y^{n-1}dy}{(1+y)^{m+n}} + \int \frac{y^{n-1}}{(1+y)^{m+n}} dx$.

consider
$$\int_{1}^{\infty} \frac{y^{n-1} dy}{(1+y)^{m+n}}$$
put $y = \frac{1}{x}$, $dy = \frac{-1}{x^2} dx$
 $1+y = 1+\frac{1}{x} = \frac{\pi}{x^2}$, $m+n$
 $g \int_{1}^{0} \frac{-1}{(1+y)^{m+n}} = -\int_{1}^{0} \frac{\pi}{x^{n-1}(1+x)^{m+n}} dx$
 $= \int_{0}^{1} \frac{\pi}{(1+x)^{m+1}} dx + \int_{0}^{1} \frac{\pi}{(1+x)^{m+n}} dx$
 $= \int_{0}^{1} \frac{\pi}{(1+x)^{m+n}} \int_{0}^{1} \frac{\pi}{(1+$

 $\Gamma(n+\frac{1}{2}) = \frac{1\cdot 2\cdot 3\cdots}{2^n} \frac{2n}{n!} \Gamma(\frac{1}{2})$ = $1 \cdot 2 \cdot 3 \dots (2n-1) \cdot 2n \prod (\frac{1}{2})$ Jan n) = (an-1)! $\int \pi \left(\int (f) = \sqrt{\pi} \right)$ 2n-1(n-1) $= \prod (an) \sqrt{\pi}$ 3²ⁿ⁻¹[(n) $B(n,n) = \Pi(n) \Pi(n)$ $\Pi(2n)$ => $\Pi(2n) = \Pi(n) \overline{\eta}$ $\prod(n)$ $\beta(n,n)$ $\Gamma\left(n+\frac{1}{2}\right) = \frac{\Gamma(n)\sqrt{\pi}}{2^{2n-1}} \beta(n,n)$ > B(n,n) = M(n) TR $2^{n-1} \prod \left(n + 1 \right)$ $\left|\left|\left|\left|\frac{\varepsilon}{\varepsilon}\right|\right|\right|$ (Eng)

Hyperbolic Functions $sinhx = \frac{e^{\chi} - e^{\chi}}{2}$ tanio = i tanho $\cosh x = \frac{e^{\chi} + e^{-\chi}}{2}$ Sinio = isinho cosio = cosho $tanhx = \frac{e^{x} - e^{x}}{e^{x} + e^{-x}}$ sin20+Los20 = 1 Cosh20 - Sinh20 = 1 $tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$ $tan (A-B) = \frac{tan A - tan B}{1 + tan A tan B}.$) Prove that $\sinh^{-1}x = \log(x + \sqrt{x^2 + 1})$ Proof:-sinha = y x=sinhy $x = e^{y} - e^{-y}$ $an = e^{y} - \frac{1}{2}y$ $\Rightarrow e^{ay} - axe^{y} - 1 = 0 \Rightarrow (e^{y})^{2} - ax(e^{y}) - 1 = 0$) are = e - 1 $e^{y}_{=} = 2x \pm \sqrt{(-2x)^{2} - (+,1,(-1))}_{=} = 3x \pm \sqrt{+x^{2} + 4}$ 2(1) $2 \chi \pm 2 \sqrt{\chi^2} = \chi \pm \sqrt{\chi^2}$ e^y= $e^{y} = \chi \neq \sqrt{\pi^{2} + 1}$ taking log both sides we get, $y = \log(\pi \pm \sqrt{\pi^2 + 1})$

Scanned by CamScanner

a)
$$\tan h^{-1}x = \frac{1}{2} \log \frac{1+x}{1-x}$$

Read $\frac{1}{\tan h^{-1}x} = \frac{1}{2} \log \frac{1+x}{1-x}$
 $\frac{1}{4} x = \tanh \frac{y}{x} = \frac{2}{e^{y} + e^{y}} = \frac{e^{y} - \frac{y}{e^{y}}}{e^{y} + \frac{1}{e^{y}}}$
 $\frac{1}{e^{y} + e^{y}} = \frac{e^{y} - 1}{e^{y} + 1}$
 $x = \frac{2}{e^{y} - 1}$
 $x = \frac{2}{e^{y} - 1}$
 $x = \frac{2}{e^{y} - 1}$
 $(x - 1)e^{y^{2} + x + 1} = 0$
 $e^{e^{y}} = -\frac{(x + 1)}{x^{-1}} = \frac{1}{e^{(1 - 2)}}$
 $\frac{e^{y}}{e^{y}} = \frac{x + 1}{1 - x}$
Taking $\log \frac{1}{1 - x}$
 $\frac{1}{2} \log \frac{(x + 1)}{(1 - x)}$
 $\frac{1}{2} = \log \frac{(x + 1)}{(1 - x)}$
 $\frac{1}{2} = \log \frac{(x + 1)}{(1 - x)}$
3) $\frac{1}{2} \sin (x + 1e) = x + \frac{1}{2} \log \frac{(x + 1)}{(1 - x)}$
3) $\frac{1}{2} \sin (x + 1e) = x + \frac{1}{2} \tan prove trat$
 $\frac{x^{2}}{(e^{2}h^{2}h^{2})^{2}} = 1$
 $\frac{2x^{2}}{(e^{2}h^{2}h^{2})^{2}} = 1$
 $\frac{2x^{2}}{(e^{2}h^{2})^{2}} = \frac{x^{2}}{x^{2}nh^{2}} = 1$
 $\frac{2x^{2}}{(e^{2}h^{2})^{2}} = x^{2}nh^{2} (e^{2}h^{2}) = x^{2}nh^{2} (e^{2}h^{2}) = 1$
 $\frac{2x^{2}}{(e^{2}h^{2})^{2}} = x^{2}nh^{2} (e^{2}h^{2}) = x^{2}nh^{2} (e^{2}h^{2}) = 1$
 $\frac{2x^{2}}{(e^{2}h^{2})^{2}} = x^{2}nh^{2} (e^{2}h^{2}) = x^{2}nh^{2} (e^{2}h^{2})$

$$\Rightarrow \sin A = \frac{\pi}{\cosh B}$$

$$\Rightarrow \cos A = \frac{4}{\sinh B}$$

$$\Rightarrow \cos A = \frac{4}{\sinh B}$$

$$\Rightarrow \cos A = \frac{4}{\sinh B}$$

$$\Rightarrow \cos^{2} A + \frac{4}{\sinh B} = 1$$

$$\Rightarrow \boxed{\frac{\pi^{2}}{\cosh^{2}} + \frac{4}{y^{2}} = 1}$$

$$\cos B = \frac{\pi}{\sinh^{2} B}$$

$$\cos B = \frac{\pi}{\sinh^{2} B}$$

$$\cos B^{2} B - \frac{\pi}{\sinh^{2} B} = 1$$

$$\boxed{\frac{\pi}{\sin^{2}} - \frac{4}{y^{2}} = 1}$$

$$\cos B^{2} B - \frac{\pi}{\sinh^{2} B} = 1$$

$$\boxed{\frac{\pi}{\sin^{2} h} - \frac{4}{y^{2}} = 1}$$
Soperate the seat and imoglinary parts of tan⁻¹ (a+ib).
Proof: $\tan^{-1} (a+ib) = \pi + iy$

$$\tan^{-1} (a+ib) = \tan(\pi + iy) = 0$$

$$a-ib = \tan(\pi + iy) + \tan(\pi - iy)$$

$$\tan((n+ib) + (x - y)) = \frac{\tan(n+iy) + \tan(\pi - iy)}{1 - \tan(\pi + iy) + \tan(\pi - iy)}$$

$$\tan 8\pi = \frac{a+jb + a-jb}{1 - (a+ib)(a-ib)} \frac{a}{1 - (a^{2}+b^{2})}$$

$$\tan \vartheta x = \frac{\vartheta a}{1-a^2b^2}$$

$$\vartheta x = \tan^{-1}\left(\frac{\vartheta a}{1-a^2b^2}\right)$$

$$x = \frac{1}{2} \tan^{-1}\left(\frac{\vartheta a}{1-a^2b^2}\right)$$

$$\tan\left[ntiy - xt^2y\right] = \frac{\tan\left(x+iy\right) - \tan\left(x-iy\right)}{1+\tan\left(x+iy\right)\tan\left(x-iy\right)}$$

$$= \frac{q+9b-qa+ib}{1+a^2b^2}$$

$$\tan\vartheta x^2y = \vartheta x^2 h$$

$$\frac{1+a^2+b^2}{1+a^2b^2}$$

$$\vartheta \tan x^2y = \frac{\vartheta b}{1+a^2b^2}$$

$$\tan^2 y = \frac{\vartheta b}{1+a^2b^2}$$

$$\tan^2 y = \frac{\vartheta b}{1+a^2b^2}$$

$$\tan^2 y = \tanh^{-1}\left(\frac{\vartheta b}{1+a^2b^2}\right)$$

$$y = \tanh^{-1}\left(\frac{\vartheta b}{1+a^2b^2}\right)$$

$$\tan^{-1}\left(a+ib\right) = \chi + iy$$

$$= \frac{1}{\vartheta} \tanh^{-1}\left(\frac{\vartheta a}{1-a^2b^2}\right) + \frac{1}{\vartheta} \tanh^{-1}\left(\frac{\vartheta b}{1+a^2b^2}\right)$$
Seperate the seal and imaginary parts g

$$\log \vartheta = tan + \frac{1}{2} \log tan + \frac{1}{2} \log \frac{\vartheta}{2} \log \frac{\vartheta}{2} = \frac{1}{2} \log \frac{\vartheta}{2} \log \frac{\vartheta}$$

= log (sin x coshy + i cosx sin hy) = log re^po = log x + log eⁱo = $\log g + i \Theta$ where r = sin r coshy + iCosx sinhy $\gamma = \sqrt{n^2 + y^2}$ = V sin2 x cos2hx + cos2 xo sim 2 hy $= \sqrt{\left(\frac{1-\cos 2x}{a}\right)\left(\frac{1+\cosh 2y}{a}\right)} + \left(\frac{1+\cos 2x}{a}\right)\left(\frac{\cos 2x}{a}\right)$ = 1 + cosax + coshzy - Cosaz coshay =+ + coshzy+ cosaz coshay =+ + coshzy+ cosaz coshay =+ cosaz ~= 1 2 coshay - 2 cosax. 1 If tanh (x+1.8), a(+1), then prese trad + 7,2-1 0 = tan -1 Cosxsinhy sin 2 Coshy = tan (cotx tanhy) $\log \sin(n+i\gamma) = \frac{1}{2} \sqrt{2} \cosh \alpha \gamma - 2 \cos \alpha \chi$ +itan (cotxtanhy)

Scanned by CamScanner

$$\int \frac{1}{4} \cos\left(\frac{\pi}{4} + i\alpha\right) = u + iv, \quad Prove that \quad u^{2} + v^{2} = 2(u^{2} + i\alpha)$$

$$\frac{\operatorname{Solution}}{(\operatorname{cost} - u^{2})} = \frac{2}{(\operatorname{Sin} 2 \operatorname{Cosh} - i)(\operatorname{coaxsinhy})}$$

$$\frac{\operatorname{Cost} - \pi + v^{2}}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})}$$

$$\frac{u}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})}$$

$$\frac{u^{2} + v^{2}}{(\operatorname{cosh} - u^{2})} = \frac{2}{(\operatorname{cosh} - u^{2})} = \frac{$$

· 10 · 1

$$= (\underline{tanhx} + i)(1 - itanhx)$$

$$= \underline{tanhx} + i(1 - \tan^{2}hx)$$

$$= \underline{tanhx} + \tan^{2}hx + i(1 - \tan^{2}hx)$$

$$I + \tan^{2}hx$$

$$= \underline{3} \underline{tanhx} + i(1 - \tan^{2}hx)$$

$$I + \tan^{2}hx$$

$$a^{2} + \underline{\beta}^{2} = \underline{A} \underline{tanhx} \quad B = \frac{1 - \tan^{2}hx}{1 + \tan^{2}hx}$$

$$a^{2} + \underline{\beta}^{2} = \underline{A} \underline{tanhx} + 1 + \tan^{2}hx - \underline{3} \tan^{2}hx$$

$$a^{2} + \underline{\beta}^{2} = \underline{A} \underline{tanhx} + 1 + \tan^{2}hx - \underline{3} \tan^{2}hx$$

$$a^{2} + \underline{\beta}^{2} = 1$$

$$I_{4} \tan^{2}hx)^{2}$$

$$a^{2} + \underline{\beta}^{2} = 1$$

$$I_{4} \tan^{2}hx)^{2}$$

$$a^{2} + \underline{\beta}^{2} = 1$$

$$I_{4} \cos(x + iy) = \overline{\gamma} (\underline{cos}a + is\sin^{2}a)$$

$$Prove (1) (\underline{cos}a + i\cos^{2}a + 2) = 2^{2}a$$

$$(i^{2}) \quad y = \frac{1}{2} \log \frac{xin(x - a)}{xin(x + a)}$$

$$Given (\underline{ces}(x + iy)) = \overline{\gamma} (\underline{cos}a + is\sin^{2}a)$$

$$Given (\underline{ces}(x + iy)) = \overline{\gamma} (\underline{cos}a + is\sin^{2}a)$$

$$Cosx (\underline{cos}hy - isinx sin(iy) = \overline{\gamma} (\underline{cos}a + i \overline{\gamma} sin a')$$

$$(\underline{cosx} (\underline{cos}hy = \overline{\gamma} \underline{cos}a - (\overline{0})$$

$$-sin x sin hy = \overline{\gamma} \underline{sin} x - (\underline{0})$$

$$(\overline{0}^{2} + \underline{0}^{2} = \overline{\gamma}^{2} \underline{cos}^{2}a + \overline{\gamma} \underline{sin}^{2}a = \underline{coix} \underline{coshy} + \underline{sin}^{2}x$$

$$sinh^{2}y$$

Scanned by CamScanner

$$= (\omega^{2}x (\omega h^{2}y - x^{n}h^{2}y) + x^{n}h^{2}y$$

$$= (\omega^{2}x + x^{n}h^{2}y)$$

$$y^{2} = (1 + (\omega h^{2}x) + (\omega h^{2}h^{2}y) - 1)$$

$$\frac{1}{2}$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 + (\omega h^{2}x) + (\omega h^{2}h^{2}y) - 1)$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 + (\omega h^{2}x) + (\omega h^{2}h^{2}y) - 1)$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 + (\omega h^{2}x) + (\omega h^{2}h^{2}y) - 1)$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\tan x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\tan x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x})$$

$$\frac{\partial y^{2}}{\partial x^{2}} = (1 - \frac{\sin x}{\sin x}$$

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
The partial differentiation is a							
function of or							
more variables .	two	zero	one	three			two
If $z=f(x,y)$ where x and y are							
function of another	continuou	differenti					continuou
variable t	s	al	two	one			s
If $f(x,y)=0$ then x and y are							
said to be an							
function	implicit	extrem	explicit	differential			implicit
f(a b) is said to be	maximu	••••••	•••••				maximum
exture mum value of $f(x, y)$ if it	mor						or
is either a	minimum	zero	minimum	maximum			minimum
The Lagrange multiplier is	mmmu	2010	mmmun	maximum			minimum
denoted by							
denoted by		L.	1	L			1
	а	D	1	a			1
Every extremum value is a							
stationary value but a							
stationary value need not be			maxımu				
anvalue.	infimum	minimum	m	extremum			extremum
If u1,u2un are functions							
of n variables x1,x2xn							
then the Jacobian of the							
transformation from							
x1,x2xn to u1,u2un is							
defined by	2	0	1	-1			2
f(a,b) is a maximum value of							
f(x,y) if there exists some							
neighbourhood of the point							
(a,b) such that for every point							
(a+h,b+k) of the	f(a,b)>f(a	f(a,b) <f(a< td=""><td></td><td></td><td></td><td></td><td>f(a,b) > f(a)</td></f(a<>					f(a,b) > f(a)
neighbourhood	+h.b+k)	+h.b+k)	f(a,b)<0	f(a,b)>0			+h.b+k)
f(a b) is a minimum value of	,)	;;	-(,-) *	-(,-) *			,)
f(x,y) if there exists some							
neighbourhood of the point							
(a b) such that for every point							
(a,b) such that for every point $(a+b+k)$ of the	f(a b)>f(a	f(a b) <f(a< td=""><td></td><td></td><td></td><td></td><td></td></f(a<>					
neighbourhood	(a,0) > 1(a + b + b)	+h h+k	f(a b)<0	f(a b)>0			f(a b) <f(a+b b+b)<="" td=""></f(a+b>
The pagessery condition for	af/av	af/av	$\frac{1}{2}$	$\frac{\partial f}{\partial y}$			a, b < l(a + 11, b + K)
maxima is	(a b) = 0	(a b) = 1	(a b) = 5	(a b) = 1			(a b) = 0
The pages and the for	(a,0)=0	(a,0) = 1	(a,0)=3	(a,0)=1			(a,0)=0
minimum is	(a b)=0	(a b)=0	(a b) = 1	(a b) = 1			$\frac{\partial I}{\partial y}$
	(a, b) = 0	(a, b) = 0	(a, b) - 1	(a, b) - 1			(a, 0) = 0
	OI/OX						OI/OX
% 1); 1 , 1, 1 , 1	(a,b)=0						(a,b)=0
f(a,b) is said to be said to be a	and	0.010	0.010	0.010			and
stationary value of $f(x,y)$ if	∂t/∂y	∂t/∂x	∂f/∂y	∂t/∂y			∂f/∂y
(x,y) is	(a,b)=0	(a,b)=1	(a,b)=0	(a,b)=1			(a,b)=0
The expansion of $f(x,y)$ by	Maclauri						
series is unique.	ns	Taylor	power	binomial			Taylor
If f(a,b) is said to be							
of f(x,y) if it is	extremu	boundary					extremum
either maximum or minimum.	m value	value	end	power			value
The differentiation is							
a function of two or more							
variables.	ODE	PDE	partial	total			partial
Any function of the type $f(x,y)=$	Implicit	Explicit	Constant	composite			Implicit

If $u=f(x,y)$, where					
x=p(t),y=s(t) then u is a					
function of t and is called the					
function	Implicit	Explicit	Constant	composite	composite
The point at which function					
f(x,y) is either maximum or					
minimum is known as					
point	Stationary	saddle poir	extremum maximu	implicit	Stationary
			m or		
If rt-s $^2>0$ and r <0 at (a,b) the $=$	fMaximum	Minimum	minimum	zero	Maximum
			maximu		
			m or		
If rt-s $^2>0$ and r >0 at (a,b) the	fMaximum	Minimum	minimum	zero	Minimum
If rt-s $^{2}>0$ at (a,b) the f(x,y) is	Stationary	Saddle poir	extremum	implicit	Saddle point
If Ñ.F=0 then F is	irrotation al	solenoida l	rotational	curl	solenoidal
If $\tilde{N} \times F=0$ then F is	irrotation al	solenoida l	rotational	curl	irrotationa 1
Any motion in which the curl of the velocity vector is zero is said to be	irrotation al	solenoida l	rotational	curl	irrotationa 1
A function is said to be if it associates a scalar with every point in space.	Scalar function	Vector function	Point function	vector point function	Scalar function
A variable quantity whose					
value at any point in a region of space depends upon the position of the point is called a	Scalar function	Vector function	Point function	vector point function	Point function
A function is said to be if it associates with vector in every point in space.	Scalar function	Vector function	Point function	vector point function	Vector function
If the divergence of a flow is zero at all points then it is said to be	rotational	irrotation al	solenoida l	conservati ve	solenoidal

gives the rate of outflow per unit volume at a point of the fluid.	curl V	div V	curl V=0	div V=0	div V
If div V=0 everywhere in some region R of space then V is called the vector point function.	rotational	irrotation al	solenoida l	conservati ve	solenoidal
is a vector which measures the extent to which individual particles of the fluid are spnning or rotating.	curl V	div V	curl V=0	div V=0	curl V
div F is a function. If curl V=0 then V is said to be an If $r=xI+vI+zK$ then div	point rotational	vector irrotation al	scalar solenoida l	rotational conservati ve	scalar irrotationa 1
r= If $r=xI+yJ+zK$ then curl	() 1	2	3	3
r= div (curl V)= curl (grad f)= Two surfaces are said to cut	() div V) div V	curl V curl V	V f	0 0
orthogonally at a point of intersection, if the respective normals at that point are	parallel	perpendic ular	equal	zero	perpendic ular
Any integral which is to be evaluated over a surface is called a	Line integral	Volume integral	surface integral	closed integral	surface integral
When the circulation of F around every closed curve in a region vanishes, then F is said to be in that region.	rotational	irrotation al	solenoida 1	conservati ve	irrotationa 1
A force field F is said to be if it is derivable from a potential function f such that $F = \text{grad } f$.	rotational	irrotation al	solenoida l	conservati ve	conservati ve
If F is then cur F=0.	rotational	irrotation al	solenoida l	conservati ve	conservati ve
If S has a unique normal at each of its points whose direction depends continuously on the point of S then the surface S is called a surface.	Orientabl e	smooth	plane	twisted	smooth
If $(3x-2y+z)I+(4x+ay-z)J+(x-y-2z)K$ is solenoidal then a=	() 1	-1	2	-1
If f=x+y+z-8 then grad f is	I+J+K	I+J-K	I-J+K	0	I+J+K
Unit-V Jacobian Series. The solution of the sufferential equation. $\frac{\chi^2 d^2 y}{d\chi^2} + \frac{\chi dy}{d\chi} + (\chi^2 - n^2)y = 0.$ $Y = \sum_{r=0}^{\infty} \frac{C-1)^r}{r!(n+r)!} \left(\frac{x}{a}\right)^{n+ar}.$ whiche is known as Bessel function. ĩ $J_{n}(x) = \sum_{\gamma=0}^{\infty} \frac{C-D^{\gamma}}{\Gamma(r+1)} \frac{\left(\frac{x}{a}\right)^{n+2\gamma}}{\left(\frac{x}{a}\right)^{n+2\gamma}} \left(\frac{\Gamma(n+1)}{r}\right)$ $J_{-n}(x) = \sum_{\substack{r=0}}^{\infty} \frac{(-1)^r}{\prod(r+1)\prod(-n+r+1)} \left(\frac{x}{a}\right)^{n+ar}.$ (x), $t \in \mathcal{A}$ (Je) (+ T' ic - [(m)] [m] b tom - shak Y & + 1 Charles and Q4mm)开行中的门台

$$d\left[\frac{\tau^{n} J_{n}(n)}{dx}\right] = \sum_{\substack{Y \ge 0 \\ Y \ge 0}}^{\infty} \frac{C_{1} J_{Y}^{Y} g_{Y}^{Y} g_{Y}^{Y}}{\prod_{(r+1)}^{n} \prod_{(r+r+1)}^{n} g_{Y}^{n+q_{r}}}$$

$$= -\chi^{n} \sum_{\substack{Y \ge 0 \\ T \le 0 \\$$

Proof $e^{\frac{\chi}{2}\left(z-\frac{1}{2}\right)} = 1 + \frac{\chi}{2}\left(z-\frac{1}{2}\right) + \frac{\chi^{2}}{4,21}\left(z-\frac{1}{2}\right) + \frac{\chi^{3}}{8,31}\left(z-\frac{1}{2}\right) + \dots$ $+\frac{x^n}{2^{n,n!}}\left(x-\frac{1}{z}\right)^n$ $= 1 + \frac{\chi}{8} \left(z - \frac{1}{z} \right) + \frac{\chi^{2}}{4.31} \left(z^{2} - 2 + \frac{1}{78} \right) + \frac{\chi^{3}}{8.31} \left(z^{3} - 3z + \frac{3}{2} + \frac{1}{2} \right)$ $t + \frac{x^{n}}{2} \left(z^{n} - nz^{n-2} + \frac{(n)(n-1)}{2} z^{n-2} + \frac{1}{-2} + \dots - \frac{1}{-2} \right)$ pⁿ,n) $= \left[-\left(\frac{x}{2}\right)^{2} + \left(\frac{x}{2}\right)^{4} \frac{1}{(2!)^{2}} - \left(\frac{x}{2}\right)^{6} \frac{1}{(3!)^{2}} + \left(\frac{x}{2}\right)^{6} \frac{1}{(3!)^{2}}\right]$ $+\left(\frac{x}{a}-\left(\frac{x}{a}\right)^{3}\frac{1}{a}+\left(\frac{x}{a}\right)^{5}\frac{1}{2}\frac{1}{3}\frac{1}{3}+\cdots\right)^{2}$ $+ z^{n} \left(\frac{\binom{n}{2}}{2} \frac{\binom{n}{1}}{\binom{n}{2}} - \frac{1}{\binom{n+1}{2}} \left(\frac{\binom{n}{2}}{\binom{n}{2}} + \frac{1}{\binom{n}{2}} \left(\frac{\binom{n}{2}}{\binom{n}{2}} + \frac{1}{\binom{n}{2}} \right) \left(\frac{\binom{n}{2}} + \frac{1}{\binom{n}{2}} \right) \left(\frac{n}{2} + \frac{n}{2} + \frac{1}{\binom{n}{2}} \right) \left(\frac{n}{2} + \frac{n}{2} + \frac$ The Coefficient of zn is $= \left(\frac{x}{a}\right)^{n} \left(\frac{1}{n!} + \left(\frac{x}{a}\right)^{a} + \left(\frac{x}{a}\right)^{a}$ $= \left(\frac{x}{a}\right)^{r} \sum_{r=0}^{\infty} \frac{c-1}{(n+r)! r!} \left(\frac{x}{a}\right)^{q} r$ $= \frac{0}{2} \frac{c-1}{\prod(r+1)\prod(n+r+1)} \left(\frac{n}{a}\right)^{n+ar}$ = $J_{n}(n)$

Scanned by CamScanner

Prove that
$$J_{n}(-x) = c-1)^{n} J_{n}(x)$$

$$J_{n}(x) = \sum_{r=0}^{\infty} \frac{c-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{n+ar}$$

$$J_{n}(-x) = \sum_{r=0}^{\infty} \frac{c-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{-x}{a}\right)^{n+2r}$$

$$= (-1)^{n} \sum_{r=0}^{\infty} \frac{c-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{n+ar}$$

$$= (-1)^{n} J_{n}(x).$$

$$a) Paove that $J_{-n}(x) = (-1)^{n} J_{n}(x)$

$$add = J_{n}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{n+ar}$$

$$J_{-n}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{-n+ar}$$

$$f(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{-n+ar}$$

$$f(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r}}{|f|(r+1)|f|(n+r+1)} \left(\frac{x}{a}\right)^{n+ar}$$

$$J_{-n}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{n} t^{r}}{|f|(n+r+1)|c|(n+r+1)|c|}$$

$$= (-1)^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{|f|(n+k+1)|f|(n+k+1)|} \left(\frac{x}{a}\right)^{n+ak}$$

$$= (-1)^{n} J_{n}(x).$$$$

3. Find
$$J_{0}(x) = \sum_{Y=0}^{\infty} \frac{(-1)^{Y}}{\Gamma[(r+1)]\Gamma[(r+1)]} \left(\frac{x}{2}\right)^{n+\Re Y}$$

 $J_{0}(x) = \sum_{Y=0}^{\infty} \frac{(-1)^{Y}}{\Gamma[(r+1)]\Gamma[(r+1)]} \left(\frac{x}{2}\right)^{n}$
 $= 1 - \left(\frac{x}{2}\right)^{2} + \left(\frac{x}{2}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2}\right)^{n}$
 $= 1 - \left(\frac{x}{2}\right)^{2} + \left(\frac{x}{2!}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= 1 - \left(\frac{x}{2!}\right)^{2} + \left(\frac{x}{2!}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= 1 - \left(\frac{x}{2!}\right)^{2} + \left(\frac{x}{2!}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= 1 - \left(\frac{x}{2!}\right)^{2} + \left(\frac{x}{2!}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= 1 - \left(\frac{x}{2!}\right)^{2} + \left(\frac{x}{2!}\right)^{n} \cdot \frac{1}{(2!)^{n}} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n} = \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $= \frac{x}{2!} - \left(\frac{x}{2!}\right)^{2} + \frac{1}{(2!)^{n}} \left(\frac{x}{2!}\right)^{n}$
 $\int_{n} J_{n} = x \left[J_{n+1} + J_{n-1}\right]$
 $n = 2 J_{1} = x \left[J_{2} + J_{0}\right]$
 $x J_{2} = \frac{2}{2!} J_{1} - J_{0}$
 $J_{2} = \frac{2}{2!} J_{1} - J_{0}$
 $J_{2} = \frac{2}{2!} J_{1} - J_{0}$
 $J_{2} = -n x^{n} J_{n} = -x^{n} J_{n+1}$
 $J_{n} - \frac{n}{x} J_{n} = -J_{n+1}$
 $x J_{n}^{n} = n J_{n} - x J_{n+1}$

Scanned by CamScanner

$$W^{k, +} \begin{array}{c} X J_{n} = \chi J_{n+1} - n J_{n} & - 0 \\ + \chi J_{n}' = n J_{n} - \chi J_{n+1} & - 0 \\ \Rightarrow \chi J_{n}' = \frac{1}{2} \left[\chi J_{n-1} - \chi J_{n+1} \right] \\ J_{n}' = \frac{1}{2} \left[\chi J_{n-1} - \chi J_{n+1} \right] \\ J_{n}' = \frac{1}{2} \left[J_{n-1} - J_{n+1} \right] \\ \Rightarrow \chi J_{n}' = \frac{1}{2} \left[J_{n-1} - J_{n+1} \right] \\ \Rightarrow \chi J_{n} = \chi J_{n+1} - \chi J_{n-1} = 0 \\ g_{n} J_{n} = \chi J_{n+1} + \chi J_{n-1} \\ = \chi \left[J_{n+1} + J_{n-1} \right] \\ P_{aove that} J_{-y_{a}} (\chi) = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{n+2\gamma} \\ \gamma = 0 \int_{T(\tau+1)}^{T(\tau+1)} \int_{T(\tau+n+1)}^{T(\tau+n+1)} \left(\frac{\chi}{2} \right)^{n+2\gamma} \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{2}} + \chi \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{2}} + \chi \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \right)^{\frac{1}{\pi}} \\ = \sqrt{\frac{2}{\pi}} \left(\frac{\chi}{2} \right)^{\frac{1}{\pi}} \left(\frac{\chi}{2} \right)^{\frac$$

 $= \sqrt{\frac{2}{\pi n}} \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots \right)$ $\int \cdot \cdot \int \left(\frac{1}{2}\right) = \sqrt{\pi}$ = 2 Cosz Noti- $\int_{1/2}^{1/2} (\alpha) = \sqrt{\frac{2}{\pi \alpha}} \sin \alpha - \frac{1 - \frac{\pi^2}{2}}{2} + \frac{\pi^4}{4!} = \dots = C_{0,\pi}$ Prove that $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$ X Solo w.k.t $an J_n = \pi [J_n + 1 + J_n - 1]$ Substitute n=/g $J_{y_0} = \chi \left(J_{3/2} + J_{-1/2} \right)$ $J_{3/2} = \frac{1}{\pi} \left[J_{1/2} - J_{-1/2} \right]$ $= \frac{1}{2} \sqrt{\frac{2}{\pi \alpha}} \sin \pi - \sqrt{\frac{2}{\pi \alpha}} \cos \chi \right)$ $= \sqrt{\frac{a}{\pi \chi}} \left(\frac{\sin \chi}{\chi} - \cos \chi \right)$ Prove that $J_{\gamma_2}(n) = \sqrt{\frac{2}{\pi n}} \sin n$ ntar $J_{n}(m) = \frac{\alpha}{\sum_{\gamma=0}^{\infty} \frac{(-1)^{\gamma}}{\prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n}$ $J_{x}(x) = \sum_{\gamma=0}^{\infty} \frac{(-1)^{\gamma}}{\prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \frac{(-1)^{\gamma}}{\prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \prod_{\gamma=0}^{n} \frac{1}{2} + a_{\gamma}$ $= \left(\frac{x}{2}\right)^{1/2} \frac{1}{\Gamma(\frac{3}{2})} - \left(\frac{x}{2}\right)^{5/2} \frac{1}{\Gamma(\frac{5}{2})} + \left(\frac{x}{2}\right)^{2} \frac{1}{2!\Gamma(\frac{1}{2})}$

Scanned by CamScanner

$$= \frac{\sqrt{x}}{\sqrt{a} \frac{1}{a} \prod_{i=1}^{n} \frac{1}{a}} = \frac{\sqrt{x}}{\sqrt{a} \frac{3}{a}} + \frac{\sqrt{2}}{\sqrt{a} \frac{3}{a}} + \frac{\sqrt{2}}{\sqrt{a} \frac{3}{a} \frac{1}{a} \sqrt{2} \frac{5}{2} \cdot \frac{3}{2} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{a}} + \frac{\sqrt{2}}{\sqrt{a} \sqrt{a} \frac{3}{a}} + \frac{\sqrt{2}}{\sqrt{a} \sqrt{a} \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{a}} + \frac{\sqrt{2}}{\sqrt{a} \sqrt{a}} + \frac{\sqrt{2}}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{1}{2} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{a}} + \frac{\sqrt{2}}{\sqrt{a} \sqrt{a}} + \frac{\sqrt{2}}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{1}{2} \frac{1}{2} \prod_{i=1}^{n} \frac{1}{a}} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a}} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a} + \frac{\sqrt{2}}{a} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a} + \frac{\sqrt{2}}{a} \cdot \frac{1}{a} + \frac{\sqrt{2}}{a} + \frac{\sqrt{2}$$

Prove that
$$J_2 = J_0^n - \frac{J_0^n}{n!}$$

Solp perverse formula
 $x J_n' = n J_n - x J_{n+1}$
Substitute $n = 0$
 $x J_n' = n J_0' = -J_1 - 0$
 $n = n$
 $y J_1' = J_1 - x J_2 - 0$
 $s^2 J_2 = 0$ $J_0'' = J_1' - 0$
Sub from (3) $e(0)$ in (3)
 $-x J_0'' = -J_0' - x J_2$
 $J_2 = J_0'' - \frac{J_0'}{x!}$
State 9 Prove Jacobi series.
1) Prove that
 $(cs. (x sin \theta) = J_0 + & J_2 (cs. & \theta + & J_4 (cs. & \theta + - - - s))$
 $sin (x & sin \theta) = & J_1 + & J_2 (cs. & \theta + & A J_4 (cs. & \theta + - - - s))$
The Generating function for $J_n(x) - u$
 $\frac{x}{a} (z - \frac{1}{2})_{=} J_0 + & Z_1 + & Z_1 + & J_2 + J_2 + J_2 + J_2 + & Z_2 - & Z_2$

 $e^{-i0} = aisin0$ $\chi^{\text{RSENQ}}_{2} J_0 + (\cos \theta + i \sin \theta) J_1 + (\cos 2\theta + i \sin 2\theta) J_2$ $+ (0930 + isin 30) J_3 +$ e $+ J_{-1} (Los 0 - isin 0) + J_{-2} (Los 20 - isin 20)$ los (xsino) +isin (xsino) $= J_0 + J_1 C_{0,0} + J_2 C_{0,0} + J_2 C_{0,0} + J_3 C_$ +J, Sind-Jasin20+J3 sin30+-) $+i(J_1sino+J_2sin20+...$ Comparing real and imaginary parts. $Cos(xsino) = J_0 + 2J_2 cos 20 + 2J_4 cos 40 + ...$ Sing x sino) = & Ji sino + a Ja sin 30 + ... These are called Jacobi Sevies Prove that i) x sinn = 2 [2232-434+6356-.] (i) $\chi \cos x = 2 [J_1 - 3^2 J_3 + 5^2 J_5 - ...]$ $V_{05x}(sino) = J_0 + 2 J_2 Cos 20 + 2 J_4 Cos 40 + -$ Soln :-W.k.t $Sin \chi (Sin \theta) = 2 J_1 Sin \theta + 2 J_3 Sin 3 \theta + 2 J_5 Sin 5 \theta + 1$ $-Sin(xSino) x COSO = -4 J_2 Sin 20 - 8 J_4 Sin 40$ off w.r.to O $-\cos(x\sin\theta)x^2\cos^2\theta + x\sin\theta.\sin(x\sin\theta)$ Again Diff w.r. to O = - 8 J2 COS 20 - 32 J4 COS 4 0+

Put $0 = \frac{1}{2}$ $\sin x = 8J_2 - 3aJ_4 + --$ = 2 [2] J2 - 4 J4 + - ·] Ditf @ w.r.b O Cos (x sino) x cos 0 = 2 J, cos 0 + 2.3 J3 cos 30 + 8.5 J5 68 50 Again wiff w.r.to D -Sin(xsino)2ºcosio - xsino cos(xsino) = - 2J, sino - 2.3J3sin30 - 2.5²J5 Sin 50 put 0= 1/2 $-\chi \cos \chi = - 2J_1 + 2.3J_2 - 2.5^2 J_5$ $\chi \omega \chi = a [J_1 - 3^2 J_3 + 5^2 J_5 - \cdots]$ Using Jacobi series Prove that $\left[J_0(x) \right]^2 + a \left[J_1(x) \right]^2 + a \left[J_a(x) \right]^2 + -$ Soln: Jacobi Series is Cos(xsino)=Jo+2J, cos20+2J, cos40+ ___ $Sin(xsino) = gJ_1sino + gJ_3sin30 + gJ_5sin50+ - G$ Squaring and integrating wirto o between Dand π on both sides 7 De 2 T Cos (x sino) do = J Jo do + J H J2 Los 20 do + JAJ2 00340 do + ...+ 2 JJoJ2 Cosado + 4 JJ2 J4 Cos20 CosHodo

cosno cosmo do = o $\int_{3}^{7} \cos^{2}(\pi \sin \theta) d\theta = J_{0}^{2}\pi + 4 J_{2}^{2} \frac{\pi}{2} + 4 J_{4}^{2} \frac{\pi}{2} + ...$ = 7 $=\pi \left[Jo^{2} + 2J_{2}^{2} + 2J_{4}^{2} + J_{3}^{2} \right]$ $\left(: \int \cos^2 h \, o \, d \, o = \frac{\pi}{2} \right)$ $\int sin^2 (xsino) do = H \int y_1^2 sin^2 o do + 4 \int J_3^2 sin^2 o do$ $\int sinnodo = \frac{\pi}{2}$ $\int sinno sinmodo = 0 \quad (ifn \neq m).$ om $(3)^{2} (7)^{2} + 2 J_{2}^{2} + 2 J_{4}^{2} + 2 J_{3}^{2} + 2 J_{3}$ From Set $\Rightarrow \int J_0(x)^{q} + \& (J_1(x))^{q} + \& (J_2(x))^{q} + \cdots =),$ Prove that $J_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(n\theta - x \sin\theta) d\theta$. $U_{0}(x \sin \theta) = J_{0}(x) + 2J_{0}(\theta + 2J_{4}(\theta + \theta + \theta)) = J_{0}(x) + 2J_{0}(\theta + 2J_{4}(\theta + \theta)) = 0$ soln :con (nsino) - 2 Jsino + 2 Jzsin30+ --Multiply Dby Cosno and integrating w.r. to a between 0 and T.

Scanned by CamScanner

f cos (xsino) cosnodo $= \int J_0 \cos n 0 d_0 + \int \partial J_2 \cos 2 \partial \cos n 0 d_0 + \int \partial J_4 \cos 4 \partial \cos n 0 d_0 + \int \partial J_4 \cos 4 \partial \cos n 0 d_0$ (...n=2m) = JaJan cosamodo $\left(\int_{cosnocosmodo=0}^{\pi}, m\neq n\right)$ = J2m T = $J_n \pi$ when n is even. Multiply @ by sinno and integrating w.r.to o from oto T. JSin [xsino)sinnodo = $2\int_{J}$, sinosinnodo $f\int_{J}$ $2J_{3}$ sinsosinnodo = 0 ? when n is even MO TJn when n is odd (:] sinno sinmodo = 0 if $n \neq m$ [[cos(xsino)cosnofsin (xsino)sinno)do $=\pi Jn$ 0 Cos(no-xsino)do -π J,(x) $J_n(x) = \int \int (cosno - x sino) do$

Prove that
$$\frac{d}{dx} \left[\alpha \operatorname{Jn} \operatorname{Jn}_{1}^{(\alpha)} \right] = \alpha \left[\operatorname{Jn}^{2} - \operatorname{Jn}_{1}^{\alpha} \right]$$

where $\frac{d}{dx} \left(\alpha \operatorname{Jn} \operatorname{Jn}_{1}^{(\alpha)} \right) = \operatorname{Jn}_{1}^{(\alpha)} \operatorname{Jn}_{1}^{(\alpha)} + \alpha \operatorname{Jn}_{1}^{(\alpha)} \operatorname{Jn}_{1}^{(\alpha)} = \alpha \operatorname{Jn}_{1}^{(\alpha)} \operatorname{Jn$

Questions	opt 1	opt 2	opt 3	opt 4	opt5	opt6	Answer
A sequence $\{2^n\}$ is	Convergent	divergent	Oscillatory	unique			divergent
A sequence $(-1)^n+2$ is	Convergent	divergent	Oscillatory	unique			Oscillatory
A sequence $\{2n+1/3n-2\}$ is	Convergent	divergent	Oscillatory	unique			Convergent
A sequence $\{2n^{2}+n/3n^{2}-3\}$ is	Convergent	divergent	Oscillatory	unique			Convergent
The series $\sum \cos(1/n)$ is	Convergent	divergent	Oscillatory	unique			Convergent
The series $\sum x^n/(n^3+1)$ at x=1 is	Convergent	divergent	divergent	Not unique			Convergent
The series $1-(1/2^2)+(1/3^2)-(1-4^2)+\dots$ is	Convergent	divergent	Oscillatory	Not unique			Convergent
The series $1-2x+3x^2-4x^3+$ where $0 \le x \le 1$ is	Convergent	divergent	divergent	unique			Convergent
The series whose nth term is $\sum \sin(1/n)$ is	Convergent	divergent	divergent	Not unique			Convergent
			Montonic	Montonic			
An ordered set of real number a_1,a_2,a_n is called a	Series	sequence	sequence	sequence			sequence
If a sequence has a, it is called a convergent sequence	Finite limit	Infinite limit	limit	Bounded			Finite limit
A sequence is said to be bounded above if there exists a number k,							
such that for every n.	a_n>k	a_n≥k	a_n≤k	a_n <k< td=""><td></td><td></td><td>a_n≤k</td></k<>			a_n≤k
Both increasing and decreasing sequence are called							
sequence.	Convergent	Montonic	Bounded	divergent			Montonic
If limit n tends to ∞ a_n is equal to then the sequence is	finite and						
said to be Convergent	unique	Infinite	unique	not unique			finite and unique
If $u_{1,}u_{2,,}u_{n,}$ be an infinite sequence or real numbers, then							
u1+u2++un+is called	infinite series	s finite series	finite terms	infinite term	s		infinite series
The series $1+2+3+$ $+n+\ldots+\infty$ is	Convergent	divergent	Oscillatory	not unique			divergent
Every absolutely convergent series is a series	Convergent	divergent	Oscillatory	not unique			Convergent
Any convergent series of terms is also absolutely							
convergent	negative	positive	zero	unique			positive
If limit n tends to infinite $u_n/u_n+1 = m$ is a series of positive							
terms $\sum u_n$ is convergent if	m>0	m<1	m>1	m=1			m>1
If limit n tends to ∞ u_n/u_n+1 = m is a series of positive terms							
\sum u_n is divergent if	m>0	m<1	m>1	m=1			m<1
If limit n tends to ∞ u_n/u_n+1 = m is a series of positive terms							
when the ratio test fails	m>0	m<1	m>1	m=1			m=1
Which of the following functions has the period 2π ?	cos x	sin nx	tan nx	tan x			cos x

If a function satisfies the condition $f(-x) = f(x)$ then which is true?	$a_{0} = 0$	$a_n = 0$	$a_{0} = a_{n} = 0$	$b_n = 0$	$b_{n} = 0$
If a function satisfies the condition $f(-x) = -f(x)$ then which is true?	$a_0 = 0$	$a_n = 0$	$a_{0} = a_{n} = 0$	$b_n = 0$	$a_{0} = a_{n} = 0$
Which of the following is an odd function?	sin x	cos x	$x^{^2}$	x^4	sin x
Which of the following is an even function?	$x^{^3}$	cos x	sin x	$\sin^{2}x$	cos x
The function $f(x)$ is said to be an odd function of x if	f(-x) = f(x)	f(x) = -f(x)	f(-x) = - f(x)	f(-x) = f(-x)	f(-x) = -f(x)
The function $f(x)$ is said to be an even function of x if	f(-x) = f(x)	$\mathbf{f}(\mathbf{x}) = -\mathbf{f}(\mathbf{x})$	f(-x) = - f(x)	f(-x) = f(-x)	f(-x) = f(x)
$\int f(x) dx = 2 \int f(x) dx$ between the limits -a to a if $f(x)$ is	even	continuous	odd	discontinu ous	even
$\int f(x) dx = 0$ between the limits -a to a if $f(x)$ is	even	continuous	odd	discontinu ous	odd
If a periodic function $f(x)$ is odd, it's Fourier expansion contains no terms.	coefficient a _n	sine	coefficient a ₀	cosine	cosine
If a periodic function f(x) is even, it's Fourier expansion contains no terms.	cosine	sine	coefficient a_0	coefficient a_n	sine
In dirichlet condition, the function f(x) has only a number of maxima and minima.	uncountabl e	continuous	infinite	finite	finite
In Fourier series, the function $f(x)$ has only a finite number of maxima and minima. This condition is known as	Dirichlet	Kuhn Tucker	Laplace	Cauchy	Dirichlet
In dirichlet condition, the function f(x) has only a number of discontinuities .	uncountabl e	continuous	infinite	finite	finite
The Fourier series of f(x) is given by	$a_0/2 + \sum$ ($a_n \cos nx +$ bn sin nx)	$a_0/2 + \sum$ ($a_n \cos nx$ - bn sin nx)	$a_n/2 + \sum$ ($a_n \sin nx^+$ bn sin nx)	$a_{0}/2 + \sum$ ($a_{0} \sin n\pi x/1$)	$a_0/2 + \sum (a_n \cos nx + bn \sin nx)$

kuhn- Tucker	Laplace	Dirichlet	Cauchy	Dirichlet
$a_0/2 + \sum a_n \sin(n\pi x/l)$	$\frac{a_0}{2} + \sum a_n \cos(n\pi x/l)$	$a_n/2 + \sum_{n cos(n\pi x/l)}$	$\begin{array}{l} a_0 / 2 + \sum \\ a_0 \sin(n\pi x / l) \end{array}$	$a_0/2 + \sum a_n \cos(n\pi x/l)$
$\frac{2}{l} \int f(x) \\ \sin(n\pi x/l) dx$	$\frac{2}{l} \int f(x) \\ \cos(n\pi x/l) \\ dx$	$\frac{1}{l} \int f(x) / l dx$	$\int f(x) dx$	$\frac{2}{l} \int f(x) \cos(n\pi x/l) dx$
$\frac{2}{l} \int f(x) dx$	$1/l \int f(x) dx$	$\frac{2}{l} \int f(x)/1 dx$	$\int f(x) dx$	$2/l \int f(x) dx$
$\frac{2}{l} \int f(x) f(x) \cos(n\pi x/l) dx$	$\frac{2}{l} \int f(x) \sin(n\pi x/l) dx$	$\int f(x) dx$	$\frac{1}{l} \int f(x) / \frac{1}{dx}$	$\frac{2}{l} \int f(x) \sin(n\pi x/l) dx$
a ₀	a ₁	b_n	$a_0 \underset{\&}{*} a_n$	b _n
a_0 _{&} a_n	a_1	b_n	b_1	a_0 _{&} a_n
$\sum b_n \sin n\pi x/l$	$\sum b_n \sin n\pi x/l$	$\sum b_n \cos n\pi x/l$	$a_0/2+\sum$ $a_n \cos(n\pi x/l)$	$a_0/2+\sum a_n \cos(n\pi x/l)$
$\sum b_n \sin n\pi x/l$	$\sum_{l} a_n \sin n\pi x / l$	$\sum b_n \cos n\pi x/l$	$\sum_{n \to \infty} a_n \cos n\pi x / l$	$\sum b_n \sin n\pi x/l$
a_0 a_0 a_0	b_1 a_n a_n	b_n b_n b_n	a_n b_1 b_1	a_n a_0 b_n
	kuhn- Tucker $a_0/2 + \sum_{a_n \sin(n\pi x/l)} 2/l \int f(x) \sin(n\pi x/l)$ $2/l \int f(x) dx$ $2/l \int f(x) dx$ $2/l \int f(x) dx$ $2/l \int f(x) \cos(n\pi x/l) dx$ a_0 $a_0 \& a_n$ $\sum_{b_n \sin(n\pi x/l)} \sum_{b_n \sin(n\pi x/l)} \sum_{a_0} \sum_{a_0$	kuhn- TuckerLaplace $a_0/2 +$ $\sum a_n \sin($ $n\pi x/l$) $a_0/2 + \sum a_n \cos(n\pi x/l)$ $n\pi x/l$) $2/l \int f(x)$ $\sin(n\pi x/2)$ $2/l \int f(x)$ $2/l \int f(x)$ $2/l \int f(x)$ x a_1/dx $2/l \int f(x)$ dx $2/l \int f(x)$ dx $2/l \int f(x) dx$ a_0 a_1 a_0 a_1 $\sum b_n \sin n\pi x/l$ $\sum b_n \sin n\pi x/l$ $\sum b_n \sin n\pi x/l$ $\sum a_n \sin n\pi x/l$ a_0 a_1 a_0 a_1	kuhn- TuckerLaplaceDirichlet $a_0/2 +$ $\sum a_n sin()$ $n\pi x/l)a_0/2 + \sum a_n\cos(n\pi x/l)a_n/2 + \sum a_n cos(n\pi x/l)a_n cos(n\pi x/l)2/l \int f(x)sin(n\pi x/)2/l \int f(x)cos(n\pi x/l)1/l \int f(x)/ldx2/l \int f(x)l) dx1/l \int f(x) dx2/l \int f(x)/ldx2/l \int f(x)l) dx1/l \int f(x) dx2/l \int f(x)/ldx2/l \int f(x)dx2/l \int f(x)dx3/l2/l \int f(x)dx2/l \int f(x) dx3/la_0a_1b_na_0a_1b_n\sum b_n sin n\pi x/l\sum b_n cos n\pi x/l\sum b_n sin n\pi x/l\sum b_n cos n\pi x/la_0a_1b_na_0a_na_nb_n$	kuhn- TuckerLaplaceDirichletCauchy $a_0/2 + \sum_{\Delta n} \sin(n/n\pi x/l)$ $a_0/2 + \sum_{\Delta n} a_0 \sin(n/n\pi x/l)$ $a_0/2 + \sum_{\Delta n} a_0 \sin(n/n\pi x/l)$ $n\pi x/l$ $cos(n\pi x/l)$ $a_n cos(n\pi x/l)$ $a_0 \sin(n/n\pi x/l)$ $2/l$ f(x) $2/l$ f(x) $1/l$ f(x)/lf(x) dx $2/l$ f(x) $2/l$ f(x) $1/l$ f(x)/lf(x) dx $2/l$ f(x) $1/l$ f(x) dx $2/l$ f(x)/lf(x) dx $2/l$ f(x) $2/l$ f(x) dx dx $2/l$ f(x) dx dx dx dx a_1 b_n $a_0 \& a_n$ a_0 a_1 b_n b_n a_0 a_n a_n a_n a_0 a_n $n\pi x/l$ a_n a_n a_n a_n b_n a_n a_n b_n a_n a_n b_n b_n