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Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer

A square matrix A is said to be ----if the determinant value of A is zero. singular non singular symmetric
non 
symmetric singular

A square matrix A is said to be ----if the determinant value of A is not equal to 
zero. singular non singular symmetric

non 
symmetric non singular

A square matrix A is said to be singular if the determinant value of A is ----. 1 2 non zero zero zero

A square matrix A is said to be non singular if the determinant value of A is ----. 1 2 non zero zero non zero
A square matrix in which all the elements below the leading diagonal are zeros,it 
is called an -----matrix.

upper 
triangular

lower 
triangular symmetric

non 
symmetric

upper 
triangular

A square matrix in which all the elements above the leading diagonal are zeros,it 
is called an -----matrix.

upper 
triangular

lower 
triangular symmetric

non 
symmetric

lower 
triangular

A unit matrix is a ----matrix. scalar
lower 
triangular symmetric

non 
symmetric scalar

 A system of equation is said to be consistent if they have  one solution       one or more 
solution  no solution  infinite 

solution
 one or more 
solution 

If rank of A is equal to the rank of [AB] then the system of equations is ------ Consistent inconsistent symmetric
non 
symmetric Consistent

If rank of A is  not equal to the rank of [AB] then the system of equations is ------ Consistent inconsistent symmetric
non 
symmetric inconsistent

The maximum value of the rank of a 4x5 matrix is 1 5 4 3 4

A square matrix A which satisfies the relation A^2 = A is called nilpotient idempotent Hermitian Skew - 
Hermitian idempotent

A matrix is idempotent if A^3 = A A^2 = 0  A^1 =A A^2 = A A^2 = A 
If the rank of A is 2, then the rank of  A^ -1 is 3 2 4 1 2
The sum of the main diagonal elements of a matrix is called------ trace of a 

matrix 
quadratic 
form

eigen value  canonical 
form

trace of a 
matrix 

Every square matrix satisfies its own ---------- characteristic 
polynomial        

characteristic 
equation

orthogonal 
transformati
on          

 canonical 
form

characteristic 
 equation

The orthogonal transformation used to diagonalise the symmetric matrix 
A is----

NT AN   NT A NAN-1        NA NT AN   

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then kλ1 ,kλ2, 
kλ3,……… ,kλ n  are the eigen values of --------------

kA  kA2         kA-1        A-1 kA

Diagonalisation of a matrix by orthogonal reduction is true only for a ----- 
 matrix.

diagonal triangular real 
symmetric

scalar real 
symmetric



In a modal matrix, the columns are the ----------- eigen vectors 
of A

eigen vectors 
of adj A

eigen 
vectors of 
inverse ofA

eigen 
values of A

eigen 
vectors of A

If atleast one of the eigen values of A is zero, then det A = ----- 0 1 10 5 0
det (A- λI ) represents------ characteristic 

polynomial
characteristic 
equation

quadratic 
form

canonical 
form

characteristic 
 polynomial

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then 1/λ1 ,1/λ2, 
1/λ3,……… ,1/λ n  are the eigen values of --------------

 A^(-1) A         A^n A^p      A^(-1)

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then λ1
p , λ 2 

p , ………. 
λ n 

p are the eigen values of 

 A^(-1)  A^2 A^(-p)     A^p     A^p     

Cayley -Hamilton theorem is used to find ------------ inverse and 
higher 
powers of A  

eigen values eigen 
vectors

quadratic 
form

inverse and 
higher 
powers of A  

The eigen values of a ---------------------- matrix are its diagonal elements diagonal  symmetric skew-matrix triangular triangular
In an orthogonal transformation NT AN = D , D refers to a ---------- 
matrix.

diagonal orthogonal symmetric skew- 
symmetric

diagonal

In a modal matrix, the columns are the eigen vectors of----------  A-1 A2         A         adj A A         
If the sum of two eigen values and trace of a 3x3 matrix A are equal, 
then det A = ---------

λ1 λ2 λ3 0 1 2 0

If 1,5 are the eigen values of a matrix A, then det A = ------- 5 0 25 6 5
The eigen vector is also known as------- latent value latent vector column 

value
 orthogonal 
value

latent vector

If 1,3,7 are the eigen values of A, then the eigen values of 2A are ----------
--

1,3,7 1,9,21 2,6,14 1,9,49 2,6,14

If the eigen values of 2A are 2, 6, 8 then eigen values of A are _________ 1,3,4 2,6,8 1,9,16 12,4,3 1,3,4
If all the eigenvalues of A are positive then it is called as_______  Positive 

definite
Negative 
definite

Positive 
semidefinite

 Negative 
semidefinite

 Positive 
definite

A Square matrix A and its transpose have _______ eigen values. different  Same Inverse Transpose  Same
The sum of the __________ of a matrix A is equal to the sum of the 
principal diagonal elements of A.

characteristic 
polynomial

characteristic 
equation

eigen values eigen 
vectors

eigen values 

The product of the eigenvalues of a matrix A is equal to_________  Sum of main 
diagonal

Determinant 
of A

Sum of 
minors of 
Main 
diagonal

Sum of the 
cofactors of 
A

Determinant 
of A

The eigenvectors of a real symmetric are _______  equal  unequal real symmetric real

02  yd x B eA ey xmxm B eA eFC 21.  eB xAFC )(.  )s i nc o s(. xBxAeFC   BA eFC xm  1.xmxm B eA eFC 21.  eB xAFC )(.  )s i nc o s(. xBxAeFC   BA eFC xm  1.xmxm B eA eFC 21.  eB xAFC )(.  )s i nc o s(. xBxAeFC   BA eFC xm  1.

0442  mm 0722  mm 0442  mm 0732  mm06523  mmm 0656 23  mmm 06523  mmm 0656 23  mmma xDa xCB eA ey s i nc o s  a xDa xCB eA ey s i nc o s 

teyd t 282  teyd t 272  teyd t  72 teyd t 272 

xmxm B eA eFC 21.  eB xAFC )(.  )s i nc o s(. xBxAeFC  

0722  mm 0656 23  mmm

teyd t 272 



If a real symmetric matrix of order 2 has ---------then the matrix is a scalar matrix. equal eigen 
vectors

different eigen 
vectors

equal eigen 
values

different 
eigen values

equal eigen 
values

A matrix is called symmetric if and only if ---------- A=A^T A=A^-1 A=-A^T A=A A=A^T

If a matrix A is equal to A^T then A is a -------- matrix. symmetric non symmetric
skew-
symmetric singular symmetric

A matrix is called skew-symmetric if and only if --------- A=A^T A=A^-1 A=-A^T A=A A=-A^T

If a matrix A is equal to -A^T then A is a -------- matrix. symmetric non symmetric
skew-
symmetric singular

skew-
symmetric

A matrix is called orthogonal if and only if ----- A^T=A^-1 A^T=-A^-1 A^T=A^-2 A^T=-A^-2 A^T=A^-1

A matrix is called ------------if and only if A^T=A^-1. orthogonal square 
non 
symmetric

triangular
orthogonal 
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Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer
What is the value of  Gamma of one ? 0 1 2 3 1
Γ (n+1)=___________ (n+1)! n Γ (n+1) Γ (n-1) n Γ (n) n Γ (n)

what is the relation between Beta and Gamma functions?

β(m,n)=Γ(
m)Γ(n)/Γ(
m+n)

β(m,n)=Γ(
m)Γ(m)/Γ(
m+n)

β(m,m)=Γ(
m)Γ(m)/Γ(
m+n)

β(m,n)=Γ(
n)Γ(n)/Γ(m
+n) β(m,n)=Γ(m)Γ(n)/Γ(m+n)

what is the value of Γ(1 /2)? pi 0 1 root(pi) root(pi)
Which one of the following statement is true? Γ(2)=Γ(1) Γ(1/2)= (√π)^2Γ (1/2)= 1 Γ(1/2)= 0 Γ(2)=Γ(1)
Which one of the following statement is false? Γ(2)=Γ(1)  Γ(1)= 1 Γ (1/2)= √πΓ (n+1)=n+1 Γ (n+1)=n+1
Γ(1/4) Γ(3/4)=_____ 2π π√2 √(2π) 1 π√2
The values of    Γ(4)=______ 1! 2! 3! 4! 3!
 If C ′ is the evolute of the curve C then C is called 
the______ of the curve  C ′ involute curvature radius of 

curvature
centre of 
curvature involute

_______ of a curve is the envelope of the normals of that 
curve. involute curvature radius of 

curvature evolute evolute

 The parametric coordinates of the parabola x^2=4ay 
are_____.

x=at^2, 
y=2at

x=at, 
y=at

x=2at, 
y=at^2 x=a, y=t x=2at, y=at^2

 The parametric coordinates of the ellipse is given by 
_________.

x=acosθ, 
y=bsinθ

x=asinθ, 
y=bcosθ

x=atanθ, 
y=bsecθ

x=asecθ, 
y=btanθ x=acosθ, y=bsinθ

 The parametric coordinates of the hyperbola is given by 
_________.

x=acosθ, 
y=bsinθ

x=asinθ, 
y=bcosθ

x=atanθ, 
y=bsecθ

x=asecθ, 
y=btanθ x=asecθ, y=btanθ

 The parametric coordinates of the parabola y^2=4ax 
are_____.

x=at^2, 
y=2at

x=at, 
y=at

x=2at, 
y=at^2 x=a, y=t x=at^2, y=2at

The locus of the centre of curvature for a curve is called its 
evolute and the curve is called an __________ of its 
evolute.

involute evolute envelope curvature involute

The locus of the centre of curvature for a curve is called 
its______. involute evolute envelope curvature evolute

 The parametric coordinates of the cycloid is given by 
_________.

x=a(θ+sin
θ), 
y=a(1+co
sθ)

x=a(θ-
sinθ),    
y=a(1-
cosθ)

x=(θ+sinθ
), 
y=(1+cos
θ)

x=(θ-
sinθ), 
y=(1-
cosθ)

x=a(θ-sinθ), y=a(1-cosθ)

If y=1/x, then y1=________ -1/x^2 1/x ax bx -1/x^2
If y=x^2, then y1=________ x^2 1/x 2x x 2x
If y=x^2, then y2=________ x^2 1/x 2x 2 2
If x=2at then dx/dt= 2at 2a 2t 0 2a
If x=at^2 then dx/dt= 2at 2a 2t 0 2at
If y=ax^2+2ax then dy/dx at (3,2) is ______ 8a 4ax 2ax 6a 8a
If y=ax^2+2ax then dy/dx at (2,2) is ______ 8a 4ax 2ax 6a 6a
If y=ax^2+2ax then dy/dx  is ______ 8ax+2a 4ax+2 2ax+2a 6a 2ax+2a
If y=ax^2+2ax then second derivative is ______ 2a 4ax 6ax 6a 2a
The volume of the solid of revolution generated by revolving the 
plane area bounded by the circle x^2+y^2=a^2 about its diameter 

is.......... (4/3)πa^3 (2/3)πa^3 (1/3)πa^3 πa^3 (4/3)πa^3
The volume of the solid of revolution generated by revolving the 
plane area bounded by the circle x^2+y^2=2^2 about its diameter 

is.......... (32/3)π (1/3)π (2/3)π π (32/3)π
The volume of the solid of revolution generated by revolving the 
plane area bounded by the circle x^2+y^2=3^2 about its diameter 

is.......... 16π 9π 36π π 36π
The Volume of a sphere of radius 'a' is.................. 2/3 π a^3 4/3 π a^3 1/3 π a^3  π a^3 4/3 π a^3
The surface are of the sphere of radius 'a' is.................. 4πa^2 πa^2 3πa^2 2πa^2 4πa^2
The Volume of a sphere of radius '2' is.................. 16/3 π 32/3 π 8/3 π 8 π 32/3 π 
The surface area of the sphere of radius '3' is.................. 36π 9π 27π 18π 36π
∫  dx=.............. x+C 1 0 x^2 x+C
ʃcdx=……………. cx+C 0 1 x+C cx+C
∫  5dx=.............. x+C 5x+C x^2+C 5+C 5x+C
∫ x^n dx=.............. x^(n+1)/ (n+1)+ Cx^(n-1)/ (n-1)+ Cnx^ (n-1)+ C(n+1) x^ (n+1)+ C x^(n+1)/ (n+1)+ C
ʃxdx=….. x^2+C x^2/2+C x^3/2+C x^2/2+C x^2/2+C
∫  x^ (2) dx=.............. (x^(2)/2)+C(x^(3)/3)+Cx+C 2x+C (x^(3)/3)+C
∫  3x^(2) dx=.............. 3x^(2)+C x+C x^2+C x^(3) +C x^(3) +C
∫ (1/x)  dx=.............. 1+ C log x+C (-1)+C (-log x)+ C log x+C
∫ e^(x)  dx=.............. (-e^x)+ C e^(-x) + C (-e^(-x))+Ce^x + C e^x + C
∫ e^(-x)  dx=.............. (-e^x)+ C e^(-x) + C (-e^(-x))+Ce^x + C (-e^(-x))+C
∫ e^(2x)  dx=.............. (-e^2x)/2+ Ce^(-2x)/2 + C(-e^(-2x))/2+Ce^2x/2+ C e^2x/2 + C
∫ e^(-2x)  dx=.............. (-e^(-2x))/2+ Ce^(-2x)/2 + C(-e^(-2x))/2+Ce^(-2x)/2+ C e^2x/2 + C
∫ cosx  dx=.............. sinx + C cosx + C (-cosx)+C (-sinx)+C sinx + C
∫ sinx  dx=.............. sinx + C cosx + C (-cosx)+C (-sinx)+C (-cosx)+C
∫ cosmx  dx=.............. (sinmx)/m + C(cosmx)/m + C(-cosmx)/m+C(-sinmx)/m+C (sinmx)/m+ C

2 5 6
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Questions opt1 opt2 opt3 opt4 opt5 opt6

The Taylor series of f(x) about the point 0 is ___________ series.
Maclauri
ns Taylor power binomial

The expansion of f(x) by Taylor series is __________ zero unique minimu maximu
The point at which function f(x) is either maximum or 
minimum is known as ______ point 

Stationar
y

Saddle 
point

extremu
m implicit

A function f has  ___ at ‘c’ if f(c) > f(x) for all ‘x’ in D, 
where D is domain of ‘f’.

an 
absolute 
maximu

an 
absolute 
minimu

local 
maximam

locam 
minimum

If f(x) = x2, then f(0) = 0 is the ___ value of f.

an 
absolute 
maximu
m

an 
absolute 
minimu
m

local 
maximam

an 
absolute 
and 
local 
minimu

A function f has a ____ at ‘c’ if there is an open interval 
I containing ‘c’ such that f(c) > f(x) for all ‘x’ in I.

an 
absolute 
maximu

an 
absolute 
minimu

local 
maximam

locam 
minimum

A function f has a ____ at ‘c’ if there is an open interval 
I containing ‘c’ such that f(c) < f(x) for all ‘x’ in I.

an 
absolute 
maximu

an 
absolute 
minimu

local 
maximam

local 
minimum

If ‘f’ has a ___ at ‘c’ and if f’(c) exists then f’(c)=0.
critical 
number

stationar
y point

local 
extremum

an 
absolute 
maximu

A function ‘f’ has  ___ at ‘c’ if f(c) < f(x) for all ‘x’ in 
D, where D is domain of ‘f’.

an 
absolute 
maximu

an 
absolute 
minimu

local 
maximam

locam 
minimum

If ‘f’ has a local extremum at ‘c’ and if f’(c) exists then 
f’(c)=___. 0 1 c (-1)
Evaluate: limit x tends to 0 (x / tan x) = 1 2 3 0
Evaluate: limit x tends to infinity (x^2 / e^x) = 1 2 3 0
L'Hopital's rule can be applied only to differentiable 
functions for which the limis are in the _____ form real indetermi

nate complex extremu
m

L'Hopital's rule can be applied only to ___functions for 
which the limis are in the indeterminate form

differentia
ble real complex extremu

m

If f(x) = x^3, then the function has ___

eiher an 
absolute 
maximu
m or an 
absolute 
minimu
m

neiher 
an 
absolute 
maximu
m nor 
an 
absolute 

local 
maximam

locam 
minimum

A ___ of a function f is a number c in the domain of f such that 
either f’(c) =0 or f’(c) does not exist

critical 
number

stationar
y point

local 
extremum

an 
absolute 
maximu

___ are critical numbers c in he domain of f, for which f’(c)=0
Critical 
number

Stationar
y points

Local 
extremum

An 
absolute 
maximu

If f has a local extremum at c, then c is a ___ of f
critical 
number

stationar
y point

local 
extremum

an 
absolute 
maximu

If f has a ____ at c, then c is a critical number of f
critical 
number

stationar
y point

local 
extremum

an 
absolute 
maximu

If f(x)=x^2 - 4x+5 on [0,3] then the absolute maximum value is 
__ 2 3 4 5
Find the critical numbers, for the function f(x)=x^3 - 3x^2 +1. (1,2) (0,2) (2,2) (1,3)
Find the critical numbers, for the function f(x)=x^3 - 3x +1. (1,1) (-1,1) (0,1) (-1,-1)
Find the critical number, for the function f(x)=2x - 3x^2 . (1/2) (1/3) (1/4) 1
Find the critical number, for the function f(x)=x^2 - 2x +2. 0 1 2 3
Find the critical number, for the function f(x)=1-2x-x^2. 0 1 2 3
Find the critical numbers, for the function f(x)=x^3 - 12x +1. (0,1) (0,2) (0,3) (0,4)
Find the stationary point of the function f(x)=2x - 3x^2 (1,1) (1,2) (1/3, 1/3) (1/2,1)

Find the stationary point of the function f(x)=x^3 - 3x +1
(1,-1) and 
(-1,3) (1,-1) (-1,3)

(1,1) and 
(1,3)

Find the absolute maximum of the function f(x) = x^2-2x+2, [0,3]1 3 5 8

2 5 6



Find the absolute minimum of the function f(x) = x^2-2x+2, 
[0,3] 1 3 5 8
Find the absolute maximum of the function f(x) = 1-2x-x^2 [-
4,1] 1 2 7 8
Find the absolute minimum of the function f(x) = 1-2x-x^2 [-
4,1] 1 2 (-7) (-8)



Answer
Maclauri
ns 
unique
Stationar
y
an 
absolute 
maximu
an 
absolute 
and 
local 
minimu

local 
maximam

local 
minimum

local 
extremum
an 
absolute 
minimu

1
1
0
indetermi
nate
differentia
ble 
neiher 
an 
absolute 
maximu
m nor 
an 
absolute 

critical 
number

Stationar
y points

critical 
number

local 
extremum

5
(0,2)
(-1,1)
(1/3)
1
1
(0,4)
(1/3, 1/3)
(1,-1) and 
(-1,3)
5



1

2

(-7)
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Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer
The partial differentiation is a  
function of_________  or 
more variables . two zero one three two 
 If z=f(x,y) where x and y are 
______ function of another 
variable t

continuou
s

differenti
al two one

continuou
s

If f(x,y)=0 then x  and y are 
said to be an _________ 
function implicit extrem explicit differential implicit
f(a,b) is said to be 
exturemumvalue of f(x,y) if it 
is either a______________ 

maximu
m or 

minimum zero minimum maximum

maximum 
 or 

minimum
The Lagrange multiplier is 
denoted by 
________________ a b l d l
Every extremum value is a 
stationary  value but a 
stationary value need not be 
an     ___________ value. infimum minimum

maximu
m extremum extremum

If u1,u2……un are functions 
of n variables x1,x2……..xn 
then the Jacobian of the 
transformation from 
x1,x2….xn to u1,u2...un is 
defined by__________ 2 0 1 -1 2
f(a,b) is a maximum value of 
f(x,y) if there exists some 
neighbourhood of the point 
(a,b)  such that for every point 
(a+h,b+k) of the 
neighbourhood ________

f(a,b)>f(a
+h,b+k)

f(a,b)<f(a
+h,b+k) f(a,b)<0 f(a,b)>0

f(a,b)>f(a
+h,b+k)

  f(a,b) is a minimum value of 
f(x,y) if there exists some 
neighbourhood of the point 
(a,b)  such that for every point 
(a+h,b+k) of the 
neighbourhood ________

f(a,b)>f(a
+h,b+k)

f(a,b)<f(a
+h,b+k) f(a,b)<0 f(a,b)>0 f(a,b)<f(a+h,b+k)

The necessary condition for 
maxima is __________

∂f/∂x 
(a,b)=0

∂f/∂x 
(a,b)= 1

∂f/∂y 
(a,b)=5

∂f/∂y 
(a,b)=1

∂f/∂x 
(a,b)=0

The necessary condition for 
minimum is ____________

∂f/∂x 
(a,b)=0

∂f/∂y 
(a,b)=0

∂f/∂x 
(a,b)=1

∂f/∂y 
(a,b)=1

∂f/∂y 
(a,b)=0

f(a,b) is said to be said to be a 
stationary value of f(x,y) if 
(x,y) is__________

∂f/∂x 
(a,b)=0 

and  
∂f/∂y 

(a,b)=0
∂f/∂x 

(a,b)=1
∂f/∂y 

(a,b)=0
∂f/∂y 

(a,b)=1

∂f/∂x 
(a,b)=0 

and  
∂f/∂y 

(a,b)=0
The expansion of f(x,y) by 
________series is unique.

Maclauri
ns Taylor power binomial Taylor

If f(a,b) is said to be 
_________of f(x,y) if it is 
either maximum or minimum.

extremu
m value

boundary 
value end power

extremum 
 value

The _______ differentiation is 
a function of two or more 
variables. ODE PDE partial total partial
Any function of the type f(x,y)=c is called an _______functionImplicit Explicit Constant composite Implicit



If u=f(x,y) ,where 
x=p(t),y=s(t) then u is a 
function of t and is called the 
____ function Implicit Explicit Constant composite composite
The point at which function 
f(x,y) is either maximum or 
minimum is known as ______ 
point StationarySaddle pointextremum implicit Stationary

If rt-s^2>0 and r<0 at (a,b) the f(x,y) is maximum at (a,b) and the_______ value of the function(a,b)Maximum Minimum

maximu
m or 

minimum zero Maximum 

If rt-s^2>0 and r>0 at (a,b) the f(x,y) is minimum at (a,b) and the_______ value of the function(a,b)Maximum Minimum

maximu
m or 

minimum zero Minimum
If rt-s^2>0  at (a,b) the f(x,y) is neither maximum nor minimum at (a,b) such point is known as _______ point StationarySaddle pointextremum implicit Saddle point

If Ñ.F=0 then F is irrotation
al

solenoida
l rotational curl solenoidal

If Ñ×F=0 then F is irrotation
al

solenoida
l rotational curl irrotationa

l
Any motion in which the curl 
of the velocity vector is zero is 
said to be ___

irrotation
al

solenoida
l rotational curl irrotationa

l

A function is said to be 
_______ if it associates a 
scalar with every point in 
space.

Scalar 
function

Vector 
function

Point 
function

vector 
point 
function

Scalar 
function

A variable quantity whose 
value at any point in a region 
of space depends upon the 
position of the point is called a 
___

Scalar 
function

Vector 
function

Point 
function

vector 
point 
function

Point 
function

A function is said to be 
_______ if it associates  with 
vector in every point in space.

Scalar 
function

Vector 
function

Point 
function

vector 
point 
function

Vector 
function

If the divergence of a flow is 
zero at all points then it is said 
to be _______

rotational irrotation
al

solenoida
l

conservati
ve solenoidal



______ gives the rate of 
outflow per unit volume at a 
point of the fluid.

curl V div V curl V=0 div V=0 div V

If div V=0 everywhere in 
some region R of space then V 
is called the _____ vector 
point function.

rotational irrotation
al

solenoida
l

conservati
ve solenoidal

_______ is a vector which 
measures the extent to which 
individual particles of the 
fluid are spnning or rotating.

curl V div V curl V=0 div V=0 curl V

div F is a ________ function. point vector scalar rotational scalar
If curl V=0 then V is said to 
be an ___________. rotational irrotation

al
solenoida
l

conservati
ve

irrotationa
l

If r=xI+yJ+zK then div 
r=________ 0 1 2 3 3

If r=xI+yJ+zK then curl 
r=________ 0 1 2 3 0

div (curl V)= 0 div V curl V V 0
curl (grad f)= 0 div V curl V f 0
Two surfaces are said to cut 
orthogonally at a point of 
intersection, if the respective 
normals at that point are 
______.

parallel perpendic
ular equal zero perpendic

ular

Any integral which is to be 
evaluated over a surface is 
called a ___

Line 
integral

Volume 
integral

surface 
integral

closed 
integral

surface 
integral

When the circulation of F 
around every closed curve in a 
region vanishes, then F is said 
to be _______ in that region.

rotational irrotation
al

solenoida
l

conservati
ve

irrotationa
l

A force field F is said to be 
____________ if it is 
derivable from a potential 
function f such that F = grad f.

rotational irrotation
al

solenoida
l

conservati
ve

conservati
ve

If F is ______ then cur F=0. rotational irrotation
al

solenoida
l

conservati
ve

conservati
ve

If S has a unique normal at 
each of its points whose 
direction depends 
continuously on the point of S 
then the surface S is called a 
______ surface.

Orientabl
e smooth plane twisted smooth

If (3x-2y+z)I+(4x+ay-z)J+(x-y-
2z)K is solenoidal then a= 0 1 -1 2 -1

If f=x+y+z-8 then grad f is 
____ I+J+K I+J-K I-J+K 0 I+J+K
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Questions opt 1 opt 2 opt 3 opt 4 opt5 opt6 Answer
A sequence  {2^n}   is Convergent  divergent Oscillatory unique divergent 
A sequence   (-1)^n+2  is Convergent  divergent Oscillatory unique Oscillatory
A sequence {2n+1/3n-2}  is Convergent  divergent Oscillatory unique Convergent  
A sequence  {2n^2+n/3n^2-3} is Convergent  divergent Oscillatory unique Convergent  
The series  ∑  cos(1/n)  is Convergent  divergent Oscillatory unique Convergent  
The series    ∑  x^n/(n^3+1)   at x=1 is Convergent  divergent divergent Not unique Convergent  
The series  1-(1/2^2)+(1/3^2)-(1-4^2)+… is Convergent  divergent Oscillatory Not unique Convergent  
The series 1-2x+3x^2-4x^3+...  where 0<x<1 is Convergent  divergent divergent unique Convergent  
 The series  whose nth term is ∑  sin (1/n)   is Convergent  divergent divergent Not unique Convergent  

 An ordered set of real number  a_1,a_2,…a_n  is called a____________Series sequence
Montonic 
sequence 

Montonic 
sequence sequence

 If a sequence has a ________,it is called a convergent sequence Finite limit Infinite limit limit Bounded Finite limit 
 A sequence  is said to be bounded above if there exists a number k, 
such that _____  for every n. a_n>k a_n≥k a_n≤k a_n<k a_n≤k
Both increasing and decreasing sequence are called ______ 
sequence. Convergent Montonic Bounded divergent Montonic
If  limit n tends to ∞  a_n  is equal to _______then the sequence is 
said to be Convergent

finite and 
unique Infinite unique not unique finite and unique 

If u1,u2,….un,…be an infinite sequence or real  numbers,then 
u1+u2+….+un+…is called_________ infinite seriesfinite series finite terms infinite terms infinite series
The series 1+2+3+  +n+…+...∞ is Convergent divergent Oscillatory not unique divergent 
Every absolutely convergent series is a ______ series Convergent divergent Oscillatory not unique Convergent
Any convergent series of ________ terms is also absolutely 
convergent negative positive zero unique positive
 If  limit n tends to  infinite   u_n/u_n+1  = m  is a series of positive 
terms ∑ u_n  is convergent if _____ m>0 m<1 m>1 m=1 m>1
 If  limit n tends to ∞  u_n/u_n+1  = m is a series of positive terms 
∑ u_n is divergent if _____ m>0 m<1 m>1 m=1 m<1
 If  limit n tends to ∞  u_n/u_n+1  = m is a series of positive terms 
.when the ratio test fails      m>0 m<1 m>1 m=1 m=1
Which of the following functions has the period 2π? cos x sin nx tan nx tan x cos x

c o n v e r g e n ti s. . .4321 313131  c o n v e r g e n ti s. . .4321  c o n v e r g e n ti s. . .4321 222  d i v e r g e n ti skkk . . .4321 

nn aL t  nn aL t 

d i v e r g e n ti skkk . . .4321 

c o n v e r g e n ti s. . .4321 222 



If a function satisfies the condition f(-x) = f(x) then which is  
true?

a_0 = 0 a_n = 0 a_0 = a_n = 
0

b_n = 0 b_n = 0

If a function satisfies the condition f(-x) = -f(x) then which is  
 true?

a0 = 0 an = 0 a_0 = a_n = 
0

b_n = 0 a_0 = a_n = 0

Which of the following is an odd function? sin x cos x x^2 x^4 sin x
Which of the following is an even function? x^3 cos x sin x sin^2x cos x

The function f(x) is said to be an odd function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( 
x)

f(-x) = f(-
x) f(-x) = - f( x)

The function f(x) is said to be an even function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( 
x)

f(-x) = f(-
x) f(-x) = f( x)

 ∫f(x) dx = 2∫f(x) dx  between the limits -a to a if f(x) is ------ even continuous odd discontinu
ous even

 ∫f(x) dx = 0  between the limits -a to a if f(x) is ------ even continuous odd discontinu
ous odd

If a periodic function f(x) is odd, it’s Fourier expansion 
contains no ------ terms.

coefficient 
an

sine
coefficient 
a0

cosine cosine

If a periodic function f(x) is even, it’s Fourier expansion 
contains no ------ terms. cosine sine

coefficient 
a_0

coefficient 
a_n

sine

In dirichlet condition, the function f(x) has only a ----- 
number of  maxima and minima.

uncountabl
e continuous infinite finite finite

In Fourier series, the function f(x) has only a finite number of 
maxima and minima. This condition is known as ------- Dirichlet Kuhn 

Tucker Laplace Cauchy Dirichlet

In dirichlet condition, the function f(x) has only a ----- 
number of  discontinuities .

uncountabl
e continuous infinite finite finite

The Fourier series of f(x) is given by ----
a 0 /2 + ∑ 
(an cosnx+ 
bn  sin nx )

a 0 /2 + ∑ 
(an cos nx- 
bn  sin nx )

a n /2 + ∑ 
(an sin nx+ 
bn sin nx  )

a 0 /2 + ∑ 
(a0 sin 
nπx/ l )

a 0 /2 + ∑ (an  
cosnx+ bn  sin nx )



In Fourier series, the expansion  f(x) = a 0 /2 + ∑ (an cos nx + 
bn sin nx ) is possible only if in  the interval  c1≤ x≤ c2 the 
function f(x) satisfies ---condition.

kuhn- 
Tucker Laplace Dirichlet Cauchy Dirichlet

If the periodic function f(x) is even, then the Fourier 
expansion is of the form ---

a 0 /2 + 
∑an sin( 
nπx/ l  )

a 0 /2 + ∑an  
cos( nπx/ l  )

a n /2 + ∑ 
an cos( nπx/ 
l )

a 0 /2 + ∑ 
a0 sin( 
nπx/ l  )

a 0 /2 + ∑an cos( 
nπx/ l  )

If the periodic function f(x) is even, then it’s Fourier co- 
efficient an is of the form ---

2/ l  ∫f(x) 
sin( nπx/  
l ) dx     

2/ l  ∫f(x) 
cos (nπx/ l ) 
dx     

1/ l  ∫f(x) / l  
dx     ∫f(x) dx    2/ l  ∫f(x) cos (nπx/  

l ) dx     

If the periodic function f(x) is even, then it’s Fourier co- 
efficient a0 is of the form ---

2/ l  ∫f(x) 
dx 1/ l  ∫f(x) dx 2/ l  ∫f(x)/ l 

dx ∫f(x) dx 2/ l  ∫f(x) dx

If the periodic function f(x) is odd, then it’s Fourier co- 
efficient bn is of the form ---

2/ l  ∫f(x) 
cos (nπx/  
l ) dx     

2/ l  ∫f(x) 
sin( nπx/ l ) 
dx     

∫f(x) dx    1/ l  ∫f(x) /  
l  dx     

2/ l  ∫f(x) sin( nπx/  
l ) dx     

If the periodic function f(x) is even, then it’s Fourier co- 
efficient -------- is zero. a0 a1 bn a0 & an bn

If the periodic function f(x) is odd, then it’s Fourier co- 
efficient -------- is zero. a_0 & a_n a_1 b_n b_1 a_0 & a_n

If the periodic function f(x) is even, then the Fourier 
expansion is of the form ---

∑b_n sin 
nπx/ l

∑b_n sin 
nπx/ l

∑ b_n cos 
nπx/ l

a_0/2+∑ 
a_n cos 
(nπx/ l )

a_0/2+∑ a_n cos 
(nπx/ l )

If the periodic function f(x) is odd, then the Fourier 
expansion is of the form ---

∑bn sin 
nπx/ l

∑an sin nπx/ 
l

∑ bn cos 
nπx/ l

∑ an cos 
nπx/ l

∑bn sin nπx/ l

1/π∫f(x) cos nx dx gives the Fouier coefficient ----------- a_0 b_1 b_n a_n a_n
1/π∫f(x) dx  gives the Fourier coefficient a_0 a_n b_n b_1 a_0
1/π∫f(x)sin nx dx gives the Fouier coefficient ----------- a_0 a_n b_n b_1 b_n
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