
15BECS602 SOFTWARE ENGINEERING

INTENDED OUTCOMES:

UNIT -I SOFTWARE PROCESS

Introduction –S/W Engineering Paradigm – life cycle models (water fall, incremental, spiral,

WINWIN spiral, evolutionary, prototyping, object oriented) - system engineering – computer based

system – verification – validation – life cycle process – development process –system engineering

hierarchy.

UNIT- II SOFTWARE REQUIREMENTS

Functional and non-functional - user – system –requirement engineering process – feasibility studies –

requirements – elicitation – validation and management – software prototyping – prototyping in the

software process – rapid prototyping techniques – user interface prototyping -S/W document.

Analysis and modeling – data, functional and behavioral models – structured analysis and data

dictionary.

UNIT- III DESIGN CONCEPTS AND PRINCIPLES

Design process and concepts – modular design – design heuristic – design model and document.

Architectural design – software architecture – data design – architectural design – transform and

transaction mapping – user interface design – user interface design principles. Real time systems -

Real time software design – system design – real time executives – data acquisition system -

monitoring and control system. SCM – Need for SCM – Version control – Introduction to SCM

process – Software configuration items.

UNIT- IV TESTING

Taxonomy of software testing – levels – test activities – types of s/w test – black box testing – testing

boundary conditions – structural testing – test coverage criteria based on data flow mechanisms –

regression testing – testing in the large. S/W testing strategies – strategic approach and issues - unit

testing – integration testing – validation testing – system testing and debugging.

UNIT- V SOFTWARE PROJECT MANAGEMENT

Measures and measurements – S/W complexity and science measure – size measure – data and logic

structure measure – information flow measure. Software cost estimation – function point models –

COCOMO model- Delphi method.- Defining a Task Network – Scheduling – Earned Value Analysis

– Error Tracking - Software changes – program evolution dynamics – software maintenance –

Architectural evolution. Taxonomy of CASE tools.

 To introduce the methodologies involved in the development and maintenance
of software over its entire life cycle.

 To be aware of Different life cycle models and requirement dictation process

TEXT BOOKS:

1. Roger S.Pressmen, “Software Engineering : A Practitioner‟s Approach”, McGraw-Hill

International Edition,4th edition,2014

REFERENCE BOOKS:

1. Fundamentals of software engineering, Rajib Mall Phi learning pvt. Ltd,4th edition,2014

2. Ian Sommerville, “Software engineering”, Pearson education Asia,9th edition,2011

3. Pankaj Jalote,” An Integrated Approach to Software Engineering”, Springer Verlag,3rd edition,2010

4. James F Peters and Witold Pedryez,” Software Engineering – An Engineering Approach”, John

Wiley and Sons, New Delhi,2007.

WEBSITES:

http://www.testingbrain.com/WHITEBOX/WHITE_BOX_Testing.html

http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/control-testing.pdf

http://www.testingbrain.com/WHITEBOX/WHITE_BOX_Testing.html
http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/control-testing.pdf

KARPAGAM ACADEMY OF HIGHER EDUCATION
FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

15BECS602 SOFTWARE ENGINEERING Lecture plan

Week
Lecture

dates
Lecture

Test /

Exam

Assignment/

Seminar
Remarks

1

Day 1-4

Basic Fundamentals of Software Engineering: Introduction to Software

Engineering, Basic terminologies in Software Engineering

2

Day

5,6,7

UNIT I - SOFTWARE PROCESS

Lecture 1: Introduction ,S/W

Engineering Paradigm, life cycle

models (water fall, incremental, spiral,

WINWIN spiral, evolutionary,
prototyping, object oriented)

CIA T1

Q1 ESE

Q1

Assignment

Day 8

Tutorial hour

3

Day

9,10,11

Lecture 2: System engineering,

computer based system ,verification ,

validation

CIA T1

Q2 ESE

Q1

Day 12

Tutorial hour

4

Day

13,14,15

Lecture 3: Lifecycle process,

development process, system

engineering hierarchy.

CIA T1

Q3 ESE

Q1

Assignment

Day 16

Tutorial hour

Week

Lecture

dates

Lecture

Test /

Exam

Assignment/

Seminar

Remarks

5

Day

17,18,19

UNIT II- SOFTWARE REQUIREMENTS

Lecture 4: Functional and non-

functional, user, system, requirement

engineering process, Feasibility studies,

requirements and elicitation.

CIA T1

Q4 ESE

Q2

Assignment

Day 20

Tutorial hour

6

Day

21,22,23

Lecture 5: Validation and management

Software prototyping, prototyping in

the software process, rapid prototyping
techniques ,user interface prototyping

CIA T1

Q5 ESE

Q2

Assignment

Day 24

Tutorial hour

7

Topics: Week 2 to Week 6- CIA Test I

8

Day

25,26,27

Lecture 6: S/W document, Analysis

and modeling, data, functional and

behavioral models, structured analysis
and data dictionary.

CIA T2

Q1 ESE

Q2

Day 28

Tutorial hour

9

Day

29,30,31

UNIT III - DESIGN CONCEPTS AND

PRINCIPLES

Lecture 7: Design process and

concepts, modular design, design

heuristic, design model and document,

Architectural design, software

architecture

CIA T2

Q2 ESE

Q3

Assignment

Day 32

Tutorial hour

10

Day

33,34,35

Lecture 8: data design, architectural

design, transform and transaction

mapping, user interface design, user

interface design principles.

CIA T2

Q3 ESE

Q3

Assignment

Week
Lecture
dates

Lecture
Test /
Exam

Assignment Remarks

Day 36

Tutorial hour

11

Day

37,38,39

Lecture 9: Real time systems, Real time

software design, system design, real

time executives, data acquisition

system, monitoring and control system.

SCM, Need for SCM, Version control,

Introduction to SCM process, Software

configuration items.

CIA T2

Q4 Q5

ESE Q3

Assignment

Day 40

Tutorial hour

12

Topics: Week 8 to Week 11- CIA Test II

13

Day

41,42,43

UNIT IV- TESTING

Lecture 10: Taxonomy of software

testing, levels, test activities, types of

s/w test, black box testing, testing

boundary conditions, Structural testing,

test coverage criteria based on data flow

mechanisms.

CIA T3

Q1 ESE

Q4

Assignment

Day 44

Tutorial hour

14

Day

45,46,47

Lecture 11: regression testing, testing

in the large, S/W testing strategies,

strategic approach and issues, unit

testing, integration testing.

CIA T3

Q2 ESE

Q4

Assignment

Day 48

Tutorial hour

15

Day

49,50,51

Lecture 12: validation testing, system

testing and debugging.
CIA T3

Q3 ESE

Q4

Day 52

Tutorial hour

Week
Lecture

dates
Lecture

Test /

Exam
Assignment Remarks

16

Day

53,54,55

UNIT V- SOFTWARE PROJECT

MANAGEMENT

Lecture 13: Measures and

measurements, S/W complexity and

science measure, size measure, data and

CIA T3

Q4 ESE

Q5

Assignment

 logic structure measure, information

flow measure, Software cost estimation,

function point models.

Day 56

Tutorial hour

17

Day

57,58,59

Lecture 14: COCOMO model, Delphi

method, Defining a Task Network,

Scheduling, Earned Value Analysis,

Error Tracking.

CIA T3

Q4 ESE

Q5

Assignment

Day 60

Tutorial hour

18

Day

61,62,63

Lecture 15: Software changes, program

evolution dynamics, software

maintenance, Architectural evolution-

Taxonomy of CASE tools.

CIA T3

Q5 ESE

Q5

Assignment

Day 64

Tutorial hour

19 Day 65
Revision (Unit 1 to Unit 5)- Past University Question Papers

20
Topics: Week 12 to Week 18- CIA Test III

TEXT BOOKS:

1. Roger S.Pressmen, “Software Engineering : A Practitioner‟s Approach”, McGraw-Hill

International Edition,4th edition,2014

REFERENCE BOOKS:

1. Fundamentals of software engineering, Rajib Mall Phi learning pvt. Ltd,4th edition,2014

2. Ian Sommerville, “Software engineering”, Pearson education Asia,9th edition,2011

3. Pankaj Jalote,” An Integrated Approach to Software Engineering”, Springer Verlag,3rd edition,2010

4. James F Peters and Witold Pedryez,” Software Engineering – An Engineering Approach”, John

Wiley and Sons, New Delhi,2007.

WEBSITES:

http://www.testingbrain.com/WHITEBOX/WHITE_BOX_Testing.html

http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/control-testing.pdf

http://www.testingbrain.com/WHITEBOX/WHITE_BOX_Testing.html
http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/control-testing.pdf

SOFTWARE ENGINEERING

UNIT I

SOFTWARE PRODUCT AND PROCESS

1.1 Software engineering paradigm:

• The framework activit ies will always be applied on every project ... BUT the tasks (and

degree of rigor) for each activit y will vary based on:

– the type of project

– characterist ics of the project
– common sense judgment; concurrence of the project team

The software process:

• A structured set of activit ies required to develop a software system

– Specificat ion;

– Design;
– Validat ion;

– Evolut ion.

• A software process model is an abstract representation of a process. It presents a
descript ion of a process from some particular perspective.

1.2 Waterfall model/Linear Sequential Model/classic life cycle :

• Systems Engineering

– Software as part of larger system, determine requirements for all system

elements, allocate requirements to software.

• Software Requirements Analysis

– Develop understanding of problem domain, user needs, function, performance,
interfaces, ...

– Software Design

– Multi-step process to determine architecture, interfaces, data structures,

functional detail. Produces (high-level) form that can be checked for quality,

conformance before coding.
• Coding

– Produce machine readable and executable form, match HW, OS and design needs.

1

2

• Testing

– Confirm that components, subsystems and complete products meet requirements,
specifications and qualit y, find and fix defects.

• Maintenance

– Incrementally, evolve software to fix defects, add features, adapt to new
condition. Often 80% of effort spent here!

Waterfall model phases:

• Requirements analysis and definit ion

• System and software design

• Implementation and unit testing

• Integration and system testing

• Operation and maintenance

• The main drawback of the waterfall model is the difficulty of accommodating change

after the process is underway. One phase has to be complete before moving onto the next

phase.
• Each phase terminates only when the documents are complete and approved by the SQA

group.

• Maintenance begins when the client reports an error after having accepted the product. It

could also begin due to a change in requirements after the client has accepted the product

Waterfall model: Advantages:

• Disciplined approach

• Careful checking by the Software Qualit y Assurance Group at the end of each phase.

• Testing in each phase.
• Documentation available at the end of each phase.

Waterfall model problems:

• It is difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-under stood and

changes will be fairly limited during the design process.

• Few business systems have stable requirements.
• The waterfall model is mostly used for large systems engineering projects where a system

is developed at several sites.

• The customer must have patience. A working version of the program will not be available

until late in the project time-span

• Feedback from one phase to another might be too late and hence expensive.

The Prototyping Models:

• Often, a customer defines a set of general objectives for software but does not identify
detailed input, processing, or output requirements.

• In other cases, the developer may be unsure of the efficiency of an algorithm, the

adaptability of an operating system, or the form that human –machine interaction should

take
• In this case prototyping paradigm may offer the best approach

• Requirements gathering

• Quick design

• Prototype building
• Prototype evaluation by customers

• Prototype may be refined

3

• Prototype thrown away and software developed using formal process{ it is used to define
the requirement} Prototyping

Strengths:

• Requirements can be set earlier and more reliably

• Customer sees results very quickly.

• Customer is educated in what is possible helping to refine requirements.
• Requirements can be communicated more clearly and completely

• Between developers and clients Requirements and design options can be

investigated quickly and Cheaply

Weaknesses:
– Requires a rapid prototyping tool and expertise in using it–a cost for the

development organisat ion

– Smoke and mirrors - looks like a working version, but it is not.
The RAD Model:

• Rapid Applicat ion Development is a linear sequential software development process

model that emphasizes an extremely short development cycle

• Rapid application achieved by using a component based construction approach
• If requirements are well understood and project scope is constrained the RAD process

enables a development team to create a ―fully functional system‖

RAD phases :

• Business modeling

• Data modeling

• Process modeling

4

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g
analy s is C o n s t r u c t i o n
des ign

c ode
t es t

D e p l o y m e n t

d e l i v e r y

f e e d b a c k

 C o m m u n i c a t i o n

P l a n n i n g

i o n
des ign

c ode

t es t

od

C o n s t r u c t

M o d e l i n g
analy s is

D e p l o y m e n t

d e l i v e r y
f e e d b a c k

• Applicat ion generat ion
• Testing and turnover

Business modeling:

• What informat ion drives the business process?
• What informat ion is generated?

• Who generates it?
Data Modeling:

• The information flow defined as part of the business modeling phase is refined into a set

of data objects that are needed to support the business.

• The characteristics (called attributes) of each object are identified and the relationships

between these objects are defined

Process modeling:
• The data modeling phase are transformed to achieve the information flow necessary to

implement a business function.

• Processing descriptions are created for adding , modifying, deleting, or retrieving a data

object
Application generation:

• RAD assumes the use of 4 generation techniques.

• Rather than creating software using conventional 3 generation programming languages,

the RAD process works to reuse existing program components (when possible) or created

reusable components (when necessary)
Testing and Turnover:

• Since the RAD process emphasizes reuse, many of the program components have already

been testing.

• This reduces over all testing time.
• However, new components must be tested and all interfaces must be fully exercised

Advantages &Disadvantages of RAD:

Advantages

• Extremely short development time.

• Uses component-based construction and emphasises reuse and code generation

Disadvantages

• Large human resource requirements (to create all of the teams).

• Requires strong commit ment between developers and customers for “rapid-fire”

activities.

• High performance requirements maybe can’t be met (requires tuning the components).

The Incremental Model

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

analy s is
des ign

C o n s t r u c t

c e

i o n

 t es t

D e p l o y m e n
d e l i v e r y
f e e d b a c k

:

5

The Incremental development

• Combination of linear + prototype

• Rather than deliver the system as a single delivery, the development and delivery is
broken down into increments with each increment delivering part of the required
functionality

• User requirements are prioritised and the highest priorit y requirements are included in

early increments

• Once the development of an increment is started, the requirements are frozen though

requirements for later increments can continue to evolve

Incremental development advantages:

• The customer is able to do some useful work after release
• Lower risk of overall project failure

• The highest priorit y system services tend to receive the most testing

Spiral Model:

Spiral model sectors:

• Customer communicat ion
Tasks required to establish effective communication between developer and

customer

• Planning

The tasks required to define recourses, timelines, and project is reviewed and the
next phase of the spiral is planned

 Risk analysis

– Risks are assessed and activities put in place to reduce the key

 Risks engineering

– Tasks required to build one or more representations of the application

6

• Construction & release
– Tasks required to construct, test, install and provide user support (e.g

documentation and training)

• Customer evaluation

– Customer feedback collected every stage

Spiral Model Advantages:

• Focuses attention on reuse options.

• Focuses attention on early error eliminat ion.

• Puts qualit y objectives up front.

• Integrates development and maintenance.

• Provides a framework for hardware/software Development.

1.3 System Engineering

 Software engineering occurs as a consequence of a process called system engineering.

 Instead of concentrating solely on software, system engineering focuses on a variety of

elements, analyzing, designing, and organizing those elements into a system that can be a

product, a service, or a technology for the transfor mat ion of informat ion or control.

7

 The system engineering process usually begins with a ―world view.‖ That is, the

entire business or product domain is examined to ensure that the proper business or

technology context can be established.

 The world view is refined to focus more fully on specific domain of interest. Within a

specific domain, the need for targeted system elements (e.g., data, software, hardware,

people) is analyzed. Finally, the analysis, design, and construction of a targeted system

element is init iated.

 At the top of the hierarchy, a very broad context is established and, at the bottom, detailed

technical activities, performed by the relevant engineering discipline (e.g., hardware or

software engineering), are conducted.

 Stated in a slight ly more formal manner, the world view (WV) is composed of a set of

domains (Di), which can each be a system or system of systems in its own right.

WV = {D1, D2, D3, . . . , Dn}

 Each domain is composed of specific elements (Ej) each of which serves some role in
accomplishing the objective and goals of the domain or component:

Di = {E1, E2, E3, . . . , Em}

 Finally, each element is implemented by specifying the technical components (Ck) that
achieve the necessary function for an element:

Ej = {C1, C2, C3, . . . , Ck}

1.4 Computer Based System

 computer-based system as A set or arrangement of elements that are organized to accomplis h
some predefined goal by processing informat ion.

 The goal may be to support some business function or to develop a product that can be sold

to generate business revenue.

 To accomplish the goal, a computer-based system makes use of a variety of system elements:

1. Software. Computer programs, data structures, and related documentation that serve to

effect the logical method, procedure, or control that is required.

2. Hardware. Electronic devices that provide computing capability, the interconnectivity

devices (e.g., network switches, telecommunications devices) that enable the flow of

data, and electromechanical devices (e.g., sensors, motors, pumps) that provide external

world function.

3. People. Users and operators of hardware and software.
4. Database. A large, organized collection of information that is accessed via software.
5. Documentation. Descript ive informat ion (e.g., hardcopy manuals, on-line help files,

Web sites) that portrays the use and/or operation of the system.

6. Procedures. The steps that define the specific use of each system element or the
procedural context in which the system resides.

 The elements combine in a variety of ways to transform information. For example, a

marketing department transforms raw sales data into a profile of the typical purchaser of a

product; a robot transforms a command file containing specific instructions into a set of

control signals that cause some specific physical action.

 Creating an informat ion system to assist the marketing department and control software to

support the robot both require system engineering.

8

 One complicating characteristic of computer-based systems is that the elements constituting

one system may also represent one macro element of a still larger system. The macro element

is a computer-based system that is one part of a larger computer-based system.

 As an example, we consider a "factory automation system" that is essentially a hierarchy of

systems. At the lowest level of the hierarchy we have a numerical control machine, robots,

and data entry devices.

 Each is a computerbased system in its own right. The elements of the numerical control

machine include electronic and electromechanical hardware (e.g., processor and memory,

motors, sensors), software (for communications, machine control, interpolation), people (the

machine operator), a database (the stored NC program), documentation, and procedures.

 A similar decomposit ion could be applied to the robot and data entry device. Each is a computer-

based system.

 At the next level in the hierarchy, a manufacturing cell is defined. The manufacturing cell is a

computer-based system that may have elements of its own (e.g., computers, mechanical

fixtures) and also integrates the macro elements that we have called numerical control

machine, robot, and data entry device.

1.5 Verification

 The goal of business process engineering (BPE) is to define architectures that will enable a
business to use information effectively.

 When taking a world view of a company‘s information technology needs, there is little doubt

that system engineering is required. Not only is the specification of the appropriate computing

architecture required, but the software architecture that populates the ―unique

configuration of heterogeneous computing resources‖ must be developed.

 Business process engineer ing is one approach for creating an overall plan for implement ing
the computing architecture .

 Three different architectures must be analyzed and designed wit hin the context of business
objectives and goals:

• data architecture
• applications architecture

• technology infrastructure

 The data architecture provides a framework for the informat ion needs of a business or

business function. The individual building blocks of the architecture are the data objects that

are used by the business. A data object contains a set of attributes that define some aspect,

qualit y, characterist ic, or descriptor of the data that are being described.

 The application architecture encompasses those elements of a system that transform objects

within the data architecture for some business purpose. In the context of this book, we

consider the application architecture to be the system of programs (software) that performs

this transformation. However, in a broader context, the application architecture might

incorporate the role of people (who are information transformers and users) and business

procedures that have not been automated.

 The technology infrastructure provides the foundation for the data and application

architectures. The infrastructure encompasses the hardware and software that are used to

support the application and data. This includes computers, operating systems, networks,

telecommunication links, storage technologies, and the architecture (e.g., client/server) that

has been designed to implement these technologies.

9

 The final BPE step—construction and integration focuses on implementation detail. The

architecture and infrastructure are implemented by constructing an appropriate database and

internal data structures, by building applications using software components, and by selecting

appropriate elements of a technology infrastructure to support the design created during

BSD. Each of these system components must then be integrated to form a complete

informat ion system or application.

 The integration activity also places the new informat ion system into the business area

context, performing all user training and logistics support to achieve a smooth transit ion.

1.6 Validation

 The goal of product engineering is to translate the customer‘s desire for a set of defined

capabilities into a working product. To achieve this goal, product engineering—like business

process engineering—must derive architecture and infrastr ucture.

 The architecture encompasses four distinct system components: software, hardware, data

(and databases), and people. A support infrastructure is established and includes the

technology required to tie the components together and the information (e.g., documents,CD-

ROM, video) that is used to support the components.

 The world view is achieved through requirements engineering. The overall requirements of

the product are elicited from the customer. These requirements encompass information and

control needs, product function and behavior, overall product performance, design and

interfacing constraints, and other special needs.

 Once these requirements are known, the job of requirements engineering is to allocate

function and behavior to each of the four components noted earlier. Once allocation has

occurred, system component engineering commences.

10

 System component engineering is actually a set of concurrent activities that address each of

the system components separately: software engineering, hardware engineering, human

engineering, and database engineer ing.

 Each of these engineering disciplines takes a domain-specific view, but it is important to note

that the engineering disciplines must establish and maintain active communication with one

another. Part of the role of requirements engineering is to establish the interfacing

mechanisms that will enable this to happen.

 The element view for product engineering is the engineering discipline itself applied to the

allocated component. For software engineering, this means analysis and design modeling

activities (covered in detail in later chapters) and construction and integration activities that

encompass code generation, testing, and support steps.

 The analysis step models allocated requirements into representations of data, function, and

behavior. Design maps the analysis model into data, architectural, interface, and software

component- level designs.

UNIT II

SOFTWARE REQUIREMENTS

 The process of establishing the services that the customer requires from a system and the
constraints under which it operates and is developed

 Requirements may be functional or non-funct ional

• Funct ional requirements describe system services or funct ions
• Non-functional requirements is a constraint on the system or on the development

process

Types of requirements

 User requirements

• Statements in natural language (NL) plus diagrams of the services the system
provides and its operational constraints. Written for customer s

 System requirements

• A structured document setting out detailed descript ions of the system services.
Written as a contract between client and contractor

 Software specification

• A detailed software descript ion which can serve as a basis for a design or

implementation. Written for developers

2.1 Functional and Non-Funct ional

Functional requirements

 Funct ionalit y or services that the system is expected to provide.

 Funct ional requirements may also explicit ly state what the system shouldn‘t do.

 Funct ional requirements specificat ion should be:

• Complete: All services required by the user should be defined
• Consistent: should not have contradictor y definit ion (also avoid

ambiguit y don‘t leave room for different interpretations)

Examples of functional requirements

 The LIBSYS system

 A library system that provides a single interface to a number of databases of articles in

different libraries.

 Users can search for, download and print these articles for personal study.

 The user shall be able to search either all of the initial set of databases or select a subset from
it.

 The system shall provide appropriate viewers for the user to read documents in the document

store.

 Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able

to copy to the account‘s permanent storage area.

11

Non-Funct ional requirements

 Requirements that are not directly concerned with the specific functions delivered by the

system

 Typically relate to the system as a whole rather than the individual system features

 Often could be deciding factor on the survival of the system (e.g. reliabilit y, cost, response
time)

Non-Funct ional requirements classifications:

Domain requirements

 Domain requirements are derived from the application domain of the system rather than from

the specific needs of the system users.

 May be new functional requirements, constrain existing requirements or set out how

particular computation must take place.

 Example: tolerance level of landing gear on an aircraft (different on dirt, asphalt, water), or

what happens to fiber optics line in case of sever weather during winter Olympics (Only domain-

area experts know)

Product requirements

 Specify the desired characterist ics that a system or subsystem must possess.

 Most NFRs are concerned wit h specifying constraints on the behaviour of the executing

system.
Specifying product requirements

 Some product requirements can be formulated precisely, and thus easily quantified

• Performance

• Capacity

12

13

 Others are more difficult to quantify and, consequently, are often stated informally

• Usabilit y

Process requirements

 Process requirements are constraints placed upon the development process of the system

 Process requirements include:

• Requirements on development standards and methods which must be followed
• CASE tools which should be used

• The management reports which must be provided

Examples of process requirements

 The development process to be used must be explicit ly defined and must be conformant with
ISO 9000 standards

 The system must be developed using the XYZ suite of CASE tools

 Management reports setting out the effort expended on each identified system component

must be produced every two weeks

 A disaster recovery plan for the system development must be specified

External requirements

 May be placed on both the product and the process

 Derived from the environment in which the system is developed

 External requirements are based on:

• application domain informat ion

• organisat ional considerat ions

• the need for the system to work with other systems

• health and safety or data protection regulat ions

• or even basic natural laws such as the laws of physics

Examples of external requirements

 Medical data system The organisation‘ s data protection officer must certify that all data is

maintained according to data protection legislat ion before the system is put into operation.

 Train protection system The time required to bring the train to a complete halt is computed
using the following function:

 The deceleration of the train shall be taken as:

gtrain = gcontrol + ggradient

where:
ggradient = 9.81 ms-2 * compensated gradient / alpha and where the values of 9.81 ms-2/

alpha are known for the different types of train.

gcontrol is initialised at 0.8 ms-2 - this value being parameterised in order to remain

adjustable. The illustrates an example of the train‘s deceleration by using the parabolas derived

from the above formula where there is a change in gradient before the (predicted) stopping point

of the train.

Software Document

 Should provide for communicat ion among team members

14

 Should act as an informat ion repository to be used by maintenance engineers

 Should provide enough informat ion to management to allow them to perform all program

management related activit ies

 Should describe to users how to operate and administer the system

 Specify external system behaviour

 Specify implementation constraints

 Easy to change

 Serve as reference tool for maintenance

 Record forethought about the life cycle of the system i.e. predict changes

 Characterise responses to unexpected events

Users of a requirements document

System customers

Managers

System engineers

System test

engineers

System

maintenance

engineers

Specify the requirements and

read them to check that they

meet their needs. They

specify changes to the

requirements

Use the requirements

document to plan a bid for

the system and to plan the

system development proces s

Use the requirements to
understand what system is to

be developed

Use the requirements to
develop validation tests for

the system

Use the requirements to help

understand the system and

the relationships between its

parts

Process Documentation

 Used to record and track the development process

• Planning documentation
• Cost, Schedule, Funding tracking

• Schedules

• Standards

15

 This documentation is created to allow for successful management of a software product

 Has a relatively short lifespan

• Only important to internal development process
• Except in cases where the customer requires a view into this data

 Some items, such as papers that describe design decisions should be extracted and moved

into the product documentation category when they become implemented

• Product Documentation

 Describes the delivered product

 Must evolve with the development of the software product

 Two main categories:

• System Documentation

• User Documentation

Product Documentation

 System Documentation

• Describes how the system works, but not how to operate it

 Examples:

• Requirements Spec

• Architectural Design

• Detailed Design

• Commented Source Code
 Including output such as JavaDoc

• Test Plans

 Including test cases

• V&V plan and results
• List of Known Bugs

 User Documentation has two main types

• End User

• System Administrator
 In some cases these are the same people

• The target audience must be well understood!

 There are five important areas that should be documented for a formal release of a software

application

• These do not necessarily each have to have their own document, but the topics should

be covered thoroughly

 Funct ional Descript ion of the Software

 Installat ion Instructions

 Introductory Manual

 Reference Manual

 System Administrator ‘s Guide

Document Quality

 Providing thorough and professional documentation is important for any size product

development team

16

• The problem is that many software professionals lack the writ ing skills to create
professional level documents

Document Structure

 All documents for a given product should have a similar structure

• A good reason for product standards

 The IEEE Standard for User Documentation lists such a structure

• It is a superset of what most documents need

 The authors ―best practices‖ are:

 Put a cover page on all documents

 Divide documents into chapters with sections and subsections

 Add an index if there is lots of reference information

 Add a glossar y to define ambiguous terms

Standards

 Standards play an important role in the development, maintenance and usefulness of

documentation

 Standards can act as a basis for qualit y documentatio n

• But are not good enough on their own

 Usually define high level content and organizat ion

 There are three types of documentation standards

1. Process Standards

 Define the approach that is to be used when creating the documentation

 Don‘t actually define any of the content of the documents

2. Product Standards

 Goal is to have all documents created for a specific product attain a consistent structure and

appearance

• Can be based on organizational or contractually required standards

 Four main types:

• Documentation Identificat ion Standards

• Document Structure Standards

• Document Presentation Standards

• Document Update Standards

 One caveat:

• Documentation that will be viewed by end users should be created in a way that is

best consumed and is most attractive to them

• Internal development documentation generally does not meet this need

3. Interchange Standards

 Deals with the creation of documents in a format that allows others to effectively use

• PDF may be good for end users who don‘t need to edit

• Word may be good for text editing

17

• Specialized CASE tools need to be considered

 This is usually not a problem wit hin a single organizat ion, but when sharing data between

organizat ions it can occur

• This same problem is faced all the time during software integration

Other Standards

 IEEE

• Has a published standard for user documentation

• Provides a structure and superset of content areas

• Many organizat ions probably won‘t create documents that completely match the
standard

 Writing Style

• Ten ―best practices‖ when writ ing are provided
• Author proposes that group edits of important documents should occur in a similar

fashio n to software walkthroughs

2.3 Requirement Engineering Process

 The requirements engineering process includes a feasibilit y study, requirements elicitation

and analysis, requirements specificat ion and requirements management

Feasibility

study

Feasibility
report

Requirements

elicitation and

analysis

System
models

Requir ements
specification

User and system
requirements

Requirements

validation

Requirements

document

2.4 Feasibility Studies

 A feasibilit y study decides whether or not the proposed system is worthw hile

 A short focused study that checks

• If the system contributes to organisat ional objectives
• If the system can be engineered using current technology and within budget

• If the system can be integrated with other systems that are used

 Based on informat ion assessment (what is required), informat ion collection and report
writing

 Quest ions for people in the organisat ion

• What if the system wasn‘t implemented?

• What are current process problems?

• How will the proposed system help?

18

• What will be the integration problems?

• Is new technology needed? What skills?

• What facilit ies must be supported by the proposed system?

2.5 Elicitation and analysis

 Sometimes called requirements elicitat ion or requirements discovery

 Involves technical staff working with customer s to find out about

• the application domain
• the services that the system should provide
• the system‘s operational constraints

 May involve end-users, managers, engineers involved in maintenance, domain experts, trade

unions, etc.

• These are called stakeholders

Problems of requirements analysis

 Stakeholders don‘t know what they really want

 Stakeholders express requirements in their own terms

 Different stakeholder s may have conflict ing requirements

 Organisat ional and political factors may influence the system requirements

 The requirements change during the analysis process

• New stakeholders may emerge and the business environment change

System models

 Different models may be produced during the requirements analysis activit y

 Requirements analysis may involve three structur ing activit ies which result in these different
models

• Partitioning – Identifies the structural (part-of) relationships between entities

• Abstraction – Identifies generalit ies among entities
• Projection – Identifies different ways of looking at a problem

 System models will be covered on January 30

Scenarios

 Scenarios are descript ions of how a system is used in practice

 They are helpful in requirements elicitat ion as people can relate to these more readily than

abstract statement of what they require from a system

 Scenarios are particular ly useful for adding detail to an outline requirements descript ion

Ethnography

 A social scient ists spends a considerable time observing and analysing how people actually

work

 People do not have to explain or articulate their work

 Social and organisat ional factors of importance may be observed

 Ethnographic studies have shown that work is usually richer and more complex than
suggested by simple system models

19

2.6 Validation and management

 Concerned with demonstrating that the requirements define the system that the customer

really wants

 Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost of fixing

an implementation error

 Requirements checking

• Validit y

• Consistency

• Completeness

• Realism

• Verifiabilit y

Requirements validation techniques

 Reviews

• Systemat ic manual analysis of the requirements

 Prototyping

• Using an executable model of the system to check requirements.

 Test-case generation

• Developing tests for requirements to check testabilit y

 Automated consistency analysis

• Checking the consistency of a structured requirements descript ion

Requirements management

 Requirements management is the process of managing changing requirements during the

requirements engineering process and system development

 Requirements are inevitably incomplete and inconsistent
• New requirements emerge during the process as business needs change and a better

understanding of the system is developed

• Different viewpo ints have different requirements and these are often contradictory

2.7 Software prototyping

Incomplete versions of the software program being developed. Prototyping can also be
used by end users to describe and prove requirements that developers have not considered

Benefits:

The software designer and implementer can obtain feedback from the users early in the

project. The client and the contractor can compare if the software made matches the software

specification, according to which the software program is built.

It also allows the software engineer some insight into the accuracy of initial project estimates
and whether the deadlines and milestones proposed can be successfully met.

Process of prototyping

1. Identify basic requirements
Determine basic requirements including the input and output informat ion desired. Details,

such as securit y, can typically be ignored.

20

2. Develop Init ial Prototype
The initial prototype is developed that includes only user interfaces. (See Horizontal

Prototype, below)

3. Review
The customers, including end-users, examine the prototype and provide feedback on

additions or changes.

4. Revise and Enhance the Prototype
Using the feedback both the specifications and the prototype can be improved. Negotiation

about what is within the scope of the contract/product may be necessary. If changes are

introduced then a repeat of steps #3 and #4 may be needed.

Dimensions of prototypes

1. Horizontal Prototype

It provides a broad view of an entire system or subsystem, focusing on user interaction more
than low-level system functionality, such as database access. Horizontal prototypes are useful
for:

 Confirmation of user interface requirements and system scope
 Develop preliminary estimates of development time, cost and effort.

2 Vertical Prototypes

A vertical prototype is a more complete elaboration of a single subsystem or function. It is

useful for obtaining detailed requirements for a given function, with the following benefits:

 Refinement database design
 Obtain informat ion on data volumes and system interface needs, for network sizing and

performance engineering

Types of prototyping

Software prototyping has many variants. However, all the methods are in some way

based on two major types of prototyping: Throwaway Prototyping and Evolut ionar y Prototyping.

1. Throwaway prototyping

Also called close ended prototyping. Throwaway refers to the creation of a model that

will eventually be discarded rather than becoming part of the final delivered software. After

preliminary requirements gathering is accomplished, a simple working model of the system is

constructed to visually show the users what their requirements may look like when they are
implemented into a finished system.

The most obvious reason for using Throwaway Prototyping is that it can be done quickly.

If the users can get quick feedback on their requirements, they may be able to refine them early

in the development of the software. Making changes early in the development lifecycle is

extremely cost effective since there is nothing at that point to redo. If a project is changed after a

considerable work has been done then small changes could require large efforts to implement

since software systems have many dependencies. Speed is crucial in implement ing a throwaway

prototype, since with a limited budget of time and money litt le can be expended on a prototype

that will be discarded.

Strength of Throwaway Prototyping is its abilit y to construct interfaces that the users can
test. The user interface is what the user sees as the system, and by seeing it in front of them, it is

much easier to grasp how the system will work.

21

2. Evolutionary prototyping

Evolutionary Prototyping (also known as breadboard prototyping) is quite different from
Throwaway Prototyping. The main goal when using Evolutionary Prototyping is to build a very

robust prototype in a structured manner and constantly refine it. "The reason for this is that the

Evolutionary prototype, when built, forms the heart of the new system, and the improvements

and further requirements will be built.

Evolutionary Prototypes have an advantage over Throwaway Prototypes in that they are

functional systems. Although they may not have all the features the users have planned, they

may be used on a temporary basis until the final system is delivered.

In Evolut ionary Prototyping, developers can focus themselves to develop parts of the

system that they understand instead of working on developing a whole system. To minimize risk,

the developer does not implement poorly understood features. The partial system is sent to

customer sites. As users work with the system, they detect opportunit ies for new features and

give requests for these features to developers. Developers then take these enhancement requests

along with their own and use sound configuration-management practices to change the software-

requirements specificat ion, update the design, recode and retest.

3. Incremental prototyping

The final product is built as separate prototypes. At the end the separate prototypes are
merged in an overall design.

4. Extreme prototyping

Extreme Prototyping as a development process is used especially for developing web

applications. Basically, it breaks down web development into three phases, each one based on

the preceding one. The first phase is a static prototype that consists mainly of HTML pages. In

the second phase, the screens are programmed and fully functional using a simulated services

layer. In the third phase the services are implemented. The process is called Extreme Prototyping

to draw attention to the second phase of the process, where a fully-functional UI is developed

with very little regard to the services other than their contract.

Advantages of prototyping

1. Reduced time and costs: Prototyping can improve the quality of requirements and

specifications provided to developers. Because changes cost exponentially more to implement as

they are detected later in development, the early determination of what the user really wants can

result in faster and less expensive software.

2. Improved and increased user involvement: Prototyping requires user involvement and

allows them to see and interact with a prototype allowing them to provide better and more

complete feedback and specifications. The presence of the prototype being examined by the user

prevents many misunderstandings and miscommunications that occur when each side believe the

other understands what they said. Since users know the problem domain better than anyone on
the development team does, increased interaction can result in final product that has greater

tangible and intangible quality. The final product is more likely to satisfy the users‘ desire for

look, feel and performance.

22

Disadvant ages of prototyping

1. Insufficient analysis: The focus on a limited prototype can distract developers from properly

analyzing the complete project. This can lead to overlooking better solutions, preparation of

incomplete specifications or the conversion of limited prototypes into poorly engineered final

projects that are hard to maintain. Further, since a prototype is limited in functionality it may not

scale well if the prototype is used as the basis of a final deliverable, which may not be noticed if

developers are too focused on building a prototype as a model.

2. User confusion of prototype and finished system: Users can begin to think that a prototype,

intended to be thrown away, is actually a final system that merely needs to be finished or

polished. (They are, for example, often unaware of the effort needed to add error-checking and

security features which a prototype may not have.) This can lead them to expect the prototype to

accurately model the performance of the final system when this is not the intent of the

developers. Users can also become attached to features that were included in a prototype for

consideration and then removed from the specification for a final system. If users are able to

require all proposed features be included in the final system this can lead to conflict.

3. Developer misunderstanding of user objectives: Developers may assume that users share

their objectives (e.g. to deliver core functionality on time and within budget), without

understanding wider commercial issues. For example, user representatives attending Enterprise

software (e.g. PeopleSoft) events may have seen demonstrations of "transaction auditing" (where

changes are logged and displayed in a difference grid view) without being told that this feature

demands additional coding and often requires more hardware to handle extra database accesses.

Users might believe they can demand auditing on every field, whereas developers might think

this is feature creep because they have made assumptions about the extent of user requirements.

If the developer has committed delivery before the user requirements were reviewed, developers

are between a rock and a hard place, particularly if user management derives some advantage

from their failure to implement requirements.

4. Developer attachment to prototype: Developers can also become attached to prototypes they
have spent a great deal of effort producing; this can lead to problems like attempting to convert a

limited prototype into a final system when it does not have an appropriate underlying

architecture. (This may suggest that throwaway prototyping, rather than evolutionary

prototyping, should be used.)

5. Excessive development time of the prototype: A key property to prototyping is the fact that

it is supposed to be done quickly. If the developers lose sight of this fact, they very well may try

to develop a prototype that is too complex. When the prototype is thrown away the precisely

developed requirements that it provides may not yield a sufficient increase in productivity to

make up for the time spent developing the prototype. Users can become stuck in debates over

details of the prototype, holding up the development team and delaying the final product.

6. Expense of implementing prototyping: the start up costs for building a development team

focused on prototyping may be high. Many companies have development methodologies in

place, and changing them can mean retraining, retooling, or both. Many companies tend to just

jump into the prototyping wit hout bothering to retrain their workers as much as they should.

A common problem with adopting prototyping technology is high expectations for productivity

with insufficient effort behind the learning curve. In addition to training for the use of a

prototyping technique, there is an often overlooked need for developing corporate and project

23

specific underlying structure to support the technology. When this underlying structure is
omitted, lower productivit y can often result.

Best projects to use prototyping

It has been found that prototyping is very effective in the analysis and design of on-line

systems, especially for transaction processing, where the use of screen dialogs is much more in

evidence. The greater the interaction between the computer and the user, the greater the benefit is

that can be obtained from building a quick system and letting the user play with it.

Systems with little user interaction, such as batch processing or systems that mostly do

calculations, benefit little from prototyping. Sometimes, the coding needed to perform the system

functions may be too intensive and the potential gains that prototyping could provide are too

small.
Prototyping is especially good for designing good human-co mputer interfaces. "One of

the most productive uses of rapid prototyping to date has been as a tool for iterative user
requirements engineering and human-computer interface design.

Methods

There are few formal prototyping methodologies even though most Agile Methods rely

heavily upon prototyping techniques.

1. Dynamic systems development method

Dynamic Systems Development Method (DSDM) is a framework for delivering business

solutions that relies heavily upon prototyping as a core technique, and is itself ISO 9001

approved. It expands upon most understood definitions of a prototype. According to DSDM the

prototype may be a diagram, a business process, or even a system placed into production. DSDM

prototypes are intended to be incremental, evolving from simple forms into more comprehensive

ones.

DSDM prototypes may be throwaway or evolutionary. Evolutionary prototypes may be evolved

horizontally (breadth then depth) or vertically (each section is built in detail with additional

iterations detailing subsequent sections). Evolutionary prototypes can eventually evolve into

final systems.

The four categories of prototypes as recommended by DSDM are:
 Business prototypes – used to design and demonstrate the business processes being

automated.

 Usability prototypes – used to define, refine, and demonstrate user interface design

usabilit y, accessibilit y, look and feel.

 Performance and capacity prototypes - used to define, demonstrate, and predict how

systems will perform under peak loads as well as to demonstrate and evaluate other non-

functional aspects of the system (transact ion rates, data storage volume, response time)
 Capability/technique prototypes – used to develop, demonstrate, and evaluate a design

approach or concept.

The DSDM lifecycle of a prototype is to:

1. Identify prototype

2. Agree to a plan

3. Create the prototype

4. Review the prototype

24

2. Operational prototyping

Operational Prototyping was proposed by Alan Davis as a way to integrate throwaway and

evolutionary prototyping with conventional system development. "[It] offers the best of both the quick-

and-dirty and conventional-development worlds in a sensible manner. Designers develop only well-

understood features in building the evolutionary baseline, while using throwaway prototyping to

experiment with the poorly understood features."

Davis' belief is that to try to "retrofit quality onto a rapid prototype" is not the correct approach

when trying to combine the two approaches. His idea is to engage in an evolutionary prototyping

methodology and rapidly prototype the features of the system after each evolut ion.
The specific methodology follows these steps:

 An evolutionary prototype is constructed and made into a baseline using conventional
development strategies, specifying and implementing only the requirements that are well
understood.

 Copies of the baseline are sent to mult iple customer sites along with a trained prototyper.

 At each site, the prototyper watches the user at the system.

 Whenever the user encounters a problem or thinks of a new feature or requirement, the

prototyper logs it. This frees the user from having to record the problem, and allows them

to continue working.

 After the user session is over, the prototyper constructs a throwaway prototype on top of

the baseline system.

 The user now uses the new system and evaluates. If the new changes aren't effective, the
prototyper removes them.

 If the user likes the changes, the prototyper writes feature-enhancement requests and

forwards them to the development team.

 The development team, with the change requests in hand from all the sites, then produce
a new evolutionary prototype using conventional methods.

Obviously, a key to this method is to have well trained prototypers available to go to the user

sites. The Operational Prototyping methodology has many benefits in systems that are complex
and have few known requirements in advance.

3. Evolutionary systems development

Evolutionary Systems Development is a class of methodologies that attempt to formally

implement Evolutionary Prototyping. One particular type, called Systems craft is described by

John Crinnio n in his book: Evolut ionar y Systems Development.

Systemscraft was designed as a 'prototype' methodology that should be modified and

adapted to fit the specific environment in which it was implemented.

Systemscraft was not designed as a rigid 'cookbook' approach to the development

process. It is now generally recognised[sic] that a good methodology should be flexible enough

to be adjustable to suit all kinds of environment and situation…

The basis of Systemscraft, not unlike Evolutionary Prototyping, is to create a working system

from the initial requirements and build upon it in a series of revisions. Systemscraft places heavy

emphasis on traditional analysis being used throughout the development of the system.

25

4. Evolutionary rapid development

Evolutionary Rapid Development (ERD) was developed by the Software Productivity

Consortium, a technology development and integration agent for the Information Technology
Office of the Defense Advanced Research Projects Agency (DARP A).

Fundamental to ERD is the concept of composing software systems based on the reuse of

components, the use of software templates and on an architectural template. Continuous

evolution of system capabilit ies in rapid response to changing user needs and technology is

highlighted by the evolvable architecture, represent ing a class of solut ions. The process focuses

on the use of small artisan-based teams integrating software and systems engineering disciplines

working mult iple, often parallel short-duration timeboxes with frequent customer interaction.

Key to the success of the ERD-based projects is parallel explorator y analysis and development of

features, infrastr uctures, and components with and adoption of leading edge technologies

enabling the quick reaction to changes in technologies, the marketplace, or customer

requirements.

To elicit customer/user input, frequent scheduled and ad hoc/impromptu meetings with the

stakeholders are held. Demonstrations of system capabilities are held to solicit feedback before

design/implementation decisions are solidified. Frequent releases (e.g., betas) are made available

for use to provide insight into how the system could better support user and customer needs. This
assures that the system evolves to satisfy existing user needs.

The design framework for the system is based on using existing published or de facto

standards. The system is organized to allow for evolving a set of capabilities that includes

considerations for performance, capacities, and functionality. The architecture is defined in terms

of abstract interfaces that encapsulate the services and their implementation (e.g., COTS

applications). The architecture serves as a template to be used for guiding development of more

than a single instance of the system. It allows for multiple application components to be used to

implement the services. A core set of functionality not likely to change is also identified and

established.

The ERD process is structured to use demonstrated functionality rather than paper

products as a way for stakeholders to communicate their needs and expectations. Central to this

goal of rapid delivery is the use of the "time box" method. Timeboxes are fixed periods of time

in which specific tasks (e.g., developing a set of functionality) must be performed. Rather than

allowing time to expand to satisfy some vague set of goals, the time is fixed (both in terms of

calendar weeks and person-hours) and a set of goals is defined that realistically can be achieved

within these constraints. To keep development from degenerating into a "random walk," long-

range plans are defined to guide the iterations. These plans provide a vision for the overall

system and set boundaries (e.g., constraints) for the project. Each iteration within the process is

conducted in the context of these long-range plans.

Once architecture is established, software is integrated and tested on a daily basis. This
allows the team to assess progress objectively and identify potential problems quickly. Since

small amounts of the system are integrated at one time, diagnosing and removing the defect is

rapid. User demonstrations can be held at short notice since the system is generally ready to

exercise at all times.

5. Scrum

Scrum is an agile method for project management. The approach was first described by

Takeuchi and Nonaka in "The New New Product Development Game" (Harvard Business

Review, Jan-Feb 1986).

26

Tools

Efficiently using prototyping requires that an organization have proper tools and a staff

trained to use those tools. Tools used in prototyping can vary from individual tools like 4th

generation programming languages used for rapid prototyping to complex integrated CASE

tools. 4th generation programming languages like Visual Basic and ColdFusion are frequently

used since they are cheap, well known and relatively easy and fast to use. CASE tools are often

developed or selected by the military or large organizations. Users may prototype elements of an

application themselves in a spreadsheet.

1. Screen generators, design tools & Software Factories

Commonly used screen generating programs that enable prototypers to show users

systems that don't function, but show what the screens may look like. Developing Human

Computer Interfaces can sometimes be the critical part of the development effort, since to the

users the interface essentially is the system.

Software Factories are Code Generator s that allo w you to model the domain model and

then drag and drop the UI. Also they enable you to run the prototype and use basic database

functionalit y. This approach allows you to explore the domain model and make sure it is in sync

with the GUI prototype.

2. Application definition or simulation software

It enables users to rapidly build lightweight, animated simulations of another computer

program, without writing code. Application simulation software allows both technical and non-

technical users to experience, test, collaborate and validate the simulated program, and provides

reports such as annotations, screenshot and schematics. To simulate applications one can also use

software which simulate real-world software programs for computer based training,

demonstration, and customer support, such as screen casting software as those areas are closely

related.

3. Sketchflow

Sketch Flow, a feature of Microsoft Expression Studio Ultimate, gives the ability to quickly

and effectively map out and iterate the flow of an application UI, the layout of individual screens

and transit ion from one application state to another.
 Interactive Visual Tool
 Easy to learn

 Dynamic

 Provides enviro ment to collect feedback

4. Visual Basic

One of the most popular tools for Rapid Prototyping is Visual Basic (VB). Microsoft Access,

which includes a Visual Basic extensibility module, is also a widely accepted prototyping tool

that is used by many non-technical business analysts. Although VB is a programming language it

has many features that facilitate using it to create prototypes, including:

 An interactive/vis ual user interface design tool.

 Easy connection of user interface components to underlying functional behavior.

 Modificat ions to the result ing software are easy to perform.

27

5. Requirements Engineering Environment

It provides an integrated toolset for rapidly represent ing, building, and executing models
of crit ical aspects of complex systems.

It is current ly used by the Air Force to develop systems. It is: an integrated set of tools

that allows systems analysts to rapidly build functional, user interface, and performance

prototype models of system components. These modeling activit ies are performed to gain a

greater understanding of complex systems and lessen the impact that inaccurate requirement

specifications have on cost and scheduling during the system development process.

REE is composed of three parts. The first, called proto is a CASE tool specifically

designed to support rapid prototyping. The second part is called the Rapid Interface Prototyping

System or RIP, which is a collection of tools that facilitate the creation of user interfaces. The

third part of REE is a user interface to RIP and proto that is graphical and intended to be easy to

use.
Rome Laboratory, the developer of REE, intended that to support their internal requirements
gathering methodology. Their method has three main parts:

 Elicitat ion from various sources which means u loose (users, interfaces to other systems),

specification, and consistency checking

 Analysis that the needs of diverse users taken together do not conflict and are technically
and economically feasible

 Validat ion that requirements so derived are an accurate reflection of user needs.

6. LYMB

LYMB is an object-oriented development environment aimed at developing applications

that require combining graphics-based user interfaces, visualization, and rapid prototyping.

7. Non-relational environments

Non-relational definit ion of data (e.g. using Cache or associat ive models can help make end-

user prototyping more productive by delaying or avoiding the need to normalize data at every

iterat ion of a simulat ion. This may yield earlier/greater clarit y of business requirements, though it
does not specifically confirm that require ments are technically and economically feasible in the

target production system.

8. PSDL

PSDL is a prototype descript ion language to describe real-time software.

2.8 Prototyping in the Software Process

System prototyping

 Prototyping is the rapid development of a system

 In the past, the developed system was normally thought of as inferior in some way to the
required system so further development was required

 Now, the boundary between prototyping and normal system development is blurred and
many systems are developed using an evolut ionar y approach

28

Uses of system prototypes

 The principal use is to help customers and developers understand the requirements for the

system

• Requirements elicitation. Users can experiment with a prototype to see how the
system supports their work

• Requirements validation. The prototype can reveal errors and omissions in the
requirements

 Prototyping can be considered as a risk reduction activit y which reduces requirements risks

Prototyping benefits

 Misunder standings between software users and developers are exposed

 Miss ing services may be detected and confusing services may be identified

 A working system is available early in the process

 The prototype may serve as a basis for deriving a system specification

 The system can support user training and system testing

Prototyping process

Prototyping in the software process

 Evolutionary prototyping

• An approach to system development where an initial prototype is produced and
refined through a number of stages to the final system

 Throw-away prototyping

• A prototype which is usually a practical implementation of the system is produced to

help discover requirements problems and then discarded. The system is then

developed using some other development process

Data Model

 Used to describe the logical structure of data processed by the system

 Entity-relat ion-attribute model sets out the entities in the system, the relationships between

these entities and the entity attributes

 Widely used in database design. Can readily be implemented using relat ional databases

 No specific notation provided in the UML but objects and associat ions can be used

functionality
 prototype

29

Behavioural Model

 Behavioural models are used to describe the overall behaviour of a system

 Two types of behavioural model are shown here

• Data processing models that show how data is processed as it moves through the system
• State machine models that show the systems response to events

 Both of these models are required for a descript ion of the system‘s behaviour

1. Data-processing models

 Data flow diagrams are used to model the system‘ s data processing

 These show the processing steps as data flows through a system

 Intrins ic part of many analysis methods

 Simple and intuit ive notation that customers can understand

 Show end-to-end processing of data

Data flow diagrams

 DFDs model the system from a functional perspective

 Tracking and documenting how the data associated with a process is helpful to develop an

overall understanding of the system

 Data flow diagrams may also be used in showing the data exchange between a system and

other systems in its environment

30

Order processing DFD

2. State machine models

 These model the behaviour of the system in response to external and internal events

 They show the system‘s responses to stimuli so are often used for modelling real-t ime

systems

 State machine models show system states as nodes and events as arcs between these nodes.

 When an event occurs, the system moves from one state to another

 Statecharts are an integral part of the UML

Microwave oven model

31

Statecharts

 Allow the decomposit ion of a model into submodels

 A brief descript ion of the actions is included follo wing the ‗do‘ in each state

 Can be complemented by tables describing the states and the stimuli

2.9 Structured Analysis

 The data-flow approach is typified by the Structured Analys is method (SA)

 Two major strategies dominate structured analysis

• ‗Old‘ method popularised by DeMarco

• ‗Modern‘ approach by Yourdon

DeMarco

 A top-down approach

• The analyst maps the current physical system onto the current logical data-flo w

model

 The approach can be summarised in four steps:

• Analysis of current physical system

• Derivat ion of logical model

• Derivat ion of proposed logical model

• Implementation of new physical system

Modern structured analysis

 Dist inguishes between user‘s real needs and those requirements that represent the external

behaviour satisfying those needs

 Includes real-time extensio ns

 Other structured analysis approaches include:

• Structured Analysis and Design Technique (SADT)

• Structured Systems Analysis and Design Methodology (SSAD M)

Method weaknesses

 They do not model non-funct ional system requirements.

 They do not usually include informat ion about whether a method is appropriate for a given

problem.

 The may produce too much documentation.

 The system models are sometimes too detailed and difficult for users to understand.

CASE workbenches

 A coherent set of tools that is designed to support related software process activit ies such as
analysis, design or testing.

 Analysis and design workbenches support system modelling during both requirements

engineering and system design.

 These workbenches may support a specific design method or may provide support for a
creating several different types of system model.

32

An analysis and design workbench

Analysis workbench components

 Diagram editors

 Model analysis and checking tools

 Repository and associated query language

 Data dictionar y

 Report definit ion and generat ion tools

 Forms definit io n tools

 Import/export translators

 Code generation tools

2.10 Data Dictionary

 Data dictionar ies are lists of all of the names used in the system models. Descript ions of the

entities, relat ionships and attributes are also included

 Advantages

• Support name management and avoid duplicat ion

• Store of organisational knowledge linking analysis, design and implementation

 Many CASE workbenches support data dictionaries

33

Data dictionary entries

34

UNIT III

ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES

Design Concepts and Principles:

 Map the informat ion from the analysis model to the design representations - data design,

architectural design, interface design, procedural design

Analysis to Design:

Design Models – 1:

• Data Design

– created by transfor ming the data dictionary and ERD into implementation data

structures

– requires as much attention as algorithm design
• Architectural Design

– derived from the analysis model and the subsystem interact ions defined in the
DFD

• Interface Design

– derived from DFD and CFD

– describes software elements communication wit h

• other software elements
• other systems

• human users
Design Models – 2 :

• Procedure-level design

– created by transfor ming the structural elements defined by the software

architecture into procedural descript ions of software components

– Derived from informat ion in the PSPEC, CSPEC, and STD

Design Principles – 1:

• Process should not suffer from tunnel vision – consider alternative approaches

• Design should be traceable to analysis model

• Do not try to reinvent the wheel

- use design patterns ie reusable components

• Design should exhibit both uniformit y and integratio n
• Should be structured to accommodate changes

35

Design Concepts -2 :

Software Architecture
– overall structure of the software components and the ways in which that structure

– provides conceptual integrit y for a system

Design Concepts -4 :

• Informat ion Hiding

– informat ion (data and procedure) contained within a module is inaccessible to

modules that have no need for such informat ion

• Funct ional Independence

– achieved by developing modules wit h single- minded purpose and an aversio n to
excessive interact ion with other models

Refactoring – Design concepts :

• Fowler [FOW99] defines refactoring in the following manner:
– "Refactoring is the process of changing a software system in such a way that it

does not alter the external behavior of the code [design] yet improves its internal

structure.‖
• When software is refectories, the existing design is examined for

– redundancy

– unused design elements

– inefficient or unnecessar y algorithms

– poorly constructed or inappropriate data structures

– or any other design failure that can be corrected to yield a better design.
Design Concepts – 4 :

• Objects

– encapsulate both data and data manipulation procedures needed to describe the
content and behavior of a real world entity

• Class

– generalized descript ion (template or pattern) that describes a collection of similar
objects

• Inheritance
– provides a means for allowing subclasses to reuse existing superclass data and

procedures; also provides mechanism for propagating changes

Design Concepts – 5:
• Messages

– the means by which objects exchange information with one another

• Polymorphism
– a mechanism that allows several objects in an class hierarchy to have different

methods with the same name

– instances of each subclass will be free to respond to messages by calling their own
versio n of the method

3.2 Modular Design Methodology Evaluation

– 1: Modularit y
– the degree to which software can be understood by examining its components

independent ly of one another

• Modular decomposabilit y

– provides systemat ic means for breaking problem into sub problems

36

• Modular compos abilit y
– supports reuse of existing modules in new systems

• Modular understandabilit y

– module can be understood as a stand-alone unit
Modular Design Methodology Evaluation – 2:

• Modular continuit y

– module change side-effects minimized

• Modular protection
– processing error side-ef fects minimized

Effective Modular Design:

• Funct ional independence
– modules have high cohesion and low coupling

• Cohesion

– qualitat ive indication of the degree to which a module focuses on just one thing

• Coupling

– qualitat ive indicat ion of the degree to which a module is connected to other
modules and to the outside world

3.4

Architectural Design:

Why Architecture?

The architecture is not the operational software. Rather, it is a representation that enables a

software engineer to:

(1) analyze the effectiveness of the design in meeting its stated requirements,
(2) consider architectural alternat ives at a stage when making design changes is still relatively

easy, and

(3) reduce the risks associated with the construction of the software.

Importance :

• Software architecture representations enable communicat ions among stakeholders
• Architecture highlights early design decisions that will have a profound impact on the

ultimate success of the system as an operational entity

• The architecture constitutes an intellectually graspable model of how the system is

structured and how its components work together

Architectural Styles – 1:
• Data centered

– file or database lies at the center of this architecture and is accessed frequently by

other components that modify data

Architectural Styles – 2:

• Data flow
– input data is transfor med by a series of computational components into output

data
– Pipe and filter pattern has a set of components called filters, connected by pipes

that transmit data from one component to the next.

– If the data flow degenerates into a single line of transfor ms, it is termed batch
sequential

• Object-or iented

– components of system encapsulate data and operations, communicat ion between
components is by message passing

37

• Layered

– several layers are defined

– each layer performs operations that become closer to the machine instruction set
in the lower layers

Architectural Styles – 3:

Call and return
– program structure decomposes function into control hierarchy wit h main program

invoking several subprograms
3.5 Software Architecture Design – 1:

• Software to be developed must be put into context

– model external entities and define interfaces

• Identify architectural archetypes

– collection of abstractions that must be modeled if the system is to be constructed
Object oriented Architecture :

• The components of a system encapsulate data and the operations that must be applied to

manipulate the data. Communication and coordination between components is

accomplished via message passing

Software Architecture Design – 2:

• Specify structure of the system
– define and refine the software components needed to implement each archetype

• Continue the process iteratively until a complete architectural structure has been derived

Layered Architecture:

• Number of different layers are defined, each accomplishing operations that progressively

become closer to the machine instruction set

• At the outer layer –components service user interface operations.

• At the inner layer – components perform operating system interfacing.
• Intermediate layers provide utilit y services and application software function

Architecture Tradeoff Analysis – 1:

1. Collect scenarios

2. Elicit requirements, constraints, and environmental descript ion

3. Describe architectural styles/patterns chosen to address scenarios and requirements
• module view

• process view

• data flow view

Architecture Tradeoff Analysis – 2:

4. Evaluate qualit y attributes independent ly (e.g. reliabilit y, performance, securit y,
maintainabilit y, flexibilit y, testabilit y, portabilit y, reusabilit y, interoperabilit y)

5. Identify sensit ivit y points for architecture

• any attributes signif icant ly affected by changing in the architecture
Refining Architectural Design:

• Processing narrative developed for each module

• Interface descript ion provided for each module

• Local and global data structures are defined

• Design restrict ions/limitat ions noted

• Design reviews conducted

38

\

Architectural Design

 An early stage of the system design process.

 Represents the link between specificat ion and design processes.

 Often carried out in parallel wit h some specificat ion activities.

 It involves identifying major system components and their communicat ions.

Advantages of explicit architecture

 Stakeholder communicat ion

- Architecture may be used as a focus of discussio n by system stakeholder s.

 System analysis
- Means that analysis of whether the system can meet its non-funct ional requirements is

possible.

 Large-scale reuse

- The architecture may be reusable across a range of systems.

Architecture and system characteristics

 Performance

- Localise crit ical operations and minimise communicat ions. Use large rather than fine-
grain components.

 Securit y

- Use a layered architecture with crit ical assets in the inner layers.

 Safety

- Localise safety-crit ical features in a small number of sub-systems.

 Availabilit y

- Include redundant components and mechanisms for fault tolerance.

 Maintainabilit y

- Use fine-grain, replaceable components.

Architectural conflicts

 Using large-grain components improves performance but reduces maintainabilit y.

 Introducing redundant data improves availabilit y but makes securit y more difficult.

 Localising safety-related features usually means more communicat ion so degraded

performance.

System structuring

 Concerned with decomposing the system into interacting sub-systems.

 The architectural design is normally expressed as a block diagram presenting an overview of

the system structure.

 More specific models showing how sub-systems share data, are distributed and interface wit h

each other may also be developed.

39

Packing robot control system

Box and line diagrams

 Very abstract - they do not show the nature of component relat ionships nor the externally

visible properties of the sub-systems.

 However, useful for communicat ion with stakeholders and for project planning.

Architectural design decisions

 Architectural design is a creative process so the process differs depending on the type of

system being developed.

 However, a number of common decisions span all design processes.

 Is there a generic application architecture that can be used?

 How will the system be distributed?

 What architectural styles are appropriate?

 What approach will be used to structure the system?

 How will the system be decomposed into modules?

 What control strategy should be used?

 How will the architectural design be evaluated?

 How should the architecture be documented?

Architecture reuse

 Systems in the same domain often have similar architectures that reflect domain concepts.

 Applicat ion product lines are built around a core architecture with variants that satisfy
particular customer requirements.

Architectural styles

 The architectural model of a system may conform to a generic architectural model or style.

 An awarenes s of these styles can simplify the problem of defining system architectures.

 However, most large systems are heterogeneous and do not follow a single architectural
style.

40

Architectural models

 Used to document an architectural design.

 Static structural model that shows the major system components.

 Dynamic process model that shows the process structure of the system.

 Interface model that defines sub-system interfaces.

 Relationships model such as a data-flow model that shows sub-system relationships.

 Distr ibut ion model that shows how sub-systems are distributed across computers.

System organisation

 Reflects the basic strategy that is used to structure a system.

 Three organisat ional styles are widely used:

• A shared data repositor y style;

• A shared services and servers style;
• An abstract machine or layered style.

The repository model

 Sub-systems must exchange data. This may be done in two ways:

• Shared data is held in a central database or repository and may be accessed by all sub-
systems;

• Each sub-system maintains its own database and passes data explicit ly to other sub-
systems.

 When large amounts of data are to be shared, the repository model of sharing is most

commonly used.

CASE toolset architecture

Repository model characteristics

Advantages

 Efficient way to share large amounts of data;

 Sub-systems need not be concerned wit h how data is produced Centralised management

e.g. backup, securit y, etc.

 Sharing model is published as the repository schema.

41

Disadvantages

 Sub-systems must agree on a repository data model. Inevitably a compromise;

 Data evolut ion is difficult and expensive;

 No scope for specific management policies;

 Difficult to distribute efficient ly.

Client-server model

 Distr ibuted system model which shows how data and processing is distributed across a range

of components.

 Set of stand-alone servers which provide specific services such as printing, data management,

etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

Client-server characteristics

Advantages

• Distr ibut ion of data is straightfor ward;

• Makes effective use of networked systems. May require cheaper hardware;

• Easy to add new servers or upgrade existing servers.
Disadvantages

• No shared data model so sub-systems use different data organisat ion. Data

interchange may be inefficient;

• Redundant management in each server;

• No central register of names and services - it may be hard to find out what servers
and services are available.

Abstract machine (layered) model

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract machines) each of which provide a set

of services.

 Supports the incremental development of sub-systems in different layers. When a layer

interface changes, only the adjacent layer is affected.

 However, often artificial to structure systems in this way.

Modular decomposition styles

 Styles of decomposing sub-systems into modules.

 No rigid distinct ion between system organisat ion and modular decomposit ion.

Sub-system s and modules

 A sub-system is a system in its own right whose operation is independent of the services

provided by other sub-systems.

 A module is a system component that provides services to other components but would not

normally be considered as a separate system.

 Modular decomposit ion

 Another structural level where sub-systems are decomposed into modules.

 Two modular decomposit io n models covered

• An object model where the system is decomposed into interacting object;

• A pipeline or data-flow model where the system is decomposed into functiona l
modules which transfor m inputs to outputs.

 If possible, decisio ns about concurrency should be delayed until modules are implemented.

42

Object models

 Structure the system into a set of loosely coupled objects with well-def ined interfaces.

 Object-or iented decomposit ion is concerned wit h identifying object classes, their attributes
and operations.

 When implemented, objects are created from these classes and some control model used to
coordinate object operations.

Invoice processing system

Object model advantages

 Objects are loosely coupled so their implementation can be modified without affecting other

objects.

 The objects may reflect real-wor ld entities.

 OO implementation languages are widely used.

 However, object interface changes may cause problems and complex entities may be hard to

represent as objects.
Function-oriented pipelining

 Funct ional transfor mat ions process their inputs to produce outputs.

 May be referred to as a pipe and filter model (as in UNIX shell).

 Variants of this approach are very common. When transformations are sequent ial, this is a

batch sequential model which is extensively used in data processing systems.

 Not really suitable for interactive systems.

User interface design

 Designing effective interfaces for software systems

 System users often judge a system by its interface rather than its functionalit y

 A poorly designed interface can cause a user to make catastrophic errors

 Poor user interface design is the reason why so many software systems are never used

 Most users of business systems interact with these systems through graphical user interfaces

(GUIs)

 In some cases, legacy text-based interfaces are still used

43

3.6 User interface design process

An aly se and

understan d user

activities

Pro duce pap er-

based design

p ro to ty pe

Ev aluate design

with en d-users

Design

p ro to ty pe

Produce

dy namic design

pro tot ype

Ev al uate design

with en d-users

3.7 UI design

principles User

familiar it y

Ex ecut abl e

pro to ty pe

Implement

fin al user

int erface

• The interface should be based on user-oriented terms and concepts rather than

computer concepts

• E.g., an office system should use concepts such as letters, documents, folders etc.
rather than directories, file identifiers, etc.

 Consistency

• The system should display an appropriate level of consistency

• Commands and menus should have the same format, command punctuation should be
similar, etc.

 Minimal surprise

• If a command operates in a known way, the user should be able to predict the
operation of comparable commands

 Recoverabilit y

• The system should provide some interface to user errors and allow the user to recover
from errors

 User guidance

• Some user guidance such as help systems, on-line manuals, etc. should be supplied

 User diversit y

• Interaction facilit ies for different types of user should be supported

• E.g., some users have seeing difficult ies and so larger text should be available

User-system interaction

 Two problems must be addressed in interact ive systems design

• How should informat ion from the user be provided to the computer system?

• How should informat ion from the computer system be presented to the user?

Interaction styles

 Direct manipulat ion

• Easiest to grasp with immediate feedback

• Difficult to program

 Menu selection

• User effort and errors minimized

• Large numbers and combinat ions of choices a problem

44

 Form fill- in

• Ease of use, simple data entry

• Tedious, takes a lot of screen space

 Natural language

• Great for casual users

• Tedious for expert users
Information presentation

 Informat ion presentation is concerned wit h presenting system informat ion to system users

 The informat ion may be presented directly or may be transfor med in some way for
presentation

 The Model-View-Controller approach is a way of supporting mult iple presentations of data

Information display

0 10 20

Dial with needle Pie chart Thermomet er Horizont al bar

Displaying relative values

Textual highlight ing

Data visualisation

 Concerned with techniques for displaying large amounts of informat ion

1

4 2

3

45

 Visualisat ion can reveal relationships between entities and trends in the data

 Possible data visualisat ions are:

• Weather informat ion

• State of a telephone network

• Chemical plant pressures and temperatures
• A model of a molecule

Colour displays

 Colour adds an extra dimension to an interface and can help the user understand complex

informat ion structures

 Can be used to highlight exceptional events

• The use of colour to communicate meaning

Error messages

 Error message design is critically important. Poor error messages can mean that a user

rejects rather than accepts a system

 Messages should be polite, concise, consistent and constructive

 The background and experience of users should be the determining factor in message
design

User interface evaluation

 Some evaluat ion of a user interface design should be carried out to assess its suitabilit y

 Full scale evaluat ion is very expensive and impractical for most systems

 Ideally, an interface should be evaluated against req

 However, it is rare for such specificat ions to be produced

3.8 Real Time Software Design

 Systems which monitor and control their environment

 Inevitably associated with hardware devices

• Sensors: Collect data from the system environment

• Actuators: Change (in some way) the system's environment

 Time is critical. Real-time systems MUST respond within specified times

 A real-time system is a software system where the correct functioning of the system depends

on the results produced by the system and the time at which these results are produced

 A ‗soft‘ real-time system is a system whose operation is degraded if results are not produced
according to the specified timing requirements

 A ‗hard‘ real-time system is a system whose operation is incorrect if results are not produced

according to the timing specificat ion
Stimulus/Response Systems

 Given a stimulus, the system must produce a response within a specified time

 2 classes

 Periodic stimuli. Stimuli which occur at predictable time intervals

• For example, a temperature sensor may be polled 10 times per second

 Aperiodic stimuli. Stimuli which occur at unpredictable times

• For example, a system power failure may trigger an interrupt which must be

processed by the system

46

Architectural considerations

 Because of the need to respond to timing demands made by different stimuli / responses, the
system architecture must allow for fast switching between stimulus handlers

 Timing demands of different stimuli are different so a simple sequential loop is not usually

adequate

Real –Time Software Design:

• Designing embedded software systems whose behaviour is subject to timing constraints
• To explain the concept of a real-time system and why these systems are usually

implemented as concurrent processes

• To describe a design process for real-time systems
• To explain the role of a real-time executive
• To introduce generic architectures for monitoring and control and data acquisit io n

systems

Real-time systems:

• Systems which monitor and control their environment
• Inevitably associated with hardware devices

– Sensors: Collect data from the system environment
– Actuators: Change (in some way) the system's

environment

• Time is critical. Real-time systems MUST respond within specified times

Definition:

• A real-t ime system is a software system where the correct functioning of the system
depends on the results produced by the system and the time at which these results are

produced

• A ‗soft‘ real-time system is a system whose operation is degraded if results are not
produced according to the specified timing requirements

• A ‗hard‘ real-t ime system is a system whose operation is incorrect if results are not
produced according to the timing specificat ion

Stimulus/Response Systems:

• Given a stimulus, the system must produce a esponse within a specified time

• Periodic stimuli. Stimuli which occur at predictable time intervals

– For example, a temperature sensor may be polled 10 times per second
• Aperiodic stimuli. Stimuli which occur at unpredictable times

– For example, a system power failure may trigger an interrupt which must be

processed by the system
Architectural considerations:

• Because of the need to respond to timing demands made by different stimuli/responses,

the system architecture must allow for fast switching between stimulus handlers

• Timing demands of different stimuli are different so a simple sequential loop is not

usually adequate

• Real-time systems are usually designed as cooperating processes with a real-t ime

executive controlling these processes

47

A real-time system model:

System elements:

• Sensors control processes
– Collect information from sensors. May buffer info rmat ion collected in response to

a sensor stimulus

• Data processor
– Carries out processing of collected informat ion and computes the system response

• Actuator control
– Generates control signals for the actuator

R-T systems design process:

• Identify the stimuli to be processed and the required responses to these stimuli
• For each stimulus and response, identify the timing constraints

• Aggregate the stimulus and response processing into concurrent processes. A process

may be associated with each class of stimulus and response

• Design algorithms to process each class of stimulus and response. These must meet the

given timing requirements

• Design a scheduling system which will ensure that processes are started in time to meet

their deadlines

• Integrate using a real-t ime executive or operating system

Timing constraints:

• May require extensive simulat ion and experiment to ensure that these are met by the
system

• May mean that certain design strategies such as object-oriented design cannot be used

because of the additional overhead involved

• May mean that low- level programming language features have to be used for

performance reasons
Real-time programm ing:

• Hard-real time systems may have to programmed in assembly language to ensure that

deadlines are met

• Languages such as C allow efficient programs to be written but do not have constructs to

support concurrency or shared resource management
• Ada as a language designed to support real-time systems design so includes a general

purpose concurrency mechanis m

48

Non-stop system components:

• Configuration manager

– Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be replaced and software

upgraded without stopping the systems
• Fault manager

– Responsible for detecting software and hardware faults and

taking appropriate actions (e.g. switching to backup disks) to ensure that the

system continues in operation
Burglar alarm system e.g

• A system is required to monitor sensors on doors and windows to detect the presence of
intruders in a building

• When a sensor indicates a break-in, the system switches on lights around the area and
calls police automat ically

• The system should include provisio n for operation without a mains power supply
• Sensors

• Movement detectors, window sensors, door sensors.

• 50 window sensors, 30 door sensors and 200 movement detectors

• Voltage drop sensor

• Actions
• When an intruder is detected, police are called automatically.

• Lights are switched on in rooms with active sensors.

• An audible alarm is switched on.
• The system switches automatically to backup power when a voltage drop is

detected.
The R-T system design process:

• Identify stimuli and associated responses

• Define the timing constraints associated with each stimulus and response
• Allocate system functions to concurrent processes

• Design algorithms for stimulus processing and response generation

• Design a scheduling system which ensures that processes will always be scheduled to
meet their deadlines

Control systems:
• A burglar alarm system is primarily a monitoring system. It collects data from sensors but

no real-t ime actuator control

• Control systems are similar but, in response to sensor values, the system sends control
signals to actuators

• An example of a monitoring and control system is a system which monitor s temperature

and switches heaters on and off

Data acquisition systems:

• Collect data from sensors for subsequent processing and analysis.

• Data collection processes and processing processes may have different periods and
deadlines.

• Data collection may be faster than processing e.g. collecting informat ion about an
explosion.

• Circular or ring buffers are a mechanism for smoothing speed differences.

49

A temperature control system:
500Hz

Switch comma nd

500Hz Room number Thermosta t process

Reactor data collection:

• A system collects data from a set of sensors monitoring the neutron flux from a nuclear
reactor.

• Flux data is placed in a ring buffer for later processing.

• The ring buffer is itself implemented as a concurrent process so that the collection and
processing processes may be synchronized.

Reactor flux monitoring:
Sensors (each data flow is a sensor value)

Sensor

ide ntifier and
value

Processed

flux level

Sensor

process

Sensor data

bufer

Process

data
Display

Mutual exclusion:

• Producer processes collect data and add it to the buffer. Consumer processes take data
from the buffer and make elements available

50

• Producer and consumer processes must be mutually excluded from accessing the same
element.

The buffer must stop producer processes adding informat ion to a full buffer and consumer
processes trying to take informat ion from an empty buffer

3.9 System Design

 Design both the hardware and the software associated with system. Partit ion functions to
either hardware or software

 Design decisions should be made on the basis on non-funct ional system requirements

 Hardware delivers better performance but potentially longer development and less scope for

change

System elements

 Sensors control processes

• Collect informat ion from sensors. May buffer information collected in response to a
sensor stimulus

 Data processor

• Carries out processing of collected informat ion and computes the system response

 Actuator control

• Generates control signals for the actuator

Sensor/actuator processes

51

Hardware and software design

R-T systems design process

 Identify the stimuli to be processed and the required responses to these stimuli

 For each stimulus and response, identify the timing constraints

 Aggregate the stimulus and response processing into concurrent processes. A process may be

associated with each class of stimulus and response

 Design algorithms to process each class of stimulus and response. These must meet the given

timing requirements

 Design a scheduling system which will ensure that processes are started in time to meet their

deadlines

 Integrate using a real-t ime executive or operating system

Timing constraints

 For aperiodic stimuli, designers make assumpt ions about probabilit y of occurrence of stimuli.

 May mean that certain design strategies such as object-oriented design cannot be used

because of the additional overhead involved

State machine modelling

 The effect of a stimulus in a real-t ime system may trigger a transit io n from one state to

another.

 Finite state machines can be used for modelling real-t ime systems.

 However, FSM models lack structure. Even simple systems can have a complex model.

 The UML includes notations for defining state machine models

52

C

Fu ll

p ower

Fu ll pow er

d o: set po wer

= 6 00

Wait in g

d o: di sp l ay
ti me

Hal f

p ow er

Hal f

p ow er

Fu ll

p ow er

Hal f p ower

d o: set po wer

= 3 00

Real-time programm ing

 Hard-real time systems may have to programmed in assembly language to ensure that
deadlines are met

 Languages such as C allow efficient programs to be written but do not have constructs to
support concurrency or shared resource management

 Ada as a language designed to support real-time systems design so includes a general

purpose concurrency mechanis m

Java as a real-time language

 Java supports lightweight concurrency (threads and synchonized methods) and can be used

for some soft real-time systems

 Java 2.0 is not suitable for hard RT programming or programming where precise control of

timing is required

• Not possible to specify thread execution time

• Uncontrollable garbage collection
• Not possible to discover queue sizes for shared resources

• Variable virtual machine implementation

• Not possible to do space or timing analysis

3.10 Real Time Executives

 Real-time executives are specialised operating systems which manage processes in the RTS

 Responsible for process management and resource (processor and memory) allocat ion

 Storage management, fault management.

 Components depend on complexit y of system

Executive components

 Real-time clock

• Provides informat ion for process scheduling.

 Interrupt handler

53

• Manages aperiodic requests for service.

 Scheduler

• Chooses the next process to be run.

 Resource manager

• Allocates memory and processor resources.

 Dispatcher s

• Starts process execution.

Non-stop system components

 Configuration manager
• Responsible for the dynamic reconfiguration of the system software and hardware.

Hardware modules may be replaced and software upgraded without stopping the
systems

 Fault manager

• Responsible for detecting software and hardware faults and taking appropriate actions
(e.g. switching to backup disks) to ensure that the system continues in operation

Real-time executive components

Process priority

 The processing of some types of stimuli must sometimes take priorit y

 Interrupt level priorit y. Highest priorit y which is allocated to processes requir ing a very fast
response

 Clock level priorit y. Allocated to periodic processes

 Within these, further levels of priorit y may be assigned

Interrupt servicing

 Control is transfer red automat ically to a pre-determined memory location

 This location contains an instruction to jump to an interrupt service routine

 Further interrupts are disabled, the interrupt serviced and control returned to the interrupted
process

54

 Interrupt service routines MUST be short, simple and fast

Periodic process servicing

 In most real-time systems, there will be several classes of periodic process, each with
different periods (the time between executions), execution times and deadlines (the time by
which processing must be completed)

 The real-time clock ticks periodically and each tick causes an interrupt which schedules the
process manager for periodic processes

 The process manager selects a process which is ready for execution

Process management

 Concerned with managing the set of concurrent processes

 Periodic processes are executed at pre-specified time intervals

 The executive uses the real-time clock to determine when to execute a process

 Process period - time between executions

 Process deadline - the time by which processing must be complete

RTE process management

Process switching

 The scheduler chooses the next process to be executed by the processor. This depends on a

scheduling strategy which may take the process priority into account

 The resource manager allocates memory and a processor for the process to be executed

 The despatcher takes the process from ready list, loads it onto a processor and starts
execution

Scheduling strategies

 Non pre-empt ive scheduling

• Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. wait ing for I/O)

 Pre-emptive scheduling

• The execution of an executing processes may be stopped if a higher priorit y process
requires service

 Scheduling algorithms

• Round-robin
• Shortest deadline first

3.11 Data Acquisit ion System

 Collect data from sensors for subsequent processing and analysis.

 Data collection processes and processing processes may have different periods and

deadlines.

55

 Data collection may be faster than processing
e.g. collecting information about an explosion, scientific experiments

 Circular or ring buffers are a mechanism for smoothing speed differences.

Reactor data collection

 A system collects data from a set of sensors monitor ing the neutron flux from a nuclear

reactor.

 Flux data is placed in a ring buffer for later processing.

 The ring buffer is itself implemented as a concurrent process so that the collection and
processing processes may be synchronized.

Reactor flux monitoring
Senso rs (each dat a flow is a sensor valu e)

Senso r

ide nt ifier and
valu e

Proces sed

flux level

Senso r

proces s

Senso r data

buffer
Proces s

dat a
Displ ay

A ring buffer

Mutual exclusion

 Producer processes collect data and add it to the buffer. Consumer processes take data from

the buffer and make elements available.

 Producer and consumer processes must be mutually excluded from accessing the same
element.

 The buffer must stop producer processes adding informat ion to a full buffer and consumer
processes trying to take informat ion from an empty buffer.

Java implementation of a ring buffer

class CircularBuffer

{
int bufsize ;

SensorRecord [] store ;

Producer
process

Consumer
proces s

56

int numberO fEntr ies = 0 ;
int front = 0, back = 0 ;

CircularBuffer (int n) {

bufsize = n ;

store = new SensorRecord [bufsize] ;

} // CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException

{

} // put

if (numberOfEntries == bufsize)
wait () ;

store [back] = new SensorRecord (rec.sensorId, rec.sensor Val) ;

back = back + 1 ;

if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntr ies + 1 ;
notify () ;

synchronized SensorRecord get () throws InterruptedExcept ion
{

SensorRecord result = new SensorRecord (-1, -1) ;

if (number OfEntries == 0)

wait () ;

result = store [front] ;

front = front + 1 ;
if (front == bufsize)

front = 0 ;
numberOfEntries = numberOfEntr ies - 1 ;

notify () ;

return result ;

} // get
} // CircularBuf fer

3.12 Monitoring and Control System

 Important class of real-time systems

 Continuous ly check sensors and take actions depending on sensor values

 Monitor ing systems examine sensors and report their results

 Control systems take sensor values and control hardware actuators

 Burglar alarm system e.g

 A system is required to monitor sensors on doors and windows to detect the presence of

intruders in a building

 When a sensor indicates a break-in, the system switches on lights around the area and calls

police automat ically

57

 The system should include provisio n for operation without a mains power supply

Burglar alarm system

 Sensors

• Movement detectors, window sensors, door sensors.
• 50 window sensors, 30 door sensors and 200 movement detectors

• Voltage drop sensor

 Actions

• When an intruder is detected, police are called automat ically.

• Lights are switched on in rooms with active sensors.
• An audible alarm is switched on.

• The system switches automatically to backup power when a voltage drop is detected.

The R-T system design process

 Identify stimuli and associated responses

 Define the timing constraints associated with each stimulus and response

 Allocate system functions to concurrent processes

 Design algorithms for stimulus processing and response generation

 Design a scheduling system which ensures that processes will always be scheduled to meet

their deadlines

 Stimuli to be processed

 Power failure

• Generated by a circuit monitor. When received, the system must switch to backup
power within 50 ms

 Intruder alarm

• Stimulus generated by system sensors. Response is to call the police, switch on
building lights and the audible alarm

Timing requirements

Stimulus/Response

Power fail interrupt

Door alarm
Window alarm

Movement detector

Audible alarm

Lights switch

Communicat ions

Voice synthesiser

Timing requirements

The switch to backup power must be completed
within a deadline of 50 ms.

Each door alarm should be polled twice per second.

Each window alarm should be polled twice per

second.
Each movement detector should be polled twice per
second.

The audible alarm should be switched on wit hin 1/2
second of an alarm being raised by a sensor.

The lights should be switched on within 1/2 second

of an alarm being raised by a sensor.

The call to the police should be started within 2

seconds of an alarm being raised by a sensor.

A synthesised message should be available within 4
seconds of an alarm being raised by a sensor.

58

Process architecture
4 00 Hz 6 0Hz 1 00 Hz

Det ecto r stat us

5 60 Hz

Sen so r st at us Sen so r st at us

 Alar m system

Power failu re

Buil di ng mon it or

p ro ces s

int err u pt Buil di ng mon it or Roo m n um b er

Power swit ch

p ro ce s s

Alarm system

p ro ces s

Ro om number

Alert mess a g e

larm larm

system system
larm system

Ro om num ber

Au di bl e alarm

p ro ces s

Lighti n g co nt ro l

p ro ces s

Vo ice syn th esi z er

p ro ces s

Building monitor process

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren siren = new Siren () ;
Lights lights = new Lights () ;

Synthesizer synthesizer = new Synthesizer () ;
DoorSensors doors = new DoorSensors (30) ;

WindowSensors windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerM onitor () ;

BuildingMonitor()

{
// initialise all the sensors and start the processes
siren.start () ; lights.start () ;

synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

}

59

public void run ()

{

int room = 0 ;
while (true)

{

// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;

// poll the window sensors at least twice/second (100 Hz)

win = windows.getVal () ;

// poll the door sensors at least twice per second (60 Hz)

door = doors.getVal () ;

if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)
{

// a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;

if (door.sensorVal == 1) room = door.room ;

if (win.sensorVal == 1) room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;

}

}
lights.shutdow n () ; siren.shutdow n () ; synthesizer.shutdown () ;

windows.shutdow n () ; doors.shutdown () ; movements.shutdow n () ;

} // run

} //BuildingM onitor

A temperature control system

500Hz

Switch command

500Hz Room number Thermosta t process

60

UNIT IV

TESTING

4.1 Taxonomy of Software Testing

 Classified by purpose, software testing can be divided into: correctness testing, performance

testing, and reliabilit y testing and securit y testing.

 Classified by life-cycle phase, software testing can be classified into the following
categories: requirements phase testing, design phase testing, program phase testing,

evaluating test results, installat ion phase testing, acceptance testing and maintenance testing.

 By scope, software testing can be categorized as follows: unit testing, component testing,

integrat ion testing, and system testing.

4.2 Test activities:

Correctness testing

Correctness is the minimum requirement of software, the essential purpose of testing. It is

used to tell the right behavior from the wrong one. The tester may or may not know the inside

details of the software module under test, e.g. control flow, data flow, etc. Therefore, either a white-

box point of view or black-box point of view can be taken in testing software. We must note that
the black-box and white-box ideas are not limited in correctness testing only.

 Black-box testing

 White-box testing

Performance testing

Not all software systems have specificat ions on performance explicit ly. But every system

will have implicit performance requirements. The software should not take infinite time or

infinite resource to execute. "Performance bugs" sometimes are used to refer to those design

problems in software that cause the system performance to degrade.

Performance has always been a great concern and a driving force of computer evolution.

Performance evaluation of a software system usually includes: resource usage, throughput, stimulus-

response time and queue lengths detailing the average or maximum number of tasks wait ing to

be serviced by selected resources. Typical resources that need to be considered include network

bandwidth requirements, CPU cycles, disk space, disk access operations, and memory usage. The

goal of performance testing can be performance bottleneck identificat ion, performance comparison

and evaluat ion, etc.

Reliability testing

Software reliabilit y refers to the probabilit y of failure - free operation of a system. It is

related to many aspects of software, including the testing process. Direct ly estimating software

reliabilit y by quantifying its related factors can be difficult. Testing is an effective sampling

method to measure software reliabilit y. Guided by the operational profile, software testing

(usually black-box testing) can be used to obtain failure data, and an estimat ion model can be

further used to analyze the data to estimate the present reliabilit y and predict future reliabilit y.

Therefore, based on the estimat ion, the developers can decide whether to release the software,

and the users can decide whether to adopt and use the software. Risk of using software can also

be assessed based on reliabilit y informat ion.

61

Security testing

Software quality, reliability and security are tightly coupled. Flaws in software can be

exploited by intruders to open security holes. With the development of the Internet, software

securit y problems are becoming even more severe.
Many critical software applications and services have integrated security measures against

malicious attacks. The purpose of security testing of these systems include identifying and

removing software flaws that may potentially lead to security violations, and validating the

effectiveness of security measures. Simulated security attacks can be performed to find
vulnerabilit ies.

4.3 Types of S/W Test

Acceptance testing

Testing to verify a product meets customer specified requirements. A customer usually

does this type of testing on a product that is developed externally.

Compatibility testing

This is used to ensure compatibilit y of an application or Web site wit h different browsers,
OSs, and hardware platforms. Compatibilit y testing can be performed manually or can be driven

by an automated functional or regression test suite.

Conformance testing

This is used to verify implementation conformance to industry standards. Producing tests

for the behavior of an implementation to be sure it provides the portabilit y, interoperability,

and/or compatibilit y a standard defines.

Integration testing

Modules are typically code modules, individual applications, client and server

applications on a network, etc. Integration Testing follows unit testing and precedes system
testing.

Load testing

Load testing is a generic term covering Performance Testing and Stress Testing.

Performance testing

Performance testing can be applied to understand your application or WWW site's

scalability, or to benchmark the performance in an environment of third party products such as

servers and middleware for potential purchase. This sort of testing is particularly useful to

identify performance bottlenecks in high use applications. Performance testing generally

involves an automated test suite as this allows easy simulation of a variety of normal, peak, and

exceptional load conditions.

Regression testing

Similar in scope to a functional test, a regression test allows a consistent, repeatable

validation of each new release of a product or Web site. Such testing ensures reported product

defects have been corrected for each new release and that no new quality problems were

introduced in the maintenance process. Though regression testing can be performed manually an

automated test suite is often used to reduce the time and resources needed to perform the

required testing.

62

System testing
Entire system is tested as per the requirements. Black-box type testing that is based on

overall requirements specificat ions, covers all combined parts of a system.

End-to-end testing

Similar to system testing, involves testing of a complete application environment in a
situation that mimics real-world use, such as interacting with a database, using network
communicat ions, or interacting with other hardware, applications, or systems if appropriate.

Sanity testing

Testing is to determine if a new software version is performing well enough to accept it

for a major testing effort. If application is crashing for init ial use then system is not stable

enough for further testing and build or application is assigned to fix.

Alpha testing

In house virtual user environment can be created for this type of testing. Testing is done
at the end of development. Still minor design changes may be made as a result of such testing.

Beta testing

Testing is typically done by end-users or others. This is the final testing before releasing
the application to commercial purpose.

Software Testing Techniques

Software Testing:

Testing is the process of exercising a program with the specific intent of finding errors prior to

delivery to the end user.
Testing Objectives:

• Testing is the process of executing a program wit h the intent of finding errors.

• A good test case is one with a high probabilit y of finding an as-yet undiscovered error.

• A successful test is one that discovers an as-yet-undiscovered error.

Testing Principles:

• All tests should be traceable to customer requirements.

• Tests should be planned before testing begins.
• 80% of all errors are in 20% of the code.

• Testing should begin in the small and progress to the large.
• Exhaustive testing is not possible.

Testing should be conducted by an independent third party if possible.

Software Defect Causes:

• Specificat ion may be wrong.

• Specificat ion may be a physical impossibilit y.

• Fault y program design.

• Program may be incorrect.

63

Types of Errors:

• Algorithmic error.

• Computation & precision error.

• Documentation error.
• Capacity error or boundary error.

• Timing and coordinat ion error.

• Throughput or performance error.

• Recovery error.

• Hardware & system software error.
• Standards & procedure errors.

Software Testability Checklist – 1:

• Operabilit y

– if it works better it can be tested more efficient ly

• Observabilit y
– what you see is what you test

• Controllabilit y

– if software can be controlled better the it is more that testing can be automated

and optimized

Software Testability Checklist – 2:

• Decomposabilit y
– controlling the scope of testing allows problems to be isolated quickly and

retested intelligent ly

• Stabilit y
– the fewer the changes, the fewer the disrupt ions to testing

• Understandabilit y

– the more informat ion that is known, the smarter the testing can be done

Good Test Attributes:

• A good test has a high probabilit y of finding an error.

• A good test is not redundant.

• A good test should be best of breed.
• A good test should not be too simple or too complex.

Test Strategies:

• Black-box or behavioral testing
– knowing the specified function a product is to perform and demonstrating correct

operation based solely on its specificat ion wit hout regard for its internal logic

• White-box or glass-box testing
– knowing the internal workings of a product, tests are performed to check the

workings of all possible logic paths

White-Box Testing:

Basis Path Testing:

• White-box technique usually based on the program flow graph

• The cyclo matic complexity of the program computed from its flow graph using the

formula V(G) = E – N + 2 or by counting the conditional statements in the PDL

representation and adding 1

• Determine the basis set of linearly independent paths (the cardinalit y of this set is the

program cyclomat ic complexit y)

• Prepare test cases that will force the execution of each path in the basis set.

64

Cyclomatic Complexity:

A number of industr y studies have indicated that the higher V(G), the higher the probabilit y or

errors.

Control Structure Testing – 1:

• White-box techniques focusing on control structures present in the software

• Condition testing (e.g. branch testing)

– focuses on testing each decisio n statement in a software module
– it is important to ensure coverage of all logical combinat ions of data that may be

processed by the module (a truth table may be helpful)

Control Structure Testing – 2:

• Data flow testing
– selects test paths based according to the locations of variable definit ions and uses

in the program (e.g. definit io n use chains)

• Loop testing
– focuses on the validit y of the program loop constructs (i.e. while, for, go to)

– involves checking to ensure loops start and stop when they are supposed to

(unstructured loops should be redesigned whenever possible)

Loop Testing: Simple Loops:

Minimum conditions—Sim ple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop
4. m passes through the loop m < n

5. (n-1), n, and (n+1) passes through the loop

where n is the maximum number of allowable passes

Loop Testing: Nested Loops:
Nested Loops

Start at the innermost loop. Set all outer loops to their minimum iterat ion parameter values.
Test the min+1, typical, max-1 and max for the innermost loop, while holding the outer loops at

their minimum values.

Move out one loop and set it up as in step 2, holding all other loops at typical values. Continue
this step until the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop

else* treat as nested loops

end if*

for example, the final loop counter value of loop 1 is

used to init ialize loop 2.

65

4.4 Black-Box Testing:

Graph-Based Testing – 1:

• Black-box methods based on the nature of the relationships (links) among the program
objects (nodes), test cases are designed to traverse the entire graph

• Transact ion flow testing
– nodes represent steps in some transact ion and links represent logical connections

between steps that need to be validated

• Finite state modeling
– nodes represent user observable states of the software and links represent state

transit ions

Graph-Based Testing – 2:

• Data flow modeling
– nodes are data objects and links are transformat ions of one data object to another

data object

• Timing modeling
– nodes are program objects and links are sequential connections between these

objects

– link weights are required execution times
Equivalence Partitioning:

• Black-box technique that divides the input domain into classes of data from which test

cases can be derived

• An ideal test case uncovers a class of errors that might require many arbitrar y test cases

to be executed before a general error is observed

Equivalence Class Guidelines:
• If input condition specifies a range, one valid and two invalid equivalence classes are

defined

• If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined

• If an input condition specifies a member of a set, one valid and one invalid equivale nce

class is defined

• If an input condit ion is Boolean, one valid and one invalid equivalence class is defined
• Boundary Value Analysis - 1

• Black-box technique
– focuses on the boundaries of the input domain rather than its center

• Guidelines:
– If input condition specifies a range bounded by values a and b, test cases should

include a and b, values just above and just below a and b

– If an input condition specifies and number of values, test cases should be exercise
the minimum and maximum numbers, as well as values just above and just below
the minimum and maximum values

66

Boundary Value Analysis – 2
1. Apply guidelines 1 and 2 to output conditions, test cases should be designed to

produce the minimum and maximum output reports

2. If internal program data structures have boundaries (e.g. size limitat ions), be
certain to test the boundaries

Comparison Testing:

• Black-box testing for safety crit ical systems in which independent ly developed
implementations of redundant systems are tested for conformance to specificatio ns

• Often equivalence class partitioning is used to develop a common set of test cases for

each implementation

Orthogonal Array Testing – 1:

• Black-box technique that enables the design of a reasonably small set of test cases that
provide maximum test coverage

• Focus is on categories of fault y logic likely to be present in the software component
(without examining the code)

Orthogonal Array Testing – 2:

• Prior it ies for assessing tests using an orthogonal array

– Detect and isolate all single mode faults

– Detect all double mode faults

– Mult imode faults

4.5 Software Testing Strategies:

Strategic Approach to Testing – 1:

• Testing begins at the component level and works outward toward the integration of the
entire computer-based system.

• Different testing techniques are appropriate at different points in time.
• The developer of the software conducts testing and may be assisted by independent test

groups for large projects.

• The role of the independent tester is to remove the conflict of interest inherent when the

builder is testing his or her own product.
Strategic Approach to Testing – 2:

• Testing and debugging are different activit ies.

• Debugging must be accommodated in any testing strategy.
• Need to consider verificat ion issues

– are we building the product right?

• Need to Consider validation issuesare we building the right product?
Verification vs validation:

• Verificat ion:

"Are we building the product right" The software should conform to its specificat ion
Validat ion:

"Are we building the right product" The software should do what the user really requires

\

67

The V & V process:
• As a whole life-cycle process - V & V must be applied at each stage in the software

process.

• Has two principal objectives

– The discovery of defects in a system

– The assessment of whether or not the system is usable in an operational situat ion.
• Strategic Testing Issues - 1 Specify product requirements in a quantifiable manner before

testing starts.

• Specify testing objectives explicit ly.

• Identify the user classes of the software and develop a profile for each.

• Develop a test plan that emphasizes rapid cycle testing.
Strategic Testing Issues – 2:

• Build robust software that is designed to test itself (e.g. use anti-bugging).

• Use effective formal reviews as a filter prior to testing.

• Conduct formal technical reviews to assess the test strategy and test cases.
Testing Strategy:

4.6 Unit Testing:

68

• Program reviews.

• Formal verification.
• Testing the program itself.

– black box and white box testing.

Black Box or White Box?:

• Maximum # of logic paths - determine if white box testing is possible.

• Nature of input data.
• Amount of computation involved.
• Complexit y of algorithms.

Unit Testing Details:

• Interfaces tested for proper information flow.

• Local data are examined to ensure that integrit y is maintained.

• Boundary conditions are tested.
• Basis path testing should be used.

• All error handling paths should be tested.

• Drivers and/or stubs need to be developed to test incomplete software.

Unit Testing:

69

Unit Test Environment :

4.7 Integration Testing:

• Bottom - up testing (test harness).

• Top - down testing (stubs).

• Regressio n Testing.
• Smoke Testing

Top Down Integration:

Top-Down Integration Testing:

• Main program used as a test driver and stubs are substitutes for components directly
subordinate to it.

• Subordinate stubs are replaced one at a time wit h real components (follow ing the depth-

first or breadth-fir st approach).

• Tests are conducted as each component is integrated.
• On completion of each set of tests and other stub is replaced with a real component.

70

• Regressio n testing may be used to ensure that new errors not introduced.

Bottom-Up Integration:

Bottom-Up Integration Testing:

• Low level components are combined in clusters that perform a specific software function.

• A driver (control program) is written to coordinate test case input and output.

• The cluster is tested.
• Drivers are removed and cluster s are combined moving upward in the program structure.

Regression Testing:

• The selective retesting of a software system that has been modified to ensure that any

bugs have been fixed and that no other previously working functions have failed as a

result of the reparations and that newly added features have not created problems with

previous versions of the software. Also referred to as verification testing, regression

testing is initiated after a programmer has attempted to fix a recognized problem or has

added source code to a program that may have inadvertently introduced errors. It is a

quality control measure to ensure that the newly modified code still complies with its

specified requirements and that unmodified code has not been affected by the

maintenance activity.

Regression Testing:

• Regressio n test suit contains 3 different classes of test cases

– Representative sample of existing test cases is used to exercise all software
functions.

– Addit io nal test cases focusing software functions likely to be affected by the

change.

– Tests cases that focus on the changed software components.
Smoke Testing:

• Software components already translated into code are integrated into a build.
• A series of tests designed to expose errors that will keep the build from performing its

functions are created.

• The build is integrated with the other builds and the entire product is smoke tested daily

using either top-down or bottom integration.

71

4.8 Validation Testing:

• Ensure that each function or performance characterist ic conforms to its specification.
• Deviat ions (deficiencies) must be negotiated with the customer to establish a means for

resolving the errors.

• Configuration review or audit is used to ensure that all elements of the software

configuration have been properly developed, cataloged, and documented to allow its

support during its maintenance phase.
Acceptance Testing:

• Making sure the software works correctly for intended user in his or her normal work

environment.

• Alpha test

– versio n of the complete software is tested by customer under the supervisio n of

the developer at the developer‘s site

• Beta test

– versio n of the complete software is tested by customer at his or her own site

without the developer being present

4.9 System Testing:

• Recovery testing

– checks system‘s abilit y to recover from failures

• Securit y testing
– verifies that system protection mechanism prevents improper penetration or data

alteration

• Stress testing

– program is checked to see how well it deals with abnormal resource demands

• Performance testing

– tests the run-time performance of software

Performance Testing:

• Stress test.

• Volume test.

• Configuration test (hardware & software).
• Compatibilit y.

• Regressio n tests.

• Securit y tests.
• Timing tests.

• Environmental tests.

• Qualit y tests.

• Recovery tests.

• Maintenance tests.
• Documentation tests.

• Human factors tests.

Testing Life Cycle:

• Establish test objectives.

• Design criteria (review criteria).

– Correct.

– Feasible.

– Coverage.

– Demonstrate functionalit y.

72

• Writing test cases.

• Testing test cases.

• Execute test cases.
• Evaluate test results.

Testing Tools:

• Simulators.
• Monitor s.

• Analyzers.

• Test data generators.

Document Each Test Case:

• Requirement tested.
• Facet / feature / path tested.

• Person & date.

• Tools & code needed.

• Test data & instructions.

• Expected results.
• Actual test results & analysis

• Correction, schedule, and signoff.

4.10 Debugging:

• Debugging (removal of a defect) occurs as a consequence of successful testing.

• Some people better at debugging than others.

• Is the cause of the bug reproduced in another part of the program?

• What ―next bug‖ might be introduced by the fix that is being

proposed? • What could have been done to prevent this bug in the

first place?

Software Implementation techniques

 Implementation techniques include imperative languages (object-oriented or procedural),

functional languages, and logic languages.

 Software Implementation Techniques include process and thread scheduling, synchronization

and concurrency primitives, file management, memory management, performance,

networking facilities, and user interfaces. Software Implementation Techniques is designed

to facilitate determining what is required to implement a specific operating system function.

Procedural programm ing

Procedural programming can sometimes be used as a synonym for imperative

programming (specifying the steps the program must take to reach the desired state), but can also

refer (as in this article) to a programming paradigm, derived from structured programming, based

upon the concept of the procedure call. Procedures, also known as routines, subroutines,

methods, or functions (not to be confused with mathematical functions, but similar to those used

in functional programming) simply contain a series of computational steps to be carried out. Any

given procedure might be called at any point during a program's execution, including by other

procedures or itself. Some good examples of procedural programs are the Linux Kernel, GIT,

Apache Server, and Quake III Arena.

73

Object-oriented programm ing

Object-or iented programming (OOP) is a programming paradigm that uses "objects" –

data structures consisting of data fields and methods together with their interactions – to design

applications and computer programs. Programming techniques may include features such as data

abstraction, encapsulat ion, modularit y, polymorphism, and inheritance. Many modern

programming languages now support OOP.

An object-oriented program may thus be viewed as a collection of interacting objects, as

opposed to the conventional model, in which a program is seen as a list of tasks (subroutines) to

perform. In OOP, each object is capable of receiving messages, processing data, and sending

messages to other objects. Each object can be viewed as an independent 'machine' with a distinct

role or responsibility. The actions (or "methods") on these objects are closely associated with the

object. For example, OOP data structures tend to 'carry their own operators around with them' (or

at least "inherit" them from a similar object or class). In the conventional model, the data and

operations on the data don't have a tight, formal association.

functional programming is a programming paradigm that treats computation as the evaluation

of mathematical functions and avoids state and mutable data. It emphasizes the application of

functions, in contrast to the imperative programming style, which emphasizes changes in state.

Functional programming has its roots in lambda calculus, a formal system developed in the

1930s to investigate function definition, function application, and recursion. Many functional

programming languages can be viewed as elaborations on the lambda calculus.

In practice, the difference between a mathemat ical function and the notion of a "function"

used in imperative programming is that imperative functions can have side effects, changing the

value of already calculated computations. Because of this they lack referential transparency, i.e.

the same language expression can result in different values at different times depending on the

state of the executing program. Conversely, in functional code, the output value of a function

depends only on the arguments that are input to the function, so calling a function f twice wit h

the same value for an argument x will produce the same result f(x) both times. Eliminat ing side

effects can make it much easier to understand and predict the behavior of a program, which is

one of the key motivations for the development of functional programming.JavaScr ipt, one of the

most widely employed languages today, incorporates functional programming capabilit ies.

Logic programming is, in its broadest sense, the use of mathematical logic for computer

programming. In this view of logic programming, which can be traced at least as far back as

John McCarthy's [1958] advice-taker proposal, logic is used as a purely declarative

representation language, and a theorem-prover or model-generator is used as the problem-solver.

The problem-solving task is split between the programmer, who is responsible only for ensuring

the truth of programs expressed in logical form, and the theorem-prover or model-generator,

which is responsible for solving problems efficiently.

Oracle’s Application Implementation Method

AIM provides with an integrated set of templates, procedures, PowerPoint presentations,

spreadsheets, and project plans for implementing the applications. AIM was such a success,

Oracle created a subset of the templates, called it AIM Advantage, and made it available as a

product to customers and other consulting firms. Since its initial release, AIM has been revised

and improved several times with new templates and methods.

74

AIM Is a Six-Phase Method

Because the Oracle ERP Applications are software modules buy from a vendor, different
implementation methods are used than the techniques used for custom developed systems. AIM
has six major phases:

 Definition phase: During this phase, you plan the project, determine business objectives,

and verify the feasibilit y of the project for given time, resource, and budget limit s.

 Operations Analysis phase: Includes documents business requirements, gaps in the

software (which can lead to customizations), and system architecture requirements. Results of

the analysis should provide a proposal for future business processes, a technical architecture

model, an application architecture model, workarounds for application gaps, performance testing

models, and a transition strategy to migrate to the new systems. Another task that can begin in

this phase is mapping of legacy data to Oracle Application APIs or open interfaces—data

conversio n.

 Solution Design phase—Used to create designs for solutions that meet future
business requirements and processes. The design of your future organizat ion comes alive during

this phase as customizat ions and module configurations are finalized.

 Build phase—During this phase of AIM, coding and testing of customizat ions,

enhancements, interfaces, and data conversio ns happens. In addition, one or more conference

room pilots test the integrated enterprise system. The results of the build phase should be a
working, tested business system solut ion.

 Transition phase—During this phase, the project team delivers the finished

solut ion to the enterprise. End-user training and support, management of change, and data
conversio ns are major activit ies of this phase.

 Production phase—Starts when the system goes live. Technical people work to

stabilize and maintain the system under full transaction loads. Users and the implementation
team begin a series of refinements to minimize unfavorable impacts and realize the business
objectives identified in the definit ion phase.

Rapid Implementations
In the late 1990s as Y2K approached, customers demanded and consulting firms discovered

faster ways to implement packaged software applications. The rapid implementation became
possible for certain types of customers. The events that converged in the late 1990s to provide

faster implementations include the following:

 Many smaller companies couldn‘t afford the big ERP project. If the software vendors and consulting

firms were going to sell to the ―middle market‖ companies, they had to develop

more efficient methods.

 Many dotcoms needed a financial infrastructure; ERP applications filled the need, and rapid

implementation methods provided the way.

 The functionalit y of the software improved a lot, many gaps were eliminated, and more

companies could implement with fewer customizations.

 After the big, complex companies implemented their ERP systems, the typical implementation

became less difficult.

 The number of skilled consultants and project managers increased significant ly.

 Other software vendors started packaging preprogrammed integration points to the Oracle

ERP modules.

75

Rapid implementations focus on delivering a predefined set of functionalit y. A key set of

business processes is installed in a standard way to accelerate the implementation schedule.

These projects benefit from the use of preconfigured modules and predefined business processes.

You get to reuse the analysis and integrat ion testing from other implementations, and you agree

to ignore all gaps by modifying your business to fit the software. Typically, the enterprise will be

allowed some control over key decisions such as the structure of the chart of accounts. Fixed

budgets are set for training, production support, and data conversio ns (a limited amount of data).

Phased Implementations

Phased implementations seek to break up the work of an ERP implementation project.

This technique can make the system more manageable and reduce risks, and costs in some cases,

to the enterprise. In the mid-1990s, 4 or 5 was about the maximum number of application

modules that could be launched into production at one time. If you bought 12 or 13 applications,

there would be a financial phase that would be followed by phases for the distribution and

manufactur ing applications. As implementation techniques improved and Y2K pressures grew in

the late 1990s, more and more companies started launching most of their applications at the same

time. This method became known as the big-bang approach. Now, each company selects a

phased or big-bang approach based on its individual requirements.

Another approach to phasing can be employed by companies with business units at

multiple sites. With this technique, one business unit is used as a template, and all applications

are completely implemented in an initial phase lasting 10–14 months. Then, other sites

implement the applications in cookie-cutter fashion. The cookie-cutter phases are focused on end-

user training and the differences that a site has from the prototype site. The cookie-cutter phase

can be as short as 9–12 weeks, and these phases can be conducted at several sites simultaneously. For

your reference, we participated in an efficient project where 13 applications were implemented big

bang–style in July at the Chicago site after about 8 months work. A site in Malaysia went live in

October. The Ireland site started up in November. After a holiday break, the Atlanta business unit

went live in February, and the final site in China started using the applications in April. Implementing

thirteen application modules at five sites in four countries in sixteen months was pretty impress ive.

Case Studies Illustrating Implementation Techniques
Some practical examples from the real world might help to illustrate some of the principles and
techniques of various software implementation methods. These case studies are composites from

about 60 implementation projects we have observed during the past 9 years.

Big companies often have a horrible time resolving issues and deciding on configuration

parameters because there is so much money involved and each of many sites might want to

control decisions about what it considers its critical success factors. For example, we once saw a

large company argue for over two months about the chart of accounts structure, while eight

consultants from two consulting firms tried to referee among the feuding operating units.

Another large company labored for more than six months to unify a master customer list for a

centralized receivables and decentralized order entry system.

Transit ion activit ies at large companies need special attention. Training end users can be

a logist ical challenge and can require considerable planning. For example, if you have 800 users

to train and each user needs an average of three classes of two hours each and you have one

month, how many classrooms and instructors do you need? Another example is that loading data

76

from a legacy system can be a problem. If you have one million customers to load into Oracle

receivables at the rate of 5,000/hour and the database administrator allows you to load 20 hours

per day, you have a 10-day task.

Because they spend huge amounts of money on their ERP systems, many big companies

try to optimize the systems and capture specific returns on the investment. However, sometimes

companies can be incredibly insensit ive and uncoordinated as they try to make money from their

ERP software. For example, one business announced at the beginning of a project that the

accounts payable department would be cut from 50–17 employees as soon as the system went

live. Another company decided to centralize about 30 accounting sites into one shared service

center and advised about 60 accountants that they would lose their jobs in about a year. Several

of the 60 employees were offered positions on the ERP implementation team.

Small companies have other problems when creating an implementation team. Occasionally, the

small company tries to put clerical employees on the team and they have problems with issue

resolution or some of the ERP concepts. In another case, one small company didn‘t create the

position of project manager. Each department worked on its own modules and ignored the

integration points, testing, and requirements of other users. When Y2K deadlines forced the

system startup, results were disastrous with a cost impact that doubled the cost of the entire

project.

Project team members at small companies sometimes have a hard time relating to the cost

of the implementation. We once worked with a company where the project manager (who was

also the database administrator) advised me within the first hour of our meeting that he thought

consult ing charges of $3/minute were outrageous, and he couldn‘t rationalize how we could

possibly make such a contribution. We agreed a consultant could not contribute $3 in value each

and every minute to his project. However, when I told him we would be able to save him
$10,000/week and make the difference between success and failure, he realized we should get to
work.

Because the small company might be relatively simple to implement and the technical

staff might be inexperienced with the database and software, it is possible that the technical staff

will be on the critical path of the project. If the database administrator can‘t learn how to handle

the production database by the time the users are ready to go live, you might need to hire some

temporary help to enable the users to keep to the schedule. In addition, we often see small

companies with just a single database administrator who might be working 60 or more hours per

week. They feel they can afford to have more DBAs as employees, but they don‘t know how to

establish the right ratio of support staff to user requirement s. These companies can burn out a

DBA quickly and then have to deal wit h the problem of replacing an important skill.

77

UNIT V

SOFTWARE PROJECT MANAGEMENT

5.1 Measures and Measurements

 Software measurement is concerned wit h deriving a numeric value for an attribute of a

software product or process.

 This allows for objective comparisons between techniques and processes.

 Although some companies have introduced measurement programmes, most organisat ions
still don‘t make systemat ic use of software measurement.

 There are few established standards in this area.

Software metric

 Any type of measurement which relates to a software system, process or related

documentation

• Lines of code in a program, the Fog index, number of person-days required to

develop a component.

 Allow the software and the software process to be quantified.

 May be used to predict product attributes or to control the software process.

 Product metrics can be used for general predictions or to identif y anomalous components.

5.2 Predictor and control metrics

Metrics assumptions

 A software property can be measured.

 The relations hip exists between what we can measure and what we want to know. We can

only measure internal attributes but are often more interested in external softwa re attributes.

 This relat ionship has been formalised and validated.

 It may be difficult to relate what can be measured to desirable external quality attributes.

78

Internal and external attributes

The measurement process

 A software measurement process may be part of a qualit y control process.

 Data collected during this process should be maintained as an organisat ional resource.

 Once a measurement database has been established, comparisons across projects become

possible.

Product measurement process

Data collection

 A metrics programme should be based on a set of product and process data.

 Data should be collected immediately (not in retrospect) and, if possible, automat ically.

 Three types of automat ic data collection

• Static product analysis;

• Dynamic product analysis;

• Process data collation.

Data accuracy

 Don‘t collect unnecessar y data

• The questions to be answered should be decided in advance and the required data
identified.

 Tell people why the data is being collected.

• It should not be part of personnel evaluation.

 Don‘t rely on memory

• Collect data when it is generated not after a project has finished.

79

Product metrics

 A qualit y metric should be a predictor of product qualit y.

 Classes of product metric

• Dynamic metrics which are collected by measurements made of a program in

execution;

• Static metrics which are collected by measurements made of the system

representations;

• Dynamic metrics help assess efficiency and reliability; static metrics help assess

complexit y, understand abilit y and maintainabilit y.

Dynamic and static metrics

 Dynamic metrics are closely related to software quality attributes

• It is relatively easy to measure the response time of a system (performance attribute)
or the number of failures (reliabilit y attribute).

 Static metrics have an indirect relationship with qualit y attributes

• You need to try and derive a relations hip between these metrics and properties such
as complexit y, understandabilit y and maintainability.

5.4 Software product metrics

Software metric Description

Fan in/Fan-out Fan-in is a measure of the number of functions or methods that

call some other function or method (say X). Fan-out is the

number of functions that are called by function X. A high value
for fan-in means that X is tightly coupled to the rest of the design

and changes to X will have extensive knock-on effects. A high

value for fan-out suggests that the overall complexity of X may

be high because of the complexity of the control logic needed to

coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger

the size of the code of a component, the more complex and error-
prone that component is likely to be. Length of code has been
shown to be one of the most reliable metrics for predicting error-

proneness in components.

Cyclomat ic complexit y This is a measure of the control complexity of a program. This
control complexity may be related to program understandability. I
discuss how to compute cyclomat ic complexit y in Chapter 22.

Length of identifiers This is a measure of the average length of distinct identifiers in a
program. The longer the identifiers, the more likely they are to be

meaningful and hence the more understandable the program.

Depth of conditional
nesting

This is a measure of the depth of nesting of if-statements in a
program. Deeply nested if statements are hard to understand and

are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in

documents. The higher the value for the Fog index, the more
difficult the document is to understand.

80

5.5 Object-oriented metrics

Object-oriented metric Description

Depth of inheritance tree This represents the number of discrete levels in the inheritance

tree where sub-classes inherit attributes and operations
(methods) from super-classes. The deeper the inheritance tree,

the more complex the design. Many different object classes may

have to be understood to understand the object classes at the
leaves of the tree.

Method fan-in/fan-out This is directly related to fan-in and fan-out as described above

and means essentially the same thing. However, it may be
appropriate to make a distinct ion between calls from other

methods within the object and calls from external methods.

Weighted methods per
class

This is the number of methods that are included in a class

weighted by the complexit y of each method. Therefore, a simple

method may have a complexit y of 1 and a large and complex

method a much higher value. The larger the value for this

metric, the more complex the object class. Complex objects are

more likely to be more difficult to understand. They may not be

logically cohesive so cannot be reused effectively as super-

classes in an inheritance tree.

Number of overriding
operations

This is the number of operations in a super-class that are over-
ridden in a sub-clas s. A high value for this metric indicates that
the super-class used may not be an appropriate parent for the

sub-class.

Measurement analysis

 It is not always obvious what data means
• Analysing collected data is very difficult.

 Professional statisticians should be consulted if available.

 Data analysis must take local circumstances into account.

Measurement surprises

 Reducing the number of faults in a program leads to an increased number of help desk calls

• The program is now thought of as more reliable and so has a wider more diverse
market. The percentage of users who call the help desk may have decreased but the
total may increase;

• A more reliable system is used in a different way from a system where users work
around the faults. This leads to more help desk calls.

ZIPF’s Law

 Zipf's Law as "the observation that frequency of occurrence of some event (P), as a function
of the rank (i) when the rank is determined by the above frequency of occurrence, is a power-

law function Pi ~ 1/ia with the exponent a close to unity (1)."

81

 Let P (a random variable) represented the frequency of occurrence of a keyword in a

program listing.

 It applies to computer programs written in any modern computer language.

 Without empirical proof because it's an obvious finding, that any computer program written

in any programming language has a power law distribution, i.e., some keywords are used

more than others.

 Frequency of occurrence of events is inversely proportional to the rank in this frequency of
occurrence.

 When both are plotted on a log scale, the graph is a straight line.

 we create entities that don't exist except in computer memory at run time; we create logic

nodes that will never be tested because it's impossible to test every logic branch; we create

informat ion flows in quantit ies that are humanly impossible to analyze with a glance;

 Software application is the combination of keywords within the context of a solution and not

their quantity used in a program; context is not a trivial task because the context of an

application is attached to the problem being solved and every problem to solve is different

and must have a specific program to solve it.

 Although a program could be syntactically correct, it doesn't mean that the algorithms

implemented solve the problem at hand. What's more, a correct program can solve the wrong

problem. Let's say we have the simple requirement of printing "Hello, World!" A

syntactically correct solut ion in Java looks as follo ws:

 Public class SayHello {
public static void main(String[] args) {

System.out.pr intln(" John Sena!");

}
}

 This solution is obviously wrong because it doesn't solve the original requirement. This

means that the context of the solution within the problem being solved needs to be

determined to ensure its quality. In other words, we need to verify that the output matches the

original requirement.

 Zip's Law can't even say too much about larger systems.

5.6 Software Cost Estimation

Software cost components

 Hardware and software costs.

 Travel and training costs.

 Effort costs (the dominant factor in most projects)

• The salaries of engineers involved in the project;

• Social and insurance costs.

 Effort costs must take overheads into account

• Costs of building, heating, light ing.

• Costs of networking and communicat ions.

• Costs of shared facilit ies (e.g library, staff restaurant, etc.).

Costing and pricing

 Estimates are made to discover the cost, to the developer, of producing a software system.

82

 There is not a simple relations hip between the development cost and the price charged to the

customer.

 Broader organisat ional, economic, political and business considerat ions influence the price

charged.

Software productivity

 A measure of the rate at which individual engineers involved in software development
produce software and associated documentation.

 Not qualit y-oriented although quality assurance is a factor in productivit y assessment.

 Essentially, we want to measure useful functionality produced per time unit.

Productivity measures

 Size related measures based on some output from the software process. This may be lines of

delivered source code, object code instructions, etc.

 Funct ion-related measures based on an estimate of the functionalit y of the delivered
software. Function-points are the best known of this type of measure.

Measurement problems

 Estimat ing the size of the measure (e.g. how many function points).

 Estimat ing the total number of programmer months that have elapsed.

 Estimat ing contractor productivit y (e.g. documentation team) and incorporating this

estimate in overall estimate.

Lines of code

 The measure was first proposed when programs were typed on cards with one line per card;

 How does this correspond to statements as in Java which can span several lines or where

there can be several statements on one line.

Productivity comparisons

 The lower level the language, the more productive the programmer

• The same functionalit y takes more code to implement in a lower- level language than
in a high-level language.

 The more verbose the programmer, the higher the productivit y

• Measures of productivit y based on lines of code suggest that programmers who write
verbose code are more productive than programmers who write compact code.

5.7 Function Point model

Function points

 Based on a combinat ion of program characterist ics

• external inputs and outputs;

• user interactions;
• external interfaces;

• files used by the system.

 A weight is associated with each of these and the function point count is computed by
mult iplying each raw count by the weight and summing all values.

83

 The function point count is modified by complexity of the project

 FPs can be used to estimate LOC depending on the average number of LOC per FP for a

given language

• LOC = AVC * number of function points;

• AVC is a language-dependent factor varying from 200-300 for assemble language to 2-
40 for a 4GL;

 FPs are very subjective. They depend on the estimator

• Automat ic function-po int counting is impossible.

5.8 COCOMO model

 An empirical model based on project experience.

 Well-documented, ‗independent‘ model which is not tied to a specific software vendor.

 Long history from init ial version published in 1981 (COCOM O -81) through various
instant iat ions to COCOMO 2.

 COCOMO 2 takes into account different approaches to software development, reuse, etc.

COCOMO 81

Project

complexity

Formula Description

Simple PM = 2.4 (KDSI)1.05 M Well-understood applications developed by

small teams.

Moderate PM = 3.0 (KDSI)1.12 M More complex projects where team

members may have limited experience of

related systems.

Embedded PM = 3.6 (KDSI)1.20 M Complex projects where the software is part

of a strongly coupled complex of hardware,

software, regulations and operational

procedures.

COCOMO 2

 COCOMO 81 was developed wit h the assumpt ion that a waterfall process would be used and
that all software would be developed from scratch.

 Since its formulat ion, there have been many changes in software engineering practice and

COCOMO 2 is designed to accommodate different approaches to software development.

COCOMO 2 models

 COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software

estimates.

 The sub-models in COCOMO 2 are:

• Applicat ion composit ion model. Used when software is composed from existing

parts.

• Early design model. Used when requirements are available but design has not yet

started.

• Reuse model. Used to compute the effort of integrating reusable components.

84

• Post-architecture model. Used once the system architecture has been designed and
more informat ion about the system is available.

Use of COCOMO 2 models

Application composition model

 Supports prototyping projects and projects where there is extensive reuse.

 Based on standard estimates of developer productivit y in application (object) points/month.

 Takes CASE tool use into account.

 Formula is

o PM = (NAP ´ (1 - %reuse/100)) / PROD

o PM is the effort in person-months, NAP is the number of application points and
PROD is the productivit y.

Early design model

 Estimates can be made after the requirements have been agreed.

 Based on a standard formula for algorithmic models

• PM = A ´ SizeB ´ M where

• M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ́ FCIL ´ SCED;

• A = 2.94 in initial calibration, Size in KLOC, B varies from 1.1 to 1.24 depending on

novelty of the project, development flexibility, risk management approaches and the

process maturit y.

Multipliers

 Mult ipliers reflect the capabilit y of the developers, the non-funct ional requirements, the

familiarit y with the development platform, etc.

• RCPX - product reliabilit y and complexit y;

85

• RUSE - the reuse required;

• PDIF - platform difficult y;

• PREX - personnel experience;
• PERS - personnel capabilit y;

• SCED - required schedule;

• FCIL - the team support facilit ies.

The reuse model

 Takes into account black-box code that is reused without change and code that has to be

adapted to integrate it with new code.

 There are two versions:

• Black-box reuse where code is not modified. An effort estimate (PM) is computed.

• White-box reuse where code is modified. A size estimate equivalent to the number of
lines of new source code is computed. This then adjusts the size estimate for new
code.

Reuse model estimates

 For generated code:

• PM = (ASLOC * AT/100)/ATP ROD

• ASLOC is the number of lines of generated code

• AT is the percentage of code automatically generated.
• ATPROD is the productivit y of engineers in integrating this code.

 When code has to be understood and integrated:

• ESLOC = ASLOC * (1-AT/100) * AAM.

• ASLOC and AT as before.

• AAM is the adaptation adjustment multiplier computed from the costs of changing
the reused code, the costs of understanding how to integrate the code and the costs of
reuse decision making.

Post-architect ure level

 Uses the same formula as the early design model but with 17 rather than 7 associated
mult iplier s.

 The code size is estimated as:

• Number of lines of new code to be developed;

• Estimate of equivalent number of lines of new code computed using the reuse model;

• An estimate of the number of lines of code that have to be modified according to
requirements changes.

The exponent term

 This depends on 5 scale factors (see next slide). Their sum/100 is added to 1.01

 A company takes on a project in a new domain. The client has not defined the process to be

used and has not allowed time for risk analysis. The company has a CMM level 2 rating.

• Precedenteness - new project (4)

• Development flexibilit y - no client involvement - Very high (1)
• Architecture/r isk resolut ion - No risk analysis - V. Low .(5)

• Team cohesion - new team - nominal (3)

• Process maturit y - some control - nominal (3)

86

 Scale factor is therefore 1.17.

Multipliers

 Product attributes

• Concerned with required characterist ics of the software product being developed.

 Computer attributes

• Constraints imposed on the software by the hardware platform.

 Personnel attributes
• Mult ipliers that take the experience and capabilities of the people working on the

project into account.

 Project attributes

• Concerned with the particular characterist ics of the software development project.

5.9 Delphi method

The Delphi method is a systemat ic, interactive forecasting method which relies on a panel

of experts. The experts answer questionnaires in two or more rounds. After each round, a

facilitator provides an anonymous summar y of the experts‘ forecasts from the previous round as

well as the reasons they provided for their judgments. Thus, experts are encouraged to revise

their earlier answers in light of the replies of other members of their panel. It is believed that

during this process the range of the answers will decrease and the group will converge towards

the "correct" answer. Finally, the process is stopped after a pre-defined stop criterion (e.g.

number of rounds, achievement of consensus, stabilit y of results) and the mean or median scores

of the final rounds determine the results.

87

The Delphi Technique is an essential project management technique that refers to an

information gathering technique in which the opinions of those whose opinions are most

valuable, traditionally industry experts, is solicited, with the ultimate hope and goal of attaining a
consensus. Typically, the polling of these industry experts is done on an anonymous basis, in

hopes of attaining opinions that are unfettered by fears or identifiability. The experts are

presented with a series of questions in regards to the project, which is typically, but not always,

presented to the expert by a third-party facilitator, in hopes of eliciting new ideas regarding
specific project points. The responses from all experts are typically combined in the form of an

overall summary, which is then provided to the experts for a review and for the opportunity to

make further comments. This process typically results in consensus within a number of rounds,

and this technique typically helps minimize bias, and minimizes the possibility that any one

person can have too much influence on the outcomes.

Key characteristics

The following key characteristics of the Delphi method help the participants to focus on
the issues at hand and separate Delphi from other methodologies:

 Structuring of information flow

The initial contributions from the experts are collected in the form of answers to

questionnaires and their comments to these answers. The panel director controls the interactions

among the participants by processing the information and filtering out irrelevant content. This

avoids the negative effects of face-to-face panel discussions and solves the usual problems of
group dynamics.

 Regular feedback

Participants comment on their own forecasts, the responses of others and on the progress

of the panel as a whole. At any moment they can revise their earlier statements. While in regular

group meetings participants tend to stick to previously stated opinions and often conform too

much to group leader, the Delphi method prevents it.

 Anonymity of the participant s

Usually all participants maintain anonymity. Their identity is not revealed even after the

completion of the final report. This stops them from dominating others in the process using their

authority or personality, frees them to some extent from their personal biases, minimizes the

"bandwagon effect" or "halo effect", allows them to freely express their opinions, and

encourages open critique and admitt ing errors by revising earlier judgments.

The first step is to found a steering committee (if you need one) and a management team

with sufficient capacities for the process. Then expert panels to prepare and formulate the

statements are helpful unless it is decided to let that be done by the management team. The

whole procedure has to be fixed in advance: Do you need panel meetings or do the teams work

virtually. Is the questionnaire an electronic or a paper one? This means, that logistics (from

Internet programming to typing the results from the paper versio ns) have to be organised. Will

there be follow-up work-shops,interview s, presentations? If yes, these also have to be organised

and pre-pared. Print ing of brochures, leaflets, questionnaire, reports have also be considered. The

last organisat ional point is the interface wit h the financing organisat ion if this is different from

the management team.

88

Scheduling

Scheduling Principles

 compart mentalizat ion—def ine distinct tasks

 interdependency—indicate task interrelationship

 effort validation—be sure resources are available

 defined responsibilit ies—people must be assigned

 defined outcomes—each task must have an output

 defined milestones—review for qualit y

Effort and Delivery Time

Effort

Cos

Ed

Eo

t d to devel opm ent ti m e

Tm i n = 0.75T d

Empirical Relationship: P vs E
Given Putnam‘s Software Equation (5-3),

E = L3 / (P3t4)

Ea = m (td

4 / t a
4)

Im possi bl e

regi on

Ea = effort i n person-m on th s

td = nom i nal del i very ti m e for schedul e

to = opti m al devel opm ent ti m e (i n term sof cost)

ta = actual del i very ti m e desi red

89

Consider a project estimated at 33 KLOC, 12 person-year s of effort, with a P of 10K, the
complet ion time would be 1.3 years
If deadline can be extended to 1.75 years,

E = L3 / (P3t4) ≈ 3.8 p-years vs 12 p-years

Timeline Charts

Effort Allocation

 ―front end‖ activit ies

• customer communicat ion

• analysis

• design
• review and modificat ion

 construction activities

• coding or code generation

 testing and installat ion

• unit, integration
• white-box, black box

• regression

5.10 Defining Task Sets

 determine type of project
 concept development, new application development, application enhancement,

application maintenance, and reengineering projects

90

 assess the degree of rigor required

 identify adaptation criteria

 select appropriate software engineering tasks

5.11 Earned Value Analysis

 Earned value

• is a measure of progress

• enables us to assess the ―percent of completeness‖ of a project using

quantitative analysis rather than rely on a gut feeling

• ―provides accurate and reliable readings of performance from as early as 15 percent

into the project.‖

Computing Earned Value

Budgeted cost of work scheduled (BCWS)

 The budgeted cost of work scheduled (BCWS) is determined for each work task represented

in the schedule.

• BCWSi is the effort planned for work task i.
• To determine progress at a given point along the project schedule, the value of BCWS

is the sum of the BCWSi values for all work tasks that should have been completed

by that point in time on the project schedule.

 The BCWS values for all work tasks are summed to derive the budget at completion, BAC.
Hence,

 BAC = ∑ (BCWSk) for all tasks k

Budgeted cost of work performed (BCWP)

 Next, the value for budgeted cost of work performed (BCWP) is computed.

• The value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

 ―the distinction between the BCWS and the BCWP is that the former represents the budget of

the activities that were planned to be completed and the latter represents the budget of the

activit ies that actually were completed.‖

 Given values for BCWS, BAC, and BCWP, important progress indicators can be computed:

 Schedule performance index, SPI = BCWP/BCWS

 Schedule variance, SV = BCWP – BCWS

 SPI is an indicat ion of the efficiency wit h which the project is utilizing

scheduled resources.

Actual cost of work performed, ACWP

 Percent scheduled for complet ion = BCWS/BAC

• provides an indicat ion of the percentage of work that should have been completed by
time t.

 Percent complete = BCWP/BAC

• provides a quantitative indicat ion of the percent of completeness of the project at a

given point in time, t.

91

 Actual cost of work performed, ACWP, is the sum of the effort actually expended on work

tasks that have been completed by a point in time on the project schedule. It is then possible

to compute

 Cost performance index, CPI = BCWP/ACWP

 Cost variance, CV = BCWP – ACWP

Problem

 Assume you are a software project manager and that you‘ve been asked to computer earned

value statist ics for a small software project. The project has 56 planned work tasks that are

estimated to require 582 person-days to complete. At the time that you‘ve been asked to do

the earned value analysis, 12 tasks have been completed. However, the project schedule

indicates that 15 tasks should have been completed. The following scheduling data (in person-

days) are available:

 Task

 1

Planned

12

Effort Actual Effort

12.5

 2 15 11

 3 13 17

 4 8 9.5

 5 9.5 9.0

 6 18 19

 7 10 10

 8 4 4.5

 9 12 10

 10 6 6.5

 11 5 4

 12 14 14.5

 13 16

 14 6

 15 8

5.12 Error Tracking

 Schedule Tracking

• conduct periodic project status meetings in which each team member reports progress

and problems.

• evaluate the results of all reviews conducted throughout the software engineering

process.

• determine whether formal project milestones (diamonds in previous slide) have been
accomplished by the scheduled date.

• compare actual start-date to planned start-date for each project task listed in the

resource table

• meet informally with practit ioners to obtain their subjective assessment of progress to

date and problems on the horizon.

• use earned value analysis to assess progress quantitatively.

 Progress on an OO Project-I

92

 Technical milestone: OO analysis completed

• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been defined and
reviewed.

• Class relationships (Chapter 8) have been established and reviewed.
• A behavioral model (Chapter 8) has been created and reviewed.
• Reusable classes have been noted.

 Technical milestone: OO design completed

• The set of subsystems (Chapter 9) has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocat ion has been established and reviewed.

• Responsibilit ies and collaborations (Chapter 9) have been identified.

• Attributes and operations have been designed and reviewed.
• The communicat ion model has been created and reviewed.

 Progress on an OO Project-I I

 Technical milestone: OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.

 Technical milestone: OO testing

• The correctness and completeness of OO analysis and design models has been

reviewed.

• A class-responsibility-co llaboration network (Chapter 8) has been developed and

reviewed.

• Test cases are designed and class-level tests (Chapter 14) have been conducted for
each class.

• Test cases are designed and cluster testing (Chapter 14) is completed and the classes

are integrated.

• System level tests have been completed.

5.13 Software Configuration Management

 Configuration management is all about change control.

 Every software engineer has to be concerned with how changes made to work products are

tracked and propagated throughout a project.

 To ensure qualit y is maintained the change process must be audited.

93

Software Configuration categories

 Computer programs

– source

– executable

 Documentation

– Technical / user

 Data

– contained within the program

– external data (e.g. files and databases)

Elements of SCM

 Component element

- Tools coupled with file management

 Process element

-Procedures define change management

 Construction element

-Automate construction of software

 Human elements

-Give guidance for activit ies and process features

Baselines

 A work product becomes a baseline only after it is reviewed and approved.

 Before baseline – changes informal

 Once a baseline is established each change request must be evaluated and verified before it is

processed.

94

Software Configuration Items

 SCI

 Document

 Test cases

 Program component

 Editors, compiler s, browsers

– Used to produce documentation.

Configuration Management process

 Identification

• tracking changes to mult iple SCI versions

 Version control

• controlling changes before and after customer release

 Change control

• authority to approve and prioritize changes

 Configuration auditing

• ensure changes are made properly

 Reporting

• tell others about changes made

5.14 Program evolution dynamics

 Program evolution dynamics is the study of the processes of system change.

 After major empirical studies, Lehman and Belady proposed that there were a number of

‗laws‘ which applied to all systems as they evolved.

 There are sensible observations rather than laws. They are applicable to large systems
developed by large organisat ions. Perhaps less applicable in other cases.

Importance of evolution

 Organizat ions have huge invest ments in their software systems - they are crit ical business

assets.

 To maintain the value of these assets to the business, they must be changed and updated.

 The majorit y of the software budget in large companies is devoted to evolving existing
software rather than developing new software.

95

Software change

 Software change is inevitable

• New requirements emerge when the software is used;
• The business environment changes;

• Errors must be repaired;
• New computers and equipment is added to the system;
• The performance or reliabilit y of the system may have to be improved.

 A key problem for organisations is implement ing and managing change to their existing

software systems.

Lehman’s laws

Law Description

Continuing change A program that is used in a real-world environment
necessarily must change or become progressively less

useful in that environment.

Increasing complexit y As an evolving program changes, its structure tends to
become more complex. Extra resources must be devoted to

preserving and simplif ying the structure.

Large program

evolution

Program evolution is a self-regulating process. System

attributes such as size, time between releases and the
number of reported errors is approximately invariant for
each system release.

Organisat ional stabilit y Over a program‘s lifetime, its rate of development is

approximately constant and independent of the resources
devoted to system development.

Conservat ion of

familiarit y

Over the lifetime of a system, the incremental change in

each release is approximately constant.

Continuing growth The functionalit y offered by systems has to continually
increase to maintain user satisfact ion.

Declining quality The quality of systems will appear to be declining unless

they are adapted to changes in their operational
environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop

feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

Applicability of Lehman’s laws

 Lehman‘s laws seem to be generally applicable to large, tailored systems developed by large

organisat ions.

• Confirmed in more recent work by Lehman on the FEAST project (see further
reading on book website).

 It is not clear how they should be modified for

• Shrink-w rapped software products;

• Systems that incorporate a significant number of COTS components;

96

• Small organisations;

• Medium sized systems.

5.15 Software maintenance

 Modifying a program after it has been put into use or delivered.

 Maintenance does not normally involve major changes to the system‘s architecture.

 Changes are implemented by modifying existing components and adding new components to

the system.

 Maintenance is inevitable

 The system requirements are likely to change while the system is being developed because

the environment is changing. Therefore a delivered system won't meet its requirements!

 Systems are tightly coupled with their environment. When a system is installed in an

environment it changes that environment and therefore changes the system requirements.

 Systems MUS T be maintained therefore if they

are to remain useful in an environment.

Types of maintenance

 Maintenance to repair software faults
• Code ,design and requirement errors
• Code & design cheap. Requirements most expensive.

 Maintenance to adapt software to a different operating environment

• Changing a system‘ s hardware and other support so that it operates in a different
environment (computer, OS, etc.) from its initial implementation.

 Maintenance to add to or modify the system‘s functionalit y

• Modifying the system to satisfy new requirements for org or business change.

Distribution of maintenance effort

Maintenance costs

 Usually greater than development costs (2* to 100* depending on the application).

97

 Affected by both technical and non-technical factors.

 Increases as software is maintained. Maintenance corrupts the software structure so makes

further maintenance more difficult.

 Ageing software can have high support costs

(e.g. old languages, compilers etc.).

Development/maintenance costs

Maintenance cost factors

 Team stabilit y

• Maintenance costs are reduced if the same staff are involved wit h them for some
time.

 Contractual responsibilit y

• The developers of a system may have no contractual responsibilit y for
maintenance so there is no incentive to design for future change.

 Staff skills

• Maintenance staff are often inexperienced and have limited domain knowledge.

 Program age and structure

• As programs age, their structure is degraded and they become harder to

understand and change.

Maintenance prediction

 Maintenance prediction is concerned with assessing which parts of the system may cause

problems and have high maintenance costs

• Change acceptance depends on the maintainabilit y of the component s affected by
the change;

• Implementing changes degrades the system structure and reduces its

maintainabilit y;

• Maintenance costs depend on the number of changes and costs of change depend

on maintainability.

Change prediction

 Predicting the number of changes requires and understanding of the relationships between a

system and its environment.

 Tight ly coupled systems require changes whenever the environment is changed.

98

 Factors influencing this relat ions hip are

• Number and complexit y of system interfaces;

• Number of inherent ly volatile system requirements;

• The business processes where the system is used.

Complexity metrics

 Predictions of maintainabilit y can be made by assessing the complexit y of system

components.

 Studies have shown that most maintenance effort is spent on a relatively small number of

system components of complex system.

 Reduce maintenance cost – replace complex components with simple alternat ives.

 Complexit y depends on

• Complexit y of control structures;

• Complexit y of data structures;

• Object, method (procedure) and module size.

Process metrics

 Process measurements may be used to assess maintainabilit y

• Number of requests for corrective maintenance;

• Average time required for impact analysis;
• Average time taken to implement a change request;
• Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a decline in maintainabilit y.

 COCOMO2 model maintenance = understand existing code + develop new code.

Project management

Objectives

 To explain the main tasks undertaken by project managers

 To introduce software project management and to describe its distinct ive characterist ics

 To discuss project planning and the planning process

99

 To show how graphical schedule representations are used by project management

 To discuss the notion of risks and the risk management process Software project

management

 Concerned with activities involved in ensuring that software is delivered on time and on

schedule and in accordance with the requirements of the organisations develoing

and procuring the software.

 Project management is needed because software development is always subject to budget

and schedule constraints that are set by the organisation developing the software.

Project planning

 Probably the most time-consuming project management activit y.

 Continuous activity from initial concept through to system delivery. Plans must be

regularly revised as new informat ion becomes available.

 Various different types of plan may be developed to support the main software project

plan that is concerned wit h schedule and budget.

Types of project plan

Plan Description

Qualit y plan

Validat ion plan

Configuration management

Plan

Maintenance plan

Development plan.

Describes the qualit y procedures and standards that
will be used in a project.

Describes the approach, resources and schedule used
for system validation.

Describes the configurat ion management procedures

and structures to be used.

Predicts the maintenance requirements of the system,

maintenance costs and effort required.

Describes how the skills and experience of the project
team members will be developed.

Project planning process

Establish the project constraints(delivery date, staff, budget)

Make init ial assessments of the project parameters (structure, size)
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project schedule

Initiate activit ies according to schedule

Wait (for a while)

Review project progress
Revise estimates of project parameters

Update the project schedule

Re-negotiate project constraints and deliverables

if (problems arise) then

Initiate technical review and possible revision
end if

end loop

100

project plan

The project plan sets out:

• resources available to the project
• work breakdown

• schedule for the work.

Project plan structure

 Introduction – objective, budget, time

 Project organisat ion. – roles of people

 Risk analysis. – arising, reduction

 Hardware and software resource requirements.

 Work breakdown. – break project to activity, milestone

 Project schedule. – time, allocation of people

 Monitor ing and reporting mechanisms.

Milestones and deliverables

 Milestones are the end-point of a process activit y.- report presented to management

 Deliverables are project results delivered to customers.

- milestones need not be deliverables. May be used by project managers. –
not to customers

 The waterfall process allows for the straight forward definit ion of progress milestones.

Milestones in requirement process

Project scheduling

 Split project into tasks and estimate time and resources required to complete each task.

 Organize tasks concurrent ly to make optimal
use of workforce.

 Minimize task dependencies to avoid delays
caused by one task wait ing for another to complete.

 Dependent on project managers intuit ion and experience.

101

The project scheduling process

Scheduling problems

 Estimat ing the difficult y of problems and hence the cost of developing a solution is hard.

 Productivit y is not proportional to the number of people working on a task.

 Adding people to a late project makes it later because of communicat ion overheads.

 The unexpected always happens. Always allow contingency in planning.

Bar charts and activity networks

 Graphical notations used to illustrate the project schedule.

 Show project breakdown into tasks. Tasks should not be too small. They should take
about a week or two.

 Activit y charts show task dependencies and the critical path.

 Bar charts show schedule against calendar time.

Task durations and dependencies

Activity Duration (days) Dependencies

T1 8

T2 15

T3 15 T1 (M1)

T4 10

T5 10 T2, T4 (M2)

T6 5 T1, T2 (M3)

T7 20 T1 (M1)

T8 25 T4 (M5)

T9 15 T3, T6 (M4)

T10 15 T5, T7 (M7)

T11 7 T9 (M6)

T12 10 T11 (M8)

102

Activity network

8 da y s

T1

4/7 /03

1 4/7 /03

M1

2 5/7 /03

M3

15 da y s

5 da y s 4/8/03

T6 M4

15 da y s

T9

2 5/8/03

M6

sta r t
15 da y s

T2

10 da y s

T4

25/7 /03

M2

2 0 da y s 7 da y s

T11

11/8/03 5/9/03

10 da y s

T5 M7 15 da y s
M8

1 8/7 /03

M5

2 5 da y s

T8

10da ys

T12

Finish

19/9/03

Activity timeline

T3

T10

T7

103

Staff allocation

5.16 Risk management

 Risk management - identifying risks and drawing up plans to minimise their effect on a

project.

 A risk is a probabilit y that some adverse circumstance will occur

• Project risks : affect schedule or resources. eg: loss of experienced designer.

• Product risks: affect the quality or performance of the software being developed.

eg: failure of purchased component.

• Business risks : affect organisation developing software. Eg: competitor
introducing new product.

Software risks

Risk Affe cts Description

Staff turnover Project Experienced staff will leave the project before it
is finished.

Management change Project There will be a change of organisational
management with different priorities.

Hardware unavailability Project Hardware that is essential for the project will not
be delivered on schedule.

Requirements change Project and product There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not
available on schedule

Size underestimate Project and product The size of the system has been underestimated.

CASE tool under-
performance

Product CASE tools which support the project do not
perform as anticipated

Technology change Business The underlying technology on which the system
is built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

104

Risk management process

 Risk identificat ion

• Identify project, product and business risks;

 Risk analysis

• Assess the likelihood and consequences of these risks;

 Risk planning

• Draw up plans to avoid or minimise the effects of the risk;

 Risk monitoring

• Constantly monitor risks & plans for risk mitigatio n.

Risk management process

Risk identification

 Discover ing possible risk

 Technology risks.

 People risks.

 Organisat ional risks.

 Tool risk.

 Requirements risks.

 Estimat ion risks.

Risks and risk types

Risk type Possible risks

Technology The database used in the system cannot process as many transact ions per

second as expected.

Software components that should be reused contain defects that limit their

functionalit y.

People It is impossible to recruit staff wit h the skills required.
Key staff are ill and unavailable at critical times.

Required training for staff is not available.

Organisat ional The organisation is restructured so that different management are

responsible for the project.

Organisat ional financial problems force reductions in the project budget.

Tools The code generated by CASE tools is ineffic ient.
CASE tools cannot be integrated.

105

Requirements Changes to requirements that require major design rework are proposed.
Customers fail to understand the impact of requirements changes.

Estimat ion The time required to develop the software is underestimated.

The rate of defect repair is underestimated.
The size of the software is underestimated.

Risk analysis

 Make judgement about probabilit y and seriousnes s of each identified risk.

 Made by experienced project managers

 Probabilit y may be very low(<10%), low(10-25%), moderate(25-50%), high(50-75%) or
very high(>75%). not precise value. Only range.

 Risk effects might be catastrophic, serious, tolerable or insignificant.

Risk Probability Effects

Organisat ional financial problems force
reductions in the project budget.

Low Catastrophic

It is impossible to recruit staff with the
skills required for the project.

High Catastrophic

Key staff are ill at critical times in the

project.

Moderate Serious

Software components that should be reused
contain defects which limit their

functionalit y.

Moderate Serious

Changes to requirements that require major
design rework are proposed.

Moderate Serious

The organisation is restructured so that
different management are responsible for
the project.

High Serious

The database used in the system cannot
process as many transactions per second as
expected.

Moderate Serious

The time required to develop the software
is underestimated.

High Serious

CASE tools cannot be integrated. High Tolerable

Customers fail to understand the impact of
requirements changes.

Moderate Tolerable

Required training for staff is not available. Moderate Tolerable

The rate of defect repair is underestimated. Moderate Tolerable

The size of the software is underestimated. High Tolerable

The code generated by CASE tools is
inefficient.

Moderate Insignificant

Risk planning

 Consider each identified risk and develop a strategy to manage that risk.

 categories

106

 Avoidance strategies

• The probabilit y that the risk will arise is reduced;

 Minimisation strategies

• The impact of the risk on the project will be reduced;

 Contingency plans
• If the risk arises, contingency plans are plans to deal with that risk. eg: financial

problems

Risk management strategies

Risk Strategy

Organisat ional financial
problems

Prepare a briefing document for senior management
showing how the project is making a very important

contribution to the goals of the business.

Recruit ment problems Alert customer of potential difficult ies and the

possibilit y of delays, invest igate buying- in
components.

Staff illness Reorganise team so that there is more overlap of work

and people therefore understand each other‘s jobs.

Defective components Replace potentially defective components with
bought-in components of known reliabilit y.

Requirements changes Derive traceabilit y informat ion to assess requirements

change impact, maximise informat ion hiding in the
design.

Organisat ional restructuring Prepare a briefing document for senior management

showing how the project is making a very important
contribution to the goals of the business.

Database performance Invest igate the possibilit y of buying a higher-
performance database.

Underestimated development
time

Invest igate buying in components, investigate use of a
program generator

Risk monitoring

 Assess each identified risks regular ly to decide whether or not it is becoming less or more

probable.

 Also assess whether the effects of the risk have changed.

 Cannot be observed directly. Factors affecting will give clues.

 Each key risk should be discussed at management progress meetings & review.

Risk indicators

Risk type Potential indicators

Technology Late delivery of hardware or support software, many
reported technology problems

People Poor staff morale, poor relations hips amongst team member,

job availabilit y

107

Organisat ional Organisat ional gossip, lack of action by senior management

Tools Reluctance by team members to use tools, complaints about
CASE tools, demands for higher -powered workstations

Requirements Many requirements change requests, customer complaints

Estimat ion Failure to meet agreed schedule, failure to clear reported
defects

CASE Tools

 Computer-A ided Software Engineering

 Prerequisites to tool use

– Need a collection of useful tools that help in every step of building a product
– Need an organized layout that enables tools to be found quickly and used

efficient ly

– Need a skilled craftsperson who understands how to use the tools effectively

CASE Tools

 Upper CASE

– requirements

– specification

– planning
– design

 Lower CASE

– implementation

– integrat ion

– maintenance
CASE tool classification

 Funct ional perspective

 Process perspective

 Integration perspective

5.17 CASE Tool Taxonomy

 Project planning tools

- used for cost and effort estimation, and project scheduling

 Business process engineering tools
- represent business data objects, their relat ionships, and flow of the data objects

between company business areas

 Process modeling and management tools

- represent key elements of processes and provide links to other tools that provide
support to defined process activit ies

 Risk analysis tools

- help project managers build risk tables by providing detailed guidance in the
identificat ion and analysis of risks

 Requirements tracing tools

- provide systemat ic database-like approach to tracking requirement status
beginning with specificat ion

 Qualit y assurance tools

108

- metrics tools that audit source code to determine compliance wit h language
standards or tools that extract metrics to project the quality of software being built

 Documentation tools

- provide opportunities for improved productivit y by reducing the amount of time
needed to produce work products

 Database management tools

- RDMS and OODM S serve as the foundation for the establishment of the CASE
repository

 Software configuration management tools

- uses the CASE repositor y to assist with all SCM tasks (ident ificat ion, versio n
control, change control, auditing, status accounting)

 Analysis and design tools

- enable the software engineer to create analysis and design models of the system to
be built, perform consistency checking between models

 Interface design and development tools
- toolkits of interface components, often part environment with a GUI to allow

rapid prototyping of user interface designs

 Prototyping tools

- enable rapid definit io n of screen layouts, data design, and report generation

 Programming tools

- compiler s, editors, debuggers, OO programming environments, fourth generation

languages, graphical programming environments, applications generators, and

database query generators

 Web development tools

- assist with the generation of web page text, graphics, forms, scripts, applets, etc.

 Test management tools

- coordinate regression testing, compare actual and expected output, conduct batch
testing, and serve as generic test drivers

 Client/ser ver testing tools

- exercise the GUI and network communicat ions requirements for the client and
server

CASE tool support

 Requirements storage

- Requirements should be managed in a secure, managed data store

 Change management

- The process of change management is a workflow process whose stages can be
defined and informat ion flow between these stages partially automated

 Traceabilit y management

- Automated retrieval of the links between requirements

DBMS Features Needed for CASE Repositories

 Non-redundant data storage

 High-level access

 Data independence

 Transact ion control

 Mult i-user support

KARPAGAM ACADEMY OF HIGHER EDUCATION
FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

15BECS602 SOFTWARE ENGINEERING QUESTION BANK

TWO MARKS

1. Write the IEEE definition of software engineering

Software Engineering: (1) The application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software; that

is, the application of engineering to software. (2) The study of approaches as in (1).

2. Mention the characteristics of software contrasting it with characteristics of

hardware

• Software is developed or engineered; it is not manufactured in the classical sense.

• Software doesn‘t ―wear out.‖

• Although the industry is moving toward component-based construction, most

software continues to be custom built

3. ‘Software doesn’t wear out’ justify.

Software doesn‘t wear out, but it does deteriorate. During the software life, it will

undergo change (maintenance). As changes are made, it is likely that some new defects

will be introduced, causing the failure rate spike.

4. Define process

A process is a collection of activities, actions, and tasks that are performed when Some

work product is to be created.

An activity strives to achieve a broad objective (e.g., communication with stakeholders)

An action encompasses a set of tasks that produce a major work product (e.g., an

architectural design model).

A task focuses on a small, but well-defined objective (e.g., conducting a unit test)

that produces a tangible outcome.

5. List out the activities of generic process framework

• Communication,

• Planning,

• Modeling,

• Construction

• Deployment

6. List out the umbrella activities of software engineering process

• Software project tracking and control

• Risk management

• Software quality assurance

• Technical reviews

• Measurement

• Software configuration management

• Reusability management

• Work product preparation and production

7. What are the steps involved in component based development model

• Available component-based products are researched and evaluated for the

• Application domain in question.

• Component integration issues are considered.

• Software architecture is designed to accommodate the components.

• Components are integrated into the architecture.

• Comprehensive testing is conducted to ensure proper functionality.

8. What is process pattern?

A process pattern describes the process related problem that encountered during

software engineering work, identifies the environment in which the problem has been

encountered and suggests one or more proven solutions to the problem

9. What are the different types of process pattern?

• Stage pattern—defines a problem associated with a framework activity for the

process. An example of a stage pattern might be EstablishingCommunication.

• Task pattern—defines a problem associated with a software engineering action or

work task and relevant to successful software engineering practice

(e.g.RequirementsGathering is a task pattern).

• Phase pattern—define the sequence of framework activities that occurs

within the process, even when the overall flow of activities is iterative

in nature. An example of a phase pattern might be SpiralModel or Prototyping

10. Mention the drawbacks of formal method.

• The development of formal models is currently quite time consuming and

expensive.

• Because few software developers have the necessary background to apply

formal methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

11. What is prototyping?

A customer defines a set of general objectives for software, but does not identify detailed

requirements for functions and features. In other cases, the developer may be unsure of the

efficiency of an algorithm, the adaptability of an operating system, or the form that human-

machine interaction should take. In these, and many other situations, a prototyping paradigm

may offer the best approach. Although prototyping can be used as a stand-alone process

model, it is more commonly used as a technique that can be implemented within the context

of any one of the process models. The prototyping paradigm assists you and other

stakeholders to better understand what is to be built when requirements are fuzzy.

12. Mention the drawbacks of water fall model

a. Real projects rarely follow the sequential flow that the model proposes.

b. It is often difficult for the customer to state all requirements explicitly.

c. The customer must have patience. A working version of the program(s)

will not be available until late in the project time span.

d. There is no back tracking

13. What are the advantages of incremental model?

o The incremental model combines elements of linear and parallel process flows.

o Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for

the project.

o Core product is delivered to the user in the first increment. So that changes any
can be made in the successive increments

o Increments can be planned to manage technical risks..

14. List the “Manifesto for Agile Software Development

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

15. What is an Agile Process?

 Is driven by customer descriptions of what is required (scenarios)

 Recognizes that plans are short-lived

 Develops software iteratively with a heavy emphasis on construction

activities

 Delivers multiple ‗software increments‘ □

 Adapts as changes occur

16. What is an Agility in context of software engineering

 Agility means effective (rapid and adaptive) response to change, effective

communication among all stockholder.

 Drawing the customer onto team and organizing a team so that it is in control of

work performed. -The Agile process, light-weight methods are People-based

rather than plan-based methods.

 The agile process forces the development team to focus on software itself rather

than design and documentation.

 The agile process believes in iterative method.

 The aim of agile process is to deliver the working model of software quickly to

the customer For example: Extreme programming is the best known of agile

process.

17. List out the XP values

Communication, Simplicity, Feedback, Courage, Respect

15 MARKS

1. Explain in detail about water fall model.

5 activities

Waterfall model and V model diagram

Drawback

2. Explain in detail about incremental process model

The incremental model combines elements of linear and parallel process flows. Core

products

Example: Microsoft word document

Advantages

3. Explain in detail about Evolutionary process model

• Prototyping – definition , diagram , process and drawback

• Spiral model- definition , diagram , process and drawback

4. Mention the manifesto of the agile software development. Discuss about the

principles of the agile software development

“Manifesto for Agile Software Development

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

The twelve principles of agile development include:

1. Customer satisfaction through early and continuous software delivery – Customers are

happier when they receive working software at regular intervals, rather than waiting extended

periods of time betweenreleases.

2. Accommodate changing requirements throughout the development process – The ability

to avoid delays when a requirement or feature request changes.

3. Frequent delivery of working software – Scrum accommodates this principle since the team

operates in software sprints or iterations that ensure regular delivery of working software.

4. Collaboration between the business stakeholders and developers throughout the project –

Better decisions are made when the business and technical team are aligned.

5. Support, trust, and motivate the people involved – Motivated teams are more likely to

deliver their best work than unhappyteams.

6. Enable face-to-face interactions – Communication is more successful when development

teams are co-located.

7. Working software is the primary measure of progress – Delivering functional software to

the customer is the ultimate factor that measures progress.

8. Agile processes to support a consistent development pace – Teams establish a repeatable

and maintainable speed at which they can deliver working software, and they repeat it with each

release.

9. Attention to technical detail and design enhances agility – The right skills and good design

ensures the team can maintain the pace, constantly improve the product, and sustain change.

10. Simplicity – Develop just enough to get the job done for right now.

11. Self-organizing teams encourage great architectures, requirements, and designs – Skilled

and motivated team members who have decision-making power, take ownership, communicate

regularly with other team members, and share ideas that deliver quality products.

12. Regular reflections on how to become more effective – Self-improvement, process

improvement, advancing skills, and techniques help team members work more efficiently.

5. Discuss in detail about Extreme Programming process with neat diagram

15BECS602 SOFTWARE ENGINEERING ONLINE QUESTIONS

Questions
opt1

opt2

opt3

opt4

answer

Some times linear sequential model
is called as Classic life cycle or

Waterfall
Model

Spiral
Model

Winwin
Spiral
Model

Prototype
Model

Waterfall Model

Sequential Approach to software
development that begins at the
 _ and progress
through analysis, design, coding,
testing and support.

Process
Level

Planning
level

Analysis

System level

System level

The original waterfall model
proposed by .

Winston
Royce

Boehm

L.B.S
Raccoon

Robert

Winston Royce

The Prototyping paradigm begins
with

Requirement
s gathering

Resources
gathering

Analysis

Design

Requirements
gathering

The quick design leads to the
construction of a

Waterfall
model

Spiral
model

Prototype
model

RAD model.

Prototype model

 serves as a
mechanism for identifying software
requirements.

RAD

Increment
al model

Spiral
model

Prototype
model

Prototype model

 _is a "high-speed"
adoption of the linear sequential
model.

Winwin spiral

Waterfall

Prototype

RAD

RAD

The
combines elements of the
 with the
iterative philosophy of prototyping.

incremental
model, linear
sequential
model

incrementa
l model,
RAD
model

Linear
sequential
model,
prototype
model

spiral model,
sequential
model

incremental
model, linear
sequential model

The Spiral Model originally
proposed by _

L.B.S
Raccoon.

Winston
Royce

Boehm

Robert

Boehm

Spiral model is an evolutionary
software process model that
couples the iterative nature of
 _ with the
controlled and systematic aspects
of the .

Prototyping,
Incremental
Model

Prototypin
g, Linear
Sequential
model

Formal
methods,
Increment
al Model

Component -
Based
Development
, Incremental
Model

Prototyping,
Linear Sequential
model

The objective of software project
planning is to provide a framework
that enables the manager to make
reasonable estimates of
 , and

Requirement
s, Cost and
Risk analysis

Resources
, Design
and
Schedule

Cost,
Resource
s and
Requirem
ents

Resources,
Cost and
Schedule

Resources, Cost
and Schedule

 _ is achieved by using
Component based construction.

RAD

Waterfall

Win Win

Incremental
Model

RAD

Using the _ s/w is
developed in a series of
incremental releases.

Rad

Spiral
Model

Win Win

Incremental
Model

Spiral Model

 calculations
can be very useful in software
project scheduling.

Time-line
chart

Boundary
time

Most –
likely time

Boundary
time

Boundary time

The foundation of Software
Engineering is the

Tools

Methods

Process

None of the
above

Process

The work associated with Software
Engineering can be categorized
into generic phases.

3

5

4

6

4

 Phase focuses on
“how”

analysis

design
developm
ent

definition

development

RAD model is a
 adaptation of
 model.

low-
speed,spiral

high-
speed,spir
al

low-
speed,wat
erfall

high
speed,linear
sequential

high speed,linear
sequential

Spiral model consists
of task region.

8

6

4

7

6

In KPA, things that must be in place
to enable the organization to meet
the commitments.

abilities

activities

methods

goals

abilities

Approach used to solve the waiting
problem in the “water fall model” is:

spiral model

protoyping
model

RAD
model

Object
Oriented
model

protoyping model

In Object Oriented model, Three
kinds of abstraction are entity,
action

virtual
machines

encapsulat
ion

modularit
y

persistence

virtual machines

In Object Oriented model,
 hides the details of the
objects.

virtual
machines

encapsulat
ion

modularit
y

persistence

encapsulation

 produces lot of
intermediate results to produce
successful product

spiral model

protyping
model

RAD
model

Waterfall
model

Waterfall model

 is the document driven
process.

spiral model

protyping
model

RAD
model

Object
Oriented
model

Object Oriented
model

 Is used when manual
helps are not provided.

spiral model

protyping
model

RAD
model

Object
Oriented
model

protyping model

Two principal s/w process cost
predictors are:

expected
effort and
expect option

expected
effort and
decomposi
tion

elapsed
time and
analogy

expected
time and
elapsed time

expected time and
elapsed time

guessing based on some personal
experience acquired in past is
known as :

analogy

expect
option

decompo
sition

none of
these

expect option

exercise judgement based upon
some previous projects is known
as:

analogy

expect
option

decompo
sition

none of
these

analogy

Breaking a product up into its
smallest components is known as:

analogy

expect
option

decompo
sition

none of
these

decomposition

This is a software development

process model

Waterfall

model

Incrementa

l model

Boehm’s

spiral

model

all of these

all of these

Software Specification is the
process where

you decide
what
software you
will use to
program

you
develop a
prototype
and show
it to the
client

You find
out what
services
are
required
from the
system

none of the
above

You find out what
services are
required from the
system

What is a type of software design
that defines interfaces between
system components?

architectural
design

Interface
Design

compone
nt Design

database
design

Interface Design

What is a type of software design
that designs system data structures
to be used in a database?

architectural
design

interface
Design

compone
nt Design

Database
design

Database design

What is an advantage of
incremental delivery?

everything is
coded at
once, so the
customer
receives the
full product

replaceme
nt systems
are easily
developed
with full
features
that clients
expected
from the
old system

Customer
s can use
prototype
s and
gain
experienc
e that
informs
their
requireme
nts for
later
systems

none of
these

Customers can

use prototypes
and gain
experience that
informs their
requirements for
later systems

Software processes are categorized
as either

thoughtful or
extreme.

plan-
driven or
agile.

fast or
agile.

plan-driven
or ideal.

plan-driven or
agile.

Software process models are also
called process

trees.

characteri
stics.

load.

paradigms.

The difference between the
Waterfall and Incremental models is

The
Incremental
approach
has separate
process
phases from
beginning to
end.

the

Increment
al
approach
uses
existing
code and
builds on
it.

the
Increment
al
approach
interleave
s
specificati
on,
developm
ent and
validation
whereas
Waterfall
has them
as
separate
phases.

the

Incremental
approach is
part of the
Waterfall
model.

the Incremental
approach
interleaves
specification,
development and
validation whereas
Waterfall has
them as separate
phases.

 adds to the costs of
Software Development because it
usually means that work that has
been completed has to be redone.

Picture
quality

Production

Software
speed

Change.

Change.

System prototypes allow users

to see how
well the
system
supports
their work.

to start
working on
the
system.

to put the
system to
productio
n.

to program
the software.

to see how well
the system
supports their
work.

What does RUP stand for in
software engineering?

Rational
Unified
Process

Rare
Universal
Product

Rational
Unique
Process

Radical
Uniting
process

Rare Universal
Product

Software prototyping helps:

generate
code

provide
thorough
testing

explore
possible
software
solutions

collect initial
software
requirements

explore possible
software solutions

What is NOT part of the design
process.

Architectural
design

Database
design

Compone
nt design

Validation
testing

Component
design

What is the order of the stages in
the waterfall mode?

Requirement
s Definition,
System &
Software
Design,
Implementati
on & Unit
Testing,
Integration &
System
Testing,
Operation &
Maintenance.

Requireme
nts
Definition,
Integration
& System
Testing,
System &
Software
Design,
Implement
ation &
Unit
Testing,
Operation
&
Maintenan
ce.

System &
Software
Design,
Requirem
ents
Definition,
Operation
&
Maintena
nce,
Implemen
tation &
Unit
Testing,
Integratio
n &
System
Testing.

Implementati
on & Unit
Testing,
Requirement
s Definition,
System &
Software
Design,
Integration &
System
Testing,
Operation &
Maintenance.

Requirements

Definition, System
& Software
Design,
Implementation &
Unit Testing,
Integration &
System Testing,
Operation &
Maintenance.

What are the four activities that are
fundamental to software
engineering?

Software
specification,
Software
design and
implementati
on, Software
requirements
validation,
Software
evolution

Software
specificatio
n,
Software
validation,
Software
evolution,
Software
design and
implement
ation

Software
specificati
on,
Software
configurat
ion,
Software
validation,
Software
evolution

Software
documentatio
n, Software
design and
implementati
on, Software
validation,
Software
evolution

Software
specification,
Software
validation,
Software
evolution,
Software design
and
implementation

Which activity most easily lends
itself to incremental design?

User
interfaces

Web
services

Enterprise
resource
planning

Embedded
software

User interfaces

Reuse-oriented software
engineering has which of the
following phases?

Unit
testing

Intermedia
te versions

Requirem
ents
modificati
on

Formal
specification

Intermediate
versions

Which of the following is not a
part/product of requirements
engineering?

Feasibility
study

Requireme
nts
validation

System
models

Architectural
design

Architectural
design

What takes the fundamental
process activities of specification,
development, validation, and
evolution and represents them as
separate process phases such as
requirements specification, software
design, implementation testing, and
so on?

The Waterfall
Method

Increment
al
Developm
ent

Reuse-
oriented
Software
Engineeri
ng

Implementati
on And Unit
Testing

The Waterfall
Method

What is not part of Incremental
Development?

Specification

Developm
ent

Requirem
ents
Modificati
on

Validation

Requirements
Modification

What is not part of the Reuse-
oriented Software Engineering?

Requirement
s
Specification

Componen
t Analysis

Requirem
ents
Modificati
on

Implementati
on and Unit
Testing

Implementation
and Unit Testing

All software processes 'must'
include activities that are
fundamental to software
engineering. They are:

Software
Specification,
Software
design and
implementati
on,

Software
inception,
Project
role
definition,
Software
Testing.

Product
definition,
Role
definition,
and Pre-
and post-
conditions
definition.

Design
elaboration,
code
reviews,
system
testing, and
design
iteration.

Software
Specification,
Software design
and
implementation,

This software process model takes
the fundamental activities of
specification, development,
validation, and evolution and
represents them as separate
process phases such as
requirements specification, software
design, implementation, testing,
and so on.

Incremental

development

The
waterfall
model

Reuse-
oriented
software
engineeri
ng

Boehm's

spiral model

The waterfall
model

The intermediate stages of the
reuse-oriented process are:

Component
Analysis,
Requirement
s
modification,
System
design and
reuse,
Development
and

Requireme
nts
specificatio
n,
Componen
t Analysis,
Requireme
nts
modificatio

Requirem
ents
specificati
on,
software
design,
implemen
tation,
and

Requirement
s
specification,
software
design and
implementati
on,
Validation.

Component
Analysis,
Requirements
modification,
System design
and reuse,
Development and
integration.

 integration. n,
Integration
.

testing.

Which statement best describes a
benefit of Incremental development
over the waterfall model.

It is possible

to gather
more of the
requirements
up front.

Time to
market is
faster
because
there is
less
overhead.

It is
easier to
get
customer
feedback
on the
developm
ent work
that’s
been
done.

It is easier to
reuse
existing
components.

It is easier to get

customer
feedback on the
development work
that’s been done.

Which term defines the process of
project compliance with policies and
procedures?

Quality
control

Quality
assurance
s

Quality
audits

Quality
control
management

Quality audits

Which process does QA provide
and umbrella for?

Continuou

s process
improvement

Quality
assurance

Project

managem
ent plan

Quality
baseline

Continuous

process
improvement

Which of the processes includes all
activities of the performing
organization that determines
policies and responsibilites of a
project?

Performance
quality
control

Project
quality
managem
ent

Performa
nce plan
managem
ent

Quality
control
management

Project quality
management

Which of the following definitions
apply to the cost of quality?

Left over
product

Total cost
of all
project
efforts

Customer
satisfactio
n

Redoing
entire project

Total cost of all
project efforts

Which of these terms apply to
identifying quality standards and
how to satisfy them?

Quality
projections

Quality
managem
ent

Quality
planning

Quality
overview

Quality planning

	KARPAGAM ACADEMY OF HIGHER EDUCATION
	FACULTY OF ENGINEERING
	SOFTWARE ENGINEERING
	The software process:
	1.2 Waterfall model/Linear Sequential Model/classic life cycle :
	Waterfall model phases:
	Waterfall model: Advantages:
	Waterfall model problems:
	The Prototyping Models:
	Strengths:
	Weaknesses:
	The RAD Model:
	RAD phases :
	Business modeling:
	Data Modeling:
	Process modeling:
	Application generation:
	Testing and Turnover:
	Advantages &Disadvantages of RAD:
	Disadvantages
	The Incremental Model
	The Incremental development
	Spiral Model:
	Spiral Model Advantages:
	1.3 System Engineering
	1.4 Computer Based System
	1.5 Verification
	1.6 Validation
	UNIT II
	Types of requirements
	2.1 Functional and Non-Funct ional Functional requirements
	Examples of functional requirements
	Non-Funct ional requirements
	Non-Funct ional requirements classifications:
	Product requirements
	Specifying product requirements
	Process requirements
	Examples of process requirements
	External requirements
	Examples of external requirements
	Software Document
	Users of a requirements document
	Process Documentation
	Product Documentation
	Document Quality
	Document Structure
	Standards
	1. Process Standards
	2. Product Standards
	3. Interchange Standards
	Other Standards
	2.3 Requirement Engineering Process
	2.4 Feasibility Studies
	2.5 Elicitation and analysis
	Problems of requirements analysis
	System models
	Scenarios
	Ethnography
	2.6 Validation and management
	Requirements validation techniques
	Requirements management
	2.7 Software prototyping
	Benefits:
	Process of prototyping
	Dimensions of prototypes
	2 Vertical Prototypes
	Types of prototyping
	1. Throwaway prototyping
	2. Evolutionary prototyping
	3. Incremental prototyping
	4. Extreme prototyping
	Advantages of prototyping
	Disadvant ages of prototyping
	Best projects to use prototyping
	Methods
	1. Dynamic systems development method
	2. Operational prototyping
	3. Evolutionary systems development
	4. Evolutionary rapid development
	5. Scrum
	Tools
	1. Screen generators, design tools & Software Factories
	2. Application definition or simulation software
	3. Sketchflow
	4. Visual Basic
	5. Requirements Engineering Environment
	6. LYMB
	7. Non-relational environments
	8. PSDL
	2.8 Prototyping in the Software Process System prototyping
	Uses of system prototypes
	Prototyping benefits
	Prototyping process
	 Throw-away prototyping
	Data Model
	Behavioural Model
	1. Data-processing models
	Data flow diagrams
	Order processing DFD
	Statecharts
	2.9 Structured Analysis
	DeMarco
	Modern structured analysis
	Method weaknesses
	CASE workbenches
	An analysis and design workbench
	2.10 Data Dictionary
	Data dictionary entries
	Analysis to Design:
	• Architectural Design
	• Interface Design
	Design Models – 2 :
	Design Principles – 1:
	Design Concepts -2 :
	Design Concepts -4 :
	Refactoring – Design concepts :
	Design Concepts – 4 :
	Design Concepts – 5:
	3.2 Modular Design Methodology Evaluation
	Modular Design Methodology Evaluation – 2:
	Effective Modular Design:
	3.4
	Architectural Styles – 1:
	Architectural Styles – 2:
	Architectural Styles – 3:
	3.5 Software Architecture Design – 1:
	Object oriented Architecture :
	Software Architecture Design – 2:
	Layered Architecture:
	Architecture Tradeoff Analysis – 1:
	Architecture Tradeoff Analysis – 2:
	Refining Architectural Design:
	Architectural Design
	Advantages of explicit architecture
	Architecture and system characteristics
	Architectural conflicts
	System structuring
	Packing robot control system
	Architectural design decisions
	Architecture reuse
	Architectural styles
	Architectural models
	System organisation
	The repository model
	CASE toolset architecture
	Disadvantages (1)
	Client-server model
	Client-server characteristics
	Abstract machine (layered) model
	Modular decomposition styles
	Sub-system s and modules
	Object models
	Invoice processing system
	Function-oriented pipelining
	User interface design
	3.6 User interface design process
	User-system interaction
	Interaction styles
	Information presentation
	Information display
	Displaying relative values
	Colour displays
	Error messages
	User interface evaluation
	3.8 Real Time Software Design
	Stimulus/Response Systems
	Architectural considerations
	Real –Time Software Design:
	Real-time systems:
	Definition:
	Stimulus/Response Systems:
	Architectural considerations:
	A real-time system model:
	R-T systems design process:
	Timing constraints:
	Real-time programm ing:
	Non-stop system components:
	Burglar alarm system e.g
	The R-T system design process:
	Control systems:
	Data acquisition systems:
	A temperature control system:
	Reactor data collection:
	Reactor flux monitoring:
	Mutual exclusion:
	3.9 System Design
	System elements
	Sensor/actuator processes
	Timing constraints
	State machine modelling
	Real-time programm ing
	Java as a real-time language
	3.10 Real Time Executives
	Executive components
	Non-stop system components
	Process priority
	Interrupt servicing
	Periodic process servicing
	Process management
	RTE process management
	Scheduling strategies
	3.11 Data Acquisit ion System
	Reactor data collection
	Reactor flux monitoring
	A ring buffer
	Java implementation of a ring buffer
	3.12 Monitoring and Control System
	Burglar alarm system
	The R-T system design process
	Timing requirements
	Timing requirements (1)
	Process architecture
	Building monitor process
	A temperature control system
	UNIT IV TESTING
	4.2 Test activities:
	Performance testing
	Reliability testing
	Security testing
	4.3 Types of S/W Test Acceptance testing
	Compatibility testing
	Conformance testing
	Integration testing
	Load testing
	Performance testing (1)
	Regression testing
	System testing
	End-to-end testing
	Sanity testing
	Alpha testing
	Beta testing
	Software Testing Techniques Software Testing:
	Testing Objectives:
	Testing Principles:
	Software Defect Causes:
	Types of Errors:
	Software Testability Checklist – 1:
	Software Testability Checklist – 2:
	Good Test Attributes:
	Test Strategies:
	White-Box Testing:
	Cyclomatic Complexity:
	Control Structure Testing – 1:
	• Condition testing (e.g. branch testing)
	Control Structure Testing – 2:
	Loop Testing: Simple Loops:
	4.4 Black-Box Testing:
	Graph-Based Testing – 2:
	Equivalence Partitioning:
	Equivalence Class Guidelines:
	Boundary Value Analysis – 2
	Comparison Testing:
	Orthogonal Array Testing – 1:
	Orthogonal Array Testing – 2:
	4.5 Software Testing Strategies:
	Strategic Approach to Testing – 2:
	Verification vs validation:
	The V & V process:
	Strategic Testing Issues – 2:
	Testing Strategy:
	Black Box or White Box?:
	Unit Testing Details:
	Unit Testing:
	Top Down Integration:
	Bottom-Up Integration:
	Regression Testing:
	Regression Testing: (1)
	Smoke Testing:
	4.8 Validation Testing:
	Acceptance Testing:
	4.9 System Testing:
	Performance Testing:
	Testing Life Cycle:
	Testing Tools:
	Document Each Test Case:
	4.10 Debugging:
	Software Implementation techniques
	Procedural programm ing
	Object-oriented programm ing
	Oracle’s Application Implementation Method
	Rapid Implementations
	Phased Implementations
	UNIT V
	Software metric
	5.2 Predictor and control metrics
	Internal and external attributes
	Product measurement process
	Data accuracy
	Product metrics
	Dynamic and static metrics
	5.4 Software product metrics
	Measurement surprises
	ZIPF’s Law
	5.6 Software Cost Estimation Software cost components
	Costing and pricing
	Software productivity
	Productivity measures
	Measurement problems
	Lines of code
	Productivity comparisons
	5.7 Function Point model Function points
	5.8 COCOMO model
	COCOMO 81
	COCOMO 2 models
	Use of COCOMO 2 models
	Early design model
	Multipliers
	The reuse model
	Reuse model estimates
	Post-architect ure level
	The exponent term
	Multipliers (1)
	5.9 Delphi method
	Key characteristics
	 Structuring of information flow
	 Regular feedback
	 Anonymity of the participant s
	Scheduling
	Effort and Delivery Time
	Empirical Relationship: P vs E
	Timeline Charts
	5.10 Defining Task Sets
	5.11 Earned Value Analysis
	Computing Earned Value
	Budgeted cost of work performed (BCWP)
	Actual cost of work performed, ACWP
	Problem
	5.12 Error Tracking
	5.13 Software Configuration Management
	Software Configuration categories
	Elements of SCM
	Baselines
	Software Configuration Items
	Configuration Management process
	5.14 Program evolution dynamics
	Importance of evolution
	Software change
	Lehman’s laws
	5.15 Software maintenance
	Types of maintenance
	Distribution of maintenance effort
	Development/maintenance costs
	Maintenance prediction
	Change prediction
	Complexity metrics
	Process metrics
	Project management
	Project planning
	Types of project plan
	project plan
	Project plan structure
	Milestones and deliverables
	Milestones in requirement process
	The project scheduling process
	Bar charts and activity networks
	Task durations and dependencies
	Activity timeline
	Software risks
	Risk management process
	Risks and risk types
	Risk planning
	Risk management strategies
	Risk indicators
	CASE Tools
	CASE tool classification
	5.17 CASE Tool Taxonomy
	CASE tool support
	DBMS Features Needed for CASE Repositories

	KARPAGAM ACADEMY OF HIGHER EDUCATION (1)
	FACULTY OF ENGINEERING
	2. Mention the characteristics of software contrasting it with characteristics of hardware
	3. ‘Software doesn’t wear out’ justify.
	4. Define process
	5. List out the activities of generic process framework
	6. List out the umbrella activities of software engineering process
	7. What are the steps involved in component based development model
	8. What is process pattern?
	9. What are the different types of process pattern?
	10. Mention the drawbacks of formal method.
	11. What is prototyping?
	12. Mention the drawbacks of water fall model
	13. What are the advantages of incremental model?
	14. List the “Manifesto for Agile Software Development
	15. What is an Agile Process?
	17. List out the XP values
	15 MARKS
	2. Explain in detail about incremental process model
	3. Explain in detail about Evolutionary process model
	4. Mention the manifesto of the agile software development. Discuss about the principles of the agile software development
	5. Discuss in detail about Extreme Programming process with neat diagram

