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OBJECTIVES 

 To provide various Amplitude modulation and demodulation systems. 

 To provide various Angle modulation and demodulation systems. 

 To provide some depth analysis in noise performance of various receiver. 

 To study some basic information theory with some channel coding theorem. 

 

INTENDED OUTCOMES: 

 Student will gain knowledge on 

 Various Amplitude modulation and demodulation systems. 

 Various Angle modulation and demodulation systems. 

 Some depth analysis in noise performance of various receiver. 

 Some basic information theory with some channel coding theorem. 

 

 

UNIT-I          AMPLITUDE MODULATION 

Generation  and  demodulation of  AM,  DSB-SC, SSB-SC, VSB  Signals,  Filtering  of  sidebands, 

Comparison of Amplitude modulation systems, Frequency translation, Frequency Division multiplexing, 

AM transmitters – Super heterodyne receiver, AM receiver. 

 

UNIT-II        ANGLE MODULATION 

Angle modulation, frequency modulation, Narrowband and wideband FM, transmission bandwidth of FM  

signals, Generation of FM signal – Direct FM – indirect FM, Demodulation of FM signals, FM stereo 

multiplexing, PLL – Nonlinear model and linear model of PLL, Non-linear effects in FM systems, FM 

Broadcast receivers, FM stereo receives. 

 

UNIT-III       RANDOM PROCESS 

Random variables, Central limit theorem, Random process, Stationary processes, Mean, Correlation & 

Covariance functions, Power spectral density, Ergodic processes, Gaussian process, Transmission of a 

Random process through a LTI filter. 

 

UNIT-IV       NOISE CHARACTERIZATION 

Noise sources and types, Noise figure and Noise temperature, Noise cascaded systems, Narrow band 

noise, PSD of in-phase and quadrature noise, Noise performance in AM systems, Noise performance in 

FM systems, Pre-emphasis and de-emphasis, Capture effect, Threshold effect. 

 

UNIT-V        INFORMATION THEORY 

Uncertainty, Information and entropy, Source coding theorem, Data compaction, Discrete memory less 

channels, mutual information, channel capacity,  channel  coding theorem, differential entropy, and 

mutual  information for  continuous ensembles,  information capacity  theorem,  implication  of  the 

information capacity theorem, rate distortion theory, Compression of information. 
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AMPLITUDE MODULATION





What is Communication ?

Communication is the process of conveying information from one  

point to another

What is the purpose of Communication system?

 The purpose of communication systems is to communicate

information bearing signals from a source located at one point in space  

to a user destination located at another point.




The three most common sources of information are: speech (or  

sound), video and data.
Regardless of the source, the information that is transmitted and

received in a communication system consists of a signal, encoding the  

information in some appropriate fashion



.



 The purpose of communication systems is to communicate information

 Figure depicts the general layout of a communication :

 An input transducer (e.g., a microphone) converts the input message into a  
message signal (e.g., a time varying voltage)

 that is transmitted over a channel by means of a transmitter which performs  a very 
important function on communication signals by encoding the signals  in some 
fashion making use of a carrier signal , and converted by a receiver  into an output
signal.

 An output transducer (e.g., a loudspeaker) converts the received signal into an
output message (e.g.: sound).The information is contained in a so- called
modulating signal that modulates a carrier signal.

 For example, in FM radio the modulating signal consists of speech and
music, and the carrier is a sinusoidal wave of pre-determined frequency, much
higher than the modulating signal frequency.
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• It provides quantitative measure of the information

contained in message signal and allows us to determine the

capacity of a communication system to transfer the

information from source to destination

• The information theory is used for mathematical modelling
and and analysis of the communication system



HYBRID COMMANALOG  

COMM
DIGITAL COMM

COMM SYSTEM

Analog Communication System:

•Analog communication is that types of communication in which the message or  

information signal i.e transmitted is analog in nature.

•This means that in analog communication the modulating signal (i.e base-band  

signal) is an analog signal.

•This analog message signal may be obtained from sources such as speech,  

video shooting etc. Analog signals are continuous in both time and value.

•Analog signals are used in many systems, although the use of analog signals has  

declined with the advent of cheap digital signals.

•All natural signals are Analog in nature.



Digital Communication System

In digital communication, the message signal to be transmitted is digital in nature.

This means that digital communication involves the transmission of information in digital  

form.
Digital signals are discrete in time and value.

Digital signals are signals that are represented by binary numbers, "1" or "0". The 1 and 0 values can  

correspond to different discrete voltage values, and any signal that doesn't quite fit into the scheme  

just gets rounded off.

Digital signals are sampled, quantized & encoded version of continuous time signals which they

represent. In addition, some techniques also make the signal undergo encryption to make the

system more tolerent to the channel.

• Advantage of digital communication over analog communication system

• Increased immunity to channel noise and external interference.

• Flexible operation of the system.

• A common format for the transmission of different kinds of message signal (e.g voice  

signal, video signal , computer data ).



BASED ON PHYSICAL STRUCTURE 

LINE COMMUNICATION

RADIO COMMUNICATION



BASED ON THE SIGNAL SPECIFICATIONS

• Nature of the baseband or information signal.

• Nature of the transmitted signal.

BASED ON THE NATURE OF THE BASEBAND SIGNAL

• Analog communication systems

• Digital communication systems

BASED ON THE NATURE OF TRANSMITTED SIGNAL:

The baseband signal can either be transmitted as it is without modulation, or through a  

carrier signal with modulation. The two systems can then be categorized as:

• Baseband communication system

• Carrier communication system

Therefore, the four types of communication system categorized based on signal  

specification are:

• Analog communication systems

• Digital communication systems

• Baseband communication systems

• Carrier communication systems





What is modulation?

• Modulation is performed at the transmitting end of the communication system.

• At the receiving end of the system we usually require the original baseband signal to  

be restored, this is usually accomplished by using a process known as demodulation  

which is the reverse process of the modulation

• In basic signal processing terms, we thus find that the transmitter of an analog  

communication system consists of a modulator and the receiver consists of a  

demodulator as



If modulation is not employed however, the system designer  
could confront the following problems:

• Antenna Height

• Narrow Banding

• Poor radiation and penetration

• Diffraction angle

• Multiplexing

• To overcome equipment limitations

• To reduce noise and interferences





What is Amplitude modulation?  

Define Amplitude modulation ?

• A Sinusoidal carrier wave c(t) is given as

• Let m(t) denote the baseband signal that carries the specification of the  
message

• The source of carrier wave c(t) is physically independent of the source  
responsible for generating m(t)

• Amplitude modulation is defined as a process in which the amplitude of the  
carrier wave c(t) is varied about a mean value, linearly with the baseband  
signal m(t).

• An amplitude modulated wave may thus be described in its most general  
form as a function of time as follows



From the above eqn , we find that the fourier transform of the AM wave s(t) is  
given by

Spectrum of baseband signal Spectrum of AM wave





.

AM MODULATED WAVE

m(t)

s(t) s(t)

Phase reversal



EQUATION OF AN AM WAVE
The instantaneous value of modulating signal and carrier signal can be represented as  
given below



• Instantaneous value of amplitude modulated signal

• Using the above mathematical expression for modulating and carrier signals, we can  
create a new mathematical expression for the complete modulated wave, as given  
below

The instantaneous value of the amplitude modulated wave is given as



• Looking at the figure we can visualize that something unusual (distortion) will occur if  
Em is greater than Ec

• Therefore the modulating signal voltage Em must be less than the carrier voltage Ec for  
proper amplitude modulation

• This relationship between the amplitude of the modulating and carrier signals is  
important and it is expressed in terms of their ratio, commonly known as modulation  
index (m)

• It is also called modulation factor, modulation coefficient or the degree of  
modulation

• The m is the ratio of the modulating signal voltage to the carrier voltage

• The modulation index is a number lying between 0 and 1 and it is very often  
expressed as a percentage and called the percentage modulation



Calculating the modulation index using AM wave

We know that with this relation we can calculate the modulation index from the  
modulated waveform . Hence we can write

By substituting 1st eqn in 2nd eqn weget

By diving 1st and 3rd eqn we get



The expression for the instantaneous value of the amplitude modulated wave

Substituting the value in eqn we get

Eqn 3 can be further expanded by means of the trignometric relation



• Looking at eqn 4 we can say that 1st term represents unmodulated carrier and two  
additional terms represents two sidebands

• The frequency of the lower sideband (LSB) is fc – fm and the frequency of the upper  
sideband (USB) is fc+fm

BANDWIDTH OF AM WAVE

• We know bandwidth can be measured by subtracting lowest frequency of the signal  
from highest frequency of the signal

• For amplitude modulated wave it is given by

• Therefore the bandwidth required for the amplitude modulation is twice the frequency  
of the modulating signal



We have seen that AM wave has three components :

• Unmodulated carrier

• Lower sideband

• Upper sideband

Therefore the total power of AM wave is the sum of the carrier power Pc and Power in  
the two sidebands Pusb and Plsb. It is given as

Where all three voltage represents r.m.s values and resistance R is a characteristic  
impedance of antenna in which the power is dissipated



• Carrier power

• Power in sideband

• Total power

• Modulation index in terms of Pc and Ptotal

• Transmission efficiency



Virtue: Its greatest virtue is its simplicity of implementation  

What happens in the transmitter side?

What happens in the receiver side?

Limitations

Amplitude modulation is wasteful in power  

Amplitude modulation is wasteful in bandwidth

How to overcome these limitations?



• What is DSB-SC?

• Power saving in DSB-SC signal

• Equation of DSB-SC signal

s(t)=c(t)m(t)

From the above eqn the Fourier transform of s(t) is



• It is a form of linear modulation where the signal is generated by simply multiplying  
a message signal along with a carrier wave



PHYSICAL APPEARANCE OF DSB-SC SIGNAL

BASEBAND SIGNAL

DSB-SC MODULATED WAVE



FREQUENCY SPECTRUM OF DSB-SC SIGNAL

SPECTRUM OF BASEBAND SIGNAL SPECTRUM OF DSB-SC MODULATED WAVE



BALANCED MODULATOR

What is balanced modulator?

Operation of balanced modulator

BALANCED MODULATOR



EQUATION OF BALANCED MODULATOR

The outputs of the two AM modulators may be expressed as follows

and

Subtracting 2nd eqn from the 1st eqn weobtain



MODULATING WAVE



SPECTRUM OF RING MODULATOR OUTPUT

ILLUSTRATING THE SPECTRUM OF RING MODULATOR OUTPUT



 COHERENT DETECTION
 What is Coherent Detection?

 Operation of Coherent Detection

COHERENT DETECTOR FOR MODULATING DSB-SC



The product modulator output is given as shown in the figure

At the filter output we then obtain a signal given by

Illustrating the spectrum of product modulator o/p with a DSBSC wave as i/p



DEMODULATION OF DSB-SC

COSTAS RECEIVER



SQUARING LOOP

BLOCK DIAGRAM OF SQUARING LOOP



The square law device is characterized by the relation

Therefore the DSBSC wave

Applied to the input of this square law device we obtain

The o/p is approximately sinusoidal as shown



SQUARING LOOP Cont..

Illustrating the Amplitude response of narrow band filter



What are the limitations of DSB-SC ?  

What is SSB signal?

• If we consider the fact that two sidebands carry same information, DSB signal  
is redundant

• That is in DSB the basic information is transmitted twice once in each  
sideband

• Therefore there is absolutely no reason to transmit both sidebands in order to  
convey the information

• One sideband may be suppressed

• The resulting signal is a single sideband commonly referred to as single  
sideband suppressed carrier signal



SPECTRUM OF BASEBAND SIGNAL

SPECTRUM OF DSBSC WAVE



SPECTRUM OF SSB WAVE WITH THE UPPER SIDEBAND TRANSMITTED

SPECTRUM OF SSB WAVE WITH THE LOWER SIDEBAND TRANSMITTED



The time domain description of an SSB wave s(t) in the canonical form

The fourier transform of SC(t) and SS(t) are related to that of the SSB wave s(t) as

On the basis of the below figure we can write

Accordingly the in phase component sc(t) is defined by



On the basis of the fig we can write

Where sgn(f) is the signum function equal to +1 for positive frequencies , zero  
for f=0 and -1 for –ve frequencies. However we note that

The hilbert transform of m(t) substituting 2nd eqn in the 1st eqn  

Which shows that the quadrature component ss(t) is defined by



SPECTRUM OF SSB WAVE

SPECTRUM OF SSB WAVE SHIFTED TO THE RIGHT BY fc

SPECTRUM OF IN PHASE COMPONENT



SPECTRUM OF QUADRATURE COMPONENT

The cananonical representation of an SSB wave s(t) obtained bt transmitting only the  
upper sideband is as follows



FREQUENCY DISCRIMINATION METHOD

Block Diagram of the Frequency Discrimination Method for Generating SSB Waves

Block diagram of a two stage SSB modulator



PHASE DISCRIMINATION METHOD

BLOCK DIAGRAM OF THE PHASE DESCRIPTION METHOD FOR GENERATING SSB WAVES



Block diagram of the phase discrimination method for generating SSB waves by using a pair  
of phase shifting network to realize a constant 90 degree phase difference





COHERENT DETECTION OF SSB WAVE

COHERENT DETECTION OF AN SSB WAVE

SPECTRUM OF THE PRODUCT MODULATOR OUTPUT V(t)



The product modulator output is given by

The resulting demodulated signal is given by

The fourier transform of the above eqn is

From the definition of hilbert transform its given as  

Substituting the eqn in the above eqn we get



Spectrum of Baseband Signal with Energy Gap in the Interval –fa<f<fa

Spectrum of coherent detector o/p with s(t) containing lower side band and ∆f >0  
or with s(t) containing upper sideband and ∆ f<0



Spectrum of coherent detector output with s(t) containing upper sideband and ∆f>0  
or with s(t) containing lower sideband and ∆f<0



What are the limitations of SSB?

What is Vestigial sideband modulation & How is VSB wave generated?  

SPECTRUM OF BASEBAND SIGNAL

SPECTRUM OF VSB WAVE



BLOCK DIAGRAM OF VSB MODULATOR



The fourier transform of sc(t) is given by

This eqn can be simplified as

This relation shows that the in-phase component of the VSB wave s(t) is defined by

To determine the quadrature component ss(t) of the VSB wave s(t) we first obtained  
the fourier transform of sc(t) as

This eqn suggests that we may generate ss(t) except for a scaling factor by passing  
the message signal m(t) through a filter whose transfer function is defined by

Thus the quadrature component of VSB wave is

ss(t)=1/2 Acms(t)



Amplitude Response of VSB Filter (Only Positive Frequency Portion )

Frequency response of filter for producing the quadrature component of the  
VSB wave



Block diagram of phase discrimination method for generating a VSB wave

• When the minus sign is selected a vestige of the lower sideband is transmitted

• When the plus sign is selected a vestige of the upper sideband is transmitted



RESPONSE OF VSB FILTER

Frequency response of a VSB filter used in TV receivers



The factor ka modifies the modulated wave applied to the envelope detector input as

The envelope detector output denoted by a(t) is therefore



COMPARISON OF SSB ,DSB, VSB

.



Block diagram of superhetrodyne receiver



SUPER HETRODYNE RECEIVER
SPECTRUM OF SUPERHETRODYNE RECEIVER



ANGLE MODULATION



Sinusoids

Sinusoid
waveform

Cosinusoid
waveform

A sinusoid, meaning a sine wave -or- a cosine wave, is the basic building block of  
all signals.



Sinewave Characteristics
A

m
p

litu
d

e

Period
Phase

1

Period
Frequency 

A sinusoid has three properties . These  
are its amplitude, period (or  
frequency), and phase.

A
m

p
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d
e
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Amplitude Modulation

Frequency Modulation

Phase Modulation

With very few exceptions, phase  
modulation is used for digital  
information.

Vsin(*t )

Vsin(*t )

Vsin(*t )



Carrier Variations

 Amplitude

 Frequency

 Phase

Types of 
Information

• Analog

• Digital

These two  
constitute

angle  
modulation.



Modulating
Signal

Modulator
Information /

Baseband
Modulated Signal

The modulation general process is the same regardless of the how the carrier is  

modulated. For our purposes, modulation means the variation of a carrier wave in  

order to transfer information.



vc (t)  Vsin(2 π fc  t  phase)

Angle modulation is a variation of  
one of these two parameters.



phase

V

To understand the  
difference between  
phase and frequency, a  
signal can be thought  
of using a phasor  
diagram. The distance  
from the center is the  
signal's amplitude.
The angle from the
positive horizontal axis
in phase.



The change in the phase over time  
(the phase velocity) is the signal's  
frequency.



t
Frequency 



Phase 





In Racing, we track each car by its  
position on the track.

In signals, we track the signal by its  
phase. This is its position on the  
phasor diagram.



In Racing, we track a car's velocity by  
how fast it goes around the track.

In signals, we track the signal's velocity  
by its frequency. This is how fast it  
goes around the phasor diagram.



Angle modulation, either PM or FM, varies  
the frequency or phase of the carrier wave.  
Because of the practicalities of  
implementation, FM is predominant; analog  
PM is only used in rare cases.

Vsin(* t )

Vary one of these  
parameters

Frequency Modulation

Phase Modulation



In either analog FM or PM, the  
amplitude remains constant.

Vsin(* t )

This remains constant!

Frequency Modulation

Phase Modulation

V

V



Frequency Modulation

V

Power V2

Envelope

The envelope, meaning the difference between the  
maximum and minimum of the carrier, is constant in an  
FM signal. That's why FM is called a constant envelope 
signal. The power of an FM signal is shown at right. It  
does not depend upon the modulating signal or the  
amount of deviation (



The total power of an FM signal is simply V2. Therefore, the total power of an  

FM signal is the power of the carrier. Period. This is regardless of the information or  

the deviation ratio.

vc (t)  Vsin(2 π fc  t (t))

Total Power  V2



VCO

Information
Signal

Frequency
Modulation

The voltage-controlled oscillator (VCO) is a device whose output frequency  
changes with the amplitude of the modulating signal. The amount of change,  
called its deviation constant, is dependent upon its design.



Center  
Frequency

An FM signal has its energy spread over an infinite number of spectral  
components. It's center frequency is the average center of the energy.



Deviation

The deviation is the maximum frequency change from the center
frequency.



Excursion

The excursion is the difference between the maximum and minimum frequency
changes. This is also called the maximum deviation or totaldeviation.



vc (t)  Vsin(2 π fc  t (t))

vc (t)  V(t) sin(2 π f c  t )

Amplitude Modulation

Angle Modulation



Consider again the general carrier

There are two ways of varying the angle of the carrier.

a) By varying the frequency, c – FrequencyModulation.
b) By varying the phase, c – Phase Modulation

ωct+φc represents the angle of the carrier.

vc t= Vccosωct +φc 



In FM, the message signal m(t) controls the frequency fc of the carrier. Consider the
carrier

frequency.

vct= Vccosωct

then for FM we may write:

FM signal vs t=Vccos2πfc + frequency deviationt ,where the frequency deviation  

will depend on m(t).

Given that the carrier frequency will change we may write for an instantaneous
carrier signal

c i c i c iV cosω t=V cos2πf t=V cosφ 

where i is the instantaneous angle = ωit = 2πfit and fi is the instantaneous



i.e. frequency is proportional to the rate of change of angle.

If fc is the unmodulated carrier and fm is the modulating frequency, then we may  
deduce that

fc is the peak deviation of thecarrier.

Hence, we have ,i.e.

Since φi = 2πfit then i
i i

dt 2π dt

1 dφdφi = 2πf or f =

i

2π dt

1 dφ
fi = fc + Δfccosωmt=

c c m
i = f + Δf cosω t 

2π dt

1 dφ

dt

dφ
mc c

i = 2πf + 2πΔf cosω t 



After integration i.e.  ωc + 2πΔfccosωmtdt

m

c m

ω
φi = ωct+

2πΔf sinω t

f

Δf
m

m

cφi = ωct+ sinω t

Hence for the FM signal, vs t=Vccosφi 



 Δfc sinωmtvst=Vccosωct +



is called the Modulation Index denoted by  i.e.

Note – FM, as implicit in the above equation for vs(t), is a non-linear process – i.e.  
the principle of superposition does not apply. The FM signal for a message m(t) as a  
band of signals is very complex. Hence, m(t) is usually considered as a 'single tone  
modulating signal' of the form

fm

The ratio
Δfc

β = 
Peak frequency deviation  

modulating frequency

mt=Vmcosωmt



The equation

series (Bessel functions)





    
fc  fmfc  fm

fc

fc 2 fmAmpfc 2 fmAmp

AmpAmpAmp

Vc J 2 ( )cos(c  2m )t Vc J 2 ( ) cos(c  2m )t 

vs (t) Vc J 0 ( )cos(c )t Vc J1 ( ) cos(c m )t Vc J 1( ) cos(c m )t







fm

Δfc

ccs
sinωmt may be expressed as Bessel


v t =V cos ω t+



vst= Vc  J nβcosωc + nωm t
n=

where Jn() are Bessel functions of the first kind. Expanding the equation for a few
terms we have:



The amplitudes drawn are completely arbitrary, since we have not found any value for
Jn() – this sketch is only to illustrate the spectrum.



The Fourier transform for an FM signal modulated by a real signal would be  
extremely difficult. Instead, engineers use the special case of an FM signal  
modulated by sinusoid, which boils down to:

π

  e- j(n x-βsin(x)) dx

-π

1 

2 π

This integral cannot be solved in closed form. In order to figure out actual  
numerical answers, we use Bessel functions, specifically Bessel functions of the  
first kind of order n and argument .



(t)  βsin(ωm  t)

vc (t)  Vsin(2 π fc  t (t))

Angle Modulation

For PM

(t)  β sin(ωm  t) dtFor FM



β 
fd V

fm

vc (t)  Vsin(2 π fc  t (t))

Angle Modulation

The beta value, called the modulation index, is the ratio  
of the deviation of the modulator, fd, multiplied by the  
amplitude of the modulating signal and divided by the  
modulating frequency, fm (Objectives 2, 3, 4b,6).



=0.5

=5 =10

=1



D 
fd V

W

vc (t)  Vsin(2 π fc  t (t))

Angle Modulation

The designator when looking at real signals is the  
deviation ratio, D, which is the product of the modulator  
deviation, fd, multiplied by the amplitude of the  
modulating signal, V, divided by the maximum frequency  
of the modulating signal, W (Objectives 2, 3, 4b, 6).



BW  2 fmax  (β1)

 2 (fmax fdev )
Carson's Rule, named after an engineer who did not think that FM would  
provide any improvement over AM, provides a rough calculation of the  
bandwidth of an FM signal based upon its design parameters and the  
parameters of the modulating signal (Objectives 2, 3, 4b, 6).





The spectrogram of an FM signal shows how the spectrum varies with time. Note  
how it is asymmetric.

This is the spectrum of an AM signal modulated with the same information as
above. But it has a symmetric spectrum.



• AM stereo

For practical implementation reasons,  
analog FM is easier to generate than analog  
PM, and FM provides better performance in  
most common environments. However,  
analog PM has been (and continues to be)  
used for a few, isolated systems.

• Broadcast analog television  
chrominance (color)

• spacecraft communications



Random process



SAMPLE SPACE AND  
PROBABILITY

• Random experiment: its outcome, for some  

reason, cannot be predicted with certainty.

– Examples: throwing a die, flipping a coin and drawing a  

card from a deck.

• Sample space: the set of all possible outcomes,

denoted by S. Outcomes are denoted by E’s and

each E lies in S, i.e., E ∈ S.

• A sample space can be discrete or continuous.

• Events are subsets of the sample space for which  

measures of their occurrences, called probabilities,  

can be defined or determined.
3



THREE AXIOMS OF  
PROBABILITY

• For a discrete sample space S, define a probability  

measure P on as a set function that assigns  

nonnegative values to all events, denoted by E, in  

such that the following conditions are satisfied

• Axiom 1: 0 ≤ P(E) ≤ 1 for all E ∈ S

• Axiom 2: P(S) = 1 (when an experiment is  

conducted there has to be an outcome).

• Axiom 3: For mutually exclusive events E1, E2,  

E3,. . . we have

4



AL  
PROBABILIT
Y

• We observe or are told that event E1 has occurred but are  
actually interested in event E2: Knowledge that of E1 has  
occurred changes the probability of E2 occurring.

• If it was P(E2) before, it now becomes P(E2|E1), the  
probability of E2 occurring given that event E1 has occurred.

• This conditional probability is given by

• If P(E2|E1) = P(E2), or P(E2 ∩ E1) = P(E1)P(E2), then E1
and E2 are said to be statistically independent.

• Bayes’ rule

– P(E2|E1) = P(E1|E2)P(E2)/P(E1)
5



MATHEMATICAL MODEL  FOR
SIGNALS• Mathematical models for representing signals

– Deterministic

– Stochastic

• Deterministic signal: No uncertainty with respect to the signal  
value at any time.
– Deterministic signals or waveforms are modeled by explicit  

mathematical expressions, such as
x(t) = 5 cos(10*t).

– Inappropriate for real-world problems???

• Stochastic/Random signal: Some degree of uncertainty in  
signal values before it actually occurs.
– For a random waveform it is not possible to write such an explicit  

expression.
– Random waveform/ random process, may exhibit certain

regularities that can be described in terms of probabilities and  
statistical averages.

– e.g. thermal noise in electronic circuits due to the random
movement of electrons 6



ENERGY AND POWER SIGNALS

• The performance of a communication system depends on the  

received signal energy: higher energy signals are detected more  

reliably (with fewer errors) than are lower energy signals.

• An electrical signal can be represented as a voltage v(t) or a current

i(t) with instantaneous power p(t) across a resistor defined by

OR 

6

2v ( t )
p ( t ) 

2 ( t ) p ( t )  i



ENERGY AND POWER SIGNALS
• In communication systems, power is often normalized by assuming R  

to be 1.

• The normalization convention allows us to express the instantaneous

power as

where x(t) is either a voltage or a current signal.

• The energy dissipated during the time interval (-T/2, T/2) by a real  

signal with instantaneous power expressed by Equation (1.4) can then  

be written as:

• The average power dissipated by the signal during the interval is:

p(t) x2 (t)

7



ENERGY AND POWER SIGNALS

• We classify x(t) as an energy signal if, and only if, it has nonzero but finite  

energy (0 < Ex < ∞) for all time, where

• An energy signal has finite energy but zero average power

• Signals that are both deterministic and non-periodic are termed as Energy  

Signals

8



ENERGY AND POWER SIGNALS

9

• Power is the rate at which the energy is delivered

• We classify x(t) as an power signal if, and only if, it has nonzero  

but finite energy (0 < Px < ∞) for all time,where

• A power signal has finite power but infinite energy

• Signals that are random or periodic termed as Power Signals



RANDOM
VARIABLE

• Functions whose domain is a sample space and  

whose range is a some set of real numbers is  

called random variables.

• Type of RV’s

– Discrete

• E.g. outcomes of flipping a coin etc

– Continuous

• E.g. amplitude of a noise voltage at a particular instant of  

time

11



12

RANDOM VARIABLES

Random Variables

• All useful signals are random, i.e. the receiver  

does not know a priori what wave form is  

going to be sent by the transmitter

• Let a random variable X(A) represent the

functional relationship between a random

event A and a real number.

• The distribution function Fx(x) of the random  

variable X is given by



RANDOM
VARIABLE

• A random variable is a mapping from the sample  

space to the set of real numbers.

• We shall denote random variables by boldface, i.e.,  

x, y, etc., while individual or specific values of the  

mapping x are denoted by x(w).

13



RANDOM
PROCESS

• A random process is a collection of time functions, or signals,  

corresponding to various outcomes of a random experiment. For  

each outcome, there exists a deterministic function, which is  

called a sample function or a realization.

Random  

variables

time (t)

R
e
a

l
n

u
m

b
e
r

Sample functions  

or realizations  

(deterministic  

function)

14



RANDOM
PROCESS

• A mapping from a sample space to a set of time functions.

15



RANDOM PROCESS  CONTD
• Ensemble: The set of possible time functions that  

one sees.

• Denote this set by x(t), where the time functions  

x1(t, w1), x2(t, w2), x3(t, w3), . . . are specific  

members of the ensemble.

• At any time instant, t = tk, we have random variable  

x(tk).

• At any two time instants, say t1 and t2, we have  

two different random variables x(t1) and x(t2).

• Any relationship b/w any two random variables is  

called Joint PDF
16



CLASSIFICATION OF  RANDOM
PROCESSES

• Based on whether its statistics change with time:  

the process is non-stationary or stationary.

• Different levels of stationary:

– Strictly stationary: the joint pdf of any order is  

independent of a shift in time.

– Nth-order stationary: the joint pdf does not depend on  

the time shift, but depends on time spacing

17



PROBABILITY DENSITY  
FUNCTION

• The pdf is defined as the derivative of the cdf:
fx(x) = d/dx Fx(x)

• It follows that:

• Note that, for all i, one has pi ≥ 0 and ∑pi = 1.

19



GAUSSIAN (OR NORMAL) RANDOM  
VARIABLE (PROCESS)

d

• A continuous random variable whose pdf is:

μ an are parameters. Usually denoted as  

N(μ, ) .

• Most important and frequently encountered random  

variable in communications.

23



CENTRAL LIMIT
THEOREM
• CLT provides justification for using Gaussian  

Process as a model based if

– The random variables are statistically independent

– The random variables have probability with same mean  

and variance

24



CLT
• The central limit theorem states that

– “The probability distribution of Vn approaches a  

normalized Gaussian Distribution N(0, 1) in the limit as  

the number of random variables approach infinity”

• At times when N is finite it may provide a poor  

approximation of for the actual probability  

distribution

25



AUTOCORRELATIO
N

21

Autocorrelation of Energy Signals

• Correlation is a matching process; autocorrelation refers to the  

matching of a signal with a delayed version of itself

• The autocorrelation function of a real-valued energy signal x(t) is  

defined as:

• The autocorrelation function Rx() provides a measure of how closely  

the signal matches a copy of itself as the copy is shifted  units in time.

• Rx() is not a function of time; it is only a function of the time difference 

between the waveform and its shifted copy.



AUTOCORRELATIO
N

22

• symmetrical in  about  

zero

• maximum value occurs at  

the origin

• autocorrelation and ESD  

form a Fourier transform  

pair, as designated by the  

double-headed arrows

• value at the origin is equal  

to the energy of the signal



AUTOCORRELATION OF A PERIODIC (POWER)  SIGNAL

23

• The autocorrelation function of a real-valued power  

signal x(t) is defined as:

• When the power signal x(t) is periodic with period T0, the  

autocorrelation function can be expressed as:



AUTOCORRELATION OF POWER  

SIGNALS

24

The autocorrelation function of a real-valued periodic signal  

has properties similar to those of an energy signal:

• symmetrical in  about  

zero

• maximum value occurs at  

the origin

• autocorrelation and PSD  

form a Fourier transform  

pair, as designated by the  

double-headed arrows

• value at the origin is equal  

to the average power of  

the signal



30
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SPECTRAL DENSITY

• The spectral density of a signal characterizes the

distribution of the signal’s energy or power, in the

frequency domain

• This concept is particularly important when considering

filtering in communication systems while evaluating the

signal and noise at the filter output.

• The energy spectral density (ESD) or the power spectral  

density (PSD) is used in the evaluation.

• Need to determine how the average power or energy of  

the process is distributed in frequency.

33



SPECTRAL
DENSITY

• Taking the Fourier transform of the random  

process does not work

34



ENERGY SPECTRAL DENSITY

29

• Energy spectral density describes the energy per unit  

bandwidth measured in joules/hertz

• Represented as x(t), the squared magnitude spectrum

x(t) =|x(f)|2

• According to Parseval’s Relation

• Therefore

• The Energy spectral density is symmetrical in frequency about  

origin and total energy of the signal x(t) can be expressed as



POWER SPECTRAL DENSITY

30

• The power spectral density (PSD) function Gx(f) of the periodic signal  

x(t) is a real, even ad nonnegative function of frequency that gives  

the distribution of the power of x(t) in the frequency domain.

• PSD is represented as (Fourier Series):

• PSD of non-periodic signals:

• Whereas the average power of a periodic signal x(t) is represented  

as:



TIME AVERAGING AND  
ERGODICITY

• A process where any member of the ensemble  

exhibits the same statistical behavior as that of the  

whole ensemble.

• For an ergodic process: To measure various  

statistical averages, it is sufficient to look at only  

one realization of the process and find the  

corresponding time average.

• For a process to be ergodic it must be stationary.  

The converse is not true.

37



Ergodici
ty

– Ergodic in the correlation:

• In order for a random process to be ergodic, it must  
first be Wide Sense Stationary.

• If a R.P. is ergodic, then we can compute power three

– From the autocorrelation:

• A random process is said to be ergodic if it is ergodic  
in the mean and ergodic in correlation:
– Ergodic in the mean: mx  E{x(t)} x(t)

x ( t ) x ( t   ) ( )  E x ( t ) x ( t   ) x

T /2

x | x(t) |2 dt  | x(t) |2
different ways:
– From any sample function: P  lim 

T /2

1
t  T

x xP (0)

– From the Power Spectral Density: P
x



   x ( f )df




time average opTe/ 2rator:

 T / 2

t  
g ( t ) dt

1

T
g ( t )  lim



Stationar
ity

 A process is strict-sense stationary (SSS) if  all its 
joint densities are invariant to a time shift:

 pxx(t) pxx(t to)

 pxx(t1),x(t2) pxx(t1 to ),x(t2  t0)

 pxx(t1),x(t2),...,x(tN ) pxx(t1  to),x(t2  t0),...,x(tN  t0)
 – in general, it is difficult to prove that a random process  is strict sense stationary.

 A process is wide-sense stationary (WSS) if:
 The mean is a constant:

 m x (t )  m x

 The autocorrelation is a function of time difference

only:

• If a process is strict-sense stationary, then it is  
also wide-sense stationary.

(t1, t2 ) ()  

where  t2  t1



• Linear Time-Invariant (LTI) Systems

LTI System

h t 

x t y t

         

       









y t  x  h t   x t *h t

 h  x t   h t * x t





Y  f  X  f   H  f 

Transmission over LTI
Systems1/3



• Assumptions:

x(t) and h(t) are real-valued  

and x(t) is WSS.

• The mean of the output y(t)

   x x
h d



Ey t m   m H 0

XY XX 

• The cross-correlation function

RYX EYtX t  h RXX 


R  EX t Y t  h  R

Transmission over LTI
Systems2/3



• The A.F. of the output

RYY  E Y tY t 

 RYX h 

 RXY  h

 h RXX h 

 RXX h h 

• The PSD of the output

S  f   S  f   H  f 
2

YY XX

Transmission over LTI
Systems3/3



NOISE  
CHARACTERIZATION

UNIT IV



 Consider a narrowband noise n(t) of bandwidth 2B centered on frequency fc

,as illustrated in Figure 1.18.

 We may represent n(t) in the canonical (standard) form:

n(t)  nI (t) cos(2fct) nQ (t) sin(2fct)

where, nI (t)is in-phase component of n(t) and nQ (t)is quadrature
component of n(t).



nI (t) and nQ (t) have important properties:

nI (t) and– nQ (t) have zero mean.

– n(t) is Gaussian, then nI (t) and nQ (t) are jointly Gaussian.

–n(t)  is stationary, then  nI (t) and nQ (t) are jointly stationary.

– Both nI (t) and nQ (t) have the same power spectral density.




0,
N N

SN ( f  fc )  SN ( f  fc ),
S ( f )  S ( f )

I Q

B  f  B  

otherwise

n(t)– nI (t) and nQ (t) have the same variance as









Cont…

1.
2

 Figure 1 Illustrating the coordinate system for representation  

of narrowband noise: (a) in terms of in-phase and quadrature  

components, and (b) in terms of envelope and phase.

nI  r cos

Qn  r sin I Qdn dn  rdrd



C
o
n
t
…











C
o
n
t
…

Rician distribution reduced to the Rayleigh  
distribution

The envelope distribution is approximately  
Gaussian when a is large



 Noise can broadly be defined as any unknown signal that  

affects the recovery of the desired signal.

 The received signal is modeled as

(9.1)r(t)  s(t) w(t)

 s(t) is the transmitted signal

 w(t) is the additive noise

(1)



Noise in Communication
Systems

 The mean of the random process

 Both noise and signal are generally assumed to have zero mean.

 The autocorrelation of the random process.

 With white noise, samples at one instant in time are uncorrelated  
with those at another instant in time regardless of the separation.
The autocorrelation of white noise is described by

 The spectrum of the random process. For additive white
Gaussian noise the spectrum is flat and defined as

 To compute noise power, we must measure the noise over a  
specified bandwidth.

(9.2)
2

0()
N

w
R ()

(9.3)
2

0
N

w
S ( f )

(9.4)N  N0 BT

(2)

(3)

(4)



Fig
.



Signal-to-Noise
Ratios

 For zero-mean processes, a simple measure of the signal  

quality is the ratio of the variances of the desired and  

undesired signals.

 Signal-to-noise ratio is defined by

 The signal-to-noise ratio is often considered to be a ratio of

the average signal power to the average noise power.

(9.5)x(t)  s(t)  n(t)

(9.6)
E[s2 (t)]SNR 
E[n2(t)]

 The desired signal,s(t), a narrowband noise signal, n(t)

(5)

(6)



Cont…

 If the signal-to-noise ratio is measured at the front-end of the  

receiver, then it is usually a measure of the quality of the  

transmission link and the receiver front-end.

 If the signal-to-noise ratio is measured at the output of the  

receiver, it is a measure of the quality of the recovered  

intormation-bearing signal whether it be audio, video, or  

otherwise.

 Reference transmission model

 This reference model is equivalent to transmitting the

message at baseband.



Fig.



Cont…

1. The message power is the same as the modulated signal power  

of the modulation scheme under study.

2. The baseband low-pass filter passes the message signal and  

rejects out-of-band noise. Accordingly, we may define the  

reference signal-to-noise ratio,SNRr,efas

(9.11)
average power of noise mesured in the message bandwidth

average power of the modulated message signal
ref

SNR 

 A Figure of merit

Figure of merit 
post  detectionSNR

referenceSNR

(11)



Fig.



Cont…

 The higher the value that the figure of merit gas, the better the  

noise performance of the receiver will be.

 To summarize our consideration of signal-to-noise ratios:

 The pre-detection SNR is measured before the signal is  

demodulated.

 The post-detection SNR is measured after the signal is  

demodulated.

 The reference SNR is defined on the basis of a baseband  

transmission model.

 The figure of merit is a dimensionless metric for comparing  

sifferent analog modulation-demodulation schemes and is  

defined as the ratio of the post-detection and reference SNRs.



Band-Pass Receiver
Structures

 Fig. shows an example of a superheterodyne receiver

 AM radio transmissions

 Common examples are AM radio transmissions, where the RF channels’  
frequencies lie in the range between 510 and 1600 kHz, and a common IF is  
455 kHz

 FM radio

 Another example is FM radio, where the RF channels are in the range from 88  
to 108 MHz and the IF is typically 10.7 MHz.

 The filter preceding the local oscillator is centered at a higher RF  
frequency and is usually much wider, wide enough to encompass all RF  
channels that the receiver is intended to handle.

 With the same FM receiver, the band-pass filter after the local oscillator  
would be approximately 200kHz wide; it is the effects of this narrower  
filter that are of most interest to us.

(9.12)s(t)  s I (t)cos(2cf t)  sQ (t)sin(2cf t) (12)



Fig.



Noise in Linear Receivers Using
Coherent  Detection

 Double-sideband suppressed-carrier (DSB-SC) modulation,  

the modulated signal is represented as

(9.13)s(t)  Acm(t)cos(2cf t  )

 is the carrier frequency

9.14)x(t)  s(t) n(t)

fc

m(t) is the message signal

 The carrier phase w(t)

 In Fig. , the received RF signal is the sum of the modulated  

signal and white Gaussian noise

 After band-pass filtering, the resulting signal is

(13)

( (14)



Fig.



Cont… The signal-to-noise ratio of the signal is

(9.15)
2 22 )) ]E[m (t)]

c
f t E[s (t)]  E[( A cos(2

(9.16)

(9.17)
2

c

P E[m2 (t)]

A2P
E[s2 (t)] c

(9.18)SNR DSB

pre

0 T

c

2N B

A2P


 In Fig.

 The assumed power spectral density of the band-pass noise is  

illustrated

 For the signal s(t)), the average power of the signal component is given by  

expected value of the squared magnitude.

 The carrier and modulating signal are independent

 Pre-detection signal-to-noise ratio of the DSB-SC system

 A noise bandwidth BT

(15)

(18)

(16)

(17)



Fig.



Cont…
 The signal at the input to the coherent detector of Fig.

 These high-frequency components are removed with a low-

pass filter

9.19)x(t)  s(t)  nI (t)cos(2fct) nQ (t)sin(2fct)

(9.20)

1

2 c I

 1 ( A m(t)  n (t)) cos(4f t)  1 n (t) sin(4f t)
2 c I c 2 Q c

 (A m(t)  n (t))

v(t)  x(t)cos(2fct)

22
and sin Acos A 

sin 2A
cos Acos A 

1 cos2A

(9.21)
1

I2 c
( A m(t) n (t))y(t) 

( (19)

(20 )

(21)



Cont…

computation of the predetection signal power, the post-detection

defined in Eq. (9.16).

 The noise component is after low-pass filtering. As

described in Section 8.11, the in-phase component has a noise

output noise power is

(9.22)

W

0

2 N df
I

2N0 W

E[n (t)] W

 The message signal m(t) and the in-phase component of the filtered  

noise nI (t) appear additively in theoutput.

 The quadrature component of the noise is completely rejected by  

the demodulator. Post-detection signal to noise ratio

2
 The message component is 

1
A m (t ) , so analogous to thec

csignal power is 4 where P is the average message power as
1 

A P

2

1
n (t)

I

N 0spectral density of over the bandwidth from  BT / 2 to BT / 2 .If

the low-pass filter has a noise bandwidth W, corresponding to the  

message bandwidth, which is less than or equal to BT / 2 , then the

(22)
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 Post-detection SNR of

 Post-detection SNR is twice pre-detection SNR.

 Figure of merit for this receiver is

 We lose nothing in performance by using a band-pass modulation 

scheme compared to the baseband modulation  scheme, even though 

the bandwidth of the former is twice as

wide.

(9.23)

SNR

0

DSB

post

2N W

A2P

1 (2N W)
4 0

1 (A2 )P

c

4 c





SNR ref

SNR DSB

post
Figure of merit  1

(23)



Noise in AM Receivers Using Envelope
Detection

 The envelope-modulated signal

 The power in the modulated part of the signal is

 The pre-detection signal-to-noise ratio is given by

(9.24)s(t)  Ac (1 kam(t))cos(2cf t)

(9.25)
2

2 2

2 2 2

a

a a

aa a

 1 k P

 1 2k E[m(t)]  k E[m (t)]

E[(1 k m(t)) ]  E[1 2k m(t)  k m (t)]

(9.26)SNR
0 T

AM

pre
2N B

c a
A2 (1 k 2P)



(24)

(25)

(26)



Fig.
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(9.27)

 Model the input to the envelope detector as

x(t)  s(t) n(t)

 [Ac  Ackam(t)  nI (t)]cos(2fct) nQ (t)sin(2fct)

(9.28)
2 2 1/ 2

c a I Q
 {[A (1 k m(t))  n (t)]  n (t)}

(9.29)

 Using the approximation

y(t)  Ac  Ackam(t)  nI (t)

 The output oxf(tt)he envelope detector is the amplitude of the  

phasor representing and it is given by

y(t)  envelope of x(t)

A2
A  B, B 2  A when

(27)

(28)

(29)
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 The post-detection SNR for the envelope detection of AM,

 This evaluation of the output SNR is only valid under two  

conditions:

 The SNR is high.

 is adjusted for 100% modulation or less, so there is no  

distortion of the signal envelope.

 The figure of merit for this AM modulation-demodulation  

scheme is

(9.30)
0

SNR AM

post
2N W

A2k 2P
c a

(9.31)
2

SNR AM
k2 P

a

a

1 k P
Figure of merit post

SNR ref

(30)

(31)



Fig.
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 In the experiment, the message is a sinusoidal wave m(t)  Asin(2mf t),

 We compute the pre-detection and post-detection SNRs for samples of its  
signal. These two measures are plotted against one another in Fig. for
ka 0.3.

 The post-detection SNR is computed as follows:

 The output signal power is determined by passing a noiseless signal through the  
envelope detector and measuring the output power.

 The output noise is computed by passing plus noise through the envelope  
detector and subtracting the output obtained form the clean signal only. With  
this approach, any distortion due to the product of noise and signal components  
is included as noise contribution.

 From Fig, there is close agreement between theory and experiment at high  
SNR values, which is to be expected. There are some minor discrepancies,  
but these can be attributed to the limitations of the discrete time simulation.  
At lower SNR there is some variation from theory as might also be  
expected.



Fig.



Noise in SSB
Receivers

 The modulated wave as

(9.32)
2 2

m(t)cos(2
A A

c

c

c

c f        t)  m̂ (t) sin(2ft)s(t) 

 We may make the following observations concerning the in-

phase and quadrature components of s(t) in Eq. (32) :

1. The two components m ( t ) are uncorrelated with eachand m̂(t)

other. Therefore, their power spectral densities are additive.

2. The Hilbert transform m̂ (t) is obtained by passing m(t) through a  

linear filter with transfer function  j sgn( f ) . The squared f 

magnitude of this transfer function is equal to one for all p .  

Accordingly, m(t) andm  ̂(t) have the same average power .

(32)
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 The pre-detection signal-to-noise ratio of a coherent receiver with SSB  

modulation is

(9.33)SNR
0

SSB

pre
4N W

A2P
c

(9.34)
2 2

2

1

2

1

2

1

2

AA

A

cQ

c

cI

c

I

c

ft)






m̂(t)  n (t) sin(4f t) 



  


m(t) n (t) cos(4









m(t)  n (t)

(9.35)
2

1

2








m(t)  n (t)

A
y(t) 

I

c

After low-pass filtering the v(t), we are leftwith

 The band-pass signal after multiplication with the synchronous oscillator 
output cos(2fct) is

v(t)  x(t)cos(2fct)

(33)

(34)

 (35)
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 The post-detection signal-to-noise ratio

 The figure of merit for the SSB system

(9.36)
0,

  B  f  B

otherwise
s ( f )

SN ( f  fc )  SN ( f  fc ),
N I

(9.37)
0,

W  f  W  

otherwise


N0 ,

sN ( f )   2
I

(9.38)SNR
0

SSB

post
4N W

A2P
c

(9.39)
SNR ref

SNR SSB

post
Figure of merit  1

 The spectrum of the in-phase component of the noise nI (t) is  

given by

(36)

(37)

(38)

(39)
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 Comparing the results for the different amplitude modulation  

schemes

 There are a number of design tradeoffs.

 Single-sideband modulation achieves the same SNR  

performance as the baseband reference model but only  

requires half the transmission bandwidth of the DSC-SC  

system.

 SSB requires more transmitter processing.



Detection of Frequency 
Modulation (FM)

 The frequency-modulated signal is given by

 Pre-detection SNR

 The pre-detection SNR in this case is simply the carrier power divided

by the noise passed by the bandpass filter, ; namily,

1. A slope network or differentiator with a purely imaginary frequency  

response that varies linearly with frequency. It produces a hybrid-

modulated wave in which both amplitude and frequency vary in  

accordance with the message signal.

2. An envelope detector that recovers the amplitude variation and reproduces  

the message signal.

(9.40)
0  
t

fcc
m()ds(t)  A cos2f t  2k

C
A2 /2

N0BT

c

0 T

A2

AM

pre
2N B

SNR 

(40)



Fig.
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 Post-detection SNR

 The noisy FM signal after band-pass filtering may be represented  

as

 We may equivalently express in terms of its envelope and

phase as

 Where the envelope is

 And the phase is

9.41)x(t)  s(t)  n(t)

(9.42)n(t)  nI (t)cos(2fct) nQ (t)sin(2fct)

(9.43)n(t)  r(t)cos[2fct n (t)]

n(t)

(9.44)
2 2 1/ 2

QI
r(t)  [n (t)  n (t)]

(9.45) 
n (t) I 

1 nQ (t) 
n

(t)  tan

( (41)

(42)

(44)

(43)

(45)



Fig.
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(9.46)
0
t

f
)d(t)  2k m(

(9.47) Ac cos[2fct (t)] r(t)cos[2fct n (t)]

 The noisy signal at the output of the band-pass filter may be  

expressed as

x(t)  s(t) n(t)

(9.48)
 c 


A  r(t) cos((t))
(t) (t)  tan1r(t) sin((t)) 

 We note that the phase of s(t) is

 The phase (t) of the resultant is given by

(46)

(47)

(48)



Fig.
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(9.50)
Ac

(t) (t) 
nQ(t)

(9.51)
0

Q
t

f
Ac

n (t)

 )d(t)  2k m(

(9.52) k f m(t)  nd (t)

The ideal discriminator output v(t) 
1 d(t)

2 dt

(9.49)(t) (t) 
r(t)

sin[(t)]
Ac

 Under this condition, and noting that tan 1sin ce 1 , the  

expression for the phase simplifies to

 Then noting that the quadrature component of the noise is

nQ (t)  r(t)sin[n (t)], we may simplify Eq.(49) to

(49)

(50)

(51)

(52)
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 The noise term is defined by

 The additive noise at the discriminator output is determined essentially by

of the quadrature noise component

(9.53)
1 dnQ(t)

c

d
2A dt

n (t)

(9.54)G( f )
j2f


jf

(9.55)S ( f )

A2 NQ

c

2


f

SN  ( f ) | G( f ) | S ( f )
2

d NQ

nd (t)

nQ(t)the quadrature component of the marrowband noise n(t) .

2Ac Ac  

SN ( f )
Q

 The power spectral density

nQ (t) as follows;

(53)

(54)

(55)



Cont…

(9.56)2

otherwise0,

 0 ,
c

| f | T

A2

N f 2 B

SN ( f )  
d

(9.57)

otherwise
0

 0 ,

0,

| f | W
A2

 N f 2

S ( f )
cN

(9.58)

W

2

c

c

3A2

f 2df
A

3


2N0 W

Averagepost - detection noise power 
N0 W

 Power spectral density of the noise nd (t) is shown in Fig.16

 Therefore, the power spectral density S N0

( f ) of the noise n0 (t)

appearing at the receiver output is defined by

(56)

(57)

(58)



Fig.
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 Figure of merit

 The figure of merit for an FM system is approximately given

by

(9.59)
0

SNR FM

post
2N W3

3A2k 2P
c f

(9.60)

W

SNR

2

0

ref

SNR FM

post

P

A2

2N W3

3A2k 2P

2

f

c

2N0W

c f

 3D2





 

 k
 3

Figure of merit 

9.61)

2

 
4 W 

 
Figure of merit  T

3 B

(59)

(60)

( (61)
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 Thus, when the carrier to noise level is high, unlike an  

amplitude modulation system an FM system allows us to trade  

bandwidth for improved performance in accordance with  

square law.
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 Threshold effect

 At first, individual clicks are heard in the receiver output, and as  

the pre-detection SNR decreases further, the clicks merge to a  

crackling or sputtering sound. At and below this breakdown  

point, Eq.(59) fails to accurately predict the post-detection SNR.

 Computer experiment : Threshold effect with FM

 Complex phasor of the FM signal is given by

[55]

 Similar to the AM computer experiment, we measure the pre-

detection and post-detection SNRs of the signal and compare

the results to the theory developed in this section.


t

c f
0

 j2 k m()ds(t)  A exp 



FM Pre-emphasis and De-
emphasis

 To compensate this distortion, we appropriately pre-distort or

pre-emphasize the baseband signal at the transmitter, prior to

FM modulation, using a filter with the frequency response

 The de-emphasis filter is often a simple resistance-capacitance  

(RC) circuit with

 At the transmitting end, the pre-emphasis filter is

(9.62)
de

pre
H ( f )

H ( f ) 
1

| f | W

(9.63)
1

de

f3dB

f
1 j

H ( f )

(9.64)
3dB

pre
f

H ( f )  1 j
f

(64)

(62)

(63)
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 The modulated signal is approximately

 Pre-emphasis can be used to advantage whenever portions of  

the message band are degraded relative to others.








  

 





0

0 

m(s)ds A cos 2

ds
ds

dm(s) 

f

t

fcc

t

 2k m(t)f t  2k

m(s) s(t)  Ac cos2fct  2k f



Thermal Noise (Johnson Noise)

This type of noise is generated by all resistances (e.g. a resistor,  

semiconductor, the resistance of a resonant circuit, i.e. the real part of the  

impedance, cable etc).

Experimental results (by Johnson) and theoretical studies (by Nyquist) give  

the mean square noise voltage as
_ 2

V 4 k TBR (volt 2 )
Where k = Boltzmann’s constant = 1.38 x 10-23 Joules per K  

T = absolute temperature

B = bandwidth noise measured in (Hz)

R = resistance (ohms)



Thermal Noise (Johnson Noise) (Cont’d)

The law relating noise power, N, to the temperature and bandwidth is

N = k TB watts

Thermal noise is often referred to as ‘white noise’ because it has a  

uniform ‘spectral density’.



Shot Noise

•Shot noise was originally used to describe noise due to random

fluctuations in electron emission from cathodes in vacuum tubes

(called shot noise by analogy with lead shot).

•Shot noise also occurs in semiconductors due to the liberation of

charge carriers.

• For pn junctions the mean square shot noise current is

Where

is the direct current as the pn junction (amps)  

is the reverse saturation current (amps)

is the electron charge = 1.6 x 10-19 coulombs  

B is the effective noise bandwidth (Hz)

2 (amps)2
DC o en I 2 I q BI 2



Signal to Noise

 
 

 
  NN

 S   S 
dB 1010log

The signal to noise ratio is given by
S 


SignalPower

N Noise Power

The signal to noise in dB is expressed by

dBmdB S  N
N


 

 S 
dBm for S and N measured in mW.

Noise Factor- Noise Figure
Consider the network shown below,



Noise Factor- Noise Figure (Cont’d)

• The amount of noise added by the network is embodied in the  

Noise Factor F, which is defined by

Noise factor F =

OUT


IN

N
S
S N

• F equals to 1 for noiseless network and in general F > 1. The  

noise figure in the noise factor quoted in dB

i.e. Noise Figure F dB = 10 log10 F F ≥ 0 dB

• The noise figure / factor is the measure of how much a network  

degrades the (S/N)IN, the lower the value of F, the better the

network.



Noise Temperature



INFORMATION THEORY



 Given an information source, and a noisy  

channel

1)Limit on the minimum number of bits  

per symbol

2)Limit on the maximum rate for reliable  

communication

 Shannon’s 3 theorems



 Let the source alphabet,

S  {s0, s1, .. , sK -1}

with the prob. of occurrence
K-1

k0

 Assume the discrete memoryless source (DMS)

What is the measure of information?

P(s  sk)  pk ,  k 0,1, .. , K -1 and pk  1



Interrelations between info., uncertainty or surprise  

No surprise no information

The amount of info may be related to the inverse of

the prob. of occurrence.

1
)

Prob.
(  Info. 

k

k
p

 I(S )  log( 
1

)



1)

2)

3)

4)

* Custom is to use logarithm of base 2

I (sk )  0 for pk  1

kk
I(s )  0

ik i k
I(s )  I (s)

for 0  p  1  

for p  p

statist. indep.if sk and siI(sk si)  I(sk ) I(si),



1) H(S)=0,iff

No Uncertainty

2) H(S)=

Maximum Uncertainty

 Def. : measure of average information  

contents per source symbol

The mean value of I(sk) over S,
K -1 K -1 1

)
k

p k  log 2 (
p

H (S )  E [I ( s k )]   p k I ( s k ) 
k  0


k  0

The property of H

0  H (S)  log2  K, where K is radix ( # of symbols)

pk 1 for some k, and all other pi ' s 0

1
log2 K , iff pk  K

for all k



 transmission data rate of a channel (bps)

 Bandwidth

 bandwidth of the transmitted signal (Hz)

 Noise

 average noise over the channel

 Error rate

 symbol alteration rate. i.e. 1-> 0



 if channel is noise free and of bandwidth W,
then maximum rate of signal transmission is
2W

 This is due to intersymbol interface



 N 
 

CBlog2
1

P  (bits/s)

The capacity of a channel of bandwidth B, perturbed by

additive white gaussian noise of psd N0 /2, and limited in bandwidth to B,

P is the average transmitted power, and N is the noise (NoB)

- It is not possible to transmit at rate higher than C reliability by any means.

- It does not say how to find coding and modulation to achieve maximum capacity,

but it indicates that approaching this limit, the transmitted signal should have statistical  

property approximately to Gaussian noise.





where

is indep. of the channel, it is possible to

|  x j  ),For a dms with input X, output Y, & p ( y k

]
J 1 K1

j0 k0 k

k j

p( y )

p( y | x )
p(x j , yk ) log2[I (X ;Y ) 

J1

, p( yk )  p( yk | x j ) p(x j )
j0

p(x j , yk )  p( yk | x j ) p(x j )

 I(X;Y) just depends upon{p(x j  ), j  0,1,2,..., J 1} , & channel.

Since{p(xj )}

maximize I(X;Y) w.r.t. {p(x j  )} .

 Def. of Channel Capacity.

C  max I (X ;Y ) (bits per channel use)
{ p( x j )}



C  max I (X ;Y )  I (X ;Y ) |p( x )0.5
0

C 1 p log2 p  (1 p) log2 (1 p) 1 H ( p)

0 .5
p

C

1.0



, it is not possible to transmit with arbitrary

small error.

ⅱ) if H ( X )


C

T s T c

 For reliable communication , needs channel encoding & decoding.  

“any coding scheme which gives the error as small as possible, and  

which is efficient enough that code rate is not too small?”

=> Shannon’s second theorem (noisy coding theorem)

Let dms with alphabet X have entropy H(X) and produce symbols  
once every Ts, and dmc have capacity C and be used once every  
Tc . Then,

i) if H ( X )


C , there exists a coding scheme.
T s T c



Let

, there exists a code (with code rate less

than or equal to C) capable of achieving an arbitrary  

low probability of error.

“ The code rate where k is k-bit input, and n is

The condition for reliable comm. ,

1


C

T s

T c

T s T c

be r , then r C

 forr  C

n-bit coded bits,.”n
r  

k

p0  0.5



 doubling bandwidth doubles the data rate

 doubling the number of bits per symbol also
doubles the data rate (assuming an error free
channel)

(S/N):-signal to noise ratio

(S / N) dB
 10log 

signalpower

noise power



compactionEfficient representation of data  

Be uniquely decodable

Need of statistics of the source

(There is an algorithm called “Lempel-Ziv” for  

unknown statistics of the source)

( Another frequent method is Run-Length code)



Variable length code Fixed length code

DMS
sk bk 

with lengt h lk (bits)
binary sequence

Source 
Encoder

K-1

k0

The coding efficiency,

The average code-Length, L , is

L pklk

Lmin

L
 

is the minimum possible value ofLwhereLmin



 Given a dms of entropy H(S), the average code-word  

length L for any source coding is

L  H (S)

min L
(i.e.) L  H (S) &   H (S )



.

.

.

1

y0

y
1


Y








 
 .


 .
X




.

X  P(yk | x j ) Y

xJ 1 yK-1

 Definition of DMC

Channel with input X & output Y which is  

noisy version of X.

Discrete when both of alphabets X & Y finite sizes.

Memoryless when no dependency between  

input symbols.

x

x0



The size is J by K

for all j










.

.

0 1 K1 1



.. p( yK 1 | xJ 1)p(y0 | xJ 1) ....

p( y | x ) ..... p( y | x )

 Channel Matrix (Transition Probability Matrix)

 p( y0 |x0 ) p(y1 | x0 ) ... p(yK 1 | x0 ) 

P  

K1

k 
a

0
priori prob. is :

P k  p ( x j ) , j  0,1 , . . , J  1

 p( yk | x j ) 1



 Given a priori probp.(xj  ) , and the channel matrix, P  

then we can find the prob. of the various output  

symbols,p(yk) as

J1

J1

the joint prob. dist’n of X and Y

p(xj , yk ) p(X xj ,Y yk ) p(Y yk / X xj ) p(X xj)

p( yk / xj ) p(xj)

the marginal prob. dist’n of the output Y,

p( yk ) p(Y yk ) p(Y yk / X xj ) p( X xj )
j0



1-p

1-p

p

p

0x 0

1x 1 y1 1

0y 0



 100% efficiency of encoding means that the  
average word length must be equal to the entropy  
of the original message ensemble:

 If the entropy of the original message ensemble is  
less than the length of the word over the original  
alphabet, this means that the original encoding is  
redundant and that the original information may  
be compressed by the efficient encoding.

H (X ) H (X )

L
Efficiency  100% 

forD2L  log D

if D2 then log D1



 On the other hand, as we have seen, to be able  
to detect and to correct the errors, a code must  
be redundant, that is its efficiency must be  
lower that 100%: the average word length must  
be larger than the entropy of the original  
message ensemble:

H (X ) H (X )

L
Efficiency  100% 

forD2L  log D

if D2 then log D1



 Separable codes are those codes for which the  
unique decipherability holds.

 Shannon-Fano encoding constructs reasonably  
efficient separable binary codes for sources  
without memory.





 Our task is to associate a sequence Ck of binary  
numbers of unspecified length nk to each  
message xk suchthat:

 Let us have the ensemble of the original  
messages to be transmitted with their  
corresponding probabilities:

X  x1, x2 ,..., xn ;P p1, p2 ,..., pn 



• No sequences of employed binary numbers Ck 

can be obtained from each other by adding  
more binary digits to the shorter sequence  
(prefix property).

• The transmission of the encoded message is  
“reasonably” efficient, that is, 1 and 0 appear  
independently and with “almost” equal  
probabilities. This ensures transmission of  
“almost” 1 bit of information per digit of the  
encoded messages.



 Another important general consideration,  
which was taken into account by C. Shannon  
and R. Fano, is that (as we have already  
considered) a more frequent message has to be  
encoded by a shorter encoding vector (word)  
and a less frequent message has to be encoded  
by a longer encoding vector (word).



• The letters (messages) of (over) the input alphabet  
must be arranged in order from most probable to least  
probable.

• Then the initial set of messages must be divided into  
two subsets whose total probabilities are as close as  
possible to being equal. All symbols then have the first  
digits of their codes assigned; symbols in the first set  
receive "0" and symbols in the second set receive "1".

• The same process is repeated on those subsets, to  
determine successive digits of their codes, as long as  
any sets with more than one member remain.

• When a subset has been reduced to one symbol, this
means the symbol's code is complete.



Message x1 x2 x3 x4 x5 x6 x7 x8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

x1,x2 x3,x4,x5,x6,x7,x8

x1 x2 x3,x4 x5,x6,x7,x8

x3 x4 x5,x6 x7,x8

0100

1100

100

10

0 1

11

x5 x6 x7 x8

101 110 111

1101 1110 1111



 Entropy

 Average length of the encoding vector

 The Shannon-Fano code gives 100% efficiency

Message x1 x2 x3 x4 x5 x6 x7 x8

Probabilit
y

0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding
vector

00 01 100 101 1100 1101 1110 1111

  1 1   1 1   1 1 
H   2  4

log
4 

 2  8
log

8 
 4  16

log
16 

 2.75
      

i 16
i   4   8   

       
L Px n 


2 
 1

2

 2 

 1
3

 4 

 1
4


 2.75



The Shannon-Fano code gives 100%
efficiency. Since the average length of the
encoding vector for this code is 2.75 bits, it
gives the 0.25 bits/symbol compression, while
the direct uniform binary encoding (3
bits/symbol) is redundant.

www.Vidyarthiplus.com

Message x1 x2 x3 x4 x5 x6 x7 x8

Probabilit  
y

0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding  
vector

00 01 100 101 1100 1101 1110 1111

http://www.Vidyarthiplus.com/


 The Huffman encoding ensures constructing  
separable codes (the unique decipherability  
property holds) with minimum redundancy  
for a set of discrete messages (letters), that is,  
this encoding results in an optimum code.



• For an optimum encoding, the longer encoding  
vector (word) should correspond to a message  
(letter) with lower probability:

Px1 Px2 ... PxN Lx1 Lx2 ... LxN
• For an optimum encoding it is necessary that

LxN1 LxN 
otherwise the average length of the encoding  
vector will be unnecessarily increased.

 It is important to mention that not more than D (D is the number  
of letters in the encoding alphabet) encoding vectors could have  
equal length (for the binary encoding D=2)



 For an optimum encoding it is necessary that  
each sequence of length

Lx 1
digits either  

must be used as an encodingNvector or must
have one of its prefixes used as an encoding  
vector.



• The letters (messages) of (over) the input alphabet  
must be arranged in order from most probable to least  
probable.

• Two least probable messages (the last two messages)  
are merged into the composite message with a  
probability equal to the sum of their probabilities. This  
new message must be inserted into the sequence of the  
original messages instead of its “parents”, accordingly  
with its probability.

• The previous step must be repeated until the last  
remaining two messages will compose a message,  
which will be the only member of the messages’  
sequence.

• The process may be utilized by constructing a binary
tree – the Huffman tree.



• The Huffman tree should be constructed as follows:
1)A root of the tree is a message from the last step with  
the probability 1; 2) Its children are two messages that  
have composed the last message; 3) The step 2 must be  
repeated until all leafs of the tree will be obtained.  
These leafs are the original messages.

• The siblings-nodes from the same level are given the  
numbers 0 (left) and 1 (right).

• The encoding vector for each message is obtained by  
passing a path from the root’s child to the leave  
corresponding to this message and reading the  
numbers of nodes (root’s childintermidiatesleaf)  
that compose the encoding vector.



  Let us construct the Huffman code for the  

following set of messages: x1, x2, x3, x4, x5  

with the probabilities p(x1)=…=p(x5)=0.2

  1) x1 (p=0.2), x2 (p=0.2), x3 (p=0.2), x4 

(p=0.2), x5  (p=0.2)

 2) x4,x5x45 (p=0.4)=> x45,x1,x2,x3

 3) x2,x3x23 (p=0.4)=>x45, x23, x1

 4) x1,x23x123(p=0.6)=> x123, x45

 5) x123, 45x12345 (p=1)



x123 x45

x4x1 x23 x5

x2 x3

0 1

0 0

0

1 1

1

Encoding vectors: x1(00); x2(010); x3(011); x4(10); x5(11)





 Average length of the encoding vector

 The Huffman code gives (2.32/2.4)100% = 97%  
efficiency

5
EntropyH(X )  50.2log0.2  5

 1
log

1 
 log

1
 log5  2.32 5 5  

5
L  3

 1
2

 2

 1
3



12
 2.4 5   5 

   
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Symbol Stage 2 Stage 3 stage4

0.4

0.2

0.2

0.1

0.4

0.2

0.2

0.2

0.4

0.4

0.2

0.6

0.4

S0

S1

S2

S3

Pk(stage1)

S4 0.1



 The result is

Then,

while, H(S) = 2.12193

 Huffman encoding is not unique.

trivial1) 0

1

1

0

Symbol Pk Code - word

S0

S1  

S2

S3

S4

0.4

0.2

0.2

0.1

0.1

0 0

1 0

1 1

0 1 0

0 1 1

L  2.2

or


