B.E Electronics and Communication Engineering 2018-2019

Semester-111
18BEEC305 SIGNALS AND SYSTEMS 3H-
3C
Instruction Hours/week: L:3 T:0 P:0 Marks: Internal:40 External:60
Total:100

End Semester Exam:3 Hours

Course Objective
e Objective of the course is to understand signal types, properties and analysis,
demonstrate and understand the fundamental properties of linear time-
invariant systems.

Course Outcomes
At the end of this course students will demonstrate the ability to
e Analyze different types of signals
e Represent continuous and discrete systems in time and frequency domain
using different
transforms
e Apply Fourier series and Transforms on signals
e Investigate whether the system is stable
e Sample and reconstruct a signal
e Apply Laplace and Z Transforms on signals

UNIT I INTRODUCTION TO SIGNALS AND SYSTEMS

Energy and power signals, continuous and discrete time signals, continuous and
discrete amplitude signals. System properties: linearity: additivity and homogeneity,
shift-invariance, causality, stability, realizability.

UNIT I LTI SYSTEMS AND ANALYSIS

Linear shift-invariant (LSI) systems, impulse response and step response, convolution,
input-output behavior with aperiodic convergent inputs. Characterization of causality
and stability of linear shift invariant systems. System representation through
differential equations and difference equations.

UNIT Il FOURIER SERIES AND FOURIER TRANSFORM

Periodic and semi-periodic inputs to an LSI system, the notion of a frequency
response and its relation tothe impulse response, Fourier series representation, the
Fourier Transform, convolution/multiplication and their effect in the frequency
domain, magnitude and phase response, Fourier domain duality. The Discrete-Time
Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's
Theorem. The idea of signal space and orthogonal bases,



UNIT IV  LAPLACE TRANSFORM ANALYSIS
The Laplace Transform, notion of eigen functions of LSI systems, a basis of eigen
functions, region of convergence, poles and zeros of system, Laplace domain analysis,
solution to differential equations and system behavior.

UNIT V Z TRANFORM AND SAMPLING

The z-Transform for discrete time signals and systems- eigen functions, region of
convergence, z-domain analysis. State-space analysis and multi-input, multi-output
representation. The state-transition matrix and its role. The Sampling Theorem and its
implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-
order hold, first-order hold, and so on. Aliasing and its effects. Relation between
continuous and discrete time systems.

Suggested Readings

1. AV. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems",
Prentice Hall, 1983.

2. R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems -
Continuous and Discrete", 4" edition, Prentice Hall, 1998.

3. Papoulis, "Circuits and Systems: A Modern Approach™, HRW, 1980.

4. B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press,
c1998.

5. Douglas K. Lindner, "Introduction to Signals and Systems"”, McGraw Hill
International Edition: ¢1999.

6. Simon Haykin, Barry van Veen, "Signals and Systems”, John Wiley and Sons
(Asia) Private Limited, c1998.

7. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John
Wiley and Sons, 1995.

8. M. J. Roberts, "Signals and Systems - Analysis using Transform methods and
MATLAB", TMH, 2003.

9. Ashok Ambardar,"Analog and Digital Signal Processing”, 2nd Edition,
Brooks/ Cole Publishing Company (An international Thomson Publishing
Company), 1999.
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S.No TOPICS TO BE COVERED TIME SUPPORTING TEACHING
DURATION MATERIALS AIDS
UNIT-I INTRODUCTION TO SIGNALS AND SYSTEMS

1 | Energy and power signals 01 T1Pg.No:139 BB

2 | Continuous and discrete time 01 T1 Pg.No :140-152 BB
signals

3 | Continuous and  discrete 01 T1PgNo:172-174 BB
amplitude signals

4 | System properties: linearity: 02 T1Pg.No:174-177 BB
additivity and homogeneity,
shift-invariance, causality,
stability, realizability.

UNIT-II LTI SYSTEMS AND ANALYSIS

8 | Linear shift-invariant (LSI) 01 T1 Pg.No :378-391,392- BB
systems 406

9 |Impulse response and step 02 T1 Pg.No:419 BB
response

10 | Convolution, input-output 01 T1 Pg.No :442-458 BB
behavior with aperiodic
convergent inputs.




11 | Characterization of causality and 01 T1 Pg.No :436-441 BB
stability of linear shift invariant
systems

12 | System representation through 02 T1 Pg.No :467 BB
differential equations

13 | System representation through 02 T1 Pg.No :475 BB
difference equations.

UNIT-III FOURIER SERIES AND FOURIER TRANSFORM

17 | Periodic and semi-periodic inputs 01 T1 Pg.No :236-259 BB
to an LSI system
and the

18 | The notion of a frequency response 01 T1 Pg.No :274 BB
and its relation to the impulse
response

19 | Fourier series representation 01 T1 Pg.No :274-275 BB

20 | The Fourier Transform, 02 T1 Pg.No :280-296 BB
convolution/multiplication and
their effect in the frequency
domain

21 | Magnitude and phase response, 01 T1 Pg.No :306 BB
Fourier domain duality.

22 | The Discrete-Time Fourier 02 T1 Pg.No:311 BB
Transform (DTFT)

23 | Discrete  Fourier  Transform 02 T1 Pg.No :315 BB
(DFT).

24 | Parseval's Theorem and the idea of 01 T1 Pg.No :290,292 BB
signal space and orthogonal bases,

UNIT-IV LAPLACE TRANSFORM ANALYSIS

26 | The Laplace Transform, notion of 02 T1 Pg.No :727-738 BB
eigen functions of LSI systems

27 | A basis of eigen functions, region 02 T1Pg.No:1261-1265 BB
of convergence

28 | Poles and zeros of system Laplace 02 T1Pg.No:1230-1246 BB
domain analysis

29 | Solution to differential equations 03 T1 Pg.No :893 BB
and system behavior.

UNIT-V Z TRANFORM AND SAMPLING
32 | The z-Transform for discrete 02 T1 Pg.No :899-902 BB

time signals and systems- eigen

functions, region of
convergence, z-domain analysis.
- Aliasing and its effects.

Relation between continuous




and discrete time systems.

33 | State-space analysis and multi- 02 T1Pg.No:68-72,77-78 BB
input, multi-output representation.
34 | The state-transition matrix and its 01 T1 Pg.No:81 BB
role.
35 | The Sampling Theorem and itg 02 T1Pg.No:1088-1125 BB
implications, Spectra of sampled
signals.
36 | Reconstruction: ideal interpolator, 02 T1 Pg.No :819-824 BB
zero-order hold, first-order hold,
and so on.
37 | Aliasing and its effects. Relation 02 T1 Pg.No :833-844 BB
between continuous and discrete
time systems.
Total No of Lecture Hours Planned: 45 Hrs
Total No of Hours Planned : 45 Hours
TEXT BOOKS:
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Oppenheim, AS. | ... " .
1 Willsky and I.T. Signals and Systems Prentice Hall 1983
Young
SUGGEST READINGS:
Year of the
S.NO. | Author(s) Name Title of the book Publisher publication




R.F. Ziemer, | "Signals and Systems - 4™ edition, Prentice 1998
W.H. TranFer Continuous and Discrete" Hall,
and D.R. Fannin
M. J. Roberts "Signals and Systems - Analysis | TMH 2003
using Transform methods and
MATLAB"
Douglas K. "Introduction to Signals and McGraw Hill 1999
Lindner Systems™ International
J. Nagrath, S. N. | "Signals and Systems" TMH 2001
Sharan, R.
Ranjan, S.
Kumar
Robert A. Gabel, | "Signals and Linear Systems" John Wiley and Sons | 1995
Richard A.
Roberts
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Basics of Signals and Systems

Gloria Menegaz
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Didactic material

Textbook

Signal Processing and Linear Systems, B.P. Lathi, CRC Press

Other books

Signals and Systems, Richard Baraniuk’ s lecture notes, available on line

Digital Signal Processing (4th Edition) (Hardcover), John G. Proakis, Dimitris K
Manolakis

Teoria dei segnali analogici, M. Luise, G.M. Vitetta, A.A. D’ Amico, McGraw-Hill

Signal processing and linear systems, Schaun's outline of digital signal
processing

All textbooks are available at the library

Handwritten notes will be available on demand
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Signals&Systems

Input signal

Output signal

—

System

—

. A
amplitude

/A/‘

VAN

Linear time invariant
systems (LTIS)

N

A
|amplitude|

N

frequency

LTIS perform any kind
of processing on the
input data to generate
output data
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Signals

Signal classification and
representation

— Types of signals

— Sampling theory

— Quantization
Signal analysis

— Fourier Transform

=  Continuous time, Fourier series,

Contents

Discrete Time Fourier Transforms, -

Windowed FT
— Spectral Analysis

<

>

Systems

Linear Time-Invariant Systems

Time and frequency domain analysis
Impulse response

Stability criteria

Digital filters

Finite Impulse Response (FIR)
Mathematical tools

Laplace Transform

= Basics

Z-Transform

= Basics

Applications in the domain of Bioinformatics

Gloria Menegaz




What is a signal?

A signal is a set of information of data

— Any kind of physical variable subject to variations represents a signal
— Both the independent variable and the physical variable can be either scalars or

vectors

* |ndependent variable: time (t), space (X, X=[X4,X5], X=[X4,X5,X5])

= Signal:

» Electrochardiography signal (EEG) 1D, voice 1D, music 1D

» Images (2D), video sequences (2D+time), volumetric data (3D)

Gloria Menegaz




Example: 1D biological signals: ECG
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Example: 1D biological signals: EEG
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1D biological signals: DNA sequencing

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATG......

Mucleotide density

D 1 1 1 1 1 1 1 1
0 2000 4000 BOOO 8000 10000 12000 14000 16000 18000

A-T C-G density
0.7 T T

—AT

DB@MWW\MJ‘—C-G—
- N

I N N Ve AV

0 2000 4000 BOOO 8000 10000 12000 14000 16000 18000

Gloria Menegaz




Example: 2D biological signals: Mi

MRI

Gloria Menegaz 9




Example: 2D biological signals: microarrays

Gloria Menegaz

10




Signals as functions

« Continuous functions of real independent variables

— 1D: f=f(x)
— 2D: f=fxy) xy
— Real world signals (audio, ECG, images)

« Real valued functions of discrete variables
— 1D: f=f1k]
- 2D: f5flij]
— Sampled signals
» Discrete functions of discrete variables
— 1D: fA=£[k]
— 2D: fi=£ij]

— Sampled and quantized signals

Gloria Menegaz
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Images as functions

Gray scale images: 2D functions

— Domain of the functions: set of (x,y) values for which f{x,y) is defined : 2D lattice
[i,j] defining the pixel locations

— Set of values taken by the function : gray levels

Digital images can be seen as functions defined over a discrete domain {i,;:

0<i<I, 0<j<J}
— IJ: number of rows (columns) of the matrix corresponding to the image
— f=f[i,j]: gray level in position [i,j]

Gloria Menegaz
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Example 1: o function

A1 i=j=0
5[1’]]_{0 i, j=0i=f

5[Z,J_J:|={1 l=0,]=.]

0 otherwise

Gloria Menegaz
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Example 2: Gaussian

Continuous function

1 X +y
207
f(xa y) = €
O~ 27T
Discrete version
1 i2 +j2
e 207

f[iaj]=m
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Example 3: Natural image
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Example 3: Natural image

Gloria Menegaz
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What is a system?

Systems process signals to

Extract information (DNA sequence analysis)

Enable transmission over channels with limited capacity (JPEG, JPEG2000,
MPEG coding)

Improve security over networks (encryption, watermarking)

Support the formulation of diagnosis and treatment planning (medical imaging)

closed-loop
o -
I : The function linking the output
M ' of the system with the input
: signal is called transfer function

input ‘ output and it is typically indicated with
System the symbol h(*)

Gloria Menegaz 17




Classification of signals

Continuous time — Discrete time
Analog — Digital (numerical)

Periodic — Aperiodic

Energy — Power

Deterministic — Random (probabilistic)
Note

— Such classes are not disjoint, so there are digital signals that are periodic of
power type and others that are aperiodic of power type etc.

— Any combination of single features from the different classes is possible

Gloria Menegaz
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Continuous time — discrete time

« Continuous time signal: a signal that is specified for every real value of the
independent variable

— The independent variable is continuous, that is it takes any value on the real axis
— The domain of the function representing the signal has the cardinality of real
numbers
= Signal « f=f(t)
» Independent variable < time (t), position (x)
= For continuous-time signals: & R

amplitude |

06F
0.4

02

02
D4F
06

08}

L I L L
50 100 1580 200 250

time
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Continuous time — discrete time

« Discrete time signal: a signal that is specified only for discrete values of the
independent variable

— ltis usually generated by sampling so it will only have values at equally spaced
intervals along the time axis

— The domain of the function representing the signal has the cardinality of integer
numbers

= Signal < f=f[n], also called “sequence”

* Independent variable < n amplitude
= For discrete-time functions: t &7, WEL I T 4]
UB-:, : . L & *
0,4-:
A
D_
02F
04+
} 06 3 . 5 =
- . - 08 Y & 5 :: * s
this axis continuous ¥ M, N, W
1 50 100 150 200 250
or discrete _ _
time (discrete)
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Analog - Digital

Analog signal: signal whose amplitude can take on any value in a
continuous range

— The amplitude of the function f(t) (or f(x)) has the cardinality of real numbers

» The difference between analog and digital is similar to the difference between
continuous-time and discrete-time. In this case, however, the difference is with respect
to the value of the function (y-axis)

— Analog corresponds to a continuous y-axis, while digital corresponds to a
discrete y-axis

M

this axis continuous
or discrete

™
-

Here we call digital what we have called quantized in the EI class

An analog signal can be both continuous time and discrete time

Gloria Menegaz 21




Analog - Digital

Digital signal: a signal is one whose amplitude can take on only a finite
number of values (thus it is quantized)
— The amplitude of the function f() can take only a finite number of values

— A digital signal whose amplitude can take only M different values is said to be M-
ary
» Binary signals are a special case for M=2

amplitude

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

time
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Example

— Continuous time analog

»

A

amplitude

time

[N,
\J

— Continuous time digital (or quantized)

» binary sequence, where the values of the function can only be one or zero.

»

A

amplitude

time

Gloria Menegaz
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Example

Discrete time analog

% A
2 i
= 0ol
© [ [
' I T -1 * I T * R
l time
Discrete time digital ¢

» binary sequence, where the values of the function can only be one or zero.

amplitude
|

il
i
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Signal amplitude/

Summary

Real Integer
Time or space
Analog Digital
Real
Continuous-time Continuous-time
Analog Digital
Integer

Discrete-time

Discrete time

Gloria Menegaz
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Note

In the image processing class we have defined as digital those signals that

are both quantized and discrete time. It is a more restricted definition.

The definition used here is as in the Lathi book.

Gloria Menegaz
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Periodic - Aperiodic

« Asignal f(t) is periodic if there exists a positive constant T, such that

Ja+T)=f(@) Vi

— The smallest value of T, which satisfies such relation is said the period of the
function f(t)

— A periodic signal remains unchanged when time-shifted of integer multiples of the
period

— Therefore, by definition, it starts at minus infinity and lasts forever

—0<f<+4+0 (E°

—0 <N <+0 netz

— Periodic signals can be generated by periodical extension

Gloria Menegaz 27




Examples

Periodic signal with period T,

M i)

S AV AUAVSAS

Aperiodic signal

A

Vi

~ 7\ A -

\_

N
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Causal and non-Causal signals
/N f(t)

Causal signals are signals that are
zero for all negative time (or spatial /\/\VAV/\/; t
positions), while T

zero here

Anticausal are signals that are zero for
all positive time (or spatial positions). -t

""‘1.
“,.F'
—
=

Noncausal signals are signals that
have nonzero values in both positive . T ~

and negative time L\j N

Gloria Menegaz
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Causal and non-causal signals

Causal signals

f()=0 <0

Anticausals signals

f()=0 t=0

Non-causal signals

3, <0: f(t)=0

Gloria Menegaz

30




Even and Odd signals

An even signal is any signal f such that f (t) = f (-t). Even signals can be
easily spotted as they are symmetric around the vertical axis.

/N felt)

AN

An odd signal, on the other hand, is a signal f such that f (t)= - (f (-1))

A\ folt)

Gloria Menegaz
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Decomposition in even and odd components

* Any signal can be written as a combination of an even and an odd signals

— Even and odd components

()= (£ F=0)+ 5 (F(0)-1 (-0)

1

f.(t) = E(f(t)+f(—t)) even component

1

f, (1) = E(f(t)—f(—t)) odd component

Gloria Menegaz
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Example

\ f(t)

A i)
=t
M i)
\ } t
/N f(t)
/ > t
/N f(t)
>t

>t
/M 2eit)
2
it's even!
/N 20(t)
>
t
it's odd!

Gloria Menegaz
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W

Example

M f(t)
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Some properties of even and odd functions

even function x odd function = odd function
odd function x odd function = even function
even function x even function = even function

Area

a

ffe (¢)dt = 2}fe (¢)dt

—-a

ffe(t)dt=0

—da

Gloria Menegaz
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Deterministic - Probabilistic

Deterministic signal: a signal whose
physical description in known
completely

A deterministic signal is a signal in
which each value of the signal is fixed
and can be determined by a
mathematical expression, rule, or
table.

Because of this the future values of the
signal can be calculated from past
values with complete confidence.
— There is no uncertainty about its
amplitude values

— Examples: signals defined through a
mathematical function or graph

Probabilistic (or random) signals: the

amplitude values cannot be predicted
precisely but are known only in terms
of probabilistic descriptors

The future values of a random signal
cannot be accurately predicted and
can usually only be guessed based on
the averages of sets of signals

— They are realization of a stochastic
process for which a model could be
available

— Examples: EEG, evocated potentials,
noise in CCD capture devices for digital
cameras

Gloria Menegaz

36




amplitude

Example

« Deterministic signal

W GTTW JTW WT?
gy ey

0 B0
time

—

G

amplitude

 Random signal

ofy ?ﬁﬁ?‘f P o . M édb(ﬁ WT?%éo (LL | QDOTTT% Tﬁ‘?ﬁo M

) . time
0 1 0 0 3 S 60 70 80

v

Gloria Menegaz 37




Finite and Infinite length signals

A finite length signal is non-zero over a finite set of values of the
independent variable

f=f(t)Vt:t,<t=t,

[, >—%,1, <+x

An infinite length signal is non zero over an infinite set of values of the
independent variable

— Forinstance, a sinusoid f(t)=sin(wt) is an infinite length signal
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Size of a signal: Norms

"Size" indicates largeness or strength.

We will use the mathematical concept of the norm to quantify this notion for
both continuous-time and discrete-time signals.

The energy is represented by the area under the curve (of the squared
signal)

»
»

amplitude

T tirﬁe
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Energy

Signal energy
E, = f F()dt
E =] f@)| dt

Generalized energy : L, norm

— For p=2 we get the energy (L, norm)

@)= (f(re)y @)’

l<p<+x

Gloria Menegaz
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Power

Power

— The power is the time average (mean) of the squared signal amplitude, that is the

mean-squared value of f(t)

.1 5
Pj,—}l_t)lolof f [ (t)dt

o1
P, =;1330; [ () dt

+7/2

-T/2
+7/2

-T/2

Gloria Menegaz
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Power - Energy

The square root of the power is the root mean square (rms) value

— This is a very important quantity as it is the most widespread measure of
similarity/dissimilarity among signals

— It is the basis for the definition of the Signal to Noise Ratio (SNR)

1)signal
SNR =20log,, P

noise

— Itis such that a constant signal whose amplitude is =rms holds the same power
content of the signal itself

There exists signals for which neither the energy nor the power are finite

f A
ramp

v

Gloria Menegaz
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Energy and Power signals

A signal with finite energy is an energy signal

— Necessary condition for a signal to be of energy type is that the amplitude goes
to zero as the independent variable tends to infinity

A signal with finite and different from zero power is a power signal

— The mean of an entity averaged over an infinite interval exists if either the entity
is periodic or it has some statistical regularity

— A power signal has infinite energy and an energy signal has zero power
— There exist signals that are neither power nor energy, such as the ramp

All practical signals have finite energy and thus are energy signals

— Itis impossible to generate a real power signal because this would have infinite
duration and infinite energy, which is not doable.

Gloria Menegaz
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Useful signal operations: shifting, scaling, inversion

« Shifting: consider a signal f(t) and the same signal delayed/anticipated by T

»

seconds  f{t)

"t
ft+T)
anticipated
< T > =t
[ delayed
(1) | e
— g

>0

Gloria Menegaz
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Useful signal operations: shifting, scaling, inversion

(Time) Scaling: compression or expansion of a signal in time

f(t) 4

A

f(2t)

»

t
compression p(t)=f(21)

»
»

f(t/2)

»

t

expansion @(t)=f(¢/2)

»
»

t

Gloria Menegaz
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Useful signal operations: shifting, scaling, inversion

« Scaling: generalization

a>1

@(t)= f(at) — compressed version
o(t)=f (1) — dilated (or expanded) version

Viceversa fora < 1

fit) flat) flat)
T~

T, A

N\

b P
L "
e

-

a>1 a<l
compression dilation
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Useful signal operations: shifting, scaling, inversion

(Time) inversion: mirror image of f(t) about the vertical axis

o(t)=f(-t)
f(t) 4
i) ft
; > | /\’\ /\/\
f(-) | > i
0 >
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Useful signal operations: shifting, scaling, inversion

 Combined operations: f(t) — f(at-b)
 Two possible sequences of operations

1. Time shift f(t) by to obtain f(t-b). Now time scale the shifted signal f(t-b) by a to
obtain f(at-b).

2. Time scale f(t) by a to obtain f(at). Now time shift f(at) by b/a to obtain f(at-b).

* Note that you have to replace t by (t-b/a) to obtain f(at-b) from f(at) when replacing t by
the translated argument (namely t-b/a))
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Unit step function

Useful functions

— Useful for representing causal signals

u0)={1 =0

0 <0

(1)

- 0 2 r—

-1
(®)

Fig. 1.15 Representation of a rectangular pulse by step functions,

S(1)=u(t=2)-u(t-4)

Gloria Menegaz
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Useful functions

« Continuous and discrete time unit step functions

u(t) ulk]
A A

B I 1111
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Useful functions

Ramp function (continuous time)

Oift <0

_ oo - -
=9§ iH0=t=<to

Lift =ty

>t

l—l
>
nw
o
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Unit impulse function

o(t)

Useful functions

50)=O t =0

fé(t)dt=1

—00

1/¢

v

e—0

v

-£/2

/2
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Properties of the unit impulse function

Multiplication of a function by impulse

$(1)6(¢)=p(0)5(z)
p(t)o(t-T)=¢p(T)o(t-T)

Sampling property of the unit function
[#()3(0)di = [9(0)0(e)dt = p(0) [ 5(1)dt = 9(0)
[9(0)3(e=T)de = ¢(7)

— The area under the curve obtained by the product of the unit impulse function
shifted by T and ¢(t) is the value of the function ¢(t) for t=T

Gloria Menegaz
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Properties of the unit impulse function

The unit step function is the integral of the unit impulse function

du
— =0t
0 (t)

jé(z‘)dt=u(t)

— Thus

jé(t)dt=u(t)={o (<0

1 =0

Gloria Menegaz
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Properties of the unit impulse function

Discrete time impulse function

) lifn=20
d[n] =
() otherwise

10

Gloria Menegaz
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Useful functions

Continuous time complex exponential
f(t)=Ae™

Euler s relations Ae?“t = Acos (wt) + j (Asin (wt))
E,_;ii'.uﬁ 4+ E—l::j?.ut::l

2

cos (wt) =

Ejtut . E—{j wt )

2j

sin (wt) =

7" = cos (wt) + jsin (wt)

Discrete time complex exponential

. — snT'
_ kenT fln] = Be

_ BEju.:nT

Gloria Menegaz
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Useful functions

Exponential function est

— Generalization of the function eivt

S=0+ jw

Therefore '

8t = o(0HIW)t — (ot Wt — oTt(cog wi + j sin wt) (1.30a)
If s* = 0 — jw (the conjugate of s), then

et t = 77w = Tt It = ¢*(cos wt — j sin wt) (1.30b)
and y )

et cos wt = 5(6” +et) (1.30c)
Gloria Menegaz 57




The exponential function

Y AV
\ ©

Gloria Menegaz 58




Complex frequency plan

signals of constant amplitude

jw
right half plan
left half plan exponentially
exponentially increasing signals

decreasing signals

»
»

0)

monotonically

increasing/decreasing

exponentials

GO0

Gloria Menegaz
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Basics of Linear Systems

2D Linear Systems




Systems

A system is characterized by
— inputs
— outputs
— rules of operation (mathematical model of the system)

f() — — Y4q(t)
) — — Yat)
—>  —
—> —

f) —» —— Yp(t)
inputs outputs

Gloria Menegaz
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Systems

« Study of systems: mathematical modeling, analysis, design

— Analysis: how to determine the system output given the input and the system
mathematical model

— design or synthesis: how to design a system that will produce the desired set of
outputs for given inputs

« SISO: single input single output - MIMO: multiple input multiple output

f(t) — — Y4q(t)
fo(t)  — —> Y1)

—> s

ft) —— —— y4(t) ., .
f) —» ——— Yy(t)
inputs outputs inputs outputs

Gloria Menegaz 62




Response of a linear system

Total response = Zero-input response + Zero-state response

The output of a system for t=0 is the result of two independent causes: the initial
conditions of the system (or system state) at t=0 and the input f(t) for t=0.

Because of linearity, the total response is the sum of the responses due to those
two causes

— The zero-input response is only due to the initial conditions and the zero-state
response is only due to the input signal

— This is called decomposition property

Real systems are locally linear

— Respond linearly to small signals and non-linearly to large signals

y

4

A

causal, linear causal, non linear

A
y .
locally linear

around f,

v
v
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Review: Linear Systems

 We define a system as a unit that converts an input function into an output
function

| System

g(x) = H/w)]

/

Independent System operator or Transfer function
variable

64




Linear Time Invariant Discrete Time Systems

X(t)

x[n]

—1 AD

A 4

LTIS (H)

y[n] Yi(t)

\ 4

D/A —

Y(e™) = H(e'")X (")
Y.(jQ) = H(jR)X,(jL)

H(jQ) = {

IF

* The input signal is bandlimited
» The Nyquist condition for sampling is met
* The digital system is linear and time

invariant

H(jL)

|Q|<m/T
|Q|=7x/T

THEN
The overall continuous time system is
equivalent to a LTIS whose frequency
response is H.
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" HaifiCe) + aifi(0)] = alfi(x)] + aH]f;(x)]

Overview of Linear Systems

Lel(x) = H[fi(x)]

where f(x) is an arbitrary input in the class of all inputs
{f(x)}, and g/(x) is the corresponding output.

— a;gi(x) + a;g,(¥)

Then the system H is called a linear system.

A linear system has the properties of additivity and homogeneity.

66




Linear Systems

« The system H is called shift invariant if

gi(x) = H|fi(x)] implies that g;(x + xo) = H|fi(x + x0)]

for all f.(x) €{f(x)} and for all x,,

« This means that offsetting the independent variable of the input by x,
causes the same offset in the independent variable of the output. Hence,
the input-output relationship remains the same.
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Linear Systems

« The operator H is said to be causal, and hence the system described by
H is a causal system, if there is no output before there is an input. In
other words,

flx) = 0 for x < xo implies that g(x) = H|[f(x)] = 0 forx < xo.

« Alinear system H is said to be stable if its response to any bounded input
is bounded. That s, if

|f(x)| < K implies that |g(x)| < ¢K

where K and ¢ are constants.
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Linear Systems

* Aunit impulse function, denoted d(a), is defined by the expression

[ : Aa)s(x — a)da = fx)

o(a) 0(x-a)

« The response of a system to a unit impulse function is called the impulse
response of the system.

h(x) = H[o(x)]
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Linear Systems

If H is a linear shift-invariant system, then we can find its response to any
input signal f(x) as follows:

g(x) = ) Aa)h(x — a)da.

This expression is called the convolution integral. It states that the response
of a linear, fixed-parameter system is completely characterized by the
convolution of the input with the system impulse response.
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Linear Systems

Convolution of two functions of a continuous variable is defined as

J)*h(x) = [ f(@)h(x-a)ea

In the discrete case

o0

fIn]*hin]= "y fImlh[n—m]

m=—OO
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Linear Systems

In the 2D discrete case

0o

fIn,n,1*hn,n,]= E Ef[ml,nfzz]h[n1 m ,n, —m, |

h[n,,n,] isalinear filter.
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lllustration of the folding, displacement, and multiplication
steps needed to perform two-dimensional convolution

Fo.p) g(e.p)

FoB)gls - oy - B)

P

Volume = f(x,y) * g(x,y)




Matrix perspective

h g
e d
b a

>
b a a b
e d d e
h g g h

step 1
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Convolution Example

h 1 1 1 I, n,1**h[n,,n,] Z Z FTmy,,m,h[n, —m,,n, —m,]
f
1 2 -1
2 2 2 3
1 1 1
2 1 3 3

Rotate 1 /
2 2 1 2

T 11 11 3] 2|2
a4 2 | 1 _J
A4 1] 1

From C. Rasmussen, U. of Delaware
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Convolution Examp

f*h

76




Convolution Examp

h
1| 1
21 4
2 | -1
2 | 2

f*h

7




Convolution Examp
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f*h




Convolution Example

21 61 1
3| 3| 1
1 | 2
2 | 2

2 2 2
2 1 3
2 2 1
1 3 2

79
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Convolution Example
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f*h




Convolution Example

2 2

2 3

2 1

1 2
4 -2
6 |

81 f

f*h




A6523
Linear, Shift-invariant Systems and Fourier Transforms

e Linear systems underly much of what happens in nature and are used in instrumentation to make
measurements of various kinds.

e We will define linear systems formally and derive some properties.
e We will show that exponentials are natural basis functions for describing linear systems.

e Fourier transforms (CT/CA), Fourier Series (CT/CA + periodic in time), and Discrete Fourier
Transforms (DT/CA + periodic in time and in frequency) will be defined.

e We will look at an application that demonstrates:

1. Definition of a power spectrum from the DFT.

2. Statistics of the power spectrum and how we generally can derive statistics for any estimator or
test statistic.

3. The notion of an ensemble or parent population from which a given set of measurements is
drawn (a realization of the process).

4. Investigate a “detection” problem (finding a weak signal in noise) and assess the false-alarm
probability.



Types of Signals

By “signal” we simply mean a quantity that is a function of some independent variable. For simplicity,
we will often consider a single independent variable (time) e.g. x(t). Later we will consider 2 or more
dimensions of general variables. .

A signal is characterized by an amplitude as a function of time and 4 kinds of signals can be defined
depending on whether the time and amplitude are discrete or continuous.

TIME

AMPLITUDE discrete continuous

discrete Digital Signals CT, DA
(m bits per sample) (m bits)

continuous DT, CA Analog Signals
(oo bits per sample) (oo bits per sample)

Quantum mechanics says there are only DT, DA signals but much of what we will do is in the classical
regime.



CT/CA

CT/DA

DT/CA

DT/DA

Examples

Light intensity from a star
(ignore photons and counting statistics)

Earth’s human population

Intensity of the moon at times of the full moon
|tj+1 — t]| ~ 28 days

Earth’s population at times of the full moon



Approach taken in the course
Theoretical treatments (analytical results) will generally be applied to DT/CA signals, for simplicity.

For the most part, we will consider analog signals and DT/CA signals, the latter as an approximation
to digital signals. For most analyses, the discreteness in time is a strong influence on what we can infer
from the data. Discreteness in amplitude is not so important, except insofar as it represents a source of
error (quantization noise). However, we will consider the case of extreme quantization into one bit of
information and derive estimators of the autocovariance.

Generically, we refer to a DT signal as a time series and the set of all possible analyses as “time series
analysis”. However, most of what we do is applicable to any sequence of data, regardless of what the
independent variable is.

Often, but not always, we can consider a DT signal to be a sampled version of a CT signal (counter
examples: occurrence times of discrete events such as clock ticks, heartbeats, photon impacts, etc.).

Nonuniform sampling often occurs and has a major impact on the structure of an algorithm.

We will consider the effects of quantization in digital signals.



Linear Systems

Consider a linear differential equation in y

dy
dt’
whose solutions include a complete set of orthogonal functions. We can represent the relationship of
x(t) (the driving function) and y(t) (the output) in transformational form:

fly, o' y", ) = (1), y = =2 ete.

system

x(t) — )

— y(t)

where h(t) describes the action of the system on the input x to produce the output y. We define h(t) to
be the response of the system to a d-function input. Thus, (%) is the “impulse response’ or Green’s
function of the system.

We wish to impose linearity and shift invariance on the systems we wish to consider:

Linearity:

If 11 — y; and 29 — 1o then axs + bxry —> ay; + byo, for any a, b

2

E.g. y = x° 1s not a linear operation.

Time or shift invariance (stationarity)

If x(t) — y(t), then x(t+ty) — y(t+to) for any tg

The output “shape” depends on the “shape” of the input, not on the time of occurrence.



Singularity Functions

We need some useful singularity “functions’:

1. §(t) defined as a functional

/

I a<t<b

2(t) E/dt/ 6t —t)2(t)  and /bdt’ 6t —1t) = <

0 otherwise
\

2. Loosely speaking, §(0) — oo, d(t # 0) — 0; So (¢) has finite (unit) area.

3. U(t) unit step function (or Heaviside function)

1 ¢t>0

Ut) = / dt' 6(t' —t) = and d[;—t(t)zé(t)
! 0 ¢<0
o 1 t>1
= Ut —ty) = / dt' 6(t' —t) =
to 0 otherwise

(1)

2)

3)



Convolution theorem

By definition
d(t) — h(t)

Using linearity we have
ad(t) — a h(t)

Let a = x(t') then
z(t') 6(t) — x(t') h(t)

By shift invariance we have
ot —t") — h(t —t)

Combining L + SI,
() o(t —t') — x(t') h(t — 1)

But, again by linearity, we can sum many terms of this kind. So, integrating over all ¢

/dtx( o(t —t') H/ dt’ z(t') h(t —t)

But by definition of 4(¢), LHS = x(¢),
—>/ dt' z(t') h(t —t') = y(t)
By a change of variable on the RHS to ¢ = t — ¢’ we also have

z(t) — /OO dt’' z(t —t') h(t') = y(t)



Any linear, shift invariant system can be described as the convolu-
tion of its impulse response with an arbitrary input.

Using the notation * to represent the integration, we therefore have

y(t)=xxh=hxzx
Properties:

1. Convolution commutes:
/ dt' h(tz(t —t') = / dt' h(t — t"x(t)

2. Graphically, convolution is “invert, slide, and sum”

3. The general integral form of * implies that, usually, information about the input is lost since h(t)
can “smear out” or otherwise preferentially weight portions of the input.

4. Theoretically, if the system response h(t) is known, the output can be ‘deconvolved’ to obtain the
input. But this is unsuccessful in many practical cases because: a) the system A(t) is not known to
arbitrary precision or, b) the output is not known to arbitrary precision.



Why are linear systems useful?

1. Filtering (real time, offline, analog, digital, causal, acausal)

2. Much signal processing and data analysis consists of the application of a linear operator (smooth-
ing, running means, Fourier transforms, generalized channelization, ... )

3. Natural processes can often be described as linear systems:

e Response of the Earth to an earthquake (propagation of seismic waves)

e Response of an active galactic nucleus swallowing a star (models for quasar light curves)
e Calculating the radiation pattern from an ensemble of particles

e Propagation of electromagnetic pulses through plasmas

e Radiation from gravitational wave sources (in weak-field regime)



We want to be able to attack the following kinds of problems:

1. Algorithm development: Given h(t), how do we get y(t) given z(¢) (“how” meaning to obtain
efficiently, hardware vs. software, etc.) ¢ vs. f domain?

2. Estimation: To achieve a certain kind of output, such as parameter estimates subject to “con-

straints”(e.g. minimum square error), how do we design h(¢)? (least squares estimation, prediction,
interpolation)

3. Inverse Theory: Given the output (e.g. a measured signal) and assumptions about the input, how
well can we determine h(t) (parameter estimation)? How well can we determine the original input
x(t)? Usually the output is corrupted by noise, so we have

y(t) = h(t) « x(t) + €(t).

The extent to which we can determine A and x depends on the signal-to-noise ratio:
((h* 2)?)1/2 /(€2)1/?2 where ( ) denotes averaging brackets.

We also need to consider deterministic, chaotic and stochastic systems:

e Deterministic = predictable, precise (noiseless) functions
e Chaotic = deterministic but apparently stochastic processes

e Stochastic = not predictable (random)

e Can have systems with stochastic input and/or stochastic system response h(t) — stochastic
output.

Not all processes arise from linear systems but linear concepts can still be applied, along with others.

10



Natural Basis Functions for Linear Systems

In analyzing LTI systems we will find certain basis functions, exponentials, to be specially useful. Why
1s this so?

Again consider an LTI system y = h * x. Are there input functions that are unaltered by the system,
apart from a multipicative constant? Yes, these correspond to the eigenfunctions of the associated
differential equation.

We want those functions ¢(t¢) for which

y(t)=¢pxh=Ho where H is just a number

That 1s, we want
oit) = [ de e ole — ¢) = H ot

This can be true if ¢p(t — t') is factorable:

ot — 1) = p(t)u(t)

where 1 (t') is a constant in ¢ but can depend on t'.

11



We constrain (t’) with:

i) ot —t')y—g

i
-
=

I
-
=
<
=
=
=

I

—_

o _ 20
i) 9t = e = 0(0) = SOV = ¥(0) = 5
/ — N\ = ! ' ¢(_t/)
W) (t — )i = ¢(—t') = p(0)Y(t') = »(t) »(0)

Now 11) and 111) automatically satisfy 1). With no loss of generality we can set

6(0) = 1 = (t) = @ — o(—1)

We want functions whose time reverses are their reciprocals. These are exponentials (or 25, a*, etc):

o(t) = e”

12



Check that e behaves as required:

y=¢x*xh = /dt’ ot —t)h(t)
— / dt' "= (t)

— est /dt/ e—st/h(t/)
= e H(s)

So¢p — ¢ H(s)
¢ = eigenvector H = eigenvalue

Note H(s) depends on s and h.

13



Two Kkinds of systems
Causal
h(t)=0fort <0

output now depends only on past values of input

H(s) :/ dt' e *'h(¢) Laplace transform
0

Acausal

h(t) not necessarily 0 for t < 0

0
H(s) = / dt' e *"'h(t')|,_s, Fourier transform

—00
Exponentials are useful for describing the action of a linear system because they “slide through” the
system. If we can describe the actual input function in terms of exponential functions, then determining
the resultant output becomes trivial. This is, of course, the essence of Fourier transform treatments of
linear systems and their underlying differential equations.

14



Convolution Theorem in the Transform Domain

Consider input — output

a et — a H(iw) e“' linearity
We can choose an arbitrary a, so let’s use
X(w) e — X(w) H(iw) e 4)

By linearity we can superpose these inputs. So integrate over w with a judicious choice of normalization

(1/27):
L™ o Xy et — L [0
-— w w)e -—
21 J_ 21 J_ o

dw X (w) H(iw) ™!
Let’s call LHS x(t) and the RH S y(t):

z(t) = % / dw X(w) e ylt) = 2i / dw X (w) H(iw) e

v

What is the relationship of X (w) to 2:()?

Multiply z(t) by e ™" and integrate to get

o0 . 1 ~ o0 , /
/ dt z(t) e ' = — [ dw X (w) / dt e'@=)t (5)

00 2m 00

15



Now the integral over ¢ on the RHS gives

o0 /
/ dt =t {O w7 w

0o oo w=w

1.e. just like a delta function. So (invoking the correct weighting factor, or normalization)

/ dt €@ = o1 §(w — W)

0,0)

Therefore the boxed RHS becomes

Therefore we have

and the inverse relation |

o(t) = o / dw X (w) e~ .

We say that z(t) and X (w) are a Fourier transform pair.
Going back to equation ?? it is clear that the FT of y(t) is the integrand on the RHS so
Y(w) = X (w) H(iw).

Usually we rewrite this as H(w) = H(iw) so

(6)

(7)

(8)

©)



Therefore, we have shown that

y(t) = x(t) =« h(t) convolution

Y(w) = X(w) Hw) multiplication
This product relation is extremely useful for

1. Deriving impulse responses of composite systems.

2. In discrete form (i.e. digitially) for implementing convolutions: w - domain multiplications can be
much faster than ¢ - domain convolutions

17



Fourier Transform Relations

Here we summarize the Fourier transform relations for a variety of signals. Let f(¢) be a continous,
aperiodic function and F'(f) be its Fourier transform. We denote their relations

ﬂw=/mwﬁqk%W

(0. ¢]

F(f) = / dt f(t)e 2™/t

as f(t) < F(f).

We need to consider the following functions: 1. The Dirac delta ‘function’
o(t)

2. A periodic train of delta functions (‘bed of nails’) with period A:

s(t,A) = EOO: d(t — nA)

n=—oo

3. The periodic extension f,(¢) of a function f(¢) defined using the bed of nails function:
fp(t) = f(t) = s(t,A) * denotes convolution
4. An aperiodic function f(t) sampled at intervals At:
fs(t) = f(t) x s(t, At)
5. The sampled and periodically extended signal:
Fult) = (1)  s(t, A1)

18



1D Fourier Transform Theorems

Function Fourier transform

1 = 3(f)

o(t) = 1

s(t) = i d(t —nA) — S(f)= A‘lié(f— k/A)  Bed of nails function

y(t) = a:i(t_) * h(t) = X(f_)ﬁ(f) Convolution

Co(r) = [dtz*(t)z(t+7) <— X (f))? Correlation

z(t — to) = e~ X (f) Shift theorem

eti2mfoly (1) = X(f - fo) Shift theorem

z(at) = a~'X(f/a) Scaling theorem

X(t) = z(—f) duality theorem

x*(t) — X*(=f) Conjugation

z*(t) = x(t) = X*(—f)=X(f) Hermiticity

S5 dt|x(t)? = [ df |IX(f)? Parseval’s theorem

dz P —

o — 2rmif X (f) Derivative theorem

[dt’ X(t) — (2mif) " X (f) Integration theorem

x(t) = Sampling theorem

S e, Sig:gﬁé (t_ngt) — ;xme%imf Sty <2£f> Bandlimited A f = half BW.
II(z) = rectangle function

xp(t) = x(t) * s(t) = X(£)S(f) Periodic in time

zp(t) = Z:ake%”'kt/A = A‘lzX(k/A)5(f —k/A)  Fourier series

where a, kE A7TX(k/A) ' 19
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Points

. You can bootstrap from a few basic FT pairs by using the FT theorems

. Narrow functions in one domain are wide in another (Uncertainty Principle, related to the scaling
theorem).

. Functions with sharp edges in one domain are oscillatory in the other (Gibbs phenomenon)

. Derivative theorem:

f(t) <= F(f)
Z—]; — 2mifF(f). (10)
. Integration theorem:
ft) <= F(f)
/tdt’f(t’ — (©2rif) " F(f). (11)

. Consider a noisy signal, like white noise (which has a constant average FTbut a realization of
white noise is noisy in both domains). Differentiation of the noise increases the high-frequency
components and thus increases the noise relative to any signal.

. Integration of the noise reduces the high frequency components. “Smoothing” (low-pass filtering)
of data is closely related to integration and in fact reduces high-frequency components.

21



Gaussian Functions

Why useful and extraordinary?

1. We have the fundamental FT pair:
—nt? —nf 2
€ — €

This can be obtained using the FT definition and by completing the square. Once you know this FT
pair, many situations can be analyzed without doing a single integral.

2. The Gaussian is one of the few functions whose shape is the same in both domains.

3. The width in the time domain (FWHM = full width at half maximum) is

B 24/1n 2

At N = (0.94
4. The width in the frequency domain Av is the same.
5. Then
AtAv = 41;12 —0.88 ~ 1.

6. Now consider a scaled version of the Gaussian function: Let ¢ — ¢/7. The scaling theorem then
says that

6_7(t/T)2 — Te_ﬁ(fT)2 )

The time-bandwidth product is the same as before since the scale factor 7' cancels. After all, AtAv
1s dimensionless!

22



7. The Gaussian function has the smallest time-bandwidth product (minimum uncertainty wave packet
in QM)

8. Central Limit Theorem: A quantity that is the sum of a large number of statistically independent
quantities has a probability density function (PDF) that is a Gaussian function. We will state this
theorem more precisely when we consider probability definitions.

9. Information: The Gaussian function, as a PDF, has maximum entropy compared to any other PDF.
This plays a role in development of so-called maximum entropy estimators.
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Chirped Signals

Consider the chirped signal ¢’ with w = wy + ot, (a linear sweep in frequency).
We write the signal as:
?}(t) _ eiwt _ ei(th—f—atQ).

The name derives from the sound that a swept audio signal would make.
1. Usage or occurrence:

(a) wave propagation through dispersive media
(b) objects that spiral in to an orbital companion, producing chirped gravitational waves
(c) swept frequency spectrometers, radar systems

(d) dedispersion applications (pulsar science)
2. We can use the convolution theorem to write
V(f) = FT{etme)
= FT{c"} + FT{cl)}

— §(f — fo) *FT {e“atQ)} .
3. The FT pair for a Gaussian function would suggest that the following is true:

i 42 a2
emt é ;emf.

4. Demonstrate that this is true!
5. Within constants and scale factor, the FT of the chirped signal is therefore

24



Three Classes of Fourier Transform

Fourier Transform (FT): applies to continuous, aperiodic functions:

f(t) _ /OO df 62m’ftﬁ1(f)

(0.9]

By = [ e

o0

2mift

Basis functions e are orthornomal on|—o0, 00]

00
/ dt 627rz'ft€—277ift _ (S(t)

0

Fourier Series: applies to continuous, periodic functions with period P:

f(t) _ ZGQWi(n/P)tFn

n=0

. 1 [P .
F = E/O dte—Zm(n/P)tf(t)

f(t) periodic with period P, orthonormal on [0, P]

P
/ dt GQWi(n/P)te—Qm(n’/P)t _ 571 o
0

25



Discrete Fourier Transform (DFT): applies to discrete time and discrete frequency functions:

00
sz _ E :627rmk:/NFn
n=0
N—

1
—2mink /N
E:e mn/fk

k=0

-1
F, = —
N

fi, F, periodic with period N,  orthonormal on [0, N]

T

27rink/N€—27Tink’

€ = 5/<;,/<;'

|
o

n

The Fourier transform is the most general because the other two can be derived from it. The DFT is not
“just” a sampled version of the FT. Nontrivial consequences take place upon digitization, as we shall
see.
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Fourier Series and Fourier Transform

2.1 INTRODUCTION

Fourier series is used to get frequency spectrum of a tinmeadtosignal, when signal is a periodic function of
time. We have seen that the sum of two sinusoids is periodiziged their frequencies are integer multiple
of a fundamental frequencyyp.

2.2 TRIGONOMETRIC FOURIER SERIES
Consider a signal(t), a sum of sine and cosine function whose frequencies argraiteultiple ofwg
X(t) = ag+ a1 cos(wot) + azcos(2wpt) + - - -
by sin (wgt) + by sin (2wot) + - - -

X(t) =ag+ i(an cos(nwot) + b sin (Nwot ) ) 1)
n=1

ap, ai,..., b1, by, ... are constants andy is the fundamental frequency.

Evaluation of Fourier Coefficients
To evaluateag we shall integrate both sides of egn. (1) over one pefigdo + T) of x(t) at an arbitrary
timetg

to+T to+T © to+T o to+T
/x(t)dt: / aodt + % an / cos(nwt)dt + 5 by / sin (nwot ) dt
to to n=lg =g

Since ;" cos(nwodt) = 0

to+T
/ sin (nwpdt) =0

1 to-i:T
=7 / X(t)dt 2)

To evaluatea, andby,, we use the following result:

to+T
/ cos(nwpt) cos(mwpgt )dt = {

to

0 m=£n
T/2 m=n#0

94
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Multiply eqgn. (1) by sin(mwpt) and integrate over one period

to+T to+T o to+T

/x(t)sin(r’rwot)dt:ao / sin(mvvot)dt+z /cos(nwot)sin(rrwot)dt+

n=1 {0

to+T

fo to

n= tO

5 to+T
by = = / X(t) sin (nwt )dt
to

Example 1:

1.0
R

_3; —2—1’ lo 1’ 2 |3 o

-1.0

Fig. 2.1.

T—-1tol T=2 Wo=Tl X1t)=t—-1l<t<l1

1 1
-1
ah =0

1
. —tcosTmt costmt]?!
bn:/tsmnntdt: —
. nm nrm 1

— 1
= ——[tcosmmt 4 costmt]*; = ———[2cOSTI+ COSTI— COSTY
Nt N

_ _/_1\n
bn — jcosnn: g |:(1):|
nm Tt n

by by bs bs bs bg
2 2 2 2 2 -2
T 2 3 4t 5m et

. 1 . 1. 1.
smnt—ésm 2nt+§sm 3nt—ZS|n4nt+---

=R

bn i i d
Zl /sm(nwvot)sm(nwot)t

(4)
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Example 2:
1.0 | | |
27 0 21 47 6m t
Fig. 2.2.
t 21
X(t) = — T=2m wo=—=1
©=27 0T T
21 A
1 1 (1 1
== [xt)dt=-= |[=t?| =3
& TO/() 4n2[2 L 2
2
2 /Ftcosmdt— 1 tsint+sinnt 2n
a”_4n2.0 2| n n |,
1 [2msin 2nt sin 20t
= —_— + —
212 n n
2 7T 1 rtcosnt t2n
. = cosnt cosm
b“—m[zo/ts'””td‘—zﬂ[ n -,
—1|2mcos 2amt cos At 1
:ﬁ + -
TE n n n
-1
by = —
" nm
1 =2/-1 1 121
t) == —)sinnt=Z+-F% = 2
X(t) 2+nl<nn)smnt 2+nn;ncos(nt+n/)
_}_} sint+sm2+sm3+
T2 0T 2 3
Example 3:
A | x(1)
2 -T4 4 TR t

Fig. 2.3. Rectangular waveform
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Figure shows a periodic rectangular waveform which is syirine to the vertical axis. Obtain its F.S.
representation.

X(t) =ap+ Z (an, cos nwiot + b, sin nwot )
n=1

X(t)=ao+ ) ancos(nwot) bn=0
n=1

-T -T
= f —_— —_—
x(t)=0 for 5 <t< 7

T

T
A for — <t<—
+ r4<<4

T T
0 for—<t< —
2°'<73%

1 o A
o=y [ Ad=3
—T/4
T/4
an = 2 / Acos(nwot)dt = A {sin nwoI +sin nwoI
T Tnwo 4 4
—T/4
an = ﬁsin (n—n> = %sin (nl[> Wo = 2—“
21 2 ™ 2 T
o A2
21 T
a=0
3n 2 3n 3

A 2A 1 1
x(t)—§+? (coswot—3cos Qvot+gcos Fwot+--->

Example 4: Find the trigonometric Fourier series for the periodic sigtt).

x(7)
1.0

fo— T —>

Fig. 2.4.
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SOLUTION :
1 —-1<t<«1
-1 1<t<3
3 1 3
—l/x(t)dt—1 [+ [ (v T—4
ao—_l_ =7 =
-1 -1 t
1 2 2nm 1
==[2-2|= . - — — — _
T(2-2=0 R
) 1 3
=T /cos(nwot)dt+/cos(nwot)dt]
-1 1
2{[23|n2}—[sin32 Si nzn]}
—i 3sin n—sinsﬂt sinsﬂT—sin(nJrﬂT)——sinﬂT
T onm 2 2 2 2) 2
4  /nm
a“_is'n(z)
0 n=even
an = — n=15913

— n=37,1115
nTt

x(t)—ﬂcos(gt)—icos 3—ﬂt +icos on —icos Lnt +ee
m 2 3n 2 51 2 7mn 2
X(t) = 4 cos(Et) - }cos 3—T[t + 1 cos 5—T[t

m 2 3 2 5 2

Example 5: Find the F.S.C. for the continuous-time periodic signal
X(t)=15 0<t<1
=-15 1<t<?2
with fundamental freqwp = Tt

x(#)
1.5

-1.5

Fig. 2.5.
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SOLUTION :
T 2T[ 27 WO =TI
Wo
ap=ay=0
bn=/l.55innntdt— / 1.5sinnmtdt
15
= ﬁ{ [ cosnmi+ 1] + [cos hrt— cosnTy }
3
by=—[1—
n m_[[ COSﬂT[]
31, 2 . 2 .
X(t) = o {23|nm+33|n3n1+53|n5m+...]
° sinm+}sin3nt+}sin5m+...
Tt 3 5
1 2
/1.5dt—1.5/dt ~0
0 1
OR

By using complex exponential Fourier series

1 2
1 | |
Co=3 [/ 1.5 Mgt 1.5/e"”mdt]
0 1

2

1
3 : .
= _4jnT[ e‘]nm 7efjnTII
0 1
-3 — jnm —j2nmt —jnT
= g &M 1o e
3 A 3
-2 e __° q_
2jm'[[ e 2jnT[[ cosnty
X(t) = C.e it
2,0
1 e jn ejnTII
n_z_w Zjnn T[]
Z 2]nn mt_ el cosm|
N=—o
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forn=1

I
N[>
O\:l

Tt
A
intsintdt = — [ (1— 2)dt
sintsin 2”0/( cos2)

Whenn is even

CA[2 27  2A
B n+l1 1-n| ml-m?)

Example 7:

z-ﬂ@ /

SOLUTION :

Point (a)(—1,-2)
Point (b)(1,2)

4
y+2= E(X‘i‘l)

y+2=2x+2
y=2x
X(t) =2t
Since function is an odd function
1

1
1
an—O,ao—T/12tdt—2><0—0

1
+ 5 cosnTt

‘ 1

T nTt

1
bn = %/tsin(nm)dt _2 [—tcosnnt
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2.3 CONVERGENCE OF FOURIER SERIES — DIRICHLET CONDITIONS

Existence of Fourier Series The conditions under which a periodic signal can be remteseby an F.S.
are known as Dirichlet conditions. F: Fundamental Period

(1) The functiorx(t) has only a finite number of maxima and minima, if any within .
(2) The functionx(t) has only a finite number of discontinuities, if any within fhe.
(3) The functiorx(t) is absolutely integrable over one period, that is

.
[Ixoldt <e
0

2.4 PROPERTIES OF CONTINUOUS FOURIER SERIES

(1) Linearity: If x1(t) andxz(t) are two periodic signals with periodwith F.S.C.C, andD, then F.C. of
linear combination ok, (t) andx;(t) are given by

Proof: If z(t) = Ax(t) + Bxa(t)
to+T

[ o= e
-1

/ &It i
o T
an = AC,+BDy
(2) Time shifting: If the F.S.C. ofx(t) areC, then the F.C. of the shifted signelt —to) are
FS[X(t —to)] = &71™0 9C,

=l

Lett—to=Tt

dt =drt

1 .
=2 [ x(t —to)e IMotdt
T / X(t=to)e

1

T
/X( )e jnwop(to+T) dr = / JnWOTd-[,e—jnWoto
T T

—|
—H

Bn=e€ ™5 -Cy
(3) Time reversal: FSx(-t)] =

1 n
B“:?/ X(—t)e~IMotgt — / t)e (=W it
T T

—t=1

dt = —dt

1 g
= _ J(=mwoTyr —
T 4 x(t)e” dt=C_,
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Example 8: Compute the exponential series of the following signal.

x(7)

2.0

1.0

-5 4 3 2 -10 1 2 3 4 5

Fig. 2.8.
SOLUTION :
T=4 wy= =
1 T 1 ; 2 3

0
1]/ —an Z
Cn=4|:/2€ 2dt+/ei"5“dt]
0 1

LT
1{—“ [em21] g{e_jnne_jng}}
4] jnmt jntt

. LT T

— — N1 ) —|n= — —INn= —
z.—l [2eTJ —2+e!M_e : 2] :_—1 [e : 2+e

2jnm 2jnm
1 1 n_ 1 _jnp 3 > 1 inZ
= jnn[l 2( 1) 5€ x(t)—4+nzz_oojmT e

Example 9:
x(1)
1.0
a b
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SOLUTION :
21
T=5 Wo = &
t+2 —-2<t<-1
Xt)=¢ 10 -—-1<t<1
2—t 1<t<?2
(a.) (_270)(_1a1)
-1
(y-1) = —(x+1)
y=t+2
(b) (1,1)(2,0)
y-0= 1 (x-2)
y=-—X+2=—-t+2
1 -1 1 2
Co=¢ /(t+2)dt+/dt+/(27t)dt
2 -1 1
3
Co=3

_ 1 2
cn:% /(t+2)e*iz%Tdt+/e*iz%"dt+/(2—t)eﬂ'2%‘dt
-1 1

A B C

-1 -1
A:/e*i%Itdt+/2e*j2%rtdt
2 2

-1 -1 -1
A—_L te‘j‘p/ +ie‘j“’/+i.ej2£1/
o A (02 A A

5 (fej%TJrZej%[)Jr 25 (eiz%rfej%[)f—lo
~j2nm 42T 2nT;j
5 2 (4 25 2 4
A= o (% a0 ) oo ()
i 2nmt i 2ntt
[ESEPRIEL - -
B= € 'ZH?[ ° = - > (e]z%_esz%)
j5" j2nm
- -10 (e_j%[ e_JZ%[>+ 10 e_j%[ 5 e_jZ%T 25 e_j%f 25 eJ%[
~j2nm j2nm j2ntt 42T 42T
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c -1 [25 (% o) 22 (¥ _eﬂ;")}

5 | n2412 N2

C —i cos Z—m —CO0S 4—m
" 2n2me 5 5

Example 10: For the continuous-time periodic signal

2 .
X(t) =2+ cos(St) +4sm(5,:t)

Determine the fundamental frequengy and the Fourier series coefficiefts such that

X(t) = i Crel ™ot

n=—oo

2 . (5
X(t) = 2+cos<;t) +4sm<;t>

The time period of the signal c¢&'t) is

SOLUTION :
Given

2n 2mn
Ty=— =7 =3sec
W]_ 2§
The time period of the signal s(B7t) is
TZ:ZE:Z—HzgseC

Wo 5% 5
Ty

5
T = % > ratio of two integers, rational number, hence periodic.
2 5
2Ty =5T>
The fundamental period of the signdt) is
T=2T, =5T, =6Ssec
and the fundamental frequency is

wao 2_2m_m
°" T "6 3

x(t):2+cos< nt)+4sm< )
)

= 2+ cos(2wgt) + 4 sin(5wot)

(ejZVV0t 4 e—jZ\Not> 4 (e]5Wot _ e7j5wot)
=+ -
2 2]

=2+

—=24+05 (ejZ\Not _"_eijWOt) _ 2] (ej5W0t _ efj5W0t>

X(t) = 2jeti(=5wet 4 o 5egti(=2Wot | o4 0 5t it _ pjgtiSwot
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2( 2 2 4 4 n
B n{nzn+nchosnt} = i 100 = g (- (1)
0 neven24, 6,8, -
an:
% nodd1 3,5, 7,---

2.5 FOURIER TRANSFORM

2.5.1 Definition
Letx(t) be a signal which is a function of timie The Fourier transform of(t) is given as
e Mt (1)

X X

Fourier transform or

(t)
X (i x(t)e 12 g 2)

(w) = |
iH=/
Sincew = 2rtf

Similarly, x(t) can be recovered from its Fourier transfaxtjw) by using Inverse Fourier transform

o0

x(t) = %_[/X(jw)ej"‘”dw 3)
X(t) = /X(if)eiZ"“dt (4)

—00

Fourier transformX(jw) is the complex function of frequenay. Therefore, it can be expressed in the
complex exponential form as follows:

X(jw) = X (jwlel

Here|X(jw)| is the amplitude spectrum aft) and 20" jg phase spectrum.
For a real-valued signal

(1) Amplitude spectrum is symmetric about vertical ax{gven function.)
(2) Phase spectrum is anti-symmetrical about vertical @tagld function.)
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2.5.2 Existence of Fourier transform (Dirichlet’s conditi on)

The following conditions should be satisfied by the signaititain its F.T.

(1) The functionx(t) should be single valued in any finite time inter¥al

(2) The functiorx(t) should have at the most finite number of discontinuities infarite time intervalT.
(3) The functionx(t) should have finite number of maxima and minima in any finiteetimervalT.

(4) The functiorx(t) should be absolutely integrable, i.e.

/|x(t)|dt <o

e These conditions are sufficient, but not necessary for tireasio be Fourier transformable.

e A physically realizable signal is always Fourier transfaiite. Thus, physical realizability is the
sufficient condition for the existence of F.T.

e All energy signals are Fourier transformable.

o X(w) = FT (tx(1)
FT (1) = | o X(jw)

Example 12: Obtain the F.T. of the signa 2 u(t) and plot its magnitude and phase spectrum.

SOLUTION :
x(t) = e 2u(t)
X(f) =[xz — [ e @iz
— o0 0
1

B a+ j2nf

X(f)
To obtain the magnitude and phase spectrum:
_a—j2nf a . 2nf
X0 = a2+ (2nf)2 <a2+4n2f2>A : (a2+4n2f2 B

IX(f)] = A2+ B2 = ! !

Ja@ L Aef2 Jawe
IX(f)] = tan ! {_i"f] — tan? (‘iv)

a
1 X(f
fora=1, |X(f)] = ——, X _ _ antw
1+w2
w ol1 |2 3 4 5 10 15 25 8

[X(w)] | 1| .707 | 0.447 | 0.316 | 0.242 | 0.196 | 0.09 0.066 | 0.03 0

[X(w) | 0| 45° —-634 | —715 | —759 | —786 | —842 | —862 | —87.7 | —9O°
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ed t>0

(ii) x(t)e—atl{eaI (-0

ol

Fig. 2.13. Graphical representation ef @l

X(W) = 1 n 1 2
Catjw a—jw  aZ4+w?
2
fora=1X(w)=-—-—
(w) 1+w?
2 [X(w)
X(w)| = =0
XW)| = 2
w (in radians) | —c | —10 -5 -3|-2|-1]0|1]|2 3 4 5 10 00
X (w)] 0 0.019 | 0.0769| 0.2 [ 0.4 | 1 2[1]04]02].11276 | 0.0769| 0.019
1IX(w)l
2.0
-10.... -5 -4 -3 -2 -1 10w

Fig. 2.14. Magnitude plot
(i) x(t) = e sgn(t)

x(f) = e-a i sen(0)

1.0 k

N 10

Fig. 2.15. Graphical representation ef atlsgn(t)
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(i) X(t)=1
X(W) = /eﬁthdt =00

This means Dirichlet condition is not satisfied. But its Fedn be calculated with the help of duality

property.
3(t) <151

Duality property states thax(t) LN X(w) then
X(t) <15 2mx(—w)

HereX(t) =1, then x(—w) will be
thenX(t) =1; 10 2m3(—w)

We know thatd(w) will be an even function o, since it is impulse function.
Hence,d(—w) = d(w). Then above equation becomes

1.4 21(—w)
Thus, ifx(t) = 1, thenX(w) = 21d(w)

(ii)) x(t) = sgn(t) sgrm:{{l iig }

sgn(?)

Fig. 2.17. Graphical representation of sgh

X(t) =2u(t) -1
Differentiating both the sides

Taking the F.T. of both sides

dt
jwX(w) =2
2
(W) = w
o 0
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(iv) X(t) = u(t)
sgnt) = 2u(t) —1
2u(t) = 1+sgnt)
Taking F.T. of both sides

2F[2u(t)] = F(1) 4+ F[sgnt)] = 2md(w) + 2

2u(t) <5 2m(w) + J%v
FT 1
u(t) — to(w) + w
Properties of unit impulse:

@ [ x)30) =x0)
(2) x(t)3(t —to) = X(to)d(t —to)

® / X(1)8(t —to)dt = X(to)

(4) 3(at) = L3(1)

) / X(T)8(t —x)dt = x(t)

(6) 8(t) = gu(t)
Example 15: Obtain the F.T. of a rectangular pulse shown in Fig. 2.18.

x(1)

=772 0 12 ¢

Fig. 2.18. Rectangular pulse

SOLUTION :
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Sampling function or interpolating function or filteringrfction denoted bys;(x) or sinc(x) as shown in
figure.

sinTx
sinc(x) =

X) = 0 whenx = £nmt

(2) sinc(x) =1 whenx = 0 (using L'Hospital’s rule)

(x) =

(x) =
(3) sinc(x) is the product of an oscillating signal strof period Ztand a decreasing S|gn§J Therefore,
sinc(x) is making sinusoidal of oscillations of periogt&ith amplified decreasing contlnuouslyés

sin ¢(x)

AN

—475\\—43,t —ZR\/—R 0 n\/Zn 3n\/41t 51 X

Fig. 2.19. Sine function

sincx = %[X; sinc(0) = g =1 L'Hospital rule

sinc(1) = %T =0; sinc(—1)=0

sinc(2) = 0; sinc(—2) =0
sinc(1/4) =0.9 sinc(—1/4) =0.9
sinc(2/4) = .6366 sirc(—0.5) = .6366
sinc(3/4) = 0.3 sinc(—7.5) = .3
sinc(1.5) = —.2122 sirc(—1.5) = —.2122
sinc(2.5) =.1273 sirg(2.5) =.1273

35 3 25 LSSl -5 -5 -5

Fig. 2.20. Sine function
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Example 17: Obtain F.T. and spectrums of following signals:
(1) x(t) = coswpt (i) x(t) = sinwpt

SOLUTION :
(i) 1 oiwet . 1 jwet
X(t) = coswpt = —el"o" - Zg™ "0
2 2
1
150 21d(w); > Rl TO(W)

Frequency shifting property states teix(t) <~ X(w— p)
%ej‘”ot FLL 1w —wo)

1 .
ée‘JWOt FL, (W wo)

F ()] = FT {;ej‘”ot + ;e‘j""f’t}

X(w) = Tt[d(W —Wp) + O(W -+ Wp)]

—Wy Wo w
Fig. 2.22. Magnitude plot of cosipt
(ii) X(t) = sinwpt

mm:?wm—%y@m+mn

Wo w

Fig. 2.23. Magnitude plot of simvpt

119
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Example 18: Obtain the F.T. of

X(t) = te"u(t)
from property of Fourier transform Ftk(t)] = jd%VX(W)
FT[e®] = L
a+ jw
Freey—j 4 (L1 ) (a+ jw) (1) .fldiw(aJr w_ 1
dw \ a+ jw (a+ jw)? (a+jw)?
Inverse Fourier Transform: (IFT)
Example 19: Find the IFT of
B X(w) = % by partial fraction expansions
(i) X(w)= a+]w > by convolution property
i)y X(w) = e M
(iv) X(w) = e Vu(w)
SOLUTION :
(i) __A B S
X(w) jw+2+(1w+2)2’2]W+1 A(jw+2)+B A=2 2A+B=1 B=-3
2 3
XW) =2 Gwrap
X(t) = 26~ 2u(t) — 3te~2u(t)
W) (a+jw)?2  (a+jw)(a+ jw) L(W)Xe(W)
1 1
W= i oM = i w
x1(t) = e u(t), xo(t) = e u(t)
Using convolution property
X(t) = xq.(t) " %2(t)
X(t) <15 X(w)
X1 (1) Xa(t) < X (W) Xa(W)
7 ut) =11<0

X(t) = / e 2u(t)e 2Dyt — 1)dr { =

ut—-1)=1 t<rt
t

:/e’ath:te’aIu(t)

0



122 e Basic System Analysis

Example 20: Find the F.T. of the function
X(t—to) = e "u(t —to)

SOLUTION :
If F[x(t)] = X(w)

then FTx(t —to)] = e~ MoX (w)

Example 21: Find the F.T. of the function
X(t) =[u(t+1) —u(t —1)]cos At

SOLUTION :
FT(cosat) = FT(ejZMZe_jm)
FT[1] = 2rd(w)
FT[e/"o!] = 2md(w — wp)
F[cos 2] = (1w — 2m) + Tid(W+ 211) (1)
1 .
Flut+1)—u(t—1)] :/e*iV“dt:_j%v(efjw_GJW) _ ZS%V @

-1
Fx(t)] = F[{u(t+1) —u(t —1)} cos 2t]
X(t) is multiplication of (1) and (2), so by using multiplicatigmoperty

XOY) < 5w Yaw) = 5 [ X@Yw-1dr

21 T om

X(W):%_[ /ZSTmTTtE)(W—Zn—T)+6(W+2ﬂ—T) dt

—00

X(W):/Sltﬂé(w—Zn—r)dH—/?6(W+2ﬂ—ﬂdr

—00

0

Since / X(1)3(t — to)dt = X(to)

—00

X(w) = sin(w— 2m) /(W — 211) 4 sin(w+ 211) / (W + 211)
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Example 22: Determine the Fourier transform of a triangular functiorslaswn in figure.

x(7)
A

-T T t

Fig. 2.24. Triangular pulse

SOLUTION :
x(2)
(0, 4)
@, [@
(-T7,0) (T,0) t
Equation of line(a) is
t
X(t) = A (? + 1)

Equation of line(b) is

Mathematically, we can writg(t) as

X(t) = A(% +1) [ult+T) — u(t)] + A (1- %) [u(t) —u(t—T)]

X(t) = 2T ut+T) —un)] + 21 - ofu) —u 1))
X(t) = Té{(tﬂ)(ﬂ) (t+T)u } ?{ T t)u(t)f(Tft)u(th)]}
) = 2 e ) —tu) ~Tun b+ 2 {Tuw e +re-1))
= 2frer ) —r - Tun b+ 2 {Tuw —r +re-))
:$Hr(t—i—T)—Zr(t)—H(t—T)H
i =2 e~ e+ (e
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1 -3<t<}
(1) = rectt) = { 0 otﬁerwise2

1 -3<t-5<%
_5) = 2= 2
rec(t—5) { 0 otherwise

11
<t<i

NI©

0 otherwise

1
rectt —5) = {

[e9]

—jwt [11/2
9/2 9/2
e B _ oW gojy-etll
- —jw jw

e 5iWaiW/2 _ g-5iwg—jw/2  pg-5iw (ejW/Z - efJ'W/Z)
jw - W2

—5jw . inw
_ 2e sin? _ g-5iw sin3
w 2

w
2

iw) — e 5iwg, (W
X(jw) = e s (3)
2.6 PROPERTIES OF CONTINUOUS-TIME FOURIER TRANSFORM
(1) Linearity
IFFT (xu(t)) = Xa(jw)

and FT(x(t)) = Xa(jw)
Then linearity property states that

FT(AXl(t) + BXZ(t)) = AXJ_(]W) + BXZ(jW)
whereA andB are constants.

Proof:

Letr(t) = Axy(t) + Bxa(t)

WMW=%M=/mem

0

:/(Axl(t)—i—sz(t))e*j"‘”dt

—00

125



Fourier Seriesand Fourier Transform e 127

= / x(1)e 1 (“WTdr

F(x(t)) = X(=iw)

(4) Time shifting

If FT (x(t)) = X(

iw)
then FT(x(t —to)) =

e WoX (jw)
Proof:
Letr(t) = x(t —to)
R(jw):/r(t)e‘j‘“’tdt:/x(tfto)e‘j""tdt
R(jw) = FT(X(t —t0)) = / X(t — to)e~ "t
Lett—top=T1 dt =drt

00

FT (X(t —to)) = / X(T)e Mo+ g

—o0
00

= /x(r)e*j‘”te*j"“‘)dr
—o0

—e Mo / X(T)e "idt

FT (X(t —to)) = e ™oX (jw). Similarly, FT (x(t +to)) = el"oX(jw)
So FT(x(t £tg)) = e 1"™oX (jw)

(5) Frequency shifting
IFFT (x(t)) = X(jw)

FT (€"0'(t)) = X (j(w—wo))

Letr(t) = eWo'x(t)

FT (r(1)) = FT (e"'x(t)) = R(jw) = [ e'x(t)e ek

FT(e"ox(t)) = / x(t)e~I(W-Woltgg
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Letw—wg=w

0

= / x(t)e Widt

—00

FT (e"'x(t)) = X(jw) = X(j (w—wp))

Similarly, FT(e1"otx(t)) = X(j(W+wp))

We can write as Fe™"0'x(t)) = X(j(w=Fwo))

(6) Duality or symmetry property
IFFT (x(t)) = X(jw)
then FT(x(t)) = 2mx(—jw)

Proof:
We know thatx(t) = 2 [, X(jw)e/"dw
Replacing by —t, we get

oY)

X(—t) = i/X(jw)e*j‘"’tdw

—o00

oY)

omx(—t) = —E/X(jw)e’j""tdw

—00

[e9]

orx(—t) = /X(jw)e’j"‘”dw

—00

Interchanging by jw

21X(— jw) = /X(t)e’j"‘”dt

—00

2x(—jw) = FT(X(1))

(7) Convolution in time domain
IfFT (x1(t)) = Xe(jw) and FT(x2(t)) = Xa(jw)
then FT(x1(t)*X2(t)) = Xa(jw)Xa(jw)
i.e., convolution in time domain becomes multiplicatiorfiequency domain.
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Proof:

/ (/ xl(r)xz(t—r)dT) e "t
://xl o(t — T)dT & Mt

= /xl(r)dr/xz(t—r) e 1"t

Lett—t=0sodt=d O
FT[xl(t)*xz(t)]:/ ()dr/ o(0) & ME+0g

—00 —00

00 0

= /xl dr/xz(D)e W g=iwtg

—00

0

= /xl Ye J"‘"dT/Xg(D) e "Ud O

—00

FT X (t)"%2(t)] = X1 (jw) Xo(jw)

(8a) Integration in time domain

IFFT (x(t)) = ( w)
then FT( /', x(1)dt) = jw)
X(

Proof: Letr(t)= [, T)
Differentiating w.r.t.t

dr(t) d
. =X(t) = FT(x(t)) = FT(dt (t))
From differentiation in time domain

X(jw) = jwX(jw)

R(jW) = 5 X (W)

t
FT(r(t)) =FT (/ x(r)dT) = j%VX(JW)

— 00
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(8b) Differentiation in time domain
IFFT (x(t)) = X(jw)
then($x(t)) = jwx (jw)

Proof: We know thatx(t) = %{ / X (jw)e™dw. Differentiating both sides w.r.t.

—00

d 17 d ;
-~ - = : M aiwt
dtx(t) Zn/X(jW) (dte )dw

1 i
= — / jWX(]W)e dw

—00

l [ee]
2—/ (WX (jw))e"dw

d S .

GO =1 FT (X (jw))

yields FT($x(t)) = jwX(jw). On generalizing we get F(%x(t)) = (jw)"X(jw)
(9) Differentiation in frequency domain

IfFT (x(t)) = X(jw)
then FT(tx(t)) = j X (jw)

Proof: We know thatX (jw) = [ x(t)e~1"™dt
On differentiating both sides w.riv

(;?Nx(jw)_/wx(t) <£Ne—iwt> dt—— [ jtxe Mat

—00 —00

Multiplying both sides byj

]diwx(JW) /(tx(t))e_jwtdt sincejZ= —lor—j2—1

o X(jw) = FT{tx(0)

. d .
FTItx(t)] = | 5 X(1w)
(10) Convolution in frequency domain (multiplication in time domain (multiplication theorem))
If FT(x1(t)) = Xg(jw) and FT[xz(t)] = Xa(jw)

FT(xa(t)x(t) = %T(Xl(iw)*xz(iw))
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Proof:

E/w’x(t)zldt/w‘x(t)x

0

We know thatx(t) 21T[/X (jw)et ™ dw

—00

[oe]

Sox*(t) = %{ /X(jw)e*j"‘”dw

on putting (1)

_ /x(t) lle[/X*(jw)ei‘“”dw] dt

x(t)e" Mdt dw

Bl
—
%
E.
;3\8

:/|x ?|dt = /|XJW

Relation between Laplace Transform and Fourier Transform
Fourier transfornX(jw) of a signalx(t) is given as

[oe]

X(jw) = /x(t)e’j"‘”dt

—00

F.T. can be calculated onlyx{t) is absolutely integrable

= [ Ixt)fdt <o

Laplace transfornx(s) of a signalx(t) is given as

We know thats= o+ jw

/X e (O+iwWt gy

X(s) = / [x(t)e ] e ™t

—o00

t)dt

@)

)

@)

)

®3)

(4)



Fourier Seriesand Fourier Transform e 133

Comparing (1) and (4), we find that L.T. ®ft) is basically the F.T. ofx(t)e~°!].

If s= jw, i.e.0 =0, then eqn. (4) becomegs) = [ x(t)e Mdt = X(jw)

Thus,X(s) = X(jw) wheno =0 ors= jw

This means L.T. is same as F.T. whes jw. The above equation shows that F.T. is special case of L.T.
Thus, L.T. provides broader characterization comparedTio $= jw indicates imaginary axis in complex
s-plane.

2.7 APPLICATIONS OF FOURIER TRANSFORM OF NETWORK ANALYSIS

Example 24: Determine the voltagé, () to a current source excitatiaft) = e tu(t) for the circuit shown
in figure.

+

1
l(t) 1Q — EF Vout(t)

Fig. 2.26.

SOLUTION :

Vi [l *
i(?) 1Q ZZ%F Vou(?)

i(t) =ia(t) +iz(t)

(= Youl0) 1 0%ult

iV
{SII’]CGI—R

i ~dv _ 1
andi = cG{ orv= z [idt

. 1 dVou (t)
t o - out
e u(t)_Vout(t)+2 p 1)
On taking thez-transform on both sides
1 . jwl _ (2+jw) .
1+jW_Vout(Jw){1+2}— 5 Vout (jw)
. 2 A B
Vout (JW) = - — = - -
ou (JW) A+ jweLjw  1+jw 2+ jw
. 2
Vou W)= 1w ™ 2 jw
A2+ jw) +B(1+ jw) =2
2A+B=2

A+B=0s5A=-B
2A-A=2, A=2B=-2
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Vo(jw) = - - :
o(jw) = 6(jW)2+7(jw)+1 - (6jW+1)(jW+1)
. 1/3 __A LB
Vo) = G i) Gwr ) Lijw ' Trjw
Vo(jw) = : : X

5(3+ijw) 5(1+jw)
Taking inverse Fourier transform, we get

Vo(t) = g (e’t/6 - e") ut) ®6)

Example 26: Determine the response of current in the network shown inZ&$(a) when a voltage having
the waveform shown in Fig. 2.28(b) is applied to it by using Hourier transform.

1Q v(t)
MW
() 1F—
0 b wt
() (b)
Fig. 2.28.

SOLUTION :
WaveformV (t) is defined as
V(t) =sint(u(t) —u(t —m)) Q)

1Q
W\
u(f) %) C(;)\' @ — IF

Leti(t) be the current in the loop. Applying KVL in loop

t t

V(t):1-i(t)+%/i(t)dt:i(t)+/i(t)dt @)

0 0
On taking Fourier transform of
. 1 g imw
YW= w1 Gz
Since FT sintu(t)] = (va)12+1
e i

FT[sintu(t —m)| = GwZil
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Solve using F.T. formula

viw = e ©
V(i) =1 () + 1 ()

Vi = (14 ) 1w = 5 )

(1) = V() @
W = YA ™) )

T wt1l (w21

|(jw) = 37 { S e }
MW= Swi1 \Gwzr1 " w21
jw 1 jw 1

~wr D (wEeD T wr D Gween S
[1(jw) l2(jw)
A Bjw+c

(W) = 51 Gwez D

~1/2  3(jw+1)
(jw+1)  ((jw)?2+1)
1

. 1 1 . 1 .
i(t) = —ée*tu(t) + 5 costut + ésmtét + ésmtu(t)

Since IFT{ ﬁm} = sintu(t)

) IFT(UWj)i"ZVH) = 3 sintu(t)
Using differential in time domain property
jw .
. jw 1 s
[ S R LW
20 = Gar ) (w1 ®

l2(jw) = I3(jw) - e ™

Since I3 =11(jw)
so i(t) = —%e‘tu(t) + % costu(t) + % sintd(t) + %sintu(t)
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From time shifting property FTX(t £tg)) = €510 x (jw)
i2(t) =ig(t—m)

1 n 1 1 1
=-5e (t >u(t—Tr)+Ecos(t—n)u(t—Tt)+§sm(t—n)6(t—rr)+§sm(t—n)u(t—n)

so  i(t)= % — [~e ' +cost +sint] u(t) + %sinté(t) + % —e T 4 cogt — 1) + sin(t — n)} ut — T+

%sin(t (- )

Example 27: For theRC circuit shown in figure.

o f

O CF 0

Fig. 2.29.

(a) Determine frequency response of the circuit.
(b) Find impulse response.

(c) Plot the magnitude and phase responsé&foe 1.

SOLUTION :
Applying KVL in loop (1)

i(t)dt 1)

andy(t) = é / i(t)dt 7



Fourier Series and Fourier Transform

A=B-C
. 1
H =
[RGw| 1+w?

H(jw) =1—(1+ jw)

0
—tan?! 1 tan tw= —tan tw

For different values o, we find|H (jw)| andH (jw)

S. No w [H(jw)]| H(jw)
1- —00 0 90
2— —50 0.0199 88.9
3— -20 0.0499 87.r
4— -10 0.099 84.3
5— -5 0.196 78.7
6— -2 0.447 63.4
7— -1 0.707 45
8— 0 1 0

9— 1 0.707 —45
10— 2 0.447 —63.4°
11- 5 0.196 —78.7°
12— 10 0.099 —84.3°
13— 20 0.0499 —87.1°
14— 50 0.0199 —88.9°
15— 0 0 -9

~50 —40 —30-20-10 0 10 20 30 40 50 w

Fig. 2.30. Magnitude plot frequency response of the circuit

139
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ZH(Gw)
4 900

1 450

50 —40 =30-20-10 | 910 20 30 40 50 w

—45°4

-90° 1

Fig. 2.31. Phase plot

Example 28: For the circuit shown in figure, determine the output voltege) to a voltage source excitation
Vit) = € 'u(t) using Fourier transform

Vinl) @ 17 8 )

Fig. 2.32.
SOLUTION :
SinceVin) = e"u(t) €
1
Vin(jw) = 1+ jW (2
Applying KVL in loop (1)
. di(t
Vinty = 2(t) +1- %
: di(t
Vi) = 2(t) + T(t) ()
di(t
Vo(t) = 1- %
di(t
Vo(t) = ) (4)
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Q3: (i) State and prove the following properties of Fourier sgri
(a) Time shifting property (b) Frequency shifting property
(i) What are Dirichlet’s conditions?

Q4: Find the fundamental periof, the fundamental frequenayw, and the Fourier series coefficierssof
the following periodic signal;

Fig. 2.3 P.
Q5: Obtain the Fourier series component of the periodic square\signals.

x(7)
1

=772 | -T/4 0 T4 |12 t

Fig. 2.4 P.

Q6: Determine the Fourier transform of the Gate function

x(?)
A

=172 T2 t

Fig. 2.5 P.

Q7: Determine the Fourier series representation of the signal

M) = t—t2for —m<t<m
~ 1 0 elsewhere
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Q8: For the continuous-time periodic signal
X(t) = 2+ cod2mt /3] + 4 sin5mt /3]
determine the fundamental frequengyand the Fourier series coefficiel@s such that

x(t) = z C,elnwot

Nn=—oo0
Q9: Find the Fourier transform of the following signals:
@xt)=31) (B)xt)=1 (o)x(t)=sgn(t)  (d)x(t)=u(t)
(e) x(t) = exp(—at)u(t) (f) x(t) = cos|wot] sin [wot]
Q10: Show that the Fourier transform of re¢t—5) is Sa(w/2) exp(j5w). Sketch the resulting amplitude
and phase spectrum.

Q11: Find the inverse Fourier transform of spectrum shown in &gur
ZX(w)
/2

| X(w) |

—1/2

—Wo wWo W

(@) ()

Fig. 2.6 P.
Q12: Find the Fourier transform of the following waveform.

x(7)
1

Fig. 2.7 P.

Q13: State and prove duality property of CTFT.

Q14: Determine the Fourier transform of the signal
X(t) = {tu(t)*[u(t) —u(t — 1)]}, whereu(t) is unit step function ant denotes the convolution operation.
Q15: Show that the frequency response of a CTLTIS (&) = H (w)X(w)
whereX(w) = Fourier transform of the signa(t)
H(w) = Fourier transform of LTIS respon$gt)
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Q16: Find the Fourier transform of the signgt) shown in figure below.

x(7)
A

0 T 2T t

Fig. 2.8 P.

Q17: Determine the frequency resport$€jw) and impulse responsgt) for a stable CTLTIS characterized
by the linear constant coefficient differential equatiovegi as

d?y(t)/dt2 + 4dy(t) /dt + 3y(t) = dx(t)/dt + 2x(t)

Q18: Find the Fourier transform of the signglt) shown in figure below.

x(7)

Fig. 2.9 P.

Q19: If g(t) is a complex signal given by(t) = gr(t) + joi(t) whereg(t) andgi(t) are the real and
imaginary parts of(t) respectively. IfG(f) is the Fourier transform af(t), express the Fourier transform
of gr(t) andgi(t) in terms ofG( f).

Q20: Find the coefficients of the complex exponential Fouriefesefor a half wave rectified sine wave
defined by
X(t) = Asin (wgt), 0<t < T0/2
- 0, T0/2 <t<Ty
with x(t) = x(t + To)

Q21: (a) Show that the Fourier transform of the convolution of signals in the time domain can be given
by the product of the Fourier transform of the individualrgits in the frequency domain.

(b) Determine the Fourier transform of the signal

) = 3 [se+vroe-2+3 (143 )5+ (1-3)]
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Qs3:

Q4.

x(7)

N
R

T=1
W = 2mtrad/ sec

:u(
X2 — X1

y-y1 X=x)

X(t)=-2t+1
to+T
2
= / X(t) cosnwt dt
to

an=0

x(7)
1.0

=772 | -T/4 74 | T2

x

—~~

—

N

I
p——
|
=

—~ I

INEEINE

g
Il
Js\‘iﬂ [BN
\M—!
o
~+
+
bH\m\—i
0
=
o
=
|

|
-
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T T
*E /4 8m-[dt/zco 8ﬂ-[tdt
& =37 3T 3T
_T T
z 7
= i 33in2ﬂ[ sin@
&= 3 3

b, = 0, since even function

x(t)—}+} Ssinz—n sin4—n+§sin4—n }sinB—n—s—
T3 0T 3 3 2 3 2 3
Q5:
x(7)
A
=172 72 t

A-p<t<y
X(t) =
0 elsewhere

.
2

i 2A . wl AT . wT

X(jw) A/Te dt W SN = g sin—

2
2

X(if) = AT sincfT

Q6:
To = 21T
wo = 1;
T
1 2 —1¢
ao_gt/(t—t ) dt =

1 4
an = ﬁ/ (t—t?) cosntdt = —

—T

T
1 h ey _ 2=
b”_n/ (t—t%) sinntdt = -

—T
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Taking inverse Fourier transform

1/ 1— elwot
xi(t) = 51/ —j eMdw o
0
0 .
" 1— e IWot
X(t) = / j eMdw =
e 21t
X(t) = X (t) + Xa(t) = %(1—@%‘ +1- e it
1 2sirf Yot
=_—(2-2 = 2
2nt( COSWot) -
Q11:
x(7)
1.0
-b  -a 0 a b t
bbb for-b<t<-a
xt)=< 1 for—a<t<a
b for a<t<b
. 2
X(jw) = m(coswa—coswb)
Q12:

X(t) =tu(t)*[u(t) —u(t —1)]
x1(t) =tu(t) X2(t) = u(t) —u(t—1)
Differentiating in frequency domain property

FTI(X() = | X (W)

Xu(jw) =

(jw)?
/ 1

Xo(jw) = /1.e’i""tdt — S (1-eiw
0 W

X(jw) = Xa (jw)Xz(jw) = (1—e %)

1
(jw)

149
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Q13: Prove convolution in time domain property.

Q14:
x(?)
4 (4
0 T 2T ¢
(0,0
At 0<t<T
— T
X(t)_{A T<t<2T
A T 2T
X (jw) = T/te-imdt+A/e—imo|t
0 T
. T T . .
—jwt — jwt —jwt
X(J'W):é [te_ /—/e.dt] +A[e. 2T ]
T —jw jw —jw | T
0 0
A(TeM 1, e 1T _ g IwWT
== (M)A =
T{—jw+w2(e )}+ { “jw }
e - A ,
— T (o WT Y A WT (o jwWT
A{_jW+W2T (e 1)} e T (e T 1)
_ AT A et A At At
jw w2T w2T  jw jw
A (L _ L e
wT \w W
Q15:
dy(t)  dy(t) dx(t)
4 — 2 1
G A ) = 20 (1)

Taking Fourier transform on both sides
(JW)2Y (jw) +4(W)Y (jw) +3Y (jw) = (jw)X (jw) +2X(jw)

((Jw)?+4(jw) +3) Y (jw) = ((jw) +2) X (jw) 2
Frequency responseé(jw) = ;{(8\;\3 = (jw)ZZiZJL\J'NWJFB 3)
H(jw) = 2+ jw A B

Griw(lrjw  3+jw 1+jw
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, T
X(t) = Asinwgt for 0 <t < EO

T
=0 forzogtho
To
2
17 . A [/ —coswpt | To
=_— [ Asinwptdt = — | — | 2
CO TQO/ 0 To( Wo 0 )

A To A A
=——— |coswp- — — 1| = ———[cosm—1] = =
To%’;[ 02 } ol 1=

To

1 2
C,= —/Asinwote*J"WOtdt
To /

To
2

/(ejwot _ e*inWOt)e*jnWotdt

T 2iTo.
Jo0

To

2

A / (ejwot(lfn) _efjwot(n+1)) dt

~2iTo

J'lo 5

A ejWot(l—n) e—jWOt(rH'l) %
©2jTo \ jwo(1-n)  —jwo(n+1) |0

A [ewl-nY  oiwnin® g 1
i-n °© (n+1)  1-n n+1

~ 2jTowo

B A ej m(1-n) e jm(n+1) 1 1
S n+tl1 1-n n+1
A [T gmiM g 1 1
“Tam\1on T nx1  1on n+d

Sinceel™= —1

A [(—elm eimt g 1
41'[( 1-n n+11—nn+1>

A 2e—J'mT+ 2
S 4m\1-n2  1-n?

e 1My 1)

- 2m(1-n?) (
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)= 3 (800 +ae-2+5(t+ 3 ) +5(1- 1))

Taking Fourier transform on both sides

Q19:

X(jw):/wx(t)ej""tdt (1)
X(jw):/w;(6(t+1)+6(t—1)+6<t+;)+6<t—;)>ethdt
X(jw):;(]oé(t—i—l) J‘Mdt+/ (t—1 J"‘”dt+/006( ) e 1"t

— 00 —00

Jofe-3)era)

Since FTo(t)) =1

So FT3(t+tg)) = e ™odt  {using time shifting property

. 1 ; i P w Fw
X(jw) = 5 (el""+e*"”+e’? +e*17)

: w
X(jw) = cosw+ cos;

OBJECTIVE TYPE QUESTIONS

Q1: If the Fourier transform of a functiox(t) is X(jw), thenX(jw) is defined as
(a) [Z,x(t)eMdt (b) /=, 2l g-imgy

(c) [Z.x(t)dt (d) [ x(t)e" Mdt
Q2: If X(]
(a) x(t)
(c) x(t) =

Q3: Fourier transform ok(t) =1 is
(a) 2rd(w) (b) TL3(W) (c) 3rtd(w) (d) 4118(W)

w) be the Fourier transform oft), then
= s S X(WeMdw  (B) x(t) = 5 [ X (jw)e Mdw
x oo X(jw)eMdw (d) x(t) = & [ |

Q4: Fourier transform ok(t —'to) is .
(@) e ™oX(jw)  (b) @™oX(jw)  (c) gX(iw)  (d) toe ™oX(jw)

e 153
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Q19: The trigonometric Fourier series of a periodic time functi@mve
(a) sine terms (b) cosine term
(c) both (a) and (b) (d) DC term
Q20: Fourier series is defined as
X(t) =a,+ ¥ (ancosnwot + by sinwpt)
n=1
(a) True (b) False

Answers: (1) d (2) a 3)a 4 a B)b
(6) c (M) a (8)a (9) a (10)d
(1) c (12)b (13)b (14) a (15) a
(16)a (17)e (18) c (19)c (20) a

UNSOLVED PROBLEMS
Q1: Show that the Fourier transform rft) = 8(t +2) 4 8(t) + 8(t — 2) is (14 2cos 2w).

Q2: Show that the inverse Fourier transform Xfjw) = 2md(w) + 1o(w — 411) 4 TO(W + 417) is X(t) =
1+ cos 4t.

Q3: Calculate the Fourier transform t# ', using the F.T. pair, Ffe "] = 2. Also find the Fourier
4t

transform ofm using duality property.
Q4: X(jw) = d(w)+d(w— 1) + &(w—>5); find IFT x(t) and show thax(t) is non-periodic.

Q5: Find the Fourier transform of the triangular pulse as shawfigure.

x(7)
1
=172 0 172 t
Fig. 2.10 P.
Ans. X(jw) = % sinc?(%)
Q6: Find the Fourier transform of(t) = rect(t/2). Ans. X(jw) = 2sincw

Q7: Find the Fourier transform of the signdl) = coswt by using the frequency shifting property.
Ans: X (jw) = T{o(w —wWp) + 0(W+Wp)]

Q8: Show that FT[sinwptu(t)] = W2W°W2 + %j[é(w+wo) —d(W—wp)].
2

jw

Q9: Find inverse Fourier transform &f(jw) = T

Ans.x(t) = & [te"tu(t)]
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Q10: Sketch and then find the Fourier transform of following signa

X1(jw) =2sincy cos 3§

x1(2)
@ x(t)=m(t+3)+m(t—3) Ans.(a) 1
-2 -1 1 2
Fig. 2.11 P.
x,(7)
2
(b) xe(t)=m(%)+m(L) Ans. (b) Tl
-2 -1 1 2 t
Fig. 2.12 P.

Xo(jw) = 4sinc2w+-2 sincw

Q11: Find the frequency respongéjw) of the RC circuit shown in figure. Plot the magnitude and phase

response foRC = 1

y(iw) 1

W) = w) = T4 jwRe

——A T
x(0) Rl c ¥
. T L

Fig. 2.13 P.

Q12: Find the Fourier series of the waveform shown in figure.

X(t) = _ﬁfor n=1357
jnmt

Ans. [x(jw)| = T

x(jw) = —tantw
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1 1 2
X(tT)t = — + =cos5t — — cos10
(tmg n+2 31

2
— —cos 15t
81

Q15: The output of a system is given by

X(t) = Asinwpt for 0<t<T
10 for m<t<2m

Determine trigonometric form of Fourier seriesxgf)

A A
AnNns. (t) = ;[ + E COint —

n
2

0

2A
)+n;n(1—n2)

COSFT[]
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Outline In i Ana C tion Unilateral LT Feed Back Applications

Introduction

» We had defined et as a basic function for CT LTI systems,s.t.
et — H(s)e*

» In Fourier transform s = jw

» In Laplace transform s = o + jw

» By Laplace transform we can
» Analyze wider range of systems comparing to Fourier Transform
> Analyze both stable and unstable systems

» The bilateral Laplace Transform is defined:

X(s) = /\ x(t)e *dt

X0

= X(o+jw) = /00 [x(t)e tle I dt

—00
= F{x(t)e ")

Farzaneh Abdollahi Signal and Systems Lecture 7 3/48



Outline i Ana Sys aluation Unilateral LT Feed

Region of Convergence (ROC)

» Note that: X(s) exists only for a specific region of s which is called
Region of Convergence (ROC)

» ROC: is the s = 0 + jw by which x(t)e™? converges:
ROC :{s=o0+jws.t. [7 |x(t)e 7"|dt < oo}
» Roc does not depend on w
» Roc is absolute integrability condition of x(t)e “*

» If o =0,ie s =jwwX(s) =F{x(t)}
» ROC is shown in s-plane

» The coordinate axes are Re{s} along the horizontal axis and Zm{s}
along the vertical axis.

Farzaneh Abdollahi Signal and Systems Lecture 7 4/48



Outline Introduction Analyzing LTI Systems with LT C valuation Unilateral LT Feed Back Applications St

Example
» Consider x(t) = e ?fu(t)
> X(s) = [T e ?tu(t)e tdt = ilae_(s+a)t|8° = #ﬂ)(e_(s“)Oo -1)

» If Re(s+ a) > 0~ Re(s) =0 > —Re(a), X(s) is bounded
» - X(s) = X, ROC : Re(s) > —Re(a

s+a’

~—

N
a
i

s-plane

N

NN

]
-

DN
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Outline Introduction Analyzing LTI Systems with LT C valuation Unilateral LT Feed Back Applications St

Example
» Consider x(t) = —e ?'u(—t)
> X(s f —atu( t) —stdft — s+ae (s—&-a)t|(1oo — sJ%a(l _ e(s-|—a)oo)

> If Re( ) < 0~ Re(s) =0 < —Re(a), X(s) is bounded
X(s) = 2=, ROC : Re(s) < —Re(a)

s-plane

Re

Farzaneh Abdollahi Signal and Systems Lecture 7 6/48



Outline duction Analyzing LTI Systems with LT ation  Unilateral LT Feed Back Apy

> In the recent two examples two different signals had similar Laplace
transform but with different Roc

» To obtain unique x(t) both X(s) and ROC is required

» If x(t) is defined as a linear combination of exponential functions,~ its
Laplace transform (X(s)) is rational

> In LTI expressed in terms of linear constant-coefficient differential
equations, Laplace Transform of its impulse response (its transfer
function) is rational

> X(S) N(S;

» Roots of N(s) zeros of X(s); They make X(s) equal to zero.
» Roots of D(s) poles of X(s); They make X(s) to be unbounded.

Farzaneh Abdollahi Signal and Systems Lecture 7 7/48



Outline Introduction

- Amirkabi
Analyzing LTI Systems with LT Ge Jluation Unilateral LT Feed Back Applications Sty

e

» To study the stability of LTI systems zeros and poles are illustrated in
s-plane (pole-zero plot)

» number of poles and zeros are equal for —oo to oo
> Consider degree of D(s) (# of poles): m; degree of N(s) (# of zeros): n

> If m < n~> There are n — m = k poles in 0o
» If m > n~ There are m — n = k zeros in 0o

Farzaneh Abdollahi

Signal and Systems Lecture 7

8/48



Introduction

ROC Properties

v

ROC only depends on o
> In s-plane Roc is strips parallel to jw axis

» If X(s) is rational, Roc does not contain any pole

» Since D(s) =0, makes X(s) unbounded

» If x(t) is finite duration and is absolutely integrable, then ROC is entire
s-plane

» If x(t) is right sided and Re{s} = 0o € ROC then Vs Re{s} > ¢ €
ROC

> If x(t) is left sided and Re{s} = op € ROC then Vs Re{s} < oy € ROC

» If x(t) is two sided and Re{s} = o9 € ROC then ROC is a strip in
s-plane including Re{s} = oy

Farzaneh Abdollahi Signal and Systems Lecture 7 9/48



Outline Introduction  Ana s ation Unilateral LT Feed plications

ROC Properties

» If X(s) is rational

the ROC is bounded between poles or extends to infinity,

no poles of X(s) are contained in ROC

If x(t) is right sided, then ROC is in the right of the rightmost pole
If x(t) is left sided, then ROC is in the left of the leftmost pole

» If ROC includes jw axis then x(t) has FT

v

vvVvYyy

Farzaneh Abdollahi Signal and Systems Lecture 7 10/48



Outline Introduction  Ana Sys aluation Unilateral LT Feed

Inverse of Laplace Transform (LT)

» By considering o fixed, inverse of LT can be obtained from inverse of FT:
> x(t)e ot =L [ X(gi—:j_ci)ef“tdw

> x(t) = & [ X(0 + jw)elT )t dw

> assuming o is fixed ~»ds = jdw

» ox(t) = % 7 X(s)etds

» If X(s) is rational , we can use expanding the rational algebraic into a
linear combination of lower order terms and then one may use

> X(s) = o5 v x(t) = —e ?u(—t) if Re{s} < —a
» X(s) = ?13 ~ x(t) = e ?u(t) if Re{s} > —a

» Do not forget to consider ROC in obtaining inverse of LT!

Farzaneh Abdollahi Signal and Systems Lecture 7 11/48



Outline Introductlon A

LT Properties

v

Linearity: axl(t) + bX2(t)<:>aX1(S) + bXQ(S)
» ROC contains: Ry R>
» If R\ R =0 it means that LT does not exit
» By zeros and poles cancelation ROC can be larger than Ry (| Rz

Time Shifting:x(t — T)<e~5T X(s) with ROC=R

Shifting in S-Domain: esOtx(t)@X(s — sp) with ROC= R + Re{so}
LX(£) with ROC = B

dx(t)

v

v

v

Time Scaling: x(at)<

la

Differentiation in Time-Domain:

v

<sX(s) with ROC containing R

Differentiation in the s-Domain: —tx (t)@dx(s) with ROC =
Convolution: xi(t) % xo(t)<X1(s)X2(s) with ROC containing R1 N Ry

v

v

Farzaneh Abdollahi Signal and Systems Lecture 7 12/48



Outline on  Analyzing LTI Systems with LT luation  Unilateral LT Feed Back Applicatic

Analyzing LTI Systems with LT

» LT of impulse response is H(s) which is named or
system function.

» Transfer fcn can represent many properties of the system:
» Causality: h(t) =0 for t < 0~ It is right sided
» ROC of a causal system is a right-half plane

> Note that the converse is not always correct

> Example: H(s) = 51, Re{s} > —1~ h(t) = e"+Vy(t + 1) it is none

zero for —1 <t <0
» For a system with rational transfer fcn, causality is equivalent to ROC being
the right-half plane to the right of the rightmost pole
» Stability: h(t) should be absolute integrable ~ its FT converges
> An LTI system is stable iff its ROC includes jw axis (0 € ROC)
» A causal system with rational H(s) is stable iff all the poles of H(s) have
negative real-parts (are in left-half plane)

Farzaneh Abdollahi Signal and Systems Lecture 7 13/48



Outline o A ing Systems with LT G Evaluation Unilateral LT Feec

Geometric Evaluation of FT by Zero/Poles Plot

» Consider Xi(s) =s—a

am

s-plane

{3, —a)

> |Xi|: length of Xy
» £ Xj: angel of Xy
1 1
P

» Now consider Xa(s) = s—a _ Xi(s)

> /Ong = —/OgXl
> KXQ = —KXl

Farzaneh Abdollahi Signal and Systems Lecture 7 14/48



Outline | ction Analyzing LTI Systems with LT Geomet Evaluation Unilateral LT Feed Back Applications

“ For higher order fcns:
X( ) MHP 1(s—8i)

_1(s—qj)
i 1‘5 Bil
> |X(5)‘ - |M|HP |s—ay]
> LX(s )f&M—f—Zi:lé(s—
B1) = Eils 4(s — ) €5 e
» Example: '
1/2 — RS W w,
H(S) = 5_|_/1/27 RG{S} > 71 lies, +i|

» h(t) = e t/2u(t)
> s(t) = [1— e~¥/2u(t) e
> AU = 2

2
> [H(jw)|? = %

» AH(jw) = —tan"!2w

» 0<w<oow —m/2<
£LH(jw) <0

> wh o [H] 1, £H(jw) |

Farzaneh Abdollahi Signal and Systems Lecture 7 15/48



Outline Intr on Analyzing LT

>

v

v

v

v

Now let us substitute 2 with 7 in the previous example

. 1/7
H(Jw) = jw—lfl/’r
. 1 w=0
PN S ¢ Vi D B 1
HUWP = s = v2 @~ 7
% w>>%
0 w=0
£H(jw)=—tantrw = T w:%
R

Relation between real part of poles and response of the systems
» T is time constant of first order systems which control response speed of
the systems
» Poles are located at —%
» The farther the poles from jw axis ~~ cut-off freq. 1, 7 |, the faster
decaying the impulse response, the faster rise time of step response

Farzaneh Abdollahi Signal and Systems Lecture 7 16/48
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Geometric Evaluation

= |
B 0dB e L. Asymptotic
T < approximation
(=
= -20
=)
& -40
-60 | 1 |
0.1/ 1t 10/t 100/t
®
4
0 : Asymptotic
5 . approximation
L 4 -
'TEI’E =T T e —"
-3m/4 L I .
01 1t 10/t 100/t
®
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Outline o Ana s with LT G Evaluation Unilateral LT Feed plications

Response for Second Order system

v

h(t) = M(et — e2t)u(t)

> H(S) _ w) w

$2+42Cwps+w? = (s—c1)(s—c2)

C1,2 = —Cwnp T wy V C2 -1

0 < ¢ < 1: under damp (two complex poles)

v

v

v

¢ =1 critically damp (s = —wj,)

v

¢ > 1: Over damp (two negative real poles)

v

For fixed wy, ¢ 11 ~>, settling time for step response 1

Farzaneh Abdollahi Signal and Systems Lecture 7 18/48
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e

Bode Plot of H(jw)

Bode Disgratm
20 T T T

40 db/dec

Magnitude (dB)

Fhase (deq)
o
fu=}

133

180 MR |
10 1’ 10" 10 10
Frequency (radizec)
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Outline Ir uction Analyzing LTI Systems with LT Geometric Evaluation Unilateral LT Feed Back Applications S eS

Impulse and Step Response of the second order system

2 T T
—— =01
— =02
15— ——=05| o

step response
T

impulse respanse

Farzaneh Abdollahi Signal and Systems Lecture 7
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All Pass Filters

Passes the signal in all fregs. with a little decreasing/increasing the
magnitude
Why do we use all-pass filters?

v

v

> H(s) = =2 Re{s}>—a, a>0
> |H(w)| =1
™ w=~0
0 w>a

Farzaneh Abdollahi Signal and Systems Lecture 7 21/48
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Geometric Evaluation

s-plane

Re

ta)
4 Hijw)
L3
| Hljea) 1

hut

1 2

-a

L]

o i
1]
172
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Stability Analysis by Routh-Hurwitz

» Remind: A system with rational transfer fcn is causal and stable if all of
its poles are in LHP.

» H(s) = gg D(s) = ans" 4+ ap_15""1 4+ ...+ a1s + ag

» How can we verify the stability of this system?
» Method 1: Find the roots of D(s)
> If nis large, it is difficult to find: —(
» Method 2: Routh-Hurwitz method

s” an  an—2 an-a
—1
s" an—1  an—3 an—s
-2
s" b1 by—3  bns
> Provide the following table "3 | ¢ | ¢35 cos
S0 hn_l

> First row includes odd coefficients of D(s)
» Second row includes even coefficients of D(s)

Farzaneh Abdollahi Signal and Systems Lecture 7 23/48



Qutline tion Analyzing LTI S s with LT Geom i Evaluatlon Unilateral LT Feed Back Applications

Stability Analysis by Routh-Hurwitz

» b;, ¢; are defined as follows:

b _ dn apn—2 b _ 1 dn dn—4
n—1 — an—1 y Un-3 — 73 1

n dn—1 4anp-3 n dn—1 4an-5

c _ 1 dn—-1 an-3 c _ 1 an—1 an—5

"l T br-1 bp_3 P I3 T T b1 bp_s

» Follow the same rule for other rows parameters

» # of RHP root os D(s) equals to # of signs changing in the first column
of the table

» Necessary condition for using Routh-Horwitz method is that all
coefficients of D(s) should exist and have similar sign(otherwise there are
more than one pole on imaginary axis, it is not stable)

» Necessary and Sufficient conditions for stability is that no signs changing
appears in the first column of the Routh-Horwitz table

Farzaneh Abdollahi Signal and Systems Lecture 7 24/48



Outline tion Analyzing LTI Systems with LT G ic Evaluation Unilateral LT Feed Back Apy

» Initial Value Theorem: If x(t) = 0 for t < 0 and x(t) does not contain
any impulse or higher order singularities at the origin then
x(07) = lims_s00 sX(5)
» X(s) may include a simple pole at the origin which represents a step signal.
» More than one pole at the origin and in jw axis make the signal oscillating
» Final Value Theorem: If x(t) = 0 for t < 0 and x(t) is bounded when
t — oo then x(o0) = lim. .o sX(s)

» Consider H(s) = N(s) nis degree of N(s), d is degree of D(s):

D(s)’
0 d>n+1
» H(0*) =< constantvalue#0 d=n+1
00 d<n+1

Farzaneh Abdollahi Signal and Systems Lecture 7 25/48
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LTI Systems Description

v

N d y(t) d x(t
> k=0 2k dyt£ Zk —o bk dXtﬁ)
S ko aksKY (s) = Yplo bis* X(s)

— Y(s) _ w

H(S) T X(s) T o0 aksk
ROC depends on

» placement of poles

» boundary conditions (right sided, left sided, two sided,...)

v

v

v
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» Feedback Interconnection of two LTI systems:

> Y(s) = Yi(s) = Xa(s)

> Xi(s) = X(s) + Ya(s) = X(s) + Ha(s)Y(s)
> Y(s) = Hi(s)Xu(s) = Hi(s)[X(s) + Ha(s) Y (s)]

Y H
> ngg = H(S) = Ws()sf)-h(s)
» ROC: is determined based on roots of 1 — Hy(s)Hy(s)
x(t) LM :1‘ :;; vy ()

vitl

2 it hy (t}

xzi0)

H,ls)

Farzaneh Abdollahi Signal and Systems

Lecture 7 27/48



Outline tion Analyzing LTI Sys s with LT G ric Evaluation Unilateral LT Feed Back Applicatic
oY)

Block Diagram Representation for Causal LTI Systems

» We can represent a transfer fcn by different methods:
. _ 2524456

> Example: H(s) = 52525

1. H(s) = (25 + 45 — 6) 2315

2. Assuming it is causal so it is at initial rest

2
> W(s) = o575 X(s)= 98 + 39 + 2w = x(1)
> Y(s) = (25° + 45 — 6)W(s)=y(t) = 242 449 _ 6

3. H(s) =2+ 3% — 3%

2(s—1
4. H(s) = (ss+2)§i7?
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Unilateral LT

> It is used to describe causal systems with nonzero initial conditions:
X(s) = foof x(t)e stdt = UL{x(t)}

» If x(t) =0 for t < 0 then X(s) = X(s)

» Unilateral LT of x(t) = Bilateral LT of x(t)u(t™)

» If h(t) is impulse response of a causal LTI system then H(s) = H(s)

» ROC is not necessary to be recognized for unilateral LT since it is always
a right-half plane

» For rational X(s), ROC is in right of the rightmost pole
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Similar Properties of Unilateral and Bilateral LT

» Convolution: Note that for unilateral LT, If both x1(t) and x(t) are zero
for t <0, then X(s) = X1(s)Xa(s)

» Time Scaling

» Shifting in s domain

> Initial and Finite Theorems: they are indeed defined for causal signals
> Integrating: [ x(r)d7 = x(t) * u(t) X (s)U(s) = LX(s)

» The main difference between /L and LT is in time differentiation:
uﬁ{dX(f)} foo dX(f) e—Stdt

v

» Use the rule f fdg = fg | gdf

> x(t)e stdt + x(t)e |52 = sX(s) — x(07)
> (s ) (0 )

> {2} = s(sX(s) — x(07)) — %(07) =

22(( ) - sx(O ) — X(O’)
» Follow the same rule for higher derivatives
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Example
» Consider < dt2 +3 + +2y(t) = x(t), where
y(07)=p=3, y(O )=~ = -5, x(t) = a=2u(t)
» Take UL:
> s°Y(s) — (ﬁy(s))— v+ 3(53)(5() )— B) +2Y(s) = X(s)
_ B(s+3)+~ X(s
> Ys) = s2+4+35s+2  s2+35+2
zl ZSR
» Zero State Response (ZSR): is a response in absence of initial values
> H(s) = g’;(;)_
» Transfer fcn is ZSR
> ZSR'yl(S)_ﬁziﬁ-%—ﬁ%
> yi(t) = (1—2e7" + e *)u(t)

v

Zero Input Response (ZIR): is a response in absence of input (x(t) = 0)

+3)—5 2
ZIR: Ya(s) = (s(+51)(3+2) =1t s+2

> () = (et + 2672t u(t)
> y(t) = yi(t) + ya(t)

Farzaneh Abdollahi Signal and Systems Lecture 7 31/48
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Outline Int

Feed Back Applications

» Closed loop Transfer fen: Q(s) = 1+GG;S}'-I(5) = Ol”f’ZO’gZPforf"

H—=

Xt * y(t)

"
L |
e >

H(s) I—

1. Inverting

LAY y(t)

]
L

|

P(s) |-

_ _ K
> Q(S) — 1+Kp(s)
> If choose K s.t. Kp(s) > 1 then Q(s) ~ ﬁ
» Example: For a capacitor, consider i as output and v as input, it is a

differentiator
> By using the above interconnection, we can make an integrator
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2. Stabilizing Unstable Systems

x(t) *+ y(t)
C(s) | G(s)

P(s)

» G(s) is unstable
> We should define P(s) and C(s) to make closed-loop system stable (poles of

closed-loop system be in LHP)
C(s)G(s
> Qs) = 1+C((SS)P(£))G(5)

Example 1: G( )= i, C(s)=K, P(s)=1
Q(s) = 5= 2+K
Choosing K > 2 make it stable
Example 2: G(s) = 2
By C(s) = K cannot be stabilized
Choose C(s) = Ky + Kas, Kz > 0, and Kj > 4 can stabilize the closed-loop
system

v

vV vy vy VvVYy
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3. Tracking

xt) + e(t) y(t)
C(s) — Gls)

Objective: Defining C(s) s.t. e(t) = x(t) — y(t) > 0as t - o0
E(s) = WX(S)

Consider x(t) as unite step

lim e(t)t—o00 = lim sE(s)s—0 = lims_0o m
If we choose C(s) s.t. C(s)G(s) > 1then e(t) > 0ast— oo

1
s

vV V.V VvY

4. Decreasing effect of disturbance

5. Decreasing Sensitivity to uncertainties
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State Space Representation

» Previously we learnt that for a LTI system with y(t): output signal, u(t):
input signal, and h(t) impulse response
y(t) = h(t) x u(t)~Y(s) = H(s)U(s)

» These representation of the system only express |/O relation

» It does not give us internal specification of the system.

» State space representation not only provide us information on 1/0O but
also gives us good view on internal specification of the system

» States of a system at time tg includes min required information to express
the system situation at time ty

» They are first degree equations
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» State space representation of LTI system

X(t) = AX(t)+ BU(t) state equations
Y(t) = CX(t)+ DU(t) output equations

X € R": state vector

U € R™: input vector

Y € RP output vector

AMXn: System Matrix

B"™™: input matrix

CP*": output matrix

DP*™: coupling matrix

vV VvV VY VvV VY

» Number of state usually equals to degree of the system

» It usually equals to number of active elements in the system (# of
capacitors and inductors in RLC circuits)

» However in some cases like having cut-set of inductors and loop of
capacitors degree of the system would be less than # of active elements

» One could choose number of the states greater than n in such case some
modes are not observable or controllable

» Set of states is not unii ue for a sistem
Farzaneh Abdollahi Signal and Systems Lecture 7 36/48
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Block Diagram of State Space Representation

D(¥)

x(F) + y(r)

u(t) C(k)

ol B(4) -0 LI f

A(F)
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Solvmg State Equations by UL

» Assuming x is causal ~» we are using UL

> % = Ax + BuZisX(s) — x(0) = AX(s) + BU(s)

> X(s) = (sl = A)"x(0) + (sl — A)"*BU(s)

> Let us define ¢(t) = L~ 1{(s/ A) 1. Transition Matrix
» x(t) = ¢(t)x(0) + / »(T)Bu(t — 7)dT

—_—— .

ZIR

ZSR
> For LTI systems ¢(t) = et

Farzaneh Abdollahi Signal and Systems Lecture 7
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Methods to Find Transition Matrix

1 o(t) =L Y(sl — AT

» Example: A= [ —06 _15 ]

_ B 3e72t _ 26731’ ef2t _ 6731“
> (b(t) =L 1(5I _A) 1= |: _6e—2t+6e—3t _26—2t_,’_3e—3t

» For large A, finding inverse matrix is time consuming and complicated
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Outline Intr o Analyzing LTI Systems wi 0 uation Unilateral LT Feec

Methods to Find Transition Matrix

2. Approximate by Infinite Power Series
» The transition matrix is system specification and input does not affect on it:

Ax(t) (1)
x(t) = o(t)x(0) (2)

» Let us represent transition matrix by an infinite power series:

-
|

x(t) = (ko+kit+kot>+..)x (3)

X(t) = (ki + 2kt + .. )x0
.'.(k1+2k2t+3k3t2 c)x0 = Alko + kit + .. )Xo
ki = Akg, ko = A& k3 Ak;
Substitute t = 0 in ( ) ko =1
ko =1, ki = A, kgz‘z‘— ks = 4

)

P(t)=et =1+ At+ A5 + ...

vV VVYVy
Il

v
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Methods to Find Transition Matrix

3. By Cayley Hamilton Theorem
» Reminder: Eigne Value of Matrix A is a scalar value \ s.t.
> Av = A\v
> where v is a vector named Eigne vector
» To find eigne values:
> M —A =0\ 4+a, 1 NP Fadta=0
> The above equation is named characteristic equation of matrix A
» Considering Cayley Hamilton Theorem result in [?]:
et = ag(t) + ar(t)A+ ...+ a,_1(t)A" L
» Eigne vector of matrix A is eigne vector ofe”!

AV,' = )\,‘V;
APvi = Xvi b o oNity, = (ag(£) 4 an () At aa(E) N2+ .+ ap 1 (DA™ V)
EA"V,' = )\?V,'

» By assuming n distinct eigne values and solving n equations all coefficients
a;(t) are obtained
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Example
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Defining Transfer Function from State Space Eq.

= Ax+ Bu
= Cx+ Du

» Transfer fcn: H(s) = ;8
> Transfer fcn is ZIR:
sX(s) = AX(s) + BU(s)~X(s) = (s| — A)~1BU(s)
> Y(s) =[C(sl — A)~1B + D]U(s)
> H(s) = C(s| — A) 1B+ D=CZZg= B+ D
> Poles of a system are eigne values of matrix A

» BUT all eigne values of A are not poles of the system (due to zero-pole
cancelation)

» If an unstable poles is canceled by a zero the system is not internally stable

anymore
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State Space Realizations

» Several state space realization can be obtained from a transfer fcn. two
of them are introduced here.
1. Controllable Canonical Form

. _ bms™+bn_1s™ " by b(s)
> Consider H(s) = =G o= = 5. n>m

Brms™+bm_15""1+...+bg

> If n = m then we can define H(s) = b, + P
> Let us define a axillary fcn M(s)

Y(s) _ Y(s) M(s) _
> e = M o = D)3
> M(s)a(s) = U(s)~M(s)(s" + ap—18" 4 ... + a0) = U(s)
> m"(t) = —a,_1m"H(t) — ... — aom(t) + u(t)

> Y(s) = b(s)M(s)~y(t) = bmm(t)™ + ...+ bim(t) + bom(t)
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Outline

Controllable Canonical Form

o
— %
y(t)
bm b1 bﬂ
u(t) m(t)__m™'(t) T 4 m) 4
Vst /s 4 = = 11/
’ Xn Xz X4
'an-‘1 “'
-8n2 “
8 | —
dp |-
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> (assume m = n —

X1 = X2
X2 = X3
Xp—1 = Xp
X, = —agXy —aiXp —...—ap_1Xp+u
y = box1+ bixo+ ...+ bp_1xp
0 1 ... ... 0 ] [0 ]
0 0 1 ... 0
> A= : : : : : , B= ,
0 0o ... ... 1
_—ao —ar ... .. —a,,_l_ 1
C=[bp by ... ... bp_1],D =0
3 2
» Example: H(s) = %
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2. Diagonal Form and Jordan Form

» Consider characteristic equation has n separate

roots:H(s) = s_ﬂﬁpl + Sfﬁpz + 5533}33 t+..t sf"Pn
Py ... ... 0 1
0 P, ... 0 1
>A: . . . . ) B: . !
0o ... . P 1

C=[ppB2 ... .5n],ﬂD :rb
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Outline

2. Diagonal Form and Jordan Form

> If there are frequent poles, for example if there are three similar poles

H(s) = 55:;91 + (5_51232)3 + (5_5;2)2 + S_'B‘}_.,2, matrices A, B, and C are

modified as follows:

P 0 0 O 1
Clo P10 o
A 0O 0 P 1 , B= 0
O 0 0 P 1
C = [B1P2B3B],D=0
. s243s+1
> H(s) = Gy
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Chapter 3

The z-transform and Analysis of LTI Systems
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Primary points
e Convolution of discrete-time signals simply becomes multiplication of their z-transforms.

e Systematic method for finding the impulse response of LTI systems described by difference equations: partial fraction
expansion.

o Characterize LTI discrete-time systems in the z-domain

Secondary points
e Characterize discrete-time signals
o Characterize LTI discrete-time systems and their response to various input signals
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3.1
The z-transform

‘We focus on the bilateral z-transform.

3.1.1 The bilateral z-transform

The direct z-transform or two-sided z-transform or bilateral z-transform or just the z-transform of a discrete-time signal
x[n] is defined as follows.

X(z) = Z xz[n]z=" or X(-)=Z{z[]} orshorthand: xz[n] & X(z).

n=—oo

e Note capital letter for transform.

o In the math literature, this is called a power series.

o It is a mapping from the space of discrete-time signals to the space of functions defined over (some subset of) the complex plane.
e We will also call the complex plane the z-plane.

We will discuss the inverse z-transform later.

Convergence

Any time we consider a summation or integral with infinite limits, we must think about convergence.

We say an infinite series of the form foz_oo ¢, converges [1, p. 141] if thereis a c € Csuch that limy_, o |c — Zf:[:_N cn| = 0.
e Some infinite series do converge to a finite value, e.g., 1 +1/2+1/4+1/8+ .- = 1_11/2 =2,

since |2 — SN (1/2)"| = ’2 — WA — (1/2)V — 0as N — oo
e One can also extend the notion of convergence to include “convergence to co” [2, p. 37].
Example. The infamous harmeonic series is an infinite series that converges to infinity: 1 +1/2+1/3+1/4+--- = o0.

e Some infinite series simply do not converge, e.g., 1 —14+1—-14..- = ?

The z-transform of a signal is an infinite series for each possible value of z in the complex plane. Typically only some of those
infinite series will converge. We need terminology to distinguish the “good” subset of values of z that correspond to convergent
infinite series from the “bad” values that do not.

Definition of ROC

On p. 152, the textbook, like many DSP books, defines the region of convergence or ROC to be:
“the set of all values of z for which X (2) attains a finite value.”

Writing each z in the polar form z = r e’?, on p. 154, the book says that: “finding the ROC for X (z) is equivalent to determining
the range of values of r for which the sequence z[n] r ~™ is absolutely summable.”

Unfortunately, that claim of equivalence is incorrect if we use the book’s definition of ROC on p. 152. There are examples of
signals, such as z[n] = 1 wu[n — 1], for which certain values of z lead to a convergent infinite series, but yet x[n]r~" is not

absolutely summable. !

—n

So we have two possible distinct definitions for the ROC: “the z values where X (z) is finite,” or, “the z values where x[n] z "

is absolutely summable.” Most DSP textbooks are not rigorous about this distinction, and in fact either definition is fine from a
practical perspective. The definitions are compatible in the case of z-transforms that are rational, which are the most important
type for practical DSP use. To keep the ROC properties (and Fourier relations) simple, we adopt the following definition.

The ROC is the set of values z € C for which the sequence x[n] z~™ is absolutely summable, i.e.,
{zeC: ¥ _lzn]z™"| < oo} .

All absolutely summable sequences have convergent infinite series [1, p. 144]. But there are some sequences, such as (—1)"/n,
that are not absolutely summable yet have convergent infinite series. These will not be included in our definition of ROC, but this
will not limit the practical utility.
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Skill: Finding a z-transform completely, including both X (z) and the ROC.
Example. z[n] = d[n]. X(z) = 1 and ROC = C = entire z-plane.
Example. z[n] = d[n — k]. X(2) = z~% and

C, k=0
ROC={ C—{0}, k>0 Sn—k] & 2 7*
C—{o0}, k<.

Example. z[n] = {4,3,0,7}. X(2) =4z +3+ 7272, ROC = C — {0} — {o0}

‘ For a finite-duration signal, the ROC is the entire z-plane, possibly excepting z = 0 and z = oc.

Why? Because for k > 0: z* is infinite for = oo and z~* is infinite for z = 0; elsewhere, polynomials in z and 2z~ are finite.

Example. x[n] = p™ u[n]. Skill: Combining terms to express as geometric series.

- = p PY? , (P)? 1
o= 3 st e S S 1 () (1 () =
The series converges iff [pz7!| < 1, i.e., if {|z| > [p[}.
n z 1 . . o .
p"uln] & [pp—r for |z| > |p| |Picture 3.2 shading outside circle radius |p|
—pz

Smaller |p| means faster decay means larger ROC.

1
Example. Important special case: p = 1 leaves just the unit step function. |u[n] & U(z) = ——, |2| > 1
© —z

Example. z[n] = —p™ u[—n — 1] for p # 0. Picture . An anti-causal signal.

-1

X(@)= Y ==Y 07 =07 Y ) =
k=0

n=-—00 k=1

1 1
z = .
1—-plz 1-—pz1

The series converges iff [p™z| < 1, i.e., if |2| < [p|. Picture 3.3 shading inside circle radius p|

Note that the last two examples have the same formula for X (z). The ROC is essential for resolving this ambiguity!

Laplace analogy

1
eMu(t) & ) real(s) > real(\)
5§—A
At £ 1
—eMu(—t) & real(s) < real(\)

s—\
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General shape of ROC

In the preceding two examples, we have seen ROC’s that are the interior and exterior of circles. What is the general shape?

The ROC is always an annulus, i.e., {ry < |z| < 71}. ‘

Note that r5 can be zero (possibly with <) and r; can be oo (possibly with <).
Explanation. Let z = 7 e’? be polar form.

o0

Z x[n]z="

n=-—oo
-1

Y el e+ faln]l e

n=—oo

S lal=n]lrm + Y k”j—””
n=0

oo

< Z |z[n]|r~™ by triangle inequality

[ X(2)|

n=—oo

n=1
The ROC is the subset of C where both of the above sums are finite.

If the right sum (the “causal part”) is finite for some zo with magnitude 7o = | 25|,
then that sum will also be finite for any z with magnitude r > ro, since for such an r each term in the sum is smaller.
So the ROC for the right sum is the subset of C for which |z| > 72, which is the exterior of some circle.

Likewise if the left sum (the “anti-causal part”) is finite for some z; with magnitude r; = |z,
then that sum will also be finite for any z with magnitude r < rq, since for such an r each term in the sum is smaller.
So the ROC for the left sum is the subset of C for which |z| < ry, for some 71, which is the interior of some circle.

‘ The ROC of a causal signal is the exterior of a circle of some radius rs. ‘

‘ The ROC of an anti-causal signal is the interior of a circle of some radius 7. ‘

For a general signal z[n], the ROC will be the intersection of the ROC of its causal and noncausal parts, which is an annulus.
If ro < 71, then that intersection is a (nonempty) annulus. Otherwise the z-transform is undefined (does not exist).

Simple example of a signal which has empty ROC?
z[n] =1 =wuln] +u[-n —1].

Recall uln] & X (z) = = for {|z| > 1}.

ROC for the causal part is {|z| > 1},

ROC for the anti-causal part is {|z| < 1}.

TABLE 3.1 - discuss here

Table shows signals decreasing away from zero, since for non-decreasing signals the z-transform is usual undefined (empty ROC).
Energy signals must eventually diminish to zero.
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Subtleties in defining the ROC (optional reading!)

We elaborate here on why the two possible definitions of the ROC are not equivalent, contrary to to the book’s claim on p. 154.

u[n — 1] . (A signal with no practical importance.)

X(z) =Y

n=1

Consider the harmonic series signal z[n] = *

The z-transform of this signal is

z ™

S|

Consider first the exterior of the unit circle. If » = |z| > 1 then

So {|z| > 1} will be included in the ROC, by either definition.

Now consider the interior of the unit circle. If r = |z| < 1 then

So {|z| < 1} will not be in the ROC, by the “absolutely summable” definition.

%0 1
n=1n

Now consider the point z = 1. At this point X (1) = >_
either definition.

= 00. So there is a pole at z = 1 and z = 1 is not in the ROC by

0 1

Now consider the point z = —1. At this point X (—1) = > ™, ~(—1)" = —log 2, which is a well-defined finite value!
See http://mathworld.wolfram.com/HarmonicSeries.html for more information.
It is easy to verify that sum using the Taylor expansion of log around 1, evaluated at 2.
e So the point z = —1 would be included in the ROC defined by the “attains a finite value” definition.
e However, at z = —1 the series 1 (—1)~" is not absolutely summable, since > o | |1(—1)7"| =}
z = —1 is not included in the “absolutely summable” definition of the ROC.

o0 1

ne1 3 = 0. So the point

Furthermore, there are other points around the unit circle where the z-transform series is convergent but not absolutely summable.

Consider z = ¢2™M/N with N even and M odd.

o0 1 [es) 1 oo N 1
= o2n(M/N)n 227 (M/N)(Nk+1) _ 72n(M/N)n )
> e > e 2. Niia®
n=1 =01=1 k=0n=1
N N/2
L en(a/nm _ Z L era/nn + 1 127 (M/N)(n+N/2)
— Nk+n — | Nk+n Nk+n+ N/2
N/2 N/2
— Z 1 o 1 e]27‘r(1\/[/N)n — Z N/2 e_]QTr(M/N)n
“—[Nk+n Nk+n+N/2 “— (Nk+n)(Nk+n+ N/2) '

This is like 1/ k2, so it will be convergent.

312
The inverse z-transform

One method for determining the inverse is contour integration using the Cauchy integral theorem. See 3.4.

Key point: we want to avoid this! By learning z-transform properties, can expand small table of z-transforms into a large set.
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3.2
Properties of the z-transform

For each property must consider both “what happens to formula X (z)” and what happens to ROC.

Linearity

If 21 [n] & X1(2) and 22[n] & X5(z) then

z[n] = a1 x1[n] +ag x2[n] & a1 X1(2) +as Xo(z)

Follows directly from definition.

Very useful for finding z-transforms and inverse z-transforms!

The ROC of the sum contains at least as much of the z-plane as the intersection of the two ROC’s.
Example: 2[n] = cos(won + ¢) u[n] (causal sinusoid).

By Euler’s identity, z[n] = £ (e/(“ont9) 4 e=s(wonte)) y[n] = L 19 (e740)" ufn] +3 e77¢ (e77%0)" u[n].

Applying previous example with “p = e*7~0” and linearity:

e e e (l—ezl) 4 fe (1 —er0 ) _cos¢ — 27 cos(wg — @)

X(z)= = .
(2) 1 —emwo z—1 + 1—e awo z-1 (1 — emo z71)(1 — e=9wo z—1) 1—2z"1coswy + 272

What is the ROC? {|z|] > |p| = 1}, as one expects since |cos(wn)| < 1.

Time shifting

If z[n] & X(2), then zn — k] & 27% X (2).
Simple proof by change of index variable.
ROC is unchanged, except for adding or deleting z = 0 or z = oo.

Now clear why unit delay was labeled 2.

Scaling the z-domain, aka modulation

If x[n) & X (z) with ROC = {ry < |z| < 72}, then a™ z[n] & X (a™2) withROC = {|a|r; < |z| < |a|rs}.

Example. Decaying sinusoid: z[n] = 5= cos(won) u[n].

1— 21z cosw
X(2) 2 )

Tl coswy + iz—Q
with ROC = {[z] > 1}.
Time reversal

If [n] & X(z) with ROC = {ry < |z| < 72}, then z[—n)] & X (27) withROC = {1/ry < |z| < 1/r1}.

Simple proof by change of summation index, since positive powers of z become negative and vice versa.
Differentiation in z-domain

If 2[n) & X (z) then n z[n] & —z-4L X(z). The ROC is unchanged.

Proof: o 0 0
S X(E) = 3 el =2 Y all(w) s = Y (nafn]) 2 = Z fnalnl}.

Caution for derivative when n = 0.

Example: x[n] = nu[n] (unit ramp signal). We know U(z) = 1/(1 — z71) for {|z| > 1}. So

d —z2 271
X(Z):_ZEU(Z):_ZO,ZA)Z = =Sk {lz| > 1}.
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Convolution

If 21[n] & X1(z) and m3[n] & X,(z) then z[n] = z1[n] * 22n] & X(2) = X1(2) Xa(2)

Proof:

= Xi(z) Xa(2)

The ROC of the convolution contains at least as much of the z-plane as the intersection of the ROC of X (z) and the ROC of
Xg (Z)

Recipe for convolution without tears:
e Compute both z-transforms
e Multiply
e Find inverse z-transform. (Hopefully already in table...)

Example. z[n] = u[n] *xu[n — 1]
1 4 1 P

X(z) = 1—21 % 117 (1—271)2

using the time-shift property. So z[n] = n u[n] from previous example.
Contrast with continuous-time: wu(t) * u(t) = tu(t).

ROC for both u[n] and u[n — 1] is {|z| > 1}. Same ROC for their convolution.

Convolution and LTI systems

If z[n] — — y[n], then since y[n] = z[n] * h[n], Y(2) = H(z) X(2).

Example: where ROC after convolution is larger than intersection.

h[n] = 0[n] — d[n — 1] (discrete-time differentiator).
x[n] = u[n — 2] (delayed step function).
H(z)=1- 2" forz #0.

X(z) = £E for {|z| > 1}. (Why?)
y[n] = x[n] % hin], so L
Y(2)=H(2)X(z)=(1-27") : =272

1—271
which has ROC = C — {0}, which is “bigger” than intersection of ROC x and ROCp.
What is y[n]? y[n] = d[n — 2].
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Correlation of two sequences
If z[n] & X (2) and y[n] & Y () are both real then

oo

rayll] = Z x[n]y[n — 1] & Rgy(2) = X(2) Y(z7h)

n=—oo

since ry, [l] = z[l] * y[—{] and by convolution and time-reversal properties.

The ROC is at least as large as the intersection of the ROC of X (z) with the ROC of Y (z71).

Multiplication of two sequences

If z1[n] & X1(z) and 22]n] & X,(z) then
1 AN
z[n] = z1[n] x2[n] £>X(z): —]]{Xl(U)XQ (;)v dv

Read about ROC

Parseval’s relation

n=-—oo

provided that r1;r9; < 1 < 71472y

Initial value theorem

(mention only)

(mention only)

If 2[n] is causal, then
z[0] = lim X(2)

Proof: simple from definition: X (z) = z[0] + z[1] 2 + z[2] 272 + - --

Final value theorem

If z[n] is causal then
lim z[n] = lim(z — 1) X(2).

n—oo z—1

The limit exists provided the ROC of (z — 1) X (z) includes the unit circle.
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Comparison to Laplace properties

Compared to corresponding properties for Laplace transform, there are some missing.
Which ones?

Conjugation

2*[n] & X*(z%)

So if z[n] is real, then X (z) = X*(2*).
(For later: If in addition, X (z) is rational, then the polynomial coefficients are real.)

Laplace properties for which z-transform analogs are less obvious because time index n is an integer in DT.

Property Continuous-Time Discrete-Time
Laplace transform z-transform
1
Time scaling f(at) & HF(E) ,a#0. ?
al” \a
Differentiation/difference in the time domain 4 2. (t) &Es X.(s) x[n] —z[n — 1] & (1—-271X(2)
Integration/summation in the time domain S walr)dr & 1 Xa(s) s _alk] & — X(2)

In discrete time, the analog of time scaling is up-sampling and down-sampling.

Time expansion (up-sampling)

Define the M-times upsampled version of z[n] as follows:

x[n/M], if nis a multiple of M
0, otherwise
{

for M =2: = ,2[~2],0,2[~1],0,2[0], 0, 2[1],0,2[2],0,...} .

Then Y (z) =3 07 x[n]z7"M = X (2M), withROCy = {z € C: 2™ € ROCx } .

n—=—oo

x[n] T M £>X(ZM)

Example. Find z-transform of y[n {1 0,0,1/8,0,0,1/82,. } . The brute-force way to solve this problem is as follows:

0o e k
Y(2) =14 (1/8)272 + (1/8)%27 0 4. = Y (1/8)F27 = Z<81z3> - W’
k=0 k=0

if |(1/8)273| < li.e., |2| > 1/2=ROC.
The alternative approach is to use upsampling properties. y[n] is formed by upsampling by a factor of m = 3 the signal z[n] =
(1/8)" u[n] & X(2) = @z for ROC = {|2| > 1/8}. Thus Y (2) = X (2*) = 1—q/g;;=s for ROC = {|2*| > 1/8}.

Down-sampling

One way to “down sample” is to zero out all samples except those that are multiples of m: Define

m] = z[n], n nota multiple of m
gl = 0, otherwise
form=2: = {...,0,2[—4],0,z[-2],0,z[0],0,z[2],0,x[4],0,...}.

General case left as exercise.

Example: m = 2.
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Trick: write y[n] = 3 (1 + (=1)") z[n] = 3 z[n] +3(-1)"
Using linearity and z domain scaling property Y(z) =
ROC of Y'(z) is at least as large as ROC of X (z).

Formula that is useful for such derivations:

o+ g[=2 +gl0] +g[2] + g4+ = D g[2n]

n=—oo

3.11
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3.3
Rational z-transforms

All of the above examples had z-transforms that were rational functions, i.e., a ratio of two polynomials in z or z .

B [l =)
=30 LG

This is a very important class (i.e., for LTI systems described by difference equations).

3.3.1
Poles and zeros

e The zeros of a z-transform X (z) are the values of z where X (z) = 0.

e The poles of a z-transform X (z) are the values of z where X (z) = cc. (¢f. mesh plot of X (2))

If X (z) is a rational function, i.e., a ratio of two polynomials in z, then

X(2) = N(z)  bo4+bizt 4 +byz™ 224:0 bpzF
 D(2) aptarzl4-tayz M ZIICVZO apzk

Without loss of generality, we assume ag # 0 and by # 0, so we can rewrite

-M M by M—1_ . bum /
oz ZV A+ ez +o+ P éb_o N N'(2)

X ——
(Z) ao Z_N ZN+Z_[1)ZN_1+"'+Z_](\; ao D/(Z)

N'(z) has M finite roots at 21, ..., zps, and D’(2) has N finite roots at py, ..., px. So we can rewrite X (2):

bo _noarlz=21)(5—2) (2 = 2u)

X(Z): ao (Z—Pl)(Z—pz)“'(Z—pN)

or

Il (2 = z)
X(2) = G N-M k=1
& T (= — pe)

)

where G 2 Z—g. Thus

e X (z) has M finite zeros at z1, ..., 2y

e X (z) has N finite poles at py,...,pN

o If N > M, X(z) has N — M zeros at z = 0

o If N <M, X(z)has M — N polesat z =0

e There can also be poles or zeros at z = 0o, depending if X (co) = oo or X(00) =0
e Counting all of the above, there will be the same number of poles and zeros.

Because of the boxed form above, X (z) is completely determined by is pole-zero locations up to the scale factor G. The scale
factor only affects the amplitude (or units) of the signal or system, whereas the poles and zeros affect the behavior.

A pole-zero plot is a graphic description of rational X (z), up to the scale factor. Use o for zeros and x for poles. Multiple poles
or zeros indicated with adjacent number.

‘ By definition, the ROC will not contain any poles. ‘

Skill: Go from x[n] to X (z) to pole-zero plot.

Example. z[n] = n u[n], unit ramp signal. Previously showed that X (z) = (1_221)2 = =0 {lz| > 1}.

Im(z)

2Re(z2)

ROC = {|z| > 1}
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Skill: Go from pole-zero plot to X (z) to x[n].

Example. What are possible ROC’s in following case? Answer: {|z| < 1}, {1 < |z| < 3}, or {3 < |z|}.
Im(z)

/ \ Re(2)
> 3
gain =7

z—19)(z z— —9z7 1t 2 1) (1—2271 .
X (2) = TEEHEE T = Ue e J022 ) But what is #[n]? (PFE soon...)

332
Pole location and time-domain behavior for causal signals

The roots of a polynomial with real coefficients (the usual case) are either real or complex conjugate pairs. Thus we focus on these
cases.

Single real pole
1 z

Z
= i X = = .
efn] = p"uln] & X(2) = 1 =
Fig. 3.11
e signal decays if pole is inside unit circle
e signal blows up if pole is outside unit circle
e signal alternates sign if pole is in left half plane, since (—|p|)™ = (—1)"|p|™

Double real pole
d 1 _ pzt . pz

TGl gt T Ui (2o p)p?

zn] = np" uln] & X (z) =

Fig. 3.12

Generalization to multiple real poles?

Pair of complex-conjugate poles

From Table 3.3:

" sin ) ufn] VA az " sin wy az sin wy az sinwg
a" sin(wgn) uln| & = =
1—2azlcoswy +a?272 22 —2azcoswp+a? (z—ae™0)(z —ae Iw0)’

where a is assumed real. The roots of the denominator polynomial are

2a coswg £ +/(2a coswg)? — 4a? . .
z= VI ) = acoswytay/cos?wy — 1 = afcoswy=£ 1/ —sin® wy] = afcos w7 sinwy] = aew0 .

2

Thus the poles of the transform of the above signal are at p = a e?“° and p* = e~ 7“0,
Thus the following signal has a pair of complex-conjugate poles:

az sin wy

— a"sin(won) uln] & X(z) = — 20
Cﬂ[n]— ( 0 ) [] X() (z—p)(z—p*)

(Also see (3.6.43).)
Fig. 3.13

What determines the rate of oscillation? wg

Qualitative relationship with Laplace: z = e*7, in terms of pole-zero locations.
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333
The system function of a LTI system

As noted previously: x[n] — | LTI hln] | — y[n] = x[n] x h[n] & ‘ Y(z)=H(z) X(z). ‘
e Forward direction: transform h[n] and z[n|, multiply, then inverse transform.
e Reverse engineering: put in known signal z[n] with transform X (z); observe output y[n]; compute transform Y (z). Divide the

two to get the system function or transfer function ‘ H(z)=Y(2)/ X(2). ‘

If you can choose any input z[n], what would it be? Probably x[n] = d[n] since X (z) = 1, so output is directly the impulse
response.

e The third rearrangement ‘ X(2)=Y(2)/H(z) ‘is also useful sometimes.

Now apply these ideas to the analysis of LTI systems that are described by general linear constant-coefficient difference equations
(LCCDE) (or just diffeq systems):

N M
y[n] = fZaky[nf k]Jerk:r[nf K].
k=1 k=0

Goal: find impulse response i[n]. Not simple with time-domain techniques. Systematic approach uses z-transforms.

Applying linearity and shift properties taking z-transform of both sides of the above:

N M
Y(z) = - Z arz Y (2) + Z bz " X(2)
k=1 k=0

SO

N
1+ Z akz_k
k=1

Y(z)= [Z bkz_kl X(2)

. A
s0, defining ag = 1,

Y(2) _ Yalobez ™t Yalobezh
X(z) 1+ Z;ICV:1 arpz=k ZkN:o arz=k

What is the name for this type of system function? It is a rational system function. (Ratio of polynomials in z.)

H(z) =

w9

Now we can see why sign in difference equation.
We can also see why studying rational z-transforms is very important.

The system function for a LCCDE system is rational.

Skill: Convert between LCCDE and system function.

What about irrational system functions? (optional reading)

Although all diffeq systems have rational z-transforms, diffeq systems are just a (particularly important) type of system within the
broader family of LTI systems. There do exist (in principle at least) LTI systems that do not have rational system functions.

Example. Consider the LTI system having the impulse response h[n] = L u[n].

The system function for this (IIR) system is H(z) = Y.~ , %z_" =log 27! = — log z, which certainly is not rational.

However, this system does not have any known practical use, and would be entirely impractical to implement!
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All zero system

If N = 0orequivalently a; = - -- = an = 0, then the system function simplifies to

M 1 M H]\l (Z o Zk)
H(Z) = Z bkz_k = ZW Z kaM_k = k:lziM
k=0 k=0

The M poles at z = 0 are called trivial poles.

Why are they called trivial poles? One reason is that they correspond only to a time shift. The other is that if a system has a pole
outside the unit circle, then certain bounded inputs will produce an unbounded output (unstable). But a pole at zero does not cause
this unstable behavior, so its effect is in some sense trivial.

Then there are M roots of the “numerator” polynomial that are nontrivial zeros. Thus this is called a all-zero system.
The impulse response is FIR:

hln] = bi6[n — k]

All pole system

If M = 0 or equivalently by = - -- = bys = 0, then the system function reduces to

b() boZN ZN

1+ ijyzl apz=k

H(z)

= = bO
N _ N )
D g 2N TF [[=1(z —pr)

where ag 2 1. This system function has N trivial zeros at z = 0 that are relatively unimportant, and the denominator polynomial
has N roots that are the poles of H(z). Thus this is called a all-pole system.
The impulse response is IIR.

Otherwise the impulse response is called a pole-zero system, and the impulse response is IIR.

Skill: Find impulse response h|n| for rational system function H (z).
Example. Find impulse response h[n] for a system described by the following input-output relationship: y[n] = — y[n — 2] + z[n] .

Recall that earlier we found the impulse response of y[n] = y[n — 1] + z[n] by a “trick.”
Now we can approach such problems systematically.

Do not bother using above formulas, just use the principle of going to the transform domain.

1
Write z-transforms: Y (2) = =272 Y (2) + X(2),s0 (1 4+ 272) Y (2) = X(2) and H(z) = =
2
1
From Table 3.3: cos(nm/2) u[n] & T, 9% hin] = cos(nm/2) u[n] = {1,0,-1,0,...}.

Note that there is more than one choice (causal and anti-causal) for the inverse z-transform since ROC never discussed.
Why did | choose the causal sequence? Because all LTI systems described by difference equations are causal.

In the above case, we could work from Table 3.3 to find h[n] from H(z). But what if the example were y[n] = y[n — 3] + z[n]?

1
Looks simple, should be do-able. By same approach, H (z) = = which is not in our table.
z

So what do we do? We need inverse z-transform method(s)!

Summary

The above concepts are very important!
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3.4
Inversion of the z-transform
Skill: Choosing and performing simplest approach to inverting a z-transform.

Methods for inverse z-transform
e Table lookup (already illustrated), using properties
e Contour integration
e Series expansion into powers of z and z !
e Partial-fraction expansion and table lookup

Practical problems requiring inverse z-transform?
e Given a system function H(z), e.g., described by a pole-zero plot, find h[n].
This is particularly important since we will design filters “in the z-domain.”
e When performing convolution via z-transforms: Y (z) = H(z) X (z), leading to y[n].

34.1
The inverse z-transform by contour integration

x[n] = 2%{7 %X(z) 2"z

The integral is a contour integral over a closed path C' that must
¢ enclose the origin,
e lie in the ROC of X (z).

Typically C'is just a circle centered at the origin and within the ROC.

Cauchy residue theorem. skip : see text

1 n—1—k _ ]-7 k=n _ _

The rest of this section might be called “how to avoid using this integral.”
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34.2
The inverse z-transform by power series expansion, aka “coefficient matching”

If we can expand the z-transform into a power series (considering its ROC), then “by the uniqueness of the z-transform:”

if X(z)= Z cnz” " then zln] = ¢y,

n—=—oo

i.e., the signal sample values in the time-domain are the corresponding coefficients of the power series expansion.

Example. Find impulse response h[n] for system described by y[n] = 2y[n — 3] + z[n].

By the usual Y/ X method, we find H(z) = 5.
From the diffeq, we this is a causal system. Do we want an expansion in terms of powers of z or z=*? We want z .

Using geometric series: H(z) = 1——5 = > peo(22 ) =300 (2F273F = 142273 422,76 4 |

Thus h[n] = {1,0,0,2,0,0,4,...} = > po, 2% §[n — 3k].
This case was easy since the power series was just the familiar geometric series.
In general one must use tedious long division if the power series is not easy to find.

Very useful for checking the first few coefficients!

Example. Find the impulse response hz[n] for the system described by y[n] = 2y[n — 3] + z[n] +5 x[n — 1].
We have

14527t 1 5271

Ho(z) — —
L Rl s v Sl e Ry

= H(2) +527" H(2) = ha[n] = h[n] +5h[n — 1] = {1,5,0,2,10,0,4,20,...}.

Example. What if we knew we had an anti-causal system? (e.g., y[n] = 2y[n + 3] + z[n + 1]).

Rewrite H(z) = z/(1 — 223) = 2y 2 ,(22%)F = 3702 2k230 ! —
hln] = 3232025 d[n + (3k +1)] = {...,4,0,0,2,0,0,1,0,0,0,...} .

But we still need a systematic method for general cases.

To PFE or not to PFE?

Before delving into the PFE, it is worth noting that there are often multiple mathematically equivalent answers to discrete-time
inverse z-transform problems.

145271
Example. Find the impulse response h[n] of the causal system having system function H(z) = %
SR S — ZaZ

Approach 1: expand H(z) into two terms and use linearity and shift properties:

1 -1 1 n n—1
Approach 2: perform “long division:”
PG PRI L1 P S SNV P
2 |1-221 2] 20 1421 2 2 '
N—_——
due to pole

Which answer is correct for h[n]? Both!
(Equality is not immediately obvious, but one can show that they are equal using 0[n] = u[n] — u[n — 1].)

However, the second form is preferable because this system has one pole, at z = 2, so it is preferable to use the form that has
exactly one term for each pole. The asymptotic (large n) behavior is more apparent in the second form.
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34.3
The inverse z-transform by partial-fraction expansion

General strategy: suppose we have a “complicated” z-transform X (z) for which we would like to find the corresponding discrete-
time signal x[n]. If we can express X (z) as a linear combination of “simple” functions {X(z)} whose inverse z-transform is
known, then we can use linearity to find z[n]. In other words:

X(z) =01 X1(2)+ -+ ax Xk(2) = z[n] = a1 x1[n]+ - + ax vx[n].
In principle one can apply this strategy to any X (z). But whether “simple” X (z)’s can be found will depend on the particular
form of X (z).

Fortunately, for the class of rational z-transforms, a decomposition into simple terms is always possible, using the partial-fraction
expansion (PFE) method.

What are the “simple forms” we will try to find? They are the “single real pole,” “double real pole,” and “complex conjugate pair”
discussed previously, summarized below.

[ Type | X(2) | z[n] |
polynomial in z Sz R > pcrd[n — k|
single real pole o " uln)

g p = p

-1

double real pole szw np™ uln]
1

double real pole a—p1)e (n+1)p™ u[n]
1 2 1

triple real pole A=pe ) L;TLH p" uln]

az sin wg

a™ sin(won) uln]

complex conjugate pair
P jugatep (z —aeo)(z — aeIwo)
"

complex conjugate pair r n r
p = |ple™o l—pz7t  1—prz!

27| |p|" cos(won + £7) u[n]

Step 1: Decompose X (z) into proper form + polynomial

As usual, we assume ag = 1, without loss of generality, so we can write the rational z-transform as follows:
N(z) b+ bzt 4+ by ™
D(z) 1+azt+--+ayz N’

Such a rational function is called proper iff ayy # 0 and M < N. We want to work with proper rational functions.

X(z) =

We can always rewrite an improper rational function (M > N) as the sum of a polynomial and a proper rational function.

Py (z7) oy, Prea(z)

If M > N,then ———= = Py/_ e

> en Pr (o) M-N(27) + Pr (2 )

Example.
_ _ _ 1 _— _ 1
X(2) 1+22:12—1+ 1+22_1271 :lz—1+1+z2_5'21(1"‘221):1214_1_521
142271 2 1+22z71 2 2 1+ 2271 2 142271
1 1 [1-311 1 1 1-—3z7+ 3 (1+2:7 11 5

I L ) [P 2 4(_ ):__+_Z71+ i
2 4 1+2271 4 4 2 142271 4 2 142271

In general this is always possible using long division.
The polynomial part is trivial to invert. Therefore, from now on we focus on proper rational functions.
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Step 2: Find roots of denominator (poles)

The MATLAB roots command is useful here, or the quadratic formula when N = 2.

We call the roots p1, . . ., py, since these roots are the poles of X (z).

Step 3a: PFE for distinct roots

One can use z or z ! for PFE. The book chooses z. We choose 2z~ to match MATLAB’s residuez.

If the poles py, ..., py are all different (distinct) then the expansion we seek has the form
1 'N
X(2) = —— 4+ ... % 3-1
(2) 1= prat + 4t [yl (3-D

where the r;’s are real or complex numbers called residues.

For distinct roots:

e = (1 —przt) X(2)

2=DPk

Proof:

1 N

+"'+7’k+"'+(1—pk271)m7

(1—pez™) X(2) = (1 —prz™)

and evaluate the LHS and RHS at z = py.

1—prz—t

Step 4a: inverse z-transform

Assuming x[n] is causal (i.e., ROC = {|z| > maxy, |px|}):

‘x[n] =ripluln]+--- +rypyk uln]. ‘

The discrete-time signal corresponding to a rational function in proper form
with distinct roots is a weighted sum of geometric progression signals.

Complex conjugate pairs

In the usual case where the polynomial coefficients are real, any complex poles occur in conjugate pairs. Furthermore, the corre-
sponding residues in the PFE also occur in complex-conjugate pairs.

PFE residues occur in complex-conjugate pairs for complex-conjugate roots. ’

skip Proof (for the distinct-root case with real coefficients):
Let p and p* denote a complex-conjugate pair of roots. Suppose X (z)
in z with real coefficients. Then

= % where Y'(2) is a ratio of polynomials

rn = (1 —pz_l)X(z) s = 1 flgfi—l B — . }_/(pzi)/p
Y(2)

T2

(1-p"27) X(2)

Y (p*) { Y*(p") } _ [ Y (p) } .

= =T7Tr
sy 1—p/p* [1-p*/p 1—p*/p !

Z=p* - (1—pzh

since Y*(p) = Y (p*) because Y (z) has real coefficients.

Example.
r r*
X =
(2) 1—pzt + 1—przt
thus
a[n] = [rp"™ + 77 (p")"] uln].

Since this is of the form a 4 a*, it must be real, so it is useful to express it using real quantities.
z[n] = 2real(rp™) uln] = 2real(|r| ’? [p|™ e*°™) uln] = 2|r|[p|" cos(won + @) u[n]

where p = |p| e’*° and r = |r|e’?. Note the different roles of /p = wy (frequency) and /7 = ¢ (phase).
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Example. Inverse z-transform by PFE

Find the signal x[n| whose z-transform has the f0110w1ng pole-zero plot.

L R

:%:: f\\\,/g/ch: {1/2<<|z\<:3}

Find the formula for X (z) and manipulate it (resorting to long division if necessary) to put

in “proper form:”

z+2
X _
(2) (z—=3)(z—1/2)
2+ 2272 . . :
= (1= 3:0)(1 — 1) (negative powers of z in denominator)
2
4 2t 42272 2 . L
= 3 + o133, 3/2 (avoiding long division)
2 2
4 249,72 - % [1 — %z‘l + %z‘z]
- g T 1 — Z —1 + 3 22
4 —g + 372'71
= 3 + 1 3:1)(1= %z—l) (proper form!)
4 ™ T9
= = PFE
3+1—3f4+1—%z1 (PFE)
residue values:
4, 17 1 4, 17 1
T1:-:§j;§i—- ——2 TQI':ELEEEL_ = —2
1— %z—l 5 3 1 —3271 =12
4 z —2 .
X(z) = 3 + 30 + p (could multiply out to check).

2
Considering the ROC, we conclude

xM}:§5hﬂ—gyl

3

A\

u[—n — 1]

/—2<3)numy

~

anti-causal

MATLAB approach: [r p k]
returns (in decimals): r =

= residuez ([0 1 2],
[(2/3 =21,

1 -7/2 3/21)

[
p = [31/2], k = 4/3.
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General PFE formula for single poles, for proper form! with M < N:
B(z)  bg+bizt by ™ 1 rN

— N — = _|_ e + —71
A(z) 1o (1 —prz™) L —piz 1 —pnz

where the residue is given by:

X(z) =

B(z)

ri=(1—prz™) X(2) e (1= piz )

Z=py
If pi. is a repeated (2nd-order) pole:
L
Tl = _ka %(1 —prz ) X (2) .
rre = (1—prz™)? X(2)
Z=Dk
In general, if p; is an Lth-order repeated pole, then
- Tk,
X(2) :...+;m+...

where

L g x| =

T L= (—pp) D d(z )

Rarely would one do this by hand for L > 2. Use residuez instead!

=Pk

Fact. For real signals, any complex poles appear in complex conjugate pairs,
and the corresponding residues come in complex conjugate pairs:

r r*
X — ...
(2) Jrl—pz*1 —1_1—])*,2*1 +

Letting p = |p|e/*° and 7 = |r| e/® (note the difference in meaning of the angles!):
z[n] = rp"uln] +r(p*)" uln]
= [re’ (Ip| )" uln] +[r] ™ (Jp| e™#)" u[n]
= |r| (|p‘” ol? Iwon 4 o=y efjwon) uln]

= 2|r| |p|" cos(won + ¢) uln] .

UIf not in proper form, then first do long division.

3.21



322 (© J. Fessler, May 27, 2004, 13:11 (student version)

Example. Finding the impulse response of a diffeq system.

Find the impulse response of the system described by the following diffeq:

4 7 1
yln] = = yln — 1] =5 yln — 2]+ yln — 3]+ aln] — 2ln — 3]
Step 0: Find the system function. (linearity, shift property)
4 [ L 3 -3
Y(2)==z27Y(2)——=2z"Y(2)+—27"Y(2)+ X(2) —27° X(2)
3 12 12
4 -1 7 -2 1 -3 -3
1—§z +EZ — 157 V(z)=[1-2""] X(z)
so (by convolution property):
Y(z) 1—273
H(z) = = T —.
X(z) 1—s2'+ 52 2— 5273

Step 1: Decompose system function into proper form + polynomial.

In this case we can see by comparing the coefficients of the 2~ terms that the coefficient
for the Oth-order term will be 1/(1/12) = 12.

1—2z3

_ 4. 1,4 7.2 _1_-3
1 32+ 5% 52

H(z) =12+ — 12| =12+ P(z)

where

1— 23
P(z) = — 12
(=) 1 -3zt 4+ 522 — 423

_3 4 -1 7 -2 1 .-3
1—z3—12[1— 327"+ 522 — 5277

_ 4,14 7 ,-—2__ 1.3
1 32+ 5% T52

—11 4+ 1627t — 7272

1—321+ 522 — 5273

Note that P(z) is a proper rational function.
Since H(z) = 12 + P(z), we see that h[n] = 120[n] + p[n].
We now focus on finding p[n| from P(z) by PFE.
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Step 2: Find poles (roots of denominator).

The MATLAB command roots ([1 -4/3 7/12 -1/12]) returns0.5 0.5 0.33,
so we check and verify that the denominator can be factored:

so in factored form: 17,2
—11+16z7" — 7z~

(1-3=)" (1 - 327)

Step 3: Find PFE

Since there is one repeated root, the PFE form is

11 71,2 2
P(z) = —— | ’ + : (3-2)
-3z (1—4z1)°  1—g2!

For a single pole at z = p;, we find the residue using this formula:

re = (1 — ppz ) P(2)

Z=Pk

Thus for the single pole at z = 1/3:

—114+ 16271 — 7272

1

ro = (1 — ngl) P(2) = —104.

z=1/3

2=1/3 (1- %2_1)2

For a double pole at z = py, the residues are given by

I d _ _
Tkl = ——_1(1 — prz )2 P(2) , and rpo = (1 —pgz 12 P(2) .
—prdz 2=p, 2=pg
Thus for the double pole at z = 1/2:
1 d 1 _ d —11+ 16zt — 7272
i1 = —1/9 F(l - 52 1)2P(z) - dz-1 1 1,1
—1/2 dz 2=1/2 < 3% 2=1/2
(1—3271)(16 — 14z71) — (=11 + 1627 — 7272)(—3)
= =2 TEEY =114,
(1—327) 2=1/2

and

1

—11+ 1627 — 7272
7"1’2 = (1 — 52_1)2 P(Z) = + - -

= = —21.
2=1/2 (1- %Z_l)

z=1/2
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Substituting in these residues into equation (3-2):

P(2) 114 N —21 N —104
z) = :
1— %z—l (1— %2_1)2 1— %z—l
Step 4: Inverse z-transform (using table lookup)

pln] = 114(%)%@] 91(n+1) <%>nu[n] 104 (%)nu[n] |

Substituting into proper form decomposition above yields our final answer:

Bn] = 126[n] + [(114 — 21+ 1)) (%)n — 104 (%)] uln)].

The Resulting Impulse Response

Impulse Response for PFE Example

1.5

0.5f

h(n)

o 5 10 15 20 25 30 35 40
n
Sanity check: h[0] = 1, as it should because for this system y[0] = z[0] for a causal input.

Using MATLAB for PFE

Most of the above work is built into the following MATLAB command:
[r p k] = residuez([1 0 0 -11, [1 -4/3 7/12 -1/127)
which returns
er = [114 -21 -104] (residues)
ep = [0.5 0.5 0.3333] (poles)
e k = [12] (direct terms)
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Furthermore, using MATLAB’s impz command, one can compute values of h[n] directly
from {b;} and {ay} (but it does not provide a formula for h[n]).
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skim

344

Decomposition of rational z-transforms
If ag = 1 then

Mabrt T

-~ &N N :
> h—o k2" [[ie: (T —pr2z™)

Product form.

Combine complex-conjugate pairs
b1 = —2real(zy)

bor = |2k |?

a1, = —2real(py)

a2k = |Pk|2

[T (1 = 212 ™) TTi_o (1 + bupe™ + bagz ™)
H?k:?(l —przt) H?k:?(l + a1zt + agpzF)

X(Z) = bo

useful for implementing, see Ch 7, 8

just skim for now!

3.5
The One-Sided z-transform

skim
Useful for analyzing response of non-relaxed systems.

Definition:

XT(2) = Z x[n]z="

n=0
3.5.1

3.5.2 Solution of difference equations with nonzero initial conditions
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3.6

3.27

Analysis of LTI Systems in the z-domain

Main goals:
e Characterize response to inputs.
e Characterize system properties (stability, causality, etc.) in z-domain.

3.6.1

Response of systems with rational system functions

X(z) — — Y(2). Goal: characterize y[n]

Assume
e H(z) is a pole-zero system, i.e., H(z) = B(z) / A(2).
e Input signal has a rational z-transform of the form X (z) = N(2)/Q(z2).

Then

So the output signal also has a rational z-transform.

How do we find y[n]? Since Y (z) is rational, we use PFE to find y[n].

Assume
e Poles of system pq,...,py are unique
e Poles of input signal ¢4, . . ., gz, are unique

e Poles of system and input signal are all different

e Zeros of system and input signal differ from all poles (so no pole-zero cancellation)
e Proper form

e Causal input sequence and causal LTI system

Then
X(e) =) g o7~ Y@= = =
= -z =1z =l —akz

so (assuming a causal system) the response is:

N L

yln] = Z rEpy uln] + Z Skqy uln] .
k=1 k=1
natural forced

The output signal for a causal pole-zero system with input signal having rational z-transform
is a weighted combination of geometric progression signals.

If there are repeated poles, then of course the PFE has terms of the form np™ u[n] etc.

The output signal has two parts
e The pj terms are the natural response y,,,[n] of the system. (The input signal affects only the residues 7).
Each term of the form p} u[n] is called a mode of the system.
e The g, terms are the forced response ys[n] of the system. (The system affects “only” the residues sg.)

Transient response from pole-zero plot

What about systems that are not necessarily in proper form?
There may be additional k; §[n — ] terms in the impulse response.

From the pole-zero plot corresponding to H(z), we can identify how many k; 6[n — ] terms will occur in the impulse response.

For causal systems:
o If there are one or more zeros at z = 0, then there will be no §[n| terms in h[n].

o If there are no poles or zeros at z = 0, then there will be one term of the form k¢ §[n] in the the impulse response.
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e If there are N7 > 1 poles at z = 0, then h[n] will include Ny + 1 terms of the form k; 6[n — I].

For IIR filters, the ¢ terms are less important than the terms in the impulse response (and in the transient response) that correspond
to nonzero poles.

3.6.2
Response of pole-zero systems with nonzero initial conditions

skim
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3.6.3
Transient and steady-state response

Define y,,,[n] to be the natural response of the system, i.e., yn,[n] = ZkN:l TPy un] .
o If all the poles have magnitude less than unity, then this response decays to zero as n — 0.
e In such cases we also call the natural response the transient response.
e Smaller magnitude poles lead to faster signal decay. So the closer the pole is to the unit circle, the longer the transient response.

The forced response has the form y¢, [n] = Z,le skqp uln] .
o If all of the input signal poles are within the unit circle, then the forced response will decay towards zero as n — oo.
o If the input signal has a pole on the unit circle then there is a persistent sinusoidal component of the input signal. The forced
response to such a sinusoid is also a persistent sinusoid.
o In this case, the forced response is also called the steady-state response.

Im(2)

Example. System (initially relaxed) described by diffeq: y[n] = 1 y[n — 1] + z[n].

1
What are the poles of the system? Atp = 0.5. H(z) = = Re(2)

— 2z
2
1
Signal: z[n] = (=1)" u[n]. Pole at g = —1. X (z) = T
1 1 1/3 2/3
Y(Z) = H(Z)X(Z) = (1 _ %271)(1 —i—zfl) = 1+ %Zfl _ %272 = 1— %Z—l + 14 21

where I found the PFE using [r p k] = residuez(l, [1 1/2 -1/2]).So

= 3(3) o+ 30

—_—— ——
natural / transient  forced / steady state

Where did 2/3 come from? H(—1) = 2/3.

Natural or Transient Response
0.35 T T T

031 T
0.251- T
= 02 1

=
>0.15} E

Forced or Steady State Response
0.8 T T T
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Geometric progression signals are “almost” eigenfunctions of LTI systems
Fact: the forced response of an LTI system with rational system function H (z) that is driven by a geometric progression input
signal z[n] = ¢™ u[n] is that same geometric progression scaled by H(q), i.e.,

n

z[n] = ¢" uln] 5 y[n] = yurln] + H(q) ¢" uln],

if no poles in system at z = q.

_ B 1 _ B(z) _ P(2) T
V() = HE)X(E) = HE) = = gy i) = A 1o g

by PFE if no roots of A(z) at z = q.

Residue: .
r=01-¢")Y(2)|,, = (1—612_1)H(Z)1_7qz_1 = H(q)
z=q
)

y[n] = yue[n] + H(q) ¢" uln] .

In particular, if ¢ = ¢/, then the input signal is a causal sinusoid, and the forced response is a steady-state response. And if the
LTI system is stable, then it has no poles on the unit circle, so the condition that A(z) have no roots at z = ¢ is satisfied. So the

steady-state response is /
yfr[n] — H(eju.)o) elwon u[n] _ |H(ejw0)| e](w0n+4 H(e?%0)) u[n]

which is a causal sinusoidal signal.

Thus the interpretation of H(e’*?) as a frequency response is entirely appropriate, even in the case of non-eternal sinusoidal
signals!

Note that if the system is stable, then the poles are inside the unit circle so the natural response will be a transient response in this
case, so eventually the output just looks essentially like the steady-state sinusoidal response.
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3.64
Causality and stability

We previously described six system properties: linearity, invertibility, stability, causality, memory, time-invariance.
e We first described these properties in general.
e We then characterized these properties in terms of the impulse response h[n] of an LTI system,
because any LTI system is described completely by its impulse response h[n].
e causality: h[n] =0V n < 0.
o stability: > 7 |h[n]| < occ.
e Now we characterize these properties in the z-domain.
If it exists, the system function H (z) (including its ROC) also describes completely an LTI system, since we can find h[n] from

H(z), i.e., we can determine the output y[n] for any input signal z[n] if we know H (z) and its ROC.
Skill: Examine conditions for causality, stability, invertibility, memory in the z-domain.

Memory

What is the system function and ROC of a memoryless system?
An LTI system is memoryless iff h[n] = by d[n]. So H(z) = by. So H(z) has no poles or zeros, and ROC = C.

In terms of dynamic systems, recall that previously we noted that FIR systems are “all zero” systems (poles at origin only).
Im(z) Im(2) Im(2)

/ \ Re(2) / Z\A Re(2) / \ Re(2)
kJROC{()gMgoo} \J/ROC{O<|Z|§00} kJROC{O.8<z|§oo}

Memoryless FIR IR
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Causality

Previous time-domain condition for causality: LTI system is causal iff its impulse response h[n] is O for n < 0.

How can we express this in the z-domain?
We showed earlier that the ROC of the z-transform of a right-sided signal is the exterior of a circle.
But is ROC = “exterior of a circle” enough? No!

z 2’2

Example. h(n] = u[n + 1] & g = o for {1 <[z < oo
—_— -z z—
The ROC is a circle’s exterior, and h[n] is right-sided, but the system is not causal.

For a causal system, the system function (assuming it exists) has a series expansion that involves only non-positive powers of z:

H(2) = 3 hla) =~ = WO+ h{1) = + 02} -

n=0

So the ROC of such an H (z) will include |z| = co. (In fact, lim,_, o, H(z) = h[0], which must be finite.)

An LTI system with impulse response h[n] is causal iff the ROC of the system function is
the exterior of a circle of radius r < oo including z = oo, i.e., ROC = {r < |z| < oo},
or, in the trivial case of a memoryless system, ROC = {0 < |z| < oo}.

Example. (skip ) Is the LTI system with system function H(z) = 2% — 27 causal? The ROC is C — {oo} — {0}, which is the
exterior of a circle of radius 0, excluding co. Thus noncausal, which we knew since h[n] = §[n + 2].

Example. Which of the following pole-zero plots correspond to causal systems?
Im(z) Im(z) Im(z2)

/ \ Re(z) / \ Re(z) / \ Re(2)
\jROC{Lz < 0.8} k//ROC{O.8< 2] < oo} \/ROC{O.8< 2] < o0}

Only the middle one. For the right one H(z) = g% which is infinite at z = oo. It is noncausal.

A given pole-zero plot for a rational system function corresponds to a causal LTI system
iff there are at least as many (finite) poles as (finite) zeros
and the ROC is the exterior of the circle intersecting the outermost pole.
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Stability

Recall time-domain condition for stability: an LTI system is BIBO stable iff >
How to express in the z-domain?
Recall definition of the ROC of a system function:

z € ROC iff {h[n] 2~ ™} is absolutely summable, i.e., S(z) = > - |h[n]| 2|~ < oo.

n=—oo

(oo}
n=—oo

|h[n]| < oc.

e Suppose system is stable. What can we say about ROC?
If the system is stable, then on the unit circle, where |z| = 1, we see S(z) < oco.
Thus BIBO stable system = ROC includes unit circle.

e Conversely, if the ROC includes the unit circle, then it includes the point z = 1, so S(1) < co, which implies Y~ __ |h[n]| <
oo so the system is BIBO stable.

An LTI system is BIBO stable iff the ROC of its system function includes the unit circle. ‘

Example. Suppose an LTI system has a pole on the unit circle at z = e’°. If we apply the bounded input €™ u[n], then the
steady state response (see 3.6.6 below) will include a term like n e7“°™ 4[n], which is unbounded.

So poles on the unit circle preclude stability.

Example. y[n]| = —y[n — 1] +z[n] = H(z) = 1-%% = 57 which has a pole at z = —1 so this system is unstable.

In general causality and stability are unrelated properties.
However, for a causal system we can narrow the condition for stability.

For a causal system, the ROC is the exterior of a circle. For it to be stable as well, the ROC must include the unit circle, so the
radius r for the ROC must be less than 1. There cannot be any poles in the ROC, so all the poles must be inside (or on the boundary
of) the circle of radius r < 1, which are thus inside the unit circle.

‘ A causal LTI system is BIBO stable iff all of the poles of its system function are inside the unit circle.

_1
1—z-1"

Example. Accumulator: y[n] = y[n — 1]+ z[n] has H(z) = Stable? No: causal but pole at z = 1 so unstable.
Recall earlier pictures showing that causal signals with poles outside unit circle are blowing up.

Intuition: signals with poles on the unit circle are the most “persistent” of the bounded signals, since they are oscillatory with no
decay. So for the system to have bounded output for such bounded input signals, its ROC must include the unit circle.

skip 3.6.6 Multiple-order poles and stability

Can poles of system function lie on the unit circle and still have the system be stable? No.

Example. Consider h[n] = u[n], so H(z) = 1/(1 — z7'), which has a pole at z = 1. Now consider the input z[n] = u[n], which
is certainly a bounded input. The output y[n] = (n + 1) u[n], as we derived long ago. So the output is not bounded.

This can happen anywhere on the unit circle.
Therefore for a causal system to be stable, all the poles of its system function must lie strictly inside the unit circle.
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3.6.5 Pole-zero cancellations

When a system has a pole and a zero at exactly the same location, they cancel each other out.

Example. Is the system y[n] = 3 y[n — 1] + x[n] stable? No, since it hsa a pole at z = 3.

Example. Find system function and pole-zero plot and assess stability for diffeq system y[n] = 3y[n — 1] +3 z[n] — z[n — 1].
—z

]
Since [1 — 327 Y (2) = [§ — 2] X (), the system function is H(z) = Y (z) / X (z) = 1%_3;_11 = 1 and h[n] = 3 é[n].

The pole and zero at z = 3 cancel, so yes, theoretically this is a stable LTI system.

picture of direct form I implementation H,(z) = 1 — 27!, Hy(2) = 1.

In practice there may be imperfect pole-zero cancellation. For example, in binary representation,

1/3=.010101...=> 27CMD =1/441/16+1/64 + -
k=0

which cannot be represented exactly with a finite number of bits. With 8 bits (.01010101), we get 0.333251953125 not 1/3.

Invertibility

In time domain, an LTI system with impulse response h[n] is invertible iff there exists an LTI system having some impulse response
hr[n] that satisfies: h[n]* hr[n] = d[n].

In z-domain: H(z) H;(z) = 1,s0 Hf(2) = ﬁ

Example. H(z) = %Ziﬁg = H(z) = %Z;—lf

So the poles becomes zeros and the zeros become poles.
Thus, in principle, any LTI system with rational system function is invertible.

However, in practice usually we want a stable inverse.

A causal, stable LTI system has a causal stable inverse
iff all of its poles and zeros are within the unit circle.

3.6.7
The Schur-Cohn stability test skip

We now have two valid procedures for checking stability of causal LTI systems:
e Checkif Y7 |h[n]| < oc.
e Check if poles of system lie inside unit circle.

To perform either one of these checks, generally one needs a concrete expression for h[n] or for H(z).

For a rational system function H(z) = B(z) / A(z), the poles are the roots of the denominator polynomial: A(z) =1+ a2~ +
- anxz~ V. Given concrete numerical values for the aj, coefficients, the usual approach to testing stability would be to just use
the MATLAB roots function and check the magnitudes of the roots.

But in the design process, often we have ranges of possible values for the coefficients, and we cannot check all of them using a
numerical root-finding routine. And for degrees greater than 2, there is no simple method for analytically finding the roots.

The Schur-Cohn test provides a method for verifying stability of discrete-time LTI systems having rational system functions without
explicitly finding the roots of the denominator polynomial. This is important practically since generally we want stable systems.

This test is the analog of the Routh-Hurwitz criterion used for testing stability of continuous-time systems.
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The Schur-Cohn Stability Test

The Schur-Cohn test provides a method for verifying stability of LTI systems with rational system functions
without explicitly finding the roots of the denominator polynomial. This is very important practically since
generally we want stable systems.
Procedure.

e Initialization: Ay(2) = A(2) = S5 axz ", an(k) = ay

e Define: A,,(z) = > 1L, am(k)z7%, where a,,,(0) = 1

e Define: B,,(2) = 2 ™A, (27Y) = D00 am(m — k)z7".

This is called the reverse polynomial, since order of coefficients are reversed.

e Define: K, = ap(m), m=1,...,N

A (2) =Ky, Bin(2)
1 - K2

e Test: The roots of A(z) are all inside the unit circle iff || K,,| < 1|form =1,2,... N.

form=N,N—-1,...,1

e Recursion: | A,,—1(z) =

The following second-order analysis serves as an “example.”

3.6.8 Stability of second-order systems

For first-order systems y[n] = a y[n — 1] 4 x[n], stability is trivial: check if |a| < 1.

Next interesting case is second-order systems:
bo

y[n] = —a1yln — 1] —azy[n — 2] +bo z[n] = H(z) = l+azt+az72"

Question. What values of a; and a, lead to a stable system?

In this 2nd order case we could determine the roots using the quadratic formula.
That is not feasible for N > 2, so we use the Schur-Cohn method as an example.

AQ(Z) =1+ alz’l + CL2272 so Ky = a2(2) = Q9

Ax(2) =Ky By(z)  1+4arz +agz? —aglag+ a1z +272  1—a3+a(l—ag)z! P

A =
1(2) 1- K2 1- a2 1- a2 1+ a

a1
so K =

. Thus H(z) is stable iff | |as| < 1|and

< 1lor |1+ as| > |ay].

a1
1+(l2

+ as

When |as| < 1, |1 + ag| = 1 + ag, so weneed 1 + ag > |a1], i.e., —(1 +az) < a; < 1+ as.

Real equal poles

N

a2

Complex conj. poles 1

1

2 A1

Real, distinct poles

Restricting our designs to coefficients in that triangle will ensure stability, without explicitly finding the roots.
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2_
In this 2nd order case the roots are given by the quadratic formula: p = — %t A 44“2

e Real and equal poles when a? = 4ay, i.e., on the parabola a, = a? /4 that touches corners of triangle.
e Real and distinct poles when a? > 4as,, which is below parabola.
e Complex poles otherwise, above parabola.

The book derives the corresponding impulse response for each case.

3.7
Summary

e z-transform and its properties

e convolution property for z-domain convolution

e system function of LTI systems

¢ finding impulse response of diffeq system having rational system function

e characterizing properties of output signals (forced, natural, transient, steady-state response)

e characterizing system properties (causality and stability) in z-domain

We now have many representations of systems:
e time domain:
e block diagram
e impulse response
e difference equation
e transform domain:
e system function
e pole-zero plot
e frequency response (soon)

Skill: Convert between these six system representations. (See diagram.)
e Use z for going between H (z) and pole-zero plot.
e Use 2! for PFE and for finding diffeq coefficients.

Where is 2D and image processing examples? Although 2D z-transform’s have been studied, e.g., [3], they are not particularly
useful in image processing, especially compared to the Fourier transform. In contrast, the 1D z-transform is the foundation for 1D
filter design.
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3.37

Discrete-time systems described by difference equations (FIR and IIR)

Difference equation:
N M
yln] = *Zaky[n*k]Jerkl'[n*k]
k=1 k=0
System function (in expanded polynomial and in factored polynomial forms):

2) = Y(z) 224:0 bpz " — pNM H]]cw:l(z_zk)
T = X0 = S e " LG

Frequency magnitude response: |H(w)| = bo

Relationships:

5 g

=

= s ‘%2/

N [a1] A

@ = 2
T 2

~ >

N[

I <

inverse Z, PFE

Block Diagram System Function H (z) Impulse Response

H(2)=Y(z)/X(2)

7|3 _
L]l ©
R o
STl T ] }
= zlf § z=¢ DTFT
) —
[ a4
S N
T
——geomay AN\ Y
Pole-Zero Plot Frequency Response
Filter Design

Each representation corresponds to a type of input/output relationship, e.g., convolution.



Chapter

Zz-Transforms 7

In the study of discrete-time signal and systems, we have thus far
considered the time-domain and the frequency domain. The z-
domain gives us a third representation. All three domains are
related to each other.

A special feature of the z-transform is that for the signals
and system of interest to us, all of the analysis will be in terms of
ratios of polynomials. Working with these polynomials is rela-
tively straight forward.

Definition of the z-Transform

e Given a finite length signal x[n], the z-transform is defined
as

N & N 1.k
X(z) = Z x[k]lz = Z x[k](z ) (7.1)
k=20

k=20

where the sequence support interval is [0, N], and z is any
complex number

e This transformation produces a new representation of x[7]
denoted X(z)

e Returning to the original sequence (inverse z-transform) x[n]

requires finding the coefficient associated with the nth power
-1
of z

ECE 2610 Signal and Systems 7—1



Definition of the z-Transform

e Formally transforming from the time/sequence/n-domain to
the z-domain is represented as

. zZ .
n-Domain < z-Domain

N
Z [n—k] S X(z) = Zxkzk

=

* A sequence and its z-transform are said to form a z-transform
pair and are denoted

x[n] & X(2) (7.2)
— In the sequence or n-domain the independent variable is n

— In the z-domain the independent variable is z

Example: x[n] = o[n—n,]
e Using the definition
N

—k N —k )
X(z) = Z x[k]z = = Z Slk—nylz " =z
k=20

k=0
e Thus,

V4 _no

o[n—nyl<>z

ECE 2610 Signals and Systems 7-2



The z-Transform and Linear Systems

Example: x[n] = 20[n]+30[n—1]+50[n—-2]+20[n—- 3]

e By inspection we find that

X(z) = 2+ 377 45774277

Example: X(z) = 4 - 57 4z 27"

e By inspection we find that
x[n] = 40[n]—-50[n—-2]+3[n—-3]-20[n-4]

* What can we do with the z-transform that is useful?

The z-Transform and Linear Systems

e The z-transform is particularly useful in the analysis and
design of LTI systems

The z-Transform of an FIR Filter

* We know that for any LTI system with input x[n] and
impulse response /[n], the output is

y[n] = x[n]+h[n] (7.3)

 We are interested in the z-transform of /#[n], where for an
FIR filter

M
h[n] = Z b,d[n—k] (7.4)
k=0

ECE 2610 Signals and Systems 7-3



The z-Transform and Linear Systems

e To motivate this, consider the input

x[n] = 2", —0<n<w (7.5)

e The output y[n] is

M M n—k
ylnl = > bpxln—kl = > bz
k=0 k:
f ) B ( M , —kj ) (7.6)
= kZZ = kZ Z

 The term in parenthesis is the z-transform of A[n], also
known as the system function of the FIR filter

e Like H (ej ®) was defined in Chapter 6, we define the system
function as

M U k
H(z) = bz = = Z hl(k]z (7.7)
k=0 k=0

e The z-transform pair we have just established is

h[n] < H(z)

M M
S bdln-kl& S bz
k=0 k=0

* Another result, similar to the frequency response result, is

y[n] = h[n]*z" = H(z)z" (7.8)
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The z-Transform and Linear Systems

_ Note if z = ¢ ®. we in fact have the frequency response
result of Chapter 6

e The system function is an Mth degree polynomial in complex
variable z

e As with any polynomial, it will have M roots or zeros, that is
there are M values z, such that H(z,) = 0

— These M zeros completely define the polynomial to within
a gain constant (scale factor), i.e.,

H(z) = by+ blz_1 + -t bMZ_M
= (1 —le_l)(l —222_1)---(1 —ZMZ_I)

_ (z—z)(z-25)---(z2—2)))

M
z

where z,, k = 1, ..., M denote the zeros

Example: Find the Zeros of
h[n] = o[n] + éS[n —1]- éS[n - 2]
 The z-transform 1s

H(z) = 1+éz — =z
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Properties of the z-Transform

e The zeros of H(z) are -1/2 and +1/3
e The difference equation
y[n] = 6x[n]+x[n—1]—-x[n-2]
has the same zeros, but a different scale factor;

proof:

Properties of the z-Transform

e The z-transform has a few very useful properties, and its def-
inition extends to infinite signals/impulse responses

The Superposition (Linearity) Property

ax[n]+ bx,[n] S aX,(z) + bX,(z) (7.9)
proof
X(z) = (ax,[n]+ bxz[n])z_1
n=20
N _1 N _1
= a Z x{[n]z  +b Z x,[n]z
n=>0 n=0
= aX,(z) + bX,(2)
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Properties of the z-Transform

The Time-Delay Property
X[n-11S 2" X(2) (7.10)
and
z —Hy
x[n—nyl<>z X(2) (7.11)
proof: Consider

-1 -N

N
x[n] = Z o, 0[n— k]
k=0

= ogo[n]+o0[n—1]+ - +a,o[n—N]
Let

Y(2) = 2 ' X(2)
N-1

) —

SO

y[n] = apo[n—1]+o0[n—-2]+ - +ayo[n-N-1]
= x[n-1]

Similarly

Y(z) = z "X(z)
= y[n] = x[n-n]

ECE 2610 Signals and Systems -7



The z-Transform as an Operator

A General z-Transform Formula
* We have seen that for a sequence x[n] having support inter-
val 0 <n < N the z-transform is
N

X2 =y x[n]z" (7.12)
n=>0
* This definition extends for doubly infinite sequences having
support interval —oo <n < oo to

X(z) = i x[n]z" (7.13)

n =-—o

— There will be discussion of this case in Chapter 8 when we
deal with infinite impulse response (IIR) filters

The z-Transform as an Operator

The z-transform can be considered as an operator.

Unit-Delay Operator

x[n]——» DLJeTeilty - y[n] = x[n-1]
x[n]———» Z_l e

ECE 2610 Signals and Systems 7-8



The z-Transform as an Operator
 In the case of the unit delay, we observe that

y[n] = z ' {x[n]} = x[n—1]

unit delay operator

which is motivated by the fact that Y(z) = X (2)

(7.14)

e Similarly, the filter
yln] = x[n] —x[n—1]

can be viewed as the operator

y[n] = (1—z Y{x[n]} = x[n]—x[n—1]

since

Y(2) = X(z) -2 ' X(z) = (1 —z HX(2)

Example: Two-Tap FIR

x[n]

. . .{?—
X(:)l bo
—1
Z by

Unit 2 X ()| x[n—1] yin]
Delay Hé—»

e Using the operator convention, we can write by inspection
that

Y(z) = byX(z)+ b,z X(2)
yln] = byx[n] +bx[n—-1]
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Convolution and the z-Transform

Convolution and the z-Transform

* The impulse response of the unity delay system is
h[n] = d[n—-1]
and the system output written in terms of a convolution is

y[n] = x[n]*8[n—-1] = x[n-1]

» The system function (z-transform of /#[n]) is

H(z) = z

and by the previous unit delay analysis,
Y(2) = 2z ' X(2)
e We observe that

Y(z) = H(z)X(2) (7.15)
proof:
M
y[n] = x[n]*h[n] = Z hlk]x[n - k] (7.16)
k=0

We now take the z-transform of both sides of (7.16) using
superposition and the general delay property

M —k
Yez) = S ALK X(2)
k=0

(7.17)

M —k
[Z hlk]z ]X(Z) = H(z)X(2)
k=0
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Convolution and the z-Transform

» Note: For the case of x[#] a finite duration sequence, X(z) is
a polynomial, and H(z)X(z) 1s a product of polynomials in
-1

z

Example: Convolving Finite Duration Sequences
e Suppose that
x[n] = 28[n]—-30[n—-2]+4d6[n-3]
hin] = d[n]+28[n—-1]+0[n-2]
We wish to find y[#] by first finding Y(z)

We begin by z-transforming each of the sequences

X(z) = 2- 37044z

H(z) = 1+ 27 42

We find Y(z) by direct multiplication
Y(z) = (232 244z )1 +22 " +27)

=2+ 42_1 —2_2 — 22_3 + 52_4 + 42_5

We find y[n] using the delay property on each of the terms of
Y(z2)
y[n] = 20[n]+408[n—-1]-0[n-2]
—20[n—-3]+50[n—-4]+40[n-35]

Convolve directly?
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Convolution and the z-Transform

e This section has established the very important result that

polynomial multiplication can be used to replace sequence

convolution, when we work in the z-domain, 1.e.,

z-Transform Convolution Theorem

y[n] = h[n]*x[n] < H(2)X(z) = Y(z)

Cascading Systems

* We have seen cascading of systems in the time-domain and

the frequency domain, we now consider the z-domain

x[n]

X (2)

LTI 1
Hi(z2), hiln]

wln]

W(z)

LTI 2
H>(z), ha[n]

yin]
————

Y(2)

e We know from the convolution theorem that
W(z) = H(2)X(z)

e [t also follows that

Y(z) = Hy(2)W(2)

so by substitution

Y(z) = [Hy(2)H(2)]X(2)

= [H1(Z)H2(Z)]X(Z)

(7.18)
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Convolution and the z-Transform

* In summary, when we cascade two LTI systems, we arrive at
the cascade impulse response as a cascade of impulse
responses in the time-domain and a product of the z-trans-
forms in the z-domain

h[n] = h[n]%h,[n] & H,(2)H,(z) = H(z)

Factoring z-Polynomials

e Multiplying z-transforms creates a cascade system, so factor-
ing must create subsystems

Example: H(z) = 1 + 37 2

» Since H(z) is a third-order polynomial, we should be able to
factor it into a first degree and second degree polynomial
* We can use the MATLAB function roots () to assist us

>> p = roots ([l 3 -2 11])

p = -3.6274
0.3137 + 0.4211i
0.3137 - 0.42111%

>> conv ([l -p(2)],[1 -p(3)1])

ans = 1.0000 -0.6274 0.2757 - 0.00001

» With one real root, the logical factoring is to create two poly-
nomials as follows
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Convolution and the z-Transform

H(z) = 1+3.6274z"
Hy(z) = (1- (03137 +/0.4211)z )

(1-(0.3137—j0.4211)z ")
= 1-0.6274z ' +027572 7

* The cascade system is thus:

x[n] _iwin] 1 i y[n]

— 1 +3.6274z — 1-0.6274z  +02757z = —»

X(2) W(z) Y(2)
Hy(2) H,(z)

e As acheck we can multiply the polynomials
>> conv ([l -p(l)],conv ([l -p(2)],[1 -p(3)]1))

ans = 1.0000, 3.0000, -2.0000-0.0000i, 1.0000-0.00001
» The difference equations for each subsystem are

wln] = x[n]+3.6274x[n— 1]
v[n] = wln]-0.6274w[n—- 1]+ 0.2757w[n — 2]

Deconvolution/Inverse Filtering

e In a two subsystems cascade can the second system undo the
action of the first subsystem?

 For the output to equal the input we need H(z) = 1

e We thus desire

1
Hl(Z)

H(z)H,(z) = 1 or H,(z) =
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Convolution and the z-Transform

Example: H,(z) = 1 —az_l, la| < 1
 The inverse filter is

| _ 1
Hl(z)

Hz(Z) = 1
l —az

e This 1s no longer an FIR filter, it is an infinite impulse
response (IIR) filter, which is the topic of Chapter 8

* We can approximate H,(z) as an FIR filter via long division

-1 22
l+az +az +---

-1
l—az )1
-1
l —az
-1
az
-1 2 -2
az -az
2 -2
az
2 -2 3 -3
az —-az
3 -3
az
e An M + 1 term approximation is
M
k —k
H,(z) = Z az
k=0

— Recall the deconvolution filter of Lab 8?

ECE 2610 Signals and Systems 7-15



Relationship Between the z-Domain and the Frequency Domain

Relationship Between the z-Domain and the

Frequency Domain

® - Domain

ik

A M
H(®) = > be’

k=0

Versus

z - Domain

Mo
H(z) = Z b,z
k=0

* Comparing the above we see
z =% in H(2), ie.,

that the connection is setting

H(®) = H(z)

(7.19)

—

The z-Plane and the Unit Circle

» If we consider the z-plane, we see that H (ei 6)) corresponds to

evaluating H(z) on the unit circle

m A Z2=J
A T
0 = —
z-Plane e —_ 2 o
- \\Z=€]
/
v
/ N
/
/ A
/ ®
| Re
/\_ , ~ >
o = 1In e
Z=—1\ /(D—O
\ /z=1
N /
unit circle™ Y.
/
S z=+_~
\\‘.:’//Tc
O = —=
2
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Relationship Between the z-Domain and the Frequency Domain

e From this interpretation we also can see why H(¢/ w) 1S peri-
odic with period 21

— As o increases it continues to sweep around the unit circle
over and over again

The Zeros and Poles of H(7)

e Consider
-1 -2 -3
H(z) = 1+bjz +by,z +b;5z (7.20)
where we have assumed that b, = 1
e Factoring H(z) results in
H(z) = (1 —le_l)(l —222_1)(1 —232_1) (7.21)

e Multiplying by 2> /2 allows to write H (z) in terms of posi-
tive powers of z

23 + b122 + bzz1 + b3ZO
3
z (7.22)
_ (Z—Zl)(Z—Zz)(Z—Z3)

3
z

H(z) =

* The zeros are the locations where H(z) = 0, 1.e., z{, z,, 23
e The poles are where H(z) — o, 1.e.,z—> 0

* Note that the poles and zeros only determine H(z) to within a
constant; recall the example on page 7-5
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Relationship Between the z-Domain and the Frequency Domain

* A pole-zero plot displays the pole and zero locations in the z-

plane
Im
— T T~ z
e
z-Plane / N
, / Three poles atz=0
) / \
. 3 "
i O Y Re
VA /
\ /
\ /
AN - v
~_ | O
23

Example: H(z) = 1 + 20 427 4z

 MATLAB has a function that supports the creation of a pole-
zero plot given the system function coefficients

>> zplane([1 2 2 1],1)

1l
0.8f
0.6
0.4F

o

0.2f

-0.21

Imaginary Part

~0.4}
~0.6}
~0.8}

ob - O 3 .........

1t

-1 -0.5

0.5 1

Real Part
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Relationship Between the z-Domain and the Frequency Domain

The Significance of the Zeros of H(z)

* The difference equation is the actual time domain means for
calculating the filter output for a given filter input

» The difference equation coefficients are the polynomial coef-
ficients in H(z)

e For x[n] = zg we know that
yln] = H(zy)z,, (7.23)

so in particular if z, is one of the zeros of H(z), H(zy) = 0
and the output y[n] = 0

e If a zero lies on the unit circle then the output will be zero for

a sinusoidal input of the form
. A n A
x[n] = z5 = (€7) = % (7.24)
where ®¢ 1s the angle of the zero relative to the real axis,
which is also the frequency of the corresponding complex
sinusoid; why?

,AO) JO = 0 (7.25)

Jjo
z=e

yin] = (H()

Nulling Filters

e The special case of zeros on the unit circle allows a filter to
null/block/annihilate complex sinusoids that enter the filter at
frequencies corresponding to the angles the zeros make with
respect to the real axis in the z-plane
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Relationship Between the z-Domain and the Frequency Domain

The nulling property extends to real sinusoids since they are
composed of two complex sinusoids at £®¢, and zeros not on
the real axis will always occur in conjugate pairs if the filter
coefficients are real

This nulling/annihilating property is useful in rejecting
unwanted jamming and interference signals in communica-
tions and radar applications

2

Example: H(z) = 1—2cos(630)z_1 +z ,x[n] = cos(wgn)

>>
>>
>>
>>
>>
>>

Factoring H(z) we find that

H(z) = (1—@[?(1—&2_1)

1 o)
Expanding x[n] we see that

x[n] = ze

1 —j(:)on 1 joon
2 +5¢

The nulling action of H(z) at +®, will remove the signal
from the filter output

We can set up a simple simulation in MATLAB to verify this

n = 0:100;

w0 = pi/4;

x = cos (wO*n) ;

y = filter ([l -2*cos(w0) 1],1,x);
stem(n,x, 'filled")

hold

Current plot held

>>
>>

stem(n,y,'filled', 'r")
axis ([0 50 -1.1 1.1]1); grid
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Relationship Between the z-Domain and the Frequency Domain

T A R T TS
‘ ‘ ‘ ‘ ‘ 0= 7
08k 1 | (blue) Y T
] o [ X J ; ® @ [ K J s AN J
0.6 AR 11 1 SR 1 R 1
<
> 04 8
xe]
C
S 0.2F i
=
o ‘ Output ‘ ‘ ‘
3—0.2' (red) i
g —04f SRS 1 1
< ‘ ‘
—06F[ || | an - , :
eoe o0 o0 o0 o0 )
-08} : ) . |- . 1 4
R = . e X3 ¥ IERRERREREY JRRRRERE
0 5 10 15 20 25 30 35 40 45 50

Time Index — n
* Since the input is applied at n = 0, we see a small transient
while the filter settles to the final output, which in this case is

ZEero
>> zplane ([l -2*cos (w0)

1],1)% check the pole-zero plot

1k
0.8
0.6f
0.4r
021

OV

-0.2F

Imaginary Part

-0.4}
-0.6}

-0.8}f

-1 -0.5 0 0.5 1
Real Part
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Relationship Between the z-Domain and the Frequency Domain

Graphical Relation Between z and ®

A

« When we make the substitution z = ¢ in H (z) we know
that we are evaluating the z-transform on the unit circle and
thus obtain the frequency response

o If we plot say |H(z)| over the entire z-plane we can visualize
how cutting out the response on just the unit circle, gives us
the frequency response magnitude

Example: L = 9 Moving Average Filter (9 taps/8th-order)

e Here we have

9-1 8 :
1 k1 —i2nk/9 -1
H(z) = = z = = l-e z
@=5% " =5 )
k=0 k=1
Im
8 Polesatz=0 \ ‘\
create the “tree ‘ | | ; A
trunk” ; 7~ | ‘H (e] m)
;
, |
2
1
g 1
0 .
-2 = 0
-1 — \ Re
z-Plane 0 -1
Magnitude 1
Surface 5 2
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Relationship Between the z-Domain and the Frequency Domain

>> zplane ([ones(1,9)1/9,1)
9-Tap Moving Average Fliter

0.8} ,”O 5 o T
0.6t | © T
_o4f o ; . 1
S o02f : | : T

Py . .8 '

g 0 ........... ...................... X ....................... ...........

S : :

g -0.2 - 7
0.4t @ | g y
06} - | o T
-0.8+ O .

-1 -0.5 0 0.5 1
Real Part
>> w = -pi:(pi/500) :pi;
>> H = freqgz([ones(1,9)/9],1,w);
1_‘ 7 : : : : : ‘_
EN |
(9]
I 05 i
o :
-3 3

Z H(e?)

ECE 2610 Signals and Systems 7-23



Useful Filters

Useful Filters

The L-Point Moving Average Filter

e The L-point moving average (running sum) filter has

lL—l

y[n] = 7 x[n - k] (7.26)
k=20

and system function (z-transform of the impulse response)
1 L=
H(z) = 7 Z (7.27)

e The sum in (7.27) can be simplified using the geometric
series sum formula

e e 1120 1 e
Hz)=7> 2z =7- I
F=0 -z z  (z-1)

(7.28)

e Notice that the zeros of H(z) are determined by the roots of
the equation

d_1=z0= =1 (7.29)

* The roots of this equation can be found by noting that
4 2k _ 1 for k any integer, thus the roots of (7.29) (zeros of
(7.28)) are

S k= 01,2, L-1 (7.30)

Zk=

e These roots are referred to as the L roots of unity
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Useful Filters

* One of the zeros sits at z = 1, but there i1s also a pole at
z = 1, so there is a pole-zero cancellation, meaning that the
pole-zero plot of H(z) corresponds to the L-roots of unity,
less therootatz = 0

Ve
z-Plane o
/
/
/
A
(0
\ Pole-zero
\\ / cancellation
/ occurs here
N Y
Q\ (%)
~N - -
L = 8 shown \\\(}//

* We have seen the frequency response of this filter before

 The first null occurs at frequency &g = 2n/L

H( )
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Practical Filter Design

A Complex Bandpass Filter

see text

A Bandpass Filter with Real Coefficients

see text

Practical Filter Design

 Here we will use fdatool from the MATLAB signal pro-
cessing toolbox to design an FIR filter

Properties of Linear-Phase Filters

e A class of FIR filters having symmetrical coefficients, i.e.,
b, = by, , for k = 0,1, ..., M has the property of linear
phase

The Linear Phase Condition

* For a filter with symmetrical coefficients we can show that
H(&'™) is of the form

joM/2

H(®) = R({®)e (7.31)

where R(ej (D) is a real function

e The fact that R(ej CO) is real means that the phase of H (ej CO) 1S
a linear function of frequency plus the possibility of *x
phase jumps whenever R(¢/ (D) passes through zero
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Properties of Linear-Phase Filters

Example: H(z) = by+bz  +byz ~+bz > +byz "

e By factoring out 2% we can write
H(z) = [by(z +2 )+ by(z +2 )+ byl

* We now move to the frequency response by letting z — ¢

H(¢®) = [2bycos(20) + 2B, cos(d) + by]e

e Note that here we have M = 4, so we see that the linear

iOM/2

phase term is indeed of the form e and the real func-

tion R(e/ (D) is of the form

R(eja)) = by +2[bycos(2®) + b, cos(®)]

Locations of the Zeros of FIR Linear-Phase Systems

e Further study of H(z) for the case of symmetric coefficients
reveals that
H(1/z2) = 2 H(z) (7.32)

e A consequence of this condition is that for H(z) having a
zero at z, 1t will also have a zero at 1/z

e Assuming the filter has real coefficients, complex zeros occur
in conjugate pairs, so the even symmetry condition further
implies that the zeros occur as quadruplets

{Z o ] 1}
0° 40> _ » *
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Properties of Linear-Phase Filters

1
z-Plane - T T < *
P ~ 0
/
\
/
/ \
| \
|
K |
\ /
\ /
\
N ~
Quadruplet Zeros for o - 1
Linear Phase Fliters Il el Z,
-1 -2 -3 -4
Example: H(z) = 1 -2z +4z " -2z " +z
>> zplane ([l -2 4 -2 1],1)
150 § O 1
1r i
. osf o ]
© . . .
o :
> .
é OF X4 .................................
(@)] X
S :
S :
— 05} -0 1
15} 0 i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real Part
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questions optl opt2 opt3 optd opt5
A signal is a function which represents . time velocity voltage current
variation variation variation variation

A signal with real value of time is a Discrete  Digital Real .Continu
signal signal signal ous
signal
ECG signal is a .random random determini determini
& & stic&  stic&
multicha multidim multidim multicha
nnel ensional ensional nnel

signal signal signal signal
If x(n) = 0,n<0, Pe is the even part of Po>Pe .Pe>Po Pe=Po Pe#Po
x(n) & Po is the odd part. Which of the
following is true?
A memory ina DT system is analog of  .energy memory sampled sampled
storage inaCT memory inaCT

ina system ofaCT system
continuo system
us time
system
Which of the following is not true? A.  both A .only A onlyB neither
u(-n)=1;B.u(-n)=0 &B Anor B

Choose the correct answer 1. ramp A. A1-C;2- 1-B;2- 1-B;2- 1-D;2-
u(t) =12.step B.3(t)=13. pulse C. r(t) A;3- C; 3- D; 3- A; 3-

=t4. Impulse D. p(t) = 1 D4-B D4-A A4-C B4-C
Impulse function is M) =1 X §)dt .[a(t)dt [§(t)dt=
=1 =1 0
A sampled signal is Analog Digital . Continuo
signal signal Discrete us signal
signal
DT signal has constant .varying constant varying

amplitud amplitud amplitud amplitud
e and e and e and e and
constant constant varying varying

time time time time

period  period period  period
Choose the best answer A.s=a 1. A-4.B-A-3;B-. A-4, A-3;B
Decreasing sinusoidal exponential B.s= 3;C- 1;C- B-3;C -4;,C-
- a 2. Increasing sinusoidal exponential 2;D-1 4,D-2 —-1;D- 2;D-1
C.s=-o+jp 3.Decreasing 2

exponential D. s = a + jp 4. Increasing
exponential



A discrete time signal can be represented only in

A general form of complex exponential

signal is
A time reversed signal is

u(-t+1) is

A time scaled signal x(at)

A pulse train is A. Discrete signal B.

Periodic signal C.Digital signal D.
Aperiodic signal
Noise signal is a

The auto-correlation function of the
white noise is
EEG signal is a

In a periodic signal, the fundamental
period T is

The odd part of the signal is

The fundamental period N is

Time shifting operation

Folding operation gives

tabular
form

n_,-joon

ae

y(t) =
X(t)
time
reversed
signal

diminish
es O<a<1

A&C
only

certain
signal
with
finite
time

constant

periodic
signal

smallest
positive
value.

Yo [x(t) +
X(-t)]
(2tm /
).

increases
the signal

reflected
image

onlyin onlyin . all
sequence graphical forms
form form

a_nejmon nejmon n_,-joon

.a a-¢€

YO = oy = y)=x(t
X(-t) X(-t) -T)

time time time

shifted  reversed reversed

signal & & scaled
shifted  signal
signal

expands . diminish

a>0 expands esa<0
O<a<1

.B&C A&D C&D

only only only

uncertain certain
signal  signal uncertain

with with signal
finite infinite  with
time time infinite
time
step Impulse pulse

function function. function
random even determini
signal.  signal stic
signal
highest smallest highest
positive negative negative
value value value
Y x@®) - %[x(-t) Y2 [x(-t) -
X(0l +x@OI  x(-D)]
(2n/ om) (w/ 2em) (wm/
2m)
reverses scales moves
the signal the signal the signal

magnifie minimize
refractive d image dimage
image



Voice signal is a one dimensional signal Generate Detected . varies
d by by single Depends continuo

single  sensor ona usly
source single
variable
A periodic signal must have the integer . rational exponent
fundamental period to be logarithm ial
ic
Tv picture signal is a one two . three multi

dimensio dimensio dimensio dimensio
nal signal nal signal nal signal nal signal

costisa symmetri Anti- Aperiodi periodic
csignal. smmetric csignal signal
signal
The fundamental period of sin50mntt is 1/50sec .1/25 1/75sec 1sec
sec
2u(t) + 2 sin2t is a. b. C. d.

periodic Aperiodi inverted discrete
signal csignal  signal signal

g12mn/3 4 o 13nn M has a period of 3 8 24 10
cos(2zn) is periodic continuo random
signal.  Aperiodi us signal signal
c signal

The even components of a signal are the depend depend depend does not
same for both positive and negative onlyon onlyon onboth depend
values  of n (Assertion). The discretion positive negative positive on both
is instants instants and positive

negative and
instants. negative

instants
The instantaneous power p(t) is a.1l/ b.R/ C. vz(t)R Vz(t) /R.
VOR) V(D)
Ltt—oo || x(t)|? dtisa Power Energy  both neither
signal signal.  power  apower
and nor an

energy  energy
signal signal
Ltt—oo (1/2N +1) Y |x(n) |? represents Power  Energy  both neither
a signal.  signal power  apower
and nor an
energy  energy
signal signal



A signal is an energy signal if

Which of the following is true? A. Non-
periodic & Deterministic signals are
energy signals B. Periodic & random
signals are power signals C. Periodic &
Deterministic signals are energy signals
D. Non- periodic & random signals are
power signals

A power signal has energy

An energy signal has power of

A signal with infinite power and infinite
energy is

A signal with finite power and infinite
energy is

A signal with 0 power and finite energy is

d(t-1) exists only at

y(t) = x(t-2) shifts a signal by 2 units
u(n)-u(n-1) is

Relation between 8(t) & u(t) is

y(t) = ax(t) is

The power of 10cos5tcos10t is
e u(t)isa

A system that depends on the past and
present input is

Stable systems will satisfy

total total total total
energy is energy is power is power is

infinite  finite. finite infinite
A&C B&D C&D A&B.
0 10 oo. 100
10 0 w 100
Only only both
power  energy  power &
signal signal energy
signal
Only only both Neither
power  energy  power & a power
signal.  signal energy  nor
signal energy
signal
Only only both Neither
power  energy  power & a power
signal signal.  energy  nor
signal energy
signal
0 1n t
right. left above below
u(n) u(n-1)  3(n). 3(-n)
St)=  u(t)= s®) =] ut)=]
d/dt u(t). d/dto(t) u(t)dt o(t)dt
time time
scaled  amplitud shifted amplitud
signal e scaled signal e shifted
signal. signal
5w 10W 25W. 50W
power  energy pulse step
signal signal.  signal signal
static .causal Non-
system  system  causal Dynamic
system  system
homogen superposi BOBI BIBO
eity tion



y(n) = x(n) is a

y(t) = tx(t)+3is a system

y(n) = x(n)cosmn is a system

Homogeneity and superposition
principles are satisfied by

y(n) = x’n is

The signal which exists only at t=0 is
The general form of CT exponential
signal is

Jdinear
system

Linear &
Time
Invariant

Dynamic
& Causal

Static
systems
linear

Time
Ce'

non-
linear
system
Non —
Linear &
Time
Invariant
Static &
Non —
causal
Causal
systems
. hon-
linear
Level

C eat

non-
causal
system
Linear &
Time
variant

. Static
& Causal

. Linear
systems
unstable

series

unstable
system

Non —
Linear &
Time
Variant
Dynamic
& Non —
causal
Stable
systems
dynamic

. impulse



opt6

answer

. time
variation
.Continu
ous
signal

. random
&
multicha
nnel
signal
.Pe>Po

. energy
storage
ina
continuo
us time
system
.only A

1-C; 2-
A; 3-
D:4-B
J8(t) dt
=1

Discrete
signal
.varying
amplitud
e and
constant
time
period

. A-4
B-3;C
—1:D -

2

2



.all
forms
. an ejwon
Lyt =
X(-t)

time
reversed
&

shifted
signal

expands
O<a<1
.B&C
only

uncertain
signal
with
infinite
time
Impulse
function.
random
signal.

smallest
positive
value.

Yo [X(t) -
X(-1)].
(2em /
).
moves
the signal

reflected
image



Depends
ona
single
variable
. rational

three
dimensio
nal signal
symmetri
c signal

.1/ 25
sec
1/ 25 sec

24
periodic
signal.

depend
on both
positive
and
negative
instants.

VA(t) / R.

Energy
signal.

Power
signal.



total
energy is
finite.

A &B.

0
Neither
a power
nor
energy
signal.
Only
power
signal.

only
energy
signal.

right .
d(n).
o(t) =
d/dt u(t).

amplitud
e scaled
signal.
25W.
energy
signal.

. causal
system

BIBO



Jdinear
system

.Non —
Linear &
Time
Invariant
. Static
& Causal

. Linear
systems

. non-
linear

. impulse
.ce™



questions

Fourier Series is used to
represent

For Fourier series to
converge

condition has to be satisfied.

Which among the following
is true?A.Over a period x(t)
must be absolutely
integrable.B.x(t) can infinite
number of maxima and
minimaC.x(t) can have many
values at a certain
instantD.x(t) must have
finite number of
discontinuities.

Choose the best answerA.
Time Shiftingl. jkwOX(K)B.
Frequency Shifting2. X(K)C.
Differentiation3. e -jk w0 t0
X(K)D. Time Scaling4. X(k —
KO)

If x(t) on FS gives X(k), then

x*(t) is

The product of 2 signals on

FS will be

Parsevals equation of a

Fourier series relates
signal in

frequency domain.

An odd signal in frequency

domain will satisfy

CT Fourier transform is used
to represent

FT representation of a signal
x(t) is

The synthesis equation of
FT plays a role for

The FT of e —atu(t) is

The F[&(t)] is

Fle —at] is

optl
Continuous time signals

opt2
Discrete time signals

opt3

Continuous time
periodic signals
Lagrange

Fourier Euler

A&D B&C A&C

A-4,B-3;C-2;D-1 A-4,B-3;,C-1,D-2A-3;B-4,C-1;D-2

X*(k) X (-k) X* (-k)
composition convolution multiplication
even signal odd signal energy signal
—X(-k) X(-k) —X(k)
periodic signal aperiodic signals all CT signals

1 s - '(UO;L T H —JjwO 'S - jcoO
ey 7J;>X (jed) e’ 5 d g&x (i) e ‘—jrdix (i) e’

periodic signal aperiodic signal power signal
- ju I = =2 A\ = ju
e _— — ——  >< ce> _ ce> _
>< Cd=> a—j(,_)'. > A" +— ce> 3 > =2 +— 3
1 0 oo
< _ a Sy =2 - _ a
> C J ce>D —Xj( 3 > ﬁ“(o C J§ <> = -



FT of rectangular pulse in
time domain is

FT of rectangular pulse in
frequency domain in
Alincrease in time of a
signalA. broadens

Xr(d rarrows x(t)B.

broadens x(t) and narrows

& biealens both x(t) and
X(jw)

The linearity property of FS
is

LT of alfl(t) + a2f2(t)

The trigonometric FS of a
periodic function can have
only

If the FT of a deterministic
signal g(t) is G(f), then the
FT of g(t-2) is

The inverse FS of frequency
shifted X(k-5) is

A waveform with
discontinuities is always
characterized by
Conversion of analog signal
to discrete signal is known
as

The error that occurs on
sampling a signal below
Nyquist rate is

The value of ak in
exponential Fourier series is

The Laplace transform of
sinhat is

The LT of tsinat is

The Inverse LT of

is

The unilateral LT of a
function x (t) is

The inverse Laplace
transform of X(s) is

Hejw) = 20 je), = K (jw) =
T

» T, :
X () = %sin c(%—t(}) = %sin C(%(}L)) — sin C(_‘

Aonly B only Conly

aX(jo) + bY(jo) aX(jo) & bY(jw) aX(k) e bY(k)

alFi(js) + a2F2(js) alFl(jm) + a2F2(jm) alF1(s) + a2F2(s)
cosine term sine term cosine and sine terms
G(f)e —j4nf G(2 -f) 2G(2f)

e jkot x(t) e j5mt x(t) e j5ko x(t)
converging Fourier strong harmonics half wave harmonics
spectra

guantization companding discretization
guarding error quantization error aliasing error

E — jkeoOt 7:'_ — @O0t 72 j
a. =T [ xMe e [xMe &l#t L [x®e’
T

T

a S a
2 2 2 2 2 2
S—a S—a S ta
as =2 =2as
ST+ a®D sT +ra® s+ a™=D>
5e —t sin2t 5e —t sin5t 2e—tsin2t

X (s) = Tx(t) e Xde = Tx(t) e "Xdas) = Tx(t) e

—o0

1 o+ joo o+ joo

<) = I)O@th%:%—el B&Isg:qen

o — joo o — joo



Magnitude and phase of > + y2 , tan’i?%ﬁ + yz, tan - €X—|— y)z, tan

Frequency co-efficient is

obtained by

In a complex exponential e - 0, 1 & 2 respectively. constant, | harmonic, fundamental, |
jkwO0 t which of the Il harmonic harmonic, constant
following is true when the thereafter

values of ‘k’ are

The LT is mainly used for  dynamic signals linear signals time invariant signals
e-iois cosO+jsind cos 0 - sin6 cos 0 jsin®

The Nyquist rate of a signal 200 Hz 800 Hz 100 Hz

is

The Nyquist sampling rate 150 samples /s 200 samples /s 250 samples /s

for a signal g(t) = 10

cos(50nt) cos2(150xt),

when t is in seconds is

In sampling a signal, guard <1/ 2 fmax .=1/2fmax > 1/ 2 fmax

time is provided when

sampling time is

Assertion: A signal must be  Recovery of signal is Guard band is less Recovery of signal is
sampled at least twice the  worst easier

highest frequency (Nyquist

rate) Dissertion:

In sampling, overlapping of <1/2 fmax =1/2 fmax > 1/ 2 fmax
frequency components will
occur if sampling time is

same  as

The Nyquist rate of the fmax 2 fmax 1/2f
signal is

A signal of maximum 50 us 100 ps 1000 ps

frequency 10 KHz is
sampled at Nyquist rate. The
time interval between 2
successive samples is

In communication, the higher efficiency higher speed of costly equipment
sampling technique leads to communication
In order to get back the low pass filter high pass filter band pass filter

original signal from the

sampled signal it is

necessary to use

Sinusoidal functions and singular functions Gaussian functions orthogonal functions
exponential functions are

examples of



Amount of information in a 0 2 bits 2 bauds
CT signal is

FToff(t)=11is 7o(w) 3nd(w) 21d(w)

Match A.e-jot 0L A-3;B-4,C-2;D- A-4,B-3;C-1;D A-4,B-3,C-2;D-
Multiplied exponential 1 -2 1

function B.

2. a constant C. ké(w)3.
rectangular pulse D.
4. shifted impulse function

The FT of unit step function 1 d(w) 1 218 (w)
IS jo jo
The advantages of LT are A. A&C B&C A&B

It gives total solution
systematicallyB. It gives
solution in frequency
domain onlyC. The initial
conditions cannot be

incorporated

The LT of e — at sinot will sSs+a 1 S

be (s+a) +c(s+a) + c(s+ad” + cu

Match A. tl. A-2;B-3;C-4,D-1A-3;B-2C—-4,D- A-3;B—-4,C-2;D-

B. u(t) 2. 1 1

C.eat3.

D. sinot4.

The initial value theoremis |_t f (t) = Lts%?) ) = Ltli_(os) () = Ltsk
t—>co s s o> s—

The final value theoremis L-t f < = LESFLESYD — Lt (S} ¢ ro = LtsF (

> oo s—>0O s—>oo



optd

Discrete time periodic
signals.

Dirichlet

B&D

A-4,B-1;C-3;D-2

X (k)
conjugation

power signal

—X*(k)

all DT signals

"t da)

all CT signals

(1)

=1

opt5

opt6 answer
Continuous time
periodic signals
Dirichlet

A&D

A-4,B-3;C-1,D-2

X* (-k)
convolution

power signal

—X(-k)

all CT signals

%TX(ja)-)E—de:_wT X (j) ejwm dco

aperiodic signal

X(jo) =g € § cerd — =
A+w =2+ j ce>
1
=2 A\

X(Jw):ﬁA"?z Ciecrd — ——————=
A+ AN+ ce>



%i(‘m')lz

7C

A, B, C

aX(k) + by(k)

alFl(w) + a2F2 ()
sinc term

f(-2)

e jk5t x(t)

qguarter wave harmonics
sampling

granular error

ik(oOtdt

a :lex(t)ejkmmdt

T

S ta

2e —t sin5t

©

dt  X(s)=[xme " dt

0—

-st

i’ox (s) e dt

260 jup), =

(0]

oG = Zpsin e 22

B only

aX(k) + bY(k)
alF1(s) + a2F2(s)

cosine and sine terms

G(f)e —janf

e j5mt x(t)
strong harmonics
sampling

aliasing error

ak _ Tij'x(t) efjk(:)otdt
T

a
2
S—a

2

2a
(s%+ad)
5e -t sin2t

oo

X (s) = [x()e ~dt

o+ joo

x(t) = % jx (s)e " dt

o joo



N (%) 2 1,X
(X+Y) tan S

I harmonic, Il harmonic,
constant thereafter

causal signals
cos 6 +sind
400 Hz

350 samples /s

1/ fmax

Recovery of signal is best

1/ fmax

max

loss of data

band- reject filter

periodic functions

VX + Yy tan 6D

constant, fundamental,
I harmonic

causal signals
cos 0 jsin®
400 Hz

350 samples /s
.=1/2 fmax

Recovery of signal is
best

> 1/ 2 fmax
2 fmax

50 ps

higher speed of
communication

low pass filter

periodic functions



nmd(w)

A-4,B-2;C-3;D-1

1 nd()
jo
A B&C

—(s)

s> Lt f® = LtsF(s)

21d(w)
A-4,B-3;,C-1;D-
2

jo
A&B

e
(s+a)" + >

A-2;B-3;C-4;D-
1

Lt f@ =LtsF (s)

t—0 S—>o0

Lt fFf> = LtsF ()

t >

s—>0O



questions

The impulse response
of the two systems in
cascade are hl (t)=e-
2tu(t) and h2 (t)=2e-
tu(t).The impulse h(t)
of the overall system is
The overall system
described above is
Assertion: A transfer
function realization
using differentiators is
not preferable Reason

The ULT is applied for

The L.T of unit ramp
function is

The impulse response
of a LTI system
h(t)=(10sin(5xt))/nt

The frequency response
of an LTI system
characterized by the
differential equation
d/dt y(t)+ay(t)=x(t) is

The eigen function and
eigen value respectively
are

The differential
equation is useful in
obtaining

Mark the wrong
statement

Mark the correct
statement

optl opt2
2(e-t—e-20u(t)  (2e-t —e-2t)u(t)

Causal Unstable

Amplifies low  Amplifies high
frequency signal frequency noise signal

stable signals noncausal signals

2/s2 1/(s+s)
noncausal stable

H(w) H(f)

est and e-st est and H(s)
frequency impulse response
response

x1()*x2(t)=x2(t) xL(t)*[ x2(1)*x3(t)]=
*x1(t)

x1(t)*x2(t-
T)=z(t-T)

X1()*x2(t-T)=z(T)

x1(t)*x2(t)+ x1(t)*x3(t)

opt3
(e-t — 2e-2t)u(t)

Stable
Amplifies low
frequency noise
signal

causal signals

s2

causal

(@) and (b)

est and H(f)

frequency and
impulse response

x1(O*
x2(t)*x3(t)]=[
X1 (1) *x2(t)]*x3(t)

x1(t)* x2(t-T)=z(t)



The convolution of
x1(t)=u(t) and x2(t)=u(t)
IS

The step response of the 1/(S+L/R)
circuit is

- % )

The convolution of
x1(t)=sint u(t) and
x2(t)=u(t)

.The convolution of
x1(t)=tu(t) and
x2(t)=u(t) is

The impulse response
of two systems
connected in parallel is

The impulse response
of two systems
connected in series is

The system is static or
memory less for

tu(t)

(1-sint)

(t2/2) u(t)

h1(t)+h2(t)

h1(t)*h2(t)

h(t)=0t#0

The system is casual for h(t)=0 =0

The convolution system absolutely

is stable if the impulse  integrable
response is

The impulse response  stable
h(t)=e2tu(t-1) is

The impulse response Infinity

for h(t)=(1/RC)e-t/RC
u(t) is

The impulse response
for h(t)=e-2tu(-t-1)
exists for

of t & is causal

Negative values

u(t)

1/(L+S/R)

(2-sint)u(t)

(t3/2) u(t)

x(6)*h(t)

x(*h()

h(t)=0 t=0

h(t)=0 1<0

absolutely differentiable

unstable

One

Positive values of t & is
causal

u(t)/t

1/(1+L/R)

(1-cost)u(t)

tu(t)

h1(t)*h2(t)

(@) and (b)

h(t)=cd(t) t = 0

h(t)=0 >0

both integrable
and differentiable

absolutely
integrable
Zero

Negative values of
t & is noncausal



The impulse response  Negative values Positive values of t & is Negative values of
h(t)=(t-1)u(t-1) exists for of t & is causal t & is causal
noncausal

For the natural response Output produced Output produced due to Output produced

of differential equation  due to initial input due to initial
conditions conditions and
input=0

For the forced response output produced output produced due to  output produced

of differential equation  due to input and initial conditions and due to initial
initial input =0 conditions
conditions = o

The natural response of 2e-0.2t e-0.2t 2e-t
the system 10dy(t)/dt +
2y(t) =x(t) with y(0)=2 is

An LTI system is causal zero for positive positive for positive t negative for

if the impulse response  t negative t

IS

The system h(t)=te-tu(t) unstable. stable causal and

is unstable.

The system h(t)=e- noncausal and  noncausal and unstable. causal and stable.
4tu(t+10) stable.

Match the 1-C,ii—A,iii— i1-A,11—C, 11— B. 1—B,ii—C,iii—
following.InputParticular B. A

Solution.(i)1A)
klcoswt + k2sinwt.(i1)

e-at B) k.(iii)

cos(wt+)C) ke-at

The direct form — I Three Four integrators and Four integrators
implementation of 2nd  integratorsand ~ four summers. and three

order system needs three summers. summers.



The frequency response transfer function. system transfer function. system function.
of LTI-CT system are
also called as

If the response of LTI~ %2 - %2 e-2t e-2t 1-e-2t
continuous time system

to unit step signal is % -

Y% e-2t, then impulse

response of the system

is

Which property isnot ~ h1(t) *h2(t) =  [h1(t) + h2(t) ] * h3(t) = [h1(t) + h2(t)] *
true for convolution h2(t) * h1(t) h1(t) * h3(t) + h2(t) *  h3(t) = h1(t)h3(t)

integral ? h3(t) + h2(t)h3(t)
Which signal is X(t)=0,t<0 X(t)=0,t>0 x(n)=0,n<0
anticasual?

Mark the correct x(t) *d(t-t0) = x(t) *d(t)=1 x(t) * 8(t - t0) =
statement X(t0) X(t - t0)

Mark the wrong x(t) * () =x(t) x(t) *d(t-A)=x(t-1) x(t- 1) * 3(t —A2)
statement =x(t—Al-2A2)
The response y(t) of Zero input Zero state response Zero input

linear system is response response + Zero

state response

Bilateral and unilateral ~ Lower limitof  Upper limit of They are same
Laplace transform integration integration

differs in terms

of

For casual continuous — Left of all Right of all system poles Right of all zeros

time LTI system, ROC  system poles
is in the



If the system is casual
and stable, the system
poles must lie

Inverse Laplace
transform of 1/ (s-a);
ROC <a is

Zero input response is
due to

Zero state response is
due to

In memoryless system

The transfer function of
a single loop system is

The impulse response of

the system having
transfer function H(s) =
1/(s2(s+1)) is

Let y(t) = x(t) *h(t).
Then

If x1(t) and x2(t) are
both periodic signals
with a common period
To, the convolution of
x1(t) and x2(t)

For a stable continuous-
time LTI system with
impulse response h(t)
that is real and even

Consider a CT LTI
system whose step
response is s(t)=e-tu(t).
The output of this
system to the input x(t)
=u(t-1) —u(t-3) is

On the jo axis

e at u(-t)

input to the
system.

input to the
system.

Zero state
response is zero.

T(s) = G(s) / (1 -
G(s)H(s))

(©2%e-20)u(t)

X(t-t1) * h(t-t2)
= y(t-11-t2)

does not
converge.

cosmt is an
eigen function.

On the left half of s-
plane

e -at u(-t)

depends on system
transfer function.
depends on system
transfer function.
Zero input response is
zero.

T(s) = H(s) / (1 -
G(s)H(s))

(©2e-H)u(t)

X(0) * h(t-12) = y(t-t1-2)

Converge.

sinot is an eigen
function.

On the right half
of s- plane

e -at u(t)

due to system
state.

due to system
state.

both responses are
zero.

T(s) =H(s)/ (1 +
G(S)H(9))

(te-H)u(t)

X(t-tL)*h(t) = y(t-
{1-t2)

Periodic
convolution of
x1(t) and x2(t)
converge.

cosmt and sinmt
are eigen function
with different
eigen values.

e(t-Du(t-1) - e(t- e(t-1)u(t-1) + e(t-3)u(t-3) e-(t-1)u(t-1) — e-(t-

3)u(t-3)

3)u(t-3)



Consider the system not linear if y(0) is linear if y(0) =0 satisfies a and b.

dy(t)/dt +ay(t) = x(t). =y0 #0.
The system is
A system can be A & B only B & C only A & Conly

realized using. A.

Indirect form. B.

Cascade form. C. Direct

form

If h(t) is the impulse oo I P _ R _
response of casual, L” x(Z)h( f(?d a(@Hha zﬁ allr)h(t —z
linear, time invariant,

continuous system.

Then output y(t) of the

system for an input of

X(t), is



optd
(2e-t —2e-2t)u(t)

Noncausal and
unstable
Amplifies high
frequency signal

unstable signals
1/s2

none of the above.

None of the above.

e-st and H(s)

step response

x1(t)*x2(t)= x1(t)+

x2(t)

xL(t)*x2(t-
T)=z(t+T)

opt5

opt6

answer
2(e-t—e-
2t)u(t)

Stable

Amplifie
s high
frequenc
y noise
signal
causal
signals
1/s2

causal

(@) and
(b)

est and
H(s)

frequenc
y and
impulse
response
X1(t)*x2(
t)=
x1(t)+
x2(t)
X1(t)*x2(
t-T)=z(t-
T



t/u(t)

1/(S+R/L)

(1-cost)

u(t)

(@) and (b)

(a) or (b)

h(t)=cd(t) t#0

h(t)=0 10

none of the above

(@) and (c)

e-t

Positive values of t
& is noncausal

tu(t)

1/(S+
R/L)

(1-
cost)u(t)

(t2/2) u(t)

(@) and
(b)

x(*h()

h(t)=0t
#0

h(t)=0
<0

absolutel
y
integrabl
e
unstable

One

Negative
values of
t&is
noncausa
I



Positive values of t
& is noncausal

Output produced
due to input and
initial condition=0

output produced
due to input

2et

zero for negative t

both a & c.

causal and unstable.

1—-B,ii—A,11—-C.

Three integrators
and four summers..

Positive
values of
t&is
causal
Output
produced
due to
initial
condition
sand
input=0
output
produced
due to
initial
condition
sand
input =0
2e-0.2t

zero for
negative t

stable

noncausa
I and
stable.
1—B, 11
—-C, 11—
A.

Four
integrator
sand
four
summers.



impulse function

Constant

[h1(t) * h2(t) ]
h3(t) = h1(t) *
h2(t) * h3(t)

X(t)=1,t<0
x(t) * 3(t - t0) = x(t
+10)

S(t— A1) * §(t -
A2) = 3(M1 —A2)

Zero input
response - Zero
state response

Bilateral transform
does not exist

Left of all zeros

system
transfer
function.

e-2t

[hi(t) +
h2(t) ] *
h3(t) =
h1()h3(t)
+
h2()h3(t)

X(t) =0,
t>0
x(t) * (t
-10) =
X(t - t0)

3(t— A1)
* 5(t—
A2) =
S —
22)

Zero
input
response
+ Zero
state
response
Lower
limit of
integratio
n

Right of
all zeros



a andb

eatu(t)

(b) and (c)
(@) and (b)

both responses are
finite.

T(s)=G(s)/ (1 +
G(S)H(9))

(tre-Hu(t)

X(t-t1) * h(t-12) =

y(t-11).y(t-12)

(@) and (c).

None of the above.

e-(t-1)u(t-1) + e-(t-

3)u(t-3)

On the
left half
of s-
plane

e at u(-t)

(b) and
(©)

(@) and
(b)

Zero
state
response
is zero.
T(s) =
G(s)/ (1

+
G(s)H(s))

(t*e-
Bu(t)

X(t-t1) *
h(t-t2) =
y(t-11-12)

(@) and
(©).

None of
the
above.

e-(t-
1)u(t-1)
—e-(t-
3)u(t-3)



not linear if y(0) = satisfies

y0. aand b.
AllA,B&C B&C
only

-)d <z ft x(z)h(t E‘?mz)h(t —7)dr



questions

Fourier Series co-effecients for a
continuous time periodic wave is

of envelope function.
Fourier transform representation is
convergence of Fourier series
representation of a signal when the
period approaches

Spectrum is the
transform of CT / DTsignal

X(e 1) is the

of the signal

DTFT of u(n) may be

DTFT of 5(n-k) is
DTFT of {1, -1, 2, 2} is

X(e 1) = e -1, then x(n) is

Match A. Differentiation in frequency
domain 1.

Time convolution 2.

C. Parsevals Theorem 3.

Frequency Convolution 4.

The periodicity property of Discrete
Fourier transform satisfies the relation

The correlation property in DTFT gives

Discrete Fourier Transform is defined
only for sequences with

optl opt2 opt3 optd

Samples Equation Functions Limits
S

Zero Infinity  One Two

Laplace Z Fourier Y

Continuo Laplace Z Discrete

us Time transform transform Time

Fourier Fourier

transform transform

.a)l ] . 1

ﬁ ej —iw i l,jw
€ 1+e 1-g ' 1-e

e - jok e - jonk e + jonk e + jok

1-el® 1.0 14l 1-¢°

+2e +2e” +2e 1 +2e

e J3m e -j3o e J3m 2@ -j3o

sin (n-1) sin 7 (n+1)

(n—l) COS7Z'(I’1—1) ﬂ(ﬂ —1) Sin( n- 2)

7(n-1) r(n-1)

A-3;B A-3;B A-3;B A-4,B

-4,C- -3,C- —-4C- -3,C-
2;:D-1 4,D-1 1;D-2 2:D-1
X= Xom= Xw-= . Xow)=
X(o+ X(ot 2n) X(ot+ 21) X(o+
2mn) 27K)
X, (e iw) X, (e J'@) 1/2 | 1/ 2.
Xo(e 1) Xp(e1) Xa(e')  Xy(e™)
Xa(e %) Xo(e)
infinite  finite both none
length length

opt5



X,(e*) isa function
of frequency
DFT is a powerful tool for

7 — transform 1is used to take a DT time-
domain signal in

ROC is a condition for which

For X(2) =1+ 2Z * +3Z ?the ROC is

27. If x(n) on Z — transform is X(Z), then
anx(n) on Z-transform is

Z-transform of a unit sample is
Is Parsevals Theorem in

The basic principle of Z- transform is to
design

Choose the correct answer The
significance of ROC is A. ROC is used
to determine the causality B. ROC is
used to determine the stability C. ROC is
used to deternmine the linearity D. ROC
is used to determine the variance.

Z — transform of the signal {1,3,2,0,0,0. .

.. }IS

discrete digital

Time Frequenc
domain y domain
analysis analysis

s-domain .

frequency
domain

Continuo Continuo
us Time us Time
Fourier  Fourier

Series Transfor

converge m

S converge
S

atZ=0 atZ=w

X(@/2), . X(Zla),

ROC ROC

lalry < 2] falr; <2

<|alr, <|alr,
0.1

Z- Fourier

Transfor Transfor

m m

Low High

Pass Pass

Filter Filter

A&C A&B

1+2/Z 1+3/2
+3/2°

continuo sequentia
us |

K S
domain  domain
analysis  analysis

complex
complex variable
variable time
frequency domain
domain

Discrete . Z-
Time transform
Fourier

Series converge
converge s

S

.except  except
atZ=0 atZ=-w
X@/z), X(Zla),

ROC ROC
lalr, < {Z| lalr, < |Z]
<|alry <|alry

o0

Laplace Fourier
Transfor Series
m

Analog .Digital

Filter Filter
Design  Design
C&D A&D
1+3/ 1+2/
Z+2127% 7



The ROC of {1,3,2,0,0,0....}1is

Z transform of &(n) is

If x(n) and y(n) are two finite sequences,

then x(n)*y(n) is
If x(n)

Ifu(n) z/(z—-1), then Z[u(-n)] is

If x(n) = 0 for n<0 and x(n) = 3" for
n>0, then the Z — transform of sequence
x(n) is
The sequence x(n) ={2,3,4,3} is

MatchA. a nx(n) 1. X(z -1) B. x(-n) 2.
X(Z*)]* C. nx(n) 3. X(Z/a) D. x*(n) 4.
—Z d{X(2)} / dz

If x(n) X(Z) then Im[x(n)]

Find the correct meaning of x((n+k))y
from the following

Which of the following is true

The relationship between DFT and Z-
transform is X(k) = X(Z) when

X(2), then the valid one is

whole
of Z —
plane

X(2)/
Y(2)

X(-n)
X(2)
z/(1-2)

73

circularly
odd

1/2j[X(2)
+ X*
(Z*)]

Sequence
x(n)
shifted
clockwis
e byk
samples

k+N
Wi
/12 _
=Wy
k

Z=¢e '
2nkn /N

whole .whole atZ=0
of the Z of the Z-
—plane  plane
except Z except Z
= w =0
z 1/z 7°
Y(2)/ :
X(2) X2(2)Y(z X(2)Y(2)
)
x(-n)  x(n)  .x(-n)
zX(2) X@)/z X(1z)
1/1-z  .1z-1 72/ z-1
Z/z-3 m) '1<T(z->l)2
neither a partly a
C|rcularly nor b and
even partly b
A-3; A-1; A-3;
B-4;C- B-3;C- B-4;C-
1,D-2 4,D-2 2;D-1
1/2§[X(2) 172j[X*( 1/2j[X(2)
~-X Z)—-X* —X*
(91 @91 (2]
sequence
sequence Sequence X(n)
x(n) x(n) shifted
shifted  shifted  clockwis
anti — anti — eby N
clockwis clockwis samples
e byk eby N
samples samples
W \ k+ W \ k+N \YY; N
N/2 _ /2:WN 12 -\
W \ k N/ 2 \ N/ 2
Z=e! .zZ=e Zz=¢!
2nk /' N 2nk /' N 2nk /' N



Assertion: DFT and IDFT are linear
transformations on s(k) and S(K)Reason

The left sided exponential sequence is

if x(n) =3 ™ for n <0 and x(n) = 0 forn
> (0 then Z — transform of x(n) is
IfX(2)=3az/(1-az ")Yandq <
|Z|, then the initial value of x(n) is

The Z — transform of a " is

If x(n) X(2), then

mX(Z)=5/(1-zY+(4)/(1-08Z"
1 if ROC is |Z| > 1, then x(n)

mXZ)=5/(1-zY+-4)/(1-08Z"
1 if ROC is 0.8 <[Z| < 1, then Xx(n)

DFTis DFTis DFTis DFTIis
obtained obtained obtained obtained
by by by by
sampling interpolat sampling sampling
operation ion operation operation
in both  operation intime in
timeand inboth and frequency
frequency time and interpolat and
domains frequency ion in interpolat

domains frequency ion in

domain time
domain
a'un) -a'u(n) -a"u(-n) .-a"u(-n-
forn>= forn>= forn<= 1)forn
0 0 0 <=0
3/2-3 .3/3-72 1/Z2-3 1/3-Z
2 1.0 ©

1/1+ .1/Q- zZ/(1- Z/(1+
azly azhy  azhy azh
x(n-2)  x(n-2)  x(n-2) .x(n-2)
x(2)+ x(-2)+ x(-2)+ x(-2)+
x(-1)2t X(-1)Z + x(-2)zt x(-1z*t
+x(0)z22 2X@)  +z(- +2 ?X(2)

2)X(z)
[4-— [4-— 15— [5-
4(0.8)" 5(0.8)" 4(0.8)" 5(0.8)"
u(n) u(n) u(n) u(n)

51" TED " T St

u(-n)— u(-n-1)— u(-n-1)— u(n) -
4(0.8)" 4(0.8)" 4(0.8)" 4(0.8)"
u(n) u(n) u(-n-1)  u(n)



opt6 answer
Samples

Infinity

Fourier

Ans: d

o 4 2@

sin z(n—1)
z(n-1)

A-3;B
—4;C—
2:D-1

X(w) =
X(o+
21tk)
1/2

Xi(e')
X,(e )
finite
length



continuo
us

Frequenc
y domain
analysis

complex
variable
frequency
domain

Z_
transform

converge
S

except at
Z=0

. X(Z/3),
ROC
lalry < |Z]
<|[alr,
.1

Z-
Transfor
m
Digital
Filter
Design
A&B

.1+3/
Z+2/72



. whole
of the Z-
plane
except Z
=0

1

X@)Y (@)

. X(-n)
X(1z)
c1/z-1

.Z/z-§

circularly
even
A -
B-1;
4: D-

N O

1/2j[X(2)
_X*
(Z%)]
Sequence
x(n)
shifted
clockwis
e byk
samples



DFT is
obtained
by
sampling
operation
in both
time and
frequency
domains

/(0=
az™

. X(n-2)
X(-2) +
x(-1)z ™
+z 'ZX(z)

[5-
4(0.8) "]
u(n)

ek
u(-n-1) -
4(0.8)"
u(n)



guestions

Examples of shift invariant system are A. Thermal systemB. Noise
EffectsC. Printing documents by the printer

y(n) = cos x(n) is a

y(n) =sgn x(n) is a , system

Sampling and truncation systems are examples of

An LTI — DT system will be stable if the unit sample response is

The impulse response of x1(n) ={1,-3, 2} and x2(n) ={1,2,1} is
The relationship between Z & S Plane is

Z- transform of unit exponential sequence is

Select the appropriate comment on Z- transform

Assertion: Unstable systems cannot be cascaded Reason

optl
A&B

linear &
stable
system

static,
causal

linear &
shift
invariant
systems

absolutely
integrable

{1,1,3,
1,2}

c>0 <
|z| <1
1/(1-e T
z Y

Good for
analysis.

Perfect
cancellatio
nis very
difficult

opt2
A&C

linear &
unstable
system

dynamic
, causal

nonlinea
r & shift
variant
systems

absolute
ly
summab
le

{1, 3,1,
1, 2}

c <0,
&zl <1
1/(1-e°
T 7 —1)

Differen
ce
equation
s helpin
easy
compute
!
program

Unstabl
e pole
can be
excited
by other
inputs



Instability can be determined from the

The ROC of (1/3) " [u(-n) — u(n-8)] is

If x(n) is -5(1) " u(-n-1) — 4(0.8) " u(n) will have ROC as

The poles are the values for which X(2) is
If N is the no. of poles, M is the no. of Zeroes and if N > M has

If N is the no. of poles, M is the no. of Zeroes and if N < M has

If X(Z) = «, then there is a

If X(Z) =0, then there is a

The system h(n) = -2(3) "u(-n-1) — (0.5) " u(n) is stable if

The ROC of {0,0,1,2,4} is the entire Z — plane

Convolution between 2 signals can be done using

Match the following Roots of the equationNatural Response A. Real &
Distinct 1. co."Bcomplex2KrnC.a" 3.Co+Cin+....C

n°D.nP 4. r"[ K, cos(nQ) + K, sin( nQ)

Match the following Roots of the equationNatural Response Real ,
repeated 1. C, coswt + C, sin wt Cos(wt + B) 2.e % (Cy+ Cyb)
N  3r'{Ke+Kin+....+K,n[te™  4.Cy+Cyn

The forced response of y(n) — 0.4y(n-1) = u(n) is
The natural response of y9n) + 0.1y(n-1) — 0.3y(n-2) = 2 u(n) is

poles of Zeroes
the open  of the
loop open
transfer loop
function transfer
function
|Z| <1/3 |Z]>1/3
1Z| >1 |Z] < 0.8
01/
N+ M N-M
Zeroes at Zeroes
the origin  at the
origin
N+ M N-M
poles at poles at
the origin  the
origin
Zero at~ Zero at
0
Zero at~» Zero at
0
|Z| >3 |Z| < 0.5
except at Z except
= o atZz=0
Graphical Tabular
Method Method
A-3;B- A-2;B
1;,C-4;,D -3;C-
-2 4,D-1
A-3;B- A-1;B
1;C-4:D -2;C
-2 -3;D-4
1.331.44
K, (0.6) "+ K1 (0.3)
K, (-0.6)" "+Kp(-

0.6) "



For the system (1 -z 12272 )y(n) = x(n) is

The system y(n) —y(n-1) = x(n)is

Assertion: Two systems x(n) and xz(n)are connected in cascade. The
response change when they are reversed.

Choose the correct answer

State is the knowledge of the variables at to determine
the behaviour of the system.
The state equation is

The output equation is

For the state equations X’(t) = Px(t) + Qu(t) Y(t) = Rx(t) + Su(t)
Match the following Listl Listll A.P1. nxpB.Q2.gxnC. R3.
nxnD.S4.VxP

For the state space representation from the transfer function the
system is represented in

Which of the statements is true? Each block diagram representation
of a system can be translated directly into computer algorithm but it
needs

The Z * block is a representation of

Laplace Transform and Z transform replace time domain operation
into

y(n) — y(n-
1) —2y(n-
2) =x(n) -
x(n-1)
causal

Reason

Possible to
confirm the
input —
output
relations

t:tl

Q=AQ+
BX

Y=CQ +
BX

A-4;B-
1;.C-2;D

Direct — |
form
sampling

differentiat
or
algebraic
equation

y(n) —
y(n-1) —
2y(n-2)
= x(n)
noncaus
al
Squarin
g
system
is not an
LTI
system
Possible
to
optimize
the
system

t=T

Q=AQ
+ BX

Y'=CQ
+ BX

A-1;B
_3;C_
4:D-2

Direct —
Il form
quantizi

ng

Integrat
or
Different
iation
equation



For a rectangular signal x(n) ={1 0<n <5}, g(n) =x(n) = x(n-1)the Z- G(Z)=1- G(Z2)=1

transform is z73 121 -z7%
>0 |Z] >0
In a RLC network, are chosen as state variables energy Inductor
voltage
The Inductor current of an electric network are considered as series shunt

voltage voltage

A system has the following Zeroes (0,-1) and poles at 0.5 + 0.5, 0.5 stable unstable
—j0.5. The system is
The system Z (Z+1) / Z > — Z + 0.5 has poles at 05+j0.5 0.5+]
0.5,05
-j0.5
The input to the integrators are present past
state state
The state variables are the input of output
delay of delay

element element

The state transition matrix determines the the
transition transitio
of the final n of the
state att = final

0 state at t
= o0
The state variables are smallest  smallest
set of set of
variables variable
that s that

determine determi
the stability ne the

of a state of
system a
svstem
The state equation is given by x(K) = x(k+1) =
Ax(K) + AX(K)
Bu(k)
If x(k) be the input of a delay element, the output will be X(k+1) X(K)
The transfer function of a SISO system is h(Z) =CZI H(Z) =
~A)~'B  B(ZI-

A*+D



Total response of the system is ZIRXZSR ZIR -
ZSR



opt3
B&C

nonlinea
ré&
stable
system

static,
non-
causal

static &
stable
systems

either A
orB

{1,-1,-
3,1,2}
c>0,
<z =1
1/(1-e
TZ—1)

Differen
ce
equation
s can be
solved
easily.

Stable
pole can
be
excited
by other
ports

opt4
A, B&C

nonlinea
ré&
unstable
system

dynamic
noncaus
al

non
causal &
stable
systems

Both A
& B

{1,-1,-3,-

1,2}
c <0,
<zl >1

1/(1+e”

GTZ—1)

Perfect
Pole-
Zero
Plots
can be
obtained

Cancell
ation is
perfect

opts

opt6

answer

A&C

nonlinea
r&
stable
system

static,
causal

static &
stable
systems

absolute
ly
summab
le
{1,-1,-
3,1,2}

c <0,
Szl <1
1/(1-e”
aT 7~ 1)

Differen
ce
equation
s helpin
easy
compute
;
program

Perfect
cancella
tion is
very
difficult



poles of Zeroes

the of the
closed closed
loop loop

transfer transfer
function function

VARSI VARS
3" @3
0.8<|Z] |Z|<1
<1

1
M—-N M

Zeroes Zeroes
atthe atthe
origin origin
M—-N N poles
poles at at the
the origin
origin

pole at pole at0

s}

pole at pole at0
| Z| > 0.5<|Z|
unit <3
circle
except except
atZ=1 atZ>1
Matrix  All of
Method the
above
A-2;B A-2;B
-4,C- -4;C-
1;D-3 3;D-1

A-3;B A-2;B
~4;,C- -3;C-
4:D-1 4:D-2

1.66  1.55
K, (0.5) K, (0.5)

"+ Ky (- "+ Ky (-
05" 0.6)"

poles of
the
closed
loop
transfer
function
|Z| > 1/3

0.8 <|Z]
<1
N-M
Zeroes
at the
origin
M-N
poles at
the
origin
pole at

o0

Zero at
0.5<|Z]
<3

except
atZ=0
All of
the
above
A-2;B
_4, C_
1;D-3

A-3;B
_1;C_
4:D -2

1.66
K, (0.5)

"+ Ky (-
0.6)"



y(n) -
2y(n-2)
= X(n)_
x(n-1)
unstable

Squarin
g
system
isan LTI
system

Possible
not to
include
the
initial
conditio
n

t=t,

Q' =AQ
+ BX

Y'=CQ
+ BX

A-3;B
_1;C_
4:D-2

Cascad
e form
coding

Multiplie
r
Differen
ce
Equatio
n

y(n) -
2y(n-1)
-Yy(n-2)
= x(n)
stable

Squarin
g
system
is not a
linear
system
Possible
to
analyze
only
linear
systems

t:to

Q' =AQ
+BX

Y =CQ
+ BX

A-3;B
_4;C_
2;:D-1

Parallel
form
modulati
on

Unit
Delay
Convolu
tion
Equatio
n

y(n) -
y(n-1) —
2y(n-2)
= X(n)
stable

Reason

Possible
to
optimize
the
system

t:to

Q =AQ
+ BX

Y=CQ
+ BX

A-3;B
_1;C_
4:D-2

Direct —
Il form
quantizi

ng

Unit
Delay
algebrai
c
equation



G@2)=16G@2) =1 G(2) =1

~z7% -z -z7°
[Z] >0 |Z] >0 |Z| >0
capacito Capacit capacito
r voltage or r voltage
current
next state state
state variable variable
variable s S
time causal stable
variant
06+] 0.5+] 0.5 +]
05,06 1,05- 0.5,0.5
-j0.5 |1 —ij0.5
future no future
state states state
input to output output
summer to of delay
summer element
the the the
transitio transitio transitio
n of the n of the n of the
initial initial initial
state at t state att state at t
= =0 =0
smallest smallest Ans: b

setof  setof
variable variable
s that s that
determi determi
ne the nethe
causalit linearity
yofa ofa
svstem system

x(k+1) = x(k) = x(k+1) =
Ax(k) +  Au(k) Ax(K) +
Bu(k) Bu(k)
x(k-1)  x(k/2) x(k-1)
H(Z)= H(©2) = H(Z) =
C(zl- Dzl - D(ZI -
A B+ A)'B+ A) B +

C D D



ZIR/ ZIR + ZIR x
ZSR ZSR ZSR
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