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Course Objective 

• Objective of the course is to understand signal types, properties and analysis, 

demonstrate and understand the fundamental properties of linear time-

invariant systems. 

 

Course Outcomes  

At the end of this course students will demonstrate the ability to 

• Analyze different types of signals 

• Represent continuous and discrete systems in time and frequency domain 

using different 

transforms 

• Apply Fourier series and Transforms on signals 

• Investigate whether the system is stable 

• Sample and reconstruct a signal 

• Apply  Laplace and Z Transforms on signals 

 

UNIT I          INTRODUCTION TO SIGNALS AND SYSTEMS 

Energy and power signals, continuous and discrete time signals, continuous and 

discrete amplitude signals. System properties: linearity: additivity and homogeneity, 

shift-invariance, causality, stability, realizability. 

 

UNIT II LTI SYSTEMS AND ANALYSIS 

Linear shift-invariant (LSI) systems, impulse response and step response, convolution, 

input-output behavior with aperiodic convergent inputs. Characterization of causality 

and stability of linear shift invariant systems. System representation through 

differential equations and difference equations. 

UNIT III FOURIER SERIES AND FOURIER TRANSFORM  

Periodic and semi-periodic inputs to an LSI system, the notion of a frequency 

response and its relation tothe impulse response, Fourier series representation, the 

Fourier Transform, convolution/multiplication and their effect in the frequency 

domain, magnitude and phase response, Fourier domain duality. The Discrete-Time 

Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's 

Theorem. The idea of signal space and orthogonal bases, 

 



UNIT IV LAPLACE TRANSFORM ANALYSIS 

The Laplace Transform, notion of eigen functions of LSI systems, a basis of eigen 

functions, region of convergence, poles and zeros of system, Laplace domain analysis, 

solution to differential equations and system behavior. 

 

UNIT V          Z TRANFORM AND SAMPLING 

The z-Transform for discrete time signals and systems- eigen functions, region of 

convergence, z-domain analysis. State-space analysis and multi-input, multi-output 

representation. The state-transition matrix and its role. The Sampling Theorem and its 

implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-

order hold, first-order hold, and so on. Aliasing and its effects. Relation between 

continuous and discrete time systems. 

 

Suggested Readings 

1. A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems", 

Prentice Hall, 1983. 

2. R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems - 

Continuous and Discrete", 4th edition, Prentice Hall, 1998. 

3. Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980. 

4. B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press, 

c1998. 

5. Douglas K. Lindner, "Introduction to Signals and Systems", McGraw Hill 

International Edition: c1999. 

6. Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons 

(Asia) Private Limited, c1998. 

7. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John 

Wiley and Sons, 1995. 

8. M. J. Roberts, "Signals and Systems - Analysis using Transform methods and 

MATLAB", TMH, 2003. 

9. Ashok Ambardar,"Analog and Digital Signal Processing", 2nd Edition, 

Brooks/ Cole Publishing Company (An international Thomson Publishing 

Company), 1999. 
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S.No TOPICS TO BE COVERED TIME 
DURATION 

SUPPORTING 
MATERIALS 

TEACHING 
AIDS 

UNIT-I   INTRODUCTION TO SIGNALS AND SYSTEMS 

1 Energy and power signals  01 T1 Pg.No :139 BB 

2 Continuous and discrete time 

signals 
01 

 

T1 Pg.No :140-152 BB 

3 Continuous and discrete 
amplitude signals 

01 T1 Pg.No :172-174 BB 

4 System properties: linearity: 

additivity and homogeneity, 

shift-invariance, causality, 

stability, realizability. 

02 T1 Pg.No :174-177 BB 

UNIT-II     LTI SYSTEMS AND ANALYSIS 

8 Linear shift-invariant (LSI) 

systems 

01 T1 Pg.No :378-391,392-
406 

BB 

9 Impulse response and step 

response 

02 T1 Pg.No :419 BB 

10 Convolution, input-output 
behavior with aperiodic 
convergent inputs. 

01 T1 Pg.No :442-458 BB 



11 Characterization of causality and 

stability of linear shift invariant 

systems 

01 

 

T1 Pg.No :436-441 BB 

12  System representation through 

differential equations  

02 T1 Pg.No :467 BB 

13  System representation through 

difference equations. 

02 T1 Pg.No :475 BB 

UNIT-III FOURIER SERIES AND FOURIER TRANSFORM  

17 Periodic and semi-periodic inputs 

to an LSI system 

 and the  

 

01 T1 Pg.No :236-259 BB 

18  The notion of a frequency response 

and its relation to the impulse 

response 

01 T1 Pg.No :274 BB 

19 Fourier series representation 01 T1 Pg.No :274-275 BB 

20 The Fourier Transform, 
convolution/multiplication and 
their effect in the frequency 
domain 

02 T1 Pg.No :280-296 BB 

21 Magnitude and phase response, 
Fourier domain duality. 

01 T1 Pg.No :306 BB 

22 The Discrete-Time Fourier 
Transform (DTFT)  

02 T1 Pg.No :311 BB 

23  Discrete Fourier Transform 

(DFT). 
02 T1 Pg.No :315 BB 

24 Parseval's Theorem and the idea of 

signal space and orthogonal bases, 

01 T1 Pg.No :290,292 BB 

UNIT-IV LAPLACE TRANSFORM ANALYSIS  

26 The Laplace Transform, notion of 

eigen functions of LSI systems  

02 T1 Pg.No :727-738 BB 

27  A basis of eigen functions, region 

of convergence 

02 T1 Pg.No :1261-1265 BB 

28 Poles and zeros of system Laplace 

domain analysis 

02 T1 Pg.No :1230-1246 BB 

29 Solution to differential equations 

and system behavior. 

03 T1 Pg.No :893 BB 

UNIT-V Z TRANFORM AND SAMPLING  

32 The z-Transform for discrete 

time signals and systems- eigen 

functions, region of 

convergence, z-domain analysis.   

-  Aliasing and its effects. 

Relation between continuous 

02 T1 Pg.No :899-902 BB 



and discrete time systems. 

33 State-space analysis and multi-

input, multi-output representation. 

02 T1 Pg.No :68-72,77-78 BB 

34 The state-transition matrix and its 

role. 

01 T1 Pg.No :81 BB 

35 The Sampling Theorem and its 
implications, Spectra of sampled 
signals. 

02 T1 Pg.No :1088-1125 BB 

36 Reconstruction: ideal interpolator, 

zero-order hold, first-order hold, 

and so on. 

02 T1 Pg.No :819-824 BB 

37 Aliasing and its effects. Relation 

between continuous and discrete 

time systems. 

02 T1 Pg.No :833-844 BB 

 

Total No of Lecture Hours Planned:   45 Hrs 

Total No of Hours Planned      :   45 Hours 

 

 

 

 

 

TEXT BOOKS: 

S.NO. Author(s) Name Title of the book Publisher 

Year of the 

publication 

1 

A.V. 

Oppenheim, A.S. 

Willsky and I.T. 

Young 

 "Signals and Systems" Prentice Hall 1983 

 

SUGGEST READINGS: 

S.NO. Author(s) Name Title of the book Publisher 

Year of the 

publication 



1 R.F. Ziemer, 

W.H. Tranter 

and D.R. Fannin 

"Signals and Systems - 

Continuous and Discrete" 

4th edition, Prentice 

Hall,  

1998 

2 M. J. Roberts  "Signals and Systems - Analysis 

using Transform methods and 

MATLAB" 

TMH 2003 

3 Douglas K. 

Lindner  

"Introduction to Signals and 

Systems" 

McGraw Hill 

International  

1999 

4 J. Nagrath, S. N. 

Sharan, R. 

Ranjan, S. 

Kumar 

"Signals and Systems" TMH 2001 

5 Robert A. Gabel, 

Richard A. 

Roberts  

"Signals and Linear Systems" John Wiley and Sons 1995 
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Didactic material 

•  Textbook 
–  Signal Processing and Linear Systems, B.P. Lathi, CRC Press 

•  Other books 
–  Signals and Systems, Richard Baraniuk’s lecture notes, available on line 
–  Digital Signal Processing (4th Edition) (Hardcover), John G. Proakis, Dimitris K 

Manolakis  
–  Teoria dei segnali analogici, M. Luise, G.M. Vitetta, A.A. D’Amico, McGraw-Hill 
–  Signal processing and linear systems, Schaun's outline of digital signal 

processing 

•  All textbooks are available at the library 

•  Handwritten notes will be available on demand 

2 
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Signals&Systems 

System 

Input signal Output signal 

time 

amplitude 

frequency 

|amplitude| Linear time invariant 
systems (LTIS) 

LTIS perform any kind 
of processing on the 

input data to generate 
output data 

3 



Gloria Menegaz 

Contents 

Signals 

•  Signal classification and 
representation 

–  Types of signals 
–  Sampling theory 
–  Quantization 

•  Signal analysis 
–  Fourier Transform 

§  Continuous time, Fourier series, 
Discrete Time Fourier Transforms, 
Windowed FT 

–  Spectral Analysis 

Systems 

•  Linear Time-Invariant Systems 
–  Time and frequency domain analysis 
–  Impulse response 
–  Stability criteria 

•  Digital filters 
–  Finite Impulse Response (FIR) 

•  Mathematical tools 
–  Laplace Transform 

§  Basics 

–  Z-Transform 
§  Basics 

 

Applications in the domain of Bioinformatics 

4 



Gloria Menegaz 

What is a signal? 

•  A signal is a set of information of data 
–  Any kind of physical variable subject to variations represents a signal 
–  Both the independent variable and the physical variable can be either scalars or 

vectors 
§  Independent variable: time (t), space (x, x=[x1,x2], x=[x1,x2,x3]) 
§  Signal: 
§  Electrochardiography signal (EEG) 1D, voice 1D, music 1D 
§  Images (2D), video sequences (2D+time), volumetric data (3D) 

5 
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Example: 1D biological signals: ECG 

6 
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Example: 1D biological signals: EEG 

am
pl

itu
de

 

time 
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1D biological signals: DNA sequencing 

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATG…… 
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Example: 2D biological signals: MI MRI 

CT 

US 
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Example: 2D biological signals: microarrays 

10 
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Signals as functions 

•  Continuous functions of real independent variables 
–  1D: f=f(x) 
–  2D: f=f(x,y) x,y 
–  Real world signals (audio, ECG, images) 

•  Real valued functions of discrete variables 
–  1D: f=f[k] 
–  2D: f=f[i,j] 
–  Sampled signals 

•  Discrete functions of discrete variables 
–  1D: fd=fd[k] 
–  2D: fd=fd[i,j] 
–  Sampled and quantized signals 

11 
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Images as functions 

•  Gray scale images: 2D functions 
–  Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice 

[i,j] defining the pixel locations 
–  Set of values taken by the function : gray levels 

•  Digital images can be seen as functions defined over a discrete domain {i,j: 
0<i<I, 0<j<J} 

–  I,J: number of rows (columns) of the matrix corresponding to the image 
–  f=f[i,j]: gray level in position [i,j] 

12 
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Example 1: δ function 
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Example 2: Gaussian 
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Continuous function 

Discrete version 
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Example 3: Natural image 

15 
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Example 3: Natural image 
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What is a system? 

•  Systems process signals to  
–  Extract information (DNA sequence analysis) 
–  Enable transmission over channels with limited capacity (JPEG, JPEG2000, 

MPEG coding) 
–  Improve security over networks (encryption, watermarking) 
–  Support the formulation of diagnosis and treatment planning (medical imaging) 
–  ……. 

System 
input output 

closed-loop 

The function linking the output 
of the system with the input 
signal is called transfer function 
and it is typically indicated with 
the symbol h(•)  

17 
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Classification of signals 

•  Continuous time – Discrete time 

•  Analog – Digital (numerical) 

•  Periodic – Aperiodic 

•  Energy – Power 

•  Deterministic – Random (probabilistic) 

•  Note 
–  Such classes are not disjoint, so there are digital signals that are periodic of 

power type and others that are aperiodic of power type etc. 
–  Any combination of single features from the different classes is possible  

18 
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Continuous time – discrete time 

•  Continuous time signal: a signal that is specified for every real value of the 
independent variable 

–  The independent variable is continuous, that is it takes any value on the real axis 
–  The domain of the function representing the signal has the cardinality of real 

numbers 
§  Signal ↔ f=f(t) 
§  Independent variable ↔ time (t), position (x) 
§  For continuous-time signals:  t ∈ 

time 

amplitude 

19 
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Continuous time – discrete time 

•  Discrete time signal: a signal that is specified  only for discrete values of the 
independent variable 

–  It is usually generated by sampling so it will only have values at equally spaced 
intervals along the time axis 

–  The domain of the function representing the signal has the cardinality of integer 
numbers 

§  Signal ↔ f=f[n], also called “sequence” 
§  Independent variable ↔ n 
§  For discrete-time functions:  t∈Z

time (discrete) 

amplitude 

20 
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Analog - Digital 

•  Analog signal: signal whose amplitude can take on any value in a 
continuous range 

–  The amplitude of the function f(t) (or f(x)) has the cardinality of real numbers 
§  The difference between analog and digital is similar to the difference between 

continuous-time and discrete-time. In this case, however, the difference is with respect 
to the value of the function (y-axis)  

–  Analog corresponds to a continuous y-axis, while digital corresponds to a 
discrete y-axis 

 
 
 
 

•  Here we call digital what we have called quantized in the EI class 

•  An analog signal can be both continuous time and discrete time 

21 
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Analog - Digital 

•  Digital signal: a signal is one whose amplitude can take on only a finite 
number of values (thus it is quantized) 

–  The amplitude of the function f() can take only a finite number of values 
–  A digital signal whose amplitude can take only M different values is said to be M-

ary 
§  Binary signals are a special case for M=2 

time 

am
pl
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Example 

–  Continuous time analog 

–  Continuous time digital (or quantized) 
§  binary sequence, where the values of the function can only be one or zero. 

time 
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time 
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Example 

•  Discrete time analog 

•  Discrete time digital 
§  binary sequence, where the values of the function can only be one or zero. 

time 
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time 
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itu
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Summary 

Signal amplitude/ 

Time or space 
Real Integer 

Real 
Analog  

Continuous-time  

Digital  

Continuous-time 

Integer 
Analog 

Discrete-time 

Digital 

Discrete time 

25 



Note 

•  In the image processing class we have defined as digital those signals that 
are both quantized and discrete time. It is a more restricted definition. 

•  The definition used here is as in the Lathi book. 

Gloria Menegaz 26 
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Periodic - Aperiodic 

•  A signal f(t) is periodic if there exists a positive constant T0 such that 

–  The smallest value of T0 which satisfies such relation is said the period of the 
function f(t) 

–  A periodic signal remains unchanged when time-shifted of integer multiples of the 
period 

–  Therefore, by definition, it starts at minus infinity and lasts forever 

–  Periodic signals can be generated by periodical extension 

0( ) ( )f t T f t t+ = ∀

t t
n n

−∞ ≤ ≤ +∞ ∈

−∞ ≤ ≤ +∞ ∈

°
Z
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Examples 

•  Periodic signal with period T0 

•  Aperiodic signal 

28 
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Causal and non-Causal signals 

•  Causal signals are signals that are 
zero for all negative time (or spatial 
positions), while  

•  Anticausal are signals that are zero for 
all positive time (or spatial positions).  

•  Noncausal signals are signals that 
have nonzero values in both positive 
and negative time 

29 
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Causal and non-causal signals 

•  Causal signals 

•  Anticausals signals 

•  Non-causal signals 

( ) 0 0f t t= <

( ) 0 0f t t= ≥

1 10 : ( ) 0t f t∃ < =
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Even and Odd signals 

•  An even signal is any signal f such that f (t) = f (-t). Even signals can be 
easily spotted as they are symmetric around the vertical axis.  

•  An odd signal, on the other hand, is a signal f such that f (t)= - (f (-t)) 

31 
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Decomposition in even and odd components 

•  Any signal can be written as a combination of an even and an odd signals 
–  Even and odd components 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

1 1
2 2
1    even component
2
1    odd component
2

e

o

e o

f t f t f t f t f t

f t f t f t

f t f t f t

f t f t f t

= + − + − −

= + −

= − −

= +
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Example 

33 
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Example 

•  Proof 
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Some properties of even and odd functions 

•  even function x odd function = odd function 

•  odd function x odd function = even function 

•  even function x even function = even function 

•  Area 

( ) ( )

( )

0

2

0

a a

e e
a
a

e
a

f t dt f t dt

f t dt

−

−

=

=

∫ ∫

∫
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Deterministic - Probabilistic 

•  Deterministic signal: a signal whose 
physical description in known 
completely 

•  A deterministic signal is a signal in 
which each value of the signal is fixed 
and can be determined by a 
mathematical expression, rule, or 
table.  

•  Because of this the future values of the 
signal can be calculated from past 
values with complete confidence. 

–  There is no uncertainty about its 
amplitude values 

–  Examples: signals defined through a 
mathematical function or graph 

•  Probabilistic (or random) signals: the 
amplitude values cannot be predicted 
precisely but are known only in terms 
of probabilistic descriptors 

•  The future values of a random signal 
cannot be accurately predicted and 
can usually only be guessed based on 
the averages of sets of signals 

–  They are realization of a stochastic 
process for which a model could be 
available 

–  Examples: EEG, evocated potentials, 
noise in CCD capture devices for digital 
cameras 
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Example 

•  Deterministic signal 

•  Random signal 
time 

am
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time 
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Finite and Infinite length signals 

•  A finite length signal is non-zero over a finite set of values of the 
independent variable 

•  An infinite length signal is non zero over an infinite set of values of the 
independent variable 

–  For instance, a sinusoid f(t)=sin(ωt) is an infinite length signal 

( ) 1 2

1 2

, :
,

f f t t t t t
t t
= ∀ ≤ ≤

> −∞ < +∞
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Size of a signal: Norms 

•  "Size" indicates largeness or strength.  

•  We will use the mathematical concept of the norm to quantify this notion for 
both continuous-time and discrete-time signals. 

•  The energy is represented by the area under the curve (of the squared 
signal) 

time 
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0 T 
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Energy 

•  Signal energy 

•  Generalized energy : Lp norm 
–  For p=2 we get the energy (L2 norm) 

2

2

( )

( )

f

f

E f t dt

E f t dt

+∞

−∞

+∞

−∞

=

=

∫

∫

( ) ( )( )( )
1/

1

pp
f t f t dt

p

=

≤ < +∞

∫
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Power 

•  Power 
–  The power is the time average (mean) of the squared signal amplitude, that is the 

mean-squared value of f(t) 
 

/ 2
2

/ 2

/ 2
2

/ 2

1lim ( )

1lim ( )

T

f T
T
T

f T
T

P f t dt
T

P f t dt
T

+

→∞
−

+

→∞
−

=

=

∫

∫
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Power - Energy 

•  The square root of the power is the root mean square (rms) value 
–  This is a very important quantity as it is the most widespread measure of 

similarity/dissimilarity among signals 
–  It is the basis for the definition of the Signal to Noise Ratio (SNR) 

–  It is such that a constant signal whose amplitude is =rms holds the same power 
content of the signal itself 

•  There exists signals for which neither the energy nor the power are finite 

t 

f 
ramp 

0 

1020log signal

noise

P
SNR

P
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
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Energy and Power signals 

•  A signal with finite energy is an energy signal 
–  Necessary condition for a signal to be of energy type is that the amplitude goes 

to zero as the independent variable tends to infinity 

•  A signal with finite and different from zero power is a power signal 
–  The mean of an entity averaged over an infinite interval exists if either the entity 

is periodic or it has some statistical regularity 
–  A power signal has infinite energy and an energy signal has zero power 
–  There exist signals that are neither power nor energy, such as the ramp 

•  All practical signals have finite energy and thus are energy signals 
–  It is impossible to generate a real power signal because this would have infinite 

duration and infinite energy, which is not doable. 

43 
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Useful signal operations: shifting, scaling, inversion 

•  Shifting: consider a signal f(t) and the same signal delayed/anticipated by T 
seconds f(t) 

t 
f(t+T) 

t 

f(t-T) 

t 

T 

T 

T>0 

anticipated 

delayed 
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Useful signal operations: shifting, scaling, inversion 

•  (Time) Scaling: compression or expansion of a signal in time 
f(t) 

t f(2t) 

t f(t/2) 

t 

compression 

expansion 

( ) ( )2t f tϕ =

( ) ( )/ 2t f tϕ =
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•  Scaling: generalization 

Useful signal operations: shifting, scaling, inversion 

( ) ( )

( )

1
  compressed version

 dilated (or expanded) version

Viceversa for 1

a
t f at

tt f
a
a

ϕ

ϕ

>

= →

⎛ ⎞= →⎜ ⎟
⎝ ⎠

<
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•  (Time) inversion: mirror image of f(t) about the vertical axis 

Useful signal operations: shifting, scaling, inversion 

( ) ( )t f tϕ = −

f(t) 

f(-t) 

0 

0 
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•  Combined operations: f(t) → f(at-b) 

•  Two possible sequences of operations 

1.  Time shift f(t) by to obtain f(t-b). Now time scale the shifted signal f(t-b) by a to 
obtain f(at-b). 

2.  Time scale f(t) by a to obtain f(at). Now time shift f(at) by b/a to obtain f(at-b).  
•  Note that you have to replace t by (t-b/a) to obtain f(at-b) from f(at) when replacing t by 

the translated argument (namely t-b/a)) 

Useful signal operations: shifting, scaling, inversion 

48 
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Useful functions 

•  Unit step function 
–  Useful for representing causal signals 

( )
1 0
0 0
t

u t
t
≥⎧

= ⎨
<⎩

( ) ( ) ( )2 4f t u t u t= − − −
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Useful functions 

•  Continuous and discrete time unit step functions 

u(t) u[k] 
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Useful functions 

•  Ramp function (continuous time) 
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Useful functions 

•  Unit impulse function 

( )

( )

0 0

1

t t

t dt

δ

δ
+∞

−∞

= ≠

=∫

t 0 

δ(t) 

-ε/2 ε/2 t 

ε→0 1/ε 
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Properties of the unit impulse function 

•  Multiplication of a function by impulse 

•  Sampling property of the unit function 

–  The area under the curve obtained by the product of the unit impulse function 
shifted by T and ϕ(t) is the value of the function ϕ(t) for t=T 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0t t t
t t T T t T

φ δ φ δ

φ δ φ δ

=

− = −

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0t t dt t dt t dt

t t T dt T

φ δ φ δ φ δ φ

φ δ φ

+∞ +∞ +∞

−∞ −∞ −∞

+∞

−∞

= = =

− =

∫ ∫ ∫

∫
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Properties of the unit impulse function 

•  The unit step function is the integral of the unit impulse function 

–  Thus 

( )

( ) ( )
t

du t
dt

t dt u t

δ

δ
−∞

=

=∫

( ) ( )
0 0
1 0

t t
t dt u t

t
δ

−∞

<⎧
= = ⎨

≥⎩
∫
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Properties of the unit impulse function 

•  Discrete time impulse function 
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Gloria Menegaz 

Useful functions 

•  Continuous time complex exponential 

•  Euler’s relations 

•  Discrete time complex exponential 
–  k=nT 

( ) j tf t Ae ω=
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Useful functions 

•  Exponential function est 
–  Generalization of the function ejωt 
 

s jσ ω= +
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The exponential function 

s=σ s=jω 

s=σ+jω s=σ+jω 
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Complex frequency plan 

σ 

jω 

left half plan 
exponentially 

decreasing signals 

right half plan 
exponentially 

increasing signals 

signals of constant amplitude 

monotonically 
increasing/decreasing 
exponentials 
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Basics of Linear Systems 

2D Linear Systems 



Gloria Menegaz 

Systems 

•  A system is characterized by  
–  inputs 
–  outputs 
–  rules of operation (mathematical model of the system) 

inputs outputs 

f1(t) 
f2(t) 

fn(t) 

y1(t) 
y2(t) 

yn(t) 
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Gloria Menegaz 

Systems 

•  Study of systems: mathematical modeling, analysis, design 
–  Analysis: how to determine the system output given the input and the system 

mathematical model 
–  design or synthesis: how to design a system that will produce the desired set of 

outputs for given inputs 

•  SISO: single input single output   -    MIMO: multiple input multiple output 

inputs outputs 

f1(t) 
f2(t) 

fn(t) 

y1(t) 
y2(t) 

yn(t) 

inputs outputs 

f1(t) y1(t) 
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Response of a linear system 

•  Total response = Zero-input response + Zero-state response 
–  The output of a system for t≥0 is the result of two independent causes: the initial 

conditions of the system (or system state) at t=0 and the input f(t) for t≥0. 
–  Because of linearity, the total response is the sum of the responses due to those 

two causes 
–  The zero-input response is only due to the initial conditions and the zero-state 

response is only due to the input signal 
–  This is called decomposition property 

•  Real systems are locally linear 
–  Respond linearly to small signals and non-linearly to large signals 

y 

f 

y 

f 

causal, linear causal, non linear 

f0 f1 f2 

locally linear 
around f0 
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Review: Linear Systems 

•  We define a system as a unit that converts an input function into an output 
function  

System operator or Transfer function Independent 
variable 
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Linear Time Invariant Discrete Time Systems 

A/D D/A LTIS (H) 
xc(t) x[n] y[n] yr(t) 

( ) ( ) ( )
( ) ( ) ( )

( ) | | /
( )

0 | | /

j j j

r c

Y e H e X e
Y j H j X j

H j T
H j

T

ω ω ω

π

π

=

Ω = Ω Ω

Ω Ω <⎧
Ω = ⎨

Ω ≥⎩

THEN 
 The overall continuous time system is 
equivalent to a LTIS whose frequency 

response is H. 

IF 
•  The input signal is bandlimited 

•  The Nyquist condition for sampling is met 
•  The digital system is linear and time 

invariant 
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Overview of Linear Systems 

Then the system H is called a linear system. 

where  fi(x) is an arbitrary input in the class of all inputs 
{f(x)}, and gi(x) is the corresponding output. 

•  Let 

•  If 

•  A linear system has the properties of additivity and homogeneity.  
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Linear Systems 

for all  fi(x) ∈{f(x)} and for all x0.  

•  The system H is called shift invariant if 

•  This means that offsetting the independent variable of the input by x0 
causes the same offset in the independent variable of the output. Hence, 

the input-output relationship remains the same.  
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Linear Systems 

•  The operator H is said to be causal, and hence the system described by 
H is a causal system, if there is no output before there is an input.  In 

other words, 

•  A linear system H is said to be stable if its response to any bounded input 
is bounded.  That is, if 

where K and c are constants. 



69 

Linear Systems 

δ(a) 

a 
x 

δ(x-a) 

•  A unit impulse function, denoted δ(a), is defined by the expression 

•  The response of a system to a unit impulse function is called the impulse 
response of the system. 

                                  h(x) = H[δ(x)] 
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Linear Systems 

•  If H is a linear shift-invariant system, then we can find its response to any 
input signal f(x) as follows: 

•  This expression is called the convolution integral.  It states that the response 
of a linear, fixed-parameter system is completely characterized by the 

convolution of the input with the system impulse response.   
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Linear Systems 

[ ]* [ ] [ ] [ ]
m

f n h n f m h n m
∞

=−∞

= −∑

•  Convolution of two functions of a continuous variable is defined as 

•  In the discrete case 

( )* ( ) ( ) ( )f x h x f h x dα α α
∞

−∞

= −∫
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Linear Systems 

1 2

1 2 1 2 1 2 1 1 2 2[ , ]* [ , ] [ , ] [ , ]
m m

f n n h n n f m m h n m n m
∞ ∞

=−∞ =−∞

= − −∑ ∑

1 2[ , ]h n n is a linear filter. 

•  In the 2D discrete case 
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Illustration of the folding, displacement, and multiplication 
steps needed to perform two-dimensional convolution 

f(α,β) g(α,β) 

f(α,β)g(x - α ,y - β)	


g(x - α ,y - β) 

α α 

α 
α 

β	

 β	



β	


β	



A B 
 (a)  (b) 

x	


y 

y

x	


B 

Volume = f(x,y) * g(x,y)	



 (c)  (d) 



74 

Matrix perspective 

a b c 

d e f 

g h i 

c b a 

f e d 

i h g 

i h g 

f e d 

c b a 

step 1 

step 2 
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Convolution Example 

From C. Rasmussen, U. of Delaware 

1 -1 -1 

1 2 -1 

1 1 1 
2 2 2 3 

2 1 3 3 

2 2 1 2 

1 3 2 2 

Rotate 

1 -1 -1 

1 2 -1 

1 1 1 

h 

f 
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Convolution Example 

Step 1 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

1 -2 -1 

2 4 -1 

1 1 1 

f 
f*h 

h 1 -1 -1 

1 2 -1 

1 1 1 
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Convolution Example 

4 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

3 -1 -2 

2 4 -2 

1 1 1 

f f*h 

h 

1 -1 -1 

1 2 -1 

1 1 1 
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Convolution Example 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 4 4 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

3 -3 -1 

3 4 -2 

1 1 1 

f f*h 

h 

1 -1 -1 

1 2 -1 

1 1 1 
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Convolution Example 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 4 4 -2 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

1 -3 -3 

1 6 -2 

1 1 1 

f f*h 

1 -1 -1 

1 2 -1 

1 1 1 
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3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 4 4 

9 

-2 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

2 -2 -1 

1 4 -1 

2 2 1 

f f*h 

h 

1 -1 -1 

1 2 -1 

1 1 1 
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Convolution Example 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

6 

4 4 

9 

-2 5 

3 

2 

1 

2 

2 

1 

3 

2 

3 2 

2 1 

2 2 

3 2 

1 -2 -2 

3 2 -2 

2 2 2 

f f*h 

h 

1 -1 -1 

1 2 -1 

1 1 1 



A6523
Linear, Shift-invariant Systems and Fourier Transforms

• Linear systems underly much of what happens in nature and are used in instrumentation to make
measurements of various kinds.

• We will define linear systems formally and derive some properties.

• We will show that exponentials are natural basis functions for describing linear systems.

• Fourier transforms (CT/CA), Fourier Series (CT/CA + periodic in time), and Discrete Fourier
Transforms (DT/CA + periodic in time and in frequency) will be defined.

• We will look at an application that demonstrates:

1. Definition of a power spectrum from the DFT.

2. Statistics of the power spectrum and how we generally can derive statistics for any estimator or
test statistic.

3. The notion of an ensemble or parent population from which a given set of measurements is
drawn (a realization of the process).

4. Investigate a “detection” problem (finding a weak signal in noise) and assess the false-alarm
probability.
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Types of Signals
By “signal” we simply mean a quantity that is a function of some independent variable. For simplicity,
we will often consider a single independent variable (time) e.g. x(t). Later we will consider 2 or more
dimensions of general variables. .

A signal is characterized by an amplitude as a function of time and 4 kinds of signals can be defined
depending on whether the time and amplitude are discrete or continuous.

TIME

AMPLITUDE discrete continuous

discrete Digital Signals CT, DA
(m bits per sample) (m bits)

continuous DT, CA Analog Signals
(∞ bits per sample) (∞ bits per sample)

Quantum mechanics says there are only DT, DA signals but much of what we will do is in the classical
regime.

2



Examples

CT/CA Light intensity from a star
(ignore photons and counting statistics)

CT/DA Earth’s human population

DT/CA Intensity of the moon at times of the full moon
|tj+1 − tj| ∼ 28 days

DT/DA Earth’s population at times of the full moon

3



Approach taken in the course
Theoretical treatments (analytical results) will generally be applied to DT/CA signals, for simplicity.

For the most part, we will consider analog signals and DT/CA signals, the latter as an approximation
to digital signals. For most analyses, the discreteness in time is a strong influence on what we can infer
from the data. Discreteness in amplitude is not so important, except insofar as it represents a source of
error (quantization noise). However, we will consider the case of extreme quantization into one bit of
information and derive estimators of the autocovariance.

Generically, we refer to a DT signal as a time series and the set of all possible analyses as “time series
analysis”. However, most of what we do is applicable to any sequence of data, regardless of what the
independent variable is.

Often, but not always, we can consider a DT signal to be a sampled version of a CT signal (counter
examples: occurrence times of discrete events such as clock ticks, heartbeats, photon impacts, etc.).

Nonuniform sampling often occurs and has a major impact on the structure of an algorithm.

We will consider the effects of quantization in digital signals.
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Linear Systems
Consider a linear differential equation in y

f (y, y′, y′′, . . .) = x(t), y′ ≡ dy

dt
, etc.

whose solutions include a complete set of orthogonal functions. We can represent the relationship of
x(t) (the driving function) and y(t) (the output) in transformational form:

x(t) −→ system
h(t)

−→ y(t)

where h(t) describes the action of the system on the input x to produce the output y. We define h(t) to
be the response of the system to a δ-function input. Thus, h(t) is the “impulse response” or Green’s
function of the system.

We wish to impose linearity and shift invariance on the systems we wish to consider:

Linearity:

If x1 −→ y1 and x2 −→ y2 then ax2 + bx2 −→ ay1 + by2, for any a, b

E.g. y = x2 is not a linear operation.

Time or shift invariance (stationarity)

If x(t) −→ y(t), then x(t + t0) −→ y(t + t0) for any t0

The output “shape” depends on the “shape” of the input, not on the time of occurrence.
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Singularity Functions
We need some useful singularity “functions”:

1. δ(t) defined as a functional

z(t) ≡
∫
dt′ δ(t′ − t) z(t′) and

∫ b

a

dt′ δ(t′ − t) =


1 a ≤ t ≤ b

0 otherwise

(1)

2. Loosely speaking, δ(0) −→∞, δ(t 6= 0) −→ 0; So δ(t) has finite (unit) area.

3. U(t) unit step function (or Heaviside function)

U(t) =

∫ ∞
0

dt′ δ(t′ − t) =


1 t ≥ 0

0 t < 0

and
dU(t)

dt
= δ(t) (2)

⇒ U(t− t0) =

∫ ∞
t0

dt′ δ(t′ − t) =


1 t ≥ t0

0 otherwise
(3)
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Convolution theorem
By definition

δ(t) −→ h(t)

Using linearity we have
a δ(t) −→ a h(t)

Let a = x(t′) then
x(t′) δ(t) −→ x(t′) h(t)

By shift invariance we have
δ(t− t′) −→ h(t− t′)

Combining L + SI,
x(t′) δ(t− t′) −→ x(t′) h(t− t′)

But, again by linearity, we can sum many terms of this kind. So, integrating over all t′:∫ ∞
−∞

dt′ x(t′) δ(t− t′) −→
∫ ∞
−∞

dt′ x(t′) h(t− t′)

But by definition of δ(t),LHS = x(t), so

x(t) −→
∫ ∞
−∞

dt′ x(t′) h(t− t′) = y(t)

By a change of variable on the RHS to t̃ = t− t′ we also have

x(t) −→
∫ ∞
−∞

dt′ x(t− t′) h(t′) = y(t)
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Any linear, shift invariant system can be described as the convolu-
tion of its impulse response with an arbitrary input.
Using the notation ∗ to represent the integration, we therefore have

y(t) = x ∗ h = h ∗ x

Properties:

1. Convolution commutes: ∫
dt′ h(t′)x(t− t′) =

∫
dt′ h(t− t′)x(t′)

2. Graphically, convolution is “invert, slide, and sum”

3. The general integral form of ∗ implies that, usually, information about the input is lost since h(t)

can “smear out” or otherwise preferentially weight portions of the input.

4. Theoretically, if the system response h(t) is known, the output can be ‘deconvolved’ to obtain the
input. But this is unsuccessful in many practical cases because: a) the system h(t) is not known to
arbitrary precision or, b) the output is not known to arbitrary precision.
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Why are linear systems useful?

1. Filtering (real time, offline, analog, digital, causal, acausal)

2. Much signal processing and data analysis consists of the application of a linear operator (smooth-
ing, running means, Fourier transforms, generalized channelization, ... )

3. Natural processes can often be described as linear systems:

• Response of the Earth to an earthquake (propagation of seismic waves)

• Response of an active galactic nucleus swallowing a star (models for quasar light curves)

• Calculating the radiation pattern from an ensemble of particles

• Propagation of electromagnetic pulses through plasmas

• Radiation from gravitational wave sources (in weak-field regime)

9



We want to be able to attack the following kinds of problems:

1. Algorithm development: Given h(t), how do we get y(t) given x(t) (“how” meaning to obtain
efficiently, hardware vs. software, etc.) t vs. f domain?

2. Estimation: To achieve a certain kind of output, such as parameter estimates subject to “con-
straints”(e.g. minimum square error), how do we design h(t)? (least squares estimation, prediction,
interpolation)

3. Inverse Theory: Given the output (e.g. a measured signal) and assumptions about the input, how
well can we determine h(t) (parameter estimation)? How well can we determine the original input
x(t)? Usually the output is corrupted by noise, so we have

y(t) = h(t) ∗ x(t) + ε(t).

The extent to which we can determine h and x depends on the signal-to-noise ratio:
〈(h ∗ x)2〉1/2/〈ε2〉1/2 where 〈 〉 denotes averaging brackets.

We also need to consider deterministic, chaotic and stochastic systems:

• Deterministic⇒ predictable, precise (noiseless) functions

• Chaotic⇒ deterministic but apparently stochastic processes

• Stochastic⇒ not predictable (random)

• Can have systems with stochastic input and/or stochastic system response h(t) −→ stochastic
output.

Not all processes arise from linear systems but linear concepts can still be applied, along with others.
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Natural Basis Functions for Linear Systems
In analyzing LTI systems we will find certain basis functions, exponentials, to be specially useful. Why
is this so?

Again consider an LTI system y = h ∗ x. Are there input functions that are unaltered by the system,
apart from a multipicative constant? Yes, these correspond to the eigenfunctions of the associated
differential equation.

We want those functions φ(t) for which

y(t) = φ ∗ h = Hφ where H is just a number

That is, we want

y(t) =

∫
dt′ h(t′)φ(t− t′) = H φ(t)

This can be true if φ(t− t′) is factorable:

φ(t− t′) = φ(t)ψ(t′)

where ψ(t′) is a constant in t but can depend on t′.

11



We constrain ψ(t′) with:

i) φ(t− t′)t′=0 ≡ φ(t) = φ(t)ψ(0)⇒ ψ(0) = 1

ii) φ(t− t′)t=t′ ≡ φ(0) = φ(t)ψ(t)⇒ ψ(t) =
φ(0)

φ(t)

iii) φ(t− t′)t=0 ≡ φ(−t′) = φ(0)ψ(t′)⇒ ψ(t′) =
φ(−t′)
φ(0)

Now ii) and iii) automatically satisfy i). With no loss of generality we can set

φ(0) = 1⇒ ψ(t) =
1

φ(t)
= φ(−t)

We want functions whose time reverses are their reciprocals. These are exponentials (or 2st, ast, etc):

φ(t) = est
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Check that est behaves as required:

y = φ ∗ h =

∫
dt′ φ(t− t′)h(t′)

=

∫
dt′ es(t−t

′)h(t′)

= est
∫
dt′ e−st

′
h(t′)

= est H(s)

So φ −→ φ H(s)

φ = eigenvector H = eigenvalue

Note H(s) depends on s and h.
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Two kinds of systems
Causal

h(t) = 0 for t < 0

output now depends only on past values of input

H(s) =

∫ ∞
0

dt′ e−st
′
h(t′) Laplace transform

Acausal

h(t) not necessarily 0 for t < 0

H(s) =

∫ ∞
−∞

dt′ e−st
′
h(t′)|s=iω Fourier transform

Exponentials are useful for describing the action of a linear system because they “slide through” the
system. If we can describe the actual input function in terms of exponential functions, then determining
the resultant output becomes trivial. This is, of course, the essence of Fourier transform treatments of
linear systems and their underlying differential equations.
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Convolution Theorem in the Transform Domain
Consider input −→ output

a eiωt −→ a H(iω) eiωt linearity

We can choose an arbitrary a, so let’s use

X̃(ω) eiωt −→ X̃(ω) H(iω) eiωt (4)

By linearity we can superpose these inputs. So integrate over ω with a judicious choice of normalization
(1/2π):

1

2π

∫ ∞
−∞

dω X̃(ω) eiωt −→ 1

2π

∫ ∞
−∞

dω X̃(ω) H(iω) eiωt

Let’s call LHS x(t) and the RHS y(t):

x(t) ≡ 1

2π

∫
dω X̃(ω) eiωt y(t) =

1

2π

∫
dω X̃(ω) H(iω) eiωt

What is the relationship of X̃(ω) to x(t)?

Multiply x(t) by e−iω
′t and integrate to get∫ ∞
−∞

dt x(t) e−iω
′t =

1

2π

∫
dw X̃(ω)

∫ ∞
−∞

dt ei(ω−ω
′)t (5)
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Now the integral over t on the RHS gives∫ ∞
−∞

dt ei(ω−ω
′)t −→

{
0 ω 6= ω′

∞ ω = ω′
(6)

i.e. just like a delta function. So (invoking the correct weighting factor, or normalization)∫ ∞
−∞

dt ei(ω−ω
′)t = 2π δ(ω − ω′) (7)

Therefore the boxed RHS becomes∫
dw X̃(ω) δ(ω − ω′) = X̃(ω′). (8)

Therefore we have

X̃(ω′) =

∫ ∞
−∞

dt x(t) e−iω
′t. (9)

and the inverse relation
x(t) =

1

2π

∫
dw X̃(ω) e−iωt.

We say that x(t) and X̃(ω) are a Fourier transform pair.

Going back to equation ?? it is clear that the FT of y(t) is the integrand on the RHS so

Ỹ (ω) = X̃(ω) H(iω).

Usually we rewrite this as H̃(ω) ≡ H(iω) so

Ỹ (ω) = X̃(ω) H̃(ω)
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Therefore, we have shown that

y(t) = x(t) ∗ h(t) convolution

Ỹ (ω) = X̃(ω) H̃(ω) multiplication

This product relation is extremely useful for

1. Deriving impulse responses of composite systems.

2. In discrete form (i.e. digitially) for implementing convolutions: ω - domain multiplications can be
much faster than t - domain convolutions

17



Fourier Transform Relations

Here we summarize the Fourier transform relations for a variety of signals. Let f (t) be a continous,
aperiodic function and F̃ (f ) be its Fourier transform. We denote their relations

f (t) =

∫ ∞
−∞

df F̃ (f )e+2πift

F̃ (f ) =

∫ ∞
−∞

dt f (t)e−2πift,

as f (t)⇐⇒ F̃ (f ).

We need to consider the following functions: 1. The Dirac delta ‘function’

δ(t)

2. A periodic train of delta functions (‘bed of nails’) with period ∆:

s(t,∆) ≡
∞∑

n=−∞
δ(t− n∆)

3. The periodic extension fp(t) of a function f (t) defined using the bed of nails function:

fp(t) = f (t) ∗ s(t,∆) ∗ denotes convolution

4. An aperiodic function f (t) sampled at intervals ∆t:

fs(t) = f (t)× s(t,∆t)

5. The sampled and periodically extended signal:

fps(t) = fp(t)× s(t,∆t)
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1D Fourier Transform Theorems

Function Fourier transform

1 ⇐⇒ δ(f)
δ(t) ⇐⇒ 1

s(t) =

∞∑
n=−∞

δ(t− n∆) ⇐⇒ S̃(f) = ∆−1
∞∑
−∞

δ(f − k/∆) Bed of nails function

y(t) = x(t) ∗ h(t) ⇐⇒ X̃(f)H̃(f) Convolution

Cx(τ) ≡
∫
dt x∗(t)x(t+ τ) ⇐⇒ |X̃(f)|2 Correlation

x(t− t0) ⇐⇒ e−iωt0X̃(f) Shift theorem

e+i2πf0tx(t) ⇐⇒ X̃(f − f0) Shift theorem

x(at) ⇐⇒ a−1X̃(f/a) Scaling theorem

X̃(t) ⇐⇒ x(−f) duality theorem
x∗(t) ⇐⇒ X̃∗(−f) Conjugation
x∗(t) = x(t) ⇐⇒ X̃∗(−f) = X̃(f) Hermiticity∫∞
−∞ dt |x(t)|2 =

∫∞
−∞ df |X̃(f)|2 Parseval’s theorem

dx

dt
⇐⇒ 2πifX̃(f) Derivative theorem∫

dt′X(t′) ⇐⇒ (2πif)−1X̃(f) Integration theorem

x(t) = Sampling theorem∑
m

xm
sin 2π∆f(t−mδt)

2π∆f(t−mδt)
⇐⇒

∑
m

xme
−2πimfδtΠ

(
f

2∆f

)
Bandlimited ∆f = half BW.

Π(x) = rectangle function

xp(t) = x(t) ∗ s(t) ⇐⇒ X̃(f)S̃(f) Periodic in time

xp(t) =
∑
k

ake
2πikt/∆ ⇐⇒ ∆−1

∑
k

X̃(k/∆)δ(f − k/∆) Fourier series

where ak ≡ ∆−1X̃(k/∆) 19
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Points

1. You can bootstrap from a few basic FT pairs by using the FT theorems

2. Narrow functions in one domain are wide in another (Uncertainty Principle, related to the scaling
theorem).

3. Functions with sharp edges in one domain are oscillatory in the other (Gibbs phenomenon)

4. Derivative theorem:

f (t) ⇐⇒ F̃ (f )
df

dt
⇐⇒ 2πifF̃ (f ). (10)

5. Integration theorem:

f (t) ⇐⇒ F̃ (f )∫
t

dt′f (t′ ⇐⇒ (2πif )−1 F̃ (f ). (11)

6. Consider a noisy signal, like white noise (which has a constant average FTbut a realization of
white noise is noisy in both domains). Differentiation of the noise increases the high-frequency
components and thus increases the noise relative to any signal.

7. Integration of the noise reduces the high frequency components. “Smoothing” (low-pass filtering)
of data is closely related to integration and in fact reduces high-frequency components.
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Gaussian Functions
Why useful and extraordinary?

1. We have the fundamental FT pair:

e−πt
2 ⇐⇒ e−πf

2

This can be obtained using the FT definition and by completing the square. Once you know this FT
pair, many situations can be analyzed without doing a single integral.

2. The Gaussian is one of the few functions whose shape is the same in both domains.

3. The width in the time domain (FWHM = full width at half maximum) is

∆t =
2
√

ln 2√
π

= 0.94

4. The width in the frequency domain ∆ν is the same.

5. Then

∆t∆ν =
4ln 2

π
= 0.88 ∼ 1.

6. Now consider a scaled version of the Gaussian function: Let t → t/T . The scaling theorem then
says that

e−π(t/T )
2 ⇐⇒ Te−π(fT )

2
.

The time-bandwidth product is the same as before since the scale factor T cancels. After all, ∆t∆ν

is dimensionless!
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7. The Gaussian function has the smallest time-bandwidth product (minimum uncertainty wave packet
in QM)

8. Central Limit Theorem: A quantity that is the sum of a large number of statistically independent
quantities has a probability density function (PDF) that is a Gaussian function. We will state this
theorem more precisely when we consider probability definitions.

9. Information: The Gaussian function, as a PDF, has maximum entropy compared to any other PDF.
This plays a role in development of so-called maximum entropy estimators.
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Chirped Signals
Consider the chirped signal eiωt with ω = ω0 + αt, (a linear sweep in frequency).
We write the signal as:

v(t) = eiωt = ei(ω0t+αt
2).

The name derives from the sound that a swept audio signal would make.
1. Usage or occurrence:

(a) wave propagation through dispersive media
(b) objects that spiral in to an orbital companion, producing chirped gravitational waves
(c) swept frequency spectrometers, radar systems
(d) dedispersion applications (pulsar science)

2. We can use the convolution theorem to write

Ṽ (f ) = FT
{
ei(ω0t+αt

2)
}

= FT
{
eiω0t

}
∗ FT

{
ei(αt

2)
}

= δ(f − f0) ∗ FT
{
ei(αt

2)
}
.

3. The FT pair for a Gaussian function would suggest that the following is true:

e−iπt
2 ⇐⇒ e−iπf

2
.

4. Demonstrate that this is true!
5. Within constants and scale factor, the FT of the chirped signal is therefore

Ṽ (f ) ∝ ei(π(f−f0)
2)
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Three Classes of Fourier Transform

Fourier Transform (FT): applies to continuous, aperiodic functions:

f (t) =

∫ ∞
−∞

df e2πiftF̃ (f )

F̃ (f ) =

∫ ∞
−∞

dt e−2πiftf (t)

Basis functions e2πift are orthornomal on[−∞,∞]∫ ∞
∞

dt e2πifte−2πift = δ(t)

Fourier Series: applies to continuous, periodic functions with period P :

f (t) =

∞∑
n=0

e2πi(n/P )tF̃n

F̃n =
1

P

∫ P

0

dt e−2πi(n/P )tf (t)

f (t) periodic with period P, orthonormal on [0, P ]∫ P

0

dt e2πi(n/P )te−2πi(n
′/P )t = δn,n′

25



Discrete Fourier Transform (DFT): applies to discrete time and discrete frequency functions:

fk =

∞∑
n=0

e2πink/N F̃n

F̃n =
1

N

N−1∑
k=0

e−2πink/Nfk

fk, F̃n periodic with period N, orthonormal on [0, N ]

N−1∑
n=0

e2πink/Ne−2πink
′
= δk,k′

The Fourier transform is the most general because the other two can be derived from it. The DFT is not
“just” a sampled version of the FT. Nontrivial consequences take place upon digitization, as we shall
see.
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2
Fourier Series and Fourier Transform

2.1 INTRODUCTION

Fourier series is used to get frequency spectrum of a time-domain signal, when signal is a periodic function of
time. We have seen that the sum of two sinusoids is periodic provided their frequencies are integer multiple
of a fundamental frequency,w0.

2.2 TRIGONOMETRIC FOURIER SERIES

Consider a signalx(t), a sum of sine and cosine function whose frequencies are integral multiple ofw0

x(t) = a0 +a1cos(w0t)+a2cos(2w0t)+ · · ·
b1sin(w0t)+b2sin(2w0t)+ · · ·

x(t) = a0 +
∞

∑
n=1

(an cos(nw0t)+bn sin(nw0t)) (1)

a0, a1, . . . , b1, b2, . . . are constants andw0 is the fundamental frequency.

Evaluation of Fourier Coefficients
To evaluatea0 we shall integrate both sides of eqn. (1) over one period(t0, t0 + T ) of x(t) at an arbitrary
time t0

t0+T∫

t0

x(t)dt =

t0+T∫

t0

a0dt +
∞

∑
n=1

an

t0+T∫

t0

cos(nw0t)dt +
∞

∑
n=1

bn

t0+T∫

t0

sin(nw0t)dt

Since
∫ t0+T

t0
cos(nw0dt) = 0

t0+T∫

t0

sin(nw0dt) = 0

a0 =
1
T

t0+T∫

t0

x(t)dt (2)

To evaluatean andbn, we use the following result:

t0+T∫

t0

cos(nw0t)cos(mw0t)dt =

{
0 m 6= n
T/2 m = n 6= 0

94
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Multiply eqn. (1) by sin(mw0t) and integrate over one period

t0+T∫

t0

x(t)sin(mw0t)dt = a0

t0+T∫

t0

sin(mw0t)dt +
∞

∑
n=1

an

t0+T∫

t0

cos(nw0t)sin(mw0t)dt +

∞

∑
n=1

bn

t0+T∫

t0

sin(mw0t)sin(nw0t)dt

bn =
2
T

t0+T∫

t0

x(t)sin(nw0t)dt (4)

Example 1:

−3 −2 −1

− −1.0

1.0

1 2 30

−

Fig. 2.1 .

T →−1 to 1 T = 2 w0 = π x(t) = t,−1 < t < 1

a0 =
1
2

1∫

−1

t dt =
1
4
(1−1) = 0

an = 0

bn =

1∫

−1

t sin πntdt =

[−t cosπnt
nπ

− cosπnt
nπ

]1

−1

=
−1
nπ

[t cosπnt +cosπnt]1−1 =− 1
nπ

[2cosπ+cosπ−cosπ]

bn =
−2
nπ

cosnπ =
2
π

[−(−1)n

n

]

b1 b2 b3 b4 b5 b6

2
π
−2
2π

2
3π

−2
4π

2
5π

−2· · ·
6π

x(t) =
∞

∑
n=1

2
π

[−(−1)n

n

]

sin nπt

=
2
π

[

sin πt− 1
2

sin 2πt +
1
3

sin 3πt− 1
4

sin 4πt + · · ·
]
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Example 2:

−2π

 1.0

2π 4π 6π0 t

Fig. 2.2 .

x(t) =
t

2π
T = 2π w0 =

2π
T

= 1

a0 =
1
T

2π∫

0

x(t)dt =
1

4π2

[
1
2

t2
]2π

0
=

1
2

an =
2

4π2

2π∫

0

t cosntdt =
1

2π2

[
t sin t

n
+

sin nt
n

]2π

0

=
1

2π2

[
2πsin 2nπ

n
+

sin 2nπ
n

]

= 0

bn =
2

4π2

2π∫

0

t sin ntdt =
−1
2π2

[ t cosnt
n

+
cosnt

n

]2π

0

=
−1
2π2

[
2πcos 2nπ

n
+

cos 2nπ
n

− 1
n

]

bn =
−1
nπ

x(t) =
1
2

+
∞

∑
n=1

(−1
nπ

)

sin nt =
1
2

+
1
π

∞

∑
n=1

1
n

cos(nt +π/2)

=
1
2
− 1

π

[

sin t +
sin 2t

2
+

sin 3t
3

+ · · ·
]

Example 3:

−T/2 −T/4 T/4

A x(t)

tT/2

Fig. 2.3 . Rectangular waveform
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Figure shows a periodic rectangular waveform which is symmetrical to the vertical axis. Obtain its F.S.
representation.

x(t) = a0 +
∞

∑
n=1

(an cosnw0t +bn sin nw0t)

x(t) = a0 +
∞

∑
n=1

an cos(nw0t) bn = 0

x(t) = 0 for
−T
2

< t <
−T
4

+A for
−T
4

< t <
T
4

0 for
T
4

< t <
T
2

a0 =
1
T

T/4∫

−T/4

Adt =
A
2

an =
2
T

T/4∫

−T/4

Acos(nw0t)dt =
2A

T nw0

[

sin nw0
T
4

+sin nw0
T
4

]

an =
4A
2πn

sin
(nπ

2

)

=
2A
πn

sin
(nπ

2

)

w0 =
2π
T

a1 =
4A
2π

=
2A
π

a2 = 0

a3 =
2A
3π

sin
3π
2

=
2A
3π

(−1) =
−2A
3π

x(t) =
A
2

+
2A
π

(

cosw0t− 1
3

cos 3w0t +
1
5

cos 5w0t + · · ·
)

Example 4: Find the trigonometric Fourier series for the periodic signal x(t).

1.0

0 1−1−3−5−7−9

x(t)

3 5 7 9 11 t

T

Fig. 2.4 .
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SOLUTION :

bn = 0 x(t) =

{

1 −1 < t < 1

−1 1< t < 3

a0 =
1
T

3∫

−1

x(t)dt =
1
T





1∫

−1

dt +

3∫

t

(−1)dt



 T = 4

=
1
T

[2−2] = 0 ∴ w0 =
2π
T

=
2π
4

=
π
2

an =
2
T





1∫

−1

cos(nw0t)dt +

3∫

1

cos(nw0t)dt





=
2

2πn

{[

2sin
πn
2

]

−
[

sin
3nπ
2
−sin

nπ
2

]}

=
1

nπ

[

3sin
nπ
2
−sin

3nπ
2

]

sin
3nπ
2

= sin
(

π+
nπ
2

)

=−sin
nπ
2

an =
4

nπ
sin
(nπ

2

)

an =







0 n = even
4

nπ
n = 1,5,9,13

−4
nπ

n = 3,7,11,15

x(t) =
4
π

cos
(π

2
t
)

− 4
3π

cos

(
3π
2

t

)

+
4
5π

cos

(
5π
2

t

)

− 4
7π

cos

(
7π
2

t

)

+ · · ·

x(t) =
4
π

[

cos
(π

2
t
)

− 1
3

cos

(
3π
2

t

)

+
1
5

cos

(
5π
2

t

)

· · ·
]

Example 5: Find the F.S.C. for the continuous-time periodic signal

x(t) = 1.5 0≤ t < 1

=−1.5 1≤ t < 2

with fundamental freq.w0 = π

−1.5

1.5

0 1

x(t)

32 54

Fig. 2.5 .
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SOLUTION :

T =
2π
w0

= 2, w0 = π

a0 = an = 0

bn =

1∫

0

1.5sinnπtdt−
2∫

1

1.5sinnπtdt

=
1.5
nπ

{

[−cosnπ+1]+ [cos2nπ−cosnπ]
}

bn =
3

nπ
[1−cosnπ]

x(t) =
3
π

[

2sinπt +
2
3

sin3πt +
2
5

sin5πt + · · ·
]

6
π

[

sinπt +
1
3

sin3πt +
1
5

sin5πt + · · ·
]

C0 =
1
2





1∫

0

1.5dt−1.5

2∫

1

dt



= 0

OR

By using complex exponential Fourier series

Cn =
1
2





1∫

0

1.5e− jnπtdt−1.5

2∫

1

e− jnπtdt





Cn =
3

−4 jnπ




e− jnπt

∣
∣
∣
∣
∣
∣

1
−e− jnπt

0

∣
∣
∣
∣
∣
∣

2

1






=
−3

4 jnπ
[
e− jnπ−1− e− j2nπ + e− jnπ]

=
3

2 jnπ
[
1− e− jnπ]=

3
2 jnπ

[1−cosnπ]

x(t) =
∞

∑
n=−∞

Cne− jnπt

∞

∑
n=−∞

3
2 jnπ

[
1− e− jnπ]e jnπt

=
∞

∑
n=−∞

3
2 jnπ

[
e jnπt − e jnπt cosπn

]
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for n = 1

=
A
2π

π∫

0

sin t sin tdt =
A
2π

π∫

0

(1−cos2t)dt

=
A
2π

[π] =
A
2

Whenn is even

=
A
2π

[
2

n+1
− 2

1−n

]

=
2A

π(1−n2)

Example 7:

−2−3 −1

−2

 2

1 2

T

30

x(t)

a

b

t

Fig. 2.7 .
SOLUTION :

T = 2 w0 =
2π
T

= π

x(t) =

{
2t −1 < t < 1
0

Point (a)(−1,−2)

Point (b)(1,2)

y− (−2) =
2− (−2)

1− (−1)
(x− (−1))

y+2 =
4
2
(x+1)

y+2 = 2x+2

y = 2x

x(t) = 2t

Since function is an odd function

an = 0, a0 =
1
T

1∫

−1

2tdt =
1
2
×0 = 0

bn =
2
T

1∫

−1

t sin(nπt)dt =
2
T




−t cosnπt

nπ

∣
∣
∣
∣
∣

1

−1

+
1

n2π2 cosnπt

∣
∣
∣
∣
∣

1

−1




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2.3 CONVERGENCE OF FOURIER SERIES – DIRICHLET CONDITIONS

Existence of Fourier Series: The conditions under which a periodic signal can be represented by an F.S.
are known as Dirichlet conditions. F.P.→ Fundamental Period

(1) The functionx(t) has only a finite number of maxima and minima, if any within theF.P.
(2) The functionx(t) has only a finite number of discontinuities, if any within theF.P.
(3) The functionx(t) is absolutely integrable over one period, that is

T∫

0

∣
∣x(t)

∣
∣dt < ∞

2.4 PROPERTIES OF CONTINUOUS FOURIER SERIES

(1) Linearity: If x1(t) andx2(t) are two periodic signals with periodT with F.S.C.Cn andDn then F.C. of
linear combination ofx1(t) andx2(t) are given by

FS[Ax1(t)+Bx2(t)] = ACn +BDn

Proof: If z(t) = Ax1(t)+Bx2(t)

an =
1
T

t0+T∫

t0

[Ax1(t)+Bx2(t)]e
− jnw0t =

A
T

∫

T

x1(t)e
− jnw0tdt +

B
T

∫

T

x2(t)e
− jnw0tdt

an = ACn +BDn

(2) Time shifting: If the F.S.C. ofx(t) areCn then the F.C. of the shifted signalx(t− t0) are

FS[x(t− t0)] = e− jnw0 t0Cn

Let t− t0 = τ

dt = dτ

Bn =
1
T

∫

T

x(t− t0)e
− jnw0tdt

=
1
T

∫

T

x(τ)e− jnw0(t0+τ)dτ =
1
T

∫

T

x(τ)e− jnw0τdτ · e− jnw0t0

Bn = e− jnw
0

t
0 ·Cn

(3) Time reversal: FS[x(−t)] = C−n

Bn =
1
T

∫

T

x(−t)e− jnw0tdt =
1
T

∫

T

x(−t)e− j(−n)w0T dt

−t = τ

dt =−dτ

=
1
T

∫

−T

x(τ)e− j(−n)w0τdτ = C−n
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Example 8: Compute the exponential series of the following signal.

−5 −4 −3 −2 −1 0 1

T

1.0

2.0

x(t)

2 3 4 5 6 t

Fig. 2.8 .

SOLUTION :

T = 4 w0 =
π
2

C0 =
1
T

T∫

0

x(t)dt =
1
4





1∫

0

2dt +

2∫

1

dt



=
3
4

Cn =
1
4





1∫

0

2e
− jn

πt
2 dt +

2∫

1

e− jn πt
2 dt





=
1
4







−4
jnπ



e
− jn

π
2 −1



− 2
jnπ

[

e− jnπ− e− jn π
2

]







=
−1

2 jnπ



2e
− jnπ

2 −2+ e− jnπ− e
− jn

π
2



=
−1

2 jnπ



e
− jn

π
2 + e

− jn
π
2 −2





=− 1
jnπ

[

1− 1
2
(−1)n− 1

2
e− jn π

2

]

x(t) =
3
4

+
∞

∑
n=−∞

1
jnπ

[

e jn π
2 − 1

2
(−1)ne jn π

2 − 1
2

]

Example 9:

−2 −1

a b

0 1

1.0

x(t)

2 3 4 5

↓ ↓

6 7 t

Fig. 2.9 .
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SOLUTION :

T = 5 w0 =
2π
5

x(t) =







t +2 −2 < t <−1
1.0 −1 < t < 1
2− t 1 < t < 2

(a) (−2,0)(−1,1)

(y−1) =
−1
−1

(x+1)

y = t +2

(b) (1,1)(2,0)

y−0 =
1
−1

(x−2)

y =−x+2 =−t +2

C0 =
1
5





−1∫

−2

(t +2)dt +

1∫

−1

dt +

2∫

1

(2− t)dt





C0 =
3
5

Cn =
1
5










−1∫

−2

(t +2)e− j 2nπ
5 dt

︸ ︷︷ ︸

A

+

1∫

−1

e− j 2nπ
5 dt

︸ ︷︷ ︸

B

+

2∫

1

(2− t)e− j 2nπ
5 dt

︸ ︷︷ ︸

C










A =

−1∫

−2

e− j 2nπ
5 tdt +

−1∫

−2

2e− j 2nπ
5 tdt

A =− 1
jφ






te− jφ

−1∫

−2






+

1
φ2 e− jφ

−1∫

−2

+
2
− jφ

e j 2nπ
5

−1∫

−2

=
5

j 2nπ

(

−e j 2nπ
5 +2e j 4nπ

5

)

+
25

4n2π2

(

e j 2nπ
5 − e j 4nπ

5

)

− 10
2nπ j

A =
5

j2nπ

(

−e j 2nπ
5 +4e j 4nπ

5

)

+
25

4n2π2

(

e j 2nπ
5 − e j 4nπ

5

)

B =
e j 2nπ

5 − e− j 2nπ
5

j 2nπ
5

=
5

j 2nπ

(

e j 2nπ
5 − e− j 2nπ

5

)

C =
−10
j 2nπ

(

e− j 4nπ
5 − e− j 2nπ

5

)

+
10

j 2nπ
e− j 4nπ

5 − 5
j 2nπ

e− j 2nπ
5 − 25

4n2π2 e− j 4nπ
5 +

25
4n2π2 e j n2π

5
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Cn =
1
5

[
25

n24π2

(

e
j2nπ

5 − e
j4nπ

5

)

− 25
4n2π2

(

e−
j4nπ

5 − e−
j2nπ

5

)]

Cn =
5

2n2π2

[

cos

(
2πn
5

)

−cos

(
4πn
5

)]

Example 10: For the continuous-time periodic signal

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

Determine the fundamental frequencyw0 and the Fourier series coefficientsCn such that

x(t) =
∞

∑
n=−∞

Cne jnw0t

SOLUTION :
Given

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

The time period of the signal cos
(

2π
3 t
)

is

T1 =
2π
w1

=
2π
2π

3
= 3sec

The time period of the signal sin
(
5π

2t
)

is

T2 = 2
π

w2
=

2π
5π

3
=

6
5

sec

T1

T2
=

3
6
5

=
5
2

ratio of two integers, rational number, hence periodic.

2T1 = 5T2

The fundamental period of the signalx(t) is

T = 2T1 = 5T2 = 6sec

and the fundamental frequency is

w0 =
2π
T

=
2π
6

=
π
3

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

= 2+cos(2w0t)+4sin(5w0t)

= 2+

(
e j2w0t + e− j2w0t

)

2
+

4
(
e j5w0t − e− j5w0t

)

2 j

= 2+0.5
(
e j2w0t + e− j2w0t)−2 j

(

e j5w0t − e− j5w0t
)

x(t) = 2 je+ j(−5)w0t +0.5e+ j(−2)w0t +2+0.5e+ j2w0t −2 je+ j5w0t
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an =
2
T

π∫

−π

x(t)cosntdt =
4
T

0∫

−π

(
2t
π

+1

)

cosnt dt

=
4
2π







2t
nπ

sint +
sinnt

n
−

0∫

−π

2
π

sinnt dt







=
1
π







2t
π

sinnt +sinnt +
2

n2π
cosnt

0∫

−π







=
2
π

{

2
n2π

+
2

n2π
cosnt

}

=
4

n2π2

{

1−cosnπ
}

=
4

n2π2 (1− (−1)n)

an =

{

0 n even 2, 4, 6, 8, · · ·
8

n2π2 n odd 1, 3, 5, 7, · · ·

2.5 FOURIER TRANSFORM

2.5.1 Definition
Let x(t) be a signal which is a function of timet. The Fourier transform ofx(t) is given as

X ( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

Fourier transform or

X (i f ) =

∞∫

−∞

x(t)e− j2π f tdt (2)

Sincew = 2π f
Similarly, x(t) can be recovered from its Fourier transformX( jw) by using Inverse Fourier transform

x(t) =
1
2π

∞∫

−∞

X( jw)e jwtdw (3)

x(t) =

∞∫

−∞

X(i f )e j2π f tdt (4)

Fourier transformX( jw) is the complex function of frequencyw. Therefore, it can be expressed in the
complex exponential form as follows:

X( jw) = |X( jw)|e j |X( jw)

Here|X( jw)| is the amplitude spectrum ofx(t) and |X( jw) is phase spectrum.

For a real-valued signal

(1) Amplitude spectrum is symmetric about vertical axisc (even function.)

(2) Phase spectrum is anti-symmetrical about vertical axisc (odd function.)
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2.5.2 Existence of Fourier transform (Dirichlet’s conditi on)

The following conditions should be satisfied by the signal toobtain its F.T.

(1) The functionx(t) should be single valued in any finite time intervalT .

(2) The functionx(t) should have at the most finite number of discontinuities in any finite time intervalT .

(3) The functionx(t) should have finite number of maxima and minima in any finite time intervalT .

(4) The functionx(t) should be absolutely integrable, i.e.
∞∫

−∞

|x(t)|dt < ∞

• These conditions are sufficient, but not necessary for the signal to be Fourier transformable.

• A physically realizable signal is always Fourier transformable. Thus, physical realizability is the
sufficient condition for the existence of F.T.

• All energy signals are Fourier transformable.

j
d

dw
X( jw) = FT (tx(t))

FT (tx(t)) = j
d

dw
X( jw)

Example 12: Obtain the F.T. of the signale−atu(t) and plot its magnitude and phase spectrum.

SOLUTION :
x(t) = e−atu(t)

X( f ) =

∞∫

−∞

x(t)e− j2π f tdt =

∞∫

0

e−(a+ j2π f )tdt

X( f ) =
1

a+ j 2π f

To obtain the magnitude and phase spectrum:

|X( f )|= a− j 2π f
a2 +(2π f )2 =

(
a

a2 +4π2 f 2

)

A− j

(
2π f

a2 +4π2 f 2

)

B

|X( f )|=
√

A2 +B2 =
1

√

a2 +4π2 f 2
=

1√
a2 +w2

|X( f )|= tan−1
[−2π f

a

]

=− tan−1
(w

a

)

for a = 1, |X( f )|= 1√
1+w2

,
|X( f )

=− tan−1 w

w 0 1 2 3 4 5 10 15 25 8

|X(w)| 1 .707 0.447 0.316 0.242 0.196 0.09 0.066 0.03 0

|X(w) 0 45◦ −63.4 −71.5 −75.9 −78.6 −84.2 −86.2 −87.7 −90◦
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(ii) x(t) = e−a|t| =

{
e−at t > 0
eat t > 0

e−a|t|

t

Fig. 2.13 . Graphical representation ofe−a|t|

x(w) =
1

a+ jw
+

1
a− jw

=
2a

a2 +w2

for a = 1 X(w) =
2

1+w2

|X(w)|= 2
1+w2

|X(w)
= 0

w (in radians) −∞ −10 −5 −3 −2 −1 0 1 2 3 4 5 10 ∞

|X(w)| 0 0.019 0.0769 0.2 0.4 1 2 1 0.4 0.2 .1176 0.0769 0.019 0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

2.0

0 2−2 1−1 3 4 5 . . . .. . . . 10−10 −3−4−5 w

|X(w)|

Fig. 2.14 . Magnitude plot

(iii) x(t) = e−a|t| sgn(t)

t

1.0

x(t) = e−a |t| sgn(t)

−1.0

Fig. 2.15 . Graphical representation ofe−a|t|sgn(t)
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(ii) x(t) = 1

X(w) =

∞∫

−∞

e− jwtdt = ∞

This means Dirichlet condition is not satisfied. But its F.T.can be calculated with the help of duality
property.

δ(t)
FT←→ 1

Duality property states that:x(t)
FT←→ X(w) then

X(t)
FT←→ 2πx(−w)

HereX(t) = 1, then x(−w) will be
x(t) = δ(t); X(w) = 1

thenX(t) = 1; 1
FT←→ 2πδ(−w)

We know thatδ(w) will be an even function ofw, since it is impulse function.
Hence,δ(−w) = δ(w). Then above equation becomes

1
FT←→ 2πδ(−w)

Thus, ifx(t) = 1, thenX(w) = 2πδ(w)

(iii) x(t) = sgn(t) sgn(t) =

{
1 t > 0
−1 t < 0

}

t

1

sgn(t)

−1

0

Fig. 2.17 . Graphical representation of sgn(t)

x(t) = 2u(t)−1

Differentiating both the sides
d
dt

x(t) = 2
d
dt

u(t) = 2δ(t)

Taking the F.T. of both sides

F

[
d
dt

x(t)

]

= 2F [δ(t)]

jwX(w) = 2

X(w) =
2
jw

X(w) =

∞∫

0

e− jwtdt−
0∫

−∞

e− jwtdt
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(iv) x(t) = u(t)

sgn(t) = 2u(t)−1

2u(t) = 1+sgn(t)

Taking F.T. of both sides

2F [2u(t)] = F(1)+F[sgn(t)] = 2πδ(w)+
2
jw

2u(t)
FT←→ 2πδ(w)+

2
jw

u(t)
FT←→ πδ(w)+

1
jw

Properties of unit impulse:

(1)

∞∫

−∞

x(t)δ(t) = x(0)

(2) x(t)δ(t− t0) = x(t0)δ(t− t0)

(3)

∞∫

−∞

x(t)δ(t− t0)dt = x(t0)

(4) δ(at) = 1
|a|δ(t)

(5)

∞∫

−∞

x(τ)δ(t− x)dt = x(t)

(6) δ(t) = d
dt u(t)

Example 15: Obtain the F.T. of a rectangular pulse shown in Fig. 2.18.

t0

x(t)

−T/2

1

T/2

Fig. 2.18 . Rectangular pulse

SOLUTION :

X(w) =

T
2∫

−T
2

e− jwtdt =
−1
jw

[

e− jw T
2 − e jw T

2

]

=
2
w

sin

(
wT
2

)

X(w) = T
sin
(
π wT

2π
)

π wT
2π

= sinc

(
wT
2π

)

= T
sin
(
π wT

2π
)

π wT
2π
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Sampling function or interpolating function or filtering function denoted bySa(x) or sinc(x) as shown in
figure.

sinc(x) =
sinπx

πx

(1) sinc(x) = 0 whenx =±nπ
(2) sinc(x) = 1 whenx = 0 (using L’Hospital’s rule)
(3) sinc(x) is the product of an oscillating signal sinx of period 2π and a decreasing signal1

x . Therefore,
sinc(x) is making sinusoidal of oscillations of period 2π with amplified decreasing continuously as1

x .

1.0

sin c(x)

0 2π−2π−3π−4π π−π 4π3π 5π x

Fig. 2.19 . Sine function

sincx =
sinπx

πx
; sinc(0) =

0
0

= 1 L’Hospital rule

sinc(1) =
sinπ

π
= 0; sinc(−1) = 0

sinc(2) = 0; sinc(−2) = 0

sinc(1/4) = 0.9 sinc(−1/4) = 0.9

sinc(2/4) = .6366 sinc(−0.5) = .6366

sinc(3/4) = 0.3 sinc(−7.5) = .3

sinc(1.5) =−.2122 sinc(−1.5) =−.2122

sinc(2.5) = .1273 sinc(2.5) = .1273

.1

.2

.3

.4

.5

.6

.7

.8

.9

0 .5 1 2 2.5 3 3.5.25 1.5.75−3 −2 −1 −.75 −.5 −.25−3.5 −1.5−2.5 t

Fig. 2.20 . Sine function
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Example 17: Obtain F.T. and spectrums of following signals:
(i) x(t) = cosw0t (ii) x(t) = sinw0t

SOLUTION :

(i) x(t) = cosw0t =
1
2

e jw0t +
1
2

e− jw0t

1
FT←→ 2πδ(w);

1
2

FT←→ πδ(w)

Frequency shifting property states thate jβtx(t)
FT←→ X(w−β)

1
2

e jw0t FT←→ πδ(w−w0)

1
2

e− jw0t FT←→ πδ(w+w0)

F [x(t)] = FT

{
1
2

e jw0t +
1
2

e− jw0t
}

X(w) = π [δ(w−w0)+δ(w+w0)]

| X(w) |

−w0 w0 w

π

Fig. 2.22 . Magnitude plot of cosw0t

(ii) x(t) = sinw0t

X(w) =
π
j
[δ(w−w0)−δ(w+w0)]

| X(w) |

−ω0

w0 w

π

π

Fig. 2.23 . Magnitude plot of sinw0t
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Example 18: Obtain the F.T. of

x(t) = te−atu(t)

from property of Fourier transform FT[tx(t)] = j d
dw X(w)

FT
[
e−at]=

1
a+ jw

FT(te−at) = j
d

dw

(
1

a+ jw

)

= j
(a+ jw) d

dw(1)−1 d
dw (a+ jw)

(a+ jw)2 =
1

(a+ jw)2

Inverse Fourier Transform: (IFT)

Example 19: Find the IFT of

(i) X(w) = 2 jw+1
( jw+2)2 by partial fraction expansions

(ii) X(w) = 1
(a+ jw)2 by convolution property

(iii) X(w) = e−|w|

(iv) X(w) = e−2wu(w)

SOLUTION :

(i) X(w) =
A

jw+2
+

B
( jw+2)2 ; 2 jw+1 = A( jw+2)+B A = 2 2A+B = 1 B =−3

X(w) =
2

jw+2
− 3

( jw+2)2

x(t) = 2e−2tu(t)−3te−2tu(t)

(ii) X(w) =
1

(a+ jw)2 =
1

(a+ jw)(a+ jw)
= X1(w)X2(w)

X1(w) =
1

a+ jw
, X2(w) =

1
a+ jw

x1(t) = e−atu(t), x2(t) = e−atu(t)

Using convolution property

x(t) = x1(t)
∗x2(t)

x(t)
FT←→ X(w)

x1(t)
∗x2(t)

FT←→ X1(w)X2(w)

x(t) =

∞∫

−∞

e−atu(t)e−a(t−τ)u(t− τ)dτ

{
u(τ) = 1 τ≤ 0

u(t− τ) = 1 t ≤ τ

=

t∫

0

e−atdτ = te−atu(t)
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Example 20: Find the F.T. of the function

x(t− t0) = e−(t−t0)u(t− t0)

SOLUTION :
If F [x(t)] = X(w)

then FT[x(t− t0)] = e− jwt0X(w)

F
[
e−tu(t)

]
=

1
1+ jw

F
[

e−(t−t0)u(t− t0)
]

=
e− jwt0

1+ jw

Example 21: Find the F.T. of the function

x(t) = [u(t +1)−u(t−1)]cos2πt

SOLUTION :

FT(cos2πt) = FT

(
e j2πt + e− j2πt

2

)

FT[1] = 2πδ(w)

FT[e jw0t ] = 2πδ(w−w0)

F [cos2πt] = πδ(1w−2π)+πδ(w+2π) (1)

F [u(t +1)−u(t−1)] =

1∫

−1

e− jwtdt =− 1
jw

(
e− jw− e jw)=

2sinw
w

(2)

F [x(t)] = F [{u(t +1)−u(t−1)}cos2πt]

x(t) is multiplication of (1) and (2), so by using multiplicationproperty

x(t)y(t)
FT←→ 1

2π
X1(w)∗Y1(w) =

1
2π

∞∫

−∞

X(τ)Y (w− τ)dτ

X(w) =
1
2π





∞∫

−∞

2sinτ
τ

πδ(w−2π− τ)+δ(w+2π− τ)



dτ

X(w) =

∞∫

−∞

sinτ
τ

δ(w−2π− τ)dτ+

∞∫

−∞

sinτ
τ

δ(w+2π− τ)dτ

Since

∞∫

−∞

x(t)δ(t− t0)dt = x(t0)

X(w) = sin(w−2π)/(w−2π)+sin(w+2π)/(w+2π)
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Example 22: Determine the Fourier transform of a triangular function asshown in figure.

x(t)

T

A

−T t

Fig. 2.24 . Triangular pulse

SOLUTION :

x(t)

(T,0)

(0, A)

(−T,0) t

a b→ →

Equation of line(a) is

x(t) = A
( t

T
+1
)

Equation of line(b) is

x(t) = A
(

1− t
T

)

Mathematically, we can writex(t) as

x(t) = A
( t

T
+1
)

[u(t +T )−u(t)]+A
(

1− t
T

)

[u(t)−u(t−T )]

x(t) =
A
T

(t +T )[u(t +T )−u(t)]+
A
T

(T − t)[u(t)−u(t−T )]

x(t) =
A
T

{

(t +T )u(t +T )− (t +T )u(t)
}

+
A
T

{

[(T − t)u(t)− (T − t)u(t−T )]
}

x(t) =
A
T

{

r(t +T )− tu(t)−Tu(t)
}

+
A
T

{

Tu(t)− tu(t)+ r(t−T )
}

=
A
T

{

r(t +T )− r(t)−Tu(t)
}

+
A
T

{

Tu(t)− r(t)+ r(t−T )
}

=
A
T

[{

r(t +T )−2r(t)+ r(t−T )
}]

X( jw) =
A
T

[
e jwT

( jw)2 −
2

( jw)2 +
e− jwT

( jw)2

]
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Π(t) = rect(t) =

{
1 −1

2 < t < 1
2

0 otherwise

rect(t−5) =

{
1 −1

2 ≤ t−5 < 1
2

0 otherwise

rect(t−5) =

{
1 9

2 ≤ t ≤ 11
2

0 otherwise

X( jw) =

∞∫

−∞

x(t)e− jwtdt =

∞∫

−∞

rect(t−5)e− jwtdt

=

11/2∫

9/2

e− jwtdt =
e− jwt

− jw

∣
∣
∣
∣

11/2

9/2

=
e−

j11w
2 − e−

9 jw
2

− jw
=

e−9 j w
2−e−11j w

2

jw

=
e−5 jwe jw/2− e−5 jwe− jw/2

jw
=

2e−5 jw
(
e jw/2− e− jw/2

)

w2 j

=
2e−5 jw

w
sin

w
2

= e−5 jw
(

sin w
2

w
2

)

X( jw) = e−5 jwSa

(w
2

)

2.6 PROPERTIES OF CONTINUOUS-TIME FOURIER TRANSFORM

(1) Linearity
If FT (x1(t)) = X1( jw)

and FT(x2(t)) = X2( jw)

Then linearity property states that

FT(Ax1(t)+Bx2(t)) = AX1( jw)+BX2( jw)

whereA andB are constants.

Proof:

Let r(t) = Ax1(t)+Bx2(t)

FT(r(t)) = R( jw) =

∞∫

−∞

r(t)e− jwtdt

=

∞∫

−∞

(Ax1(t)+Bx2(t))e− jwtdt
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=

∞∫

−∞

x(τ)e− j(−w)τdτ

F(x(t)) = X(− jw)

(4) Time shifting

If FT (x(t)) = X( jw)

then FT(x(t− t0)) = e− jwt0X( jw)

Proof:

Let r(t) = x(t− t0)

R( jw) =

∞∫

−∞

r(t)e− jwtdt =

∞∫

−∞

x(t− t0)e
− jwtdt

R( jw) = FT(x(t− t0)) =

∞∫

−∞

x(t− t0)e
− jwtdt

Let t− t0 = τ dt = dτ

FT (x(t− t0)) =

∞∫

−∞

x(τ)e− jw(t0+τ)dτ

=

∞∫

−∞

x(τ)e− jwte− jwt0dτ

= e− jwt0

∞∫

−∞

x(τ)e− jwτdτ

FT (x(t− t0)) = e− jwt0X( jw). Similarly, FT(x(t + t0)) = e jwt0X( jw)

So FT(x(t± t0)) = e± jwt0X( jw)

(5) Frequency shifting

If FT (x(t)) = X( jw)

FT (e jw
0

tx(t)) = X( j(w−w0))

Let r(t) = e jw
0

tx(t)

FT (r(t)) = FT
(
e jw0tx(t)

)
= R( jw) =

∞∫

−∞

e jw0tx(t)e− jwtdt

FT
(
e jw0tx(t)

)
=

∞∫

−∞

x(t)e− j(w−w0)tdt
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Let w−w0 = w′

=

∞∫

−∞

x(t)e− jw′tdt

FT
(
e jw0tx(t)

)
= X( jw′) = X( j(w−w0))

Similarly, FT(e− jw0tx(t)) = X( j(w+w0))

We can write as FT
(
e± jw0tx(t)

)
= X( j(w∓w0))

(6) Duality or symmetry property

If FT (x(t)) = X( jw)

then FT(x(t)) = 2πx(− jw)

Proof:

We know thatx(t) = 1
2π
∫ ∞
−∞ X( jw)e jwtdw

Replacingt by−t, we get

x(−t) =
1
2π

∞∫

−∞

X( jw)e− jwtdw

2π x(−t) =
2π
2π

∞∫

−∞

X( jw)e− jwtdw

2π x(−t) =

∞∫

−∞

X( jw)e− jwtdw

Interchangingt by jw

2π x(− jw) =

∞∫

−∞

X(t)e− jwtdt

2π x(− jw) = FT(X(t))

(7) Convolution in time domain

If FT (x1(t)) = X1( jw) and FT(x2(t)) = X2( jw)

then FT(x1(t)∗x2(t)) = X1( jw)X2( jw)

i.e., convolution in time domain becomes multiplication infrequency domain.
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Proof:

r(t) = x1(t)
∗x2(t) =

∞∫

−∞

x1(τ)x2(t− τ)dτ

FT(r(t)) = R( jw) =

∞∫

−∞

r(t)e− jwtdt

=

∞∫

−∞





∞∫

−∞

x1(τ)x2(t− τ)dτ



e− jwtdt

=

∞∫

−∞

∞∫

−∞

x1(τ)x2(t− τ)dτ e− jwtdt

=

∞∫

−∞

x1(τ)dτ
∞∫

−∞

x2(t− τ) e− jwtdt

Let t− τ = ∝ sodt = d ∝

FT[x1(t)
∗x2(t)] =

∞∫

−∞

x1(t)dτ
∞∫

−∞

x2(∝) e− jw(∝+τ)d ∝

=

∞∫

−∞

x1(τ)dτ
∞∫

−∞

x2(∝) e− jw∝ e− jwτd ∝

=

∞∫

−∞

x1(τ) e− jwτdτ
∞∫

−∞

x2(∝) e− jw∝d ∝

FT[x1(t)
∗x2(t)] = X1( jw) X2( jw)

(8a) Integration in time domain
If FT (x(t)) = X( jw)

then FT
(∫ t
−∞ x(τ)dτ

)
= 1

jw × ( jw)

Proof: Let r(t) =
∫ t
−∞ x(τ)dτ

Differentiating w.r.t.t
dr(t)

dt
= x(t)⇒ FT(x(t)) = FT

(
d
dt

r(t)

)

From differentiation in time domain

X( jw) = jwX( jw)

R( jw) =
1
jw

X( jw)

FT(r(t)) = FT





t∫

−∞

x(τ)dτ



=
1
jw

X( jw)
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(8b) Differentiation in time domain
If FT (x(t)) = X( jw)

then
(

d
dt x(t)

)
= jw× ( jw)

Proof: We know thatx(t) =
1
2π

∞∫

−∞

X( jw)e jwtdw. Differentiating both sides w.r.t.t

d
dt

x(t) =
1
2π

∞∫

−∞

X( jw)

(
d
dt

e jwt
)

dw

=
1
2π

∞∫

−∞

jwX( jw)e jwtdw

= j
1
2π

∞∫

−∞

(wX( jw))e jwtdw

d
dt

x(t) = j FT−1(wX( jw))

yields FT
(

d
dt x(t)

)
= jwX( jw). On generalizing we get FT

(
dn

dtn x(t)
)

= ( jw)nX( jw)

(9) Differentiation in frequency domain
If FT (x(t)) = X( jw)

then FT(tx(t)) = j d
dw X( jw)

Proof: We know thatX( jw) =
∫ ∞
−∞ x(t)e− jwtdt

On differentiating both sides w.r.t.w

d
dw

X( jw) =

∞∫

−∞

x(t)

(
d

dw
e− jwt

)

dt =−
∞∫

−∞

j t x(t)e− jwtdt

Multiplying both sides byj

j
d

dw
X( jw) =

∞∫

−∞

(tx(t))e− jwtdt since j2 =−1 or− j2 = 1

j
d

dw
X( jw) = FT[t x(t)]

FT[t x(t)] = j
d

dw
X( jw)

(10) Convolution in frequency domain (multiplication in ti me domain (multiplication theorem))

If FT(x1(t)) = X1( jw) and FT[x2(t)] = X2( jw)

FT(x1(t)x2(t)) =
1
2π

(X1( jw)∗X2( jw))



132 • Basic System Analysis

Proof:

E =

∞∫

−∞

∣
∣
∣x(t)2

∣
∣
∣dt =

∞∫

−∞

∣
∣
∣x(t)x∗(t)dt (1)

We know thatx(t) =
1
2π

∞∫

−∞

X( jw)e+ jwtdw

Sox∗(t) =
1
2π

∞∫

−∞

X( jw)e− jwtdw (2)

on putting (1)

=

∞∫

−∞

x(t)




1
2π

∞∫

−∞

X∗( jw)e− jwtdw



dt

=
1
2π

∞∫

−∞

X∗( jw)

∞∫

−∞

x(t)e− jwtdt dw

=
1
2π

∞∫

−∞

X( jw)X∗( jw)dw

=

∞∫

−∞

∣
∣x(t)2

∣
∣dt =

1
2π

∞∫

−∞

∣
∣X( jw)

∣
∣2dw

Relation between Laplace Transform and Fourier Transform

Fourier transformX( jw) of a signalx(t) is given as

X( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

F.T. can be calculated only ifx(t) is absolutely integrable

=

∞∫

−∞

∣
∣x(t)

∣
∣dt < ∞ (2)

Laplace transformX(s) of a signalx(t) is given as

X(s) =

∞∫

−∞

x(t)e−stdt (3)

We know thats = σ+ jw

X(s) =

∞∫

−∞

x(t)e−(σ+ jw)tdt

X(s) =

∞∫

−∞

[
x(t)e−σt]e− jwtdt (4)
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Comparing (1) and (4), we find that L.T. ofx(t) is basically the F.T. of[x(t)e−σt ].
If s = jw, i.e. σ = 0, then eqn. (4) becomesX(s) =

∫ ∞
−∞ x(t)e− jwtdt = X( jw)

Thus,X(s) = X( jw) whenσ = 0 or s = jw
This means L.T. is same as F.T. whens = jw. The above equation shows that F.T. is special case of L.T.

Thus, L.T. provides broader characterization compared to F.T., s = jw indicates imaginary axis in complex
s-plane.

2.7 APPLICATIONS OF FOURIER TRANSFORM OF NETWORK ANALYSIS

Example 24: Determine the voltageVout(t) to a current source excitationi(t) = e−tu(t) for the circuit shown
in figure.

1Ω Fi(t) ↑

+

Vout(t)
1

2

−

Fig. 2.26 .

SOLUTION :

1Ω Fi(t)

↓ i1(t) ↓ i2(t)

↑

+

Vout(t)
1

2

−

i(t) = i1(t)+ i2(t)

i(t) =
Vout(t)

1
+

1
2

dVout(t)
dt

{

sincei = V
R

andi = c dv
dt or v = 1

c

∫
idt

e−tu(t) = Vout(t)+
1
2

dVout(t)
dt

(1)

On taking thez-transform on both sides

1
1+ jw

= Vout( jw)

{

1+
jw
2

}

=
(2+ jw)

2
Vout( jw)

Vout( jw) =
2

(1+ jw)(2+ jw)
=

A
1+ jw

+
B

2+ jw

Vout( jw) =
2

1+ jw
− 2

2+ jw






A(2+ jw)+B(1+ jw) = 2
2A+B = 2
A+B = 0 s0 A =−B
2A−A = 2; A = 2,B =−2
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V0( jw) =
2

6( jw)2 +7( jw)+1
=

2
(6 jw+1)( jw+1)

V0( jw) =
1/3

( jw+1/6)( jw+1)
=

A
1
6 + jw

+
B

1+ jw

V0( jw) =
2

5
(

1
6 + jw

) − 2
5(1+ jw)

(5)

Taking inverse Fourier transform, we get

V0(t) =
2
5

(

e−t/6− e−t
)

u(t) (6)

Example 26: Determine the response of current in the network shown in Fig. 2.28(a) when a voltage having
the waveform shown in Fig. 2.28(b) is applied to it by using the Fourier transform.

1Ω

∼v(t) 1F

0

v(t)

π wt

(a) (b)

Fig. 2.28 .

SOLUTION :
WaveformV (t) is defined as

V (t) = sint(u(t)−u(t−π)) (1)

1Ω

∼u(t) 1F
i(t)

a

Let i(t) be the current in the loop. Applying KVL in loop

V (t) = 1· i(t)+
1
1

t∫

0

i(t)dt = i(t)+

t∫

0

i(t)dt (2)

On taking Fourier transform of

V ( jw) =
1

( jw)2 +1
+

e− jπw

( jw)2 +1

Since FT
[
sintu(t)

]
=

1
( jw)2 +1

FT
[
sintu(t−π)

]
=

e− jπw

( jw)2 +1
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Solve using F.T. formula

V ( jw) =
1+ e− jπw

( jw)2 +1
(3)

V ( jw) = I( jw)+
1
jw

I( jw)

V ( jw) =

(

1+
1
jw

)

I( jw) =
jw+1

jw
I( jw)

I( jw) =
jw

jw+1
V ( jw) (4)

I( jw) =
jw

jw+1
· (1+ e− jπw)

(( jw)2 +1)
From (3)

I( jw) =
jw

jw+1
·
{

1
( jw)2 +1

+
e− jπw

( jw)2 +1

}

=
jw

( jw+1)
· 1
(( jw)2 +1)

+
jw

( jw+1)
· 1
(( jw)2 +1)

· e− jπw

︸ ︷︷ ︸

I2( jw)I1( jw)

I1( jw) =
A

jw+1
+

B jw+ c
(( jw)2 +1)

=
−1/2

( jw+1)
+

1
2( jw+1)

(( jw)2 +1)

i1(t) =−1
2

e−tu(t)+
1
2

costut +
1
2

sintδt +
1
2

sintu(t)

Since IFT
{

1
( jw)2+1

}

= sintu(t)

so IFT
(

jw
( jw)2+1

)

= d
dt sintu(t)

Using differential in time domain property

IFT

[
jw

( jw)2 +1

]

= costu(t)+sintδ(t)

I2( jw) =
jw

( jw+1)
· 1
(( jw)2 +1)

· e− jπw

I2( jw) = I3( jw) · e− jπw

Since I3 = I1( jw)

so i3(t) =−1
2

e−tu(t)+
1
2

costu(t)+
1
2

sintδ(t)+
1
2

sintu(t)
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From time shifting property FT(x(t± t0)) = e± jwt0× ( jw)

i2(t) = i3(t−π)

=−1
2

e−(t−π)u(t−π)+
1
2

cos(t−π)u(t−π)+
1
2

sin(t−π)δ(t−π)+
1
2

sin(t−π)u(t−π)

so i(t) =
1
2
−
[
−e−t +cost +sint

]
u(t)+

1
2

sintδ(t)+
1
2

[

−e−(t−π) +cos(t−π)+sin(t−π)
]

u(t−π)+

1
2

sin(t−π)δ(t−π)

Example 27: For theRC circuit shown in figure.

R

C

i(t)

x(t) 1 y(t)

Fig. 2.29 .

(a) Determine frequency response of the circuit.

(b) Find impulse response.

(c) Plot the magnitude and phase response forRC = 1.

SOLUTION :
Applying KVL in loop (1)

x(t)−Ri(t)− 1
C

t∫

−∞

i(t)dt = 0

x(t) = Ri(t)+
1
C

t∫

−∞

i(t)dt (1)







Since

VR = iR

Vc = 1
C

∫
i(t)dt

andy(t) =
1
C

t∫

−∞

i(t)dt (2)
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A = B−C

∣
∣H( jw)

∣
∣=

1√
1+w2

(8)

H( jw) = 1− (1+ jw)

= tan−1 0
1
− tan−1 w =− tan−1 w (9)

For different values ofw, we find
∣
∣H( jw)

∣
∣ andH( jw)

S. No w |H( jw)| H( jw)

1− −∞ 0 90◦

2− −50 0.0199 88.9◦

3− −20 0.0499 87.1◦

4− −10 0.099 84.3◦

5− −5 0.196 78.7◦

6− −2 0.447 63.4◦

7− −1 0.707 45◦

8− 0 1 0

9− 1 0.707 −45◦

10− 2 0.447 −63.4◦

11− 5 0.196 −78.7◦

12− 10 0.099 −84.3◦

13− 20 0.0499 −87.1◦

14− 50 0.0199 −88.9◦

15− ∞ 0 −90◦

0 20−20 10

1

−10 30 40 50−30−40−50

| H(jw) |

w

Fig. 2.30 . Magnitude plot frequency response of the circuit
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90°

−90°

−45°

45°

0 20−20 10−10 30 40 50−30−40−50

∠H(jw)

w

Fig. 2.31 . Phase plot

Example 28: For the circuit shown in figure, determine the output voltageV0(t) to a voltage source excitation
Vi(t) = e−tu(t) using Fourier transform

2Ω

+
−

+

−
V0(t)Vin(t) 1H1

Fig. 2.32 .
SOLUTION :

SinceVin(t) = e−tu(t) (1)

Vin( jw) =
1

1+ jw
(2)

Applying KVL in loop (1)

Vin(t) = 2i(t)+1· di(t)
dt

Vin(t) = 2i(t)+
di(t)

dt
(3)

V0(t) = 1· di(t)
dt

V0(t) =
di(t)

dt
(4)
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Q3: (i) State and prove the following properties of Fourier series:
(a) Time shifting property (b) Frequency shifting property
(ii) What are Dirichlet’s conditions?

Q4: Find the fundamental periodT , the fundamental frequencyw0 and the Fourier series coefficientsan of
the following periodic signal;

0.5−0.5−1 t

x(t)

0

1

t

−1

Fig. 2.3 P .

Q5: Obtain the Fourier series component of the periodic square wave signals.

T/2T/4−T/4−T/2

x(t)

1

0 t

−1

Fig. 2.4 P .

Q6: Determine the Fourier transform of the Gate function

T/2−T/2

x(t)

A

t

Fig. 2.5 P .

Q7: Determine the Fourier series representation of the signal

x(t) =

{
t− t2 for −π≤ t ≤ π
0 elsewhere
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Q8: For the continuous-time periodic signal

x(t) = 2+cos[2π t/3]+4sin[5π t/3]

determine the fundamental frequencyw0 and the Fourier series coefficientsCn such that

x(t) =
∞

∑
n=−∞

Cne jnw0t

Q9: Find the Fourier transform of the following signals:

(a) x(t) = δ(t) (b) x(t) = 1 (c) x(t) = sgn(t) (d) x(t) = u(t)

(e) x(t) = exp(−at)u(t) (f) x(t) = cos[w0t]sin [w0t]

Q10: Show that the Fourier transform of rect(t−5) is Sa(w/2)exp( j5w). Sketch the resulting amplitude
and phase spectrum.

Q11: Find the inverse Fourier transform of spectrum shown in figure.

−w0 w0

| X(w) |
1

w
(a)

−w0

w0

∠X(w)

w

π/2

−π/2

(b)

Fig. 2.6 P .

Q12: Find the Fourier transform of the following waveform.

x(t)

0

1

a b t−a−b

Fig. 2.7 P .

Q13: State and prove duality property of CTFT.

Q14: Determine the Fourier transform of the signal
x(t) = {tu(t)∗[u(t)−u(t−1)]}, whereu(t) is unit step function and∗ denotes the convolution operation.

Q15: Show that the frequency response of a CTLTIS isY (w) = H(w)X(w)

whereX(w) = Fourier transform of the signalx(t)

H(w) = Fourier transform of LTIS responseh(t)
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Q16: Find the Fourier transform of the signalx(t) shown in figure below.

A

0 T 2T t

x(t)

Fig. 2.8 P .

Q17: Determine the frequency responseH( jw) and impulse responseh(t) for a stable CTLTIS characterized
by the linear constant coefficient differential equation given as

d2y(t)/dt2 +4dy(t)/dt +3y(t) = dx(t)/dt +2x(t)

Q18: Find the Fourier transform of the signalx(t) shown in figure below.

K

0 T−T t

x(t)

Fig. 2.9 P .

Q19: If g(t) is a complex signal given byg(t) = gr(t) + jgi(t) wheregr(t) and gi(t) are the real and
imaginary parts ofg(t) respectively. IfG( f ) is the Fourier transform ofg(t), express the Fourier transform
of gr(t) andgi(t) in terms ofG( f ).

Q20: Find the coefficients of the complex exponential Fourier series for a half wave rectified sine wave
defined by

x(t) =

{
Asin (w0t), 0≤ t ≤ T0/2
0, T0/2≤ t ≤ T0

with x(t) = x(t +T0)

Q21: (a) Show that the Fourier transform of the convolution of twosignals in the time domain can be given
by the product of the Fourier transform of the individual signals in the frequency domain.

(b) Determine the Fourier transform of the signal

x(t) =
1
2

[

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

δ+

(

t− 1
2

)]
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an =
1− (−1)n

n2π2

bn =
1

nπ

Q3:

0.5−0.5 1−1 t

x(t)

0

1

−1

T = 1

w0 = 2π rad/sec

y− y1 =
y2− y1

x2− x1
(x− x1)

x(t) =−2t +1

an =
2
T

t0+T∫

t0

x(t)cosnw0t dt

an = 0

Q4:

T/2T/4−T/4−T/2

x(t)
1.0

t

−1.0

T
2
−
(

−T
4

)

=
3T
4

; w0 =
2π
3T
4

=
8π
3T

x(t) =

{

1
(
−T

4 ≤ t ≤ T
4

)

−1
(

T
4 ≤ t ≤ T

2

)

a0 =
1
3T
4







T
4∫

− T
4

dt +

T
2∫

T
4

(−1)dt







=
4

3T
T
4

=
1
3
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an =
8

3T







T
4∫

− T
4

cos
8nπ
3T

dt−

T
2∫

T
4

cos
8nπ
3T

tdt







an =
1

nπ

[

3sin
2nπ
3
−sin

4nπ
3

]

bn = 0, since even function

x(t) =
1
3

+
1
π

[

3sin
2π
3
−sin

4π
3

+
3
2

sin
4π
3
− 1

2
sin

8π
3

+ · · ·
]

Q5:

T/2−T/2

x(t)

A

t

x(t) =

{

A− T
2 ≤ t ≤ T

2

0 elsewhere

X( jw) = A

T
2∫

− T
2

e− jwtdt =
2A
w

sin
wT
2

=
AT
wT
2

sin
wT
2

X(i f ) = AT sinc f T

Q6:
T0 = 2π;

w0 = 1;

a0 =
1
2π

π∫

−π

(
t− t2)dt =

−π2

3

an =
1
π

π∫

−π

(
t− t2)cosnt dt =

−4(−1)n

n2

bn =
1
π

π∫

−π

(
t− t2)sinnt dt =

−2(−1)n

n
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Taking inverse Fourier transform

x1(t) =
1
2π

w0∫

0

− j e jwtdw =
1− e jw0t

2πt

x2(t) =
1
2π

0∫

−w0

j e jwtdw =
1− e− jw0t

2πt

x(t) = x1(t)+ x2(t) =
1

2πt
(1− e jw0t +1− e− jw0t)

=
1

2πt
(2−2cosw0t) =

2sin2 w0t
2

πt

Q11:

1.0

0 a−a b−b t

x(t)

x(t) =







t+b
b−a for−b < t <−a
1 for−a < t < a
t−b
a−b for a < t < b

X( jw) =
2

w2(b−a)
(coswa−coswb)

Q12:

x(t) = tu(t)∗[u(t)−u(t−1)]

x1(t) = tu(t) x2(t) = u(t)−u(t−1)

Differentiating in frequency domain property

FT(tx(t)) = j
d

dw
X( jw)

X1( jw) =
1

( jw)2

X2( jw) =

1∫

0

1.e− jwtdt =
1
jw

(1− e− jw)

X( jw) = X1( jw)X2( jw) =
1

( jw)3 (1− e− jw)
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Q13: Prove convolution in time domain property.

Q14:

0
(0,0)

T

x(t)

A
(T,A)

2T t

x(t) =

{ A
T t 0 < t < T
A T < t < 2T

X( jw) =
A
T

T∫

0

te− jwtdt +A

2T∫

T

e− jwtdt

X( jw) =
A
T




te− jwt

− jw

T∫

0

−
T∫

0

e− jwt

jw
dt



+A

[
e− jwt

− jw

∣
∣
∣
∣

2T
T

]

=
A
T

{
Te jwt

− jw
+

1
w2

(
e− jwT −1

)
}

+A

{
e− j2wT − e− jwT

− jw

}

= A

{
e− jwt

− jw
+

1
w2T

(
e− jwT −1

)
}

− A
jw

e− jwT (e− jwT −1
)

=
Ae− jwT

jw
+

A
w2T

e− jwT − A
w2T

− A
jw

e− j 2wT +
A
jw

e− jwT

=
A

wT

(
1
w

e− jwT − 1
w

+ jTe−2 jwT
)

Q15:
d2y(t)

dt2 +4
dy(t)

dt
+3y(t) =

dx(t)
dt

+2x(t) (1)

Taking Fourier transform on both sides

( jw)2Y ( jw)+4( jw)Y ( jw)+3Y ( jw) = ( jw)X( jw)+2X( jw)

(
( jw)2 +4( jw)+3

)
Y ( jw) = (( jw)+2)X( jw) (2)

Frequency responseH( jw) =
Y ( jw)

X( jw)
=

2+ jw
( jw)2 +4 jw+3

(3)

H( jw) =
2+ jw

(3+ jw)(1+ jw)
=

A
3+ jw

+
B

1+ jw
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x(t) = Asinw0t for 0≤ t ≤ T0

2

= 0 for
T0

2
≤ t ≤ T0

C0 =
1
T0

T0
2∫

0

Asinw0tdt =
A
T0

(−cosw0t
w0

∣
∣
∣
∣

T0
2

0

)

=− A

T0 · 2π
T0

[

cosw0 ·
T0

2
−1

]

=− A
2π

[cosπ−1] =
A
2

Cn =
1
T0

T0
2∫

0

Asinw0te− jnw0tdt

=
A

2 jT0

T0
2∫

0

(e jw0t − e− jnw0t)e− jnw0tdt

=
A

2 jT0

T0
2∫

0

(

e jw0t(1−n)− e− jw0t(n+1)
)

dt

=
A

2 jT0

(

e jw0t(1−n)

jw0(1−n)
− e− jw0t(n+1)

− jw0(n+1)

∣
∣
∣
∣

T0
2

0

)

=
A

2 jT0w0

(

e jw0(1−n)
T0
2

1−n
+

e− jw0(n+1)
T0
2

(n+1)
− 1

1−n
− 1

n+1

)

=− A
4π

[

e jπ(1−n)

1−n
+

e− jπ(n+1)

n+1
− 1

1−n
− 1

n+1

]

=− A
4π

(
e jπe− jnπ

1−n
+

e− jnπ · e− jπ

n+1
− 1

1−n
− 1

n+1

)

=− A
4π

(−e− jnπ

1−n
− e− jnπ

n+1
− 1

1−n
− 1

n+1

)

Sincee jπ =−1

=
A
4π

(
2e− jnπ

1−n2 +
2

1−n2

)

=
A

2π(1−n2)
(e− jnπ +1)
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Q19:

x(t) =
1
2

(

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

+δ
(

t− 1
2

))

Taking Fourier transform on both sides

X( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

X( jw) =

∞∫

−∞

1
2

(

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

+δ
(

t− 1
2

))

e− jwtdt

X( jw) =
1
2





∞∫

−∞

δ(t +1)e− jwtdt +

∞∫

−∞

δ(t−1)e− jwtdt +

∞∫

−∞

δ
(

t +
1
2

)

e− jwtdt

+

∞∫

−∞

δ
(

t− 1
2

)

e− jwtdt





Since FT(δ(t)) = 1

So FT(δ(t± t0)) = e± jwt0dt {using time shifting property}

X( jw) =
1
2

(

e jw + e− jw + e j w
2 + e− j w

2

)

X( jw) =
e jw + e− jw

2
+

e j w
2 + e− j w

2

2

X( jw) = cos w+cos
w
2

OBJECTIVE TYPE QUESTIONS

Q1: If the Fourier transform of a functionx(t) is X( jw), thenX( jw) is defined as

(a)
∫ ∞
−∞ x(t)e jwtdt (b)

∫ ∞
−∞

dx(t)
dt e− jwtdt

(c)
∫ ∞
−∞ x(t)dt (d)

∫ ∞
−∞ x(t)e− jwtdt

Q2: If X( jw) be the Fourier transform ofx(t), then
(a) x(t) = 1

2π
∫ ∞
−∞ X( jw)e jwtdw (b) x(t) = 1

2π
∫ ∞
−∞ X( jw)e− jwtdw

(c) x(t) = 1
2π
∫ ∞

0 X( jw)e jwtdw (d) x(t) = 1
2π
∫ ∞
−∞ X( jw)e− jwtdw

Q3: Fourier transform ofx(t) = 1 is
(a) 2π δ(w) (b) π δ(w) (c) 3π δ(w) (d) 4π δ(w)

Q4: Fourier transform ofx(t− t0) is
(a) e− jwt

0X( jw) (b) e jwt
0X( jw) (c) 1

t0
X( jw) (d) t0e− jwt

0X( jw)
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Q19: The trigonometric Fourier series of a periodic time function have
(a) sine terms (b) cosine term
(c) both (a) and (b) (d) DC term

Q20: Fourier series is defined as

x(t) = a◦+
∞
∑

n=1
(an cosnw0t +bn sinw0t)

(a) True (b) False
Answers: (1) d (2) a (3) a (4) a (5) b

(6) c (7) a (8) a (9) a (10) d
(11) c (12) b (13) b (14) a (15) a
(16) a (17) e (18) c (19) c (20) a

UNSOLVED PROBLEMS

Q1: Show that the Fourier transform ofx(t) = δ(t +2)+δ(t)+δ(t−2) is (1+2cos2w).

Q2: Show that the inverse Fourier transform ofX( jw) = 2πδ(w) + πδ(w− 4π) + πδ(w + 4π) is x(t) =

1+cos 4πt.

Q3: Calculate the Fourier transform ofte−|t|, using the F.T. pair, FT
[
e−|t|

]
= 2

1+w2 . Also find the Fourier

transform of 4t
(1+t2)2 using duality property.

Q4: X( jw) = δ(w)+δ(w−π)+δ(w−5); find IFT x(t) and show thatx(t) is non-periodic.

Q5: Find the Fourier transform of the triangular pulse as shown in figure.

0

1

x(t)

tT/2−T/2

Fig. 2.10 P .

Ans. X( jw) = T
2 sinc2(wt

4 )

Q6: Find the Fourier transform ofx(t) = rect(t/2). Ans. X( jw) = 2sincw

Q7: Find the Fourier transform of the signalx(t) = cosw0t by using the frequency shifting property.
Ans: X( jw) = π[δ(w−w0)+δ(w+w0)]

Q8: Show that FT[sinw0tu(t)] = w0
w2

0−w2 + π j
2 [δ(w+w0)−δ(w−w0)].

Q9: Find inverse Fourier transform ofX( jw) = jw
(1+ jw)2

Ans.x(t) = d
dt [te−tu(t)]
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Q10: Sketch and then find the Fourier transform of following signals

(a) x1(t)= π
(
t + 3

2

)
+π
(
t− 3

2

)
Ans. (a)

x1(t)

−1 1

1

2−2

−

t

X1( jw)= 2sinc w
2 cos3w

2

Fig. 2.11 P.

(b) x2(t)= π
(

t
4

)
+π
(

t
2

)
Ans. (b)

x2(t)

−1 1

1

2

2

−2

−

t

X2( jw)= 4sinc2w+2sincw

Fig. 2.12 P.

Q11: Find the frequency responsex( jw) of theRC circuit shown in figure. Plot the magnitude and phase
response forRC = 1

x( jw) =
y( jw)

x( jw)
=

1
1+ jwRC

↑ ↑
R

C y(l)x(t) −− ↑↑

Fig. 2.13 P .

Ans. |x( jw)|= 1√
1+w2

x( jw) =− tan−1 w

Q12: Find the Fourier series of the waveform shown in figure.

x(t) =
2A
jnπ

for n = 1,3,5,7
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x(tπ)t =
1
π

+
1
2

cos5πt− 2
3π

cos10

− 2
8π

cos15πt

Q15: The output of a system is given by

x(t) =

{
Asinw0t for 0≤ t ≤ π
0 for π≤ t ≤ 2π

Determine trigonometric form of Fourier series ofx(t)

Ans.

[

x(t) =
A
π

+
A
2

cos(nt− π
2
)+

∞

∑
n=2

2A
π(1−n2)

cosnt

]
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Introduction
I We had defined est as a basic function for CT LTI systems,s.t.

est → H(s)est

I In Fourier transform s = jω

I In Laplace transform s = σ + jω
I By Laplace transform we can

I Analyze wider range of systems comparing to Fourier Transform
I Analyze both stable and unstable systems

I The bilateral Laplace Transform is defined:

X (s) =

∫ ∞
−∞

x(t)e−stdt

⇒ X (σ + jω) =

∫ ∞
−∞

[x(t)e−σt ]e−jωtdt

= F{x(t)e−σt}
Farzaneh Abdollahi Signal and Systems Lecture 7 3/48
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Region of Convergence (ROC)

I Note that: X (s) exists only for a specific region of s which is called
Region of Convergence (ROC)

I ROC: is the s = σ + jω by which x(t)e−σ converges:
ROC : {s = σ + jω s.t.

∫∞
−∞ |x(t)e−σt |dt <∞}

I Roc does not depend on ω
I Roc is absolute integrability condition of x(t)e−σt

I If σ = 0, i,e, s = jω X (s) = F{x(t)}
I ROC is shown in s-plane

I The coordinate axes are Re{s} along the horizontal axis and Im{s}
along the vertical axis.
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Example
I Consider x(t) = e−atu(t)

I X (s) =
∫∞
−∞ e−atu(t)e−stdt = −1

s+ae
−(s+a)t |∞0 = −1

s+a(e−(s+a)∞ − 1)

I If Re(s + a) > 0 Re(s) = σ > −Re(a),X (s) is bounded

I ∴X (s) = 1
s+a , ROC : Re(s) > −Re(a)
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Example

I Consider x(t) = −e−atu(−t)

I X (s) = −
∫∞
−∞ e−atu(−t)e−stdt = 1

s+ae
−(s+a)t |0−∞ = 1

s+a(1− e(s+a)∞)

I If Re(s + a) < 0 Re(s) = σ < −Re(a),X (s) is bounded

I ∴X (s) = 1
s+a , ROC : Re(s) < −Re(a)
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I In the recent two examples two different signals had similar Laplace
transform but with different Roc

I To obtain unique x(t) both X (s) and ROC is required

I If x(t) is defined as a linear combination of exponential functions, its
Laplace transform (X (s)) is rational

I In LTI expressed in terms of linear constant-coefficient differential
equations, Laplace Transform of its impulse response (its transfer
function) is rational

I X (s) = N(s)
D(s)

I Roots of N(s) zeros of X(s); They make X(s) equal to zero.
I Roots of D(s) poles of X(s); They make X(s) to be unbounded.
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I To study the stability of LTI systems zeros and poles are illustrated in
s-plane (pole-zero plot)

I number of poles and zeros are equal for −∞ to ∞
I Consider degree of D(s) (# of poles): m; degree of N(s) (# of zeros): n
I If m < n There are n −m = k poles in ∞
I If m > n There are m − n = k zeros in ∞
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ROC Properties

I ROC only depends on σ
I In s-plane Roc is strips parallel to jω axis

I If X (s) is rational, Roc does not contain any pole
I Since D(s) = 0, makes X (s) unbounded

I If x(t) is finite duration and is absolutely integrable, then ROC is entire
s-plane

I If x(t) is right sided and Re{s} = σ0 ∈ ROC then ∀s Re{s} > σ0 ∈
ROC

I If x(t) is left sided and Re{s} = σ0 ∈ ROC then ∀s Re{s} ≤ σ0 ∈ ROC

I If x(t) is two sided and Re{s} = σ0 ∈ ROC then ROC is a strip in
s-plane including Re{s} = σ0
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ROC Properties

I If X (s) is rational
I the ROC is bounded between poles or extends to infinity,
I no poles of X (s) are contained in ROC
I If x(t) is right sided, then ROC is in the right of the rightmost pole
I If x(t) is left sided, then ROC is in the left of the leftmost pole

I If ROC includes jω axis then x(t) has FT
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Inverse of Laplace Transform (LT)

I By considering σ fixed, inverse of LT can be obtained from inverse of FT:

I x(t)e−σt = 1
2π

∫∞
−∞ X (σ + jω︸ ︷︷ ︸

s

)e jωtdω

I x(t) = 1
2π

∫∞
−∞ X (σ + jω)e(σ+jω)tdω

I assuming σ is fixed  ds = jdω

I ∴x(t) = 1
2πj

∫∞
−∞ X (s)estds

I If X (s) is rational , we can use expanding the rational algebraic into a
linear combination of lower order terms and then one may use

I X (s) = 1
s+a  x(t) = −e−atu(−t) if Re{s} < −a

I X (s) = 1
s+a  x(t) = e−atu(t) if Re{s} > −a

I Do not forget to consider ROC in obtaining inverse of LT!
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LT Properties

I Linearity: ax1(t) + bx2(t)⇔aX1(s) + bX2(s)
I ROC contains: R1

⋂
R2

I If R1

⋂
R2 = ∅ it means that LT does not exit

I By zeros and poles cancelation ROC can be larger than R1

⋂
R2

I Time Shifting:x(t − T )⇔e−sTX (s) with ROC=R

I Shifting in S-Domain: es0tx(t)⇔X (s − s0) with ROC= R +Re{s0}
I Time Scaling: x(at)⇔ 1

|a|X ( sa) with ROC = R
a

I Differentiation in Time-Domain: dx(t)
dt ⇔sX (s) with ROC containing R

I Differentiation in the s-Domain: −tx(t)⇔dX (s)
ds with ROC = R

I Convolution: x1(t) ∗ x2(t)⇔X1(s)X2(s) with ROC containing R1 ∩ R2
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Analyzing LTI Systems with LT

I LT of impulse response is H(s) which is named transfer function or
system function.

I Transfer fcn can represent many properties of the system:
I Causality: h(t) = 0 for t < 0 It is right sided

I ROC of a causal system is a right-half plane
I Note that the converse is not always correct
I Example: H(s) = es

s+1
, Re{s} > −1 h(t) = e−(t+1)u(t + 1) it is none

zero for −1 < t < 0
I For a system with rational transfer fcn, causality is equivalent to ROC being

the right-half plane to the right of the rightmost pole

I Stability: h(t) should be absolute integrable  its FT converges
I An LTI system is stable iff its ROC includes jω axis (0 ∈ ROC)

I A causal system with rational H(s) is stable iff all the poles of H(s) have
negative real-parts (are in left-half plane)
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Geometric Evaluation of FT by Zero/Poles Plot

I Consider X1(s) = s − a

I |X1|: length of X1

I ]X1: angel of X1

I Now consider X2(s) = 1
s−a = 1

X1(s)

I logX2 = −logX1

I ]X2 = −]X1
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I For higher order fcns:

X (s) = M
∏R

i=1(s−βi )∏P
j=1(s−αj )

I |X (s)| = |M|
∏R

i=1 |s−βi |∏P
j=1 |s−αj |

I ]X (s) = ]M +
∑R

i=1](s −
βi )−

∑R
j=1 ](s − αj)

I Example:

H(s) = 1/2
s+1/2 , Re{s} >

−1
2

I h(t) = 1
2e
−t/2u(t)

I s(t) = [1− e−t/2]u(t)
I H(jω) = 1/2

jω+1/2

I |H(jω)|2 = (1/2)2

w2+(1/2)2

I ]H(jω) = − tan−1 2ω
I 0 < ω <∞ − π/2 <
]H(jω) < 0

I ω↑ |H| ↓,]H(jω) ↓
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I Now let us substitute 2 with τ in the previous example

I H(jω) = 1/τ
jω+1/τ

I |H(jω)|2 = (1/τ)2

w2+(1/τ)2 =


1 ω = 0
1√
2

ω = 1
τ

1
τω ω � 1

τ

I ]H(jω) = − tan−1 τω =


0 ω = 0
−π
4 ω = 1

τ
−π
2 ω � 1

τ

I Relation between real part of poles and response of the systems
I τ is time constant of first order systems which control response speed of

the systems
I Poles are located at − 1

τ
I The farther the poles from jω axis  cut-off freq. ↑, τ ↓, the faster

decaying the impulse response, the faster rise time of step response
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Response for Second Order system

I h(t) = M(ec1t − ec2t)u(t)

I H(s) = ω2
n

s2+2ζωns+ω2
n

= ω2
n

(s−c1)(s−c2)

I C1,2 = −ζωn ± ωn

√
ζ2 − 1

I 0 < ζ < 1: under damp (two complex poles)

I ζ = 1 critically damp (s = −ωn)

I ζ > 1: Over damp (two negative real poles)

I For fixed ωn, ζ ↑↑ , settling time for step response ↑
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Bode Plot of H(jω)
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Impulse and Step Response of the second order system
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All Pass Filters

I Passes the signal in all freqs. with a little decreasing/increasing the
magnitude

I Why do we use all-pass filters?

I H(s) = s−a
s+a Re{s} > −a, a > 0

I |H(ω)| = 1

I ]H(jω) = θ1 − θ2 = π − 2θ2 = π − 2tan−1(ωa ) =


π ω = 0
π
2 ω = a
0 ω � a
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Stability Analysis by Routh-Hurwitz

I Remind: A system with rational transfer fcn is causal and stable if all of
its poles are in LHP.

I H(s) = N(s)
D(s) , D(s) = ans

n + an−1s
n−1 + . . .+ a1s + a0

I How can we verify the stability of this system?
I Method 1: Find the roots of D(s)

I If n is large, it is difficult to find: −(

I Method 2: Routh-Hurwitz method

I Provide the following table

sn an an−2 an−4 . . .
sn−1 an−1 an−3 an−5 . . .
sn−2 bn−1 bn−3 bn−5 . . .
sn−3 cn−1 cn−3 cn−5 . . .

...
...

s0 hn−1

I First row includes odd coefficients of D(s)
I Second row includes even coefficients of D(s)
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Stability Analysis by Routh-Hurwitz

I bi , ci are defined as follows:

bn−1 = − 1
an−1

∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣ , bn−3 = − 1
an−1

∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣
cn−1 = − 1

bn−1

∣∣∣∣ an−1 an−3

bn−1 bn−3

∣∣∣∣ , cn−3 = − 1
bn−1

∣∣∣∣ an−1 an−5

bn−1 bn−5

∣∣∣∣
I Follow the same rule for other rows parameters

I # of RHP root os D(s) equals to # of signs changing in the first column
of the table

I Necessary condition for using Routh-Horwitz method is that all
coefficients of D(s) should exist and have similar sign(otherwise there are
more than one pole on imaginary axis, it is not stable)

I Necessary and Sufficient conditions for stability is that no signs changing
appears in the first column of the Routh-Horwitz table
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I Initial Value Theorem: If x(t) = 0 for t < 0 and x(t) does not contain
any impulse or higher order singularities at the origin then
x(0+) = lims→∞ sX (s)

I X (s) may include a simple pole at the origin which represents a step signal.
I More than one pole at the origin and in jω axis make the signal oscillating

I Final Value Theorem: If x(t) = 0 for t < 0 and x(t) is bounded when
t →∞ then x(∞) = lims→0 sX (s)

I Consider H(s) = N(s)
D(s) , n is degree of N(s), d is degree of D(s):

I H(0+) =

 0 d > n + 1
constant value 6= 0 d = n + 1

∞ d < n + 1
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LTI Systems Description

I
∑N

k=0 ak
dky(t)
dtk

=
∑M

k=0 bk
dkx(t)
dtk

I
∑N

k=0 aks
kY (s) =

∑M
k=0 bks

kX (s)

I H(s) = Y (s)
X (s) =

∑M
k=0 bk s

k∑N
k=0 ak s

k

I ROC depends on
I placement of poles
I boundary conditions (right sided, left sided, two sided,...)
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I Feedback Interconnection of two LTI systems:
I Y (s) = Y1(s) = X2(s)
I X1(s) = X (s) + Y2(s) = X (s) + H2(s)Y (s)
I Y (s) = H1(s)X1(s) = H1(s)[X (s) + H2(s)Y (s)]
I Y (s)

X (s) = H(s) = H1(s)
1−H2(s)H1(s)

I ROC: is determined based on roots of 1− H2(s)H1(s)
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Block Diagram Representation for Causal LTI Systems

I We can represent a transfer fcn by different methods:

I Example: H(s) = 2s2+4s−6
s2+3s+2

1. H(s) = (2s2 + 4s − 6) 1
s2+3s+2

2. Assuming it is causal so it is at initial rest

I W (s) = 1
s2+3s+2

X (s)⇔ d2w
dt2 + 3 dw

dt
+ 2w = x(t)

I Y (s) = (2s2 + 4s − 6)W (s)⇔y(t) = 2 dw2

dt2 + 4 dw
dt
− 6w

3. H(s) = 2 + 6
s+2 −

8
s+1

4. H(s) = 2(s−1)
s+2

s+3
s+1
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Unilateral LT

I It is used to describe causal systems with nonzero initial conditions:
X (s) =

∫∞
0− x(t)e−stdt = UL{x(t)}

I If x(t) = 0 for t < 0 then X (s) = X (s)

I Unilateral LT of x(t) = Bilateral LT of x(t)u(t−)

I If h(t) is impulse response of a causal LTI system then H(s) = H(s)

I ROC is not necessary to be recognized for unilateral LT since it is always
a right-half plane

I For rational X (s), ROC is in right of the rightmost pole
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Similar Properties of Unilateral and Bilateral LT
I Convolution: Note that for unilateral LT, If both x1(t) and x2(t) are zero

for t < 0, then X (s) = X1(s)X2(s)

I Time Scaling

I Shifting in s domain

I Initial and Finite Theorems: they are indeed defined for causal signals

I Integrating:
∫ t

0− x(τ)dτ = x(t) ∗ u(t)
UL⇔X (s)U(s) = 1

sX (s)
I The main difference between UL and LT is in time differentiation:

I UL{ dx(t)
dt } =

∫∞
0−

dx(t)
dt e−stdt

I Use the rule
∫
fdg = fg −

∫
gdf

I ∴UL{ dx(t)
dt } = s

∫∞
0− x(t)e−stdt + x(t)e−st |∞0− = sX (s)− x(0−)

I UL{ dx(t)
dt } = sX (s)− x(0−)

I UL{ d
2x(t)
dt2 } =UL{ d

dt {
dx(t)
dt }} = s(sX (s)− x(0−))− x́(0−) =

s2X (s)− sx(0−)− x́(0−)
I Follow the same rule for higher derivatives
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Example
I Consider d2y

dt2 + 3dy
dt + 2y(t) = x(t), where

y(0−) = β = 3, ý(0−) = γ = −5, x(t) = α = 2u(t)
I Take UL:

I s2Y(s)− βY(s)− γ + 3(sY(s)− β) + 2Y(s) = X (s)

I Y(s) =
β(s + 3) + γ

s2 + 3s + 2︸ ︷︷ ︸
ZIR

+
X (s)

s2 + 3s + 2︸ ︷︷ ︸
ZSR

I Zero State Response (ZSR): is a response in absence of initial values

I H(s) = Y(s)
X (s)

I Transfer fcn is ZSR
I ZSR: Y1(s) = α

s(s+1)(s+2)
= 1

s
+ 1

s+2
− 2

s+1

I y1(t) = (1− 2e−t + e−2t)u(t)

I Zero Input Response (ZIR): is a response in absence of input (x(t) = 0)
I ZIR: Y2(s) = 3(s+3)−5

(s+1)(s+2) = 1
s+1 + 2

s+2

I y2(t) = (e−t + 2e−2t)u(t)

I y(t) = y1(t) + y2(t)
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Feed Back Applications
I Closed loop Transfer fcn: Q(s) = G(s)

1+G(s)H(s) = Open loop Gain
1−Loop Gain

1. Inverting

I Q(s) = K
1+Kp(s)

I If choose K s.t. Kp(s)� 1 then Q(s) ' 1
p(s)

I Example: For a capacitor, consider i as output and v as input, it is a
differentiator

I By using the above interconnection, we can make an integrator
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2. Stabilizing Unstable Systems

I G (s) is unstable
I We should define P(s) and C (s) to make closed-loop system stable (poles of

closed-loop system be in LHP)
I Q(s) = C(s)G(s)

1+C(s)P(s)G(s)

I Example 1: G (s) = 1
s−2 , C (s) = K , P(s) = 1

I Q(s) = K
s−2+K

I Choosing K > 2 make it stable
I Example 2: G (s) = 1

s2−4
I By C (s) = K cannot be stabilized
I Choose C (s) = K1 + K2s, K2 > 0, and K1 > 4 can stabilize the closed-loop

system
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3. Tracking

I Objective: Defining C (s) s.t. e(t) = x(t)− y(t)→ 0 as t →∞
I E (s) = 1

1+C(s)G(s)X (s)
I Consider x(t) as unite step
I lim e(t)t→∞ = lim sE (s)s→0 = lims→0

s
1+C(s)G(s)

1
s

I If we choose C (s) s.t. C (s)G (s)� 1 then e(t)→ 0 as t →∞

4. Decreasing effect of disturbance

5. Decreasing Sensitivity to uncertainties
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State Space Representation

I Previously we learnt that for a LTI system with y(t): output signal, u(t):
input signal, and h(t) impulse response
y(t) = h(t) ∗ u(t) Y (s) = H(s)U(s)

I These representation of the system only express I/O relation

I It does not give us internal specification of the system.

I State space representation not only provide us information on I/O but
also gives us good view on internal specification of the system

I States of a system at time t0 includes min required information to express
the system situation at time t0

I They are first degree equations
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I State space representation of LTI system

Ẋ (t) = AX (t) + BU(t) state equations

Y (t) = CX (t) + DU(t) output equations
I X ∈ Rn: state vector
I U ∈ Rm: input vector
I Y ∈ Rp output vector
I An×n: System Matrix
I Bn×m: input matrix
I C p×n: output matrix
I Dp×m: coupling matrix

I Number of state usually equals to degree of the system
I It usually equals to number of active elements in the system (# of

capacitors and inductors in RLC circuits)
I However in some cases like having cut-set of inductors and loop of

capacitors degree of the system would be less than # of active elements
I One could choose number of the states greater than n in such case some

modes are not observable or controllable

I Set of states is not unique for a system
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Block Diagram of State Space Representation
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Solving State Equations by UL

I Assuming x is causal  we are using UL

I ẋ = Ax + Bu
UL⇔sX (s)− x(0) = AX (s) + BU(s)

I X (s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

I Let us define φ(t) = L−1{(sI − A)−1}: Transition Matrix

I x(t) = φ(t)x(0)︸ ︷︷ ︸
ZIR

+

∫ t

0
φ(τ)Bu(t − τ)dτ︸ ︷︷ ︸

ZSR

I For LTI systems φ(t) = eAt
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Methods to Find Transition Matrix

1. φ(t) = L−1(sI − A)−1

I Example: A =

[
0 1
−6 −5

]
I φ(t) = L−1(sI − A)−1 =

[
3e−2t − 2e−3t e−2t − e−3t

−6e−2t + 6e−3t −2e−2t + 3e−3t

]
I For large A, finding inverse matrix is time consuming and complicated
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Methods to Find Transition Matrix

2. Approximate by Infinite Power Series
I The transition matrix is system specification and input does not affect on it:

ẋ = Ax(t) (1)

x(t) = Φ(t)x(0) (2)

I Let us represent transition matrix by an infinite power series:

x(t) = (k0 + k1t + k2t
2 + . . .)x0 (3)

I ẋ(t) = (k1 + 2k2t + . . .)x0

I ∴(k1 + 2k2t + 3k3t
2 + . . .)x0 = A(k0 + k1t + . . .)x0

I k1 = Ak0, k2 = A k1

2 , k3 = A k2

3
I Substitute t = 0 in (3): k0 = I
I k0 = I , k1 = A, k2 = A2

2! , k3 = A3

3!

I φ(t) = eAt = I + At + A2 t2

2! + . . .
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Methods to Find Transition Matrix

3. By Cayley Hamilton Theorem
I Reminder: Eigne Value of Matrix A is a scalar value λ s.t.

I Av = λv
I where v is a vector named Eigne vector

I To find eigne values:
I |λI − A| = 0 λn + an−1λ

n−1 + . . .+ a1λ+ a0 = 0
I The above equation is named characteristic equation of matrix A

I Considering Cayley Hamilton Theorem result in [?]:
eAt = a0(t)I + a1(t)A + . . .+ an−1(t)An−1

I Eigne vector of matrix A is eigne vector ofeAt

Avi = λivi
A2vi = λ2

i vi
...Anvi = λni vi

⇒ eλi tvi = (a0(t)I+a1(t)λi +a2(t)λ2
i +. . .+an−1(t)λn−1)vi

I By assuming n distinct eigne values and solving n equations all coefficients
ai (t) are obtained
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Example

I A =

[
0 1
−6 −5

]
I λ1 = −2, λ2 = −3

I e−2t = a0(t)− 2a1(t)

I e−3t = a0(t)− 3a1(t)

I a1(t) = e−2t − e−3t

I a0(t) = 3e−2t − 2e−3t

I φ(t) = eAt =

[
3e−2t − 2e−3t e−2t − e−3t

−6e−2t + 6e−3t −2e−2t + 3e−3t

]
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Defining Transfer Function from State Space Eq.

ẋ = Ax + Bu

y = Cx + Du

I Transfer fcn: H(s) = Y (s)
X (s)

I Transfer fcn is ZIR:
sX (s) = AX (s) + BU(s) X (s) = (sI − A)−1BU(s)

I Y (s) = [C (sI − A)−1B + D]U(s)

I H(s) = C (sI − A)−1B + D=C adj(sI−A)
det(sI−A)B + D

I Poles of a system are eigne values of matrix A
I BUT all eigne values of A are not poles of the system (due to zero-pole

cancelation)
I If an unstable poles is canceled by a zero the system is not internally stable

anymore
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State Space Realizations

I Several state space realization can be obtained from a transfer fcn. two
of them are introduced here.

1. Controllable Canonical Form
I Consider H(s) =

bmsm+bm−1s
m−1+...+b0

sn+an−1sn−1+...+a0
= b(s)

a(s)
, n > m

I If n = m then we can define H(s) = bn +
b̄msm+b̄m−1s

m−1+...+b̄0

sn+an−1sn−1+...+a0

I Let us define a axillary fcn M(s)
I Y (s)

U(s)
= Y (s)

M(s)
.M(s)
U(s)

= b(s). 1
a(s)

I M(s)a(s) = U(s) M(s)(sn + an−1s
n−1 + . . .+ a0) = U(s)

I mn(t) = −an−1m
n−1(t)− . . .− a0m(t) + u(t)

I Y (s) = b(s)M(s) y(t) = bmm(t)m + . . .+ b1ṁ(t) + b0m(t)

Farzaneh Abdollahi Signal and Systems Lecture 7 44/48



Outline Introduction Analyzing LTI Systems with LT Geometric Evaluation Unilateral LT Feed Back Applications State Space Representation

Controllable Canonical Form
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I (assume m = n − 1) By defining output of integrators as states:
ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = −a0x1 − a1x2 − . . .− an−1xn + u

y = b0x1 + b1x2 + . . .+ bn−1xn

I ∴A =


0 1 . . . . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 1
−a0 −a1 . . . . . . −an−1

 , B =


0
...
...
0
1

,

C = [b0 b1 . . . . . . bn−1],D = 0

I Example: H(s) = s3+6s2+5s+2
s3+7s2+3s+1
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2. Diagonal Form and Jordan Form

I Consider characteristic equation has n separate
roots:H(s) = β1

s−P1
+ β2

s−P2
+ β3

s−P3
+ . . .+ βn

s−Pn

I ∴A =


P1 . . . . . . 0
0 P2 . . . 0
...

...
...

...
0 . . . . . . Pn

 , B =


1
1
...
1

,

C = [β1 β2 . . . βn],D = 0
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2. Diagonal Form and Jordan Form

I If there are frequent poles, for example if there are three similar poles
:H(s) = β1

s−P1
+ β2

(s−P2)3 + β3

(s−P2)2 + β4
s−P2

, matrices A,B, and C are

modified as follows:

A =


P1 0 0 0
0 P2 1 0
0 0 P2 1
0 0 0 P2

 , B =


1
0
0
1


C = [β1 β2 β3 β4],D = 0

I Example: H(s) = s2+3s+1
(s+1)2(s+3)
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Contents

The z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3

General shape of ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5

The inverse z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6

Properties of the z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7

Convolution and LTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8

Correlation of two sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9

Rational z-transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12

Poles and zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12

Pole location and time-domain behavior for causal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13

The system function of a LTI system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14

Inversion of the z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16

The inverse z-transform by contour integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16

The inverse z-transform by power series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17

The inverse z-transform by partial-fraction expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18

Example. Inverse z-transform by PFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20

Example. Finding the impulse response of a diffeq system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.22

Decomposition of rational z-transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26

The One-Sided z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26

Analysis of LTI Systems in the z-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.27

Response of systems with rational system functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.27

Response of pole-zero systems with nonzero initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28

Transient and steady-state response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.29

Geometric progression signals are “almost” eigenfunctions of LTI systems . . . . . . . . . . . . . . . . . . . . . . . 3.30

Causality and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.31

The Schur-Cohn stability test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.34

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.36

Discrete-time systems described by difference equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.37

3.1



3.2 c© J. Fessler, May 27, 2004, 13:11 (student version)

Primary points
• Convolution of discrete-time signals simply becomes multiplication of their z-transforms.
• Systematic method for finding the impulse response of LTI systems described by difference equations: partial fraction

expansion.
• Characterize LTI discrete-time systems in the z-domain

Secondary points
• Characterize discrete-time signals
• Characterize LTI discrete-time systems and their response to various input signals
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3.1
The z-transform

We focus on the bilateral z-transform.

3.1.1 The bilateral z-transform

The direct z-transform or two-sided z-transform or bilateral z-transform or just the z-transform of a discrete-time signal
x[n] is defined as follows.

X(z) =
∞∑

n=−∞

x[n] z−n or X(·) = Z {x[·]} or shorthand: x[n]
Z
↔ X(z) .

• Note capital letter for transform.
• In the math literature, this is called a power series.
• It is a mapping from the space of discrete-time signals to the space of functions defined over (some subset of) the complex plane.
• We will also call the complex plane the z-plane.

We will discuss the inverse z-transform later.

Convergence

Any time we consider a summation or integral with infinite limits, we must think about convergence.

We say an infinite series of the form
∑∞

n=−∞
cn converges [1, p. 141] if there is a c ∈ C such that limN→∞

∣
∣
∣c −

∑N
n=−N cn

∣
∣
∣ = 0.

• Some infinite series do converge to a finite value, e.g., 1 + 1/2 + 1/4 + 1/8 + · · · = 1
1−1/2 = 2,

since
∣
∣
∣2 −

∑N
n=0(1/2)

n
∣
∣
∣ =

∣
∣
∣2 − 1−(1/2)N+1

1−1/2

∣
∣
∣ = (1/2)N → 0 as N → ∞.

• One can also extend the notion of convergence to include “convergence to ∞” [2, p. 37].
Example. The infamous harmonic series is an infinite series that converges to infinity: 1 + 1/2 + 1/3 + 1/4 + · · · = ∞.

• Some infinite series simply do not converge, e.g., 1 − 1 + 1 − 1 + · · · = ?

The z-transform of a signal is an infinite series for each possible value of z in the complex plane. Typically only some of those
infinite series will converge. We need terminology to distinguish the “good” subset of values of z that correspond to convergent
infinite series from the “bad” values that do not.

Definition of ROC

On p. 152, the textbook, like many DSP books, defines the region of convergence or ROC to be:
“the set of all values of z for which X(z) attains a finite value.”

Writing each z in the polar form z = r eφ, on p. 154, the book says that: “finding the ROC for X(z) is equivalent to determining
the range of values of r for which the sequence x[n] r−n is absolutely summable.”

Unfortunately, that claim of equivalence is incorrect if we use the book’s definition of ROC on p. 152. There are examples of
signals, such as x[n] = 1

n u[n − 1], for which certain values of z lead to a convergent infinite series, but yet x[n] r−n is not
absolutely summable.

So we have two possible distinct definitions for the ROC: “the z values where X(z) is finite,” or, “the z values where x[n] z−n

is absolutely summable.” Most DSP textbooks are not rigorous about this distinction, and in fact either definition is fine from a
practical perspective. The definitions are compatible in the case of z-transforms that are rational, which are the most important
type for practical DSP use. To keep the ROC properties (and Fourier relations) simple, we adopt the following definition.

The ROC is the set of values z ∈ C for which the sequence x[n] z−n is absolutely summable, i.e.,
{
z ∈ C :

∑∞

n=−∞
|x[n] z−n| < ∞

}
.

All absolutely summable sequences have convergent infinite series [1, p. 144]. But there are some sequences, such as (−1)n/n,
that are not absolutely summable yet have convergent infinite series. These will not be included in our definition of ROC, but this
will not limit the practical utility.



3.4 c© J. Fessler, May 27, 2004, 13:11 (student version)

Skill: Finding a z-transform completely, including both X(z) and the ROC.

Example. x[n] = δ[n]. X(z) = 1 and ROC = C = entire z-plane.

Example. x[n] = δ[n − k]. X(z) = z−k and

ROC =







C, k = 0
C − {0} , k > 0
C − {∞} , k < 0.

δ[n − k]
Z
↔ z−k

Example. x[n] = {4, 3, 0, π}. X(z) = 4z + 3 + πz−2, ROC = C − {0} − {∞}

For a finite-duration signal, the ROC is the entire z-plane, possibly excepting z = 0 and z = ∞.

Why? Because for k > 0: zk is infinite for z = ∞ and z−k is infinite for z = 0; elsewhere, polynomials in z and z−1 are finite.

Example. x[n] = pn u[n]. Skill: Combining terms to express as geometric series.

-
n

6

-2 -1 0 1 2 3 4

1

X(z) =

∞∑

n=−∞

x[n] z−n =

∞∑

n=0

pnz−n =

∞∑

n=0

(pz−1)n = 1 +
(p

z

)

+
(p

z

)2

+
(p

z

)3

+ · · · =
1

1 − pz−1
.

The series converges iff
∣
∣pz−1

∣
∣ < 1, i.e., if {|z| > |p|}.

pn u[n]
Z
↔

1

1 − pz−1
, for |z| > |p| Picture 3.2 shading outside circle radius |p|

Smaller |p| means faster decay means larger ROC.

Example. Important special case: p = 1 leaves just the unit step function. u[n]
Z
↔ U(z) =

1

1 − z−1
, |z| > 1

Example. x[n] = −pn u[−n − 1] for p 6= 0. Picture . An anti-causal signal.

X(z) =

−1∑

n=−∞

−pnz−n = −

∞∑

k=1

(p−1z)k = −(p−1z)

∞∑

k=0

(p−1z)k = −p−1z
1

1 − p−1z
=

1

1 − pz−1
.

The series converges iff
∣
∣p−1z

∣
∣ < 1, i.e., if |z| < |p|. Picture 3.3 shading inside circle radius |p|

Note that the last two examples have the same formula for X(z). The ROC is essential for resolving this ambiguity!

Laplace analogy

eλt u(t)
L
↔

1

s − λ
, real(s) > real(λ)

− eλt u(−t)
L
↔

1

s − λ
, real(s) < real(λ)
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General shape of ROC

In the preceding two examples, we have seen ROC’s that are the interior and exterior of circles. What is the general shape?

The ROC is always an annulus, i.e., {r2 < |z| < r1}.

Note that r2 can be zero (possibly with ≤) and r1 can be ∞ (possibly with ≤).

Explanation. Let z = r eθ be polar form.

|X(z)| =

∣
∣
∣
∣
∣

∞∑

n=−∞

x[n] z−n

∣
∣
∣
∣
∣
≤

∞∑

n=−∞

|x[n]| r−n by triangle inequality

=

−1∑

n=−∞

|x[n]| r−n +

∞∑

n=0

|x[n]| r−n

=
∞∑

n=1

|x[−n]| rn +
∞∑

n=0

|x[n]|

rn
.

The ROC is the subset of C where both of the above sums are finite.

If the right sum (the “causal part”) is finite for some z2 with magnitude r2 = |z2|,
then that sum will also be finite for any z with magnitude r ≥ r2, since for such an r each term in the sum is smaller.
So the ROC for the right sum is the subset of C for which |z| > r2, which is the exterior of some circle.

Likewise if the left sum (the “anti-causal part”) is finite for some z1 with magnitude r1 = |z1|,
then that sum will also be finite for any z with magnitude r ≤ r1, since for such an r each term in the sum is smaller.
So the ROC for the left sum is the subset of C for which |z| < r1, for some r1, which is the interior of some circle.

The ROC of a causal signal is the exterior of a circle of some radius r2.

The ROC of an anti-causal signal is the interior of a circle of some radius r1.

For a general signal x[n], the ROC will be the intersection of the ROC of its causal and noncausal parts, which is an annulus.
If r2 < r1, then that intersection is a (nonempty) annulus. Otherwise the z-transform is undefined (does not exist).

Simple example of a signal which has empty ROC?
x[n] = 1 = u[n] +u[−n − 1].
Recall u[n]

Z
↔ X(z) = 1

1−z−1 for {|z| > 1}.
ROC for the causal part is {|z| > 1},
ROC for the anti-causal part is {|z| < 1}.

TABLE 3.1 - discuss here

Table shows signals decreasing away from zero, since for non-decreasing signals the z-transform is usual undefined (empty ROC).
Energy signals must eventually diminish to zero.
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Subtleties in defining the ROC (optional reading!)

We elaborate here on why the two possible definitions of the ROC are not equivalent, contrary to to the book’s claim on p. 154.

Consider the harmonic series signal x[n] = 1
n u[n − 1] . (A signal with no practical importance.)

The z-transform of this signal is

X(z) =
∞∑

n=1

1

n
z−n.

Consider first the exterior of the unit circle. If r = |z| > 1 then

∞∑

n=1

∣
∣
∣
∣

1

n
z−n

∣
∣
∣
∣
=

∞∑

n=1

1

n

(
1

r

)n

<

∞∑

n=1

(
1

r

)n

< ∞.

So {|z| > 1} will be included in the ROC, by either definition.

Now consider the interior of the unit circle. If r = |z| < 1 then

N∑

n=1

∣
∣
∣
∣

1

n
z−n

∣
∣
∣
∣
=

N∑

n=1

1

n

(
1

r

)n

>

N∑

n=1

1

n
→ ∞.

So {|z| < 1} will not be in the ROC, by the “absolutely summable” definition.

Now consider the point z = 1. At this point X(1) =
∑∞

n=1
1
n = ∞. So there is a pole at z = 1 and z = 1 is not in the ROC by

either definition.

Now consider the point z = −1. At this point X(−1) =
∑∞

n=1
1
n (−1)n = − log 2, which is a well-defined finite value!

See http://mathworld.wolfram.com/HarmonicSeries.html for more information.
It is easy to verify that sum using the Taylor expansion of log around 1, evaluated at 2.
• So the point z = −1 would be included in the ROC defined by the “attains a finite value” definition.
• However, at z = −1 the series 1

n (−1)−n is not absolutely summable, since
∑∞

n=1

∣
∣ 1
n (−1)−n

∣
∣ =

∑∞

n=1
1
n = ∞. So the point

z = −1 is not included in the “absolutely summable” definition of the ROC.

Furthermore, there are other points around the unit circle where the z-transform series is convergent but not absolutely summable.

Consider z = e2πM/N , with N even and M odd.

∞∑

n=1

1

n
e2π(M/N)n =

∞∑

k=0

N∑

l=1

1

Nk + l
e2π(M/N)(Nk+l) =

∞∑

k=0

N∑

n=1

1

Nk + n
e2π(M/N)n .

N∑

n=1

1

Nk + n
e2π(M/N)n =

N/2
∑

n=1

[
1

Nk + n
e2π(M/N)n +

1

Nk + n + N/2
e2π(M/N)(n+N/2)

]

=

N/2
∑

n=1

[
1

Nk + n
−

1

Nk + n + N/2

]

e2π(M/N)n =

N/2
∑

n=1

N/2

(Nk + n)(Nk + n + N/2)
e2π(M/N)n .

This is like 1/k2, so it will be convergent.

3.1.2
The inverse z-transform

One method for determining the inverse is contour integration using the Cauchy integral theorem. See 3.4.

Key point: we want to avoid this! By learning z-transform properties, can expand small table of z-transforms into a large set.
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3.2
Properties of the z-transform

For each property must consider both “what happens to formula X(z)” and what happens to ROC.

Linearity

If x1[n]
Z
↔ X1(z) and x2[n]

Z
↔ X2(z) then

x[n] = a1 x1[n] +a2 x2[n]
Z
↔ a1 X1(z)+a2 X2(z)

Follows directly from definition.

Very useful for finding z-transforms and inverse z-transforms!

The ROC of the sum contains at least as much of the z-plane as the intersection of the two ROC’s.

Example: x[n] = cos(ω0n + φ)u[n] (causal sinusoid).
By Euler’s identity, x[n] = 1

2

(
e(ω0n+φ) + e−(ω0n+φ)

)
u[n] = 1

2 eφ (eω0)
n

u[n] + 1
2 e−φ (e−ω0)

n
u[n] .

Applying previous example with “p = e±ω0” and linearity:

X(z) =
1
2 eφ

1 − eω0 z−1
+

1
2 e−φ

1 − e−ω0 z−1
=

1
2 eφ

(
1 − e−ω0 z−1

)
+ 1

2 e−φ
(
1 − eω0 z−1

)

(1 − eω0 z−1)(1 − e−ω0 z−1)
=

cosφ − z−1 cos(ω0 − φ)

1 − 2z−1 cosω0 + z−2
.

What is the ROC? {|z| > |p| = 1}, as one expects since |cos(ωn)| ≤ 1.

Time shifting

If x[n]
Z
↔ X(z), then x[n − k]

Z
↔ z−k X(z).

Simple proof by change of index variable.
ROC is unchanged, except for adding or deleting z = 0 or z = ∞.

Now clear why unit delay was labeled z−1.

Scaling the z-domain, aka modulation

If x[n]
Z
↔ X(z) with ROC = {r1 < |z| < r2}, then an x[n]

Z
↔ X

(
a−1z

)
with ROC = {|a|r1 < |z| < |a|r2}.

Example. Decaying sinusoid: x[n] = 1
2n cos(ω0n) u[n].

X(z) =
1 − 1

2z−1 cos ω0

1 − z−1 cos ω0 + 1
4z−2

with ROC =
{
|z| > 1

2

}
.

Time reversal

If x[n]
Z
↔ X(z) with ROC = {r1 < |z| < r2}, then x[−n]

Z
↔ X

(
z−1

)
with ROC = {1/r2 < |z| < 1/r1}.

Simple proof by change of summation index, since positive powers of z become negative and vice versa.

Differentiation in z-domain

If x[n]
Z
↔ X(z) then nx[n]

Z
↔ −z d

dz X(z). The ROC is unchanged.

Proof:

−z
d

dz
X(z) = −z

d

dz

∞∑

n=−∞

x[n] z−n = −z

∞∑

n=−∞

x[n] (−n) z−n−1 =

∞∑

n=−∞

(nx[n]) z−n = Z {nx[n]} .

Caution for derivative when n = 0.

Example: x[n] = nu[n] (unit ramp signal). We know U(z) = 1/(1 − z−1) for {|z| > 1}. So

X(z) = −z
d

dz
U(z) = −z

−z−2

(1 − z−1)2
=

z−1

(1 − z−1)2
, {|z| > 1} .
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Convolution

If x1[n]
Z
↔ X1(z) and x2[n]

Z
↔ X2(z) then x[n] = x1[n] ∗x2[n]

Z
↔ X(z) = X1(z) X2(z)

Proof:

X(z) =

∞∑

n=−∞

x[n] z−n

=

∞∑

n=−∞

[
∞∑

k=−∞

x1[k] x2[n − k]

]

z−n

=
∞∑

k=−∞

x1[k]

[
∞∑

n=−∞

x2[n − k] z−n

]

=

∞∑

k=−∞

x1[k] z−k X2(z)

= X1(z)X2(z)

The ROC of the convolution contains at least as much of the z-plane as the intersection of the ROC of X1(z) and the ROC of
X2(z).

Recipe for convolution without tears:
• Compute both z-transforms
• Multiply
• Find inverse z-transform. (Hopefully already in table...)

Example. x[n] = u[n] ∗u[n − 1]

X(z) =
1

1 − z−1
· z−1 1

1 − z−1
=

z−1

(1 − z−1)2

using the time-shift property. So x[n] = nu[n] from previous example.
Contrast with continuous-time: u(t) ∗ u(t) = tu(t).

ROC for both u[n] and u[n − 1] is {|z| > 1}. Same ROC for their convolution.

Convolution and LTI systems

If x[n] → LTI h[n] → y[n], then since y[n] = x[n] ∗h[n], Y (z) = H(z)X(z).

Example: where ROC after convolution is larger than intersection.
h[n] = δ[n]− δ[n − 1] (discrete-time differentiator).
x[n] = u[n − 2] (delayed step function).
H(z) = 1 − z−1 for z 6= 0.
X(z) = z−2

1−z−1 for {|z| > 1}. (Why?)

y[n] = x[n] ∗h[n], so

Y (z) = H(z)X(z) = (1 − z−1)
z−2

1 − z−1
= z−2

which has ROC = C − {0}, which is “bigger” than intersection of ROCX and ROCH .
What is y[n]? y[n] = δ[n − 2].
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Correlation of two sequences

If x[n]
Z
↔ X(z) and y[n]

Z
↔ Y (z) are both real then

rxy[l] =
∞∑

n=−∞

x[n] y[n − l]
Z
↔ Rxy(z) = X(z)Y (z−1)

since rxy[l] = x[l] ∗ y[−l] and by convolution and time-reversal properties.

The ROC is at least as large as the intersection of the ROC of X(z) with the ROC of Y (z−1).

Multiplication of two sequences (mention only)

If x1[n]
Z
↔ X1(z) and x2[n]

Z
↔ X2(z) then

x[n] = x1[n] x2[n]
Z
↔ X(z) =

1

2π

∮

X1(v)X∗

2

(z

v

)

v−1 dv

Read about ROC

Parseval’s relation (mention only)

∞∑

n=−∞

x1[n] x∗

2[n] =
1

2π

∮

X1(z)X∗

2

(
1

z∗

)

z−1 dz

provided that r1lr2l < 1 < r1ur2u

Initial value theorem

If x[n] is causal, then
x[0] = lim

z→∞
X(z)

Proof: simple from definition: X(z) = x[0] +x[1] z−1 + x[2] z−2 + · · ·

Final value theorem

If x[n] is causal then
lim

n→∞
x[n] = lim

z→1
(z − 1)X(z) .

The limit exists provided the ROC of (z − 1)X(z) includes the unit circle.
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Comparison to Laplace properties

Compared to corresponding properties for Laplace transform, there are some missing.
Which ones?

Conjugation

x∗[n]
Z
↔ X∗(z∗)

So if x[n] is real, then X(z) = X∗(z∗).
(For later: If in addition, X(z) is rational, then the polynomial coefficients are real.)

Laplace properties for which z-transform analogs are less obvious because time index n is an integer in DT.

Property Continuous-Time Discrete-Time
Laplace transform z-transform

Time scaling f(at)
L
↔

1

|a|
F

( s

a

)

, a 6= 0. ?

Differentiation/difference in the time domain d
dt xa(t)

L
↔ sXa(s) x[n]−x[n − 1]

Z
↔ (1 − z−1)X(z)

Integration/summation in the time domain
∫ t

−∞
xa(τ) dτ

L
↔ 1

s Xa(s)
∑n

k=−∞
x[k]

Z
↔ 1

1−z−1 X(z)

In discrete time, the analog of time scaling is up-sampling and down-sampling.

Time expansion (up-sampling)

Define the M -times upsampled version of x[n] as follows:

y[n] =

{
x[n/M ], if n is a multiple of M
0, otherwise

for M = 2 : = {. . . , 0, x[−2], 0, x[−1], 0, x[0], 0, x[1], 0, x[2], 0, . . .} .

Then Y (z) =
∑∞

n=−∞
x[n] z−nM = X

(
zM

)
, with ROCY =

{
z ∈ C : zM ∈ ROCX

}
.

x[n] ↑ M
Z
↔ X

(
zM

)

Example. Find z-transform of y[n] =
{
1, 0, 0, 1/8, 0, 0, 1/82, . . .

}
. The brute-force way to solve this problem is as follows:

Y (z) = 1 + (1/8)z−3 + (1/8)2z−6 + · · · =

∞∑

k=0

(1/8)kz−3k =

∞∑

k=0

(
1

8z3

)k

=
1

1 − (1/8)z−3
,

if |(1/8)z−3| < 1 i.e., |z| > 1/2 = ROC.

The alternative approach is to use upsampling properties. y[n] is formed by upsampling by a factor of m = 3 the signal x[n] =

(1/8)n u[n]
Z
↔ X(z) = 1

1−(1/8)z−1 for ROC = {|z| > 1/8}. Thus Y (z) = X
(
z3

)
= 1

1−(1/8)z−3 for ROC =
{
|z3| > 1/8

}
.

Down-sampling

One way to “down sample” is to zero out all samples except those that are multiples of m: Define

y[n] =

{
x[n], n not a multiple of m
0, otherwise

for m = 2 : = {. . . , 0, x[−4], 0, x[−2], 0, x[0], 0, x[2], 0, x[4], 0, . . .} .

General case left as exercise.

Example: m = 2.
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Trick: write y[n] = 1
2 (1 + (−1)n) x[n] = 1

2 x[n] + 1
2 (−1)n x[n] .

Using linearity and z-domain scaling property: Y (z) = 1
2 [X(z)+X(−z)] .

ROC of Y (z) is at least as large as ROC of X(z).

Formula that is useful for such derivations:

· · · + g[−2] + g[0] + g[2] + g[4] + · · · =

∞∑

n=−∞

g[2n] =

∞∑

m=−∞

1

2
(1 + (−1)m) g[m] .
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3.3
Rational z-transforms

All of the above examples had z-transforms that were rational functions, i.e., a ratio of two polynomials in z or z−1.

X(z) =
B(z)

A(z)
= g

∏

k(z − zk)
∏

k(z − pk)
.

This is a very important class (i.e., for LTI systems described by difference equations).

3.3.1
Poles and zeros
• The zeros of a z-transform X(z) are the values of z where X(z) = 0.
• The poles of a z-transform X(z) are the values of z where X(z) = ∞. (cf. mesh plot of X(z))

If X(z) is a rational function, i.e., a ratio of two polynomials in z, then

X(z) =
N(z)

D(z)
=

b0 + b1z
−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aMz−M
=

∑M
k=0 bkz−k

∑N
k=0 akz−k

Without loss of generality, we assume a0 6= 0 and b0 6= 0, so we can rewrite

X(z) =
b0

a0

z−M

z−N

zM + b1
b0

zM−1 + · · · + bM

b0

zN + a1

a0
zN−1 + · · · + aN

a0

4
=

b0

a0
zN−M N ′(z)

D′(z)

N ′(z) has M finite roots at z1, . . . , zM , and D′(z) has N finite roots at p1, . . . , pN . So we can rewrite X(z):

X(z) =
b0

a0
zN−M (z − z1)(z − z2) · · · (z − zM )

(z − p1)(z − p2) · · · (z − pN )

or

X(z) = GzN−M

∏M
k=1(z − zk)

∏N
k=1(z − pk)

,

where G
4
= b0

a0
. Thus

• X(z) has M finite zeros at z1, . . . , zM

• X(z) has N finite poles at p1, . . . , pN

• If N > M , X(z) has N − M zeros at z = 0
• If N < M , X(z) has M − N poles at z = 0
• There can also be poles or zeros at z = ∞, depending if X(∞) = ∞ or X(∞) = 0
• Counting all of the above, there will be the same number of poles and zeros.

Because of the boxed form above, X(z) is completely determined by is pole-zero locations up to the scale factor G. The scale
factor only affects the amplitude (or units) of the signal or system, whereas the poles and zeros affect the behavior.

A pole-zero plot is a graphic description of rational X(z), up to the scale factor. Use ◦ for zeros and × for poles. Multiple poles
or zeros indicated with adjacent number.

By definition, the ROC will not contain any poles.

Skill: Go from x[n] to X(z) to pole-zero plot.

Example. x[n] = nu[n], unit ramp signal. Previously showed that X(z) = z−1

(1−z−1)2 = z
(z−1)2 , {|z| > 1} .

Re(z)

Im(z)

2

ROC = {|z| > 1}
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Skill: Go from pole-zero plot to X(z) to x[n].

Example. What are possible ROC’s in following case? Answer: {|z| < 1}, {1 < |z| < 3}, or {3 < |z|}.

Re(z)

Im(z)

2 3

gain = 7

X(z) = 7 (z−)(z+)(z−2)
(z−0)(z−1)(z−3) = 7 (1−z−1)(1+z−1)(1−2z−1)

(1−z−1)(1−3z−1) . But what is x[n]? (PFE soon...)

3.3.2
Pole location and time-domain behavior for causal signals

The roots of a polynomial with real coefficients (the usual case) are either real or complex conjugate pairs. Thus we focus on these
cases.

Single real pole
x[n] = pn u[n]

Z
↔ X(z) =

1

1 − pz−1
=

z

z − p
.

Fig. 3.11
• signal decays if pole is inside unit circle
• signal blows up if pole is outside unit circle
• signal alternates sign if pole is in left half plane, since (−|p|)n = (−1)n|p|n

Double real pole

x[n] = npn u[n]
Z
↔ X(z) = −z

d

dz

1

1 − pz−1
=

pz−1

(1 − pz−1)2
=

pz

(z − p)2

Fig. 3.12

Generalization to multiple real poles?

Pair of complex-conjugate poles

From Table 3.3:

an sin(ω0n) u[n]
Z
↔

az−1 sin ω0

1 − 2az−1 cosω0 + a2z−2
=

az sin ω0

z2 − 2az cosω0 + a2
=

az sin ω0

(z − a eω0)(z − a e−ω0)
,

where a is assumed real. The roots of the denominator polynomial are

z =
2a cos ω0 ±

√

(2a cos ω0)2 − 4a2

2
= a cos ω0±a

√

cos2 ω0 − 1 = a[cos ω0±

√

− sin2 ω0] = a[cos ω0±j sin ω0] = a e±ω0 .

Thus the poles of the transform of the above signal are at p = a eω0 and p∗ = e−ω0 .

Thus the following signal has a pair of complex-conjugate poles:

x[n] = an sin(ω0n) u[n]
Z
↔ X(z) =

az sin ω0

(z − p)(z − p∗)
.

(Also see (3.6.43).)
Fig. 3.13

What determines the rate of oscillation? ω0

Qualitative relationship with Laplace: z ≡ esT , in terms of pole-zero locations.
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3.3.3
The system function of a LTI system

As noted previously: x[n] → LTI h[n] → y[n] = x[n] ∗h[n]
Z
↔ Y (z) = H(z)X(z) .

• Forward direction: transform h[n] and x[n], multiply, then inverse transform.
• Reverse engineering: put in known signal x[n] with transform X(z); observe output y[n]; compute transform Y (z). Divide the

two to get the system function or transfer function H(z) = Y (z) /X(z) .

If you can choose any input x[n], what would it be? Probably x[n] = δ[n] since X(z) = 1, so output is directly the impulse
response.

• The third rearrangement X(z) = Y (z) /H(z) is also useful sometimes.

Now apply these ideas to the analysis of LTI systems that are described by general linear constant-coefficient difference equations
(LCCDE) (or just diffeq systems):

y[n] = −

N∑

k=1

ak y[n − k] +

M∑

k=0

bk x[n − k] .

Goal: find impulse response h[n]. Not simple with time-domain techniques. Systematic approach uses z-transforms.

Applying linearity and shift properties taking z-transform of both sides of the above:

Y (z) = −

N∑

k=1

akz−k Y (z)+

M∑

k=0

bkz−k X(z)

so [

1 +
N∑

k=1

akz−k

]

Y (z) =

[
M∑

k=0

bkz−k

]

X(z)

so, defining a0
4
= 1,

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz−k

1 +
∑N

k=1 akz−k
=

∑M
k=0 bkz−k

∑N
k=0 akz−k

,

What is the name for this type of system function? It is a rational system function. (Ratio of polynomials in z.)

Now we can see why “−” sign in difference equation.
We can also see why studying rational z-transforms is very important.

The system function for a LCCDE system is rational.

Skill: Convert between LCCDE and system function.

What about irrational system functions? (optional reading)

Although all diffeq systems have rational z-transforms, diffeq systems are just a (particularly important) type of system within the
broader family of LTI systems. There do exist (in principle at least) LTI systems that do not have rational system functions.

Example. Consider the LTI system having the impulse response h[n] = 1
n u[n].

The system function for this (IIR) system is H(z) =
∑∞

n=0
1
nz−n = log z−1 = − log z, which certainly is not rational.

However, this system does not have any known practical use, and would be entirely impractical to implement!
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All zero system

If N = 0 or equivalently a1 = · · · = aN = 0, then the system function simplifies to

H(z) =
M∑

k=0

bkz−k =
1

zM

M∑

k=0

bkzM−k =

∏M
k=1(z − zk)

zM
.

The M poles at z = 0 are called trivial poles.

Why are they called trivial poles? One reason is that they correspond only to a time shift. The other is that if a system has a pole
outside the unit circle, then certain bounded inputs will produce an unbounded output (unstable). But a pole at zero does not cause
this unstable behavior, so its effect is in some sense trivial.

Then there are M roots of the “numerator” polynomial that are nontrivial zeros. Thus this is called a all-zero system.
The impulse response is FIR:

h[n] =

N∑

k=0

bk δ[n − k] .

All pole system

If M = 0 or equivalently b1 = · · · = bM = 0, then the system function reduces to

H(z) =
b0

1 +
∑N

k=1 akz−k
=

b0z
N

∑N
k=0 akzN−k

= b0
zN

∏N
k=1(z − pk)

,

where a0
4
= 1. This system function has N trivial zeros at z = 0 that are relatively unimportant, and the denominator polynomial

has N roots that are the poles of H(z). Thus this is called a all-pole system.
The impulse response is IIR.

Otherwise the impulse response is called a pole-zero system, and the impulse response is IIR.

Skill: Find impulse response h[n] for rational system function H(z).

Example. Find impulse response h[n] for a system described by the following input-output relationship: y[n] = − y[n − 2] +x[n] .

Recall that earlier we found the impulse response of y[n] = y[n − 1] +x[n] by a “trick.”
Now we can approach such problems systematically.

Do not bother using above formulas, just use the principle of going to the transform domain.

Write z-transforms: Y (z) = −z−2 Y (z) +X(z), so (1 + z−2)Y (z) = X(z) and H(z) =
1

1 + z−2
.

From Table 3.3: cos(nπ/2) u[n]
Z
↔

1

1 + z−2
, so h[n] = cos(nπ/2) u[n] = {1, 0,−1, 0, . . .} .

Note that there is more than one choice (causal and anti-causal) for the inverse z-transform since ROC never discussed.
Why did I choose the causal sequence? Because all LTI systems described by difference equations are causal.

In the above case, we could work from Table 3.3 to find h[n] from H(z). But what if the example were y[n] = y[n − 3] +x[n]?

Looks simple, should be do-able. By same approach, H(z) =
1

1 − z−3
, which is not in our table.

So what do we do? We need inverse z-transform method(s)!

Summary

The above concepts are very important!
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3.4
Inversion of the z-transform
Skill: Choosing and performing simplest approach to inverting a z-transform.

Methods for inverse z-transform
• Table lookup (already illustrated), using properties
• Contour integration
• Series expansion into powers of z and z−1

• Partial-fraction expansion and table lookup

Practical problems requiring inverse z-transform?
• Given a system function H(z), e.g., described by a pole-zero plot, find h[n].

This is particularly important since we will design filters “in the z-domain.”
• When performing convolution via z-transforms: Y (z) = H(z) X(z), leading to y[n].

3.4.1
The inverse z-transform by contour integration

x[n] =
1

2π

∮

X(z) zn−1 dz

The integral is a contour integral over a closed path C that must
• enclose the origin,
• lie in the ROC of X(z).

Typically C is just a circle centered at the origin and within the ROC.

Cauchy residue theorem. skip : see text

1

2πj

∮

zn−1−k dz =

{
1, k = n
0, k 6= n

= δ[n − k] .

The rest of this section might be called “how to avoid using this integral.”
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3.4.2
The inverse z-transform by power series expansion, aka “coefficient matching”

If we can expand the z-transform into a power series (considering its ROC), then “by the uniqueness of the z-transform:”

if X(z) =

∞∑

n=−∞

cnz−n then x[n] = cn,

i.e., the signal sample values in the time-domain are the corresponding coefficients of the power series expansion.

Example. Find impulse response h[n] for system described by y[n] = 2 y[n − 3] +x[n].

By the usual Y/X method, we find H(z) = 1
1−2z−3 .

From the diffeq, we this is a causal system. Do we want an expansion in terms of powers of z or z−1? We want z−1.

Using geometric series: H(z) = 1
1−2z−3 =

∑∞

k=0(2z
−3)k =

∑∞

k=0 2kz−3k = 1 + 2z−3 + 22z−6 + . . ..
Thus h[n] = {1, 0, 0, 2, 0, 0, 4, . . .} =

∑∞

k=0 2k δ[n − 3k].

This case was easy since the power series was just the familiar geometric series.
In general one must use tedious long division if the power series is not easy to find.

Very useful for checking the first few coefficients!

Example. Find the impulse response h2[n] for the system described by y[n] = 2 y[n − 3] +x[n] +5x[n − 1].
We have

H2(z) =
1 + 5z−1

1 − 2z−3
=

1

1 − 2z−3
+

5z−1

1 − 2z−3
= H(z)+5z−1 H(z) =⇒ h2[n] = h[n] +5h[n − 1] = {1, 5, 0, 2, 10, 0, 4, 20, . . .} .

Example. What if we knew we had an anti-causal system? (e.g., y[n] = 2 y[n + 3] +x[n + 1]).

Rewrite H(z) = z/(1 − 2z3) = z
∑∞

k=0(2z
3)k =

∑∞

k=0 2kz3k+1 =⇒
h[n] =

∑∞

k=0 2k δ[n + (3k + 1)] = {. . . , 4, 0, 0, 2, 0, 0, 1, 0, 0, 0, . . .} .

But we still need a systematic method for general cases.

To PFE or not to PFE?

Before delving into the PFE, it is worth noting that there are often multiple mathematically equivalent answers to discrete-time
inverse z-transform problems.

Example. Find the impulse response h[n] of the causal system having system function H(z) =
1 + 5z−1

1 − 2z−1
.

Approach 1: expand H(z) into two terms and use linearity and shift properties:

H(z) =
1

1 − 2z−1
+ 5z−1 1

1 − 2z−1
=⇒ h[n] = 2n u[n] +5 · 2n−1 u[n − 1] .

Approach 2: perform “long division:”

H(z) = −
5

2
+

[
1 + 5z−1

1 − 2z−1
+

5

2

]

=
5

2
+

7
2

1 + 2z−1
=⇒ h[n] = −

5

2
δ[n] +

7

2
2n u[n]

︸ ︷︷ ︸

due to pole

.

Which answer is correct for h[n]? Both!
(Equality is not immediately obvious, but one can show that they are equal using δ[n] = u[n]−u[n − 1].)

However, the second form is preferable because this system has one pole, at z = 2, so it is preferable to use the form that has
exactly one term for each pole. The asymptotic (large n) behavior is more apparent in the second form.
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3.4.3
The inverse z-transform by partial-fraction expansion

General strategy: suppose we have a “complicated” z-transform X(z) for which we would like to find the corresponding discrete-
time signal x[n]. If we can express X(z) as a linear combination of “simple” functions {Xk(z)} whose inverse z-transform is
known, then we can use linearity to find x[n]. In other words:

X(z) = α1 X1(z) + · · · + αK XK(z) =⇒ x[n] = α1 x1[n] + · · · + αK xK [n] .

In principle one can apply this strategy to any X(z). But whether “simple” Xk(z)’s can be found will depend on the particular
form of X(z).

Fortunately, for the class of rational z-transforms, a decomposition into simple terms is always possible, using the partial-fraction
expansion (PFE) method.

What are the “simple forms” we will try to find? They are the “single real pole,” “double real pole,” and “complex conjugate pair”
discussed previously, summarized below.

Type X(z) x[n]

polynomial in z
∑

k ckz−k
∑

k ck δ[n − k]

single real pole
1

1 − pz−1
pn u[n]

double real pole
pz−1

(1 − pz−1)2
npn u[n]

double real pole
1

(1 − pz−1)2
(n + 1)pn u[n]

triple real pole
1

(1 − pz−1)3
(n + 2)(n + 1)

2
pn u[n]

complex conjugate pair
az sin ω0

(z − a eω0)(z − a e−ω0)
an sin(ω0n) u[n]

complex conjugate pair
p = |p| eω0

r

1 − pz−1
+

r∗

1 − p∗z−1
2 |r| |p|

n
cos(ω0n + ∠r) u[n]

Step 1: Decompose X(z) into proper form + polynomial

As usual, we assume a0 = 1, without loss of generality, so we can write the rational z-transform as follows:

X(z) =
N(z)

D(z)
=

b0 + b1z
−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N
.

Such a rational function is called proper iff aN 6= 0 and M < N . We want to work with proper rational functions.

We can always rewrite an improper rational function (M ≥ N ) as the sum of a polynomial and a proper rational function.

If M ≥ N , then
PM (z−1)

PN (z−1)
= PM−N (z−1) +

PN−1(z
−1)

PN (z−1)
.

Example.

X(z) =
1 + z−2

1 + 2z−1
=

1

2
z−1 +

[
1 + z−2

1 + 2z−1
−

1

2
z−1

]

=
1

2
z−1 +

1 + z−2 − 1
2z−1

(
1 + 2z−1

)

1 + 2z−1
=

1

2
z−1 +

1 − 1
2z−1

1 + 2z−1

=
1

2
z−1 −

1

4
+

[
1 − 1

2z−1

1 + 2z−1
+

1

4

]

= −
1

4
+

1

2
z−1 +

1 − 1
2z−1 + 1

4

(
1 + 2z−1

)

1 + 2z−1
= −

1

4
+

1

2
z−1 +

5
4

1 + 2z−1
.

In general this is always possible using long division.
The polynomial part is trivial to invert. Therefore, from now on we focus on proper rational functions.
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Step 2: Find roots of denominator (poles)

The MATLAB roots command is useful here, or the quadratic formula when N = 2.

We call the roots p1, . . . , pN , since these roots are the poles of X(z).

Step 3a: PFE for distinct roots

One can use z or z−1 for PFE. The book chooses z. We choose z−1 to match MATLAB’s residuez.

If the poles p1, . . . , pN are all different (distinct) then the expansion we seek has the form

X(z) =
r1

1 − p1z−1
+ · · · +

rN

1 − pNz−1
, (3-1)

where the rk’s are real or complex numbers called residues.

For distinct roots:

rk = (1 − pkz−1)X(z)
∣
∣
∣
z=pk

Proof:
(1 − pkz−1)X(z) = (1 − pkz−1)

r1

1 − p1z−1
+ · · · + rk + · · · + (1 − pkz−1)

rN

1 − pNz−1
,

and evaluate the LHS and RHS at z = pk.

Step 4a: inverse z-transform

Assuming x[n] is causal (i.e., ROC = {|z| > maxk |pk|}):

x[n] = r1p
n
1 u[n] + · · · + rNpn

N u[n] .

The discrete-time signal corresponding to a rational function in proper form
with distinct roots is a weighted sum of geometric progression signals.

Complex conjugate pairs

In the usual case where the polynomial coefficients are real, any complex poles occur in conjugate pairs. Furthermore, the corre-
sponding residues in the PFE also occur in complex-conjugate pairs.

PFE residues occur in complex-conjugate pairs for complex-conjugate roots.

skip Proof (for the distinct-root case with real coefficients):
Let p and p∗ denote a complex-conjugate pair of roots. Suppose X(z) = Y(z)

(1−pz−1)(1−p∗z−1) where Y (z) is a ratio of polynomials
in z with real coefficients. Then

r1 = (1 − pz−1)X(z)
∣
∣
∣
z=p

=
Y (z)

1 − p∗z−1

∣
∣
∣
∣
z=p

=
Y (p)

1 − p∗/p

r2 = (1 − p∗z−1)X(z)
∣
∣
∣
z=p∗

=
Y (z)

(1 − pz−1)

∣
∣
∣
∣
z=p∗

=
Y (p∗)

1 − p/p∗
=

[
Y ∗(p∗)

1 − p∗/p

]∗

=

[
Y (p)

1 − p∗/p

]∗

= r∗1

since Y ∗(p) = Y (p∗) because Y (z) has real coefficients.

Example.

X(z) =
r

1 − pz−1
+

r∗

1 − p∗z−1

thus
x[n] = [rpn + r∗(p∗)n]u[n] .

Since this is of the form a + a∗, it must be real, so it is useful to express it using real quantities.

x[n] = 2 real(rpn) u[n] = 2 real
(
|r| eφ |p|

n
eω0n

)
u[n] = 2 |r| |p|

n
cos(ω0n + φ)u[n]

where p = |p| eω0 and r = |r| eφ. Note the different roles of ∠p = ω0 (frequency) and ∠r = φ (phase).
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3.4.3
Example. Inverse z-transform by PFE

Find the signal x[n] whose z-transform has the following pole-zero plot.

Re(z)

Im(z)

-

-2 1/2 3
ROC = {1/2 < |z| < 3}g = 1

Find the formula for X(z) and manipulate it (resorting to long division if necessary) to put
in “proper form:”

X(z) =
z + 2

(z − 3)(z − 1/2)

=
z−1 + 2z−2

(1 − 3z−1)(1 − 1
2z

−1)
(negative powers of z in denominator)

=
4

3
+

[
z−1 + 2z−2

1 − 7
2z

−1 + 3
2z

−2
−

2

3/2

]

(avoiding long division)

=
4

3
+

z−1 + 2z−2 − 4
3

[
1 − 7

2z
−1 + 3

2z
−2

]

1 − 7
2z

−1 + 3
2z

−2

=
4

3
+

−4
3 + 17

3 z−1

(1 − 3z−1)(1 − 1
2z

−1)
(proper form!)

=
4

3
+

r1

1 − 3z−1
+

r2

1 − 1
2z

−1
(PFE)

residue values:

r1 =
−4

3 + 17
3 z−1

1 − 1
2z

−1

∣
∣
∣
∣
z=3

=
2

3
, r2 =

−4
3 + 17

3 z−1

1 − 3z−1

∣
∣
∣
∣
z=1/2

= −2

X(z) =
4

3
+

2
3

1 − 3z−1
+

−2

1 − 1
2z

−1
(could multiply out to check).

Considering the ROC, we conclude

x[n] =
4

3
δ[n]−

2

3
3n u[−n − 1]

︸ ︷︷ ︸

anti-causal

−2

(
1

2

)n

u[n] .

MATLAB approach: [r p k] = residuez([0 1 2], [1 -7/2 3/2])
returns (in decimals): r = [2/3 -2], p = [3 1/2], k = 4/3.
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General PFE formula for single poles, for proper form1 with M < N :

X(z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · · bMz−M

∏N
k=1(1 − pkz−1)

=
r1

1 − p1z−1
+ · · · +

rN

1 − pNz−1

where the residue is given by:

rj = (1 − pkz
−1) X(z)

∣
∣
∣
z=pk

=
B(z)

∏

l 6=k(1 − plz−1)

∣
∣
∣
∣
∣
z=pk

.

If pk is a repeated (2nd-order) pole:

X(z) = · · · +
rk,1

1 − pkz−1
+

rk,2

(1 − pkz−1)2
+ · · ·

rk,1 =
1

−pk

d

dz−1
(1 − pkz

−1)2 X(z)

∣
∣
∣
∣
z=pk

rk,2 = (1 − pkz
−1)2 X(z)

∣
∣
∣
z=pk

.

In general, if pk is an Lth-order repeated pole, then

X(z) = · · · +
L∑

l=1

rk,l

(1 − pkz−1)l
+ · · ·

where

rk,l =
1

(L − l)! (−pk)(L−l)

dL−l

d(z−1)L−l
(1 − pkz

−1)L X(z)

∣
∣
∣
∣
z=pk

, l = 1, . . . , L.

Rarely would one do this by hand for L > 2. Use residuez instead!

Fact. For real signals, any complex poles appear in complex conjugate pairs,
and the corresponding residues come in complex conjugate pairs:

X(z) = · · · +
r

1 − pz−1
+

r∗

1 − p∗z−1
+ · · ·

Letting p = |p| eω0 and r = |r| eφ (note the difference in meaning of the angles!):

x[n] = rpn u[n] +r∗(p∗)n u[n]

= |r| eφ (|p| eω0)n u[n] + |r| e−φ (|p| e−ω0)n u[n]

= |r|
(
|p|n eφ eω0n + e−φ e−ω0n

)
u[n]

= 2 |r| |p|n cos(ω0n + φ) u[n] .

1If not in proper form, then first do long division.
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Example. Finding the impulse response of a diffeq system.

Find the impulse response of the system described by the following diffeq:

y[n] =
4

3
y[n − 1]−

7

12
y[n − 2] +

1

12
y[n − 3] + x[n]− x[n − 3] .

Step 0: Find the system function. (linearity, shift property)

Y (z) =
4

3
z−1 Y (z)−

7

12
z−2 Y (z) +

1

12
z−3 Y (z) + X(z)−z−3 X(z)

[

1 −
4

3
z−1 +

7

12
z−2 −

1

12
z−3

]

Y (z) =
[
1 − z−3

]
X(z)

so (by convolution property):

H(z) =
Y (z)

X(z)
=

1 − z−3

1 − 4
3z

−1 + 7
12z

−2 − 1
12z

−3
.

Step 1: Decompose system function into proper form + polynomial.

In this case we can see by comparing the coefficients of the z−3 terms that the coefficient
for the 0th-order term will be 1/(1/12) = 12.

H(z) = 12 +

[
1 − z−3

1 − 4
3z

−1 + 7
12z

−2 − 1
12z

−3
− 12

]

= 12 + P (z)

where

P (z) =
1 − z−3

1 − 4
3z

−1 + 7
12z

−2 − 1
12z

−3
− 12

=
1 − z−3 − 12

[
1 − 4

3z
−1 + 7

12z
−2 − 1

12z
−3

]

1 − 4
3z

−1 + 7
12z

−2 − 1
12z

−3

=
−11 + 16z−1 − 7z−2

1 − 4
3z

−1 + 7
12z

−2 − 1
12z

−3
.

Note that P (z) is a proper rational function.
Since H(z) = 12 + P (z), we see that h[n] = 12 δ[n] + p[n].
We now focus on finding p[n] from P (z) by PFE.
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Step 2: Find poles (roots of denominator).

The MATLAB command roots([1 -4/3 7/12 -1/12]) returns 0.5 0.5 0.33,
so we check and verify that the denominator can be factored:

1 −
4

3
z−1 +

7

12
z−2 −

1

12
z−3 =

(

1 −
1

2
z−1

)2 (

1 −
1

3
z−1

)

,

so in factored form:

P (z) =
−11 + 16z−1 − 7z−2

(
1 − 1

2z
−1

)2 (
1 − 1

3z
−1

) .

Step 3: Find PFE

Since there is one repeated root, the PFE form is

P (z) =
r1,1

1 − 1
2z

−1
+

r1,2
(
1 − 1

2z
−1

)2 +
r2

1 − 1
3z

−1
. (3-2)

For a single pole at z = pk, we find the residue using this formula:

rk = (1 − pkz
−1) P (z)

∣
∣
∣
z=pk

.

Thus for the single pole at z = 1/3:

r2 = (1 −
1

3
z−1) P (z)

∣
∣
∣
∣
z=1/3

=
−11 + 16z−1 − 7z−2

(
1 − 1

2z
−1

)2

∣
∣
∣
∣
∣
z=1/3

= −104.

For a double pole at z = pk, the residues are given by

rk,1 =
1

−pk

d

dz−1
(1 − pkz

−1)2 P (z)

∣
∣
∣
∣
z=pk

, and rk,2 = (1 − pkz
−1)2 P (z)

∣
∣
∣
z=pk

.

Thus for the double pole at z = 1/2:

r1,1 =
1

−1/2

d

dz−1
(1 −

1

2
z−1)2 P (z)

∣
∣
∣
∣
z=1/2

= −2
d

dz−1

−11 + 16z−1 − 7z−2

1 − 1
3z

−1

∣
∣
∣
∣
z=1/2

= −2
(1 − 1

3z
−1)(16 − 14z−1) − (−11 + 16z−1 − 7z−2)(−1

3)

(1 − 1
3z

−1)2

∣
∣
∣
∣
z=1/2

= 114,

and

r1,2 = (1 −
1

2
z−1)2 P (z)

∣
∣
∣
∣
z=1/2

=
−11 + 16z−1 − 7z−2

(1 − 1
3z

−1)

∣
∣
∣
∣
z=1/2

= −21.
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Substituting in these residues into equation (3-2):

P (z) =
114

1 − 1
2z

−1
+

−21

(1 − 1
2z

−1)2
+

−104

1 − 1
3z

−1
.

Step 4: Inverse z-transform (using table lookup)

p[n] = 114

(
1

2

)n

u[n]−21(n + 1)

(
1

2

)n

u[n]−104

(
1

3

)n

u[n] .

Substituting into proper form decomposition above yields our final answer:

h[n] = 12 δ[n] +

[

(114 − 21(n + 1))

(
1

2

)n

− 104

(
1

3

)n]

u[n] .

The Resulting Impulse Response

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

n

h(
n)

Impulse Response for PFE Example

Sanity check: h[0] = 1, as it should because for this system y[0] = x[0] for a causal input.

Using MATLAB for PFE

Most of the above work is built into the following MATLAB command:
[r p k] = residuez([1 0 0 -1], [1 -4/3 7/12 -1/12])

which returns
• r = [114 -21 -104] (residues)
• p = [0.5 0.5 0.3333] (poles)
• k = [12] (direct terms)
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Furthermore, using MATLAB’s impz command, one can compute values of h[n] directly
from {bk} and {ak} (but it does not provide a formula for h[n]).
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skim

3.4.4
Decomposition of rational z-transforms

If a0 = 1 then

X(z) =

∑M
k=0 bkz−k

∑N
k=0 akz−k

= b0

∏M
k=1(1 − zkz−1)

∏N
k=1(1 − pkz−1)

.

Product form.

Combine complex-conjugate pairs

b1k = −2 real(zk)

b2k = |zk|
2

a1k = −2 real(pk)

a2k = |pk|
2

X(z) = b0

∏?
k=?(1 − zkz−1)

∏?
k=?(1 − pkz−1)

∏?
k=?(1 + b1kz−1 + b2kz−k)

∏?
k=?(1 + a1kz−1 + a2kz−k)

.

useful for implementing, see Ch 7, 8

just skim for now!

3.5
The One-Sided z-transform

skim

Useful for analyzing response of non-relaxed systems.

Definition:

X+(z)
4
=

∞∑

n=0

x[n] z−n

3.5.1

3.5.2 Solution of difference equations with nonzero initial conditions
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3.6
Analysis of LTI Systems in the z-domain

Main goals:
• Characterize response to inputs.
• Characterize system properties (stability, causality, etc.) in z-domain.

3.6.1
Response of systems with rational system functions

X(z) → H(z) → Y (z). Goal: characterize y[n]

Assume
• H(z) is a pole-zero system, i.e., H(z) = B(z) /A(z).
• Input signal has a rational z-transform of the form X(z) = N(z)/Q(z).

Then

Y (z) = H(z)X(z) =
B(z)N(z)

A(z)Q(z)
.

So the output signal also has a rational z-transform.

How do we find y[n]? Since Y (z) is rational, we use PFE to find y[n].

Assume
• Poles of system p1, . . . , pN are unique
• Poles of input signal q1, . . . , qL are unique
• Poles of system and input signal are all different
• Zeros of system and input signal differ from all poles (so no pole-zero cancellation)
• Proper form
• Causal input sequence and causal LTI system

Then

X(z) =

L∑

k=1

αk

1 − qkz−1

T
→ Y (z) =

N∑

k=1

rk

1 − pkz−1
+

L∑

k=1

sk

1 − qkz−1

so (assuming a causal system) the response is:

y[n] =

N∑

k=1

rkpn
k u[n]

︸ ︷︷ ︸

natural

+

L∑

k=1

skqn
k u[n]

︸ ︷︷ ︸

forced

.

The output signal for a causal pole-zero system with input signal having rational z-transform
is a weighted combination of geometric progression signals.

If there are repeated poles, then of course the PFE has terms of the form npn u[n] etc.

The output signal has two parts
• The pk terms are the natural response ynr[n] of the system. (The input signal affects only the residues rk).

Each term of the form pn
k u[n] is called a mode of the system.

• The qk terms are the forced response yfr[n] of the system. (The system affects “only” the residues sk.)

Transient response from pole-zero plot

What about systems that are not necessarily in proper form?
There may be additional kl δ[n − l] terms in the impulse response.

From the pole-zero plot corresponding to H(z), we can identify how many kl δ[n − l] terms will occur in the impulse response.
For causal systems:
• If there are one or more zeros at z = 0, then there will be no δ[n] terms in h[n].
• If there are no poles or zeros at z = 0, then there will be one term of the form k0 δ[n] in the the impulse response.
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• If there are N1 ≥ 1 poles at z = 0, then h[n] will include N1 + 1 terms of the form kl δ[n − l].

For IIR filters, the δ terms are less important than the terms in the impulse response (and in the transient response) that correspond
to nonzero poles.

3.6.2
Response of pole-zero systems with nonzero initial conditions

skim
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3.6.3
Transient and steady-state response

Define ynr[n] to be the natural response of the system, i.e., ynr[n] =
∑N

k=1 rkpn
k u[n] .

• If all the poles have magnitude less than unity, then this response decays to zero as n → ∞.
• In such cases we also call the natural response the transient response.
• Smaller magnitude poles lead to faster signal decay. So the closer the pole is to the unit circle, the longer the transient response.

The forced response has the form yfr[n] =
∑L

k=1 skqn
k u[n] .

• If all of the input signal poles are within the unit circle, then the forced response will decay towards zero as n → ∞.
• If the input signal has a pole on the unit circle then there is a persistent sinusoidal component of the input signal. The forced

response to such a sinusoid is also a persistent sinusoid.
• In this case, the forced response is also called the steady-state response.

Example. System (initially relaxed) described by diffeq: y[n] = 1
2 y[n − 1] +x[n] .

What are the poles of the system? At p = 0.5. H(z) =
1

1 − 1
2z−1

. Re(z)

Im(z)

Signal: x[n] = (−1)n u[n]. Pole at q = −1. X(z) =
1

1 + z−1
.

Y (z) = H(z)X(z) =
1

(1 − 1
2z−1)(1 + z−1)

=
1

1 + 1
2z−1 − 1

2z−2
=

1/3

1 − 1
2z−1

+
2/3

1 + z−1

where I found the PFE using [r p k] = residuez(1, [1 1/2 -1/2]). So

y[n] =
1

3

(
1

2

)n

u[n]

︸ ︷︷ ︸

natural / transient

+
2

3
(−1)n u[n]

︸ ︷︷ ︸

forced / steady state

.

Where did 2/3 come from? H(−1) = 2/3.
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0
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0.1

0.15

0.2
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n
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0 2 4 6 8 10 12 14 16
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1

n

y(
n)

Total Response
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Geometric progression signals are “almost” eigenfunctions of LTI systems

Fact: the forced response of an LTI system with rational system function H(z) that is driven by a geometric progression input
signal x[n] = qn u[n] is that same geometric progression scaled by H(q), i.e.,

x[n] = qn u[n]
T
→ y[n] = ynr[n] +H(q) qn u[n],

if no poles in system at z = q.

Y (z) = H(z) X(z) = H(z)
1

1 − qz−1
=

B(z)

A(z)(1 − qz−1)
=

P (z)

A(z)
+

r

1 − qz−1

by PFE if no roots of A(z) at z = q.

Residue:

r = (1 − qz−1) Y (z)|z=q = (1 − qz−1) H(z)
1

1 − qz−1

∣
∣
∣
∣
z=q

= H(q)

so
y[n] = ynr[n] +H(q) qn u[n] .

In particular, if q = eω0 , then the input signal is a causal sinusoid, and the forced response is a steady-state response. And if the
LTI system is stable, then it has no poles on the unit circle, so the condition that A(z) have no roots at z = q is satisfied. So the
steady-state response is

yfr[n] = H(eω0) eω0n u[n] = |H(eω0)| e(ω0n+∠ H(eω0 )) u[n]

which is a causal sinusoidal signal.

Thus the interpretation of H(eω0) as a frequency response is entirely appropriate, even in the case of non-eternal sinusoidal
signals!

Note that if the system is stable, then the poles are inside the unit circle so the natural response will be a transient response in this
case, so eventually the output just looks essentially like the steady-state sinusoidal response.
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3.6.4
Causality and stability

We previously described six system properties: linearity, invertibility, stability, causality, memory, time-invariance.
• We first described these properties in general.
• We then characterized these properties in terms of the impulse response h[n] of an LTI system,

because any LTI system is described completely by its impulse response h[n].
• causality: h[n] = 0 ∀ n < 0.
• stability:

∑∞

n=−∞
|h[n]| < ∞.

• Now we characterize these properties in the z-domain.
If it exists, the system function H(z) (including its ROC) also describes completely an LTI system, since we can find h[n] from
H(z), i.e., we can determine the output y[n] for any input signal x[n] if we know H(z) and its ROC.

Skill: Examine conditions for causality, stability, invertibility, memory in the z-domain.

Memory

What is the system function and ROC of a memoryless system?
An LTI system is memoryless iff h[n] = b0 δ[n]. So H(z) = b0. So H(z) has no poles or zeros, and ROC = C.

In terms of dynamic systems, recall that previously we noted that FIR systems are “all zero” systems (poles at origin only).

Re(z)

Im(z)

ROC = {0 ≤ |z| ≤ ∞}

Memoryless

Re(z)

Im(z)

2

ROC = {0 < |z| ≤ ∞}

FIR

Re(z)

Im(z)

ROC = {0.8 < |z| ≤ ∞}

IIR
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Causality

Previous time-domain condition for causality: LTI system is causal iff its impulse response h[n] is 0 for n < 0.

How can we express this in the z-domain?
We showed earlier that the ROC of the z-transform of a right-sided signal is the exterior of a circle.
But is ROC = “exterior of a circle” enough? No!

Example. h[n] = u[n + 1]
Z
↔

z

1 − z−1
=

z2

z − 1
for {1 < |z| < ∞}.

The ROC is a circle’s exterior, and h[n] is right-sided, but the system is not causal.

For a causal system, the system function (assuming it exists) has a series expansion that involves only non-positive powers of z:

H(z) =

∞∑

n=0

h[n] z−n = h[0] +h[1] z−1 + h[2] z−2 + · · · .

So the ROC of such an H(z) will include |z| = ∞. (In fact, limz→∞ H(z) = h[0], which must be finite.)

An LTI system with impulse response h[n] is causal iff the ROC of the system function is
the exterior of a circle of radius r < ∞ including z = ∞, i.e., ROC = {r < |z| ≤ ∞},

or, in the trivial case of a memoryless system, ROC = {0 ≤ |z| ≤ ∞}.

Example. (skip ) Is the LTI system with system function H(z) = z2 − z−1 causal? The ROC is C − {∞} − {0}, which is the
exterior of a circle of radius 0, excluding ∞. Thus noncausal, which we knew since h[n] = δ[n + 2].

Example. Which of the following pole-zero plots correspond to causal systems?

Re(z)

Im(z)

ROC = {|z| < 0.8}

Re(z)

Im(z)

ROC = {0.8 < |z| ≤ ∞}

Re(z)

Im(z)

ROC = {0.8 < |z| < ∞}

Only the middle one. For the right one H(z) = g (z−1)(z−1/2)
z−0.8 which is infinite at z = ∞. It is noncausal.

A given pole-zero plot for a rational system function corresponds to a causal LTI system
iff there are at least as many (finite) poles as (finite) zeros

and the ROC is the exterior of the circle intersecting the outermost pole.



c© J. Fessler, May 27, 2004, 13:11 (student version) 3.33

Stability

Recall time-domain condition for stability: an LTI system is BIBO stable iff
∑∞

n=−∞
|h[n]| < ∞.

How to express in the z-domain?
Recall definition of the ROC of a system function:

z ∈ ROC iff {h[n] z−n} is absolutely summable, i.e., S(z) =
∑∞

n=−∞
|h[n]| |z|−n < ∞.

• Suppose system is stable. What can we say about ROC?
If the system is stable, then on the unit circle, where |z| = 1, we see S(z) < ∞.
Thus BIBO stable system =⇒ ROC includes unit circle.

• Conversely, if the ROC includes the unit circle, then it includes the point z = 1, so S(1) < ∞, which implies
∑∞

n=−∞
|h[n]| <

∞ so the system is BIBO stable.

An LTI system is BIBO stable iff the ROC of its system function includes the unit circle.

Example. Suppose an LTI system has a pole on the unit circle at z = eω0 . If we apply the bounded input eω0n u[n], then the
steady state response (see 3.6.6 below) will include a term like n eω0n u[n], which is unbounded.

So poles on the unit circle preclude stability.

Example. y[n] = − y[n − 1] +x[n] =⇒ H(z) = 1
1+z−1 = z

z+1 which has a pole at z = −1 so this system is unstable.

In general causality and stability are unrelated properties.

However, for a causal system we can narrow the condition for stability.

For a causal system, the ROC is the exterior of a circle. For it to be stable as well, the ROC must include the unit circle, so the
radius r for the ROC must be less than 1. There cannot be any poles in the ROC, so all the poles must be inside (or on the boundary
of) the circle of radius r < 1, which are thus inside the unit circle.

A causal LTI system is BIBO stable iff all of the poles of its system function are inside the unit circle.

Example. Accumulator: y[n] = y[n − 1] +x[n] has H(z) = 1
1−z−1 . Stable? No: causal but pole at z = 1 so unstable.

Recall earlier pictures showing that causal signals with poles outside unit circle are blowing up.

Intuition: signals with poles on the unit circle are the most “persistent” of the bounded signals, since they are oscillatory with no
decay. So for the system to have bounded output for such bounded input signals, its ROC must include the unit circle.

skip 3.6.6 Multiple-order poles and stability

Can poles of system function lie on the unit circle and still have the system be stable? No.

Example. Consider h[n] = u[n], so H(z) = 1/(1 − z−1), which has a pole at z = 1. Now consider the input x[n] = u[n], which
is certainly a bounded input. The output y[n] = (n + 1)u[n], as we derived long ago. So the output is not bounded.

This can happen anywhere on the unit circle.
Therefore for a causal system to be stable, all the poles of its system function must lie strictly inside the unit circle.
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3.6.5 Pole-zero cancellations

When a system has a pole and a zero at exactly the same location, they cancel each other out.

Example. Is the system y[n] = 3 y[n − 1] +x[n] stable? No, since it hsa a pole at z = 3.

Example. Find system function and pole-zero plot and assess stability for diffeq system y[n] = 3 y[n − 1] + 1
3 x[n]−x[n − 1] .

Since [1 − 3z−1]Y (z) = [ 13 − z−1]X(z), the system function is H(z) = Y (z) /X(z) =
1
3
−z−1

1−3z−1 = 1
3 and h[n] = 1

3 δ[n].

The pole and zero at z = 3 cancel, so yes, theoretically this is a stable LTI system.

picture of direct form I implementation H1(z) = 1
3 − z−1, H2(z) = 1

1−3z−1 .

In practice there may be imperfect pole-zero cancellation. For example, in binary representation,

1/3 = .010101 . . . =

∞∑

k=0

2−(2k+1) = 1/4 + 1/16 + 1/64 + · · ·

which cannot be represented exactly with a finite number of bits. With 8 bits (.01010101), we get 0.333251953125 not 1/3.

Invertibility

In time domain, an LTI system with impulse response h[n] is invertible iff there exists an LTI system having some impulse response
hI [n] that satisfies: h[n] ∗hI [n] = δ[n].

In z-domain: H(z) HI(z) = 1, so HI(z) = 1
H(z) .

Example. H(z) = 7
5

z−2
z−1/2 =⇒ HI(z) = 5

7
z−1/2
z−2 .

So the poles becomes zeros and the zeros become poles.

Thus, in principle, any LTI system with rational system function is invertible.

However, in practice usually we want a stable inverse.

A causal, stable LTI system has a causal stable inverse
iff all of its poles and zeros are within the unit circle.

3.6.7
The Schur-Cohn stability test skip

We now have two valid procedures for checking stability of causal LTI systems:
• Check if

∑∞

n=0 |h[n]| < ∞.
• Check if poles of system lie inside unit circle.

To perform either one of these checks, generally one needs a concrete expression for h[n] or for H(z).

For a rational system function H(z) = B(z) /A(z), the poles are the roots of the denominator polynomial: A(z) = 1 + a1z
−1 +

· · · aNz−N . Given concrete numerical values for the ak coefficients, the usual approach to testing stability would be to just use
the MATLAB roots function and check the magnitudes of the roots.

But in the design process, often we have ranges of possible values for the coefficients, and we cannot check all of them using a
numerical root-finding routine. And for degrees greater than 2, there is no simple method for analytically finding the roots.

The Schur-Cohn test provides a method for verifying stability of discrete-time LTI systems having rational system functions without
explicitly finding the roots of the denominator polynomial. This is important practically since generally we want stable systems.

This test is the analog of the Routh-Hurwitz criterion used for testing stability of continuous-time systems.
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The Schur-Cohn Stability Test

The Schur-Cohn test provides a method for verifying stability of LTI systems with rational system functions
without explicitly finding the roots of the denominator polynomial. This is very important practically since
generally we want stable systems.

Procedure.
• Initialization: AN(z) = A(z) =

∑
N

k=0
akz

−k, aN(k) = ak

• Define: Am(z) =
∑

m

k=0
am(k)z−k, where am(0) = 1

• Define: Bm(z) = z−mAm(z−1) =
∑

m

k=0
am(m − k)z−k.

This is called the reverse polynomial, since order of coefficients are reversed.
• Define: Km = am(m), m = 1, . . . , N

• Recursion: Am−1(z) =
Am(z)−Km Bm(z)

1 − K2
m

for m = N,N − 1, . . . , 1

• Test: The roots of A(z) are all inside the unit circle iff |Km| < 1 for m = 1, 2, . . . , N .

The following second-order analysis serves as an “example.”

3.6.8 Stability of second-order systems

For first-order systems y[n] = a y[n − 1] + x[n], stability is trivial: check if |a| < 1.

Next interesting case is second-order systems:

y[n] = −a1 y[n − 1]−a2 y[n − 2] +b0 x[n] =⇒ H(z) =
b0

1 + a1z−1 + a2z−2
.

Question. What values of a1 and a2 lead to a stable system?

In this 2nd order case we could determine the roots using the quadratic formula.
That is not feasible for N > 2, so we use the Schur-Cohn method as an example.

A2(z) = 1 + a1z
−1 + a2z

−2 so K2 = a2(2) = a2

A1(z) =
A2(z)−K2 B2(z)

1 − K2
2

=
1 + a1z

−1 + a2z
−2 − a2(a2 + a1z

−1 + z−2

1 − a2
2

=
1 − a2

2 + a1(1 − a2)z
−1

1 − a2
2

= 1 +
a1

1 + a2
z−1,

so K1 =
a1

1 + a2

. Thus H(z) is stable iff |a2| < 1 and
∣
∣
∣
∣

a1

1 + a2

∣
∣
∣
∣
< 1 or |1 + a2| > |a1|.

When |a2| < 1, |1 + a2| = 1 + a2, so we need 1 + a2 > |a1|, i.e., −(1 + a2) < a1 < 1 + a2.

-1

-1

Real equal poles

1

Real, distinct poles

Complex conj. poles

1 2-2PSfrag replacements a1

a2

Restricting our designs to coefficients in that triangle will ensure stability, without explicitly finding the roots.
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In this 2nd order case the roots are given by the quadratic formula: p = − a1

2
±

√
a2

1
−4a2

4

• Real and equal poles when a2

1
= 4a2, i.e., on the parabola a2 = a2

1
/4 that touches corners of triangle.

• Real and distinct poles when a2

1
> 4a2, which is below parabola.

• Complex poles otherwise, above parabola.

The book derives the corresponding impulse response for each case.

3.7
Summary
• z-transform and its properties
• convolution property for z-domain convolution
• system function of LTI systems
• finding impulse response of diffeq system having rational system function
• characterizing properties of output signals (forced, natural, transient, steady-state response)
• characterizing system properties (causality and stability) in z-domain

We now have many representations of systems:
• time domain:

• block diagram
• impulse response
• difference equation

• transform domain:
• system function
• pole-zero plot
• frequency response (soon)

Skill: Convert between these six system representations. (See diagram.)
• Use z for going between H(z) and pole-zero plot.
• Use z−1 for PFE and for finding diffeq coefficients.

Where is 2D and image processing examples? Although 2D z-transform’s have been studied, e.g., [3], they are not particularly
useful in image processing, especially compared to the Fourier transform. In contrast, the 1D z-transform is the foundation for 1D
filter design.
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Discrete-time systems described by difference equations (FIR and IIR)

Difference equation:

y[n] = −

N∑

k=1

ak y[n − k] +

M∑

k=0

bk x[n − k]

System function (in expanded polynomial and in factored polynomial forms):

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz−k

∑N
k=1 akz−k

= b0z
N−M

∏M
k=1(z − zk)

∏N
k=1(z − pk)

Frequency magnitude response: |H(ω)| = b0

∏

k |e
ω − zk|

∏

k |e
ω − pk|

Relationships:
Difference Equation

Block Diagram

Pole-Zero Plot

Impulse Response

inverse Z, PFE

Z

DTFT

Filter Design

Geometry

Frequency Response

H
(z

)=
B

(z
)/A

(z
)

A
(z

)Y
(z

)=
B

(z
)X

(z
)

H(z)=Y(z)/X(z)

Dire
ct

 F
or

m
 I,

II

In
sp

ec
tio

n?

z,
p=

ro
ot

s{
b,

a}

PSfrag replacements

z = eω

x[n] =
δ[n] =⇒

y[n] =
h[n]

b
k =

h[k] if FIR

System Function H(z)

H
(z

)
=

g

∏
M k
=

1
(z

−
z k

)
∏

N k
=

1
(z

−
p

k
)

Each representation corresponds to a type of input/output relationship, e.g., convolution.
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z-Transforms

In the study of discrete-time signal and systems, we have thus far
considered the time-domain and the frequency domain. The z-
domain gives us a third representation. All three domains are
related to each other. 

A special feature of the z-transform is that for the signals
and system of interest to us, all of the analysis will be in terms of
ratios of polynomials. Working with these polynomials is rela-
tively straight forward.

Definition of the z-Transform

• Given a finite length signal , the z-transform is defined
as

(7.1)

where the sequence support interval is [0, N], and z is any
complex number

• This transformation produces a new representation of 
denoted 

• Returning to the original sequence (inverse z-transform) 
requires finding the coefficient associated with the nth power
of 

x n[ ]

X z( ) x k[ ]z k–

k 0=

N

∑ x k[ ] z 1–( )
k

k 0=

N

∑= =

x n[ ]
X z( )

x n[ ]

z 1–

Chapter

7
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•  Formally transforming from the time/sequence/n-domain to
the z-domain is represented as

• A sequence and its z-transform are said to form a z-transform
pair and are denoted

(7.2)

– In the sequence or n-domain the independent variable is n

– In the z-domain the independent variable is z

Example: 

• Using the definition

• Thus,

n-Domain z-Domain↔

x n[ ] x k[ ]δ n k–[ ]
k 0=

N

∑ X z( )↔ x k[ ]z k–

k 0=

N

∑= =
z

z

x n[ ] X z( )↔z

x n[ ] δ n n0–[ ]=

X z( ) x k[ ]z k–

k 0=

N

∑ δ k n0–[ ]z k–

k 0=

N

∑ z
n0–

= = =

δ n n0–[ ] z
n0–

↔
z
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Example: 

• By inspection we find that

Example: 

• By inspection we find that

• What can we do with the z-transform that is useful?

The z-Transform and Linear Systems

• The z-transform is particularly useful in the analysis and
design of LTI systems

The z-Transform of an FIR Filter

• We know that for any LTI system with input  and
impulse response , the output is

(7.3)

• We are interested in the z-transform of , where for an
FIR filter

(7.4)

x n[ ] 2δ n[ ] 3δ n 1–[ ] 5δ n 2–[ ] 2δ n 3–[ ]+ + +=

X z( ) 2 3z 1– 5z 2– 2z 3–
+ + +=

X z( ) 4 5z 2– z 3– 2z 4–
–+–=

x n[ ] 4δ n[ ] 5δ n 2–[ ]– δ n 3–[ ] 2δ n 4–[ ]–+=

x n[ ]
h n[ ]

y n[ ] x n[ ]*h n[ ]=

h n[ ]

h n[ ] bkδ n k–[ ]
k 0=

M

∑=
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• To motivate this, consider the input

(7.5)

• The output  is

(7.6)

• The term in parenthesis is the z-transform of , also
known as the system function of the FIR filter

• Like  was defined in Chapter 6, we define the system
function as

(7.7)

• The z-transform pair we have just established is

• Another result, similar to the frequency response result, is

(7.8)

x n[ ] zn ∞– n ∞< <,=

y n[ ]

y n[ ] bkx n k–[ ]
k 0=

M

∑ bkz
n k–

k 0=

M

∑= =

bkz
nz k–

k 0=

M

∑ bkz
k–

k 0=

M

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

zn==

h n[ ]

H ejω( )

H z( ) bkz
k–

k 0=

M

∑ h k[ ]z k–

k 0=

M

∑= =

h n[ ] H z( )↔

bkδ n k–[ ]
k 0=

M

∑ bkz
k–

k 0=

M

∑↔

z

z

y n[ ] h n[ ]*z
n H z( )zn= =



The z-Transform and Linear Systems

ECE 2610 Signals and Systems 7–5

– Note if , we in fact have the frequency response
result of Chapter 6

• The system function is an Mth degree polynomial in complex
variable z

• As with any polynomial, it will have M roots or zeros, that is
there are M values  such that 

– These M zeros completely define the polynomial to within
a gain constant (scale factor), i.e.,

where  denote the zeros

Example: Find the Zeros of

• The z-transform is

z ejω̂=

z0 H z0( ) 0=

H z( ) b0 b1z
1– … bMz

M–
+ + +=

1 z1z
1–

–( ) 1 z2z
1–

–( )… 1 zMz
1–

–( )=

z z1–( ) z z2–( )… z zM–( )

zM
--------------------------------------------------------------=

zk k, 1 … M, ,=

h n[ ] δ n[ ] 1
6
---δ n 1–[ ] 1

6
---δ n 2–[ ]–+=

H z( ) 1 1
6
---z 1– 1

6
---z 2–

–+=

1 1
2
---z 1–

+⎝ ⎠
⎛ ⎞ 1 1

3
---z 1–

–⎝ ⎠
⎛ ⎞=

z 1
2
---+⎝ ⎠

⎛ ⎞ z 1
3
---–⎝ ⎠

⎛ ⎞ z2⁄=
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• The zeros of  are -1/2 and +1/3

• The difference equation

has the same zeros, but a different scale factor;

proof:

Properties of the z-Transform

• The z-transform has a few very useful properties, and its def-
inition extends to infinite signals/impulse responses

The Superposition (Linearity) Property

(7.9)

proof

H z( )

y n[ ] 6x n[ ] x n 1–[ ] x n 2–[ ]–+=

ax1 n[ ] bx2 n[ ]+ aX1 z( ) bX2 z( )+↔z

X z( ) ax1 n[ ] bx2 n[ ]+( )z 1–

n 0=
∑=

a x1 n[ ]z 1–

n 0=

N

∑ b x2 n[ ]z 1–

n 0=

N

∑+=

aX1 z( ) bX2 z( )+=
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The Time-Delay Property

(7.10)

and

(7.11)

proof: Consider

then

Let

so

Similarly

x n 1–[ ] z 1– X z( )↔z

x n n0–[ ] z
n0–
X z( )↔z

X z( ) α0 α1z
1– … αNz

N–
+ + +=

x n[ ] αkδ n k–[ ]
k 0=

N

∑=

α0δ n[ ] α1δ n 1–[ ] … αNδ n N–[ ]+ + +=

Y z( ) z 1– X z( )=

α0z
1– α1z

2– … αNz
N– 1–

+ + +=

y n[ ] α0δ n 1–[ ] α1δ n 2–[ ] … αNδ n N 1––[ ]+ + +=

x n 1–[ ]=

Y z( ) z
n0–
X z( )=

 y n[ ]⇒ x n n0–[ ]=
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A General z-Transform Formula

• We have seen that for a sequence  having support inter-
val  the z-transform is

(7.12)

• This definition extends for doubly infinite sequences having
support interval  to

(7.13)

– There will be discussion of this case in Chapter 8 when we
deal with infinite impulse response (IIR) filters

The z-Transform as an Operator

The z-transform can be considered as an operator.

Unit-Delay Operator

x n[ ]
0 n N≤ ≤

X z( ) x n[ ]z n–

n 0=

N

∑=

∞– n ∞≤ ≤

X z( ) x n[ ]z n–

n ∞–=

∞

∑=

Unit
Delay

z 1–

x n[ ]

x n[ ]

y n[ ] x n 1–[ ]=
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• In the case of the unit delay, we observe that

(7.14)

which is motivated by the fact that 

• Similarly, the filter

can be viewed as the operator

since

Example: Two-Tap FIR

• Using the operator convention, we can write by inspection
that

y n[ ] z 1– x n[ ]{ } x n 1–[ ]= =

unit delay operator

Y z( ) z 1– X z( )=

y n[ ] x n[ ] x n 1–[ ]–=

y n[ ] 1 z 1–
–( ) x n[ ]{ } x n[ ] x n 1–[ ]–= =

Y z( ) X z( ) z 1– X z( )– 1 z 1–
–( )X z( )= =

Y z( ) b0X z( ) b1z
1– X z( )+=

y n[ ] b0x n[ ] b1x n 1–[ ]+=



Convolution and the z-Transform

ECE 2610 Signals and Systems 7–10

Convolution and the z-Transform

• The impulse response of the unity delay system is

and the system output written in terms of a convolution is

• The system function (z-transform of ) is

and by the previous unit delay analysis,

• We observe that

(7.15)

proof:

(7.16)

We now take the z-transform of both sides of (7.16) using
superposition and the general delay property

(7.17)

h n[ ] δ n 1–[ ]=

y n[ ] x n[ ]*δ n 1–[ ] x n 1–[ ]= =

h n[ ]

H z( ) z 1–
=

Y z( ) z 1– X z( )=

Y z( ) H z( )X z( )=

y n[ ] x n[ ]*h n[ ] h k[ ]x n k–[ ]
k 0=

M

∑= =

Y z( ) h k[ ] z k– X z( )( )
k 0=

M

∑=

h k[ ]z k–

k 0=

M

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

X z( ) H z( )X z( )==
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• Note: For the case of  a finite duration sequence,  is
a polynomial, and  is a product of polynomials in

Example: Convolving Finite Duration Sequences

• Suppose that

• We wish to find  by first finding 

• We begin by z-transforming each of the sequences

• We find  by direct multiplication

• We find  using the delay property on each of the terms of

Convolve directly?

x n[ ] X z( )
H z( )X z( )

z 1–

x n[ ] 2δ n[ ] 3δ n 2–[ ]– 4δ n 3–[ ]+=

h n[ ] δ n[ ] 2δ n 1–[ ] δ n 2–[ ]+ +=

y n[ ] Y z( )

X z( ) 2 3z 2–
– 4z 3–

+=

H z( ) 1 2z 1– z 2–
+ +=

Y z( )

Y z( ) 2 3z 2–
– 4z 3–

+( ) 1 2z 1– z 2–
+ +( )=

2 4z 1– z 2–
– 2z 3–

– 5z 4– 4z 5–
+ + +=

y n[ ]
Y z( )

y n[ ] 2δ n[ ] 4δ n 1–[ ] δ n 2–[ ]–+=

2δ n 3–[ ]– 5δ n 4–[ ] 4δ n 5–[ ]+ +
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• This section has established the very important result that
polynomial multiplication can be used to replace sequence
convolution, when we work in the z-domain, i.e.,

Cascading Systems

• We have seen cascading of systems in the time-domain and
the frequency domain, we now consider the z-domain

• We know from the convolution theorem that

• It also follows that

so by substitution

(7.18)

y n[ ] h n[ ]*x n[ ]= H z( )X z( )↔ Y z( )=
z

z-Transform Convolution Theorem

W z( ) H1 z( )X z( )=

Y z( ) H2 z( )W z( )=

Y z( ) H2 z( )H1 z( )[ ]X z( )=

H1 z( )H2 z( )[ ]X z( )=
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• In summary, when we cascade two LTI systems, we arrive at
the cascade impulse response as a cascade of impulse
responses in the time-domain and a product of the z-trans-
forms in the z-domain

Factoring z-Polynomials

• Multiplying z-transforms creates a cascade system, so factor-
ing must create subsystems

Example: 

• Since  is a third-order polynomial, we should be able to
factor it into a first degree and second degree polynomial

• We can use the MATLAB function roots() to assist us
>> p = roots([1 3 -2 1])

p = -3.6274          
     0.3137 + 0.4211i
     0.3137 - 0.4211i

>> conv([1 -p(2)],[1 -p(3)])

ans =  1.0000    -0.6274      0.2757 - 0.0000i

• With one real root, the logical factoring is to create two poly-
nomials as follows

h n[ ] h1 n[ ]*h2 n[ ]= H1 z( )H2 z( )↔ H z( )=
z

H z( ) 1 3z 1– 2z 2–
– z 3–

+ +=

H z( )



Convolution and the z-Transform

ECE 2610 Signals and Systems 7–14

• The cascade system is thus:

• As a check we can multiply the polynomials
>> conv([1 -p(1)],conv([1 -p(2)],[1 -p(3)]))

ans = 1.0000, 3.0000, -2.0000-0.0000i, 1.0000-0.0000i

• The difference equations for each subsystem are

Deconvolution/Inverse Filtering

• In a two subsystems cascade can the second system undo the
action of the first subsystem?

• For the output to equal the input we need 

• We thus desire

 or 

H1 z( ) 1 3.6274z 1–
+=

H2 z( ) 1 0.3137 j0.4211+( )z 1–
–( )=

1 0.3137 j0.4211–( )z 1–
–( )

1 0.6274z 1–
– 0.2757z 2–

+=

1 3.6274z 1–
+ 1 0.6274z 1–

– 0.2757z 2–
+

H1 z( ) H2 z( )

x n[ ] w n[ ] y n[ ]

X z( ) W z( ) Y z( )

w n[ ] x n[ ] 3.6274x n 1–[ ]+=

y n[ ] w n[ ] 0.6274w n 1–[ ]– 0.2757w n 2–[ ]+=

H z( ) 1=

H1 z( )H2 z( ) 1= H2 z( ) 1
H1 z( )
--------------=
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Example: 

• The inverse filter is

• This is no longer an FIR filter, it is an infinite impulse
response (IIR) filter, which is the topic of Chapter 8

• We can approximate  as an FIR filter via long division

• An  term approximation is

– Recall the deconvolution filter of Lab 8?

H1 z( ) 1 az 1–
– a 1<,=

H2 z( ) 1
H1 z( )
-------------- 1

1 az 1–
–

-------------------= =

H2 z( )

1 az 1–     1–

1 az 1– a2z 2– …+ + +

1 az 1–
–

az 1–

az 1– a2z 2–
–

a2z 2– a3z 3–
–

a2z 2–

a3z 3–

M 1+

H2 z( ) akz k–

k 0=

M

∑=
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Relationship Between the z-Domain and the 
Frequency Domain

• Comparing the above we see that the connection is setting
 in , i.e.,

(7.19)

The z-Plane and the Unit Circle

• If we consider the z-plane, we see that  corresponds to
evaluating  on the unit circle

ω̂ - Domain

H ejω̂( ) bke
jω̂k–

k 0=

M

∑=
 versus

z - Domain

H z( ) bkz
k–

k 0=

M

∑=

z ejω̂= H z( )

H ejω̂( ) H z( )
z ejω̂=

=

H ejω̂( )
H z( )

z ejω̂=

ω̂

1

Re

Im

z-Plane

ω̂ π
2
---–=

ω̂ π
2
---=

ω̂ 0=

unit circle

z 1=

z j–=

z j=

ω̂ π±=
z 1–=
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• From this interpretation we also can see why  is peri-
odic with period 

– As  increases it continues to sweep around the unit circle
over and over again

The Zeros and Poles of H(z)

• Consider

(7.20)

where we have assumed that 

• Factoring  results in

(7.21)

• Multiplying by  allows to write  in terms of posi-
tive powers of 

(7.22)

• The zeros are the locations where , i.e., 

• The poles are where , i.e., 

• Note that the poles and zeros only determine  to within a
constant; recall the example on page 7-5  

H ejω̂( )
2π

ω̂

H z( ) 1 b1z
1– b2z

2– b3z
3–

+ + +=

b0 1=

H z( )

H z( ) 1 z1z
1–

–( ) 1 z2z
1–

–( ) 1 z3z
1–

–( )=

z3 z3⁄ H z( )
z

H z( )
z3 b1z

2 b2z
1 b3z

0
+ + +

z3
--------------------------------------------------------=

z z1–( ) z z2–( ) z z3–( )

z3
------------------------------------------------------=

H z( ) 0= z1 z2 z3, ,

H z( ) ∞→ z 0→

H z( )
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• A pole-zero plot displays the pole and zero locations in the z-
plane

Example: 

• MATLAB has a function that supports the creation of a pole-
zero plot given the system function coefficients

>> zplane([1 2 2 1],1) 

Re

Im

z1

z3

z2
z-Plane

3

Three poles at z = 0

H z( ) 1 2z 1– 2z 2– z 3–
+ + +=
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The Significance of the Zeros of H(z)

• The difference equation is the actual time domain means for
calculating the filter output for a given filter input

• The difference equation coefficients are the polynomial coef-
ficients in 

• For  we know that

, (7.23)

so in particular if  is one of the zeros of , 
and the output 

• If a zero lies on the unit circle then the output will be zero for
a sinusoidal input of the form

(7.24)

where  is the angle of the zero relative to the real axis,
which is also the frequency of the corresponding complex
sinusoid; why?

(7.25)

Nulling Filters

• The special case of zeros on the unit circle allows a filter to
null/block/annihilate complex sinusoids that enter the filter at
frequencies corresponding to the angles the zeros make with
respect to the real axis in the z-plane

H z( )

x n[ ] z0
n

=

y n[ ] H z0( )z0
n

=

z0 H z( ) H z0( ) 0=
y n[ ] 0=

x n[ ] z0
n ejω̂0( )

n
ejω̂0n= = =

ω̂0

y n[ ] H z( )
z e

jω̂0=
⎝ ⎠
⎛ ⎞ ejω̂0n 0= =
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• The nulling property extends to real sinusoids since they are
composed of two complex sinusoids at , and zeros not on
the real axis will always occur in conjugate pairs if the filter
coefficients are real

• This nulling/annihilating property is useful in rejecting
unwanted jamming and interference signals in communica-
tions and radar applications

Example: , 

• Factoring  we find that

• Expanding  we see that

• The nulling action of  at  will remove the signal
from the filter output

• We can set up a simple simulation in MATLAB to verify this
>> n = 0:100;
>> w0 = pi/4;
>> x = cos(w0*n);
>> y = filter([1 -2*cos(w0) 1],1,x);
>> stem(n,x,'filled')
>> hold
Current plot held
>> stem(n,y,'filled','r')
>> axis([0 50 -1.1 1.1]); grid

ω̂0±

H z( ) 1 2 ω̂0( )z 1–cos– z 2–
+= x n[ ] ω̂0n( )cos=

H z( )

H z( ) 1 ejω̂0 z 1–
–⎝ ⎠

⎛ ⎞ 1 e jω̂0– z 1–
–⎝ ⎠

⎛ ⎞=

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

z1 z2

x n[ ]

x n[ ] 1
2
---e jω̂0n– 1

2
---ejω̂0n+=

H z( ) ω̂0±
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• Since the input is applied at , we see a small transient
while the filter settles to the final output, which in this case is
zero

>> zplane([1 -2*cos(w0) 1],1)% check the pole-zero plot
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Graphical Relation Between z and 

• When we make the substitution  in  we know
that we are evaluating the z-transform on the unit circle and
thus obtain the frequency response

• If we plot say  over the entire z-plane we can visualize
how cutting out the response on just the unit circle, gives us
the frequency response magnitude

Example:  Moving Average Filter (9 taps/8th-order)

• Here we have

ω̂

z ejω̂= H z( )

H z( )

L 9=

H z( ) 1
9
--- z k–

k 0=

9 1–

∑ 1
9
--- 1 e j2πk 9⁄– z 1–

–( )
k 1=

8

∏= =

�2
�1

0

1

2
�2

�1

0

1

2

0

1

2

3

�2
�1

0

1

Re

Im

z-Plane 
Magnitude
Surface

H ejω̂⎝ ⎠
⎛ ⎞

8 Poles at z = 0
create the “tree
trunk”
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>> zplane([ones(1,9)]/9,1)

>> w = -pi:(pi/500):pi;
>> H = freqz([ones(1,9)/9],1,w);
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Useful Filters

The L-Point Moving Average Filter

• The L-point moving average (running sum) filter has

(7.26)

and system function (z-transform of the impulse response)

(7.27)

• The sum in (7.27) can be simplified using the geometric
series sum formula

(7.28)

• Notice that the zeros of  are determined by the roots of
the equation

(7.29)

• The roots of this equation can be found by noting that
 for k any integer, thus the roots of (7.29) (zeros of

(7.28)) are

(7.30)

• These roots are referred to as the L roots of unity

y n[ ] 1
L
--- x n k–[ ]
k 0=

L 1–

∑=

H z( ) 1
L
--- z k–

k 0=

L 1–

∑=

H z( ) 1
L
--- z k–

k 0=

L 1–

∑ 1
L
--- 1 z L–

–

1 z 1–
–

----------------⋅ 1
L
--- zL 1–

zL 1– z 1–( )
----------------------------⋅= = =

H z( )

zL 1– 0= zL⇒ 1=

ej2πk 1=

zk ej2πk L⁄= k, 0 1 2 … L 1–, , , ,=
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• One of the zeros sits at , but there is also a pole at
, so there is a pole-zero cancellation, meaning that the

pole-zero plot of  corresponds to the L-roots of unity,
less the root at 

•  We have seen the frequency response of this filter before

• The first null occurs at frequency 

z 1=
z 1=

H z( )
z 0=

L-1

2π
L

------

Pole-zero
cancellation
occurs here

z-Plane

L 8 shown=

ω̂0 2π L⁄=

ω̂

1

. . .

0 2π
L

------ 4π
L

------

H ejω̂⎝ ⎠
⎛ ⎞

π
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A Complex Bandpass Filter

see text

A Bandpass Filter with Real Coefficients

see text

Practical Filter Design

• Here we will use fdatool from the MATLAB signal pro-
cessing toolbox to design an FIR filter

Properties of Linear-Phase Filters

• A class of FIR filters having symmetrical coefficients, i.e.,
 for  has the property of linear

phase

The Linear Phase Condition

• For a filter with symmetrical coefficients we can show that
 is of the form

(7.31)

where  is a real function

• The fact that  is real means that the phase of  is
a linear function of frequency plus the possibility of 
phase jumps whenever  passes through zero

bk bM k–= k 0 1 … M, , ,=

H ejω̂( )

H ejω̂( ) R ejω̂( )e jωM 2⁄–
=

R ejω̂( )

R ejω̂( ) H ejω̂( )
π±

R ejω̂( )
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Example: 

• By factoring out  we can write

• We now move to the frequency response by letting 

• Note that here we have , so we see that the linear
phase term is indeed of the form  and the real func-
tion  is of the form

Locations of the Zeros of FIR Linear-Phase Systems

• Further study of  for the case of symmetric coefficients
reveals that

(7.32)

• A consequence of this condition is that for  having a
zero at  it will also have a zero at 

• Assuming the filter has real coefficients, complex zeros occur
in conjugate pairs, so the even symmetry condition further
implies that the zeros occur as quadruplets

H z( ) b0 b1z
1– b2z

2– b1z
3– b0z

4–
+ + + +=

z 2–

H z( ) b0 z
2 z 2–

+( ) b1 z
1 z 1–

+( ) b2+ +[ ]z 2–
=

z ejω̂→

H ejω̂( ) 2b0 2ω̂( )cos 2b1 ω̂( ) b2+cos+[ ]e jω̂4 2⁄–
=

M 4=
e jω̂M 2⁄–

R ejω̂( )

R ejω̂( ) b2 2+ b0 2ω̂( )cos b1 ω̂( )cos+[ ]=

H z( )

H 1 z⁄( ) zMH z( )=

H z( )
z0 1 z0⁄

z0 z0
* 1
z0
---- 1
z0

*----, , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫
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Example: 

>> zplane([1 -2 4 -2 1],1)

z-Plane

Quadruplet Zeros for
Linear Phase FIlters
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questions opt1 opt2 opt3 opt4 opt5

 A signal is a function which represents . time 

variation

velocity 

variation

voltage 

variation

current 

variation

 A signal with real value of time is a Discrete 

signal

  Digital 

signal

Real 

signal

.Continu

ous 

signal

 ECG signal is a . random 

& 

multicha

nnel 

signal

random 

& 

multidim

ensional 

signal

determini

stic & 

multidim

ensional 

signal

determini

stic & 

multicha

nnel 

signal

 If x(n) = 0,n<0, Pe is the even part of 

x(n) & Po is the odd part. Which of the 

following is true?

Po ≥ Pe . Pe ≥ Po Pe = Po Pe ≠ Po

A memory in a DT system is analog of . energy 

storage 

in a 

continuo

us time 

system

memory 

in a CT 

system

sampled 

memory 

of a CT 

system

sampled 

in a CT 

system

 Which of the following is not true? A. 

u(-n) = 1; B. u(-n) = 0

both A 

& B  

.only A only B neither 

A nor B

 Choose the correct answer 1. ramp A. 

u(t) = 1 2. step  B. d(t) = 1 3. pulse C. r(t) 

= t 4. Impulse D. p(t) = 1

.1-C; 2-

A; 3- 

D;4 – B 

 1-B; 2-

C; 3- 

D;4 – A

1-B; 2-

D; 3- 

A;4 – C

1-D; 2-

A; 3- 

B;4 – C

 Impulse function is d(t) = 1  d(t) dt 

= 1  

.  d(t) dt 

= 1  

 d(t) dt= 

0

 A sampled signal is Analog 

signal

Digital 

signal

. 

Discrete 

signal

Continuo

us signal

 DT signal has constant 

amplitud

e and 

constant 

time 

period

.varying 

amplitud

e and 

constant 

time 

period

constant 

amplitud

e and 

varying 

time 

period

varying 

amplitud

e and 

varying 

time 

period

 Choose the best answer A. s = a  1. 

Decreasing sinusoidal exponential B. s = 

- a  2. Increasing sinusoidal exponential 

C. s = - a + jb  3. Decreasing  

exponential D. s = a + jb  4. Increasing  

exponential

A - 4; B - 

 3; C – 

2; D – 1 

A - 3; B - 

 1; C – 

4; D – 2

.  A - 4; 

B - 3; C 

– 1; D – 

2

 A - 3; B 

- 4; C – 

2; D – 1



 A discrete time signal can be represented only in 

tabular 

form

only in 

sequence 

form

only in 

graphical 

 form

. all 

forms

 A general form of complex exponential 

signal is
a

n
e

-jwon   
a-

n
e

jwon  
. a

n
e

jwon  
a-

n
e

-jwon

A time reversed signal is y(t) = 

x(t)   

. y(t) = 

x(-t)  

 y(-t) = 

x(-t)  

y(t) = x(t 

-T)

 u(-t+1) is  time 

reversed 

signal 

 time 

shifted 

signal

 .time 

reversed 

& 

shifted 

signal

 time 

reversed 

& scaled 

signal

 A time scaled signal x(at) diminish

es 0<a<1

expands 

a>0

. 

expands 

0<a<1

diminish

es a<0

A pulse train is  A. Discrete signal B. 

Periodic signal C.Digital signal D. 

Aperiodic signal

 A & C 

only  

. B & C 

only  

 A & D 

only

 C & D 

only 

Noise signal is a certain 

signal 

with 

finite 

time  

uncertain 

 signal 

with 

finite 

time

 certain 

signal 

with 

infinite 

time

. 

uncertain 

 signal 

with 

infinite 

time

 The auto-correlation function of the 

white noise is

 constant  step 

function

Impulse 

function.

pulse 

function

EEG signal is a  periodic 

signal

 random 

signal.

 even 

signal  

determini

stic 

signal

 In a periodic signal, the fundamental 

period T is

smallest 

positive 

value.

 highest 

positive 

value

smallest 

negative 

value

highest 

negative 

value

 The odd part of the signal is ½ [x(t) + 

x(-t)]

  ½ [x(t) - 

 x(-t)].

  ½[x(-t) 

+ x(t)]

½ [x(-t) - 

 x(-t)]

 The fundamental period N is (2pm / 

w).

(2p / wm)  (w/ 2pm)    (wm / 

2p)

 Time shifting operation  

increases 

the signal  

reverses 

the signal  

scales 

the signal

 moves 

the signal

 Folding operation gives . 

reflected 

image

 

refractive 

 image

magnifie

d image

minimize

d image



 Voice signal is a one dimensional signal Generate

d by 

single 

source

Detected 

by single 

sensor

. 

Depends 

on a 

single 

variable

varies 

continuo

usly

 A periodic signal must have the 

fundamental period to be 

 

logarithm

ic 

 integer . rational exponent

ial

Tv picture signal is a one 

dimensio

nal signal

 two 

dimensio

nal signal

. three 

dimensio

nal signal

 multi 

dimensio

nal signal

 cos t is a symmetri

c signal.

 Anti-

smmetric 

 signal

Aperiodi

c signal

 periodic 

signal

 The fundamental period of sin50pt is 1/ 50 sec . 1/ 25 

sec

1/75 sec  1 sec

 2u(t) + 2 sin2t is a. 

periodic 

signal

b. 

Aperiodi

c signal

c. 

inverted 

signal

d. 

discrete 

signal

 e 
j2p n /3

 + e 
j3p n /4

 has a period of 3 8 24 10

 cos(2pn) is  periodic 

signal.

 

Aperiodi

c signal

continuo

us signal

random 

signal

 The even components of a signal are the 

same for both positive and negative  

values     of n (Assertion). The discretion 

is

depend 

only on 

positive 

instants

depend 

only on 

negative 

instants

depend 

on both 

positive 

and 

negative 

instants.

does not 

depend 

on both 

positive 

and 

negative 

instants

The instantaneous power p(t) is a. 1 / 

(v
2
(t)R)

b. R / 

v
2
(t)

c.  v
2
(t)R v

2
(t) / R.

Lt t→ x(t)
2
 dt is a  Power 

signal

Energy 

signal.

 both 

power 

and 

energy 

signal

 neither 

a power 

nor an 

energy 

signal

Lt t→ (1 / 2N +1)  x(n)
2
 represents 

a

 Power 

signal.

Energy 

signal

 both 

power 

and 

energy 

signal

 neither 

a power 

nor an 

energy 

signal



A signal is an energy signal if  total 

energy is 

infinite

 total 

energy is 

finite.

total 

power is 

finite 

total 

power is 

infinite

Which of the following is true? A. Non- 

periodic & Deterministic signals are 

energy signals B. Periodic & random 

signals are power signals C. Periodic & 

Deterministic signals are energy signals 

D. Non- periodic & random signals are 

power signals

 A & C  B & D C & D  A & B.

 A power signal has energy 0 10   100

An energy signal has power of 10 0   100

A signal with infinite power and infinite 

energy is

Only 

power 

signal

 only 

energy 

signal

 both 

power & 

energy 

signal

 A signal with finite power and infinite 

energy is

Only 

power 

signal.

 only 

energy 

signal

 both 

power & 

energy 

signal

 Neither 

a power 

nor 

energy 

signal

A signal with 0 power and finite energy is Only 

power 

signal

only 

energy 

signal.

both 

power & 

energy 

signal

 Neither 

a power 

nor 

energy 

signal

d(t-1) exists only at 0 1 n t

 y(t) = x(t-2) shifts a signal by 2 units  right . left  above  below

u(n)-u(n-1) is  u(n) u(n-1) d(n). d(-n) 

 Relation between d(t) & u(t) is  d(t) = 

d/dt u(t). 

 u(t)= 

d/dt d(t)   

 d(t) =   

u(t)dt      

 u(t)=   

d(t)dt 

 y(t) = ax(t) is time 

scaled 

signal

 

amplitud

e scaled 

signal.

 time 

shifted 

signal

 

amplitud

e shifted 

signal

 The power of 10cos5tcos10t is 5W 10W 25W.  50W 

 e 
-3t

 u(t) is a  power 

signal

 energy 

signal.

pulse 

signal

step 

signal

 A system that depends on the past and 

present input is

static 

system

. causal 

system

Non-

causal 

system     

 

Dynamic 

system

 Stable systems will satisfy homogen

eity

superposi

tion

BOBI BIBO



 y(n) = x(n
3
) is a .linear 

system 

non-

linear 

system 

non-

causal 

system 

unstable 

system

 y(t) = tx(t)+3 is a _______ system Linear & 

Time 

Invariant

.Non – 

Linear & 

Time 

Invariant

Linear & 

Time 

variant

Non – 

Linear & 

Time 

Variant

y(n) = x(n)coswn is a _________ system Dynamic 

& Causal

Static & 

Non – 

causal

. Static 

& Causal

Dynamic 

& Non – 

causal

Homogeneity and superposition 

principles are satisfied by

Static 

systems

Causal 

systems

. Linear 

systems

 Stable 

systems

 y(n) = x
2
n is linear . non-

linear

unstable dynamic

 The signal which exists only at t=0 is Time  Level  series . impulse

The general form of CT exponential 

signal is
 C e

t 
. C e

at 
 C e

a2t2
C

2
 e 

at2



opt6 answer

. time 

variation

.Continu

ous 

signal

. random 

& 

multicha

nnel 

signal

. Pe ≥ Po

. energy 

storage 

in a 

continuo

us time 

system

.only A

1-C; 2-

A; 3- 

D;4 – B 

.  d(t) dt 

= 1  

. 

Discrete 

signal

.varying 

amplitud

e and 

constant 

time 

period

.  A - 4; 

B - 3; C 

– 1; D – 

2



. all 

forms

. a
n
e

jwon  

. y(t) = 

x(-t)  

 .time 

reversed 

& 

shifted 

signal

. 

expands 

0<a<1

. B & C 

only  

. 

uncertain 

 signal 

with 

infinite 

time

Impulse 

function.

 random 

signal.

smallest 

positive 

value.

  ½ [x(t) - 

 x(-t)].

(2pm / 

w).

 moves 

the signal

. 

reflected 

image



. 

Depends 

on a 

single 

variable

. rational

three 

dimensio

nal signal

symmetri

c signal

. 1/ 25 

sec

1/ 25 sec

24

 periodic 

signal.

depend 

on both 

positive 

and 

negative 

instants.

v
2
(t) / R.

Energy 

signal.

 Power 

signal.



 total 

energy is 

finite.

 A & B.

 

0

 Neither 

a power 

nor 

energy 

signal.

Only 

power 

signal.

only 

energy 

signal.

1

 right .

d(n). 

 d(t) = 

d/dt u(t). 

 

amplitud

e scaled 

signal.

25W. 

 energy 

signal.

. causal 

system

BIBO



.linear 

system 

.Non – 

Linear & 

Time 

Invariant

. Static 

& Causal

. Linear 

systems

. non-

linear

. impulse

. C e
at 



questions opt1 opt2 opt3

Fourier Series is used to 

represent

Continuous time signals Discrete time signals Continuous time  

periodic signals

For Fourier series to 

converge _____________ 

condition has to be satisfied.

Fourier Euler Lagrange

Which among the following 

is true?A.Over a period x(t) 

must be absolutely 

integrable.B.x(t) can infinite 

number of maxima and 

minimaC.x(t) can have many 

values at a certain 

instantD.x(t) must have 

finite number of 

discontinuities.

A & D B & C A & C

Choose the best answerA. 

Time Shifting1. jkω0X(K)B. 

Frequency Shifting2. X(K)C. 

Differentiation3. e -jk ω0 t0 

X(K)D. Time Scaling4. X(k – 

K0)

A – 4; B – 3; C – 2; D - 1 A – 4; B – 3; C – 1; D – 2 A – 3; B – 4; C – 1; D - 2

If x(t) on FS gives X(k), then 

x*(t) is

X*(k) X (-k) X* (-k)

The product of 2 signals on 

FS will be

composition convolution multiplication

Parsevals equation of a 

Fourier series relates 

________signal in 

frequency domain.

even signal odd signal energy signal

An odd signal in frequency 

domain will satisfy

–X(-k) X(-k) –X(k)

CT Fourier transform is used 

to represent

periodic signal aperiodic signals all CT signals

FT representation of a signal 

x(t) is

The synthesis equation of 

FT plays a role for

periodic signal aperiodic signal power signal

The FT of e –atu(t) is

The F[δ(t)] is 1 0 ∞

F[e –at] is





djX e

tj 0
)(

2

1



−





djX e

tj 0
)(

2

1 −


−

 



djX e

tj 0
)(

1



−




ja
jX

−
=

1
)( 


22

2
)(

+
=

A

A
jX




ja
jX

+
=

1
)(




ja
jX

−
=

1
)(




22

2
)(

+
=

A

A
jX




ja
jX

+
=

1
)(

=)( jX


T 1
sin =)( jX

T
T

1

1
sin2  =)( jX

T
T
1

1
sin =)( jX



T 1
sin2



FT of rectangular pulse in 

time domain is

FT of rectangular pulse in 

frequency domain in

A increase in time of a 

signalA. broadens

 and narrows x(t)B. 

broadens x(t) and narrows

C. broadens both x(t) and

The linearity property of FS 

is

aX(j) + bY(j) aX(j) • bY(j) aX(k) • bY(k)

LT of a1f1(t) + a2f2(t) a1F1(js) + a2F2(js) a1F1(j) + a2F2(j) a1F1(s) + a2F2(s)

The trigonometric FS of a 

periodic function can have 

only

cosine term sine term cosine and sine terms

If the FT of a deterministic 

signal g(t) is G(f), then the 

FT of g(t-2) is

G(f)e –j4f G(2 – f) 2G(2f)

The inverse FS of frequency 

shifted X(k-5) is

e jkt x(t) e j5t x(t) e j5k x(t)

A waveform with 

discontinuities is always 

characterized by

converging Fourier 

spectra

strong harmonics half wave harmonics

Conversion of analog signal 

to discrete signal is known 

as

quantization companding discretization

The error that occurs on 

sampling a signal below 

Nyquist rate is

guarding error quantization error aliasing error

The value of ak in 

exponential Fourier series is

The Laplace transform of 

sinhat is

The LT of tsinat is

The Inverse LT of

 is

The unilateral LT of a 

function x (t) is

The inverse Laplace 

transform of X(s) is

5e –t sin2t 5e –t sin5t 2e –t sin2t

A only B only C only
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Magnitude and phase of 

Frequency co-efficient is 

obtained by

In a complex exponential e -

jkω0 t which of the 

following is true when the 

values of ‘k’ are

      0, 1 & 2 respectively. constant,  I harmonic, 

II harmonic

fundamental, I 

harmonic, constant 

thereafter

The LT  is mainly used for dynamic signals linear signals time invariant signals

e - iq is cos q + j sin q cos q - sinq cos q  j sin q

The Nyquist rate of a signal 

is

200 Hz 800 Hz 100 Hz

The Nyquist sampling rate 

for a signal g(t) = 10 

cos(50t) cos2(150t), 

when t is in seconds is

150 samples / s 200 samples / s 250 samples / s

In sampling a signal, guard 

time is provided when 

sampling time is 

< 1 / 2 fmax . = 1 / 2 fmax > 1/ 2 fmax

Assertion: A signal must be 

sampled at least twice the 

highest frequency (Nyquist 

rate)     Dissertion:

Recovery of signal is 

worst

Guard band is less Recovery of signal is 

easier

In sampling, overlapping of 

frequency components will 

occur if sampling time is 

same       as

< 1 / 2 fmax = 1 / 2 fmax > 1/ 2 fmax

The Nyquist rate of the 

signal is 

fmax 2 fmax 1 / 2 f

A signal of maximum 

frequency 10 KHz is 

sampled at Nyquist rate. The 

time interval       between 2 

successive samples is

50 ms 100 ms 1000 ms

In communication, the 

sampling technique leads to 

higher efficiency higher speed of 

communication

costly equipment

In order to get back the 

original signal from the 

sampled signal it is 

necessary to use

low pass filter high pass filter band pass filter

Sinusoidal functions and 

exponential functions are 

examples of 

singular functions Gaussian functions orthogonal functions
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Amount of information in a 

CT signal is

0 2 bits 2 bauds

FT of f(t) = 1 is d() 3d() 2d()

Match   A. e - jt    01. 

Multiplied exponential 

function B.

2. a constant C. kd()3. 

rectangular pulse D.

 4. shifted impulse function

The FT of unit step function 

is 

d()   + 2d()

The advantages of LT are A. 

It gives total solution 

systematicallyB. It gives 

solution in frequency 

domain onlyC. The initial 

conditions cannot be 

incorporated

A & C B & C A & B

The LT of e – at sint will 

be

Match  A. t1.

B. u(t) 2.

C. e at3.

D. sint4.

The initial value theorem is 

The final value theorem is

A – 3; B – 4; C – 2; D – 

1

A – 4; B – 3; C – 1; D 

– 2

A – 4; B – 3; C – 2; D – 

1

A – 2; B – 3; C – 4; D - 1 A – 3; B – 2 C – 4; D - 

1

A – 3; B – 4; C – 2; D - 
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opt4 opt5 opt6 answer

Discrete time periodic 

signals.

Continuous time  

periodic signals

Dirichlet Dirichlet

B & D A & D

A – 4; B – 1; C – 3; D – 2 A – 4; B – 3; C – 1; D – 2

X (k) X* (-k)

conjugation convolution

power signal power signal

–X*(k) –X(-k)

all DT signals all CT signals

all CT signals aperiodic signal

δ(t) 1
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aX(k) + bY(k) aX(k) + bY(k)

a1F1() + a2F2() a1F1(s) + a2F2(s)

sinc term cosine and sine terms

f(-2) G(f)e –j4f

e jk5t x(t) e j5t x(t)

quarter wave harmonics strong harmonics

sampling sampling

granular error aliasing error

2e –t sin5t 5e –t sin2t

B onlyA, B, C
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I harmonic, II harmonic, 

constant thereafter

constant, fundamental, 

I harmonic

causal signals causal signals

cos q + sinq cos q  j sin q

400 Hz 400 Hz

350 samples / s 350 samples / s

1/ fmax . = 1 / 2 fmax

Recovery of signal is best Recovery of signal is 

best

1/ fmax > 1/ 2 fmax

max 2 fmax

5 ms 50 ms

loss of data higher speed of 

communication

band- reject filter low pass filter

periodic functions periodic functions
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questions opt1 opt2 opt3

 The impulse response 

of the two systems in 

cascade are h1 (t)=e-

2tu(t) and h2 (t)=2e-

tu(t).The   impulse h(t) 

of the overall system   is

 2(e-t – e-2t)u(t)  (2e-t – e-2t)u(t)  (e-t – 2e-2t)u(t)

 The overall system 

described above is

 Causal  Unstable  Stable

 Assertion: A transfer 

function realization 

using differentiators is 

not preferable Reason

Amplifies low 

frequency signal

Amplifies high 

frequency noise signal

Amplifies low 

frequency noise 

signal

The ULT is applied for  stable signals  noncausal signals  causal signals

 The L.T of unit ramp 

function is

 2/s2  1/(s+s)  s2

 The impulse response 

of a LTI system 

h(t)=(10sin(5πt))/πt

noncausal stable causal

 The frequency response 

of an LTI system 

characterized by the 

differential equation 

d/dt y(t)+ay(t)=x(t) is

H(ω) H(f) (a) and (b)

The eigen function and 

eigen value respectively 

are

 est and e-st  est and H(s)  est and H(f)

The differential 

equation is useful in 

obtaining

 frequency 

response

 impulse response  frequency and 

impulse response

 Mark the wrong 

statement

x1(t)*x2(t)=x2(t)

*x1(t)

x1(t)*[ x2(t)*x3(t)]= 

x1(t)*x2(t)+ x1(t)*x3(t)

x1(t)*[ 

x2(t)*x3(t)]=[ 

x1(t)*x2(t)]*x3(t)

 Mark the correct 

statement

x1(t)*x2(t-

T)=z(t-T)

x1(t)*x2(t-T)=z(T) x1(t)* x2(t-T)=z(t)



 The convolution of 

x1(t)=u(t) and x2(t)=u(t) 

is

t u(t) u(t) u(t)/t

 The convolution of 

x1(t)=sint u(t) and 

x2(t)=u(t)

(1-sint) (1-sint)u(t) (1-cost)u(t)

 .The convolution of 

x1(t)=tu(t) and 

x2(t)=u(t) is

(t2/2) u(t) (t3/2) u(t) tu(t)

 The impulse response 

of two systems 

connected in parallel is

h1(t)+h2(t) x(t)*h(t) h1(t)*h2(t)

 The impulse response 

of two systems 

connected in series is

h1(t)*h2(t) x(t)*h(t) (a) and (b)

 The system is casual for

 The convolution system 

is stable if the impulse 

response is

absolutely 

integrable

absolutely differentiable both integrable 

and differentiable

 The impulse response 

h(t)=e2tu(t-1) is

stable unstable absolutely 

integrable

The impulse response 

for h(t)=(1/RC)e-t/RC 

u(t) is

Infinity One Zero

 The impulse response 

for h(t)=e-2tu(-t-1) 

exists for

Negative values 

of t & is causal

Positive values of t & is 

causal

Negative values of 

t & is noncausal

h(τ)=0  τ = 0 h(τ)= cδ(t) t = 0

The step response of the 

circuit  is

 1 / (S + L / R)  1 / (L + S / R)  1 / (1 + L / R)

 The system is static or 

memory less for

h(τ)=0 τ=0 h(τ)=0 τ<0 h(τ)=0 τ>0

h(τ)=0 τ ≠ 0



 The impulse response 

h(t)=(t-1)u(t-1) exists for

Negative values 

of t & is 

noncausal

Positive values of t & is 

causal

Negative values of 

t & is causal

 For the natural response 

of differential equation

Output produced  

 due to initial 

conditions

Output produced  due to 

input

Output produced  

due to initial 

conditions and 

input=0

 For the forced response 

of differential equation

output produced 

due to input and  

initial 

conditions = 

output produced due to 

initial conditions and 

input =0

output produced 

due to initial 

conditions

 The natural response of 

the system 10dy(t)/dt + 

2y(t) =x(t) with y(0)=2 is

2e-0.2t e-0.2t 2e-t

An LTI system is causal 

if the impulse response 

is

zero for positive 

t

positive for positive t negative for 

negative t

The system h(t)=te-tu(t) 

is

unstable. stable causal and 

unstable.

The system h(t)=e-

4tu(t+10)

noncausal and 

stable.

noncausal and unstable. causal and stable.

Match the 

following.InputParticular 

 Solution.(i)1A) 

k1cosωt + k2sinωt.(ii)   

e-at  B) k.(iii)   

cos(ωt+φ)C) ke-at

i - C, ii – A, iii – 

B.

i - A, ii – C, iii – B. i – B, ii – C, iii – 

A.

The direct form – I 

implementation of 2nd 

order system needs

Three 

integrators and 

three summers.

Four integrators and 

four summers.

Four integrators 

and three 

summers.



The frequency response 

of LTI-CT system are 

also called as

transfer function. system transfer function. system function.

If the response of LTI 

continuous time system 

to unit step signal is ½ - 

½ e-2t, then impulse 

response of the system 

is__________

½ - ½ e-2t e-2t 1- e-2t

Which property is not 

true for convolution 

integral________?

h1(t) * h2(t) = 

h2(t) * h1(t)

[h1(t) + h2(t) ] * h3(t) = 

h1(t) * h3(t) + h2(t) * 

h3(t)

[h1(t) + h2(t) ] * 

h3(t) = h1(t)h3(t) 

+ h2(t)h3(t)

Which signal is 

anticasual?

x(t) = 0, t < 0 x(t) = 0, t > 0 x(n) = 0, n < 0

Mark the correct 

statement

x(t) * δ(t - t0) = 

x(t0)

x(t) * δ(t) = 1 x(t) * δ(t - t0) = 

x(t - t0)

Mark the wrong 

statement

x(t) *  δ(t) = x(t) x(t) * δ(t - λ) = x(t - λ) x(t- λ) * δ(t – λ2) 

= x(t – λ1– λ2)

The response y(t) of 

linear system is____

Zero input 

response

Zero state response Zero input 

response + Zero 

state response

Bilateral and unilateral 

Laplace transform 

differs in terms 

of________

Lower limit of 

integration

Upper limit of 

integration

They are same

For casual continuous – 

time LTI system, ROC 

is in the_________

Left of all 

system poles

Right of all system poles Right of all zeros



If the system is casual 

and stable, the system 

poles must lie

On the jω axis On the left half of s- 

plane

On the right half 

of s- plane

Inverse Laplace 

transform of  1 / (s-a); 

ROC <a is ________

e at u(-t) e -at u(-t) e -at u(t)

Zero input response is 

due to

input to the 

system.

depends on system 

transfer function.

due to system 

state.

Zero state response is 

due to

input to the 

system.

depends on system 

transfer function.

due to system 

state.

In memoryless system Zero state 

response is zero.

Zero input response is 

zero.

both responses are 

zero.

The transfer function of 

a single loop system is

T(s) = G(s) / (1 - 

G(s)H(s))

T(s) = H(s) / (1 - 

G(s)H(s))

T(s) = H(s) / (1 + 

G(s)H(s))

The impulse response of 

the system having 

transfer function H(s) = 

1/(s2(s+1)) is

(t2*e-2t)u(t) (t2e-t)u(t) (te-t)u(t)

Let y(t) = x(t) *h(t). 

Then

x(t-t1) * h(t-t2) 

= y(t-t1-t2)

x(t) * h(t-t2) = y(t-t1-t2) x(t-t1)*h(t) = y(t-

t1-t2)

If x1(t) and x2(t) are 

both periodic signals 

with a common period 

To, the convolution  of 

x1(t) and x2(t)

does not 

converge.

Converge. Periodic 

convolution of 

x1(t) and x2(t) 

converge.

For a stable continuous-

time LTI system with 

impulse response h(t) 

that is real and  even

cosωt is an 

eigen function.

sinωt is an eigen 

function.

cosωt and sinωt 

are  eigen function 

with different 

eigen values.

Consider a CT LTI 

system whose step 

response is s(t)=e-tu(t). 

The output of this 

system to the input x(t) 

= u(t-1) – u(t-3) is

e(t-1)u(t-1) – e(t-

3)u(t-3)

e(t-1)u(t-1) + e(t-3)u(t-3) e-(t-1)u(t-1) – e-(t-

3)u(t-3)



Consider the system 

dy(t)/dt +ay(t) = x(t). 

The system is

not linear if y(0) 

= y0 ≠ 0.

is linear if y(0) = 0 satisfies a and b.

A system can be 

realized using. A. 

Indirect form. B. 

Cascade form. C. Direct 

form

A & B only B & C only A & C only

If h(t) is the impulse 

response of casual, 

linear, time invariant, 

continuous system.  

Then output y(t) of the 

system for an input of 

x(t), is________


+

−
−  dthx )()( 

+

−
0

)()(  dthx  −
t

dthx
0

)()( 



opt4 opt5 opt6 answer

 (2e-t – 2e-2t)u(t)  2(e-t – e-

2t)u(t) 

 Noncausal and  

unstable

 Stable

Amplifies high 

frequency signal

Amplifie

s high 

frequenc

y noise 

signal

 unstable signals  causal 

signals

 1/s2  1/s2

none of the above. causal

None of the above. (a) and 

(b)

 e-st and H(s)  est and 

H(s)

 step response  

frequenc

y and 

impulse 

response

x1(t)*x2(t)= x1(t)+ 

x2(t)

x1(t)*x2(

t)= 

x1(t)+ 

x2(t)

x1(t)*x2(t-

T)=z(t+T)

x1(t)*x2(

t-T)=z(t-

T)



t/u(t) t u(t)

(1-cost) (1-

cost)u(t)

u(t) (t2/2) u(t)

(a) and (b) (a) and 

(b)

(a) or (b) x(t)*h(t)

none of the above absolutel

y 

integrabl

e

(a) and (c) unstable

 e-t One

Positive values of t 

& is noncausal

Negative 

values of 

t & is 

noncausa

l

h(τ)= cδ(t)  t ≠ 0

1 / (S + R / L) 1 / (S + 

R / L)

h(τ)=0 τ 

≠ 0

h(τ)=0 τ≠0 h(τ)=0 

τ<0



Positive values of t 

& is noncausal

Positive 

values of 

t & is 

causal

Output produced  

due to input and  

initial condition=0 

Output 

produced  

  due to 

initial 

condition

s and 

input=0

output produced 

due to input

output 

produced 

 due to 

initial 

condition

s and 

input =0

2et        2e-0.2t

zero for negative t zero for 

negative t

both a & c. stable

causal and unstable. noncausa

l and 

stable.

i – B, ii – A, iii – C. i – B, ii 

– C, iii – 

A.

Three integrators 

and four summers..

Four 

integrator

s and 

four 

summers.



impulse function system 

transfer 

function.

Constant e-2t

[h1(t) * h2(t) ] * 

h3(t) = h1(t) * 

h2(t) * h3(t)

[h1(t) + 

h2(t) ] * 

h3(t) = 

h1(t)h3(t) 

 + 

h2(t)h3(t)

x(t) = 1, t < 0 x(t) = 0, 

t > 0

x(t) * δ(t - t0) = x(t 

+ t0)

x(t) * δ(t 

- t0) = 

x(t - t0)

δ(t – λ1) * δ(t – 

λ2) = δ(λ1 – λ2)

δ(t – λ1) 

* δ(t – 

λ2) = 

δ(λ1 – 

λ2)

Zero input 

response - Zero 

state response

Zero 

input 

response 

+ Zero 

state 

response

Bilateral transform 

does not exist

Lower 

limit of 

integratio

n

Left of all zeros Right of 

all zeros



a  and b On the 

left half 

of s- 

plane

e at u(t) e at u(-t)

(b) and (c) (b) and 

(c)

(a) and (b) (a) and 

(b)

both responses are 

finite.

Zero 

state 

response 

is zero.

T(s) = G(s) / (1 + 

G(s)H(s))

T(s) = 

G(s) / (1 

+ 

G(s)H(s))

(t*e-t)u(t) (t*e-

t)u(t)

x(t-t1) * h(t-t2) = 

y(t-t1).y(t-t2)

x(t-t1) * 

h(t-t2) = 

y(t-t1-t2)

(a) and (c). (a) and 

(c).

None of the above. None of 

the 

above.

e-(t-1)u(t-1) + e-(t-

3)u(t-3)

e-(t-

1)u(t-1) 

– e-(t-

3)u(t-3)



not linear if y(0) = 

y0.

satisfies 

a and b.

All A, B & C B & C 

only

 −
t

dthx
0

)()(  − −
t

t
dthx  )()( 

+

−
−  dthx )()(



questions opt1 opt2 opt3 opt4 opt5

Fourier Series co-effecients for a 

continuous time periodic wave is 

____________ of envelope function.

Samples Equation

s

Functions Limits

Fourier transform representation is 

convergence of Fourier series 

representation of a signal when the 

period approaches

Zero Infinity One Two

Spectrum is the ___________________ 

transform of CT / DTsignal

Laplace Z Fourier Y

X(e 
jw

) is the ______________________ 

of the signal

Continuo

us Time 

Fourier 

transform

Laplace 

transform

Z 

transform

Discrete 

Time 

Fourier 

transform

DTFT of d(n-k) is .e 
- jwk

e 
- jwnk

e 
+ jwnk

e 
+ jwk

DTFT of {1, -1, 2, 2} is 1 - e 
 jw  

 

+ 2 e  
 

j2w    
+ 2 

e 
j3w

1 - e 
- jw    

 + 2 e 
– 

j2w    
- 2 

e 
– j3w

1 + e 
 jw    

 + 2 e  
 

j2w    
+ 2 

e 
 j3w

.1 - e 
- 

jw 
 + 2 e 

– j2w    
+ 

2 e 
– j3w

 Match A. Differentiation in frequency 

domain  1.  

Time convolution 2. 

C. Parsevals Theorem 3. 

Frequency Convolution 4. 

 The periodicity property of Discrete 

Fourier transform satisfies the relation

 X(w) = 

X(w+ 

2pn)

 X(w) = 

X(w+ 2n)

 X(w) = 

X(w+ 2p)

.  X(w) = 

X(w+ 

2pk)
 The correlation property in DTFT gives X1(e 

jw
) 

X2(e -
jw

)

 X1(e 
jw

) 

X2(e 
jw

)

1 / 2 

X1(e 
jw

) 

X2(e -
jw

)

 1 / 2 

X1(e 
jw

) 

X2(e 
jw

)

 Discrete Fourier Transform is defined 

only for sequences with

 infinite 

length

finite 

length

 both  none

 DTFT of u(n) may be

 

.A – 3; B 

– 4; C – 

2; D – 1

A – 3; B 

– 3; C – 

4; D – 1

A – 3; B 

– 4; C – 

1; D – 2

A – 4; B 

– 3; C – 

2; D – 1

  

 X(e 
jw

) = e - 
jw

, then x(n) is   . 

.  

e
j

a
w−

+1

1

e ja w+1 1 e ja w−1 1

e
e

j

j

w

w

−
−1

1

e
e

j

j

w

w

−
+1

1

e
jw−

−1

1

e jw−+1 1e jw−−1 1

−= )()( e jXnx w −= )()( e jXnx w −= )(1)( e jXnx wp

)1(

)1(sin

−

−

n

np

)1(

)1(cos

−

−

n

n

p

p )1(

)1(sin

−

+

n

n

p

p

)1(

)2sin(

−

−

n

n

p



 X1(e 
jw

) is a ______________ function 

of frequency

 discrete  digital continuo

us

sequentia

l

DFT is a powerful tool for  Time 

domain 

analysis

Frequenc

y domain 

analysis

 K 

domain 

analysis

 S 

domain 

analysis

 Z – transform is used to take a DT time- 

domain signal in

 

frequency 

 domain

 s-domain . 

complex 

variable 

frequency 

 domain

 complex 

variable 

time 

domain

ROC is a condition for which  

Continuo

us Time 

Fourier 

Series 

converge

s

 

Continuo

us Time 

Fourier 

Transfor

m 

converge

s

 Discrete 

Time 

Fourier 

Series 

converge

s

. Z- 

transform 

 

converge

s

 For X(Z) = 1 + 2Z 
-1

 + 3Z 
-2

 the ROC is  at Z = 0  at Z =  . except 

at Z = 0

 except 

at Z = 

27. If x(n) on Z – transform is X(Z), then 

anx(n) on Z-transform is

 X(a/Z),  

ROC 

|a|r1 < |Z| 

< |a|r2

. X(Z/a),  

ROC 

|a|r1 < |Z| 

< |a|r2

 X(a/Z),  

ROC 

|a|r2 < |Z| 

< |a|r1

 X(Z/a),  

ROC 

|a|r2 < |Z| 

< |a|r1

 Z-transform of a unit sample is 0 . 1  

 Is Parsevals Theorem in Z-

Transfor

m

 Fourier 

Transfor

m

Laplace 

Transfor

m

Fourier 

Series

The basic principle of Z- transform is to 

design

Low 

Pass 

Filter

High 

Pass 

Filter

Analog 

Filter 

Design

.Digital 

Filter 

Design

Choose the correct answer The 

significance of ROC is A. ROC is used 

to determine the causality B. ROC is 

used to determine the stability C. ROC is 

used to deternmine the linearity D. ROC 

is used to determine the variance.

A & C .A & B C & D A & D 

Z – transform of the signal {1,3,2,0,0,0. . 

. . } is

 1 + 2 /Z 

+ 3 / Z
2

 1 + 3 / Z . 1 + 3 / 

Z + 2 / Z
2

 1 + 2 / 

Z
2



 The ROC of  {1,3,2,0,0,0. . . . } is  whole 

of Z – 

plane

 whole 

of the Z 

– plane 

except Z 

=  

. whole 

of the Z-

plane 

except Z 

= 0

 at Z = 0

 Z transform of  d(n) is . 1  z  1 / z  z
2

 If x(n) and y(n) are two finite sequences, 

then x(n)*y(n) is

 X(z) / 

Y(z)

 Y(z) / 

X(z)

 

X2(z)Y(z

)

. 

X(z)Y(z)

 If x(n)             X(Z), then the valid one is  x(-n)    

X(z)

 x(-n)    

zX(z)

 x(-n)    

X(z) / z

. x(-n)    

X( 1/ z )

 If u(n)  z / (z – 1), then Z[u(-n)] is  z / (1-z)  1 / 1-z . 1/z-1  z
2
 / z-1

 If x(n) = 0 for n<0 and x(n) = 3 
n
 for 

n>0, then the Z – transform of sequence 

x(n) is

 1/z-3 .Z/z-3 1/(z-3) 
-1

1/ (z-1)
2

The sequence x(n) = {2,3,4,3} is  

circularly 

 odd

. 

circularly 

 even

 neither a 

nor b

 partly a 

and 

partly b

MatchA. a nx(n) 1. X(z -1) B. x(-n) 2. 

X(Z*)]* C. nx(n) 3. X(Z/a) D. x*(n) 4. 

–Z d{X(Z)} / dz

. A – 3; 

B- 1; C- 

4; D- 2

 A – 3; 

B- 4; C- 

1; D- 2

 A – 1; 

B- 3; C- 

4; D- 2

 A – 3; 

B- 4; C- 

2; D- 1

If  x(n)             X(Z) then Im[x(n)]  

1/2j[X(Z) 

 + X* 

(Z*)]

 

1/2j[X(Z) 

 – X 

(Z*)]

 

1/2j[X*(

Z) – X* 

(Z*)]

. 

1/2j[X(Z) 

 – X* 

(Z*)]

Find the correct meaning of x((n+k))N   

from the following

. 

Sequence 

 x(n) 

shifted 

clockwis

e by k 

samples

 

sequence 

x(n) 

shifted 

anti – 

clockwis

e by k 

samples

 

Sequence 

 x(n) 

shifted 

anti – 

clockwis

e by N 

samples

sequence 

x(n) 

shifted  

clockwis

e by N 

samples

Which of the following is true  W N 
k + N 

/ 2
 = W N  

k

. W N 
k + 

N / 2
 = - 

W N 
k

 W N 
k + N 

/ 2
 = W N  

N/ 2

 W N 
k + N 

/ 2
 = - W 

N 
N/ 2

The relationship between DFT and Z- 

transform is X(k) = X(Z) when
 Z = e 

– j 

2pkn / N

 Z = e 
 j 

2pk / N

. Z = e 
– j 

2pk / N

 Z = e 
j 

2pk / N 



Assertion: DFT and IDFT are linear 

transformations on s(k) and S(K)Reason

.DFT is 

obtained 

by 

sampling 

operation 

 in both 

time and 

frequency 

 domains

DFT is 

obtained 

by 

interpolat

ion 

operation 

 in both 

time and 

frequency 

 domains

DFT is 

obtained 

by 

sampling 

operation 

 in time 

and 

interpolat

ion in  

frequency 

 domain

DFT is 

obtained 

by 

sampling 

operation 

 in 

frequency 

 and 

interpolat

ion in  

time 

domain

The left sided exponential sequence is  a 
n
u(n) 

for n >= 

0

 -a 
n
u(n) 

for n >= 

0

 -a 
n
u(-n) 

for n <= 

0

. -a 
n
u(-n-

1) for n 

<= 0

 if x(n) = 3 
m

 for n <0 and x(n) = 0 for n 

> 0 then Z – transform of x(n) is

 3 / Z – 3 . 3 / 3 – Z  1 / Z – 3  1 / 3 – Z

 If X ( Z) = 3aZ 
-1

 / (1 – aZ 
– 1

)
3
 and |a| < 

|Z|, then the initial value of x(n) is

2 1 . 0  ∞

The Z – transform of a 
n
 is  1 / (1 + 

aZ
 -1

)

. 1 / (1 – 

aZ
 -1

)

 Z / (1 – 

aZ
 -1

)

 Z / (1 + 

aZ
 -1

)

If  x(n)             X(Z), then  x(n-2)  

x(-2) + 

x(-1)Z 
-1 

 

+ x(0)z 
-2

 x(n-2)  

x(-2) + 

x(-1)Z  + 

z X(z)

 x(n-2)  

x(-2) + 

x(-2)Z 
-1 

 

+ z(-

2)X(z)

. x(n-2)  

x(-2) + 

x(-1)Z 
-1 

 

+ z 
-2

X(z)

In X (Z) = 5 / (1 – z 
-1

) + (-4) / (1 – 0.8 Z 
-

1
) if ROC is |Z| > 1, then x(n)

 [ 4 – 

4(0.8) 
n
] 

u(n)

 [ 4 – 

5(0.8) 
n
] 

u(n)

. [ 5 – 

4(0.8) 
n
] 

u(n)

 [ 5 – 

5(0.8) 
n
] 

u(n)

In X (Z) = 5 / (1 – z 
-1

) + (-4) / (1 – 0.8 Z 
-

1
) if ROC is 0.8 <|Z| < 1, then x(n)

 -5(1) 
n 
 

u(-n) – 

4(0.8) 
n 
 

u(n)

. -5(1) 
n 
 

u(-n-1) – 

4(0.8) 
n 
 

u(n)

 -5(1) 
n 
 

u(-n-1) – 

4(0.8) 
n 
 

u(-n-1)

 -5(1) 
n 
 

u(n) – 

4(0.8) 
n 
 

u(n)



opt6 answer

Samples

Infinity

Fourier

Ans: d

.e 
- jwk

.1 - e 
- 

jw 
 + 2 e 

– j2w    
+ 

2 e 
– j3w

 X(w) = 

X(w+ 

2pk)
1 / 2 

X1(e 
jw

) 

X2(e -
jw

)

 finite 

length

. 

.A – 3; B 

– 4; C – 

2; D – 1

. 
e ja w−−1 1

e njw− e njw−= )(1)( e jXnx wp

)1(

)1(sin

−

−

n

n

p

p

e
jw−

−1

1



continuo

us

Frequenc

y domain 

analysis

 complex 

variable 

frequency 

 domain

Z- 

transform 

 

converge

s

except at 

Z = 0

. X(Z/a),  

ROC 

|a|r1 < |Z| 

< |a|r2

. 1

Z-

Transfor

m

.Digital 

Filter 

Design

.A & B

. 1 + 3 / 

Z + 2 / Z
2



. whole 

of the Z-

plane 

except Z 

= 0

. 1

. 

X(z)Y(z)

. x(-n)    

X( 1/ z )

. 1/z-1

.Z/z-3

. 

circularly 

 even

. A – 3; 

B- 1; C- 

4; D- 2

. 

1/2j[X(Z) 

 – X* 

(Z*)]

Sequence 

 x(n) 

shifted 

clockwis

e by k 

samples

. W N 
k + 

N / 2
 = - 

W N 
k

. Z = e 
– j 

2pk / N



.DFT is 

obtained 

by 

sampling 

operation 

 in both 

time and 

frequency 

 domains

. -a 
n
u(-n-

1) for n 

<= 0

. 3 / 3 – Z

. 0

. 1 / (1 – 

aZ
 -1

)

. x(n-2)  

x(-2) + 

x(-1)Z 
-1 

 

+ z 
-2

X(z)

. [ 5 – 

4(0.8) 
n
] 

u(n)

. -5(1) 
n 
 

u(-n-1) – 

4(0.8) 
n 
 

u(n)



questions opt1 opt2

Examples of shift invariant system are A. Thermal systemB. Noise 

EffectsC. Printing documents by the printer

A & B A & C

y(n) = cos x(n) is a linear & 

stable 

system

linear & 

unstable 

system

y(n) = sgn x(n) is a _____, _______ system static, 

causal

dynamic

, causal

Sampling and truncation systems are examples of linear & 

shift 

invariant 

systems

nonlinea

r & shift 

variant 

systems

An LTI – DT system will be stable if the unit sample response is absolutely 

integrable

absolute

ly 

summab

le
The impulse response of x1(n) = {1,-3, 2} and x2(n) = {1,2,1} is { 1, 1, 3, 

1,2}

{ 1, 3, 1, 

1, 2}

The relationship between Z & S Plane is s > 0,  

|z| <1

s < 0, 

 |z| <1
Z- transform of unit exponential sequence is 1 / (1- e 

- aT 

Z 
– 1

)

1 / (1- e 
- 

T
 Z 

– 1
)

Select the appropriate comment on Z- transform Good for 

analysis.

Differen

ce 

equation

s help in 

easy 

compute

r 

program

.
Assertion: Unstable systems cannot be cascaded Reason Perfect 

cancellatio

n is very 

difficult

Unstabl

e pole 

can be 

excited 

by other 

inputs



Instability can be determined from the poles of 

the open 

loop 

transfer 

function

Zeroes 

of the 

open 

loop 

transfer 

function

The ROC of (1/3) 
n
 [u(-n) – u(n-8)] is |Z| < 1/ 3 |Z| > 1/3

If  x(n) is -5(1) 
n
 u(-n-1) – 4(0.8) 

n
 u(n) will have ROC as |Z| >1 |Z| < 0.8

The poles are the values for which X(Z) is 0 1 / ∞

If N is the no. of poles, M is the no. of Zeroes and if N > M has N+ M 

Zeroes at 

the origin

N – M 

Zeroes 

at the 

origin
If N is the no. of poles, M is the no. of Zeroes and if N < M has N+ M 

poles at 

the origin

N – M 

poles at 

the 

origin
If X(Z) = ∞, then there is a Zero at ∞ Zero at 

0

If X(Z) = 0, then there is a Zero at ∞ Zero at 

0

The system h(n) = -2(3) 
n 

u(-n-1) – (0.5) 
n
 u(n) is stable if |Z| >3 |Z| < 0.5

The ROC of {0,0,1,2,4} is the entire Z – plane except at Z 

=  ∞

except 

at Z = 0

Convolution between 2 signals can be done using Graphical 

Method

Tabular 

Method

Match the following Roots of the equationNatural Response A. Real & 

Distinct       1.  c a 
n
 B complex 2 Kr n C. a 

n
        3. C0 + C1n + . . . . C 

pn 
p
 D. n 

p
        4. r 

n
[ K1 cos(nW) + K2 sin( nW)

A – 3; B – 

1; C – 4; D 

- 2

A – 2; B 

– 3; C – 

4; D - 1

Match the following Roots of the equationNatural Response Real , 

repeated       1. C1 coswt + C2 sin wt Cos(wt + b)         2. e 
at

 (C0 + C1t) 

N       3. r 
n
{K0 + K1n + . . . . + Kp n

p
] te 

at 
       4. C0 + C1n

A – 3; B – 

1; C – 4: D 

– 2

A – 1; B 

– 2; C 

–3; D –4

The forced response of y(n) – 0.4y(n-1) = u(n) is 1.33 1. 44

The natural response of y9n) + 0.1y(n-1) – 0.3y(n-2) = 2 u(n) is K1 (0.6) 
n
 + 

K2 (-0.6) 
n

K1 (0.3) 
n
 + K2 (-

0.6) 
n



For the system (1 – z 
-1

 – 2 z
 – 2

 )y(n) = x(n) is y(n) – y(n-

1) – 2y(n-

2) = x(n) – 

x(n-1)

y(n) – 

y(n-1) – 

2y(n-2) 

= x(n) 
The system  y(n) – y(n-1)  = x(n)is causal noncaus

al

Assertion: Two systems x(n) and x
2
(n)are connected in cascade. The 

response change when they are reversed.

      

Reason

Squarin

g 

system 

is not an 

LTI 

system
Choose the correct answer Possible to 

confirm the 

input – 

output 

relations

Possible 

to 

optimize 

the 

system

State is the knowledge of the variables at _________ to determine 

the behaviour of the system.

t = t1 t = T

The state equation is Q’ = AQ + 

BX

Q = AQ 

+ BX

The output equation is Y = CQ’ + 

BX

Y’ = CQ 

+ BX

For the state equations X’(t) = Px(t) + Qu(t) Y(t) = Rx(t) + Su(t)    

Match the following          List I  List II A. P1.  n x p B. Q2. q x n C. R3. 

n x n D. S4. V x P

A – 4; B – 

1; C – 2; D 

- 3

A – 1; B 

– 3; C – 

4; D - 2

For the state space representation from the transfer function the 

system is represented in

Direct – I 

form

Direct – 

II form

Which of the statements is true? Each block diagram representation 

of a system can be translated directly into computer  algorithm but it 

needs

sampling quantizi

ng

The Z 
-1

 block is a representation of differentiat

or

Integrat

or

Laplace Transform and Z transform replace time domain operation 

into

algebraic 

equation

Different

iation 

equation



For a rectangular signal x(n) = { 1 0< n <5}, g(n) = x(n) – x(n-1) the Z- 

transform is

G(Z) = 1 – 

Z 
– 3

,  |Z| 

>0

G(Z) = 1 

– Z 
– 2

,  

|Z| >0

In a RLC network,  _____________ are chosen as state variables energy Inductor 

voltage

The Inductor current of an electric network are considered as series 

voltage

shunt 

voltage

A system has the following Zeroes (0,-1) and poles at 0.5 + j0.5, 0.5 

–j0.5. The system is

stable unstable

The system Z ( Z+1) / Z 
2
 – Z + 0.5 has poles at 0.5 + j 0.5 0.5 + j 

0.5, 0.5 

– j0.5
The input to the integrators are present 

state

past 

state

The state variables are the input of 

delay 

element

output 

of delay 

element

The state transition matrix determines the 

transition 

of the final 

state at t = 

0

the 

transitio

n of the 

final 

state at t 

= ∞
The state variables are smallest 

set of 

variables 

that 

determine 

the stability 

of a 

system

smallest 

set of 

variable

s that 

determi

ne the 

state of 

a 

system
The state equation is given by x(k) = 

Ax(k) + 

Bu(k)

x(k+1) = 

Ax(k)

If x(k) be the input of a delay element, the output will be x(k+1) x(k)

The transfer function of a SISO system is h(Z) = C(ZI 

– A) 
– 1

B

H(Z) = 

B(ZI – 

A) 
-1

 + D



Total response of the system is ZIR x ZSR ZIR – 

ZSR



opt3 opt4 opt5 opt6 answer

B & C A, B & C A & C

nonlinea

r & 

stable 

system

nonlinea

r & 

unstable 

system

nonlinea

r & 

stable 

system

static, 

non- 

causal

dynamic

, 

noncaus

al

static, 

causal

static & 

stable 

systems

non 

causal & 

stable 

systems

static & 

stable 

systems

either A 

or B

Both A 

& B

absolute

ly 

summab

le
{ 1,-1,-

3,1,2}

{ 1,-1,-3,-

1,2}

{ 1,-1,-

3,1,2}

s > 0, 

 |z| =1

s < 0, 

 |z| >1

s < 0, 

 |z| <1
1 / (1- e 
T
 Z 

– 1
)

1 / (1+e 
- 

aT
 Z 

– 1
)

1 / (1- e 
- 

aT
 Z 

– 1
)

Differen

ce 

equation

s can be 

solved 

easily.

Perfect 

Pole-

Zero 

Plots 

can be 

obtained

Differen

ce 

equation

s help in 

easy 

compute

r 

program

.
Stable 

pole can 

be 

excited 

by other 

ports

Cancell

ation is 

perfect

Perfect 

cancella

tion is 

very 

difficult



poles of 

the 

closed 

loop 

transfer 

function

Zeroes 

of the 

closed 

loop 

transfer 

function

poles of 

the 

closed 

loop 

transfer 

function
|Z| >  

(1/3) 
n

|Z| <  

(1/3) 
n

|Z| > 1/3

0.8 <|Z| 

< 1

|Z| < 1 0.8 <|Z| 

< 1

1 ∞ ∞

M – N 

Zeroes 

at the 

origin

M 

Zeroes 

at the 

origin

N – M 

Zeroes 

at the 

origin
M – N 

poles at 

the 

origin

N poles 

at the 

origin

M – N 

poles at 

the 

origin
pole at 

∞

pole at 0 pole at 

∞

pole at 

∞

pole at 0 Zero at 

∞

| Z| > 

unit 

circle

0.5 < |Z| 

<3

0.5 < |Z| 

<3

except 

at Z = 1

except 

at Z > 1

except 

at Z = 0

Matrix 

Method

All of 

the 

above

All of 

the 

above
A – 2; B 

– 4; C – 

1; D - 3

A – 2; B 

– 4; C – 

3; D – 1

A – 2; B 

– 4; C – 

1; D - 3

A – 3; B 

– 4; C – 

4: D – 1

A – 2; B 

– 3; C – 

4: D – 2

A – 3; B 

– 1; C – 

4: D – 2

1.66 1.55 1.66

K1 (0.5) 
n
 + K2 (-

0.5) 
n

K1 (0.5) 
n
 + K2 (-

0.6) 
n

K1 (0.5) 
n
 + K2 (-

0.6) 
n



y(n) – 

2y(n-2) 

= x(n)- 

x(n-1)

y(n) – 

2y(n-1) 

– y(n-2) 

= x(n)

y(n) – 

y(n-1) – 

2y(n-2) 

= x(n) 
unstable stable stable

Squarin

g 

system 

is an LTI 

system

Squarin

g 

system 

is not a 

linear 

system

      

Reason

Possible 

not to 

include 

the 

initial 

conditio

n

Possible 

to 

analyze 

only 

linear 

systems

Possible 

to 

optimize 

the 

system

t = t t = t0 t = t0

Q’ = AQ’ 

+ BX

Q’ = AQ’ 

+ BX’

Q’ = AQ 

+ BX

Y’ = CQ’ 

+ BX

Y = CQ 

+ BX

Y = CQ 

+ BX

A – 3; B 

– 1; C – 

4; D - 2

A – 3; B 

– 4; C – 

2; D – 1

A – 3; B 

– 1; C – 

4; D - 2

Cascad

e form

Parallel 

form

Direct – 

II form

coding modulati

on

quantizi

ng

Multiplie

r

Unit 

Delay

Unit 

Delay

Differen

ce 

Equatio

n

Convolu

tion 

Equatio

n

algebrai

c 

equation



G(Z) = 1 

– Z 
– 6

,  

|Z| >0

G(Z) = 1 

– Z 
– 1

,  

|Z| >0

G(Z) = 1 

– Z 
– 6

,  

|Z| >0

capacito

r voltage

Capacit

or 

current

capacito

r voltage

next 

state 

variable

state 

variable

s

state 

variable

s
time 

variant

causal stable

0.6 + j 

0.5, 0.6 

– j0.5

0.5 + j 

1, 0.5 – 

j1

0.5 + j 

0.5, 0.5 

– j0.5
future 

state

no 

states

future 

state

input to 

summer

output 

to 

summer

output 

of delay 

element

the 

transitio

n of the 

initial 

state at t 

= ∞

the 

transitio

n of the 

initial 

state at t 

= 0

the 

transitio

n of the 

initial 

state at t 

= 0
smallest 

set of 

variable

s that 

determi

ne the 

causalit

y of a 

system

smallest 

set of 

variable

s that 

determi

ne the 

linearity 

of a 

system

Ans: b

x(k+1) = 

Ax(k) + 

Bu(k)

x(k) = 

Au(k)

x(k+1) = 

Ax(k) + 

Bu(k)
x(k-1) x(k/2) x(k-1)

H(Z) = 

C(ZI – 

A) 
-1

B + 

C

H(Z) = 

D(ZI – 

A) 
-1

B + 

D

H(Z) = 

D(ZI – 

A) 
-1

B + 

D



ZIR / 

ZSR

ZIR + 

ZSR

ZIR x 

ZSR
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