14BECS405 Formal Languages and Automata

COURSE OBJECTIVES:

e To have an introductory knowledge of automata, formal language theory

e and computability.

¢ To have an understanding of finite state and pushdown automata.

e To have a knowledge of regular languages and context free languages.

e To know the relation between regular language, context free language and corresponding
recognizers.

e To study the Turing machine and classes of problems

LEARNING OUTCOMES:

To have a introductory knowledge of automata, formal language theory and
computability.

To have an understanding of finite state and pushdown automata.

To have a knowledge of regular languages and context free languages.

To know the relation between regular language, context free language and
corresponding recognizers.

To study the Turing machine and classes of problems.

UNIT-1 Introduction To Automata
9

Basics of String and Alphabets - Finite Automata (FA) — Deterministic Finite Automata
(DFA)— Non-deterministic Finite Automata (NFA) — Conversion of NFA to DFA- Finite
Automata with Epsilon transition-Equivalence and Minimization of Automata

UNIT- 11 Regular Expressions And Languages
(€))

Regular Expression — FA and Regular Expressions — Proving languages not to be regular —
Pumping lemma for regular sets - Closure properties of regular languages- Decision Properties
of Regular Languages

UNIT- III Context-Free Grammar And Languages

Context-Free Grammar (CFG) — Parse Trees — Ambiguity in grammars and languages —
Definition of the Pushdown automata — Languages of a Pushdown Automata — Equivalence of
Pushdown automata and CFG, Deterministic Pushdown Automata- Pumping Lemma for CFL -
Closure Properties of CFL- Context Sensitive Grammar (CSG) & Languages

®)

UNIT IV Properties of Context Free Grammar
(€]

Normal forms for Context Free Grammar- Chomsky Normal Form- The Pumping lemma for
Context free Languages- Closure properties of Context Free Languages-Inverse
Homomorphism-Decision Properties of CFL

UNIT-V Turing Machine
(€))

Turing Machines — Introduction- Definition — Turing machine construction- Storage in Finite
control-Multiple tracks- Subroutines-Checking of Symbols — Two way infinite tape-
Undecidability .

Total Hours: 45

TEXT BOOKS:

1. Hopcroft J.E, R.Motwani and J.D.Ullman, Introduction to Automata
Theory, Languages and Computations, Pearson Education, 2011.

REFERENCES:

1. Lewis H.R and C.H.Papadimitriou, Elements of The theory of Computation, Pearson
Education, PHI, 2009.

2. Martin J, Introduction to Languages and the Theory of Computation, TMH, 2010

3. Micheal Sipser, Introduction of the Theory and Computation, Edition,Thomson
Brokecole,2012.

4. An Introduction to Formal Languages and Automata, 5th Edition, Peter Linz, 2011

WEBSITES:

1. http://www.regular-expressions.info/tutorial.html
2. http://www.cs.duke.edu/csed/jflap/tutorial/fa/nfa2dfa/index.html
3. http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

IDecred ta ke

vl e JnzerSeczon 43l LG s 158

KARPAGAM ACADEMY OF HIGHER EDUCATION

Faculty of Engineering

Department of Computer Science and Engineering

Lecture Plan

Subject Name: FORMAL LANGUAGES AND AUTOMATA

Subject Code: 14BECS405

. No.of Supporting Teachi
S-No Topic Name Periods Materials ne
Aids
UNIT- I Introduction To Automata
1 Basics of String and Alphabets 1 R[1]-1 BB
2 | Finite Automata (FA) 1 R[1]-1 BB
3 Deterministic Finite Automata (DFA) 1 R[1]-5 PPT
4 | Non-deterministic Finite Automata (NFA) 1 R[1]-6 PPT
5 | Non-deterministic Finite Automata (NFA) 1 R[1]-6 PPT
6 | Conversion of NFA to DFA 1 T[1]-95 PPT
7 Conversion of NFA to DFA i
T[1]-95 PPT
8 Finite Automata with Epsilon transition 1 T[1]-68 BB
9 | Finite Automata with Epsilon transition 1 Web PPT
10 | Equivalence and Minimization of Automata 1 T[1]-12 BB
11 | Tutorial: Basic Applications 1 Web BB
Total 11
UNIT- Regular Expressions and Languages
12 | Regular Expression 1 T[1]-200 PPT
13 | Finite Automata (FA) 1 web PPT
14 | FA and Regular Expressions 1 T[1] 201 BB
15 | Proving languages not to be regular 1 T[1]214 PPT
16 | Pumping lemma for regular sets 1 T[1]214 PPT
17 | Closure properties of regular languages 1 T[1]218 PPT
18 Closure properties of regular languages 1 R[1]218 PPT
19 Decision properties of regular langauages 1 R[1]218 PPT
20 | Decision properties of regular langauages 1 R[1]221 BB
21 Revision 1 R[1]221 PPT
Total 10
UNIT- III Context-Free Grammar And Languages
22 | Context-Free Grammar (CFG) 1 web PPT

23 | Parse Trees 1 web PPT
24 | Ambiguity in grammars and languages 1 web PPT
25 | Definition of the Pushdown automata 1 T[1]-488 BB
26 | Languages of a Pushdown Automata 1 T[1]-193 PPT
27 | Equivalence of Pushdown automata and CFG 1 T[1]-266 BB
28 | Deterministic Pushdown Automata 1 T[1]-305 PPT
29 | Pumping Lemma for CFL 1 T[1]-343 BB
30 | Closure Properties of CFL 1 web PPT
31 Context Sensitive Grammar (CSG) & Languages
1 web PPT
Total 10
UNIT- IV Properties of Context Free Grammar
32 | Properties of Context Free Grammar 1 R[1]-139 PPT
33 | Normal forms for Context Free Grammar 1 R[1]-139 PPT
34 | Chomsky Normal Form 1 T[1]-140 PPT
35 | The Pumping lemma 1 R[1]-152 BB
36 | The Pumping lemma for Context free Languages 1 R[1]-159 PPT
37 | Closure properties of Context Free Languages 1 R[1]-162 BB
38 | Inverse Homomorphism 1 R[1]-163 PPT
39 | Decision Properties of CFL 1 R[1]-133 PPT
40 | Properties of CFL 1 web PPT
41 | Revision 1 R[1]-133 BB
Total 10
UNIT-V Turing Machine
42 | Turing Machines 1 R[1]-248 PPT
43 | Introduction to TM 1 R[1]-465 BB
44 | Definition — Turing machine construction 1 R[1]-465 BB
45 | Storage in Finite control 1 R[1]-255 PPT
46 | Multiple tracks 1 R[1]-248 PPT
47 | Subroutines 1 T[1]-1087 PPT
48 | Checking of Symbols 1 T[1]-1087 PPT
49 | Two way infinite tape 1 T[1]-690 BB
50 | Undecidability Problem 1 T[1]-690 PPT
51 | Revision 1 T[1]-752 BB
52 Discussion on Previous University Question Papers
Total 10
Total Hours 52

TEXT BOOKS

Year of
publica
S.NO | Title of the book tion
Hopcroft J.E, R.Motwani and J.D.Ullman, Introduction to Automata
1 Theory, Languages and Computations, Pearson Education 2011
REFERNCE BOOKS
Year of
publica
S.NO | Title of the book tion
Lewis H.R and C.H.Papadimitriou, Elements of The theory of Computation, Pearson
1 | Education, PHI, 2009. 2009
WEBSITES

1. http://www.regular-expressions.info/tutorial.html
2. http://www.cs.duke.edu/csed/jflap/tutorial/fa/nfa2dfa/index.html
3. http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

& KARPAGAM UNIVERSITY
%/__4 K arpagam Academy of Higher Education

cnabie gn | Enrich
K A R P A G A M (Established under Section 3 of UGC Act 1956)
UNIVE R S I__T ¥ Eachanari, Coimbatore-641 021. TAMILNADU

Faculty of Engineering

Department of Computer Science and
Engineering

13BECS505
THEORY OF COMPUTATION
LECTURE NOTES

Prepared by
K.Sundareswari, AP

SYLLABUS

UNIT-I AUTOMATA

Introduction to formal proof — Additional forms of proof — Inductive proofs —Finite Automata
(FA) — Deterministic Finite Automata (DFA)— Non-deterministic Finite Automata (NFA) —
Finite Automata with Epsilon transitions.

UNIT- 11 REGULAR EXPRESSIONS AND LANGUAGES

Regular Expresson — FA and Regular Expressions — Proving languages not to be regular —
Closure properties of regular languages — Equivalence and minimization of Automata.

UNIT- 111 CONTEXT-FREE GRAMMAR AND LANGUAGES

Context-Free Grammar (CFG) — Parse Trees — Ambiguity in grammars and languages —
Definition of the Pushdown automata — Languages of a Pushdown Automata — Equivalence of
Pushdown automata and CFG, Deterministic Pushdown Automata

UNIT- 1V PROPERTIES OF CONTEXT-FREE LANGUAGES

Normal forms for CFG — Pumping Lemma for CFL - Closure Properties of CFL — Turing
Machines — Programming Techniques for TM.

UNIT-V UNDECIDABILITY

A language that is not Recursively Enumerable (RE) — An undecidable problem that is RE -
Undecidable problems about Turing Machine —Post’s Correspondence Problem-The classes P
and NP.

UNIT-1 AUTOMATA

Introduction to formal proof — Additional forms of proof — Inductive proofs —Finite Automata
(FA) — Deterministic Finite Automata (DFA)- Non-deterministic Finite Automata (NFA) —
Finite Automata with Epsilon transitions.

Theory of computations is based on mathematical computations, These
computations are used to represent various mathematical models. In this subject we
will study many interesting models such as finite automata, push down automata,
turning machines. This subject is a fundamental subject, that is very close to the
subjects like compilers, operating system, sytem software and pattern recognition
sytem. The automata theory is the base of this subject. The automata theory is theory
of models. Working of every process can be represented by means of model. The
model can be a theoretical or mathematical model. The model helps in representing
the concpet of every activity. The logic or behaviour of such models can be well
understood with the help of proofs. In this chapter we will learn the basic types of
mathematical proofs. We will learn how automata are important in theory of
computation. Hence we will study concept of finite automata.

1.1 Introduction to formal Proofs

The formal proof can be using deductive proof and inductive proof. The deductive
proof consists of sequence of statements given with logical reasoning in order to prove
the first or initial statement. The initial statement is called hypothesis.

The inductive proof is a recursive kind of proof which consists of sequence of
parameterized statements that use the statement itself with lower values of its
parameter.

In short, formal proofs are the proofs in which we try to prove that statement B is
true because statement A is true, The statement A is called hypothesis and B is called
conclusion statement. In other words, "if A then B" we say that B is deduced from A.

Let us see some additional forms of proofs.

1.2 Additional forms of Proof

We will discuss additional forms of proofs with the help of some examples. We
will discuss

1. Proofs about sets
2. Proofs by contradiction
3. Proofs by counter example

1.2.1 A Proof about Sets

The set is a collection of elements or items. By giving proofs about the sets we try
to prove certain properties of the sets.

For example if there are two expressions A and B and we want to prove that both
the expressions A and B are equivalent then we need to show that the set represented
by expression A is same as the set represented by expression B. Let PUQ = Q UR if
we map expression A with PUQ and expression B with QUR then to prove A = B we
need to prove PUQ = QUP.

This proof is of the kind "if and only if" that means an element x is in A if and
only if it is in B. We will make use of sequence of statements along with logical
justification in order to prove this equivalence.

Sr. No. Statement Justification
1, x is in PUQ Given
2, xisinPorxisinQ 1) And by definition of union
3 xisinQorxisinP 2) And by definition of union
4, X is in QUP 3) (2) And by definition of union
Table 1.1
Sr. No. Statement Justification
1. X is in QUP Given
2. XxisinQorxisinP 1} And by definition of union
3 xisinPorxisinQ 2) And by definition of union
4, x Is in PUQ 3) (2) by And by definition of
union
Table 1.2

Hence PUQ = QUP. Thus A = B is true as element x is in B if and only if x is in
hiﬂ

Theory of Computation 1.3 Automata

1.2.2 Proof by Contradiction

In this type of proof, for the statement of the form if A then B we start with
statement A is not true and thus by assuming false A we try to get the conclusion of
statement B. When it becomes impossible to reach to statement B we contradict our
self and accept that A is true.

For example -
Prove PUQ = QUP.

Proof. Assume PUQ # QUP. Now consider x is in P or x is in Q that means x is in
PUQ (by definition of union), in other words x is in Q or a is in P which can also be
written as x is in QUP (by definition of union). This contradicts our assumption
PUQ = QUP. hence the assumption which we made initially is false. And therefore
PUQ = QUP is proved.

1.2.3 Proof by Counter Example

In order to prove certain statements, we need to see all possible conditions in
which that statement remains true. There are some situations in which the statement
can not be true. For example

There is no such pair of integers such that a mod b =b mod a

Proof - Here the possibilities are either a > b or a < b. For example if a = 2 and
b= 3 then 2 mod 3 # 3 mod 2.

Similarly, if a = 3 and b = 2 then also 3 mod 2 # 2 mod 3. Thus the given
statement is true for any pair of integers but if a = b then naturally, a mod b = b mod
a. Thus we need to change the statement of theorem slightly and it will be a mod
b=b mod a is true only when a = b.

This type of proof is called counter example. Such proof are true only at some
specific conditions.

1.3 Inductive Proofs

Inductive proofs are special type of proofs used to prove recursively defined
objects.

The inductive proofs can be carried out using two steps

1. Basis of induction - In this step we start with the lowest possible value. For
example to show - 5(i) we will consideri =0 ori =1

2. Inductive step = In this step we try to show 5(n) is since S(n + 1) is true. Let us
discuss some example to understand the inductive proof.

inmp Example 1.1
Prove

1+2+3+..+n=n(n+ 1)/2 using method of induction

Proof :
Consider the two step approach for a proof by method of induction

1. Basis of induction = Let n=1then LHS=1and RHS =1 + 1/2 = 1. Hence

LHS = RHS.

2. Induction hypothesis — To prove 1 + 2 + 3 .., + n=n (n + 1) / 2 consider
n=n+1

thenl1+2+3+...+n+n+1)=n{n+1)/2+(n+1)

n® 4+ 3n + 2/2
(n+1) (n+2)/2

]

Thus it is proved that 1 + 2 +3 ... +n=n (n + 1)

Jmp Example 1.2
Prove nl> = 201

Proof : Consider

1. Basis of induction - Let n = 1 then LHS = 1 RHS = 2! ! = 2 = 1 hence
ni>=2""1is proved.

2. Induction hypothesis. Let n = n + 1 then
ki = 2 'wherek>=1
then (k + 1) (k + 1)k! by definition of n!
(k + 1) 2¢-!
2 x 21
2

Il

Il

]

1.4 Basic Concepts of Automata Theory

1.4.1 Set

Set is defined as a collection of various objects. These objects are called the
zlements of the set.

For example : A set of vowels. This set has the elements such as a, e, i, 0, u.

The set is denoted by capital letter. Let us see how the set of vowels be
represented,

A= laeioul
The elements of the set are grouped into the curly brackets and separated by
commas. The set can be finite or infinite.

Finite set : A finite set is a set of finite number of elements. As you have seen set
of vowels is a finite set of elements.

Infinite set : The infinite set is a collection of all the elements which are infinite in
number,

For example : Set of natural numbers.
If we want to describe any element of a set we can write it as,
[a | ais always even number |

This can be read as the element a of set A such that A (a) i.e. element a is always
even number.

If we want to show that b is any element in set A then we can denote it as beA
i.e. b belongs to A.

Subset : The subset A is called subset of set B if every element of set A is present
in set B. But reverse is not true. It is denoted as A ¢ B.

Empty set : The set having no elements in it is called empty set. It is denoted by
A = |, the empty set is written as ¢.

Null string : The null element is denoted by & or * character. Null element means
no value character. Remember & = §.

Power set : The power set is a set of all the subsets of its elements.
For example: A=(1,2, 3
Then the power set Q = {¢, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2,3},}

The number of elements are always equal to 2" where n is number of elements in
original set. As in set A there are 3 elements, therefore in powerset Q there are 2% = 8
elements.

1.4.2 Operations on Set
On the sets following operations are possible.

i} A U B is union operation - If
A 11,2,3] B = |1,2,4] then
AuB { 1,2, 3, 4] ie. combination of both the sets.

ii) A m B is intersection operation = If
A=1{123] and B = (23,4 then

AnB = |2 3] ie. collection of common elements from both
the sets.

iii) A - B is the difference operation - If
A=1123], and B = {23, 4] then
A=B = |1] ie. elements which are there in set A but not

in set B.

1.4.3 Cardinality of Sets

The cardinality of the set is nothing but the number of members in the set.

1.

Fig. 1.1 Cardinality of two sets

These sets A, and A, have the same cardinality as there is one to one mapping of
he elements of A; and A,.

1.4.4 Relations

Relaﬁbnship is a major aspect between two objects, even this is true in our real
ife. One object can be related with the other object by a 'mother of relation. Then
hose two objects form a pair based on this certain relationship.

Definition : The relation R is a collection for the set S which represents the pair of
lements.

For example : (7, b) is in R. We can represent their relation as a R b. The first
:omponent of each pair is chosen from a set called domain and second component of

sach pair is chosen from a set called range.
7

Iroperties of Relations
A relation R on set S is

1. Reflexive if iRi for all i in S.

2. Irreflexive if iRi is false for all i in 5.

3. Transitive if iRj and jRk imply iRk.

4. S}rn"umehic if iR} implies jRi.

5. Asymmetric if iRj implies that jRi is false.
Every asymmetric relation must be irreflexive.
For example : if A = [a, b | then

reflexive relation R can be = | {a, a), (b, b) |
irreflexive relation R can be = | (4, b) |
transitive relation R can be = | (a, b), (b, a), (a, a) |
symmetric relation R can be = | (g, b), (b, a) |
asymmetric relation R can be = | (a, b) |

Zquivalent Relation

A relation is said to be equivalence relation if it is reflexive, symmetric and
ransitive, over some set S.

Suppose R is a set of relations and S is the set of elements.

For example : S is the set of lines in a plane and R is the relation of lines
ntersecting to each other.

nmp Example 1.3 : Determine whether R is equivalence relation or not where

A=[0,1,2) R=10,0,(1,0,(1,1),(2, 2,2, 1]
Solution : The R is reflexive because (0, 0), (1, 1), (2, 2) € R.
Where as R is not symmetric because (0, 1) is not in R whereas (1, 0) is in R.

Hence the R is not a equivalence relation.

<losures of Relations
Sometimes when the relation R is given, it may not be reflexive or transitive.

By adding some pairs we make the relation as reflexive or transitive.
For example : Let { (g, b), (b, c), (a, a), (b, b) |

Now this relation is not transitive because (a, b), (b, ¢) is there in relation R but
{a, c) is not there in R so we can make the transitive closure as

| (a, a), (b, b), (a, b), (b, c), (a,) |

We can even define reflexive closure and symmetric closure in the same way.

1.4.5 Graphs

A graph, denoted G = (V, E) consists of finite set of vertices (or nodes) V and set
of edges, the edges are nothing but pair of vertices.

For example :

Fig. 1.2

Here the E1 is a edge connecting the vertices V1 and V2.
The set V= [V1, V2, V3, V4] and E =|[El, E2, E3, E4|]

1.4.6 Directed Graph

The directed graph is also a collection of vertices and edges where the directions
are mentioned along the edges.

For example :

Fig. 1.3

The edge E1 shows the direction to V2 vertex from vertex V1.

We will see the directed graphs in further chapters and we will call those graphs
as transition graphs.

1.4.7 Trees
Trees is a collection of vertices and edges with following properties.
1. There is one vertex, called root which has no predecessors.
2. From this root node all the successors are ordered.

For example :
Compuler
CPU /ﬂ\
/ /\ left right
mmnar menu mlhm;l ra:.-r button button
button
Memory Hard disk
Fig. 1.4

In the above example, at the leaf node all the components of computer are given,
when motherboard, memory and harddisk these components are configured they are
meant for CPU always. Keys are the prominent component for keyboard. When CPU,
monitor, keyboard and mouse are taken as one set, then it constitutes a device called
computer.

Computer is a root node in the above figure. CPU, Monitor, keyboard, mouse are
the interior nodes. Motherboard, memory harddisk are the leaf nodes for the CPU.
Monitor is a parent node or father of Menu button and cathode ray tube whereas
menu button is a left child of monitor and cathode ray tube is a right child of
monitor.

The only difference between graphs and trees is that graphs do not have special
node called root node.

1.4.8 Alphabets, String and Languages

Alphabet is a finite set of symbols we can not define symbol formally.
We can give supporting example for definition of alphabets.
For example: S = |(a,b,c, ..z}
The elements a, b, ¢, ... z are the alphabetsor 5=(0,1 |
Here 0 and 1 are alphabets.

Strings is a collection of alphabets.

10

FINITE AUTOMATA

Theory of computer science is based on a basic unit recognized as language.
Basically language is a collection of alphabets - the alphabets which form the strings
or words. Everybody of us, develop our own ideas when we think in our language.
Thus language becomes a fundamental aspect for building any idea or a thought.

In theory of computations there are two types of languages regular language and
irregular language. Let us define the language.

2.1 Definition of Language

The language can be defined as a collection of strings or words over the certain
input set,

For example : Rama is a boy.

This above statement indicates certain language and the input set is L = |A, B, C,
w &, 0, b, ¢ .. 2. The words 'Rama’, ‘'boy’, is '@’ are collected together in certain
manner to form a sentence of the language. Many such statements help us to speak a
language. In this chapter we will discuss a mathematical model called finite state
machine.

2.2 Finite State System

The finite state system represents a mathematical model of a system with certain
input. The model finally gives certain output. The input when is given to the machine
it is pmcessed b],r various states, these states are called as intermediate states.

The very good example of finite state system is a control mechanism of elevator.
This mechanism only remembers the current floor number pressed, it does not
remember all the previously pressed numbers,

The finite state system is a very good design tool for the programs such as text
editors and lexical analysers (which is used in compilers). The lexical analyzer is a
program which scans your program character by character and recognizes those words
as tokens.

11

Let us take some number 010 which is equivalent to 2. We will scan this number
from M5B to LSB.

01 0
" i A
S0 5 52

Then we will reach to state S; which is remainder 2 state. Similarly for input 1001
which is equivalent to 9 we will be in final state after scanning the complete input.

1 0 0 1
T+ &3
S5i 52 5 [So

Thus the number is really divisible by 3.
mmp Example 2.8 : Design FA which accepts even number of 0's and even number of 1's.

Solution : This FA will consider four different stages for input 0 and 1. The stages
could be

even number of 0 and even number of 1,
even number of 0 and odd number of 1,
odd number of 0 and even number of 1,
odd number of 0 and odd number of 1
Let us try to design the machine

Fig. 2.13

Here qq is a start state as well as final state. Note carefully that a symmetry of 0's
and 1's is maintained. We can associate meanings to each state as :

qo : State of even number of 0's and even number of 1's.
qi : State of odd number of 0's and even number of 1's.
qz : State of odd number of 0's and odd number of 1's.
q3 : State of even number of 0's and odd number of 1's.

12

The transition table can be as follows -

4] 1
-+ q 93
q qo q:
q2 qs S F
qs q2 Qo

nmp Example 2.9 : Design FA to accept the string that always ends with 00).

Solution :

Fig. 2.14
If the input is 01001100 it will be processed as

/l/l/l/l/l/l/&/l

Qg 9 9 9 9 qy g

Fig. 2.15
The q; is a final state, hence the input is accepted.

Imp Example 2.10 : Construct the transition graph for a FA which accepts a language L

over £ {0, 1} in which every string start with 0 and ends with 1.

Solution :

Fig. 2.16

13

In the above transition graph we have handled the case as if the input starts with
1 then it will be in q3 state which is a dead state and never lead to final state. Thus
this machine strictly handles the strings starting with 0 and ending with 1.

mmp Example 2.11 : Design FA to accept L, where L = {Strings in which a always
appears trippled] over the set I = [a, b).

Solution : For this particular language the valid strings are aaab, baaaaaa, bbaaab and
so on. The 2 always appears in a clump of 3. The TG (transition graph) will look like
this -

Fig. 2.17 For Ex. 2.11
Note that the sequence of tripple a is maintained to reach to the final state.

mmp Example 2,12 : Design FA fo accept L where all the strings in L are such that total
number of a’s in them are divisible by 3,

Solution : As we have seen earlier, while testing divisibility by 3, we group the input
as remainder 0, remainder 1 and remainder 2.

Hence

Sp : State of remainder 0
S: : State of remainder 1
S; : State of remainder 2

14

Note the difference between previous example and this, here there is no conditior
as a should be in clump but total number of 4's in a string are divisible by 3. Hence
b's are allowed in between.

mmp Example 2.13 : Design a FA that reads strings made up of letters in the word
CHARIOT and recognize those strings that contain the word 'CAT" as a substring.

Solution : To design this FA we will first consider the input set which will be £ = (C,
H, A, R 1, O, T}. From this input set we have to recognize the word 'CAT. We can dc
that as follows -

Step 1:

Smnr®c @AT

Fig. 2.19
Step 2 :

HARILOT

CHARILOT

HARLO

Fig. 2.20 Required finite automata

From above figure it is clear that on recognizing C initially from Z = (C, H, A, R,
I, O, T) we are moving to state q,, other than C all the characters are remaining in
state q, only. From q, the character A will be identified and from g, character T will
be identifier and from g, character T will be identified. The transition table can be

drawn as follows
15

Stﬂhwpu’l c H A R | 0 T
- G % % % % % % %
a4 q, 9 9 9 9 G L]
0z 4 9% Y L] Q9 i 93
@] o] % 4 93 93 o]

The substring may appear anywhere in the input string for any number of times,
For example 'HACCATHA'. From this 'CAT can be recognized and we should reach
to g, state finally.

2.3 Deterministic Finite Automata (DFA)

The finite Automata is called Deterministic Finite Automata if there is only one
path for a specific input from current state to next state. For example, the DFA can be
shown as below.

Fig. 2.21 Deterministic finite automata
From state Sq for input ‘4’ there is only one path, going to S;. Similarly from Sq
there is only one path for input b going to 5;.

The DFA can be represented by the same 5-tuples described in the definition of
FSM. All the above examples are actually the DFAs.

Definition of DFA
A deterministic finite automation is a collection or following things -
1) The finite set of states which can be denoted by Q.
2) The finite set of input symbols £
3) The start state g, such that g, € Q
4) A set of final states F such that Fe Q

5) The mapping function or transition function denoted by 8. Two parameters are
passed to this transition function : one is current state and other is input symbol. The
transition function returns a state which can be called as next state.

For example q, = & (qy a) means from current state g, with input a the next state
transition 1s .
In short, the DFA is a five tuple notation denoted as :
A= 1(QZLqF)
The name of DFA is A which is a collection above described five elements.
Method of Specifying DFA

This 5-tuple DFA can be represented by two ways - 1) Transition diagram
2) Transition table.

1) Transition Diagram : It is a 5-tuple graph used state and edges represent the
transitions from one state to another.

For example -

Fig. 2.22

2) Transition table - This is the tabular representation of the DFA. For a transition
table the transition function is used.

For example

ENt a b

i) Q4 =
a4 = a2
92 RFl -

The rows of the table correspond to states and columns of the table correspond to
inputs.

17

2.4 Non-Deterministic Finite Automata (NFA or NDFA)

The concept of Nondeterministc
Finite Automata is exactly reverse ol
Deterministic Finite Automata. The
Finite Automata is called NFA when
there exists many paths for a specific
input from current state to next state,
The NFA can be shown as in Fig. 2.23,

Note that the NFA shows from qg
for input a there are two next states q,
and q;. Similarly, from qq for input b

Fig. 2.23 Non-deterministic finite automata

the next states are qo and q;.

Thus it is not fixed or determined that with a particular input where to go next.
Hence this FA is called Nondeterministic finite Automata.

Consider the input string bba. This string can be derived as

Input b b a
Path Qo qo qi
Inputb b a
or
Path g9 qo q2
Input b b
or pe i

Path g0 q1 qu

Thus you can not take the decision of which path has to be followed for deriving
the given string.
Definition of NFA

The NFA can be formally defined as a collection of 5 tuples,

Q is a finite set of states

I is a finite set of inputs

6 is called next state or transition function

qo is initial state

F is a final state where FgQ.

There can be multiple final states. Thus the next question might be what is the use
of NFA. The NFA is basically used in theory of computations because they are more

flexible and easier to use than the DFAs.
18

Difference between NFA and DFA

The DFA is a deterministic finite automata whereas NFA is a non deterministic
finite automata. In DFA, for a given state, on a given input we reach to a
deterministic and unique state. On the other hand, in NFA we may lead to more than
one states for given input. The DFA is a subset of NFA. We need to convert NFA to
DFA in the design of compiler.

2.5 The Equivalence of DFA and the NFA

As we have discussed, the finite automata can either be DFA or NFA. You might
be thinking now, who is better NFA or DFA. Which has more power ? Here is a
theorem which tell you that any NFA can be converted to its equivalent DFA. That is
any language L acceptable by NFA can be acceptable by its equivalent DFA. The basic
idea in this theorem is that, DFA keeps track of all the states, that NFA could be in
reading the same input as the DFA has read.

Let us see the theorem.

Theorem : Let L be a set accepted by non deterministic finite automation. Then
there exists a deterministic finite automation that accepts L.

Proof : Let
M =(Q,E, 8, qo, F) be an NFA for language L. Then define DFA M’ such that

M = (Q,Z,8, q0,F)
The states of M’ are all the subset of M', The Q' =29,

F' be the set.of all the final states in M.

The elements in Q" will be denoted by [q1,92,93 ,...qi] and the elements in Q are
ienoted by {qu,ql,qgm} The [q1,q2,...qi] will be assumed as one state in Q' if in
‘he NFA qq is a initial state it is denoted in DFA as qj =[qn] We define,

8'([91.92.93 1], @) = [P1, P2, P3/ - ;]
if and only if,

6({91-92,93,-9i} . @) ={p1,P2,P3, - Pj}

This means that whenever in NFA, at the current states {q,,92,93,...q; } if we get
nput a and it goes to the next states {p1, pz2, ... p;} then while constructing DFA for it
he current state is assumed to be [q1,q2,93,....q;] At this state, the input is a and
‘he next is assumed to be [Pl Py e pj] . On applying & function on each of the states
11.92,93,.-q; the new states may be any of the states from [pi,pa2,...pj]. The
heorem can be proved with the induction method by assuming length of input
string x

17

6'(q0, x) = [91.92.--qi]
if and only if,
8(q0,X) = {91.92,93,--9i}
Basis : If length of input string is 0
i.e. |x]| =0, that means x is & then qp =[qo]

Induction : If we assume that the hypothesis is true for the input string of length
m or less than m. Then if x a is a string of length m+1. Then the function &' could be

written as
8'(qo, xa) = 8'(8'(q0,%),9)
By the induction hypothesis,
8'(q0, %) = [p1-P2,-Pi]
if and only if,
8(q0, X) = {P1.P2,P3/,Pj}
By definition of &’
8'([p1. P2+ Pj)0) = [,m2s k]
if and only if,

5({1"*?2:---1’1’}”) = {n,r2, .0
Thus
6'(qo, xa) = [n,r2, . 1]
if and only if
8(qo, x @) = {n,r2, ... 0}
is shown by inductive hypothesis.
Thus L (M) = L(M)
With the help of this theorem, let us try to solve few examples.
mmp Example 2.14 : Let M = ({qo,q1}, {0.1},5, qo, {q1})

be NFA where 8(qo,0)={q0.91}.5(q0.1) = {q1},

8(q1,0)=6.3 (q1.1) = {q0.q1}
Construct its equivalent DFA.

20

Solution : Let the DFA M'= (Q', ¥, &', qu, F’]-
Now, the &' function will be computed as follows -
As 5(90,0) = qo.q1} 8'([0], 0)=[q0,q1]
As in NFA the initial state is qq, the DFA will also contain the initial state [90]

Let us draw the transition table for & function for a given NFA.

0 1

ba) = 2w [fway | fab | = 8)
a{mn} = @ & {qﬂ.ql} = E(qu 1}

& Function for NFA
From the transition table we can compute that there are [qa], [q1], [q0,q:] states
for its equivalent DFA. We need to compute the transition from state [qo, q1}

8({q0, q1},0) = 8(qo.0)wd(q;. 0)

= {9091}V
= {90, q1}
So, 8'([90.91}0) = [qo.q1]
Similarly,
8({q0.q1}1) = 8(qo.1)wd(qi.1)
= {q1}vi{qo.qi}
= {q0.q1}

So, &'([q0.91}1) = [qo.91]

As in the given NFA q; is a final state, then in DFA where ever q; exists that
state becomes a final state. Hence in the DFA final states are [q] and [qq,q:]
Therefore set of final states F = {{§:] [qo,q1]}

The equivalent DFA is

0 1

-+ Qo | [90. 9 [a]
(a1 ¢ [a0. 9]

[90.91) | [q0. @] | [90. 9]
Transition table for equivalent DFA

21

2.2.1 Basic Definition of Finite Automata (FA)
A finite automata is a collection of 5 - tuples (Q, Z,5, qo, F) where
Q is a finite set of states, which is non empty.
I is input alphabet, indicates input set
qo in Q is the initial state
F s a set of final states
§ is a transition function or a function defined for going to next state.

The finite automation can be represented as

g | blc|lalalhbh]|]a]|c|nputtape

Finite
control

Head

Fig. 2.1 Finite Automation

Usually the finite automation is a mathematical representation of finite state
machine.

From Fig. 2.1 we can see that, the machine has a input tape on which the input
can be placed. The tape reader is for pointing the character'which is to be read from
input tape.

The finite control is always one of internal states which decides what will be the
next state after reading the input tape by a reader. For example suppose current state
is q; and suppose now the reader is reading c, it is a finite control which decides
what will be the next state at input .

Transition graph : The FA is associated with a directed graph called a transition
diagram or transition graph. The vertices of this graph corresponds to the states.

2L

Fig. 2.24

Even, we can change the names of the states of DFA

A = [qo]
B = [qi]
C = [qo.91]

With these new names the DFA will be as follows -

Fig. 2.25 An equivalent DFA

imp Example 2.15 : Convert the given NFA to DFA

(4] 1
- qo {qe.q1} 9o
q1 q2 q

q:2 q3 q3

23

Solution : As we know, first we will compute &' function

Hence

Similarly,

Hence

8({q0} 0) = {90, q1}
6'([90).0) = [q0. q1]

8({q0}.1) = {qo}
5'([90],1) = [qo]

Thus we have got a new state [qo,q;] .

Let us check how it behaves on input 0 and 1.

So,

8'([90,91].0)

Similarly

§'([q0.91].1)

i

]

6([90].0) v 3([a:].0)
{q0.q1} v {q2}
{q0.91.92}

Hence a new state is generated i.e. [q0,91,92]

8([q0],1) v 8([q1].1)
{90} v {a1}
{q0,91}

No new state is generated here.

Again §' function will be computed for [qq,q1,92], the new state being generated.

State 0 1
[q0] [a0.9] [a0]
[q0.9] [90.91,92] [90.91)
[a09192] | [90.9v9295] | [90.9093]

As, you have observed in the above table for a new state [qo,q:,q2 | the input 0
will give a new state [qq,q:1,q2.,93] and input 1 will give a new state [qo,q1,93]

because

5'([%41;112}3}

n

8'([q0],0)w8'([q1].0) v 3'([q2].,0)
{q0,q1}V {q2} v {q3}

24

Il

{90.91,92,93}

= [q0.91.92.93]
Same procedure for input 1. Thus the final DFA is as given below.

State 0 1
-+ [g0] [qo.q1] [90]
[ad [4:] [a1
™) [a:] (4]
fas] ¢ [a:]
[90.91] [90.91.9:] [g0.91]
[20.91.9:] [90:91:92.93] [q0.q1.95]
[90.91.92] [q0.q1.9:]
[90.91.92.93] [90.91.92.95] [90.91192/9:]

DFA for example 14
mmp Example 2.16 : Construct DFA equivalent to the given NFA

0 1

- p {p. q} P
q r r
r 5 -

5 5 -

The NFA M = {[p, q, r, s}, {0, 1}, & {pl. [s]]
The equivalent DFA will be constructed.

0 1
- [p] [p. q] 9]
[a]] il

ly] [s] -

@ [s] [s]

[pu q] [F"1 q. I'} [Fl. l']

Continuing with the generated new states.

0 1
— [p] [p. al (rl
[a] [r] [r]
] [s] -
@ (s] [s]
[p. a] [p. a. 1] o,
p. 9. 1] [p. q. r.] Ip, 1]
Erl [P, Q. 5] [p]
{IIJ. q.r, s] [p. r. 5]
@ [p. 9. r. s] [p. 1. s)
[p. 9. 5] [p. s
[P, q. 5] [p. s]

The final state F' = { [s], [p. q. r. sl. [p. q. sb. [p. r. s). [p. s] |

Part 1

-
- -

Part 11

Fia. 2.26

The transition graph shows two disconnected parts. But part I will be accepted as
final DFA because it consists of start state and final states, in part II there is no start
state.

2.6 NFA with £ Moves

The ¢ is a character used to indicate null string i.e. the string which is used simply
for transition from one state to other without any input. The NFA with & moves can
be shown as below.

For example

Fig. 2.27 NFA with ¢ moves

We can convert the siven NFA with € moves to the NFA wnthuut & moves. Let us
take one example to see liow this happens.

Fig. 2.28 Finite Automata with £ moves
The important aspect for building the transition table is to compute the § function.
The § the transition function, maps Q x (Z U {&}) to 2Q. The intention is that 5 (q, a)
will consist of all states p such that there is a transition labelled a from q to p where a
is either £ or the symbol in & Let us daslgn the transition table with & function for

Fig. 2.28.

X ¥y z £
qo {20} ¢ ¢ {a}
q ¢ {91} $ {a}
Q2 [& {q:} 4

Let 8" (g, w) will be all states p such that one can go from q to p along a path
labelled w, sometime including edges labelled e. While constructing 5" we have to

27

compute the set of states reachable from a given state q using & transitions only. Let
us use ¢ CLOSURE (q) to denote the set of all vertices p such that there is a path from

q to p labelled .

The &" can be interpreted as follows -

6" (q,¢) =

For win Z*and a in £,8" (q, wa) = ¢ CLOSURE (p)
where p = |p | for some r in 8" (g, w) p is in & (r, a))
For the transition table

§"(qo. £)

Thus

8°(q0, X)

n

1l

"

8"(qo,%)
8"(qo, xy)

e - CLOSURE (q)

¢ CLOSURE {qo}
{90.91.92}

e-CLOSURE (5(5"(qo.£), ¥))

e-=CLOSURE (5({q0.91,92}%))
e-CLOSURE (5(qo,x)w8(qi,X)wUd(q2,x))
e-CLOSURE ({qo}wé ué)

g-CLOSURE [{qo}]
{90.91.92}

&-CLOSURE (5(8"(qa.), ¥))

&-CLOSURE (5({q0,91,q2}, Y))

e-CLOSURE ({q1})
{91,92}

Thus the transition table can be drawn as -

X y z
9 | {gequg:} | {9n9:} 19}
Q b W) | e
9 4 0 19

28

XYz

Fig. 2.29 NFA without ¢ transitions

Conversion of NFA with ¢ transitions to NFA without £ transitions -

As we have seen one example of conversion of NFA with ¢ transitions. Let us try
to prove this with the induction method.

Theorem : If L is accepted by NFA with ¢ transitions, then there exist L which is
accepted by NFA without ¢ transitions.

Proof :
Let, M =(Q,Y. ,8,q0,F) be an NFA with ¢ transitions.
Construct M’ = (Q_.z ,8',qo, F') where
F' = Fu {qo} ife- CLOSURE contains state off
} F otherwise

M' is a NFA without ¢ moves. The &' function can be denoted by 8" with some
input. For example, &' (g, 4) = 8" (q,) for some q in Q and a from £ . We will apply
the method of induction with input x. The x will not be & because

5'(qo. £) = {qo}-

8"(qo.t) = e-CLOSURE (qq) Therefore we will assume length of string to be 1.

Basis : |x| = 1. Then x is a symbol a

8'(qo.a) = 8°(qo.)
Induction : |[x| >1 Letx = wa
8'(qo.w a) = 8'(8'(qo, w).a)
By inductive hypothesis,
§'(qo, w) = 8"(qo.w)=p

Now we will show that &' (p, a) = 8(qo, w a)
But 8 (p,a) = v & (ga)=u &" (g 4)
qinp qinp
8"(qo, w) we have,

7
o
I

29

]

v 8" (q,a) = 8"(qp, wa)
qinp

Thus by definition §"

:'i*(qu,wn] ﬁ"(qu.Wﬂ)

2.7 NFA with ¢ Moves to DFA

As we have seen that NFA with ¢ moves can be converted to NFA without ¢
moves. To gain the DFA, we can follow the following diagram.

Fig. 2.30 Moves to DFA

mmp Example 2.17 : Construct an equivalent NFA without ¢ from given NFA with e .

Fig. 2.31
Solution : We will find out & closure function of every state for given input I = {a, b,
Cl-

g = closure | P) = [P)
& |p.al = & [g - closure |p, al

= Ipl
8 [p. bl = & [e- closure [p, b}

= lql

b [e- closure {p, c]

o {p. ¢l
= |r}
30

g - closure {q}

6 [q, a)

& [a, b)

5 lq, cl

g - closure |{r}
a |r, al

5 r, b)

8 |r, c)

ipql
le - closure (p, a} v & closure |q, a]

lp.ql

& e - closure [p, b} v & closure |g, b}
qur

(q.r]

5 |e - closure [p, c] w & closure {q, c|
[r|

Ip. ql

& e - closure [p, a] v e closure |g, a}
Ip. ql

8 [e - closure [p, b} v & closure {g, b}
lq. r)

8 e - closure {p, c] w & closure |{q, c|

{r}

Hence the NFA can be drawn as -

a b c
{p} {p} {q} {r}
{q} {p. a} {a. 1} {r}
{r} {p. q} {9. r} {r}

The transition diagram can be drawn as —

Fig. 2.32

31

2.8 Minimization of DFA

The minimization of DFA means reducing the number of states from given FA.
Thus we get the DFA with redundant states after minimizing the DFA.

While minimizing DFA we first find out which two states are equivalent we then
replace those two states by one representative state. Now for finding the equivalent
states we will apply the following rule.

"The two states 5, and 5; are equivalent if and only if both the states are final
states or both are non-final states.”

Let us understand the rule with the help of some examples.

mmp Example 2.18 : Construct a minimized DFA for

0 1

-+l b f

' b g c
(© a €

= d c g
e h f

= f c g
9] e

i h g c

Solution : From the given table, the state a is a initial state, state ¢ is a final state.
Now, we can notice that states b and h gives the same output states on receiving the
respective input. And both the states are non final states. So we can reduce those
states we can say, b = h i.e. wherever h occurs we will replace it by b, similarly d = f
and hence we will replace every f by d.

0 1

= —+ b d
b q c

® a ¢

d c 9

' g b d
g g e

32

For example - We draw transition diagram for the input @ a b b as follows

Note that the start state is 5y and final state is 5;. The input set here is T = {a, b)
51,5; and S, all are the intermediate states.

For a transition diagram following notations are used -
State : qp is a name of the state (you can give any name to a state)

: transition from one state to another

(or) denotes the start or initial state

{or)
@ denotes the final state

Mapping functions : The FSM has two forms of mapping functions.
Machine function and state function.
The machine function is a function which denotes, with certain input what will be
the output from current state. It can be written as
Sx1 =0

where 5 is a current state
I is the input
O is the output
The state function is a function which denotes with certain input from current
state what will be the next state. It can be written as -
Sxl = §
33

Now @ = e and both are non final states. So we will replace every e by a.

0 1

-+ b d
b g [

c a c

d G g

a g a

Now there is no reduction possible further. Hence this is a minimized DFA.

iy Example 2.19 : Construct a minimized DFA for the given transition table.

0 1

—+ o el qs
9 Qs q:
@ 90 q:
Q3 q2 Je

04 47 qs

qs q2 qe
9s Qs 94
47 9e q2

Solution : From given transition table we can get two non final states which are
equivalent and those are qi =qs. These two states have similar output on receiving
input 0 and 1. So we will replace qs by q3 every where.

0 1

—* S 4 93
q Qe q:
@ Qo 9z
Q3 q: Qe

4 qz qa

Qs 9e q4

qr 9e qz

Now again we find q; =q7. These two non final states are equivalent.

0 1

= 9 9 QP

q Qs 02

@ qo q2

qQs q2 ds

q q Qs

96 9s Q4

Again, qo=q4

0 1

=+ % 9 qs

qi Qb G

B &

93 42 Qs

6 q1 93

Again, qo=qs

0 1

-+ Qo q 9

@ Qo q:

a2 9o q:

9 q: Qo

Now again we can see q; and q gives the same output states for input 0 and 1.
But these can not be the equivalent states because q2 is final state and q; is a nonfinal
state. Hence this is a final minimized DFA.

Solved Examples

mmp Example 2.20 : Design FSM that accepts the string with exactly two zeros,

Solution :

Fig. 2.33

At every state there is a loop of 1 that means there can be possibility of occurance |
of 1's in between 0's. The count of 0 has to be maintained as exactly two. There is no |
restriction on number of 1's. You can try out a valid string '101011' will lead to the
final state q,. The state q; is a dead state. For the invalid inputs you will fell in
deadstate like q3. |

mmp Example 2.21 : Design FSM for the language that accepts the string containing at |
least two zero's over the Z={0, 1},

Solution : The condition is for at least two zeros and there is no restriction on|
number of 1's. At least two zeros means minimum two zeros are necessary.

Fig. 2.34

You are suggested to note the difference between the FSM drawn in example 18/
and this FSM. , i

iy Example 2.22 : Design FSM for the language L consisting of the strings mntm'm’nﬂ
at the most two zeros. i

36

Solution : In this problem, at the most two 0's are allowed. This means no zero,
single zero or two zeros will do ! But not more than two zeros are allowed. The TG
for this will look like this -

Fig. 2.35

Here qq is a start and final state. This state indicates that there is no zero in the
input string. As there is no restriction on number 1's, the input 1 may occur at any
number of times at any place in the string.

mmp Example 2.23 : Design FSM which contains, the string containing double zeros
always over L= {0, 1}

Solution : Here, the condition is that whenever zero will appear it should be double.
No single zero is allowed in the string. The 1 will be flexible i.e. it may appear any
number of times.

Fig. 2.36

‘The edge from q2 to qg is followed for input either 1 or &. The & indicates no
string.

For example if wish to derive the above FSM for 0000, then £ edge will be
important. The FSM will derive it as 00e 00, but which is equal to 0000. Thus because
of & the recursion is possible.

iy Example 2.24 : Design FSM which accepts the language in which every stnng
starts with 0 followed by any number of 1's but having no two consecutive zeros.

Solutin : Here the strings are starting with 0 and to have the situation as not to have
the consecutive zeros, we have shown the transition between q, and q; as alternate 0
and 1. The machine can accept the input as 0111 i.e. starting with 0 and followed by
no (absolutely no) consecutive zeros.

37

Fig. 2.37

Fig. 2.38

Solution : If we follow the above FA, in straight, we will get a string 101. If the state
q; is a current state then even after many iterations to q; with input 1 we will reach
to final state q; after following 01, latter on it may come across any number of ('s
and 1's. Thus we can predict that the above machine is for the language containing
101 as a substring, over the input set £ = {0,1}.

mmp Example 2.26 : Construct an equivalent DFA for following NFA.

Fig. 2.39

Solution : The NFA given in the problem statement is a NFA with ¢ moves. We will
first convert it to NFA without ¢ moves. From NFA without &€ moves the equivalent
DFA can be constructed.

We have discussed conversion of NFA with ¢ moves to NFA with cut ¢ moves in
previous section. And diagram for NFA without emoves can be

38

Fig. 2.40

Now we will convert this to equivalent DFA. The given NFA can be written using
transition table as -

X ¥ z
Gy {9 94. 93} {94, 93} {a2)
a4 - {as. 92} {q2)
% - - {92)

We can see that & (qy %) = [qg ;. q;) hence we will assume {qp q;, q,) as a state
[90 9 G2l
For this new state [q,. q;, q,] assume input x,y and z.

6 1[qy qy @) XI = [go Qi Q]
6 llqe 9 @b ¥ = [q qil
8 1[gy qyr 92l 21 = gy

The new state generated is [q,, g,}. Hence we will check the input transitions for
state {q,, g,) (Note that square bracket is used for state representation)

6 1[qy, qu). x)

6 {[qu gl Y1 = [qu qi]

6 {[qy @l 2l = [q]
Hence finally the DFA will be -

State \ Input x ¥ z
G [90- 94, 93 (a4, Gl [9;]

[94] - (9. g2 [92)

[gz] = = [9;]

[9p: 94+ 92 lag. 94, a3l (94 g2l [a;]
[94. Q2] = (a1, Q2 (2]

39

Here qq is a start state and q, q;, Gy [9o Gy Q2] [q; ;] are all final states. The
transition diagram can be drawn.

Fig. 2.41

Review Questions
1. Describe the language represented by following DFA

0 1

-+ 0y % 9
* Gy %2 S0
Gz G2 9z

2. Design a finite automaton for the language consisting of all the strings with 011 as substring over
=10, 3
3. Convert the following NFA to DFA and also describe the language accepted by it

0 1

—+p {p. q} {p}
q {r, 8} {1}
r {p 1} {t}
® 8 4
® 5 ¢

4. Explain the significance of & transitions in finite slate system.

where 5; indicates the next state.

Thus at any stage the machine will act as either on arrival of an input symbol it
will change the state using state function or it will give output using machine
function.

FSM

FSM with FSM without
output output

Fig. 2.3 Finite state machine
Now, we will solve some examples based on FSM without output.

mmp Example 2.1 : Design a FA which accepts the only input 101 over the input set
Z={0, 1}

Solution :

Fig. 2.4 For Ex. 2.1

Note that in the problem statement it is mentioned as only input 101 will be
accepted. Hence in the solution we have simply shown the transitions, for input 101.
There is no other path shown for other input.

mmp Example 2.2 : Design a FA which checks whether the given binary number is even.

Solution : The binary number is made up of 0's and 1's when any binary number
ends with 0 it is always even and when a binary number ends with 1 it is always
odd. For example

0100 is a even number, it is equal to 4.
0011 is a odd number, it is equal to 3.

and so while designing FA we will assume one start state, one state ending in 0
and other state for ending with 1. Since we want to check whether given binary
number is even or not, we will make the state for 0, the final state.

41

Fig. 2.5 For Ex. 2.2

The FA indicates clearly 5; is a state which handles all the 1's and 5, is a state
which handles all the 0's. Let us take some input

01000 = 0S; 1000
015; 000
010S; 00
0100S; 0
010005,

Now at the end of input we are in final or in accept state so it is a even number.
Similarly let us take another input.

1011 = 15,011
10S; 11
10151
10115,

Now we are at the state S, which is a non final state.
Another idea to represent FA with the help of transition table.

Mpm 0 1

-+ S 52 S

5 52 5

& s 5

Transition table

42

Thus the table indicates in the first column all the current states. And under the
column 0 and 1 the next states are shown.

The first row of transition table can be read as : When current state is Sy, on input
0 the next state will be S; and on input 1 the next state will be ;. The arrow marked
to S; indicates that it is a start state and circle marked to S; indicates that it is a final
state.

imp Example 2.3 : Design FA which accepts only those strings which start with 1 and
ends with 0.

Solution : The FA will have a start state A from which only the edge with input 1
will go to next state.

()=
\L/
1

Fig. 2.6 For Ex, 2.3

In state B if we read 1 we will be in B state but if we read 0 at state B we will
reach to state C which is a final state. In state C if we read either 0 or 1 we will go to
state C or B respectively. Note that the special care is taken for 0, if the input ends
with 0 it will be in final state.

mmp Example 2.4 : Design FA which accepts odd number of 1's and any number of 0's.

Solution : In the problem statement, it is indicated that there will be a state which is
meant for odd number of 1's and that will be the final state. There is no condition on
number of 0's.

Fig. 2.7 For Ex. 2.4

At the start if we read input 1 then we will go to state 5 which is a final state as
we have read odd number of 1's. There can be any number of zeros at any state and
therefore the self loop is applied to state S; as well as to state 5;. For example if the

f

43

input is 10101101, in this string there are any number of zeros but odd number of
ones. The machine will derive this input as follows -
1 input ends here

in which is a final state
0 51
in
il B~
s,
in
1] 51
in
1 52
in
01s,
in
1 s,
Stad —
slale ;3:

Fig. 2.8 Ladder diagram of processing the input

mmp Example 2.5 : Design FA which checks whther the given unary number is divisible
by 3.

Solution :

o TN o I
hisd W

Fig. 2.9 For Ex. 2.5

The unary number is made up of ones. The number 3 can be written in unary
form as 111, number 5 can be written as 11111 and so on. The unary number which is
divisible by 3 can be 111 or 111111 or 111111111 and so on. The transition table is as
follows

Input 1
= qe q
L gz
92 g
"

44

Consider a number 111111 which is equal to 6 i.e. divisible by 3. So after complete
scan of this number we reach to final state q3.

Start 111111
State qp
1q; 11111
11921111
111q5 111
1111&11
11111921
111111?; — Now we are in final state.

mmp Example 2.6 : Design FA to check whether given decimal number is divisible by
three.

Solution : To determine whether the given decimal number is divisible by three, we
need to take the input number digit by digit. Also, while considering its divisibility by
three, we have to consider that the possible remainders could be 1, 2 or 0. The
remainder 0 means, it is divisible by 3. Hence from input set [0, 1, 2, ..., 9} (since
decimal number is a input), we will get either remainder 0 or 1 or 2 while testing its
divisibility by 3. S0 we need to group these digits according to their remainders. The
groups are as given below -

remainder 0 group : 5¢ : (0, 3, 6, 9)
remainder 1 group : $; : (1, 4, 7)
remainder 2 group : S; : (2, 5, 8)

We have named out these states as 5y,5; and S;. The state S; will be the final
state as it is remainder 0 state.

(0,3,6,9)

Fig. 2.10 For Ex. 2.6

45

Let us test the above FA, if the number is 36 then it will proceed by reading the
number digit by digit.

From

start E

goto state 5,
3

from 5,10 S,
36

T

input ends and we are in
final state S
Fig. 2.11
Hence the number is divisible 3, isn't it ? Similarly if number is 121 which is not
divisible by 3, it will be processed as
S 121
1521
1251
1215; which is remainder 1 state.

iy Example 2.7 : Design FA which checks whether a given binary number is divisible by
three.

Solution : As we have discussed in previous example, the same logic is applicable to
this problem even ! The input number is a binary number. Hence the input set will be
I= {0, 1}. The start state is denoted by 5, the remainder 0 is by Sy, remainder 1 by §;
and remainder 2 by 5,.

Fig. 2.12 For Ex. 2.7

46

TWO MARKS
Define: (i) Finite Automaton(FA) (i) Transition diagram April /May 2008

FA consists of afinite set of states and a set of transitions from state to state that occur on
input symbols chosen from an alphabet _. Finite Automaton is denoted by a 5- tuple(Q,Z, 9,q0,F),
where Q isthe finite set of states, _isafiniteinput aphabet, g0 in Q isthe initia state, Fisthe
set of final statesand _isthe transition mapping function Q * _to Q.
Transition diagram is a directed graph in which the vertices of the graph correspond to the states
of FA. If there is a transition from state g to state p on input a, then there is an arc labeled “ a *
from g to p in the transition diagram.

What isa: (a) String (b) Regular language

A string x is accepted by a Finite Automaton M=(Q, Z, 8.q0,F) if & (q0,x)=p, for some p
in F.FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads
from the start state to accepting state.
The language accepted by M isL(M) isthe set {x | _(q0,x) isin F}. A language is regular if it is
accepted by some finite automaton.

Why are switching circuits called as finite state systems?

A switching circuit consists of a finite number of gates, each of which can be in any one
of the two conditions 0 or 1.Although the voltages assume infinite set of values,the electronic
circuitry is designed so that the voltages orresponding to O or 1 are stable and all others adjust to
these value. Thus control unit of acomputer is afinite statesystem.

What is Deductive proofs?
A deductive proof consists of a sequence of statements which starts from a hypothesis or a given
statement to aconclusion. Each step is satisfying some logical principle.

Define proof by contrapositive.
It is the other form of if then statement. The contrapositive of the statement “ if H then C
“is If not C then not H *.

Define the concatenation of two strings.
Suppose x and y are two strings then the concatenation of x and y is xy.
Ex: if x =0011 and y = 1100 then xy = 00111100.

What are the applications of automata theory?

_ In compiler construction.

_ In switching theory and design of digital circuits.

_ To verify the correctness of a program.

_ Design and analysis of complex software and hardware systems.

_ Todesign finite state machines such as Moore and mealy machines.

What is Moore machine and Meay machine?

A special case of FA is Moore machine in which the output depends on the state of the
machine. An automaton in whch the output depends on the transition and current input is called
Mealy machine.

Define Language.

A set of strings all of which are chosen from some X°, where X is a particular alphabet is
called alanguage.

Ex: The language L over {0,1} where set of strings with an equal number 0’s and 1’s.

L ={ ¢, 01, 10, 0011, 0101, 1001, 1100,...... }

47

10.

11.

12.

13.

14.

15.

16.

17.

18.

What are the components of Finite automaton model ?

The components of FA model are Input tape, Read control and finite control.

(8 Theinput tape is divided into number of cells. Each cell can hold onei/p symbol

(b)The read head reads one symbol at atime and moves ahead.

(c)Finite contral acts like a CPU. Depending on the current state and input symbol read from the
input tape it changes state.

Differentiate NFA and DFA

NFA or Non Deterministic Finite Automaton is the one in which there exists many paths
for a specific input from current state to next state. NFA can be used in theory of computation
because they are more flexible and easier to use than DFA .

Deterministic Finite Automaton is a FA in which there is only one path for a specific
input from current state to next state. There is a unique transition on each input symbol.(Write
examples with diagrams).

What is e-closure of a state q0?
€ -closure(g0) denotes a set of al vertices p such that there is a path from g0 to p labeled
€. Example :closure(q0)={q0,q1}

Give the examples/applications designed as finite state system.

Text editors and lexical analyzers are designed as finite state systems. A lexica
analyzer scans the symbols of a program to locate strings corresponding to identifiers, constants
etc, and it has to remember limited amount of information .

Define automaton.

Automaton is a abstact computing device. It is a mathematical model of a system,with
discrete inputs, outputs, states and set of transitions from state to state that occurs on input
symbols from alphabet 2.

What isthe principle of mathematical induction. April/May 2008

Let P(n) be a ststement about a non negative integer n. Then the principle of
mathematical induction isthat P(n) follows from

P(1) and P(n-1) implies P(n) for dl n>1.
Condition(i) is caled the basis step and condition (ii) is called the inductive step. P(n-1) is called
the induction hypothesis.

List any four ways of theorem proving
Deductive
If and only if
Induction
Proof by contradiction.

Define TOC
TOC describes the basic ideas and models underlying computing. TOC suggests various
abstract models of computation, represented mathematically.

What are the applications of TOC?
Compiler Design

Robotics

Artificial Intelligence

Knowledge Engineering.

48

19.

20.

21.

22

23.

Define a Deterministic Finite Automaton.

A Determinstic finite automaton consists of :

A finite set of states, often denoted by Q

A finite set of input symbols, often denoted by X

A transition function that takes as arguments a state and an input symbol and returns a state.
A dtart state, one of the statesin Q

A set of final or accepting states .

Define aNon Deterministic Finite Automaton

A Non Deterministic Finite Automaton consists of

A finite set of states, often denoted by Q

A finite set of input symbols, often denoted by X

A transition function that takes as arguments a state and an input symbol in X, and returns a
subset of Q.

A start state, one of the statesin Q

A set of final or accepting states .

Define Transition Diagram.
Transition Diagram associated with DFA is a directed graph whose vertices correspond to
states of DFA, The edges are the transitions from one state to another.

What are the properties of Transition Function(d)
0(q.€)=q For al strings w and input symbol a
A(g,aw)=3(3(q.a),w)
A(g,wa)= 3(3(q,w).a)
The transition function & can be extended that operates on states and strings.

Lists the operations on Strings.
Length of astring
Empty string
Concatenation of string
Reverse of astring
Power of an alphabet
Kleene closure
Substring

Palindrome

SQ@ o0 TR

24. Liststhe operations on Languages.

Product
Reversal
Power
Kleene star
Kleene plus
Union
Intersection

@ oo

49

UNIT Il
REGULAR EXPRESSION

In the previous chapter, we have learnt how to represent any language by a
machine or model. In this chapter we will discuss how these models can be converted
into expressions. The languages accepted by finite automata are easily described by
simple expressions, called regular expressions. The regular expression is the very
effective way to represent any language.

In this chapter, we will also see how to design the finite automata from given
regular expression and vice versa. The regular expressions are mainly to represent the
set of regular language. We will also see the language which is not regular. Let us
start with the regular expression.

3.1 Definition of Regular Expression

Let I be an alphabet which is used to denote the input set. The regular expression
over L can be defined as follows,

1. ¢ is a regular expression which denotes the empty set.
2. ¢ is a regular expression and denotes the set {}.
3. For each 'a' in £ 'a' is a regular expression and denotes the set (a).

4, If r and s are regular expressions denoting the languages Li and L
respectively, then

r+s is equivalent to L; U L; ie. union.
rs is equivalent to L; L, i.e. concatenation
r* is equivalent to L) i.e. closure,

The r* is known as kleen closure or closure which indicates occurrence of r for @
number of times.

For example if £ = [a] and we have regular expression R = a*, then R is a set
denoted by R = [g, a, aa, aaa, aaag, ...}

That is R includes any number of a's as well as empty string which indicates zero
number of a's appearing, denoted by ¢ character.

50

Similarly there is a positive closure of L which can be shown as L*. The L*
denotes set of all the strings except the ¢ or null string. The null string can be denoted
byeor A

If £ = [a} and if we have regular expression R=a* then R is a set denoted by

R = |a, aa, ana, agna,)
We can construct L* as
L* = gLt
Let us try to use regular expressions with the help of some examples.

mwp Example 3.1 : Write the regular expression for the language accepting all
combinations of a’s over the set L = {a}.

Solution : All combinations of a's means a may be single, double, tripple and so on.
There may be the case that a is appearing for zero times, which means a null string.
That is we expect the set of [, a, aa, aaa, ...]. So we can give regular expression for this
as

R = a*
That is kleen closure of a.

mmp Example 3.2 : Design the regular expression (r.e.) for the language accepting all
combinations of a's except the null string over I = {a}

Solution : The regular expression has to be built for the language
L = la, aa, aaa, ...}
This set indicates that there is no null string. So we can denote r.e. as
R = a*
As we know, positive closure indicates the set of strings without a null string.

mmp Example 3.3 : Design regular expression for the language containing all the strings
containing any number of a's and b's,

Solution : The regular expression will be
re. = (a+b)*

This will give the set as L = {¢, a, aa, ab, b, ba, bab, abab, any combination of 4
and b) .
The (# + b)* means any combination with 2 and b even a null string.

51

TWO MARKS:

1. Whatisaregular expresson?
A regular expression is a string that describes the whole set of strings according to certain

syntax rules. These expressions are used by many text editors and utilities to search bodies of text
for certain patterns etc. Definition is: Let _ be an aphabet. The regular expression over _ and the
setsthey denote are:

i._isar.eand denotes empty set.

ii. _isar.eand denotestheset {_}

iii. For each ‘a’ in _, a+ is ar.e and denotes the set {a}.

iv. If ‘r’ and ‘s’ are r.e denoting the languages R and Srespectively then (r+s),
(rs) and (r*) arer.e that denote the sets RUS, RS and R* respectively.

2. DifferentiateL* and L+
L* denotesKleeneclosureand isgivenby L* =U Li i=0

example : 0* ={_,0,00,000,........ccocviriiiiiiii e }
Language includes empty words also.
L+ denotes Positive closure and isgiven by L+=U Lii=1q0 gl

3. What is Arden’s Theorem?
Arden’s theorem helps in checking the equivalence of two regular expressions. Let P and Q be

the two regular expressions over the input alphabet _. The regular expression R is given as :
R=Q+RP Which has a unique solution as R=QP*.

4. Write ar.eto denote a language L which accepts all the strings which begin or end with
either 00 or 11.
Ther.e consists of two parts:
L1=(00+11) (any no of 0’s and 1’s) =(00+11)(0+1)*
L2=(any no of 0’s and 1’s)(00+11) =(0+1)*(00+11)
Hencer.e R=L1+L2 =[(00+11)(0+1)*] + [(0+1)* (00+11)]
5. Construct a r.e for the language over the set _={a,b} in which total number of a’s are
divisible by 3
(b* ab* ab* ab*)*

6. Whatis: (i) (O+1)* (ii))(0OD)* (iii)(0+1) (iv)(0+1)+
(0+1)*={_,0,1,01,10,001,101,101001,.......c.c0vvvrnennn. }

Any combinations of 0’s and 1’s.

(01)*={_, 01,0101 ,01010L ,vvvveevreereeeereee e eeeeee e }

52

10.

All combinations with the pattern 01.

(0+1)=0or 1,No other possihilities.

(0+1)+={0,1,01,10,1000,0101,... ccuvueeereeeriieeie e e }
Reg exp denoting a language over _ ={1} having (i) even length of string (ii) odd length of
astring

(i) Even length of string R=(11)*

(ii) Odd length of the string R=1(11)*
Reg exp for: (i) All strings over {0,1} with the substring ‘0101" (ii) All strings beginning
with "11 * and ending with ‘ab’ (iii) Set of all strings over {a,b}with 3 consecutive b’s. (iv)
Set of all strings that end with “1’and has no substring ‘00’

(H(0+1)* 0101(0+1)*

(i11(1+atb)* ab

(iii)(atb)* bbb (at+b)*

(iv)(1+01)* (10+11)* 1

Construct a r.e for the language which accepts all strings with atleast two ¢’s over the set
>={c,b}
(b+o)* ¢ (btc)* c (b+o)*

What arethe applications of Regular expressions and Finite automata Lexical
analyzersand Text editors aretwo applications.
Lexical analyzers:

The tokens of the programming language can be expressed using regular
expressions. The lexical analyzer scans the input program and separates the tokens.For eg
identifier can be expressed as aregular expression as. (letter)(letter+digit)*

If anything in the source language matches with this reg exp then it is recognized as an
identifier.The letter is{AB,C,........... Zab,c....z} and digit is {0,1,...9}.Thus reg exp
identifies token in alanguage.

Text editors:;

These are programs used for processing the text. For example UNIX text editors uses the
reg exp for substituting the strings such as. S/bbb*/b/

Gives the substitute a single blank for the first string of two or more blanks in a given
line. In UNIX text editors any reg exp is converted to an NFA with €transitions, this NFA can
be then simulated directly.

53

11. .Reg exp for the language that accepts all strings in which ‘a’ appears tripled overthe set
> ={a}
reg exp=(aaa)*

12. What arethe applications of pumping lemma?
Pumping lemmais used to check if alanguage is regular or not.

() Assume that the language(L) isregular.

(i) Select a constant ‘n’.

(iii) Select astring(z) in L, such that |zj>n.

(iv) Split theword zinto u,v and w such that |uv|<=nand |v|>=1.

(V) You achieve a contradiction to pumping lemma that there exists an ‘i’ Such that uvi
w isnotinL.Then L isnot aregular language.

13. What isthe closure property of regular sets?
Theregular setsare closed under union, concatenation and Kleene closure.

riur2=rl +r2
ri.r2=rlr2
(ry*=r*

The class of regular sets are closed under complementation, substitution, homomorphism and
inverse homomorphism.

14. .Reg exp for the language such that every string will have atleast one ‘a’ followed by
atleast one ‘b’.
R=a'b’

15. Write the exp for the language starting with and has no consecutive b’s .
reg exp=(at+ab)*

16. Construct aregular expression denoting odd numbersin their binary representation
{o/1}"1

17. Construct aregular expression denoting even numbersin their binary representation
{o/1}°0

18. Construct aregular expression denoting the set of all strings over {a,b} such that all starts
with aand endswith b
a{alb} b

19. Construct aregular expression denoting the set of all strings over {a,b} such that all starts
with aand endswith ab
a{alb} ab

20. Construct aregular expression denoting the set of all strings over {a,b} such that all ends
with abb
{alb} abb

54

UNIT- 111 CONTEXT-FREE GRAMMAR AND LANGUAGES

Context-Free Grammar (CFG) — Parse Trees — Ambiguity in grammars and languages —
Definition of the Pushdown automata — Languages of a Pushdown Automata — Equivalence of
Pushdown automata and CFG, Deterministic Pushdown Automata.

Grammar

A grammar is a mechanism used for describing languages. This is one of the most
simple but yet powerful mechanism. There are other notions to do the same, of course. In
everyday language, like English, we have a set of symbols (aphabet), a set of words
constructed from these symbols, and a set of rules using which we can group the words to
construct meaningful sentences. The grammar for English tells us what are the words in it
and the rules to construct sentences. It also tells us whether a particular sentence is well-
formed (as per the grammar) or not. But even if one follows the rules of the english
grammar it may lead to some sentences which are not meaningful at all, because of
impreciseness and ambiguities involved in the language. In english grammar we use many
other higher level constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc.
A typical rule can be defined as

<sentence>-> < noun-phrase >< predicate >

meaning that "a sentence can be constructed using a 'noun-phrase’ followed by a predicate”.
Some morerules are as follows:

<noun-phrase>->< article >< noun >
<predicate>—>< verb >

with similar kind of interpretation given above. If we take {a, an, the} to be <article>; cow, bird,
boy, Ram, pen to be examples of <noun>; and eats, runs, swims, walks, are associated with
<verb>, then we can construct the sentence- a cow runs, the boy eats, an pen walks- using the
above rules. Even though al sentences are well-formed, the last one is not meaningful. We
observe that we start with the higher level construct <sentence> and then reduce it to <noun-
phrase>, <article>, <noun>, <verb> successively, eventually leading to a group of words
associated with these constructs.

These concepts are generalized in forma language leading to forma grammars. The
word ‘formal’ here refers to the fact that the specified rules for the language are explicitly stated
in terms of what strings or symbols can occur. There can be no ambiguity in it.

FORMAL DEFINITIONS OF A GRAMMAR
A grammar G is defined as a quadruple.
G={N,2,P,S)
N isanon-empty finite set of non-terminals or variables,
Y isanon-empty finite set of terminal symbolssuchthat N n=®
SN, isaspecia non-termina (or variable) caled the start symbol, and PL (N U »)*
x(N'U >)*isafinite set of production rules.
The binary relation defined by the set of production rulesis denoted by -, i.e.a—>Biff(a,B)] P.
In other words, P is a finite set of production rules of the form .a=>pB, whereand al! (N U)*
and BL1 (N U Y)*

55

PRODUCTION RULES:

The production rules specify how the grammar transforms one string to another. Given a
string []ay, we say that the production rule a—> 3 is applicable to this string, sinceit is possible to
use the rule a>p to rewrite the a(in [Jay) to B obtaining a new string [1By. We say that [Jay
derives [1By and is denoted as

Clay==> [1By

Successive strings are dervied by applying the productions rules of the grammar in any
arbitrary order. A particular rule can be used if it is applicable, and it can be applied as many
times as described. We write a==>f if the string pcan be derived from the string a in zero or
more steps; a==>f if [can be derived from a in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate
many strings of terminal symbols starting with the special start symbol, S of the grammar. The
set of al such termina strings is caled the language generated (or defined) by the grammar.
Formaly, for a given grammar G={N,} ,P,S) thelanguage generated by G is

L(G)={ wil 2 *[s => w}

That is w [L(G) iffs>w.ilfw [0 L(G) , we must have for some n=0,
S=al=>a2=>a3=>....=>a n=w, denoted as aderivation sequence of w, The strings S=a 1,02, a
3,..., 0 n=w are denoted as sentential forms of the derivation.

Example :Consider the grammar G={N,> ,P,S), where N ={S}, >={a, b} and Pisthe set of the
followingproduction rules

{ S>ab, S>ash)

Some terminal strings generated by this grammar together with their derivation is given below.
S=>ab

S=>aSh=>aabb

S=>aSh=>aaSbb=>aaabbb

It is easy to prove that the language generated by this grammar is

L(G)={al I Ib[1]i=1}
By using the first production, it generates the string ab(fori =1).

To generate any other string, it needs to start with the production S>aSband then the
non-terminal Sin theRHS can be replaced either by ab (in which we get the string aabb) or the
same production S>aSocan be used one or more times. Every time it adds an 'a’ to the left and a
'b' to the right of S thus giving the sentential formal!Sh(,i=1. When the non-termina is
replaced by ab (which is then only possibility for generating a terminal string) we get a terminal
string of the form al'Sb(,i=1.

There is no genera rule for finding a grammar for a given language. For many
languages we can devise grammars and there are many languages for which we cannot
find any grammar.

Example: Find agrammar for the language L={ab"+|jn=>1}.

It is possible to find a grammar for L by modifying the previous grammar since we need
to generate an extra b at the end of the string . We can do this by adding a production S>Bb
where the non-terminal B generatesal 'Sh(,i=1 as given in the previous example.

56

Using the above concept we devise the follwoing grammar for L.
G={N,>.,P,S),where, N={ S B}, P={ S->Bb, B>ab, B>aBh}

PARSE TREES:

There is a tree representation for derivations that has proved extremely usetul.
This tree shows us clearly how the symbols of a terminal string are grouped
into substrings, each of which belongs to the language of one of the variables of
the grammar. But perhaps more importantly, the tree, known as a “parse tree”

CONSTRUCTION OF PARSER TREE:

Let us fix on a grammar G = (V,T, P, S). The parse trees for 7 are trees with

the following conditions:

1. Each interior node is labeled by a variable in V.

2. Each leaf is labeled by either a variable, a terminal, or €. However, if the

leaf is labeled €, then it must be the only child of its parent.

3. If an interior node is labeled A, and its children are labeled

B Ty

respectively. from the left, then A — X, X, --- X is a production in P.
Note that the only time one of the X’s can be ¢ is if that is the label of

the only child, and 4 — € is a production of G.

Example 5.10: Figure 5.5 shows a parse tree for the palindrome grammar of
Fig. 5.1. The production used at the root is P — 00, and at the middle child
of the root it is P — 1P1. Note that at the bottom is a use of the production
P — ¢. That use, where the node labeled by the head has one child, labeled e,

is the only time that a node labeled E can appear in a parse tree. 0O
e I \
/ | \
|

=

Figure 5.5: A parse troo showing thoe derivation f2 = 0110

If we look at the leaves of any parse tree and concatenate them trom the left, we
get a string, called the yield of the tree, which is always a string that is derived
from the root variable. The fact that the yicld is derived from the root will be

proved shortly. Of special importance are those parse trees such that:

1. The yield is a terminal string. That is, all leaves are labeled either with

a terminal or with e.

2. The root is labeled by the start symbol.

When a grammar fails to provide unique structures, it is sometimes possible
to redesign the grammar to make the structure unique for each string in the
language. Unfortunately, sometimes we cannot co so. That is, there are some
CFL’s that are “inherently ambiguous”; every grammar for the language puts

more than one structure on some strings in the language.
grammar lets us generate expressions with any sequence of * and + operators,

and the productions E = E + E | Ex E allow us to generate these expressions
in any order we choose.

Example 5.25: For instance, consider the sentential form E + E = E. It has
two derivations from £:

L E3E+E=>E+E+E

2. E5ExE=3E+E+E
Notice that in derivation (1), the second E is replaced by E * E, while in

derivation (2), the first E is replaced by E + E. Figure 5.17 shows the two
parse trees, which we should note are distinct trees.

SN N
SN N

E ¥ E

(a) (b)

Figure 5.17: Two parse trees with the same yield
we say a CFG G = (V,T,P,5) is ambiguous if there is at least one string v
in T* for which we can find two different parse trees, each with root labeled S
and yield w. If each string has at most one parse tree in the grammar, then the

grammar is ¥nambiguous.

58

PUSH DOWN AUTOMATA:

Regular language can be charaterized as the language accepted by finite automata.
Similarly, we can characterize the context-free language as the langauge accepted by a class
of machines called "PushdownAutomata' (PDA). A pushdown automation is an extension of
the NFA. It is observed that FA have limited capability. (in the sense that the class of
languages accepted or characterized by them is small). This is due to the "finite memory"
(number of states) and "no external memory" involved with them. A PDA issimply an NFA
augmented with an "external stack memory". The addition of a stack provides the PDA with
alast-in, first-out memory management cpapability. This "Stack™ or "pushdownstore" can be
used to record a potentially unbounded information. It is due to this memory management
capability with the help of the stack that a PDA can overcome the memory limitations that
prevents a FA toaccept many interesting languages like {ab"|n=0}. Although, a PDA can
store an unbounded amount of information on the stack, its access to the information on the
stack islimited. It can push an element onto the top of the stack and pop off an element from
the top of the stack. To read down into the stack the top elements must be popped off and are
lost. Due to this limited access to the information on the stack, a PDA still has some
limitations and cannot accept some other interesting languages.

input tape

aj d7 B || st An

Read-only head

finite
control

!

X4
X3
X3

push/pop

Asshownin figure, a PDA has three components. an input tape with read only head,
afinite control and a pushdown store. The input head is read-only and may only move from
left to right, one symbol (or cell) at atime. In each step, the PDA pops the top symbol off
the stack; based on this symbol, the input symbol it is currently reading, andits present state,
it can push a sequence of symbols onto the stack, move its read-only head one cell (or
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, [I- transitions are also allowed in which
the PDA can pop and push, and change state without reading the next input symbol or moving
its read-only head. Besides this, there may be multiple options for possible next moves.

Formal Definitions :Formally, a PDAMis a 7-tupleM
=(Q.2, rn11,q0,z0, Fjwhere,

59

e Qisafinite set of states,
* Yisafinite set of input symbols (input al phabets),

» risafinite set of stack symbols (stack alphabets),
» [isatrangtion function from Q1 (3 U {1 })[] { subset of QI *

. gOL! Qsthe start state
e 20U Ristheinitia stack symbol, and

F*[1 Q isthefinal or accept states.

Explanation of the transition function, [1:

If, for any al), [(q,a,z)={(plBLl), (p2,82).....(pk,fk). This means intitutively that
whenever the PDA is in state q reading input symbol a and z on top of the stack, it can
nondeterministically for any i < t< k

* gotostate pi
* pop z off the stack
* push pionto the stack (where P10 *) (The usua convention is that if
Bi=x1x2....xn, then x1 will beat thetop and xn at the bottom.)

* move read head right one cell past the current symbol a.

If a = [, then 0@l .2={(p1B1),(p2,82),... (pk,Bk)],(means intitutively that
whenver the PDA isin state g with z on the top of the stack regardless of the current input
symbol, it can nondeterministically for any i, i < t<k,

go to state Pi

pop z off the stack

push B1 onto the stack, and

leave its read-only head whereit is.

State transition diagram :A PDA can also be depicted by a state transition diagram. The
labels on the arcsindicate both the input and the stack operation. The transition

1 (p,az)={(gM}or alY> U{} pqll QzI andall *isdepicted by

a, o
//_\\//_\/_
(2) (@)

Final states are indicated by double circles and the start state is indicated by an arrow to it from
nowhere.

CONFIGURATION OR INSTANTANEOUS DESCRIPTION (ID) :

A configuration or an instantaneous description (ID) of PDA at any moment during its
computation isan
element of QU > *[] r#escribing the current state, the portion of the input remaining to be

60

read (i.e. under and to the right of the read head), and the current stack contents. Only these
three elements can affect the computation from that point on and, hence, are parts of the ID.

The start or initalconfiguartion (or ID) on input wis(q0,w,z0) . That is, the PDA
aways starts in its start state, gOwith its read head pointing to the leftmost input symbol and
the stack containing only the start/initial stack symbol,z0. The "next move relation” one
figure describes how the PDA can move from one configuration to another in one step.
Formaly, (djaw,z) M(p,w,Ba)

Iff (p.B)) L (q,a,2)
‘a’ may be [or an input symbol.

Let I, J, K be IDs of a PDA. We define we write | '—ﬁ M,K, if ID | can become K
after exactlyimoves. Therelations —M and '—ﬁM define as follows
iy
| K
-0 i BB ch that | —BK and K g

|t i I ch that |

That is, — ngsthe reflexive, transitive closure of l—ﬁN We say that | |—$NJ if theID J
follows from the ID | inzero or more moves.

(Note: subscript M can be dropped when the particular PDA M is understood.)
L anguage accepted by a PDA M
There are two alternative definiton of acceptance as given below.

1. Acceptance by final state:

Consider the PDA M =(Q,>, 1./ .90,z0,F) . Informally, the PDA M is said to accept its input
wby final state if it enters any final state in zero or more moves after reading its entire input,
starting in the start configuration on input ®.

Formally, we define L(M), the language accepted by final state to be
{ w0 3% (90,w,20)|- N (pIB)for some p) Fand B %

2. Acceptance by empty stack (or Null stack): The PDA Maccepts its input « by empty stack if
starting in the start configuration on inputw, it ever empties the stack w/o pushing anything back
on after reading the entire input. Formally, we define N(M), the language accepted by empty
stack, to be

{ w7 XH(90,w,z0)|- N (pC] I for some pl1 QG

61

Note that the set of final states, F is irrelevant in this case and we usualy let the F to be the
empty seti.e F=Q.

Example 1 :Hereis aPDA that accepts the language {ab"[n=0}.

M=(Q.>, .q0,z0,F)

Q={0q1,92,93.94}

>={a,b}

r={a.b,z}

F={qgl,04} , and [I consists of the following transitions

€(ql.az)={{q2.az)}

€ (92,aa)={{q2.aa)}

€ (92,b,a={{q3.0)}

€ (g3,b,a)={{q3..))}

. €(q3,1,2)={{q4,2)}

The PDA can aso be described by the adjacent transition diagram.

agprwdPE

a, z/az

g

a, a/aa b, ale

Informally, whenever the PDA M sees an input a in the start state glwith the start
symbol z on the top of the stack it pushes a onto the stack and changes state to 2. (to
remember that it has seen the first 'a’). On state q2if it sees anymore a, it simply pushes it onto
the stack. Note that when M is on stateg2, the symbol on the top of the stack can only be a. On
state g2 if it sees the first b with a on the top of the stack, then it needs to start comparison of
numbers of a's and b's, since all the a's at the begining of the input have already been pushed
onto the stack. It start this process by popping off the a from the top of the stack and entersin
state g3 (to remember that the comparison process has begun). On stateg3 , it expects only b's
in the input (if it sees any more ain the input thus the input will not be in the proper form of
anbn).

Hence there is no more on input a when it is in state g3. On state q3it pops off an a
from the top of the stack for every b in the input. When it sees the last b on state g3 (i.e. when
the input is exaushted), then the last a from the stack will be popped off and the start symbol z
is exposed. This is the only possible case when the input (i.e. on [1-input) the PDA M will
move to state g4 which is an accept state. We can show the computation of the PDA on a
given input using the IDs and next move relations. For example, following are the computation
on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

(q1,aabb,z) |-- (g2,aabb,z) (using transition 1)

62

[-(g1,bb,zz) (using transition 2)

[-(93,b,z) (using transition 3)

[-(g3,1) ,z)(using transition 4), |-(g4,! ,z) using transition 5) , gdisfinal state. Hence , accept.
So the string aabb is rightly accepted by M

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.
)] Let the input be aabab.
(g1,aabab,z) |-- (g2,abab,z)
|-(g2,bab,aaz)
-(a3,ab,a2)

No further move is defined at this point. Hence the PDA gets stuck and the string aabab is not
accepted.

Example 2 :We give an example of a PDAMthat accepts the set of balanced strings of
parentheses [] byempty stack.
The PDA M is given below.

M =({qH{[]34z [}, ,q.2P) where [is defined as

1(q.[,2)={(q.[2)}
T (q.LD={(a.[D}
H(q,LD=1(g, 1)}
(g, ,2)={(q,[1)}

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and
whenever it sees a] and the top of the stack symbol is[, it will pop the symbol [off the stack.
(The third transition). The fourth transition is used when the input is exhausted in order to pop z
off the stack (to empty the stack) and accept. Note that there is only one state and no final state.
The following is a sequence of configurations leading to the acceptance of thestring[[][1]]-

(a[1101101.2) |- (a.[10111.[2) Hau[T1.[2) [allllll2)
(@]lll.[[2) Fa]l.[DHall.2) al.[2) Ha." .29
Equivalence of acceptance by final state and empty stack.

It-turns out that the two definitions of acceptance of a language by a PDA - accpetance by findl
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by fina state by some other PDA and vice versa
Hence it doesn't matter which one we use, sinceeach kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final state or empty stack, we
can always construct an equivalent PDA M with asingle final state that accpets exactly the same
language L. The construction process of M’ from M and the proof of equivalence of M&M' are
given below.

63

There are two cases to be considered.

CASE | : PDAMaccepts by fina state, Let M =(Q,2., ! ,¢0,z0,F) Let gf be a new state not

in Q. Consider the PDA M‘=(Q U{qgl}}..[7,90,z0,{q)where (1’ as well as the following
transition.

1 *(q) ,X)eontains (q1,X)[] ql) Fand X[= Itiseasy to show that M and M’ are equivaent i.e.
L(M) =L(M")

Let I L(M). Then (q0,w,z0)|- M(q,"! y)for some g Fandy(] *

Then (40,w,20)|- M*(q,1) Y)I-M*(q," ¥)|

Thus M’ accepts w

Conversely, let M’acceptswi.e. w[1L(M’), then(q0,w,z0)|- M*(q, 1 y)|-M*(q,(' y)| for g F
M’ inherits al other moves except the last one from M. Hence (g0,w,z0)|- M*(q,L! Y)|-for
some

gl E

Thus M accepts w. Informally, on any input M’ simulate al the moves of M and enters in its
own final state glwhenever M entersin any one of itsfinal statusin F. Thus M’accepts a string
w iffM acceptsit.

CASE Il :PDAMaccepts by empty stack.

We will construct M’from M in such away that M’ simulates M and detects when M empties its
stack.

M’ enters its final state g1 when and only when M empties its stack. ThusM’will accept a
string w iffM accepts.

Let M’=(Q U{q0’q1}.>, U {X},[1",0°,X,{ql})where q0’,g1 not) Qand X [rand [
contains all the transition of], aswell as the following two transitions.

1.007(q0,17 ,X)={(q0,20,X)}and

2.117(q0,00,.X)={(qL,[7)} ,[1ql1Q

Transitions 1 causes M’ to enter the initial configuration of M except that M’will have its own
bottom-of-stack marker X which is below the symbols of M's stack. From this point onward M’
will simulate every move of M since all the transitions of M arealso in M’

If M ever emptiesits stack, then M’when simulating M will empty its stack except the symbol X
at the bottom.

At this point, M” will enter its final state glby using transition rule 2, thereby (correctly)
accepting the input. We will prove that Mand M’are equivalent.

64

Let Maccepts w. Then

(90,w,z0) |- M* (q,L! ,[] ¥or some (q [Q) But then
(90,w,X)|- M’%(g0,w,z0,X) (by transition rule 1)

[- M*(g1,0] ,.X) Since M’ includes al the moves of M)
[-- M1 |-(g1,07,00 §(by transition rule 2)

Hence, M’ also accepts w. Conversely, let M’accepts w.
Then (90’,w,X) |- M*(q0’,w,zoX) |- M* (q0’,L1 ,X)} M* (q0’,L0 ,[J) forsomeq) Q
Every move in the sequence, (q0°,w,zoX) |- M* (q0’,L1 ,X)were taken from M.
Hence, M starting with its initia configuration will eventually empty its stack and accept the
input i.e.
(90,w,z0)|- M* (go,L! 1)

EQUIVALENCE OF PDA’S AND CFG’S:

We will now show that pushdown automata and context-free grammars are equivalent in
expressive power, that is, the language accepted by PDAs are exactly the context-free languages.
To show this, we have to prove each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the
same language generated by G.

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the
same language accpeted by M.

(i) CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an
equivalent PDA.
Let the given CFG is G={N,>,P,S). Without loss of generality we can assume that G isin
Greibach Normal Form i.e. al productions of G are of the form .

A—->cB1B2...Bn wherecl! Y U{[] }{and k=0.
From the given CFG G we now construct an equivalent PDA M that accepts by empty stack.
Note that thereisonly one state in M. Let
M={{q},>,N,[} ,q,SP) where

* qistheonly state

Y istheinput alphabet,
N isthe stack alphabet ,
g isthe start state.
Sisthe start/initial stack symbol, and [, the transition relation is defined as follows
For each production A>cB1B2...Bk U P, (q,B1,B2,...Bk)LJ L[l (q,cA) We now want to
show that M and G are equivaent i.e. L(G)=N(M). i.e. for any wll > *, wll L(G)ff wll N(M)
If wil L(G), then by definition of L(G), there must be a leftmost derivation starting with S and
deriving w.

i.e S=>w

Again if wilNM) then one sysmbol. Therefore we need to show that for any
wl Y *S=>wiff(q,w,s) |- (9,1 ,[])

But we will prove a more general result as given in the following lemma. Replacing A by S

65

(the start symbol) and y by [Igivesthe required proof.
Lemma For anyx,y[] > * yl[I N*and All N, A=>xy via aleftmost derivative iff
(a.xy,A)l- M*(q,y.y)
Proof : The proof is by induction onn.
Basis:n=0
A=>xyiffA=xy i.e. x=L1 and y=A
Iff (a.xy,A)=(a.y.y)
iff(a.xy.a |- M*(a.y.y)
Induction Step :
First, assumethat A=>xy viaaleftmost derivation. Let the last production applied
in their derivationisB>cf for somecl| > U{l] }and B[] N*
Then, for some w(] > * al] N*

A=>wBa=>wc Ba=xy

Where x=wc and y=pa
Now by the indirection hypothesis, we get,

(0,0Y,A)|- M*(0,CY,B0) i (@D)]
Again by the construction of M, we get
@p) [(q.c,B)
so, from (1), we get
(.0y,A)l- M*(q,cy,Ba) |- M *(q,y,Ba)
since x=wc and y=Ba, we get (q,0y,A)|- M*(q,y,y)
That is, ifA=>xy , then(q,wy,A)|- M*(q,y,y) . Conversely, assume that
(@.wy,A)l- M*(q,y.y) and let
(g,¢,8)=(q,B) be the transition used in the last move. Then for some w1 Y* ¢ > U {[] }and
all r*
(9,0y,A)|- M*(q,cy,Ba) |- M’ *(q,y,Ba) where x=wc and y=[a,

Now, by the induction hypothesis, we get A=>wBa via a leftmost derivation. Again, by the
construction of M, B->c3 must be a production of G. [Since(q,p)[! [(q.,c,B). Applying the
production to the sentential form wBa kwe get

A=>wpo=>wc Po=xy

i.e. A=>xy
viaaleftmost derivation.
Hence the proof.

Example :Consider the CFGGin GNF
S->aAB
A->alaA
B->a/bB

The one state PDA M equivalent to G is shown below. For convenience, a
production of G and the corresponding transition in M are marked by the same
encircled number.

(1) S>aAB

66

(2)A >a
(3)A>aA
4B >a
(5)B >bB

M={{q} {ab}{S,A,B},>,,q,SWe have used the same construction discussed earlier
Some Useful Explanations:

Consider the moves of M on input aaaba leading to acceptance of the string.
1.(g,aaaba,s) —>(q, aaba, AB)

2. —=(q, aba, AB)

3 ~>(q,ba,B)

4, >(0,aB)

5. L >(g,a,B) Accept by empty stack.

Note :encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

S=>aAB=>aaAB=>aaaB=>aaabB=>aaaba
Steps 1 2 3 4 5

Observations:

» There is an one-to-one correspondence of the sequence of moves of the PDA M and the
derivation sequence under the CFG G for the same input string in the sense that - number
of steps in both the cases are same and transition rule corresponding to the same
production is used at every step (as shown by encircled number).

» considering the moves of the PDA and derivation under G together, it is also observed
that at every step the input read so far and the stack content together is exactly
identical to the corresponding sentential formii.e.

<what is Read><stack> = <sentential form>
Say, at step 2, Read so far
= astack = AB

Sentential form = aAB From this property we claim that (q,x,S)|- M*(q,[) a)iff S=>xa. If the
clam is true, then apply with o=lland we get (g.x,5) M*(q,),[1)fS=>x or
x N(MjffxJ L(GY by definition)

Thus N(M) = L(G) as desired. Note that we have aready proved a more general version
of the clam PDA and CFG:
We now want to show that for every PDA M that accpets by empty stack, thereis a CFG G such

67

that L(G) =N(M) we first see whether the "reverse of the construction™ that was used in part (i)
can be used here to construct an equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAS.

* Thatis, for every one-state PDA M there is CFG G such that L(G) = N(M). For every
move of the PDA M (q,B1,B2,...Bk)we introduce a production A-> cB1,B2,...Bkin
the grammar G=(N, > ,P,S) where N =T and S=z0.

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).
But the reverse construction does not work for PDAs with more than one state. For example,
consider the PDA M produced here to accept the langauge({ arba|n=1}
M=({p,a} {ab} {z0,A},"] ,p,z0%P)
Now let us construct CFG G=(N,> ,P,S) using the "reverse" construction.
(NoteN={z0,A},S=20).

Transitionsin M Corresponding Production in G
a,z0/A z0>aA
aA/AA A-2>aAA

b,A/A A>DbA

aA/ll A-a

We can drive strings like aabaa which is in the language.
s=>70=>aA=>aaA A=>aabAA=>aabaA=>aabaa

But under this grammar we can a so derive some strings which are not in the language. e.g
s=>7z0=>aA=>aaA A=>aabAA=>aabaA=>aabaa
ands=>z0=>aA=>aa But ag,not | L(M)

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

Claim: For every PDA M there is some one-state PDA M’such that N(M)=N(M’).

It is quite possible to prove the above claim. But here we will adopt a different approach.
We start with any arbitrary PDA M that accepts by empty stack and directly construct an
equivalent CFG G.

PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more
states. Without loss of generality we can assume that the PDA M accepts by empty stack.
Theideais to use nonterminal of the form <PAg> whenever PDA M in state P with A on
top of the stack goes to state q0. That is, for example, for a given transition of the PDA
corresponding production in the grammar as shown below, And, we would like to show, in
generd, that <PAg>=>w iff the PDA M, when started from state P with A on the top of the
stack will finish processing w, arrive at state q and remove A from the stack. we are now
ready to give the construction of an equivalent CFG G from a given PDA M. we need to
introduce two kinds of producitons in the grammar as given below. The reason for
introduction of the first kind of production will be justified at a later point. Introduction of
the second type of production has been justified in the above discussion.

68

Let M={Q, ,>,N, ,q,SP) be aPDA. We construct from M aequivalent CFG G=(N,},P,S)
Where
* Nisthe set of nonterminals of the form<PAg>for p,g ./ Qand ALl rand P contains the
following two kind of production

1.5><q0z00>11 q[1Q
2. If (g1,B1B2.....Bn)lJ [(q.a,A) then for every choice of the sequence
02,93,...qn+1, gl Q 2<isn+l.

Include the follwoing production
<gn,gn+1>->a<qlBlg2><q2B2g3>...... <gnBngn>

If n =0, then the production is <gA gl1>->a.For the whole exercise to be meaningful we want
<gA g1> =>wmeans thereis a sequence of transitions (for PDA M), starting in state g, ending in
gn+1,during which the PDA M consumes the input string « and removes A from the stack (and,
of course, al other symbols pushed onto stack in A's place, and so on.)
That iswe want to claim that

<pAg>=>wiff (pw,A)[-(a,L,))
If this claim is true, then let p=g0,A=z0 to get <q0z0g>iff (q0,w,z0) |-(g,.) ,[!)Yfor someg! Q
But for dlgiQ we have S><q0z0g>as production in G. Therefore,
S=><q0z0g>iff=>(q0,w,z0)|-(q,! ,L1).e. S=>w iff PDA M accepts w by empty stack or L(G) =
N(M). Now, to show that the above construction of CFG G from any PDA M works, we need to
prove the proposed claim.

Note: At this point, the justification for introduction of the first type of production (of the form
s><g0z0g>) in the CFG G, is quite clear. This helps use deriving a string from the start
symbol of the grammar.

Proof :Of the claim <PAg>=>w iff (P,w,A)-(q,.!,[]dor some wll > * ALl rand P,q-! Q.The
proof is by induction on the number of stepsin a derivation of G (which of courseis equal to the
number of moves taken by M). Let the number of stepstakenisn.

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the' if ' part

If (P,w,A)|-(q,l) ,L] then <PAG>=>w.

Basisisn=1

Then(P,w,A)|(q,l),[1) . In this case, it is clear that wl!Y U{[]’} Hence, by construction
<PAQg>=>w.

isaproduction of G.

Then

Inductive Hypothesis::

69

Vvi<n (P,CO,A)KCI,[,U):><PAq>=>W
Inductive Step :(P,w,A)|(q,] ,[])

For n>1, let w=ax for somea | >, U {[] }and x[I > * consider the first move of the PDA M
which uses the general transition (q1,B1B2....Bn) |-(q,l/ ,[¥

(p,ax,A) |-(ql,x, B1B2....Bn)|-(q,[] ,[1)Now M must remove q1,B1B2....Bnfrom stack
while consuming X in the remaining n-1 moves.

Letx=x1x2...xn, where x1x2...xnis the prefix of x that M has consumed when Bi+1 first
appears at top of the stack. Then there must exist a sequence of states in M (as per
construction) g2,q3,...gn,gn+1(withgn+1=p), such that

(p.ax,A) |-(q1,x,B1B2...Bn)=(q1,x1x2....xn, B1B2...Bn)

(92,x2x3....xn, B2B3...Bn) [this step implies (q1,x1,B1) |-(g2,! ,[1)
(93,x3x4....xn, B3B4...Bn) [this step implies (92,x2,B2) |-(g3,] ,[1)]

|' (qn,xnan)zl'(CL[,U)]

[Note: Each step takes less than or equal to n -1 moves because the total number of moves
required assumed to be n-1.]

That is, in genera

(i xi,Bi)-(qi+1,01 ,71), 1<i< n+1

So, applying inductive hypothesis we get
<qiBigi+1> => xi, 1<i< n+1. But corresponding to the original move
(p,w,A)= (p,ax,A)|-(q1,x,B1B2...Bn)in M we have added the following production in G.

We can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

(ql,aabb,z)}- (g2,abb,az)(using transition 1) ,|- (q2,abb,az) (using transition 2)
|- (g3,b,az)(using transition 3), (g3, 1,z using transition 4)

[-(g4,[,zX(using transition 5) , g4 isfinal state. Hence, accept.

So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

70

)] Let the input be aabab

(ql,aabb,2)}- (g2,abb,az)
|- (q2,bab,aaz)
[-(g3,ab.az)

No further moveis defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of thestring[[][]1]1[]
(a.[0001.2Ha[11.[2) | (a][11.[[2)

F(a.(1M1.[2)F(au1111.[2) | (a.]1].[2)

|-(q,[],Z) |-(q,][Z) |'(q|[9Z) I' (ql 0, 0)

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by find
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by final state by some other PDA and vice versa.
Hence it doesn't matter which one we use, since each kind of machine can smulate the
other.Given any arbitrary PDA M that accpets the language L by final

state or empty stack, we can always construct an equivaent PDA M with a single fina state
that accpets exactly the same language L. The construction process of M' from M and the proof
of equivalence of M&M' are given below
There are two cases to be considered.
CASE 1 :PDAMaccepts by final state, Let M=(Q,>, L ,q0,z0,F). Let gf be a new state not in
Q. Consider the PDAM’=(Q U{qf},>. r.[! *,q0,z0,F) where [’ as well as the following
transition.
[1’(q,] ,X)contains (qf ,X) [1 q[] Fand X[[Itiseasy to show that Mand M’are equivalent i.e.
L(M)=L(M")
Let wl! L(M). Then (qO,w,z0)|- M*(q,’ y)for some g ! Fand {1 >*
Then (qO,w,z0)|- M*(q,) y)I- M*(af,L) y)
Thus M’ accepts w.
Conversely, let M’acceptsw i.e. wl | L(M”), then (qO,w,z0)|- M*(q,"| Y)I- M*(qf, Y)for some
gl F. M inherits al other moves except the last one from M. Hence (qO,w,z0)|- M*(q,[] y)for

someq | F.

Thus M accepts w. Informally, on any input M’ simulate all the moves of M and enters in its

71

own fina state gfwhenever M enters in any one of its final status in F. Thus M’ accepts a
string wiffM acceptsit.

g
CASE 2 :PDAMaccepts by empty stack.

we will construct M’fromM in such away M’ simulates M and detects when M empties its stack.

M enters its final state gf when and only when M empties its stack.ThusM’ will accept a
string wiffM accepts.

Let M’=(Q U{qo’,af},>, r U{x}.[] *,q0°,X,{qf}) where qo’,qf not [] Qand (1 *and [] contains
all thetransition of (1, aswell as the following two transitions.

(g0, ,X)={(q0,20,X)&nd
11°(q0,11 ,.X)={(qf,[1)}, [T q[1 Q

TWO MARKS

1
2.

1. What are the applications of Context free languages
Context free languages areused in :
a. Defining programming languages.
b. Formalizing the notion of parsing.
c. Trandation of programming languages.
String processing applications.

2. What are the uses of Context free grammars?
Construction of compilers.
Simplified the definition of programming languages.
Describes the arithmetic expressions with arbitrary nesting of balanced parenthesis{ (,) }.
Describes block structure in programming languages.
Model neura nets.

3. Define a Context Free Grammar
A context free grammar (CFG) is denoted as G=(V,T,P,S) whereV and T are finite set of
variables and terminals respectively. V and T are digoint. P isafinite set of productions each
isof theform A->_where A isavariableand _isastring of symbolsfrom (V U T)*.

4. What isthe language generated by CFG or G?
The language generated by G (L(G)) is{w |wisinT* and S=>w. Thatisa G string
isin L(G) if:
i. Thestring consists solely of terminals.
ii. Thestring can be derived from S.

5. Whatis: (a) CFL (b) Sentential form
L is acontext freelanguage (CFL) if itisL(G) for some CFG G.
A string of terminals and variables «a is called a sentential form if:
S=>a ,where Sisthestart symbol of the grammar.

6. What isthe language generated by the grammar G=(V,T,P,S) where

P={S->aSb, S->ab} ?
S=>aSh=>aaShb=>.......cccocoiiii . =>3"p"

72

10.

11.

Thus the language L(G)={ ah" | n>=1}.The language has strings with equal number of a’s
and b’s.

What is :(a) derivation (b)derivation/parse tree (c) subtree
(a) Let G=(V,T,P,S) be the context free grammar. If A-> B isa productionof Panda and vy
are any strings in (VUT)* then a Ay =>afy

(b) A treeisaparse\ derivation tree for G if:
a. Every vertex hasalabel whichisasymbol of VU TU{_}.
b. Thelabel of theroot is S.
c. Ifavertexisinterior and hasalabel A, then A must bein V.
d. If n has a label A and vertices n1,n2,..... nk are the sons of the vertex n in order from
left with labels X1,X2,........... Xk respectively then A X1X2.....Xk must be in P.
e. If vertex nhaslabel _thennisaleaf andisthe only son of itsfather.

(c) A subtree of a derivation tree is a particular vertex of the tree together with al its
descendants ,the edges connecting them and their labels.The label of the root may not be the
start symbol of the grammar.

If S>aSb|aAb , A->bAa, A->ba .Find out the CFL
soln. S->aAb=>abab
S->aSb=>aaAb b =>aabab b(sub S->aAb)
S>aSbh=>aaSbb=>aaaAbbb=>aaabab bb
Thus L={dh™a"b", where n,m>=1}

What is a ambiguous grammar?

A grammar is said to be ambiguous if it has more than one derivation trees for a
sentence or in other words if it has more than one leftmost derivation or more than one
rightmost derivation.

Find CFG with no useless symbols equivalent to : S—AB | CA,

B-BC|AB, A-a,C-aB|h.

S>AB

S>CA

B->BC

B->AB

A->a

C->aB

C->b are the given productions.
A symbol X isuseful if S => aXB =>w. The variable B cannot generate terminals as B-
>BC and B->AB. Hence B is useless symbol and remove B from all productions.
Hence useful productions are: S>CA , A->a , C->b

Construct CFG without € production from:S —~a|Ab|aBa,A -b|€, B -b|A.
S>a

S>Ab

S>aBa

A->b

A->€E

B->b

B->A arethe given set of production.

A->€ is the only empty production. Remove the empty production
S> Ab, Put A->€ and hence S-> b.

If B->A and A->€ then B ->€

73

12.

13.

14.

15.

16.

17.

18.

19.

Hence S->aBa becomes S->aa.

Thus S>a | Ab |b| aBa |aa

A->b

B->b

Finally the productions are: S> a | Ab | b | aBa | aa
A->b

B->b

Define a Context Free Grammar
A CFG is a grammar whose productions are of the form A -> a where A€V anda € (V U
T)
Construct a CFG for the language L(G) = {0™1": n> 1}.
G={Vv={S}, T={0,1}, P, S} whereP={S->0SS->01}
Construct a CFG for the language L (G) = {0"1": n> 0}.
G={V={S}, T={0,1}, P, S} whereP={S->0S1S->¢}
Find aLM derivation for aaabbabbba with the productions.
P:S—>aB|bA A >a|aS|bAA B 2b|bS|aBB
Solution: S-> aB

S-> aaBB

S > asaBBB

S > aaabBB

S - aaabbB

S - aaabbaBB

S > aaabbabB

S - aaabbabbS

S - aaabbabbbA

S - aaabbabbba
FindaL(G) S—> aSh,S—> ab
Solution: S-> aSb
aaSbb
ast’
aabb'
. ab"

AwpE

L(G) ={ab", n>1}
For the grammar S - aCa, C - aCa| b. Find L(G)
Solution:
S aCa> aaCaa> d'Ca’
S adbd'L(G) ={adbd", n > 0}

Construct a CFG for the language over { a,b} which contains palindrome strings.
G={Vv={S}, T={ab},P, S

where

P={S->aSa

S->bSb

S->a

S->b

S->¢}

Define the language of a Grammar.

IfG=(V, T, P, S isaCFG, the language of G denoted by L(G), is the set of terminal
strings that have derivations from the start symbol i.e. L(G) ={win T /S->*w}
What are the three ways to simplify a context free grammar?
removing the useless symbols from the set of productions.

By eliminating the empty productions.
By eliminating the unit productions.

74

UNIT- 1V PROPERTIES OF CONTEXT-FREE LANGUAGES
Normal forms for CFG — Pumping Lemma for CFL - Closure Properties of CFL — Turing
Machines — Programming Techniques for TM.

PROPERTIES OF CONTEXT - FREE LANGUAGES
Empty Production Removal

The productions of context-free grammars can be coerced into a variety of forms
without affecting the expressive power of the grammars. If the empty string does not belong
to a language, then there is a way to eliminate the productions of the form A- A from the
grammar. If the empty string belongs to a language, then we can eliminate A from all
productions save for the single production S — A. In this case we can aso eliminate any
occurrences of Sfrom the right-hand side of productions.

Procedureto find CFG with out empty Productions

Step (i): For all productions 4 — A, put 4 into V.
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions|

Step (1): For all productions 4 — A, put 4 mto V.
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions

where 4;,4,,4;,, A, are in ¥y, put B into V.
To find P, let us consider all productions in P of the form

v o o AR, o -

foreachx, eV UT.

75

UNIT PRODUCTION REMOVAL

Any production of a CFG of the form
A—> B

where 4. B €V is called a “Unit-production™. Having variable one on either
side of a production is sometimes undesirable.
“Substitution Rule” is made use of in removing the unit-productions.
Given G = (V. T, S. P). a CFG with no A-productions, there exists a CFG
G= (I:' T8 }3) that does not have any unit-productions and that 1s equivalent

0 G.
Let us illustrate the procedure to remove unit-production through example
2.4.6.
Procedure to remove the unit productions:
Find all variables B, for each A such that
ASB
This is done by sketching a “depending graph™ with an edge (C. D)
whenever the grammar has unit-production C — D, then 4 =B holds
whenever there i1s a walk between 4 and B.

The new grammar G. equivalent to G is obtained by letting into P all
non-unit productions of P.

Then for all 4 and B satisfying 4 = B. we add to P
where B — y | ¥]...... | v, 1s the set of all rules in P with B on the left.

LEFT RECURSION REMOVAL:

A variable 4 1s left-recursive if it occurs in a production of the form

A— Ax

for any x (VUT)*.

A grammar i1s left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that 1s not

left-recursive. 76

NORMAL FORMS

Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal
Form (GNF) are considered here.

Chomsky Normal Form (CNF)

Any context-free language L without any A-production is generated by a
grammar is which productions are of the form A - BC or A- a, where A, B
VN,anda VT.

Procedureto find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and A-productionsif any,
(i) Eliminate the terminals on the right hand side of length two or more.

(iii) Restrict the number of variables on the right hand side of productions to
two. Proof:

For Sep (i): Apply the following theorem: “Every context free language can be generated

by a grammar with no useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or two or more symbols.
Let us assume the equivalent resulting grammar asG [1 (VN ,VT P ,S).

For Sep (ii): Consider any production of the form

B, > a.LetV \ be the set of variables in ¥V, together with B/ s introduced for

every terminal on RHS.
The resulting grammar G, = (Vy; .V;.P’.§) is equivalent to G and every
production in P’ has either a single terminal or two or more variables.

For step (iii): Consider 4 — BB, B

where B.’s are variables and m = 3.
If m =2, then 4 — B,.B, 1s in proper form.

The production 4 — BB, B, is replaced by new productions
A— B\ D,,
D, — B,D,,
Dm—l - Bm—le

, 77
where D;S are new variables.

The grammar thus obtained 1s G,, which is i CNF.

Example: Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G
with productions P given

S — aAbB
A— adla

B — bB|b.
Solution

(1) There are no unit productions in the given set of P.
(if) Amongst the given productions, we have
A—>a,
B—b
which are in proper form.
For § — a4bB. we have
S — B,AB,B.
B,—a
B, — b
For 4 — ad, we have

A— B, 4

For B — bB. we have
B — BbB

(i11) In P"above, we have only
S— B,AB,B
not in proper form.
Hence we assume new variables D, and D, and the productions
8 —> B 1)

D, — AD,
D, — B,B

Therefore the grammar in Chomsky Normal Form (CNF) is G, with the
productions given by
S — B,D,.
D, — AD,,
D, - B,B,
A—» 8 A,
B — B,B.
B, — a,
B, — b,
A— a,
and B — b.

Pumping Lemma for CFG
A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a
language, then certain other strings must also belong to the language. Let us discuss a Pumping
Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at
least ‘m’ symbols long can be “pumped” to produce additional strings in L. The value of ‘nv
depends on the particular language. Let L be an infinite context-free language. Then there is
some positive integer ‘m’ such that, if Sisastring of L of Length at least ‘m’, then
(i) S=uvwxy (for someu, v, w, X, y)
@i) | vwx|<m
(i) | vx| =21
(iVviuviwxiy L.
for al non-negative values of
i. It should be understood that
(i) If Sis sufficiently long string, then there are two substrings, v and X,
somewhere in S. There is stuff (u) before v, stuff (w) between v and x, and stuff (y),
after x.
(i) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m.
(iii) Substrings v and x won’t both be empty, though either one could be.

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same
number of times, the resultant string will also bein L.

Definitions A variableis useful if it occursin the derivation of some string. This requires that
(a) the variable occurs in some sentential form (you can get to the variable if you start from S),
and

(b) a string of terminals can be derived from the sentential form (the variable is not a “dead
end”). A variable is “recursive” if it can generate a string containing itself. For example,
variable Aisrecursiveif

S =udy
for some values of » and 1‘
A recursive variable 4 can be either
(1) “Directly Recursive”, i.e., there is a production
A= x Ax,
for some strings x;.x, € (T WF) ,or
(1) “Indirectly Recursive”, 1.e., there are variables x; and productions

Ay s
X1 —>...X2
X]—:»...Xa...

N o (-

79

Proof of Pumping Lemma

(&) Suppose we have a CFL given by L. Then there is some context-free Grammar G that
generates L. Suppose

(i) L isinfinite, hence there is no proper upper bound on the length of strings belonging to L.
(i) L does not contain .

(i) G has no productions or |-productions.

There are only a finite number of variables in a grammar and the productions for each variable
have finite lengths. The only way that a grammar can generate arbitrarily long stringsisif one or
more variables is both useful and recursive. Suppose no variable is recursive. Since the start
symbol is non recursive, it must be defined only in terms of terminals and other variables. Then
since those variables are non recursive, they have to be defined in terms of terminals and still
other variables and so on.

After a while we run out of “other variables” while the generated string is still finite.
Therefore there is an upper bond on the length of the string which can be generated from
the start symbol. This contradicts our statement that the language is finite. Hence, our
assumption that no variable is recursive must be incorrect.

(b) Let us consider astring X belonging to L. If X is sufficiently long, then the derivation of X
must have involved recursive use of some variable A. Since A was used in the derivation, the
derivation should have started as

S = udy

for some values of # and y. Since A was used recursively the derivation must
have continued as

*® *
S = udy = uvAxy

Finally the derivation must have eliminated all variables to reach a string
X in the language.

*

& *
S =2 udy=D uvAxy D uvwxy =x

This shows that derivation steps

A=vAdx

*
and A= w
are possible. Hence the derivation
A=vx

must also be possible.

Usage of Pumping Lemma:

The Pumping Lemma can be used to show that certain languages are not
context free.
Let us show that the language

L={a'b'c"|i>0}
18 not context-free.
Proof: Suppose L is a context-free language.
If string X € L, where | X'| > m, it follows that X'=avwxy. where | vivx| < m.

Choose a value 7 that is greater than m. Then, wherever vx occurs in the
string @'b'c’, it cannot contain more than two distinct letters it can be all a’s,
all b’s. all ¢’s, or it can be @’s and b’s. or it can be b’s and ¢’s.

Therefore the string vx cannot contain more than two distinct letters: but
by the “Pumping Lemma” it cannot be empty. either, so it must contain at least
one letter.

Now we are ready to “pump”.

Since ivvxy isin L, v *wx® ymust also be in L. Since v and x can’t both be

empty,
b p
v Swx Ty > | uvwxy,

so we have added letters.
Both since v does not contain all three distinct letters, we cannot have
added the same number of each letter.
22 g
Therefore, v wx"y cannot be in L.
Thus we have ammived at a “contradiction™.

Hence our origina assumption, that L is context free should be false. Hence the language L
is not con text-free.

Example

Check whether the language given by L [1 {a mbmcn : m< n< 2m} isaCFL
or not. Solution

81

Closure properties of CFL — Substitution

Let £ be an alphabet, and suppose that for every symbol a in X, we choose a
language L,. These chosen languages can be over any alphabets, not necessarily
% and not necessarily the same. This choice of languages defines a function s
(a substitution) on X, and we shall refer to L, as s{a) for each symbol a.

If w=ayay- -ay, is a string in £*, then s(w) is the language of all strings
T1&y &, such that string x; is in the language s(a;), for i = 1,2,...,n. Put
another way, s(w) is the concatenation of the languages s(a;)s(az) - s(an).
We can further extend the definition of s to apply to languages: s(L) is the
union of s(w) for all strings w in L.

Theorem 7.23: If L is a context-free language over alphabet X, and s is a
substitution on ¥ such that s(a) is a CFL for each a in X, then s(L) is a CFL.

PROOF: The essential idea is that we may take a CFG for L and replace each
terminal a by the start symbol of a CFG for language s(a). The result is a
single CFG that generates s(L). However, there are a few details that must be
gotten right to make this idea work.

More formally, start with grammars for each of the relevant languages, say
G = (V,Z,P,8) for L and G, = (V,,T4,Pa,S:) for each @ in £. Since we
can choose any names we wish for variables, let us make sure that the sets of
variables are disjoint; that is, there is no symbol A that is in two or more of
V and any of the V,'s. The purpose of this choice of names is to make sure
that when we combine the productions of the various grammars into one set
of productions, we cannot get accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of the given grammars.

We construct a new grammar G' = (V', T, P', 8) for s(L), as follows:

e V' is the union of V and all the V,'s for a in X.
e T' is the union of all the T,’s for a in .
e P’ consists of:

1. All productions in any F,, for a in X.

2. The productions of P, but with each terminal a in their bodies re-
placed by S, everywhere a occurs.

Thus, all parse trees in grammar G' start out like parse trees in G, but instead
of generating a yield in X*, there is a frontier in the tree where all nodes have
labels that are S, for some a in ¥. Then, dangling from each such node is a
parse tree of G, whose yield is a terminal string that is in the language s(a).

82

I nver se Homomor phism:

Theorem 7.30: Let L be a CFL and h a homomorphism. Then h=*(L) is a
CFL.

PROOF: Suppose h applies to symbols of alphabet 3 and produces strings in
T*. We also assume that L is a language over alphabet T'. As suggested above,
we start with a PDA P = (Q,T,T,4,qo, Zo, F) that accepts L by final state.
We construct a new PDA

P'=(Q',%,d,(qgo,€), 2o, F x {€}) (7.1)

where:

1. Q' is the set of pairs (g, z) such that:

(a) ¢ is a state in @, and

(b) z is a suffix (not necessarily proper) of some string h(a) for some
input symbol a in .

That is, the first component of the state of P’ is the state of P, and the
second component is the buffer. We assume that the buffer will period-
ically be loaded with a string h(a), and then allowed to shrink from the
front, as we use its symbols to feed the simulated PDA P. Note that since
¥ is finite, and h(a) is finite for all a, there are only a finite number of
states for P’.

2. ¢' is defined by the following rules:

(a) 8'((g,€),a,X) = {((q, h(a)),X)} for all symbols a in £, all states
g in @), and stack symbols X in I'. Note that a cannot be € here.

When the buffer is empty, P’ can consume its next input symbol a
and place h(a) in the buffer.

(b) If 6(q, b, X) contains (p,7), where bis in T or b = ¢, then
8'((q,bz),¢, X)

contains ((p,z),7). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in T', then
the buffer must not be empty, but if b = ¢, then the buffer can be
empty.

83

3. Note that, as defined in (7.1), the start state of P’ is (go, €); i.e., P’ starts
in the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1), are those states (g, ¢)
such that ¢ is an accepting state of P.

The following statement characterizes the relationship between P’ and P:

o (g0, h(w), Z0) ©* (p,e,7) if and only if ((g0,€),w, Z0) ¥, ((p,€),6,7)-
TURING MACHINE‘?INFORMAL DEFINITION:

We consider here a basic model of TM which is deterministic and have one-tape. There are
many variations, all are equally powerfull.

The basic model of TM has afinite set of states, a semi-infinite tape that has aleftmost cell but
is infinite to the right and a tape head that can move left and right over the tape, reading and
writing symbols.

For any input w with |wi|=n, initially it is written on the n leftmost (contiguous) tape cells.
The infinitely many cells to the right of the input al contain a blank symbol, B which is a
special tape symbol that is not an input symbol. The machine starts in its start state with its
head scanning the leftmost symbol of the input w.

Depending upon the symbol scanned by the tape head and the current state the machine makes a
move which consists of the following:

* writesanew symbol on that tape cell,
* movesits head one cell either to the left or to the right and
* (possibly) enters anew state.

The action it takes in each step is determined by a transition functions. The machine continues
computing (i.e. making moves) until

* it decidesto "accept” itsinput by entering a special state called accept or final state or
» haltswithout accepting i.e. rglecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the
input, in which caseit issaid to "loop™" on that input

Formal Definition : R
Formally, a deterministic turing machine (DTM) is a7-tuplem 34

* Qisafinite nonempty set of states.
» Bisafinite non-empty set of tape symbols, call ed the tape alphabet of M.

84

. s aflnlte nonemptyset of |nput symbols called the input alphabet of M.

|sthe set of final state.

S0, given the current state and tape symbol being read, the transition function describes the next
state, symbol to be written on the tape, and the direction in which to move the tape head (L and
R denote left and right, respectively).

Transition function ﬁ

* The heart of the TM is the transition function, Ehecause it tells us how the machine
gets one step to the next.
* when the machlne is ina certal n state g #EQ and the head is currently scanning the

tape symbol HEa: g2 then the machine

replaces the symbol X by Y on the tape
goesto state p, and
the tape head moves one cell (i.e. one tape symbol) to the left (or right) if DisL (or R

)-

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it
contains all the information to exactly capture the "current state of the computations”.

wh e

It contains the following:

» Thecurrent state, g

» The position of the tape head,

* The constants of the tape up to the rightmost nonblank symbol or the symbol to the
left of the head, whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank
symbols on the tape, at any finite time, the TM has visited only a finite prefix of the infinite

tape.

An ID (or configuration) of aTM M is denoted by %ﬁwhere U

« Hdis the tape contents to the left of the head
» qisthecurrent state.

ﬁl s the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of ﬁ (Note that if m
then the tape head is scanning a blank symbol)

85

If &is the start state and w is the input to a TM M then the starting or initial configuration
of M isdenoted by ﬁﬁ

The Halting Problem:

The input to a Turing machine is a string. Turing machines themselves can be written as
strings. Since these strings can be used as input to other Turing machines. A “Universal Turing
machine” is one whose input consists of a description M of some arbitrary Turing machine, and
some input w to which machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. Thisiswritten as
Universal Turing Machine (M +w) =M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing
machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do
for example, suppose you have written a C pretty printer in C, then used the Pretty printer on
itself. Another common usage is Bootstrapping—where some convenient languages used to write
aminimal compiler for some new language L, then used this minima compiler for L to write a
new, improved compiler for language L. Each time a new feature is added to language L, you can
recompile and use this new feature in the next version of the compiler. Turing machines
sometimes halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given
some other string. The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an effective procedure to
look at a Turing machine and its input and determine whether the machine will halt with that
input. If there is an effective procedure, then we can build a Turing machine to implement it.
Suppose we have a Turing machine “WillHalt” which, given an input string M + w, will halt and
accept the string if Turing machine M halts on input w and will halt and reject the string if Turing
machine M does not halt on input w. When viewed as a Boolean function, “WillHalt (M, w)” halts
and returns “TRUE” in the first case, and (halts and) returns “FALSE” in the second.

Theorem:
Turing Machine “WillHalt (M, w)” does not exist.
Proof: This theorem is proved by contradiction. Suppose we could build a machine
“WillHalt”. Then we can certainly build a second machine, “LooplfHalts”, that will go into
an infinite loop if and only if “WillHalt” accepts its input:
Function LooplfHats (M, w): if
WillHat (M, w) then whiletruedo { }
else
return false;
We will also define a machine “LooplfHaltOnltSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will
halt in this case.
Function LooplfHaltsOnltself (M): return
LooplfHalts (M, M):
Finally, we ask what happensif wetry:
Function Impossible:
return LooplfHaltsOnltself (LooplfHaltsOnltself):

This machine, when applied to itself, goes into an infinite loop if and only if it halts when
applied to itself. Thisisimpossible. Hence the theorem is proved.

86

A Turing machine can be "programmed,” in much the same manner as a computer is
programmed. When one specifies the function which we usually call 4 for a Tm, he is realy
writing a program for the Tm.

1. Storagein finite Control

The finite control can be used to hold a finite amount of information. To do so, the state is
written as a pair of elements, one exercising control and the other storing a symbol. It
should be emphasized that this arrangement is for conceptual purposes only. No
modification in the definition of the Turing machine has been made.

Example

Consider the Turing machine Solution

Wil this
prograrmm
halt?

87

T = (K, {Oa 1}3 {0: la B}s Sa [%a B]’ F)’

where K can be written as {g,¢1} X {0, 1, B}. That is, K consists of the
pairs [gq, 0}, [0, 11, (90, BY, [41, 0], [g1, 1], and [g, B, The set Fis {[gy, BJ}.
T looks at the first input symbol, records it in its finite control, and checks
that the symbol does not appear elsewhere on its input. The second com-
ponent of the state records the first input symbol, Note that T accepts a
regular set, but 7 will serve for demonstration purposes. We define 8 as
foltows.

L 3.) 8([‘?0! B]z 0) i ([qlz O]) 03 R)
b) 8((gc, B], 1) = ([g:, 1} L, R)
(T stores the symbol scanned in second component of the state and moves
right. The first component of T’s state becomes g,.)

2. 3) (g5, 0} 1) = ([9:. 0}, 1, R)

b) 8(g:, 11,0) = (g1, 11,0,)
(If T'has a 0 stored and sees a 1, or vice versa, then T continues to move

to the right.)

3. a) ((g;, 0], B) = ([¢g1, B],0,L)
b) 3([?;, 1]& B) = ([ql? B]: 03 L)
(T enters the final state [gy, B] if T reaches a blank symbol without
having first encountered a second copy of the leftmost symbol.)

If T reaches a blank in state [¢;, 0] or [g4, 1], it accepts. For state [¢;, 0]
and symbol 0 or for state [g;, 1] and symbol 1, & is not defined, so if T ever
sees the symbol stored, it halts without accepting.

In general, we can allow the finite control to have kX components, all but
one of which store information.

88

2. Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k.
This arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the
tape are considered as k-tuples. One component for each track.

Example

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input greater
than 2, written on the first track, and determinesiif it isaprime. The input is surrounded by ¢ and $
on thefirst track.

Thus, the allowable input symbolsare [¢, B, B], [0, B, B 1], [1, B, B], and [$, B, B]. These symbols
can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank
symbol can be represented by [B, B, B]

To test if itsinput is aprime, the Tm first writes the number two in binary on the second track and
copies the first track onto the third track. Then, the second track is subtracted, as many times as
possible, from the third track, effectively dividing the third track by the second and leaving the
remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is
nonzero, increase the number on the second track by one.

If now the second track equals the first, the number on the first track is a prime, because it cannot
be divided by any number between one and itself. If the second is less than the first, the whole
operation is repeated for the new number on the second track. In Fig., the Tm is testing to
determine if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37
appears on the third track.

3. Subroutines

VI1I. SUBROUTINES. It is possible for one Turing machine to be a “sub-
routine” of another Tm under rather general conditions. If 7; is to be a
subroutine of 75, we require that the states of T, be disjoint from the states
of T; (excluding the states of T,’s subroutine). To “call” T,, T, enters the
start state of 7;. The rules of 7; are part of the rules of 7,. In addition,
from a halting state of T}, T, enters a state of its own and proceeds.

TWO MARKS

1. What arethetwo major normal formsfor context — free grammar?
The two Normal forms are

Chomsky Normal Form
Greibach Normal Form

2. What isa useless symbol? Nov/Dec 2007
A symbol x isuseful if thereisa derivation.

S==>axb==>wforsomea,b,wl T
or elsg, it is useless.

3. What ise- Production rule?
Any production rule of the form A = eisknown as e - production.

89

4. Define Unit Production.
Any production rule of the form A = B isknown as unit production.

5. When do you say a symbol is useful?
We say a symbol is useful either if it derives a string of terminals or it can be used in the middle of a derivation
which yields aterminal or a string of terminals.

6. Define Chomsky’s Normal form.
A CFG whose production rules are of the form

A>BCorA=>a
where A, B, and C are variables and aisterminal.

7. Writethe procedureto eliminate e - productions.
For all productions A e, put A into V*
Repeat the following steps until no new variables are added.
a. For al productions
B>AIAA;. A,

where A; A,A;... A arein V?
b. PutBintoV*

8. Writethe procedureto eliminate the unit productions.
Find all variables B, for each A such that

A==>B

The new grammar G’ is obtained by letting into P’ all non — unit productions of P.
For all A and B satisfying A ==>, add to P’

ADyi|Y2l...|Yn
whereB 2 y1 | Y2 |. .. |Yn is the set of productions in P’

9. Eliminate the useless symbol from the following
S>AB|a A->Db

B is an useless symbol since it doesn’t derive a terminal. Eliminating it we get
S>a
A>Db

10. Define Greibach Normal form. Nov/Dec 2009
A CFG whose production rules are of the form A = a where a is a terminal and a is either empty or a string of
non — terminals.

11. State pumping lemma for Context freelanguage. April/May 2008
Let L beaCFL. Then there exists a constant n such that if zisany string in L such that |z| < n then we can write z
= uvwxy subject to the following conditions.

a |vwx|<n

b) vwx#ze o

c) forali>0uv'wx'yisinL.
d)

12. What isthe use of pumping lemma for CFG.
It is used to check whether a given language is context free language or not.

13. What operations that preserve CFL’s.
1. Substitution

2. Union

90

3. Concatenation
4. Closure (star)
5. Reversal

14. What isaformal language?

Language is a set of valid strings from some a phabet. The set may be empty finite or infinite. L(M) is
the language defined by machine M and L(G) is the language defined by Context free grammar. The two
notations for specifying formal languages are: Grammar or regular expression Generative approach)
Automaton(Recognition approach)

15. What is Backus-Naur Form(BNF)?
Computer scientists describes the programming languages by a notation called Backus- Naur Form. Thisis

a context free grammar notation with minor changes in format and some shorthand.

16. Let G=({S,C} {a,b},P,S) where P consistsof S->aCa, C->aCa |[b. FindL(G).
S>aCa=>aba

S->aCa=> a aCa a=>aabaa
S>aCa=> aaCaa=> aaaCaaa=>aaabaaa
ThusL(G)={ dba" wheren>=1}

17. Find L(G) where G= ({S} {0,1},{S>0S1,S>_},S)S>_,_isinL(G)
S-> 0S1 =>0_1=>01 S->0S1->0 0S11=>0011 Thus L(G)= { Onln | n>=0}

18. What isa parser?
A parser for grammar G is a program that takes as input a string w and produces as output either a parse

tree for w ,if wisasentence of G or an error message indicating that w is not a sentence of G.
19. What aretheclosure properties of CFL?
CFL are closed under union, concatenation and Kleene closure. CFL are closed under substitution ,

homomorphism. CFL are not closed under intersection , complementation. Closure properties of CFL’s are
used to prove that certain languages are not context free.

20. Statethe pumpinglemmafor CFLs.
Let L beany CFL. Then there isa constant n, depending only on L, such that if zisin L and |z| >=n,
then z=uvwxy such that :
(i) vx|>=1

(i1) vwx| <=n and

(iii) for all i>=0 wviwxiy isin L.

91

UNIT-V UNDECIDABILITY

A language that is not Recursively Enumerable (RE) — An undecidable problem that is RE -
Undecidable problems about Turing Machine — Post’s Correspondence Problem - The classes P
and NP.

5.1INTRODUCTION:

While there are many branches of knowledge, each having its own problems and
methods, "Undecidability’ is a subject dealing with the very nature of problemsitself. Given any
problem, does it have a solution? Is there any method to find the solution? These are the kind of
guestions which this subject tries to address. In what follows, we shall see the answers to these
guestions. But first, we need precise definitions of what is a problem, a solution, a method and a
few entertaining mathematical results. Design a Turing machine to add two given integers.

Solution:

Assume that m and n are positive integers. Let us represent the input as 0" B0".
If the separating B is removed and 0’s come together we have the required
output. 77 + # is unary.

(1) The separating B 1s replaced by a 0.
(i1) The rightmost 0 is erased i.e.. replaced by B.

Let us define M =({¢y.91-G>-95-94}-10}.{0.B}.8.q94.{g,})- O 1is
defined by Table shown below.

Tape Symbol

State 0 B
o (g,.0.R) (¢,.0.R)
1 (¢;.0.R) (¢,.8.L)
4> (g5.8.L) —_
3 (g¢5.0.L) (g4.-B.R)

M starts from ID ¢,0™ B0", moves right until seeking the blank B. M

changes state to ¢,. On reaching the right end. it reverts, replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state g,.
Some unsolvable Problems are as follows:

- Doesagiven Turing machine M halts on all input?

Does Turing machine M halt for any input?

Isthe language L(M) finite?

Does L(M) contain astring of length k, for some given k?

92

Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing
machine M and input string w, whether or not M accepts w. These problems for which no
algorithms exist are called “UNDECIDABLE” or “UNSOLVABLE”.

Our next goal is to devise a binary code for Turing machines so that each TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, M;.” To represent a TM M = (Q,{0,1},T',6,q1, B, F') as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are q;,¢2,--.,gr for some r. The start state
will always be ¢, and g2 will be the only accepting state. Note that, since
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

e We shall assume the tape symbols are X, Xa,..., X for some s. X,
always will be the symbol 0, X2 will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

e We shall refer to direction L as D, and direction R as Ds.

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that L(M) = Lq.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function 8. Suppose one transition rule
is 6(qi, X;) = (gr, Xy, D), for some integers ¢, j, ¥, I, and m. We shall code
this rule by the string 0:10710*10¢10™. Notice that, since all of %, j, k, I, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

Gl AT sy 110,

where each of the (s is the code for one transition of M.

93

5.1.1 Diagonalization language:

o The language Ly, the diagonalization language, is the set of strings w;
such that w; is not in L{M;).

That is, Ly consists of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason L, is called a “diagonalization™ language can be seen if we
consider Fig. 9.1. This table tells for all ¢ and j, whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”? We may
think of the ith row as the characteristic vector for the language L(M;); that
is, the 1’s in this row indicate the strings that are members of this language.

j —
1 2 3 4 °
10Nl 1 0
21NN 0
" 300 oNI\l
i40101

Diagonal

This table represents |anguage acceptable by Turing machine

The diagonal values tell whether M; accepts w;. To construct L4, we com-
plement the diagonal. For instance, if Fig. 9.1 were the correct table, then
the complemented diagonal would begin 1,0,0,0,.... Thus, Lg would contain
w, = €, not contain w through wy, which are 0, 1, and 00, and so on.

The trick of complementing the diagonal to construct the characteristic
vector of a language that cannot be the language that appears in any row,
is called diagonalization. It works because the complement of the diagonal is

94

Proof that L 4 isnot recursively enumerable:

Theorem 9.2: L, is not a recursively enumerable language. That is, there is
no Turing machine that accepts L.

PROOF: Suppose Lg were L(M) for some TM M. Since Ly, is a language over
alphabet {0, 1}, M would be in the list of Turing machines we have constructed,
since it includes all TM’s with input alphabet {0,1}. Thus, there is at least
one code for M, say i; that is, M = M,;.

Now, ask if w; is in L,.

o Ifw; isin Ly, then M; accepts w;. But then, by definition of Ly, w; is not
in Lg, because Lg contains only those w; such that M; does not accept
wy.

e Similarly, if w; is not in Ly, then M; does not accept w;, Thus, by defini-
tion of Ly, w; is in Ly.

Since w; can neither be in Ly nor fail to be in L4, we conclude that there is a
contradiction of our assumption that M exists. That is, L, is not a recursively
enumerable language. O

5.2 RECURSIVE LANGUAGES:

We call a language L recursive if L = L(M) for some Turing machine M such
that:

1. If wis in L, then M accepts (and therefore halts).

2. If w is not in L, then M eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language I as a “problem,” as will be the case frequently,
then problem L is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.

95

Theorem 9.3: If L is a recursive language, so is L.

PROOF: Let I, = L(M) for some TM M that always halts. We construct a TM
M such that T = L(M) by the construction suggested in Fig. 9.3. That is, M
behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no
transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from r.
3. For each combination of a nonaccepting state of M and a tape symbol of

M such that M has no transition (i.e., M halts without accepting), add
a transition to the accepting state r.

—* Accept Accept
w - M
e iy

Reject

Since M is guaranteed to halt, we know that M is also guaranteed to halt.

Moreover, M accepts exactly those strings that M does not accept. Thus M
accepts L. 0O

96

Theorem 9.4: If both a language I and (its complement are RE, then L is
recursive. Note that then bv Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let L = L(My) and L = L(M>).
Both M; and M, are simulated in parallel by a TM M. We can make M a
two-tape TM, and then convert it to a one-tape TM, to make the simulation
easy and obvious. One tape of M simulates the tape of M;, while the other tape
of M simulates the tape of M». The states of M; and M- are each components
of the state of M.

— Accept —™ Accept

—™ Accept ™ Reject

Figure 9.4: Simulation of two TM’s accepting a language and its complement

If input w to M is in L, then M, will eventually accept. If so, M accepts
and halts. If w is not in L, then it is in L, so M» will eventually accept. When
M, accepts, M halts without accepting. Thus, on all inputs, M halts, and

L(M) is exactly L. Since M always halts, and L(M) = L, we conclude that L
is recursive. 0O

5.21 UNIVERSAL LANGUAGE:

We define L,,, the universal language, to be the set of binary strings tl}at
encode, in the notation of Section 9.1.2, a pair (M, w), where M is a TNI with
the binary input alphabet, and w is a string in (04 1)*, such that w is in L{M).
That is, L, is the set of strings representing a TM and an input accepted _by
that TM. We shall show that there is a TM U, often called the universal Tu'r‘r.'i:g
machine, such that L, = L(U). Since the input to U is a binary string, U is
in fact some M; in the list of binary-input Turing machines we developed in

97

5.3UNDECIDABILITY OF UNIVERSAL LANGUAGE:

Theorem 9.6: L, is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 9.3, L,, the complement of L, would also be
recursive. However, if we have a TM M to accept L,, then we can construct a
TM to accept Ls (by a method explained below). Since we already know that
Lq is not RE, we have a contradiction of our assumption that L, is recursive.

Hypothetical == Accept —T— Accept

W | Copy [* w1llw -=| algorithm

Mfor L [o Reject —T Reject

M’ for Ld

Figure 9.6: Reduction of Ly to L,

Suppose L(M) = L,. As suggested by Fig. 9.6, we can modify TM M into
a TM M’ that accepts L, as follows.

1. Given string w on its input, M’ changes the input to wlllw. You may,
as an exercise, write a TM program to do this step on a single tape.
However, an easy argument that it can be done is to use a second tape to
copy w, and then convert the two-tape TM to a one-tape TM.

9. M’ simulates M on the new input. If w is w; in our exm_meration, then
M determines whether M; accepts w;. Since M accepts Ly, it will accept
if and only if M; does not accept w;; i.e., w; is in Lqg.

Thus, M' accepts w if and only if w is in Lq. Since we know M’ cannot exist
by Theorem 9.2, we conclude that L, is not recursive. U

5.4 Post's Correspondence Problem (Pcp)
A post correspondence system consists of afinite set of ordered pairs

(%20 i=12" " \where

A K EE gor some alphabet 5.

Any sequence of numbersiy, ip,....Ik S—t is caled a solution to a Post Correspondence
System. The Post's Correspondence Problem is the problem of determining whether a Post
Correspondence system has a solutions.

98

Example 1 : Consider the post correspondence system
{ (aa,a8), (bb,ba),(abb,b)}. Thelist 1,2,1,3 isasolution to it.

Because X1X2X1X3=Y1Y2Y1Y3

A post correspondence system is also denoted as an instance of the PCP) Example 2 : The
following PCP instance has no solution. This can be proved as follows. cannot be chosen at the
start, since than the LHS and RHS would differ in the first symbol (in LHS and in RHS). So, we
must start with. The next pair must be so that the 3 rd symbol in the RHS becomes identical to
that of the LHS, which isa. After this step, LHS and RHS are not matching. If is selected next,
then would be mismatched in the 7 th symbol (in LHS and in RHS). If is selected, instead, there
will not be any choice to match the both side in the next step.

Example3: Thelist 1,3,2,3 isasolution to the following PCP instance.

The following properties can easily be proved.
Proposition The Post Correspondence System has solutionsif and only if
Corollary : PCP over one-letter aphabet is decidable.

Proposition Any PCP instance over an aphabet with is equivalent to a PCP instance over an
alphabet with

Proof : Consider We can now encode every as any PCP instance over will now have only two
symbols, 0 and 1 and, hence, is equivalent to a PCP instance over

Theorem : PCP isundecidable. That is, there is no algorithm that determines whether an arbitrary
Post Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability
of PCP. Since halting problem of TM is undecidable (already proved), This reduction shows that
PCP is also undecidable. The proof islittle bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free
languages are undecidable. To prove this we reduce the PCP to each of these problem. The
following discussion makes it clear how PCP can be used to serve this purpose. Let be a Post
Correspondence System over the alphabet. We construct two CFG's G, and Gy from the ordered
pairs X,y respectively as follows. It is clear that the grammar generates the strings that can appear
in the LHS of a sequence while solving the PCP followed by a sequence of numbers. The
sequence of number at the end records the sequence of strings from the PCP instance (in reverse
order) that generates the string. Similarly, generates the strings that can be obtained from the
RHS of a sequence and the corresponding sequence of numbers (in reverse order). Now, if the
Post Correspondence System has a solution, then there must be a sequence. Conversely, let
Hence, w must be in the form w;w, where and w, in a sequence (since, only that kind of strings
can be generated by each of and).Now, the string is a solution to the Post Correspondence

99

System. It isinteresting to note that we have here reduced PCP to the language of pairs of CFG,s
whose intersection is nonempty. The following result is adirect conclusion of the above.

Theorem : Given any two CFG's G; and G, the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an agorithm A to decide this question. This
would imply that PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars and by using the constructions
elaborated aready. We can now use the algorithm A to decide whether and Thus, PCP is
decidable, a contradiction. So, such an algorithm does not exist.

If and are CFG's constructed from any arbitrary Post Correspondence System, than it is not
difficult to

show that and are also context-free, even though the class of context-free languages are not
closed under complementation.

and their complements can be used in various ways to show that many other questions related to
CFL's are undecidable. We prove here some of those.

5.5 Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complesity T'(n) [or to have “running
time T'(n)"] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T'(n), such as T'(n) = 500> or T(n) = 3" + 5n%: we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L{M) for some deterministic TM M of time complexity T(n).

5.5.1 Non deter ministic polynomial time:

A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for
some polynomial p is said to be non polynomia time NTM. NP is the set of languags that are
accepted by polynomial time NTM’s. Many problems are in NP but appear not to be in p. One
of the great mathematical questions of our age: isthere anything in NP that is not in p?

5.5.2 NP-complete problems:

If We cannot resolve the “p=np question, we can at least demonstrate that certain
problems in NP are the hardest , in the sense that if any one of them were in P, then P=NP.
These are called NP-complete. Intellectual leverage: Each NP-complete problem’s apparent
difficulty reinforces the belief that they are al hard.

5.5.3 Methodsfor proving NP-Complete problems:

Polynomial time reduction (PTR): Take time that is some polynomial in the input size to
convert instances of one problem to instances of another. If P1 PTR to P2 and P2 isin P1 the so
is P1. Start by showing every problem in NP has a PTR to Satisfiability of Boolean
formula.Then, more problems can be proven NP complete by showing that SAT PTRs to them
directly or indirectly.

100

TWO MARKS QUESTIONS AND ANSWERS
1. What istheweak-form of Turing thesis?

A Turing Machine can pute anything that can be puted by a general purpose
digital puter.

2. What isthe strong-form of Turing thesis?

A Turing Machine can pute anything that can be puted. Thisisthe strong form of
Turing thesis.

3. When alanguageis said to berecursively enumerable?

A language is recursively enumerable if there exists a Turing Machine that
accepts every string of the language and does not accept strings that are not in the
language.

4. When alanguageis said to be recursive?

A language L is said to be recursive if there exists a Turing machine M that
accepts L, and goesto halt state or else M rejects L. The language L 4. Which consists of
all those strings w such that the Turing machine represented by w does not accept the
input w.

La={ wi|w I L(M)}

6. Define decidability (or) decidable problems?
A problem is said to be decidable if there exists a Turing machine which gives
one ‘yes’ or ‘no’ answer for every input in the language.
(or)

A problem is said to be decidable if it isarecursive language.

7. Define Undecidable.problem?
If aproblem isnot arecursive language, then it is called undecidable problem.

8. Define Universal language?

A Universal Turing Machine Mu is an automation, that given as input the
description of any Turing Machine M and a string w, can simul ate the putation of
M onw.

9. What arethereasonsfor a TM not accepting itsinput?
)] The TM may halt in anon final state.
i) The TM may enter into an indefinite loop.

10. Definetrivial property?
A property istrivia if it is either empty of isall RE languages.

11. Definerice Theorem?
Every non-trivial property of the RE languages is undecidable.

12. Define post’s correspondence problem?

An instance of PCP
consists of two

“StS, A =wy,

Wo, W3,

. Wk

B=Xy, X2, X3, .0 vveiins X of strings over some .

Thisinstance of PCP has a solution if there Is any sequence of
101

iNtegersiy, iz, «oveevvennnn. im With m>1.

Such that
Wi, Wi2, Wi3 toiiii i it iin i snnnanns Wim=Xi1, Xi2, X
[Byeenrrnrnnnnns Xim
Thesequence of i 1,6 2,.vvvvvvieiinnnnn, I misasolution to thisinstance of PCP.

13. Let A and B belistsof three strings each, as defined in the following table?

A B
w X

1] 1 111

2 10111 10

3 10 0

Find the instance of post correspondence Problem.
Solution :
APPLY Wiz, Wi2, Wig weeere e e veiieienieninn W oim = X i1y X i2y X i3yeernennenennn X im

to this problem.

TakeM =4
w2wlwlwi3=x2x1x1xi3
10111111
0 =101111110

Instance = 2,1,1,3.
14. Define modified . post’s corr&epondence problem?
Given lists A and B, of K strings each from 3 *, say

A=w, wWw,...... L wB=x11,x2,2x3, .3.........xkk)
'Does there exist asequence of integersi 1,0 2,.vvvvveiennnnn i r such that
Wil,W|2,W|3 W|m—X|l,X|2,X|3,
Thesequence of i 1,i 2,.vvvvvvvvinnnnnn, I misasolution to thisinstance of PCP.

15. Define problem solvablein polynomial Time?

A Turing Machine M is said to be of time plexity T(n) if whenever m given an
input w of length n, m halts after making atmost T(n) moves, regardless of whether or
not m accepts.

16. Define the classes P and NP?

P consists of al those languages or problems accepted by some Turing
Machine that runs in some polynomial amount of time, as a function of its input
length.

NP is the class of languages or problems that are accepted by Nondeterministic
TM’s with a polynomial bound on the time taken along any sequence of non -
deterministic choices.

102

17. Define NP - plete Problem?
A language L is NP - plete if the following statements are true.
a LisinNP
b. For every language L' in NP there is a polynomial
time reduction of L* to L

18. What aretractable problems?

The problems which are solvable by polynomial time
algorithms are called tractable problems.

19. What arethe properties of recursive enumer able sets Which are undecidable?
)] Emptiness
i) Finiteness
iii) Regularity
iv) Context — freedom

20. What arethe properties of recursive and Recursively Enumer able L anguage?
1. The plement of a Recursive language is Recursive.
2. The union of two recursive languages are recursive.
The union of two RE languages
are RE.
3. If alanguage L and plement L are both RE, then L isrecursive. .

103

— KARPAGAM UNIVERSITY
5ﬁ RPAG ,IA M (Under Section 3 of UGC Act 1956)
| COIMBATORE-641 021

THEORY OF COMPUTATION
111-CSE A&B
UNIT IV &V
IMPORTANT TWO MARKS

1. Define Deterministic push down automata

APDAP=(Q,Z%5,T,q0, Z0, F) to be deterministic iff
¢ §(g,a,X) has at most one member for any qin Q,ain X ora=g¢ and X in |--
e if 5 (q,a,X) is not empty, for some a in X, then 6(q,&,X) must be empty.

2. What is a multi-tape Turing machine?

A multi-tape Turing machine consists of a finite control with k-tape heads
and k-tapes; each tape is infinite in both directions. On a single move depending on
the state of finite control and symbol scanned by each of tape heads ,the machine can
change state print a new symbol on each cells scanned by tape head, move each of
its tape head independently one cell to the left or right or remain stationary.

3. Isit true that NDPA is more powerful than that od DPDA? Justify your answer.
No, NPDA is not powerful than DPDA. Because NPDA may produce ambiguous
grammar by reaching its final state or by emptying its stack. But DPDA produces only
unambiguous grammar.

4. What are the two major normal forms for context-free grammar?
The two Normal forms are
e Chomsky Normal Form (CNF)
e Greibach Normal Form (GNF)

5. What are the various representation of TM?
The TM can be represented using:
e Instantaneous description.
e Transition table.
e Transition diagram.

6. How do you simplify the context-free grammar?
e First eliminate useless symbols, where the variable or terminals that do not
appear in any derivation of a terminal string from the start symbol.
e Next eliminate a - production which is of the form A— & for some variable A.

¢ Eliminate unit productions, which are of the form A — B for variables A, B.
o Finally use any of the normal forms to get the simplified CFG.

7. What are the required fields of an instantaneous description or configuration of a
T™.
The required fields of an instantaneous description or configuration of a TM are:
e The state of the TM
e The contents of the tape.
e The position of the tape head on the tape.

8. When a language is said to be recursive?
A language L is said to be recursive if there exists a Turing machine M that accepts L,
and goes to halt state or else M rejects L.

9. Define Class NP Complete problem.
A language L is NP — complete if the following statements are true.
e Lisin NP
o For every language L1 in NP there is a polynomial time reduction of L1 to L

10. What are the properties of recursive and Recursively Enumerable Language?
e The complement of a Recursive language is Recursive.
¢ The union of two recursive languages is recursive.
¢ The union of two RE languages is RE.
¢ [falanguage L and complement L are both RE, then L is recursive.

11. State the pumping lemma for CFL
Let L be any CFL. Then there is a constant n, depending only on L, such that if z
is in L and |z| >=n, then z=uvwxy such that :
(i) lvx| >=1
(i) vwx| <=nand
(iii) for all i>=0 uv'wx'y is in L.

12. Differentiate PDA and TM.

PDA ™
1. PDA uses a stack for storage. | 1. TM uses a tape that is infinite.

2.The language accepted by PDA | 2. Tm recognizes recursively
is CFL. enumerable languages.

13. What are UTMs or Universal Turing machines?

Universal TMs are TMs that can be programmed to solve any problem, that can be
solved by any Turing machine. A specific Universal Turing machine U is: Input to U: The

encoding “M “ of a Tm M and encoding “w” of a string w. Behavior : U halts on input “M”
“w” if and only if M halts on input w.

14. Define Nullable Variable?
Nullable variable in a CFG G =(V,T,P,S) can be defined as follows.
e Any variable A for which P contains the production A-> [A, is nullable.
e |f P contains the production A>[1 B1,B2, Bn and B1, B2,Bn are nullable
variables, then A is nullable.
e No other variables in V are nullable.

15. Let G=(V,T,P,S) with the productions given by
S >0 aSbS/ ¢
B->abB
Eliminate the useless production.
Solution:
Remove B is useless production because of Variable is not reachable. S> aSbS /¢

16. Write the procedure to eliminate the unit productions.
i) Find all variables B, for each A such that A>* B
ii) The new grammar G is obtained by letting into P all non-unit productions of P.
iii) For all A and B satisfying A>* B, add to p
Ayily2lys/......... /yn, where B 2>y1/y2/ys/......... / ynis the set of
productions in P.
17. Define CNF.

A CFG without any e—production is generated by a grammar in which the
productions are of the form. A >BC or A>[1a, where ABX VandaXT.

18. Define Turing Machine.
The Turing Machine is denoted by M = (Q, %, 8, T, qo, B, F) Where
Q — Finite set of states
¥ - Finite set of input symbols
I' - Finite set of stack symbols
0 - Transition function - Q x |-- >Q x |-- x {L,R}, Where L,R — Directions.
Qo— Start State
B — A Start symbol of the |--, a blank
F — Final State.

19. When a language is said to be recursively enumerable?
A language is recursively enumerable if there exists a Turing Machine that accepts
every string of the language and does not accept strings that are not in the language

20. Define post’s correspondence problem?
An instance of PCP consists of two lists,
A=W, W2, W3, Wk
B=x1, X2, X3 Xk of strings over some X.

This instance of PCP has a solution if there is any sequence of integers i1, iz, im
with m>1. Such that wit, Wiz, Wiscoevviiniiiiiinana... Wim=Xil, X i2, X i3eeeeeuunnnn.. X im.
The sequence of i 1,i 2,................. i mis a solution to this instance of PCP.

21. Define the classes P and NP?
e P consists of all those languages or problems accepted by some Turing Machine
that runs in some polynomial amount of time, as a function of its input length.
e NP is the class of languages or problems that are accepted by Nondeterministic
TM’s with a polynomial bound on the time taken along any sequence of non —
deterministic choices.

22. What is GNF?
Every CFL L without € can be generated by a grammar for which every production is of
the form A— aa, where AXV, aXT, is a string of variables.

23. What are the properties of recursive enumerable sets which are undecidable?
e Emptiness
¢ Finiteness
e Regularity
e Context — freedom

24. Compare NPDA and DPDA.

NPDA DPDA

1. NPDA is the standard PDA
used in automata theory.

1. The standard PDA in
practical situation is DPDA.

2. Every PDA is NPDA unless
otherwise specified.

2. The PDA is deterministic in
the sense ,that at most one
move is possible from any ID.

Fourteen marks:

1. i) Convert the following CFG to CNF

S->ASAJaB
A->BJS

B->b| ¢

ii) Explain about Greibach Normal Form. 4)

2. Show that halting problem of Turing machine is undecidable. (14)
3. Explain the theorem of CFL to prove that CFL are closed under union,intersection and

kleen closure. Prove that CFL’s are closed under homomorphism (14)

4. i) Show that the intersection of two recursive languages is also recursive @)
ii) Show that the union of two recursively enumerable language is also recursively

enumerable @)

5. Find the CNF for the following grammar

S — AS/as
A —aab/E
S — bba (14)
6. i) Prove that if L is a CFL and R is a regular set, then LR is a CFL. (10)
ii) Prove that CFL are closed under substitution (4)

7. Find whether the following languages are recursive or recursively enumerable.
i) Union of two recursive languages
ii) Union of two recursively enumerable languages.
i) If L and complement of L are recursively enumerable.
iv) L, (14)

8. i) Explain multiple track Turing machine with an example. (7)

ii) Construct the Turing machine to compute the concatenation function (7)

9. Define Universal language Lu. Show that Lu is recursively enumerable but

not recursive. (14)

10) Explain about Greibach Normal Form. (4)

Chapter

Automata Theory

Instructions

A. The following abbreviations are used in this chapter.

FEM = Finite State Machine

DFSM - Deterministic Finite State Machine
HDFSM - Non-Deterministic Finite State Machine
PDOM = Push Down Machine

DPDM - Deterministic Push Down Machine
NDFDM - Non-Deterministic Push Down Machine
™ = Turing Machine

UTH - Universal Turing Machine

CFG = Context Free Grammar

CF = 'Context Free

CEL - context Fres Language

CS5G - Context Sansitive Grammar

B. In Transition diagrams, states are represented by circles.
The start state is represented by a circle pointed to by an arrow.
A final state is represented by a circle encircled by another.

C. In a CFG, unless stated otherwise, grammar symbol on the left hand side of the first
production, is the start symbuol.

1. The word ‘formal’ in formal languages means
{(a) the symbols used have well-defined meaning
(b) they are unnecessary, in reality
(c) only the form of the string of symbols is significant
(d) none of the above

Autowmata Theory 147

2. Let A = {0, 1}. The number of possible strings of length *a" that can be formed by the
elements of the set A is

(a) m! ib) n* {c) m" idy 2"

1. Choose the correct statements.

(a) Moore and Mealy machines are FSM's with output capability.
(b) Any given Moore machine has an equivalent Mealy machine.
{c) Any given Mealy machine has an equivalent Moore machine.
(d) Moore machine is not an FSM.

4. The major difference between a Moore and a Mealy machine is that
{a) the output of the former depends on the present state and the current input
{b) the output of the former depends only on the present state
(c} the output of the former depends only on the current input
(d) none of the above

5. Choose the correct statements.

(a) A Mealy machine generates no language as such.
(b} A Moore machine generates no language as such.
ic) A Mealy machine has no terminal state.

{d) For a given input string, length of the output string generated by a Moore machine is one
more than the length of the output string generated by that of a Mealy machine.

*6. The recognizing capability of NDFSM and DFSM

(a) may be different {(b) must be different
{c) must be the same (d) none of the above
7. F5M can recognize
{a) any gramimar (b} only CFG
{¢) any unambigoous grammar (d) only regular grammar

8. Pumping lemma is generally used for proving

{a) a given grammar is regular
(b) a given grammar is not regular
{c) whether two given regular expressions are equivalent
(d) mone of the above

*9. Which of the following are not regular?
(a) String of 0°"s whose length is a perfect square.
ih) Set of all palindromes made up of 0's and 1"s.
{c) Sirings of 0's, whose length 15 a prime number.
{(d) String of odd number of zeroes.

*10. Which of the following pairs of regular expressions are sguivalent?
{a) 1i01)* and (10)*1 (b) x{xx)* and (xx}*x
(c) tab)* and a*h+* (dy »° and x*w:’

148

MC(s in Computer Science

11. Choose the correct statements,

*11.

{a) 2={a"k" | n=0,1,2,3,...} isaregular langnage.

(b) The set B, consisting of all strings made up of only a’s and b's having equal number of
a's and b's defines a regular language.

(¢} L{A*B*)n B gives the set A,

(d) None of the above

Fick the correct stalements.

The logic of Pomping lemma 15 a good example of

{a) the Pigeon-hole principle ib) the divide and conquer technigue

(C) recursion (d) iteration

*13. The basic limitation of an FSM 15 that

14.

15.

16.

*17.

18.

{a) it can't remember arbitrary large amount of information

(b} it sometimes recognizes grammars that are not regular

(c) it sometimes fails to recognize grammars that are regular

(d) all of the above

Palindromes can't be recognized by any FSM because

(a) an FSM can’t remember arbitrarily large amount of information
(b) an FSM can’t deterministically fix the mid-point

{c) even if the mid-point is known, an FSM can’t find whether the second half of the string
matches the first half

(d) none of the above

An FS5M can be considered a TM
(a) of finite tape length, rewinding capability and unidirectional tape movement

(b} of finite tape length, without rewinding capability and unidirectional tape movement
(c) of finite tape length, without rewinding capability and bidirectional tape movement
(d) of finite tape length, rewinding capability and bidirectional tape movement

TM is more powerful than FSM because

{a) the tape movement is confined to one direction
(b) it has no finite stale control

{c) it has the capability to remember arbitrary long
sequences of imput symbols.

(dy mone of the above

The FSM pictured in Fig. 6.1 recognizes Fig. 6.1
(a) all strings ib) no sring
(c) € = alone id) none of the above i
The FSM pictured in Fig. 6.2 is a _ 10, o1
{a) Mealy machine -
(b)Y Moore machine) .
(c) Kleene machine
Fig. 6.2

(dy none of the above

19. The above machine

Automata Theory 149

{a) complements a given bit pattern {b) generates all strings of 0's and 15
{¢) adds 1 w a given bit pattern {d) none of the above
20. The language of all words (made up of a's and b’s) with at least two a's can be described by

the regular expression

(a) {a+b)*ala+b)*ala+b)* (b) {a+b)*ab*ala+b}*

(c) brab*ala+b) * {d) ala+bl*ala+b) *(a+b)*
21. Which of the following pairs of regular expression are not equivalent?

(a) (abl*a and aibal* (b) {a+b)* and (a*+b)*

c) (a*+b)* and (a+b}™ (d) none of the above

*22. Consider the two FSM’s in Fig. 6.3.

Pick the correct statement.
(a) Both are equivalent and O
{b) The second FSM accepts only

ic) The first FSM accepts nothing
{d) None of the above

23. Set of regular languages over a given alphabet
set, 15 not closed under

{a) union (b} complementation

(c) intersection " (d) none of the above
*24. The machine pictured in Fig. 6.4.

{a) complements a given bit pattern

(b} finds 2's complement of a given bit pattern

{c) increments a given bit pattern by 1

(d) changes the sign bit

Fig. 6.3
0/, 170
)|
1|
110
1M
Fig. 6.4

25. For which of the following applications regular expressions can’t be used?
(a) Designing compilers (b) Developing text editors
(c) Simulating sequential circuits {d) Designing computers

*26. The FSM pictured in Fig. 6.5 recognizes
(a) any string of odd number of a’s

{b) any string of odd number of a’s and even
number of b's

(c) any siring of even number of a’s and even
number of b's

(d) any string of even number of a’s and odd
number of b's

27, Any given Transition graph has an equivalent
{a) regular expression (b) DFSM
ic) NDFSM {d) none of the above

150

28.

*29.

*30.

M.

*32.

*M.

MC(s in Computer Science

The following CFG
S = af | b5 1 a1 b
is equivalent to the regular expression

(a) {(a*sh)* by {fa+k)" (c) la+bia+b}* (d)y {a+bi*{a+b)
Any string of terminals that can be generated by the following CFG
5 = XY
X = a¥ | bX a
Y = Ya | ¥Yb I a
{a) has at least one b {h) should end in an "a’
ic) has no consecutive a's or b's {d) has at least two a's
The following CFG

S = aB | DbA
& =2 b | &8 bARA
E —+ b | bS5 | aBB
generates strings of terminals that have
{a) equal number of a’s and b's
(h) odd number of a's and odd number b's
{c) even number of a's and even number of b's
(d) odd number a’s and even number of a’s
Let L{G) denote the language generated by the grammar G. To prove set A = L ((7),
{a) it is enough o prove that an arbitrary member of A can be generated by grammar {r
{b} it is enough to prove that an arbitrary string generated by &, belongs to set A
{c) both the above comments (a) and (b} are to be proved
{d) either of the above comments (a} or (b} is to be proved

The set {a"8" | n = 1,2,3...} can be generated by the CFG
{a) 5 — ab | asb by 3 = aaSbbk | ab
¢}y 2 = ab | asbh | E d) 5 = aasSbbh | ab | aabhb

Choose the correct statements.

ia) All languages can be generated by CFG.

{(b) Any regular language has an equivalent CFG.

ic) Some non-regular languages can’t be generated by any CFG.
(d) Some regular languages can't be generated by any CFG.

Which of the following CFG's can’t be simulated by an FSM?
a) & =» S5a | a (b} 5 — abX
X = ¥

¥ = 4 1 aX
() & —= asbhl ab (d}y Mone of the above

is.

36,

37,

41.

42,

Automata Theory 151

CFG is not closed under
{a) union {b) Kleene star (¢} complementation {d) product
Theset A = {a"F"a" | n=1,2,3,...} is an ¢xample of a grammar that is
{a) regular (b) context free
{c) not context free {d) none of the above
Let £1 = {&abh"a™ ' m, n = 1,2,3,...}
2 = (&b 1 m, n = 1,2,3, I-
E3 = {ak"a" | n = 1,2,3,...}
Choose the correct statements,
fa) L3 = L1 m L2

(b} L1 and LZ are CFL but L2 is not a CFL

{¢) Ll and LZ are not CFL but L3 is a CFL

{d) L1 is a subset of L3

L = {a"b"a" | nel,2,3,...}is an example of a language that is
(a) context free

(b) not context free

{c) not context free but whose complement is CF

(d) context free but whose complement is not CF

The intersection of a CFL and a regular language

ia) need not be regular (b) need not be context free

ic) is always regular {d) is always CF

A PDM behaves like an FSM when the number of auxiliary memory it has is

(a) O (hy 1 (cy 2 (d) none of the above
A PDM behaves like a TM when the number of auxiliary memory it has 1

(a) O (b} 1 or more {¢) 2 or more (d) none of the above
Choose the correct statements.

(a) The power of DFSM and NDFSM are the same.

ib} The power of DFSM and NDFSM are different.

{c} The power of DPDM and NDPDM are different.

{d) The power of DPDM and NDPDM are the same.

Which of the following is accepted by an NDPDM, but not by a DPDM?

(a) All strings in which a given symbol 15 present at least twice.

ib) Even palindromes (i.e. palindromes made up of even number of terminals).
(c) Strings ending with a particular terminal.

{d} None of the above

CS5G can be recognized by a

(a) FSM (by DPDM

ic) NDPDM (d} linearly bounded memory machine

152

45.

46.

47.

51.

Ly 8

MCQys in Computer Science

Choose the correct statements,

(a) An FSM with 1 stack 15 more powerful than an FSM with no stack.

(b} An F5M with 2 stacks is more powerful than a FSM with 1 stack.

(c) An FSM with 3 stacks is more powerful than an FSM with 2 stacks.

(dy All of these.

Choose the correct statements.,

(a) An FSM with 2 stacks 1% as powerful as a TM™.

ib) DFSM and NDFSM have the same power.

{cy A DF5M with | stack and an NDFSM with 1 stack have the same power.
(d) A DFSM with 2 stacks and an NDFSM with 2 stacks have the same power.
Bounded minimalization is a technigue for

(@) proving whether a primitive recursive function is Tumning computable

(b) proving whether a primitive recursive function is a total function

{c) gemerafing primitive recursive functions

id) generating partial recursive functions

Which of the following is not primitive recursive but computable?

{a) Camot function (b} Riemann function
(¢) Bounded function (d} Ackermann function
Which of the following is not primitive recursive but partially recursive?
(a) Carnot function (b} Rieman function

(¢} Bounded function (d) Ackermann function
Choose the correct statements.

(a} A total recursive function is also a partial recursive function.
(b} A partial recursive function is also a total recursive function.
(c} A partial recarsive function 15 also a primative recursive function.
{d) A primitive recursive function is also a partial recursive function.

A language L for which there exisis a TM., T, that accepis every word in L and either rejects
or loops for every word that is not in L, is said to be

(a} recursive (b} recursively enumerable

{c) NP-HARD (d} none of the above

Choose the correct statements.,

(a) L = [a™"a"™ | n=1,2,3,...} is recursively enumerable.

(b} Recursive languages are closed under union,

(c) Every recursive language is recursively enumerable.

{d} Recursive languages are closed under intersection.

Choose the correct statements.

(a) Set of recursively enumerable langoages is closed under union.

{b) If a language and its complement are both regular, then the language must be recursive.

Automara Theory 153

ic) Recorsive languages are closed under complementation.
(d} Mone of the above,

Pick the correct answers.

Universal TM influenced the concept of

(a) stored-program computers

(b) interpretive implementation of programming languages
ic) computability

{d} none of the above

558, The number of internal states of a UTM should be at least

(a) 1 (b} 2 (c) 3 d) 4

56. The number of symbols necessary 1o simulate a TM with m symbols and n states is

58.

59,

6l.

*62.

63,

(a} m+ 8 (b) Bmn + 4m (c} mn (d) demn + m
Any TM with m symbols and n states can be simulated by another TM with just 2 symbaols
and less than

{a) Bmn states (b) 4mn + B siates () B + 4 states (d) mn states
The statement — "4 TM can't solve halting problem” is

(a) true (b} false

(c) sll an open guestion (d) none of the above

If there exists a TM which when applied to any problem in the class, terminates if the correct
answer 15 ves, and, may or may not terminate otherwise is said to be

(a) stable (b} unsolvable {c} partially solvable {d} unstable

The number of states of the FSM, required to simulate the behaviour of a computer, with a
memory capable of storing ‘m’ words. each of length “n” bits is

(ay m= 2" (hy 2™ {cy 2" (d) none of the above
The vermnacular language English, if considered a formal language. is a

{a} regular language (b} context free language

{¢) context sensitive language (d) none of the above

Let P, Q. and R be three languages. If P and R are regular and if PQ = R. then

{a) Q) has to be regular (b) Q cannot be regular

ic) Q) need not be regular (dy Q has to be a CFL

Consider the grammar
3 = PQ | 30 i PS
P = x
Q = ¥
To get a siring of A terminals, the number of productions to be used is
ia) n° by m= 1 {c) 2n (dy 2n-1

154

*56.

*6H7.

*6H.

*H9.

MCQs in Computer Science

Choose the correct statements.
A class of languages that is closed under
(a) wmon and complementation has o be closed under intersection
(b} intersection and complementation has to be closed under union
{c) umion and intersection has to be closed under complementation
(d) all of the above
The following grammar is
S = acb | boic | abF
s =2 as |l b
& — obb ab
b = bdb | b
{a) context free (b) regular (¢) context sensitive (d) LR (k)
Which of the following definitions generates the same language as L, where
L = {¥xy', n=z1} ?
I.E = xEv | =y
I xy | x"xyy”

ML =77
ia) I only ib) T and 11 {c) I and ITE id) IT only
A finite state machine with the following state table has a single input x and a single output z.
Frezenr state Nexr srare. 2
xm] . x o=
A o B.0O
B R.1 |
C B, O o, |
rx B. 1 C, 0

If the initial state is unknown, then the shortest input sequence to reach the final state C is

(a) 07 (by 10 {c} 101 {dy 110

Leta = {(0,1}andL = A* LetR = (071", nsi}. The languages L UR and R are
respectively

(a) regular, regular ib) not regular, regular

{c) regular. not regular (¢} not regular, not reguloar

Which of the following conversion is not possible algorithmically?

(a) Regular grammar to context free grammar

{b) MNon-deterministic FSA to deterministic FSA

{¢) Non-deterministic PDA to deterministic PDA

(d) MNon-deterministic Turing machine to deterministic Turing machine

*T70.

*T1.

11.
16.
21.
26.
1.
36.
41.
46,
3l
56.
6l.

71.

10.

i2.

13

Awtomata Theory 155

An FSM can be used to add two given integers. This remark is
{a) true (b} false {c) may be true {d) none of the above

A CFG is said to be in Chomsky Normal Form (TCNF), if all the productions are of the form
A — BC or A — a. LetG bea CFG in CNF. To derive a string of terminals of length
x, the number of productions to be used is

{a) 2x — | (b) 2x fc) 2x+ 1 (d) 2*
Answers

c 2.d 3. ahbhc 4. b 5 a, b, e d
¢ 7. d 8. b 9 a b, c 10, a, b, d
c 12. a 13. & 14. a, b, ¢ 15. b
c 17. ¢ 18. a 19, a 20, a, b, c
d 22.d 23 d 24, ¢ 25 a,d
C 27, a, b, ¢ 28, b, e d 29 d M. a
c 32. a, d 33 b, c M ¢ 35. ¢
c 37. a. b K. b, ¢ 39, ¢, d 40. a
C 42, a. c 43 b 44, d 45. a, b
a, b, d 47. ¢ 48, d 49, d 50, a,d
b 52, a,b, ¢, d 33 a, b c 54, a4, b, c 55. b
d 57. a 58, a 59, ¢ 60. b
b 62, ¢ 63, d 6d, a, b 65, ¢
a 67. b 68, ¢ 69, ¢ 0. b
a

Explanations

DFSM 15 a special case of NDFSM. Corresponding to any given NDFSM, one can construct
an eguivalent DFSM. Corresponding to any given DFSM, one can construct an equivalent
NDFSM. So they are equally powerful.

Strings of odd number of zerpes can be generated by the regular expression {00)*0.
Pumping lemma can be used to prove the non-regulanty of the other options,

Two regular expressions R1 and R2 are equivalent if any string that can be generated by R1
can be generated by R2Z and vice-versa. In option (¢}, {abl* will generate abab, which is
not of the form a™b" (because a’s and b’s should come together). All other opiions are
correct (check 1t out!).

Pigeon-hole principle is that if *a" balls are to be put in “m” boxes, then at least one box will
have more than one ball if n=m. Though this is obvious, still powerful.

That's why it can't recognize strings of equal number of a’s and b's, well-formedness of
nested parenthesis etc.

156

17.

221,

29.

32

34,

2.

.

MCQs in Computer Science

Here the final state and the start state are one and the same. No transition is there. But
by definition, there is an (implicit) e-transition from any state to itself. So, the only string that
could be sccepted is g,
Refer Qn. 17. In the second diagram, the final state is unreachable from the starc state. So
not even £ could be accepted.
Let 011011 be the input 1o the FSM and let it be fed from the right (i.e.. least significant
digit first). f we add 1 to 021011 we should get 011100, But did we obtain it? Whenever
we add 1 to an 1, we make it O and carry 1 1o the next stage (state) and repeat the process, If
we add 1 to a O, then first make it 1 and all the more significant digits will remain the same,
e, al will be O and an 1 will be 1. That’s what the given machine does. Hence the answer
1= {c).
Here the initial and the final states are one and the same. If vou carcfully examine the
transition diagram, to move right you have to consume a "», to move left a 'b°, to go up an
‘a’ and o go down an “a’. Whenever we move right, we have to move left at some stage or
the other, to get back to the initial-cum-final state. This implies, a “b" essentially has an
associated another "5, Same is the case with “a” (since any up (down) has a corresponding
down (up)). So, even number of a's and #'s have to be present.
2 is the start stale. X—a, Y—a arc the only productions that could terminate a string
derivable from X and ¥ respectively. So at least two a's have to come anyway. Hence the
answer is (d).
Wehave 35 — aB —» aaBBE — aabB — aabb.
S0 (h) is wrong. We have

S — agE = ab
So (c) is wrong.
A careful observation of the productions will reveal a similarity. Change & to B, B to &, & to
b and b 1o a. The new set of productions will be the same as the original set. So (d) is false
and (a) is the correct answer,
Option (b) is wrong becanse it can't generate aabb (in fact any even power). Option (c) is
wrong since it generates € also, Both (a) and (d) are correct.
Option (¢} generates the set {a"kE", n=1,2,3,...} which is not regular. Options (a)
and (b) being left linear and right linear respectively. should have equivalent regular expres-
sions.
Totally there are mn bits. Each bit will be in one of the two possible states — 1 or 0. 50 the
entire memory made up of mn bits will be in one of the possible 2™ states,
Forexample, P = a*; @ = a"h"bh*; R = PQ = a*b*
The first two options can be proved to be correct using De Morgan's laws, Oplion (c) can be
disproved by the following counter-example. Let the universal set U be {a, b, ¢, d.}. Let A =
{{a}, {d}. {a. d}. {b, d}. {a. b, d}. {}}. A is closed under union and intersection bul 15 not
closed under complementation. For example complement of {a, d} is {b, c}, which is not a
member of A.
11 generates strings like xxyyy, which are not supposed to be. Il generates strings like xyy,
which are not supposed to be. [can be verified to generate all the strings in L and only those.

67.
68.

oY,

70.

71.

Antomata Theory 157

Draw the transition diagram and venify that the string 10 from A, leads to C.

L is the set of all possible strings made up of 0's and 1's (including the null string). So, LUR
15 L. which can be generated by the regular expression(a+b)*, and hence a regular lan-
guage. F is not a regular expression. This can be proved by using Pumping Lemma or simply
by the fact that finite state automata, that recognizes regular expressions, has no memory to
record the number of 07s or I's it has scanned. Withowt this information 071" cannot be

recognized.

In general, a language (or equivalently the machine that recognizes it} cannot be converted to
another language that is less powerful.

FSM is basically a language acceptor. As such, it does not have any output capability. So it
cannot add and output the resull

This can be proved using induction.

	syllabus.pdf (p.1-5)
	TOC LECTURE NOTES.pdf (p.6-109)
	FRONT.pdf
	UNIT I II.pdf
	UNIT3.pdf
	UNIT IV.pdf
	UNIT V.pdf

	TOC TWO MARKS.pdf (p.110-115)
	Automata-Theory-MCQS-PDF.pdf (p.116-127)

