
L T P C

 3 0 0 3

COURSE OBJECTIVES:

• To have an introductory knowledge of automata, formal language theory

• and computability.

• To have an understanding of finite state and pushdown automata.

• To have a knowledge of regular languages and context free languages.

• To know the relation between regular language, context free language and corresponding

recognizers.

• To study the Turing machine and classes of problems

LEARNING OUTCOMES:

• To have a introductory knowledge of automata, formal language theory and

• computability.

• To have an understanding of finite state and pushdown automata.

• To have a knowledge of regular languages and context free languages.

• To know the relation between regular language, context free language and

• corresponding recognizers.

• To study the Turing machine and classes of problems.

UNIT- I Introduction To Automata
(9)

Basics of String and Alphabets - Finite Automata (FA) – Deterministic Finite Automata
(DFA)– Non-deterministic Finite Automata (NFA) – Conversion of NFA to DFA- Finite
Automata with Epsilon transition-Equivalence and Minimization of Automata

UNIT- II Regular Expressions And Languages
(9)

Regular Expression – FA and Regular Expressions – Proving languages not to be regular –
Pumping lemma for regular sets - Closure properties of regular languages- Decision Properties
of Regular Languages

UNIT- III Context-Free Grammar And Languages (9)

Context-Free Grammar (CFG) – Parse Trees – Ambiguity in grammars and languages –
Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of
Pushdown automata and CFG, Deterministic Pushdown Automata- Pumping Lemma for CFL -
Closure Properties of CFL- Context Sensitive Grammar (CSG) & Languages

14BECS405 Formal Languages and Automata

UNIT IV Properties of Context Free Grammar
(9)
Normal forms for Context Free Grammar- Chomsky Normal Form- The Pumping lemma for
Context free Languages- Closure properties of Context Free Languages-Inverse
Homomorphism-Decision Properties of CFL

UNIT- V Turing Machine
(9)

Turing Machines – Introduction- Definition – Turing machine construction- Storage in Finite
control-Multiple tracks- Subroutines-Checking of Symbols – Two way infinite tape-
Undecidability .

Total Hours: 45

TEXT BOOKS:

1. Hopcroft J.E, R.Motwani and J.D.Ullman, Introduction to Automata

Theory, Languages and Computations, Pearson Education, 2011.

REFERENCES:

1. Lewis H.R and C.H.Papadimitriou, Elements of The theory of Computation, Pearson
Education, PHI, 2009.

2. Martin J, Introduction to Languages and the Theory of Computation, TMH, 2010

3. Micheal Sipser, Introduction of the Theory and Computation, Edition,Thomson

Brokecole,2012.

4. An Introduction to Formal Languages and Automata, 5th Edition, Peter Linz, 2011

WEBSITES:

1. http://www.regular-expressions.info/tutorial.html

2. http://www.cs.duke.edu/csed/jflap/tutorial/fa/nfa2dfa/index.html

3. http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

KARPAGAM ACADEMY OF HIGHER EDUCATION

Subject Name: FORMAL LANGUAGES AND AUTOMATA

S.No Topic Name

 UNIT

1 Basics of String and Alphabets

2 Finite Automata (FA)

3 Deterministic Finite Automata (DFA)

4 Non-deterministic Finite Automata (NFA)

5 Non-deterministic Finite Automata (NFA)

6 Conversion of NFA to DFA

7
Conversion of NFA to DFA

8 Finite Automata with Epsilon transition

9 Finite Automata with Epsilon transition

10 Equivalence and Minimization of Automata

11 Tutorial: Basic Applications

Total

 UNIT

12 Regular Expression

13 Finite Automata (FA)

14 FA and Regular Expressions

15 Proving languages not to be regular

16 Pumping lemma for regular sets

17 Closure properties of regular languages

18 Closure properties of regular languages

19 Decision properties of regular

20 Decision properties of regular langauages

21 Revision

Total

 UNIT

22 Context-Free Grammar (CFG)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Faculty of Engineering

Lecture Plan

FORMAL LANGUAGES AND AUTOMATA Subject Code:

Topic Name
No.of

Periods

Supporting

Materials

UNIT- I Introduction To Automata

Basics of String and Alphabets 1

1

Deterministic Finite Automata (DFA) 1

deterministic Finite Automata (NFA) 1

Finite Automata (NFA) 1

Conversion of NFA to DFA 1
Conversion of NFA to DFA

1

Finite Automata with Epsilon transition 1

Finite Automata with Epsilon transition 1

Minimization of Automata 1

Tutorial: Basic Applications 1

Total 11

UNIT- Regular Expressions and Languages

1

1

FA and Regular Expressions 1

Proving languages not to be regular 1

Pumping lemma for regular sets 1

Closure properties of regular languages 1

Closure properties of regular languages 1

Decision properties of regular langauages 1

Decision properties of regular langauages 1

1

Total 10

UNIT- III Context-Free Grammar And Languages

Free Grammar (CFG) 1

Supporting

Materials

Teachi

ng

Aids

R[1]-1 BB

R[1]-1 BB

R[1]-5 PPT

R[1]-6 PPT

R[1]-6 PPT

T[1]-95 PPT

T[1]-95 PPT

T[1]-68 BB

Web PPT

T[1]-12 BB

Web BB

T[1]-200 PPT

web PPT

T[1] 201 BB

T[1]214 PPT

T[1]214 PPT

T[1]218 PPT

R[1]218 PPT

R[1]218 PPT

R[1]221 BB

R[1]221 PPT

Free Grammar And Languages

web PPT

Subject Code: 14BECS405

23 Parse Trees 1 web PPT

24 Ambiguity in grammars and languages 1 web PPT

25 Definition of the Pushdown automata 1 T[1]-488 BB

26 Languages of a Pushdown Automata 1 T[1]-193 PPT

27 Equivalence of Pushdown automata and CFG 1 T[1]-266 BB

28 Deterministic Pushdown Automata 1 T[1]-305 PPT

29 Pumping Lemma for CFL 1 T[1]-343 BB

30 Closure Properties of CFL 1 web PPT

31
Context Sensitive Grammar (CSG) & Languages
 1 web PPT

 Total 10

 UNIT- IV Properties of Context Free Grammar

32 Properties of Context Free Grammar 1 R[1]-139 PPT

33 Normal forms for Context Free Grammar 1 R[1]-139 PPT

34 Chomsky Normal Form 1 T[1]-140 PPT

35 The Pumping lemma 1 R[1]-152 BB

36 The Pumping lemma for Context free Languages 1 R[1]-159 PPT

37 Closure properties of Context Free Languages 1 R[1]-162 BB

38 Inverse Homomorphism 1 R[1]-163 PPT

39 Decision Properties of CFL 1 R[1]-133 PPT

40 Properties of CFL 1 web PPT

41 Revision 1 R[1]-133 BB

Total 10

 UNIT- V Turing Machine

42 Turing Machines 1 R[1]-248 PPT

43 Introduction to TM 1 R[1]-465 BB

44 Definition – Turing machine construction 1 R[1]-465 BB

45 Storage in Finite control 1 R[1]-255 PPT

46 Multiple tracks 1 R[1]-248 PPT

47 Subroutines 1 T[1]-1087 PPT

48 Checking of Symbols 1 T[1]-1087 PPT

49 Two way infinite tape 1 T[1]-690 BB

50 Undecidability Problem 1 T[1]-690 PPT

51 Revision 1 T[1]-752 BB

52 Discussion on Previous University Question Papers

Total 10

 Total Hours 52

TEXT BOOKS

S.NO Title of the book

Year of

publica

tion

1
Hopcroft J.E, R.Motwani and J.D.Ullman, Introduction to Automata
Theory, Languages and Computations, Pearson Education

2011

REFERNCE BOOKS

S.NO Title of the book

Year of

publica

tion

1
Lewis H.R and C.H.Papadimitriou, Elements of The theory of Computation, Pearson
Education, PHI, 2009.

2009

WEBSITES

1. http://www.regular-expressions.info/tutorial.html

2. http://www.cs.duke.edu/csed/jflap/tutorial/fa/nfa2dfa/index.html

3. http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

KARPAGAM UNIVERSITY

Karpagam Academy of Higher Education

(Established under Section 3 of UGC Act 1956)

Eachanari, Coimbatore-641 021. TAMILNADU

Faculty of Engineering

Department of Computer Science and
Engineering

13BECS505

THEORY OF COMPUTATION

LECTURE NOTES

Prepared by

K.Sundareswari,AP

1

SYLLABUS

UNIT- I AUTOMATA

Introduction to formal proof – Additional forms of proof – Inductive proofs –Finite Automata

(FA) – Deterministic Finite Automata (DFA)– Non-deterministic Finite Automata (NFA) –

Finite Automata with Epsilon transitions.

UNIT- II REGULAR EXPRESSIONS AND LANGUAGES

Regular Expression – FA and Regular Expressions – Proving languages not to be regular –

Closure properties of regular languages – Equivalence and minimization of Automata.

UNIT- III CONTEXT-FREE GRAMMAR AND LANGUAGES

Context-Free Grammar (CFG) – Parse Trees – Ambiguity in grammars and languages –

Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of

Pushdown automata and CFG, Deterministic Pushdown Automata.

UNIT- IV PROPERTIES OF CONTEXT-FREE LANGUAGES

Normal forms for CFG – Pumping Lemma for CFL - Closure Properties of CFL – Turing

Machines – Programming Techniques for TM.

UNIT- V UNDECIDABILITY

A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE –

Undecidable problems about Turing Machine –Post’s Correspondence Problem-The classes P

and NP.

2

UNIT- I AUTOMATA

Introduction to formal proof – Additional forms of proof – Inductive proofs –Finite Automata
(FA) – Deterministic Finite Automata (DFA)– Non-deterministic Finite Automata (NFA) –
Finite Automata with Epsilon transitions.

3

4

5

6

7

8

9

10

11

FINITE AUTOMATA

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

TWO MARKS
1. Define: (i) Finite Automaton(FA) (ii)Transition diagram April /May 2008

FA consists of a finite set of states and a set of transitions from state to state that occur on
input symbols chosen from an alphabet _. Finite Automaton is denoted by a 5- tuple(Q,Σ, δ,q0,F),
where Q is the finite set of states , _ is a finite input alphabet, q0 in Q is the initial state, F is the
set of final states and _ is the transition mapping function Q * _ to Q.
Transition diagram is a directed graph in which the vertices of the graph correspond to the states
of FA. If there is a transition from state q to state p on input a, then there is an arc labeled ‘ a ‘
from q to p in the transition diagram.

2. What is a : (a) String (b) Regular language
A string x is accepted by a Finite Automaton M=(Q, Σ, δ.q0,F) if δ (q0,x)=p, for some p

in F.FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads
from the start state to accepting state.
The language accepted by M is L(M) is the set {x | _(q0,x) is in F}. A language is regular if it is
accepted by some finite automaton.

3. Why are switching circuits called as finite state systems?
A switching circuit consists of a finite number of gates, each of which can be in any one

of the two conditions 0 or 1.Although the voltages assume infinite set of values,the electronic
circuitry is designed so that the voltages orresponding to 0 or 1 are stable and all others adjust to
these value. Thus control unit of a computer is a finite statesystem.

4. What is Deductive proofs?
A deductive proof consists of a sequence of statements which starts from a hypothesis or a given
statement to a conclusion. Each step is satisfying some logical principle.

5. Define proof by contrapositive.
It is the other form of if then statement. The contrapositive of the statement “ if H then C

“ is If not C then not H “.

6. Define the concatenation of two strings.
Suppose x and y are two strings then the concatenation of x and y is xy.

Ex: if x = 0011 and y = 1100 then xy = 00111100.

7. What are the applications of automata theory?
_ In compiler construction.
_ In switching theory and design of digital circuits.
_ To verify the correctness of a program.
_ Design and analysis of complex software and hardware systems.
_ To design finite state machines such as Moore and mealy machines.

8. What is Moore machine and Mealy machine?
A special case of FA is Moore machine in which the output depends on the state of the

machine. An automaton in whch the output depends on the transition and current input is called
Mealy machine.

9. Define Language.
A set of strings all of which are chosen from some *, where  is a particular alphabet is

called a language.
Ex: The language L over {0,1} where set of strings with an equal number 0’s and 1’s.
L = { , 01, 10, 0011, 0101, 1001, 1100,……}

48

10. What are the components of Finite automaton model?
The components of FA model are Input tape, Read control and finite control.
(a)The input tape is divided into number of cells. Each cell can hold one i/p symbol
(b)The read head reads one symbol at a time and moves ahead.
(c)Finite control acts like a CPU. Depending on the current state and input symbol read from the
input tape it changes state.

11. Differentiate NFA and DFA
NFA or Non Deterministic Finite Automaton is the one in which there exists many paths

for a specific input from current state to next state. NFA can be used in theory of computation
because they are more flexible and easier to use than DFA .

Deterministic Finite Automaton is a FA in which there is only one path for a specific
input from current state to next state. There is a unique transition on each input symbol.(Write
examples with diagrams).

12. What is ε-closure of a state q0?
ε -closure(q0) denotes a set of all vertices p such that there is a path from q0 to p labeled

ε. Example :closure(q0)={q0,q1}

13. Give the examples/applications designed as finite state system.
Text editors and lexical analyzers are designed as finite state systems. A lexical

analyzer scans the symbols of a program to locate strings corresponding to identifiers, constants
etc, and it has to remember limited amount of information .

14. Define automaton.
Automaton is a abstact computing device. It is a mathematical model of a system,with

discrete inputs, outputs, states and set of transitions from state to state that occurs on input
symbols from alphabet Σ.

15. What is the principle of mathematical induction. April/May 2008
Let P(n) be a ststement about a non negative integer n. Then the principle of

mathematical induction is that P(n) follows from
P(1) and P(n-1) implies P(n) for all n>1.

Condition(i) is called the basis step and condition (ii) is called the inductive step. P(n-1) is called
the induction hypothesis.

16. List any four ways of theorem proving
Deductive
If and only if
Induction
Proof by contradiction.

17. Define TOC
TOC describes the basic ideas and models underlying computing. TOC suggests various

abstract models of computation, represented mathematically.

18. What are the applications of TOC?
Compiler Design
Robotics
Artificial Intelligence
Knowledge Engineering.

49

19. Define a Deterministic Finite Automaton.
A Determinstic finite automaton consists of :
A finite set of states, often denoted by Q
A finite set of input symbols, often denoted by 
A transition function that takes as arguments a state and an input symbol and returns a state.
A start state, one of the states in Q
A set of final or accepting states F.

20. Define a Non Deterministic Finite Automaton
A Non Deterministic Finite Automaton consists of
A finite set of states, often denoted by Q
A finite set of input symbols, often denoted by 
A transition function that takes as arguments a state and an input symbol in , and returns a
subset of Q.
A start state, one of the states in Q
A set of final or accepting states F.

21. Define Transition Diagram.
Transition Diagram associated with DFA is a directed graph whose vertices correspond to

states of DFA, The edges are the transitions from one state to another.

22. What are the properties of Transition Function(δ)
δ(q.ε)=q For all strings w and input symbol a

Δ(q,aw)= δ(δ(q.a),w)
Δ(q,wa)= δ(δ(q,w).a)

The transition function δ can be extended that operates on states and strings.

23. Lists the operations on Strings.
a. Length of a string
b. Empty string
c. Concatenation of string
d. Reverse of a string
e. Power of an alphabet
f. Kleene closure
g. Substring
h. Palindrome

24. Lists the operations on Languages.
a. Product
b. Reversal
c. Power
d. Kleene star
e. Kleene plus
f. Union
g. Intersection

50

UNIT II
REGULAR EXPRESSION

51

52

TWO MARKS:

1. What is a regular expression?
A regular expression is a string that describes the whole set of strings according to certain

syntax rules. These expressions are used by many text editors and utilities to search bodies of text
for certain patterns etc. Definition is: Let _ be an alphabet. The regular expression over _ and the
sets they denote are:

i. _ is a r.e and denotes empty set.

ii. _ is a r.e and denotes the set {_}

iii. For each ‘a’ in _ , a+ is a r.e and denotes the set {a}.

iv. If ‘r’ and ‘s’ are r.e denoting the languages R and S respectively then (r+s),

(rs) and (r*) are r.e that denote the sets RUS, RS and R* respectively.

2. Differentiate L* and L+
L* denotes Kleene closure and is given by L* =U Li i=0

example : 0* ={_ ,0,00,000,…………………………………}

Language includes empty words also.

L+ denotes Positive closure and is given by L+= U Li i=1 q0 q1

3. What is Arden’s Theorem?
Arden’s theorem helps in checking the equivalence of two regular expressions. Let P and Q be
the two regular expressions over the input alphabet _. The regular expression R is given as :
R=Q+RP Which has a unique solution as R=QP*.

4. Write a r.e to denote a language L which accepts all the strings which begin or end with
either 00 or 11.

The r.e consists of two parts:

L1=(00+11) (any no of 0’s and 1’s) =(00+11)(0+1)*

L2=(any no of 0’s and 1’s)(00+11) =(0+1)*(00+11)

Hence r.e R=L1+L2 =[(00+11)(0+1)*] + [(0+1)* (00+11)]

5. Construct a r.e for the language over the set _={a,b} in which total number of a’s are
divisible by 3

(b* a b* a b* a b*)*

6. What is: (i) (0+1)* (ii)(01)* (iii)(0+1) (iv)(0+1)+
(0+1)*= { _ , 0 , 1 , 01 , 10 ,001 ,101 ,101001,…………………}

Any combinations of 0’s and 1’s.

(01)*={_ , 01 ,0101 ,010101 ,…………………………………..}

53

All combinations with the pattern 01.

(0+1)= 0 or 1,No other possibilities.

(0+1)+= {0,1,01,10,1000,0101,………………………………….}

7. Reg exp denoting a language over _ ={1} having (i) even length of string (ii) odd length of
a string

(i) Even length of string R=(11)*

(ii) Odd length of the string R=1(11)*

8. Reg exp for: (i) All strings over {0,1} with the substring ‘0101’ (ii) All strings beginning
with ’11 ‘ and ending with ‘ab’ (iii) Set of all strings over {a,b}with 3 consecutive b’s. (iv)
Set of all strings that end with ‘1’and has no substring ‘00’

(i)(0+1)* 0101(0+1)*

(ii)11(1+a+b)* ab

(iii)(a+b)* bbb (a+b)*

(iv)(1+01)* (10+11)* 1

9. Construct a r.e for the language which accepts all strings with atleast two c’s over the set
Σ={c,b}

(b+c)* c (b+c)* c (b+c)*

10. What are the applications of Regular expressions and Finite automata Lexical
analyzers and Text editors are two applications.

Lexical analyzers:

The tokens of the programming language can be expressed using regular
expressions. The lexical analyzer scans the input program and separates the tokens.For eg
identifier can be expressed as a regular expression as: (letter)(letter+digit)*

If anything in the source language matches with this reg exp then it is recognized as an
identifier.The letter is{A,B,C,………..Z,a,b,c….z} and digit is {0,1,…9}.Thus reg exp
identifies token in a language.

Text editors:

These are programs used for processing the text. For example UNIX text editors uses the
reg exp for substituting the strings such as: S/bbb*/b/

Gives the substitute a single blank for the first string of two or more blanks in a given
line. In UNIX text editors any reg exp is converted to an NFA with Єtransitions, this NFA can
be then simulated directly.

54

11. .Reg exp for the language that accepts all strings in which ‘a’ appears tripled overthe set
Σ ={a}

reg exp=(aaa)*

12. .What are the applications of pumping lemma?
Pumping lemma is used to check if a language is regular or not.

(i) Assume that the language(L) is regular.
(ii) Select a constant ‘n’.
(iii) Select a string(z) in L, such that |z|>n.
(iv) Split the word z into u,v and w such that |uv|<=n and |v|>=1.
(v) You achieve a contradiction to pumping lemma that there exists an ‘i’ Such that uvi

w is not in L.Then L is not a regular language.

13. What is the closure property of regular sets?
The regular sets are closed under union, concatenation and Kleene closure.

r1Ur2= r1 +r2

r1.r2= r1r2

(r)*=r*

The class of regular sets are closed under complementation, substitution, homomorphism and
inverse homomorphism.

14. .Reg exp for the language such that every string will have atleast one ‘a’ followed by
atleast one ‘b’.

R=a+b+

15. Write the exp for the language starting with and has no consecutive b’s .
reg exp=(a+ab)*

16. Construct a regular expression denoting odd numbers in their binary representation
{0/1}*1

17. Construct a regular expression denoting even numbers in their binary representation
{0/1}*0

18. Construct a regular expression denoting the set of all strings over {a,b} such that all starts
with a and ends with b

a{a/b}*b

19. Construct a regular expression denoting the set of all strings over {a,b} such that all starts
with a and ends with ab

a{a/b}*ab

20. Construct a regular expression denoting the set of all strings over {a,b} such that all ends
with abb

{a/b}*abb

55

UNIT- III CONTEXT-FREE GRAMMAR AND LANGUAGES

Context-Free Grammar (CFG) – Parse Trees – Ambiguity in grammars and languages –
Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of
Pushdown automata and CFG, Deterministic Pushdown Automata.

Grammar
A grammar is a mechanism used for describing languages. This is one of the most

simple but yet powerful mechanism. There are other notions to do the same, of course. In
everyday language, like English, we have a set of symbols (alphabet), a set of words
constructed from these symbols, and a set of rules using which we can group the words to
construct meaningful sentences. The grammar for English tells us what are the words in it
and the rules to construct sentences. It also tells us whether a particular sentence is well-
formed (as per the grammar) or not. But even if one follows the rules of the english
grammar it may lead to some sentences which are not meaningful at all, because of
impreciseness and ambiguities involved in the language. In english grammar we use many
other higher level constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc.
A typical rule can be defined as

<sentence>< noun-phrase >< predicate >

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate".
Some more rules are as follows:

<noun-phrase>< article >< noun >

<predicate>< verb >

with similar kind of interpretation given above. If we take {a, an, the} to be <article>; cow, bird,
boy, Ram, pen to be examples of <noun>; and eats, runs, swims, walks, are associated with
<verb>, then we can construct the sentence- a cow runs, the boy eats, an pen walks- using the
above rules. Even though all sentences are well-formed, the last one is not meaningful. We
observe that we start with the higher level construct <sentence> and then reduce it to <noun-
phrase>, <article>, <noun>, <verb> successively, eventually leading to a group of words
associated with these constructs.

These concepts are generalized in formal language leading to formal grammars. The
word 'formal' here refers to the fact that the specified rules for the language are explicitly stated
in terms of what strings or symbols can occur. There can be no ambiguity in it.

FORMAL DEFINITIONS OF A GRAMMAR
A grammar G is defined as a quadruple.

G={N,∑,P,S)
N is a non-empty finite set of non-terminals or variables,
∑ is a non-empty finite set of terminal symbols such that N ∩∑=Φ
SϵN, is a special non-terminal (or variable) called the start symbol, and Pϵ(N U ∑)*
x(N U ∑)* is a finite set of production rules.

The binary relation defined by the set of production rules is denoted by, i.e.αβiff(α,β)ϵP.
In other words, P is a finite set of production rules of the form .αβ, where and αϵ (N U ∑)*
and βϵ(N U ∑)*

56

PRODUCTION RULES:
The production rules specify how the grammar transforms one string to another. Given a

string ẟαy, we say that the production rule αβ is applicable to this string, since it is possible to
use the rule αβ to rewrite the α(in ẟαy) to β obtaining a new string ẟβy. We say that ẟαy
derives ẟβy and is denoted as

ẟαy==> ẟβy
Successive strings are dervied by applying the productions rules of the grammar in any

arbitrary order. A particular rule can be used if it is applicable, and it can be applied as many
times as described. We write α==>β if the string βcan be derived from the string α in zero or
more steps; α==>β if β can be derived from α in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate
many strings of terminal symbols starting with the special start symbol, S, of the grammar. The
set of all such terminal strings is called the language generated (or defined) by the grammar.
Formaly, for a given grammar G={N,∑,P,S) the language generated by G is

L(G)={ wϵ∑*|s => w}

That is w ϵ L(G) iffs=>w.Ifw ϵ L(G) , we must have for some n≥0,
S=α1=>a2=>a3=>….=>a n=w, denoted as aderivation sequence of w, The strings S= α 1, α 2, α
3,…, α n=w are denoted as sentential forms of the derivation.
Example :Consider the grammar G={N,∑,P,S), where N = {S}, ∑={a, b} and P is the set of the
followingproduction rules

{ Sab, SaSb}

Some terminal strings generated by this grammar together with their derivation is given below.
S =>ab
S =>aSb=>aabb
S =>aSb=>aaSbb=>aaabbb

It is easy to prove that the language generated by this grammar is

L(G)={a b | i≥1}
By using the first production, it generates the string ab(fori =1).

To generate any other string, it needs to start with the production SaSband then the
non-terminal S in theRHS can be replaced either by ab (in which we get the string aabb) or the
same production SaSbcan be used one or more times. Every time it adds an 'a' to the left and a
'b' to the right of S, thus giving the sentential forma Sb ,i≥1. When the non-terminal is
replaced by ab (which is then only possibility for generating a terminal string) we get a terminal
string of the form a Sb ,i≥1.

There is no general rule for finding a grammar for a given language. For many
languages we can devise grammars and there are many languages for which we cannot
find any grammar.

Example: Find a grammar for the language L={aⁿbⁿ+¹|n≥1} .
It is possible to find a grammar for L by modifying the previous grammar since we need

to generate an extra b at the end of the string . We can do this by adding a production SBb
where the non-terminal B generates a Sb ,i≥1 as given in the previous example.

57

Using the above concept we devise the follwoing grammar for L.
G={N,∑,P,S),where, N = { S, B }, P = { S-->Bb, Bab, BaBb}

PARSE TREES:

CONSTRUCTION OF PARSER TREE:

58

59

PUSH DOWN AUTOMATA:

Regular language can be charaterized as the language accepted by finite automata.
Similarly, we can characterize the context-free language as the langauge accepted by a class
of machines called "PushdownAutomata" (PDA). A pushdown automation is an extension of
the NFA. It is observed that FA have limited capability. (in the sense that the class of
languages accepted or characterized by them is small). This is due to the "finite memory"
(number of states) and "no external memory" involved with them. A PDA is simply an NFA
augmented with an "external stack memory". The addition of a stack provides the PDA with
a last-in, first-out memory management cpapability. This "Stack" or "pushdownstore" can be
used to record a potentially unbounded information. It is due to this memory management
capability with the help of the stack that a PDA can overcome the memory limitations that
prevents a FA toaccept many interesting languages like {aⁿbⁿ|n≥0}. Although, a PDA can
store an unbounded amount of information on the stack, its access to the information on the
stack is limited. It can push an element onto the top of the stack and pop off an element from
the top of the stack. To read down into the stack the top elements must be popped off and are
lost. Due to this limited access to the information on the stack, a PDA still has some
limitations and cannot accept some other interesting languages.

As shown in figure, a PDA has three components: an input tape with read only head,
a finite control and a pushdown store. The input head is read-only and may only move from
left to right, one symbol (or cell) at a time. In each step, the PDA pops the top symbol off
the stack; based on this symbol, the input symbol it is currently reading, andits present state,
it can push a sequence of symbols onto the stack, move its read-only head one cell (or
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, ϵ- transitions are also allowed in which
the PDA can pop and push, and change state without reading the next input symbol or moving
its read-only head. Besides this, there may be multiple options for possible next moves.

Formal Definitions :Formally, a PDAMis a 7-tupleM
=(Q,∑,┌,ẟ,q0,z0,F)where,

60

• Qis a finite set of states,
• ∑is a finite set of input symbols (input alphabets),

• ┌is a finite set of stack symbols (stack alphabets),

• ẟis a transition function from Q˟ (∑ U {ϵ})˟┌to subset of Q˟┌*

• q0ϵQis the start state
• z0ϵ┌, is the initial stack symbol, and

• F*ϵQ, is the final or accept states.

Explanation of the transition function, ẟ:
If, for any aϵ∑, ẟ(q,a,z)={(p1,β1), (p2,β2)…..(pk,βk). This means intitutively that

whenever the PDA is in state q reading input symbol a and z on top of the stack, it can
nondeterministically for any i ≤ t≤ k

• go to state pi
• pop z off the stack
• push βionto the stack (where β1ϵ┌*) (The usual convention is that if

βi=x1x2….xn, then x1 will be at the top and xn at the bottom.)
• move read head right one cell past the current symbol a.

If a = ϵ, then ẟ(q,ϵ,z)={(p1,β1),(p2,β2),… (pk,βk)],(means intitutively that
whenver the PDA is in state q with z on the top of the stack regardless of the current input
symbol, it can nondeterministically for any i, i ≤ t≤ k,

• go to state Pi
• pop z off the stack
• push β1 onto the stack, and
• leave its read-only head where it is.

State transition diagram :A PDA can also be depicted by a state transition diagram. The
labels on the arcsindicate both the input and the stack operation. The transition
ẟ(p,a,z)={(q,α)}for aϵ∑ U {ϵ} ,p,q ϵ Q,z ϵ ┌and α ϵ ┌* is depicted by

Final states are indicated by double circles and the start state is indicated by an arrow to it from
nowhere.

CONFIGURATION OR INSTANTANEOUS DESCRIPTION (ID) :
A configuration or an instantaneous description (ID) of PDA at any moment during its

computation is an
element of Q˟∑*˟┌*describing the current state, the portion of the input remaining to be

61

read (i.e. under and to the right of the read head), and the current stack contents. Only these
three elements can affect the computation from that point on and, hence, are parts of the ID.

The start or initalconfiguartion (or ID) on input ωis(q0,ω,z0) . That is, the PDA
always starts in its start state, q0with its read head pointing to the leftmost input symbol and
the stack containing only the start/initial stack symbol,z0. The "next move relation" one
figure describes how the PDA can move from one configuration to another in one step.

Formally, (q,aω,z) M(p,ω,βα)

Iff (p,β)ϵ ẟ(q,a,z)
'a' may be ϵor an input symbol.

Let I, J, K be IDs of a PDA. We define we write I M,K, if ID I can become K

after exactlyimoves. Therelations M and M define as follows

I K

I J if such that I K and K J

I J if such that I J.

That is, Mis the reflexive, transitive closure of N. We say that I NJ if the ID J
follows from the ID I inzero or more moves.

(Note: subscript M can be dropped when the particular PDA M is understood.)

Language accepted by a PDA M

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state:

Consider the PDA M =(Q,∑,┌,ẟ,q0,z0,F) . Informally, the PDA M is said to accept its input
ωby final state if it enters any final state in zero or more moves after reading its entire input,
starting in the start configuration on input ω.

Formally, we define L(M), the language accepted by final state to be

{ ωϵ∑*| (q0,ω,z0)|- N (pϵβ)for some pϵ Fand βϵ┌*}

2. Acceptance by empty stack (or Null stack): The PDA Maccepts its input ω by empty stack if
starting in the start configuration on inputω, it ever empties the stack w/o pushing anything back
on after reading the entire input. Formally, we define N(M), the language accepted by empty
stack, to be

{ ωϵ∑*| (q0,ω,z0)|- N (pϵϵ)for some pϵ Q}

62

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the
empty set i.e. F = Q .

Example 1 :Here is a PDA that accepts the language {aⁿbⁿ|n≥0}.

M =(Q,∑,┌,ẟ,q0,z0,F)
Q={q1,q2,q3.q4}
∑={a,b}
┌={a,b,z}
F={q1,q4} , and ẟconsists of the following transitions

1. ∈(q1,a,z)={{q2.az)}
2. ∈ (q2,a,a)={{q2.aa)}
3. ∈ (q2,b,a)={{q3.ϵ)}
4. ∈ (q3,b,a)={{q3.ϵ)}
5. ∈ (q3,ϵ,z)={{q4,z)}

The PDA can also be described by the adjacent transition diagram.

Informally, whenever the PDA M sees an input a in the start state q1with the start
symbol z on the top of the stack it pushes a onto the stack and changes state to q2. (to
remember that it has seen the first 'a'). On state q2if it sees anymore a, it simply pushes it onto
the stack. Note that when M is on stateq2, the symbol on the top of the stack can only be a. On
state q2 if it sees the first b with a on the top of the stack, then it needs to start comparison of
numbers of a's and b's, since all the a's at the begining of the input have already been pushed
onto the stack. It start this process by popping off the a from the top of the stack and enters in
state q3 (to remember that the comparison process has begun). On stateq3 , it expects only b's
in the input (if it sees any more a in the input thus the input will not be in the proper form of
anbn).

Hence there is no more on input a when it is in state q3. On state q3it pops off an a
from the top of the stack for every b in the input. When it sees the last b on state q3 (i.e. when
the input is exaushted), then the last a from the stack will be popped off and the start symbol z
is exposed. This is the only possible case when the input (i.e. on ϵ-input) the PDA M will
move to state q4 which is an accept state. We can show the computation of the PDA on a
given input using the IDs and next move relations. For example, following are the computation
on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

(q1,aabb,z) |-- (q2,aabb,z) (using transition 1)

63

|-(q1,bb,zz) (using transition 2)
|-(q3,b,z) (using transition 3)
|-(q3,ϵ,z)(using transition 4), |-(q4,ϵ,z)(using transition 5) , q4is final state. Hence , accept.
So the string aabb is rightly accepted by M

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabab.
(q1,aabab,z) |-- (q2,abab,z)
|-(q2,bab,aaz)
|-(q3,ab,az)

No further move is defined at this point. Hence the PDA gets stuck and the string aabab is not
accepted.

Example 2 :We give an example of a PDAMthat accepts the set of balanced strings of
parentheses [] byempty stack.
The PDA M is given below.

M =({q}{[,]},{z,[},ẟ,q,z,Φ) where ẟis defined as

ẟ(q,[,z)={(q,[z)}
ẟ(q,[,])={(q,[[)}
ẟ(q,[,])={(q,ϵ)}
ẟ(q,ϵ,z)={(q,ϵ)}

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and
whenever it sees a] and the top of the stack symbol is [, it will pop the symbol [off the stack.
(The third transition). The fourth transition is used when the input is exhausted in order to pop z
off the stack (to empty the stack) and accept. Note that there is only one state and no final state.
The following is a sequence of configurations leading to the acceptance of the string [[] []] [].

(q,[[][]][],z) |- (q,[][]][],[z) |-(q,[]][],[z) |-(q,]][][[z)

|-(q,]][],[[z) |-(q,][],[z)|-(q,[],z) |-(q,],[z) |-(q,ϵ,z)

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by final state by some other PDA and vice versa.
Hence it doesn't matter which one we use, sinceeach kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final state or empty stack, we
can always construct an equivalent PDA M with a single final state that accpets exactly the same
language L. The construction process of M' from M and the proof of equivalence of M&M' are
given below.

64

There are two cases to be considered.

CASE I : PDAMaccepts by final state, Let M =(Q,∑,┌,ẟ,q0,z0,F)Let qf be a new state not
in Q. Consider the PDA M‘=(Q U{q1}∑.,ẟ,q0,z0,{q})where ẟ’ as well as the following
transition.

ẟ’(qϵ,X)contains (q1,X)˅ qϵ Fand Xϵ┌. It is easy to show that M and M' are equivalent i.e.

L(M) = L(M’)

Let ωϵL(M). Then (q0,ω,z0)|- M(q,ϵ,γ)for some qϵ Fandγϵ┌*

Then (q0,ω,z0)|- M*(q,ϵ,γ)|-M*(q,ϵ,γ)|

Thus M’ accepts ω

Conversely, let M’acceptsωi.e. ωϵL(M’), then(q0,ω,z0)|- M*(q,ϵ,γ)|-M*(q,ϵ,γ)| for qϵ F
M’ inherits all other moves except the last one from M. Hence (q0,ω,z0)|- M*(q,ϵ,γ)| -for
some

qϵF.

Thus M accepts ω. Informally, on any input M’ simulate all the moves of M and enters in its
own final state q1whenever M enters in any one of its final status in F. Thus M’accepts a string
ω iffM accepts it.

CASE II :PDAMaccepts by empty stack.

We will construct M’from M in such a way that M’ simulates M and detects when M empties its
stack.

M’ enters its final state q1 when and only when M empties its stack.ThusM’will accept a
string ω iffM accepts.

Let M’=(Q U{q0’q1},∑,┌ U {X},ẟ’,q0’,X,{q1})where q0’,q1 not ϵ Q and X ϵ┌and ẟ
contains all the transition of ẟ, as well as the following two transitions.

1.ẟ’(q0,ϵ,X)={(q0,z0,X)}and
2. ẟ’(q0,ϵ,X)={(q1,ϵ)} ,˅qϵQ

Transitions 1 causes M’ to enter the initial configuration of M except that M’will have its own
bottom-of-stack marker X which is below the symbols of M's stack. From this point onward M’
will simulate every move of M since all the transitions of M are also in M’

If M ever empties its stack, then M’when simulating M will empty its stack except the symbol X
at the bottom.

At this point, M’ will enter its final state q1by using transition rule 2, thereby (correctly)
accepting the input. We will prove that Mand M’are equivalent.

65

Let Maccepts ω. Then

(q0,ω,zo) |- M* (q,ϵ,ϵ)for some (q ϵQ). But then
(q0,ω,X)|- M’¹(q0,ω,z0,X) (by transition rule 1)
|- M*(q1,ϵ,X)(Since M’ includes all the moves of M)
|-- M¹ |-(q1,ϵ,ϵ)((by transition rule 2)

Hence, M’ also accepts ω. Conversely, let M’accepts ω.
Then (q0’,ω,X) |- M*(q0’,ω,zoX) |- M* (q0’,ϵ,X) |- M* (q0’,ϵ,ϵ) for some q ϵ Q
Every move in the sequence, (q0’,ω,zoX) |- M* (q0’,ϵ,X)were taken from M.
Hence, M starting with its initial configuration will eventually empty its stack and accept the
input i.e.

(q0,ω,z0)|- M* (q0,ϵ,ϵ)

EQUIVALENCE OF PDA’S AND CFG’S:
We will now show that pushdown automata and context-free grammars are equivalent in

expressive power, that is, the language accepted by PDAs are exactly the context-free languages.
To show this, we have to prove each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the
same language generated by G.

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the
same language accpeted by M.

(i) CFA to PDA
We will first prove that the first part i.e. we want to show to convert a given CFG to an

equivalent PDA.
Let the given CFG is G={N,∑,P,S). Without loss of generality we can assume that G is in
Greibach Normal Form i.e. all productions of G are of the form .

AcB1B2…Bn where cϵ∑ U{ϵ}and k≥0.
From the given CFG G we now construct an equivalent PDA M that accepts by empty stack.
Note that there is only one state in M. Let
M={{q},∑,N,ẟ,q,S,Φ) where

• q is the only state
• ∑is the input alphabet,
• N is the stack alphabet ,
• q is the start state.
• S is the start/initial stack symbol, and ẟ, the transition relation is defined as follows

For each production AcB1B2…Bk ϵ P, (q,B1,B2,…Bk)ϵ ẟ(q,cA). We now want to
show that M and G are equivalent i.e. L(G)=N(M). i.e. for any wϵ∑*, wϵL(G).iff wϵN(M).
If wϵL(G), then by definition of L(G), there must be a leftmost derivation starting with S and
deriving w.

i.e. S=>w

Again if wϵN(M), then one sysmbol. Therefore we need to show that for any
wϵ∑*S=>wiff(q,w,s) |- (q,ϵ,ϵ).

But we will prove a more general result as given in the following lemma. Replacing A by S

66

(the start symbol) and γ by ϵgives the required proof.
Lemma For anyx,yϵ∑*, γϵN*and AϵN, A=>xy via a leftmost derivative iff

(q,xy,A)|- M*(q,y,γ)
Proof :The proof is by induction onn.
Basis :n= 0

A=>xyiffA=xy i.e. x=ϵand y=A
Iff (q,xy,A)=(q,y,γ)
iff(q,xy,a) |- M*(q,y,γ)

Induction Step :
First, assume that A=>xy via a leftmost derivation. Let the last production applied

in their derivation is Bcβ for some cϵ∑U{ϵ}and βϵN*.
Then, for some ωϵ∑*, αϵN*

A=>ωBα=>ωc βα=xy

Where x=ωc and y=βα
Now by the indirection hypothesis, we get,

(q,ωy,A)|- M*(q,cy,Bα)...(1)
Again by the construction of M, we get
(q,β)ϵẟ(q,c,B)
so, from (1), we get
(q,ωy,A)|- M*(q,cy,Bα) |- M’ *(q,y,Bα)
since x=ωc and y=βα, we get (q,ωy,A)|- M*(q,y,γ)
That is, ifA=>xy , then(q,ωy,A)|- M*(q,y,γ) . Conversely, assume that
(q,ωy,A)|- M*(q,y,γ) and let
(q,c,β)=(q,β) be the transition used in the last move. Then for some ωϵ∑*, cϵ∑ U {ϵ}and
αϵ┌*
(q,ωy,A)|- M*(q,cy,Bα) |- M’ *(q,y,Bα) where x=ωc and y=βα,

Now, by the induction hypothesis, we get A=>ωBα via a leftmost derivation. Again, by the
construction of M, B->cβ must be a production of G. [Since(q,β)ϵẟ(q,c,B)]. Applying the
production to the sentential form ωBα kwe get

A=>ωβα=>ωc βα=xy
i.e. A=>xy

via a leftmost derivation.
Hence the proof.

Example :Consider the CFGGin GNF

S->aAB
Aa / aA
Ba / bB

The one state PDA M equivalent to G is shown below. For convenience, a
production of G and the corresponding transition in M are marked by the same
encircled number.

(1) SaAB

67

(2) A a
(3) AaA
(4) B a
(5) B bB

M={{q},{a,b},{S,A,B},∑,ẟ,q,S)We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.

1.(q,aaaba,s) (q, aaba, AB)

2. (q, aba, AB)

3. (q, ba, B)

4. (q, a, B)

5. (q, a , B) Accept by empty stack.

Note :encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

S =>aAB=>aaAB=>aaaB=>aaabB=>aaaba

Observations:
• There is an one-to-one correspondence of the sequence of moves of the PDA M and the

derivation sequence under the CFG G for the same input string in the sense that - number
of steps in both the cases are same and transition rule corresponding to the same
production is used at every step (as shown by encircled number).

• considering the moves of the PDA and derivation under G together, it is also observed
that at every step the input read so far and the stack content together is exactly
identical to the corresponding sentential form i.e.

<what is Read><stack> = <sentential form>
Say, at step 2, Read so far
= a stack = AB

Sentential form = aAB From this property we claim that (q,x,S)|- M*(q,ϵ,α) iff S=>xα. If the
claim is true, then apply with α=ϵand we get (q,x,S)|- M*(q,ϵ,ϵ)iffS=>x or
xϵN(M)iffxϵL(G)(by definition)

Thus N(M) = L(G) as desired. Note that we have already proved a more general version
of the claim PDA and CFG:
We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such

Steps 1 2 3 4 5

67

(2) A a
(3) AaA
(4) B a
(5) B bB

M={{q},{a,b},{S,A,B},∑,ẟ,q,S)We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.

1.(q,aaaba,s) (q, aaba, AB)

2. (q, aba, AB)

3. (q, ba, B)

4. (q, a, B)

5. (q, a , B) Accept by empty stack.

Note :encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

S =>aAB=>aaAB=>aaaB=>aaabB=>aaaba

Observations:
• There is an one-to-one correspondence of the sequence of moves of the PDA M and the

derivation sequence under the CFG G for the same input string in the sense that - number
of steps in both the cases are same and transition rule corresponding to the same
production is used at every step (as shown by encircled number).

• considering the moves of the PDA and derivation under G together, it is also observed
that at every step the input read so far and the stack content together is exactly
identical to the corresponding sentential form i.e.

<what is Read><stack> = <sentential form>
Say, at step 2, Read so far
= a stack = AB

Sentential form = aAB From this property we claim that (q,x,S)|- M*(q,ϵ,α)iff S=>xα. If the
claim is true, then apply with α=ϵand we get (q,x,S)|- M*(q,ϵ,ϵ)iffS=>x or
xϵN(M)iffxϵL(G)(by definition)

Thus N(M) = L(G) as desired. Note that we have already proved a more general version
of the claim PDA and CFG:
We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such

Steps 1 2 3 4 5

67

(2) A a
(3) AaA
(4) B a
(5) B bB

M={{q},{a,b},{S,A,B},∑,ẟ,q,S)We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.

1.(q,aaaba,s) (q, aaba, AB)

2. (q, aba, AB)

3. (q, ba, B)

4. (q, a, B)

5. (q, a , B) Accept by empty stack.

Note :encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

S =>aAB=>aaAB=>aaaB=>aaabB=>aaaba

Observations:
• There is an one-to-one correspondence of the sequence of moves of the PDA M and the

derivation sequence under the CFG G for the same input string in the sense that - number
of steps in both the cases are same and transition rule corresponding to the same
production is used at every step (as shown by encircled number).

• considering the moves of the PDA and derivation under G together, it is also observed
that at every step the input read so far and the stack content together is exactly
identical to the corresponding sentential form i.e.

<what is Read><stack> = <sentential form>
Say, at step 2, Read so far
= a stack = AB

Sentential form = aAB From this property we claim that (q,x,S)|- M*(q,ϵ,α) iff S=>xα. If the
claim is true, then apply with α=ϵand we get (q,x,S)|- M*(q,ϵ,ϵ)iffS=>x or
xϵN(M)iffxϵL(G)(by definition)

Thus N(M) = L(G) as desired. Note that we have already proved a more general version
of the claim PDA and CFG:
We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such

Steps 1 2 3 4 5

68

that L(G) =N(M) we first see whether the "reverse of the construction" that was used in part (i)
can be used here to construct an equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAs.
• That is, for every one-state PDA M there is CFG G such that L(G) = N(M). For every

move of the PDA M (q,B1,B2,…Bk)we introduce a production A cB1,B2,…Bkin
the grammar G=(N,∑,P,S) where N = T and S=z0.

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).
But the reverse construction does not work for PDAs with more than one state. For example,
consider the PDA M produced here to accept the langauge{aⁿbaⁿ|n≥1}

M=({p,q},{a,b},{z0,A},ẟ,p,z0,Φ)
Now let us construct CFG G=(N,∑,P,S) using the "reverse" construction.
(NoteN={z0,A},S=z0).

Transitions in M Corresponding Production in G

a,z0/A z0aA

a,A/AA AaAA

b,A/A AbA

a,A/ϵ Aa

We can drive strings like aabaa which is in the language.
s=>z0=>aA=>aaAA=>aabAA=>aabaA=>aabaa

But under this grammar we can also derive some strings which are not in the language. e.g
s=>z0=>aA=>aaAA=>aabAA=>aabaA=>aabaa
ands=>z0=>aA=>aa But aa,notϵ L(M)

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

Claim: For every PDA M there is some one-state PDA M’such that N(M)=N(M’).
It is quite possible to prove the above claim. But here we will adopt a different approach.
We start with any arbitrary PDA M that accepts by empty stack and directly construct an
equivalent CFG G.

PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more
states. Without loss of generality we can assume that the PDA M accepts by empty stack.
The idea is to use nonterminal of the form <PAq> whenever PDA M in state P with A on
top of the stack goes to state q0. That is, for example, for a given transition of the PDA
corresponding production in the grammar as shown below, And, we would like to show, in
general, that <PAq>=>ω iff the PDA M, when started from state P with A on the top of the
stack will finish processing ω, arrive at state q and remove A from the stack. we are now
ready to give the construction of an equivalent CFG G from a given PDA M. we need to
introduce two kinds of producitons in the grammar as given below. The reason for
introduction of the first kind of production will be justified at a later point. Introduction of
the second type of production has been justified in the above discussion.

69

Let M={Q,┌,∑,N,ẟ,q,S,Φ) be a PDA. We construct from M a equivalent CFG G=(N,∑,P,S)
Where

• N is the set of nonterminals of the form<PAq>for p,q ϵ Q and Aϵ┌ and P contains the
following two kind of production

1.S<q0z0q>˅ qϵQ
2. If (q1,B1B2…..Bn)ϵẟ(q,a,A), then for every choice of the sequence

q2,q3,…qn+1, q1ϵQ, 2≤i≤n+1.

Include the follwoing production
<qn,qn+1>a<q1B1q2><q2B2q3>……<qnBnqn>

If n = 0, then the production is <qA q1>a.For the whole exercise to be meaningful we want
<qA q1> =>ωmeans there is a sequence of transitions (for PDA M), starting in state q, ending in
qn+1,during which the PDA M consumes the input string ω and removes A from the stack (and,
of course, all other symbols pushed onto stack in A's place, and so on.)

That is we want to claim that

<pAq> => ω iff (p,ω,A) |-(q,ϵ,ϵ)

If this claim is true, then let p=q0,A=z0 to get <q0z0q>iff (q0,ω,z0) |-(q,ϵ,ϵ)for someqϵQ.
But for allqϵQ we have S<q0z0q>as production in G. Therefore,
S=><q0z0q>iff=>(q0,ω,z0)|-(q,ϵ,ϵ)i.e. S=>w iff PDA M accepts w by empty stack or L(G) =
N(M). Now, to show that the above construction of CFG G from any PDA M works, we need to
prove the proposed claim.

Note: At this point, the justification for introduction of the first type of production (of the form
s<q0z0q>) in the CFG G, is quite clear. This helps use deriving a string from the start
symbol of the grammar.

Proof :Of the claim <PAq>=>w iff (P,ω,A)|-(q,ϵ,ϵ)for some wϵ∑*, Aϵ┌and P,qϵQ .The
proof is by induction on the number of steps in a derivation of G (which of course is equal to the
number of moves taken by M). Let the number of steps taken is n.

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

If (P,ω,A)|-(q,ϵ,ϵ)then <PAq>=>w.

Basis is n =1

Then(P,ω,A)|(q,ϵ,ϵ) . In this case, it is clear that wϵ∑ U{ϵ’}. Hence, by construction
<PAq>=>w.
is a production of G.

Then

Inductive Hypothesis :

70

˅i<n (P,ω,A)|(q,ϵ,ϵ)=><PAq>=>w.
Inductive Step :(P,ω,A)|(q,ϵ,ϵ)

For n>1, let w = ax for some aϵ∑ U {ϵ}and xϵ∑* consider the first move of the PDA M
which uses the general transition (q1,B1B2….Bn) |-(q,ϵ,ϵ)=

(p,ax,A) |-(q1,x, B1B2….Bn)|-(q,ϵ,ϵ). Now M must remove q1,B1B2….Bnfrom stack
while consuming x in the remaining n-1 moves.

Letx=x1x2…xn, where x1x2…xnis the prefix of x that M has consumed when Bi+1 first
appears at top of the stack. Then there must exist a sequence of states in M (as per
construction) q2,q3,…qn,qn+1(withqn+1=p), such that

(p,ax,A) |-(q1,x,B1B2…Bn)=(q1,x1x2….xn, B1B2…Bn)
(q2,x2x3….xn, B2B3…Bn) [this step implies (q1,x1,B1) |-(q2,ϵ,ϵ)]
(q3,x3x4….xn, B3B4…Bn) [this step implies (q2,x2,B2) |-(q3,ϵ,ϵ)]
…….
|- (qn,xn,Bn)=|-(q,ϵ,ϵ)]

[Note: Each step takes less than or equal to n -1 moves because the total number of moves
required assumed to be n-1.]

That is, in general

(qi,xi,Bi)|-(qi+1,ϵ,ϵ), 1≤i≤ n+1

So, applying inductive hypothesis we get

<qiBiqi+1> => xi, 1≤i≤ n+1. But corresponding to the original move

(p,w,A)= (p,ax,A)|-(q1,x,B1B2…Bn)in M we have added the following production in G.

We can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

(q1,aabb,z)|- (q2,abb,az)(using transition 1) ,|- (q2,abb,az) (using transition 2)

|- (q3,b,az)(using transition 3), (q3,ϵ,z)(using transition 4)

|-(q4,ϵ,z)((using transition 5) , q4 is final state. Hence, accept.

So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

71

i) Let the input be aabab

(q1,aabb,z)|- (q2,abb,az)
|- (q2,bab,aaz)
|-(q3,ab.az)

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[] []] [].
(q,[[][][],z)|-(q,[][]],[z) |- (q,][]][],[[z)
|-(q,[]][],[z)|-(q,]][],[z) |- (q,][],[z)
|-(q,[],z) |-(q,].[z) |-(q,ϵ,z) |- (q, ϵ, ϵ)

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by final state by some other PDA and vice versa.
Hence it doesn't matter which one we use, since each kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final

state or empty stack, we can always construct an equivalent PDA M with a single final state
that accpets exactly the same language L. The construction process of M' from M and the proof
of equivalence of M&M' are given below

There are two cases to be considered.

CASE 1 :PDAMaccepts by final state, Let M=(Q,∑,┌,ẟ,q0,z0,F). Let qf be a new state not in
Q. Consider the PDAM’=(Q U{qf},∑,┌,ẟ’,q0,z0,F) where ẟ’ as well as the following
transition.

ẟ’(q,ϵ,X)contains (qf,X) ˅ qϵFand Xϵ┌. It is easy to show that Mand M’are equivalent i.e.
L(M)=L(M’)

Let ωϵL(M). Then (q0,w,z0)|- M*(q,ϵ,γ)for some qϵFand ┌ϵ∑*

Then (q0,w,z0)|- M*(q,ϵ,γ)|- M*(qf,ϵ,γ)

Thus M’ accepts ω.

Conversely, let M’acceptsω i.e. ωϵL(M’), then (q0,w,z0)|- M*(q,ϵ,γ)|- M*(qf,ϵ,γ)for some
qϵF . M inherits all other moves except the last one from M. Hence (q0,w,z0)|- M*(q,ϵ,γ)for
some qϵF.

Thus M accepts ω. Informally, on any input M’ simulate all the moves of M and enters in its

72

own final state qfwhenever M enters in any one of its final status in F. Thus M’ accepts a
string ωiffM accepts it.
g
CASE 2 :PDAMaccepts by empty stack.

we will construct M’fromM in such a way M’ simulates M and detects when M empties its stack.

M enters its final state qf when and only when M empties its stack.ThusM’ will accept a
string ωiffM accepts.

Let M’=(Q U{qo’,qf},∑,┌ U{x},ẟ’,q0’,X,{qf}) where qo’,qf not ϵ Qand ẟ’and ẟcontains
all the transition of ẟ, as well as the following two transitions.

1. ẟ’(q0,ϵ,X)={(q0,z0,X)}and
2. ẟ’(q0,ϵ,X)={(qf,ϵ)}, ˅qϵQ

TWO MARKS

1. What are the applications of Context free languages
Context free languages are used in :

a. Defining programming languages.
b. Formalizing the notion of parsing.
c. Translation of programming languages.
String processing applications.

2. What are the uses of Context free grammars?
Construction of compilers.
Simplified the definition of programming languages.
Describes the arithmetic expressions with arbitrary nesting of balanced parenthesis { (,) }.
Describes block structure in programming languages.
Model neural nets.

3. Define a Context Free Grammar
A context free grammar (CFG) is denoted as G=(V,T,P,S) where V and T are finite set of

variables and terminals respectively. V and T are disjoint. P is a finite set of productions each
is of the form A->_ where A is a variable and _ is a string of symbols from (V U T)*.

4. What is the language generated by CFG or G?
The language generated by G (L(G)) is {w | w is in T* and S=>w. That is a G string

is in L(G) if:
i. The string consists solely of terminals.

ii. The string can be derived from S.

5. What is : (a) CFL (b) Sentential form
L is a context free language (CFL) if it is L(G) for some CFG G.

A string of terminals and variables α is called a sentential form if:
S => α ,where S is the start symbol of the grammar.

6. What is the language generated by the grammar G=(V,T,P,S) where
P={S->aSb, S->ab}?
S=> aSb=>aaSbb=>…………………………..=>anbn

73

Thus the language L(G)={ anbn | n>=1}.The language has strings with equal number of a’s
and b’s.

7. What is :(a) derivation (b)derivation/parse tree (c) subtree
(a) Let G=(V,T,P,S) be the context free grammar. If A-> β is a production of P and α and γ
are any strings in (VUT)* then α A γ => αβγ

(b) A tree is a parse \ derivation tree for G if:
a. Every vertex has a label which is a symbol of VU TU{_}.
b. The label of the root is S.
c. If a vertex is interior and has a label A, then A must be in V.
d. If n has a label A and vertices n1,n2,….. nk are the sons of the vertex n in order from

left with labels X1,X2,………..Xk respectively then A X1X2…..Xk must be in P.
e. If vertex n has label _ ,then n is a leaf and is the only son of its father.

(c) A subtree of a derivation tree is a particular vertex of the tree together with all its
descendants ,the edges connecting them and their labels.The label of the root may not be the
start symbol of the grammar.

8. If S->aSb | aAb , A->bAa , A->ba .Find out the CFL
soln. S->aAb=>abab
S->aSb=>a aAb b =>a a ba b b(sub S->aAb)
S->aSb =>a aSb b =>a a aAb b b=>a a a ba b bb

Thus L={anbmambn, where n,m>=1}

9. What is a ambiguous grammar?
A grammar is said to be ambiguous if it has more than one derivation trees for a

sentence or in other words if it has more than one leftmost derivation or more than one
rightmost derivation.

10. Find CFG with no useless symbols equivalent to : S→AB | CA ,
B→BC | AB, A→a , C→aB | b.
S-> AB
S->CA
B->BC
B->AB
A->a
C->aB
C->b are the given productions.
A symbol X is useful if S => αXβ => w. The variable B cannot generate terminals as B-
>BC and B->AB. Hence B is useless symbol and remove B from all productions.
Hence useful productions are: S->CA , A->a , C->b

11. Construct CFG without Є production from : S →a | Ab | aBa , A →b | Є , B →b | A.
S->a
S->Ab
S->aBa
A->b
A->Є
B->b
B->A are the given set of production.
A->Є is the only empty production. Remove the empty production
S-> Ab , Put A->Є and hence S-> b.
If B-> A and A->Є then B ->Є

74

Hence S->aBa becomes S->aa .
Thus S-> a | Ab | b | aBa | aa
A->b
B->b
Finally the productions are: S-> a | Ab | b | aBa | aa
A->b
B->b

12. Define a Context Free Grammar
A CFG is a grammar whose productions are of the form A -> α where A Є V and α Є (V U
T)*

13. Construct a CFG for the language L(G) = {0n1n : n > 1}.
G = {V = {S}, T = {0, 1}, P, S} where P ={S -> 0S S -> 01}

14. Construct a CFG for the language L (G) = {0n1n: n > 0}.
G = {V = {S}, T = {0, 1}, P, S} where P ={S -> 0S1 S ->}

15. Find a LM derivation for aaabbabbba with the productions.
P : S aB | bA, A a | aS | bAA, B b | bS | aBB
Solution: S aB

S aaBB
S aaaBBB
S aaabBB
S aaabbB
S aaabbaBB
S aaabbabB
S aaabbabbS
S aaabbabbbA
S aaabbabbba

16. Find a L(G) S aSb, S ab
Solution: S aSb

1. aaSbb
2. aiSbi

3. aiabbi

4. anbn

L(G) = {anbn, n > 1}
For the grammar S aCa, C aCa | b. Find L(G)
Solution:

S aCa-> aaCaa-> anCan

S anban L(G) = {anban, n > 0}

17. Construct a CFG for the language over {a,b} which contains palindrome strings.
G = {V = {S}, T = {a, b}, P, S}
where
P ={S -> aSa
S -> bSb
S -> a
S -> b
S ->}

18. Define the language of a Grammar.
If G = (V, T, P, S) is a CFG, the language of G denoted by L(G), is the set of terminal

strings that have derivations from the start symbol i.e. L(G) = {w in T / S -> *w}
19. What are the three ways to simplify a context free grammar?

removing the useless symbols from the set of productions.
By eliminating the empty productions.
By eliminating the unit productions.

75

UNIT- IV PROPERTIES OF CONTEXT-FREE LANGUAGES

Normal forms for CFG – Pumping Lemma for CFL - Closure Properties of CFL – Turing

Machines – Programming Techniques for TM.

PROPERTIES OF CONTEXT - FREE LANGUAGES
Empty Production Removal

The productions of context-free grammars can be coerced into a variety of forms
without affecting the expressive power of the grammars. If the empty string does not belong
to a language, then there is a way to eliminate the productions of the form A→ λ from the
grammar. If the empty string belongs to a language, then we can eliminate λ from all
productions save for the single production S → λ. In this case we can also eliminate any
occurrences of S from the right-hand side of productions.

Procedure to find CFG with out empty Productions

76

UNIT PRODUCTION REMOVAL

LEFT RECURSION REMOVAL:

77

NORMAL FORMS

Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal
Form (GNF) are considered here.

Chomsky Normal Form (CNF)

Any context-free language L without any λ-production is generated by a
grammar is which productions are of the form A → BC or A→ a, where A, B
∈VN , and a ∈ V Τ.

Procedure to find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and λ-productions if any,
(ii) Eliminate the terminals on the right hand side of length two or more.
(iii) Restrict the number of variables on the right hand side of productions to
two. Proof:
For Step (i): Apply the following theorem: “Every context free language can be generated
by a grammar with no useless symbols and no unit productions”.
At the end of this step the RHS of any production has a single terminal or two or more symbols.
Let us assume the equivalent resulting grammar as G  (VN ,VT ,P ,S).
For Step (ii): Consider any production of the form

78

Example: Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G
with productions P given

Solution

79

Pumping Lemma for CFG
A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a

language, then certain other strings must also belong to the language. Let us discuss a Pumping
Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at
least ‘m’ symbols long can be “pumped” to produce additional strings in L. The value of ‘m’
depends on the particular language. Let L be an infinite context-free language. Then there is
some positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then
(i) S = uvwxy (for some u, v, w, x, y)
(ii) | vwx| ≤ m
(iii) | vx| ≥1
(iv) uv iwx i y∈L.
for all non-negative values of
i. It should be understood that
(i) If S is sufficiently long string, then there are two substrings, v and x,
somewhere in S. There is stuff (u) before v, stuff (w) between v and x, and stuff (y),
after x.
(ii) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m.
(iii) Substrings v and x won’t both be empty, though either one could be.
(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same
number of times, the resultant string will also be in L.

Definitions A variable is useful if it occurs in the derivation of some string. This requires that
(a) the variable occurs in some sentential form (you can get to the variable if you start from S),

and
(b) a string of terminals can be derived from the sentential form (the variable is not a “dead
end”). A variable is “recursive” if it can generate a string containing itself. For example,
variable A is recursive if

80

Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that
generates L. Suppose
(i) L is infinite, hence there is no proper upper bound on the length of strings belonging to L.
(ii) L does not contain l.
(iii) G has no productions or l-productions.

There are only a finite number of variables in a grammar and the productions for each variable
have finite lengths. The only way that a grammar can generate arbitrarily long strings is if one or
more variables is both useful and recursive. Suppose no variable is recursive. Since the start
symbol is non recursive, it must be defined only in terms of terminals and other variables. Then
since those variables are non recursive, they have to be defined in terms of terminals and still
other variables and so on.

After a while we run out of “other variables” while the generated string is still finite.
Therefore there is an upper bond on the length of the string which can be generated from
the start symbol. This contradicts our statement that the language is finite. Hence, our
assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X
must have involved recursive use of some variable A. Since A was used in the derivation, the
derivation should have started as

81

Usage of Pumping Lemma:

Hence our original assumption, that L is context free should be false. Hence the language L
is not con text-free.

Example
Check whether the language given by L  {a mbmcn : m ≤ n ≤ 2m} is a CFL
or not. Solution

82

Closure properties of CFL – Substitution

83

Inverse Homomorphism:

84

TURING MACHINE: INFORMAL DEFINITION:

We consider here a basic model of TM which is deterministic and have one-tape. There are
many variations, all are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but
is infinite to the right and a tape head that can move left and right over the tape, reading and
writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (contiguous) tape cells.
The infinitely many cells to the right of the input all contain a blank symbol, B which is a
special tape symbol that is not an input symbol. The machine starts in its start state with its
head scanning the leftmost symbol of the input w.
Depending upon the symbol scanned by the tape head and the current state the machine makes a
move which consists of the following:

• writes a new symbol on that tape cell,
• moves its head one cell either to the left or to the right and
• (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues
computing (i.e. making moves) until

• it decides to "accept" its input by entering a special state called accept or final state or
• halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the
input, in which case it is said to "loop" on that input

Formal Definition :

Formally, a deterministic turing machine (DTM) is a 7-tuple , where

• Q is a finite nonempty set of states.
• is a finite non-empty set of tape symbols, call ed the tape alphabet of M.

85

• is a finite non-empty set of input symbols, called the input alphabet of M.

• is the transition function of M,

• is the initial or start state.
• is the blank symbol

• is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next
state, symbol to be written on the tape, and the direction in which to move the tape head (L and
R denote left and right, respectively).

Transition function :

• The heart of the TM is the transition function, because it tells us how the machine
gets one step to the next.

• when the machine is in a certain state q Q and the head is currently scanning the

tape symbol , and if , then the machine

1. replaces the symbol X by Y on the tape
2. goes to state p, and
3. the tape head moves one cell (i.e. one tape symbol) to the left (or right) if D is L (or R

).

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it
contains all the information to exactly capture the "current state of the computations".

It contains the following:

• The current state, q
• The position of the tape head,
• The constants of the tape up to the rightmost nonblank symbol or the symbol to the

left of the head, whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank
symbols on the tape, at any finite time, the TM has visited only a finite prefix of the infinite
tape.

An ID (or configuration) of a TM M is denoted by where and

• is the tape contents to the left of the head
• q is the current state.

• is the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of . (Note that if ,
then the tape head is scanning a blank symbol)

86

If is the start state and w is the input to a TM M then the starting or initial configuration

of M is denoted by

The Halting Problem:
The input to a Turing machine is a string. Turing machines themselves can be written as

strings. Since these strings can be used as input to other Turing machines. A “Universal Turing
machine” is one whose input consists of a description M of some arbitrary Turing machine, and
some input w to which machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. This is written as
Universal Turing Machine (M + w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing
machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do
for example, suppose you have written a C pretty printer in C, then used the Pretty printer on
itself. Another common usage is Bootstrapping—where some convenient languages used to write
a minimal compiler for some new language L, then used this minimal compiler for L to write a
new, improved compiler for language L. Each time a new feature is added to language L, you can
recompile and use this new feature in the next version of the compiler. Turing machines
sometimes halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given
some other string. The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an effective procedure to
look at a Turing machine and its input and determine whether the machine will halt with that
input. If there is an effective procedure, then we can build a Turing machine to implement it.
Suppose we have a Turing machine “WillHalt” which, given an input string M + w, will halt and
accept the string if Turing machine M halts on input w and will halt and reject the string if Turing
machine M does not halt on input w. When viewed as a Boolean function, “WillHalt (M, w)” halts
and returns “TRUE” in the first case, and (halts and) returns “FALSE” in the second.

Theorem:
Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction. Suppose we could build a machine
“WillHalt”. Then we can certainly build a second machine, “LoopIfHalts”, that will go into
an infinite loop if and only if “WillHalt” accepts its input:
Function LoopIfHalts (M, w): if
WillHalt (M, w) then while true do { }
else
return false;
We will also define a machine “LoopIfHaltOnItSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will
halt in this case.
Function LoopIfHaltsOnItself (M): return
LoopIfHalts (M, M):
Finally, we ask what happens if we try:
Function Impossible:
return LoopIfHaltsOnItself (LoopIfHaltsOnItself):
This machine, when applied to itself, goes into an infinite loop if and only if it halts when
applied to itself. This is impossible. Hence the theorem is proved.

87

A Turing machine can be "programmed," in much the same manner as a computer is
programmed. When one specifies the function which we usually call δ for a Tm, he is really
writing a program for the Tm.

1. Storage in finite Control
The finite control can be used to hold a finite amount of information. To do so, the state is
written as a pair of elements, one exercising control and the other storing a symbol. It
should be emphasized that this arrangement is for conceptual purposes only. No
modification in the definition of the Turing machine has been made.
Example
Consider the Turing machine Solution

88

89

2. Multiple Tracks
We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k.
This arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the
tape are considered as k-tuples. One component for each track.
Example
The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input greater
than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢ and $
on the first track.
Thus, the allowable input symbols are [¢, B, B], [0, B, B], [1, B, B], and [$, B, B]. These symbols
can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank
symbol can be represented by [B, B, B]
To test if its input is a prime, the Tm first writes the number two in binary on the second track and
copies the first track onto the third track. Then, the second track is subtracted, as many times as
possible, from the third track, effectively dividing the third track by the second and leaving the
remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is
nonzero, increase the number on the second track by one.
If now the second track equals the first, the number on the first track is a prime, because it cannot
be divided by any number between one and itself. If the second is less than the first, the whole
operation is repeated for the new number on the second track. In Fig., the Tm is testing to
determine if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37
appears on the third track.

3. Subroutines

TWO MARKS

1. What are the two major normal forms for context – free grammar?
The two Normal forms are

 Chomsky Normal Form
 Greibach Normal Form

2. What is a useless symbol? Nov/Dec 2007
A symbol x is useful if there is a derivation.

S ==>  x  ==> w for some , , w  T*

or else, it is useless.

3. What is  - Production rule?
Any production rule of the form A  is known as  - production.

90

4. Define Unit Production.
Any production rule of the form A B is known as unit production.

5. When do you say a symbol is useful?
We say a symbol is useful either if it derives a string of terminals or it can be used in the middle of a derivation
which yields a terminal or a string of terminals.

6. Define Chomsky’s Normal form.
A CFG whose production rules are of the form

A BC or A a

where A, B, and C are variables and a is terminal.

7. Write the procedure to eliminate  - productions.
 For all productions A, put A into V1

 Repeat the following steps until no new variables are added.
a. For all productions

B A1 A2 A3 … An

where A1 A2 A3 … An are in V1

b. Put B into V1.

8. Write the procedure to eliminate the unit productions.
 Find all variables B, for each A such that

*

A ==> B

 The new grammar G’ is obtained by letting into P’ all non – unit productions of P.
 For all A and B satisfying A ==>, add to P’

A y1 | y2 | . . . | yn

where B y1 | y2 | . . . | yn is the set of productions in P’

9. Eliminate the useless symbol from the following
S AB | a A b

B is an useless symbol since it doesn’t derive a terminal. Eliminating it we get

S a

A b

10. Define Greibach Normal form. Nov/Dec 2009
A CFG whose production rules are of the form A  α where a is a terminal and α is either empty or a string of
non – terminals.

11. State pumping lemma for Context free language. April/May 2008
Let L be a CFL. Then there exists a constant n such that if z is any string in L such that |z| < n then we can write z
= uvwxy subject to the following conditions.

a) |vwx | < n
b) vx ≠ 
c) for all i > 0 uviwxiy is in L.
d)

12. What is the use of pumping lemma for CFG.
It is used to check whether a given language is context free language or not.

13. What operations that preserve CFL’s.
1. Substitution

2. Union

91

3. Concatenation

4. Closure (star)

5. Reversal

14. What is a formal language?
Language is a set of valid strings from some alphabet. The set may be empty,finite or infinite. L(M) is

the language defined by machine M and L(G) is the language defined by Context free grammar. The two
notations for specifying formal languages are: Grammar or regular expression Generative approach)
Automaton(Recognition approach)

15. What is Backus-Naur Form(BNF)?
Computer scientists describes the programming languages by a notation called Backus- Naur Form. This is

a context free grammar notation with minor changes in format and some shorthand.

16. Let G= ({S,C} ,{a,b},P,S) where P consists of S->aCa , C->aCa |b. FindL(G).
S-> aCa => aba

S->aCa=> a aCa a=>aabaa

S->aCa=> a aCa a=> a a aCa a a =>aaabaaa

Thus L(G)= { anban ,where n>=1 }

17. Find L(G) where G= ({S} ,{0,1}, {S->0S1 ,S->_ },S) S->_ , _ is in L(G)
S-> 0S1 =>0_1=>01 S->0S1=>0 0S11=>0011 Thus L(G)= { 0n1n | n>=0}

18. What is a parser?
A parser for grammar G is a program that takes as input a string w and produces as output either a parse

tree for w ,if w is a sentence of G or an error message indicating that w is not a sentence of G.

19. What are the closure properties of CFL?
CFL are closed under union, concatenation and Kleene closure. CFL are closed under substitution ,

homomorphism. CFL are not closed under intersection , complementation. Closure properties of CFL’s are
used to prove that certain languages are not context free.

20. State the pumping lemma for CFLs.
Let L be any CFL. Then there is a constant n, depending only on L, such that if z is in L and |z| >=n,

then z=uvwxy such that :

(i) |vx| >=1

(ii) |vwx| <=n and

(iii) for all i>=0 uviwxiy is in L.

92

UNIT- V UNDECIDABILITY

A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE –
Undecidable problems about Turing Machine – Post’s Correspondence Problem - The classes P
and NP.

5.1 INTRODUCTION:
While there are many branches of knowledge, each having its own problems and

methods, `Undecidability' is a subject dealing with the very nature of problems itself. Given any
problem, does it have a solution? Is there any method to find the solution? These are the kind of
questions which this subject tries to address. In what follows, we shall see the answers to these
questions. But first, we need precise definitions of what is a problem, a solution, a method and a
few entertaining mathematical results. Design a Turing machine to add two given integers.

Solution:

Some unsolvable Problems are as follows:
 Does a given Turing machine M halts on all input?
 Does Turing machine M halt for any input?
 Is the language L(M) finite?
 Does L(M) contain a string of length k, for some given k?

93

 Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing
machine M and input string w, whether or not M accepts w. These problems for which no
algorithms exist are called “UNDECIDABLE” or “UNSOLVABLE”.

94

5.1.1 Diagonalization language:

This table represents language acceptable by Turing machine

95

Proof that Ld is not recursively enumerable:

5.2 RECURSIVE LANGUAGES:

96

97

5.2.1 UNIVERSAL LANGUAGE:

98

5.3 UNDECIDABILITY OF UNIVERSAL LANGUAGE:

5.4 Post's Correspondence Problem (Pcp)
A post correspondence system consists of a finite set of ordered pairs

where

for some alphabet ∑.

Any sequence of numbers i1, i2,….ik s – t is called a solution to a Post Correspondence
System. The Post's Correspondence Problem is the problem of determining whether a Post
Correspondence system has a solutions.

99

Example 1 : Consider the post correspondence system

{(aa,aa), (bb,ba),(abb,b)}. The list 1,2,1,3 is a solution to it.

Because x1x2x1x3=y1y2y1y3

A post correspondence system is also denoted as an instance of the PCP) Example 2 : The
following PCP instance has no solution. This can be proved as follows. cannot be chosen at the
start, since than the LHS and RHS would differ in the first symbol (in LHS and in RHS). So, we
must start with. The next pair must be so that the 3 rd symbol in the RHS becomes identical to
that of the LHS, which is a . After this step, LHS and RHS are not matching. If is selected next,
then would be mismatched in the 7 th symbol (in LHS and in RHS). If is selected, instead, there
will not be any choice to match the both side in the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

The following properties can easily be proved.

Proposition The Post Correspondence System has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

Proposition Any PCP instance over an alphabet with is equivalent to a PCP instance over an
alphabet with

Proof : Consider We can now encode every as any PCP instance over will now have only two
symbols, 0 and 1 and, hence, is equivalent to a PCP instance over

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary
Post Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability
of PCP. Since halting problem of TM is undecidable (already proved), This reduction shows that
PCP is also undecidable. The proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free
languages are undecidable. To prove this we reduce the PCP to each of these problem. The
following discussion makes it clear how PCP can be used to serve this purpose. Let be a Post
Correspondence System over the alphabet. We construct two CFG's Gx and Gy from the ordered
pairs x,y respectively as follows. It is clear that the grammar generates the strings that can appear
in the LHS of a sequence while solving the PCP followed by a sequence of numbers. The
sequence of number at the end records the sequence of strings from the PCP instance (in reverse
order) that generates the string. Similarly, generates the strings that can be obtained from the
RHS of a sequence and the corresponding sequence of numbers (in reverse order). Now, if the
Post Correspondence System has a solution, then there must be a sequence. Conversely, let
Hence, w must be in the form w1w2 where and w2 in a sequence (since, only that kind of strings
can be generated by each of and).Now, the string is a solution to the Post Correspondence

100

System. It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s
whose intersection is nonempty. The following result is a direct conclusion of the above.

Theorem : Given any two CFG's G1 and G2 the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This
would imply that PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars and by using the constructions
elaborated already. We can now use the algorithm A to decide whether and Thus, PCP is
decidable, a contradiction. So, such an algorithm does not exist.

If and are CFG's constructed from any arbitrary Post Correspondence System, than it is not
difficult to

show that and are also context-free, even though the class of context-free languages are not
closed under complementation.

and their complements can be used in various ways to show that many other questions related to
CFL's are undecidable. We prove here some of those.

5.5 Class p-problem solvable in polynomial time:

5.5.1 Non deterministic polynomial time:

A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for
some polynomial p is said to be non polynomial time NTM. NP is the set of languags that are
accepted by polynomial time NTM’s. Many problems are in NP but appear not to be in p. One
of the great mathematical questions of our age: is there anything in NP that is not in p?

5.5.2 NP-complete problems:
If We cannot resolve the “p=np question, we can at least demonstrate that certain

problems in NP are the hardest , in the sense that if any one of them were in P , then P=NP.
These are called NP-complete. Intellectual leverage: Each NP-complete problem’s apparent
difficulty reinforces the belief that they are all hard.

5.5.3 Methods for proving NP-Complete problems:
Polynomial time reduction (PTR): Take time that is some polynomial in the input size to

convert instances of one problem to instances of another. If P1 PTR to P2 and P2 is in P1 the so
is P1. Start by showing every problem in NP has a PTR to Satisfiability of Boolean
formula.Then, more problems can be proven NP complete by showing that SAT PTRs to them
directly or indirectly.

101

TWO MARKS QUESTIONS AND ANSWERS
1. What is the weak-form of Turing thesis?

A Turing Machine can pute anything that can be puted by a general purpose
digital puter.
2. What is the strong-form of Turing thesis?

A Turing Machine can pute anything that can be puted. This is the strong form of
Turing thesis.
3. When a language is said to be recursively enumerable?

A language is recursively enumerable if there exists a Turing Machine that
accepts every string of the language and does not accept strings that are not in the
language.
4. When a language is said to be recursive?

A language L is said to be recursive if there exists a Turing machine M that
accepts L, and goes to halt state or else M rejects L. The language Ld. Which consists of
all those strings w such that the Turing machine represented by w does not accept the
input w.

Ld = { wi | wi  L(Mi)}

6. Define decidability (or) decidable problems?
.

A problem is said to be decidable if there exists a Turing machine which gives
one ‘yes’ or ‘no’ answer for every input in the language.

(or)
A problem is said to be decidable if it is a recursive language.

7. Define Undecidable.problem?
If a problem is not a recursive language, then it is called undecidable problem.

8. Define Universal language?

A Universal Turing Machine Mu is an automation, that given as input the
description of any Turing Machine M and a string w, can simulate the putation of
M on w.

9. What are the reasons for a TM not accepting its input?
i) The TM may halt in a non final state.
ii) The TM may enter into an indefinite loop.

10. Define trivial property?
A property is trivial if it is either empty of is all RE languages.

11. Define rice Theorem?
Every non-trivial property of the RE languages is undecidable.

12. Define post’s correspondence problem?
An instance of PCP

consists of two
lists, A = w1,
w2, w3,
. wk
B = x1, x2, x3,xk of strings over some ∑.

This instance of PCP has a solution if there is any sequence of

102

integers i1, i2,, ………….im with m≥1.
Such that

wi1, w i2, w i3 ………………………..w im = x i1, x i2, x
i3,………….x im

The sequence of i 1,i 2,……………..i m is a solution to this instance of PCP.

13. Let A and B be lists of three strings each, as defined in the following table?

A B

w x
1 1 111

2 10111 10

3 10 0

Find the instance of post correspondence Problem.
Solution :

Apply wi1, w i2, w i3 ………………………..w im = x i1, x i2, x i3,………….x im

to this problem.

Take M = 4 .
w 2 w 1 w 1 wi3 = x 2 x 1 x 1 xi3
10 111 111
0 =10 111 111 0
Instance = 2,1,1,3.

14. Define modified . post’s correspondence problem?
Given lists A and B, of K strings each from ∑*, say

A = w , w w , w B= x11, x2,2x3, .3xkk
Does there exist a sequence of integers i 1,i 2,……………..i r such that
wi1, w i2, w i3 ………………………..w im = x i1, x i2, x i3,………….x ir
The sequence of i 1,i 2,……………..i m is a solution to this instance of PCP.

15. Define problem solvable in polynomial Time?
A Turing Machine M is said to be of time plexity T(n) if whenever m given an

input w of length n, m halts after making atmost T(n) moves, regardless of whether or
not m accepts.

16. Define the classes P and NP?
P consists of all those languages or problems accepted by some Turing

Machine that runs in some polynomial amount of time, as a function of its input
length.

NP is the class of languages or problems that are accepted by Nondeterministic
TM’s with a polynomial bound on the time taken along any sequence of non –
deterministic choices.

103

17. Define NP – plete Problem?
A language L is NP – plete if the following statements are true.

a. L is in NP
b. For every language L1 in NP there is a polynomial

time reduction of L1 to L

18. What are tractable problems?
The problems which are solvable by polynomial time

algorithms are called tractable problems.

19. What are the properties of recursive enumerable sets Which are undecidable?
i) Emptiness
ii) Finiteness
iii) Regularity
iv) Context – freedom

20. What are the properties of recursive and Recursively Enumerable Language?
1. The plement of a Recursive language is Recursive.
2. The union of two recursive languages are recursive.
The union of two RE languages

are RE.
3. If a language L and plement L are both RE, then L is recursive. .

KARPAGAM UNIVERSITY

(Under Section 3 of UGC Act 1956)

COIMBATORE-641 021

THEORY OF COMPUTATION

III-CSE A&B

 UNIT IV & V

IMPORTANT TWO MARKS

1. Define Deterministic push down automata

 A PDA P = (Q, Σ, δ, Γ, q0, Z0, F) to be deterministic iff

 δ (q,a,X) has at most one member for any q in Q, a in Σ or a = ε and X in |--

 if δ (q,a,X) is not empty, for some a in Σ, then δ(q,ε,X) must be empty.

2. What is a multi-tape Turing machine?
A multi-tape Turing machine consists of a finite control with k-tape heads

and k-tapes; each tape is infinite in both directions. On a single move depending on

the state of finite control and symbol scanned by each of tape heads ,the machine can

change state print a new symbol on each cells scanned by tape head, move each of

its tape head independently one cell to the left or right or remain stationary.

 3. Is it true that NDPA is more powerful than that od DPDA? Justify your answer.
 No, NPDA is not powerful than DPDA. Because NPDA may produce ambiguous

grammar by reaching its final state or by emptying its stack. But DPDA produces only

unambiguous grammar.

 4. What are the two major normal forms for context-free grammar?

The two Normal forms are

 Chomsky Normal Form (CNF)

 Greibach Normal Form (GNF)

5. What are the various representation of TM?

The TM can be represented using:

 Instantaneous description.

 Transition table.

 Transition diagram.

6. How do you simplify the context-free grammar?

 First eliminate useless symbols, where the variable or terminals that do not

appear in any derivation of a terminal string from the start symbol.

 Next eliminate a ε- production which is of the form A→ ε for some variable A.

 Eliminate unit productions, which are of the form A → B for variables A, B.

 Finally use any of the normal forms to get the simplified CFG.

 7. What are the required fields of an instantaneous description or configuration of a

TM.
 The required fields of an instantaneous description or configuration of a TM are:

 The state of the TM

 The contents of the tape.

 The position of the tape head on the tape.

 8. When a language is said to be recursive?
A language L is said to be recursive if there exists a Turing machine M that accepts L,

and goes to halt state or else M rejects L.

9. Define Class NP Complete problem.

 A language L is NP – complete if the following statements are true.

 L is in NP

 For every language L1 in NP there is a polynomial time reduction of L1 to L

 10. What are the properties of recursive and Recursively Enumerable Language?

 The complement of a Recursive language is Recursive.

 The union of two recursive languages is recursive.

 The union of two RE languages is RE.

 If a language L and complement L are both RE, then L is recursive.

11. State the pumping lemma for CFL

Let L be any CFL. Then there is a constant n, depending only on L, such that if z

is in L and |z| >=n, then z=uvwxy such that :

(i) |vx| >=1

(ii) |vwx| <=n and

(iii) for all i>=0 uv
i
wx

i
y is in L.

12. Differentiate PDA and TM.

PDA TM

1. PDA uses a stack for storage.

1. TM uses a tape that is infinite.

2.The language accepted by PDA

is CFL.

2. Tm recognizes recursively

enumerable languages.

13. What are UTMs or Universal Turing machines?

Universal TMs are TMs that can be programmed to solve any problem, that can be

solved by any Turing machine. A specific Universal Turing machine U is: Input to U: The

encoding “M “ of a Tm M and encoding “w” of a string w. Behavior : U halts on input “M”

“w” if and only if M halts on input w.

 14. Define Nullable Variable?
 Nullable variable in a CFG G =(V,T,P,S) can be defined as follows.

 Any variable A for which P contains the production AA, is nullable.

 If P contains the production AB1,B2, ……. Bn and B1, B2, ….Bn are nullable

variables, then A is nullable.

 No other variables in V are nullable.

 15. Let G=(V,T,P,S) with the productions given by

S aSbS/ ε

 BabB

Eliminate the useless production.

 Solution:
Remove B is useless production because of Variable is not reachable. S aSbS / ε

 16. Write the procedure to eliminate the unit productions.

 i) Find all variables B, for each A such that A* B

 ii) The new grammar G is obtained by letting into P all non-unit productions of P.

 iii) For all A and B satisfying A* B, add to p

 Ay1 / y2 / y3 /………/ yn , where B y1 / y2 / y3 /………/ yn is the set of

productions in P.

 17. Define CNF.

A CFG without any ε–production is generated by a grammar in which the

productions are of the form. A BC or Aa, where A,B Σ V and a Σ T.

18. Define Turing Machine.

The Turing Machine is denoted by M = (Q, Σ, δ, Γ, q0, B, F) Where

Q – Finite set of states

Σ - Finite set of input symbols

Γ - Finite set of stack symbols

δ - Transition function - Q x |-- Q x |-- x {L,R}, Where L,R – Directions.

 q0 – Start State

B – A Start symbol of the |--, a blank

F – Final State.

 19. When a language is said to be recursively enumerable?

A language is recursively enumerable if there exists a Turing Machine that accepts

every string of the language and does not accept strings that are not in the language

 20. Define post’s correspondence problem?
An instance of PCP consists of two lists,

 A = w1, w2, w3, wk

 B = x1, x2, x3,xk of strings over some Σ.

 This instance of PCP has a solution if there is any sequence of integers i1, i2,, ………….im

with m≥1. Such that wi1, w i2, w i3 ………………………..w im = x i1, x i2, x i3,………….x im.

The sequence of i 1,i 2,……………..i m is a solution to this instance of PCP.

 21. Define the classes P and NP?

 P consists of all those languages or problems accepted by some Turing Machine

that runs in some polynomial amount of time, as a function of its input length.

 NP is the class of languages or problems that are accepted by Nondeterministic

TM’s with a polynomial bound on the time taken along any sequence of non –

deterministic choices.

22. What is GNF?

Every CFL L without ε can be generated by a grammar for which every production is of

the form A→ aα, where AΣV, aΣT, is a string of variables.

 23. What are the properties of recursive enumerable sets which are undecidable?

 Emptiness

 Finiteness

 Regularity

 Context – freedom

24. Compare NPDA and DPDA.

NPDA DPDA

1. NPDA is the standard PDA

used in automata theory.

1. The standard PDA in

practical situation is DPDA.

2. Every PDA is NPDA unless

otherwise specified.

2. The PDA is deterministic in

the sense ,that at most one

move is possible from any ID.

Fourteen marks:

1. i) Convert the following CFG to CNF

 S->ASA|aB

A->B|S

B->b| ε (10)

 ii) Explain about Greibach Normal Form. (4)

2. Show that halting problem of Turing machine is undecidable. (14)

3. Explain the theorem of CFL to prove that CFL are closed under union,intersection and

 kleen closure. Prove that CFL’s are closed under homomorphism (14)

4. i) Show that the intersection of two recursive languages is also recursive (7)

ii) Show that the union of two recursively enumerable language is also recursively

enumerable (7)

5. Find the CNF for the following grammar

 S → AS / as

 A → aab /E

 S → bba (14)

6. i) Prove that if L is a CFL and R is a regular set, then LR is a CFL. (10)

 ii) Prove that CFL are closed under substitution (4)

7. Find whether the following languages are recursive or recursively enumerable.

 i) Union of two recursive languages

 ii) Union of two recursively enumerable languages.

 iii) If L and complement of L are recursively enumerable.

 iv) uL (14)

8. i) Explain multiple track Turing machine with an example. (7)

 ii) Construct the Turing machine to compute the concatenation function (7)

9. Define Universal language Lu. Show that Lu is recursively enumerable but

 not recursive. (14)

10) Explain about Greibach Normal Form. (4)

	syllabus.pdf (p.1-5)
	TOC LECTURE NOTES.pdf (p.6-109)
	FRONT.pdf
	UNIT I II.pdf
	UNIT3.pdf
	UNIT IV.pdf
	UNIT V.pdf

	TOC TWO MARKS.pdf (p.110-115)
	Automata-Theory-MCQS-PDF.pdf (p.116-127)

