
 To understand the concepts of object oriented analysis and design 

 To understand the object oriented life cycle. 

 To know how to identify objects, relationships, services and attributes through UML. 



LEARNING OUTCOMES:

 To understand the use-case diagrams. 

 To know the Object Oriented Design process. 

 To know about software quality and usability. 
UNIT- I INTRODUCTION (9)
An Overview of Object Oriented Systems Development - Object Basics – Object Oriented

Systems Development Life Cycle.

UNIT- II OBJECT ORIENTED METHODOLOGIES (9)
Rumbaugh Methodology - Booch Methodology - Jacobson Methodology - Patterns –

Frameworks – Unified Approach – Unified Modeling Language – Use case - class diagram -

Interactive Diagram - Package Diagram - Collaboration Diagram - State Diagram - Activity

Diagram.

UNIT- III OBJECT ORIENTED ANALYSIS (9)
Identifying use cases - Object Analysis - Classification – Identifying Object relationships - Attributes

and Methods.

UNIT- IV OBJECT ORIENTED DESIGN (9)
Design axioms - Designing Classes – Access Layer - Object Storage - Object Interoperability.

UNIT- V SOFTWARE QUALITY AND USABILITY (9)
Designing Interface Objects – Software Quality Assurance – System Usability - Measuring User

Satisfaction

Total hours:45
TEXT BOOKS:

1. Ali Bahrami Object Oriented Systems Development Tata McGraw- Hill 2008

2. Martin Fowler Martin Fowler PHI/Pearson Education 2007
REFERENCES:

1. Stephen R. Schach Introduction to Object Oriented Analysis and Design Tata

McGraw-Hill 2003

2. James Rumbaugh, Ivar Jacobson, Grady Booch The Unified Modeling Language

Reference Manual Addison Wesley 2005

3. Hans-Erik Eriksson, Magnus Penker, Brain Lyons, David Fado UML Toolkit

OMG Press Wiley Publishing Inc 2004

L T P C

3 0 0 3

14BECS703 OBJECT ORIENTED ANALYSIS AND DESIGN

COURSE OBJECTIVES:

LESSON PLAN

COURSE EDUCATIONAL OBJECTIVES:

 The main objective is the students become familiar with all phases of OOAD.

 Master the main features of the UML.

 Master the main concepts of Object Technologies and how to apply them at work and

develop the ability to analyze and solve challenging problem in various domains.

 Learn the Object design Principles and understand how to apply them towards

implementation.

COURSE OUTCOMES:

After the completion of the course, students should be able to:

1. Select the basic elements of modeling such as Things, Relationships and Diagrams

depending on the views of UML Architecture and SDLC.

2. Apply basic and Advanced Structural Modeling Concepts for designing real time applications.

3. Design Class and Object Diagrams that represent Static Aspects of a Software System.
4. Analyze Dynamic Aspects of a Software System using Use Case, Interaction and Activity

Diagrams.

5. Apply techniques of State Chart Diagrams and Implementation Diagrams to model

behavioral aspects and Runtime environment of Software Systems.

Detailed Lesson Plan

 No. of Content delivery

S.NO DATE TOPIC TO BE COVERED Actual Date HOURS Methods

 UNIT-I INTRODUCTION TO UML

1 22/06/15 Importance of Modelling 1 DM1

2 23/06/15 Principles of modelling 1 DM1

3 25/06/15 Object Oriented modelling 1 DM1

4 26/06/15 Conceptual model of the UML 1 DM1

5 27/06/15 Conceptual model of the UML 1 DM6

6 29/06/15 Conceptual model of the UML 1 DM6

7 30/06/15 UML Architecture 1 DM1

8 06/07/15 Software Development life cycle 1 DM6

9 07/07/15 Tutorial-I 1 DM2

10 09/07/15 Software Development life cycle 1 DM1

 UNIT-II STRUCTURAL MODELLING

11 10/07/15 Basic Structural Modelling: Classes 1 DM1

12 13/07/15 Basic Structural Modelling: Classes 1 DM6

13 14/07/15 Relation ships 1 DM1

14 16/07/15 Common mechanisms 1 DM1

15 17/07/15 Common mechanisms 1 DM6

16 20/07/15 Common mechanisms 1 DM6

17 21/07/15 Diagrams 1 DM1

18 23/07/15 Tutorial-II DM2

19 24/07/15 Diagrams 1 DM6

20 25/07/15 Advanced Structural Modelling: Classes 1 DM2

21 27/07/15 Advanced Relation ships 1 DM1

22 28/07/15 Interfaces 1 DM6

23 30/07/15 Types and Roles 1 DM6

24 31/07/15 Packages DM1

25 01/08/15 Tutorial-III DM2

26 03/07/15 Review DM6

 UNIT-III CLASSES & OBJECT DIAGRAMS

27 04/07/15 Terms & Concepts - Class diagrams 1 DM1

28 06/07/15 Modelling techniques for class diagrams 1 DM1

29 07/07/15 Modelling techniques for class diagrams 1 DM1

30 10/07/15

31 11/07/15

32 13/07/15 MID-I EXAMS

33 14/07/15

34 17/08/15

35 18/08/15 Terms & Concepts - Object diagrams 1 DM1

36 20/08/15 Modelling techniques for Object diagrams 1 DM6

37 21/08/15 Modelling techniques for Object diagrams 1 DM6

38 22/08/15 Tutorial-IV 1 DM2

 UNIT-IV BASIC BEHAVIORAL MODELLING

39 24/08/15 Interactions 1 DM1

40 25/08/15 Interaction diagrams- Sequence 1 DM1

41 27/08/15 Interaction diagrams - Collaborations 1 DM1

42 28/08/15 Interaction diagrams –C M Techniques 1 DM6

43 29/08/15 Use cases 1 DM1

44 31/08/15 Use case Diagrams 1 DM1

45 01/09/15 Common modelling techniques 1 DM6

46 03/09/15 Activity diagrams 1 DM1

47 04/09/15 Common modelling techniques 1 DM6

48 05/09/15 Tutorial-V 1 DM2

49 07/09/15 Review DM6

50 08/09/15 Review DM6

 UNIT-V

51 10/09/15 Advanced Behavioral Modelling 1 DM6

52 11/09/15 Events and Signals 1 DM1

53 14/09/15 Events and Signals 1 DM6

54 15/09/15 State machines 1 DM6

55 18/09/15 Processes and Threads 1 DM1

56 19/09/15 Time and Space 1 DM1

57 21/09/15 State Chart Diagrams 1 DM6

58 22/09/15 State Chart Diagrams 1 DM6

59 25/09/15 Tutorial-VI 1 DM2

60 26/09/15 Architectural Modelling 1 DM1

61 28/09/15 Components 1 DM1

62 29/09/15 Component Diagrams 1 DM6

63 01/10/15 Deployment 1 DM1

64 03/10/15 Deployment Diagrams 1 DM6

65 05/10/15 Tutorial-VII 1 DM2

66 06/10/15 Review 1 DM6

67 08/10/15 Review DM6

68 09/10/15 Review DM6

69 12/10/15 Review of Unit - IV DM6

70 13/10/15 Review of Unit - III DM6

71 15/10/15 Review of Unit - II DM6

72 16/10/15 Review of Unit - II DM6

73 17/10/15 Review of Unit - I DM6

74 26/10/15

75 27/10/15

76 29/10/15 MID – II EXAMS

77 30/10/15

78 31/10/15

TEXT BOOK :

1. Grady Booch, James Rumbaugh, Ivar Jacobson : The Unified Modeling Language
User Guide, Pearson Education.

UNIT-I

Introduction:

The various trends in S/W development give the change in the languages. In earlier

days S/W developers used Machine Languages, which deals with 0‘s and 1‘s

[Binary Number]. S/W developers felt it was difficult to program using binary

numbers. In later stage Assembly Language was used for a programming. Assembly

Language uses mnemonics, which is better than binary language. Then high-level

language was introduced. The human understandable English is used in the

programming languages. Initial stages of high-level languages have the procedural

/structural languages. Programmers concentrate more on functions rather than data.

To overcome this object oriented programming languages was introduced. In

OOProgramming the programmer concentrate or gives equal importance to

functions and data. The advantages over procedure languages are OOPS concepts.

Machine Language 0,1

↓

Assembly Language Mnemonics

↓

High Level Language Human Understandable Language

Procedure/Structural

language

Global data

Concentrate on functions.

 Object oriented programming language

OOPS concepts.

The OOPS concepts are

Data hiding

Data encapsulation

Data abstraction

Inheritance

Polymorphism

Objects

Class

Dynamic binding

Message passing.

The detailed view of oops concepts is discussed later.

OBJECT ORIENTATION:

Object oriented methods enable us to create sets of objects that work

together synergistically to produce software that better module their problem domains

than similar systems produced by traditional techniques. The system created using

object oriented methods are easier to adapt changing requirements, easier to maintain,

more robust, promote greater design. The reasons why object orientation works

High level of abstraction.

Seamless transition among different phases of software development.

Encourage of good programming techniques.

Promotion of reusability.

High level of abstraction:

Top-down approach It supports abstraction of the function level.

Objects oriented approach It supports abstraction at the object level.

The

object encapsulate both the data (attributes) and functions (methods), they work
as a higher level of abstraction. The development can proceed at the object level,
this makes designing, coding, testing, and maintaining the system much simpler.

Seamless transition among different phases of software development

Traditional Approach:

The software development using this approach requires different
styles and methodologies for each step of the process. So moving from one
phase to another requires more complex transistion.

Object-oriented approach:

We use the same language to talk about analysis, design,
programming and database design. It returns the level of complexity and
reboundary, which makes clearer and robust system development.

Encouragement of good programming techniques:

A class in an object-oriented system carefully delineates between its

interface and the implementation of that interface. The attributes and methods are

encapsulated within a class (or) held together tightly. The classes are grouped into

subsystems but remain independent one class has no impact on other classes. Object

oriented approach is not a magical one to promote perfect design (or) perfect code.

Raising the level of abstraction from function level to object level and
focusing on the real-world aspects of the system, the object oriented method tends to

Promote clearer designs.

Makes implementation easier.

Provide overall better communication.

Promotion of Reusability:

Objects are reusable because they are modeled directly out of real world.

The classes are designed generically with reuse. The object orientation adds

inheritance, which is a powerful technique that allows classes to built from each other.

The only differents and enhancements between the classes need to be designed and

coded. All the previous functionality remains and can be reused without change.

OBJECT-ORIENTED SYSTEM DEVELOPMENT

Traditional Software Development:

The S/W development is based on function and procedures.

Object-oriented software development:

It is a way to develop software by building self-contained modules or
objects that can be easily replaced, modified and reused. In an object-oriented
environment, software is a collection of discrete objects that encapsulate their
data as well as the functionality to model real-world objects. An object orientation
yields important benefits to the practice of software construction. Each object has
attributes (data) and methods (function). Objects are grouped into classes.

In object-oriented system, everything is an object and each object is
responsible for itself.

For example:

Windows applications needs windows object that can open
themselves on screen and either display something or accept input.

Windows object is responsible for things like opening, sizing, and

closing itself.

When a windows display something, that something is an object. (ex)

chart.

Chart object is responsible for maintaining its data and labels and
even for drawing itself.

Review of objects:

The object-oriented system development makes software
development easier and more natural by raising the level of abstraction to the
point where applications can be implemented. The name object was chosen
because ―everyone knows what is an object is ‖. The real question is ―what do
objects have to do with system development‖ rather that ―what is an object?‖

Object:

A car is an object a real-world entity, identifiably separate from its
surroundings. A car has a well-defined set of attributes in relation to other object.

 CAR Object

Attributes Methods

 Color Drive it

 Manufacturer Lock it

 Cost Tow it

Owner

Carry Passenger in it

Attributes:

Data of an object.

Properties of an object.

Methods:

Procedures of an
object. or

Behaviour of an object.

The term object was for formal utilized in the similar language. The term
object means a combination or data and logic that represent some real-world entity.

When developing an object oriented applications, two basic questions arise

What objects does the application need?

What functionality should those objects have?

Programming in an object-oriented system consists of adding new
kind of objects to the system and defining how they behave. The new object
classes can be built from the objects supplied by the object-oriented system.

Object state and properties (Attributes):

Properties represent the state of an object. In an object oriented
methods we want to refer to the description of these properties rather than how
they are represented in a particular programming language.

Car

Cost

Color Attributes of car object

Make

Model

We could represent each property in several ways in a programming

languages.

For example:

Color 1. Can be declared as character to store sequence or character [ex: red, blue, ..]

2. Can declared as number to store the stock number of paint [ex: red
paint, blue paint, ..]

3. Can be declared as image (or) video file to refer a full color video image.

The importance of this distinction is that an object abstract state can
be independent of its physical representation.

Object Behaviour and Methods:

We can describe the set of things that an object can do on its own (or) we

can

do with it.

For example:

Consider an object car,

We can drive the car.
We can stop the car.

Each of the above statements is a description of the objects behaviour. The

objects behaviour is described in methods or procedures. A method is a function or

procedures that is defined in a class and typically can access to perform some operation.

Behaviour denotes the collection of methods that abstractly describes what an object is

capable of doing. The object which operates on the method is called receiver. Methods

encapsulate the behaviour or the object, provide interface to the object and hide any of the

internal structures and states maintained by the object. The procedures provide us the

means to communicate with an object and access it properties.

For example:

An employee object knows how to compute salary. To compute an
employee salary, all that is required is to send the compute payroll message to
the employee object.

So the simplification of code simplifies application development and

maintenance.

Objects Respond to Messages:

The capability of an object‘s is determined by the methods defined
for it. To do an operation, a message is sent to an object. Objects represented to
messages according to the methods defined in its class.

For example:

When we press on the brake pedal of a car, we send a stop
message to the car object. The car object knows how to respond to the stop
message since brake have been designed with specialized parts such as break
pads and drums precisely respond to that message.

 Brake

Car Object

Different object can respond to the same message in different ways.
The car, motorcycle and bicycle will all respond to a stop message, but the actual
operations performed are object specific.

It is the receiver‘s responsibility to respond to a message in an
appropriate manner. This gives the great deal or flexibility, since different object can
respond to the same message in different ways. This is known as polymorphism.

Objects are grouped in classes:

The classification of objects into various classes is based its
properties (states) and behaviour (methods). Classes are used to distinguish are
type of object from another. An object is an instance of structures, behaviour and
inheritance for objects. The chief rules are the class is to define the properties
and procedures and applicability to its instances.

For example:

Employee Class

David

John

Andrew Objects of

Align class employee

Alfred

Class Hierarchy:

An object-oriented system organizes classes into a subclass super
class hierarchy. The properties and behaviours are used as the basis for
making distinctions between classes are at the top and more specific are at
the bottom of the class hierarchy. The family car is the subclass of car. A
subclass inherits all the properties and methods defined in its super class.

Motor Vehicle

 Bus Truck Car

Private Govt Mini Heavy Race Family

Omni Passenger Lorry Truck Car Car

Bus Bus

Super class/Subclass Hierarchy

Inheritance:

It is the property of object-oriented systems that allow objects to be
built from other objects. Inheritance allows explicitly taking advantage of the
commonality of objects when constructing new classes. Inheritance is a
relationship between classes where one class is the parent class of another
(derived) class. The derived class holds the properties and behaviour of base
class in addition to the properties and behaviour of derived class.

Vehicle

Car

Hyundai

Santro Sonata Accent

Inheritance allows reusability.

Dynamic Inheritance:

Dynamic inheritance allows objects to change and evolve over time.
Since base classes provide properties and attributes for objects, hanging base
classes changes the properties and attributes of a class.

Example:

A window objects change to icon and basic again. When we double click
the folder the contents will be displayed in a window and when close it, changes back to
icon. It involves changing a base class between a windows class and icon class.

Multiple Inheritances:

Some object-oriented systems permit a class to inherit its state
(attributes) and behaviour from more than one super class. This kind or
inheritance is referred to as multiple inheritances.

For example:

Utility vehicle inherits the attributes from the Car and Truck classes.

Vehicle

Truck Car Bus

Utility Vehicle

Encapsulation and Information Hiding:

Information hiding is the principle of concealing the internal data and
procedures of an object. In C++ , encapsulation protection mechanism with
private, public and protected members.

In per-class protection:

Class methods can access any objects of that class and not just the receiver.

In per-object protection:

Methods can access only the receiver.

An important factor in achieving encapsulation is the design at different
classes of objects that operate using a common protocol. This means that many
objects will respond to the message using operations tailored to its class.

A car engine is an example of encapsulation. Although engines may
differ in implementation, the interface between the driver and car is through a
common protocol.

Polymorphism:

Poly ‖many‖

Morph ―form‖

It means objects that can take on or assume many different forms.
Polymorphism means that the same operations may behave differently on

different classes. Booch defines polymorphism as the relationship of objects
many different classes by some common super class. Polymorphism allows us to
write generic, reusable code more easily, because we can specify general
instructions and delegate the implementation detail to the objects involved.

Example:

In a pay roll system, manager, office worker and production worker
objects all will respond to the compute payroll message, but the actual operations
performed are object specific.

Object Relationship and associations:

Association represents the relationships between objects and classes.
Associations are bi-directional. The directions implied by the name are the
forward direction and the opposite is the inverse direction.

Pilot

Can fly

Planes

Flown by

A pilot ―can fly‖ planes. The inverse of can fly is ―is flown by ―. Plane ―is flown by‖ pilot

Cardinality:

It specifies how many instances of one class may relate to a single
instance of an associated class. Cardinality constrains the number of
related objects and often is described as being ―one‖ or ―many‖.

Consumer-producer association:

A special form or association is a consumer-producer relationship,
also known as a client-server association (or) a use relationship. It can be viewed
as one-way interaction. One object requests the service or another object. The
object that makes the request is the consumer or client and the object that
receives the request and provides the service is the producer (or) server

Example:

Request for

Print Server Item

Printing

The consumer-producer association we have a print object that prints
the consumer object. The print producer provides the ability to print other objects.

Aggregations:

All objects, except the most basic ones, are composed of and may contain

other objects. Breaking down objects in to the objects from which they are composed is

de composition. This is possible because an objects attributes need not be simple data

fields, attributes can reference other objects. Since each object has an identity, one

object can refer to other objects. This is known as aggregation. The car object is an

aggregation of other objects such as engine, seat and wheel objects.

Car

Engine Seat Wheel

Static and Dynamic Binding:

Determining which function has to be involved at compile time is
called static binding. Static binding optimized the calls. (Ex) function call.

The process of determining at run time which functions to involve is
termed dynamic binding. Dynamic binding occurs when polymorphic call is issued. It
allows some method invocation decision to be deferred until the information is known.

Example:

Cut operation in a edit submenu. It pass the cut operation to any
object on the desktop, each or which handles the message in its own way.

Object Persistence:

Objects have a lifetime. They are explicitly created and can exist for
a period of time that has been the duration of the process in which they were
created. A file or database can provide support for objects having a longer
lifeline, longer than the duration of the process for which they are created. This
characteristic is called object persistence.

Meta-Classes:

In an object-oriented system every thing is an object, what about a class?
Is a class an object?. Yes, a class is an object. So, If it is an object, it must belong to a
class, such a class belong to a class called a meta-class (or) class or classes.

Object-Oriented Systems Development Life Cycle [OOSDLC]

Introduction:

The S/W development process that consists of Analysis, Design,

implementation, testing and refinement is to transform users needs into a software

solution that satisfies those needs. Some people view the s/w developing process as

interesting but feel it has less importance in developing s/w. Ignoring the process and

plunge into the implementation and programming phases of s/w development is much

like the builder who would by pass the architect. The object oriented approach requires

a more rigorous process to do things right. We have to spend more time on gathering

requirements, developing a requirements model and an analysis model, then turning

them into the design model. We should consult a prototype of some of the key system

components shortly after the products are selected. It is used to understand how easy

or difficult it will be to implement some of the features of the system.

Software Development process:

S/W development can be viewed as a process. The development itself

is a process of change, retirement, transformation (or) addition to the existing
product. It is possible to replace one sub process with a new one, as long as the

new sub process has the same interface as the old one, to allow it to fit into the

process as a whole. The object-oriented approach provides us a set of rules for

describing inheritance and specialization in a consistent way when a sub process
changes the behaviour of its parent process. The process can be divided into small,

interacting phases know as sub processes. The sub processes must be defined in

such a way that they are clearly spelled out, to allow each activity to be performed

as independently of other sub processes as possible. Each sub process must have

A description in terms of how it works

Specification of the input required for the process

Specification of the output to be produced.

The software development process can be viewed as a series of transformations, where
the output of one transformation becomes the input of the subsequent transformation.

Transformation 1 [Analysis]

Transformation 2 [Design]

Transformation 3 [Implementation]

Problem

Transformation 1

Statements

Analysis

What are the users of the system?

Transformation 2

Design

Transformation 3

System

 Implementation Software

 Detail Product

Transformation 1 [Analysis]

It translates the users‘ needs into system requirements and responsibilities.

The way they use can provide insight into user requirements.

Transformation 2 [Design]

It begins with a problem statement and ends with a detailed design
that can be transformed into an operational system. This transformation includes
the bulk of the software development activity, including definition of how to build
the software, its development and it‘s testing. It includes the design descriptions,
the program and the testing materials.

Transformation 3 [Implementation]

It refines the detailed design into the system deployment that will
satisfy the users needs. It represents embedding the software product within its
operational environment.

The software development process is the waterfall approach which starts

with deciding

what is to be done (what is the problem)

How to accomplish
them Which we do it

Test the result to see it we have satisfied the users
requirements Finally we use what we have done

What

Analysis

How

Design

Implementation

Do It

Test

Testing

Use

Maintenance

The water fall S/W development process

Building High-Quality Software

The software process transforms the users needs via the application
domain to a software solution that satisfies those needs. High-Quality products
must meet users needs and expectations. The quality of the product should be
improved prior to delivery rather than correcting them after deliver.

To achieve high quality software we need to be able to answer the
following question.

How do we determine when the system is ready for delivery?

It is now operational system that satisfies uses needs?

It is correct and operating as we thought it should?

Does it pass an evaluation process?

There are different approaches for systems testing. Blum describes a means of
system evaluation in terms of four quality measures,

Correspondence

Correctness

Verification
and Validation

Validation

Verification

Needs Requirements Design Software

Correctness

* Correspondence measures how well the delivered system matches the needs of
the operational environment as described in the original requirements statement.

* Validation is the task of predicting correspondence. True correspondence can
be determined only after the system is in place

* Correctness measures the consistency of the product requirements with
respect to the design specification

* Verification is the exercise of determining correctness.

Boehm observes that these quality measures, verification and validation is
answering the following questions.

Verification- Am I building the product right?

Validation- Am I building the right product.

Object-Oriented Systems Development: A use-case Driven Approach:

The object-oriented S/W development Life Cycle (SDLC) consists
of three macro process.

Object-Oriented Analysis
Object-oriented Design and

Object-oriented Implementation.

Build a Use-

Case model

Object

Analysis

Validation

test

Analysis

Iteration and Reuse

Using Tools User Satisfaction

CASE and/or OO Usability & QA

Programming Tests

languages

Implementation

Design Classes Build Object

Define Attributes and Dynamic

& Methods
Model

User satisfaction

Usability test &
Build User

quality assurance

Interface &

test

Prototype

Design

The use-case model can be employed throughout most activities of software
development. The main advantage is that all design decisions can be traced
back directly to user requirements.

Object-oriented Analysis – Use case
driven Object-oriented design

Prototyping

Component-based development

Incremental testing

Object-Oriented Analysis –Use-Case Driven:

The object-oriented analysis phase of S/W development is concerned with
determing the system requirements and identifying classes and their relationship to other
classes in the problem domain. To understand the system requirements we need to identify
the users or the actors. Who are the actors and how do they use the system, scenarios are
used to help analysis to understand the requirements. Ivar Jacobson came up with the
concept of the use case, his name for scenario to describe user-computer system inter
action. The object-oriented community has adopted use case to a remarkable degree.

Scenarios are a great way of examine who does what in the interactions
among objects and what role they play. That is their inert relationship. This inter actions
among the objects roles to achieve a given goal is called collaboration.

A use-case is a typical interaction between a user and a system that
captures user goals & needs. Expressing these high-level processes and interactions it
is referred to as use-case modeling. Once the use case model is better understood and
developed we should start to identify classes and create their relationships.

The physical objects in the system also provide us important information
an objects in the system. The objects could be individuals‘ organizations, machines,
units of information; pictures (or) what ever else makes up the application and makes
sense in the context of the real-world system.

For example: The object in the payroll system is as follows,

The employee, worker, supervisor, office
admin. The paycheck.

The product being made.

The process used to make the product.

The objects need to have meaning only within the context of the application domain.

Few guide lines to use in object-oriented design.

Reuse, rather than build, anew class, know the existing classes.

Design a large number of simple numbers of simple classes, rather than a
small number of complex classes.

Design methods.

Critique what we have proposed. It possible go back and refine the classes.

Prototyping:

It is important to construct a prototype of some of the key system
components shortly after the products are selected. A prototype is a version of a
software product developed in the early stages of the product‘s life cycle for
specific, experimental purposes. It enables to fully understand how easy or
difficult it will be to implement some of the features of the system. It gives users a
chance to comment on the usability and usefulness of the user interface design,
it can define use cases and it makes use Case modeling much easier.

Prototyping was used as a ―quick and dirty‖ way to test the design,
user interface and so forth, something to be thrown away when the ―industrial
strength‖ version was developed. The rapid application development (RAD)
refines the prototype into the final product.

Prototypes have been categorized in various ways. The following
categorized are some of the commonly accepted prototypes.

Horizontal prototype

Vertical prototype

Analysis prototype

Domain prototype

Horizontal Prototype:

It is a simulation of the interface but contains no functionality. This
has the advantages of being very quick to implement, providing a good overall
feel of the system and allowing users to evaluate the interface on the basis of
their normal, expected perception of the system.

Vertical Prototype:

It is a subset of the system features with complete functionality. The

advantage of this method is that the few implemented functions can be tested in great

depth. The prototypes are hybrid between horizontal and vertical, the major portions of

the interface are established so the user can get the feel of the system and features

having a high degree of risk are prototyped with much more functionality.

Analysis Prototype:

It is an aid for exploring the problem domain. This class of prototype
is used to inform the user and demonstrate the proof of a concept. It is not used
as the basis of development and is discarded when it has served its purpose.

Domain Prototype:

It is an aid for the incremental development of the ultimate software
solution. It demonstrates the feasibility of the implementation and eventually will
evolve into a deliverable product.

The typical time required to produce a prototype is anywhere from a
few days to several weeks, depending on the type and function of prototype. The
prototype makes the end users and management members to ascertain that the
general structure of the prototype meets the requirements established for the
overall design. The purpose of this review is

To demonstrate that the prototype has been developed according to
the specification and that the final specification is appropriate.

To collect information about errors or other problems in the system, such as
user interface problems that need to be addressed in the intermediate prototype stage

To give management and everyone connected with the project the
first glimpse of what the technology can provide.

Prototyping is a useful exercise of almost any stage of the
development. Prototyping should be done in parallel with the preparation of the
functional specification. It also results in modification to the specification.

Implementation:

Software components are built and tested in-house, using a wide range
of technologies. Computer aided software engineering (CASE) tools allow their
users to rapidly develop information systems. The main goal of CASE technology is
the automation of the entire information system‘s development life cycle process
using a set of integrated software tools, such as modeling, methodology and
automatic code generation. The code generated by CASE tools is only the skeleton
of an application and a lot needs to be filled in by programming by hand.

Component-Based Development: (CBD)

CASE tools are the beginning of Component-Based Development.
Component-Based Development is an industrialized approach to the software
development process. Application development to assembly of prebuilt,
pretested, reusable software components that operate with each other: The two
basic ideas of using Component-Based development.

1. The application development can be improved significantly if applications
can be assembled quickly from prefabricated software components.

2. An increasingly large collection of interpretable software components could
be made available to developers in both general and specified catalogs.

A CBD developer can assemble components to construct a complete software

system. The software components are the functional units of a program, building blocks

offering a collection of reusable services. The object-Oriented concept addresses analysis,

design and programming, where as component-Based development is concerned with the

implementation and system integration aspects of software development.

Rapid Application Development (RAD):

RAD is a set of tools and techniques that can be used to build
application footer than typically possible with traditional methods. The term is
often conjunction with S/W prototyping. RAD encourages the incremental
development approach of ―grow, do not build‖ software.

Testing:

(Refer Software Engineering Book)

Design Patterns:

Design pattern is instructive information for that captures the essential
structure and insight of a successful family of proven design solutions to a recurring
problem that arises within a certain context.

Gang Of Four (GoF) [Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides]
introduced the concept of design patterns.

Characteristics of Design Patterns:

1. It solves the problem – Design patterns are not just abstract representations of theoretical

research. To be accepted as a pattern it should have some proves practical experiences.

2. It‘s a proven concept – Patterns must have a successful history.

3. It describes a relationship – Patterns do not specify a single class instead it
specifies more than one classes and their relationship.

4. It has a human component - Good patterns make the job of the programmer easy
and time saving.

Contents of Design Pattern:

• Name of the pattern is used to identify the pattern as well as an descriptive of the
problem solution in general. Easy to remember and context related names
makes remembering patterns easy.

• Context of the pattern describes when and where the pattern is applicable. It also
describes the purpose of pattern and also the place where it is not applicable due
to some specific conditions.

• Solution of the design pattern is describes how to build the appropriate design
using this appropriate design.

• Consequences of design patterns describe the impact of choosing a particular
design pattern in a system.

Pattern Template:

1. PATTERN NAME (good and relevant names make patterns easy to remember)
2. INTENT (Which problem does the pattern solve)
3. ALSO KNOWN AS(alias names given to the pattern)
4. APPLICABILITY(when should this pattern be applied)
5. STRUCTURE(Graphical representation of the Pattern (using UML))

6. PARTICIPANTS(classes and objects taking part in the pattern and their relationship)

7. COLLABORATORS (says how objects/actors interact to achieve the goal).

8. CONSEQUENCES (how does they solve the problem and what are the
consequences if the problem is solved by this way.)

9. IMPLEMENTATION (Issues related with Implementation, language specific issues)

10. KNOWN USES (Examples of the same pattern used in real systems)

11. RELATED PATTERNS (Specify is there any similar patterns. Where are they
used.) The Singleton Design Pattern:

1. Pattern Name – Singleton
2. Intent – To ensure a class has only one instance a global point of access to it.

3. Motivation – Its common in software development where some component developers
specify that more than one object of a Class alive make systems ambiguous.

4. Applicability – Singleton can be used where there must be exactly one object and
it must be accessible to multiple clients/objects.

5. Structure:

Singleton

Static int count

Other singleton data

Static singleton *

create_Instance()

*Other singleton

behaviour*

6. Participants – Singleton class defines a Class function which can be
accessed by the clients for creating instance.

7. Collaborations – Clients access a singleton object solely through instance operation.

8. Consequences – Controlled access to the single instance, Reduced name
space, can be sub classed and more behaviors can be added, and can be
modified for existence of more than one objects(BASED ON THE DOMAIN).

Implementation:

class singleton

{

private:

static int no_of_obj;

static singleton * pointer_instance;

// other private data members and member functions

public:

static singleton * create_instance()

{

if (no_of_obj==0)

{

pointer_instance=new singleton;

no_of_obj=1;

}

return pointer_instance;

}

}

//function f() uses the following statement to create a new instance:

singleton s=singleton::create_instance();

Generative Patterns: Patterns that suggest the way of finding the solution

Non Generative patterns: They do not suggest instead they give a passive solution.

Non Generative patterns cannot be used in all the situation.

Frameworks:

Frameworks are the way of delivering application development patterns to
support/share best development practice during application development.

In general framework is a generic solution to a problem that can be applied to all

levels of development. Design and Software frameworks and most popular where Design pattern

helps on Design phase and software frameworks help in Component Based Development phase.

Framework groups a set of classes which are either concrete or abstract. This
group can be sub classed in to a particular application and recomposing the necessary items.

a. Frameworks can be inserted in to a code where a design pattern cannot
be inserted. To include a design pattern the implementation of the design
pattern is used.

b. Design patterns are instructive information; hence they are less in space where
Frameworks are large in size because they contain many design patterns.

c. Frameworks are more particular about the application domain where
design patterns are less specified about the application domain.

Note:

Include the details of Microsoft .Net development framework.

UNIT –II

OBJECT ORIENTED METHODOLOGIES:

Overview of methodologies:

In 1980‘s, many methodologists were wondering how analysis and design

methods and processes would fit into an object-oriented world. Object oriented methods

suddenly had become very popular and it was apparent that the techniques to help

people execute good analysis and design were just as important as the object-oriented

methodologies, sometimes called second-generation object-oriented methods.

Many methodologies are available to choose from for system development.

The methodology is based on modeling the business problem and implementing the

differences lie primary in the documentation of information, modeling notations and

languages. An application an be implemented in many ways to meet some requirements

and provide the same functionality. Two people using the methodology may produce

applications designs that look radically different. This does not necessarily mean
that one is right and one is wrong, just that they are different.

The various methodologies and their notations are developed by

Jim Rum Baugh

Grady Booch

Ivar Jacobson

These is the origin of the UML (Unified Modeling Language)

Each method has its own strengths.

Rum Baugh Method Describing the object model or the static structure of the system.

Jacobson Method Good for providing user driven analysis models.

Booch Method Produces detailed object-oriented design methods.

Object Modeling Technique (OMT) or Rum Baugh ET AL‘s Object
Modeling Technique:

The object modeling techniques (OMT) presented by Jim Ram Baugh and

his counters describes a method for the analysis, design and implementation or

system using an object-oriented technique. Object modeling technique (OMT) is

a fast, intuitive approach for identifying and modeling all the objects all the

objects making up a system. The information such as class attributes, methods,

inheritance and association also can be expressed easily. The dynamic behavior

of objects within a system is described in OMT dynamic model. This dynamic

model specifies the detailed state transition and description. The relationships

can be expressed in OMT‘s functional model.

OMT consists of four phases, which can be performing iteratively.

Analysis: The results are objects and dynamic and functional models.

System design: The results are a structure of the basic architecture of
the system along with high-level strategy decisions.

Implementation: The activity produces reusable, extensible and robust code.

OMT separates modeling into three different parts.

• An object model:

Presented by the object model and the data dictionary.

• An dynamic model:

Presented by the state diagrams and event flow diagrams.

• Functional model:

Presented by data flow and constraints.

The Object model:

It describes the structure of objects in a system, their identity,
relationships to other objects, attribute and operations. This model is graphically
represented by an object diagram, which contains classes interconnected by
association lines. The object diagram contains classes interconnected by
association lines. The association lines establish relationships among the
classes. The links from the objects or one class to the objects or another class.

The OMT object model of a bank system

The object model of bank system. The boxes represent classes and
the field triangle represents specialization.

Client

Client Account

Transaction

First name
Account

Account Transaction

Trans date

Last name

Number

Trans time

Pin code

Balance

Trans type

Deposit

Amount

With draw

 post balance

Create transaction

Saving

Checking account

Checking Saving Account

Account

With draw

The OMT dynamic model

OMT provides a detailed and comprehensive dynamic model. The state transition
diagram is a network of states, transitions, events, and actions. Each state receives one
or more events and the next state depends on the current state as well as the events.

No

been selected

Nothing is

selected

Account has

been selected

Selected

checking or

savings

Select

checking

account

Select

transaction

type

Enter the

amount

Confirmation

The OMT functional model

The OMT data flow diagram (DFD) shows the flow of data between different
processes in a business. An OMT DFD provides a simple and intuitive method for
describing business process with out focusing on the details of computer systems.

Data flow diagrams use four primary symbols:

Process:

The process is any function being performed. (ex: verify
password or pin in the ATM)

Data flow:

The data flow shows the direction of data element movement.

Data store:

The data store is a location where data is stored. (ex: account
in ATM)

External entity:

The external entity is a source or destination of a data element. (ex:

ATM card reader)

 carsatium

Bank code

Bad bank code

ATM Card

Select bank

reader

Bank

 Card code Invalid card code

Use

Select

keyboard

card

entry

tion

type

 Verify

Select

User screen

selection account password

 Update

 account

ATM data flow diagram

system architect

User

The Booch Methodologies:

The Booch Methodologies is a widely used object-oriented method.
It helps to design our system using object paradigm. It covers the analysis and
design phases of an object-oriented system. Booch uses large set of symbols.
We will never use all these symbols and diagrams. We start with class and object
diagrams in various steps. The Booch method consists of the following diagrams.

Class Diagrams.
Object Diagrams.

State Transition Diagrams.
Module Diagrams

Process Diagrams

Interaction Diagrams.

Car

color

manufacturer superclass

cost

inherits

Ford

 inherits

Mustang

Taurus

Escort

The Macro Development Process:

The macro process serves as a controlling frame work for the micro
process and can takes weeks (or) even months. The technical management of the
system is interested less in the actual object-oriented design than in how well the
project corresponds to the requirements set for it and whether it is produced on time.

The macro development process consists of the following
steps. Conceptualization.

Analysis and Development of the Architecture.

Design or Create the System Architecture.
Evolution or Implementation.

Conceptualization:

* Establish the core requirements of the system.

* Establish a set of goals and develop a problem to prove the concept.

Analysis and Development of the Model:

The class diagrams are used to describe the roles and responsibilities
of objects to carry out in performing the desired behavior of the system.

The object diagrams describe the desired behavior of the system
in terms of scenarios.

The interaction diagrams are also used to describe the behavior
of the system in terms of scenarios.

Design or Create the System Architecture:

* The class diagram is used to decide what classes exist and how they relate to
each other.

* The object diagrams decide what mechanisms are used to regulate how
objects collaborate.

* The module diagram used to map out where each class and object should be declared.

* The module diagram is used to determine which processor to allocate a process. It
also determines the schedule for multiple processes on each relevant processor.

Evolution or Implementation:

Produce a stream of software implementation after a successfully
refining the system through many iterations.

Maintenance:

Make localized changes to the system to add new requirements and
eliminate bugs.

The Micro Development Process:

Each macro development process has its own micro development
process. The micro process is a description of the day to day activities by a
single (or) small group of software developers.

The micro development process consists of the following steps.

* Identify classes and objects.
* Identify class and object semantics.
* Identify class and object relationships.
* Identify class and object interface and implementation.

The Jacobson Methodologies:

The Jacobson methodologies cover the entire life cycle and stress trace

ability between the different phases, both forward and backward. This trace ability

enables reuse of analysis and design work. The heart of their methodologies is the use-

case concept, which evolved with objectory (Object Factory for Software Development)

Object-oriented Business Engineering (OOBE)

Object-Oriented Software Engineering (OOSE)

The Booch methodology prescribes a macro development and micro
development process.

Use Cases

Use cases are scenarios for understanding system requirements. A

use case is an interaction between users and a system.

The use-case model captures the goal of the user and the responsibility of
the system to its users

The use case description must contain:

How and when the use case begins and ends.

The interaction between the use case and its actors, including
when the interaction occurs and what is exchanged.

How and when the use case will store data in the
system. Exceptions to the flow of events.

Library

Checking out books

Getting an

Interlibrary loan

Object-Oriented Software Engineering: Objectory

Object-oriented software engineering (OOSE), also called Objectory, is a
method of object-oriented development with the specific aim to fit the
development of large, real-time systems.

Objectory is built around several different models:

Use case model.

Domain object model.

Analysis object model.

Implementation

model. Test model.

Use-case model

Realized by

Tested in

Express in

Structured by

Implemented by

 OK

 NOT OK

Domain Object Analysis Design model Implementation Testing model

Model Model Model

Use case model.

The use case model defines the outside (actors) and inside (use
case) of the system behavior.

Domain object model.

The objects of the real world are mapped into the domain object model.

Analysis object model.

The analysis object model presents how the source code should be
carried out and written.

Implementation model.

The implementation model represents the implementation of the system.

Test model

The test model constitutes the test plans, specifications, and reports.

Object-Oriented Business Engineering (OOBE)

Object-oriented business engineering (OOBE) is object modeling at the
enterprise level.

Use cases again are the central vehicle for modeling, providing traceability
throughout the software engineering processes.

OOBE consists of:

Analysis
phase Design

Implementation phases
and Testing phase.

Analysis phase

The analysis phase defines the system to be built in terms of the problem-
domain object model, the requirements model, and the analysis model. The
analysis process is iterative but the requirements and analysis models should be
stable before moving to subsequent models.

Design and Implementation phases

The implementation environment must be identified for the design model. The
analysis objects are translated into design objects that fit the current implementation.

Testing phase.

There are several levels of testing and techniques. The levels include unit
testing, integration testing, and system testing.

Patterns

A pattern is instructive information that captures the essential structure and
insight of a successful family of proven solutions to a recurring problem that
arises within a certain context and system of forces.

The main idea behind using patterns is to provide documentation to help
categorize and communicate about solutions to recurring problems.

The pattern has a name to facilitate discussion and the information
it represents.

A good pattern will do the following:

It solves a problem.

Patterns capture solutions, not just abstract principles or strategies.

It is a proven concept.

Patterns capture solutions with a track record, not theories or speculation.

The solution is not obvious.

The best patterns generate a solution to a problem indirectly—a
necessary approach for the most difficult problems of design.

It describes a relationship.

Patterns do not just describe modules, but describe deeper system
structures and mechanisms.

The pattern has a significant human component.

All software serves human comfort or quality of life; the best patterns
explicitly appeal to aesthetics and utility.

Generative Patterns:

Patterns that suggest the way of finding the solution

Non Generative patterns:

They do not suggest instead they give a passive solution. Non Generative
patterns cannot be used in the entire situation.

Patterns template

There are different pattern templates are available which will represent a pattern.
It is generally agreed that a pattern should contain certain following components.

Name A meaningful name.

Problem A statement of the problem that describes its intent.

Context The preconditions under which the problem and its solution seem to recur
and for which the solution is desirable. This tells us the pattern‘s applicability.

Forces constraints and conflicts with one another with the goals which we
wish to achieve.

Solution solution makes the pattern come alive.

Examples sample implementation

Resulting context describes the post conditions and side effects of the pattern.

Rationale justifying explanation of steps or rules in the pattern. This tells how
the pattern actually works, why it works and why it is good.

Related patterns. The static and dynamic relationships between these
patterns and others with in the same pattern language or system.

Known uses The known occurrences of the pattern and its application within
existing systems.

Anti patterns

A pattern represents a best practice whereas an anti pattern represents
worst practice or a lesson learned.

Anti patterns come in two varieties:

Those describing a bad solution to a problem that resulted in a bad situation

Those describing how to get out of a bad situation and how to proceed
from there to a good solution.

Capturing Patterns

Guidelines for capturing patterns:

Focus on practicability.

Aggressive disregard of originality.
Nonanonymous review.

Writers' workshops instead of
presentations. Careful editing.

Frameworks:

Frameworks are the way of delivering application development patterns to
support/share best development practice during application development.

In general framework is a generic solution to a problem that can be applied to all

levels of development. Design and Software frameworks and most popular where Design pattern

helps on Design phase and software frameworks help in Component Based Development phase.

Framework groups a set of classes which are either concrete or abstract. This
group can be sub classed in to a particular application and recomposing the necessary items.

d. Frameworks can be inserted in to a code where a design pattern cannot
be inserted. To include a design pattern the implementation of the design
pattern is used.

e. Design patterns are instructive information; hence they are less in space where
Frameworks are large in size because they contain many design patterns.

f. Frameworks are more particular about the application domain where
design patterns are less specified about the application domain.

Note:

Include the details of Microsoft .Net development framework.

Differences Between Design Patterns and Frameworks

Design patterns are more abstract than frameworks.

Design patterns are smaller architectural elements than frameworks.
Design patterns are less specialized than frameworks.

Object Oriented Methodologies

There are different methods for modeling object oriented systems. Each methodology
can represent same model with varying documentation style, Modeling language and notations.

1. Rumbaugh‘s Object Modeling Technique

• The system can be modeled with the help of 3 different models
1. Object Model

2. Dynamic Model
3. Functional Model

• These models are related to different phases as they are the outcome of
each phase.

• In analysis phase less detailed [more abstract] representation of object,
dynamic and functional model are used.

• In system design phase Architectural diagram is drawn that represents
blocks are relations.

• In object design the models generated during analysis phase are refined.

• In implementation phase reusable robust code is generated from the design.

• Object Model:
o It‘s an object diagram containing interrelated objects.

o Objects are represented by object notation and it contains Name,
Behavior and attributes.

o Association lines represent the relationship between the objects.

One – to – One relationship is one in which an object uses only
one object at the other end. [Represented by straight line].

One – to – Many relationship is one in which an object at one end
uses many objects at the other end. [Represented by bubbled line].

Specialized relationship [Inheritance] – is one in which the one
object is a type of other object. [Represented by filled triangle].

Do

course

College Studies Student Private

 Center

Is a type

of

Physically

Handicapped

o In the above example there exist an one to one relationship between
student and college as a student studies in a college at a time

o There exists one to much relationship between student and private computer
center coz a student can courses in more than one private center.

o Physically handicapped student is a type of student [generalization].

• Dynamic Model

o Represents a set of states possessed by the system.
o Interconnected lines represent the transition between the states.

o The system performs some activity when it is in a state.

o One or more event may occur in a state and the system may undergo
transition from one state to the other state based on the event.

o State transition can be triggered by an event or completion of an activity.
o Hence next state depends on the current state and event.

Idle

Card INS

Reading

No Card

Read

Complete

Verification

User gave

Trans

option

Process

o The above diagram shows the different states of an ATM machine.

o The system remains in idle state until the user inserts card when user
inserts card the system goes to Reading state and once it‘s completed the
system goes to verification state and prompt for process choice option.

o The system goes to Process state when the user gives the option for
transaction.

• Functional Model [Data Flow Diagram]
o Represents flow of data between various functional blocks of the system.

o A functional model may be an external device, process or a Data store.

o Functional blocks are connected by labeled line that represents flow of
data between various functional models.

Scanner

Digital

Camera

PIN Reader/ Choice

C

o

d

e

W

i

s

e

Barcode

Process

 Bar Code

S

t

a

t

u

s

I

m

a

g

e

W

i

s

e

Imag

e
 Process

Image

PIN Wise

Status

PIN/Choice Process

PIN

Account wise

Choice

Process

Trans

o The above diagram represents the flow of data between various
functional blocks.

o The external devices/entities are represented in a rectangular box

o The Process is represented in a oval shape which performs a
particular functionality.

o The Data Store [Information Storage] is represented inside a parallel line.
o Labeled arrows represent direction of flow of data and the date itself.

2. The Booch Methodology

o Booch provides a technique for creating more informative model.

o This approach provides a large set of notations so that a complete model
can be built during the analysis and design phase.

o Booch gave equal importance to process [Management Aspect] and
diagrams [Technical].

o Diagrams introduced by Booch are

1. Class Diagram
2. State Transition Diagram
3. Module Diagram
4. Process Diagram
5. Interaction Diagram

o Booch define process in terms of Macro Process and Micro Process.

o Diagrams:
o Class Diagram

Represents a set of interrelated classes.

This diagram shows the existence of various classes and
logical relation between them.

Class Name

attributes

operat

ion

General Notation for a class

Association

Inheritance

Has

using

• Association can be quantified with the help of
Cardinality.

Student

Course

Name

1

1..N Name

Number

Year

The above class diagram represents the
association between student class and Course
class. The cardinality says that each student
can attend one course and each course can
have any number of students.

Note: For 16 marks question convert all the
UML diagrams in to Booch diagrams.

o Interaction Diagram

An interaction diagram is used to trace the execution
scenario in the same context as an object diagram.

Interaction diagram includes objects involved in the
sequence of communication.

The interaction diagram represents the sequence of
message passing among related objects.

BROWSER

ISP

WEBSERVER

DATABASE

Http Req

Http Req

SQL query

Result set

HTML Page

HTML Page

The above interaction diagram represents the sequence
of message passing between various objects.

[Note: Explain the sequence]

o Module Diagram

Module diagram is used to show the allocation of classes and
objects to modules in the physical design of the system.

A single module diagram represents the view of module
structure of the system.

These diagrams are used to indicate the physical
layering of the system during architectural design.

Module diagram contains modules and dependencies.

Dependencies are represented by straight line.

Data Processing

Printer Control

User Interface

o State Transition Diagram

State transition diagrams represent the different states
of the machine as whole or different states of an object.

The states are named and represented in a state icon.

Various transitions between states are represented by
directed line with the event and result.

This labeled line says that when that particular event occurs
the machine undergoes transition from one to another state.

No card Insterted/ waitfor card()

 Inserted Card

Idle

Read/Validate

Valid Card

Process

invalid card

o Process Diagram

Process Diagram is used to show the allocation of process
to processors in the physical design of the system.

The process diagram is used to indicate the physical
collection of processors and devices.

The processor is represented by cube with shaded sides
and device is represented by a cube.

BAR code

scanner

Validatorq

Digital

Came ra

o The Process – Booch gave the concept of Macro process and Micro
Process. It highlights the management aspect.

o The Macro Development Process – Concerns about the management
aspect of the system. The entire process is composed of a set of
Macro Development Process. The set of Macro process are

Conceptualization – core requirement of the system

Analysis and Development of the Model – Trace the use
of the software, actors, what the system should do.

Design and Create System Arch. – Set of interconnected
classes with detailed representation of properties and
behavior. Various modules that exist from OO
decomposition are represented.

Evolution or Implementation – After successful iterations
of previous steps the representation is implemented in
programming languages.

Maintenance – It is carried out to make changes needed
after the release because of new requirements.

o The Micro Development Process – It represents the set of minute
activities that belongs to a Macro Development Process. In detail
the Micro development process represents the minute set of
activities carried out by a programmer or group of programmers.

o The steps involved are

Identify classes and objects

Identify class and semantics

Identify class and relationship

Identify class, object interfaces and implementation

2. The Jacobson Methodology

o Jacobson and team came with the concept of Object Oriented
Software Engineering and Object Oriented Business Engineering
which covers the entire project life cycle.

o Use Case is introduced by this team and later it is adopted in UML.

o Use Case diagram captures the complete requirements of the user and
is used in almost all the phases of the software development.

o Use Case represents the interaction between the actor and the system.

ud

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

 Enquiry

4.00 Unregistered Trial Version E<<Uses>>A0 0 Unregistered Tri

 Check Card

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

 <<Uses>>

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

 Borrow Books

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

Member Return Books

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

 Renev al Books

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

4.00 Unregistered Trial Version EA 4.00 Unregistered Tri

o Use Case diagram contains a set of use case where a single use case
represents a flow of events.

o There exist <<extends>> and <<uses>> relationships between the
various use cases.

o If a use case extends a particular use case the derived case does
some functionality more than the base use case.

o The relation between two use cases is said to be <<uses>> if one use
case invokes the used one whenever needed.

o In the above example the Member (actor) may borrow books or return
books in a library.

o In both the cases the card should be checked and redundancy can be
eliminated by establishing uses relationship.

o An use case is said to be concrete if that particular case is initiated by the
actor where a abstract use case is one which is not initiated by the actor.

o Object Oriented Business Engineering is a variant of Object Oriented
Software Engineering.

o Various model specified by Jacobson are
o Use Case Model – Needs of the user.
o Domain Object Model – mapped real world objects.

o Analysis Model – represents what should be done and how
should be done to the customer to satisfy them

o Implementation Model – represents the runtime representation
of the system.

o Test Model – represents the test plan, specifications and the report.

UML

(Unified Modeling Language)

Model Represents an abstract of the system. It is build prior to the original system. It

can be used to make a study on the system and also can be used to analyze the effect

of changes on the system. Models are used in all disciplines of engineering.

Static Model Represents the static structure of the system. Static models are stable and they

don‘t change over time.

E.g. Class diagram.

Dynamic Model Collection of diagrams that represents the behavior of the system over time.

It shows the interaction between various objects over time.

E.g. Interaction Diagram.

A model includes

a) Model Elements – Fundamental modeling concepts and semantics.

b) Notation – Visual rendering of model elements.

c) Guidelines – Expression of usage.

Technique of creating models. It is also a good medium of communication

between developers at various levels.

• Clarity – Visual representations are mode clear and informative than listed

or written documents. Missed out details can be easily found out.

• Familiarity – Similar modeling language and techniques is followed by

developers working in same domain.

• Maintenance – Changes can be made easily in visual systems and

changes can be confirmed easily.

• Simplification – More complex structures can be represented in an

abstract manner to deliver the conceptual idea.

Unified Modeling Language:

It‘s a language for modeling software systems. This language is used for specifying,

visualizing, constructing and documenting software systems through out the development.

(Mostly object oriented development).UML is used to model systems build through Unified

Approach. Unified Approach combines the methodologies of Booch, Rumbaugh and Jacobson.

Models can be represented at different levels based on the abstraction and

refinement. A complete model can be obtained only after continuous refinement of UML

diagrams. UML is composed of 9 graphical diagrams:

1) Class Diagram

2) Use – Case Diagram

3) Behavior Diagram

a. Interaction Diagram

i. Sequence Diagram

ii. Collaboration Diagram

b. State Chart Diagram

c. Activity Diagram

4) Implementation Diagram

a. Component Diagram

b. Deployment Diagram

UML Class Diagram:

Class diagram represents the types of objects in the system and the

various kinds of static relationships that exist between them. Class diagrams are used in

object modeling where real world objects are mapped to logical objects in computer

program. Notations and symbols used in Class diagrams are

1) Class Notation

2) Object Diagram

3) Class Interface Notation

4) Binary Association Notation and Association Role

5) Qualifier

6) Multiplicity

7) OR Association

8) Association Class

9) N – ARY Association

10) Aggregation and Composition

11) Generalization

1) Class Notation:

Classes are represented in a rectangular box. The top box has the name, the middle one

has the attributes/properties/data members and the lower one

 has the behavior/ member

functions/ methods. A Box with a class name represents the most abstract representation of a

class.

E.g.

Vehicle

Vehicle

Vehicle

- Color

Color

- Brand

Brand

- Owner

Owner

#Drive()

 +Stop()

 -Turn()

 -Reverse()

All the above diagrams represent the same class in different levels of abstraction.

Visibility of members can be specified using -, + and # symbols.

- indicates a private member

+ indicates a public member

indicates a protected member.

2) Object Diagram:

Object diagram is an instance of a class diagram. It gives a detailed state of a system at

a particular point of time. Class diagrams can contain objects and Object diagram cannot

contain classes. Hence Class diagram with objects and no classes is called an object diagram.

 My car

 Color: red

3) Class

Brand: Ford

Owner: Mr. Doss

It represents the externally visible behavior of a class. Externally visible behaviors

are public members. The notation is small circle with a line connected to a class.

Print

Print Control

4) Binary Association Notation and association role:

It represents the association between two classes represented by a straight line

connecting 2 classes. Association has got a name written on the line and association role

 Works for

Company

Person

Employer Employee

In the above diagram Works for is the association that exist between Person and

Company. The arrow mark indicates the direction of association. i.e., The Person Works

for the company.

Association Role: it‘s related to association. Each class that is a member of an association

plays a role in the association called association role. E.g. The person plays the role of EMPLOYEE

in the WORKS FOR association where a company plays the role of EMPLOYER.

5) Qualifier:

Qualifier is an attribute of an association. It makes the association more clear.

 B
a
n
k

A
c
c
o
u
n
t

maintains 1..2

P
e
rs

o
n

The qualifier here is the account and it defines that each instance of account is

related to 1 or 2 person. Hence the account qualifies the association maintains.

6) Multiplicity:

It gives the range of associated classes. It is specified of the form lower

bound..upper bound or integer. Lower bound must be an integer where upper bound

can be an integer or a *. * Denotes many.

When a multiplicity is stated at one end it states that each class at the other end can

have relation with stated number of classes at the nearer end.

E.g:

The below diagrams says that each course can have any number of students OR each

student may attend any number of courses.

Also each department has one or more courses and a course may belong to one or

more departments.

Dept

 1..*

 has

 1..*

attends

Student *

* Course

7) OR – Association:

It‘s a relation in which a class is associated to more than one class and only one association

is instantiated at any instance of time for an object. It is represented by a dashed line connecting two

associations. A constraint string can be used to label the OR association line.

COMPANY

{or}

CAR

Is owned by

PERSON

8) Association Class:

It‘s an association that has class properties. The association class is atta.ched to an

association with a dashed line

 Works

for

Company

Person

emplo

emplo

 yer yee

Works For

Salary

Here the works for relation has got one attribute salary. Hence an association class is maintained.

9) N – Ary Association:

It‘s an association where more classes participate. They are connected by a big diamond

and the name of the association is named near the line

college

1..* studies

Class

Student

* class

Mark

Sem

Mark[8]

avg

10) Aggregation and Composition:

Aggregation is a ‗part – of‘ association. Containment is a type of aggregation
with weak ownership where composition is a part of relationship with strong owner ship.

For E.g

A Car consist of Engine, Door, light etc..
[Composition] A Car contains a Bag [Containment]

Containment is represented by a line with hollow diamond arrow at the end where a
Composition is represented by filled diamond at the end.

Car

Sweet Bag

for Containment.

Meal Box

car

engine door

This is an example for Containment.

12) Generalization:

It is a relationship between more general and specific classes. It‘s

represented by a directed line with a hollow arrow head. Some diagrams specify

incomplete number of subclasses. It can be represented by ellipses.

… in the example diagram specifies that there are some more sub

classes of CAR class are available and they are not mentioned.

E.g.

CAR

…

Benz

Ford Maruthi

EXAMPLE FOR A CLASS DIAGRAM:

cd

0 Unregistered Trial Version EA 4.00 Unregistered

 ShopCart

Customer

0

- SubT otal: int

Version EA4 - Name:

- Salestax:

- addressToBill: int

- Total: int

*

1
- addressToShip: int

0

Version EA 4

+ placeOrder() : void

- emailAddress: int

- creditRating: int

+ CancelOrder() : void

0

 1 1

EA 4.00 Unregistered

Unregistered Trial Version

0 Unregistered Trial Version EA 4.00 Unregistered

0

 1

EA 4.00 Unregistered

Unregistered Trial Version

-

 CreditCard

0 Unregistered Issuer: 4.
PrefferedCustomer

- Number: int

 - ExpirationDate: int

- Discount%:

0 Unregistered

* 1

 4.

 + AuthoriseCharge() : void

0 Unregistered Trial Version EA 4.00 Unregistered

0 Unregistered Trial Version EA 4.00 Unregistered

0

 *

EA 4.00 Unregistered

Unregistered Trial Version

 ItermsToPurchase

0
-

Quantity:

 Version EA 4.00 Unregistered

 - PricePerunit: int

0 + addItem() : void Version EA 4.00 Unregistered

 + removeItem() : void

0 Unregistered Trial Version EA 4.00 Unregistered

Note: like this study all the diagrams

UNIT-III

Object Analysis: Classification

Classification:

It‘s the technique of identifying the class of an object rather than individual objects. In other
words it‘s the process of checking whether the object belong to particular category or not.

Classification Theory:

Many persons introduced many theories for classification.

1. Booch: Classification guides us in making good decisions for modularization using the

property of sameness. The identified classes can be placed in same module or in different

module based on the sameness. Sameness/ Similarity can be measured with coupling and

cohesion. Cohesion is the measure of dependency between the
classes/packages/components in a module where coupling is the measure of
dependency between different modules. In real software development prefers
weak coupling and strong cohesion.

2. Martin and Odell: Classification can be used for well understanding of concept
[Building Blocks].These classes iteratively represent the refinement job during
design. Classes also act as an index to various implementations.

3. Tou and Gonzalez: Explained classification based on physicophysiology i.e., the
relation between the person and the system. When a person is introduced to a
system the human intelligence may help him to identify a set of objects and
classes which later can be refined.

Classification Approaches:

Many approaches have been introduced for identifying classes in a domain. The most
used ones are

1. Noun Phrase Approach
2. Use – Case driven Approach
3. Common Class Approach
4. Class Responsibilities and Collaborators

1. Noun Phrase Approach:

The classes are identified from the NOUN PHRASES that exist in the
requirements/ use case. The steps involved are

1. Examining the use case/ requirements.
2. Nouns in textual form are selected and considered to be the classes.
3. Plural classes are converted into singular classes.
4. Identified classes are grouped into 3 categories

a. Irrelevant Classes – They are the unnecessary classes
b. Relevant Classes – They are the necessary classes

c. Fuzzy Classes - They are the classes where exist some
uncertainty in their existence.

5. Identify candidate classes from above set of classes.

Guidelines for selecting candidate classes from Relevant, Irrelevant
and Fuzzy set of classes.

1. Redundant Classes – Never keep two classes that represent similar information

and behavior. If there exist more than one name for a similar class

select the more relevant name. Try to use relevant names that are use
by the user. (E.g. Class Account is better than Class Moneysaving)

2. Adjective Classes – An adjective qualifies a noun (Class). Specification of

adjective may make the object to behave in a different way or may be totally

irrelevant. Naming a new class can be decided how far the adjective changes

the behavior of the class. (E.g. The behavior of Current Account Holder

differs from the behavior of Savings Account Holder. Hence they should be

named as two different classes. In the other case the toper adjective doesn‘t

make much change in the behavior of the student object. Hence this can be

added as a state in the student class and no toper class is named)

3. Attribute Class – Some classes just represent a particular property of
some objects. They should not be made as a class instead they can be
added as a property in the class. (E.g. No Minimum Balance, Credit
limit are not advised to named as a class instead they should be
included as an attribute in Account class).

4. Irrelevant Class – These classes can be identified easily. When a class
is identified and named the purpose and a description of the class is
stated and those classes with no purpose are identified as irrelevant
classes. (E.g .Class Fan identified in the domain of attendance
management system is irrelevant when u model the system to be
implemented. These type of classes can be scraped out.)

The above steps are iterative and the guidelines can be used at any level of
iteration. The cycles of iteration is continues until the identified classes are
satisfied by the analyst/ designer.

The iterative Process can be represented as below

Review and

eliminate redundant

classes

Review Adjectives

Review irrelevant

classes

Review Attributes

[Note: USE EXAMPLE FROM THE CASE STUDY]

2. Common Class Patterns Approach:

A set of classes that are common for all domains are listed and classes are
identified based on that category. The set of class category is listed based on the
previous knowledge (Past Experience).

The Class Patterns are

1. Concept Class

o This category represents a set of classes that represent the whole business
activity (Concept). The never contains peoples or events. These classes
represent the entire concept in an abstract way. (E.g. SavingsBank Class)

2. Events Class

o These are the category of classes that represent some event at a particular
instance of time. Mostly they record some information. (E.g. Transaction Class)

3. Organization Class

o These are the category of classes that represent a person, group of
person, resources and facilities. Mostly a group of organization class has
a defined mission (target or task). (E.g. CSEDEPT Class represents a
group of employees who belongs to Dept of CSE).

4. People Class

o This category contains the individuals who play some role in the system or
in any association. These people carry out some functions that may be
some triggers. People class can be viewed as a subcategory of
Organization class. This category again contains 2 subsets

i. People who use the system (E.g. Data Entry Operator who use the
system for entering attendance may not be an employee of the
college but a contract staff.)

ii. People who do not use the system but they play some role in the
system. (E.g. Lecturer, Students, Instructor etc)

5. Place Class

o This category of classes represents physical locations which is needed to
record some details or the place itself is recorded in detail. (E.g.
Information about BLOCK1 where CSE dept functions).

6. Tangible things and Device Class

o This category includes tangible objects and devices like sensors involved
in the system.

[Note: USE EXAMPLE FROM THE CASE STUDY]

3. Use Case Driven Approach – Identifying Classes

Use case diagram/ Model represents different needs of the user and various actors
involved in the domain boundary. Unified Approach recommends identification of objects with

the Use Case model as the base. Since the use case represents the user requirements
the objects identified are also relevant and important to the domain.

The activities involved are

1. A particular scenario from an use case model is considered
2. Sequence of activities involved in that particular scenario is modeled.
3. Modeling the sequence diagram needs objects involved in the sequence.
4. Earlier iteration starts with minimum number of objects and it grows.
5. The process is repeated for all scenarios in the use case diagram.
6. The above steps are repeated for all the Use Case diagrams.

[Note: USE EXAMPLE FROM THE CASE STUDY, SPECIFY ATLEAST 2 LEVELS OF
ITERATION FOR A SINGLE USE CASE SCENARIO]

3. Classes, Collaborators, Responsibilities – Classification (CRC)

Classes represents group of similar objects.

Responsibilities represent the attributes and methods (responsibilities of the class)

Collaborators represent other objects whose interaction is needed to fulfill the
responsibilities of the class/object.

CRC Cards – They are 4‖ X 6‖ cards where all the information about the objects is written.

Class Name Collaborators

Responsibilities

…

..

The above diagram represents the format of a CRC card. It contains the class name
and responsibilities on the L.H.S compartment. Class name on the upper left most
corner and responsibilities in bulleted format. Class Name identifies the class and
Responsibilities represent the methods and attributes. Collaborators represent the other
objects involved to fulfill the responsibility of the object.

This information on the card helps the designer to understand the responsibilities and
collaborating classes.

The Process involves

• Identify classes.

• Identify responsibilities.

• Find out the collaborators and need.

• Create CRC card for each class identified.

Identify classes

and

responsibility

Identify

Collaboration

 Assign

Responsibility

E.g.

 Account

 • Balance Current Account

 • number (Sub class)

 • withdraw()

 • deposit() Saving Bank

 • getBalance() (Sub class)

 Transaction.

The above diagram shows an example of a CRC card representing Account Class.

Its responsibility is to store information like Balance, Number and to have behaviors like
withdraw, deposit and getBalance.

Account class has 2 subclasses. They are Current Account and Savings Account. It
also collaborates with Transaction class to fulfill the responsibilities.

Guidelines for Naming Classes:

• Use singular Class Name

• Use Comfortable/ relevant names

• Class Name should reflect the responsibility

• Capitalize class names or Capitalize first letter

Identifying Object Relations, Attributes and Methods.

1. Association:-

Association represents a physical or conceptual connection between 2 or more objects.

Association is represented by a straight line connecting objects.

Binary association exists between 2 objects/ classes.

Trinary association exists between 3 objects/ classes.

N- Ary association exists between N objects/ classes.

Association names make the association more informative. It is the label
attached to the line representing the association.

Association role is the role played the objects involved in the association. It is
attached to link representing the association.

 Works for

Company

Person

Employer Employee

The above diagram represents the association between the person and the
company. The association says that Person object works for a company object.

Association Name: Works for

In this association Company plays the role of employer and person plays the role of employee.

Steps in identifying associations:

Associations are identified by analyzing the relationship among classes. The
dependencies are found out by analyzing the responsibilities of the class.

Answers for the following questions can be used to identify the associations.

1. Is the class capable of doing all its responsibilities?
2. If not what does it need?
3. What are the other class needed to fulfill the requirements?

Some cases the associations are explicit where in other cases they are identified from
general knowledge.

Common Association Patterns:

These patterns and associations are group of associations identified by good
expertise persons and researchers.

For Example

• Location Pattern – associations of type next to, part of, contained in that represents
association with respect to the physical location. For e.g. tyre is a part of car.

• Communication Pattern – association of type talk to, order to that represents
associations with respect to communication. For e.g. driver turns the vehicle.

These patterns are maintained in the repository as groups and when a new
association is identified it is placed in the relevant group.

Guidelines for eliminating unnecessary associations:

1) Remove implementation associations separate those associations that represent
associations related to implementation. Postpone these issues to later stages of design
or initial stages of coding.

2) Eliminate higher order associations by decomposing them into set of binary
associations. Higher order associations increase the complexity where binary relations
reduce complexity by reducing the confusions and ambiguities.

3) Eliminate derived associations by representing them in simpler associations. For e.g.
Grand Parent Association can be represented in terms of two parent relationship.
Hence it is enough to deal the parent relationship and no grandparent relationship.

1. Super – Sub Class Relationship (Inheritance):-

Super – Sub class relationship known as generalization hierarchy. New classes can
be built from other classes hence the effort for creating new classes gets reduced. The
newly built class is called a derived class and the class from which the new class is built is
called Base Class. This inheritance allows user to share the attributes and methods.

[NOTE: Give one example]

Guidelines for identifying Super – Subclass relationship

1) Top – Down: - Identify more generalized classes first analyze the purpose and
importance of those classes. If necessary identify the specialized classes and represent
them. If needed increase the number of levels of generalization/ inheritance.

2) Bottom – Up: - Identify classes and compare them for similar properties and methods. If
generalization applies find a new class that can represent the similar classes.

3) Reusability: - Analyze the specialized classes and check weather similar properties/ behavior

lie in same layer. If such members exist push them to top most level as possible.

4) Remove multiple inheritance if it creates any ambiguity in the design. Such inheritance

Object Oriented Analysis:

Analysis is a process of transforming a set of facts into a set of complete, unambiguous

and consistent picture of requirements of the system must do to fulfill the user‘s requirement

needs.

In this phase developer will analyze how the user will use the system and what should be

done to satisfy the user. The analyst may user the following technique

1. Examination of existing system requirements

2. Interviews

3. Questionnaire

4. Observation

Analysis is a difficult process because of the following contents in the SRS

1. Fuzzy descriptions

2. Incomplete requirements

3. Unnecessary features

Business Object Analysis process:

In three tire architecture the business layer actually implements the logic that

solves the requirement. Hence analysis done for objects in business layer. The Object

Oriented Analysis Process involves the following steps

1. Identify the actors who use the system

a. Who is using the system? OR

b. Who will be using the system?

2. Develop the simple business process model using an Activity diagram

3. Develop Use Case

a. What are the users doing with the system?

b. What are the users going to do with the system?

4. Prepare Interaction diagram for classification

5. Classification

a. Identify classes

b. Identify relationships

c. Identify attributes

d. Identify methods

6. Iterate and refine

1. Identifying Actors:

Actor represents the role of a user with respect to the system. An user may play

more than one role. Analyst have to identify what are the roles played by the user and

how they use. Actors can be identified using the following questions

1. Who is using the system?

2. Who is affected by the system?

3. Who affects the system?

4. What are the external systems used to fulfill the task?

5. What problems does this application solve and for whom?

6. How users use the system?

Jacobson provides two – three rule in identifying actors. i.e. start with 2 or 3 classes

(minimum) number of classes and refine on later iterations.

[Note: State the ATM System domain and specify the actors found from the Case

Study] 2. Developing a Simple Business Process Model

The entire set of activities that takes place in the domain are represented with the help of

a simple Business Process Model created with an UML activity diagram. This makes each

member of the team very familiar with the domain and overall activities that takes place when a

aduser uses the system in the domain.

MEMBER ARRIVES AT ATM

CENTER

INSERY CARD

ENTERS

PASSWORD

CORRECT

PIN?

SELECT THE

TRANSACTION

TYPE

PERFORMS

TRANSACTION

MORE

TRANSACTION?

The above diagram represents the Business Process Model for an ATM System. It
lists out following activities done by the user in an ATM Center.

1. User enters the ATM Center and inserts the card
2. He Enters the PIN
3. If he enters an incorrect PIN machine ask for correct PIN
4. User selects the type of Transaction
5. System Performs the Transaction
6. User collects the cash, card and leaves the ATM Center.

2. Develop use case model.

Use case diagram represents various requirements of the user. This use case model can be

used in most of the phases.

It consists of

a. Actors involved
b. Various Scenarios (Use Cases)
c. Communication between actors and use cases
d. Relation between various use cases

i. USES
ii. Extends

a. Actors: Actors represents the role played by the user with respect to the system. An user may play

more than one role. Actors are represented by any of the three ways in UML

<< ACTOR>>
Client

Client

<<Client>>

While dealing with the actors importance is given to the role than the people. An actor uses more

than one use case.

b. Use Cases: Use Case represents the flow of events/ sequence of activities possible in the system.

A use case can be executed by more than one actor. An use case is developed/ named by grouping a

set of activities together.

Use Case Name

c. Communication between actors and use case. Communication between an actor and use case is

represented by a straight line connecting the actor and the use case. The line represents that the actor/

user uses that particular use case. An actor may use more than one use case.

62

d. Relation between Use Case.

i) Uses – This relationship exist when there is a sub flow between use case. In order to avoid

redundancy (created in all the places where there is a sub flow) sub flow is represented by a

single Use Case and it can be used by any Use case. This is a way of sharing use cases.

Transfer Money Uses

Check Balance

Debit Money Uses

ii) Extends – Extends relation exist between Use Cases if one use case is similar to

the other use case but does some more operations. (Note the same relation exist

between super – sub class). This relation helps the analyst and the designer to

establish relationship between classes and packages that implement the use case.

Deposit in to Savings

Bank

Deposit in to

Account

Deposit in to Current

Account

Abstract and Concrete Use Case:

An Abstract Use Case is one not executed by the user and it is not complete.
Abstract Use Case is used by other use case. They can be inherited.

A Concrete Use Case is one executed by the user and is complete.

Guidelines for developing Use Case:

1. Capture simple and normal Use Case first
2. Find out the mistakes and alternate ways of representing the work.

63

3. Find out the common operations among the use cases and represent
them as a specialized use case.

Documentation:

Documentation is the effective way of communication between different
developers/ team. This document reduces the gap between different phases/ team. The
detailed representation of each work and product developed during various iterations of
different phases are written. Document serves as a reference point for future reference.

Guidelines for Developing Effective Documentation:

1. Use common cover
2. Mind 80 – 20 rule while creating and referring documents.
3. Try only familiar terms in document.
4. Make document as short as possible.
5. Represent the document in an organized way.

UNIT-IV

Access Layer Design:

The need of access layer is to design/ create a set of classes that have rights and the way to

communicate with the database or data storage place. It isolates following information from the

business layer hence it gives service to the business layer.

1) Where data resides?

Local, Local server, remote server etc.

2) How data resides?

In a database, in a file, DBMS, RDBMS, ORDBMS, Internet etc.

3) How to access the stored data?

SQL, stream, File stream, ORB (for DCOM/ EJB) etc.

Access layer provides 2 important service to business layer

Translate Request The business layer is not aware of the protocol for accessing data as the

internal details are known only to the access layer classes. So any request from the business layer for

data cannot be transformed to storage as such. Such request are translated in to a form that storage

managers can understand and then transformed.

64

Business
Request

Translated

Layer Access Database/

Object/

messages

Layer

Request as

Data Storage

Classes Classes

query etc

Translate Result The business layer objects/ classes cannot understand the data send as such

from the database/ storage. But the access layer classes can understand the format of result data

from the storage as well as the format the business layer can understand. Hence the access layer

classes translate the result data in to a form so that business layer can understand.

Business
Translated

Unformatted

Layer Access Database/

result result from

Object/ Layer Data Storage

storage

Classes

Classes

Persistent Data Persistent data is one which exists between executions. These data is to

be stored permanently for future executions.

E.g. In a student class the name, no, address etc are persistent data.

Transient Data Transient data is one that may not exist between executions. These data

are need not to be stored in database for future execution.

E.g. In a student class the variables meant for temporary purpose like temp_tot etc are transient data

Access Layer Design Sub Process:

I. Design access layer

i. Create mirror class for all classes identified in business layer

which contains persistent data.

ii. Identify access layer class relationship

iii. Simplify access layer classes and class relationship

1. Remove redundant classes

65

2. Singe method classes can be removed and added in
another class.

iv. Iterate and refine.

[Note: Explain the process in detail]

The below diagram demonstrates the sub process.

First diagram represents the step mirroring.

The second diagram represents the step of identifying relationship between access layer classes.

The third diagram represents simplified class diagram.

id Component Model

EA Unregistered Trial Version EA 4.00 Unregistered Trial Version EA 4.00 Unregist

 Business Layer

 Access Layer

EA class1 EA

ClassDB1

 Unregist

Mirror Class Package

EA EA EA 4.00 Unregist

EA

Class2 Class3

EA

ClassDB2 ClassDB3

EA 4.00 Unregist

EA EA EA 4.00 Unregist

A 4.00 Unregistered Trial Version EA 4.00 Unregistered Trial Version EA 4.00 Unregis

id Component Model

EA 4 Unregistered Trial Version EA 4.00 Unregistered Trial Version EA 4.00 Unregist

 Business Layer

 Access Layer

EA class1 EA

ClassDB1

 Unregist

Mirror Class Package

EA EA EA 4.00 Unregist

EA

Class2 Class3

EA

ClassDB2 ClassDB3

EA 4.00 Unregist

EA EA EA 4.00 Unregist

A 4.00 Unregistered Trial Version EA 4.00 Unregistered Trial Version EA 4.00 Unregis

66

id Component Model

EA 4.00 Unregistered Trial Version

Access Layer

EA

ClassDB1

EA

EA

ClassDB3

EA

EA 4.00 Unregistered Trial Version

Study of Object Storage Techniques:

DBMS – Database Management System is a set of programs that enables the creation and
maintenance of collection of related data. The DBMS and associated programs access,
manipulate, protect and manage the data.

Lifetime of objects/ data can be categorized as following

Transient:

1. Transient results to the evaluation of expression.
2. Variables involved in procedure activation
3. Global variables that are dynamically allocated

Persistent:

1. Data that exist between different executions of programs.
2. Data that exist between different versions of programs

3. Data that outlive a program.

Study of DBMS:

DBMS – Database Management System is a set of programs that enables the creation and
maintenance of collection of related data. The DBMS and associated programs access,
manipulate, protect and manage the data.

DBMS also contains the full definition of the data formats. It is called meta data or schema.
Since the complexity and issues regarding the storage lies with in the DBMS it provides a
generic storage management system.

Database Views:

The low level storage details are isolated from the user and for better understanding the
logical concepts are supplied to the user.

The various logical concepts are represented by different database views.

67

Database Models:

A Persistence – This refers to the life time of an object. Some objects outlive the programs.
Persistent Objects are one whose life time is long and transient objects are those whose
lifetime is very short.

database model is a collection of logical constructs used to represent the data structure
and data relationships with in the database.

The conceptual model represents the logical nature of organization of data where a
implementation model represents the real implementation details.

1. Hierarchical Model

This model represents the data as a single rooted tree structure. Each node represents the data

object and connection between various nodes represents the parent – child relationship. This

relationship resembles the generalization relationship among objects. A parent node can have

any number of child node where each child node shouldn‘t have more than one parent node.

Motor Vehicle

Bus Truck Car

2. Network Model

A network database model is similar to hierarchical model. Here in this model each
parent can have any number of child nodes and each child node can have any
number of parent nodes.

 Motor Vehicle Transport

Bus Truck Car

3. Relational Model

This model defines 4 basic concepts. Table, Primary Key, Foreign Key and relation
between tables.

Table – It‘s a collection of records form the table. The Table is composed of various
rows (tuples) and columns (attributes).

A primary key is a combination of one or more attributes which is used to identify
any tuple unambiguously. Primary never gets duplicated in a table.

Foreign key is an attribute of a table that is a primary key of another table.

68

Relation between tables – The primary key of one table is the foreign key of another table.

Also data can be searched with the combination of more then one table.

Because of these reasons the relational model is the most widely used model.

STUDENT_UNIV STUDENT_COLLEGE

Univ % of

Reg_no Name mark

 College Bus

 id_no Name root Area

Name Bus time

 root

STUDENT_TRANSPORT

Database Interface:

The interface of a database includes Data Definition Language (DDL), Data
Manipulation Language (DML) and a query.

There are two ways to establish relation with the database

1) By embedding SQL in a program that needs an interface. Since SQL
(Structured Query Language) is one of widely accepted language usage of
SQL in a program makes programmers feel easy.

2) Extending the programming language to manage data. Here the programmers
have to know about the data models and implementation details.

DDL – Data Definition Language is the language used to describe the structure of

Objects (data) stored in a database and relation between them. This structure of
information is called Database Schema. DDL is used to create tables in a database.

E.g

CREATE SCHEMA COLLEGE

CREATE DATABASE COLLEGE_DB

CREATE TABLE STUDENT_TRANSPORT (Name char (10) NOT NULL, Busroot
number (2) NOT NULL, time TIME)

DML and Queries:

69

Data Manipulation Language is used for creating, changing and destroying data inside a
table. SQL (Structured Query Language) is the standard language for making queries.

A query usually specifies

* The domains of the discourse over which to ask the query.
* The elements of general interest.
* The conditions are constraints that apply.

* The ordering, sorting, or grouping of elements and the
constraints that apply to the ordering or grouping.

Traditional DML specifies what are the data desired and specifies how to retrieve the
data. Object Oriented DML just specifies what data is desired and not how. While
developing applications that uses SQL the mostly used way is to embed the SQL
statements inside the program.

Transaction:

A transaction is a unit of change in which many individual modifications are
aggregated into a single modification that occurs entirely or not at all. Thus all the changes
inside the transactions are done fully or none at all.

A transaction is said to be commit if all the transactions made are successfully updated
to the database and said to abort if all the changes made cannot be added to database.

Concurrent Transaction:

A transaction is said to be concurrent if it uses a database which is used by another
transactions. Hence a database lock is used to avoid problems like ―last updated‖. When a
transactions starts using a database it is locked and is not available to other transactions.

Distributed Database is one in which a portion of database lies of one node and other on
another node.

Client Server Computing.

Client – Node that request for a service

Server – Node that services the request.

Client Server computing is the logical extension of modular programming. The
fundamental concept behind the modular programming is decomposing the larger software
in to smaller modules for easier development and maintainability.

Client Server computing is developed by extending this concept i.e, modules are allowed to
execute in different nodes with different memory spaces. The module that needs and request
the service is called a client and the module that gives the service is called a server.

The network operating system is the back bones of this client sever computing. It provides
services such as routing, distribution, messages, filing and printing and network
management. This Network Operating System (NOS) is called middleware.

70

Client Program:

o It sends a message to the server requesting a service (task done by server).
o Manages User Interface portion of the application.

o Performs validation of data input by the user.

o Performs business logic execution (in case of 2 tier).

o Manages local resources.

o Mostly client programs are GUI.

Server Program:

o Fulfills the task requested by the client.
o Executes database retrieval and updation as requested by the client.

o Manages data integrity and dispatches results to the client.

o Some cases a server performs file sharing as well as application services.

o Uses power full processors and huge storage devices.

File Server – Manages sharing of files or file records. Client sends a message to the file

server requesting a file or file record. The File Server checks the integrity and
availability of file/record.

Data Base Servers – Client pass the SQL query in the form of messages to the
server in turn server performs the query and dispatches the result.

Transaction Servers – Client sends message to the server for a transaction (set
of SQL statements) where the transaction succeeds or fails entirely.

Application Servers – Application servers need not to be database centric. They
may Serve any of user needs such as sending mails, regulating download.

Characteristics of Client Server Computing:

1. A combination of client/ front end process that interacts with the user and server/
backend process that interacts with the shared resources.

2. The front end and back end task have different computing resource requirements.
3. The hardware platform and operating system need not be the same.

4. Client and Server communicate through standard well defined Application Program
Interface (API).

5. They are scalable.

Distributed and cooperative processing

In Distributed Computing the applications and business logic are distributed across
multiple processing platforms. It implies that the processing should be carried out in
different process for the transaction to be completed. These processes may not run at
same time. Proper synchronization mechanism is provided if needed.

71

Cooperative processing is a type of distributed computing where more then one process is
to be completed for completing the entire transaction. These processes are executed concurrently
on different machines and good synchronization and inter process mechanism is provided.

Distributes Object Computing offers more flexible way of distributed computing where
mobile software components (objects) travel around the network and get executed in different
platforms. They communicate with application wrappers and manage the resources they
control. In this computing the entire system is made up of users ,objects and methods.

Various DOC standards are OMG‘s CORBA, OpenDoc, Microsoft ActiveX/ DCOM.

Object Relation Mapping.

In a relational database system the data are stored in the form of tables where each
table contains a set of attributes/fields and tuple/rows. In an object oriented environment
the counterpart of class is a table.

In the mapping the classes are mapped to table such a way that the persistent data
members of classes will become the attributes. Each row in the table corresponds to an
object. The following mapping types are used in object oriented environment

1. Table – Class Mapping
2. Table – Multiple Class Mapping
3. Table – Inherited Class Mapping
4. Tables – Inherited Class Mapping

1. Table Class Mapping

It‘s a simple one – to – one mapping of a class to a table and properties of class are
become the fields. Each row in the table represents an object and column

represents a property of objects. CAR

 Cost

CAR TABLE Color

Cost Color Make Model Make

 Model

2. Table – Multiple Classes Mapping

Here a single table is mapped to more than one non inherited classes. So all the
persistent properties of mapped classes represents the columns of the table. The column
value that is not common for the mapped classes can be used to identify the instance.

In the below example the Employee Class and Customer Class are mapped to person
table. Instances of employee class can be identified from the rows whose custID value is NULL.
Also instances of Customer class can be identified from the rows whose empID is NULL.

 Employee

 Name

Name Address custID empID Address

 empID

72

Mr. X A1, a2 C123 NULL

Mr.Y A2, A3 NULL E123 Employee

Name

Address

empID

3. Table Inherited Classes Mapping

In this case a single table is mapped to more than one class which has a common super class.

This mapping allows user to represent the instances of super class and subclasses in a single table.

In the given example the instances of Employee class can be identified from the
rows whose wage and salary are NULL. The instances of Hourly Employee can be
identified from the rows whose salary is NULL. The instances of Salaries Employee can be
identified from the rows with Wage as NULL.

4. Multiple Tables – Inherited Classes Mapping.

This kind of mapping allows is a to be established among tables. In a relational
database this is possible by using primary key and foreign key.

In the below example Employee and Customer inherits the properties of Person class. The
Person table is mapped to Person class, Employee table is mapped to Employee class and
Customer table is mapped to Customer Class. There exist is a relation between Employee,
person and customer, person.

cd Data Model

nregistered Trial Version EA 4.00 Unr

 Person

nregistered - ssn: EA 4.00 Unr

 - name:

 - address:

nregistered Trial Version EA 4.00 Unr

 Employee Trial Version Customer Unr

- dept: - name:

- slary:

Trial Version

- address:

Unr

- company:

nregistered Trial Version EA 4.00 Unr

Name Address SSN Name Dept SSN Salary

73

Name Address Company

Study of Multi Database System and Open Database Connectivity

DBMS RDBMS OODBMS DBMS

LOCAL DATABASES

MDBS

MDBS

APPLICATION

Multi database system is a heterogeneous data base system facilitate the integration
of heterogeneous database systems and other information sources. Federated multi
database systems are one that are unstructured or semi unstructured.

This multi database system provides single database illusion to the users. The user initiate

a single transaction that in turn uses many heterogeneous databases. Hence the user performs

updation and queries only to a single schema. This schema is called the global schema and it

integrates schemata of local databases. Neutralization solves the schemata conflicts.

The query and updates given to global schema by the user is decomposed and
dispatched to local databases. The local databases are managed by gateways as one gate
way for each local database.

Open Database Connectivity (ODBC) is an API (Application Program Interface) that
provides database access to application programs. The application programs can
communicate with the database through function calls (message passing) regardless of the
type and location of the database.

ODBC Driver Manager

Datab

O

ase A

D

Driver for Database A

B

Application

C

Program

A

Driver for Database B

Datab

P

ase B

Driver for Database C

 I

Datab

ase C

74

The above diagram shows the logical view of Virtual Database using ODBC. The
application program uses ODBC API to communicate with the database. Application
programs passes same messages to interface irrespective of the type and location of
database. ODBC maintains a set of drivers necessary for communicating with the
database. This reduces the database related complexities for a programmer.

The driver manager loads and unloads drivers, performs status checking, manages multiple
connection and heterogeneous databases.

Design of Business Layer

Business layer involves lot of logic that is to be implemented in order to achieve the
customer needs. Analysis is carried out for business layer objects. Hence the design for
business layer has got a strong dependency with the model produced in the analysis phase.

The activities involved in Business Layer design are

2. Business Layer Class Design – apply design axioms for designing classes for
business layer. Designing classes includes designing their attributes, methods
and relationships.

I. Design/ Refine UML Class diagram developed in previous phase/ iteration.

i. Design/ Refine attributes (Use OCL)

1. Add left out attributes

2. Specify visibility, data type and initial value if any for attributes

ii. Design/ Refine Methods (Use OCL and UML Activity diagram)
1. Add left out methods

2. Specify visibility of the protocol (+, - ,#)

3. Specify the argument list and return type

4. Design the method body using UML Activity diagram and OCL.

iii. Refine association

iv. Refine Generalization and aggregation.

v. Iterate and refine.

Refine/ Design Refine/ Design Refine class

Attributes identified Methods identified association,

in previous iteration/ in previous iteration/ inheritance and

phase phase aggregation.

Refining Attributes:

75

Attributes represents the information maintained by each object. Complete list of

attributes should be identified in order to maintain a complete set of information. Detailed

information of attributes is not specified in analysis phase but in design phase.

OCL is used to represent the attribute details inside a class diagram/ notation.

Various types of attributes are

1) Single valued attributes – an attribute represents one value at a time.
2) Multi valued attributes – an attribute can store more than one value
3) Reference attributes – an attribute refers (alias) another instance.

OCL format for representing attributes:

The OCL specification for specifying attributes is

Visibility attribute name : type

OR

Visibility attribute name : type = initial value

E.g.

+ Name : String
- represents a public attribute Name of type String

Name : String = ―Hello‖

- represents a protected attribute Name of type String with initial
value Hello

[Note: Use the example from the case study]

Designing/ Refining Methods:

Designing methods involves design of Method protocol and Method body. A method

protocol defines the rule for message passing to this particular object where the method

body gives the implementation details. The types of methods provided by class are

1) Constructor – Method that is responsible for creating objects/ Method invoked

during instantiating.

2) Destructor – The method that destroys instances/ Method invoked when an

object is freed from memory.

3) Conversion Method – Methods responsible for converting one form of date to other form.

4) Copy Method – Methods responsible for copying information.

5) Attribute Set – Method responsible for setting values in attributes

6) Attribute Ger – Method responsible for getting the values from an attribute

7) I/O Methods – Method responsible for getting and sending data from a device

76

8) Domain Specific – Those methods responsible for some functionality in a

particular domain.

Designing Protocol:

Protocol gives the rule for message passing between objects. Protocol is the interface

provided by the object. Based on the visibility of the protocol it can be classified into

1. Public Protocol

2. Private Protocol

3. Protected Protocol.

Private protocols specify messages that can be send only by the methods inside the class.

They are visible only inside the class.

Protected protocols specify messages that can be send only by the methods inside the class.

But they can be inherited by the subclass.

Public protocols specify messages that can be send by the methods with in the class

as well as objects outside the class.

Protocol and Encapsulation leakage – If protocols aren‘t well designed unnecessary

messages are made available outside the class results in encapsulation leakage.

Internal layer contains the private and protected protocols where an External layer

contains public protocols.

OCL Specification for Protocol Design:

The specification is

Visibility protocol name (argument list) : return type

Where argument list is arg1: type, arg2: type, arg3: type …

argn: type E.g.

+ getName () : String

It‘s a public protocol named getName with no parameters and it returns a

value of type String.

- setData (name : String, no : Integer) : Boolean

It is a private protocol that accepts 2 arguments one of type String and other

of type Integer. It returns a value of type Boolean.

77

Designing Method body:

UML Activity diagram along with OCL specification can be used for representing the

body of the method. Activity diagram representing the method body says how the

work should be done.

[Note: Use an activity diagram from case study]

Design of Business Layer

Business layer involves lot of logic that is to be implemented in order to achieve the
customer needs. Analysis is carried out for business layer objects. Hence the design for
business layer has got a strong dependency with the model produced in the analysis phase.

The activities involved in Business Layer design are

3. Business Layer Class Design – apply design axioms for designing classes for
business layer. Designing classes includes designing their attributes, methods
and relationships.

I. Design/ Refine UML Class diagram developed in previous phase/ iteration.

i. Design/ Refine attributes (Use OCL)

1. Add left out attributes

2. Specify visibility, data type and initial value if any for attributes

ii. Design/ Refine Methods (Use OCL and UML Activity diagram)
1. Add left out methods

2. Specify visibility of the protocol (+, - ,#)

3. Specify the argument list and return type

4. Design the method body using UML Activity diagram and OCL.

iii. Refine association

iv. Refine Generalization and aggregation.

v. Iterate and refine.

Refine/ Design Refine/ Design Refine class

Attributes identified Methods identified association,

in previous iteration/ in previous iteration/ inheritance and

phase phase aggregation.

Refining Attributes:

78

Attributes represents the information maintained by each object. Complete list of

attributes should be identified in order to maintain a complete set of information. Detailed

information of attributes is not specified in analysis phase but in design phase.

OCL is used to represent the attribute details inside a class diagram/ notation.

Various types of attributes are

4) Single valued attributes – an attribute represents one value at a time.
5) Multi valued attributes – an attribute can store more than one value
6) Reference attributes – an attribute refers (alias) another instance.

OCL format for representing attributes:

The OCL specification for specifying attributes is

Visibility attribute name : type

OR

Visibility attribute name : type = initial value

E.g.

+ Name : String
- represents a public attribute Name of type String

Name : String = ―Hello‖

- represents a protected attribute Name of type String with initial
value Hello

[Note: Use the example from the case study]

Designing/ Refining Methods:

Designing methods involves design of Method protocol and Method body. A method

protocol defines the rule for message passing to this particular object where the method

body gives the implementation details. The types of methods provided by class are

9) Constructor – Method that is responsible for creating objects/ Method invoked

during instantiating.

10) Destructor – The method that destroys instances/ Method invoked when an

object is freed from memory.

11) Conversion Method – Methods responsible for converting one form of date to other form.

12) Copy Method – Methods responsible for copying information.

13) Attribute Set – Method responsible for setting values in attributes

14) Attribute Ger – Method responsible for getting the values from an attribute

15) I/O Methods – Method responsible for getting and sending data from a device

79

16) Domain Specific – Those methods responsible for some functionality in a

particular domain.

Designing Protocol:

Protocol gives the rule for message passing between objects. Protocol is the interface

provided by the object. Based on the visibility of the protocol it can be classified into

4. Public Protocol

5. Private Protocol

6. Protected Protocol.

Private protocols specify messages that can be send only by the methods inside the class.

They are visible only inside the class.

Protected protocols specify messages that can be send only by the methods inside the class.

But they can be inherited by the subclass.

Public protocols specify messages that can be send by the methods with in the class

as well as objects outside the class.

Protocol and Encapsulation leakage – If protocols aren‘t well designed unnecessary

messages are made available outside the class results in encapsulation leakage.

Internal layer contains the private and protected protocols where an External layer

contains public protocols.

OCL Specification for Protocol Design:

The specification is

Visibility protocol name (argument list) : return type

Where argument list is arg1: type, arg2: type, arg3: type …

argn: type E.g.

+ getName () : String

It‘s a public protocol named getName with no parameters and it returns a

value of type String.

- setData (name : String, no : Integer) : Boolean

It is a private protocol that accepts 2 arguments one of type String and other

of type Integer. It returns a value of type Boolean.

80

Designing Method body:

UML Activity diagram along with OCL specification can be used for representing the

body of the method. Activity diagram representing the method body says how the

work should be done.

[Note: Use an activity diagram from case study]

Object Oriented Design

Software Design represents the logic of the software system providing more dependency to
the computer domain than physical/ user domain. Design actually deals with ―LOGIC TO
IMPLEMENT IN PROGRAM TO ACHIEVE THE SYSTEM GOAL‖

Analysis

SOFTWARE

Design and Design Document

Model

DESIGN PROCESS

I. SOFTWARE DESIGN PROCESS:

Software Design Process is the set of activities involved in developing a good and quality design.

This is a sub process of Software Engineering Process.

DESIGN AXIOMS AND COROLLARIES Design Patterns

Design/ Refine Design/ Refine Design/ Verify the

the classes for Classes for Refine User Design/

Business Layer Access Layer Interface Usability test

Iterate

The above diagram shows the different sub phases in software design process.

Unified Approach suggests 3-tired architecture. Since design has strongly dependency with
implementation, the design should carried out for these layers separately.

4. Business Layer Class Design – apply design axioms for designing classes for
business layer. Designing classes includes designing their attributes, methods
and relationships.

I. Design/ Refine UML Class diagram developed in previous phase/ iteration.

81

i. Design/ Refine attributes (Use OCL)

1. Add left out attributes

2. Specify visibility, data type and initial value if any for attributes

ii. Design/ Refine Methods (Use OCL and UML Activity diagram)
1. Add left out methods

2. Specify visibility of the protocol (+, - ,#)

3. Specify the argument list and return type

4. Design the method body using UML Activity diagram and OCL.

iii. Refine association

iv. Refine Generalization and aggregation.

v. Iterate and refine.

II. Design access layer

i. Create mirror class for all classes identified in business layer.

ii. Identify access layer class relationship

iii. Simplify access layer classes and class relationship

1. Remove redundant classes

2. Singe method classes can be removed and added in
another class.

iv. Iterate and refine.

III. Design View Layer

i. Design the macro level user interface – identify view layer objects

ii. Design micro level user interface

1. Design view layer objects by applying design axioms and
corollaries.

2. Build a prototype of view layer interface

iii. Verify Usability and User Satisfaction

iv. Iterate and refine

5. Iterate and refine the above steps in necessary.

[Note: Explanation is given for 3 sub process separately. Example is given in CASE study
of ATM system.]

II. DESIGN AXIOMS AND COROLLARIES:

Axiom is a fundamental truth that has no exception or counter proof.

A corollary is one derived from axiom or another proves theorem.

82

These can be used in the software design for the following reasons

1. Making the design more informative and uniform.
2. Avoid unnecessary relationships and information.
3. Increase the quality.
4. Avoid unnecessary effort.

Axiom1 The independence axiom Maintain independence of components/ classes/
activities

Axiom2 The information axiom Minimize the information content of the design

Axiom1 The independence axiom

It says that when we implement one requirement of an user it should not affect the
other requirement or its implementation. I.e., each component should satisfy its
requirements without affecting other requirements.

E.g.

Requirement1:

Requirement2:

Node1 should send multimedia files requested by the Node2.

Node1 one should take minimum time for sending due to heavy traffic.

Consider the component C1 responsible for sending Multimedia files.

Choice 1: C1 reads the files and send the file header first and then the content in a
byte stream. Here the component satisfies the first requirement
where it fails to satisfy the second requirement.

Choice 2: C1 reads the files and compress the content and file header contains the
file and compression information. Since the file size transferred
is reduced this choice satisfies both requirements.

Axiom2 The information axiom

It deals with the simplicity and less information content. The fact is less number of information makes a

simple design, hence less complex. Minimizing complexity makes the design more enhanced. The best way

to reduce the information content is usage of inheritance in design. Hence more information can be
reused from existing classes/ components.

E.g.

Chioce1: (with out inheritance)

 Vehicle Car

 Name Name

 Brand Brand

 Owner Owner

 Color

83

Stop()

Engine No

Start()

Stop()

Class car maintains more information even though they are already maintained in
vehicle class. Since car class maintains more information the design that contains the
car class makes the design look more complex.

Vehicle 3 properties and 2 methods.

Car 5 properties and 3 methods.

Chioce2 (with inheritance)

Car

Vehicle

Color

Name
 Engine No

Brand

Owner Cngecolor()

Stop()

Start()

In this case the class car inherits some reusable methods and properties from vehicle
class and hence it has to maintain 2 attributes and 1 method. Hence the class car looks simple.

Corollaries:

Corollaries are derived from design axioms(rules). These corollaries are
suggestions to the designer to create a quality design.

They are

1. Corollary 1Uncoupled Design with less information content (from
Axiom1 and 2)

2. Corollary 2Single purpose classes (from Axiom1 and 2)

3. Corollary 3large number of simple classes (from Axiom1 and 2)

4. Corollary 4Strong Maping (from Axiom 1)

5. Corollary 5Standardization (from Axiom 2)

6. Corollary 6Design with inheritance (from Axiom 2)

Corollary 4

Corollary 1

AXIOM 1

Corollary 2

84

AXIOM 1

Corollary 3

Corollary 1 Uncoupled design with less information content.

This corollary explains the concept of dependency by cohesion and coupling.

Cohesion is the dependency among the classes inside a component

Coupling the measure of dependency between 2 components.

Designers prefer design with

1) Low coupling between components
2) High cohesion among the classes inside a component.

Hence by reducing the strength of coupling between classes/ components reduces the complexity
of the design.

Coupling It‘s the measure of association established between 2 objects/ components. Designers
prefer weak coupling among components because effect of change in one component should have

less impact on the other component. The degree (strength) of coupling is the function of

1. How complicated the connection is?

2. Whether the connection refers to object itself or something inside the referred object

3. What message/ data is being send and received.

Interaction coupling exist between 2 objects if there is a message passing between those 2 objects.

The strength of interaction coupling depends on the complexity of messages passed between them.

Inheritance coupling exist between super and sub class. Inheritance coupling is
desirable. Types of coupling

1. Content Coupling (Very High)
2. Common Coupling (High)
3. Control Coupling (Medium)
4. Stamp Coupling (Low)
5. Data Coupling (Very low)

Cohesion is the strength of dependency between classes with in a component. More
cohesion reflects single purpose of the class. Designers prefer strong cohesion among
contents of the component.

Corollary 2 Single purpose

Each class should have a single well defined purpose and the aim of the class is to
full fill that responsibility. If the class aims at implementing multi purpose subdivide the
class in to smaller classes.

Corollary 3 Large number of simpler classes for reusability

85

Complex classes are difficult to understand and hence for reuse needs more effort. Many times

unnecessary members are reused as the super class was a complex one. The guideline says that ―The

smaller are your classes, better your chances of reusing them in other projects.
Large and complex classes are too specialized to be reused.‖

Corollary 4 Strong Mapping

The designer, analyst and programmer should maintain strong dependency among the products

obtained during the different phases of SDLC. Hence a class identified during the analysis is designed in

design phase and coded in implementation phase.

Designer should consider the programming language while creating design using technologies.

Corollary 5 Standardization

The Designer/ Programmer should be aware of the existing classes/ components available in the

standard library. This knowledge will help the designer to reuse the existing classes and design the newly

needed classes/ components. A class/ pattern repository is maintained to store all the reusable classes and

components. Even in most of the cases the repository is shared. Repository maintains the reusable
components, description, commercial/ non commercial and usage.

Corollary 6 Design with Inheritance

[Note: Include inheritance , importance and need of inheritance, types with one example]

OCL – Object Constraint Language:

It‘s a specification language used for representing properties of objects in an UML diagram.

It is English like language. The rules and semantics of the UML diagrams can be represented using

OCL. OCL specifications in UML diagrams make UML diagrams more clear and informative.

Sets, arithmetic expressions, Boolean expressions can be represented using OCL.

OCL Specifications:

1. Item. Selector

Selector Used to get the value of the attribute.

Item Entity to which the attribute belongs to.

E.g.

Stundent1. No = 30

Student1 is the Item and no is the selector.

2. Item. Selector [qualifier value]

Selector Used to identify a set of similar values.

Item Entity to which the attribute belongs to.

Qualifier specifies the particular value among the group.

86

E.g.

Student1. Mark [3]

Student1 is the Item, mark is the selector and 3 (qualifier) that represents 3
rd

 mark

3. Boolean Expression

(Item1. Selector Boolean operation Item2.Selector)

E.g. S1. mark > S2. mark represents a Boolean value of true or false.

4. Set operation

Set select (Boolean expression) is used to select a group of

objects that satisfies the Boolean expression.

Student select (mark >40) selects a list of students who has mark greater than 40.

5. Attribute specification

The OCL specification for specifying attributes is

Visibility attribute name : type

OR

Visibility attribute name : type = initial value

E.g.

+ Name : String

- represents a public attribute Name of type String

Name : String = ―Hello‖

- represents a protected attribute Name of type String with initial value Hello

6. Protocol Design Specification

The specification is

Visibility protocol name (argument list) : return type

Where argument list is arg1 : type, arg2 : type, arg3 : type … argn : type

E.g.

+ getName () : String

87

It‘s a public protocol named getName with no parameters and it returns a

value of type String.

- setData (name : String, no : Integer) : Boolean

It is a private protocol that accepts 2 arguments one of type String and other

of type Integer. It returns a value of type Boolean.

7. OCL in representing function call

Name =
Student:: + getName() : String

getName()

The activity diagram does not specify any details of getName where the OCL
specification near the function call represents the clear idea about the method getName.

[Note: more examples should be added in each category]

Designing View Layer Classes:

View layer objects are more responsible for user interaction and these view layer

objects have more relation with the user where business layer objects have less interaction

with users. Another feature of view layer objects are they deal less with the logic. They help

the users to complete their task in an easy manner.

The Major responsibilities of view layer objects are

1. Input – View Layer objects have to respond for user interaction. The

user interface is designed to translate an action by the user (Eg. Clicking the

button) in to a corresponding message.

2. Output - Displaying or printing information after processing.

View Layer Design Process:

1. Macro Level UI Design Process

a. Identify classes that interact with human actors

b. A sequence/ collaboration diagram can be used to represent a clear

picture of actor system interaction.

88

c. For every class identified determine if the class interacts with the human

actor. If so

i. Identify the view layer object for that class.

ii. Define the relationship among view layer objects.

2. Micro Level UI Design Process

a. Design of view layer objects by applying Design Axioms and Corollaries.

b. Create prototype of the view layer interface.

3. Testing the usability and user satisfaction testing.

4. Iterate and refine the above steps.

[Note: Explain the above process for an essay]

User Interface Design Rules:

UI Design Rule 1: Making the interface simple

For complex application if the user interface is simple it is easy for the users to learn

new applications. Each User Interface class should have a well define single purpose. If a

user cannot sit before a screen and find out what to do next without asking multiple

questions, then it says your interface is not simple.

UI Design Rule 2: Making the Interface Transparent and Natural.

The user interface should be natural that users can anticipate what to do next by

applying previous knowledge of doing things with out a computer. This rule says there

should be a strong mapping and users view of doing things.

UI Design Rule 3: Allowing users to be in control of the Software.

The UI should make the users feel they are in control of the software and not the

software controls the user. The user should play an active role and not a reactive role in the

sense user should initiate the action and not the software.

89

Some ways to make put users in control are

1. Make the interface forgiving.

2. Make the interface visual.

3. Provide immediate feedback.

4. Avoid Modes.

5. Make the interface consistent.

Purpose of View Layer Interface - Guidelines

Unit – V

Software Quality Assurance Testing:

Bugging and Debugging - Related to Syntax Errors.

Testing – Related to Logical, Interface and communication errors.

Testing – for assuring quality. (In general)

Software Quality Assurance Testing – For Satisfying the Customer – Give more importance
to testing the Business Logic and less importance to satisfaction of the user.

User Interface Testing – Usability and User Satisfaction – More importance is given to the
easiness of the User Interface and less importance to the logic.

Quality Assurance Testing

• Error Based Testing
o Methods are tested with some valid and invalid parameters

o Boundary Tests

Methods are tested with boundary values of the parameters. The
boundary values are

• - ve value (if applicable)

• Minimum Value – 1

• Minimum Value

• Medium Value

• Maximum Value – 1

• Maximum Value

• Maximum Value + 1etc etc

• Testing Strategies
o Black Box Testing.

o White Box Testing.

o Top down Approach.

o Bottom up Approach.

(Note: Refer SE notes/ Pressman book)

• Impact of OO on Testing
o Impact of Inheritance

90

It is not necessary to test Inherited Methods because its already been
verified in the Base class.

But if the inherited method is over ridded then the behavior may
change and it is needed to be tested.

(Note: Explain with an example)

o Reusability of Test Cases

Test Cases can be reused based up on the level of
reusage Overridden methods show a different behavior.

If the similarities in behavior exist test cases can be reused.

In some cases Inherited method accept same parameter as Base but
different behavior.

In the above case a test case can be reused such a way that the
expected o/p of the test case is changed and used.

o Test Cases

Test cases represents various testing scenarios.

A good test case is one which has a high probability of detecting an
undiscovered error.

A successful test case is one that can detect an
undiscovered error. Guidelines

• Describe which feature the test attempt to cover

• If scenario based then develop test case based on Use case

• Specify what feature is going to be tested and what is the
input/parameters and expectations

• Test the normal usage of that object

• Test abnormal reasonable usage

• Test abnormal unreasonable usage

• Test boundary conditions

• Document the cases for next iteration
o Test Plan

Objectives of the Test – Create the objectives and describe how to
achieve them

Development of Test Case – Develop test data, both input and expected output

Test Analysis – Analysis of test case and documentation of test results.

o Guidelines for developing Test Plans

Develop test plan based on the requirements generated by the user.

It should contain the schedule and list of required resources.

Determine the strategy (Black box, white box etc.) document what is to
be done.

SCM (Software Configuration management or Change control) activities
should be considered when ever a change is made due to a test result.

Keep the plan up to date.

Update documents when a mile stone is reached.

o Continuous Testing

Since UA suggests iterative development continuous testing is
advisable for efficient management of resource.

Testing is also carried out for each iteration of development.

• Myer‘s bug location and debugging principles.

o Bug Locating Principles
Think

91

If you reach an impasse (deadlock) sleep on it.

If impasse still remains discuss the problems to some
one else o Debugging Principles

Where there is one bug there is likely to be
another Fix the error and not the symptom

The probability of correctness of the solution decreases when the
program size increases.

Beware that error correction should not create more number of errors.

Example Format

For example..fill out the categories for any object

Test plan

1. Project Name:
2. Team Name:
3. Test Team Details:
4. Shedule:
5. Object/ Class under testing:
6. List of Methods:

7. Test Cases for Each
Method. a. Method1

i. Test Case 1
ii. Test Case 2

iii. ..
iv. Test Case N

b. Method2
i. Test Case 1

ii. Test Case2
iii. ..
iv. Test Case N

.

ONLINE QUESTIONS

UNIT-I

QUESTIONS OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 ANSWER

The entities of the

physical world are

called ________

Physical

Entities Objects Real Entities Methods Objects

The mechanism by

which the data and

functions are bound

together within an

object is called as

Encapsula

tion Inheritance Polymorphism Class Encapsulation

_______ supports the

concept of OOP C++ VB Java Oracle C++

______ increases

flexibility by

permitting the addition

of a new class of

objects without

modifying existing

code

Dynamic

binding

Polymorphi

sm Inheritance Class

Dynamic

binding

Advantage of OOPs

has important

technology for building

Simple

hardware

system

Simple

software

system

Complex

software

system

Complex

hardware

system

Complex

software

system

Using a single function

name to perform

different types of tasks

is known as

Encapsula

tion abstraction polymorphism Inheritance polymorphism

In inheritance, super

class is also known as

Parent

Class

Friend

Class Child Class Sub Class Parent Class

 ------ is a mechanism

that associates the code

and data it manipulates

into a single unit.

Encapsula

tion Abstraction Polymorphism Inheritance Encapsulation

The process of

invoking an operation

on an object is referred

to as ------

Message

Passing

Function

Overloadin

g

Operator

Overloading

Virtual

Function

Message

Passing

The phenomenon

where the object

outlines the program

execution time and

exists between

execution of a program

Persistenc

e Genericity Extensibility Delegation Persistence

is known as---------

The technique for

defining the declaration

of data items without

specifying this exact

data type is known as--

Delegatio

n

Message

Passing Genericity Persistence Genericity

The object’s internal

structure is totally

hidden from the user is

called as------

Inheritanc

e

Data

Encapsulati

on Polymorphism Class

Data

Encapsulation

The data in a class are

also called Members

Instance

Variables. Fields. Variables Members

 Action modules that

process data in class is

called

Recursive

Function

Member

Function

Class

variables

Instances of a

class

Member

Function

A class is a

drived

data type

basic data

type

user defind

data type

primitive data

type

user defind

data type

In object orientated

programming a class of

objects can

properties from another

class of objects Utilize Borrow Inherit Adapt Inherit

Which of the following

are class relationships

in inheritance ?

is-a

relationshi

p.

 Part-of

relationship

.

 Use-a

relationship.

 All of these

options.

is-a

relationship.

Which of the following

represents

relationships in

Delegation ?

is-a

relationshi

p.

Part-of

relationship

.

Use-a

relationship.

All of these

options.

Part-of

relationship.

 Which are the main

three features of OOP

language?

 Data

Encapsula

tion,

Inheritanc

e &

Exception

handling

Inheritance

,

Polymorphi

sm &

Exception

handling

 Data

Encapsulation,

Inheritance &

Polymorphism

 Overloading,

Inheritance &

Polymorphism

 Data

Encapsulation,

Inheritance &

Polymorphism

 When a language has

the capability to

produce new data type,

it is called Extensible Overloaded Encapsulated Reprehensible Extensible

State the object

oriented languages C++ Java Eiffel All the above All the above

Overload function in

C++

a group

function

with the

different

name

all have the

same

number

and type of

arguments

functions with

same name

and different

number and

type of

arguments

All of the

above

functions with

same name

and different

number and

type of

arguments

Operator overloading is

making

c++

operators

works

with

objects

giving new

meaning to

existing

c++

operators

making new

c++ operator

both making

c++ operators

works with

objects &

giving new

meaning to

existing c++

operators

both making

c++ operators

works with

objects &

giving new

meaning to

existing c++

operators

A class is a collection

of _______________

 data

structure methods objects all the above objects

_________ are created

by run time system. class object function all the above object

 ___________ can be

abstract. ___________

can not be abstract.

 object ,

class

class

,object

constructor

,destructor

 destructor,

constructor class ,object

Objects communicate

with each other or

interact among

themselves by

dynamic

linking binding

message-

passing

 none of the

above

message-

passing

represents one or more

conceptual connections

between objects

Associatio

n

Aggregatio

n

 both

Association &

Aggregation

 none of the

above Association

Specialization is also

called

________________rela

tionship. “has – a “ “part –of” “one-one” “is-a” “is-a”

A class that cannot be

instantiated is called

 meta

class

drived

class abstract class

 none of the

above abstract class

The protected data

members are visible in

its ____________

own class

and its

derived

class own class

 any where in

the program

 none the

above

own class and

its derived

class

__________ is/are a

pure object oriented

language . C++ smalltalk java c# java

The method of design

encompassing the

process of object

oriented decomposition

and a notation for

depicting both logical

and physical and as

well as static and

dynamic models of the

system under design is

known as:

Object-

Oriented

Programm

ing

Object-

Oriented

Design

Object-

Oriented

Analysis

None of the

mentioned

Object-

Oriented

Design

What is the

programming style of

the object oriented

conceptual model?

Invariant

relationshi

ps Algorithms

Classes and

objects

Goals, often

expressed in a

predicate

calculus.

Classes and

objects

The essential

characteristics of an

object that distinguish

it from all other kinds

of objects and thus

provide crisply defined

conceptual boundaries,

relative to the

perspective of the

viewer is called:

Encapsula

tion Modularity Hierarchy Abstraction Abstraction

Abstraction is

classified into _______

types 4 3 2 1 4

The process of

compartmentalizing the

elements of an

abstraction that

constitute its structure

and behavior is called

as Hierarchy

Encapsulati

on Modularity

Entity

Abstraction Encapsulation

Single inheritance,

Multiple inheritance,

and Aggregation comes

under _______

Modularit

y Typing Hierarchy

None of the

mentioned Hierarchy

 In which of the

following mechanisms,

types of all variables

and expressions are

Strong

Typing

Weak

Typing

Static

Binding/ early

binding

Dynamic

Binding/ late

binding

Static

Binding/ early

binding

fixed at compilation

time.

In which of the

following mechanisms,

types of all variables

and expressions are not

known until runtime

Strong

Typing

Weak

Typing

Static

Binding/ early

binding

Dynamic

Binding/ late

binding

Dynamic

Binding/ late

binding

Which of the following

statements about

Persistence is correct?

 It is the

enforceme

nt of the

class of an

object,

such that

objects of

different

types may

not be

interchang

ed, or at

the most

they may

be

interchang

ed only in

very

restricted

ways.

It is the

property of

an object

through

which its

existence

transcends

time and/or

space.

It is the

property that

distinguishes

an active

object from

one that is not

active.

All of the

mentioned

It is the

property of an

object through

which its

existence

transcends

time and/or

space.

What is that concept in

type theory in which a

single name may

denote objects of many

different classes that

are related by some

common super class

referred to ______

Monomor

phism

Type

Checking Polymorphism Generalization Polymorphism

Object oriented

technology is built

upon a sound

engineering foundation,

whose elements are

collectively called as

Von

Neumann

Model

Object

Model

Structured

Model

Programming

Model Object Model

Which of the following

programming language

are object oriented in

Smalltalk

and

Simula

FORTRAN

and

ALGOL C and Ada

Perl and

Python

Smalltalk and

Simula

nature

Callback is an

operation provided by

Inheritanc

e

Encapsulati

on Modularity Abstraction Abstraction

reader, :writer or

:accessor are the slot

options in Smalltalk LISP Object Pascal CLOS CLOS

Dependencies among

files can then be

asserted using the

macro #define #undef #include #endif #include

Inheritance is an

example of which type

of hierarchy

Class

Structure

 Object

Structure Both

None of the

mentioned

Class

Structure

Superclass represents

abstractions

Generalize

d

abstractio

ns

Specializati

on

abstraction

s Both

None of the

mentioned

Generalized

abstractions

Subclass represents

abstractions

Generalize

d

abstractio

ns

Specializati

on

abstraction

s Both

None of the

mentioned

Specialization

abstractions

_____________ is the

property that

distinguishes an active

object from one that is

not active.

Persistenc

e Typing Aggregation Concurrency Concurrency

Which of the following

statements about object

model is true?

I. Object model

encourages the reuse of

software and entire

design of the

application.

II. Object model

produces systems that

are built upon stable

intermediate forms.

III. Object model

reduce the inherent in

developing complex

systems.

IV. None of the

mentioned I, III I, II I, II, III IV I, II, III

1) Which of the

following property is

associated with

objects? State Behavior Identity

All of the

mentioned

All of the

mentioned

Which of the property

of a object

encompasses all of the

(usually static)

properties of the object

plus the current

(usually dynamic)

values of each of these. Semantics Behavior State Identity State

Which of the following

object types are

generally autonomous,

meaning that they can

exhibit some behavior

without being operated

upon by another object Passive Active

Both Passive

and Active

None of the

mentioned Active

A ________ is a

description of a set of

objects that share the

same attributes,

operations,

relationships, and

semantics. Structure Class Constructor Function Class

A ________ is a

special member

function whose task is

to initialize the objects

of its class.

Construct

or Destructor Selector Iterator Constructor

Which of the following

statements about a

constructor is not true?

We cannot

refer to

their

addresses.

They

cannot be

inherited,

though a

derived

class can

call the

base class

constructor

.

An object

with a

constructor

can be used as

a member of a

union.

Constructors

cannot be

virtual.

An object

with a

constructor

can be used as

a member of a

union.

The constructors that

can take arguments are

called ___________

Default

Construct

or

Copy

Constructor

Parameterized

Constructor

Dynamic

Constructor

Parameterized

Constructor

When an object is

created and initialized

at the same time, a

_________ constructor

gets called.

Inline

Construct

or

Copy

Constructor

 Default

Constructor

Parameterized

Constructor

Copy

Constructor

UNIT-II

QUESTIONS OPT1 OPT2 OPT3 OPT4 OPT5

O
P
T
6 ANSWER

Test methods within
each
object____________
__ unit testing

 integration
testing

 system
testing

 acceptance
testing unit testing

A function that has
access to the private
member of the class
but is not itself a
member of the class
is called as

private
member
function

inline
function

friend
function

protected
function friend function

It is necessary that a
constructor in a class
should always be
________ private public protected in main() public

Size of an object is
equal to

 size of data
members only

 size of
member
functions
only

 sum of the
size of data
member and
member
functions none

 sum of the size
of data member
and member
functions

………………….method
is good for producing
user-driven analysis
model Rumbaughetal Jacobson Booch Shaler/mellor Jacobson

……………….method
produce detail object
oriented design
models Rumbaugh-etal Jacobson Booch Coad/yardon Jacobson

which of the
following mobel is
not a OMT parts? object model

static
model

dynamic
model

functional
model static model

a process description
and consumer-
producer
relationships can be
expressrd using object model

OMT static
model

OMT dynamic
model

OMT
functional
model3

OMT functional
model3

……………..

The object modeling
technique(OMT) is a
……………….. simple fast intuitive

network of
states intuitive

………….is not a
complete and has no
actor that initiate it is
used by another use
case abstract concrete single

none of the
above abstract

……………. Defines the
outside and inside of
the system behavior Use case domain analysis test Use case

a “pattern in waiting”
which is not yet
known to recur,
sometime is called
……………..

generation
pattern

nongenerat
ion pattern antipattern protopattern protopattern

……………… descrides
recurring
phemomena without
necessarily sayind
how to reproduce
them

generation
pattern

nongenerat
ion pattern antipattern protopattern

nongeneration
pattern

the process of
looking for patterns
to document is called
……………… protopatten antipatten

pattern
mining frame work pattern mining

………………. Is a set of
cooperating classes
that make up a
reusable design for
specific classes that
markup a reusable
design for a specific
class of software patten framework

unified
approach

none of the
above framework

a definition of an
object oriented
software framework
is given by gamma etal

rambaugh
etal booch jocobson gamma etal

 …………………is the
process of extracting
the needs of a
system and what the
system must do to
satisfy the

use case driven
development

object
oriented
analysis

object
oriented
design

continuous
testing

object oriented
analysis

requirements

the user interface
layer also called
………………….. access layer

business
layer view layer

dynamic
layer view layer

the user inter face
layer object are
identified during

use-case driven
development

object
oriented
design

incremental
development

none of the
above

incremental
development

……………..contains
object that know
how to
communication with
the place where the
data actually reside access layer

business
layer

user interface
layer

none of the
above access layer

……………… are a way
of delivering
application
development
patterns to support
best practice sharing
during application
development patterns

framework
s

unified
appoaches protopattern frameworks

………………… have a
strong method for
producing object
model rambangh etal jacobson booch oad rambangh etal

………….allow iterative
development by
allowing you to go
back and forth
between design and
modeling framework pattern

unified
approach

none of the
above

unified
approach

 which of the
following is not a
OMT phases? analysis

object
design

implementati
on testing testing

in OMT data flow
diagram …………..
symbol is used to
identified the or
destination of a data
element process dataflow data store

external
entity external entity

………………….. is a
description of the
day to day activities
by a single or small
group of software

business
process

micro
developme
nt process

macro
development
process

software
development
process

micro
development
process

developers process

………………. Is an
abstract
representation of a
system construct to
understand the
system prior to
building or modifying
it model object class

none of the
above model

 the process of
determining at
runtime which
function to invoke is
termed as
…………………. static binding

dymanic
binding

object
persistance meta class dymanic binding

A class is a collection
of _______________ data structure methods objects

 all the
above objects

_________ are
created by run time
system. class object function all the above object

 ___________ can be
abstract.
___________ can not
be abstract. object , class

class
,object

constructor
,destructor

 destructor,
constructor class ,object

Objects
communicate with
each other or
interact among
themselves by
____________ dynamic linking binding

message-
passing

 none of the
above

message-
passing

represents one or
more conceptual
connections between
objects Association

Aggregatio
n both a & b

 none of the
above Association

Specialization is also
called
________________re
lationship. “has – a “ “part –of” “one-one” “is-a” “is-a”

A class that cannot
be instantiated is
called __________ meta class drived class abstract class

 none of the
above abstract class

The protected data
members are visible
in its ____________

own class and
its derived
class own class

 any where in
the program

 none the
above

own class and
its derived class

__________ is/are a
pure object oriented
language . C++ smalltalk java c# java

Test methods within
each
object____________
__ unit testing

 integration
testing

 system
testing

 acceptance
testing unit testing

The Library programs
a written

for rountines
that are
repetitions

for
routines
that are
difficult to
type

for routines
that are
difficult to
solve

none of the
above

for rountines
that are
repetitions

which one the
following is not a
utility program text editors

debugging
aids compiler I/O routines compiler

System software that
helps the user to
correct logical
mistake utility program

memory
dump

Debugging
acids

library
programs Debugging acids

the program of
placing jobs in a
queue for execution
is called

Batch
programming spooling queuing Multitasking spooling

A Shareware is a share program text editor
an account
package package text editor

A Realtime system

completes the
task in given
time

completes
the task in
very short
time

completes the
task after
given time
interval

is time
consuming
program

completes the
task in given
time

An arrangement in
which analysis
assigns a group of
analysts to survey a
specific system is

project
oriented

pool
oriented functional

Team
Oriented functional

The three stage
model described by
Bowman,davis and
wetherbe

Analyis,design,i
mplementation

planning,a
nalysis,impl
ementatio
n

planning,analy
sis,resource
allocation

planning,anal
ysis,design

planning,analysi
s,resource
allocation

technical writer are
employed

before
investigation

at the time
of analysis

at the time of
programming

when the
candidate
system nears
completion

when the
candidate
system nears
completion

the ________
dimension tells
whether the primary
concern is
strategic,magerial or time focus MIS Analysis focus

operational

Which of the
following is not a
part of the feasiblity
study data collection

cost
estimates

evaluation of
existing
system

Analysis of
candidate
system data collection

which of the
following constitues
a pictorial language flow chart algorithms pseudocode program flow chart

the techniques of
writing a good
program forms part
of the

analysis of
algorithm

software
engineerin
g

design of
algorithms

operating
system

software
engineering

Flow system models
shows the flow of

money,goods,p
ower

material,go
ods,data

money,materi
al,information

material,ener
gy,informatio
n

material,energy,
information

A structured program
generally has compact looks

Redundant
codes many inputs

many
outputs

Redundant
codes

A good module
should have

one entry and
one exit

one entry
and many
exit

many entry
and one exit

many entry
and many
exit

one entry and
one exit

software engineering
primary aims on

reliable
software

cost
effective
software

reliable and
cost effective
software

none of the
above

reliable and cost
effective
software

A directed dashed
line represents

relationship. Message Association Dependency

none of the
above Dependency

A dashed line with
hollow arrowhead
represents

relationship. realization association dependency

generalizatio
n realization

A ___________ allow
us to you to create
new kind of building
blocks derived from
existing one. tagged value stereotype interface class stereotype

A tagged value
extends the
_____________ of a
UML building block. vocabulary properties semantic definition properties

A constraint extends
the _____________
of a UML building
block. vocabulary properties semantic definition semantic

UNIT-III

QUESTIONS OPT1 OPT2 OPT3 OPT4
OP
T5

OP
T6 ANSWER

in object
oriented
design of
software,whic
h of the
following is
not true?

object
inherit the
properties
of the class

classes are
defined based
on the
attributes of
objects

an object
can belong
to two
classes

classes are
always different

an object can
belong to two
classes

the system
interm of
inputs and
outputs is
defined under
the concepts
of

system
analysis system design black box environment black box

desing phase
will usually be top down bottom up random centre fringing top down

design phase
includes

data,archit
ectural and
procedural
design only

architecture,pr
ocedural and
interfacedesign
only

data,archit
ectural and
interface
designs
only

data,architectural
,interface and
procedural
designs

data,architectural
,interface and
procedural
designs

In object
oriented
design of
softwareobject
have

attributes
and name
only

operations and
name only

attributes,
name and
operations

none of the
above

attributes,name
and operations

A constuctor is
called
whenever

an object is
declared

an object is
used

a class is
declared a class is used

an object is
declared

Choose the
correct
statement

a
destructor
ia inherited

a constructor
cannot be
virtual

a desructor
can be
virtual

a consructor is
not inherited

a constructor
cannot be virtual

Class
Dog:public
X,public y is an
instance of

multiple
inheritance

repeated
inheritance

linear
inheritance

none of the
above

multiple
inheritance

Which of the
following
operators
cannot be
overloaded? >> ?: +

no such operator
exist ?:

A model is an
abstract
representation
of a system,
constructed to
understand
the system
prior to
building or
modifying it. model system language structure model

Most
modelling
techniques
used for
analysis and
design
involve______
____ .

conceptual
model

graphiclanguag
e symbols descriptive text graphiclanguage

can be viewed
as a snapshot
of a system’s
parameters at
rest or at a
specific point
in time

dynamic
model test model

static
model

implementation
model static model

A

is a collection
of procedures
or behaviours,
reflect the
behaviour of a
system over
time

domain
object
model use case model

static
model dynamic model dynamic model

__ is a
specification
language that
uses simple
logic for
specifying the
properties of a
system. UML OMT OCL DFD OCL

A class
diagram is a
collection of

modelling
element. object static use case implementation static

A

___ is an
association
attribute. Multiplicity Qualifier

Generalizat
ion composition Qualifier

_ specifies the
range of
allowable
associated
classes. navigation navigability multiplicity associations multiplicity

An__________
___ is an
association
among more
than two
classes.

or-
association

is-a
relationship

a-part of
association n-ary association n-ary association

_ show the
configuration
of run-time
processing
elements and
the software
components.

collaborati
on diagram

sequence
diagram

component
diagram

deployment
diagram

deployment
diagram

A

is a grouping
of model
elements. component package folder packet package

__ represents
a situation in
which a
change to the
target element
may require a
change to
source
element in
dependency

model
dependenc
y

information
dependency

component
dependenc
y

deployment
dependency

model
dependency

A

__ is a graphic
symbol
containing
textual
information. model symbol note Datatype note

_ represents a
built-in
extensibility
mechanism of
UML. model stereotypes swimlane flow stereotypes

Actions may
be organized
into

meta
model crosslanes swimlane attribute swimlane

Packages can
be used to
designate not
only logical
and physical
grouping but
also

__.

component
s elements metamodel use case group use case group

The

may be used
for the upper
bound
,denoting an
unlimited
upper bound. # * & ? *

Each action in
activity
diagram is
assigned to

swimlane. three two one four one

A

_ is an
alternative
way to
understand
the overall

Sequence
diagram

Collaboration
diagram

Activity
diagram

State chart
diagram

Sequence
diagram

flow of the
control of a
program.

The

_ relationship
is used when
there is more
than one use
case that is
similar to
another use
case but does
a little more.

communic
ation extends

correspond
s uses extends

The purpose of

__ is to
understand
the algorithm
involved in
performing a
model.

interaction
diagram

activity
diagram

statechart
diagram

interaction
diagram

statechart
diagram

Each swim
lane is
separated
from
neighboring
swimlanes by

lines on both
sides. cross vertical horizontal dashed vertical

A modelling
language must
include

_

notations
and model
elements guidelines

both
notations
and model
elements
and
guidelines

only notations
and model
elements

both notations
and model
elements and
guidelines

The
disadvantage
of

is that they are
great only for
representing a

interaction
diagram

collaboration
diagram

both
interaction
diagram
and
collaborati
on diagram

state chart
diagram

interaction
diagram

single
sequential
process.

___ is a form
of association.

Generalizat
ion composition

aggregatio
n navigation aggregation

A constraint is
used to

rules of a UML
building block. add modify

both add
and modify none

both add and
modify

The
architecture of
a software-
intensive
system can be
described by
____ views. three five nine none five

Which view
doesn’t
represents a
software-
intensive
system? class use case

implement
ation deployment class

A use case
view
represents

aspects of the
view. static dynamic

both static
and
dynamic none

both static and
dynamic

The _______
view addresses
the
performance,
scalability and
throughput of
the system. use case process

implement
ation design process

The _______
view addresses
the
configuration
management
of the system’s use case process

implement
ation design implementation

releases.

The _______
view addresses
the
distribution,
delivery and
installation of
the parts that
make up of the
physical
system. use case process

implement
ation None None

A ________ is
a contract or
an obligation
of a class. constraint note

 responsibil
ity none responsibility

relationship is
used to model
an inheritance.

specializati
on generalization

dependenc
y none generalization

A line with a
solid diamond
represents

relationship.

specializati
on generalization

aggregatio
n composition composition

A link can be
viewed as a
subset of
_________.

generalizati
on association

both
generalizati
on and
association none association

A _________
diagram
emphasizes
the structural
organization of
the objects
that send and
receive
messages. sequence activity use case collaboration collaboration

In UML
diagram of a
class

state of
object
cannot be
represente
d

state is
irrelevant

state is
represente
d as an
attribute

state is
represented as a
result of an
operation

state is
represented as
an attribute

Attributes are
assigned value

when
operations
are
performed
on an
object

when instances
of objects are
defined

when
methods
are
invoked

when classes are
identified

when instances
of objects are
defined

In object-
oriented
design

operations
and
methods
are
identical

methods
specify
algorithms
whereas
operations
only state what
is to be done

methods
do not
change
values of
attributes

methods and
constructor are
same

methods specify
algorithms
whereas
operations only
state what is to
be done

Each swimlane
represents
responsibility
for part of the
overall activity
and may be
implemented
by one or
more
____________ Class Model Graph Object Object

The two types
of
implementatio
n diagrams are

activity
diagram

deployment
diagram

component
diagram

both deployment
diagram and
component
diagram

both deployment
diagram and
component
diagram

A

is similar to a
Petri diagram,
where a token
represents an
activity
diagram.

statechart
diagram

collaboration
diagram

activity
diagram

deployment
diagram

statechart
diagram

An activity is
shown as a
__________,co
ntaining the
name of the
operation. Rectangle Ellipse round box decision box round box

When an
activity symbol
appears within
a state symbol,
it indicates
the_________
___ of an
operation. Execution termination

both a and
b only Execution

_______ is the
process of
transforming a
problem
definition from
a fuzzy set of
facts and
myths into a
coherent
statement of a
system’s
requirements. Analysis Design Testing None Design

The

_____ are
external
factors that
interact with
the system,

Use cases class diagram actors activity diagram actors

are scenarios
that describe
how actors use
the system.

class
diagram

activity
diagram

Interaction
diagram Use cases Use cases

____ is a
special flow of
events through
the system. Use cases

activity
diagram

Interaction
diagram

Sequence
diagram Use cases

A

_is an atomic
set of activities
that are
performed
either fully or
not at all.

Transforma
tion

A measurable
value

Transactio
n Design Transaction

The

association is
used when you
have one use
case that is
similar to
another use
case but does
a bit more or is
more
specialized. Uses extends class Hierarchy extends

UNIT-IV

QUESTIONS OPT1 OPT2 OPT3 OPT4 OPT5
OP
T6 ANSWER

The __________
association occurs
when you are
describing your use
cases and notice that
some of them have
sub flows in common Uses extends class Hierarchy Uses

_____________ use
case is not complete
and has no initiation
actors. Concrete static dynamic abstract abstract

Each use case has
______________mai
n actor One two three four One

A ____________ can
serve as an initial
understanding of the
requirements Analysis Design Testing Document Document

______is the
specification of the
number of
occurrences of one
object related to
occurrences of
another object super class sub class objects operations. operations.

______ serve as
input for creation of
other modeling
elements.

scenario-based
elements

class based
elements

behavioural
elements

flow-oriented
elements.

scenario-
based
elements

_______ diagram
represents the
actions and decisions
that occur as some
function is
performed.

UML swim lane
diagram

UML activity
diagram

relational
diagram none

UML
activity
diagram

 diagram represents
the flow of actions &
decisions and
indicates which
actors perform each.

UML swim lane
diagram

UML activity
diagram

relational
diagram none

UML swim
lane
diagram

The DFD is presented
in a fashion. structural functional operational hierarchical hierarchical

The data-flow
modeling is a core
modeling activity in
analysis. controlled nested structured complex structured

______ continuity
must be maintained
as each DFD level is
refined. informational flow data flow functional flow none

informatio
nal flow

_____ can be used to
asses the simplicity
of function . validation specification cohesion variation cohesion

______ represents
the behavior of the
system.

monitor
specification

monitoring
system

control
specification control system

control
specificatio
n

____ is used to
describe all flow
model processes that
appear at the final
level of refinement.

monitor
specification

process
specification

monitor
specification none

process
specificatio
n

______ are set of
attribute defined for
potential class and
applied to all
instructions of class. common-attribute

multiple-
attribute

retained
information needed service

common-
attribute

_____ defined a
relationship between
classes. associations

collaboration
s relations operations

association
s

______ diagram
represents behavior
by describing how
classes move from
state to state state use case sequence none sequence

____ must occur to
force an object to sequence instance operation trigger. trigger.

make a trition from
one active state to
another.

_____ establish the
context of the
problem and overall
function of the
system. places structures roles events places

A class has state that
represent its
behavior as the sys
performs its . operations functions unions none functions

Which task is
performed during
use-case realization
refinement?

identify
participating
classes

allocate
responsibiliti
es among
classes

model
messages
between
classes

model
associated class
relationships

model
associated
class
relationshi
ps

Which process
document describes
design mechanisms,
any mappings
between design
mechanisms, and the
details regarding
their use?

Software
Architecture
Document

Design
Guidelines

Vision
Document

Software
Development
Plan

Vision
Document

In the state of a state
machine, a behavior
can be defined
_____.

before reaching a
state

upon
reaching a
state

upon leaving a
state inside a state

inside a
state

When identifying
design elements, a
simple analysis class
will map to
a(n)_____. active class interface design class subsystem design class

In which OOAD
activity is the
distribution
mechanism
identified?

Identify Design
Elements

Identify
Design
Mechanisms Class Design

Architectural
Analysis

Identify
Design
Mechanism
s

Identify Design
Elements is part of
which workflow
detail?

Define a
Candidate
Architecture

Design
Components

Perform
Architectural

Refine the
Architecture

Design
Component
s

Object-oriented
system modelling
using CRC method
gives

Java programs for
the system

C++
programs for
the system

Classes of the
system, their
responsibilities
and

Objective C
programs for
the system

Classes of
the system,
their
responsibili

collaborating
classes

ties and
collaborati
ng classes

A class is a group of objects

template for
objects of a
particular
type

a class of
objects

a classification
of objects

template
for objects
of a
particular
type

The expansion of the
acronym CRC is

Collecting
Responsibilities
Classes

Collaborating
with
Relevant
Classes

Class
Responsibilities
and
Collaborators

Creating
Relevant
Classes

Class
Responsibil
ities and
Collaborato
rs

When a subclass is
created using
inheritance the
resulting class

may have only
attributes of
parent class

may have
only
operations of
parent class

may have new
operations only
in addition to
those in parent
class

may have new
attributes and
new operations
in addition to
those of the
parent class

may have
new
attributes
and new
operations
in addition
to those of
the parent
class

An object is selected
for modelling a
system provided

its attributes are
invariant during
operation of the
system

its attributes
change
during
operation of
the system

it has
numerous
attributes

it has no
attributes
relevant to the
system

its
attributes
change
during
operation
of the
system

Multiplicity is the
same as what
concept for an ERD? Relationship Attribute Entity Cardinality Cardinality

Composition is a
stronger form of
which of the
following? Aggregation

Encapsulatio
n Inheritance

All of the
above.

Aggregatio
n

An abstract class is
which of the
following?

A class that has
direct instances,
but whose
descendants may
have direct
instances.

A class that
has no direct
instances,
but whose
descendants
may have
direct
instances.

A class that has
direct
instances, but
whose
descendants
may not have
direct
instances.

A class that has
no direct
instances, but
whose
descendants
may not have
direct instances

A class that
has no
direct
instances,
but whose
descendant
s may have
direct
instances.

The term Complete
for a UML has the Overlapping rule Disjoint rule

Total
specialization

Partial
specialization

Total
specializati

same meaning as
which of the
following for an EER
diagram?

rule rule on rule

A UML diagram
includes which of the
following? Class name

List of
attributes

List of
operations

All of the
above.

All of the
above.

An object can have
which of the
following
multiplicities? Zero One More than one

All of the
above.

All of the
above.

Which of the
following statement
is true concerning
objects and/or
classes?

An object is an
instance of a
class.

A class is an
instance of
an object.

An object
includes
encapsulates
only data.

A class includes
encapsulates
only data.

An object is
an instance
of a class.

Which of the
following applies to a
class rather than an
object? Query Update Scope

Constructor

Scope

The benefits of
object-oriented
modeling are which
of the following?

The ability to
tackle more
challenging
problems

Reusability of
analysis,
design, and
programming
results

Improved
communication
between users,
analysts, etc.

All of the
above.

All of the
above.

The term Incomplete
for a UML has the
same meaning as
which of the
following for an EER
diagram? Overlapping rule Disjoint rule

Total
specialization
rule

Partial
specialization
rule

Partial
specializati
on rule

A constructor
operation does which
of the following?

Creates a new
instance of a class

Updates an
existing
instance of a
class

Deletes and
existing
instance of a
class

All of the
above.

Creates a
new
instance of
a class

Which of the
following is a
technique for hiding
the internal
implementation
details of an object? Encapsulation

Polymorphis
m Inheritance

All of the
above.

Encapsulati
on

Aggregation is which
of the following?

Expresses a part-
of relationship
and is a stronger
form of an

Expresses a
part-of
relationship
and is a

Expresses an is-
a relationship
and is a
stronger form

Expresses an is-
a relationship
and is a weaker
form of an

Expresses a
part-of
relationshi
p and is a

association
relationship.

weaker form
of an
association
relationship.

of an
association
relationship.

association
relationship.

stronger
form of an
association
relationshi
p.

The fact that the
same operation may
apply to two or more
classes is called
what? Inheritance

Polymorphis
m Encapsulation

Multiple
classification

Polymorphi
sm

The object-oriented
development life
cycle is which of the
following?

Analysis, design,
and
implementation
steps in the given
order and using
multiple
iterations.

Analysis,
design, and
implementati
on steps in
the given
order and
going
through the
steps no
more than
one time.

Analysis,
design, and
implementation
steps in any
order and using
multiple
iterations.

Analysis,
design, and
implementation
steps in any
order and going
through the
steps no more
than one time.

Analysis,
design, and
implement
ation steps
in the given
order and
using
multiple
iterations.

Which of the
following statements
best describes what a
class diagram can
include? Only classes.

Only classes
and their
relationships.

Classes,
instances and
their
relationships. None

Classes,
instances
and their
relationshi
ps.

Which is the correct
name for "a possible
set of classes,
together with an
understanding of
how those classes
might interact to
deliver the
functionality of a use
case"?

 use case class
diagram. realization. collaboration. generalization

collaborati
on.

One of the following
is not a difference
between a class
diagram and a
collaboration
diagram. Which one?

A collaboration
diagram shows
object interaction,
while a class
diagram ignores
this.

A class
diagram
shows more
of the
structural
details than
the
collaboration
diagram. none

A class diagram
shows the
names of the
classes, while
the
collaboration
ignores these.

A class
diagram
shows the
names of
the classes,
while the
collaborati
on ignores
these.

Which of these is the Interface, control Boundary, Interface, none Boundary,

correct set of analysis
class stereotypes in
standard UML?

and entity. control and
entity.

sequence and
entity.

control and
entity.

One of the following
is not an advantage
of stereotyping
analysis classes.
Which one?

The resulting
packages can
form a basis for
the system's
architecture.

It can be
useful to
differentiate
classes that
have broad
similarities in
the way that
they behave.

Once a class is
stereotyped, its
behaviour is
likely to
become more
predictable. none

Once a
class is
stereotype
d, its
behaviour
is likely to
become
more
predictable
.

What do boundary
classes represent?

Customers and
suppliers of the
business.

People who
will use the
system. none

Interaction
between the
system and its
actors.

Interaction
between
the system
and its
actors.

What is the
significance of the
double colon in the
class name: User
Interface::AddAdvert
UI?

The class called
AddAdvertUI is in
the package called
User Interface.

User
Interface is
the
stereotype of
a class called
AddAdvertUI.

User Interface
and
AddAdvertUI
are two
alternative
names for the
same class. none

The class
called
AddAdvert
UI is in the
package
called User
Interface.

What are entity
classes?

Classes that
contain data.

Classes that
contain
persistent
data.

Classes that
represent
something or
some concept
in the
application
domain.

classes contain
relationship

Classes
that
represent
something
or some
concept in
the
application
domain.

What do control
classes represent?

The calculation
and scheduling
aspects of the
logic of the use
case.

Classes that
interact with
the users of
the system.

Classes that
control the
storage of
persistent data. scheduling only

The
calculation
and
scheduling
aspects of
the logic of
the use
case.

One of the
following cannot dire
ctly affect the state
of an object. Which
one?

A change in the
value of one of its
attributes.

The creation
or
destruction
of another
object of the

The creation or
destruction of a
link with
another object. none

The
creation or
destruction
of another
object of

same class. the same
class.

What is the
difference between a
link and an
association?

A link connects
two instances,
while an
association
connects two
classes.

A link is a
transient
association.

A link is an
association
between two
entity classes.

A link is for
communication

A link
connects
two
instances,
while an
association
connects
two
classes.

What is the
significance of the
multiplicity of an
association?

It denotes the
number of
different classes
that can be linked
together.

It constrains
the number
of objects of
one
participating
class that can
be linked to
an object of
the other
class.

It constrains
the number of
times that an
object of one
participating
class can be
linked during its
lifetime.

it contains
relationships
only

It
constrains
the
number of
objects of
one
participatin
g class that
can be
linked to an
object of
the other
class.

 How do operations
differ from methods?

A method is a
particular
implementation
of an operation.

An operation
is a particular
implementati
on of a
method.

Some object-
oriented
programming
languages have
methods, while
other have
operations.

methods is
rules

A method
is a
particular
implement
ation of an
operation.

Why is it often
difficult to determine
the most appropriate
choice of
responsibilities for
each class?

Because there
may be several
alternatives that
appear equally
justified.

Because the
developers
may not
know enough
about how
the users
want the
system to be
designed.

Because
members of the
development
team are often
lazy and avoid
responsibility as
much as they
can. none

Because
there may
be several
alternatives
that appear
equally
justified.

UNIT-V

QUESTIONS OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 ANSWER

Testing is a -------- if
a program does not
work correctly. Failure. Success. Complete. Partial. Failure.

Loop testing comes
under which testing
method

White
box . Black box. Green box. Yellow box. White box .

Which testing
methods are used
by end-users who
actually test
software before
they use it.

Trial and
Error
testing.

Alpha and Beta
testing.

White box
testing.

Black box
testing.

Alpha and
Beta testing.

To test a function,
the programmer has
to wrote a -----
which calls the
function and passes
its test data. Stub. Proxy. Driver.

None of the
above. Driver.

The testing
technique that
requires devising
test cases to
exercise the internal
logic of a software
module is called------

White
box
testing.

Glass box
testing.

Grey box
testing.

Black box
testing.

Black box
testing.

Independent test
groups is a part of---

Software
develop
ment
project
team.

Software
testing team. Execution. Planning team.

Software
development
project team.

Low level
components are
combined into
clusters in

Top
down
integrati
on.

Integration
testing.

Bottom up
integration. Cluster testing.

Bottom up
integration.

Testing OO class
operations is made
more difficult by

Encapsul
ation. Inheritance.

Polymorphis
m.

Both
Inheritance
and
Polymorphism.

Both
Inheritance
and
Polymorphis
m.

Unit testing is a
Black box
testing.

White box
testing.

Stress
testing.

None of the
above.

Black box
testing.

The important
element of the
validation process is
a -----------------

Alpha
testing. Beta testing.

Gama
testing.

Configuration
review.

Configuration
review.

The different classes
of loops seen in loop
testing are

Simple
loop,
Nested
loop,
structure
loop,
Unstruct
ured
loop.

Simple loop,
Nested loop,
For loop,
Structured
loop.

Nested loop,
While loop,
Do while
loop, For
loop.

Simple loop,
Nested loop,
Concatenated,
Unstructured
loop.

Simple loop,
Nested loop,
Concatenated
,
Unstructured
loop.

Select the correct
characteristics that
lead to testable
software.

Testabilit
y,
Stability
and
Consiste
ncy.

Testability,
Understandabil
ity and
Simplicity.

Communicati
on, Speed
and stability.

Versatility,
Accuracy and
Testability.

Testability,
Understanda
bility and
Simplicity.

Both Hardware and
Software are
integrated and
tested for error in

Task
testing.

Behavioral
testing.

validation
testing. System testing.

System
testing.

Software testing
accounts to what
percent of software
development costs? 10-20. 40-50 . 70-80. 5-10. 40-50 .

Loop Testing comes
under which testing
method?

Black box
testing.

White box
testing.

Yellow box
testing.

Green box
testing.

White box
testing.

Graph based testing
comes under which
testing methods?

Black box
testing.

White box
testing.

Yellow box
testing.

Green box
testing.

Black box
testing.

_________ of
software design
defines the
relationship
between major
structural elements
of the
software,styles and
design patterns.

interface
design

architectural
design class design design activity

architectural
design

The importance of
software design can
be stated with a
single word
____________.

Custome
r
requirem
ent engineering model quality quality

Software design is
an iterative process
through which
requirements are
translated into
a__________ for
constructing the
software. Blueprint process scenario system design Blueprint

_________ refers to
a sequence of
instructions that
have a specific and
limited function in
software design.

abstracti
on

data
abstraction

procedural
abstraction limit data.

procedural
abstraction

Collection of data
that describes a
data object is design
concept is called
___________.

data
abstracti
on abstraction

procedural
abstraction data structure.

data
abstraction

The overall structure
of the software and
the ways in which
that structure
provides conceptual
integrity for a
system is named as
_____________.

software
engineeri
ng

software
design

software
abstraction

software
architecture.

software
architecture.

Architectural design
can be represented
using the models
like ______ , ______
, _______
&_________.

structural
,framewo
rk,dynam
ic,proces
s &
functiona
l.

software,futuri
stic,design,proc
ess &
framework.

regular,depe
ndant,engine
ering,archite
ctural
&conceptual.

none of the
above.

structural,fra
mework,dyna
mic,process &
functional.

_________ is the
concept used to
hide the details of
data structure and
procedural
processing behind a
module interface in
software
engineering.

data
hiding

information
hiding design hiding all the above.

information
hiding

In the design
patterns
___________ is the
language specific
patterns generally
implement an
algorithm element
of a component &
specific interface
protocol. idioms coding patterns framework

both idioms
&coding
patterns

both idioms
&coding
patterns

represents a
implementation-
specific skeletal
infrastructure for
design work.

framewo
rk design protocol none framework

The two
components of
software
architecture design
pyramid are
_________ &

design
data &
design
model

data design &
architectural
design

data analysis
& design
analysis

data design &
design analysis

data design &
architectural
design

__________ is a
technique that
reuses design
elements that have
proven successful in
the past.

pattern-
based
design

programming
based data

pattern
programming

programming
design.

pattern-
based design

______ are used to
create interface and
also interacts with
software. sub class super class

controller
class boundary class

boundary
class

 is used to assemble
a collection of
related classes. methods objects package instance. package

When faced with
severe deadline
pressure,
experienced project
managers some
times use a project
scheduling and
control technique
called

White -
Boxing Black -Boxing Time-Boxing

Effort
Validation Time-Boxing

enables you to
determine what
tasks will be
conducted at a given
point in time.

Time -
Boxing Time line chart

Project
tables Scheduling tool

Time line
chart

Independent test
groups is a part of---

Software
develop
ment
project
team.

Software
testing team. Execution. Planning team.

Software
development
project team.

Overloading without
explicit arguments
to an operator is
known as -------

operator
overloadi
ng

Argument
overloading

Unary
operator
overloading

Binary
operator
overloading

Unary
operator
overloading

Overloading with
single explicit
arguments to an
operator is known
as -------

operator
overloadi
ng

Argument
overloading

Unary
operator
overloading

Binary
operator
overloading

Binary
operator
overloading

________ feature
can be used to add
two user-defined
operator data types. Function Overloading Arrays Pointers Overloading

Which of the
following
overloading
operator does not
allow in operator
function in c++? + >> . / ?: ?:

Pure virtual function
should be declare in
------------------------- public private protected

outside the
class public

The friend function
binary operator
overloading
operator must have
________ operand two three one four three

The friend function
unary operator
overloading
operator must have
________ operand two three one four one

The technique of
building new classes
from the existing
class is called ---------

inheritan
ce friend

polymorphis
m Overloading inheritance

The class derived
from two or more
than two base class
is called ________.

single
inheritan
ce

multiple
inheritance

hybrid
inheritance

hierarchal
inheritance

multiple
inheritance

Derivation of several
classes from a single
base class is called
________.

single
inheritan
ce

multiple
inheritance

hybrid
inheritance

hierarchal
inheritancens:

hierarchal
inheritancens
:

Overloading feature
can add two
________ data
types. in-built enumerated user-defined static user-defined

The public member
of a class can be
accessed by its own
objects using the

operator.

Scope
resolutio
n Relational Arithmetic DotAns: DotAns:

Derivation of a class
from another
derived classes is
called ________.

multileve
l
inheritan
ce

multiple
inheritance

hybrid
inheritance

hierarchal
inheritanceAns:

multilevel
inheritance

Derivation of class
involving more than
one form of
inheritance is called

multileve
l
inheritan
ce

 multiple
inheritance

 hybrid
inheritance

 hierarchal
inheritance

 hybrid
inheritance

.A _________ is a
function declared in
a base class that has
no definition
relative to the base
class.

virtual
function

pure virtual
function stream class

pure virtual
function

Pure virtual function
is equated to ------- 0 1 2 3 0

Inheritance provides
the concept of
________.

derived
class subclass

virtual base
class reusability reusability

The virtual function
must be defined in
_______ Public Private Protected

Private or
protected Public

The function in base
class is declared as
virtual using the
keyword _______ Virtual virtual function pure virtual friend Virtual

Virtual functions are
from the concept of
______ objects polymorphism inheritance None.

polymorphis
m

To use a friend
function to overload
the ++ or --
operators we have
to pass the -----
as a
_____________.

operator
&
argumen
t

operand &
reference
parameter

object &
reference
parameter

object &
argument

operand &
reference
parameter

_____ is achieved
when a virtual
function is accessed
through a pointer to
the base class.

run time
polymorp
hism inheritance class friend.

run time
polymorphis
m

We cannot have
virtual constructors
but _____ are
allowed.

translato
rs

default
constructor

virtual
destructor

static
members.

virtual
destructor

The keywords
private and public
are known as
_________ labels. static dynamic visibility const visibility

Duplication of
inherited members
of ___ inheritance
avoided by making
the common base
class, a virtual base
class. single multi-level multipath hierarchicalAns multipath

 ----------- is the
default visibility
mode. private public protected

visibility mode
must be any of
public, private ,
protected private

Operator
overloading in a
class known as

function
overload
operator

operator
overload
function

Overloading
operator

Overloading
operator

92

