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Objective: Digital signal processing has lot of applications in different fields of life. This objective of
this paper is to give knowledge to students about the theory of signal processing and the different methods
involved in it.

Unit I

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent
Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals, Discrete-
Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical Method; Analytical
Method, Properties of Convolution; Commutative; Associative; Distributive; Shift; Sum Property System
Response to Periodic Inputs, Relationship Between LTI System Properties and the Impulse Response;
Causality; Stability; Invertibility, Unit Step Response.

Unit I1

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time
Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing in
Time Domain; Differentiation in Frequency Domain; Convolution Property.

Unit I1T

The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship Between z-
Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence; Properties of ROC,
Properties; Time Reversal; Differentiation in the z-Domain; Power Series Expansion Method (or Long
Division Method); Analysis and Characterization of LTI Systems; Transfer Function and Difference-
Equation System. Solving Difference Equations.

Unit IV

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR
Digital Filters, Simple IR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier
Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity;
Circular Time Shifting; Circular Frequency Shifting.

Unit V

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity, Properties of the
Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-
In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms. Realization of Digital Filters:
Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures
(Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR
systems; Direct-Form I.
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3 | Hr Periodicity of DTFT, T1:1.111

4 | Hr Properties; Linearity; T1:1.111

5 | Hr Time Shifting; T1:1.111

6 | Hr Frequency Shifting T1:1.112

7 | Hr Differencing in Time Domain; | T1:1.112

8 | Hr Differentiation in Frequency Domain; | 71:1.112-1.113

9 | Hr Convolution Property T1:1.114

10 | Hr Revision
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UNIT-II

1 | Hr The z-Transform: Bilateral (Two-Sided) z- | T1:2.1-2.2
Transform,

2 | Hr Inverse z-Transform, Relationship T1:2.3-2.37
Between z-Transform and Discrete-Time
Fourier Transform

3 | Hr Z Plane T1:2.27

4 | Hr Region-of-Convergence; Properties of T1:2.3-2.6
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5 | Hr Properties; Time Reversal; Differentiation | T1:2.8-2.17
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9 | Hr Difference-Equation System. T1:2.52

10 | Hr Solving Difference Equation T1:2.58
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UNIT-IV

1 | Hr | Filter Concepts: Phase Delay and Group | T1:1.139-1.145
delay

2 | Hr Zero-Phase Filter,, | T1:1.145

3 | Hr | Linear-Phase Filter T1:1.145

4 I Hr | Simple FIR Digital Filters, T1:1.147

5 I Hr | Simple IIR Digital Filters, T1:1.153

6 I Hr | All pass Filters, Averaging Filters, Notch | T1:1.156-1.157
Filters.

7 | Hr | Discrete Fourier Transform: Frequency | T1:3.00

Domain Sampling (Sampling of DTFT),

8 | Hr | The Discrete Fourier Transform (DFT) T1:3.1-3.2
and its Inverse, DFT as a Linear
transformation,

9 | Hr | Continuation

10 | Hr | Properties; Periodicity; Linearity; T1:3.2-3.5

11 I Hr | Circular Time Shifting; Circular T1:3.25-3.27
Frequency Shifting.
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UNIT-I
SYLLABUS

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the
Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and
Odd Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum;
Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative;
Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between

Definition

Anything that carries information can be called as signal. It can also be defined as a physical
quantity that varies with time, temperature, pressure or with any independent variables such as
speech signal or video signal.

The process of operation in which the characteristics of a signal (Amplitude, shape, phase,
frequency, etc.) undergoes a change is known as signal processing.

Note — Any unwanted signal interfering with the main signal is termed as noise. So, noise is
also a signal but unwanted.

According to their representation and processing, signals can be classified into various
categories details of which are discussed below.

Continuous Time Signals

Continuous-time signals are defined along a continuum of time and are thus, represented by a
continuous independent variable. Continuous-time signals are often referred to as analog
signals.

This type of signal shows continuity both in amplitude and time. These will have values at each
instant of time. Sine and cosine functions are the best example of Continuous time signal.

x(t

>

Continuous Time signal

The signal shown above is an example of continuous time signal because we can get value of
signal at each instant of time.
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Discrete Time signals

The signals, which are defined at discrete times are known as discrete signals. Therefore, every
independent variable has distinct value. Thus, they are represented as sequence of numbers.

Although speech and video signals have the privilege to be represented in both continuous and
discrete time format; under certain circumstances, they are identical. Amplitudes also show
discrete characteristics. Perfect example of this is a digital signal; whose amplitude and time

both are discrete.

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of
time. Mathematically, these types of signals can be formularized as;

x={x[n]},—oo<n<co

Where, 7 is an integer.

It is a sequence of numbers x, where n'" number in the sequence is represented as x[n].

(Y)

-4 -3 -2-10 1 2 345

Unit Impulse or Delta Function

A signal, which satisfies the condition, o(t)=lime—oox(t)d(t)=lime—oox(t) is known as unit
impulse signal. This signal tends to infinity when t = 0 and tends to zero when t # 0 such that
the area under its curve is always equals to one. The delta function has zero amplitude

everywhere excunit_impulse.jpgept at t = 0.

(D

€ >
0

impulse signal
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Properties of Unit Impulse Signal

e (t) is an even signal.

e 0(t) is an example of neither energy nor power (NENP) signal.

e Area of unit impulse signal can be written as;
A=Joo—00§(t)dt=[oo—oolime—0x(t)dt=lime—0Joo—oo[ x(t)dt]=1

o Weight or strength of the signal can be written as;
y(t)=Ad(t)
Area of the weighted impulse signal can be written as

y(t)=loo—ooy(t)dt=]oo—0 Ad(t)=A[Joo—00d(t)dt]=A=1=Wigthedimpulse
Unit Step Signal

A signal, which satisfies the following two conditions

U(t)=1(whent>0)and

U(t)=0(whent<0)

is known as a unit step signal.

It has the property of showing discontinuity at t = 0. At the point of discontinuity, the signal

value is given by the average of signal value. This signal has been taken just before and after the
point of discontinuity (according to Gibb’s Phenomena).

u(t)

< >

unit Step Signal

If we add a step signal to another step signal that is time scaled, then the result will be unity. It is
a power type signal and the value of power is 0.5. The RMS (Root mean square) value is 0.707
and its average value is also 0.5

Ramp Signal
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Integration of step signal results in a Ramp signal. It is represented by r(t). Ramp signal also
satisfies the condition r(t)=[t—ooU(t)dt=tU(t)r(t)=]—ootU(t)dt=tU(t). It is neither energy nor power
(NENP) type signal.

r) .
’ +
#
< >
Ramp Type Signal
Parabolic Signal
P(t)
t

Parabolic Signal
Integration of Ramp signal leads to parabolic signal. It is
represented by p(t). Parabolic signal also satisfies he
condition p(t)=/t—oor(t)dt=(t2/2)U(t)p(t)=/—ootr(t)dt=(t2/2)U(t) . It is neither energy nor Power
(NENP) type signal.

Signum Function
This function is represented as
sgn(t)={1fort>0

—1 fort<0

It is a power type signal. Its power value and RMS (Root mean square) values, both are 1.
Average value of signum function is zero.
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sgn(t) 1

=1
signum function
Sinc Function
t is also a function of sine and is written as

SinC(t)=SinITtITT=Sa(I1t)
Properties of Sinc function
It is an energy type signal.

Sinc(0)=limt—0sinITtITt=1

to +1 but anything divided by infinity is equal to zero)
If sinc(t)=0=>sinl1t=0

[Tt=nII

t=n(n#0)

Sinusoidal Signal
A signal, which is continuous in nature is known as continuous signal. General format of a
sinusoidal signal is

x(t)=Asin(wt+d)

Here,

A = amplitude of the signal

o = Angular frequency of the signal (Measured in radians)
¢ = Phase angle of the signal (Measured in radians)

The tendency of this signal is to repeat itself after certain period of time, thus is called periodic
signal. The time period of signal is given as;

T=2n0T=21t®

The diagrammatic view of sinusoidal signal is shown below.

Rectangular Function
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A signal is said to be rectangular function type if it satisfies the following condition
n(t/1)={1, fort<t/2

0, Otherwise

—ris iz

.I'I 3 Tanw

Being symmetrical about Y -axis, this signal is termed as even signal.

Triangular Pulse Signal
Any signal, which satisfies the following condition, is known as triangular signal.

Transformation of the Independent Variable
Signal Operation
Time Shifting

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or
subtracting the amount of the shift to the time variable in the function. Subtracting a fixed
amount from the time variable will shift the signal to the right (delay) that amount, while adding
to the time variable will shift the signal to the left (advance).

y(t) = x(t - to)
Here, the original signal x(t) is shifted by an amount to.

Rule: set t - tp=0 and move the origin of x(t) to to.
Example 1-2-1: Given x(t) = u(t+2) - u(t-2), find x(t-to) and x(t+to).
Time Scaling

Time scaling compresses and dilates a signal by multiplying the time variable by some amount.
If that amount is greater than one, the signal becomes narrower and the operation is
called compression, while if the amount is less than one, the signal becomes wider and is
called dilation. It often takes people quite a while to get comfortable with these operations, as
people's intuition is often for the multiplication by an amount greater than one to dilate and less
than one to compress.
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The signal y(t) = x(at) is a time-scaled version of x(t).

If|a] > 1, we are SPEEDING UP x(t) by a factor of a.
If ja] < 1, we are SLOWING DOWN x(t) by a factor of a.

Combinations of Scale and Shift

Find x(2t+1) where x(t) is:

" )

AN

-1 0 1 2 t

e

Method 1: Shift then scale: x(at+b)
(i) v(O)=x(t+b);
(1) y(t) =v(at)= x(at+b).

v(t)=x(t+1)
y(H)=v(2t)

Time Reversal

A natural question to consider when learning about time scaling is: What happens when the time
variable is multiplied by a negative number? The answer to this is time reversal. This operation
is the reversal of the time axis, or flipping the signal over the y-axis.

We reverse a signal x(t) by flipping it over the vertical-axis to form a new signal y(t) = x(-t).
Signal Characteristics

Periodic Functions
How can we tell if a continuous- time signal x(t) is periodic? That is, given t and T, is there some
period T >0 such that

x(t) =x(t+T).

If x(t) is periodic with period T, it is also periodic with period nT, that is:
x(t) =x(t + nT)

The minimum value of T that satisfies x(t) = x(t + T) is called the fundamental period of the
signal and we denote it as To.
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The fundamental frequency of the signal in hertz (cycles/second) is
and in radians/second, it is
If xi(t) is periodic with period T and x»(t) is periodic with period T2, then the sum of the two
signals xi(t) + x2(t) is periodic with period equal to the least common multiple(T1, T2) if the ratio
of the two periods is a rational number, i.e.:
Let T'=kiT1 = k2T, and z(t) = x1(t) + x2(t),
zZt+T")= xi(t+kiTi) + xo(t + koT2) = xi1(t) + x2(t) = z(t)
Even and Odd Functions

Any continuous time signal can be expressed as the sum of an even signal and an odd signal:
X(t) = Xe(t) + Xo(t)

Even: xe(t)= xe(-t)

Odd: xo(t)=- Xo(-t)

An even signal is symmetric across the vertical axis.
An odd signal is anti-symmetric across the vertical axis.

Xe()=(x()+x(-t))/2
Xo(H)=(x(t)-x(-))/2

Examplel-2-10: given the unit step function (a discontinuous continuous-time signal),
find ue(t) and uo(t)
Signals are classified into the following categories:

e Continuous Time and Discrete Time Signals

e Deterministic and Non-deterministic Signals

e Even and Odd Signals

e Periodic and Aperiodic Signals

e Energy and Power Signals

e Real and Imaginary Signals

Continuous Time and Discrete Time Signals
A signal is said to be continuous when it is defined for all instants of time.
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A signal is said to be discrete when it is defined at only discrete instants of time
Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any
instant of time. Or, signals which can be defined exactly by a mathematical formula are known
as deterministic signals.

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some
instant of time. Non-deterministic signals are random in nature hence they are called random
signals. Random signals cannot be described by a mathematical equation. They are modelled in
probabilistic terms.

Even and Odd Signals
A signal is said to be even when it satisfies the condition x(t) = x(-t)

Example 1: t2, t4... cost etc.
Let x(t) =t2
x(-t) = (-t)2 = t2 = x(t)

~,~, 12 is even function
Example: t, t3 ... And sin t

Let x(t) =sint
x(-t) = sin(-t) = -sin t = -x(t)

~,, sin t i1s odd function.
Any function f(t) can be expressed as the sum of its even function f<(t) and odd function f(t).

f@)=7fe(t) + fo(t)
where
fe(t)="Af(t) +f(-1)]

Periodic and Aperiodic Signals
A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N).

Where
T = fundamental time period,

1/T = f= fundamental frequency.
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Amplitsde

TO

The above signal will repeat for every time interval To hence it is periodic with period To.
Energy and Power Signals

A signal 1s said to be energy signal when it has finite energy.

o0
Energy E = / z® (t)dt
— 0
A signal is said to be power signal when it has finite power.

1 T
Power P = lim —f

T oo

x?(t)dt
T
A signal cannot be both, energy and power simultaneously. Also, a signal may be neither
energy nor power signal.
Power of energy signal = 0
Energy of power signal = o
Real and Imaginary Signals
A signal is said to be real when it satisfies the condition x(t) = x*(t)

A signal is said to be odd when it satisfies the condition x(t) = -x*(t)
Example:

If x(t)= 3 then x*(t)=3*=3 here x(t) is a real signal.

If x(t)= 3j then x*(t)=3j* = -3j = -x(t) hence x(t) is a odd signal.
Discrete-time systems

Discrete-time systems, “A set of connected parts or models which takes discrete-time signals
as input, known as excitation, processes it under certain set of rules and algorithms to have a
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desired output of another discrete-time signal, known as response”. In general, if a there is
excitation x(n) and the response of the system is y(n), the we express the system as,

y(n) =T [x(n]] or

T
x(m) — v(n)

Where, T is the general rule or algorithm which is implemented on x(n) or the excitation to
get the response y(n). For example, a few systems are represented as,

yin) = -2x(n)
or, ¥in) = x{n-1) + x(n) + x{n+1)

Block Diagram representation of Discrete-time systems
Digital Systems are represented with blocks of different elements or entities connected with
arrows which also fulfills the purpose of showing the direction of signal flow,

Excitation = JREE==GSipl=a=ull = Response

Some common elements of Discrete-time systems are:-

Adder: It performs the addition or summation of two signals or excitation to have a
response. An adder is represented as,

4 > ¥{n) = xa[n}+xz[n)

Constant Multiplier: This entity multiplies the signal with a constant integer or
fraction. And is represented as, in this example the signal x(n) is multiplied with a

[Pl

constant “a” to have the response of the system as y(n).
Signal Multiplier: This element multiplies two signals to obtain one.

Unit-delay element: This element delays the signal by one sample i.e. the response of
the system is the excitation of previous sample. This can element is said to have a
memory which stores the excitation at time n-1 and recalls this excitation at the time n
form the memory. This element is represented as,
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x(n) = v(n) = x(n-1)

Unit-advance element: This element advances the signal by one sample i.e. the
response of the current excitation is the excitation of future sample. Although, as we can
see this element is not physically realizable unless the response and the excitation are
already in stored or recorded form.

Discrete-time systems are classified on different principles to have a better idea about a
particular system, their behavior and ultimately to study the response of the system.

Relaxed system: If y(n,-1) is the initial condition of a system with response y(n) and
y(no-1)=0 , then the system is said to be initially relaxed i.e. if the system has no
excitation prior to n, .

Static and Dynamic systems: A system is said to be a Static discrete-time system if the
response of the system depends at most on the current or present excitation and not on
the past or future excitation. If there is any other scenario then the system is said to be a
Dynamic discrete-time system. The static systems are also said to be memory-less
systems and on the other hand dynamic systems have either finite or infinite memory
depending on the nature of the system. Examples below will clear any arising doubts
regarding static and dynamic systems.

Static System

y(n) = 2x(n) + nx*(n)
y(n) = ax(n)

Dynamic system with finite memory

y(n) = ax(n) + bx(n-1) + cx{n+1)

ym)=Ye_.x(n—k)

Dynamic system with in -finite memory

ym) =Z&ox(n—k)
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Time-variant and Time-invariant system: A discrete-time system is said to be time
invariant if the input-output characteristics do not change with time, i.e. if the excitation
is delayed by k units then the response of the system is also delayed by k units. Let there
be a system,

x(n) —=T  yin) ¥ x(n)
Then the relaxed system 7 is time-invariant if and only if,

®in-k) —=T  yink) ¥ x(n)and k.

Otherwise, the system is said to be time-variant system if it does not follows the above
specified set of rules. For example,

yin) = ax(n)

time-invariant }

yin) = x(n) + x{n-3)

time-invarant }

Linear and non-Linear systems: A system is said to be a linear system if it follows the
superposition principle i.e. the sum of responses (output) of weighted individual
excitations (input) is equal to the response of sum of the weighted excitations. Pay
attention to the above specified rule, according to the rule the following condition must
be fulfilled by the system in order to be classified as a Linear system,

If, wy(m) = T ax,(n) ]
ya(n) = T bxa(n) ]
and, y(n) = Tlaxq{n} + bxz(n)]
Then, the system is said to be linear if,

T axq(n} + bxgn)l = T] axq(n) ] + TT txz(n) ]

#zfn} ' ;

> ¥(n)
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a

:(n) '

y"(n)

b

xz(n) ’

So, iff y’(n) = y’’(n) then the system is said to be linear. I the system does not fulfills
this property then the system is a non-Linear system

Causal and non-Causal systems: A discrete-time system is said to be a causal system
if the response or the output of the system at any time depends only on the present or
past excitation or input and not on the future inputs. If the system 7 follows the
following relation then the system is said to be causal otherwise it is a non-causal

system.
w(n)= I,::UK{H— k) [ Caneal }
vin) = x(n) + =x(n+1) {non-Causal }

Stable and Unstable systems: A system is said to be stable if the bounded input
produces a bounded output i.e. the system is BIBO stable. If,

xm =M ¥ M=o

y@)=N ¥ w<N<w

Then the system is said to be bounded system and if this is not the case then the system
is unbounded or unstable.

The Basics of the Convolution Sum
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Consider a DT LTI system, L.

z(n) — [L]— y(n)
DT convolution is based on an earlier result where we showed that any signal xz(n) can be
expressed as a sum of impulses.

o

z(n)= 3 x(k)s(n— k)

k=—o0

So let us consider z(n) written in this form to be our input to the LTI system.

y(n) = L[z(n)] =L [ > z(k)d(n— k}]

k=—c0

This looks like our general linear form with a scalar z(k) and a signal in n, §(n — k). Reecall
that for an LTT system:

o Lincarity (L): azy(n) + bza(n) — — ayi(n) + bya(n)
e Time Invariance (TI): x(n — n,) — — y(n —n,)

We can use the property of linearity to distribute the system L over our input.

y(n) = L {Z xmw(n—m} — 3 2L 5t — k)]

k=—c0 k=—occ

So now we wonder, what is L [§(n — k})|?7 Well, we can figure it out. Suppose we know how
L acts on one impulse §(n), and we call it

h(n) = L(5(n)]
then by time invariance we get our answer.
h(n — k) = L[dé(n — k)]
§(n — k) — [L] — h(n — k)
This means that if we know one input-output pair for this system, namely

§(n) — [L]— h(n)
z(n) — [L] — y(n)

then we can infer

which gives us the following.

y(n) = > x(k)h(n— k)
k=—oc
This is the convolution sum for DT LTI systems.

The convolution sum for z(n) and h(n) is usually written as shown here.

y(n) =z(n)xh(n) = > z(k)h(n — k)
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Example 2.1: DT Convolution: Step Response

Say we are given the following signal z(n) and system impulse response h(n).

z(n) =u(n) and h(n)= (%) u(mn)

' h(n)= (%)Tj(n}

1 0,5

A 1 T 0 K £ 1

=
—
3
—
Il
o
—
3
—

We wish to find the step response s(n) of the system (i.e. the response of the
system to the unit step input x(n) = u(n). This is shown below.

o0

s(n) =xz(n) * h(n) = Z z(k)h(n — k)

k:—‘_x:

Thus the step response is as follows, found by substituting our actual signals into
the general convolution sum.

o0 n—k
s(n) = Y u(k) e) u(n — k)

k=—na

Let’s look at this step response in smaller ranges to see what happens.

e First, consider the case where n < 0.
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Prepared

. =4 1 n—k .
s(n) = Z u(k) (5) u(n — k)

h=—o0

-y (N

k=0
We can pull out any terms only in n

since that is not the snmmation variable.

S0
qOp

g

k=0

Now we have a form consistent with a geometric series. We can use that to
solve.

i ] — ontl
Recall Z ok — — = mtl
k=0 =2
So we have s(n) as follows.
s(n) = (2" —1)
(2-2" 1)

We can visualize this, say for n = 2, as shown below. Note how the system
output comes from the overlap of the input signal and the shifted and flipped
impulse response.
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x(k) = u(k)

i1

- s - -

O & o o002 i 4 2 2 —s k

So, overall, we have the following step response.

s(n) = [‘2 — (%)n} u(n)

s(n) = [ 2-(0.5)"] u(n)

1¢
- = -
«—eo oo oo N
The w(n) comes from our first case above since s(n) = 0 for n < 0, and obviously

the other part comes from the expression found in the second case above.
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3 Basic Properties of DT Convolution

Discrete-time convolution has several useful properties that allows us to solve systems more
easily.

3.1 Commutativity
Convolution is a commutative operation, meaning signals can be convolved in any order.
z(n) * h(n) = h(n) * z(n)

This quite naturally is true of the convolution sums themselves, as well.

o

> z(k)h(n — k) = Z h(k)z(n — k)

k=—n0 k=—oo

3.2  Associativity

Convolution is associative, meaning that convolution operations in series can be done in any
order.

(z(n) * h(n)) * g(n) = z(n) * (h(n) * g(n))
This is significant because it means systems in series can be reordered.

Thus we have

z(n) — | hin) ‘—» ‘g(n} | — y(n)

is the same as
zr(n) — | h(n)* g(n) | — y(n)

is the same as
r(n) — |g(n)* h(n) | — y(n)

is the same as

z(n) — |g(n)| — [h(n)| — y(n)

and so the systems in series can be reordered.
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3.3 Distributivity

Convolution is distributive over addition.
z(n) * [h(n) + g(n)] = z(n) = h{n) + z(n) * g(n)

This is significant to all parallel connections becanse it means the following two arrangements
are equivalent.

z(n) — h(n) + g(n) | — y(n)

is the same as

h(n)
X(n) E

g(n)

3.4 TIdentity

We have previously established that d(n) is the identity with respect to discrete-time convo-

lution.
= 4]

Recall z(n)= Y z(k)d(n — k) = z(n) + i(n)
k=—oc
So z(n) *d(n) = x(n).

This concept is quite easily extended, so z(n) * é(n —n,) = z(n —n,) for n, € Z and
z(n—mn,) *d(n —n) =z(n— (n, +ny)) for n,,ny € Z.

Impulse Response of Discrete Time System:

Discrete Time System is an algorithm, which operates on a discrete time signal called as input signal

according to some well-defined rules/operation. Impulse Response of a system is the reaction to any
discrete time system in response to some external changes. Impulse Response is generally denoted as
h(t) or h[n]. The output y[n] of any discrete LTI system is depended on the input (i.e. x(n)) and system's
response to unit impulse (i.e. h[n]).
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System output

x[n] y[n]
— H |—

Figure 1

To find Impulse Response

5 [n] h[n]
— H FH—

We can determine the systems output y[n], if we know system’s impulse response, h[n], and the input,

x[n]. To find the impulse response of the system we provide a Unit impulse to the input x[n].
Systems with memory

In a memoryless system. the output 1(7) 5 a finction of the mput x(r) at the time mstant ¢ alone. It does not depend on etther
past or future mputs.

An LTI system that is memoryless can only have this form:
vy = x(t) * h(r) = Kx(1)

Here. X i the system gain and it nmst be constant or else the system would vary with time.

x(6) () Kx(t)
" LTI ’

For y(r)= Kx(t). the mpulse response /1(t) nmst be of the form of a wit mypulse weighted by a constant K-

h(r)=Kalr)
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Invertible Systems

x(E)

0 J e SAC BN

hit) * hit) = &(n)

A system is mvertible if we can find /1 {r) so that the original mput x(7) can be recovered from the output y(r). For this to

hold, the system nuist be one-to-one.
We will see how to do this when we study transforns.

Causality
We know that for a causal system, the output depends only on past or present mputs and not on fitre mputs.
Equmvalently, a causal system does not respond to an mput until it occurs (the output s not based on the future).
In other words. a response to an mput at r = f. would oceur only for r Z 7y and not before .

We know that 7(r) is the system response to d(r), and that d(t) occurs at r = 0.

L ht) &
8it) Aig)
0] t 0f t

A system 15 causal, of kif)=0, t<0

Another way to look at the causality condition: Let's exanme the convolution equation. flipping (r) mstead of x(r):

iy = Tk(é -r)x(r)dr

Causality: if hi(¢) is causal then it - 1) =0, r=t<0orr<rt
So.
3
¥y = [k -0)x@ds

which shows us that the output 1(r) depends only on values of the mput x(7) for t = 1. ie. it only depends on the past and

present.
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Stability
We can tell if an LTI system is BIBO stable from its mpulse response.
k()| = By. forallr. to deternme if the system is BIBO stable, we need to deternme ifits output remains bounded for all thne:

I x( —)h(n)dr

o0

<

pta) =

o

“x(ﬁ -T)h(r)dr Why 7

=0

= ]D |:Jr(£ —r)”h(r)|dr £ T31|h(‘.r)|dr =5 T|k(r)|dr

Therefore, [YE)]< B I|h(r)|dr {w if “h(fﬂdf {e

-0 —ie

That 1s, the system 1s BIBO stable f the mpulse response /i) 1s absohutely mtegrable:

TP?(T)ldT =G

-0

In this case, the output will be bounded by a second constant: [y(r)| = ByG = B, and tlus. the system is BIBO stable.
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POSSIBLE QUESTIONS
PART-B(2 MARKYS)

Define signal.

Define periodic and aperiodic signal
Define energy and power signal
Define convolution

What are the properties of convolution
What do you mean by stability

What do you mean by invertibilty
Define even and odd signals

. Define discrete time system

10. Define unit step response.

00N U AW

PART-C (6 MARKS)
1.Discuss about discrete time systems.
2. Find the convolution of the signal
x(n)=1 n=-2,0,1
=2 n=-1
=0 elsewhere
h(n)=3(n) -6(n-1)+3(n-2)-6(n-3)
3. Determine the following systems are linear or non-linear a)Y(n)= n x(n) b)y(n)= X? (n)
4. Determine the following systems are Causal or non causal a) y(n)=x(n?) b) y(n)= a x(n)+b x(n-1)
5. Derive expression for convolution operation and list out the properties of convolution.
6.Discuss about elementary discrete time signals.

7.Write short note on FIR and IIR systems ,Causal and non causal systems , Time variant and time in-
varient system.

8.Write short note on Causality, Stability and Invertibility.
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QUESTIONS

CHOICE1

CHOICE2

CHOICE3

CHOICE4

ANSWER

UNIT-1

Impulse response is
non-zero for positive

Impulse response is
zero for positive values

Impulse response is
non-zero for negative

Impulse response is
zero for negative

Impulse response is
zero for negative

An LTI system is said to be causal if and only if values of n of n values of n values of n values of n

The impulse response of a LTI system is h(n)={1,1,1}. What

is the response of the signal to the input x(n)={1,2,3}? {1,3,6,3,1} {1,2,3,2,1} {1,3,6,5,3} {1,1,1,0,0} {1,3,6,5,3}

The system described by the equation y(n)=ay(n-1)+b x(n)

is . B a recursive system. causal non-causal superpostion a recursive system.
T e e y()=y(n-1)+ ) y(n)=y(n-1)+ y()=y(n-1)+ y()=y(n-1)+ y(n)=y(n-1)+

Which of the following is a recursive form of a non- 1/(M+1)[x(n)+x(n-1-  |1/(M+1)[x(n)+x(n- 1/(M+1)[x(n)-x(n- 1/(M+1)[x(n)-x(n-1- 1/(M+1)[x(n)-x(n-1-
recursive system described by the equation M)]. 1+M)]. 1+M)]. M)]. M)].

.If x(n) is a discrete-time signal, then the value of x(n) at

non integer value of 'n’ is: 0 positive negative not defined not defined

The discrete time function defined as u(n)=n for n=0;=0 for
n<0 is an:

Unit sample signal

Unit step signal

Unit ramp signal

None of the mentioned

Unit ramp signal

The phase function of a discrete time signal x(n)=a", where

a=r.e" is: tan(n0) nb tan™ (n6) cosH tan™ (n6)

A real valued signal x(n) is called as anti-symmetric if: x(n)=x(-n) x(n)=-x(-n) x(n)=-x(n) x(n)=y(n) x(n)=-x(-n)

The odd part of a signal x(t) is: x(t)+x(-t) x(t)-x(-t) (1/2)*(x(t)+x(-1) (1/2)*(x(t)-x(-1)) (1/2)*(x(t)-x(-t))
Time scaling operation is also known as: Down-sampling Up-sampling Sampling zer0 sampling Down-sampling
What is the condition for a signal x(n)=Br" where r=e"" to

be called as an decaying exponential signal? 0<r<oo O<r<1 r>1 r<0 O<r<1

The function given by the equation x(n)=1, for n=0;=0, for
n#0is a:

Step function

Ramp function

Triangular function

Impulse function

Impulse function

The output signal when a signal x(n)=(0,1,2,3) is processed

through an ‘Identical’ system is: (3,2,1,0) (1,2,3,0) (0,1,2,3) (0,2) (1,2,3,0)

If a signal x(n) is passed through a system to get an output

signal of y(n)=x(n+1), then the signal is said to be: Delayed Advanced No operation None of the mentioned |None of the mentioned
What is the output y(n) when a signal x(n)=n*u(n)is passed

through a accumulator system under the conditions that it

is initially relaxed? (n®+n+1)/2 (n(n+1))/2 (n+1) (n+1)/2 (n(n+1))/2

The output signal when a signal x(n)=(0,1,2,3) is processed

through an ‘Delay’ system is: (3,2,1,0) (1,2,3,0) (2,3,0) (3,2,1,3) (3,2,1,3)

The system described by the input-output equation
y(n)=nx(n)+bx3(n) is a:

Static system

Dynamic system

Identical system

ideal system

Static system

Whether the system described by the input-output
equations y(n)=x(n)-x(n-1)

time varient

time in varient

delay

non-delay

time in varient




The system described by the input-output equations

y(n)=xz(n) is Linear non linear exponential delay non linear
If the output of the system of the system at any ‘n’ depends

only the present or the past values of the inputs then the

system is said to be: Linear Causal Non-Linear Non-causal Causal

The system described by the input-output equations

y(n)=x(-n) Linear Causal Non-Linear Non-causal Non-causal
. If a system do not have a bounded output for bounded

input, then the system is said to be: Causal Non-causal Stable Non-stable Non-stable
The impulse response of a LTI system is h(n)={1,1,1}. What

is the response of the signal to the input x(n)={1,2,3}? {1,3,6,3,1} {1,2,3,2,1} {1,3,6,5,3} {1,1,1,0,0} {1,3,6,5,3}
Determine the output y(n) of a LTI system with impulse

response h(n)=a"u(n),|a|<1with the input sequence

X(n)=u(n). (1-a"")/(1-a) (1-a")/(1-a) (1+a™V)/(1+a) (1-a) (1-a"")/(1-a)

Determine the impulse response for the cascade of two LTI
systems having impulse responses h1(n)=(1/2)? u(n) and
h2(n)= (1/4)% u(n).

(1/2)"[2-(1/2)"], n<0

(1/2)"[2-(1/2)"], n>0

(1/2)"[2+(1/2)"], n<0

(1/2)"[2+(1/2)"], n>0

(1/2)"[2-(1/2)"], n>0

An LTI system is said to be causal if and only if

Impulse response is
non-zero for positive
values of n

Impulse response is
zero for positive values
of n

Impulse response is
non-zero for negative
values of n

Impulse response is
zero for negative
values of n

Impulse response is
zero for negative
values of n

x(n)*6(n-ngy)=

x(n+ng)

x(n-ng)

x(-n-ny)

x(-n+ny)

x(n-ng)

The discrete impulse function is defined by

6(n)=1,n20,=0,n#1

6(n)=1,n=0=0,n%1

6(n)=1,n<0=0,n%1

6(n)=1,n<0=0,n21

6(n)=1,n=0=0,n%1

The computational procedure for Decimation in frequency
algorithm takes

Log2 N stages

2Log2 N stages

Log2 N? stages

Log2 N/2 stages

Log2 N stages

The anti causal sequences have components in the left
hand sequences.

Positive

negative

not defined

0

Positive

The IIR filter designing involves

Designing of analog
filter in analog domain
and transforming into
digital domain

Designing of digital
filter in analog domain
and transforming into
digital domain

Designing of analog
filter in digital domain
and transforming into
analog domain

Designing of digital
filter in digital domain
and transforming into
analog domain

Designing of digital
filter in analog domain
and transforming into
digital domain

Which among the following represent/s the characteristic/s
of an ideal filter?

Constant gain in
passband

Zero gain in stop band

Linear Phase Response

All of the above

All of the above

FIR filters

.are non-recursive

. are recursive

use feedback

linear

are non-recursive

In tapped delay line filter, the tapped line is also known as

Pick-on node

Pick-off node

Pick-up node

Pick-down node

Pick-off node

How is the sensitivity of filter coefficient quantization for
FIR filters?

Low

Moderate

High

Unpredictable

Low

I I R digital filters are of the following nature

Recursive

Non Recursive

Reversive

Non Reversive

Recursive

Present and previous

Present input and

Present Input,
Previous input and

Present Input,
Previous input and

In I I R digital filter the present output depends on Inputs only previous outputs only Present input only output output
Which of the following is best suited for I I R filter when Lower sidelobes in Higher Sidelobes in Lower sidelobes in No sidelobes in Lower sidelobes in
compared with the FIR filter stopband stopband Passband stopband stopband




In the case of I I R filter which of the following is true if the

. More parameters for

More memory

Lower computational

Higher computational

Lower computational

phase distortion is tolerable design requirement Complexity complexity Complexity
A causal and stable I I R filter has Linear phase No Linear phase Linear amplitude No Amplitude No Linear phase
Neither the Impulse response nor the phase response of the Matched Z -
analog filter is Preserved in the digital filter in the following | The method of Impulse invariant Bilinear transformation Bilinear
method mapping of differentials |method transformation technique transformation
Out of the given [ I R filters the following filter is the
efficient one Circular filter Elliptical filter Rectangular filter Chebyshev filter Elliptical filter
What is the disadvantage of impulse invariant method Aliasing one to one mapping anti aliasing d warping Aliasing

d. Matched Z -
. Which of the I I R Filter design method is antialiasing a. The method of b. Impulse invariant c. Bilinear transformation c. Bilinear
method? mapping of differentials |method transformation technique transformation
The nonlinear relation between the analog and digital
frequencies is called a. aliasing b. warping c. prewarping d. antialiasing b. warping

The most common technique for the design of I I R Digital
filter is

a. Direct Method

b. In direct method

c. Recursive method

d. non recursive
method

b. In direct method

The I I R filter design method thatovercomes the limitation
of applicability to only Lowpass filter and a limited class of
bandpass filters is

a. Approximation of
derivatives

b. Impulse Invariance

c. Bilinear
Transformation

d. Frequency sampling

b. Impulse Invariance

The Fourier transform of a real valued time signal has

odd symmetry

conjugate symmetry

even symmetry

no symmetry

conjugate symmetry

A signal x(t) has a Fourier transform X(w). If x(t) is a real
and odd function of t, them X(w) is

areal and even
function of w

an imaginary and odd
function of w

an imaginary and even
function of w

areal and odd function
of w

an imaginary and odd
function of w

The amplitude spectrum of a Gaussian pulse is uniform Gaussian a sine function An impulse function Gaussian

If a signal f(t) has energy E, the energy of the signal f(2t) is

equal to E 2E E/2 4E E/2

The trigonometric Fourier series of an even function does

not have the dc term cosine terms sine terms odd harmonic terms sine terms

The Fourier series of an odd periodic function, contains only |odd harmonics cosine terms sine terms even harmonic terms sine terms

The trigonometric Fourier series of a periodic time function

can have only cosine terms sine terms dc term even harmonic terms  |cosine terms

The trigonometric Fourier series of an even function of

time does not have cosine terms sine terms dc term even harmonic terms cosine terms

A system with an input x(t) and output y(t) is described by |(linear and time- non-linear & time- non-linear and time-

the relation: y(t) = t. x(t). This system is invariant linear and time-varying |invariant varying linear and time-varying

The input and output of a continuous time system are

respectively denoted by x(t) and y(t). Which of the

following descriptions correspond to a casual system? ()= (-2)+ (+4) ()=(-4) (+1 ()=(+4) (-1 ()=(+5) (+5 ()=(+4) (-1
Periodic with period

A discrete-time signal [ ]=sin( 2 ), beingan integer,is |Periodic with periodn |m/2 Periodic with period m2 |Not periodic Not periodic

Convolution of ( +5) with impulse function ( -7)is equal

to (-12) (-2) (+12) (+2) (-2)

Two systems with impulse responses h1(t) and h2(t) are

connected in cascade. Then the overall impulse response of |product of h1(t) and convolution of h1(t) subtraction of h2(t) convolution of h1(t)

the cascade system is given by h2(t) sum of h1(t) and h2(t) |and h2(t) from h1(t) and h2(t)
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UNIT-1I1
SYLLABUS

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-
Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting;
Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property

Discrete Time Fourier Transform

r(f
A discrete-time signal can be considered as a continuous signal ( ) sampled at a
F=1/ty Q=2n/tg tg
rate or , Where is the sampling period (time interval between two
consecutive samples). The corresponding sampling function (comb function) is:

comb(t) = i §(t — mty)

m=—00
The sampling process can be represented by
o0 [ 4]
r,(t) = z(t) comb(t) = x(t) Y d(t—mty) = > z[m]d(t — mitp)
m=—00 ==
r[m] = x(mty) (t)  t=mig
where is the value of at . The Fourier transform of this
discrete signal (treated as a special case of continuous signal) is:
X(jw) - f T (t)e ¥ dt = f [ Y z[m]d(t — mtq)] et
oo ea =0
o0 e a] ) o0 )
Z J:[m]f §(t — mtg) e 77t = Z z[m] ™74
=00 =2 =00
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r,(t)

This is the forward Fourier transform (analysis) of a discrete signal . The
X(jl_,u') D F—L..ul.ll."tn

spectrum is periodic with period

X(.} (u..-'—"ﬂ):] — Z r[m] _Tl:u,-l-Q:I:I:'?ﬁn _ Z I[?n]e—jw:nfnﬁ—jﬂanfn — X(ju.,-')

ME=— 0 M= —C0
as

E—jﬂ'm%u — E—jimﬁ -1
z[m]
To get back the time signal from its spectrum:
o0

}Ll:jm) — Z z[m] g~ Wt

IM=—x0
Eju‘nﬂ'g I."IQ
we multiply the equation by and integrate both sides with respect to ' over the
=2nF = L..ILII.'"IED

period to obtain the inverse Fourier transform (synthesis):

fX jm _Tu,nfgdu-)_ D] E" ju‘:ni‘g]e_fu‘n%gdw

{2 M=—00

0 &0

> r[m]%f}e_m{m_”ﬁ”dw = > z[mld[m —n] = z[n]

m=—Ca B =00

Note that here we used

_ ERy l m=n
Juil me—m)tg - (re—m ) 2mwea ' — —
E'?f dw = f dw = d[m—n] = { 0 m#n

which can be compared this with

1 PR 1 oy 1l m=n
= Jlrme—m gl - : (mre—m ) 2=t/T — _ —
T LE dt T LEJ dt = 8lm —n] { 0 m#n

To summarize, the spectrum of a given discrete signal
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[ ]
r,(t) = Z r[m]d(t — mty)
=00

can be found by forward Fourier transform to be:

o0 o0

Xo(jw) = Flafmll = Y zlmleme = 3 ofm]emsr

m=—00 =00

and the signal can be expressed by inverse Fourier transform:

1 . N R
z[m] = F{Xa(jw)] = ﬁLXQUW)EM“ Sdw = ];‘}LF(JC)E‘T‘" o df

It is interesting to compare this discrete time Fourier transform pair with the Fourier series
expansion - the Fourier transform of a periodic signal:

rr(t) = F1X[n]] Z X[n]ermeet = Z X [n]es?mfot

nn=—00 n=—00

1

h 1 o
_}LF[H] = F[II(f)] = TLIT(t)E_JMDidt — T jl._rr(t)e—j_..-.n_ﬁ;.idt

with discrete spectrum:

o0
X(jw)=2r > X[nJé(w—nwy) or X(f)= Z X[n]é(f—nfa)
Te=—C0 TE=— 0
We see symmetry between these two different forms of Fourier transform. If the
z(t) = z(t+T) X(jw)
signal is periodic its spectrum is discrete, the coefficients of the
wy = 2n/T r(t)
Fourier series with interval . On the other hand, if is discrete with
ty = 27/Q X(jw) = X(jw + Q)

interval , its spectrum is periodic.
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fﬁg - ].
In pa@cg—_la@;-ifﬁiﬁde wniPef time is so chosen that the sampling period is ,
then , and the forward Fourier transform of a discrete signal becomes:
}L(jm) = Z r[mle™ ™ = Z J:[m]e_ﬂ”z“f
m=—00 m=—000

The inverse transform becomes:

The spectrum 1s periodic.

X(jw)  X(f)
he spectrum of a time signal (continuous or discrete) can be denoted by or to
emphasize the fact that the spectrum represents how the energy contained in the signal is

7 X(f)
distributed as a function of frequency &' or . Moreover, if is used, the
12w
factor in front of the inverse transform is dropped so that the transform pair takes a more
symmetric form. On the other hand, as Fourier transform of discrete signal can be considered as
5=0+jw _
a special case of Z transform when the real part of is zero, i.e., ¥ = €° = ¥

o0 o0

X(:H;:L.ju,- = Z r[n]:_”L:'_.jw- = Z I[?i]&‘jw”:X(t’.jw:}

=00 n=—00

z[n]  X(e)

it is also natural to denote the spectrum of by

DTFT Analysis of Discrete LTI Systems
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The input-output relationship of an LTI system is governed by a convolution process: y[n] = x[n]
* h[n] where h[n] is the discrete time impulse response of the system

Then the frequency-response is simply the DTFT of h[n]:
Properties of Discrete Fourier Transform

DFT
x(k)

v

X(n) -
N

As a special case of general Fourier transform, the discrete time transform shares all properties
(and their proofs) of the Fourier transform discussed above, except now some of these properties
may take different forms. In the following, we always

Flelml] = X(e*)  Flylm]] = Y(e*)
assume and \

Periodicity

Let x(n) and x(k) be the DFT pair then if

x(n+N) = x(n) for all n then

X(k+N) = X(K) for all k

Thus periodic sequence xp(n) can be given as

on
xp(n) =3, x(n-IN)

|:'IE'

Linearity
Flaz[m] 4+ by[m]] = aX (&™) + bY (e*)

The linearity property states that if
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DFT
xl(n) = X1(k) And
N
DFT
x2(n) = S X2(k) Then
N
Then DFT
al x1(n) + a2 x2(n) < » al X1(k)+a2 X2(k) N

DFT of linear combination of two or more signals is equal to the same linear combination of
DFT of individual signals.

Time Shifting

Flz[m —mg]] = e 7™ X ()

Proof:
=0 B
Flr[m— mg]] = Z r[m — mgle™ ™"
IT=—10
m' = m — mg
If we let , the above becomes
=0 . ¥ - .
.F[I[?n _ ?nﬂ]] — Z I[??’I"] E—_Tu'l:m +ma) E—_Tw'mnx(ejw)
TE=— i

Time Reversal

Flz[-m]] = X(e™7)
Frequency Shifting

Flz[m]e’™ ™| = X(E.j':“'_“'”:')
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Differencing

Differencing is the discrete-time counterpart of differentiation.

Flz[m]—z[m—1]] = (1 - E_j"”')}f(ej“')
Proof:

Flz[m] — z[m — 1]] = Flz[m]] — Flz[m — 1]]

X(Ej“'] — _X(ej“:l eI = (1— E_j“')}f(ej“')

Differentiation in frequency

.F_IU%X(Ej“')] = m x[m]

proof: Differentiating the definition of discrete Fourier transform with respect to &', we get

d . d &= . e d .
_X ._-I"lrb : _ .__TE-L-'?TT — _ .—_TLA-'???
= (E ) 2 m:E_m z[mle m:E_m z[m| 7 e

Y —jmaz[m]e” 4

Convolution Theorems

The convolution theorem states that convolution in time domain corresponds to multiplication in
frequency domain and vice versa:

Flzn] + yln]] = X(£°) Y(e*)  (a)

Flz[n] y[n]] = X(%) « Y (™) (b)
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rr(t)
Recall that the convolution of periodic signals

and

yr(t)

or(t) * yr(t) 2

[
X(f)
Here the convolution of periodic spectra

7 fer(urte = rar
v ()

and is similarly defined as

E l L Sy o ] ]-
()Y () = o [ X(e)¥ (&)
LJE

ix S AT S TR RO R
27 Jo '}L(EJ )1 (EJ )dwl
Proof of (a):

Flz[n] * y[n]] i I i r[mly[n — m] |e™ ™

R=—00 m=—00
co oo | |
S ozm[ Y yn —mle ]
=00 n=—00

X(je) Y0
Proof of (b):
Flz[n]y[n]] Y

> alalylnle = 3 5= [

X[ju;’]ejwrdu_:;]y[n]f_j”""
1 oy i “ =0 i i “

5 ). X@WN[ X e ylnle™™]dw

]‘ o i > —iniw—w’ !

‘H‘jn. X(Gu') > ynle™ =) !
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]_ 2w

— [T XG)Y (o - o))d = X(jw) Y (jw)

27 Jo

Parseval's Relation

oo ]_ P )
> el = o= [ IX(e) P
27 Jo
n=—0
Parseval’sTheorem
The Parseval s theorem states
N-1 " N-1 5
> X(n)y (n) =I/N ¥ x(k) y (k)
n={) n={

This equation give energy of finite duration sequence in terms of its frequency components.

Example 1. The spectrum of

z[n] = a™u[n] (|la] < 1)
X(e™) = Flzln]] = i a"uln|e ™™ = i(ae_j“')” = ﬁ

If the signal is two-sided:

z[n] = a™l = a™un] + a "u[-n] — §[n],  (|a| < 1)

Due to the time reversal property, its spectrum is
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. 1 1 1—a®
X () = _ 1= i
1 — qe—™ 1l — ae® 1 — 2a cosw + a*

Example 2. Consider an LTI system with impulse response

hn] = a™uln], (|a| < 1)

and input

z[n] = b"u[n], (15| < 1)

y[n]
The output can be found in either time domain by convolution or in frequency domain by
multiplication. In time domain, we have

y[n] © kn]xzn]= ) @ Muln—m|bulm]=a™ > a "

M=— 00 =0

w1 (b/a)"™ L

a uln| = 7
a —

= (5/a) (a™t! — b )u[n]

When @ = b, we have

yln] =a™ > a7 = (n 4 1)a™uln]

=0
z[n] h{n]
In frequency domain, we first find the spectra of both and to be:
- 1 ., 1
Xe™")=—— He")=——
(=) 1 — qe=7’ () 1 — be—
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and the spectrum of the output is:

1

V(e™) = H(e™) X(e¥) = (1 — be=)(1 — ae— )

y(n) Y(e™)
To find in time domain by inverse transform of , we use partial fraction
expansion to rewrite the above as

. A B A— Abe ¥ 4+ B — aBe ™
Y(e¥) = _
(E ) 1 — ge—i& t 1 — be—w (l [ b,g_—jw)(l — ag_—jw)

By equating the coefficients of €77 and the constants, we get

A+B=1, aB+bA=0

which can be solved to get

a —b
A — B —_
a—b’ a—>b
Y (jw)
In this form, can be easily inverse transformed to yield
b 1
hin] = [ai ba”’ - bb”]u[n] = m(a”"'l — 5" uln]

same as the result from convolution. Again when @ = &, we have

. 1 el d 1
Yi{ie™) = = —
( ) (l — ae—i“')3 a jdw(l — ae—i“')
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But since
1
Ft —| = a"uln
Epp— ]

by the frequency differentiation property, we have
)| = na™u|n]

d 1
—1p: "
L4

and the output in time domain is obtained as:

ol - FY ()] = P ()

1
—(n + l)a”""l un+ 1 = (n + l)a”u[n + 1]

)

(n + l)a”’u[n]

Note that the time-shifting property is used due to the factor e? . Also note
uln + 1] n=—1 u[n]
that (starting at ) is replaced by (starting at 1@ = D)
n+1=10 n=-—1

as when

Example 4. The impulse response of a discrete LTI system is

hlm] = a™u[m]

a| <1 y[m]

where so that the system is stable. The output of the system with an input
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Ejﬁ: N + E—_T'Emnl."'ﬁ'_

LY - ]

4 Fa

can be found in three different ways.

y[m] :  klm] % z[m] = i o e’

z[m] h[m|
Time domain convolution: The output is the convolution of and

ﬁxlz:ln—k:ll."lf'-'_ + E—jﬁ:l::-n—kjll."'f'-'_

2
=0
5¢ ' 5¢ ]
= k=0 = =0
E 72w /N 1 + EE—J”—mI.-"“'- 1
2 1 — qe—72=/N = 2~ 1 — qei2=/N

h{m]
The eigenequation method: We first get the frequency response function from
H(e™) = Y hlk]e =73 (ae™)" = ———
fe=—cao k=0 ]‘ —ae’

which is the eigenvalue of the system when the input is a complex exponential eI
Now the system's response to

Eji: m /N + E-_fi:m;"f\r

LY o ‘)

4 Fa

can be found to be
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l 2w [N 2w W L e g 4 AT
y[?n] . E[H’(Ej‘_ml.ﬁ)ej_..mﬂl. N +H(€ _T_...a.I.P\)E _T_..a.:'ﬂl.f"-]

)

Ee_fixm,"'ﬁ-" L + Eg—jixm,"'h" 1
2 1 — gqe—i2=/N = 2~ 1 — gqei2=/N
h[m] z[m]
e Frequency domain multiplication: If we find the spectra of both and in
y[m]
the frequency domain, the spectrum of can be found by multiplication. We already
know
H(e) = Flh[m]] = o
l — qe—
z[m]
We next find the spectrum of
- oo Eji:m.."'ﬁ'_ + E—_T'Exml."'f\'_ _
- gl i _ —Jimt
X(e) © Flaml] = Y 5 ‘
TM—=— 00
o0
T Z [6(w — 2km — 27 /N ) + §(w — 2k7 — 27 /N )]
k=—0o0
y[m]
Now the spectrum of the output can be found
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Y(e™) H(e™)X(e™)

— oo
Ak

— dw—2%k7 — 27 /N) 4+ 8w — 2kw — 27/N
T k:Z_m[ (w /N) + 6w /N)]
y[m]
and the output is obtained by inverse Fourier transform:
1 2 T = 27 2T 0
y[m] : ‘?_f [ — Z [{jl:-_u — 2km — —_] -+ {jl:w' — 2km — —I_]]]E'Tmmdw
2r Jo "l —ae™¥ T N N
E j2mm/N 1 Iy jamm/N 1
) legeiWN ) | - geia/N
H(2x/N)
The physical meaning of this result will be clear if we write in polar form:
oy ..'r\.' ]_ E'
H(@™N) = = el

1 — ged?=/N

and the output becomes

i
ik

m—|—€)

y[m] = r cos(

L
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That is, the output of the system is also a sinusoidal signal of the same frequency as the input,
but with different magnitude 7 and a phase angle . For example, if N = 4, we have

H(ij.-*'i): _ = - itanTl(a)

and the output is

POSSIBLE QUESTIONS

PART-B( 2 MARKS)

Define Linearity

Define Time Shifting property

Define Frequency Shifting property

Define Differencing in Time Domain property
Define Differentiation in Frequency Domain property
Define Convolution Property

Define DTFT

Define periodicity of DTFT

State Parcevall's theorem.

LERAANNR DN

PART-C (6 MARKYS)
1. Derive expression for Fourier Transform Representation of Aperiodic Discrete-Time Signals.
2. Discuss the properties of DTFT.

3. Prove Differencing in Time Domain; Differentiation in Frequency Domain properties of
DTFT.

4. Prove Convolution properties of DTFT.
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QUESTIONS CHOICE1 CHOICE2 CHOICE3 CHOICE4 ANSWER
UNIT-II
Periodic Discrete Aperiodic Discrete Aperiodic Periodic continuous | Aperiodic Discrete
DTFT is the representation of time signals time signals continuous signals signals time signals
The transforming relations performed by DTFT are Linearity nonlinearity demodulation periodicity Linearity
The transforming relations performed by DTFT are Modulation nonlinearity demodulation periodicity Modulation
The transforming relations performed by DTFT are Shifting nonlinearity demodulation periodicity Shifting
The transforming relations performed by DTFT are Convolution nonlinearity demodulation periodicity Convolution
DFT is preferred for Removal of noise Filter design demodulation periodicity Filter design
[ts ability to
determine the
frequency component
The DFT is preferred for of the signal Quantization of signal |demodulation periodicity Quantization of signal
As compared to the analog systems, the digital processing of Programmable non progammable Programmable
signals allow operations opertion costly not reliable operations
As compared to the analog systems, the digital processing of Flexibility in the non progammable Flexibility in the
signals allow system design opertion costly not reliable system design
As compared to the analog systems, the digital processing of non progammable
signals allow Cheaper systems opertion costly not reliable Cheaper systems
As compared to the analog systems, the digital processing of non progammable
signals allow More reliability opertion costly not reliable More reliability
Relates the Relates the
conditions in time conditions in time
domain and Gives the spectrum domain and
The Nyquist theorem for sampling frequency domain Helps in quantization |of the signal calculate bndwidth frequency domain
Gives the spectrum Limits the bandwidth Limits the bandwidth
The Nyquist theorem for sampling of the signal requirement Helps in quantization |calculate bndwidth requirement




Roll-off factor is

The bandwidth
occupied beyond the
Nyquist Bandwidth of
the filter

The performance of
the filter or device

Aliasing effect

sampling

The bandwidth
occupied beyond the
Nyquist Bandwidth of
the filter

Ability to resolve
different frequency
components from

b. Ability to translate
into frequency

c. Ability to convert
into discrete time

Ability to convert

Ability to resolve
different frequency
components from

Frequency selectivity characteristics of DFT refers to input signal domain signal continous time signal |input signal
Which term applies to the maintaining of a given signal level until Shannon frequency |, . -
: . o . Stair-stepping .
the next sampling? Holding Aliasing sampling Holding
-bi ignifi i i 6.25% of full scal 6.25% of full scal
For a 4-bit DAC, the least significant bit (LSB) is % of full scale 0.625% of full scale  |12% of full scale 1.2% of full scale % of full scale

The DTFT transforms an infinite-length discrete signal in the time
domain into

an finite-length
continuous signal in
the frequency domain.

an finite-length
discrete signal in the
frequency domain.

an in finite-length
continuous signal in
the frequency domain.

an infinite-length
discrete signal in the
frequency domain.

an finite-length
continuous signal in
the frequency domain.

As with continuous-time, convolution is represented by the
symbol *, and can be written as

y[n]=x[n]**h[n]

y[n]=x[n]*h[n]

y[n]=x[n]/h[n]

y[n]=x[n]h[n]

y[n]=x[n]*h[n]

Let f and g be two functions with convolution f*g .. Let F be the
Fourier transform operator. Then

E(f*g)=F(f) .(g)

E(f*+g)=F(f) -F(g)

F(fg)=F(f) .-F(g)

E(f*+g)=F(f)/-F(g)

E(f*g)=F(f) .(g)

Let f and g be two functions with convolution f*g .. Let F be the
Fourier transform operator. Then

F(f-g)=F(f)*F(9)

F(f-g)=F()F(9)

F(f*g)=F(f)*F(g)

F(f-g)=F(f)/F(9)

F(f-g)=F(f)*F(g)

Inverse Fourier transform F-1, we can writ

fxg=F-1(F(f)-F(g))

fg=F(F(f)-F(g))

fg=F-1(F(f)-F(g))

fxg=F-1(F(f)/F(g))

fxg=F-1(F(f)-F(g))

The Fourier transform of a convolution is the pointwise product

of Fouriertransform Fourier serious infinite series FFT Fouriertransform
convolution in one domain corresponds to point-wise ...... in the
other domain (e.g., frequency domain).

multiplication addition subtraction integration multiplication
Symmetry property deals with the effect on the frequency-
domain representation of a signal if the time variable is altered constant added subtracted altered

a unit pulse with a very small duration, in time that becomes an
infinite-length constant function in frequency.

delta function

impulse function

ramp function

step function

delta function

Time shifting shows that a shift in time is equivalent to a

linear phase shift in
frequency

Non- linear phase
shift in frequency

linear frequency shift
in time

linear frequency shift

linear phase shift in
frequency

frequency content depends only on the shape of a signal, which is
.unchanged in a time shift, then

phasespectrum will
be altered

amplitude spectrum
will be altered

time spectrum will be
altered

frequency spectrum
will be altered

phasespectrum will
be altered

convolution in time becomes......... in frequency

multiplication

addition

subtraction

integration

multiplication




convolution property is also another excellent example of ......
between time and frequency.

symmetry

antisymmetry

periodicity

aperiodicity

symmetry

Convolution property is also another excellent example of
symmetry between

time andfrequency

time and phase

phase and frequency

phase and amplitude

time andfrequency

Parseval's relation tells us that the energy of a signal is equal to.

the energy of its

the power of its

the energy of its Z

the power of its Z

the energy of its

Fourier transform Fourier transform transform transform Fourier transform
Continuous functions are sampled to form a Fourier transform fourierseries Ztransform digital image digital image
2D Fourier transform and its inverse are infinitely aperiodic periodic linear nonlinear periodic
Which property of delta function indicates the equality between
the area under the product of function with shifted impulse and
the value of function located at unit impulse instant ? Replication sampling scaling alising sampling
Which among the below specified conditions/cases of discrete
time in terms of real constant 'a’, represents the double-sided
decaying exponential signal? a>1 a<l1 0 than a less than 1 than a less than 1

A system is said to be shift invariant only if

a shift in the input
signal also results in
the corresponding
shift in the output

a shift in the input
signal does not
exhibit the
corresponding shift
in the output

c. a shifting level does
not vary in an input
as well as output

d. a shifting at input
does not affect the
output

a shift in the input
signal also results in
the corresponding
shift in the output

Which condition determines the causality of the LTI system in
terms of its impulse response ?

a. Only if the value of
an impulse response
is zero for all
negative values of
time

b. Only if the value of
an impulse response
is unity for all
negative values of
time

c. Only if the value of
an impulse response
is infinity for all
negative values of
time

d. Only if the value of
an impulse response
is negative for all
negative values of
time

a. Only if the value of
an impulse response
is zero for all
negative values of
time

An equalizer used to compensate the distortion in the
communication system by faithful recovery of an original signal is
nothing but an illustration of

static system

dynamic system

invertible system

non-invertible system

invertible system

Which block of the discrete time systems requires memory in

order to store the previous input? adder multplier unit delay unit advance unit delay
Which type/s of discrete-time system do/does not exhibit the
necessity of any feedback ? recursive system nonrecursive system |linear nonlinear nonrecursive system

Which type of system response to its input represents the zero
value of its initial condition?

Zero state response

b. Zero input response

c. Total response

d. Natural response

Zero state response

Which among the following operations is/are not involved
/associated with the computation process of linear convolution?

Folding Operation

b. Shifting Operation

c. Multiplication
Operation

d. Integration
Operation

d. Integration
Operation




A LTI system is said to be initially relaxed system only if ___

zero input produces
zero output

b. zero input
produces non-zero
output

c. zero input
produces an output
equal to unity

d. none of the above

zero input produces
zero output

What are the number of samples present in an impulse response
called as?

string

b. array

c. length

d. element

c. length

a. Shape of signal in
time domain & shape

b. Shape of signal in
frequency domain &
shape of spectrum

c. Shape of signal in
time domain & shape
of spectrum can

d. Shape of signal in
time domain & shape
of spectrum can

a. Shape of signal in
time domain & shape

Duality Theorem / Property of Fourier Transform states that of spectrum can be can be never be never be of spectrum can be
interchangeable interchangeable interchangeable interchangeable interchangeable

Which property of fourier transform gives rise to an additional

phase shift of -2 ft, for the generated time delay in the

communication system without affecting an amplitude spectrum ? |. Time Scaling Linearity Time Shifting Duality Time Shifting
Transformation from Transformation from

What is/are the crucial purposes of using the Fourier Transform [time domain to Plotting of amplitude space domain to

while analyzing any elementary signals at different frequencies? |frequency domain & phase spectrum Botha &b frequency domain Botha &b

What is the possible range of frequency spectrum for discrete

time fourier series (DTFS)? 0to2m - to +T Botha &b 0 Botha &b

Which among the following assertions represents a necessary

Discrete Time Signal

Discrete Time Signal

Discrete Time Signal

Discrete Time Signal

Discrete Time Signal

condition for the existence of Fourier Transform of discrete time |should be absolutely |should be absolutely |should be absolutely [should be absolutely [should be absolutely
signal (DTFT)? summable multipliable integrable differentiable summable
What is the nature of Fourier representation of a discrete & Discrete and Continuous &
aperiodic signal? Continuous & periodic|aperiodic aperiodic Discrete & periodic Continuous & periodic
Which property of periodic signal in DTFS gets completely
clarified / identified by the equation x (n - ny)? Conjugation Time Shifting Frequency Shifting |Time Reversal Time Shifting
Which are the only waves that correspond/ support the
measurement of phase angle in the line spectra? Sine waves Cosine waves Triangular waves Square wave Cosine waves
Number of digital Number of digital Number of digital Number of digital Number of digital
What does the signalling rate in the digital communication pulses transmitted pulses transmitted pulses received per |pulses received per |pulses transmitted
system imply ? per second per minute second minute per second
Width of each pulse | Width of each pulse | Width of each pulse Width of each pulse
As the signalling rate increases, increases decreases remains unaffected None of the above decreases

Which phenomenon occurs due to an increase in the channel
bandwidth during the transmission of narrow pulses in order to
avoid any intervention of signal distortion?

Compression in time
domain

Expansion in

frequency domain

Expansion in time
domain

Compression in
frequency domain

Expansion in
frequency domain




What does the term y(-1) indicate especially in an equation that
represents the behaviour of the causal system?

initial condition of
the system

negative initial
condition of the
system

negative feedback
condition of the
system

response of the
system to its initial
input

initial condition of
the system

Damped sinusoids are

sinusoid signals
multiplied by
growing exponentials

sinusoid signals
divided by growing
exponentials

sinusoid signals
multiplied by
decaying exponentials

sinusoid signals
divided by decaying
exponentials

sinusoid signals
multiplied by
decaying exponentials
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
COLIRSE CODE- 16PHLI4 03 LINIT:II(Z Transform) Batch (2016-201 q)
UNIT-111
SYLLABUS

The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship
Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence;
Properties of ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series
Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems;
Transfer Function and Difference-Equation System. Solving Difference Equations.

Analysis of continuous time LTI systems can be done using z-transforms. It is a

powerful mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as
— — N0 —n
Z.T[z(n)] = X(Z) = £2___z(n)z

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

Z.Tla(n)] = X(Z) = =2 2(n)z"

Z-transform may exist for some signals for which Discrete Time Fourier Transform
(DTFT) does not exist.
Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined

as
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X(Z)y=22 _ z(n)z™"...... (1)
If Z = re® then equation 1 becomes
X(re™) =% __ z(n)re™]™
=52 _a(n)r e
X(re™) = X(Z) = F.T[z(n)r "]... ... (2)

The above equation represents the relation between Fourier transform and Z-
transform.

X(Z)| ;= = F.T[z(n)].
INVERSE Z TRANSFORM
X(re™) = F.T[z(n)r "]
z(n)r ™ = F.T ' X(re*]
z(n) = F.T 1 X(re)]
= r”‘%f}((rejw)ej“mdw
=+ [X(réw)[re*]"dw. .. ... (3)

T

Substitute re’ = z.

dz = jre®dw = jzdw
dw = Fl.z_ldz
Substitute in equation 3.

3 = z(n) = — [ X(2)2"+2 dz = ﬁf X(2)z" dz

2T ?
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o0

X(2)= )Y a(n)z"

z(n) = %jf)((z)z”_ldz

Z-Transform has following properties:

Linearity Property

¥ 2(n) <o X(2)

and y(n) &5 Y(Z)

Then linearity property states that

a z(n) + by(n) &5 aX(Z)+bY(Z)

Time Shifting Property
¥ 2(n) &2 X(Z)
Then Time shifting property states that

z(n —m) Pt 2 ™ X(2)
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Multiplication by Exponential Sequence Property

Z.T
If z(n) < X(2)
Then multiplication by an exponential sequence property states that

a . 2(n) &5 X(Z/a)

Time Reversal Property

I 2(n) < X(Z)

Then time reversal property states that

#(—n) < X(1/2)

Differentiation in Z-Domain OR Multiplication by n Property
Z.T

If z(n) +— X(2)

Then multiplication by n or differentiation in z-domain property states that

Z.T k
nFx(n) & [—l]kzkd;;(f)

Convolution Property

I 2(n) £ X(2)

and y(n) Pk Y(Z)

Then convelution property states that

2(n) * y(n) < X(2).Y(2)
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Correlation Property

I 2(n) < X(Z)

and y(n) & Y(Z)

Then correlation property states that

2(n) ® y(n) < X(2).Y(Z)

Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.

Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

z(0) = lim, o X(2)

This is used to find the initial value of the signal without taking inverse z-transform

“inal Value Theorem
For a causal signal x(n), the final value theorem states that
z(o0) = lim, ,; [z — 1] X(2)

This is used to find the final value of the signal without taking inverse z-transform.
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Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of
convergence of z-transform.

Properties of ROC of Z-Transforms

ROC of z-transform is indicated with circle in z-plane.
ROC does not contain any poles.

If x(n) is a finite duration causal sequence or right sided sequence, then the
ROC is entire z-plane except at z = 0.

If x(n) is a finite duration anti-causal sequence or left sided sequence, then the
ROC is entire z-plane except at z = co.

If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with
radius a. i.e. |z| > a.

If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle
with radius a. i.e. |z| < a.

If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane

exceptatz =0 &z = co.

The concept of ROC can be explained by the following example:

Example 1: Find z-transform and ROC of a"u[n| + a” nu[—n — 1]
Z.Tla"uln]] + Z.Tla "u[-n 1] = 75 + -4

a

1
ROC : |2 > a ROC:\2|<E

The plot of ROC has two conditionsasa>1anda <1,
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unit circle unit circle
y ’
%)r/ 5

In this case, there is no combination ROC.

-

unit circle 4

unit circle

W

Here, the combination of ROC is from a < |2| < &

Hence for this problem, z-transform is possible when a < 1.

Prepared by Mrs.Ambili Vipin, Asst Prof, Department of PHYSICS, KAHE Page 7/21



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
COLIRSE CODE- 16PHLI4 03 LINIT:II(Z Transform) Batch (2016-201 q)

Causality and Stability

Causality condition for discrete time LTI systems is as follows:

A discrete time LTI system is causal when

ROC is outside the outermost pole.

In The transfer function H[Z], the order of numerator cannot be grater than
the order of denominator.

Stability Condition for Discrete Time LTI Systems

A discrete time LTI system is stable when

its system function H[Z] include unit circle |z|=1.

all poles of the transfer function lay inside the unit circle |z|=1.

Power series expansion

If the z-transform 1s given as a power series in the form

X(z)= Z z[n]z™"
=... +z[-222 +z[-1)2! + z[0] + z[1)z71 + 2[2]z 72 + ...,
then any value in the sequence can be found by identifying the coefficient of

the appropriate power of 271,

Example: finite-length sequence

The z-transform
. 1 . .
X(2)=2%(1- 52_1)(1 +27H1 -2

can be multiplied out to give

5 1 1 _
4 _ 2, _ -1
X(z)==z2 57 1—|—22 :
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By inspection, the corresponding sequence is therefore

( 1 n=—2
—% n=-—1
z[n| = ¢ —1 n=>0
% n=1
| 0 otherwise

or equivalently

z[n] = 16[n+ 2] — %5[?1 + 1] — 15[n] + %d[n —1].

Example: power series expansion by long division
Consider the transform
1

X =1

2| > |al.

Since the ROC is the exterior of a circle, the sequence 1s right-sided. We
therefore divide to get a power series in powers of 2~ 1:

l+az"'+a?2724- .

1—az"1)1
l—az—1t
az~?t
az"t1—a?272
a2z 24 ...

or

o= lrar e
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Therefore z[n] = a™u[n].
Example: power series expansion for left-sided sequence
Consider instead the z-transform

1
1—az=V’

X(2)= |2 < |al.

Because of the ROC, the sequence is now a left-sided one. Thus we divide to
obtain a series in powers of z:

—a + z) z
z—a 122

az 1

Thus z[n] = —a™u[—n — 1].
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Z-Transform of Basic Signals

x(t) X[Z]

) 1

u(n) Vet
u(—n —1) —%
d(n—m) z ™
a"ufn] 7
a"u[—n —1] — Zi;
na™un| | ZE_ZG| 3
na™u[—n — 1] - |Za_i|2

Z?—aZ cosw
Z?—2aZ cosw+a?

aZsinw
Z2-2aZ cosw+ta?

The z-Plane and the Unit Circle

* If we consider the z-plane, we see that H(?) corresponds to
evaluating H(z) on the unit circle
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Im g 757
z-Plane e 2z _ Jo
e g ‘
/ ~
I-II. :\\
) i i. Re
?) _: in?, ®=0
z=-1 z=1
unit circle y ’
N &
B =

+ From this interpretation we also can see why H(?) is peri-
odic with period 27

— As @ increases it continues to sweep around the unit circle
over and over again

The Zeros and Poles of H(z)
* Consider
H(z)y =1+ blz_l + bz:_2 - 53:_3
where we have assumed that b, = 1
* Factoring H(z) results in
-1 -1 -1
H(z) = (1-zy2 Ml -z )(1-z32 )
* Multiplying by =2 /2 allows to write H(z) in terms of posi-
tive powers of =

3 2 1 0
2+ Dbzm+ Db,z 4Dy
3

H(z) =

(= z—z3)(=z—=3)
3
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* The zeros are the locations where H(z) = 0. 1Le.. 2,25, 23

* The poles are where H(z) - =, l.e..z =0

* A pole-zero plot displays the pole and zero locations in the z-

plane
Im
- 1" -6 5
z-Plane / N
f/ /4; Three poles at z=0
. A
3 "
—5 & Re
) :1 |
'\-.\ K
s
\ N .
. o
“3

The Significance of the Zeros of H(z)

* The difference equation is the actual time domain means for
calculating the filter output for a given filter input

* The difference equation coefficients are the polynomial coet-
ficients in H(z)

"
For x[n] = z; we know that

n
v[n] = H(zy)z,.

so in particular if 2 is one of the zeros of H(z), H{:O] =0
and the output y[n] = 0

Differentation in Z —Domain

Z[nzn|| = -z {—{_X(;-J.

ROC = R,
d
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Proof:

x x

%X('.z_] = Z I[n]d—i(:_”)z Z (—n)z[n|z! :—Tl Z nz(n|z

= n=—2 n=—2c ¥ n=—X
ie.,

Zlnz[n]] = 723‘\'(:)

Example: Taking derivative with respect to £ of the right side of

Zla"uln]] = Tt

we get

d { 1 } —az"?
dz [1—az™'] (1 —az"1)?

Due to the property of differentiation in z-domain, we have

Znauln]] =

Note that for a different ROC |z| < |/, we have

az I

(1—az"1)?

Z[—na"u|-n—1]] =

Analysis and Characterization of LTI Systems Using z-Transform

The z-transform plays a particularly important role in the analysis and representation of
discrete-time LTI systems. Many properties of a system can be tied directly to
characteristics of the poles, zeros, and region of convergence of the system function.

Due to its convolution property, the z-transform is a powerful tool to analyze LTI systems
y[n] = hln] * z[n] == Y (z) = H(z)X(z)

when the input is the eigenfimction of all LTI system, ie., =[n| = €™ = 2™ the
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operation on this fnput by the system can be found by nmltiplying the syster's eigenvalie () to the iput:
y[n] = O[z"] = h[n| * z™ = H(z)z"

Causality

A discrete-time LTI system is causal if and only if the ROC of its system function is the
exterior of a circle, include infinity.

A discrete-time LTI system with rational system function H(z) is causal if and only if:

(a) the ROC is the exterior of a circle outside the outmost pole;

(b) with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot
be greater than the order of the denominator.

Stability

An LTI system is stable if and only if the ROC of the system function H(z) includes the
unit circle, |z[=1.

A causal LTI system with rational system function H(z) is stable if and only if all of the
poles of H(z) lie inside the unit circle -i.e., they must all have magnitude smaller that 1.

The Transfer Function in the Z-domain

A LTI system is completely characterized by its impulse response h[n] or equivalently the
Z-transform of the impulse response H(z) which is called the transfer function.

z[n] * hln] — X(2)H(2).

In case the impulse response is given to define the LTI system we can simply calculate the Z-
transform to obtain :math: H(z).

In case the system is defined with a difference equation we could first calculate the impulse
response and then calculating the Z-transform. But it is far easier to calculate the Z-
transform of both sides of the difference equation.
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As an example consider the following difference equation:

y|n] = 1.5y[n — 1] — 0.5y[n — 2] + 0.5z(n|.

Remember that “x[n-n_0]ztarrow z*{-n_0}X(z)$ and knowing that the Z-transform is a linear
transform we can apply the Z-transform to both sides of the above equation and obtain:

Y(2) = 1.527'Y(2) — 0.5z 2Y(2) + 0.5X(2)

This can be rewritten as:

Y(2) 0.5 2
X(z) 1-15z14052z"2 222-3z+1
DIFFERENCE EQUATION

A difference equation is an equation which expresses a relation between an independent
variable and the successive values of the dependent variable or the successive differences
of the dependent variable.

Difference equations arise in the situations in which the discrete values of the
independent variable
involve. Many practical phenomena are modelled with the help of difference equations.

Example

-2

Yies + 2.1"x+2 - 3)”:1—1 + 5,1'".'{ =X

~ -

Order of a Difference Equation :

The difference between the largest and smallest arguments appearing in the difference equation is called
its order.
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Solution of a Difference Equation :

A solution of a difference equation is a relation between the independent variable and the dependent
variable satisfying the equation.

e.g., The relation y(x) = ea” 1s a solution of the difference equation y(x + 1) — ap(x) =0, a # 1 where c 1s
an arbitrary constant.

The solution of a difference equation of order n shall generally contain n arbitrary constants.

A solution involving as many arbitrary constants as is the order of the equation, is called the
general solution.

Any solution obtained from the general solution by assigning particular values to the arbitrary
constants is called a particular solution.

In the above example, y(x) = ca” 1s the general solution and y(x) = 3a" is a particular solution.

A difference equation is formed by eliminating the arbitrary constants from a relation giving the order of
the equation is equal to the number of arbitrary constants. The following examples illustrate the formation
of difference equations :

Example: For the difference equation y[a] - syin — 1| = uln| find y|n| for n > 0.
Assume rest IC y|-1] = 0.
(Here u/n| 1s the umt step function.)

answer: Rewnte the equation as y/n| = uln| + %y|n -1l.

Makeatablee n -1 01 2 1 4
un| 011 1 1 1
yln| 0 1 32 7/4 158 /16 ...

We have already seen difference equations with Euler's formula. For example the IVP

i = ky; y(0) = 1 becomes the difference equation
Yntl = ¥n f .utyn Il L 'E‘h]r}'n & Yol ~ |] | 'i‘h‘”fn 0.

Here 1nstead of y|n| we wrote y,

Z-transform (analog of Laplace transform)

Let x/n| be a sequence. Its z-transform s X{z) Zrhz 7

n
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POSSIBLE QUESTIONS
PART-B(2 MARKYS)
1.Define Z transform
2.Define inverse Z transform
3.Define Z plane
4.Define region of convergence
5.List out the properties of ROC
6.Define difference equation.
7.Define transfer function
8.Define stability in Z domain
9.Define causality in Z domain
10.What are the significance of poles and zeroes?
PART-C( 6 MARKYS)
1.Derive the expression for Z transform and inverse Z transform.
2. Explain and prove the properties of z transform
3.Explain region of convergence in Z transform
4.Explain the significance of poles and zeroes.

5.Writeshort note on transfer function and difference equation.
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QUESTIONS CHOICE1 CHOICE2 CHOICE3 CHOICE4 ANSWER
/ = /= = / + Z/aT / =

The region of convergence of the z - transform of a unit step

function is | |>1 (Real partof z) > 0 | |<1 (Real partof z) < 0 | |>1

Two discrete time systems with impulse responses 1[ ]= [ -

1] and

2[ 1= [ - 2] are connected in cascade. The overdll ifipulie?
response of
theRascdded system is [ -1+ [ -2] [ -4] [ -3] [ -1] [ -2] [ -3]

For a system function H(s) to be stable

The zeros lie in left half
of the s plane

The zeros lie in right
half of the s plane

The poles lie in left half
of the s plane

The poles lie in right
half of the s plane

The poles lie in left half
of the s plane

The s plane and z plane are related as z=¢e" z=e”" z=2e" z=¢"/2 z=¢e"
. Both convert discrete Both convert discrete
Both convert frequency |time domain to time domain to
The similarity between the Fourier transform and the z spectrum domain to frequency spectrum . Both convert analog Both convert digital frequency spectrum

transform is that

discrete time domain

domain

signal to digital signal

signal to analog signal

domain

The ROC of a system is the

range of z for which the
z transform converges

range of frequency for
which the z transform
exists

range of frequency for
which the signal gets
transmitted

range in which the
signal is free of noise

range of z for which the
z transform converges

For an expanded power series method, the coefficients represent

Inverse sequence
values

Original sequence
values

Negative values only

Positive values only

Inverse sequence values

Which of the following justifies the linearity property of z-
transform?[x(n)<X(z)].

x(n)+y(n) <X(z)Y(z)

x(n)+y(n) <X(z)+Y(z)

x(n)y(n) <X(2)+Y(2)

x(n)y(n) <X(2)Y(z)

x(n)+y(n) <X(z)+Y(z)

What is the z-transform of the signal x(n)=[3(2n)-4(3n)Ju(n)?

3/(1-22-1)-4/(1-3z-1)

3/(1+22-1)-4/(1+3z-1)

3/(1-22)-4/(1-32)

None of the mentioned

3/(1-2z-1)-4/(1-3z-1)

According to Time shifting property of z-transform, if X(z) is the

z-transform of x(n) then what is the z-transform of x(n-k)? zkX(z) z-kX(z) X(z-k) X(z+k) z-kX(z)
If X(z) is the z-transform of the signal x(n) then what is the z-
transform of anx(n)? X(az) X(az-1) X(a-1z2) None of the mentioned | X(a-1z)

If the ROC of X(z) is r1<|z|<r2, then what is the ROC of X(a-1z)?

|a|rl<|z|<|a|r2

|a|r1>|z|>|a|r2

|a|rl<|z|>|a|r2

|a|r1>|z|<|a|r2

|a|rl<|z|<|a|r2

If X(z) is the z-transform of the signal x(n), then what is the z-

transform of the signal x(-n)? X(-z) X(z-1) X-1(z) X(Z) X(z-1)
X(z) is the z-transform of the signal x(n), then what is the z-
transform of the signal nx(n)? -z(dX(z))/dz zdX(z)/dz Z d) z-1(dX(z))/dz -z(dX(z))/dz

What is the set of all values of z for which X(z) attains a finite
value?

Radius of convergence

Radius of divergence

Feasible solution

None of the mentioned

Radius of convergence

What is the ROC of the signal x(n)=8(n-k),k>0?

z=0

7Z=00

Entire z-plane, except
at z=0

Entire z-plane, except
atz=oo

Entire z-plane, except at
z=0




What is the ROC of the z-transform of the signal x(n)=

a"u(n)+b"u(-n-1)? |a|<|z|<[b] |a|>|z|>|b] |a|>|z|<|b] |a|<|z|>|b] |a|<|z|<[b]

What is the ROC of z-transform of finite duration anti-causal Entire z-plane, except at |Entire z-plane, except at | Entire z-plane, except
sequence? z=0 Z=00 z=0 Z=00 at z=oo

What is the ROC of z-transform of an two sided infinite sequence? | |z|>r1 |z|<rl r2<|z|<rl z=1 |z|>r1

What is the ROC of the system function H(z) if the discrete time
LTI system is BIBO stable?

Entire z-plane, except
atz=0

Entire z-plane, except
at z=oo

Contain unit circle

contain ellipse

Contain unit circle

The ROC of z-transform of any signal cannot contain poles Zeros ones infinites poles

What is the ROC of a causal infinite length sequence? |z]<rl |z|>rl r2<|z|<rl Z=0 r2<|z|<rl

If Z{x1(n)}=X1(z) and Z{x2(n)}=X2(z) then Z{x1(n)*x2(n)}=? X1(z).X2(z) X1(z)+X2(z) X1(z)*X2(z) X1(Z)-X2(Z) X1(z).X2(z)
What is the convolution x(n) of the signals x1(n)={1,-2,1} and

x2(n)={1,1,1,1,1,1}? {1,1,0,0,0,0,1,1} {-1,-1,0,0,0,0,-1,-1} {-1,1,0,0,0,0,1,-1} {1,-1,0,0,0,0,-1,1} {1,-1,0,0,0,0,-1,1}

If Z{x1(n)}=X1(z) and Z{x2(n)}=X2(z) then what is the z-

transform of correlation between the two signals? X1(z).X2(z-1) X1(z).X2(z-1) X1(z).X2(z) X1(z).X2(-z) X1(z).X2(z-1)

If x(n) is causal, then lim—(z—00)X(z)=? x(-1) x(1) x(0) Cannot be determined |x(0)

What is the z-transform of the signal x(n)=§(n-n0)? zn0 z-n0 zn-n0 zn+n0 z-n0

If X(z) is the z-transform of the signal x(n), then what is the z-

transform of x*(n)? X(z%) X*(z) X*(-z) X*(z¥) dX*(z*)

If x(n) is an imaginary sequence, then the z-transform of the real

part of the sequence is: 1/2[X(z)+X*(z%)]. 1/2[X(2)-X*(z")]. 1/2[X(-z)-X*(z*)]. 1/2[X(-z)+X*(z")]. 1/2[X(z)+X*(z%)].

If x1(n)={1,2,3} and x2(n)={1,1,1}, then what is the convolution

sequence of the given two signals? {1,2,3,1,1} {1,2,3,4,5} {1,3,5,6,2} {1,2,6,5,3} {1,2,6,5,3}

What are the values of z for which the value of X(z)=0? Poles Zeros Solutions None of the mentioned |Zeros

What are the values of z for which the value of X(z)=c0? Poles Zeros Solutions None of the mentioned |Poles

If X(z) has M finite zeros and N finite poles, then which of the IN-M| poles at origin(if | [IN+M| zeros at origin(if | [IN+M| poles at origin(if [|N-M| zeros at origin(if | |N-M| zeros at origin(if
following condition is true? N>M) N>M) N>M) N>M) N>M)

If X(z) has M finite zeros and N finite poles, then which of the |IN-M| poles at origin(if | |[N+M| zeros at origin(if | [IN+M| poles at origin(if | [N-M| zeros at origin(if | [N-M| poles at origin(if
following condition is true? N <M) N <M) N <M) N <M) N <M)

The z-transform X(z) of the signal x(n)=anu(n) has:

One pole at z=0 and one
zero at z=a

One pole at z=0 and one
zero at z=0

One pole at z=a and one
zero at z=a

One pole at z=a and
one zero at z=0

One pole at z=a and
one zero at z=0

What are the values of z for which the value of X(z)=0? Poles Zeros Solutions None of the mentioned |Zeros

If Y(z) is the z-transform of the output function, X(z) is the z-

transform of the input function and H(z) is the z-transform of

system function of the LTI system, then H(z)=? (Y(2))/(X(2)) (X(2))/(Y(2)) Y(z).X(z) None of the mentioned | (Y(z))/(X(z))
What is the unit sample response of the system described by the

difference equation y(n)=0.5y(n-1)+2x(n)? 0.5(2)nu(n) 2(0.5)nu(n) 0.5(2)nu(-n) 2(0.5)nu(-n) 2(0.5)nu(n)

Which of the following method is used to find the inverse z-
transform of a signal?

Counter integration

Expansion into a series
of terms

Partial fraction
expansion

All of the mentioned

All of the mentioned

For what kind of signals one sided z-transform is unique?

All signals

Anti-causal signal

Causal signal

non-causal signal

Causal signal

What is the one sided z-transform X+(z) of the signal
x(n)={1,2,5,7,0,1}?

722+27+5+72-1+2-3

5+7z+z3

7-2+27-1+5+7z+23

5+7z-1+z-3

5+7z-1+z-3

What is the one sided z-transform of x(n)=6(n-k)?

z-kK

zk

0

1

z-K




What is the one sided z-transform of x(n)=6(n+k)? z-k zk 0 1 0

The impulse response of a relaxed LTI system is

h(n)=anu(n),|a|<1. What is the value of the step response of the

system as n—oo? 1/(1+a) 1/(1-a) a/(1+a) a/(1-a) 1/(1-a)

If all the poles of H(z) are outside the unit circle, then the system neither BIBO stable and |neither BIBO stable and

is said to be:

Only causal

Only BIBO stable

BIBO stable and causal

neither causal

neither causal

If all the poles have small magnitudes, then the rate of decay of

signal is: Slow Rapid Constant 0 Rapid

If one or more poles are located near the unit circle , then the

rate of decay of signal is: Slow Rapid Constant 0 Slow

If the ROC of the system function is the exterior of a circle of

radius r < oo, including the point z = oo, then the system is said to

be: stable Anti-causal signal Causal signal non-causal signal Causal signal

A linear time invariant system is said to be BIBO stable if and

only if the ROC of the system function: Includes unit circle Excludes unit circle Is an unit circle circle Includes unit circle

If all the poles of H(z) are inside the unit circle, then the system BIBO stable and non

is said to be: Only causal Only BIBO stable BIBO stable and causal |causal BIBO stable and causal
If x(n) is a discrete-time signal, then the value of x(n) at non

integer value of ‘n’ is: Zero Positive Negative Not defined Not defined

If the system is initially relaxed at time n=0 and memory equals Zero-condition

to zero, then the response of such state is called as: Zero-state response Zero-input response response None of the mentioned |Zero-state response

Zero-state response is also known as:

Zero-state response

Forced response

Natural response

None of the mentioned

Forced response

The solution obtained by assuming the input x(n) of the system
is zero is:

General solution

Particular solution

Homogenous solution

c) Complete solution

Homogenous solution

The total solution of the difference equation is given as: yp(n)-yh(n) yp(n)+yh(n) yh(n)-yp(n) y[n]=x[n]h[n] yp(n)+yh(n)
What is the particular solution of the first order difference

equation y(n)+ay(n-1)=x(n) where |a|<1, when the input of the

system x(n)=u(n)? 1/(1+a) u(n) 1/(1+a) 1/(1-a) u(n) 1/(1-a) 1/(1+a) u(n)
The impulse response of a LTI system is h(n)={1,1,1}. What is the

response of the signal to the input x(n)={1,2,3}? {1,3,6,3,1} {1,2,3,2,1} {1,3,6,5,3} {1,1,1,0,0} {1,3,6,5,3}

The z — ansform F(z) of the funcuon f(nT) a™ is
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UNIT IV
SYLLABUS

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR
Digital Filters, Simple IR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier
Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity;
Circular Time Shifting; Circular Frequency Shifting.

DIGITAL FILTER

A digital filter is just a filter that operates on digital signals, such, as sound represented inside a
computer. It is a computationwhich takes one sequence of numbers (the input signal) and
produces a new sequence of numbers (the filtered output signal). The» filters mentioned in the
previous paragraph are not digital only because they ‘operate on signals that are not digital. It is
important to realize that a digital filter can'do anything that a real-world filter can do. That is, all
the filters alluded|to above can besimulated'to an asbitrary degree of precision digitally. Thus, a
digital filter,is only a formula for ‘going from one“digital signal to another. Digital filters are
defined by their impulse response, h[n], or the filter output given a unit sample impulse input
signal. A discrete-time unit impulse signal is defined by:

. Digital filters arésoftenbest deseribed in terms of their frequency response. That is, how
is a sinusoidal signal ofa'given frequency affected by the filter.

e The frequency response,of a filter consists of its magnitude and phase responses. The
magnitude response indicates the ratio of a filtered sine wave's output amplitude to its
input amplitude. The phase reponse describes the phase ""offset" or time delay
experienced by a sine wave passing through a filter.

A linear-phase filter is typically used when a causal filter is needed to modify
a signal'smagnitude-spectrum while preserving the signal's time-domain waveform as much as
possible. Linear-phase filters have a symmetric impulse response, e.g.,
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hin)=h{N-1-n), n=01,2,...,N—1.

The symmetric-impulse-response constraint means that /inear-phase filters must be FIR filters,
because a causal recursive filter cannot have a symmetric impulse response. Every real
symmetric impulse response corresponds to a real frequency response times a linear phase
o a=(N-1)2
term 771 where is the slope of the li

B(w) = —awT
because a filter phase of the form

hase. Linear phase is often ideal

onds to phase delay

P2 8w —owl o (N-UT
Lt ) 2
and group delay \
, & il N il . o {!"‘.‘T ].}T
D(w) = ~5=0(w) = ~ 7= (~awl) = al = *———.

(N —1)/2
ter are equal to samples

in which the phase slope is @ = ()

ase filter is even. That is, it satisfies

hin) =h{-n), nclZ

Every even signal is symmet t not every symmetric signal is even. To be even, it must be
symmetric about time 0. A zero-phase filter cannot be causal.

PHASE DELAY

w)
The phase response of an LTI filter gives the radian phase shift added to the phase of
each sinusoidal component of the input signal. It is often more intuitive to consider instead
the phase delay, defined as
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B w
Plw) = {—m} {Phase Delay)

The phase delay gives the time delay in seconds experienced by each sinusoidal component of
the input signal.

Hw) = —wT/2

For example the phase response was corresponds to a phase

Plw)=T/2
delay or one-half sample. Thus, we can
y(n) =xz(n) + xin — 1)
the filter exhibits ha at every frequency.
From a sinewave-analysis point of vi i i se is

H(e™T) = Gw)e’®w)

xz(n) = cos(wnT)
Is

then the output ‘

yin) = Glw)cosfwnT + {w)]
= Glw)eos{wnT — P(w)]}

and it can be cle
delay in seconds.

phase delay expresses the phase response as a time

GROUP DELAY

A more commonly encountere
defined by

esentation of filter phase response is called the group delay,

1
D(w) 2 iﬁ{w}. {Group Delay)
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. Hw) = —ow
For linear phase responses, i.e., for some constant o he group delay and thephase

delay are identical, and each may be interpreted as time delay. If the phase response is nonlinear,
then the relative phases of thesinusoidal signal components are generally altered by the filter. A
nonlinear phase response normally causes a *“smearing" of attack transients such as in percussive
sounds. Another term for this type of phase distortion is phase dispersion.

An example of a linear phase response is that of the simplest lowpass filter,
O(w) = —wT/2 = Plw)=D(w)=T/2

Thus, both the phase delay and the group delaghof the simplest lowpadssifilter are equal to half a
sample at every frequency.

LINEAR-PHASE FILTER

Linear phase is a property of a filter, where the phase response of the filter is a linear

function of frequency. The result is that all frequency components of the input signal are shifted
in time (usually delayed) by the same constant amount (the slope of the linear function), which is
referred to as the phase delay. And consequently, there is no phase distortion due to the time
delay of frequencies relative to one another.

For discrete-time signals, perfect linear phase is easily achieved with a finite impulse
response (FIR) filter. Approximations can be achieved with infinite impulse response (IIR)
designs, which are more computationally efficient. Several techniques are:

o a Bessel transfer function which has a maximally flat group delay
o a maximally flat group delay approximation function

e aphase equalizer
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If a discrete-time cosine signal
z1(n) = cos(win + ¢1)

is processed through a discrete-time filter with frequency response
H (v) = A(w) - %@

then the output signal is given by

y1(n) = A(wy) cos(wyn + ¢y + 0(wy))

y1(n) = A(wr) cos (w ( ; 9(""”) —@1) |

W

or

The LTI system has the effect of scaling the cosine signal and de-

laying it by —8(w;)/w;.

O(w)
— —— = constant

w

—  fw) =Kw

— The phase is linear

The function #(w)/w is called the phase delay. A linear phase filter

therefore has constant phase delay.
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Linear-phase FIR filter can be divided into four basic types.

Type impulse response
| symmetric length is odd
[l symmetric length is even

Il anti-symmetric | length is odd

v anti-symmetric | length is even

SIMPLE FIR DIGITAL FILTERS
SIMPLE IIR DIGITAL FILTERS
AVERAGING FILTERS,
ALL PASS FILTERS,

NOTCH FILTE
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DISCRETE FOURIER TRANSFORM-DFT

Like continuous time signal Fourier transform, discrete time Fourier Transform can be used to
represent a discrete sequence into its equivalent frequencydomain representation and LTI
discrete time system and develop various computationalfalgorithms.

X (jw) in continuous F.T, is a continuous function of&(n). However, DFT deals with
representing x(n) with samples of its spectrum X(w):"Hence, this mathematical tool carries much
importance computationally in convenient representation. Both, periodic and non-periodic
sequences can be processed through this tool.“The, periodic sequenees need to be sampled by
extending the period to infinity.

Frequency Domain Sampling

From the introduction, it is clear that we heed to know how te proceed thzough fiequency
domain sampling i.e. sampling X(w). Heneejthe relationship between sampled Fourier transform
and DFT is established in the following mannet, Similarly, periodic sequenees can fit to this tool
by extending the period N to infinity.

Let an Non periodic sequence,be

X(n) =limpy_o xn(n)
Defining its, Fourier transform

X(w) =32 _ z(n)e 7" X(Kdw)

=

Here, X() is sampled petiodically, at every 6o radian interval.
As X(w) is periodic in 27 radians, we require samples only in fundamental range. The samples
are taken after equidistant intervals in the frequency range 0<w<2m. Spacing between equivalent

27
S = 2T

intervals is

Now evaluating,
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X(57h) = T0 o w(n)e 2N,

where k=0,1,.....N-1

After subdividing the above, and interchanging the order of summation

N-1 o0
E"rk § : E : m(?’l— Nl! —j?"mk ‘N
n=0 l=—oc

S o ax(n—NIl)==z,(n)=a periodic function of

period N and its fourier series
where, n =0,1,.....,N-1; 'p’- stands for periodic entity or function
The Fourier coefficients are,

1 N-1 —i2mnk/N
Ck — an_“ :‘Bp(n)e J&TTLR k=0;1;-..,N'1

Comparing equations 3 and 4, we get ;

NCj = X(37k) k=0,1,..,N-1
m ;
2w i —j2mnk/N
NCy, = X(57k) = X(e) = Y z,(n)e™’
n=—0od

From Fourier series expansion,

-1

N-1
(TL E NC EJQTHk’ f\’ E X( Z_Trk)ej?'rrrz-kf;’\"
'U k—U N

k=0

Where n=0,1,...,N-1
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Here, we got the periodic signal from X(w). z(n) can be extracted from z,(n) only, if
there is no aliasing in the time domain. N > L

N = period of z,(n) L= period of z(n)

_Jzy(n), 0<n<N-1
z(n) { 0, Otherwise

The mapping is achieved in this manner.

The inverse DFT is given by:

1 N-—-1 .
x(n) = N Z X (k)el?™ N
- k=0

| N1 (N
r(n) = N Z Z :l?(?n)ﬁ_ﬂrk\zn E?ZW%
" k=0 Um=0
V-1 = k)
— Z v(m) v Z o I2Tg } — 2(n)
m=0 . k=0 J

Properties of DFT

Linearity
It states that the DFT of a combination of signals is equal to the sum of DFT of

individual signals. Let us take two signals x,(n) and x5(n), whose DFT s are X;(w) and
X5(w) respectively. So, if

zi(n) = Xi(w) and za(n) = X2(w)
Then azi(n) + bza(n) — aX;(w) + bXs(w)

where a and b are constants.

Symmetry
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The symmetry properties of DFT can be derived in a similar way as we derived DTFT
symmetry properties. We know that DFT of sequence x(n) is denoted by X(K). Now, if
x(n) and X(K) are complex valued sequence, then it can be represented as under

z(n) = zg(n) + jr1(n),0 <n <N -1
And  X(K) = Xgr(K)+jiX1(K),0< K <N-1
Duality Property

Let us consider a signal x(n), whose DFT is given as X(K). Let the finite duration
sequence be X(N). Then according to duality theorem,

If, z(n) «+— X(K)

Then, X(N) +— Nz[((—k))n]

So, by using this theorem if we know DFT, we can easily find the finite duration
sequence.

Complex Conjugate Properties

Suppose, there is a signal x(n), whose DFT is also known to us as X(K). Now, if the
complex conjugate of the signal is given as x*(n), then we can easily find the DFT
without doing much calculation by using the theorem shown bhelow.

If, z(n) +— X(K)
Then, z#*(n)+— Xx((K))y =X*(N-K)
Circular Frequency Shift

The multiplication of the sequence x(n) with the complex exponential sequence
e21kn/N is aquivalent to the circular shift of the DFT by L units in frequency. This is the
dual to the circular time shifting property.

If, z(n) +— X(K)
Then,  a(n)eMEN . X((K — L))
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Multiplication of Two Sequence

If there are two signal x;(n) and x,(n) and their respective DFTs are X; (k) and X5(K),

then multiplication of signals in time sequence corresponds to circular convolution of
their DFTs.

If, zi(n) +— X1 (K) & z2(n) +— X2 (K)
Then, z1(n) x za(n) +— X; (K)0X,(K)
Parseval’s Theorem

For complex valued sequences x(n) and y(n), in general
If, z(n) +— X(K) & y(n)+—Y(K)
Then,  Yop z(n)y*(n) = & Yase X(K)Y*(K)
DFT Circular Convolution

Let us take two finite duration sequences x;(n) and x5(n), having integer length as N.

Their DFTs are X;(K) and X,(K) respectively, which is shown below —

N-1 .

X(K)=> z(n)e’™ k=0,1,2..N-1
n=>0
N-1 ”

%K) = Y ax(n)e’ ™ k=0,1,2..N -1
n=0

Now, we will try to find the DFT of another sequence x3(n), which is given as X3(K)
X3(K) = X3 (K) x X3 (K)
By taking the IDFT of the above we get
20 kn

N-1
z3(n) = 5 »_ X3(K)e ™

n=0

After solving the above equation, finally, we get

N-1
z3(n) = ) @1(m)zs[((n — m))n]

m=0

m=0,1,2..N —1
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Methods of Circular Convolution

Generally, there are two methods, which are adopted to perform circular convolution
and they are -

Concentric circle method,

Matrix multiplication method.

Concentric Circle Method

Let z1(n) and z3(n) be two given sequences. The steps followed for circular
convolution of z1(n) and zs(n) are

Take two concentric circles. Plot N samples of z1(n) on the circumference of

the outer circle (maintaining equal distance successive points) in anti-clockwise
direction.

For plotting z3(n), plot N samples of z5(n) in clockwise direction on the inner

circle, starting sample placed at the same point as 0t" sample of z1(n)
Multiply corresponding samples on the two circles and add them to get output.
Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method

Matrix method represents the two given sequence z(n) and z3(n) in matrix form.

One of the given sequences is repeated via circular shift of one sample at a
time to form a N X N matrix.

The other sequence is represented as column matrix.

The multiplication of two matrices give the result of circular convolution.
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DFT: Circular Shift

conventional shift circular shift

1 P 1
I ]
' L 4 !

p
mn
y
Fl

N—1
Z z((n —m)modN )Wk
n=0
N-—1
= km Z x((n — m)modN)1-"1""13('”*”?')
n=0
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N —1
=  Wwhm Z x((n — m)modN) Wk —m)modN

=0

where we use the facts that WWFhUmedN) — 17kl 3nd that the
order of summation in DFT does not change its result.

Similarly, if X (k) = DF7T{x(n)}, then

T

X((k —m)modN) = DFT {x(n)el?™ N }.
It
GE] = I-'T-"—__r.;"”k - X [ K]
then
glrn] = x[{r — ) n]-
Derivation:
Begin with the Inverse DFT.
1 N —1
. _ b O T ek
glr] = N E G E] W
Foe=1
1 _'H"l';r_]_
= v 2> WA X [E]WRS
B k=0
_l N —1
Flh{rm—r)
= N E X [~] W N
Fo=10
— w@w[re — 1]

x[{rz — 7md ).
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Given an N-point signal {x[n]|, n € Zy}, the signal
gln) := w(n — m)n]

represents a circular shift of x[n] by m samples to the right. For example, if
g[n] == x[(n — 1)n]

then

gIN = 1] = 2{(N — 2)x] = o[V 2]
For example, if z[n] is the 4-point signal
[n] = (1,3,5,2)
then

x[(n —1)n] = (2,1,3,5).

x[(n — m)y] represents a circular shift by m samples.

circular shift in frequency
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If
g[n] -— _.-'_;':_!n . [71]
then
G[;l] = ;‘f[{ﬂ — '?'Tl}__a,.f_—]_
Derivation:
Begin with the DFT.
N —1
G[JII.'] P— Z [ ] T_';__”’h
—0
N —1
- Z TIF_:":'”! : -' ] T{'_ﬂ?nk
=0
_'ﬂ"r"—]_
= > " wln] W
re—>0
— X[k — m]

X[k — myn]-
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Verify Parseval’s theorem of the sequence z(n) = %u(n)

] = 1 [ ;
Solution — ; z1(n)|? = gf_ﬂ |1 X1 (e7)[? dw

o0
LH.S > lzi(n)
— 0

= a(m)e" ()
= 1 2n 1 16
=Y (GPrum) = — ==
L4 1-5 15
. o 1 o 1
R.H.S. X(eJﬁJ) - l—ie—jw T 1-0.25 cosw+j0.25 sinw

®( oWy 1
==X (8 )_ 1-0.25cos w—340.25 sinw

Calculating, X(e™). X *(e*)

1 1

T (1-0.25cosw)*+(0.25sinw)’  1.0625-0.5 cosw

1 T 1
o f —r T.0625-0 5cos s

1 ™ 1 o
2 J-m 1.0625—0.5coswdw - 16/15

We can see that, LHS = RHS. (Hence Proved)
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Compute the N-point DFT of z(n) = 34(n)

Solution — We know that,

N-1

X(K) = 3 a(n)e s

n=>0

.
N-1 J2llkn

= Z 3d(n)e v

=0
=36(0) xe’ =1
So, z(k)=3,0<k<N-1 . Ans.

Compute the N-point DFT of z(n) = 7(n — ng)

Solution — We know that,

X(K) =Y a(n)e ¥

Substituting the value of x(n),

N-1

F21lkn
Z 70(n—mngle "~

m=(}

—e —kjldllkng/ N

CIRCULAR TIME SHIETING
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If

gln] == z[{—n)n]
then

Gk = X[(=k)x].
Derivation:

G [}‘] — T [(:— ?1) _-*\-'] [1[’?\'— nk

= Z x[m|Wy (—m)nk

[m]Wi*

m=

0
_A]

X
X[(=F)n]

where we used the change of variables . = (—n)n (in which case n = (—m)n
for0 <n<N-—-1).
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POSSIBLE QUESTIONS
PART-B(2 MARKS)

1.Define digital filters
2.Define phase delay
3. Define group delay
4.Define linear phase filter and notch filter.
5. Define FIR filter

6.Define IIR filter

7.Define DFT and inverse DFT.
8.Define circular time shifting

9. Define periodicity of DFT.

10. Define circular frequency shifting

PART-C ( 6 MARKS )

7. Explain the working pri of all pass filter.
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QUESTIONS

CHOICE1

CHOICE2

CHOICE3

CHOICE4

ANSWER

UNIT-IV

In the Frequency Transformations of the analog domain the
transformation is

Low Pass to Lowpass

Lowpass to Highpass

Lowpass to Bandpass

Lowpass to Bandreject

Lowpass to Highpass

In the Frequency Transformations of the analog domain the
transformation is

Low Pass to Lowpass

Lowpass to Highpass

Lowpass to Bandpass

Lowpass to Bandreject

Lowpass to Bandreject

The magnitude response of the following filter decreases
monotonically as frequency increases

Butterworth Filter

Chebyshev type - 1

Chebyshev type - 2

Butterworth Filter

The transition band is more in Butterworth Filter Chebyshev type - 1 Chebyshev type - 2 FIR Filter Butterworth Filter
. The poles of Butterworth filter lies on sphere circle ellipse parabola circle
I I R digital filters are of the following nature Recursive Non Recursive Reversive Non Reversive Recursive

In 11 R digital filter the present output depends on

Present and previous
Inputs only

Present input and previous
outputs only

Present input only

Present Input, Previous
input and output

Present Input, Previous
input and output

Which of the following is best suited for I I R filter when compared with |Lower sidelobes in Higher Sidelobes in Lower sidelobes in Lower sidelobes in
the FIR filter stopband stopband Passband No sidelobes in stopband |stopband
In the case of I I R filter which of the following is true if the phase More parameters for More memory Lower computational Higher computational Lower computational
distortion is tolerable design requirement Complexity complexity Complexity
A causal and stable I I R filter has Linear phase No Linear phase Linear amplitude No Amplitude No Linear phase
Neither the Impulse response nor the phase response of the analog The method of mapping of Matched Z -
filter is Preserved in the digital filter in the following method differentials Impulse invariant method |Bilinear transformation transformation technique |Bilinear transformation
Out of the given I I R filters the following filter is the efficient one Circular filter Elliptical filter Rectangular filter Chebyshev filter Elliptical filter
What is the disadvantage of impulse invariant method Aliasing ne to one mapping anti aliasing warping Aliasing

The method of mapping of Matched Z -
Which of the 11 R Filter design method is antialiasing method? differentials Impulse invariant method | Bilinear transformation |transformation technique |Bilinear transformation
The nonlinear relation between the analog and digital frequencies is
called aliasing warping prewarping antialiasing warping
The most common technique for the design of I I R Digital filter is Direct Method In direct method Recursive method non recursive method In direct method

In the design a IIR Digital filter for the conversion of analog filter in to
Digital domain the desirable property is

The axis in the s - plane
should map outside the
unit circle in the z - Plane

The Left Half Plane(LHP)
of the s - plane should map
in to the unit circle in the Z
-plane

The Left Half Plane(LHP)
of the s-plane should map
outside the unit circle in
the z-plane

The Right Half Plane(RHP)
of the s-plane should map
in to the unit circle in the Z
-plane

The Left Half Plane(LHP)
of the s - plane should map
in to the unit circle in the Z
-plane

The I I R filter design method thatovercomes the limitation of
applicability to only lowpass filter and a limited class of bandpass filter
is

Approximation of
derivatives

Impulse Invariance

Bilinear Transformation

Frequency sampling

Impulse Invariance

The direct form II for realisation involves

The realisation of transfer
function into two parts

Realisation fraction

division of two transfer
functions

subtraction of two
transfer functions

The realisation of transfer
function into two parts




The direct form II for realisation involves

The realisation of transfer
function into one part

Realisation after fraction

division of two transfer
functions

subtraction of two
transfer functions

Realisation after fraction

The direct form II for realisation involves

The realisation of transfer
function into one part

Realisation after fraction

Product of two transfer
functions

subtraction of two
transfer functions

Product of two transfer
functions

The direct form II for realisation involves

The realisation of transfer
function into one part

Realisation after fraction

division of two transfer
functions

sum of two transfer
functions

sum of two transfer
functions

The cascade realisation of IIR systems involves

The transfer function
broken into product of
transfer functions

The transfer function
divided into multiplication
of transfer functions

Factoring the numerator
and denominator
polynomials

integral of the transfer
functions

The transfer function
broken into product of
transfer functions

The cascade realisation of IIR systems involves

The transfer function
broken into product of
transfer functions

The transfer function
divided into addition of
transfer functions

Factoring the numerator
polynomials

integral of the transfer
functions

The transfer function
divided into addition of
transfer functions

The advantage of using the cascade form of realisation is

It has same number of
poles and zeros as that of
individual components

The number of poles is the
product of poles of
individual components

The number of zeros is the
product of poles of
individual components

Over all transfer function
cannot be determined

It has same number of
poles and zeros as that of
individual components

The advantage of using the cascade form of realisation is

It hasdifferent number of
poles and zeros as that of
individual components

The number of poles is the
product of poles of
individual components

The number of zeros is the
product of poles of
individual components

Over all transfer function
may be determined

Over all transfer function
may be determined

Which among the following represent/s the characteristic/s of an ideal

filter? Constant gain in passband [infinite gain in stop band |Non linear phase response |finite band width Constant gain in passband
Which among the following represent/s the characteristic/s of an ideal

filter? zero gain in passband zero gain in stop band Non linear phase response |finite band width zero gain in stop band
Which among the following represent/s the characteristic/s of an ideal

filter? zero gain in passband constant gain in stop band | linear phase response finite band width linear phase response

FIR filters

are non-recursive

causal

are recursive

use feedback

are non-recursive

FIR filters

causal

do not adopt any feedback

use feedback

are recursive

do not adopt any feedback

In tapped delay line filter, the tapped line is also known as

Pick-on node

Pick-off node

Pick-up node

Pick-down node

Pick-off node

How is the sensitivity of filter coefficient quantization for FIR filters? Low Moderate High Unpredictable Low
Decimation is a process in which the sampling rate is enhanced stable reduced unpredictable reduced
Anti-imaging filter with cut-off frequency w. =t/ I is specifically used

upsampling process for the removal of unwanted images. Before At the time of After All of the above After

The IIR filter designing involves

designing of analog filter in
analog domain and
transforming into digital
domain

Designing of digital filter
in analog domain and
transforming into digital
domain

Designing of analog filter
in digital domain and
transforming into analog
domain

Designing of digital filter in
digital domain and
transforming into analog
domain

Designing of digital filter
in analog domain and
transforming into digital
domain

IIR filter design by approximation of derivatives has the limitations

Used only for transforming
analog high pass filters

Used for band pass filters
having smaller resonant
frequencies

Used only for transforming
analog high pass filters




Used only for transforming

Used for band pass filters
having different resonant

Used only for transforming

Used for band pass filters
having high resonant

Used only for
transforming analog low

IR filter design by approximation of derivatives has the limitations analog low pass filters frequencies analog low pass filters frequencies pass filters

The filter that may not be realized by approximation of derivatives

techniques are Band pass filters #NAME? Low pass filters All pass filter Band pass filters
The filter that may not be realized by approximation of derivatives

techniques are Band pass filters Band reject filter Low pass filters All pass filter Band reject filter

In direct form for realisation of IIR filters,

Denominator coefficients
are the multipliers in the
feed forward paths

Multipliers in the feedback
paths are the positives of
the denominator
coefficients

Multipliers in the feedback
paths are the negatives of
the denominator
coefficients

all the above

Multipliers in the feedback
paths are the negatives of
the denominator
coefficients

In direct form for realisation of IIR filters,

Denominator coefficients
are the multipliers in the
feed forward paths

Multipliers in the feedback
paths are the positives of
the denominator
coefficients

Numerator coefficients are
the multipliers in the feed
forward paths

all the above

Numerator coefficients are
the multipliers in the feed
forward paths

Roll-off factor is

The bandwidth occupied
beyond the Nyquist
Bandwidth of the filter

The performance of the
filter or device

Aliasing effect

None of the above

The bandwidth occupied
beyond the Nyquist
Bandwidth of the filter

The DFT is preferred for

Its ability to determine the
frequency component of
the signal

Removal of noise

Quantization of signal

filter analysis

Its ability to determine the
frequency component of
the signal

The DFT is preferred for

Filter design

Removal of noise

Quantization of signal

sampling

Filter design

Frequency selectivity characteristics of DFT refers to

Ability to resolve different
frequency components
from input signal

Ability to translate into
frequency domain

Ability to convert into
discrete signal

None of the above

Ability to resolve different
frequency components
from input signal

Positive and negative Upper higher and lower
DIT algorithm divides the sequence into values Even and odd samples spectrum Small and large samples | Even and odd samples
Analysis in time or Analysis in time or
The transformations are required for frequency domain Quantization Modulation sampling frequency domain
The transformations are required for Easier operations Quantization Modulation sampling Easier operations

The computational procedure for Decimation in frequency algorithm
takes

Log2 N stages

2Log2 N stages

Log2 N? stages

Log2 N/2 stages

Log2 N stages

Product of one even and one odd function is even odd prime aliasing odd
If f(x,y) is imaginary, then its Fourier transform is conjugate symmetry hermition antihermition symmetry antihermition
£(0,0) is sometimes called ac component dc component jaggy coordinate dc component
Even functions are said to be symmetric antisymmetric periodic aperiodic symmetric
Linear functions possesses property of additivity homogeneity multiplication Both A and B Both A and B
Continuous functions are sampled to form a Fourier series Fourier transform fast Fourier series digital image digital image
2D Fourier transform and its inverse are infinitely aperiodic periodic linear non linear periodic
0dd functions are said to be symmetric antisymmetric periodic aperiodic antisymmetric
Gradient computation equation is |Gx|+|Gy]| |Gx|-|Gy| |Gx|/|Gy| |Gx|x|Gy| |Gx|+|Gy]|
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UNIT V
SYLLABUS

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity, Properties of the
Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-In-
Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms. Realization of Digital Filters: Non
Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed
Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form I.

A fast Fourier transform (FFT) is any fast algorithm for computi
the DFT. The development of FFT algorithms had a tremendc
impact on computational aspects of signal processing and appl

science. T he DFT of an N-point signal
{xn],0 <n < N — 1}

is defined as

_'r"'Fr_]_
X[k] = E ax:[12] 1-"[-"’_;;‘"”___ 0<kE< N —1

re—>0)

_ - Xar 2 2:’1—
Wy = /% = cos (Tﬂ) +J sin (T>

is the principal NV-th root of unity.

where
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DIRECT DFT COMPUTATION

Direct computation of X k] for 0 <k < N — 1 requires
(N = 1)* complex multiplications

N(N — 1) complex additions
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DFET as a Linear Transformation
e Natrix representation of DFT
Detinition of DFT:

N-

X(k)y=S x(mWy. k=01...N-1
=0
1 -1 )
1‘(n):—,TA’(k)W§m. n=01....1 N—1
N iz -
where
x(0) X(0)
Let .
x(1 X1
Xy = ( ) X}\" = _{ )
AN -1 X(N—1)
and
1 1 1 .. 1
1 Wy wi oo W
Wy =1 Wy Wy RO
1 WN('_’\-'—I) Wé(_\f—l} . W\"::V_l)('\'_”
Thus.
Xy =Wyx, N -point DFT
Xy = WX, N - point IDFT
= %“'_;X_V

Because the matrix (transformation) yy,; has a specific structure and because H",f; has par-

ticular values (for some & and #). we can reduce the number of arithmetic operations for

computing this transform.
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W, = _ = 1 o

-1 1 -1
g -1 —J

Only additions are needed to compute this specific transform.
(This 1s a well-known radix-4 FFT)
6

Thus. the DFT of x[n] is 2425
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Fast Fourier Transform

-- Highly efficient algorithms for computing DFT

L]

General principle: Divide-and-conquer
Specific properties of wf

B Complex conjugate symmetry: ;™ = (W)

B Symmetry: Wi_% S
B Periodicity: w}=¥ =}
B Particular values of k and »: e.g.. radix-4 FFT (no multiplications)

Direct computation of DFT

X[k]=_§x[n]-W§". k=01...N-1
n=0 . :
_ ! [[Re(atm)- Rel3e' )~ Im(afn)- i3 )| +|
- ,ﬁ)] J'[Re(.r[n])- Im(W;f-?1 J+ Im(x[n]]Re(FF’ii" )] [

For each k. we need N complex multiplications and N-1 complex additions. = 4V real

multiplications and 4/N-2 real additions.
. : ok :
We will show how to use the properties of I y to reduce computations.

* Radix-2 algorithms: Decimation-in-time; Decimation-in-frequency
e Composite NV algorithms: Cooley-Tukey: Prime factor
* Winograd algorithm

e Chirp transform algorithm

RADIX-2 FFT

The radix-2 FFT algorithms are used for data vectors of lengths
N = 2K They proceed by dividing the DFT into two DFTs of

length N /2 each, and iterating. There are several types of radix-

2 FFT algorithms, the most common being the decimation-in-time

(DIT) and the decimation-in-frequency (DIF).
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The development of the FFT will call on two properties of Wy.

The first property is:

HE — Ur\, 5
which is derived as
-[{"':%' — t—_}%-?
— E,_J {) _}
= Wy)s

More generally, we have

Wik = Wi,

The second property is:

WE= = —wk

Prepared by Mrs.Ambili Vipin, Asst Prof, Department of PHYSICS, KAHE Page 6/17



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BSC PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
— COIIRSE CODE: 16PHI4 03 LINIT-V(EET) Batch (2016-2019)

which is derived as

iy R g2ty N
'[..i___»;f — e I (k+ )

|.,-|:.?_
wl
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Radix-2 Decimation-in-time Algorithms
— Assume N-point DFT and N = 2"

B Idea: N-point DFT = J\% -point DFT = % -point DFT
1\7 -point DFT
4
N% -point DFT = NA -point DFT

N/ -point DFT
v,

B Sequence: x[0] x[1] x[2] x[3] --- x["5] --- x[N-1]
Evenindex: x[0] x[2] -+ x[N —2]
Odd index: x[1] x[3] - x[N—1]
X[k] = Ex[n]W_{t". k=0l..N-1
n=0

= Yy + Y«

neven 1 odd

. on=lr _n=2r+l
= _E.""[B']W\zf,* + _z.r[l."+l]W}2”””‘
r=0 r=0
EY 4 Ry
WE P A
%‘1 X
X[kle 3 x[2r 135, + W 3 x{2r + 13
. r=0 L =0 .
%poim DET % poin: DFT
= Glk]+ Wi HIk]
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B Comparison:
(a) Direct computation of N-point DFT (N frequency samples):
2 . . +2
~ N~ complex multiplications and N~ complex adds

(b) Direct computation of N% -point DFT:

2 C e 32
~ [ N ] complex multiplications and [ N} complex adds

2 2

- T .
+ additional N complex multis and N complex adds

)

2 2 :
N ‘ _ v+ Y complex multis and adds
2 ) 2

~ (Total:) . 5

(c) log, N -stage FFT

Since N = 2", we can further break f\% -point DFT into two % -point DFT and

50 011
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: ‘ ) 1
- 1 M - -
I i il

T .
At each stage: ~ N complex multis and adds

Total: ~ N log, N complex multis and adds (":}EIOEq v)
—log, ]
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Butterfly: Basic unit in FFT

Two multiplications:

One multiplication:

8-Point DFT
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- - = "" - '_‘.

B In-place computations

Only two registers are needed for computing a butterfly unit.

Xm [p] = Xm—l[p] + W{'Xm—l [(I]
Xm [Q] = Xm—‘l[p] - H{{:Xm—‘l [Q]
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Radix-2 Decimation-in-frequency Algorithms
B Dividing the output sequence X[f] into smaller pieces.

N-1
X(k)y=>Y x(mWy, k=01...N-1

n=0
Ifkis even. kK = 27,

N-1 N
X[2rl= 3 x[ng,  r=0l-,—-1

n=l 2

N

7 N-1 ) v
_ nr T 2nr .
= j:; [y + :\ x[n]wy n<«(n A)

N, \_'1 (o

z | % N ey
=3 xnwy" + > x n+? Wy

n=0

4
Il
_,r_-;

—"'[""‘%}‘{] quW\ _ ﬂ}';.m

|'=

Il
‘L_I-;!_\_'Ij_ul

—

]+ x{n+ ]] W

[ 4
[ 1+ ]|:.?’J += ] ] W N2
Similarly, if kis odd, K = 21 +1.

-1,

=]

Il
i [\/1'

Sy

X[2r+1]=3
n=0%

—1

X[2r]=1 [x[n]+x{

r':-Uk

NT)
xn]- x[u + —} 1 Wy W
21 T
J -

N Y o
_1 .

X[JZJI +1]= T[ x[n] - x[n + V}] W Wy,

nai) 2

I

il x[n]—;.-[n . %

Let [glr]=ln]+xn+ 2
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- - E L}

- " %,

.- - L] - 3

- = - Yl

| W,

LN 1
Y ) .-

--, | 1 I'- | 51 =

We can further break Y[27] into even and odd groups ...

Again. we can reduce the two-multiplication butterfly into one multiplication. Hence. the

computational complexity 1s bout ¥ log, N- The in-place computation property holds if the

outputs are in bit-reversed order (when inputs are in the normal order).

Flow chart of decimation —in-frequency decomposition of an 8 -point DFT in to four 2-point
DFT computations
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Flow graph of complete decimation —in- frequency decomposition of an 8 point DFT
computation
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Inverse FFT

3 N-1
B DFT =L xpgwg O
N
. N-1
PR Xk = St wi

‘|
x [n]_—[ TX k1w |
ir 0 /
_ 15 ‘?[X wF)
4 x=l:]
13\"—1. .
:_E[.X [k]-Wy )
N;r=o
- L pErlxt
Lol

Take the conjugate of the above equation:

r] = (FT[x ()

1 PFT[ ")

Thus. we can use the FFT algorithm to compute the inverse DFT.
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POSSIBLE QUESTIONS

PART-B (2 MARKYS)

1.Define FFT and inverse FFT.

2.Define Symmetry and Periodicity of FFT

3.List out the Properties of the Twiddle factor (WN).

4.Define Non Recursive and Recursive Structures

5.Define Canonic and Non Canonic Structures.

6.Define radix -2 FFT.

7.What is the basic operation of DIT algorithm?

8. What is the basic operation of DIF algorithm?

9.Draw the basic butterfly diagram for DIT algorithm

10. Draw the basic butterfly diagram for DIF algorithm

PART-C ( 6MARKYS)

1. Draw the signal flow graph for 8-point DFT using DIT algorithm

2. Draw the signal flow graph for 8-point DFT using DIF algorithm

3.Compute an 8 point DFT for the sequence x(n)={ 1.-1,1,-1,0,0,0,0} using DIT algorithm
4. Compute an 8 point DFT for the sequence x(n)={ 1.-1,1,-1,0,0,0,0} using DIF algorithm
5.Explain the Properties of the Twiddle factor (WN).

6.Realize IIR filter structure using Direct form —I

7.Realize the second order digital filter y(n) =2 r cos (00) y(n-1)-r? y(n-2)+x(n)-rcos(w0)x(n-1).

8.Explain cascade realization of FIR filter.
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QUESTIONS CHOICE1 CHOICE2 CHOICE3 CHOICE4 ANSWER
UNIT-V
N2 complex
N2 complex N2 complex additions |multiplications and N2 complex additions | N2 complex

Which of the following is true regarding the number of computations
required to compute an N-point DFT?

multiplications and N(N-
1) complex additions

and N(N-1) complex
multiplications

N(N+1) complex
additions

and N(N+1) complex
multiplications

multiplications and N(N-
1) complex additions

Which of the following is true regarding the number of computations
required to compute DFT at any one value of ‘k’?

4N-2 real
multiplications and 4N
real additions

4N real multiplications
and 4N-4 real additions

4N-2 real
multiplications and
4N+2 real additions

4N real multiplications
and 4N-2 real additions

4N real multiplications
and 4N-2 real additions

WNk+N/2=

WNk

-WNk

WN-k

0

WNK

The computation of XR(k) for a complex valued x(n) of N points
requires:

2N2 evaluations of
trigonometric functions

4N2 real multiplications

4N(N-1) real additions

All of the mentioned

All of the mentioned

If the arrangement is of the form in which the first row consists of the
first M elements of x(n), the second row consists of the next M
elements of x(n), and so on, then which of the following mapping

represents the above arrangement n=l+mL n=Ml+m n=ML+] n=0 n=Ml+m

If N=LM, then what is the value of WNmqL? WMmgq WLmq WNmq w WMmgq

How many complex multiplications are performed in computing the

N-point DFT of a sequence using divide-and-conquer method if

N=LM? N(L+M+2) N(L+M-2) N(L+M-1) N(L+M+1) N(L+M+1)

How many complex additions are performed in computing the N-

point DFT of a sequence using divide-and-conquer method if N=LM? | N(L+M+2) N(L+M-2) N(L+M-1) N(L+M+1) N(L+M-2)

If we store the signal row wise and compute the L point DFT at each

column, the resulting array must be multiplied by which of the

following factors? WNIq WNpq WNIq WNpm WNpm

If X(Kk) is the N/2 point DFT of the sequence x(n), then what is the

value of X(k+N/2)? F1(k)+F2(k) F1(k)- WNk F2(k) F1(k)+WNk F2(k) F1(k)/WNk F2(k) F1(k)- WNk F2(k)
How many complex multiplications are required to compute X(k)? N(N+1) N(N-1)/2 N2/2 N(N+1)/2 N(N+1)/2

The total number of complex multiplications required to compute N

point DFT by radix-2 FFT is: (N/2)log2N Nlog2N (N/2)logN (N/2)InN (N/2)log2N

The total number of complex additions required to compute N point

DFT by radix-2 FFT is: (N/2)log2N Nlog2N (N/2)logN (N/2)InN Nlog2N

For a decimation-in-time FFT algorithm, which of the following is Both input and output |Both input and output |Input is shuffled and Input is in order and Input is shuffled and
true? are in order are shuffled output is in order output is shuffled output is in order
. For a decimation-in-time FFT algorithm, which of the following is Both input and output | Both input and output | Input is shuffled and Input is in order and Input is in order and
true? are in order are shuffled output is in order output is shuffled output is shuffled




If x1(n) and x2(n) are two real valued sequences of length N, and let
x(n) be a complex valued sequence defined as x(n)=x1(n)+jx2(n), 0<
n< N-1, then what is the value of x2(n)?

(x(n)-x*(n))/2

(x(m)+x*m))/2

(xm)+x*(0))/2j

(x(n)-x*(n))/2j

(x(n)-x*(n))/2j

.If X(k) is the DFT of x(n) which is defined as x(n)=x1(n)+jx2(n), 0<
n< N-1, then what is the DFT of x1(n)?

1/2 [X*(K)+X*(N-K)].

) 1/2 [X*(K)-X*(N-K]]

1/2j [X*(K)-X*(N-K]].

1/2 [X*(K)+X*(N-K)].

1/2 [X*(K)+X*(N-K)].

If X(Kk) is the DFT of x(n) which is defined as x(n)=x1(n)+jx2(n), 0< n<
N-1, then what is the DFT of x1(n)?

(1/2) [X*(K)+X*(N-K)].

(1/2) [X*(K)-X*(N-K]].

(1/2j) [X*(K)-X*(N-K]].

(1/2)) [X*(K)+X*(N-K)].

(1/2j) [X*(K)-X*(N-K]].

If g(n) is a real valued sequence of 2N points and x1(n)=g(2n) and

x2(n)=g(2n+1), then what is the value of G(k), k=0,1,2..N-1? X1(k)-W2kNX2 (k) X1(k)+W2kNX2(k) X1(k)+W2kX2(k) X1(k)-W2kX2(k) X1(k)+W2kNX2(k)

If g(n) is a real valued sequence of 2N points and x1(n)=g(2n) and

x2(n)=g(2n+1), then what is the value of G(k), k=N,N-1,...2N-1? X1(k)-W2kX2 (k) X1(k)+W2kNX2(k) X1(k)+W2kX2(k) X1(k)-W2kNX2(k) X1(k)-W2kNX2 (k)
How many complex multiplications are need to be performed for

each FFT algorithm? (N/2)logN Nlog2N (N/2)log2N (N/2)In2N (N/2)log2N

How many complex additions are required to be performed in linear

filtering of a sequence using FFT algorithm? (N/2)logN 2Nlog2N (N/2)log2N Nlog2N 2Nlog2N

How many complex multiplication are required per output data

point? [(N/2)logN]/L [Nlog22N]/L [(N/2)log2N]/L [(N/2)log2N]/L [Nlog22N]/L

Which of the following is used in the realization of a system? Delay elements Multipliers Adders All of the mentioned All of the mentioned
Computational complexity refers to the number of: Additions Arithmetic operations |Multiplications division Arithmetic operations
Which of the following refers the number of memory locations

required to store the system parameters, past inputs, past outputs Computational Finite world length bandwidth

and any intermediate computed values? complexity effect Memory requirements |requirements Memory requirements

Which of the following are called as finite word length effects?

Parameters of the
system must be
represented with finite
precision

Computations are
truncated to fit in the
limited precision
constraints

Whether the
computations are

performed in fixed point

or floating point
arithmetic

All of the mentioned

All of the mentioned

Which of the following is an method for implementing an FIR
system?

Direct form

Cascade form

Lattice structure

All of the mentioned

All of the mentioned

How many memory locations are used for storage of the output point

of a sequence of length M in direct form realization? M+1 M M-1 M/N M-1

By combining two pairs of poles to form a fourth order filter section,

by what factor we have reduced the number of multiplications? 25% 30% 40% 50% 50%

The desired frequency response is specified at a set of equally spaced

frequencies defined by the equation: m/2M(k+a) m/M(k+a) 2n/M(k+a) 2n/M(k-a) 2n/M(k+a)
The zeros of the system function of comb filter are located: Inside unit circle On unit circle Outside unit circle circle On unit circle
If M and N are the orders of numerator and denominator of rational

system function respectively, then how many multiplications are

required in direct form-I realization of that IIR filter? M+N-1 M+N M+N+1 M+N+2 M+N+1

If M and N are the orders of numerator and denominator of rational

system function respectively, then how many additions are required

in direct form-I realization of that IIR filter? M+N-1 M+N M+N+1 M+N+2 M+N




If M and N are the orders of numerator and denominator of rational
system function respectively, then how many memory locations are

required in direct form-I realization of that IIR filter? M+N+1 M+N M+N-1 M+N-2 M+N+1

If M and N are the orders of numerator and denominator of rational

system function respectively, then how many memory locations are

required in direct form-II realization of that IIR filter? M+N+1 M+N Min [M,N]. Max [M,N]. Max [M,N].
What are the nodes that replace the adders in the signal flow graphs? | Source node Sink node Branch node Summing node Summing node

If we reverse the directions of all branch transmittances and
interchange the input and output in the flow graph, then the resulting
structure is called as:

Direct form-I

Transposed form

Direct form-II

sampling

Transposed form

In IIR Filter design by the Bilinear Transformation, the Bilinear
Transformation is a mapping from

Z-plane to S-plane

S-plane to Z-plane

S-plane to J-plane

J-plane to Z-plane

S-plane to Z-plane

The state space or the internal description of the system still involves
a relationship between the input and output signals, what are the
additional set of variables it also involves?

System variables

Location variables

State variables

variables

State variables

3. Which of the following gives the complete definition of the state of
a system at time n0?

Amount of information
at n0 determines output
signal for n=n0

Input signal x(n) for
n=n0 determines output
signal for n=n0

Input signal x(n) for
n=0 determines output
signal for n=n0

Amount of information
at nO+input signal x(n)
for n=n0 determines
output signal for n=n0

Amount of information
at nO+input signal x(n)
for n=n0 determines
output signal for n=n0

. If we interchange the rows and columns of the matrix F, then the

system is called as: Identity system Transposed system Diagonal system system Transposed system
A closed form solution of the state space equations is easily obtained
when the system matrix F is: Transpose Symmetric Identity Diagonal Diagonal
N? complex
N’ complex N’ complex additions  |multiplications and N? complex additions N? complex

Which of the following is true regarding the number of computations
required to compute an N-point DFT?

multiplications and N(N-
1) complex additions

and N(N-1) complex
multiplications

N(N+1) complex
additions

and N(N+1) complex
multiplications

multiplications and N(N-
1) complex additions

Which of the following is true regarding the number of computations
required to compute DFT at any one value of ‘k’?

4N-2 real
multiplications and 4N
real additions

4N real multiplications
and 4N-4 real additions

4N-2 real
multiplications and
4N+2 real additions

4N real multiplications
and 4N-2 real additions

4N real multiplications
and 4N-2 real additions

WNk+N/2=

WNk

-WNk

WN-k

W

-WNk

The computation of XR(k) for a complex valued x(n) of N points
requires:

2N2 evaluations of
trigonometric functions

4N2 real multiplications

4N(N-1) real additions

All of the mentioned

All of the mentioned

If N=LM, then what is the value of WNmqL?

WMmq

WLmq

WNmq

W

WMmq

What is the highest frequency that is contained in the sampled
signal?

2Fs

Fs/2

Fs

F

Fs/2

If {x(n)} is the signal to be analyzed, limiting the duration of the
sequence to L samples, in the interval 0< n< L-1, is equivalent to

multiplying {x(n)} by:

Kaiser window

Hamming window

Hanning window

Rectangular window

Rectangular window

Which of the following is the advantage of Hanning window over
rectangular window?

More side lobes

Less side lobes

More width of main
lobe

width of main lobe

Less side lobes




Which of the following is the disadvantage of Hanning window over
rectangular window?

More side lobes

Less side lobes

More width of main
lobe

width of main lobe

More width of main
lobe

If the input analog signal falls outside the range of the quantizer
(clipping), e_q (n) becomes unbounded and results in

Granular noise

Overload noise

Particulate noise

Heavy noise

Overload noise

Signal-to-Quantization

Signal-to-Quantization

Signal-to-Quantization

Signal-to-Quantization

Signal-to-Quantization

What is the abbreviation of SQNR? Net Ratio Noise Ratio Noise Region Net Region Noise Ratio
What is the scale used for the measurement of SQNR? DB db dB All of the mentioned dB

In Overlap save method of long sequence filtering, what is the length

of the input sequence block? L+M+1 L+M L+M-1 L L+M-1

Which of the following is true in case of Overlap add method?

M zeros are appended at
last of each data block

M zeros are appended
at first of each data
block

M-1 zeros are appended
at last of each data block

M-1 zeros are appended
at first of each data
block

M-1 zeros are appended
at last of each data block

What is the model that has been adopt for characterizing round of

Multiplicative white

Subtractive white noise

Additive white noise

Additive white noise

errors in multiplication? noise model model model noise model model

How many quantization errors are present in one complex valued

multiplication? One Two Three Four Four

What is the total number of quantization errors in the computation

of single point DFT of a sequence of length N? 2N 4N 8N 12N 4N

How is the variance of the quantization error related to the size of

the DFT? Equal Inversely proportional [Square proportional Proportional Proportional
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The z — wransform F(z) of the funcuon f(nT) = a"7 is
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