
INTENDED OUTCOMES:

 To cover the fundamental concepts of the C# language and the .NET framework.

 The student will gain knowledge in the concepts of the .NET framework as a whole and the
technologies that constitute the framework.

 The student will gain programming skills in C# both in basic and advanced levels.

 By building sample applications, the student will get experience and be ready for large-scale

projects.

UNIT- I INTRODUCTION TO C#

Introducing C#, Understanding .NET, Overview of C#, Literals, Variables, Data Types, Operators,

Expressions, Branching, Looping, Methods, Arrays, Strings, Structures, Enumerations.

UNIT –II OBJECT ORIENTED ASPECTS OF C#

Classes, Objects, Inheritance, Polymorphism, Interfaces, Operator Overloading, Delegates, Events,

Errors and Exceptions.

UNIT- III APPLICATION DEVELOPMENT ON .NET

Building Windows Applications, Accessing Data with ADO.NET.

UNIT- IV WEB BASED APPLICATION DEVELOPMENT ON .NET

Programming Web Applications with Web Forms, Programming Web Services.

UNIT -V THE CLR AND THE .NET FRAMEWORK

Assemblies, Versioning, Attributes, Reflection, Viewing MetaData, Type Discovery, Reflecting on a

Type, Marshaling, Remoting, Understanding Server Object Types, Specifying a Server with an Interface,

Building a Server, Building the Client, Using SingleCall, Threads.

13BECS7E10 C # AND . NET FRAMEWORK 3 0 0 3

TEXT BOOKS:

S.NO Author(s) Name Title of the book Publisher Year of

publication

1 E. Balagurusamy Programming in C# Tata McGraw-

Hill

2010

2 J. Liberty Programming C#

(2nd Edition)

O’Reilly 2007

REFERENCE BOOKS:

S.NO Author(s) Name Title of the book Publisher Year of

publication

1 Herbert Schildt The Complete

REFERENCE

BOOKS: C#

Tata McGraw-

Hill

2004

2 Robinson et al Professional C#

(2nd edition)

Wrox Press 2004

3 Andrew Troelsen C# and the .NET

Platform

A! Press 2003

4 Thamarai Selvi.S,

Murugesan.R

A Textbook on C# Pearson

Education

2012

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University Established Under Section 3 Of UGC Act 1956)

 Pollachi Main Road, Eachanari Post, Coimbatore – 641 021. INDIA

 Phone No: 0422-6471113-4, 6453777 Fax No: 0422 – 2980022-23

 Email ID: info@karpagam.com Web: www.kahedu.edu.in

S.NO TABLE OF CONTENTS

Lecture

Hours

Books /

Websites

referred
PAGE NO

Teaching

Aids

UNIT I INTRODUCTION TO C#

1

Introducing C# and Understanding

.NET
1 T2

9 - 13 T2

2

Overview of C# Literals Variables,

and Data Types

1 T2
26 - 30

BB

3 Operators, Expression and Branching 1 T2 36 - 44 BB

4
Tutorial 1 Revision on Literals

Variables, Data Types, Operators

and Expression with Examples

1 BB

5 Branching 1 T2 36 - 44 BB

6 Looping and Arrays
1 T2 45- 51 and

156

BB

7 Structures 1 T2 123-129 BB

8
Tutorial 2 Branching, Looping and

Arrays with Examples

1 BB

9
Structures and Enumerations

1 T2 123-129

and 33 – 35

BB

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 Name of the Subject : C # AND .NET FRAMEWORK

 Subject Code: 13BECS7E10

S.NO TABLE OF CONTENTS

Lecture

Hours

Books /

Websites

referred

PAGE

NO

Teaching

Aids

UNIT II OBJECT ORIENTED ASPECTS OF C#

10 Classes, Objects 1 T2 63 - 73 BB BB

11 Inheritance and Polymorphism
1 T2 95 – 98

BB

12 Polymorphism 1 T2 99 – 104 BB

13
Tutorial 3 Revision with Examples on

Classes, Objects, Methods, Inheritance

and Polymorphism

1

 BB

14 Interfaces 1 T2 130 - 137 BB

15 Operator Overloading 1 T2 115 - 116 PPT

16
Tutorial 4 - Revision with Examples in

Interfaces and Operator Overloading.

1 BB

17 Delegates and Events
1 T2 251 – 269

270 - 279

BB

18 Errors and Exceptions 1 T2 233- 247 PPT

UNIT III APPLICATION DEVELOPMENT ON .NET

19
Building Windows Applications

1 T1
18

BB

 Label in C# Winforms T1 18 BB

20 Label in C# Winforms .NET 1 T1 19 PPT

21
Tutorial 5 - Label Control in C# Winforms

.NET Tutorial

1 T1
19

BB

22 Example for winforms keypress event 1 T1 20 BB

Example for Winforms keydown event with

modifier keys

 T1
22

PPT

23
Tutorial 6 - Working with forms keyup

and keydown events

1 T1
24

BB

24
Working With Winform Textbox Enter And

Leave Events

1 T1
26

BB

 Example for Windows Application T1 27 BB

 Windows Forms Events or Winform Events T1 29 BB

25 Tutorial 7 - Windows Application Form 1 T1 31 BB

26 Windows Form Properties 1 T1 32 PPT

 Windows Form Methods T1 33 BB

27
Tutorial 8 - Accessing Data with

ADO.NET.

1 T1
35

BB

http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx
http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx
http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx
http://www.programcall.com/36/csnet/Example-for--winforms-keypress-event-in-dotnet.aspx
http://www.programcall.com/35/csnet/example-for-winforms-keydown-event-with-modifier-keys.aspx
http://www.programcall.com/35/csnet/example-for-winforms-keydown-event-with-modifier-keys.aspx
http://www.programcall.com/34/csnet/winforms-forms-keyup-and-keydown-events.aspx
http://www.programcall.com/34/csnet/winforms-forms-keyup-and-keydown-events.aspx
http://www.programcall.com/33/csnet/winforms-form-enter-and-leave-events-.aspx
http://www.programcall.com/33/csnet/winforms-form-enter-and-leave-events-.aspx
http://www.programcall.com/32/csnet/example-for-windows-application.aspx
http://www.programcall.com/31/csnet/events-of-the-windows-forms-in-csnet.aspx

UNIT IV WEB BASED APPLICATION DEVELOPMENT ON .NET

28 Visual Studio ASP.NET Web Applications
1 T1

42
BB

Programming Web Applications with Web

Forms

 T1

42

BB

29 Windows Forms
1 T1

43
BB

 Web Forms
 T1

43
PPT

30
Tutorial 9 - Comparing Windows Forms

and Web Forms

1 T1
44

BB

31
Event Handling in Windows Forms

Introduction to Events in Windows Forms

1 T1
45 - 46

BB

32
Introduction to Event Handlers in Windows

Forms

1 T1
46

BB

Creating Event Handlers on the Windows

Forms Designer

 T1
47

PPT

33
Tutorial 10 - Creating Default Event

Handlers on the Windows Forms Designer

1 T1
48

BB

34
Creating Event Handlers at Run Time for

Windows Forms

1 T1
49

BB

Connecting Multiple Events to a Single

Event Handler in Windows Forms

 T1
50

BB

35
Creating Event Handlers in the Visual Basic

Code Editor

1 T1
51

PPT

36
Tutorial 11 - Programming Web Services

(Tutorial)

1 T1
57

BB

UNIT V GRAPHS

37 Assemblies 1 T1 65 BB

 Versioning T1 67 BB

38 Attributes 1 T1 70 BB

 Reflection T1 72 BB

40 Tutorial 12 - Viewing Metadata 1 T1 72 BB

41 Type Discovery 1 T1 73 BB

 Reflecting on a Type, Marshalling T1 74 BB

 Remoting T1 75 BB

42 Understanding Server Object Types 1 T1 76 BB

43
Tutorial 13 - Specifying a Server with an

Interface

1 T1

77

BB

 Building a Server T1 77 BB

Total no. of Lecture Hours : 31

Total no. of Tutorial Hours : 14

Total no. of Hours : 45

TEXT BOOKS :

S.NO Author(s) Name Title of the book Publisher Year of

publication

1 E. Balagurusamy Programming in C# Tata McGraw-

Hill

2010

2 J. Liberty Programming C#

(2nd Edition)

O’Reilly 2007

REFERENCE BOOKS:

S.NO Author(s) Name Title of the book Publisher Year of

publication

1 Herbert Schildt The Complete

REFERENCE

BOOKS: C#

Tata McGraw-

Hill

2004

2 Robinson et al Professional C#

(2nd edition)

Wrox Press 2004

3 Andrew Troelsen C# and the .NET

Platform

A! Press 2003

4 Thamarai Selvi.S,

Murugesan.R

A Textbook on C# Pearson

Education

2012

Staff – In Charge HOD/CSE

44 Building the Client 1 T1 80 BB

 Using Single Call T1 82 BB

45 Tutorial 14 - Threads 1 T1 83 BB

1

UNIT- I

INTRODUCTION TO C#

Introducing C#

C# (pronounced "C sharp") is a simple, modern, object-oriented, and type-safe programming

language. It will immediately be familiar to C and C++ programmers. C# combines the high

productivity of Rapid Application Development (RAD) languages and the raw power of C++.

Visual C# .NET is Microsoft's C# development tool. It includes an interactive development

environment, visual designers for building Windows and Web applications, a compiler, and a

debugger. Visual C# .NET is part of a suite of products, called Visual Studio .NET, that also

includes Visual Basic .NET, Visual C++ .NET, and the JScript scripting language. All of these

languages provide access to the Microsoft .NET Framework, which includes a common

execution engine and a rich class library. The .NET Framework defines a "Common Language

Specification" (CLS), a sort of lingua franca that ensures seamless interoperability between CLS-

compliant languages and class libraries. For C# developers, this means that even though C# is a

new language, it has complete access to the same rich class libraries that are used by seasoned

tools such as Visual Basic .NET and Visual C++ .NET. C# itself does not include a class library.

Understanding .NET

Visual Studio .NET is a complete set of development tools for building ASP Web applications,

XML Web services, desktop applications, and mobile applications. Visual Basic .NET, Visual

C++ .NET, Visual C# .NET, and Visual J# .NET all use the same integrated development

environment (IDE), which allows them to share tools and facilitates in the creation of mixed-

language solutions. In addition, these languages leverage the functionality of the .NET

Framework, which provides access to key technologies that simplify the development of ASP

Web applications and XML Web services.

Overview of C#

C# is a modern, general-purpose, object-oriented programming language developed by Microsoft

and approved by European Computer Manufacturers Association (ECMA) and International

Standards Organization (ISO).

C# was developed by Anders Hejlsberg and his team during the development of .Net

Framework.

C# is designed for Common Language Infrastructure (CLI), which consists of the executable

code and runtime environment that allows use of various high-level languages on different

computer platforms and architectures.

2

The following reasons make C# a widely used professional language:

 It is a modern, general-purpose programming language

 It is object oriented.

 It is component oriented.

 It is easy to learn.

 It is a structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 It is a part of .Net Framework.

Strong Programming Features of C#

Although C# constructs closely follow traditional high-level languages, C and C++ and being an

object-oriented programming language. It has strong resemblance with Java, it has numerous

strong programming features that make it endearing to a number of programmers worldwide.

Following is the list of few important features of C#:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 LINQ and Lambda Expressions

 Integration with Windows

 Literals

A literal is a source code representation of a value.

literal:

boolean-literal

integer-literal

real-literal

character-literal

string-literal

null-literal

3

 Variables

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in C# has a specific type, which determines the size and layout of the variable's memory

the range of values that can be stored within that memory and the set of operations that can be

applied to the variable.

The basic value types provided in C# can be categorized as:

Type Example

Integral types sbyte, byte, short, ushort, int, uint, long, ulong, and char

Floating point types float and double

Decimal types decimal

Boolean types true or false values, as assigned

Nullable types Nullable data types

C# also allows defining other value types of variable such as enum and reference types of

variables such as class, which we will cover in subsequent chapters.

Defining Variables

Syntax for variable definition in C# is:

<data_type> <variable_list>;

Here, data_type must be a valid C# data type including char, int, float, double, or any user-

defined data type, and variable_list may consist of one or more identifier names separated by

commas.

Some valid variable definitions are shown here:

int i, j, k;

char c, ch;

float f, salary;

double d;

You can initialize a variable at the time of definition as:

int i = 100;

Initializing Variables

Variables are initialized (assigned a value) with an equal sign followed by a constant expression.

The general form of initialization is:

4

variable_name = value;

Variables can be initialized in their declaration. The initializer consists of an equal sign followed

by a constant expression as:

<data_type> <variable_name> = value;

Some examples are:

int d = 3, f = 5; /* initializing d and f. */

byte z = 22; /* initializes z. */

double pi = 3.14159; /* declares an approximation of pi. */

char x = 'x'; /* the variable x has the value 'x'. */

It is a good programming practice to initialize variables properly, otherwise sometimes program

may produce unexpected result.

Data Types

The variables in C#, are categorized into the following types:

 Value types

 Reference types

 Pointer types

Value Type

Value type variables can be assigned a value directly. They are derived from the class

System.ValueType.

The value types directly contain data. Some examples are int, char, and float, which stores

numbers, alphabets, and floating point numbers, respectively. When you declare an int type, the

system allocates memory to store the value.

Reference Type

The reference types do not contain the actual data stored in a variable, but they contain a

reference to the variables.

In other words, they refer to a memory location. Using multiple variables, the reference types can

refer to a memory location. If the data in the memory location is changed by one of the variables,

the other variable automatically reflects this change in value. Example of built-in reference types

are: object, dynamic, and string.

Pointer Type

5

Pointer type variables store the memory address of another type. Pointers in C# have the same

capabilities as the pointers in C or C++.

Syntax for declaring a pointer type is:

type* identifier;

For example,

char* cptr;

int* iptr;

Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C# has rich set of built-in operators and provides the following type of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

Expressions

Operator precedence determines the grouping of terms in an expression. This affects evaluation

of an expression. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so the first evaluation takes place for 3*2 and then 7 is added into it.

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators are evaluated first.

Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

http://www.tutorialspoint.com/csharp/csharp_operators_precedence.htm

6

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

 Branching

 Branching Statements

 if Statement :
1. It executes its block only if the condition is true

2. Syntax:

if (condition)

{

//statement;

}

 if else Statement
1. It executes if block if condition is true; otherwise it will execute the else block

2. Syntax:
if (condition)

{

//statement;

}

else

{

//statement;

}

 else if Statement:

1. It checks the condition of both if and else if block and executes the respective block;

otherwise it will execute the else block.

2. Syntax:
if (condition)

{

//statement;

}

else if(condition)

{

7

//statement;

}

else

{

//statement;

}

 Switch Statement
1. The switch block consists of several cases which includes a default case too.

2. Each case has break statement to jump out of switch block on its execution.

3. The cases are matched and then executed provided the condition for cases in switch

statement..

4. Syntax:

switch (variable)

{

case 1:

//statement;

break;

case 2:

//statement;

break;

default:

//statement;

break;

}

Looping

 Looping Statements

 while Statement
1. It executes the block until the condition fails.

2. It will execute its block only if the condition is true and continues to loop

3. Syntax:
while (condition)

{

//statement;

}

 do-while Statement

1. It executes its statements and checks the condition.

2. It continues looping if condition is true; else it aborts.

3. Syntax:

do

{

//statement;

}

while (condition);

 for Statement

8

1. It executes its block until the condition fails.

2. Syntax:

for(initialization; condition; iteration)

{

//statement;

}

 foreach Statement
1. It executes the block for each values.

2. Syntax:
foreach (datatype values in variable)

{

//statement;

}

 Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array is used

to store a collection of data, but it is often more useful to think of an array as a collection of

variables of the same type stored at contiguous memory locations.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an

index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Declaring Arrays

To declare an array in C#, you can use the following syntax:

datatype[] arrayName;

where,

 datatype is used to specify the type of elements in the array.

 [] specifies the rank of the array. The rank specifies the size of the array.

 arrayName specifies the name of the array.

9

For example,

double[] balance;

Strings

In C#, you can use strings as array of characters, However, more common practice is to use the

string keyword to declare a string variable. The string keyword is an alias for the System.String

class.

Creating a String Object

You can create string object using one of the following methods:

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or an object to its string representation

Structures

In C#, a structure is a value type data type. It helps you to make a single variable hold related

data of various data types. The struct keyword is used for creating a structure.

Structures are used to represent a record. Suppose you want to keep track of your books in a

library. You might want to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a new data

type, with more than one member for your program.

For example, here is the way you can declare the Book structure:

struct Books

{

 public string title;

 public string author;

 public string subject;

10

 public int book_id;

};

 Enumerations

An enumeration is a set of named integer constants. An enumerated type is declared using the

enum keyword.

C# enumerations are value data type. In other words, enumeration contains its own values and

cannot inherit or cannot pass inheritance.

Declaring enum Variable

The general syntax for declaring an enumeration is:

enum <enum_name>

{

 enumeration list

};

Where,

 The enum_name specifies the enumeration type name.

 The enumeration list is a comma-separated list of identifiers.

Each of the symbols in the enumeration list stands for an integer value, one greater than the

symbol that precedes it. By default, the value of the first enumeration symbol is 0.

For example:

enum Days { Sun, Mon, tue, Wed, thu, Fri, Sat };

UNIT –I

TWO MARKS

1. How is c# better than java?

C# is a new language developed exclusively to suit the features of .NET platform. It can be

used for a variety of application that is supported by .NET platform:

Console application

Windows application

Developing windows controls

Developing ASP.NET projects

Creating web controls

Providing web services

11

Developing .NET component library

2.What are the differences between the c# and c++? * C# complies straight from source code

to executable code, with no object files. * In c++, class definition does not use a semicolon at the

end * C# does not support #include statement * In c#, switch can also be used on string values.

3. What are the differences between the c# and java?

Although c# uses .net run time that is similar to java runtime the c# complier produces an

Executable code.

C# has more primitive data types

Unlike java, all c# data types are objects.

Arrays are declared differently in c++

4. State some of the new features that are unique to c# language?
It is a brand new language derived from the c/c++ family.

It simplifies and modernizes c++

It is the only component oriented language available today

It is a concise, lean and modern language

It has a lean and consistent syntax.

5. What is .net? .net is the software framework that includes everything required for developing

software for web services.

6. What is managed code? The code that satisfies the CLR at runtime in order to execute is

referred to as managed code. For example c# complier generates II, code(managed code).

7. What is the importance of the main method in a c# program? C# includes a feature that

enables us to define more than one class with the main method. Since main is the entry point for

program execution there are now than one entry points. In facts there should be only one. This

problem can be resolved by specifying which main is to be used to the complier at the time of

compilation as shown below;Csc filename.cs/main: classname

8. What is a local variable? Variable declared inside methods are called local variables. Local

variable can also be declared inside program blocks that are defined between an opening brace

{and the closing brace}. The scope of a local variable starts after immediately after its identifier

in the declaration and extends up to the end of the block containing the declaration.

9. What is initialization? Why is it necessary? A variable must be given a value after it has

been declared but before it is used in an expression. A simple method of giving value to a

variable is through the assignment statement as follow, Variable name=value;

10.Why do we require type conversion operation? There is a need to convert a data of one

type to another before it is used in arithmetic operations or to store a value of one type into a

variable of another type .for example consider the code below : byte b1 = 50; byte b2 = 60; byte

b3 = b1 + b2;

12

UNIT –II

OBJECT ORIENTED ASPECTS OF C#

Classes

When you define a class, you define a blueprint for a data type. This does not actually define any

data, but it does define what the class name means. That is, what an object of the class consists of

and what operations can be performed on that object. Objects are instances of a class. The

methods and variables that constitute a class are called members of the class.

Defining a Class

A class definition starts with the keyword class followed by the class name; and the class body

enclosed by a pair of curly braces. Following is the general form of a class definition:

<access specifier> class class_name

{

 // member variables

 <access specifier> <data type> variable1;

 <access specifier> <data type> variable2;

 ...

 <access specifier> <data type> variableN;

 // member methods

 <access specifier> <return type> method1(parameter_list)

 {

 // method body

 }

 <access specifier> <return type> method2(parameter_list)

 {

 // method body

 }

 ...

 <access specifier> <return type> methodN(parameter_list)

 {

 // method body

 }

}

Note:

13

 Access specifiers specify the access rules for the members as well as the class itself. If

not mentioned, then the default access specifier for a class type is internal. Default

access for the members is private.

 Data type specifies the type of variable, and return type specifies the data type of the data

the method returns, if any.

 To access the class members, you use the dot (.) operator.

 The dot operator links the name of an object with the name of a member.

Objects

A class or struct definition is like a blueprint that specifies what the type can do. An object is

basically a block of memory that has been allocated and configured according to the blueprint. A

program may create many objects of the same class. Objects are also called instances, and they

can be stored in either a named variable or in an array or collection. Client code is the code that

uses these variables to call the methods and access the public properties of the object. In an

object-oriented language such as C#, a typical program consists of multiple objects interacting

dynamically.

Inheritance

One of the most important concepts in object-oriented programming is inheritance. Inheritance

allows us to define a class in terms of another class, which makes it easier to create and maintain

an application. This also provides an opportunity to reuse the code functionality and speeds up

implementation time.

When creating a class, instead of writing completely new data members and member functions,

the programmer can designate that the new class should inherit the members of an existing class.

This existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS A animal,

dog IS-A mammal hence dog IS-A animal as well, and so on.

Polymorphism

The word polymorphism means having many forms. In object-oriented programming paradigm,

polymorphism is often expressed as 'one interface, multiple functions'.

Polymorphism can be static or dynamic. In static polymorphism, the response to a function is

determined at the compile time. In dynamic polymorphism, it is decided at run-time.

Interfaces

14

An interface is defined as a syntactical contract that all the classes inheriting the interface should

follow. The interface defines the 'what' part of the syntactical contract and the deriving classes

define the 'how' part of the syntactical contract.

Interfaces define properties, methods, and events, which are the members of the interface.

Interfaces contain only the declaration of the members. It is the responsibility of the deriving

class to define the members. It often helps in providing a standard structure that the deriving

classes would follow.

Abstract classes to some extent serve the same purpose, however, they are mostly used when

only few methods are to be declared by the base class and the deriving class implements the

functionalities.

Declaring Interfaces

Interfaces are declared using the interface keyword. It is similar to class declaration. Interface

statements are public by default. Following is an example of an interface declaration:

public interface ITransactions

{

 // interface members

 void showTransaction();

 double getAmount();

}

Operator Overloading

You can redefine or overload most of the built-in operators available in C#. Thus a programmer

can use operators with user-defined types as well. Overloaded operators are functions with

special names the keyword operator followed by the symbol for the operator being defined.

similar to any other function, an overloaded operator has a return type and a parameter list.

For example, go through the following function:

public static Box operator+ (Box b, Box c)

{

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

}

The above function implements the addition operator (+) for a user-defined class Box. It adds the

attributes of two Box objects and returns the resultant Box object.

15

Delegates

C# delegates are similar to pointers to functions, in C or C++. A delegate is a reference type

variable that holds the reference to a method. The reference can be changed at runtime.

Delegates are especially used for implementing events and the call-back methods. All delegates

are implicitly derived from the System.Delegate class.

Declaring Delegates

Delegate declaration determines the methods that can be referenced by the delegate. A delegate

can refer to a method, which has the same signature as that of the delegate.

For example, consider a delegate:

public delegate int MyDelegate (string s);

The preceding delegate can be used to reference any method that has a single string parameter

and returns an int type variable.

Syntax for delegate declaration is:

delegate <return type> <delegate-name> <parameter list>

Events

Events are user actions such as key press, clicks, mouse movements, etc., or some occurrence

such as system generated notifications. Applications need to respond to events when they occur.

For example, interrupts. Events are used for inter-process communication.

Errors and Exceptions

An exception is a problem that arises during the execution of a program. A C# exception is a

response to an exceptional circumstance that arises while a program is running, such as an

attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C# exception

handling is built upon four keywords: try, catch, finally, and throw.

 try: A try block identifies a block of code for which particular exceptions is activated. It

is followed by one or more catch blocks.

 catch: A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The catch keyword indicates the

catching of an exception.

16

 finally: The finally block is used to execute a given set of statements, whether an

exception is thrown or not thrown. For example, if you open a file, it must be closed

whether an exception is raised or not.

 throw: A program throws an exception when a problem shows up. This is done using a

throw keyword.

Syntax

Assuming a block raises an exception, a method catches an exception using a combination of the

try and catch keywords. A try/catch block is placed around the code that might generate an

exception. Code within a try/catch block is referred to as protected code, and the syntax for using

try/catch looks like the following:

try

{

 // statements causing exception

}

catch(ExceptionName e1)

{

 // error handling code

}

catch(ExceptionName e2)

{

 // error handling code

}

catch(ExceptionName eN)

{

 // error handling code

}

finally

{

 // statements to be executed

}

You can list down multiple catch statements to catch different type of exceptions in case your try

block raises more than one exception in different situations.

UNIT- II

TWO MARKS

1. What is a constructor?

A constructor initializes an object when it is created. It has the same name as its class and is

syntactically similar to a method. However, constructors have no explicit return type. The

general form of constructor if shown here: Access class-name () {//constructor code}

17

2. What is a static constructor? A static constructor is called before any object of the class is

created. This is useful to do any housekeeping work that needs to be done once. it is usually used

to assign initial values to static data members.

3. What are the restrictions of static methods?

That there is no access modifier on static constructors. It cannot take any. A class can have only

one static constructor.

4. What is property?

 Another type of class members is the property. A property combines a field with the methods

that access it. If you want to create a field that is available to users of an objects, but you want to

maintain control over the operations allowed on that field.

5. What is read-only property?

There are situations where we would like to decide the value of a constant member at run-time.

We may also like to have different constant values for different objects of the class. To overcome

these shortcomings, c# provides another modifier known as read only

6. What is an indexer?

Array indexing is performed using the []operator. An indexer allows an object to be indexed like

an array. The main use of indexes is to support the creation of specified arrays that are subjects

to one or more constraints.

7. What are the two form of inheritance?

The two form of inheritance classical form, containment form

8. What is hiding a method?

We can use the modifier new to tell the compiler that the derived class method “hides” the base

class method.

9. What is polymorphism?

18

Polymorphism means ’one name, many form’. Polymorphism can be achieved in two ways. c#

supports both of them *Operation polymorphism *Inclusion polymorphism

10. What is early binding?

The compiler is able to select and bind the appropriate method to the object for a particular call

at complier time itself. This process is called early binding, or static binding, it is also known as

complier time polymorphism.

UNIT- III

APPLICATION DEVELOPMENT ON .NET

Building Windows Applications

A windows application is an application that runs on windows desktop. Windows applications

will have graphical user interface (GUI). Because of GUI, designing the application will be easy

and fast.

System.Windows.Forms namespace used to build Windows-based applications.

To Develop Windows Application. Open Visual Studio

Click on File-> New -> Project -> Visual C#(or lang you want)->Windows->Windows

Form Application.

Provide suitable name to the windows application as shown in the screen shot below

Developing Winforms application .net

Example for Windows Application

Label in C# Winforms

 Label is used to display the static text on windows form.

In the below screenshot, you can see a form.

Now if you want to add some text on the form, double click on the label control in the control’s

toolbox. The label control will be added to the form.

http://www.programcall.com/32/csnet/example-for-windows-application.aspx
http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx

19

Label in C# Winforms .NET

Now select the Label and press F4. The Label Properties windows will be text.

Find the property - Text and add the text you want . The text you added will be displayed on the form.

Thus the label control is used to display the static text on the windows form.

Label Control in C# Winforms .NET

http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx
http://www.programcall.com/41/csnet/label-control-cs-winforms-.net.aspx

20

You can also add the label text in program as below

//Adding label text in program

 label1.Text = "Welcome to ProgramCall.com";

Example for winforms keypress event

Keypress event is used when you want to write the code based on the keys having ASCII value. The

second argument e for keypress event is of type keypresseventargs and it has a property keychar that

http://www.programcall.com/36/csnet/Example-for--winforms-keypress-event-in-dotnet.aspx

21

contains the character pressed by the user on the keyboard and this property is used to write the codein

keypress event.

 Within the keypress event it is not possible to access modifier keys. The second argument e in

keypress event has a property Handled that can be used to exit from keypress event in middle. For this

set Handled property to true.

Example : The following example accepts two numbers from user and performs addition or subtraction

or multiplication or division based on the keys A, S, M and D respectively. C will clear the text boxes

and X will close the form.

1. Add a win form to the project and design it as follows.

2. Set the following properties to the controls.

TextBox1 Name : TxtNum1

TextBox2 Name : TxtNum2

TextBox3 Name : TxtResult

3. Write the following code within the keypress event of the form. For creating the keypress event for

the form, open properties of the form and within the properties window click on events button and then

double click on keypress event.

private void KeypressEvent_KeyPress(object sender, KeyPressEventArgs e)

22

 {

 switch (e.KeyChar)

 {

 case 'A':

 case 'a':

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) +

Convert.ToInt32(TxtNum2.Text)).ToString();

 e.Handled = true;

 break;

 case 'S':

 case 's':

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) -

Convert.ToInt32(TxtNum2.Text)).ToString();

 e.Handled = true;

 break;

 case 'M':

 case 'm':

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) *

Convert.ToInt32(TxtNum2.Text)).ToString();

 e.Handled = true;

 break;

 case 'D':

 case 'd':

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) /

Convert.ToInt32(TxtNum2.Text)).ToString();

 e.Handled = true;

 break;

 case 'C':

 case 'c':

 TxtNum1.Clear();

 TxtNum2.Clear();

 TxtResult.Clear();

 TxtNum1.Focus();

 e.Handled = true;

 break;

 case 'X':

 case 'x':

 this.Close();

 break;

 }

 }

Keypress event of the text box can be used to restrict the text box to accept only alphabets or only

digits or only specified characters.

Example for Winforms keydown event with modifier keys

Control, shift and alt keys are called modifier keys. If you want to execute the code in keydown or

keyup event only when user press a key along with modifier keys then use modifiers property of

second argument e that contains the modifier keys pressed along with the key pressed on the keyboard.

http://www.programcall.com/35/csnet/example-for-winforms-keydown-event-with-modifier-keys.aspx

23

Example : The following example accepts two numbers from user and performs addition or subtraction

or multiplication or division based on the key combination Ctrl+F1, Ctrl+F2, Ctrl+F3 and Ctrl+F4

respectively. Ctrl+F5 will clear the text boxes and Escape will close the form.

1. Add a win form to the project and design it as follows.

2. Set the following properties to the controls.

TextBox1 Name : TxtNum1

TextBox2 Name : TxtNum2

TextBox3 Name : TxtResult

3. write the following code within the keydown event of the form. For creating the keydown event for

the form, open properties of the form and within the properties window click on events button and then

double click on keydown event.

private void KeyDownModifiers_KeyDown(object sender, KeyEventArgs e)

 {

 if (e.Modifiers == Keys.Control)

 {

 switch (e.KeyCode)

 {

 case Keys.F1:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) +

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F2:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) -

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

24

 case Keys.F3:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) *

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F4:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) /

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F5:

 TxtNum1.Clear();

 TxtNum2.Clear();

 TxtResult.Clear();

 TxtNum1.Focus();

 break;

 }

 }

 if (e.KeyCode == Keys.Escape)

 this.Close();

 }

4. Run the application with shortcut F5.

5. if you want to check for the condition with the combination of more than one modifier keys then

write the condition by specifying the modifier keys in parentheses separated by single pipe(|) symbol .

if (e.Modifiers == (Keys.Control | Keys.Alt))

{

}

Working with forms keyup and keydown events

Keydown and keyup events are used when you want to write the code based on the keys having

keycode but not ASCII value.

The second argument e for keydown and keyup events is of type keyeventargs and it has a property

keycode that contains the keycode of the key pressed by the user on the keyboard and this property is

used to write the code in either keydown or keyup event.

 When you are writing the code in keyboard events of the form, then the keypreview property of the

form must be set to true, because by default only keyboard events of the control that contains the focus

will be raised and not the keyboard events of the form. When you set keypreview property true, then

the keyboard events of both the control that contains the focus and form will be raised.

http://www.programcall.com/34/csnet/winforms-forms-keyup-and-keydown-events.aspx

25

Example : The following example accepts two numbers from user and performs addition or

subtraction or multiplication or division based on the function keys F1,F2,F3 and F4 respectively. F5

will clear the text boxes and Escape will close the form.

1. Add a win form to the project and design it as follows.

2. Set the following properties to the controls.

TextBox1 Name : TxtNum1

TextBox2 Name : TxtNum2

TextBox3 Name : TxtResult

3. write the following code within the keydown event of the form. For creating the keydown event for

the form, open properties of the form and within the properties window click on events button and then

double click on keydown event.

private void KeyDownKeyUp_KeyDown(object sender, KeyEventArgs e)

 {

 switch (e.KeyCode)

 {

 case Keys.F1:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) +

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F2:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) -

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F3:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) *

26

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F4:

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) /

Convert.ToInt32(TxtNum2.Text)).ToString();

 break;

 case Keys.F5:

 TxtNum1.Clear();

 TxtNum2.Clear();

 TxtResult.Clear();

 TxtNum1.Focus();

 break;

 case Keys.Escape:

 this.Close();

 break;

 }

 }

4. Run the application with shortcut F5.

Control, shift and alt keys are called modifier keys. If you want to execute the code in keydown or

keyup event only when user press a key along with modifier keys then use modifiers property of

second argument e that contains the modifier keys pressed along with the key pressed on the keyboard.

Working With Winform Textbox Enter And Leave Events

When focus enters in to a control then enter event will be raised and when a control lost focus then

leave event will be raised. These events can be used to write the code that needs to be executed when a

control got and lost the focus.

1. Create a windows application and design the form as follows.

Open Visual Studio ->File -> New Project ->Visual C#-> select Windows Forms Application

Give the name of the application and click on OK

http://www.programcall.com/33/csnet/winforms-form-enter-and-leave-events-.aspx

27

2. Set following properties to the controls on the form. Select the control and press F4.

the properties window will be opened and set the properties.

TextBox1 Name : TxtNum1

TextBox2 Name : TxtNum2

TextBox3 Name : TxtResult

Button Name : BtnClose

 Text : Close

3. Choose leave event of second textbox txtnum2 by opening properties window, clicking on events

button and then double clicking on leave event and write the following code in it.

private void TxtNum2_Leave(object sender, EventArgs e)

 {

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) +

Convert.ToInt32(TxtNum2.Text)).ToString();

 }

4. Double Click on close button and write the following code in its click event to close the form.

private void BtnClose_Click(object sender, EventArgs e)

{

 this.Close();

}

5. Run the application with shortcut F5.

Example for Windows Application

The following example creates a C# windows Form application with three text boxes and two button

controls. When user enters two numbers in to first two text boxes and clicks on first button then sum

http://www.programcall.com/32/csnet/example-for-windows-application.aspx

28

has to be calculated for those two numbers and display the result in third text box.

1. Create a windows application and design the form as follows.

Open Visual Studio ->File -> New Project ->Visual C#-> select Windows Forms Application

Give the name of the application and click on OK

2. Set the following properties for the controls on the form.

TextBox1 Name : TxtNum1

TextBox2 Name : TxtNum2

TextBox3 Name : TxtResult

Button1 Name : BtnSum

 Text : Sum

Button2 Name : BtnClose

 Text : Close

3. Double click on the sum button and write the following code in the click event of that button to

calculate sum and display the result in result textbox

private void BtnSum_Click(object sender, EventArgs e)

 {

 TxtResult.Text = (Convert.ToInt32(TxtNum1.Text) +

29

Convert.ToInt32(TxtNum2.Text)).ToString();

 }

4. Double click on close button and write the following code in the click event of that button to close

the form.

private void BtnClose_Click(object sender, EventArgs e)

 {

 this.Close();

 }

5. Run the Application with shortcut F5.

6. in the above example if you want to calculate sum when user press enter key and close the form

when user press escape key, set sum button as acceptbutton for the form and close button as

cancelbutton for the form.

Windows Forms Events or Winform Events

Every control has its own events and events are used to write the code for windows application.

Every event has two arguments; sender and e. sender contains the information regarding the control

that raises the event and e contains data related to the event.

For all the events type of sender is object and type of e varies depending on the event.

 The following set of events is common for almost every windows control.

 Sno EventName Description

 1 Click

 Will be raised when user clicks on the control with any button of the

mouse. In this event it is not possible to determine which button of the

mouse was clicked by the user. Type of second argument e is EventArgs.

 2 MouseClick

 Will be raised when user clicks on the control with any button of the

mouse. In this event you can determine which button of the mouse was

clicked by the user. Type of second argument e is MouseEventArgs.

 3 DoubleClick

 Will be raised when user double clicks on a control with any button of

the mouse. In this event it is not possible to determine which button of

the mouse was double clicked by the user. Type of second argument e is

EventArgs.

http://www.programcall.com/31/csnet/events-of-the-windows-forms-in-csnet.aspx

30

 4 MouseDoubleClick

 Will be raised when user double clicks on a control with any button of

the mouse. In this event it is possible to determine which button of the

mouse was double clicked by the user. Type of second argument e is

MouseEventArgs.

 5 Enter
 Will be raised when the focus enters in to the control and type of second

argument e is EventArgs.

 6 Leave
 Will be raised when the focus leaves the control and type of second

argument e is EventArgs.

 7 Validating

 Will be raised immediately after the leave event and is

used to write validation code. Type of second argument e is

CancelEventArgs. In this event you can cancel navigation of cursor to

next control when validation was failed.

 8 Validated

 Will be raised immediately after the validating event and is also used to

write validation code. Type of second argument e is EventArgs. In this

event you can’t cancel navigation of cursor to next control when

validation was failed.

 9 KeyDown

 Will be raised when any key of the keyboard was hold down. This event

is used to handle the keys that doesn’t have ASCII value and have

keycode. Type of second argument e is KeyEventArgs.

 10 KeyUp

 Will be raised when any key of the keyboard was released. This event is

used to handle the keys that doesn’t have ASCII value and have keycode.

Type of second argument e is KeyEventArgs.

 11 KeyPress

 Will be raised when any key of the keyboard was completely down. This

event is used to handle the

keys that have an ASCII value. Type of second argument e is

KeyPressEventArgs.

 12 MouseDown
 Will be raised when a button of the mouse was down on the control and

type of second argument e is MouseEventArgs.

 13 MouseUp

Will be raised when a button of the mouse was up on the

control and type of second argument e is MouseEventArgs.

Will be raised when a button of the mouse was up on

the control and type of second argument e is MouseEventArgs.

 MouseDown and MouseUp events are used to draw

graphics and to start and stop drag and drop operations.

 14 MouseEnter

 Will be raised when mouse pointer enters in to the control and type of

second argument e is EventArgs.

Will be raised when mouse pointer enters in to the control and type of

second argument e is EventArgs.

 15
 MouseLeave

MouseLeave

 Will be raised when mouse pointer leaves the control and type of second

argument e is EventArgs.

 MouseEnter and MouseLeave events are used to

change the icon while performing drag and drop operations based on

31

The following set of events is available only for a form.

 Sno EventName Description

 1 Load

 This is the default event for form and will be raised whenever the form is

loaded. This event can be used to initialize variables and type of second

argument e is EventArgs.

 2 FormClosing

 Will be raised when the form is about to be closed. This event can be used

to write the code that needs to be executed while the form is closed and

type of second argument e is FormClosingEventArgs.

 3 FormClosed

 Will be raised immediately after FormClosing event. This event can be

used to write the code that needs to be executed while the form is closed

and type of second argument e is FormClosedEventArgs.

 4 Resize
 Will be raised when form is resized and type of second argument e is

EventArgs.

Windows Application Form

A windows form is used to design and write the code for windows application.

Winform has design and code interfaces. To switch between design and code interfaces, use the

shortcut F7. A windows form is also a class and it is created as partial class inherited from

the class form available in system.windows.forms namespace. To refer to the current form

in code, use the keyword this. A winform has the following important properties.

whether drop is possible.

 16 MouseMove
 Will be raised when mouse pointer moves over the

control and type of second argument e is MouseEventArgs.

 17 MouseHover

 Will be raised when mouse pointer was placed over the control

constantly for at least one second and type of second argument e is

EventArgs.

32

Windows Form Properties

 Sno Property Name Decription

 1 Name Used to uniquely identify the control in code.

 2 AcceptButton

Used to set a button available on the form as accept button so that the

code written for that button is automatically executed when user

press enter key wherever the focus is on the form.

 3 AutoScroll

Indicates whether scroll bars are displayed when a control on the

form is out side the boundary of the

form.

 4 BackColor Used to set a background color for the control.

http://images.programcall.com/Windows-Label-Control-CS.JPG

33

 5 BackgroundImage Used to display an image in the background of the form.

 6 BackgroundImageLayout Used to set layout for the background image on the form.

 7 CancelButton

Used to set a button available on the form as cancelbutton so that the

code written for that button is automatically executed when user

press escape key wherever the focus is on the form.

 8 ControlBox
Indicates whether minimize, maximize and close buttons and

system icon are displayed in the title bar of the form.

 9 Enabled Indicates whether the events of the control are raised.

 10 Font Used to set font for the text displayed in the control

 11 ForeColor Used to set Font Color for the control.

 12 Icon Used to set the icon to display in the title bar of the form.

 13 Location Used to set position of the control from left and top.

 14 Size Used to set width and height of the control.

 15 Text Used to set a caption for the form.

 16 WindowState

Indicates the initial state of the form when it was

displayed for the first time. It has three possible values.,

minimized, maximized and normal.

Windows Form Methods

 Sno Method Name Description

 1 Close() Used to close the form.

 2 Hide() Used to hide the form.

 3 Show() Used to display the form as non-modal window

 4 ShowDialog() Used to display the form as modal window.

34

c# tablelayoutpanel

 Winforms Tablelayoutpanel is used to align winform controls in rows and columns.

When you add a control in tablelayoutpanel control cell, by default is positions in top left control

of the cell, to change it to the required postion use the control's anchor property as below

//Use anchor property of control, to set the position of the control in tablelayoutpanel cell

 this.textBox1.Anchor = ((System.Windows.Forms.AnchorStyles)

 ((System.Windows.Forms.AnchorStyles.Bottom |

System.Windows.Forms.AnchorStyles.Left)));

 this.label1.Anchor = ((System.Windows.Forms.AnchorStyles)

 ((System.Windows.Forms.AnchorStyles.Bottom |

System.Windows.Forms.AnchorStyles.Right)));

 this.button2.Anchor = ((System.Windows.Forms.AnchorStyles)

 ((System.Windows.Forms.AnchorStyles.Top |

System.Windows.Forms.AnchorStyles.Right)));

TableLayoutPanel RowSpan or ColumnSpan

To span control across multiple rows or columns , use contro'ls rowspan or columnspan property.

The below lines of code can be used to span control across multiple rows or multiple columns.

//To span control across 3 rows

 this.tableLayoutPanel1.SetRowSpan(this.button2, 3);

 //To span control across 2 columns

 this.tableLayoutPanel1.SetColumnSpan(this.label1, 2);

http://images.programcall.com/winform-tablelayout-panel.jpg

35

Accessing Data with ADO.NET.

ADO.NET Code Snippets

A quick look at Database Technologies provided by Mircosoft

 To access data from database like SQL server and oracle, .net

framework provides ADO.Net. when we look at database technologies provided by

Microsoft, they are as follows.

Data providers in .net

 Different databases will have different storage formats. Different languages will support

different data formats, this language formats will not be understandable to databases; this

requires a translator between a language application and database. This translator is called driver

or provider. Driver or provider is a software component, this acts like mediator between

application and database.

Database

Technology Description

 DAO

(Data Access

Objects)

o This works based on JetEngine or DBEngine.

o It is efficient in accessing desktop databases

like MS Access, Foxpro and Excel.

o It is not efficient in accessing remote

databases like SQL Server and Oracle.

 RDO

(Remote Data

Objects)

o This works based on ODBC(Open DatabaseConnectivity).
o It is efficient in accessing remote databases.
o It can not access the databases that don’t support ODBC.

 ADO

(Activex Data

Objects)

o This works based on OLEDB (Object Linking and Embedding DataBase).
o It can access almost any database that may be desktop database or remote database and that

may support ODBC or may not support ODBC.
o It is efficient than DAO and RDO.
o It doesn’t support pure architecture.
o It doesn’t support XML.

 ADO.Net

o To overcome the drawbacks of ADO, in .net, Microsoft provides ADO.Net.
o Same as ADO it can access almost any database that may be desktop database or remote

database and that may support ODBC or may not support ODBC.
o It supports pure disconnected architecture and XML.

36

Disconnected Architecture in ADO.NET

The architecture of ADO.net in which data retrieved from database can be accessed even when

connection to database was closed is called as disconnected architecture. Disconnected

architecture of ADO.net was built on classes connection, data adapter, command builder an

dataset and data view.

Connection : Connection object is used to establish a connection to database and connection it

self will not transfer any data.

DataAdapter : DataAdapter is used to transfer the data between database and dataset. It has

commands like select, insert, update and delete. Select command is used to retrieve data from

37

database and insert, update and delete commands are used to send changes to the data in dataset

to database. It needs a connection to transfer the data.

CommandBuilder : by default dataadapter contains only the select command and it doesn’t

contain insert, update and delete commands. To create insert, update and delete commands for

the dataadapter, commandbuilder is used. It is used only to create these commands for the

dataadapter and has no other purpose.

DataSet : Dataset is used to store the data retrieved from database by dataadapter and make it

available for .net application.

To fill data in to dataset fill() method of dataadapter is used and has the following syntax.

Da.Fill(Ds,”TableName”);

When fill method was called, dataadapter will open a connection to database, executes select

command, stores the data retrieved by select command in to dataset and immediately closes the

connection.

As connection to database was closed, any changes to the data in dataset will not be directly sent

to the database and will be made only in the dataset. To send changes made to data in dataset to

the database, Update() method of the dataadapter is used that has the following syntax.

Da.Update(Ds,”Tablename”);

When Update method was called, dataadapter will again open the connection to database,

executes insert, update and delete commands to send changes in dataset to database and

immediately closes the connection. As connection is opened only when it is required and will be

automatically closed when it was not required, this architecture is called disconnected

architecture.

A dataset can contain data in multiple tables.

DataView : DataView is a view of table available in DataSet. It is used to find a record, sort the

records and filter the records. By using dataview, you can also perform insert, update and delete

as in case of a DataSet.

38

Connected Architecture of ADO.NET

The architecture of ADO.net, in which connection must be opened to access the data retrieved

from database is called as connected architecture. Connected architecture was built on the

classes connection, command, data reader and transaction.

Connection : in connected architecture also the purpose of connection is to just establish a

connection to database and it self will not transfer any data.

 DataReader : DataReader is used to store the data retrieved by command object and make it

available for .net application. Data in DataReader is read only and within the DataReader you

can navigate only in forward direction and it also only one record at a time.

To access one by one record from the DataReader, call Read() method of the DataReader whose

return type is bool. When the next record was successfully read, the Read() method will return

true and otherwise returns false.

39

Command Object in ADO.NET

Command : Command is used to execute almost any SQL command from within the .net

application. The SQL command like insert, update, delete, select, create, alter, drop can be

executed with command object and you can also call stored procedures with the command

object. Command object has the following important properties.

 Connection : used to specify the connection to be used by the command object.

 CommandType : Used to specify the type of SQL command you want to execute. To

assign a value to this property, use the enumeration CommandType that has the members

Text, StoredProcedure and TableDirect. Text is the default and is set when you want to

execute ant SQL command with command object. StoredProcedure is set when you want

to call a stored procedure or function and TableDirect is set when you want to retrieve

data from the table directly by specifying the table name without writing a select

statement.

 CommandText : Used to specify the SQL statement you want to execute.

 Transaction : Used to associate a transaction object to the command object so that

the changes made to the database with command object can be committed or rollback.

Command object has the following important methods.

 ExecuteNonQuery() : Used to execute an SQL statement that doesn’t return any value

like insert, update and delete. Return type of this method is int and it returns the no. of

rows affected by the given statement.

 ExecuteScalar() : Used to execute an SQL statement and return a single value. When the

select statement executed by executescalar() method returns a row and multiple rows,

then the method will return the value of first column of first row returned by the query.

Return type of this method is object.

 ExecuteReader() : Used to execute a select a statement and return the rows returned by

the select statement as a DataReader. Return type of this method is DataReader.

ADO.NET Dataset vs DataReader

DataSet and DataReader are called fundamental objects of ADO.net as they are used to store data

and make it available for .net application and they have the following differences.

Differences Between DataSet and DataReader

40

DataSet DataReader

It is disconnected object and can provide It is connected object and can not provide

access to data even when connection to access to data when connection to database

database was closed. was closed.

It can store data from multiple tables It can store data from only one table.

It allows insert, update and delete on data It is read only and it doesn’t allow insert,

 update and delete on data.

It allows navigation between record either It allows only forward navigation that also

forward or backward. only to immediate next record.

It can contain multiple records. It can contain only one record at a time.

All the data of a dataset will be on client All the data of a DataReader will be on

system. server and one record at a time is retrieved

 and stored in datareader when you call the

 Read() method of datareader.

UNIT- III

TWO MARKS

1. List out the different types of applications that can be created on .net?

 .Net offers closely related but distinguishable suites of tools for building windows or web

applications. Both are based on the premises that many applications have user interfaces centered

on interacting with the user through form and controls, such as buttons, list boxes, text, and so

forth

2. What are the advantages in using a dataset?

Dataset is a subset of the entire database cached on your machines without a continuous

connection to the database-disconnected architecture which reduce burden on the database server

which may help your application scale well.

3. Define relational database?

41

A database is a repository of data. A relational database organizes your data into tables. Consider

the north wind database provided with Microsoft SQL server and Microsoft access.

4. What are the advantages of ADO.NET?

The significant advantage to disconnecting your data architecture from your database. The

biggest advantage is that your application, whether running on the web or on a local machine,

will create a reduced burden on the database server which may help your application to scale

well. A disconnected architecture is resource frugal.

5. What is declarative reference integrity?

Relational database use declarative reference integrity to establish constraints on the relationship

among the various tables. This helps avoid two types of mistakes. First, you can’t enter a record

with an invalid customer ID Secondly, you can’t delete a customer record it that customerID is

used in any order. The integrity of your data and its relationship is thus protected.

6. Define Data Adapter?

The dataset is an abstraction of relational data base.ADO.NET uses a data Adapter as a bridge

between the dataset and data source, which is the underlying database.dataAdapter provides the

Fill () method to retrieve data from the database and populate the dataset.

7. Define Data Reader?

The data reader provides connected, forward-only, read-only access to a Collection of tables. By

executing either a SQL statement or stored procedures.datareader is a lightweight object.

8. What are the advantages of web applications?

- They can be accessed from any browser that can connect to the server. - Update can be made at

the server - You can achieve better performance by building a desktop application.

9. What is the step to create windows application?

First open visual studio and file ----->new ----> project. In project window, create a new c#

windows application and name it sharpwindowsform.

42

10. Differentiate between data reader and dataset?

The actually uses a data reader to populate itself. A data reader is lean, mean access Methods that

return results as soon as they are available, rather than for the whole of the query to be populated

into a dataset.

UNIT- IV

WEB BASED APPLICATION DEVELOPMENT ON .NET

Visual Studio ASP.NET Web Applications

A Visual Studio Web application is built around ASP.NET. ASP.NET is a platform — including

design-time objects and controls and a run-time execution context — for developing and running

applications on a Web server.

ASP.NET in turn is part of the .NET Framework, so that it provides access to all of the features

of that framework. For example, you can create ASP.NET Web applications using any .NET

programming language (Visual Basic, C#, Managed Extensions for C++, and many others) and

.NET debugging facilities. You access data using ADO.NET. Similarly, you can access

operating system services using .NET Framework classes, and so on.

ASP.NET Web applications run on a Web server configured with Microsoft Internet Information

Services (IIS). However, you do not need to work directly with IIS. You can program IIS

facilities using ASP.NET classes, and Visual Studio handles file management tasks such as

creating IIS applications when needed and providing ways for you to deploy your Web

applications to IIS.

Programming Web Applications with Web Forms

When designing applications that involve a user interface, you have two choices: Windows

Forms and Web Forms. Both have full design-time support within the development environment

and can provide a rich user interface and advanced application functionality to solve business

problems. How, then, to decide which technology is appropriate for a given application?

Certain application considerations might make the choice obvious: For example, if you are

creating an e-commerce Web site that will be accessible to the public over the Internet, then of

course you would develop the application using Web Forms pages. If you are building a

processing-intensive, highly responsive application that needs to take advantage of the full

functionality of the client machine — such as an office productivity application — of course you

would use Windows Forms. However, in other cases the choice might not be so clear.

43

In the sections that follow, you can find information about the features and characteristics of

each type of technology that will help you determine which is most suited to your application.

Windows Forms

Windows Forms are used to develop applications where the client is expected to shoulder a

significant amount of the processing burden in an application. These include classic Win32

desktop applications, the kinds that were traditionally developed in previous versions of Visual

Basic and Visual C++. Examples include drawing or graphics applications, data-entry systems,

point-of-sale systems, and games.

A common feature these applications share is that they rely on the power of the desktop

computer for processing and high-performance content display. Some Windows Forms

applications might be entirely self-contained and perform all application processing on the user's

computer. Games are often written this way. Others might be part of a larger system and use the

desktop computer primarily for processing user input. For example, a point-of-sale system often

requires a responsive, sophisticated user interface that is created on the desktop computer, but is

linked to other components that perform back-end processing.

Because a Windows application that uses Windows Forms is built around a Windows

framework, it has access to system resources on the client computer, including local files, the

Windows registry, the printer, and so on. This level of access can be restricted to eliminate any

security risks or potential problems that arise from unwanted access. Additionally, Windows

Forms can take advantage of the .NET GDI+ graphics classes to create a graphically rich

interface, which is often a requirement for data-mining or game applications.

Web Forms

ASP.NET Web Forms are used to create applications in which the primary user interface is a

browser. Naturally, this includes applications intended to be available publicly via the World

Wide Web, such as e-commerce applications. But Web Forms are useful for more than just

creating Web sites — many other applications lend themselves to a "thin front end" as well, such

as an intranet-based employee handbook or benefits application. An important feature is that

there is no distribution cost, since users already have installed the only piece of the application

that they need— the browser.

Web Forms applications are, by definition, platform-independent — that is, they are "reach"

applications. Users can interact with your application regardless of what type of browser they

have and even what type of computer they are using. At the same time, Web Forms applications

can be optimized to take advantage of features built into the most recent browsers such as

Microsoft Internet Explorer 5 to enhance performance and responsiveness. (In many cases, this

optimization is built into the Web Forms components you are using, which can automatically

detect browser levels and render pages accordingly.)

Web Forms offer some features that are useful even in non-Web contexts. Because they rely on

HTML, they are suitable for text-intensive applications of any sort, and especially those in which

44

text formatting is important. Because browsers are usually limited in their access to a user's

system resources, they are useful precisely in situations where you want to limit users' access to

portions of your application.

Comparing Windows Forms and Web Forms

The following table provides a side-by-side comparison of different application criteria and how

Windows Forms and Web Forms technologies address these criteria.

Feature/Criterion Windows Forms Web Forms

Deployment

Windows Forms allow "no-touch"

deployment, where applications can be

downloaded, installed, and run directly on

the users' machines without any alteration

of the registry.

Web Forms have no client deployment; the

client requires only a browser. The server

must be running the Microsoft .NET

Framework. Updates to the application are

made by updating code on the server.

Graphics

Windows Forms include GDI+, which

allows sophisticated graphics to be used for

games and other extremely rich graphical

environments.

Interactive or dynamic graphics require round

trips to the server for updates when used on

Web Forms. GDI+ can be used on the server

to create custom graphics.

Responsiveness

Windows Forms can run entirely on the

client computer; they can provide the

quickest response speed for applications

requiring a high degree of interactivity.

If you know that users will have Internet

Explorer 5 or later, a Web Forms application

can take advantage of the browser's dynamic

HTML (DHTML) capabilities to create a rich,

responsive user interface (UI). If users have

other browsers, most processing (including

UI-related tasks such as validation) requires a

round trip to the Web server, which can affect

responsiveness.

Form and text flow

control

Windows Forms grid positioning gives you

precise two-dimensional control (x and y

coordinates) over the placement of controls.

To display text on Windows Forms requires

that you insert it into controls (for example,

the Label control, the Textbox control, or

the RichTextBox control). Formatting is

limited.

Web Forms are based around HTML-style

flow layout and therefore support all the

features of Web page layout. They are

particularly rich in text formatting support.

Control layout can be managed adequately

(with some limitations, such as no
overlapping controls). If the users have

DHTML-capable browsers, you can specify

much more precise layout with two-

dimensional (x- and y-coordinate) layout.

Platform
Windows Forms require the .NET

Framework running on the client computer.

Web Forms require only a browser. DHTML-

capable browsers can take advantage of extra

features, but Web Forms can be designed to

work with all browsers. The Web server must

45

be running the .NET Framework.

Access to local

resources (file system,

Windows registry, and

so forth)

Applications, when permitted, can have

complete access to local computer

resources. If required, the application can be

restricted with precision from using specific

resources.

Browser security prevents the

application from accessing resources on

the local computer.

Programming model

Windows Forms are based on a client-side,

Win32 message-pump mode, where

instances of components are created, used,

and discarded by the developer.

Web Forms rely on a largely asynchronous,

disconnected model, where components are

loosely coupled to the application front end.

Typically, application components are

invoked via HTTP. This model may not be

suitable for applications requiring extreme

throughput from the user end or for those

with high-volume transactions. Similarly,

Web Forms applications may not be suitable

for database applications that require high

levels of concurrency control (for example,

pessimistic locking).

Security

Windows Forms use granular permissions

in its implementation of code access

security to protect computer resources and

sensitive information. This allows careful

exposure of functionality, while retaining

security. For instance the Printing

Permission, which at one level would allow

printing to the default printer only, at

another level would allow printing to any

printer.

Authorization to gain access to the resources

of a web application is typically controlled on

a per-URL basis by authenticating the

credentials (for example, a name/password

pair) of the requestor. Web Forms enable the

ability to control the identity under which

server application code is executed.

Applications can execute code with the

identity of the requesting entity, which is

known as impersonation. Applications can

also dynamically tailor content based on the

requestor's identity or role. For example, a

manager could receive access to a site, or a

higher level of content than someone with

lower permissions.

Event Handling in Windows Forms

Visual Studio .NET 2003

An event handler is a procedure in your code that determines the actions to be performed when

an event occurs, such as the user clicking a button or a message queue receiving a message.

When an event is raised, the event handler (or handlers) that receives the event is executed.

46

Events can be assigned to multiple handlers, and the methods that handle particular events can be

changed dynamically. You can use the Windows Forms Designer to create event handlers.

Introduction to Events in Windows Forms

Visual Studio .NET 2003

An event is an action which you can respond to, or "handle," in code. Events can be generated by

a user action, such as clicking the mouse or pressing a key; by program code; or by the system.

Event-driven applications execute code in response to an event. Each form and control exposes a

predefined set of events that you can program against. If one of these events occurs and there is

code in the associated event handler, that code is invoked.

The types of events raised by an object vary, but many types are common to most controls. For

example, most objects will handle a Click event — if a user clicks a form, code in the form's

Click event handler is executed.

Note Many events occur in conjunction with other events. For example, in the course of the

DoubleClick event occurring, the MouseDown, MouseUp, and Click events occur.

Introduction to Event Handlers in Windows Forms

Visual Studio .NET 2003

An event handler is a method that is bound to an event. When the event is raised, the code within

the event handler is executed. Each event handler provides two parameters that allow you to

handle the event properly. The following example shows an event handler for a Button control's

Click event:

' Visual Basic

Private Sub button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles button1.Click

End Sub

// C#

private void button1_Click(object sender, System.EventArgs e)

{

}

// C++

private:

 System::Void button1_Click(System::Object * sender,

 System::EventArgs * e)

 {

https://msdn.microsoft.com/en-us/library/aa291080%28v=vs.71%29.aspx

47

 }

The first parameter, sender, provides a reference to the object that raised the event. The second

parameter, e in the example above, passes an object specific to the event that is being handled.

By referencing the object's properties (and, sometimes, its methods), you can obtain information

such as the location of the mouse for mouse events or data being transferred in drag-and-drop

events.

Typically each event produces an event handler with a different event-object type for the second

parameter. Some event handlers, such as those for the MouseDown and MouseUp events, have

the same object type for their second parameter. For these types of events, you can use the same

event handler to handle both events.

You can also use the same event handler to handle the same event for different controls. For

example, if you have a group of RadioButton controls on a form, you could create a single event

handler for the Click event and have each control's Click event bound to the single event

handler.

Creating Event Handlers on the Windows Forms Designer

Visual Studio .NET 2003

In nearly all applications, it is essential to respond to user or system events. In C# and C++, you

can create event handlers using the Properties window. In Visual Basic, you can use the Class

Name and Method Name drop-down boxes in the Code Editor. For more information on creating

default-named event handlers, see Creating Default Event Handlers on the Windows Forms

Designer.

To create an event handler in Visual Basic

1. Right-click the form and choose View Code.

2. From the Class Name drop-down box, select the control that you want to add a specific

event handler to.

3. From the Method Name drop-down box, select the event for which you want to add a

specific handler.

4. The Code Editor inserts the appropriate event handler and positions the insertion point

within the method. In the example below, it is the Click event for the Button control.

5. ' Visual Basic

6. Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

7. ' Add event handler code here.

8. End Sub

9. Add the appropriate code to the event handler.

To create an event handler in C# or C++

https://msdn.microsoft.com/en-us/library/aa984316%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984316%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.click%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984060%28v=vs.71%29.aspx

48

1. Click the form or control that you want to create an event handler for.

2. In the Properties window, click the Events button ().

3. In the list of available events, click the event that you want to create an event handler for.

4. In the box to the right of the event name, type the name of the handler and press ENTER.

Tip Name the event handler according to the functionality of the event; for example, for

the Click event, you can type StartProcess as the event handler.

The Code Editor appears, showing the code for the form, and an event handler method is

generated in your code similar to the following:

// C#

private void StartProcess(object sender, System.EventArgs e)

{

 // Add event handler code here.

}

// C++

private:

 System::Void StartProcess(System::Object * sender,

 System::EventArgs * e)

 {

 // Add event handler code here.

 }

5. Add the appropriate code to the event handler.

Creating Default Event Handlers on the Windows Forms Designer

Visual Studio .NET 2003

Within the Windows Forms Designer, double-clicking the design surface (either the form or a

control) creates an event handler for the default action for that item.

To create the event handler for a default action

1. Double-click the item on the Windows Forms Designer for which you wish to create a

handler.

The Code Editor opens and the mouse pointer is located inside the newly created default

event handler.

2. Add the appropriate code to the event handler.

When you finish, your code might look like this:

49

' Visual Basic

Private Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) Handles

Button1.Click

'Add Event Handlers Code Here

End Sub

// C#

private void button1_Click(object sender, System.EventArgs e)

{

}

// C++

private:

 System::Void button1_Click(System::Object * sender,

 System::EventArgs * e)

 {

 }

The preceding code is the default event handler for a Button control.

Creating Event Handlers at Run Time for Windows Forms

Visual Studio .NET 2003

In addition to creating events using the Windows Forms Designer, you can also create an event

handler at run time. This action allows you to connect event handlers based on conditions in code

at run time as opposed to having them connected when the program initially starts.

To create an event handler at run time

1. Open the form in the Code Editor that you want to add an event handler to.

2. Add a method to your form with the method signature for the event that you want to

handle.

For example, if you were handling the Click event of a Button control, you would create

a method such as the following:

' Visual Basic

Private Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)

 ' Add event handler code here.

End Sub

// C#

private void button1_Click(object sender, System.EventArgs e)

{

// Add event handler code here.

https://msdn.microsoft.com/en-us/library/system.windows.forms.button%28v=vs.71%29.aspx

50

}

// C++

private:

 System::Void button1_Click(System::Object * sender,

 System::EventArgs * e)

 {

 // Add event handler code here.

 }

3. Add code to the event handler as appropriate to your application.

4. Determine which form or control you want to create an event handler for.

5. In a method within your form's class, add code that specifies the event handler to handle

the event. For example, the following code specifies the event handler button1_Click

handles the Click event of a Button control:

6. ' Visual Basic

7. AddHandler Button1.Click, AddressOf Button1_Click

8.

9. // C#

10. button1.Click += new EventHandler(button1_Click);

11.
12. // C++

13. button1->add_Click(new System::EventHandler(this, button1_Click));

The AddHandler method demonstrated in the Visual Basic code above establishes a

click event handler for the button.

Connecting Multiple Events to a Single Event Handler in Windows Forms

Visual Studio .NET 2003

In your application design, you may find it necessary to have a single event handler used for

multiple events or the multiple events fire the same procedure. For example, it is often a

powerful time-saver to have a menu command fire the same event as a button on your form does

if they expose the same functionality. You can do this by using the Events view of the Properties

window in C# or using the Handles keyword and the Class Name and Method Name drop-

down boxes in the Visual Basic Code Editor.

To connect multiple events to a single event handler in Visual Basic

1. Right-click the form and choose View Code.

2. From the Class Name drop-down box, select one of the controls that you want to have

the event handler handle.

3. From the Method Name drop-down box, select one of the events that you want the event

handler to handle.

51

4. The Code Editor inserts the appropriate event handler and positions the insertion point

within the method. In the example below, it is the Click event for the Button control.

5. ' Visual Basic

6. Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

7. 'Add Event Handler Code Here

8. End Sub

9. Append the other events you would like handled to the Handles clause.

10. ' Visual Basic

11. Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click, Button2.Click

12. 'Add Event Handler Code Here

13. End Sub

14. Add the appropriate code to the event handler.

To connect multiple events to a single event handler in C#

1. Select the control to which you want to connect an event handler.

2. In the Properties window, click the Events button ().

3. Click the name of the event that you want to handle.

4. In the value section next to the event name, click the drop-down button to display a list of

existing event handlers that match the method signature of the event you want to handle.

5. Select the appropriate event handler from the list.

Code will be added to the form to bind the event to the existing event handler.

Creating Event Handlers in the Visual Basic Code Editor

Visual Studio .NET 2003

The Visual Basic Code Editor provides an easy way to create event handlers for your Windows

Forms. Although it does not allow you to connect multiple events to a single event handler (see

Connecting Multiple Events to a Single Event Handler in Windows Forms), it does provide a

quick and easy way to create event handlers while working on your form's code without having

to display the form in the Windows Forms Designer.

To create an event handler using the Visual Basic Code Editor

1. In the Code Editor, choose the form or control that you want to create an event handler

for from the Class Name drop-down list.

2. From the Method Name list at the top of the Code Editor, choose the event that you want

to create an event handler for.

Visual Basic creates an event handler and adds it to your form's class.

https://msdn.microsoft.com/en-us/library/system.windows.forms.control.click%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984060%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984307%28v=vs.71%29.aspx

52

Mouse and Keyboard Events in Windows Forms

Visual Studio .NET 2003

There are a number of events related to the user's employment of the mouse and keyboard. Each

of these events has an event handler for which you can write code in your Windows applications.

These events include MouseDown, MouseUp, MouseMove, MouseEnter, MouseLeave,

MouseHover, KeyPress, KeyDown, and KeyUp. The MouseDown, MouseUp, and MouseMove

event handlers receive an argument of MouseEventArgs containing data related to their events.

The MouseEnter, MouseLeave, and MouseHover event handlers receive an argument of type

EventArgs containing data related to their events. The key-related event handlers receive an

argument of type KeyEventArgs containing data related to their events. These events are handled

just like any other events that occur on Windows Forms. For more information about handling

events, see Introduction to Event Handlers In Windows Forms.

Additionally, be aware that you can change the mouse cursor while operations are occurring.

This capability can be paired with the MouseEnter and MouseLeave events to both provide

feedback to the user that computations are occurring as well as limit user interaction for specified

amounts of time. For example, if you show a dialog box to indicate files are being copied, it is

customary to change the cursor to the hourglass.

Sometimes, the mouse cursor will change because of system events, such as when your

application is involved in a drag-and-drop operation. For more information about drag-and-drop

procedures, see Drag-and-Drop Operations and Clipboard Support. You can change the mouse

cursor by setting the Cursor property of a control. For more information about working with

cursors, see Cursors Class.

Order of Events in Windows Forms

Visual Studio .NET 2003

The order in which events are raised in Windows applications is of particular interest to

developers concerned with handling each of these events in turn. When a situation calls for

meticulous handling of events, such as when you are redrawing parts of the form, an awareness

of the precise order in which events are raised at run time is necessary. For an overview of events

in Windows Forms, see Introduction to Events in Windows Forms. For details about the makeup

of event handlers, see Introduction to Event Handlers in Windows Forms.

Another aspect of Windows Forms architecture is covered in Anatomy of the Visual Basic Code

Behind Windows Forms.

Standard Click Event Firing Behavior

All Windows Forms controls raise events in the same order when a mouse button is pressed and

released (regardless of which mouse button), except where noted for individual controls. The

following is the order of events raised for a single mouse-button click:

https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mousedown%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mouseup%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mousemove%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mouseenter%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mouseleave%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mousehover%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.keypress%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.keydown%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.keyup%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.mouseeventargs%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.eventargs%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.keyeventargs%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983763%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983608%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.cursor%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.cursors%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983762%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983763%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983559%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa983559%28v=vs.71%29.aspx

53

1. MouseDown event.

2. Click event.

3. MouseUp event.

The following is the order of events raised for a double mouse-button click:

1. MouseDown event.

2. Click event.

3. DoubleClick event. (This can vary, depending whether the control in question has its

StandardDoubleClick ControlStyles bit set to true. For more information on how to set

a ControlStyles bit, see the Control.SetStyle Method.)

4. MouseUp event.

Individual Controls

The following controls do not conform to the standard Click event behavior:

 Button control

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, Click

o Right double-click: No Click events raised

 CheckBox control

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, Click

o Right double-click: No Click events raised

 RadioButton control

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, Click

o Right double-click: No Click events raised

 TextBox control

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, DoubleClick

o Right double-click: No Click events raised

 ListBox control

Note The event behavior detailed below happens whether the user clicks on an item or

not (that is, a mouse click or double-click anywhere within the ListBox control raises

these events).

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, DoubleClick

https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mousedown%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.click%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.mouseup%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.doubleclick%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.control.setstyle%28v=vs.71%29.aspx

54

o Right double-click: No Click events raised

 CheckedListBox control

Note The event behavior detailed below happens whether the user clicks on an item or

not (that is, a mouse click or double click anywhere within the ListBox control raises

these events)

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, DoubleClick

o Right double-click: No Click events raised

 ComboBox control

Note The event behavior detailed below happens whether the user clicks on the edit

field, the button, or on an item within the list.

o Left click: Click

o Right click: No Click events raised

o Left double-click: Click, Click

o Right double-click: No Click events raised

 RichTextBox control

o Left click: No Click events raised

o Right click: No Click events raised

o Left double-click: No Click events raised

o Right double-click: No Click events raised

 ListView control

Note The event behavior detailed below happens only when the user clicks on the items

in the ListView control. No events are raised for clicks anywhere else on the control. In

addition to those described below, there are the BeforeLabelEdit and AfterLabelEdit

events, which may be of interest to developers wishing to use validation with the

ListView control.

o Left click: Click

o Right click: Click

o Left double-click: Click, DoubleClick

o Right double-click: Click, DoubleClick

 TreeView control

Note The event behavior detailed below happens only when the user clicks on the items

themselves or to the right of the items in the TreeView control. No events are raised for

clicks anywhere else on the control. In addition to those described below, there are the

BeforeCheck, BeforeSelect, BeforeLabelEdit, AfterSelect, AfterCheck, and

https://msdn.microsoft.com/en-us/library/system.windows.forms.listview.beforelabeledit%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.listview.afterlabeledit%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.beforecheck%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.beforeselect%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.beforelabeledit%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.afterselect%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.aftercheck%28v=vs.71%29.aspx

55

AfterLabelEdit events, which may be of interest to developers wishing to use validation

with the TreeView control.

o Left click: Click

o Right click: Click

o Left double-click: Click, DoubleClick

o Right double-click: Click, DoubleClick

For details on the data sent by the system when these events are raised, see EventArgs Class. For

details on monitoring user input to the keyboard for modifier keys (such as the SHIFT, ALT, and

CTRL keys), see Determining Which Modifier Key Was Pressed.

Control Painting Behavior

Toggle controls, such as the controls deriving from the ButtonBase class, have a distinctive

painting behavior. It is as follows:

1. The user presses the mouse button.

2. The control paints in the pressed state.

3. The MouseDown event is raised.

4. The user releases the mouse button.

5. The control paints in the raised state.

6. The Click event is raised.

7. The MouseUp event is raised.

Note If the user moves the pointer out of the toggle control while the mouse button is

down (such as moving the mouse off the Button control while it is pressed), the toggle

control will paint in the raised state.

Determining Which Modifier Key Was Pressed

Visual Studio .NET 2003

When creating an application that accepts the user's keystrokes, you may also want to monitor

for modifier keys such as the SHIFT, ALT, and CTRL keys. When a modifier key is pressed in

combination with other keys, or with mouse clicks, your application can respond appropriately

— the letter S may simply cause an "S" to appear on the screen, but if CTRL+S is pressed, the

current document may be saved.

To determine which modifier key was pressed

 Use the bitwise AND operator (And in Visual Basic, & in C# and C++) with the

ModifierKeys property and a value of the Keys enumeration to determine which

modifier key was pressed. (ModifierKeys is a shared member of the Control class; for

more information on shared members, see Shared Members.)

 ' Visual Basic

https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview.afterlabeledit%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.eventargs%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984219%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.buttonbase%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.keys%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/4hbsxy95%28v=vs.71%29.aspx

56

 Private Sub Button1_KeyPress(ByVal sender As Object, ByVal e As _

 System.Windows.Forms.KeyPressEventArgs) Handles Button1.KeyPress

 If (Control.ModifierKeys And Keys.Shift) = Keys.Shift Then

 MessageBox.Show("Pressed " & Keys.Shift)

 End If

 End Sub

 // C#

 private void button1_KeyPress(object sender,

System.Windows.Forms.KeyPressEventArgs e)

 {

 if ((Control.ModifierKeys & Keys.Shift) == Keys.Shift)

 {

 MessageBox.Show("Pressed " + Keys.Shift);

 }

 }

 // C++

 private:

 System::Void button1_KeyPress(System::Object * sender,

 System::Windows::Forms::KeyPressEventArgs * e)

 {

 if ((Control::ModifierKeys & Keys::Shift) == Keys::Shift)

 {

 MessageBox::Show(String::Concat(S"Pressed ",

 __box(Keys::Shift)->ToString()));

 }

 }

Note For C# or C++, be sure that the necessary code to enable the event handler is

present. In this case, it would be similar to the following:

// C#

this.button1.Click += new System.EventHandler(this.button1_Click);

// C++

this->button1->add_KeyPress

 (new System::Windows::Forms::KeyPressEventHandler

 (this, button1_KeyPress));

Overriding Base Methods Using the Visual Basic Code Editor

Visual Studio .NET 2003

When working with Visual Basic classes in Windows Forms, you may need to override a method

defined in a base class. In addition to providing a way to create event handlers while writing

57

code, the Visual Basic Code Editor also allows you to override methods contained in your base

class.

To override a base class method using the Visual Basic Code Editor

1. Open the form that you want to use in the Code Editor.

2. From the Class Name drop-down list at the top of the Code Editor, choose (Overrides).

A list of the methods is added to the Event list.

3. From the Method Name list at the top of the Code Editor, choose the method for which

you want to create an event handler.

A method is added to your form's class and the Overrides keyword is added to the

method signature. The following code demonstrates an example of an overridden form

method:

' Visual Basic

Protected Overrides Sub Finalize()

 'Implementation Code Added Here

End Sub

Programming Web Services

Introduction to Web Service with Example in ASP.NET

Background

In this article we will learn about web service using the scenario when Our applications often

require code to determine the number of days, such as how long the customer is associated with

us, also to convert from a date of present days into days or years and so on.

In a normal application I need to write the Business logic repeatedly for the same requirements

so due to the requirements you can write a single web service for Multiple applications that allow

an access method on any platform used, so let us start with the basics.

Per-requirement to Understand this application

If you are a beginner and you need to understand what a web service is then you can read the

article of the author Vidya Vrat Agarwal sir; the article is .NET Web Services.

I hope you read it if you are unfamiliar with web services.

http://www.c-sharpcorner.com/authors/84c85b/vidya-vrat-agarwal.aspx
http://www.c-sharpcorner.com/UploadFile/84c85b/net-web-services/

58

What is web services ?

A "web service is the communication platform between two different or same

platform applications that allows to use their web method."

In the preceding definition you observed that I used the two main points in the definition of web

service; they are different or same platform application and the second is web method.

so let us learn some basic about it .

What does different or same application and platform mean

It means that I can create a web service in any language, such as Java or other languages and that

the language web service can be used in a .Net based application and also a .Net web service or

in another application to exchange the information.

What does web method mean

The method in web services always start with [webMethod] attributes, it means that it is a web

method that is accessible anywhere, the same as my web application.

to understand more clear let us ,I represent all above given definitions explanation in

following diagram

59

In the above diagram,I have shown,how the Asp.net Web Service is used in different types of

applications means i am trying to explain that I can create a web service in any language, such

as Java or other languages and that the language web service can be used in a .Net based

application as wel as java or other applications and you can also use .Net based web application

in Java applications means web Services dont have a any platform restrictions.

I hope you understand the basics of a web service.

So let us start to create the web service.

Note

If you closely observe that ,there is no separate web service template in .Framework 2010 as you

see in 2008 while adding a project or web site it might be because of WCF.

So let us start using a different way to add a web service using a template

1. "Start" - "All Programs" - "Microsoft Visual Studio 2010"

2. "File" - "New Project" - "C#" - "Empty Web Application" (to avoid adding a master

page)

3. Provide the web site a name such as "agetodays" or another as you wish and specify the

location

60

4. Then right-click on Solution Explorer - "Add New Item" - you see the web service

templates

Select Web Service Template and click on add button. then after that the Solution Explorer look

like as follows.

Then open the Webservice.cs class and write the following method followed by [webMethod]

attribute as in.

61

1. [WebMethod]

2. public int converttodaysweb(int day, int month, int year)

3. {

4. DateTime dt = new DateTime(year, month, day);

5. int datetodays = DateTime.Now.Subtract(dt).Days;

6. return datetodays;

7. }

In the code above I have declared a one integer method named converttodaysweb with the three

parameters day, month and year for accepting day, month and year from the user.

Then after that I created an object of date time and passed the those variables that I get from the

users. I declared another variable in the method that is age today to store the number of days

remaining from the user's input date to the current date and finally I return that variable..

The webservice.cs file will then look as in the following

1. using System;

2. using System.Collections.Generic;

3. using System.Web;

4. using System.Web.Services;

5. ///<summary>

6. /// Summary description for UtilityWebService

7. ///</summary>

8. [WebService(Namespace = "http://tempuri.org/")]

9. [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

10. // To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment

 the following line.

11. // [System.Web.Script.Services.ScriptService]

12. public class WebService: System.Web.Services.WebService

13. {

14. public WebService()

15. {

16. //Uncomment the following line if using designed components

17. //InitializeComponent();

18. }

19. [WebMethod]

20. public int converttodaysweb(int day, int month, int year)

21. {

22. DateTime dt = new DateTime(year, month, day);

23. int datetodays = DateTime.Now.Subtract(dt).Days;

24. return datetodays;

25.
26. }

27.

62

28. }

Now run the application that look like as follows.

Now in the above we see our method that we are created in the webservice.cs file, so click on

that method and provide input values and click on the "invoke" link as in.

63

The output will be as follows

In the screen above you see that the output is 8671, that is the days from the input date.

64

UNIT –IV

TWO MARKS

1. What are the uses of server side controls? .NET wants you to use server side controls that

can often generate unnecessary trips back to the server by default. Plus, .NET also want to make

the determination as to how will acts with various browsers. While not impossible, it is make it

much more cumbersome to create custom workaround for special situations. Not to mention the

facts that new browsers are released in between .NET services pack updates.

2. List out the server side state management options supported by ASP.NET.

Application states

Session state

Profile properties

Database support

3. Differentiate the postback events with nonpostback events?

Post back events are those that cause the form to be posted back to the server immediately. In

contrast, many event are considered nonpostback in that the form isn’t posted back it the server

immediately. Instead these events are cached by the control until the next time a post back event

occurs.

4. What is WSDL?

A lot of work is being done for you automatically. HTML pages describing your web services

and its methods are generated and this page includes links to pages in which the methods can be

tested.

5. List down the events in life cycle of a web page?

Initialize, load view state, process postback data, load, handle postback events, prerender, save

state, render, dispose

6. Define the prerender event in life cycle of a web page?

This is your last chance to modify the output the output prior to rendering using the

OnPreRender () method.

7. Define Client-side support?

65

You make use of a web service by writing client code that acts as though it were communicating

directly with a local object, but in reality communicates with host server through a proxy.

8. Define server-side support?

While creating a web service requires no special programming on your part, you need only write

the implementing code, add the [web method] attribute and let the server do rest.

9. What is SOAP?

SOAP is a lightweight, message-based protocol built on XML, HTTP and SMTP. Two other

protocols are desirable, but not required. For a client to a use a SOAP-enabled web service.

10. Define web form life cycle?

The life cycle begins with request for the page, which cause the server to load it. When the

request is complete, the page is unloading.

UNIT -V

THE CLR AND THE .NET FRAMEWORK

Assemblies

The programs presented so far have stood on their own except for dependence on a few system-

provided classes such as System. Console. It is far more common, however, for real-world

applications to consist of several different pieces, each compiled separately. For example, a

corporate application might depend on several different components, including some developed

internally and some purchased from independent software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical

organizational system. Namespaces are used both as an "internal" organization system for a

program, and as an "external" organization system — a way of presenting program elements that

are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly may contain types,

the executable code used to implement these types, and references to other assemblies.

66

There are two main kinds of assemblies: applications and libraries. Applications have a main

entry point and usually have a file extension of .exe; libraries do not have a main entry point, and

usually have a file extension of .dll.

To demonstrate the use of namespaces and assemblies, this section revisits the "hello, world"

program presented earlier, and splits it into two pieces: a class library that provides messages and

a console application that displays them.

The class library will contain a single class named HelloMessage. The example

// HelloLibrary.cs

namespace Microsoft.CSharp.Introduction

{

 public class HelloMessage

 {

 public string Message {

 get {

 return "hello, world";

 }

 }

 }

}

shows the HelloMessage class in a namespace named Microsoft.CSharp.Introduction. The

HelloMessage class provides a read-only property named Message. Namespaces can nest, and

the declaration

namespace Microsoft.CSharp.Introduction

{...}

is shorthand for several levels of namespace nesting:

namespace Microsoft

{

 namespace CSharp

 {

 namespace Introduction

 {...}

 }

}

The next step in the componentization of "hello, world" is to write a console application that uses

the HelloMessage class. The fully qualified name for the class —

Microsoft.CSharp.Introduction.HelloMessage — could be used, but this name is quite long and

unwieldy. An easier way is to use a "using namespace directive," which makes it possible to use

all of the types in a namespace without qualification. The example

67

// HelloApp.cs

using Microsoft.CSharp.Introduction;

class HelloApp

{

 static void Main() {

 HelloMessage m = new HelloMessage ();

 System.Console.WriteLine(m.Message);

 }

}

shows a using namespace directive that refers to the Microsoft.CSharp.Introduction namespace.

The occurrences of HelloMessage are shorthand for

Microsoft.CSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliases. A using alias directive defines an alias for a

type. Such aliases can be useful in situation in which name collisions occur between two class

libraries, or when a small number of types from a much larger namespace are being used. The

example

using MessageSource = Microsoft.CSharp.Introduction.HelloMessage;

shows a using alias directive that defines MessageSource as an alias for the HelloMessage class.

The code we have written can be compiled into a class library containing the class HelloMessage

and an application containing the class HelloApp. The details of this compilation step might

differ based on the compiler or tool being used. Using the command-line compiler provided in

Visual Studio .NET, the command-line invocations are

csc /target:library HelloLibrary.cs

csc /reference:HelloLibrary.dll HelloApp.cs

which produce a class library named HelloLibrary.dll and an application named HelloApp.exe.

Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new

version of a component is source compatible with a previous version if code that depends on the

previous version can, when recompiled, work with the new version. In contrast, a new version of

a component is binary compatible if an application that depended on the old version can, without

recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source

compatibility. In fact, some languages contain flaws that make it impossible, in general, to

evolve a class over time without breaking at least some client code.

68

As an example, consider the situation of a base class author who ships a class named Base. In the

first version, Base contains no F method. A component named Derived derives from Base, and

introduces an F. This Derived class, along with the class Base on which it depends, is released to

customers, who deploy to numerous clients and servers.

// Author A

namespace A

{

 public class Base // version 1

 {

 }

}

// Author B

namespace B

{

 class Derived: A.Base

 {

 public virtual void F() {

 System.Console.WriteLine("Derived.F");

 }

 }

}

From this point, the versioning trouble begins. The author of Base produces a new version,

giving it its own F method.

// Author A

namespace A

{

 public class Base // version 2

 {

 public virtual void F() { // added in version 2

 System.Console.WriteLine("Base.F");

 }

 }

}

This new version of Base should be both source and binary compatible with the initial version.

(If it weren't possible to simply add a method then a base class could never evolve.)

Unfortunately, the new F in Base makes the meaning of Derived's F unclear. Did Derived mean

to override Base's F? This seems unlikely, since when Derived was compiled, Base did not even

have an F! Further, if Derived's F does override Base's F, then it must adhere to the contract

specified by Base — a contract that was unspecified when Derived was written! In some cases,

this is impossible. For example, Base's F might require that overrides of it always call the base.

Derived's F could not possibly adhere to such a contract.

69

C# addresses this versioning problem by requiring developers to state their intent clearly . In the

original code example, the code was clear, since Base did not even have an F. Clearly, Derived's

F is intended as a new method rather than an override of a base method, since no base method

named F exists.

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still

clear — Derived's F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear — the author of Derived may

intend its F to override Base's F, or to hide it. Since the intent is unclear, the compiler produces a

warning, and by default makes Derived's F hide Base's F. This course of action duplicates the

semantics for the case in which Derived is not recompiled. The warning that is generated alerts

Derived's author to the presence of the F method in Base.

If Derived's F is semantically unrelated to Base's F, then Derived's author can express this intent

— and, in effect, turn off the warning–by using the new keyword in the declaration of F.

// Author A

namespace A

{

 public class Base // version 2

 {

 public virtual void F() { // added in version 2

 System.Console.WriteLine("Base.F");

 }

 }

}

// Author B

namespace B

{

 class Derived: A.Base // version 2a: new

 {

 new public virtual void F() {

 System.Console.WriteLine("Derived.F");

 }

 }

}

On the other hand, Derived's author might investigate further, and decide that Derived's F should

override Base's F. This intent can be specified by using the override keyword, as shown below.

// Author A

namespace A

{

 public class Base // version 2

 {

70

 public virtual void F() { // added in version 2

 System.Console.WriteLine("Base.F");

 }

 }

}

// Author B

namespace B

{

 class Derived: A.Base // version 2b: override

 {

 public override void F() {

 base.F();

 System.Console.WriteLine("Derived.F");

 }

 }

}

The author of Derived has one other option, and that is to change the name of F, thus completely

avoiding the name collision. Although this change would break source and binary compatibility

for Derived, the importance of this compatibility varies depending on the scenario. If Derived is

not exposed to other programs, then changing the name of F is likely a good idea, as it would

improve the readability of the program — there would no longer be any confusion about the

meaning of F.

Attributes

C# is an imperative language, but like all imperative languages it does have some declarative

elements. For example, the accessibility of a method in a class is specified by declaring it public,

protected, internal, protected internal, or private. C# generalizes this capability, so that

programmers can invent new kinds of declarative information, attach this declarative information

to various program entities, and retrieve this declarative information at run-time. Programs

specify this additional declarative information by defining and using attributes.

For instance, a framework might define a HelpAttribute attribute that can be placed on program

elements such as classes and methods, enabling developers to provide a mapping from program

elements to documentation for them. The example

using System;

[AttributeUsage(AttributeTargets.All)]

public class HelpAttribute: Attribute

{

 public HelpAttribute(string url) {

 this.url = url;

 }

71

 public string Topic = null;

 private string url;

 public string Url {

 get { return url; }

 }

}

defines an attribute class named HelpAttribute that has one positional parameter (string url) and

one named parameter (string Topic). As explained this attribute may be referenced by its full

name, HelpAttribute, or by its implicit short name, Help. Positional parameters are defined by

the formal parameters for public instance constructors of the attribute class, and named

parameters are defined by public non-static read-write fields and properties of the attribute class.

The example

[Help("http://www.microsoft.com/.../Class1.htm")]

public class Class1

{

 [Help("http://www.microsoft.com/.../Class1.htm", Topic = "F")]

 public void F() {}

}

shows several uses of the Help attribute.

Attribute information for a given program element can be retrieved at run time by using

reflection support. The example

using System;

class Test

{

 static void Main() {

 Type type = typeof(Class1);

 object[] arr = type.GetCustomAttributes(typeof(HelpAttribute), true);

 if (arr.Length == 0)

 Console.WriteLine("Class1 has no Help attribute.");

 else {

 HelpAttribute ha = (HelpAttribute) arr[0];

 Console.WriteLine("Url = {0}, Topic = {1}", ha.Url, ha.Topic);

 }

 }

}

checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url values if

the attribute is present.

72

Reflection

Reflection objects are used for obtaining type information at runtime. The classes that give

access to the metadata of a running program are in the System.Reflection namespace.

The System.Reflection namespace contains classes that allow you to obtain information about

the application and to dynamically add types, values, and objects to the application.

Applications of Reflection

Reflection has the following applications:

 It allows view attribute information at runtime.

 It allows examining various types in an assembly and instantiate these types.

 It allows late binding to methods and properties

 It allows creating new types at runtime and then performs some tasks using those types.

Viewing MetaData

The MemberInfo object of the System.Reflection class needs to be initialized for discovering

the attributes associated with a class. To do this, you define an object of the target class, as:

System.Reflection.MemberInfo info = typeof(MyClass);

The following program demonstrates this:

using System;

[AttributeUsage(AttributeTargets.All)]

public class HelpAttribute : System.Attribute

{

 public readonly string Url;

 public string Topic // Topic is a named parameter

 {

 get

 {

 return topic;

 }

 set

 {

73

 topic = value;

 }

 }

 public HelpAttribute(string url) // url is a positional parameter

 {

 this.Url = url;

 }

 private string topic;

}

[HelpAttribute("Information on the class MyClass")]

class MyClass

{

}

namespace AttributeAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 System.Reflection.MemberInfo info = typeof(MyClass);

 object[] attributes = info.GetCustomAttributes(true);

 for (int i = 0; i < attributes.Length; i++)

 {

 System.Console.WriteLine(attributes[i]);

 }

 Console.ReadKey();

 }

 }

}

When it is compiled and run, it displays the name of the custom attributes attached to the class

MyClass:

HelpAttribute

Type Discovery

• This allows you to examine the types in an assembly.

Assemblies are the core unit of deployment. At design time, we can examine the CIL code in a

set of reference assemblies with a couple of external tools such as Reflector and ildasm to peek

into underlying metadata, MSIL code and the manifest.

74

But many times it is necessary to discover types at runtime, and this is the situation where .NET

Reflection can be used.

Reflecting on a Type

Reflection typically is the process of runtime type discovery to inspect metadata, CIL code, late

binding and self-generating code. At run time by using reflection, we can access the same "type"

information as displayed by the ildasm utility at design time. The reflection is analogous to

reverse engineering in which we can break an existing *.exe or *.dll assembly to explore defined

significant contents information, including methods, fields, events and properties.

You can dynamically discover the set of interfaces supported by a given type using the

System.Reflection namespace. This namespace contains numerous related types as follows:

Types Description

Assembly This static class allows you to load, investigate and manipulate an assembly.

AssemblyName Allows to exploration of abundant details behind an assembly.

EventInfo Information about a given event.

PropertyInfo Holds information of a specified property.

MethodInfo Contains information about a specified method.

Reflection typically is used to dump out the loaded assemblies list, their reference to inspect

methods, properties etcetera. Reflection is also used in the external disassembling tools such

Reflector, Fxcop and NUnit because .NET tools don't need to parse the source code similar to

C++.

Marshalling

Marshaling is the process of creating a bridge between managed code and unmanaged code; it is

the homer that carries messages from the managed to the unmanaged environment and reverse. It

is one of the core services offered by the CLR (Common Language Runtime.)

Because much of the types in unmanaged environment do not have counterparts in managed

environment, you need to create conversion routines that convert the managed types into

unmanaged and vice versa; and that is the marshaling process.

As a refresher, we call .NET code “managed” because it is controlled (managed) by the CLR.

Other code that is not controlled by the CLR is called unmanaged.

75

Remoting

C# Remoting Architecture

The .NET Remoting provides an inter-process communication between Application Domains by

using Remoting Framework. The applications can be located on the same computer , different

computers on the same network, or on computers across separate networks. The .NET Remoting

supports distributed object communications over the TCP and HTTP channels by using Binary

or SOAP formatters of the data stream.

The main three components of a Remoting Framework are :

1. C# Remotable Object

2. C# Remote Listener Application - (listening requests for Remote Object)

3. C# Remote Client Application - (makes requests for Remote Object)

The Remote Object is implemented in a class that derives from System.MarshalByRefObject .

You can see the basic workflow of .Net Remoting from the above figure. When a client calls the

Remote method, actually the client does not call the methods directly . It receives a proxy to the

remote object and is used to invoke the method on the Remote Object . Once the proxy receives

the method call from the Client , it encodes the message using appropriate formatter (Binary

Formatter or SOAP Formatter) according to the Configuration file. After that it sends the call

to the Server by using selected Channel (TcpChannel or HttpChannel). The Server side

channel receives the request from the proxy and forwards it to the Server on Remoting system,

which locates and invokes the methods on the Remote Object. When the execution of remote

method is complete, any results from the call are returned back to the client in the same way.

http://csharp.net-informations.com/remoting/remotable-object.htm
http://csharp.net-informations.com/remoting/remote-listener.htm
http://csharp.net-informations.com/remoting/remote-client.htm

76

Before an object instance of a Remotable type can be accessed, it must be created and initialized

by a process known as Activation. Activation is categorized in two models , they are Client-

activated Objects and Server-activated Objects.

C# Remote Activation

The real difference between client-activated and server-activated objects is that a server-

activated object is not really created when a client instantiates it. Instead, it is created as needed.

By default the .NET Framework ships with two formatters(Binary Formatter or SOAP Formatter

) and two channels(TcpChannel ,HttpChannel).

C# Remote Channels

C# Remote Formatters

Formatters and Channel are configured by using Configuration files. It can be easily Configured

by using XML-based files.

C# Remote Configuration

The .NET Remoting is easy to use and powerful, largely because it is based on the Common

Type System (CTS) and the Common Language Runtime (CLR).

Understanding Server Object Types

There are two types of server objects supported for remoting in .NET: well-known and client-

activated. The communication with well-known objects is established each time a message is

sent by the client. There is no permanent connection with a well-known object, as there is with

client-activated objects.

Well-known objects come in two varieties: singleton and single-call. With a well-known

singleton object, all messages for the object, from all clients, are dispatched to a single object

running on the server. The object is created when the server is started and is there to provide

service to any client that can reach it. Well-known objects must have a parameterless constructor.

With a well-known single-call object, each new message from a client is handled by a new

object. This is highly advantageous on server farms, where a series of messages from a given

client might be handled in turn by different machines depending on load balancing.

Client-activated objects are typically used by programmers who are creating dedicated servers,

which provide services to a client they are also writing. In this scenario, the client and the server

create a connection, and they maintain that connection until the needs of the client are fulfilled.

http://csharp.net-informations.com/remoting/remote-activation.htm
http://vb.net-informations.com/framework/what_is_net_framework.htm
http://csharp.net-informations.com/remoting/remoting-channel.htm
http://csharp.net-informations.com/remoting/remoting-formatters.htm
http://csharp.net-informations.com/remoting/remote-configuration.htm
http://vb.net-informations.com/framework/common_type_system.htm
http://vb.net-informations.com/framework/common_type_system.htm
http://vb.net-informations.com/framework/common_language_runtime.htm

77

Specifying a Server with an Interface

The best way to understand remoting is to walk through an example. Here, build a simple four-

function calculator class, like the one used in an earlier discussion on web services

Example 19-2. The Calculator interface
namespace Programming_CSharp

{

 using System;

 public interface ICalc

 {

 double Add(double x, double y);

 double Sub(double x, double y);

 double Mult(double x, double y);

 double Div(double x, double y);

 }

}

Save this in a file named ICalc.cs and compile it into a file named ICalc.dll. To create and

compile the source file in Visual Studio, create a new project of type C# Class Library, enter the

interface definition in the Edit window, and then select Build Build on the Visual Studio menu

bar. Alternatively, if you have entered the source code using Notepad, you can compile the file at

the command line by entering:

csc /t:library ICalc.cs

There are tremendous advantages to implementing a server through an interface. If you

implement the calculator as a class, the client must link to that class in order to declare instances

on the client. This greatly diminishes the advantages of remoting, because changes to the server

require the class definition to be updated on the client. In other words, the client and server

would be tightly coupled. Interfaces help decouple the two objects; in fact, you can later update

that implementation on the server, and as long as the server still fulfills the contract implied by

the interface, the client need not change at all.

Building a Server

To build the server used in this example, create CalcServer.cs in a new project of type C#

Console Application (be sure to include a reference to ICalc.dll) and then compile it by selecting

Build Build on the Visual Studio menu bar. Or, you can enter the code in Notepad, save it to a

file named CalcServer.cs, and enter the following at the command-line prompt:

csc /t:exe /r:ICalc.dll CalcServer.cs

78

The Calculator class implements ICalc. It derives from MarshalByRefObject so that it will

deliver a proxy of the calculator to the client application:

public class Calculator : MarshalByRefObject, ICalc

The implementation consists of little more than a constructor and simple methods to implement

the four functions.

In this example, you'll put the logic for the server into the Main() method of CalcServer.cs.

Your first task is to create a channel. Use HTTP as the transport because it is simple and you

don't need a sustained TCP/IP connection. You can use the HTTPChannel type provided by

.NET:

HTTPChannel chan = new HTTPChannel(65100);

Notice that you register the channel on TCP/IP port 65100

Next, register the channel with the CLR ChannelServices using the static method

RegisterChannel:

ChannelServices.RegisterChannel(chan);

This step informs .NET that you will be providing HTTP services on port 65100, much as IIS

does on port 80. Because you've registered an HTTP channel and not provided your own

formatter, your method calls will use the SOAP formatter by default.

Now you are ready to ask the RemotingConfiguration class to register your well-known object.

You must pass in the type of the object you want to register, along with an endpoint. An endpoint

is a name that RemotingConfiguration will associate with your type. It completes the address.

If the IP address identifies the machine and the port identifies the channel, the endpoint identifies

the actual application that will be providing the service. To get the type of the object, you can

call the static method GetType() of the Type class, which returns a Type object. Pass in the full

name of the object whose type you want:

Type calcType =

 Type.GetType("Programming_CSharp.Calculator");

Also pass in the enumerated type that indicates whether you are registering a SingleCall or

Singleton:

RemotingConfiguration.RegisterWellKnownServiceType

 (calcType, "theEndPoint",WellKnownObjectMode.Singleton);

The call to RegisterWellKnownServiceType does not put one byte on the wire. It simply uses

reflection to build a proxy for your object.

79

Now you're ready to rock and roll. Example 19-3 provides the entire source code for the server.

Example 19-3. The Calculator server
using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

namespace Programming_CSharp

{

 // implement the calculator class

 public class Calculator : MarshalByRefObject, ICalc

 {

 public Calculator()

 {

 Console.WriteLine("Calculator constructor");

 }

 // implement the four functions

 public double Add(double x, double y)

 {

 Console.WriteLine("Add {0} + {1}", x, y);

 return x+y;

 }

 public double Sub(double x, double y)

 {

 Console.WriteLine("Sub {0} - {1}", x, y);

 return x-y;

 }

 public double Mult(double x, double y)

 {

 Console.WriteLine("Mult {0} * {1}", x, y);

 return x*y;

 }

 public double Div(double x, double y)

 {

 Console.WriteLine("Div {0} / {1}", x, y);

 return x/y;

 }

 }

 public class ServerTest

 {

 public static void Main()

 {

 // create a channel and register it

 HttpChannel chan = new HttpChannel(65100);

 ChannelServices.RegisterChannel(chan);

 Type calcType =

 Type.GetType("Programming_CSharp.Calculator");

 // register our well-known type and tell the server

 // to connect the type to the endpoint "theEndPoint"

 RemotingConfiguration.RegisterWellKnownServiceType

 (calcType,

80

 "theEndPoint",

 WellKnownObjectMode.Singleton);

 // "They also serve who only stand and wait."); (Milton)

 Console.WriteLine("Press [enter] to exit...");

 Console.ReadLine();

 }

 }

}

When you run this program, it prints its self-deprecating message:

Press [enter] to exit...

and then waits for a client to ask for service.

Building the Client

The client must also register a channel, but because you are not listening on that channel, you

can use channel 0:

HTTPChannel chan = new HTTPChannel(0);

ChannelServices.RegisterChannel(chan);

The client now need only connect through the remoting services, passing a Type object

representing the type of the object it needs (in our case, the ICalc interface) and the URI

(Uniform Resource Identifier) of the implementing class:

MarshalByRefObject obj =

 RemotingServices.Connect

 (typeof(Programming_CSharp.ICalc),

 "http://localhost:65100/theEndPoint");

In this case, the server is assumed to be running on your local machine, so the URI is

http://localhost, followed by the port for the server (65100), followed in turn by the endpoint you

declared in the server (theEndPoint).

The remoting service should return an object representing the interface you've requested. You

can then cast that object to the interface and begin using it. Because remoting cannot be

guaranteed (the network might be down, the host machine may not be available, and so forth),

you should wrap the usage in a try block:

try

{

 Programming_CSharp.ICalc calc =

 obj as Programming_CSharp.ICalc;

 double sum = calc.Add(3,4);

81

You now have a proxy of the calculator operating on the server, but usable on the client, across

the process boundary and, if you like, across the machine boundary. Example 19-4 shows the

entire client (to compile it, you must include a reference to ICalc.dll as you did with

CalcServer.cs).

Example 19-4. The remoting Calculator client
namespace Programming_CSharp

{

 using System;

 using System.Runtime.Remoting;

 using System.Runtime.Remoting.Channels;

 using System.Runtime.Remoting.Channels.Http;

 public class CalcClient

 {

 public static void Main()

 {

 int[] myIntArray = new int[3];

 Console.WriteLine("Watson, come here I need you...");

 // create an Http channel and register it

 // uses port 0 to indicate won't be listening

 HttpChannel chan = new HttpChannel(0);

 ChannelServices.RegisterChannel(chan);

 // get my object from across the http channel

 MarshalByRefObject obj =

 (MarshalByRefObject) RemotingServices.Connect

 (typeof(Programming_CSharp.ICalc),

 "http://localhost:65100/theEndPoint");

 try

 {

 // cast the object to our interface

 Programming_CSharp.ICalc calc =

 obj as Programming_CSharp.ICalc;

 // use the interface to call methods

 double sum = calc.Add(3.0,4.0);

 double difference = calc.Sub(3,4);

 double product = calc.Mult(3,4);

 double quotient = calc.Div(3,4);

 // print the results

 Console.WriteLine("3+4 = {0}", sum);

 Console.WriteLine("3-4 = {0}", difference);

 Console.WriteLine("3*4 = {0}", product);

 Console.WriteLine("3/4 = {0}", quotient);

 }

 catch(System.Exception ex)

 {

 Console.WriteLine("Exception caught: ");

 Console.WriteLine(ex.Message);

82

 }

 }

 }

}

Output on client:

Watson, come here I need you...

3+4 = 7

3-4 = -1

3*4 = 12

3/4 = 0.75

Output on server:

Calculator constructor

Press [enter] to exit...

Add 3 + 4

Sub 3 - 4

Mult 3 * 4

Div 3 / 4

The server starts up and waits for the user to press Enter to signal that it can shut down. The

client starts and displays a message to the console. The client then calls each of the four

operations. You see the server printing its message as each method is called, and then the results

are printed on the client.

It is as simple as that; you now have code running on the server and providing services to your

client.

Using SingleCall

To see the difference that SingleCall makes versus Singleton, change one line in the server's

Main() method. Here's the existing code:

RemotingConviguration.RegisterWellKnownServiceType

 ("CalcServerApp","Programming_CSharp.Calculator",

 "theEndPoint",WellKnownObjectMode.Singleton);

Change the object to SingleCall:

RemotingConviguration.RegisterWellKnownServiceType

 ("CalcServerApp","Programming_CSharp.Calculator",

 "theEndPoint",WellKnownObjectMode.SingleCall);

The output reflects that a new object is created to handle each request:

Calculator constructor

Press [enter] to exit...

Calculator constructor

Add 3 + 4

Calculator constructor

Sub 3 - 4

Calculator constructor

83

Mult 3 * 4

Calculator constructor

Div 3 / 4

Threads

Operating systems use processes to separate the different applications that they are executing.

Threads are the basic unit to which an operating system allocates processor time, and more than

one thread can be executing code inside that process. Each thread maintains exception handlers,

a scheduling priority, and a set of structures the system uses to save the thread context until it is

scheduled. The thread context includes all the information the thread needs to seamlessly resume

execution, including the thread's set of CPU registers and stack, in the address space of the

thread's host process.

The .NET Framework further subdivides an operating system process into lightweight managed

subprocesses, called application domains, represented by System.AppDomain. One or more

managed threads (represented by System.Threading.Thread) can run in one or any number of

application domains within the same managed process. Although each application domain is

started with a single thread, code in that application domain can create additional application

domains and additional threads. The result is that a managed thread can move freely between

application domains inside the same managed process; you might have only one thread moving

among several application domains.

An operating system that supports preemptive multitasking creates the effect of simultaneous

execution of multiple threads from multiple processes. It does this by dividing the available

processor time among the threads that need it, allocating a processor time slice to each thread

one after another. The currently executing thread is suspended when its time slice elapses, and

another thread resumes running. When the system switches from one thread to another, it saves

the thread context of the preempted thread and reloads the saved thread context of the next thread

in the thread queue.

The length of the time slice depends on the operating system and the processor. Because each

time slice is small, multiple threads appear to be executing at the same time, even if there is only

one processor. This is actually the case on multiprocessor systems, where the executable threads

are distributed among the available processors.

When to Use Multiple Threads

Software that requires user interaction must react to the user's activities as rapidly as possible to

provide a rich user experience. At the same time, however, it must do the calculations necessary

to present data to the user as fast as possible. If your application uses only one thread of

execution, you can combine asynchronous programming with .NET remoting or XML Web

services created using ASP.NET to use the processing time of other computers in addition to that

of your own to increase responsiveness to the user and decrease the data processing time of your

application. If you are doing intensive input/output work, you can also use I/O completion ports

to increase your application's responsiveness.

https://msdn.microsoft.com/en-us/library/system.appdomain%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/system.threading.thread%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa719598%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa720332%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa719556%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa719556%28v=vs.71%29.aspx

84

Advantages of Multiple Threads

Using more than one thread, however, is the most powerful technique available to increase

responsiveness to the user and process the data necessary to get the job done at almost the same

time. On a computer with one processor, multiple threads can create this effect, taking advantage

of the small periods of time in between user events to process the data in the background. For

example, a user can edit a spreadsheet while another thread is recalculating other parts of the

spreadsheet within the same application.

Without modification, the same application would dramatically increase user satisfaction when

run on a computer with more than one processor. Your single application domain could use

multiple threads to accomplish the following tasks:

 Communicate over a network, to a Web server, and to a database.

 Perform operations that take a large amount of time.

 Distinguish tasks of varying priority. For example, a high-priority thread manages time-

critical tasks, and a low-priority thread performs other tasks.

 Allow the user interface to remain responsive, while allocating time to background tasks.

Disadvantages of Multiple Threads

It is recommended that you use as few threads as possible, thereby minimizing the use of

operating-system resources and improving performance. Threading also has resource

requirements and potential conflicts to be considered when designing your application. The

resource requirements are as follows:

 The system consumes memory for the context information required by processes,

AppDomain objects, and threads. Therefore, the number of processes, AppDomain

objects, and threads that can be created is limited by available memory.

 Keeping track of a large number of threads consumes significant processor time. If there

are too many threads, most of them will not make significant progress. If most of the

current threads are in one process, threads in other processes are scheduled less

frequently.

 Controlling code execution with many threads is complex, and can be a source of many

bugs.

 Destroying threads requires knowing what could happen and handling those issues.

Providing shared access to resources can create conflicts. To avoid conflicts, you must

synchronize, or control the access to, shared resources. Failure to synchronize access properly (in

the same or different application domains) can lead to problems such as deadlocks (in which two

threads stop responding while each waits for the other to complete) and race conditions (when an

anomalous result occurs due to an unexpected critical dependence on the timing of two events).

The system provides synchronization objects that can be used to coordinate resource sharing

among multiple threads. Reducing the number of threads makes it easier to synchronize

resources.

85

Resources that require synchronization include:

 System resources (such as communications ports).

 Resources shared by multiple processes (such as file handles).

 The resources of a single application domain (such as global, static, and instance fields)

accessed by multiple threads.

Threading and Application Design

In general, using the ThreadPool class is the easiest way to handle multiple threads for relatively

short tasks that will not block other threads and when you do not expect any particular

scheduling of the tasks. However, there are a number of reasons to create your own threads:

 If you need a task to have a particular priority.

 If you have a task that might run a long time (and therefore block other tasks).

 If you need to place threads into a single-threaded apartment (all ThreadPool threads are

in the multithreaded apartment).

 If you need a stable identity associated with the thread. For example, you should use a

dedicated thread to abort that thread, suspend it, or discover it by name.

UNIT-V

 TWO MARKS

1. What are assemblies?

An assembly is a collection of file that appear to be a single dill or executable (exe) Assemblies

are .NET unit of reuse, versioning, security and deployment.

2. What is the difference between single call and singleton?

With a well-known singleton object, all messages for the object, from all clients, are dispatched

to a single objet running on the server. With a well-known single-call object, each new message

from a client is handling by a new object.

3. Define metadata?

Assemblies are the .NET unit of reuse, versioning, security, and deployment. In addition to the

objects code for the application, assemblies contain resources.

4. What is a PF file?

On disk, assemblies are portable executable files, PF files are not new. The format of a.NET PE

file is exactly the same as a normal windows PE files. PE files are implemented as DLLS or

EXEs.it consists of one or more modules.

https://msdn.microsoft.com/en-us/library/system.threading.threadpool%28v=vs.71%29.aspx

86

5. Define mulimodule assemblies

A multimodule assembly consists of multiple files. The assembly manifest in this case can reside

in a standalone file, or it can be embedded in one of the modules. when the assembly is referred

the runtime loads the file containing the manifest and then loads the required modules as needed.

6. Define shared assemblies

If you want to share your assembly, it must meet certain stringent requirement Your assembly

must have a strong name. strong name are globally unique. To share your assembly place it in

the global assembly cache .this is an area of the file system set aside by the CLR to hold shared

assemblies.

7. Define private assemblies

Assemblies come in two flavors: Private and shared. Private assemblies are intended to be used

by only one application. Shared assemblies are intended to be shared among many applications.

8. Define attributes

Attributes are a mechanism for adding metadata, such as compiler instructions and other data

about your data, method, and classes to the program itself. Attributes are inserted into the

metadata and are visible through ILDasam and other metadata-reading tools.

9. Define reflection

Reflection is the process by which a program can read its own metadata or metadata from

another program. A program is said to reflect on itself or on another program, extracting

metadata from the reflected assembly and using that metadata either to inform the user or to

modify the program’s behavior.

10. Define: Marshaling

The process of moving an object to be remoted is called marshaling.

	C#Syllabus.pdf (p.1-2)
	INTENDED OUTCOMES:
	TEXT BOOKS:
	REFERENCE BOOKS:

	lecture plan- C#.pdf (p.3-6)
	Total no. of Lecture Hours : 31
	Total no. of Tutorial Hours : 14
	Total no. of Hours : 45
	TEXT BOOKS :
	REFERENCE BOOKS:

	Staff – In Charge HOD/CSE

	c# unit 1 - 5.pdf (p.7-92)
	Strong Programming Features of C#
	Defining Variables
	Initializing Variables
	Value Type
	Reference Type
	Pointer Type
	Declaring Arrays
	Creating a String Object
	Defining a Structure
	Declaring enum Variable
	Defining a Class
	Declaring Interfaces
	Declaring Delegates
	Syntax
	Windows Application Form
	Windows Form Methods

	c# tablelayoutpanel
	TableLayoutPanel RowSpan or ColumnSpan

	A quick look at Database Technologies provided by Mircosoft
	Data providers in .net
	Disconnected Architecture in ADO.NET
	Connected Architecture of ADO.NET
	Command Object in ADO.NET
	ADO.NET Dataset vs DataReader
	Differences Between DataSet and DataReader
	Visual Studio ASP.NET Web Applications
	Windows Forms
	Web Forms
	Comparing Windows Forms and Web Forms

	Event Handling in Windows Forms
	Introduction to Events in Windows Forms
	Introduction to Event Handlers in Windows Forms
	Creating Event Handlers on the Windows Forms Designer
	Creating Default Event Handlers on the Windows Forms Designer
	Creating Event Handlers at Run Time for Windows Forms
	Connecting Multiple Events to a Single Event Handler in Windows Forms
	Creating Event Handlers in the Visual Basic Code Editor
	Mouse and Keyboard Events in Windows Forms
	Order of Events in Windows Forms
	Standard Click Event Firing Behavior
	Individual Controls

	Control Painting Behavior

	Determining Which Modifier Key Was Pressed
	Overriding Base Methods Using the Visual Basic Code Editor
	Introduction to Web Service with Example in ASP.NET
	Applications of Reflection

	C# Remoting Architecture
	Example 19-2. The Calculator interface
	Example 19-3. The Calculator server
	Example 19-4. The remoting Calculator client
	Using SingleCall
	When to Use Multiple Threads
	Advantages of Multiple Threads
	Disadvantages of Multiple Threads
	Threading and Application Design

