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                                                            SEMESTER VI                                                        L T P C 

15PHU603A                                        MATHEMATICAL PHYSICS    5  -  -  5 

Scope: Mathematics is the back-born of science and engineering.  So, it is necessary for a physics student 

to be familiar with different methods in mathematics.   

Objectives: The objective of this paper is to give a basic idea about different methods of mathematics, 

used in Physics. 

 

UNIT - I           

 Operations with Del operator - Gradient of scalar field, physical interpretation -Divergence of a 

vector function - curl of a vector - curl of the curl - The Laplacian operator - Line, surface and volume 

integrals - Important vector identities - Gauss divergence theorem - Problems in Gauss divergence 

theorem - Stoke’s theorem and its proof with simple problems - Classification of vector fields - 

Orthogonal, curvilinear coordinates, differential operators interms of orthogonal curvilinear coordinates - 

gradient, curl and Laplacian in spherical polar coordinates and cylindrical coordinates. 

Tensors – Contrvariant and covariant tensor 

 

UNIT - II           

 Matrices-Special types of matrices -Transpose of a matrix - Conjugate of a matrix - Conjugate 

transpose of a matrix-symmetric and antisymmetric matrices - Hermitian and skew - Hermitian matrices - 

Determinant of a matrix - Adjoint of a matrix - Inverse of a matrix -Unitary matrices - Rank of a matrix 

and simple problems - Characteristic matrix and characteristic equation - Characteristic vector - Methods 

of finding the Eigen values and Eigen vectors of a matrix. 

 

UNIT - III           

Differential Equations: Introduction – Solution in simple cases of ordinary differential equations of 

second order – Simple problems from Physics – Partial Differential equations – Special types of 

differential equations arising in Physics. 

Group Theory: Introduction in sets, mappings and binary operations – groups – elementary properties of 

groups – The centre of a group – Cosets or consents of a subgroup – cyclic group. 

  

UNIT - IV         

Functions of a complex variable – single and multivalued functions – Cauchy – Riemann differential 

equation – analytical – line integrals of complex function – Cauchy’s integral theorem and integral 

formula – derivatives of an analytic function – Taylor’s variable – Residue and Cauchy’s residue theorem 

– application to the equation of definite integrals – conformal transformation – Invariance of the 

Laplacian. 

 

UNIT – V 

Arithmetic mean - Median - Quartiles - Deciles - Percentiles - Mode - Empirical relation between mean, 

median and mode - Geometric mean, harmonic mean - Relation between arithmetic mean, geometric 

mean and harmonic mean - Range - Range meanor average deviation - Standard deviation - Variance and 

mean square deviation. 
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KARPAGAM ACADEMY OF HIGHER EDUCATION 

 (Deemed to be University Established Under Section 3 of UGC Act 1956) 

Coimbatore – 641 021.  

LECTURE PLAN 

DEPARTMENT OF PHYSICS 

 
      STAFF NAME: N.GEETHA 

      SUBJECT NAME: MATHEMATICAL PHYSICS                                      SUB.CODE:15PHU603A 

      SEMESTER: VI                                   CLASS:  III B.Sc (PHY)  

UNIT-I 

S.

No 

Lecture 

Duration 

(Hr) 

 

Topics to be covered 

 

Support 

Material 

1 1hr Operations with Del operator T1:18 

2 1hr Gradient of scalar field, physical interpretation T1:18 

3 1hr Divergence of a vector function T1:24 

4 1hr curl of a vector - curl of the curl T1:28-29 

5 1hr The Laplacian operator T1:29 

6 1hr Line, surface and volume integrals - Important 

vector identities 

T1:22;32 

7 1hr Gauss divergence theorem - Problems in Gauss 

divergence theorem 

T1:36 

8 1hr Stoke’s theorem and its proof with simple problems T1:47 

9 1hr Classification of vector fields        T1:59 

10 1hr Orthogonal, curvilinear coordinates, differential 

operators interms of orthogonal curvilinear 

coordinates 

T1:64 

11 1hr Continuation  

12 1hr Gradient, curl and Laplacian in spherical polar 

coordinates and cylindrical coordinates. 

 

T!:66 

13 1hr Tensors – Contravariant and covariant tensor 

 

 

T1:187 

14  1hr Revision  

Total no. of hours planned for unit-I 14 
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UNIT-II 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                           

                             

                            

 

 
                                                

S.

N

o 

Lecture 

Duration 

(Hr) 

 

Topics to be covered 

 

Support 

Material 
1 1hr Introduction  

2 1hr Matrices-Special types of matrices T1:109 

3 1hr Transpose of a matrix  

4 1hr Conjugate of a matrix - Conjugate transpose of a 

matrix 

 

T1:112,114 

5 1hr symmetric and antisymmetric matrices T1:115 

6 1hr Hermitian and skew - Hermitian matrices T1:117 

7 1hr Determinant of a matrix  T1:119,124 

8 1hr  Adjoint of a matrix 

9 1hr Inverse of a matrix -Unitary matrices T1:124,130 

10 1hr Rank of a matrix and simple problems T1:134 

11 1hr Characteristic matrix and characteristic equation - T1:138,139 

12 1hr Characteristic vector 

13 1hr Methods of finding the Eigen values and Eigen 

vectors of a matrix. 

T1:159 

14          1hr Revision  

                                              Total no. of hours planned for unit-II 14 
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                                                              UNIT-III 

 

 

  

S.N

o 

Lecture 

Duratio

n 

(Hr) 

 

Topics to be covered 

 

Support 

Material 

1 1hr Differential Equations: Introduction T1:394 

2 1hr Solution in simple cases of ordinary differential 

equations of second order 

T1:395 

3 1hr – Simple problems from Physics  

4 1hr Partial Differential equations  

5 1hr Special types of differential equations arising in 

Physics. 

 

 

6 1hr Continuation  

7 1hr Group Theory T1:814 

8 1hr Introduction in sets, mappings and binary 

operations 

 

9 1hr Continuation  

10 1hr groups – elementary properties of groups T1:815 

11 1hr The centre of a group  

12 1hr Cosets or consents of a subgroup T1:821 

13 1hr Continuation  

14 1hr cyclic group T1:816 

15  1hr Revision  

Total no. of hours planned for unit-III 15 
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 UNIT-IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         

 

 

 

 

 

 

S.No 

 

 

Lecture 

Duration 

(Hr) 

 

Topics to be covered 

 

Support 

Material 

    

1 1hr Introduction  

2 1hr Functions of complex variable T1:293 

3 1hr Single and multi valued functions T1:294 

4 1hr Cauchy Riemann differential 

equation,Analytical line integrals of complex 

function 

T1:296 

5 1hr Cauchy’s integral theorem and its formula T1:309,318 

6 1hr Derivatives of an analytic function  

7 1hr Taylor’s variable T1:319 

8 1hr Residue and Cauchy residue theorem 

9 1hr Application to the equation of definite 

integrals 

T1:324 

10 1hr Conformal transformation T1:332 

11 1hr continuation T1:341 

12 1hr Invariance of the laplacian 

13 1/2hr continuation T1:342 

            

1/2hr 

Revision  

                                              Total no. of hours planned for unit-IV 13 
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S.

No 

 

 

 

Lecture 

Duratio

n 

(Hr) 

 

Topics to be covered 

 

Support 

Material 

1 1hr Introduction  

2 1hr Arithmetic mean  T1:766 

3 1hr  Median  T1:768 

4 1hr Quartiles  

5 1hr Deciles   

6 1hr Percentiles  

7 1hr Mode T1:768 

8 1hr Empirical relation between mean, 

median and mode 

 

9 1hr Geometric mean, harmonic mean T1:767 

10 1hr Relation between arithmetic mean, 

geometric mean and harmonic mean 

 

11 1hr Continuation  

12 1hr Range T1:770 

13 1hr Range mean or average deviation  T1:770 

14 1hr Standard Deviation T1:771 

15 1hr  Variance and mean square deviation  

16 1hr Revision  

17 1hr Old question paper discussion  

18 1hr Old question paper discussion  

19 1hr Old question paper discussion  

                                              Total no. of hours planned 

for unit-v 

19 
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Textbooks        : T1-Sathya Prakash,2002, Mathematical physics, fourth edition, S. chand & company,  
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UNIT-I 

 

SYLLABUS 

 

 

 

 

 

 

 

 

GRADIENT OF SCALAR FIELD,PHYSICAL INTERPRETATION: 

 

The gradient of a scalar field is a vector field and whose magnitude is the rate of 

change and which points in the direction of the greatest rate of increase of the scalar field. 

If the vector is resolved, its components represent the rate of change of the scalar field 

with respect to each directional component. Hence for a two-dimensional scalar 

field ∅ (x,y).  

 

And for a three-dimensional scalar field ∅ (x, y, z) 

 

 

The gradient of a scalar field is the derivative of f in each direction. Note that the gradient 

of a scalar field is a vector field. An alternative notation is to use 

the del or nabla operator, ∇ f = grad f. 

 

Operations with Del operator - Gradient of scalar field, physical interpretation -

Divergence of a vector function - curl of a vector - curl of the curl - The Laplacian 

operator - Line, surface and volume integrals - Important vector identities - Gauss 

divergence theorem - Problems in Gauss divergence theorem - Stoke’s theorem and its 

proof with simple problems - Classification of vector fields - Orthogonal, curvilinear 

coordinates, differential operators interms of orthogonal curvilinear coordinates - 

gradient, curl and Laplacian in spherical polar coordinates and cylindrical coordinates. 

Tensors – Contravariant and covariant tensor 
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For a three dimensional scalar, its gradient is given by: 

 

Gradient is a vector that represents both the magnitude and the direction of the maximum 

space rate of increase of a scalar.  

 

dV = (∇ V) ∙ dl, where dl = ai ∙ dl 

 

In Cartesian 

 

 

In Cylindrical 

 

 

In Spherical 

 

 

Properties of gradient 

·  We can change the vector field into a scalar field only if the given vector is differential. 

The given vector must be differential to apply the gradient phenomenon. 

·  The gradient of any scalar field shows its rate and direction of change in space. 

 

Example 1: For the scalar field ∅ (x,y) = 3x + 5y,calculate gradient of ∅. 

Solution 1: Given scalar field ∅ (x,y) = 3x + 5y 
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Example 2: For the scalar field ∅ (x,y) = x
4
yz,calculate gradient of ∅. 

Solution: Given scalar field ∅ (x,y) = x
4
yz 

 

 

Example 3: For the scalar field ∅ (x,y) = x
2
sin5y,calculate gradient of∅.  

Solution: Given scalar field ∅ (x,y) = x
2
sin5y 

 

 

DIVERGENCE OF A VECTOR FUNCTION: 

 

A vector is a quantity that has a magnitude in a certain direction. Vectors are used 

to model forces, velocities, pressures, and many other physical phenomena. A vector 

field is a function that assigns a vector to every point in space. Vector fields are used to 

model force fields (gravity, electric and magnetic fields), fluid flow, etc. 

 

The divergence of a vector field F = <P,Q,R> is defined as the partial derivative of P with 

respect to x plus the partial derivative of Q with respect to y plus the partial derivative of 

R with respect to z. 
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The divergence of a vector field is also given by: 

 

 

We define the divergence of a vector field at a point, as the net outward flux of per 

volume as the volume about the point tends to zero. 

 

∇  ∙ A = divA 

 

In Cartesian 

∇  ∙ A ≡ ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z 

 

In Cylindrical 

∇  ∙ A ≡ ∂(r ∙ Ay)/(r ∙ ∂r) + ∂Aø/(r ∙ ∂ø) + ∂Az/∂z 

 

In Spherical 

∇  ∙ A ≡ ∂(R
2
 ∙ AR)/(R

2
∙∂R) + ∂(Aø ∙ sinθ)/(R ∙ sinθ ∙ ∂θ) + ∂Aø/(R ∙ sinθ ∙ ∂ø) 

 

Example 1: Compute the divergence of F(x, y) = 3x
2
i + 2yj.  

Solution: The divergence of F(x, y) is given by ∇ •F(x, y) which is a dot product.  

 

 

Example 2: Calculate the divergence of the vector field G(x,y,z) = e
x
i + ln(xy)j + e

xyz
k. 

Solution: The divergence of G(x,y,z) is given by ∇ • G(x,y,z) which is a dot product. Its 

components are given by: 
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G1 = e
x
 

G2 = ln(xy) 

G3 = e
xyz

 

and its divergence is: 

 

 

Example 3: Calculate the divergence of the vector field G(x, y, z) = 4y/x
2
 · i + (sin y)j + 

3k 

Solution: The divergence of G(x, y, z) is given by ∇ • G(x,y,z) which is a dot product. Its 

components are given by: 

G1 = 4y/x
2
 

G2 = (sin y) 

G3 = 3 

 

and its divergence is 

 

 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
   CLASS: III BSC PHY                                 COURSE NAME: MATHEMATICAL              

                                                                                      PHYSICS 
COURSE CODE: 15PHU603A                  UNIT: I                           BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.  Page 6/28 
 

 

 

CURL OF A VECTOR: 

 

The curl of a vector field A, denoted by curl A or ∇  x A, is a vector whose magnitude is 

the maximum net circulation of A per unit area as the area tends to zero and whose 

direction is the normal direction of the area when the area is oriented to make the net 

circulation maximum!. 

 

In Cartesian 

 

 

In Cylindrical 

 

 

In Spherical 
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Given a vector field F(x, y, z) = Pi + Qj + Rk in space. The curl of F is the new vector 

field 

 

This can be remembered by writing the curl as a "determinant" 

 

 

 

Theorem: Let F be a three dimensional differentiable vector field with continuous partial 

derivatives.  Then Curl F = 0, if and only if F is conservative. 

 

Example 1: Determine if the vector field F =  yz
2
i + (xz

2
 + 2) j + (2xyz - 1) k is 

conservative.  

Solution:  
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Therefore the given vector field F is conservative. 

 

Example 2: Find the curl of F(x, y, z) = 3x
2
i + 2zj – xk. 

Solution: 

 

 

Example 3: What is the curl of the vector field F = (x + y + z, x − y – z, x
2
 + y

2
 + z

2
)? 

Solution: 
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Example 4: Find the curl of F = (x
2
 – y)i + 4zj + x

2
k. 

Solution: 
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GAUSS DIVERGENCE THEOREM: 

 

Let B be a solid region in R
3
 and let S be the surface of B, oriented with outwards 

pointing normal vector. Gauss Divergence theorem states that for a C
1
 vector field F, the 

following equation holds: 

 

Note that for the theorem to hold, the orientation of the surface must be pointing 

outwards from the region B, otherwise we’ll get the minus sign in the above equation. 

Note that since S is the boundary ofB, then it is always a closed surface ie: it has no 

boundary. In other words, the integral of a continuously differentiable vector field across 

a boundary (flux) is equal to the integral of the divergence of that vector field within the 

region enclosed by the boundary.  

 

Applications of Gauss Theorem: 

 

 The Aerodynamic Continuity Equation 

1. The surface integral of mass flux around a control volume without sources or 

sinks is equal to the rate of mass storage. 

2. If the flow at a particular point is incompressible, then the net velocity flux 

around the control volume must be zero. 

3. As net velocity flux at a point requires taking the limit of an integral, one instead 

merely calculates the divergence. 

4. If the divergence at that point is zero, then it is incompressible.  If it is positive, 

the fluid is expanding, and vice versa. 
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 Gauss’s Theorem can be applied to any vector field which obeys an inverse-

square law (except at the origin) such as gravity, electrostatic attraction, and even 

examples in quantum physics such as probability density. 

 

Example 1: Use the divergence theorem to calculate , where S is the surface of 

the box Bwith vertices (±1, ±2, ±3) with outwards pointing normal vector and F(x, y, z) = 

(x
2
z

3
, 2xyz

3
, xz

4
). 

Solution: Note that the surface integral will be difficult to compute, since there are six 

different components to parameterize (corresponding to the six sides of the box) and so 

one would have to compute six different integrals. Instead, using Gauss Theorem, it is 

easier to compute the integral (∇ ·F)of B. 

First, we compute (∇ ·F) = 2xz
3
 + 2xz

3
 + 4xz

3
 = 8xz

3
. Now we integrate this function 

over the region B bounded by S: 

 

 

which is easy to verify. 

 

Example 2: Evaluate , where S is the sphere given by x
2
 + y

2
 + 

z
2
 = 9. 

Solution: We could parametrize the surface and evaluate the surface integral, but it is 

much faster to use the divergence theorem. Since 
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The divergence theorem gives: 

 

 

Example 3: Let R be the region in R
3
 by the paraboloid z = x

2
 + y

2
 and the plane z = 

1and let S be the boundary of the region R. Evaluate  

Solution:  

Since  

 

The divergence theorem gives: 

 

It is easiest to set up the triple integral in cylindrical coordinates: 

 

 

STOKES THEOREM: 

 

The Stokes's Theorem is given by: 
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The surface integral of the curl of a vector field over an open surface is equal to the 

closed line integral of the vector along the contour bounding the surface. 

 

 

THE LAPLACIAN OPERATOR: 

The Laplacian for a scalar function  is a scalar differential operator defined by 

 
(1) 

where the  are the scale factors of the coordinate system (Weinberg 1972, p. 109; 

Arfken 1985, p. 92). 

Note that the operator  is commonly written as  by mathematicians (Krantz 1999, 

p. 16). 

The Laplacian is extremely important in mechanics, electromagnetics, wave theory, and 

quantum mechanics, and appears in Laplace's equation 

 (2) 

the Helmholtz differential equation 

 (3) 

the wave equation 

http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/ScaleFactor.html
http://mathworld.wolfram.com/LaplacesEquation.html
http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html
http://mathworld.wolfram.com/WaveEquation.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 
   CLASS: III BSC PHY                                 COURSE NAME: MATHEMATICAL              

                                                                                      PHYSICS 
COURSE CODE: 15PHU603A                  UNIT: I                           BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 14/28 
 

 
(4) 

and the Schrödinger equation 

 
(5) 

The analogous operator obtained by generalizing from three dimensions to four-

dimensional spacetime is denoted  and is known as the d'Alembertian. A version of the 

Laplacian that operates on vector functions is known as thevector Laplacian, and a tensor 

Laplacian can be similarly defined. The square of the Laplacian  is known as 

the biharmonic operator. 

A vector Laplacian can also be defined, as can its generalization to a tensor Laplacian. 

The following table gives the form of the Laplacian in several common coordinate 

systems. 

coordinate system  

Cartesian coordinates 
 

cylindrical coordinates 
 

parabolic coordinates 
 

parabolic cylindrical coordinates 
 

spherical coordinates 
 

The finite difference form is 

http://mathworld.wolfram.com/SchroedingerEquation.html
http://mathworld.wolfram.com/dAlembertian.html
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/TensorLaplacian.html
http://mathworld.wolfram.com/TensorLaplacian.html
http://mathworld.wolfram.com/BiharmonicOperator.html
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/TensorLaplacian.html
http://mathworld.wolfram.com/CartesianCoordinates.html
http://mathworld.wolfram.com/CylindricalCoordinates.html
http://mathworld.wolfram.com/ParabolicCoordinates.html
http://mathworld.wolfram.com/ParabolicCylindricalCoordinates.html
http://mathworld.wolfram.com/SphericalCoordinates.html
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(6) 

For a pure radial function , 

   (7) 

  
 

(8) 

  
 

(9) 

Using the vector derivative identity 

 (10) 

so 

   (11) 

  
 

(12) 

  
 

(13) 

Therefore, for a radial power law, 

  
 

(14) 

   (15) 

   (16) 

An identity satisfied by the Laplacian is 

 
(17) 

http://mathworld.wolfram.com/VectorDerivative.html
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where  is the Hilbert-Schmidt norm,  is a row vector, and  is the transpose of . 

To compute the Laplacian of the inverse distance function , where , and 

integrate the Laplacian over a volume, 

 
(18) 

This is equal to 

 
 

 
(19) 

  
 

(20) 

  
 

(21) 

  
 

(22) 

  
 

(23) 

where the integration is over a small sphere of radius . Now, for  and , the 

integral becomes 0. Similarly, for  and , the integral becomes . Therefore, 

 
(24) 

where  is the delta function. 
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LINE INTEGRAL: 

 

The line integral of a vector field  on a curve  is defined by 

 
(1) 

where  denotes a dot product. In Cartesian coordinates, the line integral can be written 

 
(2) 

where 

 

(3) 

For  complex and  a path in the complex plane parameterized by , 

 
(4) 

Poincaré's theorem states that if  in a simply connected neighborhood  of a 

point , then in this neighborhood,  is the gradient of a scalar field , 

 (5) 

for , where  is the gradient operator. Consequently, the gradient theorem gives 

 
(6) 

for any path  located completely within , starting at  and ending at . 
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This means that if  (i.e.,  is an irrotational field in some region), then the line 

integral is path-independent in this region. If desired, a Cartesian path can therefore be 

chosen between starting and ending point to give 

 

(7) 

If  (i.e.,  is a divergenceless field, a.k.a. solenoidal field), then there exists 

a vector field  such that 

 (8) 

where  is uniquely determined up to a gradient field (and which can be chosen so 

that ). 

SURFACE INTEGRAL: 

For a scalar function  over a surface parameterized by  and , the surface integral is 

given by 

  
 

(1) 

  
 

(2) 

where  and  are tangent vectors and  is the cross product. 

For a vector function over a surface, the surface integral is given by 

  
 

(3) 
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(4) 

  
 

(5) 

where  is a dot product and  is a unit normal vector. If , then  is given 

explicitly by 

 
(6) 

If the surface is surface parameterized using  and , then 

 
(7) 

 

 

VOLUME INTEGRAL: 

A triple integral over three coordinates giving the volume within some region , 

 

 

ORTHOGONAL CO-ORDINATES: 

In elementary geometry, orthogonal is the same as perpendicular. Two lines or curves are 

orthogonal if they are perpendicular at their point of intersection. Two vectors  and  of 

the real plane  or the real space  are orthogonal iff their dot product . This 

condition has been exploited to define orthogonality in the more abstract context of the -

dimensional real space . 
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More generally, two elements  and  of an inner product space  are called orthogonal if 

the inner product of  and  is 0. Two subspaces  and  of  are called orthogonal if 

every element of  is orthogonal to every element of . The same definitions can be 

applied to any symmetric or differential k-form and to any Hermitian form. 

CURVILINEAR CO-ORDINATES: 

A coordinate system composed of intersecting surfaces. If the intersections are all at right 

angles, then the curvilinear coordinates are said to form an orthogonal coordinate system. 

If not, they form a skew coordinate system. 

A general metric  has a line element 

 (1) 

where Einstein summation is being used. Orthogonal coordinates are defined as those 

with a diagonal metric so that 

 (2) 

where  is the Kronecker delta and  is a so-called scale factor. Orthogonal curvilinear 

coordinates therefore have a simple line element 

   (3) 

   (4) 

which is just the Pythagorean theorem, so the differential vector is 

 (5) 

or 
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(6) 

where the scale factors are 

 
(7) 

and 

  

 

(8) 

  
 

(9) 

Equation (◇) may therefore be re-expressed as 

 (10) 

 

TENSORS: 

An th-rank tensor in -dimensional space is a mathematical object that has  indices 

and  components and obeys certain transformation rules. Each index of a tensor ranges 

over the number of dimensions of space. However, the dimension of the space is largely 

irrelevant in most tensor equations (with the notable exception of the 

contracted Kronecker delta). Tensors are generalizations of scalars (that have no indices), 

vectors (that have exactly one index), and matrices (that have exactly two indices) to an 

arbitrary number of indices. 

Tensors provide a natural and concise mathematical framework for formulating and 

solving problems in areas of physics such as elasticity, fluid mechanics, and general 

relativity. 
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The notation for a tensor is similar to that of a matrix (i.e., ), except that a 

tensor , , , etc., may have an arbitrary number of indices. In addition, a 

tensor with rank  may be of mixed type , consisting of  so-called "contravariant" 

(upper) indices and  "covariant" (lower) indices. Note that the positions of the slots in 

which contravariant and covariant indices are placed are significant so, for example, 

 is distinct from . 

While the distinction between covariant and contravariant indices must be made for 

general tensors, the two are equivalent for tensors in three-dimensional Euclidean space, 

and such tensors are known as Cartesian tensors. 

Objects that transform like zeroth-rank tensors are called scalars, those that transform like 

first-rank tensors are called vectors, and those that transform like second-rank tensors are 

called matrices. In tensor notation, a vector would be written , where , ..., , 

and matrix is a tensor of type , which would be written  in tensor notation. 

Tensors may be operated on by other tensors (such as metric tensors, the permutation 

tensor, or the Kronecker delta) or by tensor operators (such as the covariant derivative). 

The manipulation of tensor indices to produce identities or to simplify expressions is 

known as index gymnastics, which includes index lowering and index raisingas special 

cases. These can be achieved through multiplication by a so-called metric tensor , 

, , etc., e.g., 

   (1) 

   (2) 

(Arfken 1985, p. 159). 

Tensor notation can provide a very concise way of writing vector and more general 

identities. For example, in tensor notation, the dot product  is simply written 

http://mathworld.wolfram.com/Matrix.html
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 (3) 

where repeated indices are summed over (Einstein summation). Similarly, the cross 

product can be concisely written as 

 (4) 

where  is the permutation tensor. 

Contravariant second-rank tensors are objects which transform as 

 
(5) 

Covariant second-rank tensors are objects which transform as 

 
(6) 

Mixed second-rank tensors are objects which transform as 

 
(7) 

If two tensors  and  have the same rank and the 

same covariant and contravariant indices, then they can be added in the obvious way, 

   (8) 

   (9) 

   (10) 

The generalization of the dot product applied to tensors is called tensor contraction, and 

consists of setting two unlike indices equal to each other and then summing using 
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the Einstein summation convention. Various types of derivatives can be taken of tensors, 

the most common being the comma derivative and covariant derivative. 

If the components of any tensor of any tensor rank vanish in one particular coordinate 

system, they vanish in all coordinate systems. A transformation of the variables of a 

tensor changes the tensor into another whose components are linear homogeneous 

functions of the components of the original tensor. 

A tensor space of type  can be described as a vector space tensor product between 

 copies of vector fieldsand  copies of the dual vector fields, i.e., one-forms. For example, 

 (11) 

is the vector bundle of -tensors on a manifold , where  is the tangent 

bundle of  and  is its dual. Tensors of type  form a vector space. This 

description generalized to any tensor type, and an invertible linear map  induces 

a map , where  is the dual vector space and  the Jacobian, defined 

by 

 (12) 

where  is the pullback map of a form is defined using the transpose of the Jacobian. 

This definition can be extended similarly to other tensor products of  and . When 

there is a change of coordinates, then tensors transform similarly, with  the Jacobian of 

the linear transformation. 

COVARIANT TENSORS: 

A covariant tensor, denoted with a lowered index (e.g., ) is a tensor having specific 

transformation properties. In general, these transformation properties differ from those of 

a contravariant tensor. 
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To examine the transformation properties of a covariant tensor, first consider the gradient 

 
(1) 

for which 

 
(2) 

where . Now let 

 
(3) 

then any set of quantities  which transform according to 

 
(4) 

or, defining 

 
(5) 

according to 

 (6) 

is a covariant tensor. 

Contravariant tensors are a type of tensor with differing transformation properties, 

denoted . To turn acontravariant tensor  into a covariant tensor  (index lowering), 

use the metric tensor  to write 
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 (7) 

Covariant and contravariant indices can be used simultaneously in a mixed tensor. 

In Euclidean spaces, and more generally in flat Riemannian manifolds, a coordinate 

system can be found where the metric tensor is constant, equal to Kronecker delta 

 (8) 

Therefore, raising and lowering indices is trivial, hence covariant and contravariant 

tensors have the same coordinates, and can be identified. Such tensors are known 

as Cartesian tensors. 

A similar result holds for flat pseudo-Riemannian manifolds, such as Minkowski space, 

for which covariant and contravariant tensors can be identified. However, raising and 

lowering indices changes the sign of the temporal components of tensors, because of 

the negative eigenvalue in the Minkowski metric. 

CONTRAVARIANT TENSORS: 

A contravariant tensor is a tensor having specific transformation properties (cf., 

a covariant tensor). To examine the transformation properties of a contravariant tensor, 

first consider a tensor of rank 1 (a vector) 

 (1) 

for which 

 
(2) 

Now let , then any set of quantities  which transform according to 
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(3) 

or, defining 

 
(4) 

according to 

 (5) 

is a contravariant tensor. Contravariant tensors are indicated with raised indices, i.e., . 

Covariant tensors are a type of tensor with differing transformation properties, denoted 

. However, in three-dimensional Euclidean space, 

 
(6) 

for , 2, 3, meaning that contravariant and covariant tensors are equivalent. Such 

tensors are known asCartesian tensor. The two types of tensors do differ in higher 

dimensions, however. 

Contravariant four-vectors satisfy 

 (7) 

where  is a Lorentz tensor. 

To turn a covariant tensor  into a contravariant tensor  (index raising), use the metric 

tensor  to write 

 (8) 
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Covariant and contravariant indices can be used simultaneously in a mixed tensor. 

  

 

POSSIBLE QUESTIONS 

 

8 MARK: 

 

 State the Gauss’s divergence theorem. 

 State Stoke’s theorem with its analytical proof. 

 Show that the vector V = (sin y + z) i + ( x cos y – z) j + (x – y) k is 

irrotational. 

 Determine the constant ‘a’ so that the vector V = (x + 3y) i + (y – 2z) j + (x + 

az) k 

 is solenoidal. 

 Find curl curl f for f = x 2y i – 2xz j + 2yz k 

 If a is a constant vector find (i) div (r x a) and ii) curl (r x a) 

 Explain the Gauss divergence theorem. 

 Find the constants a, b, c so that the vector F = (x +2y + az) i + (bx – 3y – z) j 

+(4x + cy + 2z) is irrotational. 

 Write a short note on classification of vector field. 

 Prove that i) curl r = 0 and ii) div r = 3 

 Write differential operators in terms of orthogonal curvilinear co-ordinates. 

  Taking F = x 2 y i + xz j + 2yz k verify that div curl F = 0. 

http://mathworld.wolfram.com/MixedTensor.html
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QUESTIONS CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER
Ñ x ( Ñ f ) = 1 0 2 -1 0

 Ñ2 (rm) is equal  to mrm-1          m2 rm-2             m(m+1) rm-2           (m+1) m rm-1  m(m+1) rm-2          

The divergence theorem enables to convert a surface integral

 on a closed surface into a ------
line integral          volume integral          surface integral         None volume integral         

If  A  is solenoidal , then div A=0              curl A =0                   |A| = 0                                                    div (curlA) =0 div A=0             

If  r is  position vector , then Ñx r = 3 2 1 0 0

If   f=4xi+yj-2k    then Ñ.f=? 1 0 3 2 3

  The function f is said to satisfify the laplace equation if Ñ2 f                   Ñf   Ñ4f                                          Ñ3f Ñ2 f                  

 If r is position vector , then Ñ.r  = 0 1 2 3 3

If A is  irrotational , then   | A | = 1             ÑxA =0                        |A| =0                         Ñ.A=0 ÑxA =0                       

The divergence of the position vector r is 1 2 r 3 3

If  r = xi +yj +zk ,  then Ñ.(ar)  is equal to  a r 0 3a 0

Which of the following is a scalar function ?  Ñ.A             Ñf  Ñ( Ñ.A)        ÑxA Ñ.A            

Given that f = x2 +y2 + z2 ,  then Ñ2 f is   1 3 6 0 6

If i, j and k  are the unit vectors along the coordinate axes , 

then (i .i) is 
0 1 p  j 1

If i ,  j and k  are the unit vectors along the coordinate axes , 

then (jxj) is 
1 k 0 p  0

If i   and j   are the unit vectors along x  and y  projections,  

then (i.j) is
0 1 k 3 0

If  r = xi +yj +zk, then Ñ.r =?  1 2 0 3 3

If i ,  j and k  are the unit vectors along the x, y, z  axes , then 

jxk is equal to 
0 1 I 3 I

If  r = 2xi -yj +2zk, then Ñ.r =? 0 4 2 3 3

If A = 3i-5j+2k   and B = 4i+3j  then A.B  is equal to -3 19 -14 11 -3

If   A is irrotational , then Ñ.A =0    ÑxA=0             Ñ.A¹0          ÑxA ¹0 ÑxA=0            

A vector A is said to be solenoidal  if   ÑxA ¹0       ÑxA=0             Ñ.A¹0          Ñ.A =0    Ñ.A =0   

If F is solenoidal ,then  Ñ.F =0           ÑxF=0             Ñ2F=0             Ñ . ÑXF =0 Ñ.F =0          

 In Stoke’s theorem,   òc  A.dr = òò  (Ñ.A) ds         òò  (ÑxA) ds  0 òò  (ÑA) ds òò  (ÑxA) ds 

Ñ ( kf) =------ Ñ x k(f)              k (Ñ x f)              k (Ñ f)                      Ñ . k(f) k (Ñ f)                     

  Ñ ( f + Y) = ----- Ñ f +Ñ Y   Ñ f -Ñ Y              none Ñ f * Ñ Y Ñ f +Ñ Y  

Ñ (fY ) = (Ñf)Y - f(ÑY)       Ñ(fY) + f(ÑY)    Ñ(fY) - f(ÑY)        (Ñf)Y + f(ÑY) (Ñf)Y + f(ÑY)

Ñ (f/Y )  = [(Ñf)Y - f(ÑY)]/ Y2                                 [(Ñf)Y + f(ÑY)]/ Y2     [(Ñf)Y + f(ÑY)]/ Y3  [(Ñf)Y * f(ÑY)]/ Y2 [(Ñf)Y - f(ÑY)]/ Y2                                 
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Ñ(A + B ) = ------- Ñ . A   -  Ñ . B                                              Ñ . A   + Ñ . B Ñ . A   x  Ñ . B                                             Ñ . B  /   Ñ . A Ñ . A   + Ñ . B

Ñ. (kA ) =------ Ñ x k(A)             k (Ñ x A)            k (Ñ . A)         Ñ . k(A)  k (Ñ . A)        

 Ñ . ( fA) =------ (Ñf) .A +  f ((Ñ . A) .A          k (Ñ x f)      k (Ñ f)       (Ñf) .A -  f ((Ñ . A) .A (Ñf) .A +  f ((Ñ . A) .A          

Ñ x (A + B ) = ------ Ñ x A   -  Ñ x B                                     Ñ x A   + Ñ x B Ñ x A   . Ñ x B                                      Ñ x A   / Ñ x B Ñ x A   + Ñ x B

Ñx(kA ) = ------ Ñ . k(A)              k x(Ñ x A)            k x(Ñ . A)       k .(Ñ x A) k .(Ñ x A)

Ñ x ( fA) =------ (Ñf) x A +  f ((Ñ x A)                       (Ñf) . A +  f ((Ñ . A)                                
(Ñxf) x A +  f x(Ñ x 

A)                    
(Ñf) x A -  f ((Ñ x A)     (Ñf) x A +  f ((Ñ x A)                       

The operator Ñ defined by  ¶/¶x -¶/¶y -¶/¶z                                  ¶/¶x +¶/¶y -¶/¶z ¶/¶x -¶/¶y +¶/¶z                               ¶/¶x +¶/¶y +¶/¶z ¶/¶x +¶/¶y +¶/¶z

The operator Ñ2 defined by ------ ¶2/¶x2 +¶2/¶y2 +¶2/¶z2                          ¶2/¶x2 +¶2/¶y2 -¶2/¶z2 ¶2/¶x2 -¶2/¶y2 +¶2/¶z2                        ¶2/¶x2 -¶2/¶y2 -¶2/¶z2 ¶2/¶x2 +¶2/¶y2 +¶2/¶z2                          

A single valued function f(x,y,z) is said to be a hormonic 

function

 if its second  partial derivatives exist and are continuous and 

if the function satisfies the ------ equation

Integral  Laplace  continuous  Differential  Laplace 

If r = xi + yj + zk  then, Ñ (1/ r) = ----- –r/r2                     r/r3                    1/r3                     –r/r3  –r/r3 

The divergence of a curl of a vector  is --- one three zero two zero

If A =A1i +A2j + A3k, where A1, A2, A3 have continuous 

second 

partials, then   Ñ . (Ñ x A) =---

2 1 -1 -2 2

If Ñ . V = 0,  then the vector V is said to be Irrotational vector                            Position vector        Solenoidal vector     Zero vector Solenoidal vector    

If Ñ x V = 0,  then the vector V is said to be Irrotational vector                            Position vector        Zero vector Solenoidal vector     Irrotational vector                            

The vector A = x2z2i + xyz2j – xz3k is Irrotational vector                            Solenoidal vector     Zero vector Position vector        Solenoidal vector    

If f is a hormonic function, then Ñf is Irrotational vector                            Position vector        Solenoidal vector     Zero vector Zero vector

If A and B are irrotational, then AxB is Irrotational vector                            Position vector        Solenoidal vector     Zero vector Zero vector

If  A is irrotational, then ÑxA is 1 -1 2 0 0

If  A is solenoidal, then Ñ.A is 1 -1 0 -2 0

div (curl A) = ---- 0 1 -1 2 0

Curl ( grad f) = --- 1 non zero 2 0 1

Curl (A+B) = ----- Curl A – Curl B       curl A + Curl B       curl A * Curl B curl A / Curl B curl A + Curl B      

d/dt(A.B) = ----- A.dA/dt +dB/dt. B   A.dB/dt +dA/dt .B    A.dA/dt - dB/dt A.dA/dt + dB/dt A.dA/dt - dB/dt

If  F is constant vector, then curl F = ---- 1 2 non zero 0 0

Ñ . (Ñf ) =------ Ñ2f                      0 Ñf                    f Ñ2f                     

    Grad rn = ----- nrn-1  r          nrn-2  r          (n-1)rn-2  r     rn-1  r nrn-2  r         

.------------ is a vector quantity. Mass  .pressure       volume force force

If  f is a scalar function and f(t) is a vector function then (ff) ff ’ - f’f.      .ff ’ + f’f.     ff ’ x f’f ff ’ / f’f. ff ’ - f’f.     

Gradient of a constant is -----------. Constant 1 0 gradiant 0

The derivative of the sum of two derivable vector functions

f(t) and g(t) of the scalar variable t, is equal to the---------- of

their derivatives.

sum difference multiple division sum



Any scalar function f which satisfies the partial differential

equation 
harmonic function  

Homogeneous 

function    
Nonharmonic function  

Nonhomogeneous 

function    
harmonic function  

.If f=(x+y)i+xj+zk and s is the surface of the cube bounded 

by the planes x=0,x=1,y=0,y=1,z=0  and z=1 then the surface 

integral is ----------

1 2 4 6 6

.∫∫∫ ∆f dv=-------- . ∫∫ f.n ds   ∫∫∫ f.n ds   ∫∫ fxn ds   ∫∫∫ fxn ds   . ∫∫ f.n ds  

.∫∫∫ ∆xB dv=-------- ∫∫ nxB ds   . ∫∫∫ nxB ds   ∫∫ n.B ds   . ∫∫∫ n.B ds   ∫∫ nxB ds  

In a Gauss divergence theorem,f is a vector point function --- 

and ----- in a region v of space

finite and 

differentiable

infinite and 

differentiable  

finite andNon 

differentiable

in finite and 

Nondifferentiable

finite and 

differentiable
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UNIT-II 

 

SYLLABUS 

 

 

MATRICES: 

 

A rectangular array of numbers is called a matrix. We shall mostly be concerned 

with matrices having real numbers as entries. The horizontal arrays of a matrix are called 

its ROWS and the vertical arrays are called its COLUMNS. A matrix having m rows 

and n columns is said to have the order m × n. 

 

A matrix A of order m × n can be represented in the following form:  

 

where aij is the entry at the intersection of the i
th

 row and j
th

 column.  

 

In a more concise manner, we also denote the matrix A by [aij] by suppressing its order.    

Note: Some books also use 

Matrices-Special types of matrices -Transpose of a matrix - Conjugate of a matrix - 

Conjugate transpose of a matrix-symmetric and antisymmetric matrices - Hermitian 

and skew - Hermitian matrices - Determinant of a matrix - Adjoint of a matrix - 

Inverse of a matrix -Unitary matrices - Rank of a matrix and simple problems - 

Characteristic matrix and characteristic equation - Characteristic vector - Methods 

of finding the Eigen values and Eigen vectors of a matrix. 
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to represent a matrix. 

A matrix having only one column is called a column vector and a matrix with only one 

row is called a row vector. Whenever a vector is used, it should be understood from the 

context whether it is a row vector or a column vector. 

 

Here are a couple of examples of different types of matrices: 

Symmetric:  

 

 

Diagonal 

 

 

Upper Triangular 
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Lower Triangular 

 

 

Zero 

 

 

 

Identity 

 

 

Example 1:  

Let , list out the aij’s values in A. 

Solution:   

a11 = 1, a12 = 3, a13 = 6 

a21 = 2, a22 = 3, a23 = 7 

a31 = 4, a32 = 4, a33 = 0 
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Example 2:  

State the aij’s values in . 

Solution:  

a11 = 9, a12 = 8, a13 = 7 

a21 = 6, a22 = 5, a23 = 4 

a31 = 3, a32 = 2, a33 = 1 

a41 = 4, a42 = 6, a43 = 8 

Example 3: Provide two examples of column and row matrices each. 

Solution:  

We know that, a matrix having only one column is called a column vector or column 

matrix and a matrix with only one row is called a row vector or row column.  

 

 

Example 4: Is the following matrix classified under the category of matrices? 

 

Solution:  

A is not a matrix because column three or we can say row three is incomplete. 
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Example 5: What is the order of the following matrix? 

 

Solution:  

We know that a matrix having m rows and n columns is said to have the 

order m × n, therefore the order of A is 4 × 3. 

 

Types of matrices — triangular, diagonal, scalar, identity, symmetric, skew-

symmetric, periodic, nilpotent 

Upper triangular matrix. A square matrix in which all the elements below the diagonal 

are zero i.e. a matrix of type: 

  

            

  

Lower triangular matrix. A square matrix in which all the elements above the diagonal 

are zero i.e. a matrix of type 
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Diagonal matrix. A square matrix in which all of the elements are zero except for the 

diagonal elements i.e. a matrix of type 

 

 

        

  

It is often written as D = diag(a11, a22, a33, ... , ann) 

 

Scalar matrix. A diagonal matrix in which all of the diagonal elements are equal to some 

constant “k” i.e. a matrix of type 

  

                                                   

Identity matrix. A diagonal matrix in which all of the diagonal elements are equal to “1" 

i.e. a matrix of type 
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An identity matrix of order nxn is denoted by In . 

 

Transpose of a matrix.  

The matrix resulting from interchanging the rows and columns in the given 

matrix. The transpose of 

 

 

               

 is 

          

 

 The first row of A becomes the first column of A
T
, the second row of A becomes the 

second column of A
T
, etc.. It corresponds to a “flip”of the matrix about the diagonal 

running down from the upper left corner. 

Symmetric matrix.  

A square matrix in which corresponding elements with respect to the diagonal are 

equal; a matrix in which aij = aji where aij is the element in the i-th row and j-th column; a 

matrix which is equal to its transpose; a square matrix in which a flip about the diagonal 

leaves it unchanged. Example: 

 

 

                                                                                     

 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
   CLASS: III BSC PHY                                 COURSE NAME: MATHEMATICAL              

                                                                                      PHYSICS 
COURSE CODE: 15PHU603A                  UNIT: II                           BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 8/ 
 

Skew-symmetric matrix. 

 A square matrix in which corresponding elements with respect to the diagonal are 

negatives of each other; a matrix in which aij = -aji where aij is the element in the i-th row 

and j-th column; a matrix which is equal to the negative of its transpose. The diagonal 

elements are always zeros. Example:                                                                

 

 

 

 

Direct Sum. Let A1, A2, ... ,As be square matrices of respective orders m1, m2, ... ,ms . 

  The generalization 

 

 

                  

 

 of the diagonal matrix is called the direct sum of the Ai. 

 

Inverse of a matrix.  

If A and B are square matrices such that AB = BA = I where I is the identity 

matrix , then B is called the inverse of A and we write B = A
-1

 . The matrix B also has A 

as an inverse and we can write A = B
-1

 . 
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Commutative and anti-commutative matrices. If A and B are square matrices such that 

AB = BA, then A and B are called commutative or are said to commute. If AB = -BA, the 

matrices are said to anti-commute. 

 

Periodic matrix. A matrix A for which A
k+1 

= A , where k is a positive integer. If k is the 

least positive integer for which A
k+1 

= A , then A is said to be ofperiod k. If k = 1, so that 

A
2
 = A, then A is called idempotent. 

 

Nilpotent matrix. A matrix A for which A
p
 = 0, where p is some positive integer. If p is 

the least positive integer for which A
p
 = 0, then A is said to benilpotent of index p. 

 

DETERMINANT OF A MATRIX: 

Determinants are mathematical objects that are very useful in the analysis and solution 

of systems of linear equations. As shown by Cramer's rule, a nonhomogeneous system of 

linear equations has a unique solution iff the determinant of the 

system's matrix is nonzero (i.e., the matrix is nonsingular). For example, eliminating , , 

and from the equations 

   (1) 

   (2) 

   (3) 

gives the expression 

 (4) 

which is called the determinant for this system of equation. Determinants are defined 

only for square matrices. 

http://mathworld.wolfram.com/SystemofEquations.html
http://mathworld.wolfram.com/CramersRule.html
http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Nonzero.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/SquareMatrix.html
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If the determinant of a matrix is 0, the matrix is said to be singular, and if the determinant 

is 1, the matrix is said to be unimodular. 

The determinant of a matrix , 

 

(5) 

is commonly denoted , , or in component notation as , 

, or (Muir 1960, p. 17). Note that the notation  may be more convenient 

when indicating the absolute value of a determinant, i.e.,  instead of . The 

determinant is implemented in the Wolfram Language as Det[m]. 

A  determinant is defined to be 

 
(6) 

A  determinant can be expanded "by minors" to obtain 

 

(7) 

A general determinant for a matrix  has a value 

 

(8) 

http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/SingularMatrix.html
http://mathworld.wolfram.com/UnimodularMatrix.html
http://mathworld.wolfram.com/Matrix.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/Det.html
http://mathworld.wolfram.com/Minor.html
http://mathworld.wolfram.com/Matrix.html
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with no implied summation over  and where  (also denoted ) is the cofactor of 

 defined by 

 (9) 

and  is the minor of matrix  formed by eliminating row  and column  from . This 

process is calleddeterminant expansion by minors (or "Laplacian expansion by minors," 

sometimes further shortened to simply "Laplacian expansion"). 

A determinant can also be computed by writing down all permutations of , taking 

each permutation as the subscripts of the letters , , ..., and summing with signs 

determined by , where  is the number ofpermutation inversions in 

permutation  (Muir 1960, p. 16), and  is the permutation symbol. For example, 

with , the permutations and the number of inversions they contain are 123 (0), 132 

(1), 213 (1), 231 (2), 312 (2), and 321 (3), so the determinant is given by 

 

(10) 

If  is a constant and  an  square matrix, then 

 (11) 

Given an  determinant, the additive inverse is 

 (12) 

Determinants are also distributive, so 

 (13) 

This means that the determinant of a matrix inverse can be found as follows: 

http://mathworld.wolfram.com/Cofactor.html
http://mathworld.wolfram.com/Minor.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
http://mathworld.wolfram.com/Permutation.html
http://mathworld.wolfram.com/PermutationInversion.html
http://mathworld.wolfram.com/PermutationSymbol.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/Distributive.html
http://mathworld.wolfram.com/MatrixInverse.html
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 (14) 

where  is the identity matrix, so 

 
(15) 

Determinants are multilinear in rows and columns, since 

 

(16) 

and 

 

(17) 

The determinant of the similarity transformation of a matrix is equal to the determinant of 

the original matrix 

   (18) 

  
 

(19) 

   (20) 

The determinant of a similarity transformation minus a multiple of the unit matrix is 

given by 

   (21) 

   (22) 

   (23) 

   (24) 

http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/Multilinear.html
http://mathworld.wolfram.com/SimilarityTransformation.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Matrix.html
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The determinant of a transpose equals the determinant of the original matrix, 

 (25) 

and the determinant of a complex conjugate is equal to the complex conjugate of the 

determinant 

 (26) 

Let  be a small number. Then 

 (27) 

where  is the matrix trace of . The determinant takes on a particularly simple form 

for a triangular matrix 

 

(28) 

Important properties of the determinant include the following, which include invariance 

under elementary row and column operations. 

1. Switching two rows or columns changes the sign. 

2. Scalars can be factored out from rows and columns. 

3. Multiples of rows and columns can be added together without changing the 

determinant's value. 

4. Scalar multiplication of a row by a constant  multiplies the determinant by . 

5. A determinant with a row or column of zeros has value 0. 

http://mathworld.wolfram.com/Transpose.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/MatrixTrace.html
http://mathworld.wolfram.com/TriangularMatrix.html
http://mathworld.wolfram.com/ElementaryRowandColumnOperations.html
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6. Any determinant with two rows or columns equal has value 0. 

Property 1 can be established by induction. For a  matrix, the determinant is 

 
  (29) 

   (30) 

  
 

(31) 

For a  matrix, the determinant is 

 

(32) 

Property 2 follows likewise. For  and  matrices, 

 
  (33) 

  
 

(34) 

and 

http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Matrix.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 
   CLASS: III BSC PHY                                 COURSE NAME: MATHEMATICAL              

                                                                                      PHYSICS 
COURSE CODE: 15PHU603A                  UNIT: II                           BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 15/ 
 

 

 
 

(35) 

  

 

(36) 

Property 3 follows from the identity 

 

(37) 

If  is an  matrix with  real numbers, then  has the interpretation as the 

oriented -dimensionalcontent of the parallelepiped spanned by the column vectors , 

...,  in . Here, "oriented" means that, up to a change of  or  sign, the number is 

the -dimensional content, but the sign depends on the "orientation" of the column 

vectors involved. If they agree with the standard orientation, there is a  sign; if not, there 

is a  sign. Theparallelepiped spanned by the -dimensional vectors  through  is the 

collection of points 

 (38) 

where  is a real number in the closed interval . 

Several accounts state that Lewis Carroll (Charles Dodgson) sent Queen Victoria a copy 

of one of his mathematical works, in one account, An Elementary Treatise on 

Determinants. Heath (1974) states, "A well-known story tells how Queen Victoria, 

charmed by Alice in Wonderland, expressed a desire to receive the author's next work, 

and was presented, in due course, with a loyally inscribed copy of An Elementary 

Treatise on Determinants," while Gattegno (1974) asserts "Queen Victoria, having 

enjoyed Alice so much, made known her wish to receive the author's other books, and 

http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Content.html
http://mathworld.wolfram.com/Parallelepiped.html
http://mathworld.wolfram.com/Sign.html
http://mathworld.wolfram.com/Content.html
http://mathworld.wolfram.com/Sign.html
http://mathworld.wolfram.com/Sign.html
http://mathworld.wolfram.com/Sign.html
http://mathworld.wolfram.com/Parallelepiped.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/ClosedInterval.html
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was sent one of Dodgson's mathematical works." However, in Symbolic Logic (1896), 

Carroll stated, "I take this opportunity of giving what publicity I can to my contradiction 

of a silly story, which has been going the round of the papers, about my having presented 

certain books to Her Majesty the Queen. It is so constantly repeated, and is such absolute 

fiction, that I think it worth while to state, once for all, that it is utterly false in every 

particular: nothing even resembling it has occurred" (Mikkelson and Mikkelson). 

 

Hadamard (1893) showed that the absolute value of the determinant of a complex 

 matrix with entries in theunit disk satisfies 

 (39) 

(Brenner 1972). The plots above show the distribution of determinants for random 

 complex matrices with entries satisfying  for , 3, and 4. 

RANK OF A MATRIX: 

 

The DETERMINANT of a matrix det A or │A│  

 











2221

1211

aa

aa
A

 

 

│A│= a11 - a12 

http://mathworld.wolfram.com/ComplexMatrix.html
http://mathworld.wolfram.com/UnitDisk.html
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

















333231

232221

131211

aaa

aaa

aaa

A
 

 

3231

2221

13

3331

2321

12

3332

2322

11
aa

aa
a

aa

aa
a

aa

aa
aA 

 

 

a11( a22a33-a23a32) - a12(a21a33-a23a31) + a13(a21a32-a22a31) 

 

( a22a33-a23a32) is called the minor of a11 and is usually denoted│Aij│ - in this case │A11│ 

 

 



















182

796

453

A
 

 

82

96
4

12

76
5

18

79
3 A

 

 

= 3(9 – 56) - 5(6 – 14) + 4(48 – 18) 

 

= -141 + 40 + 120 
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= 19 

 

The COFACTOR of the elements of aij denoted by cij 

is 

 

cij = (-1)
i+j

│Aij│ 

 

ij

n

i

ijij

n

j

ij cacaA  
1

 

 

PROPERTIES OF DETERMINANTS 

 

1. │A
T
│=│A│ 

 

2. 
2221

1211

2221

1211

aa

aa
ka

kaa

kaa


 

 

3. If A is (n x n) then │kA│ = k
n
│A│ 

 

4. If a square matrix has two equal rows or columns its determinant is zero 

 

5. If any row (or column) is the multiple of any other row (or column) then its 

determinant is zero 

 

6. The value of a determinant is unchanged if a multiple of one row (or column) 

is added to another row (or column) 
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7. If A is a diagonal matrix of order n then its determinant is a11a22 …. ann 

 

8. If A is a triangular matrix of order n then its determinant is a11a22 …. ann 

 

9. If B is the matrix obtained from a square matrix A by interchanging any two 

rows (or columns) then det B = -det A 

 

10. If A and B are square matrices of the same order  

then │AB│ = │A││B│ 

 

11. If A1, A2 , …. , As are square matrices then │diag(A1, A2 , …. , As )│ = │A1││A2│ 

… │As│ 

 

12. In general │A + B│does not equal│A│ + │B│ 
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The RANK of a matrix is equal to the highest order non-zero determinant that can be 

formed from its sub-matrices 

 





















5921

287108

21693

14254

A
 

 

det A = 0 

 

63

7108

693

254


 

 

Rank of A = 3 

 

The rank of a matrix can also be measured by the maximum number of linearily 

independent columns of A 

 

This also equals the maximum number of linearily independent rows 
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


















































 

 

c1a1 + c2a2 + c3a3 + c4a4 = 0 

 

A FULL COLUMN RANK matrix has the same number of linearily independent 

columns (rows) equal to the number of columns  

 

A FULL ROW RANK matrix has the same number of linearily independent rows 

(columns) equal to the number of rows 

 

If A does not have full row and column rank it is SINGULAR 

If A does have full row and column rank it is NON-SINGULAR  

 

rank (In) = n 

rank (kA) = rank (A) 

rank (A
T
) = rank (A) 

If A is (m x n) then rank (A) is ≤ min {m, n} 

rank AB ≤ min{rank (A), rank (B)} 

INVERSES 

 

If A and B are matrices of order n such that AB = BA = In then B is called the inverse of A 

 

A has an inverse iff it is of full column and row rank – non-singular 

 

A
-1

 = C
T
 / │A│  
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C
T
 is the transpose of the matrix of co-factors 

 











43

21
A

 

 

│A│= 4 – 6 = -2 

 

c11 = 4  c12 = -3  c21 = -2  c22 = 1 

 

T

A 













12

34

2

11

  

 













2/12/3

12
1A

 

 

 

PROPERTIES OF INVERSES 

1. I
-1 = 

I 

2. (A
-1

)
-1

 = A 

3. AB = I     BA = I 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
   CLASS: III BSC PHY                                 COURSE NAME: MATHEMATICAL              

                                                                                      PHYSICS 
COURSE CODE: 15PHU603A                  UNIT: II                           BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 23/ 
 

4. A non-singular  A
-1

 non-singular 

5. A and B non-singular  (AB)
-1

 = B
-1

A
-1

 

LEFT INVERSE of a (m x n) matrix A is the (n x m) matrix B such that BA = In 

 

RIGHT INVERSE of a (m x n) matrix A is the (n x m) matrix C such that AC = Im 

 

(T x k) design matrix X which has rank k < T 

has an infinite number of left inverses including 

(X
T
X)

-1
X

T 

 

 

IDEMPOTENT MATRICES 

 

AA = A 

 











6.03.0

8.04.0
A

 

 

Consider M = [I – X(X
T
X)

-1
X

T
] 
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KRONECKER PRODUCT 
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



















000602

000044

903301

066022

 

EIGEN VALUE AND EIGEN VECTORS: 

Eigenvalues are a special set of scalars associated with a linear system of 

equations (i.e., a matrix equation) that are sometimes also known as characteristic roots, 

characteristic values (Hoffman and Kunze 1971), proper values, or latent roots (Marcus 

and Minc 1988, p. 144). 

The determination of the eigenvalues and eigenvectors of a system is extremely important 

in physics and engineering, where it is equivalent to matrix diagonalization and arises in 

such common applications as stability analysis, the physics of rotating bodies, and small 

oscillations of vibrating systems, to name only a few. Each eigenvalue is paired with a 

corresponding so-called eigenvector (or, in general, a corresponding right eigenvectorand 

a corresponding left eigenvector; there is no analogous distinction between left and right 

for eigenvalues). 

The decomposition of a square matrix  into eigenvalues and eigenvectors is known in 

this work as eigen decomposition, and the fact that this decomposition is always possible 

as long as the matrix consisting of the eigenvectors of  is square is known as the eigen 

decomposition theorem. 

The Lanczos algorithm is an algorithm for computing the eigenvalues 

and eigenvectors for large symmetric sparse matrices. 

http://mathworld.wolfram.com/LinearSystemofEquations.html
http://mathworld.wolfram.com/LinearSystemofEquations.html
http://mathworld.wolfram.com/MatrixEquation.html
http://mathworld.wolfram.com/MatrixDiagonalization.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/RightEigenvector.html
http://mathworld.wolfram.com/LeftEigenvector.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/EigenDecomposition.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/EigenDecompositionTheorem.html
http://mathworld.wolfram.com/EigenDecompositionTheorem.html
http://mathworld.wolfram.com/LanczosAlgorithm.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/SparseMatrix.html
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Let  be a linear transformation represented by a matrix . If there is a vector 

 such that 

 

(1) 

for some scalar , then  is called the eigenvalue of  with corresponding 

(right) eigenvector . 

Letting  be a  square matrix 

 

(2) 

with eigenvalue , then the corresponding eigenvectors satisfy 

 

(3) 

which is equivalent to the homogeneous system 

 

(4) 

Equation (4) can be written compactly as 

 

(5) 

where  is the identity matrix. As shown in Cramer's rule, a linear system of equations has 

nontrivial solutions iff thedeterminant vanishes, so the solutions of equation (5) are given 

by 

http://mathworld.wolfram.com/LinearTransformation.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/Eigenvalue.html#eqn4
http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/CramersRule.html
http://mathworld.wolfram.com/LinearSystemofEquations.html
http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/Determinant.html
http://mathworld.wolfram.com/Eigenvalue.html#eqn5
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(6) 

This equation is known as the characteristic equation of , and the left-hand side is 

known as the characteristic polynomial. 

For example, for a  matrix, the eigenvalues are 

 

(7) 

which arises as the solutions of the characteristic equation 

 

(8) 

If all  eigenvalues are different, then plugging these back in gives  independent 

equations for the components of each corresponding eigenvector, and the system is said 

to be nondegenerate. If the eigenvalues are -fold degenerate, then the system is said to 

be degenerate and the eigenvectors are not linearly independent. In such cases, the 

additional constraint that the eigenvectors be orthogonal, 

 

(9) 

where  is the Kronecker delta, can be applied to yield  additional constraints, thus 

allowing solution for theeigenvectors. 

Eigenvalues may be computed in the Wolfram Language using Eigenvalues[matrix]. 

Eigenvectors and eigenvalues can be returned together using the 

command Eigensystem[matrix]. 

Assume we know the eigenvalue for 

 

(10) 

Adding a constant times the identity matrix to , 

http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/CharacteristicPolynomial.html
http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/Degenerate.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/OrthogonalVectors.html
http://mathworld.wolfram.com/KroneckerDelta.html
http://mathworld.wolfram.com/Eigenvector.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/Eigenvalues.html
http://reference.wolfram.com/language/ref/Eigensystem.html
http://mathworld.wolfram.com/IdentityMatrix.html
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(11) 

so the new eigenvalues equal the old plus . Multiplying  by a constant  

 

(12) 

so the new eigenvalues are the old multiplied by . 

Now consider a similarity transformation of . Let  be the determinant of , then 

 

 

 

(13) 

  

 

(14) 

   

(15) 

so the eigenvalues are the same as for . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/SimilarityTransformation.html
http://mathworld.wolfram.com/Determinant.html
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POSSIBLE QUESTIONS 

 

8 MARK 

 Show that the matrix  A =    is orthogonal. 

 Show that the matrix  B =    is unitary. 

 Find the  eigen values of matrix  

 Show that the matrix A =   is Skew – symmetric but not Skew 

Hermitian.                   

                

 Explain the different types of matrices.(any 5) 

 

 Show that the matrix A =   is Skew – symmetric but not Skew   

             Hermitian. 

 Find the Eigen values of the matrix A =  

 Find the Rank of following matrices   i)              ii)  

 Find the eigen values of matrix A =  

 

 Find the Rank of following matrices   i)              ii)  

 If matrix  A =      and    B =   Find  A.B 

 Find the eigen values and eigen vectors of the matrix   
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MATHEMATICAL  PHYSICS (15PHU603A)

UNIT II

QUESTIONS CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER
A diagonal matrix in which all the diagonal elements are 

equal is called --------.
 scalar   matrix  diagonal  matrix   unit matrix    null matrix  scalar   matrix  

[ 3  8  9  -2 ] is a row matrix of order-------------------  1x 4  4 x 1      1x 1   4 x 4  1x 4

in a square matrix A, aij = 0 for i <j, then it is called a ---------

------ matrix.
lower triangular           upper triangular    diagonal    triangular lower triangular   

The matrix multiplication of two matrices A and B is 

possible only if ----------------.

order of A is m x n 

and order of B is m 

x n

order of A is m x n 

and order of B is n x 

p

order of A is m xm 

and order of B is n x 

n

order of A is m x n 

and order of B is p x 

n

order of A is m x n 

and order of B is n x 

p

 If the order of the matrix A is 4 x 5 and the order of the 

matrix B is 2 x 4 then the resultant matrix BA has the order--

---------.

 2 x 5      2 x 4     4 x 5       4 x 4  2 x 5     

A Square matrix such that A’ =  – A is called -------------- symmetric                          skew symmetric hermit ion scalar skew symmetric 

The sum of the diagonal elements in a matrix A is the ---------

----.
Trace of A unit of A  Transpose of A  inverse of A Trace of A

If a square matrix A of order n is of the form An = 0, then it 

is an ----------- matrix.
 Identity               Idempotent Nilpotent Orthogonal Nilpotent

If a square matrix A of order n is of the form A
n
 = A, then it 

is an ----------- matrix.
 Identity               Idempotent Nilpotent Orthogonal   Idempotent 

(AB) 
–1

 = ---------------. A
–1

  B
–1

 A
–1

B
–1

B
–1

A
–1

B
–1

A
–1

(A
T
)
 –1

 = ---------------. (A
T
)  (A

–1 
)
 T

    (A
 –1

)  (A
T
)
 T

 (A
–1 

)
 T

The ------------ of a square matrix A is the transpose of the 

matrix formed by replacing  the elements of A by their 

corresponding cofactors.

Transpose  Inverse  Cofactor        Ad joint     Ad joint

The formula for solving the system of simultaneous linear 

equations by matrix inversion method is ---------------
 X = A B  X = A B–1   X = A–1  B X = B A–1   X = A–1  B

The transpose of a matrix A is getting by ----------------.
Interchanging  rows 

into  columns only. 

Interchanging 

columns

 into  rows only

Interchanging rows 

into  columns and 

columns into rows

Taking the same 

matrix

 without 

interchanging 

the rows and 

columns.

Interchanging  rows 

into  columns only. 
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The  subtraction of any two matrices A and B are possible 

only if ----.

A and B have 

same elements

A and B have 

same order

A and B have 

different order

A and B have 

different elements

A and B have 

same order

Two matrices A and B said to be equal if ---------------.
A and B have 

same elements

A and B have 

same order

A and B have 

different order

A and B have same 

elements and same 

order

A and B have same 

elements and same 

order

Every matrix is a ------------------------ of it self. sub matrix unit matrix  equal matrix  none sub matrix

The co – factor of an element Aij is defined as ----------------.

( –1) 
i+j

  *  

Determinant 

obtained by deleting 

i 
th

 row and j 
th 

column of A

( –1)   *  

Determinant 

obtained by deleting 

i th row and j th 

column of A

 Determinant 

obtained by deleting 

i 
th

 row and j 
th 

column of A

( –1) 
i+j

  *  

Determinant 

obtained by deleting 

j 
th

 row and i 
th 

column of A

( –1) 
i+j

  *  

Determinant 

obtained by deleting 

i 
th

 row and j 
th 

column of A

A
–1

A = ---------------. 0 1 Identity matrix  Zero matrix Identity matrix

I*A = ---------------. A 0 Identity matrix  Zero matrix A

An identity matrix is also found as a ------------- matrix Scalar Diagonal  triangular  scalar and diagonal  scalar and diagonal

In a 3x3 square matrix the minor and the cofactor of the 

element a23 have  ---------.
Same sign and same 

value

same sign and 

different values

Opposite sign and

 same value           

 opposite sign and

 different values

Opposite sign and

 same value           

If every element  of a  matrix is multiplied   by a constant  k 

,then the determinant value of the matrix   is multiplied by----

-------------

k  k-1  k
2  k+1 k

The determinant value   of the  unit matrix  of order 2  is -----

-------------
1 0 -1 2 1

If any one of the row or column of a  matrix is zero then the 

determinant value  of the matrix   is ------------------
0  positive  negative  one 0

If A is singular ,its inverse is ---------------- null matrix        does not exists    1/Adj A  1/|A|       does not exists    

A rectangular matrix  will not possesses-------------- inverse  cofactor  determinant  transpose inverse 

For any square matrix  (adj A).A = A. (adj A) is -------------- |A| .I  |A |  1 / |A|  A
T |A| .I 

For any  two square matrices A and B (adj AB) = --------------

--
(adj A). (adj B) (adj B). (adj A)  (adj BA)  (adj B +adj A) (adj B). (adj A)
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UNIT-III 

SYLLABUS 

Differential Equations: Introduction – Solution in simple cases of ordinary differential equations 

of second order – Simple problems from Physics – Partial Differential equations – Special types 

of differential equations arising in Physics. 

Group Theory: Introduction in sets, mappings and binary operations – groups – elementary 

properties of groups – The centre of a group – Cosets or consents of a subgroup – cyclic group. 

  

DIFFERENTIAL EQUATIONS: 

A differential equation is an equation that involves the derivatives of a function as well as 

the function itself. If partial derivatives are involved, the equation is called a partial differential 

equation; if only ordinary derivatives are present, the equation is called an ordinary differential 

equation. Differential equations play an extremely important and useful role in applied math, 

engineering, and physics, and much mathematical and numerical machinery has been developed 

for the solution of differential equations. 

 

ORDINARY DIFFERENTIAL EQUATION: 

An ordinary differential equation (frequently called an "ODE," "diff eq," or "diffy Q") is 

an equality involving a function and its derivatives. An ODE of order  is an equation of the 

form 

 

(1) 

where  is a function of ,  is the first derivative with respect to , 

and  is the thderivative with respect to . 

Nonhomogeneous ordinary differential equations can be solved if the general solution to the 

homogenous version is known, in which case the undetermined coefficients method or variation 

of parameters can be used to find the particular solution. 

http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/PartialDerivative.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/UndeterminedCoefficientsMethod.html
http://mathworld.wolfram.com/VariationofParameters.html
http://mathworld.wolfram.com/VariationofParameters.html
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Many ordinary differential equations can be solved exactly in the Wolfram 

Language using DSolve[eqn, y, x], and numerically using NDSolve[eqn, y, x, xmin, xmax ]. 

An ODE of order  is said to be linear if it is of the form 

 

(2) 

A linear ODE where  is said to be homogeneous. Confusingly, an ODE of the form 

 

(3) 

is also sometimes called "homogeneous." 

In general, an th-order ODE has  linearly independent solutions. Furthermore, any linear 

combination of linearly independent functions solutions is also a solution. 

Simple theories exist for first-order (integrating factor) and second-order (Sturm-Liouville 

theory) ordinary differential equations, and arbitrary ODEs with linear constant coefficients can 

be solved when they are of certain factorable forms. Integral transforms such as the Laplace 

transform can also be used to solve classes of linear ODEs. Morse and Feshbach (1953, pp. 667-

674) give canonical forms and solutions for second-order ordinary differential equations. 

While there are many general techniques for analytically solving classes of ODEs, the only 

practical solution technique for complicated equations is to use numerical methods (Milne 1970, 

Jeffreys and Jeffreys 1988). The most popular of these is the Runge-Kutta method, but many 

others have been developed, including the collocation method and Galerkin method. A vast 

amount of research and huge numbers of publications have been devoted to the numerical 

solution of differential equations, both ordinary and partial (PDEs) as a result of their importance 

in fields as diverse as physics, engineering, economics, and electronics. 

http://www.wolfram.com/language/
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/DSolve.html
http://reference.wolfram.com/language/ref/NDSolve.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/HomogeneousOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/LinearCombination.html
http://mathworld.wolfram.com/LinearCombination.html
http://mathworld.wolfram.com/LinearlyDependentFunctions.html
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/IntegratingFactor.html
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/Sturm-LiouvilleTheory.html
http://mathworld.wolfram.com/Sturm-LiouvilleTheory.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/LaplaceTransform.html
http://mathworld.wolfram.com/LaplaceTransform.html
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/Runge-KuttaMethod.html
http://mathworld.wolfram.com/CollocationMethod.html
http://mathworld.wolfram.com/GalerkinMethod.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
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The solutions to an ODE satisfy existence and uniqueness properties. These can be formally 

established byPicard's existence theorem for certain classes of ODEs. Let a system of first-order 

ODE be given by 

 

(4) 

for , ...,  and let the functions , where , ..., , all be defined in 

a domain  of the -dimensional space of the variables , ..., , . Let these functions be 

continuous in  and have continuous firstpartial derivatives  for , ...,  and , 

...,  in . Let  be in . Then there exists a solution of (4) given by 

 

(5) 

for  (where ) satisfying the initial conditions 

 

(6) 

Furthermore, the solution is unique, so that if 

 

(7) 

is a second solution of (◇) for  satisfying (◇), 

then  for . Because every th-order ODE can be expressed as a system 

of  first-order ODEs, this theorem also applies to the single th-order ODE. 

An exact first-order ordinary differential equation is one of the form 

 

(8) 

http://mathworld.wolfram.com/Existence.html
http://mathworld.wolfram.com/Unique.html
http://mathworld.wolfram.com/PicardsExistenceTheorem.html
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/Domain.html
http://mathworld.wolfram.com/PartialDerivative.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html#eqn4
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/ExactFirst-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OftheForm.html
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where 

 

(9) 

An equation of the form (◇) with 

 

(10) 

is said to be nonexact. If 

 

(11) 

in (◇), it has an -dependent integrating factor. If 

 

(12) 

in (◇), it has an -dependent integrating factor. If 

 

(13) 

in (◇), it has a -dependent integrating factor. 

Other special first-order types include cross multiple equations 

 

(14) 

http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
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homogeneous equations 

 

(15) 

linear equations 

 

(16) 

and separable equations 

 

(17) 

Special classes of second-order ordinary differential equations include 

 

(18) 

(  missing) and 

 

(19) 

(  missing). A second-order linear homogeneous ODE 

 

(20) 

for which 

 

(21) 

can be transformed to one with constant coefficients. 

http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
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The undamped equation of simple harmonic motion is 

 

(22) 

which becomes 

 

(23) 

when damped, and 

 

(24) 

when both forced and damped. 

Systems with constant coefficients are of the form 

 

(25) 

The following are examples of important ordinary differential equations which commonly arise 

in problems of mathematical physics. 

Abel's differential equation 

 

(26) 

 

(27) 

Airy differential equation 

 

(28) 

http://mathworld.wolfram.com/SimpleHarmonicMotion.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquationSystemwithConstantCoefficients.html
http://mathworld.wolfram.com/AbelsDifferentialEquation.html
http://mathworld.wolfram.com/AiryDifferentialEquation.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS: III BSC PHY   COURSE NAME: MATHEMATICAL PHYSICS             

COURSE CODE: 15PHU603A                  UNIT: III                   BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.  Page 7/70 
 

Anger differential equation 

 

(29) 

Baer differential equations 

 

(30) 

 

(31) 

Bernoulli differential equation 

 

(32) 

Bessel differential equation 

 

(33) 

Binomial differential equation 

 

(34) 

Bôcher equation 

 

(35) 

Briot-Bouquet equation 

http://mathworld.wolfram.com/AngerDifferentialEquation.html
http://mathworld.wolfram.com/BaerDifferentialEquation.html
http://mathworld.wolfram.com/BernoulliDifferentialEquation.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/BinomialDifferentialEquation.html
http://mathworld.wolfram.com/BocherEquation.html
http://mathworld.wolfram.com/Briot-BouquetEquation.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS: III BSC PHY   COURSE NAME: MATHEMATICAL PHYSICS             

COURSE CODE: 15PHU603A                  UNIT: III                   BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.  Page 8/70 
 

 

(36) 

Chebyshev differential equation 

 

(37) 

Clairaut's differential equation 

 

(38) 

Confluent hypergeometric differential equation 

 

(39) 

d'Alembert's equation 

 

(40) 

Duffing differential equation 

 

(41) 

Eckart differential equation 

 

(42) 

where . 

Emden-Fowler differential equation 

http://mathworld.wolfram.com/ChebyshevDifferentialEquation.html
http://mathworld.wolfram.com/ClairautsDifferentialEquation.html
http://mathworld.wolfram.com/ConfluentHypergeometricDifferentialEquation.html
http://mathworld.wolfram.com/dAlembertsEquation.html
http://mathworld.wolfram.com/DuffingDifferentialEquation.html
http://mathworld.wolfram.com/EckartDifferentialEquation.html
http://mathworld.wolfram.com/Emden-FowlerDifferentialEquation.html
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(43) 

Euler differential equation 

 

(44) 

Halm's differential equation 

 

(45) 

Hermite differential equation 

 

(46) 

Heun's differential equation 

 

(47) 

where . 

Hill's differential equation 

 

(48) 

Hypergeometric differential equation 

 

(49) 

Jacobi differential equation 

http://mathworld.wolfram.com/EulerDifferentialEquation.html
http://mathworld.wolfram.com/HalmsDifferentialEquation.html
http://mathworld.wolfram.com/HermiteDifferentialEquation.html
http://mathworld.wolfram.com/HeunsDifferentialEquation.html
http://mathworld.wolfram.com/HillsDifferentialEquation.html
http://mathworld.wolfram.com/HypergeometricDifferentialEquation.html
http://mathworld.wolfram.com/JacobiDifferentialEquation.html
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(50) 

Laguerre differential equation 

 

(51) 

Lamé's differential equation 

 

(52) 

where . 

Lane-Emden differential equation 

 

(53) 

Legendre differential equation 

 

(54) 

Linear constant coefficients 

 

(55) 

Lommel differential equation 

 

(56) 

Löwner's differential equation 

http://mathworld.wolfram.com/LaguerreDifferentialEquation.html
http://mathworld.wolfram.com/LamesDifferentialEquation.html
http://mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html
http://mathworld.wolfram.com/LegendreDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquationSystemwithConstantCoefficients.html
http://mathworld.wolfram.com/LommelDifferentialEquation.html
http://mathworld.wolfram.com/LoewnersDifferentialEquation.html
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(57) 

Malmstén's differential equation 

 

(58) 

Mathieu differential equation 

 

(59) 

where . 

Modified Bessel differential equation 

 

(60) 

Modified spherical Bessel differential equation 

 

(61) 

where  

Rayleigh differential equation 

 

(62) 

Riccati differential equation 

 

(63) 

http://mathworld.wolfram.com/MalmstensDifferentialEquation.html
http://mathworld.wolfram.com/MathieuDifferentialEquation.html
http://mathworld.wolfram.com/ModifiedBesselDifferentialEquation.html
http://mathworld.wolfram.com/ModifiedSphericalBesselDifferentialEquation.html
http://mathworld.wolfram.com/RayleighDifferentialEquation.html
http://mathworld.wolfram.com/RiccatiDifferentialEquation.html
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Riemann P-Differential Equation 

 

(64) 

where . 

Sharpe's differential equation 

 

(65) 

Spherical Bessel differential equation 

 

(66) 

where . 

Struve differential equation 

 

(67) 

Sturm-Liouville equation 

 

(68) 

Gegenbauer differential equation 

http://mathworld.wolfram.com/RiemannP-DifferentialEquation.html
http://mathworld.wolfram.com/SharpesDifferentialEquation.html
http://mathworld.wolfram.com/SphericalBesselDifferentialEquation.html
http://mathworld.wolfram.com/StruveDifferentialEquation.html
http://mathworld.wolfram.com/Sturm-LiouvilleEquation.html
http://mathworld.wolfram.com/GegenbauerDifferentialEquation.html
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(69) 

van der Pol equation 

 

(70) 

Weber differential equation 

 

(71) 

where . 

Whittaker differential equation 

 

(72) 

where . 

FIRST ORDER DIFFERENTIAL EQUATIONS: 

Given a first-order ordinary differential equation 

 

(1) 

if  can be expressed using separation of variables as 

 

(2) 

then the equation can be expressed as 

http://mathworld.wolfram.com/vanderPolEquation.html
http://mathworld.wolfram.com/WeberDifferentialEquations.html
http://mathworld.wolfram.com/WhittakerDifferentialEquation.html
http://mathworld.wolfram.com/SeparationofVariables.html
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(3) 

and the equation can be solved by integrating both sides to obtain 

 

(4) 

Any first-order ODE of the form 

 

(5) 

can be solved by finding an integrating factor  such that 

 

 

 

(6) 

   

(7) 

Dividing through by  yields 

 

(8) 

However, this condition enables us to explicitly determine the appropriate  for 

arbitrary  and . To accomplish this, take 

 

(9) 

in the above equation, from which we recover the original equation (◇), as required, in the form 

http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/IntegratingFactor.html
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(10) 

But we can integrate both sides of (9) to obtain 

 

(11) 

 

(12) 

Now integrating both sides of (◇) gives 

 

(13) 

(with  now a known function), which can be solved for  to obtain 

 

(14) 

where  is an arbitrary constant of integration. 

Given an th-order linear ODE with constant coefficients 

 

(15) 

first solve the characteristic equation obtained by writing 

 

(16) 

and setting  to obtain the  complex roots. 

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html#eqn9
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
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(17) 

 

(18) 

Factoring gives the roots , 

 

(19) 

For a nonrepeated real root , the corresponding solution is 

 

(20) 

If a real root  is repeated  times, the solutions are degenerate and the linearly independent 

solutions are 

 

(21) 

Complex roots always come in complex conjugate pairs, . For 

nonrepeated complex roots, the solutions are 

 

(22) 

If the complex roots are repeated  times, the linearly independent solutions are 

 

(23) 

Linearly combining solutions of the appropriate types with arbitrary multiplicative constants then 

gives the complete solution. If initial conditions are specified, the constants can be explicitly 

determined. For example, consider the sixth-order linear ODE 

http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
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(24) 

which has the characteristic equation 

 

(25) 

The roots are 1, 2 (three times), and , so the solution is 

 

(26) 

If the original equation is nonhomogeneous ( ), now find the particular solution  by the 

method ofvariation of parameters. The general solution is then 

 

(27) 

where the solutions to the linear equations are , , ..., , and  is the particular 

solution. 

SECOND ORDER DIFFERENTIAL EQUATIONS: 

An ordinary differential equation of the form 

 

(1) 

Such an equation has singularities for finite  under the following conditions: (a) If 

either  or diverges as , but  and  remain finite as , 

then  is called a regular or nonessential singular point. (b) If  diverges faster 

than  so that  as , or  diverges faster than  so 

that  as , then  is called an irregular or essential singularity. 

http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/VariationofParameters.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
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Singularities of equation (1) at infinity are investigated by making the substitution , 

so , giving 

 

(2) 

 

 

 

(3) 

  

 

(4) 

  

 

(5) 

Then (3) becomes 

 

(6) 

Case (a): If 

  

 

(7) 

  

 

(8) 

remain finite at  ( ), then the point is ordinary. Case (b): If either  diverges no 

more rapidly than or  diverges no more rapidly than , then the point is a regular 

singular point. Case (c): Otherwise, the point is an irregular singular point. 

Morse and Feshbach (1953, pp. 667-674) give the canonical forms and solutions for second-

order ordinary differential equations classified by types of singular points. 

http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html#eqn1
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html#eqn3
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For special classes of linear second-order ordinary differential equations, 

variable coefficients can be transformed into constant coefficients. Given a second-order linear 

ODE with variable coefficients 

 

(9) 

Define a function , 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

(14) 

This will have constant coefficients if  and  are not functions of . But we are free to set  to 

an arbitrary positiveconstant for  by defining  as 

 

(15) 

Then 

 

 

 

(16) 

http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Positive.html
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(17) 

and 

  

 

(18) 

  

 

(19) 

Equation (◇) therefore becomes 

 

(20) 

which has constant coefficients provided that 

 

(21) 

Eliminating constants, this gives 

 

(22) 

So for an ordinary differential equation in which  is a constant, the solution is given by solving 

the second-order linear ODE with constant coefficients 

 

(23) 

for , where  is defined as above. 

http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Coefficient.html
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A linear second-order homogeneous differential equation of the general form 

 

(24) 

can be transformed into standard form 

 

(25) 

with the first-order term eliminated using the substitution 

 

(26) 

Then 

 

(27) 

 

(28) 

 

(29) 

 

(30) 

 

(31) 

so 

 

 

 

(32) 
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(33) 

Therefore, 

 

(34) 

where 

 

(35) 

If , then the differential equation becomes 

 

(36) 

which can be solved by multiplying by 

 

(37) 

to obtain 

 

(38) 

 

(39) 

 

(40) 

For a nonhomogeneous second-order ordinary differential equation in which the  term does not 

appear in the function , 
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(41) 

let , then 

 

(42) 

So the first-order ODE 

 

(43) 

if linear, can be solved for  as a linear first-order ODE. Once the solution is known, 

 

(44) 

 

(45) 

On the other hand, if  is missing from , 

 

(46) 

let , then , and the equation reduces to 

 

(47) 

which, if linear, can be solved for  as a linear first-order ODE. Once the solution is known, 

 

(48) 
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Nonhomogeneous ordinary differential equations can be solved if the general solution to the 

homogenous version is known, in which case variation of parameters can be used to find the 

particular solution. In particular, the particular solution  to a nonhomogeneous second-order 

ordinary differential equation 

 

(49) 

can be found using variation of parameters to be given by the equation 

 

(50) 

where  and  are the homogeneous solutions to the unforced equation 

 

(51) 

and  is the Wronskian of these two functions. 

PARTIAL DIFFERENTIAL EQUATIONS: 

A partial differential equation (PDE) is an equation involving functions and their partial 

derivatives; for example, thewave equation 

 

(1) 

Some partial differential equations can be solved exactly in the Wolfram 

Language using DSolve[eqn, y, x1, x2 ], and numerically using NDSolve[eqns, y, 

x, xmin, xmax , t, tmin, tmax ]. 

http://mathworld.wolfram.com/VariationofParameters.html
http://mathworld.wolfram.com/VariationofParameters.html
http://mathworld.wolfram.com/Wronskian.html
http://mathworld.wolfram.com/Equation.html
http://mathworld.wolfram.com/PartialDerivative.html
http://mathworld.wolfram.com/PartialDerivative.html
http://mathworld.wolfram.com/WaveEquation.html
http://www.wolfram.com/language/
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/DSolve.html
http://reference.wolfram.com/language/ref/NDSolve.html
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In general, partial differential equations are much more difficult to solve analytically than 

are ordinary differential equations. They may sometimes be solved using a Bäcklund 

transformation, characteristics, Green's function,integral transform, Lax pair, separation of 

variables, or--when all else fails (which it frequently does)--numerical methods such as finite 

differences. 

Fortunately, partial differential equations of second-order are often amenable to analytical 

solution. Such PDEs are of the form 

 

(2) 

Linear second-order PDEs are then classified according to the properties of the matrix 

 

(3) 

as elliptic, hyperbolic, or parabolic. 

If  is a positive definite matrix, i.e., , the PDE is said to be elliptic. Laplace's 

equation and Poisson's equation are examples. Boundary conditions are used to give the 

constraint  on , where 

 

(4) 

holds in . 

If det , the PDE is said to be hyperbolic. The wave equation is an example of a hyperbolic 

partial differential equation. Initial-boundary conditions are used to give 

 

(5) 

http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/BaecklundTransformation.html
http://mathworld.wolfram.com/BaecklundTransformation.html
http://mathworld.wolfram.com/Characteristic.html
http://mathworld.wolfram.com/GreensFunction.html
http://mathworld.wolfram.com/IntegralTransform.html
http://mathworld.wolfram.com/LaxPair.html
http://mathworld.wolfram.com/SeparationofVariables.html
http://mathworld.wolfram.com/SeparationofVariables.html
http://mathworld.wolfram.com/FiniteDifference.html
http://mathworld.wolfram.com/FiniteDifference.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/EllipticPartialDifferentialEquation.html
http://mathworld.wolfram.com/HyperbolicPartialDifferentialEquation.html
http://mathworld.wolfram.com/ParabolicPartialDifferentialEquation.html
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/EllipticPartialDifferentialEquation.html
http://mathworld.wolfram.com/LaplacesEquation.html
http://mathworld.wolfram.com/LaplacesEquation.html
http://mathworld.wolfram.com/PoissonsEquation.html
http://mathworld.wolfram.com/HyperbolicPartialDifferentialEquation.html
http://mathworld.wolfram.com/WaveEquation.html
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(6) 

 

(7) 

where 

 

(8) 

holds in . 

If det , the PDE is said to be parabolic. The heat conduction equation equation and other 

diffusion equations are examples. Initial-boundary conditions are used to give 

 

(9) 

 

(10) 

where 

 

(11) 

holds in . 

The following are examples of important partial differential equations that commonly arise in 

problems of mathematical physics. 

Benjamin-Bona-Mahony equation 

 

(12) 

Biharmonic equation 

http://mathworld.wolfram.com/HeatConductionEquation.html
http://mathworld.wolfram.com/Benjamin-Bona-MahonyEquation.html
http://mathworld.wolfram.com/BiharmonicEquation.html
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(13) 

Boussinesq equation 

 

(14) 

Cauchy-Riemann equations 

 

 

 

(15) 

 

 

 

(16) 

Chaplygin's equation 

 

(17) 

Euler-Darboux equation 

 

(18) 

Heat conduction equation 

 

(19) 

Helmholtz differential equation 

 

(20) 

http://mathworld.wolfram.com/BoussinesqEquation.html
http://mathworld.wolfram.com/Cauchy-RiemannEquations.html
http://mathworld.wolfram.com/ChaplyginsEquation.html
http://mathworld.wolfram.com/Euler-DarbouxEquation.html
http://mathworld.wolfram.com/HeatConductionEquation.html
http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html
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Klein-Gordon equation 

 

(21) 

Korteweg-de Vries-Burgers equation 

 

(22) 

Korteweg-de Vries equation 

 

(23) 

Krichever-Novikov equation 

 

(24) 

where 

 

(25) 

Laplace's equation 

 

(26) 

Lin-Tsien equation 

 

(27) 

Sine-Gordon equation 

http://mathworld.wolfram.com/Klein-GordonEquation.html
http://mathworld.wolfram.com/Korteweg-deVries-BurgersEquation.html
http://mathworld.wolfram.com/Korteweg-deVriesEquation.html
http://mathworld.wolfram.com/Krichever-NovikovEquation.html
http://mathworld.wolfram.com/LaplacesEquation.html
http://mathworld.wolfram.com/Lin-TsienEquation.html
http://mathworld.wolfram.com/Sine-GordonEquation.html
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(28) 

Spherical harmonic differential equation 

 

(29) 

Tricomi equation 

 

(30) 

Wave equation 

 

(31) 

 

GROUP: 

Suppose that we take an equilateral triangle and look at its symmetry group. There are two 

obvious sets of symmetries. First one can rotate the triangle through 120
◦
 . Suppose that we 

choose clockwise as the positive direction and denote rotation through 120
◦
 as R. It is natural to 

represent rotation through 240
◦
 as R

2
, where we think of R

2
 as the effect of applying R twice. 

 

If we apply R three times, represented by R
3
, we would be back where we started. In other 

words we ought to include the trivial symmetry I, as a symmetry of the triangle (in just the same 

way that we think of zero as being a number). Note that the symmetry rotation through 120
◦
 

anticlockwise, could be represented as R
−1

 . Of course this is the same as rotation through 240
◦
 

clockwise, so that R
−1

 = R
2
 . 

 

The other obvious sets of symmetries are flips. For example one can draw a vertical line 

http://mathworld.wolfram.com/SphericalHarmonicDifferentialEquation.html
http://mathworld.wolfram.com/TricomiEquation.html
http://mathworld.wolfram.com/WaveEquation.html
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through the top corner and flip about this line. Call this operation F = F1. Note that F 
2
 = I, 

representing the fact that flipping twice does nothing. 

 

There are two other axes to flip about, corresponding to the fact that there are three corners. 

Putting all this together we have 

 

 

F1 

 

A 

 

F2 

 

 

   F3                    R 

 

Figure 1. Symmetries of an equilateral triangle 

 

The set of symmetries we have created so far is then equal to 

 

{ I, R,  R
2
, F1, F2, F3 }. 

 

Is this all? The answer is yes, and it is easy to see this, once one notices the following fact; any 

symmetry is determined by its action on the vertices of the triangle. In fact a triangle is 

determined by its vertices, so this is clear. Label the vertices A, B and C, where A starts at the 

top, B is the bottom right, and C is the bottom left. 

 

Now in total there are at most six different permutations of the letters A, B and C. We have 

C B 
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already given six different symmetries, so we must in fact have exhausted the list of symmetries. 

 

Note that given any two symmetries, we can always consider what happens when we apply 

first one symmetry and then another. However note that the notation RF is ambiguous. Should 

we apply R first and then F or F first and then R? We will adopt the convention that RF means 

first apply F and then apply R. 

 

Now RF is a symmetry of the triangle and we have listed all of them. Which one is it? Well 

the action of RF on the vertices will take 

 

A −→ A −→ B 

 

B −→ C −→ A 

 

C −→ B −→ C. 

 

 

In total then A is sent to B, B is sent to A and C is sent to C. As this symmetry fixes one of the 

vertices, it must be a flip. In fact it is equal to F3. 

 

Let us now compute the symmetry FR. Well the action on the vertices is as follows 

 

A −→ B −→ C 

 

B −→ C −→ B 

 

C −→ A −→ A. 
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So in total the action on the vertices is given as A goes to C, B goes to B and C goes to A. 

Again this symmetry fixes the vertex B and so it is equal to F2. 

Thus F3 = RF = FR = F2. 

 

Let us step back a minute and consider what (algebraic) structure these examples give us. We 

are given a set (the set of symmetries) and an operation on this set, that is a rule that tells us how 

to multiply (in a formal sense) any two elements. We have an identity (the symmetry that does 

nothing). As this symmetry does nothing, composing with this symmetry does nothing (just as 

multiplying by the number one does nothing). 

 

Finally, given any symmetry there is an inverse symmetry which undoes the action of the 

symmetry (R represents rotation through 120
◦
 clockwise, and R

−1
 represents rotation through 

120
◦
 anticlockwise, thus undoing the action of R). 
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Definition 1.1. A group G is a set together with two operations (or more 

simply, functions), one called multiplication m: G × G −→ G and the 

other called the inverse i : G −→ G. These operations obey the following 

rules 

 

(1) Associativity: For every g, h and k ∈  G, 

m(m(g, h), k) = m(g, m(h, k)). 

 

(2) Identity: There is an element e in the group such that for every g ∈  

G  

m(g, e) = g 

 

and 

m(e, g) = g. 

 

(3) Inverse: For every g ∈  G, 

m(g, i(g)) = e = m(i(g), g). 

 

It is customary to use different (but equivalent) notation to denote the 

operations of multiplication and inverse. One possibility is to use the 

ordinary notation for multiplication 

m(x, y) = xy. 

The inverse is then denoted 

 

i(g) = g 
−1

 . 

The three rules above will then read as follows 

(1) 

(gh)k = g(hk). 
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(2) 

ge = g = eg 

(3) 

gg 
−1

 = eg 
−1

 g. 

Another alternative is to introduce a slight different notation for the 

multiplication rule, something like *. In this case the three rules come out 

as 

(1) 

(g * h) * k = g * (h * k). 

(2) 

g * e = g = e * g 

(3) 

 

g * g 
−1

 = e = g 
−1

 *g. 

 

 

 

 

 

The key thing to realise is that the multiplication rule need not have any 

relation to the more usual mutliplication rule of ordinary numbers. 

 

Let us see some examples of groups. Can we make the empty set into a 

group? How would we define the multiplication? Well the answer is that 

there is nothing to define, we just get the empty map. Is this empty map 

associative? The answer is yes, since there is nothing to check. Does there 

exist an identity? No, since the empty set does not have any elements at 

all. 
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Thus there is no group whose underlying set is empty. 

 

Now suppose that we take a set with one element, call it a. The 

definition of the multiplication rule is obvious. We only need to know 

how to multiply a with a, 

 

m(a, a) = aa = a 
2
 = a * a = a. 

 

Is this multiplication rule associative? Well suppose that g, h and k are 

three elements of G. Then g = h = k = a. We compute the LHS, 

 

m(m(a, a), a) = m(a, a) = a. 

 

Similarly the RHS is 

 

m(a, m(a, a)) = m(a, a) = a. 

 

These two are equal and so this multiplication rule is associative. Is 

their an identity? Well there is only one element of the group, a. We have 

to check that if we multiply e = a by any other element g of the group then 

we get back g. The only possible choice for g is a. 

 

m(g, e) = m(a, a) = a = g, 

 

and 

 

m(e, g) = m(a, a) = a = g. 

 

So a acts as an identity. Finally does every element have an inverse? 
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Pick an element g of the group G. In fact g = a. The only possiblity for an 

inverse of g is a. 

 

m(g, g 
−1

) = m(a, a) = a = e. 

 

Similarly 

 

g 
−1

 g = aa = a = e. 

 

So there is a unique rule of multiplication for a set with one element, 

and with this law of multiplication we get a group. 

 

Consider the set {a, b} and define a multiplication rule by 

 

aa = a ab = b 

ba = b bb = a 

 

Here a plays the role of the identity. a and b are their own inverses. It is 

not hard to check that associativity holds and that we therefore get a 

group. 

 

To see some more examples of groups, it is first useful to prove a 

general result about associativity. 

 

Lemma 1.2. Let f : A −→ B, g : B −→ C, h: C −→ D be three functions. 

 

Then 

 

h ◦ (g ◦ f) = (h ◦ g) ◦ f. 
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Proof. Both the LHS and RHS are functions from A −→ D. To prove that 

two such functions are equal, it suffices to prove that they give the same 

value, when applied to any element a ∈ A. 

 

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = 

h(g(f(a))) 

 

Similarly 

 

((h ◦ g) ◦ f))(a) = (h ◦ g)(f(a)) 

D 

 

= h(g(f(a))).  

 

The set {I, R, R
2
, F1, F2, F3} is a group, where the multiplication rule is 

composition of symmetries. Any symmetry, can be interpreted as a 

function R
2
 −→ R

2
, and composition of symmetries is just composition of 

functions. Thus this rule of multiplication is associative by ( 1.2). 

 

I plays the role an identity. Since we can undo any symmetry, every 

element of the group has an inverse. 

 

Definition 1.3. The dihedral group Dn of order n is the group of 

symmetries of a regular n-gon. 

 

With this notation, D3 is the group above, the set of symmetries of an 

equilateral triangle. The same proof as above shows that Dn is a group. 

 

Definition 1.4. We say that a group G is abelian, if for every g and h in G, 
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gh = hg. 

 

The groups with one or two elements above are abelian. However D3 as 

we have already seen is not abelian. Thus not every group is abelian. 

 

Consider the set of whole numbers W = {1, 2, . . . } under addition. Is 

this a group? 

Lemma 1.5. Addition and multiplication of complex number is asso­ 

ciative. 

 

Proof. Well-known.  

 

So addition of whole numbers is certainly associative. Is there an 

identity? No. So W is not a group under addition, since there is no 

identity. 

 

How about if we enlarge this set by adding 0, to get the of natural 

numbers N? In this case there is an identity, but there are no inverses. For 

example 1 has no inverse, since if you add a non-negative number to 1 

you get something at least one. 

 

On the other hand (Z, +) is a group under addition, where Z is the set of 

integers. Similiarly Q, R, C are all groups under addition. 

 

How about under multiplication? First how about Z. Multiplication is 

associative, and there is an identity, one. However not every element has 

an inverse. For example, 2 does not have an inverse. 

What about Q under multiplication? Associativity is okay. Again one 

plays the role of the identity and it looks like every element has an 
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inverse. Well not quite, since 0 has no inverse. 

 

Once one removes zero to get Q
∗

 , then we do get a group under 

multiplication. Similarly R
∗

 and C
∗

 are groups under multiplication. 

All of these groups are abelian. 

 

We can create some more interesting groups using these examples. Let 

Mm,n(C) denote m × n matrices, with entries in C. The multipli­ cation rule 

is addition of matrices (that is add corresponding entries). This operation 

is certainly associative, as this can be checked entry by entry. The zero 

matrix (that is the matrix with zeroes everywhere) plays the role of the 

identity. 

 

Given a matric A, the inverse matrix is −A, that is the matrix ob­ tained 

by changing the sign of every entry. Thus Mm,n(C) is a group under 

addition, which is easily seen to be abelian. We can the replace complex 

numbers by the reals, rationals or integers. 

 

GLn(C) denotes the set of n × n matrices, with non-zero determi­ nant. 

Multiplication is simply matrix multiplication. We check that this is a 

group. First note that a matrix corresponds to a (linear) func­ tion R
n
 −→ 

R 
n
, and under this identification, matrix multiplication corresponds to 

composition of functions. 

 

Thus matrix multiplication is associative. The matrix with one’s on the 

main diagonal and zeroes everywhere else is the identity matrix. 

SUBGROUP: 

Consider the chain of inclusions of groups 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS: III BSC PHY   COURSE NAME: MATHEMATICAL PHYSICS             

COURSE CODE: 15PHU603A                  UNIT: III                   BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.  Page 40/70 
 

Z ⊂ Q ⊂ R ⊂ C. 

where the law of multiplication is ordinary addition. 

 

Then each subset is a group, and the group laws are obviously com­ 

patible. That is to say that if you want to add two integers together, it does 

not matter whether you consider them as integers, rational num­ bers, real 

numbers or complex numbers, the sum always comes out the same. 

 

Definition 2.1. Let G be a group and let H be a subset of G. We say that H 

is a subgroup of G, if the restriction to H of the rule of multiplication and 

inverse makes H into a group. 

 

Notice that this definition hides a subtlety. More often than not, the 

restriction to H × H of m, the rule of multiplication of G, won’t even 

define a rule of multiplication on H itself, because there is no a priori 

reason for the product of two elements of H to be an element of H. 

 

For example suppose that G is the set of integers under addition, and H 

is the set of odd numbers. Then if you take two elements of H and add 

them, then you never get an element of H, since you will always get an 

even number. 

 

Similarly, the inverse of H need not be an element of H. For example 

take H to be the set of natural numbers. Then H is closed under addition 

(the sum of two positive numbers is positive) but the inverse of every 

element of H does not lie in H. 

Definition 2.2. Let G be a group and let S be subset of G. 

 

We say that S is closed under multiplication, if whenever a and b are in 
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S, then the product of a and b is in S. 

 

We say that S is closed under taking inverses, if whenever a is in S, 

then the inverse of a is in S. 

 

For example, the set of even integers is closed under addition and 

taking inverses. The set of odd integers is not closed under addition (in a 

big way as it were) and it is closed under inverses. The natural numbers 

are closed under addition, but not under inverses. 

Proposition 2.3. Let H be a non-empty subset of G. 

 

Then H is a subgroup of G iff H is closed under multiplication and 

taking inverses. Furthermore, the identity element of H is the identity 

element of G and the inverse of an element of H is equal to the inverse 

element in G. 

If G is abelian then so is H. 

 

Proof. If H is a subgroup of G, then H is closed under multiplication and 

taking inverses by definition. 

 

So suppose that H is closed under multiplication and taking inverses. 

Then there is a well defined product on H. We check the axioms of a 

group for this product. 

 

Associativity holds for free. Indeed to say that the multiplication on H 

is associative, is to say that for all g, h and k ∈ H, we have 

(gh)k = g(hk). 
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But g, h and k are elements of G and the associative rule holds in G. 

Hence equality holds above and multiplication is associative in H. 

 

We have to show that H contains an identity element. As H is non-

empty we may pick a ∈ H. As H is closed under taking inverses, a
−1

 ∈ H. 

But then 

e = aa
−1

 ∈ H 

 

as H is closed under multiplication. So e ∈ H. Clearly e acts as an identity 

element in H as it is an identity element in G. Suppose that h ∈ H. Then 

h
−1

 ∈ H, as H is closed under taking inverses. But h
−1

 is clearly the inverse 

of h in H as it is the inverse in G. 

 

Finally if G is abelian then H is abelian. The proof follows just like the 

proof of associativity. D 

 

Example 2.4. (1) The set of even integers is a subgroup of the set of 

integers under addition. By ( 2.3) it suffices to show that the even 

integers are closed under addition and taking inverses, which is 

clear. 

 

(3) The set of natural numbers is not a subgroup of the group of 

integers under addition. The natural numbers are not closed under 

taking inverses.  

 

(4) The set of rotations of a regular n-gon is a subgroup of the group 

Dn of symmetries of a regular n-gon. By ( 2.3) it suffices to check 

that the set of rotations is closed under multiplication  
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and inverse. Both of these are obvious. For example, suppose that 

R1 and R2 are two rotations, one through θ radians and the  

 

other through φ. Then the product is a rotation through θ + φ. On 

the other hand the inverse of R1 is rotation through 2π − θ.  

(5) The group Dn of symmetries of a regular n-gon is a subgroup of 

the set of invertible two by two matrices, with entries in R. Indeed 

any symmetry can be interpreted as a matrix. Since we have 

already seen that the set of symmetries is a group, it is in  

fact a subgroup. 

 

(5) The following subsets are subgroups. 

 

Mm,n(Z) ⊂ Mm,n(Q) ⊂ Mm,n(R) ⊂ Mm,n(C). 

 

(6) The following subsets are subgroups. 

 

GLn(Q) ⊂ GLn(R) ⊂ GLn(C). 

 

(7) It is interesting to enumerate the subgroups of D3. At one ex­ 

treme we have D3 and at the other extreme we have {I}. Clearly 

the set of rotations is a subgroup, {I, R, R
2
}. On the other hand {I, 

Fi} forms a subgroup as well, since Fi
2
 = I. Are these the only 

subgroups?  

 

Suppose that H is a subgroup that contains R. Then H must 

contain R
2
 and I, since H must contain all powers of R. Sim­ ilarly 

if H contains R
2
 , it must contain R

4
 = (R

2
)
2
 . But  
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R
4
 = R

3
R = R. 

 

Suppose that in addition H contains a flip. By symmetry, we 

may suppose that this flip is F = F1. But RF1 = F3 and FR = F2. So 

then H would be equal to G. 

 

The final possibility is that H contains two flips, say F1 and F2. 

Now F1R = F2, so 

 

R = F 1
−1

 F2 = F1F2. 

 

So if H contains F1 and F2 then it is forced to contain R. In this 

case H = G as before. 

 

Here are some examples, which are less non-trivial. 

 

Definition-Lemma 2.5. Let G be a group and let g ∈ G be an element of 

G. 

 

The centraliser of g ∈ G is defined to be 

 

Cg = { h ∈ G | hg = gh }. 

 

Then Cg is a subgroup of G. 

 

Proof. By ( 2.3) it suffices to prove that Cg is closed under multiplication 

and taking inverses. 

Suppose that h and k are two elements of Cg. We show that the product 
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hk is an element of Cg. We have to prove that (hk)g = g(hk). 

(hk)g = h(kg) by associativity 

= h(gk) as k ∈ Cg 

= (hg)k by associativity 

= (gh)k as h ∈ Cg 

= g(hk) by associativity. 

 

Thus hk ∈ Cg and Cg is closed under multiplication. 

 

Now suppose that h ∈ G. We show that the inverse of h is in G. We 

have to show that h
−1

g = gh
−1

 . Suppose we start with the equality 

hg = gh. 

Multiply both sides by h
−1

 on the left. We get 

h
−1

(hg) = h
−1

(gh), 

so that simplifying we get 

 

g = (h
−1

 g)h. 

Now multiply both sides of this equality by h
−1

 on the right, 

 

gh
−1

 = (h
−1

 g)(hh
−1

). 

Simplifying we get 

ghg
−1

 = g 
−1

h, 

 

which is what we want. Thus h
−1

 ∈ Cg. Thus Cg is closed under taking 

inverses and Cg is a subgroup by ( 2.3). D 

 

Lemma 2.6. Let G be a finite group and let H be a non-empty finite set, 

closed under multiplication. 
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Then H is a subgroup of G. 

 

Proof. It suffices to prove that H is closed under taking inverses. Let 

a ∈ H. If a = e then a
−1

 = e and this is obviously in H. So we may 

assume that a = e. Consider the powers of a, 

 

a, a
2
 , a

3
 , . . . . 

 

As H is closed under products, it is obviously closed under powers (by an 

easy induction argument). As H is finite and this is an infinite sequence, 

we must get some repetitions, and so for some m and n distinct positive 

integers 

a
m

 = a 
n
 . 

Possibly switching m and n, we may assume m < n. Multiplying both 

sides by the inverse a
−m

 of a
m

, we get 

 

a
n−m

 = e. 

 

As a 6==e, n−m 6= 1. Set k = n−m−1. Then k > 0 and b = a
k
 ∈ H. 

But 

 

ba = a 
k
 a = a 

n−m−1
 a = a 

n−m
 = e. 

Similarly 

 

ab = e. 

 

Thus b is the inverse of a. Thus H is closed under taking inverses and 
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so H is a subgroup of G by ( 2.3). D 

 

CO-SETS: 

Consider the group of integers Z under addition. Let H be the subgroup 

of even integers. Notice that if you take the elements of H and add one, 

then you get all the odd elements of Z. In fact if you take the elements of 

H and add any odd integer, then you get all the odd elements. 

 

On the other hand, every element of Z is either odd or even, and 

certainly not both (by convention zero is even and not odd), that is, we 

can partition the elements of Z into two sets, the evens and the odds, and 

one part of this partition is equal to the original subset H. 

 

Somewhat surprisingly this rather trivial example generalises to the 

case of an arbitrary group G and subgroup H, and in the case of finite 

groups imposes rather strong conditions on the size of a subgroup. 

 

To go further, we need to recall some basic facts abouts partitions and 

equivalence relations. 

 

Definition 3.1. Let X be a set. An equivalence relation ∼ is a relation on 

X, which is 

 

(6) (reflexive) For every x ∈  X, x ∼ x.  

 

(7) (symmetric) For every x and y ∈  X, if x ∼ y then y ∼ x.  

 

(8) (transitive) For every x and y and z ∈  X, if x ∼ y and y ∼ z then x 

∼ z.  



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS: III BSC PHY   COURSE NAME: MATHEMATICAL PHYSICS             

COURSE CODE: 15PHU603A                  UNIT: III                   BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.  Page 48/70 
 

Example 3.2. Let S be any set and consider the relation 

 

a ∼ b    if and only if    a = b. 

 

A moments thought will convince the reader this is an equivalence re­ 

lation. 

 

Let S be the set of people in this room and let 

 

a ∼ b    if and only if a and b have the same colour top. 

 

Then ∼ is an equivalence relation. 

 

Let S = R and 

 

a ∼ b    if and only if    a ≥ b. 

 

Then ∼ is reflexive and transitive but not symmetric. It is not an 

equivalence relation. 

 

Lemma 3.3. Let G be a group and let H be a subgroup. Let ∼ be the 

relation on G defined by the rule 

 

a ∼ b    if and only if    b
−1

 a ∈  H. 

 

Then ∼ is an equivalence relation. 

 

Proof. There are three things to check. First we check reflexivity. Sup­ 

pose that a ∈  G. Then a
−1

a = e ∈  H, since H is a subgroup. But then a ∼ a 
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by definition of ∼ and ∼ is reflexive. 

Now we check symmetry. Suppose that a and b are elements of G 

 

and that a ∼ b. Then b
−1

a ∈  H. As H is closed under taking inverses, 

(b
−1

a)
−1

 ∈  H. But 

(b−1 a)−1 = a −1(b−1)−1 

 

= a 
−1

b. 

 

Thus a
−1

b ∈  H. But then by definition b ∼ a. Thus ∼ is symmetric. 

Finally we check transitivity. Suppose that a ∼ b and b ∼ c. 

 

Then b
−1

a ∈  H and c
−1

b ∈  H. As H is closed under multiplication 

(c
−1

b)(b
−1

a) ∈  H. On the other hand 

 

(c
−1

b)(b
−1

 a) = c 
−1

(bb
−1

)a 

 

= c 
−1

(ea) = c 
−1

 a. 

 

Thus c
−1

a ∈  H. But then a ∼ c and ∼ is transitive. 

As ∼ is reflexive, symmetric and transitive, it is an equivalence re­ 

lation. D 

 

On the other hand if we are given an equivalence relation, the natural 

thing to do is to look at its equivalence classes. 

 

Definition 3.4. Let ∼ be an equivalence relation on a set X. Let a ∈  X be 

an element of X. The equivalence class of a is 

[a] = { b ∈  X | b ∼ a }. 
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Example 3.5. In the examples ( 3.2), the equivalence classes in the first 

example are the singleton sets, in the second example the equivalence 

classes are the colours. 

 

Definition 3.6. Let X be a set. A partition P of X is a collection of subsets 

Ai, i ∈  I, such that 

(1) The Ai cover X, that is, 

 

Ai = X. 

 

i∈I 

(2) The Ai are pairwise disjoint, that is, if i = j then 

 

Ai ∩ Aj = ∅ . 

 

Lemma 3.7. Given an equivalence relation ∼ on X there is a unique 

partition of X. The elements of the partition are the equivalence classes of 

∼ and vice-versa. That is, given a partition P of X we may construct 

an equivalence relation ∼ on X such that the partition associated to ∼ is 

precisely P . 

 

Concisely, the data of an equivalence relation is the same as the data of 

a partition. 

 

Proof. Suppose that ∼ is an equivalence relation. Note that x ∈  [x] as x ∼ 

x. Thus certainly the set of equivalence classes covers X. The only thing 

to check is that if two equivalence classes intersect at all, then in fact they 

are equal. 
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We first prove a weaker result. We prove that if x ∼ y then [x] = [y]. 

Since y ∼  x, by symmetry, it suffices to prove that [x] ⊂ [y]. Suppose that 

a ∈  [x]. Then a ∼ x. As x ∼ y it follows that a ∼ y, by transitivity. But 

then a ∈  [y]. Thus [x] ⊂ [y] and by symmetry [x] = [y]. 

 

So suppose that x ∈  X and y ∈  X and that z ∈  [x] ∩ [y]. As z ∈  [x], z 

∼ x. As z ∈  [y], z ∼ y. But then by what we just proved [x] = [z] = [y]. 

 

Thus if two equivalence classes overlap, then they coincide and we 

have a partition. 

Now suppose that we have a partition 

 

P = { Ai | i ∈  I }. 

 

Define a relation ∼ on X by the rule x ∼ y iff x ∈  Ai and y ∈  Ai (same 

i, of course). That is, x and y are related iff they belong to the same part. It 

is straightforward to check that this is an equivalence relation, and that 

this process reverses the one above. Both of these things are left as an 

exercise to the reader. D 

 

Example 3.8. Let X be the set of integers. Define an equivalence relation 

on Z by the rule x ∼ y iff x − y is even. 

 

Then the equivalence classes of this relation are the even and odd 

numbers. 

 

More generally, let n be an integer, and let nZ be the subset consisting 
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of all multiples of n, 

 

nZ = { an | a ∈  Z }. 

Since the sum of two multiples of n is a multiple of n, 

an + bn = (a + b)n, 

and the inverse of a multiple of n is a multiple of n, 

 

−(an) = (−a)n, 

 

nZ is closed under multiplication and inverses. Thus nZ is a subgroup of 

Z. 

 

The equivalence relation corresponding to nZ becomes a ∼ b iff a−b ∈ 

nZ, that is, a − b is a multiple of n. There are n equivalence classes, 

 

[0], [1], [2], [3], . . . [n − 1]. 

 

Definition-Lemma 3.9. Let G be a group, let H be a subgroup and let ∼ be 

the equivalence relation defined in ( 3.3). Let g ∈ G. Then 

 

[g] = gH = { gh | h ∈ H }. 

gH is called a left coset of H. 

 

Proof. Suppose that k ∈ [g]. Then k ∼ g and so g
−1

k ∈ H. If we set h = 

g
−1

k, then h ∈ H. But then k = gh ∈ gH. Thus [g] ⊂ gH. 

 

Now suppose that k ∈ gH. Then k = gh for some h ∈ H. But then h = 

g
−1

k ∈ H. By definition of ∼, k ∼ g. But then k ∈ [g]. D 
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In the example above, we see that the left cosets are 

 

(8) = { an | a ∈ Z }  

 

(9) = { an + 1 | a ∈ Z }  

 

(10) = { an + 2 | a ∈ Z }  

 

.
..  

 

[n − 1] = { an − 1 | a ∈ Z }. 

 

It is interesting to see what happens in the case G = D3. Suppose we 

take H = {I, R, R
2
}. Then 

[I] = H = {I, R, R
2
}. 

 

Pick F1 ∈/ H. Then 

 

[F1] = F1H = {F1, F2, F3}. 

Thus H partitions G into two sets, the rotations, and the flips, 

 

{{I, R, R
2
}, {F1, F2, F3}}. 

 

Note that both sets have the same size. 

Now suppose that we take H = {I, F1} (up to the obvious symme­ tries, 

this is the only other interesting example). 

 

In this case 
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[I] = IH = H = {I, F1}. 

Now R is not in this equivalence class, so 

 

[R] = RH = {R, RF1} = {R, F2}. 

 

Finally look at the equivalence class containing R
2
 . 

 

[R
2
] = R

2
H = {R

2
, R

2
F1} = {R

2
, F3}. 

The corresponding partition is 

 

{{I, F1}, {R, F2}, {R
2
, F3}}. 

Note that, once again, each part of the partition has the same size. 

 

Definition 3.10. Let G be a group and let H be a subgroup. 

 

The index of H in G, denoted [G : H], is equal to the number of left 

cosets of H in G. 

 

Note that even though G might be infinite, the index might still be 

finite. For example, suppose that G is the group of integers and let H be 

the subgroup of even integers. Then there are two cosets (evens and odds) 

and so the index is two. 

We are now ready to state our first Theorem. 

 

Theorem 3.11. (Lagrange’s Theorem) Let G be a group. Then 

 

|H|[G : H] = |G|. 

In particular if G is finite then the order of H divides the order of 
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G. 

Proof. Since G is a disjoint union of its left cosets, it suffices to prove that 

the cardinality of each coset is equal to the cardinality of H. 

Suppose that gH is a left coset of H in G. Define a map 

 

A : H −→ gH, 

by sending h ∈ H to A(h) = gh. Define a map 

B : gH −→ H, 

by sending k ∈ gH to B(k) = g
−1

k. These maps are both clearly well-

defined. 

We show that B is the inverse of A. We first compute 

 

B ◦ A: H −→ H. 

Suppose that h ∈ H, then 

 

(B ◦ A)(h) = B(A(h)) = 

B(gh) 

 

= g 
−1

(gh) 

= h. 

 

Thus B ◦ A: H −→ H is certainly the identity map. Now consider 

A ◦ B : gH −→ gH. 

 

Suppose that k ∈  gH, then 

 

(A ◦ B)(k) = A(B(k)) = A(g 
−1

k) = g(g 
−1

k) = 

k. 
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Thus B is indeed the inverse of A. In particular A must be a bijection and so H and gH must have 

the same cardinality. D 

 

CYCLIC GROUP: 

 

Lemma 4.1. Let G be a group and let Hi, i ∈ I be a collection of subgroups of G. 

 

Then the intersection 

H =   Hi, 

 

i∈ I 

is a subgroup of G 

 

Proof. First note that H is non-empty, as the identity belongs to every Hi. We have to check that 

H is closed under products and inverses. 

Suppose that g and h are in H. Then g and h are in Hi, for all i. But then hg ∈ Hi for all i, as Hi 

is closed under products. Thus gh ∈ H. 

Similarly as Hi is closed under taking inverses, g
−1

 ∈ Hi for all i ∈ I. 

But then g
−1

 ∈ H. 

D 

 

Thus H is indeed a subgroup.  

 

Definition-Lemma 4.2. Let G be a group and let S be a subset of G. The subgroup H = (S) 

generated by S is equal to the smallest 

subgroup of G that contains S. 

 

Proof. The only thing to check is that the word smallest makes sense. Suppose that Hi, i ∈ I is the 

collection of subgroups that contain S. 
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By ( 4.1), the intersection H of the Hi is a subgroup of G. 

On the other hand H obviously contains S and it is contained in 

each Hi. 

D 

 

Thus H is the smallest subgroup that contains S.  

 

Lemma 4.3. Let S be a non-empty subset of G. 

 

Then the subgroup H generated by S is equal to the smallest subset of G, containing S, that is 

closed under taking products and inverses. 

 

Proof. Let K be the smallest subset of G, closed under taking products and inverses. 

 

As H is closed under taking products and inverses, it is clear that H must contain K. On the 

other hand, as K is a subgroup of G, K 

 

must contain H. 

D 

 

But then H = K.  

 

Definition 4.4. Let G be a group. We say that a subset S of G gen­ erates G, if the smallest 

subgroup of G that contains S is G itself. 

 

Definition 4.5. Let G be a group. We say that G is cyclic if it is generated by one element. 

 

Let G = (a) be a cyclic group. By ( 4.3) 

 

G = { a 
i
 | i ∈ Z }. 

Definition 4.6. Let G be a group and let g ∈ G be an element of G. The order of g is equal to the 

cardinality of the subgroup generated 
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by g. 

 

Lemma 4.7. Let G be a finite group and let g ∈ G. 

Then the order of g divides the order of G. 

 

Proof. Immediate from Lagrange’s Theorem. D 

 

Lemma 4.8. Let G be a group of prime order. 

 

Then G is cyclic. 

 

Proof. If the order of G is one, there is nothing to prove. Otherwise pick an element g of G not 

equal to the identity. As g is not equal to the identity, its order is not one. As the order of g 

divides the order of G and this is prime, it follows that the order of g is equal to the order 

of G. 

D 

 

But then G = (g) and G is cyclic.  

 

It is interesting to go back to the problem of classifying groups of finite order and see how 

these results change our picture of what is going on. 

 

Now we know that every group of order 1, 2, 3 and 5 must be cyclic. Suppose that G has order 

4. There are two cases. If G has an element a of order 4, then G is cyclic. 

 

We get the following group table. 

 

∗  e a 

2 3  

a2 a3  
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e a 

 

e a a  

a a a
2
 a

3
 e  

a
2
 a

2
 a

3
 e a  

a3 a
3
 e a a2  

 

Replacing a
2
 by b, a

3
 by c we get 

 

∗  e a b c 

e e a b c 

a a b c e 

b b c e a 

c c e a b 

     

 

Now suppose that G does not contain any elements of order 4. Since the order of every 

element divides 4, the order of every element must be 1, 2 or 4. On the other hand, the only 

element of order 1 is the identity element. Thus if G does not have an element of order 4, then 

every element, other than the identity, must have order 2. 

In other words, every element is its own inverse. 

 

∗  e a b c 

e e a b c 

a a e ?  

b b  e  

c c   e 
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Now ? must in fact be c, simply by a process of elimination. In fact we must put c somewhere 

in the row that contains a and we cannot put it in the last column, as this already contains c. 

Continuing in this way, it turns out there is only one way to fill in the whole table 

 

∗  e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

     

 

So now we have a complete classification of all finite groups up to order five (it easy to see 

that there is a cyclic group of any order; just take the rotations of a regular n-gon). If the order is 

not four, then the only possibility is a cyclic group of that order. Otherwise the order is four and 

there are two possibilities. 

 

Either G is cyclic. In this case there are two elements of order 4 (a and a
3
) and one element of 

order two (a
2
). Otherwise G has three elements of order two. Note however that G is abelian. 

So the first non-abelian group has order six (equal to D3). 

 

One reason that cyclic groups are so important, is that any group G contains lots of cyclic 

groups, the subgroups generated by the ele­ ments of G. On the other hand, cyclic groups are 

reasonably easy to understand. First an easy lemma about the order of an element. 

 

Lemma 4.9. Let G be a group and let g ∈ G be an element of G. Then the order of g is the 

smallest positive number k, such that 

a
k
 = e. 
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Proof. Replacing G by the subgroup (g) generated by g, we might as well assume that G is 

cyclic, generated by g. 

Suppose that g
l
 = e. I claim that in this case 

 

G = { e, g, g 
2
 , g 

3
 , g 

4
, . . . , g 

l
 
−1

 }. 

Indeed it suffices to show that the set is closed under multiplication and taking inverses. 

 

Suppose that g
i
 and g

j
 are in the set. Then g 

i
 g 

j
 = g

i+j
. If i + j < l there is nothing to prove. If i 

+ j ≥ l, then use the fact that g
l
 = e to rewrite g

i+j
 as g

i+j
 
−l

. In this case i + j − l > 0 and less than l. 

So the set is closed under products. 

 

Given g
i
, what is its inverse? Well g 

l
 
−i

 g 
i
 = g

l
 = e. So g

l−i
 is the inverse of g

i
 . Alternatively 

we could simply use the fact that H is finite, to conclude that it must be closed under taking 

inverses. 

 

Thus |G| ≤ l and in particular |G| ≤ k. In particular if G is infinite, there is no integer k such that 

g
k
 = e and the order of g is infinite and the smallest k such that g

k
 = e is infinity. Thus we may 

assume that the order of g is finite. 

 

Suppose that |G| < k. Then there must be some repetitions in the 

set 

 

{ e, g, g 
2
 , g 

3
 , g 

4
, . . . , g 

k−1
 }. 

 

Thus g
a
 = g

b
 for some a = b between 0 and k − 1. Suppose that a < b. Then g

b−a
 = e. But this 

contradicts the fact that k is the smallest integer such that g
k
 = e. D 

 

Lemma 4.10. Let G be a finite group of order n and let g be an element of G. 

Then g
n
 = e. 
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Proof. We know that g
k
 = e where k is the order of g. But k divides n. So n = km. But then 

 

g 
n
 = g 

km
 = (g 

k
)
m

 = e
m

 = e. D 

 

Lemma 4.11. Let G be a cyclic group, generated by a. Then 

 

(9) G is abelian.  

 

(10)If G is infinite, the elements of G are precisely  

 

 . . a
−3

 , a
−2

 , a
−1

 , e, a, a
2
 , a

3
 , . . .  

 

(11)If G is finite, of order n, then the elements of G are precisely  

 

e, a, a 
2
, . . . , a 

n−2
 , a

n−1
 , 

 

and a
n
 = e. 

 

Proof. We first prove (1). Suppose that g and h are two elements of G. As G is generated by a, 

there are integers m and n such that g = a
m

 

and h = a
n
 . Then 

 

gh = a
m

 a
n
 

= a m+n  

 

= a n+m  

 

= hg.  
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Thus G is abelian. Hence (1). 

D 

 

(2) and (3) follow from ( 4.9).  

 

Note that we can easily write down a cyclic group of order n. The group of rotations of an n-

gon forms a cyclic group of order n. Indeed any rotation may be expressed as a power of a 

rotation R through 2π/n. On the other hand, R
n
 = 1. 

 

However there is another way to write down a cyclic group of order n. Suppose that one takes 

the integers Z. Look at the subgroup nZ. Then we get equivalence classes modulo n, the left 

cosets. 

 

[0], [1], [2], [3], . . . , [n − 1]. 

 

I claim that this is a group, with a natural method of addition. In fact I define 

[a] + [b] = [a + b]. 

 

in the obvious way. However we need to check that this is well-defined. The problem is that the 

notation 

 

[a] 

 

is somewhat ambiguous, in the sense that there are infinitely many numbers a
'
 such that 

[a
'
] = [a]. 

In other words, if the difference a
'
 − a is a multiple of n then a and a

'
 represent the same 

equivalence class. For example, suppose that n = 3. Then [1] = [4] and [5] = [−1]. So there are 

two ways to calculate 

[1] + [5]. 
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One way is to add 1 and 5 and take the equivalence class. [1] + [5] = [6]. On the other hand we 

could compute [1] + [5] = [4] + [−1] = [3]. Of course [6] = [3] = [0] so we are okay. 

 

So now suppose that a
'
 is equal to a modulo n and b

'
 is equal to b modulo n. This means 

a
'
 = a + pn 

and 

b
'
 = b + qn, 

where p and q are integers. Then 

 

a
'
 + b

'
 = (a + pn) + (b + qn) = (a + b) + (p + q)n. 

So we are okay 

[a + b] = [a
'
 + b

'
], 

 

 

and addition is well-defined. The set of left cosets with this law of addition is denote Z/nZ, the 

integers modulo n. Is this a group? Well associativity comes for free. As ordinary addition is 

associative, so is addition in the integers modulo n. 

 

[0] obviously plays the role of the identity. That is 

 

[a] + [0] = [a + 0] = [a]. 

 

Finally inverses obviously exist. Given [a], consider [−a]. Then 

 

[a] + [−a] = [a − a] = [0]. 

 

Note that this group is abelian. In fact it is clear that it is generated by [1], as 1 generates the 

integers Z. 
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How about the integers modulo n under multiplication? There is an obvious choice of 

multiplication. 

 

[a] · [b] = [a · b]. 

 

Once again we need to check that this is well-defined. Exercise left for the reader. 

 

Do we get a group? Again associativity is easy, and [1] plays the role of the identity. 

Unfortunately, inverses don’t exist. For example [0] does not have an inverse. The obvious thing 

to do is throw away zero. But even then there is a problem. For example, take the integers 

modulo 4. Then 

 

[2] · [2] = [4] = [0]. 

 

So if you throw away [0] then you have to throw away [2]. In fact given n, you should throw 

away all those integers that are not coprime to n, at the very least. In fact this is enough. 

 

Definition-Lemma 4.12. Let n be a positive integer. 

The group of units, Un, for the integers modulo n is the subset of Z/nZ of integers coprime to 

n, under multiplication. 

 

Proof. We check that Un is a group. 

First we need to check that Un is closed under multiplication. Sup­ pose that [a] ∈ Un and [b] ∈ 

Un. Then a and b are coprime to n. This means that if a prime p divides n, then it does not divide 

a or b. But then p does not divide ab. As this is true for all primes that divide n, it follows that ab 

is coprime to n. But then [ab] ∈ Un. Hence multiplication is well-defined. 

This rule of multiplication is clearly associative. Indeed suppose that [a], [b] and [c] ∈ Un. 

Then 
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([a] · [b]) · [c] = [ab] · c 

 

= [(ab)c]  

 

= [a(bc)]  

 

= [a] · [bc]  

 

= [a] · ([b] · [c]).  

 

So multiplication is associative. 

Now 1 is coprime to n. But then [1] ∈ Un and this clearly plays the role of the identity. 

 

Now suppose that [a] ∈ Un. We need to find an inverse of [a]. We want an integer b such that 

 

[ab] = 1. 

 

This means that 

 

ab + mn = 1, 

 

for some integer m. But a and n are coprime. So by Euclid’s algorithm, such integers exist. D 

 

Definition 4.13. The Euler φ function is the function ϕ(n) which assigns the order of Un to n. 

 

Lemma 4.14. Let a be any integer, which is coprime to the positive integer n. 

Then a
φ(n)

 = 1 mod n. 
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Proof. Let g = [a] ∈ Un. By ( 4.10) g
φ(n)

 = e. But then 

[a
φ
(n)] = [1]. 

 

Thus 

a 
φ(n)

 = 1  mod n. D 

 

Given this, it would be really nice to have a quick way to compute ϕ(n). 

 

Lemma 4.15. The Euler ϕ function is multiplicative. That is, if m and n are 

coprime positive integers, 

 

ϕ(mn) = ϕ(m)ϕ(n). 

 

Proof. We will prove this later in the course
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Given ( 4.15), and the fact that any number can be factored, it suffices 

to compute ϕ(p
k
), where p is prime and k is a positive integer. 

 

Consider first ϕ(p). Well every number between 1 and p − 1 is auto­ 

matically coprime to p. So ϕ(p) = p − 1. 

 

Theorem 4.16. (Fermat’s Little Theorem) Let a be any integer. Then a
p
 = 

a mod p. In particular a
p−1

 = 1 mod p if a is coprime to p. 

Proof. Follows from ( 4.14). D 

How about ϕ(p
k
)? Let us do an easy example. 

 

Suppose we take p = 3, k = 2. Then of the eight numbers between 1 and 

8, two are multiples of 3, 3 and 6 = 2 · 3. More generally, if a number 

between 1 and p
k
 − 1 is not coprime to p, then it is a multiple of p. But 

there are p
k−1

 − 1 such multiples, 

p = 1 · p, 2p, 3p, . . . (p
k−1

 − 1)p. 

 

Thus (p
k
 − 1) − (p

k−1
 − 1) − p

k
 − p

k−1
 numbers between 1 and p

k
 are 

coprime to p. We have proved 

 

Lemma 4.17. Let p be a prime number. Then 

 

ϕ(p 
k
) = p 

k
 − p

k−1
 . 

Example 4.18. What is the order of U5000? 

5000 = 5 · 1000 = 5 · (10)
3
 = 5

4
 · 2

3
 . 

Now 

ϕ(2
3
) = 2

3
 − 2

2
 = 4, 
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and 

ϕ(5
4
) = 5

4
 − 5

3
 = 5

3
(4) = 125 · 4. 

As the Euler-phi function is multiplicative, we get 

 

ϕ(5000) = 4 · 4 · 125 = 2
4
 · 5

3
 = 2000. 

 

It is also interesting to see what sort of groups one gets. For example, 

what is U6? 

 

ϕ(6) = ϕ(2)ϕ(3) = 1 · 2 = 2. Thus we get a cyclic group of order 2. In 

fact 1 and 5 are the only numbers coprime to 6. 

 

5
2
 = 25 = 1  mod 6. 

How about U8? Well 

ϕ(8) = 4. 

 

So either U8 is either cyclic of order 4, or every element has order 2. 1, 

3, 5 and 7 are the numbers coprime to 2. Now 

 

3
2
 = 9 = 1  mod 8, 

 

5
2
 = 25 = 1 mod 8, 

and   

7
2
 = 49 = 1 mod 8. 

 

So 

[3]
2
 = [5]

2
 = [7]

2
 = [1] 

and every element of U8, other than the identity, has order two. But then U8 cannot be cyclic. 
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POSSIBLE QUESTIONS: 

8 MARK: 

 Derive the  concept of subgroup and abelian.. 

 write a short note on cosets and cyclic group. 

 Explain the concept of group and its properties with examples. 

 Derive the laplace equation in terms of Cartesian co-ordinates.  

 Explain the concept of group theory. 

 Explain the concept of group theory and its properties with example. 

 Derive the general solution for the first order differential equation 

 Derive the general solution for second order differential equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEPARTMENT OF PHYSICS

CLASS: III B. Sc., PHYSICS  BATCH: 2015-2018

MATHEMATICAL  PHYSICS (15PHU603A)
UNIT III

QUESTIONS CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER

For partial differential equation, if b² - 4ac = 0 then equation is 
called

None of these
hyperbolic parabolic elliptic parabolic

Boundary condition which include direct boundary value is
Dirichlet boundary 
condition

Neumann boundary 
condition

forced boundary 
condition

discrete boundary 
condition

Dirichlet boundary 
condition

Region of flow trailing a body where effect of that body is felt on 

velocity field is called
flow region wake trailing region velocity region wake

Measure of circulation of fluid is called stability vorticity viscosity  None of these vorticity

Flow in which each particle of fluid follows an irregular path is 
called

laminar flow  turbulent flow mixed flow None of these  turbulent flow

A partial differential equation has
one independent 
variable

two or more 
independent 
variables

more than one 
dependent variable

equal number of 
dependent and 
independent 
variables

two or more 
independent 
variables

At Mach number Ma < 1, pressure disturbances travel
faster than flow 
velocity

slower than flow 
velocity

equal to flow 
velocity

None of these
faster than flow 
velocity

Dividing line between subsonic and super sonic regime is called subsonic line supersonic line sonic line reference line sonic line
Truncation error becomes zero as mesh spacing tends to maximum minimum zero None of these zero

Difference between exact solution to mathematical model and 
discretized equations used to approximate it is called

modeling error discretization error  convergence error None of these discretization error

Euler number indicates relationship between pressure drop temperature drop velocity drop viscosity drop pressure drop
{ - 3 n : n ε Z } IS an abelian group under subtraction division multiplication  addition  addition

If G = { 1, -1, ι, - ι } is group under multiplication, then inverse 
of - ι is

1 −1 ι None of Above ι

A monoid is always a A group
a commutative 
group

a non abelian group groupoid groupoid

If a, b are elements of a group G, then (ba)-1 = a-1 b-1 b-1 a-1 a-1 b b-1 a a-1 b-1

A monoid is always a A group
a commutative 
group

a non abelian group semi - group semi - group

The solution of a differential equation which is not obtainted 

from the general solution is known as 
particular solution singular solution complete solution Auxiliary solution singular solution

The differential equation dy/dx = y^2 is linear non-linear Quasilinear None of these non-linear
 Ratio between longest side and shortest side of mesh is called mesh orthogonality mesh skewness mesh aspect ratio mesh smoothness mesh aspect ratio
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When Reynolds number Re > 4000, flow is turbulent transient laminar None of these turbulent
Path of fluid particles can not be tracked in turbulent flow laminar flow  mixed flow None of these turbulent flow
When mach number is in between 1.2 - 5, flow is in  subsonic regime super sonic regime sonic regime transonic regime super sonic regime

Artificial node is added for
Dirichlet boundary 

condition

Neumann boundary 

condition

forced boundary 

condition

discrete boundary 

condition

Neumann boundary 

condition
A space of interest where mass can cross boundary is Control volume Control surface control system control boundary Control volume
When fluid properties does not change with time, flow is called  steady unsteady viscous non viscous  steady
Boundary of control volume is called Control volume Control surface control system control boundary Control surface
A process in which flow in boundary layer can no longer stay attached 

to surface & separates from surface is called
Force separation boundary separation flow separation surface separation flow separation

Finite difference method is  exact solution 
approximate 
solution method

 unique solution   None of these
approximate 
solution method

difference between mathematical model and real world it is trying to 

represent is called
modeling error discretization error convergence error None of these modeling error
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UNIT-IV 

SYLLABUS: 

Functions of a complex variable – single and multivalued functions – Cauchy – Riemann 

differential equation – analytical – line integrals of complex function – Cauchy’s integral 

theorem and integral formula – derivatives of an analytic function – Taylor’s variable – Residue 

and Cauchy’s residue theorem – application to the equation of definite integrals – conformal 

transformation – Invariance of the Laplacian. 

I.  Introduction 

The complex number system is merely a logical extension of the real number system.  

The set of complex numbers includes the real numbers and still more.  All complex numbers are 

of the form 

x + iy 

where i = .1   In other words i
2
 = -1.  If y = 0, then the complex number x + iy becomes the 

real number x.  This is why we say that the complex numbers are still "more" than the reals.  The 

real numbers form a proper subset of the reals.  We do not mean that the complex numbers are 

more numerous.  We simply mean that they subsume the reals.  

Because there are two real numbers ( x and y ) associated with each complex number, we 

are able to depict complex numbers using a plane, as opposed to the reals which are depicted on 

a line.  Unlike the real number system, complex numbers are not ordered.  This means that it is 

not meaningful to say z1 < z2 in the complex number system, even though such a thing is 

posssible in the reals.  

It is possible to define addition and multiplication of complex numbers in the following intuitive 

ways: 

         Addition:      (x1+iy1) + (x2 + iy2)  =  (x1+x2) + i(y1+y2) 
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         Multiplication:  (x1+iy1)(x2+iy2)     =  (x1x2 – y1y2) + i(x1y2+x2y1) 

The complex number 0 + i0 is the complex counterpart of zero in the reals.  It is the complex 

additive identity.  We will at times simply denote it as 0.  The multiplicative identity is equal to 1 

+ i0, which we will at times denote as 1.      

A complex number can be written as z, so long as we understand that z = x + iy.  It is possible to 

discuss subtracting and dividing complex numbers.  For example 

z1 – z2   =  (x1+iy1) + (-x2 + i(-y2))      =   (x1 - x2) + i(y1 - y2) 

2

1

z

z
   = ))((

2

1

2

1

1

2

1

2

1

1
11

yx

y
i

yx

x
iyx





  =  1 

In addition to the basic operations of addition, subtraction, multiplication, and division, we can 

also perform more complicated operations – such as taking the square root.  

1z = a + ib  where (a+ib)(a+ib) = z1 = x1 + iy1 . 

Example:  Find 43 i    

Note that there are two solutions:  43 i =2+i  and  43 i = -2-i  

To check this we note that (2+i)(2+i) = 3 + i4 as is the case with –2-i.  

It is not hard to show that there will be exactly two complex square roots for any (nonzero) 

complex number. 

The complex conjugate of a complex number z = x + iy is denoted z and is defined as (x – iy).  

The modulus of a complex number is defined as zzz || .     

Representation in the 2-Dimensional Plane 

Each complex number can be written as z = x+iy.  This means that we can associate an 

ordered pair (x,y) with each and every complex number z = x+iy.  Luckily, this gives us a 

graphical representation of the complex number system. We can visualize the complex numbers.  
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The 2-dimensional plane that represents the complex numbers is sometimes called the Argand 

plane but was first employed by Gauss.  The horizontal axis represents the real numbers which is 

a 1-dimensional subspace of the plane. The vertical axis represents "pure" complex numbers; or 

numbers which have no real part, x.  A good question is whether or not the complex numbers 

(field) is isomorphic to R
2
 under addition and multiplication.    

The unit circle plays an important role in complex numbers since any (non-zero) complex 

number can be written as a scalar multiple of its corresponding point on the unit circle.   For 

example, the point z = x + iy is a (x
2
 + y

2
) - multiple of  

2222 yx

y
i

yx

x





 

which lies on the unit circle.  Seen in this way, the unit circle can generate the entire set of 

complex numbers through the appropriate multiplication of scalars to points on the unit circle.  

This is analogous to a point on the real number line (e.g., 1 and –1 ) being able to generate any 

other number on the real number line by the appropriate multiplication of a scalar.  The unit 

circle is not unique in this regard, though.  Other types of geometric objects containing the origin 

can do this as well.  The value of the circle is that each point on the circle is equidistant from the 

origin and this distance is equal to 1.  Note that the real numbers 1 and –1 have distance from 

zero equal to unity and can generate any real number through multiplication of a scalar.  It is 

interesting, in this regard, that the inverse of a complex number involves the normalization of 

both the real and (negative) imaginary parts of the number.  That is, the denominator is the 

formula for a circle.   

The unit circle separates the plane into two regions.  The set of points that are strictly 

inside the circle (called the open unit disk) and the set of points on and outside the unit circle.  

The interior of the unit circle (i.e. the unit disk) is particularly important to the stability of certain 

difference equations.  It is similarly involved in determining whether a time series is covariance 

stationary.  

III.  Functions of a Complex Variable 
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We can define complex valued functions of a complex variable.  That is, the domain of 

the function is the complex variable field and the range is also the complex field. We can write 

this as  

w = f(z) 

where both w and z are complex numbers.  Such functions have complex numbers as parameters, 

as well.  For example, we can write the following function 

ivu
yx

yxiyx

iyx

i

z

z
zfw o 











22

)(2)2(21
)(  

Clearly, w is complex, as is z.  The parameter zo is also complex, but it is a fixed complex 

number.  Note how that u and v have become real multivariate functions of x and y.  That is, 

22

2
),(

yx

yx
yxuu




    and   

22

)(2
),(

yx

yx
yxvv




  

As x and y run over all the values in R
2
, both u and v are determined, and hence z is determined 

accordingly.  This complex z then determines the value of w.  

One of the most useful of all the complex functions is the exponential function.  This function 

has a straigtforward relation to the trignometric functions.  We can understand this relation by 

using a MacLaurin series for the e
x
 function.  To begin with  


!2!1

1
2xx

e x
 

Which, if we substitute iθ for x, we get 

                    
!2

)(

!1

)(
1

2ii
e i 

 

                       
!6!5!4!3!2!1

1
65432 


iii
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                       }
!7!5!3!1

{}
!6!4!2

1{
753642


iiii 

  

                       )sin()cos(  i  

Note that the point ( cos(θ), sin(θ) ) is on the unit circle and as θ runs from 0 to 2π, the point 

moves completely around the circle in a counterclockwise fashion. We can therefore write any 

complex number as a scalar multiple of e
iθ

.  Usually this is written as 

z = x + iy = rcos(θ) + i rsin(θ) = re
iθ

 

with θ = arctan(y/x) and r
2
 = x

2
 + y

2
.  

The complex exponential and its relation to the trigonometric functions is of the greatest 

imporance in of mathematics.  It is incredibly useful and leads to some rather extraordinary and 

unexpected results.  

For example, it allows us to easily compute the following real number 

z  =  i
i
 

e

1
 0.207 

where 1i .  It also allows us to write out the logarithm of a negative number, which was a 

great controversy during the time of Euler and Leibnitz.  That is, we can write  

z  =  ln(-1)  =  iπ 

from which all other negative logarithms can be derived.
1
  The logarithm of a complex number 

can also be derived using this relation.  Hence, we have 

ln(z)  =  ln(x+iy)  =  ln(re
iθ

)  =  ln(r) + iθ 

where θ is the angle formed by vectors (x, 0) and (0, y) and where r
2
 = x

2
 + y

2
.   

                                                           
1
 The logarithmic function defined on complex and negative numbers is a multi-valued function and in fact our 

result above only holds provided we specify the “branch” on which we are evaluating the log.  One can see this 

since log(1) = log(-1) + log(-1) = 2πi according to the branch we have decided to use.  The value log(1) = 0 

corresponds to yet another branch.  
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Polynomial equations, even simple ones, have solutions which are surprising to those who look 

only for real solutions.  For example, even the very simple equation 

z
4
 + 1 = 0 

has FOUR distinct roots (consider z
2
 = i and z

2
 = -i).  In general, the Fundamental Theorem of 

Algebra tells us that there will be exactly n complex roots (possibly repeated) which solve an n
th

 

order polynomial equation.  Once again, it is important to remember that the coefficients on 

these polynomial equations can also be complex numbers, as well.   

 

The familiar trigonometric functions of sin(x) and cos(x) can be defined for complex numbers.  

This is done in the perfectly logical manner as follows: 

i

ee
iyxz

ixix

2
)sin()sin(


   and  

2
)cos()cos(

ixix ee
iyxz


 , 

where we remember that i
i


1

.  

IV.  Limits and Derivatives of Complex Functions 

Limits in the complex system are complicated by the fact that z = x + iy depends on (x, y) 

and therefore one can approach zo = xo + iyo along infinitely many paths.  For example,  

)
1

()
1

(
n

yi
n

xz oon   and )
1

()
1

('

n
yi

n
xz oon   

both limit to zo = xo + iyo, but do so along different paths.  Obviously, other more complicated 

paths are possible.  This makes it a little more difficult to define a derivative, which makes use of 

limits in its defintion.   

The derivative of w = f(z), if it exists, is defined by the unique limit 
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





)()(
lim

)00(

zfzf

dz

dw

i





 

where 0)00(  i , the origin, along ANY path.    

Example:  w = f(z) = z
2
 is differentiable.  To see this, assume (g(n), h(n)) are functions 

parametrized such that they limit to the origin as n  .  The ordered pair we have assumed 

maps out any path to the origin and is perfectly general.  It is not difficult to show that  

       
)n(ih)n(g

}iyx{)}n(hy(i))n(gx{(
lim)z('f

22

n 





 

            = )}]n(ih)n(g{}iyx{2[lim
n




 

            =  

and thus, regardless of the path we take to the origin, the limit remains the same and thus the 

derivative of f(z) is equal to f ’(z) = 2z.    ■ 

V.  The Cauchy-Riemann Equations and Complex Differentiation 

Suppose that we consider f(z) = z
2
 and substitute into this z = x+iy.  We can therefore write this 

function again in the following way: 

f(z) = z
2
 = F(x,y) = (x+iy)

2
 = (x

2
 – y

2
) + i2xy = u(x,y) + iv(x,y) 

where u(x,y) = (x
2
 – y

2
) and where v(x,y) = 2xy.  Now since z = x+iy, we know that 

2

zz
x


   and 

i

zz
y

2


  

from which it follows that 
2

1






z

x
 and  

iz

y

2

1





.  Now consider the complex derivative f ’(z). 

)
2

1
)(22()

2

1
)(22()('

i
xiyyix

z

y

y

F

z

x

x

F
zf 

















  
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This of course reduces to zzf 2)('   and the result agrees with the derivative computed in the 

previous section using limits.  

Now suppose that F(x,y) = u(x,y) + iv(x,y) is any differentiable complex function.  What must be 

true about the functions u and v ?  This is the subject of the Cauchy - Riemann equations.  

First, suppose that z changes by x changing alone.  Then, assume that z changes by y changing 

alone.  This would give us two expressions for the derivative of  

f(z) = F(x,y). 

The first (holding y constant) can be written as 

 

}{
2

1
|)(' tan

x

v
i

x

u

z

x

x

v
i

z

x

x

u

z

x

x

F
zf tconsy




































  

 

while the second (holding x constant) can be written as 

}{
2

1
|)(' tan

y

v

y

u
i

z

y

y

v
i

z

y

y

u

z

y

y

F
zf tconsx




































 . 

Now, the derivative of f(z) cannot depend on which way that z is changing (either by x changing 

alone or alternatively by y changing alone ) and so the two expressions for )(' zf  must be equal 

if the derivative exists.  This implies that  

y

v

x

u









  and that  

x

v

y

u









  

These two equalities are known as the Cauchy-Riemann Equations.  

VI.  Complex Integration 
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The first thing to note about complex integration is that it is done in the plane and 

therefore uses contour or line integration as its basis.  A strong understanding of line integration 

is therefore useful when discussing complex variables.  This is not so unexpected since the 2 

dimensional plane in complex variables now operates analogously to the real line in elementary 

calculus. Instead of integrating over some interval, or collection of intevals, we must integrate 

along some curve or line in 2-space.  

The second thing to note about complex integration is that integration no longer implies the 

measurement of some area.  That is, one does not necessarily get a “clean” real number 

associated with an integral in complex variables.  What this inplies is that integrals cannot be 

ordered by size as they can be in real integration.  One cannot say that this area is larger than 

that area.  This is because there is no ordering of the complex numbers, unlike the reals.  Indeed, 

the integral of a complex function of a complex variable typically yields a complex number.   

Here is a simple example to show complex integration: 

 

Example:  Let f(z) = z, where z = x+iy.  It is obvious that the image of the function f is not a real 

number; it is complex.  Now suppose that we integrate this in the x-y plane along the line y = x 

from (0,0) to (1,1).  We are integrating the function f(z) along the ray from the origin to the point 

(1,1).  This directed line segment is sometimes denoted C for curve, even though it is a straight 

line segment.  We assume that we move from the point (0,0) to the point (1,1), since direction is 

important.  Now let’s actually do the integration. 

  
C CC

idydxiyxdzzdzzf ))(()(  

                              =  

1

0

)1)(( dxiixx  

                             =  

1

0

2)1( dxix  
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                            = 
1

0

2 dxxi  

                            = 1

0
|2ix  

                            = i                ■ 

This example shows that the complex definite integral of the complex function  

f(z) = z is itself a complex number; in fact, it is equal to z = i.  

CAUCHY’S INTEGRAL FORMULA: 

 

Cauchy's integral formula states that 

 

(1) 

where the integral is a contour integral along the contour  enclosing the point . 

It can be derived by considering the contour integral 

 

(2) 

defining a path  as an infinitesimal counterclockwise circle around the point , and defining 

the path  as an arbitrary loop with a cut line (on which the forward and reverse contributions 

cancel each other out) so as to go around . The total path is then 

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Circle.html
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(3) 

so 

 

(4) 

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. 

Therefore, the first term in the above equation is 0 since  does not enclose the pole, and we are 

left with 

 

(5) 

Now, let , so . Then 

 

 

 

(6) 

  

 

(7) 

But we are free to allow the radius  to shrink to 0, so 

 

 

 

(8) 

  

 

(9) 

  

 

(10) 

   

(11) 

giving (1). 

http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/Pole.html
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If multiple loops are made around the point , then equation (11) becomes 

 

(12) 

where  is the contour winding number. 

A similar formula holds for the derivatives of , 

  

 

(13) 

  

 

(14) 

  

 

(15) 

  

 

(16) 

  

 

(17) 

Iterating again, 

 

(18) 

Continuing the process and adding the contour winding number , 

                                                                                            (19)     

TAYLOR’S VARIABLE: 

The Taylor’s series specifies the value of a function at one point  in terms of the value of the 

http://mathworld.wolfram.com/CauchyIntegralFormula.html#eqn11
http://mathworld.wolfram.com/ContourWindingNumber.html
http://mathworld.wolfram.com/ContourWindingNumber.html
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function and its derivatives at a reference point say . It is an expansion in powers of the change in 

variable here say (z - a ). 

Fig.53: Contouri C defined in the anticlockwise direction, with parametric equation |z - a| < R 

Let ƒ(z) be an analytic function inside and on a simple closed curve C, with the center as a and 

radius R. Then at each point inside the contour C we define 

  

The power series here converges to ƒ(z)  when |z -a| < R. 

Here R will be the radius of convergence which is defined as the distance from the reference 

point  to the nearest singularity of the function ƒ(z). On |z -a| = R  the series may or may not 

converge while for|z -a| >R  the series diverges. If the nearest singularity of ƒ(z) is at ∞ , the 

radius of convergence is at , i.e. the series converges for all values of z. 

If a = 0 then the resulting series is often called the Maclaurin series. 

 

 

Fig.53: Contouri C defined in the anticlockwise direction, with parametric equation |z - a| < R 

Let ƒ(z) be an analytic function inside and on a simple closed curve C, with the center as a and 
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radius R. Then at each point inside the contour C we define 

  

The power series here converges to ƒ(z)  when |z -a| < R. 

Here R will be the radius of convergence which is defined as the distance from the reference 

point  to the nearest singularity of the function ƒ(z). On |z -a| = R  the series may or may not 

converge while for|z -a| >R  the series diverges. If the nearest singularity of ƒ(z) is at ∞ , the 

radius of convergence is at , i.e. the series converges for all values of z. 

If a = 0 then the resulting series is often called the Maclaurin series. 

Proof of the Taylor’s series 

Let us consider an analytic function ƒ(z) in a neighborhood of a point z = a  . Also let C be a 

circle which lies in this neighborhood and has the center a. Then by Cauchy’s integral formula 

 

where, 

  z: any arbitrary fixed point inside the contour C 

  s:  be the complex variable of integration. 

The radius of convergence of the Taylor series is at least equal to the shortest distance from a to 

the boundary C. It may be larger but then the series may not represent ƒ(z) at all points 

of Cwhich lie in the interior of the circle of convergence. 
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Fig.54: Contour C, with center at a and having the variable of integration as s and any point in 

the interior as z 

We shall first develop   in powers z-a of 

 

Since s is on C while z is inside C, therefore 

 

Now, from the geometric progression for |q|<1 

 

We obtain the relation, 

 

Here, 
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Then 

 

Using 2 

 

Inserting (A) in (2) which is then put back in (1) to get 

 

Since z and a are constants we take the powers of z-a out from under the integral sign and the last 

term is 

 

Using Cauchy’s integral formula 

 

We comprehend the series as 
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This representation is called the Taylor’s series 

 Rn (z)is called the Remainder. Since the analytic functions has derivatives to all orders we may 

take n as large as possible i.e. As  n → ∞ we write 

 

This is the Taylor’s series for the function f(z) with center at a. The series in (7) above will 

clearly converge and represent f(z) if and only if 

 

This we can prove as s is on the contour C while z is inside C thus we will have |s-z| > 0. Since 

f(z) is analytic inside C and on C it follows that the absolute value of  is bounded thus we can 

say 

 

 Let r be the radius of C then |s-a|=r, for all s on C and C has the length as  

Therefore, 
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As n→ ∞ then the right hand side is zero. 

Example: Express the Taylor series for ƒ(z) = e
z
 

Soln.: The ƒ(z) is an analytic function. We can express the Taylor series about z=0. In general an 

expansion about z=a is 

 

The power series here converges to ƒ(z) when |z -a| < R.  While about z=0 can be written as 

  

The first singularity of this function lies at infinity thus the radius of convergence is infinity. 

Example: Express the Taylor series for (i) ƒ(z) = sin z  (ii) ƒ(z) = cos z (iii) ƒ(z) = sinh 

z (iv) ƒ(z) = cosh z 

Soln.: The given functions in all the cases are analytic functions. The first singularity of these 

function lies at infinity thus the radius of convergence is infinity.  We can express the Taylor 

series about z=0 as 
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Differentiating each side of (A) with respect to z and interchanging the symbols for 

differentiation and summation we have we can write the expansion as 

(ii)                   

Such a case is possible as term by term differentiation of a power series is allowed. Here the 

power series is a Maclaurin or Taylor series. 

(iii)                  We can use the identity sin iz = i sinh z,  So using (A) by replacing every z by iz 
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The first singularity of this function lies at infinity thus the radius of convergence is infinity. 

                                    

(iv)                  A term by term differentiation of equation (C ) yields 

 

Example: Find the geometric series for the function 

(i)   

Soln. : The function ƒ(z) is singular at z=1, this point lies on the circle of convergence 

Derivative of the function  are of type 

 

So the series and in particular the Maclaurin series has 

ƒ
n
(0) =n! 

Thus, 
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RESIDUE AND CAUCHY’S RESIDUE THEOREM: 

Residue 

We recall that if a function ƒ(z) is analytic in a simply connected region, then according to 

Cauchy's integral theorem the value of the integral 

 

 is always zero, where C is a closed contour lying wholly in R. 

  

If, on the other hand, the function ƒ(z)  fails to be analytic at a finite number of points in the 

interior of the contour C in R, then there is a specific number called the residue, which each of 

these points (points of singularity) contribute to the value of the integral. 

We note that a point ‘a’ is an isolated singularity if the function fails to be analytic at that point 
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and in addition there is some neighborhood throughout which the function is analytic except at 

the point itself. The contribution of the singularity towards the integral is the residue. Thus for 

a non-analytic function the integral 

 

In this case we may represent the function by a Laurent series which converges in the domain 

0<|z-a|<R, where R is the distance from ‘a’ to the nearest singular point of the function f(z). Thus 

in general we can write 

  

  

where we can write 

 

For the special case n=-1 we have 

 

The coefficient A-1 which is the coefficient of  in the above expansion of the Laurent series 

is called the RESIDUE of the function at the isolated singular point ‘a’. Thus 
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Example: Find the integral of the function   around the unit circle C in the 

counterclockwise sense. 

Soln. 

  

 

Fig.61: Isolated singular point at z=0 inside a unit circle. 

  

 We obtain the Laurent series for an isolated singularity at z=0 of the function as 

  

  

  

Comparing it with (i) we find that the residue is 
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Example: Show that the integral of the function   around the circle C, |z|=2 

described in the counterclockwise sense is zero. 

Soln. 

 

Fig.62: Isolated singular point at z=0 inside a circle  |z|<2. 

  

The isolated singularity at point z=0 lies interior to the contour C. By Maclaurin series we know 

that 

 

Thus we can write a series for   
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and comparing it with (i) we find that the residue is A-1 = 0 

Hence, 

 

Example: Find the residue at simple poles for the function  

Soln. Using the definition 

 

To evaluate the residue we see that the function  has simple poles at z=0 and z=1. 

Thus, we have at these  simple poles 

 

Example: Find the residue for the function  

Soln. In this function  we see that we have simple pole at z=2 and a pole of 

order 2 at z=-1. So, for the simple pole we calculate the residue as 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
          CLASS: III BSC PHY                                       COURSE NAME: MATHEMATICAL              

                                                                                                              PHYSICS 

COURSE CODE: 15PHU603A                  UNIT: IV                                          BATCH-2015-2018 
 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 26/34 
 

 

For the pole of order k=2 we find the residue at z=-1 by using the general formula 

 

Example: Obtain the Laurent series expansion of the following functions in the neighborhood of 

the singular points and calculate the residues: (i)   (ii)  

  

Solution 

(i) Note that z=0 is the isolated singular point of the function  

We recall the series expansion of cos z as 

 

Thus, 

 

We note that in this series the coefficient of the 1/z term is 1. Thus, A-1= 1, therefore is the 

residue of the given function. 
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(ii) The function has a double pole at z=1. We expand the exponential series in powers of (z-1) 

 

This is the required Laurent series expansion. We observe the coefficient of 1/(z-1) is the residue 

What have we achieved so far? We agree that now we can evaluate the residue of a function ƒ(z) 

with one singular point in a contour using Laurent series expansion. However, how do we 

proceed when encloses more than one isolated singular points? In such a situation, we have to 

extend the concept of residue developed so far to more than one singularity. The theorem of 

residues deals with such a general case and we discuss it in the following section. 

Residue Theorem: 

We extend the concept of residue developed so far to the case when the integrand has several 

singularities. Let us consider a positively oriented simple closed contour C, within and on which 

a function is analytic except for a finite number of singular points z1, z2, z3, … zn interior to C. If 

A1, A2, A3…, An denote the residues of ‘f(z)’ at those respective points then 

 

Proof: 
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Fig.63: A finite number of singular points z1, z2, z3 … zn interior to C. 

Let the singular points zj(j=1,2,…n) be the centers of positively oriented circles Cj which are 

interior to C and are so small that no two of the circles have points in common. That is to say that 

all the singularities are isolated by small contours. 

The circles Cj along with the simple closed contour C form the boundary of a closed region. As 

we can see in the figure the function is analytic throughout the shaded region, which is a multiply 

connected domain. Hence, by Cauchy Goursat theorem 

 

We note that this theorem is valid only for isolated singularities. The immense utility of this 

theorem stems from the fact that it facilitates calculation of a contour integral indirectly through 

the residues of f (z) at the singularities inside C. 

Example: Use the residue theorem to evaluate the integral 
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Where, C is the circle |z|=2 described in counterclockwise sense. Verify your result using (i) 

Laurent series (ii) partial fractions. 

  

Solution.: The integrand  has two singularities at z=0 and z=1 and both of which are interior to 

the contour C as we see in the figure. We need to find the residues for both the singularities. 

 

Fig.64: Contour of radius 2, having singularities at z=0 and z=1 

 

(i)            Laurent Series approach. 

We know that 

 

So we expand the function in the different domains and observe in 0<|z|<1 
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Fig.65: Different domains. Darker circle is for |z|<1 case. The lighter is the annular domain 

1<|1|<2 

Now we observe in the domain 1<|z|<2 
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(ii)          Partial fractions approach 

The given function can be expressed as 

 

Thus we can write the integral clearly as 

 

Both the results lead to the same result. 

Example: Use the residue theorem to evaluate the integral 

 

where, C is the circle (i)|z|=2 or (ii) |z+2|=3 described in counterclockwise sense 

Soln.:The given function is . It has singularities at z=0, which is a pole of order 3 

and a simple pole at z=-3 

(i)            We pick the case |z|=2. In this we see that the simple pole z=-3 does not lie in the 

concerned region. Thus there exists only one singularity at z=0. We evaluate that using the 

standard formula of the residue for order m 
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Thus using the residue theorem 

 

  

(ii)          We pick the case |z+2|=3. In this we see that the simple pole z=-3 as well as pole of 

order 3 at z=0 lie inside the contour. We have already calculated the residue at z=0 in the above 

part. We need to evaluate not the residue at z=-3 only. It is a simple pole thus we have 

 

Applications of Residues 

The residue theorem is one of the most powerful results of complex variable theory since it finds 

so many and so varied applications in mathematical analysis and physical sciences. Actually, the 

usefulness of the residue theorem stems from the fact that, even when the integrand is not 

innocent-looking, it facilitates the evaluation of the integral by way of a rather straight forward 

calculation of residues at the singular points of the given function. Further, the detailed shape of 

the contour is not relevant, except in so far as it encloses certain singular points. From pragmatic 

considerations, the residue theorem is of special importance in the evaluation of real integrals. It 

is not possible to cover all the applications in an elementary course such as this. Therefore, we 

shall concentrate only on the evaluation of some types of definite integrals using the method of 

residues. Once you get familiar with the basic principles of this method, you should be able to 

apply these to more advanced applications. 
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POSSIBLE QUESTIONS 

   8 MARK 

 

 State and Prove the Cauchy’s integral theorem. 

 Find the value of the integral ,(i)along the straight line from z=0  to z=1+I; (ii)along real 

axis from z=0 to z=1 and then along a line parallel to the  imaginary axis from z=1 to 

z=1+i. 

 State and prove Cauchy’s integral formula. 

 Find the different values of (1+i) 1/3 

 Mention the properties of Moduli and Arguments. 

 Write a short note on complex conjugates. 

 Test the analyticity of the function w=sin z and hence derive that (sin z)=cos z 

 Derive the Cauchy’s Riemann differential equations. 

 Find the value of the intergral (i)along y=x 2 ,having (0,0)(3,9)end points (ii)along y=3x 

between the same points.Do the values depend upon path. 

 State and prove the Cauchy’s integral theorem 
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The exponential form of a complex number is z = reiq z = eiq  z = cos q / r z = r / cos q z = reiq

The construction of analytic function 

using………………method integral differential Milne-Thomson analytics Milne-Thomson

Ifw=f(z)is continuous at every point of aregion of 

R,it is  said to be ………………..in the entire 

region R. continuous  dis continuous piecewise continuous uniform continuous continuous 

If  Ur=(1/r) VΘ and Vr=-(1/r) UΘ are the Cauchy-

Riemann equation in…………………….form cartesian polar integral differential polar

All polynomials in z are…………………….. continuous  differentiable analytic dis continuous analytic

If f(z) derivative only at the origin, it is 

not……………………nowhere  analytic  argument modulus real  analytic 

An analytic function with constant realpart is 

………………… finite infinite constant continuous constant

An analytic function with constant modulus is 

………………… finite infinite constant zero constant

Any function which has continuous second order 

partial derivatives and which satifies Laplace's 

equation is called………………………..function Laplace continuous harmonic integral harmonic

 Any function which satisfies the Laplace equation 

is known as harmonic function conjugate function single function analytic function harmonic function

A single valued function f(z) which is 

differentiable at z = zo it is said to be irregular function       analytic function periodic function all the above       analytic function

 If a given number is wholly real, it is found in/on a real axis imaginary x-y plane space imaginary

A set which entirely consists of interior points is 

known as a null set a bounded set a closed set an open  set an open  set

The symbol i  with the property i 2= -1 was 

introduced by Euler Gauss Cauchy Reimann Euler

 In the Argand diagram, the fourth roots of unity 

forms a -------
rectangle square cube

none
square

The Conjugate of 1/i   is –i i  1 -1 –i

 The value of i2 + i3 + i4 is irregular function regular function infinite  none none

 The sum of nth roots of unity are ------ 0 1 2 3 0
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In the Argand diagram, the fourth roots of unity 

forms a -------
square rectangle circle

rombus
square

A complex number can be represented as an 

ordered pair of …………… numbersx and y. real imaginary whole complex real

A ………... number can be represented as an 

ordered pair of real  numbers x and y. natural whole complex rational complex

A complex number z=x+iy is zero if x=0 and 

y=…………. 0 1 2 3 0

A complex number z=x+iy is ……………..if x=0 

and y=0. finite infinite zero  one zero 

If z=x+iy is a complexnumber, then Ž=x-iy is 

called ………………..of the complex number z real imaginary conjugate whole conjugate

Two complex numbers z1=x1+iy1  & z2=x2+iy2 

are equal if x1=x2 and y1……….y2 equal not equal  greater than less than equal

The sum of two complex numbers are 

also…………………..numbers real imaginary whole complex complex

The differeenceof two complex numbers are 

also…………………numbers real imaginary complex rational complex

The product of two complex numbers are also 

……………numbers imaginary complex real irrational complex

The quotient of two complex numbers are also 

…………….numbers real imaginary whole complex complex

A complex number z is represented by a point P in 

a plane,such a plane is called 

………………….plane real cartesian argand polar argand

In a complex number r=√(x2+y2) is called the 

……………..of z range real modulus minus modulus

The angleof a complex number is called the 

……………….of z angle argument modulus rational argument

A single valued function w=f(z)of a complex 

variable z is said to be……………… at  a point z0 one-one onto analytic rational analytic

A ………. valued function w=f(z)of a complex 

variable z is said to be analytic  at  a point z0 zero single double triple single

A single  valued function w=f(z)of a complex 

variable z is said to be analytic  at  a point z0 if it 

has a …………….derivative at z0 zero unique second order higher order unique

The function f(z) is………………..in a region R if 

it has a derivative at every point of R.  analytic  argument modulus real  analytic 

The function f(z) is analytic in a region R if it has 

a …………. at every point of R. integral derivative zero  finite derivative



The function f(z) is analytic in a region R if it has 

a derivative at every point of ………….. Z R Q W R

A point at which the function w=f(z) fails to be 

analytic is calld a ……………….of f(z) singular non singular rational  irrational singular

A point at which the function w=f(z) 

……………... to be analytic is calld a singular of 

f(z) correct fails zero  one fails

A point at which the function w=f(z) fails to be 

………………….is calld a singular point of f(z) modulus analytic  argument continuous analytic 

If w=f(z) is an analytic function z, then the 

four……………..should exists ordinary derivative partial derivative Total derivative higher order derivative partial derivative

If w=f(z) is an …………... function z, then the 

four partial order derivatives should exists  analytic  argument modulus real  analytic 

The Cauchy-Riemann equations are otherwise 

called as………………..equation C-R C-E R-E C-I C-R

The C-R equations satisfy …………….. And 

…………………….. Ux=Vy &  Vx=-Uy Ux=Vy &  Vx=-Uy Ux=-Vy &  Vx=-Uy Ux=Vy &  Vx=Uy Ux=Vy &  Vx=-Uy

If f(z)=u+iv is an analytic function of z=x+iy ,then 

u and v satisfy ………………..equation integral differential Laplace C-R equation Laplace

If f(z)=u+iv is an  ………...function of z=x+iy 

,then u and v satisfy Laplce  equation real analytic imaginary rational analytic

Any function of x and y which possesses 

continuous first and second order partial 

derivatives and satifies……….. integral differential Laplace C-R equation Laplace

Any function of x and y which possesses 

…………... first and second order partial 

derivatives and satifies Laplace equation uniform continuous discontinuous continuous piecewise continuous continuous

Any function of x and y which possesses 

continuous first and second order …………. 

derivatives and satifies Laplace equation partial ordinary total higher partial

Any function of x and y which possesses 

continuous first and second order partial 

derivatives and satifies laplace equation is called a 

…………equation Laplace integral differential harmonic harmonic

The real and imaginary parts of an analytic 

function satisfy …………….equation Laplace integral differential harmonic laplace
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UNIT-V 

SYLLABUS 

Arithmetic mean - Median - Quartiles - Deciles - Percentiles - Mode - Empirical relation 

between mean, median and mode - Geometric mean, harmonic mean - Relation between 

arithmetic mean, geometric mean and harmonic mean - Range - Range mean or average 

deviation - Standard deviation - Variance and mean square deviation. 

. 

ARITHMETIC MEAN: 

The arithmetic mean of a set of values is the quantity commonly called "the" mean or the 

average. Given a set of samples , the arithmetic mean is 

 

(1) 

It can be computed in the Wolfram Language using Mean[list]. 

The arithmetic mean is the special case  of the power mean and is one of the Pythagorean 

means. 

When viewed as an estimator for the mean of the underlying distribution (known as 

the population mean), the arithmetic mean of a sample is called the sample mean. 

For a continuous distribution function, the arithmetic mean of the population, denoted , , , 

or  and called the population mean of the distribution, is given by 

 

(2) 

where  is the expectation value. Similarly, for a discrete distribution, 

http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/Mean.html
http://mathworld.wolfram.com/PowerMean.html
http://mathworld.wolfram.com/PythagoreanMeans.html
http://mathworld.wolfram.com/PythagoreanMeans.html
http://mathworld.wolfram.com/PopulationMean.html
http://mathworld.wolfram.com/Sample.html
http://mathworld.wolfram.com/SampleMean.html
http://mathworld.wolfram.com/ContinuousDistribution.html
http://mathworld.wolfram.com/DistributionFunction.html
http://mathworld.wolfram.com/PopulationMean.html
http://mathworld.wolfram.com/ExpectationValue.html
http://mathworld.wolfram.com/DiscreteDistribution.html
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(3) 

The arithmetic mean satisfies 

 

(4) 

 

(5) 

and 

 

(6) 

if  and  are independent statistics. The "sample mean," which is the mean estimated from a 

statistical sample, is an unbiased estimator for the population mean. 

Hoehn and Niven (1985) show that 

 

(7) 

for any constant . For positive arguments, the arithmetic mean satisfies 

 

(8) 

where  is the geometric mean and  is the harmonic mean (Hardy et al. 1952, Mitrinović 1970, 

Beckenbach and Bellman 1983, Bullen et al. 1988, Mitrinović et al. 1993, Alzer 1996). This can 

be shown as follows. For , 

 

(9) 

http://mathworld.wolfram.com/IndependentStatistics.html
http://mathworld.wolfram.com/UnbiasedEstimator.html
http://mathworld.wolfram.com/GeometricMean.html
http://mathworld.wolfram.com/HarmonicMean.html
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(10) 

 

(11) 

 

(12) 

 

(13) 

with equality iff . To show the second part of the inequality, 

 

(14) 

 

(15) 

 

(16) 

with equality iff . Combining (◇) and (◇) then gives (◇). 

Given  independent random normally distributed variates , each with population 

mean  and variance , 

 

(17) 

  

 

(18) 

  

 

(19) 

http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/Iff.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/Variate.html
http://mathworld.wolfram.com/PopulationMean.html
http://mathworld.wolfram.com/PopulationMean.html
http://mathworld.wolfram.com/Variance.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 

   CLASS: III BSC PHY                    COURSE NAME: MATHEMATICAL PHYSICS              

COURSE CODE: 15PHU603A                  UNIT: V                          BATCH-2015-2018 

 

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 4/20 
 

  

 

(20) 

  

 

(21) 

   

(22) 

so the sample mean is an unbiased estimator of the population mean. However, the distribution 

of  depends on the sample size. For large samples,  is approximately normal. For small 

samples, Student's t-distribution should be used. 

The variance of the sample mean is independent of the distribution, and is given by 

  

 

(23) 

  

 

(24) 

  

 

(25) 

  

 

(26) 

  

 

(27) 

For small samples, the sample mean is a more efficient estimator of the population mean than 

the statistical median, and approximately  less (Kenney and Keeping 1962, p. 211). Here, an 

estimator of a parameter of a probability distribution is said to be more efficient than another one 

if it has a smaller variance. In this case, the variance of the sample mean is generally less than 

the variance of the sample median. The relative efficiency of two estimators is the ratio of this 

variance. 

http://mathworld.wolfram.com/UnbiasedEstimator.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/PopulationMean.html
http://mathworld.wolfram.com/StatisticalMedian.html
http://mathworld.wolfram.com/Variance.html
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A general expression that often holds approximately is 

 

(28) 

MEAN, MEDIAN, MODE AND RANGE: 

Mean, median, and mode are three kinds of "averages". There are many "averages" in statistics, 

but these are, I think, the three most common, and are certainly the three you are most likely to 

encounter in your pre-statistics courses, if the topic comes up at all. 

The "mean" is the "average" you're used to, where you add up all the numbers and then divide by 

the number of numbers. The "median" is the "middle" value in the list of numbers. To find the 

median, your numbers have to be listed in numerical order from smallest to largest, so you may 

have to rewrite your list before you can find the median. The "mode" is the value that occurs 

most often. If no number in the list is repeated, then there is no mode for the list. 

The "range" of a list a numbers is just the difference between the largest and smallest values. 

 Find the mean, median, mode, and range for the following list of values: 

13, 18, 13, 14, 13, 16, 14, 21, 13 

The mean is the usual average, so I'll add and then divide: 

(13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) ÷ 9 = 15 

Note that the mean, in this case, isn't a value from the original list. This is a common result. You 

should not assume that your mean will be one of your original numbers. 

The median is the middle value, so first I'll have to rewrite the list in numerical order: 

13, 13, 13, 13, 14, 14, 16, 18, 21 
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There are nine numbers in the list, so the middle one will be the (9 + 1) ÷ 2 = 10 ÷ 2 = 5th 

number: 

13, 13, 13, 13, 14, 14, 16, 18, 21 

So the median is 14. 

The mode is the number that is repeated more often than any other, so 13 is the mode. 

The largest value in the list is 21, and the smallest is 13, so the range is 21 – 13 = 8. 

mean: 15 

median: 14 

mode: 13 

range: 8 

Note: The formula for the place to find the median is "([the number of data points] + 1) ÷ 2", but 

you don't have to use this formula. You can just count in from both ends of the list until you meet 

in the middle, if you prefer, especially if your list is short. Either way will work. 

 Find the mean, median, mode, and range for the following list of values: 

1, 2, 4, 7 

The mean is the usual average: 

(1 + 2 + 4 + 7) ÷ 4 = 14 ÷ 4 = 3.5 

The median is the middle number. In this example, the numbers are already listed in numerical 

order, so I don't have to rewrite the list. But there is no "middle" number, because there are an 

even number of numbers. Because of this, the median of the list will be the mean (that is, the 

usual average) of the middle two values within the list. The middle two numbers are 2 and 4, so: 
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(2 + 4) ÷ 2 = 6 ÷ 2 = 3 

So the median of this list is 3, a value that isn't in the list at all. 

The mode is the number that is repeated most often, but all the numbers in this list appear only 

once, so there is no mode. 

The largest value in the list is 7, the smallest is 1, and their difference is 6, so the range is 6. 

mean: 3.5 

median: 3 

mode: none 

range: 6 

The values in the list above were all whole numbers, but the mean of the list was a decimal 

value. Getting a decimal value for the mean (or for the median, if you have an even number of 

data points) is perfectly okay; don't round your answers to try to match the format of the other 

numbers. 

 Find the mean, median, mode, and range for the following list of values: 

8, 9, 10, 10, 10, 11, 11, 11, 12, 13 

The mean is the usual average, so I'll add up and then divide: 

(8 + 9 + 10 + 10 + 10 + 11 + 11 + 11 + 12 + 13) ÷ 10 = 105 ÷ 10 = 10.5 

The median is the middle value. In a list of ten values, that will be the (10 + 1) ÷ 2 = 5.5-th 

value; the formula is reminding me, with that "point-five", that I'll need to average the fifth and 

sixth numbers to find the median. The fifth and sixth numbers are the last 10 and the first 11, so: 

(10 + 11) ÷ 2 = 21 ÷ 2 = 10.5 
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The mode is the number repeated most often. This list has two values that are repeated three 

times; namely, 10 and 11, each repeated three times. 

The largest value is 13 and the smallest is 8, so the range is 13 – 8 = 5. 

mean: 10.5 

median: 10.5 

modes: 10 and 11 

range: 5 

As you can see, it is possible for two of the averages (the mean and the median, in this case) to 

have the same value. But this is not usual, and you should not expect it. 

 A student has gotten the following grades on his tests: 87, 95, 76, and 88. He wants 

an 85 or better overall. What is the minimum grade he must get on the last test in order to 

achieve that average? 

The minimum grade is what I need to find. To find the average of all his grades (the known ones, 

plus the unknown one), I have to add up all the grades, and then divide by the number of grades. 

Since I don't have a score for the last test yet, I'll use a variable to stand for this unknown value: 

"x". Then computation to find the desired average is: 

(87 + 95 + 76 + 88 + x) ÷ 5 = 85 

Multiplying through by 5 and simplifying, I get: 

87 + 95 + 76 + 88 + x = 425 

346 + x = 425 

x = 79 
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He needs to get at least a 79 on the last test. 

QUARTILES: 

Quartiles are values that divide a sample of data into four equal parts. With them you can 

quickly evaluate a data set's spread and central tendency, which are important first steps in 

understanding your data. 

Quartile Description 

1st quartile (Q1) 25% of the data are less than or equal to this value. 

2nd quartile 

(Q2) 

The median. 50% of the data are less than or equal to this value. 

3rd quartile 

(Q3) 

75% of the data are less than or equal to this value. 

Interquartile 

range 

The distance between the 1st and 3rd quartiles (Q3-Q1); thus, it spans the 

middle 50% of the data. 

For example, for the following data: 7, 9, 16, 36, 39, 45, 45, 46, 48, 51 

 Q1 = 14.25 

 Q2 (median) = 42 

 Q3 = 46.50 
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 Interquartile range = 14.25 to 46.50, or 32.25 

NOTE 

Quartiles are calculated values, not observations in the data. It is often necessary to interpolate 

between two observations to calculate a quartile accurately. 

Because they are not affected by extreme observations, the median and interquartile range are a 

better measure of central tendency and spread for highly skewed data than are the mean and 

standard deviation. 

 DECILES: 

Deciles are the partition values which divide the set of observations into ten equal parts. There 

are nine deciles: D1,D2,D3,…,D9D1,D2,D3,…,D9. The first decile is D1D1, which is a point 

which has 10% of the observations below it. 

 

D1=Value of (n+110)thitem 

D2=Value of 2(n+110)thitem 

D3=Value of 3(n+110)thitem 

⋮ 

D9=Value of 9(n+110)thitem 

Quartile for a Frequency Distribution (Discrete Data) 

         D1=Value of (n+110)thitem(n=∑f) 

D2=Value of 2(n+110)thitem 

D3=Value of 3(n+110)thitem 

⋮ 
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D9=Value of 9(n+110)thitem 

Quartile for Grouped Frequency Distribution 

D1 = l+hf(n10−c) (n=∑f) 

D2=l+hf(2n10−c) 

D3=l+hf(3n10−c) 

⋮ 

D9=l+hf(9n10−c)D1 = l+hf(n10−c) (n=∑f)D2=l+hf(2n10−c)D3=l+hf(3n10−c)⋮D9=l+hf(9n10−c

) 

PERCENTILES: 

Percentiles are the points which divide the set of observations into one hundred equal 

parts. These points are denoted by P1,P2,P3,…,P99P1,P2,P3,…,P99, and are called the first, 

second, third... ninety ninth percentile. The percentiles are calculated for a very large number of 

observations like workers in factories and the populations in provinces or countries. Percentiles 

are usually calculated for grouped data. The first percentile denoted by P1P1 is calculated 

as P1=Value of (n100)thitemP1=Value of (n100)thitem. We find the group in which 

the (n100)th(n100)th item lies and then P1P1 is interpolated from the formula. 

 

P1 = l+hf(n100−c) (n=∑f) 

P2=l+hf(2n100−c) 

P3=l+hf(3n100−c) 

⋮ 

P99=l+hf(99n100−c) 

GEOMETRIC MEAN:  
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The geometric mean of a sequence  is defined by 

 

(1) 

Thus, 

  

 

(2) 

  

 

(3) 

and so on. 

The geometric mean of a list of numbers may be computed using GeometricMean[list] in 

the Wolfram Languagepackage DescriptiveStatistics` . 

For , the geometric mean is related to the arithmetic mean  and harmonic mean  by 

 

(4) 

(Havil 2003, p. 120). 

The geometric mean is the special case  of the power mean and is one of the Pythagorean 

means. 

Hoehn and Niven (1985) show that 

 

(5) 

for any positive constant . 

http://reference.wolfram.com/language/DescriptiveStatistics/ref/GeometricMean.html
http://www.wolfram.com/language/
http://mathworld.wolfram.com/ArithmeticMean.html
http://mathworld.wolfram.com/HarmonicMean.html
http://mathworld.wolfram.com/PowerMean.html
http://mathworld.wolfram.com/PythagoreanMeans.html
http://mathworld.wolfram.com/PythagoreanMeans.html
http://mathworld.wolfram.com/Positive.html
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HARMONIC MEAN: 

The harmonic mean  of  numbers  (where , ..., ) is the 

number  defined by 

 

(1) 

The harmonic mean of a list of numbers may be computed in the Wolfram 

Language using HarmonicMean[list]. 

The special cases of  and  are therefore given by 

  

 

(2) 

  

 

(3) 

and so on. 

The harmonic means of the integers from 1 to  for , 2, ... are 1, 4/3, 18/11, 48/25, 300/137, 

120/49, 980/363, ... (OEIS A102928 and A001008). 

For , the harmonic mean is related to the arithmetic mean  and geometric mean  by 

 

(4) 

http://www.wolfram.com/language/
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/HarmonicMean.html
http://oeis.org/A102928
http://oeis.org/A001008
http://mathworld.wolfram.com/ArithmeticMean.html
http://mathworld.wolfram.com/GeometricMean.html
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The harmonic mean is the special case  of the power mean and is one of 

the Pythagorean means. In older literature, it is sometimes called the subcontrary mean. 

The volume-to-surface area ratio for a cylindrical container with height  and radius  and 

the mean curvature of a general surface are related to the harmonic mean. 

Hoehn and Niven (1985) show that 

 

(5) 

for any positive constant c . 

 RELATION BETWEEN ARITHMETIC MEAN, GEOMETRIC MEAN AND 

HARMONIC MEAN: 

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic 

progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is 

called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean. 

  

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship 

between the three is given by the formula 

  

AM×HM=GM2AM×HM=GM2 

  

Below is the derivation of this relationship. 

Derivation of AM × HM = GM
2
 

Arithmetic mean: 

http://mathworld.wolfram.com/PowerMean.html
http://mathworld.wolfram.com/PythagoreanMeans.html
http://mathworld.wolfram.com/Volume.html
http://mathworld.wolfram.com/SurfaceArea.html
http://mathworld.wolfram.com/MeanCurvature.html
http://mathworld.wolfram.com/Positive.html
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x,AM,yx,AM,y   →   arithmetic progression 

  

Taking the common difference of arithmetic progression, 

AM−x=y−AMAM−x=y−AM 

x+y=2AMx+y=2AM   →   Equation (1) 

 

Geometric Progression 

x,GM,yx,GM,y   →   geometric progression 

  

The common ratio of this geometric progression is 

GMx=yGMGMx=yGM 

xy=GM2xy=GM2   →   Equation (2)  

      Harmonic Progression 

x,HM,yx,HM,y   →   harmonic progression 

1x,1HM,1y1x,1HM,1y   →   the reciprocal of each term will form an arithmetic 

progression 

  

The common difference is 

1HM−1x=1y−1HM1HM−1x=1y−1HM 

2HM=1y+1x2HM=1y+1x 

2HM=x+yxy2HM=x+yxy   →   Equation (3) 

  

Substitute x + y = 2AM from Equation (1) and xy = GM
2
 from Equation (2) to 

Equation (3) 

2HM=2AMGM22HM=2AMGM2 
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GM2=AM×HMGM2=AM×HM    

 

 

 

 

Range mean or average deviation , Standard deviation , Variance and mean square 

deviation: 

Mean is a measure of central tendency. It measures what the majority of the data are 

doing toward the middle of a set. The mean is often referred to as the average of a data set. As 

an example, an algebra class has 10 students. Their grades on the last test were 85, 90, 87, 93, 

100, 53, 78, 85, 99 and 82. What is the average grade for the students? To find mean, simply add 

all the numbers in a data set and divide by the number of items in the set: 

85 + 90 + 87 + 93 + 100 + 53 + 78 + 85 + 99 + 82 = 852 852 / 10 = 85.2 

The average, or mean, test grade in the class is 85.2. 

Mode Occurs Most 

Mode is another measure of central tendency. The mode is just the number that occurs 

most frequently. It's easy to remember because mode and most sound alike. Using the algebra 

class example, what grade occurred most frequently among the students? To answer, put the 

values in order: 

53, 78, 82, 85, 85, 87, 90, 93, 99, 100 

The only grade that occurred more than once is 85. Since 85 occurred most, the mode is 85. 
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Median Is the Middle, Range Is the Spread 

Median is another measure of central tendency. The median is simply the middlenumber 

of a set. Put the numbers in order and look for one in the middle. If there is no middle number, 

add the two in the center and divide by 2. In the algebra class example, what is the median 

grade? To answer, put the values in order: 

53, 78, 82, 85, 85, 87, 90, 93, 99, 100 

Since there are an even number of test grades, there is no middle number. The two test grades in 

the middle are 85 and 87. Add them and divide by 2: 

85 + 87 = 172 172 / 2 = 86 

The median, or middle grade, is 86. 

Range is a quick calculation. Range is simply the largest value minus the smallest. It 

shows you how spread out the numbers are. For these grades, subtract 53 from 100 to get the 

range of 47. 

Find Variance Before Standard Deviation 

Standard deviation is the square root of the variance, so you must find the variance 

first. Variance is the average of the squared difference of each number from the mean. That may 

sound confusing, but it's pretty simple to do. Take each number in the set and subtract if from the 

mean. Then square it. Add those values together, and divide by the number of items in your set. 

Working with the algebra class grades again, subtract each one from the mean: 

85.2 - 53 = 32.2 85.2 - 78 = 7.2 85.2 - 82 = 3.2 85.2 - 85 = 0.2 85.2 - 85 = 0.2 85.2 - 87 = -1.8 

85.2 - 90 = -4.8 85.2 - 93 = -7.8 85.2 - 99 = -13.8 85.2 - 100 = 14.8 

Square each of those values, then add them together: 

1,036.84 + 51.84 + 10.24 + 0.04 + 0.04 + 3.24 + 23.04 + 60.84 + 190.44 + 219.04 = 1,595.6 

Finally, divide that sum by the number of items in the set, in this case 10: 
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1,595.6 / 10 = 159.56 

The variance for this data set is 159.56. 

Standard Deviation Measures Spread 

Standard deviation is the measure of how spread out the numbers are from the center of 

a data set. A small standard deviation means a lot of the numbers are grouped around the middle 

of the set. A large standard deviation means that the number are spread out with some very high 

and low numbers. With the algebra grades, use this equation: 

square root (159.56) = 12.63 

The standard deviation for this data set is 12.63. 
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POSSIBLE QUESTIONS 

8 MARK: 

 . Following table gives the weight of 31 persons in a sample survey. Calculate geometric mean.   

 

Weight 130 135 140 145 146 148 149 150 157 

No. of persons 3 4 6 6 3 5 2 1 1 

                                          
 The monthly incomes of 10 families in rupees in a certain village are given below. Calculate harmonic      

         mean. 

Family 1 2 3 4 5 6 7 8 9 10 

Income 85 70 10 75 500 8 42 250 40 36 

 

 Calculate geometric mean of the following 

S.No 1 2 3 4 5 

Values 50 72 54 82 93 

 10 students of B.Com class of a college have obtained the following marks in statics out 

of 100 marks. Calculate the standard deviation. 

S.No 1 2 3 4 5 6 7 8 9 10 

Marks 5 10 20 25 40 42 45 48 70 80 

 Compute the mode from the following series 

 

Size of 

item 

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 

freque

ncy 

20 24 32 28 20 16 34 10 8 

                                                                                

 The arithmetic mean of following data is 28. Find the missing frequency and   

 median. 

Profits per 

shop 

0-10  10-20 20-30 30-40 40-50 50-60 

No of shops 12 18 27 7 17 6 

 Calculate mean from the following data 

Value 1 2 3 4 5 6 7 8 9 10 

Frequency 21 30 28 40 26 34 40 9 15 57 

 

 Find median for the following data 

Roll No 1 2 3 4 5 6 7 

Marks 45 32 18 57 65 28 46 
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DEPARTMENT OF PHYSICS

CLASS: III B. Sc., PHYSICS  BATCH: 2015-2018

MATHEMATICAL  PHYSICS (15PHU603A)
UNIT V

QUESTIONS CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER
A measure of ……………...helps to get a single 

representative value for a set of unequal values.
central tendency dispersion final tendency initial tendency central tendency 

A measure of central tendency helps to get a 

single representative value for a set of ………….. 

values.

equal unequal greater smaller unequal

 ……………….. is  the total of the values of the 

items divided by their number
Mean Median Mode Range Mean

Arithmetic Mean is  the ……………...of the 

values of the items divided by their number
sum difference equal total total

Arithmetic Mean is  the total of the values of the 

items ……………. by their number
sum difference product divided divided

The ………….. of the deviations of the values 

from their arithemetic mean is zero.
sum difference product divided sum

The sum of the deviations of the values from their 

……………….is zero.
arithmetic mean arithmetic median arithmetic mode arithmetic range arithmetic mean

The sum of the deviations of the values from their 

arithemetic mean is …………....
zero one two three zero

……………... is the value of the middle most 

item when all the items are in order of magnitude.
Mean Median Mode Range Median

Median is the value of the ……………... most 

item when all the items are in order of magnitude.
initial final middle higher middle

……….. is the value which has the greatest 

frequency density.
Mean Median Mode Range Mode

Mode is the value which has the 

…………….frequency density.
smallest greatest initial final greatest

………………. mean is the appropriate root of 

the product of the values of the items.
arithmetic geometric harmonic standard geometric

Geometric mean is the 

appropriate……………….of the product of the 

values of the items.

sum difference root quotient root

Geometric mean is the appropriate root of the 

…………….of the values of the items.
sum difference product divided product

……………... is the reciprocal of the mean of 

reciprocals of the values of the items
arithmetic geometric harmonic standard harmonic

Harmonic mean is the ……………..of the mean 

of reciprocals of the values of the items
sum difference root reciprocal reciprocal

Harmonic mean is the reciprocal of the …………. 

of reciprocals of the values of the items
Mean Median Mode Range Mean
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In symmetical distributions the relation is 

………………
mean=median=mode mean≠median=mode mean=median≠mode mean≠median≠mode mean=median=mode

The relation between the means is ………… A.M< G.M< H.M A.M = G.M =H.M A.M > G.M > H.M A.M≠ G.M≠ H.M A.M > G.M > H.M
…………...are positional values. quartile mean median standard quartile 
………….divide the total frequency into ten equal 

parts and hence their name.
quartile deciles percentiles mean deciles

Deciles divide the …………….frequency into ten 

equal parts and hence their name.
sum difference equal total total

Deciles divide the total frequency into ……….. 

equal parts and hence their name.
zero five ten twenty ten

…………. divide the total frequency into hundred 

equal parts and hence their name.
quartile deciles percentiles mean percentiles

Percentiles divide the total frequency into 

……….. parts and hence their name.
ten twenty fifty hundred  hundred

…………..measures give pure numbers which are 

free form the units of measurements of data.
Relative absolute possibility finite Relative 

Relative measures give …………...which are free 

form the units of measurements of data.
real numbers pure numbers complex numbers imaginary numbers pure numbers 

Relative measures give pure numbers which are 

free form the …………. of measurements of data.
scale value units range units

…………………..and ………………measures 

are two kinds of measures of  dispersion.
absolute and possibility finite and infinite non relative and relative absolute and relative absolute and relative

……………... is the difference between the 

greatest and smallest of the values.
Median Mean Range Mode Range

Range is the …………... between the greatest and 

smallest of the values.
sum difference product quotient difference

Range is the difference between the 

………………….. of the values.
smallest and greatest greatest and smallest finite and infinite greatest and infinite greatest and smallest

…………………. is used in statistical quality 

control.
Median Mean Range Mode Range

Range is used in statistical ……………….. 

control.
units constant quality value quality

…………….deviation is half of the difference 

between first and third quartiles.
quartile mean median standard quartile 

Quartile deviation is ……………..of the 

difference between first and third quartiles.
one fourth half one third three fourth half

Quartile deviation is half of the difference 

between ………………..quartiles.
first and third first and two two and third third and fourth first and third 

There are …………….. kinds of mean deviations one two three four three

……………………... the root mean square 

deviation of the values from their arithmetic mean
mean median mode standard deviation standard deviation

Standard deviation the………………..deviation 

of the values from their arithmetic mean
 root mean square  root median square  root mode square  root range square  root mean square 



Standard deviation the root mean square deviation 

of the values from their arithmetic …………
mean median mode standard deviation mean

…………... deviationof the values from the 

arithmetic mean is known as variance.
Mean square  root mean square range square standard deviation Mean square

Mean square deviationof the values from the 

arithmetic mean is known as variance.
arithmetic range arithmetic mode arithmetic median arithmetic mean arithmetic mean

Mean square deviationof the values from the 

arithmetic mean is known as ……………….
mean median variance standard deviation variance

………………….. is the positive square root of 

variance.
mean median variance standard deviation standard deviation

Standarad deviation is the positive …………...of 

variance.
square root cubic root fourth root fifth root square root

Standarad deviation is the positive square root of 

………..
mean median variance standard deviation variance

The formula for range is ……….. L-S L+S L*S L/S L-S
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(20 x 1 = 20 marks)  

1. The scalar is the quantity having__________. 

                  a)magnitude b) direction c) both magnitude  

                  and direction      d)  magnitude but no direction. 

2. The vector is the quantity having ___________. 

                  a) magnitude b) direction c) both magnitude  

                  and direction      d)  magnitude but no direction. 

3. Kronecker delta symbol is 

                  a) covariant tensor  b) a contravariant tensor 

                  c) an invariant  d) a mixed tensor 

4. The example for scalar quantity are ___________.  

                   a)mass b)force  c) acceleration   d) displacement 

5. The example for vector quantity are ___________.  

                  a)velocity  b) time  c) volume  d) work 

6. The vector whose magnitude are different but they have 

the same direction and sense is called _________.  

      a) like vector b) unlike vector  c) Equal  

      vector    d) unit vector 

7. The vector whose magnitude is equal but have opposite 

sense  is called __________.  

      a) Negative vector  b) unlike vector 

      c) Equal vector   d) unit vector 

8. The vector whose magnitude is zero is called __________.  

      a) like vector b) Zero vector    c) Equal vector        

      d) unit vector 

9. The vector whose magnitude is unity is called 

___________. 

      a) like vector b) Zero vector      c) Equal vector     

      d) unit vector 

10. The vector associated with a linear directional affect are 

called __________. 

                  a) like vector b) Zero vector      c) Equal vector         

                  d)polar vector    

11. The vector associated with rotation about an axis are 

called ___________. 

                  a) like vector b) Zero vector      c) Equal vector      

                  d)axial vector 

12. The example for polar vector is ___________. 

                  a) torque     b) force      c) angular velocity     

                  d)angular momentum     

13. The example for axial vector is ___________. 

      a) torque     b) force      c) linear velocity    

      d)linear momentum 

14. The scalar product is also called as ____________. 

                  a) dot product     b) cross product      c)del  

                  product   d)nabla product     

15. The vector product is also called as ____________. 

                  a) dot product     b) cross product      c) del  

               product   d)nabla product 

16. A matrix may be defined as a ____________ array of 

numbers. 



                  a) square     b) rectangle      c) square or rectangle    

                  d)both square and rectangle   

17. A matrix having the same number of rows and columns 

are called as _________. 

        a) diagonal matrix     b) square matrix      

        c) scalar matrix   d)unit matrix 

18. If all the elements in the square matrix is zero except  in 

the leading diagonal is called _____. 

                    a) diagonal matrix     b) square matrix       

                    c) scalar matrix    d)unit matrix 

19. A scalar matrix in which each diagonal element is unity is 

called __________ 

       a) diagonal matrix     b) square matrix     

       c) scalar matrix                  d)unit matrix 

20. A diagonal matrix in which all diagonal element are equal 

is called __________ 

             a) diagonal matrix    b) square matrix    

             c) scalar matrix    d)unit matrix 

  

  

PART – B 

 

      Answer all the following questions                                                  

                                                                        ( 3 x 10 = 30 marks)                                                                                                                                                                                       

21. a. State and derive Gauss divergence theorem.  

                                

                                   (OR) 

 

b. Show that   (i)div (φ A) = φ div A + A .grad φ 

                      (ii)curl (φ A)= φ curl A + (grad φ) x A  

       

22.  a. Show that r
n 

r is an irrotational vector for any value of    

     n, but is solenoidal only if n= - 3 (r is position vector of  

     a point). 

                        

                                     (OR) 

b. Show that (i)div (AXB) =B.curl A – A.curl B. 

                 (ii) curl (AXB)=(B. ∇)A-(A. ∇)B +A div B – B div A. 

                 (iii) curl curl A= grad div A- ∇ 2 
.
 
A. 

23. a Find the Eigen values of the matrix A =  

(OR) 

           b.Explain the gradient of the scalar field with its physical  

            significance.  
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