
15BECS404 Advanced Java Programming L T P C

Course Objectives:

 3 2 0 4

 Understand the concepts of object-oriented, event driven, and concurrent programming

paradigms
 Develop skills in using these paradigms using Java.

Learning Outcomes:

To be able to describe & discuss advanced features of Java programming including:

 concurrent object-oriented programming in Java

 event-driven programming
 event handling in the context of Java GUI programming

UNIT I Interfaces and Packages 9

Defining Interfaces-Extending Interfaces-Implementing Interfaces-Accessing Interface Variables-
Java API Packages-Using System Packages-Naming Conventions-Creating Packages-Accessing a
Package-Using a Package-Adding a Class to a Package-Hiding Classes-Static Import

UNIT II Multithreaded Programming 9

Creating Threads-Extending the Thread Class-Stopping and Blocking a Thread-Life Cycle of a
Thread-Using Thread Methods-Thread Exceptions-Thread Priority-Synchronization

UNIT III Managing Errors and Exceptions 9

Implementing the „Runnable‟ Interface-Inter thread Communication-Types of Errors-Exceptions-
Syntax of Exception Handling Code-Multiple Catch Statements-Using Finally Statement-
Throwing Our Own Exceptions-Using Exceptions for Debugging

UNIT IV Applet and Graphics 9

How Applets Differ from Applications-Preparing to Write Applets-Building Applet Code-Applet

Life Cycle-Creating an Executable Applet-Designing a Web Page-Applet Tag-Adding Applet to
HTML File-Running the Applet-Getting Input from the User-Event Handling-The Graphics Class-

Introduction to AWT Package-Introduction to Swings

UNIT V Managing Input/output Files in Java 9

Concept of Streams-Stream Classes-Byte Stream Classes-Character Stream Classes-Using
Streams-Other Useful I/O Classes-Using the File Class-Input/Output Exceptions-Creation of Files-

Reading/Writing Characters-Reading/Writing Bytes-Handling Primitive Data Types-
Concatenating and Buffering Files-
Random Access Files-Interactive Input and Output-Other
 Streamclasses

Total Hours: 45+15=60

Advanced

java

1 / 113

Text Books:

1. E. Balagurusamy, “Programming with Java”, 4
th

 Edition, Tata Mc Graw Hill, 2010

2. C. Thomas Wu, “An Introduction to Object-Oriented programming with Java”, 5
th

 Edition Tata McGraw-
Hill Publishing company Ltd 2010

3. Yashawant Kanetkar, “Let Us Java”, 1
st

 Edition, PBP Publications, 2012

References:

1. Cay S. Horstmann and Gary Cornel, “Core Java: Volume I – Fundamentals”, 8th Edition, Sun Microsystems
Press, 2011

2. Timothy Budd “Understanding Object-oriented programming with Java” Pearson Education,2nd edition,
2006

3. Herbert Schildt, “Java The Complete Reference”, Oracle Press, 8th edition, 2011

Websites:

1. http://java.sun.com.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Faculty of Engineering

Lecture Plan

Subject Name: Subject Code:

S.N
o

Topic
Name

No.of
Period
s

Supporting
Materials

Teach
i ng
Aids

 UNIT- I Interfaces and Packages

1 Defining Interfaces-Extending Interfaces 1 R[1]-1 BB

2
Implementing Interfaces

1

R[2]-1

BB

3 Accessing Interface Variables 1 R[1]-8 PPT

4
Java API Packages

1

T[1]-6

PPT

5 Using System Packages 1 R[2]-17 PPT

6 Naming Conventions 1 T[1]-45 PPT

7 Creating Packages 1 T[1]-56 BB

8 Accessing a Package 1
T[1]-85

BB

9 Using a Package 1 R[1] 201 PPT

Advanced

java

2 / 113

10 Adding a Class to a Package

1 R[2]101 BB

11 Hiding Classes, Static Import 1 T[2]-15 BB

Total 11

 UNIT- II Multithreaded Programming

12 Creating Threads

1 R[1]-156 PPT

13 Extending the Thread Class 1 Web PPT

14 Stopping and Blocking a Thread 1 R[2]140 BB

15 Life Cycle of a Thread 1 R[2]156 PPT

16 Using Thread Methods 1 R[1]214 PPT

17
Thread Exceptions

1

R[2]135

PPT

18
Thread Priority 1 Web PPT

19
Synchronization 1 R[2]214 BB

 8

 UNIT- III Managing Errors and Exceptions

20 Implementing the „Runnable‟ Interface

1 Web PPT

21 Inter thread Communication 1 Web PPT

22 Types of Errors 1 Web PPT

23 Exceptions 1 T[1]-242 BB

24 Syntax of Exception Handling Code 1 T[1]-245 BB

25 Multiple Catch Statements 1 T[1]-193 PPT

26 Using Finally Statement 1 T[2]-205 BB

27 Throwing Our Own Exceptions 1 R[1]-250 PPT

28 Using Exceptions for Debugging 1 R[1]-285 PPT

Total 9

 UNIT- IV Applet and Graphics

29 How Applets Differ from Applications-

1 R[1]-287 PPT

30 Preparing to Write Applets- 1 R[1]-289 PPT

31 Building Applet Code- 1 T[1]-250 PPT

32 Applet Life Cycle- 1 R[1]-291 BB

33 Creating an Executable Applet- 1
R[2]-189

BB

34 Designing a Web Page- 1 R[1]-293 PPT

35 Applet Tag- 1
T[1]-253

BB

36 Adding Applet to HTML File- 1 R[2]-191 BB

37 Running the Applet- 1 T[1]-293 BB

38 Getting Input from the User- 1 T[1]-300 BB

39 Event Handling- 1
T[1]-305

PPT

Advanced

java

3 / 113

40 The Graphics Class 1 T[2]-208 PPT

41 -Introduction to AWT Package- 1 T[2]-210 BB

42 Introduction to Swings 1 T[2]-212 BB

Total 14

 UNIT- V Managing Input/output Files in Java

43 Concept of Streams

1 R[1]-248 PPT

44 Stream Classes, Byte Stream Classes, Character Stream
Classes

1 R[1]-465 BB

45 Using Streams 1 R[1]-465 BB

46 Other Useful I/O Classes, Using the File Class 1 R[1]-255 PPT

47 Input/Output Exceptions 1 R[1]-248 PPT

48 Creation of Files 1 T[1]-519 PPT

49 Reading/Writing Characters, Reading/Writing Bytes,
Handling Primitive Data Types

1 T[1]-524 PPT

50 Concatenating and Buffering Files, Random Access Files 1 T[1]-690 BB

51 Interactive Input and Output 1 R[1]-248 BB

52 Other Stream classes 1 R[1]-465 PPT

 Discussion on Previous University Question Papers

Total 10

 Total Hours 52

LECTURE NOTES

UNIT 1

Advanced

java

4 / 113

package com.javacodegeeks.advanced.construction;

public class NoConstructor {

1.1 Introduction

Java programming language, originated in Sun Microsystems and released back in 1995, is one of
the most widely used pro- gramming languages in the world, according to TIOBE Programming
Community Index. Java is a general-purpose programming language. It is attractive to software
developers primarily due to its powerful library and runtime, simple syntax, rich set of sup- ported
platforms (Write Once, Run Anywhere - WORA) and awesome community.

In this tutorial we are going to cover advanced Java concepts, assuming that our readers already have
some basic knowledge of the language. It is by no means a complete reference, rather a detailed
guide to move your Java skills to the next level.

Along the course, there will be a lot of code snippets to look at. Where it makes sense, the same
example will be presented using Java 7 syntax as well as Java 8 one.

1.2 Instance Construction

Java is object-oriented language and as such the creation of new class instances (objects) is, probably,
the most important concept of it. Constructors are playing a central role in new class instance
initialization and Java provides a couple of favors to define them.

1.2.1 Implicit (Generated) Constructor

Java allows to define a class without any constructors but it does not mean the class will not have
any. For example, let us consider this class:

This class has no constructor but Java compiler will generate one implicitly and the creation of new
class instances will be possible using new keyword.

 final NoConstructor noConstructorInstance = new NoConstructor();

1.2.2 Constructors without Arguments

The constructor without arguments (or no-arg constructor) is the simplest way to do Java compiler‟s job

explicitly.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Advanced

java

5 / 113

package com.javacodegeeks.advanced.construction;

public class ConstructorWithArguments {

public ConstructorWithArguments(final String arg1,final String arg2) {

// Constructor body here

final ConstructorWithArguments constructorWithArguments =

new ConstructorWithArguments("arg1", "arg2");

public ConstructorWithArguments(final String arg1) {

this(arg1, null);

package com.javacodegeeks.advanced.construction;

public class InitializationBlock {

// initialization code here

package com.javacodegeeks.advanced.construction;

public class InitializationBlocks {

This constructor will be called once new instance of the class is created using the new keyword.

 final NoArgConstructor noArgConstructor = new NoArgConstructor();

1.2.3 Constructors with Arguments

The constructors with arguments are the most interesting and useful way to parameterize new class
instances creation. The following example defines a constructor with two arguments.

In this case, when class instance is being created using the new keyword, both constructor arguments

should be provided.

Interestingly, the constructors can call each other using the special this keyword. It is considered
a good practice to chain constructors in such a way as it reduces code duplication and basically leads
to having single initialization entry point. As an example, let us add another constructor with only

one argument.

1.2.4 Initialization Blocks

Java has yet another way to provide initialization logic using initialization blocks. This feature is
rarely used but it is better to know it exists.

In a certain way, the initialization block might be treated as anonymous no-arg constructor. The particular
class may have multiple initialization blocks and they all will be called in the order they are defined in the

code. For example:

package com.javacodegeeks.advanced.construction;

public class NoArgConstructor {

public NoArgConstructor() {

// Constructor body here

Advanced

java

6 / 113

package com.javacodegeeks.advanced.construction;

public class InitializationBlockAndConstructor {

// initialization code here

public InitializationBlockAndConstructor() {

package com.javacodegeeks.advanced.construction;

public class InitializationWithDefaults {

private boolean booleanMember;

private byte byteMember;

private short shortMember;

private int intMember;

private long longMember;

private char charMember;

private float floatMember;

private double doubleMember;

private Object referenceMember;

Initialization blocks do not replace the constructors and may be used along with them. But it is very
important to mention that initialization blocks are always called before any constructor.

1.2.5 Construction guarantee

Java provides certain initialization guarantees which developers may rely on. Uninitialized instance
and class (static) variables are automatically initialized to their default values.

Table 1.1: datasheet

Type Default Value

boolean False
byte 0
short 0
int 0
long 0L
char u0000
float 0.0f
double 0.0d
object reference null

Let us confirm that using following class as a simple example:

// initialization code here

// initialization code here

Advanced

java

7 / 113

InitializationWithDefaults(),

final InitializationWithDefaults initializationWithDefaults = new ←›

booleanMember = false

byteMember = 0

shortMember = 0

intMember = 0

longMember = 0

charMember = 0

floatMember = 0.0

doubleMember = 0.0

referenceMember = null

Once instantiated using new keyword:

The following output will be shown in the console:

1.2.6 Visibility

Constructors are subject to Java visibility rules and can have access control modifiers which determine
if other classes may invoke a particular constructor.

Table 1.2: datasheet

Modifier Package Subclass Everyone Else

public accessible accessible accessible
protected accessible accessible not accessible

<no modifier> accessible not accessible not accessible

private not accessible not accessible not accessible

1.2.7 Garbage collection

Java (and JVM in particular) uses automatic garbage collection. To put it simply, whenever new
objects are created, the memory is automatically allocated for them. Consequently, whenever the
objects are not referenced anymore, they are destroyed and their memory is reclaimed.

Java garbage collection is generational and is based on assumption that most objects die young (not
referenced anymore shortly after their creation and as such can be destroyed safely). Most developers
used to believe that objects creation in Java is slow and instantiation of the new objects should be
avoided as much as possible. In fact, it does not hold true: the objects creation in Java is quite cheap
and fast. What is expensive though is an unnecessary creation of long-lived objects which eventually
may fill up old generation and cause stop-the-world garbage collection.

public InitializationWithDefaults() {

System.out.println("booleanMember = " + booleanMember);

System.out.println("byteMember = " + byteMember);

System.out.println("shortMember = " + shortMember);

System.out.println("intMember = " + intMember);

System.out.println("longMember = " + longMember);

System.out.println("charMember = " +

Character.codePointAt(new char[] { charMember }, 0));

System.out.println("floatMember = " + floatMember);

System.out.println("doubleMember = " + doubleMember);

System.out.println("referenceMember = " + referenceMember);

Advanced

java

8 / 113

try (final InputStream in = Files.newInputStream(path)) {

// code here

package com.javacodegeeks.advanced.construction;

public class StaticInitializationBlock {

static {

// static initialization code here

package com.javacodegeeks.advanced.construction;

public class StaticInitializationBlocks {

static {

// static initialization code here

static {

// static initialization code here

1.2.8 Finalizers

So far we have talked about constructors and objects initialization but have not actually mentioned
anything about their counter- part: objects destruction. That is because Java uses garbage collection
to manage objects lifecycle and it is the responsibility of garbage collector to destroy unnecessary
objects and reclaim the memory.

However, there is one particular feature in Java called finalizers which resemble a bit the destructors
but serves the different purpose of performing resources cleanup. Finalizers are considered to be a
dangerous feature (which leads to numerous side- effects and performance issues). Generally, they
are not necessary and should be avoided (except very rare cases mostly related to native objects). A
much better alternative to finalizers is the introduced by Java 7 language construct called try-with-

resources and AutoCloseable interface which allows to write clean code like this:

1.3 Static initialization

So far we have looked through class instance construction and initialization. But Java also supports
class-level initialization constructs called static initializers. There are very similar to the initialization
blocks except for the additional static keyword. Please notice that static initialization is performed

once per class-loader. For example:

Similarly to initialization blocks, you may include any number of static initializer blocks in the class
definition and they will be executed in the order in which they appear in the code. For example:

Because static initialization block can be triggered from multiple parallel threads (when the loading
of the class happens in the first time), Java runtime guarantees that it will be executed only once and
in thread-safe manner.

1.4 Construction Patterns

Over the years a couple of well-understood and widely applicable construction (or creation) patterns
have emerged within Java community. We are going to cover the most famous of them: singleton,
helpers, factory and dependency injection (also known as inversion of control).

http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
http://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html

Advanced

java

9 / 113

package com.javacodegeeks.advanced.construction.patterns;

public class NaiveSingleton {

private static NaiveSingleton instance;

private NaiveSingleton() {

public static NaiveSingleton getInstance() {

if(instance == null) {

instance = new NaiveSingleton();

return instance;

final property of the class.

package com.javacodegeeks.advanced.construction.patterns;

public class EagerSingleton {

private static final EagerSingleton instance = new EagerSingleton();

private EagerSingleton() {

public static EagerSingleton getInstance() {

return instance;

package com.javacodegeeks.advanced.construction.patterns;

public class LazySingleton {

private static LazySingleton instance;

private LazySingleton() {

public static synchronized LazySingleton getInstance() {

if(instance == null) {

instance = new LazySingleton();

return instance;

1.4.1 Singleton

Singleton is one of the oldest and controversial patterns in software developer‟s community.
Basically, the main idea of it is to ensure that only one single instance of the class could be created at
any given time. Being so simple however, singleton raised a lot of the discussions about how to
make it right and, in particular, thread-safe. Here is how a naive version of singleton class may look

like:

At least one problem with this code is that it may create many instances of the class if called
concurrently by multiple threads. One of the ways to design singleton properly (but in non-lazy

fashion) is using the static final property of the class.

If you do not want to waste your resources and would like your singletons to be lazily created when
they are really needed, the explicit synchronization is required, potentially leading to lower
concurrency in a multithreaded environments (more details about concurrency in Java will be

discussing in part 9 of the tutorial, Concurrency best practices).

Advanced

java

10 / 113

package com.javacodegeeks.advanced.construction.patterns;

public final class HelperClass {

private HelperClass() {

public static void helperMethod1() {

// Method body here

public static void helperMethod2() {

// Method body here

package com.javacodegeeks.advanced.construction.patterns;

public class Book {

private Book(final String title) {

public static Book newBook(final String title) {

return new Book(title);

public interface BookFactory {

Book newBook();

Nowadays, singletons are not considered to be a good choice in most cases, primarily because they
are making a code very hard to test. The domination of dependency injection pattern (please see the
Dependency Injection section below) also makes singletons unnecessary.

1.4.2 Utility/Helper Class

The utility or helper classes are quite popular pattern used by many Java developers. Basically, it
represents the non-instantiable class (with constructor declared as private), optionally declared as
final (more details about declaring classes as final will be provided in part 3 of the tutorial,
How to design Classes and Interfaces) and contains static methods only. For example:

From seasoned software developer standpoint, such helpers often become containers for all kind of
non-related methods which have not found other place to be put in but should be shared somehow
and used by other classes. Such design decisions should be avoided in most cases: it is always
possible to find another way to reuse the required functionality, keeping the code clean and concise.

1.4.3 Factory

Factory pattern is proven to be extremely useful technique in the hands of software developers. As
such, it has several flavors in Java, ranging from factory method to abstract factory. The simplest
example of factory pattern is a static method which returns new instance of a particular class

(factory method). For example:

The one may argue that it does not make a lot of sense to introduce the newBook factory method but
using such a pattern often makes the code more readable. Another variance of factory pattern involves
interfaces or abstract classes (abstract factory). For example, let us define a factory interface:

With couple of different implementations, depending on the library type:

Advanced

java

11 / 113

package com.javacodegeeks.advanced.construction.patterns;

import java.text.DateFormat;

import java.util.Date;

public class Dependant {

private final DateFormat format = DateFormat.getDateInstance();

public String format(final Date date) {

return format.format(date);

package com.javacodegeeks.advanced.construction.patterns;

import java.text.DateFormat;

import java.util.Date;

public class Dependant {

private final DateFormat format;

public Dependant(final DateFormat format) {

this.format = format;

public String format(final Date date) {

return format.format(date);

Now, the particular class of the Book is hidden behind BookFactory interface implementation, still
providing the generic way to create books.

1.4.4 Dependency Injection

Dependency injection (also known as inversion of control) is considered as a good practice for class
designers: if some class instance depends on the other class instances, those dependencies should be
provided (injected) to it by means of constructors (or setters, strategies, etc.) but not created by the

instance itself. Let us consider the following example:

The class Dependant needs an instance of DateFormat and it just creates one by calling
DateFormat.getDateInstanc e() at construction time. The better design would be to use

constructor argument to do the same thing:

In this case the class has all its dependencies provided from outside and it would be very easy to
change date format and write test cases for it.

1.5 Download the Source Code

public class Library implements BookFactory {

@Override

public Book newBook() {

return new PaperBook();

public class KindleLibrary implements BookFactory {

@Override

public Book newBook() {

return new KindleBook();

Advanced

java

12 / 113

• You may download the source code here: com.javacodegeeks.advanced.java

1.6 What’s next

In this part of the tutorial we have looked at classes and class instances construction and initialization techniques,

along the way covering several widely used patterns. In the next part we are going to dissect the Object class and

usage of its well-known methods: equals, hashCode, toString and clone.

UNIT II

2.1 Introduction

From part 1 of the tutorial, How to create and destroy objects, we already know that Java is an
object-oriented language (however, not a pure object-oriented one). On top of the Java class
hierarchy sits the Object class and every single class in Java implicitly is inherited from it. As such,
all classes inherit the set of methods declared in Object class, most importantly the following
ones:

Table 2.1: datasheet

Method Description

protected Object clone() Creates and returns a copy of this object.
protected void finalize() Called by the garbage collector on an object when

garbage collection determines that there are no
more references to the object. We have discussed
finalizers in the part 1 of the
tutorial, How to create and destroy objects.

boolean equals(Object obj) Indicates whether some other object is “equal to” this
one.

int hashCode() Returns a hash code value for the object.
String toString() Returns a string representation of the object.
void notify() Wakes up a single thread that is waiting on this

object’s monitor. We are going to discuss this
method in the part 9
of the tutorial, Concurrency best practices.

void notifyAll() Wakes up all threads that are waiting on this
object’s monitor. We are going to discuss this
method in the part 9
of the tutorial, Concurrency best practices.

void wait()

void wait(long timeout)

void wait(long timeout, int nanos)

Causes the current thread to wait until another
thread invokes the notify() method or the
notifyAll() method for this object. We are
going to discuss these methods in the part 9 of
the tutorial, Concurrency best
practices.

In this part of the tutorial we are going to look at equals,hashCode,toString and clone
methods, their usage and important constraints to keep in mind.

http://www.javacodegeeks.com/wp-content/uploads/2015/09/com.javacodegeeks.advanced.java_.zip
http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Advanced

java

13 / 113

package com.javacodegeeks.advanced.objects;

public class Person {

private final String firstName;

private final String lastName;

private final String email;

public Person(final String firstName, final String lastName, final String email) {

this.firstName = firstName;

this.lastName = lastName;

this.email = email;

public String getEmail() {

return email;

public String getFirstName() {

return firstName;

public String getLastName() {

return lastName;

// Step 0: Please add the @Override annotation, it will ensure that your

// intention is to change the default implementation.

@Override

public boolean equals(Object obj) {

// Step 1: Check if the ’obj’ is null

if (obj == null) {

return false;

// Step 2: Check if the ’obj’ is pointing to the this instance

if (this == obj) {

return true;

2.2 Methods equals and hashCode

By default, any two object references (or class instance references) in Java are equal only if they are
referring to the same memory location (reference equality). But Java allows classes to define their
own equality rules by overriding the equals() method of the Object class. It sounds like a
powerful concept, however the correct equals() method implementation should conform to a set
of rules and satisfy the following constraints:

• Reflexive. Object x must be equal to itself and equals(x) must return true.

• Symmetric. If equals(y) returns true then y.equals(x) must also return true.

• Transitive. If equals(y) returns true and y.equals(z) returns true, then x.equals(z) must also return true.

• Consistent. Multiple invocation of equals() method must result into the same value, unless any of the properties
used for equality comparison are modified.

• Equals To Null. The result of equals(null) must be always false.

Unfortunately, the Java compiler is not able to enforce those constraints during the compilation
process. However, not following these rules may cause very weird and hard to troubleshoot issues.
The general advice is this: if you ever are going to write your own equals() method
implementation, think twice if you really need it. Now, armed with all these rules, let us write a

simple implementation of the equals() method for the Person class.

Advanced

java

14 / 113

// Please add the @Override annotation, it will ensure that your

// intention is to change the default implementation.

@Override

public int hashCode() {

final int prime = 31;

int result = 1;

result = prime * result + ((email == null) ? 0 : email.hashCode());

result = prime * result + ((firstName == null) ? 0 : firstName.hashCode());

result = prime * result + ((lastName == null) ? 0 : lastName.hashCode());

return result;

It is not by accident that this section also includes the hashCode() method in its title. The last, but
not least, rule to remember: whenever you override equals() method, always override the
hashCode() method as well. If for any two objects the equals() method returns true, then the
hashCode() method on each of those two objects must return the same integer value (however the
opposite statement is not as strict: if for any two objects the equals() method returns false, the

hashCode() method on each of those two objects may or may not return the same integer value).
Let us take a look on hashCode() method for the Person class.

To protect yourself from surprises, whenever possible try to use final fields while implementing
equals() and hashCod e(). It will guarantee that behavior of those methods will not be
affected by the field changes (however, in real-world projects

// Step 3: Check classes equality. Note of caution here: please do not use the

// ’instanceof’ operator unless class is declared as final. It may cause

// an issues within class hierarchies.

if (getClass() != obj.getClass()) {

return false;

// Step 4: Check individual fields equality

final Person other = (Person) obj;

if (email == null) {

if (other.email != null) {

return false;

} else if(!email.equals(other.email)) {

return false;

if (firstName == null) {

if (other.firstName != null) {

return false;

} else if (!firstName.equals(other.firstName)) {

return false;

if (lastName == null) {

if (other.lastName != null) {

return false;

} else if (!lastName.equals(other.lastName)) {

return false;

return true;

Advanced

java

15 / 113

// Please add the @Override annotation, it will ensure that your

// intention is to change the default implementation.

@Override

public String toString() {

return String.format("%s[email=%s, first name=%s, last name=%s]",

getClass().getSimpleName(), email, firstName, lastName);

package com.javacodegeeks.advanced.objects;

import java.util.Arrays;

public class Office {

private Person[] persons;

public Office(Person ... persons) {

this.persons = Arrays.copyOf(persons, persons.length);

@Override

public String toString() {

return String.format("%s{persons=%s}",

getClass().getSimpleName(), Arrays.toString(persons));

public Person[] getPersons() {

return persons;

it is not always possible).

Finally, always make sure that the same fields are used within implementation of equals() and
hashCode() methods. It will guarantee consistent behavior of both methods in case of any change
affecting the fields in question.

2.3 Method toString

The toString() is arguably the most interesting method among the others and is being
overridden more frequently. Its purpose is it to provide the string representation of the object (class
instance). The properly written toString() method can greatly simplify debugging and
troubleshooting of the issues in real-live systems.

The default toString() implementation is not very useful in most cases and just returns the full
class name and object hash code, separated by @, f.e.:

 com.javacodegeeks.advanced.objects.Person@6104e2ee

Let us try to improve the implementation and override the toString() method for our Person
class example. Here is a one of the ways to make toString() more useful.

Now, the toString() method provides the string version of the Person class instance with all
its fields included. For example, while executing the code snippet below:

The following output will be printed out in the console:

 Person[email=john.smith@domain.com, first name=John, last name=Smith]

Unfortunately, the standard Java library has a limited support to simplify toString() method
implementations, notably, the most useful methods are Objects.toString(),

final Person person = new Person("John", "Smith", "john.smith@domain.com");

System.out.println(person.toString());

mailto:john.smith@domain.com

Advanced

java

16 / 113

Arrays.toString() /Arrays.deepToString(). Let us take a look on the Office class
and its possible toString() implementation.

Advanced

java

17 / 113

public class Person implements Cloneable {

// Please add the @Override annotation, it will ensure that your

// intention is to change the default implementation.

@Override

public Person clone() throws CloneNotSupportedException {

return (Person)super.clone();

package com.javacodegeeks.advanced.objects;

import java.util.Arrays;

public class Office implements Cloneable {

private Person[] persons;

public Office(Person ... persons) {

this.persons = Arrays.copyOf(persons, persons.length);

@Override

public Office clone() throws CloneNotSupportedException {

return (Office)super.clone();

public Person[] getPersons() {

return persons;

The following output will be printed out in the console (as we can see the Person class instances
are properly converted to string as well):

 Office{persons=[Person[email=john.smith@domain.com, first name=John, last name=Smith]]}

The Java community has developed a couple of quite comprehensive libraries which help a lot to make
toString() implemen- tations painless and easy. Among those are Google Guava‟s
Objects.toStringHelper and Apache Commons Lang ToStringBuilder.

2.4 Method clone

If there is a method with a bad reputation in Java, it is definitely clone(). Its purpose is very clear
- return the exact copy of the class instance it is being called on, however there are a couple of
reasons why it is not as easy as it sounds.

First of all, in case you have decided to implement your own clone() method, there are a lot of
conventions to follow as stated in Java documentation. Secondly, the method is declared
protected in Object class so in order to make it visible, it should be overridden as public
with return type of the overriding class itself. Thirdly, the overriding class should implement the Clo
neable interface (which is just a marker or mixin interface with no methods defined) otherwise
CloneNotSupportedException exception will be raised. And lastly, the implementation should call

super.clone() first and then perform additional actions if needed. Let us see how it could be
implemented for our sample Person class.

The implementation looks quite simple and straightforward, so what could go wrong here? Couple of
things, actually. While the cloning of the class instance is being performed, no class constructor is
being called. The consequence of such a behavior is that unintentional data sharing may come out.
Let us consider the following example of the Office class, introduced in previous section:

In this implementation, all the clones of the Office class instance will share the same persons
array, which is unlikely the desired behavior. A bit of work should be done in order to make the

http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/base/Objects.ToStringHelper.html
http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-lang/
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#clone()
http://docs.oracle.com/javase/7/docs/api/java/lang/CloneNotSupportedException.html

Advanced

java

18 / 113

clone() implementation to do the right thing.

Advanced

java

19 / 113

final String str1 = new String("bbb");

System.out.println("Using == operator: " + (str1 == "bbb"));

System.out.println("Using equals() method: " + str1.equals("bbb"));

Using == operator: false

Using equals() method: true

It looks better now but even this implementation is very fragile as making the persons field to be
final will lead to the same data sharing issues (as final cannot be reassigned).

By and large, if you would like to make exact copies of your classes, probably it is better to avoid
clone() and Cloneable and use much simpler alternatives (for example, copying constructor,
quite familiar concept to developers with C++ background, or factory method, a useful construction
pattern we have discussed in part 1 of the tutorial, How to create and destroy objects).

2.5 Method equals and == operator

There is an interesting relation between Java == operator and equals() method which causes a lot of
issues and confusion. In most cases (except comparing primitive types), == operator performs
referential equality: it returns true if both references point to the same object, and false otherwise.

Let us take a look on a simple example which illustrates the differences:

From the human being prospective, there are no differences between str1=="bbb" and
str1.equals("bbb"): in both cases the result should be the same as str1 is just a reference to "bbb"

string. But in Java it is not the case:

Even if both strings look exactly the same, in this particular example they exist as two different
string instances. As a rule of thumb, if you deal with object references, always use the equals() or
Objects.equals() (see please next section Useful helper classes for more details) to compare
for equality, unless you really have an intention to compare if object references are pointing to the
same instance.

2.6 Useful helper classes

Since the release of Java 7, there is a couple of very useful helper classes included with the standard
Java library. One of them is class Objects. In particular, the following three methods can greatly
simplify your own equals() and hashCode() method implementations.

Table 2.2: datasheet

Method Description

static boolean equals(Object a, Object

b)

Returns true if the arguments are equal to each
other and
false otherwise.

static int hash(Object...values) Generates a hash code for a sequence of input
values.

static int hashCode(Object o) Returns the hash code of a non-null argument and 0
for a
null argument.

@Override

public Office clone() throws CloneNotSupportedException {

final Office clone = (Office)super.clone();

clone.persons = persons.clone();

return clone;

http://docs.oracle.com/javase/7/docs/api/java/util/Objects.html

Advanced

java

20 / 113

If we rewrite equals() and hashCode() method for our Person‟s class example using these
helper methods, the amount of the code is going to be significantly smaller, plus the code becomes
much more readable.

2.7 Download the Source Code

• You may download the source code here: advanced-java-part-2

2.8 What’s next

In this section we have covered the Object class which is the foundation of object-oriented
programming in Java. We have seen how each class may override methods inherited from Object
class and impose its own equality rules. In the next section we are going to switch our gears from
coding and discuss how to properly design your classes and interfaces.

UNIT III

3.1 Introduction

Whatever programming language you are using (and Java is not an exception here), following good
design principles is a key factor to write clean, understandable, testable code and deliver long-living,
easy to maintain solutions. In this part of the tutorial we are going to discuss the foundational
building blocks which the Java language provides and introduce a couple of design principles,
aiming to help you to make better design decisions.

@Override

public boolean equals(Object obj) {

if (obj == null) {

return false;

if (this == obj) {

return true;

if (getClass() != obj.getClass()) {

return false;

final PersonObjects other = (PersonObjects) obj;

if(!Objects.equals(email, other.email)) {

return false;

} else if(!Objects.equals(firstName, other.firstName)) {

return false;

} else if(!Objects.equals(lastName, other.lastName)) {

return false;

return true;

@Override

public int hashCode() {

return Objects.hash(email, firstName, lastName);

http://www.javacodegeeks.com/wp-content/uploads/2015/09/advanced-java-part-2.zip

Advanced

java

21 / 113

package com.javacodegeeks.advanced.design;

public interface SimpleInterface {

void performAction();

package com.javacodegeeks.advanced.design;

public interface InterfaceWithDefinitions {

String CONSTANT = "CONSTANT";

enum InnerEnum {

E1, E2;

More precisely, we are going to discuss interfaces and interfaces with default methods (new feature of Java 8), abstract
and final classes, immutable classes, inheritance, composition and revisit a bit the visibility (or accessibility) rules we have
briefly touched in part 1 of the tutorial, How to create and destroy objects.

3.2 Interfaces

In object-oriented programming, the concept of interfaces forms the basics of contract-driven (or
contract-based) development. In a nutshell, interfaces define the set of methods (contract) and every
class which claims to support this particular interface must provide the implementation of those
methods: a pretty simple, but powerful idea.

Many programming languages do have interfaces in one form or another, but Java particularly
provides language support for that. Let take a look on a simple interface definition in Java.

In the code snippet above, the interface which we named SimpleInterface declares just one
method with name perfo rmAction. The principal differences of interfaces in respect to classes
is that interfaces outline what the contact is (declare methods), but do not provide their
implementations.

However, interfaces in Java can be more complicated than that: they can include nested interfaces,
classes, enumerations, an- notations (enumerations and annotations will be covered in details in part
5 of the tutorial, How and when to use Enums and Annotations) and constants. For example:

http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/

Advanced

java

22 / 113

public void performAction();

void performAction();

public abstract void performAction();

public void performAction();

void performAction();

String CONSTANT = "CONSTANT";

public static final String CONSTANT = "CONSTANT";

class InnerClass {

static class InnerClass {

public interface Cloneable {

With this more complicated example, there are a couple of constraints which interfaces implicitly
impose with respect to the nested constructs and method declarations, and Java compiler enforces
that. First and foremost, even if it is not being said explicitly, every declaration in the interface is
public (and can be only public, for more details about visibility and accessibility rules, please refer

to section Visibility). As such, the following method declarations are equivalent:

Worth to mention that every single method in the interface is implicitly declared as abstract and even
these method declarations are equivalent:

As for the constant field declarations, additionally to being public, they are implicitly static and
final so the following declarations are also equivalent:

And finally, the nested classes, interfaces or enumerations, additionally to being public, are
implicitly declared as static. For example, those class declarations are equivalent as well:

Which style you are going to choose is a personal preference, however knowledge of those simple
qualities of interfaces could save you from unnecessary typing.

3.3 Marker Interfaces

Marker interfaces are a special kind of interfaces which have no methods or other nested constructs
defined. We have already seen one example of the marker interface in part 2 of the tutorial Using
methods common to all objects, the interface Cloneable. Here is how it is defined in the Java

library:

Marker interfaces are not contracts per se but somewhat useful technique to “attach” or “tie” some
particular trait to the class. For example, with respect to Cloneable, the class is marked as being
available for cloning however the way it should or could be done is not a part of the interface.
Another very well-known and widely used example of marker interface is Serializable:

class InnerClass {

interface InnerInterface {

void performInnerAction();

void performAction();

http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/
http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/

Advanced

java

23 / 113

public void runMe(final Runnable r) {

r.run();

package com.javacodegeeks.advanced.design;

public interface InterfaceWithDefaultMethods {

void performAction();

default void performDefaulAction() {

// Implementation here

package com.javacodegeeks.advanced.design;

public interface InterfaceWithDefaultMethods {

static void createAction() {

// Implementation here

@FunctionalInterface

public interface Runnable {

void run();

This interface marks the class as being available for serialization and deserialization, and again, it
does not specify the way it could or should be done.

The marker interfaces have their place in object-oriented design, although they do not satisfy the
main purpose of interface to be a contract.

3.4 Functional interfaces, default and static methods

With the release of Java 8, interfaces have obtained new very interesting capabilities: static methods,
default methods and automatic conversion from lambdas (functional interfaces).

In section Interfaces we have emphasized on the fact that interfaces in Java can only declare methods
but are not allowed to provide their implementations. With default methods it is not true anymore: an
interface can mark a method with the default keyword and provide the implementation for it. For

example:

Being an instance level, defaults methods could be overridden by each interface implementer, but
from now, interfaces may also include static methods, for example:

One may say that providing an implementation in the interface defeats the whole purpose of
contract-based development, but there are many reasons why these features were introduced into the
Java language and no matter how useful or confusing they are, they are there for you to use.

The functional interfaces are a different story and they are proven to be very helpful add-on to the
language. Basically, the functional interface is the interface with just a single abstract method declared
in it. The Runnable interface from Java standard library is a good example of this concept:

The Java compiler treats functional interfaces differently and is able to convert the lambda function into
the functional interface implementation where it makes sense. Let us take a look on following function
definition:

public interface Serializable {

http://www.javacodegeeks.com/2014/05/java-8-features-tutorial.html

Advanced

java

24 / 113

package com.javacodegeeks.advanced.design;

public abstract class SimpleAbstractClass {

public void performAction() {

// Implementation here

public abstract void performAnotherAction();

To invoke this function in Java 7 and below, the implementation of the Runnable interface should
be provided (for example using Anonymous classes), but in Java 8 it is enough to pass run()
method implementation using lambda syntax:

 runMe(() -> System.out.println("Run!"));

Additionally, the @FunctionalInterface annotation (annotations will be covered in details in
part 5 of the tutorial, How and when to use Enums and Annotations) hints the compiler to verify
that the interface contains only one abstract method so any changes introduced to the interface in the
future will not break this assumption.

3.5 Abstract classes

Another interesting concept supported by Java language is the notion of abstract classes. Abstract
classes are somewhat similar to the interfaces in Java 7 and very close to interfaces with default
methods in Java 8. By contrast to regular classes, abstract classes cannot be instantiated but could be
subclassed (please refer to the section Inheritance for more details). More importantly, abstract
classes may contain abstract methods: the special kind of methods without implementations, much

like interfaces do. For example:

In this example, the class SimpleAbstractClass is declared as abstract and has one
abstract method declaration as well. Abstract classes are very useful when most or even some
part of implementation details could be shared by many subclasses. However, they still leave the
door open and allow customizing the intrinsic behavior of each subclass by means of abstract
methods.

One thing to mention, in contrast to interfaces which can contain only public declarations,
abstract classes may use the full power of accessibility rules to control abstract methods visibility
(please refer to the sections Visibility and Inheritance for more details).

3.6 Immutable classes

Immutability is becoming more and more important in the software development nowadays. The rise
of multi-core systems has raised a lot of concerns related to data sharing and concurrency (in the
part 9, Concurrency best practices, we are going to discuss in details those topics). But the one
thing definitely emerged: less (or even absence of) mutable state leads to better scalability and
simpler reasoning about the systems.

Unfortunately, the Java language does not provide strong support for class immutability. However
using a combination of techniques it is possible to design classes which are immutable. First and
foremost, all fields of the class should be final. It is a good start but does not guarantee
immutability alone.

package com.javacodegeeks.advanced.design;

import java.util.Collection;

public class ImmutableClass {

private final long id;

private final String[] arrayOfStrings;

private final Collection< String > collectionOfString;

Advanced

java

25 / 113

public ImmutableClass(final long id, final String[] arrayOfStrings,

final Collection< String > collectionOfString) {

this.id = id;

this.arrayOfStrings = Arrays.copyOf(arrayOfStrings, arrayOfStrings.length);

this.collectionOfString = new ArrayList<>(collectionOfString);

public Collection<String> getCollectionOfString() {

return Collections.unmodifiableCollection(collectionOfString);

public String[] getArrayOfStrings() {

return Arrays.copyOf(arrayOfStrings, arrayOfStrings.length);

package com.javacodegeeks.advanced.design;

public class AnonymousClass {

public static void main(String[] args) {

new Thread(

// Example of creating anonymous class which implements

// Runnable interface

new Runnable() {

@Override

public void run() {

// Implementation here

).start();

Secondly, follow the proper initialization: if the field is the reference to a collection or an array, do not
assign those fields directly from constructor arguments, make the copies instead. It will guarantee
that state of the collection or array will not be changed from outside.

And lastly, provide the proper accessors (getters). For the collection, the immutable view should be
exposed using Collecti ons.unmodifiableXxx wrappers.

With arrays, the only way to ensure true immutability is to provide a copy instead of returning
reference to the array. That might not be acceptable from a practical standpoint as it hugely depends

on array size and may put a lot of pressure on garbage collector.

Even this small example gives a good idea that immutability is not a first class citizen in Java yet.
Things can get really complicated if an immutable class has fields referencing another class instances.
Those classes should also be immutable however there is no simple way to enforce that.

There are a couple of great Java source code analyzers like FindBugs) and PMD) which may help a
lot by inspecting your code and pointing to the common Java programming flaws. Those tools are
great friends of any Java developer.

3.7 Anonymous classes

In the pre-Java 8 era, anonymous classes were the only way to provide in-place class definitions and
immediate instantiations. The purpose of the anonymous classes was to reduce boilerplate and
provide a concise and easy way to represent classes as expressions. Let us take a look on the typical

old-fashioned way to spawn new thread in Java:

In this example, the implementation of the Runnable interface is provided in place as anonymous
class. Although there are some limitations associated with anonymous classes, the fundamental
disadvantages of their usage are a quite verbose syntax constructs which Java imposes as a language.
Even the simplest anonymous class which does nothing requires at least 5 lines of code to be written

http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/

Advanced

java

26 / 113

every time.

Advanced

java

27 / 113

package com.javacodegeeks.advanced.design;

public class AnonymousClass {

public static void main(String[] args) {

new Thread(() -> { /* Implementation here */ }).start();

package com.javacodegeeks.advanced.design;

public class Parent {

// Everyone can see it

public static final String CONSTANT = "Constant";

// No one can access it

Luckily, with Java 8, lambdas and functional interfaces all this boilerplate is about to gone away,
finally making the Java code to look truly concise.

3.8 Visibility

We have already talked a bit about Java visibility and accessibility rules in part 1 of the tutorial,
How to design Classes and Interfaces. In this part we are going to get back to this subject again but
in the context of subclassing.

Table 3.1: datasheet

Modifier Package Subclass Everyone Else

public accessible accessible Accessible
protected accessible accessible not accessible

<no modifier> accessible not accessible not accessible

private not accessible not accessible not accessible

Different visibility levels allow or disallow the classes to see other classes or interfaces (for example,
if they are in different packages or nested in one another) or subclasses to see and access methods,
constructors and fields of their parents.

In next section, Inheritance, we are going to see that in action.

3.9 Inheritance

Inheritance is one of the key concepts of object-oriented programming, serving as a basis of building
class relationships. Com- bined together with visibility and accessibility rules, inheritance allows
designing extensible and maintainable class hierarchies.

Conceptually, inheritance in Java is implemented using subclassing and the extends keyword,
followed by the parent class. The subclass inherits all of the public and protected members of its
parent class. Additionally, a subclass inherits the package- private members of the parent class if
both reside in the same package. Having said that, it is very important no matter what you are trying
to design, to keep the minimal set of the methods which class exposes publicly or to its subclasses.

For example, let us take a look on a class Parent and its subclass Child to demonstrate different

new Runnable() {

@Override

public void run() {

http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/
http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/

Advanced

java

28 / 113

visibility levels and their effect:

Advanced

java

29 / 113

package com.javacodegeeks.advanced.design;

// Resides in the same package as parent class

public class Child extends Parent implements Parent.ProtectedInterface {

@Override

protected void protectedAction() {

// Calls parent’s method implementation

super.protectedAction();

@Override

void packageAction() {

// Do nothing, no call to parent’s method implementation

public void childAction() {

this.protectedField = "value";

Inheritance is a very large topic by itself, with a lot of subtle details specific to Java. However, there
are a couple of easy to follow rules which could help a lot to keep your class hierarchies concise. In
Java, every subclass may override any inherited method of its parent unless it was declared as final
(please refer to the section Final classes and methods).

However, there is no special syntax or keyword to mark the method as being overridden which may
cause a lot of confusion. That is why the @Override annotation has been introduced: whenever
your intention is to override the inherited method, please always use the @Override annotation to
indicate that.

Another dilemma Java developers are often facing in design is building class hierarchies (with
concrete or abstract classes) versus interface implementations. It is strongly advised to prefer
interfaces to classes or abstract classes whenever possible. Interfaces are much more lightweight,
easier to test (using mocks) and maintain, plus they minimize the side effects of implementation
changes. Many advanced programming techniques like creating class proxies in standard Java library

private String privateField;

// Only subclasses can access it

protected String protectedField;

// No one can see it

private class PrivateClass {

// Only visible to subclasses

protected interface ProtectedInterface {

// Everyone can call it

public void publicAction() {

// Only subclass can call it

protected void protectedAction() {

// No one can call it

private void privateAction() {

// Only subclasses in the same package can call it

void packageAction() {

Advanced

java

30 / 113

heavily rely on interfaces.

Advanced

java

31 / 113

package com.javacodegeeks.advanced.design;

public class MultipleInterfaces implements Runnable, AutoCloseable {

@Override

public void run() {

// Some implementation here

@Override

public void close() throws Exception {

// Some implementation here

public class A implements Runnable {

@Override

public void run() {

// Some implementation here

// Class B wants to inherit the implementation of run() method from class A.

public class B extends A implements AutoCloseable {

@Override

public void close() throws Exception {

// Some implementation here

// Class C wants to inherit the implementation of run() method from class A

// and the implementation of close() method from class B.

public class C extends B implements Readable {

@Override

public int read(java.nio.CharBuffer cb) throws IOException {

// Some implementation here

3.10 Multiple inheritance

In contrast to C++ and some other languages, Java does not support multiple inheritance: in Java
every class has exactly one direct parent (with Object class being on top of the hierarchy as we
have already known from part 2 of the tutorial, Using methods common to all objects). However,
the class may implement multiple interfaces and as such, stacking interfaces is the only way to

achieve (or mimic) multiple inheritance in Java.

Implementation of multiple interfaces is in fact quite powerful, but often the need to reuse an
implementation leads to deep class hierarchies as a way to overcome the absence of multiple inheritance

support in Java.

http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/
http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/

Advanced

java

32 / 113

package com.javacodegeeks.advanced.design;

public interface DefaultMethods extends Runnable, AutoCloseable {

@Override

default void run() {

// Some implementation here

And so on. . . The recent Java 8 release somewhat addressed the problem with the introduction of
default methods. Because of default methods, interfaces actually have started to provide not only
contract but also implementation. Consequently, the classes which implement those interfaces are

automatically inheriting these implemented methods as well. For example:

Advanced

java

33 / 113

interface A {

default void performAction() {

interface B extends A {

@Override

default void performAction() {

interface C extends A {

@Override

default void performAction() {

// E is not compilable unless it overrides performAction() as well

interface E extends B, C {

public class Vehicle {

private Engine engine;

private Wheels[] wheels;

// ...

Be aware that multiple inheritance is a powerful, but at the same time a dangerous tool to use. The
well known “Diamond of Death” problem is often cited as the fundamental flaw of multiple
inheritance implementations, so developers are urged to design class hierarchies very carefully.
Unfortunately, the Java 8 interfaces with default methods are becoming the victims of those flaws as

well.

For example, the following code snippet fails to compile:

At this point it is fair to say that Java as a language always tried to escape the corner cases of object-
oriented programming, but as the language evolves, some of those cases are started to pop up.

3.11 Inheritance and composition

Fortunately, inheritance is not the only way to design your classes. Another alternative, which many
developers consider being better than inheritance, is composition. The idea is very simple: instead of
building class hierarchies, the classes should be composed from other classes.

Let us take a look on this example:

@Override

default void close() throws Exception {

// Some implementation here

// Class C inherits the implementation of run() and close() methods from the

// DefaultMethods interface.

public class C implements DefaultMethods, Readable {

@Override

public int read(java.nio.CharBuffer cb) throws IOException {

// Some implementation here

Advanced

java

34 / 113

public class Vehicle extends Engine {

private Wheels[] wheels;

// ...

package com.javacodegeeks.advanced.design;

public class Encapsulation {

private final String email;

private String address;

public Encapsulation(final String email) {

this.email = email;

public String getAddress() {

return address;

public void setAddress(String address) {

this.address = address;

public String getEmail() {

return email;

The Vehicle class is composed out of engine and wheels (plus many other parts which are left
aside for simplicity). However, one may say that Vehicle class is also an engine and so could be

designed using the inheritance.

Which design decision is right? The general guidelines are known as IS-A and HAS-A principles.
IS-A is the inheritance relationship: the subclass also satisfies the parent class specification and a
such IS-A variation of parent class. Consequently, HAS-A is the composition relationship: the class
owns (or HAS-A) the objects which belong to it. In most cases, the HAS-A principle works better
then IS-A for couple of reasons:

• The design is more flexible in a way it could be changed

• The model is more stable as changes are not propagating through class hierarchies

• The class and its composites are loosely coupled compared to inheritance which tightly couples parent and its subclasses

• The reasoning about class is simpler as all its dependencies are included in it, in one place

However, the inheritance has its own place, solves real design issues in different way and should not
be neglected. Please keep those two alternatives in mind while designing your object-oriented
models.

3.12 Encapsulation

The concept of encapsulation in object-oriented programming is all about hiding the implementation
details (like state, internal methods, etc.) from the outside world. The benefits of encapsulation are
maintainability and ease of change. The less intrinsic details classes expose, the more control the
developers have over changing their internal implementation, without the fear to break the existing
code (a real problem if you are developing a library or framework used by many people).

Encapsulation in Java is achieved using visibility and accessibility rules. It is considered a best
practice in Java to never expose the fields directly, only by means of getters and setters (if the field is

not declared as final). For example:

Advanced

java

35 / 113

package com.javacodegeeks.advanced.design;

public final class FinalClass {

package com.javacodegeeks.advanced.design;

public class FinalMethod {

public final void performAction() {

This example resembles what is being called JavaBeans in Java language: the regular Java classes
written by following the set of conventions, one of those being allow the access to fields using getter
and setter methods only.

As we already emphasized in the Inheritance section, please always try to keep the class public
contract minimal, following the encapsulation principle. Whatever should not be public, should be
private instead (or protected / package priv ate, depending on the problem you are
solving). In long run it will pay off, giving you the freedom to evolve your design without
introducing breaking changes (or at least minimize them).

3.13 Final classes and methods

In Java, there is a way to prevent the class to be subclassed by any other class: it should be declared as

final.

The same final keyword in the method declaration prevents the method in question to be overridden in

subclasses.

There are no general rules to decide if class or method should be final or not. Final classes and
methods limit the extensibility and it is very hard to think ahead if the class should or should not be
subclassed, or method should or should not be overridden. This is particularly important to library
developers as the design decisions like that could significantly limit the applicability of the library.

Java standard library has some examples of final classes, with most known being String class. On
an early stage, the decision has been taken to proactively prevent any developer‟s attempts to come up
with own, “better” string implementations.

3.14 Download the Source Code

This was a lesson on How to design Classes and Interfaces.

• You may download the source code here: advanced-java-part-3

3.15 What’s next

In this part of the tutorial we have looked at object-oriented design concepts in Java. We also briefly
walked through contract- based development, touched some functional concepts and saw how the
language evolved over time. In next part of the tutorial we are going to meet generics and how they
are changing the way we approach type-safe programming.

UNIT IV

http://docs.oracle.com/javase/tutorial/javabeans/
http://www.javacodegeeks.com/wp-content/uploads/2015/09/advanced-java-part-3.zip

Advanced

java

36 / 113

package com.javacodegeeks.advanced.generics;

public interface GenericInterfaceOneType< T > {

void performAction(final T action);

package com.javacodegeeks.advanced.generics;

public interface GenericInterfaceSeveralTypes< T, R > {

R performAction(final T action);

package com.javacodegeeks.advanced.generics;

public class ClassImplementingGenericInterface

implements GenericInterfaceOneType< String > {

@Override

public void performAction(final String action) {

4.1 Introduction

The idea of generics represents the abstraction over types (well-known to C++ developers as
templates). It is a very powerful concept (which came up quite a while ago) that allows to develop
abstract algorithms and data structures and to provide concrete types to operate on later. Interestingly,
generics were not present in the early versions of Java and were added along the way only in Java 5
release. And since then, it is fair to say that generics revolutionized the way Java programs are being
written, delivering much stronger type guaranties and making code significantly safer.

In this section we are going to cover the usage of generics everywhere, starting from interfaces,
classes and methods. Providing a lot of benefits, generics however do introduce some limitations and
side-effects which we also are going to cover.

4.2 Generics and interfaces

In contrast to regular interfaces, to define a generic interface it is sufficient to provide the type (or
types) it should be parameterized with. For example:

The GenericInterfaceOneType is parameterized with single type T, which could be used
immediately by interface dec- larations. The interface may be parameterized with more than one type,

for example:

Whenever any class wants to implement the interface, it has an option to provide the exact type
substitutions, for example the
ClassImplementingGenericInterface class provides String as a type parameter T of the

generic interface:

Advanced

java

37 / 113

package com.javacodegeeks.advanced.generics;

public class GenericClassOneType< T > {

public void performAction(final T action) {

// Implementation here

package com.javacodegeeks.advanced.generics;

public class GenericClassImplementingGenericInterface< T >

implements GenericInterfaceOneType< T > {

@Override

public void performAction(final T action) {

// Implementation here

public< T, R > R performAction(final T action) {

final R result = ...;

// Implementation here

return result;

protected abstract< T, R > R performAction(final T action);

static< T, R > R performActionOn(final Collection< T > action) {

final R result = ...;

The Java standard library has a plenty of examples of the generic interfaces, primarily within
collections library. It is very easy to declare and use generic interfaces however we are going to get
back to them once again when discussing bounded types (wildcards and bounded types) and generic
limitations (Limitation of generics).

4.3 Generics and classes

Similarly to interfaces, the difference between regular and generic classes is only the type parameters
in the class definitions. For example:

Please notice that any class (concrete, abstract or final) could be parameterized using generics. One
interesting detail is that the class may pass (or may not) its generic type (or types) down to the
interfaces and parent classes, without providing the exact type instance, for example:

It is a very convenient technique which allows classes to impose additional bounds on generic type
still conforming the interface (or parent class) contract, as we will see in section wildcards and
bounded types.

4.4 Generics and methods

We have already seen a couple of generic methods in the previous sections while discussing classes
and interfaces. However, there is more to say about them. Methods could use generic types as part of
arguments declaration or return type declaration. For example:

There are no restrictions on which methods can use generic types, they could be concrete, abstract,
static or final. Here is a couple of examples:

// Implementation here

Advanced

java

38 / 113

package com.javacodegeeks.advanced.generics;

public class GenericMethods< T > {

public< R > R performAction(final T action) {

final R result = ...;

// Implementation here

return result;

public< U, R > R performAnotherAction(final U action) {

final R result = ...;

// Implementation here

return result;

final List< Long > longs = new ArrayList<>();

final Set< Integer > integers = new HashSet<>();

If methods are declared (or defined) as part of generic interface or class, they may (or may not) use
the generic types of their owner. They may define own generic types or mix them with the ones from

their class or interface declaration. For example:

Class constructors are also considered to be kind of initialization methods, and as such, may use the
generic types declared by their class, declare own generic types or just mix both (however they
cannot return values so the return type parameterization is not applicable to constructors), for
example:

It looks very easy and simple, and it surely is. However, there are some restrictions and side-effects
caused by the way generics are implemented in Java language and the next section is going to
address that.

4.5 Limitation of generics

Being one of the brightest features of the language, generics unfortunately have some limitations,
mainly caused by the fact that they were introduced quite late into already mature language. Most
likely, more thorough implementation required significantly more time and resources so the trade-
offs had been made in order to have generics delivered in a timely manner.

Firstly, primitive types (like int, long, byte, . . .) are not allowed to be used in generics. It
means whenever you need to parameterize your generic type with a primitive one, the respective
class wrapper (Integer, Long, Byte, . . .) has to be used instead.

Not only that, because of necessity to use class wrappers in generics, it causes implicit boxing and
unboxing of primitive values (this topic will be covered in details in the part 7 of the tutorial,
General programming guidelines), for example:

// Implementation here

return result;

public class GenericMethods< T > {

public GenericMethods(final T initialAction) {

// Implementation here

public< J > GenericMethods(final T initialAction, final J nextAction) {

// Implementation here

Advanced

java

39 / 113

final List< Long > longs = new ArrayList<>();

longs.add(0L); // ’long’ is boxed to ’Long’

long value = longs.get(0); // ’Long’ is unboxed to ’long’

// Do something with value

Advanced

java

40 / 113

void sort(Collection< String > strings) {

// Some implementation over strings heres

void sort(Collection< Number > numbers) {

// Some implementation over numbers here

void sort(Collection strings)

void sort(Collection numbers)

public< T > void action(final T action) {

if(action instanceof T) {

// Do something here

public< T > void action(final T action) {

if(T.class.isAssignableFrom(Number.class)) {

// Do something here

public< T > void performAction(final T action) {

T[] actions = new T[0];

public< T extends InputStream > void read(final T stream) {

// Some implementation here

But primitive types are just one of generics pitfalls. Another one, more obscure, is type erasure. It is
important to know that generics exist only at compile time: the Java compiler uses a complicated set
of rules to enforce type safety with respect to generics and their type parameters usage, however the
produced JVM bytecode has all concrete types erased (and replaced with the Object class). It

could come as a surprise first that the following code does not compile:

From the developer‟s standpoint, it is a perfectly valid code, however because of type erasure, those two methods are narrowed
down to the same signature and it leads to compilation error (with a weird message like “Erasure of method
sort(Collection<String>) is the same as another method . . . ”):

Another disadvantage caused by type erasure come from the fact that it is not possible to use
generics‟ type parameters in any meaningful way, for example to create new instances of the type, or
get the concrete class of the type parameter or use it in the instanceof operator. The examples
shown below do no pass compilation phase:

And lastly, it is also not possible to create the array instances using generics‟ type parameters. For
example, the following code does not compile (this time with a clean error message “Cannot create

a generic array of T”):

Despite all these limitations, generics are still extremely useful and bring a lot of value. In the
section Accessing generic type parameters we are going to take a look on the several ways to
overcome some of the constraints imposed by generics implementation in Java language.

4.6 Generics, wildcards and bounded types

So far we have seen the examples using generics with unbounded type parameters. The extremely
powerful ability of generics is imposing the constraints (or bounds) on the type they are
parameterized with using the extends and super keywords.

The extends keyword restricts the type parameter to be a subclass of some other class or to
implement one or more interfaces. For example:

Advanced

java

41 / 113

public< T extends Serializable > void store(final T object) {

// Some implementation here

public< T, J extends T > void action(final T initial, final J next) {

// Some implementation here

public< T extends InputStream & Serializable > void storeToRead(final T stream) {

// Some implementation here

public< T extends Serializable & Externalizable & Cloneable > void persist(

final T object) {

// Some implementation here

public void store(final Collection< ? extends Serializable > objects) {

// Some implementation here

public void store(final Collection< ? > objects) {

// Some implementation here

public void interate(final Collection< ? super Integer > objects) {

// Some implementation here

final Map< String, Collection< String > > map =

new HashMap< String, Collection< String > >();

The type parameter T in the read method declaration is required to be a subclass of the
InputStream class. The same keyword is used to restrict interface implementations. For

example:

Method store requires its type parameter T to implement the Serializable interface in order for
the method to perform the desired action. It is also possible to use other type parameter as a bound

for extends keyword, for example:

The bounds are not limited to single constraints and could be combined using the & operator.
There could be multiple interfaces specified but only single class is allowed. The combination of
class and interfaces is also possible, with a couple of examples show below:

Before discussing the super keyword, we need to get familiarized with the concepts of wildcards.
If the type parameter is not of the interest of the generic class, interface or method, it could be

replaced by the ? wildcard. For example:

The method store does not really care what type parameters it is being called with, the only thing it
needs to ensure that every type implements Serializable interface. Or, if this is not of any
importance, the wildcard without bounds could be used instead:

In contrast to extends, the super keyword restricts the type parameter to be a superclass of some other

class. For example:

By using upper and lower type bounds (with extends and super) along with type wildcards, the
generics provide a way to fine-tune the type parameter requirements or, is some cases, completely
omit them, still preserving the generics type-oriented semantic.

4.7 Generics and type inference

When generics found their way into the Java language, they blew up the amount of the code
developers had to write in order to satisfy the language syntax rules. For example:

Advanced

java

42 / 113

public static < T > void performAction(final Collection< T > actions,

final Collection< T > defaults) {

// Some implementation here

final Collection< String > strings = new ArrayList<>();

performAction(strings, Collections.emptyList());

public< @Actionable T > void performAction(final T action) {

// Some implementation here

final Collection< @NotEmpty String > strings = new ArrayList<>();

// Some implementation here

The Java 7 release somewhat addressed this problem by making changes in the compiler and
introducing the new diamond operator <>. For example:

 final Map< String, Collection< String > > map = new HashMap<>();

The compiler is able to infer the generics type parameters from the left side and allows omitting
them in the right side of the expression. It was a significant progress towards making generics syntax
less verbose, however the abilities of the compiler to infer generics type parameters were quite

limited. For example, the following code does not compile in Java 7:

The Java 7 compiler cannot infer the type parameter for the Collections.emptyList() call
and as such requires it to be passed explicitly:

 performAction(strings, Collections.< String >emptyList());

Luckily, the Java 8 release brings more enhancements into the compiler and, particularly, into the
type inference for generics so the code snippet shown above compiles successfully, saving the
developers from unnecessary typing.

4.8 Generics and annotations

Although we are going to discuss the annotations in the next part of the tutorial, it is worth
mentioning that in the pre-Java 8 era the generics were not allowed to have annotations associated
with their type parameters. But Java 8 changed that and now it becomes possible to annotate
generics type parameters at the places they are declared or used. For example, here is how the

generic method could be declared and its type parameter is adorned with annotations:

Or just another example of applying the annotation when generic type is being used:

In the part 4 of the tutorial, How and when to use Enums and Annotations, we are going to take a
look on a couple of examples how the annotations could be used in order to associate some metadata
with the generics type parameters. This section just gives you the feeling that it is possible to enrich
generics with annotations.

4.9 Accessing generic type parameters

As you already know from the section Limitation of generics, it is not possible to get the class of the
generic type parameter. One simple trick to work-around that is to require additional argument to be
passed, Class< T >, in places where it is necessary to know the class of the type parameter T. For
example:

for(final Map.Entry< String, Collection< String > > entry: map.entrySet()) {

// Some implementation here

Advanced

java

43 / 113

class SomeClass implements Serializable {

public Serializable performAction(final Serializable instance) {

// Do something here

return instance;

final SomeClass instance = new SomeClass();

// Please notice a necessary type cast required

final SomeClass modifiedInstance = (SomeClass)performAction(instance);

public< T extends Serializable > T performAction(final T instance) {

// Do something here

return instance;

final SomeClass instance = new SomeClass();

final SomeClass modifiedInstance = performAction(instance);

class SomeClass implements Serializable, Runnable {

@Override

public void run() {

It might blow the amount of arguments required by the methods but with careful design it is not as
bad as it looks at the first glance.

Another interesting use case which often comes up while working with generics in Java is to
determine the concrete class of the type which generic instance has been parameterized with. It is
not as straightforward and requires Java reflection API to be involved. We will take a look on
complete example in the part 11 of the tutorial, Reflection and dynamic languages support but for
now just mention that the ParameterizedType instance is the central point to do the reflection
over generics.

4.10 When to use generics

Despite all the limitations, the value which generics add to the Java language is just enormous.
Nowadays it is hard to imagine that there was a time when Java had no generics support. Generics
should be used instead of raw types (Collection< T > instead of Collection, Callable<
T > instead of Callable, . . .) or Object to guarantee type safety, define clear type constraints on
the contracts and algorithms, and significantly ease the code maintenance and refactoring.

However, please be aware of the limitations of the current implementation of generics in Java, type
erasure and the famous implicit boxing and unboxing for primitive types. Generics are not a silver
bullet solving all the problems you may encounter and nothing could replace careful design and
thoughtful thinking.

It would be a good idea to look on some real examples and get a feeling how generics make Java

developer‟s life easier.

Example 1: Let us consider the typical example of the method which performs actions against the
instance of a class which implements some interface (say, Serializable) and returns back the

modified instance of this class.

Without using generics, the solution may look like this:

Let us see how generics improve this solution:

The ugly type cast has gone away as compiler is able to infer the right types and prove that those types are

used correctly.

Example 2: A bit more complicated example of the method which requires the instance of the class
to implement two interfaces (say, Serializable and Runnable).

public< T > void performAction(final T action, final Class< T > clazz) {

// Some implementation here

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/ParameterizedType.html

Advanced

java

44 / 113

// The class itself should be modified to use the intermediate interface

// instead of direct implementations

class SomeClass implements SerializableAndRunnable {

@Override

public void run() {

// Some implementation

public void performAction(final SerializableAndRunnable instance) {

// Do something here

public< T extends Serializable & Runnable > void performAction(final T instance) {

// Do something here

Without using generics, the straightforward solution is to introduce intermediate interface (or use the
pure Object as a last resort), for example:

Although it is a valid solution, it does not look as the best option and with the growing number of
interfaces it could get really nasty and unmanageable. Let us see how generics can help here:

Very clear and concise piece of code, no intermediate interface or other tricks are required.

The universe of examples where generics make code readable and straightforward is really endless.
In the next parts of the tutorial generics will be often used to demonstrate other features of the Java
language.

4.11 Download the Source Code

• This was a lesson on How to design Classes and Interfaces. You may download the source code here: advanced-java-part-4

4.12 What’s next

In this section we have covered one of very distinguishing features of Java language called generics.
We have seen how generics make you code type-safe and concise by checking that the right types
(with bounds) are being used everywhere. We also looked through some of the generics limitations
and the ways to overcome them. In the next section we are going to discuss enumerations and
annotations.

UNIT V

5.1 Introduction

In this part of the tutorial we are going to cover yet another two great features introduced into the
language as part of Java 5 release along with generics: enums (or enumerations) and annotations.
Enums could be treated as a special type of classes and annotations as a special type of interfaces.

The idea of enums is simple, but quite handy: it represents a fixed, constant set of values. What it
means in practice is that enums are often used to design the concepts which have a constant set of
possible states. For example, the days of week are a great example of the enums: they are limited to

// Some implementation

http://www.javacodegeeks.com/wp-content/uploads/2015/09/advanced-java-part-4.zip

Advanced

java

45 / 113

public class DaysOfTheWeekConstants {

public static final int MONDAY = 0;

public static final int TUESDAY = 1;

public static final int WEDNESDAY = 2;

public static final int THURSDAY = 3;

public static final int FRIDAY = 4;

public static final int SATURDAY = 5;

public static final int SUNDAY = 6;

public boolean isWeekend(int day) {

return(day == SATURDAY || day == SUNDAY);

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday.

From the other side, annotations are a special kind of metadata which could be associated with
different elements and constructs of the Java language. Interestingly, annotations have contributed a
lot into the elimination of boilerplate XML descriptors used in Java ecosystem mostly everywhere.
They introduced the new, type-safe and robust way of configuration and customization techniques.

5.2 Enums as special classes

Before enums had been introduced into the Java language, the regular way to model the set of fixed
values in Java was just by declaring a number of constants. For example:

Although this approach kind of works, it is far from being the ideal solution. Primarily, because the
constants themselves are just values of type int and every place in the code where those constants
are expected (instead of arbitrary int values) should be explicitly documented and asserted all the
time. Semantically, it is not a type-safe representation of the concept as the following method

demonstrates.

Advanced

java

46 / 113

public enum DaysOfTheWeek {

MONDAY,

TUESDAY,

THURSDAY,

FRIDAY,

SATURDAY,

SUNDAY

public boolean isWeekend(DaysOfTheWeek day) {

return(day == SATURDAY || day == SUNDAY);

public enum DaysOfTheWeekFields {

MONDAY(false),

TUESDAY(false),

WEDNESDAY(false),

THURSDAY(false),

FRIDAY(false),

SATURDAY(true),

SUNDAY(true);

private final boolean isWeekend;

private DaysOfTheWeekFields(final boolean isWeekend) {

this.isWeekend = isWeekend;

public boolean isWeekend() {

return isWeekend;

public boolean isWeekend(DaysOfTheWeek day) {

return day.isWeekend();

From logical point of view, the day argument should have one of the values declared in the
DaysOfTheWeekConstants class. However, it is not possible to guess that without additional
documentation being written (and read afterwards by someone). For the Java compiler the call like
isWeekend *(100)* looks absolutely correct and raises no concerns.

Here the enums come to the rescue. Enums allow to replace constants with the typed values and to
use those types everywhere. Let us rewrite the solution above using enums.

What changed is that the class becomes enum and the possible values are listed in the enum
definition. The distinguishing part however is that every single value is the instance of the enum class
it is being declared at (in our example, DaysOfTheWeek). As such, whenever enum are being used,

the Java compiler is able to do type checking. For example:

Please notice that the usage of the uppercase naming scheme in enums is just a convention, nothing
really prevents you from not doing that.

5.3 Enums and instance fields

Enums are specialized classes and as such are extensible. It means they can have instance fields,
constructors and methods (although the only limitations are that the default no-args constructor
cannot be declared and all constructors must be private). Let us add the property isWeekend to

every day of the week using the instance field and constructor.

As we can see, the values of the enums are just constructor calls with the simplification that the new
keyword is not required. The isWeekend() property could be used to detect if the value

Advanced

java

47 / 113

represents the week day or week-end. For example:

Advanced

java

48 / 113

interface DayOfWeek {

boolean isWeekend();

public enum DaysOfTheWeekInterfaces implements DayOfWeek {

MONDAY() {

@Override

public boolean isWeekend() {

return false;

},

TUESDAY() {

@Override

public boolean isWeekend() {

return false;

},

WEDNESDAY() {

@Override

public boolean isWeekend() {

return false;

},

THURSDAY() {

@Override

public boolean isWeekend() {

return false;

},

FRIDAY() {

@Override

public boolean isWeekend() {

return false;

},

SATURDAY() {

@Override

public boolean isWeekend() {

return true;

},

SUNDAY() {

@Override

public boolean isWeekend() {

return true;

};

Instance fields are an extremely useful capability of the enums in Java. They are used very often to
associate some additional details with each value, using regular class declaration rules.

5.4 Enums and interfaces

Another interesting feature, which yet one more time confirms that enums are just specialized classes,
is that they can implement interfaces (however enums cannot extend any other classes for the reasons
explained later in the Enums and generics section). For example, let us introduce the interface

DayOfWeek.

And rewrite the example from the previous section using interface implementation instead of regular

instance fields.

Advanced

java

49 / 113

public enum DaysOfTheWeekFieldsInterfaces implements DayOfWeek {

MONDAY(false),

TUESDAY(false),

WEDNESDAY(false),

THURSDAY(false),

FRIDAY(false),

SATURDAY(true),

SUNDAY(true);

private final boolean isWeekend;

private DaysOfTheWeekFieldsInterfaces(final boolean isWeekend) {

this.isWeekend = isWeekend;

@Override

public boolean isWeekend() {

return isWeekend;

public class DaysOfTheWeek extends Enum< DaysOfTheWeek > {

// Other declarations here

public< T extends Enum < ? > > void performAction(final T instance) {

// Perform some action here

The way we have implemented the interface is a bit verbose, however it is certainly possible to make
it better by combining instance fields and interfaces together. For example:

By supporting instance fields and interfaces, enums can be used in a more object-oriented way,
bringing some level of abstraction to rely upon.

5.5 Enums and generics

Although it is not visible from a first glance, there is a relation between enums and generics in Java.
Every single enum in Java is automatically inherited from the generic Enum< T > class, where T
is the enum type itself. The Java compiler does this transformation on behalf of the developer at
compile time, expanding enum declaration public enum DaysOfTheWeek to something like

this:

It also explains why enums can implement interfaces but cannot extend other classes: they implicitly
extend Enum< T > and as we know from the part 2 of the tutorial, Using methods common to all
objects, Java does not support multiple inheritance.

The fact that every enum extends Enum< T > allows to define generic classes, interfaces and
methods which expect the in- stances of enum types as arguments or type parameters. For example:

In the method declaration above, the type T is constrained to be the instance of any enum and Java

compiler will verify that.

5.6 Convenient Enums methods

The base Enum< T > class provides a couple of helpful methods which are automatically inherited by

every enum instance.

Table 5.1: datasheet

http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/
http://www.javacodegeeks.com/2015/09/using-methods-common-to-all-objects/

Advanced

java

50 / 113

public void performAction(DaysOfTheWeek instance) {

switch(instance) {

case MONDAY:

// Do something

break;

case TUESDAY:

// Do something

break;

// Other enum constants here

Table 5.1: (continued)

Method Description

String name() Returns the name of this enum constant, exactly as
declared in its enum declaration.

int ordinal() Returns the ordinal of this enumeration constant
(its position in its enum declaration, where the
initial constant
is assigned an ordinal of zero).

Additionally, Java compiler automatically generates two more helpful `static `methods for every
enum type it encounters (let us refer to the particular enum type as T).

Table 5.2: datasheet

Method Description

T[] values() Returns the all declared enum constants for the

enum T.

T valueOf(String name) Returns the enum constant T with the specified

name.

Because of the presence of these methods and hard compiler work, there is one more benefit of using
enums in your code: they can be used in switch/case statements. For example:

5.7 Specialized Collections: EnumSet and EnumMap

Instances of enums, as all other classes, could be used with the standard Java collection library.
However, certain collection types have been optimized for enums specifically and are recommended
in most cases to be used instead of general-purpose counterparts.

We are going to look on two specialized collection types: EnumSet< T > and EnumMap< T, ?>.
Both are very easy to use and we are going to start with the EnumSet< T >.

The EnumSet< T > is the regular set optimized to store enums effectively. Interestingly,
EnumSet< T > cannot be instan- tiated using constructors and provides a lot of helpful factory
methods instead (we have covered factory pattern in the part 1 of the tutorial, How to create and
destroy objects).

For example, the allOf factory method creates the instance of the EnumSet< T > containing all
enum constants of the enum type in question:

 final Set< DaysOfTheWeek > enumSetAll = EnumSet.allOf(DaysOfTheWeek.class);

Consequently, the noneOf factory method creates the instance of an empty EnumSet< T > for the

http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/
http://www.javacodegeeks.com/2015/09/how-to-create-and-destroy-objects/

Advanced

java

51 / 113

enum type in question:

Advanced

java

52 / 113

final Set< DaysOfTheWeek > enumSetSome = EnumSet.of(

DaysOfTheWeek.SUNDAY,

DaysOfTheWeek.SATURDAY

);

final Map< DaysOfTheWeek, String > enumMap = new EnumMap<>(DaysOfTheWeek.class);

enumMap.put(DaysOfTheWeek.MONDAY, "Lundi");

enumMap.put(DaysOfTheWeek.TUESDAY, "Mardi");

treated as specialized interfaces. Annotations may declare the attributes with or ←›

without default values, for example:

public @interface SimpleAnnotationWithAttributes {

String name();

int order() default 0;

public @interface SimpleAnnotation {

The @interface keyword introduces new annotation type. That is why annotations could be ←›

 final Set< DaysOfTheWeek > enumSetNone = EnumSet.noneOf(DaysOfTheWeek.class);

It is also possible to specify which enum constants of the enum type in question should be included
into the EnumSet< T >, using the of factory method:

The EnumMap< T, ?> is very close to the regular map with the difference that its keys could be
the enum constants of the enum type in question. For example:

Please notice that, as most collection implementations, EnumSet< T > and EnumMap< T, ?> are
not thread-safe and cannot be used as-is in multithreaded environment (we are going to discuss thread-
safety and synchronization in the part 9 of the tutorial, Concurrency best practices).

5.8 When to use enums

Since Java 5 release enums are the only preferred and recommended way to represent and dial with
the fixed set of constants. Not only they are strongly-typed, they are extensible and supported by any
modern library or framework.

5.9 Annotations as special interfaces

As we mentioned before, annotations are the syntactic sugar used to associate the metadata with
different elements of Java language.

Annotations by themselves do not have any direct effect on the element they are annotating.
However, depending on the annota- tions and the way they are defined, they may be used by Java
compiler (the great example of that is the @Override annotation which we have seen a lot in the
part 3 of the tutorial, How to design Classes and Interfaces), by annotation processors (more de- tails
to come in the Annotation processors section) and by the code at runtime using reflection and other
introspection techniques (more about that in the part 11 of the tutorial, Reflection and dynamic
languages support).

Let us take a look at the simplest annotation declaration possible:

If an annotation declares an attribute without a default value, it should be provided in all places the
annotation is being applied. For example:

 @SimpleAnnotationWithAttributes(name = "new annotation")

By convention, if the annotation has an attribute with the name value and it is the only one which
is required to be specified, the name of the attribute could be omitted, for example:

http://www.javacodegeeks.com/2015/09/how-to-design-classes-and-interfaces/

Advanced

java

53 / 113

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)

public @interface AnnotationWithRetention {

There are a couple of limitations which in certain use cases make working with annotations not very
convenient. Firstly, anno- tations do not support any kind of inheritance: one annotation cannot
extend another annotation. Secondly, it is not possible to create an instance of annotation
programmatically using the new operator (we are going to take a look on some workarounds to that
in the part 11 of the tutorial, Reflection and dynamic languages support). And thirdly, annotations
can declare only attributes of primitive types, String or Class< ?> types and arrays of those.
No methods or constructors are allowed to be declared in the annotations.

5.10 Annotations and retention policy

Each annotation has the very important characteristic called retention policy which is an
enumeration (of type RetentionPolicy) with the set of policies on how to retain annotations. It could
be set to one of the following values.

Table 5.3: datasheet

Policy Description

CLASS Annotations are to be recorded in the class file by
the
compiler but need not be retained by the VM at run
time

RUNTIME Annotations are to be recorded in the class file by
the compiler and retained by the VM at run time, so
they may
be read reflectively.

SOURCE Annotations are to be discarded by the compiler.

Retention policy has a crucial effect on when the annotation will be available for processing. The
retention policy could be set using @Retention annotation. For example:

Setting annotation retention policy to RUNTIME will guarantee its presence in the compilation
process and in the running appli- cation.

5.11 Annotations and element types

Another characteristic which each annotation must have is the element types it could be applied to.
Similarly to the retention policy, it is defined as enumeration (ElementType) with the set of possible
element types.

Table 5.4: datasheet

public @interface SimpleAnnotationWithValue {

String value();

It could be used like this:

@SimpleAnnotationWithValue("new annotation")

http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/RetentionPolicy.html
http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/ElementType.html

Advanced

java

54 / 113

import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

@Target({ ElementType.FIELD, ElementType.METHOD })

public @interface AnnotationWithTarget {

@Target({ ElementType.TYPE })

@Retention(RetentionPolicy.RUNTIME)

@Inherited

@interface InheritableAnnotation {

public class Parent {

public class Child extends Parent {

Table 5.4: (continued)

Element Type Description

ANNOTATION_TYPE Annotation type declaration
CONSTRUCTOR Constructor declaration
FIELD Field declaration (includes enum constants)
LOCAL_VARIABLE Local variable declaration
METHOD Method declaration
PACKAGE Package declaration
PARAMETER Parameter declaration
TYPE Class, interface (including annotation type), or enum

declaration

Additionally to the ones described above, Java 8 introduces two new element types the annotations can be

applied to.

Table 5.5: datasheet

Element Type Description

TYPE_PARAMETER Type parameter declaration
TYPE_USE Use of a type

In contrast to the retention policy, an annotation may declare multiple element types it can be
associated with, using the @ Target annotation. For example:

Mostly all annotations you are going to create should have both retention policy and element types

specified in order to be useful.

5.12 Annotations and inheritance

The important relation exists between declaring annotations and inheritance in Java. By default, the
subclasses do not inherit the annotation declared on the parent class. However, there is a way to
propagate particular annotations throughout the class hierarchy using the @Inherited annotation.

For example:

In this example, the @InheritableAnnotation annotation declared on the Parent class will be
inherited by the Child
class as well.

Advanced

java

55 / 113

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface RepeatableAnnotations {

RepeatableAnnotation[] value();

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@Repeatable(RepeatableAnnotations.class)

public @interface RepeatableAnnotation {

String value();

};

@RepeatableAnnotation("repeatition 1")

@RepeatableAnnotation("repeatition 2")

public void performAction() {

// Some code here

5.13 Repeatable annotations

In pre-Java 8 era there was another limitation related to the annotations which was not discussed yet:
the same annotation could appear only once at the same place, it cannot be repeated multiple times.
Java 8 eased this restriction by providing support for repeatable annotations. For example:

Although in Java 8 the repeatable annotations feature requires a bit of work to be done in order to
allow your annotation to be repeatable (using @Repeatable), the final result is worth it: more
clean and compact annotated code.

5.14 Annotation processors

The Java compiler supports a special kind of plugins called annotation processors (using the -
processor command line argument) which could process the annotations during the compilation
phase. Annotation processors can analyze the annotations usage (perform static code analysis), create
additional Java source files or resources (which in turn could be compiled and processed) or mutate
the annotated code.

The retention policy (see please Annotations and retention policy) plays a key role by instructing the
compiler which annotations should be available for processing by annotation processors.

Annotation processors are widely used, however to write one it requires some knowledge of how
Java compiler works and the compilation process itself.

5.15 Annotations and configuration over convention

Convention over configuration is a software design paradigm which aims to simplify the
development process when a set of simple rules (or conventions) is being followed by the developers.
For example, some MVC (model-view-controller) frameworks follow the convention to place
controllers in the controller folder (or package). Another example is the ORM (object-relational
mappers) frameworks which often follow the convention to look up classes in model folder (or
package) and derive the relation table name from the respective class.

On the other side, annotations open the way for a different design paradigm which is based on explicit
configuration. Considering the examples above, the @Controller annotation may explicitly
mark any class as controller and @Entity may refer to relational database table. The benefits also
come from the facts that annotations are extensible, may have additional attributes and are restricted
to particular element types. Improper use of annotations is enforced by the Java compiler and reveals
the misconfiguration issues very early (on the compilation phase).

Advanced

java

56 / 113

5.16 When to use annotations

Annotations are literally everywhere: the Java standard library has a lot of them, mostly every Java
specification includes the annotations as well. Whenever you need to associate an additional
metadata with your code, annotations are straightforward and easy way to do so.

Interestingly, there is an ongoing effort in the Java community to develop common semantic
concepts and standardize the an- notations across several Java technologies (for more information,
please take a look on JSR-250 specification). At the moment, following annotations are included
with the standard Java library.

Table 5.6: datasheet

Annotation Description

@Deprecated Indicates that the marked element is deprecated
and should no longer be used. The compiler
generates a warning whenever a program uses a
method, class, or field with this
annotation.

@Override Hints the compiler that the element is meant to
override an
element declared in a superclass.

@SuppressWarnings Instructs the compiler to suppress specific warnings
that it
would otherwise generate.

@SafeVarargs When applied to a method or constructor, asserts
that the code does not perform potentially unsafe
operations on its varargs parameter. When this
annotation type is used, unchecked warnings
relating to varargs usage are supressed (more
details about varargs will be covered in the part 6 of
the tutorial, How to write methods efficiently).

@Retention Specifies how the marked annotation is retained.
@Target Specifies what kind of Java elements the marked

annotation can be applied to.

@Documented Indicates that whenever the specified annotation
is used those elements should be documented
using the Javadoc
tool (by default, annotations are not included in
Javadoc).

@Inherited Indicates that the annotation type can be inherited
from the super class (for more details please refer
to Annotations
and inheritance section).

And the Java 8 release adds a couple of new annotations as well.

Table 5.7: datasheet

Annotation Description

@FunctionalInterface Indicates that the type declaration is intended to
be a functional interface, as defined by the Java
Language Specification (more details about
functional interfaces are covered in the part 3 of
the tutorial, How to design
Classes and Interfaces).

@Repeatable Indicates that the marked annotation can be
applied more than once to the same declaration
or type use (for more
details please refer to Repeatable annotations
section).

https://jcp.org/en/jsr/detail?id=250
http://www.javacodegeeks.com/2015/09/how-to-design-classes-and-interfaces/
http://www.javacodegeeks.com/2015/09/how-to-design-classes-and-interfaces/

Advanced

java

57 / 113

5.17 Download the Source Code

This was a lesson on How to design Classes and Interfaces. You may download the

source code here: advanced-java-part-5

5.18 What’s next

In this section we have covered enums (or enumerations) which are used to represent the fixed

set of constant values, and annotations which decorate elements of Java code with metadata.

Although somewhat unrelated, both concepts are very widely used in the Java. Despite the fact

that in the next part of the tutorial we are going to look on how to write methods efficiently,

annotations will be often the part of the mostly every discussion.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 COIMBATORE-21

 Faculty of Engineering

 Department of Computer Science and Engineering

UNIVERSITY EXAMINATION

Subject Code : 15BECS404

Name of the Course : II B.E CSE

Title of the paper : Advanced Java Programming

Part-A

Answer All Questions (9*2=18)

1. What is origin of Java?

2. What is the command javac is used for?
3. What is a Java Servlet?
4. Which is the root class of all AWT events?
5. State some OOP features.
6. What is Polymorphism?
7. State difference between inheritance and interface.
8. What are the types of inheritance? Which inheritance is not supported by Java?
9. Which method will a web browser call on a new applet?

Part-B

Answer ALL Questions (3*14=42)

10. Explain the concepts of Object Oriented Programming.
OR

11. Compare the lifestyle of CMP and BMP Entity Beans.

12. Explain Android Operating System architecture. Discuss Android features.

http://www.javacodegeeks.com/wp-content/uploads/2015/09/advanced-java-part-5.zip

Advanced

java

58 / 113

OR

13. Explain Struts Validation Framework with a diagram.

14. Write down the steps and code snippets for creating a simple struts application for logging on

the site.

OR

15. Explain Android architecture.

ONLINE 1 MARK QUESTIONS

1. Java programs are

A) Faster than others

B) Platform independent

C) Not reusable

D) Not scalable

2. Java has its origin in

A) C programming language

B) PERRL

C) COBOL

D) Oak programming language

3. Which one of the following is true for Java

A) Java is object-oriented and interpreted

B) Java is efficient and faster than C

C) Java is the choice of everyone.

D) Java is not robust.

4. The command javac is used to

A) debug a java program

B) compile a java program

C) interpret a java program

D) execute a java program

5. Java servlets are an efficient and powerful solution for creating ………….. for the web.

A) Dynamic content

B) Static content

C) Hardware

D) Both a and b

6. Filters were officially introduced in the Servlet ……………… specification.

A) 2.1

B) 2.3

C) 2.2

D) 2.4

7. Which is the root class of all AWT events

Advanced

java

59 / 113

A) java.awt.ActionEvent

B) java.awt.AWTEvent

C) java.awt.event.AWTEvent

D) java.awt.event.Event

8. OOP features are

i) Increasing productivity ii) Reusability

iii) Decreasing maintenance cost iv) High vulnerability

A) 1,2 & 4

B) 1,2 & 3

C) 1, 2 & 4

D) none of the above

9. break statement is used to

i) get out of method ii) end a program

iii) get out of a loop iv) get out of the system

A) 1 & 2

B) 1,2 & 3

C) 1 & 3

D) 3

10. Native-protocol pure Java converts ……….. into the ………… used by DBMSs directly.

A) JDBC calls, network protocol

B) ODBC class, network protocol

C) ODBC class, user call

D) JDBC calls, user call

11. All Java classes are derived from

A) java.lang.Class

B) java.util.Name

C) java.lang.Object

D) java.awt.Window

12. The jdb is used to

A) Create a jar archive

B) Debug a java program

C) Create a C header file

D) Generate java documentation

13. What would happen if “String[]args” is not included as an argument in the main method?

A) No error

B) Compilation error

C) The program won‟t run

D) Program exit

14. For the execution of DELETE SQL query in JDBC, …………. method must be used.

A) executeQuery()

B) executeDeleteQuery()

C) executeUpdate()

D) executeDelete()

15. Which method will a web browser call on a new applet?

A) main method

B) destroy method

C) execute method

Advanced

java

60 / 113

D) init method

16. Which of the following is not mandatory in a variable declaration?

A) a semicolon

B) an identifier

C) an assignment

D) a data type

17. When a programming class implements an interface, it must provide behavior for

A) two methods defined in that interface

B) any methods in a class

C) only certain methods in that interface

D) all methods defined in that interface

18. In order to run JSP ……………….. is required.

A) Mail Server

B) Applet viewer

C) Java Web Server

D) Database connection

19. State true or false.

i) AWT is an extended version of swing

ii) Paint() of Applet class cannot be overridden

A) i-false, ii-false

B) i-false,ii-true

C) i-true, ii-false

D) i-true, ii-true

20. Prepared Statement object in JDBC used to execute……….. queries.

A) Executable

B) Simple

C) High level

D) Parameterized

21. In Java variables, if first increment of the variable takes place and then the assignment occurs.

This operation is also called…………………………

A) pre-increment

B) post-increment

C) incrementation

D) pre incrementation

22. When the operators are having the same priority, they are evaluated from …………….. ………….

in the order they appear in the expression.

A) right to left

B) left to right

C) any of the order

D) depends on the compiler

23. In Java, …………. can only test for equality, whereas ………… can evaluate any type of Boolean

expression.

A) switch, if

B) if, switch

C) if, break

D) continue, if

Advanced

java

61 / 113

24. The ………………….. looks only for a match between the value of the expression and one of its

case constants.

A) if

B) match

C) switch

D) None of the above

25. System.in.read() is being used, the program must specify the ……………… clause.

A) throws.java.out.IOException

B) throws.java.in.IOException

C) throws.java.io.IOException

D) throws.java.io.InException

26. By using ………………. you can force immediate termination of a loop, bypassing the

conditional expression and any remaining code in the body of the loop.

A) Break

B) Continue

C) Terminate

D) Loop Close

27. The out object is an object encapsulated inside the …………….. class and represents the standard

output device.

A) standard

B) local

C) global

D) system

28. The third type of comment is used by a tool called ……………… for automatic generation of

documentation.

A) Java commenting

B) Java generator

C) Java doc

D) Java loc

29. In the second type, the information written in java after // is ignored by the …………………..

A) Interpreter

B) Compiler

C) Programmer

D) All of the above

30. The compiled Java program can run on any ………………… platform having Java Virtual

Machine (JVM) installed on it.

A) program

B) java

C) hardware

D) nonjava

