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COURSE OBJECTIVES: 
• A n a l y z e  the asymptotic performance of algorithms. 
• Write rigorous correctness proofs for algorithms. 
• D e m o n s t r a t e  a familiarity with major algorithms and data structures. 
• A p p l y  important algorithmic design paradigms and methods of analysis. 
• S y n t h e s i z e  efficient algorithms in common engineering design situations. 

 

 
COURSE OUTCOMES: 

• For  a  given  algorithms  analyze  worst-case  running  times  of  algorithms  
based  on asymptotic analysis and justify the correctness of algorithms . 

• Describe the greedy paradigm and explain when an algorithmic design 
situation calls for it. For a given problem develop the greedy algorithms. 

• Describe  the  divide-and-conquer  paradigm  and  explain  when an  
algorithmic design situation  calls  for  it.   Synthesize  divide-and-conquer  
algorithms.  Derive and solve recurrence relation. 

• Describe  the  dynamic-programming  paradigm   and  explain  when  an  
algorithmic 

design situation calls  for  it.  For  a  given  problems  of dynamic-programming and 
develop   the  dynamic  programming  algorithms,  and  analyze  it  to  determine  its 

computational complexity. 
• For   a   given  model  engineering  problem  model  it   using  graph  and  

write  the corresponding algorithm to solve the problems. 
• Explain   the   ways   to   analyze   randomized   algorithms   (expected   running   

time, probability of error). 
• Explain  what  an  approximation  algorithm  is.  Compute  the  approximation  

factor of  an approximation algorithm (PTAS and FPTAS). 
UNIT 1: 
Introduction:  Characteristics  of  algorithm.  Analysis  of  algorithm: Asymptotic  
analysis  of complexity bounds – best, average and worst-case  behavior;  
Performance  measurements of 
Algorithm,  Time    and    space    trade-offs,    Analysis    of    recursive    algorithms  
through recurrence relations: Substitution method, Recursion tree method and Masters’ 
theorem. 

 
UNIT  2: 
Fundamental  Algorithmic  Strategies:   Brute-Force, Greedy,Dynamic Programming,  
Branch- and-Bound and Backtracking   methodologies   for   the   design   of   



algorithms; Illustrations 
of  these  techniques  for  Problem-Solving  ,  Bin  Packing,  Knap  Sack  TSP.  Heuristics  
– 
characteristics and their application domains. 

 
UNIT  3: 
Graph  and  Tree  Algorithms:  Traversal  algorithms: Depth First Search (DFS) and 
Breadth 
First Search (BFS); Shortest path  algorithms,  Transitive  closure,  Minimum  Spanning  
Tree, 
Topological sorting, Network Flow Algorithm. 
UNIT 4: 
Tractable and Intractable Problems: Computability of Algorithms, Computability classes – 
P, 
NP, NP-complete and NP-hard.   Cook’s   theorem,   Standard   NP-complete   problems   
and 
Reduction techniques. 

 
UNIT  5: 
Advanced    Topics:    Approximation    algorithms, Randomized algorithms, Class of 
problems beyond NP – P SPACE 

 
TEXT BOOKS: 

1. Introduction to  Algorithms,  4TH  Edition,  Thomas H  Cormen,  Charles  E  
Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill. 

2. Fundamentals of Algorithms – E. Horowitz et al. 
 

REFERENCES: 
1. Algorithm  Design,   1ST   Edition,   Jon   Kleinberg   and ÉvaTardos, Pearson. 
2. Algorithm  Design:  Foundations,  Analysis,  and  Internet Examples, Second 

Edition, Michael T Goodrich and Roberto Tamassia, Wiley. 
3. Algorithms   --   A   Creative   Approach,   3RD   Edition, UdiManber, Addison-

Wesley, Reading, MA. 
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UNIT-1 

1. Characteristics of an Algorithm 

Not all procedures can be called an algorithm. An algorithm should have the following 

characteristics − 

 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or 

phases), and their inputs/outputs should be clear and must lead to only one meaning. 

 Input − An algorithm should have 0 or more well-defined inputs. 

 Output − An algorithm should have 1 or more well-defined outputs, and should match 

the desired output. 

 Finiteness − Algorithms must terminate after a finite number of steps. 

 Feasibility − Should be feasible with the available resources. 

 Independent − An algorithm should have step-by-step directions, which should be 

independent of any programming code. 

2. Analysis of Algorithm 

Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing of 

its run-time performance. Using asymptotic analysis, we can very well conclude the best case, 

average case, and worst case scenario of an algorithm. 

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to 

work in a constant time. Other than the "input" all other factors are considered constant. 

Asymptotic analysis refers to computing the running time of any operation in mathematical 

units of computation. For example, the running time of one operation is computed as f(n) and 

may be for another operation it is computed as g(n
2
). This means the first operation running 

time will increase linearly with the increase in n and the running time of the second operation 

will increase exponentially when n increases. Similarly, the running time of both operations will 

be nearly the same if n is significantly small. 

Usually, the time required by an algorithm falls under three types − 

 Best Case − Minimum time required for program execution. 

 Average Case − Average time required for program execution. 

 Worst Case − Maximum time required for program execution. 

3. Asymptotic Notations 

Following are the commonly used asymptotic notations to calculate the running time 

complexity of an algorithm. 

 Ο Notation 



 Ω Notation 

 θ Notation 

Big Oh Notation, Ο 

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time. 

It measures the worst case time complexity or the longest amount of time an algorithm can 

possibly take to complete. 

 

Omega Notation, Ω 

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. 

It measures the best case time complexity or the best amount of time an algorithm can possibly 

take to complete. 

 

Theta Notation, θ 

The notation θ(n) is the formal way to express both the lower bound and the upper bound of an 

algorithm's running time. It is represented as follows − 



 

Common Asymptotic Notations 

Following is a list of some common asymptotic notations − 

constant − Ο(1) 

logarithmic − Ο(log n) 

linear − Ο(n) 

n log n − Ο(n log n) 

quadratic − Ο(n
2
) 

cubic − Ο(n
3
) 

polynomial − n
Ο(1)

 

exponential − 2
Ο(n)

 

 

4. Fundamentals of Algorithmic problem solving 

• Understanding the problem 

• Ascertain the capabilities of the computational device 



• Exact /approximate soln. 

• Decide on the appropriate data structure 

• Algorithm design techniques 

• Methods of specifying an algorithm 

• Proving an algorithms correctness 

• Analysing an algorithm 

Understanding the problem:The problem given should be understood completely.Check if it is 

similar to some standard problems & if a Known algorithm exists.otherwise a new algorithm has 

to be devised.Creating an algorithm is an art which may never be fully automated. An important 

step in the design is to specify an in- stance of the problem. 

Ascertain the capabilities of the computational device: Once a problem is understood we need 

to Know the capabilities of the computing device this can be done by Knowing the type of the 

architecture,speed & memory availability. 

Exact /approximate soln.: Once algorithm is devised, it is necessary to show that it computes 

answer for all the possible legal inputs. The solution is stated in two forms,Exact solution or 

approximate solution.examples of problems where an exact solution cannot be obtained are 

i)Finding a squareroot of number. 

ii)Solutions of non linear equations. 

Decide on the appropriate data structure:Some algorithms do not demand any in- genuity in 

representing their inputs.Someothers are in fact are predicted on ingenious data structures.A 

data type is a well-defined collection of data with a well-defined set of operations on it.A 

data structure is an actual implementation of a particular abstract data type. The Elementary Data 

Structures are ArraysThese let you access lots of data fast. (good) .You can have arrays 

of any other da ta type. (good) .However, you cannot make arrays bigger if your program decides 

it needs more space. (bad) . 

RecordsThese let you organize non-homogeneous data into logical packages to keep every- thing 

together. (good) .These packages do not include operations, just data fields (bad, which is why 

we need objects) .Records do not help you process distinct items in loops (bad, which is why 

arrays of records are used) SetsThese let you represent subsets of a set with such operations as 

intersection, union, and equivalence. (good) .Built-in sets are limited to a certain small size. (bad, 

but we can build our own set data type out of arrays to solve this problem if necessary) 

Algorithm design techniques: Creating an algorithm is an art which may never be fully au- 

tomated. By mastering these design strategies, it will become easier for you to devise new and 

useful algorithms. Dynamic programming is one such technique. Some of the techniques are 

especially useful in fields other then computer science such as operation research and electric- al 

engineering. Some important design techniques are linear, non linear and integer programming 



Methods of specifying an algorithm: There are mainly two options for specifying an algorithm: 

use of natural language or pseudocode & Flowcharts. 

A Pseudo code is a mixture of natural language & programming language like constructs. A 

flowchart is a method of expressing an algorithm by a collection of connected geometric shapes. 

Proving an algorithms correctness: Once algorithm is devised, it is necessary to show that it 

computes answer for all the possible legal inputs .We refer to this process as algorithm 

validation. The process of validation is to assure us that this algorithm will work correctly 

independent of issues concerning programming language it will be written in. A proof of 

correctness requires that the solution be stated in two forms. One form is usually as a program 

which is annotated by a set of assertions about the input and output variables of a program. These 

assertions are often expressed in the predicate calculus. The second form is called a specification, 

and this may also be expressed in the predicate calculus. A proof consists of showing that these 

two forms are equivalent in that for every given legal input, they describe same out- put. A 

complete proof of program correctness requires that each statement of programming language be 

precisely defined and all basic operations be proved correct. All these details may cause proof to 

be very much longer than the program. 

5. (a). Time Complexity of Algorithms 

For any defined problem, there can be N number of solution. This is true in general. If I have a 

problem and I discuss about the problem with all of my friends, they will all suggest me different 

solutions. And I am the one who has to decide which solution is the best based on the 

circumstances. 

Similarly for any problem which must be solved using a program, there can be infinite number of 

solutions. Let's take a simple example to understand this. Below we have two different 

algorithms to find square of a number(for some time, forget that square of any number n is n*n): 

One solution to this problem can be, running a loop for n times, starting with the number n and 

adding n to it, every time. 

/*  

    we have to calculate the square of n 

*/ 

for i=1 to n 

    do n = n + n 

// when the loop ends n will hold its square 

return n 

Or, we can simply use a mathematical operator * to find the square. 

/*  

    we have to calculate the square of n 

*/ 



return n*n 

 

 

In the above two simple algorithms, you saw how a single problem can have many solutions. 

While the first solution required a loop which will execute for n number of times, the second 

solution used a mathematical operator * to return the result in one line. So which one is the better 

approach, of course the second one. 

What is Time Complexity? 

Time complexity of an algorithm signifies the total time required by the program to run till its 

completion. 

The time complexity of algorithms is most commonly expressed using the big O notation. It's an 

asymptotic notation to represent the time complexity. We will study about it in detail in the next 

tutorial. 

Time Complexity is most commonly estimated by counting the number of elementary steps 

performed by any algorithm to finish execution. Like in the example above, for the first code the 

loop will run n number of times, so the time complexity will be n atleast and as the value 

of n will increase the time taken will also increase. While for the second code, time complexity is 

constant, because it will never be dependent on the value of n, it will always give the result in 1 

step. 

And since the algorithm's performance may vary with different types of input data, hence for an 

algorithm we usually use the worst-case Time complexity of an algorithm because that is the 

maximum time taken for any input size. 

Calculating Time Complexity 

Now lets tap onto the next big topic related to Time complexity, which is How to Calculate Time 

Complexity. It becomes very confusing some times, but we will try to explain it in the simplest 

way. 

Now the most common metric for calculating time complexity is Big O notation. This removes 

all constant factors so that the running time can be estimated in relation to N, as N approaches 

infinity. In general you can think of it like this : 

statement; 

Above we have a single statement. Its Time Complexity will be Constant. The running time of 

the statement will not change in relation to N. 

 

 

for(i=0; i < N; i++) 

{ 

    statement; 



} 

The time complexity for the above algorithm will be Linear. The running time of the loop is 

directly proportional to N. When N doubles, so does the running time. 

 

 

for(i=0; i < N; i++)  

{ 

    for(j=0; j < N;j++) 

    {  

    statement; 

    } 

} 

This time, the time complexity for the above code will be Quadratic. The running time of the 

two loops is proportional to the square of N. When N doubles, the running time increases by N * 

N. 

(b). Space Complexity of Algorithms 

Whenever a solution to a problem is written some memory is required to complete. For any 

algorithm memory may be used for the following: 

1. Variables (This include the constant values, temporary values) 

2. Program Instruction 

3. Execution 

Space complexity is the amount of memory used by the algorithm (including the input values to 

the algorithm) to execute and produce the result. 

Sometime Auxiliary Space is confused with Space Complexity. But Auxiliary Space is the extra 

space or the temporary space used by the algorithm during it's execution. 

Space Complexity = Auxiliary Space + Input space 

 

Memory Usage while Execution 

While executing, algorithm uses memory space for three reasons: 

1. Instruction Space 



It's the amount of memory used to save the compiled version of instructions. 

2. Environmental Stack 

Sometimes an algorithm(function) may be called inside another algorithm(function). In 

such a situation, the current variables are pushed onto the system stack, where they wait 

for further execution and then the call to the inside algorithm(function) is made. 

For example, If a function A() calls function B() inside it, then all th variables of the 

function A() will get stored on the system stack temporarily, while the function B() is 

called and executed inside the funciton A(). 

3. Data Space 

Amount of space used by the variables and constants. 

But while calculating the Space Complexity of any algorithm, we usually consider only Data 

Space and we neglect the Instruction Space and Environmental Stack. 

Calculating the Space Complexity 

For calculating the space complexity, we need to know the value of memory used by different 

type of datatype variables, which generally varies for different operating systems, but the method 

for calculating the space complexity remains the same. 

Type Size 

bool, char, unsigned char, signed char, __int8 1 byte 

__int16, short, unsigned short, wchar_t, __wchar_t 2 bytes 

float, __int32, int, unsigned int, long, unsigned long 4 bytes 

double, __int64, long double, long long 8 bytes 

 

 



Now let's learn how to compute space complexity by taking a few examples: 

{ 

    int z = a + b + c; 

    return(z); 

} 

In the above expression, variables a, b, c and z are all integer types, hence they will take up 4 

bytes each, so total memory requirement will be (4(4) + 4) = 20 bytes, this additional 4 bytes is 

for return value. And because this space requirement is fixed for the above example, hence it is 

called Constant Space Complexity. 

Let's have another example, this time a bit complex one, 

// n is the length of array a[] 

int sum(int a[], int n) 

{ 

 int x = 0;  // 4 bytes for x 

 for(int i = 0; i < n; i++) // 4 bytes for i 

 {  

     x  = x + a[i];   

 } 

 return(x); 

} 

 In the above code, 4*n bytes of space is required for the array a[] elements. 

 4 bytes each for x, n, i and the return value. 

Hence the total memory requirement will be (4n + 12), which is increasing linearly with the 

increase in the input value n, hence it is called as Linear Space Complexity. 

Similarly, we can have quadratic and other complex space complexity as well, as the complexity 

of an algorithm increases. 

But we should always focus on writing algorithm code in such a way that we keep the space 

complexity minimum. 

 

 



UNIT-II 

 

1. Brute Force Algorithm  

The brute force algorithm consists in checking, at all positions in the text between 0 and n-m, 

whether an occurrence of the pattern starts there or not. Then, after each attempt, it shifts the pattern by 

exactly one position to the right. 

The brute force algorithm requires no preprocessing phase, and a constant extra space in addition 

to the pattern and the text. During the searching phase the text character comparisons can be done in 
any order.  

The time complexity of this searching phase is O(mn) (when searching for  a
m-1

b in a
n
 for 

instance). The expected number of text character comparisons is 2n. 

Main Features 

 no preprocessing phase 

 constant extra space needed 

 always shifts the window by exactly 1 position to the right 

 comparisons can be done in any order 

 searching phase in O(mn) time complexity 

 2n expected text characters comparisons 

EXAMPLE 

Bubble sort is one of the simple sorting algorithms and also popularly known as a Brute Force 

Approach. The logic of the algorithm is very simple as it works by repeatedly iterating through a list of 

elements, comparing two elements at a time and swapping them if necessary until all the elements are 

swapped to an order. 

 

For e.g. if we have a list of 10 elements, bubble sort starts by comparing the first two elements in the list. 

If the second element is smaller than the first element then it exchanges them. Then it compares the 

current second element with the third element in the list. This continues until the second last and the last 

element is compared which completes one iteration through the list. By the time it completes the first 

iteration the largest element in the list comes to the rightmost position. 

The algorithm gets its name as we start from lowest point and “bubble up” the higher elements to the 

highest point in the list. We can also follow other approach where we start from highest point and “bubble 

down” lowest elements in the list. Since it only uses comparisons to operate on elements, it is a 

comparison sort. 



 

 

 



 

As we can see in above example the list sorted by third iteration and it is useless to go for 4th and 5th 

iterations. So we use a flag which determines whether a swap operation is done in last iteration or not. If a 

swap operation is not done in last iteration we will stop remaining iterations since the list is already in 

sorted order. For the above example we will stop iterating once third iteration is done as the whole list is 

sorted by then. 

 

 

Pseudo-code 

procedure bubbleSort( A : list of sortable items ) 

   repeat      

     swapped = false 

     for i = 0 to length(A) - 1  

       if A[i] > A[i+1] then 

         swap( A[i], A[i+1] ) 

         swapped = true 

       end if 

     end for 

   until not swapped 

end procedure 

 

2. Greedy Method 

 Greedy method is the most straightforward designed technique. 

 As the name suggest they are short sighted in their approach taking decision on the basis   

of the information immediately at the hand without  worrying about the effect these 

decision may have in the future. 

 



DEFINITION: 

 

 A problem with N inputs will have some constraints .any subsets that satisfy these 

constraints are called a feasible solution. 

 A feasible solution that either maximize can minimize a given objectives function is 

called an optimal solution. 

 

Control algorithm for Greedy Method: 

1.Algorithm Greedy (a,n) 

2.//a[1:n] contain the „n‟  inputs 

3. {  

4.solution =0;//Initialise the solution. 

5.For i=1 to n do 

6.{ 

7.x=select(a); 

8.if(feasible(solution,x))then 

9.solution=union(solution,x); 

10.} 

11.return solution; 

12.} 

 

* The function select an input from a[] and removes it. The select input value is assigned to X. 

 

 Feasible is a Boolean value function that determines whether X can be included into the 

solution vector. 

 The function Union combines X with The solution and updates the objective function. 

 The function Greedy describes the essential way that a greedy algorithm will once a 

particular problem is chosen ends the function subset, feasible & union are properly 

implemented. 

 

Example  

Knapsack Problem 

 We are given n objects  and knapsack  or bag with capacity M object I has  a weight Wi 

where I varies from 1 to N. 

 

 The problem is we have to fill the bag with the help of N objects and the resulting profit 

has to be maximum. 

 

 Formally the problem can be stated as  

 

Maximize         xipi subject to    XiWi<=M 

Where Xi is the fraction of object and it lies between 0 to 1. 

 

 There are so many ways to solve this problem, which will give many feasible solution for 

which we have to find the optimal solution. 

 

 But in this algorithm, it will generate only one solution which is going to be feasible as 

well as optimal. 



 

 First, we find the profit & weight rates of each and every object and sort it according to 

the descending order of the ratios. 

 

 Select an object with highest p/w ratio and check whether its height is lesser than the 

capacity of the bag. 

 

 If so place 1 unit of the first object and decrement .the capacity of the bag by the weight 

of the object you have placed. 

 

 Repeat the above steps until the capacity of the bag becomes less than the weight of the 

object you have selected .in this case place a fraction of the object and come out of the 

loop. 

 

 Whenever you selected. 

 

ALGORITHM: 

 

1.Algorityhm Greedy knapsack (m,n) 

2//P[1:n] and the w[1:n]contain the profit 

3.// & weight res‟.of the n object ordered. 

4.//such that p[i]/w[i] >=p[i+1]/W[i+1] 

5.//n is the Knapsack size and x[1:n] is the solution vertex. 

6.{ 

7.for I=1 to n do a[I]=0.0; 

8.U=n; 

9.For I=1 to n do 

10.{ 

11.if (w[i]>u)then break; 

13.x[i]=1.0;U=U-w[i] 

14.} 

15.if(i<=n)then x[i]=U/w[i]; 

16.} 

 

Example: 

 

Capacity=20 

N=3   ,M=20 

Wi=18,15,10 

Pi=25,24,15 

 

Pi/Wi=25/18=1.36,24/15=1.6,15/10=1.5 

 

Descending Order  Pi/Wi1.6    1.5     1.36 

Pi     =  24      15       25 

Wi    = 15      10       18 

 Xi  =   1        5/10    0 

PiXi=1*24+0.5*1531.5 



 

The optimal solution is 31.5 

 

X1 X2 X3         WiXi       PiXi 
½  1/3  ¼      16.6        24.25 

1   2/5   0      20         18.2 

0   2/3   1      20          31 

0    1     ½        20          31.5 

 

Of these feasible solution Solution 4 yield the Max profit .As we shall soon see this solution is 

optimal for the given problem instance. 

 

3.  Dynamic program general method 

 

 It is an algorithm design method that can be used when the solution to a problem can be 

viewed as the result of a sequence of decisions. 

 The idea of dynamic programming is thus quit simple: avoid calculating the same thing 

twice, usually by keeping a table of known result that fills up a sub instances are solved. 

 Divide and conquer is a top-down method. When a problem is solved by divide and 

conquer, we immediately attack the complete instance, which we then divide into smaller 

and smaller sub-instances as the algorithm progresses. 

    Dynamic programming on the other hand is a bottom-up technique. We usually start with 

the smallest and hence the simplest sub- instances. By combining their solutions, we 

obtain the answers to sub-instances of increasing size, until finally we arrive at the 

solution of the original instances. 

    The essential difference between the greedy method and dynamic programming is that 

the greedy method only one decision sequence is ever generated. In dynamic 

programming, many decision sequences may be generated. However, sequences 

containing sub-optimal sub-sequences cannot be optimal and so will not be generated. 

Because of principle of optimality, decision sequences containing subsequences that are 

suboptimal are not considered. Although the total number of different decision sequences is 

exponential in the number of decisions(if there are d choices for each of the n decisions to be 

made then there are d
n
 possible decision sequences),Dynamic programming algorithms often 

have a polynomial complexity. 

 

Example 

All Pair Shortest Path Algorithm 

 Let G(V,E) be a directed graph with n vertices , „E‟ is the set of edges & V is the set of n 

vertices. 

 Each edge has an associated non-negative length. 

 We want to calculate the length of the shortest path between each pair of nodes. 

 i.e)Shortest path between every vertex to all other vertices. 

 Suppose the nodes of G are numbered from 1 to n, so n={1,2,...n} 

 cost (i,j) is length of edge <i,j> and it is called as cost adjacency matrix. 

 cost(i,i)=0 for i=1,2...n, 

 cost(i,j)=cost of edge <i,j> for all i&j 

 costi,j)=infinity, if the edge (i,j) does not exist. 

 



 The all pairs shortest path problem is to determine a matrix A such that A(i,j)  is the length 

of a shortest path from i to j. 

 The principle of optimality: 

  If k is the node on the shortest path from i to j then the part of the path from i to k 

and the part from k to j must also be optimal, that is shorter. 

 

 First create a cost adjacency matrix for the given graph. 

 Copy the above matrix to matrix D,which will give the direct distance between nodes. 

 We have to perform n*n iterations for each iteration of k. The matrix D will give you the 

distance between nodes with only (1,2...,k)as intermediate nodes. 

 At the iteration k,we have to check for each pair of nodes (i,j) whether or not there exists a 

path from i to j passing through node k.          

 Likewise we have to find the value for n iterations (ie) for n nodes. 
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                             Fig: floyd’s algorithm and work 

 

ALGORITHM : 

Algorithm Allpaths(cost,A,n) 

//cost[1…n,1…n] is the cost adjacency matrix of graph with n vertices 

//A[i,j] is the cost of shortest path from vertex i to j 

//cost[i,i]=0.0 for 1<=i<=n 

{ 

 for i:=1 to n do 

 for j:=1 to n do 

  A[i,j]:=cost[i,j]; //copy cost into A 

for k:=1 to n do 

 for i:=1 to n do 

  for j:=1 to n do 

    A[i,j]:=min{A[i,j], A[i,k]+ A[k,j]; 

} 

 

COST ADJACENCY MATRIX : 



 

 At 0
th

 iteration it nil give you the direct distances between any 2 nodes 

 

 0    5    

 50  0  15    5 

cost(i,j) = A(i,j) = D0 =          30    0    15  

 15     5    0  

 

         It gives the direct distances between the two nodes. 

 At 1
st
 iteration we have to check the each pair(i,j) whether there is a path through node 1.if 

so we have to check whether it is  minimum than the previous value and if i is so than the 

distance through 1 is the value of d1(i,j).at the same time we have to solve the intermediate 

node in the matrix position p(i,j). 

 

for k= 1 to 4 

 When k=1 

 for i= 1 to 4 

when i=1 

 for j= 1 to 4 

 when j=1 

 A[1,1]=min(A[1,1],a[1,1]+A[1,1])=min(0,0)=0 

 When j=2 

 A[1,2]=min(A[1,2],A[1,1]+A[1,2])=min(5,0+5)=5 

 When j=3 

 A[1,3]=min(A[1,3],A[1,1]+A[1,3])=min(,0+)= 

 When j=4 

 A[1,4]=min(A[1,4],A[1,1]+A[1,4])=min(,0+)= 

 

  When i=2 

 for j= 1 to 4 

 when j=1 

 A[2,1]=min(A[2,1],A[2,1]+A[1,1])=min(50,50+0)=50 

 When j=2 

 A[2,2]=min(A[2,2],A[2,1]+A[1,2])=min(0,50+5)=0 

 When j=3 

 A[2,3]=min(A[2,3],A[2,1]+A[1,3])=min(15,50+)=15 

 When j=4 

 A[2,4]=min(A[2,4],A[2,1]+A[1,4])=min(5,50+)=5 

 

  When i=3 

 for j= 1 to 4 

 when j=1 

 A[3,1]=min(A[3,1],A[3,1]+A[1,1])=min(30,30+0)=30 

 When j=2 

 A[3,2]=min(A[3,2],A[3,1]+A[1,2])=min(,30+5)=35 

 When j=3 

 A[3,3]=min(A[3,3],A[3,1]+A[1,3])=min(0,30+)=0 

 When j=4 



 A[3,4]=min(A[3,4],A[3,1]+A[1,4])=min(15,30+)=15 

   

  When i=4 

 for j= 1 to 4 

 when j=1 

 A[4,1]=min(A[4,1],A[4,1]+A[1,1])=min(15,15+0)=15 

 When j=2 

 A[4,2]=min(A[4,2],A[4,1]+A[1,2])=min(,15+5)=20 

 When j=3 

 A[4,3]=min(A[4,3],A[4,1]+A[1,3])=min(5,15+)=5 

 When j=4 

 A[4,4]=min(A[4,4],A[4,1]+A[1,4])=min(0,15+)=0 

 

  

k  

 
i j A[i,j] 

1 1 1 0 

  2 5 

  3  

  4  

 2 1 50 

  2 0 

  3 15 

  4 5 

 3 1 30 

  2 35 

  3 0 

  4 15 

 4 1 15 

  2 20 

  3 5 

  4 0 

 

 

 

                                     0   5       0 0 0 0 

50  0  15  5        P[3,2]= 1       0 0 0 0  

                          D1=    30 35  0 15         P[4,2]= 1  P1= 0 1 0 0  

                                     15 20  5  0    0 1 0 0 

   

 

 

When k=2,we have obtained the matrix D2 and P2 



 

                                        0     5   2010P[1,3] = 2  0 0 2 2 

                         D2=        50   0   15     5   P[1,4] = 2    P2= 0 0 0 0  

30  35   0    15          0 1 0 1 

15  20   5     0      0 1 0 0 

 

 

                                                         0   5  20  10      

                                            D3=       45  0  15   5         P[2,1]=3 

                                                         30 35   0  15 

                                                         15 20   5   0    

 

 

 

 

                                                            0    5  15 10 

                                                          20    0  10  5      P[1,3]=4 

                                            D4=        30  35   0  15      P[2,3]=4  

15  20   5    0      

 

 

 

 D4 will give the shortest distance between any pair of nodes. 

 

 If you want the exact path then we have to refer the matrix p.The matrix will be, 

 

         0 0 4 2 

         3 0 4 0         0         direct path 

 P=    0 1 0 0 

         0 1 0 0   

 

 Since,p[1,3]=4,the shortest path from 1 to3 passes through 4. 

 

 Looking now at p[1,4]&p[4,3] we discover that between 1 & 4, we have to go to node 2 

but that from 4 to 3 we proceed directly. 

 

 Finally we see the trips from 1 to 2, & from 2 to 4, are also direct. 

 

 The shortest path from 1 to 3 is 1,2,4,3. 

 

 

ALGORITHM : 

 

Function Floyd (L[1..r,1..r]):array[1..n,1..n]    

array D[1..n,1..n] 

 



D = L 

For   k = 1 to n do  

For   i  = 1 to n do  

For   j  = 1 to n do  

 

D [ i , j ] = min (D[ i, j ], D[ i, k ] + D[ k, j ]  

 

Return D   

 

ANALYSIS: 

This algorithm takes a time of  (n
3
) 

 

4. Backtracking method  

 It is one of the most general algorithm design techniques.  

 

 Many problems which deal with searching for a set of solutions or for a optimal solution 

satisfying some constraints can be solved using the backtracking formulation. 

 

 To apply backtracking method, tne desired solution must be expressible as an n-tuple 

(x1…xn) where xi is chosen from some finite set Si. 

 

 The problem is to find a vector, which maximizes or minimizes a criterion function 

P(x1….xn). 

 

 The major advantage of this method is, once we know that a partial vector (x1,…xi)  will 

not lead to an optimal solution that (mi+1………..mn) possible test vectors may be ignored 

entirely. 

 

 Many problems solved using backtracking require that all the solutions satisfy a complex 

set of constraints. 

 

 These constraints are classified as:       

      

                                      i) Explicit constraints.                                

                                     ii) Implicit constraints. 

 

1) Explicit constraints: 

             Explicit constraints are rules that restrict each Xi to take values only from a given 

set. 

                      Some examples are, 

Xi0 or Si = {all non-negative real nos.} 

Xi =0 or 1 or Si={0,1}. 

LiXiUi or Si= {a: Li aUi} 

 

 All tupules that satisfy the explicit constraint define a possible solution space for I. 



 

 

 

2) Implicit constraints: 

                   The implicit constraint determines which of the tuples in the solution space I can 

actually satisfy the criterion functions. 

 

Algorithm: 

Algorithm IBacktracking (n) 

// This schema describes the backtracking procedure .All solutions are generated in X[1:n]  

//and printed as soon as they are determined. 

 { 

    k=1; 

    While (k 0) do 

    { 

       if (there remains all untried 

       X[k]  T (X[1],[2],…..X[k-1]) and Bk (X[1],…..X[k])) is true ) then 

      { 

         if(X[1],……X[k] )is the path to the answer node) 

        Then write(X[1:k]); 

        k=k+1;                 //consider the next step. 

     } 

  else k=k-1;                      //consider backtracking to the previous set. 

 } 

} 

 All solutions are generated in X[1:n] and printed as soon as they are determined. 

 

 T(X[1]…..X[k-1]) is all possible values of X[k] gives that X[1],……..X[k-1] have 

already been chosen. 

 

 Bk(X[1]………X[k]) is a boundary function which determines the elements of X[k] 

which satisfies the implicit constraint. 

 

 Certain problems which are solved using backtracking method are, 

                                        

                     1. Sum of subsets. 

                     2. Graph coloring. 

                     3. Hamiltonian cycle. 

                     4. N-Queens problem.    

Example 

Graph coloring  

 

Let „G‟ be a graph and „m‟ be a given positive integer. If the nodes of „G‟ can be colored in such 

a way that no two adjacent nodes have the same color. Yet only „M‟ colors are used. So it‟s 

called M-color ability decision problem. 

 The graph G can be colored using the smallest integer „m‟. This integer is referred to as 

chromatic number of the graph. 



 A graph is said to be planar iff it can be drawn on plane in such a way that no two edges 

cross each other. 

 Suppose we are given a map then, we have to convert it into planar. Consider each and 

every region as a node. If two regions are adjacent then the corresponding nodes are 

joined by an edge. 

Consider a map with five regions and its graph. 

 

 4 5 

 

 2 

 

 

 3 

 

1 is adjacent to 2, 3, 4. 

2 is adjacent to 1, 3, 4, 5 

3 is adjacent to 1, 2, 4 

4 is adjacent to   1, 2, 3, 5 

5 is adjacent to   2, 4 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Steps to color the Graph: 

 

 First create the adjacency matrix graph(1:m,1:n) for a graph, if there is an edge between 

i,j then C(i,j) = 1 otherwise C(i,j) =0. 

 

 The Colors will be represented by the integers 1,2,…..m and the solutions will be stored 

in the array X(1),X(2),………..,X(n) ,X(index) is the color, index is the node. 

 

 He formula is used to set the color is, 

 X(k) = (X(k)+1) % (m+1) 

 

 First one chromatic number is assigned ,after assigning a number for „k‟ node, we have to 

check whether the adjacent nodes has got the same values if so then we have to assign the 

next value. 
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 Repeat the procedure until all possible combinations of colors are found. 

 

 The function which is used to check the adjacent nodes and same color is, 

If(( Graph (k,j) == 1) and X(k) = X(j)) 

 

Example: 

     
 N= 4 

 M= 3 

 

 

 

 

Adjacency Matrix: 

 

 0   1   0   1 

 1   0   1   0 

  0   1   0   1 

 1   0   1   0 

 

 Problem is to color the given graph of 4 nodes using 3 colors. 

 

Node-1 can take the given graph of 4 nodes using 3 colors. 

 

 The state space tree will give all possible colors in that ,the numbers which are inside the 

circles are nodes ,and the branch with a number is the colors of the nodes. 

 

State Space Tree: 

1 

3 

2 

4 



 
 

 

Algorithm: 

 

Algorithm mColoring(k) 

// the graph is represented by its Boolean adjacency matrix G[1:n,1:n]  .All assignments //of 

1,2,……….,m to the vertices of the graph such that adjacent vertices are assigned //distinct 

integers are printed. ‟k‟ is the index of the next vertex to color. 

 

{ 

repeat 

{ 

    // generate all legal assignment for X[k]. 

  Nextvalue(k);    // Assign to X[k] a legal color. 

         If (X[k]=0) then return;           // No new color possible. 

        If (k=n) then                  // Almost „m‟ colors have been used to color the „n‟ vertices 

                  Write(x[1:n]);      

      Else mcoloring(k+1); 

}until(false); 

} 

 

 

 
 
 

 



UNIT-III 

GRAPH BASIC TERMINOLOGIES 

A graph is a pictorial representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by points termed as vertices, 

and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, 

connecting the pairs of vertices. Take a look at the following graph − 

 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Graph Data Structure 

Mathematical graphs can be represented in data structure. We can represent a graph using an 

array of vertices and a two-dimensional array of edges. Before we proceed further, let's 

familiarize ourselves with some important terms − 

 Vertex − Each node of the graph is represented as a vertex. In the following example, the labeled 

circle represents vertices. Thus, A to G are vertices. We can represent them using an array as shown 

in the following image. Here A can be identified by index 0. B can be identified using index 1 and so 

on. 

 Edge − Edge represents a path between two vertices or a line between two vertices. In the following 

example, the lines from A to B, B to C, and so on represents edges. We can use a two-dimensional 

array to represent an array as shown in the following image. Here AB can be represented as 1 at row 

0, column 1, BC as 1 at row 1, column 2 and so on, keeping other combinations as 0. 

 Adjacency − Two node or vertices are adjacent if they are connected to each other through an edge. 

In the following example, B is adjacent to A, C is adjacent to B, and so on. 

 Path − Path represents a sequence of edges between the two vertices. In the following example, 

ABCD represents a path from A to D. 



 

Basic Operations 

Following are basic primary operations of a Graph − 

 Add Vertex − Adds a vertex to the graph. 

 Add Edge − Adds an edge between the two vertices of the graph. 

 Display Vertex − Displays a vertex of the graph. 

 

TREE BASIC TERMINOLOGIES 

Tree represents the nodes connected by edges. We will discuss binary tree or binary search tree 

specifically. 

Binary Tree is a special data structure used for data storage purposes. A binary tree has a special 

condition that each node can have a maximum of two children. A binary tree has the benefits of 

both an ordered array and a linked list as search is as quick as in a sorted array and insertion or 

deletion operation are as fast as in linked list. 



 

Important Terms 

Following are the important terms with respect to tree. 

 Path − Path refers to the sequence of nodes along the edges of a tree. 

 Root − The node at the top of the tree is called root. There is only one root per tree and one path from 

the root node to any node. 

 Parent − Any node except the root node has one edge upward to a node called parent. 

 Child − The node below a given node connected by its edge downward is called its child node. 

 Leaf − The node which does not have any child node is called the leaf node. 

 Subtree − Subtree represents the descendants of a node. 

 Visiting − Visiting refers to checking the value of a node when control is on the node. 

 Traversing − Traversing means passing through nodes in a specific order. 

 Levels − Level of a node represents the generation of a node. If the root node is at level 0, then its 

next child node is at level 1, its grandchild is at level 2, and so on. 

 keys − Key represents a value of a node based on which a search operation is to be carried out for a 

node. 

Binary Search Tree Representation 

Binary Search tree exhibits a special behavior. A node's left child must have a value less than its 

parent's value and the node's right child must have a value greater than its parent value. 



 

We're going to implement tree using node object and connecting them through references. 

Tree Node 

The code to write a tree node would be similar to what is given below. It has a data part and 

references to its left and right child nodes. 

struct node { 

   int data;    

   struct node *leftChild; 

   struct node *rightChild; 

}; 

In a tree, all nodes share common construct. 

BST Basic Operations 

The basic operations that can be performed on a binary search tree data structure, are the 

following − 

 Insert − Inserts an element in a tree/create a tree. 

 Search − Searches an element in a tree. 

 Preorder Traversal − Traverses a tree in a pre-order manner. 

 Inorder Traversal − Traverses a tree in an in-order manner. 

 Postorder Traversal − Traverses a tree in a post-order manner. 

We shall learn creating (inserting into) a tree structure and searching a data item in a tree in this 

chapter. We shall learn about tree traversing methods in the coming chapter. 

Insert Operation 

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first 

locate its proper location. Start searching from the root node, then if the data is less than the key 

value, search for the empty location in the left subtree and insert the data. Otherwise, search for 

the empty location in the right subtree and insert the data. 



Algorithm 

If root is NULL  

   then create root node 

return 

 

If root exists then 

   compare the data with node.data 

    

   while until insertion position is located 

 

      If data is greater than node.data 

         goto right subtree 

      else 

         goto left subtree 

 

   endwhile  

    

   insert data 

  

end If  

 

1. Traversal Algorithm 

Depth First Search 

Depth First Search (DFS) algorithm traverses a graph in a depth wise motion and uses a stack to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, 

then to F and lastly to C. It employs the following rules. 



 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices 

from the stack, which do not have adjacent vertices.) 

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1 

 

Initialize the stack. 

2 

 

Mark S as visited and put it onto the stack. 

Explore any unvisited adjacent node from S. We 

have three nodes and we can pick any of them. 

For this example, we shall take the node in an 

alphabetical order. 

3 

 

Mark A as visited and put it onto the stack. 

Explore any unvisited adjacent node from A. 

Both S and D are adjacent to A but we are 

concerned for unvisited nodes only. 



4 

 

Visit D and mark it as visited and put onto the 

stack. Here, we have B and C nodes, which are 

adjacent to D and both are unvisited. However, 

we shall again choose in an alphabetical order. 

5 

 

We choose B, mark it as visited and put onto the 

stack. Here B does not have any unvisited 

adjacent node. So, we pop B from the stack. 

6 

 

We check the stack top for return to the previous 

node and check if it has any unvisited nodes. 

Here, we find D to be on the top of the stack. 



7 

 

Only unvisited adjacent node is 

from D is C now. So we visit C, mark it as 

visited and put it onto the stack. 

As C does not have any unvisited adjacent node so we keep popping the stack until we find a 

node that has an unvisited adjacent node. In this case, there's none and we keep popping until 

the stack is empty. 

Breadth First Search (BFS) 

Breadth First Search (BFS) algorithm traverses a graph in a breadth wise motion and uses a 

queue to remember to get the next vertex to start a search, when a dead end occurs in any 

iteration. 

 

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C 

and G lastly to D. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 



Step Traversal Description 

1 

 

Initialize the queue. 

2 

 

We start from visiting S (starting node), and 

mark it as visited. 

3 

 

We then see an unvisited adjacent node from S. 

In this example, we have three nodes but 

alphabetically we choose A, mark it as visited 

and enqueue it. 



4 

 

Next, the unvisited adjacent node from S is B. 

We mark it as visited and enqueue it. 

5 

 

Next, the unvisited adjacent node from S is C. 

We mark it as visited and enqueue it. 

6 

 

Now, S is left with no unvisited adjacent nodes. 

So, we dequeue and find A. 

7 

 

From A we have D as unvisited adjacent node. 

We mark it as visited and enqueue it. 



At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep 

on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is 

over. 

2. Shortest Path Algorithm 

 

The shortest path problem is about finding a path between 2 vertices in a graph such that the 

total sum of the edges weights is minimum. 

Dijkstra's Algorithm 

Dijkstra's algorithm has many variants but the most common one is to find the shortest paths 

from the source vertex to all other vertices in the graph. 

Algorithm Steps: 

 Set all vertices distances = infinity except for the source vertex, set the source distance 

= 0. 

 Push the source vertex in a min-priority queue in the form (distance , vertex), as the 

comparison in the min-priority queue will be according to vertices distances. 

 Pop the vertex with the minimum distance from the priority queue (at first the popped 

vertex = source). 

 Update the distances of the connected vertices to the popped vertex in case of "current 

vertex distance + edge weight < next vertex distance", then push the vertex 

with the new distance to the priority queue. 

 If the popped vertex is visited before, just continue without using it. 

 Apply the same algorithm again until the priority queue is empty. 

Dijkstra’s algorithm finds a shortest path tree from a single source node, by building a set of 

nodes that have minimum distance from the source. 

  
The graph has the following: 

 vertices, or nodes, denoted in the algorithm by vv or uu; 



 weighted edges that connect two nodes: (u,vu,v) denotes an edge, 

and w(u,v)w(u,v) denotes its weight. In the diagram on the right, the weight for each 

edge is written in gray. 

This is done by initializing three values: 

 distdist, an array of distances from the source node ss to each node in the graph, 

initialized the following way: distdist(ss) = 0; and for all other nodes vv, distdist(vv) 

= \infty∞. This is done at the beginning because as the algorithm proceeds, 

the distdist from the source to each node vv in the graph will be recalculated and 

finalized when the shortest distance to vv is found 

 QQ, a queue of all nodes in the graph. At the end of the algorithm's progress, QQ will 

be empty. 

 SS, an empty set, to indicate which nodes the algorithm has visited. At the end of the 

algorithm's run, SS will contain all the nodes of the graph. 

The algorithm proceeds as follows: 

1. While QQ is not empty, pop the node vv, that is not already in SS, from QQ with the 

smallest distdist (vv). In the first run, source node ss will be chosen 

because distdist(ss) was initialized to 0. In the next run, the next node with the 

smallest distdist value is chosen. 

2. Add node vv to SS, to indicate that vv has been visited 

3. Update distdist values of adjacent nodes of the current node vv as follows: for each new 

adjacent node uu, 

 if distdist (vv) + weight(u,v)weight(u,v) < distdist (uu), there is a new minimal 

distance found for uu, so update distdist (uu) to the new minimal distance value; 

 otherwise, no updates are made to distdist (uu). 

The algorithm has visited all nodes in the graph and found the smallest distance to each 

node. distdist now contains the shortest path tree from source ss. 

Note: The weight of an edge (u,vu,v) is taken from the value associated with (u,vu,v) on the 

graph. 

Implementation 

This is pseudocode for Dijkstra's algorithm, mirroring Python syntax. It can be used in order to 

implement the algorithm in any language. 

https://brilliant.org/wiki/queues-basic/
https://brilliant.org/wiki/sets/


function Dijkstra(Graph, source): 

       dist[source]  := 0                     // Distance from source to source is set to 0 

       for each vertex v in Graph:            // Initializations 

           if v ≠ source 

               dist[v]  := infinity           // Unknown distance function from source to each node set to infinity 

           add v to Q                         // All nodes initially in Q 

 

      while Q is not empty:                  // The main loop 

          v := vertex in Q with min dist[v]  // In the first run-through, this vertex is the source node 

          remove v from Q  

 

          for each neighbor u of v:           // where neighbor u has not yet been removed from Q. 

              alt := dist[v] + length(v, u) 

              if alt < dist[u]:               // A shorter path to u has been found 

                  dist[u]  := alt            // Update distance of u  

 

      return dist[] 

  end function 

Examples 

We step through Dijkstra's algorithm on the graph used in the algorithm above: 

1. Initialize distances according to the algorithm.

[3] 

https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-3


2. Pick first node and calculate distances to adjacent nodes.

[4] 

3. Pick next node with minimal distance; repeat adjacent node distance calculations.

[5] 

4. Final result of shortest-path tree[6] 

https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-5
https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-6


 

Transitive Closure of a Graph using DFS 

Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex 

pairs (u, v) in the given graph. Here reachable mean that there is a path from vertex u to v. The 

reach-ability matrix is called transitive closure of a graph. 

For example, consider below graph 

 
Transitive closure of above graphs is  

     1 1 1 1  

     1 1 1 1  

     1 1 1 1  

     0 0 0 1  

Minimum Spanning Tree 

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum 

possible number of edges. Hence, a spanning tree does not have cycles and it cannot be 

disconnected.. 

https://media.geeksforgeeks.org/wp-content/uploads/transitive-closer-graph.png


By this definition, we can draw a conclusion that every connected and undirected Graph G has 

at least one spanning tree. A disconnected graph does not have any spanning tree, as it cannot 

be spanned to all its vertices. 

 

We found three spanning trees off one complete graph. A complete undirected graph can have 

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above 

addressed example, n is 3, hence 33−2 = 3 spanning trees are possible. 

General Properties of Spanning Tree 

We now understand that one graph can have more than one spanning tree. Following are a few 

properties of the spanning tree connected to graph G − 

 A connected graph G can have more than one spanning tree. 

 All possible spanning trees of graph G, have the same number of edges and vertices. 

 The spanning tree does not have any cycle (loops). 

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree 

is minimally connected. 

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree is maximally 

acyclic. 

Mathematical Properties of Spanning Tree 

 Spanning tree has n-1 edges, where n is the number of nodes (vertices). 

 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning tree. 

 A complete graph can have maximum nn-2 number of spanning trees. 



Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected 

graphs do not have spanning tree. 

Application of Spanning Tree 

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. 

Common application of spanning trees are − 

 Civil Network Planning 

 Computer Network Routing Protocol 

 Cluster Analysis 

Let us understand this through a small example. Consider, city network as a huge graph and 

now plans to deploy telephone lines in such a way that in minimum lines we can connect to all 

city nodes. This is where the spanning tree comes into picture. 

Minimum Spanning Tree (MST) 

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than 

all other spanning trees of the same graph. In real-world situations, this weight can be measured 

as distance, congestion, traffic load or any arbitrary value denoted to the edges. 

Minimum Spanning-Tree Algorithm 

We shall learn about two most important spanning tree algorithms here − 

 Kruskal's Algorithm 

 Prim's Algorithm 

 

Kruskal's algorithm 

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This 

algorithm treats the graph as a forest and every node it has as an individual tree. A tree connects 

to another only and only if, it has the least cost among all available options and does not violate 

MST properties. 

 To understand Kruskal's algorithm let us consider the following example − 

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm


 

 Step 1 - Remove all loops and Parallel Edges 
 Remove all loops and parallel edges from the given graph. 

 
 In case of parallel edges, keep the one which has the least cost associated and remove all 

others. 

 

 Step 2 - Arrange all edges in their increasing order of weight 
 The next step is to create a set of edges and weight, and arrange them in an ascending 

order of weightage (cost). 

 

 Step 3 - Add the edge which has the least weightage 



 Now we start adding edges to the graph beginning from the one which has the least 

weight. Throughout, we shall keep checking that the spanning properties remain intact. 

In case, by adding one edge, the spanning tree property does not hold then we shall 

consider not to include the edge in the graph. 

 
 The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does 

not violate spanning tree properties, so we continue to our next edge selection. 

 Next cost is 3, and associated edges are A,C and C,D. We add them again − 

 
 Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. 

− 

 
 We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 

 
 We observe that edges with cost 5 and 6 also create circuits. We ignore them and move 

on. 



 
 Now we are left with only one node to be added. Between the two least cost edges 

available 7 and 8, we shall add the edge with cost 7. 

 
 By adding edge S,A we have included all the nodes of the graph and we now have 

minimum cost spanning tree. 

 

Prim’s Algorithm 

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses the greedy 

approach. Prim's algorithm shares a similarity with the shortest path first algorithms. 

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree and 

keeps on adding new nodes to the spanning tree from the given graph. 

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use the 

same example − 

 

Step 1 - Remove all loops and parallel edges 



 

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the 

one which has the least cost associated and remove all others. 

 

Step 2 - Choose any arbitrary node as root node 

In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily 

chosen, so any node can be the root node. One may wonder why any video can be a root node. 

So the answer is, in the spanning tree all the nodes of a graph are included and because it is 

connected then there must be at least one edge, which will join it to the rest of the tree. 

Step 3 - Check outgoing edges and select the one with less cost 

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8, 

respectively. We choose the edge S,A as it is lesser than the other. 

 



Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We 

select the one which has the lowest cost and include it in the tree. 

 

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all 

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the 

new edge, which is less than other edges' cost 8, 6, 4, etc. 

 

After adding node D to the spanning tree, we now have two edges going out of it having the 

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield 

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included. 

 

 

 

 



UNIT-IV 

P and NP Class 

In Computer Science, many problems are solved where the objective is to maximize or 

minimize some values, whereas in other problems we try to find whether there is a solution or 

not. Hence, the problems can be categorized as follows − 

Optimization Problem 

Optimization problems are those for which the objective is to maximize or minimize some 

values. For example, 

 Finding the minimum number of colors needed to color a given graph. 

 Finding the shortest path between two vertices in a graph. 

Decision Problem 

There are many problems for which the answer is a Yes or a No. These types of problems are 

known as decision problems. For example, 

 Whether a given graph can be colored by only 4-colors. 

 Finding Hamiltonian cycle in a graph is not a decision problem, whereas checking a graph is 

Hamiltonian or not is a decision problem. 

What is Language? 

Every decision problem can have only two answers, yes or no. Hence, a decision problem may 

belong to a language if it provides an answer „yes‟ for a specific input. A language is the totality 

of inputs for which the answer is Yes. Most of the algorithms discussed in the previous chapters 

are polynomial time algorithms. 

For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a constant, 

the algorithm is a polynomial time algorithm. 

Algorithms such as Matrix Chain Multiplication, Single Source Shortest Path, All Pair Shortest 

Path, Minimum Spanning Tree, etc. run in polynomial time. However there are many problems, 

such as traveling salesperson, optimal graph coloring, Hamiltonian cycles, finding the longest 

path in a graph, and satisfying a Boolean formula, for which no polynomial time algorithms is 

known. These problems belong to an interesting class of problems, called the NP-

Complete problems, whose status is unknown. 

In this context, we can categorize the problems as follows − 

P-Class 



The class P consists of those problems that are solvable in polynomial time, i.e. these problems 

can be solved in time O(nk) in worst-case, where k is constant. 

These problems are called tractable, while others are called intractable or superpolynomial. 

Formally, an algorithm is polynomial time algorithm, if there exists a polynomial p(n) such that 

the algorithm can solve any instance of size n in a time O(p(n)). 

Problem requiring Ω(n50) time to solve are essentially intractable for large n. Most known 

polynomial time algorithm run in time O(nk) for fairly low value of k. 

The advantages in considering the class of polynomial-time algorithms is that all 

reasonable deterministic single processor model of computation can be simulated on each 

other with at most a polynomial slow-d 

NP-Class 

The class NP consists of those problems that are verifiable in polynomial time. NP is the class 

of decision problems for which it is easy to check the correctness of a claimed answer, with the 

aid of a little extra information. Hence, we aren‟t asking for a way to find a solution, but only to 

verify that an alleged solution really is correct. 

Every problem in this class can be solved in exponential time using exhaustive search. 

P versus NP 

Every decision problem that is solvable by a deterministic polynomial time algorithm is also 

solvable by a polynomial time non-deterministic algorithm. 

All problems in P can be solved with polynomial time algorithms, whereas all problems in NP - 

P are intractable. 

It is not known whether P = NP. However, many problems are known in NP with the property 

that if they belong to P, then it can be proved that P = NP. 

If P ≠ NP, there are problems in NP that are neither in P nor in NP-Complete. 

The problem belongs to class P if it‟s easy to find a solution for the problem. The problem 

belongs to NP, if it‟s easy to check a solution that may have been very tedious to find. 

 

Cook‟s Theorem 

 

Stephen Cook presented four theorems in his paper “The Complexity of Theorem Proving 

Procedures”. These theorems are stated below. We do understand that many unknown terms are 

being used in this chapter, but we don‟t have any scope to discuss everything in detail. 

Following are the four theorems by Stephen Cook − 



Theorem-1 

If a set S of strings is accepted by some non-deterministic Turing machine within polynomial 

time, then S is P-reducible to {DNF tautologies}. 

Theorem-2 

The following sets are P-reducible to each other in pairs (and hence each has the same 

polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {sub-graph pairs}. 

Theorem-3 

 For any TQ(k) of type Q, TQ(k)k√(logk)2TQ(k)k(logk)2 is unbounded 

 There is a TQ(k) of type Q such that TQ(k)⩽2k(logk)2TQ(k)⩽2k(logk)2 

Theorem-4 

If the set S of strings is accepted by a non-deterministic machine within time T(n) = 2n, and 

if TQ(k) is an honest (i.e. real-time countable) function of type Q, then there is a constant K, 

so S can be recognized by a deterministic machine within time TQ(K8n). 

 First, he emphasized the significance of polynomial time reducibility. It means that if we have a 

polynomial time reduction from one problem to another, this ensures that any polynomial time 

algorithm from the second problem can be converted into a corresponding polynomial time algorithm 

for the first problem. 

 Second, he focused attention on the class NP of decision problems that can be solved in polynomial 

time by a non-deterministic computer. Most of the intractable problems belong to this class, NP. 

 Third, he proved that one particular problem in NP has the property that every other problem in NP 

can be polynomially reduced to it. If the satisfiability problem can be solved with a polynomial time 

algorithm, then every problem in NP can also be solved in polynomial time. If any problem in NP is 

intractable, then satisfiability problem must be intractable. Thus, satisfiability problem is the hardest 

problem in NP. 

 Fourth, Cook suggested that other problems in NP might share with the satisfiability problem this 

property of being the hardest member of NP. 

 



UNIT-V 

Approximate Algorithms 

Introduction: 

An Approximate Algorithm is a way of approach NP-COMPLETENESS for the optimization problem. 

This technique does not guarantee the best solution. The goal of an approximation algorithm is to come as 

close as possible to the optimum value in a reasonable amount of time which is at the most polynomial 

time. Such algorithms are called approximation algorithm or heuristic algorithm. 

o For the traveling salesperson problem, the optimization problem is to find the shortest cycle, and 

the approximation problem is to find a short cycle. 

o For the vertex cover problem, the optimization problem is to find the vertex cover with fewest 

vertices, and the approximation problem is to find the vertex cover with few vertices. 

Performance Ratios 

Suppose we work on an optimization problem where every solution carries a cost. An Approximate 

Algorithm returns a legal solution, but the cost of that legal solution may not be optimal. 

      For Example, suppose we are considering for a minimum size vertex-cover (VC). An approximate 

algorithm returns a VC for us, but the size (cost) may not be minimized. 

      Another Example is we are considering for a maximum size Independent set (IS). An approximate 

Algorithm returns an IS for us, but the size (cost) may not be maximum. Let C be the cost of the solution 

returned by an approximate algorithm, and C* is the cost of the optimal solution. 

We say the approximate algorithm has an approximate ratio P (n) for an input size n, where 

Intuitively, the approximation ratio measures how bad the approximate solution is distinguished with the 

optimal solution. A large (small) approximation ratio measures the solution is much worse than (more or 

less the same as) an optimal solution. 

      Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we may write P. Therefore, a 1-

approximation algorithm gives an optimal solution. Some problems have polynomial-time approximation 

algorithm with small constant approximate ratios, while others have best-known polynomial time 

approximation algorithms whose approximate ratios grow with n. 

Vertex Cover 



A Vertex Cover of a graph G is a set of vertices such that each edge in G is incident to at least one of 

these vertices. 

The decision vertex-cover problem was proven NPC. Now, we want to solve the optimal version of the 

vertex cover problem, i.e., we want to find a minimum size vertex cover of a given graph. We call such 

vertex cover an optimal vertex cover C*. 

 

An approximate algorithm for vertex cover: 

1. Approx-Vertex-Cover (G = (V, E))   

2. {              

3.        C = empty-set;   

4.     E'= E;   

5.     While E' is not empty do   

6.       {   

7.     Let (u, v) be any edge in E': (*)   

8.     Add u and v to C;   

9.     Remove from E' all edges incident to   

10.        u or v;   

11.       }   

12.     Return C;   

13. }   

The idea is to take an edge (u, v) one by one, put both vertices to C, and remove all the edges incident to u 

or v. We carry on until all edges have been removed. C is a VC. But how good is C? 



 
VC = {b, c, d, e, f, g} 

What is a Randomized Algorithm? 
An algorithm that uses random numbers to decide what to do next anywhere in its 

logic is called Randomized Algorithm.. For example, in Randomized Quick Sort, we 

use random number to pick the next pivot (or we randomly shuffle the array). And 

in Karger’s algorithm, we randomly pick an edge. 

 

How to analyse Randomized Algorithms? 
Some randomized algorithms have deterministic time complexity. For 

example, this implementation of Karger’s algorithm has time complexity as O(E). 

Such algorithms are called Monte Carlo Algorithms and are easier to analyse for 

worstcase. 

On the other hand, time complexity of other randomized algorithms (other than Las 

Vegas) is dependent on value of random variable. Such Randomized algorithms are 

called Las Vegas Algorithms. These algorithms are typically analysed for expected 

worst case. To compute expected time taken in worst case, all possible values of the 

used random variable needs to be considered in worst case and time taken by every 

possible value needs to be evaluated. Average of all evaluated times is the expected 

worst case time complexity. Below facts are generally helpful in analysis os such 

algorithms. 

LinearityofExpectation 

Expected Number of Trials until Success. 
For example consider below a randomized version of QuickSort. 

A Central Pivot is a pivot that divides the array in such a way that one side has at-

least 1/4 elements. 
// Sorts an array arr[low..high] 

randQuickSort(arr[], low, high) 
 

1. If low >= high, then EXIT. 

 

2. While pivot 'x' is not a Central Pivot. 

https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/linearity-of-expectation/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/


  (i)   Choose uniformly at random a number from [low..high].  

        Let the randomly picked number number be x. 

  (ii)  Count elements in arr[low..high] that are smaller  

        than arr[x]. Let this count be sc. 

  (iii) Count elements in arr[low..high] that are greater  

        than arr[x]. Let this count be gc. 

  (iv)  Let n = (high-low+1). If sc >= n/4 and 

        gc >= n/4, then x is a central pivot. 

 

3. Partition arr[low..high] around the pivot x. 

 

4. // Recur for smaller elements 

   randQuickSort(arr, low, sc-1)  

 

5. // Recur for greater elements 

   randQuickSort(arr, high-gc+1, high)  

The important thing in our analysis is, time taken by step 2 is O(n). 

How many times while loop runs before finding a central pivot? 
The probability that the randomly chosen element is central pivot is 1/2. 

Therefore, expected number of times the while loop runs is 2 (See this for details) 

Thus, the expected time complexity of step 2 is O(n). 

What is overall Time Complexity in Worst Case? 
In worst case, each partition divides array such that one side has n/4 elements and 

other side has 3n/4 elements. The worst case height of recursion tree is Log 3/4 n which 

is O(Log n). 
 

T(n) < T(n/4) + T(3n/4) + O(n) 

T(n) < 2T(3n/4) + O(n) 

 

Solution of above recurrence is O(n Log n)  

Note that the above randomized algorithm is not the best way to implement 

randomized Quick Sort. The idea here is to simplify the analysis as it is simple to 

analyse. 

Typically, randomized Quick Sort is implemented by randomly picking a pivot (no 
loop). Or by shuffling array elements.  

 

https://www.geeksforgeeks.org/expected-number-of-trials-before-success/
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