
B.E-CSE 2018-2019

15BECS405 DESIGN AND ANALYSIS OF ALGORITHMS 3H-5C

Instruction Hours/week: L:3 T:0 P:4 Marks: Internal:40 External:60 Total:100

End Semester Exam:3 Hours

COURSE OBJECTIVES:
• A n a l y z e the asymptotic performance of algorithms.
• Write rigorous correctness proofs for algorithms.
• D e m o n s t r a t e a familiarity with major algorithms and data structures.
• A p p l y important algorithmic design paradigms and methods of analysis.
• S y n t h e s i z e efficient algorithms in common engineering design situations.

COURSE OUTCOMES:

• For a given algorithms analyze worst-case running times of algorithms
based on asymptotic analysis and justify the correctness of algorithms .

• Describe the greedy paradigm and explain when an algorithmic design
situation calls for it. For a given problem develop the greedy algorithms.

• Describe the divide-and-conquer paradigm and explain when an
algorithmic design situation calls for it. Synthesize divide-and-conquer
algorithms. Derive and solve recurrence relation.

• Describe the dynamic-programming paradigm and explain when an
algorithmic

design situation calls for it. For a given problems of dynamic-programming and
develop the dynamic programming algorithms, and analyze it to determine its

computational complexity.
• For a given model engineering problem model it using graph and

write the corresponding algorithm to solve the problems.
• Explain the ways to analyze randomized algorithms (expected running

time, probability of error).
• Explain what an approximation algorithm is. Compute the approximation

factor of an approximation algorithm (PTAS and FPTAS).
UNIT 1:
Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic
analysis of complexity bounds – best, average and worst-case behavior;
Performance measurements of
Algorithm, Time and space trade-offs, Analysis of recursive algorithms
through recurrence relations: Substitution method, Recursion tree method and Masters’
theorem.

UNIT 2:
Fundamental Algorithmic Strategies: Brute-Force, Greedy,Dynamic Programming,
Branch- and-Bound and Backtracking methodologies for the design of

algorithms; Illustrations
of these techniques for Problem-Solving , Bin Packing, Knap Sack TSP. Heuristics
–
characteristics and their application domains.

UNIT 3:
Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and
Breadth
First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning
Tree,
Topological sorting, Network Flow Algorithm.
UNIT 4:
Tractable and Intractable Problems: Computability of Algorithms, Computability classes –
P,
NP, NP-complete and NP-hard. Cook’s theorem, Standard NP-complete problems
and
Reduction techniques.

UNIT 5:
Advanced Topics: Approximation algorithms, Randomized algorithms, Class of
problems beyond NP – P SPACE

TEXT BOOKS:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E
Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

REFERENCES:
1. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
2. Algorithm Design: Foundations, Analysis, and Internet Examples, Second

Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
3. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-

Wesley, Reading, MA.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Subject Name: DESIGN AND ANA

S.No Topic Name

1 Introduction: Characteristic

2
Analysis of algorithm:
complexity bounds

3 Best, average and worst-ca

4
Performance measuremen

Algorithm
5 Time and space trade-
6 Analysis of recursive

7
Analysis of recursive
relations

8 Substitution method
9 Recursion tree method

10 Masters’ theorem
11 Tutorial : Analysis of Algorithm

Total

 UNIT- II FU

12 Brute-Force methodologies
13 Greedy methodologies
14 Dynamic Programming met
15 Branch- and-Bound methodo
16 Backtracking methodologi

17 Illustrations
of these techniques for P

18 Bin Packing
19 Knap Sack TSP

20
Heuristics –
characteristics and their app

21 Tutorial : Algorithm Strategy

Total

KARPAGAM ACADEMY OF HIGHER EDUCATION

Faculty of Engineering

Lecture Plan

ANALYSIS OF ALGORITHMS Subject Code:

Topic Name
No.of

Periods

Supporting

Materials

UNIT- I INTRODUCTION

cs of algorithm. 1
: Asymptotic analysis of

1

ase behavior 1

nts of
1

-offs 1

 algorithms 1
 algorithms through recurrence

1

1
1
1

Analysis of Algorithm 1

Total 11

UNDAMENTAL ALGORITHMIC STRAT

 1
1

thodologies 1
ologies 1
ies 1

Problem-Solving 1
1
1

plication domains 1
Algorithm Strategy 1

Total 10

Subject Code: 15BECS405

Supporting

Materials

Teachi

ng

Aids

R[1]-1 BB

R[1]-1 BB

R[1]-5 PPT

R[1]-6 PPT

R[1]-6 PPT

R[1]-95 PPT

R[1]-95 PPT

R[1]-68 BB

Web PPT

R[1]-12 BB

Web BB

TEGIES

R[1]-200 PPT

web PPT

R[1] 201 BB

R[1]214 PPT

R[1]214 PPT

R[1]218 PPT

R[1]218 PPT

R[1]218 PPT

R[1]221 BB

R[1]221 PPT

 UNIT- III GRAPH AND TREE ALGORITHMS

22 Graph and Tree Algorithms 1 web PPT

23 Traversal algorithms 1 web PPT

24 Depth First Search (DFS) 1 web PPT

25 Breadth First Search 1 T[1]-488 BB

26 Shortest path algorithms 1 T[1]-193 PPT

27 Transitive closure 1 T[1]-266 BB

28 Minimum Spanning Tree 1 T[1]-305 PPT

29 Topological sorting 1 T[1]-343 BB

30 Network Flow Algorithm 1 web PPT

31 Tutorial: Real-time application 1 web PPT

 Total 10
 UNIT- IV TRACTABLE AND INTRACTABLE PROBLEMS

32 Computability of Algorithms 1 R[1]-139 PPT

33 Computability classes 1 R[1]-139 PPT

34 P-Class 1 T[1]-140 PPT

35 NP-Class 1 R[1]-152 BB

36 NP-complete 1 R[1]-159 PPT

37 NP-hard 1 R[1]-162 BB

38 Cook’s theorem 1 R[1]-163 PPT

39 Standard NP-complete problems 1 R[1]-133 PPT

40 Reduction techniques 1 web PPT

41 Tutorial : List of problems in NP hard 1 R[1]-133 BB

Total 10
 UNIT- V ADVANCED TOPICS

42 Approximation algorithms 1 R[1]-248 PPT

43 Approximation algorithms: Problems 1 R[1]-465 BB

44 Class of problems 1 R[1]-465 BB

45 Class of problems :Example Problems 1 R[1]-255 PPT

46 Class of problems: Example Problems 1 R[1]-248 PPT

47 NP SPACE 1 T[1]-1087 PPT

48 beyond NP SPACE 1 T[1]-1087 PPT

49 P SPACE 1 T[1]-690 BB

50 Tutorial: Approximation algorithm 1 T[1]-690 PPT

51 Revisions 1 T[1]-752 BB

52 Discussion on Previous University Question Papers

Total 10
 Total Hours 52

TEXT BOOKS

S.NO Title of the book

Year of

publica

tion

1 Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E
Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2012

2
Fundamentals of Algorithms – E. Horowitz et al.

2013

REFERNCE BOOKS

S.NO Title of the book

Year of

publica

tion

1 Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson 2011

2

Algorithm Design: Foundations, Analysis, and Internet Examples, Second
Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

2012

3
 Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-
Wesley, Reading, MA.

2011

WEBSITES

1. https://www.javatpoint.com/daa-tutorial
2. https://nptel.ac.in/content/syllabus_pdf/106106131.pdf

UNIT-1

1. Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the following

characteristics −

 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or

phases), and their inputs/outputs should be clear and must lead to only one meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and should match

the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which should be

independent of any programming code.

2. Analysis of Algorithm

Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing of

its run-time performance. Using asymptotic analysis, we can very well conclude the best case,

average case, and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to

work in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical

units of computation. For example, the running time of one operation is computed as f(n) and

may be for another operation it is computed as g(n
2
). This means the first operation running

time will increase linearly with the increase in n and the running time of the second operation

will increase exponentially when n increases. Similarly, the running time of both operations will

be nearly the same if n is significantly small.

Usually, the time required by an algorithm falls under three types −

 Best Case − Minimum time required for program execution.

 Average Case − Average time required for program execution.

 Worst Case − Maximum time required for program execution.

3. Asymptotic Notations

Following are the commonly used asymptotic notations to calculate the running time

complexity of an algorithm.

 Ο Notation

 Ω Notation

 θ Notation

Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time.

It measures the worst case time complexity or the longest amount of time an algorithm can

possibly take to complete.

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time.

It measures the best case time complexity or the best amount of time an algorithm can possibly

take to complete.

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound of an

algorithm's running time. It is represented as follows −

Common Asymptotic Notations

Following is a list of some common asymptotic notations −

constant − Ο(1)

logarithmic − Ο(log n)

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n
2
)

cubic − Ο(n
3
)

polynomial − n
Ο(1)

exponential − 2
Ο(n)

4. Fundamentals of Algorithmic problem solving

• Understanding the problem

• Ascertain the capabilities of the computational device

• Exact /approximate soln.

• Decide on the appropriate data structure

• Algorithm design techniques

• Methods of specifying an algorithm

• Proving an algorithms correctness

• Analysing an algorithm

Understanding the problem:The problem given should be understood completely.Check if it is

similar to some standard problems & if a Known algorithm exists.otherwise a new algorithm has

to be devised.Creating an algorithm is an art which may never be fully automated. An important

step in the design is to specify an in- stance of the problem.

Ascertain the capabilities of the computational device: Once a problem is understood we need

to Know the capabilities of the computing device this can be done by Knowing the type of the

architecture,speed & memory availability.

Exact /approximate soln.: Once algorithm is devised, it is necessary to show that it computes

answer for all the possible legal inputs. The solution is stated in two forms,Exact solution or

approximate solution.examples of problems where an exact solution cannot be obtained are

i)Finding a squareroot of number.

ii)Solutions of non linear equations.

Decide on the appropriate data structure:Some algorithms do not demand any in- genuity in

representing their inputs.Someothers are in fact are predicted on ingenious data structures.A

data type is a well-defined collection of data with a well-defined set of operations on it.A

data structure is an actual implementation of a particular abstract data type. The Elementary Data

Structures are ArraysThese let you access lots of data fast. (good) .You can have arrays

of any other da ta type. (good) .However, you cannot make arrays bigger if your program decides

it needs more space. (bad) .

RecordsThese let you organize non-homogeneous data into logical packages to keep every- thing

together. (good) .These packages do not include operations, just data fields (bad, which is why

we need objects) .Records do not help you process distinct items in loops (bad, which is why

arrays of records are used) SetsThese let you represent subsets of a set with such operations as

intersection, union, and equivalence. (good) .Built-in sets are limited to a certain small size. (bad,

but we can build our own set data type out of arrays to solve this problem if necessary)

Algorithm design techniques: Creating an algorithm is an art which may never be fully au-

tomated. By mastering these design strategies, it will become easier for you to devise new and

useful algorithms. Dynamic programming is one such technique. Some of the techniques are

especially useful in fields other then computer science such as operation research and electric- al

engineering. Some important design techniques are linear, non linear and integer programming

Methods of specifying an algorithm: There are mainly two options for specifying an algorithm:

use of natural language or pseudocode & Flowcharts.

A Pseudo code is a mixture of natural language & programming language like constructs. A

flowchart is a method of expressing an algorithm by a collection of connected geometric shapes.

Proving an algorithms correctness: Once algorithm is devised, it is necessary to show that it

computes answer for all the possible legal inputs .We refer to this process as algorithm

validation. The process of validation is to assure us that this algorithm will work correctly

independent of issues concerning programming language it will be written in. A proof of

correctness requires that the solution be stated in two forms. One form is usually as a program

which is annotated by a set of assertions about the input and output variables of a program. These

assertions are often expressed in the predicate calculus. The second form is called a specification,

and this may also be expressed in the predicate calculus. A proof consists of showing that these

two forms are equivalent in that for every given legal input, they describe same out- put. A

complete proof of program correctness requires that each statement of programming language be

precisely defined and all basic operations be proved correct. All these details may cause proof to

be very much longer than the program.

5. (a). Time Complexity of Algorithms

For any defined problem, there can be N number of solution. This is true in general. If I have a

problem and I discuss about the problem with all of my friends, they will all suggest me different

solutions. And I am the one who has to decide which solution is the best based on the

circumstances.

Similarly for any problem which must be solved using a program, there can be infinite number of

solutions. Let's take a simple example to understand this. Below we have two different

algorithms to find square of a number(for some time, forget that square of any number n is n*n):

One solution to this problem can be, running a loop for n times, starting with the number n and

adding n to it, every time.

/*

 we have to calculate the square of n

*/

for i=1 to n

 do n = n + n

// when the loop ends n will hold its square

return n

Or, we can simply use a mathematical operator * to find the square.

/*

 we have to calculate the square of n

*/

return n*n

In the above two simple algorithms, you saw how a single problem can have many solutions.

While the first solution required a loop which will execute for n number of times, the second

solution used a mathematical operator * to return the result in one line. So which one is the better

approach, of course the second one.

What is Time Complexity?

Time complexity of an algorithm signifies the total time required by the program to run till its

completion.

The time complexity of algorithms is most commonly expressed using the big O notation. It's an

asymptotic notation to represent the time complexity. We will study about it in detail in the next

tutorial.

Time Complexity is most commonly estimated by counting the number of elementary steps

performed by any algorithm to finish execution. Like in the example above, for the first code the

loop will run n number of times, so the time complexity will be n atleast and as the value

of n will increase the time taken will also increase. While for the second code, time complexity is

constant, because it will never be dependent on the value of n, it will always give the result in 1

step.

And since the algorithm's performance may vary with different types of input data, hence for an

algorithm we usually use the worst-case Time complexity of an algorithm because that is the

maximum time taken for any input size.

Calculating Time Complexity

Now lets tap onto the next big topic related to Time complexity, which is How to Calculate Time

Complexity. It becomes very confusing some times, but we will try to explain it in the simplest

way.

Now the most common metric for calculating time complexity is Big O notation. This removes

all constant factors so that the running time can be estimated in relation to N, as N approaches

infinity. In general you can think of it like this :

statement;

Above we have a single statement. Its Time Complexity will be Constant. The running time of

the statement will not change in relation to N.

for(i=0; i < N; i++)

{

 statement;

}

The time complexity for the above algorithm will be Linear. The running time of the loop is

directly proportional to N. When N doubles, so does the running time.

for(i=0; i < N; i++)

{

 for(j=0; j < N;j++)

 {

 statement;

 }

}

This time, the time complexity for the above code will be Quadratic. The running time of the

two loops is proportional to the square of N. When N doubles, the running time increases by N *

N.

(b). Space Complexity of Algorithms

Whenever a solution to a problem is written some memory is required to complete. For any

algorithm memory may be used for the following:

1. Variables (This include the constant values, temporary values)

2. Program Instruction

3. Execution

Space complexity is the amount of memory used by the algorithm (including the input values to

the algorithm) to execute and produce the result.

Sometime Auxiliary Space is confused with Space Complexity. But Auxiliary Space is the extra

space or the temporary space used by the algorithm during it's execution.

Space Complexity = Auxiliary Space + Input space

Memory Usage while Execution

While executing, algorithm uses memory space for three reasons:

1. Instruction Space

It's the amount of memory used to save the compiled version of instructions.

2. Environmental Stack

Sometimes an algorithm(function) may be called inside another algorithm(function). In

such a situation, the current variables are pushed onto the system stack, where they wait

for further execution and then the call to the inside algorithm(function) is made.

For example, If a function A() calls function B() inside it, then all th variables of the

function A() will get stored on the system stack temporarily, while the function B() is

called and executed inside the funciton A().

3. Data Space

Amount of space used by the variables and constants.

But while calculating the Space Complexity of any algorithm, we usually consider only Data

Space and we neglect the Instruction Space and Environmental Stack.

Calculating the Space Complexity

For calculating the space complexity, we need to know the value of memory used by different

type of datatype variables, which generally varies for different operating systems, but the method

for calculating the space complexity remains the same.

Type Size

bool, char, unsigned char, signed char, __int8 1 byte

__int16, short, unsigned short, wchar_t, __wchar_t 2 bytes

float, __int32, int, unsigned int, long, unsigned long 4 bytes

double, __int64, long double, long long 8 bytes

Now let's learn how to compute space complexity by taking a few examples:

{

 int z = a + b + c;

 return(z);

}

In the above expression, variables a, b, c and z are all integer types, hence they will take up 4

bytes each, so total memory requirement will be (4(4) + 4) = 20 bytes, this additional 4 bytes is

for return value. And because this space requirement is fixed for the above example, hence it is

called Constant Space Complexity.

Let's have another example, this time a bit complex one,

// n is the length of array a[]

int sum(int a[], int n)

{

 int x = 0; // 4 bytes for x

 for(int i = 0; i < n; i++) // 4 bytes for i

 {

 x = x + a[i];

 }

 return(x);

}

 In the above code, 4*n bytes of space is required for the array a[] elements.

 4 bytes each for x, n, i and the return value.

Hence the total memory requirement will be (4n + 12), which is increasing linearly with the

increase in the input value n, hence it is called as Linear Space Complexity.

Similarly, we can have quadratic and other complex space complexity as well, as the complexity

of an algorithm increases.

But we should always focus on writing algorithm code in such a way that we keep the space

complexity minimum.

UNIT-II

1. Brute Force Algorithm

The brute force algorithm consists in checking, at all positions in the text between 0 and n-m,

whether an occurrence of the pattern starts there or not. Then, after each attempt, it shifts the pattern by

exactly one position to the right.

The brute force algorithm requires no preprocessing phase, and a constant extra space in addition

to the pattern and the text. During the searching phase the text character comparisons can be done in
any order.

The time complexity of this searching phase is O(mn) (when searching for a
m-1

b in a
n
 for

instance). The expected number of text character comparisons is 2n.

Main Features

 no preprocessing phase

 constant extra space needed

 always shifts the window by exactly 1 position to the right

 comparisons can be done in any order

 searching phase in O(mn) time complexity

 2n expected text characters comparisons

EXAMPLE

Bubble sort is one of the simple sorting algorithms and also popularly known as a Brute Force

Approach. The logic of the algorithm is very simple as it works by repeatedly iterating through a list of

elements, comparing two elements at a time and swapping them if necessary until all the elements are

swapped to an order.

For e.g. if we have a list of 10 elements, bubble sort starts by comparing the first two elements in the list.

If the second element is smaller than the first element then it exchanges them. Then it compares the

current second element with the third element in the list. This continues until the second last and the last

element is compared which completes one iteration through the list. By the time it completes the first

iteration the largest element in the list comes to the rightmost position.

The algorithm gets its name as we start from lowest point and “bubble up” the higher elements to the

highest point in the list. We can also follow other approach where we start from highest point and “bubble

down” lowest elements in the list. Since it only uses comparisons to operate on elements, it is a

comparison sort.

As we can see in above example the list sorted by third iteration and it is useless to go for 4th and 5th

iterations. So we use a flag which determines whether a swap operation is done in last iteration or not. If a

swap operation is not done in last iteration we will stop remaining iterations since the list is already in

sorted order. For the above example we will stop iterating once third iteration is done as the whole list is

sorted by then.

Pseudo-code

procedure bubbleSort(A : list of sortable items)

 repeat

 swapped = false

 for i = 0 to length(A) - 1

 if A[i] > A[i+1] then

 swap(A[i], A[i+1])

 swapped = true

 end if

 end for

 until not swapped

end procedure

2. Greedy Method

 Greedy method is the most straightforward designed technique.

 As the name suggest they are short sighted in their approach taking decision on the basis

of the information immediately at the hand without worrying about the effect these

decision may have in the future.

DEFINITION:

 A problem with N inputs will have some constraints .any subsets that satisfy these

constraints are called a feasible solution.

 A feasible solution that either maximize can minimize a given objectives function is

called an optimal solution.

Control algorithm for Greedy Method:

1.Algorithm Greedy (a,n)

2.//a[1:n] contain the „n‟ inputs

3. {

4.solution =0;//Initialise the solution.

5.For i=1 to n do

6.{

7.x=select(a);

8.if(feasible(solution,x))then

9.solution=union(solution,x);

10.}

11.return solution;

12.}

* The function select an input from a[] and removes it. The select input value is assigned to X.

 Feasible is a Boolean value function that determines whether X can be included into the

solution vector.

 The function Union combines X with The solution and updates the objective function.

 The function Greedy describes the essential way that a greedy algorithm will once a

particular problem is chosen ends the function subset, feasible & union are properly

implemented.

Example

Knapsack Problem

 We are given n objects and knapsack or bag with capacity M object I has a weight Wi

where I varies from 1 to N.

 The problem is we have to fill the bag with the help of N objects and the resulting profit

has to be maximum.

 Formally the problem can be stated as

Maximize xipi subject to XiWi<=M

Where Xi is the fraction of object and it lies between 0 to 1.

 There are so many ways to solve this problem, which will give many feasible solution for

which we have to find the optimal solution.

 But in this algorithm, it will generate only one solution which is going to be feasible as

well as optimal.

 First, we find the profit & weight rates of each and every object and sort it according to

the descending order of the ratios.

 Select an object with highest p/w ratio and check whether its height is lesser than the

capacity of the bag.

 If so place 1 unit of the first object and decrement .the capacity of the bag by the weight

of the object you have placed.

 Repeat the above steps until the capacity of the bag becomes less than the weight of the

object you have selected .in this case place a fraction of the object and come out of the

loop.

 Whenever you selected.

ALGORITHM:

1.Algorityhm Greedy knapsack (m,n)

2//P[1:n] and the w[1:n]contain the profit

3.// & weight res‟.of the n object ordered.

4.//such that p[i]/w[i] >=p[i+1]/W[i+1]

5.//n is the Knapsack size and x[1:n] is the solution vertex.

6.{

7.for I=1 to n do a[I]=0.0;

8.U=n;

9.For I=1 to n do

10.{

11.if (w[i]>u)then break;

13.x[i]=1.0;U=U-w[i]

14.}

15.if(i<=n)then x[i]=U/w[i];

16.}

Example:

Capacity=20

N=3 ,M=20

Wi=18,15,10

Pi=25,24,15

Pi/Wi=25/18=1.36,24/15=1.6,15/10=1.5

Descending Order Pi/Wi1.6 1.5 1.36

Pi = 24 15 25

Wi = 15 10 18

 Xi = 1 5/10 0

PiXi=1*24+0.5*1531.5

The optimal solution is 31.5

X1 X2 X3 WiXi PiXi
½ 1/3 ¼ 16.6 24.25

1 2/5 0 20 18.2

0 2/3 1 20 31

0 1 ½ 20 31.5

Of these feasible solution Solution 4 yield the Max profit .As we shall soon see this solution is

optimal for the given problem instance.

3. Dynamic program general method

 It is an algorithm design method that can be used when the solution to a problem can be

viewed as the result of a sequence of decisions.

 The idea of dynamic programming is thus quit simple: avoid calculating the same thing

twice, usually by keeping a table of known result that fills up a sub instances are solved.

 Divide and conquer is a top-down method. When a problem is solved by divide and

conquer, we immediately attack the complete instance, which we then divide into smaller

and smaller sub-instances as the algorithm progresses.

 Dynamic programming on the other hand is a bottom-up technique. We usually start with

the smallest and hence the simplest sub- instances. By combining their solutions, we

obtain the answers to sub-instances of increasing size, until finally we arrive at the

solution of the original instances.

 The essential difference between the greedy method and dynamic programming is that

the greedy method only one decision sequence is ever generated. In dynamic

programming, many decision sequences may be generated. However, sequences

containing sub-optimal sub-sequences cannot be optimal and so will not be generated.

Because of principle of optimality, decision sequences containing subsequences that are

suboptimal are not considered. Although the total number of different decision sequences is

exponential in the number of decisions(if there are d choices for each of the n decisions to be

made then there are d
n
 possible decision sequences),Dynamic programming algorithms often

have a polynomial complexity.

Example

All Pair Shortest Path Algorithm

 Let G(V,E) be a directed graph with n vertices , „E‟ is the set of edges & V is the set of n

vertices.

 Each edge has an associated non-negative length.

 We want to calculate the length of the shortest path between each pair of nodes.

 i.e)Shortest path between every vertex to all other vertices.

 Suppose the nodes of G are numbered from 1 to n, so n={1,2,...n}

 cost (i,j) is length of edge <i,j> and it is called as cost adjacency matrix.

 cost(i,i)=0 for i=1,2...n,

 cost(i,j)=cost of edge <i,j> for all i&j

 costi,j)=infinity, if the edge (i,j) does not exist.

 The all pairs shortest path problem is to determine a matrix A such that A(i,j) is the length

of a shortest path from i to j.

 The principle of optimality:

 If k is the node on the shortest path from i to j then the part of the path from i to k

and the part from k to j must also be optimal, that is shorter.

 First create a cost adjacency matrix for the given graph.

 Copy the above matrix to matrix D,which will give the direct distance between nodes.

 We have to perform n*n iterations for each iteration of k. The matrix D will give you the

distance between nodes with only (1,2...,k)as intermediate nodes.

 At the iteration k,we have to check for each pair of nodes (i,j) whether or not there exists a

path from i to j passing through node k.

 Likewise we have to find the value for n iterations (ie) for n nodes.

15

 30

 5

 5 50 5 15

 15

 Fig: floyd’s algorithm and work

ALGORITHM :

Algorithm Allpaths(cost,A,n)

//cost[1…n,1…n] is the cost adjacency matrix of graph with n vertices

//A[i,j] is the cost of shortest path from vertex i to j

//cost[i,i]=0.0 for 1<=i<=n

{

 for i:=1 to n do

 for j:=1 to n do

 A[i,j]:=cost[i,j]; //copy cost into A

for k:=1 to n do

 for i:=1 to n do

 for j:=1 to n do

 A[i,j]:=min{A[i,j], A[i,k]+ A[k,j];

}

COST ADJACENCY MATRIX :

 At 0
th

 iteration it nil give you the direct distances between any 2 nodes

 0 5

 50 0 15 5

cost(i,j) = A(i,j) = D0 = 30 0 15

 15 5 0

 It gives the direct distances between the two nodes.

 At 1
st
 iteration we have to check the each pair(i,j) whether there is a path through node 1.if

so we have to check whether it is minimum than the previous value and if i is so than the

distance through 1 is the value of d1(i,j).at the same time we have to solve the intermediate

node in the matrix position p(i,j).

for k= 1 to 4

 When k=1

 for i= 1 to 4

when i=1

 for j= 1 to 4

 when j=1

 A[1,1]=min(A[1,1],a[1,1]+A[1,1])=min(0,0)=0

 When j=2

 A[1,2]=min(A[1,2],A[1,1]+A[1,2])=min(5,0+5)=5

 When j=3

 A[1,3]=min(A[1,3],A[1,1]+A[1,3])=min(,0+)=

 When j=4

 A[1,4]=min(A[1,4],A[1,1]+A[1,4])=min(,0+)=

 When i=2

 for j= 1 to 4

 when j=1

 A[2,1]=min(A[2,1],A[2,1]+A[1,1])=min(50,50+0)=50

 When j=2

 A[2,2]=min(A[2,2],A[2,1]+A[1,2])=min(0,50+5)=0

 When j=3

 A[2,3]=min(A[2,3],A[2,1]+A[1,3])=min(15,50+)=15

 When j=4

 A[2,4]=min(A[2,4],A[2,1]+A[1,4])=min(5,50+)=5

 When i=3

 for j= 1 to 4

 when j=1

 A[3,1]=min(A[3,1],A[3,1]+A[1,1])=min(30,30+0)=30

 When j=2

 A[3,2]=min(A[3,2],A[3,1]+A[1,2])=min(,30+5)=35

 When j=3

 A[3,3]=min(A[3,3],A[3,1]+A[1,3])=min(0,30+)=0

 When j=4

 A[3,4]=min(A[3,4],A[3,1]+A[1,4])=min(15,30+)=15

 When i=4

 for j= 1 to 4

 when j=1

 A[4,1]=min(A[4,1],A[4,1]+A[1,1])=min(15,15+0)=15

 When j=2

 A[4,2]=min(A[4,2],A[4,1]+A[1,2])=min(,15+5)=20

 When j=3

 A[4,3]=min(A[4,3],A[4,1]+A[1,3])=min(5,15+)=5

 When j=4

 A[4,4]=min(A[4,4],A[4,1]+A[1,4])=min(0,15+)=0

k

i j A[i,j]

1 1 1 0

 2 5

 3

 4

 2 1 50

 2 0

 3 15

 4 5

 3 1 30

 2 35

 3 0

 4 15

 4 1 15

 2 20

 3 5

 4 0

 0 5 0 0 0 0

50 0 15 5 P[3,2]= 1 0 0 0 0

 D1= 30 35 0 15 P[4,2]= 1 P1= 0 1 0 0

 15 20 5 0 0 1 0 0

When k=2,we have obtained the matrix D2 and P2

 0 5 2010P[1,3] = 2 0 0 2 2

 D2= 50 0 15 5 P[1,4] = 2 P2= 0 0 0 0

30 35 0 15 0 1 0 1

15 20 5 0 0 1 0 0

 0 5 20 10

 D3= 45 0 15 5 P[2,1]=3

 30 35 0 15

 15 20 5 0

 0 5 15 10

 20 0 10 5 P[1,3]=4

 D4= 30 35 0 15 P[2,3]=4

15 20 5 0

 D4 will give the shortest distance between any pair of nodes.

 If you want the exact path then we have to refer the matrix p.The matrix will be,

 0 0 4 2

 3 0 4 0 0 direct path

 P= 0 1 0 0

 0 1 0 0

 Since,p[1,3]=4,the shortest path from 1 to3 passes through 4.

 Looking now at p[1,4]&p[4,3] we discover that between 1 & 4, we have to go to node 2

but that from 4 to 3 we proceed directly.

 Finally we see the trips from 1 to 2, & from 2 to 4, are also direct.

 The shortest path from 1 to 3 is 1,2,4,3.

ALGORITHM :

Function Floyd (L[1..r,1..r]):array[1..n,1..n]

array D[1..n,1..n]

D = L

For k = 1 to n do

For i = 1 to n do

For j = 1 to n do

D [i , j] = min (D[i, j], D[i, k] + D[k, j]

Return D

ANALYSIS:

This algorithm takes a time of (n
3
)

4. Backtracking method

 It is one of the most general algorithm design techniques.

 Many problems which deal with searching for a set of solutions or for a optimal solution

satisfying some constraints can be solved using the backtracking formulation.

 To apply backtracking method, tne desired solution must be expressible as an n-tuple

(x1…xn) where xi is chosen from some finite set Si.

 The problem is to find a vector, which maximizes or minimizes a criterion function

P(x1….xn).

 The major advantage of this method is, once we know that a partial vector (x1,…xi) will

not lead to an optimal solution that (mi+1………..mn) possible test vectors may be ignored

entirely.

 Many problems solved using backtracking require that all the solutions satisfy a complex

set of constraints.

 These constraints are classified as:

 i) Explicit constraints.

 ii) Implicit constraints.

1) Explicit constraints:

 Explicit constraints are rules that restrict each Xi to take values only from a given

set.

 Some examples are,

Xi0 or Si = {all non-negative real nos.}

Xi =0 or 1 or Si={0,1}.

LiXiUi or Si= {a: Li aUi}

 All tupules that satisfy the explicit constraint define a possible solution space for I.

2) Implicit constraints:

 The implicit constraint determines which of the tuples in the solution space I can

actually satisfy the criterion functions.

Algorithm:

Algorithm IBacktracking (n)

// This schema describes the backtracking procedure .All solutions are generated in X[1:n]

//and printed as soon as they are determined.

 {

 k=1;

 While (k 0) do

 {

 if (there remains all untried

 X[k] T (X[1],[2],…..X[k-1]) and Bk (X[1],…..X[k])) is true) then

 {

 if(X[1],……X[k])is the path to the answer node)

 Then write(X[1:k]);

 k=k+1; //consider the next step.

 }

 else k=k-1; //consider backtracking to the previous set.

 }

}

 All solutions are generated in X[1:n] and printed as soon as they are determined.

 T(X[1]…..X[k-1]) is all possible values of X[k] gives that X[1],……..X[k-1] have

already been chosen.

 Bk(X[1]………X[k]) is a boundary function which determines the elements of X[k]

which satisfies the implicit constraint.

 Certain problems which are solved using backtracking method are,

 1. Sum of subsets.

 2. Graph coloring.

 3. Hamiltonian cycle.

 4. N-Queens problem.

Example

Graph coloring

Let „G‟ be a graph and „m‟ be a given positive integer. If the nodes of „G‟ can be colored in such

a way that no two adjacent nodes have the same color. Yet only „M‟ colors are used. So it‟s

called M-color ability decision problem.

 The graph G can be colored using the smallest integer „m‟. This integer is referred to as

chromatic number of the graph.

 A graph is said to be planar iff it can be drawn on plane in such a way that no two edges

cross each other.

 Suppose we are given a map then, we have to convert it into planar. Consider each and

every region as a node. If two regions are adjacent then the corresponding nodes are

joined by an edge.

Consider a map with five regions and its graph.

 4 5

 2

 3

1 is adjacent to 2, 3, 4.

2 is adjacent to 1, 3, 4, 5

3 is adjacent to 1, 2, 4

4 is adjacent to 1, 2, 3, 5

5 is adjacent to 2, 4

Steps to color the Graph:

 First create the adjacency matrix graph(1:m,1:n) for a graph, if there is an edge between

i,j then C(i,j) = 1 otherwise C(i,j) =0.

 The Colors will be represented by the integers 1,2,…..m and the solutions will be stored

in the array X(1),X(2),………..,X(n) ,X(index) is the color, index is the node.

 He formula is used to set the color is,

 X(k) = (X(k)+1) % (m+1)

 First one chromatic number is assigned ,after assigning a number for „k‟ node, we have to

check whether the adjacent nodes has got the same values if so then we have to assign the

next value.

1

1

3

5 4

Al

g

o

ri

t

h

m

m

C

ol

o

ri

n

g(

k)

//

t

h

e

2

 Repeat the procedure until all possible combinations of colors are found.

 The function which is used to check the adjacent nodes and same color is,

If((Graph (k,j) == 1) and X(k) = X(j))

Example:

 N= 4

 M= 3

Adjacency Matrix:

 0 1 0 1

 1 0 1 0

 0 1 0 1

 1 0 1 0

 Problem is to color the given graph of 4 nodes using 3 colors.

Node-1 can take the given graph of 4 nodes using 3 colors.

 The state space tree will give all possible colors in that ,the numbers which are inside the

circles are nodes ,and the branch with a number is the colors of the nodes.

State Space Tree:

1

3

2

4

Algorithm:

Algorithm mColoring(k)

// the graph is represented by its Boolean adjacency matrix G[1:n,1:n] .All assignments //of

1,2,……….,m to the vertices of the graph such that adjacent vertices are assigned //distinct

integers are printed. ‟k‟ is the index of the next vertex to color.

{

repeat

{

 // generate all legal assignment for X[k].

 Nextvalue(k); // Assign to X[k] a legal color.

 If (X[k]=0) then return; // No new color possible.

 If (k=n) then // Almost „m‟ colors have been used to color the „n‟ vertices

 Write(x[1:n]);

 Else mcoloring(k+1);

}until(false);

}

UNIT-III

GRAPH BASIC TERMINOLOGIES

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed as vertices,

and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges,

connecting the pairs of vertices. Take a look at the following graph −

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Graph Data Structure

Mathematical graphs can be represented in data structure. We can represent a graph using an

array of vertices and a two-dimensional array of edges. Before we proceed further, let's

familiarize ourselves with some important terms −

 Vertex − Each node of the graph is represented as a vertex. In the following example, the labeled

circle represents vertices. Thus, A to G are vertices. We can represent them using an array as shown

in the following image. Here A can be identified by index 0. B can be identified using index 1 and so

on.

 Edge − Edge represents a path between two vertices or a line between two vertices. In the following

example, the lines from A to B, B to C, and so on represents edges. We can use a two-dimensional

array to represent an array as shown in the following image. Here AB can be represented as 1 at row

0, column 1, BC as 1 at row 1, column 2 and so on, keeping other combinations as 0.

 Adjacency − Two node or vertices are adjacent if they are connected to each other through an edge.

In the following example, B is adjacent to A, C is adjacent to B, and so on.

 Path − Path represents a sequence of edges between the two vertices. In the following example,

ABCD represents a path from A to D.

Basic Operations

Following are basic primary operations of a Graph −

 Add Vertex − Adds a vertex to the graph.

 Add Edge − Adds an edge between the two vertices of the graph.

 Display Vertex − Displays a vertex of the graph.

TREE BASIC TERMINOLOGIES

Tree represents the nodes connected by edges. We will discuss binary tree or binary search tree

specifically.

Binary Tree is a special data structure used for data storage purposes. A binary tree has a special

condition that each node can have a maximum of two children. A binary tree has the benefits of

both an ordered array and a linked list as search is as quick as in a sorted array and insertion or

deletion operation are as fast as in linked list.

Important Terms

Following are the important terms with respect to tree.

 Path − Path refers to the sequence of nodes along the edges of a tree.

 Root − The node at the top of the tree is called root. There is only one root per tree and one path from

the root node to any node.

 Parent − Any node except the root node has one edge upward to a node called parent.

 Child − The node below a given node connected by its edge downward is called its child node.

 Leaf − The node which does not have any child node is called the leaf node.

 Subtree − Subtree represents the descendants of a node.

 Visiting − Visiting refers to checking the value of a node when control is on the node.

 Traversing − Traversing means passing through nodes in a specific order.

 Levels − Level of a node represents the generation of a node. If the root node is at level 0, then its

next child node is at level 1, its grandchild is at level 2, and so on.

 keys − Key represents a value of a node based on which a search operation is to be carried out for a

node.

Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have a value less than its

parent's value and the node's right child must have a value greater than its parent value.

We're going to implement tree using node object and connecting them through references.

Tree Node

The code to write a tree node would be similar to what is given below. It has a data part and

references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

In a tree, all nodes share common construct.

BST Basic Operations

The basic operations that can be performed on a binary search tree data structure, are the

following −

 Insert − Inserts an element in a tree/create a tree.

 Search − Searches an element in a tree.

 Preorder Traversal − Traverses a tree in a pre-order manner.

 Inorder Traversal − Traverses a tree in an in-order manner.

 Postorder Traversal − Traverses a tree in a post-order manner.

We shall learn creating (inserting into) a tree structure and searching a data item in a tree in this

chapter. We shall learn about tree traversing methods in the coming chapter.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first

locate its proper location. Start searching from the root node, then if the data is less than the key

value, search for the empty location in the left subtree and insert the data. Otherwise, search for

the empty location in the right subtree and insert the data.

Algorithm

If root is NULL

 then create root node

return

If root exists then

 compare the data with node.data

 while until insertion position is located

 If data is greater than node.data

 goto right subtree

 else

 goto left subtree

 endwhile

 insert data

end If

1. Traversal Algorithm

Depth First Search

Depth First Search (DFS) algorithm traverses a graph in a depth wise motion and uses a stack to

remember to get the next vertex to start a search, when a dead end occurs in any iteration.

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first,

then to F and lastly to C. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices

from the stack, which do not have adjacent vertices.)

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description

1

Initialize the stack.

2

Mark S as visited and put it onto the stack.

Explore any unvisited adjacent node from S. We

have three nodes and we can pick any of them.

For this example, we shall take the node in an

alphabetical order.

3

Mark A as visited and put it onto the stack.

Explore any unvisited adjacent node from A.

Both S and D are adjacent to A but we are

concerned for unvisited nodes only.

4

Visit D and mark it as visited and put onto the

stack. Here, we have B and C nodes, which are

adjacent to D and both are unvisited. However,

we shall again choose in an alphabetical order.

5

We choose B, mark it as visited and put onto the

stack. Here B does not have any unvisited

adjacent node. So, we pop B from the stack.

6

We check the stack top for return to the previous

node and check if it has any unvisited nodes.

Here, we find D to be on the top of the stack.

7

Only unvisited adjacent node is

from D is C now. So we visit C, mark it as

visited and put it onto the stack.

As C does not have any unvisited adjacent node so we keep popping the stack until we find a

node that has an unvisited adjacent node. In this case, there's none and we keep popping until

the stack is empty.

Breadth First Search (BFS)

Breadth First Search (BFS) algorithm traverses a graph in a breadth wise motion and uses a

queue to remember to get the next vertex to start a search, when a dead end occurs in any

iteration.

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C

and G lastly to D. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue.

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

Step Traversal Description

1

Initialize the queue.

2

We start from visiting S (starting node), and

mark it as visited.

3

We then see an unvisited adjacent node from S.

In this example, we have three nodes but

alphabetically we choose A, mark it as visited

and enqueue it.

4

Next, the unvisited adjacent node from S is B.

We mark it as visited and enqueue it.

5

Next, the unvisited adjacent node from S is C.

We mark it as visited and enqueue it.

6

Now, S is left with no unvisited adjacent nodes.

So, we dequeue and find A.

7

From A we have D as unvisited adjacent node.

We mark it as visited and enqueue it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep

on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is

over.

2. Shortest Path Algorithm

The shortest path problem is about finding a path between 2 vertices in a graph such that the

total sum of the edges weights is minimum.

Dijkstra's Algorithm

Dijkstra's algorithm has many variants but the most common one is to find the shortest paths

from the source vertex to all other vertices in the graph.

Algorithm Steps:

 Set all vertices distances = infinity except for the source vertex, set the source distance

= 0.

 Push the source vertex in a min-priority queue in the form (distance , vertex), as the

comparison in the min-priority queue will be according to vertices distances.

 Pop the vertex with the minimum distance from the priority queue (at first the popped

vertex = source).

 Update the distances of the connected vertices to the popped vertex in case of "current

vertex distance + edge weight < next vertex distance", then push the vertex

with the new distance to the priority queue.

 If the popped vertex is visited before, just continue without using it.

 Apply the same algorithm again until the priority queue is empty.

Dijkstra’s algorithm finds a shortest path tree from a single source node, by building a set of

nodes that have minimum distance from the source.

The graph has the following:

 vertices, or nodes, denoted in the algorithm by vv or uu;

 weighted edges that connect two nodes: (u,vu,v) denotes an edge,

and w(u,v)w(u,v) denotes its weight. In the diagram on the right, the weight for each

edge is written in gray.

This is done by initializing three values:

 distdist, an array of distances from the source node ss to each node in the graph,

initialized the following way: distdist(ss) = 0; and for all other nodes vv, distdist(vv)

= \infty∞. This is done at the beginning because as the algorithm proceeds,

the distdist from the source to each node vv in the graph will be recalculated and

finalized when the shortest distance to vv is found

 QQ, a queue of all nodes in the graph. At the end of the algorithm's progress, QQ will

be empty.

 SS, an empty set, to indicate which nodes the algorithm has visited. At the end of the

algorithm's run, SS will contain all the nodes of the graph.

The algorithm proceeds as follows:

1. While QQ is not empty, pop the node vv, that is not already in SS, from QQ with the

smallest distdist (vv). In the first run, source node ss will be chosen

because distdist(ss) was initialized to 0. In the next run, the next node with the

smallest distdist value is chosen.

2. Add node vv to SS, to indicate that vv has been visited

3. Update distdist values of adjacent nodes of the current node vv as follows: for each new

adjacent node uu,

 if distdist (vv) + weight(u,v)weight(u,v) < distdist (uu), there is a new minimal

distance found for uu, so update distdist (uu) to the new minimal distance value;

 otherwise, no updates are made to distdist (uu).

The algorithm has visited all nodes in the graph and found the smallest distance to each

node. distdist now contains the shortest path tree from source ss.

Note: The weight of an edge (u,vu,v) is taken from the value associated with (u,vu,v) on the

graph.

Implementation

This is pseudocode for Dijkstra's algorithm, mirroring Python syntax. It can be used in order to

implement the algorithm in any language.

https://brilliant.org/wiki/queues-basic/
https://brilliant.org/wiki/sets/

function Dijkstra(Graph, source):

 dist[source] := 0 // Distance from source to source is set to 0

 for each vertex v in Graph: // Initializations

 if v ≠ source

 dist[v] := infinity // Unknown distance function from source to each node set to infinity

 add v to Q // All nodes initially in Q

 while Q is not empty: // The main loop

 v := vertex in Q with min dist[v] // In the first run-through, this vertex is the source node

 remove v from Q

 for each neighbor u of v: // where neighbor u has not yet been removed from Q.

 alt := dist[v] + length(v, u)

 if alt < dist[u]: // A shorter path to u has been found

 dist[u] := alt // Update distance of u

 return dist[]

 end function

Examples

We step through Dijkstra's algorithm on the graph used in the algorithm above:

1. Initialize distances according to the algorithm.

[3]

https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-3

2. Pick first node and calculate distances to adjacent nodes.

[4]

3. Pick next node with minimal distance; repeat adjacent node distance calculations.

[5]

4. Final result of shortest-path tree[6]

https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-5
https://brilliant.org/wiki/dijkstras-short-path-finder/#citation-6

Transitive Closure of a Graph using DFS

Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex

pairs (u, v) in the given graph. Here reachable mean that there is a path from vertex u to v. The

reach-ability matrix is called transitive closure of a graph.

For example, consider below graph

Transitive closure of above graphs is

 1 1 1 1

 1 1 1 1

 1 1 1 1

 0 0 0 1

Minimum Spanning Tree

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges. Hence, a spanning tree does not have cycles and it cannot be

disconnected..

https://media.geeksforgeeks.org/wp-content/uploads/transitive-closer-graph.png

By this definition, we can draw a conclusion that every connected and undirected Graph G has

at least one spanning tree. A disconnected graph does not have any spanning tree, as it cannot

be spanned to all its vertices.

We found three spanning trees off one complete graph. A complete undirected graph can have

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above

addressed example, n is 3, hence 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a few

properties of the spanning tree connected to graph G −

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree

is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree is maximally

acyclic.

Mathematical Properties of Spanning Tree

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning tree.

 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected

graphs do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph.

Common application of spanning trees are −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge graph and

now plans to deploy telephone lines in such a way that in minimum lines we can connect to all

city nodes. This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than

all other spanning trees of the same graph. In real-world situations, this weight can be measured

as distance, congestion, traffic load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm

We shall learn about two most important spanning tree algorithms here −

 Kruskal's Algorithm

 Prim's Algorithm

Kruskal's algorithm

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This

algorithm treats the graph as a forest and every node it has as an individual tree. A tree connects

to another only and only if, it has the least cost among all available options and does not violate

MST properties.

 To understand Kruskal's algorithm let us consider the following example −

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm

 Step 1 - Remove all loops and Parallel Edges
 Remove all loops and parallel edges from the given graph.

 In case of parallel edges, keep the one which has the least cost associated and remove all

others.

 Step 2 - Arrange all edges in their increasing order of weight
 The next step is to create a set of edges and weight, and arrange them in an ascending

order of weightage (cost).

 Step 3 - Add the edge which has the least weightage

 Now we start adding edges to the graph beginning from the one which has the least

weight. Throughout, we shall keep checking that the spanning properties remain intact.

In case, by adding one edge, the spanning tree property does not hold then we shall

consider not to include the edge in the graph.

 The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does

not violate spanning tree properties, so we continue to our next edge selection.

 Next cost is 3, and associated edges are A,C and C,D. We add them again −

 Next cost in the table is 4, and we observe that adding it will create a circuit in the graph.

−

 We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

 We observe that edges with cost 5 and 6 also create circuits. We ignore them and move

on.

 Now we are left with only one node to be added. Between the two least cost edges

available 7 and 8, we shall add the edge with cost 7.

 By adding edge S,A we have included all the nodes of the graph and we now have

minimum cost spanning tree.

Prim’s Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses the greedy

approach. Prim's algorithm shares a similarity with the shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree and

keeps on adding new nodes to the spanning tree from the given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use the

same example −

Step 1 - Remove all loops and parallel edges

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the

one which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily

chosen, so any node can be the root node. One may wonder why any video can be a root node.

So the answer is, in the spanning tree all the nodes of a graph are included and because it is

connected then there must be at least one edge, which will join it to the rest of the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,

respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the

new edge, which is less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it having the

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included.

UNIT-IV

P and NP Class

In Computer Science, many problems are solved where the objective is to maximize or

minimize some values, whereas in other problems we try to find whether there is a solution or

not. Hence, the problems can be categorized as follows −

Optimization Problem

Optimization problems are those for which the objective is to maximize or minimize some

values. For example,

 Finding the minimum number of colors needed to color a given graph.

 Finding the shortest path between two vertices in a graph.

Decision Problem

There are many problems for which the answer is a Yes or a No. These types of problems are

known as decision problems. For example,

 Whether a given graph can be colored by only 4-colors.

 Finding Hamiltonian cycle in a graph is not a decision problem, whereas checking a graph is

Hamiltonian or not is a decision problem.

What is Language?

Every decision problem can have only two answers, yes or no. Hence, a decision problem may

belong to a language if it provides an answer „yes‟ for a specific input. A language is the totality

of inputs for which the answer is Yes. Most of the algorithms discussed in the previous chapters

are polynomial time algorithms.

For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a constant,

the algorithm is a polynomial time algorithm.

Algorithms such as Matrix Chain Multiplication, Single Source Shortest Path, All Pair Shortest

Path, Minimum Spanning Tree, etc. run in polynomial time. However there are many problems,

such as traveling salesperson, optimal graph coloring, Hamiltonian cycles, finding the longest

path in a graph, and satisfying a Boolean formula, for which no polynomial time algorithms is

known. These problems belong to an interesting class of problems, called the NP-

Complete problems, whose status is unknown.

In this context, we can categorize the problems as follows −

P-Class

The class P consists of those problems that are solvable in polynomial time, i.e. these problems

can be solved in time O(nk) in worst-case, where k is constant.

These problems are called tractable, while others are called intractable or superpolynomial.

Formally, an algorithm is polynomial time algorithm, if there exists a polynomial p(n) such that

the algorithm can solve any instance of size n in a time O(p(n)).

Problem requiring Ω(n50) time to solve are essentially intractable for large n. Most known

polynomial time algorithm run in time O(nk) for fairly low value of k.

The advantages in considering the class of polynomial-time algorithms is that all

reasonable deterministic single processor model of computation can be simulated on each

other with at most a polynomial slow-d

NP-Class

The class NP consists of those problems that are verifiable in polynomial time. NP is the class

of decision problems for which it is easy to check the correctness of a claimed answer, with the

aid of a little extra information. Hence, we aren‟t asking for a way to find a solution, but only to

verify that an alleged solution really is correct.

Every problem in this class can be solved in exponential time using exhaustive search.

P versus NP

Every decision problem that is solvable by a deterministic polynomial time algorithm is also

solvable by a polynomial time non-deterministic algorithm.

All problems in P can be solved with polynomial time algorithms, whereas all problems in NP -

P are intractable.

It is not known whether P = NP. However, many problems are known in NP with the property

that if they belong to P, then it can be proved that P = NP.

If P ≠ NP, there are problems in NP that are neither in P nor in NP-Complete.

The problem belongs to class P if it‟s easy to find a solution for the problem. The problem

belongs to NP, if it‟s easy to check a solution that may have been very tedious to find.

Cook‟s Theorem

Stephen Cook presented four theorems in his paper “The Complexity of Theorem Proving

Procedures”. These theorems are stated below. We do understand that many unknown terms are

being used in this chapter, but we don‟t have any scope to discuss everything in detail.

Following are the four theorems by Stephen Cook −

Theorem-1

If a set S of strings is accepted by some non-deterministic Turing machine within polynomial

time, then S is P-reducible to {DNF tautologies}.

Theorem-2

The following sets are P-reducible to each other in pairs (and hence each has the same

polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {sub-graph pairs}.

Theorem-3

 For any TQ(k) of type Q, TQ(k)k√(logk)2TQ(k)k(logk)2 is unbounded

 There is a TQ(k) of type Q such that TQ(k)⩽2k(logk)2TQ(k)⩽2k(logk)2

Theorem-4

If the set S of strings is accepted by a non-deterministic machine within time T(n) = 2n, and

if TQ(k) is an honest (i.e. real-time countable) function of type Q, then there is a constant K,

so S can be recognized by a deterministic machine within time TQ(K8n).

 First, he emphasized the significance of polynomial time reducibility. It means that if we have a

polynomial time reduction from one problem to another, this ensures that any polynomial time

algorithm from the second problem can be converted into a corresponding polynomial time algorithm

for the first problem.

 Second, he focused attention on the class NP of decision problems that can be solved in polynomial

time by a non-deterministic computer. Most of the intractable problems belong to this class, NP.

 Third, he proved that one particular problem in NP has the property that every other problem in NP

can be polynomially reduced to it. If the satisfiability problem can be solved with a polynomial time

algorithm, then every problem in NP can also be solved in polynomial time. If any problem in NP is

intractable, then satisfiability problem must be intractable. Thus, satisfiability problem is the hardest

problem in NP.

 Fourth, Cook suggested that other problems in NP might share with the satisfiability problem this

property of being the hardest member of NP.

UNIT-V

Approximate Algorithms

Introduction:

An Approximate Algorithm is a way of approach NP-COMPLETENESS for the optimization problem.

This technique does not guarantee the best solution. The goal of an approximation algorithm is to come as

close as possible to the optimum value in a reasonable amount of time which is at the most polynomial

time. Such algorithms are called approximation algorithm or heuristic algorithm.

o For the traveling salesperson problem, the optimization problem is to find the shortest cycle, and

the approximation problem is to find a short cycle.

o For the vertex cover problem, the optimization problem is to find the vertex cover with fewest

vertices, and the approximation problem is to find the vertex cover with few vertices.

Performance Ratios

Suppose we work on an optimization problem where every solution carries a cost. An Approximate

Algorithm returns a legal solution, but the cost of that legal solution may not be optimal.

 For Example, suppose we are considering for a minimum size vertex-cover (VC). An approximate

algorithm returns a VC for us, but the size (cost) may not be minimized.

 Another Example is we are considering for a maximum size Independent set (IS). An approximate

Algorithm returns an IS for us, but the size (cost) may not be maximum. Let C be the cost of the solution

returned by an approximate algorithm, and C* is the cost of the optimal solution.

We say the approximate algorithm has an approximate ratio P (n) for an input size n, where

Intuitively, the approximation ratio measures how bad the approximate solution is distinguished with the

optimal solution. A large (small) approximation ratio measures the solution is much worse than (more or

less the same as) an optimal solution.

 Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we may write P. Therefore, a 1-

approximation algorithm gives an optimal solution. Some problems have polynomial-time approximation

algorithm with small constant approximate ratios, while others have best-known polynomial time

approximation algorithms whose approximate ratios grow with n.

Vertex Cover

A Vertex Cover of a graph G is a set of vertices such that each edge in G is incident to at least one of

these vertices.

The decision vertex-cover problem was proven NPC. Now, we want to solve the optimal version of the

vertex cover problem, i.e., we want to find a minimum size vertex cover of a given graph. We call such

vertex cover an optimal vertex cover C*.

An approximate algorithm for vertex cover:

1. Approx-Vertex-Cover (G = (V, E))

2. {

3. C = empty-set;

4. E'= E;

5. While E' is not empty do

6. {

7. Let (u, v) be any edge in E': (*)

8. Add u and v to C;

9. Remove from E' all edges incident to

10. u or v;

11. }

12. Return C;

13. }

The idea is to take an edge (u, v) one by one, put both vertices to C, and remove all the edges incident to u

or v. We carry on until all edges have been removed. C is a VC. But how good is C?

VC = {b, c, d, e, f, g}

What is a Randomized Algorithm?
An algorithm that uses random numbers to decide what to do next anywhere in its

logic is called Randomized Algorithm.. For example, in Randomized Quick Sort, we

use random number to pick the next pivot (or we randomly shuffle the array). And

in Karger’s algorithm, we randomly pick an edge.

How to analyse Randomized Algorithms?
Some randomized algorithms have deterministic time complexity. For

example, this implementation of Karger’s algorithm has time complexity as O(E).

Such algorithms are called Monte Carlo Algorithms and are easier to analyse for

worstcase.

On the other hand, time complexity of other randomized algorithms (other than Las

Vegas) is dependent on value of random variable. Such Randomized algorithms are

called Las Vegas Algorithms. These algorithms are typically analysed for expected

worst case. To compute expected time taken in worst case, all possible values of the

used random variable needs to be considered in worst case and time taken by every

possible value needs to be evaluated. Average of all evaluated times is the expected

worst case time complexity. Below facts are generally helpful in analysis os such

algorithms.

LinearityofExpectation

Expected Number of Trials until Success.
For example consider below a randomized version of QuickSort.

A Central Pivot is a pivot that divides the array in such a way that one side has at-

least 1/4 elements.
// Sorts an array arr[low..high]

randQuickSort(arr[], low, high)

1. If low >= high, then EXIT.

2. While pivot 'x' is not a Central Pivot.

https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/linearity-of-expectation/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

 (i) Choose uniformly at random a number from [low..high].

 Let the randomly picked number number be x.

 (ii) Count elements in arr[low..high] that are smaller

 than arr[x]. Let this count be sc.

 (iii) Count elements in arr[low..high] that are greater

 than arr[x]. Let this count be gc.

 (iv) Let n = (high-low+1). If sc >= n/4 and

 gc >= n/4, then x is a central pivot.

3. Partition arr[low..high] around the pivot x.

4. // Recur for smaller elements

 randQuickSort(arr, low, sc-1)

5. // Recur for greater elements

 randQuickSort(arr, high-gc+1, high)

The important thing in our analysis is, time taken by step 2 is O(n).

How many times while loop runs before finding a central pivot?
The probability that the randomly chosen element is central pivot is 1/2.

Therefore, expected number of times the while loop runs is 2 (See this for details)

Thus, the expected time complexity of step 2 is O(n).

What is overall Time Complexity in Worst Case?
In worst case, each partition divides array such that one side has n/4 elements and

other side has 3n/4 elements. The worst case height of recursion tree is Log 3/4 n which

is O(Log n).

T(n) < T(n/4) + T(3n/4) + O(n)

T(n) < 2T(3n/4) + O(n)

Solution of above recurrence is O(n Log n)

Note that the above randomized algorithm is not the best way to implement

randomized Quick Sort. The idea here is to simplify the analysis as it is simple to

analyse.

Typically, randomized Quick Sort is implemented by randomly picking a pivot (no
loop). Or by shuffling array elements.

https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

 KARPAGAM UNIVERSITY
 COIMBATORE-21

 Faculty of Engineering

 Department of Computer Science and Engineering

Possible Questions

Title of the paper : Design and Analysis of Algorithms

Part-A

Answer All Questions (20*1=20)

(Online Examination)

Part-B

Answer ALL Questions (5*16=80)

21. a i) Explain in detail Big oh, Big Omega and Big Theta Notations with necessary illustrations.(8)

 ii)Discuss fundamentals of algorithm analysis framework in detail. (8)

(OR)

21. b i)Discuss the important problem types in algorithm solving (8)

 ii) Write short notes on fundamentals of algorithmic solving. (8)

22. a i) Using iterative method, find the asymptotic value for (8)

 T(n) = 1 for n=1

 3 T(n/4) + n for n>1

 ii) With the help of example explain how a recursive algorithm can be represented by

recurrence relation. (8)

(OR)

22. b i) What is empirical analysis of algorithms? Discuss how empirical analysis will be done. (8)

 ii) Write short notes on algorithm visualization. (8)

23. a Explain divide and conquer technique in detail. Name some problems which apply divide and

conquer techniques for solving it. Discuss binary search algorithm and analyze it. (16)

 (OR)

23. b Explain selection sort algorithm with an example and explain the relevance of brute force method

in solving it. (16)

24 a) Explain Floyd’s Algorithm for all pair shortest path algorithm with example and

analyze its efficiency

(OR)

 b) Write the Huffman’s Algorithm. Construct the Huffman’s tree for the following data and obtain its

Huffman’s Code.

25 a) Explain the Assignment problem in Branch and bound with Example. (16)

(OR)

 b) Write backtracking algorithm for N queens problem and Hamiltonian problem. (16)

 KARPAGAM UNIVERSITY

 COIMBATORE-21

 Faculty of Engineering

 Department of Computer Science and Engineering

Subject Code : 15BECS405

Name of the Course : II B.E CSE Time : 3Hrs

Title of the paper : Design and Analysis of Algorithms Max Marks : 100 marks

Semester : IV Date :

Part-A

Answer All Questions (20*1=20)

(Online Examination)

Part-B

Answer ALL Questions (5*16=80)

21. a i) Explain in detail Big oh, Big Omega and Big Theta Notations with necessary illustrations.(8)

 ii)Discuss fundamentals of algorithm analysis framework in detail. (8)

(OR)

21. b i)Discuss the important problem types in algorithm solving (8)

 ii) Write short notes on fundamentals of algorithmic solving. (8)

22. a i) Using iterative method, find the asymptotic value for (8)

 T(n) = 1 for n=1

 3 T(n/4) + n for n>1

 ii) With the help of example explain how a recursive algorithm can be represented by

recurrence relation. (8)

(OR)

22. b i) What is empirical analysis of algorithms? Discuss how empirical analysis will be done. (8)

 ii) Write short notes on algorithm visualization. (8)

23. a Explain divide and conquer technique in detail. Name some problems which apply divide and

conquer techniques for solving it. Discuss binary search algorithm and analyze it. (16)

 (OR)

23. b Explain selection sort algorithm with an example and explain the relevance of brute force method

in solving it. (16)

24 a) Explain Floyd’s Algorithm for all pair shortest path algorithm with example and

analyze its efficiency

(OR)

 b) Write the Huffman’s Algorithm. Construct the Huffman’s tree for the following data and obtain its

Huffman’s Code.

25 a) Explain the Assignment problem in Branch and bound with Example. (16)

(OR)

 b) Write backtracking algorithm for N queens problem and Hamiltonian problem. (16)

Online Questions

Questions opt1 opt2 opt3 opt4 Answer

The average and

worst case

complexity of

merge sort is O(n
2
),O(n

2
)

O(n
2
)

,O(nlogn)

O(nlogn

),O(n
2
)

O(nlogn),

O(nlogn)

O(nlogn)

,O(nlogn

)

The time

taken by binary

search to serach

for an element in

sorted array is O(n) O(logn)

O(nlogn

) O(n
2
) O(logn)

Let there be an

array of length

‘N’, and the

selection sort

algorithm is used

to sort it, how

many times a

swap function is

called to complete

the execution?

N log N

times

 log N times

N
2

times

N-1

times

N-1

times

The Sorting

method which is

used for external

sort is

Bubble

sort

Quick

sort

Merge

sort

Radix

sort
Merge

sort

Which of the

following sorting

procedure is the

slowest?

Quick

sort

Heap

sort

Shell

sort

Bubble

sort

Bubble

sort

the time required

to search an

element in a

binary search tree

having n elements

is

O(1)

O(log n)

O(n)

 O(n log n)
O(log n)

the number of

comparisons

required by

binary search of

100000 elements

is 15 20 25 30 20

Best case running

time of quick sort

is

O(n)

O(logn)

O(nlogn

)

 O(n2)

O(nlogn

)

which of the

sorting algorithm

does not have a

worst case

running time of

O(n2)

Selection

sort

insertion

sort

merge

sort

 quick sort

merge

sort

A sort which

compares

adjacent elements

in a list and

switches where

necessary is a

insertion

sort heap sort

quick

sort

bubble

sort

bubble

sort

A characteristic

of the data that
Order of the

list

length of the

list

maximu

m value

mean of

data values
Order of

the

 binary search tree

but the linear

search ignores, is

the

 in the

list

list

A sort which uses

the binary tree

concept such that

any number is

larger than all the

numbers is the

subtree below it is

called

Selection

sort

insertion

sort

quick

sort

 heap sort

heap

sort

Worst case

complexity of the

insertion sort

algorithm is O(n2) O(n)

O(n-1)

 O(n+1)

O(n2)

Average case

complexity of the

insertion sort

algorithm is O(n2) O(n)

O(n-1)

 O(n+1)

O(n2)

Best case

complexity of the

insertion sort

algorithm is O(n2) O(n)

O(n-1)

 O(n+1)
O(n)

Worst case

complexity of the

bubble sort

algorithm is O(n3) O(n4)
O(n2)
 O(n)

O(n2)

Best case

complexity of the

bubble sort

algorithm is O(n3) O(n4)
O(n2)
 O(n)

O(n2)

Average case

complexity of the

bubble sort

algorithm is O(n3) O(n4)
O(n2)

 O(n)
O(n2)

Worst case

complexity of the

selection sort

algorithm is O(n3) O(n4)
O(n2)

 O(n)
O(n2)

Average case

complexity of the

selection sort

algorithm is O(n3) O(n4)
O(n2)

 O(n)
O(n2)

	2289-syllabus.pdf (p.1-5)
	unit-1.pdf (p.6-14)
	unit-II.pdf (p.15-29)
	unit-III.pdf (p.30-51)
	unit-IV.pdf (p.52-54)
	Unit-V.pdf (p.55-58)
	CIA-III DAA.pdf (p.59-62)

