
17BECS603                                              Artificial Intelligence  
 

COURSE OBJECTIVES: 
      

 

• Artificial Intelligence aims at developing computer applications, which encompasses 

• perception, reasoning and learning and to provide an in-depth understanding of major 

techniques used to simulate intelligence.  

• To provide a strong foundation of fundamental concepts in Artificial Intelligence  

• To provide a basic exposition to the goals and methods of Artificial Intelligence  

• To enable the student to apply these techniques in applications which involve perception, 

reasoning and learning.  

 

LEARNING OUTCOMES:  

• Understand the history, development and various applications of artificial intelligence  

• Familiarize with propositional and predicate logic and their roles in logic programming;  

• Understand the programming language Prolog and write programs in declarative 

programming style;  

• Learn the knowledge representation and reasoning techniques in rule-based systems, case 

based systems, and model-based systems;  

• Appreciate how uncertainty is being tackled in the knowledge representation and reasoning 

process, in particular, techniques based on probability theory and possibility theory (fuzzy 

logic) 

 

UNIT I Introduction and Problem Solving               (9)

          
Introduction – Foundations of AI – History of AI – Intelligent agent – Types of agents - Structure 
– Problem solving agents – Uninformed search strategies – Breadth first search – Uniform cost 
search  
– Depth first search –Depth limited search – Bidirectional search – Searching with partial 

Information. 

 
UNIT II Informed Search and Game Playing (9)              
Informed search – Strategies – A* Heuristic function – Hill Climbing – Simulated Annealing – 
Constraint Specification problem – Local Search in continuous space – Genetic algorithm – 
Optimal decisions in games - Pruning- Imperfect decisions –Alpha-Beta pruning – Games that 
include an element of chance. 

 

UNIT III Knowledge and Reasoning (9)              
Knowledge based agent – The Wumpus world environment – Propositional logic – Inference rules 
– First-orderlogic – Syntax and semantics – Situation calculus – Building a knowledge base – 
Electronic circuit domain – Ontology– Forward and backward chaining – Resolution – Truth 
maintenance system. 
 
UNIT IV Acting Logically  (9)              
Planning – Representation of planning – Partial order planning –Planning and acting in real world 
– Acting under uncertainty – Bayes’s rules – Semantics of Belief networks – Inference in Belief 
networks – Making simple decisions – Making complex decisions. 

L T P C 

3 0 0 3 



 

UNIT V Learning and Communication (9)         
 
Learning from observation – Learning decision trees –Ensemble learning – Learning general 
logical descriptions – Computational learning theory – Neural networks – Applications – 
Reinforcement learning  
– Passive reinforcement – Active reinforcement – Communication as action – Types of 
communicating agents – Parsing – DCG – Semantic interpretation. 

 

Total 

hours:45 

TEXT BOOKS: 

  
1. Stuart J.Russel, Peter Norvig, “Artificial  Intelligence A Modern Approach”, Pearson  

Education, 2010.  

 

REFERENCES: 

 
1. Elaine Rich, Kevin Knight, “Artifical Intelligence", 2nd Edition, Tata McGraw Hill, 2001. 
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Subject Name: ARTIFICIAL INTELLIGENCE

S.No Topic Name

  UNIT

1 Introduction – Foundations of AI

2 History of AI – Intelligent agent

3 Types of agents and Structure

4 Problem solving agents 

5 Uninformed search strategies

6 Breadth first search 

7 
Uniform cost search 
 

8 Depth first search 

9 Depth limited search 

10 Bidirectional search 

11 Searching with partial Information.

Total

  UNIT

12 Informed search – Strategies

13 A* Heuristic function 

14 Hill Climbing, Simulated Annealing

15 Constraint Specification problem

16 Local Search in continuous space

17  Genetic algorithm 

18  Optimal decisions in games

19  Pruning- Imperfect decisions

20 Alpha-Beta pruning 

21 Games that include an element of chance

Total

  

KARPAGAM ACADEMY OF HIGHER EDUCATION 

Faculty of Engineering  

Lecture  Plan 

ARTIFICIAL INTELLIGENCE Subject Code:

Topic Name 
No.of 

Periods 

Supporting 

Materials

UNIT- I Introduction and Problem Solving 

Foundations of AI 1 

Intelligent agent 1 

Types of agents and Structure 1 

1 

Uninformed search strategies 1 

1 

1 

1 

1 

1 

Searching with partial Information. 1 

Total 11   

UNIT- II Informed Search and Game Playing 

Strategies 1 

1 

Hill Climbing, Simulated Annealing 1 

Constraint Specification problem 1 

Local Search in continuous space 1 

1 

Optimal decisions in games 1 

Imperfect decisions 1 

1 

Games that include an element of chance 1 

Total 10   

UNIT- III Knowledge and Reasoning 

 

Subject Code: 14BECS602 

Supporting 

Materials 

Teachi

ng 

Aids 

 

R[1]-1 BB 

R[1]-1 BB 

R[1]-5 PPT 

R[1]-6  PPT 

R[1]-6 PPT 

T[1]-95 PPT 

T[1]-95 PPT 

T[1]-68  BB 

Web PPT  

T[1]-12 BB 

Web BB 

  

T[1]-200 PPT 

web PPT 

T[1] 201 BB 

T[1]214 PPT 

T[1]214 PPT 

T[1]218 PPT 

R[1]218  PPT 

R[1]218  PPT 

R[1]221 BB 

R[1]221 PPT 

  



22 Knowledge based agent 1 web PPT 

23 The Wumpus world environment 1 web PPT 

24 Inference rules 1 web  PPT 

25 First-orderlogic 1 T[1]-488 BB 

26 Syntax and semantics- Situation calculus 1 T[1]-193 PPT 

27 Building a knowledge base 1 T[1]-266  BB 

28 Electronic circuit domain 1 T[1]-305 PPT 

29 Ontology 1 T[1]-343 BB 

30 Forward and backward chaining 1 web PPT 

31 
Resolution – Truth maintenance system. 
 1 web PPT 

  Total  10     

  UNIT- IV  Acting Logically 

32 Planning 1 R[1]-139 PPT 

33 Representation of planning 1 R[1]-139 PPT 

34 Partial order planning 1 T[1]-140 PPT 

35 Planning and acting in real world 1 R[1]-152 BB 

36 Acting under uncertainty 1 R[1]-159  PPT 

37 Bayes’s rules 1 R[1]-162 BB 

38 Semantics of Belief networks 1 R[1]-163 PPT 

39 Inference in Belief networks 1 R[1]-133   PPT 

40 Making simple decisions 1 web PPT 

41 Making complex decisions 1 R[1]-133 BB 

Total 10     

  UNIT- V  Learning and Communication 

42 Learning from observation 1 R[1]-248 PPT 

43 Learning decision trees 1 R[1]-465 BB 

44 Ensemble learning 1 R[1]-465 BB 

45 Learning general logical descriptions 1 R[1]-255 PPT 

46 Computational learning theory 1 R[1]-248 PPT 

47 Neural networks 1 T[1]-1087 PPT 

48 
Applications – Reinforcement learning 
 1 T[1]-1087 PPT  

49 Passive reinforcement – Active reinforcement 1 T[1]-690 BB 

50 
Communication as action – Types of communicating 

agents – Parsing 1 T[1]-690 PPT 

51 DCG – Semantic interpretation. 1 T[1]-752 BB 

52 Discussion on Previous University Question Papers 

Total 10     

  Total Hours 52     



TEXT BOOKS 

S.NO Title of the book     

Year of 

publica

tion 

1 
Stuart J.Russel, Peter Norvig, “Artificial  Intelligence A Modern Approach”, Pearson  
Education. 

 

2010 

REFERNCE BOOKS 

S.NO Title of the book     

Year of 

publica

tion 

1 
Elaine Rich, Kevin Knight, “Artifical Intelligence", 2nd Edition, Tata McGraw Hill, 
2001. 

 
2001 

WEBSITES 

1. https://www.javatpoint.com/Artificial intelligence-tutorial 

2. https://nptel.ac.in/content/syllabus_pdf/106105131.pdf 

 

 

 

 

 

 

 

 

 

 

 

 



Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING  

 

P
ag

el
 

 
 

ARTIFICIAL INTELLIGENCE 
 

 

UNIT-I PROBLEM 

SOLVING 

 
Introduction  - Agents  - Problem  formulation  -  Uninformed  search  strategies  - 

Heuristics - Informed search strategies - Constraint satisfaction 
 

 

What is artificial intelligence? 

 
   Artificial  Intelligence  is  the  branch  of computer  science  concerned  with  making 

computers behave like humans. 

   Major AI textbooks define artificial intelligence as "the study and design of intelligent 

agents," where an intelligent agent is a system that perceives its environment  and 

takes actions which maximize its chances of success. 

   John  McCarthy,  who  coined  the  term  in  1956,  defines  it  as  "the  science  and 

engineering  of making  intelligent  machines,  especially intelligent  computer 

programs." 

   The  definitions  of  AI  according  to  some  text  books  are  categorized  into  four 
approaches and are summarized in the table below : 

 
Systems that think like humans 
"The  exciting  new  effort  to  make  computers 

think …  machines  with minds,  in the full and 

literal sense."(Haugeland,1985) 

Systems that think rationally 
"The study of mental faculties through the use of 
computer models." 

(Charniak and McDermont,1985) 

Systems that act like humans 
The  art  of  creating  machines   that  performs 

functions     that     require     intelligence     when 

performed by people."(Kurzweil,1990) 

Systems that act rationally 
"Computational intelligence  is the study of the 

design of intelligent agents."(Poole et al.,1998) 

 

Applications of Artificial Intelligence: 
 

 

  Autonomous planning and scheduling: 

 
A hundred million miles from Earth, NASA's Remote Agent program became 

the first on-board autonomous planning program to control the scheduling of 

operations  for  a spacecraft  (Jonsson  et  al.,  2000).  Remote Agent  generated 

plans from high-level  goals specified from the ground, and it monitored  the 

operation of the spacecraft as the plans were executed-detecting,  diagnosing, 

and recovering from problems as they occurred.
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  Game playing: 

 
IBM's  Deep  Blue  became  the  first  computer  program  to  defeat  the  world 

champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 

in an exhibition match (Goodman and Keene, 1997). 

 
  Autonomous control: 

 
The  ALVINN  computer  vision  system  was  trained  to  steer  a  car  to  keep  it 

following a lane. It was placed in CMU's NAVLAB computer-controlled  minivan 

and used to navigate across the United States-for 2850 miles it was in control of 

steering the vehicle 98% of the time. 

 
  Diagnosis: 

 
Medical diagnosis programs based on probabilistic analysis have been able 

to perform at the level of an expert physician in several areas of medicine. 

 
  Logistics Planning: 

 
During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis 

and Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics 

planning and scheduling for transportation.  This involved up to 50,000 vehicles, 

cargo, and people at a time, and had to account for starting points, destinations, 

routes, and conflict resolution among all parameters. The AI planning techniques 

allowed a plan to be generated in hours that would have taken weeks with older 

methods. The Defense Advanced Research Project Agency (DARPA) stated that 

this single application more than paid back DARPA's 30-year investment in AI. 

 
  Robotics: 

 
Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia et al., 

1996)  is  a  system  that  uses  computer  vision  techniques  to  create  a  three- 

dimensional model of a patient's internal anatomy and then uses robotic control to 

guide the insertion of a hip replacement prosthesis. 

 
  Language understanding and problem solving: 

 
PROVERB  (Littman  et al., 1999) is a computer program that solves crossword 

puzzles  better  than most  humans,  using  constraints  on possible  word  fillers,  a 

large  database  of past  puzzles,  and  a variety of  information  sources  including 

dictionaries  and  online  databases  such as a  list  of  movies  and  the  actors  that 

appear in them. 

 

AGENTS: 

 
Rationality  concept  can  be  used  to  develop  a  smallest  of  design  principle  for  building 

successful agents; these systems are reasonably called as Intelligent.

STUDENTSFOCUS.COM
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Agents and environments: 

 
An agent is anything that can be viewed as perceiving its environment through sensors and 

SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure. 

 
o A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other 

body parts for actuators. 

o A robotic agent might have cameras and infrared range finders for sensors and various motors 

for actuators. 

o A software agent receives keystrokes,  file contents, and network packets as sensory inputs 

and acts on the environment by displaying on the screen, writing files, and sending network 

packets. 
 

 

 
 

 
 
 

Percept 
 

We use the term percept to refer to the agent's perceptual inputs at any given instant. 

 
Percept Sequence 

 
An  agent's  percept  sequence  is  the  complete  history  of  everything  the  agent  has  ever 

perceived. 

 
Agent function 

 
Mathematically speaking, we say that an agent's behavior is described by the agent function 

that maps any given percept sequence to an action. 

 
Agent program 

 
  The agent function for an artificial agent will be implemented by an agent program. 
   It is important to keep these two ideas distinct. 

  The agent function is an abstract mathematical description; 

  the agent program is a concrete implementation, running on the agent architecture.

STUDENTSFOCUS.COM
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  To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world 

shown in Figure. 

  This particular world has just two locations: squares A and B. 

  The vacuum agent perceives  which square it is in and whether  there is dirt in the 

square. 

  It can choose to move left, move right, suck up the dirt, or do nothing. 

   One very simple agent function is the following: 

   if the current square is dirty, then suck, otherwise, 

   it move to the other square. 

   A partial tabulation of this agent function is shown in Figure. 

 

 
 

Agent function 
 

 
Percept Sequence Action 

[A, Clean] Right 

[A, Dirty] Suck 

[B, Clean] Left 

[B, Dirty] Suck 

[A, Clean], [A, Clean] Right 

[A, Clean], [A, Dirty] Suck 

….. ….. 

 

 

Agent program 

function Reflex-VACUUM-AGENT  ([locations, status]) returns an action 

if status = Dirty then return  Suck 

else if  location = A then return Right 
elseif location = B then return Left 

 
Good Behavior: The concept of Rationality 

 
  A rational agent is one that does the right thing-conceptually speaking; every entr y 

in the table for the agent function is filled out correctly. 

  Obviously, doing the right thing is better than doing the wrong thing. 

  The right action is the one that will cause the agent to be most successful.

STUDENTSFOCUS.COM
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Performance measures 

 
   A performance measure embodies the criterion for success of an agent's behavior. 

  When an agent is plunked down in an environment, it generates a sequence of actions 

according to the percepts it receives. 

  This sequence of actions causes the environment to go through a sequence of states. 

  If the sequence is desirable, then the agent has performed well. 

 
Rationality 

 
What is rational at any given time depends on four things: 

o The performance measure that defines the criterion of success. 
o The agent's prior knowledge of the environment. 
o The actions that the agent can perform. 
o The agent's percept sequence to date. 
o This leads to a definition of a rational agent: 

 
For  each  possible  percept  sequence,  a  rational  agent  should  select  an action  that  is 

expected  to  maximize  its performance  measure,  given  the  evidence  provided  by the 

percept sequence and whatever built-in knowledge the agent has. 

 
Omniscience, learning, and autonomy 

 
   An  omniscient   agent  knows  the  actual  outcome  of  its  actions  and  can  act 

accordingly; but omniscience is impossible in reality. 

   Doing  actions  in  order  to  modify  future  percepts-sometimes  called  information 
gathering-is an important part of rationality. 

  Our definition requires a rational agent not only to gather information,  but also to 

learn as much as possible from what it perceives. 

   To the extent that an agent relies on the prior knowledge of its designer rather than on 

its own percepts, we say that the agent lacks autonomy. 

  A rational agent should be autonomous-it should learn what it can to compensate for 

partial or incorrect prior knowledge. 

 
Task environments 

 
   We must think about task environments,  which are essentially the "problems"  to which 

rational agents are the "solutions." 

 

Specifying the task environment 

 
  The rationality of the simple vacuum-cleaner agent, needs specification of 

  the performance measure 

  the environment 

  the agent's actuators 

  Sensors.
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PEAS 
 

  All these are grouped together under the heading of the task environment. 

  We call this the PEAS (Performance, Environment, Actuators, Sensors) description. 

  In designing an agent, the first step must always be to specify the task environment as 

fully as possible. 

  The  following  table  shows  PEAS  description  of  the  task  environment   for  an 

automated taxi. 
 

 
Agent 

Type 
Performance 

Measure 
Environments Actuators Sensors 

Taxi 

driver 

Safe:        fast, 

legal, 

comfortable 

trip, 

maximize 

profits 

Roads,other 

traffic,pedestrians, 

customers 

Steering,accelerator, 

brake, 

Signal,horn,display 

Cameras,sonar, 

Speedometer,GPS, 

Odometer,engine 

sensors,keyboards, 

accelerometer 

 

  The following table shows PEAS description of the task environment for some other 

agent type. 
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Properties of task environments 

 
o Fully observable vs. partially observable 
o Deterministic vs. stochastic 
o Episodic vs. sequential 
o Static vs. dynamic 
o Discrete vs. continuous 
o Single agent vs. multiagent 

 
Fully observable vs. partially observable. 

 
  If an agent's sensors give it access to the complete state of the environment  at each 

point in time, then we say that the task environment is fully observable. 

   A task environment is effectively fully observable if the sensors detect all aspects that 

are relevant to the choice of action; 

  An  environment  might  be  partially  observable  because  of  noisy  and  inaccurate 

sensors or because parts of the state are simply missing from the sensor data. 

 
Deterministic vs. stochastic. 

 
  If the next state of the environment is completely determined by the current state and 

the action executed by the agent, then we say the environment is deterministic; 

  Otherwise, it is stochastic. 

 
Episodic vs. sequential 

 
  In  an  episodic  task  environment,  the  agent's  experience  is  divided  into  atomic 

episodes. 

  Each episode consists of the agent perceiving and then performing a single action. 
Crucially, the next episode does not depend on the actions taken in previous episodes. 

  For example, an agent that has to spot defective parts on an assembly line bases each 

decision on the current part, regardless of previous decisions; 

  In sequential environments, on the other hand, the current decision 

Could affect all future decisions. 

   Chess and taxi driving are sequential: 

 
Discrete vs. continuous. 

 
  The discrete/continuous distinction can be applied to the state of the environment, to 

the way time is handled, and to the percepts and actions of the agent. 

  For example, a discrete-state environment such as a chess game has a finite number of 

distinct states. 

  Chess also has a discrete set of percepts and actions. 

  Taxi driving is a continuous- state and continuous-time problem: 

  The speed and location of the taxi and of the other vehicles sweep through a range of 

continuous values and do so smoothly over time. 

  Taxi-driving actions are also continuous (steering angles, etc.)
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Single agent vs. multiagent. 

 
  An  agent   solving   a  crossword   puzzle   by  itself  is  clearly  in  a  single-agent 

environment, 
  Where as an agent playing chess is in a two-agent environment. 

  Multiagent is further classified in to two ways 

 
  Competitive multiagent environment 

  Cooperative multiagent environment 

 

Agent programs 
 

  The job of Artificial Intelligence is to design the agent program that implements the 

agent function mapping percepts to actions 

  The agent program will run in an architecture 

  An architecture is a computing device with physical sensors and actuators 

  Where Agent is combination of Program and Architecture 

 
Agent = Program + Architecture 

 
  An agent program takes the current percept as input while the agent function takes the 

entire percept history 

  Current  percept  is  taken  as  input  to  the  agent  program  because  nothing  more  is 
available from the environment 

  The following TABLE-DRIVEN_AGENT  program is invoked for each new percept 
and returns an action each time 

 
Function TABLE-DRIVEN_AGENT (percept) returns an action 

 
static: percepts, a sequence initially empty 

table, a table of actions, indexed by percept sequence 

 
append percept to the end of percepts 

action  LOOKUP(percepts, table) 

return action 

 
Drawbacks: 

 
  Table  lookup  of  percept-action  pairs  defining  all  possible  condition-action  rules 

necessary to interact in an environment 

  Problems 
•    Too big to generate and to store (Chess has about 10^120 states, for example) 

•    No knowledge of non-perceptual parts of the current state 

• Not adaptive to changes in the environment; requires entire table to be updated 

if changes occur 

•    Looping: Can't make actions conditional 

 
  Take a long time to build the table 

  No autonomy 

  Even with learning, need a long time to learn the table entries 
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Some Agent Types 
 

 

  Table-driven agents 
•    use a percept sequence/action table in memory to find the next action. They 

are implemented by a (large) lookup table. 

  Simple reflex agents 

• are  based   on  condition-action   rules,   implemented   with  an  appropriate 

production system. They are stateless devices which do not have memory of 

past world states. 

  Agents with memory 
•    have internal state, which is used to keep track of past states of the world. 

  Agents with goals 
•    are agents that, in addition to state information,  have goal information  that 

describes  desirable  situations.  Agents  of  this  kind  take  future  events  into 

consideration. 

  Utility-based agents 
•    base  their  decisions  on  classic  axiomatic  utility  theory  in  order  to  act 

rationally. 

 

Kinds of Agent Programs 
 

  The following are the agent programs, 

•    Simple reflex agents 

•    Mode-based reflex agents 

•    Goal-based reflex agents 

•    Utility-based agents 

 
Simple Reflex Agent 

 
  The simplest kind of agent is the simple reflex agent. 

   These agents select actions on the basis of the current percept, ignoring the rest of the 

percept history. 

   For example, the vacuum agent whose agent function is tabulated is given below, 

   a simple reflex agent, because its decision is based only on the current location and 

on whether that contains dirt. 

  Select action on the basis of only the current percept.E.g. the vacuum-agent 

  Large reduction in possible percept/action situations(next page). 

  Implemented through condition-action rules 

  If dirty then suck 

 
A Simple Reflex Agent: Schema 

 
  Schematic diagram of a simple reflex agent. 

  The following simple reflex agents, acts according to a rule whose condition matches 

the current state, as defined by the percept 

 
function SIMPLE-REFLEX-AGENT(percept) returns an action 

static: rules, a set of condition-action rules 

state  INTERPRET-

INPUT(percept) SVCETSTUDENTSFOCUS.COM
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rule  RULE-

MATCH(state, rule) 

action  RULE- 

ACTION[rule] return action 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   The agent program for a simple reflex agent in the two-state vacuum environment. 

 
function REFLEX-VACUUM-AGENT ([location, status]) return an action 

if status == Dirty then return Suck 

else if location == A then return Right 

else if location == B then return Left 

 

Characteristics 
 

o Only works if the environment is fully observable. 
o Lacking history, easily get stuck in infinite loops 
o One solution is to randomize actions 

 

 
 

Model-based reflex agents 
 

 

 The most effective way to handle partial observability is for the agent to keep track of 

the part of the world it can't see now. 

  That is, the agent should maintain some sort of internal   state that depends on the 

percept history and thereby reflects at least some of the unobserved  aspects of the 
current state. 

  Updating  this  internal  state  information  as  time  goes  by  requires  two  kinds  of 

knowledge to be encoded in the agent program. 

  First, we need some information about how the world evolves independently of the 

agent 

  For  example,  that an overtaking  car  generally will be closer behind  than it was a 

moment ago. 

  Second,  we  need  some  information  about  how  the  agent's  own  actions  affect  the 

world 
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 For example, that when the agent turns the steering wheel clockwise, the car turns to 

the  right  or  that  after  driving  for  five  minutes  northbound  on  the  freeway  one  is 

usually about five miles north of where one was five minutes ago. 

 This  knowledge  about "how  the  world  working  - whether  implemented  in simple 
Boolean circuits or in complete scientific theories-is called a model of the world. 

  An agent that uses such a MODEL-BASED model is called a model-based agent. 

 Schematic diagram of A model based reflex agent 

 

 
 

  Model based reflex agent. It keeps track of the current state of the world using an 

internal model. It then chooses an action in the same way as the reflex agent. 
 

 
 

function REFLEX-AGENT-WITH-STATE(percept) returns an action 

static: rules, a set of condition-action rules 

state, a description of the current world state 

action, the most recent action. 

state  VPDATE-STATE(state, action, percept) 

rule  RVLE-

MATCH(state, rule) 

action  RVLE- 

ACTION[rule] return action 

 

Goal-based agents 
 

 

  Knowing about the current state of the environment  is not always enough to decide 
what to do. 

   For example, at a road junction, the taxi can turn left, turn right, or go straight on. The 

correct decision depends on where the taxi is trying to get to. 

  In other words, as well as a current state description, the agent needs some sort of 

goal information that describes situations that are desirable. 

  For example, being at the passenger's destination. 

   The agent program can combine this with information about the results of possible 

actions (the same information as was used to update internal state in the reflex agent) 

in order to choose actions that achieve the goal. 

  Schematic diagram of  the goal-based agent's structure. 
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Utility-based agents 
 

  Goals  alone  are  not  really  enough  to  generate   high-quality  behavior  in  most 

environments. 
  For example, there are many action sequences that will get the taxi to its destination 

(thereby achieving  the goal) but some are quicker,  safer, more reliable,  or cheaper 

than others. 

  Goals just provide a crude binary distinction between "happy" and "unhappy" states, 
whereas  a  more  general  performance   measure  should  allow  a  comparison  of 

different world states according to exactly how happy they would make the agent if 

they  could  be  achieved.  Because   "happy"  does  not  sound  very  scientific,   the 

customary terminology is to say that if one world state is preferred to another, then it 

has higher utility for the agent. 
  Schematic diagram of a utility-based agents 

   It uses a model of the world, along with a utility function that measures its preferences 

among states of the world. 

  Then  it chooses  the  action  that  leads to  the  best  expected  utilit y,  where  expected 

utility is computed  by averaging  over all possible  outcome states, weighted  by the 

probability of the outcome. 
  Certain goals can be reached in different ways 

•    Some are better, have a higher utility 

  Vtility function maps a (Sequence of) state(S) onto a real number. 

  Improves on goal: 

•    Selecting between conflicting goals 

•    Select  appropriately  between  several  goals  based  on  likelihood  of 

Success 
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Learning Agent 
 

Schematic diagram of Learning Agent 
 
 
 

 
 

  All agents can improve their performance through learning. 

  A learning agent can be divided into four conceptual components, as, 

•    Learning element 

•    Performance element 

•    Critic 

•    Problem generator 

  The most important distinction is between the learning element, which is responsible for 

making improvements, 

  The performance element, which is responsible for selecting external actions. 

  The performance element is what we have previously considered to be the entire agent: it 

takes in percepts and decides on actions. 

  The  learning  element  uses  feedback  from  the  critic  on  how  the  agent  is  doing  and 
determines how the performance element should be modified to do better in the future. 

  The last component of the learning agent is the problem generator. 
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   It   is  responsible   for  suggesting   actions   that   will   lead   to  new   and   informative 

experiences. But if the agent is willing to explore a little, it might discover much better 

actions for the long run. 

  The  problem  generator's  job  is  to  suggest  these  exploratory  actions.  This  is  what 

scientists do when they carry out experiments. 

 
Summary: Intelligent Agents 

 
• An agent perceives and acts in an environment, has an architecture, and is implemented 

by an agent program. 

•    Task environment - PEAS (Performance, Environment, Actuators, Sensors) 

• The  most  challenging  environments  are  inaccessible,  nondeterministic,  dynamic,  and 

continuous. 

• An ideal agent always chooses the action which maximizes  its expected  performance, 

given its percept sequence so far. 

•    An agent program maps from percept to action and updates internal state. 

-  Reflex agents respond immediately to percepts. 

•    simple reflex agents 

•    model-based reflex agents 

-  Goal-based agents act in order to achieve their goal(s). 

-  Utility-based agents maximize their own utility function. 

•    All agents can improve their performance through learning. 
 

 

Problem Formulation 
 

 

  An important aspect of intelligence is goal-based problem solving. 

  The solution of many problems can be described by finding a sequence of actions that 

lead to a desirable goal. 

  Each action changes the state and the aim is to find the sequence of actions and states 

that lead from the initial (start) state to a final (goal) state. 

  A well-defined problem can be described by: 

       Initial state 
       Operator or successor function - for any state x returns s(x), the set of 

states reachable from x with one action 

       State space - all states reachable from initial by any sequence of actions 

       Path - sequence through state space 

 Path cost - function that assigns a cost to a path. Cost of a path is the sum 

of costs of individual actions along the path 

       Goal test - test to determine if at goal state 

  What is Search? 

  Search is the systematic examination of states to find path from the start/root state to 

the goal state. 

  The  set  of  possible  states,  together  with  operators  defining  their  connectivit y 

constitute the search space. 

  The output of a search algorithm is a solution, that is, a path from the initial state to a 

state that satisfies the goal test. 
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Problem-solving agents 
 
 

  A Problem solving agent is a goal-based agent. 

  It decides what to do by finding sequence of actions that lead to desirable states. 

  The agent can adopt a goal and aim at satisfying it. 

  To illustrate the agent's behavior 

  For example where our agent is in the city of Arad, which is in Romania. The agent 

has to adopt a goal of getting to Bucharest. 

  Goal  formulation,   based  on  the  current  situation  and  the  agent's   performance 

measure, is the first step in problem solving. 

  The agent's task is to find out which sequence of actions will get to a goal state. 

  Problem formulation  is the process of deciding what actions and states to consider 

given a goal. 

 
Example: Route finding problem 

On holiday in Romania :  currently in Arad. 

Flight leaves tomorrow from Bucharest 

Formulate goal: be in Bucharest 

 
Formulate problem: 

states: various cities 

actions: drive between cities 

 
Find solution: 

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest 

 
  Goal formulation and problem formulation 

A problem is defined by four items: 

initial state e.g., "at Arad" 

successor function S(x) = set of action-state pairs 

e.g., S(Arad) = {[Arad   ->      Zerind;Zerind],….} 

goal test, can be 

explicit, e.g., x = at Bucharest" 

implicit, e.g., NoDirt(x) 

path cost (additive) 

e.g., sum of distances, number of actions executed, etc. 

c(x; a; y) is the step cost, assumed to be >= 0 

A solution is a sequence of actions leading from the initial state 

to a goal state. 
 

Search 
 

   An agent with several immediate options of unknown value can decide what to do b y 

examining different  possible sequences  of actions that leads to the states of known 

value,and then choosing the best sequence. 

  The process of looking for sequences actions from the current state to reach the goal 

state is called search. 
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  The search algorithm takes a problem as input and returns a solution in the form of 

action sequence. 
  Once   a   solution   is  found,the   execution   phase   consists   of   carrying   out   the 

recommended action. 

  The following shows a simple "formulate,search,execute"  design for the agent. 

  Once solution has been executed, the agent will formulate a new goal. 

  It first formulates a goal and a problem,searches for a sequence of actions that would 

solve a problem,and executes the actions one at a time. 

 
function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action 

inputs : percept, a percept 

static: seq, an action sequence, initially empty 

state, some description of the current world state 

goal, a goal, initially null 

problem, a problem formulation 

state VPDATE-STATE(state,  percept) 

if seq is empty then do 
goal       FORMVLATE-GOAL(state) 

problem      FORMVLATE-PROBLEM(state,  goal) 

seq        SEARCH( problem) 

action         FIRST(seq); 

seq     REST(seq) 

return action 

 
   The agent design assumes the Environment is 

 
 Static: The entire process carried out without paying attention to changes that 

might be occurring in the environment. 

 Observable  : The  initial  state  is  known  and  the agent's  sensor  detects  all 

aspects that are relevant to the choice of action 

 Discrete  :  With  respect  to  the  state  of  the  environment  and  percepts  and 

actions so that alternate courses of action can be taken 

 Deterministic: The next state of the environment is completely determined b y 
the  current  state  and  the  actions  executed  by the  agent.  Solutions  to  the 
problem are single sequence of actions 

 
An agent carries out its plan with eye closed. This is called an open loop system because ignoring the 

percepts breaks the loop between the agent and the environment. 

 

Well-defined problems and solutions 
 

 

A problem can be formally defined by four components: 

 
 The initial  state that the agent  starts  in . The initial state for our agent  of 

example problem is described by In(Arad) 

     A Successor Function returns  the possible actions available to the agent. 

 Given  a  state   x,SVCCESSOR-FN(x)   returns  a  set  of  {action,successor} 

ordered pairs where each action is one of the legal actions in state x,and each 

successor is a state that can be reached from x by applying the action. 
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 For example, from the state In(Arad),the successor function for the Romania 

problem would return 

 
{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] } 

 
 State Space: The set of all states reachable from the initial state.   The state 

space forms a graph in which the nodes are states and the arcs between nodes 

are actions. 

 A path in the state space is a sequence of states connected by a sequence of 

actions. 

     The goal test determines whether the given state is a goal state. 

     A path cost function assigns numeric cost to each action. 

     For the Romania problem the cost of path might be its length in kilo meters. 

 The step cost of taking action a to go from state x to state y is denoted b y 

c(x,a,y). It is assumed that the step costs are non negative. 

     A solution to the problem is a path from the initial state to  a goal state. 

     An optimal solution has the lowest path cost among all solutions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A simplified Road Map of part of Romania 

 

Advantages: 
 

 

 They are easy enough because they can be carried out without further search or 
planning 

 The choice of a good abstraction  thus involves removing as much details as 

possible while retaining validity and ensuring that the abstract actions are eas y 

to carry out. 
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EXAMPLE PROBLEMS 
 

 

     The problem solving approach has been applied to a vast array of task environments. 
Some best known problems are summarized below. 

       They are distinguished as toy or real-world problems 
  A Toy problem is intended to illustrate various problem solving methods. 

It can be easily used by different researchers to compare the performance of 

algorithms. 

  A Real world problem is one whose solutions people actually care about. 

 

TOY PROBLEMS 
 

 

Vacuum World Example 
 

o States:  The agent is in one of two locations.,each of which might or might not contain dirt. 
Thus there are 2 x 2

2  
= 8 possible world states. 

o Initial state:  Any state can be designated as initial state. 
o Successor function : This generates the legal states that results from trying the three actions 

(left, right, suck). The complete state space is shown in figure 2.3 

o Goal Test : This tests whether all the squares are clean. 
o Path test : Each step costs one ,so that the the path cost is the number of steps in the path. 

 
Vacuum World State Space 

 
 
 
 

 

 
The state space for the vacuum world. 

Arcs denote actions: L = Left,R = Right,S = Suck 
 
 

8-puzzle: 
 

 An 8-puzzle consists of a 3x3 board with eight numbered  tiles and a blank 
space. 

 A tile adjacent to the blank space can slide into the space. The object is to 

reach the specific goal state ,as shown in figure 
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Example: The 8-puzzle 
 
 
 
 
 
 
 
 
 
 
 

 
A typical instance of 8-puzzle. 

The problem formulation is as follows : 

o States : A state description  specifies the location of each of the eight tiles and the 

blank in one of the nine squares. 

o Initial state : Any state can be designated as the initial state. It can be noted that any 

given goal can be reached from exactly half of the possible initial states. 

o Successor function : This generates the legal states that result from trying the four 

actions (blank moves Left,Right,Vp or down). 

o Goal Test : This checks whether the state matches the goal configuration shown in 

figure 2.4.(Other goal configurations are possible) 

o Path cost: Each step costs 1,so the path cost is the number of steps in the path. 
o The 8-puzzle belongs to the family of sliding-block puzzles, which are often used  as 

test problems for new search algorithms in AI. 

o This general class is known as NP-complete. 
o The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved. 
o The 15 puzzle ( 4 x 4 board ) has around 1.3 trillion states, an the random instances 

can be solved optimally in few milli seconds by the best search algorithms. 

o The 24-puzzle (on a 5 x 5 board) has around 10
25  

states ,and random instances are still 

quite difficult to solve optimally with current machines and algorithms. 

 

8-queens problem 
 

 

 The goal of 8-queens  problem is to place 8 queens on the chessboard  such that no 

queen attacks  any other.  (A  queen attacks  any piece  in the  same  row,  column  or 

diagonal). 

 The following figure shows an attempted  solution that fails: the queen in the right 

most column is attacked by the queen at the top left. 

 An    Incremental    formulation    involves    operators    that    augments    the    state 

description,starting  with an empty state.for 8-queens problem,this means each action 

adds a queen to the state. 

 A complete-state formulation  starts with all 8 queens on the board and move them 

around. 

In either case the path cost is of no interest because only the final state counts. 
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8-queens problem 

 
    The first incremental formulation one might try is the following : 

 
o States : Any arrangement of 0 to 8 queens on board is a state. 
o Initial state : No queen on the board. 
o Successor function : Add a queen to any empty square. 
o Goal Test : 8 queens are on the board,none attacked. 

 

     In this formulation, we have 64.63…57 = 3 x 10
14 

possible sequences to investigate. 

 A better formulation  would  prohibit  placing a queen in any square that is alread y 

attacked. : 

 
o States : Arrangements of n queens ( 0 <= n < = 8 ) ,one per column in the 

left most columns ,with no queen attacking another are states. 

o Successor function : Add a queen to any square in the left most empty 

column such that it is not attacked by any other queen. 

 
 This formulation  reduces the 8-queen  state space   from 3 x 10

14  
to just 2057,and 

solutions are easy to find. 

 For  the  100  queens  the  initial  formulation  has  roughly  10
400  

states  whereas  the 
improved formulation has about 10

52 
states. 

 This is a huge reduction, but the improved state space is still too big for the algorithms 

to handle. 

 

REAL WORLD PROBLEMS 
 

 

  A real world problem is one whose solutions people actually care about. 

  They tend not to have a single agreed upon description, but attempt is made to  give 

general flavor of their formulation, 

  The following are the some real world problems, 

 
o Route Finding Problem 
o Touring Problems 
o Travelling Salesman Problem 
o Robot Navigation 
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ROUTE-FINDING PROBLEM 

 
  Route-finding  problem  is defined  in terms of specified  locations  and  transitions 

along links between them. 

  Route-finding algorithms are used in a variety of applications,  such as routing in 

computer  networks,   military  operations  planning,  and  air  line  travel  planning 

systems. 

 
AIRLINE TRAVEL PROBLEM 

 
The airline travel problem is specifies as follows : 

 
o States : Each is represented by a location(e.g.,an airport) and the current time. 
o Initial state : This is specified by the problem. 
o Successor function : This returns the states resulting from taking any scheduled 

flight(further  specified  by seat  class and location),leaving  later  than the current 
time plus the within-airport transit time,from the current airport to another. 

o Goal Test : Are we at the destination by some prespecified time? 
o Path cost : This depends upon the monetary cost,waiting time,flight time,customs 

and immigration procedures,seat quality,time of dat,type of air plane,frequent-flyer 
mileage awards, and so on. 

 
TOURING PROBLEMS 

 
 Touring  problems  are  closely  related  to  route-finding  problems,but   with  an 

important difference. 

     Consider for example, the problem, "Visit  every city at least once"  as shown in 
Romania map. 

 As with route-finding the actions correspond to trips between adjacent cities. The 
state space, however,is quite different. 

 
  Initial state would be "In Bucharest; visited{Bucharest}". 

  Intermediate state would be "In Vaslui; visited 

{Bucharest,Vrziceni,Vaslui}". 

  Goal test would check whether the agent is in Bucharest and all 20 

cities have been visited. 

 
THE TRAVELLING SALESPERSON PROBLEM (TSP) 

 
                    TSP  is a  touring  problem  in  which  each  city must  be  visited 

exactly once. 

                        The aim is to find the shortest tour. The problem is known to be 

NP-hard. 

                    Enormous    efforts    have    been    expended    to    improve    the 

capabilities of TSP algorithms. 
                     These  algorithms   are  also  used  in  tasks  such  as  planning 

movements of automatic circuit-board  drills and of stocking machines on 

shop floors. 
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VLSI layout 

 
A VLSI layout problem requires positioning millions of components and connections on 

a  chip   to  minimize   area  ,minimize   circuit   delays,minimize   stray  capacitances,and 

maximize manufacturing  yield. The layout problem is split into two parts : cell layout 

and channel routing. 

 
ROBOT navigation 

 
ROBOT  navigation  is  a  generalization  of  the  route-finding  problem.  Rather  than  a 

discrete  set  of routes,a  robot  can move  in a continuous  space  with an infinite  set  of 

possible actions and states. For a circular  Robot moving on a flat surface,the  space is 

essentially two-dimensional. 

 
When the robot has arms and legs or wheels that also must be controlled,the search  space 

becomes multi-dimensional.  Advanced techniques are required to make the search space 

finite. 

 
AUTOMATIC ASSEMBLY SEQUENCING 

 
The example includes assembly of intricate objects such as electric motors. The aim in 

assembly problems is to find the order in which to assemble the parts of some objects.  If the 

wrong order is choosen, there will be no way to add some part later without undoing somework 

already done. 

Another  important  assembly problem  is protein design,  in which the goal is to find  a 

sequence of 

Amino acids that will be fold into a three-dimensional protein with the right properties to 

cure some disease. 

 
INTERNET SEARCHING 

 
In recent years there has been increased demand for software robots that perform Internet 

searching, looking for answers to questions, for related information, or for shopping deals. 

The searching techniques consider  internet  as a graph of nodes (pages)  connected  by 

links. 

 
MEASURING PROBLEM-SOLVING PERFORMANCE 

 
  The  output  of problem-solving  algorithm  is  either  failure  or  a  solution. 

(Some  algorithms  might  struck  in  an  infinite  loop  and  never  return  an 

output.) 

  The algorithm's performance can be measured in four ways : 

 
o Completeness: Is the algorithm guaranteed to find a solution when 

there is one? 

o Optinality : Does the strategy find the optimal solution 
o Time complexity: How long does it take to find a solution? 
o Space complexity:  How much memory is needed to perform the 

search? 
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UNINFORMED SEARCH STRATGES 
 

 

           Uninformed Search Strategies have no additional information about states 

beyond that provided in the problem definition. 

               Strategies that know whether one non goal state is "more promising" than 

another are called Informed search or heuristic search strategies. 

There are five uninformed search strategies as given below. 

o  Breadth-first  search 

o Vniform-cost  search 

o Depth-first search 

o Depth-limited search 
o Iterative deepening search 
o Bidirectional Search 

 

Breadth-first search 
 

 

   Breadth-first search is a simple strategy in which the root node is 

expanded first, then all successors of the root node are expanded next, 

then their successors, and so on. 

In general, all the nodes are expanded at a given depth in the search tree 

before any nodes at the next level are expanded. 

   Breath-first-search is implemented by calling TREE-SEARCH with an 

empty fringe that is a first-in-first-out(FIFO) queue, assuring that the 

nodes that are visited first will be expanded first. 

   In otherwards, calling TREE-SEARCH (problem,FIFO-QVEVE()) results 

in breadth-first-search. 

   The FIFO queue puts all newly generated successors at the end of the 

queue, which means that Shallow nodes are expanded before deeper 

nodes. 
 
 
 
 
 
 
 
 
 
 

Breadth-first search on a simple binary tree. At each stage ,the node to be expanded next  is indicated 

by a marker. 
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Properties of breadth-first-search 

 

 
 

Time and memory requirements for breadth-first-search. 

 
Time complexity for BFS 

       Assume every state has b successors. 

    The root of the search tree generates b nodes at the first level,each of which 

generates b more nodes,for a total of b
2 

at the second level. 
        Each of these generates b more nodes,yielding b

3 
nodes at the third 

level,and so on. 

       Now suppose,that the solution is at depth d. 

   In the worst case,we would expand all but the last node at level d,generating 
b

d+1 
- b nodes at level d+1. 

       Then the total number of nodes generated is 

b + b
2 
+ b

3 
+ …+ b

d 
+ (bd

+1 
+ b)   = O(b

d+1).
 

 
   Every node that is generated must remain in memory,because it is either 

part of the fringe or is an ancestor of a fringe node. 

       The space compleity is,therefore ,the same as the time complexity 
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UNIFORM-COST SEARCH 
      Instead of expanding the shallowest node,uniform-cost search expands the 

node n with the lowest path cost. 

  uniform-cost search does not care about the number of steps a path has,but 

only about their total cost. 

 
Properties of Uniform-cost-search: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEPTH-FIRST-SEARCH 
 

   Depth-first-search always expands the deepest node in the current fringe of 

the search tree. 

   The progress of the search is illustrated in figure. 

   The  search  proceeds  immediately  to  the  deepest  level  of  the   search 

tree,where the nodes have no successors. 

   As those nodes are expanded,they are dropped from the fringe, 

   so then the search "backs  up"  to the next  shallowest  node that still  has 
unexplored successors. 

   This strategy can be implemented by TREE-SEARCH with a  last-in-first- 
out (LIFO) queue,also known as a stack. 

   Depth-first-search has very modest memory requirements. 

   It needs to store only a single path from the root to a leaf node,along with 
the remaining unexpanded sibling nodes for each node on the path. 

   Once the node has been expanded,it can be removed from the  memory,as 
soon as its descendants have been fully explored. 

   For a state space with a branching factor b and maximum depth  m,depth- 
first-search requires storage of only bm + 1 nodes. 

 
 
 
 
 
 
 
 
 
 

SVCET
STUDENTSFOCUS.COM



 

 

P
ag

e2
6

 

Artificial Intelligence                                 CSE/IIIYr/VISem              VNIT - I/PROBLEM SOLVING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Depth-first-search on a binary tree. Nodes that have been expanded and have no descendants in the 

fringe can be removed from the memory; these are shown in black. Nodes at depth 3 are assumed 

to have no successors and M is the only goal node. 

 
Drawback of Depth-first-search 

 
The drawback of depth-first-search is that it can make a wrong choice and get 

stuck    going down very long(or even infinite) path when a different choice would lead to 

solution near the root of the search tree. 

 
For  example,  depth-first-search  will explore  the entire  left  subtree  even  if 

node C is a goal node. 

 
BACKTRACKING SEARCH 

 
A variant of depth-first  search called backtracking search uses less memor y 

and only one successor is generated at a time rather than all successors.; Only O(m) memor y 

is needed rather than O(b
m
) 
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DEPTH-LIMITED-SEARCH 
 

 

  The problem of unbounded trees can be alleviated by supplying depth-first-search  with a 

pre-determined depth limit l. 

         That is,nodes at depth l are treated as if they have no successors. 

         This approach is called depth-limited-search. 

         The depth limit solves the infinite path problem. 

  Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(b
l
) and 

its space compleiy is O(bl). 

         Depth-first-search can be viewed as a special case of depth-limited search with l = oo 

           Sometimes,depth limits can be based on knowledge of the problem. 

           For,example,on the map of Romania there are 20 cities. 

  Therefore,we know that if there is a solution.,it must be of length 19 at the longest,So l = 10 

is a possible choice. 

  However,it oocan be shown that any city can be reached from any other city in at most 9 
steps. 

         This number known as the diameter of the state space,gives us a better depth limit. 

  Depth-limited-search  can be  implemented  as  a simple  modification  to  the  general  tree- 
search algorithm or to the recursive depth-first-search algorithm. 

         The pseudocode for recursive depth-limited-search is shown. 

  It can  be noted  that  the above  algorithm  can terminate  with two  kinds  of failure  : the 

standard failure value indicates no solution; the cutoff value indicates no solution within the 

depth limit. 

  Depth-limited  search = depth-first search with depth limit   l, returns cut off if any path is 

cut off by depth limit 

     Recursive implementation of Depth-limited-search: 

 
function Depth-Limited-Search( problem, limit) returns a solution/fail/cutoff 

return Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) 

function Recursive-DLS(node, problem, limit) returns solution/fail/cutoff 

cutoff-occurred?        false 

if Goal-Test(problem,State[node])  then return Solution(node) 

else if Depth[node] = limit then return cutoff 

else for each successor in Expand(node, problem) do 

result          Recursive-DLS(successor,  problem, limit) 

if result = cutoff then cutoff_occurred?          true 

else if result not = failure then return result 

if cutoff_occurred? then return cutoff else return failure 
 

 
 

ITERATIVE DEEPENING DEPTH-FIRST SEARCH 

 
  Iterative  deepening  search  (or  iterative-deepening-depth-first-search)  is  a  general 

strategy often used  in combination  with depth-first-search,that  finds the better depth 

limit. 

  It does this by gradually increasing the limit - first 0,then 1,then 2, and so on - until a 

goal is found. 

         This will occur when the depth limit reaches d,the depth of the shallowest goal node. 
 
 
 

SVCET
STUDENTSFOCUS.COM



 

 

P
ag

e2
8

 

Artificial Intelligence                                 CSE/IIIYr/VISem              VNIT - I/PROBLEM SOLVING 
 
 

         Iterative deepening combines the benefits of depth-first and breadth-first-search 

         Like depth-first-search,its memory requirements are modest;O(bd) to be precise. 

  Like  Breadth-first-search,it   is  complete  when  the  branching  factor  is  finite  and 
optimal when the path cost is a non decreasing function of the depth of the node. 

  The      following      figure      shows      the      four     iterations      of     ITERATIVE- 

DEEPENING_SEARCH  on a  binary  search  tree,where  the  solution  is found  on the 

fourth iteration. 
 

 
The iterative deepening search algorithm, which repeatedly applies depth-limited-search with 

increasing limits. It terminates when a solution is found or if the depth limited search returns failure, 

meaning that no solution exists. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Four iterations of iterative deepening search on a binary tree 
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Iterative deepening search 
 

S                                             
S                            S

 
Limit = 0 

 

A                               D 

Limit = 1
 

 
 

S                            S                                         S
 

 

A                              D       A                              D 

 

B             D             A                   E 
Limit = 2 

 

 
 

     Iterative search is not as wasteful as it might seem 

 

Properties of iterative deepening search 
 

 
 

 

  In general,iterative deepening is the prefered uninformed search method when there is 
a large search space and the depth of solution is not known. 
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Bidirectional Search 
 

       The idea behind bidirectional search is to run two simultaneous searches 

 
    one forward from the initial state and 

    other backward from the goal, 

 
       It stops when the two searches meet in the middle. 

       The motivation is that b
d/2  

+ b
d/2  

much less than b
d/

 

 
 
 
 
 
 
 
 
 
 
 
 

 
A schematic view of a bidirectional search that is about to succeed, when a Branch from 

the Start node meets a Branch from the goal node. 

 
Comparing Uninformed Search Strategies 

 

 

The following table compares search strategies in terms of the four evaluation criteria. 
 
 
 
 
 
 
 
 
 
 
 

Evaluation of search strategies,b is the branching factor; d is the depth of the shallowest 
solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are 

as follows: 
a  

complete if b is finite; 
b 

complete if step costs >= E for positive E; 
c 
optimal if step 

costs are all identical; 
d 

if both directions use breadth-first search. 

 

INFORMED SEARCH AND EXPLORATION 

Informed (Heuristic) Search Strategies 

     Informed  search  strategy  is one  that  uses  problem-specific  knowledge  beyond  the 
definition of the problem itself. 

     It can find solutions more efficiently than uninformed strategy. 
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Best-first search 
 

    Best-first  search  is  an  instance  of  general  TREE-SEARCH  or  GRAP H-SEARCH 

algorithm in which a node is selected for expansion based on an  evaluation function 

f(n). 

    The  node  with  lowest  evaluation  is  selected  for  expansion,because   the   evaluation 

measures the distance to the goal. 

   This can be implemented  using a priority-queue,a  data structure that will maintain  the 

fringe in ascending order of f-values. 

 

Heuristic functions 
 

 A  heuristic  function  or  simply  a  heuristic  is  a  function  that  ranks  alternatives  in 

various search algorithms at each branching step basing on an available information in 

order to make a decision which branch is to be followed during a search. 

 The key component  of Best-first  search algorithm  is a heuristic  function,denoted  by 

h(n): 

 
h(n)  = estimated cost of the cheapest path from node n to a goal node. 

 
     For example,in Romania, one might estimate the cost of the cheapest path from Arad to 

Bucharest via a straight-line distance from Arad to Bucharest 

 Heuristic  function  are  the  most  common  form  in  which  additional  knowledge  is 
imparted to the search algorithm. 

 
Greedy Best-first search 

 
 Greedy best-first search tries to expand the node that is closest to the goal,on the 

grounds that this is likely to a solution quickly. 

     It evaluates the nodes by using the heuristic function f(n) = h(n). 

     Taking the example of Route-finding problems in Romania, the goal is to reach 

Bucharest starting from the city Arad. 

     We need to know the straight-line distances to Bucharest from various cities. 

 For example, the initial state is In(Arad) ,and the straight line distance heuristic 

hSLD(In(Arad)) is found to be 366. 
     Vsing the straight-line distance heuristic hSLD ,the goal state can be reached faster. 

 

 
 

Values of hSLD - straight line distances to Bucharest 
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Strategies in greedy best-first search for Bucharest using straight-line distance heuristic hSLD. Nodes 

are labeled with their h-values. 

 
     The above figure shows the progress of greedy best-first search using hSLD to find a path from 

Arad to Bucharest. 

 The first node to be expanded from Arad will be Sibiu,because it is closer to Bucharest than 

either Zerind or Timisoara. 

     The next node to be expanded will be Fagaras,because it is clo sest. 

     Fagaras in turn generates Bucharest,which is the goal. 
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Properties of greedy search 

 
o Complete?? No-can get stuck in loops, e.g., 

Iasi ! Neamt ! Iasi ! Neamt ! 
Complete in finite space with repeated-state checking 

o Time?? O(bm), but a good heuristic can give dramatic improvement 
o Space?? O(bm)-keeps all nodes in memory 
o Optimal?? No 

 

     Greedy best-first search is not optimal,and it is incomplete. 

 The worst-case time and space  complexity is O(b
m
),where m is the maximum depth of 

the search space. 
 

A
* 

Search 
 

 

 A
*  

Search is the most widely used form of best-first search. The evaluation function 

f(n) is obtained by combining 

(1) g(n) = the cost to reach the node,and 
(2) h(n) = the cost to get from the node to the goal : 

f(n) = g(n) + h(n). 

     A
* 

Search is both optimal and complete. A
* 
is optimal if h(n) is an admissible heuristic. 

The obvious example of admissible heuristic is the straight-line distance hSLD. 

     It cannot be an overestimate. 

 A
* 
Search is optimal if h(n) is an admissible heuristic - that is,provided that h(n) never 

overestimates the cost to reach the goal. 

 An obvious example of an admissible heuristic is the straight-line distance hSLD that we 

used in getting to Bucharest. 

     The progress of an A
* 
tree search for Bucharest is shown in above figure. 

 The values of 'g ' are computed from the step costs shown in the Romania,Also the 
values of hSLD are given in Figure Route Map of Romania. 

 

Recursive Best-first Search (RBFS) 
 

 

 Recursive best-first search is a simple recursive algorithm that attempts to mimic the 

operation of standard best-first search,but using only linear space. 

     The algorithm is shown in below figure. 

 Its structure is similar to that of recursive depth-first search,but rather than continuing 

indefinitely down the current path,it keeps track of the f-value of the best alternative path 

available from any ancestor of the current node. 

       If the current node exceeds this limit,the recursion unwinds back to the alternative path. 
As the recursion unwinds,RBFS replaces the f-value of each node along the path with 

the best f-value of its children. 
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Stages in A
* 
Search for Bucharest. Nodes are labeled with f = g + h . The h-values are the straight- 

line distances to Bucharest taken from figure Route map of Romania 
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function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure 

return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞) 
 

 
function RFBS( problem, node, f_limit) return a solution or failure and a new f- 

cost limit 

if GOAL-TEST[problem](STATE[node]) then return node 

successors  EXPAND(node, problem) 

if successors is empty then return failure, ∞ 

for each s in successors do 

f [s]  max(g(s) + h(s), f [node]) 

repeat 

best  the lowest f-value node in successors 

if f [best] > f_limit then return failure, f [best] 

alternative  the second lowest f-value among successors 

result, f [best]  RBFS(problem, best, min(f_limit, alternative)) 

if result   failure then return result 

 
The algorithm for recursive best-first search 
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 Stages in an RBFS search for the shortest route to Bucharest.  The f-limit value for each 
recursive call is shown on top of each current node. 

  (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value 

that is worse than the best alternative path (Fagaras). 

 (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up 
to Rimnicu Vilcea;then Fagaras is expanded,revealing a best leaf value of 450. 

 (c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed 

upto Fagaras; then Rimni Vicea is expanded. 

 This  time  because  the  best  alternative   path(through  Timisoara)  costs  atleast  447,the 

expansion continues to Bucharest 
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RBFS Evaluation: 
 

 

     RBFS is a bit more efficient than IDA* 

- Still excessive node generation (mind changes) 

     Like A*, optimal if h(n) is admissible 

     Space complexity is O(bd). 

- IDA* retains only one single number (the current f-cost limit) 

     Time complexity difficult to characterize 

- Depends on accuracy if h(n) and how often best path changes. 

     IDA* en RBFS suffer from too little memory. 

 

Heuristic Functions 
 

 

 A heuristic function or simply a heuristic is a function that ranks alternatives in various 

search algorithms at each branching step basing on an available information in order to 

make a decision which branch is to be followed during a search 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A typical instance of the 8-puzzle. 

 
     The solution is 26 steps long. 

 

 

The 8-puzzle 

 
     The 8-puzzle is an example of Heuristic search problem. 

 The object of the puzzle is to slide the tiles horizontally or vertically into the empty space 

until the configuration matches the goal configuration 

     The average cost for a randomly generated 8-puzzle instance is about 22 steps. 

 The branching factor  is about   3.(When  the empty tile  is in the middle,there  are four 

possible moves;when it is in the corner there are two;and when it is along an edge there 

are three). 

     This means that an exhaustive search to depth 22 would look at about 3
22 

approximately = 

3.1 X 10
10 

states. 

 By keeping track of repeated states, we could cut this down by a factor of about 170, 000, 

because there are only 9!/2 = 181,440 distinct states that are reachable. 

     This is a manageable number, but the corresponding number for the 15-puzzle is roughly 

10
13

. 
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 If we want to find the shortest solutions by using A
*
,we need a heuristic function that 

never overestimates the number of steps to the goal. 

 The two commonly used heuristic functions for the 15-puzzle are : 
(1) h1  = the number of misplaced tiles. 

 In the above figure all of the eight tiles are out of position, so the start state would have 
h1 = 8. h1 is an admissible heuristic. 

(2) h2  = the sum of the distances of the tiles from their goal positions. This is 
called the city block distance or Manhattan distance. 

h2   is  admissible ,because all any move can do is move one tile one step closer to the

goal.  
     Tiles 1 to 8 in start state give a Manhattan distance of 

 
h2   = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18. 

     Neither of these overestimates the true solution cost, which is 26.
 

The Effective Branching factor 

 
     One way to characterize the quality of a heuristic is the effective branching factor b*. 

If  the  total  number  of nodes  generated  by A*  for  a  particular  problem  is  N,and  the 

solution depth is d,then b
*   

is the branching factor that a uniform tree of depth d would 
have to have in order to contain N+1 nodes. Thus, 

N + 1 = 1 + b
* 
+ (b

*
)

2
+…+(b

*
)

d
 

 For example,if  A
*  

finds a solution  at depth 5 using 52  nodes,then  effective  branching 

factor is 1.92. 

 A  well  designed  heuristic  would  have  a  value  of  b
*  

close  to  1,allowing  failru  large 
problems to be solved. 

 To  test  the  heuristic  functions  h1  and  h2,1200  random  problems  were  generated  with 
solution lengths from 2 to 24 and solved them with iterative deepening search and with 

A
* 

search using both h1 and h2. 

  The following table gives the average number of nodes expanded by each strategy and 

the effective branching factor. 

 The results suggest that h2 is better than h1,and is far better than using iterative deepening 

search. 

     For a solution length of 14,A
*    

with h2  is 30,000 times more efficient than uninformed 
iterative deepening search. 
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Comparison of search costs and effective branching factors for the ITERATIVE-DEEPENING- 

SEARCH and A
* 

Algorithms with h1,and h2. Data are average over 100 instances of the 8-puzzle,for 
various solution lengths. 

 

 
 

Inventing admissible heuristic functions 
 

 

Relaxed problems 
 

 

o A problem with fewer restrictions on the actions is called a relaxed problem 
o The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original 

problem 
o If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then hi(n) gives the 

shortest solution 
o If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the 

shortest solution 

 

CONSTRAINT SATISFACTION PROBLEMS (CSP) 
 
 

   A Constraint Satisfaction Problem (or CSP) is defined by a 

 
  set of variables X1, X2….Xn, and a 

    set of constraints C1,C2,…,Cm. 
  Each variable Xi has a nonempty domain D,of possible values. 
   Each  constraint  Ci    involves  some  subset  of  variables  and  specifies  the 

allowable combinations of values for that subset. 

 
   A  State  of  the  problem  is  defined  by an  assignment  of  values  to  some  or  all  of  the 

variables,{Xi = vi,Xj = vj,…}. 

 An  assignment  that  does  not  violate  any  constraints  is  called  a  consistent  or  legal 

assignment. 

    A complete assignment is one in which every variable is mentioned, and a solution to a CSP 

is a complete assignment that satisfies all the constraints. 
 
 

 
SVCET

STUDENTSFOCUS.COM



 

 

P
ag

e4
0

 

Artificial Intelligence                                 CSE/IIIYr/VISem              VNIT - I/PROBLEM SOLVING 
 
 

   Some CSPs also require a solution that maximizes an objective function. 

   For Example for Constraint Satisfaction Problem : 

   The following figure shows the map of Australia showing each of its states and territories. 

    We are given the task of coloring each region either red,green,or blue in such a way that the 

neighboring regions have the same color. 

   To formulate this as CSP ,we define the variable to be the regions  :WA,NT,Q,NSW,V,SA, 

and T. 

   The domain of each variable is the set {red,green,blue}. 

   The constraints require neighboring regions to have distinct colors; 

   for    example,    the    allowable    combinations     for    WA    and    NT    are    the    pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. 

    The  constraint  can  also  be  represented  more  succinctly  as  the  inequality  WA  not   = 

NT,provided   the   constraint   satisfaction   algorithm   has   some   way   to   evaluate   such 

expressions.) 

    There are many possible solutions such as 

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}. 
 

 
 

 
Principle states and territories of Australia. Coloring this map can be viewed as aconstraint 

satisfaction problem. The goal is to assign colors to each region so that no neighboring regions have 

the same color. 

 
     It is helpful to visualize a CSP as a constraint graph,as shown in the following figure. 

 The nodes of the graph corresponds to variables of the problem and the arcs correspond to 

constraints. 
 
 
 
 
 
 
 
 

The map coloring problem represented as a constraint graph. 
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     CSP can be viewed as a standard search problem as follows : 

 
  Initial state : the empty assignment {},in which all variables are unassigned. 

  Successor   function   :   a   value   can   be   assigned    to   any   unassigned 

variable,provided that it does not conflict with previously assigned variables. 

  Goal test : the current assignment is complete. 

  Path cost : a constant cost(E.g.,1) for every step. 

 
 Every solution must be a complete assignment and therefore appears at depth n if there are n 

variables. 

     Depth first search algorithms are popular for CSPs 

 
Varieties of CSPs 

 
(i)        Discrete variables 

 
Finite domains 

 
     The simplest kind of CSP involves variables that are discrete and have finite domains. 

     Map coloring problems are of this kind. 

       The 8-queens problem can also be viewed as finite-domain 

 CSP,where  the variables Q1,Q2,…..Q8  are the positions each queen in columns 1,….8 and 

each variable has the domain {1,2,3,4,5,6,7,8}. 

 If the maximum  domain size of any variable  in a CSP  is d,then the number of possible 
complete assignments is O(d

n
) - that is,exponential in the number of variables. 

     Finite domain CSPs include Boolean CSPs,whose variables can be either true or false. 

 
Infinite domains 

 
 Discrete variables can also have infinite domains - for example,the set of integers or the set 

of strings. 

 With  infinite  domains,it  is  no  longer  possible  to describe  constraints  by enumerating  all 

allowed combination of values. Instead a constraint language of algebric inequalities such as 

Startjob1 + 5 <= Startjob3. 

 
(ii)       CSPs with continuous domains 

 
     CSPs with continuous domains are very common in real world. 

  For  example  ,in  operation  research  field,the  scheduling  of  experiments  on  the  Hubble 

Telescope  requires  very  precise  timing  of  observations;   the  start  and  finish  of  each 

observation  and  maneuver  are  continuous-valued  variables  that  must  obey     a  variety of 

astronomical,precedence and power constraints. 

     The  best  known  category  of  continuous-domain  CSPs  is  that  of  linear  programming 

problems,where the constraints must be linear inequalities forming a convex region. 

     Linear programming problems can be solved in time polynomial in the number of variables. 
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Varieties of constraints : 

 
(i) Unary constraints involve a single variable. 

 
Example: SA # green 

 
(ii) Binary constraints involve pairs of variables. 

 
Example: SA # WA 

 
(iii) Higher order constraints involve 3 or more variables. 

 
Example: cryptarithmetic puzzles. 

 
(iv) Absolute constraints are the constraints, which rules out a potential solution when they are 

violated 

 
(v) Preference constraints are the constraints indicating which solutions are preferred 

 
Example: Vniversity Time Tabling Problem 

 

 
 

 
 

 

     Cryptarithmetic problem. 

 Each letter stands for a distinct digit;the aim is to find a substitution of digits for letters such 

that the resulting sum is arithmetically correct,with the added restriction that no leading zeros 

are allowed. 

 The constraint  hypergraph for the cryptarithmetic  problem,showint  the Alldiff constraint  as 

well as the column addition constraints. 

     Each constraint is a square box connected to the variables it contains. 
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Backtracking Search for CSPs 
 

 

 The term backtracking  search is used for depth-first  search that chooses  values for one 

variable at a time and backtracks when a variable has no legal values left to assign. 

     The following algorithm shows the Backtracking Search for CSP 

 

 
A simple backtracking algorithm for constraint satisfaction problem. The algorithm is modeled 

on the recursive depth-first search 

 

 
 

Part of search tree generated by simple backtracking for the map coloring problem. 

 

Propagating information through constraints 
 

     So far our search algorithm considers the constraints on a variable only at the time that the 
Variable is chosen by SELECT-VNASSIGNED-VARIABLE. 

 But by looking at some of the constraints earlier in the search, or even before the search has 
started, we can drastically reduce the search space. 
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Forward checking 
 

     One way to make better use of constraints during search is called forward checking. 

 Whenever a variable X is assigned,  the forward checking process looks at each unas signed 

variable Y that is connected to X by a constraint and deletes from Y 's domain any value that 

is inconsistent with the value chosen for X. 

     The following figure shows the progress of a map-coloring search with forward checking. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Constraint propagation 
 

 

     Although forward checking detects many inconsistencies, it does not detect all of them. 

 Constraint propagation is the general term for propagating the implications of a constraint 

on one variable onto other variables. 

 
Arc Consistency 
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K-Consistency 

 
 

Local Search for CSPs 

 
 

The Structure of Problems 
 

 

Problem Structure 
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Independent Sub problems 

 
 

Tree-Structured CSPs 
 

 
 
 
 
 
 
 

 

************************************************ 
 

FIRST UNIT-I PROBLEM SOLVING FINISHED 
 

************************************************ 
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ARTIFICIAL INTELLIGENCE 

UNIT-II LOGICAL 

REASONING 

 

 
Logical Agents – propositional logic – inferences – first-order logic – inferences in 
first-order logic – forward chaining- backward chaining – unification – resolution 

 

2.0 Logic: 
 

 A knowledge  representation  language  in which  syntax  and  semantics  are  defined 

correctly is known as logic. 
 

 A formal language to represent the knowledge in which reasoning  is carried out to 

achieve the goal state. 
 

    Logics consists of the following two representations in sequence, 
 

 A formal system is used to describe the state of the world 
 

   Syntax “ Which describes how to make sentences” 
 

   Semantics “ Which describes the meaning of the sentences” 
 

 The  proof  theory  “a  set  of  rule  for  deducing  the  entailments  of  a  set  of 

sentences. 
 

    We will represent the sentences using two different logics, They are, 
 

 Propositional Logic (or) Boolean logic 
 

 Predicate logic (or) First order logic 
 

2.1 Logical Agents: 
 

 The Logical agent has to perform the following task using logic representation. The 

tasks are, 
 

   To know the current state of the world 
 

   How to infer the unseen properties of the world 
 

   New changes in the environment 
 

   Goal of the agent

STUDENTSFOCUS.COM



Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING 

SVCET 

 

 

P
ag

e
2

 

 
 

   How to perform actions depends on circumstances 
 

2.2 Propositional Logic: 
 

    Each fact is represented by one symbol. 

 Proposition  symbols  can  be  connected  with  Boolean  connectives,  to  give  more 

complex meaning.   Connectives , 

o Λ                       Logical Conjunction 
o V                       Logical disjunction 
o ¬                       Negation 
o ⇔                      Material Equivalence or Biconditional

 
o ⇒                         Material Implication or conditional

 
    Simple statements are implemented 
    The Symbols of propositional logic are the logical constants, (True and False) 

    For Example: -  P, Q 

Connectives 

Λ (and)                       ----- Example: - P Λ Q 

V (or)                          ----- Example: - P V Q 
⇒ (implies)                 ----- Example: - (P Λ Q) ⇒ R

 
⇔ (equivalent)           ----- Example: - (P Λ Q) ⇔ (Q Λ P)

 
¬ (not)                         ----- Example: - ¬ P 

    A BNF (Backus-Naur Form) grammer of sentence in propositional logic 

 
Sentence                     ---------> Atomic sentence | complex sentence 

Atomic sentence        ---------> True | False | P | Q | R | 

Complex sentence     ---------> (sentence) | sentence connective sentence | 

¬ Sentence 
Connective                 ---------> Λ | V | ⇒ | ⇔

 
    Order of precedence ( from highest to lowest) :  ¬ , Λ , V , ⇒  and  ⇔

 
    Example : -  ¬P VQ ΛR ⇒ S is equivalent to ((¬P )V(Q Λ R)) ⇒ S

 
    The following truth table shows the five logical connectives 

 
P Q ¬ P P Λ Q P V Q P ⇒ Q P ⇔ Q 

False False True False False True True 

False True True False True True False 

True False False False True False False 

True True False True True True True 

 

    These truth table can be used to define the validity of a sentence. 

 If the sentence is true in every row (i.e. for different types of logical constants) then 

the sentence is a valid sentence. 

    For Example: - ((P V H) Λ¬H) ⇒  P Check whether the given sentence  is a valid
 

sentence or not. 
P H P V H (P V H) Λ¬H ((P V H) Λ¬H) ⇒ P 

False False False False True 

False True True False True 

True False True True True 

True True True False True 
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    The given sentence is ((P V H) Λ¬H) ⇒ P valid sentence, because the sentence is

 
TRUE in every row for different types of logical statements. 

 
2.3 Inference Rules for Propositional logic: 

 

 

    The propositional logic has seven inference rules. 

    Inference means conclusion reached by reasoning from data or premises; speculation. 

    A procedure which combines known facts to produce ("infer") new facts. 

 Logical inference is used to create new sentences that logically follow from a given 

set of predicate calculus sentences (KB). 

 An  inference  rule  is  sound  if  every  sentence  X  produced  by  an  inference  rule 

operating on a KB logically follows from the KB. (That is, the inference rule does not 

create any contradictions) 

 An inference rule is complete if it is able to produce every expression that logically 

follows  from  (is  entailed   by)  the  KB.  (Note  the  analogy  to  complete  search 

algorithms.) 

    Here are some examples of sound rules of inference 

A rule is sound if its conclusion is true whenever the premise is true 
 

 
 

Rule Premise Conclusion 

Modus Ponens A, A  B B 

And Introduction A, B A  B 

And Elimination A  B A   B 

Or Introduction A, B A 

Double Negation A A 

Unit Resolution A  B, B A 

Resolution A  B, B  C A  C 

 

2.4     An Agent for the Wumpus world – Propositional logic 
 We will discuss the knowledge base representation and a method to find the wumpus 

using propositional logic representation. 

    From the following figure assume that the agent has reached the square (1,2) 
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 The Knowledge Base: The agent percepts are converted into sentences and entered 

into the knowledge base, with some valid sentences that are entailed by the percept 

sentences 

 From the above figure we can perceive the following percept sentences and it is added 

to the knowledge base. 
 

 S1, 1 B1, 1 ----- for the square (1, 1) 

 S2, 1 B2, 1 ----- for the square (2, 1) 

S1, 2 B1, 2 ----- for the square (1, 2) 

S1, 2  ----- There is a stench in (1, 2) 

 B1, 2  ----- There is a breeze in (1, 2) 

 S2, 1  ----- There is a stench in (2, 1) 
B2, 1  ----- There is a breeze in (2, 1) 

 S1, 1  ----- There is a stench in (1, 1) 

 B1, 1  ----- There is a breeze in (1, 1) 

    The rule of three squares, 

    R1 :-         S1, 1  ⇒  W1 1   W1 2   W2 1
 

    R2:-      S2, 1  ⇒  W1 1   W2 2   W2 1   W3 1
 

    R3:-          S1, 2  ⇒  W1 1   W1 2   W2 2   W1 3
 

    R4:-          S1, 2  ⇒     W1 3     W1 2      W2 2     W1 1

 

    Finding the wumpus as,  We can prove that the Wumpus is in (1, 3) using the four 
rules given. 

o Apply Modus Ponens with S1 1  and  R1: 

     W1 1   W1 2   W2 1 

o Apply And-Elimination to this, yielding three sentences: 

     W1 1,  W1 2,  W2 1 

o Apply Modus Ponens to S21 and  R2, then apply And-elimination: 

     W2 2,  W2 1,  W3 1 

o Apply Modus Ponens to S12 and  R4 to obtain: 
    W1 3  W1 2  W2 2  W1 1 

o Apply Unit resolution on  (W1 3   W1 2    W2 2  W1 1) and  W1 1: 

    W1 3  W1 2  W2 2 

o Apply Unit Resolution with (W1 3  W1 2  W2 2) and W2 2: 

    W1 3  W1 2 

o Apply Unit Resolution with (W1 3  W1 2) and W1 2: 
    W1 3 

 

2.5   First-Order Logic: 
 

 First-Order Logic is a logic which is sufficiently expressive to represent a good deal 

of our commonsense knowledge. 
 

 It  is  also  either  includes  or  forms  the  foundation  of  many  other  representation 

languages. 
 

    It is also called as First-Order Predicate calculus. 
 

    It is abbreviated as FOL or FOPC
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2.5.1   Representation Revisited: 
 

    It is necessary to know about the nature of representation languages. 
 

    The following are the some languages, 
 

   Programming languages 
 

   Propositional logic languages 
 

   Natural languages 
 

Programming languages: 
 

 Programming  languages  like  C++  or  Java  are  the  largest  class  of  formal 

languages in common use. 
 

    Programs represent only computational processes. 
 

    Data structures within programs can represent facts. 
 

 For Example, 4 x 4 arrays can be used by a program to represent the contents 

of the Wumpus world. 
 

 Thus the programming language statement World [2, 2]            Pit is a fairly 

natural way to assert that there is a pit in square [2, 2]. 
 

Disadvantages: 
 

 Programming languages lack is any general mechanism for deriving facts from 

other  facts;  each  update  to  a  data  structure  is  done  by a  domain-specific 

procedure whose details are derived by the programmer from his or her own 

knowledge of the domain. 
 

 A second drawback of data structures in programs is the lack of any easy way 

to say 
 

    For Example, “There is a Pit in [2,2] or [3,1]” or “If the Wumpus is in [I,I] 

then he is not in [2,2]”. 
 

    Programs lack the expressiveness required to handle partial information. 
 

Propositional Logic Languages: 
 

    Propositional logic is a declarative language 
 

    The following are the properties of propositional logic 
 

 Its  semantics  is  based  on  a  truth  relation  between  sentences  and  possible 

worlds. 
 

 It also has sufficient expressive power to deal with partial information, using 

disjunction and negation. 
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 It  also  has  compositionality  that  is  desirable  in  representation  languages 

namely compositionality. 
 

 In a compositionality language, the meaning of a sentence is function of the 

meaning of its parts.
 

    For Example, “S1,4 Λ S1, 
”
 

 

is related to the meanings of “S1,4
”
 

 

and “S1,  
”

 

 It would be very strange if  “S1,4
”   

meant that there is a  stench in square [1,4] 

and “S1,2
”   

meant that there is a stench in square [1,2], but “S1,4 Λ S1,2
”   

meant 
that France and Poland drew  1-1 in last week’s ice hockey qualifying match. 

 

 Clearly,   non  Compositionality   makes   life  much  more  difficult   for  the 

reasoning system. 
 

Advantages: 
 

    Declarative 
 

    Context-Independent 
 

    Unambiguous 
 

Disadvantages: 
 

 It lacks the expressive power to describe an environment with many objects 

concisely. 
 

 For Example, it is forced to write a separate rule about breezes and pits for 

each square, such as B1, 1  (P1, 2 V P2, 1). 
 

 The procedural approach of programming  languages can be contrasted  with 

the  declarative   nature  of  propositional   logic,   in  which  knowledge   and 

inference are separate and inference is entirely domain-independent. 
 

Natural Languages: 
 

 A  moments  thought  suggests  that  natural  languages  like  English  are  very 

expressive indeed. 
 

 Natural   language   is   essentially   a   declarative   knowledge   representation 

language and attempts to pin down its formal semantics. 
 

 The modern view of natural language is that it serves a somewhat different 

purpose,   namely   as   a   medium   for   communication   rather   than   pure 

representation. 
 

 When a speaker points and says, “Look!” the listener comes to know that, say, 

Superman has finally appeared over the rooftops. 
 

 The meaning of the above sentence depends both on the sentence itself and on 

the context in which the sentence was spoken. 
 

Disadvantages: 
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    It is difficult to understand how the context can be represented. 
 

 This is because one could not store a sentence such as “Look!” in knowledge 

base and expect to recover its meaning without also storing a representation of 

the context. 
 

    They are also non-compositional 
 

    They suffer from ambiguity, which would cause difficulties for thinking. 
 

 For Example,  when people think about spring, they are not confused  as to 

whether they are thinking about a season or something that goes boing-and if 

one word can correspond to two thoughts, thoughts can’t be words. 
 

2.5.2  First-Order Logic: 
 

 First-Order Logic is a logic which is sufficiently expressive to represent a good deal 

of our commonsense knowledge. 
 

 It  is  also  either  includes  or  forms  the  foundation  of  many  other  representation 

languages. 
 

    It is also called as First-Order Predicate calculus. 
 

    It is abbreviated as FOL or FOPC 
 

 FOL adopts the foundation of propositional  logic with all its advantages to build a 

more  expressive  logic  on  that  foundation,  borrowing  representational  ideas  from 

natural language while avoiding its drawbacks 
 

    The Syntax of natural language contains elements such as, 
 

Nouns and noun phrases that refer to objects (Squares, pits, rumpuses) 
 

Verbs and verb phrases that refer to among objects ( is breezy, is adjacent to) 
 

 Some of these relations are functions-relations in which there is only one “Value” for 

a given “input”. 
 

    For Example, 
 

Objects: People, houses, numbers 
 

Relations:      These can be unary relations or properties such as red, round, 

More generally n-ary relations such as brother of, bigger than, 

Functions: father of, best friend,… 
 

 Indeed, almost any assertion can be thought of as referring to objects and properties or 

relations 
 

    For Example, in the way of Sentence “ One plus Two is Three” 
 

    Where, 
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Objects: One, Two, Three, One plus Two 
 

Relations: equals 
 

Function: plus 
 

    Ontological  commitment  of First-Order  logic  language  is “Facts”,  “Objects”,  and 

“Relations”. 
 

    Where ontological commitment means “WHAT EXISTS IN THE WORLD”. 
 

    Epistemological  Commitment  of First-Order logic language is “True”, “False”, and 

“Unknown”. 
 

 Where   epistemological   commitment   means   “WHAT   AN  AGENT   BELIEVES 

ABOUT FACTS”. 
 

Advantages: 
 

 It  has  been  so  important  to  mathematics,  philosophy,  and  Artificial  Intelligence 

precisely because those fields can be usefully thought of as dealing with objects and 

the relations among them. 
 

    It can also express facts about some or all of the objects in the universe. 
 

 It enables  one to  represent  general  laws or  rules,  such as the  statement  “Squares 

neighboring the wumpus are smelly”. 
 

2.5.3  Syntax and Semantics of First-Order Logic: 
 

 The models of a logical language are the formal structures that constitute the possible 

worlds under consideration. 
 

 Models  for  propositional  logic  are  just  sets  of  truth  values  for  the  proposition 

symbols. 
 

    Models for first-order logic are more interesting. 
 

    First they have objects in them. 
 

 The domain of a model is the set of objects it contains; these objects are sometimes 

called domain elements. 
 

    The following diagram shows a model with five objects 
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    The five objects are, 
 

   Richard the Lionheart 
 

   His younger brother 
 

   The evil King John 
 

   The left legs of Richard and John 
 

   A crown 
 

    The objects in the model may be related in various ways, In the figure Richard and 

John are brothers. 
 

    Formally speaking, a relation is just the set of tuples of objects that are related. 
 

 A tuple is a collection of Objects arranged in a fixed order and is written with 

angle brackets surrounding the objects. 
 

    Thus, the brotherhood relation in this model is the set 
 

{(Richard the Lionheart, King John),(King John, Richard the Lionheart)} 
 

 The crown is on King John’s head, so the “on head” relation contains just one 

tuple, (the crown, King John). 
 

 The relation can be binary relation relating pairs of objects (Ex:- “Brother”) or 

unary relation representing a common object (Ex:- “Person” representing both 

Richard and John) 
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 Certain kinds of relationships are best considered as functions that relates an 

object to exactly one object. 
 

    For Example:- each person has one left leg, so the model has a unary “left leg” 

function that includes the following mappings 

(Richard the Lionheart) ----> Richard’s left leg 

(King John) ---->  John’s left leg 

  Symbols and Interpretations: 
 

    The basic syntactic elements of first-order logic are the symbols that stand for 

objects, relations and functions 
 

  Kinds of Symbols 
 

    The symbols come in three kinds namely, 
 

   Constant Symbols standing for Objects (Ex:- Richard) 
 

   Predicate Symbols standing for Relations (Ex:- King) 
 

   Function Symbols stands for functions (Ex:- LeftLeg) 
 

o Symbols will begin with uppercase letters 
 

o The choice of names is entirely up to the user 
 

o Each predicate and function symbol comes with an arity 
 

o Arity fixes the number of arguments. 
 

    The semantics must relate sentences to models in order to determine truth. 
 

    To do this, an interpretation is needed specifying exactly which objects, relations 

and functions are referred to by the constant, predicate and function symbols. 
 

    One possible interpretation called as the intended interpretation- is as follows; 
 

   Richard refers to Richard the Lionheart and John refers to the evil 

King John. 
 

  Brother refers to the brotherhood  relation, that is the set of tuples of 

objects  given  in  equation  {(Richard  the  Lionheart,  King 

John),(King John, Richard the Lionheart)} 
 

   OnHead refers to the “on head” relation that holds between the crown 

and King John; Person, King and Crown refer to the set of objects 

that are persons, kings and crowns. 
 

   Leftleg refers to the “left leg” function, that is, the mapping given in 

{(Richard  the  Lionheart,  King  John),(King  John,  Richard  the 

Lionheart)} 
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 There  are  many  other  possible  interpretations  relating  these  symbols  to  this 

particular model. 
 

 The truth of any sentence is determined by a model and an interpretation for the 

sentence symbols. 
 

    The syntax of the FOL with equality specified in BNF is as follows 
 

Sentence                                        AtomicSentence 
 

|     (Sentence Connective Sentence) 
 

|     Quantifier Variable,…Sentence 
 

|     - Sentence 
 

AtomicSentence                            Predicate (Term…)  |   Term = Term 
 

Term                                              Function (Term,….) 
 

|     Constatnt 
 

|     Variable 

Connective                                     ⇒ | Λ | V | 



Quantifier                                      ∀ | ∃
 

Constant                                         A | X1 | John 
 

Variable                                         a | x | s | … 

 
Predicate                                        Before | HasColor | Raining | …. 

 
Function                                         Mother | LeftLeg | …. 

 
    Where, 

 
 
 
 
 
 
 
 

  Terms: 

Λ                     Logical Conjunction 

V                     Logical disjunction 

∀                         Universal Quantification
 

∃                         Existential Quantification
 

⇔                     Material Equivalence
 

⇒                       Material Implication

 

    A Term is a logical expression that refers to an object 

 Constant symbol are therefore terms, but it is not always convenient to have a 

distinct symbol to name every object. 

 For Example:- in English we might use the expression “King Johns left leg” rather 

than giving a name to his leg. 
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 A complex term is formed by a function symbol followed by a parenthesized list 

of terms as arguments to the function symbol. 

 It is just like a complicated kind of name. It’s not a “subroutine call” that returns a 

value”. 

 The formal semantics of terms is straight forward, 

Consider a term f(t1……tn) 

Where 

 
f- some function in the model (call it F) 

 
The argument terms – objects in the domain 

 
The term – object that is the value of the function F applied to 

the domain 

 
 For Example:- suppose the LeftLeg function symbol refers to the function is, 

(Richard the Lionheart) ------ Richards left leg 

(King John ) ------  Johns left leg 

 
John refers to King John, then LeftLeg (John) refers to king Johns left leg. 

 
    In this way the Interpretation fixes the referent of every term. 

 
  Atomic Sentences:- 

 
 An   atomic   sentence   is   formed   from   a  predicate   symbol   followed   by  a 

parenthesized list of terms: 

 
Brother (Richard, John) 

 
    This states that Richard the Lionheart is the brother of King John. 

    Atomic Sentences can have complex terms as arguments. 

    Thus,   Married(Father(Richard),    Mother(John))    states   that   Richard   the 

Lionheart’s father is married to King John’s mother 

 An atomic sentence is true in a given model, under a given interpretation, if the 

relation referred to by the predicate symbol holds among the objects referred to by 

the arguments. 

 
  Complex Sentences:- 

 
 Logical connectives can be used to construct more complex sentences, just as in 

propositional calculus. 

 The semantics of sentences formed with logical connectives is identical to that in 

the propositional case. 
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¬ Brother (LeftLeg (Richard), John) 

 
Brother (Richard, John) Λ Brother (John, Richard) 

 
King (Richard) V King (John) 

¬ King (Richard) ⇒ King (John)
 

¬     it refers “ Logical Negation” 
 

  Quantifiers:- 

 
 Quantifiers are used to express properties of entire collections of objects, instead 

of enumerating the objects by name if a logic that allows object is found. 

    It has two type, 

    The following are the types of standard quantifiers, 

 
   Universal 

   Existential 

  Universal Quantification (∀):-
 

    Universal Quantification make statement about every object. 
    “All Kings are persons”, is written in first-order logic as 

∀x king (x) ⇒ Person (x)

 

    ∀ is usually pronounced “For all….”, Thus the sentences says , “For all x, if x is a
 

king, then x is a person”. 
    The symbol x is called a variable. 

 A variable is a term all by itself, and as such can also serve as the argument of a 

function-for example, LeftLeg(x). 

    A term with no variables is called a ground term. 

 Based on our model, we can extend the interpretation in five ways, 

x --------- Richard the Lionheart 

x --------- King John 

 
x --------- Richard’s Left leg 

x --------- John’s Left leg 

x --------- the crown 

 
 The universally quantified sentence is equivalent  to asserting the following five 

sentences 

 
Richard the Lionheart ------ Richard the Lionheart is a person 
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King John is a King    ------ King John is a Person 

 
Richard’s left leg is King        -------- Richard’s left leg is a person 

John’s left leg is a King          -------- John’s left leg is a person 

The crown is a King   -------- The crown is a Person 

  Existential Quantification (∃):-

 
    An  existential  quantifier  is  used  make  a  statement  about  some  object  in  the 

universe without naming it. 

    To say, for example :- that King John has a crown on his head, write ∃x crown
 

(x) Λ OnHead (x, John).
     ∃x is pronounced “ There exists an x such that..,” or “For some x..”

     Consider the following sentence,

 
∃x crown (x) ⇒  OnHead (x,John)

 
    Applying the semantics says that at least one of the following assertion is true, 

 
Richard the Lionheart is a crown Λ Richard the Lionheart is on John’s head 

King John is Crown                     Λ King John is on John’s head 

Richard’s left leg is a crown        Λ Richard’s left leg is on John’s head 

John’s left leg is a crown             Λ John’s left leg is on John’s head 

The crown is a crown                   Λ The crown is on John’s head 

 
 Now  an  implication  is true  if  both  premise  and  conclusion  are  true,  or  if  its 

premise is false. 

 
  Nested Quantifiers:- 

 
    More complex sentences are expressed using multiple quantifiers. 

    The following are the some cases of multiple quantifiers, 

    The simplest case where the quantifiers are of the same type. 

    For Example:- “Brothers are Siblings” can be written as 

∀x ∀y, Brother (x,y) ⇒ sibling (x,y)

 

    Consecutive  quantifiers  of the same type can be written as one quantifier  with 
several variables. 

    For Example:- to say that siblinghood is a symmetric relationship as 

∀x ,y sibling (x,y) ⇔ sibling (y,z)

 

    In some cases it is possible to have mixture of quantifiers. 
 For Example:- “Everybody loves somebody” means that for every person, there is 

someone that person loves: 
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∀x ∃y Loves (x, y).

 
    On the other hand , to say “There is someone who is loved by everyone”, we can 

write  as 

∃y ∀x Loves (x, y).

 

  Connections between ∀ and ∃
 

    The two quantifiers are actually intimately connected with each other , through 
negation, 

 Declaring that everyone dislikes parsnips is the same as declaring there does not 

exist someone who likes them, and vice versa: 

∀x  ¬ Likes (x, Parsnips) is equivalent to ¬ ∃x Likes (x, Parsnips)

 

    Going one step further: “Everyone likes ice cream” means that there os no one 
who does not like ice cream: 

∀x ¬ Likes (x, IceCream) is equivalent to ¬ ∃x Likes (x, IceCream)

 

    Because  ∀   is  really   a  conjunction   over  the  universe   of  objects  ∃  is  a
 disjunction, it should not be surprising that they obey de Morgan’s rules.

     The  de  Morgan’s  rules  for  quantified  and  un-quantified  sentences  are  as
 follows:

 
    ≡ it refers definition 

∀x ¬ P ≡ ¬ ∃x P                        ¬ P Λ ¬ Q ≡ ¬ (P V Q)

 

¬ ∀x  P ≡ ∃x ¬ P                       ¬ (P Λ Q) ≡ ¬ P V ¬ Q

 
∀x  P ≡ ¬ ∃x ¬ P                       P Λ Q ≡ ¬ (¬ P V ¬ Q)

 
∃x  P ≡ ¬ ∀x ¬ P                        P V Q ≡ ¬ (¬ P Λ ¬ Q )

 
  Equality:- 

 
 First  –  order  logic  includes  one more  way of using  equality symbol  to  make 

atomic sentences. 

    Use of equality symbol 

 
  The equality symbol can be used to make statements to the effect that two 

terms refer to the same object. 

  For Example: - Father (John) = Henry says that the object referred to by 

Father (John) and the object referred to by Henry are the same. 

  Determining the truth of an equality sentence is simply a matter of seeing 

that the referents of the two terms are the same object. 

  The equality symbol can be used to state facts about a given function 
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  It can also be used with negation to insist that two terms are not the same 

object. 

  For Example:-  To say that Richard has at least two brothers, write as 

∃x,y  Brother(x, Richard) Λ Brother(y,Richard) Λ ¬ (x = y)

 

2.5.4 Using First – Order Logic 
 

The best way to learn about FOL is through examples.  In Knowledge  representation,  a 

domain is just some part of the world about which some knowledge is to be expressed. 

 
  Assertions:- 

 
 Sentences   that   are  added   to  knowledge   base   using   TELL,   exactly  as  in 

propositional logic are called assertion (Declaration/Statement). 

    For Example:- It can be declared that “ John is a King and that Kings are persons” 

 
TELL (KB, King(John)) 

TELL (KB, ∀x  King(x) ⇒ Person(x))
 

  Queries:- 
 

    Questions of the knowledge base can be asked using ASK. 

    For Example:- ASK(KB, King(John)) returns true. 

    Questions asked using ASK are called queries or goals. 

 Generally speaking,  any query that is logically  needed  by the  knowledge  base 

should be answered positively. 

    For Example:- Given the two assertions in the preceding line, the query 

 
ASK(KB, Person(John) should also return true 

 
  Substitution/Binding List:- 

 
    Substitution or Binding list is a set of variable/term pairs. 

    It is a standard form for an answer of a query with existential variables. 

    For Example:- “Is there an x such that…” is solved by providing such an x. 

    Given Just the two assertions, the answer would be {x/John} 

    If there is more than one possible answer, a list of substitutions can be returned. 

 
  The Kinship Domain:- 

 
    Kinship domain is the domain of family relationships, or Kinship. 

    This domain includes facts such as “Elizabeth is the mother of Charles” and 

“Charles is the father of William” and rules such as 

“One’s grandmother is the mother of one’s parent”. 

    The objects in this domain are people. 

    There will be two unary predicates as “Male” and “Female” 

    Kinship relations will be represented by binary predicates. 
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 For Example:-  parenthood, brotherhood,  marriage and so on are represented  by 

Parent, sibling, Brother, Sister, Child, Daughter,Son,Spouse,Wife, Husband, 

Grandparents, Grandchild, Cousin, Aunt, and Uncle. 

    For Example:- 

    One’s mother is One’s female parent: 

∀ m, c Mother(c) = m ⇔ Female (m) Λ Parent (m,c)

 

  Axioms:- 
 

    Axioms are commonly associated with purely mathematical domains. 

    The  axioms  define,  the  Mother  function  and  the  Husband,  Male,  Parent  and 

Sibling predicates in terms of other predicates. 

 They provide the basic factual information from which useful conclusions can be 

derived. 

    Kinship axioms are also definitions : they have the form  ∀x ,y  p(x,y) ⇔ …

 
  Theorems:- 

 
    Not all logical sentences about a domain are axioms. 

    Some are Theorems-that is, they are caused by the axioms. 

    For Example:- 

∀x ,y  Sibling(x,y) ⇔ … Sibling (y,x)
 

    The above declaration that siblinghood is symmetric 

    It’s a theorem that follows logically from the axiom that defines siblinghood. 

    If ASK Questions the knowledge base this sentence, it should return true 

 From logical point of view, a knowledge base need contain only axioms and no 

theorems 

 From a practical point of view, theorems are essential to reduce the computational 

cost of deriving new sentences. 

 
  Numbers:- 

 
 Numbers are perhaps the most brilliant example of how a large theory can be built 

up from a tiny heart of axioms. 

    Requirements 

 
   A predicate NatNum is needed that will be true of natural numbers 

   One constant symbol, 0 

   One function symbol, S (Successor) 

 
    Peano Axioms:- 

 
    The peano axioms define natural numbers and addition. 

   Natural numbers are defined recursively: 

 
NatNum (0) 
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∀n  NatNum (n) ⇒ NatNum (S(n))

 
   That is, 0 is a natural number, and for every object n, if n is a natural 

number then S(n) is a natural number, 

   So the natural numbers are 0, S(0), S(S(0)), and so on.. 
 

  Sets:- 

 
 The domain of sets is also fundamental to mathematics as well as to commonsense 

reasoning 

    The empty set is a constant written as { }. 

    There is one unary predicate, Set, which is true of sets. 

    The binary predicates are x € s (x is a member of set s) and s1 ⊆ s2 (set s1 is a
 

subset, not necessarily proper, of set s2) 

    The binary functions are s1 ∩ s2 (the intersection of two sets), s1 ∪ s2 (the union
 

of two sets), and {x/s} (the set resulting from adjoining element x to set s) 
    One possible set of axioms is as follows, 

 
  The only sets are the empty set and those made by adjoining something to 

a set 

∀s Set(s) ⇔ (s = { }) V (∃x , s2 Set(s2) Λ s = {x/s2}

 

  There is no way to decompose EmptySet into a smaller set and an element: 

¬ ∃x, s {x/s} = { }

 

  Adjoining an element already in the set has no effect: 

∀x,s     x ∈(set membership)  s  ⇔ s = {x/s}
 

  The only members of a set are the elements that were connected into it. 
This can be expressed recursively, saying that x is a member of s if and 

only if s is equal to some set S2 connected with some element y, where 

either y is the same as x or x is a member of S2 

∀x,s     x ∈ s  ⇔ [∃y, s2 (s={y/s2} Λ (x=y V x ∈ s2)) ]
 

  A set is subset of another set if and only if all of the first sets members are 
members of the second set 

∀s1, s2     s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
 

  Two sets are equal if and only if each is a subset of the other 

∀s1, s2     (s1 = s2) ⇔ (s1 ⊆ s2 Λ s2 ⊆ s1) 
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  An object is in the Intersection of two sets if and only if it is a member of 

both sets 

∀x, s1, s2    x ∈ (s1 ∩ s2)     (x ∈ s1  Λ x ∈ s2)
 

  An object is in the union of two sets if and only if it is a member of either 
set 

 

∀x, s1, s2    x ∈ (s1 ∪ s2)     (x ∈ s1 V x ∈ s2) 
 

  Lists:- 

 
    Lists are similar to sets. 

 The differences are that lists are ordered and the same element can appear more 

than once in a list. 

    Nil is the constant list with no elements 

    Cons, Append, First, and Rest are functions. 

    Find is the predicate that does for lists what Member does for sets. 

    List? is a predicate that is true only of lists. 

    The empty list is f1. 

    The term Cons (x, y), where y is a nonempty list, is written [x/y]. 

    The term Cons (x, Nil), (i.e. The list containing the element x), is written as x1. 

    A  list  of  several  elements,  such  as  [A,B,C]  corresponds  to  the  nested  term 

Cons(A, Cons(B, Cons(C, Nil))) 

 
  The Wumpus World:- 

 
 The first order axioms of wumpus world are more concise, capturing in a natural 

way what exactly we want to represent the concept. 

 Here the more interesting question is “how an agent should organize what it 

knows in order to take the right actions”. 

    For this purpose we will consider three agent architectures: 

 
  Reflex agents                    - classify their percept and act accordingly 

  Model based agents          - construct an internal representation of the 

World and use it to act 

  Goal based agents             - form goals and try to achieve them 

 
 The  first  step  of wumpus  world  agent  construction  is to  define  the  interface 

between the environment and the agent. 

 The percept  sentence  must include  both the percept  and the time  at which it 

occurred, to differentiate between the consequent percepts. 

    For Example:- 

 
Percept ([Stench, Breeze, Glitter, None, None], 3) 

 
    In this sentence 

Percept                                    -          predicate 
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Stench, Breeze, Glitter         -          Constants 

3                                               -          Integer to represent to time. 

 The agents action are, 

Turn (Right) 

Turn (Left) 

Forward 
Shoot 

Grab 

Release 

Climb 

    To determine which is best, the agent program constructs a query such as 

∃a BestActions(a,5)
 

    ASK  solves this query and returns a binding list such as {a/Grab}. 
 The agent  program  then calls  TELL  to record  the action which was taken to 

update the Knowledge base KB. 

 
  Types of Sentences:- 

 
    The percept sentences are classified in to two as, 

  Synchronic (Same time) 

  Diachronic (across time) 

 Synchronic:  -  The  sentences  dealing  with  time  is  synchronic  if  they  relate 

properties of a world state to other properties of the same world state. 

 Diachronic:  -   The  sentences describing the way in which the world changes (or 

does not change) are diachronic sentences 

 
  Kinds of Synchronic Rules:- 

 
 There are two kinds of synchronic rules that could allow to capture the necessar y 

information for deductions are, 

 
  Diagnostic rules 

  Casual rules 

 
o  Diagnostic Rules: - Infer the presence of hidden properties directly from 

the percept – derived (observed) information. 

o  For Example: - For finding pits, if a square is breezy, some adjacent square 

must contain a pit. 

∀s  Breezy(s) ⇒ ∃r Adjacent (r,s) Λ Pit(r)

 

o If a square is not breezy, no adjacent square contains a pit. 

∀s ¬Breezy(s) ⇒ ¬∃r Adjacent (r,s) Λ Pit(r)

 
o Combining these two, the derived biconditional sentence is : 

∀s  Breezy(s) ⇔ ∃r Adjacent (r,s) Λ Pit(r) 
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o Casual Rules: - Reflect the assumed direction of casuality in the world. 

Some hidden property of the world causes certain percepts to be generated. 

o For Example:- A Pit causes all adjacent squares to be breezy. 

∀r Pit(r) ⇒ [∀s Adjacent (r, s) ⇒ Breezy(s)]

 
o If all squares adjacent to a given square are pitless, the square will not be 

breezy 

∀s [∀r  Adjacent (r,s) ⇒ ¬ Pit(r)] ⇒ ¬ Breezy(s)

 

o System  that  reason  with  casual  rules  are  called  model-based  reasoning 
systems, because the casual rules from a model of how the environment 
operates. 

 
2.5.5 KNOWLEDGE ENGINEERING IN FIRST ORDER LOGIC:- 

 
    Knowledge   Engineering:   -  The  general  process  of  Knowledge   Base   KB 

Construction. 

 Knowledge  Engineer:  -  Who  investigates  a  particular  domain,  learns  what 

concepts are important in that domain and creates a formal representation of the 

objects and relations in the domain. 

 The knowledge engineering projects vary widely in content, scope and difficulty, 

but all projects include the following steps, 

 
   Identify  the  Task:  -  The  Knowledge  engineer  should  identify  the 

PEAS description of the domain. 

  Assemble the relevant knowledge: - The idea of combining expert’s 

knowledge   of   that   domain   (i.e.)   a   process   called   knowledge 

acquisition. 

  Decide on a vocabulary of predicates,  functions  and constants:  - 

Translate the important domain-level concepts into logical level name. 

The resulting vocabulary is known as ontology of the domain, which 

determines  what  kinds of things  exist,  but does not determine  their 

specific properties and interrelationships. 
   Encode  general  knowledge  about  the  domain:  -  The  knowledge 

engineer  writes the axioms (rules) for all the vocabulary terms. The 

misconceptions are clarified from step 3 and the process is iterated. 

  Encode a description  of the specific problem instance:  - To write 

simple atomic sentences about instances of concepts that are already 

part of the ontology. 

  Pose queries to the inference procedure and get answers: - For the 

given  query  the  inference  procedure  operate  on  the  axioms  and 

problem specific facts to derive the answers. 

   Debug the knowledge base: - For the given query , if the result is not 

a  user  expected  on  then  KB  is  updated  with  relevant  or  missing 

axioms. 

 
 The seven step process is explained  with the domain of ELECTRONIC  CIRCUITS 

DOMAIN. 
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   Identify the task: - 
o  Analyse the circuit functionality,  does the circuit actually add 

properly? (Circuit Verification). 

   Assemble the relevant knowledge: - 

o The circuit is composed of wire and gates. 

o  The four types of gates (AND, OR, NOT, XOR) with two input 
terminals and one output terminal knowledge is collected. 

 Decide on a vocabulary: - 

o   The  functions,  predicates  and  constants  of  the  domain  are 
identified. 

o Functions are used to refer the type of gate. 

Type (x1) = XOR, 

where x1 ---- Name of the gate and Type ---- function 

o The  same  can be represented  by either  binary  predicate  (or) 

individual type predicate. 

Type (x1, XOR) – binary predicate 

XOR (x1) – Individual type 

o  A gate or circuit can have one or more terminals. For x1, the 

terminals are x1In1, x1In2 and x1 out1 
Where x1 In1 ----- 1

st 
input of gate x1 

x1 In2 ----- 2
nd 

input of gate x1 

x1 out1 ---- output of gate x1 

o  Then  the  connectivity  between  the  gates  represented  by the 

predicate connected. (i.e.) connected (out(1, x1), In(1,x2)). 

o  Finally the possible values of the output terminal C1, as true or 

false, represented as a signal with 1 or 0. 

 Encode general knowledge of the domain:- 

o  This  example   needs  only  seven  simple   rules   to  describe 

everything need to know about circuits 
o If two terminals are connected, then they have the same signal: 

 

    t1,t2 Connected(t1, t2)  Signal(t1) = Signal(t2) 
 

o The signal at every terminal is either 1 or 0 (but not both): 
 

    t Signal(t) = 1  Signal(t) = 0 
 

    1 ≠ 0 
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o Connected is a commutative predicate 
 

    t1,t2 Connected(t1, t2)  Connected(t2, t1) 
 

o An OR gate’s output is 1 if and only if any of its input is 1: 
 

    g Type(g) = OR  Signal(Out(1,g)) = 1  n 

Signal(In(n,g)) = 1 
 

o An AND gate’s output is 0 if and only if any of its inputs is 0 
 

    g Type(g) = AND  Signal(Out(1,g)) = 0  n 

Signal(In(n,g)) = 0 
 

o An XOR gate’s output is 1 if and only if inputs are different: 
 

    g Type(g) = XOR  Signal(Out(1,g)) = 1 

Signal(In(1,g)) ≠ Signal(In(2,g)) 
 

o A NOT gate’s output is different from its input: 
 

    g Type(g) = NOT  Signal(Out(1,g)) ≠ 

Signal(In(1,g)) 
 

 Encode the specific problem instance: 
 

o First, we categorize the gates: 
 

Type(X1) = XOR                    Type(X2) = XOR 

Type(A1) = AND                    Type(A2) = AND 

Type(O1) = OR 

o Then, we show the connections between them 

Connected(Out(1,X1),In(1,X2))     Connected(In(1,C1),In(1,X1)) 

Connected(Out(1,X1),In(2,A2))     Connected(In(1,C1),In(1,A1)) 

Connected(Out(1,A2),In(1,O1))     Connected(In(2,C1),In(2,X1)) 

Connected(Out(1,A1),In(2,O1))     Connected(In(2,C1),In(2,A1)) 

Connected(Out(1,X2),Out(1,C1))  Connected(In(3,C1),In(2,X2)) 

Connected(Out(1,O1),Out(2,C1))  Connected(In(3,C1),In(1,A2)) 

   Pose Queries to the inference procedure: 
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o  What  combinations  of inputs would cause the first output of 

C1(the sum bit) to be 0 and the second output of C1 (the carr y 

bit) to be 1? 

 

i1,i2,i3 Signal(In(1,C1)) = i1  Signal(In(2,C1)) = i2  

Signal(In(3,C1)) = i3  Signal(Out(1,C1)) = o  

Signal(Out(2,C1)) = 1 
 

o  The answers are substitutions for the variables i1,i2  and i3 Such 

that the resulting sentence is entailed by the knowledge base. 
 

o There are three such substitutions as: 
 

{ i1/1,i2/1 , i3/0} { i1/1,i2/0 , i3/1} { i1/0,i2/1 , i3/1} 
 

o  What are the possible sets of values of all the terminals for the 

adder circuit? 
 

i1,i2,i3,o1,o2  Signal(In(1,C1)) = i1   Signal(In(2,C1)) = 

i2   Signal(In(3,C1))  = i3   Signal(Out(1,C1))  = o1   

Signal(Out(2,C1)) = o2 

 

   Debug the knowledge base: 

o The knowledge base is checked with different constraints. 

o  For Example:-  if the assertion 1 ≠   0 is not included  in the 

knowledge base then it is variable to prove any output for the 

circuit, except for the input cases 000 and 110. 
 

 

2.6   Inference in First-order Logic:- 

    We have learned seven inference rules of propositional logic. 

    These rules are applicable for First-order logic also 

 With those rules First-order logic holds some additional rules “with quantifiers” in which 

substituting particular individual for the variable is done (i.e.) SUBST(Ө, α) to denote 

the result of applying the substitution (or) binding list Ө to the sentence α. 

    For Example:- 

SUBST ( {x/Ram, y/John} Likes(x, y)) = Likes(Ram, John) 

    The following are the new three inference rules for First-order Logic. 

   Universal Elimination 

   Existential Elimination 

   Existential Introduction 

    Universal Elimination:- For any sentence α, variable v and ground term g; 
 

 

v α / SUBST( {v/g}, α) 

Example:- 

x likes (x, Icecream) is a sentence α. 
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SUBST ({x/John}, α) is a substitution Ө = John 

Likes (John, Icecream) – Inferred sentence 

    Existential Elimination :- For any sentence α variable v, and constant symbol k that 

does not appear elsewhere in the Knowledge base: 
 

 

v α / SUBST( {v/k}, α) 

Example:- 

x Kill (x, Victim) – α 

SUBST({x/Murderer, Victim}, α) where Ө = Murderer 

Kill (Murderer, Victim) – Inferred Sentence 

 Existential Introduction :- For any sentence α, variable v that does not occur in α, and 

ground term g that does occur in α 
 

 

α / v SUBST( {g/v}, α) 

Example:- 

Likes (John, Icecream) – α 

x Likes (x, Icecream) – Inferred Sentence 
 

 

2.6.1 AN EXAMPLE PROOF USING FIRST- ORDER LOGIC:- 
 

 

    An application of inference rule is matching their premise patterns to the sentences in the 

KB and then adding their conclusion patterns to the KB. 

    Task: - For the given situation described in English, Convert it into its equivalent FOL 

representation and prove that “West is a Criminal”. 

 Situation: - The law says that it is a crime for an American to sell weapons to hostile 

nations.   The country Nono, an enemy of America,  has some missiles,  and all of its 

missiles were sold to it by Colonel West, who is American. 

 Solution:  - The given description  is splitted  into  sentences  and is converted  into  its 

corresponding FOL representation. 

 
   It is a crime for an American to sell weapons to hostile nations: 

x y z American(x)  Weapon(y)  Nation(z)  Hostile(z)  Sells(x, y, z 

Criminal(x) 

   Nono … has some missiles, 

x Owns(Nono,x)  Missile(x) 

   all of its missiles were sold to it by Colonel West 

x Missiles(x)  Owns(Nono,x)  Sells(West,x,Nono) 

   We will also need to know that missiles are weapons 

x Missile(x)  Weapon(x) 

   An enemy of America counts as "hostile“ 

x Enemy(x,America)  Hostile(x) 

   West, who is American … 

American(West) 
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   Nono, is a nation 

Nation (Nono) 

   Nono, an enemy of America 

Enemy (Nono, America) 

   America is nation 

Nation (America) 
 

 

2.7     Forward Chaining:- 

    The Generalized Modus Ponens rule can be used by Forward Chaining. 

    From the sentences in the KB which in turn derive new conclusions. 

 Forward chaining is preferred when new fact is added to the database and we want to 

generate its consequences. 

    Forward Chaining Algorithm:- 

   Forward chaining is triggered by the addition of new fact “p” into the knowledge 

base (i.e.) the action TELL is performed. 

   If the new fact is a rename of any other existing sentence in the KB then it is not 

included in KB. 

   With the new fact “p” find all premises that had “p” as premise and if any other 

premise is already known to hold then its consequence is included in KB. 

   The important  operation of forward  chaining is renaming  : One sentence  is a 

renaming of another if, they are identical except for the names of the variables. 

   For Examples:- 

o Likes(x, Icecream) and Likes(y, Icecream) are renaming of each other. 

o  Likes(x,x) and Likes(x,y) are not renaming of each other (i.e.) its variable 

differs, the meaning is logically different. 

   Consider  the  KB  of  crime  problem  represented  in Horn  form  to  explain  the 

concept of forward chaining. 

   The implication sentences are (i), (iv), (v), (vi) 

   Two iterations are required: 

   On the first iteration, 

o Step (i) has unsatisfied premises 

o Step (iv) is satisfied with {x/M1} and sells (west, M1,Nono) is added 

o Step (v) is satisfied with {x/m1} and weapon (M1) is added 

o Step (vi) is satisfied with {x/Nono}, and Hostile (Nono) is added 

   On the second iteration, 

o  Step (i) is satisfied with {x/West, y/M1, z/Nono} and Criminal(west) is 

added. 

   The following table shows the forward chaining algorithm, 

   Inputs:-  KB, the Knowledge  base, a set of first-order  definite  clauses  α, the 

query, an atomic sentence 

   Local variable:- new, the new sentences inferred on each iteration 
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   The following figure shows the proof tree generated by forward chaining 

algorithm on the Crime Example, 

 

 
 

 

  The above discussed  inference processes  are not directed towards solving any 

particular problem: for this reason it is called a data-driven  or data-directed 

procedure. 

   In  this  problem,   no  new   inferences   are  possible  because   every  sentence 

concluded by forward chaining is already exist in the KB. Such a KB is called a 

fixed point of the inference process. 

   FOL-FC-ASK function is sound and complete. 

   Every inference is an application of generalized modus ponens, which is sound. 

  Then it is complete for definite clauses KB (i.e.) it answers every query whose 

answers are entailed by any KB of definite clauses. 

2.7.1    Efficient Forward chaining:- 

    The above discussed FC Algorithm has three possible types of complexity. 
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 Pattern  Matching:  -  “inner  loop”  of  the  algorithm  involves  finding  all 

possible unifiers such that the premise of a rule unifies with a suitable set of 

facts in the KB. 

 Matching rules against known facts:- The algorithm re-checks every rule on 

every iteration  to see whether  its premises  are satisfied,  even if  very few 

additions are made to the KB on each iteration 

 Irrelevant facts to the goal are generated 

 In forward  chaining  approach,  inference  rules are applied  to  the knowledge  base, 

yielding new assertions. 

    This process repeats forever or until some stopping criterian is met. 

 This method is appropriate for the design of an agent, that is on each cycle, we add 

the percepts to the knowledge base and run the forward chainer, which chooses an 

action to perform according to a set of condition action rules. 

 Theoretically a production system can be implemented with a theorem prover, using 

resolution to do forward chaining over a full first order knowledge base. 

    An  efficient  language  can  be  used  to  perform  this  task,  because  it  reduces  the 

branching factor. 

    The typical production system has three features: 

  The system maintained a KB called the working memory which has a set 

of positive literals with no variable 

  The system maintains  a rule memory.  This contains  a set of inference 

rules P1  P2   act1  act2…. That acti  is executed when pi  is satisfied, 

which performs adding or deleting an element from the working memory 

– match phase. 

  In each cycle, the system computes  the subset of rules whose left-hand 

side is satisfied by the current contents of the working memory - match 

phase. 

2.8   Backward Chaining:- 

 Backward  chaining  is  designed  to  find  all  answers  to  a  question  asked  to  the 

knowledge base. Therefore it requires a ASK procedure to derive the answer. 

    The procedure BACK WARD-CHAIN will check two constraints. 

  If the given question can derive a answer directly from the sentences of the 

knowledge base then it returns with answers. 

  If the first constraint  is not satisfied then it finds all implications whose 

conclusion unifies with the query and tries to establish the premises of 

those implications.  If the premise  is a conjunction  then BACK-CHAIN 

processes the conjunction conjunct by conjunct, building up the unifiers 

for the whole premises as it goes. 

    Composition of Substitutions:- COMPOSE(Ө1, Ө2) is the substitution whose effect 

is identical to the effect of applying each substitution in turn (i.e.), 

SUBST (COMPOSE (Ө1, Ө2), p) = SUBST (Ө2, SUBST (Ө1, p)) 

    For Example:- 

P – Sells (x,M1, y) 
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SUBST (Ө2, SUBST (Ө1, p)) 

SUBST (Ө2, SUBST (x/West, p)) i.e. (Ө1 = x/west) 

SUBST ((y/Nono), (x/West, p)) i.e. (Ө2 = y/Nono) 

Therefore p – Sells (West, M1, Nono) 

    The following table shows the backward chaining algorithm, 
 

 

 

    The following graph shows the proof tree to infer that west is a criminal, 
 

 

 

    To prove Criminal(x), we have to prove the five conjuncts below it 

 Some of which are directly exist in the knowledge  base, others require one more 

iteration of backward chaining. 

 In the search process the substitution of values for the variables has to be done in a 

correct way, otherwise it may lead to failure solution. 

    The following are the some properties of Backward Chaining, 

o Depth-first recursive proof search: space is linear in size of proof 
o Incomplete due to infinite loops 

     fix by checking current goal against every goal on stack 
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o Inefficient due to repeated subgoals (both success and failure) 

     fix using caching of previous results (extra space) 

o Widely used for logic programming 

 
2.8.1    Logic Programming:- 

    A system in which KB can be constructed and used. 

    A relation between logic and algorithm is summed up in Robert Kowalsh equation 

Algorithm = Logic + Control 

 Logic programming  languages,  usually use backward  chaining and input/output  of 

programming languages. 

    A logic programming language makes it possible to write algorithms by augmenting 

logic sentences with information to control the inference process. 

    For Example:- PROLOG 

  A prolog program is described as a series of logical assertions each of 

which is a Horn Clause. 

   A Horn Clause is a Clause that has atmost one positive literal, 

Example: - P, ¬PQ 

  Implementation: - All inferences are done by backward chaining, with 

depth first search.  The  order of search through  the conjuncts  of an 

antecedent is left to right and the clauses in the KB are applied first-to- 

last order. 

    Example for FOL to PROLOG conversion:- 

o FOL 

   x Pet(x)  Small(x)  Apartment(x) 

   x Cat(x) v Dog(x)  Pet(x) 

   x Product(x)  Dog(x)  Small(x) 

   Poodle(fluffy) 

o Equivalent PROLOG representation 

   Apartment(x) :- Pet(x), Small(x) 

   Pet(x) :- Cat(x) 

Pet(x) :- Dog(x) 

   Dog(x) :- Poodle(x) 

Small(x) :- Poodle(x) 

   Poodle(fluffy) 

o  In the PROLOG representation the consequent or the left hand side is called as 

head and the antecedent or the right hand side is called as body. 

    Execution of a PROLOG program:- 

o The execution of a prolog program can happen in two modes, 

1.   Interpreters 

2.   Compilers 

o Interpretation: 

   A method which uses BACK-CHAIN algorithm with the program as 

the KB. 
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   To maximize the speed of execution,  we will consider two different 

types of constraints executed in sequence, They are 

1.   Choice  Point:  -  Generating  sub  goals  one  by  one  to 

perform interpretation. 

2.   Trail: - Keeping track of all the variables that have been 

bound in a stack is called as trail. 

o Compilation:- 

  Procedure  implementation  is  done  to  run  the  program  (i.e.)  calling  the 

inference rules whenever it is required for execution. 

2.9 Unification:- 
 

 

 The  process  of  finding  all  legal  substitutions  that  make  logical  expressions  look 

identical and 

    Unification is a "pattern matching" procedure that takes two atomic sentences, called 

literals,  as input, and returns "failure" if they do not match and a substitution  list, 

Theta, if they do match. 

    Theta is called the most general unifier (mgu) 

    All variables in the given two literals are implicitly universally quantified 

    To make literals match, replace (universally-quantified) variables by terms 

    The unification routine, UNIFY is to take two atomic sentences p and q and returns α 

substitution that would make p and q look the same 

UNIFY (p, q) = θ where SUBST (θ, p) = SUBST (θ, q) 

θ = Unifier of two sentences 

    For example:- 

p – S1(x, x) q 

– S1(y, z) 

Assume θ = y 

p – S1(y, y) – x/y (Substituting y for x) 

q – S1(y, y) – z/y (Substituting y for z) 

 In  the  above  two  sentences  (p,  q),  the  unifier  of  two  sentences  (i.e.)  θ  =  y  is 

substituted in both the sentences, which derives a same predicate name, same number 

of arguments and same argument names. 

    Therefore the given two sentences are unified sentences. 

 The function UNIFY will return its result as fail, for two different types of criteria’s 

as follows, 

  If the given two atomic sentences (p, q) are differs in its predicate name 

then the UNIFY will return failure as a result 

For Example: - p – hate (M, C), q – try (M, C) 

  If  the  given  two  atomic  sentences  (p,  q)  are  differs  in  its  number  of 

arguments then the UNIFY will return failure as a result 

For Example: - p – try (M, C),  q – try (M, C, R) 

    For Example: - The Query is Knows (John, x) whom does John Know? 
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 Some answers to the above query can be found by finding all sentences in the KB that 

unify with knows (John, x) 

    Assume the KB has as follows, 

Knows (John, John) 

Knows (y, Leo) 

Knows (y, Mother(y)) 

Knows (x, Elizabeth) 

    The results of unification are as follows, 

UNIFY (knows (john, x), knows (John, Jane)) = {x/Jane} 

UNIFY (knows (john, x), knows (y, Leo)) = {x/Leo, y/John} 

UNIFY (knows (john, x), knows (y, Mother(y)) = {y/John, x/Mother (John)} 

UNIFY (knows (john, x), knows (x, Elizabeth)) = fail 

    x cannot take both the values John and Elizabeth at the same time. 

 Knows (x, Elizabeth) means “Everyone knows Elizabeth” from this we able to infer 

that John knows Elizabeth. 

    This can be avoided  by using standardizing  apart one of the two  sentences  being 

unified (i.e.) renaming is done to avoid name clashes. 

    For Example:- 

UNIFY (Knows (john, x), knows (x1, Elizabeth)) = {x/Elizabeth, x1/John} 
 

 

2.9.1    Most general Unifier (MGU):- 
 

 

 UNIFY should return a substitution that makes the two arguments look the same, but 

there may be a chance of more than one unifier. 

    For Example:- 

UNIFY (knows (john, x), knows (y, z)) = {y/John, x/z} or {y/John, x/John, z/John} 

 The result of applying 1
st 

unifier is knows (John, z) and the 2
nd 

unifier is knows (John, 

John). 

 Here the first unifier result is more general than the second one, because it places less 

restriction on the values of the variables. 

    This indicates that every unifiable pair of expressions,  a single MGU is exist until 

renaming of variables. 

    The following table shows the unification algorithm, 

 The following are the steps to be done for unification  of two sentences p and q is 

given below, 

  Recursively explore the two expressions simultaneously along with unifier 

returns failure if two corresponding  points in the structure do not match. 

Therefore the time complexit y is O(n
2
) in the size of the expressions being 

unified. 

  When the  variable  is matched  against  a complex term,  one must check, 

whether the variable itself occurs, if it is true then returns failure (consistent 

unifier is not allowed) – occur check. 
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    The above table shows the unification algorithm 
 

 

2.9.2    Storage and retrieval:- 

 Once the data type for sentences and terms are defined, we need to maintain asset of 

sentences in a KB (i.e.) to store and fetch a sentence or term, 

   Store (s) – stores a sentence s. 

   Fetch (q) – returns all unifiers 

    Such that the query q unifies with some sentences in the KB. 

    For Example: - The unification for Knows (John, x) is an Instance of fetching. 

    The simplest way to store and fetch is maintain a long list in sequential order. 

 For a Query q, call UNIFY (q, s) for every sentences s in the list, requires O(n) time on 

an n-element KB. 

    To make the fetch more efficient, indexing the facts in KB is done. 

    The different types of indexing are as follows, 

   Table based Indexing 

   Tree based Indexing 
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   Predicate based Indexing 

 A simple form of indexing is predicate indexing puts all the knows facts in one bucket 

and all the brother facts in another. 

    The buckets are stored in hash table for efficient access, 

  Where  hash  table  means  “a data  structure  for  storing  and  retrieving  information 

indexed by fixed keys” 

 Given sentence to be stored, it is possible to construct indices for all possible queries 

that unify with it, 

    For Example:- For the fact Employs (SSN, John) the queries are as follows, 

   Employs (SSN, John)             Does SSN employ John? 

   Employs (x, John)                   who employs John? 

   Employs (SSN, y)                   whom does SSN employ? 

   Employs (x, y)                        who employs whom? 

 These queries form a substitution  lattice (i.e.)  Properties of Lattice:-   child of any 

node in the lattice is obtained from its parent by a single substitution and the highest 

common descendent  of any two nodes is the result of applying their most general 

unifier. 

    For a predicate with n arguments, the lattice contains O(2
n
) nodes 

 The following diagram shows the subsumption lattice, 

Employs (x, y) 

 

Employs (x, John)                      Employs (x, y) 

Employs (SSN, John) 

2.9.3    Advantages and Disadvantages:- 

Advantages:- 

    The scheme works very well whenever the lattice contains a small number of nodes. 

    For a predicate with n arguments, the lattice contains O(2n) nodes. 

Disadvantages:- 

 If function symbols are allowed, the number of nodes is also exponential in the size of 

the terms in the sentence to be stored. This can lead to a huge number of indices. 

    At some point, the benefits of indexing are outweighed by the costs of storing and 

maintaining all the indices. 
 

 

2.10     Resolution:- 

    Resolution is a complete inference procedure for first order logic 

    Any sentence a entailed by KB can be derived with resolution 

    Catch: proof procedure can run for an unspecified amount of time
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o  At any given moment, if proof is not done, don’t know if infinitely looping or 

about to give an answer 

o Cannot always prove that a sentence a is not entailed by KB 

o First-order logic is semidecidable 

    Rules used in the resolution procedure are : 

o Simple resolution inference rule – premises have exactly two disjuncts

, 

  

 

or equivalently 
, 

  

o  Resolution inference rule – two disjunctions of any length, if one of disjunct in 

the class (pj) unifies with the negation of the disjunct in the other class, then 

infer the disjunction of all the disjuncts except for those two, 

o Using disjunctions:- For literals pi and qi, where UNIFY (pj, ¬qk) = θ 

 
p1  .......... pj..........  pm, q1  ..........qk.........  qn 

SUBST ( , ( p1  ........... pj  1  pj  1......... pm  q1...........qk   1  qk  1..........  qn 

 

 

o Using implications:- For atoms pi, qi, ri, si where UNIFY (pj, qk) = θ 

 

p1  .......... pj  ........... pn1  r1  .......rn 2 

 

 

s1  ..........sn3  , q1  ..........qk.........qn 4 

SUBST ( , ( p1  ... pj  1  pj  1...... pn1  s1  .....sn3  r1  .......rn 2  q1  ...........qk   1  qk  1.......... qn 4 
 

 

2.10.1  Canonical Form (or) Normal form for Resolution:- 

 The canonical  form representation of sentences for resolution procedure (to derive pa 

proof) is done in two ways, they are as follows, 

o  Conjunctive Normal form (CNF):- All the disjunctions are joined aqs one 

big sentences. 

o  Implicative Normal Form (INF):- All the conjunctions of atoms on the left 

and a disjunction of atoms on the right. 

    The following table shows the Knowledge base for CNF and INF, 
 

 

Conjuctive Normal Form Implicative Normal Form 

 P(w)  Q(w) P(w)  Q(w) 

P(x)   R(x) True  P(x)  R(x) 

 Q(y)  S(y) Q(y)  S(y) 

 R(z)  S(z) R(z)  S(z) 

 
    Resolution is a generalization of Modus Ponen. 

 The following is the representation  of Modus Ponen rule in resolution as a special 

case (i.e.),
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,



 

is equivalent to 
True  ,

True  

2.10.2  Methods used for resolution technique 
 

 

 Resolution Proof:-  A set of inference rules and resolution rules can be used to derive 

a conclusion from the KB. 

 Resolution   with  refutation  (or)  proof  by  contradiction   (or)  reduction  and 

absurdum:-  One complete  inference  procedure  using resolution  is refutation.  The 

idea  is  to  prove  P,  we  assume  P  is  false  (i.e.  add    P  to  KB)  and  prove  a 

contradiction, that is the KB implies P. 

(KB   P  False)  (KB  P) 

    Example: 

1.   Prove that S(A) ts true from KB1 of CNF and INF representation using 

  Resolution Proof 

  Resolution with refutation 

(a)  Resolution Using INF representation:- 

Given (KB1):- 

1.   P(w)  Q(w) 

2.   True  P(x)  R(x) 

3.   Q(y)  S(y) 

4.   R(z)  S(z) 

    The following diagram shows the proof that S(A) from KB1 using resolution 
 

P(w)  Q(w) 
 

{y/w} 

(Step1 & Step3) 

Q(y)  S(y)

 

P(w)  S(w) True  P(x)  R(x)

{w/x} 
 

 

Step 2

True  S(x)  R(x)  

 
{x/A , z/A} 

R(z)  S(z) 
 

 
Step 3

 

True  S(A) 
 
 

    Resolution rule:- In the first step transitive implication rule is used 

    Substitution of one predicate in the other. (i.e.) P(x)  S(x) is substituted in True 

 P(x)  S(x) that is instead of P(x), S(x) is substituted.
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    Substitution of one predicate in the other. (i.e.) R(A)  S(A) is substituted in True 

 S(A)  R(A) that is instead of  R(A), S(A) is substituted, which derives True 

 S(A)  S(A) is equivalent to True  S(A) 

    Therefore S(A) is true is proved using resolution technique for INF representation. 

    Where each “Vee” Shape in the proof tree represents a resolution step, 

 The two sentences at the top are the premises from the KB, and the one at the bottom 

is the conclusion (or) resolvent. 

 
b. Resolution Using CNF representation:- 

Given (KB1):- 
1.   ~P(w)  Q(w) 
2.   P(x)  R(x) 

3.   ~Q(y)  S(y) 

4.   ~R(z)  S(z) 

    Resolution rule:- 

, 

  

 

 
(i.e.) 

 

~ P  w Q  w  , ~ Q  w S  w 
~ P  w   S  w 

    Resolution rule:- 

, 

  

 

 
 

(i.e.) 

 

R x P x  , ~ P x S x 
R  x   S  x 

    Resolution rule:- 

, 

  

 

 
 

(i.e.) 

 

S AR A , ~ R AS A
S  A  S  A

    Therefore S(A) is true is proved using resolution technique for CNF representation. 

    The following diagram shows the proof that S(A) from KB1 using resolution. 
 

~P(w)  Q(w) 
 

{y/w} 

(Step1 & Step3) 

~Q(y)  S(y)

 

~P(w)  S(w) P(x)  R(x)

{w/x} 
 

 

Step 2

S(x)  R(x)  

 
{x/A , z/A} 

~R(z)  S(z) 
 

 
Step 3

 

S(A)  S(A) 
 
 
 

S(A) 
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C. Resolution with refutation Proof using INF representation:- 

Given (KB1):- 
1.   P(w)  Q(w) 

2.   True  P(x)  R(x) 

3.   Q(y)  S(y) 

4.   R(z)  S(z) 

    Resolution rule:-  In this step transitive implication is applied, 

   ,   

  

    Substitution  of one predicate in the other. (i.e.) P(x)   S(x) is substituted  in True 

 P(x)  S(x) that is instead of P(x), S(x) is substituted. 

    Substitution  of one predicate in the other. (i.e.) R(x)   S(x) is substituted  in True 

 S(x)  R(x) that is instead of  R(x), S(x) is substituted, which derives True  S(x) 

 S(x) is equivalent to True  S(x) 

 To prove using refutation, negation of given proof is added to the KB and derives a 

contradiction, then the given statement is true otherwise it is false. 

    Therefore in step 4, we assume S(A)  False, derives a contradiction True  False. 

    Therefore S(A) is true is proved using refutation technique in INF representation. 

 The following diagram shows the proof that S(A) from KB1 using resolution with 

refutation in INF representation. 
 
 

P(w)  Q(w) 
 

{y/w} 

(Step1 & Step3) 

Q(y)  S(y)

 

P(w)  S(w) True  P(x)  R(x)

{w/x} 
 

 

Step 2

True  S(x)  R(x)  

 
{z/x} 

R(z)  S(z) 
 

 
Step 4

 

True  S(A)                           S(A)  False 
 

{x/A}
 

 

True  False 

Negation
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D. Resolution with refutation using CNF representation:- 

Given KB1:- 
1.   ~P(w)  Q(w) 

2.   P(x)  R(x) 
3.   ~Q(y)  S(y) 
4.   ~R(z)  S(z) 

    Resolution rule:- 

, 

  

 

 
(i.e.) 

 

~ P  w Q  w  , ~ Q  w S  w 
~ P  w   S  w 

    Resolution rule:- 

, 

  

 

 
 

(i.e.) 

 

R x P x  , ~ P x S x 
R  x   S  x 

    Resolution rule:- 

, 

  

 

 
 

(i.e.) 

 

S AR A , ~ R AS A
S  A  S  A

 To prove using refutation, the negation of the given statement to be proved is added to 

the KB and it derives a empty set, represents that the statement is True in the KB. 

    Therefore   S(A)   is  True   is   proved   using   resolution   with   refutation   in   CNF 

representation. 

 The following diagram shows the proof that S(A) from KB1 using resolution with 

refutation in CNF representation. 
 
 

~P(w)  Q(w) 
 

{y/w} 

(Step1 & Step3) 

~Q(y)  S(y)

 

~P(w)  S(w) P(x)  R(x)

{w/x} 
 

 

Step 2

S(x)  R(x)  

 
{x/A , w/A} 

~R(z)  S(z) 
 

 
Step 4

S(A)  S(A) S(A)
 
 

Negation 
 

{  } 
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2.10. 3 Resolution technique (From FOL Representation):- 

 
 In the previous section we learned how to prove the given fact using two different types 

of resolution techniques (Resolution proof, Resolution with refutation proof) from the 

given KB representation (CNF, INF). 

 Suppose if the KB is given as a English description, to prove a fact , then how to derive 

the conclusion? What are the sequence of steps to be done? Are discussed one by one, 

o The given KB description is converted into FOL Sentences 
o FOL sentences are converted to INF (or) CNF representation without changing 

the meaning of it (using conversion to normal form procedure) 

o  Apply one of the resolution technique (Resolution  proof (or) Resolution with 

refutation proof), to resolve the conflict. 

o Derive the fact to be proved or declare it as a incomplete solution. 

 
2.10.3.1 Conversion to Normal Form or Clause Form (Procedure) :- 

 
1.   Eliminate Implications:- 

Eliminate Implication by the corresponding disjunctions,
(i.e.)  p  q 

2.   Move  inwards :- 

is the same as p  q

Negations  are  allowed  only  on  atoms  in  CNF  and  not  at  all  in  INF.  Therefore 

eliminate  negations with, Demorgan’s laws, the quantifier  equivalences and double 

negation. 

Demorgans Law 
( p  q) becomes p  q 

( p  q) becomes p  q 

Quantifier equivalences 

xp becomes xp

xp becomes 

Double Negation 

xp

p becomes p Double negation 

3.   Standardize variables:- 
If the sentence consists of same variable name twice, change the name of one of the 

variable. This avoids confusion later when we drop the quantifiers, 

(i.e.) (xp( x))  (xQ( x)) is changed into (xp( x))  (yQ( y)) 

4.   Move quantifiers left:- 
The quantifiers in the middle of the sentence to be moved to the left, without changing 

the meaning of the sentence
(i.e.)  p   xq becomes x 

not to contain x. 

5.   Skolimize:- 

p  q , which is true because p here is guaranteed

Skolimization  is the process of removing existential quantifiers by elimination,  it is 

very similar to the existential elimination rule.

(i.e.) xp( x) 

in the KB. 

into p(A), where A is a constant that does not appear elsewhere

For Example:- “Everyone has a heart” 

o FOL : x person(x) 

 

y Heart (y)  Has (x, y)

o Replace y......y with a constant H 
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x person (x)  Heart (H)  Has (x, y) 

o  The  above  representation  says  that  everyone  has  the  same  heart  H,  not 

necessarily  shared  between  each  other.  It  can  be  rewritten  by applying  a 

function to each person that maps from person to heart. 

x  person (x)    Heart (F(x)    Has (x, F(x)) where F is a function 

that does not appear elsewhere in the KB and it is called as Skolem function. 

6.   Distribute  over  :- 
(a  b)  c becomes  (a  c)  (b  c) 

7.   Flatten nested conjunctions and disjunctions :- 

(a  b)  c becomes  (a  b  c) 

(a  b)  c becomes  (a  b  c) 

It is a conjunction where every conjunct is a disjunction of literals. 

8.   Convert disjunctions to implications :- 

From the CNF it is possible to derive the INF, (i.e.) combine the negative literals into 

one list, the positive literals into another and build an implication from them, 
(i.e.) (a  b  c  d ) becomes (a  b  c  d ) 

 1. For Example: - Covert the given axioms into equivalent clasuses form and prove that R is 

true using CNF and INF representation. 

o Axioms: 

    P 

    P  Q  R 

    S  T  Q 

    T 

o Proof: 
   Equivalent Conjunctive Clause Form Representation: 

o P 
o  P    Q  R 
o  S  Q,  T  Q 
o T 

   Equivalent INF Representation: 

o P 

o P  Q  R 
o S  Q, T  Q 

o T 

    The negation of the given statement (~R) derives a contradiction ({ }). 

    Therefore it is proved that R is true. 

    The following diagram shows the proof of resolution with refutation using CNF. 
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~R                                           ~P  ~Q  R 
 

 

Negation                                  Step b 
 

~P  ~Q                                             P 
 

 
 

Step a 
 

~Q                                         ~T  Q 
 
 

Step c 
 

~T                                                   T 
 
 

Step d 
 

{  } 
 

 
 

    The negation of the given statements (R  False) derives a contradiction (True  False). 

    Therefore it is proved that R is True (i.e. Taken assumption is wrong) 

    The following diagram shows the proof of Resolution with refutation using INF. 
 

 

P  Q  R                                 P 

 
(Step a & b) 

 

T  Q Q   R

 
(Step c) 

 

 

T   R                                      T 

 
(Step d) 

 
 

R                               R  False 
 

 
Negation 

 

False 
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 2. For Example: - Convert the given sentences (KB2) into its equivalent FOL representation 

and then convert it into its CNF and INF representation and solve the task using resolution 

with refutation proof. 

 

o Given KB2:- 

    Marcus was a man 

    Marcus was a Pompeian 

    All pompeians were romans 

    Caesar was a ruler 

    All romans were either loyalto Caesar or hated him 

    Everyone is loyal to someone 

    People only try to assassinate rulers they are not loyal to. 

    Marcus tried to assassinate Caesar 

    All man are people 

o Task: - Did Marcus hate Caesar? 

o Solution:- 
   FOL Representation: 

1.   Man (Marcus) 

2.   Pompeian (Marcus) 

3.   x Pompeian (x)  Roman (x) 

4.   Ruler (Caesar) 
5.   x Roman (x)  Loyalto (x, Caesar)  Hate (x, Caesar)

6.   x y Loyalto (x, y)

7.   x y Person(x)  Ruler(y)  Trytoassassinate(x, y)   Loyalto(x, y) 

8.   Trytoassassinate (Marcus, Caesar) 
9.   x Man (x)  Person (x) 

   INF Representation: 

1.   Man (Marcus) 

2.   Pompeian (Marcus) 

3.   Pompeian (x)  Roman (x) 

4.   Ruler (Caesar) 

5.   Roman (x)  Loyalto (x, Caesar)  Hate (x, Caesar) 

6.   Loyalto (x, y) 

7.   Person(x)  Ruler(y)  Trytoassassinate(x, y)   Loyalto(x, y) 

8.   Trytoassassinate (Marcus, Caesar) 

9.   Man (x)  Person (x) 

   CNF Representation : 

1.   Man (Marcus) 

2.   Pompeian (Marcus) 

3.   ~Pompeian (x)  Roman (x) 
4.   Ruler (Caesar) 

5.   ~Roman (x)  Loyalto (x, Caesar)  Hate (x, Caesar) 
6.   Loyalto (x, y) 

7.   ~Person(x)   ~Ruler(y)   ~Trytoassassinate(x, y)  ~Loyalto(x, y) 

8.   Trytoassassinate (Marcus, Caesar) 

9.   ~Man (x)  Person (x) 
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 To prove the given fact, we assumed the negation of it (i.e.) Hate(Marcus, Caesar)  False 

and using inference rules we derive a contradiction False, which means that the assumption 

must be false, and Hate(Marcus, Caesar) is True. 

    Therefore it is proved that Hate (Marcus, Caesar) is True using INF Representation. 

    The following diagram shows the proof of Resolution with refutation using INF 

representation. 
 

Pompeian (Marcus)                   Pompeian (x)  Roman (x) 

2 & 3 

{ x/Marcus} 
 

Roman (Marcus)                       Roman (x)  Loyalto (x,
 

{x/Marcus} Caesar)  Hate (x, Caesar) 
 

5
10 

Loyalto (Marcus, Caesar)  Hate (Marcus, Caesar) 
 

 

Person (x)  Ruler 

(y)  Trytoassassinate (x, y) 

 ~Loyalto (x, y) 

Trytoassassinate (Marcus, 

Caesar)

 

7 & 8 {x/Marcus, y/Marcus} 

Person (Marcus)  Ruler (Caesar) 

 ~Loyalto (Marcus, Caesar) 

Ruler (Caesar)

 

4 

Person (Marcus)  ~Loyalto 

(Marcus, Caesar) 

 

 

Man (x)  Person (x) 

 
{x/Marcus}                 9

 

Man (Marcus) 
 

 

1 

Man (Marcus)  ~Loyalto 

(Marcus, Caesar)

 

 

~Loyalto (Marcus, Caesar)                Loyalto (Marcus, Caesar) 

 Hate (Marcus, Caesar) 
 

10 

Hate (Marcus, Caesar) Hate (Marcus, Caesar) 

False
 
 
 

False 

Negation
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 To prove the given fact, we assumed that the negation of it (i.e.) ~ Hate (Marcus, Caesar) and 

using inference rules, we derive a contradiction as empty set, which means that the 

assumption must be false, and Hate (Marcus, Caesar) is true in the given KB. 

    Therefore it is proved that Hate (Marcus, Caesar) is true using CNF representation. 

    The following diagram shows the proof of Resolution with refutation using CNF 

representation. 
 

~Hate (Marcus, Caesar)                                 ~Roman (x)  Loyalto (x, Caesar)  Hate (x, Caesar) 
 

(Negation & 5) {x/Marcus} 
 

~Roman (Marcus)  Loyalto (Marcus, 

Caesar) 

Pompeian (x)  Roman(x)

{x/Marcus}                                             3 
 

 

~Pompeian (Marcus)  Loaylto (Marcus, 

Caesar) 

Pompeian (Marcus) 
 

2
 

 
 

~Person(x)  ~Ruler (y) ~trytoassassinate 

(x, y)  ~Loyalto (x, y) 

Loyalto (Marcus, Caesar) 
 

 
 
{x/Marcus, y/Caesar}

 

~Man(x)  Person (x) 
 

 
9 

7 

 

 
{x/Marcus} 

 

~Person(Marcus)  ~Ruler (Caesar) 

 ~Trytoassassinate (Marcus, Caesar)

~Man(Caesar)  ~Ruler (Caesar) 

 ~Trytoassassinate (Marcus, Caesar) 

Man(Marcus) 

 
1

 

 

~Ruler(Marcus)  ~Trytoassassinate 

(Marcus, Caesar) 

Ruler (Caesar) 
 

 
4

 
 
 

~Trytoassassinate (Marcus, Caesar)                     ~Trytoassassinate (Marcus, Caesar) 

 
8 

 
{ } 
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.10.4    Dealing with equality:- 
 

    The unification algorithm is used to find a equality between variables with other terms (i.e.) 

p(x) unifies with p(A), but p(A) and p(B) fails to unify, even if the sentence A=B in the KB. 

 
 The unification does only a syntactic test based on the appearance of the argument terms, not 

a true semantic test (meaning) based on the objects they represent. 
 

    To solve this problem, one of the way is, the properties can be followed as, 

1.   x 
 

2.   x, y 

x  x 
 

x  y  y  x 

- Reflexive 
 

- Symmetric

3.   x, y, z x  y  y  z  x  z - Transitive

4.   x, y x  y  ( p1( x)  p1( y)) x  y , if the predicate name

x, y x  y  ( p 2( x)  p2( y)) and arguments are same.

5.   w, x, y, z w  y  x  z  ( F 1(w, x)  F 1( y, z))
 

w  y  x  z  ( F 2(w, x)  F 2( y, z)) 
 

    The other way to deal with equality is demodulation rule. For any terms x, y and z where 

UNIFY (x, z) =  , defined as : 
 

x  y, (......z......) 

(.....SUBST ( , y).....) 

 

    A more powerful rule named paramodulation deals with the case where we do not know 

x  y , but we do know x  y  p( x) . 

 
2.10.5  Resolution strategies:- 

 

    A strategy which is used to guide the search towards a proof of the resolution inference rule. 

Different types of strategies are as follows, 
 

 Unit Preferences:- 
 

This  strategy  prefers  a  sentence  with  single  literal,  to  produce  a  very  short 

sentence 

For Example:- P and P  Q  R derives the sentence Q  R .
 

 Set of support:- 
 

A subset of the sentence are identified (set of support) and resolution combines a 

set of support with another sentence and adds the resolvent into the set off support, 

which reduces the size of a sentence in the KB. 
 

Disadvantage: - Bad choice for the set of support will make the algorithm 

incomplete.
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Advantage: - Goal directed proof trees are generated 
 

 Input resolution:- 
 

This strategy combines one of the input sentences (from the KB or the query) 

with some other sentence. 
 

For Example:- Resolution proof, Resolution with refutation proof. 
 

Input resolution is complete for KB that are in Horn form, but incomplete in 

the general case. 
 

 Linear resolution:- 
 

Two predicates are resolved (P and Q), if either P is in the original KB or if P is an 

ancestor of Q in the proof tree. 
 

 Subsumption:- 
 

A  strategy  which  eliminate  all  sentences  that  are  more  specific  than  the 

existing sentence. 
 

For example:- if P(x) is in the KB, then there is no sense in adding P(A) to 

KB. 
 

2.10.6 Theorem Provers (or) Automated reasoners 
 

 Theorem provers use resolution or some other inference procedure to prove sentences in full 

first order logic, often used for mathematical and scientific reasoning tasks. 
 

    For Example:- MRS, LIFE. 
 

Logic Programming language (PROLOG) Theorem Provers 

Handles only the horn clauses Handles full FOL representation 

Choice of writing sentences in different form 

with same meaning affects the execution order 

Does not affects the execution order derives 

the same conclusion 

Example:- writing  A  B  C instead of 

A  C  B affects the execution of the 

program 

Example:- User can write either  A  B  C or 

A  C  B or another form B  C  A and 

the results will be exactly same. 

 

 

Design of a Theorem Prover:- 

 
 An example for theorem prover is: OTTER=> Organized Techniques for Theorem proving 

and Effective Research, with particular attention to its control strategy. 

    To prepare a problem for OTTER, the user must divide the knowledge into four parts; 

1.   SetOfSupport  (SOS):  A set of clauses,  which  defines  the  important  facts  about  the 

problem. Resolution step resolves the member of SOS with another axiom.
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2.   Usable axioms: - A set of axioms that are outside the set of support, provides background 

knowledge about the problem area. The boundary between SOS and the axiom is up to 

the user’s judgement. 

3.   Rewrites (or) Demodulators :- A set of equations evaluated or reduced from left-to-right 

order (i.e.) x + 0 = x in which x + 0 should be replaced by the term x. 

4.   A set of parameters and clauses that defines the control strategy that is, 

a.   Heuristic function :- to control the search 

b.   Filtering function :- eliminates some subgoals which are uninteresting 

2.10.7 Execution:- 

 
 Resolution takes place by combining the element of SOS with useful axiom, generally prefers 

unit strategy. 

    The process continuous until a reputation is found or there are no more clauses in the SOS. 

    The following shows the algorithm of execution, 

 
Algorithm:- 

 
Procedure OTTER(sos, usable) 

Inputs: sos, a set of support-clauses defining the problem (global variable) 

Usable background knowledge potentially relevant to the problem 

Repeat:  
clause              the lightest member of sos 

move clause from sos to usable 

PROCESS (INFER(clause, usable),sos)
Until sos = [] or a refutation has been found 

function INFER(clause, usable) returns clauses 

resolve clause with each member of usable 

return the resulting clauses after applying FILTER 
 

Procedure PROCESS (clauses, sos) 

for each clause in clauses do 

clause             SIMPLIFY (clause) 

merge identical literals 

discard clause if it is a tautology 

sos            [clause | sos] 

if clause has no literals then a refutation has been found 

if clause has one literal then look for unit refutation 

end 
 
 

 
2.10.8 Extending Prolog:- 

 
 Theorem prover can be build using prolog compiler as a base and a sound complete reasoned 

of full first order logic is done using PTTP. 

     Where PTTP is Prolog Technology Theorem Prover.
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 PTTP   includes   five   significant   changes   to   prolog   to   restore   the  completeness   and 

expensiveness. 

 
Prolog PTTP 

Depth First Search Iterative deepening search 

Not possible like a PTTP implementation Negated literals are allowed (i.e.) in the 

implementation P,  P can be derived using 

two separate routines 

Locking is not allowed Locking is allowed (i.e.) A clause with n atoms 

is stored as n different rules. Example:- 
A  B  X  is equivalent to 

B  X  A, X  B  A 

Inference is not complete Inference is complete since refutation is 

allowed 

Unification is less efficient Unification is more eficient 
 

Drawback of PTTP:- 

 
    Each inference rule is used by the system both in its original form and contrapositive form 

Example:-  ( f ( x, y)  f (a, b))  ( x  a)  ( y  b) 

    Prolog proves that two f terms are equal, But PTTP would also generate the contrapositive 
( x  a)  ( f ( x, y)  f (a, b))  ( y  b) 

    This is a wasteful way to prove that any two terms x and a are different. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

************************************************ 
 
 

SECOND UNIT-II LOGICAL REASONING FINISHED 
 
 

************************************************ 
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ARTIFICIAL INTELLIGENCE 
 
 

 

UNIT-III 
 

 
 
 

KNOWLEDGE INFERENCE 
 
Knowledge Representation - Production based System, Frame based System. Inference 
- Backward Chaining, Forward  Chaining, Rule value approach, Fuzzy Reasoning - 
Certainity factors, Bayesian Theory - Bayesian Network - Dempster Shafer Theory 

 

3.0 Knowledge representation: - 
    The task of coming up with a sequence of actions that will achieve a goal is called Planning. 

    “Deciding in ADVANCE what is to be done” 

    A problem solving methodology 

    Generating a set of action that are likely to lead to achieving a goal 

    Deciding on a course of actions before acting 

    Representation for states and Goals:- 

o  In the STRIPS language, states are represented by conjunctions of function-free 

ground literals, that is, predicates applied to constant symbols, possibly negated. 

o For example, 

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^…. 

o Goals are also described by conjunctions of literals. 
o For example, 

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill) 
o  Goals can also contain variables. For example, the goal of being at a store that sells 

milk would be represented as 

    Representation for actions:- 
o Our STRIPS operators consist of three components: 

o   the action description is what an agent actually returns to the environment in order to 
do something. 

o   the precondition is a conjunction of atoms (positive literals) that says what must be 
true before the operator can be applied. 

o   the effect of an operator is a conjunction of literals (positive or negative) that 

describes how the situation changes when the operator is applied. 

o Here’s an example for the operator for going from one place to another: 

    Op(Action:Go(there), 

    Precond:At(here)^Path(here, there), 

    Effect:At(there)^ ¬At(here)) 

   Representation of Plans:- 
o Consider a simple problem: 
o Putting on a pair of shoes 
o Goal RightShoeOn ^ LeftShoeOn 
o Four operators: 
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Given:- 

Op(Action:RightShoe,PreCond:RightSockOn,Effect:RightShoeON) 

Op(Action:RightSock , Effect: RightSockOn) 

Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn) 

Op(Action:LeftSock,Effect:LeftSockOn)

    A description of an initial state 

    A set of actions 

    A (partial) description of a goal state 

Problem:- 
    Find a sequence of actions (plan) which transforms the initial state into the goal state. 

Application areas:- 
    Systems design 

    Budgeting 

    Manufacturing product 

    Robot programming and control 

    Military activities 

Benefits of Planning:- 
    Reducing search 

    Resolving goal conflicts 

    Providing basis for error recovery 

 

3.1 Planning with State Space Search: 
 

    Planning with state space search approach is used to construct a planning algorithm. 

    This is most straightforward approach. 

    The description of actions in a planning problem specifies both preconditions and effects. 

    It is possible to search in either direction. 

    Either from forward from the initial state or backward from the goal 

    The following are the two types of state space search , 

o Forward state-space search 

o Backward state-space search 

    The following diagram shows the Forward state-space search 
 

 
 

 
 
 
 

At(P1,A) 

At(P2, A) 

 
 
 

Fly(P1,A,B) 
 
 
 
 

Fly(P2,A,B) 

At(P1,B) 

At(P2, A) 

 

 

At(P1,A) 

At(P2, B)
 

 

3.1.1 Forward state-space search:- 

 
    Planning with forward state-space search is similar to the problem solving using Searching. 
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    It is sometimes called as progression Planning. 

    It moves in the forward direction. 

 we start in the problems initial state, considering sequence of actions until we find a sequence 

that reaches a goal state. 

    The formulation of planning problems as state-space search problems is as follows, 

o The Initial state of the search is the initial state from the planning problem. 
o In general, each state will be a set of positive ground literals; literals not appearing are 

false. 

o  The  actions  that  are  applicable  to  a  state  are  all  those  whose  preconditions  are 

satisfied. 

o  The successor state resulting from an action is generated by adding the positive effect 

literals and deleting the negative effect literals. 

o The goal test checks whether the state satisfies the goal of the planning problem. 

o The step cost of each action is typically 1. 
    This method was too inefficient. 

 It does not address the irrelevant action problem, (i.e.) all applicable actions are considered 

from each state. 

    This approach quickly bogs down without a good heuristics. 

    For Example:- 

o Consider an air cargo problem with 10 airports, where each airport has 5 planes and 

20 pieces of cargo. 

o The Goal is to move the entire cargo form airport A to airport B. 

o There is a simple solution to the Problem, 
o Load the 20 pieces of cargo into one of the planes at A, then fly the plane to B, and 

unload the cargo. 

o But finding the solution can be difficult because the average branching factor is huge. 

 
3.1.2 Backward state- space search:- 

 
    Backward search is similar to bidirectional search. 

 It can be difficult to implement  when the goal states are described  by a set of constraints 

rather than being listed explicitly. 

 It is not always obvious how to generate a description of the possible predecessors of the set 

of goal states. 

    The main advantage of this search is that it allows us to consider only relevant actions. 

    An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the goal. 

    The following diagram shows the Backward state-space search 
 

At(P1,A) 

At(P2, B) 

 
 

 

At(P1,B) 

At(P2, A) 

 
 

Fly(P1,A,B) 
 
 
 
 

 
Fly(P2,A,B) 

 

 
 
 
 

At(P1,B) 

At(P2, B)
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    For  example:- 

o  The goal in our 10-airport cargo problem is to have 20 pieces of cargo at airport B, or 

more precisely, 
At(C1,B)  At(C2,B)  ……  At(C20,B) 

o  Now consider the conjunct At(C1,B). working backwards, we can seek actions that 

have this as an effect. There is only one unload(C1,p,B), where plane p is unspecified. 

o  In this search restriction to relevant actions means that backward search often has a 

much lower branching factor than forward search. 

    Searching backwards is sometimes called regression planning. 

 The principal question is:- what are the states from which applying a given action leads to the 

goal? 

    Computing the description of these states is called regressing the goal through the action. 

    consider the air cargo example;- we have the goal as, 

At(C1,B)  At(C2,B)  ……  At(C20,B) 
and the relevant action Unload(C1,p,B), which achieves the first conjunct. 

    The action will work only if its preconditions are satisfied. 

 Therefore  , any predecessor  state  must  include  these  preconditions  : In(C1,p)   At(p,B), 

Moreover the subgoal At(C1,B) should not be true in the predecessor state. 

    The predecessor description is 
In(C1,p)  At(p,B)  At(C2,B)  ……  At(C20,B) 

 In addition  to  insisting  that actions  achieve  some  desired  literal,  we must  insist  that the 

actions not undo any desired literals. 

    An action that satisfies this restriction is called consistent. 

 From  definitions  of  relevance  and  consistency,  we  can  describe  the  general  process  of 

constructing predecessors for backward search. 

 Given  a  goal  description  G,  let  A  be  an  action  that  is  relevant  and  consistent.  The 

corresponding predecessor is as follows 

o any positive effects of A that appear in G are deleted 
o Each precondition literal of A is added, unless it already appears 

 Termination occurs when a predecessor description is  generated that is satisfied by the initial 

state of the planning problem. 

 
3.1.3 Heuristics for State-space search:- 

Heuristic Estimate:- 

    The value of a state is a measure of how close it is to a goal state. 

    This cannot be determined exactly (too hard), but can be approximated. 

    One way of approximating is to use the relaxed problem. 

    Relaxation is achieved by ignoring the negative effects of the actions. 

 The relaxed action set, A’, is defined by: 

A’ = {<pre(a),add(a),0> | a in A} 
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Building the relaxed plan graph:- 

    Start at the initial state 

    Repeatedly apply all relaxed actions whose preconditions are satisfied. 

o Their (positive) effects are asserted at the next layer. 

 If all actions applied and the goals are not 
all present in the final graph layer 

Then the problem is unsolvable. 

 
Extracting Relaxed solution 

 
    When a layer containing all of the goals is reached ,FF searches backwards for a plan. 

    The earliest possible achiever is always used for any goal. 

    This maximizes the possibility for exploiting actions in the relaxed plan. 

    The relaxed plan might contain many actions happening concurrently at a layer. 

 The number of actions in the relaxed plan is an estimate of the true cost of achieving the 

goals. 

 
How FF uses the Heuristics:- 

 
    FF uses the heuristic to estimate how close each state is to a goal state 

    any state satisfying the goal propositions. 
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 The actions in the relaxed plan are used as a guide to which actions to explore when 

extending the plan. 

 All actions in the relaxed plan at layer i that achieve at least one of the goals required 

at layer i+1 are considered helpful. 

    FF restricts attention to the helpful actions when searching forward from a state. 

 
Properties of the Heuristics:- 

 
    The relaxed plan that is extracted is not guaranteed to be the optimal relaxed plan. 

 the heuristic is not admissible. 

    FF can produce non-optimal solutions. 

    Focusing only on helpful actions is not completeness preserving. 

 Enforced hill-climbing is not completeness preserving. 

 
3.2 Partial Order Planning:- 

 

 

    Formally a planning algorithm has three inputs: 

o A description of the world in some formal language, 

o A description of the agent’s goal in some formal language, and 
o A description of the possible actions that can be performed. 

 The planner’s o/p is a sequence of actions which when executed in any world satisfying the 
initial state description will achieve the goal. 

    Representation for states and Goals:- 

o  In the STRIPS language, states are represented by conjunctions of function-free 

ground literals, that is, predicates applied to constant symbols, possibly negated. 

o For example, 

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^…. 
o Goals are also described by conjunctions of literals. 
o For example, 

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill) 

o  Goals can also contain variables. For example, the goal of being at a store that sells 

milk would be represented as 

    Representation for actions:- 
o Our STRIPS operators consist of three components: 
o  the action description is what an agent actually returns to the environment in order to 

do something. 

o   the precondition is a conjunction of atoms (positive literals) that says what must be 

true before the operator can be applied. 

o   the effect of an operator is a conjunction of literals (positive or negative) that 

describes how the situation changes when the operator is applied. 

o Here’s an example for the operator for going from one place to another: 

    Op(Action:Go(there), 

    Precond:At(here)^Path(here, there), 

    Effect:At(there)^ ¬At(here)) 

   Representation of Plans:- 
o Consider a simple problem: 

o Putting on a pair of shoes 
o Goal RightShoeOn ^ LeftShoeOn 
o Four operators: 
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Op(Action:RightShoe,PreCond:RightSockOn,Effect:RightShoeON) 

Op(Action:RightSock , Effect: RightSockOn) 

Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn) 

Op(Action:LeftSock,Effect:LeftSockOn) 

 Least Commitment:- The general strategy of delaying a choice during search is called Least 

commitment. 

 Partial-order Planner:- Any planning algorithm that can place two actions into a plan 

without specifying which come first is called a partial order planner. 

 Linearization:- The partial-order solution corresponds to six possible total order plans ; each 

of these is called a linearization of the partial order plan. 

    Total order planner:- Planner in which plans consist of a simple lists of steps. 

    A plan is defined as a data structure 

o A set of plan steps 

o A set of step ordering 
o A set of variable binding constraints 
o A set of causal links : si    

c       
sj 

”si achieves c for sj” 

    Initial plan before any refinements 

Start  <  Finish 

Refine and manipulate until a plan that is a solution 
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 The following diagram shows the partial order plan for putting on shoes and socks, and the 

six corresponding linearization into total order plans. 
 

 

 
 

    Solutions 

o solution : a plan that an agent guarantees achievement of the goal 

o a solution is a complete and consistent plan 
o a complete plan : every precondition of every step is achieved by some other step 

o  a consistent plan : no contradictions in the ordering or binding constraints. When we 
meet a inconsistent plan we backtrack and try another branch 

 
3.2.1 Partial order planning Algorithm:- 

 
The following is the Partial order planning algorithm, 

 
function pop(initial-state, conjunctive-goal, operators) 

// non-deterministic algorithm 

plan = make-initial-plan(initial-state,  conjunctive-goal); 

loop: 

begin 

if solution?(plan) then return plan; 

(S-need, c) = select-subgoal(plan) ; // choose an unsolved goal 

choose-operator(plan, operators, S-need, c); 

// select an operator to solve that goal and revise plan 

resolve-threats(plan);  // fix any threats created 

end 
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end 

 
function solution?(plan) 

if causal-links-establishing-all-preconditions-of-all-steps(plan) 

and all-threats-resolved(plan) 

and all-temporal-ordering-constraints-consistent(plan) 

and all-variable-bindings-consistent(plan) 

then return true; 

else return false; 

end 

 
function select-subgoal(plan) 

pick a plan step S-need from steps(plan) with a precondition c 

that has not been achieved; 

return (S-need, c); 

end 

 
procedure choose-operator(plan, operators, S-need, c) 

// solve "open precondition" of some step 

choose a step S-add by either 

Step Addition: adding a new step from operators that 

has c in its Add-list 

or Simple Establishment: picking an existing step in Steps(plan) 

that has c in its Add-list; 

if no such step then return fail; 

add causal link "S-add --->c S-need" to Links(plan); 

add temporal ordering constraint "S-add < S-need" to Orderings(plan); 

if S-add is a newly added step then 

begin 

add S-add to Steps(plan); 

add "Start < S-add" and "S-add < Finish" to Orderings(plan); 

end 

end 

 
procedure resolve-threats(plan) 

foreach S-threat that threatens link "Si --->c Sj" in Links(plan) 

begin     // "declobber" threat 

choose either 

Demotion: add "S-threat < Si" to Orderings(plan) 

or Promotion: add "Sj < S-threat" to Orderings(plan); 

if not(consistent(plan)) then return fail; 

end 

end 

 
    Partial Order Planning  Example:- 

o Shopping problem: “get milk, banana, drill and bring them back home” 
o assumption 

1)Go action “can travel the two locations” 
2)no need money 
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o initial state : operator start 

Op(ACTION:Start,EFFECT:At(Home)  Sells(HWS,Drill)  Sells(SM,Milk), 

Sells(SM,Banana)) 

o goal state : Finish 

Op(ACTION:Finish, PRECOND:Have(Drill)  Have(Milk)  Have(Banana) 

 At(Home)) 

o actions: 

Op(ACTION:Go(there),PRECOND:At(here),EFFECT:At(there)  ¬At(here)) 

Op(ACTION:Buy(x),PRECOND:At(store)  Sells(store,x),EFFECT:Have(x)) 

 
    There are many possible ways in which the initial plan elaborated 

o one choice : three Buy actions for three preconditions of Finish action 
o second choice:sells precondition of Buy 

• Bold arrows:causal links, protection of precondition 

• Light arrows:ordering constraints 

 
    The following diagram shows the, 

o partial plan that achieves three of four preconditions of finish 
o Refining the partial plan by adding casual links to achieve the sells preconditions of 

the buy steps 
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    causal links : protected links 

a causal link is protected by ensuring that threats are ordered to come before or after the 

protected link 

 demotion : placed before 

promotion : placed after 
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 The following diagram shows the partial plan that achieves At Precondition of the three buy 

conditions 

 

 
 

    The following diagram shows the solution of this problem, 
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    The following are the Knowledge engineering for plan, 

    Methodology for solving problems with the planning approach 

(1) Decide what to talk about 

(2) Decide on a vocabulary of conditions, operators, and      objects 

(3) Encode operators for the domain 

(4) Encode a description of the specific problem instance 

(5) pose problems to the planner and get back plans 

    (ex) The blocks world 

o (1) what to talk about 

    cubic blocks sitting on a table 

    one block on top of another 

    A robot arm pick up a block and moves it to another position 

o (2) Vocabulary 

    objects:blocks and table 

    On(b,x) : b is on x 

    Move(b,x,y) : move b form x to y 

    ¬exist x On(x,b) or x ¬On(x,b) : precondition 

    clear(x) 

o (3)Operators 
Op(ACTION:Move(b,x,y), 

PRECOND:On(b,x)  Clear(b)  Clear(y), 

EFFECT:On(b,y)  Clear(x)  ¬On(b,x)  ¬Clear(y)) 

Op(ACTION:MoveToTable(b,x), 

PRECOND:On(b,x)  Clear(b), 

EFFECT:On(b,Table)  Clear(x)  ¬On(b,x)) 

 

3.3 Planning Graph:- 
 Planning graphs are an efficient way to create a representation of a planning problem that can 

be used to 

o Achieve better heuristic estimates 
o Directly construct plans 

    Planning graphs only work for propositional problems. 

    Planning graphs consists of a seq of levels that correspond to time steps in the plan. 

o Level 0 is the initial state. 
o Each level consists of a set of literals and a set of actions that represent what might be 

possible at that step in the plan 

o Might be is the key to efficiency 
o Records only a restricted subset of possible negative interactions among actions. 

    Each level consists of 

o  Literals = all those that could be true at that time step, depending upon the actions 

executed at preceding time steps. 

o  Actions = all those actions that could have their preconditions satisfied at that time 

step, depending on which of the literals actually hold. 

    For Example:- 

 
Init(Have(Cake)) 

Goal(Have(Cake)  Eaten(Cake)) 
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Action(Eat(Cake), 

PRECOND: Have(Cake) 

EFFECT: ¬Have(Cake)  Eaten(Cake)) 

Action(Bake(Cake), 

PRECOND: ¬ Have(Cake) 

EFFECT: Have(Cake)) 

    Steps to create planning graph for the example, 

o Create level 0 from initial problem state. 

 

 
 

 
 

o Add all applicable actions. 
o Add all effects to the next state. 

 

 
 

o Add persistence actions (inaction = no-ops)  to map all literals in state Si to state Si+1. 
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o Identify mutual exclusions between actions and literals based on potential conflicts. 

 

 
 

    Mutual Exclusion:- 

o A mutex relation holds between two actions when: 
    Inconsistent effects: one action negates the effect of another. 

 Interference: one of the effects of one action is the negation of a precondition 

of the other. 

 Competing needs: one of the preconditions of one action is mutually exclusive 

with the precondition of the other. 

o A mutex relation holds between two literals when: 
    one is the negation of the other OR 

 each possible action pair that could achieve the literals is mutex (inconsistent 

support). 

    Level S1 contains all literals that could result from picking any subset of actions in A0 

o Conflicts between literals that can not occur together 
(as a consequence of the selection action) are 

represented by mutex links. 

o  S1 defines multiple states and the mutex links are the constraints that define this set of 

states. 
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    Repeat process until graph levels off: 

o two consecutive levels are identical, or 
o contain the same amount of literals 

(explanation follows later) 

 

 
 

    In figure 

o rectangle denotes actions 
o small square denotes persistence actions 
o straight lines denotes preconditions and effects 
o curved lines denotes mutex links 

 
3.3.1 Planning Graphs for Heuristic Estimation:- 

 
    PG’s provide information about the problem 

o PG is a relaxed problem. 

o  A literal that does not appear in the final level of the graph cannot be achieved by any 
plan. 

    H(n) = ∞ 

o Level Cost: First level in which a goal appears 
    Very low estimate, since several actions can occur 
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 Improvement: restrict to one action per level using serial PG (add mutex links 

between every pair of actions, except persistence actions). 

    Cost of a conjunction of goals 

o Max-level: maximum first level of any of the goals 
o Sum-level: sum of first levels of all the goals 
o Set-level: First level in which all goals appear without being mutex 

    The following is the GraphPlan Algorithm, 

    Extract a solution directly from the PG 

 
function GRAPHPLAN(problem) return solution or failure 

graph  INITIAL-PLANNING-GRAPH(problem) 

goals  GOALS[problem] 

loop do 
if goals all non-mutex in last level of graph then do 

solution  EXTRACT-SOLUTION(graph, goals, LENGTH(graph)) 

if solution  failure then return solution 

else if NO-SOLUTION-POSSIBLE(graph)  then return failure 

graph  EXPAND-GRAPH(graph, problem) 

    Initially the plan consist of 5 literals from the initial state and the CWA literals (S0). 

    Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0) 

    Also add persistence actions and mutex relations. 

    Add the effects at level S1 

    Repeat until goal is in level Si 

    EXPAND-GRAPH also looks for mutex relations 

o Inconsistent effects 

    E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) 

and not At(Spare, Ground) 

o Interference 

    E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND 
and not At(Flat,Axle) as EFFECT 

o Competing needs 
    E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not 

At(Flat, Axle) 

o Inconsistent support 

    E.g. in S2, At(Spare,Axle) and At(Flat,Axle) 

 
    In S2, the goal literals exist and are not mutex with any other 

o Solution might exist and EXTRACT-SOLUTION will try to find it 

    EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process: 

o Initial state = last level of PG and goal goals of planning problem 
o Actions = select any set of non-conflicting actions that cover the goals in the state 
o Goal = reach level S0 such that all goals are satisfied 
o Cost = 1 for each action. 
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3.3.2 Termination of  GraphPlan:- 

 
    Termination? YES 

    PG are monotonically increasing or decreasing: 

o  Literals increase monotonically: - Once a literal appears at a given level, it will appear 

at all subsequent  levels.  This is because of the persistence  actions;  Once  a literal 
shows up, persistence actions cause it to say forever. 

o  Actions increase monotonically:- Once a literal appears at a given level, it will appear 

at  all  subsequent   levels.   This   is  a  consequence   of  literals   increasing;   if  the 

preconditions of an action appear at one level, they will appear at subsequent levels, 

and thus will the action 

o  Mutexes decrease monotonically:-  If two actions are mutex at a given level Ai, then 

they will also be mutex for all previous levels at which they both appear. 

    Because of these properties and because there is a finite number of actions and literals, every 

PG will eventually level off 

 
3.4 Planning and Acting in the Real World: 

 
 In which we see how more expressive representation and more interactive agent architectures 

lead to planners that are useful in the real world. 

    Planners that are used in the real world for tasks such as scheduling, 

o Hubble Space Telescope Observations 
o Operating factories 
o handling the logistics for military campaigns 

 
3.4.1 Time, Schedules and Resources: 

 
    Time is the essence in the general family of applications called Job Shop Scheduling. 

 Such a tasks require completing a set of jobs, each of which consists of a sequence of actions, 

where each action has a given duration and might require some resources. 

 The problem is to determine a schedule that minimizes the total time required to complete all 

the jobs, while respecting the resource constraints. 

    For Example:- The following problem is a job shop scheduling. 

 
Init (chassis(C1)   chassis(C2) 
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 Engine (E1,C1,30)   Engine (E2,C2,60) 

 Wheels (W1,C1,30)   Wheels (W2,C2,15)) 
Goal (Done(C1)   Done(C2)) 

 
Action (AddEngine(e,c,m), 

PRECOND: Engine(e,c,d)  chassis(c)    EngineIn(c), 
EFFECT: EngineIn(c)   Duration (d)) 

Action (AddWheels(w,c), 

PRECOND: Wheels(w,c,d)   chassis(c), 

EFFECT: WheelsOn(c)   Duration (d)) 

Action (Inspect(c), 

PRECOND: EngineIn(c)   WheelsOn (c)  chassis (c), 

EFFECT: Done (c)  Duration(10)) 
 

    The above table shows the Job Shop scheduling problem for assembling two cars. 

    The notation Duration (d) means that an action takes d minutes to execute. 

 Engine(E1,C1,30) means that E1 is an Engine that fits into chassis C1 and takes 30 minutes 

to Install 

    The problem can be solved by POP (Partial order planning). 

    We must now determine when each action should begin and end. 

    The following diagram shows the solution for the above problem 

    To find the start and end times of each action apply the Critical Path Method CPM. 

 The critical path is the one that is the longest and upon which the other parts of the process 

cannot be shorter than. 
 

 
 

 
 

    At the top, the solution is given as a partial order plan. 
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 The duration of each action is given at the bottom of each rectangle, with the earliest and 

latest start time listed as [ES, LS] in the upper left. 

    The difference between these two numbers is the slack of an action 

    Action with zero slack are on the critical path, shown with bold arrows. 

    At the bottom of the figure the same solution is shown as timeline. 

 Grey rectangles represent time intervals during which an action may be executed, provided 

that the ordering constraints are respected. 

    The unoccupied portion of a grey rectangle indicates the slack. 

 The  following  formula  serve  as a definition  for ES and LS and  also  as the  outline  of a 

dynamic programming algorithm to compute them: 
 

ES (Start)  0 

ES (B)  max A    BES ( A)  Duration( A) 

LS (Finish)  ES ( Finish) 

LS ( A)  min A    BLS (B)  Duration( A) 

    The complexity of the critical path algorithm is just O(Nb). 

    where N is the number of actions and b is the branching factor. 

 
Scheduling with resource constraints: 

 
    Real scheduling problems are complicated by the presence of constraints on resources. 

    Consider the above example with some resources. 

 The following table shows the job shop scheduling problem for assembling two cars, with 

resources. 

Init (chassis(C1)   chassis(C2) 
 Engine (E1,C1,30)   Engine (E2,C2,60) 
 Wheels (W1,C1,30)   Wheels (W2,C2,15) 

 EngineHoists (1)  WheelStations (1)  Inspectors (2)) 

Goal (Done(C1)   Done(C2)) 

 
Action (AddEngine(e,c,m), 

PRECOND: Engine(e,c,d)  chassis(c)    EngineIn(c), 

EFFECT: EngineIn(c)   Duration (d) 

RESOURCE: EngineHoists (1)) 

Action (AddWheels(w,c), 

PRECOND: Wheels(w,c,d)   chassis(c), 
EFFECT: WheelsOn(c)   Duration (d), 
RESOURCE: WheelStations (1)) 

Action (Inspect(c), 
PRECOND: EngineIn(c)   WheelsOn (c)  chassis (c), 

EFFECT: Done (c)  Duration(10), 
RESOURCE: Inspectors (1)) 

 

 The available resources are on engine assembly station, one wheel assembly station, and two 

inspectors. 

 The notation RESOURCE: means that the resource r is used during execution of an action, 

but becomes free again when the action is complete. 

    The following diagram shows the solution to the job shop scheduling with resources. 
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    The left hand margin lists the three resources 

    Actions are shown aligned horizontally with the resources they consume. 

    There are two possible schedules, depending on which assembly uses the engine station first. 

    One simple but popular heuristic is the minimum slack algorithm. 

    it schedules actions in a greedy fashion. 

 On each iteration, it considers the unscheduled  actions that have had all their predecessors 

scheduled and schedules the one with the least slack for the earliest possible start. 

    It then updates the ES and LS times for each affected action and repeats. 

 The heuristics is based on the same principle as the most-constrained  variable heuristic in 

constraint satisfaction. 

 

3.4.2 Hierarchical Task Network Planning: 
 

 

    One of the most pervasive ideas for dealing with complexit y is Hierarchical Decomposition. 

 The key benefit of hierarchical structure structure is that, at each level of the hierarchy is 

reduced to a small number of activities at the next lower level 

 So that the computational cost of finding the correct way to arrange those activities for the 

current problem is small. 

    A planning method based on Hierarchical Task Networks or HTNs. 

 This approach we take combines ideas from both partial-order planning and the area known 

as “HTN planning”. 

 In HTN planning, the initial plan, which describes the problem, is viewed as very high-level 

description of what is to be done. For Example: - Building a House. 

    Plans are refined by applying a action decompositions. 

 Each action decompositions  reduces a high-level action to a partially ordered set of lower- 

level actions 

 
3.4.2.1 Representing action decompositions: 

 
    The following diagram shows the decomposition of a Building a house action. 
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Land Build House 
 

House

 
 

 
Start 

 
Land 

 
Get 

Permit 

decomposes to 
 

 
Construction 

 
 
 

Pay 

Builder 

 

 
 

House 

 
 Money 

 
 

 
Finish

 
Money 

Hire 

Builder
 

 
 
 

    In pure HTN planning, plans are generated only by successive action decompositions. 

 Therefore  the  HTN  views planning  as a process  of making  an activity  description  more 

concrete, rather than a process of constructing an activity description, starting from the empty 

activity. 

 The action decompositions are represented as, action decompositions methods are stored in a 

plan library 

    From which they are extracted and instantiated to fit the needs of the plan being constructed. 

    Each method is an expression of the form Decompose (a, d). 

 It means that an action a can be decomposed into the plan d, which is represented as a partial 

ordered plan. 

 The  following  table  shows  the  action descriptions  for  the  house-building  problem  and  a 

detailed decomposition for the BuildHouse action. 

 The start action of the decomposition supplies all those preconditions of actions in the plan 

that are not supplied by other actions, such a things called external preconditions. 

    In our example external preconditions are land and money. 

 Similarly, the external effects, which are the preconditions of Finish, are all those effects of 

actions in the plan that are not negated by other actions. 

 
Action (BuyLand, PRECOND: Money, EFFECT: Land   Money) 

Action (GetLoan, PRECOND: GoodCredit, EFFECT:Money   Mortgage) 

Action (BuildHouse, PRECOND: Land, EFFECT: House) 

 
Action (GetPermit, PRECOND: Land, EFFECT: Permit) 

Action (HireBuilder, EFFECT: Contract) 

Action (Construction, PRECOND: Permit   Contract, EFFECT: HouseBuilt    Permit) 
Action (PayBuilder, PRECOND: Money  HouseBuilt, EFFECT:  Money  House    Contract) 

 
Decompose (BuildHouse, 

Plan (Steps : {S1: GetPermit, S2: HireBuilder, S3: Construction, S4: PayBuilder} 

ORDERINGS: {Start  S1  S3  S4  Finish,   Start  S2  S3}, 
Links: {Start  Land   S1,  Start  Money S4,  S1permit S3, S2  Contract S3,  S3 HouseBuilt S4, 

S4  House   Finish, S4  Money Finish})) 
 

 
 

    Decomposition should be a correct implementation of the action. 
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    A plan library could contain several decompositions for any given high-level action. 

 Decomposition  should  be  a correct  plan,  but  it  could  have  additional  preconditions  and 

effects beyond those stated in the high-level action description. 

 The  precondition   of  the  high-level  action  should  be  the  intersection  of  the  external 

preconditions of its decomposition. 

    In which two other forms of information hiding should be noted as, 

    First the high-level description completely ignores all internal effects of the decompositions 

 Second the high-level description does not specify the intervals “inside” the activity during 

which the high-level preconditions are effects must hold. 

    Information hiding of this kind is essential if hierarchical planning is to reduce complexity. 

 
3.4.2.2 Modifying the planner for decomposition: 

 
    In this we will see how to modify the Partial Order Planning to incorporate HTN planning. 

 We can do that by modifying the POP successor function to allow decomposition methods to 

be applied to the current partial plan P. 

 The new successor plans are formed by first selecting some non-primitive action a’ in P and 

then, for any Decompose (a, d) method from the plan library such that a and a’ unify with 

substitution θ, replacing a’ with d’ = SUBST (θ, d) 

 The following diagram shows the decomposition  of a high-level action within an existing 

plan. 

    Where The BuildHouse action is replaced by the decomposition from the above example. 

    The external precondition land is supplied by the existing causal link from BuyLand. 

 The external precondition  Money remains open after the decomposition  step, so we add a 

new action, GetLoan. 

    To be more precise follow the below steps, 

o First the action a’ is removed from P.Then for each step S in the decomposition d’ 
o Second step is to hook up the ordering constraints for a’ in the original plan to the 

steps in d’. 

o Third and final step is to hook up casual links. 

 
Money                                  Land                                  House 

 

Start                                   Buy Land                                     Build House                                      Finish 
 
 
 
 

 

Money 
 

Start 

Land 

Buy Land 

 

 

Get Permit 

 

 

House 

Construction                       
Pay 

Builder 

 

 
 
 

Finish

Get Loan Hide Builder
GoodCredit                                                                            Money 

 

 
 
 

    This completes the additions required for generating decompositions in the context of the 

POP Planner. 
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3.4.3 Planning and Acting in Non-deterministic domains: 
 

 So far we have considered only classical planning domains that are fully observable, static 

and deterministic. 

    Furthermore we have assumed that the action descriptions are correct and complete. 

    Agents have to deal with both incomplete and incorrect information. 

    Incompleteness arises because the world is partially observable, non-deterministic or both. 

    Incorrectness arises because the world does not necessarily match my model of the world. 

 The   possibility   of   having   complete   or   correct   knowledge   depends   on   how   much 

indeterminacy there in the world. 

 Bounded indeterminacy actions can have unpredictable effects, but the possible effects can 

be listed in the action description axioms. 

 Unbounded indeterminacy the set of possible preconditions or effects either is unknown or 

is too large to be enumerated completely. 

    Unbounded indeterminacy is closely related to the qualification problem. 

    There are four planning methods for handling indeterminacy. 

    The following planning methods are suitable for bounded indeterminacy, 

o Sensorleses Planning:- 
    Also called as Confront Planning 

 This  method  constructs  standard,  sequential  plans  that  are  to  be  executed 

without perception. 

 This  algorithm  must  ensure  that  the plan achieves  the  goal  in all possible 

circumstances,   regardless  of  the  true  initial  state  and  the  actual  action 

outcomes. 

 It relies on coercion – the idea that the world can be forced into a given state 

even when the agent has only partial information about the current state. 

    Coercion is not always possible. 

 
o Conditional Planning:- 

  Also called as Contingency planning 

  This method constructing   a conditional plan with different branches for the 

different contingencies that could arise. 

  The agent plans first and then executes the plan was produced. 

  The agents find out which part of the plan to execute by including sensing 

actions  in the plan to test for the appropriate conditions. 

    The following planning methods are suitable for Unbounded indeterminacy, 

o  Execution Monitoring and Replanning:- 
  In this, the agent can use any of the preceding planning techniques to construct 

a plan. 

  It also uses Execution Monitoring to judge whether the plan has a provision 

for the actual current situation or need to be revised. 

  Replanning occurs when something goes wrong. 

  In this the agent can handle unbounded indeterminacy. 

o  Continuous Planning:- 
    It is designed to persist over a lifetime. 

 It can  handle  unexpected  circumstances  in the  environment,  even  if  these 

occur while the agent is in the middle of constructing a plan. 
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 It can also handle the abandonment  of goals and the creation  of additional 

goals by goal formulation. 
 

 

3.4.4 Conditional Planning:- 
 

 

 Conditional  planning  is  a  way  to  deal  with  uncertainty  by  checking  what  is  actually 

happening in the environment at predetermined points in the plan. 

    Conditional planning is simplest to explain for fully observable environments 

    The partially observable case is more difficult to explain in this conditional planning. 

 
3.4.4.1 Conditional planning in fully observable environments: 

 
    Full observability means that the agent always knows the current state. 

    CP in fully observable environments (FOE) 

o  initial state : the robot in the right square of a clean world; 
o  the environment is fully observable: AtR ∧CleanL∧CleanR.

 
o  The goal state : the robot in the left square of a clean world. 

    Vacuum world with actions Left, Right, and Suck 

    Disjunctive effects: Action (Left, PRECOND : AtR, EFFECT : AtL   AtR) 

    Modified Disjunctive effects : Action (Left, PRECOND : AtR, EFFECT : AtL 

v AtR) 

 Conditional  effects:  Action(Suck,  Precond:  , Effect: (when AtL: CleanL)  ^ 

(when AtR: CleanR) 

Action (Left, Precond: AtR, Effect: AtL v (AtL ^ when CleanL: !ClearnL) 

o  Conditional steps for creating conditional plans: 
if test then planA else planB 

e.g., if AtL ^ CleanL then Right else Suck 

o  The search tree for the vacuum world is shown in the following figure 

 

 
o  The first two levels of the search tree for the double Murphy vaccum world. 
o  State nodes are OR nodes where some action must be chosen. 
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o   Chance  nodes,  shown  as circles,  are  AND  nodes where  every outcome  must  be 

handled, as indicated by the arc linking the outgoing branches. 

o  The solution is shown as bold lines in the tree. 

    The following table shows the recursive depth first algorithm for AND-OR graph search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    The following figure shows the part of the search graph, 

 clearly there are no longer any acyclic solutions,  and AND-OR-GRAPH-SEARCH  would 

return with failure,  there is however  a, cyclic  solution,  which is keep  trying Left until it 

works. 

 

 
 

 The first level of the search graph for the triple Murphy vacuum world, where we have shown 

cycles explicitly. 

    All solutions for this problem are cyclic plans. 
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    The cyclic solution is as follows, 

 

 
 

Conditional Planning in partially observable environments 

 
 In the initial state of a partially observable planning problem, the agent knows only a certain 

amount about the actual state. 

    The simplest way to model this situation is to say that the initial state belongs to a state!set 

    The state set is a way of describing the agents initial belief state. 

    Determine “both squares are clean” with local dirt sensing 

o  the vacuum agent is AtR and knows about R, how about L? 

 The  following  graph shows  part of the  AND-OR  graph for the  alternate  double Murphy 

vaccum world, 

    In which Dirt can sometimes be left behind when the agent leaves a clean square 

 

 
 

    The agent cannot sense dirt in other squares. 

    Sets of full state descriptions 

o  { (AtR ⋀ CleanR ⋀ CleanL), (AtR ⋀ CleianR ⋀ ¬CleanL) }
 

    Logical sentences that capture exactly the set of possible worlds in the belief state. 
o  AtR ⋀ CleanR

 
    Knowledge propositions describing the agent's knowledge 

 
 closed-world  assumption  - if a knowledge  proposition  does  not  appear  in the  list,  it  is 

assumed false. 

    Now we need to decide how sensing works. 
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    There are two choices here, 

o   Automatic  sensing:-  Which  means  that at every time  step  the agent  gets all the 

variable percepts 

o  Active sensing:- Which means the percepts are obtained only by executing specific 

sensory actions such as 

    CheckDirt 

    CheckLocation 
 

Action(Left, PRECOND: AtR, 

EFFECT: K(AtL) ⋀¬K (AtR) ⋀ when CleanR: ¬K(CleanR) ⋀ 
when CleanL: K ( CleanL) ⋀

 
when ¬ CleanL: K(¬ CleanL)) . 

 
Action(CheckDirt, EFFECT: 

when AtL⋀CleanL: K(CleanL) ⋀
 

when AtL ⋀ ¬CleanL: K (¬CleanL) ⋀
 

when AtR ⋀ CleanR: K(CleanR) ⋀
 

when AtR ⋀ ¬CleanR: K(¬CleanR))

 
3.4.4.2 Execution Monitoring and Replanning: 

 
 An execution  monitoring  agent  checks  its percepts to see whether  everything  is going to 

according plan. 

 Murphy’s law tells us that even the best-laid plans of mice, men and conditional   planning 

agents frequently fail. 

 The problem is unbounded indeterminacy – some unanticipated  circumstances  will always 

arise for which the agents action description are incorrect. 

    Therefore, execution monitoring is a necessity in realistic environments. 

    we will consider two kinds of execution monitoring, 

o   Simple,  but weak form called  action monitoring  – whereby the agent  checks the 

environment to verify that the next action will work. 

o   more complex, but more effective form called plan monitoring – in which the agent 

verifies the entire remaining plan. 

 A replanning agent knows what to do when something unexpected happens, call a planner 

again to come up with a new plan to reach the goal. 

 To avoid spending too much time planning, this is usually done by trying to repair the old 

plan – to find a way from the current unexpected state back onto the plan 

 Together Execution Monitoring and replanning form a general strategy that can be applied 

to both fully and partially observable environments 

 It can be applied  to a variety of planning representations  as state-space,  partial-order  and 

conditional plans. 

    The following table shows a simple approach to state-space planning. 

    The planning agent starts with a goal and creates an initial plan to achieve it. 

    The agent then starts executing actions one by one. 

 The replanning agent keeps track of both the remaining unexpected plan segment plan and 

the complete original plan whole-plan 

 It uses action monitoring: before carrying out the next action of plan, the agent examines its 

percepts to see whether any preconditions of the plan have unexpectedly become unsatisfied. 
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 If they have, the agent will try to get back on track by replanning a sequence of actions that 

should take it back to some point in the whole-plan. 

    The following table has an agent that does action monitoring and replanning 

    It uses a complete state-space planning algorithm called PLANNER as a subroutine. 

 If the preconditions of the next action are not met, the agent loops through the possible point 

p in whole-plan, trying to find one that PLANNER can plan a path to. 

    This path is called repair. 

 If PLANNER succeeds in finding a repair, the agent appends repair and the tail of the plan 

after p, to create the new plan. 

    The agent then returns the first step in the plan. 

 
Function REPLANNING-AGENT(percept)  returns an action 

Static: KB, a Knowledge base (includes action descriptions) 

Plan, a plan, initially [] 

Whole-plan, a plan, initially [] 

Goal, a goal 

 
TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t)) 

Current  STATE-DESCRIPTION(KB,t) 

If plan  =  [] then 

whole-plan   plan  PLANNER(current,goal,KB) 

If PRECONDITIONS(FIRST(plan))  not currently true in KB then 

Candidates  SORT(whole-plan, ordered by distance to current) 

Find state s in candidates such that 
Failure   repair  PLANNER(current,s,KB) 

Continuation   the tail of whole-plan starting at s 

Whole-plan  plan  APPEND(repair, continuation) 

Return POP(plan) 

 

    The following diagram shows the schematic illustration of the process. 

    The illustration of process is also called as Plan Monitoring. 

 The replanner notices that the preconditions of the first action in plan are not satisfied by the 

current state. 

 It then calls the planner to come up with a new subplan called repair that will get from the 

current situation to some state s on whole-plan. 
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whole-plan 
 

plan 
 

 
 

S                                           P                   E                                                            G 
 
 

Continuation 
 

 
repair 

 
 

O 
 

 

    Before execution, the planner comes up with a plan, here called whole-plan, to get from S to 

G. 

    The agent executes the plan until the point Marked E. 

 Before executing the remaining plan, it checks  preconditions  as usual and finds that it is 

actually in state O rather than state E. 

 It then calls its planning algorithm to come up with repair, which is a plan to get from O to 

some point P on the original whole-plan. 

    The new plan now becomes the concatenation of repair and continuation. 

    For example:- 

o  Problem of achieving a chair and table of matching color 

 

 
 

    The agents PLANNER should come up with the following plan as, 
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 If: the agent constructs a plan to solve the painting problem by painting the chair and table 

red. only enough paint for the chair 

    Plan monitoring 

o  Detect failure by checking the preconditions for success of the entire remaining plan 
o  Useful when a goal is serendipitously achieved 

    While you’re painting the chair, someone comes painting the table with the 
same color 

o   Cut off execution  of a doomed  plan and don’t continue  until the failure actually 
occurs 

 While  you’re  painting  the chair,  someone  comes  painting  the table  with  a 

different color 

 If one insists on checking every precondition,  it might never get around  to actually doing 

anything 

    RP - monitors during execution 

 

3.4.4.3 Continuous Planning 
 

 

    Continuous planning agent 

o  execute some steps ready to be executed 
o  refine the plan to resolve standard deficiencies 
o  refine the plan with additional information 
o  fix the plan according to unexpected changes 

    recover from execution errors 
    remove steps that have been made redundant 

    Goal ->Partial Plan->Some actions-> Monitoring the world -> New Goal 

 The continuous planning agent monitors the world continuously,  updating its world model 

from new percepts even if its deliberations are still continuing. 

    For example:- 

o use the blocks world domain problem 
o The action we will need is Move(x, y), which moves block x onto block y, provided 

that both are clear. 

o  The following is the action schema, 

Action (Move(x, y), 

PRECOND: Clear(x)   Clear(y)  On(x ,z), 

EFFECT: On(x, y  Clear(z)   Clear(y)    On(x, z)) 
o Goal: On(C, D)  On(D ,B) 
o Start is used as the label for the current state 
o The following seven diagram shows the continuous planning agent approach towards 

the goal 

o Plan and execution 
o Steps in execution: 

    Ordering - Move(D,B), then Move(C,D) 

    Another agent did Move(D,B) - change the plan 

    Remove the redundant step 

    Make a mistake, so On(C,A) 

    Still one open condition 

    Planning one more time - Move(C,D) 

    Final state: start -> finish 
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 The sequences of states as the continuous planning agent tries to reach the goal state On(C, 

D)  On(D ,B) as shown in (d). 

    The start state is (a). 

    At (b), another agent has interfered, putting D on B. 

    At (c), the agent has executed Move(C, D) but has failed, dropping C on A instead. 

    It retries Move(C, D), reaching the goal state (d). 

 

 
 

    The initial plan constructed by the continuous planning agent. 

    The plan is indistinguishable, so far, from that produced by a normal POP. 

 

 
 

    After someone else moves D onto B, the unsupported links supplying Clear(B) and On(D, G) 

are dropped, producing this plan. 

 

 
 The  link  supplied  by Move(D,  B)  has  been  replaced  by one  from  Start,  and  the  new- 

redundant step Move(D, B) has been dropped. 
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 After Move(C, D) is executed and removed from the plan, the effects of the Start step reflect 

the fact that C ended up on A instead of the intended D. 

    The goal precondition On(C, D) is still open. 

 

 
    The open condition is resolved by adding Move(C, D) back in. 

 
 
 
 
 
 
 
 
 
 

    After  Move(C,  D) is executed  and dropped  from the plan,  the  remaining  open condition 

On(C, D) is resolved by adding a causal link from the new start step. 

    Now the plan is completed. 

    From this example, we can see that continuous planning is quite similar to POP. 

    On each iteration, the algorithm finds something about the plan that needs fixing a so-called 

plan-flaw and fixes it. 

 The POP algorithm can be seen as a flaw-removal algorithm where the two flaws are open 

preconditions and causal conflicts. 

 On the other hand, the continuous planning agent addresses a much broader range of flaws as 

follows, 

o Missing goals 
o Open precondition 
o Causal conflicts 
o Unsupported links 
o Redundant actions 
o Unexecuted actions 
o Unnecessary historical goal 

    The following table shows the continuous-POP-Agent algorithm 

 
Function CONTINUOUS-POP-AGENT  (percept) returns an action 

Static: plan, a plan, initially with just Start, Finish 

 
Action   NoOp (the default) 

EFFECTS [Start] = UPDATE(EFFECTS [Start], percept) 

REMOVE-FLAW (plan) // possibly updating action 

Return action 

 

    It has a cycle of “perceive, remove flaw act” 

    It keeps a persistent plan in its KB, and on each turn it removes one ,flaw from the plan. 

    It then takes an action and repeats the loop. 
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    It is a continuous partial-order planning agent. 

 After receiving a percept the agent removes flaw from its constantly updated plan and then 

returns an action. 

 Often it will take many steps of flaw-removal planning, during which it returns NoOp, before 

it is ready to take a real action. 

 

3.4.4.4 Multiagent Planning 
 

 

    So far we have dealt with single-agent environments 

    Multiagent environments can be cooperative or competitive. 

    For example:- 

o the problem is team planning in double tennis. 

    Plans can be constructed that specify actions for both players on the team 

    Our objective is to construct plans efficiently. 

    To   do   this   we   need   requires   some   form   of   coordination,   possibly   achieved   by 

communication. 

    The following table shows the double tennis problem, 

 

 
 

 In the above table, Two agents are playing together and can be in one of four locations as 

follows, 

o [Left, Baseline] 
o [Right, Baseline] 
o [Left, Net] 
o [Right, Net] 

    The ball can be returned if exactly one player is in the right place. 

 
Cooperation: Joint goals and plans 

 
 An agent (A, B) declares that there are two agents, A and B who are participating  in the 

plan. 

 Each action explicitly mentions the agent as a parameter, because we need to keep track of 

which agent does what. 

 A solution to a multiagent planning problem is a joint plan consisting of actions for each 

agent 
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 A joint plan is a solution if the goal will be achieved when each agent performs its assigned 

actions. 

    The following plan is a solution to the tennis problem 

o PLAN 1 : 

    A : [Go(A,[Right, Baseline]),Hit(A, Ball)] 

    B : [NoOp(B),NoOp(B)]. 

 If both agents have the same KB, and if this is the only solution, then everything would be 

fine; the agents could each determine the solution and then jointly execute it. 

 Unfortunately for the agents, there is another plan that satisfies the goal just as well as the 

first 

o PLAN 2: 

    A : [Go(A, [Left, Net]), NoOp(A)] 

    B : [Go (B,[Right,baseline]),H it(23, Ball)] 

    If A chooses plan 2 and B chooses plan 1, then nobody will return the ball. 

    Conversely, if A chooses 1 and B chooses 2, then they will probably collide with each other; 

no one returns the ball and the net may remain uncovered. 

    So the agents need a mechanism for coordination to reach the same joint plan 

 
Multibody Planning: 

 
 concentrates on the construction of correct joint plans, deferring the coordination issue for the 

time being, we call this Multibody planning 

    Our approach to multibody planning will be based on partial-order planning 

    we will assume full observability, to keep things simple 

 There is one additional issue that doesn’t arise in the single-agent case; the environment is no 

longer truly static. 

    Because other agents could act while any particular agent is deliberating. 

    Therefore we need synchronization 

 We will assume that each action takes the same amount of time and that actions at each point 

in the joint plan are simultaneous. 

    At any point in time, each agent is executing exactly one action. 

    This set of concurrent actions is called a joint action. 

 For example,  Plan 2 for the tennis problem  can be represented  as this sequence  of joint 

actlons: 

 
 

Coordination Mechanisms: 

 
 The simplest method by which a group of agents can ensure agreement on a joint plan is to 

adopt a convention prior to engaging in joint activity. 

 A convention is any constraint on the selection of joint plans, beyond the basic constraint that 

the joint plan must work if all agents adopt it 

    For example 

o  the convention "stick to your side of the court" would cause the doubles partners to 

select plan 2 
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o the convention "one player always stays at the net" would lead them to plan 1 

 In  the  absence  of  an  applicable  convention,  agents  can  use  communication  to  achieve 

common knowledge of a feasible join plan 

    For example: 

o  a doubles tennis player could shout "Mine!" or "Yours!" to indicate a preferred joint 

plan. 

 
Competition: 

 
    Not all multiagent environments involve cooperative agents 

    Agents with conflicting utility functions are in competition with each other 

    One example: chess-playing. So an agent must 

(a) recognize that there are other agents 

(b) compute some of the other agent's possible plans 

(c) compute how the other agent's plans interact with its  own plans 

(d) decide on the best action in view of these interactions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

************************************************ 
 
 

THIRD UNIT-I PLANNING FINISHED 

GOOD LUCK 

************************************************ 
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ARTIFICIAL INTELLIGENCE 
 
 

 

UNIT-IV 
 
 
 
 

PLANNING AND MACHINE LEARNING 
 
 
 
 

Basic plan generation systems – Strips - Advanced plan generation systems - K strips 
- Strategic explanations - Why, Why not and how explanations. Learning - Machine 

learning, adaptive learning. 
 

 

4.1 Uncertainty 
    Agents almost never have access to the whole truth about the environment 

(i.e)Agent must therefore act under uncertainity. 

 Uncertainity  can  also  arise  because  of  incompleteness  and  incorrectness  in  the  agent’s 

understanding of the properties of the environment. 
 

4.1.1 Handling of Uncertainty:- 

    Identifying uncertainity in dental diagnosis system. 

    For all P Symptom(P,toothache) → Diagnosis(P,Cavity) 

 This rule is logically wrong.Not all patients with toothache have cavities,some of them may 

have gum disease or impacted wisdom teeth or one of several other problems. 

    For   all   P   symptom(P,toothache)    →   Disease(P,cavity)    ᴠ   Disease(P-Gumdisease)    ᴠ 

Disease(P,Impacted Wisdom)…. 

(i.e)unlimited set of possibilities are exists for toothache symptom. 

Change into casual rule as: 

    For  all  P  disease(P,cavity)   →  Symptom(P,toothache),but   this  rule  is  not  right 

either,not all cavities cause pain. 

    Trying to FOL in medical diagnosis thus fails for three main reasons. 

I.      LAZINES:  Too  much  work  to  list  the  complete  set  of  antecedents  and 

consequents needed. 

II.      THEORETICAL  IGNORANCE:  Medical science  has no complete theory 

for domain. 

III.      PRACTICAL  IGNORANCE:  Even  if we  know  all  the  rules,uncertainit y 

arises because some tests cannot be run on the patients body. 

 

    CONCLUSION: 
 

o  Agents  knowledge  can  at  best  provide  only  a  degree  of  belief  in  the  relevant 

sentences.the total used to deal with degree of belief will be probability theory,which 

assigns or numerical degree of belief between 0 to 1 to sentences. 
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    PRIOR (or) UNCONDITIONAL PROBABILITY:Before the evidence is obtained. 

    POSTERIOR (or) CONDITIONAL PROBABILITY:After the evidence is obtained. 

 UTILITY  THEORY:To  represent  and  reasons  with  preference(i.e)utility-quality   of  being 

useful. 

Decision theory=probability theory + Utility theory 

 The fundamentals idea of decision theory is that an agent is rational if and only if it chooses 

the action that yields the highest expected utility,averaged  overall the possible outcomes of 

the action-maximium expected utility.(i.e)Weighting the utility of a particular outcome by the 

probability that it occurs. 

    The following shows a decision theoretic agent 

 
Function DT-Agent (percept)returns an action 

Static: belief_state,probabilistic  beliefs about the current state of world 

action, the Agent’s action 

Update: belief_state based on action and percept 

Calculate outcomes probabilities for actions, 

given action description and current  Belief_state 

Select action with highest expected utility 

given probabilities of outcomes and Utility information 

Return action 

 
4.2 Review of Probability 

 
AXIOMS OF PROBABILITY: 

 
I.      All probabilities are between 0 and 1. 0 ≤ P(A) ≤ 1 

II.      Necessarily   true  (i.e.  valid)  proposition   have  probability  1  an  necessarily   false  (i.e. 

unsatisfiable)proposition  have probability 0 P(True) = 1        P(False) = 0 

III.      The probability of a disjunction is given by P(A ᴠ B) = P(A) + P(B)-P(A ᴧ B) 

IV.      Let B = ⌐A in the axiom (III) 

V.      P(True) = P(A) + P(⌐A) – P(False) (by logical equivalence) 

VI.      1 = P(A) + P(⌐A) (by step 2) 

VII.      P(⌐A) = 1-P(A) (by algebra) 

 
    Joint probability distribution: 

An  agent’s  probability  assignments  to  all  propositions  in  the  domain  (both  simple  and 

complex) 
 

Ex: Trivial medical domain with two Boolean variables. 
 

 Toothache ⌐Toothache 

 

Cavity 
 

0.04 
 

0.06 

 

⌐Cavity 
 

0.01 
 

0.89 

 
 
 

I.      Adding across a row or column gives the unconditional probability of a variable. 

P(Cavity) = 0.06 + 0.04 = 0.1 
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P(Cavity + Toothache) = 0.04 +0.01 + 0.06 = 0.11 

 
II.      Conditional Probability 

 

P(Cavity / Toothache) = 
 
 
 

Bayes’Rule: 

=                   = 0.80

 

1.    Recall two forms of the product rule 

P(A ᴧ B) = P(A/B) P(B) 

P(A ᴧ B) = P(B/A) P(A) 

Equating the two righthand sides and dividing by P(A),i.e. 
 

P(A/B)= 
 

Is called as Baye’s rule (or) Baye’s law (or) Baye’s theorem 

2.    From the above equation the general law of multivalued variables can be written using the P 

notation: 

 
P(Y / X) = 

 

3.    From the above equation on some background evidence E: 

P(Y / X,E) =  

4.    Disadvantage 

It requires three terms to compute one conditional probability (P(B/A)) 

-      One conditional probability P(A/B) 

-      Two unconditional probability P(B) and P(A) 

5.    Advantage 

If three  values are known,then  the unknown fourth value → P(B/A)  is computed 

easily. 

6.    Example: 

Given:  P(S/M) = 0.5   ,   P(M) = 1/5000   ,  P(S) = 1/20 

S – the proposition that the patient has a stiff nect 

M – the proposition that the patient has meningitis 

P(S/M) – only one in 5000 patients with a stiff neck to have meningitis 
 

P(M/S) =                   = 0.0002 
 

7.    Normalization 

a) Consider again the equation for calculating the probability of meningitis given 

a stiff neck. 

 
P(M/S) = 

 

b) Consider the patient is suffering from whiplash W given a stiff neck. 

 
P(W/S) = 

 
 

SVCET
STUDENTSFOCUS.COM



Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING  

 

P
a

ge
4

 

 

 

c) To perform relative  likelihood  between a and b,we need P(S/W) = 0.8 and 

P(W) = 1/1000 and P(S) is nit required since it is already defined 

 

 =  =                     = 

 
i.e.whiplash is 80 times more likely than meningitis,given a stiff 

neck. 

d)  Disadvantages: consider the folloeing equations: 

P(M/S) =                         ………. (1) 

P(⌐M/S) =                        ………….. (2) 

Adding  (1) and (2) using the fact that 
P(M/S) + P(⌐M/S) = 1,we obtain 

P(S) = P(S/M) P(M) + P(S/⌐M) P(⌐M) 

Substituting into the equation for P(M/S),we have 

P(M/S) =  
This process is called normalization ,because it treats 1/P(S) as a normalizing 
constant that allows the conditional terms to sum to 1 

The general multivalued normalization equation is 

P(  ) = αP( P(Y) 

α – normalization constant 

8.       Baye’s Rule and evidence 

a)         Two conditional probability relating to cavities: 

P(Cavity / Toothache) = 0.8 

P(Cavity /Catch) =0.95 
Using Baye’s Rule: 

 
P(Cavity/Toothache ᴧ Catch) = 

 

b)        Bayesian updating is done (i.e) evidence one piece at a time. 

 
P(Cavity/Toothache) = P(Cavity)                           ………..(1) 

 

c)         When catch is observed apply Bayes Rule with constant conditioning context 

P(Cavity/Toothache ᴧ Catch) =     …………(2) 

From (1) and (2) 

 
= P(Cavity) 

 

 

d)        Mathematically the equation are rewritten as:
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P(Catch/Cavity ᴧ Toothache) = P(Catch/Cavity) 

P(Toothache/Cavity ᴧ Catch) = P(Toothache/cavity) 

These equations express the conditional independence of Toothache and catch on 

given Cavity. 

e)         Using conditional independences,simplify the equation of Bayes updating 

P(Cavity/Toothache ᴧ Catch) = P(Cavity)  

f)         Using normalization,it is further reduced as 

P(Cavity/Toothache ᴧ Catch) → P(X/Y,Z) = P(X/Z) 

P(Z/X,Y) = α P(Z) P(X/Z) P(Y/Z)    (i.e.) P(Z/X,Y)sum to 1 

 
4.3 Bayesian Network:- 

 
4.3.1 Syntax: 

 
 A data structure used to represent knowledge in an uncertain domain (i.e) to represent the 

dependence between variables and to give a whole specification of the joint probability 

distribution. 

    A belief network is a graph in which the following holds. 

I.      A set of random variables makes up the nodes of the network. 

II.      A set of directed links or arrows connects pairs of nodes x→y,x has a direct 

influence on y. 

III.      Each node has a conditional probability tale that quantifies the effects that the 

parents have on the node.The parents of a node are all nodes that have arrows 

pointing to it. 

IV.      Graph has no directed cycles(DAG) 

 The other names of Belief network are Bayesian network ,probabilistic  network, casual 

network and knowledge map. 
 

    Example: 
 

A new burglar alarm has been installed at home. 
 

 It is fairly reliable at detecting a burglary but also responds on occasion to minor 

earthquakes. 

    You also have two neighbours,John and Mary,who have promised to call you at 

work when they hear the alarm. 

 John always calls when he hears the alarm but sometimes confuses the telephone 

ringing with the alarm and calls then too. 

    Mary on the otherhand likes rather loud music and sometimes misses the alarm 

together. 

 Given the evidence of who has or has not called estimate the probability of a 

burglary 

Uncertainty: 

I. Mary currently listening to loud music
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B E P(A) 

T T .95 

T F .94 

F T .29 

F F .001 

 

A P(J) 

T 
 

 

F 

.90 
 

 

.05 

 

A P(M) 

T 
 

 

F 

.70 
 

 

.01 
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II.   John confuses telephone ring with alarm → laziness and ignorance in the 

operation 

III. Alarm may fail off → power failure, dead battery, cut wires etc. 
 

 

Belief network 
 

Burglary 
Earthquake 

eeee
 

 

Alarm 
 

John calls 
Mary calls

 
 

Conditional probability table for the random variable Alarm: 
 

Burglary Earthquake P(Alarm/Burglary,Earthquake) 

True False 

T 

T 

F 

F 

T 

F 

T 

F 

0.950 

0.950 

0.290 

0.001 

0.050 

0.050 

0.710 

0.999 

 

Each row in a table must sum to 1,because the entry represents set of cases for the variable. A table 

with n Boolean variables contain 2
n   

independently specifiable probabilities. 
 

 
 

 
 

Burglary 

P(B) 

.001 

 
 

 
Earthquake 

 
 

P(E) 

.002
 

 
 
 
 
 

Alarm 
 
 
 
 
 

John calls 
 

Mary calls
 
 
 
 

 

Belief network with conditional probability
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4.3.2 Semantics 

 
There are two ways in which one can understand the semantics of Belief networks 

 
1. Network as a representation of the joint probabilit y distribution-used to know how to construct 

networks. 
 

2. Encoding of a collection of conditional independence statements-designing inference procedure. 
 

 Joint probability distribution: How to construct network’s? A belief network provides a 

complete description of the domain.Every entry in the joint probability distribution can be 

calculated from the information in the network.A entry in the joint is the probability of a 

conjunction of particular assignment to each variable(i.e) 

P(X1 = x,ᴧ….ᴧxn = xn) 

    We use the notation P(x1…..xn)as an abbreviation for this.The value of this entry is given 

by the following formula: 

P(x1……xn) =                   i|Parents(Xi)) 

 Thus each entry in the joint is represented by the product of the appreciate elements of the 

CPT in the belief network.The CPT’s therefore provide a decomposed representation of 

the joint. 

 The probability of the event that alarm has sounded but neither a burglary nor an 

earthquake has occurred,and both John and Mary call.We use single letter names for the 

variables. 

P(JᴧMᴧA⌐Bᴧ⌐E) 

= P(J/A) P(M/A) P(A|⌐Bᴧ⌐E) P(⌐B) P(⌐E) 

= 0.90 * 0.70 * 0.001 * 0.999 * 0.998 

= 0.00062 

Noisy OR: It is the logical relationship of uncertaint y.In proposition logic we might say 

fever is true, If and only if cold, flu or malaria is true. The Noisy OR made adds some 

uncertainity to this strict logical approach. The model makes three assumptions. 

I. It assumes the each cause has an independent chance of causing the effect. 

II. It assumes that all possible causes are listed. 

III. It assumes that whatever inhibits Flu from causing a fever.These inhibits are not 

responded as nodes but rather are summarized as “noise parameters” 

Example 

P(Fever/cold) = 0.4 

P(Fever/Flu)=0.8                        Noise parameters are 0.6,0.2 and 0.1 

P(Fever/Malaria)=0.9 

    Conclusion: 
 

I.  If no parent node is true then the output is false with 100% certainity. 

II.  If exactly one parent is true,then the output is false with probability equal to the 

noise parameter for that node. 

III.  The probability that the output node is false is just the product of the noise 

parameters for all the input nodes that are true.
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     Conditional independent relations in belief networks: 

 

 From the given network is it possible to read off whether a set of nodes X is 

independent of another set Y,given a set of evidence nodes E? the answer is 

yes,and the method is provided by the notion of direction dependent separation or 

de-seperation. 

    If every undirected path from a node in X to a node in Y is de-seperated by E then 

X and Y are conditionally independent given E. 
 

 
 
 

X   E                                                                             Y 

Z 
 

 
Z 

 

 
Z 

 
 
 
 
 

A path from X to Y can be blocked given evidence E 
 

 Three paths in which a path from x to y can be blocked,given a  evidence E.If 

every path from x to Y is blocked,then we say E deseperates x and y(i.e) 

I.      Z is in E and z has one arrow on the path leading in and one arrow out. 

II.      Z is in E and Z has both arrows leading out. 

III.      Neither Z nor any descendents of Z is in E and both arrows lead into Z. 
 

Example belief network for d-seperation:Car’s electrical system and engine 
 
 

Battery 
 

 
Radio                                      Ignition 

Gas

 
 

 
Starts 

 
 
 
 

 
Moves 

 
 
 

 
SVCET

STUDENTSFOCUS.COM



 

 

P
a

ge
9

 

Artificial Intelligence                                CSE/IIIYr/VISem                                UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING 

 
 

1. Whether there is a Gas in the car and whether the car Radio plays are independent given 
 evidence about whether the Spark plugs fire  

2. Gas and Radio are independent if battery works.  

3. Gas and Radio are independent given no evidence at all.  

4. Gas and Radio are dependent on evidence start.  

 

4.5. Inference in Temporal models 
The generic temporal model has the following set of inference tasks: 

1. Monitoring (or) filtering 

Filtering (Monitoring):computing the conditional distribution over the current state, given all 

evidence to data, P(Xt|e1:t) 
 

 In the umbrella example, monitoring would mean computing the probability of rain today, 

given all the observation of the umbrella so far, including today 
 
 

X0                                                         X1 Xk                                                          Xt

 

 
 
 
 
 
 
 

E1                                                               Ek                                                           Et 

 
 

 
2.Prediction 

 
Prediction:computing the conditional distribution over the future state,given all evidence to 

date,P(Xt+k|e1:t),for k>0. 

In the umbrella example,prediction would mean computing the probability of rain 
tomarrow(k=1),or the day after tomarrow(k=2),etc.,given all the observations of the umbrella 

so far Xt+1 

X0                                                           X1 Xk                                                         Et+1

 
 
 
 
 
 
 

E1                                                         Et                                                          
Et 

 
 
 
 
 
 
 
 
 
 

SVCET

STUDENTSFOCUS.COM



Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING  

 

P
a

ge
1

0
 

 

 

Monitoring(filtering) 
 

 Filtering(monitoring):computing  the conditional distribution over the current state,given all 

evidence to data,corresponds to computing the distribution P(Xt|e1:t),or P(Xt+1|e1:t+1): 

P(Xt+1|e1:t+1) = P(Xt+1|e1:t,et+1) = P(Xt+1|et+1,e1:t) 

    General form of Baye’s rule conditional also on evidence e 
 

P(Y|X,e) =                            = αP(X|Y,e) P(Y|e) 
 

    In temporal Markov process,it reads: 

P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t) 

    Since evidence et depends only on the current state Xt 

P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t)

    Then we can simplify 
 

 

P(Xt+1|e1:t+1) = αP(et+1|Xt+1) P(Xt+1|e1:t)

    The  second  term  P(Xt+1|e1:t),corresponds  to  a  one-step  prediction  of  the  nextstate,given 

evidence up to time t,and the first term updates this new state with the new evidence at time 

t+1his updating is called filtering. 

    Let us now obtain the one-step prediction: 

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t) 

 The first term is the (Markov) transition model and the second term is a current state 

distribution given evidence up to date 

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t) 

    The recursive formula for monitoring/filtering then reads 

P(Xt+1|e1:t+1) = αP(et+1|Xt+1) (Xt+1|Xt) P(Xt|e1:t) 

We can write the same set of equations for P(Xt|e1:t),where we replace 

t+1 ← t and t ← t-1 prediction to the far future 

 What happens when we want to predict further into future given only the evidence up to this 

date? 

    It can be shown that predicted distribution for state vector converges towards one constant 

vector,the so called fixed point (for every t > mixing time): 

P(Xt|e1:t) = P(Xt+1|e1:t+1) 

    This is called a stationary distribution of the Markov process,and the time required to reach 

this stationary state is called the mixing time. 

 Stationary distribution of the Markov process dooms to failure any attempt to predict the 

actual state for a number of steps ahead that is more than a small fraction of the mixing time. 
 

3. Most likely sequence 
 

 Given all evidence to date,we want to find the sequence of states that is most likely to have 

generated all the evidence,i.e. argmax X1:t P(X1:t|e1:t) 

    In the umbrella example,if the umbrella appears on each of the first three days and is absent 

on the fourth,then the most likely explanation is that it rained on the first three days and it did 

not rain on the fourth.
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 Algorithms for this task are useful in many applications,including speech recognition,i.e. to 

find the most likely sequence of words, given series sounds,or the construction of bit strings 

transmitted over a noisy channel(cell phone),etc. 
 

 

Rt-1 P(Rt) 

T 

 
F 

0.7 

 
0.3 

 

Raint-1 

 

Raint 
Raint+1

 

Rt P(Ut) 

T 

 
f 

0.9 

 
0.2 

Umbrellat-1 
 

Umbrellat 

 

 

Umbrella 

 
 
t+1

 

 

 Suppose that [true,true,false,true,true]is  the umbrella sequence,which the security guard 

observes first five days on the job. 

    What is the weather sequence most likely to explain this out of 2
5
=32 possible sequences,i.e. 

argmax X1:t P(X1:t|e1:t)? 

 For each state,the bold arrow indicates its best predecessor as measured by the product of the 

preceding sequence probability m1:t and the transition probability P(Xt|Xt-1) 

    To derive the recursive formula,let us focus on paths that reach the state Rain5 = true.the most 

likely path consists of the most likely path to some state at t=4 followed by the transition to 

Rain5 = true. 

 The state at t=4,which will become part of the path to Rain5 = true is whichever maximizes 

the likelihood of that path. 

 There is a recursive relationship between most likely paths to each state Xt+1 and most likely 

paths to each state  Xt. 
 

Rain1                                             Rain2                                   Rain3                                          Rain4                              Rain5 
 

 

true                                 true                                  true                                    true                                  true 
 

 
 

false                                 false                                 false                                   false                               false 
 
 
 

true                             true                             true                              true                           true
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.8182 .5155  .0361  .0334  .0210 

.1818 .0491  .1237  .0173  .0024 

 

m1:1 
 

 
 
 

    Viterbi algorithm: 

 

m1:2 
 

 

m1:3 
 

 

m1:4 
 

 

m1:5 

 

 Let us denoted by m1:t the probability of the best sequence reaching each state at time 

t. 

M1:t =  1,…….,Xt-1,Xt|e1:t) 

 Then the recursive relationship between most likely paths to each state Xt+1 and most 

likely paths to each state Xt, reads 

m1:t+1  =  1,…….,Xt,Xt+1|e1:t+1) 

=αP(et+1|Xt+1) P(Xt+1|Xt)  X1,….,Xt-1,Xt|e1:t)) 

This is the viterbi formula 
 

 
 

4.6 Hidden Markov model 

 
 An HMM is a temporal probabilistic model in which the state of the process is described 

by a single discrete random variable. 

       The possible values of the variable are the possible states of the world. 

       The umbrella example described in the HMM,since it has just one state variable Raint. 

Additional state variables can be added to a temporal model while staying within   the 

HMM framenetwork,but only by combining all the state variable into a single 

“megavariable”  whose values are all possible  tuples of values of the  individual  state 

variables. 
 

       Simplified  matrix algorithms: 
 

 With a single,discrete state variable Xt,we can give concrete form to the representations 

of the transition model,and the forward and backward messages. 

 Let the state variable Xt have values denoted by integers 1,….,S,where S is the number of 

possible states. 

     The transition model P(Xt|Xt-1) becomes an S x S matrix T,where 

Tij = P(Xt = j|Xt-1 = i) 

Tij – probability of a transition from state I to state j. 

  For example,the transition matrix for the umbrella world is 
 

T = P(Xt|Xt-1)  =
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  We also put the sensor model in matrix form.In this case,because the value of the evidence 

variable Et  is known to be say et,we needuse only that part of the model specifying the 

probability that et appears. 

  For each time step t,we construct a diagonal matrix Ot whose diagonal entries are given by 

the values P(et|Xt = i) and whose entries are 0. 
 

O1 = 
 

  We use column vectors to represent the forward and backward messages,the computations 

become simple matrix-vector operations. 

The forward equation becomes 
F1:t+1 = α Ot+1 T

T 
f1:t                   …………(1) 

and the backward equation becomes 

bk+1:t = TOk+1 bk+2:t                      …………(2) 
  From these equations,we  can see that the time complexity of the forward and backward 

algorithm applied to a sequence of length t is O(S
2
t).The space complexity is O(St). 

  Besides  providing  an elegant  description   of the filtering  and  smoothing  algorithms  for 

HMMs,the matrix formulation reveals opportunities for improved algorithms. 

  The first is a simple variation on the forward-backward algorithm that allows smoothing to 

be carried out in constant space,independently of the length of the sequence. 

  The  idea  is  that  smoothing    for  any  particular  time  slice  k  requires  the  simultaneous 

presence of both forward and backward messages,f1:k  and bk+1:t. 

  The forward-backward algorithms achieves this by storing the fs computed on the forward 

pass so that they are available during the backward pass. 

f1:t = α
’ 

(T
T
)
-1 

Ot+1
-1 

f1:t+1 

  The modified  smoothing  algorithm  works by first running  the standard  forward  pass to 

compute ft:t  and then running the backward pass for both b and f together,using them to 

compute the smoothed  estimate at each step. 

  A  second  area  in  which  the  matrix  formulation  reveals  an  improvement  is  in  online 

smoothing with a fixed lag. 

  Let us suppose that the lag is d; that is,we are smoothing at time slice t-d,where the current 

time is t.By equation. 

αf1:t-dbt-d+1:t 

for slice t-d.Then,when a new observation arrives,we need to compute 

αf1:t-d+1bt-d+2:t+1 

for slice t-d+1.First,we can compute f1:t-d+1 from f1:t-d, using the standard filtering process. 
  Computing the backward message incrementally is more trickly,because there is no simple 

relationship between the old backward message bt-d+1:t and the new backward message 

bt-d+2:t+1. 

  Instead ,we will examine the relationship between the old backward message bt-d+1:t and the 

backward  message  at the  front  of the sequence,bt+1:t.To  do this,we  apply equation(2)  d 

times to get 

bt-d+1:t =                                 bt+1:t = Bt-d+1:t 1.        ………….(3) 

Where the matrix Bt-d+1:t is the product of the sequence of T and O matrices. 
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  B  can  be  thought  of  as  a  “transformation  operator”  that  transforms  a  later  backward 

message into an earlier one. 

bt-d+2:t+1 =                                 bt+2:t+1 = Bt-d+2:t+1 1.     …………(4) 

  Examining the product expressions in the above two equations(3) & (4),we see that they 

have a simple relationship:to  get the second product,”divide”  the first product by the first 

element TOt-d+1, and multiply by the new last element TOt+1. 

  In matrix language,then there is a simple relationship between the old and new B matrices: 

Bt-d+2:t+1 = Ot-d+1
-1 T-1 Bt-d+1:t TOt+1.               …………….(5) 

  This  equation  provides  an  incremental  update  for  the  B matrix,which  in turn(eqn  (4)) 

allows us to compute the backward message bt-d+2:t+1. 
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UNIT-V 
 
 
 
 

EXPERT SYSTEMS 
 

 
 
 

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge 
Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, 
XOON, Expert systems shells. 

 

 

5.1 Learning from Observation: 
 

 

 The idea behind learning is that percepts should be used not only for acting, but also for 

improving the agent’s ability to act in the future. 

 Learning  takes  place  as  the  agent  observes  its  interactions  with  the  world  and  its  own 

decision making process. 

 Learning  can  range  from  trivial  memorization  of  experience  to  the  creation  of  a  entire 

scientific theory, as exhibited like Albert Einstein. 

 

5.1.1 Forms of Learning: 
 

 Learning  agent is a performance  element that decides what actions to take and a learning 

element that modifies the performance  element so that better decisions can be taken in the 

future. 

    There are large variety of learning elements 

    The design of a learning element is affected by following three major issues, 

o Which components of performance element are to be learned. 

o What feedback is available to make these components learn 
o What representation is used for the component. 

    The components of these agents includes the following, 

o A direct mapping from conditions on current state to actions 
o A means to infer relevant properties of the world from the percept sequence 
o Information about the way the world evolves and about the results of possible action 

the agent can take 

o Utility information indicating the desirability of world states 
o Action-value information indicating the desirability of action 
o Goals that describe classes of states whose achievement maximizes the agent utilty 

    Each of the component can be learned from appropriate feedback 

o For Example: - An agent is training to become a taxi driver. 
o The various components in the learning are as follows, 
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    Everytime  when the instructor shouts “Brake”  the agent learn a condition – 

action rule for when to brake. 

    By seeing many images, agent can learn to recognize them 

 By  trying  actions  and  observing  the  results,  agent  can  learn  the  effect  of 

actions (i.e.) braking on a wet road – agent can experience sliding 

 The utility information can be learnt from desirability of world states, (i.e.) if 

the vehicle is thoroughly shaken during a trip, then customer will not give tip 

to the agent, which plans to become a taxi driver 

    The type of feedback available for learning is also important. 

    The learning can be classified into following three types. 

o Supervised learning 

o Unsupervised learning 
o Reinforcement learning 

    Supervised Learning:- 
o It is a learning pattern, in which 

    Correct answers for each example or instance is available 

    Learning is done from known sample input and output 

 For  example:  -  The  agent  (taxi  driver)  learns  condition  –  action  rule  for 

braking – this is a function from states to a Boolean output (to brake or not to 

brake).  Here  the  learning  is  aided  by teacher  who  provides  correct  output 

value for the examples. 

    Unsupervised Learning:- 

o It is learning pattern, in which 

    Correct answers are not given for the input. 

    It is mainly used in probabilistic learning system. 

    Reinforcement Learning:- 
o Here learning pattern is rather than being told by a teacher. 
o It learns from reinforcement (i.e.) by occasional rewards 

o  For example:- The agent (taxi driver), if he does not get a trip at end of journey, it 
gives him a indication that his behavior is undesirable. 

 
5.2 Inductive Learning 

 
    Learn a function from example, 

    For example:- f is target function 

An example is a pair (x, f(x)) where x = input and f(x) = output of the function is applied to x 

 The pure inductive inference or induction is “given a training set of example of f, return a 

function h that approximates f. 

    Where the function h  is called hypothesis 

    This is a simplified model of real learning, because it 

o Ignores prior knowledge 
o Assumes a deterministic, observable “environment”. 

    A good hypothesis will generalize well, i.e., able to predict based on unseen examples 
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5.2.1 Inductive learning method:- 



    Goal is to estimate real underlying functional relationship from example observations 

 Construct / adjust h to agree with f on training set (h is consistent if it agrees with f on all 

example ) 

    For example:- Curve fitting example 

    Given 

 

    Linear hypothesis: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Curve fitting with various polynomial hypothesis for the same data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Ockham’s razor : prefer simplest hypothesis consistent with the data 
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    Not-exactly-consistent  may be preferable over exactly consistent 

    Nondeterministic behavior 

    Consistency even not always possible 

    Nondeterministic functions : trade-off complexity of hypothesis / degree of fit 
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5.3 Decision Trees 
 

 

    Decision tree is one of the simplest learning algorithms. 

 A decision tree is a graph or model of decisions and their possible consequences, including 

chance event outcomes, resource costs, and utility. 

    It can be used to create a plan to reach a goal. 

    Decision trees are constructed to help with making decisions. 

    It is a predictive model. 

 
5.3.1 Decision trees as performance elements:- 

 
 Each interior node corresponds to a variable; an arc to a child represents a possible value of 

that variable. 

 A leaf represents a possible value of target variable given the values of the variables 

represented by the path from the root. 

 The decision tree takes object or situation described by set of attributes as input and decides 

or predicts output value. 

    The output value can be Boolean, discrete or continuous. 

    Learning a discrete valued function is called classification learning. 

    Learning a continuous valued function is called regression. 

    In Boolean classification it is classified as true (positive) or false (negative). 

    A decision tree reaches its destination by performing a sequence of tests. 

 Each interior or internal node corresponds to a test of the variable; an arc to a child represents 

possible values of that test variable. 

    The decision tree seems to be very for humans. 

    For Example:- 

o A decision tree for deciding whether to wait for a table at a restaurant. 

o The aim here is to learn a definition for the goal predicate. 
o we will see how to automate the task the following attributes are decided. 

    Alternate: is there an alternative restaurant nearby? 
    Bar: is there a comfortable bar area to wait in? 

    Fri/Sat : is today Friday or Saturday? 

    Hungry: are we hungry? 

    Patrons : number of people in the restaurant [the values are None, Some, Full] 

    Price : price range [$, $$, $$$] 

    Raining: is it raining outside? 

    Reservation: have we made a reservation? 

    Type : kind of restaurant [French, Italian, Thai, Burger] 

    WaitEstimate : estimated waiting time by the host [0-10, 10-30, 30-60, >60] 

 The  following  table  described  the  example  by  attribute  values  (Boolean, 

Discrete, Continuous) situations where I will / won’t wait for a table.
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 The following diagram shows the decision tree for deciding whether to wait 

for a table 

 

 
    The above decision tree does not use price and type  as irrelevant. 

 For example:- if the Patrons = full and the Wait Estimate = 0-10 minutes, it 

will be classified as positive(yes) and the person will wait for the table 

 Classification of example is positive (T) or negative (F) shown in both table 

and in decision tree.
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5.3.2 Expressiveness of decision trees 

 
    Decision trees can express any function of the input attributes 

    E.g., for Boolean functions, truth table row  path to leaf 

    The following table shows the truth table of A XOR B 

 
A B A XOR B 

F F F 

F T T 

T F T 

T T F 

 

    The following diagram shows the decision tree of XOR gate 

 

 
    There is a consistent decision tree for any training set with one path to leaf for each example 

[unless f nondeterministic in x] but it probably won’t generalize to new examples 

    Applying Ockham’s razor : smallest tree consistent with examples 

    Able to generalize to unseen examples 

o No need to program everything out / specify everything in detail 

‘true’ tree = smallest tree? 

 
Advantages of Decision Tree: 

 
    They are simple to understand and interpret 

    They require little data preparation 

    If uses a white box model. 

    It is possible to validate a model using statistical tests, hence robust. 

    Perform well with large data in a short time. 

 
5.3.3 Decision tree learning: 

 
    Unfortunately, finding the ‘smallest’ tree is intractable in general 

    New aim : find a ‘smallish’ tree consistent with the training examples 

    Idea : [recursively] choose ‘most significant’ attribute as root of [sub]tree 

    ‘Most significant’ : making the most difference to the classification 

 Idea : a good attribute splits the examples into subsets that are [ideally] ‘all positive’ or ‘all 

negative’ 

    Patrons? is a better choice
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    The following diagram shows the splitting the examples by testing on attributes 

 

 
 The above diagram Splitting on Type brings us no nearer to distinguishing between positive 

and negative examples 

 The below diagram Splitting on Patrons does a good job of separating positive and negative 

examples 

 

 
    The following table shows the Decision Tree Learning Algorithm, 

 

 
 

    The following tree shows the decision tree induced from the training data set as follows,
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    substantially simpler solution than ‘true’ tree 

    More complex hypothesis isn’t justified by small amount of data 
 

 
 

 
5.3.4 Using Information theory: 

 
    Information content [entropy] : 

    I(P(v ), … , P(v )) = Σ -P(v ) log2 P(v )
1                       n             i=1           i                       i 

    For a training set containing p positive examples and n negative examples
 

I (
   p    

, 
   n    

)   
   p    

log
 

 

    p    
 

   n    
log

 
 

   n  

p  n p  n p  n 
2   

p  n p  n 
2   

p  n
 

 Specifies the minimum number of bits of information needed to encode the classification of 

an arbitrary member 

 
Information Gain: 
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    Chosen attribute A divides training set E into subsets E1, … , Ev according to their values for 

A, where A has v distinct values 

remainder( A)   
p i ni  I (

    pi        , 
   ni        )

i 1 p  n p
i  
 n

i 
p

i  
 n

i
 

    Information gain [IG] : expected reduction in entropy caused by partitioning the examples 
 

IG( A)  I (
   p    

, 
   n    

)  remainder( A)
p  n p  n

    Information gain [IG] : expected reduction in entropy caused by partitioning the examples 
 

IG( A)  I (
   p    

, 
   n    

)  remainder( A)
p  n p  n

    Choose the attribute with the largest IG 

    For Example:- For the training set : p = n = 6, I(6/12, 6/12) = 1 bit 

    Consider Patrons? and Type? [and others] 
 

IG(Patrons)  1  [
 2 

I (0,1)  
 4 

I (1,0)  
 6  

I ( 
2 

, 
4 

)]  .0541 bits
12             12 12    6  6

IG(Type)  1  [
 2 

I ( 
1 

, 
1 

)  
 2 

I ( 
1 

, 
1 

)  
 4 

I ( 
2 

, 
2 

)  
 4 

I ( 
2 

, 
2 

)]  0 bits
12    2  2 12    2  2 12    4  4 12    4  4

    Patrons has the highest IG of all attributes and so is chosen as the root 

 
5.3.5 Assessing the performance of the learning Algorithm: 

 
 A learning algorithm is good if it produces hypothesis that do a good job of predicting the 

classification of unseen examples. 

 Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a 

hypothesis by checking its predictions against the correct classification once we know it. 

    We do this on a set of examples known as the test set. 

    The following are the steps to assess the performance, 

1.   Collect a large set of examples 

2.   Divide it into two disjoint sets: the training set and the test set 

3.   Apply the learning algorithm to the training set, generating a hypothesis h. 

4.   Measure the percentage of examples in the test set that are correctly classified h. 

5.   Repeat steps 1 to 4 for different sizes of training sets and different randomly selected 

training sets of each size. 

 The  result  of this  procedure  is  a  set  of data  that  can  be  processed  to  give  the  average 

prediction quality as a function of the size of the training set. 

 This function can be plotted on a graph, giving what is called the learning curve for the 

algorithm on the particular domain. 

 The following diagram shows the learning curve for DECISION-TREE-LEARNING with the 

above attribute table example. 
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    In the graph the training set grows, the prediction quality increases. 

    Such a curves are called happy graphs. 

 
5.4 Explanation Based Learning: 

 
 Explanation-based   learning   is  a  method   for  extracting   general   rules  from  individual 

observations 

    Human appear to learn quite a lot from example 

    Basic idea: Use results from one examples problem solving effort next time around. 

 when an agent can utilize a worked example of a problem as a problem-solving method, the 

agent is said to have the capability of explanation-based learning (EBL). 

    This is a type of analytic learning. 

 The advantage of explanation-based  learning is that, as a deductive mechanism, it requires 

only a single training example (inductive learning methods often require many training 

examples) 

    To utilize just a single example most EBL algorithms require all of the following, 

o The training example 
o A Goal concept 
o An Operationality Criteria 
o A Domain theory 

    An EBL accepts four kinds of input as follows, 

o A training example:- what the learning sees in the world 
o A goal concept:- a high level description of what the program is supposed to learn 
o An operational criteria:- a description of which concepts are usable 
o A domain  theory:-  a set of rules that describe  relationships  between  objects and 

actions in a domain 
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    The domain theory has two types as, 

 Explanation:   -  the   domain   theory   is   used   to  prune   away   all 

unimportant  aspects of the training example with respect to the goal 

concept. 

 Generalisation: -  the explanation is generalized as far possible while 

still describing the goal concept 

 
    For Example:- 

o  Cary Larson once drew a cartoon in which a bespectacled caveman, Zog, is roasting a 
lizard on the end of a pointed stick. 

o He is watched by an amazed crowd of less intellectual contemporaries. 
o In this case, the caveman  generalize  by explaining the success of the pointed stick 

which supports the lizard and keeps the hand away from the fire. 

o  This explanation can infer a general rule: that any long, rigid, sharp object can be used 

to toast small, soft bodies. 

o This kind of generalization process is said to be Explanation based Learning. 
o The EBL procedure is very much domain theory driven with the training example 

helping to focus the learning. 

o Entailment constraints satisfied by EBL is 
    Hypothesis   Descriptions |= Classifications 
    Background  |= Hypothesis 

 
5.4.1 Extracting rules from examples: 

 
    EBL is a method for extracting general rules from individual observations. 

    The basic idea is first to construct an explanation of the observation using prior knowledge. 

    Consider the problem of differentiating and simplifying the algebraic expressions. 

    If we differentiate the expression X
2 

with respect to X, we obtain 2X. 

 The  proof tree for Derivative(X
2
,  X) = 2X is too large to use, so we will use a simpler 

problem to illustrate the generalization method. 

    Suppose our problem is to simplify 1 x (0 + X). 

    The knowledge base includes the following rules 

o Rewrite(u, v)  Simplify(v, w)  Simplify(u, w) 
o Primitive(u)   Simplify(u, u) 
o ArithmeticUnknown(u)   Primitive(u) 
o Number(u)  Primitive(u) 
o Rewrite(1 x u, u) 
o Rewrite(0 x u, u) 

 
    EBL  Process Working 

    The EBL work as follows 

1.   Construct a proof that the goal predicate applies to the example using the available 

background knowledge 

2.   In parallel, construct a generalized proof tree for the variabilized goal using the same 

inference steps as in the original proof. 

3.   Construct a new rule whose left hand side consists of leaves of the proof tree and RHS 

is the variabilized goal. 

4.   Drop any conditions that are true regardless of the values of the variables in the goal. 
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 In the diagram, the first tree shows the proof of original problem instance, from which we can 

derive 

o ArithmeticUnknown(z) = Simplify( 1 x (0 + z), z) 

 The  second  tree  shows  the  problem  where  the  constants  are  replaced  by  variables  as 

generalized proof tree. 
 
 

Simplify(1x(0+X),w) 
 
 
 

 
Rewrite(1x(0+X),v)                         Simplify(0+X),w) 

 

(v/0+x) 
 

Rewrite(0+X,v')                  Simplify(X,W) 
 

v'/x                      {w/x} 

 

Primitive(X) 
 

 
 

Arithmetic Unknown(X) 
 
 
 

 
Simplify(x×(y+z),w) 

 
 
 

Rewrite(x×(y+z),v)                       Simplify(y+z,w) 
 

x/1  ,  v/y+z  
 
Rewrite(y+z,v')                               Simplify(z,w)

y/0,v'/z                                  w/z  
 
Primitive(z)

 
 

 
Arithmetic unknouwn(z) 

 

 

5.4.2 Improving efficiency: 

 
    The generalized proof tree mentioned above gives or yields more than one generalized rule. 

 For example if we terminate,  or PRUNE, the growth of the right hand branch in the tree 

when it reached the primitive step, we get the rule as, 

o Primitive(z)   Simplify(1 X (0 + z), z) 
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 This rule is a valid as, but more general than, the rule using ArithmeticUnknow,  because it 

covers cases where z is a number. 

    After pruning the step, 

o Simplify ( y + z, w ), yielding the rule 
o Simplify ( y + z, w)   Simplify (1 X( y + z ), w) 

    The problem is to choose which of these rules. 

    The choice of which rule to generate comes down to the question of efficiency. 

    There are three factors involved in the analysis of efficiency gains from EBL as, 

o  Adding  large  number  of rules can  slow  down the reasoning  process,  because  the 

inference  mechanism  must  still  check  those  rules  even  in case  where  they  not  a 

solution. It increases the branching factor in the search space. 

o  To compensate  the slowdown in reasoning, the derived rules must offer significant 

increase in speed for the cases that they do not cover. This increase occurs because the 
derived rules avoid dead ends but also because they short proof also. 

o  Derived rule is as general as possible, so that they apply to the largest possible set of 
cases. 

 
5.5 Statistical Learning Methods: 

 
    Agents can handle uncertainty by using the methods of probability and decision theory. 

    But they must learn their probabilistic theories of the world from experience. 

    The learning task itself can be formulated as a process of probabilistic inference. 

 A  Bayesian  view  of  learning  is  extremely  powerful,  providing  general  solutions  to  the 

problem of noise, overfitting and optimal prediction. 

 It also takes into  account the fact that a less than omniscient agent can never be certain about 

which theory of the world is correct, yet must still make decisions by using some theory of 

the world. 

 
5.5.1 Statistical Learning 

 
    The key concepts of statistical learning are Data and Hypotheses. 

 Data are evidence (i.e.) instantiations of some or all of the random variables describing the 

domain. 

 Hypotheses are probabilistic theories of how the domain works, including logical theories as 

a special case. 

    For Example:- 

o The favorite surprise candy comes in two flavors as Cherry and Lime 
o The manufacturer has a peculiar sense of humor and wraps each piece of candy in the 

same opaque wrapper, regardless of flavor. 

o  The candy is sold in very large bags of which there are known to be five kinds-again, 

indistinguishable from the outside: 

h1: 100% cherry candies 

h2: 75% cherry candies + 25% lime candies 

h3: 50% cherry candies + 50% lime candies 

h4: 25% cherry candies + 75% lime candies 

h5: 100% lime candies 
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o  Given a new bag of candy the random variable H (for hypotheses) denotes the type of 

tile bag, with possible values h1 through h5. H is not directly observable. 

o  As the pieces of candy are opened and inspected, data are revealed as D1, D2…Dn in 
which each D is a random variable with possible values Cherry and Lime. 

o The basic task faced by the agent is to predict the flavor of the next piece of candy 
 

 
 

5.5.1.1 Bayesian Learning: 

 
 Bayesian Learning calculates the probability of each hypothesis,  given the data and makes 

predictions by using all the hypotheses, weighted by their probabilities. 

    In this way learning is reduced to probabilistic inference. 

    Let D be all data, with observed value d, then probability of a hypothesis hi, using Bayes rule 

P(h |d) = a P(d | h )P(h ) 
i                                i          i 

    For prediction about quantity X : 

P(X|d)= ∑ P(X|d,h )P(h |d)= ∑ P(X|h )P(h |d) 
i          i                              i          i 

    Where it is assumed that each hypothesis determines a probability distribution over X. 

 This equation shows that predictions were weighted averages over the predictions of the 

individual hypothesis 

    The key quantities in the Bayesian approach are the 

o Hypothesis Prior, P(hi) 

o Likelihood of the data under each hypothesis, P(d | h ) 
i 

 For candy example, assume the time being that the prior distribution over h1,….h5 is given 

by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer. 

 The likelihood of the data is calculated under the assumption that the observations are i..i..d, 

that is i= independently, i= identically and d= distributed So that 

P(d | hi)   P(dj | hi) 
j 

 The following figure shows how the posterior probabilities of the five hypotheses change as 

the sequence of 10 Lime is observed. 

 Notice that the probabilities start out at their prior values. So h1 is initially the most likely 

choice and remains so after 1 Lime candy is unwrapped. 

    After 2 Lime candies are unwrapped, h1 is most likely; after 3 or more, h5 is the most likely. 
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 The following figure shows the predicted probability that the next candy is Lime as expected, 

it increases monotonically toward 1 
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5.5.1.2 Characteristics of Bayesian Learning: 

 
o  The true hypothesis eventually dominates the Bayesian prediction. For any fixed prior 

that  does  not  rule  out  the  true  hypothesis,  the  posterior  probability  of  any  false 

hypothesis  will vanish,  because  the  probability  of generating  uncharacteristic  data 

indefinitely is vanishingly small. 

o  More importantly, the Bayesian prediction is optimal, whether the data set is small or 
large. 

    For real learning problems, the hypothesis space is usually very large or infinite. 

    In most cases choose the approximation or simplified methods. 

 
5.5.1.2.1 Approximation 

 
    Make predictions based on a single most probable hypothesis hi that maximizes P(hi|d). 

    This is often called a maximum a posteriori or MAP hypothesis. 

 Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to the 

extent that P(X|d)  P(X| hMAP). 

 In candy example,  hMAP  = h5  after three  lime candies  in a row, so the MAP learner  then 

predicts that the fourth candy is lime with probability 1.0 a much more dangerous prediction 

than the Bayesian prediction of 0.8 shown in the above graphs. 

 As  more  data  arrive,  the  MAP  and  Bayesian  predictions  become  closer,  because  the 

competitors to the MAP hypothesis become less and less probable. 

    Finding MAP hypothesis is much easier than Bayesian Learning is more advantage. 

 
5.5.2 Learning with Complete Data: 

 
    The statistical learning method begins with parameter learning with complete data. 

 A parameter  learning  task involves  finding  the numerical  parameter  for the probabilit y 

model. 

    The structure of the model is fixed. 

 Data are complete when each data point contains values for every variable in the probabilit y 

model. 

    Complete data simplify the problem of learning the parameters of complex model. 

 
5.5.1.1 Maximum Likelihood Parameter Learning: Discrete Models 

 
 Suppose we buy a bag of lime and cherry candy from a manufacturer  whose lime-cherry 

proportion are completely unknown. 

    The fraction can be anywhere between 0 and 1. 

 The parameter in this case is  , which is the proportion of cherry candies, and the hypothesis 

is h . 

    The proportion of lime is (1-  ). 

 We assume all the proportions are known a priori then Maximum Likelihood approach can be 

applied. 

    If we model the situation  in Bayesian  network,  we need  just one random  variable  called 

Flavor it has values cherry and lime. 

    The probability of cherry is  `. 

    If we unwrap N candies, of which C are cherries and L=N-C are limes. 

    The likelihood of the particular set is, 
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N 

P(d / h )   P(dj \ h )   c .(1   )L

 

J 1 

 The  maximum-likelihood   hypothesis  is  given  by  the  value  of  e`  that  maximizes  the 

expression. 

    It can be obtained by maximizing the log likelihood. 
N 

L1(d | h )  P(d | h )  log(P(dj \ h )  c log  L log(1   ) 
J 1 

    To find the ML value of  differentiate wrt  and then equate resulting to zero 
 

 

=      -         ,      -        = 0,                 ,                where c+l = N 
 

    The standard method for maximum likelihood parameter learning is given by 

o  Write  down  an  expression  for  the  likelihood  of  the  data  as  a  function  of  the 

parameters 

o Write down the derivative of the log likelihood with respect to each parameter. 
o Find the parameter values such that the derivatives are zero 

 The  most  important  fact  is  that,  with  complete  data,  the  maximum-likelihood  parameter 
learning problem for a Bayesian network 

 
5.5.1.2 Maximum Likelihood Parameter Learning: Continuous Models 

 
    Continuous variables are ubiquitous (everywhere) in real world applications. 

    Example of Continuous probability model is linear-Gaussian model. 

    The principles for maximum likelihood learning are identical to discrete model. 

 Let us take a simple case of learning the parameters  of a Gaussian density function on a 

single variable. 

    The data are generated as follows 
 

 
 

 
    Parameters of this model µ = mean and σ = Standard deviation. 

    Let the observed values be x1, x2,………xN 

    Then the log likelihood is given as
 

L   log 
    1     

e 
( x )2

 

2 
2

 

 

N 

=  N  ( log   2  log  )  
( xj   ) 2 

2
j 1 2 j 1       2

    Setting the derivatives to zero as usual, we obtain 
 

 xj

L 
 

  1  
 

( x   )  0
 

   
    j  

     2   j 1      
j                                                                                                                     

N 
 

 
L     N

 
 
  1  

 
 

 
N   

(         )
2       

0
  ( xj    )2

 

    j  

 
 
 
 
 3  j 1

 

xj          
N

 

    Maximum likelihood value of the mean is the simple average. 
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    Maximum likelihood value of the standard deviation is the square root of the simple variance. 

 
5.5.3 Learning with Hidden Variables: 

 
1.   Many  real  world  problems  have  hidden  variables  (or)  latent  variables  which  are  not 

observable in the data that are available for learning. 

2.   For Example:- Medical record often include the observed symptoms, treatment applied and 

outcome of the treatment, but seldom contain a direct observation of disease itself. 

 
Assumed  the diagnostic  model for heart  disease.  There  are three observable  predisposing 

factors and 3 observable symptoms. Each variable has 3 possible values (none, moderate and 

severe) 

2                                                2 
Diet 

2
Smoking  

Exercise

54 
 

Heart Diseases 

 

 
 

Hidden Variable
 

6                                                                                                                         6
Symptoms1  

6 
Symptoms2 

Symptoms3

 

 
 

If hidden is removed the total number of parameters increases from 78 (54 + 2 + 2 + 2 + 6 + 6 

+ 6) to 708 

2                      2                                  2 

Smoking                             Smoking                           Exercise 
 

 
 
 

54           
Symptoms1 162 

 

Symptoms2 
486 

 

Symptoms3
 

 
 
 
 
 

3.   Hidden variables can dramatically reduce the number of parameters required to specify the 

Bayesian network, there by reduce the amount of data needed to learn the parameters. 

4.   It also includes estimating probabilities when some of the data are missing. 

5.   The  reason we  learn Bayesian  network  with  hidden  variable  is that  it reveals  interesting 

structures in our data. 

6.   Consider a situation in which you can observe a whole bunch of different evidence variables, 

Er through En. They are all different symptoms that a patient might have.
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Different systems: 

E1 
 

 

E4                             E2 
 

 

E3 

3 
If the variables are conditionally dependent on one another, we will get a highly connected 
graph that representing the entire joint distribution between the variables. 

 

 

E1 
 

 

E4                             E2 
 

 

E3 

3 
7.   The model can be made simpler by introducing an additional “cause” node. It represents the 

underlying disease state that was causing the patient symptoms. 
 

 

Cause 
 
 

 
E1                                           En 

E2 

3 
This will have O(n) parameters, because the evident variables are conditionally independent 

given the causes. 

8.   Missing data 

  Imagine that we have 2 binary variables A and B that are not independent. We try to 

estimate the Joint distribution. 

 
A B 

1 1 

1 1 

0 0 

0 0 

0 0 

0 H 

0 1 

1 0 
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  0 

A 

1 

A 

0B 3/7 1/7 

1 B 1/7 2/7 
 

  0 

A 

1 

A 

0B 0.5 0.125 

1 B 0.125 0.25 
 

0                                           0 

P
a

ge
2

0
 0 

 
 

  It is done by counting how many were (true, true) and how may (false, false) and 

divide by the total number of cases to get maximum likelihood estimate. 

  The above data set has some data missing (denoted on “H”). There’s no real way to 

guess the value during our estimation problem. 

  The missing data items can be independent of the value it would have had. The data 

can be missed if there is a fault in the instrument used to measure. 

  For  Example:-  Blood  pressure  instrument  fault,  so  blood  pressure  data  can  be 

missing) 

9.   We can ignore missing values and estimate parameters 

 
Estimate Parameters 

 

 0 

A 

1 

A 

0B 0.429 0.143 

1 B 0.143 0.285 
 

We can consider     H = 0 (or) H = 1 

 log Pr(D / M )  log(Pr/ D, H  0 / M )  Pr(D, H  1 / M )) 

= 3 log 0.429 + 2 log 0.143 + 2 log 0.285 + log (0.429 + 0.143) 

= -9.498 Maximum likelihood score 

 
10.  We also try to fit it with best value. 

For the above cause consider H=0, Estimated parameters as follows, 

 
 0 

A 

1 

A 

0B 4/8 1/8 

1 B 1/8 2/8 
 

 log Pr(D / M )  log(Pr/ D, H  0 / M )  Pr(D, H  1 / M )) 

= 3 log 0.5 + 2 log 0.125 + 2 log 0.25 + log (0.5 + 0.125) 

= -9.481 

There is an improvement in likelihood value. 

11. We will employ some soft assignment technique. we fill the value of the missing variable by 

using our knowledge of the joint distribution over A, B and compute a distribution over H. 

 
 0 

A 

1 

A 

0B 0.25 0.25 

1 B 0.25 0.25 

Initial guess Uniform distribution. 

Compute probability distribution over H 

Pr(H / D, )  Pr(H / D
6 
, ) because it refers to 6

th
 

 

 
 

case in the observed data in the table.

 Pr( H / D
6 
, ) 

 Pr( B / A,
0 
) 

because missing variable is B and the observed one is not A, we need the probability of B 

given not A.
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 0 

A 

1 

A 

0B 0.4375 0.125 

1 B 0.1875 0.25 
 

A B 

1 1 

1 1 

0 0 

0 0 
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1
 

 
 

Pr(B / A,
0 
)  Pr(A, B / 

0 
) / Pr(A / 

0 
) 

=  
0.25 

= 0.5 
0.5 

H = 0 probability is 0.5 

H = 1 probability is 0.5 

 
A B 

1 1 

1 1 

0 0 

0 0 

0 0 

0 0,0.5 
 

1,0.5 

0 1 

1 0 

Now maximum likelihood estimation using expected counts. 

So expected parameter is 

 
 0 

A 

1 

A 

0B 3.5/8 1/8 

1 B 1.5/8 2/8 
 

New estimate is 

Pr(H / D, Q1)  Pr(, B / Q1) / Pr(A / Q1) 

=  
0.1875 
0.625 

So the new table is = 0.3
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  0 

A 

1 

A 

0B 0.4625 0.125 

1 B 0.1625 0.25 

 

P
a
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2

2
 

 
 

0 0 

0 0,0.7 
 

1,0.3 

0 1 

1 0 

 

 
 

 0 

A 

1 

A 

0B 3.7/8 1/8 

1 B 1.3/8 2/8 

 

 theta2 is 
2  

is 

Pr(H / D,
2 
)  Pr(Ar, B / 

2 
) / Pr(A / 

2 
) 

=  
0.1625 

 0.26 
0.625 

log likelihood is increasing 

log Pr(0 / 
0 
)  10.3972 

log Pr(D / 
1 
)  9.4760 

log Pr(D / 
2 
)  9.4524 

Since all values are negative it is in increasing order. 

We have to choose the best value 
12. The above iterative process is called EM algorithm. 

a.   The basic idea in EM algorithm  is to pretend  that we know the parameters  of the 

model  and  then  to  infer  the  probability  that  each  data  point  belongs  to  each 

component. 

b.   After that we refit the components of the data, where each component is fitted to the 

entire  data  set  with  each  point  weighted  by  probabilit y  that  it  belongs  to  the 

component. 

c.   This process is iterated until it converges. 

d.   We are completing  the data  by inferring  probability  distributions  over  the  hidden 

variable. 

13. EM Algorithm 

a.   want to find  to maximize PR(D/  ) 
To find theta (  ) that maximizes the probability of data for given theta (  ) 

b.   Instead find  , P  to maximize, where  P  = P tilde 

g ( , P )   P ( H ) log(Pr( D, H /  ) / P (H )) 
H 

 Ep log Pr(D, H /  )  log P (H )

Where, P (H ) = Probability distribution over hidden variables, H= Hidden Variables

c.   Find optimum value for g 

   holding  fixed and optimizing  P
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   holding P  fixed and optimizing 
   and repeat the procedure over and again 

d.   g has some local and global optima as PR(D/  ) 
e.   Example:- 

i.   Pick initial  0 

ii.   Probability of hidden variables given the observed data and the current model. 

Loop until it converges 

P t  1(H )  Pr(H / D, t ) 

arg max

P t  1     E 
rP t 1 

log Pr( D, H /  )

We find  the maximum  likelihood  model for the “expected  data” using the 

distribution over H to generate expected counts for different case. 

iii.   Increasing likelihood. 

iv.   Convergence is determined (but difficult) 

v.   Process with local optima i.e., sometimes it converges quite effectively to the 

maximum model that’s near the one it started with, but there’s much better 

model somewhere else in the space. 
 

 
 
 

Local minima 
 

 

optimum Value
 

EM for Bayesian Network: 
 

Let us try to apply EM for Bayesian Networks. 
 

1.   Our data is a set of cases of observations of some observable variables i.e. D = Observable 

Variables 

2.   Our hidden variables will actually be the values of the hidden node in each case. H = Values 

of hidden variable in each case 

For Example:- If we have 10 data case and a network with one hidden node, then we have 

10 hidden variables on missing pieces of data. 

3.   Assume structure is known 

4.   Find maximum likelihood estimation of CPTSs that maximize the probability of the observed 

data D. 

5.   Initialize CPT’s to anything (with no 0’s) 

Filling the data 
 

1.   Fill in the data set with distribution over values for hidden variables 

2.   Estimate Conditional probability using expected counts. 

We will compute the probability distribution  over H given D and theta (  ), we have ‘m’ 

different hidden variables, one for the value of node H in each of the m data cases. 

P t  1( H )  Pr( H / D, t ) 
 

 

  Pr( H   / D  ,
t 
) 

m 

3.   Compute a distribution over each individual hidden variable 

4.   Each factor is a call to bayes net inference
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01 02 ………. Dn Pr(H 
m 

/ D
m 

, ) t 

1 1 ………. 0 0.9 

0 1 ………. 0 0.2 

0  ………. 1 0.1 

1 1 ………. 1 0.2 

1 1 ………. 1 0.5 

 
t 

m          m 

m          m 

P
a

ge
2

4
 

 
 

5.   For Example:- 

a.   Consider a simple case with one hidden node 
 

 

H 
 

All nodes are binary 
 

D1                                          Dn 
D2 

3 
 

 
 
 
 
 
 
 
 

Pr(H m / Dm , ) = Bayes net inference

b.   We use bayes net inference to compute for each case in our data set, the probabilit y 

that H would be true, given the values of the observed variables. 

c.   To compute expected count i.e., the expected number of times H is true, we will add 

up the probability of H.

E( H )  Pr(H   / D  ,
t 
) 

m

= 1.9(0.9 + 0.2 + 0.1 + 0.2 + 0.5) 

d.   To get the expected number of times that H and D2 are true, we find all the cases in 

which D2 is true, and add up their probabilities of H being true.

E( H )  Pr(H   / D  ,t ) 
m

= 1.9 

E( H  D2)   Pr(H
  

/ D  ,
t 
) I (D

2  
)

m          m                      m 

 
m 

= 0.9 + 0.2 + 0.2 + 0.5 

= 1.8 

Pr( D2 / H )  
1.8 

Probability of D2 given H 
1.9 

= 0.9473 

5.5.4 Instance Based Learning:- 
 

    A parametric learning method is simple and effective. 

 In parametric  learning  method  when we have little data or data set grows larger then the 

hypothesis is fixed. 

    Instance based model represents a distribution using the collection of training instances. 

    Thus the number of parameter grows with the training set. 

    Non Parametric learning methods allows the hypothesis complexity to grow with the data. 

 Instance based Learning or Memory based learning is a non-parametric  model because 

they construct hypothesis directly from the training set. 

    The simplest form of learning is memorization.
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 When an object is observed or the solution to a problem is found, it is stored in memory for 

future use. 

    Memory can be thought of as a lookup table. 

 When a new problem is encountered, memory is searched to find if the same problem has 

been solved before. 

 If an exact  match  for  the  search  is  required,  learning  is  slow  and  consumes  very  large 

amounts of memory. 

 However, approximate matching allows a degree of generalization that both speeds learning 

and saves memory. 

 For Example:-  “ If we are shown an object and we want to know if it is a chair, then we 

compare the description of this new object with descriptions of “typical” chairs that we have 

encountered before. 

 If the description of the new object is “close” to the description of one of the stored instances 

then we may call it a chair. 

    Obviously, we must defined what we mean by “typical” and “close”. 

 |To better understand the issues involved in learning prototypes, we will briefly describe three 

experiments in Instance based learning (IBL) by Aha, Kibler and Albert (1991). 

 IBL  learns  to  classify  objects  by  being  shown  examples  of  objects,  described  by  an 

attribute/value list, along with the class to which each example belongs. 

    Experiment 1:- 

o  In the first experiment (IB1), to learn a concept simply required the program to store 
every example. 

o  When an unclassified object was presented for classification by the program, it used a 

simple Euclidean distance measure to determine the nearest neighbor of the object 
and the class given to it was the class of the neighbor. 

o The simple scheme works well, and is tolerant to some noise in the data. 
o Its major disadvantage is that it requires a large amount of storage capacity. 

    Experiment 2:- 

o The second experiment (IB2) attempted to improve the space performance of IB1. 
o In  this  case,  when  new  instances  of  classes  were  presented  to  the  program,  the 

program attempted to classify them. 

o  Instances that were correctly classified were ignored and only incorrectly classified 

instances were stored to become part of the concept. 

o This scheme reduced storage dramatically, it was less noise tolerant than the first. 

    Experiment 3:- 
o  The third experiment (IB3) used a more sophisticated method for evaluating instances 

to decide if they should be kept or not. 

o IB3 is similar to IB2 with the following additions. 
o IB3 maintains a record of the number of correct and incorrect classification attempts 

for each saved instance. 

o This record summarized an instances classification performance. 
o IB3  uses a significance  test to determine  which  instances  are good  classifiers  and 

which ones are believed to be noisy. 

o The latter are discarded from the concept description. 
o This method strengthens noise tolerance, while keeping storage requirements down. 

 
5.5.5 Neural Network:- 

 

    A neural network is an interconnected group of neurons.
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    The prime examples are biological neural networks, especially the human brain. 

 In modern usage the term most often refers to ANN (Artificial Neural Networks) or neural 

nets for short. 

 An Artificial  Neural Network  is a mathematical  or computational  model for information 

processing based on a connections approach to computation. 

 It involves a network of relatively simple processing elements, where the global behavior is 

determined by the connections between the processing elements and element parameters. 

 In a neural network model, simple nodes (neurons or units) are connected together to form a 

network of nodes and hence the term “Neural Network” 

 

The biological neuron Vs Artificial neuron:- 

Biological Neuron:- 

 The  brain is a collection  of about 10 million  interconnected  neurons shown in following 

figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Each  neuron  is  a  cell  that  uses  biochemical  reactions  to  receive,  process  and  transmit 

information. 

    A neurons dendrites tree is connected to a thousand neighboring neurons. 

 When one of those neurons fire,  a positive  or negative  charge  is received  by one of the 

dendrites. 

 The strengths of all the received charges are added together through the processes of spatial 

and temporal summation. 

 Spatial summation occurs when several weak signals are converted into a single large one, 

while temporal summation converts a rapid series of weak pulses from one source into one 

large signal. 

    The aggregate input is then passed to the soma (cell body). 

 The soma and the enclosed nucleus don’t play a significant role in the processing of incoming 

and outgoing data. 

 
Artificial Neuron (Simulated neuron):- 

 
Artificial Neurons are composed of nodes or units connected by directed links as shown in following figure.
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Inputs                      Weights (+ve/-ve)
 

a0            W0 

 

 
 

Summation
W1                                                                    Output ai 

a1                                                    g 

ini 

W2                                   Activation function ai = g(ini) 

a2 
Wn 

 

 
 

aj 
 

o A link from unit j to unit i serve to propagate the activation aj from j to i. 

o  Each link also has a numeric weight Wj, i associated with it, which determines the 

strength and sign of the connection. 

o Each unit i first computes a weighted sum of its inputs 
n 

ini  Wj, iaj 

j 0 

o Then it applies an activation function g to this sum to derive the output. 
n 

ai  g (ini)  g (Wj, iaj) 
j 0 

o  A simulated neuron which takes the weighted sum as its input and sends the output 1, 

if the sum is greater than some adjustable threshold value otherwise it sends 0. 

o The activation function g is designed to meet two desires, 
    The unit needs to be “active” (near +1) when the “right” inputs are given and 

“inactive” (near 0) when the “wrong” inputs are given. 

 The  activation  needs to  be non linear,  otherwise  the entire  neural  network 

collapses into a simple linear function. 

o There are two activation functions, 
    Threshold function 

    Sigmoid function 

Comparison between Real neuron and Artificial neuron (or) Simulated neuron:- 
 

 Computers (Artificial neuron) Human brain (Real neuron) 

Computational Units 1 CPU, 10
5 

gates 10
11 

neurons 

Storage Units 10
9 

bits RAM, 10
11 

bits disk 10
11 

neurons, 10
14 

Synapses 

Cycle time 10
-8 

sec 10
-3 

sec 

Bandwidth 10
9 

bits/sec 10
14 

bits/sec 

Neuron updates/Sec 10
5
 10

14
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Real neuron Simulated neuron (Artificial neuron) 

The character of real neuron is not modeled The properties are derived by simply adding up 

the weighted sum as its input 

Simulation of dendrites is done using electro 

chemical reaction 

A process output is derived using logical circuits 

Billion times faster in decision making process Million times faster in decision making process 

More fault tolerant Less fault tolerant 

Autonomous learning is possible Autonomous learning is not possible 

 

Feed-Forward network Recurrent network 

Unidirectional Connection Bidirectional Connection 

Cycles not exist Cycles exist 

A layered network, backtracking is not possible Not a layered network, backtracking is not 

possible 

Computes a function of the input values that 

depends on the weight settings, no internal state 

other than the weight settings 

Internal state stored in the activation levels of the 

units. 

Example:- Simple layering Models Example:- Brain 

A model used for simple reflex agent A model used for complex agent design 
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 The  above  table  shows  the comparison  based  on raw computational  sources  available  to 

computer and human brain. 

    The following table shows the comparison based on structure and working method. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract properties of neural networks:- 

    They have the ability to perform distributed computation 

    They have the ability to learn. 

    They have the ability to tolerate noisy inputs 

Neural network Structures:- 

 The  arrangement  of neurons  into  layers  and  the  connection  patterns  within  and  between 

layers is called the network structures. 

 They are classified into two categories depends on the connection established in the network 

and the number of layers. 

o Acyclic (or) Feed-forward network 
    Single layer feed-forward network 

    Multilayer feed-forward network 

o Cyclic (or) Recurrent networks 

 The  following  table  shows  the  difference  between  Feed-forward  network  and  Recurrent 
network,
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Feed-Forward network:- 
 

 A feed-forward network represents a function of its current input; thereby it has no internal 

state other than the weights themselves. 

    Consider the following network, which has two hidden input units and an output unit. 

1    
W1,3 

 

 
 

W2,3 

 

 
W1,4 

W3,5 
3 
 

 
5

 

2 

W2,4 

W4,5 

4

 

 Given an input vector x = (x1, x2), the activations  of the input units are set to (a1,a2) = 

(x1,x2) and the network computes 

a5  g (W 3, 5a3  W 4, 5a 4)  g (W 3, 5 g (W 1, 3a1  W 2, 3a 2)  W 4, 5 g (W 1, 4 a1  W 2, 4a 2)) 
 

Single Layer feed-forward network:- 
 

    A single layer network has one layer of connection weights. 

    The following figure shows the single layer feed forward network. 

 

 The units can be distinguished as input units, which receive signals from the outside world, 

and output units, from which the response of the network can be read. 

    The input units are fully connected to output units but are not connected to other input units. 

    They are generally used for pattern classification. 

 
Multi Layer feed-forward network:- 

    A multi layer network with one or more layers of nodes called hidden nodes. 

    Hidden nodes connected between the input units and the output units. 

    The below figure shows the multilayer feed-forward network. 

    Typically there is a layer of weights between two adjacent levels of units. 

    The network structure has 3 input layer, 4 hidden layer and 2 output layer. 

    Multilayer network can solve more complicated problems than single layer networks. 

    In this network training may be more difficult.

STUDENTSFOCUS.COM



 

 

P
a

ge
3

0
 

Artificial Intelligence                                 CSE/IIIYr/VISem                                UNIT-V/LEARNING 
 

 
 

 
 

 
 

 
 

 

Recurrent network:- 

 Each node is a processing element or unit, it may be in one of the two states (Black-Active, 

White-Inactive) units are connected to each other with weighted symmetric connection. 

    A positive weighted connection indicates that the two units tend to activate each other. 

    A negative connection allows an active unit to deactive neighboring unit. 

    The following diagram shows the simple recurrent network which is a Hopfield network, 

 
-1 

 

 
 

+1                       -1          +3 

-1 

 
+ 2              + 1          -2               +3 

 

 
 

+1                            -1 

 
    Working method:- 

o  A random unit is chosen. 

o  If any of its neighbors are active, the unit computes the sum of the weights on the 
connections to those active neighbors. 

o If the sum is positive, the unit becomes active, otherwise it become inactive. 

 Fault  tolerance:-  If  a  new  processing  element  fails  completely,  the  network  will  still 

function properly. 

 
Learning Neural network structures:- 

    It is necessary to understand how to find the best network structure. 

 If a network is too big is chosen, it will be able to memorize all the examples by forming a 

large lookup table, but will not generalize well to inputs that have not been seen before. 

    There are two kinds of networks must be considered namely, 

    Fully connected network 

    Not Fully connected network 

    Fully Connected networks:- 
 

 

SVCET
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o  If fully connected networks are considered, the only choices to be made concern the 

number of hidden layers and their sizes. 

o The usual approach is to try several and keep the best. 
o The cross validation techniques are needed to avoid peeking at the test set. 

    Not Fully Connected network:- 

o  If  not  fully  connected  networks  are  considered,  then  find  some  effective  search 
method through the very large space of possible connection topologies. 

    Optimal Brain damage Algorithm:- 
o The following are the steps involved in brain damage algorithm, 

1.   Begin with a fully connected network 
2.   Remove connections from it. 

3.   After  the  network  is  trained  for  the  first  time,  an  information  theoretic 

approach identifies an optimal selection of connections that can be dropped. 

4.   Then the network is trained. 

5.   If its performance has not decreased then the process is repeated. 

6.   In addition to removing connections, it is also possible to remove units that are 

not contributing much to the result. 

    Tiling Algorithm:- 

o It is an algorithm, which is proposed for growing a larger network from a smaller one. 
o it resembles decision-list learning. 
o The following are the steps involved in tiling algorithm, 

1.   Start with a single unit that does its best to produce the correct output on as 

many of the training examples as possible. 

2.   Subsequent units are added to take care of the examples that the first unit got 

wrong. 

3.   The  algorithm  adds  only  as  many  units  as  are  needed  to  cover  all  the 

examples. 

 
Advantages of Neural Networks:- 

 The neural network learns well, because the data were generated from a simple decision tree 

in the first place. 

    Neural networks are capable of far more complex learning tasks of course. 

    There are literally tens of thousands of published applications of neural networks 

 
5.6. Reinforcement Learning 

 
5.6.1 Reinforcement: 

 
 Reinforcement is a feedback from which the agent comes to know that something good has 

happened when it wins and that something bad has happened when it loses. This is also called 

as reward. 

    For Examples:- 

o In chess game, the reinforcement is received only at the end of the game. 
o In ping-pong, each point scored can be considered a reward; when learning to crawl, 

any forward motion is an achievement. 

 The framework for agents regards the reward as part of the input percept, but the agent must 

be hardwired to recognize that part as a reward rather than as just another sensory input. 

    Rewards served to define optimal policies in Markov decision processes. 

    An optimal policy is a policy that maximizes the expected total reward.
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 The task of reinforcement learning is to use observed rewards to learn an optimal policy for 

the environment. 

    Learning from these inforcements or rewards is known as reinforcement learning 

    In reinforcement learning an agent is placed in an environment, the following are the agents 

o Utility-based agent 
o Q-Learning agent 
o Reflex agent 

   The following are the Types of Reinforcement Learning, 

o Passive Reinforcement Learning 
o Active Reinforcement Learning 

 
5.6.2 Passive Reinforcement Learning 

 
   In this learning, the agent’s policy is fixed and the task is to learn the utilities of states. 

   It could also involve learning a model of the environment. 

   In passive learning, the agent’s policy  is fixed (i.e.) in state s, it always executes the action 

 (s). 

   Its goal is simply to learn the utility function U  (s). 

   For example: - Consider the 4 x 3 world. 

   The following figure shows the policy for that world. 
 

 
 

    
+1 

    
-1 

    

 

 
    The following figure shows the corresponding utilities 

 
 
0.812 

 
0.868 

 
0.918 

 
+1 

 
0.762 

  
0.560 

 
-1 

 
0.705 

 
0.655 

 
0.611 

 
0.388 

 

    Clearly, the passive learning task is similar to the policy evaluation task. 

    The main difference is that the passive learning agent does not know 

o  Neither the transition  model T(s, a,s’), which specifies  the probabilit y of reaching 

state’s from state s after doing action a; 

o Nor does it know the reward function R(s), which specifies the reward for each state.
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    The agent executes a set of trials in the environment using its policy  . 

 In each trial, the agent starts in state (1,1) and experiences a sequence of state transitions until 

it reaches one of the terminal states, (4,2) or (4,3). 

    Its percepts supply both the current state and the reward received in that state. 

    Typical trials might look like this: 
 

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (1,2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (4,3)+1 

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (3,2)-0.4 (3,3)-0.4 (4,3)+1 

(1 ,1)-0.4 (2, 1)-0.4 (3,1)-0.4 (3,2)-0.4 (4,2)-1    

 

    Note that each state percept is subscripted with the reward received. 

    The  object  is to  use  the  information  about  rewards  to  learn  the  expected  utility  U  (s) 

associated with each nonterminal state s. 

    The utility is defined to be the expected sum of (discounted) rewards obtained if policy is 

 followed, the utility function is written as 

                                                   


U (s)  E   tR(st ) | , s 0         s 
 

    For the 4 x 3 world set   = 1 
 

 

5.6.2.1 Direct utility estimation:- 

 t 0                                                

 

    A simple method  for direct utility estimation  is in the area of adaptive  control theory by 

Widrow and Hoff(1960). 

 The idea is that the utility of a state is the expected total reward from that state onward, and 

each trial provides a sample of this value for each state visited. 

    Example:- The first trial in the set of three given earlier provides a sample total reward of 

0.72 for state (1,1), two samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and 0.88 for 

(1,3) and so on. 

 Thus at the end of each sequence, the algorithm calculates the observed reward- to-go for 

each state and updates the estimated utility for that state accordingly. 

 In the  limit  of  infinitely  many trails,  the sample  average  will come  together  to  the true 

expectations in the utility function. 

    It is clear that direct utility estimation is just an instance of supervised learning. 

 This means that reinforcement  learning have been reduced to a standard inductive learning 

problem. 

 Advantage:-  Direct  utility  estimation  succeeds  in  reducing  the  reinforcement   learning 

problem to an inductive learning problem. 

    Disadvantage:- 

o  It misses a very important source of information, namely, the fact that the utilities of 
states are not independent 

 Reason:-  The utility of each state equals its own reward plus the expected 

utility  of  its  successor  states.  That-is,  the  utility  values  obey the  Bellman 

equations for a fixed policy 

U  (s)  R(s)   T (s,  (s), s`)U  (s`) 
s

`
 

o It misses opportunities for learning 

    Reason:- It ignores the connections between states 

o The algorithm often converges very slowly.
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 Reason:- More broadly, direct utility estimation can be viewed as searching in 

a hypothesis  space  for U that is much larger that it needs to be, in that it 

includes many functions that violate the Bellman equations. 

5.6.2.2 Adaptive Dynamic programming:- 

    Agent must learn how states are connected. 

 Adaptive  Dynamic  Programming  agent  works  by  learning  the  transition  model  of  the 

environment as it goes along and solving the corresponding Markov Decision process using a 

dynamic programming method.

    For passive learning agent, the transition model T (s,  (s), s`) 

into Bellman equation to calculate the utilities of the states. 

and the observed rewards R(S)

 The process of learning the model itself is easy, because the environment is fully observable 

i.e. we have a supervised learning task where the input is a state-action pair and the output is 

the resulting state. 

    We can also represent the transition model as a table of probabilities. 

    The following algorithm shows the passive ADP agent, 

 
Function PASSIVE-ADP-AGENT(percept)  returns an action 

Inputs:      percept,a percept indicating the current  state s
’ 

and reward signal r
’
 

Static:        π a,fixed policy 

Mdb,an MDP with model T,rewards R,discount  γ 

U,a table of utilities,initially empty 

Nsa,a table of frequencies for state-action pairs,initially zero 

Nsa 
’
,a  table of frequencies for state-action-state triples,initially zero 

S,a,the previous state and action,initially null 

If s
’ 

is new then do U[s
’
]←r

’ 
; R[s

’
]←r

’
 

If s is not null then do 

Increment Nsa[s,a]andNsas’[s,a,s
’
] 

For each t such that Nsas’[s,a,t]is nonzero do 

T[s,a,t]←Nsas’[s,a,t]/Nsa[s,a] 
U←VALUE-DETERMINATION(π,U,mdb) 

If TERMINALS?[s
’
]then s,a←null else s,a←s

’
,π[s

’
] 

return a 
 

    Its performance on the 4 * 3 world is shown in the following figure. 

 The following figure shows the root-mean square error in the estimate for U(1,1), averaged 

over 20 runs of 100 trials each. 

0.45 
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    Advantages:- 

o It can converges quite quickly 

    Reason:- The model usually changes only slightly with each observation, the 

value iteration process can use the previous utility estimates as initial values. 

o The process of learning the model itself is easy 

    Reason:- The environment is fully observable.  This means that a supervised 

learning task exist where the input is a state-action pair and the output is the 

resulting state. 

o  It provides a standard against which other reinforcement  learning algorithms can be 
measured. 

    Disadvantage:- 

o It is intractable for large state spaces 

5.6.2.3 Temporal Difference Learning:- 

 In order to approximate the constraint equation U 
 

(S ) , use the observed transitions to adjust 

the values of the observed states, so that they agree with the constraint equation. 

    When the transition occurs from S to S
1 
, we apply the following update to U 

 
(S ) 

U 
 

(S )  U 
 

(S )   ( R(S )  U 
 

(S
1 
)  U 

 
(S )) 

    Where  = learning rate parameter. 

    The above equation is called Temporal difference or TD equation. 

 The  following  algorithm  shows  the  passive  reinforcement  learning  agent  using  temporal 

differences, 

Function PASSIVE-TD-AGENT(precept)returns an action 

Inputs:percept,a percept indicating the current state s
’ 

and reward signal r
’
 

Static:π,a fixed policy 

U,a table of utilities,initially empty 

Ns,a table of frequencies for states,initially zero 
S,a,r,the previous state,action,and reward,initially null 

If s’ is new then U[s’]←r’ 

If s is not null then do 

Increment Ns[s] 
U[s]←U[s] + α(Ns[s])(r + γU[s’] - U[s]) 

If TERMINAL?[s’]then s,a,r←null else s,a,r←s’,π[s’],r’ 

return a 
 

   Advantages:- 

o It is much simpler 
o It requires much less computation per observation 

   Disadvantages:- 
o It does not learn quite as fast as the ADP agent 

o It shows much higher variability 
    The following table shows the difference between ADP and TD approach, 

 
ADP Approach TD Approach 

ADP adjusts the state to agree with all of the 

successors that might occur, weighted by their 

probabilities 

TD adjusts a state to agree with its observed 

successor 

ADP makes as many adjustments as it needs to 

restore consistency between the utility estimates 

U and the environment model T 

TD makes a single adjustment per observed 

transition 
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    The following points shows the relationship between ADP and TD approach, 

o Both try to make local adjustments to the utility estimates in order to make each state 

“agree” with its successors. 

o  Each adjustment made by ADP could be seen, from the TD point of view, as a result 

of a “pseudo-experience” generated by simulating the current environment model. 

o  It is possible to extend  the TD approach to use an environment  model to generate 

several “pseudo-experiences-transitions that the TD agent can imagine might happen, 

given its current model. 

o  For each observed transition, the TD agent can generate a large number of imaginar y 

transitions. In this way the resulting utility estimates will approximate more and more 

closely those of ADP- of course, at the expense of increased computation time. 

 
5.6.3. Active Reinforcement learning:- 

 
    A passive learning agent has a fixed policy that determines its behavior. 

    “An active agent must decide what actions to do” 

 An ADP agent can be taken  an considered  how it must be modified  to handle  this  new 

freedom. 

    The following are the required modifications:- 

o  First the agent will need to learn a complete model with outcome probabilities for all 

actions. The simple learning mechanism used by PASSIVE-ADP-AGENT will do just 

fine for this. 

o  Next, take into account the fact that the agent has a choice of actions. The utilities it 

needs to learn are those defined by the optimal policy. 

U (s)  R(s)   max T (s, a, s`)U (s`) 
a        

s ̀  

o  These equations can be solved to obtain the utility function U using he value iteration 

or policy iteration algorithms. 

o  Having obtained a utility function U that is optimal for the learned model, the agent 

can extract an optimal action by one-step look ahead to maximize the expected utility; 

o  Alternatively,  if it uses policy iteration, the optimal policy is already available, so it 

should simply execute the action the optimal policy recommends. 

5.6.3.1 Exploration:- 

 Greedy agent is an agent that executes an action recommended by the optimal policy for the 

learned model. 

 The  following  figure  shows  the  suboptimal  policy to  which  this agent  converges  in this 

particular sequence of trials. 

 
    

+1 

    
-1 

    

 The agent does not learn the true utilities or the true optimal policy! what happens is that, in 

the  39
th  

trial,  it  finds  a  policy  that  reaches  +1  reward  along  the  lower  route  via  (2,1), 
(3,1),(3,2), and (3,3).
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 After experimenting with minor variations from the 276
th 

trial onward it sticks to that policy, 

never  learning  the  utilities  of  the  other  states  and  never  finding  the  optimal  route  via 

(1,2),(1.3) and (2,3). 

    Choosing the optimal action cannot lead to suboptimal results. 

 The fact is that the learned model is not the same as the true environment; what is optimal in 

the learned model can therefore be suboptimal in the true environment. 

 Unfortunately, the agent does  not know what the true environment is, so it cannot compute 

the optimal action for the true environment. 

    Hence this can be done by the means of Exploitation. 

 The greedy agent can overlook that actions do more than provide rewards according to the 

current  learned  model;  they  also  contribute  to  learning  the  true  model  by  affecting  the 

percepts that are received. 

    An agent therefore must make a trade-off between exploitation to maximize its reward and 

exploration to maximize its long-term well being. 

    Pure exploitation risks getting stuck in a rut. 

 Pure exploitation to improve ones knowledge id of no use if one never puts that knowledge 

into practice. 

 
5.6.3.2 GLIE Scheme:- 

 To come up with a reasonable scheme that will eventually lead to optimal behavior by the 

agent a GLIE Scheme can be used. 

 A GLIE Scheme must try each action in each state an unbounded number of times to avoid 

having a finite probability that an optimal action is missed because of an unusually bad series 

of outcomes. 

    An ADP agent using such a scheme will eventually learn the true environment model. 

 A GLIE Scheme must also eventually become  greedy,  so that the agents actions become 

optimal with respect to the learned (and hence the true) model. 

    There are several GLIE Scheme as follows, 

o  The agent can choose a random action a fraction 1/t of the time and to follow the 

greedy policy otherwise. 

    Advantage:- This method eventually converges to an optimal policy 

    Disadvantage:- It can be extremely slow 

o  Another approach is to give some weight to actions that the agent has not tried very 

often, while tending to avoid actions that are believed to be of low utility. This can be 

implemented  by altering  the constraint  equation,  so that it assigns  a higher  utilit y 

estimate to relatively UP explored state-action pairs. 

 Essentially, this amounts to an optimistic prior over the possible environments and causes the 

agent to behave initially as if there were wonderful rewards scattered all over the place. 

5.6.3.3 Exploration function:- 

 Let  U
+  

denotes the optimistic  estimate  of the  utility of the state  s, and  let N(a,s)  be the 

number of times action a has been tried in state s. 

 Suppose  that  value  iteration  is  used  in an  ADP  learning  agent;  then  rewrite  the  update 

equation to incorporate the optimistic estimate. 

    The following equation does this, 

U 
 
(s)  R(s)   max f 


T (s, a, s`)U 

 
(s`), N (a, s)



a           
                                            

s ̀                                              
    Here f(u ,n) is called the exploration function. 

    It determines how greed is trade off against curiosity.
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    The function f(u, n) should be increasing in u and decreasing in n. 

 The simple definition is 

f( u, n) =  R
+ 

in n<Nc 

u   otherwise 

where R
+ 

= optimistic estimate of the best possible reward obtainable in any state and Nc is a 

fixed parameter. 

 The fact that U
+  

rather than U appears on the right hand side of the above equation is very 
important. 

 If  U  is  used,  the  more  pessimistic  utility  estimate,  then  the  agent  would  soon  become 

unwilling to explore further a field. 

 The use of U
+  

means that benefits  of exploration  are propagated  back from the edges of 
unexplored regions, so that actions that lead toward unexplored  regions are weighted more 

highly, rather than just actions that are themselves unfamiliar. 

5.6.3.4 Learning an action value function:- 

    To construct an active temporal difference learning agent, it needs a change in the passive TD 

approach. 

 The most obvious change that can be made in the passive case is that the agent is no longer 

equipped with a fixed policy, so if it learns a utility function U, it will need to learn a model 

in order to be able to choose an action based on U via one step look ahead. 

    The update rule of passive TD remains unchanged. This might seem old. 

    Reason:- 
o  Suppose the agent takes a step that normally leads to a good destination, but because 

of non determinism in the environment the agent ends up in a disastrous state. 

o  The TD update rule will take this as seriously as if the outcome had been the normal 

result of the action, where the agent should  not worry about it too much since the 

outcome was a fluke. 

o  It can be shown that the TD algorithm will converge to the same values as ADP as the 

number of training sequences tends to infinity. 

5.6.3.5 Q-Learning:- 

    An alternative TD method called Q-Learning. 

    It can be used that learns an action value representation instead of learning utilities. 

    The notation Q(a, s) can be used to denote the value of doing action “a” in state “s”. 

    Q values are directly related to utility values as follows, 

U (s)  max Q(a, s) 
a 

    Q Learning is called a model free method. 

    Reason:- 
o  It has a very important property: a TD that learns a Q-function does not need a model 

for either learning or action selection. 
o  As with utilities, a constraint equation can be written that must hold at equilibrium 

when the Q-Values are correct, 

Q(a, s)  R(s)   T (s, a, s`) max Q(a`, s`) 
s`                                  

a`
 

o  As in the ADP learning agent, this equation can be used directly as an update equation 

for an iteration process that calculates exact Q-values, given an estimated model. 

o This does, however, require that a model also be learned because the equation uses 
T(s, a, Sf). 

o The temporal difference approach, on the other hand, requires no model. 
o The update equation for TD Q-Learning is 
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Q(a, s)  Q(a, s)  [R(s)   max Q(a`, s`)  Q(a, s)] 
a` 

o Which is calculated whenever action a is executed in state s leading to state Sf. 

    The following algorithm shows the Q-Learning agent program 

 
Function Q-LEARNING_AGENT(percept)returns an action 

Inputs:      percept,a percept indicating the current state s’ and reward signal r’ 

Static:        q, a table of action values index by state and action 

Nsa,a table of frequencies for state-action pairs 

S,a,r,the previous state,action,and reward,initially null 

If s is not null then do 

Increment Nsa[s,a] 
Q[a,s]←q[a,s] + α(Nsa[s,a])(r + γ maxa’   Q[a’,s’] – Q[a,s]) 

If TERMINAL?[s’]then s,a,r←null 
Else s,a,r←s’,argmaxa’  f(Q[a’,s’],Nsa[a’,s’]),r’ 

return a 

 
 Some  researchers  have  claimed  that  the  availability  of  model  free  methods  such  as  Q- 

Learning means that the knowledge based approach is unnecessary. 

    But there is some suspicion i.e. as the environment becomes more complex. 

 
5.6.4 Generalization in Reinforcement Learning:- 

 The utility function and Q-functions learned by the agents are represented  in tabular form 

with one output value for each input tuple. 

    This approach works well for small set spaces. 

 Example:- The game of chess where the state spaces are of the order 10
50 

states. Visiting all 

the states to learn the game is tedious. 

    One way to handle such problems is to use FUNCTION APPROXIMATION. 

 Function approximation  is nothing but using any sort of representation  for the function 

other than the table. 

 For Example:- The evaluation function for chess is represented as a weighted linear function 

of set of features or basic functions f1,….fn 

U
 

(S )  
1 
f
1 
(S )  

2 
f 

2 
(S )  ..........   nf

n 
(S ) 

    The reinforcement learning can learn value for the parameters   
1
.........

n 
. 

    Such that the evaluation function U   
approximates the true utility function. 

 As in all inductive learning, there is a tradeoff between the size of the hypothesis space and 

the time it takes to learn the function. 

 For reinforcement  learning,  it makes more sense to use an online learning algorithm  that 

updates the parameter after each trial. 

    Suppose we run a trial and the total reward obtained starting at (1, 1) is 0.4. 

    This suggests that U 
(1,1) , currently 0.8 is too large and must be reduced. 

 The parameter  should be adjusted  to achieve  this. This is done similar  to neural network 

learning where we have an error function which computes the gradient with respect to the 

parameters. 

 If Uj(S) is the observed total reward for state S onward in the jth trial then the error is defined 
as half the squared difference of the predicted total and the actual total.

E 
j 
(S )  (U (S )  U (S ))

2  
/ 2
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 The rate of change of error with respect to each parameter  
i    

is 

parameter in the direction of the decreasing error. 


i  
 

i  
  ( E 

j 
(S ) / C 

j 
)  

i 
  (U 

j 
(S )  U

 
(S ))(U

 
(S ) / 

i 
) 

    This is called Widrow-Hoff Rule or Delta Rule. 

    Advantages:- 
o It requires less space. 

 E 
j  

/  
j 
, so to move the

o  Function  approximation   can  also  be  very  helpful  for  learning  a  model  of  the 
environment. 

o It allows for inductive generalization over input states. 

    Disadvantages:- 

o The convergence is likely to be displayed. 
o It could fail to be any function in the chosen hypothesis space that approximates the 

true utility function sufficiently well. 

o  Consider   the  simplest   case,   which   is  direct   utility  estimation.   With   function 

approximation, this is an instance of supervised learning. 
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Artificial Intelligence 

Online Question 

 

 

1. What is Artificial intelligence? 

Putting your intelligence into Computer 
Programming with your own intelligence 

Making a Machine intelligent 
Playing a Game 

Putting more memory into Computer 
2. Which is not the commonly used programming language for AI? 

(a)  PROLOG           (b)  Java                  (c)  LISP                  (d)  Perl             (e)  Java script. 
3. What is state space? 

The whole problem 

Your Definition to a problem 

Problem you design 

Representing your problem with variable and parameter 
A space where You know the solution. 

4. A production rule consists of 

(a)  A set of Rule                                    (b)  A sequence of steps 

(c)  Both (a) and (b)                                (d)  Arbitrary representation to problem 

(e)  Directly getting solution. 
5. Which search method takes less memory? 

(a)  Depth-First Search                            (b)  Breadth-First search 

(c)  Both (a) and (b)                                (d)  Linear Search. 
(e)  Optimal search. 

6. A heuristic is a way of trying 

To discover something or an idea embedded in a program 

To search and measure how far a node in a search tree seems to be from a goal 
To compare two nodes in a search tree to see if one is better than the other 
Only (a) and (b) 
Only (a), (b) and (c). 

7. A* algorithm is based on 

(a)  Breadth-First-Search                         (b)  Depth-First –Search 

(c)  Best-First-Search                                                            (d)  Hill climbing. 
(e)  Bulkworld Problem. 

8. Which is the best way to go for Game playing problem? 

(a)  Linear approach                                (b)  Heuristic approach 

(c)  Random approach                                                           (d)  Optimal approach 

(e)  Stratified approach. 
9. How do you represent “All dogs have tails”. 

(a)   ٧x: dog(x)�hastail(x)                       (b)  ٧x: dog(x)�hastail(y) 
(c)  ٧x: dog(y)�hastail(x)                        (d)  ٧x: dog(x)�has�tail(x) 
(e)  ٧x: dog(x)�has�tail(y) 

10. Which is not a property of representation of knowledge? 

(a)  Representational Verification              (b)  Representational Adequacy 



(c)  Inferential Adequacy                          (d)  Inferential Efficiency 

(e)  Acquisitional Efficiency. 

 

Answers 

 

1. Answer : (c) 

Reason : Because AI is to make things work automatically through machine without using human effort. 
Machine will give the result with just giving input from human. That means the system or machine 
will act as per the requirement. 

2. Answer : (d) 

Reason : Because Perl is used as a script language, and not of much use for AI practice. All others are 
used to generate an artificial program to a great extent. 

3. Answer : (d) 

Reason : Because state space is mostly concerned with a problem, when you try to solve a problem, we 
have to design a mathematical structure to the problem which can only be through variables and 
parameters. Ex. You have given a 4-gallon jug and another 3gallon jugs. Neither has measuring 
marker on it. You have to fill the jugs with water .How can you get exactly 2 gallons of water in to 
4gallons.Here the state space can defined as set of ordered pairs integers(x,y),such that 
x=0,1,2,3 or 4 and y=0,1,2 or 3;X represents the number of gallons in 4galoon jug and y 
represents quantity of water in the 3-gallon jug. 

4. Answer : (c) 

Reason : When you are trying to solve a problem, you should design how to get a step by step solution with 
constraints condition to your problem, e.g Chess board problem. 

5. Answer : (a) 

Reason : Depth-First Search takes less memory since only the nodes on the current path are stored, but in 
Breadth First Search, all of the tree that has generated must be stored. 

6. Answer : (e) 

Reason : In a heuristic approach we discover certain idea and use heuristic functions to search for a goal 
and predicates to compare nodes. 

7. Answer : (c) 

Reason : Because Best-first-search  is giving the idea of optimization and quick choose of path, and all 
these characteristic lies in A* algorithm. 

8. Answer : (b) 

Reason : We use Heuristic approach as it will find out brute force computation ,looking at hundreds of 
thousands of positions. e.g Chess competition between Human and AI based Computer. 

9. Answer : (a) 

Reason : We represent the statement in mathematical logic taking ‘x ‘as Dog and which has tail. We can 
not represent two variable x, y for the same object Dog which has tail. The symbol “٧ “represent 
all. 

10. Answer : (a) 

Reason : There is nothing to go for Representational verification, the verification comes under 
Representational adequacy. 
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