
17BECS603 Artificial Intelligence

COURSE OBJECTIVES:

• Artificial Intelligence aims at developing computer applications, which encompasses

• perception, reasoning and learning and to provide an in-depth understanding of major

techniques used to simulate intelligence.

• To provide a strong foundation of fundamental concepts in Artificial Intelligence

• To provide a basic exposition to the goals and methods of Artificial Intelligence

• To enable the student to apply these techniques in applications which involve perception,

reasoning and learning.

LEARNING OUTCOMES:

• Understand the history, development and various applications of artificial intelligence

• Familiarize with propositional and predicate logic and their roles in logic programming;

• Understand the programming language Prolog and write programs in declarative

programming style;

• Learn the knowledge representation and reasoning techniques in rule-based systems, case

based systems, and model-based systems;

• Appreciate how uncertainty is being tackled in the knowledge representation and reasoning

process, in particular, techniques based on probability theory and possibility theory (fuzzy

logic)

UNIT I Introduction and Problem Solving (9)

Introduction – Foundations of AI – History of AI – Intelligent agent – Types of agents - Structure
– Problem solving agents – Uninformed search strategies – Breadth first search – Uniform cost
search
– Depth first search –Depth limited search – Bidirectional search – Searching with partial

Information.

UNIT II Informed Search and Game Playing (9)
Informed search – Strategies – A* Heuristic function – Hill Climbing – Simulated Annealing –
Constraint Specification problem – Local Search in continuous space – Genetic algorithm –
Optimal decisions in games - Pruning- Imperfect decisions –Alpha-Beta pruning – Games that
include an element of chance.

UNIT III Knowledge and Reasoning (9)
Knowledge based agent – The Wumpus world environment – Propositional logic – Inference rules
– First-orderlogic – Syntax and semantics – Situation calculus – Building a knowledge base –
Electronic circuit domain – Ontology– Forward and backward chaining – Resolution – Truth
maintenance system.

UNIT IV Acting Logically (9)
Planning – Representation of planning – Partial order planning –Planning and acting in real world
– Acting under uncertainty – Bayes’s rules – Semantics of Belief networks – Inference in Belief
networks – Making simple decisions – Making complex decisions.

L T P C

3 0 0 3

UNIT V Learning and Communication (9)

Learning from observation – Learning decision trees –Ensemble learning – Learning general
logical descriptions – Computational learning theory – Neural networks – Applications –
Reinforcement learning
– Passive reinforcement – Active reinforcement – Communication as action – Types of
communicating agents – Parsing – DCG – Semantic interpretation.

Total

hours:45

TEXT BOOKS:

1. Stuart J.Russel, Peter Norvig, “Artificial Intelligence A Modern Approach”, Pearson

Education, 2010.

REFERENCES:

1. Elaine Rich, Kevin Knight, “Artifical Intelligence", 2nd Edition, Tata McGraw Hill, 2001.

KARPAGAM

Subject Name: ARTIFICIAL INTELLIGENCE

S.No Topic Name

 UNIT

1 Introduction – Foundations of AI

2 History of AI – Intelligent agent

3 Types of agents and Structure

4 Problem solving agents

5 Uninformed search strategies

6 Breadth first search

7
Uniform cost search

8 Depth first search

9 Depth limited search

10 Bidirectional search

11 Searching with partial Information.

Total

 UNIT

12 Informed search – Strategies

13 A* Heuristic function

14 Hill Climbing, Simulated Annealing

15 Constraint Specification problem

16 Local Search in continuous space

17 Genetic algorithm

18 Optimal decisions in games

19 Pruning- Imperfect decisions

20 Alpha-Beta pruning

21 Games that include an element of chance

Total

KARPAGAM ACADEMY OF HIGHER EDUCATION

Faculty of Engineering

Lecture Plan

ARTIFICIAL INTELLIGENCE Subject Code:

Topic Name
No.of

Periods

Supporting

Materials

UNIT- I Introduction and Problem Solving

Foundations of AI 1

Intelligent agent 1

Types of agents and Structure 1

1

Uninformed search strategies 1

1

1

1

1

1

Searching with partial Information. 1

Total 11

UNIT- II Informed Search and Game Playing

Strategies 1

1

Hill Climbing, Simulated Annealing 1

Constraint Specification problem 1

Local Search in continuous space 1

1

Optimal decisions in games 1

Imperfect decisions 1

1

Games that include an element of chance 1

Total 10

UNIT- III Knowledge and Reasoning

Subject Code: 14BECS602

Supporting

Materials

Teachi

ng

Aids

R[1]-1 BB

R[1]-1 BB

R[1]-5 PPT

R[1]-6 PPT

R[1]-6 PPT

T[1]-95 PPT

T[1]-95 PPT

T[1]-68 BB

Web PPT

T[1]-12 BB

Web BB

T[1]-200 PPT

web PPT

T[1] 201 BB

T[1]214 PPT

T[1]214 PPT

T[1]218 PPT

R[1]218 PPT

R[1]218 PPT

R[1]221 BB

R[1]221 PPT

22 Knowledge based agent 1 web PPT

23 The Wumpus world environment 1 web PPT

24 Inference rules 1 web PPT

25 First-orderlogic 1 T[1]-488 BB

26 Syntax and semantics- Situation calculus 1 T[1]-193 PPT

27 Building a knowledge base 1 T[1]-266 BB

28 Electronic circuit domain 1 T[1]-305 PPT

29 Ontology 1 T[1]-343 BB

30 Forward and backward chaining 1 web PPT

31
Resolution – Truth maintenance system.
 1 web PPT

 Total 10

 UNIT- IV Acting Logically

32 Planning 1 R[1]-139 PPT

33 Representation of planning 1 R[1]-139 PPT

34 Partial order planning 1 T[1]-140 PPT

35 Planning and acting in real world 1 R[1]-152 BB

36 Acting under uncertainty 1 R[1]-159 PPT

37 Bayes’s rules 1 R[1]-162 BB

38 Semantics of Belief networks 1 R[1]-163 PPT

39 Inference in Belief networks 1 R[1]-133 PPT

40 Making simple decisions 1 web PPT

41 Making complex decisions 1 R[1]-133 BB

Total 10

 UNIT- V Learning and Communication

42 Learning from observation 1 R[1]-248 PPT

43 Learning decision trees 1 R[1]-465 BB

44 Ensemble learning 1 R[1]-465 BB

45 Learning general logical descriptions 1 R[1]-255 PPT

46 Computational learning theory 1 R[1]-248 PPT

47 Neural networks 1 T[1]-1087 PPT

48
Applications – Reinforcement learning
 1 T[1]-1087 PPT

49 Passive reinforcement – Active reinforcement 1 T[1]-690 BB

50
Communication as action – Types of communicating

agents – Parsing 1 T[1]-690 PPT

51 DCG – Semantic interpretation. 1 T[1]-752 BB

52 Discussion on Previous University Question Papers

Total 10

 Total Hours 52

TEXT BOOKS

S.NO Title of the book

Year of

publica

tion

1
Stuart J.Russel, Peter Norvig, “Artificial Intelligence A Modern Approach”, Pearson
Education.

2010

REFERNCE BOOKS

S.NO Title of the book

Year of

publica

tion

1
Elaine Rich, Kevin Knight, “Artifical Intelligence", 2nd Edition, Tata McGraw Hill,
2001.

2001

WEBSITES

1. https://www.javatpoint.com/Artificial intelligence-tutorial

2. https://nptel.ac.in/content/syllabus_pdf/106105131.pdf

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

P
ag

el

ARTIFICIAL INTELLIGENCE

UNIT-I PROBLEM

SOLVING

Introduction - Agents - Problem formulation - Uninformed search strategies -

Heuristics - Informed search strategies - Constraint satisfaction

What is artificial intelligence?

 Artificial Intelligence is the branch of computer science concerned with making

computers behave like humans.

 Major AI textbooks define artificial intelligence as "the study and design of intelligent

agents," where an intelligent agent is a system that perceives its environment and

takes actions which maximize its chances of success.

 John McCarthy, who coined the term in 1956, defines it as "the science and

engineering of making intelligent machines, especially intelligent computer

programs."

 The definitions of AI according to some text books are categorized into four
approaches and are summarized in the table below :

Systems that think like humans
"The exciting new effort to make computers

think … machines with minds, in the full and

literal sense."(Haugeland,1985)

Systems that think rationally
"The study of mental faculties through the use of
computer models."

(Charniak and McDermont,1985)

Systems that act like humans
The art of creating machines that performs

functions that require intelligence when

performed by people."(Kurzweil,1990)

Systems that act rationally
"Computational intelligence is the study of the

design of intelligent agents."(Poole et al.,1998)

Applications of Artificial Intelligence:

 Autonomous planning and scheduling:

A hundred million miles from Earth, NASA's Remote Agent program became

the first on-board autonomous planning program to control the scheduling of

operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated

plans from high-level goals specified from the ground, and it monitored the

operation of the spacecraft as the plans were executed-detecting, diagnosing,

and recovering from problems as they occurred.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

P
ag

e2

 Game playing:

IBM's Deep Blue became the first computer program to defeat the world

champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5

in an exhibition match (Goodman and Keene, 1997).

 Autonomous control:

The ALVINN computer vision system was trained to steer a car to keep it

following a lane. It was placed in CMU's NAVLAB computer-controlled minivan

and used to navigate across the United States-for 2850 miles it was in control of

steering the vehicle 98% of the time.

 Diagnosis:

Medical diagnosis programs based on probabilistic analysis have been able

to perform at the level of an expert physician in several areas of medicine.

 Logistics Planning:

During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis

and Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics

planning and scheduling for transportation. This involved up to 50,000 vehicles,

cargo, and people at a time, and had to account for starting points, destinations,

routes, and conflict resolution among all parameters. The AI planning techniques

allowed a plan to be generated in hours that would have taken weeks with older

methods. The Defense Advanced Research Project Agency (DARPA) stated that

this single application more than paid back DARPA's 30-year investment in AI.

 Robotics:

Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia et al.,

1996) is a system that uses computer vision techniques to create a three-

dimensional model of a patient's internal anatomy and then uses robotic control to

guide the insertion of a hip replacement prosthesis.

 Language understanding and problem solving:

PROVERB (Littman et al., 1999) is a computer program that solves crossword

puzzles better than most humans, using constraints on possible word fillers, a

large database of past puzzles, and a variety of information sources including

dictionaries and online databases such as a list of movies and the actors that

appear in them.

AGENTS:

Rationality concept can be used to develop a smallest of design principle for building

successful agents; these systems are reasonably called as Intelligent.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Svcet

P
ag

e3

Agents and environments:

An agent is anything that can be viewed as perceiving its environment through sensors and

SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure.

o A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other

body parts for actuators.

o A robotic agent might have cameras and infrared range finders for sensors and various motors

for actuators.

o A software agent receives keystrokes, file contents, and network packets as sensory inputs

and acts on the environment by displaying on the screen, writing files, and sending network

packets.

Percept

We use the term percept to refer to the agent's perceptual inputs at any given instant.

Percept Sequence

An agent's percept sequence is the complete history of everything the agent has ever

perceived.

Agent function

Mathematically speaking, we say that an agent's behavior is described by the agent function

that maps any given percept sequence to an action.

Agent program

 The agent function for an artificial agent will be implemented by an agent program.
 It is important to keep these two ideas distinct.

 The agent function is an abstract mathematical description;

 the agent program is a concrete implementation, running on the agent architecture.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Svcet

P
ag

e4

 To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world

shown in Figure.

 This particular world has just two locations: squares A and B.

 The vacuum agent perceives which square it is in and whether there is dirt in the

square.

 It can choose to move left, move right, suck up the dirt, or do nothing.

 One very simple agent function is the following:

 if the current square is dirty, then suck, otherwise,

 it move to the other square.

 A partial tabulation of this agent function is shown in Figure.

Agent function

Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

….. …..

Agent program

function Reflex-VACUUM-AGENT ([locations, status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right
elseif location = B then return Left

Good Behavior: The concept of Rationality

 A rational agent is one that does the right thing-conceptually speaking; every entr y

in the table for the agent function is filled out correctly.

 Obviously, doing the right thing is better than doing the wrong thing.

 The right action is the one that will cause the agent to be most successful.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Svcet

P
ag

e
5

Performance measures

 A performance measure embodies the criterion for success of an agent's behavior.

 When an agent is plunked down in an environment, it generates a sequence of actions

according to the percepts it receives.

 This sequence of actions causes the environment to go through a sequence of states.

 If the sequence is desirable, then the agent has performed well.

Rationality

What is rational at any given time depends on four things:

o The performance measure that defines the criterion of success.
o The agent's prior knowledge of the environment.
o The actions that the agent can perform.
o The agent's percept sequence to date.
o This leads to a definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is

expected to maximize its performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent has.

Omniscience, learning, and autonomy

 An omniscient agent knows the actual outcome of its actions and can act

accordingly; but omniscience is impossible in reality.

 Doing actions in order to modify future percepts-sometimes called information
gathering-is an important part of rationality.

 Our definition requires a rational agent not only to gather information, but also to

learn as much as possible from what it perceives.

 To the extent that an agent relies on the prior knowledge of its designer rather than on

its own percepts, we say that the agent lacks autonomy.

 A rational agent should be autonomous-it should learn what it can to compensate for

partial or incorrect prior knowledge.

Task environments

 We must think about task environments, which are essentially the "problems" to which

rational agents are the "solutions."

Specifying the task environment

 The rationality of the simple vacuum-cleaner agent, needs specification of

 the performance measure

 the environment

 the agent's actuators

 Sensors.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Svcet

P
ag

e6

PEAS

 All these are grouped together under the heading of the task environment.

 We call this the PEAS (Performance, Environment, Actuators, Sensors) description.

 In designing an agent, the first step must always be to specify the task environment as

fully as possible.

 The following table shows PEAS description of the task environment for an

automated taxi.

Agent

Type
Performance

Measure
Environments Actuators Sensors

Taxi

driver

Safe: fast,

legal,

comfortable

trip,

maximize

profits

Roads,other

traffic,pedestrians,

customers

Steering,accelerator,

brake,

Signal,horn,display

Cameras,sonar,

Speedometer,GPS,

Odometer,engine

sensors,keyboards,

accelerometer

 The following table shows PEAS description of the task environment for some other

agent type.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Svcet

P
ag

e7

Properties of task environments

o Fully observable vs. partially observable
o Deterministic vs. stochastic
o Episodic vs. sequential
o Static vs. dynamic
o Discrete vs. continuous
o Single agent vs. multiagent

Fully observable vs. partially observable.

 If an agent's sensors give it access to the complete state of the environment at each

point in time, then we say that the task environment is fully observable.

 A task environment is effectively fully observable if the sensors detect all aspects that

are relevant to the choice of action;

 An environment might be partially observable because of noisy and inaccurate

sensors or because parts of the state are simply missing from the sensor data.

Deterministic vs. stochastic.

 If the next state of the environment is completely determined by the current state and

the action executed by the agent, then we say the environment is deterministic;

 Otherwise, it is stochastic.

Episodic vs. sequential

 In an episodic task environment, the agent's experience is divided into atomic

episodes.

 Each episode consists of the agent perceiving and then performing a single action.
Crucially, the next episode does not depend on the actions taken in previous episodes.

 For example, an agent that has to spot defective parts on an assembly line bases each

decision on the current part, regardless of previous decisions;

 In sequential environments, on the other hand, the current decision

Could affect all future decisions.

 Chess and taxi driving are sequential:

Discrete vs. continuous.

 The discrete/continuous distinction can be applied to the state of the environment, to

the way time is handled, and to the percepts and actions of the agent.

 For example, a discrete-state environment such as a chess game has a finite number of

distinct states.

 Chess also has a discrete set of percepts and actions.

 Taxi driving is a continuous- state and continuous-time problem:

 The speed and location of the taxi and of the other vehicles sweep through a range of

continuous values and do so smoothly over time.

 Taxi-driving actions are also continuous (steering angles, etc.)

STUDENTSFOCUS.COM

P
ag

e8

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Single agent vs. multiagent.

 An agent solving a crossword puzzle by itself is clearly in a single-agent

environment,
 Where as an agent playing chess is in a two-agent environment.

 Multiagent is further classified in to two ways

 Competitive multiagent environment

 Cooperative multiagent environment

Agent programs

 The job of Artificial Intelligence is to design the agent program that implements the

agent function mapping percepts to actions

 The agent program will run in an architecture

 An architecture is a computing device with physical sensors and actuators

 Where Agent is combination of Program and Architecture

Agent = Program + Architecture

 An agent program takes the current percept as input while the agent function takes the

entire percept history

 Current percept is taken as input to the agent program because nothing more is
available from the environment

 The following TABLE-DRIVEN_AGENT program is invoked for each new percept
and returns an action each time

Function TABLE-DRIVEN_AGENT (percept) returns an action

static: percepts, a sequence initially empty

table, a table of actions, indexed by percept sequence

append percept to the end of percepts

action LOOKUP(percepts, table)

return action

Drawbacks:

 Table lookup of percept-action pairs defining all possible condition-action rules

necessary to interact in an environment

 Problems
• Too big to generate and to store (Chess has about 10^120 states, for example)

• No knowledge of non-perceptual parts of the current state

• Not adaptive to changes in the environment; requires entire table to be updated

if changes occur

• Looping: Can't make actions conditional

 Take a long time to build the table

 No autonomy

 Even with learning, need a long time to learn the table entries

SVCET

STUDENTSFOCUS.COM

P
ag

e9

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

Some Agent Types

 Table-driven agents
• use a percept sequence/action table in memory to find the next action. They

are implemented by a (large) lookup table.

 Simple reflex agents

• are based on condition-action rules, implemented with an appropriate

production system. They are stateless devices which do not have memory of

past world states.

 Agents with memory
• have internal state, which is used to keep track of past states of the world.

 Agents with goals
• are agents that, in addition to state information, have goal information that

describes desirable situations. Agents of this kind take future events into

consideration.

 Utility-based agents
• base their decisions on classic axiomatic utility theory in order to act

rationally.

Kinds of Agent Programs

 The following are the agent programs,

• Simple reflex agents

• Mode-based reflex agents

• Goal-based reflex agents

• Utility-based agents

Simple Reflex Agent

 The simplest kind of agent is the simple reflex agent.

 These agents select actions on the basis of the current percept, ignoring the rest of the

percept history.

 For example, the vacuum agent whose agent function is tabulated is given below,

 a simple reflex agent, because its decision is based only on the current location and

on whether that contains dirt.

 Select action on the basis of only the current percept.E.g. the vacuum-agent

 Large reduction in possible percept/action situations(next page).

 Implemented through condition-action rules

 If dirty then suck

A Simple Reflex Agent: Schema

 Schematic diagram of a simple reflex agent.

 The following simple reflex agents, acts according to a rule whose condition matches

the current state, as defined by the percept

function SIMPLE-REFLEX-AGENT(percept) returns an action

static: rules, a set of condition-action rules

state INTERPRET-

INPUT(percept) SVCETSTUDENTSFOCUS.COM

P
ag

el
O

Artificial Intelligence CSE/IIIYr/VISem UNIT - I/PROBLEM SOLVING

rule RULE-

MATCH(state, rule)

action RULE-

ACTION[rule] return action

 The agent program for a simple reflex agent in the two-state vacuum environment.

function REFLEX-VACUUM-AGENT ([location, status]) return an action

if status == Dirty then return Suck

else if location == A then return Right

else if location == B then return Left

Characteristics

o Only works if the environment is fully observable.
o Lacking history, easily get stuck in infinite loops
o One solution is to randomize actions

Model-based reflex agents

 The most effective way to handle partial observability is for the agent to keep track of

the part of the world it can't see now.

 That is, the agent should maintain some sort of internal state that depends on the

percept history and thereby reflects at least some of the unobserved aspects of the
current state.

 Updating this internal state information as time goes by requires two kinds of

knowledge to be encoded in the agent program.

 First, we need some information about how the world evolves independently of the

agent

 For example, that an overtaking car generally will be closer behind than it was a

moment ago.

 Second, we need some information about how the agent's own actions affect the

world

SVCET
STUDENTSFOCUS.COM

P
ag

el
l

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 For example, that when the agent turns the steering wheel clockwise, the car turns to

the right or that after driving for five minutes northbound on the freeway one is

usually about five miles north of where one was five minutes ago.

 This knowledge about "how the world working - whether implemented in simple
Boolean circuits or in complete scientific theories-is called a model of the world.

 An agent that uses such a MODEL-BASED model is called a model-based agent.

 Schematic diagram of A model based reflex agent

 Model based reflex agent. It keeps track of the current state of the world using an

internal model. It then chooses an action in the same way as the reflex agent.

function REFLEX-AGENT-WITH-STATE(percept) returns an action

static: rules, a set of condition-action rules

state, a description of the current world state

action, the most recent action.

state VPDATE-STATE(state, action, percept)

rule RVLE-

MATCH(state, rule)

action RVLE-

ACTION[rule] return action

Goal-based agents

 Knowing about the current state of the environment is not always enough to decide
what to do.

 For example, at a road junction, the taxi can turn left, turn right, or go straight on. The

correct decision depends on where the taxi is trying to get to.

 In other words, as well as a current state description, the agent needs some sort of

goal information that describes situations that are desirable.

 For example, being at the passenger's destination.

 The agent program can combine this with information about the results of possible

actions (the same information as was used to update internal state in the reflex agent)

in order to choose actions that achieve the goal.

 Schematic diagram of the goal-based agent's structure.

SVCET
STUDENTSFOCUS.COM

P
ag

el
2

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Utility-based agents

 Goals alone are not really enough to generate high-quality behavior in most

environments.
 For example, there are many action sequences that will get the taxi to its destination

(thereby achieving the goal) but some are quicker, safer, more reliable, or cheaper

than others.

 Goals just provide a crude binary distinction between "happy" and "unhappy" states,
whereas a more general performance measure should allow a comparison of

different world states according to exactly how happy they would make the agent if

they could be achieved. Because "happy" does not sound very scientific, the

customary terminology is to say that if one world state is preferred to another, then it

has higher utility for the agent.
 Schematic diagram of a utility-based agents

 It uses a model of the world, along with a utility function that measures its preferences

among states of the world.

 Then it chooses the action that leads to the best expected utilit y, where expected

utility is computed by averaging over all possible outcome states, weighted by the

probability of the outcome.
 Certain goals can be reached in different ways

• Some are better, have a higher utility

 Vtility function maps a (Sequence of) state(S) onto a real number.

 Improves on goal:

• Selecting between conflicting goals

• Select appropriately between several goals based on likelihood of

Success

SVCET

STUDENTSFOCUS.COM

P
ag

el
3

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Learning Agent

Schematic diagram of Learning Agent

 All agents can improve their performance through learning.

 A learning agent can be divided into four conceptual components, as,

• Learning element

• Performance element

• Critic

• Problem generator

 The most important distinction is between the learning element, which is responsible for

making improvements,

 The performance element, which is responsible for selecting external actions.

 The performance element is what we have previously considered to be the entire agent: it

takes in percepts and decides on actions.

 The learning element uses feedback from the critic on how the agent is doing and
determines how the performance element should be modified to do better in the future.

 The last component of the learning agent is the problem generator.

SVCET
STUDENTSFOCUS.COM

P
ag

el
4

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 It is responsible for suggesting actions that will lead to new and informative

experiences. But if the agent is willing to explore a little, it might discover much better

actions for the long run.

 The problem generator's job is to suggest these exploratory actions. This is what

scientists do when they carry out experiments.

Summary: Intelligent Agents

• An agent perceives and acts in an environment, has an architecture, and is implemented

by an agent program.

• Task environment - PEAS (Performance, Environment, Actuators, Sensors)

• The most challenging environments are inaccessible, nondeterministic, dynamic, and

continuous.

• An ideal agent always chooses the action which maximizes its expected performance,

given its percept sequence so far.

• An agent program maps from percept to action and updates internal state.

- Reflex agents respond immediately to percepts.

• simple reflex agents

• model-based reflex agents

- Goal-based agents act in order to achieve their goal(s).

- Utility-based agents maximize their own utility function.

• All agents can improve their performance through learning.

Problem Formulation

 An important aspect of intelligence is goal-based problem solving.

 The solution of many problems can be described by finding a sequence of actions that

lead to a desirable goal.

 Each action changes the state and the aim is to find the sequence of actions and states

that lead from the initial (start) state to a final (goal) state.

 A well-defined problem can be described by:

 Initial state
 Operator or successor function - for any state x returns s(x), the set of

states reachable from x with one action

 State space - all states reachable from initial by any sequence of actions

 Path - sequence through state space

 Path cost - function that assigns a cost to a path. Cost of a path is the sum

of costs of individual actions along the path

 Goal test - test to determine if at goal state

 What is Search?

 Search is the systematic examination of states to find path from the start/root state to

the goal state.

 The set of possible states, together with operators defining their connectivit y

constitute the search space.

 The output of a search algorithm is a solution, that is, a path from the initial state to a

state that satisfies the goal test.

SVCET
STUDENTSFOCUS.COM

P
ag

el
5

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Problem-solving agents

 A Problem solving agent is a goal-based agent.

 It decides what to do by finding sequence of actions that lead to desirable states.

 The agent can adopt a goal and aim at satisfying it.

 To illustrate the agent's behavior

 For example where our agent is in the city of Arad, which is in Romania. The agent

has to adopt a goal of getting to Bucharest.

 Goal formulation, based on the current situation and the agent's performance

measure, is the first step in problem solving.

 The agent's task is to find out which sequence of actions will get to a goal state.

 Problem formulation is the process of deciding what actions and states to consider

given a goal.

Example: Route finding problem

On holiday in Romania : currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal: be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

 Goal formulation and problem formulation

A problem is defined by four items:

initial state e.g., "at Arad"

successor function S(x) = set of action-state pairs

e.g., S(Arad) = {[Arad -> Zerind;Zerind],….}

goal test, can be

explicit, e.g., x = at Bucharest"

implicit, e.g., NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x; a; y) is the step cost, assumed to be >= 0

A solution is a sequence of actions leading from the initial state

to a goal state.

Search

 An agent with several immediate options of unknown value can decide what to do b y

examining different possible sequences of actions that leads to the states of known

value,and then choosing the best sequence.

 The process of looking for sequences actions from the current state to reach the goal

state is called search.

SVCET

STUDENTSFOCUS.COM

P
ag

el
6

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 The search algorithm takes a problem as input and returns a solution in the form of

action sequence.
 Once a solution is found,the execution phase consists of carrying out the

recommended action.

 The following shows a simple "formulate,search,execute" design for the agent.

 Once solution has been executed, the agent will formulate a new goal.

 It first formulates a goal and a problem,searches for a sequence of actions that would

solve a problem,and executes the actions one at a time.

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

inputs : percept, a percept

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state VPDATE-STATE(state, percept)

if seq is empty then do
goal FORMVLATE-GOAL(state)

problem FORMVLATE-PROBLEM(state, goal)

seq SEARCH(problem)

action FIRST(seq);

seq REST(seq)

return action

 The agent design assumes the Environment is

 Static: The entire process carried out without paying attention to changes that

might be occurring in the environment.

 Observable : The initial state is known and the agent's sensor detects all

aspects that are relevant to the choice of action

 Discrete : With respect to the state of the environment and percepts and

actions so that alternate courses of action can be taken

 Deterministic: The next state of the environment is completely determined b y
the current state and the actions executed by the agent. Solutions to the
problem are single sequence of actions

An agent carries out its plan with eye closed. This is called an open loop system because ignoring the

percepts breaks the loop between the agent and the environment.

Well-defined problems and solutions

A problem can be formally defined by four components:

 The initial state that the agent starts in . The initial state for our agent of

example problem is described by In(Arad)

 A Successor Function returns the possible actions available to the agent.

 Given a state x,SVCCESSOR-FN(x) returns a set of {action,successor}

ordered pairs where each action is one of the legal actions in state x,and each

successor is a state that can be reached from x by applying the action.

SVCET
STUDENTSFOCUS.COM

P
ag

el
7

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 For example, from the state In(Arad),the successor function for the Romania

problem would return

{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }

 State Space: The set of all states reachable from the initial state. The state

space forms a graph in which the nodes are states and the arcs between nodes

are actions.

 A path in the state space is a sequence of states connected by a sequence of

actions.

 The goal test determines whether the given state is a goal state.

 A path cost function assigns numeric cost to each action.

 For the Romania problem the cost of path might be its length in kilo meters.

 The step cost of taking action a to go from state x to state y is denoted b y

c(x,a,y). It is assumed that the step costs are non negative.

 A solution to the problem is a path from the initial state to a goal state.

 An optimal solution has the lowest path cost among all solutions.

A simplified Road Map of part of Romania

Advantages:

 They are easy enough because they can be carried out without further search or
planning

 The choice of a good abstraction thus involves removing as much details as

possible while retaining validity and ensuring that the abstract actions are eas y

to carry out.

SVCET STUDENTSFOCUS.COM

P
ag

el
8

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

EXAMPLE PROBLEMS

 The problem solving approach has been applied to a vast array of task environments.
Some best known problems are summarized below.

 They are distinguished as toy or real-world problems
 A Toy problem is intended to illustrate various problem solving methods.

It can be easily used by different researchers to compare the performance of

algorithms.

 A Real world problem is one whose solutions people actually care about.

TOY PROBLEMS

Vacuum World Example

o States: The agent is in one of two locations.,each of which might or might not contain dirt.
Thus there are 2 x 2

2
= 8 possible world states.

o Initial state: Any state can be designated as initial state.
o Successor function : This generates the legal states that results from trying the three actions

(left, right, suck). The complete state space is shown in figure 2.3

o Goal Test : This tests whether all the squares are clean.
o Path test : Each step costs one ,so that the the path cost is the number of steps in the path.

Vacuum World State Space

The state space for the vacuum world.

Arcs denote actions: L = Left,R = Right,S = Suck

8-puzzle:

 An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank
space.

 A tile adjacent to the blank space can slide into the space. The object is to

reach the specific goal state ,as shown in figure

SVCET STUDENTSFOCUS.COM

P
ag

el
9

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Example: The 8-puzzle

A typical instance of 8-puzzle.

The problem formulation is as follows :

o States : A state description specifies the location of each of the eight tiles and the

blank in one of the nine squares.

o Initial state : Any state can be designated as the initial state. It can be noted that any

given goal can be reached from exactly half of the possible initial states.

o Successor function : This generates the legal states that result from trying the four

actions (blank moves Left,Right,Vp or down).

o Goal Test : This checks whether the state matches the goal configuration shown in

figure 2.4.(Other goal configurations are possible)

o Path cost: Each step costs 1,so the path cost is the number of steps in the path.
o The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as

test problems for new search algorithms in AI.

o This general class is known as NP-complete.
o The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved.
o The 15 puzzle (4 x 4 board) has around 1.3 trillion states, an the random instances

can be solved optimally in few milli seconds by the best search algorithms.

o The 24-puzzle (on a 5 x 5 board) has around 10
25

states ,and random instances are still

quite difficult to solve optimally with current machines and algorithms.

8-queens problem

 The goal of 8-queens problem is to place 8 queens on the chessboard such that no

queen attacks any other. (A queen attacks any piece in the same row, column or

diagonal).

 The following figure shows an attempted solution that fails: the queen in the right

most column is attacked by the queen at the top left.

 An Incremental formulation involves operators that augments the state

description,starting with an empty state.for 8-queens problem,this means each action

adds a queen to the state.

 A complete-state formulation starts with all 8 queens on the board and move them

around.

In either case the path cost is of no interest because only the final state counts.

SVCET

STUDENTSFOCUS.COM

P
ag

e2
0

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

8-queens problem

 The first incremental formulation one might try is the following :

o States : Any arrangement of 0 to 8 queens on board is a state.
o Initial state : No queen on the board.
o Successor function : Add a queen to any empty square.
o Goal Test : 8 queens are on the board,none attacked.

 In this formulation, we have 64.63…57 = 3 x 10
14

possible sequences to investigate.

 A better formulation would prohibit placing a queen in any square that is alread y

attacked. :

o States : Arrangements of n queens (0 <= n < = 8) ,one per column in the

left most columns ,with no queen attacking another are states.

o Successor function : Add a queen to any square in the left most empty

column such that it is not attacked by any other queen.

 This formulation reduces the 8-queen state space from 3 x 10

14
to just 2057,and

solutions are easy to find.

 For the 100 queens the initial formulation has roughly 10
400

states whereas the
improved formulation has about 10

52
states.

 This is a huge reduction, but the improved state space is still too big for the algorithms

to handle.

REAL WORLD PROBLEMS

 A real world problem is one whose solutions people actually care about.

 They tend not to have a single agreed upon description, but attempt is made to give

general flavor of their formulation,

 The following are the some real world problems,

o Route Finding Problem
o Touring Problems
o Travelling Salesman Problem
o Robot Navigation

SVCET

STUDENTSFOCUS.COM

P
ag

e2
1

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

ROUTE-FINDING PROBLEM

 Route-finding problem is defined in terms of specified locations and transitions

along links between them.

 Route-finding algorithms are used in a variety of applications, such as routing in

computer networks, military operations planning, and air line travel planning

systems.

AIRLINE TRAVEL PROBLEM

The airline travel problem is specifies as follows :

o States : Each is represented by a location(e.g.,an airport) and the current time.
o Initial state : This is specified by the problem.
o Successor function : This returns the states resulting from taking any scheduled

flight(further specified by seat class and location),leaving later than the current
time plus the within-airport transit time,from the current airport to another.

o Goal Test : Are we at the destination by some prespecified time?
o Path cost : This depends upon the monetary cost,waiting time,flight time,customs

and immigration procedures,seat quality,time of dat,type of air plane,frequent-flyer
mileage awards, and so on.

TOURING PROBLEMS

 Touring problems are closely related to route-finding problems,but with an

important difference.

 Consider for example, the problem, "Visit every city at least once" as shown in
Romania map.

 As with route-finding the actions correspond to trips between adjacent cities. The
state space, however,is quite different.

 Initial state would be "In Bucharest; visited{Bucharest}".

 Intermediate state would be "In Vaslui; visited

{Bucharest,Vrziceni,Vaslui}".

 Goal test would check whether the agent is in Bucharest and all 20

cities have been visited.

THE TRAVELLING SALESPERSON PROBLEM (TSP)

 TSP is a touring problem in which each city must be visited

exactly once.

 The aim is to find the shortest tour. The problem is known to be

NP-hard.

 Enormous efforts have been expended to improve the

capabilities of TSP algorithms.
 These algorithms are also used in tasks such as planning

movements of automatic circuit-board drills and of stocking machines on

shop floors.

SVCET

STUDENTSFOCUS.COM

P
ag

e2
2

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

VLSI layout

A VLSI layout problem requires positioning millions of components and connections on

a chip to minimize area ,minimize circuit delays,minimize stray capacitances,and

maximize manufacturing yield. The layout problem is split into two parts : cell layout

and channel routing.

ROBOT navigation

ROBOT navigation is a generalization of the route-finding problem. Rather than a

discrete set of routes,a robot can move in a continuous space with an infinite set of

possible actions and states. For a circular Robot moving on a flat surface,the space is

essentially two-dimensional.

When the robot has arms and legs or wheels that also must be controlled,the search space

becomes multi-dimensional. Advanced techniques are required to make the search space

finite.

AUTOMATIC ASSEMBLY SEQUENCING

The example includes assembly of intricate objects such as electric motors. The aim in

assembly problems is to find the order in which to assemble the parts of some objects. If the

wrong order is choosen, there will be no way to add some part later without undoing somework

already done.

Another important assembly problem is protein design, in which the goal is to find a

sequence of

Amino acids that will be fold into a three-dimensional protein with the right properties to

cure some disease.

INTERNET SEARCHING

In recent years there has been increased demand for software robots that perform Internet

searching, looking for answers to questions, for related information, or for shopping deals.

The searching techniques consider internet as a graph of nodes (pages) connected by

links.

MEASURING PROBLEM-SOLVING PERFORMANCE

 The output of problem-solving algorithm is either failure or a solution.

(Some algorithms might struck in an infinite loop and never return an

output.)

 The algorithm's performance can be measured in four ways :

o Completeness: Is the algorithm guaranteed to find a solution when

there is one?

o Optinality : Does the strategy find the optimal solution
o Time complexity: How long does it take to find a solution?
o Space complexity: How much memory is needed to perform the

search?

SVCET
STUDENTSFOCUS.COM

P
ag

e2
3

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

UNINFORMED SEARCH STRATGES

 Uninformed Search Strategies have no additional information about states

beyond that provided in the problem definition.

 Strategies that know whether one non goal state is "more promising" than

another are called Informed search or heuristic search strategies.

There are five uninformed search strategies as given below.

o Breadth-first search

o Vniform-cost search

o Depth-first search

o Depth-limited search
o Iterative deepening search
o Bidirectional Search

Breadth-first search

 Breadth-first search is a simple strategy in which the root node is

expanded first, then all successors of the root node are expanded next,

then their successors, and so on.

In general, all the nodes are expanded at a given depth in the search tree

before any nodes at the next level are expanded.

 Breath-first-search is implemented by calling TREE-SEARCH with an

empty fringe that is a first-in-first-out(FIFO) queue, assuring that the

nodes that are visited first will be expanded first.

 In otherwards, calling TREE-SEARCH (problem,FIFO-QVEVE()) results

in breadth-first-search.

 The FIFO queue puts all newly generated successors at the end of the

queue, which means that Shallow nodes are expanded before deeper

nodes.

Breadth-first search on a simple binary tree. At each stage ,the node to be expanded next is indicated

by a marker.

SVCET
STUDENTSFOCUS.COM

P
ag

e2
4

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Properties of breadth-first-search

Time and memory requirements for breadth-first-search.

Time complexity for BFS

 Assume every state has b successors.

 The root of the search tree generates b nodes at the first level,each of which

generates b more nodes,for a total of b
2

at the second level.
 Each of these generates b more nodes,yielding b

3
nodes at the third

level,and so on.

 Now suppose,that the solution is at depth d.

 In the worst case,we would expand all but the last node at level d,generating
b

d+1
- b nodes at level d+1.

 Then the total number of nodes generated is

b + b
2
+ b

3
+ …+ b

d
+ (bd

+1
+ b) = O(b

d+1).

 Every node that is generated must remain in memory,because it is either

part of the fringe or is an ancestor of a fringe node.

 The space compleity is,therefore ,the same as the time complexity

SVCET
STUDENTSFOCUS.COM

P
ag

e2
5

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

UNIFORM-COST SEARCH
 Instead of expanding the shallowest node,uniform-cost search expands the

node n with the lowest path cost.

 uniform-cost search does not care about the number of steps a path has,but

only about their total cost.

Properties of Uniform-cost-search:

DEPTH-FIRST-SEARCH

 Depth-first-search always expands the deepest node in the current fringe of

the search tree.

 The progress of the search is illustrated in figure.

 The search proceeds immediately to the deepest level of the search

tree,where the nodes have no successors.

 As those nodes are expanded,they are dropped from the fringe,

 so then the search "backs up" to the next shallowest node that still has
unexplored successors.

 This strategy can be implemented by TREE-SEARCH with a last-in-first-
out (LIFO) queue,also known as a stack.

 Depth-first-search has very modest memory requirements.

 It needs to store only a single path from the root to a leaf node,along with
the remaining unexpanded sibling nodes for each node on the path.

 Once the node has been expanded,it can be removed from the memory,as
soon as its descendants have been fully explored.

 For a state space with a branching factor b and maximum depth m,depth-
first-search requires storage of only bm + 1 nodes.

SVCET
STUDENTSFOCUS.COM

P
ag

e2
6

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Depth-first-search on a binary tree. Nodes that have been expanded and have no descendants in the

fringe can be removed from the memory; these are shown in black. Nodes at depth 3 are assumed

to have no successors and M is the only goal node.

Drawback of Depth-first-search

The drawback of depth-first-search is that it can make a wrong choice and get

stuck going down very long(or even infinite) path when a different choice would lead to

solution near the root of the search tree.

For example, depth-first-search will explore the entire left subtree even if

node C is a goal node.

BACKTRACKING SEARCH

A variant of depth-first search called backtracking search uses less memor y

and only one successor is generated at a time rather than all successors.; Only O(m) memor y

is needed rather than O(b
m
)

SVCET STUDENTSFOCUS.COM

P
ag

e2
7

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

DEPTH-LIMITED-SEARCH

 The problem of unbounded trees can be alleviated by supplying depth-first-search with a

pre-determined depth limit l.

 That is,nodes at depth l are treated as if they have no successors.

 This approach is called depth-limited-search.

 The depth limit solves the infinite path problem.

 Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(b
l
) and

its space compleiy is O(bl).

 Depth-first-search can be viewed as a special case of depth-limited search with l = oo

 Sometimes,depth limits can be based on knowledge of the problem.

 For,example,on the map of Romania there are 20 cities.

 Therefore,we know that if there is a solution.,it must be of length 19 at the longest,So l = 10

is a possible choice.

 However,it oocan be shown that any city can be reached from any other city in at most 9
steps.

 This number known as the diameter of the state space,gives us a better depth limit.

 Depth-limited-search can be implemented as a simple modification to the general tree-
search algorithm or to the recursive depth-first-search algorithm.

 The pseudocode for recursive depth-limited-search is shown.

 It can be noted that the above algorithm can terminate with two kinds of failure : the

standard failure value indicates no solution; the cutoff value indicates no solution within the

depth limit.

 Depth-limited search = depth-first search with depth limit l, returns cut off if any path is

cut off by depth limit

 Recursive implementation of Depth-limited-search:

function Depth-Limited-Search(problem, limit) returns a solution/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns solution/fail/cutoff

cutoff-occurred? false

if Goal-Test(problem,State[node]) then return Solution(node)

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node, problem) do

result Recursive-DLS(successor, problem, limit)

if result = cutoff then cutoff_occurred? true

else if result not = failure then return result

if cutoff_occurred? then return cutoff else return failure

ITERATIVE DEEPENING DEPTH-FIRST SEARCH

 Iterative deepening search (or iterative-deepening-depth-first-search) is a general

strategy often used in combination with depth-first-search,that finds the better depth

limit.

 It does this by gradually increasing the limit - first 0,then 1,then 2, and so on - until a

goal is found.

 This will occur when the depth limit reaches d,the depth of the shallowest goal node.

SVCET
STUDENTSFOCUS.COM

P
ag

e2
8

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 Iterative deepening combines the benefits of depth-first and breadth-first-search

 Like depth-first-search,its memory requirements are modest;O(bd) to be precise.

 Like Breadth-first-search,it is complete when the branching factor is finite and
optimal when the path cost is a non decreasing function of the depth of the node.

 The following figure shows the four iterations of ITERATIVE-

DEEPENING_SEARCH on a binary search tree,where the solution is found on the

fourth iteration.

The iterative deepening search algorithm, which repeatedly applies depth-limited-search with

increasing limits. It terminates when a solution is found or if the depth limited search returns failure,

meaning that no solution exists.

Four iterations of iterative deepening search on a binary tree

SVCET STUDENTSFOCUS.COM

P
ag

e2
9

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Iterative deepening search

S
S S

Limit = 0

A D

Limit = 1

S S S

A D A D

B D A E
Limit = 2

 Iterative search is not as wasteful as it might seem

Properties of iterative deepening search

 In general,iterative deepening is the prefered uninformed search method when there is
a large search space and the depth of solution is not known.

SVCET

STUDENTSFOCUS.COM

P
ag

e3
0

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Bidirectional Search

 The idea behind bidirectional search is to run two simultaneous searches

 one forward from the initial state and

 other backward from the goal,

 It stops when the two searches meet in the middle.

 The motivation is that b
d/2

+ b
d/2

much less than b
d/

A schematic view of a bidirectional search that is about to succeed, when a Branch from

the Start node meets a Branch from the goal node.

Comparing Uninformed Search Strategies

The following table compares search strategies in terms of the four evaluation criteria.

Evaluation of search strategies,b is the branching factor; d is the depth of the shallowest
solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are

as follows:
a

complete if b is finite;
b

complete if step costs >= E for positive E;
c
optimal if step

costs are all identical;
d

if both directions use breadth-first search.

INFORMED SEARCH AND EXPLORATION

Informed (Heuristic) Search Strategies

 Informed search strategy is one that uses problem-specific knowledge beyond the
definition of the problem itself.

 It can find solutions more efficiently than uninformed strategy.

SVCET STUDENTSFOCUS.COM

P
ag

e3
1

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Best-first search

 Best-first search is an instance of general TREE-SEARCH or GRAP H-SEARCH

algorithm in which a node is selected for expansion based on an evaluation function

f(n).

 The node with lowest evaluation is selected for expansion,because the evaluation

measures the distance to the goal.

 This can be implemented using a priority-queue,a data structure that will maintain the

fringe in ascending order of f-values.

Heuristic functions

 A heuristic function or simply a heuristic is a function that ranks alternatives in

various search algorithms at each branching step basing on an available information in

order to make a decision which branch is to be followed during a search.

 The key component of Best-first search algorithm is a heuristic function,denoted by

h(n):

h(n) = estimated cost of the cheapest path from node n to a goal node.

 For example,in Romania, one might estimate the cost of the cheapest path from Arad to

Bucharest via a straight-line distance from Arad to Bucharest

 Heuristic function are the most common form in which additional knowledge is
imparted to the search algorithm.

Greedy Best-first search

 Greedy best-first search tries to expand the node that is closest to the goal,on the

grounds that this is likely to a solution quickly.

 It evaluates the nodes by using the heuristic function f(n) = h(n).

 Taking the example of Route-finding problems in Romania, the goal is to reach

Bucharest starting from the city Arad.

 We need to know the straight-line distances to Bucharest from various cities.

 For example, the initial state is In(Arad) ,and the straight line distance heuristic

hSLD(In(Arad)) is found to be 366.
 Vsing the straight-line distance heuristic hSLD ,the goal state can be reached faster.

Values of hSLD - straight line distances to Bucharest

SVCET STUDENTSFOCUS.COM

P
ag

e3
2

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Strategies in greedy best-first search for Bucharest using straight-line distance heuristic hSLD. Nodes

are labeled with their h-values.

 The above figure shows the progress of greedy best-first search using hSLD to find a path from

Arad to Bucharest.

 The first node to be expanded from Arad will be Sibiu,because it is closer to Bucharest than

either Zerind or Timisoara.

 The next node to be expanded will be Fagaras,because it is clo sest.

 Fagaras in turn generates Bucharest,which is the goal.

SVCET STUDENTSFOCUS.COM

P
ag

e3
3

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Properties of greedy search

o Complete?? No-can get stuck in loops, e.g.,

Iasi ! Neamt ! Iasi ! Neamt !
Complete in finite space with repeated-state checking

o Time?? O(bm), but a good heuristic can give dramatic improvement
o Space?? O(bm)-keeps all nodes in memory
o Optimal?? No

 Greedy best-first search is not optimal,and it is incomplete.

 The worst-case time and space complexity is O(b
m
),where m is the maximum depth of

the search space.

A
*

Search

 A
*

Search is the most widely used form of best-first search. The evaluation function

f(n) is obtained by combining

(1) g(n) = the cost to reach the node,and
(2) h(n) = the cost to get from the node to the goal :

f(n) = g(n) + h(n).

 A
*

Search is both optimal and complete. A
*
is optimal if h(n) is an admissible heuristic.

The obvious example of admissible heuristic is the straight-line distance hSLD.

 It cannot be an overestimate.

 A
*
Search is optimal if h(n) is an admissible heuristic - that is,provided that h(n) never

overestimates the cost to reach the goal.

 An obvious example of an admissible heuristic is the straight-line distance hSLD that we

used in getting to Bucharest.

 The progress of an A
*
tree search for Bucharest is shown in above figure.

 The values of 'g ' are computed from the step costs shown in the Romania,Also the
values of hSLD are given in Figure Route Map of Romania.

Recursive Best-first Search (RBFS)

 Recursive best-first search is a simple recursive algorithm that attempts to mimic the

operation of standard best-first search,but using only linear space.

 The algorithm is shown in below figure.

 Its structure is similar to that of recursive depth-first search,but rather than continuing

indefinitely down the current path,it keeps track of the f-value of the best alternative path

available from any ancestor of the current node.

 If the current node exceeds this limit,the recursion unwinds back to the alternative path.
As the recursion unwinds,RBFS replaces the f-value of each node along the path with

the best f-value of its children.

SVCET

STUDENTSFOCUS.COM

P
ag

e3
4

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Stages in A
*
Search for Bucharest. Nodes are labeled with f = g + h . The h-values are the straight-

line distances to Bucharest taken from figure Route map of Romania

SVCET STUDENTSFOCUS.COM

P
ag

e3
5

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure

return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-

cost limit

if GOAL-TEST[problem](STATE[node]) then return node

successors EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

f [s] max(g(s) + h(s), f [node])

repeat

best the lowest f-value node in successors

if f [best] > f_limit then return failure, f [best]

alternative the second lowest f-value among successors

result, f [best] RBFS(problem, best, min(f_limit, alternative))

if result failure then return result

The algorithm for recursive best-first search

SVCET STUDENTSFOCUS.COM

P
ag

e3
6

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each
recursive call is shown on top of each current node.

 (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value

that is worse than the best alternative path (Fagaras).

 (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up
to Rimnicu Vilcea;then Fagaras is expanded,revealing a best leaf value of 450.

 (c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed

upto Fagaras; then Rimni Vicea is expanded.

 This time because the best alternative path(through Timisoara) costs atleast 447,the

expansion continues to Bucharest

SVCET STUDENTSFOCUS.COM

P
ag

e3
7

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

RBFS Evaluation:

 RBFS is a bit more efficient than IDA*

- Still excessive node generation (mind changes)

 Like A*, optimal if h(n) is admissible

 Space complexity is O(bd).

- IDA* retains only one single number (the current f-cost limit)

 Time complexity difficult to characterize

- Depends on accuracy if h(n) and how often best path changes.

 IDA* en RBFS suffer from too little memory.

Heuristic Functions

 A heuristic function or simply a heuristic is a function that ranks alternatives in various

search algorithms at each branching step basing on an available information in order to

make a decision which branch is to be followed during a search

A typical instance of the 8-puzzle.

 The solution is 26 steps long.

The 8-puzzle

 The 8-puzzle is an example of Heuristic search problem.

 The object of the puzzle is to slide the tiles horizontally or vertically into the empty space

until the configuration matches the goal configuration

 The average cost for a randomly generated 8-puzzle instance is about 22 steps.

 The branching factor is about 3.(When the empty tile is in the middle,there are four

possible moves;when it is in the corner there are two;and when it is along an edge there

are three).

 This means that an exhaustive search to depth 22 would look at about 3
22

approximately =

3.1 X 10
10

states.

 By keeping track of repeated states, we could cut this down by a factor of about 170, 000,

because there are only 9!/2 = 181,440 distinct states that are reachable.

 This is a manageable number, but the corresponding number for the 15-puzzle is roughly

10
13

.

SVCET STUDENTSFOCUS.COM

P
ag

e3
8

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 If we want to find the shortest solutions by using A
*
,we need a heuristic function that

never overestimates the number of steps to the goal.

 The two commonly used heuristic functions for the 15-puzzle are :
(1) h1 = the number of misplaced tiles.

 In the above figure all of the eight tiles are out of position, so the start state would have
h1 = 8. h1 is an admissible heuristic.

(2) h2 = the sum of the distances of the tiles from their goal positions. This is
called the city block distance or Manhattan distance.

h2 is admissible ,because all any move can do is move one tile one step closer to the

goal.
 Tiles 1 to 8 in start state give a Manhattan distance of

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

 Neither of these overestimates the true solution cost, which is 26.

The Effective Branching factor

 One way to characterize the quality of a heuristic is the effective branching factor b*.

If the total number of nodes generated by A* for a particular problem is N,and the

solution depth is d,then b
*

is the branching factor that a uniform tree of depth d would
have to have in order to contain N+1 nodes. Thus,

N + 1 = 1 + b
*
+ (b

*
)

2
+…+(b

*
)

d

 For example,if A
*

finds a solution at depth 5 using 52 nodes,then effective branching

factor is 1.92.

 A well designed heuristic would have a value of b
*

close to 1,allowing failru large
problems to be solved.

 To test the heuristic functions h1 and h2,1200 random problems were generated with
solution lengths from 2 to 24 and solved them with iterative deepening search and with

A
*

search using both h1 and h2.

 The following table gives the average number of nodes expanded by each strategy and

the effective branching factor.

 The results suggest that h2 is better than h1,and is far better than using iterative deepening

search.

 For a solution length of 14,A
*

with h2 is 30,000 times more efficient than uninformed
iterative deepening search.

SVCET

STUDENTSFOCUS.COM

P
ag

e3
9

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Comparison of search costs and effective branching factors for the ITERATIVE-DEEPENING-

SEARCH and A
*

Algorithms with h1,and h2. Data are average over 100 instances of the 8-puzzle,for
various solution lengths.

Inventing admissible heuristic functions

Relaxed problems

o A problem with fewer restrictions on the actions is called a relaxed problem
o The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original

problem
o If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then hi(n) gives the

shortest solution
o If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the

shortest solution

CONSTRAINT SATISFACTION PROBLEMS (CSP)

 A Constraint Satisfaction Problem (or CSP) is defined by a

 set of variables X1, X2….Xn, and a

 set of constraints C1,C2,…,Cm.
 Each variable Xi has a nonempty domain D,of possible values.
 Each constraint Ci involves some subset of variables and specifies the

allowable combinations of values for that subset.

 A State of the problem is defined by an assignment of values to some or all of the

variables,{Xi = vi,Xj = vj,…}.

 An assignment that does not violate any constraints is called a consistent or legal

assignment.

 A complete assignment is one in which every variable is mentioned, and a solution to a CSP

is a complete assignment that satisfies all the constraints.

SVCET

STUDENTSFOCUS.COM

P
ag

e4
0

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 Some CSPs also require a solution that maximizes an objective function.

 For Example for Constraint Satisfaction Problem :

 The following figure shows the map of Australia showing each of its states and territories.

 We are given the task of coloring each region either red,green,or blue in such a way that the

neighboring regions have the same color.

 To formulate this as CSP ,we define the variable to be the regions :WA,NT,Q,NSW,V,SA,

and T.

 The domain of each variable is the set {red,green,blue}.

 The constraints require neighboring regions to have distinct colors;

 for example, the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

 The constraint can also be represented more succinctly as the inequality WA not =

NT,provided the constraint satisfaction algorithm has some way to evaluate such

expressions.)

 There are many possible solutions such as

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}.

Principle states and territories of Australia. Coloring this map can be viewed as aconstraint

satisfaction problem. The goal is to assign colors to each region so that no neighboring regions have

the same color.

 It is helpful to visualize a CSP as a constraint graph,as shown in the following figure.

 The nodes of the graph corresponds to variables of the problem and the arcs correspond to

constraints.

The map coloring problem represented as a constraint graph.

SVCET STUDENTSFOCUS.COM

P
ag

e4
1

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

 CSP can be viewed as a standard search problem as follows :

 Initial state : the empty assignment {},in which all variables are unassigned.

 Successor function : a value can be assigned to any unassigned

variable,provided that it does not conflict with previously assigned variables.

 Goal test : the current assignment is complete.

 Path cost : a constant cost(E.g.,1) for every step.

 Every solution must be a complete assignment and therefore appears at depth n if there are n

variables.

 Depth first search algorithms are popular for CSPs

Varieties of CSPs

(i) Discrete variables

Finite domains

 The simplest kind of CSP involves variables that are discrete and have finite domains.

 Map coloring problems are of this kind.

 The 8-queens problem can also be viewed as finite-domain

 CSP,where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and

each variable has the domain {1,2,3,4,5,6,7,8}.

 If the maximum domain size of any variable in a CSP is d,then the number of possible
complete assignments is O(d

n
) - that is,exponential in the number of variables.

 Finite domain CSPs include Boolean CSPs,whose variables can be either true or false.

Infinite domains

 Discrete variables can also have infinite domains - for example,the set of integers or the set

of strings.

 With infinite domains,it is no longer possible to describe constraints by enumerating all

allowed combination of values. Instead a constraint language of algebric inequalities such as

Startjob1 + 5 <= Startjob3.

(ii) CSPs with continuous domains

 CSPs with continuous domains are very common in real world.

 For example ,in operation research field,the scheduling of experiments on the Hubble

Telescope requires very precise timing of observations; the start and finish of each

observation and maneuver are continuous-valued variables that must obey a variety of

astronomical,precedence and power constraints.

 The best known category of continuous-domain CSPs is that of linear programming

problems,where the constraints must be linear inequalities forming a convex region.

 Linear programming problems can be solved in time polynomial in the number of variables.

SVCET STUDENTSFOCUS.COM

P
ag

e4
2

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Varieties of constraints :

(i) Unary constraints involve a single variable.

Example: SA # green

(ii) Binary constraints involve pairs of variables.

Example: SA # WA

(iii) Higher order constraints involve 3 or more variables.

Example: cryptarithmetic puzzles.

(iv) Absolute constraints are the constraints, which rules out a potential solution when they are

violated

(v) Preference constraints are the constraints indicating which solutions are preferred

Example: Vniversity Time Tabling Problem

 Cryptarithmetic problem.

 Each letter stands for a distinct digit;the aim is to find a substitution of digits for letters such

that the resulting sum is arithmetically correct,with the added restriction that no leading zeros

are allowed.

 The constraint hypergraph for the cryptarithmetic problem,showint the Alldiff constraint as

well as the column addition constraints.

 Each constraint is a square box connected to the variables it contains.

SVCET STUDENTSFOCUS.COM

P
ag

e4
3

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Backtracking Search for CSPs

 The term backtracking search is used for depth-first search that chooses values for one

variable at a time and backtracks when a variable has no legal values left to assign.

 The following algorithm shows the Backtracking Search for CSP

A simple backtracking algorithm for constraint satisfaction problem. The algorithm is modeled

on the recursive depth-first search

Part of search tree generated by simple backtracking for the map coloring problem.

Propagating information through constraints

 So far our search algorithm considers the constraints on a variable only at the time that the
Variable is chosen by SELECT-VNASSIGNED-VARIABLE.

 But by looking at some of the constraints earlier in the search, or even before the search has
started, we can drastically reduce the search space.

SVCET STUDENTSFOCUS.COM

P
ag

e4
4

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Forward checking

 One way to make better use of constraints during search is called forward checking.

 Whenever a variable X is assigned, the forward checking process looks at each unas signed

variable Y that is connected to X by a constraint and deletes from Y 's domain any value that

is inconsistent with the value chosen for X.

 The following figure shows the progress of a map-coloring search with forward checking.

Constraint propagation

 Although forward checking detects many inconsistencies, it does not detect all of them.

 Constraint propagation is the general term for propagating the implications of a constraint

on one variable onto other variables.

Arc Consistency

SVCET STUDENTSFOCUS.COM

P
ag

e4
5

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

K-Consistency

Local Search for CSPs

The Structure of Problems

Problem Structure

SVCET STUDENTSFOCUS.COM

P
ag

e4
6

Artificial Intelligence CSE/IIIYr/VISem VNIT - I/PROBLEM SOLVING

Independent Sub problems

Tree-Structured CSPs

**

FIRST UNIT-I PROBLEM SOLVING FINISHED

**

SVCET STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SVCET

P
ag

e
1

ARTIFICIAL INTELLIGENCE

UNIT-II LOGICAL

REASONING

Logical Agents – propositional logic – inferences – first-order logic – inferences in
first-order logic – forward chaining- backward chaining – unification – resolution

2.0 Logic:

 A knowledge representation language in which syntax and semantics are defined

correctly is known as logic.

 A formal language to represent the knowledge in which reasoning is carried out to

achieve the goal state.

 Logics consists of the following two representations in sequence,

 A formal system is used to describe the state of the world

 Syntax “ Which describes how to make sentences”

 Semantics “ Which describes the meaning of the sentences”

 The proof theory “a set of rule for deducing the entailments of a set of

sentences.

 We will represent the sentences using two different logics, They are,

 Propositional Logic (or) Boolean logic

 Predicate logic (or) First order logic

2.1 Logical Agents:

 The Logical agent has to perform the following task using logic representation. The

tasks are,

 To know the current state of the world

 How to infer the unseen properties of the world

 New changes in the environment

 Goal of the agent

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SVCET

P
ag

e
2

 How to perform actions depends on circumstances

2.2 Propositional Logic:

 Each fact is represented by one symbol.

 Proposition symbols can be connected with Boolean connectives, to give more

complex meaning. Connectives ,

o Λ Logical Conjunction
o V Logical disjunction
o ¬ Negation
o ⇔ Material Equivalence or Biconditional

o ⇒ Material Implication or conditional

 Simple statements are implemented
 The Symbols of propositional logic are the logical constants, (True and False)

 For Example: - P, Q

Connectives

Λ (and) ----- Example: - P Λ Q

V (or) ----- Example: - P V Q
⇒ (implies) ----- Example: - (P Λ Q) ⇒ R

⇔ (equivalent) ----- Example: - (P Λ Q) ⇔ (Q Λ P)

¬ (not) ----- Example: - ¬ P

 A BNF (Backus-Naur Form) grammer of sentence in propositional logic

Sentence ---------> Atomic sentence | complex sentence

Atomic sentence ---------> True | False | P | Q | R |

Complex sentence ---------> (sentence) | sentence connective sentence |

¬ Sentence
Connective ---------> Λ | V | ⇒ | ⇔

 Order of precedence (from highest to lowest) : ¬ , Λ , V , ⇒ and ⇔

 Example : - ¬P VQ ΛR ⇒ S is equivalent to ((¬P)V(Q Λ R)) ⇒ S

 The following truth table shows the five logical connectives

P Q ¬ P P Λ Q P V Q P ⇒ Q P ⇔ Q

False False True False False True True

False True True False True True False

True False False False True False False

True True False True True True True

 These truth table can be used to define the validity of a sentence.

 If the sentence is true in every row (i.e. for different types of logical constants) then

the sentence is a valid sentence.

 For Example: - ((P V H) Λ¬H) ⇒ P Check whether the given sentence is a valid

sentence or not.
P H P V H (P V H) Λ¬H ((P V H) Λ¬H) ⇒ P

False False False False True

False True True False True

True False True True True

True True True False True

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SVCET

P
ag

e
3

 The given sentence is ((P V H) Λ¬H) ⇒ P valid sentence, because the sentence is

TRUE in every row for different types of logical statements.

2.3 Inference Rules for Propositional logic:

 The propositional logic has seven inference rules.

 Inference means conclusion reached by reasoning from data or premises; speculation.

 A procedure which combines known facts to produce ("infer") new facts.

 Logical inference is used to create new sentences that logically follow from a given

set of predicate calculus sentences (KB).

 An inference rule is sound if every sentence X produced by an inference rule

operating on a KB logically follows from the KB. (That is, the inference rule does not

create any contradictions)

 An inference rule is complete if it is able to produce every expression that logically

follows from (is entailed by) the KB. (Note the analogy to complete search

algorithms.)

 Here are some examples of sound rules of inference

A rule is sound if its conclusion is true whenever the premise is true

Rule Premise Conclusion

Modus Ponens A, A B B

And Introduction A, B A B

And Elimination A B A B

Or Introduction A, B A

Double Negation A A

Unit Resolution A B, B A

Resolution A B, B C A C

2.4 An Agent for the Wumpus world – Propositional logic
 We will discuss the knowledge base representation and a method to find the wumpus

using propositional logic representation.

 From the following figure assume that the agent has reached the square (1,2)

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SVCET

P
ag

e
4

 The Knowledge Base: The agent percepts are converted into sentences and entered

into the knowledge base, with some valid sentences that are entailed by the percept

sentences

 From the above figure we can perceive the following percept sentences and it is added

to the knowledge base.

 S1, 1 B1, 1 ----- for the square (1, 1)

 S2, 1 B2, 1 ----- for the square (2, 1)

S1, 2 B1, 2 ----- for the square (1, 2)

S1, 2 ----- There is a stench in (1, 2)

 B1, 2 ----- There is a breeze in (1, 2)

 S2, 1 ----- There is a stench in (2, 1)
B2, 1 ----- There is a breeze in (2, 1)

 S1, 1 ----- There is a stench in (1, 1)

 B1, 1 ----- There is a breeze in (1, 1)

 The rule of three squares,

 R1 :- S1, 1 ⇒ W1 1 W1 2 W2 1

 R2:- S2, 1 ⇒ W1 1 W2 2 W2 1 W3 1

 R3:- S1, 2 ⇒ W1 1 W1 2 W2 2 W1 3

 R4:- S1, 2 ⇒ W1 3 W1 2 W2 2 W1 1

 Finding the wumpus as, We can prove that the Wumpus is in (1, 3) using the four
rules given.

o Apply Modus Ponens with S1 1 and R1:

 W1 1 W1 2 W2 1

o Apply And-Elimination to this, yielding three sentences:

 W1 1, W1 2, W2 1

o Apply Modus Ponens to S21 and R2, then apply And-elimination:

 W2 2, W2 1, W3 1

o Apply Modus Ponens to S12 and R4 to obtain:
 W1 3 W1 2 W2 2 W1 1

o Apply Unit resolution on (W1 3 W1 2 W2 2 W1 1) and W1 1:

 W1 3 W1 2 W2 2

o Apply Unit Resolution with (W1 3 W1 2 W2 2) and W2 2:

 W1 3 W1 2

o Apply Unit Resolution with (W1 3 W1 2) and W1 2:
 W1 3

2.5 First-Order Logic:

 First-Order Logic is a logic which is sufficiently expressive to represent a good deal

of our commonsense knowledge.

 It is also either includes or forms the foundation of many other representation

languages.

 It is also called as First-Order Predicate calculus.

 It is abbreviated as FOL or FOPC

STUDENTSFOCUS.COM

P
ag

e
5

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

2.5.1 Representation Revisited:

 It is necessary to know about the nature of representation languages.

 The following are the some languages,

 Programming languages

 Propositional logic languages

 Natural languages

Programming languages:

 Programming languages like C++ or Java are the largest class of formal

languages in common use.

 Programs represent only computational processes.

 Data structures within programs can represent facts.

 For Example, 4 x 4 arrays can be used by a program to represent the contents

of the Wumpus world.

 Thus the programming language statement World [2, 2] Pit is a fairly

natural way to assert that there is a pit in square [2, 2].

Disadvantages:

 Programming languages lack is any general mechanism for deriving facts from

other facts; each update to a data structure is done by a domain-specific

procedure whose details are derived by the programmer from his or her own

knowledge of the domain.

 A second drawback of data structures in programs is the lack of any easy way

to say

 For Example, “There is a Pit in [2,2] or [3,1]” or “If the Wumpus is in [I,I]

then he is not in [2,2]”.

 Programs lack the expressiveness required to handle partial information.

Propositional Logic Languages:

 Propositional logic is a declarative language

 The following are the properties of propositional logic

 Its semantics is based on a truth relation between sentences and possible

worlds.

 It also has sufficient expressive power to deal with partial information, using

disjunction and negation.

SVCET

STUDENTSFOCUS.COM

2 2

P
ag

e
6

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 It also has compositionality that is desirable in representation languages

namely compositionality.

 In a compositionality language, the meaning of a sentence is function of the

meaning of its parts.

 For Example, “S1,4 Λ S1,
”

is related to the meanings of “S1,4
”

and “S1,
”

 It would be very strange if “S1,4
”

meant that there is a stench in square [1,4]

and “S1,2
”

meant that there is a stench in square [1,2], but “S1,4 Λ S1,2
”

meant
that France and Poland drew 1-1 in last week’s ice hockey qualifying match.

 Clearly, non Compositionality makes life much more difficult for the

reasoning system.

Advantages:

 Declarative

 Context-Independent

 Unambiguous

Disadvantages:

 It lacks the expressive power to describe an environment with many objects

concisely.

 For Example, it is forced to write a separate rule about breezes and pits for

each square, such as B1, 1 (P1, 2 V P2, 1).

 The procedural approach of programming languages can be contrasted with

the declarative nature of propositional logic, in which knowledge and

inference are separate and inference is entirely domain-independent.

Natural Languages:

 A moments thought suggests that natural languages like English are very

expressive indeed.

 Natural language is essentially a declarative knowledge representation

language and attempts to pin down its formal semantics.

 The modern view of natural language is that it serves a somewhat different

purpose, namely as a medium for communication rather than pure

representation.

 When a speaker points and says, “Look!” the listener comes to know that, say,

Superman has finally appeared over the rooftops.

 The meaning of the above sentence depends both on the sentence itself and on

the context in which the sentence was spoken.

Disadvantages:

SVCET

STUDENTSFOCUS.COM

P
ag

e
7

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 It is difficult to understand how the context can be represented.

 This is because one could not store a sentence such as “Look!” in knowledge

base and expect to recover its meaning without also storing a representation of

the context.

 They are also non-compositional

 They suffer from ambiguity, which would cause difficulties for thinking.

 For Example, when people think about spring, they are not confused as to

whether they are thinking about a season or something that goes boing-and if

one word can correspond to two thoughts, thoughts can’t be words.

2.5.2 First-Order Logic:

 First-Order Logic is a logic which is sufficiently expressive to represent a good deal

of our commonsense knowledge.

 It is also either includes or forms the foundation of many other representation

languages.

 It is also called as First-Order Predicate calculus.

 It is abbreviated as FOL or FOPC

 FOL adopts the foundation of propositional logic with all its advantages to build a

more expressive logic on that foundation, borrowing representational ideas from

natural language while avoiding its drawbacks

 The Syntax of natural language contains elements such as,

Nouns and noun phrases that refer to objects (Squares, pits, rumpuses)

Verbs and verb phrases that refer to among objects (is breezy, is adjacent to)

 Some of these relations are functions-relations in which there is only one “Value” for

a given “input”.

 For Example,

Objects: People, houses, numbers

Relations: These can be unary relations or properties such as red, round,

More generally n-ary relations such as brother of, bigger than,

Functions: father of, best friend,…

 Indeed, almost any assertion can be thought of as referring to objects and properties or

relations

 For Example, in the way of Sentence “ One plus Two is Three”

 Where,

SVCET

STUDENTSFOCUS.COM

P
ag

e
8

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

Objects: One, Two, Three, One plus Two

Relations: equals

Function: plus

 Ontological commitment of First-Order logic language is “Facts”, “Objects”, and

“Relations”.

 Where ontological commitment means “WHAT EXISTS IN THE WORLD”.

 Epistemological Commitment of First-Order logic language is “True”, “False”, and

“Unknown”.

 Where epistemological commitment means “WHAT AN AGENT BELIEVES

ABOUT FACTS”.

Advantages:

 It has been so important to mathematics, philosophy, and Artificial Intelligence

precisely because those fields can be usefully thought of as dealing with objects and

the relations among them.

 It can also express facts about some or all of the objects in the universe.

 It enables one to represent general laws or rules, such as the statement “Squares

neighboring the wumpus are smelly”.

2.5.3 Syntax and Semantics of First-Order Logic:

 The models of a logical language are the formal structures that constitute the possible

worlds under consideration.

 Models for propositional logic are just sets of truth values for the proposition

symbols.

 Models for first-order logic are more interesting.

 First they have objects in them.

 The domain of a model is the set of objects it contains; these objects are sometimes

called domain elements.

 The following diagram shows a model with five objects

SVCET

STUDENTSFOCUS.COM

P
ag

e
9

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 The five objects are,

 Richard the Lionheart

 His younger brother

 The evil King John

 The left legs of Richard and John

 A crown

 The objects in the model may be related in various ways, In the figure Richard and

John are brothers.

 Formally speaking, a relation is just the set of tuples of objects that are related.

 A tuple is a collection of Objects arranged in a fixed order and is written with

angle brackets surrounding the objects.

 Thus, the brotherhood relation in this model is the set

{(Richard the Lionheart, King John),(King John, Richard the Lionheart)}

 The crown is on King John’s head, so the “on head” relation contains just one

tuple, (the crown, King John).

 The relation can be binary relation relating pairs of objects (Ex:- “Brother”) or

unary relation representing a common object (Ex:- “Person” representing both

Richard and John)

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Certain kinds of relationships are best considered as functions that relates an

object to exactly one object.

 For Example:- each person has one left leg, so the model has a unary “left leg”

function that includes the following mappings

(Richard the Lionheart) ----> Richard’s left leg

(King John) ----> John’s left leg

 Symbols and Interpretations:

 The basic syntactic elements of first-order logic are the symbols that stand for

objects, relations and functions

 Kinds of Symbols

 The symbols come in three kinds namely,

 Constant Symbols standing for Objects (Ex:- Richard)

 Predicate Symbols standing for Relations (Ex:- King)

 Function Symbols stands for functions (Ex:- LeftLeg)

o Symbols will begin with uppercase letters

o The choice of names is entirely up to the user

o Each predicate and function symbol comes with an arity

o Arity fixes the number of arguments.

 The semantics must relate sentences to models in order to determine truth.

 To do this, an interpretation is needed specifying exactly which objects, relations

and functions are referred to by the constant, predicate and function symbols.

 One possible interpretation called as the intended interpretation- is as follows;

 Richard refers to Richard the Lionheart and John refers to the evil

King John.

 Brother refers to the brotherhood relation, that is the set of tuples of

objects given in equation {(Richard the Lionheart, King

John),(King John, Richard the Lionheart)}

 OnHead refers to the “on head” relation that holds between the crown

and King John; Person, King and Crown refer to the set of objects

that are persons, kings and crowns.

 Leftleg refers to the “left leg” function, that is, the mapping given in

{(Richard the Lionheart, King John),(King John, Richard the

Lionheart)}

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 There are many other possible interpretations relating these symbols to this

particular model.

 The truth of any sentence is determined by a model and an interpretation for the

sentence symbols.

 The syntax of the FOL with equality specified in BNF is as follows

Sentence AtomicSentence

| (Sentence Connective Sentence)

| Quantifier Variable,…Sentence

| - Sentence

AtomicSentence Predicate (Term…) | Term = Term

Term Function (Term,….)

| Constatnt

| Variable

Connective ⇒ | Λ | V |

Quantifier ∀ | ∃

Constant A | X1 | John

Variable a | x | s | …

Predicate Before | HasColor | Raining | ….

Function Mother | LeftLeg | ….

 Where,

 Terms:

Λ Logical Conjunction

V Logical disjunction

∀ Universal Quantification

∃ Existential Quantification

⇔ Material Equivalence

⇒ Material Implication

 A Term is a logical expression that refers to an object

 Constant symbol are therefore terms, but it is not always convenient to have a

distinct symbol to name every object.

 For Example:- in English we might use the expression “King Johns left leg” rather

than giving a name to his leg.

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 A complex term is formed by a function symbol followed by a parenthesized list

of terms as arguments to the function symbol.

 It is just like a complicated kind of name. It’s not a “subroutine call” that returns a

value”.

 The formal semantics of terms is straight forward,

Consider a term f(t1……tn)

Where

f- some function in the model (call it F)

The argument terms – objects in the domain

The term – object that is the value of the function F applied to

the domain

 For Example:- suppose the LeftLeg function symbol refers to the function is,

(Richard the Lionheart) ------ Richards left leg

(King John) ------ Johns left leg

John refers to King John, then LeftLeg (John) refers to king Johns left leg.

 In this way the Interpretation fixes the referent of every term.

 Atomic Sentences:-

 An atomic sentence is formed from a predicate symbol followed by a

parenthesized list of terms:

Brother (Richard, John)

 This states that Richard the Lionheart is the brother of King John.

 Atomic Sentences can have complex terms as arguments.

 Thus, Married(Father(Richard), Mother(John)) states that Richard the

Lionheart’s father is married to King John’s mother

 An atomic sentence is true in a given model, under a given interpretation, if the

relation referred to by the predicate symbol holds among the objects referred to by

the arguments.

 Complex Sentences:-

 Logical connectives can be used to construct more complex sentences, just as in

propositional calculus.

 The semantics of sentences formed with logical connectives is identical to that in

the propositional case.

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

¬ Brother (LeftLeg (Richard), John)

Brother (Richard, John) Λ Brother (John, Richard)

King (Richard) V King (John)

¬ King (Richard) ⇒ King (John)

¬ it refers “ Logical Negation”

 Quantifiers:-

 Quantifiers are used to express properties of entire collections of objects, instead

of enumerating the objects by name if a logic that allows object is found.

 It has two type,

 The following are the types of standard quantifiers,

 Universal

 Existential

 Universal Quantification (∀):-

 Universal Quantification make statement about every object.
 “All Kings are persons”, is written in first-order logic as

∀x king (x) ⇒ Person (x)

 ∀ is usually pronounced “For all….”, Thus the sentences says , “For all x, if x is a

king, then x is a person”.
 The symbol x is called a variable.

 A variable is a term all by itself, and as such can also serve as the argument of a

function-for example, LeftLeg(x).

 A term with no variables is called a ground term.

 Based on our model, we can extend the interpretation in five ways,

x --------- Richard the Lionheart

x --------- King John

x --------- Richard’s Left leg

x --------- John’s Left leg

x --------- the crown

 The universally quantified sentence is equivalent to asserting the following five

sentences

Richard the Lionheart ------ Richard the Lionheart is a person

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

King John is a King ------ King John is a Person

Richard’s left leg is King -------- Richard’s left leg is a person

John’s left leg is a King -------- John’s left leg is a person

The crown is a King -------- The crown is a Person

 Existential Quantification (∃):-

 An existential quantifier is used make a statement about some object in the

universe without naming it.

 To say, for example :- that King John has a crown on his head, write ∃x crown

(x) Λ OnHead (x, John).
 ∃x is pronounced “ There exists an x such that..,” or “For some x..”

 Consider the following sentence,

∃x crown (x) ⇒ OnHead (x,John)

 Applying the semantics says that at least one of the following assertion is true,

Richard the Lionheart is a crown Λ Richard the Lionheart is on John’s head

King John is Crown Λ King John is on John’s head

Richard’s left leg is a crown Λ Richard’s left leg is on John’s head

John’s left leg is a crown Λ John’s left leg is on John’s head

The crown is a crown Λ The crown is on John’s head

 Now an implication is true if both premise and conclusion are true, or if its

premise is false.

 Nested Quantifiers:-

 More complex sentences are expressed using multiple quantifiers.

 The following are the some cases of multiple quantifiers,

 The simplest case where the quantifiers are of the same type.

 For Example:- “Brothers are Siblings” can be written as

∀x ∀y, Brother (x,y) ⇒ sibling (x,y)

 Consecutive quantifiers of the same type can be written as one quantifier with
several variables.

 For Example:- to say that siblinghood is a symmetric relationship as

∀x ,y sibling (x,y) ⇔ sibling (y,z)

 In some cases it is possible to have mixture of quantifiers.
 For Example:- “Everybody loves somebody” means that for every person, there is

someone that person loves:

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

∀x ∃y Loves (x, y).

 On the other hand , to say “There is someone who is loved by everyone”, we can

write as

∃y ∀x Loves (x, y).

 Connections between ∀ and ∃

 The two quantifiers are actually intimately connected with each other , through
negation,

 Declaring that everyone dislikes parsnips is the same as declaring there does not

exist someone who likes them, and vice versa:

∀x ¬ Likes (x, Parsnips) is equivalent to ¬ ∃x Likes (x, Parsnips)

 Going one step further: “Everyone likes ice cream” means that there os no one
who does not like ice cream:

∀x ¬ Likes (x, IceCream) is equivalent to ¬ ∃x Likes (x, IceCream)

 Because ∀ is really a conjunction over the universe of objects ∃ is a
 disjunction, it should not be surprising that they obey de Morgan’s rules.

 The de Morgan’s rules for quantified and un-quantified sentences are as
 follows:

 ≡ it refers definition

∀x ¬ P ≡ ¬ ∃x P ¬ P Λ ¬ Q ≡ ¬ (P V Q)

¬ ∀x P ≡ ∃x ¬ P ¬ (P Λ Q) ≡ ¬ P V ¬ Q

∀x P ≡ ¬ ∃x ¬ P P Λ Q ≡ ¬ (¬ P V ¬ Q)

∃x P ≡ ¬ ∀x ¬ P P V Q ≡ ¬ (¬ P Λ ¬ Q)

 Equality:-

 First – order logic includes one more way of using equality symbol to make

atomic sentences.

 Use of equality symbol

 The equality symbol can be used to make statements to the effect that two

terms refer to the same object.

 For Example: - Father (John) = Henry says that the object referred to by

Father (John) and the object referred to by Henry are the same.

 Determining the truth of an equality sentence is simply a matter of seeing

that the referents of the two terms are the same object.

 The equality symbol can be used to state facts about a given function

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 It can also be used with negation to insist that two terms are not the same

object.

 For Example:- To say that Richard has at least two brothers, write as

∃x,y Brother(x, Richard) Λ Brother(y,Richard) Λ ¬ (x = y)

2.5.4 Using First – Order Logic

The best way to learn about FOL is through examples. In Knowledge representation, a

domain is just some part of the world about which some knowledge is to be expressed.

 Assertions:-

 Sentences that are added to knowledge base using TELL, exactly as in

propositional logic are called assertion (Declaration/Statement).

 For Example:- It can be declared that “ John is a King and that Kings are persons”

TELL (KB, King(John))

TELL (KB, ∀x King(x) ⇒ Person(x))

 Queries:-

 Questions of the knowledge base can be asked using ASK.

 For Example:- ASK(KB, King(John)) returns true.

 Questions asked using ASK are called queries or goals.

 Generally speaking, any query that is logically needed by the knowledge base

should be answered positively.

 For Example:- Given the two assertions in the preceding line, the query

ASK(KB, Person(John) should also return true

 Substitution/Binding List:-

 Substitution or Binding list is a set of variable/term pairs.

 It is a standard form for an answer of a query with existential variables.

 For Example:- “Is there an x such that…” is solved by providing such an x.

 Given Just the two assertions, the answer would be {x/John}

 If there is more than one possible answer, a list of substitutions can be returned.

 The Kinship Domain:-

 Kinship domain is the domain of family relationships, or Kinship.

 This domain includes facts such as “Elizabeth is the mother of Charles” and

“Charles is the father of William” and rules such as

“One’s grandmother is the mother of one’s parent”.

 The objects in this domain are people.

 There will be two unary predicates as “Male” and “Female”

 Kinship relations will be represented by binary predicates.

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

7

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 For Example:- parenthood, brotherhood, marriage and so on are represented by

Parent, sibling, Brother, Sister, Child, Daughter,Son,Spouse,Wife, Husband,

Grandparents, Grandchild, Cousin, Aunt, and Uncle.

 For Example:-

 One’s mother is One’s female parent:

∀ m, c Mother(c) = m ⇔ Female (m) Λ Parent (m,c)

 Axioms:-

 Axioms are commonly associated with purely mathematical domains.

 The axioms define, the Mother function and the Husband, Male, Parent and

Sibling predicates in terms of other predicates.

 They provide the basic factual information from which useful conclusions can be

derived.

 Kinship axioms are also definitions : they have the form ∀x ,y p(x,y) ⇔ …

 Theorems:-

 Not all logical sentences about a domain are axioms.

 Some are Theorems-that is, they are caused by the axioms.

 For Example:-

∀x ,y Sibling(x,y) ⇔ … Sibling (y,x)

 The above declaration that siblinghood is symmetric

 It’s a theorem that follows logically from the axiom that defines siblinghood.

 If ASK Questions the knowledge base this sentence, it should return true

 From logical point of view, a knowledge base need contain only axioms and no

theorems

 From a practical point of view, theorems are essential to reduce the computational

cost of deriving new sentences.

 Numbers:-

 Numbers are perhaps the most brilliant example of how a large theory can be built

up from a tiny heart of axioms.

 Requirements

 A predicate NatNum is needed that will be true of natural numbers

 One constant symbol, 0

 One function symbol, S (Successor)

 Peano Axioms:-

 The peano axioms define natural numbers and addition.

 Natural numbers are defined recursively:

NatNum (0)

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

∀n NatNum (n) ⇒ NatNum (S(n))

 That is, 0 is a natural number, and for every object n, if n is a natural

number then S(n) is a natural number,

 So the natural numbers are 0, S(0), S(S(0)), and so on..

 Sets:-

 The domain of sets is also fundamental to mathematics as well as to commonsense

reasoning

 The empty set is a constant written as { }.

 There is one unary predicate, Set, which is true of sets.

 The binary predicates are x € s (x is a member of set s) and s1 ⊆ s2 (set s1 is a

subset, not necessarily proper, of set s2)

 The binary functions are s1 ∩ s2 (the intersection of two sets), s1 ∪ s2 (the union

of two sets), and {x/s} (the set resulting from adjoining element x to set s)
 One possible set of axioms is as follows,

 The only sets are the empty set and those made by adjoining something to

a set

∀s Set(s) ⇔ (s = { }) V (∃x , s2 Set(s2) Λ s = {x/s2}

 There is no way to decompose EmptySet into a smaller set and an element:

¬ ∃x, s {x/s} = { }

 Adjoining an element already in the set has no effect:

∀x,s x ∈(set membership) s ⇔ s = {x/s}

 The only members of a set are the elements that were connected into it.
This can be expressed recursively, saying that x is a member of s if and

only if s is equal to some set S2 connected with some element y, where

either y is the same as x or x is a member of S2

∀x,s x ∈ s ⇔ [∃y, s2 (s={y/s2} Λ (x=y V x ∈ s2))]

 A set is subset of another set if and only if all of the first sets members are
members of the second set

∀s1, s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)

 Two sets are equal if and only if each is a subset of the other

∀s1, s2 (s1 = s2) ⇔ (s1 ⊆ s2 Λ s2 ⊆ s1)

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

9

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 An object is in the Intersection of two sets if and only if it is a member of

both sets

∀x, s1, s2 x ∈ (s1 ∩ s2) (x ∈ s1 Λ x ∈ s2)

 An object is in the union of two sets if and only if it is a member of either
set

∀x, s1, s2 x ∈ (s1 ∪ s2) (x ∈ s1 V x ∈ s2)

 Lists:-

 Lists are similar to sets.

 The differences are that lists are ordered and the same element can appear more

than once in a list.

 Nil is the constant list with no elements

 Cons, Append, First, and Rest are functions.

 Find is the predicate that does for lists what Member does for sets.

 List? is a predicate that is true only of lists.

 The empty list is f1.

 The term Cons (x, y), where y is a nonempty list, is written [x/y].

 The term Cons (x, Nil), (i.e. The list containing the element x), is written as x1.

 A list of several elements, such as [A,B,C] corresponds to the nested term

Cons(A, Cons(B, Cons(C, Nil)))

 The Wumpus World:-

 The first order axioms of wumpus world are more concise, capturing in a natural

way what exactly we want to represent the concept.

 Here the more interesting question is “how an agent should organize what it

knows in order to take the right actions”.

 For this purpose we will consider three agent architectures:

 Reflex agents - classify their percept and act accordingly

 Model based agents - construct an internal representation of the

World and use it to act

 Goal based agents - form goals and try to achieve them

 The first step of wumpus world agent construction is to define the interface

between the environment and the agent.

 The percept sentence must include both the percept and the time at which it

occurred, to differentiate between the consequent percepts.

 For Example:-

Percept ([Stench, Breeze, Glitter, None, None], 3)

 In this sentence

Percept - predicate

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

Stench, Breeze, Glitter - Constants

3 - Integer to represent to time.

 The agents action are,

Turn (Right)

Turn (Left)

Forward
Shoot

Grab

Release

Climb

 To determine which is best, the agent program constructs a query such as

∃a BestActions(a,5)

 ASK solves this query and returns a binding list such as {a/Grab}.
 The agent program then calls TELL to record the action which was taken to

update the Knowledge base KB.

 Types of Sentences:-

 The percept sentences are classified in to two as,

 Synchronic (Same time)

 Diachronic (across time)

 Synchronic: - The sentences dealing with time is synchronic if they relate

properties of a world state to other properties of the same world state.

 Diachronic: - The sentences describing the way in which the world changes (or

does not change) are diachronic sentences

 Kinds of Synchronic Rules:-

 There are two kinds of synchronic rules that could allow to capture the necessar y

information for deductions are,

 Diagnostic rules

 Casual rules

o Diagnostic Rules: - Infer the presence of hidden properties directly from

the percept – derived (observed) information.

o For Example: - For finding pits, if a square is breezy, some adjacent square

must contain a pit.

∀s Breezy(s) ⇒ ∃r Adjacent (r,s) Λ Pit(r)

o If a square is not breezy, no adjacent square contains a pit.

∀s ¬Breezy(s) ⇒ ¬∃r Adjacent (r,s) Λ Pit(r)

o Combining these two, the derived biconditional sentence is :

∀s Breezy(s) ⇔ ∃r Adjacent (r,s) Λ Pit(r)

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

o Casual Rules: - Reflect the assumed direction of casuality in the world.

Some hidden property of the world causes certain percepts to be generated.

o For Example:- A Pit causes all adjacent squares to be breezy.

∀r Pit(r) ⇒ [∀s Adjacent (r, s) ⇒ Breezy(s)]

o If all squares adjacent to a given square are pitless, the square will not be

breezy

∀s [∀r Adjacent (r,s) ⇒ ¬ Pit(r)] ⇒ ¬ Breezy(s)

o System that reason with casual rules are called model-based reasoning
systems, because the casual rules from a model of how the environment
operates.

2.5.5 KNOWLEDGE ENGINEERING IN FIRST ORDER LOGIC:-

 Knowledge Engineering: - The general process of Knowledge Base KB

Construction.

 Knowledge Engineer: - Who investigates a particular domain, learns what

concepts are important in that domain and creates a formal representation of the

objects and relations in the domain.

 The knowledge engineering projects vary widely in content, scope and difficulty,

but all projects include the following steps,

 Identify the Task: - The Knowledge engineer should identify the

PEAS description of the domain.

 Assemble the relevant knowledge: - The idea of combining expert’s

knowledge of that domain (i.e.) a process called knowledge

acquisition.

 Decide on a vocabulary of predicates, functions and constants: -

Translate the important domain-level concepts into logical level name.

The resulting vocabulary is known as ontology of the domain, which

determines what kinds of things exist, but does not determine their

specific properties and interrelationships.
 Encode general knowledge about the domain: - The knowledge

engineer writes the axioms (rules) for all the vocabulary terms. The

misconceptions are clarified from step 3 and the process is iterated.

 Encode a description of the specific problem instance: - To write

simple atomic sentences about instances of concepts that are already

part of the ontology.

 Pose queries to the inference procedure and get answers: - For the

given query the inference procedure operate on the axioms and

problem specific facts to derive the answers.

 Debug the knowledge base: - For the given query , if the result is not

a user expected on then KB is updated with relevant or missing

axioms.

 The seven step process is explained with the domain of ELECTRONIC CIRCUITS

DOMAIN.

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Identify the task: -
o Analyse the circuit functionality, does the circuit actually add

properly? (Circuit Verification).

 Assemble the relevant knowledge: -

o The circuit is composed of wire and gates.

o The four types of gates (AND, OR, NOT, XOR) with two input
terminals and one output terminal knowledge is collected.

 Decide on a vocabulary: -

o The functions, predicates and constants of the domain are
identified.

o Functions are used to refer the type of gate.

Type (x1) = XOR,

where x1 ---- Name of the gate and Type ---- function

o The same can be represented by either binary predicate (or)

individual type predicate.

Type (x1, XOR) – binary predicate

XOR (x1) – Individual type

o A gate or circuit can have one or more terminals. For x1, the

terminals are x1In1, x1In2 and x1 out1
Where x1 In1 ----- 1

st
input of gate x1

x1 In2 ----- 2
nd

input of gate x1

x1 out1 ---- output of gate x1

o Then the connectivity between the gates represented by the

predicate connected. (i.e.) connected (out(1, x1), In(1,x2)).

o Finally the possible values of the output terminal C1, as true or

false, represented as a signal with 1 or 0.

 Encode general knowledge of the domain:-

o This example needs only seven simple rules to describe

everything need to know about circuits
o If two terminals are connected, then they have the same signal:

 t1,t2 Connected(t1, t2) Signal(t1) = Signal(t2)

o The signal at every terminal is either 1 or 0 (but not both):

 t Signal(t) = 1 Signal(t) = 0

 1 ≠ 0

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

o Connected is a commutative predicate

 t1,t2 Connected(t1, t2) Connected(t2, t1)

o An OR gate’s output is 1 if and only if any of its input is 1:

 g Type(g) = OR Signal(Out(1,g)) = 1 n

Signal(In(n,g)) = 1

o An AND gate’s output is 0 if and only if any of its inputs is 0

 g Type(g) = AND Signal(Out(1,g)) = 0 n

Signal(In(n,g)) = 0

o An XOR gate’s output is 1 if and only if inputs are different:

 g Type(g) = XOR Signal(Out(1,g)) = 1

Signal(In(1,g)) ≠ Signal(In(2,g))

o A NOT gate’s output is different from its input:

 g Type(g) = NOT Signal(Out(1,g)) ≠

Signal(In(1,g))

 Encode the specific problem instance:

o First, we categorize the gates:

Type(X1) = XOR Type(X2) = XOR

Type(A1) = AND Type(A2) = AND

Type(O1) = OR

o Then, we show the connections between them

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))

Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))

Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))

Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))

Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))

Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

 Pose Queries to the inference procedure:

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

o What combinations of inputs would cause the first output of

C1(the sum bit) to be 0 and the second output of C1 (the carr y

bit) to be 1?

i1,i2,i3 Signal(In(1,C1)) = i1 Signal(In(2,C1)) = i2

Signal(In(3,C1)) = i3 Signal(Out(1,C1)) = o

Signal(Out(2,C1)) = 1

o The answers are substitutions for the variables i1,i2 and i3 Such

that the resulting sentence is entailed by the knowledge base.

o There are three such substitutions as:

{ i1/1,i2/1 , i3/0} { i1/1,i2/0 , i3/1} { i1/0,i2/1 , i3/1}

o What are the possible sets of values of all the terminals for the

adder circuit?

i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 Signal(In(2,C1)) =

i2 Signal(In(3,C1)) = i3 Signal(Out(1,C1)) = o1

Signal(Out(2,C1)) = o2

 Debug the knowledge base:

o The knowledge base is checked with different constraints.

o For Example:- if the assertion 1 ≠ 0 is not included in the

knowledge base then it is variable to prove any output for the

circuit, except for the input cases 000 and 110.

2.6 Inference in First-order Logic:-

 We have learned seven inference rules of propositional logic.

 These rules are applicable for First-order logic also

 With those rules First-order logic holds some additional rules “with quantifiers” in which

substituting particular individual for the variable is done (i.e.) SUBST(Ө, α) to denote

the result of applying the substitution (or) binding list Ө to the sentence α.

 For Example:-

SUBST ({x/Ram, y/John} Likes(x, y)) = Likes(Ram, John)

 The following are the new three inference rules for First-order Logic.

 Universal Elimination

 Existential Elimination

 Existential Introduction

 Universal Elimination:- For any sentence α, variable v and ground term g;

v α / SUBST({v/g}, α)

Example:-

x likes (x, Icecream) is a sentence α.

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SUBST ({x/John}, α) is a substitution Ө = John

Likes (John, Icecream) – Inferred sentence

 Existential Elimination :- For any sentence α variable v, and constant symbol k that

does not appear elsewhere in the Knowledge base:

v α / SUBST({v/k}, α)

Example:-

x Kill (x, Victim) – α

SUBST({x/Murderer, Victim}, α) where Ө = Murderer

Kill (Murderer, Victim) – Inferred Sentence

 Existential Introduction :- For any sentence α, variable v that does not occur in α, and

ground term g that does occur in α

α / v SUBST({g/v}, α)

Example:-

Likes (John, Icecream) – α

x Likes (x, Icecream) – Inferred Sentence

2.6.1 AN EXAMPLE PROOF USING FIRST- ORDER LOGIC:-

 An application of inference rule is matching their premise patterns to the sentences in the

KB and then adding their conclusion patterns to the KB.

 Task: - For the given situation described in English, Convert it into its equivalent FOL

representation and prove that “West is a Criminal”.

 Situation: - The law says that it is a crime for an American to sell weapons to hostile

nations. The country Nono, an enemy of America, has some missiles, and all of its

missiles were sold to it by Colonel West, who is American.

 Solution: - The given description is splitted into sentences and is converted into its

corresponding FOL representation.

 It is a crime for an American to sell weapons to hostile nations:

x y z American(x) Weapon(y) Nation(z) Hostile(z) Sells(x, y, z

Criminal(x)

 Nono … has some missiles,

x Owns(Nono,x) Missile(x)

 all of its missiles were sold to it by Colonel West

x Missiles(x) Owns(Nono,x) Sells(West,x,Nono)

 We will also need to know that missiles are weapons

x Missile(x) Weapon(x)

 An enemy of America counts as "hostile“

x Enemy(x,America) Hostile(x)

 West, who is American …

American(West)

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Nono, is a nation

Nation (Nono)

 Nono, an enemy of America

Enemy (Nono, America)

 America is nation

Nation (America)

2.7 Forward Chaining:-

 The Generalized Modus Ponens rule can be used by Forward Chaining.

 From the sentences in the KB which in turn derive new conclusions.

 Forward chaining is preferred when new fact is added to the database and we want to

generate its consequences.

 Forward Chaining Algorithm:-

 Forward chaining is triggered by the addition of new fact “p” into the knowledge

base (i.e.) the action TELL is performed.

 If the new fact is a rename of any other existing sentence in the KB then it is not

included in KB.

 With the new fact “p” find all premises that had “p” as premise and if any other

premise is already known to hold then its consequence is included in KB.

 The important operation of forward chaining is renaming : One sentence is a

renaming of another if, they are identical except for the names of the variables.

 For Examples:-

o Likes(x, Icecream) and Likes(y, Icecream) are renaming of each other.

o Likes(x,x) and Likes(x,y) are not renaming of each other (i.e.) its variable

differs, the meaning is logically different.

 Consider the KB of crime problem represented in Horn form to explain the

concept of forward chaining.

 The implication sentences are (i), (iv), (v), (vi)

 Two iterations are required:

 On the first iteration,

o Step (i) has unsatisfied premises

o Step (iv) is satisfied with {x/M1} and sells (west, M1,Nono) is added

o Step (v) is satisfied with {x/m1} and weapon (M1) is added

o Step (vi) is satisfied with {x/Nono}, and Hostile (Nono) is added

 On the second iteration,

o Step (i) is satisfied with {x/West, y/M1, z/Nono} and Criminal(west) is

added.

 The following table shows the forward chaining algorithm,

 Inputs:- KB, the Knowledge base, a set of first-order definite clauses α, the

query, an atomic sentence

 Local variable:- new, the new sentences inferred on each iteration

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

7

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 The following figure shows the proof tree generated by forward chaining

algorithm on the Crime Example,

 The above discussed inference processes are not directed towards solving any

particular problem: for this reason it is called a data-driven or data-directed

procedure.

 In this problem, no new inferences are possible because every sentence

concluded by forward chaining is already exist in the KB. Such a KB is called a

fixed point of the inference process.

 FOL-FC-ASK function is sound and complete.

 Every inference is an application of generalized modus ponens, which is sound.

 Then it is complete for definite clauses KB (i.e.) it answers every query whose

answers are entailed by any KB of definite clauses.

2.7.1 Efficient Forward chaining:-

 The above discussed FC Algorithm has three possible types of complexity.

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Pattern Matching: - “inner loop” of the algorithm involves finding all

possible unifiers such that the premise of a rule unifies with a suitable set of

facts in the KB.

 Matching rules against known facts:- The algorithm re-checks every rule on

every iteration to see whether its premises are satisfied, even if very few

additions are made to the KB on each iteration

 Irrelevant facts to the goal are generated

 In forward chaining approach, inference rules are applied to the knowledge base,

yielding new assertions.

 This process repeats forever or until some stopping criterian is met.

 This method is appropriate for the design of an agent, that is on each cycle, we add

the percepts to the knowledge base and run the forward chainer, which chooses an

action to perform according to a set of condition action rules.

 Theoretically a production system can be implemented with a theorem prover, using

resolution to do forward chaining over a full first order knowledge base.

 An efficient language can be used to perform this task, because it reduces the

branching factor.

 The typical production system has three features:

 The system maintained a KB called the working memory which has a set

of positive literals with no variable

 The system maintains a rule memory. This contains a set of inference

rules P1 P2 act1 act2…. That acti is executed when pi is satisfied,

which performs adding or deleting an element from the working memory

– match phase.

 In each cycle, the system computes the subset of rules whose left-hand

side is satisfied by the current contents of the working memory - match

phase.

2.8 Backward Chaining:-

 Backward chaining is designed to find all answers to a question asked to the

knowledge base. Therefore it requires a ASK procedure to derive the answer.

 The procedure BACK WARD-CHAIN will check two constraints.

 If the given question can derive a answer directly from the sentences of the

knowledge base then it returns with answers.

 If the first constraint is not satisfied then it finds all implications whose

conclusion unifies with the query and tries to establish the premises of

those implications. If the premise is a conjunction then BACK-CHAIN

processes the conjunction conjunct by conjunct, building up the unifiers

for the whole premises as it goes.

 Composition of Substitutions:- COMPOSE(Ө1, Ө2) is the substitution whose effect

is identical to the effect of applying each substitution in turn (i.e.),

SUBST (COMPOSE (Ө1, Ө2), p) = SUBST (Ө2, SUBST (Ө1, p))

 For Example:-

P – Sells (x,M1, y)

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

9

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

SUBST (Ө2, SUBST (Ө1, p))

SUBST (Ө2, SUBST (x/West, p)) i.e. (Ө1 = x/west)

SUBST ((y/Nono), (x/West, p)) i.e. (Ө2 = y/Nono)

Therefore p – Sells (West, M1, Nono)

 The following table shows the backward chaining algorithm,

 The following graph shows the proof tree to infer that west is a criminal,

 To prove Criminal(x), we have to prove the five conjuncts below it

 Some of which are directly exist in the knowledge base, others require one more

iteration of backward chaining.

 In the search process the substitution of values for the variables has to be done in a

correct way, otherwise it may lead to failure solution.

 The following are the some properties of Backward Chaining,

o Depth-first recursive proof search: space is linear in size of proof
o Incomplete due to infinite loops

 fix by checking current goal against every goal on stack

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

o Inefficient due to repeated subgoals (both success and failure)

 fix using caching of previous results (extra space)

o Widely used for logic programming

2.8.1 Logic Programming:-

 A system in which KB can be constructed and used.

 A relation between logic and algorithm is summed up in Robert Kowalsh equation

Algorithm = Logic + Control

 Logic programming languages, usually use backward chaining and input/output of

programming languages.

 A logic programming language makes it possible to write algorithms by augmenting

logic sentences with information to control the inference process.

 For Example:- PROLOG

 A prolog program is described as a series of logical assertions each of

which is a Horn Clause.

 A Horn Clause is a Clause that has atmost one positive literal,

Example: - P, ¬PQ

 Implementation: - All inferences are done by backward chaining, with

depth first search. The order of search through the conjuncts of an

antecedent is left to right and the clauses in the KB are applied first-to-

last order.

 Example for FOL to PROLOG conversion:-

o FOL

 x Pet(x) Small(x) Apartment(x)

 x Cat(x) v Dog(x) Pet(x)

 x Product(x) Dog(x) Small(x)

 Poodle(fluffy)

o Equivalent PROLOG representation

 Apartment(x) :- Pet(x), Small(x)

 Pet(x) :- Cat(x)

Pet(x) :- Dog(x)

 Dog(x) :- Poodle(x)

Small(x) :- Poodle(x)

 Poodle(fluffy)

o In the PROLOG representation the consequent or the left hand side is called as

head and the antecedent or the right hand side is called as body.

 Execution of a PROLOG program:-

o The execution of a prolog program can happen in two modes,

1. Interpreters

2. Compilers

o Interpretation:

 A method which uses BACK-CHAIN algorithm with the program as

the KB.

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 To maximize the speed of execution, we will consider two different

types of constraints executed in sequence, They are

1. Choice Point: - Generating sub goals one by one to

perform interpretation.

2. Trail: - Keeping track of all the variables that have been

bound in a stack is called as trail.

o Compilation:-

 Procedure implementation is done to run the program (i.e.) calling the

inference rules whenever it is required for execution.

2.9 Unification:-

 The process of finding all legal substitutions that make logical expressions look

identical and

 Unification is a "pattern matching" procedure that takes two atomic sentences, called

literals, as input, and returns "failure" if they do not match and a substitution list,

Theta, if they do match.

 Theta is called the most general unifier (mgu)

 All variables in the given two literals are implicitly universally quantified

 To make literals match, replace (universally-quantified) variables by terms

 The unification routine, UNIFY is to take two atomic sentences p and q and returns α

substitution that would make p and q look the same

UNIFY (p, q) = θ where SUBST (θ, p) = SUBST (θ, q)

θ = Unifier of two sentences

 For example:-

p – S1(x, x) q

– S1(y, z)

Assume θ = y

p – S1(y, y) – x/y (Substituting y for x)

q – S1(y, y) – z/y (Substituting y for z)

 In the above two sentences (p, q), the unifier of two sentences (i.e.) θ = y is

substituted in both the sentences, which derives a same predicate name, same number

of arguments and same argument names.

 Therefore the given two sentences are unified sentences.

 The function UNIFY will return its result as fail, for two different types of criteria’s

as follows,

 If the given two atomic sentences (p, q) are differs in its predicate name

then the UNIFY will return failure as a result

For Example: - p – hate (M, C), q – try (M, C)

 If the given two atomic sentences (p, q) are differs in its number of

arguments then the UNIFY will return failure as a result

For Example: - p – try (M, C), q – try (M, C, R)

 For Example: - The Query is Knows (John, x) whom does John Know?

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Some answers to the above query can be found by finding all sentences in the KB that

unify with knows (John, x)

 Assume the KB has as follows,

Knows (John, John)

Knows (y, Leo)

Knows (y, Mother(y))

Knows (x, Elizabeth)

 The results of unification are as follows,

UNIFY (knows (john, x), knows (John, Jane)) = {x/Jane}

UNIFY (knows (john, x), knows (y, Leo)) = {x/Leo, y/John}

UNIFY (knows (john, x), knows (y, Mother(y)) = {y/John, x/Mother (John)}

UNIFY (knows (john, x), knows (x, Elizabeth)) = fail

 x cannot take both the values John and Elizabeth at the same time.

 Knows (x, Elizabeth) means “Everyone knows Elizabeth” from this we able to infer

that John knows Elizabeth.

 This can be avoided by using standardizing apart one of the two sentences being

unified (i.e.) renaming is done to avoid name clashes.

 For Example:-

UNIFY (Knows (john, x), knows (x1, Elizabeth)) = {x/Elizabeth, x1/John}

2.9.1 Most general Unifier (MGU):-

 UNIFY should return a substitution that makes the two arguments look the same, but

there may be a chance of more than one unifier.

 For Example:-

UNIFY (knows (john, x), knows (y, z)) = {y/John, x/z} or {y/John, x/John, z/John}

 The result of applying 1
st

unifier is knows (John, z) and the 2
nd

unifier is knows (John,

John).

 Here the first unifier result is more general than the second one, because it places less

restriction on the values of the variables.

 This indicates that every unifiable pair of expressions, a single MGU is exist until

renaming of variables.

 The following table shows the unification algorithm,

 The following are the steps to be done for unification of two sentences p and q is

given below,

 Recursively explore the two expressions simultaneously along with unifier

returns failure if two corresponding points in the structure do not match.

Therefore the time complexit y is O(n
2
) in the size of the expressions being

unified.

 When the variable is matched against a complex term, one must check,

whether the variable itself occurs, if it is true then returns failure (consistent

unifier is not allowed) – occur check.

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 The above table shows the unification algorithm

2.9.2 Storage and retrieval:-

 Once the data type for sentences and terms are defined, we need to maintain asset of

sentences in a KB (i.e.) to store and fetch a sentence or term,

 Store (s) – stores a sentence s.

 Fetch (q) – returns all unifiers

 Such that the query q unifies with some sentences in the KB.

 For Example: - The unification for Knows (John, x) is an Instance of fetching.

 The simplest way to store and fetch is maintain a long list in sequential order.

 For a Query q, call UNIFY (q, s) for every sentences s in the list, requires O(n) time on

an n-element KB.

 To make the fetch more efficient, indexing the facts in KB is done.

 The different types of indexing are as follows,

 Table based Indexing

 Tree based Indexing

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
3

4

 Predicate based Indexing

 A simple form of indexing is predicate indexing puts all the knows facts in one bucket

and all the brother facts in another.

 The buckets are stored in hash table for efficient access,

 Where hash table means “a data structure for storing and retrieving information

indexed by fixed keys”

 Given sentence to be stored, it is possible to construct indices for all possible queries

that unify with it,

 For Example:- For the fact Employs (SSN, John) the queries are as follows,

 Employs (SSN, John) Does SSN employ John?

 Employs (x, John) who employs John?

 Employs (SSN, y) whom does SSN employ?

 Employs (x, y) who employs whom?

 These queries form a substitution lattice (i.e.) Properties of Lattice:- child of any

node in the lattice is obtained from its parent by a single substitution and the highest

common descendent of any two nodes is the result of applying their most general

unifier.

 For a predicate with n arguments, the lattice contains O(2
n
) nodes

 The following diagram shows the subsumption lattice,

Employs (x, y)

Employs (x, John) Employs (x, y)

Employs (SSN, John)

2.9.3 Advantages and Disadvantages:-

Advantages:-

 The scheme works very well whenever the lattice contains a small number of nodes.

 For a predicate with n arguments, the lattice contains O(2n) nodes.

Disadvantages:-

 If function symbols are allowed, the number of nodes is also exponential in the size of

the terms in the sentence to be stored. This can lead to a huge number of indices.

 At some point, the benefits of indexing are outweighed by the costs of storing and

maintaining all the indices.

2.10 Resolution:-

 Resolution is a complete inference procedure for first order logic

 Any sentence a entailed by KB can be derived with resolution

 Catch: proof procedure can run for an unspecified amount of time

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
3

5

o At any given moment, if proof is not done, don’t know if infinitely looping or

about to give an answer

o Cannot always prove that a sentence a is not entailed by KB

o First-order logic is semidecidable

 Rules used in the resolution procedure are :

o Simple resolution inference rule – premises have exactly two disjuncts

,

or equivalently
,

o Resolution inference rule – two disjunctions of any length, if one of disjunct in

the class (pj) unifies with the negation of the disjunct in the other class, then

infer the disjunction of all the disjuncts except for those two,

o Using disjunctions:- For literals pi and qi, where UNIFY (pj, ¬qk) = θ

p1 pj.......... pm, q1 qk......... qn

SUBST (, (p1 pj 1 pj 1......... pm q1...........qk 1 qk 1.......... qn

o Using implications:- For atoms pi, qi, ri, si where UNIFY (pj, qk) = θ

p1 pj pn1 r1 rn 2

s1 sn3 , q1 qk.........qn 4

SUBST (, (p1 ... pj 1 pj 1...... pn1 s1 sn3 r1 rn 2 q1 qk 1 qk 1.......... qn 4

2.10.1 Canonical Form (or) Normal form for Resolution:-

 The canonical form representation of sentences for resolution procedure (to derive pa

proof) is done in two ways, they are as follows,

o Conjunctive Normal form (CNF):- All the disjunctions are joined aqs one

big sentences.

o Implicative Normal Form (INF):- All the conjunctions of atoms on the left

and a disjunction of atoms on the right.

 The following table shows the Knowledge base for CNF and INF,

Conjuctive Normal Form Implicative Normal Form

 P(w) Q(w) P(w) Q(w)

P(x) R(x) True P(x) R(x)

 Q(y) S(y) Q(y) S(y)

 R(z) S(z) R(z) S(z)

 Resolution is a generalization of Modus Ponen.

 The following is the representation of Modus Ponen rule in resolution as a special

case (i.e.),

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
3

6

,

is equivalent to
True ,

True

2.10.2 Methods used for resolution technique

 Resolution Proof:- A set of inference rules and resolution rules can be used to derive

a conclusion from the KB.

 Resolution with refutation (or) proof by contradiction (or) reduction and

absurdum:- One complete inference procedure using resolution is refutation. The

idea is to prove P, we assume P is false (i.e. add P to KB) and prove a

contradiction, that is the KB implies P.

(KB P False) (KB P)

 Example:

1. Prove that S(A) ts true from KB1 of CNF and INF representation using

 Resolution Proof

 Resolution with refutation

(a) Resolution Using INF representation:-

Given (KB1):-

1. P(w) Q(w)

2. True P(x) R(x)

3. Q(y) S(y)

4. R(z) S(z)

 The following diagram shows the proof that S(A) from KB1 using resolution

P(w) Q(w)

{y/w}

(Step1 & Step3)

Q(y) S(y)

P(w) S(w) True P(x) R(x)

{w/x}

Step 2

True S(x) R(x)

{x/A , z/A}

R(z) S(z)

Step 3

True S(A)

 Resolution rule:- In the first step transitive implication rule is used

 Substitution of one predicate in the other. (i.e.) P(x) S(x) is substituted in True

 P(x) S(x) that is instead of P(x), S(x) is substituted.

STUDENTSFOCUS.COM

P
ag

e
3

7

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 Substitution of one predicate in the other. (i.e.) R(A) S(A) is substituted in True

 S(A) R(A) that is instead of R(A), S(A) is substituted, which derives True

 S(A) S(A) is equivalent to True S(A)

 Therefore S(A) is true is proved using resolution technique for INF representation.

 Where each “Vee” Shape in the proof tree represents a resolution step,

 The two sentences at the top are the premises from the KB, and the one at the bottom

is the conclusion (or) resolvent.

b. Resolution Using CNF representation:-

Given (KB1):-
1. ~P(w) Q(w)
2. P(x) R(x)

3. ~Q(y) S(y)

4. ~R(z) S(z)

 Resolution rule:-

,

(i.e.)

~ P w Q w , ~ Q w S w
~ P w S w

 Resolution rule:-

,

(i.e.)

R x P x , ~ P x S x
R x S x

 Resolution rule:-

,

(i.e.)

S AR A , ~ R AS A
S A S A

 Therefore S(A) is true is proved using resolution technique for CNF representation.

 The following diagram shows the proof that S(A) from KB1 using resolution.

~P(w) Q(w)

{y/w}

(Step1 & Step3)

~Q(y) S(y)

~P(w) S(w) P(x) R(x)

{w/x}

Step 2

S(x) R(x)

{x/A , z/A}

~R(z) S(z)

Step 3

S(A) S(A)

S(A)

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

C. Resolution with refutation Proof using INF representation:-

Given (KB1):-
1. P(w) Q(w)

2. True P(x) R(x)

3. Q(y) S(y)

4. R(z) S(z)

 Resolution rule:- In this step transitive implication is applied,

 ,

 Substitution of one predicate in the other. (i.e.) P(x) S(x) is substituted in True

 P(x) S(x) that is instead of P(x), S(x) is substituted.

 Substitution of one predicate in the other. (i.e.) R(x) S(x) is substituted in True

 S(x) R(x) that is instead of R(x), S(x) is substituted, which derives True S(x)

 S(x) is equivalent to True S(x)

 To prove using refutation, negation of given proof is added to the KB and derives a

contradiction, then the given statement is true otherwise it is false.

 Therefore in step 4, we assume S(A) False, derives a contradiction True False.

 Therefore S(A) is true is proved using refutation technique in INF representation.

 The following diagram shows the proof that S(A) from KB1 using resolution with

refutation in INF representation.

P(w) Q(w)

{y/w}

(Step1 & Step3)

Q(y) S(y)

P(w) S(w) True P(x) R(x)

{w/x}

Step 2

True S(x) R(x)

{z/x}

R(z) S(z)

Step 4

True S(A) S(A) False

{x/A}

True False

Negation

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

9

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

D. Resolution with refutation using CNF representation:-

Given KB1:-
1. ~P(w) Q(w)

2. P(x) R(x)
3. ~Q(y) S(y)
4. ~R(z) S(z)

 Resolution rule:-

,

(i.e.)

~ P w Q w , ~ Q w S w
~ P w S w

 Resolution rule:-

,

(i.e.)

R x P x , ~ P x S x
R x S x

 Resolution rule:-

,

(i.e.)

S AR A , ~ R AS A
S A S A

 To prove using refutation, the negation of the given statement to be proved is added to

the KB and it derives a empty set, represents that the statement is True in the KB.

 Therefore S(A) is True is proved using resolution with refutation in CNF

representation.

 The following diagram shows the proof that S(A) from KB1 using resolution with

refutation in CNF representation.

~P(w) Q(w)

{y/w}

(Step1 & Step3)

~Q(y) S(y)

~P(w) S(w) P(x) R(x)

{w/x}

Step 2

S(x) R(x)

{x/A , w/A}

~R(z) S(z)

Step 4

S(A) S(A) S(A)

Negation

{ }

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

2.10. 3 Resolution technique (From FOL Representation):-

 In the previous section we learned how to prove the given fact using two different types

of resolution techniques (Resolution proof, Resolution with refutation proof) from the

given KB representation (CNF, INF).

 Suppose if the KB is given as a English description, to prove a fact , then how to derive

the conclusion? What are the sequence of steps to be done? Are discussed one by one,

o The given KB description is converted into FOL Sentences
o FOL sentences are converted to INF (or) CNF representation without changing

the meaning of it (using conversion to normal form procedure)

o Apply one of the resolution technique (Resolution proof (or) Resolution with

refutation proof), to resolve the conflict.

o Derive the fact to be proved or declare it as a incomplete solution.

2.10.3.1 Conversion to Normal Form or Clause Form (Procedure) :-

1. Eliminate Implications:-

Eliminate Implication by the corresponding disjunctions,
(i.e.) p q

2. Move inwards :-

is the same as p q

Negations are allowed only on atoms in CNF and not at all in INF. Therefore

eliminate negations with, Demorgan’s laws, the quantifier equivalences and double

negation.

Demorgans Law
(p q) becomes p q

(p q) becomes p q

Quantifier equivalences

xp becomes xp

xp becomes

Double Negation

xp

p becomes p Double negation

3. Standardize variables:-
If the sentence consists of same variable name twice, change the name of one of the

variable. This avoids confusion later when we drop the quantifiers,

(i.e.) (xp(x)) (xQ(x)) is changed into (xp(x)) (yQ(y))

4. Move quantifiers left:-
The quantifiers in the middle of the sentence to be moved to the left, without changing

the meaning of the sentence
(i.e.) p xq becomes x

not to contain x.

5. Skolimize:-

p q , which is true because p here is guaranteed

Skolimization is the process of removing existential quantifiers by elimination, it is

very similar to the existential elimination rule.

(i.e.) xp(x)

in the KB.

into p(A), where A is a constant that does not appear elsewhere

For Example:- “Everyone has a heart”

o FOL : x person(x)

y Heart (y) Has (x, y)

o Replace y......y with a constant H

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

x person (x) Heart (H) Has (x, y)

o The above representation says that everyone has the same heart H, not

necessarily shared between each other. It can be rewritten by applying a

function to each person that maps from person to heart.

x person (x) Heart (F(x) Has (x, F(x)) where F is a function

that does not appear elsewhere in the KB and it is called as Skolem function.

6. Distribute over :-
(a b) c becomes (a c) (b c)

7. Flatten nested conjunctions and disjunctions :-

(a b) c becomes (a b c)

(a b) c becomes (a b c)

It is a conjunction where every conjunct is a disjunction of literals.

8. Convert disjunctions to implications :-

From the CNF it is possible to derive the INF, (i.e.) combine the negative literals into

one list, the positive literals into another and build an implication from them,
(i.e.) (a b c d) becomes (a b c d)

 1. For Example: - Covert the given axioms into equivalent clasuses form and prove that R is

true using CNF and INF representation.

o Axioms:

 P

 P Q R

 S T Q

 T

o Proof:
 Equivalent Conjunctive Clause Form Representation:

o P
o P Q R
o S Q, T Q
o T

 Equivalent INF Representation:

o P

o P Q R
o S Q, T Q

o T

 The negation of the given statement (~R) derives a contradiction ({ }).

 Therefore it is proved that R is true.

 The following diagram shows the proof of resolution with refutation using CNF.

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

~R ~P ~Q R

Negation Step b

~P ~Q P

Step a

~Q ~T Q

Step c

~T T

Step d

{ }

 The negation of the given statements (R False) derives a contradiction (True False).

 Therefore it is proved that R is True (i.e. Taken assumption is wrong)

 The following diagram shows the proof of Resolution with refutation using INF.

P Q R P

(Step a & b)

T Q Q R

(Step c)

T R T

(Step d)

R R False

Negation

False

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 2. For Example: - Convert the given sentences (KB2) into its equivalent FOL representation

and then convert it into its CNF and INF representation and solve the task using resolution

with refutation proof.

o Given KB2:-

 Marcus was a man

 Marcus was a Pompeian

 All pompeians were romans

 Caesar was a ruler

 All romans were either loyalto Caesar or hated him

 Everyone is loyal to someone

 People only try to assassinate rulers they are not loyal to.

 Marcus tried to assassinate Caesar

 All man are people

o Task: - Did Marcus hate Caesar?

o Solution:-
 FOL Representation:

1. Man (Marcus)

2. Pompeian (Marcus)

3. x Pompeian (x) Roman (x)

4. Ruler (Caesar)
5. x Roman (x) Loyalto (x, Caesar) Hate (x, Caesar)

6. x y Loyalto (x, y)

7. x y Person(x) Ruler(y) Trytoassassinate(x, y) Loyalto(x, y)

8. Trytoassassinate (Marcus, Caesar)
9. x Man (x) Person (x)

 INF Representation:

1. Man (Marcus)

2. Pompeian (Marcus)

3. Pompeian (x) Roman (x)

4. Ruler (Caesar)

5. Roman (x) Loyalto (x, Caesar) Hate (x, Caesar)

6. Loyalto (x, y)

7. Person(x) Ruler(y) Trytoassassinate(x, y) Loyalto(x, y)

8. Trytoassassinate (Marcus, Caesar)

9. Man (x) Person (x)

 CNF Representation :

1. Man (Marcus)

2. Pompeian (Marcus)

3. ~Pompeian (x) Roman (x)
4. Ruler (Caesar)

5. ~Roman (x) Loyalto (x, Caesar) Hate (x, Caesar)
6. Loyalto (x, y)

7. ~Person(x) ~Ruler(y) ~Trytoassassinate(x, y) ~Loyalto(x, y)

8. Trytoassassinate (Marcus, Caesar)

9. ~Man (x) Person (x)

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 To prove the given fact, we assumed the negation of it (i.e.) Hate(Marcus, Caesar) False

and using inference rules we derive a contradiction False, which means that the assumption

must be false, and Hate(Marcus, Caesar) is True.

 Therefore it is proved that Hate (Marcus, Caesar) is True using INF Representation.

 The following diagram shows the proof of Resolution with refutation using INF

representation.

Pompeian (Marcus) Pompeian (x) Roman (x)

2 & 3

{ x/Marcus}

Roman (Marcus) Roman (x) Loyalto (x,

{x/Marcus} Caesar) Hate (x, Caesar)

5
10

Loyalto (Marcus, Caesar) Hate (Marcus, Caesar)

Person (x) Ruler

(y) Trytoassassinate (x, y)

 ~Loyalto (x, y)

Trytoassassinate (Marcus,

Caesar)

7 & 8 {x/Marcus, y/Marcus}

Person (Marcus) Ruler (Caesar)

 ~Loyalto (Marcus, Caesar)

Ruler (Caesar)

4

Person (Marcus) ~Loyalto

(Marcus, Caesar)

Man (x) Person (x)

{x/Marcus} 9

Man (Marcus)

1

Man (Marcus) ~Loyalto

(Marcus, Caesar)

~Loyalto (Marcus, Caesar) Loyalto (Marcus, Caesar)

 Hate (Marcus, Caesar)

10

Hate (Marcus, Caesar) Hate (Marcus, Caesar)

False

False

Negation

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

 To prove the given fact, we assumed that the negation of it (i.e.) ~ Hate (Marcus, Caesar) and

using inference rules, we derive a contradiction as empty set, which means that the

assumption must be false, and Hate (Marcus, Caesar) is true in the given KB.

 Therefore it is proved that Hate (Marcus, Caesar) is true using CNF representation.

 The following diagram shows the proof of Resolution with refutation using CNF

representation.

~Hate (Marcus, Caesar) ~Roman (x) Loyalto (x, Caesar) Hate (x, Caesar)

(Negation & 5) {x/Marcus}

~Roman (Marcus) Loyalto (Marcus,

Caesar)

Pompeian (x) Roman(x)

{x/Marcus} 3

~Pompeian (Marcus) Loaylto (Marcus,

Caesar)

Pompeian (Marcus)

2

~Person(x) ~Ruler (y) ~trytoassassinate

(x, y) ~Loyalto (x, y)

Loyalto (Marcus, Caesar)

{x/Marcus, y/Caesar}

~Man(x) Person (x)

9

7

{x/Marcus}

~Person(Marcus) ~Ruler (Caesar)

 ~Trytoassassinate (Marcus, Caesar)

~Man(Caesar) ~Ruler (Caesar)

 ~Trytoassassinate (Marcus, Caesar)

Man(Marcus)

1

~Ruler(Marcus) ~Trytoassassinate

(Marcus, Caesar)

Ruler (Caesar)

4

~Trytoassassinate (Marcus, Caesar) ~Trytoassassinate (Marcus, Caesar)

8

{ }

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
4

6

.10.4 Dealing with equality:-

 The unification algorithm is used to find a equality between variables with other terms (i.e.)

p(x) unifies with p(A), but p(A) and p(B) fails to unify, even if the sentence A=B in the KB.

 The unification does only a syntactic test based on the appearance of the argument terms, not

a true semantic test (meaning) based on the objects they represent.

 To solve this problem, one of the way is, the properties can be followed as,

1. x

2. x, y

x x

x y y x

- Reflexive

- Symmetric

3. x, y, z x y y z x z - Transitive

4. x, y x y (p1(x) p1(y)) x y , if the predicate name

x, y x y (p 2(x) p2(y)) and arguments are same.

5. w, x, y, z w y x z (F 1(w, x) F 1(y, z))

w y x z (F 2(w, x) F 2(y, z))

 The other way to deal with equality is demodulation rule. For any terms x, y and z where

UNIFY (x, z) = , defined as :

x y, (......z......)

(.....SUBST (, y).....)

 A more powerful rule named paramodulation deals with the case where we do not know

x y , but we do know x y p(x) .

2.10.5 Resolution strategies:-

 A strategy which is used to guide the search towards a proof of the resolution inference rule.

Different types of strategies are as follows,

 Unit Preferences:-

This strategy prefers a sentence with single literal, to produce a very short

sentence

For Example:- P and P Q R derives the sentence Q R .

 Set of support:-

A subset of the sentence are identified (set of support) and resolution combines a

set of support with another sentence and adds the resolvent into the set off support,

which reduces the size of a sentence in the KB.

Disadvantage: - Bad choice for the set of support will make the algorithm

incomplete.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
4

7

Advantage: - Goal directed proof trees are generated

 Input resolution:-

This strategy combines one of the input sentences (from the KB or the query)

with some other sentence.

For Example:- Resolution proof, Resolution with refutation proof.

Input resolution is complete for KB that are in Horn form, but incomplete in

the general case.

 Linear resolution:-

Two predicates are resolved (P and Q), if either P is in the original KB or if P is an

ancestor of Q in the proof tree.

 Subsumption:-

A strategy which eliminate all sentences that are more specific than the

existing sentence.

For example:- if P(x) is in the KB, then there is no sense in adding P(A) to

KB.

2.10.6 Theorem Provers (or) Automated reasoners

 Theorem provers use resolution or some other inference procedure to prove sentences in full

first order logic, often used for mathematical and scientific reasoning tasks.

 For Example:- MRS, LIFE.

Logic Programming language (PROLOG) Theorem Provers

Handles only the horn clauses Handles full FOL representation

Choice of writing sentences in different form

with same meaning affects the execution order

Does not affects the execution order derives

the same conclusion

Example:- writing A B C instead of

A C B affects the execution of the

program

Example:- User can write either A B C or

A C B or another form B C A and

the results will be exactly same.

Design of a Theorem Prover:-

 An example for theorem prover is: OTTER=> Organized Techniques for Theorem proving

and Effective Research, with particular attention to its control strategy.

 To prepare a problem for OTTER, the user must divide the knowledge into four parts;

1. SetOfSupport (SOS): A set of clauses, which defines the important facts about the

problem. Resolution step resolves the member of SOS with another axiom.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
4

8

2. Usable axioms: - A set of axioms that are outside the set of support, provides background

knowledge about the problem area. The boundary between SOS and the axiom is up to

the user’s judgement.

3. Rewrites (or) Demodulators :- A set of equations evaluated or reduced from left-to-right

order (i.e.) x + 0 = x in which x + 0 should be replaced by the term x.

4. A set of parameters and clauses that defines the control strategy that is,

a. Heuristic function :- to control the search

b. Filtering function :- eliminates some subgoals which are uninteresting

2.10.7 Execution:-

 Resolution takes place by combining the element of SOS with useful axiom, generally prefers

unit strategy.

 The process continuous until a reputation is found or there are no more clauses in the SOS.

 The following shows the algorithm of execution,

Algorithm:-

Procedure OTTER(sos, usable)

Inputs: sos, a set of support-clauses defining the problem (global variable)

Usable background knowledge potentially relevant to the problem

Repeat:
clause the lightest member of sos

move clause from sos to usable

PROCESS (INFER(clause, usable),sos)
Until sos = [] or a refutation has been found

function INFER(clause, usable) returns clauses

resolve clause with each member of usable

return the resulting clauses after applying FILTER

Procedure PROCESS (clauses, sos)

for each clause in clauses do

clause SIMPLIFY (clause)

merge identical literals

discard clause if it is a tautology

sos [clause | sos]

if clause has no literals then a refutation has been found

if clause has one literal then look for unit refutation

end

2.10.8 Extending Prolog:-

 Theorem prover can be build using prolog compiler as a base and a sound complete reasoned

of full first order logic is done using PTTP.

 Where PTTP is Prolog Technology Theorem Prover.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-II/LOGICAL REASONING

P
ag

e
4

9

 PTTP includes five significant changes to prolog to restore the completeness and

expensiveness.

Prolog PTTP

Depth First Search Iterative deepening search

Not possible like a PTTP implementation Negated literals are allowed (i.e.) in the

implementation P, P can be derived using

two separate routines

Locking is not allowed Locking is allowed (i.e.) A clause with n atoms

is stored as n different rules. Example:-
A B X is equivalent to

B X A, X B A

Inference is not complete Inference is complete since refutation is

allowed

Unification is less efficient Unification is more eficient

Drawback of PTTP:-

 Each inference rule is used by the system both in its original form and contrapositive form

Example:- (f (x, y) f (a, b)) (x a) (y b)

 Prolog proves that two f terms are equal, But PTTP would also generate the contrapositive
(x a) (f (x, y) f (a, b)) (y b)

 This is a wasteful way to prove that any two terms x and a are different.

**

SECOND UNIT-II LOGICAL REASONING FINISHED

**

STUDENTSFOCUS.COM

P
ag

e
1

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

ARTIFICIAL INTELLIGENCE

UNIT-III

KNOWLEDGE INFERENCE

Knowledge Representation - Production based System, Frame based System. Inference
- Backward Chaining, Forward Chaining, Rule value approach, Fuzzy Reasoning -
Certainity factors, Bayesian Theory - Bayesian Network - Dempster Shafer Theory

3.0 Knowledge representation: -
 The task of coming up with a sequence of actions that will achieve a goal is called Planning.

 “Deciding in ADVANCE what is to be done”

 A problem solving methodology

 Generating a set of action that are likely to lead to achieving a goal

 Deciding on a course of actions before acting

 Representation for states and Goals:-

o In the STRIPS language, states are represented by conjunctions of function-free

ground literals, that is, predicates applied to constant symbols, possibly negated.

o For example,

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^….

o Goals are also described by conjunctions of literals.
o For example,

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill)
o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

 Representation for actions:-
o Our STRIPS operators consist of three components:

o the action description is what an agent actually returns to the environment in order to
do something.

o the precondition is a conjunction of atoms (positive literals) that says what must be
true before the operator can be applied.

o the effect of an operator is a conjunction of literals (positive or negative) that

describes how the situation changes when the operator is applied.

o Here’s an example for the operator for going from one place to another:

 Op(Action:Go(there),

 Precond:At(here)^Path(here, there),

 Effect:At(there)^ ¬At(here))

 Representation of Plans:-
o Consider a simple problem:
o Putting on a pair of shoes
o Goal RightShoeOn ^ LeftShoeOn
o Four operators:

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

Given:-

Op(Action:RightShoe,PreCond:RightSockOn,Effect:RightShoeON)

Op(Action:RightSock , Effect: RightSockOn)

Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn)

Op(Action:LeftSock,Effect:LeftSockOn)

 A description of an initial state

 A set of actions

 A (partial) description of a goal state

Problem:-
 Find a sequence of actions (plan) which transforms the initial state into the goal state.

Application areas:-
 Systems design

 Budgeting

 Manufacturing product

 Robot programming and control

 Military activities

Benefits of Planning:-
 Reducing search

 Resolving goal conflicts

 Providing basis for error recovery

3.1 Planning with State Space Search:

 Planning with state space search approach is used to construct a planning algorithm.

 This is most straightforward approach.

 The description of actions in a planning problem specifies both preconditions and effects.

 It is possible to search in either direction.

 Either from forward from the initial state or backward from the goal

 The following are the two types of state space search ,

o Forward state-space search

o Backward state-space search

 The following diagram shows the Forward state-space search

At(P1,A)

At(P2, A)

Fly(P1,A,B)

Fly(P2,A,B)

At(P1,B)

At(P2, A)

At(P1,A)

At(P2, B)

3.1.1 Forward state-space search:-

 Planning with forward state-space search is similar to the problem solving using Searching.

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 It is sometimes called as progression Planning.

 It moves in the forward direction.

 we start in the problems initial state, considering sequence of actions until we find a sequence

that reaches a goal state.

 The formulation of planning problems as state-space search problems is as follows,

o The Initial state of the search is the initial state from the planning problem.
o In general, each state will be a set of positive ground literals; literals not appearing are

false.

o The actions that are applicable to a state are all those whose preconditions are

satisfied.

o The successor state resulting from an action is generated by adding the positive effect

literals and deleting the negative effect literals.

o The goal test checks whether the state satisfies the goal of the planning problem.

o The step cost of each action is typically 1.
 This method was too inefficient.

 It does not address the irrelevant action problem, (i.e.) all applicable actions are considered

from each state.

 This approach quickly bogs down without a good heuristics.

 For Example:-

o Consider an air cargo problem with 10 airports, where each airport has 5 planes and

20 pieces of cargo.

o The Goal is to move the entire cargo form airport A to airport B.

o There is a simple solution to the Problem,
o Load the 20 pieces of cargo into one of the planes at A, then fly the plane to B, and

unload the cargo.

o But finding the solution can be difficult because the average branching factor is huge.

3.1.2 Backward state- space search:-

 Backward search is similar to bidirectional search.

 It can be difficult to implement when the goal states are described by a set of constraints

rather than being listed explicitly.

 It is not always obvious how to generate a description of the possible predecessors of the set

of goal states.

 The main advantage of this search is that it allows us to consider only relevant actions.

 An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the goal.

 The following diagram shows the Backward state-space search

At(P1,A)

At(P2, B)

At(P1,B)

At(P2, A)

Fly(P1,A,B)

Fly(P2,A,B)

At(P1,B)

At(P2, B)

SVCET

STUDENTSFOCUS.COM

P
ag

e
4

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 For example:-

o The goal in our 10-airport cargo problem is to have 20 pieces of cargo at airport B, or

more precisely,
At(C1,B) At(C2,B) …… At(C20,B)

o Now consider the conjunct At(C1,B). working backwards, we can seek actions that

have this as an effect. There is only one unload(C1,p,B), where plane p is unspecified.

o In this search restriction to relevant actions means that backward search often has a

much lower branching factor than forward search.

 Searching backwards is sometimes called regression planning.

 The principal question is:- what are the states from which applying a given action leads to the

goal?

 Computing the description of these states is called regressing the goal through the action.

 consider the air cargo example;- we have the goal as,

At(C1,B) At(C2,B) …… At(C20,B)
and the relevant action Unload(C1,p,B), which achieves the first conjunct.

 The action will work only if its preconditions are satisfied.

 Therefore , any predecessor state must include these preconditions : In(C1,p) At(p,B),

Moreover the subgoal At(C1,B) should not be true in the predecessor state.

 The predecessor description is
In(C1,p) At(p,B) At(C2,B) …… At(C20,B)

 In addition to insisting that actions achieve some desired literal, we must insist that the

actions not undo any desired literals.

 An action that satisfies this restriction is called consistent.

 From definitions of relevance and consistency, we can describe the general process of

constructing predecessors for backward search.

 Given a goal description G, let A be an action that is relevant and consistent. The

corresponding predecessor is as follows

o any positive effects of A that appear in G are deleted
o Each precondition literal of A is added, unless it already appears

 Termination occurs when a predecessor description is generated that is satisfied by the initial

state of the planning problem.

3.1.3 Heuristics for State-space search:-

Heuristic Estimate:-

 The value of a state is a measure of how close it is to a goal state.

 This cannot be determined exactly (too hard), but can be approximated.

 One way of approximating is to use the relaxed problem.

 Relaxation is achieved by ignoring the negative effects of the actions.

 The relaxed action set, A’, is defined by:

A’ = {<pre(a),add(a),0> | a in A}

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
5

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

Building the relaxed plan graph:-

 Start at the initial state

 Repeatedly apply all relaxed actions whose preconditions are satisfied.

o Their (positive) effects are asserted at the next layer.

 If all actions applied and the goals are not
all present in the final graph layer

Then the problem is unsolvable.

Extracting Relaxed solution

 When a layer containing all of the goals is reached ,FF searches backwards for a plan.

 The earliest possible achiever is always used for any goal.

 This maximizes the possibility for exploiting actions in the relaxed plan.

 The relaxed plan might contain many actions happening concurrently at a layer.

 The number of actions in the relaxed plan is an estimate of the true cost of achieving the

goals.

How FF uses the Heuristics:-

 FF uses the heuristic to estimate how close each state is to a goal state

 any state satisfying the goal propositions.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
6

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The actions in the relaxed plan are used as a guide to which actions to explore when

extending the plan.

 All actions in the relaxed plan at layer i that achieve at least one of the goals required

at layer i+1 are considered helpful.

 FF restricts attention to the helpful actions when searching forward from a state.

Properties of the Heuristics:-

 The relaxed plan that is extracted is not guaranteed to be the optimal relaxed plan.

 the heuristic is not admissible.

 FF can produce non-optimal solutions.

 Focusing only on helpful actions is not completeness preserving.

 Enforced hill-climbing is not completeness preserving.

3.2 Partial Order Planning:-

 Formally a planning algorithm has three inputs:

o A description of the world in some formal language,

o A description of the agent’s goal in some formal language, and
o A description of the possible actions that can be performed.

 The planner’s o/p is a sequence of actions which when executed in any world satisfying the
initial state description will achieve the goal.

 Representation for states and Goals:-

o In the STRIPS language, states are represented by conjunctions of function-free

ground literals, that is, predicates applied to constant symbols, possibly negated.

o For example,

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^….
o Goals are also described by conjunctions of literals.
o For example,

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill)

o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

 Representation for actions:-
o Our STRIPS operators consist of three components:
o the action description is what an agent actually returns to the environment in order to

do something.

o the precondition is a conjunction of atoms (positive literals) that says what must be

true before the operator can be applied.

o the effect of an operator is a conjunction of literals (positive or negative) that

describes how the situation changes when the operator is applied.

o Here’s an example for the operator for going from one place to another:

 Op(Action:Go(there),

 Precond:At(here)^Path(here, there),

 Effect:At(there)^ ¬At(here))

 Representation of Plans:-
o Consider a simple problem:

o Putting on a pair of shoes
o Goal RightShoeOn ^ LeftShoeOn
o Four operators:

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
7

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

Op(Action:RightShoe,PreCond:RightSockOn,Effect:RightShoeON)

Op(Action:RightSock , Effect: RightSockOn)

Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn)

Op(Action:LeftSock,Effect:LeftSockOn)

 Least Commitment:- The general strategy of delaying a choice during search is called Least

commitment.

 Partial-order Planner:- Any planning algorithm that can place two actions into a plan

without specifying which come first is called a partial order planner.

 Linearization:- The partial-order solution corresponds to six possible total order plans ; each

of these is called a linearization of the partial order plan.

 Total order planner:- Planner in which plans consist of a simple lists of steps.

 A plan is defined as a data structure

o A set of plan steps

o A set of step ordering
o A set of variable binding constraints
o A set of causal links : si

c
sj

”si achieves c for sj”

 Initial plan before any refinements

Start < Finish

Refine and manipulate until a plan that is a solution

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
8

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The following diagram shows the partial order plan for putting on shoes and socks, and the

six corresponding linearization into total order plans.

 Solutions

o solution : a plan that an agent guarantees achievement of the goal

o a solution is a complete and consistent plan
o a complete plan : every precondition of every step is achieved by some other step

o a consistent plan : no contradictions in the ordering or binding constraints. When we
meet a inconsistent plan we backtrack and try another branch

3.2.1 Partial order planning Algorithm:-

The following is the Partial order planning algorithm,

function pop(initial-state, conjunctive-goal, operators)

// non-deterministic algorithm

plan = make-initial-plan(initial-state, conjunctive-goal);

loop:

begin

if solution?(plan) then return plan;

(S-need, c) = select-subgoal(plan) ; // choose an unsolved goal

choose-operator(plan, operators, S-need, c);

// select an operator to solve that goal and revise plan

resolve-threats(plan); // fix any threats created

end

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
9

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

end

function solution?(plan)

if causal-links-establishing-all-preconditions-of-all-steps(plan)

and all-threats-resolved(plan)

and all-temporal-ordering-constraints-consistent(plan)

and all-variable-bindings-consistent(plan)

then return true;

else return false;

end

function select-subgoal(plan)

pick a plan step S-need from steps(plan) with a precondition c

that has not been achieved;

return (S-need, c);

end

procedure choose-operator(plan, operators, S-need, c)

// solve "open precondition" of some step

choose a step S-add by either

Step Addition: adding a new step from operators that

has c in its Add-list

or Simple Establishment: picking an existing step in Steps(plan)

that has c in its Add-list;

if no such step then return fail;

add causal link "S-add --->c S-need" to Links(plan);

add temporal ordering constraint "S-add < S-need" to Orderings(plan);

if S-add is a newly added step then

begin

add S-add to Steps(plan);

add "Start < S-add" and "S-add < Finish" to Orderings(plan);

end

end

procedure resolve-threats(plan)

foreach S-threat that threatens link "Si --->c Sj" in Links(plan)

begin // "declobber" threat

choose either

Demotion: add "S-threat < Si" to Orderings(plan)

or Promotion: add "Sj < S-threat" to Orderings(plan);

if not(consistent(plan)) then return fail;

end

end

 Partial Order Planning Example:-

o Shopping problem: “get milk, banana, drill and bring them back home”
o assumption

1)Go action “can travel the two locations”
2)no need money

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

o initial state : operator start

Op(ACTION:Start,EFFECT:At(Home) Sells(HWS,Drill) Sells(SM,Milk),

Sells(SM,Banana))

o goal state : Finish

Op(ACTION:Finish, PRECOND:Have(Drill) Have(Milk) Have(Banana)

 At(Home))

o actions:

Op(ACTION:Go(there),PRECOND:At(here),EFFECT:At(there) ¬At(here))

Op(ACTION:Buy(x),PRECOND:At(store) Sells(store,x),EFFECT:Have(x))

 There are many possible ways in which the initial plan elaborated

o one choice : three Buy actions for three preconditions of Finish action
o second choice:sells precondition of Buy

• Bold arrows:causal links, protection of precondition

• Light arrows:ordering constraints

 The following diagram shows the,

o partial plan that achieves three of four preconditions of finish
o Refining the partial plan by adding casual links to achieve the sells preconditions of

the buy steps

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 causal links : protected links

a causal link is protected by ensuring that threats are ordered to come before or after the

protected link

 demotion : placed before

promotion : placed after

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The following diagram shows the partial plan that achieves At Precondition of the three buy

conditions

 The following diagram shows the solution of this problem,

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The following are the Knowledge engineering for plan,

 Methodology for solving problems with the planning approach

(1) Decide what to talk about

(2) Decide on a vocabulary of conditions, operators, and objects

(3) Encode operators for the domain

(4) Encode a description of the specific problem instance

(5) pose problems to the planner and get back plans

 (ex) The blocks world

o (1) what to talk about

 cubic blocks sitting on a table

 one block on top of another

 A robot arm pick up a block and moves it to another position

o (2) Vocabulary

 objects:blocks and table

 On(b,x) : b is on x

 Move(b,x,y) : move b form x to y

 ¬exist x On(x,b) or x ¬On(x,b) : precondition

 clear(x)

o (3)Operators
Op(ACTION:Move(b,x,y),

PRECOND:On(b,x) Clear(b) Clear(y),

EFFECT:On(b,y) Clear(x) ¬On(b,x) ¬Clear(y))

Op(ACTION:MoveToTable(b,x),

PRECOND:On(b,x) Clear(b),

EFFECT:On(b,Table) Clear(x) ¬On(b,x))

3.3 Planning Graph:-
 Planning graphs are an efficient way to create a representation of a planning problem that can

be used to

o Achieve better heuristic estimates
o Directly construct plans

 Planning graphs only work for propositional problems.

 Planning graphs consists of a seq of levels that correspond to time steps in the plan.

o Level 0 is the initial state.
o Each level consists of a set of literals and a set of actions that represent what might be

possible at that step in the plan

o Might be is the key to efficiency
o Records only a restricted subset of possible negative interactions among actions.

 Each level consists of

o Literals = all those that could be true at that time step, depending upon the actions

executed at preceding time steps.

o Actions = all those actions that could have their preconditions satisfied at that time

step, depending on which of the literals actually hold.

 For Example:-

Init(Have(Cake))

Goal(Have(Cake) Eaten(Cake))

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

Action(Eat(Cake),

PRECOND: Have(Cake)

EFFECT: ¬Have(Cake) Eaten(Cake))

Action(Bake(Cake),

PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

 Steps to create planning graph for the example,

o Create level 0 from initial problem state.

o Add all applicable actions.
o Add all effects to the next state.

o Add persistence actions (inaction = no-ops) to map all literals in state Si to state Si+1.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

o Identify mutual exclusions between actions and literals based on potential conflicts.

 Mutual Exclusion:-

o A mutex relation holds between two actions when:
 Inconsistent effects: one action negates the effect of another.

 Interference: one of the effects of one action is the negation of a precondition

of the other.

 Competing needs: one of the preconditions of one action is mutually exclusive

with the precondition of the other.

o A mutex relation holds between two literals when:
 one is the negation of the other OR

 each possible action pair that could achieve the literals is mutex (inconsistent

support).

 Level S1 contains all literals that could result from picking any subset of actions in A0

o Conflicts between literals that can not occur together
(as a consequence of the selection action) are

represented by mutex links.

o S1 defines multiple states and the mutex links are the constraints that define this set of

states.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 Repeat process until graph levels off:

o two consecutive levels are identical, or
o contain the same amount of literals

(explanation follows later)

 In figure

o rectangle denotes actions
o small square denotes persistence actions
o straight lines denotes preconditions and effects
o curved lines denotes mutex links

3.3.1 Planning Graphs for Heuristic Estimation:-

 PG’s provide information about the problem

o PG is a relaxed problem.

o A literal that does not appear in the final level of the graph cannot be achieved by any
plan.

 H(n) = ∞

o Level Cost: First level in which a goal appears
 Very low estimate, since several actions can occur

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

7

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 Improvement: restrict to one action per level using serial PG (add mutex links

between every pair of actions, except persistence actions).

 Cost of a conjunction of goals

o Max-level: maximum first level of any of the goals
o Sum-level: sum of first levels of all the goals
o Set-level: First level in which all goals appear without being mutex

 The following is the GraphPlan Algorithm,

 Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph INITIAL-PLANNING-GRAPH(problem)

goals GOALS[problem]

loop do
if goals all non-mutex in last level of graph then do

solution EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

if solution failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph EXPAND-GRAPH(graph, problem)

 Initially the plan consist of 5 literals from the initial state and the CWA literals (S0).

 Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)

 Also add persistence actions and mutex relations.

 Add the effects at level S1

 Repeat until goal is in level Si

 EXPAND-GRAPH also looks for mutex relations

o Inconsistent effects

 E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground)

and not At(Spare, Ground)

o Interference

 E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND
and not At(Flat,Axle) as EFFECT

o Competing needs
 E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not

At(Flat, Axle)

o Inconsistent support

 E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

 In S2, the goal literals exist and are not mutex with any other

o Solution might exist and EXTRACT-SOLUTION will try to find it

 EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process:

o Initial state = last level of PG and goal goals of planning problem
o Actions = select any set of non-conflicting actions that cover the goals in the state
o Goal = reach level S0 such that all goals are satisfied
o Cost = 1 for each action.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

3.3.2 Termination of GraphPlan:-

 Termination? YES

 PG are monotonically increasing or decreasing:

o Literals increase monotonically: - Once a literal appears at a given level, it will appear

at all subsequent levels. This is because of the persistence actions; Once a literal
shows up, persistence actions cause it to say forever.

o Actions increase monotonically:- Once a literal appears at a given level, it will appear

at all subsequent levels. This is a consequence of literals increasing; if the

preconditions of an action appear at one level, they will appear at subsequent levels,

and thus will the action

o Mutexes decrease monotonically:- If two actions are mutex at a given level Ai, then

they will also be mutex for all previous levels at which they both appear.

 Because of these properties and because there is a finite number of actions and literals, every

PG will eventually level off

3.4 Planning and Acting in the Real World:

 In which we see how more expressive representation and more interactive agent architectures

lead to planners that are useful in the real world.

 Planners that are used in the real world for tasks such as scheduling,

o Hubble Space Telescope Observations
o Operating factories
o handling the logistics for military campaigns

3.4.1 Time, Schedules and Resources:

 Time is the essence in the general family of applications called Job Shop Scheduling.

 Such a tasks require completing a set of jobs, each of which consists of a sequence of actions,

where each action has a given duration and might require some resources.

 The problem is to determine a schedule that minimizes the total time required to complete all

the jobs, while respecting the resource constraints.

 For Example:- The following problem is a job shop scheduling.

Init (chassis(C1) chassis(C2)

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
1

9

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 Engine (E1,C1,30) Engine (E2,C2,60)

 Wheels (W1,C1,30) Wheels (W2,C2,15))
Goal (Done(C1) Done(C2))

Action (AddEngine(e,c,m),

PRECOND: Engine(e,c,d) chassis(c) EngineIn(c),
EFFECT: EngineIn(c) Duration (d))

Action (AddWheels(w,c),

PRECOND: Wheels(w,c,d) chassis(c),

EFFECT: WheelsOn(c) Duration (d))

Action (Inspect(c),

PRECOND: EngineIn(c) WheelsOn (c) chassis (c),

EFFECT: Done (c) Duration(10))

 The above table shows the Job Shop scheduling problem for assembling two cars.

 The notation Duration (d) means that an action takes d minutes to execute.

 Engine(E1,C1,30) means that E1 is an Engine that fits into chassis C1 and takes 30 minutes

to Install

 The problem can be solved by POP (Partial order planning).

 We must now determine when each action should begin and end.

 The following diagram shows the solution for the above problem

 To find the start and end times of each action apply the Critical Path Method CPM.

 The critical path is the one that is the longest and upon which the other parts of the process

cannot be shorter than.

 At the top, the solution is given as a partial order plan.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The duration of each action is given at the bottom of each rectangle, with the earliest and

latest start time listed as [ES, LS] in the upper left.

 The difference between these two numbers is the slack of an action

 Action with zero slack are on the critical path, shown with bold arrows.

 At the bottom of the figure the same solution is shown as timeline.

 Grey rectangles represent time intervals during which an action may be executed, provided

that the ordering constraints are respected.

 The unoccupied portion of a grey rectangle indicates the slack.

 The following formula serve as a definition for ES and LS and also as the outline of a

dynamic programming algorithm to compute them:

ES (Start) 0

ES (B) max A BES (A) Duration(A)

LS (Finish) ES (Finish)

LS (A) min A BLS (B) Duration(A)

 The complexity of the critical path algorithm is just O(Nb).

 where N is the number of actions and b is the branching factor.

Scheduling with resource constraints:

 Real scheduling problems are complicated by the presence of constraints on resources.

 Consider the above example with some resources.

 The following table shows the job shop scheduling problem for assembling two cars, with

resources.

Init (chassis(C1) chassis(C2)
 Engine (E1,C1,30) Engine (E2,C2,60)
 Wheels (W1,C1,30) Wheels (W2,C2,15)

 EngineHoists (1) WheelStations (1) Inspectors (2))

Goal (Done(C1) Done(C2))

Action (AddEngine(e,c,m),

PRECOND: Engine(e,c,d) chassis(c) EngineIn(c),

EFFECT: EngineIn(c) Duration (d)

RESOURCE: EngineHoists (1))

Action (AddWheels(w,c),

PRECOND: Wheels(w,c,d) chassis(c),
EFFECT: WheelsOn(c) Duration (d),
RESOURCE: WheelStations (1))

Action (Inspect(c),
PRECOND: EngineIn(c) WheelsOn (c) chassis (c),

EFFECT: Done (c) Duration(10),
RESOURCE: Inspectors (1))

 The available resources are on engine assembly station, one wheel assembly station, and two

inspectors.

 The notation RESOURCE: means that the resource r is used during execution of an action,

but becomes free again when the action is complete.

 The following diagram shows the solution to the job shop scheduling with resources.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The left hand margin lists the three resources

 Actions are shown aligned horizontally with the resources they consume.

 There are two possible schedules, depending on which assembly uses the engine station first.

 One simple but popular heuristic is the minimum slack algorithm.

 it schedules actions in a greedy fashion.

 On each iteration, it considers the unscheduled actions that have had all their predecessors

scheduled and schedules the one with the least slack for the earliest possible start.

 It then updates the ES and LS times for each affected action and repeats.

 The heuristics is based on the same principle as the most-constrained variable heuristic in

constraint satisfaction.

3.4.2 Hierarchical Task Network Planning:

 One of the most pervasive ideas for dealing with complexit y is Hierarchical Decomposition.

 The key benefit of hierarchical structure structure is that, at each level of the hierarchy is

reduced to a small number of activities at the next lower level

 So that the computational cost of finding the correct way to arrange those activities for the

current problem is small.

 A planning method based on Hierarchical Task Networks or HTNs.

 This approach we take combines ideas from both partial-order planning and the area known

as “HTN planning”.

 In HTN planning, the initial plan, which describes the problem, is viewed as very high-level

description of what is to be done. For Example: - Building a House.

 Plans are refined by applying a action decompositions.

 Each action decompositions reduces a high-level action to a partially ordered set of lower-

level actions

3.4.2.1 Representing action decompositions:

 The following diagram shows the decomposition of a Building a house action.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

Land Build House

House

Start

Land

Get

Permit

decomposes to

Construction

Pay

Builder

House

 Money

Finish

Money

Hire

Builder

 In pure HTN planning, plans are generated only by successive action decompositions.

 Therefore the HTN views planning as a process of making an activity description more

concrete, rather than a process of constructing an activity description, starting from the empty

activity.

 The action decompositions are represented as, action decompositions methods are stored in a

plan library

 From which they are extracted and instantiated to fit the needs of the plan being constructed.

 Each method is an expression of the form Decompose (a, d).

 It means that an action a can be decomposed into the plan d, which is represented as a partial

ordered plan.

 The following table shows the action descriptions for the house-building problem and a

detailed decomposition for the BuildHouse action.

 The start action of the decomposition supplies all those preconditions of actions in the plan

that are not supplied by other actions, such a things called external preconditions.

 In our example external preconditions are land and money.

 Similarly, the external effects, which are the preconditions of Finish, are all those effects of

actions in the plan that are not negated by other actions.

Action (BuyLand, PRECOND: Money, EFFECT: Land Money)

Action (GetLoan, PRECOND: GoodCredit, EFFECT:Money Mortgage)

Action (BuildHouse, PRECOND: Land, EFFECT: House)

Action (GetPermit, PRECOND: Land, EFFECT: Permit)

Action (HireBuilder, EFFECT: Contract)

Action (Construction, PRECOND: Permit Contract, EFFECT: HouseBuilt Permit)
Action (PayBuilder, PRECOND: Money HouseBuilt, EFFECT: Money House Contract)

Decompose (BuildHouse,

Plan (Steps : {S1: GetPermit, S2: HireBuilder, S3: Construction, S4: PayBuilder}

ORDERINGS: {Start S1 S3 S4 Finish, Start S2 S3},
Links: {Start Land S1, Start Money S4, S1permit S3, S2 Contract S3, S3 HouseBuilt S4,

S4 House Finish, S4 Money Finish}))

 Decomposition should be a correct implementation of the action.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 A plan library could contain several decompositions for any given high-level action.

 Decomposition should be a correct plan, but it could have additional preconditions and

effects beyond those stated in the high-level action description.

 The precondition of the high-level action should be the intersection of the external

preconditions of its decomposition.

 In which two other forms of information hiding should be noted as,

 First the high-level description completely ignores all internal effects of the decompositions

 Second the high-level description does not specify the intervals “inside” the activity during

which the high-level preconditions are effects must hold.

 Information hiding of this kind is essential if hierarchical planning is to reduce complexity.

3.4.2.2 Modifying the planner for decomposition:

 In this we will see how to modify the Partial Order Planning to incorporate HTN planning.

 We can do that by modifying the POP successor function to allow decomposition methods to

be applied to the current partial plan P.

 The new successor plans are formed by first selecting some non-primitive action a’ in P and

then, for any Decompose (a, d) method from the plan library such that a and a’ unify with

substitution θ, replacing a’ with d’ = SUBST (θ, d)

 The following diagram shows the decomposition of a high-level action within an existing

plan.

 Where The BuildHouse action is replaced by the decomposition from the above example.

 The external precondition land is supplied by the existing causal link from BuyLand.

 The external precondition Money remains open after the decomposition step, so we add a

new action, GetLoan.

 To be more precise follow the below steps,

o First the action a’ is removed from P.Then for each step S in the decomposition d’
o Second step is to hook up the ordering constraints for a’ in the original plan to the

steps in d’.

o Third and final step is to hook up casual links.

Money Land House

Start Buy Land Build House Finish

Money

Start

Land

Buy Land

Get Permit

House

Construction
Pay

Builder

Finish

Get Loan Hide Builder
GoodCredit Money

 This completes the additions required for generating decompositions in the context of the

POP Planner.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

3.4.3 Planning and Acting in Non-deterministic domains:

 So far we have considered only classical planning domains that are fully observable, static

and deterministic.

 Furthermore we have assumed that the action descriptions are correct and complete.

 Agents have to deal with both incomplete and incorrect information.

 Incompleteness arises because the world is partially observable, non-deterministic or both.

 Incorrectness arises because the world does not necessarily match my model of the world.

 The possibility of having complete or correct knowledge depends on how much

indeterminacy there in the world.

 Bounded indeterminacy actions can have unpredictable effects, but the possible effects can

be listed in the action description axioms.

 Unbounded indeterminacy the set of possible preconditions or effects either is unknown or

is too large to be enumerated completely.

 Unbounded indeterminacy is closely related to the qualification problem.

 There are four planning methods for handling indeterminacy.

 The following planning methods are suitable for bounded indeterminacy,

o Sensorleses Planning:-
 Also called as Confront Planning

 This method constructs standard, sequential plans that are to be executed

without perception.

 This algorithm must ensure that the plan achieves the goal in all possible

circumstances, regardless of the true initial state and the actual action

outcomes.

 It relies on coercion – the idea that the world can be forced into a given state

even when the agent has only partial information about the current state.

 Coercion is not always possible.

o Conditional Planning:-

 Also called as Contingency planning

 This method constructing a conditional plan with different branches for the

different contingencies that could arise.

 The agent plans first and then executes the plan was produced.

 The agents find out which part of the plan to execute by including sensing

actions in the plan to test for the appropriate conditions.

 The following planning methods are suitable for Unbounded indeterminacy,

o Execution Monitoring and Replanning:-
 In this, the agent can use any of the preceding planning techniques to construct

a plan.

 It also uses Execution Monitoring to judge whether the plan has a provision

for the actual current situation or need to be revised.

 Replanning occurs when something goes wrong.

 In this the agent can handle unbounded indeterminacy.

o Continuous Planning:-
 It is designed to persist over a lifetime.

 It can handle unexpected circumstances in the environment, even if these

occur while the agent is in the middle of constructing a plan.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 It can also handle the abandonment of goals and the creation of additional

goals by goal formulation.

3.4.4 Conditional Planning:-

 Conditional planning is a way to deal with uncertainty by checking what is actually

happening in the environment at predetermined points in the plan.

 Conditional planning is simplest to explain for fully observable environments

 The partially observable case is more difficult to explain in this conditional planning.

3.4.4.1 Conditional planning in fully observable environments:

 Full observability means that the agent always knows the current state.

 CP in fully observable environments (FOE)

o initial state : the robot in the right square of a clean world;
o the environment is fully observable: AtR ∧CleanL∧CleanR.

o The goal state : the robot in the left square of a clean world.

 Vacuum world with actions Left, Right, and Suck

 Disjunctive effects: Action (Left, PRECOND : AtR, EFFECT : AtL AtR)

 Modified Disjunctive effects : Action (Left, PRECOND : AtR, EFFECT : AtL

v AtR)

 Conditional effects: Action(Suck, Precond: , Effect: (when AtL: CleanL) ^

(when AtR: CleanR)

Action (Left, Precond: AtR, Effect: AtL v (AtL ^ when CleanL: !ClearnL)

o Conditional steps for creating conditional plans:
if test then planA else planB

e.g., if AtL ^ CleanL then Right else Suck

o The search tree for the vacuum world is shown in the following figure

o The first two levels of the search tree for the double Murphy vaccum world.
o State nodes are OR nodes where some action must be chosen.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

o Chance nodes, shown as circles, are AND nodes where every outcome must be

handled, as indicated by the arc linking the outgoing branches.

o The solution is shown as bold lines in the tree.

 The following table shows the recursive depth first algorithm for AND-OR graph search.

 The following figure shows the part of the search graph,

 clearly there are no longer any acyclic solutions, and AND-OR-GRAPH-SEARCH would

return with failure, there is however a, cyclic solution, which is keep trying Left until it

works.

 The first level of the search graph for the triple Murphy vacuum world, where we have shown

cycles explicitly.

 All solutions for this problem are cyclic plans.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

7

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The cyclic solution is as follows,

Conditional Planning in partially observable environments

 In the initial state of a partially observable planning problem, the agent knows only a certain

amount about the actual state.

 The simplest way to model this situation is to say that the initial state belongs to a state!set

 The state set is a way of describing the agents initial belief state.

 Determine “both squares are clean” with local dirt sensing

o the vacuum agent is AtR and knows about R, how about L?

 The following graph shows part of the AND-OR graph for the alternate double Murphy

vaccum world,

 In which Dirt can sometimes be left behind when the agent leaves a clean square

 The agent cannot sense dirt in other squares.

 Sets of full state descriptions

o { (AtR ⋀ CleanR ⋀ CleanL), (AtR ⋀ CleianR ⋀ ¬CleanL) }

 Logical sentences that capture exactly the set of possible worlds in the belief state.
o AtR ⋀ CleanR

 Knowledge propositions describing the agent's knowledge

 closed-world assumption - if a knowledge proposition does not appear in the list, it is

assumed false.

 Now we need to decide how sensing works.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 There are two choices here,

o Automatic sensing:- Which means that at every time step the agent gets all the

variable percepts

o Active sensing:- Which means the percepts are obtained only by executing specific

sensory actions such as

 CheckDirt

 CheckLocation

Action(Left, PRECOND: AtR,

EFFECT: K(AtL) ⋀¬K (AtR) ⋀ when CleanR: ¬K(CleanR) ⋀
when CleanL: K (CleanL) ⋀

when ¬ CleanL: K(¬ CleanL)) .

Action(CheckDirt, EFFECT:

when AtL⋀CleanL: K(CleanL) ⋀

when AtL ⋀ ¬CleanL: K (¬CleanL) ⋀

when AtR ⋀ CleanR: K(CleanR) ⋀

when AtR ⋀ ¬CleanR: K(¬CleanR))

3.4.4.2 Execution Monitoring and Replanning:

 An execution monitoring agent checks its percepts to see whether everything is going to

according plan.

 Murphy’s law tells us that even the best-laid plans of mice, men and conditional planning

agents frequently fail.

 The problem is unbounded indeterminacy – some unanticipated circumstances will always

arise for which the agents action description are incorrect.

 Therefore, execution monitoring is a necessity in realistic environments.

 we will consider two kinds of execution monitoring,

o Simple, but weak form called action monitoring – whereby the agent checks the

environment to verify that the next action will work.

o more complex, but more effective form called plan monitoring – in which the agent

verifies the entire remaining plan.

 A replanning agent knows what to do when something unexpected happens, call a planner

again to come up with a new plan to reach the goal.

 To avoid spending too much time planning, this is usually done by trying to repair the old

plan – to find a way from the current unexpected state back onto the plan

 Together Execution Monitoring and replanning form a general strategy that can be applied

to both fully and partially observable environments

 It can be applied to a variety of planning representations as state-space, partial-order and

conditional plans.

 The following table shows a simple approach to state-space planning.

 The planning agent starts with a goal and creates an initial plan to achieve it.

 The agent then starts executing actions one by one.

 The replanning agent keeps track of both the remaining unexpected plan segment plan and

the complete original plan whole-plan

 It uses action monitoring: before carrying out the next action of plan, the agent examines its

percepts to see whether any preconditions of the plan have unexpectedly become unsatisfied.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
2

9

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 If they have, the agent will try to get back on track by replanning a sequence of actions that

should take it back to some point in the whole-plan.

 The following table has an agent that does action monitoring and replanning

 It uses a complete state-space planning algorithm called PLANNER as a subroutine.

 If the preconditions of the next action are not met, the agent loops through the possible point

p in whole-plan, trying to find one that PLANNER can plan a path to.

 This path is called repair.

 If PLANNER succeeds in finding a repair, the agent appends repair and the tail of the plan

after p, to create the new plan.

 The agent then returns the first step in the plan.

Function REPLANNING-AGENT(percept) returns an action

Static: KB, a Knowledge base (includes action descriptions)

Plan, a plan, initially []

Whole-plan, a plan, initially []

Goal, a goal

TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t))

Current STATE-DESCRIPTION(KB,t)

If plan = [] then

whole-plan plan PLANNER(current,goal,KB)

If PRECONDITIONS(FIRST(plan)) not currently true in KB then

Candidates SORT(whole-plan, ordered by distance to current)

Find state s in candidates such that
Failure repair PLANNER(current,s,KB)

Continuation the tail of whole-plan starting at s

Whole-plan plan APPEND(repair, continuation)

Return POP(plan)

 The following diagram shows the schematic illustration of the process.

 The illustration of process is also called as Plan Monitoring.

 The replanner notices that the preconditions of the first action in plan are not satisfied by the

current state.

 It then calls the planner to come up with a new subplan called repair that will get from the

current situation to some state s on whole-plan.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

whole-plan

plan

S P E G

Continuation

repair

O

 Before execution, the planner comes up with a plan, here called whole-plan, to get from S to

G.

 The agent executes the plan until the point Marked E.

 Before executing the remaining plan, it checks preconditions as usual and finds that it is

actually in state O rather than state E.

 It then calls its planning algorithm to come up with repair, which is a plan to get from O to

some point P on the original whole-plan.

 The new plan now becomes the concatenation of repair and continuation.

 For example:-

o Problem of achieving a chair and table of matching color

 The agents PLANNER should come up with the following plan as,

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 If: the agent constructs a plan to solve the painting problem by painting the chair and table

red. only enough paint for the chair

 Plan monitoring

o Detect failure by checking the preconditions for success of the entire remaining plan
o Useful when a goal is serendipitously achieved

 While you’re painting the chair, someone comes painting the table with the
same color

o Cut off execution of a doomed plan and don’t continue until the failure actually
occurs

 While you’re painting the chair, someone comes painting the table with a

different color

 If one insists on checking every precondition, it might never get around to actually doing

anything

 RP - monitors during execution

3.4.4.3 Continuous Planning

 Continuous planning agent

o execute some steps ready to be executed
o refine the plan to resolve standard deficiencies
o refine the plan with additional information
o fix the plan according to unexpected changes

 recover from execution errors
 remove steps that have been made redundant

 Goal ->Partial Plan->Some actions-> Monitoring the world -> New Goal

 The continuous planning agent monitors the world continuously, updating its world model

from new percepts even if its deliberations are still continuing.

 For example:-

o use the blocks world domain problem
o The action we will need is Move(x, y), which moves block x onto block y, provided

that both are clear.

o The following is the action schema,

Action (Move(x, y),

PRECOND: Clear(x) Clear(y) On(x ,z),

EFFECT: On(x, y Clear(z) Clear(y) On(x, z))
o Goal: On(C, D) On(D ,B)
o Start is used as the label for the current state
o The following seven diagram shows the continuous planning agent approach towards

the goal

o Plan and execution
o Steps in execution:

 Ordering - Move(D,B), then Move(C,D)

 Another agent did Move(D,B) - change the plan

 Remove the redundant step

 Make a mistake, so On(C,A)

 Still one open condition

 Planning one more time - Move(C,D)

 Final state: start -> finish

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 The sequences of states as the continuous planning agent tries to reach the goal state On(C,

D) On(D ,B) as shown in (d).

 The start state is (a).

 At (b), another agent has interfered, putting D on B.

 At (c), the agent has executed Move(C, D) but has failed, dropping C on A instead.

 It retries Move(C, D), reaching the goal state (d).

 The initial plan constructed by the continuous planning agent.

 The plan is indistinguishable, so far, from that produced by a normal POP.

 After someone else moves D onto B, the unsupported links supplying Clear(B) and On(D, G)

are dropped, producing this plan.

 The link supplied by Move(D, B) has been replaced by one from Start, and the new-

redundant step Move(D, B) has been dropped.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 After Move(C, D) is executed and removed from the plan, the effects of the Start step reflect

the fact that C ended up on A instead of the intended D.

 The goal precondition On(C, D) is still open.

 The open condition is resolved by adding Move(C, D) back in.

 After Move(C, D) is executed and dropped from the plan, the remaining open condition

On(C, D) is resolved by adding a causal link from the new start step.

 Now the plan is completed.

 From this example, we can see that continuous planning is quite similar to POP.

 On each iteration, the algorithm finds something about the plan that needs fixing a so-called

plan-flaw and fixes it.

 The POP algorithm can be seen as a flaw-removal algorithm where the two flaws are open

preconditions and causal conflicts.

 On the other hand, the continuous planning agent addresses a much broader range of flaws as

follows,

o Missing goals
o Open precondition
o Causal conflicts
o Unsupported links
o Redundant actions
o Unexecuted actions
o Unnecessary historical goal

 The following table shows the continuous-POP-Agent algorithm

Function CONTINUOUS-POP-AGENT (percept) returns an action

Static: plan, a plan, initially with just Start, Finish

Action NoOp (the default)

EFFECTS [Start] = UPDATE(EFFECTS [Start], percept)

REMOVE-FLAW (plan) // possibly updating action

Return action

 It has a cycle of “perceive, remove flaw act”

 It keeps a persistent plan in its KB, and on each turn it removes one ,flaw from the plan.

 It then takes an action and repeats the loop.

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 It is a continuous partial-order planning agent.

 After receiving a percept the agent removes flaw from its constantly updated plan and then

returns an action.

 Often it will take many steps of flaw-removal planning, during which it returns NoOp, before

it is ready to take a real action.

3.4.4.4 Multiagent Planning

 So far we have dealt with single-agent environments

 Multiagent environments can be cooperative or competitive.

 For example:-

o the problem is team planning in double tennis.

 Plans can be constructed that specify actions for both players on the team

 Our objective is to construct plans efficiently.

 To do this we need requires some form of coordination, possibly achieved by

communication.

 The following table shows the double tennis problem,

 In the above table, Two agents are playing together and can be in one of four locations as

follows,

o [Left, Baseline]
o [Right, Baseline]
o [Left, Net]
o [Right, Net]

 The ball can be returned if exactly one player is in the right place.

Cooperation: Joint goals and plans

 An agent (A, B) declares that there are two agents, A and B who are participating in the

plan.

 Each action explicitly mentions the agent as a parameter, because we need to keep track of

which agent does what.

 A solution to a multiagent planning problem is a joint plan consisting of actions for each

agent

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

 A joint plan is a solution if the goal will be achieved when each agent performs its assigned

actions.

 The following plan is a solution to the tennis problem

o PLAN 1 :

 A : [Go(A,[Right, Baseline]),Hit(A, Ball)]

 B : [NoOp(B),NoOp(B)].

 If both agents have the same KB, and if this is the only solution, then everything would be

fine; the agents could each determine the solution and then jointly execute it.

 Unfortunately for the agents, there is another plan that satisfies the goal just as well as the

first

o PLAN 2:

 A : [Go(A, [Left, Net]), NoOp(A)]

 B : [Go (B,[Right,baseline]),H it(23, Ball)]

 If A chooses plan 2 and B chooses plan 1, then nobody will return the ball.

 Conversely, if A chooses 1 and B chooses 2, then they will probably collide with each other;

no one returns the ball and the net may remain uncovered.

 So the agents need a mechanism for coordination to reach the same joint plan

Multibody Planning:

 concentrates on the construction of correct joint plans, deferring the coordination issue for the

time being, we call this Multibody planning

 Our approach to multibody planning will be based on partial-order planning

 we will assume full observability, to keep things simple

 There is one additional issue that doesn’t arise in the single-agent case; the environment is no

longer truly static.

 Because other agents could act while any particular agent is deliberating.

 Therefore we need synchronization

 We will assume that each action takes the same amount of time and that actions at each point

in the joint plan are simultaneous.

 At any point in time, each agent is executing exactly one action.

 This set of concurrent actions is called a joint action.

 For example, Plan 2 for the tennis problem can be represented as this sequence of joint

actlons:

Coordination Mechanisms:

 The simplest method by which a group of agents can ensure agreement on a joint plan is to

adopt a convention prior to engaging in joint activity.

 A convention is any constraint on the selection of joint plans, beyond the basic constraint that

the joint plan must work if all agents adopt it

 For example

o the convention "stick to your side of the court" would cause the doubles partners to

select plan 2

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
ag

e
3

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-III/PLANNING

o the convention "one player always stays at the net" would lead them to plan 1

 In the absence of an applicable convention, agents can use communication to achieve

common knowledge of a feasible join plan

 For example:

o a doubles tennis player could shout "Mine!" or "Yours!" to indicate a preferred joint

plan.

Competition:

 Not all multiagent environments involve cooperative agents

 Agents with conflicting utility functions are in competition with each other

 One example: chess-playing. So an agent must

(a) recognize that there are other agents

(b) compute some of the other agent's possible plans

(c) compute how the other agent's plans interact with its own plans

(d) decide on the best action in view of these interactions

**

THIRD UNIT-I PLANNING FINISHED

GOOD LUCK

**

STUDENTSFOCUS.COM

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

ARTIFICIAL INTELLIGENCE

UNIT-IV

PLANNING AND MACHINE LEARNING

Basic plan generation systems – Strips - Advanced plan generation systems - K strips
- Strategic explanations - Why, Why not and how explanations. Learning - Machine

learning, adaptive learning.

4.1 Uncertainty
 Agents almost never have access to the whole truth about the environment

(i.e)Agent must therefore act under uncertainity.

 Uncertainity can also arise because of incompleteness and incorrectness in the agent’s

understanding of the properties of the environment.

4.1.1 Handling of Uncertainty:-

 Identifying uncertainity in dental diagnosis system.

 For all P Symptom(P,toothache) → Diagnosis(P,Cavity)

 This rule is logically wrong.Not all patients with toothache have cavities,some of them may

have gum disease or impacted wisdom teeth or one of several other problems.

 For all P symptom(P,toothache) → Disease(P,cavity) ᴠ Disease(P-Gumdisease) ᴠ

Disease(P,Impacted Wisdom)….

(i.e)unlimited set of possibilities are exists for toothache symptom.

Change into casual rule as:

 For all P disease(P,cavity) → Symptom(P,toothache),but this rule is not right

either,not all cavities cause pain.

 Trying to FOL in medical diagnosis thus fails for three main reasons.

I. LAZINES: Too much work to list the complete set of antecedents and

consequents needed.

II. THEORETICAL IGNORANCE: Medical science has no complete theory

for domain.

III. PRACTICAL IGNORANCE: Even if we know all the rules,uncertainit y

arises because some tests cannot be run on the patients body.

 CONCLUSION:

o Agents knowledge can at best provide only a degree of belief in the relevant

sentences.the total used to deal with degree of belief will be probability theory,which

assigns or numerical degree of belief between 0 to 1 to sentences.

STUDENTSFOCUS.COM

P
a

ge
2

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

 PRIOR (or) UNCONDITIONAL PROBABILITY:Before the evidence is obtained.

 POSTERIOR (or) CONDITIONAL PROBABILITY:After the evidence is obtained.

 UTILITY THEORY:To represent and reasons with preference(i.e)utility-quality of being

useful.

Decision theory=probability theory + Utility theory

 The fundamentals idea of decision theory is that an agent is rational if and only if it chooses

the action that yields the highest expected utility,averaged overall the possible outcomes of

the action-maximium expected utility.(i.e)Weighting the utility of a particular outcome by the

probability that it occurs.

 The following shows a decision theoretic agent

Function DT-Agent (percept)returns an action

Static: belief_state,probabilistic beliefs about the current state of world

action, the Agent’s action

Update: belief_state based on action and percept

Calculate outcomes probabilities for actions,

given action description and current Belief_state

Select action with highest expected utility

given probabilities of outcomes and Utility information

Return action

4.2 Review of Probability

AXIOMS OF PROBABILITY:

I. All probabilities are between 0 and 1. 0 ≤ P(A) ≤ 1

II. Necessarily true (i.e. valid) proposition have probability 1 an necessarily false (i.e.

unsatisfiable)proposition have probability 0 P(True) = 1 P(False) = 0

III. The probability of a disjunction is given by P(A ᴠ B) = P(A) + P(B)-P(A ᴧ B)

IV. Let B = ⌐A in the axiom (III)

V. P(True) = P(A) + P(⌐A) – P(False) (by logical equivalence)

VI. 1 = P(A) + P(⌐A) (by step 2)

VII. P(⌐A) = 1-P(A) (by algebra)

 Joint probability distribution:

An agent’s probability assignments to all propositions in the domain (both simple and

complex)

Ex: Trivial medical domain with two Boolean variables.

 Toothache ⌐Toothache

Cavity

0.04

0.06

⌐Cavity

0.01

0.89

I. Adding across a row or column gives the unconditional probability of a variable.

P(Cavity) = 0.06 + 0.04 = 0.1

SVCET STUDENTSFOCUS.COM

P
a

ge
3

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P(Cavity + Toothache) = 0.04 +0.01 + 0.06 = 0.11

II. Conditional Probability

P(Cavity / Toothache) =

Bayes’Rule:

= = 0.80

1. Recall two forms of the product rule

P(A ᴧ B) = P(A/B) P(B)

P(A ᴧ B) = P(B/A) P(A)

Equating the two righthand sides and dividing by P(A),i.e.

P(A/B)=

Is called as Baye’s rule (or) Baye’s law (or) Baye’s theorem

2. From the above equation the general law of multivalued variables can be written using the P

notation:

P(Y / X) =

3. From the above equation on some background evidence E:

P(Y / X,E) =

4. Disadvantage

It requires three terms to compute one conditional probability (P(B/A))

- One conditional probability P(A/B)

- Two unconditional probability P(B) and P(A)

5. Advantage

If three values are known,then the unknown fourth value → P(B/A) is computed

easily.

6. Example:

Given: P(S/M) = 0.5 , P(M) = 1/5000 , P(S) = 1/20

S – the proposition that the patient has a stiff nect

M – the proposition that the patient has meningitis

P(S/M) – only one in 5000 patients with a stiff neck to have meningitis

P(M/S) = = 0.0002

7. Normalization

a) Consider again the equation for calculating the probability of meningitis given

a stiff neck.

P(M/S) =

b) Consider the patient is suffering from whiplash W given a stiff neck.

P(W/S) =

SVCET
STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
4

c) To perform relative likelihood between a and b,we need P(S/W) = 0.8 and

P(W) = 1/1000 and P(S) is nit required since it is already defined

 = = =

i.e.whiplash is 80 times more likely than meningitis,given a stiff

neck.

d) Disadvantages: consider the folloeing equations:

P(M/S) = ………. (1)

P(⌐M/S) = ………….. (2)

Adding (1) and (2) using the fact that
P(M/S) + P(⌐M/S) = 1,we obtain

P(S) = P(S/M) P(M) + P(S/⌐M) P(⌐M)

Substituting into the equation for P(M/S),we have

P(M/S) =
This process is called normalization ,because it treats 1/P(S) as a normalizing
constant that allows the conditional terms to sum to 1

The general multivalued normalization equation is

P() = αP(P(Y)

α – normalization constant

8. Baye’s Rule and evidence

a) Two conditional probability relating to cavities:

P(Cavity / Toothache) = 0.8

P(Cavity /Catch) =0.95
Using Baye’s Rule:

P(Cavity/Toothache ᴧ Catch) =

b) Bayesian updating is done (i.e) evidence one piece at a time.

P(Cavity/Toothache) = P(Cavity) ………..(1)

c) When catch is observed apply Bayes Rule with constant conditioning context

P(Cavity/Toothache ᴧ Catch) = …………(2)

From (1) and (2)

= P(Cavity)

d) Mathematically the equation are rewritten as:

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
5

P(Catch/Cavity ᴧ Toothache) = P(Catch/Cavity)

P(Toothache/Cavity ᴧ Catch) = P(Toothache/cavity)

These equations express the conditional independence of Toothache and catch on

given Cavity.

e) Using conditional independences,simplify the equation of Bayes updating

P(Cavity/Toothache ᴧ Catch) = P(Cavity)

f) Using normalization,it is further reduced as

P(Cavity/Toothache ᴧ Catch) → P(X/Y,Z) = P(X/Z)

P(Z/X,Y) = α P(Z) P(X/Z) P(Y/Z) (i.e.) P(Z/X,Y)sum to 1

4.3 Bayesian Network:-

4.3.1 Syntax:

 A data structure used to represent knowledge in an uncertain domain (i.e) to represent the

dependence between variables and to give a whole specification of the joint probability

distribution.

 A belief network is a graph in which the following holds.

I. A set of random variables makes up the nodes of the network.

II. A set of directed links or arrows connects pairs of nodes x→y,x has a direct

influence on y.

III. Each node has a conditional probability tale that quantifies the effects that the

parents have on the node.The parents of a node are all nodes that have arrows

pointing to it.

IV. Graph has no directed cycles(DAG)

 The other names of Belief network are Bayesian network ,probabilistic network, casual

network and knowledge map.

 Example:

A new burglar alarm has been installed at home.

 It is fairly reliable at detecting a burglary but also responds on occasion to minor

earthquakes.

 You also have two neighbours,John and Mary,who have promised to call you at

work when they hear the alarm.

 John always calls when he hears the alarm but sometimes confuses the telephone

ringing with the alarm and calls then too.

 Mary on the otherhand likes rather loud music and sometimes misses the alarm

together.

 Given the evidence of who has or has not called estimate the probability of a

burglary

Uncertainty:

I. Mary currently listening to loud music

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

B E P(A)

T T .95

T F .94

F T .29

F F .001

A P(J)

T

F

.90

.05

A P(M)

T

F

.70

.01

P
a

ge
6

II. John confuses telephone ring with alarm → laziness and ignorance in the

operation

III. Alarm may fail off → power failure, dead battery, cut wires etc.

Belief network

Burglary
Earthquake

eeee

Alarm

John calls
Mary calls

Conditional probability table for the random variable Alarm:

Burglary Earthquake P(Alarm/Burglary,Earthquake)

True False

T

T

F

F

T

F

T

F

0.950

0.950

0.290

0.001

0.050

0.050

0.710

0.999

Each row in a table must sum to 1,because the entry represents set of cases for the variable. A table

with n Boolean variables contain 2
n

independently specifiable probabilities.

Burglary

P(B)

.001

Earthquake

P(E)

.002

Alarm

John calls

Mary calls

Belief network with conditional probability

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
7

4.3.2 Semantics

There are two ways in which one can understand the semantics of Belief networks

1. Network as a representation of the joint probabilit y distribution-used to know how to construct

networks.

2. Encoding of a collection of conditional independence statements-designing inference procedure.

 Joint probability distribution: How to construct network’s? A belief network provides a

complete description of the domain.Every entry in the joint probability distribution can be

calculated from the information in the network.A entry in the joint is the probability of a

conjunction of particular assignment to each variable(i.e)

P(X1 = x,ᴧ….ᴧxn = xn)

 We use the notation P(x1…..xn)as an abbreviation for this.The value of this entry is given

by the following formula:

P(x1……xn) = i|Parents(Xi))

 Thus each entry in the joint is represented by the product of the appreciate elements of the

CPT in the belief network.The CPT’s therefore provide a decomposed representation of

the joint.

 The probability of the event that alarm has sounded but neither a burglary nor an

earthquake has occurred,and both John and Mary call.We use single letter names for the

variables.

P(JᴧMᴧA⌐Bᴧ⌐E)

= P(J/A) P(M/A) P(A|⌐Bᴧ⌐E) P(⌐B) P(⌐E)

= 0.90 * 0.70 * 0.001 * 0.999 * 0.998

= 0.00062

Noisy OR: It is the logical relationship of uncertaint y.In proposition logic we might say

fever is true, If and only if cold, flu or malaria is true. The Noisy OR made adds some

uncertainity to this strict logical approach. The model makes three assumptions.

I. It assumes the each cause has an independent chance of causing the effect.

II. It assumes that all possible causes are listed.

III. It assumes that whatever inhibits Flu from causing a fever.These inhibits are not

responded as nodes but rather are summarized as “noise parameters”

Example

P(Fever/cold) = 0.4

P(Fever/Flu)=0.8 Noise parameters are 0.6,0.2 and 0.1

P(Fever/Malaria)=0.9

 Conclusion:

I. If no parent node is true then the output is false with 100% certainity.

II. If exactly one parent is true,then the output is false with probability equal to the

noise parameter for that node.

III. The probability that the output node is false is just the product of the noise

parameters for all the input nodes that are true.

STUDENTSFOCUS.COM

P
a

ge
8

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

 Conditional independent relations in belief networks:

 From the given network is it possible to read off whether a set of nodes X is

independent of another set Y,given a set of evidence nodes E? the answer is

yes,and the method is provided by the notion of direction dependent separation or

de-seperation.

 If every undirected path from a node in X to a node in Y is de-seperated by E then

X and Y are conditionally independent given E.

X E Y

Z

Z

Z

A path from X to Y can be blocked given evidence E

 Three paths in which a path from x to y can be blocked,given a evidence E.If

every path from x to Y is blocked,then we say E deseperates x and y(i.e)

I. Z is in E and z has one arrow on the path leading in and one arrow out.

II. Z is in E and Z has both arrows leading out.

III. Neither Z nor any descendents of Z is in E and both arrows lead into Z.

Example belief network for d-seperation:Car’s electrical system and engine

Battery

Radio Ignition

Gas

Starts

Moves

SVCET

STUDENTSFOCUS.COM

P
a

ge
9

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

1. Whether there is a Gas in the car and whether the car Radio plays are independent given
 evidence about whether the Spark plugs fire

2. Gas and Radio are independent if battery works.

3. Gas and Radio are independent given no evidence at all.

4. Gas and Radio are dependent on evidence start.

4.5. Inference in Temporal models
The generic temporal model has the following set of inference tasks:

1. Monitoring (or) filtering

Filtering (Monitoring):computing the conditional distribution over the current state, given all

evidence to data, P(Xt|e1:t)

 In the umbrella example, monitoring would mean computing the probability of rain today,

given all the observation of the umbrella so far, including today

X0 X1 Xk Xt

E1 Ek Et

2.Prediction

Prediction:computing the conditional distribution over the future state,given all evidence to

date,P(Xt+k|e1:t),for k>0.

In the umbrella example,prediction would mean computing the probability of rain
tomarrow(k=1),or the day after tomarrow(k=2),etc.,given all the observations of the umbrella

so far Xt+1

X0 X1 Xk Et+1

E1 Et
Et

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
1

0

Monitoring(filtering)

 Filtering(monitoring):computing the conditional distribution over the current state,given all

evidence to data,corresponds to computing the distribution P(Xt|e1:t),or P(Xt+1|e1:t+1):

P(Xt+1|e1:t+1) = P(Xt+1|e1:t,et+1) = P(Xt+1|et+1,e1:t)

 General form of Baye’s rule conditional also on evidence e

P(Y|X,e) = = αP(X|Y,e) P(Y|e)

 In temporal Markov process,it reads:

P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t)

 Since evidence et depends only on the current state Xt

P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t)

 Then we can simplify

P(Xt+1|e1:t+1) = αP(et+1|Xt+1) P(Xt+1|e1:t)

 The second term P(Xt+1|e1:t),corresponds to a one-step prediction of the nextstate,given

evidence up to time t,and the first term updates this new state with the new evidence at time

t+1his updating is called filtering.

 Let us now obtain the one-step prediction:

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t)

 The first term is the (Markov) transition model and the second term is a current state

distribution given evidence up to date

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t)

 The recursive formula for monitoring/filtering then reads

P(Xt+1|e1:t+1) = αP(et+1|Xt+1) (Xt+1|Xt) P(Xt|e1:t)

We can write the same set of equations for P(Xt|e1:t),where we replace

t+1 ← t and t ← t-1 prediction to the far future

 What happens when we want to predict further into future given only the evidence up to this

date?

 It can be shown that predicted distribution for state vector converges towards one constant

vector,the so called fixed point (for every t > mixing time):

P(Xt|e1:t) = P(Xt+1|e1:t+1)

 This is called a stationary distribution of the Markov process,and the time required to reach

this stationary state is called the mixing time.

 Stationary distribution of the Markov process dooms to failure any attempt to predict the

actual state for a number of steps ahead that is more than a small fraction of the mixing time.

3. Most likely sequence

 Given all evidence to date,we want to find the sequence of states that is most likely to have

generated all the evidence,i.e. argmax X1:t P(X1:t|e1:t)

 In the umbrella example,if the umbrella appears on each of the first three days and is absent

on the fourth,then the most likely explanation is that it rained on the first three days and it did

not rain on the fourth.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
1

1

 Algorithms for this task are useful in many applications,including speech recognition,i.e. to

find the most likely sequence of words, given series sounds,or the construction of bit strings

transmitted over a noisy channel(cell phone),etc.

Rt-1 P(Rt)

T

F

0.7

0.3

Raint-1

Raint
Raint+1

Rt P(Ut)

T

f

0.9

0.2

Umbrellat-1

Umbrellat

Umbrella

t+1

 Suppose that [true,true,false,true,true]is the umbrella sequence,which the security guard

observes first five days on the job.

 What is the weather sequence most likely to explain this out of 2
5
=32 possible sequences,i.e.

argmax X1:t P(X1:t|e1:t)?

 For each state,the bold arrow indicates its best predecessor as measured by the product of the

preceding sequence probability m1:t and the transition probability P(Xt|Xt-1)

 To derive the recursive formula,let us focus on paths that reach the state Rain5 = true.the most

likely path consists of the most likely path to some state at t=4 followed by the transition to

Rain5 = true.

 The state at t=4,which will become part of the path to Rain5 = true is whichever maximizes

the likelihood of that path.

 There is a recursive relationship between most likely paths to each state Xt+1 and most likely

paths to each state Xt.

Rain1 Rain2 Rain3 Rain4 Rain5

true true true true true

false false false false false

true true true true true

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

P
a

ge
1

2

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m1:1

 Viterbi algorithm:

m1:2

m1:3

m1:4

m1:5

 Let us denoted by m1:t the probability of the best sequence reaching each state at time

t.

M1:t = 1,…….,Xt-1,Xt|e1:t)

 Then the recursive relationship between most likely paths to each state Xt+1 and most

likely paths to each state Xt, reads

m1:t+1 = 1,…….,Xt,Xt+1|e1:t+1)

=αP(et+1|Xt+1) P(Xt+1|Xt) X1,….,Xt-1,Xt|e1:t))

This is the viterbi formula

4.6 Hidden Markov model

 An HMM is a temporal probabilistic model in which the state of the process is described

by a single discrete random variable.

 The possible values of the variable are the possible states of the world.

 The umbrella example described in the HMM,since it has just one state variable Raint.

Additional state variables can be added to a temporal model while staying within the

HMM framenetwork,but only by combining all the state variable into a single

“megavariable” whose values are all possible tuples of values of the individual state

variables.

 Simplified matrix algorithms:

 With a single,discrete state variable Xt,we can give concrete form to the representations

of the transition model,and the forward and backward messages.

 Let the state variable Xt have values denoted by integers 1,….,S,where S is the number of

possible states.

 The transition model P(Xt|Xt-1) becomes an S x S matrix T,where

Tij = P(Xt = j|Xt-1 = i)

Tij – probability of a transition from state I to state j.

 For example,the transition matrix for the umbrella world is

T = P(Xt|Xt-1) =

STUDENTSFOCUS.COM

P
a

ge
1

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

 We also put the sensor model in matrix form.In this case,because the value of the evidence

variable Et is known to be say et,we needuse only that part of the model specifying the

probability that et appears.

 For each time step t,we construct a diagonal matrix Ot whose diagonal entries are given by

the values P(et|Xt = i) and whose entries are 0.

O1 =

 We use column vectors to represent the forward and backward messages,the computations

become simple matrix-vector operations.

The forward equation becomes
F1:t+1 = α Ot+1 T

T
f1:t …………(1)

and the backward equation becomes

bk+1:t = TOk+1 bk+2:t …………(2)
 From these equations,we can see that the time complexity of the forward and backward

algorithm applied to a sequence of length t is O(S
2
t).The space complexity is O(St).

 Besides providing an elegant description of the filtering and smoothing algorithms for

HMMs,the matrix formulation reveals opportunities for improved algorithms.

 The first is a simple variation on the forward-backward algorithm that allows smoothing to

be carried out in constant space,independently of the length of the sequence.

 The idea is that smoothing for any particular time slice k requires the simultaneous

presence of both forward and backward messages,f1:k and bk+1:t.

 The forward-backward algorithms achieves this by storing the fs computed on the forward

pass so that they are available during the backward pass.

f1:t = α
’

(T
T
)
-1

Ot+1
-1

f1:t+1

 The modified smoothing algorithm works by first running the standard forward pass to

compute ft:t and then running the backward pass for both b and f together,using them to

compute the smoothed estimate at each step.

 A second area in which the matrix formulation reveals an improvement is in online

smoothing with a fixed lag.

 Let us suppose that the lag is d; that is,we are smoothing at time slice t-d,where the current

time is t.By equation.

αf1:t-dbt-d+1:t

for slice t-d.Then,when a new observation arrives,we need to compute

αf1:t-d+1bt-d+2:t+1

for slice t-d+1.First,we can compute f1:t-d+1 from f1:t-d, using the standard filtering process.
 Computing the backward message incrementally is more trickly,because there is no simple

relationship between the old backward message bt-d+1:t and the new backward message

bt-d+2:t+1.

 Instead ,we will examine the relationship between the old backward message bt-d+1:t and the

backward message at the front of the sequence,bt+1:t.To do this,we apply equation(2) d

times to get

bt-d+1:t = bt+1:t = Bt-d+1:t 1. ………….(3)

Where the matrix Bt-d+1:t is the product of the sequence of T and O matrices.

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-IV/UNCERTAIN KNOWLEDGE AND REASONING

 B can be thought of as a “transformation operator” that transforms a later backward

message into an earlier one.

bt-d+2:t+1 = bt+2:t+1 = Bt-d+2:t+1 1. …………(4)

 Examining the product expressions in the above two equations(3) & (4),we see that they

have a simple relationship:to get the second product,”divide” the first product by the first

element TOt-d+1, and multiply by the new last element TOt+1.

 In matrix language,then there is a simple relationship between the old and new B matrices:

Bt-d+2:t+1 = Ot-d+1
-1 T-1 Bt-d+1:t TOt+1. …………….(5)

 This equation provides an incremental update for the B matrix,which in turn(eqn (4))

allows us to compute the backward message bt-d+2:t+1.

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/Expert System

ARTIFICIAL INTELLIGENCE

UNIT-V

EXPERT SYSTEMS

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge
Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART,
XOON, Expert systems shells.

5.1 Learning from Observation:

 The idea behind learning is that percepts should be used not only for acting, but also for

improving the agent’s ability to act in the future.

 Learning takes place as the agent observes its interactions with the world and its own

decision making process.

 Learning can range from trivial memorization of experience to the creation of a entire

scientific theory, as exhibited like Albert Einstein.

5.1.1 Forms of Learning:

 Learning agent is a performance element that decides what actions to take and a learning

element that modifies the performance element so that better decisions can be taken in the

future.

 There are large variety of learning elements

 The design of a learning element is affected by following three major issues,

o Which components of performance element are to be learned.

o What feedback is available to make these components learn
o What representation is used for the component.

 The components of these agents includes the following,

o A direct mapping from conditions on current state to actions
o A means to infer relevant properties of the world from the percept sequence
o Information about the way the world evolves and about the results of possible action

the agent can take

o Utility information indicating the desirability of world states
o Action-value information indicating the desirability of action
o Goals that describe classes of states whose achievement maximizes the agent utilty

 Each of the component can be learned from appropriate feedback

o For Example: - An agent is training to become a taxi driver.
o The various components in the learning are as follows,

STUDENTSFOCUS.COM

P
a

ge
2

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 Everytime when the instructor shouts “Brake” the agent learn a condition –

action rule for when to brake.

 By seeing many images, agent can learn to recognize them

 By trying actions and observing the results, agent can learn the effect of

actions (i.e.) braking on a wet road – agent can experience sliding

 The utility information can be learnt from desirability of world states, (i.e.) if

the vehicle is thoroughly shaken during a trip, then customer will not give tip

to the agent, which plans to become a taxi driver

 The type of feedback available for learning is also important.

 The learning can be classified into following three types.

o Supervised learning

o Unsupervised learning
o Reinforcement learning

 Supervised Learning:-
o It is a learning pattern, in which

 Correct answers for each example or instance is available

 Learning is done from known sample input and output

 For example: - The agent (taxi driver) learns condition – action rule for

braking – this is a function from states to a Boolean output (to brake or not to

brake). Here the learning is aided by teacher who provides correct output

value for the examples.

 Unsupervised Learning:-

o It is learning pattern, in which

 Correct answers are not given for the input.

 It is mainly used in probabilistic learning system.

 Reinforcement Learning:-
o Here learning pattern is rather than being told by a teacher.
o It learns from reinforcement (i.e.) by occasional rewards

o For example:- The agent (taxi driver), if he does not get a trip at end of journey, it
gives him a indication that his behavior is undesirable.

5.2 Inductive Learning

 Learn a function from example,

 For example:- f is target function

An example is a pair (x, f(x)) where x = input and f(x) = output of the function is applied to x

 The pure inductive inference or induction is “given a training set of example of f, return a

function h that approximates f.

 Where the function h is called hypothesis

 This is a simplified model of real learning, because it

o Ignores prior knowledge
o Assumes a deterministic, observable “environment”.

 A good hypothesis will generalize well, i.e., able to predict based on unseen examples

STUDENTSFOCUS.COM

P
a

ge
3

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

5.2.1 Inductive learning method:-

 Goal is to estimate real underlying functional relationship from example observations

 Construct / adjust h to agree with f on training set (h is consistent if it agrees with f on all

example)

 For example:- Curve fitting example

 Given

 Linear hypothesis:

 Curve fitting with various polynomial hypothesis for the same data

 Ockham’s razor : prefer simplest hypothesis consistent with the data

STUDENTSFOCUS.COM

 Not-exactly-consistent may be preferable over exactly consistent

 Nondeterministic behavior

 Consistency even not always possible

 Nondeterministic functions : trade-off complexity of hypothesis / degree of fit

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
4

5.3 Decision Trees

 Decision tree is one of the simplest learning algorithms.

 A decision tree is a graph or model of decisions and their possible consequences, including

chance event outcomes, resource costs, and utility.

 It can be used to create a plan to reach a goal.

 Decision trees are constructed to help with making decisions.

 It is a predictive model.

5.3.1 Decision trees as performance elements:-

 Each interior node corresponds to a variable; an arc to a child represents a possible value of

that variable.

 A leaf represents a possible value of target variable given the values of the variables

represented by the path from the root.

 The decision tree takes object or situation described by set of attributes as input and decides

or predicts output value.

 The output value can be Boolean, discrete or continuous.

 Learning a discrete valued function is called classification learning.

 Learning a continuous valued function is called regression.

 In Boolean classification it is classified as true (positive) or false (negative).

 A decision tree reaches its destination by performing a sequence of tests.

 Each interior or internal node corresponds to a test of the variable; an arc to a child represents

possible values of that test variable.

 The decision tree seems to be very for humans.

 For Example:-

o A decision tree for deciding whether to wait for a table at a restaurant.

o The aim here is to learn a definition for the goal predicate.
o we will see how to automate the task the following attributes are decided.

 Alternate: is there an alternative restaurant nearby?
 Bar: is there a comfortable bar area to wait in?

 Fri/Sat : is today Friday or Saturday?

 Hungry: are we hungry?

 Patrons : number of people in the restaurant [the values are None, Some, Full]

 Price : price range [$, $$, $$$]

 Raining: is it raining outside?

 Reservation: have we made a reservation?

 Type : kind of restaurant [French, Italian, Thai, Burger]

 WaitEstimate : estimated waiting time by the host [0-10, 10-30, 30-60, >60]

 The following table described the example by attribute values (Boolean,

Discrete, Continuous) situations where I will / won’t wait for a table.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
5

 The following diagram shows the decision tree for deciding whether to wait

for a table

 The above decision tree does not use price and type as irrelevant.

 For example:- if the Patrons = full and the Wait Estimate = 0-10 minutes, it

will be classified as positive(yes) and the person will wait for the table

 Classification of example is positive (T) or negative (F) shown in both table

and in decision tree.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
6

5.3.2 Expressiveness of decision trees

 Decision trees can express any function of the input attributes

 E.g., for Boolean functions, truth table row path to leaf

 The following table shows the truth table of A XOR B

A B A XOR B

F F F

F T T

T F T

T T F

 The following diagram shows the decision tree of XOR gate

 There is a consistent decision tree for any training set with one path to leaf for each example

[unless f nondeterministic in x] but it probably won’t generalize to new examples

 Applying Ockham’s razor : smallest tree consistent with examples

 Able to generalize to unseen examples

o No need to program everything out / specify everything in detail

‘true’ tree = smallest tree?

Advantages of Decision Tree:

 They are simple to understand and interpret

 They require little data preparation

 If uses a white box model.

 It is possible to validate a model using statistical tests, hence robust.

 Perform well with large data in a short time.

5.3.3 Decision tree learning:

 Unfortunately, finding the ‘smallest’ tree is intractable in general

 New aim : find a ‘smallish’ tree consistent with the training examples

 Idea : [recursively] choose ‘most significant’ attribute as root of [sub]tree

 ‘Most significant’ : making the most difference to the classification

 Idea : a good attribute splits the examples into subsets that are [ideally] ‘all positive’ or ‘all

negative’

 Patrons? is a better choice

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
7

 The following diagram shows the splitting the examples by testing on attributes

 The above diagram Splitting on Type brings us no nearer to distinguishing between positive

and negative examples

 The below diagram Splitting on Patrons does a good job of separating positive and negative

examples

 The following table shows the Decision Tree Learning Algorithm,

 The following tree shows the decision tree induced from the training data set as follows,

STUDENTSFOCUS.COM

P
a

ge
8

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 substantially simpler solution than ‘true’ tree

 More complex hypothesis isn’t justified by small amount of data

5.3.4 Using Information theory:

 Information content [entropy] :

 I(P(v), … , P(v)) = Σ -P(v) log2 P(v)
1 n i=1 i i

 For a training set containing p positive examples and n negative examples

I (
 p

,
 n

)
 p

log

 p

 n
log

 n

p n p n p n
2

p n p n
2

p n

 Specifies the minimum number of bits of information needed to encode the classification of

an arbitrary member

Information Gain:

STUDENTSFOCUS.COM

v

P
a

ge
9

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 Chosen attribute A divides training set E into subsets E1, … , Ev according to their values for

A, where A has v distinct values

remainder(A)
p i ni I (

 pi ,
 ni)

i 1 p n p
i
 n

i
p

i
 n

i

 Information gain [IG] : expected reduction in entropy caused by partitioning the examples

IG(A) I (
 p

,
 n

) remainder(A)
p n p n

 Information gain [IG] : expected reduction in entropy caused by partitioning the examples

IG(A) I (
 p

,
 n

) remainder(A)
p n p n

 Choose the attribute with the largest IG

 For Example:- For the training set : p = n = 6, I(6/12, 6/12) = 1 bit

 Consider Patrons? and Type? [and others]

IG(Patrons) 1 [
 2

I (0,1)
 4

I (1,0)
 6

I (
2

,
4

)] .0541 bits
12 12 12 6 6

IG(Type) 1 [
 2

I (
1

,
1

)
 2

I (
1

,
1

)
 4

I (
2

,
2

)
 4

I (
2

,
2

)] 0 bits
12 2 2 12 2 2 12 4 4 12 4 4

 Patrons has the highest IG of all attributes and so is chosen as the root

5.3.5 Assessing the performance of the learning Algorithm:

 A learning algorithm is good if it produces hypothesis that do a good job of predicting the

classification of unseen examples.

 Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a

hypothesis by checking its predictions against the correct classification once we know it.

 We do this on a set of examples known as the test set.

 The following are the steps to assess the performance,

1. Collect a large set of examples

2. Divide it into two disjoint sets: the training set and the test set

3. Apply the learning algorithm to the training set, generating a hypothesis h.

4. Measure the percentage of examples in the test set that are correctly classified h.

5. Repeat steps 1 to 4 for different sizes of training sets and different randomly selected

training sets of each size.

 The result of this procedure is a set of data that can be processed to give the average

prediction quality as a function of the size of the training set.

 This function can be plotted on a graph, giving what is called the learning curve for the

algorithm on the particular domain.

 The following diagram shows the learning curve for DECISION-TREE-LEARNING with the

above attribute table example.

STUDENTSFOCUS.COM

P
a

ge
1

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 In the graph the training set grows, the prediction quality increases.

 Such a curves are called happy graphs.

5.4 Explanation Based Learning:

 Explanation-based learning is a method for extracting general rules from individual

observations

 Human appear to learn quite a lot from example

 Basic idea: Use results from one examples problem solving effort next time around.

 when an agent can utilize a worked example of a problem as a problem-solving method, the

agent is said to have the capability of explanation-based learning (EBL).

 This is a type of analytic learning.

 The advantage of explanation-based learning is that, as a deductive mechanism, it requires

only a single training example (inductive learning methods often require many training

examples)

 To utilize just a single example most EBL algorithms require all of the following,

o The training example
o A Goal concept
o An Operationality Criteria
o A Domain theory

 An EBL accepts four kinds of input as follows,

o A training example:- what the learning sees in the world
o A goal concept:- a high level description of what the program is supposed to learn
o An operational criteria:- a description of which concepts are usable
o A domain theory:- a set of rules that describe relationships between objects and

actions in a domain

STUDENTSFOCUS.COM

P
a

ge
1

1

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 The domain theory has two types as,

 Explanation: - the domain theory is used to prune away all

unimportant aspects of the training example with respect to the goal

concept.

 Generalisation: - the explanation is generalized as far possible while

still describing the goal concept

 For Example:-

o Cary Larson once drew a cartoon in which a bespectacled caveman, Zog, is roasting a
lizard on the end of a pointed stick.

o He is watched by an amazed crowd of less intellectual contemporaries.
o In this case, the caveman generalize by explaining the success of the pointed stick

which supports the lizard and keeps the hand away from the fire.

o This explanation can infer a general rule: that any long, rigid, sharp object can be used

to toast small, soft bodies.

o This kind of generalization process is said to be Explanation based Learning.
o The EBL procedure is very much domain theory driven with the training example

helping to focus the learning.

o Entailment constraints satisfied by EBL is
 Hypothesis Descriptions |= Classifications
 Background |= Hypothesis

5.4.1 Extracting rules from examples:

 EBL is a method for extracting general rules from individual observations.

 The basic idea is first to construct an explanation of the observation using prior knowledge.

 Consider the problem of differentiating and simplifying the algebraic expressions.

 If we differentiate the expression X
2

with respect to X, we obtain 2X.

 The proof tree for Derivative(X
2
, X) = 2X is too large to use, so we will use a simpler

problem to illustrate the generalization method.

 Suppose our problem is to simplify 1 x (0 + X).

 The knowledge base includes the following rules

o Rewrite(u, v) Simplify(v, w) Simplify(u, w)
o Primitive(u) Simplify(u, u)
o ArithmeticUnknown(u) Primitive(u)
o Number(u) Primitive(u)
o Rewrite(1 x u, u)
o Rewrite(0 x u, u)

 EBL Process Working

 The EBL work as follows

1. Construct a proof that the goal predicate applies to the example using the available

background knowledge

2. In parallel, construct a generalized proof tree for the variabilized goal using the same

inference steps as in the original proof.

3. Construct a new rule whose left hand side consists of leaves of the proof tree and RHS

is the variabilized goal.

4. Drop any conditions that are true regardless of the values of the variables in the goal.

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

2

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 In the diagram, the first tree shows the proof of original problem instance, from which we can

derive

o ArithmeticUnknown(z) = Simplify(1 x (0 + z), z)

 The second tree shows the problem where the constants are replaced by variables as

generalized proof tree.

Simplify(1x(0+X),w)

Rewrite(1x(0+X),v) Simplify(0+X),w)

(v/0+x)

Rewrite(0+X,v') Simplify(X,W)

v'/x {w/x}

Primitive(X)

Arithmetic Unknown(X)

Simplify(x×(y+z),w)

Rewrite(x×(y+z),v) Simplify(y+z,w)

x/1 , v/y+z

Rewrite(y+z,v') Simplify(z,w)

y/0,v'/z w/z

Primitive(z)

Arithmetic unknouwn(z)

5.4.2 Improving efficiency:

 The generalized proof tree mentioned above gives or yields more than one generalized rule.

 For example if we terminate, or PRUNE, the growth of the right hand branch in the tree

when it reached the primitive step, we get the rule as,

o Primitive(z) Simplify(1 X (0 + z), z)

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

3

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 This rule is a valid as, but more general than, the rule using ArithmeticUnknow, because it

covers cases where z is a number.

 After pruning the step,

o Simplify (y + z, w), yielding the rule
o Simplify (y + z, w) Simplify (1 X(y + z), w)

 The problem is to choose which of these rules.

 The choice of which rule to generate comes down to the question of efficiency.

 There are three factors involved in the analysis of efficiency gains from EBL as,

o Adding large number of rules can slow down the reasoning process, because the

inference mechanism must still check those rules even in case where they not a

solution. It increases the branching factor in the search space.

o To compensate the slowdown in reasoning, the derived rules must offer significant

increase in speed for the cases that they do not cover. This increase occurs because the
derived rules avoid dead ends but also because they short proof also.

o Derived rule is as general as possible, so that they apply to the largest possible set of
cases.

5.5 Statistical Learning Methods:

 Agents can handle uncertainty by using the methods of probability and decision theory.

 But they must learn their probabilistic theories of the world from experience.

 The learning task itself can be formulated as a process of probabilistic inference.

 A Bayesian view of learning is extremely powerful, providing general solutions to the

problem of noise, overfitting and optimal prediction.

 It also takes into account the fact that a less than omniscient agent can never be certain about

which theory of the world is correct, yet must still make decisions by using some theory of

the world.

5.5.1 Statistical Learning

 The key concepts of statistical learning are Data and Hypotheses.

 Data are evidence (i.e.) instantiations of some or all of the random variables describing the

domain.

 Hypotheses are probabilistic theories of how the domain works, including logical theories as

a special case.

 For Example:-

o The favorite surprise candy comes in two flavors as Cherry and Lime
o The manufacturer has a peculiar sense of humor and wraps each piece of candy in the

same opaque wrapper, regardless of flavor.

o The candy is sold in very large bags of which there are known to be five kinds-again,

indistinguishable from the outside:

h1: 100% cherry candies

h2: 75% cherry candies + 25% lime candies

h3: 50% cherry candies + 50% lime candies

h4: 25% cherry candies + 75% lime candies

h5: 100% lime candies

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

4

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

o Given a new bag of candy the random variable H (for hypotheses) denotes the type of

tile bag, with possible values h1 through h5. H is not directly observable.

o As the pieces of candy are opened and inspected, data are revealed as D1, D2…Dn in
which each D is a random variable with possible values Cherry and Lime.

o The basic task faced by the agent is to predict the flavor of the next piece of candy

5.5.1.1 Bayesian Learning:

 Bayesian Learning calculates the probability of each hypothesis, given the data and makes

predictions by using all the hypotheses, weighted by their probabilities.

 In this way learning is reduced to probabilistic inference.

 Let D be all data, with observed value d, then probability of a hypothesis hi, using Bayes rule

P(h |d) = a P(d | h)P(h)
i i i

 For prediction about quantity X :

P(X|d)= ∑ P(X|d,h)P(h |d)= ∑ P(X|h)P(h |d)
i i i i

 Where it is assumed that each hypothesis determines a probability distribution over X.

 This equation shows that predictions were weighted averages over the predictions of the

individual hypothesis

 The key quantities in the Bayesian approach are the

o Hypothesis Prior, P(hi)

o Likelihood of the data under each hypothesis, P(d | h)
i

 For candy example, assume the time being that the prior distribution over h1,….h5 is given

by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer.

 The likelihood of the data is calculated under the assumption that the observations are i..i..d,

that is i= independently, i= identically and d= distributed So that

P(d | hi) P(dj | hi)
j

 The following figure shows how the posterior probabilities of the five hypotheses change as

the sequence of 10 Lime is observed.

 Notice that the probabilities start out at their prior values. So h1 is initially the most likely

choice and remains so after 1 Lime candy is unwrapped.

 After 2 Lime candies are unwrapped, h1 is most likely; after 3 or more, h5 is the most likely.

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

5

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 The following figure shows the predicted probability that the next candy is Lime as expected,

it increases monotonically toward 1

SVCET

STUDENTSFOCUS.COM

P
a

ge
1

6

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

5.5.1.2 Characteristics of Bayesian Learning:

o The true hypothesis eventually dominates the Bayesian prediction. For any fixed prior

that does not rule out the true hypothesis, the posterior probability of any false

hypothesis will vanish, because the probability of generating uncharacteristic data

indefinitely is vanishingly small.

o More importantly, the Bayesian prediction is optimal, whether the data set is small or
large.

 For real learning problems, the hypothesis space is usually very large or infinite.

 In most cases choose the approximation or simplified methods.

5.5.1.2.1 Approximation

 Make predictions based on a single most probable hypothesis hi that maximizes P(hi|d).

 This is often called a maximum a posteriori or MAP hypothesis.

 Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to the

extent that P(X|d) P(X| hMAP).

 In candy example, hMAP = h5 after three lime candies in a row, so the MAP learner then

predicts that the fourth candy is lime with probability 1.0 a much more dangerous prediction

than the Bayesian prediction of 0.8 shown in the above graphs.

 As more data arrive, the MAP and Bayesian predictions become closer, because the

competitors to the MAP hypothesis become less and less probable.

 Finding MAP hypothesis is much easier than Bayesian Learning is more advantage.

5.5.2 Learning with Complete Data:

 The statistical learning method begins with parameter learning with complete data.

 A parameter learning task involves finding the numerical parameter for the probabilit y

model.

 The structure of the model is fixed.

 Data are complete when each data point contains values for every variable in the probabilit y

model.

 Complete data simplify the problem of learning the parameters of complex model.

5.5.1.1 Maximum Likelihood Parameter Learning: Discrete Models

 Suppose we buy a bag of lime and cherry candy from a manufacturer whose lime-cherry

proportion are completely unknown.

 The fraction can be anywhere between 0 and 1.

 The parameter in this case is , which is the proportion of cherry candies, and the hypothesis

is h .

 The proportion of lime is (1-).

 We assume all the proportions are known a priori then Maximum Likelihood approach can be

applied.

 If we model the situation in Bayesian network, we need just one random variable called

Flavor it has values cherry and lime.

 The probability of cherry is `.

 If we unwrap N candies, of which C are cherries and L=N-C are limes.

 The likelihood of the particular set is,

SVCET

STUDENTSFOCUS.COM

N

P
a

ge
1

7

N

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

N

P(d / h) P(dj \ h) c .(1)L

J 1

 The maximum-likelihood hypothesis is given by the value of e` that maximizes the

expression.

 It can be obtained by maximizing the log likelihood.
N

L1(d | h) P(d | h) log(P(dj \ h) c log L log(1)
J 1

 To find the ML value of differentiate wrt and then equate resulting to zero

= - , - = 0, , where c+l = N

 The standard method for maximum likelihood parameter learning is given by

o Write down an expression for the likelihood of the data as a function of the

parameters

o Write down the derivative of the log likelihood with respect to each parameter.
o Find the parameter values such that the derivatives are zero

 The most important fact is that, with complete data, the maximum-likelihood parameter
learning problem for a Bayesian network

5.5.1.2 Maximum Likelihood Parameter Learning: Continuous Models

 Continuous variables are ubiquitous (everywhere) in real world applications.

 Example of Continuous probability model is linear-Gaussian model.

 The principles for maximum likelihood learning are identical to discrete model.

 Let us take a simple case of learning the parameters of a Gaussian density function on a

single variable.

 The data are generated as follows

 Parameters of this model µ = mean and σ = Standard deviation.

 Let the observed values be x1, x2,………xN

 Then the log likelihood is given as

L log
 1

e
(x)2

2
2

N

= N (log 2 log)
(xj) 2

2
j 1 2 j 1 2

 Setting the derivatives to zero as usual, we obtain

 xj

L

 1

(x) 0

 j

 2 j 1
j

N

L N

 1

N

()
2

0
 (xj)2

 j

 3 j 1

xj
N

 Maximum likelihood value of the mean is the simple average.

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
1

8

 Maximum likelihood value of the standard deviation is the square root of the simple variance.

5.5.3 Learning with Hidden Variables:

1. Many real world problems have hidden variables (or) latent variables which are not

observable in the data that are available for learning.

2. For Example:- Medical record often include the observed symptoms, treatment applied and

outcome of the treatment, but seldom contain a direct observation of disease itself.

Assumed the diagnostic model for heart disease. There are three observable predisposing

factors and 3 observable symptoms. Each variable has 3 possible values (none, moderate and

severe)

2 2
Diet

2
Smoking

Exercise

54

Heart Diseases

Hidden Variable

6 6
Symptoms1

6
Symptoms2

Symptoms3

If hidden is removed the total number of parameters increases from 78 (54 + 2 + 2 + 2 + 6 + 6

+ 6) to 708

2 2 2

Smoking Smoking Exercise

54
Symptoms1 162

Symptoms2
486

Symptoms3

3. Hidden variables can dramatically reduce the number of parameters required to specify the

Bayesian network, there by reduce the amount of data needed to learn the parameters.

4. It also includes estimating probabilities when some of the data are missing.

5. The reason we learn Bayesian network with hidden variable is that it reveals interesting

structures in our data.

6. Consider a situation in which you can observe a whole bunch of different evidence variables,

Er through En. They are all different symptoms that a patient might have.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
1

9

Different systems:

E1

E4 E2

E3

3
If the variables are conditionally dependent on one another, we will get a highly connected
graph that representing the entire joint distribution between the variables.

E1

E4 E2

E3

3
7. The model can be made simpler by introducing an additional “cause” node. It represents the

underlying disease state that was causing the patient symptoms.

Cause

E1 En

E2

3
This will have O(n) parameters, because the evident variables are conditionally independent

given the causes.

8. Missing data

 Imagine that we have 2 binary variables A and B that are not independent. We try to

estimate the Joint distribution.

A B

1 1

1 1

0 0

0 0

0 0

0 H

0 1

1 0

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 0

A

1

A

0B 3/7 1/7

1 B 1/7 2/7

 0

A

1

A

0B 0.5 0.125

1 B 0.125 0.25

0 0

P
a

ge
2

0
 0

 It is done by counting how many were (true, true) and how may (false, false) and

divide by the total number of cases to get maximum likelihood estimate.

 The above data set has some data missing (denoted on “H”). There’s no real way to

guess the value during our estimation problem.

 The missing data items can be independent of the value it would have had. The data

can be missed if there is a fault in the instrument used to measure.

 For Example:- Blood pressure instrument fault, so blood pressure data can be

missing)

9. We can ignore missing values and estimate parameters

Estimate Parameters

 0

A

1

A

0B 0.429 0.143

1 B 0.143 0.285

We can consider H = 0 (or) H = 1

 log Pr(D / M) log(Pr/ D, H 0 / M) Pr(D, H 1 / M))

= 3 log 0.429 + 2 log 0.143 + 2 log 0.285 + log (0.429 + 0.143)

= -9.498 Maximum likelihood score

10. We also try to fit it with best value.

For the above cause consider H=0, Estimated parameters as follows,

 0

A

1

A

0B 4/8 1/8

1 B 1/8 2/8

 log Pr(D / M) log(Pr/ D, H 0 / M) Pr(D, H 1 / M))

= 3 log 0.5 + 2 log 0.125 + 2 log 0.25 + log (0.5 + 0.125)

= -9.481

There is an improvement in likelihood value.

11. We will employ some soft assignment technique. we fill the value of the missing variable by

using our knowledge of the joint distribution over A, B and compute a distribution over H.

 0

A

1

A

0B 0.25 0.25

1 B 0.25 0.25

Initial guess Uniform distribution.

Compute probability distribution over H

Pr(H / D,) Pr(H / D
6
,) because it refers to 6

th

case in the observed data in the table.

 Pr(H / D
6
,)

 Pr(B / A,
0
)

because missing variable is B and the observed one is not A, we need the probability of B

given not A.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 0

A

1

A

0B 0.4375 0.125

1 B 0.1875 0.25

A B

1 1

1 1

0 0

0 0

P
a

ge
2

1

Pr(B / A,
0
) Pr(A, B /

0
) / Pr(A /

0
)

=
0.25

= 0.5
0.5

H = 0 probability is 0.5

H = 1 probability is 0.5

A B

1 1

1 1

0 0

0 0

0 0

0 0,0.5

1,0.5

0 1

1 0

Now maximum likelihood estimation using expected counts.

So expected parameter is

 0

A

1

A

0B 3.5/8 1/8

1 B 1.5/8 2/8

New estimate is

Pr(H / D, Q1) Pr(, B / Q1) / Pr(A / Q1)

=
0.1875
0.625

So the new table is = 0.3

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 0

A

1

A

0B 0.4625 0.125

1 B 0.1625 0.25

P
a

ge
2

2

0 0

0 0,0.7

1,0.3

0 1

1 0

 0

A

1

A

0B 3.7/8 1/8

1 B 1.3/8 2/8

 theta2 is
2

is

Pr(H / D,
2
) Pr(Ar, B /

2
) / Pr(A /

2
)

=
0.1625

 0.26
0.625

log likelihood is increasing

log Pr(0 /
0
) 10.3972

log Pr(D /
1
) 9.4760

log Pr(D /
2
) 9.4524

Since all values are negative it is in increasing order.

We have to choose the best value
12. The above iterative process is called EM algorithm.

a. The basic idea in EM algorithm is to pretend that we know the parameters of the

model and then to infer the probability that each data point belongs to each

component.

b. After that we refit the components of the data, where each component is fitted to the

entire data set with each point weighted by probabilit y that it belongs to the

component.

c. This process is iterated until it converges.

d. We are completing the data by inferring probability distributions over the hidden

variable.

13. EM Algorithm

a. want to find to maximize PR(D/)
To find theta () that maximizes the probability of data for given theta ()

b. Instead find , P to maximize, where P = P tilde

g (, P) P (H) log(Pr(D, H /) / P (H))
H

 Ep log Pr(D, H /) log P (H)

Where, P (H) = Probability distribution over hidden variables, H= Hidden Variables

c. Find optimum value for g

 holding fixed and optimizing P

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

m m

P
a

ge
2

3

 holding P fixed and optimizing
 and repeat the procedure over and again

d. g has some local and global optima as PR(D/)
e. Example:-

i. Pick initial 0

ii. Probability of hidden variables given the observed data and the current model.

Loop until it converges

P t 1(H) Pr(H / D, t)

arg max

P t 1 E
rP t 1

log Pr(D, H /)

We find the maximum likelihood model for the “expected data” using the

distribution over H to generate expected counts for different case.

iii. Increasing likelihood.

iv. Convergence is determined (but difficult)

v. Process with local optima i.e., sometimes it converges quite effectively to the

maximum model that’s near the one it started with, but there’s much better

model somewhere else in the space.

Local minima

optimum Value

EM for Bayesian Network:

Let us try to apply EM for Bayesian Networks.

1. Our data is a set of cases of observations of some observable variables i.e. D = Observable

Variables

2. Our hidden variables will actually be the values of the hidden node in each case. H = Values

of hidden variable in each case

For Example:- If we have 10 data case and a network with one hidden node, then we have

10 hidden variables on missing pieces of data.

3. Assume structure is known

4. Find maximum likelihood estimation of CPTSs that maximize the probability of the observed

data D.

5. Initialize CPT’s to anything (with no 0’s)

Filling the data

1. Fill in the data set with distribution over values for hidden variables

2. Estimate Conditional probability using expected counts.

We will compute the probability distribution over H given D and theta (), we have ‘m’

different hidden variables, one for the value of node H in each of the m data cases.

P t 1(H) Pr(H / D, t)

 Pr(H / D ,
t
)

m

3. Compute a distribution over each individual hidden variable

4. Each factor is a call to bayes net inference

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

01 02 ………. Dn Pr(H
m

/ D
m

,) t

1 1 ………. 0 0.9

0 1 ………. 0 0.2

0 ………. 1 0.1

1 1 ………. 1 0.2

1 1 ………. 1 0.5

t

m m

m m

P
a

ge
2

4

5. For Example:-

a. Consider a simple case with one hidden node

H

All nodes are binary

D1 Dn
D2

3

Pr(H m / Dm ,) = Bayes net inference

b. We use bayes net inference to compute for each case in our data set, the probabilit y

that H would be true, given the values of the observed variables.

c. To compute expected count i.e., the expected number of times H is true, we will add

up the probability of H.

E(H) Pr(H / D ,
t
)

m

= 1.9(0.9 + 0.2 + 0.1 + 0.2 + 0.5)

d. To get the expected number of times that H and D2 are true, we find all the cases in

which D2 is true, and add up their probabilities of H being true.

E(H) Pr(H / D ,t)
m

= 1.9

E(H D2) Pr(H

/ D ,
t
) I (D

2
)

m m m

m

= 0.9 + 0.2 + 0.2 + 0.5

= 1.8

Pr(D2 / H)
1.8

Probability of D2 given H
1.9

= 0.9473

5.5.4 Instance Based Learning:-

 A parametric learning method is simple and effective.

 In parametric learning method when we have little data or data set grows larger then the

hypothesis is fixed.

 Instance based model represents a distribution using the collection of training instances.

 Thus the number of parameter grows with the training set.

 Non Parametric learning methods allows the hypothesis complexity to grow with the data.

 Instance based Learning or Memory based learning is a non-parametric model because

they construct hypothesis directly from the training set.

 The simplest form of learning is memorization.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
2

5

 When an object is observed or the solution to a problem is found, it is stored in memory for

future use.

 Memory can be thought of as a lookup table.

 When a new problem is encountered, memory is searched to find if the same problem has

been solved before.

 If an exact match for the search is required, learning is slow and consumes very large

amounts of memory.

 However, approximate matching allows a degree of generalization that both speeds learning

and saves memory.

 For Example:- “ If we are shown an object and we want to know if it is a chair, then we

compare the description of this new object with descriptions of “typical” chairs that we have

encountered before.

 If the description of the new object is “close” to the description of one of the stored instances

then we may call it a chair.

 Obviously, we must defined what we mean by “typical” and “close”.

 |To better understand the issues involved in learning prototypes, we will briefly describe three

experiments in Instance based learning (IBL) by Aha, Kibler and Albert (1991).

 IBL learns to classify objects by being shown examples of objects, described by an

attribute/value list, along with the class to which each example belongs.

 Experiment 1:-

o In the first experiment (IB1), to learn a concept simply required the program to store
every example.

o When an unclassified object was presented for classification by the program, it used a

simple Euclidean distance measure to determine the nearest neighbor of the object
and the class given to it was the class of the neighbor.

o The simple scheme works well, and is tolerant to some noise in the data.
o Its major disadvantage is that it requires a large amount of storage capacity.

 Experiment 2:-

o The second experiment (IB2) attempted to improve the space performance of IB1.
o In this case, when new instances of classes were presented to the program, the

program attempted to classify them.

o Instances that were correctly classified were ignored and only incorrectly classified

instances were stored to become part of the concept.

o This scheme reduced storage dramatically, it was less noise tolerant than the first.

 Experiment 3:-
o The third experiment (IB3) used a more sophisticated method for evaluating instances

to decide if they should be kept or not.

o IB3 is similar to IB2 with the following additions.
o IB3 maintains a record of the number of correct and incorrect classification attempts

for each saved instance.

o This record summarized an instances classification performance.
o IB3 uses a significance test to determine which instances are good classifiers and

which ones are believed to be noisy.

o The latter are discarded from the concept description.
o This method strengthens noise tolerance, while keeping storage requirements down.

5.5.5 Neural Network:-

 A neural network is an interconnected group of neurons.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
2

6

 The prime examples are biological neural networks, especially the human brain.

 In modern usage the term most often refers to ANN (Artificial Neural Networks) or neural

nets for short.

 An Artificial Neural Network is a mathematical or computational model for information

processing based on a connections approach to computation.

 It involves a network of relatively simple processing elements, where the global behavior is

determined by the connections between the processing elements and element parameters.

 In a neural network model, simple nodes (neurons or units) are connected together to form a

network of nodes and hence the term “Neural Network”

The biological neuron Vs Artificial neuron:-

Biological Neuron:-

 The brain is a collection of about 10 million interconnected neurons shown in following

figure.

 Each neuron is a cell that uses biochemical reactions to receive, process and transmit

information.

 A neurons dendrites tree is connected to a thousand neighboring neurons.

 When one of those neurons fire, a positive or negative charge is received by one of the

dendrites.

 The strengths of all the received charges are added together through the processes of spatial

and temporal summation.

 Spatial summation occurs when several weak signals are converted into a single large one,

while temporal summation converts a rapid series of weak pulses from one source into one

large signal.

 The aggregate input is then passed to the soma (cell body).

 The soma and the enclosed nucleus don’t play a significant role in the processing of incoming

and outgoing data.

Artificial Neuron (Simulated neuron):-

Artificial Neurons are composed of nodes or units connected by directed links as shown in following figure.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
2

7

Inputs Weights (+ve/-ve)

a0 W0

Summation
W1 Output ai

a1 g

ini

W2 Activation function ai = g(ini)

a2
Wn

aj

o A link from unit j to unit i serve to propagate the activation aj from j to i.

o Each link also has a numeric weight Wj, i associated with it, which determines the

strength and sign of the connection.

o Each unit i first computes a weighted sum of its inputs
n

ini Wj, iaj

j 0

o Then it applies an activation function g to this sum to derive the output.
n

ai g (ini) g (Wj, iaj)
j 0

o A simulated neuron which takes the weighted sum as its input and sends the output 1,

if the sum is greater than some adjustable threshold value otherwise it sends 0.

o The activation function g is designed to meet two desires,
 The unit needs to be “active” (near +1) when the “right” inputs are given and

“inactive” (near 0) when the “wrong” inputs are given.

 The activation needs to be non linear, otherwise the entire neural network

collapses into a simple linear function.

o There are two activation functions,
 Threshold function

 Sigmoid function

Comparison between Real neuron and Artificial neuron (or) Simulated neuron:-

 Computers (Artificial neuron) Human brain (Real neuron)

Computational Units 1 CPU, 10
5

gates 10
11

neurons

Storage Units 10
9

bits RAM, 10
11

bits disk 10
11

neurons, 10
14

Synapses

Cycle time 10
-8

sec 10
-3

sec

Bandwidth 10
9

bits/sec 10
14

bits/sec

Neuron updates/Sec 10
5
 10

14

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

Real neuron Simulated neuron (Artificial neuron)

The character of real neuron is not modeled The properties are derived by simply adding up

the weighted sum as its input

Simulation of dendrites is done using electro

chemical reaction

A process output is derived using logical circuits

Billion times faster in decision making process Million times faster in decision making process

More fault tolerant Less fault tolerant

Autonomous learning is possible Autonomous learning is not possible

Feed-Forward network Recurrent network

Unidirectional Connection Bidirectional Connection

Cycles not exist Cycles exist

A layered network, backtracking is not possible Not a layered network, backtracking is not

possible

Computes a function of the input values that

depends on the weight settings, no internal state

other than the weight settings

Internal state stored in the activation levels of the

units.

Example:- Simple layering Models Example:- Brain

A model used for simple reflex agent A model used for complex agent design

P
a

ge
2

8

 The above table shows the comparison based on raw computational sources available to

computer and human brain.

 The following table shows the comparison based on structure and working method.

Abstract properties of neural networks:-

 They have the ability to perform distributed computation

 They have the ability to learn.

 They have the ability to tolerate noisy inputs

Neural network Structures:-

 The arrangement of neurons into layers and the connection patterns within and between

layers is called the network structures.

 They are classified into two categories depends on the connection established in the network

and the number of layers.

o Acyclic (or) Feed-forward network
 Single layer feed-forward network

 Multilayer feed-forward network

o Cyclic (or) Recurrent networks

 The following table shows the difference between Feed-forward network and Recurrent
network,

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
2

9

Feed-Forward network:-

 A feed-forward network represents a function of its current input; thereby it has no internal

state other than the weights themselves.

 Consider the following network, which has two hidden input units and an output unit.

1
W1,3

W2,3

W1,4

W3,5
3

5

2

W2,4

W4,5

4

 Given an input vector x = (x1, x2), the activations of the input units are set to (a1,a2) =

(x1,x2) and the network computes

a5 g (W 3, 5a3 W 4, 5a 4) g (W 3, 5 g (W 1, 3a1 W 2, 3a 2) W 4, 5 g (W 1, 4 a1 W 2, 4a 2))

Single Layer feed-forward network:-

 A single layer network has one layer of connection weights.

 The following figure shows the single layer feed forward network.

 The units can be distinguished as input units, which receive signals from the outside world,

and output units, from which the response of the network can be read.

 The input units are fully connected to output units but are not connected to other input units.

 They are generally used for pattern classification.

Multi Layer feed-forward network:-

 A multi layer network with one or more layers of nodes called hidden nodes.

 Hidden nodes connected between the input units and the output units.

 The below figure shows the multilayer feed-forward network.

 Typically there is a layer of weights between two adjacent levels of units.

 The network structure has 3 input layer, 4 hidden layer and 2 output layer.

 Multilayer network can solve more complicated problems than single layer networks.

 In this network training may be more difficult.

STUDENTSFOCUS.COM

P
a

ge
3

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

Recurrent network:-

 Each node is a processing element or unit, it may be in one of the two states (Black-Active,

White-Inactive) units are connected to each other with weighted symmetric connection.

 A positive weighted connection indicates that the two units tend to activate each other.

 A negative connection allows an active unit to deactive neighboring unit.

 The following diagram shows the simple recurrent network which is a Hopfield network,

-1

+1 -1 +3

-1

+ 2 + 1 -2 +3

+1 -1

 Working method:-

o A random unit is chosen.

o If any of its neighbors are active, the unit computes the sum of the weights on the
connections to those active neighbors.

o If the sum is positive, the unit becomes active, otherwise it become inactive.

 Fault tolerance:- If a new processing element fails completely, the network will still

function properly.

Learning Neural network structures:-

 It is necessary to understand how to find the best network structure.

 If a network is too big is chosen, it will be able to memorize all the examples by forming a

large lookup table, but will not generalize well to inputs that have not been seen before.

 There are two kinds of networks must be considered namely,

 Fully connected network

 Not Fully connected network

 Fully Connected networks:-

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

1

o If fully connected networks are considered, the only choices to be made concern the

number of hidden layers and their sizes.

o The usual approach is to try several and keep the best.
o The cross validation techniques are needed to avoid peeking at the test set.

 Not Fully Connected network:-

o If not fully connected networks are considered, then find some effective search
method through the very large space of possible connection topologies.

 Optimal Brain damage Algorithm:-
o The following are the steps involved in brain damage algorithm,

1. Begin with a fully connected network
2. Remove connections from it.

3. After the network is trained for the first time, an information theoretic

approach identifies an optimal selection of connections that can be dropped.

4. Then the network is trained.

5. If its performance has not decreased then the process is repeated.

6. In addition to removing connections, it is also possible to remove units that are

not contributing much to the result.

 Tiling Algorithm:-

o It is an algorithm, which is proposed for growing a larger network from a smaller one.
o it resembles decision-list learning.
o The following are the steps involved in tiling algorithm,

1. Start with a single unit that does its best to produce the correct output on as

many of the training examples as possible.

2. Subsequent units are added to take care of the examples that the first unit got

wrong.

3. The algorithm adds only as many units as are needed to cover all the

examples.

Advantages of Neural Networks:-

 The neural network learns well, because the data were generated from a simple decision tree

in the first place.

 Neural networks are capable of far more complex learning tasks of course.

 There are literally tens of thousands of published applications of neural networks

5.6. Reinforcement Learning

5.6.1 Reinforcement:

 Reinforcement is a feedback from which the agent comes to know that something good has

happened when it wins and that something bad has happened when it loses. This is also called

as reward.

 For Examples:-

o In chess game, the reinforcement is received only at the end of the game.
o In ping-pong, each point scored can be considered a reward; when learning to crawl,

any forward motion is an achievement.

 The framework for agents regards the reward as part of the input percept, but the agent must

be hardwired to recognize that part as a reward rather than as just another sensory input.

 Rewards served to define optimal policies in Markov decision processes.

 An optimal policy is a policy that maximizes the expected total reward.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

2

 The task of reinforcement learning is to use observed rewards to learn an optimal policy for

the environment.

 Learning from these inforcements or rewards is known as reinforcement learning

 In reinforcement learning an agent is placed in an environment, the following are the agents

o Utility-based agent
o Q-Learning agent
o Reflex agent

 The following are the Types of Reinforcement Learning,

o Passive Reinforcement Learning
o Active Reinforcement Learning

5.6.2 Passive Reinforcement Learning

 In this learning, the agent’s policy is fixed and the task is to learn the utilities of states.

 It could also involve learning a model of the environment.

 In passive learning, the agent’s policy is fixed (i.e.) in state s, it always executes the action

 (s).

 Its goal is simply to learn the utility function U (s).

 For example: - Consider the 4 x 3 world.

 The following figure shows the policy for that world.

+1

-1

 The following figure shows the corresponding utilities

0.812

0.868

0.918

+1

0.762

0.560

-1

0.705

0.655

0.611

0.388

 Clearly, the passive learning task is similar to the policy evaluation task.

 The main difference is that the passive learning agent does not know

o Neither the transition model T(s, a,s’), which specifies the probabilit y of reaching

state’s from state s after doing action a;

o Nor does it know the reward function R(s), which specifies the reward for each state.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

3

 The agent executes a set of trials in the environment using its policy .

 In each trial, the agent starts in state (1,1) and experiences a sequence of state transitions until

it reaches one of the terminal states, (4,2) or (4,3).

 Its percepts supply both the current state and the reward received in that state.

 Typical trials might look like this:

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (1,2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (4,3)+1

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (3,2)-0.4 (3,3)-0.4 (4,3)+1

(1 ,1)-0.4 (2, 1)-0.4 (3,1)-0.4 (3,2)-0.4 (4,2)-1

 Note that each state percept is subscripted with the reward received.

 The object is to use the information about rewards to learn the expected utility U (s)

associated with each nonterminal state s.

 The utility is defined to be the expected sum of (discounted) rewards obtained if policy is

 followed, the utility function is written as

U (s) E tR(st) | , s 0 s

 For the 4 x 3 world set = 1

5.6.2.1 Direct utility estimation:-

 t 0

 A simple method for direct utility estimation is in the area of adaptive control theory by

Widrow and Hoff(1960).

 The idea is that the utility of a state is the expected total reward from that state onward, and

each trial provides a sample of this value for each state visited.

 Example:- The first trial in the set of three given earlier provides a sample total reward of

0.72 for state (1,1), two samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and 0.88 for

(1,3) and so on.

 Thus at the end of each sequence, the algorithm calculates the observed reward- to-go for

each state and updates the estimated utility for that state accordingly.

 In the limit of infinitely many trails, the sample average will come together to the true

expectations in the utility function.

 It is clear that direct utility estimation is just an instance of supervised learning.

 This means that reinforcement learning have been reduced to a standard inductive learning

problem.

 Advantage:- Direct utility estimation succeeds in reducing the reinforcement learning

problem to an inductive learning problem.

 Disadvantage:-

o It misses a very important source of information, namely, the fact that the utilities of
states are not independent

 Reason:- The utility of each state equals its own reward plus the expected

utility of its successor states. That-is, the utility values obey the Bellman

equations for a fixed policy

U (s) R(s) T (s, (s), s`)U (s`)
s

`

o It misses opportunities for learning

 Reason:- It ignores the connections between states

o The algorithm often converges very slowly.

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

s

R
M

S
e

rr
o

r
in

 u
ti

li
ty

P
a

ge
3

4

 Reason:- More broadly, direct utility estimation can be viewed as searching in

a hypothesis space for U that is much larger that it needs to be, in that it

includes many functions that violate the Bellman equations.

5.6.2.2 Adaptive Dynamic programming:-

 Agent must learn how states are connected.

 Adaptive Dynamic Programming agent works by learning the transition model of the

environment as it goes along and solving the corresponding Markov Decision process using a

dynamic programming method.

 For passive learning agent, the transition model T (s, (s), s`)

into Bellman equation to calculate the utilities of the states.

and the observed rewards R(S)

 The process of learning the model itself is easy, because the environment is fully observable

i.e. we have a supervised learning task where the input is a state-action pair and the output is

the resulting state.

 We can also represent the transition model as a table of probabilities.

 The following algorithm shows the passive ADP agent,

Function PASSIVE-ADP-AGENT(percept) returns an action

Inputs: percept,a percept indicating the current state s
’

and reward signal r
’

Static: π a,fixed policy

Mdb,an MDP with model T,rewards R,discount γ

U,a table of utilities,initially empty

Nsa,a table of frequencies for state-action pairs,initially zero

Nsa
’
,a table of frequencies for state-action-state triples,initially zero

S,a,the previous state and action,initially null

If s
’

is new then do U[s
’
]←r

’
; R[s

’
]←r

’

If s is not null then do

Increment Nsa[s,a]andNsas’[s,a,s
’
]

For each t such that Nsas’[s,a,t]is nonzero do

T[s,a,t]←Nsas’[s,a,t]/Nsa[s,a]
U←VALUE-DETERMINATION(π,U,mdb)

If TERMINALS?[s
’
]then s,a←null else s,a←s

’
,π[s

’
]

return a

 Its performance on the 4 * 3 world is shown in the following figure.

 The following figure shows the root-mean square error in the estimate for U(1,1), averaged

over 20 runs of 100 trials each.

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0 20 40 60 80 100 120
Number of trials

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

5

 Advantages:-

o It can converges quite quickly

 Reason:- The model usually changes only slightly with each observation, the

value iteration process can use the previous utility estimates as initial values.

o The process of learning the model itself is easy

 Reason:- The environment is fully observable. This means that a supervised

learning task exist where the input is a state-action pair and the output is the

resulting state.

o It provides a standard against which other reinforcement learning algorithms can be
measured.

 Disadvantage:-

o It is intractable for large state spaces

5.6.2.3 Temporal Difference Learning:-

 In order to approximate the constraint equation U

(S) , use the observed transitions to adjust

the values of the observed states, so that they agree with the constraint equation.

 When the transition occurs from S to S
1
, we apply the following update to U

(S)

U

(S) U

(S) (R(S) U

(S
1
) U

(S))

 Where = learning rate parameter.

 The above equation is called Temporal difference or TD equation.

 The following algorithm shows the passive reinforcement learning agent using temporal

differences,

Function PASSIVE-TD-AGENT(precept)returns an action

Inputs:percept,a percept indicating the current state s
’

and reward signal r
’

Static:π,a fixed policy

U,a table of utilities,initially empty

Ns,a table of frequencies for states,initially zero
S,a,r,the previous state,action,and reward,initially null

If s’ is new then U[s’]←r’

If s is not null then do

Increment Ns[s]
U[s]←U[s] + α(Ns[s])(r + γU[s’] - U[s])

If TERMINAL?[s’]then s,a,r←null else s,a,r←s’,π[s’],r’

return a

 Advantages:-

o It is much simpler
o It requires much less computation per observation

 Disadvantages:-
o It does not learn quite as fast as the ADP agent

o It shows much higher variability
 The following table shows the difference between ADP and TD approach,

ADP Approach TD Approach

ADP adjusts the state to agree with all of the

successors that might occur, weighted by their

probabilities

TD adjusts a state to agree with its observed

successor

ADP makes as many adjustments as it needs to

restore consistency between the utility estimates

U and the environment model T

TD makes a single adjustment per observed

transition

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

6

 The following points shows the relationship between ADP and TD approach,

o Both try to make local adjustments to the utility estimates in order to make each state

“agree” with its successors.

o Each adjustment made by ADP could be seen, from the TD point of view, as a result

of a “pseudo-experience” generated by simulating the current environment model.

o It is possible to extend the TD approach to use an environment model to generate

several “pseudo-experiences-transitions that the TD agent can imagine might happen,

given its current model.

o For each observed transition, the TD agent can generate a large number of imaginar y

transitions. In this way the resulting utility estimates will approximate more and more

closely those of ADP- of course, at the expense of increased computation time.

5.6.3. Active Reinforcement learning:-

 A passive learning agent has a fixed policy that determines its behavior.

 “An active agent must decide what actions to do”

 An ADP agent can be taken an considered how it must be modified to handle this new

freedom.

 The following are the required modifications:-

o First the agent will need to learn a complete model with outcome probabilities for all

actions. The simple learning mechanism used by PASSIVE-ADP-AGENT will do just

fine for this.

o Next, take into account the fact that the agent has a choice of actions. The utilities it

needs to learn are those defined by the optimal policy.

U (s) R(s) max T (s, a, s`)U (s`)
a

s ̀

o These equations can be solved to obtain the utility function U using he value iteration

or policy iteration algorithms.

o Having obtained a utility function U that is optimal for the learned model, the agent

can extract an optimal action by one-step look ahead to maximize the expected utility;

o Alternatively, if it uses policy iteration, the optimal policy is already available, so it

should simply execute the action the optimal policy recommends.

5.6.3.1 Exploration:-

 Greedy agent is an agent that executes an action recommended by the optimal policy for the

learned model.

 The following figure shows the suboptimal policy to which this agent converges in this

particular sequence of trials.

+1

-1

 The agent does not learn the true utilities or the true optimal policy! what happens is that, in

the 39
th

trial, it finds a policy that reaches +1 reward along the lower route via (2,1),
(3,1),(3,2), and (3,3).

STUDENTSFOCUS.COM

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

P
a

ge
3

7

 After experimenting with minor variations from the 276
th

trial onward it sticks to that policy,

never learning the utilities of the other states and never finding the optimal route via

(1,2),(1.3) and (2,3).

 Choosing the optimal action cannot lead to suboptimal results.

 The fact is that the learned model is not the same as the true environment; what is optimal in

the learned model can therefore be suboptimal in the true environment.

 Unfortunately, the agent does not know what the true environment is, so it cannot compute

the optimal action for the true environment.

 Hence this can be done by the means of Exploitation.

 The greedy agent can overlook that actions do more than provide rewards according to the

current learned model; they also contribute to learning the true model by affecting the

percepts that are received.

 An agent therefore must make a trade-off between exploitation to maximize its reward and

exploration to maximize its long-term well being.

 Pure exploitation risks getting stuck in a rut.

 Pure exploitation to improve ones knowledge id of no use if one never puts that knowledge

into practice.

5.6.3.2 GLIE Scheme:-

 To come up with a reasonable scheme that will eventually lead to optimal behavior by the

agent a GLIE Scheme can be used.

 A GLIE Scheme must try each action in each state an unbounded number of times to avoid

having a finite probability that an optimal action is missed because of an unusually bad series

of outcomes.

 An ADP agent using such a scheme will eventually learn the true environment model.

 A GLIE Scheme must also eventually become greedy, so that the agents actions become

optimal with respect to the learned (and hence the true) model.

 There are several GLIE Scheme as follows,

o The agent can choose a random action a fraction 1/t of the time and to follow the

greedy policy otherwise.

 Advantage:- This method eventually converges to an optimal policy

 Disadvantage:- It can be extremely slow

o Another approach is to give some weight to actions that the agent has not tried very

often, while tending to avoid actions that are believed to be of low utility. This can be

implemented by altering the constraint equation, so that it assigns a higher utilit y

estimate to relatively UP explored state-action pairs.

 Essentially, this amounts to an optimistic prior over the possible environments and causes the

agent to behave initially as if there were wonderful rewards scattered all over the place.

5.6.3.3 Exploration function:-

 Let U
+

denotes the optimistic estimate of the utility of the state s, and let N(a,s) be the

number of times action a has been tried in state s.

 Suppose that value iteration is used in an ADP learning agent; then rewrite the update

equation to incorporate the optimistic estimate.

 The following equation does this,

U

(s) R(s) max f

T (s, a, s`)U

(s`), N (a, s)

a

s ̀
 Here f(u ,n) is called the exploration function.

 It determines how greed is trade off against curiosity.

STUDENTSFOCUS.COM

P
a

ge
3

8

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 The function f(u, n) should be increasing in u and decreasing in n.

 The simple definition is

f(u, n) = R
+

in n<Nc

u otherwise

where R
+

= optimistic estimate of the best possible reward obtainable in any state and Nc is a

fixed parameter.

 The fact that U
+

rather than U appears on the right hand side of the above equation is very
important.

 If U is used, the more pessimistic utility estimate, then the agent would soon become

unwilling to explore further a field.

 The use of U
+

means that benefits of exploration are propagated back from the edges of
unexplored regions, so that actions that lead toward unexplored regions are weighted more

highly, rather than just actions that are themselves unfamiliar.

5.6.3.4 Learning an action value function:-

 To construct an active temporal difference learning agent, it needs a change in the passive TD

approach.

 The most obvious change that can be made in the passive case is that the agent is no longer

equipped with a fixed policy, so if it learns a utility function U, it will need to learn a model

in order to be able to choose an action based on U via one step look ahead.

 The update rule of passive TD remains unchanged. This might seem old.

 Reason:-
o Suppose the agent takes a step that normally leads to a good destination, but because

of non determinism in the environment the agent ends up in a disastrous state.

o The TD update rule will take this as seriously as if the outcome had been the normal

result of the action, where the agent should not worry about it too much since the

outcome was a fluke.

o It can be shown that the TD algorithm will converge to the same values as ADP as the

number of training sequences tends to infinity.

5.6.3.5 Q-Learning:-

 An alternative TD method called Q-Learning.

 It can be used that learns an action value representation instead of learning utilities.

 The notation Q(a, s) can be used to denote the value of doing action “a” in state “s”.

 Q values are directly related to utility values as follows,

U (s) max Q(a, s)
a

 Q Learning is called a model free method.

 Reason:-
o It has a very important property: a TD that learns a Q-function does not need a model

for either learning or action selection.
o As with utilities, a constraint equation can be written that must hold at equilibrium

when the Q-Values are correct,

Q(a, s) R(s) T (s, a, s`) max Q(a`, s`)
s`

a`

o As in the ADP learning agent, this equation can be used directly as an update equation

for an iteration process that calculates exact Q-values, given an estimated model.

o This does, however, require that a model also be learned because the equation uses
T(s, a, Sf).

o The temporal difference approach, on the other hand, requires no model.
o The update equation for TD Q-Learning is

SVCET

STUDENTSFOCUS.COM

P
a

ge
3

9

 j

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

Q(a, s) Q(a, s) [R(s) max Q(a`, s`) Q(a, s)]
a`

o Which is calculated whenever action a is executed in state s leading to state Sf.

 The following algorithm shows the Q-Learning agent program

Function Q-LEARNING_AGENT(percept)returns an action

Inputs: percept,a percept indicating the current state s’ and reward signal r’

Static: q, a table of action values index by state and action

Nsa,a table of frequencies for state-action pairs

S,a,r,the previous state,action,and reward,initially null

If s is not null then do

Increment Nsa[s,a]
Q[a,s]←q[a,s] + α(Nsa[s,a])(r + γ maxa’ Q[a’,s’] – Q[a,s])

If TERMINAL?[s’]then s,a,r←null
Else s,a,r←s’,argmaxa’ f(Q[a’,s’],Nsa[a’,s’]),r’

return a

 Some researchers have claimed that the availability of model free methods such as Q-

Learning means that the knowledge based approach is unnecessary.

 But there is some suspicion i.e. as the environment becomes more complex.

5.6.4 Generalization in Reinforcement Learning:-

 The utility function and Q-functions learned by the agents are represented in tabular form

with one output value for each input tuple.

 This approach works well for small set spaces.

 Example:- The game of chess where the state spaces are of the order 10
50

states. Visiting all

the states to learn the game is tedious.

 One way to handle such problems is to use FUNCTION APPROXIMATION.

 Function approximation is nothing but using any sort of representation for the function

other than the table.

 For Example:- The evaluation function for chess is represented as a weighted linear function

of set of features or basic functions f1,….fn

U

(S)
1
f
1
(S)

2
f

2
(S) nf

n
(S)

 The reinforcement learning can learn value for the parameters
1
.........

n
.

 Such that the evaluation function U
approximates the true utility function.

 As in all inductive learning, there is a tradeoff between the size of the hypothesis space and

the time it takes to learn the function.

 For reinforcement learning, it makes more sense to use an online learning algorithm that

updates the parameter after each trial.

 Suppose we run a trial and the total reward obtained starting at (1, 1) is 0.4.

 This suggests that U
(1,1) , currently 0.8 is too large and must be reduced.

 The parameter should be adjusted to achieve this. This is done similar to neural network

learning where we have an error function which computes the gradient with respect to the

parameters.

 If Uj(S) is the observed total reward for state S onward in the jth trial then the error is defined
as half the squared difference of the predicted total and the actual total.

E
j
(S) (U (S) U (S))

2
/ 2

SVCET

STUDENTSFOCUS.COM

P
a

ge
4

0

Artificial Intelligence CSE/IIIYr/VISem UNIT-V/LEARNING

 The rate of change of error with respect to each parameter
i

is

parameter in the direction of the decreasing error.

i

i
 (E

j
(S) / C

j
)

i
 (U

j
(S) U

(S))(U

(S) /

i
)

 This is called Widrow-Hoff Rule or Delta Rule.

 Advantages:-
o It requires less space.

 E
j

/
j
, so to move the

o Function approximation can also be very helpful for learning a model of the
environment.

o It allows for inductive generalization over input states.

 Disadvantages:-

o The convergence is likely to be displayed.
o It could fail to be any function in the chosen hypothesis space that approximates the

true utility function sufficiently well.

o Consider the simplest case, which is direct utility estimation. With function

approximation, this is an instance of supervised learning.

UNIT – V Expert

System

ALL THE BEST &

WISH YOU GOOD

LUCK

SVCET

STUDENTSFOCUS.COM

Artificial Intelligence

Online Question

1. What is Artificial intelligence?

Putting your intelligence into Computer
Programming with your own intelligence

Making a Machine intelligent
Playing a Game

Putting more memory into Computer
2. Which is not the commonly used programming language for AI?

(a) PROLOG (b) Java (c) LISP (d) Perl (e) Java script.
3. What is state space?

The whole problem

Your Definition to a problem

Problem you design

Representing your problem with variable and parameter
A space where You know the solution.

4. A production rule consists of

(a) A set of Rule (b) A sequence of steps

(c) Both (a) and (b) (d) Arbitrary representation to problem

(e) Directly getting solution.
5. Which search method takes less memory?

(a) Depth-First Search (b) Breadth-First search

(c) Both (a) and (b) (d) Linear Search.
(e) Optimal search.

6. A heuristic is a way of trying

To discover something or an idea embedded in a program

To search and measure how far a node in a search tree seems to be from a goal
To compare two nodes in a search tree to see if one is better than the other
Only (a) and (b)
Only (a), (b) and (c).

7. A* algorithm is based on

(a) Breadth-First-Search (b) Depth-First –Search

(c) Best-First-Search (d) Hill climbing.
(e) Bulkworld Problem.

8. Which is the best way to go for Game playing problem?

(a) Linear approach (b) Heuristic approach

(c) Random approach (d) Optimal approach

(e) Stratified approach.
9. How do you represent “All dogs have tails”.

(a) ٧x: dog(x)�hastail(x) (b) ٧x: dog(x)�hastail(y)
(c) ٧x: dog(y)�hastail(x) (d) ٧x: dog(x)�has�tail(x)
(e) ٧x: dog(x)�has�tail(y)

10. Which is not a property of representation of knowledge?

(a) Representational Verification (b) Representational Adequacy

(c) Inferential Adequacy (d) Inferential Efficiency

(e) Acquisitional Efficiency.

Answers

1. Answer : (c)

Reason : Because AI is to make things work automatically through machine without using human effort.
Machine will give the result with just giving input from human. That means the system or machine
will act as per the requirement.

2. Answer : (d)

Reason : Because Perl is used as a script language, and not of much use for AI practice. All others are
used to generate an artificial program to a great extent.

3. Answer : (d)

Reason : Because state space is mostly concerned with a problem, when you try to solve a problem, we
have to design a mathematical structure to the problem which can only be through variables and
parameters. Ex. You have given a 4-gallon jug and another 3gallon jugs. Neither has measuring
marker on it. You have to fill the jugs with water .How can you get exactly 2 gallons of water in to
4gallons.Here the state space can defined as set of ordered pairs integers(x,y),such that
x=0,1,2,3 or 4 and y=0,1,2 or 3;X represents the number of gallons in 4galoon jug and y
represents quantity of water in the 3-gallon jug.

4. Answer : (c)

Reason : When you are trying to solve a problem, you should design how to get a step by step solution with
constraints condition to your problem, e.g Chess board problem.

5. Answer : (a)

Reason : Depth-First Search takes less memory since only the nodes on the current path are stored, but in
Breadth First Search, all of the tree that has generated must be stored.

6. Answer : (e)

Reason : In a heuristic approach we discover certain idea and use heuristic functions to search for a goal
and predicates to compare nodes.

7. Answer : (c)

Reason : Because Best-first-search is giving the idea of optimization and quick choose of path, and all
these characteristic lies in A* algorithm.

8. Answer : (b)

Reason : We use Heuristic approach as it will find out brute force computation ,looking at hundreds of
thousands of positions. e.g Chess competition between Human and AI based Computer.

9. Answer : (a)

Reason : We represent the statement in mathematical logic taking ‘x ‘as Dog and which has tail. We can
not represent two variable x, y for the same object Dog which has tail. The symbol “٧ “represent
all.

10. Answer : (a)

Reason : There is nothing to go for Representational verification, the verification comes under
Representational adequacy.

	AI-Syllabus.pdf (p.1-5)
	unit 1.pdf (p.6-51)
	unit 2.pdf (p.52-100)
	unit 3.pdf (p.101-170)
	unit 4.pdf (p.171-184)
	unit-5.pdf (p.185-225)
	one mark-AI.pdf (p.226-227)

