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13BECS603   PRINCIPLES OF COMPILER DESIGN 

 

COURSE OBJECTIVES: 

To understand and list the different stages in the process of compilation. 

 To understand and design Lexical analyzers and parsers 

To Develop algorithms to generate code for a target machine 

 To learn and develop techniques for optimization of code. 

COURSE OUTCOMES: 

Upon completing the course the students will be able to 

 Understand the complete process of compilation from source code to target code 
 develop the lexical analyzer and parsers 

 Develop algorithms to generate code for a target machine 

 Optimize the generated code  

 

U N I T  1:Introduction           (9) 

Introduction - What is a Compiler? - Cousins of a Compiler- Assembler - Interpreter - Phases of 

compilation and   overview, Lexical Analysis, Syntax Analysis, Semantic Analysis, Intermediate 

code Generation, Code Optimization, Code Generation - Specification of Tokens.  

 

U N I T  2:Lexical   Analysis(scanner)         (9) 

Regular l a n g u a g e s ,   finite   automata,   regular expressions,  from  regular expressions to finite 

automata, scanner generator (lex, flex). 

Syntax Analysis (Parser): Context-free languages and grammars, push-down 

automata,LL(1)gram-mars and top-down parsing,operator 

grammars,LR(O),SLR(1),LR(1),LALR(1) grammars and bottom-up parsing, ambiguity and LR 

parsing,LALR(1) parser generator (yacc,  bison) 

 

U N I T  3:Semantic  Analysis          (9) 

Attribute  grammars,  syntax directed definition,evaluation and flow of attribute in a syntax tree. 

 

Symbol          Table:Its      structure,   symbol attributes         and management.           Run-time 

environment:   Procedure    activation,parameter passing, value return, memory allocation, and 

scope.Intermediate Code Generation:Translation of different language features,   different types of     

intermediate    forms.     

 

U N I T  4 : Code Improvement(optimization)        (9) 

Analysis: control-flow, data-flow dependence  etc.; Code improvement  local optimization,  global 

optimization,  loop optimization,  peep-hole   optimization etc.Architecture       dependent       code       

improvement: instruction scheduling(for  pipeline),  loop  optimization  (for  cache  memory) etc.   

Register allocation  and  target  code  generation   

 

 

U N I T  5 : Advanced topics          (9) 

Type  systems,  data  abstraction,compilation of Object Oriented features and non-

imperativeprogramminglanguages. 

Total Hours: 45 

 

TEXT BOOKS: 

1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 

Pearson Education Asia, 2
nd

 Edition, 2017. 
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2. Allen I Holub, Compiler Design in C, Prentice Hall of india, 2016. 

 

REFERENCES: 

1. Keith Cooper and lindaTorczon, Engineering a compiler, 2
nd

 edition, 2016. 

2. Bennet.J.P, Introduction to Compiler Techniques, Tata McGraw-Hill, 2015. 

3. R.Levine, Tony Mason, Doug Brown  John, Lex &Yacc, 2
nd

 Edition (October 2012) O‟Reilly & 

Associates. 

4. Kenneth c.Louden,Compiler Construction: Principles and Pratice, Thomson Learning, 2018. 

 

WEBSITES: 

 

1. http://www.tenouk.com/ModuleW.html/ 

2. http://www.mactech.com/articles/mactech/Vol.06/06.04/Lexical Analysis/index.html 
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13BECS603-  PRINCIPLES OF COMPILER DESIGN 

LECTURE PLAN 

S.NO 

DESCRIPTION OF 

PORTION TO BE 

COVERED 

HOURS 

 

Reference Book & Page Nos. 

Used for teaching 

  

TEACHING    

AIDS 

1 
Discussion on the  

Fundamentals of Compilers  
1 R[1] Page no 17-33 

PPT 

2 
Introduction to Types of 

Compilers-uses of compilers 
1 R[1] Page no 12-14 

PPT 

UNIT- I INTRODUCTION TO COMPILING 

3 

Compilers  

Analysis of the source 

program 

1 
R[2]-Page no 1.1-1.3                  

R[1]-Page no1-3  
BB 

4 Phases of compiler 1 
R[1]-Page no 4-11 

R[2]-Page no1.6-1.10 
BB 

5 

Tutorial:  

Compilers  

Phases of compiler 

1 
 R[2]-Page no 1.1-1.3                  

R[1]-Page no1-3 
PPT 

6 
Cousins of the compiler 

Grouping of phases 
1 R[2]-Page no 1.14-1.17 BB 

7 
Compiler construction tools 

Lexical Analysis 
1 R[2]-Page no 1.19 PPT 

8 
The role of the lexical 

analyzer 
1 R[2]-Page no 1.25-1.28 PPT 
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9 

Tutorial: Lexical Analysis 

The role of the lexical 

analyzer 

 

1  R[2]-Page no 1.25-1.28 PPT 

10 
Input buffering-Tokens 

Specification
 

1 R[2]-Page no 1.28-1.29 PPT 

TOTAL HOURS FOR UNIT-I 10  

UNIT- II SYNTAX ANALYSIS 

11 

The role of the parser 

writing a grammar 
1 

R[1]-Page no 191-195  

R[2]-Page no 2.9-2..16 

 

BB 

12 Context-free grammars  1 R[2]-Page no 197-206 PPT 

13 
Tutorial hour –

  

Context-free grammars  
1 R[2]-Page no 197-206 PPT 

14 

Top-down parsing 

Recursive-descent parser 

Predictive parser 

1 
R[1]-Page no 217-231 

R[2]-Page no 2.16-2.19 
BB 

15 
Constructing an SLR(1) 

parsing table 
1 

R[1]-Page no 252-248 

R[2]-Page no 2.43 

 

BB 

16 

Bottom-up Parsing  

Shift reduce parsing 

Operator-precedence parsing 

1 
R[2]-Page no 2.26-2.37 

R[1] Page no 233-240 
PPT 

17 

Tutorial : 

Bottom-up Parsing  

Shift reduce parsing 

 

1 
R[2]-Page no 2.26-2.37 

R[1] Page no 233-240 
BB 

18 
LR Parsers 

SLR Parser 
1 

R[1]-Page no 241-248 

R[2]-Page no 2.39-2.42 
BB 

19 
Canonical LR Parser 

1 
R[1]-Page no 259-261 

 
PPT 
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20 
LALR Parser 

1 
R[1]-Page no 266-277 

R[2]-Page no 2.62 
PPT 

TOTAL HOURS FOR UNIT-II 10 

 

UNIT -III INTERMEDIATE CODE GENERATION 

21 

Intermediate languages 

 1 R[2]-Page no 3.1-3.6 BB 

22 

Declarations 

Assignment statements 
1 

R[1]-Page no 370-379      

R[2] Page no 3.13-3.14 
BB 

23 
Boolean expressions 

 
1 

R[1]-Page no 399-409 

R[2] Page no 3.24-3.26 
BB 

24 
Tutorial:  

Boolean expressions
 

1 
R[1]-Page no 399-409 

R[2] Page no 3.24-3.26 
BB 

25 
Case statements 

1 
R[1]-Page no 418-421 

R[2] Page no 33.31-3.32 
PPT 

26 Backpatching
 1 R[2] Page no 3.40 BB 

27 

 

Tutorial: Case statements 

 

1 
R[1]-Page no 418-421 

R[2] Page no 33.31-3.32 
PPT 

28 
Procedure calls 

 
1  R[2] Page no 3.41-3.45 PPT 

29 Symbol table 1  R[2] Page no 3.41-3.45 PPT 

TOTAL HOURS FOR UNIT-III 9 

 
UNIT- IV CODE GENERATION 

30 

Issues in the design of a code 

generator
 

1 
R[1]-Page no 501-505 

R[2] Page no 4.2-4.3 
BB 

31 
The target machine

 
1 

R[1]-Page no 512-516 

R[2] Page no 4.6 
BB 
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32 
Run-time storage management 

 1 
R[1]-Page no 427-440 

R[2] Page no 4.6-4.10 
BB 

33 
Tutorial :

  

Run-time storage management
 

1 
R[1]-Page no 427-440 

R[2] Page no 4.6-4.10 
BB 

34 

Basic blocks and flow graphs 

Next use information, a 

simple code generator 

 

1 R[2] Page no 4.10-4.14 BB 

35 
The dag representation of 

basic blocks
 

1 R[2] Page no 4.10-4.14 PPT 

36 

Tutorial:
  

The dag representation of 

basic blocks
 

1 R[2] Page no 4.10-4.14 PPT 

37 
Peephole optimization 

1 
R[1]-Page no 549-553 

R[2]-Page no 4.22-4.24 
BB 

TOTAL HOURS FOR UNIT-IV 8 

UNIT- V CODE OPTIMIZATION AND RUN TIME ENVIRONMENTS 

38 

Introduction to code 

optimization 

 

1 
R[1]-Page no 583-596 

R[2]-Page no 5.1-5.2 
BB 

39 

The principle sources of 

optimization 

 

1 
R[1]-Page no 583-596 

R[2]-Page no 5.3-5.11 
BB 

40 

Optimization of basic blocks 

Global data flow analysis 1 R[2]-Page no 5.3-5.11 

BB 

41 
Tutorial  

Code optimization 
1  R[2]-Page no 5.3-5.11 

BB 

42 

Run time environment
 

1 R[2]-Page no 5.20 PPT 

43 

Source Language issues 

1 R[2]-Page no 5.20 BB 

44 

Storage Organization 

 Storage Allocation strategies  

 

1 R[2]-Page no 5.27-5.31 BB 

45 

Tutorial : 

Storage Organization 

 

1 R[2]-Page no 5.27-5.31 BB 
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46 
Access to non-local names, 

parameter missing 
 

R[2]-page no 

5.32 
BB 

47 
Discussion on Past Five Year End Semester Question Paper  

1 

TOTAL HOURS FOR UNIT-V 10 

TOTAL LECTURE HOURS 37 

TOTAL TUTORIAL HOURS 10 

TOTAL HOURS 47 

REFERENCES    
     

1 
Alfred Aho, Ravi Sethi, Jeffrey D Ullman, 2006, Compilers Principles, Techniques and  Tools, 

4
th

 Edition, Pearson Education Asia 

2 
Author: P.Kalaiselvi, Principles Of Compiler Design A.A.R.Senthikumaar, 2008,  3

rd
 edition, 

charulatha publication, India 

3 
Allen I. Holub, 2003, Compiler Design in C, 4

th
 Edition, Prentice Hall of India. 

4 

Fischer.C.N and R.J.LeBlanc, 2003, Crafting a compiler with C, 3
rd

 Edition, Benjamin 

Cummings. 

5 Bennet.J.P, 2003,  Introduction to Compiler Techniques, 2
nd

 Edition, Tata McGraw-Hill 
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LECTURE NOTES 

CHAPTER I- LEXICAL ANALYSIS 

1.1 INRODUCTION TO COMPILING 

 

Translator: 
It is a program that translates one language to another. 

 

source code Translator target code 
    

Figure1.1:translator 

Types of Translator: 
1.Interpreter 

2.Compiler 

3.Assembler 

 

1.Interpreter: 
It is one of the translators that translate high level language to low level language. 

 

high level language Interpreter low level language 
   

 

Figure 1.2: Interpreter 

During execution, it checks line by line for errors. 

Example: Basic, Lower version of Pascal. 

 

2.Assembler: 
It translates assembly level language to machine code. 

assembly language 
 

machine code 
 

Assembler  

  
 

   
 

                                                   

                                                    Figure 1.3:Assembler 

Example: Microprocessor 8085, 8086.  
 

 
3.Compiler: 

It is a program that translates one language(source code) to another language (target  
code). 

source code 
 

target code 
 

Compiler  

  
 

   
 

 
Figure 1.4:Compiler 

It executes the whole program and then displays the errors. 

Example: C, C++, COBOL, higher version of Pascal.
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Difference between compiler and interpreter:  
Compiler  

It is a translator that translates high level to 

low level language 

 
Interpreter  

It is a translator that translates high level to 

low level language 

It displays the errors after the whole program is It checks line by line for errors. 

executed.  

Examples: Basic, lower version of Pascal. Examples: C, C++, Cobol, higher version of 

 Pascal. 
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1.1.1 PARTS OF COMPILATION 

 
There are 2 parts to compilation: 

1. Analysis  

2. Synthesis  

 

Analysis part breaks down the source program into constituent pieces and creates an 

intermediate representation of the source program. 
 
Synthesis part constructs the desired target program from the intermediate representation. 

 
source code 

 

 

Analysis 
 

 intermediate code  
Synthesis 

 
 

 

object code 

Figure 1.5:Parts of Compilation 

 

Software tools used in Analysis part: 

1) Structure editor:   
Takes as input a sequence of commands to build a source program. The structure editor not 

only performs the text-creation and modification functions of an ordinary text editor, but it also 

analyzes the program text, putting an appropriate hierarchical structure on the source program. 

For example , it can supply key words automatically - while …. do and begin….. end. 


2) Pretty printers :   
A pretty printer analyzes a program and prints it in such a way that the structure of the 

program becomes clearly visible. For example, comments may appear in a special font. 


3) Static checkers :   
A static checker reads a program, analyzes it, and attempts to discover potential bugs 

without running the program. For example, a static checker may detect that parts of the 

source program can never be executed. 

4) Interpreters :   

Translates from high level language ( BASIC, FORTRAN, etc..) into machine language. 

An interpreter might build a syntax tree and then carry out the operations at the nodes as it 

walks the tree. Interpreters are frequently used to execute command language since each 

operator executed in a command language is usually an invocation of a complex routine such 

as an editor or complier. 
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1.2 ANALYSIS OF THE SOURCE PROGRAM 

 
Analysis consists of 3 phases: 

 
Linear/Lexical Analysis : 

It is also called scanning. It is the process of reading the characters from left to right and 

grouping into tokens having a collective meaning. For example, in the assignment statement 

a=b+c*2, the characters would be grouped into the following tokens: 

i) The identifier1 „a‟  

ii) The assignment symbol (=)  

iii) The identifier2 „b‟  

iv) The plus sign (+)  

v) The identifier3 „c‟  

vi) The multiplication sign (*)  

vii) The constant „2‟  

 
Syntax Analysis : 

It is called parsing or hierarchical analysis. It involves grouping the tokens of the source 

program into grammatical phrases that are used by the compiler to synthesize output. They are 

represented using a syntax tree as shown below: 

 
= 

 
a + 

 
b * 

 
c 2  

Figure 1.6:Syntax Analysis 

 

A syntax tree is the tree generated as a result of syntax analysis in which the interior 

nodes are the operators and the exterior nodes are the operands. This analysis shows an 

error when the syntax is incorrect. 

 
Semantic Analysis : 

It checks the source programs for semantic errors and gathers type information for the 

subsequent code generation phase. It uses the syntax tree to identify the operators and 

operands of statements. An important component of semantic analysis is type checking. 

Here the compiler checks that each operator has operands that are permitted by the source 

language specification. 
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1.3 PHASES OF COMPILER 

 

A Compiler operates in phases, each of which transforms the source program from 

one representation into another. The following are the phases of the compiler: 
 
Main phases:  
1) Lexical analysis 

2)Syntax analysis 

3)Semantic analysis 

4) Intermediate code generation 

5)Code optimization 

6)Code generation 

 
Sub-Phases:  
1)Symbol table management 

2)Error handling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7:Phases of Compiler 

 

LEXICAL ANALYSIS: 
It is the first phase of the compiler. It gets input from the source program and produces 

tokens as output. It reads the characters one by one, starting from left to right and forms the 

tokens. 
Token : It represents a logically cohesive sequence of characters such as keywords, 

operators, identifiers, special symbols etc. 

Example: a +b =20 

Here, a,b,+,=,20 are all separate tokens. 

Group of characters forming a token is called the Lexeme. 

 



13 

 

The lexical analyser not only generates a token but also enters the lexeme into the 

symbol table if it is not already there.  



SYNTAX ANALYSIS: 
It is the second phase of the compiler. It is also known as parser. It gets the token stream as 

input from the lexical analyser of the compiler and generates syntax tree as the output. 
Syntax tree: It is a tree in which interior nodes are operators and exterior nodes are operands. 

Example: For a=b+c*2, syntax tree is 
 

= 

 
a + 

 
b * 

 
c 2 

Figure 1.8: Syntax Tree 

 

SEMANTIC ANALYSIS: 
It is the third phase of the compiler. It gets input from the syntax analysis as parse tree and 

checks whether the given syntax is correct or not. It performs type conversion of all the data 

types into real data types. 
 

INTERMEDIATE CODE GENERATION: 
It is the fourth phase of the compiler. It gets input from the semantic analysis and converts 

the input into output as intermediate code such as three-address code. The three-address code 

consists of a sequence of instructions, each of which has atmost three operands. 

Example: t1=t2+t3 

 

CODE OPTIMIZATION: 
 

It is the fifth phase of the compiler. It gets the intermediate code as input and produces 

optimized intermediate code as output. This phase reduces the redundant code and attempts to 

improve the intermediate code so that faster-running machine code will result. During the code 

optimization, the result of the program is not affected. To improve the code generation, the 

optimization involves,

- deduction and removal of dead code (unreachable code).  

- calculation of constants in expressions and terms.  

- collapsing of repeated expression into temporary string.  

- loop unrolling.  

- moving code outside the loop.  

- removal of unwanted temporary variables. 
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CODE GENERATION: 
 

It is the final phase of the compiler. It gets input from code optimization phase and produces 

the target code or object code as result.Intermediate instructions are translated into a sequence of 

machine instructions that perform the same task. The code generation involves 

- allocation of register and memory  

- generation of correct references  

- generation of correct data types  

- generation of missing code  

 

SYMBOL TABLE MANAGEMENT: 
 

Symbol table is used to store all the information about identifiers used in the program. It is a 

data structure containing a record for each identifier, with fields for the attributes of the 

identifier. It allows to find the record for each identifier quickly and to store or retrieve data from 

that record. Whenever an identifier is detected in any of the phases, it is stored in the symbol 

table. 
 

ERROR HANDLING: 
 

Each phase can encounter errors. After detecting an error, a phase must handle the error so 

that compilation can proceed. In lexical analysis, errors occur in separation of tokens. In 

syntax analysis, errors occur during construction of syntax tree. In semantic analysis, errors 

occur when the compiler detects constructs with right syntactic structure but no meaning and 

duringtype conversion. In code optimization, errors occur when the result is affected by the 

optimization. In code generation, it shows error when code is missing etc. 
 

To illustrate the translation of source code through each phase, consider the statement 

a=b+c*2. The figure shows the representation of this statement after each phase: 
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Symbol Table 
 
a id1   
b id2   
c id3  

a=b+c*2 
 

 

Lexical analyser 
 

 id1=id2+id3*2  
Syntax analyser 

 
= 

 
id1  + 

 
id2 * 

 
id3 2 

 
Semantic analyser 

 

= 

 
id1 + 

 
id2 * 

 
id3 inttoreal 

 
2 

 
Intermediate code generator 
 
 

temp1=inttoreal(2) 

temp2=id3*temp1 

temp3=id2+temp2 

id1=temp3 

 

Code optimizer 
 

 

temp1=id3*2.0 

id1=id2+temp1 

 

Code generator 
 
 
 
 

MOVF id3,R2 

MULF #2.0,R2 

MOVF id2,R1 

ADDF R2,R1 

MOVF R1,id1 
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1.4 COUSINS OF COMPILER 
1. Preprocessor  

2. Assembler  

3.  Loader and Link-editor  

 

PREPROCESSOR 
A preprocessor is a program that processes its input data to produce output that is used as 

input to another program. The output is said to be a preprocessed form of the input data, which 

is often used by some subsequent programs like compilers. 

They may perform the following functions : 

1. Macro processing  

2. File Inclusion  

3. Rational Preprocessors  

4. Language extension  

1. Macro processing: 
A macro is a rule or pattern that specifies how a certain input sequence should be 

mapped to an output sequence according to a defined procedure. The mapping process that 

instantiates a macro into a specific output sequence is known as macro expansion. 
 
2. File Inclusion: 

Preprocessor includes header files into the program text. When the preprocessor finds 

an #include directive it replaces it by the entire content of the specified file. 
 
3. Rational Preprocessors: 

These processors change older languages with more modern flow-of-control and data-

structuring facilities. 
 
4. Language extension : 

These processors attempt to add capabilities to the language by what amounts to built-in 

macros. For example, the language Equel is a database query language embedded in C. 
 
ASSEMBLER 

Assembler creates object code by translating assembly instruction mnemonics 

into machine code. There are two types of assemblers:  
 One-pass assemblers go through the source code once and assume that all symbols 

will be defined before any instruction that references them. 
 Two-pass assemblers create a table with all symbols and their values in the first pass, 

and then use the table in a second pass to generate code. 
 
LINKER AND LOADER 

A linker or link editor is a program that takes one or more objects generated by 

a compiler and combines them into a single executable program. 

Three tasks of the linker are : 

1. Searches the program to find library routines used by program, e.g. printf(), math routines.  

2. Determines the memory locations that code from each module will occupy and relocates 

its instructions by adjusting absolute references  

3. Resolves references among files.  

A loader is the part of an operating system that is responsible for loading programs in 

memory, one of the essential stages in the process of starting a program.



17 

 

1.5 GROUPING OF THE PHASES 

 
Compiler can be grouped into front and back ends: 

 
- Front end: analysis (machine independent)  

These normally include lexical and syntactic analysis, the creation of the symbol table, 

semantic analysis and the generation of intermediate code. It also includes error handling 

that goes along with each of these phases. 
 
- Back end: synthesis (machine dependent)  

It includes code optimization phase and code generation along with the necessary 

error handling and symbol table operations. 
 
Compiler passes 

 
A collection of phases is done only once (single pass) or multiple times (multi pass)  

 Single pass: usually requires everything to be defined before being used in 

source program. 
 Multi pass: compiler may have to keep entire program representation in memory. 

 
Several phases can be grouped into one single pass and the activities of these phases are 

interleaved during the pass. For example, lexical analysis, syntax analysis, semantic analysis 

and intermediate code generation might be grouped into one pass. 
 
1.6 COMPILER CONSTRUCTION TOOLS 

 

These are specialized tools that have been developed for helping implement 

various phases of a compiler. The following are the compiler construction tools: 
 
1) Parser Generators:   

-These produce syntax analyzers, normally from input that is based on a context-free 

grammar.  
-It consumes a large fraction of the running time of a compiler. -

Example-YACC (Yet Another Compiler-Compiler).  
 
2) Scanner Generator:   

-These generate lexical analyzers, normally from a specification based on regular 

expressions. -The basic organization of lexical analyzers is based on finite automation.  
 
3) Syntax-Directed Translation:   

-These produce routines that walk the parse tree and as a result generate intermediate 

code. -Each translation is defined in terms of translations at its neighbor nodes in the tree.  
 
4) Automatic Code Generators:   

-It takes a collection of rules to translate intermediate language into machine language. The 

rules must include sufficient details to handle different possible access methods for data.  
 
5) Data-Flow Engines:   

-It does code optimization using data-flow analysis, that is, the gathering of information 

about how values are transmitted from one part of a program to each other part. 
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1.7 LEXICAL ANALYSIS 

 
Lexical analysis is the process of converting a sequence of characters into a sequence of 

tokens. A program or function which performs lexical analysis is called a lexical analyzer or 

scanner. A lexer often exists as a single function which is called by a parser or another function. 
 
1.7.1 THE ROLE OF THE LEXICAL ANALYZER 

The lexical analyzer is the first phase of a compiler. Its main task is to read the input 

characters and produce as output a sequence of tokens that the parser uses for syntax analysis. 
 

 
  

token 
 

 

source lexical parser 
 

 
 

program analyser 

get next token 

 
 

    

   
 

 
 

 
symbol 

table 

Figure 1.10:Role of Lexical Analyzer 

 

Upon receiving a “get next token” command from the parser, the lexical analyzer 

reads input characters until it can identify the next token. 
 
1.7.2 ISSUES OF LEXICAL ANALYZER 

There are three issues in lexical analysis:  
1. To make the design simpler. 

2. To improve the efficiency of the compiler. 
3. To enhance the computer portability. 

 

1.7.3 TOKENS 
A token is a string of characters, categorized according to the rules as a symbol (e.g., 

IDENTIFIER, NUMBER, COMMA). The process of forming tokens from an input stream of 

characters is called tokenization. 

A token can look like anything that is useful for processing an input text stream or text 

file. Consider this expression in the C programming 10language: sum=3+2; 

Table 1.1:Tokens 
 

Lexeme Token type 
  

sum Identifier  
= Assignment operator  

 
3 Number 

 
+ Addition operator  

 
2 Number 

 
  End of statement  
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LEXEME: 

 
Collection or group of characters forming tokens is called Lexeme. 

 

PATTERN: 
A pattern is a description of the form that the lexemes of a token may take.In the case of 

a keyword as a token, the pattern is just the sequence of characters that form the keyword. For 

identifiers and some other tokens, the pattern is a more complex structure that is matched by 

many strings. 
 
1.7.4 Attributes for Tokens 

Some tokens have attributes that can be passed back to the parser. The lexical analyzer 

collects information about tokens into their associated attributes. The attributes influence the 

translation of tokens. 
 
i) Constant : value of the constant  

ii) Identifiers: pointer to the corresponding symbol table entry.  

 

1.7.5 ERROR RECOVERY STRATEGIES IN LEXICAL ANALYSIS: 
The following are the error-recovery actions in lexical analysis:  

1)Deleting an extraneous character. 

2) Inserting a missing character. 

 

            3)Replacing an incorrect character by a correct character. 

           4)Transforming two adjacent characters. 

          5)Panic mode recovery: Deletion of successive characters from the token until 

error is resolved.  

 
1.8 INPUT BUFFERING 

We often have to look one or more characters beyond the next lexeme before we can 

be sure we have the right lexeme. As characters are read from left to right, each character is 

stored in the buffer to form a meaningful token as shown below: 
 

Forward pointer  

  A = B + C    

Beginning of the token  Look ahead pointer 
 

Figure1.11:Input Buffering 

 
We introduce a two-buffer scheme that handles large look aheads safely. We then consider 

an improvement involving "sentinels" that saves time checking for the ends of buffers.
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1.8.1 BUFFER PAIRS 
A buffer is divided into two N-character halves, as shown below 



: : E : : = : : M : *  C : * : : * : 2 : eof  
 

 

lexeme_beginning 

forward 
 

Figure 1.12: Buffer Pair 
 

Each buffer is of the same size N, and N is usually the number of characters on one 

disk block. E.g., 1024 or 4096 bytes. Using one system read command we can read N 

characters into a buffer. If fewer than N characters remain in the input file, then a special 

character, represented by eof, marks the end of the source file. Two pointers to the input are 

maintained: 

1. Pointer lexeme_beginning, marks the beginning of the current lexeme, 

whose extent we are attempting to determine.  

2. Pointer forward scans ahead until a pattern match is found.   
Once the next lexeme is determined, forward is set to the character at its 

right end.  

The string of characters between the two pointers is the current lexeme. After 

the lexeme is recorded as an attribute value of a token returned to the parser, 

lexeme_beginning is set to the character immediately after the lexeme just found.  
 
Advancing forward pointer: 

Advancing forward pointer requires that we first test whether we have reached the end of 

one of the buffers, and if so, we must reload the other buffer from the input, and move forward 

to the beginning of the newly loaded buffer. If the end of second buffer is reached, we must 

again reload the first buffer with input and the pointer wraps to the beginning of the buffer. 
 
Code to advance forward pointer: 

 
if forward at end of first half then begin 

reload second half; 

forward := forward + 1 

end 

else if forward at end of second half then 

begin reload second half; 

move forward to beginning of first half 

end 

else forward := forward + 1; 

 

SENTINELS 
For each character read, we make two tests: one for the end of the buffer, and one to 

determine what character is read. We can combine the buffer-end test with the test for the 

current character if we extend each buffer to hold a sentinel character at the end. The sentinel is 

a special character that cannot be part of the source program, and a natural choice is the 

character eof. 
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The sentinel arrangement is as shown below: 



: : E : : = : : M : * : eof  C : * : : * : 2 : eof : : : eof  
 
 

lexeme_beginning 

forwad 

Figure 1.13:Sentinels 
 

Note that eof retains its use as a marker for the end of the entire input. Any eof that 

appears other than at the end of a buffer means that the input is at an end. 
 
Code to advance forward pointer: 

 
forward : = forward + 1; if 

forward ↑ = eof then begin 

if forward at end of first half then begin 

reload second half; 

forward := forward + 1 

end 

else if forward at end of second half then 

begin reload first half; 

move forward to beginning of first 

half end 

else /* eof within a buffer signifying end of input 

*/ terminate lexical analysis 

end 

 

1.9 SPECIFICATION OF TOKENS 
There are 3 specifications of tokens:  

1) Strings 

2)  Language  

3)Regular expression 
 
Strings and Languages 
 
An alphabet or character class is a finite set of symbols. 

 
A string over an alphabet is a finite sequence of symbols drawn from that alphabet. 

 
A language is any countable set of strings over some fixed alphabet. 

 
In language theory, the terms "sentence" and "word" are often used as synonyms for 

"string." The length of a string s, usually written |s|, is the number of occurrences of symbols in s. 

For example, banana is a string of length six. The empty string, denoted ε, is the string of length 

zero. 
 
 

 

 

Operations on strings 
The following string-related terms are commonly used: 
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1. A prefix of string s is any string obtained by removing zero or more symbols from the 

end of strings.For example, ban is a prefix of banana. 

2. A suffix of string s is any string obtained by removing zero or more symbols from 

the beginning of s. For example, nana is a suffix of banana.  

3. A substring of s is obtained by deleting any prefix and any suffix from s. For 

example, nan is a substring of banana.  

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes, 

suffixes, and substrings, respectively of s that are not ε or not equal to s itself.  

5. A subsequence of s is any string formed by deleting zero or more not necessarily 

consecutive positions of s. For example, baan is a subsequence of banana.  

 

Operations on languages: 
The following are the operations that can be applied to languages: 

 
1.Union 
2.Concatenation 

3.Kleene closure  

4.Positive closure 
 
The following example shows the operations on strings: Let L={0,1} and S={a,b,c} 

1. Union : L U S={0,1,a,b,c} 
2. Concatenation : L.S={0a,1a,0b,1b,0c,1c} 
3. Kleene closure : L

*
={ ε,0,1,00….} 

4. Positive closure : L
+
={0,1,00….} 

 
Regular Expressions 

Each regular expression r denotes a language L(r).Here are the rules that define the 

regular expressions over some alphabet Σ and the languages that those expressions denote: 
 

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole 

member is the empty string.  

2. If„a‟is a symbol in Σ, then „a‟is a regular expression, and L(a) = {a}, that is, the 

language with one string, of length one, with „a‟in its one position.  

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then,  

 
a) (r)|(s) is a regular expression denoting the language L(r) U L(s).  

b) (r)(s) is a regular expression denoting the language L(r)L(s).  

c) (r)* is a regular expression denoting (L(r))*.  

d) (r) is a regular expression denoting L(r).  

 

4. The unary operator * has highest precedence and is left associative.  

 
5. Concatenation has second highest precedence and is left associative.  

6. It| has lowest precedence and is left associative.  

 

 

 

Regular set 

 
A language that can be defined by a regular expression is called a regular set. 

If two regular expressions r and s denote the same regular set, we say they are equivalent and 

write r = s. 
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There are a number of algebraic laws for regular expressions that can be used to 

manipulate into equivalent forms. 

For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative. 

 

Regular Definitions 

 
Giving names to regular expressions is referred to as a Regular definition. If Σ is an 

alphabet of basic symbols, then a regular definition is a sequence of definitions of the form 
 
dl → r 1 d2 

→ r2  
……… 

dn → rn 

 
1. Each di is a distinct name.  

2. Each ri is a regular expression over the alphabet Σ U {dl, d2,. . . , di-l}.  

 
Example: Identifiers is the set of strings of letters and digits beginning with a letter. Regular 

definition for this set: 

letter → A | B | …. | Z | a | b | …. | z | 

digit → 0 | 1 | …. | 9 

id → letter ( letter | digit ) * 

 

Shorthands 

 

Certain constructs occur so frequently in regular expressions that it is convenient to 

introduce notational shorthands for them. 

 

 
 
1. One or more instances (+):  

 

- The unary postfix operator + means “ one or more instances of” .  
 

- If r is a regular expression that denotes the language L(r), then ( r )
+
 is a regular expression 

that denotes the language (L (r ))
+
  

 

- Thus the regular expression a
+
 denotes the set of all strings of one or more a‟s.  

 

- The operator 
+
 has the same precedence and associativity as the operator 

*
.  

 

 

 

2. Zero or one instance ( ?): 

 

- The unary postfix operator ? means “zero or one instance of”.  

 
- The notation r? is a shorthand for r | ε.  

 

- If „r‟ is a regular expression, then ( r )? is a regular expression that denotes the language 

L( r ) U { ε }.  
 



24 

 

3. Character Classes: 

 

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression 

a | b | c.  
 

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z.  

 

- We can describe identifiers as being strings generated by the regular expression, 

[A–Za–z][A–Za–z0–9]*  
 
Non-regular Set 

 
A language which cannot be described by any regular expression is a non-regular set. 

Example: The set of all strings of balanced parentheses and repeating strings cannot be described 

by a regular expression. This set can be specified by a context-free grammar. 
 
RECOGNITION OF TOKENS 

 
Consider the following grammar fragment: 

 
stmt → if expr then stmt 

|if expr then stmt else stmt 

|ε 
 
expr → term relop term 

|term 
 
term → id 

|num 
 
where the terminals if , then, else, relop, id and num generate sets of strings given by the 

following regular definitions: 

If → if 

Then → then 

Else → else 
Relop → <|<=|=|<>|>|>= 
Id → letter(letter|digit)

*
 

Num → digit
+
 (.digit

+
)?(E(+|-)?digit

+
)? 

 
For this language fragment the lexical analyzer will recognize the keywords if, then, else, 

as well as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords 

are reserved; that is, they cannot be used as identifiers. 

 

Transition diagrams 

 
It is a diagrammatic representation to depict the action that will take place when a lexical 

analyzer is called by the parser to get the next token. It is used to keep track of information about 

the characters that are seen as the forward pointer scans the input. 
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Figure 1.14:Transition Diagram 

 

 

1.10 A LANGUAGE FOR SPECIFYING LEXICAL ANALYZER 

 
There is a wide range of tools for constructing lexical analyzers. 

 Lex 

 YACC 

 

LEX 

Lex is a computer program that generates lexical analyzers. Lex is commonly used with 

the yacc parser generator. 

 
 
Creating a lexical analyzer 

First, a specification of a lexical analyzer is prepared by creating a program lex.l in the 

Lex language. Then, lex.l is run through the Lex compiler to produce a C program lex.yy.c. 

Finally, lex.yy.c is run through the C compiler to produce an object program a.out, which is the 

lexical analyzer that transforms an input stream into a sequence of tokens. 
 

 

lex.l 
Lex 

lex.yy.c  

compiler 
 

  
 

    

 
 
 

lex.yy.c 
 C compiler 

 a.out 
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input a.out sequence of 
 

stream  tokens  

 
 

 

 

Figure 1.15: Creating Lexical Analyzer 

Lex Specification 
A Lex program consists of three parts: 

 
{ definitions }  

%%  

{ rules }  

%%  

{ user subroutines }  

 
 Definitions include declarations of variables, constants, and regular definitions 



 Rules are statements of the form 

p1 {action1} 

p2  {action2} … 

pn  {actionn} 
where pi is regular expression and actioni describes what action the lexical analyzer 

should take when pattern pi matches a lexeme. Actions are written in C code. 


 User subroutines are auxiliary procedures needed by the actions. These can be compiled 

separately and loaded with the lexical analyzer. 

 

YACC- YET ANOTHER COMPILER-COMPILER 
Yacc provides a general tool for describing the input to a computer program. The Yacc 

user specifies the structures of his input, together with code to be invoked as each such structure 

is recognized. Yacc turns such a specification into a subroutine that handles the input process; 

frequently, it is convenient and appropriate to have most of the flow of control in the user's 

application handled by this subroutine. 

1.11 FINITE AUTOMATA 

 

Finite Automata is one of the mathematical models that consist of a number of states and 

edges. It is a transition diagram that recognizes a regular expression or grammar. 
 
Types of Finite Automata 

 
There are tow types of Finite Automata :  

 Non-deterministic Finite Automata (NFA) 

 Deterministic Finite Automata (DFA) 
 
1.11.1 Non-deterministic Finite Automata 
 
NFA is a mathematical model that consists of five tuples denoted by 

M = {Qn, Ʃ,δ, q0, fn}  
Qn – finite set of states 

Ʃ – finite set of input symbols 

δ – transition function that maps state-symbol pairs to set of states 
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q0 – starting state 

fn – final state 
 
1.11.2 Deterministic Finite Automata 
DFA is a special case of a NFA in which 

i) no state has an ε-transition.  

ii) there is at most one transition from each state on any input.  
 
DFA has five tuples denoted by 

M = {Qd,Ʃ, δ, q0, fd}  
Qd – finite set of states 

Ʃ – finite set of input symbols  

δ –  transition function that maps state-symbol pairs to set of states  

q0 – starting state 

fd – final state 

 

1.11.3 Construction of DFA from regular expression 

 
The following steps are involved in the construction of DFA from regular expression: 

i) Convert RE to NFA using Thomson‟s rules  

ii) Convert NFA to DFA  

iii) Construct minimized DFA 

 
UNIT-II 

CHAPTER-II 
 

SYNTAX ANALYSIS AND RUNTIME ENVIRONMENT 
 
2.1 SYNTAX ANALYSIS 
 

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and 

generates a syntax tree or parse tree. 
 
Advantages of grammar for syntactic specification : 
 

1. A grammar gives a precise and easy-to-understand syntactic specification of a 

programming language.   
2. An efficient parser can be constructed automatically from a properly designed grammar.   
3. A grammar imparts a structure to a source program that is useful for its translation into 

object code and for the detection of errors.   
4. New constructs can be added to a language more easily when there is a grammatical 

description of the language.  
 
2.1.1 THE ROLE OF PARSER 
 

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and 

verifies that the string can be generated by the grammar for the source language. It reports any 

syntax errors in the program. It also recovers from commonly occurring errors so that it can 

continue processing its input. 
 

Position of parser in compiler model 
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source lexical token parser parse rest of intermediate 
 

program analyzer 
get next token 

 tree front end representation 
 

      
 

 
 
 
 

 
symbol 

table 

 
Figure 2.1:Role of Parser 

 

Functions of the parser: 
 
5) It verifies the structure generated by the tokens based on the grammar.   
6) It constructs the parse tree.   
7) It reports the errors.   
8) It performs error recovery.  

Issues : 
 
Parser cannot detect errors such as: 
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1. Variable re-declaration   
2. Variable initialization before use.   
3. Data type mismatch for an operation.  

The above issues are handled by Semantic Analysis phase. 
 
Syntax error handling : 
 
Programs can contain errors at many different levels. For example :  
1. Lexical, such as misspelling a keyword.   
2. Syntactic, such as an arithmetic expression with unbalanced parentheses.   
3. Semantic, such as an operator applied to an incompatible operand.   
4. Logical, such as an infinitely recursive call.  
 
Functions of error handler: 
 
1. It should report the presence of errors clearly and accurately.   
2. It should recover from each error quickly enough to be able to detect subsequent errors.   
3. It should not significantly slow down the processing of correct programs.  
 
2.1.2 Error recovery strategies: 
 
The different strategies that a parse uses to recover from a syntactic error are: 
 
1. Panic mode   
2. Phrase level   
3. Error productions   
4. Global correction  
 
Panic mode recovery: 
 

On discovering an error, the parser discards input symbols one at a time until a 

synchronizing token is found. The synchronizing tokens are usually delimiters, such as 

semicolon or end. It has the advantage of simplicity and does not go into an infinite loop. When 

multiple errors in the same statement are rare, this method is quite useful. 
 
Phrase level recovery: 
 

On discovering an error, the parser performs local correction on the remaining input that 

allows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc. 
 
Error productions: 
 

The parser is constructed using augmented grammar with error productions. If an error 

production is used by the parser, appropriate error diagnostics can be generated to indicate the 

erroneous constructs recognized by the input. 

Global correction:  
Given an incorrect input string x and grammar G, certain algorithms can be used to find a 

parse tree for a string y, such that the number of insertions, deletions and changes of tokens is as 

small as possible. However, these methods are in general too costly in terms of time and space. 
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2.2 CONTEXT-FREE GRAMMARS 
 

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start 

symbol and productions. 
 
Terminals : These are the basic symbols from which strings are formed. 
 
Non-Terminals : These are the syntactic variables that denote a set of strings. These help to 

define the language generated by the grammar. 
 
Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of 

strings it denotes is the language defined by the grammar. 
 
Productions : It specifies the manner in which terminals and non-terminals can be combined to 

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a 

string of non-terminals and terminals. 
 
Example of context-free grammar: The following grammar defines simple arithmetic 

expressions: 
 

expr → expr op expr 

expr → (expr)  
expr → - expr 

expr → id op 

→ + op → - 

 
op → * 

op → / 

op → ↑ 
 
In this grammar, 
 

 id + - * / ↑( ) are terminals. 
 expr , op are non-terminals. 
 expr is the start symbol. 
 Each line is a production. 

 
2.2.1 Derivations: 
 
Two basic requirements for a grammar are :  
 To generate a valid string.   
 To recognize a valid string.  
 
Derivation is a process that generates a valid string with the help of grammar by replacing the 

non-terminals on the left with the string on the right side of the production. 

 
Example : Consider the following grammar for arithmetic expressions :  

E → E+E |E*E |( E ) | - E | id 
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To generate a valid string - (id+id ) from the grammar the steps are  
 E → - E   
 E → - (E )   
 E → - (E+E )   
 E → - (id+E )   
 E → - (id+id )  

In the above derivation,  
 E is the start symbol. 



 - (id+id) is the required sentence (only terminals). 


 Strings such as E, -E, -(E), . . . are called sentinel forms. 
 
Types of derivations: 
 
The two types of derivation are: 
 

 Left most derivation   
 Right most derivation.  

 

 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for 

replacement. 



 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first 

for replacement. 
 
Example: 
 
Given grammar G : E → E+E |E*E |(E ) | - E |id 
 
Sentence to be derived : – (id+id) 
 
LEFTMOST DERIVATION       RIGHTMOST DERIVATION 
 

E → - E E → - E 
 

E → - (E ) E → - (E ) 
 

E → - (E+E ) E → - (E+E ) 
 

E → - (id+E ) E → - (E+id ) 
 

E → - (id+id ) E → - (id+id ) 
 
 String that appear in leftmost derivation are called left sentinel forms. 



 String that appear in rightmost derivation are called right sentinel forms. 
 
Sentinels: 
 

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or 

terminals, then α is called the sentinel form of G.
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Yield or frontier of tree: 
 

Each interior node of a parse tree is a non-terminal. The children of node can be a 

terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form 

in the parse tree is called yield or frontier of the tree. 
 
Ambiguity: 
 

A grammar that produces more than one parse for some sentence is said to be ambiguous 

grammar. 
 
Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 
 
The sentence id+id*id has the following two distinct leftmost derivations: 
 

E → E+ E E → E* E 
 

E → id + E E → E + E * E 
 

E → id + E * E E → id + E * E 
 

E → id + id * E E → id + id * E 
 

E → id + id * id E → id + id * id 
 

The two corresponding parse trees are :         
 

  E        E   
 

               
 

                
 

E +  E  E * E 
 

               
 

id  E *  E E  + E id 
 

               

               
 

        

id id 

  
 

   id  id   
 

 
 

 

2.3 WRITING A GRAMMAR 
 
There are four categories in writing a grammar : 
 

1. Regular Expression Vs Context Free Grammar  
 Eliminating ambiguous grammar.   
 Eliminating left-recursion   
 Left-factoring.   

Each parsing method can handle grammars only of a certain form hence, the initial grammar 

may have to be rewritten to make it parsable. 
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2.3.1 Regular Expressions vs. Context-Free Grammars: 
 

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR 
  

It is used to describe the tokens of programming 

languages. 

 

It is used to check whether the given input is 

valid or not using transition diagram. 

It consists of a quadruple where S → start 

symbol, P → production, T → terminal, V → 

variable or non- terminal.  
It is used to check whether the given input is 

valid or not using derivation. 

 

The transition diagram has set of states and 

edges. 

 
It has no start symbol. 

 

The context-free grammar has set of 

productions. 

 
It has start symbol. 

 
 
 
It is useful for describing the structure of lexical 

constructs such as identifiers, constants, 

keywords, and so forth. 

 
 
 
It is useful in describing nested structures 

such as balanced parentheses, matching 

begin-end‟s and so on. 
 

 

 The lexical rules of a language are simple and RE is used to describe them. 


 Regular expressions provide a more concise and easier to understand notation for tokens 

than grammars. 


 Efficient lexical analyzers can be constructed automatically from RE than from 

grammars. 


 Separating the syntactic structure of a language into lexical and nonlexical parts provides 

a convenient way of modularizing the front end into two manageable-sized components. 
 
Eliminating ambiguity: 
 
Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost 

derivation can be eliminated by re-writing the grammar. 
 
Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 
 
This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following 

two parse trees for leftmost derivation : 
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1.     stmt            
 

if   expr  then stmt        
 

                 
 

   E1             
 

     if expr then stmt else stmt 
 

                

2. 

    

stmt 

E 

 

2 

 

S1 

 

 

 

S2 

 

 
 

         
 

               
 

if expr then  stmt    else stmt     
 

 

E 

 

1 

     

S 

 

2 

    
 

            
 

    if expr then stmt        
 

 
 

 

E2 S1 
 
To eliminate ambiguity, the following grammar may be used: 
 

stmt → matched_stmt | unmatched_stmt 
 

matched_stmt → if expr then matched_stmt else matched_stmt | other 
 
unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 
 
 

 

2.3.2 Eliminating Left Recursion: 
 

A grammar is said to be left recursive if it has a non-terminal A such that there is a 

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive 

grammars. Hence, left recursion can be eliminated as follows: 
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If there is a production A → Aα |β it can be replaced with a sequence of two productions 
 

A → βA‟ 
 

A‟→ αA‟ | ε without 

changing the set of strings derivable from A. 

 
Example : Consider the following grammar for arithmetic expressions: 

E → E+T |T 

 
T → T*F |F 

F→ (E) |id 

 
First eliminate the left recursion for E 

as E → TE‟ 

 
E‟ → +TE‟ |ε 
 
Then eliminate for T 

as T → FT‟ 

 
T‟→ *FT‟ | ε 
 
Thus the obtained grammar after eliminating left recursion 

is E → TE‟ 

 
E‟ → +TE‟ | ε 
 
T → FT‟ 
 
T‟ → *FT‟ | ε 

F → (E) |id 

 
Algorithm to eliminate left recursion: 
 
1. Arrange the non-terminals in some order A1, A2 . . . An.   
2. for i := 1 to n do begin   

for j := 1 to i-1 do begin  
replace each production of the form Ai → A j γ by 

the productions Ai → δ1 γ | δ2γ | . . . | δk γ 

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;  
end  
eliminate the immediate left recursion among the Ai-productions  

end 
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2.3.3 Left factoring: 
 

Left factoring is a grammar transformation that is useful for producing a grammar 

suitable for predictive parsing. When it is not clear which of two alternative productions to use to 

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have 

seen enough of the input to make the right choice. 
 
If there is any production A → αβ1 | αβ2 , it can be rewritten as 
 

A → αA‟ 
 

A‟→ β1 | β2 
 
Consider the grammar , G : S → iEtS | iEtSeS | a  

E → b 
 
Left factored, this grammar becomes 
 
S → iEtSS‟ | a  
S‟→ eS |ε  
E → b 
 
PARSING 
 

It is the process of analyzing a continuous stream of input in order to determine its 

grammatical structure with respect to a given formal grammar. 
 
Parse tree: 
 

Graphical representation of a derivation or deduction is called a parse tree. Each interior 

node of the parse tree is a non-terminal; the children of the node can be terminals or non-

terminals. 
 
Types of parsing: 
 
1. Top down parsing   
2. Bottom up parsing  

 

 Top–down parsing : A parser can start with the start symbol and try to transform it to the 

input string. 


Example : LL Parsers. 


 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start 

symbol. 


Example : LR Parsers. 
 
2.4 TOP-DOWN PARSING 
 

It can be viewed as an attempt to find a left-most derivation for an input string or an 

attempt to construct a parse tree for the input starting from the root to the leaves. 
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Types of top-down parsing : 
 
1. Recursive descent parsing   
2. Predictive parsing  
 
2.4.1 RECURSIVE DESCENT PARSING  
 

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of 

recursive procedures to scan its input. 


 This parsing method may involve backtracking, that is, making repeated scans of the 

input. 
 
Example for backtracking : 
 
Consider the grammar G : S → cAd 

A → ab |a  
and the input string w=cad. 
 
The parse tree can be constructed using the followingtop-down approach : 
 
Step1: 
 
Initially create a tree with single node labeled S. An input pointer points to „c‟, the first symbol 

of w. Expand the tree with the production of S. 
 

S 
 

 

c A   d 
 
Step2: 
 
The leftmost leaf „c‟ matches the first symbol of w, so advance the input pointer to the second 

symbol of w „a‟ and consider the next leaf „A‟. Expand A using the first alternative. 
 

S 
 
 

 

c A   d 
 
 

 

a b 
 
Step3: 
 
The second symbol „a‟ of w also matches with second leaf of tree. So advance the input pointer 

to third symbol of w „d‟. But the third leaf of tree is b which does not match with the input 

symbol d. 
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Hence discard the chosen production and reset the pointer to second position. This is called 

backtracking. 
 
Step4: 
 
Now try the second alternative for A. 
 

S 
 
 

 

c A   d 
 
 

 

a 
 
Now we can halt and announce the successful completion of parsing. 
 
Example for recursive decent parsing: 
 
A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. Hence, 

elimination of left-recursion must be done before parsing. 
 
Consider the grammar for arithmetic expressions 

E → E+T |T 

 
T → T*F |F 

F→ (E) |id 

 
After eliminating the left-recursion the grammar 

becomes, E → TE‟ 

 
E‟ → +TE‟ | ε 

T → FT‟ 

 
T‟ → *FT‟ | ε 

F → (E) |id 

 
Now we can write the procedure for grammar as follows: 
 
Recursive procedure: 
 
Procedure E() 

begin  
T( ); 

EPRIME( );  
end 
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Procedure EPRIME( 

) begin  
If input_symbol=‟+‟ 

then ADVANCE( );  
T( ); 

EPRIME( );  
end 
 
Procedure T( ) 

begin  
F( ); 

TPRIME( );  
end 
 
Procedure TPRIME( 

) begin  
If input_symbol=‟*‟ 

then ADVANCE( );  
F( ); 

TPRIME( ); 
 
end 
 
Procedure F( ) 

begin  
If input-symbol=‟id‟ then 

ADVANCE( );  
else if input-symbol=‟(„ 

then ADVANCE( );  
E( );  
else if input-symbol=‟)‟ 

then ADVANCE( );  
end 
 
else ERROR( ); 

Stack implementation: 
 
To recognize input id+id*id : 

Table 2.1: Stack implementation 

PROCEDURE INPUT STRING 
  

 
E( ) 

 
T( ) 

 
F( ) 

 
ADVANCE( ) 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 
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TPRIME( ) 

 
EPRIME( ) 

 
ADVANCE( ) 

 
T( ) 

 
F( ) 

 
ADVANCE( ) 

 
TPRIME( ) 

 
ADVANCE( ) 

 
F( ) 

 
ADVANCE( ) 

 
TPRIME( ) 

id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
id+id*id 

 
 
 
2.4.2 PREDICTIVE PARSING  

 

 Predictive parsing is a special case of recursive descent parsing where no backtracking is 

required. 

 The key problem of predictive parsing is to determine the production to be applied for a 

non-terminal in case of alternatives. 
 
Non-recursive predictive parser 
 

 

   INPUT  a + b $   
 

STACK 

           
 

           
 

X 
 

Predictive parsing program 
 

OUTPUT 
 

   
 

           
 

 Y         
 

 
Z 

 
$  

Parsing Table M 
 
 

Figure 2.2:Non-recursive predicative parser 
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The table-driven predictive parser has an input buffer, stack, a parsing table and an output 

stream. 
 
Input buffer: 
 
It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
 
Stack: 
 
It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 

Initially, the stack contains the start symbol on top of $. 
 
Parsing table: 
 
It is a two-dimensional array M[A, a], where „A‟ is anon-terminal and „a‟ is aterminal. 
 
Predictive parsing program: 
 
The parser is controlled by a program that considers X, the symbol on top of stack, and a, the 

current input symbol. These two symbols determine the parser action. There are three 

possibilities: 
 

1. If X = a = $, the parser halts and announces successful completion of parsing.   
2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next 

input symbol.   
3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This 

entry will either be an X-production of the grammar or an error entry.  

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by 

WVU. If M[X, a] = error, the parser calls an error recovery routine.  

Algorithm for nonrecursive predictive parsing: 
 
Input : A string w and a parsing table M for grammar G. 
 
Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 
 
Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in 

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for 

the input is as follows: 
 

set ip to point to the first symbol of w$; 

repeat  
let X be the top stack symbol and a the symbol pointed to by ip; 

if X is a terminal or $ then  
if X = a then  

pop X from the stack and advance ip 

else error()  
else /* X is a non-terminal */  

if M[X, a] = X →Y1Y2 … Yk then begin 
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 pop X from the stack; 
 

 push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 
 

 output the production X → Y1 Y2 . . . Yk 
 

 end 
 

until X = $ 

else error() 
 

/* stack is empty */ 
 

 
Predictive parsing table construction: 
 
The construction of a predictive parser is aided by two functions associated with a grammar G : 
 
1. FIRST  
 
2. FOLLOW  

Rules for first( ): 
 
1. If X is terminal, then FIRST(X) is {X}.  
 
2. If X → ε is a production, then add ε to FIRST(X).  
 
3. If X is non-terminal and X → aα is a production then add a to FIRST(X).  
 
4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some 

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is 

in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).  
 
Rules for follow( ): 
 
1. If S is a start symbol, then FOLLOW(S) contains $.  

 

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in 

follow(B).  
 
3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 

everything in FOLLOW(A) is in FOLLOW(B).  
 
Algorithm for construction of predictive parsing table: 
 
Input : Grammar G 
 
Output : Parsing table M 
 
Method : 
 
1. For each production A →α of the grammar, do steps 2 and 3.  
 
2. For each terminal a in FIRST(α), add A → α to M[A, a].  
 
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].  
 
4. Make each undefined entry of M be error.  
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Example: 
 
Consider the following grammar : 

 
E → E+T |T  
T → T*F |F  
F→ (E) |id 

 
After eliminating left-recursion the grammar is 

 
E → TE‟  
E‟ → +TE‟ |ε  
T → FT‟  
T‟ → *FT‟ | ε  
F → (E) |id 

 
First( ) : 

 
FIRST(E) ={ (, id} 

 
FIRST(E‟) ={+ , ε } 

 
FIRST(T) = { ( , id} 

 
FIRST(T‟) ={*, ε } 

 
FIRST(F) ={ ( , id } 

 
Follow( ): 

 
FOLLOW(E) ={ $, ) } 

 
FOLLOW(E‟) ={ $, ) } 

 
FOLLOW(T) ={ +, $, ) } 

 
FOLLOW(T‟) = { +, $, ) } 

 
FOLLOW(F) ={+, * , $ , ) } 

 Table 2.2: Predictive parsing   Er          
 

               
 

 

NON- id + * ( ) $ 
  

        
 

 TERMINAL              
 

 E  E → TE‟      E → TE‟      
 

 E‟    E‟ → +TE‟      E‟ → ε  E‟→ ε  
 

 T  T → FT‟      T → FT‟      
 

 T‟    T‟→ ε  T‟→ *FT‟    T‟ → ε  T‟ → ε  
 

 F  F→ id      F→ (E)      
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 Table 2.3:Stack implementation     
 

        
 

 

stack 
 

Input Output 
  

     
 

 $E   id+id*id $    
 

 $E‟T   id+id*id $  E → TE‟  
 

 $E‟T‟F   id+id*id $  T → FT‟  
 

 $E‟T‟id   id+id*id $  F→ id  
 

 $E‟T‟   +id*id $    
 

 $E‟   +id*id $  T‟ → ε  
 

 $E‟T+   +id*id $  E‟ → +TE‟  
 

 $E‟T   id*id $    
 

 $E‟T‟F   id*id $  T → FT‟  
 

 $E‟T‟id   id*id $  F→ id  
 

 $E‟T‟   *id $    
 

 $E‟T‟F*   *id $  T‟ → *FT‟  
 

 $E‟T‟F   id $    
 

 $E‟T‟id   id $  F→ id  
 

 $E‟T‟   $    
 

 $E‟   $  T‟ → ε  
 

 $   $  E‟ → ε  
 

 
LL(1) grammar: 

 
The parsing table entries are single entries. So each location has not more than one entry. This 

type of grammar is called LL(1) grammar. 
 
Consider this following grammar: 

 
S → iEtS | iEtSeS | a  
E → b 

 
After eliminating left factoring, we have 

 
S → iEtSS‟ |a  
S‟→ eS | ε  
E → b 

 
To construct a parsing table, we need FIRST()and FOLLOW() for all the non-terminals. 

 
FIRST(S) ={ i, a } 

 
FIRST(S‟) = {e, ε } 

 
FIRST(E) ={ b} 

 
FOLLOW(S) ={ $ ,e } 
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FOLLOW(S‟) = { $ ,e } 
 
FOLLOW(E) = {t} 

 
Table 2.4:Parsing table 

 
NON- a b e i t $ 

TERMINAL       

S S → a   S → iEtSS‟   
       

S‟   S‟→ eS   S‟→ ε 

   S‟→ ε    

E  E → b     
       

 

Since there are more than one production, the grammar is not LL(1) grammar. 
 
Actions performed in predictive parsing: 

 
1. Shift   
2. Reduce   
3. Accept   
4. Error  

 
Implementation of predictive parser: 

 
1. Elimination of left recursion, left factoring and ambiguous grammar.   
2. Construct FIRST() and FOLLOW() for all non-terminals.   
3. Construct predictive parsing table.   
4. Parse the given input string using stack and parsing table.  

 

2.5 BOTTOM-UP PARSING 
 
Constructing a parse tree for an input string beginning at the leaves and going towards the root is 

called bottom-up parsing. 
 
A general type of bottom-up parser is a shift-reduce parser. 

 
2.5.1 SHIFT-REDUCE PARSING  

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree 

for an input string beginning at the leaves (the bottom) and working up towards the root (the 

top). 

 

Example:  
Consider the grammar:  
S → aABe  
A → Abc | b  
B→ d  
The sentence to be recognized is abbcde. 
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REDUCTION (LEFTMOST) RIGHTMOST DERIVATION 

abbcde (A → b) S → aABe 

aAbcde (A → Abc) → aAde 

aAde (B → d) → aAbcde 

aABe (S → aABe) → abbcde 

S    
The reductions trace out the right-most derivation in reverse. 

 

Handles: 
 

A handle of a string is a substring that matches the right side of a production, and whose 

reduction to the non-terminal on the left side of the production represents one step along the 

reverse of a rightmost derivation. 
 
Example: 
 
Consider the grammar: 
 
E → E+E  
E → E*E  
E → (E)  
E → id 
 
And the input string id1+id2*id3 
 
The rightmost derivation is : 
 
E → E+E   

→ E+E*E   
→ E+E*id3   
→ E+id2*id3   
→ id1+id2*id3  

 
In the above derivation the underlined substrings are called handles. 
 
Handle pruning: 

 

A rightmost derivation in reverse can be obtained by “handle pruning”.  

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right-

sentinel form of some rightmost derivation. 
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Table 2.5:Stack implementation of shift-reduce parsing : 

 

 Stack Input  Action  
 

       
 

 $ id1+id2*id3 $  shift  
 

       
 

 $ id1 +id2*id3 $  reduce by E→id  
 

       
 

 $ E +id2*id3 $  shift  
 

       
 

 $ E+ id2*id3 $  shift  
 

       
 

 $ E+id2 *id3 $  reduce by E→id  
 

       
 

 $ E+E *id3 $  shift  
 

       
 

 $ E+E* id3 $  shift  
 

       
 

 

$ E+E*id3 
 

$ 
 

reduce by E→id 
  

    
 

       
 

 $ E+E*E  $  reduce by E→ E *E  
 

       
 

 $ E+E  $  reduce by E→ E+E  
 

       
 

 $ E  $  accept  
 

       
 

 
 
 
Actions in shift-reduce parser:  
 shift  – The next input symbol is shifted onto the top of the stack.  
 reduce – The parser replaces the handle within a stack with a non-terminal. 
 accept – The parser announces successful completion of parsing.  
 error – The parser discovers that a syntax error has occurred and calls an error recovery 

routine. 

 
Conflicts in shift-reduce parsing: 
 
There are two conflicts that occur in shift shift-reduce parsing: 
 
1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce.  
 
2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make.  
 
1. Shift-reduce conflict: 
 
Example: 
 
Consider the grammar: 
 
E→E+E |E*E |id and input id+id*id
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Stack Input Action Stack Input Action 
      

$ E+E *id $ Reduce by $E+E *id $ Shift 

  E→E+E    
      

$ E *id $ Shift $E+E* id $ Shift 

      
$ E* id $ Shift $E+E*id $ Reduce by 

     E→id 
      

$ E*id $ Reduce by $E+E*E $ Reduce by 

  E→id   E→E*E 
      

$ E*E $ Reduce by $E+E $ Reduce by 

  E→E*E   E→E*E 
      

$ E   $E   

      
 

 

2. Reduce-reduce conflict: 
 
Consider the grammar: 

 
M → R+R |R+c |R 

R → c  
and input c+c 

 

Stack Input Action Stack Input Action 
      

$ c+c $ Shift $ c+c $ Shift 

      
$ c +c $ Reduce by $ c +c $ Reduce by 

  R→c   R→c 
      

$ R +c $ Shift $ R +c $ Shift 

      

$ R+ c $ Shift $ R+ c $ Shift 

      
$ R+c $ Reduce by $ R+c $ Reduce by 

  R→c   M→R+c 
      

$ R+R $ Reduce by $ M $  

  M→R+R    
      

$ M $     
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Viable prefixes:  
 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form. 


 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser 

are called viable prefixes. 


 The set of viable prefixes is a regular language. 
 
2.5.2 OPERATOR-PRECEDENCE PARSING 
 
An efficient way of constructing shift-reduce parser is called operator-precedence parsing. 
 
Operator precedence parser can be constructed from a grammar called Operator-grammar. These 

grammars have the property that no production on right side is ɛ or has two adjacent non-

terminals. 

Example: 
 
Consider the grammar: 
 
E → EAE |(E) | -E |id  
A → + | - |* |/ | ↑ 
 
Since the right side EAE has three consecutive non-terminals, the grammar can be written as 

follows: 
 
E → E+E |E-E |E*E | E/E |E↑E | -E |id 

Operator precedence relations:  
There are three disjoint precedence relations 

namely < 
.
 - less than  

= - equal to  
.
 >  - greater than 

The relations give the followingmeaning: 

a < 
.
 b – a yields precedence to b 

a=b – a has the same precedence as b 

a 
.
 > b – a takes precedence over b 

 
Rules for binary operations:  
 If operator θ1 has higher precedence than operator θ2, then 

make θ1 
.
 > θ2 and θ2 < 

.
 θ1  

 
 If operators θ1 and θ2, are of equal precedence, then make   

θ1 
.
 > θ2 and θ2 

.
 > θ1 if operators are left associative 

θ1 < 
.
 θ2 and θ2 < 

.
 θ1 if right associative 

 
 Make the following for all operators θ:   

: < 
.
 id , id 

.
 > θ  

: < 
.
 (, ( < 

.
 θ   

) 
.
 > θ , θ 

.
 > ) 

θ 
.
 > $ , $ < 

.
 θ 
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Also make  

( = ) , ( < 
.
 ( , ) 

.
 > ) , ( < 

.
 id , id 

.
 > ) , $ < 

.
 id , id 

.
 > $ , $ < 

.
 ( , ) 

.
 > $ 

 
Example: 
 
Operator-precedence relations for the grammar 
 
E → E+E |E-E |E*E | E/E |E↑E | (E) | -E |id is given in the following table assuming 
 

1. ↑ is of highest precedence and right-associative   
2. * and / are of next higher precedence and left-associative, and   
3. + and - are of lowest precedence and left-associative   
Note that the blanks in the table denote error entries. 

 

      TABLE : Operator-precedence relations         
 

   

 

 

 

 

 

   

 

   

 

 

 

 

 

   

   

+ - * 
 

/ ↑ 
 

id ( ) $ 
  

             
 

 +   .>  .>  <.  <.  <.  <.  <.  .>  .>  
 

 -   .>  .>  <.  <.  <.  <.  <.  .>  .>  
 

 *   .>  .>  .>  .>  <
.
  <

.
  <

.
  .>  .>  

 

 /   .>  .>  .>  .>  <.  <.  <.  .>  .>  
 

 ↑   
.
>  

.
>  

.
>  

.
>  <

.
  <

.
  <

.
  

.
>  

.
>  

 

 id   .>  .>  .>  .>  ∙
.
>      .>  .>  

 

 (   <
.
  <

.
  <

.
  <

.
  <

.
  <

.
  <

.
  =    

 

 )   .>  .>  .>  .>  .>      .>  .>  
 

 $   <
.
  <

.
  <

.
  <

.
  <

.
  <

.
  <

.
      

 

Operator precedence parsing algorithm:             
 

Input : An input string w and a table of precedence relations.         
 

Output : If w is well formed, a skeletal parse tree ,with a placeholder non-terminal E labeling all 

interior nodes; otherwise, an error indication.  
Method : Initially the stack contains $ and the input buffer the string w $. To parse, we execute 

the following program : 

(1)Set ip to point to the first symbol of w$;  
2. repeat forever   
3. if $ is on top of the stack and ip points to $ then   
4. return   

else begin  
4. let a be the topmost terminal symbol on the stack 

and let b be the symbol pointed to by ip;  

5. if a <
.
 b or a = b then begin  

6. push b onto the stack;   
7. advance ip to the next input symbol;   

end; 
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(9) else if a 
.
 > b then      /*reduce*/ 

(10) repeat   
(11) pop the stack   

(12) until the top stack terminal is related by <
.
 

to the terminal most recently popped   
(13) else error( )   

end 

Stack implementation of operator precedence parsing:  
Operator precedence parsing uses a stack and precedence relation table for its 

implementation of above algorithm. It is a shift-reduce parsing containing all four actions shift, 
 
reduce, accept and error.  
The initial configuration of an operator precedence parsing is STACK$ 

 
where w is the input string to be parsed. 

Example: 
 
Consider the grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string is id+id*id .The 

implementation is as follows: 
 

STACK  INPUT COMMENT 

$ <∙ id+id*id $ shift id 

$ id ∙> +id*id $ pop the top of the stack id 

$ <∙ +id*id $ shift + 

$ + <∙ id*id $ shift id 

$ +id ∙> *id $ pop id 

$ + <∙ *id $ shift * 

$ + * <∙ id $ shift id 

$ + * id ∙> $ pop id 

$ + * ∙> $ pop * 

$ + ∙> $ pop + 

$  $ accept 
 
Advantages of operator precedence parsing:  
3. It is easy to implement.   
4. Once an operator precedence relation is made between all pairs of terminals of a grammar , 

the grammar can be ignored. The grammar is not referred anymore during implementation.  

Disadvantages of operator precedence parsing:  
2. It is hard to handle tokens like the minus sign (-) which has two different precedence.   
3. Only a small class of grammar can be parsed using operator-precedence parser. 

INPUT 

w$ 
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2.6 LR PARSERS  
An efficient bottom-up syntax analysis technique that can be used to parse a large class of 

CFG is called LR(k) parsing. The „L‟ is for left-to-right scanning of the input, the „R‟ for 

constructing a rightmost derivation in reverse, and the „k‟ for the number of input symbols. 

When „k‟ is omitted, it is assumed to be 1. 

 

Advantages of LR parsing:  
 It recognizes virtually all programming language constructs for which CFG can be 

written. 


 It is an efficient non-backtracking shift-reduce parsing method. 


 A grammar that can be parsed using LR method is a proper superset of a grammar that 

can be parsed with predictive parser. 


 It detects asyntactic error as soon as possible. 

 

Drawbacks of LR method:  
It is too much of work to construct a LR parser by hand for a programming language 

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC. 

 
Types of LR parsing method:  
1. SLR- Simple LR   

 Easiest to implement, least powerful. 


2. CLR- Canonical LR   
 Most powerful, most expensive. 



3. LALR- Look-Ahead LR   
 Intermediate in size and cost between the other two methods. 

 
The LR parsing algorithm: 
 
The schematic form of an LR parser is as follows: 
 

 

INPUT  
a1 … 

 
ai … 

 
an $ 

 
 

       
 

              
 

Sm      LR parsing program   OUTPUT 
 

Xm 
             

 

             
 

Sm-1              
 

Xm-1              
 

…      action  goto     
 

S0              
 

 

STACK 
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It consists of : an input, an output, a stack, a driver program, and a parsing table that has two 

parts (action and goto). 
 
 The driver program is the same for all LR parser. 


 The parsing program reads characters from an input buffer one at a time. 


 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on 

top. Each Xi is a grammar symbol and each si is a state. 


 The parsing table consists of two parts : action and goto functions. 
 
Action : The parsing program determines sm, the state currently on top of stack, and ai, the 

current input symbol. It then consults action[sm,ai] in the action table which can have one of four 

values : 
 
 shift s, where s is a state,   
 reduce by a grammar production A → β,   
 accept, and   
 error.  
 
Goto : The function goto takes a state and grammar symbol as arguments and produces a state. 
 
LR Parsing algorithm: 
 
Input: An input string w and an LR parsing table with functions action and goto for grammar G. 
 
Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication. 
 
Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input 

buffer. The parser then executes the following program : 
 

set ip to point to the first input symbol of 

w$; repeat forever begin 

let s be the state on top of the stack 

and a the symbol pointed to by ip;  
if action[s, a] =shift s‟ then begin push 

a then s‟ on top of the stack; 

advance ip to the next input symbol 

end  
else if action[s, a]=reduce A→β then begin 

pop 2* |β |symbols off the stack;  
let s‟ be the state now on top of the stack; 

push A then goto[s‟, A] on top of the 

stack; output the production A→ β 

end  
else if action[s, a]=accept then 

return 
else error( )  

end 
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2.7 CONSTRUCTING SLR(1) PARSING TABLE: 
 
To perform SLR parsing, take grammar as input and do the following:  
 Find LR(0) items.   
 Completing the closure.   
 Compute goto(I,X), where, I is set of items and X is grammar symbol.  
 
LR(0) items:  

An LR(0) item of a grammar G is a production of G with a dot at some position of the 

right side. For example, production A → XYZ yields the four items : 
 
A → . XYZ  
A → X . YZ  
A → XY . Z  
A → XYZ . 
 
Closure operation:  

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from 

I by the two rules: 
 
\{ Initially, every item in I is added to closure(I).   
\{ If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if 

it is not already there. We apply this rule until no more new items can be added to 

closure(I).  
 
Goto operation:  

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such 

that [A→ α . Xβ] is in I. 

Steps to construct SLR parsing table for grammar G are: 
 

1. Augment G and produce G‟   
2. Construct the canonical collection of set of items C for G‟   
3. Construct the parsing action function action and goto using the following algorithm that 

requires FOLLOW(A) for each non-terminal of grammar.  

 
Algorithmfor construction of SLR parsing table: 
Input  : An augmented grammar G‟  
Output : The SLR parsing table functions action and goto for G‟  
Method :  
1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G‟.   
2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:   

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be 

terminal.   
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).   
(c) If [S‟→S.] is in Ii, then set action[i,$] to “accept”.  

 
If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).



55 

 

3. The goto transitions for state i are constructed for all non-terminals A using the rule: If 

goto(Ii,A)= Ij, then goto[i,A] = j.  
Ʃ All entries not defined by rules (2) and (3) are made “error”   
Ʃ The initial state of the parser is the one constructed from the set of items containing 

[S‟→.S].  

 
Example for SLR parsing:  
Construct SLR parsing for the following grammar :  
G : E → E + T | T  

T → T * F | F  
F→ (E) | id 

 

The given grammar is :  
G : E → E + T ------ (1) 

E →T ------ (2) 

T → T * F ------ (3) 

T → F ------ (4) 

F→ (E) ------ (5) 

F→ id ------ (6) 

 

Step 1 : Convert given grammar into augmented grammar.  
Augmented grammar :  

E‟ → E  
E → E + T  
E → T  
T → T * F  
T → F  
F→ (E)  
F→ id 

Step 2 : Find LR (0) items. 

 

I0 : E‟ → . E  
δ → . E + T   
iv) → . T   
T → . T * F   
T → . F   
F → . (E)   
F → . id 

 

GOTO ( I0 , E)   GOTO ( I4 , id ) 

I1 : E‟ → E .  I5 : F→ id . 

E → E . + T    
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GOTO ( I0 , T)  
I2 : E → T .  

T → T . * F 

 

GOTO ( I0 , F)  
I3 : T → F . 

 

GOTO ( I0 , ( )  
I4 : F → ( . E)  

E → . E + T   
E → . T   
T → . T * F   
T → . F   
F → . (E)   
F → . id  

 

GOTO ( I0 , id )  
I5 : F→ id . 

 

GOTO ( I1 , + )  
I6 : E → E + . T 

T → . T * F  
T → . F  
F → . (E) 

F → . id 

 
GOTO ( I2 , * )  
I7 : T → T * . F  

F → . (E) 

F → . id 

 
GOTO ( I4 , E )  
I8 : F→ ( E . ) E 

→ E . + T 

 
GOTO ( I4 , T)  
I2 : E →T .  

T → T . * F 

 

GOTO ( I4 , F)  
I3 : T → F . 

GOTO ( I6 , T )  
I9 : E → E + T .  

T → T . * F 

 

GOTO ( I6 , F )  
I3 : T → F . 

 

GOTO ( I6 , ( )  
I4 : F→ ( . E ) 

 

GOTO ( I6 , id)  
I5 : F→ id . 

 

GOTO ( I7 , F )  
I10 : T → T * F . 

 

GOTO ( I7 , ( )  
I4 : F→ ( . E )  

E → . E + T  
E → . T  
T → . T * F  
T → . F  
F → . (E)  
F → . id 

 

GOTO ( I7 , id )  
I5 : F → id . 

 

GOTO ( I8 , ) )  
I11 : F→ ( E ) . 

 

GOTO ( I8 , + )  
I6 : E → E + . T  

T → . T * F  
T → . F  
F→ . ( E )  
F→ . id 

 

GOTO ( I9 , *)  
I7 : T → T * . F  

F→ . ( E )  
F→ . id 
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GOTO ( I4 , ()  
I4 : F → ( . E)  

E → . E + T   
E → . T   
T → . T * F   
T → . F   
F → . (E)   
F → id  

 
 

 

FOLLOW (E) = { $ , ) , +)  
FOLLOW (T) = { $ , + , ) , * }  
FOOLOW (F) = { * , + , ) , $ } 
 
SLR parsing table: 
 

     ACTION        GOTO    
 

                   
 

 

id + * ( ) $ 
 

E T F 
  

          
 

                   
 

I0 s5      s4      1  2  3  
 

                   
 

I1   s6        ACC        
 

                   
 

I2   r2  s7    r2  r2        
 

                   
 

I3   r4  r4    r4  r4        
 

                   
 

I4 s5      s4      8  2  3  
 

                   
 

I5   r6  r6    r6  r6        
 

                   
 

I6 s5      s4        9  3  
 

                   
 

I7 s5      s4          10  
 

                   
 

I8   s6      s11          
 

                   
 

I9   r1  s7    r1  r1        
 

                   
 

I10   r3  r3    r3  r3        
 

                   
 

I11   r5  r5    r5  r5        
 

                   
 

 

Blank entries are error entries. 
 
Stack implementation: 
 
Check whether the input id + id * id is valid or not
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STACK 
 
0 
 
0 id 5 
 
0 F 3 
 

 

0 T 2 
 

 

0 E 1 
 

 

0 E 1 + 6 
 
0 E 1 + 6 id 5 
 
0 E 1 + 6 F 3 

INPUT 
 
id + id * id $ 
 

+ id * id $  
 

+ id * id $  
 

 

+ id * id $  
 

 

+ id * id $  
 

 

id * id $ 
 

* id $ 
 

* id $ 

ACTION 
 
GOTO ( I0 , id ) = s5 ; shift 
 
GOTO ( I5 , + ) = r6 ; reduce by F→id 
 
GOTO ( I0 , F ) = 3  
GOTO ( I3 , + ) = r4 ; reduce by T → F 
 
GOTO ( I0 , T ) = 2  
GOTO ( I2 , + ) = r2 ; reduce by E → T 
 
GOTO ( I0 , E ) = 1  
GOTO ( I1 , + ) = s6 ; shift 
 
GOTO ( I6 , id ) = s5 ; shift 
 
GOTO ( I5 , * ) = r6 ; reduce by F→ id 
 
GOTO ( I6 , F ) = 3  
GOTO ( I3 , * ) = r4 ; reduce by T → F 

 

 0 E 1 + 6 T 9 * id $ GOTO ( I6 , T ) = 9  

    GOTO ( I9 , * ) = s7 ; shift  
     

 0 E 1 + 6 T 9 * 7 id $ GOTO ( I7 , id ) = s5 ; shift  
      

 0 E 1 + 6 T 9 * 7 id 5 $ GOTO ( I5 , $ ) = r6 ; reduce by F→ id  
      

 0 E 1 + 6 T 9 * 7 F 10 $ GOTO ( I7 , F ) = 10  

    GOTO ( I10 , $ ) = r3 ; reduce by T → T * F  
       

 0 E 1 + 6 T 9 $ GOTO ( I6 , T ) = 9  

    GOTO ( I9 , $ ) = r1 ; reduce by E → E + T  
       

 0 E 1  $ GOTO ( I0 , E ) = 1  

    GOTO ( I1 , $ ) = accept  
       

       

 

2.8 TYPE CHECKING 
A compiler must check that the source program follows both syntactic and semantic 

conventions of the source language.  
This checking, called static checking, detects and reports programming errors. 

 
Some examples of static checks: 

 
1. Type checks – A compiler should report an error if an operator is applied to an incompatible 

operand. Example: If an array variable and function variable are added together.  
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2. Flow-of-control checks – Statements that cause flow of control to leave a construct must 

have some place to which to transfer the flow of control. Example: An error occurs when an 

enclosing statement, such as break, does not exist in switch statement.  
 

   Position of type checker   
 

token 

 

syntax 

  

syntax 

 

intermediate 
 

parser  type checker intermediate 
 

stream      code generator  
 

        
 

 
 

 A type checker verifies that the type of a construct matches that expected by its 

context. For example : arithmetic operator mod in Pascal requires integer operands, so a 

type checker verifies that the operands of mod have type integer. 


 Type information gathered by a type checker may be needed when code is generated. 
 
2.9 TYPE SYSTEMS 
 
The design of a type checker for a language is based on information about the syntactic 

constructs in the language, the notion of types, and the rules for assigning types to 

language constructs. 
 
For example : “ if both operands of the arithmetic operators of +,- and * are of type integer, 

then the result is of type integer ” 
 
Type Expressions 
 

 The type of a language construct will be denoted by a “type expression.” 


 A type expression is either a basic type or is formed by applying an operator called a 

type constructor to other type expressions. 


 The sets of basic types and constructors depend on the language to be checked. 
 
The following are the definitions of type expressions: 
 
1. Basic types such as boolean, char, integer, real are type expressions.  
 

A special basic type, type_error , will signal an error during type checking; void denoting 

“the absence of a value” allows statements to be checked.  
 
2. Since type expressions may be named, a type name is a type expression.  
 
3. A type constructor applied to type expressions is a type expression. 

Constructors include:   
Arrays : If T is a type expression then array (I,T) is a type expression denoting the 

type of an array with elements of type T and index set I.  

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a 

type expression. 
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Records : The difference between a record and a product is that the fields of a record have 

names. The record type constructor will be applied to a tuple formed from field names and 

field types. 

For example:  
type row = record  

address: integer;  
lexeme: array[1..15] of char 

end;  
var table: array[1...101] of row;  

declares the type name row representing the type expression record((address X integer) X 

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type. 

 
Pointers : If T is a type expression, then pointer(T) is a type expression denoting the 

type “pointer to an object of type T”.  
For example, var p: ↑ row declares variable p to have type pointer(row). 

 

Functions : A function in programming languages maps a domain type D to a range type 

R. The type of such function is denoted by the type expression D → R 
 
4.  Type expressions may contain variables whose values are type expressions. 
 

Tree representation for char x char → pointer (integer) 

 

→ 

 

x pointer 
 

char char   integer 
 
Type systems 
 
 A type system is a collection of rules for assigning type expressions to the various parts 

of a program. 


 A type checker implements a type system. It is specified in a syntax-directed manner. 


 Different type systems may be used by different compilers or processors of the 

same language. 
 
Static and Dynamic Checking of Types 
 
 Checkingdone by a compiler is said to be static, while checking done when the target 

program runs is termed dynamic. 


 Any check can be done dynamically, if the target code carries the type of an element 

along with the value of that element. 

 
 



61 

 

Sound type system  
A sound type system eliminates the need for dynamic checking for type errors because it 

allows us to determine statically that these errors cannot occur when the target program runs. 

That is, if a sound type system assigns a type other than type_error to a program part, then type 

errors cannot occur when the target code for the program part is run. 
 
Strongly typed language  

A language is strongly typed if its compiler can guarantee that the programs it 

accepts will execute without type errors. 
 
Error Recovery 
 
 Since type checking has the potential for catching errors in program, it is desirable 

for type checker to recover from errors, so it can check the rest of the input. 


 Error handling has to be designed into the type system right from the start; the 

type checking rules must be prepared to cope with errors. 
 
2.10 SPECIFICATION OF A SIMPLE TYPE CHECKER 
 

Here, we specify a type checker for a simple language in which the type of each 

identifier must be declared before the identifier is used. The type checker is a translation scheme 

that synthesizes the type of each expression from the types of its subexpressions. The type 

checker can handle arrays, pointers, statements and functions. 
 
A Simple Language 
 
Consider the following grammar: 

P → D ; E  
 

D → D ; D | id : T  
 

T → char | integer | array [ num ] of T | ↑ T 
 

E → literal | num | id | E mod E | E [ E ] | E ↑ 
 

Translation scheme:  
 

P → D ; E  
 

D → D ; D 

{ addtype (id.entry , T.type)} 
 

D → id : T 
 

T → char { T.type : = char } 
 

T → integer { T.type : = integer } 
 

T → ↑ T1 { T.type : = pointer(T1.type) } 
 

T → array [ num ] of T1 { T.type : = array ( 1… num.val , T1.type) } 
 
In the above language,  
→ There are two basic types : char and integer ;   
→ type_error is used to signal errors;   
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression 

pointer ( integer ).  
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Type checking of expressions 
 
In the following rules, the attribute type forE gives the type expression assigned to the 

expression generated by E. 
 

1. E → literal { E.type : = char } 

E → num { E.type : = integer } 

Here, constants represented by the tokens literal and num have type char and integer. 
 
2. E → id      { E.type : = lookup ( id.entry ) }  

lookup ( e ) is used to fetch the type saved in the symbol table entry pointed to by e. 
 
3. E → E1 mod E2   { E.type : = if E1. type = integer and  

E2. type = integer then 

integer else type_error }  
The expression formed by applying the mod operator to two subexpressions of type integer 

has type integer; otherwise, its type is type_error. 
 
4. E → E1 [ E2 ]   { E.type : = if E2.type = integer and  

E1.type = array(s,t) then t  
else type_error }  

In an array reference E1 [ E2 ] , the index expression E 2 must have type integer. The result 

is the element type t obtained from the type array(s,t) of E1. 
 
5. E → E1 ↑    { E.type : = if E1.type = pointer (t) then t  

else type_error } 
 

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type 

t of the object pointed to by the pointer E. 
 
Type checking of statements 
 
Statements do not have values; hence the basic type void can be assigned to them. If an error 

is detected within a statement, then type_error is assigned. 
 
Translation scheme for checking the type of statements: 
 
1. Assignment statement:  

S → id : = E { S.type : = if id.type = E.type then void else 

type_error } 
 
2. Conditional statement:  

S → if E then S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 
 
3. While statement:  

S → while E do S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 
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4. Sequence of statements:  
S → S1 ; S2 { S.type : = if S1.type = void and S1.type = void 

then void  
else type_error } 

 
Type checking of functions 
 
The rule for checking the type of a function application is :  

E → E1 ( E2)  { E.type : = if E2.type = s and  
E1.type = s → t then 

t else type_error } 

 
 
2.11 SOURCE LANGUAGE ISSUES 
 
Procedures:  

A procedure definition is a declaration that associates an identifier with a statement. 

The identifier is the procedure name, and the statement is the procedure body.  
For example, the following is the definition of procedure named readarray : 

 

procedure readarray; 

var i : integer;  
begin  

for i : = 1 to 9 do 

read(a[i]) end; 
 
When a procedure name appears within an executable statement, the procedure is said to 

be called at that point. 
 
Activation trees:  

An activation tree is used to depict the way control enters and leaves activations. In an 

activation tree,  
1. Each node represents an activation of a procedure.   
2. The root represents the activation of the main program.   
3. The node for a is the parent of the node for b if and only if control flows from activation a 

to b.   
4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the 

lifetime of b.  
 
Control stack: 

 A control stack is used to keep track of live procedure activations. The idea is to push 

the node for an activation onto the control stack as the activation begins and to pop the 

node when the activation ends. 


 The contents of the control stack are related to paths to the root of the activation tree. 

When node n is at the top of control stack, the stack contains the nodes along the 

path from n to the root. 
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The Scope of a Declaration:  
A declaration is a syntactic construct that associates information with a 

name. Declarations may be explicit, such as:  
var i : integer ;  

or they may be implicit. Example, any variable name starting with I is assumed to denote 

an integer. 
 
The portion of the program to which a declaration applies is called the scope of that declaration. 
 
Binding of names:  

Even if each name is declared once in a program, the same name may denote different 

data objects at run time. “Data object” corresponds to a storage location that holds values. 
 
The term environment refers to a function that maps a name to a storage location. The 

term state refers to a function that maps a storage location to the value held there. 
 

environment state 
 
 
 
 
 

name storage     value 
 

When an environment associates storage location s with a name x, we say that x is 

bound to s. This association is referred to as a binding of x. 

 
2.12 STORAGE ORGANISATION 
 

 The executing target program runs in its own logical address space in which 

each program value has a location. 
 The management and organization of this logical address space is shared between the 

complier, operating system and target machine. The operating system maps the 

logical address into physical addresses, which are usually spread throughout memory. 

 

Typical subdivision of run-time memory: 

 

Code 
 

Static Data 
 

Stack 
 

 

free memory 

 

Heap 
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 Run-time storage comes in blocks, where a byte is the smallest unit of addressable 

memory. Four bytes form a machine word. Multibyte objects are stored in 

consecutive bytes and given the address of first byte. 

 The storage layout for data objects is strongly influenced by the addressing constraints 

of the target machine. 
 A character array of length 10 needs only enough bytes to hold 10 characters, a 

compiler may allocate 12 bytes to get alignment, leaving 2 bytes unused. 
 This unused space due to alignment considerations is referred to as padding. 
 The size of some program objects may be known at run time and may be placed in 

an area called static. 
 The dynamic areas used to maximize the utilization of space at run time are stack 

and heap. 
 
Activation records: 
 

 Procedure calls and returns are usually managed by a run time stack called the 

control stack. 
 Each live activation has an activation record on the control stack, with the root of the 

activation tree at the bottom, the latter activation has its record at the top of the stack. 


 The contents of the activation record vary with the language being implemented. 

The diagram below shows the contents of activation record. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Temporary values such as those arising from the evaluation of expressions. 
 Local data belonging to the procedure whose activation record this is. 
 A saved machine status, with information about the state of the machine just before 

the call to procedures. 
 An access link may be needed to locate data needed by the called procedure but 

found elsewhere. 
 A control link pointing to the activation record of the caller. 
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 Space for the return value of the called functions, if any. Again, not all called 

procedures return a value, and if one does, we may prefer to place that value in a 

register for efficiency. 

 The actual parameters used by the calling procedure. These are not placed in 

activation record but rather in registers, when possible, for greater efficiency. 

2.13 STORAGE ALLOCATION STRATEGIES  
The different storage allocation strategies are :  
1. Static allocation – lays out storage for all data objects at compile time   
2. Stack allocation – manages the run-time storage as a stack.   
3. Heap allocation – allocates and deallocates storage as needed at run time from a data 

area known as heap.  

 
2.13.1 STATIC ALLOCATION  

 In static allocation, names are bound to storage as the program is compiled, so there is 

no need for a run-time support package. 
 Since the bindings do not change at run-time, everytime a procedure is activated, 

its names are bound to the same storage locations. 

 Therefore values of local names are retained across activations of a procedure. That 

is, when control returns to a procedure the values of the locals are the same as they 

were when control left the last time. 

 From the type of a name, the compiler decides the amount of storage for the name and 

decides where the activation records go. At compile time, we can fill in the addresses 

at which the target code can find the data it operates on. 

 
2.13.2 STACK ALLOCATION OF SPACE 

 

 All compilers for languages that use procedures, functions or methods as units of user-

defined actions manage at least part of their run-time memory as a stack. 
 Each time a procedure is called , space for its local variables is pushed onto a stack, 

and when the procedure terminates, that space is popped off the stack. 
 

Calling sequences: 
 

 Procedures called are implemented in what is called as calling sequence, which 

consists of code that allocates an activation record on the stack and enters information 

into its fields. 

 A return sequence is similar to code to restore the state of machine so the calling 

procedure can continue its execution after the call. 
 The code in calling sequence is often divided between the calling procedure (caller) 

and the procedure it calls (callee). 
 When designing calling sequences and the layout of activation records, the 

following principles are helpful: 
 Values communicated between caller and callee are generally placed at the 

beginning of the callee‟s activation record, so they are as close as possible to 

the caller‟s activation record. 



67 

 

 Fixed length items are generally placed in the middle. Such items typically 

include the control link, the access link, and the machine status fields. 


 Items whose size may not be known early enough are placed at the end of the 

activation record. The most common example is dynamically sized array, where 

the value of one of the callee‟s parameters determines the length of the array. 

 We must locate the top-of-stack pointer judiciously. A common approach is to 

have it point to the end of fixed-length fields in the activation record. Fixed-length 

data can then be accessed by fixed offsets, known to the intermediate-code 

generator, relative to the top-of-stack pointer. 

 
     

. . . 
    

 

         
 

           

     

Parameters and returned values 
   

 

 

caller‟s   

   
 

 
control link 

  
 

activation 
  

 

links and saved status   
 

 

record 
  

 

 

temporaries and local data 

  
 

   
 

  caller‟s   
 

 responsibility 
     

 

Parameters and returned values     
 

callee‟s      
 

activation control link   
 

  
 

record 
 

 links and saved status 
 

top_sp 

 

  
 

         
 

  callee‟s 
temporaries and local data 

  
 

 responsibility   
 

      
 

          
 

 
Division of tasks between caller and callee 

 

 The calling sequence and its division between caller and callee are as follows. 



 The caller evaluates the actual parameters. 


 The caller stores a return address and the old value of top_sp into the callee‟s 

activation record. The caller then increments the top_sp to the respective 

positions. 


 The callee saves the register values and other status information. 


 The callee initializes its local data and begins execution. 


 A suitable, corresponding return sequence is: 



 The callee places the return value next to the parameters. 


 Using the information in the machine-status field, the callee restores top_sp 

and other registers, and then branches to the return address that the caller 

placed in the status field. 


 Although top_sp has been decremented, the caller knows where the return value is, 

relative to the current value of top_sp; the caller therefore may use that value. 

 



68 

 

Variable length data on stack: 
 

 The run-time memory management system must deal frequently with the allocation 

of space for objects, the sizes of which are not known at the compile time, but which 

are local to a procedure and thus may be allocated on the stack. 

 The reason to prefer placing objects on the stack is that we avoid the expense of 

garbage collecting their space. 
 The same scheme works for objects of any type if they are local to the procedure 

called and have a size that depends on the parameters of the call. 

 
 
 
 

   .     
 

         

 
activation 

     
 

 control link    
 

record for p 
   

 

pointer to A    
 

       

      
 

   pointer to B    
 

   pointer to C    
 

        
 

        
 

arrays of p 
array A 

   
 

   
 

     
 

   array B    
 

   array C    
 

      

top_sp 

 

      
 

activation record for control link 
  

 

  
 

procedure q called by p      
 

      

top 

 

arrays of q    
 

        
 

 
 

Access to dynamically allocated arrays 

 

 Procedure p has three local arrays, whose sizes cannot be determined at compile 

time. The storage for these arrays is not part of the activation record for p. 

 Access to the data is through two pointers, top and top-sp. Here the top marks the 

actual top of stack; it points the position at which the next activation record will begin. 
 The second top-sp is used to find local, fixed-length fields of the top activation record. 
 The code to reposition top and top-sp can be generated at compile time, in terms of 

sizes that will become known at run time. 
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2.13.3 HEAP ALLOCATION  
Stack allocation strategy cannot be used if either of the following is possible :  
1. The values of local names must be retained when an activation ends.   
2. A called activation outlives the caller.  

 

 Heap allocation parcels out pieces of contiguous storage, as needed for activation 

records or other objects. 
 Pieces may be deallocated in any order, so over the time the heap will consist of 

alternate areas that are free and in use. 

 

 

Position in the Activation records in the heap Remarks 
 

activation tree        
 

          
 

 s       Retained activation 
 

      s   record for r 
 

         
 

r q ( 1 , 9)    control link   
 

          
 

      r    
 

      
control link 

  
 

        
 

          
 

q(1,9) 

 

control link 
 
 
 
 
 
 
 

 The record for an activation of procedure r is retained when the activation ends. 


 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically. 


 If the retained activation record for r is deallocated, there will be free space in the 

heap between the activation records for s and q. 

















CHAPTER III – INTERMEDIATE CODE GENERATION 
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3.1 INTRODUCTION 
 

The front end translates a source program into an intermediate representation from 

which the back end generates target code. 
 
Benefits of using a machine-independent intermediate form are: 
 
5. Retargeting is facilitated. That is, a compiler for a different machine can be created 

by attaching a back end for the new machine to an existing front end.  
 
6. A machine-independent code optimizer can be applied to the intermediate representation.  
 

Position of intermediate code generator 
 

     

intermediate 

  

Parser  static  intermediate code 
 

  checker  code generator code generator 
 

       

 
Figure 3.1:Intermediate code generator 

 

3.2 INTERMEDIATE LANGUAGES 
 
Three ways of intermediate representation: 
 

1. Syntax tree 


2. Postfix notation 


3. Three address code 
 
The semantic rules for generating three-address code from common programming language 

constructs are similar to those for constructing syntax trees or for generating postfix notation. 
 
3.2.1 Graphical Representations: 
 
Syntax tree: 
 

A syntax tree depicts the natural hierarchical structure of a source program. A dag 

(Directed Acyclic Graph) gives the same information but in a more compact way because 

common subexpressions are identified. A syntax tree and dag for the assignment statement a : = 

b * - c + b * - c are as follows: 
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 assign    assign   

 A +   A +  

 

 

*  *    *  

b  Uminus   b uminus b uminus 
        

         

 c  c  c 

 (a) Syntax tree   (b) Dag 

 

Figure 3.2:Syntax Tree and DAG 

 

Postfix notation: 
 

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of 

the tree in which a node appears immediately after its children. The postfix notation for the 

syntax tree given above is 
 

a b c uminus * b c uminus * + assign 
 
Syntax-directed definition: 

 
Syntax trees for assignment statements are produced by the syntax-directed definition. 

Non-terminal S generates an assignment statement. The two binary operators + and * are 

examples of the full operator set in a typical language. Operator associativities and 

precedences are the usual ones, even though they have not been put into the grammar. This 

definition constructs the tree from the input a : = b * - c + b* - c. 
 
Table 3.1:Syntax directed definition 

 

PRODUCTION SEMANTIC RULE 
  

S  id : = E S.nptr : = mknode(„assign‟,mkleaf(id, id.place), E.nptr) 

E  E1 +E2 E.nptr : = mknode(„+‟, E1.nptr, E2.nptr ) 

E  E1 * E2 E.nptr : = mknode(„*‟, E1.nptr, E2.nptr ) 

E  - E1 E.nptr : = mknode(„uminus‟, E1.nptr) 

E  (E1 ) E.nptr : = E1.nptr 

E  id E.nptr : = mkleaf( id, id.place ) 
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Syntax-directed definition to produce syntax trees for assignment statement 

 

The token id has an attribute place that points to the symbol-table entry for the identifier. 

A symbol-table entry can be found from an attribute id.name, representing the lexeme associated 

with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of characters, 

then attribute name might be the index of the first character of the lexeme. 
 

Two representations of the syntax tree are as follows. In (a) each node is represented as a 

record with a field for its operator and additional fields for pointers to its children. In (b), nodes 

are allocated from an array of records and the index or position of the node serves as the pointer to 

the node. All the nodes in the syntax tree can be visited by following pointers, starting from the 

root at position 10. 

Two representations of the syntax tree 
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Figure 3.3:Two representations of syntax tree 
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3.2.2 Three-Address Code: 
Three-address code is a sequence of statements of the general form 

 
x : = y op z 

 
where x, y and z are names, constants, or compiler-generated temporaries; op stands for any 

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z might be translated into asequence 
 

t1 : = y * z t2 : 

= x + t1 
 
wheret1 and t2 are compiler-generated temporary names. 

 

Advantages of three-address code: 
 
 The unraveling of complicated arithmetic expressions and of nested flow-of-

control statements makes three-address code desirable for target code generation and 

optimization. 


 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation. 
 

Three-address code is a linearized representation of a syntax tree or a dag in which 

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are 

represented by the three-address code sequences. Variable names can appear directly in three-

address statements. 
 

Three-address code corresponding to the syntax tree and dag given above 
 

t1 : = - c t1 : = -c 

t2 : = b * t1 t2 : = b * t1 

t3 : = - c t5 : = t2 + t2 

t4 : = b * t3 a : = t5 

t5 : = t2 + t4  

a : = t5  

(a) Code for the syntax tree (b) Code for the dag 
 
The reason for the term “three-address code” is that each statement usually contains three 

addresses, two for the operands and one for the result. 
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Types of Three-Address Statements: 
 

The common three-address statements are: 
 
5. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical 

operation.  
 
6. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary 

operations include unary minus, logical negation, shift operators, and conversion operators 

that, for example, convert a fixed-point number to a floating-point number.  

 
7. Copy statements of the form x : = y where the value of y is assigned to x.  

 

8. The unconditional jump goto L. The three-address statement with label L is the next to be 

executed.  

 
9. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (   

<, =, >=, etc. ) to x and y, and executes the statement with label L next if x stands in relation 

relop to y. If not, the three-address statement following if x relop y goto L is executed next, 

as in the usual sequence. 

 
4. param x and call p, n for procedure calls and return y, where y representing a returned value 

is optional. For example,  

param x1 

param x2   
. . .   

param xn 

call p,n  
 

generated as part of a call of the procedure p(x1, x2, …. ,xn ).  

 

5. Indexed assignments of the form x : = y[i] and x[i] : = y.  

 

6. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.  
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Syntax-Directed Translation into Three-Address Code: 
 

When three-address code is generated, temporary names are made up for the interior 

nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary 

t, followed by the assignment id.place : = t. 
 

Given input a : = b * - c + b * - c, the three-address code is as shown above. The 

synthesized attribute S.code represents the three-address code for the assignment S. The 

nonterminal E has two attributes : 

5. E.place, the name that will hold the value of E , and   
6. E.code, the sequence of three-address statements evaluating E.  

 

 

 

Table 3.2: Syntax-directed definition to produce three-address code for assignments 
 

PRODUCTION SEMANTIC RULES 
  

S  id : = E S.code : = E.code || gen(id.place ‘:=’ E.place) 

E  E1 + E2 E.place := newtemp; 

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place) 

E  E1 * E2 E.place := newtemp; 

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place) 

E  - E1 E.place := newtemp; 

 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place) 

E  (E1 ) E.place : = E1.place; 

 E.code : = E1.code 

E  id E.place : = id.place; 

 E.code : = ‘ ‘ 
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Semantic rules generating code for a while statement 
 

S.begin: 
 

E.code 
 

if E.place = 0 goto S.after 

 

  S1.code 
    

  goto S.begin  

S.after: . . .  

PRODUCTION SEMANTIC RULES 

S  while E do S1 S.begin := newlabel; 

  S.after := newlabel; 

  S.code := gen(S.begin ‘:’) || 

   E.code || 

   gen ( ‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)|| 

   S1.code || 

   gen ( ‘goto’ S.begin) || 

   gen (S.after ‘:’) 
 
 

Figure 3.4:semantic rule generating code for while statement 

 

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to 

successive calls. 


 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z. 

Expressions appearing instead of variables like x, y and z are evaluated when passed to 

gen, and quoted operators or operand, like „+‟ are taken literally. 


 Flow-of–control statements can be added to the language of assignments. The code for S 

whileEdoS1is generated using new attributesS.beginandS.afterto mark 

the firststatement in the code for E and the statement following the code for S, respectively. 

 The function newlabel returns a new label every time it is called. 


 We assume that a non-zero expression represents true; that is when the value of E 

becomes zero, control leaves the while statement. 
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Implementation of Three-Address Statements: 
A three-address statement is an abstract form of intermediate code. In a compiler, 

these statements can be implemented as records with fields for the operator and the operands. 

Three such representations are:Quadruples 

 Triples 


 Indirect triples 
 
Quadruples: 
 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. 



 The op field contains an internal code for the operator. The three-address statement x : = 

y op z is represented by placing y in arg1, z in arg2 and x in result. 


 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table 

entries for the names represented by these fields. If so, temporary names must be entered 

into the symbol table as they are created. 

Triples: 
 To avoid entering temporary names into the symbol table, we might refer to a temporary 

value by the position of the statement that computes it. 


 If we do so, three-address statements can be represented by records with only three 

fields: op, arg1 and arg2. 


 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table 

or pointers into the triple structure ( for temporary values ). 


 Since three fields are used, this intermediate code format is known as triples. 

 

 op arg1 arg2 result 
     

(0) uminus c  t1 

(1) * b t1 t2 

(2) uminus c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) : = t3  a 

     

(a) Quadruples 

 
 

 op arg1 arg2 
     

(0) uminus c   

(1) * b (0)  

(2) uminus c   

(3) * b (2)  

(4) + (1) (3)  

(5) assign a (4)  

     

 

(b) Triples 

 

Figure 3.4: Quadruple and triple representation of three-address statements 

given above 
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A ternary operation like x[i] : = y requires two entries in the triple structure as shown as 

below while x : = y[i] is naturally represented as two operations. 

 

 

  op arg1 arg2   
       

(0) [ ] = x i   

(1) assign (0) y   
       

 
 

(a) x[i] : = y 

 

 
 

 op arg1 arg2  
     

(0) = [ ] y i 

(1) assign x (0)  
     

 
 

(b) x : = y[i] 
 

Figure 3.5:triple structure 

 

Indirect Triples: 
 
 Another implementation of three-address code is that of listing pointers to triples, 

rather than listing the triples themselves. This implementation is called indirect triples. 


 For example, let us use an array statement to list pointers to triples in the desired 

order. Then the triples shown above might be represented as follows: 

 

 

  statement    op arg1 arg2  
           

           

(0) (14)    (14) uminus c   

(1) (15)    (15) * b (14)  

(2) (16)    (16) uminus c   

(3) (17)    (17) * b (16)  

(4) (18)    (18) + (15) (17)  

(5) (19)    (19) assign a (18)  
           

 

 

Figure 3.6:Indirect triples representation of three-address statements 
 
3.3 DECLARATIONS 
 

As the sequence of declarations in a procedure or block is examined, we can lay out 

storage for names local to the procedure. For each local name, we create a symbol-table entry 

with information like the type and the relative address of the storage for the name. The relative 

address consists of an offset from the base of the static data area or the field for local data in an 

activation record. 
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3.3.1 Declarations in a Procedure:  
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a 

single procedure to be processed as a group. In this case, a global variable, say offset, can 

keep track of the next available relative address. 
 
In the translation scheme shown below: 
 
 Nonterminal P generates a sequence of declarations of the form id : T. 



 Before the first declaration is considered, offset is set to 0. As each new name is seen , 

that name is entered in the symbol table with offset equal to the current value of offset, 

and offset is incremented by the width of the data object denoted by that name. 


 The procedure enter( name, type, offset ) creates a symbol-table entry for name, gives its 

type type and relative address offset in its data area. 


 Attribute type represents a type expression constructed from the basic types integer and 

real by applying the type constructors pointer and array. If type expressions are 

represented by graphs, then attribute type might be a pointer to the node representing a 

type expression. 


 The width of an array is obtained by multiplying the width of each element by the 

number of elements in the array. The width of each pointer is assumed to be 4. 

 
 
 

Computing the types and relative addresses of declared names 
 

P  D { offset : = 0 } 
 

D  D ; D 
 

D  id : T { enter(id.name, T.type, offset);  
offset : = offset + T.width } 

 
T  integer { T.type : = integer;  

T.width : = 4 } 
 

T  real { T.type : = real;  
T.width : = 8 } 

 
T  array [ num ] of T1 { T.type : = array(num.val, T1.type);  

T.width : = num.val X T1.width } 
 

T  ↑ T1 { T.type : = pointer ( T1.type);  
T.width : = 4 } 
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3.3.2 Keeping Track of Scope Information: 
 

When a nested procedure is seen, processing of declarations in the enclosing procedure is 

temporarily suspended. This approach will be illustrated by adding semantic rules to the 

following language: 
 

P  D 
 

D  D ; D | id : T | proc id ; D ; S 
 
One possible implementation of a symbol table is a linked list of entries for names. 
 

A new symbol table is created when a procedure declaration D  proc id D1;S is seen, 

and entries for the declarations in D1 are created in the new table. The new table points back to 

the symbol table of the enclosing procedure; the name represented by id itself is local to the 

enclosing procedure. The only change from the treatment of variable declarations is that the 

procedure enter is told which symbol table to make an entry in. 
 

For example, consider the symbol tables for procedures readarray, exchange, and 

quicksort pointing back to that for the containing procedure sort, consisting of the entire 

program. Since partition is declared within quicksort, its table points to that of quicksort. 
 

        sort       
 

                
 

     nil header        
 

       a         
 

       x         
 

     readarray   to readarray  
 

     exchange   to exchange  
 

     quicksort         
 

  readarray exchange    quicksort  
 

 
 header 

   
header 

   
header 

 
 

        
 

  i           k   
 

             v   
 

            partition   
 

                
 

             partition  
 

             header  
 

             i   
 

             j   
 

                 

 
Figure 3.7: Symbol tables for nested procedures 
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The semantic rules are defined in terms of the following operations: 
 
1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The 

argument previous points to a previously created symbol table, presumably that for the 

enclosing procedure.  

 
2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed 

to by table. Again, enter places type type and relative address offset in fields within the entry.  

 
3. addwidth(table, width) records the cumulative width of all the entries in table in the header 

associated with this symbol table.  

 
4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table 

pointed to by table. The argument newtable points to the symbol table for this procedure 

name.  
 

Syntax directed translation scheme for nested procedures 
 
P  M D { addwidth ( top( tblptr) , top (offset));  

pop (tblptr); pop (offset) } 
 
M  ɛ { t : = mktable (nil);  

push (t,tblptr); push (0,offset) } 
 
D  D1 ; D2 
 
D  proc id ; N D1 ; S     { t : = top (tblptr);  

addwidth ( t, top (offset));  
pop (tblptr); pop (offset);  
enterproc (top (tblptr), id.name, t) } 

 
D  id : T { enter (top (tblptr), id.name, T.type, top (offset));  

top (offset) := top (offset) + T.width } 
 
N  ɛ { t := mktable (top (tblptr));  

push (t, tblptr); push (0,offset) } 
 
 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and 

partition when the declarations in partition are considered. 


 The top element of stack offset is the next available relative address for a local of 

the current procedure. 


 All semantic actions in the subtrees for B and C in 
 

A  BC {actionA} 
 

are done before actionA at the end of the production occurs. Hence, the action associated 

with the marker M is the first to be done. 
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 The action for nonterminal M initializes stack tblptr with a symbol table for the 

outermost scope, created by operation mktable(nil). The action also pushes relative 

address 0 onto stack offset. 


 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new 

symbol table. The argument top(tblptr) gives the enclosing scope for the new table. 


 For each variable declaration id: T, an entry is created for id in the current symbol table. 

The top of stack offset is incremented by T.width. 


 When the action on the right side of D  proc id; ND1; S occurs, the width of all 

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth. 

Stacks tblptr and offset are then popped. 


At this point, the name of the enclosed procedure is entered into the symbol table of 

its enclosing procedure. 

 
3.4  ASSIGNMENT STATEMENTS 
 
Suppose that the context in which an assignment appears is given by the following grammar. 
 

P  M D 
 

M  ɛ 
 

D  D ; D | id : T | proc id ; N D ; S 
 

N  ɛ 
 
Nonterminal P becomes the new start symbol when these productions are added to those in the 

translation scheme shown below. 
 

Translation scheme to produce three-address code for assignments 
 

S  id : = E   { p : = lookup ( id.name);  
if p ≠nil then  
emit( p „ : =‟ E.place)  
else error } 

 
E  E1 + E2    { E.place : = newtemp;  

emit( E.place „: =‟ E1.place „ + „ E2.place ) } 
 

E  E1 * E2    { E.place : = newtemp;  
emit( E.place „: =‟ E1.place „ * „ E2.place ) } 

 
E  - E1       { E.place : = newtemp;  

emit ( E.place „: =‟ „uminus‟ E1.place ) } 
 

E  ( E1 )    { E.place : = E1.place } 
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            E  id     { p : = lookup ( id.name); 
 

if p ≠nil then  
E.place : = 

p else error } 
 
Reusing Temporary Names 
 
 The temporaries used to hold intermediate values in expression calculations tend to 

clutter up the symbol table, and space has to be allocated to hold their values. 


 Temporaries can be reused by changing newtemp. The code generated by the rules for E 

E1+ E2has the general form:
 

evaluate E1 into t1 

evaluate E2 into t2 

t : = t1 + t2 
 
 The lifetimes of these temporaries are nested like matching pairs of balanced parentheses. 



 Keep a count c , initialized to zero. Whenever a temporary name is used as an operand, 

decrement c by 1. Whenever a new temporary name is generated, use $c and increase c 

by 1. 


 For example, consider the assignment x := a * b + c * d – e * f 
 

Table 3.3:Three-address code with stack temporaries 
 

    

 statement value of c 
    

  0  

$0 := a * b 1  

$1 := c * d 2  

$0 := $0 + $1 1  

$1 := e * f 2  

$0 := $0 - $1 1  

x := $0 0  
    

 

 

Addressing Array Elements: 
 

Elements of an array can be accessed quickly if the elements are stored in a block of 

consecutive locations. If the width of each array element is w, then the ith element of array A 

begins in location 
 

base + ( i – low ) x w 
 
where low is the lower bound on the subscript and base is the relative address of the storage 

allocated for the array. That is, base is the relative address of A[low]. 
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The expression can be partially evaluated at compile time if it is rewritten as 
 

i x w + ( base – low x w) 
 
The subexpression c = base – low x w can be evaluated when the declaration of the array is seen. 

We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is 

obtained by simply adding i x w to c. 
 
Address calculation of multi-dimensional arrays: 
A two-dimensional array is stored in of the two forms : 
 
 Row-major (row-by-row) 



 Column-major (column-by-column) 

 

    Layouts for a 2 x 3 array    
 

          
 

    A[ 1,1 ]  A [ 1,1 ] 
first column 

 

        

first row 
 

A[ 1,2 ] 
 

A [ 2,1 ] 
 

     
 

        

      

A [ 1,2 ] 

    

    A[ 1,3 ]   

second column 
 

       

 

 

    A[ 2,1 ]  A [ 2,2 ]  

        
 

second row 

        

 A[ 2,2 ]  A [ 1,3 ]    
 

       

 

third column 
 

    A[ 2,3 ]  A [ 2,3 ]  

        
 

           

       
 

   (a) ROW-MAJOR (b) COLUMN-MAJOR 
 

 
Figure 3.8:Address calculation of multi-dimensional arrays 

 

In the case of row-major form, the relative address of A[ i1 ,i2] can be calculated by the formula 
 

base + ((i1 – low1) x n2 + i2 – low2) x w 
 
where, low1 and low2 are the lower bounds on the values of i1 and i2 and n2 is the number of 

values that i2 can take. That is, if high2 is the upper bound on the value of i2, then n2 = high2 – 

low2 + 1. 
 
Assuming that i1 and i2 are the only values that are known at compile time, we can rewrite the 

above expression as 
 

(( i1 x n2 ) + i2 ) x w + ( base – (( low1 x n2 ) + low2 ) x w) 
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Generalized formula: 
 
The expression generalizes to the following expression for the relative address of A[i1,i2,…,ik] 
 
(( . . . (( i1n2 + i2 ) n3 + i3) . . . ) nk + ik ) x w + base – (( . . .((low1n2 + low2)n3 + low3) . . 

.) nk + lowk) x w 
 
for all j, nj = highj – lowj +1 

 

The Translation Scheme for Addressing Array Elements : 
Semantic actions will be added to the grammar : 
 

(1) S  L : = E   
(2) E  E + E   
(3) E  ( E )   
(4) E  L   
(5) L  Elist ]   
(6) L  id   
(7) Elist  Elist , E   
(8) Elist  id [ E  

We generate a normal assignment if L is a simple name, and an indexed assignment into the 

location denoted by L otherwise : 

 

(1) S  L : = E { if L.offset = null then / * L is a simple id */ 

  emit ( L.place ‘: =’ E.place ); 

  else 

  emit ( L.place ‘ [„ L.offset ‘ ]’ ‘: =’E.place) } 

(2) E  E1 + E2 { E.place : = newtemp; 

  emit ( E.place ‘: =’ E1.place ‘ +’ E2.place )} 

(3) E  ( E1 ) { E.place : = E1.place } 
 
When an array reference L is reduced to E , we want the r-value of L. Therefore we use indexing 

to obtain the contents of the location L.place [ L.offset ] : 
 

(4) E  L { if L.offset = null then /* L is a simple id* / 

   E.place : = L.place 

  else begin 

   E.place : = newtemp; 

   emit ( E.place ‘: =’ L.place ‘ [„ L.offset „]‟) 

  end } 

(5) L  Elist ] { L.place : = newtemp; 

   L.offset : = newtemp; 

   emit (L.place ‘: =’ c( Elist.array )); 

   emit (L.offset ‘: =’ Elist.place ‘*’ width (Elist.array)) } 
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(6) L  id { L.place := id.place; 

   L.offset := null } 

(7) Elist  Elist1 , E { t := newtemp; 

   m : = Elist1.ndim + 1; 

emit ( t ‘: =’ Elist 1.place ‘*’ limit 

(Elist1.array,m)); emit ( t ‘: =’ t ‘+’ E.place);  
Elist.array : = Elist1.array; 

Elist.place : = t;  
Elist.ndim : = m } 

 
(8) Elist  id [ E   { Elist.array : = id.place; 
 

Elist.place : = E.place;  
Elist.ndim : = 1 } 

 
Type conversion within Assignments : 

 

Consider the grammar for assignment statements as above, but suppose there are two 

types – real and integer , with integers converted to reals when necessary. We have another 

attribute E.type, whose value is either real or integer. The semantic rule for E.type associated 

with the production E  E + E is : 
 

E  E + E      { E.type : =  
if E1.type = integer and  

E2.type = integer then integer  
else real } 

 
The entire semantic rule for E  E + E and most of the other productions must be 

modified to generate, when necessary, three-address statements of the form x : = inttoreal y, 

whose effect is to convert integer y to areal of equal value, called x. 

Semantic action for E  E1 + E2 
 

E.place := newtemp;  
if E1.type = integer and E2.type = integer then 

begin emit( E.place ‘: =’ E1.place ‘int +’ 

E2.place); E.type : = integer  
end  
else if E1.type = real and E2.type = real then begin 

emit( E.place ‘: =’ E1.place „real +‟ 

E2.place); E.type : = real  
end  
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else if E1 .type = integer and E2.type = real then 

begin u : = newtemp;  
emit( u ‘: =’ „inttoreal‟ E1.place); emit( 

E.place ‘: =’ u „ real +‟ E2.place); 

E.type : = real  
end  
else if E1.type = real and E2.type =integer then 

begin u : = newtemp;  
emit( u ‘: =’ „inttoreal‟ E2.place); emit( 

E.place ‘: =’ E1.place ‘ real +’ u); 

E.type : = real  
end 

else  
E.type : = type_error; 

 
 
For example, for the input x : = y + i * j  
assuming x and y have type real, and i and j have type integer, the output would look like 
 

t1 : = i int* j t3 : 

= inttoreal t1 t2 : 

= y real+ t3 x : = 

t2 
 
3.5 BOOLEAN EXPRESSIONS 
 

Boolean expressions have two primary purposes. They are used to compute logical 

values, but more often they are used as conditional expressions in statements that alter the flow 

of control, such as if-then-else, or while-do statements. 
 

Boolean expressions are composed of the boolean operators ( and, or, and not ) applied 

to elements that are boolean variables or relational expressions. Relational expressions are of the 

form E1 relop E2, where E1 and E2 are arithmetic expressions. 
 
Here we consider boolean expressions generated by the following grammar : 
 

E  E or E | E and E | not E | ( E ) | id relop id | true | false 
 
Methods of Translating Boolean Expressions: 
 
There are two principal methods of representing the value of a boolean expression. They are : 
 
 To encode true and false numerically and to evaluate a boolean expression analogously 

to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false. 


 To implement boolean expressions by flow of control, that is, representing the value of a 

boolean expression by a position reached in a program. This method is particularly 

convenient in implementing the boolean expressions in flow-of-control statements, such 

as the if-then and while-do statements. 
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3.5 .1 Numerical Representation 
 

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from 

left to right, in a manner similar to arithmetic expressions. 

For example : 
 
The translation for  

a or b and not c is 

the three-address sequence  
t1 : = not c t2 

: = b and t1 t3 

: = a or t2 
 
A relational expression such as a < b is equivalent to the conditional 

statementif a < b then 1 else 0 

which can be translated into the three-address code sequence (again, we arbitrarily 

start statement numbers at 100) : 
 

100 :  if a < b goto 103  
101 :  t : = 0  
102 :  goto 104  
103 :  t : = 1  
104 : 

 

 

Translation scheme using a numerical representation for booleans 
 

E  E1 or E2 { E.place : = newtemp; 
 

E  E1 and E2 

emit( E.place ‘: =’ E1.place ‘or’E2.place )} 
 

{ E.place : = newtemp; 
 

E  not E1 

emit( E.place ‘: =’ E1.place ‘and’E2.place )} 
 

{ E.place : = newtemp; 
 

 emit( E.place ‘: =’ ‘not’ E1.place )} 
 

E  ( E1 ) { E.place : = E1.place } 
 

E  id1 relop id2 { E.place : = newtemp; 
 

 emit( ‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3); 
 

 emit( E.place ‘: =’ ‘0’ ); 
 

 emit(„goto‟ nextstat +2); 
 

 emit( E.place ‘: =’ ‘1’) } 
 

E  true { E.place : = newtemp; 
 

E false 

emit( E.place ‘: =’ ‘1’) } 
 

{ E.place : = newtemp; 
 

 emit( E.place ‘: =’ ‘0’) } 
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Short-Circuit Code: 

 
We can also translate a boolean expression into three-address code without generating 

code for any of the boolean operators and without having the code necessarily evaluate the entire 

expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is 

possible to evaluate boolean expressions without generating code for the boolean operators and, 

or, and not if we represent the value of an expression by a position in the code sequence. 

 

Translation of a < b or c < d and e < f 

 

 

100 : if a < b goto 103 107 : t2 : = 1 

101 : t1 : = 0  108 : if e < f goto 111 

102 : goto 104  109 : t3 : = 0 

103 : t1 : = 1  110 : goto 112 

104 : if c < d goto 107 111 : t3 : = 1 

105 : t2 : = 0  112 : t4 : = t2 and t3 

106 : goto 108  113 : t5 : = t1 or t4 
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Flows-of-Control Statements 
We now consider the translation of boolean expressions into three-address code in the 

context of if-then, if-then-else, and while-do statements such as those generated by the following 

grammar: 

S  if E then S1  
| if E then S1 else S2 

| while E do S1 

In each of these productions, E is the Boolean expression to be translated. In the translation, we 

assume that a three-address statement can be symbolically labeled, and that the function 

newlabel returns a new symbolic label each time it is called. 

 E.true is the label to which control flows if E is true, and E.false is the label to which 

control flows if E is false. 

 The semantic rules for translating a flow-of-control statement S allow control to flow 

from the translation S.code to the three-address instruction immediately following 

S.code. 

 S.next is a label that is attached to the first three-address instruction to be executed after 

the code for S. 

Code for if-then , if-then-else, and while-do statements 
 
 
 
 
 

E.code to E.true E.true: 
 
E.true : E.false 

S1.code  
E.false: 

 
E.false :    . . . 
 

S.next: 

 
to E.true 

E.code  
to E.false 

 

S1.code 
 
 
goto S.next 
 

S2.code 
 
 
 

. . . 
 

(a) if-then  (b) if-then-else 
 

   
 

S.begin: E.code to E.true 
 

  to E.false  

E.true: S1.code 
 

 
 

 

goto S.begin 
 

E.false: . . . 
 

(c) while-do  
Figure3.9: code for if-then,if-then-else,while-do statements
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Table 3.4:Syntax-directed definition for flow-of-control statements 

  

PRODUCTION 

 

SEMANTIC RULES 

  

  
 

    
 

S  if E then S1  E.true : = newlabel;  
 

  E.false : = S.next;  
 

  S1.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code  
 

 

 

 

 

S  if E then S1 else S2  E.true : = newlabel;  
 

  E.false : = newlabel;  
 

   S1.next : = S.next;  
 

  S2.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code ||  
 

  gen(‘goto’ S.next) ||  
 

  gen( E.false ‘:’) || S2.code  
 

 

 

 

 

 

S  while E do S1  S.begin : = newlabel;  
 

  E.true : = newlabel;  
 

  E.false : = S.next;  
 

  S1.next : = S.begin;  
 

  S.code : = gen(S.begin ‘:’)|| E.code ||  
 

  gen(E.true ‘:’) || S1.code ||  
 

  gen(‘goto’ S.begin)  
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3.5.2 Control-Flow Translation of Boolean Expressions: 

 

Table 3.5:Syntax-directed definition to produce three-address code for booleans 

PRODUCTION SEMANTIC RULES 
  

E  E1 or E2 E1.true : = E.true; 

 E1.false : = newlabel; 

 E2.true : = E.true; 

 E2.false : = E.false; 

 E.code : = E1.code || gen(E1.false ‘:’) || E2.code 

E  E1 and E2 E.true : = newlabel; 

 E1.false : = E.false; 

 E2.true : = E.true; 

 E2.false : = E.false; 

 E.code : = E1.code || gen(E1.true ‘:’) || E2.code 

 

E  not E1 E1.true : = E.false; 

 E1.false : = E.true; 

 E.code : = E1.code 

E  ( E1 ) E1.true : = E.true; 
  
 

E1.false : = E.false; 
 

 
 

 E.code : = E1.code 
 

 

E  id1 relop id2 E.code : = gen(„if‟ id1.place relop.op id2.place 
 

 „goto‟ E.true) || gen(„goto‟ E.false) 
 

 

E  true E.code : = gen(„goto‟ E.true) 
 

E  false E.code : = gen(‘goto’ E.false) 
 

  
 

 
 
3.6 CASE STATEMENTS 
 
The “switch” or “case” statement is available in a variety of languages. The switch-statement 

syntax is as shown below :  
Switch-statement syntax 

switch expression 

begin  
case value : statement case 

value : statement  
. . .  

case value : statement 

default : statement  
end 
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There is a selector expression, which is to be evaluated, followed by n constant values that the 

expression might take, including a default “value” which always matches the expression if no other 

value does. The intended translation of a switch is code to: 
 

4. Evaluate the expression.   
5. Find which value in the list of cases is the same as the value of the expression.   
6. Execute the statement associated with the value found.  

 

Step (2) can be implemented in one of several ways : 

 By a sequence of conditional goto statements, if the number of cases is small. 


 By creating a table of pairs, with each pair consisting of a value and a label for the 

code of the corresponding statement. Compiler generates a loop to compare the value of the 

expression with each value in the table. If no match is found, the default (last) entry is sure to 

match. 

 If the number of cases s large, it is efficient to construct a hash table. 


 There is a common special case in which an efficient implementation of the n-way 

branch exists. If the values all lie in some small range, say imin to imax, and the number of 

different values is a reasonable fraction of imax - imin, then we can construct an array of labels, 

with the label of the statement for value j in the entry of the table with offset j - imin and the 

label for the default in entries not filled otherwise. To perform switch, 

evaluate the expression to obtain the value of j , check the value is within range and transfer to 

the table entry at offset j-imin . 
 
Syntax-Directed Translation of Case Statements: 
 

Consider the following switch statement: 
 

switch E begin 
 

case V1 : S1 case 

V2 : S2  
. . .  

case Vn-1 : Sn-1  
default :  Sn  

end 
 
This case statement is translated into intermediate code that has the following form : 

Translation of a case statement 
 

 code to evaluate E into t 
 

 goto test 
 

L1 : code for S1 
 

 goto next 
 

L2 : code for S2 
 

 goto next 
 

  . . . 
 

Ln-1 : code for Sn-1 
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 goto next 
 

Ln : code for Sn 
 

 goto next 
 

test : if t = V1 goto L1 
 

 if t = V2 goto L2 
 

  . . . 
 

 if t = Vn-1 goto Ln-1 
 

next : 

goto Ln 
 

  
 

 
To translate into above form : 

 When keyword switch is seen, two new labels test and next, and a new temporary t 

are generated. 


 As expression E is parsed, the code to evaluate E into t is generated. After processing 

E , the jump goto test is generated. 


 As each case keyword occurs, a new label Li is created and entered into the symbol 

table. A pointer to this symbol-table entry and the value Vi of case constant are placed on a 

stack (used only to store cases). 

 Each statement case Vi : Si is processed by emitting the newly created label Li, 

followed by the code for Si , followed by the jump goto next. 

 Then when the keyword end terminating the body of the switch is found, the code can 

be generated for the n-way branch. Reading the pointer-value pairs on the case stack from the 

bottom to the top, we can generate a sequence of three-address statements of the form 
 

case V1 L1 case 

V2 L2  
. . .  

case Vn-1 Ln-1  
case t Ln label 

next 
 

where t is the name holding the value of the selector expression E, and Ln is the label for the 

default statement. 
 
3.7 BACKPATCHING 
 

The easiest way to implement the syntax-directed definitions for boolean expressions is to use 

two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first order, 

computing the translations. The main problem with generating code for boolean expressions and flow-

of-control statements in a single pass is that during one single pass we may not know the labels that 

control must go to at the time the jump statements are generated. Hence, a series of branching 

statements with the targets of the jumps left unspecified is generated. Each statement will be put on a 

list of goto statements whose labels will be filled in when the proper label can be determined. We call 

this subsequent filling in of labels backpatching. 
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To manipulate lists of labels, we use three functions : 

5. makelist(i) creates a new list containing only i, an index into the array of quadruples; makelist 

returns a pointer to the list it has made.   
6. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the 

concatenated list.   
7. backpatch(p,i) inserts i as the target label for each of the statements on the list pointed to by p.  

 
Boolean Expressions: 

We now construct a translation scheme suitable for producing quadruples for boolean 

expressions during bottom-up parsing. The grammar we use is the following: 

5. E  E1 or M E2   
6. | E1 and M E2   
7. | not E1   
8. | ( E1)   
9. | id1 relop id2   
10. | true   
11. | false   
12. M  ɛ  

 

Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code for 

boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by  
E.truelist and E.falselist. 
 
 

 

 

 

Consider production E  E1 and M E 2. If E1 is false, then E is also false, so the statements on 

E1.falselist become part of E.falselist. If E1 is true, then we must next test E2, so the target for the 

statements E1.truelist must be the beginning of the code generated for E2. This target is obtained 

using marker nonterminal M. 
 
Attribute M.quad records the number of the first statement of E2.code. With the production M  ɛ 

we associate the semantic action 
 

{ M.quad : = nextquad } 
 
The variable nextquad holds the index of the next quadruple to follow. This value will be backpatched 

onto the E1.truelist when we have seen the remainder of the production E  E1 and ME2. The 

translation scheme is as follows: 
 

(1) E  E1 or M E2 { backpatch ( E1.falselist, M.quad); 

  E.truelist : = merge( E1.truelist, E2.truelist); 

  E.falselist : = E2.falselist } 

(2) E  E1 and M E2 { backpatch ( E1.truelist, M.quad); 
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  E.truelist : = E2.truelist; 

  E.falselist : = merge(E1.falselist, E2.falselist)} 

(3) E  not E1 { E.truelist : = E1.falselist; 

  E.falselist : = E1.truelist; } 

(4) E  ( E1 ) { E.truelist : = E1.truelist; 

  E.falselist : = E1.falselist; } 

(5) E  id1 relop id2 { E.truelist : = makelist (nextquad); 

  E.falselist : = makelist(nextquad + 1); 

  emit(„if‟ id1.place relop.op id2.place „goto_‟) 

  emit(„goto_‟) } 

(6) E  true { E.truelist : = makelist(nextquad); 

  emit(„goto_‟) } 

(7) E  false { E.falselist : = makelist(nextquad); 

  emit(„goto_‟) } 

(8) M  ɛ { M.quad : = nextquad }  
 
 
 
 
 
 
 
 
 
 
 
 
 
Flow-of-Control Statements: 
 
A translation scheme is developed for statements generated by the following grammar : 
 
5. S  if E then S   
6. | if E then S else S   
7. | while E do S   
8. | begin L end   
9. | A   
10. L  L ; S   
11. | S  

 

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean expression. 

We make the tacit assumption that the code that follows a given statement in execution also follows it 

physically in the quadruple array. Else, an explicit jump must be provided. 
 
Scheme to implement the Translation: 
 

The nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of 
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unfilled quadruples that must eventually be completed by backpatching. These lists are pointed to by 

the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and 

unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist is 

defined similarly. 

The semantic rules for the revised grammar are as follows: 
 
F S  if E then M1 S1 N else M2 S2   

{ backpatch (E.truelist, M1.quad);   
backpatch (E.falselist, M2.quad);  
S.nextlist : = merge (S1.nextlist, merge (N.nextlist, S2.nextlist)) } 

We backpatch the jumps when E is true to the quadruple M1.quad, which is the beginning of the code 

for S1. Similarly, we backpatch jumps when E is false to go to the beginning of the code for S2. The 

list S.nextlist includes all jumps out of S1 and S2, as well as the jump generated by N. 
 

(2) N  ɛ { N.nextlist : = makelist( nextquad ); 

  emit(„goto _‟) } 

(3) M  ɛ { M.quad : = nextquad } 

(4) S  if E then MS1 { backpatch( E.truelist, M.quad); 

  S.nextlist : = merge( E.falselist, S1.nextlist) } 

(5) S  while M1 E do M2 S1 { backpatch( S1.nextlist, M1.quad); 

  backpatch( E.truelist, M2.quad); 

  S.nextlist : = E.falselist 

  emit( „goto‟ M1.quad ) } 

(6) S  begin L end { S.nextlist : = L.nextlist }           

 

    (7)  S  A { S.nextlist : = nil } 
 
The assignment S.nextlist : = nil initializes S.nextlist to an empty list. 
 

(8) L  L1 ; M S { backpatch( L1.nextlist, M.quad); 

  L.nextlist : = S.nextlist } 
 
The statement following L1 in order of execution is the beginning of S. Thus the L1.nextlist list is 

backpatched to the beginning of the code for S, which is given by M.quad. 
 

(9)  L  S { L.nextlist : = S.nextlist } 

 

3.8 PROCEDURE CALLS 
 

The procedure is such an important and frequently used programming construct that it is 

imperative for a compiler to generate good code for procedure calls and returns. The run-time routines 

that handle procedure argument passing, calls and returns are part of the run-time support package. 
 
Let us consider a grammar for a simple procedure call statement 
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 S  call id ( Elist )   
 Elist  Elist , E   
 Elist  E  

Calling Sequences: 
 

The translation for a call includes a calling sequence, a sequence of actions taken on entry to and 

exit from each procedure. The falling are the actions that take place in a calling sequence : 
 
 When a procedure call occurs, space must be allocated for the activation record of the 

called procedure. 


 The arguments of the called procedure must be evaluated and made available to the 

called procedure in a known place. 


 Environment pointers must be established to enable the called procedure to access data 

in enclosing blocks. 


 The state of the calling procedure must be saved so it can resume execution after the 

call. 


 Also saved in a known place is the return address, the location to which the called 

routine must transfer after it is finished. 


 Finally a jump to the beginning of the code for the called procedure must be 

generated. For example, consider the following syntax-directed translation 



 S  call id ( Elist )   
{ for each item p on queue do   

emit (‘ param’ p ); 

emit (‘call’ id.place) }  
3. Elist  Elist , E  

 
{ append E.place to the end of queue }  

 
4. Elist  E   

{ initialize queue to contain only E.place }  

 

 Here, the code for S is the code for Elist, which evaluates the arguments, followed by a param 

p statement for each argument, followed by a call statement. 



 queue is emptied and then gets a single pointer to the symbol table location for the name that 

denotes the value of E. 
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CHAPTER IV - CODE GENERATION 
 

The final phase in compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. The 

code generation techniques presented below can be used whether or not an optimizing phase 

occurs before code generation. 
 

  Position of code generator   
 

source 

 

intermediate 

 

intermediate 

 

target 
 

front end code code 
 

program   optimizer  generator program 
 

        

 
 

 
symbol 

table 

 
Figure 4.1:Code Generator 

 

4.1 ISSUES IN THE DESIGN OF A CODE GENERATOR 
The following issues arise during the code generation phase : 
 

7. Input to code generator  

8. Target program  

9. Memory management  

10. Instruction selection  

11. Register allocation  

12. Evaluation order  

 

9) Input to code generator:   
The input to the code generation consists of the intermediate representation of the source 

program produced by front end , together with information in the symbol table to determine run-

time addresses of the data objects denoted by the names in the intermediate representation. 

Intermediate representation can be : 

 Linear representation such as postfix notation  

 Three address representation such as quadruples  

 Virtual machine representation such as stack machine code  

 Graphical representations such as syntax trees and dags.  

 

Prior to code generation, the front end must be scanned, parsed and translated into intermediate 

representation along with necessary type checking. Therefore, input to code generation is 

assumed to be error-free. 

10) Target program:   

The output of the code generator is the target program. The output may be : 
 Absolute machine language   

 It can be placed in a fixed memory location and can be executed immediately.  
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10. Relocatable machine language   
 It allows subprograms to be compiled separately.  

 
11. Assembly language   

- Code generation is made easier.  
 
3. Memory management:   

Names in the source program are mapped to addresses of data objects in run-time memory by 

the front end and code generator. It makes use of symbol table, that is, a name in a three-address 

statement refers to a symbol-table entry for the name. Labels in three-address statements have to 

be converted to addresses of instructions. For example, 

j : goto i generates jump instruction as follows : 

 if i < j, a backward jump instruction with target address equal to location of 

code for quadruple i is generated. 

 if i > j, the jump is forward. We must store on a list for quadruple i the 

location of the first machine instruction generated for quadruple j. When i is 

processed, the machine locations for all instructions that forward jumps to i 

are filled. 


4. Instruction selection:   
The instructions of target machine should be complete and uniform. Instruction speeds and 

machine idioms are important factors when efficiency of target program is considered. The 

quality of the generated code is determined by its speed and size. The former statement can be 

translated into the latter statement as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2:Instruction selection 

 

 

5. Register allocation   
Instructions involving register operands are shorter and faster than those involving operands 

in memory. The use of registers is subdivided into two subproblems : 

 Register allocation – the set of variables that will reside in registers at a point in 

the program is selected

 Register assignment – the specific register that a variable will reside in is 

picked. 
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Certain machine requires even-odd register pairs for some operands and results. For 
example , consider the division instruction of the form : 

D  x, y 
 

where, x – dividend even register in even/odd register pair 

y – divisor  
even register holds the remainder 

odd register holds the quotient 
 
6. Evaluation order   

The order in which the computations are performed can affect the efficiency of the target 

code. Some computation orders require fewer registers to hold intermediate results than others. 
 
4.2 TARGET MACHINE 


Familiarity with the target machine and its instruction set is a prerequisite for designing a 

good code generator. The target computer is a byte-addressable machine with 4 bytes to a 

word.It has n general-purpose registers, R0, R1, . . . , Rn-1. 
It has two-address instructions of the form:  

op source, destination  
where, op is an op-code, and source and destination aredata fields. 

 
     It has the following op-codes : 

MOV (move source to destination) 

ADD (add source to destination)  
SUB (subtract source from destination) 

 
The source and destination of an instruction are specified by combining registers and 

memory locations with address modes. 
 

Table 4.1:Address modes with their assembly-language forms 

 

MODE FORM ADDRESS ADDED COST 
    

Absolute M M 1 
    

Register R R 0 
    

Indexed c(R) c+contents(R) 1 
    

indirect register *R contents (R) 0 
    

indirect indexed *c(R) contents(c+ 1 

  contents(R))  
    

Literal #c c 1 
    

 



93 

 

 For example : MOV R0, M stores contents of Register R0 into memory location M ; 

MOV 4(R0), M stores the value contents(4+contents(R0)) into M. 
 
Instruction costs : 
 

Instruction cost = 1+cost for source and destination address modes. This cost corresponds to 

the length of the instruction. Address modes involving registers have cost zero. Address modes 

involving memory location or literal have cost one. Instruction length should be minimized if 

space is important. Doing so also minimizes the time taken to fetch and perform the instruction. 

For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one, since it 

occupies only one word of memory. 

The three-address statement a : = b + c can be implemented by many different 

instruction sequences : 

i) MOV b, R0  

ADD c, R0 cost = 6 

MOV R0, a  

ii) MOV b, a  

ADD c, a cost = 6 
 

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :  
MOV *R1, *R0  

ADD *R2, *R0 cost = 2 
 
In order to generate good code for target machine, we must utilize its addressing 

capabilities efficiently. 
 
4.3 RUN-TIME STORAGE MANAGEMENT 
 

Information needed during an execution of a procedure is kept in a block of storage called an 

activation record, which includes storage for names local to the procedure. The two standard 

storage allocation strategies are: 

 Static allocation  

 Stack allocation   
In static allocation, the position of an activation record in memory is fixed at compile time. 

In stack allocation, a new activation record is pushed onto the stack for each execution of a 

procedure. The record is popped when the activation ends. 
The following three-address statements are associated with the run-time allocation and 

deallocation of activation records: 

 Call,  

 Return,  

 Halt, and  

 Action, a placeholder for other statements.   
We assume that the run-time memory is divided into areas for: 
 Code  

 Static data  

 Stack  
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4.3.1 Static allocation 
 
Implementation of call statement: 
 

The codes needed to implement static allocation are as follows: 
 
MOV #here +20, callee.static_area     /*It saves return address*/ 
 
GOTO callee.code_area   /*It transfers control to the target code for the called procedure */ 
 
where,  
callee.static_area – Address of the activation record callee.code_area 

– Address of the first instruction for called procedure  
#here +20 – Literal return address which is the address of the instruction following GOTO. 
 
Implementation of return statement: 
 
A return from procedure callee is implemented by : 

 

GOTO *callee.static_area 
 
This transfers control to the address saved at the beginning of the activation record. 
 
Implementation of action statement: 
 
The instruction ACTION is used to implement action statement. 
 
Implementation of halt statement: 
 
The statement HALT is the final instruction that returns control to the operating system. 
 
4.3.2 Stack allocation 
 

Static allocation can become stack allocation by using relative addresses for storage in 

activation records. In stack allocation, the position of activation record is stored in register so 

words in activation records can be accessed as offsets from the value in this register. 
 
The codes needed to implement stack allocation are as follows: 

Initialization of stack: 
 
MOV #stackstart , SP      /* initializes stack */ 
 
Code for the first procedure 
 
HALT /* terminate execution */ 

Implementation of Call statement: 
 
ADD #caller.recordsize, SP   /* increment stack pointer */ 
 
MOV #here +16, *SP     /*Save return address */ 
 
GOTO callee.code_area 
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where,  
caller.recordsize – size of the activation record  
#here +16 – address of the instruction following the GOTO 
 
Implementation of Return statement: 
 
GOTO *0 (SP )   /*return to the caller */ 
 
SUB #caller.recordsize, SP  /* decrement SP and restore to previous value */ 
 
 

 

4.4 BASIC BLOCKS AND FLOW GRAPHS 
 
4.4.1 Basic Blocks 
 

A basic block is a sequence of consecutive statements in which flow of control enters at the 

beginning and leaves at the end without any halt or possibility of branching except at the end. 
The following sequence of three-address statements forms a basic block: t1:=a*a

t2 : = a * b 

t3 : = 2 * t2 

t4 : = t1 + t3 

t5 : = b * b 

t6 : = t4 + t5 
 
 

Basic Block Construction: 
 

 

Algorithm: Partition into basic blocks 
 

Input: A sequence of three-address statements 
 

Output: A list of basic blocks with each three-address statement in exactly one block 
 

Method: 
 

(9) We first determine the set of leaders, the first statements of basic blocks. The rules 
we use are of the following:  

 The first statement is a leader.  
 Any statement that is the target of a conditional or unconditional goto is a 

leader.  
 Any statement that immediately follows a goto or conditional goto statement 

is a leader.  
(10) For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program.  
 
 
 

Figure 4.3:Basic block construction 
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Consider the following source code for dot product of two vectors a and b of length 20 
 

 
begin 

 
prod :=0; 

i:=1; do 

begin 

 
prod :=prod+ a[i]* b[i]; 

i :=i+1; 

 
end 

 
while i <= 20 

 
end 

 
 

Figure 4.4:Source code for dot product 

 

The three-address code for the above source program is given as : 

(1) prod := 0  

(2) i := 1  

(3) t1 := 4* i  

(4) t2 := a[t1] /*compute a[i] */ 

(5) t3 := 4*i  

(6) t4 := b[t3] /*compute b[i] */ 

(7) t5 := t2*t4  

(8) t6 := prod+t5  

(9) prod := t6  

(10) t7 := i+1  

(11) i := t7  

(12) if i<=20 goto (3)  

    
 

Figure 4.5:Three address code for above fig4.4 

Basic block 1: Statement (1) to (2) 
 
Basic block 2: Statement (3) to (12) 
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4.4.2 Transformations on Basic Blocks: 
 

A number of transformations can be applied to a basic block without changing the set of 

expressions computed by the block. Two important classes of transformation are : 
 

1. Structure-preserving transformations 


2. Algebraic transformations 

Structure preserving transformations:  
 

a. Common subexpression elimination:  
 
a : = b + c 

b : = a – d 

c : = b + c 

d : = a – d 

 
a : = b + c 

b : = a - d 

c : = b + c 

d : = b

Since the second and fourth expressions compute the same expression, the basic block can 

be transformed as above. 
 

b) Dead-code elimination: 
 

Suppose x is dead, that is, never subsequently used, at the point where the statement x : 

= y + z appears in a basic block. Then this statement may be safely removed without 

changing the value of the basic block. 
 

c) Renaming temporary variables: 
 

A statement t : = b + c ( t is a temporary ) can be changed to u : = b + c (u is a new 

temporary) and all uses of this instance of t can be changed to u without changing the value 

of the basic block.  
Such a block is called a normal-form block. 

 
d) Interchange of statements: 

 
Suppose a block has the following two adjacent statements: 

 
t1 : = b + c  
t2 : = x + y 

We can interchange the two statements without affecting the value of the block if 

and only if neither x nor y is t1 and neither b nor c is t2. 

8. Algebraic transformations:  

Algebraic transformations can be used to change the set of expressions computed by a 

basic block into an algebraically equivalent set.   
Examples:   
i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set of 

expressions it computes.  
ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y. 
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4.4.2 Flow Graphs 
 

Flow graph is a directed graph containing the flow-of-control information for the set of basic 

blocks making up a program. The nodes of the flow graph are basic blocks. It has a distinguished 

initial node. E.g.: Flow graph for the vector dot product is given as follows: 
 
 

prod : = 0 B1 

i : = 1  
  

 
 
 

t1 : = 4 * i  
t2 : = a [ t1 ] 

t3 : = 4 * i B2  
t4 : = b [ t3 ]  
t5 : = t2 * t4  
t6 : = prod + 

t5 prod : = t6 

t7 : = i + 1  
i : = t7  
if i <= 20 goto B2 

 
 
 
 
 

Figure 4.6:Flow graph for vector dot product 

 

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The target of 

jump from last statement of B1 is the first statement B2, so there is an edge from B1 (last 

statement) to B2 (first statement). B1 is the predecessor of B2, and B2 is a successor of B1. 
 

 

4.4.4 Loops 
 
A loop is a collection of nodes in a flow graph such that 

All nodes in the collection are strongly connected.   
The collection of nodes has a unique entry.   

A loop that contains no other loops is called an inner loop. 
 
4.5 NEXT-USE INFORMATION 
 

If the name in a register is no longer needed, then we remove the name from the register 

and the register can be used to store some other names. 
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Input: Basic block B of three-address statements 
 

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x, 

y and z. 
 

Method: We start at the last statement of B and scan backwards. 
 

1. Attach to statement i the information currently found in the symbol table 
regarding the next-use and liveliness of x, y and z.  

2. In the symbol table, set x to “not live” and “no next use”.   
3. In the symbol table, set y and z to “live”,and next-uses of y and z to i.  

 
Figure 4.7:Next-Use Information 

 

 

Table 4.2: Symbol Table:      
 

       
 

 

Names Liveliness Next-use 
  

    
 

       
 

 x  not live  no next-use  
 

       
 

 y  Live  i  
 

       
 

 z  Live  i  
 

       
 

 

 

4.6 A SIMPLE CODE GENERATOR 
 

A code generator generates target code for a sequence of three- address statements and 

effectively uses registers to store operands of the statements. For example: consider the three-

address statement a := b+c It can have the following sequence of codes: 
 

ADD Rj, Ri Cost = 1  // if Ri contains b and Rj contains c 

 (or)  

ADD c, Ri Cost = 2 // if c is in a memory location 

 (or)  

MOV c, Rj Cost = 3 // move c from memory to Rj and add 

ADD Rj, Ri   
 
Register and Address Descriptors: 
 

A register descriptor is used to keep track of what is currently in each registers. The register 

descriptors show that initially all the registers are empty. An address descriptor stores the 

location where the current value of the name can be found at run time. 
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A code-generation algorithm: 

 

The algorithm takes as input a sequence of three -address statements constituting a basic block. 

For each three-address statement of the form x : = y op z, perform the following actions: 
 
 Invoke a function getreg to determine the location L where the result of the computation y op 

z should be stored.  
 
 Consult the address descriptor for y to determine y‟, the current location of y. Prefer the 

register for y‟ if the value of y is currently both in memory and a register. If the value of y 

is not already in L, generate the instruction MOV y‟ , L to place a copy of y in L.  
 
 Generate the instruction OP z‟ , L where z‟ is a current location of z. Prefer a register to 

a memory location if z is in both. Update the address descriptor of x to indicate that x is 

in location L. If x is in L, update its descriptor and remove x from all other descriptors.  
 
 If the current values of y or z have no next uses, are not live on exit from the block, and are 

in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those 

registers will no longer contain y or z.  
 
Generating Code for Assignment Statements: 

 

 The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:  

t : = a – b 

u : = a – c 

v : = t + u 

d : = v + u 

with d live at the end. 
 
Table 4.3: Code sequence for the example: 

 

Statements Code Generated Register descriptor Address descriptor 
 

    
 

  Register empty  
 

    
 

t : = a - b MOV a, R0 R0 contains t t in R0 
 

 SUB b, R0    
 

     
 

u : = a - c MOV a , R1 R0 contains t t in R0 
 

 SUB c , R1 R1 contains u u in R1 
 

     
 

v : =t + u ADD R1, R0 R0 contains v u in R1 
 

  R1 contains u v in R0 
 

     
 

d : = v + u ADD R1, R0 R0 contains d d in R0 
 

 
MOV R0, d 

  d in R0 and memory 
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Generating Code for Indexed Assignments 
 
The table shows the code sequences generated for the indexed assignment 

statements a : = b [ i ] and a [ i ] : = b 

Table 4.4: Indexed assignment 
 

Statements Code Generated Cost 
   

a : = b[i] MOV b(Ri), R 2 
   

a[i] : = b MOV b, a(Ri) 3 
   

 

 

Generating Code for Pointer Assignments 
 
The table shows the code sequences generated for the pointer assignments 

a : = *p and *p : = a 

Table 4.5:Pointer assignment 
 

 Statements Code Generated   Cost 
 

      
 

 a : = *p MOV *Rp, a   2 
 

      
 

 *p : = a MOV a, *Rp   2 
 

       
 

 Table 4.6:Generating Code for Conditional Statements    
 

       
 

 

Statement 
 

Code 
    

     
 

       
 

 if x < y goto z  CMP x, y    
 

   CJ< z /* jump to z if condition code 
 

      is negative */ 
 

       
 

x : = y +z if x 

<0 goto z 

MOV y, R0  
ADD z, R0 

MOV R0,x 

CJ< z 
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4.7 THE DAG REPRESENTATION FOR BASIC BLOCKS 
 
A DAG for a basic block is a directed acyclic graph with the following labels on nodes: 

 Leaves are labeled by unique identifiers, either variable names or constants.  

 Interior nodes are labeled by an operator symbol.  

 Nodes are also optionally given a sequence of identifiers for labels to store 

the computed values.  

 

DAGs are useful data structures for implementing transformations on basic blocks. 

 It gives a picture of how the value computed by a statement is used in subsequent 

statements. 

 It provides a good way of determining common sub - expressions. 
 
 
Algorithm for construction of DAG 

 

Input: A basic block 
 

Output: A DAG for the basic block containing the following information: 
 

1. A label for each node. For leaves, the label is an identifier. For interior nodes, 
an operator symbol.  

2. For each node a list of attached identifiers to hold the computed values.  
Case (i)x := y OP z 

 
Case (ii)x := OP y 

 
Case (iii)x := y 

 
Method: 

 
Step 1: If y is undefined then create node(y). 

 
If z is undefined, create node(z) for case(i). 

 
Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is 

 
node(z). (Checkingfor common sub expression). Let n be this node. 

 
For case(ii), determine whether there is node(OP) with one child node(y). If not create 

such a node. 
 

For case(iii), node n will be node(y). 
 

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached 
 

identifiers for the noden found in step 2 and set node(x) to n. 
 
 
 

Figure 4.8:Algorithm for construction of DAG 
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Example: Consider the block of three- address statements: 

 
 

4. t1 := 4* i   
5. t2 := a[t1]   
6. t3 := 4* i   
7. t4 := b[t3]   
8. t5 := t2*t4   
9. t6 := prod+t5   
10. prod := t6   
11. t7 := i+1   
12. i := t7   
13. if i<=20 goto (1)  

                                                                                                                                                              

 

 

Stages in DAG Construction 
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Application of DAGs: 
 

5. We can automatically detect common sub expressions.  

6. We can determine which identifiers have their values used in the block.  
7. We can determine which statements compute values that could be used outside the block.  
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GENERATING CODE FROM DAGs 
 

The advantage of generating code for a basic block from its dag representation is that, 

from a dag we can easily see how to rearrange the order of the final computation sequence than 

we can starting from a linear sequence of three-address statements or quadruples. 
 
Rearranging the order  
The order in which computations are done can affect the cost of resulting object code. 
 
For example, consider the following basic block:  

t1 : = a + b 

t2 : = c + d 

t3 : = e – t2 

t4 : = t1 – t3 
 
Generated code sequence for basic block: 
 
MOV a , R0  
ADD b , R0  
MOV c , R1  
ADD d , R1  
MOV R0 , t1  
MOV e , R0  
SUB R1 , R0  
MOV t1 , R1  
SUB R0 , R1  
MOV R1 , t4 
 
Rearranged basic block:  
Now t1 occurs immediately before t4. 
 

t2 : = c + d 

t3 : = e – t2 

t1 : = a + b 

t4 : = t1 – t3 
 
Revised code sequence: 
 
MOV c , R0 

ADD d , R0 

MOV a , R0 

SUB R0 , R1 

MOV a , R0 

ADD b , R0 

SUB R1 , R0 

MOV R0 , t4 
 
In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved. 
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A Heuristic ordering for Dags 
 
The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow 

the evaluation of its leftmost argument. 
 
The algorithm shown below produces the ordering in reverse. 
 
Algorithm: 
 
8. while unlisted interior nodes remain do begin   
9. select an unlisted node n, all of whose parents have been listed;   
10. list n;   
11. while the leftmost child m of n has no unlisted parents and is not a leaf do 

begin   
12. list m;   
13. n : = m   

end 

end 

 
 
Example: Consider the DAG shown below: 
 

1  * 

 
 

2  + -  3 
 

4 
* 

 

 

 5 -  + 8 

 6  + 7 c d  11 e  12 

a 9 b 10   
 
 

 

Figure 4.9:Example DAG 

 

 

 

 

 

 

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3). 
 
Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6). 
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Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we 

select anew n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left 

chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that. 
 
The resulting list is 1234568 and the order of evaluation is 8654321. 

 

Code sequence: 
 
t8 : = d + e t6 : 

= a + b t5 : = t6 

– c t4 : = t5 * t8 

t3 : = t4 – e t2 : 

= t6 + t4 t1 : = 

t2 * t3 
 
This will yield an optimal code for the DAG on machine whatever be the number of registers. 
 

 

CHAPTER V - CODE OPTIMIZATION 
 
5.1 INTRODUCTION 

 

The code produced by the straight forward compiling algorithms can often be made to run 

faster or take less space, or both. This improvement is achieved by program transformations that 

are traditionally called optimizations. Compilers that apply code-improving transformations are 

called optimizing compilers. 


Optimizations are classified into two categories. They are 


 Machine independent optimizations: 
 Machine dependant optimizations: 

 
Machine independent optimizations: 
 

Machine independent optimizations are program transformations that improve the target 

code without taking into consideration any properties of the target machine. 
 
Machine dependant optimizations: 
 

Machine dependant optimizations are based on register allocation and utilization of 

special machine-instruction sequences. 
 
The criteria for code improvement transformations: 

 

 Simply stated, the best program transformations are those that yield the most benefit for the 

least effort. 


 The transformation must preserve the meaning of programs. That is, the optimization must 

not change the output produced by a program for a given input, or cause an error such as 

division by zero, that was not present in the original source program. At all times we take the 

“safe” approach of missing an opportunity to apply a transformation rather than risk 

changing what the program does. 
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 A transformation must, on the average, speed up programs by a measurable amount. We are 

also interested in reducing the size of the compiled code although the size of the code has 

less importance than it once had. Not every transformation succeeds in improving every 

program, occasionally an “optimization” may slow down a program slightly. 


 The transformation must be worth the effort. It does not make sense for a compiler writer to 

expend the intellectual effort to implement a code improving transformation and to have the 

compiler expend the additional time compiling source programs if this effort is not repaid 

when the target programs are executed. “Peephole” transformations of this kind are simple 

enough and beneficial enough to be included in any compiler. 
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Organization for an Optimizing Compiler: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1:Organization for an Optimizing Compiler 
 

Flow analysis is a fundamental prerequisite for many important types of code improvement. 

Generally control flow analysis precedes data flow analysis.Control flow analysis (CFA) 

represents flow of control usually in form of graphs, CFA constructs such as 
1. control flow graph 

2. Call graph 
Data flow analysis (DFA) is the process of ascerting and collecting information prior to program 

execution about the possible modification, preservation, and use of certain entities (such as 

values or attributes of variables) in a computer program. 
 

 

5.2 PRINCIPAL SOURCES OF OPTIMISATION 

 

A transformation of a program is called local if it can be performed by looking only at the 

statements in a basic block; otherwise, it is called global. Many transformations can be 

perormed at both the local and global levels. Local transformations are usually performed first. 
 
5.2.1 Function-Preserving Transformations 

 

There are a number of ways in which a compiler can improve a program without 

changing the function it computes. The transformations 


 Common sub expression elimination, 

 Copy propagation, 

 Dead-code elimination, and 

 Constant folding 

are common examples of such function-preserving transformations. The other transformations 

come up primarily when global optimizations are performed. 
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Frequently, a program will include several calculations of the same value, such as an offset 

in an array. Some of the duplicate calculations cannot be avoided by the programmer because 

they lie below the level of detail accessible within the source language. 

1.Common Sub expressions elimination: 



An occurrence of an expression E is called a common sub-expression if E was previously 

computed, and the values of variables in E have not changed since the previous computation. 

We can avoid recomputing the expression if we can use the previously computed value. 
For example 

t1: =4*i 

t2: =a [t1] 

t3: =4*j 

t4:=4*i 

t5: =n 

t6: =b [t4] +t5 

 

The above code can be optimized using the common sub-expression elimination as 

t1: =4*i 

t2: =a [t1] 

t3: =4*j 

t5: =n 

t6: =b [t1] +t5 

 

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. And value 

of i is not been changed from definition to use. 
 
2.Copy Propagation: 



Assignments of the form f : = g called copy statements, or copies for short. The idea behind 

the copy-propagation transformation is to use g for f, whenever possible after the copy statement 

f: = g. Copy propagation means use of one variable instead of another. This may not appear to be 

an improvement, but as we shall see it gives us an opportunity to eliminate x. 
For example 

 x=Pi; 

..… 

A=x*r*r; 

The optimization using copy propagation can be done as follows: 

A=Pi*r*r; 

Here the variable x is eliminated 

 

3.Dead-Code Eliminations: 

 
A variable is live at a point in a program if its value can be used subsequently; otherwise, it 

is dead at that point. A related idea is dead or useless code, statements that compute the 
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values that never get used. While the programmer is unlikely to introduce any dead code 

intentionally, it may appear as the result of previous transformations. An optimization can be 

done byeliminating dead code. 

Example: 

 
i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 

Here, „if‟statement is dead code because this condition will never get satisfied. 

 
4.Constant folding: 



We can eliminate both the test and printing from the object code. More generally, deducing 

at compile time that the value of an expression is a constant and using the constant instead is 

known as constant folding. One advantage of copy propagation is that it often turns the copy 

statement into dead code. For example,

a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 

 

5.2.2 Loop Optimizations: 



We now give a brief introduction to a very important place for optimizations, namely loops, 

especially the inner loops where programs tend to spend the bulk of their time. The running time 

of a program may be improved if we decrease the number of instructions in an inner loop, even if 

we increase the amount of code outside that loop. Three techniques are important for loop 

optimization: 
 

 code motion, which moves code outside a loop; 

 Induction-variable elimination, which we apply to replace variables from inner loop. 

 Reduction in strength, which replaces and expensive operation by a cheaper one, such as 

a multiplication by an addition. 


1.Code Motion: 

 

An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the number of 

times a loop is executed ( a loop-invariant computation) and places the expression before the 

loop. Note that the notion “before the loop” assumes the existence of an entry for the loop. For 

example, evaluation of limit-2 is a loop-invariant computation in the following while-statement: 


while (i <= limit-2) /* statement does not change limit*/ 

Code motion will result in the equivalent of 
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t= limit-2; 

while (i<=t)  /* statement does not change limit or t */ 

 

2.Induction Variables : 

Loops are usually processed inside out. For example consider the loop around B3. Note that 

the values of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4 

decreases by 4 because 4*j is assigned to t4. Such identifiers are called induction variables. When 

there are two or more induction variables in a loop, it may be possible to get rid of all but one, by 

the process of induction-variable elimination. For the inner loop around B3 in Fig. we cannot get 

rid of either j or t4 completely; t4 is used in B3 and j in B4. 

However, we can illustrate reduction in strength and illustrate a part of the process of 

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2 - B5 is 

considered. Example:As the relationship t4:=4*j surely holds after such an assignment to t4 in 

Fig. and t4 is not changed elsewhere in the inner loop around B3, it follows that just after the 

statement j:=j -1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 

4:= 4*j by t4:= t4-4. The only problem is that t 4 does not have a value when we enter block B3 

for the first time. Since we must maintain the relationship t4=4*j on entry to the block B3, we 

place an initializations of t4 at the end of the block where j itself is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

before after 

 

Figure 5.2:Induction variable example 
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initialized, shown by the dashed addition to block B1 in second Fig.The replacement of a 

multiplication by a subtraction will speed up the object code if multiplication takes more time 

than addition or subtraction, as is the case on many machines. 

3.Reduction In Strength: 



Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 

machine. Certain machine instructions are considerably cheaper than others and can often be 

used as special cases of more expensive operators. For example, x² is invariably cheaper to 

implement as x*x than as a call to an exponentiation routine. Fixed-point multiplication or 

division by a power of two is cheaper to implement as a shift. Floating-point division by a 

constant can be implemented as multiplication by a constant, which may be cheaper. 
 
5.2.3 OPTIMIZATION OF BASIC BLOCKS 

 

There are two types of basic block optimizations. They are : 

 
 Structure-Preserving Transformations 

 Algebraic Transformations 

 

Structure-Preserving Transformations: 

 

The primary Structure-Preserving Transformation on basic blocks are: 

 
 Common sub-expressionelimination 

 Dead code elimination 

 Renaming of temporary variables 

 Interchange of two independent adjacent statements. 



1.Common sub-expression elimination: 

 

Common sub expressions need not be computed over and over again. Instead they can be 

computed once and kept in store from where it‟s referenced when encountered again – of course 

providing the variable values in the expression still remain constant. 
 
Example: 

 
 =b+c  

 =a-d  

 =b+c  

 =a-d  
 

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d 
 
Basic block can be transformed to 

 =b+c  

 =a-d  

 =a  

 =b  
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2.Dead code elimination: 

 
It‟s possible that a large amount of dead (useless) code may exist in the program. This 

might be especially caused when introducing variables and procedures as part of construction or 

error -correction of a program – once declared and defined, one forgets to remove them in case 

they serve no purpose. Eliminating these will definitely optimize the code. 
 
3.Renaming of temporary variables: 



A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is another 

temporary name, and change all uses of t to u. In this we can transform a basic block to its 

equivalent block called normal-form block. 


4.Interchange of two independent adjacent statements: 



Two statements 
 

t1:=b+c 

 
t2:=x+y 

 

can be interchanged or reordered in its computation in the basic block when value of t1 

does not affect the value of t2. 
 
Algebraic Transformations: 

 

Algebraic identities represent another important class of optimizations on basic blocks. This 

includes simplifying expressions or replacing expensive operation by cheaper ones i.e. reduction 

in strength. Another class of related optimizations is constant folding. Here we evaluate constant 

expressions at compile time and replace the constant expressions by their values. Thus the 

expression 2*3.14 would be replaced by 6.28. 
The relational operators <=, >=, <, >, + and = sometimes generate unexpected common sub 

expressions. Associative laws may also be applied to expose common sub expressions. For 

example, if the source code has the assignments 
 

a :=b+c e 

:=c+d+b 
 
the following intermediate code may be generated: 

a :=b+c 

t :=c+d  
 :=t+b  

 

Example: 

x:=x+0 can be removed 

 
x:=y**2 can be replaced by a cheaper statement x:=y*y
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The compiler writer should examine the language carefully to determine what rearrangements of 

computations are permitted, since computer arithmetic does not always obey the algebraic 

identities of mathematics. Thus, a compiler may evaluate x*y-x*z as x*(y-z) but it may not 

evaluate a+(b-c) as (a+b)-c. 
 
5.3 LOOPS IN FLOW GRAPH 

 
A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. 
 
Dominators: 

In a flow graph, a node d dominates node n, if every path from initial node of the flow 

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 

Similarlyeverynode dominates itself. 
 
Example: 

*In the flow graph below, 

*Initial node,node1 dominates every 

node. *node 2 dominates itself 
*node 3 dominates all but 1 and 2. 

*node 4 dominates all but 1,2 and 3.  
*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin 

through the other. 
*node 7 dominates 7,8 ,9 and 10. 

*node 8 dominates 8,9 and 10.  
*node 9 and 10 dominates only themselves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3:Flow graph 
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The way of presenting dominator information is in a tree, called the dominator tree in which 

the initial node is the root. The parent of each other node is its immediate dominator. Each node 

d dominates only its descendents in the tree. The existence of dominator tree follows from a 

property of dominators; each node has a unique immediate dominator in that is the last 

dominator of n on any path from the initial node to n. In terms of the dom relation, the immediate 

dominator m has the property is d=!n and d dom n, then d dom m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4:Dominator Tree 
 

 

D(1)={1} 

 

D(2)={1,2} 

 
D(3)={1,3} 

 
D(4)={1,3,4} 

 

D(5)={1,3,4,5} 

 
D(6)={1,3,4,6} 

 

D(7)={1,3,4,7} 

 
D(8)={1,3,4,7,8} 

 
D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 
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Natural Loop: 

 

One application of dominator information is in determining the loops of a flow graph 

suitable for improvement. The properties of loops are 


A loop must have a single entry point, called the header. This entry point-dominates all 

nodes in the loop, or it would not be the sole entry to the loop. 

There must be at least one wayto iterate the loop(i.e.)at least one path back to the header. 



One way to find all the loops in a flow graph is to search for edges in the flow graph whose 

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of edges 

are called as back edges. 

Example: 

 
In the above graph, 

 

7 → 4 4 DOM 7 

10 →7 7 DOM 10 

4 → 3  

8 → 3  
 

9 →1  

The above edges will form loop in flow graph. Given a back edge n → d, we define the natural 

loop of the edge to be d plus the set of nodes that can reach n without going through d. Node d is 

the header of the loop. 
 
Algorithm: Constructing the natural loop of a back edge. 

 

Input: A flow graph G and a back edge n→d. 

 
Output: The set loop consisting of all nodes in the natural loop n→d. 

 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make 

sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is placed once 

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we 

never examine its predecessors, and thus find only those nodes that reach n without going 

through d. 

Procedure insert(m); 

if m is not in loop then 

begin loop := loop U 

{m}; push m onto stack  
end; 

 
stack : =empty; 
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loop : 

={d}; 

insert(n);  
while stack is not empty do begin  

pop m, the first element of stack, off stack; 

for each predecessor p of m do insert(p)  
end Inner 

loop: 

 
If we use the natural loops as “the loops”, then we have the useful property that unless two 

loops have the same header, they are either disjointed or one is entirely contained in the other. 

Thus, neglecting loops with the same header for the moment, we have a natural notion of inner 

loop: one that contains no other loop. 
When two natural loops have the same header, but neither is nested within the other, they are 

combined and treated as a single loop. 
 
Pre-Headers: 

 

Several transformations require us to move statements “before the header”. Therefore begin 

treatment of a loop L by creating a new block, called the preheater. The pre-header has only the 

header as successor, and all edges which formerly entered the header of Lfrom outside L instead 

enter the pre-header. Edges from inside loop L to the header are not changed. Initially the pre-

header is empty, but transformations on L may place statements in it. 

 
 

 

header pre-header  

 
 

 
loop L 

 

header 
 

loop L 
 

(a) Before (b) After 

Figure 5.5:Pre-Header 

 

Reducible flow graphs: 
 

Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, dominators 

can be easily calculated, data flow analysis problems can also be solved efficiently. Exclusive 

use of structured flow-of-control statements such as if-then-else, while-do, continue, and break 

statements produces programs whose flow graphs are always reducible.The most important 

properties of reducible flow graphs are that there are no jumps into the middle of loops from 

outside; the only entry to a loop is through its header.  
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Definition: 
 

A flow graph G is reducible if and only if we can partition the edges into two disjoint groups, 

forward edges and back edges, with the following properties. 
 
 The forward edges from an acyclic graph in which every node can be reached from initial 

node of G. 


 The back edges consist only of edges where heads dominate theirs tails. 


 Example: The above flow graph is reducible. 
 
If we know the relation DOM for a flow graph, we can find and remove all the back edges. The 

remaining edges are forward edges. If the forward edges form an acyclic graph, then we can say 

the flow graph reducible. In the above example remove the five back edges 4→3, 7→4, 8→3, 

9→1 and 10→7 whose heads dominate their tails, the remaining graph is acyclic. The key 

property of reducible flow graphs for loop analysis is that in such flow graphs every set of nodes 

that we would informally regard as a loop must contain a back edge. 

 

5.4 PEEPHOLE OPTIMIZATION 

 

A statement-by-statement code-generations strategy often produce target code that contains 

redundant instructions and suboptimal constructs .The quality of such target code can be 

improved by applying “optimizing” transformations to the target program. A simple but 

effective technique for improving the target code is peephole optimization, a method for trying 

to improving the performance of the target program by examining a short sequence of target 

instructions (called the peephole) and replacing these instructions by a shorter or faster 

sequence, whenever possible. The peephole is a small, moving window on the target program. 

The code in the peephole need not contiguous, although some implementations do require this.it 

is characteristic of peephole optimization that each improvement may spawn opportunities for 

additional improvements. 
We shall give the following examples of program transformations that are characteristic of 

peephole optimizations: 


 Redundant-instructions elimination 

 Flow-of-control optimizations 

 Algebraic simplifications 

 Use of machine idioms 

 Unreachable Code 
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Redundant Loads And Stores: 

 
If we see the instructions sequence 

 

(1) MOV R0,a  

 
(2) MOV a,R0  

 
we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of 

a is already in register R0.If (2) had a label we could not be sure that (1) was always executed 

immediately before (2) and so we could not remove (2). 

Unreachable Code: 

 

Another opportunity for peephole optimizations is the removal of unreachable 

instructions. An unlabeled instruction immediately following an unconditional jump may be 

removed. This operation can be repeated to eliminate a sequence of instructions. For example, 

for debugging purposes, a large program may have within it certain segments that are executed 

only if a variable debug is 1. In C, the source code might look like: 
 

#define debug 

0 …. 

If ( debug ) { 

 
Print debugging information 

 

} 

 

 In the intermediate representations the if-statement may be translated as: If 

debug =1 goto L2 

 
goto L2 

 

L1: print debugging information 

 
L2: …………………………(a) 

 

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what the 

value of debug; (a) can be replaced by: 
 

If debug ≠1 goto L2 

Print debugging information 

 
L2: ……………………………(b) 
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As the argument of the statement of (b) evaluates to a constant true it can be replaced by  
 

 

If debug ≠0 goto L2 

 
Print debugging information 

 

L2: ……………………………(c) 

 

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by 

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can be 

eliminated one at a time. 
 
Flows-Of-Control Optimizations: 

 

The unnecessary jumps can be eliminated in either the intermediate code or the target 

code by the following types of peephole optimizations. We can replace the jump sequence 
 

goto L1 

 
…. 

 

L1: gotoL2 

 
by the sequence 

goto L2 

…. 

L1: goto L2 

 

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto L2 

provided it is preceded by an unconditional jump .Similarly, the sequence 
 

if a < b goto L1 

 
…. 

 
L1: goto L2 

 

can be replaced by 

 
Ifa < b goto L2 

 
…. 

 
L1: goto L2 

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. Then 

the sequence 

goto L1 

 
…….. 
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L1: if a <b goto L2 

 
L3: …………………………………..(1) 

 

Maybe replaced by 
 

Ifa<b goto L2 

 
goto L3 

 
……. 

 

L3: ………………………………….(2) 

 

While the number of instructions in (1) and (2) is the same, we sometimes skip the 

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time 
 
Algebraic Simplification: 

 

There is no end to the amount of algebraic simplification that can be attempted through 

peephole optimization. Only a few algebraic identities occur frequently enough that it is worth 

considering implementing them .For example, statements such as 


(d) := x+0  

 
Or 

 

x := x * 1 

 

Are often produced by straightforward intermediate code-generation algorithms, and they can be 

eliminated easily through peephole optimization. 

 

Reduction in Strength: 
 

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 

machine. Certain machine instructions are considerably cheaper than others and can often be 

used as special cases of more expensive operators. 
For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation 

routine. Fixed-point multiplication or division by a power of two is cheaper to implement as a 

shift. Floating-point division by a constant can be implemented as multiplication by a constant, 

which may be cheaper. 
 

X
2
 → X*X 
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Useof Machine Idioms: 
The target machine may have hardware instructions to implement certain specific operations 

efficiently. For example, some machines have auto-increment and auto-decrement addressing 

modes. These add or subtract one from an operand before or after using its value. The use of 

these modes greatly improves the quality of code when pushing or popping a stack, as in 

parameter passing. These modes can also be used in code for statements like i : =i+1.  

i:=i+1 → i++ 

 
i:=i-1 → i-- 

 
5.5 INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS 

 

In order to do code optimization and a good job of code generation , compiler needs to 

collect information about the program as a whole and to distribute this information to each 

block in the flow graph. A compiler could take advantage of “reaching definitions” , such as 

knowing where a variable like debug was last defined before reaching a given block, in order 

to perform transformations are just a few examples of data-flow information that an 

optimizing compiler collects by a process known as data-flow analysis. 

Data-flow information can be collected by setting up and solving systems of equations 

of the form : 
 

out [S] = gen [S] U ( in [S] – kill [S] ) 
 
This equation can be read as “ the information at the end of a statement is either generated 

within the statement , or enters at the beginning and is not killed as control flows through the 

statement.” 

The details of how data-flow equations are set and solved depend on three factors. 
 
 The notions of generating and killing depend on the desired information, i.e., on the data 

flow analysis problem to be solved. Moreover, for some problems, instead of 

proceeding along with flow of control and defining out[s] in terms of in[s], we need to 

proceed backwards and define in[s] in terms of out[s]. 


 Since data flows along control paths, data-flow analysis is affected by the constructs in 

a program. In fact, when we write out[s] we implicitly assume that there is unique end 

point where control leaves the statement; in general, equations are set up at the level of 

basic blocks rather than statements, because blocks do have unique end points. 


 There are subtleties that go along with such statements as procedure calls, 

assignments through pointer variables, and even assignments to array variables. 

 
Points and Paths: 

 

Within a basic block, we talk of the point between two adjacent statements, as well as 

the point before the first statement and after the last. Thus, block B1 has four points: one before 

any of the assignments and one after each of the three assignments. 
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B1 

 

d1 : i :=m-

1 d2: j :=n 

d3: a := u1  
B2 

 
d4 : I := i+1 

 
B3  

d5: j := j-1 
 
 

B4 
 
 
 

B5         B6  
d6 :a :=u2 

 
 

Figure 5.6:Points and paths 

 

Now let us take a global view and consider all the points in all the blocks. A path from p1 to pn 

is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either 
 
 Pi is the point immediately preceding a statement and pi+1 is the point 

immediately following that statement in the same block, or 


 Pi is the end of some block and pi+1 is the beginning of a successor block. 

 

Reaching definitions: 

 

A definition of variable x is a statement that assigns, or may assign, a value to x. The most 

common forms of definition are assignments to x and statements that read a value from an i/o 

device and store it in x. These statements certainly define a value for x, and they are referred 

to as unambiguous definitions of x. There are certain kinds of statements that may define a 

value for x; they are called ambiguous definitions. The most usual forms of ambiguous 

definitions of x are: 
 
 A call of a procedure with x as a parameter or a procedure that can access x because x 

is in the scope of the procedure. 


 An assignment through a pointer that could refer to x. For example, the assignment *q: = 

y is a definition of x if it is possible that q points to x. we must assume that an 

assignment through a pointer is a definition of every variable. 
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We say a definition d reaches a point p if there is a path from the point immediately following 

d to p, such that d is not “killed” along that path. Thus a point can be reached by an 

unambiguous definition and an ambiguous definition of the same variable appearing later 

along one path. 

 
Data-flow analysis of structured programs: 

 

Flow graphs for control flow constructs such as do-while statements have a useful 

property: there is a single beginning point at which control enters and a single end point that 

control leaves from when execution of the statement is over. We exploit this property when we 

talk of the definitions reaching the beginning and the end of statements with the following 

syntax. 


S   id: = E| S; S | if E then S else S | do S while 

E E  id + id| id 

Expressions in this language are similar to those in the intermediate code, but the flow 

graphs for statements have restricted forms. 

 
 
 
 
 
 
 

 
                   S1 

 
 
 
 
 
 
 
 
S1 

If E goto s1 
 
 
 
 
 
 

S2  
If E goto s1 

 

S1 S2  

 
 

 
 
 
 
 
 
 
 

 

S1 ; S2 

 

IF E then S1 else S2       do S1 while E 

 

Figure 5.7:Data flow analysis of structured programs 
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We define a portion of a flow graph called a region to be a set of nodes N that 

includes a header, which dominates all other nodes in the region. All edges between nodes in 

N are in the region, except for some that enter the header. The portion of flow graph 

corresponding to a statement S is a region that obeys the further restriction that control can 

flow to just one outside block when it leaves the region.
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we say that the beginning points of the dummy blocks at the entry and exit of a statement‟s 

region are the beginning and end points, respectively, of the statement. The equations are 

inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S] for all 

statements S. 
gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions 

that never reach the end of S. 
Consider the following data-flow equations for reaching definitions : 
 
i ) 
 
 

 

S d : a : = b + c 
 

 
 

  
 

 
 
 
 

 

gen [S] = { d } 

kill [S] = Da – { d } 

out [S] = gen [S] U ( in[S] – kill[S] ) 

 

Observe the rules for a single assignment of variable a. Surely that assignment is a definition 

of a, say d. Thus 


Gen[S]={d} 

On the other hand, d “kills” all other definitions of a, so we write 

Kill[S] = Da – {d} 

 
Where, Da is the set of all definitions in the program for variable a. 

 
ii ) 
 
 

 

S S1 
 
 
 

S2 
 
 
 

gen[S]=gen[S2] U (gen[S1]-kill[S2])  

Kill[S] = kill[S2] U (kill[S1] – gen[S2] 

in [S1] = in [S] 

in [S2] = out [S1] 

out [S] = out [S2] 
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Under what circumstances is definition d generated by S=S1; S2? First of all, if it is generated by 

S2, then it is surely generated by S. if d is generated by S1, it will reach the end of S provided it 

is not killed by S2. Thus, we write 
 

gen[S]=gen[S2] U (gen[S1]-kill[S2]) 

 

Similar reasoning applies to the killing of a definition, so we have 

         Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 

 
Conservative estimation of data-flow information: 

 

There is a subtle miscalculation in the rules for gen and kill. We have made the 

assumption that the conditional expression E in the if and do statements are “uninterpreted”; 

that is, there exists inputs to the program that make their branches go either way. We 

assume that any graph-theoretic path in the flow graph is also an execution path, i.e., a path 

that is executed when the program is run with least one possible input. 


When we compare the computed gen with the “true” gen we discover that the true gen is 

always a subset of the computed gen. on the other hand, the true kill is always a superset of the 

computed kill. These containments hold even after we consider the other rules. It is natural to 

wonder whether these differences between the true and computed gen and kill sets present a 

serious obstacle to data-flow analysis. The answer lies in the use intended for these data. 


Overestimating the set of definitions reaching a point does not seem serious; it merely stops 

us from doing an optimization that we could legitimately do. On the other hand, 

underestimating the set of definitions is a fatal error; it could lead us into making a change in 

the program that changes what the program computes. For the case of reaching definitions, 

then, we call a set of definitions safe or conservative if the estimate is a superset of the true set 

of reaching definitions. We call the estimate unsafe, if it is not necessarily a superset of the 

truth. Returning now to the implications of safety on the estimation of gen and kill for reaching 

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in the 

safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a point, 

and cannot prevent a definition from reaching a place that it truly reached. Decreasing kill can 

only increase the set of definitions reaching any given point. 

 

Computation of in and out: 

 

any data-flow problems can be solved by synthesized translations similar to those used to 

compute gen and kill. It can be used, for example, to determine loop-invariant computations. 

However, there are other kinds of data-flow information, such as the reaching-definition 

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute depending 

on in. we intend that in[S] be the set of definitions reaching the beginning of S, taking into 

account the flow of control throughout the entire program, including statements outside of S or 

within which S is nested. 
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The set out[S] is defined similarly for the end of s. it is important to note the distinction 

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S without 

following paths outside S. Assuming we know in[S] we compute out by equation, that is 

 
Out[S] = gen[S] U (in[S] - kill[S]) 

 
Considering cascade of two statements S1; S2, as in the second case. We start by 

observingin[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], since a 

definition reaches the beginning of S2 if and only if it reaches the end of S1. Now we can 

compute out[S2], and this set is equal to out[S]. 

Considering if-statement we have conservatively assumed that control can follow either 

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the beginning of 

S. 


In[S1] = in[S2] = in[S] 

If a definition reaches the end of S if and only if it reaches the end of one or both sub 

statements; i.e, 
 

Out[S]=out[S1] U out[S2] 

Representation of sets: 

 

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit 

vectors. We assign a number to each definition of interest in the flow graph. Then bit vector 

representing a set of definitions will have 1 in position I if and only if the definition 

numbered I is in the set. The number of definition statement can be taken as the index of 

statement in an array holding pointers to statements. However, not all definitions may be of 

interest during global data-flow analysis. Therefore the number of definitions of interest 

will typically be recorded in a separate table. 


A bit vector representation for sets also allows set operations to be implemented efficiently. 

The union and intersection of two sets can be implemented by logical or and logical and, 

respectively, basic operations in most systems-oriented programminglanguages. The 

difference A-B of sets A and B can be implemented by taking the complement of B and then 

using logical and to compute A . 

Local reaching definitions: 

 

Space for data-flow information can be traded for time, by saving information only at certain 

points and, as needed, recomputing information at intervening points. Basic blocks are usually 

treated as a unit during global flow analysis, with attention restricted to only those points that 

are the beginnings of blocks. Since there are usually many more points than blocks, restricting 

our effort to blocks is a significant savings. When needed, the reaching definitions for all points 

in a block can be calculated from the reaching definitions for the beginning of a block. 
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Use-definition chains: 

 

It is often convenient to store the reaching definition information as” use-definition 

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions that 

reaches that use. If a use of variable a in block B is preceded by no unambiguous definition of a, 

then ud-chain for that use of a is the set of definitions in in[B] that are definitions ofa.in 

addition, if there are ambiguous definitions of a ,then all of these for which no unambiguous 

definition of a lies between it and the use of a are on the ud-chain for this use of a. 

 
Evaluation order: 

 

The techniques for conserving space during attribute evaluation, also apply to the 

computation of data-flow information using specifications. Specifically, the only constraint on 

the evaluation order for the gen, kill, in and out sets for statements is that imposed by 

dependencies between these sets. Having chosen an evaluation order, we are free to release the 

space for a set after all uses of it have occurred. Earlier circular dependencies between 

attributes were not allowed, but we have seen that data-flow equations may have circular 

dependencies.  



General control flow: 
 

Data-flow analysis must take all control paths into account. If the control paths are evident 

from the syntax, then data-flow equations can be set up and solved in a syntax-directed 

manner. When programs can contain goto statements or even the more disciplined break and 

continue statements, the approach we have taken must be modified to take the actual control 

paths into account. Several approaches may be taken. The iterative method works arbitrary flow 

graphs. Since the flow graphs obtained in the presence of break and continue statements are 

reducible, such constraints can be handled systematically using the interval-based methods. 

However, the syntax-directed approach need not be abandoned when break and continue 

statements are allowed. 
 
5.6 CODE IMPROVIG TRANSFORMATIONS 
 
Algorithms for performing the code improving transformations rely on data-flow 

information. Here we consider common sub-expression elimination, copy propagation and 

transformations for moving loop invariant computations out of loops and for eliminating 

induction variables. Global transformations are not substitute for local transformations; both 

must be performed. 

 

Elimination of global common sub expressions: 

 

The available expressions data-flow problem discussed in the last section allows us to 

determine if an expression at point p in a flow graph is a common sub-expression. The following 

algorithm formalizes the intuitive ideas presented for eliminating common sub-expressions. 
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ALGORITHM:Global common sub expression elimination. 
 

INPUT:A flow graph with available expression information. 
 

OUTPUT: A revised flow graph. 
 

METHOD: For every statement s of the form x := y+z
6

 such that y+z is available at 

the beginning of block and neither y nor r z is defined prior to statement s in that 

block, do the following. 
 

 To discover the evaluations of y+z that reach s‟s block, we follow 

flow graph edges, searching backward from s‟s block. However, we do not 

go through any block that evaluates y+z. Thelast evaluation of y+z in each 

block encountered is an evaluation of y+z that reaches s. 


 Create new variable u. 


 Replace each statement w: =y+z found in (1) by  
u : = y + 

z w : = u 
 

Replace statement s by x:=u. 


Some remarks about this algorithm are in order. 


 The search in step(1) of the algorithm for the evaluations of y+z that reach 

statement s can also be formulated as a data-flow analysis problem. However, it does 

not make sense to solve it for all expressions y+z and all statements or blocks because 

too much irrelevant information is gathered. 

 Not all changes made by algorithm are improvements. We might wish to limit 

the number of different evaluations reaching s found in step (1), probably to one. 


 Algorithm will miss the fact that a*z and c*z must have the same value in 
 

a :=x+y c :=x+y 
 

vs 
 

b :=a*z d :=c*z 
 
 Because this simple approach to common sub expressions considers only the 

literal expressions themselves, rather than the values computed by expressions. 
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Copy propagation: 

 

Various algorithms introduce copy statements such as x :=copies may also be generated 

directly by the intermediate code generator, although most of these involve temporaries local to 

one block and can be removed by the dag construction. We may substitute y for x in all these 

places, provided the following conditions are met every such use u of x. Statement s must be the 

only definition of x reaching u. On every path from s to including paths that go through u 

several times, there are no assignments to y. 


Condition (1) can be checked using ud-changing information. We shall set up a new data-

flow analysis problem in which in[B] is the set of copies s: x:=y such that every path from 

initial node to the beginning of B contains the statement s, and subsequent to the last occurrence 

of s, there are no assignments to y.

 

 ALGORITHM: Copy propagation. 


INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and  
with c_in[B] representing the solution to equations that is the set of copies x:=y 

that reach block B along every path, with no assignment to x or y following the last 

occurrence of x:=y on the path. We also need ud-chains giving the uses of each 

definition. 
 

OUTPUT: A revised flow graph. 
 

METHOD: For each copy s : x:=y do the following: 
 
 Determine those uses of x that are reached by this definition of namely, s: x: =y. 



 Determine whether for every use of x found in (1) , s is in c_in[B], where B is the 

block of this particular use, and moreover, no definitions of x or y occur prior to this 

use of x within B. Recall that if s is in c_in[B]then s is the only definition of x that 

reaches B. 

 If s meets the conditions of (2), then remove s and replace all uses of x found in (1) 

by y. 

 
Detection of loop-invariant computations: 

 

Ud-chains can be used to detect those computations in a loop that are loop-invariant, that is, 

whose value does not change as long as control stays within the loop. Loop is a region 

consisting of set of blocks with a header that dominates all the other blocks, so the only way to 

enter the loop is through the header. 



If an assignment x := y+z is at a position in the loop where all possible definitions of y and z are 

outside the loop, then y+z is loop-invariant because its value will be the same each time x:=y+z is 

encountered. Having recognized that value of x will not change, consider v := x+w, where w could 

only have been defined outside the loop, then x+w is also loop-invariant.  
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ALGORITHM: Detection of loop-invariant computations. 
 

INPUT: A loop L consisting of a set of basic blocks, each block containing sequence 

of three-address statements. We assume ud-chains are available for the individual 

statements. 
 

OUTPUT: the set of three-address statements that compute the same value each time 

executed, from the time control enters the loop L until control next leaves L. 
 

METHOD: we shall give a rather informal specification of the algorithm, trusting 

that the principles will be clear. 
 
 Mark “invariant” those statements whose operands are all either constant or have 

all their reaching definitions outside L. 


 Repeat step (3) until at some repetition no new statements are marked “invariant”. 


 Mark “invariant” all those statements not previously so marked all of whose 

operands either are constant, have all their reaching definitions outside L, or have 

exactly one reaching definition, and that definition is a statement in L marked 

invariant. 

Performing code motion: 

 

Having found the invariant statements within a loop, we can apply to some of them an 

optimization known as code motion, in which the statements are moved to pre-header of the 

loop. The following three conditions ensure that code motion does not change what the 

program computes. Consider s: x: =y+z. 
 
 The block containing s dominates all exit nodes of the loop, where an exit of a loop is a 

node with a successor not in the loop. 


 There is no other statement in the loop that assigns to x. Again, if x is a temporary assigned 

only once, this condition is surely satisfied and need not be changed.No use of x in the 

loop is reached by any definition of x other than s. This condition too will be satisfied, 

normally, if x is temporary. 

 
 ALGORITHM: Code motion. 



INPUT: A loop L with ud-chaining information and dominator information. 


OUTPUT: A revised version of the loop with a pre-header and some statements 

moved to the pre-header. 


 

 

METHOD: 


 Use loop-invariant computation algorithm to find loop-invariant statements. 
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 For each statement s defining x found in step(1), check: 


i) That it is in a block that dominates all exits of L,  
 

ii) That x is not defined elsewhere in L, and  
 

iii) That all uses in L of x can only be reached by the definition of x in statement 

s.  
 

 Move, in the order found by loop-invariant algorithm, each statement s found in 


(1) and meeting conditions (2i), (2ii), (2iii) , to a newly created pre-header, 

provided any operands of s that are defined in loop L have previously had their 

definition statements moved to the pre-header. 
 
To understand why no change to what the program computes can occur, condition (2i) and (2ii) 

of this algorithm assure that the value of x computed at s must be the value of x after any exit 

block of L. When we move s to a pre-header, s will still be the definition of x that reaches the 

end of any exit block of L. Condition (2iii) assures that any uses of x within L did, and will 

continue to, use the value of x computed by s. 

Alternative code motion strategies: 

 

The condition (1) can be relaxed if we are willing to take the risk that we may actually 

increase the running time of the program a bit; of course, we never change what the program 

computes. The relaxed version of code motion condition (1) is that we may move a statement 

s assigning x only if: 


1‟. The block containing s either dominates all exists of the loop, or x is not used outside 

the loop. For example, if x is a temporary variable, we can be sure that the value will 

be used only in its own block. 


If code motion algorithm is modified to use condition (1‟), occasionally the running time will 

increase, but we can expect to do reasonably well on the average. The modified algorithm may 

move to pre-header certain computations that may not be executed in the loop. Not only does 

this risk slowing down the program significantly, it may also cause an error in certain 

circumstances. 

 

Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by an 

assignment x: =y+z, we can still take the computation y+z outside a loop. Create a new 

temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the loop. In 

many cases we can propagate out the copy statement x: = t.  
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Maintaining data-flow information after code motion: 
The transformations of code motion algorithm do not change ud-chaining information, since 

by condition (2i), (2ii), and (2iii), all uses of the variable assigned by a moved statement s that 

were reached by s are still reached by s from its new position. Definitions of variables used by s 

are either outside L, in which case they reach the pre-header, or they are inside L, in which 

case by step (3) they were moved to pre-header ahead of s. If the ud-chains are represented by 

lists of pointers to pointers to statements, we can maintain ud-chains when we move statement s 

by simply changing the pointer to s when we move it. That is, we create for each statement s 

pointer ps, which always points to s. We put the pointer on each ud-chain containing s. Then, 

no matter where we move s, we have only to change ps , regardless of how many ud-chains s 

is on. 


The dominator information is changed slightly by code motion. The pre-header is now the 

immediate dominator of the header, and the immediate dominator of the pre-header is the node 

that formerly was the immediate dominator of the header. That is, the pre-header is inserted into 

the dominator tree as the parent of the header.  



Elimination of induction variable: 

A variable x is called an induction variable of a loop L if every time the variable x changes 

values, it is incremented or decremented by some constant. Often, an induction variable is 

incremented by the same constant each time around the loop, as in a loop headed by for i := 1 

to 10. However, our methods deal with variables that are incremented or decremented zero, 

one, two, or more times as we go around a loop. The number of changes to an induction 

variable may even differ at different iterations. 


A common situation is one in which an induction variable, say i, indexes an array, and 

some other induction variable, say t, whose value is a linear function of i, is the actual offset 

used to access the array. Often, the only use made of i is in the test for loop termination. We 

can then get rid of i by replacing its test by one on t. We shall look for basic induction 

variables, which are those variables i whose only assignments within loop L are of the form i 

:= i+c or i-c, where c is a constant. 


 
ALGORITHM: Elimination of induction variable 

 

INPUT: A loop L with reaching definition information, loop-invariant computation 

information and live variable information. 
 

OUTPUT: A revised loop. 
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METHOD: 
 
 Consider each basic induction variable i whose only uses are to compute other induction 

variables in its family and in conditional branches. Take some j in i‟s family, preferably one 

such that c and d in its triple are as simple as possible and modify each test that i appears in 

to use j instead. We assume in the following tat c is positive. A test of the form „if i relop x 

goto B‟, where x is not an induction variable, is replaced by 
 

r := c*x /* r := x if c is 1. */ 
 

r := r+d /* omit if d is 0 */ 
 

if j relop r goto B 
 
where, r is a new temporary. The case „if x relop i goto B‟is handled analogously. If there are 

two induction variables i1 and i2 in the test if i 1 relop i2 goto B, then we check if both i1 and i2 

can be replaced. The easy case is when we have j1 with triple and j2 with triple, and c1=c2 and 

d1=d2. Then, i1 relop i2 is equivalent to j1 relop j2. 
 

Now, consider each induction variable j for which a statement j: =s was introduced. First 

check that there can be no assignment to s between the introduced statement j :=s and any use of 

j. In the usual situation, j is used in the block in which it is defined, simplifying this check; 

otherwise, reaching definitions information, plus some graph analysis is needed to implement 

the check. Then replace all uses of j by uses of s and delete statement j: 
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ONLINE QUESTIONS 

 

UNIT-I 

 

 

Questions opt1 opt2 opt3 opt4 
opt
5 

opt
6 answer 

_______ 
translates 
assembly 
level 
language in 
to an 
equivalent 
machine level 
language Compiler 

Assemble
r Loader 

Preprocesso
r     Assembler 

_______ 
translates 
high level 
language in 
to an 
equivalent 
low level 
language Compiler 

Assemble
r Loader 

Preprocesso
r     Compiler 

File inclusion 
is performed 
by _______ Compiler 

Assemble
r Loader 

Preprocesso
r     

Preprocesso
r 

_______ 
performs type 
checking 

Lexical 
analysis  

Semantic 
analysis 

Linear 
analysis 

Syntax 
analysis     

Semantic 
analysis 

Grouping of 
characters is 
called 
_______ String Stream Token Record     Token 

 ______ 
groups 
tokens in to 
grammatical 
phrases Parser Scanner Analyzer Processor            Parser 

Example for 
Token  Syntax Character Symbol Keyword      Keyword  
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The Idem 
potent law in 
regular 
expression is  R *** = r * R ** = r *** R ** = r * R *** = r **     R ** = r * 

_______ 
breaks up the 
source 
program into 
pieces & 
creates 
intermediate 
code 
representatio
n Linear phase 

Analysis 
phase 

Syntax 
phase 

Synthesis 
phase      

Analysis 
phase 

_______ 
constructs the 
target 
program from 
intermediate 
code 
representatio
n Linear phase 

Analysis 
phase 

Syntax 
phase 

Synthesis 
phase      

Synthesis 
phase  

Grouping of 
tokens into 
syntactic 
structure is 
performed by Linear analysis Parser  Scanner 

Code 
optimization       Parser  

______ 
transforming 
parse tree in 
to 
intermediate 
language 
representatio
n  

Three address 
code 

Code 
generatio
n  

Intermediat
e code 
generation   

Post fix 
notation     

Intermediate 
code 
generation   

______ 
converts 
intermediate 
code in to low 
level 
language  

Intermediate 
code 
generation 

Code 
generatio
n Assembler Loader     

Code 
generation 
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_______ is 
the input of 
structure 
editors 

Sequence of 
commands 

Sequence 
of 
characters 

Sequence 
of tokens String      

Sequence of 
commands 

Pretty printers 
performs  Printing only 

Analyzing 
and 
printing 

Debugging 
and printing 

Debugging 
only     

Analyzing 
and printing 

Static 
checker work 
is _______ 

Debugging and 
printing 

Analyzing 
and 
printing 

Analyzing 
and 
debugging 

Debugging 
only     

Analyzing 
and 
debugging 

_______ 
translates 
high level 
language in 
to an 
equivalent 
low level 
Language Interpreter 

Assemble
r Loader 

Preprocesso
r     Interpreter 

_______ is 
the input of 
text 
formatters 

Sequence of 
commands 

Stream of 
characters 

Stream of 
tokens Lexeme      

Stream of 
characters 

Query 
interpreters 
translates a 
predicate 
contains____
_  

Boolean 
operators only 

Relational 
operators 
only  

Relational 
and 
Boolean 
operators 

Arithmetic, 
Relational 
and Boolean 
operators      

Relational 
and Boolean 
operators 

Loader 
performs 
_____ 

Loading 
program in to 
cache memory  

Loading 
program 
in to main 
memory 

Loading 
program in 
to 
secondary 
memory Inking      

Loading 
program in 
to main 
memory 

 _____ is the 
linking-editor 
job 

 Linking 
preprocessor 
directives 

 Linking 
library 
functions 

 Linking 
machine 
code 

 Linking 
object 
modules      

 Linking 
object 
modules  

Parser 
generators 
produce ____ Scanners 

Lexical 
analyzers 

Syntax 
analyzers  

Little 
languages      

Syntax 
analyzers  

____ uses 
Scanner 
generators  

Semantic 
Analyzers 

Lexical 
analyzers 

Syntax 
analyzers  

Little 
languages      

Lexical 
analyzers 
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Intermediate 
code 
generation 
using  
________ 
tool  

Syntax 
direction 
engine 

Syntax 
directed 
trlation 
engine 

Syntax 
trlation 
scheme 

Syntax 
directed 
scheme      

Syntax 
directed 
trlation 
engine 

Code 
Optimization 
phase using 
________ 
tool  

Data flow 
engine 

Automatic 
code 
generator  

Code 
generator 

Code 
optimizer      

Data flow 
engine 

Code 
Generation 
phase using 
________ 
tool  

Data flow 
engine 

Automatic 
code 
generator  

Code 
generator 

Code 
optimizer      

Automatic 
code 
generator  

Lexeme is a 
________ 

Sequence of 
characters 

Sequence 
of 
command
s 

Set of 
strings Pattern      

Sequence of 
characters 

Relational 
operators is a 
________ Lexeme Pattern Token Character      Token 

Deleting an 
extraneous 
character is a 
action of  
______ 
phase Lexical Syntax Semantic Synthesis      Lexical 

Trposing two 
adjacent 
characters is 
a action of  
______ 
phase Semantic Syntax Lexical Synthesis      Lexical 

_________ is 
an error 
recovery 
action in 
Lexical 
analysis 

Inserting a 
missing 
character 

Function 
call return 

Semicolon 
missing 

Misspelled 
keyword      

Inserting a 
missing 
character 

Sentinel is an 
_________ Foe Foef Feof Eof     Eof 
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____ is an 
one way of 
implementing 
lexical 
analyzer Using Lex 

Using 
Lexeme Using Yacc 

Using 
Operating 
System      Using Lex 

The pointer 
used in buffer 
pair scheme 
is  Backward Forward 

Lexeme-
End 

Lexeme-
Start      Forward 

_______ is 
an example 
of Computer 
Alphabets  ASC  EBDCIC  ASCI  EBCDIC       EBCDIC  

Finite 
sequence of 
symbols 
called 
_______ String Character Sequence Group      String 

Any set of 
strings over 
some fixed 
alphabet is a  
_____ Abstract  Alphabets Language Sequence      Language 

Set of letters 
and digits is 
represented 
by  LD LUD (LU* (L*      LUD 

Set of all four 
letter strings 
is 
represented 
in a language 
as  L4 LLLL L* (LLLL)*      L4 
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Set of strings 
including 
empty string 
is 
represented 
is a language 
as  L+ L* D+ D*      L* 

 _____ is an 
representatio
n of one or 
more digits  L+ L* D+ D*      D+ 

If X = class , 
Y = room  
then XY is  Class  Room 

Class 
Room Classroom      Classroom  

Prefix of 
Banana is  Ban  Ana Na Banana      Ban  

_____  is the 
subsequence 
of banana Can Baaa Nand Nanan      Baaa 

Suffix of 
Banana is  Ban  Baaa Nana Banana      Nana 

Substring of 
banana is  Nan  Baaa Aaa Bnn      Nan  

Definition of 
LUM is 

{ s| s is in L or s 
is in M } 

{ s| s is in 
L and s is 
in M } 

{ s| s is in L 
nor s is in 
M } 

{ s| s is in L 
nand s is in 
M }      

{ s| s is in L 
or s is in M } 

_____  is a 
notation for 
Regular 
Expression 

Letter(letterdigit
) + 

Digit 
(letterdigit
) + 

Digit (letter 
| digit) * 

Letter(letter | 
digit) *      

Letter(letter | 
digit) *  

Definition of 
LM is 

{ st | s is in L or  
s is in M } 

{ st | s is 
in L and t 
is in M } 

{ st | s is in 
L or  t is in 
M } 

{ st | s is in L 
and s is in M 
}      

{ st | s is in L 
and t is in M 
} 

L* is an 
representatio
n of _____ 

Negative 
closure 

Positive 
closure 

Kleene 
closure Line closure      

Kleene 
closure 
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Positive 
closure of L is 
written as  L+ L* D+ D*      L+ 

(r) | (s) is a 
regular 
expression 
denoting  
_____ L(r) | L(s) L(r) L(s) L(r)* L(s) L(r) U L(s)       L(r) U L(s)   

(r) (s) is a 
regular 
expression 
denoting  
_____ L(r) | L(s) L(r)L(s) L(r)* L(s) L(r) U L(s)       L(r)L(s) 

(r) * is a 
regular 
expression 
denoting 
_____ (L(r))* Lr* L(r) L*(r)      (L(r))* 

The regular 
expression a* 
denotes  { a }  { ? , a} 

 { a , aa , 
aaa, ……} 

 { ? , a , aa , 
aaa, ……}     

 { ? , a , aa , 
aaa, ……} 

Identifier is 
represented 
in character 
class as  

[ A-Z] [ A-Z0-
9]* 

[ A-Za-z] [ 
A-Za-z0-
9]* 

[ A-Za-z] [ 
A-Za-z]* 

[ A-Z] [ A-
Za-z0-9]*      

[ A-Za-z] [ A-
Za-z0-9]* 

_______ 
cannot be 
described by 
a regular 
expression 

???{ wcw | w is 
a string of a‟s 
and b‟s } 

{ w | w is 
a string of 
a‟s and 
b‟s } 

??{ w* | w 
is a string 
of a‟s and 
b‟s } 

??{ w+ | w is 
a string of 
a‟s and b‟s }     

???{ wcw | 
w is a string 
of a‟s and 
b‟s } 

_______ is 
an 
associative 
property of a 
regular 
expression R(s|t) = (r|s)t 

R|(s|t) = 
(r|s)t 

R|(s|t) = 
(r|s)|t (s|t)r= t(r|s)      

R|(s|t) = 
(r|s)|t 
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A 
replacement 
according  to 
a production 
is 
called______
_  Reduction 

Productio
n Derivation Parse tree     Derivation 

 

 

UNIT-II 

 

 

Questions opt1 opt2 opt3 opt4 
opt
5 

opt
6 answer 

Process of 
replacing a string 
by an NT 
according to a 
production______
_  Reduction 

Productio
n Derivation Parse tree     Reduction 

Which of the 
following is not a 
true statement as 
a derivation tree? 

all the leaf 
nodes are 
terminals 

root node 
is start 
symbol 

interior 
node is 
terminal 

interior node 
is non - 
terminal     

interior 
node is 
terminal 

Method of 
converting regular 
expression to a 
recognizer is 
_______ 

Lexical 
analyzer  

Finite 
automata Lex Yacc     

Finite 
automata 

Demerits of using 
transition table is  
_______ 

tough to 
implement slower 

takes up 
less space 

takes up lot of 
space      

takes up lot 
of space  

In which Finite 
Automata no 
states has an ? - 
transition NFA DFA NDFA DNFA     DFA 
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 _______ has 
atmost one edge 
labeled “a” 
leaving state S NFA DFA NDFA DNFA     DFA 

Tool used to 
design the lexical 
analysis 
is_______ Yacc Lexeme Lex Yaccer     Lex 

_______ 
language is used 
to create Lex 
program C  Lex Yacc Linux     Lex 

_______ is a c 
program 
produced by Lex 
compiler Lex.yy.c Lex.c a.out tokens     Lex.yy.c 

_______ is the 
output produced 
by C compiler in 
Lex Lex.yy.c Lex.c a.out tokens     a.out 

_______ is the 
input taken by C 
compiler in Lex Lex.yy.c Lex.c a.out tokens     Lex.yy.c 

 ______ is one of 
the field in the 
Lex specification 

Transition 
rules 

Translatio
n rules Definition main function     

Translation 
rules 

_______ is not a 
part of Lex 
specification 

manifest 
constants 

auxiliary 
procedure
s 

declaration
s main function      

main 
function  
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Build parse trees 
from root to 
leaves  is called 
_______ 

Top down 
parsing 

Bottom up 
parsing LR parsing 

Root leaf 
parsing     

Top down 
parsing 

Input to the top 
down parsing is 
scanned from 
_______ root to right left to right top to left right to left     left to right 

A ? Aa is called 
as  

Left 
factoring 

Ambiguou
s 

Left 
Recursion 

Left 
refactoring     

Left 
Recursion 

Elimination of left 
recursion for the 
A ? Aa / ß are 
_______  

A ? A‟a , A‟ 
? ß „a / ? 

A ? ßA‟ , 
A‟ ? aA‟ / 
? 

A ? Aa , A‟ 
? A‟a / ? 

A ? Aa / ß , A 
? ß„a / ?      

A ? ßA‟ , A‟ 
? aA‟ / ? 

Elimination of left 
recursion for the 
E ? E+T / T  is 
_____  

E? TE‟ , E‟ 
? +TE‟ / ? 

E? T‟E , 
E‟ ? +E / ? 

E? T‟E‟ , E‟ 
? +T‟E/ ? 

E ? TE , E‟ ? 
+T‟E‟ / ?:      

E? TE‟ , E‟ 
? +TE‟ / ? 

Elimination of left 
recursion for the 
T ? T * F / F  is 
_____  

T ? FT , T‟ 
? *F‟T‟ / ? 

T? F‟T , T‟ 
? *E / ? 

T? F‟T‟ , T‟ 
? *F‟T/ ? 

T? FT‟ , T‟ ? 
*FT‟ / ?\     

T? FT‟ , T‟ 
? *FT‟ / ?\ 

Process of 
factoring out the 
common prefixes 
is ____ 

Left 
factoring 

Ambiguou
s 

Left 
Recursion 

Left 
refactoring     

Left 
factoring 

Elimination of left 
factoring for the A 
? a ß1 / a ß2 are 
_______  

A ? aßA‟ , 
A‟ ? ß1 / ß2 

A ? a‟A , 
A‟ ? aß2 / 
ß1 

A ? aA‟ , A‟ 
? ß1 / ß2 

A ? a‟A‟ , A‟ ? 
a ß1 / a ß2     

A ? aA‟ , A‟ 
? ß1 / ß2 
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 ____ is the left 
factored grammar 
for S? iEtS | 
iEtSeS | a 

S? iEtSS‟ | 
a , S‟? eS | 
? 

S? iEtS‟ | 
a , S‟? 
iEtSS‟ | ? 

S? iEtSS‟ | 
a , S‟? 
iEtSeS | ? 

S? iEtSeS | a 
, S‟? eS | ?     

S? iEtSS‟ | 
a , S‟? eS | 
? 

Top down parsing 
is creating the 
tree in   ________ 
order post pre in reverse polish     pre 

Top down parsing 
is used to 
find________  post order 

Right 
most 
derivation  in order 

Left most 
derivation     

Left most 
derivation 

left recursive 
grammar can 
cause top down 
parser to go  
________ elimination 

error 
condition  infinite loop finite loop     infinite loop 

Difficulty of top 
down parsing is 
________ 

Forward 
loop 

For 
tracking 

Backward 
loop Back tracking     

Back 
tracking 

 ________ is the 
Top down parsing 
technique   

Recursive 
descent 

Recursion 
descent 

Predicate 
logic 

periodic 
parsing     

Recursive 
descent 

Demerits of 
recursive descent 
parsing is 
________ 

Backtrackin
g 

Left 
factoring Recursive Recursion     Recursive 

Predictive parsing 
consists of  

input , 
parsing 
program, 
parsing 
table , 
output 

input , 
stack, 
parsing 
table , 
output 

input , 
parsing 
program, 
stack , 
output 

input , 
parsing 
program,stac
k, parsing 
table     

input , 
stack, 
parsing 
table , 
output 
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In predictive 
parsing program 
let X be the top 
stack symbol and 
a be the next 
input symbol ,  if 
X is terminal  and 
if X= a then 
_________ 

push X on 
to the stack 

push a on 
to the 
stack 

pop a from 
the stack 

pop X from 
the stack     

pop X from 
the stack 

In predictive 
parsing program 
let X be the top 
stack symbol and 
a be the next 
input symbol ,  if 
X is  Non - 
terminal  and if M[ 
X,a] =X?Y1 , Y2 , 
…. Yk then 
_________ 

push X from 
the stack , 
pop Yk , 
Yk-1 , …. 
Y1 on to the 
stack 

push X 
from the 
stack  , 
pop Y1 , 
Y2 , …. 
Yk  on to 
the stack 

pop X from 
the stack , 
push Yk , 
Yk-1 , …. 
Y1 on to 
the stack 

pop X from 
the stack  , 
push Y1 , Y2 
, …. Yk  on to 
the stack     

pop X from 
the stack , 
push Yk , 
Yk-1 , …. 
Y1 on to 
the stack 

In predictive 
parsing if X is a 
terminal , then 
FIRST(X) is  { ? } { X } terminal nonterminal     { X } 

Two functions 
used in predictive 
parsing is 
_______   

FIRST , 
LAST 

FIRST , 
FOLLOW 

FOLLOW , 
LAST 

FIRST, 
PREDICT     

FIRST , 
FOLLOW 
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In predictive 
parsing if X ? ?, 
then FIRST(X) is { ? } { X } terminal nonterminal     { ? } 

In predictive 
parsing A? aBß , 
then everything in 
____ is in ____ 

FIRST(a) , 
FOLLOW 
(B) 

FIRST(ß) 
, 
FOLLOW 
(ß) 

FIRST(ß) , 
FOLLOW 
(B) 

FIRST(a) , 
FOLLOW (ß)     

FIRST(ß) , 
FOLLOW 
(B) 

In predictive 
parsing A? aB , 
then everything in 
____ is in ____ 

FOLLOW 
(a), 
FOLLOW 
(B) 

FOLLOW 
(A) , 
FOLLOW 
(B) 

FOLLOW 
(a) , 
FOLLOW 
(A) 

FOLLOW (A) 
, FOLLOW 
(a)     

FOLLOW 
(A) , 
FOLLOW 
(B) 

In predictive 
parsing A? aBß, 
where FIRST(ß) 
contains ? ,  then 
everything in  
______ is in ____ 

FOLLOW 
(A) , 
FOLLOW 
(B) 

FOLLOW 
(a), 
FOLLOW 
(B) 

FOLLOW 
(a) , 
FOLLOW 
(A) 

FOLLOW (A) 
, FOLLOW 
(a)     

FOLLOW 
(A) , 
FOLLOW 
(B) 

 ____ is included 
in FOLLOW 
function set of 
predictive parsing    % # $ @     $ 

If a grammar S ? 
(L) | a ,  then 
FIRST(S) is ____ { ( , a } { ? } { L , a } { $ }     { ( , a } 

Elimination of left 
recursion for the L 
? L,S | S  is 
_____  

L? S,L‟ , L‟? 
LL‟ / ? 

L? S‟,L , 
L‟? S,L / ? 

L? SL‟ , L‟? 
SL‟ / ? 

L? S‟,L‟ , L‟? 
LL / ?     

L? SL‟ , L‟? 
SL‟ / ? 
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LL(1) grammar 
has the property 
of  _____ Ambiguity 

No 
ambiguity 

No 
recursion 

No 
backtracking     

No 
ambiguity 

LL(1) grammar 
has _____ 
property   Ambiguity 

Left 
recursive 

No 
recursion 

No Left 
recursive     

No Left 
recursive 

In LL(1) grammar 
the first L stands 
for _____ 

left to right 
scanning 

left most 
derivation 

left to right 
derivation left subtree     

left to right 
scanning 

In LL(1) grammar 
the second L 
stands for _____ 

left to right 
scanning 

left most 
derivation 

left to right 
derivation left subtree     

left most 
derivation 

In LL(1) grammar 
the 1 stands for 
_____ 

one output 
symbol 

one time 
scanning 

one sub 
tree 

one input 
symbol     

one input 
symbol 

In predictive 
parsing , If X = a 
= $ error report 

successful 
completio
n 

advances 
pointer 

pop X off the 
stack     

successful 
completion 

In predictive 
parsing , If X = a 
? $ error report 

successful 
completio
n 

advances 
pointer & 
pop X off 
the stack 

pop X off the 
stack & 
parser halts     

advances 
pointer & 
pop X off 
the stack 

In predictive 
parsing , If X = $ 

Stack is 
empty 

Stack is 
full error report 

pop X from 
Stack     

Stack is 
empty 

Ambiguity means  
_____ 

produces 
more than 
two parse 
tree 

produces 
null parse 
tree 

produces 
more than 
one parse 
tree 

produces 
finite parse 
tree     

produces 
more than 
one parse 
tree 

Ambiguous 
means  _____ 

produces 
more than 
two 
derivation 

produces 
only left 
most 
derivation 

produces 
more than 
one 
derivation 

produces only 
right most 
derivation     

produces 
more than 
one 
derivation 

The output of Lex 
compiler is _____ 

Transition 
table 

Transition 
diagram 

Lex 
specificatio
n action     

Transition 
table 
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The input of Lex 
compiler is  
_____ 

Transition 
table 

Transition 
diagram 

Lex 
specificatio
n action          

Lex 
specificatio
n 

The lexical 
analyzer design 
has _____ 

Lex 
compiler 

Transition 
table 

Lex 
specificatio
n  

Transition 
diagram     

Transition 
table 

Recognizer is a  
_____ tool program string grammar     program 

NFA 
representation in 
a directed graph 
is called_______  NFA graph 

NFA 
direction 
graph 

Transition 
edge 

Transition 
graph     

Transition 
graph 

_______ is an 
easiest 
implementation of 
NFA in a 
computer. 

Transition 
diagram  

Transition 
table 

Transition 
graph 

Finite 
automata     

Transition 
table 

_______ is an 
input for the 
syntax analysis  token 

source 
program parse tree syntax     token 

_______ is an 
output of the 
parser  expression token parse tree 

intermediate 
representatio
n     parse tree 

Parser is a 
_______ 

Lexical 
analyzer 

Front end 
tool Scanner Back end tool      

Front end 
tool 

_______ is syntax 
error 

misspelled 
identifier 

misspelle
d keyword 

misspelled 
operator 

unbalanced 
parenthesis      

unbalanced 
parenthesis  

 

 

UNIT-III 

 

 

Questions opt1 opt2 opt3 opt4 
opt
5 

opt
6 answer 
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 _______ is one of 
the method of 
parsing 

left to right 
parsing 

Top down 
parsing 

Bottom 
down 
parsing 

Top up 
parsing     

Top down 
parsing 

______ constructs 
parse tree from leaf 
node to root 

Bottom up 
parsing 

Top down 
parsing 

Bottom 
down 
parsing 

Top up 
parsing     

Bottom up 
parsing 

one of the goal of 
error handler in 
parser is   

avoid 
common 
error 

slow down 
the process 

report the 
presence 
of error 

avoid 
specific 
error     

report the 
presence of 
error 

In which error 
recovery strategy  
parser discards one 
symbol at a time ?   

Panic 
mode 

phrase 
level 

error 
production
s 

global 
corrections     Panic mode 

In which error 
recovery strategy  
parser makes local 
corrections ?   

Panic 
mode 

phrase 
level 

error 
production
s 

global 
corrections     

phrase 
level 

In which error 
recovery strategy  
parser generate 
error diagnostics ?   

Panic 
mode 

phrase 
level 

error 
production
s 

global 
corrections     

error 
productions 

In which error 
recovery strategy  
parser using 
algorithmic 
approach ?   

Panic 
mode 

phrase 
level 

error 
production
s 

global 
corrections      

global 
corrections  
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The syntactic 
structure of a 
programming 
language is 
described by    

Context 
free 
grammar CNF CCNF 

Regular 
language     

Context 
free 
grammar 

Context free 
grammar consists 
of ______ 

T , NT, $ , 
P 

T, NT, S , 
Production  

Terminal , 
token , 
Non 
terminal  

Terminal ,  
Token , 
production     

T, NT, S , 
Production  

The keyword else is 
a _______ Terminal 

Non 
terminal 

Start 
symbol Production     Terminal 

_______ are 
syntactic variable  Production 

Non 
terminal Terminal string      

Non 
terminal 

Non terminal 
denotes _______ 

sets of 
characters 

sets of 
grammar 

sets of 
production 

sets of 
strings     

sets of 
strings 

Start symbol  is  a 
_______ Production 

Non 
terminal Terminal string     

Non 
terminal 

Upper case letters 
are _______  Production 

Non 
terminal Terminal string     

Non 
terminal 

Lower case letters 
are _______  Production 

Non 
terminal Terminal string      Terminal 

Punctuation 
symbols are_____  Production 

Non 
terminal Terminal string      Terminal 

Boldface strings are 
_____ Terminal 

Non 
terminal 

Start 
symbol Production      Terminal 

operator symbols 
are _____ Terminal 

Non 
terminal  

Start 
symbol Production      Terminal 
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Lower case italic 
names are ____ Production 

Non 
terminal Terminal string     

Non 
terminal 

The left side of the 
first production is 
called ________ String Terminal 

Non 
terminal 

Start 
symbol     

Start 
symbol 

Lower case Greek 
letters 
represents_______
_  

Grammar 
symbols Terminals 

Non 
terminals 

Start 
symbol     

Grammar 
symbols 

sequence of 
replacements is 
called ________   Reduction Derivation  parse tree sentence     Derivation  

Graphical 
representation of a 
derivation is a 
________ parse tree 

syntactic 
tree 

syntax 
graph pattern      parse tree 

substring that 
matches the right 
side of a production 
is called ________ 

Handle 
pruning Pattern Handle parsing      Handle 

Right most 
derivation in 
reverse is 
called______  

Handle 
pruning Pattern Handle parsing      

Handle 
pruning 
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In______ action the 
next input symbol is 
shifted on to the top 
of the stack accept reduce shift error      shift 

In______ action the 
parser announces 
the successful 
completion of 
parsing accept reduce shift error      accept 

In______ action 
parser discovers 
the syntax error accept reduce shift error      error  

In______ action 
parser replacing the 
handle with the non 
terminal accept reduce shift error      reduce 

The set of prefixes 
that appear on the 
stack are called  
______ prefixes 

viable 
prefixes 

reduce 
conflict 

viable 
suffixes      

viable 
prefixes 

Grammar that has  
no production right 
side is e is called  
_______  

operator 
grammar 

shift reduce 
grammar 

operator 
precedenc
e grammar 

precedenc
e grammar      

operator 
grammar 
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Grammar that has  
no production right 
side is two adjacent 
non terminals is 
called  _______  

operator 
precedenc
e grammar 

shift reduce 
grammar 

operator 
grammar 

precedenc
e grammar      

operator 
grammar 

In  precedence 
relation a < b 
means  _____ 

a has 
different 
precedenc
e to b 

a has same 
precedence 
as b 

a takes 
precedenc
e over b 

a yields 
precedenc
e to b      

a yields 
precedence 
to b  

In  precedence 
relation a > b 
means  _____ 

a has 
different 
precedenc
e to b 

a has same 
precedence 
as b 

a takes 
precedenc
e over b 

a yields 
precedenc
e to b      

a takes 
precedence 
over b 

In  precedence 
relation a = b 
means  _____ 

a has 
different 
precedenc
e to b 

a has same 
precedence 
as b 

a takes 
precedenc
e over b 

a yields 
precedenc
e to b      

a has same 
precedence 
as b 

In precedence 
relation * and + has 
the precedence of 
_____ * > + + > * + = + * = *      * > + 

In precedence 
relation $ and id 
has the precedence 
of _____ $ > id $ =id $ <id $  ? id      $ <id 
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In operator 
precedence parsing 
if a < b then  

pop a from 
the stack 

push a on 
to the stack 

pop b from 
the stack  

push b on 
to the 
stack      

push b on 
to the stack  

In operator 
precedence parsing 
if a = b then  

pop a from 
the stack 

push b on 
to the stack 

pop b from 
the stack  

push a on 
to the 
stack      

push b on 
to the stack 

In operator 
precedence parsing 
if a > b then  

pop the 
stack 

push the 
stack 

pop b from 
the stack  

push a on 
to the 
stack      

pop the 
stack 

In LR(k) parsing   , 
the L stands for   
_____   

left to right 
scanning 

left most 
derivation 

left to right 
derivation left subtree         

left to right 
scanning 

In LR(k) parsing   , 
the R stands for   
_____   

left to right 
scanning 

Right most 
derivation 

left to right 
derivation 

Right most 
derivation 
in reverse     

Right most 
derivation 
in reverse 

In LR(k) parsing   , 
the k stands for   
_____   

parsing 
symbol 

number of 
input 
symbols 

number of 
characters 

look ahead 
symbol      

number of 
input 
symbols 

_____ LR 
technique is easy to 
implement SLR 

canonical 
LR LALR 

Look 
ahead LR      SLR 

_____  LR 
technique is most 
powerful SLR 

canonical 
LR LALR 

Look 
ahead LR      

canonical 
LR 

_____  LR 
technique is most 
expensive SLR 

canonical 
LR LALR 

Look 
ahead LR      

canonical 
LR 
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_____  LR 
technique is least 
powerful SLR 

canonical 
LR LALR 

Look 
ahead LR      SLR 

S‟ ? .S    is included 
in _____ items closure non kernel kernel 

non 
closure       kernel 

The functions 
performed in LR 
parsing are  _____ 

action and 
shift 

action and 
goto 

action and 
error 

goto and 
shift       

action and 
goto 

Action function 
involved with  
_____ Terminals 

Non 
terminals 

start 
symbol production      Terminals 

Goto function 
involved with _____ Terminals 

Non 
terminals 

Start 
symbol Production      

Non 
terminals 

LALR is 
abbreviated from 
_____ 

Left and 
Right LR 

Look ahead 
Simple LR 

Look 
ahead LR  

Left to 
Right 
simple LR      

Look ahead 
LR  

_______ is a 
combination of 
terminals and non 
terminals 

?productio
n token 

regular 
expression 

regular 
definition     ?production 

_______ is an one 
of the bottom up 
parsing technique 

Operator 
parsing 

Shift reduce 
parsing 

Recursive 
descent 
parsing 

Predictive 
parsing      

Shift reduce 
parsing 
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_______ translates 
intermediate 
representation in to 
an equivalent low 
level language Analyzer Front end Back end 

Synthesize
r      Back end 

The input for the 
intermediate code 
generator is 
_______ 

Optimized 
code 

Intermediat
e Code Token 

Meaningful 
expression      

Meaningful 
expression  

The output for the 
intermediate code 
generator is 
_______ 

Optimized 
code 

Intermediat
e Code Token 

Meaningful 
expression      

Intermediat
e Code 

In _______ tree the 
operators 
represented in the 
interior node Postfix  Parse Tree 

Syntax 
Tree Prefix       

Syntax 
Tree 

______ is a 
linearized 
representation of a 
syntax tree 

Postfix 
Notation Parse Tree 

Two 
address 
code 

Prefix 
notation            

Postfix 
Notation 

Postfix notation for 
the statement a = b 
* - c  is  ______ 

* uminus a 
b c 

uminus * a 
b c 

a b c * 
uminus 

a b c 
uminus *      

a b c 
uminus *  
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UNIT-IV 

 

 

Questions opt1 opt2 opt3 opt4 
op
t5 

op
t6 answer 

Semantic rule to 
produce syntax 
tree for the 
production E ? 
id is ______ 

E.nptr = 
mkleaf ( 
id.place) 

E.nptr = 
mknode ( 
id.place) 

E.nptr = 
mkleaf ( id , 
id.place) 

E.nptr = 
mknode (id 
, id.place)      

E.nptr = 
mkleaf ( id , 
id.place) 

Semantic rule to 
produce syntax 
tree for the 
production E ? - 
E1 is ______ 

E.nptr = 
mknode 
(„uminus‟ ,  
E1.nptr ) 

E.nptr = 
mkunode 
(„uminus‟ ,  
E1.nptr ) 

E.nptr = 
mkleaf 
(„uminus‟ ,  
E1.nptr ) 

E.nptr = 
mkuleaf 
(„uminus‟ ,  
E1.nptr )      

E.nptr = 
mkunode 
(„uminus‟ ,  
E1.nptr ) 

Semantic rule to 
produce syntax 
tree for the 
production E ? 
E1 +  E2 is 
______ 

E.nptr = 
mknode („+‟ 
,  E1.nptr ) 

E.nptr = 
mkpnode („+‟ 
,  E1.nptr ) 

E.nptr = 
mkpnode („+‟ 
,  E1.nptr , 
E2.nptr ) 

E.nptr = 
mknode („+‟ 
,  E1.nptr , 
E2.nptr )     

E.nptr = 
mknode („+‟ ,  
E1.nptr , 
E2.nptr ) 

_______ is an 
general form of 
three address 
code 
representation x = y op z x = z op op x = z op 

op x =  op y 
z      x = y op z 

_______ is an 
one type of 
three address 
code 
statements if x y goto L 

if x relop y 
goto L goto L if  x y 

goto L if x 
relop y     

if x relop y 
goto L 
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The name that 
will hold the 
value of E is 
called _______ E.place E.code  place.E code.E       E.place 

The sequence 
of three address 
statements 
evaluating E is 
called______  E.place E.code  place.E code.E     E.code  

Record 
structure with 
four fields is 
called______  

Three 
address 
code Quadruples Triples 

Indirect 
triples            Quadruples 

Three fields of 
Record 
structure is 
called______  

Three 
address 
code Quadruples Triples 

Indirect 
triples            Triples 

emit is used to  
______ 

emit 
3address 
statements 
to an 
output file 

emit 
assignments 
to an output 
file 

emit 
terminals to 
an output file 

emit non 
terminals to 
an output 
file     

emit 
3address 
statements 
to an output 
file 

Translation  of 
E?(E1) is  
_______ 

E1.place = 
E.place 

E.place=E1.pl
ace 

E.place = 
(E1.place) 

(E1.place)= 
E.place     

E.place=E1.
place 

Translation  of 
E? id is  
_______ 

E1.place = 
E.place 

E.place=E1.pl
ace 

E.place = 
id.place 

E1.place= 
id.place      

E.place = 
id.place 

_______ are 
the 3 fields of 
triples 

arg1,arg2,a
rg3 

arg1,arg2,res
ult 

arg1,op,resul
t 

arg1,arg2,o
p      arg1,arg2,op  

_______ are 
the 4 fields of 
Quadruples 

arg1,arg2,a
rg3 , arg4 

arg1,arg2,arg
3,result 

arg1,,arg2,o
p,result 

arg1,arg2,a
rg3,op      

arg1,,arg2,o
p,result 
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Listing pointers 
to triples is 
called _____ 

Indirect 
triples  triples Quadruples             

Indirect 
ruples      

Indirect 
triples  

offset 
represents____
_  

relative 
address   three address location address      

relative 
address   

E1.type=integer
,E2.type = 
integer , E.type 
is ____  integer real inttoreal  float      integer 

E1.type=integer
,E2.type = real , 
E.type is ____  integer real inttoreal  float      real 

E1.type=real,E2
.type = real , 
E.type is ____  integer real inttoreal  float      real 

E1.type=real,E2
.type = integer, 
E.type is ____  integer real inttoreal  float      real 

E?E1 or E2 
represents ____ 

E1.place = 
E1.place  * 
E2.place 

E.code= 
E1.place or  
E2.place 

E1.code= 
E1.place and 
E2.place 

E.place= 
E1.place or 
E2.place     

E.place= 
E1.place or 
E2.place 

E? true 
represents 
________ E.code=0 E.place = 0 E.place = 1 E.code=1      E.place = 1 

E? false 
represents 
________ E.code=0 E.place = 0 E.place = 1 E.code=1      E.place = 0 

E?not E1 
represents ____ 

E1.place = 
E1.place  
not 
E2.place 

E.code= 
E1.place not  
E2.place 

E1.code= 
not E1.place  

E.place= 
not 
E1.place     

E.place= not 
E1.place 
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_________ is a 
one semantic 
rule of S?if E 
then S1 

E.false=ne
wlabel 

E.true=newla
bel 

S.next=S1.n
ext 

S.code=E.p
lace B     

E.true=newl
abel 

_________ is a 
one of the  
semantic rule of 
S?if E then S1 

E.false=ne
wlabel 

S1.next=S.ne
xt 

S.next=S1.n
ext 

S.code=E.p
lace      

S1.next=S.n
ext 

_________ is a 
one of the  
semantic rule of 
S? while E do 
S1 

E.false=ne
wlabel 

S1.next=S.ne
xt 

S.next=S1.n
ext 

E.false=S.n
ext      

E.false=S.ne
xt  

_________ is a 
one of the  
semantic rule of 
S? while E do 
S1 

E.false=ne
wlabel 

S1.next=S.ne
xt 

E.true=newl
abel 

E.false=S1.
next      

E.true=newl
abel 

_________ is a 
one of the  
semantic rule of 
S?if E then S1 
else S2 

E.false=S1.
next 

S1.next=S.ne
xt 

S.next=S1.n
ext 

S.code=E.c
ode      

S.code=E.co
de  

_________ is a 
one of the 
semantic rule of 
S?if E then S1 
else S2 

E.false=E.tr
ue 

S1.next=S.ne
xt 

S.next=S1.n
ext 

S.code=E.p
lace      

S1.next=S.n
ext 

_________ is a 
one of the  
semantic rule of 
S? while E do 
S1 

E.false=S.n
ext 

S1.next=S2.n
ext 

E.true=E.fals
e 

E.false=S1.
next      

E.false=S.ne
xt 
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_________ is a 
one of the  
semantic rule of 
E?E1  or E2 

E1.true=E.t
rue 

E1.false=E.fal
se 

E2.true=E.fal
se 

E2.fasle=E
1.true      

E1.true=E.tr
ue 

_________ is a 
one of the  
semantic rule of 
E?E1 or E2 

E1.true=E.f
alse 

E1.false=E.fal
se 

E2.true=E.tr
ue 

E2.fasle=E
1.true      

E2.true=E.tr
ue 

_________ is a 
one of the  
semantic rule of 
E?E1  or E2 

E1.true=E.f
alse 

E1.false=E.fal
se 

E2.true=E1.t
rue 

E2.fasle=E.
false      

E2.fasle=E.f
alse  

_________ is a 
one of the  
semantic rule of 
E?E1  and E2 

E1.true=E.f
alse 

E1.false=E.fal
se 

E2.true=E1.t
rue 

E2.fasle=E
1.false      

E1.false=E.f
alse 

_________ is a 
one of the  
semantic rule of 
E?E1  and E2 

E1.true=E.f
alse 

E1.false=E.tr
ue 

E2.true=E1.t
rue 

E2.fasle=E.
false      

E2.fasle=E.f
alse  

_________ is a 
one of the  
semantic rule of 
E?E1  and E2 

E1.true=E.f
alse 

E1.false=E2.f
alse 

E2.true=E.tr
ue 

E2.fasle=E
1.false      

E2.true=E.tr
ue 

_________ is a 
one of the  
semantic rule of 
E?E1  and E2 

E1.true=ne
wlabel 

E1.false=E2.f
alse 

E2.true=E1.t
rue 

E2.fasle=E.
true      

E1.true=new
label 
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_________ is a 
one of the 
semantic rule of 
E? not E1 

E.true= 
E1.false 

E1.true = 
E.false 

E.false= 
E2.true 

E.code=E.p
lace      

E1.true = 
E.false 

_________ is a 
one of the 
semantic rule of 
E? not E1 

E1.true= 
E.false 

E1.true = 
E2.false 

E.false= 
E2.true 

E.code=E.p
lace      

E1.true= 
E.false 

The use of 
makelist(i) is  

creates a 
new list 
containing 
quadruples 

creates a new 
list containing 
only i 

creates a 
new list by 
inserting i 

creates a 
new list 
pointed to 
p1     

creates a 
new list 
containing 
only i 

____  is the use 
of merge(p1,p2) 

concatenat
es the lists 
pointed by 
p1 and p2 

merge the list 
containg only 
i 

merge the 
list pointed 
by p1 

merge the 
list 
containing 
quadruples      

concatenate
s the lists 
pointed by 
p1 and p2 

The use of 
backpatch(p,i) 
is 

concatenat
es the lists 
pointed by 
p1 and p2 

merge the list 
containing 
only i 

inserts I as 
the target 
label 

merge the 
list 
containing 
quadruples      

inserts I as 
the target 
label 

_________ is a 
one of the 
semantic rule of 
E? not E1 

E.truelist= 
E1.falselist 

E1.truelist = 
E2.falselist 

E.falselist= 
E2.truelist 

E.code=E.p
lace      

E.truelist= 
E1.falselist 

 _________ is a 
one of the 
semantic rule of 
E? not E1 

E1.truelist= 
E1.falselist 

E1.truelist = 
E2.falselist 

E.falselist= 
E1.truelist 

E.code=E.p
lace      

E.falselist= 
E1.truelist 

________ is a 
one of the 
semantic rule of 
E? (E1) 

E.truelist= 
E1.truelist 

E1.truelist = 
E2.falselist 

E.falselist= 
E2.truelist 

E.code=E.p
lace      

E.truelist= 
E1.truelist 
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_________ is a 
one of the 
semantic rule of 
E? (E1) 

E2.truelist= 
E1.truelist 

E1.truelist = 
E2.falselist 

E.falselist= 
E1.falselist 

E.code=E.p
lace      

E.falselist= 
E1.falselist 

translation of 
s?begin L end  
is _____ 

S.list = 
L.nextlist 

S.nextlist=L.n
extlist 

L.List = 
S.Listnext 

L.nextlist=S
.list      

S.nextlist=L.
nextlist 

The translation 
of Elist?Elist,E 
is  

append 
E.code to 
the end of 
the queue 

append 
E.place to the 
beginning of 
the queue 

append 
E.code to 
the 
beginning of 
the queue 

append 
E.place to 
the end of 
queue      

append 
E.place to 
the end of 
queue  

The translation 
of Elist? E is  

Initialize 
E.code to 
the end of 
the queue 

Initialize 
E.place to the 
beginning of 
the queue 

Initialize 
E.code to 
the 
beginning of 
the queue 

Initialize 
queue to 
contain only 
E.place      

Initialize 
queue to 
contain only 
E.place  

The translation 
of M? ? with 
quadruple  is  

M.quad = 
nextQuad 

M.nextquad = 
nextQuad 

M.next = 
M.Quad 

M.quad = 
M.nextQua
d      

M.quad = 
nextQuad 

The translation 
of N? ? with 
quadruple  is  

N.nextlist = 
makelist(ne
xtqua 

N.nextlist = 
list(qua 

N.nextlist = 
makelist(M.q
ua 

N.nextlist = 
make 
(nextqua     

N.nextlist = 
makelist(nex
tqua 

_______ is an 
input of code 
generation 
phase 

optimized 
code target code 

source 
program object code      

optimized 
code 

The output for 
the code 
generator is 
_______ 

Optimized 
code 

Intermediate 
Code Token 

Assembly 
language       

Assembly 
language   



170 

 

The 
transformation 
performed only 
within a basic 
block is 
called_______ local global preserve optimization      local 

Eliminating the 
same sub 
expressions is 
called _______  

common 
elimination  

common sub 
expression 
elimination 

common 
expression 
deletion 

common 
sub 
expression 
deletion       

common sub 
expression 
elimination 

______ is a 
transformations 
of copy 
statements 

copy 
propagatio
n 

copy 
transformatio
n copy for long 

copy 
elimination            

copy 
propagation 

Useless code 
transformation 
is called  
______ 

usecode 
elimination  

dead 
elimniation 

useless code 
elimination 

Deadcode 
elimination      

Deadcode 
elimination  

Using the 
constant and 
deducing during 
compile time is 
called ______ 

dead code 
elimination 

copy 
propagation 

constant 
folding 

constant 
propagation      

constant 
folding 

Optimizing inner 
loops named as 
______ 

Loop 
transformat
ion 

Loop 
optimization 

Deadcode 
elimination 

copy 
propagation      

Loop 
optimization 

 

 

 

UNIT-V 

 

 

Questions opt1 opt2 opt3 opt4 
opt
5 

opt
6 answer 

Decreasing 
the amount Induction  Reduction Loop motion 

Code 
motion     Code motion 
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of code in a 
inner loop is 
called as 
______ 

_______ is 
an  one way 
of loop 
optimization 

Induction 
variable 
elimination 

Copy 
propagati
on 

Deadcode 
elimination 

constant 
folding      

Induction 
variable 
elimination 

_______ is 
an loop 
optimization 
technique 

Reduction 
variable 
elimination 

Reduction 
in 
strength 

Deadcode 
elimination 

constant 
folding     

Reduction in 
strength 

The 
Expansion 
for DAG is 
_______ 

Directed 
Acyclic Graph 

Directed 
Action 
Graph  

Direction 
Asymmetric 
Graph 

Direction 
Action 
Graph       

Directed 
Acyclic Graph 

The  
Algebraic 
transformati
on includes 
______  

Algebraic 
Deduction 

Algebraic 
Identities  

constant 
folding 

reduction 
in 
strength     

Algebraic 
Identities  

The output 
for the code 
generation 
phase  is 
_______ 

Optimized 
code 

Intermedi
ate Code 

Machine level 
language Token       

Machine level 
language 

_______ is 
the input of 
code 
generation 
phase 

Optimized 
code 

Intermedi
ate Code 

Machine level 
language Token      

Intermediate 
Code 

The use of 
symbol table 
is  

to determine 
the run time 
addresses of 
the data 
objects 

to 
determine 
the run 
time value 
of the 
data 

to determine 
the compile 
time value of 
the data 

to 
determine 
the 
compile 
time 
addresse
s of the 
data 
objects     

to determine 
the run time 
addresses of 
the data 
objects 

_______ is a 
linear 
representati
ons of 
intermediate 
code Prefix notation 

Infix 
notation 

Postfix 
notation 

RP 
notation     

Postfix 
notation 

_______  is 
an 
representati
on of three 
address 
code Quadruples 

Indirect 
Quadrupl
es 

Postfix 
notation Linear      Quadruples 

_______ is 
the virtual 
machine 
representati
on 

Sequence of 
commands 

Stack 
machine 
code  Machine code 

Stack 
code      

Stack machine 
code  

_____ is a 
Graphical DEG tree Parsing   Syntax trees 

Linear 
tree      Syntax trees 
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representati
on of three 
address 
code 

_____ is a 
Graphical 
representati
on of 
intermediate 
code DAG  Parsing   Semantic tree 

Linear 
tree      DAG  

_____ is the 
output form 
of a target 
program 

Intermediate 
code   

linking 
library 
functions 

linking 
machine code 

Absolute 
machine 
code      

Absolute 
machine code  

_____ is an 
one of the 
output form 
of a target 
program 

Intermediate 
code   

linking 
library 
functions 

Re locatable 
machine code 

Absolute 
intermedi
ate code      

Re locatable 
machine code 

Semantic 
checking 
done in  
____  

Intermediate 
code generator 

Lexical 
analyzers 

Syntax 
analyzers  

Code 
generator      

Code 
generator  

Mapping 
names to 
addresses of 
data objects 
is done by  
________   

intermediate 
code generator 

code 
generator code optimizer             

Lexical 
analysis      code generator 

Deducing 
the number 
of  jumping 
labels is 
done by 
________  Backpatching 

Quadrupl
e  Triple 

Indirect 
Triple      Backpatching 

The speed is 
increased 
based on 
instruction 
selection by 
using 
________  Assignment 

Machine 
idioms  Structure Register      

Machine 
idioms  

During 
Register 
Allocation   

we select 
variables 
reside in the 
register 

we pick 
specific 
register 
that a 
variable 
reside in  

choose 
register pairs 

Allocate 
constants 
to register      

we select 
variables 
reside in the 
register 

During 
Register 
assignment   

We select 
variables 
reside in the 
register 

We pick 
specific 
register 
that a 
variable 
reside in  

Choose 
registers pairs 

Allocate 
constants 
to register      

We pick 
specific 
register that a 
variable reside 
in  
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SRDA 
stands for  
______  

Shift Right 
Double 
Arithmetic 

Shift 
Round 
Direct 
Arithmetic 

Scan Right 
Double 
Arithmetic 

Scan 
Round 
Direct 
Arithmetic      

Shift Right 
Double 
Arithmetic 

______ is 
used to 
improve the 
efficiency Choice of Run Syntax 

Choice of 
Evaluation 
order Semantic      

Choice of 
Evaluation 
order 

________ is 
an two 
address 
instruction 
form 

op 
source,destina
tion 

source op 
destinatio
n 

source,destina
tion op 

destinatio
n 
source,op      

op 
source,destina
tion 

ADD  is an  
_________ 

ADD to 
register 

ADD 
destinatio
n to 
memory 

ADD to 
memory 

ADD 
source to 
destinatio
n      

ADD source to 
destination  

SUB  is an  
_________ 

SUB to 
register 

SUB 
destinatio
n to 
memory 

SUB to 
memory 

SUB 
source 
from 
destinatio
n      

SUB source 
from 
destination  

For absolute 
mode the 
added cost 
is _______  1 0 2 3     1 

For Register 
mode the 
added cost 
is _______  1 0 2 3     0 

For Indexed 
mode the 
added cost 
is _______  1 0 2 3     1 

For Indirect 
indexed 
mode the 
added cost 
is _______  1 0 2 3     1 

The form for 
absolute 
mode is 
_______  c(R) *R R M      M  

The form for 
Register 
mode is 
_______  c(R) *R R M      R 

The form for 
Indexed 
mode is 
_______  c(R) *R R M     c(R) 

The form for 
Indirect 
Register  
mode is 
_______  c(R) *R R M      *R 

The form for 
Indirect *c(R) *R R M     *c(R) 
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Indexed 
mode is 
_______  

The address 
of Register 
mode is 
_______  c(R) *R R M      R 

The address 
of Indexed 
mode is 
_______  

c + contents of 
(R) R contents of R M      

c + contents of 
(R) 

The address 
of Indirect 
Register 
mode is 
_______  

c + contents of 
(R) R contents of (R) M     contents of (R) 

The address 
of Indirect 
Indexed 
mode is 
_______  

contents (c + 
contents of 
(R)) R contents of R M      

contents (c + 
contents of 
(R)) 

The cost of 
MOV R0,R1 
is _______ 1 0 2 3     1 

The cost of 
MOV R5,M 
is _______ 1 0 2 3     2 

The cost of 
ADD #1,R3 
is _______ 1 0 2 3     2 

The cost of 
SUB 4(R0), 
*12(R1) is 
_______ 1 0 2 3     3 

The cost of 
MOV b,a 
and ADD c,a   
is _______ 1 0 6 3     6 

The cost of 
ADD R2,R1 
and MOV 
R1,a is 
_______ 1 0 2 3     3 

The getreg 
denotes 
_______ 

to determine 
the location L 

to 
determine 
the value 

to determine 
the Register 

to 
determine 
the 
memory     

to determine 
the location L 

The function 
of register 
descriptor is 
_______ 

 to keep track 
of the location 

 to keep 
track of 
what is 
currently 
in each 
register 

 to keep track 
of the register 

 to keep 
track of 
the 
descriptor 
value      

 to keep track 
of what is 
currently in 
each register 
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The function 
of register 
descriptor is 
_______ 

to keep track 
of the location 

to keep 
track of 
what is 
currently 
in each 
register 

to keep track 
of the register 

to keep 
track of 
the 
descriptor 
value     

to keep track 
of the location 

For the 
statement t 
= a – b , the 
value of 
Address 
Descriptor 
is_______  R0 contains t u in R0 t in R0 

R0 
contains u      t in R0 
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