
1

13BECS603 PRINCIPLES OF COMPILER DESIGN

COURSE OBJECTIVES:

To understand and list the different stages in the process of compilation.

 To understand and design Lexical analyzers and parsers

To Develop algorithms to generate code for a target machine

 To learn and develop techniques for optimization of code.

COURSE OUTCOMES:

Upon completing the course the students will be able to

 Understand the complete process of compilation from source code to target code
 develop the lexical analyzer and parsers

 Develop algorithms to generate code for a target machine

 Optimize the generated code

U N I T 1:Introduction (9)

Introduction - What is a Compiler? - Cousins of a Compiler- Assembler - Interpreter - Phases of

compilation and overview, Lexical Analysis, Syntax Analysis, Semantic Analysis, Intermediate

code Generation, Code Optimization, Code Generation - Specification of Tokens.

U N I T 2:Lexical Analysis(scanner) (9)

Regular l a n g u a g e s , finite automata, regular expressions, from regular expressions to finite

automata, scanner generator (lex, flex).

Syntax Analysis (Parser): Context-free languages and grammars, push-down

automata,LL(1)gram-mars and top-down parsing,operator

grammars,LR(O),SLR(1),LR(1),LALR(1) grammars and bottom-up parsing, ambiguity and LR

parsing,LALR(1) parser generator (yacc, bison)

U N I T 3:Semantic Analysis (9)

Attribute grammars, syntax directed definition,evaluation and flow of attribute in a syntax tree.

Symbol Table:Its structure, symbol attributes and management. Run-time

environment: Procedure activation,parameter passing, value return, memory allocation, and

scope.Intermediate Code Generation:Translation of different language features, different types of

intermediate forms.

U N I T 4 : Code Improvement(optimization) (9)

Analysis: control-flow, data-flow dependence etc.; Code improvement local optimization, global

optimization, loop optimization, peep-hole optimization etc.Architecture dependent code

improvement: instruction scheduling(for pipeline), loop optimization (for cache memory) etc.

Register allocation and target code generation

U N I T 5 : Advanced topics (9)

Type systems, data abstraction,compilation of Object Oriented features and non-

imperativeprogramminglanguages.

Total Hours: 45

TEXT BOOKS:

1. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools,

Pearson Education Asia, 2
nd

 Edition, 2017.

2

2. Allen I Holub, Compiler Design in C, Prentice Hall of india, 2016.

REFERENCES:

1. Keith Cooper and lindaTorczon, Engineering a compiler, 2
nd

 edition, 2016.

2. Bennet.J.P, Introduction to Compiler Techniques, Tata McGraw-Hill, 2015.

3. R.Levine, Tony Mason, Doug Brown John, Lex &Yacc, 2
nd

 Edition (October 2012) O‟Reilly &

Associates.

4. Kenneth c.Louden,Compiler Construction: Principles and Pratice, Thomson Learning, 2018.

WEBSITES:

1. http://www.tenouk.com/ModuleW.html/

2. http://www.mactech.com/articles/mactech/Vol.06/06.04/Lexical Analysis/index.html

3

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore-21.

 FACULTY OF ENGINEERING
 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

13BECS603- PRINCIPLES OF COMPILER DESIGN

LECTURE PLAN

S.NO

DESCRIPTION OF

PORTION TO BE

COVERED

HOURS

Reference Book & Page Nos.

Used for teaching

TEACHING

AIDS

1
Discussion on the

Fundamentals of Compilers
1 R[1] Page no 17-33

PPT

2
Introduction to Types of

Compilers-uses of compilers
1 R[1] Page no 12-14

PPT

UNIT- I INTRODUCTION TO COMPILING

3

Compilers

Analysis of the source

program

1
R[2]-Page no 1.1-1.3

R[1]-Page no1-3
BB

4 Phases of compiler 1
R[1]-Page no 4-11

R[2]-Page no1.6-1.10
BB

5

Tutorial:

Compilers

Phases of compiler

1
 R[2]-Page no 1.1-1.3

R[1]-Page no1-3
PPT

6
Cousins of the compiler

Grouping of phases
1 R[2]-Page no 1.14-1.17 BB

7
Compiler construction tools

Lexical Analysis
1 R[2]-Page no 1.19 PPT

8
The role of the lexical

analyzer
1 R[2]-Page no 1.25-1.28 PPT

4

9

Tutorial: Lexical Analysis

The role of the lexical

analyzer

1 R[2]-Page no 1.25-1.28 PPT

10
Input buffering-Tokens

Specification

1 R[2]-Page no 1.28-1.29 PPT

TOTAL HOURS FOR UNIT-I 10

UNIT- II SYNTAX ANALYSIS

11

The role of the parser

writing a grammar
1

R[1]-Page no 191-195

R[2]-Page no 2.9-2..16

BB

12 Context-free grammars 1 R[2]-Page no 197-206 PPT

13
Tutorial hour –

Context-free grammars
1 R[2]-Page no 197-206 PPT

14

Top-down parsing

Recursive-descent parser

Predictive parser

1
R[1]-Page no 217-231

R[2]-Page no 2.16-2.19
BB

15
Constructing an SLR(1)

parsing table
1

R[1]-Page no 252-248

R[2]-Page no 2.43

BB

16

Bottom-up Parsing

Shift reduce parsing

Operator-precedence parsing

1
R[2]-Page no 2.26-2.37

R[1] Page no 233-240
PPT

17

Tutorial :

Bottom-up Parsing

Shift reduce parsing

1
R[2]-Page no 2.26-2.37

R[1] Page no 233-240
BB

18
LR Parsers

SLR Parser
1

R[1]-Page no 241-248

R[2]-Page no 2.39-2.42
BB

19
Canonical LR Parser

1
R[1]-Page no 259-261

PPT

5

20
LALR Parser

1
R[1]-Page no 266-277

R[2]-Page no 2.62
PPT

TOTAL HOURS FOR UNIT-II 10

UNIT -III INTERMEDIATE CODE GENERATION

21

Intermediate languages

 1 R[2]-Page no 3.1-3.6 BB

22

Declarations

Assignment statements
1

R[1]-Page no 370-379

R[2] Page no 3.13-3.14
BB

23
Boolean expressions

1

R[1]-Page no 399-409

R[2] Page no 3.24-3.26
BB

24
Tutorial:

Boolean expressions

1
R[1]-Page no 399-409

R[2] Page no 3.24-3.26
BB

25
Case statements

1
R[1]-Page no 418-421

R[2] Page no 33.31-3.32
PPT

26 Backpatching
 1 R[2] Page no 3.40 BB

27

Tutorial: Case statements

1
R[1]-Page no 418-421

R[2] Page no 33.31-3.32
PPT

28
Procedure calls

1 R[2] Page no 3.41-3.45 PPT

29 Symbol table 1 R[2] Page no 3.41-3.45 PPT

TOTAL HOURS FOR UNIT-III 9

UNIT- IV CODE GENERATION

30

Issues in the design of a code

generator

1
R[1]-Page no 501-505

R[2] Page no 4.2-4.3
BB

31
The target machine

1

R[1]-Page no 512-516

R[2] Page no 4.6
BB

6

32
Run-time storage management

 1
R[1]-Page no 427-440

R[2] Page no 4.6-4.10
BB

33
Tutorial :

Run-time storage management

1
R[1]-Page no 427-440

R[2] Page no 4.6-4.10
BB

34

Basic blocks and flow graphs

Next use information, a

simple code generator

1 R[2] Page no 4.10-4.14 BB

35
The dag representation of

basic blocks

1 R[2] Page no 4.10-4.14 PPT

36

Tutorial:

The dag representation of

basic blocks

1 R[2] Page no 4.10-4.14 PPT

37
Peephole optimization

1
R[1]-Page no 549-553

R[2]-Page no 4.22-4.24
BB

TOTAL HOURS FOR UNIT-IV 8

UNIT- V CODE OPTIMIZATION AND RUN TIME ENVIRONMENTS

38

Introduction to code

optimization

1
R[1]-Page no 583-596

R[2]-Page no 5.1-5.2
BB

39

The principle sources of

optimization

1
R[1]-Page no 583-596

R[2]-Page no 5.3-5.11
BB

40

Optimization of basic blocks

Global data flow analysis 1 R[2]-Page no 5.3-5.11

BB

41
Tutorial

Code optimization
1 R[2]-Page no 5.3-5.11

BB

42

Run time environment

1 R[2]-Page no 5.20 PPT

43

Source Language issues

1 R[2]-Page no 5.20 BB

44

Storage Organization

 Storage Allocation strategies

1 R[2]-Page no 5.27-5.31 BB

45

Tutorial :

Storage Organization

1 R[2]-Page no 5.27-5.31 BB

7

46
Access to non-local names,

parameter missing

R[2]-page no

5.32
BB

47
Discussion on Past Five Year End Semester Question Paper

1

TOTAL HOURS FOR UNIT-V 10

TOTAL LECTURE HOURS 37

TOTAL TUTORIAL HOURS 10

TOTAL HOURS 47

REFERENCES

1
Alfred Aho, Ravi Sethi, Jeffrey D Ullman, 2006, Compilers Principles, Techniques and Tools,

4
th

 Edition, Pearson Education Asia

2
Author: P.Kalaiselvi, Principles Of Compiler Design A.A.R.Senthikumaar, 2008, 3

rd
 edition,

charulatha publication, India

3
Allen I. Holub, 2003, Compiler Design in C, 4

th
 Edition, Prentice Hall of India.

4

Fischer.C.N and R.J.LeBlanc, 2003, Crafting a compiler with C, 3
rd

 Edition, Benjamin

Cummings.

5 Bennet.J.P, 2003, Introduction to Compiler Techniques, 2
nd

 Edition, Tata McGraw-Hill

Faculty In charge HOD

8

LECTURE NOTES

CHAPTER I- LEXICAL ANALYSIS

1.1 INRODUCTION TO COMPILING

Translator:
It is a program that translates one language to another.

source code Translator target code

Figure1.1:translator

Types of Translator:
1.Interpreter

2.Compiler

3.Assembler

1.Interpreter:
It is one of the translators that translate high level language to low level language.

high level language Interpreter low level language

Figure 1.2: Interpreter

During execution, it checks line by line for errors.

Example: Basic, Lower version of Pascal.

2.Assembler:
It translates assembly level language to machine code.

assembly language

machine code

Assembler

 Figure 1.3:Assembler

Example: Microprocessor 8085, 8086.

3.Compiler:

It is a program that translates one language(source code) to another language (target
code).

source code

target code

Compiler

Figure 1.4:Compiler

It executes the whole program and then displays the errors.

Example: C, C++, COBOL, higher version of Pascal.

9

Difference between compiler and interpreter:
Compiler

It is a translator that translates high level to

low level language

Interpreter

It is a translator that translates high level to

low level language

It displays the errors after the whole program is It checks line by line for errors.

executed.

Examples: Basic, lower version of Pascal. Examples: C, C++, Cobol, higher version of

 Pascal.

10

1.1.1 PARTS OF COMPILATION

There are 2 parts to compilation:

1. Analysis

2. Synthesis

Analysis part breaks down the source program into constituent pieces and creates an

intermediate representation of the source program.

Synthesis part constructs the desired target program from the intermediate representation.

source code

Analysis

 intermediate code
Synthesis

object code

Figure 1.5:Parts of Compilation

Software tools used in Analysis part:

1) Structure editor:
Takes as input a sequence of commands to build a source program. The structure editor not

only performs the text-creation and modification functions of an ordinary text editor, but it also

analyzes the program text, putting an appropriate hierarchical structure on the source program.

For example , it can supply key words automatically - while …. do and begin….. end.

2) Pretty printers :
A pretty printer analyzes a program and prints it in such a way that the structure of the

program becomes clearly visible. For example, comments may appear in a special font.

3) Static checkers :
A static checker reads a program, analyzes it, and attempts to discover potential bugs

without running the program. For example, a static checker may detect that parts of the

source program can never be executed.

4) Interpreters :

Translates from high level language (BASIC, FORTRAN, etc..) into machine language.

An interpreter might build a syntax tree and then carry out the operations at the nodes as it

walks the tree. Interpreters are frequently used to execute command language since each

operator executed in a command language is usually an invocation of a complex routine such

as an editor or complier.

11

1.2 ANALYSIS OF THE SOURCE PROGRAM

Analysis consists of 3 phases:

Linear/Lexical Analysis :

It is also called scanning. It is the process of reading the characters from left to right and

grouping into tokens having a collective meaning. For example, in the assignment statement

a=b+c*2, the characters would be grouped into the following tokens:

i) The identifier1 „a‟

ii) The assignment symbol (=)

iii) The identifier2 „b‟

iv) The plus sign (+)

v) The identifier3 „c‟

vi) The multiplication sign (*)

vii) The constant „2‟

Syntax Analysis :

It is called parsing or hierarchical analysis. It involves grouping the tokens of the source

program into grammatical phrases that are used by the compiler to synthesize output. They are

represented using a syntax tree as shown below:

=

a +

b *

c 2

Figure 1.6:Syntax Analysis

A syntax tree is the tree generated as a result of syntax analysis in which the interior

nodes are the operators and the exterior nodes are the operands. This analysis shows an

error when the syntax is incorrect.

Semantic Analysis :

It checks the source programs for semantic errors and gathers type information for the

subsequent code generation phase. It uses the syntax tree to identify the operators and

operands of statements. An important component of semantic analysis is type checking.

Here the compiler checks that each operator has operands that are permitted by the source

language specification.

12

1.3 PHASES OF COMPILER

A Compiler operates in phases, each of which transforms the source program from

one representation into another. The following are the phases of the compiler:

Main phases:
1) Lexical analysis

2)Syntax analysis

3)Semantic analysis

4) Intermediate code generation

5)Code optimization

6)Code generation

Sub-Phases:
1)Symbol table management

2)Error handling

Figure 1.7:Phases of Compiler

LEXICAL ANALYSIS:
It is the first phase of the compiler. It gets input from the source program and produces

tokens as output. It reads the characters one by one, starting from left to right and forms the

tokens.
Token : It represents a logically cohesive sequence of characters such as keywords,

operators, identifiers, special symbols etc.

Example: a +b =20

Here, a,b,+,=,20 are all separate tokens.

Group of characters forming a token is called the Lexeme.

13

The lexical analyser not only generates a token but also enters the lexeme into the

symbol table if it is not already there.

SYNTAX ANALYSIS:
It is the second phase of the compiler. It is also known as parser. It gets the token stream as

input from the lexical analyser of the compiler and generates syntax tree as the output.
Syntax tree: It is a tree in which interior nodes are operators and exterior nodes are operands.

Example: For a=b+c*2, syntax tree is

=

a +

b *

c 2

Figure 1.8: Syntax Tree

SEMANTIC ANALYSIS:
It is the third phase of the compiler. It gets input from the syntax analysis as parse tree and

checks whether the given syntax is correct or not. It performs type conversion of all the data

types into real data types.

INTERMEDIATE CODE GENERATION:
It is the fourth phase of the compiler. It gets input from the semantic analysis and converts

the input into output as intermediate code such as three-address code. The three-address code

consists of a sequence of instructions, each of which has atmost three operands.

Example: t1=t2+t3

CODE OPTIMIZATION:

It is the fifth phase of the compiler. It gets the intermediate code as input and produces

optimized intermediate code as output. This phase reduces the redundant code and attempts to

improve the intermediate code so that faster-running machine code will result. During the code

optimization, the result of the program is not affected. To improve the code generation, the

optimization involves,

- deduction and removal of dead code (unreachable code).

- calculation of constants in expressions and terms.

- collapsing of repeated expression into temporary string.

- loop unrolling.

- moving code outside the loop.

- removal of unwanted temporary variables.

14

CODE GENERATION:

It is the final phase of the compiler. It gets input from code optimization phase and produces

the target code or object code as result.Intermediate instructions are translated into a sequence of

machine instructions that perform the same task. The code generation involves

- allocation of register and memory

- generation of correct references

- generation of correct data types

- generation of missing code

SYMBOL TABLE MANAGEMENT:

Symbol table is used to store all the information about identifiers used in the program. It is a

data structure containing a record for each identifier, with fields for the attributes of the

identifier. It allows to find the record for each identifier quickly and to store or retrieve data from

that record. Whenever an identifier is detected in any of the phases, it is stored in the symbol

table.

ERROR HANDLING:

Each phase can encounter errors. After detecting an error, a phase must handle the error so

that compilation can proceed. In lexical analysis, errors occur in separation of tokens. In

syntax analysis, errors occur during construction of syntax tree. In semantic analysis, errors

occur when the compiler detects constructs with right syntactic structure but no meaning and

duringtype conversion. In code optimization, errors occur when the result is affected by the

optimization. In code generation, it shows error when code is missing etc.

To illustrate the translation of source code through each phase, consider the statement

a=b+c*2. The figure shows the representation of this statement after each phase:

15

Symbol Table

a id1
b id2
c id3

a=b+c*2

Lexical analyser

 id1=id2+id3*2
Syntax analyser

=

id1 +

id2 *

id3 2

Semantic analyser

=

id1 +

id2 *

id3 inttoreal

2

Intermediate code generator

temp1=inttoreal(2)

temp2=id3*temp1

temp3=id2+temp2

id1=temp3

Code optimizer

temp1=id3*2.0

id1=id2+temp1

Code generator

MOVF id3,R2

MULF #2.0,R2

MOVF id2,R1

ADDF R2,R1

MOVF R1,id1

16

1.4 COUSINS OF COMPILER
1. Preprocessor

2. Assembler

3. Loader and Link-editor

PREPROCESSOR
A preprocessor is a program that processes its input data to produce output that is used as

input to another program. The output is said to be a preprocessed form of the input data, which

is often used by some subsequent programs like compilers.

They may perform the following functions :

1. Macro processing

2. File Inclusion

3. Rational Preprocessors

4. Language extension

1. Macro processing:
A macro is a rule or pattern that specifies how a certain input sequence should be

mapped to an output sequence according to a defined procedure. The mapping process that

instantiates a macro into a specific output sequence is known as macro expansion.

2. File Inclusion:

Preprocessor includes header files into the program text. When the preprocessor finds

an #include directive it replaces it by the entire content of the specified file.

3. Rational Preprocessors:

These processors change older languages with more modern flow-of-control and data-

structuring facilities.

4. Language extension :

These processors attempt to add capabilities to the language by what amounts to built-in

macros. For example, the language Equel is a database query language embedded in C.

ASSEMBLER

Assembler creates object code by translating assembly instruction mnemonics

into machine code. There are two types of assemblers:
 One-pass assemblers go through the source code once and assume that all symbols

will be defined before any instruction that references them.
 Two-pass assemblers create a table with all symbols and their values in the first pass,

and then use the table in a second pass to generate code.

LINKER AND LOADER

A linker or link editor is a program that takes one or more objects generated by

a compiler and combines them into a single executable program.

Three tasks of the linker are :

1. Searches the program to find library routines used by program, e.g. printf(), math routines.

2. Determines the memory locations that code from each module will occupy and relocates

its instructions by adjusting absolute references

3. Resolves references among files.

A loader is the part of an operating system that is responsible for loading programs in

memory, one of the essential stages in the process of starting a program.

17

1.5 GROUPING OF THE PHASES

Compiler can be grouped into front and back ends:

- Front end: analysis (machine independent)

These normally include lexical and syntactic analysis, the creation of the symbol table,

semantic analysis and the generation of intermediate code. It also includes error handling

that goes along with each of these phases.

- Back end: synthesis (machine dependent)

It includes code optimization phase and code generation along with the necessary

error handling and symbol table operations.

Compiler passes

A collection of phases is done only once (single pass) or multiple times (multi pass)

 Single pass: usually requires everything to be defined before being used in

source program.
 Multi pass: compiler may have to keep entire program representation in memory.

Several phases can be grouped into one single pass and the activities of these phases are

interleaved during the pass. For example, lexical analysis, syntax analysis, semantic analysis

and intermediate code generation might be grouped into one pass.

1.6 COMPILER CONSTRUCTION TOOLS

These are specialized tools that have been developed for helping implement

various phases of a compiler. The following are the compiler construction tools:

1) Parser Generators:

-These produce syntax analyzers, normally from input that is based on a context-free

grammar.
-It consumes a large fraction of the running time of a compiler. -

Example-YACC (Yet Another Compiler-Compiler).

2) Scanner Generator:

-These generate lexical analyzers, normally from a specification based on regular

expressions. -The basic organization of lexical analyzers is based on finite automation.

3) Syntax-Directed Translation:

-These produce routines that walk the parse tree and as a result generate intermediate

code. -Each translation is defined in terms of translations at its neighbor nodes in the tree.

4) Automatic Code Generators:

-It takes a collection of rules to translate intermediate language into machine language. The

rules must include sufficient details to handle different possible access methods for data.

5) Data-Flow Engines:

-It does code optimization using data-flow analysis, that is, the gathering of information

about how values are transmitted from one part of a program to each other part.

18

1.7 LEXICAL ANALYSIS

Lexical analysis is the process of converting a sequence of characters into a sequence of

tokens. A program or function which performs lexical analysis is called a lexical analyzer or

scanner. A lexer often exists as a single function which is called by a parser or another function.

1.7.1 THE ROLE OF THE LEXICAL ANALYZER

The lexical analyzer is the first phase of a compiler. Its main task is to read the input

characters and produce as output a sequence of tokens that the parser uses for syntax analysis.

token

source lexical parser

program analyser

get next token

symbol

table

Figure 1.10:Role of Lexical Analyzer

Upon receiving a “get next token” command from the parser, the lexical analyzer

reads input characters until it can identify the next token.

1.7.2 ISSUES OF LEXICAL ANALYZER

There are three issues in lexical analysis:
1. To make the design simpler.

2. To improve the efficiency of the compiler.
3. To enhance the computer portability.

1.7.3 TOKENS
A token is a string of characters, categorized according to the rules as a symbol (e.g.,

IDENTIFIER, NUMBER, COMMA). The process of forming tokens from an input stream of

characters is called tokenization.

A token can look like anything that is useful for processing an input text stream or text

file. Consider this expression in the C programming 10language: sum=3+2;

Table 1.1:Tokens

Lexeme Token type

sum Identifier
= Assignment operator

3 Number

+ Addition operator

2 Number

 End of statement

19

LEXEME:

Collection or group of characters forming tokens is called Lexeme.

PATTERN:
A pattern is a description of the form that the lexemes of a token may take.In the case of

a keyword as a token, the pattern is just the sequence of characters that form the keyword. For

identifiers and some other tokens, the pattern is a more complex structure that is matched by

many strings.

1.7.4 Attributes for Tokens

Some tokens have attributes that can be passed back to the parser. The lexical analyzer

collects information about tokens into their associated attributes. The attributes influence the

translation of tokens.

i) Constant : value of the constant

ii) Identifiers: pointer to the corresponding symbol table entry.

1.7.5 ERROR RECOVERY STRATEGIES IN LEXICAL ANALYSIS:
The following are the error-recovery actions in lexical analysis:

1)Deleting an extraneous character.

2) Inserting a missing character.

 3)Replacing an incorrect character by a correct character.

 4)Transforming two adjacent characters.

 5)Panic mode recovery: Deletion of successive characters from the token until

error is resolved.

1.8 INPUT BUFFERING

We often have to look one or more characters beyond the next lexeme before we can

be sure we have the right lexeme. As characters are read from left to right, each character is

stored in the buffer to form a meaningful token as shown below:

Forward pointer

 A = B + C

Beginning of the token Look ahead pointer

Figure1.11:Input Buffering

We introduce a two-buffer scheme that handles large look aheads safely. We then consider

an improvement involving "sentinels" that saves time checking for the ends of buffers.

20

1.8.1 BUFFER PAIRS
A buffer is divided into two N-character halves, as shown below

: : E : : = : : M : * C : * : : * : 2 : eof

lexeme_beginning

forward

Figure 1.12: Buffer Pair

Each buffer is of the same size N, and N is usually the number of characters on one

disk block. E.g., 1024 or 4096 bytes. Using one system read command we can read N

characters into a buffer. If fewer than N characters remain in the input file, then a special

character, represented by eof, marks the end of the source file. Two pointers to the input are

maintained:

1. Pointer lexeme_beginning, marks the beginning of the current lexeme,

whose extent we are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found.
Once the next lexeme is determined, forward is set to the character at its

right end.

The string of characters between the two pointers is the current lexeme. After

the lexeme is recorded as an attribute value of a token returned to the parser,

lexeme_beginning is set to the character immediately after the lexeme just found.

Advancing forward pointer:

Advancing forward pointer requires that we first test whether we have reached the end of

one of the buffers, and if so, we must reload the other buffer from the input, and move forward

to the beginning of the newly loaded buffer. If the end of second buffer is reached, we must

again reload the first buffer with input and the pointer wraps to the beginning of the buffer.

Code to advance forward pointer:

if forward at end of first half then begin

reload second half;

forward := forward + 1

end

else if forward at end of second half then

begin reload second half;

move forward to beginning of first half

end

else forward := forward + 1;

SENTINELS
For each character read, we make two tests: one for the end of the buffer, and one to

determine what character is read. We can combine the buffer-end test with the test for the

current character if we extend each buffer to hold a sentinel character at the end. The sentinel is

a special character that cannot be part of the source program, and a natural choice is the

character eof.

21

The sentinel arrangement is as shown below:

: : E : : = : : M : * : eof C : * : : * : 2 : eof : : : eof

lexeme_beginning

forwad

Figure 1.13:Sentinels

Note that eof retains its use as a marker for the end of the entire input. Any eof that

appears other than at the end of a buffer means that the input is at an end.

Code to advance forward pointer:

forward : = forward + 1; if

forward ↑ = eof then begin

if forward at end of first half then begin

reload second half;

forward := forward + 1

end

else if forward at end of second half then

begin reload first half;

move forward to beginning of first

half end

else /* eof within a buffer signifying end of input

*/ terminate lexical analysis

end

1.9 SPECIFICATION OF TOKENS
There are 3 specifications of tokens:

1) Strings

2) Language

3)Regular expression

Strings and Languages

An alphabet or character class is a finite set of symbols.

A string over an alphabet is a finite sequence of symbols drawn from that alphabet.

A language is any countable set of strings over some fixed alphabet.

In language theory, the terms "sentence" and "word" are often used as synonyms for

"string." The length of a string s, usually written |s|, is the number of occurrences of symbols in s.

For example, banana is a string of length six. The empty string, denoted ε, is the string of length

zero.

Operations on strings
The following string-related terms are commonly used:

22

1. A prefix of string s is any string obtained by removing zero or more symbols from the

end of strings.For example, ban is a prefix of banana.

2. A suffix of string s is any string obtained by removing zero or more symbols from

the beginning of s. For example, nana is a suffix of banana.

3. A substring of s is obtained by deleting any prefix and any suffix from s. For

example, nan is a substring of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes,

suffixes, and substrings, respectively of s that are not ε or not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more not necessarily

consecutive positions of s. For example, baan is a subsequence of banana.

Operations on languages:
The following are the operations that can be applied to languages:

1.Union
2.Concatenation

3.Kleene closure

4.Positive closure

The following example shows the operations on strings: Let L={0,1} and S={a,b,c}

1. Union : L U S={0,1,a,b,c}
2. Concatenation : L.S={0a,1a,0b,1b,0c,1c}
3. Kleene closure : L

*
={ ε,0,1,00….}

4. Positive closure : L
+
={0,1,00….}

Regular Expressions

Each regular expression r denotes a language L(r).Here are the rules that define the

regular expressions over some alphabet Σ and the languages that those expressions denote:

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole

member is the empty string.

2. If„a‟is a symbol in Σ, then „a‟is a regular expression, and L(a) = {a}, that is, the

language with one string, of length one, with „a‟in its one position.

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then,

a) (r)|(s) is a regular expression denoting the language L(r) U L(s).

b) (r)(s) is a regular expression denoting the language L(r)L(s).

c) (r)* is a regular expression denoting (L(r))*.

d) (r) is a regular expression denoting L(r).

4. The unary operator * has highest precedence and is left associative.

5. Concatenation has second highest precedence and is left associative.

6. It| has lowest precedence and is left associative.

Regular set

A language that can be defined by a regular expression is called a regular set.

If two regular expressions r and s denote the same regular set, we say they are equivalent and

write r = s.

23

There are a number of algebraic laws for regular expressions that can be used to

manipulate into equivalent forms.

For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative.

Regular Definitions

Giving names to regular expressions is referred to as a Regular definition. If Σ is an

alphabet of basic symbols, then a regular definition is a sequence of definitions of the form

dl → r 1 d2

→ r2
………

dn → rn

1. Each di is a distinct name.

2. Each ri is a regular expression over the alphabet Σ U {dl, d2,. . . , di-l}.

Example: Identifiers is the set of strings of letters and digits beginning with a letter. Regular

definition for this set:

letter → A | B | …. | Z | a | b | …. | z |

digit → 0 | 1 | …. | 9

id → letter (letter | digit) *

Shorthands

Certain constructs occur so frequently in regular expressions that it is convenient to

introduce notational shorthands for them.

1. One or more instances (+):

- The unary postfix operator + means “ one or more instances of” .

- If r is a regular expression that denotes the language L(r), then (r)
+
 is a regular expression

that denotes the language (L (r))
+

- Thus the regular expression a
+
 denotes the set of all strings of one or more a‟s.

- The operator
+
 has the same precedence and associativity as the operator

*
.

2. Zero or one instance (?):

- The unary postfix operator ? means “zero or one instance of”.

- The notation r? is a shorthand for r | ε.

- If „r‟ is a regular expression, then (r)? is a regular expression that denotes the language

L(r) U { ε }.

24

3. Character Classes:

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression

a | b | c.

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z.

- We can describe identifiers as being strings generated by the regular expression,

[A–Za–z][A–Za–z0–9]*

Non-regular Set

A language which cannot be described by any regular expression is a non-regular set.

Example: The set of all strings of balanced parentheses and repeating strings cannot be described

by a regular expression. This set can be specified by a context-free grammar.

RECOGNITION OF TOKENS

Consider the following grammar fragment:

stmt → if expr then stmt

|if expr then stmt else stmt

|ε

expr → term relop term

|term

term → id

|num

where the terminals if , then, else, relop, id and num generate sets of strings given by the

following regular definitions:

If → if

Then → then

Else → else
Relop → <|<=|=|<>|>|>=
Id → letter(letter|digit)

*

Num → digit
+
 (.digit

+
)?(E(+|-)?digit

+
)?

For this language fragment the lexical analyzer will recognize the keywords if, then, else,

as well as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords

are reserved; that is, they cannot be used as identifiers.

Transition diagrams

It is a diagrammatic representation to depict the action that will take place when a lexical

analyzer is called by the parser to get the next token. It is used to keep track of information about

the characters that are seen as the forward pointer scans the input.

25

Figure 1.14:Transition Diagram

1.10 A LANGUAGE FOR SPECIFYING LEXICAL ANALYZER

There is a wide range of tools for constructing lexical analyzers.

 Lex

 YACC

LEX

Lex is a computer program that generates lexical analyzers. Lex is commonly used with

the yacc parser generator.

Creating a lexical analyzer

First, a specification of a lexical analyzer is prepared by creating a program lex.l in the

Lex language. Then, lex.l is run through the Lex compiler to produce a C program lex.yy.c.

Finally, lex.yy.c is run through the C compiler to produce an object program a.out, which is the

lexical analyzer that transforms an input stream into a sequence of tokens.

lex.l
Lex

lex.yy.c

compiler

lex.yy.c
 C compiler

 a.out

26

input a.out sequence of

stream tokens

Figure 1.15: Creating Lexical Analyzer

Lex Specification
A Lex program consists of three parts:

{ definitions }

%%

{ rules }

%%

{ user subroutines }

 Definitions include declarations of variables, constants, and regular definitions

 Rules are statements of the form

p1 {action1}

p2 {action2} …

pn {actionn}
where pi is regular expression and actioni describes what action the lexical analyzer

should take when pattern pi matches a lexeme. Actions are written in C code.

 User subroutines are auxiliary procedures needed by the actions. These can be compiled

separately and loaded with the lexical analyzer.

YACC- YET ANOTHER COMPILER-COMPILER
Yacc provides a general tool for describing the input to a computer program. The Yacc

user specifies the structures of his input, together with code to be invoked as each such structure

is recognized. Yacc turns such a specification into a subroutine that handles the input process;

frequently, it is convenient and appropriate to have most of the flow of control in the user's

application handled by this subroutine.

1.11 FINITE AUTOMATA

Finite Automata is one of the mathematical models that consist of a number of states and

edges. It is a transition diagram that recognizes a regular expression or grammar.

Types of Finite Automata

There are tow types of Finite Automata :

 Non-deterministic Finite Automata (NFA)

 Deterministic Finite Automata (DFA)

1.11.1 Non-deterministic Finite Automata

NFA is a mathematical model that consists of five tuples denoted by

M = {Qn, Ʃ,δ, q0, fn}
Qn – finite set of states

Ʃ – finite set of input symbols

δ – transition function that maps state-symbol pairs to set of states

27

q0 – starting state

fn – final state

1.11.2 Deterministic Finite Automata
DFA is a special case of a NFA in which

i) no state has an ε-transition.

ii) there is at most one transition from each state on any input.

DFA has five tuples denoted by

M = {Qd,Ʃ, δ, q0, fd}
Qd – finite set of states

Ʃ – finite set of input symbols

δ – transition function that maps state-symbol pairs to set of states

q0 – starting state

fd – final state

1.11.3 Construction of DFA from regular expression

The following steps are involved in the construction of DFA from regular expression:

i) Convert RE to NFA using Thomson‟s rules

ii) Convert NFA to DFA

iii) Construct minimized DFA

UNIT-II

CHAPTER-II

SYNTAX ANALYSIS AND RUNTIME ENVIRONMENT

2.1 SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and

generates a syntax tree or parse tree.

Advantages of grammar for syntactic specification :

1. A grammar gives a precise and easy-to-understand syntactic specification of a

programming language.
2. An efficient parser can be constructed automatically from a properly designed grammar.
3. A grammar imparts a structure to a source program that is useful for its translation into

object code and for the detection of errors.
4. New constructs can be added to a language more easily when there is a grammatical

description of the language.

2.1.1 THE ROLE OF PARSER

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and

verifies that the string can be generated by the grammar for the source language. It reports any

syntax errors in the program. It also recovers from commonly occurring errors so that it can

continue processing its input.

Position of parser in compiler model

28

source lexical token parser parse rest of intermediate

program analyzer
get next token

 tree front end representation

symbol

table

Figure 2.1:Role of Parser

Functions of the parser:

5) It verifies the structure generated by the tokens based on the grammar.
6) It constructs the parse tree.
7) It reports the errors.
8) It performs error recovery.

Issues :

Parser cannot detect errors such as:

29

1. Variable re-declaration
2. Variable initialization before use.
3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling :

Programs can contain errors at many different levels. For example :
1. Lexical, such as misspelling a keyword.
2. Syntactic, such as an arithmetic expression with unbalanced parentheses.
3. Semantic, such as an operator applied to an incompatible operand.
4. Logical, such as an infinitely recursive call.

Functions of error handler:

1. It should report the presence of errors clearly and accurately.
2. It should recover from each error quickly enough to be able to detect subsequent errors.
3. It should not significantly slow down the processing of correct programs.

2.1.2 Error recovery strategies:

The different strategies that a parse uses to recover from a syntactic error are:

1. Panic mode
2. Phrase level
3. Error productions
4. Global correction

Panic mode recovery:

On discovering an error, the parser discards input symbols one at a time until a

synchronizing token is found. The synchronizing tokens are usually delimiters, such as

semicolon or end. It has the advantage of simplicity and does not go into an infinite loop. When

multiple errors in the same statement are rare, this method is quite useful.

Phrase level recovery:

On discovering an error, the parser performs local correction on the remaining input that

allows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc.

Error productions:

The parser is constructed using augmented grammar with error productions. If an error

production is used by the parser, appropriate error diagnostics can be generated to indicate the

erroneous constructs recognized by the input.

Global correction:
Given an incorrect input string x and grammar G, certain algorithms can be used to find a

parse tree for a string y, such that the number of insertions, deletions and changes of tokens is as

small as possible. However, these methods are in general too costly in terms of time and space.

30

2.2 CONTEXT-FREE GRAMMARS

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start

symbol and productions.

Terminals : These are the basic symbols from which strings are formed.

Non-Terminals : These are the syntactic variables that denote a set of strings. These help to

define the language generated by the grammar.

Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of

strings it denotes is the language defined by the grammar.

Productions : It specifies the manner in which terminals and non-terminals can be combined to

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a

string of non-terminals and terminals.

Example of context-free grammar: The following grammar defines simple arithmetic

expressions:

expr → expr op expr

expr → (expr)
expr → - expr

expr → id op

→ + op → -

op → *

op → /

op → ↑

In this grammar,

 id + - * / ↑() are terminals.
 expr , op are non-terminals.
 expr is the start symbol.
 Each line is a production.

2.2.1 Derivations:

Two basic requirements for a grammar are :
 To generate a valid string.
 To recognize a valid string.

Derivation is a process that generates a valid string with the help of grammar by replacing the

non-terminals on the left with the string on the right side of the production.

Example : Consider the following grammar for arithmetic expressions :

E → E+E |E*E |(E) | - E | id

31

To generate a valid string - (id+id) from the grammar the steps are
 E → - E
 E → - (E)
 E → - (E+E)
 E → - (id+E)
 E → - (id+id)

In the above derivation,
 E is the start symbol.

 - (id+id) is the required sentence (only terminals).

 Strings such as E, -E, -(E), . . . are called sentinel forms.

Types of derivations:

The two types of derivation are:

 Left most derivation
 Right most derivation.

 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for

replacement.

 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first

for replacement.

Example:

Given grammar G : E → E+E |E*E |(E) | - E |id

Sentence to be derived : – (id+id)

LEFTMOST DERIVATION RIGHTMOST DERIVATION

E → - E E → - E

E → - (E) E → - (E)

E → - (E+E) E → - (E+E)

E → - (id+E) E → - (E+id)

E → - (id+id) E → - (id+id)

 String that appear in leftmost derivation are called left sentinel forms.

 String that appear in rightmost derivation are called right sentinel forms.

Sentinels:

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or

terminals, then α is called the sentinel form of G.

32

Yield or frontier of tree:

Each interior node of a parse tree is a non-terminal. The children of node can be a

terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form

in the parse tree is called yield or frontier of the tree.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

E → E+ E E → E* E

E → id + E E → E + E * E

E → id + E * E E → id + E * E

E → id + id * E E → id + id * E

E → id + id * id E → id + id * id

The two corresponding parse trees are :

 E E

E + E E * E

id E * E E + E id

id id

 id id

2.3 WRITING A GRAMMAR

There are four categories in writing a grammar :

1. Regular Expression Vs Context Free Grammar
 Eliminating ambiguous grammar.
 Eliminating left-recursion
 Left-factoring.

Each parsing method can handle grammars only of a certain form hence, the initial grammar

may have to be rewritten to make it parsable.

33

2.3.1 Regular Expressions vs. Context-Free Grammars:

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR

It is used to describe the tokens of programming

languages.

It is used to check whether the given input is

valid or not using transition diagram.

It consists of a quadruple where S → start

symbol, P → production, T → terminal, V →

variable or non- terminal.
It is used to check whether the given input is

valid or not using derivation.

The transition diagram has set of states and

edges.

It has no start symbol.

The context-free grammar has set of

productions.

It has start symbol.

It is useful for describing the structure of lexical

constructs such as identifiers, constants,

keywords, and so forth.

It is useful in describing nested structures

such as balanced parentheses, matching

begin-end‟s and so on.

 The lexical rules of a language are simple and RE is used to describe them.

 Regular expressions provide a more concise and easier to understand notation for tokens

than grammars.

 Efficient lexical analyzers can be constructed automatically from RE than from

grammars.

 Separating the syntactic structure of a language into lexical and nonlexical parts provides

a convenient way of modularizing the front end into two manageable-sized components.

Eliminating ambiguity:

Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost

derivation can be eliminated by re-writing the grammar.

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following

two parse trees for leftmost derivation :

34

1. stmt

if expr then stmt

 E1

 if expr then stmt else stmt

2.

stmt

E

2

S1

S2

if expr then stmt else stmt

E

1

S

2

 if expr then stmt

E2 S1

To eliminate ambiguity, the following grammar may be used:

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt | other

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt

2.3.2 Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive

grammars. Hence, left recursion can be eliminated as follows:

35

If there is a production A → Aα |β it can be replaced with a sequence of two productions

A → βA‟

A‟→ αA‟ | ε without

changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:

E → E+T |T

T → T*F |F

F→ (E) |id

First eliminate the left recursion for E

as E → TE‟

E‟ → +TE‟ |ε

Then eliminate for T

as T → FT‟

T‟→ *FT‟ | ε

Thus the obtained grammar after eliminating left recursion

is E → TE‟

E‟ → +TE‟ | ε

T → FT‟

T‟ → *FT‟ | ε

F → (E) |id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.
2. for i := 1 to n do begin

for j := 1 to i-1 do begin
replace each production of the form Ai → A j γ by

the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;
end
eliminate the immediate left recursion among the Ai-productions

end

36

2.3.3 Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. When it is not clear which of two alternative productions to use to

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have

seen enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A → αA‟

A‟→ β1 | β2

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS‟ | a
S‟→ eS |ε
E → b

PARSING

It is the process of analyzing a continuous stream of input in order to determine its

grammatical structure with respect to a given formal grammar.

Parse tree:

Graphical representation of a derivation or deduction is called a parse tree. Each interior

node of the parse tree is a non-terminal; the children of the node can be terminals or non-

terminals.

Types of parsing:

1. Top down parsing
2. Bottom up parsing

 Top–down parsing : A parser can start with the start symbol and try to transform it to the

input string.

Example : LL Parsers.

 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start

symbol.

Example : LR Parsers.

2.4 TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

37

Types of top-down parsing :

1. Recursive descent parsing
2. Predictive parsing

2.4.1 RECURSIVE DESCENT PARSING

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input.

 This parsing method may involve backtracking, that is, making repeated scans of the

input.

Example for backtracking :

Consider the grammar G : S → cAd

A → ab |a
and the input string w=cad.

The parse tree can be constructed using the followingtop-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to „c‟, the first symbol

of w. Expand the tree with the production of S.

S

c A d

Step2:

The leftmost leaf „c‟ matches the first symbol of w, so advance the input pointer to the second

symbol of w „a‟ and consider the next leaf „A‟. Expand A using the first alternative.

S

c A d

a b

Step3:

The second symbol „a‟ of w also matches with second leaf of tree. So advance the input pointer

to third symbol of w „d‟. But the third leaf of tree is b which does not match with the input

symbol d.

38

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

S

c A d

a

Now we can halt and announce the successful completion of parsing.

Example for recursive decent parsing:

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. Hence,

elimination of left-recursion must be done before parsing.

Consider the grammar for arithmetic expressions

E → E+T |T

T → T*F |F

F→ (E) |id

After eliminating the left-recursion the grammar

becomes, E → TE‟

E‟ → +TE‟ | ε

T → FT‟

T‟ → *FT‟ | ε

F → (E) |id

Now we can write the procedure for grammar as follows:

Recursive procedure:

Procedure E()

begin
T();

EPRIME();
end

39

Procedure EPRIME(

) begin
If input_symbol=‟+‟

then ADVANCE();
T();

EPRIME();
end

Procedure T()

begin
F();

TPRIME();
end

Procedure TPRIME(

) begin
If input_symbol=‟*‟

then ADVANCE();
F();

TPRIME();

end

Procedure F()

begin
If input-symbol=‟id‟ then

ADVANCE();
else if input-symbol=‟(„

then ADVANCE();
E();
else if input-symbol=‟)‟

then ADVANCE();
end

else ERROR();

Stack implementation:

To recognize input id+id*id :

Table 2.1: Stack implementation

PROCEDURE INPUT STRING

E()

T()

F()

ADVANCE()

id+id*id

id+id*id

id+id*id

id+id*id

40

TPRIME()

EPRIME()

ADVANCE()

T()

F()

ADVANCE()

TPRIME()

ADVANCE()

F()

ADVANCE()

TPRIME()

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

id+id*id

2.4.2 PREDICTIVE PARSING

 Predictive parsing is a special case of recursive descent parsing where no backtracking is

required.

 The key problem of predictive parsing is to determine the production to be applied for a

non-terminal in case of alternatives.

Non-recursive predictive parser

 INPUT a + b $

STACK

X

Predictive parsing program

OUTPUT

 Y

Z

$

Parsing Table M

Figure 2.2:Non-recursive predicative parser

41

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where „A‟ is anon-terminal and „a‟ is aterminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.
2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next

input symbol.
3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This

entry will either be an X-production of the grammar or an error entry.

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by

WVU. If M[X, a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for

the input is as follows:

set ip to point to the first symbol of w$;

repeat
let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then
if X = a then

pop X from the stack and advance ip

else error()
else /* X is a non-terminal */

if M[X, a] = X →Y1Y2 … Yk then begin

42

 pop X from the stack;

 push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

 output the production X → Y1 Y2 . . . Yk

 end

until X = $

else error()

/* stack is empty */

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is

in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

1. For each production A →α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

43

Example:

Consider the following grammar :

E → E+T |T
T → T*F |F
F→ (E) |id

After eliminating left-recursion the grammar is

E → TE‟
E‟ → +TE‟ |ε
T → FT‟
T‟ → *FT‟ | ε
F → (E) |id

First() :

FIRST(E) ={ (, id}

FIRST(E‟) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T‟) ={*, ε }

FIRST(F) ={ (, id }

Follow():

FOLLOW(E) ={ $,) }

FOLLOW(E‟) ={ $,) }

FOLLOW(T) ={ +, $,) }

FOLLOW(T‟) = { +, $,) }

FOLLOW(F) ={+, * , $,) }

 Table 2.2: Predictive parsing Er

NON- id + * () $

 TERMINAL

 E E → TE‟ E → TE‟

 E‟ E‟ → +TE‟ E‟ → ε E‟→ ε

 T T → FT‟ T → FT‟

 T‟ T‟→ ε T‟→ *FT‟ T‟ → ε T‟ → ε

 F F→ id F→ (E)

44

 Table 2.3:Stack implementation

stack

Input Output

 $E id+id*id $

 $E‟T id+id*id $ E → TE‟

 $E‟T‟F id+id*id $ T → FT‟

 $E‟T‟id id+id*id $ F→ id

 $E‟T‟ +id*id $

 $E‟ +id*id $ T‟ → ε

 $E‟T+ +id*id $ E‟ → +TE‟

 $E‟T id*id $

 $E‟T‟F id*id $ T → FT‟

 $E‟T‟id id*id $ F→ id

 $E‟T‟ *id $

 $E‟T‟F* *id $ T‟ → *FT‟

 $E‟T‟F id $

 $E‟T‟id id $ F→ id

 $E‟T‟ $

 $E‟ $ T‟ → ε

 $ $ E‟ → ε

LL(1) grammar:

The parsing table entries are single entries. So each location has not more than one entry. This

type of grammar is called LL(1) grammar.

Consider this following grammar:

S → iEtS | iEtSeS | a
E → b

After eliminating left factoring, we have

S → iEtSS‟ |a
S‟→ eS | ε
E → b

To construct a parsing table, we need FIRST()and FOLLOW() for all the non-terminals.

FIRST(S) ={ i, a }

FIRST(S‟) = {e, ε }

FIRST(E) ={ b}

FOLLOW(S) ={ $,e }

45

FOLLOW(S‟) = { $,e }

FOLLOW(E) = {t}

Table 2.4:Parsing table

NON- a b e i t $

TERMINAL

S S → a S → iEtSS‟

S‟ S‟→ eS S‟→ ε

 S‟→ ε

E E → b

Since there are more than one production, the grammar is not LL(1) grammar.

Actions performed in predictive parsing:

1. Shift
2. Reduce
3. Accept
4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.
3. Construct predictive parsing table.
4. Parse the given input string using stack and parsing table.

2.5 BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the root is

called bottom-up parsing.

A general type of bottom-up parser is a shift-reduce parser.

2.5.1 SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree

for an input string beginning at the leaves (the bottom) and working up towards the root (the

top).

Example:
Consider the grammar:
S → aABe
A → Abc | b
B→ d
The sentence to be recognized is abbcde.

46

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION

abbcde (A → b) S → aABe

aAbcde (A → Abc) → aAde

aAde (B → d) → aAbcde

aABe (S → aABe) → abbcde

S
The reductions trace out the right-most derivation in reverse.

Handles:

A handle of a string is a substring that matches the right side of a production, and whose

reduction to the non-terminal on the left side of the production represents one step along the

reverse of a rightmost derivation.

Example:

Consider the grammar:

E → E+E
E → E*E
E → (E)
E → id

And the input string id1+id2*id3

The rightmost derivation is :

E → E+E

→ E+E*E
→ E+E*id3
→ E+id2*id3
→ id1+id2*id3

In the above derivation the underlined substrings are called handles.

Handle pruning:

A rightmost derivation in reverse can be obtained by “handle pruning”.

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right-

sentinel form of some rightmost derivation.

47

Table 2.5:Stack implementation of shift-reduce parsing :

 Stack Input Action

 $ id1+id2*id3 $ shift

 $ id1 +id2*id3 $ reduce by E→id

 $ E +id2*id3 $ shift

 $ E+ id2*id3 $ shift

 $ E+id2 *id3 $ reduce by E→id

 $ E+E *id3 $ shift

 $ E+E* id3 $ shift

$ E+E*id3

$

reduce by E→id

 $ E+E*E $ reduce by E→ E *E

 $ E+E $ reduce by E→ E+E

 $ E $ accept

Actions in shift-reduce parser:
 shift – The next input symbol is shifted onto the top of the stack.
 reduce – The parser replaces the handle within a stack with a non-terminal.
 accept – The parser announces successful completion of parsing.
 error – The parser discovers that a syntax error has occurred and calls an error recovery

routine.

Conflicts in shift-reduce parsing:

There are two conflicts that occur in shift shift-reduce parsing:

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce.

2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make.

1. Shift-reduce conflict:

Example:

Consider the grammar:

E→E+E |E*E |id and input id+id*id

48

Stack Input Action Stack Input Action

$ E+E *id $ Reduce by $E+E *id $ Shift

 E→E+E

$ E *id $ Shift $E+E* id $ Shift

$ E* id $ Shift $E+E*id $ Reduce by

 E→id

$ E*id $ Reduce by $E+E*E $ Reduce by

 E→id E→E*E

$ E*E $ Reduce by $E+E $ Reduce by

 E→E*E E→E*E

$ E $E

2. Reduce-reduce conflict:

Consider the grammar:

M → R+R |R+c |R

R → c
and input c+c

Stack Input Action Stack Input Action

$ c+c $ Shift $ c+c $ Shift

$ c +c $ Reduce by $ c +c $ Reduce by

 R→c R→c

$ R +c $ Shift $ R +c $ Shift

$ R+ c $ Shift $ R+ c $ Shift

$ R+c $ Reduce by $ R+c $ Reduce by

 R→c M→R+c

$ R+R $ Reduce by $ M $

 M→R+R

$ M $

49

Viable prefixes:
 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form.

 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser

are called viable prefixes.

 The set of viable prefixes is a regular language.

2.5.2 OPERATOR-PRECEDENCE PARSING

An efficient way of constructing shift-reduce parser is called operator-precedence parsing.

Operator precedence parser can be constructed from a grammar called Operator-grammar. These

grammars have the property that no production on right side is ɛ or has two adjacent non-

terminals.

Example:

Consider the grammar:

E → EAE |(E) | -E |id
A → + | - |* |/ | ↑

Since the right side EAE has three consecutive non-terminals, the grammar can be written as

follows:

E → E+E |E-E |E*E | E/E |E↑E | -E |id

Operator precedence relations:
There are three disjoint precedence relations

namely <
.
 - less than

= - equal to
.
 > - greater than

The relations give the followingmeaning:

a <
.
 b – a yields precedence to b

a=b – a has the same precedence as b

a
.
 > b – a takes precedence over b

Rules for binary operations:
 If operator θ1 has higher precedence than operator θ2, then

make θ1
.
 > θ2 and θ2 <

.
 θ1

 If operators θ1 and θ2, are of equal precedence, then make

θ1
.
 > θ2 and θ2

.
 > θ1 if operators are left associative

θ1 <
.
 θ2 and θ2 <

.
 θ1 if right associative

 Make the following for all operators θ:

: <
.
 id , id

.
 > θ

: <
.
 (, (<

.
 θ

)
.
 > θ , θ

.
 >)

θ
.
 > $, $ <

.
 θ

50

Also make

(=) , (<
.
 (,)

.
 >) , (<

.
 id , id

.
 >) , $ <

.
 id , id

.
 > $, $ <

.
 (,)

.
 > $

Example:

Operator-precedence relations for the grammar

E → E+E |E-E |E*E | E/E |E↑E | (E) | -E |id is given in the following table assuming

1. ↑ is of highest precedence and right-associative
2. * and / are of next higher precedence and left-associative, and
3. + and - are of lowest precedence and left-associative
Note that the blanks in the table denote error entries.

 TABLE : Operator-precedence relations

+ - *

/ ↑

id () $

 + .> .> <. <. <. <. <. .> .>

 - .> .> <. <. <. <. <. .> .>

 * .> .> .> .> <
.
 <

.
 <

.
 .> .>

 / .> .> .> .> <. <. <. .> .>

 ↑
.
>

.
>

.
>

.
> <

.
 <

.
 <

.

.
>

.
>

 id .> .> .> .> ∙
.
> .> .>

 (<
.
 <

.
 <

.
 <

.
 <

.
 <

.
 <

.
 =

) .> .> .> .> .> .> .>

 $ <
.
 <

.
 <

.
 <

.
 <

.
 <

.
 <

.

Operator precedence parsing algorithm:

Input : An input string w and a table of precedence relations.

Output : If w is well formed, a skeletal parse tree ,with a placeholder non-terminal E labeling all

interior nodes; otherwise, an error indication.
Method : Initially the stack contains $ and the input buffer the string w $. To parse, we execute

the following program :

(1)Set ip to point to the first symbol of w$;
2. repeat forever
3. if $ is on top of the stack and ip points to $ then
4. return

else begin
4. let a be the topmost terminal symbol on the stack

and let b be the symbol pointed to by ip;

5. if a <
.
 b or a = b then begin

6. push b onto the stack;
7. advance ip to the next input symbol;

end;

51

(9) else if a
.
 > b then /*reduce*/

(10) repeat
(11) pop the stack

(12) until the top stack terminal is related by <
.

to the terminal most recently popped
(13) else error()

end

Stack implementation of operator precedence parsing:
Operator precedence parsing uses a stack and precedence relation table for its

implementation of above algorithm. It is a shift-reduce parsing containing all four actions shift,

reduce, accept and error.
The initial configuration of an operator precedence parsing is STACK$

where w is the input string to be parsed.

Example:

Consider the grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string is id+id*id .The

implementation is as follows:

STACK INPUT COMMENT

$ <∙ id+id*id $ shift id

$ id ∙> +id*id $ pop the top of the stack id

$ <∙ +id*id $ shift +

$ + <∙ id*id $ shift id

$ +id ∙> *id $ pop id

$ + <∙ *id $ shift *

$ + * <∙ id $ shift id

$ + * id ∙> $ pop id

$ + * ∙> $ pop *

$ + ∙> $ pop +

$ $ accept

Advantages of operator precedence parsing:
3. It is easy to implement.
4. Once an operator precedence relation is made between all pairs of terminals of a grammar ,

the grammar can be ignored. The grammar is not referred anymore during implementation.

Disadvantages of operator precedence parsing:
2. It is hard to handle tokens like the minus sign (-) which has two different precedence.
3. Only a small class of grammar can be parsed using operator-precedence parser.

INPUT

w$

52

2.6 LR PARSERS
An efficient bottom-up syntax analysis technique that can be used to parse a large class of

CFG is called LR(k) parsing. The „L‟ is for left-to-right scanning of the input, the „R‟ for

constructing a rightmost derivation in reverse, and the „k‟ for the number of input symbols.

When „k‟ is omitted, it is assumed to be 1.

Advantages of LR parsing:
 It recognizes virtually all programming language constructs for which CFG can be

written.

 It is an efficient non-backtracking shift-reduce parsing method.

 A grammar that can be parsed using LR method is a proper superset of a grammar that

can be parsed with predictive parser.

 It detects asyntactic error as soon as possible.

Drawbacks of LR method:
It is too much of work to construct a LR parser by hand for a programming language

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC.

Types of LR parsing method:
1. SLR- Simple LR

 Easiest to implement, least powerful.

2. CLR- Canonical LR
 Most powerful, most expensive.

3. LALR- Look-Ahead LR
 Intermediate in size and cost between the other two methods.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

INPUT
a1 …

ai …

an $

Sm LR parsing program OUTPUT

Xm

Sm-1

Xm-1

… action goto

S0

STACK

53

It consists of : an input, an output, a stack, a driver program, and a parsing table that has two

parts (action and goto).

 The driver program is the same for all LR parser.

 The parsing program reads characters from an input buffer one at a time.

 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on

top. Each Xi is a grammar symbol and each si is a state.

 The parsing table consists of two parts : action and goto functions.

Action : The parsing program determines sm, the state currently on top of stack, and ai, the

current input symbol. It then consults action[sm,ai] in the action table which can have one of four

values :

 shift s, where s is a state,
 reduce by a grammar production A → β,
 accept, and
 error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input

buffer. The parser then executes the following program :

set ip to point to the first input symbol of

w$; repeat forever begin

let s be the state on top of the stack

and a the symbol pointed to by ip;
if action[s, a] =shift s‟ then begin push

a then s‟ on top of the stack;

advance ip to the next input symbol

end
else if action[s, a]=reduce A→β then begin

pop 2* |β |symbols off the stack;
let s‟ be the state now on top of the stack;

push A then goto[s‟, A] on top of the

stack; output the production A→ β

end
else if action[s, a]=accept then

return
else error()

end

54

2.7 CONSTRUCTING SLR(1) PARSING TABLE:

To perform SLR parsing, take grammar as input and do the following:
 Find LR(0) items.
 Completing the closure.
 Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the

right side. For example, production A → XYZ yields the four items :

A → . XYZ
A → X . YZ
A → XY . Z
A → XYZ .

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from

I by the two rules:

\{ Initially, every item in I is added to closure(I).
\{ If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if

it is not already there. We apply this rule until no more new items can be added to

closure(I).

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such

that [A→ α . Xβ] is in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G‟
2. Construct the canonical collection of set of items C for G‟
3. Construct the parsing action function action and goto using the following algorithm that

requires FOLLOW(A) for each non-terminal of grammar.

Algorithmfor construction of SLR parsing table:
Input : An augmented grammar G‟
Output : The SLR parsing table functions action and goto for G‟
Method :
1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G‟.
2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be

terminal.
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).
(c) If [S‟→S.] is in Ii, then set action[i,$] to “accept”.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

55

3. The goto transitions for state i are constructed for all non-terminals A using the rule: If

goto(Ii,A)= Ij, then goto[i,A] = j.
Ʃ All entries not defined by rules (2) and (3) are made “error”
Ʃ The initial state of the parser is the one constructed from the set of items containing

[S‟→.S].

Example for SLR parsing:
Construct SLR parsing for the following grammar :
G : E → E + T | T

T → T * F | F
F→ (E) | id

The given grammar is :
G : E → E + T ------ (1)

E →T ------ (2)

T → T * F ------ (3)

T → F ------ (4)

F→ (E) ------ (5)

F→ id ------ (6)

Step 1 : Convert given grammar into augmented grammar.
Augmented grammar :

E‟ → E
E → E + T
E → T
T → T * F
T → F
F→ (E)
F→ id

Step 2 : Find LR (0) items.

I0 : E‟ → . E
δ → . E + T
iv) → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I0 , E) GOTO (I4 , id)

I1 : E‟ → E . I5 : F→ id .

E → E . + T

56

GOTO (I0 , T)
I2 : E → T .

T → T . * F

GOTO (I0 , F)
I3 : T → F .

GOTO (I0 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I0 , id)
I5 : F→ id .

GOTO (I1 , +)
I6 : E → E + . T

T → . T * F
T → . F
F → . (E)

F → . id

GOTO (I2 , *)
I7 : T → T * . F

F → . (E)

F → . id

GOTO (I4 , E)
I8 : F→ (E .) E

→ E . + T

GOTO (I4 , T)
I2 : E →T .

T → T . * F

GOTO (I4 , F)
I3 : T → F .

GOTO (I6 , T)
I9 : E → E + T .

T → T . * F

GOTO (I6 , F)
I3 : T → F .

GOTO (I6 , ()
I4 : F→ (. E)

GOTO (I6 , id)
I5 : F→ id .

GOTO (I7 , F)
I10 : T → T * F .

GOTO (I7 , ()
I4 : F→ (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I7 , id)
I5 : F → id .

GOTO (I8 ,))
I11 : F→ (E) .

GOTO (I8 , +)
I6 : E → E + . T

T → . T * F
T → . F
F→ . (E)
F→ . id

GOTO (I9 , *)
I7 : T → T * . F

F→ . (E)
F→ . id

57

GOTO (I4 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → id

FOLLOW (E) = { $,) , +)
FOLLOW (T) = { $, + ,) , * }
FOOLOW (F) = { * , + ,) , $ }

SLR parsing table:

 ACTION GOTO

id + * () $

E T F

I0 s5 s4 1 2 3

I1 s6 ACC

I2 r2 s7 r2 r2

I3 r4 r4 r4 r4

I4 s5 s4 8 2 3

I5 r6 r6 r6 r6

I6 s5 s4 9 3

I7 s5 s4 10

I8 s6 s11

I9 r1 s7 r1 r1

I10 r3 r3 r3 r3

I11 r5 r5 r5 r5

Blank entries are error entries.

Stack implementation:

Check whether the input id + id * id is valid or not

58

STACK

0

0 id 5

0 F 3

0 T 2

0 E 1

0 E 1 + 6

0 E 1 + 6 id 5

0 E 1 + 6 F 3

INPUT

id + id * id $

+ id * id $

+ id * id $

+ id * id $

+ id * id $

id * id $

* id $

* id $

ACTION

GOTO (I0 , id) = s5 ; shift

GOTO (I5 , +) = r6 ; reduce by F→id

GOTO (I0 , F) = 3
GOTO (I3 , +) = r4 ; reduce by T → F

GOTO (I0 , T) = 2
GOTO (I2 , +) = r2 ; reduce by E → T

GOTO (I0 , E) = 1
GOTO (I1 , +) = s6 ; shift

GOTO (I6 , id) = s5 ; shift

GOTO (I5 , *) = r6 ; reduce by F→ id

GOTO (I6 , F) = 3
GOTO (I3 , *) = r4 ; reduce by T → F

 0 E 1 + 6 T 9 * id $ GOTO (I6 , T) = 9

 GOTO (I9 , *) = s7 ; shift

 0 E 1 + 6 T 9 * 7 id $ GOTO (I7 , id) = s5 ; shift

 0 E 1 + 6 T 9 * 7 id 5 $ GOTO (I5 , $) = r6 ; reduce by F→ id

 0 E 1 + 6 T 9 * 7 F 10 $ GOTO (I7 , F) = 10

 GOTO (I10 , $) = r3 ; reduce by T → T * F

 0 E 1 + 6 T 9 $ GOTO (I6 , T) = 9

 GOTO (I9 , $) = r1 ; reduce by E → E + T

 0 E 1 $ GOTO (I0 , E) = 1

 GOTO (I1 , $) = accept

2.8 TYPE CHECKING
A compiler must check that the source program follows both syntactic and semantic

conventions of the source language.
This checking, called static checking, detects and reports programming errors.

Some examples of static checks:

1. Type checks – A compiler should report an error if an operator is applied to an incompatible

operand. Example: If an array variable and function variable are added together.

59

2. Flow-of-control checks – Statements that cause flow of control to leave a construct must

have some place to which to transfer the flow of control. Example: An error occurs when an

enclosing statement, such as break, does not exist in switch statement.

 Position of type checker

token

syntax

syntax

intermediate

parser type checker intermediate

stream code generator

 A type checker verifies that the type of a construct matches that expected by its

context. For example : arithmetic operator mod in Pascal requires integer operands, so a

type checker verifies that the operands of mod have type integer.

 Type information gathered by a type checker may be needed when code is generated.

2.9 TYPE SYSTEMS

The design of a type checker for a language is based on information about the syntactic

constructs in the language, the notion of types, and the rules for assigning types to

language constructs.

For example : “ if both operands of the arithmetic operators of +,- and * are of type integer,

then the result is of type integer ”

Type Expressions

 The type of a language construct will be denoted by a “type expression.”

 A type expression is either a basic type or is formed by applying an operator called a

type constructor to other type expressions.

 The sets of basic types and constructors depend on the language to be checked.

The following are the definitions of type expressions:

1. Basic types such as boolean, char, integer, real are type expressions.

A special basic type, type_error , will signal an error during type checking; void denoting

“the absence of a value” allows statements to be checked.

2. Since type expressions may be named, a type name is a type expression.

3. A type constructor applied to type expressions is a type expression.

Constructors include:
Arrays : If T is a type expression then array (I,T) is a type expression denoting the

type of an array with elements of type T and index set I.

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a

type expression.

60

Records : The difference between a record and a product is that the fields of a record have

names. The record type constructor will be applied to a tuple formed from field names and

field types.

For example:
type row = record

address: integer;
lexeme: array[1..15] of char

end;
var table: array[1...101] of row;

declares the type name row representing the type expression record((address X integer) X

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type.

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the

type “pointer to an object of type T”.
For example, var p: ↑ row declares variable p to have type pointer(row).

Functions : A function in programming languages maps a domain type D to a range type

R. The type of such function is denoted by the type expression D → R

4. Type expressions may contain variables whose values are type expressions.

Tree representation for char x char → pointer (integer)

→

x pointer

char char integer

Type systems

 A type system is a collection of rules for assigning type expressions to the various parts

of a program.

 A type checker implements a type system. It is specified in a syntax-directed manner.

 Different type systems may be used by different compilers or processors of the

same language.

Static and Dynamic Checking of Types

 Checkingdone by a compiler is said to be static, while checking done when the target

program runs is termed dynamic.

 Any check can be done dynamically, if the target code carries the type of an element

along with the value of that element.

61

Sound type system
A sound type system eliminates the need for dynamic checking for type errors because it

allows us to determine statically that these errors cannot occur when the target program runs.

That is, if a sound type system assigns a type other than type_error to a program part, then type

errors cannot occur when the target code for the program part is run.

Strongly typed language

A language is strongly typed if its compiler can guarantee that the programs it

accepts will execute without type errors.

Error Recovery

 Since type checking has the potential for catching errors in program, it is desirable

for type checker to recover from errors, so it can check the rest of the input.

 Error handling has to be designed into the type system right from the start; the

type checking rules must be prepared to cope with errors.

2.10 SPECIFICATION OF A SIMPLE TYPE CHECKER

Here, we specify a type checker for a simple language in which the type of each

identifier must be declared before the identifier is used. The type checker is a translation scheme

that synthesizes the type of each expression from the types of its subexpressions. The type

checker can handle arrays, pointers, statements and functions.

A Simple Language

Consider the following grammar:

P → D ; E

D → D ; D | id : T

T → char | integer | array [num] of T | ↑ T

E → literal | num | id | E mod E | E [E] | E ↑

Translation scheme:

P → D ; E

D → D ; D

{ addtype (id.entry , T.type)}

D → id : T

T → char { T.type : = char }

T → integer { T.type : = integer }

T → ↑ T1 { T.type : = pointer(T1.type) }

T → array [num] of T1 { T.type : = array (1… num.val , T1.type) }

In the above language,
→ There are two basic types : char and integer ;
→ type_error is used to signal errors;
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression

pointer (integer).

62

Type checking of expressions

In the following rules, the attribute type forE gives the type expression assigned to the

expression generated by E.

1. E → literal { E.type : = char }

E → num { E.type : = integer }

Here, constants represented by the tokens literal and num have type char and integer.

2. E → id { E.type : = lookup (id.entry) }

lookup (e) is used to fetch the type saved in the symbol table entry pointed to by e.

3. E → E1 mod E2 { E.type : = if E1. type = integer and

E2. type = integer then

integer else type_error }
The expression formed by applying the mod operator to two subexpressions of type integer

has type integer; otherwise, its type is type_error.

4. E → E1 [E2] { E.type : = if E2.type = integer and

E1.type = array(s,t) then t
else type_error }

In an array reference E1 [E2] , the index expression E 2 must have type integer. The result

is the element type t obtained from the type array(s,t) of E1.

5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t

else type_error }

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type

t of the object pointed to by the pointer E.

Type checking of statements

Statements do not have values; hence the basic type void can be assigned to them. If an error

is detected within a statement, then type_error is assigned.

Translation scheme for checking the type of statements:

1. Assignment statement:

S → id : = E { S.type : = if id.type = E.type then void else

type_error }

2. Conditional statement:

S → if E then S1 { S.type : = if E.type = boolean then S1.type

else type_error }

3. While statement:

S → while E do S1 { S.type : = if E.type = boolean then S1.type

else type_error }

63

4. Sequence of statements:
S → S1 ; S2 { S.type : = if S1.type = void and S1.type = void

then void
else type_error }

Type checking of functions

The rule for checking the type of a function application is :

E → E1 (E2) { E.type : = if E2.type = s and
E1.type = s → t then

t else type_error }

2.11 SOURCE LANGUAGE ISSUES

Procedures:

A procedure definition is a declaration that associates an identifier with a statement.

The identifier is the procedure name, and the statement is the procedure body.
For example, the following is the definition of procedure named readarray :

procedure readarray;

var i : integer;
begin

for i : = 1 to 9 do

read(a[i]) end;

When a procedure name appears within an executable statement, the procedure is said to

be called at that point.

Activation trees:

An activation tree is used to depict the way control enters and leaves activations. In an

activation tree,
1. Each node represents an activation of a procedure.
2. The root represents the activation of the main program.
3. The node for a is the parent of the node for b if and only if control flows from activation a

to b.
4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the

lifetime of b.

Control stack:

 A control stack is used to keep track of live procedure activations. The idea is to push

the node for an activation onto the control stack as the activation begins and to pop the

node when the activation ends.

 The contents of the control stack are related to paths to the root of the activation tree.

When node n is at the top of control stack, the stack contains the nodes along the

path from n to the root.

64

The Scope of a Declaration:
A declaration is a syntactic construct that associates information with a

name. Declarations may be explicit, such as:
var i : integer ;

or they may be implicit. Example, any variable name starting with I is assumed to denote

an integer.

The portion of the program to which a declaration applies is called the scope of that declaration.

Binding of names:

Even if each name is declared once in a program, the same name may denote different

data objects at run time. “Data object” corresponds to a storage location that holds values.

The term environment refers to a function that maps a name to a storage location. The

term state refers to a function that maps a storage location to the value held there.

environment state

name storage value

When an environment associates storage location s with a name x, we say that x is

bound to s. This association is referred to as a binding of x.

2.12 STORAGE ORGANISATION

 The executing target program runs in its own logical address space in which

each program value has a location.
 The management and organization of this logical address space is shared between the

complier, operating system and target machine. The operating system maps the

logical address into physical addresses, which are usually spread throughout memory.

Typical subdivision of run-time memory:

Code

Static Data

Stack

free memory

Heap

65

 Run-time storage comes in blocks, where a byte is the smallest unit of addressable

memory. Four bytes form a machine word. Multibyte objects are stored in

consecutive bytes and given the address of first byte.

 The storage layout for data objects is strongly influenced by the addressing constraints

of the target machine.
 A character array of length 10 needs only enough bytes to hold 10 characters, a

compiler may allocate 12 bytes to get alignment, leaving 2 bytes unused.
 This unused space due to alignment considerations is referred to as padding.
 The size of some program objects may be known at run time and may be placed in

an area called static.
 The dynamic areas used to maximize the utilization of space at run time are stack

and heap.

Activation records:

 Procedure calls and returns are usually managed by a run time stack called the

control stack.
 Each live activation has an activation record on the control stack, with the root of the

activation tree at the bottom, the latter activation has its record at the top of the stack.

 The contents of the activation record vary with the language being implemented.

The diagram below shows the contents of activation record.

 Temporary values such as those arising from the evaluation of expressions.
 Local data belonging to the procedure whose activation record this is.
 A saved machine status, with information about the state of the machine just before

the call to procedures.
 An access link may be needed to locate data needed by the called procedure but

found elsewhere.
 A control link pointing to the activation record of the caller.

66

 Space for the return value of the called functions, if any. Again, not all called

procedures return a value, and if one does, we may prefer to place that value in a

register for efficiency.

 The actual parameters used by the calling procedure. These are not placed in

activation record but rather in registers, when possible, for greater efficiency.

2.13 STORAGE ALLOCATION STRATEGIES
The different storage allocation strategies are :
1. Static allocation – lays out storage for all data objects at compile time
2. Stack allocation – manages the run-time storage as a stack.
3. Heap allocation – allocates and deallocates storage as needed at run time from a data

area known as heap.

2.13.1 STATIC ALLOCATION

 In static allocation, names are bound to storage as the program is compiled, so there is

no need for a run-time support package.
 Since the bindings do not change at run-time, everytime a procedure is activated,

its names are bound to the same storage locations.

 Therefore values of local names are retained across activations of a procedure. That

is, when control returns to a procedure the values of the locals are the same as they

were when control left the last time.

 From the type of a name, the compiler decides the amount of storage for the name and

decides where the activation records go. At compile time, we can fill in the addresses

at which the target code can find the data it operates on.

2.13.2 STACK ALLOCATION OF SPACE

 All compilers for languages that use procedures, functions or methods as units of user-

defined actions manage at least part of their run-time memory as a stack.
 Each time a procedure is called , space for its local variables is pushed onto a stack,

and when the procedure terminates, that space is popped off the stack.

Calling sequences:

 Procedures called are implemented in what is called as calling sequence, which

consists of code that allocates an activation record on the stack and enters information

into its fields.

 A return sequence is similar to code to restore the state of machine so the calling

procedure can continue its execution after the call.
 The code in calling sequence is often divided between the calling procedure (caller)

and the procedure it calls (callee).
 When designing calling sequences and the layout of activation records, the

following principles are helpful:
 Values communicated between caller and callee are generally placed at the

beginning of the callee‟s activation record, so they are as close as possible to

the caller‟s activation record.

67

 Fixed length items are generally placed in the middle. Such items typically

include the control link, the access link, and the machine status fields.

 Items whose size may not be known early enough are placed at the end of the

activation record. The most common example is dynamically sized array, where

the value of one of the callee‟s parameters determines the length of the array.

 We must locate the top-of-stack pointer judiciously. A common approach is to

have it point to the end of fixed-length fields in the activation record. Fixed-length

data can then be accessed by fixed offsets, known to the intermediate-code

generator, relative to the top-of-stack pointer.

. . .

Parameters and returned values

caller‟s

control link

activation

links and saved status

record

temporaries and local data

 caller‟s

 responsibility

Parameters and returned values

callee‟s

activation control link

record

 links and saved status

top_sp

 callee‟s
temporaries and local data

 responsibility

Division of tasks between caller and callee

 The calling sequence and its division between caller and callee are as follows.

 The caller evaluates the actual parameters.

 The caller stores a return address and the old value of top_sp into the callee‟s

activation record. The caller then increments the top_sp to the respective

positions.

 The callee saves the register values and other status information.

 The callee initializes its local data and begins execution.

 A suitable, corresponding return sequence is:

 The callee places the return value next to the parameters.

 Using the information in the machine-status field, the callee restores top_sp

and other registers, and then branches to the return address that the caller

placed in the status field.

 Although top_sp has been decremented, the caller knows where the return value is,

relative to the current value of top_sp; the caller therefore may use that value.

68

Variable length data on stack:

 The run-time memory management system must deal frequently with the allocation

of space for objects, the sizes of which are not known at the compile time, but which

are local to a procedure and thus may be allocated on the stack.

 The reason to prefer placing objects on the stack is that we avoid the expense of

garbage collecting their space.
 The same scheme works for objects of any type if they are local to the procedure

called and have a size that depends on the parameters of the call.

 .

activation

 control link

record for p

pointer to A

 pointer to B

 pointer to C

arrays of p
array A

 array B

 array C

top_sp

activation record for control link

procedure q called by p

top

arrays of q

Access to dynamically allocated arrays

 Procedure p has three local arrays, whose sizes cannot be determined at compile

time. The storage for these arrays is not part of the activation record for p.

 Access to the data is through two pointers, top and top-sp. Here the top marks the

actual top of stack; it points the position at which the next activation record will begin.
 The second top-sp is used to find local, fixed-length fields of the top activation record.
 The code to reposition top and top-sp can be generated at compile time, in terms of

sizes that will become known at run time.

63

2.13.3 HEAP ALLOCATION
Stack allocation strategy cannot be used if either of the following is possible :
1. The values of local names must be retained when an activation ends.
2. A called activation outlives the caller.

 Heap allocation parcels out pieces of contiguous storage, as needed for activation

records or other objects.
 Pieces may be deallocated in any order, so over the time the heap will consist of

alternate areas that are free and in use.

Position in the Activation records in the heap Remarks

activation tree

 s Retained activation

 s record for r

r q (1 , 9) control link

 r

control link

q(1,9)

control link

 The record for an activation of procedure r is retained when the activation ends.

 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.

 If the retained activation record for r is deallocated, there will be free space in the

heap between the activation records for s and q.

CHAPTER III – INTERMEDIATE CODE GENERATION

64

3.1 INTRODUCTION

The front end translates a source program into an intermediate representation from

which the back end generates target code.

Benefits of using a machine-independent intermediate form are:

5. Retargeting is facilitated. That is, a compiler for a different machine can be created

by attaching a back end for the new machine to an existing front end.

6. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

intermediate

Parser static intermediate code

 checker code generator code generator

Figure 3.1:Intermediate code generator

3.2 INTERMEDIATE LANGUAGES

Three ways of intermediate representation:

1. Syntax tree

2. Postfix notation

3. Three address code

The semantic rules for generating three-address code from common programming language

constructs are similar to those for constructing syntax trees or for generating postfix notation.

3.2.1 Graphical Representations:

Syntax tree:

A syntax tree depicts the natural hierarchical structure of a source program. A dag

(Directed Acyclic Graph) gives the same information but in a more compact way because

common subexpressions are identified. A syntax tree and dag for the assignment statement a : =

b * - c + b * - c are as follows:

65

 assign assign

 A + A +

* * *

b Uminus b uminus b uminus

 c c c

 (a) Syntax tree (b) Dag

Figure 3.2:Syntax Tree and DAG

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of

the tree in which a node appears immediately after its children. The postfix notation for the

syntax tree given above is

a b c uminus * b c uminus * + assign

Syntax-directed definition:

Syntax trees for assignment statements are produced by the syntax-directed definition.

Non-terminal S generates an assignment statement. The two binary operators + and * are

examples of the full operator set in a typical language. Operator associativities and

precedences are the usual ones, even though they have not been put into the grammar. This

definition constructs the tree from the input a : = b * - c + b* - c.

Table 3.1:Syntax directed definition

PRODUCTION SEMANTIC RULE

S id : = E S.nptr : = mknode(„assign‟,mkleaf(id, id.place), E.nptr)

E E1 +E2 E.nptr : = mknode(„+‟, E1.nptr, E2.nptr)

E E1 * E2 E.nptr : = mknode(„*‟, E1.nptr, E2.nptr)

E - E1 E.nptr : = mknode(„uminus‟, E1.nptr)

E (E1) E.nptr : = E1.nptr

E id E.nptr : = mkleaf(id, id.place)

66

Syntax-directed definition to produce syntax trees for assignment statement

The token id has an attribute place that points to the symbol-table entry for the identifier.

A symbol-table entry can be found from an attribute id.name, representing the lexeme associated

with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of characters,

then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a

record with a field for its operator and additional fields for pointers to its children. In (b), nodes

are allocated from an array of records and the index or position of the node serves as the pointer to

the node. All the nodes in the syntax tree can be visited by following pointers, starting from the

root at position 10.

Two representations of the syntax tree

0

id

b

 assign

1

id

c

id

a

2

uminus

1

3

*

0

2

+

4

id

b

5

id

c

*

*

6

uminus

5

id

b

id

b

 7 * 4 6

8 +

3 7

uminus

uminus

9 id

a

id c id c

10

assign 9

8

 (a) (b)

Figure 3.3:Two representations of syntax tree

67

3.2.2 Three-Address Code:
Three-address code is a sequence of statements of the general form

x : = y op z

where x, y and z are names, constants, or compiler-generated temporaries; op stands for any

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z might be translated into asequence

t1 : = y * z t2 :

= x + t1

wheret1 and t2 are compiler-generated temporary names.

Advantages of three-address code:

 The unraveling of complicated arithmetic expressions and of nested flow-of-

control statements makes three-address code desirable for target code generation and

optimization.

 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a dag in which

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-

address statements.

Three-address code corresponding to the syntax tree and dag given above

t1 : = - c t1 : = -c

t2 : = b * t1 t2 : = b * t1

t3 : = - c t5 : = t2 + t2

t4 : = b * t3 a : = t5

t5 : = t2 + t4

a : = t5

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three

addresses, two for the operands and one for the result.

68

Types of Three-Address Statements:

The common three-address statements are:

5. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical

operation.

6. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary

operations include unary minus, logical negation, shift operators, and conversion operators

that, for example, convert a fixed-point number to a floating-point number.

7. Copy statements of the form x : = y where the value of y is assigned to x.

8. The unconditional jump goto L. The three-address statement with label L is the next to be

executed.

9. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (

<, =, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation

relop to y. If not, the three-address statement following if x relop y goto L is executed next,

as in the usual sequence.

4. param x and call p, n for procedure calls and return y, where y representing a returned value

is optional. For example,

param x1

param x2
. . .

param xn

call p,n

generated as part of a call of the procedure p(x1, x2, …. ,xn).

5. Indexed assignments of the form x : = y[i] and x[i] : = y.

6. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.

69

Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior

nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary

t, followed by the assignment id.place : = t.

Given input a : = b * - c + b * - c, the three-address code is as shown above. The

synthesized attribute S.code represents the three-address code for the assignment S. The

nonterminal E has two attributes :

5. E.place, the name that will hold the value of E , and
6. E.code, the sequence of three-address statements evaluating E.

Table 3.2: Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES

S id : = E S.code : = E.code || gen(id.place ‘:=’ E.place)

E E1 + E2 E.place := newtemp;

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E E1 * E2 E.place := newtemp;

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E - E1 E.place := newtemp;

 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E (E1) E.place : = E1.place;

 E.code : = E1.code

E id E.place : = id.place;

 E.code : = ‘ ‘

70

Semantic rules generating code for a while statement

S.begin:

E.code

if E.place = 0 goto S.after

 S1.code

 goto S.begin

S.after: . . .

PRODUCTION SEMANTIC RULES

S while E do S1 S.begin := newlabel;

 S.after := newlabel;

 S.code := gen(S.begin ‘:’) ||

 E.code ||

 gen (‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)||

 S1.code ||

 gen (‘goto’ S.begin) ||

 gen (S.after ‘:’)

Figure 3.4:semantic rule generating code for while statement

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to

successive calls.

 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z.

Expressions appearing instead of variables like x, y and z are evaluated when passed to

gen, and quoted operators or operand, like „+‟ are taken literally.

 Flow-of–control statements can be added to the language of assignments. The code for S

whileEdoS1is generated using new attributesS.beginandS.afterto mark

the firststatement in the code for E and the statement following the code for S, respectively.

 The function newlabel returns a new label every time it is called.

 We assume that a non-zero expression represents true; that is when the value of E

becomes zero, control leaves the while statement.

71

Implementation of Three-Address Statements:
A three-address statement is an abstract form of intermediate code. In a compiler,

these statements can be implemented as records with fields for the operator and the operands.

Three such representations are:Quadruples

 Triples

 Indirect triples

Quadruples:
 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result.

 The op field contains an internal code for the operator. The three-address statement x : =

y op z is represented by placing y in arg1, z in arg2 and x in result.

 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table

entries for the names represented by these fields. If so, temporary names must be entered

into the symbol table as they are created.

Triples:
 To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it.

 If we do so, three-address statements can be represented by records with only three

fields: op, arg1 and arg2.

 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table

or pointers into the triple structure (for temporary values).

 Since three fields are used, this intermediate code format is known as triples.

 op arg1 arg2 result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) : = t3 a

(a) Quadruples

 op arg1 arg2

(0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

(b) Triples

Figure 3.4: Quadruple and triple representation of three-address statements

given above

72

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as

below while x : = y[i] is naturally represented as two operations.

 op arg1 arg2

(0) [] = x i

(1) assign (0) y

(a) x[i] : = y

 op arg1 arg2

(0) = [] y i

(1) assign x (0)

(b) x : = y[i]

Figure 3.5:triple structure

Indirect Triples:

 Another implementation of three-address code is that of listing pointers to triples,

rather than listing the triples themselves. This implementation is called indirect triples.

 For example, let us use an array statement to list pointers to triples in the desired

order. Then the triples shown above might be represented as follows:

 statement op arg1 arg2

(0) (14) (14) uminus c

(1) (15) (15) * b (14)

(2) (16) (16) uminus c

(3) (17) (17) * b (16)

(4) (18) (18) + (15) (17)

(5) (19) (19) assign a (18)

Figure 3.6:Indirect triples representation of three-address statements

3.3 DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out

storage for names local to the procedure. For each local name, we create a symbol-table entry

with information like the type and the relative address of the storage for the name. The relative

address consists of an offset from the base of the static data area or the field for local data in an

activation record.

73

3.3.1 Declarations in a Procedure:
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a

single procedure to be processed as a group. In this case, a global variable, say offset, can

keep track of the next available relative address.

In the translation scheme shown below:

 Nonterminal P generates a sequence of declarations of the form id : T.

 Before the first declaration is considered, offset is set to 0. As each new name is seen ,

that name is entered in the symbol table with offset equal to the current value of offset,

and offset is incremented by the width of the data object denoted by that name.

 The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its

type type and relative address offset in its data area.

 Attribute type represents a type expression constructed from the basic types integer and

real by applying the type constructors pointer and array. If type expressions are

represented by graphs, then attribute type might be a pointer to the node representing a

type expression.

 The width of an array is obtained by multiplying the width of each element by the

number of elements in the array. The width of each pointer is assumed to be 4.

Computing the types and relative addresses of declared names

P D { offset : = 0 }

D D ; D

D id : T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T integer { T.type : = integer;

T.width : = 4 }

T real { T.type : = real;
T.width : = 8 }

T array [num] of T1 { T.type : = array(num.val, T1.type);

T.width : = num.val X T1.width }

T ↑ T1 { T.type : = pointer (T1.type);
T.width : = 4 }

74

3.3.2 Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is

temporarily suspended. This approach will be illustrated by adding semantic rules to the

following language:

P D

D D ; D | id : T | proc id ; D ; S

One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D proc id D1;S is seen,

and entries for the declarations in D1 are created in the new table. The new table points back to

the symbol table of the enclosing procedure; the name represented by id itself is local to the

enclosing procedure. The only change from the treatment of variable declarations is that the

procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and

quicksort pointing back to that for the containing procedure sort, consisting of the entire

program. Since partition is declared within quicksort, its table points to that of quicksort.

 sort

 nil header

 a

 x

 readarray to readarray

 exchange to exchange

 quicksort

 readarray exchange quicksort

 header

header

header

 i k

 v

 partition

 partition

 header

 i

 j

Figure 3.7: Symbol tables for nested procedures

75

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The

argument previous points to a previously created symbol table, presumably that for the

enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed

to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header

associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table

pointed to by table. The argument newtable points to the symbol table for this procedure

name.

Syntax directed translation scheme for nested procedures

P M D { addwidth (top(tblptr) , top (offset));

pop (tblptr); pop (offset) }

M ɛ { t : = mktable (nil);

push (t,tblptr); push (0,offset) }

D D1 ; D2

D proc id ; N D1 ; S { t : = top (tblptr);

addwidth (t, top (offset));
pop (tblptr); pop (offset);
enterproc (top (tblptr), id.name, t) }

D id : T { enter (top (tblptr), id.name, T.type, top (offset));

top (offset) := top (offset) + T.width }

N ɛ { t := mktable (top (tblptr));

push (t, tblptr); push (0,offset) }

 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and

partition when the declarations in partition are considered.

 The top element of stack offset is the next available relative address for a local of

the current procedure.

 All semantic actions in the subtrees for B and C in

A BC {actionA}

are done before actionA at the end of the production occurs. Hence, the action associated

with the marker M is the first to be done.

76

 The action for nonterminal M initializes stack tblptr with a symbol table for the

outermost scope, created by operation mktable(nil). The action also pushes relative

address 0 onto stack offset.

 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new

symbol table. The argument top(tblptr) gives the enclosing scope for the new table.

 For each variable declaration id: T, an entry is created for id in the current symbol table.

The top of stack offset is incremented by T.width.

 When the action on the right side of D proc id; ND1; S occurs, the width of all

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth.

Stacks tblptr and offset are then popped.

At this point, the name of the enclosed procedure is entered into the symbol table of

its enclosing procedure.

3.4 ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar.

P M D

M ɛ

D D ; D | id : T | proc id ; N D ; S

N ɛ

Nonterminal P becomes the new start symbol when these productions are added to those in the

translation scheme shown below.

Translation scheme to produce three-address code for assignments

S id : = E { p : = lookup (id.name);
if p ≠nil then
emit(p „ : =‟ E.place)
else error }

E E1 + E2 { E.place : = newtemp;

emit(E.place „: =‟ E1.place „ + „ E2.place) }

E E1 * E2 { E.place : = newtemp;
emit(E.place „: =‟ E1.place „ * „ E2.place) }

E - E1 { E.place : = newtemp;

emit (E.place „: =‟ „uminus‟ E1.place) }

E (E1) { E.place : = E1.place }

77

 E id { p : = lookup (id.name);

if p ≠nil then
E.place : =

p else error }

Reusing Temporary Names

 The temporaries used to hold intermediate values in expression calculations tend to

clutter up the symbol table, and space has to be allocated to hold their values.

 Temporaries can be reused by changing newtemp. The code generated by the rules for E

E1+ E2has the general form:

evaluate E1 into t1

evaluate E2 into t2

t : = t1 + t2

 The lifetimes of these temporaries are nested like matching pairs of balanced parentheses.

 Keep a count c , initialized to zero. Whenever a temporary name is used as an operand,

decrement c by 1. Whenever a new temporary name is generated, use $c and increase c

by 1.

 For example, consider the assignment x := a * b + c * d – e * f

Table 3.3:Three-address code with stack temporaries

 statement value of c

 0

$0 := a * b 1

$1 := c * d 2

$0 := $0 + $1 1

$1 := e * f 2

$0 := $0 - $1 1

x := $0 0

Addressing Array Elements:

Elements of an array can be accessed quickly if the elements are stored in a block of

consecutive locations. If the width of each array element is w, then the ith element of array A

begins in location

base + (i – low) x w

where low is the lower bound on the subscript and base is the relative address of the storage

allocated for the array. That is, base is the relative address of A[low].

78

The expression can be partially evaluated at compile time if it is rewritten as

i x w + (base – low x w)

The subexpression c = base – low x w can be evaluated when the declaration of the array is seen.

We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is

obtained by simply adding i x w to c.

Address calculation of multi-dimensional arrays:
A two-dimensional array is stored in of the two forms :

 Row-major (row-by-row)

 Column-major (column-by-column)

 Layouts for a 2 x 3 array

 A[1,1] A [1,1]
first column

first row

A[1,2]

A [2,1]

A [1,2]

 A[1,3]

second column

 A[2,1] A [2,2]

second row

 A[2,2] A [1,3]

third column

 A[2,3] A [2,3]

 (a) ROW-MAJOR (b) COLUMN-MAJOR

Figure 3.8:Address calculation of multi-dimensional arrays

In the case of row-major form, the relative address of A[i1 ,i2] can be calculated by the formula

base + ((i1 – low1) x n2 + i2 – low2) x w

where, low1 and low2 are the lower bounds on the values of i1 and i2 and n2 is the number of

values that i2 can take. That is, if high2 is the upper bound on the value of i2, then n2 = high2 –

low2 + 1.

Assuming that i1 and i2 are the only values that are known at compile time, we can rewrite the

above expression as

((i1 x n2) + i2) x w + (base – ((low1 x n2) + low2) x w)

79

Generalized formula:

The expression generalizes to the following expression for the relative address of A[i1,i2,…,ik]

((. . . ((i1n2 + i2) n3 + i3) . . .) nk + ik) x w + base – ((. . .((low1n2 + low2)n3 + low3) . .

.) nk + lowk) x w

for all j, nj = highj – lowj +1

The Translation Scheme for Addressing Array Elements :
Semantic actions will be added to the grammar :

(1) S L : = E
(2) E E + E
(3) E (E)
(4) E L
(5) L Elist]
(6) L id
(7) Elist Elist , E
(8) Elist id [E

We generate a normal assignment if L is a simple name, and an indexed assignment into the

location denoted by L otherwise :

(1) S L : = E { if L.offset = null then / * L is a simple id */

 emit (L.place ‘: =’ E.place);

 else

 emit (L.place ‘ [„ L.offset ‘]’ ‘: =’E.place) }

(2) E E1 + E2 { E.place : = newtemp;

 emit (E.place ‘: =’ E1.place ‘ +’ E2.place)}

(3) E (E1) { E.place : = E1.place }

When an array reference L is reduced to E , we want the r-value of L. Therefore we use indexing

to obtain the contents of the location L.place [L.offset] :

(4) E L { if L.offset = null then /* L is a simple id* /

 E.place : = L.place

 else begin

 E.place : = newtemp;

 emit (E.place ‘: =’ L.place ‘ [„ L.offset „]‟)

 end }

(5) L Elist] { L.place : = newtemp;

 L.offset : = newtemp;

 emit (L.place ‘: =’ c(Elist.array));

 emit (L.offset ‘: =’ Elist.place ‘*’ width (Elist.array)) }

80

(6) L id { L.place := id.place;

 L.offset := null }

(7) Elist Elist1 , E { t := newtemp;

 m : = Elist1.ndim + 1;

emit (t ‘: =’ Elist 1.place ‘*’ limit

(Elist1.array,m)); emit (t ‘: =’ t ‘+’ E.place);
Elist.array : = Elist1.array;

Elist.place : = t;
Elist.ndim : = m }

(8) Elist id [E { Elist.array : = id.place;

Elist.place : = E.place;
Elist.ndim : = 1 }

Type conversion within Assignments :

Consider the grammar for assignment statements as above, but suppose there are two

types – real and integer , with integers converted to reals when necessary. We have another

attribute E.type, whose value is either real or integer. The semantic rule for E.type associated

with the production E E + E is :

E E + E { E.type : =
if E1.type = integer and

E2.type = integer then integer
else real }

The entire semantic rule for E E + E and most of the other productions must be

modified to generate, when necessary, three-address statements of the form x : = inttoreal y,

whose effect is to convert integer y to areal of equal value, called x.

Semantic action for E E1 + E2

E.place := newtemp;
if E1.type = integer and E2.type = integer then

begin emit(E.place ‘: =’ E1.place ‘int +’

E2.place); E.type : = integer
end
else if E1.type = real and E2.type = real then begin

emit(E.place ‘: =’ E1.place „real +‟

E2.place); E.type : = real
end

81

else if E1 .type = integer and E2.type = real then

begin u : = newtemp;
emit(u ‘: =’ „inttoreal‟ E1.place); emit(

E.place ‘: =’ u „ real +‟ E2.place);

E.type : = real
end
else if E1.type = real and E2.type =integer then

begin u : = newtemp;
emit(u ‘: =’ „inttoreal‟ E2.place); emit(

E.place ‘: =’ E1.place ‘ real +’ u);

E.type : = real
end

else
E.type : = type_error;

For example, for the input x : = y + i * j
assuming x and y have type real, and i and j have type integer, the output would look like

t1 : = i int* j t3 :

= inttoreal t1 t2 :

= y real+ t3 x : =

t2

3.5 BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical

values, but more often they are used as conditional expressions in statements that alter the flow

of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied

to elements that are boolean variables or relational expressions. Relational expressions are of the

form E1 relop E2, where E1 and E2 are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :

E E or E | E and E | not E | (E) | id relop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

 To encode true and false numerically and to evaluate a boolean expression analogously

to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false.

 To implement boolean expressions by flow of control, that is, representing the value of a

boolean expression by a position reached in a program. This method is particularly

convenient in implementing the boolean expressions in flow-of-control statements, such

as the if-then and while-do statements.

82

3.5 .1 Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from

left to right, in a manner similar to arithmetic expressions.

For example :

The translation for

a or b and not c is

the three-address sequence
t1 : = not c t2

: = b and t1 t3

: = a or t2

A relational expression such as a < b is equivalent to the conditional

statementif a < b then 1 else 0

which can be translated into the three-address code sequence (again, we arbitrarily

start statement numbers at 100) :

100 : if a < b goto 103
101 : t : = 0
102 : goto 104
103 : t : = 1
104 :

Translation scheme using a numerical representation for booleans

E E1 or E2 { E.place : = newtemp;

E E1 and E2

emit(E.place ‘: =’ E1.place ‘or’E2.place)}

{ E.place : = newtemp;

E not E1

emit(E.place ‘: =’ E1.place ‘and’E2.place)}

{ E.place : = newtemp;

 emit(E.place ‘: =’ ‘not’ E1.place)}

E (E1) { E.place : = E1.place }

E id1 relop id2 { E.place : = newtemp;

 emit(‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3);

 emit(E.place ‘: =’ ‘0’);

 emit(„goto‟ nextstat +2);

 emit(E.place ‘: =’ ‘1’) }

E true { E.place : = newtemp;

E false

emit(E.place ‘: =’ ‘1’) }

{ E.place : = newtemp;

 emit(E.place ‘: =’ ‘0’) }

83

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating

code for any of the boolean operators and without having the code necessarily evaluate the entire

expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is

possible to evaluate boolean expressions without generating code for the boolean operators and,

or, and not if we represent the value of an expression by a position in the code sequence.

Translation of a < b or c < d and e < f

100 : if a < b goto 103 107 : t2 : = 1

101 : t1 : = 0 108 : if e < f goto 111

102 : goto 104 109 : t3 : = 0

103 : t1 : = 1 110 : goto 112

104 : if c < d goto 107 111 : t3 : = 1

105 : t2 : = 0 112 : t4 : = t2 and t3

106 : goto 108 113 : t5 : = t1 or t4

84

Flows-of-Control Statements
We now consider the translation of boolean expressions into three-address code in the

context of if-then, if-then-else, and while-do statements such as those generated by the following

grammar:

S if E then S1
| if E then S1 else S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we

assume that a three-address statement can be symbolically labeled, and that the function

newlabel returns a new symbolic label each time it is called.

 E.true is the label to which control flows if E is true, and E.false is the label to which

control flows if E is false.

 The semantic rules for translating a flow-of-control statement S allow control to flow

from the translation S.code to the three-address instruction immediately following

S.code.

 S.next is a label that is attached to the first three-address instruction to be executed after

the code for S.

Code for if-then , if-then-else, and while-do statements

E.code to E.true E.true:

E.true : E.false

S1.code
E.false:

E.false : . . .

S.next:

to E.true

E.code
to E.false

S1.code

goto S.next

S2.code

. . .

(a) if-then (b) if-then-else

S.begin: E.code to E.true

 to E.false

E.true: S1.code

goto S.begin

E.false: . . .

(c) while-do
Figure3.9: code for if-then,if-then-else,while-do statements

85

Table 3.4:Syntax-directed definition for flow-of-control statements

PRODUCTION

SEMANTIC RULES

S if E then S1 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code

S if E then S1 else S2 E.true : = newlabel;

 E.false : = newlabel;

 S1.next : = S.next;

 S2.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.next) ||

 gen(E.false ‘:’) || S2.code

S while E do S1 S.begin : = newlabel;

 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.begin;

 S.code : = gen(S.begin ‘:’)|| E.code ||

 gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.begin)

86

3.5.2 Control-Flow Translation of Boolean Expressions:

Table 3.5:Syntax-directed definition to produce three-address code for booleans

PRODUCTION SEMANTIC RULES

E E1 or E2 E1.true : = E.true;

 E1.false : = newlabel;

 E2.true : = E.true;

 E2.false : = E.false;

 E.code : = E1.code || gen(E1.false ‘:’) || E2.code

E E1 and E2 E.true : = newlabel;

 E1.false : = E.false;

 E2.true : = E.true;

 E2.false : = E.false;

 E.code : = E1.code || gen(E1.true ‘:’) || E2.code

E not E1 E1.true : = E.false;

 E1.false : = E.true;

 E.code : = E1.code

E (E1) E1.true : = E.true;

E1.false : = E.false;

 E.code : = E1.code

E id1 relop id2 E.code : = gen(„if‟ id1.place relop.op id2.place

 „goto‟ E.true) || gen(„goto‟ E.false)

E true E.code : = gen(„goto‟ E.true)

E false E.code : = gen(‘goto’ E.false)

3.6 CASE STATEMENTS

The “switch” or “case” statement is available in a variety of languages. The switch-statement

syntax is as shown below :
Switch-statement syntax

switch expression

begin
case value : statement case

value : statement
. . .

case value : statement

default : statement
end

87

There is a selector expression, which is to be evaluated, followed by n constant values that the

expression might take, including a default “value” which always matches the expression if no other

value does. The intended translation of a switch is code to:

4. Evaluate the expression.
5. Find which value in the list of cases is the same as the value of the expression.
6. Execute the statement associated with the value found.

Step (2) can be implemented in one of several ways :

 By a sequence of conditional goto statements, if the number of cases is small.

 By creating a table of pairs, with each pair consisting of a value and a label for the

code of the corresponding statement. Compiler generates a loop to compare the value of the

expression with each value in the table. If no match is found, the default (last) entry is sure to

match.

 If the number of cases s large, it is efficient to construct a hash table.

 There is a common special case in which an efficient implementation of the n-way

branch exists. If the values all lie in some small range, say imin to imax, and the number of

different values is a reasonable fraction of imax - imin, then we can construct an array of labels,

with the label of the statement for value j in the entry of the table with offset j - imin and the

label for the default in entries not filled otherwise. To perform switch,

evaluate the expression to obtain the value of j , check the value is within range and transfer to

the table entry at offset j-imin .

Syntax-Directed Translation of Case Statements:

Consider the following switch statement:

switch E begin

case V1 : S1 case

V2 : S2
. . .

case Vn-1 : Sn-1
default : Sn

end

This case statement is translated into intermediate code that has the following form :

Translation of a case statement

 code to evaluate E into t

 goto test

L1 : code for S1

 goto next

L2 : code for S2

 goto next

 . . .

Ln-1 : code for Sn-1

88

 goto next

Ln : code for Sn

 goto next

test : if t = V1 goto L1

 if t = V2 goto L2

 . . .

 if t = Vn-1 goto Ln-1

next :

goto Ln

To translate into above form :

 When keyword switch is seen, two new labels test and next, and a new temporary t

are generated.

 As expression E is parsed, the code to evaluate E into t is generated. After processing

E , the jump goto test is generated.

 As each case keyword occurs, a new label Li is created and entered into the symbol

table. A pointer to this symbol-table entry and the value Vi of case constant are placed on a

stack (used only to store cases).

 Each statement case Vi : Si is processed by emitting the newly created label Li,

followed by the code for Si , followed by the jump goto next.

 Then when the keyword end terminating the body of the switch is found, the code can

be generated for the n-way branch. Reading the pointer-value pairs on the case stack from the

bottom to the top, we can generate a sequence of three-address statements of the form

case V1 L1 case

V2 L2
. . .

case Vn-1 Ln-1
case t Ln label

next

where t is the name holding the value of the selector expression E, and Ln is the label for the

default statement.

3.7 BACKPATCHING

The easiest way to implement the syntax-directed definitions for boolean expressions is to use

two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first order,

computing the translations. The main problem with generating code for boolean expressions and flow-

of-control statements in a single pass is that during one single pass we may not know the labels that

control must go to at the time the jump statements are generated. Hence, a series of branching

statements with the targets of the jumps left unspecified is generated. Each statement will be put on a

list of goto statements whose labels will be filled in when the proper label can be determined. We call

this subsequent filling in of labels backpatching.

89

To manipulate lists of labels, we use three functions :

5. makelist(i) creates a new list containing only i, an index into the array of quadruples; makelist

returns a pointer to the list it has made.
6. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the

concatenated list.
7. backpatch(p,i) inserts i as the target label for each of the statements on the list pointed to by p.

Boolean Expressions:

We now construct a translation scheme suitable for producing quadruples for boolean

expressions during bottom-up parsing. The grammar we use is the following:

5. E E1 or M E2
6. | E1 and M E2
7. | not E1
8. | (E1)
9. | id1 relop id2
10. | true
11. | false
12. M ɛ

Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code for

boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by
E.truelist and E.falselist.

Consider production E E1 and M E 2. If E1 is false, then E is also false, so the statements on

E1.falselist become part of E.falselist. If E1 is true, then we must next test E2, so the target for the

statements E1.truelist must be the beginning of the code generated for E2. This target is obtained

using marker nonterminal M.

Attribute M.quad records the number of the first statement of E2.code. With the production M ɛ

we associate the semantic action

{ M.quad : = nextquad }

The variable nextquad holds the index of the next quadruple to follow. This value will be backpatched

onto the E1.truelist when we have seen the remainder of the production E E1 and ME2. The

translation scheme is as follows:

(1) E E1 or M E2 { backpatch (E1.falselist, M.quad);

 E.truelist : = merge(E1.truelist, E2.truelist);

 E.falselist : = E2.falselist }

(2) E E1 and M E2 { backpatch (E1.truelist, M.quad);

90

 E.truelist : = E2.truelist;

 E.falselist : = merge(E1.falselist, E2.falselist)}

(3) E not E1 { E.truelist : = E1.falselist;

 E.falselist : = E1.truelist; }

(4) E (E1) { E.truelist : = E1.truelist;

 E.falselist : = E1.falselist; }

(5) E id1 relop id2 { E.truelist : = makelist (nextquad);

 E.falselist : = makelist(nextquad + 1);

 emit(„if‟ id1.place relop.op id2.place „goto_‟)

 emit(„goto_‟) }

(6) E true { E.truelist : = makelist(nextquad);

 emit(„goto_‟) }

(7) E false { E.falselist : = makelist(nextquad);

 emit(„goto_‟) }

(8) M ɛ { M.quad : = nextquad }

Flow-of-Control Statements:

A translation scheme is developed for statements generated by the following grammar :

5. S if E then S
6. | if E then S else S
7. | while E do S
8. | begin L end
9. | A
10. L L ; S
11. | S

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean expression.

We make the tacit assumption that the code that follows a given statement in execution also follows it

physically in the quadruple array. Else, an explicit jump must be provided.

Scheme to implement the Translation:

The nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of

91

unfilled quadruples that must eventually be completed by backpatching. These lists are pointed to by

the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and

unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist is

defined similarly.

The semantic rules for the revised grammar are as follows:

F S if E then M1 S1 N else M2 S2

{ backpatch (E.truelist, M1.quad);
backpatch (E.falselist, M2.quad);
S.nextlist : = merge (S1.nextlist, merge (N.nextlist, S2.nextlist)) }

We backpatch the jumps when E is true to the quadruple M1.quad, which is the beginning of the code

for S1. Similarly, we backpatch jumps when E is false to go to the beginning of the code for S2. The

list S.nextlist includes all jumps out of S1 and S2, as well as the jump generated by N.

(2) N ɛ { N.nextlist : = makelist(nextquad);

 emit(„goto _‟) }

(3) M ɛ { M.quad : = nextquad }

(4) S if E then MS1 { backpatch(E.truelist, M.quad);

 S.nextlist : = merge(E.falselist, S1.nextlist) }

(5) S while M1 E do M2 S1 { backpatch(S1.nextlist, M1.quad);

 backpatch(E.truelist, M2.quad);

 S.nextlist : = E.falselist

 emit(„goto‟ M1.quad) }

(6) S begin L end { S.nextlist : = L.nextlist }

 (7) S A { S.nextlist : = nil }

The assignment S.nextlist : = nil initializes S.nextlist to an empty list.

(8) L L1 ; M S { backpatch(L1.nextlist, M.quad);

 L.nextlist : = S.nextlist }

The statement following L1 in order of execution is the beginning of S. Thus the L1.nextlist list is

backpatched to the beginning of the code for S, which is given by M.quad.

(9) L S { L.nextlist : = S.nextlist }

3.8 PROCEDURE CALLS

The procedure is such an important and frequently used programming construct that it is

imperative for a compiler to generate good code for procedure calls and returns. The run-time routines

that handle procedure argument passing, calls and returns are part of the run-time support package.

Let us consider a grammar for a simple procedure call statement

92

 S call id (Elist)
 Elist Elist , E
 Elist E

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry to and

exit from each procedure. The falling are the actions that take place in a calling sequence :

 When a procedure call occurs, space must be allocated for the activation record of the

called procedure.

 The arguments of the called procedure must be evaluated and made available to the

called procedure in a known place.

 Environment pointers must be established to enable the called procedure to access data

in enclosing blocks.

 The state of the calling procedure must be saved so it can resume execution after the

call.

 Also saved in a known place is the return address, the location to which the called

routine must transfer after it is finished.

 Finally a jump to the beginning of the code for the called procedure must be

generated. For example, consider the following syntax-directed translation

 S call id (Elist)
{ for each item p on queue do

emit (‘ param’ p);

emit (‘call’ id.place) }
3. Elist Elist , E

{ append E.place to the end of queue }

4. Elist E

{ initialize queue to contain only E.place }

 Here, the code for S is the code for Elist, which evaluates the arguments, followed by a param

p statement for each argument, followed by a call statement.

 queue is emptied and then gets a single pointer to the symbol table location for the name that

denotes the value of E.

90

CHAPTER IV - CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program. The

code generation techniques presented below can be used whether or not an optimizing phase

occurs before code generation.

 Position of code generator

source

intermediate

intermediate

target

front end code code

program optimizer generator program

symbol

table

Figure 4.1:Code Generator

4.1 ISSUES IN THE DESIGN OF A CODE GENERATOR
The following issues arise during the code generation phase :

7. Input to code generator

8. Target program

9. Memory management

10. Instruction selection

11. Register allocation

12. Evaluation order

9) Input to code generator:
The input to the code generation consists of the intermediate representation of the source

program produced by front end , together with information in the symbol table to determine run-

time addresses of the data objects denoted by the names in the intermediate representation.

Intermediate representation can be :

 Linear representation such as postfix notation

 Three address representation such as quadruples

 Virtual machine representation such as stack machine code

 Graphical representations such as syntax trees and dags.

Prior to code generation, the front end must be scanned, parsed and translated into intermediate

representation along with necessary type checking. Therefore, input to code generation is

assumed to be error-free.

10) Target program:

The output of the code generator is the target program. The output may be :
 Absolute machine language

 It can be placed in a fixed memory location and can be executed immediately.

91

10. Relocatable machine language
 It allows subprograms to be compiled separately.

11. Assembly language

- Code generation is made easier.

3. Memory management:

Names in the source program are mapped to addresses of data objects in run-time memory by

the front end and code generator. It makes use of symbol table, that is, a name in a three-address

statement refers to a symbol-table entry for the name. Labels in three-address statements have to

be converted to addresses of instructions. For example,

j : goto i generates jump instruction as follows :

 if i < j, a backward jump instruction with target address equal to location of

code for quadruple i is generated.

 if i > j, the jump is forward. We must store on a list for quadruple i the

location of the first machine instruction generated for quadruple j. When i is

processed, the machine locations for all instructions that forward jumps to i

are filled.

4. Instruction selection:
The instructions of target machine should be complete and uniform. Instruction speeds and

machine idioms are important factors when efficiency of target program is considered. The

quality of the generated code is determined by its speed and size. The former statement can be

translated into the latter statement as shown below:

Figure 4.2:Instruction selection

5. Register allocation
Instructions involving register operands are shorter and faster than those involving operands

in memory. The use of registers is subdivided into two subproblems :

 Register allocation – the set of variables that will reside in registers at a point in

the program is selected

 Register assignment – the specific register that a variable will reside in is

picked.

92

Certain machine requires even-odd register pairs for some operands and results. For
example , consider the division instruction of the form :

D x, y

where, x – dividend even register in even/odd register pair

y – divisor
even register holds the remainder

odd register holds the quotient

6. Evaluation order

The order in which the computations are performed can affect the efficiency of the target

code. Some computation orders require fewer registers to hold intermediate results than others.

4.2 TARGET MACHINE

Familiarity with the target machine and its instruction set is a prerequisite for designing a

good code generator. The target computer is a byte-addressable machine with 4 bytes to a

word.It has n general-purpose registers, R0, R1, . . . , Rn-1.
It has two-address instructions of the form:

op source, destination
where, op is an op-code, and source and destination aredata fields.

 It has the following op-codes :

MOV (move source to destination)

ADD (add source to destination)
SUB (subtract source from destination)

The source and destination of an instruction are specified by combining registers and

memory locations with address modes.

Table 4.1:Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST

Absolute M M 1

Register R R 0

Indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0

indirect indexed *c(R) contents(c+ 1

 contents(R))

Literal #c c 1

93

 For example : MOV R0, M stores contents of Register R0 into memory location M ;

MOV 4(R0), M stores the value contents(4+contents(R0)) into M.

Instruction costs :

Instruction cost = 1+cost for source and destination address modes. This cost corresponds to

the length of the instruction. Address modes involving registers have cost zero. Address modes

involving memory location or literal have cost one. Instruction length should be minimized if

space is important. Doing so also minimizes the time taken to fetch and perform the instruction.

For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one, since it

occupies only one word of memory.

The three-address statement a : = b + c can be implemented by many different

instruction sequences :

i) MOV b, R0

ADD c, R0 cost = 6

MOV R0, a

ii) MOV b, a

ADD c, a cost = 6

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :
MOV *R1, *R0

ADD *R2, *R0 cost = 2

In order to generate good code for target machine, we must utilize its addressing

capabilities efficiently.

4.3 RUN-TIME STORAGE MANAGEMENT

Information needed during an execution of a procedure is kept in a block of storage called an

activation record, which includes storage for names local to the procedure. The two standard

storage allocation strategies are:

 Static allocation

 Stack allocation
In static allocation, the position of an activation record in memory is fixed at compile time.

In stack allocation, a new activation record is pushed onto the stack for each execution of a

procedure. The record is popped when the activation ends.
The following three-address statements are associated with the run-time allocation and

deallocation of activation records:

 Call,

 Return,

 Halt, and

 Action, a placeholder for other statements.
We assume that the run-time memory is divided into areas for:
 Code

 Static data

 Stack

94

4.3.1 Static allocation

Implementation of call statement:

The codes needed to implement static allocation are as follows:

MOV #here +20, callee.static_area /*It saves return address*/

GOTO callee.code_area /*It transfers control to the target code for the called procedure */

where,
callee.static_area – Address of the activation record callee.code_area

– Address of the first instruction for called procedure
#here +20 – Literal return address which is the address of the instruction following GOTO.

Implementation of return statement:

A return from procedure callee is implemented by :

GOTO *callee.static_area

This transfers control to the address saved at the beginning of the activation record.

Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating system.

4.3.2 Stack allocation

Static allocation can become stack allocation by using relative addresses for storage in

activation records. In stack allocation, the position of activation record is stored in register so

words in activation records can be accessed as offsets from the value in this register.

The codes needed to implement stack allocation are as follows:

Initialization of stack:

MOV #stackstart , SP /* initializes stack */

Code for the first procedure

HALT /* terminate execution */

Implementation of Call statement:

ADD #caller.recordsize, SP /* increment stack pointer */

MOV #here +16, *SP /*Save return address */

GOTO callee.code_area

95

where,
caller.recordsize – size of the activation record
#here +16 – address of the instruction following the GOTO

Implementation of Return statement:

GOTO *0 (SP) /*return to the caller */

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

4.4 BASIC BLOCKS AND FLOW GRAPHS

4.4.1 Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control enters at the

beginning and leaves at the end without any halt or possibility of branching except at the end.
The following sequence of three-address statements forms a basic block: t1:=a*a

t2 : = a * b

t3 : = 2 * t2

t4 : = t1 + t3

t5 : = b * b

t6 : = t4 + t5

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block

Method:

(9) We first determine the set of leaders, the first statements of basic blocks. The rules
we use are of the following:

 The first statement is a leader.
 Any statement that is the target of a conditional or unconditional goto is a

leader.
 Any statement that immediately follows a goto or conditional goto statement

is a leader.
(10) For each leader, its basic block consists of the leader and all statements up to but not

including the next leader or the end of the program.

Figure 4.3:Basic block construction

96

Consider the following source code for dot product of two vectors a and b of length 20

begin

prod :=0;

i:=1; do

begin

prod :=prod+ a[i]* b[i];

i :=i+1;

end

while i <= 20

end

Figure 4.4:Source code for dot product

The three-address code for the above source program is given as :

(1) prod := 0

(2) i := 1

(3) t1 := 4* i

(4) t2 := a[t1] /*compute a[i] */

(5) t3 := 4*i

(6) t4 := b[t3] /*compute b[i] */

(7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12) if i<=20 goto (3)

Figure 4.5:Three address code for above fig4.4

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

97

4.4.2 Transformations on Basic Blocks:

A number of transformations can be applied to a basic block without changing the set of

expressions computed by the block. Two important classes of transformation are :

1. Structure-preserving transformations

2. Algebraic transformations

Structure preserving transformations:

a. Common subexpression elimination:

a : = b + c

b : = a – d

c : = b + c

d : = a – d

a : = b + c

b : = a - d

c : = b + c

d : = b

Since the second and fourth expressions compute the same expression, the basic block can

be transformed as above.

b) Dead-code elimination:

Suppose x is dead, that is, never subsequently used, at the point where the statement x :

= y + z appears in a basic block. Then this statement may be safely removed without

changing the value of the basic block.

c) Renaming temporary variables:

A statement t : = b + c (t is a temporary) can be changed to u : = b + c (u is a new

temporary) and all uses of this instance of t can be changed to u without changing the value

of the basic block.
Such a block is called a normal-form block.

d) Interchange of statements:

Suppose a block has the following two adjacent statements:

t1 : = b + c
t2 : = x + y

We can interchange the two statements without affecting the value of the block if

and only if neither x nor y is t1 and neither b nor c is t2.

8. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a

basic block into an algebraically equivalent set.
Examples:
i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set of

expressions it computes.
ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y.

98

4.4.2 Flow Graphs

Flow graph is a directed graph containing the flow-of-control information for the set of basic

blocks making up a program. The nodes of the flow graph are basic blocks. It has a distinguished

initial node. E.g.: Flow graph for the vector dot product is given as follows:

prod : = 0 B1

i : = 1

t1 : = 4 * i
t2 : = a [t1]

t3 : = 4 * i B2
t4 : = b [t3]
t5 : = t2 * t4
t6 : = prod +

t5 prod : = t6

t7 : = i + 1
i : = t7
if i <= 20 goto B2

Figure 4.6:Flow graph for vector dot product

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The target of

jump from last statement of B1 is the first statement B2, so there is an edge from B1 (last

statement) to B2 (first statement). B1 is the predecessor of B2, and B2 is a successor of B1.

4.4.4 Loops

A loop is a collection of nodes in a flow graph such that

All nodes in the collection are strongly connected.
The collection of nodes has a unique entry.

A loop that contains no other loops is called an inner loop.

4.5 NEXT-USE INFORMATION

If the name in a register is no longer needed, then we remove the name from the register

and the register can be used to store some other names.

99

Input: Basic block B of three-address statements

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x,

y and z.

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table
regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.
3. In the symbol table, set y and z to “live”,and next-uses of y and z to i.

Figure 4.7:Next-Use Information

Table 4.2: Symbol Table:

Names Liveliness Next-use

 x not live no next-use

 y Live i

 z Live i

4.6 A SIMPLE CODE GENERATOR

A code generator generates target code for a sequence of three- address statements and

effectively uses registers to store operands of the statements. For example: consider the three-

address statement a := b+c It can have the following sequence of codes:

ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c

 (or)

ADD c, Ri Cost = 2 // if c is in a memory location

 (or)

MOV c, Rj Cost = 3 // move c from memory to Rj and add

ADD Rj, Ri

Register and Address Descriptors:

A register descriptor is used to keep track of what is currently in each registers. The register

descriptors show that initially all the registers are empty. An address descriptor stores the

location where the current value of the name can be found at run time.

100

A code-generation algorithm:

The algorithm takes as input a sequence of three -address statements constituting a basic block.

For each three-address statement of the form x : = y op z, perform the following actions:

 Invoke a function getreg to determine the location L where the result of the computation y op

z should be stored.

 Consult the address descriptor for y to determine y‟, the current location of y. Prefer the

register for y‟ if the value of y is currently both in memory and a register. If the value of y

is not already in L, generate the instruction MOV y‟ , L to place a copy of y in L.

 Generate the instruction OP z‟ , L where z‟ is a current location of z. Prefer a register to

a memory location if z is in both. Update the address descriptor of x to indicate that x is

in location L. If x is in L, update its descriptor and remove x from all other descriptors.

 If the current values of y or z have no next uses, are not live on exit from the block, and are

in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those

registers will no longer contain y or z.

Generating Code for Assignment Statements:

 The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Table 4.3: Code sequence for the example:

Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a - b MOV a, R0 R0 contains t t in R0

 SUB b, R0

u : = a - c MOV a , R1 R0 contains t t in R0

 SUB c , R1 R1 contains u u in R1

v : =t + u ADD R1, R0 R0 contains v u in R1

 R1 contains u v in R0

d : = v + u ADD R1, R0 R0 contains d d in R0

MOV R0, d

 d in R0 and memory

101

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment

statements a : = b [i] and a [i] : = b

Table 4.4: Indexed assignment

Statements Code Generated Cost

a : = b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a : = *p and *p : = a

Table 4.5:Pointer assignment

 Statements Code Generated Cost

 a : = *p MOV *Rp, a 2

 *p : = a MOV a, *Rp 2

 Table 4.6:Generating Code for Conditional Statements

Statement

Code

 if x < y goto z CMP x, y

 CJ< z /* jump to z if condition code

 is negative */

x : = y +z if x

<0 goto z

MOV y, R0
ADD z, R0

MOV R0,x

CJ< z

102

4.7 THE DAG REPRESENTATION FOR BASIC BLOCKS

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

 Leaves are labeled by unique identifiers, either variable names or constants.

 Interior nodes are labeled by an operator symbol.

 Nodes are also optionally given a sequence of identifiers for labels to store

the computed values.

DAGs are useful data structures for implementing transformations on basic blocks.

 It gives a picture of how the value computed by a statement is used in subsequent

statements.

 It provides a good way of determining common sub - expressions.

Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes,
an operator symbol.

2. For each node a list of attached identifiers to hold the computed values.
Case (i)x := y OP z

Case (ii)x := OP y

Case (iii)x := y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). (Checkingfor common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create

such a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the noden found in step 2 and set node(x) to n.

Figure 4.8:Algorithm for construction of DAG

103

Example: Consider the block of three- address statements:

4. t1 := 4* i
5. t2 := a[t1]
6. t3 := 4* i
7. t4 := b[t3]
8. t5 := t2*t4
9. t6 := prod+t5
10. prod := t6
11. t7 := i+1
12. i := t7
13. if i<=20 goto (1)

Stages in DAG Construction

104

105

Application of DAGs:

5. We can automatically detect common sub expressions.

6. We can determine which identifiers have their values used in the block.
7. We can determine which statements compute values that could be used outside the block.

106

GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that,

from a dag we can easily see how to rearrange the order of the final computation sequence than

we can starting from a linear sequence of three-address statements or quadruples.

Rearranging the order
The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1 : = a + b

t2 : = c + d

t3 : = e – t2

t4 : = t1 – t3

Generated code sequence for basic block:

MOV a , R0
ADD b , R0
MOV c , R1
ADD d , R1
MOV R0 , t1
MOV e , R0
SUB R1 , R0
MOV t1 , R1
SUB R0 , R1
MOV R1 , t4

Rearranged basic block:
Now t1 occurs immediately before t4.

t2 : = c + d

t3 : = e – t2

t1 : = a + b

t4 : = t1 – t3

Revised code sequence:

MOV c , R0

ADD d , R0

MOV a , R0

SUB R0 , R1

MOV a , R0

ADD b , R0

SUB R1 , R0

MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved.

109

A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow

the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:

8. while unlisted interior nodes remain do begin
9. select an unlisted node n, all of whose parents have been listed;
10. list n;
11. while the leftmost child m of n has no unlisted parents and is not a leaf do

begin
12. list m;
13. n : = m

end

end

Example: Consider the DAG shown below:

1 *

2 + - 3

4
*

 5 - + 8

 6 + 7 c d 11 e 12

a 9 b 10

Figure 4.9:Example DAG

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

110

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we

select anew n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left

chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.

Code sequence:

t8 : = d + e t6 :

= a + b t5 : = t6

– c t4 : = t5 * t8

t3 : = t4 – e t2 :

= t6 + t4 t1 : =

t2 * t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.

CHAPTER V - CODE OPTIMIZATION

5.1 INTRODUCTION

The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations that

are traditionally called optimizations. Compilers that apply code-improving transformations are

called optimizing compilers.

Optimizations are classified into two categories. They are

 Machine independent optimizations:
 Machine dependant optimizations:

Machine independent optimizations:

Machine independent optimizations are program transformations that improve the target

code without taking into consideration any properties of the target machine.

Machine dependant optimizations:

Machine dependant optimizations are based on register allocation and utilization of

special machine-instruction sequences.

The criteria for code improvement transformations:

 Simply stated, the best program transformations are those that yield the most benefit for the

least effort.

 The transformation must preserve the meaning of programs. That is, the optimization must

not change the output produced by a program for a given input, or cause an error such as

division by zero, that was not present in the original source program. At all times we take the

“safe” approach of missing an opportunity to apply a transformation rather than risk

changing what the program does.

111

 A transformation must, on the average, speed up programs by a measurable amount. We are

also interested in reducing the size of the compiled code although the size of the code has

less importance than it once had. Not every transformation succeeds in improving every

program, occasionally an “optimization” may slow down a program slightly.

 The transformation must be worth the effort. It does not make sense for a compiler writer to

expend the intellectual effort to implement a code improving transformation and to have the

compiler expend the additional time compiling source programs if this effort is not repaid

when the target programs are executed. “Peephole” transformations of this kind are simple

enough and beneficial enough to be included in any compiler.

112

Organization for an Optimizing Compiler:

Figure 5.1:Organization for an Optimizing Compiler

Flow analysis is a fundamental prerequisite for many important types of code improvement.

Generally control flow analysis precedes data flow analysis.Control flow analysis (CFA)

represents flow of control usually in form of graphs, CFA constructs such as
1. control flow graph

2. Call graph
Data flow analysis (DFA) is the process of ascerting and collecting information prior to program

execution about the possible modification, preservation, and use of certain entities (such as

values or attributes of variables) in a computer program.

5.2 PRINCIPAL SOURCES OF OPTIMISATION

A transformation of a program is called local if it can be performed by looking only at the

statements in a basic block; otherwise, it is called global. Many transformations can be

perormed at both the local and global levels. Local transformations are usually performed first.

5.2.1 Function-Preserving Transformations

There are a number of ways in which a compiler can improve a program without

changing the function it computes. The transformations

 Common sub expression elimination,

 Copy propagation,

 Dead-code elimination, and

 Constant folding

are common examples of such function-preserving transformations. The other transformations

come up primarily when global optimizations are performed.

113

Frequently, a program will include several calculations of the same value, such as an offset

in an array. Some of the duplicate calculations cannot be avoided by the programmer because

they lie below the level of detail accessible within the source language.

1.Common Sub expressions elimination:

An occurrence of an expression E is called a common sub-expression if E was previously

computed, and the values of variables in E have not changed since the previous computation.

We can avoid recomputing the expression if we can use the previously computed value.
For example

t1: =4*i

t2: =a [t1]

t3: =4*j

t4:=4*i

t5: =n

t6: =b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: =4*i

t2: =a [t1]

t3: =4*j

t5: =n

t6: =b [t1] +t5

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. And value

of i is not been changed from definition to use.

2.Copy Propagation:

Assignments of the form f : = g called copy statements, or copies for short. The idea behind

the copy-propagation transformation is to use g for f, whenever possible after the copy statement

f: = g. Copy propagation means use of one variable instead of another. This may not appear to be

an improvement, but as we shall see it gives us an opportunity to eliminate x.
For example

 x=Pi;

..…

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

3.Dead-Code Eliminations:

A variable is live at a point in a program if its value can be used subsequently; otherwise, it

is dead at that point. A related idea is dead or useless code, statements that compute the

114

values that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization can be

done byeliminating dead code.

Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, „if‟statement is dead code because this condition will never get satisfied.

4.Constant folding:

We can eliminate both the test and printing from the object code. More generally, deducing

at compile time that the value of an expression is a constant and using the constant instead is

known as constant folding. One advantage of copy propagation is that it often turns the copy

statement into dead code. For example,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

5.2.2 Loop Optimizations:

We now give a brief introduction to a very important place for optimizations, namely loops,

especially the inner loops where programs tend to spend the bulk of their time. The running time

of a program may be improved if we decrease the number of instructions in an inner loop, even if

we increase the amount of code outside that loop. Three techniques are important for loop

optimization:

 code motion, which moves code outside a loop;

 Induction-variable elimination, which we apply to replace variables from inner loop.

 Reduction in strength, which replaces and expensive operation by a cheaper one, such as

a multiplication by an addition.

1.Code Motion:

An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the number of

times a loop is executed (a loop-invariant computation) and places the expression before the

loop. Note that the notion “before the loop” assumes the existence of an entry for the loop. For

example, evaluation of limit-2 is a loop-invariant computation in the following while-statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of

115

t= limit-2;

while (i<=t) /* statement does not change limit or t */

2.Induction Variables :

Loops are usually processed inside out. For example consider the loop around B3. Note that

the values of j and t4 remain in lock-step; every time the value of j decreases by 1, that of t4

decreases by 4 because 4*j is assigned to t4. Such identifiers are called induction variables. When

there are two or more induction variables in a loop, it may be possible to get rid of all but one, by

the process of induction-variable elimination. For the inner loop around B3 in Fig. we cannot get

rid of either j or t4 completely; t4 is used in B3 and j in B4.

However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2 - B5 is

considered. Example:As the relationship t4:=4*j surely holds after such an assignment to t4 in

Fig. and t4 is not changed elsewhere in the inner loop around B3, it follows that just after the

statement j:=j -1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t

4:= 4*j by t4:= t4-4. The only problem is that t 4 does not have a value when we enter block B3

for the first time. Since we must maintain the relationship t4=4*j on entry to the block B3, we

place an initializations of t4 at the end of the block where j itself is

before after

Figure 5.2:Induction variable example

116

initialized, shown by the dashed addition to block B1 in second Fig.The replacement of a

multiplication by a subtraction will speed up the object code if multiplication takes more time

than addition or subtraction, as is the case on many machines.

3.Reduction In Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target

machine. Certain machine instructions are considerably cheaper than others and can often be

used as special cases of more expensive operators. For example, x² is invariably cheaper to

implement as x*x than as a call to an exponentiation routine. Fixed-point multiplication or

division by a power of two is cheaper to implement as a shift. Floating-point division by a

constant can be implemented as multiplication by a constant, which may be cheaper.

5.2.3 OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

 Structure-Preserving Transformations

 Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

 Common sub-expressionelimination

 Dead code elimination

 Renaming of temporary variables

 Interchange of two independent adjacent statements.

1.Common sub-expression elimination:

Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it‟s referenced when encountered again – of course

providing the variable values in the expression still remain constant.

Example:

 =b+c

 =a-d

 =b+c

 =a-d

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d

Basic block can be transformed to

 =b+c

 =a-d

 =a

 =b

117

2.Dead code elimination:

It‟s possible that a large amount of dead (useless) code may exist in the program. This

might be especially caused when introducing variables and procedures as part of construction or

error -correction of a program – once declared and defined, one forgets to remove them in case

they serve no purpose. Eliminating these will definitely optimize the code.

3.Renaming of temporary variables:

A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is another

temporary name, and change all uses of t to u. In this we can transform a basic block to its

equivalent block called normal-form block.

4.Interchange of two independent adjacent statements:

Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t1

does not affect the value of t2.

Algebraic Transformations:

Algebraic identities represent another important class of optimizations on basic blocks. This

includes simplifying expressions or replacing expensive operation by cheaper ones i.e. reduction

in strength. Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus the

expression 2*3.14 would be replaced by 6.28.
The relational operators <=, >=, <, >, + and = sometimes generate unexpected common sub

expressions. Associative laws may also be applied to expose common sub expressions. For

example, if the source code has the assignments

a :=b+c e

:=c+d+b

the following intermediate code may be generated:

a :=b+c

t :=c+d
 :=t+b

Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

118

The compiler writer should examine the language carefully to determine what rearrangements of

computations are permitted, since computer arithmetic does not always obey the algebraic

identities of mathematics. Thus, a compiler may evaluate x*y-x*z as x*(y-z) but it may not

evaluate a+(b-c) as (a+b)-c.

5.3 LOOPS IN FLOW GRAPH

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial node of the flow

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop.

Similarlyeverynode dominates itself.

Example:

*In the flow graph below,

*Initial node,node1 dominates every

node. *node 2 dominates itself
*node 3 dominates all but 1 and 2.

*node 4 dominates all but 1,2 and 3.
*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin

through the other.
*node 7 dominates 7,8 ,9 and 10.

*node 8 dominates 8,9 and 10.
*node 9 and 10 dominates only themselves.

Figure 5.3:Flow graph

119

The way of presenting dominator information is in a tree, called the dominator tree in which

the initial node is the root. The parent of each other node is its immediate dominator. Each node

d dominates only its descendents in the tree. The existence of dominator tree follows from a

property of dominators; each node has a unique immediate dominator in that is the last

dominator of n on any path from the initial node to n. In terms of the dom relation, the immediate

dominator m has the property is d=!n and d dom n, then d dom m.

Figure 5.4:Dominator Tree

D(1)={1}

D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

D(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}

120

Natural Loop:

One application of dominator information is in determining the loops of a flow graph

suitable for improvement. The properties of loops are

A loop must have a single entry point, called the header. This entry point-dominates all

nodes in the loop, or it would not be the sole entry to the loop.

There must be at least one wayto iterate the loop(i.e.)at least one path back to the header.

One way to find all the loops in a flow graph is to search for edges in the flow graph whose

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of edges

are called as back edges.

Example:

In the above graph,

7 → 4 4 DOM 7

10 →7 7 DOM 10

4 → 3

8 → 3

9 →1

The above edges will form loop in flow graph. Given a back edge n → d, we define the natural

loop of the edge to be d plus the set of nodes that can reach n without going through d. Node d is

the header of the loop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d.

Output: The set loop consisting of all nodes in the natural loop n→d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make

sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is placed once

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we

never examine its predecessors, and thus find only those nodes that reach n without going

through d.

Procedure insert(m);

if m is not in loop then

begin loop := loop U

{m}; push m onto stack
end;

stack : =empty;

121

loop :

={d};

insert(n);
while stack is not empty do begin

pop m, the first element of stack, off stack;

for each predecessor p of m do insert(p)
end Inner

loop:

If we use the natural loops as “the loops”, then we have the useful property that unless two

loops have the same header, they are either disjointed or one is entirely contained in the other.

Thus, neglecting loops with the same header for the moment, we have a natural notion of inner

loop: one that contains no other loop.
When two natural loops have the same header, but neither is nested within the other, they are

combined and treated as a single loop.

Pre-Headers:

Several transformations require us to move statements “before the header”. Therefore begin

treatment of a loop L by creating a new block, called the preheater. The pre-header has only the

header as successor, and all edges which formerly entered the header of Lfrom outside L instead

enter the pre-header. Edges from inside loop L to the header are not changed. Initially the pre-

header is empty, but transformations on L may place statements in it.

header pre-header

loop L

header

loop L

(a) Before (b) After

Figure 5.5:Pre-Header

Reducible flow graphs:

Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined, dominators

can be easily calculated, data flow analysis problems can also be solved efficiently. Exclusive

use of structured flow-of-control statements such as if-then-else, while-do, continue, and break

statements produces programs whose flow graphs are always reducible.The most important

properties of reducible flow graphs are that there are no jumps into the middle of loops from

outside; the only entry to a loop is through its header.

122

Definition:

A flow graph G is reducible if and only if we can partition the edges into two disjoint groups,

forward edges and back edges, with the following properties.

 The forward edges from an acyclic graph in which every node can be reached from initial

node of G.

 The back edges consist only of edges where heads dominate theirs tails.

 Example: The above flow graph is reducible.

If we know the relation DOM for a flow graph, we can find and remove all the back edges. The

remaining edges are forward edges. If the forward edges form an acyclic graph, then we can say

the flow graph reducible. In the above example remove the five back edges 4→3, 7→4, 8→3,

9→1 and 10→7 whose heads dominate their tails, the remaining graph is acyclic. The key

property of reducible flow graphs for loop analysis is that in such flow graphs every set of nodes

that we would informally regard as a loop must contain a back edge.

5.4 PEEPHOLE OPTIMIZATION

A statement-by-statement code-generations strategy often produce target code that contains

redundant instructions and suboptimal constructs .The quality of such target code can be

improved by applying “optimizing” transformations to the target program. A simple but

effective technique for improving the target code is peephole optimization, a method for trying

to improving the performance of the target program by examining a short sequence of target

instructions (called the peephole) and replacing these instructions by a shorter or faster

sequence, whenever possible. The peephole is a small, moving window on the target program.

The code in the peephole need not contiguous, although some implementations do require this.it

is characteristic of peephole optimization that each improvement may spawn opportunities for

additional improvements.
We shall give the following examples of program transformations that are characteristic of

peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code

123

Redundant Loads And Stores:

If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of

a is already in register R0.If (2) had a label we could not be sure that (1) was always executed

immediately before (2) and so we could not remove (2).

Unreachable Code:

Another opportunity for peephole optimizations is the removal of unreachable

instructions. An unlabeled instruction immediately following an unconditional jump may be

removed. This operation can be repeated to eliminate a sequence of instructions. For example,

for debugging purposes, a large program may have within it certain segments that are executed

only if a variable debug is 1. In C, the source code might look like:

#define debug

0 ….

If (debug) {

Print debugging information

}

 In the intermediate representations the if-statement may be translated as: If

debug =1 goto L2

goto L2

L1: print debugging information

L2: …………………………(a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what the

value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: ……………………………(b)

124

As the argument of the statement of (b) evaluates to a constant true it can be replaced by

If debug ≠0 goto L2

Print debugging information

L2: ……………………………(c)

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can be

eliminated one at a time.

Flows-Of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or the target

code by the following types of peephole optimizations. We can replace the jump sequence

goto L1

….

L1: gotoL2

by the sequence

goto L2

….

L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto L2

provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2

can be replaced by

Ifa < b goto L2

….

L1: goto L2

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. Then

the sequence

goto L1

……..

125

L1: if a <b goto L2

L3: …………………………………..(1)

Maybe replaced by

Ifa<b goto L2

goto L3

…….

L3: ………………………………….(2)

While the number of instructions in (1) and (2) is the same, we sometimes skip the

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:

There is no end to the amount of algebraic simplification that can be attempted through

peephole optimization. Only a few algebraic identities occur frequently enough that it is worth

considering implementing them .For example, statements such as

(d) := x+0

Or

x := x * 1

Are often produced by straightforward intermediate code-generation algorithms, and they can be

eliminated easily through peephole optimization.

Reduction in Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target

machine. Certain machine instructions are considerably cheaper than others and can often be

used as special cases of more expensive operators.
For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation

routine. Fixed-point multiplication or division by a power of two is cheaper to implement as a

shift. Floating-point division by a constant can be implemented as multiplication by a constant,

which may be cheaper.

X
2
 → X*X

126

Useof Machine Idioms:
The target machine may have hardware instructions to implement certain specific operations

efficiently. For example, some machines have auto-increment and auto-decrement addressing

modes. These add or subtract one from an operand before or after using its value. The use of

these modes greatly improves the quality of code when pushing or popping a stack, as in

parameter passing. These modes can also be used in code for statements like i : =i+1.

i:=i+1 → i++

i:=i-1 → i--

5.5 INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS

In order to do code optimization and a good job of code generation , compiler needs to

collect information about the program as a whole and to distribute this information to each

block in the flow graph. A compiler could take advantage of “reaching definitions” , such as

knowing where a variable like debug was last defined before reaching a given block, in order

to perform transformations are just a few examples of data-flow information that an

optimizing compiler collects by a process known as data-flow analysis.

Data-flow information can be collected by setting up and solving systems of equations

of the form :

out [S] = gen [S] U (in [S] – kill [S])

This equation can be read as “ the information at the end of a statement is either generated

within the statement , or enters at the beginning and is not killed as control flows through the

statement.”

The details of how data-flow equations are set and solved depend on three factors.

 The notions of generating and killing depend on the desired information, i.e., on the data

flow analysis problem to be solved. Moreover, for some problems, instead of

proceeding along with flow of control and defining out[s] in terms of in[s], we need to

proceed backwards and define in[s] in terms of out[s].

 Since data flows along control paths, data-flow analysis is affected by the constructs in

a program. In fact, when we write out[s] we implicitly assume that there is unique end

point where control leaves the statement; in general, equations are set up at the level of

basic blocks rather than statements, because blocks do have unique end points.

 There are subtleties that go along with such statements as procedure calls,

assignments through pointer variables, and even assignments to array variables.

Points and Paths:

Within a basic block, we talk of the point between two adjacent statements, as well as

the point before the first statement and after the last. Thus, block B1 has four points: one before

any of the assignments and one after each of the three assignments.

127

B1

d1 : i :=m-

1 d2: j :=n

d3: a := u1
B2

d4 : I := i+1

B3

d5: j := j-1

B4

B5 B6
d6 :a :=u2

Figure 5.6:Points and paths

Now let us take a global view and consider all the points in all the blocks. A path from p1 to pn

is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either

 Pi is the point immediately preceding a statement and pi+1 is the point

immediately following that statement in the same block, or

 Pi is the end of some block and pi+1 is the beginning of a successor block.

Reaching definitions:

A definition of variable x is a statement that assigns, or may assign, a value to x. The most

common forms of definition are assignments to x and statements that read a value from an i/o

device and store it in x. These statements certainly define a value for x, and they are referred

to as unambiguous definitions of x. There are certain kinds of statements that may define a

value for x; they are called ambiguous definitions. The most usual forms of ambiguous

definitions of x are:

 A call of a procedure with x as a parameter or a procedure that can access x because x

is in the scope of the procedure.

 An assignment through a pointer that could refer to x. For example, the assignment *q: =

y is a definition of x if it is possible that q points to x. we must assume that an

assignment through a pointer is a definition of every variable.

128

We say a definition d reaches a point p if there is a path from the point immediately following

d to p, such that d is not “killed” along that path. Thus a point can be reached by an

unambiguous definition and an ambiguous definition of the same variable appearing later

along one path.

Data-flow analysis of structured programs:

Flow graphs for control flow constructs such as do-while statements have a useful

property: there is a single beginning point at which control enters and a single end point that

control leaves from when execution of the statement is over. We exploit this property when we

talk of the definitions reaching the beginning and the end of statements with the following

syntax.

S id: = E| S; S | if E then S else S | do S while

E E id + id| id

Expressions in this language are similar to those in the intermediate code, but the flow

graphs for statements have restricted forms.

 S1

S1

If E goto s1

S2
If E goto s1

S1 S2

S1 ; S2

IF E then S1 else S2 do S1 while E

Figure 5.7:Data flow analysis of structured programs

129

We define a portion of a flow graph called a region to be a set of nodes N that

includes a header, which dominates all other nodes in the region. All edges between nodes in

N are in the region, except for some that enter the header. The portion of flow graph

corresponding to a statement S is a region that obeys the further restriction that control can

flow to just one outside block when it leaves the region.

130

we say that the beginning points of the dummy blocks at the entry and exit of a statement‟s

region are the beginning and end points, respectively, of the statement. The equations are

inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S] for all

statements S.
gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions

that never reach the end of S.
Consider the following data-flow equations for reaching definitions :

i)

S d : a : = b + c

gen [S] = { d }

kill [S] = Da – { d }

out [S] = gen [S] U (in[S] – kill[S])

Observe the rules for a single assignment of variable a. Surely that assignment is a definition

of a, say d. Thus

Gen[S]={d}

On the other hand, d “kills” all other definitions of a, so we write

Kill[S] = Da – {d}

Where, Da is the set of all definitions in the program for variable a.

ii)

S S1

S2

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Kill[S] = kill[S2] U (kill[S1] – gen[S2]

in [S1] = in [S]

in [S2] = out [S1]

out [S] = out [S2]

131

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is generated by

S2, then it is surely generated by S. if d is generated by S1, it will reach the end of S provided it

is not killed by S2. Thus, we write

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Similar reasoning applies to the killing of a definition, so we have

 Kill[S] = kill[S2] U (kill[S1] – gen[S2])

Conservative estimation of data-flow information:

There is a subtle miscalculation in the rules for gen and kill. We have made the

assumption that the conditional expression E in the if and do statements are “uninterpreted”;

that is, there exists inputs to the program that make their branches go either way. We

assume that any graph-theoretic path in the flow graph is also an execution path, i.e., a path

that is executed when the program is run with least one possible input.

When we compare the computed gen with the “true” gen we discover that the true gen is

always a subset of the computed gen. on the other hand, the true kill is always a superset of the

computed kill. These containments hold even after we consider the other rules. It is natural to

wonder whether these differences between the true and computed gen and kill sets present a

serious obstacle to data-flow analysis. The answer lies in the use intended for these data.

Overestimating the set of definitions reaching a point does not seem serious; it merely stops

us from doing an optimization that we could legitimately do. On the other hand,

underestimating the set of definitions is a fatal error; it could lead us into making a change in

the program that changes what the program computes. For the case of reaching definitions,

then, we call a set of definitions safe or conservative if the estimate is a superset of the true set

of reaching definitions. We call the estimate unsafe, if it is not necessarily a superset of the

truth. Returning now to the implications of safety on the estimation of gen and kill for reaching

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in the

safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a point,

and cannot prevent a definition from reaching a place that it truly reached. Decreasing kill can

only increase the set of definitions reaching any given point.

Computation of in and out:

any data-flow problems can be solved by synthesized translations similar to those used to

compute gen and kill. It can be used, for example, to determine loop-invariant computations.

However, there are other kinds of data-flow information, such as the reaching-definition

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute depending

on in. we intend that in[S] be the set of definitions reaching the beginning of S, taking into

account the flow of control throughout the entire program, including statements outside of S or

within which S is nested.

132

The set out[S] is defined similarly for the end of s. it is important to note the distinction

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S without

following paths outside S. Assuming we know in[S] we compute out by equation, that is

Out[S] = gen[S] U (in[S] - kill[S])

Considering cascade of two statements S1; S2, as in the second case. We start by

observingin[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], since a

definition reaches the beginning of S2 if and only if it reaches the end of S1. Now we can

compute out[S2], and this set is equal to out[S].

Considering if-statement we have conservatively assumed that control can follow either

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the beginning of

S.

In[S1] = in[S2] = in[S]

If a definition reaches the end of S if and only if it reaches the end of one or both sub

statements; i.e,

Out[S]=out[S1] U out[S2]

Representation of sets:

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit

vectors. We assign a number to each definition of interest in the flow graph. Then bit vector

representing a set of definitions will have 1 in position I if and only if the definition

numbered I is in the set. The number of definition statement can be taken as the index of

statement in an array holding pointers to statements. However, not all definitions may be of

interest during global data-flow analysis. Therefore the number of definitions of interest

will typically be recorded in a separate table.

A bit vector representation for sets also allows set operations to be implemented efficiently.

The union and intersection of two sets can be implemented by logical or and logical and,

respectively, basic operations in most systems-oriented programminglanguages. The

difference A-B of sets A and B can be implemented by taking the complement of B and then

using logical and to compute A .

Local reaching definitions:

Space for data-flow information can be traded for time, by saving information only at certain

points and, as needed, recomputing information at intervening points. Basic blocks are usually

treated as a unit during global flow analysis, with attention restricted to only those points that

are the beginnings of blocks. Since there are usually many more points than blocks, restricting

our effort to blocks is a significant savings. When needed, the reaching definitions for all points

in a block can be calculated from the reaching definitions for the beginning of a block.

133

Use-definition chains:

It is often convenient to store the reaching definition information as” use-definition

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions that

reaches that use. If a use of variable a in block B is preceded by no unambiguous definition of a,

then ud-chain for that use of a is the set of definitions in in[B] that are definitions ofa.in

addition, if there are ambiguous definitions of a ,then all of these for which no unambiguous

definition of a lies between it and the use of a are on the ud-chain for this use of a.

Evaluation order:

The techniques for conserving space during attribute evaluation, also apply to the

computation of data-flow information using specifications. Specifically, the only constraint on

the evaluation order for the gen, kill, in and out sets for statements is that imposed by

dependencies between these sets. Having chosen an evaluation order, we are free to release the

space for a set after all uses of it have occurred. Earlier circular dependencies between

attributes were not allowed, but we have seen that data-flow equations may have circular

dependencies.

General control flow:

Data-flow analysis must take all control paths into account. If the control paths are evident

from the syntax, then data-flow equations can be set up and solved in a syntax-directed

manner. When programs can contain goto statements or even the more disciplined break and

continue statements, the approach we have taken must be modified to take the actual control

paths into account. Several approaches may be taken. The iterative method works arbitrary flow

graphs. Since the flow graphs obtained in the presence of break and continue statements are

reducible, such constraints can be handled systematically using the interval-based methods.

However, the syntax-directed approach need not be abandoned when break and continue

statements are allowed.

5.6 CODE IMPROVIG TRANSFORMATIONS

Algorithms for performing the code improving transformations rely on data-flow

information. Here we consider common sub-expression elimination, copy propagation and

transformations for moving loop invariant computations out of loops and for eliminating

induction variables. Global transformations are not substitute for local transformations; both

must be performed.

Elimination of global common sub expressions:

The available expressions data-flow problem discussed in the last section allows us to

determine if an expression at point p in a flow graph is a common sub-expression. The following

algorithm formalizes the intuitive ideas presented for eliminating common sub-expressions.

134

ALGORITHM:Global common sub expression elimination.

INPUT:A flow graph with available expression information.

OUTPUT: A revised flow graph.

METHOD: For every statement s of the form x := y+z
6

 such that y+z is available at

the beginning of block and neither y nor r z is defined prior to statement s in that

block, do the following.

 To discover the evaluations of y+z that reach s‟s block, we follow

flow graph edges, searching backward from s‟s block. However, we do not

go through any block that evaluates y+z. Thelast evaluation of y+z in each

block encountered is an evaluation of y+z that reaches s.

 Create new variable u.

 Replace each statement w: =y+z found in (1) by
u : = y +

z w : = u

Replace statement s by x:=u.

Some remarks about this algorithm are in order.

 The search in step(1) of the algorithm for the evaluations of y+z that reach

statement s can also be formulated as a data-flow analysis problem. However, it does

not make sense to solve it for all expressions y+z and all statements or blocks because

too much irrelevant information is gathered.

 Not all changes made by algorithm are improvements. We might wish to limit

the number of different evaluations reaching s found in step (1), probably to one.

 Algorithm will miss the fact that a*z and c*z must have the same value in

a :=x+y c :=x+y

vs

b :=a*z d :=c*z

 Because this simple approach to common sub expressions considers only the

literal expressions themselves, rather than the values computed by expressions.

135

Copy propagation:

Various algorithms introduce copy statements such as x :=copies may also be generated

directly by the intermediate code generator, although most of these involve temporaries local to

one block and can be removed by the dag construction. We may substitute y for x in all these

places, provided the following conditions are met every such use u of x. Statement s must be the

only definition of x reaching u. On every path from s to including paths that go through u

several times, there are no assignments to y.

Condition (1) can be checked using ud-changing information. We shall set up a new data-

flow analysis problem in which in[B] is the set of copies s: x:=y such that every path from

initial node to the beginning of B contains the statement s, and subsequent to the last occurrence

of s, there are no assignments to y.

 ALGORITHM: Copy propagation.

INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and
with c_in[B] representing the solution to equations that is the set of copies x:=y

that reach block B along every path, with no assignment to x or y following the last

occurrence of x:=y on the path. We also need ud-chains giving the uses of each

definition.

OUTPUT: A revised flow graph.

METHOD: For each copy s : x:=y do the following:

 Determine those uses of x that are reached by this definition of namely, s: x: =y.

 Determine whether for every use of x found in (1) , s is in c_in[B], where B is the

block of this particular use, and moreover, no definitions of x or y occur prior to this

use of x within B. Recall that if s is in c_in[B]then s is the only definition of x that

reaches B.

 If s meets the conditions of (2), then remove s and replace all uses of x found in (1)

by y.

Detection of loop-invariant computations:

Ud-chains can be used to detect those computations in a loop that are loop-invariant, that is,

whose value does not change as long as control stays within the loop. Loop is a region

consisting of set of blocks with a header that dominates all the other blocks, so the only way to

enter the loop is through the header.

If an assignment x := y+z is at a position in the loop where all possible definitions of y and z are

outside the loop, then y+z is loop-invariant because its value will be the same each time x:=y+z is

encountered. Having recognized that value of x will not change, consider v := x+w, where w could

only have been defined outside the loop, then x+w is also loop-invariant.

136

ALGORITHM: Detection of loop-invariant computations.

INPUT: A loop L consisting of a set of basic blocks, each block containing sequence

of three-address statements. We assume ud-chains are available for the individual

statements.

OUTPUT: the set of three-address statements that compute the same value each time

executed, from the time control enters the loop L until control next leaves L.

METHOD: we shall give a rather informal specification of the algorithm, trusting

that the principles will be clear.

 Mark “invariant” those statements whose operands are all either constant or have

all their reaching definitions outside L.

 Repeat step (3) until at some repetition no new statements are marked “invariant”.

 Mark “invariant” all those statements not previously so marked all of whose

operands either are constant, have all their reaching definitions outside L, or have

exactly one reaching definition, and that definition is a statement in L marked

invariant.

Performing code motion:

Having found the invariant statements within a loop, we can apply to some of them an

optimization known as code motion, in which the statements are moved to pre-header of the

loop. The following three conditions ensure that code motion does not change what the

program computes. Consider s: x: =y+z.

 The block containing s dominates all exit nodes of the loop, where an exit of a loop is a

node with a successor not in the loop.

 There is no other statement in the loop that assigns to x. Again, if x is a temporary assigned

only once, this condition is surely satisfied and need not be changed.No use of x in the

loop is reached by any definition of x other than s. This condition too will be satisfied,

normally, if x is temporary.

 ALGORITHM: Code motion.

INPUT: A loop L with ud-chaining information and dominator information.

OUTPUT: A revised version of the loop with a pre-header and some statements

moved to the pre-header.

METHOD:

 Use loop-invariant computation algorithm to find loop-invariant statements.

137

 For each statement s defining x found in step(1), check:

i) That it is in a block that dominates all exits of L,

ii) That x is not defined elsewhere in L, and

iii) That all uses in L of x can only be reached by the definition of x in statement

s.

 Move, in the order found by loop-invariant algorithm, each statement s found in

(1) and meeting conditions (2i), (2ii), (2iii) , to a newly created pre-header,

provided any operands of s that are defined in loop L have previously had their

definition statements moved to the pre-header.

To understand why no change to what the program computes can occur, condition (2i) and (2ii)

of this algorithm assure that the value of x computed at s must be the value of x after any exit

block of L. When we move s to a pre-header, s will still be the definition of x that reaches the

end of any exit block of L. Condition (2iii) assures that any uses of x within L did, and will

continue to, use the value of x computed by s.

Alternative code motion strategies:

The condition (1) can be relaxed if we are willing to take the risk that we may actually

increase the running time of the program a bit; of course, we never change what the program

computes. The relaxed version of code motion condition (1) is that we may move a statement

s assigning x only if:

1‟. The block containing s either dominates all exists of the loop, or x is not used outside

the loop. For example, if x is a temporary variable, we can be sure that the value will

be used only in its own block.

If code motion algorithm is modified to use condition (1‟), occasionally the running time will

increase, but we can expect to do reasonably well on the average. The modified algorithm may

move to pre-header certain computations that may not be executed in the loop. Not only does

this risk slowing down the program significantly, it may also cause an error in certain

circumstances.

Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by an

assignment x: =y+z, we can still take the computation y+z outside a loop. Create a new

temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the loop. In

many cases we can propagate out the copy statement x: = t.

138

Maintaining data-flow information after code motion:
The transformations of code motion algorithm do not change ud-chaining information, since

by condition (2i), (2ii), and (2iii), all uses of the variable assigned by a moved statement s that

were reached by s are still reached by s from its new position. Definitions of variables used by s

are either outside L, in which case they reach the pre-header, or they are inside L, in which

case by step (3) they were moved to pre-header ahead of s. If the ud-chains are represented by

lists of pointers to pointers to statements, we can maintain ud-chains when we move statement s

by simply changing the pointer to s when we move it. That is, we create for each statement s

pointer ps, which always points to s. We put the pointer on each ud-chain containing s. Then,

no matter where we move s, we have only to change ps , regardless of how many ud-chains s

is on.

The dominator information is changed slightly by code motion. The pre-header is now the

immediate dominator of the header, and the immediate dominator of the pre-header is the node

that formerly was the immediate dominator of the header. That is, the pre-header is inserted into

the dominator tree as the parent of the header.

Elimination of induction variable:

A variable x is called an induction variable of a loop L if every time the variable x changes

values, it is incremented or decremented by some constant. Often, an induction variable is

incremented by the same constant each time around the loop, as in a loop headed by for i := 1

to 10. However, our methods deal with variables that are incremented or decremented zero,

one, two, or more times as we go around a loop. The number of changes to an induction

variable may even differ at different iterations.

A common situation is one in which an induction variable, say i, indexes an array, and

some other induction variable, say t, whose value is a linear function of i, is the actual offset

used to access the array. Often, the only use made of i is in the test for loop termination. We

can then get rid of i by replacing its test by one on t. We shall look for basic induction

variables, which are those variables i whose only assignments within loop L are of the form i

:= i+c or i-c, where c is a constant.

ALGORITHM: Elimination of induction variable

INPUT: A loop L with reaching definition information, loop-invariant computation

information and live variable information.

OUTPUT: A revised loop.

139

METHOD:

 Consider each basic induction variable i whose only uses are to compute other induction

variables in its family and in conditional branches. Take some j in i‟s family, preferably one

such that c and d in its triple are as simple as possible and modify each test that i appears in

to use j instead. We assume in the following tat c is positive. A test of the form „if i relop x

goto B‟, where x is not an induction variable, is replaced by

r := c*x /* r := x if c is 1. */

r := r+d /* omit if d is 0 */

if j relop r goto B

where, r is a new temporary. The case „if x relop i goto B‟is handled analogously. If there are

two induction variables i1 and i2 in the test if i 1 relop i2 goto B, then we check if both i1 and i2

can be replaced. The easy case is when we have j1 with triple and j2 with triple, and c1=c2 and

d1=d2. Then, i1 relop i2 is equivalent to j1 relop j2.

Now, consider each induction variable j for which a statement j: =s was introduced. First

check that there can be no assignment to s between the introduced statement j :=s and any use of

j. In the usual situation, j is used in the block in which it is defined, simplifying this check;

otherwise, reaching definitions information, plus some graph analysis is needed to implement

the check. Then replace all uses of j by uses of s and delete statement j:

140

ONLINE QUESTIONS

UNIT-I

Questions opt1 opt2 opt3 opt4
opt
5

opt
6 answer

translates
assembly
level
language in
to an
equivalent
machine level
language Compiler

Assemble
r Loader

Preprocesso
r Assembler

translates
high level
language in
to an
equivalent
low level
language Compiler

Assemble
r Loader

Preprocesso
r Compiler

File inclusion
is performed
by _______ Compiler

Assemble
r Loader

Preprocesso
r

Preprocesso
r

performs type
checking

Lexical
analysis

Semantic
analysis

Linear
analysis

Syntax
analysis

Semantic
analysis

Grouping of
characters is
called
_______ String Stream Token Record Token

groups
tokens in to
grammatical
phrases Parser Scanner Analyzer Processor Parser

Example for
Token Syntax Character Symbol Keyword Keyword

141

The Idem
potent law in
regular
expression is R *** = r * R ** = r *** R ** = r * R *** = r ** R ** = r *

breaks up the
source
program into
pieces &
creates
intermediate
code
representatio
n Linear phase

Analysis
phase

Syntax
phase

Synthesis
phase

Analysis
phase

constructs the
target
program from
intermediate
code
representatio
n Linear phase

Analysis
phase

Syntax
phase

Synthesis
phase

Synthesis
phase

Grouping of
tokens into
syntactic
structure is
performed by Linear analysis Parser Scanner

Code
optimization Parser

transforming
parse tree in
to
intermediate
language
representatio
n

Three address
code

Code
generatio
n

Intermediat
e code
generation

Post fix
notation

Intermediate
code
generation

converts
intermediate
code in to low
level
language

Intermediate
code
generation

Code
generatio
n Assembler Loader

Code
generation

142

_______ is
the input of
structure
editors

Sequence of
commands

Sequence
of
characters

Sequence
of tokens String

Sequence of
commands

Pretty printers
performs Printing only

Analyzing
and
printing

Debugging
and printing

Debugging
only

Analyzing
and printing

Static
checker work
is _______

Debugging and
printing

Analyzing
and
printing

Analyzing
and
debugging

Debugging
only

Analyzing
and
debugging

translates
high level
language in
to an
equivalent
low level
Language Interpreter

Assemble
r Loader

Preprocesso
r Interpreter

_______ is
the input of
text
formatters

Sequence of
commands

Stream of
characters

Stream of
tokens Lexeme

Stream of
characters

Query
interpreters
translates a
predicate
contains____
_

Boolean
operators only

Relational
operators
only

Relational
and
Boolean
operators

Arithmetic,
Relational
and Boolean
operators

Relational
and Boolean
operators

Loader
performs

Loading
program in to
cache memory

Loading
program
in to main
memory

Loading
program in
to
secondary
memory Inking

Loading
program in
to main
memory

 _____ is the
linking-editor
job

 Linking
preprocessor
directives

 Linking
library
functions

 Linking
machine
code

 Linking
object
modules

 Linking
object
modules

Parser
generators
produce ____ Scanners

Lexical
analyzers

Syntax
analyzers

Little
languages

Syntax
analyzers

____ uses
Scanner
generators

Semantic
Analyzers

Lexical
analyzers

Syntax
analyzers

Little
languages

Lexical
analyzers

143

Intermediate
code
generation
using

tool

Syntax
direction
engine

Syntax
directed
trlation
engine

Syntax
trlation
scheme

Syntax
directed
scheme

Syntax
directed
trlation
engine

Code
Optimization
phase using

tool

Data flow
engine

Automatic
code
generator

Code
generator

Code
optimizer

Data flow
engine

Code
Generation
phase using

tool

Data flow
engine

Automatic
code
generator

Code
generator

Code
optimizer

Automatic
code
generator

Lexeme is a

Sequence of
characters

Sequence
of
command
s

Set of
strings Pattern

Sequence of
characters

Relational
operators is a
________ Lexeme Pattern Token Character Token

Deleting an
extraneous
character is a
action of

phase Lexical Syntax Semantic Synthesis Lexical

Trposing two
adjacent
characters is
a action of

phase Semantic Syntax Lexical Synthesis Lexical

_________ is
an error
recovery
action in
Lexical
analysis

Inserting a
missing
character

Function
call return

Semicolon
missing

Misspelled
keyword

Inserting a
missing
character

Sentinel is an
_________ Foe Foef Feof Eof Eof

144

____ is an
one way of
implementing
lexical
analyzer Using Lex

Using
Lexeme Using Yacc

Using
Operating
System Using Lex

The pointer
used in buffer
pair scheme
is Backward Forward

Lexeme-
End

Lexeme-
Start Forward

_______ is
an example
of Computer
Alphabets ASC EBDCIC ASCI EBCDIC EBCDIC

Finite
sequence of
symbols
called
_______ String Character Sequence Group String

Any set of
strings over
some fixed
alphabet is a
_____ Abstract Alphabets Language Sequence Language

Set of letters
and digits is
represented
by LD LUD (LU* (L* LUD

Set of all four
letter strings
is
represented
in a language
as L4 LLLL L* (LLLL)* L4

145

Set of strings
including
empty string
is
represented
is a language
as L+ L* D+ D* L*

 _____ is an
representatio
n of one or
more digits L+ L* D+ D* D+

If X = class ,
Y = room
then XY is Class Room

Class
Room Classroom Classroom

Prefix of
Banana is Ban Ana Na Banana Ban

_____ is the
subsequence
of banana Can Baaa Nand Nanan Baaa

Suffix of
Banana is Ban Baaa Nana Banana Nana

Substring of
banana is Nan Baaa Aaa Bnn Nan

Definition of
LUM is

{ s| s is in L or s
is in M }

{ s| s is in
L and s is
in M }

{ s| s is in L
nor s is in
M }

{ s| s is in L
nand s is in
M }

{ s| s is in L
or s is in M }

_____ is a
notation for
Regular
Expression

Letter(letterdigit
) +

Digit
(letterdigit
) +

Digit (letter
| digit) *

Letter(letter |
digit) *

Letter(letter |
digit) *

Definition of
LM is

{ st | s is in L or
s is in M }

{ st | s is
in L and t
is in M }

{ st | s is in
L or t is in
M }

{ st | s is in L
and s is in M
}

{ st | s is in L
and t is in M
}

L* is an
representatio
n of _____

Negative
closure

Positive
closure

Kleene
closure Line closure

Kleene
closure

146

Positive
closure of L is
written as L+ L* D+ D* L+

(r) | (s) is a
regular
expression
denoting
_____ L(r) | L(s) L(r) L(s) L(r)* L(s) L(r) U L(s) L(r) U L(s)

(r) (s) is a
regular
expression
denoting
_____ L(r) | L(s) L(r)L(s) L(r)* L(s) L(r) U L(s) L(r)L(s)

(r) * is a
regular
expression
denoting
_____ (L(r))* Lr* L(r) L*(r) (L(r))*

The regular
expression a*
denotes { a } { ? , a}

 { a , aa ,
aaa, ……}

 { ? , a , aa ,
aaa, ……}

 { ? , a , aa ,
aaa, ……}

Identifier is
represented
in character
class as

[A-Z] [A-Z0-
9]*

[A-Za-z] [
A-Za-z0-
9]*

[A-Za-z] [
A-Za-z]*

[A-Z] [A-
Za-z0-9]*

[A-Za-z] [A-
Za-z0-9]*

cannot be
described by
a regular
expression

???{ wcw | w is
a string of a‟s
and b‟s }

{ w | w is
a string of
a‟s and
b‟s }

??{ w* | w
is a string
of a‟s and
b‟s }

??{ w+ | w is
a string of
a‟s and b‟s }

???{ wcw |
w is a string
of a‟s and
b‟s }

_______ is
an
associative
property of a
regular
expression R(s|t) = (r|s)t

R|(s|t) =
(r|s)t

R|(s|t) =
(r|s)|t (s|t)r= t(r|s)

R|(s|t) =
(r|s)|t

147

A
replacement
according to
a production
is
called______
_ Reduction

Productio
n Derivation Parse tree Derivation

UNIT-II

Questions opt1 opt2 opt3 opt4
opt
5

opt
6 answer

Process of
replacing a string
by an NT
according to a
production______
_ Reduction

Productio
n Derivation Parse tree Reduction

Which of the
following is not a
true statement as
a derivation tree?

all the leaf
nodes are
terminals

root node
is start
symbol

interior
node is
terminal

interior node
is non -
terminal

interior
node is
terminal

Method of
converting regular
expression to a
recognizer is

Lexical
analyzer

Finite
automata Lex Yacc

Finite
automata

Demerits of using
transition table is

tough to
implement slower

takes up
less space

takes up lot of
space

takes up lot
of space

In which Finite
Automata no
states has an ? -
transition NFA DFA NDFA DNFA DFA

148

 _______ has
atmost one edge
labeled “a”
leaving state S NFA DFA NDFA DNFA DFA

Tool used to
design the lexical
analysis
is_______ Yacc Lexeme Lex Yaccer Lex

language is used
to create Lex
program C Lex Yacc Linux Lex

_______ is a c
program
produced by Lex
compiler Lex.yy.c Lex.c a.out tokens Lex.yy.c

_______ is the
output produced
by C compiler in
Lex Lex.yy.c Lex.c a.out tokens a.out

_______ is the
input taken by C
compiler in Lex Lex.yy.c Lex.c a.out tokens Lex.yy.c

 ______ is one of
the field in the
Lex specification

Transition
rules

Translatio
n rules Definition main function

Translation
rules

_______ is not a
part of Lex
specification

manifest
constants

auxiliary
procedure
s

declaration
s main function

main
function

149

Build parse trees
from root to
leaves is called

Top down
parsing

Bottom up
parsing LR parsing

Root leaf
parsing

Top down
parsing

Input to the top
down parsing is
scanned from
_______ root to right left to right top to left right to left left to right

A ? Aa is called
as

Left
factoring

Ambiguou
s

Left
Recursion

Left
refactoring

Left
Recursion

Elimination of left
recursion for the
A ? Aa / ß are

A ? A‟a , A‟
? ß „a / ?

A ? ßA‟ ,
A‟ ? aA‟ /
?

A ? Aa , A‟
? A‟a / ?

A ? Aa / ß , A
? ß„a / ?

A ? ßA‟ , A‟
? aA‟ / ?

Elimination of left
recursion for the
E ? E+T / T is

E? TE‟ , E‟
? +TE‟ / ?

E? T‟E ,
E‟ ? +E / ?

E? T‟E‟ , E‟
? +T‟E/ ?

E ? TE , E‟ ?
+T‟E‟ / ?:

E? TE‟ , E‟
? +TE‟ / ?

Elimination of left
recursion for the
T ? T * F / F is

T ? FT , T‟
? *F‟T‟ / ?

T? F‟T , T‟
? *E / ?

T? F‟T‟ , T‟
? *F‟T/ ?

T? FT‟ , T‟ ?
*FT‟ / ?\

T? FT‟ , T‟
? *FT‟ / ?\

Process of
factoring out the
common prefixes
is ____

Left
factoring

Ambiguou
s

Left
Recursion

Left
refactoring

Left
factoring

Elimination of left
factoring for the A
? a ß1 / a ß2 are

A ? aßA‟ ,
A‟ ? ß1 / ß2

A ? a‟A ,
A‟ ? aß2 /
ß1

A ? aA‟ , A‟
? ß1 / ß2

A ? a‟A‟ , A‟ ?
a ß1 / a ß2

A ? aA‟ , A‟
? ß1 / ß2

150

 ____ is the left
factored grammar
for S? iEtS |
iEtSeS | a

S? iEtSS‟ |
a , S‟? eS |
?

S? iEtS‟ |
a , S‟?
iEtSS‟ | ?

S? iEtSS‟ |
a , S‟?
iEtSeS | ?

S? iEtSeS | a
, S‟? eS | ?

S? iEtSS‟ |
a , S‟? eS |
?

Top down parsing
is creating the
tree in ________
order post pre in reverse polish pre

Top down parsing
is used to
find________ post order

Right
most
derivation in order

Left most
derivation

Left most
derivation

left recursive
grammar can
cause top down
parser to go
________ elimination

error
condition infinite loop finite loop infinite loop

Difficulty of top
down parsing is

Forward
loop

For
tracking

Backward
loop Back tracking

Back
tracking

 ________ is the
Top down parsing
technique

Recursive
descent

Recursion
descent

Predicate
logic

periodic
parsing

Recursive
descent

Demerits of
recursive descent
parsing is

Backtrackin
g

Left
factoring Recursive Recursion Recursive

Predictive parsing
consists of

input ,
parsing
program,
parsing
table ,
output

input ,
stack,
parsing
table ,
output

input ,
parsing
program,
stack ,
output

input ,
parsing
program,stac
k, parsing
table

input ,
stack,
parsing
table ,
output

151

In predictive
parsing program
let X be the top
stack symbol and
a be the next
input symbol , if
X is terminal and
if X= a then

push X on
to the stack

push a on
to the
stack

pop a from
the stack

pop X from
the stack

pop X from
the stack

In predictive
parsing program
let X be the top
stack symbol and
a be the next
input symbol , if
X is Non -
terminal and if M[
X,a] =X?Y1 , Y2 ,
…. Yk then

push X from
the stack ,
pop Yk ,
Yk-1 , ….
Y1 on to the
stack

push X
from the
stack ,
pop Y1 ,
Y2 , ….
Yk on to
the stack

pop X from
the stack ,
push Yk ,
Yk-1 , ….
Y1 on to
the stack

pop X from
the stack ,
push Y1 , Y2
, …. Yk on to
the stack

pop X from
the stack ,
push Yk ,
Yk-1 , ….
Y1 on to
the stack

In predictive
parsing if X is a
terminal , then
FIRST(X) is { ? } { X } terminal nonterminal { X }

Two functions
used in predictive
parsing is

FIRST ,
LAST

FIRST ,
FOLLOW

FOLLOW ,
LAST

FIRST,
PREDICT

FIRST ,
FOLLOW

152

In predictive
parsing if X ? ?,
then FIRST(X) is { ? } { X } terminal nonterminal { ? }

In predictive
parsing A? aBß ,
then everything in
____ is in ____

FIRST(a) ,
FOLLOW
(B)

FIRST(ß)
,
FOLLOW
(ß)

FIRST(ß) ,
FOLLOW
(B)

FIRST(a) ,
FOLLOW (ß)

FIRST(ß) ,
FOLLOW
(B)

In predictive
parsing A? aB ,
then everything in
____ is in ____

FOLLOW
(a),
FOLLOW
(B)

FOLLOW
(A) ,
FOLLOW
(B)

FOLLOW
(a) ,
FOLLOW
(A)

FOLLOW (A)
, FOLLOW
(a)

FOLLOW
(A) ,
FOLLOW
(B)

In predictive
parsing A? aBß,
where FIRST(ß)
contains ? , then
everything in
______ is in ____

FOLLOW
(A) ,
FOLLOW
(B)

FOLLOW
(a),
FOLLOW
(B)

FOLLOW
(a) ,
FOLLOW
(A)

FOLLOW (A)
, FOLLOW
(a)

FOLLOW
(A) ,
FOLLOW
(B)

 ____ is included
in FOLLOW
function set of
predictive parsing % # $ @ $

If a grammar S ?
(L) | a , then
FIRST(S) is ____ { (, a } { ? } { L , a } { $ } { (, a }

Elimination of left
recursion for the L
? L,S | S is

L? S,L‟ , L‟?
LL‟ / ?

L? S‟,L ,
L‟? S,L / ?

L? SL‟ , L‟?
SL‟ / ?

L? S‟,L‟ , L‟?
LL / ?

L? SL‟ , L‟?
SL‟ / ?

153

LL(1) grammar
has the property
of _____ Ambiguity

No
ambiguity

No
recursion

No
backtracking

No
ambiguity

LL(1) grammar
has _____
property Ambiguity

Left
recursive

No
recursion

No Left
recursive

No Left
recursive

In LL(1) grammar
the first L stands
for _____

left to right
scanning

left most
derivation

left to right
derivation left subtree

left to right
scanning

In LL(1) grammar
the second L
stands for _____

left to right
scanning

left most
derivation

left to right
derivation left subtree

left most
derivation

In LL(1) grammar
the 1 stands for

one output
symbol

one time
scanning

one sub
tree

one input
symbol

one input
symbol

In predictive
parsing , If X = a
= $ error report

successful
completio
n

advances
pointer

pop X off the
stack

successful
completion

In predictive
parsing , If X = a
? $ error report

successful
completio
n

advances
pointer &
pop X off
the stack

pop X off the
stack &
parser halts

advances
pointer &
pop X off
the stack

In predictive
parsing , If X = $

Stack is
empty

Stack is
full error report

pop X from
Stack

Stack is
empty

Ambiguity means

produces
more than
two parse
tree

produces
null parse
tree

produces
more than
one parse
tree

produces
finite parse
tree

produces
more than
one parse
tree

Ambiguous
means _____

produces
more than
two
derivation

produces
only left
most
derivation

produces
more than
one
derivation

produces only
right most
derivation

produces
more than
one
derivation

The output of Lex
compiler is _____

Transition
table

Transition
diagram

Lex
specificatio
n action

Transition
table

154

The input of Lex
compiler is

Transition
table

Transition
diagram

Lex
specificatio
n action

Lex
specificatio
n

The lexical
analyzer design
has _____

Lex
compiler

Transition
table

Lex
specificatio
n

Transition
diagram

Transition
table

Recognizer is a
_____ tool program string grammar program

NFA
representation in
a directed graph
is called_______ NFA graph

NFA
direction
graph

Transition
edge

Transition
graph

Transition
graph

_______ is an
easiest
implementation of
NFA in a
computer.

Transition
diagram

Transition
table

Transition
graph

Finite
automata

Transition
table

_______ is an
input for the
syntax analysis token

source
program parse tree syntax token

_______ is an
output of the
parser expression token parse tree

intermediate
representatio
n parse tree

Parser is a

Lexical
analyzer

Front end
tool Scanner Back end tool

Front end
tool

_______ is syntax
error

misspelled
identifier

misspelle
d keyword

misspelled
operator

unbalanced
parenthesis

unbalanced
parenthesis

UNIT-III

Questions opt1 opt2 opt3 opt4
opt
5

opt
6 answer

155

 _______ is one of
the method of
parsing

left to right
parsing

Top down
parsing

Bottom
down
parsing

Top up
parsing

Top down
parsing

______ constructs
parse tree from leaf
node to root

Bottom up
parsing

Top down
parsing

Bottom
down
parsing

Top up
parsing

Bottom up
parsing

one of the goal of
error handler in
parser is

avoid
common
error

slow down
the process

report the
presence
of error

avoid
specific
error

report the
presence of
error

In which error
recovery strategy
parser discards one
symbol at a time ?

Panic
mode

phrase
level

error
production
s

global
corrections Panic mode

In which error
recovery strategy
parser makes local
corrections ?

Panic
mode

phrase
level

error
production
s

global
corrections

phrase
level

In which error
recovery strategy
parser generate
error diagnostics ?

Panic
mode

phrase
level

error
production
s

global
corrections

error
productions

In which error
recovery strategy
parser using
algorithmic
approach ?

Panic
mode

phrase
level

error
production
s

global
corrections

global
corrections

156

The syntactic
structure of a
programming
language is
described by

Context
free
grammar CNF CCNF

Regular
language

Context
free
grammar

Context free
grammar consists
of ______

T , NT, $,
P

T, NT, S ,
Production

Terminal ,
token ,
Non
terminal

Terminal ,
Token ,
production

T, NT, S ,
Production

The keyword else is
a _______ Terminal

Non
terminal

Start
symbol Production Terminal

_______ are
syntactic variable Production

Non
terminal Terminal string

Non
terminal

Non terminal
denotes _______

sets of
characters

sets of
grammar

sets of
production

sets of
strings

sets of
strings

Start symbol is a
_______ Production

Non
terminal Terminal string

Non
terminal

Upper case letters
are _______ Production

Non
terminal Terminal string

Non
terminal

Lower case letters
are _______ Production

Non
terminal Terminal string Terminal

Punctuation
symbols are_____ Production

Non
terminal Terminal string Terminal

Boldface strings are
_____ Terminal

Non
terminal

Start
symbol Production Terminal

operator symbols
are _____ Terminal

Non
terminal

Start
symbol Production Terminal

157

Lower case italic
names are ____ Production

Non
terminal Terminal string

Non
terminal

The left side of the
first production is
called ________ String Terminal

Non
terminal

Start
symbol

Start
symbol

Lower case Greek
letters
represents_______
_

Grammar
symbols Terminals

Non
terminals

Start
symbol

Grammar
symbols

sequence of
replacements is
called ________ Reduction Derivation parse tree sentence Derivation

Graphical
representation of a
derivation is a
________ parse tree

syntactic
tree

syntax
graph pattern parse tree

substring that
matches the right
side of a production
is called ________

Handle
pruning Pattern Handle parsing Handle

Right most
derivation in
reverse is
called______

Handle
pruning Pattern Handle parsing

Handle
pruning

158

In______ action the
next input symbol is
shifted on to the top
of the stack accept reduce shift error shift

In______ action the
parser announces
the successful
completion of
parsing accept reduce shift error accept

In______ action
parser discovers
the syntax error accept reduce shift error error

In______ action
parser replacing the
handle with the non
terminal accept reduce shift error reduce

The set of prefixes
that appear on the
stack are called
______ prefixes

viable
prefixes

reduce
conflict

viable
suffixes

viable
prefixes

Grammar that has
no production right
side is e is called

operator
grammar

shift reduce
grammar

operator
precedenc
e grammar

precedenc
e grammar

operator
grammar

159

Grammar that has
no production right
side is two adjacent
non terminals is
called _______

operator
precedenc
e grammar

shift reduce
grammar

operator
grammar

precedenc
e grammar

operator
grammar

In precedence
relation a < b
means _____

a has
different
precedenc
e to b

a has same
precedence
as b

a takes
precedenc
e over b

a yields
precedenc
e to b

a yields
precedence
to b

In precedence
relation a > b
means _____

a has
different
precedenc
e to b

a has same
precedence
as b

a takes
precedenc
e over b

a yields
precedenc
e to b

a takes
precedence
over b

In precedence
relation a = b
means _____

a has
different
precedenc
e to b

a has same
precedence
as b

a takes
precedenc
e over b

a yields
precedenc
e to b

a has same
precedence
as b

In precedence
relation * and + has
the precedence of
_____ * > + + > * + = + * = * * > +

In precedence
relation $ and id
has the precedence
of _____ $ > id $ =id $ <id $? id $ <id

160

In operator
precedence parsing
if a < b then

pop a from
the stack

push a on
to the stack

pop b from
the stack

push b on
to the
stack

push b on
to the stack

In operator
precedence parsing
if a = b then

pop a from
the stack

push b on
to the stack

pop b from
the stack

push a on
to the
stack

push b on
to the stack

In operator
precedence parsing
if a > b then

pop the
stack

push the
stack

pop b from
the stack

push a on
to the
stack

pop the
stack

In LR(k) parsing ,
the L stands for

left to right
scanning

left most
derivation

left to right
derivation left subtree

left to right
scanning

In LR(k) parsing ,
the R stands for

left to right
scanning

Right most
derivation

left to right
derivation

Right most
derivation
in reverse

Right most
derivation
in reverse

In LR(k) parsing ,
the k stands for

parsing
symbol

number of
input
symbols

number of
characters

look ahead
symbol

number of
input
symbols

_____ LR
technique is easy to
implement SLR

canonical
LR LALR

Look
ahead LR SLR

_____ LR
technique is most
powerful SLR

canonical
LR LALR

Look
ahead LR

canonical
LR

_____ LR
technique is most
expensive SLR

canonical
LR LALR

Look
ahead LR

canonical
LR

161

_____ LR
technique is least
powerful SLR

canonical
LR LALR

Look
ahead LR SLR

S‟ ? .S is included
in _____ items closure non kernel kernel

non
closure kernel

The functions
performed in LR
parsing are _____

action and
shift

action and
goto

action and
error

goto and
shift

action and
goto

Action function
involved with
_____ Terminals

Non
terminals

start
symbol production Terminals

Goto function
involved with _____ Terminals

Non
terminals

Start
symbol Production

Non
terminals

LALR is
abbreviated from

Left and
Right LR

Look ahead
Simple LR

Look
ahead LR

Left to
Right
simple LR

Look ahead
LR

_______ is a
combination of
terminals and non
terminals

?productio
n token

regular
expression

regular
definition ?production

_______ is an one
of the bottom up
parsing technique

Operator
parsing

Shift reduce
parsing

Recursive
descent
parsing

Predictive
parsing

Shift reduce
parsing

162

_______ translates
intermediate
representation in to
an equivalent low
level language Analyzer Front end Back end

Synthesize
r Back end

The input for the
intermediate code
generator is

Optimized
code

Intermediat
e Code Token

Meaningful
expression

Meaningful
expression

The output for the
intermediate code
generator is

Optimized
code

Intermediat
e Code Token

Meaningful
expression

Intermediat
e Code

In _______ tree the
operators
represented in the
interior node Postfix Parse Tree

Syntax
Tree Prefix

Syntax
Tree

______ is a
linearized
representation of a
syntax tree

Postfix
Notation Parse Tree

Two
address
code

Prefix
notation

Postfix
Notation

Postfix notation for
the statement a = b
* - c is ______

* uminus a
b c

uminus * a
b c

a b c *
uminus

a b c
uminus *

a b c
uminus *

163

UNIT-IV

Questions opt1 opt2 opt3 opt4
op
t5

op
t6 answer

Semantic rule to
produce syntax
tree for the
production E ?
id is ______

E.nptr =
mkleaf (
id.place)

E.nptr =
mknode (
id.place)

E.nptr =
mkleaf (id ,
id.place)

E.nptr =
mknode (id
, id.place)

E.nptr =
mkleaf (id ,
id.place)

Semantic rule to
produce syntax
tree for the
production E ? -
E1 is ______

E.nptr =
mknode
(„uminus‟ ,
E1.nptr)

E.nptr =
mkunode
(„uminus‟ ,
E1.nptr)

E.nptr =
mkleaf
(„uminus‟ ,
E1.nptr)

E.nptr =
mkuleaf
(„uminus‟ ,
E1.nptr)

E.nptr =
mkunode
(„uminus‟ ,
E1.nptr)

Semantic rule to
produce syntax
tree for the
production E ?
E1 + E2 is

E.nptr =
mknode („+‟
, E1.nptr)

E.nptr =
mkpnode („+‟
, E1.nptr)

E.nptr =
mkpnode („+‟
, E1.nptr ,
E2.nptr)

E.nptr =
mknode („+‟
, E1.nptr ,
E2.nptr)

E.nptr =
mknode („+‟ ,
E1.nptr ,
E2.nptr)

_______ is an
general form of
three address
code
representation x = y op z x = z op op x = z op

op x = op y
z x = y op z

_______ is an
one type of
three address
code
statements if x y goto L

if x relop y
goto L goto L if x y

goto L if x
relop y

if x relop y
goto L

164

The name that
will hold the
value of E is
called _______ E.place E.code place.E code.E E.place

The sequence
of three address
statements
evaluating E is
called______ E.place E.code place.E code.E E.code

Record
structure with
four fields is
called______

Three
address
code Quadruples Triples

Indirect
triples Quadruples

Three fields of
Record
structure is
called______

Three
address
code Quadruples Triples

Indirect
triples Triples

emit is used to

emit
3address
statements
to an
output file

emit
assignments
to an output
file

emit
terminals to
an output file

emit non
terminals to
an output
file

emit
3address
statements
to an output
file

Translation of
E?(E1) is

E1.place =
E.place

E.place=E1.pl
ace

E.place =
(E1.place)

(E1.place)=
E.place

E.place=E1.
place

Translation of
E? id is

E1.place =
E.place

E.place=E1.pl
ace

E.place =
id.place

E1.place=
id.place

E.place =
id.place

_______ are
the 3 fields of
triples

arg1,arg2,a
rg3

arg1,arg2,res
ult

arg1,op,resul
t

arg1,arg2,o
p arg1,arg2,op

_______ are
the 4 fields of
Quadruples

arg1,arg2,a
rg3 , arg4

arg1,arg2,arg
3,result

arg1,,arg2,o
p,result

arg1,arg2,a
rg3,op

arg1,,arg2,o
p,result

165

Listing pointers
to triples is
called _____

Indirect
triples triples Quadruples

Indirect
ruples

Indirect
triples

offset
represents____
_

relative
address three address location address

relative
address

E1.type=integer
,E2.type =
integer , E.type
is ____ integer real inttoreal float integer

E1.type=integer
,E2.type = real ,
E.type is ____ integer real inttoreal float real

E1.type=real,E2
.type = real ,
E.type is ____ integer real inttoreal float real

E1.type=real,E2
.type = integer,
E.type is ____ integer real inttoreal float real

E?E1 or E2
represents ____

E1.place =
E1.place *
E2.place

E.code=
E1.place or
E2.place

E1.code=
E1.place and
E2.place

E.place=
E1.place or
E2.place

E.place=
E1.place or
E2.place

E? true
represents
________ E.code=0 E.place = 0 E.place = 1 E.code=1 E.place = 1

E? false
represents
________ E.code=0 E.place = 0 E.place = 1 E.code=1 E.place = 0

E?not E1
represents ____

E1.place =
E1.place
not
E2.place

E.code=
E1.place not
E2.place

E1.code=
not E1.place

E.place=
not
E1.place

E.place= not
E1.place

166

_________ is a
one semantic
rule of S?if E
then S1

E.false=ne
wlabel

E.true=newla
bel

S.next=S1.n
ext

S.code=E.p
lace B

E.true=newl
abel

_________ is a
one of the
semantic rule of
S?if E then S1

E.false=ne
wlabel

S1.next=S.ne
xt

S.next=S1.n
ext

S.code=E.p
lace

S1.next=S.n
ext

_________ is a
one of the
semantic rule of
S? while E do
S1

E.false=ne
wlabel

S1.next=S.ne
xt

S.next=S1.n
ext

E.false=S.n
ext

E.false=S.ne
xt

_________ is a
one of the
semantic rule of
S? while E do
S1

E.false=ne
wlabel

S1.next=S.ne
xt

E.true=newl
abel

E.false=S1.
next

E.true=newl
abel

_________ is a
one of the
semantic rule of
S?if E then S1
else S2

E.false=S1.
next

S1.next=S.ne
xt

S.next=S1.n
ext

S.code=E.c
ode

S.code=E.co
de

_________ is a
one of the
semantic rule of
S?if E then S1
else S2

E.false=E.tr
ue

S1.next=S.ne
xt

S.next=S1.n
ext

S.code=E.p
lace

S1.next=S.n
ext

_________ is a
one of the
semantic rule of
S? while E do
S1

E.false=S.n
ext

S1.next=S2.n
ext

E.true=E.fals
e

E.false=S1.
next

E.false=S.ne
xt

167

_________ is a
one of the
semantic rule of
E?E1 or E2

E1.true=E.t
rue

E1.false=E.fal
se

E2.true=E.fal
se

E2.fasle=E
1.true

E1.true=E.tr
ue

_________ is a
one of the
semantic rule of
E?E1 or E2

E1.true=E.f
alse

E1.false=E.fal
se

E2.true=E.tr
ue

E2.fasle=E
1.true

E2.true=E.tr
ue

_________ is a
one of the
semantic rule of
E?E1 or E2

E1.true=E.f
alse

E1.false=E.fal
se

E2.true=E1.t
rue

E2.fasle=E.
false

E2.fasle=E.f
alse

_________ is a
one of the
semantic rule of
E?E1 and E2

E1.true=E.f
alse

E1.false=E.fal
se

E2.true=E1.t
rue

E2.fasle=E
1.false

E1.false=E.f
alse

_________ is a
one of the
semantic rule of
E?E1 and E2

E1.true=E.f
alse

E1.false=E.tr
ue

E2.true=E1.t
rue

E2.fasle=E.
false

E2.fasle=E.f
alse

_________ is a
one of the
semantic rule of
E?E1 and E2

E1.true=E.f
alse

E1.false=E2.f
alse

E2.true=E.tr
ue

E2.fasle=E
1.false

E2.true=E.tr
ue

_________ is a
one of the
semantic rule of
E?E1 and E2

E1.true=ne
wlabel

E1.false=E2.f
alse

E2.true=E1.t
rue

E2.fasle=E.
true

E1.true=new
label

168

_________ is a
one of the
semantic rule of
E? not E1

E.true=
E1.false

E1.true =
E.false

E.false=
E2.true

E.code=E.p
lace

E1.true =
E.false

_________ is a
one of the
semantic rule of
E? not E1

E1.true=
E.false

E1.true =
E2.false

E.false=
E2.true

E.code=E.p
lace

E1.true=
E.false

The use of
makelist(i) is

creates a
new list
containing
quadruples

creates a new
list containing
only i

creates a
new list by
inserting i

creates a
new list
pointed to
p1

creates a
new list
containing
only i

____ is the use
of merge(p1,p2)

concatenat
es the lists
pointed by
p1 and p2

merge the list
containg only
i

merge the
list pointed
by p1

merge the
list
containing
quadruples

concatenate
s the lists
pointed by
p1 and p2

The use of
backpatch(p,i)
is

concatenat
es the lists
pointed by
p1 and p2

merge the list
containing
only i

inserts I as
the target
label

merge the
list
containing
quadruples

inserts I as
the target
label

_________ is a
one of the
semantic rule of
E? not E1

E.truelist=
E1.falselist

E1.truelist =
E2.falselist

E.falselist=
E2.truelist

E.code=E.p
lace

E.truelist=
E1.falselist

 _________ is a
one of the
semantic rule of
E? not E1

E1.truelist=
E1.falselist

E1.truelist =
E2.falselist

E.falselist=
E1.truelist

E.code=E.p
lace

E.falselist=
E1.truelist

________ is a
one of the
semantic rule of
E? (E1)

E.truelist=
E1.truelist

E1.truelist =
E2.falselist

E.falselist=
E2.truelist

E.code=E.p
lace

E.truelist=
E1.truelist

169

_________ is a
one of the
semantic rule of
E? (E1)

E2.truelist=
E1.truelist

E1.truelist =
E2.falselist

E.falselist=
E1.falselist

E.code=E.p
lace

E.falselist=
E1.falselist

translation of
s?begin L end
is _____

S.list =
L.nextlist

S.nextlist=L.n
extlist

L.List =
S.Listnext

L.nextlist=S
.list

S.nextlist=L.
nextlist

The translation
of Elist?Elist,E
is

append
E.code to
the end of
the queue

append
E.place to the
beginning of
the queue

append
E.code to
the
beginning of
the queue

append
E.place to
the end of
queue

append
E.place to
the end of
queue

The translation
of Elist? E is

Initialize
E.code to
the end of
the queue

Initialize
E.place to the
beginning of
the queue

Initialize
E.code to
the
beginning of
the queue

Initialize
queue to
contain only
E.place

Initialize
queue to
contain only
E.place

The translation
of M? ? with
quadruple is

M.quad =
nextQuad

M.nextquad =
nextQuad

M.next =
M.Quad

M.quad =
M.nextQua
d

M.quad =
nextQuad

The translation
of N? ? with
quadruple is

N.nextlist =
makelist(ne
xtqua

N.nextlist =
list(qua

N.nextlist =
makelist(M.q
ua

N.nextlist =
make
(nextqua

N.nextlist =
makelist(nex
tqua

_______ is an
input of code
generation
phase

optimized
code target code

source
program object code

optimized
code

The output for
the code
generator is

Optimized
code

Intermediate
Code Token

Assembly
language

Assembly
language

170

The
transformation
performed only
within a basic
block is
called_______ local global preserve optimization local

Eliminating the
same sub
expressions is
called _______

common
elimination

common sub
expression
elimination

common
expression
deletion

common
sub
expression
deletion

common sub
expression
elimination

______ is a
transformations
of copy
statements

copy
propagatio
n

copy
transformatio
n copy for long

copy
elimination

copy
propagation

Useless code
transformation
is called

usecode
elimination

dead
elimniation

useless code
elimination

Deadcode
elimination

Deadcode
elimination

Using the
constant and
deducing during
compile time is
called ______

dead code
elimination

copy
propagation

constant
folding

constant
propagation

constant
folding

Optimizing inner
loops named as

Loop
transformat
ion

Loop
optimization

Deadcode
elimination

copy
propagation

Loop
optimization

UNIT-V

Questions opt1 opt2 opt3 opt4
opt
5

opt
6 answer

Decreasing
the amount Induction Reduction Loop motion

Code
motion Code motion

171

of code in a
inner loop is
called as

_______ is
an one way
of loop
optimization

Induction
variable
elimination

Copy
propagati
on

Deadcode
elimination

constant
folding

Induction
variable
elimination

_______ is
an loop
optimization
technique

Reduction
variable
elimination

Reduction
in
strength

Deadcode
elimination

constant
folding

Reduction in
strength

The
Expansion
for DAG is

Directed
Acyclic Graph

Directed
Action
Graph

Direction
Asymmetric
Graph

Direction
Action
Graph

Directed
Acyclic Graph

The
Algebraic
transformati
on includes

Algebraic
Deduction

Algebraic
Identities

constant
folding

reduction
in
strength

Algebraic
Identities

The output
for the code
generation
phase is

Optimized
code

Intermedi
ate Code

Machine level
language Token

Machine level
language

_______ is
the input of
code
generation
phase

Optimized
code

Intermedi
ate Code

Machine level
language Token

Intermediate
Code

The use of
symbol table
is

to determine
the run time
addresses of
the data
objects

to
determine
the run
time value
of the
data

to determine
the compile
time value of
the data

to
determine
the
compile
time
addresse
s of the
data
objects

to determine
the run time
addresses of
the data
objects

_______ is a
linear
representati
ons of
intermediate
code Prefix notation

Infix
notation

Postfix
notation

RP
notation

Postfix
notation

_______ is
an
representati
on of three
address
code Quadruples

Indirect
Quadrupl
es

Postfix
notation Linear Quadruples

_______ is
the virtual
machine
representati
on

Sequence of
commands

Stack
machine
code Machine code

Stack
code

Stack machine
code

_____ is a
Graphical DEG tree Parsing Syntax trees

Linear
tree Syntax trees

172

representati
on of three
address
code

_____ is a
Graphical
representati
on of
intermediate
code DAG Parsing Semantic tree

Linear
tree DAG

_____ is the
output form
of a target
program

Intermediate
code

linking
library
functions

linking
machine code

Absolute
machine
code

Absolute
machine code

_____ is an
one of the
output form
of a target
program

Intermediate
code

linking
library
functions

Re locatable
machine code

Absolute
intermedi
ate code

Re locatable
machine code

Semantic
checking
done in

Intermediate
code generator

Lexical
analyzers

Syntax
analyzers

Code
generator

Code
generator

Mapping
names to
addresses of
data objects
is done by

intermediate
code generator

code
generator code optimizer

Lexical
analysis code generator

Deducing
the number
of jumping
labels is
done by
________ Backpatching

Quadrupl
e Triple

Indirect
Triple Backpatching

The speed is
increased
based on
instruction
selection by
using
________ Assignment

Machine
idioms Structure Register

Machine
idioms

During
Register
Allocation

we select
variables
reside in the
register

we pick
specific
register
that a
variable
reside in

choose
register pairs

Allocate
constants
to register

we select
variables
reside in the
register

During
Register
assignment

We select
variables
reside in the
register

We pick
specific
register
that a
variable
reside in

Choose
registers pairs

Allocate
constants
to register

We pick
specific
register that a
variable reside
in

173

SRDA
stands for

Shift Right
Double
Arithmetic

Shift
Round
Direct
Arithmetic

Scan Right
Double
Arithmetic

Scan
Round
Direct
Arithmetic

Shift Right
Double
Arithmetic

______ is
used to
improve the
efficiency Choice of Run Syntax

Choice of
Evaluation
order Semantic

Choice of
Evaluation
order

________ is
an two
address
instruction
form

op
source,destina
tion

source op
destinatio
n

source,destina
tion op

destinatio
n
source,op

op
source,destina
tion

ADD is an

ADD to
register

ADD
destinatio
n to
memory

ADD to
memory

ADD
source to
destinatio
n

ADD source to
destination

SUB is an

SUB to
register

SUB
destinatio
n to
memory

SUB to
memory

SUB
source
from
destinatio
n

SUB source
from
destination

For absolute
mode the
added cost
is _______ 1 0 2 3 1

For Register
mode the
added cost
is _______ 1 0 2 3 0

For Indexed
mode the
added cost
is _______ 1 0 2 3 1

For Indirect
indexed
mode the
added cost
is _______ 1 0 2 3 1

The form for
absolute
mode is
_______ c(R) *R R M M

The form for
Register
mode is
_______ c(R) *R R M R

The form for
Indexed
mode is
_______ c(R) *R R M c(R)

The form for
Indirect
Register
mode is
_______ c(R) *R R M *R

The form for
Indirect *c(R) *R R M *c(R)

174

Indexed
mode is

The address
of Register
mode is
_______ c(R) *R R M R

The address
of Indexed
mode is

c + contents of
(R) R contents of R M

c + contents of
(R)

The address
of Indirect
Register
mode is

c + contents of
(R) R contents of (R) M contents of (R)

The address
of Indirect
Indexed
mode is

contents (c +
contents of
(R)) R contents of R M

contents (c +
contents of
(R))

The cost of
MOV R0,R1
is _______ 1 0 2 3 1

The cost of
MOV R5,M
is _______ 1 0 2 3 2

The cost of
ADD #1,R3
is _______ 1 0 2 3 2

The cost of
SUB 4(R0),
*12(R1) is
_______ 1 0 2 3 3

The cost of
MOV b,a
and ADD c,a
is _______ 1 0 6 3 6

The cost of
ADD R2,R1
and MOV
R1,a is
_______ 1 0 2 3 3

The getreg
denotes

to determine
the location L

to
determine
the value

to determine
the Register

to
determine
the
memory

to determine
the location L

The function
of register
descriptor is

 to keep track
of the location

 to keep
track of
what is
currently
in each
register

 to keep track
of the register

 to keep
track of
the
descriptor
value

 to keep track
of what is
currently in
each register

175

The function
of register
descriptor is

to keep track
of the location

to keep
track of
what is
currently
in each
register

to keep track
of the register

to keep
track of
the
descriptor
value

to keep track
of the location

For the
statement t
= a – b , the
value of
Address
Descriptor
is_______ R0 contains t u in R0 t in R0

R0
contains u t in R0

176

