13BECS801 Mobile Computing

COURSE OBJECTIVES:

- To understand the basic concepts of mobile computing.
- To learn the basics of mobile telecommunication system .
- To be familiar with the network layer protocols and Ad-Hoc networks.
- To know the basis of transport and application layer protocols.
- To gain knowledge about different mobile platforms and application development.

UNIT I INTRODUCTION

Introduction to Mobile Computing – Applications of Mobile Computing- Generations of Mobile Communication Technologies- Multiplexing – Spread spectrum -MAC Protocols – SDMA- TDMA-FDMA- CDMA

UNIT II MOBILE TELECOMMUNICATION SYSTEM

Introduction to Cellular Systems – GSM – Services & Architecture – Protocols – Connection Establishment – Frequency Allocation – Routing – Mobility Management – Security – GPRS- UMTS – Architecture – Handover – Security

UNIT III MOBILE NETWORK LAYER

Mobile IP – DHCP – AdHoc– Proactive protocol-DSDV, Reactive Routing Protocols – DSR, AODV, Hybrid routing –ZRP, Multicast Routing- ODMRP, Vehicular Ad Hoc networks (VANET) –MANET Vs VANET – Security.

UNIT IV MOBILE TRANSPORT AND APPLICATION LAYER

Mobile TCP– WAP – Architecture – WDP – WTLS – WTP – WSP – WAE – WTA Architecture – WML

UNIT V MOBILE PLATFORMS AND APPLICATIONS

Mobile Device Operating Systems – Special Constraints & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – MCommerce – Structure – Pros & Cons – Mobile Payment System – Security Issues

TEXT BOOKS

- 1. Jochen Schiller, "Mobile Communications", PHI/Pearson Education, Second Edition, 2003. (Unit I Chap 1,2 &3- Unit II chap 4,5 &6-Unit III Chap 7.Unit IV Chap 8- Unit V Chap 9&10.)
- William Stallings, "Wireless Communications and Networks", PHI/Pearson Education, 2002. (Unit I Chapter – 7&10-Unit II Chap 9)

REFERENCES

- 3. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", PHI/Pearson Education, 2003.
- 4. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, New York, 2003.
- 5. Hazysztof Wesolowshi, "Mobile Communication Systems", John Wiley and Sons Ltd, 2002.

KARPAGAM UNIVERSITY Faculty of Engineering Department of Computer Science and Engineering

Lecture Plan

	L		
	lty Name : B.Arunkumar		Subject Code: 13BECS801
Subj	ect Name : Mobile Computing	Class	: IV-BE-CSE
Session			Teaching
No	Topics to be covered	Ref (Page No)	Method
		(1 460 110)	
1	Introduction – History, Devices, Application & Reference Model.	1(3-7,9-14,18-20)	BB
2	Wireless Transmission- Frequencies & Regulations.	1(25-27),2(27-29)	BB
3	Signals, Antennas, Signal Propagation- Path loss –Delay Spread, propagation effects.	1(28-37),2(109-115)	BB
4	Multi path propagation, Multiplexing - Space Division Mux, FDM, TDM, CDM.	1(39-44)	BB
5	Modulation- ASK, FSK, PSK, MSK, BPSK, QPSK,DQPSK.	1(45-50)	BB
6	Modulation- QAM, OFDM, COFDM. Spread Spectrum: Introduction, DSSS - Transmitter and Receiver.	1(50-59),2(180-187)	BB
7.	FHSS – Transmitter and Receiver Cellular Systems.	1(59-64),2(175-180)	BB
8	Media Access Control: SDMA, FDMA, TDMA, CSMA, CDMA, Comparison of S/T/F/CDMA.	1(69-89)	ВВ/ОНР
9	Cellular Wireless Networks.	2(278-329)	BB

Sessio n		Ref(Page No)	Teaching Method
No	Topics to be covered		
10	Telecommunication Networks- Introduction, GSM – Services, System Architecture.	1(93-100),2(18- 20)	BB/OHP
11	Radio Interface, Protocol, Localization and Calling.	1(105-113)	BB
12	Handover, Security-Authentication, Encryption.	1(117-122)	BB/OHP
13	Data Services - HSCPD, GPRS.	1(122-130)	BB/OHP
14	DECT- System Architecture, Protocol architecture.	1(130-134)	BB
15	UMTS & IMT 2000-UMTS architecture, UTRA FDD mode, UTRA TDD mode.	1(134-149)	ВВ/ОНР
16	Satellite Networks- Basics.	2(251-252)	BB
17	Satellite Parameters & configurations-satellite orbits, GEO, LEO, MEO	2(252-259)	BB
18	Capacity Allocation- Frequency division- FAMA –FDMA, DAMA-FDMA, Time division – DAMA-TDMA, FAMA – TDMA	2(260-275)	ВВ/ОНР
19	Broadcast Systems: Introduction, cyclic repetition of data, Digital Audio Broadcasting-Multimedia object transfer protocol.	1(183-190)	BB
20	Digital Video Broadcasting	1(191-195)	BB
	Continuous Assessment Test - I		

Session No	Topics to be covered	Time Mts	Ref(Page No)	Teaching Method
21	Wireless LAN: Introduction, Infrared and radio transmission Infrastructure & AdHoc Networks.	50	1(201-205)	BB

22	IEEE 802.11, System Architecture, Protocol	50	1(207-210)	BB/OHP
	Architecture.			
23	Physical Layer: FHSS, DSSS.	50	1(211-213)	BB
24	Introduction-Media Access Control Layer, DFWMAC- DCF, RTS / CTS, PCF with polling.	50	1(214-224)	BB
25	MAC Management – Synchronization, Power Management, Roaming.	50	1(225-230)	BB/OHP
26	IEEE 802.11a,IEEE 802.11b standards, Hyperlan – Introduction, Protocol Architecture, Physical Layer.	50	1(231-238)	BB/OHP
27	Hyperlan – CAC Sub layer - Prioritization Phase, Elimination Phase, Yield Phase, Transmission Phase.	50	1(239-257)	BB
28	Hyperlan - MAC Sub layer.	50	1(257-268)	BB
29	Blue tooth – Physical Layer, MAC Layer, Networking, Security, Link Management.	50	1(269-293)	ВВ/ОНР

Session No	Topics to be covered	Time Mts	Ref(Page No)	Teaching Method
30	Mobile IP – Requirements, Entities & Terminologies.	50	1(303-308),2(373-387)	BB
31	Mobile IP - IP Packet Delivery, Agent Advertisement, Discovery, Registration.	50	1(309-312)	BB
32	Mobile IP – Tunneling & Encapsulation, Optimization.	50	1(315-320)	BB
33	Mobile IP – Reverse Tunneling, IPV6.	50	1(321-324)	BB
34	DHCP.	50	1(328-330)	BB
35	Ad Hoc Network: - Routing, Types.	50	1(330-334)	BB

36	Ad Hoc Network: - Destination Sequence	50	1(335-338)	BB
	Distance Vector, Dynamic Source Routing.			
37	Ad Hoc Network: - Hierarchical Algorithms.	50	1(339-343)	BB
38	Ad Hoc Network: - Alternative Metrics.	50	1(343-346)	BB
	Continuous Assessment Test - II			

Session No	Topics to be covered	Time Mts	Ref(Page No)	Teaching Method
39	Mobile Transport Layer : Traditional TCP- Congestion Control.	50	1(351-353)	BB
40	TCP: Slow Start, Fast retransmit / fast recovery, implication on mobility, Indirect TCP, Snooping TCP.	50	1(353-359)	BB
41	Mobile TCP, Fast Retransmit / fast recovery, Transmission/ timeout freezing.	50	1(360-363)	BB
42	Selective retransmission, Transaction oriented TCP.	50	1(363-365)	BB
43	Wireless Application Protocol- Architecture, Wireless Datagram Protocol.	50	1(392-394)	BB/OHP
44	Wireless Application Environment, Wireless Session Protocol.	50	1(394-397)	BB
45	Wireless Transaction Protocol, Wireless Markup Language, WML Script	50	1(400-416)	BB
	Continuous Assessment Test - III			

TEXT BOOKS

- 6. Jochen Schiller, "Mobile Communications", PHI/Pearson Education, Second Edition, 2003. (Unit I Chap 1,2 &3- Unit II chap 4,5 &6-Unit III Chap 7.Unit IV Chap 8- Unit V Chap 9&10.)
- William Stallings, "Wireless Communications and Networks", PHI/Pearson Education, 2002. (Unit I Chapter – 7&10-Unit II Chap 9)

REFERENCES

- 8. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", PHI/Pearson Education, 2003.
- 9. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, New York, 2003.
- 10. Hazysztof Wesolowshi, "Mobile Communication Systems", John Wiley and Sons Ltd, 2002.

Staff Incharge

HOD/CSE

<u>UNIT I</u>

WIRELESS COMMUNICATION FUNDAMENTALS

1.0 INTRODUCTION

Mobile computing means different things to different people. Ubiquitous, wireless and remote computing Wireless and mobile computing are not synonymous. Wireless is a transmission or information transport method that enables mobile computing.

Aspects of mobility:

- user mobility: users communicate (wireless) "anytime, anywhere, with anyone"
- > device portability: devices can be connected anytime, anywhere to the network

Mobility Issues

- Bandwidth restrictions and variability
- Location-aware network operation
 - User may wake up in a new environment
 - Dynamic replication of data
 - Querying wireless data & location-based responses
- Busty network activity during connections & handling disconnections
- Disconnection
 - o OS and File System Issues allow for disconnected operation
 - o Database System Issues when disconnected, based on local data

Portability Issues

- Battery power restrictions
- Risks to data
 - Physical damage, loss, theft

- Unauthorized access
- encrypt data stored on mobiles
- Backup critical data to fixed (reliable) hosts
- Small user interface
 - Small displays due to battery power and aspect ratio constraints
 - Cannot open too many windows
 - Difficult to click on miniature icons
 - Input Graffiti, (Dictionary-based) Expectation
 - Gesture or handwriting recognition with Stylus Pen Voice matching or voice recognition

1.1 APPLICATIONS

Vehicles

- transmission of news, road condition, weather, music via DAB
- personal communication using GSM
- position via GPS
- local ad-hoc network with vehicles close-by to prevent accidents, guidance system, redundancy
- vehicle data (e.g., from busses, high-speed trains) can be transmitted in advance for maintenance

Emergencies

- early transmission of patient data to the hospital, current status, first diagnosis
- Replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc.
- crisis, war, ...

Travelling salesmen

- direct access to customer files stored in a central location
- consistent databases for all agents
- mobile office

Replacement of fixed networks

remote sensors, e.g., weather, earth activities

- flexibility for trade shows
- LANs in historic buildings

Entertainment, education,

- outdoor Internet access
- intelligent travel guide with up-to-date location dependent information
- ad-hoc networks for multi user games

Location dependent services

Location aware services

• what services, e.g., printer, fax, phone, server etc. exist in the local environment

Follow-on services

• automatic call-forwarding, transmission of the actual workspace to the current location

Information services

- "push": e.g., current special offers in the supermarket
- "pull": e.g., where is the Black Forrest Cherry Cake?

Support services

- caches, intermediate results, state information etc. "follow" the mobile device through the fixed network Privacy
- who should gain knowledge about the location

Effects of device portability

Power consumption

- limited computing power, low quality displays, small disks due to limited battery capacity
- CPU: power consumption ~ CV2f
 - C: internal capacity, reduced by integration
 - V: supply voltage, can be reduced to a certain limit
 - f: clock frequency, can be reduced temporally

Loss of data

higher probability, has to be included in advance into the design (e.g., defects, theft)

Limited user interfaces

- compromise between size of fingers and portability
- integration of character/voice recognition, abstract symbols

Limited memory

- limited value of mass memories with moving parts
- Flash-memory or? as alternative

Wireless networks in comparison to fixed networks

Higher loss-rates due to interference

emissions of, e.g., engines, lightning

Restrictive regulations of frequencies

- frequencies have to be coordinated, useful frequencies are almost all occupied Low transmission rates
- local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM .Higher delays, higher jitter
- connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems

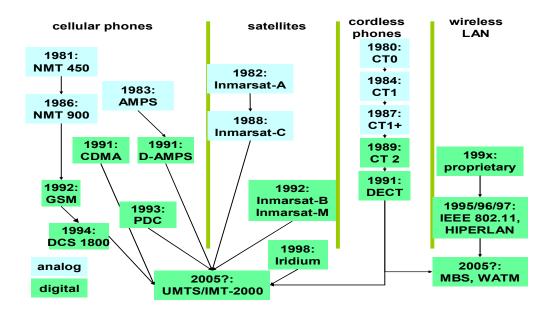
Lower security, simpler active attacking

 radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones

Always shared medium

secure access mechanisms important

Early history of wireless communication


Many people in history used light for communication

- heliographs, flags ("semaphore"), …
- 150 BC smoke signals for communication; (Polybius, Greece)
- 1794, optical telegraph, Claude Chappe

Here electromagnetic waves are of special importance:

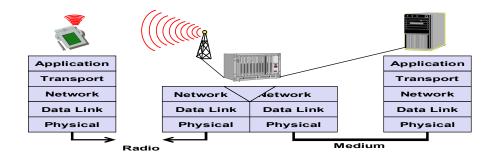
- 1831 Faraday demonstrates electromagnetic induction
- J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
- H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space(1886, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

Wireless systems: overview of the development

Areas of research in mobile communication

Wireless Communication

- transmission quality (bandwidth, error rate, delay)
- modulation, coding, interference
- media access, regulations


Mobility

- location dependent services
- location transparency
- quality of service support (delay, jitter, security)

Portability

- power consumption
- limited computing power, sizes of display, ...
- usability

Simple reference model used here

Influence of mobile communication to the LAYER MODEL

Application layer

- service location
- new applications, multimedia
- adaptive applications

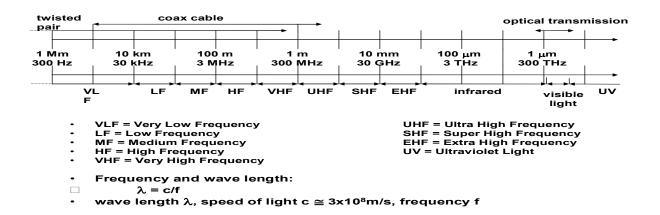
Transport layer

- congestion and flow control
- quality of service

Network layer

- addressing, routing, device location
- hand-over

Data link layer


- authentication
- media access
- multiplexing
- media access control

Physical layer

- encryption
- modulation
- interference
- attenuation
- frequency

1.3 WIRELESS TRANSMISSION - FREQUENCIES FOR RADIO TRANSMISSION

Frequencies for communication

Frequencies for mobile communication

- VHF-/UHF-ranges for mobile radio
 - simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellite communication
 - small antenna, focusing
 - large bandwidth available
- Wireless LANs use frequencies in UHF to SHF spectrum
 - some systems planned up to EHF
 - limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - Weather dependent fading, signal loss caused by heavy rainfall etc.

Frequencies and regulations

ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio

Conforancos	
Conferences	

	Europe	USA	Japan
Mobile	NMT 453-457MHz,	AMPS, TDMA, CDMA	PDC
phones	463-467 MHz;	824-849 MHz,	810-826 MHz,
-	GSM 890-915 MHz,	869-894 MHz;	940-956 MHz;
	935-960 MHz;	TDMA, CDMA, GSM	1429-1465 MHz,
	1710-1785 MHz,	1850-1910 MHz,	1477-1513 MHz
	1805-1880 MHz	1930-1990 MHz;	
Cordless	CT1+ 885-887 MHz,	PACS 1850-1910 MHz,	PHS
telephones	930-932 MHz;	1930-1990 MHz	1895-1918 MHz
	CT2	PACS-UB 1910-1930 MHz	JCT
	864-868 MHz		254-380 MHz

1.4 SIGNALS

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values

- signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift φ
 - sine wave as special periodic signal for a carrier:

 $s(t) = At sin(2 \pi ft t + \phi t)$

Fourier representation of periodic signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Different representations of signals

- amplitude (amplitude domain)
- frequency spectrum (frequency domain)
- phase state diagram (amplitude M and phase φ in polar coordinates)

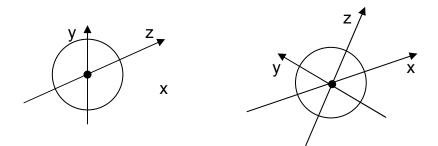
Composed signals transferred into frequency domain using Fourier transformation

Digital signals need

- infinite frequencies for perfect transmission
- Modulation with a carrier frequency for transmission (analog signal!)

ANTENNAS

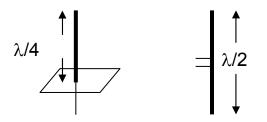
Isotropic radiator


Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission

Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna

Real antennas always have directive effects (vertically and/or horizontally)

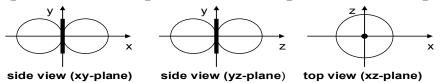
Radiation pattern: measurement of radiation around an antenna


Ideal isotropic radiator

Simple dipoles

Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole,

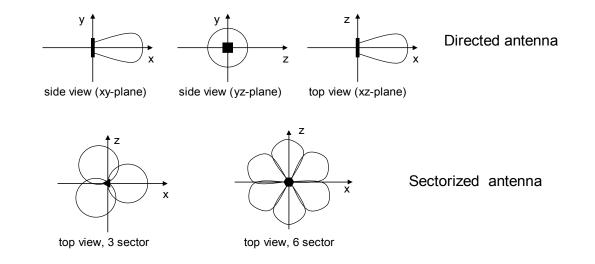
shape of antenna proportional to wavelength



Example: Radiation pattern of a simple Hertzian dipole

• Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole shape of antenna proportional to wavelength

• Example: Radiation pattern of a simple Hertzian dipole



Simple dipole

• Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power)

Directed and Sectorized

Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

Antennas: diversity

Grouping of 2 or more antennas


multi-element antenna arrays

Antenna diversity

o switched diversity, selection diversity

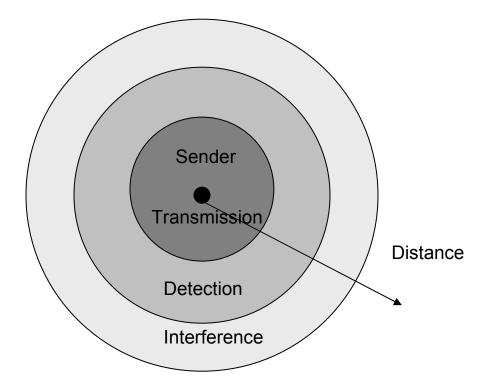
receiver chooses antenna with largest output diversity combining

- combine output power to produce gain
- cophasing needed to avoid cancellation

SIGNAL PROPAGATION

Transmission range

- communication possible
- low error rate

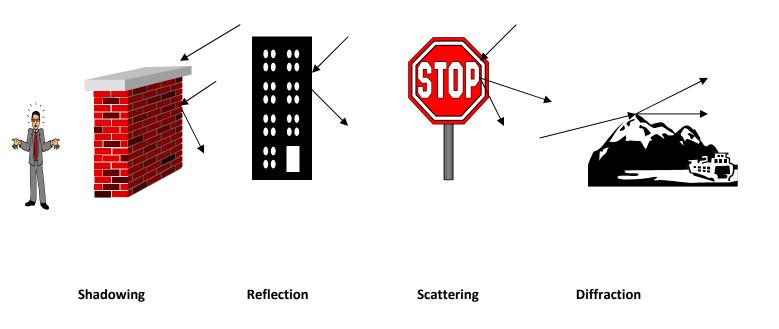

Detection range

- detection of the signal possible
- no communication possible

Interference range

signal may not be detected

signal adds to the background noise


Signal propagation

Propagation in free space always like light (straight line)

Receiving power proportional to 1/d² (d = distance between sender and receiver)

Receiving power additionally influenced by

- fading (frequency dependent)
- shadowing
- reflection at large obstacles
- scattering at small obstacles
- diffraction at edges

Multipath propagation

Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Time dispersion: signal is dispersed over time

→ Interference with "neighbor" symbols, Inter Symbol Interference (ISI)

The signal reaches a receiver directly and phase shifted

→ Distorted signal depending on the phases of the different parts

Effects of mobility

Channel characteristics change over time and location

- signal paths change
- different delay variations of different signal parts
- different phases of signal parts

→Quick changes in the power received (short term fading)

Additional changes in

- distance to sender
- obstacles further away

→ Slow changes in the average power received (long term fading)

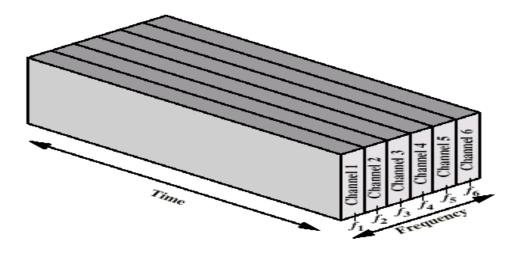
MULTIPLEXING

Multiplexing in 4 dimensions

- space (si)
- time (t)
- frequency (f)
- code (c)

Frequency Division Multiplexing - FDM

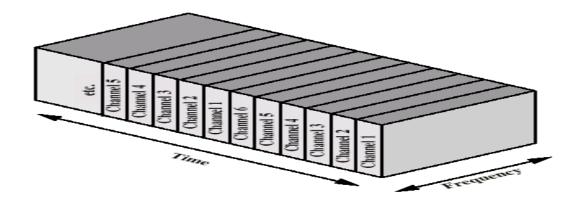
The oldest used technique used for multiplexing. Possible when the useful bandwidth of the medium exceeds that of the signals it has to carry. Each signal is modulated on a different carrier frequency. This results in shifting the spectrum of the signal around the carrier frequency. Sufficient guard-band is given so those neighboring signals do not overlap in the frequency domain.


At the receiving end each signal is extracted by first passing it through a band-pass filter and then demodulating with the same carrier frequency that was used to modulate the signal. The signals carried using FDM may be analog signals or may be analog signals representing digital data. However FDM is mostly a technique from the era of analog communications. In FDM a device uses some of the channel all of the time. FDM is used in radio and television broadcasting. FDM is also used in high capacity long distance links in the telephone network.

Frequency division multiplexing (FDM) achieves multiplexing by using different carrier frequencies .Receiver can "tune" to specific frequency and extract modulation for that one channel .Frequencies must be separated to avoid interference - "Wastes" potential signal bandwidth for guard channels.Only useful in media that can carry multiple signals with different frequencies - high-bandwidth required .

Used in:

- The standard of the analog telephone network
- The standard in radio broadcasting
- The standard for video
 - 1. Broadcast
 - 2. Cable
 - 3. Satellite

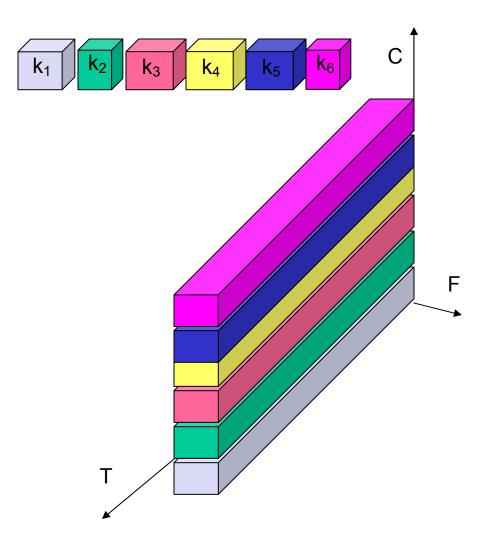

Frequency Division Multiplexing Diagram

Time Division Multiplexing - TDM

Time division multiplexing is more suitable for digital data. TDM can be used when the data rate available on a communication link exceeds the data rate required by any one of the sources. In TDM each source that is to use the link fills up a buffer with data. A TDM multiplexer scans the buffers in some predetermined order and transmits bits from each source one after the other.

- Requires digital signaling & transmission
- Requires data rate = sum of inputs + framing
- Data rate much higher than equivalent analog bandwidth uses
- Separates data streams in time not frequency
- The standard of the modern digital telephone system

Code Division Multiplexing - CDM


Each channel has a unique code. All channels use the same spectrum at the same time.

Advantages:

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

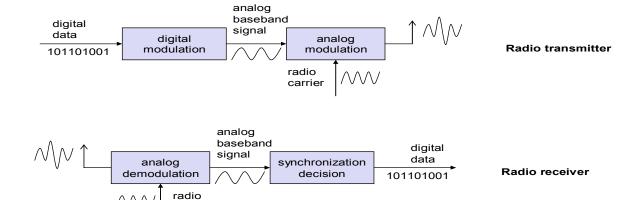
Disadvantages:

- lower user data rates
- more complex signal regeneration

MODULATIONS

Digital modulation

- o digital data is translated into an analog signal (baseband)
- ASK, FSK, PSK main focus in this chapter
- o differences in spectral efficiency, power efficiency, robustness


Analog modulation

- o shifts center frequency of baseband signal up to the radio carrier Motivation
- o smaller antennas (e.g., $\lambda/4$)
- Frequency Division Multiplexing
- medium characteristics

Basic schemes

- Amplitude Modulation (AM)
- Frequency Modulation (FM)
- Phase Modulation (PM)

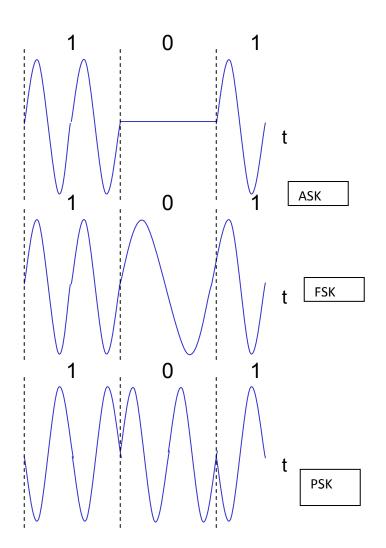
Modulation and demodulation

Digital modulation

Modulation of digital signals known as Shift Keying.

carrier

Amplitude Shift Keying (ASK):


- very simple
- low bandwidth requirements
- very susceptible to interference

Frequency Shift Keying (FSK):

needs larger bandwidth

Phase Shift Keying (PSK):

- more complex
- robust against interference

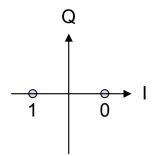
Advanced Frequency Shift Keying

bandwidth needed for FSK depends on the distance between the carrier frequencies

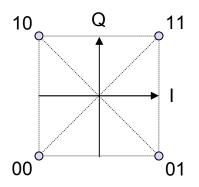
- special pre-computation avoids sudden phase shifts
 MSK (Minimum Shift Keying)
- bit separated into even and odd bits, the duration of each bit is doubled
- depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
- the frequency of one carrier is twice the frequency of the other
- even higher bandwidth efficiency using a Gaussian low-pass filter
 GMSK (Gaussian MSK), used in GSM.

Advanced Phase Shift Keying

BPSK (Binary Phase Shift Keying):


- bit value 0: sine wave
- bit value 1: inverted sine wave
- very simple PSK
- low spectral efficiency
- robust, used e.g. in satellite systems

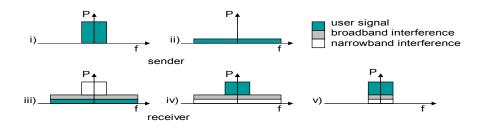
QPSK (Quadrature Phase Shift Keying):


- 2 bits coded as one symbol
- symbol determines shift of sine wave
- needs less bandwidth compared to BPSK
- more complex

Often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK (IS-136, PACS, PHS

BPSK (Binary Phase Shift Keying):

QPSK (Quadrature Phase Shift Keying):


Quadrature Amplitude Modulation

Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation

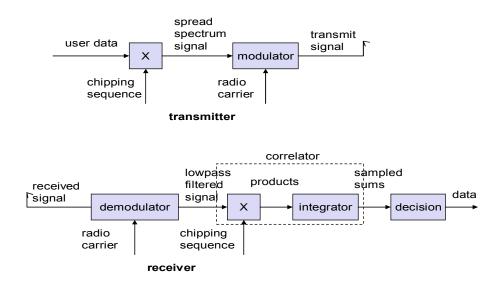
- it is possible to code n bits using one symbol
- 2n discrete levels, n=2 identical to QPSK
- bit error rate increases with n, but less errors compared to comparable PSK schemes

SPREAD SPECTRUM

Effects of spreading and interference

DSSS (Direct Sequence Spread Spectrum)

XOR of the signal with pseudo-random number (chipping sequence)


• many chips per bit (e.g., 128) result in higher bandwidth of the signal Advantages

- reduces frequency selective fading
- in cellular networks

- \circ $\,$ base station scan use the same frequency range several base stations can detect and recover the signal
- soft handover

Disadvantages

• precise power control necessary

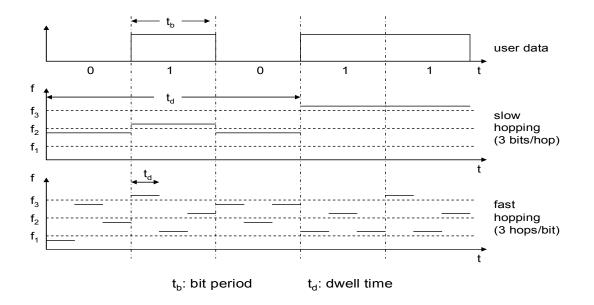
FHSS (Frequency Hopping Spread Spectrum)

Discrete changes of carrier frequency

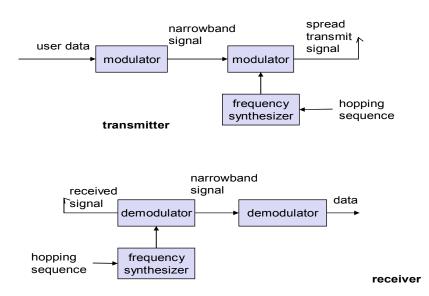
sequence of frequency changes determined via pseudo random number sequence

Two versions

- Fast Hopping: several frequencies per user bit
- Slow Hopping: several user bits per frequency


Advantages

- frequency selective fading and interference limited to short period
- simple implementation
- uses only small portion of spectrum at any time


Disadvantages

- not as robust as DSSS
- simpler to detect

FHSS (Frequency Hopping Spread Spectrum)

Frequency Hopping Spread Spectrum

MAC

Medium Access Control (MAC)

MAC protocol which were developed for nodes at short distance did not show good performance for nodes at longer distance so another protocol has to be developed Known as 2p MAC Protocol.

802.11 protocols were good for devices which had no power supply issue frequent charging were available to them etc.

- 1. This protocol based devices were not good for certain operation like monitoring the natural habitat of wildlife.
- 2. Sampling the water level of dam.

These applications do not require frequent human intervention and are required to run for a longer duration.

To fulfill the requirement other protocol was developed sensor network (802.15.4)

- Energy Budgets:-Main points which were discussed in this were how its protocol helps in saving power by cleverly managing the time when device should sleep when to wake up.
- MAC protocol used in 802.15.4.
- Routing and tree formation in ZigBee: Routing protocol was developed by Zigbee firm.

Wireless MAC Issues

Wireless medium makes the MAC design more challenging than the wireline networks.

The three important issues are:

- 1. Half Duplex operation -> either send or receive but not both at a given time
- 2. Time varying channel
- 3. Burst channel errors

1. Half Duplex Operation

In wireless, it's difficult to receive data when the transmitter is sending the data, because:

When node is transmitting, a large fraction of the signal energy leaks into the receiver path

- The transmitted and received power levels can differ by orders of magnitude
- The leakage signal typically has much higher power than the received signal ->"Impossible to detect a received signal, while transmitting data"

Collision detection is not possible, while sending data

As collision cannot be detected by the sender, all proposed protocols attempt to minimize the probability of collision -> Focus on collision avoidance

2. Time Varying Channel

Three mechanisms for radio signal propagation

- **Reflection** occurs when a propagating wave impinges upon an object that has very large dimensions than the wavelength of the radio wave e.g. reflection occurs from the surface of the earth and from buildings and walls
- **Diffraction** occurs when the radio path between the transmitter and the receiver is obstructed by a surface with sharp edges

• **Scattering** – occurs when the medium through which the wave travels consists of objects with The received signal by a node is a superposition of time-shifted and attenuated versions of the ransmitted signals the received signal varies with time .The time varying signals (time varying channel) phenomenon also known as multipath propagation.The rate of variation of channel is determined by the coherence time of the hannel Coherence time is defined as time within which When a node's received signal strength drops below a certain threshold the node is said to be in fade .Handshaking is widely used strategy to ensure the link quality is good enough for data communication. A successful handshake between a sender and a receiver (small message) indicates a good communication link.

3. Burst Channel Errors

As a consequence of time varying channel and varying signals strengths 2 errors are introduced in the transmission (Very likely) for wire line networks the bit error rate (BER) is the probability of packet error is small .For wire line networks the errors are due to random For wireless networks the BER is as high.For wireless networks the errors are due to node being in fade as a result errors occur in a long burst. Packet loss due to burst errors - mitigation techniques

- » Smaller packets
- » Forward Error Correcting Codes
- » Retransmissions (Acks)

Location Dependent Carrier Sensing

Location Dependent Carrier Sensing results in three types of nodes that protocols need to deal with:

Hidden Nodes

Even if the medium is free near the transmitter, it may not be free near the intended receiver

Exposed Nodes

Even if the medium is busy near the transmitter, it may be free near the intended receiver

Capture

Capture occurs when a receiver can cleanly receive a transmission from one of two simultaneous transmissions

Hidden Node/Terminal Problem

A hidden node is one that is within the range of the intended destination but out of range of sender Node B can communicate with A and C both A and C cannot hear each other When A transmits to B, C cannot detect the transmission using the carrier sense mechanism C falsely thinks that the channel is idle

Exposed Nodes

An exposed node is one that is within the range of the sender but out of range of destination .when a node's received signal strength drops below a certain threshold the node is said to be in fade .Handshaking is widely used strategy to ensure the link quality is good enough for data communication. A successful handshake between a sender and a receiver (small message) indicates a good communication link.

In theory C can therefore have a parallel transmission with any node that cannot hear the transmission from B, i.e. out of range of B. But C will not transmit to any node because its an exposed node. Exposed nodes waste bandwidth.

Capture

Capture is said to occur when a receiver can cleanly receive a transmission from one of two simultaneous transmissions both within its range Assume node A and D transmit simultaneously to B. The signal strength received from D is much higher than that from A, and D's transmission can be decoded without errors in presence of transmissions from A.D has captured A. Capture is unfair because it gives preference to nodes that are closer to the receiver. It may improve protocol performance

MULTIPLE ACCESS

FDMA

It is an ANALOQUE technique in time. Synchronization the transmission bandwidth is partitioned to frequency slots different users has different RF carrier frequencies, i.e. Each user is assigned a particular frequency slot.

users/signals are at the receiver by separated out FILTERING if all frequency slots are occupied then the system has reached its.

TDMA

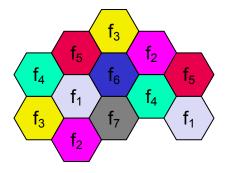
It is a DIGITAL technique requires between users synchronization each user/signal is assigned a particular (within a time-frame) time slot.

CELLULAR WIRELESS NETWORKS

Implements space division multiplex: base station covers a certain transmission area (cell). Mobile stations communicate only via the base station

Advantages of cell structures:

- higher capacity, higher number of users
- less transmission power needed
- more robust, decentralized
- base station deals with interference, transmission area etc. locally

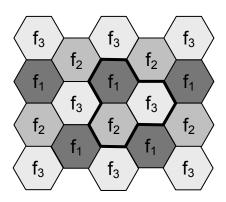

Problems:

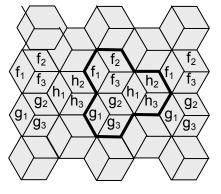
- fixed network needed for the base stations
- handover (changing from one cell to another) necessary
- interference with other cells

Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

Frequency reuse only with a certain distance between the base stations

Standard model using 7 frequencies:


Fixed frequency assignment:


- □ certain frequencies are assigned to a certain cell
- D problem: different traffic load in different cells

Dynamic frequency assignment:

D base station chooses frequencies depending on the frequencies already used in neighbor cells

- □ more capacity in cells with more traffic
- □ assignment can also be based on interference measurements

3 cell cluster

3 cell cluster with 3 sector antennas

Cell : Why Hexagon?

- In reality the cell is an irregular shaped circle, for design convenience and as a first order approximation, it is assumed to be regular polygons
- The hexagon is used for two reasons:
 A hexagonal layout requires fewer cells, therefore, fewer transmission site
 - Less expensive compared to square and triangular cells

• Irregular cell shape leads to inefficient use of the spectrum because of inability to reuse frequency on account of co channel interference uneconomical deployment of equipment, requiring relocation from one cell site to another

<u>UNIT II</u>

TELECOMMUNICATION NETWORKS

Telecommunication systems – GSM – GPRS – DECT – UMTS – IMT-2000 – Satellite Networks - Basics – Parameters and Configurations – Capacity Allocation – FAMA and DAMA – Broadcast Systems – DAB - DVB.

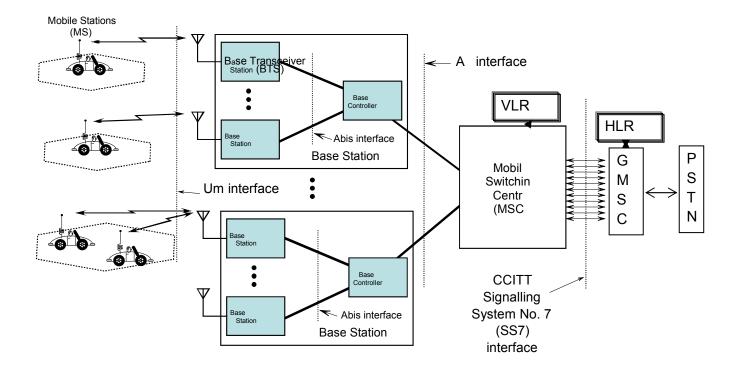
Telecommunication systems -GSM – GPRS – DECT – UMTS – IMT-2000

Building Blocks

- AMPS Advanced Mobile Phone System
- TACS Total Access Communication System
- NMT Nordic Mobile Telephone System

AMPS – Advanced Mobile Phone System

- analog technology
- used in North and South America and approximately 35 other countries
- operates in the 800 MHz band using FDMA technology


TACS – Total Access Communication System

- variant of AMPS
- deployed in a number of countries
- primarily in the UK

NMT – Nordic Mobile Telephone System

- analog technology
- deployed in the Benelux countries and Russia
- operates in the 450 and 900 MHz band
- first technology to offer international roaming only within the Nordic countries

System Architecture

Mobile Station (MS)

Mobile Equipment (ME)

Subscriber Identity Module (SIM)

Base Station Subsystem (BBS)

Base Transceiver Station (BTS)

Base Station Controller (BSC)

Network Subsystem

Mobile Switching Center (MSC)

Home Location Register (HLR)

Visitor Location Register (VLR)

Authentication Center (AUC)

Equipment Identity Register (EIR)

- Mobile Station: is a subscriber unit intended for use while on the move at unspecified locations. It could be a hand-held or a portable terminal.
- Base Station: a fixed radio station used for communication with MS. It is located at the centre of a cell and consist of Transmitters and Receivers.
- Mobile Switching Centre: it coordinates the routing of calls, do the billing, etc.

Mobile Station (MS)

The Mobile Station is made up of two entities:

- 1. Mobile Equipment (ME)
- 2. Subscriber Identity Module (SIM

Mobile Equipment

- Produced by many different manufacturers
- Must obtain approval from the standardization body
- Uniquely identified by an IMEI (International Mobile Equipment Identity)

Subscriber Identity Module (SIM)

- Smart card containing the International Mobile Subscriber Identity (IMSI)
- Allows user to send and receive calls and receive other subscribed services
- Encoded network identification details
- Protected by a password or PIN
- Can be moved from phone to phone contains key information to activate the phone

Base Station Subsystem (BBS)

Base Station Subsystem is composed of two parts that communicate across the standardized Abis interface allowing operation between components made by different suppliers

- 1. Base Transceiver Station (BTS)
- 1. Base Station Controller (BSC)

Base Transceiver Station (BTS)

- Houses the radio transceivers that define a cell
- Handles radio-link protocols with the Mobile Station
- Speech and data transmissions from the MS are recoded
- Requirements for BTS:
 - o ruggedness
 - o reliability
 - o portability
 - o minimum costs

Base Station Controller (BSC)

- Manages Resources for BTS
- Handles call set up
- Location update
- Handover for each MS

Network Subsystem

Mobile Switching Center (MSC)

• Switch speech and data connections between: Base Station Controllers Mobile Switching Centers

GSM-networks

Other external networks

- Heart of the network
- Three main jobs:1) Connects calls from sender to receiver

2) Collects details of the calls made and received

3) Supervises operation of the rest of the network component

Home Location Registers (HLR)

- contains administrative information of each subscriber
- Current location of the mobile

Visitor Location Registers (VLR)

- contains selected administrative information from the HLR
- authenticates the user
- tracks which customers have the phone on and ready to receive a call
- periodically updates the database on which phones are turned on and ready to receive calls

Authentication Center (AUC)

- mainly used for security
- data storage location and functional part of the network
- Ki is the primary element

Equipment Identity Register (EIR)

Database that is used to track handsets using the IMEI (International Mobile Equipment Identity)

- Made up of three sub-classes: The White List, The Black List and the Gray List
- Optional database

Basic Features Provided by GSM

Call Waiting

- Notification of an incoming call while on the handset
 - Call Hold
- Put a caller on hold to take another call
- Call Barring - All calls, outgoing calls, or incoming calls
 - Call Forwarding
- Calls can be sent to various numbers defined by the user
 - Multi Party Call Conferencing
- Link multiple calls together

Advanced Features Provided by GSM

- Calling Line ID - incoming telephone number displayed
- Alternate Line Service
 one for personal calls
 - one for business calls
- Closed User Group

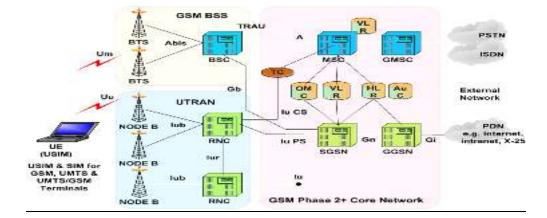
 call by dialing last for numbers
- Advice of Charge - tally of actual costs of phone calls
- Fax & Data
 Virtual Office / Professional Office

- Roaming
 - services and features can follow customer from market to market

Advantages of GSM

- Crisper, cleaner quieter calls
- Security against fraud and eavesdropping
- International roaming capability in over 100 countries
- Improved battery life
- Efficient network design for less expensive system expansion
- Efficient use of spectrum
- Advanced features such as short messaging and caller ID
- A wide variety of handsets and accessories
- High stability mobile fax and data at up to 9600 baud
- Ease of use with over the air activation, and all account information is held in a smart card which can be moved from handset to handset

UMTS (Universal Mobile Telephone System)


- Reasons for innovations
 - new service requirements
 - availability of new radio bands
- User demands
 - seamless Internet-Intranet access
 - wide range of available services
 - compact, lightweight and affordable terminals
 - simple terminal operation
 - open, understandable pricing structures for the whole spectrum of available services

UMTS Basic Parameter

- Frequency Bands (FDD : 2x60 MHz):
 - 1920 to 1980 MHz (Uplink)
 - 2110 to 2170 MHz (Downlink)
- Frequency Bands (TDD: 20 + 15 MHz):
 - 1900 1920 MHz and 2010 2025 MHz
- RF Carrier Spacing:
 - 4.4 5 MHz

- RF Channel Raster:
 - 200 KHz
- Power Control Rate:
 - 1500 Cycles per Second

UMTS W-CDMA Architecture

SATELLITE NETWORKS

History of satellite communication

1945 Arthur C. Clarke publishes an essay about "Extra

Terrestrial Relays"

1957 first satellite SPUTNIK

1960 first reflecting communication satellite ECHO

1963 first geostationary satellite SYNCOM

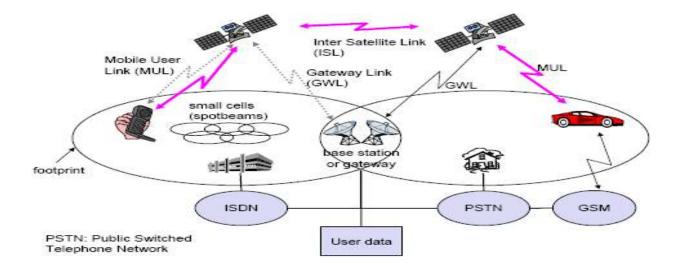
1965 first commercial geostationary satellite Satellit "Early Bird"

(INTELSAT I): 240 duplex telephone channels or 1 TV

channel, 1.5 years lifetime

1976 three MARISAT satellites for maritime communication
1982 first mobile satellite telephone system INMARSAT-A
1988 first satellite system for mobile phones and data
communication INMARSAT-C
1993 first digital satellite telephone system
1998 global satellite systems for small mobile phones

Applications


□ Traditionally

- □ weather satellites
- $\hfill\square$ radio and TV broadcast satellites
- □ military satellites
- □ satellites for navigation and localization (e.g., GPS)

□ Telecommunication

- \Box global telephone connections
- \Box backbone for global networks
- □ connections for communication in remote places or underdeveloped areas
- □ global mobile communication
- $\hfill\square$ satellite systems to extend cellular phone systems (e.g., GSM or AMPS)

Classical satellite systems

Basics

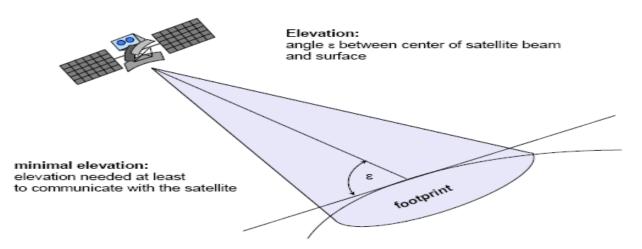
Satellites in circular orbits

- \Box attractive force Fg = m g (R/r)²
- \Box centrifugal force Fc = m r ω^2
- □ m: mass of the satellite
- \Box R: radius of the earth (R = 6370 km)
- \Box r: distance to the center of the earth
- \Box g: acceleration of gravity (g = 9.81 m/s²)
- \Box ω : angular velocity (ω = 2 π f, f: rotation frequency)

Stable orbit

Fg = Fc

$$r = \sqrt[3]{\frac{gR^2}{\left(2\pi f\right)^2}}$$


Basics

- Elliptical or circular orbits
- o Complete rotation time depends on distance satellite-earth
- Inclination: angle between orbit and equator
- Elevation: angle between satellite and horizon
- o LOS (Line of Sight) to the satellite necessary for connection
 - 1. High elevation needed, less absorption due to e.g. buildings
 - Uplink: connection base station satellite
- o Downlink: connection satellite base station
- Typically separated frequencies for uplink and downlink
 - 1. Transponder used for sending/receiving and shifting of frequencies
 - 2. Transparent transponder: only shift of frequencies
 - 3. Regenerative transponder: additionally signal regeneration

Elevation

I

0

Link budget of satellites

Parameters like attenuation or received power determined by four parameters:

Sending power

Gain of sending antenna

Distance between sender and receiver

Gain of receiving antenna Problems

Varying strength of received signal due to multipath propagation

Interruptions due to shadowing of signal (no LOS) possible solutions

Link Margin to eliminate variations in signal strength

Satellite diversity (usage of several visible satellites at the same time) helps to use less sending power

$$L = \left(\frac{4\pi rf}{c}\right)^2$$

L: Loss

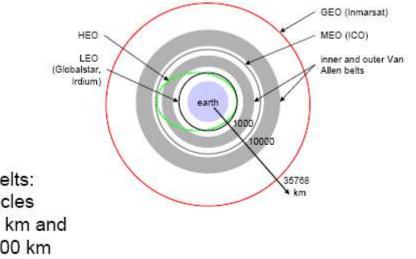
f: carrier frequency

r: distance

c: speed of light

<u>ORBITS</u>

Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit:


□ GEO: geostationary orbit, ca. 36000 km above earth surface

□ LEO (Low Earth Orbit): ca. 500 - 1500 km

□ MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit):

ca. 6000 - 20000 km

□ HEO (Highly Elliptical Orbit) elliptical orbits

Van-Allen-Belts: ionized particles 2000 - 6000 km and 15000 - 30000 km above earth surface

Geostationary satellites

Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0°)

Complete rotation exactly one day, satellite is synchronous to earth rotation

Fix antenna positions, no adjusting necessary

Satellites typically have a large footprint (up to 34% of earth surface!), therefore difficult to reuse frequencies

Bad elevations in areas with latitude above 60° due to fixed position above the equator

High transmit power needed

High latency due to long distance (ca. 275 ms)

Not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission

LEO systems

Orbit ca. 500 - 1500 km above earth surface

Visibility of a satellite ca. 10 - 40 minutes

Global radio coverage possible Latency comparable with terrestrial long distance Connections, ca. 5 - 10 ms Smaller footprints, better frequency reuse But now handover necessary from one satellite to another Many satellites necessary for global coverage More complex systems due to moving satellites Examples: Iridium (start 1998, 66 satellites) Global star (start 1999, 48 satellites)

MEO systems

Orbit ca. 5000 - 12000 km above earth surface Comparison with LEO systems: Slower moving satellites Less satellites needed Simpler system design For many connections no hand-over needed Higher latency, ca. 70 - 80 ms Higher sending power needed Special antennas for small footprints needed Example: ICO (Intermediate Circular Orbit, Inmarsat) start ca. 2000

Routing

One solution: inter satellite links (ISL) Reduced number of gateways needed Forward connections or data packets within the satellite network as long as possible Only one uplink and one downlink per direction needed for the connection of two mobile phones Problems: More complex focusing of antennas between satellites High system complexity due to moving routers Higher fuel consumption Thus shorter lifetime Iridium and Teledesic planned with ISL Other systems use gateways and additionally terrestrial networks

Localization of mobile stations

Mechanisms similar to GSM

Gateways maintain registers with user data

- HLR (Home Location Register): static user data
- VLR (Visitor Location Register): (last known) location of the mobile station

SUMR (Satellite User Mapping Register):

Satellite assigned to a mobile station

Positions of all satellites

Registration of mobile stations

Localization of the mobile station via the satellite's position

Requesting user data from HLR

Updating VLR and SUMR

Calling a mobile station

Localization using HLR/VLR similar to GSM

Connection setup using the appropriate satellite

Handover in satellite systems

Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites

Intra satellite handover

Handover from one spot beam to another

Mobile station still in the footprint of the satellite, but in another cell

Inter satellite handover

Handover from one satellite to another satellite

Mobile station leaves the footprint of one satellite

Gateway handover

Handover from one gateway to another

Mobile station still in the footprint of a satellite, but gateway leaves the footprint

Inter system handover

Handover from the satellite network to a terrestrial cellular network

Mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.

Overview of LEO/MEO systems

	Iridium	Globalstar	ICO	Teledesic
# satellites	66 + 6	48 + 4	10 + 2	288
altitude (km)	780	1414 10390 ca		ca. 700
coverage	global	±70° latitude	de global global	
min. elevation	8°	20°	20°	40°
frequencies [GHz (circa)]	1.6 MS 29.2 ↑ 19.5 ↓ 23.3 ISL	1.6 MS ↑ 2.5 MS ↓ 5.1 ↑ 6.9 ↓	2 MS ↑ 2.2 MS ↓ 5.2 ↑ 7 ↓	19 ↓ 28.8 ↑ 62 ISL
access method	FDMA/TDMA	CDMA	FDMA/TDMA	FDMA/TDMA
ISL	yes	no	no	yes
bit rate	2.4 kbit/s	9.6 kbit/s	4.8 kbit/s	64 Mbit/s ↓ 2/64 Mbit/s ↑
# channels	4000	2700	4500	2500
Lifetime [years]	5-8	7.5	12	10
cost estimation	4.4 B\$	2.9 B\$	4.5 B\$	9 B\$

WIRLESS LAN

Wireless LAN – IEEE 802.11 - Architecture – services – MAC – Physical layer – IEEE 802.11a - 802.11b standards – HIPERLAN – Blue Tooth.

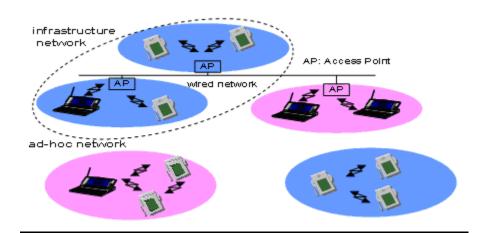
WIRELESS LAN

Characteristics of wireless LANs

Advantages

- Very flexible within the reception area
- Ad-hoc networks without previous planning possible
- o (almost) no wiring difficulties (e.g. historic buildings, firewalls)
- More robust against disasters like, e.g., earthquakes, fire or users pulling a plug...

Disadvantages


- Typically very low bandwidth compared to wired networks (1-10 Mbit/s)
- Many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11)
- Products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000

Design goals for wireless LANs

- o global, seamless operation
- o low power for battery use
- \circ $\,$ no special permissions or licenses needed to use the LAN $\,$
- robust transmission technology
- o simplified spontaneous cooperation at meetings
- \circ easy to use for everyone, simple management
- o protection of investment in wired networks
- security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)

 transparency concerning applications and higher layer protocols, but also location awareness if necessary

Comparison: infrastructure vs. ad-hoc networks

IEEE 802.11 - ARCHITECTURE – SERVICES - ARCHITECTURE – SERVICES – MAC – PHYSICAL LAYER – IEEE 802.11A - 802.11B STANDARDS

802.11 - Architecture of an infrastructure network

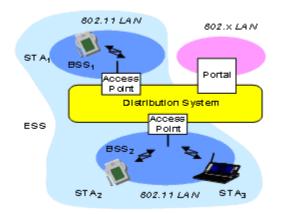
Station (STA)

 terminal with access mechanisms to the wireless medium and radio contact to the access point

Basic Service Set (BSS)

o group of stations using the same radio frequency

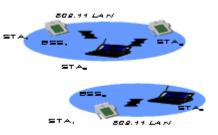
Access Point

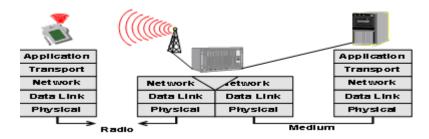

o station integrated into the wireless LAN and the distribution system

Portal

• bridge to other (wired) networks

Distribution System


 interconnection network to form one logical network (EES: Extended Service Set) based on several BSS


802.11 - Architecture of an ad-hoc network

Direct communication within a limited range

- Station (STA): terminal with access mechanisms to the wireless medium
- Basic Service Set (BSS): group of stations using the same radio frequency

IEEE standard 802.11

802.11 - Layers and functions

MAC

Access mechanisms, fragmentation, encryption

MAC Management

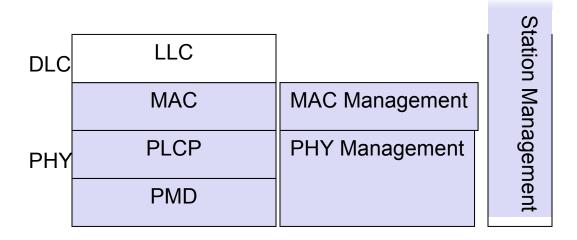
Synchronization, roaming, MIB, power management

PLCP Physical Layer Convergence Protocol

Clear channel assessment signal (carrier sense)

PMD Physical Medium Dependent

Modulation, coding


PHY Management

Channel selection, MIB

Station Management

Coordination of all management functions

802.11 - Layers

802.11 - Physical layer

3 versions: 2 radio (typ. 2.4 GHz), 1 IR

o data rates 1 or 2 Mbit/s

FHSS (Frequency Hopping Spread Spectrum)

- spreading, despreading, signal strength, typ. 1 Mbit/s
- o min. 2.5 frequency hops/s (USA), two-level GFSK modulation

DSSS (Direct Sequence Spread Spectrum)

- DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
- preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s
- o chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
- o max. radiated power 1 W (USA), 100 mW (EU), min. 1mW

Infrared

- o 850-950 nm, diffuse light, typ. 10 m range
- o carrier detection, energy detection, synchronization

802.11 - MAC layer I - DFWMAC

Traffic services

- Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
- Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)

Access methods


- DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
- DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem

- DFWMAC- PCF (optional)
 - access point polls terminals according to a list

Priorities

- defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

802.11 - MAC layer

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

DS: Distribution System

AP: Access Point

DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier

- **RA: Receiver Address**
- TA: Transmitter Address

MAC management

Synchronization

- □ try to find a LAN, try to stay within a LAN
- □ timer etc.

Power management

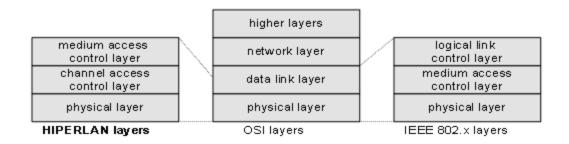
- □ sleep-mode without missing a message
- D periodic sleep, frame buffering, traffic measurements

Association/Reassociation

- □ integration into a LAN
- □ roaming, i.e. change networks by changing access points
- □ scanning, i.e. active search for a network

MIB - Management Information Base

□ managing, read, write


HIPERLAN

ETSI standard

- European standard, cf. GSM, DECT, ...
- Enhancement of local Networks and interworking with fixed networks
- integration of time-sensitive services from the early beginning

HIPERLAN family

- one standard cannot satisfy all requirements
 - range, bandwidth, QoS support
 - commercial constraints
- HIPERLAN 1 standardized since 1996

HIPERLAN 1 - Characteristics

Data transmission

- D point-to-point, point-to-multipoint, connectionless
- 23.5 Mbit/s, 1 W power, 2383 byte max. packet size

Services

- □ asynchronous and time-bounded services with hierarchical priorities
- compatible with ISO MAC

Topology

- □ infrastructure or ad-hoc networks
- transmission range can be larger then coverage of a single node ("forwarding" integrated in mobile terminals)

Further mechanisms

D power saving, encryption, checksums

Services and protocols

CAC service

- **D** definition of communication services over a shared medium
- □ specification of access priorities
- □ abstraction of media characteristics

MAC protocol

- □ MAC service, compatible with ISO MAC and ISO MAC bridges
- uses HIPERLAN CAC

CAC protocol

provides a CAC service, uses the PHY layer, specifies hierarchical access mechanisms for one or several channels

Physical protocol

□ send and receive mechanisms, synchronization, FEC, modulation, signal strength

HIPERLAN 1 - Physical layer

Scope

- □ modulation, demodulation, bit and frame synchronization
- □ forward error correction mechanisms
- □ measurements of signal strength
- □ channel sensing

Channels

- **G** 3 mandatory and 2 optional channels (with their carrier frequencies)
- mandatory
 - channel 0: 5.1764680 GHz
 - channel 1: 5.1999974 GHz
 - channel 2: 5.2235268 GHz
- optional (not allowed in all countries)
 - channel 3: 5.2470562 GHz
 - channel 4: 5.2705856 GHz

BLUETOOTH

Consortium: Ericsson, Intel, IBM, Nokia, Toshiba - many members

Scenarios

- connection of peripheral devices
 - loudspeaker, joystick, headset
- □ support of ad-hoc networking
 - small devices, low-cost
- □ bridging of networks
 - e.g., GSM via mobile phone Bluetooth laptop

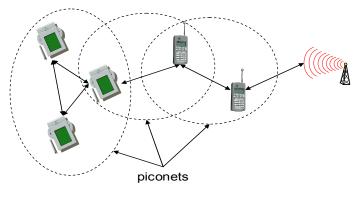
Simple, cheap, replacement of IrDA, low range, lower data rates

2.4 GHz, FHSS, TDD, CDMA

Bluetooth MAC layer

- Synchronous Connection-Oriented link (SCO)

 symmetrical, circuit switched, point-to-point
- Asynchronous Connectionless Link (ACL)


 packet switched, point-to-multipoint, master polls
- Access code
 - synchronization, derived from master, unique per channel
- Packet header
 - 1/3-FEC, MAC address (1 master, 7 slaves), link type, alternating bit ARQ/SEQ, checksum

7.48.1

Scatternets

- Each piconet has one master and up to 7 slaves
- Master determines hopping sequence, slaves have to synchronize
- Participation in a piconet = synchronization to hopping sequence
- Communication between piconets = devices jumping back and forth between the piconets

7.49.1

<u>UNIT IV</u>

MOBILE NETWORK LAYER

Mobile IP – Dynamic Host Configuration Protocol - Routing – DSDV – DSR – Alternative Metrics

Mobile IP

A standard for mobile computing and networking

Computers doesn't stay put.

Change location without restart its application or terminating any ongoing communication

IP Networking

Protocol layer

Network Layer

Transport Layer

What does IP do

moving packets from source to destination

No 'end-to-end' guarantees

IP addresses

Network-prefix

Host portion

IP Routing

Packet Header

Network-prefix

Every node on the same link has the same network-prefix

Mobile IP Solves the following problems

f a node moves from one link to another without chnging its IP address, it will be unable to receive packets at the new link; and

If a node moves from one link to another without chnging its IP address, it will be unable to receive packets at the new link; and

Mobile IP Overview

Solution for Internet

Scalable, robust, secure, maintain communication

Use their permanent IP address

Routing protocol

Route packets to nodes that could potentially change location very rapidly

Layer 4-7, outside Mobile IP, but will be of major interest

Mobile IP: Terminology

- Mobile Node (MN)
 - node that moves across networks without changing its IP address
- Correspondent Node (CN)
 - ost with which MN is "corresponding" (TCP)
- Home Agent (HA)
 - host in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP packets to the COA
- Foreign Agent (FA)
 - host in the current foreign network of the MN, typically a router
 - forwards tunneled packets to the MN, typically the default router for MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view

<u>Tunneling</u>

An encapsulating IP packet including a path and an original IP packet

IP-in-IP encapsulation

IP-in-IP encapsulation

IP-in-IP-encapsulation (mandatory in RFC 2003)

- tunnel between HA and COA

ver.	IHL	TOS	length			
IP identification			flags	fragment offs et		
TTL		IP-in-IP	IP checksum			
IP address of HA						
Care-of address COA						
ver.	IHL	TOS	length			
IP identification			flags	fragment offs et		
ΠL		lay. 4 prot.	IP checksum			
IP address of CN						
IP address of MN						
TCP/UDP/ paylo ad						

Mobile IP and IPv6

Mobile IP was developed for IPv4, but IPv6 simplifies the protocols

- Security is integrated and not an add-on, authentication of registration is included
- COA can be assigned via auto-configuration (DHCPv6 is one candidate), every node has address auto configuration
- No need for a separate FA, **all** routers perform router advertisement which can be used instead of the special agent advertisement;
- Addresses are always *co-located*
- MN can signal a sender directly the COA, sending via HA not needed in this case (automatic path optimization)
- soft"hand-over, i.e. without packet loss, between two subnets is supported
- MN sends the new COA to its old router
- the old router encapsulates all incoming packets for the MN and forwards them to the new COA
- Authentication is always granted

ROUTING

Motivation for Mobile IP

Routing

- based on IP destination address, network prefix (e.g. 129.13.42)
- determines physical subnet
- change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables

Specific routes to end-systems?

- change of all routing table entries to forward packets to the right destination
- does not scale with the number of mobile hosts and frequent changes in the location, security problems

Changing the IP-address?

- adjust the host IP address depending on the current location
- almost impossible to find a mobile system, DNS updates take to long time

Requirements to Mobile IP

Transparency

- mobile end-systems keep their IP address
- continuation of communication after interruption of link possible
- point of connection to the fixed network can be changed

Compatibility

- support of the same layer 2 protocols as IP
- no changes to current end-systems and routers required
- mobile end-systems can communicate with fixed systems

Security

• authentication of all registration messages

Efficiency and scalability

- only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
- world-wide support of a large number of mobile systems in the whole
- Internet

IPv6 availability

- Generally available with (new) versions of most operating systems.
 - BSD, Linux 2.2 Solaris 8
- An option with Windows 2000/NT
- Most routers can support IPV6
- Supported in J2SDK/JRE 1.4

IPv6 Design Issues

- Overcome IPv4 scaling problem
 - Lack of address space.
 - Flexible transition mechanism.
- New routing capabilities.
- Quality of service.

- Security.
- Ability to add features in the future.

Mobile ad hoc networks

Standard Mobile IP needs an infrastructure

- Home Agent/Foreign Agent in the fixed network
- DNS, routing etc. are not designed for mobility

Sometimes there is no infrastructure!

- remote areas, ad-hoc meetings, disaster areas
- Cost can also be an argument against an infrastructure!
- no default router available
- every node should be able to forward

Traditional routing algorithms

Traditional algorithms are pro-active – i.e. operate independent of user-message demands. Suitable for wired networks.

Distance Vector

- periodic exchange of messages with all physical neighbors that contain information about who can be reached at what distance
- selection of the shortest path if several paths available Link State
- periodic notification of all routers about the current state of all physical links
- routers get a complete picture of the network Example
- ARPA packet radio network (1973), DV-Routing, up to 138 nodes
- every 7.5s exchange of routing tables including link quality
- updating of tables also by reception of packets
- routing problems solved with limited flooding

Problems of traditional routing algorithms

Dynamics of the topology

- Frequent changes of connections, connection quality, participants
- Limited performance of mobile systems
- periodic updates of routing tables need energy without contributing to the transmission of user data; sleep modes difficult to realize
- Limited bandwidth of the system is reduced even more due to the exchange of routing information
- Links can be asymmetric, i.e., they can have a direction dependent transmission quality

- Uncontrolled redundancy in links
- Interference 'unplanned links' (advantage?)

<u>DSDV</u>

DSDV (Destination Sequenced Distance Vector)

Early work

• on demand version: AODV (Ad-hoc On-demand Distance Vector Expansion of distance vector routing (but still pro-active)

Sequence numbers for all routing updates

- assures in-order execution of all updates
- avoids loops and inconsistencies

Decrease of update frequency ('damping')

- store time between first and best announcement of a path
- inhibit update if it seems to be unstable (based on the stored time values)

DYNAMIC HOST CONFIGURATION PROTOCOL

Dynamic Host Configuration Protocol (DHCP) is a network protocol for automatically assigning TCP/IP information to client machines. Each DHCP client connects to the centrally-located DHCP server which returns that client's network configuration, including the IP address, gateway, and DNS servers

DHCP is useful for automatic configuration of client network interfaces. When configuring the client system, the administrator can choose DHCP and instead of entering an IP address, netmask, gateway, or DNS servers. The client retrieves this information from the DHCP server. DHCP is also useful if an administrator wants to change the IP addresses of a large number of systems. Instead of reconfiguring all the systems, he can just edit one DHCP configuration file on the server for the new set of IP addresses. If the DNS servers for an organization changes, the changes are made on the DHCP server, not on the DHCP clients. Once the network is restarted on the clients (or the clients are rebooted), the changes take effect.

Furthermore, if a laptop or any type of mobile computer is configured for DHCP, it can be moved from office to office without being reconfigured as long as each office has a DHCP server that allows it to connect to the network.

Configuration File

The first step in configuring a DHCP server is to create the configuration file that stores the network information for the clients. Global options can be declared for all clients, while other options can be declared for individual client systems.

The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are case-insensitive and lines beginning with a hash mark (#) are considered comments.

Two DNS update schemes are currently implemented — the ad-hoc DNS update mode and the interim DHCP-DNS interaction draft update mode. If and when these two are accepted as part of the Internet Engineering Task Force (IETF) standards process, there will be a third mode — the standard DNS update method. The DHCP server must be configured to use one of the two current schemes. Version 3.0b2pl11 and previous versions used the ad-hoc mode; however, it has been deprecated.

There are two types of statements in the configuration file:

Parameters — State how to perform a task, whether to perform a task, or what network configuration options to send to the client.

Declarations — Describe the topology of the network, describe the clients, provide addresses for the clients, or apply a group of parameters to a group of declarations.

Some parameters must start with the **option** keyword and are referred to as options. Options configure DHCP options; whereas, parameters configure values that are not optional or control how the DHCP server behaves.

In **Example** the **routers**, **subnet-mask**, **domain-name**, **domain-name-servers**, and **time-offset** options are used for any **host** statements declared below it.

Additionally, a **subnet** can be declared, a **subnet** declaration must be included for every subnet in the network. If it is not, the DHCP server fails to start.

In this **example**, there are global options for every DHCP client in the subnet and a range declared. Clients are assigned an IP address within the range.

subnet 192.168.1.0 netmask option routers option subnet-mask	255.255.255 192.168.1. 255.255	254;
option domain-name option domain-name-se		ple.com"; 2.168.1.1;
option time-offset	-18000;	# Eastern Standard Time

range 192.168.1.10 192.168.1.100;

Dynamic source routing

Split routing into discovering a path and maintaining a path

Discovering a path

Only if a path for sending packets to a certain destination is needed and no path is currently available (reactive algorithm)

Maintaining a path

Only while the path is in use: make sure that it can be used continuously

Path discovery

Broadcast a packet (Route Request) with destination address and unique ID

- if a station receives a broadcast packet
- if the station is the receiver (i.e., has the correct destination address) then return the packet to the sender (path was collected in the packet) 2 if the packet has already been received earlier (identified via ID) then

Discard the packet

- otherwise, append own address and broadcast packet
- sender receives packet with the current path (address list)

Maintaining paths

- After sending a packet
- wait for a layer 2 acknowledgement (if applicable)
- listen into the medium to detect if other stations forward the packet (if possible)
- request an explicit acknowledgement
- if a station encounters problems it can inform the sender of a packet or look-up a new path locally

ALTERNATIVE METRICS.

Mobile IP with reverse tunneling

Router accepts often only "topological correct" addresses (firewall!)

- a packet from the MN encapsulated by the FA is now topological correct
- furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is to far away from the receiver)

Reverse tunneling does not solve

- problems with firewalls, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
- optimization of data paths, i.e. packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)
- The standard is backwards compatible
- the extensions can be implemented easily and cooperate with current implementations without these
 extensions

Agent Advertisements can carry requests for reverse tunneling

World Wide Web and mobility

Protocol (HTTP, Hypertext Transfer Protocol) and language

(HTML, Hypertext Markup Language) of the Web have not been designed for mobile applications and mobile devices, thus creating many problems!

Typical transfer sizes

- HTTP request: 100-350 byte
- responses avg. <10 kbyte, header 160 byte, GIF 4.1kByte, JPEG
- 12.8 kbyte, HTML 5.6 kbyte
- but also many large files that cannot be ignored
- The Web is no file system
- Web pages are not simple files to download
- static and dynamic content, interaction with servers via forms, content transformation, push technologies etc.
- many hyperlinks, automatic loading and reloading, redirecting
- a single click might have big consequences!

<u>UNIT V</u>

TRANSPORT AND APPLICATION LAYERS

Traditional TCP – Classical TCP improvements – WAP, WAP 2.0.

TRADITIONAL TCP

TCP is an alternative transport layer protocol over IP.

- TCP provides:
 - Connection-oriented
 - Reliable
 - Full-duplex
 - Byte-Stream

Connection-Oriented

- *Connection oriented* means that a virtual connection is established before any user data is transferred.
- If the connection cannot be established the user program is notified.
- If the connection is ever interrupted the user program(s) is notified.

Reliable

- *Reliable* means that every transmission of data is acknowledged by the receiver.
- If the sender does not receive acknowledgement within a specified amount of time, the sender retransmits the data

Byte Stream

- *Stream* means that the connection is treated as a stream of bytes.
- The user application does not need to package data in individual datagrams (as with UDP).

Buffering

- TCP is responsible for buffering data and determining when it is time to send a datagram.
- It is possible for an application to tell TCP to send the data it has buffered without waiting for a buffer to fill up.

Full Duplex

- TCP provides transfer in both directions.
- To the application program these appear as 2 unrelated data streams, although TCP can piggyback

control and data communication by providing control information (such as an ACK) along with user data.

TCP Ports

- Interprocess communication via TCP is achieved with the use of ports (just like UDP).
- UDP ports have no relation to TCP ports (different name spaces).

TCP Segments

- The chunk of data that TCP asks IP to deliver is called a *TCP segment*.
- Each segment contains:
 - data bytes from the byte stream
 - control information that identifies the data bytes

TCP Lingon

- When a client requests a connection it sends a "SYN" segment (a special TCP segment) to the server port.
- SYN stands for synchronize. The SYN message includes the client's ISN.
- ISN is Initial Sequence Number.
- Every TCP segment includes a *Sequence Number* that refers to the first byte of *data* included in the segment.
- Every TCP segment includes an *Acknowledgement Number* that indicates the byte number of the next data that is expected to be received.
 - All bytes up through this number have already been received.
- There are a bunch of control flags:
 - URG: urgent data included.
 - ACK: this segment is (among other things) an acknowledgement.
 - RST: error connection must be reset.
 - SYN: synchronize Sequence Numbers (setup)
 - FIN: polite connection termination
- MSS: Maximum segment size (A TCP option)
- Window: Every ACK includes a Window field that tells the sender how many bytes it can send before the receiver will have to toss it away (due to fixed buffer size).

CLASSICAL TCP IMPROVEMENTS

TCP Connection Creation

- Programming details later for now we are concerned with the actual communication.
- A server accepts a connection.
 - Must be looking for new connections!
- A *client* requests a connection.
 - Must know where the server is!

Client Starts

- A client starts by sending a SYN segment with the following information:
 - Client's ISN (generated pseudo-randomly)
 - Maximum Receive Window for client.
 - Optionally (but usually) MSS (largest datagram accepted).
 - No payload! (Only TCP headers)

Server Response

- When a waiting server sees a new connection request, the server sends back a SYN segment with:
 - Server's ISN (generated pseudo-randomly)
 - Request Number is Client ISN+1
 - Maximum Receive Window for server.
 - Optionally (but usually) MSS
 - No payload! (Only TCP headers)
 - When the Server's SYN is received, the client sends back an ACK with:
 - Acknowledgment Number is Server's ISN+1

TCP 3-way handshake

Client: "I want to talk, and I'm starting with byte number X".

Server: "OK, I'm here and I'll talk. My first byte will be called number *Y*, and I know your first byte will be number *X*+1".

Client: "Got it - you start at byte number Y+1".

Bill: "Monica, I'm afraid I'll syn and byte your ack"

TCP Data and ACK

- Once the connection is established, data can be sent.
- Each data segment includes a sequence number identifying the first byte in the segment.
- Each segment (data or empty) includes a request number indicating what data has been received

Buffering

- Keep in mind that TCP is part of the Operating System. The O.S. takes care of all these details asynchronously.
- The TCP layer doesn't know when the application will ask for any received data.

• TCP buffers incoming data so it's ready when we ask for it.

TCP Buffers

- Both the client and server allocate buffers to hold incoming and outgoing data
 - The TCP layer does this.
- Both the client and server announce with every ACK how much buffer space remains (the Window field in a TCP segment).

Send Buffers

- The application gives the TCP layer some data to send.
- The data is put in a send buffer, where it stays until the data is ACK'd.
- The TCP layer won't accept data from the application unless (or until) there is buffer space.

ACKs

- A receiver doesn't have to ACK every segment (it can ACK many segments with a single ACK segment).
- Each ACK can also contain outgoing data (piggybacking).
- If a sender doesn't get an ACK after some time limit, it resends the data.

TCP Segment Order

- Most TCP implementations will accept out-of-order segments (if there is room in the buffer).
- Once the missing segments arrive, a single ACK can be sent for the whole thing.
- Remember: IP delivers TCP segments, and IP is not reliable IP datagrams can be lost or arrive out of order.

Termination

- The TCP layer can send a RST segment that terminates a connection if something is wrong.
- Usually the application tells TCP to terminate the connection politely with a FIN segment.

TCP Sockets Programming

- Creating a *passive mode* (server) socket.
- Establishing an application-level connection.
- Sending/receiving data.
- Terminating a connection.

Establishing a passive mode TCP socket

Passive mode:

- Address already determined.
- Tell the kernel to accept incoming connection requests directed at the socket address.

3-way handshake

• Tell the kernel to queue incoming connections for us.

Accepting an incoming connection

- Once we start listening on a socket, the O.S. will queue incoming connections
 - Handles the 3-way handshake
 - Queues up multiple connections.
- When our application is ready to handle a new connection, we need to ask the O.S. for the next connection.

Terminating a TCP connection

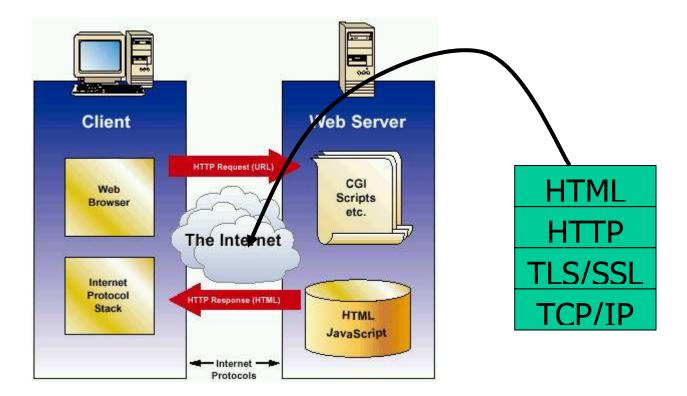
- Either end of the connection can call the close() system call.
- If the other end has closed the connection, and there is no buffered data, reading from a TCP socket returns 0 to indicate EOF

Client Code

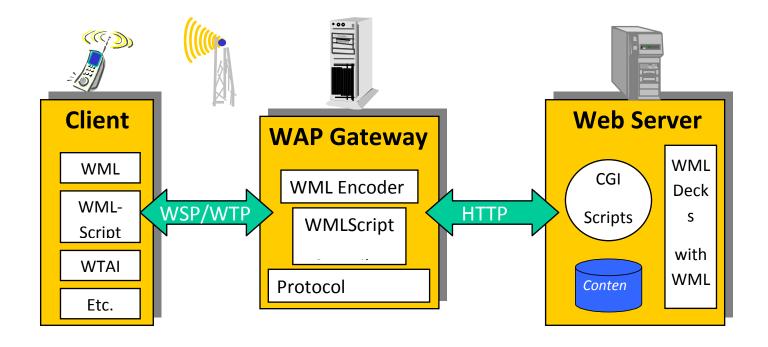
- TCP clients can connect to a server, which:
 - takes care of establishing an endpoint address for the client socket.
 - don't need to call bind first, the O.S. will take care of assigning the local endpoint address (TCP port number, IP address).
 - Attempts to establish a connection to the specified server.
 - 3-way handshake

Reading from a TCP socket

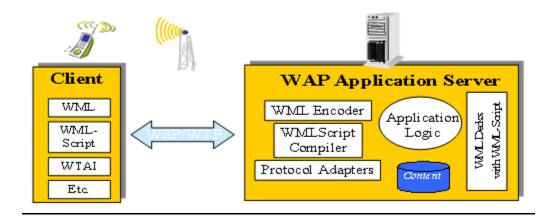
- By default **read()** will block until data is available.
- Reading from a TCP socket may return less than max bytes (whatever is available).
- You must be prepared to read data 1 byte at a time!

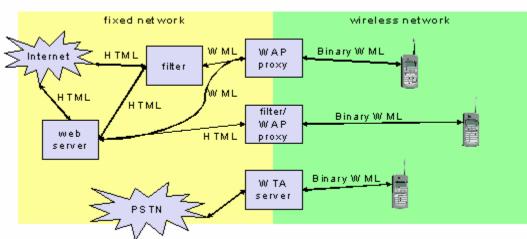

WIRELESS APPLICATION PROTOCOL (WAP)

- Empowers mobile users with wireless devices to easily access and interact with information and services.
- A "standard" created by wireless and Internet companies to enable Internet access from a cellular phone


WAP: Main Features

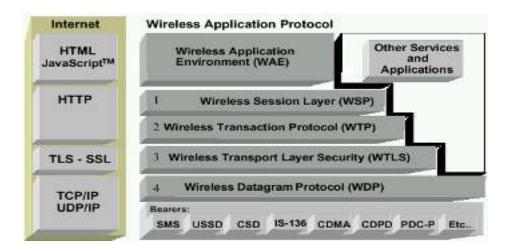
- Browser
 - "Micro browser", similar to existing web browsers
- Markup language
 - Similar to HTML, adapted to mobile devices
- Script language
 - Similar to Javascript, adapted to mobile devices
- Gateway
 - Transition from wireless to wired world
- Server
 - "Wap/Origin server", similar to existing web servers
- Protocol layers
 - Transport layer, security layer, session layer etc.
- Telephony application interface
 - Access to telephony functions


Internet Model


WAP Architecture

WAP Application Server

WAP: Network Elements



Binary W ML: binary file form at for clients

WAP Specifies

- Wireless Application Environment
 - WML Microbrowser
 - WMLScript Virtual Machine
 - WMLScript Standard Library
 - Wireless Telephony Application Interface (WTAI)
 - WAP content types
- Wireless Protocol Stack
 - Wireless Session Protocol (WSP)
 - Wireless Transport Layer Security (WTLS)
 - Wireless Transaction Protocol (WTP)
 - Wireless Datagram Protocol (WDP)
 - Wireless network interface definitions

WAP Stack

- WAE (Wireless Application Environment):
 - Architecture: application model, browser, gateway, server
 - WML: XML-Syntax, based on card stacks, variables, ...
 - WTA: telephone services, such as call control, phone book etc.
- WSP (Wireless Session Protocol):
 - Provides HTTP 1.1 functionality
 - Supports session management, security, etc.
- WTP (Wireless Transaction Protocol):
 - Provides reliable message transfer mechanisms
 - Based on ideas from TCP/RPC
- WTLS (Wireless Transport Layer Security):
 - Provides data integrity, privacy, authentication functions
 - Based on ideas from TLS/SSL
- WDP (Wireless Datagram Protocol):
 - Provides transport layer functions
 - Based on ideas from UDP

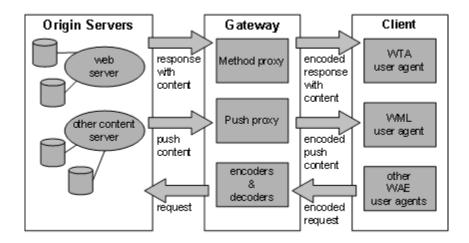
WHY WAP?

- Wireless networks and phones
 - have specific needs and requirements
 - not addressed by existing Internet technologies
- WAP
 - Enables any data transport
 - TCP/IP, UDP/IP, GUTS (IS-135/6), SMS, or USSD.
 - Optimizes the content and air-link protocols
 - Utilizes plain Web HTTP 1.1 servers
 - leverages existing development methodologies
 - utilizes standard Internet markup language technology (XML)
 - all WML content is accessed via HTTP 1.1 requests
 - WML UI components map well onto existing mobile phone user interfaces
 - no re-education of the end-users
 - leveraging market penetration of mobile devices
 - Several modular entities together form a fully compliant Internet entity

WAP: "Killer" Applications

- Location-based services
 - Real-time traffic reporting, Event/restaurant recommendation
- Enterprise solutions
 - Email access, Database access, "global" intranet access
 - Information updates "pushed" to WAP devices
- Financial services
 - Banking, Bill-paying, Stock trading, Funds transfers
- Travel services
 - Schedules and rescheduling, Reservations
- Gaming and Entertainment
 - Online, real-time, multi-player games
 - Downloadable horoscopes, cartoons, quotes, advice
- M-Commerce
 - Shopping on the go
 - Instant comparison shopping
 - Location-based special offers and sales

Wireless Application Environment (WAE)


- Goals
 - device and network independent application environment

- for low-bandwidth, wireless devices
- considerations of slow links, limited memory, low computing power, small display, simple user interface (compared to desktops)
- integrated Internet/WWW programming model
- high interoperability

WAE Components

- Architecture
 - Application model, Microbrowser, Gateway, Server
- User Agents
 - WML/WTA/Others
 - content formats: vCard, vCalendar, Wireless Bitmap, WML, ...
- WML
 - XML-Syntax, based on card stacks, variables, ...
- WMLScript
 - procedural, loops, conditions, ... (similar to JavaScript)
- WTA
 - telephone services, such as call control, text messages, phone book, ... (accessible from WML/WMLScript)
- Proxy (Method/Push)

WAE: Logical Model

WML: Wireless Markup Language

Tag-based browsing language:

- Screen management (text, images)
- Data input (text, selection lists, etc.)
- Hyperlinks & navigation support
- Takes into account limited display, navigation capabilities of devices
- XML-based language
 - describes only intent of interaction in an abstract manner
 - presentation depends upon device capabilities
- Cards and Decks
 - document consists of many cards
 - User interactions are split into cards
 - Explicit navigation between cards
 - cards are grouped to decks
 - deck is similar to HTML page, unit of content transmission
 - Events, variables and state mgmt
- The basic unit is a card. Cards are grouped together into **Decks** Document ~ Deck (unit of transfer)
- All decks must contain
 - Document prologue
 - XML & document type declaration
 - <WML> element
 - Must contain one or more cards

WML Example

WML>

<CARD>

<DO TYPE="ACCEPT">

<GO URL="#eCard"/>

</D0

Welcome!

</CARD>

<CARD NAME="eCard">

<DO TYPE="ACCEPT">

```
<GO URL="/submit?N=$(N)&S=$(S)"/>
```

</D0>

Enter name: <INPUT KEY="N"/>

Choose speed:

<SELECT KEY="S">

<OPTION VALUE="0">Fast</OPTION>

<OPTION VALUE="1">Slow</OPTION>

<SELECT>

</CARD>

</WML>

WMLScript

- Complement to WML
 - Derived from JavaScript[™]
- Provides general scripting capabilities
 - Procedural logic, loops, conditionals, etc.
 - Optimized for small-memory, small-cpu devices
- Features
 - local user interaction, validity check of user input
 - access to device facilities (phone call, address book etc.)
 - extensions to the device software
 - configure device, download new functionality after deployment
- Bytecode-based virtual machine
 - Stack-oriented design, ROM-able
 - Designed for simple, low-impact implementation
- WMLScript compiler resides in the network

WMLScript Libraries

- Lang VM constants, general-purpose math functionality, etc.
- String string processing functions
- URL URL processing

- Browser WML browser interface
- Dialog simple user interface
- Float floating point functions

Wireless Telephony Application (WTA)

- Collection of telephony specific extensions

 designed primarily for network operators
- Example
 - calling a number (WML) wtai://wp/mc;07216086415
 - calling a number (WMLScript)
 WTAPublic.makeCall("07216086415");
- Implementation
 - Extension of basic WAE application model
 - Extensions added to standard WML/WMLScript browser
 - Exposes additional API (WTAI)

WTA Features

- Extension of basic WAE application model
 - network model for interaction
 - client requests to server
 - event signaling: server can push content to the client
 - event handling
 - table indicating how to react on certain events from the network
 - client may now be able to handle unknown events
 - telephony functions
 - some application on the client may access telephony functions
 - WTAI includes:
 - Call control

•

- Network text messaging
- Phone book interface
- Event processing
- Security model: segregation
 - Separate WTA browser
 - Separate WTA port

WAP Push Services

- Web push
 - Scheduled pull by client (browser)
 - example: Active Channels
 - no real-time alerting/response
 - example: stock quotes
- Wireless push

_

- accomplished by using the network itself
 - example: SMS
- limited to simple text, cannot be used as starting point for service
 - example: if SMS contains news, user cannot request specific news item
- WAP push
 - Network supported push of WML content
 - example: Alerts or service indications
 - Pre-caching of data (channels/resources)

Push Access Protocol

- Based on request/response model
- Push initiator is the client
- Push proxy is the server
- Initiator uses HTTP POST to send push message to proxy
- Initiator sends control information as an XML document, and content for mobile (as WML)
- Proxy sends XML entity in response indicating submission status
- Initiator can
 - cancel previous push
 - query status of push
 - query status/capabilities of device

Push Proxy Gateway

- WAP stack (communication with mobile device)
- TCP/IP stack (communication with Internet push initiator)
- Proxy layer does
 - control information parsing
 - content transformation
 - session management
 - client capabilities
 - store and forward
 - prioritization

- address resolution
- management function

WTP Services and Protocols

- WTP (Transaction)
 - provides reliable data transfer based on request/reply paradigm
 - no explicit connection setup or tear down
 - optimized setup (data carried in first packet of protocol exchange)
 - seeks to reduce 3-way handshake on initial request
 - supports
 - header compression
 - segmentation /re-assembly
 - retransmission of lost packets
 - selective-retransmission
 - port number addressing (UDP ports numbers)
 - flow control
 - message oriented (not stream)
 - supports an Abort function for outstanding requests
 - supports concatenation of PDUs
 - supports User acknowledgement or Stack acknowledgement option
 - acks may be forced from the WTP user (upper layer)
 - default is stack ack

WAP 2.0.

WSP - Wireless Session Protocol

- Goals
 - HTTP 1.1 functionality
 - Request/reply, content type negotiation, ...
 - support of client/server transactions, push technology
 - key management, authentication, Internet security services
- WSP Services
 - provides shared state between client and server, optimizes content transfer
 - session management (establish, release, suspend, resume)
 - efficient capability negotiation
 - content encoding
 - push

- WSP/B (Browsing)
 - HTTP/1.1 functionality but binary encoded
 - exchange of session headers
 - push and pull data transfer
 - asynchronous requests

WSP Overview

- Header Encoding
 - compact binary encoding of headers, content type identifiers and other well-known textual or structured values
 - reduces the data actually sent over the network
- Capabilities (are defined for):
 - message size, client and server
 - protocol options: Confirmed Push Facility, Push Facility, Session Suspend Facility, Acknowledgement headers
 - maximum outstanding requests
 - extended methods
 - header code pages
- Suspend and Resume
 - server knows when client can accept a push
 - multi-bearer devices
 - dynamic addressing
 - allows the release of underlying bearer resources
- Session Context and Push
 - push can take advantage of session headers
 - server knows when client can accept a push
- Connection-mode
 - long-lived communication, benefits of the session state, reliability
- Connectionless-mode
 - stateless applications, no session creation overhead, no reliability overhead

WAP: Ongoing Work

- WDP
 - Tunnel to support WAP where no (end-to-end) IP bearer available
- WTLS

- support for end-to-end security (extending WTLS endpoint beyond WAP Gateway)
- interoperable between WAP and Internet (public key infrastructure)
- integrating Smart Cards for security functions
- WTP
 - efficient transport over wireless links (wireless TCP)
 - bearer selection/switching
 - quality of service definitions
- WSP
 - quality of service parameters
 - multicast data, multimedia support
- WAE
 - User agent profiles: personalize for device characteristics, preferences etc

<u>UNIT II</u>

TELECOMMUNICATION NETWORKS

Telecommunication systems – GSM – GPRS – DECT – UMTS – IMT-2000 – Satellite Networks - Basics – Parameters and Configurations – Capacity Allocation – FAMA and DAMA – Broadcast Systems – DAB - DVB.

Telecommunication systems -GSM – GPRS – DECT – UMTS – IMT-2000

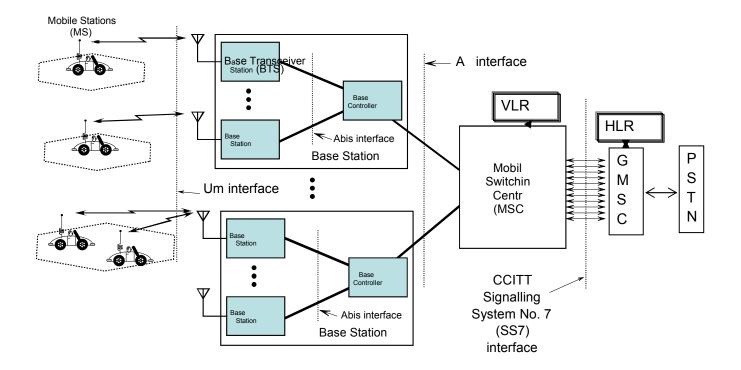
Building Blocks

- AMPS Advanced Mobile Phone System
- TACS Total Access Communication System
- NMT Nordic Mobile Telephone System

<u>AMPS – Advanced Mobile Phone System</u>

• analog technology

- used in North and South America and approximately 35 other countries
- operates in the 800 MHz band using FDMA technology


TACS – Total Access Communication System

- variant of AMPS
- deployed in a number of countries
- primarily in the UK

<u>NMT – Nordic Mobile Telephone System</u>

- analog technology
- deployed in the Benelux countries and Russia
- operates in the 450 and 900 MHz band
- first technology to offer international roaming only within the Nordic countries

System Architecture

Mobile Station (MS)

Mobile Equipment (ME)

Subscriber Identity Module (SIM)

Base Station Subsystem (BBS)

Base Transceiver Station (BTS)

Base Station Controller (BSC)

Network Subsystem

Mobile Switching Center (MSC)

Home Location Register (HLR)

Visitor Location Register (VLR)

Authentication Center (AUC)

Equipment Identity Register (EIR)

- Mobile Station: is a subscriber unit intended for use while on the move at unspecified locations. It could be a hand-held or a portable terminal.
- Base Station: a fixed radio station used for communication with MS. It is located at the centre of a cell and consist of Transmitters and Receivers.
- Mobile Switching Centre: it coordinates the routing of calls, do the billing, etc.

Mobile Station (MS)

The Mobile Station is made up of two entities:

- 2. Mobile Equipment (ME)
- 2. Subscriber Identity Module (SIM

Mobile Equipment

- Produced by many different manufacturers
- Must obtain approval from the standardization body
- Uniquely identified by an IMEI (International Mobile Equipment Identity)

Subscriber Identity Module (SIM)

- Smart card containing the International Mobile Subscriber Identity (IMSI)
- Allows user to send and receive calls and receive other subscribed services
- Encoded network identification details
- Protected by a password or PIN
- Can be moved from phone to phone contains key information to activate the phone

Base Station Subsystem (BBS)

Base Station Subsystem is composed of two parts that communicate across the standardized Abis interface allowing operation between components made by different suppliers

- 2. Base Transceiver Station (BTS)
- 2. Base Station Controller (BSC)

Base Transceiver Station (BTS)

- Houses the radio transceivers that define a cell
- Handles radio-link protocols with the Mobile Station
- Speech and data transmissions from the MS are recoded
- Requirements for BTS:
 - o ruggedness
 - o reliability
 - o portability
 - o minimum costs

Base Station Controller (BSC)

- Manages Resources for BTS
- Handles call set up
- Location update
- Handover for each MS

Network Subsystem

Mobile Switching Center (MSC)

• Switch speech and data connections between: Base Station Controllers Mobile Switching Centers

GSM-networks

Other external networks

- Heart of the network
- Three main jobs:1) Connects calls from sender to receiver

2) Collects details of the calls made and received

3) Supervises operation of the rest of the network component

Home Location Registers (HLR)

- contains administrative information of each subscriber
- Current location of the mobile

Visitor Location Registers (VLR)

- contains selected administrative information from the HLR
- authenticates the user
- tracks which customers have the phone on and ready to receive a call
- periodically updates the database on which phones are turned on and ready to receive calls

Authentication Center (AUC)

- mainly used for security
- data storage location and functional part of the network
- Ki is the primary element

Equipment Identity Register (EIR)

Database that is used to track handsets using the IMEI (International Mobile Equipment Identity)

- Made up of three sub-classes: The White List, The Black List and the Gray List
- Optional database

Basic Features Provided by GSM

Call Waiting

- Notification of an incoming call while on the handset
 - Call Hold
- Put a caller on hold to take another call
- Call Barring - All calls, outgoing calls, or incoming calls
 - Call Forwarding
- Calls can be sent to various numbers defined by the user
 - Multi Party Call Conferencing
- Link multiple calls together

Advanced Features Provided by GSM

- Calling Line ID - incoming telephone number displayed
- Alternate Line Service
 one for personal calls
 - one for business calls
- Closed User Group

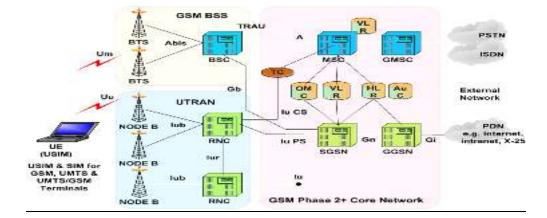
 call by dialing last for numbers
- Advice of Charge - tally of actual costs of phone calls
- Fax & Data
 Virtual Office / Professional Office

- Roaming
 - services and features can follow customer from market to market

Advantages of GSM

- Crisper, cleaner quieter calls
- Security against fraud and eavesdropping
- International roaming capability in over 100 countries
- Improved battery life
- Efficient network design for less expensive system expansion
- Efficient use of spectrum
- Advanced features such as short messaging and caller ID
- A wide variety of handsets and accessories
- High stability mobile fax and data at up to 9600 baud
- Ease of use with over the air activation, and all account information is held in a smart card which can be moved from handset to handset

UMTS (Universal Mobile Telephone System


- Reasons for innovations
 - new service requirements
 - availability of new radio bands
- User demands
 - seamless Internet-Intranet access
 - wide range of available services
 - compact, lightweight and affordable terminals
 - simple terminal operation
 - open, understandable pricing structures for the whole spectrum of available services

UMTS Basic Parameter

- Frequency Bands (FDD : 2x60 MHz):
 - 1920 to 1980 MHz (Uplink)
 - 2110 to 2170 MHz (Downlink)
- Frequency Bands (TDD: 20 + 15 MHz):
 - 1900 1920 MHz and 2010 2025 MHz
- RF Carrier Spacing:
 - 4.4 5 MHz

- RF Channel Raster:
 - 200 KHz
- Power Control Rate:
 - 1500 Cycles per Second

UMTS W-CDMA Architecture

SATELLITE NETWORKS

History of satellite communication

1945 Arthur C. Clarke publishes an essay about "Extra

Terrestrial Relays"

1957 first satellite SPUTNIK

1960 first reflecting communication satellite ECHO

1963 first geostationary satellite SYNCOM

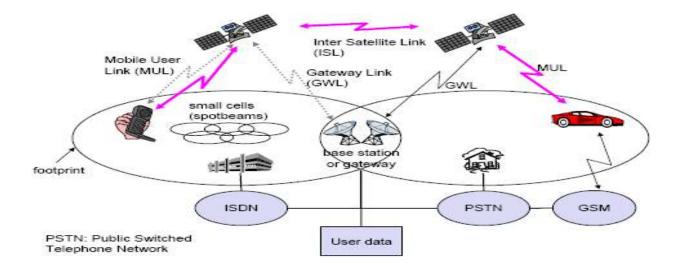
1965 first commercial geostationary satellite Satellit "Early Bird"

(INTELSAT I): 240 duplex telephone channels or 1 TV

channel, 1.5 years lifetime

1976 three MARISAT satellites for maritime communication
1982 first mobile satellite telephone system INMARSAT-A
1988 first satellite system for mobile phones and data
communication INMARSAT-C
1993 first digital satellite telephone system
1998 global satellite systems for small mobile phones

Applications


□ Traditionally

- □ weather satellites
- $\hfill\square$ radio and TV broadcast satellites
- □ military satellites
- □ satellites for navigation and localization (e.g., GPS)

□ Telecommunication

- \Box global telephone connections
- \Box backbone for global networks
- □ connections for communication in remote places or underdeveloped areas
- □ global mobile communication
- $\hfill\square$ satellite systems to extend cellular phone systems (e.g., GSM or AMPS)

Classical satellite systems

Basics

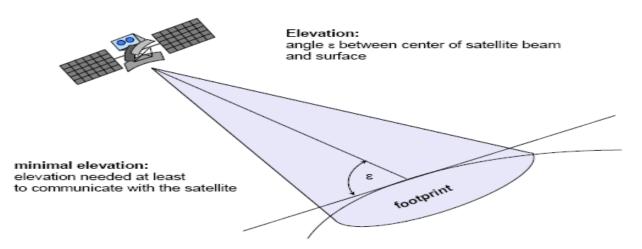
Satellites in circular orbits

- \Box attractive force Fg = m g (R/r)²
- \Box centrifugal force Fc = m r ω^2
- □ m: mass of the satellite
- \Box R: radius of the earth (R = 6370 km)
- \Box r: distance to the center of the earth
- \Box g: acceleration of gravity (g = 9.81 m/s²)
- \Box ω : angular velocity (ω = 2 π f, f: rotation frequency)

Stable orbit

Fg = Fc

$$r = \sqrt[3]{\frac{gR^2}{\left(2\pi f\right)^2}}$$


Basics

- Elliptical or circular orbits
- o Complete rotation time depends on distance satellite-earth
- Inclination: angle between orbit and equator
- Elevation: angle between satellite and horizon
- o LOS (Line of Sight) to the satellite necessary for connection
 - 1. High elevation needed, less absorption due to e.g. buildings
 - Uplink: connection base station satellite
- o Downlink: connection satellite base station
- Typically separated frequencies for uplink and downlink
 - 1. Transponder used for sending/receiving and shifting of frequencies
 - 2. Transparent transponder: only shift of frequencies
 - 3. Regenerative transponder: additionally signal regeneration

Elevation

I

0

Link budget of satellites

Parameters like attenuation or received power determined by four parameters:

Sending power

Gain of sending antenna

Distance between sender and receiver

Gain of receiving antenna Problems

Varying strength of received signal due to multipath propagation

Interruptions due to shadowing of signal (no LOS) possible solutions

Link Margin to eliminate variations in signal strength

Satellite diversity (usage of several visible satellites at the same time) helps to use less sending power

$$L = \left(\frac{4\pi rf}{c}\right)^2$$

L: Loss

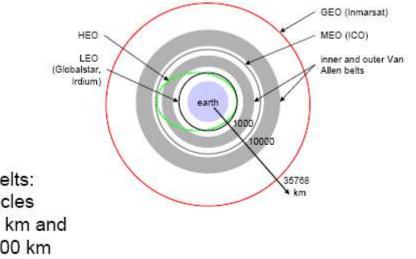
f: carrier frequency

r: distance

c: speed of light

<u>ORBITS</u>

Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit:


□ GEO: geostationary orbit, ca. 36000 km above earth surface

□ LEO (Low Earth Orbit): ca. 500 - 1500 km

□ MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit):

ca. 6000 - 20000 km

□ HEO (Highly Elliptical Orbit) elliptical orbits

Van-Allen-Belts: ionized particles 2000 - 6000 km and 15000 - 30000 km above earth surface

Geostationary satellites

Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0°)

Complete rotation exactly one day, satellite is synchronous to earth rotation

Fix antenna positions, no adjusting necessary

Satellites typically have a large footprint (up to 34% of earth surface!), therefore difficult to reuse frequencies

Bad elevations in areas with latitude above 60° due to fixed position above the equator

High transmit power needed

High latency due to long distance (ca. 275 ms)

Not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission

LEO systems

Orbit ca. 500 - 1500 km above earth surface

Visibility of a satellite ca. 10 - 40 minutes

Global radio coverage possible Latency comparable with terrestrial long distance Connections, ca. 5 - 10 ms Smaller footprints, better frequency reuse But now handover necessary from one satellite to another Many satellites necessary for global coverage More complex systems due to moving satellites Examples: Iridium (start 1998, 66 satellites) Global star (start 1999, 48 satellites)

MEO systems

Orbit ca. 5000 - 12000 km above earth surface Comparison with LEO systems: Slower moving satellites Less satellites needed Simpler system design For many connections no hand-over needed Higher latency, ca. 70 - 80 ms Higher sending power needed Special antennas for small footprints needed Example: ICO (Intermediate Circular Orbit, Inmarsat) start ca. 2000

Routing

One solution: inter satellite links (ISL) Reduced number of gateways needed Forward connections or data packets within the satellite network as long as possible Only one uplink and one downlink per direction needed for the connection of two mobile phones Problems: More complex focusing of antennas between satellites High system complexity due to moving routers Higher fuel consumption Thus shorter lifetime Iridium and Teledesic planned with ISL Other systems use gateways and additionally terrestrial networks

Localization of mobile stations

Mechanisms similar to GSM

Gateways maintain registers with user data

- HLR (Home Location Register): static user data
- VLR (Visitor Location Register): (last known) location of the mobile station

SUMR (Satellite User Mapping Register):

Satellite assigned to a mobile station

Positions of all satellites

Registration of mobile stations

Localization of the mobile station via the satellite's position

Requesting user data from HLR

Updating VLR and SUMR

Calling a mobile station

Localization using HLR/VLR similar to GSM

Connection setup using the appropriate satellite

Handover in satellite systems

Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites

Intra satellite handover

Handover from one spot beam to another

Mobile station still in the footprint of the satellite, but in another cell

Inter satellite handover

Handover from one satellite to another satellite

Mobile station leaves the footprint of one satellite

Gateway handover

Handover from one gateway to another

Mobile station still in the footprint of a satellite, but gateway leaves the footprint

Inter system handover

Handover from the satellite network to a terrestrial cellular network

Mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.

Overview of LEO/MEO systems

	Iridium	Globalstar	ICO	Teledesic
# satellites	66 + 6	48 + 4	10 + 2	288
altitude (km)	780	1414	10390	ca. 700
coverage	global	±70° latitude	global	global
min. elevation	8°	20°	20°	40°
frequencies [GHz (circa)]	1.6 MS 29.2 ↑ 19.5 ↓ 23.3 ISL	1.6 MS ↑ 2.5 MS ↓ 5.1 ↑ 6.9 ↓	2 MS ↑ 2.2 MS ↓ 5.2 ↑ 7 ↓	19 ↓ 28.8 ↑ 62 ISL
access method	FDMA/TDMA	CDMA	FDMA/TDMA	FDMA/TDMA
ISL	yes	no	no	yes
bit rate	2.4 kbit/s	9.6 kbit/s	4.8 kbit/s	64 Mbit/s ↓ 2/64 Mbit/s ↑
# channels	4000	2700	4500	2500
Lifetime [years]	5-8	7.5	12	10
cost estimation	4.4 B\$	2.9 B\$	4.5 B\$	9 B\$

<u>UNIT III</u>

WIRLESS LAN

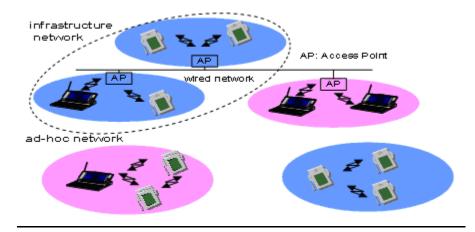
Wireless LAN – IEEE 802.11 - Architecture – services – MAC – Physical layer – IEEE 802.11a - 802.11b standards – HIPERLAN – Blue Tooth.

WIRELESS LAN

Characteristics of wireless LANs

Advantages

- Very flexible within the reception area
- Ad-hoc networks without previous planning possible
- (almost) no wiring difficulties (e.g. historic buildings, firewalls)
- More robust against disasters like, e.g., earthquakes, fire or users pulling a plug...


Disadvantages

- Typically very low bandwidth compared to wired networks (1-10 Mbit/s)
- Many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11)
- Products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000

Design goals for wireless LANs

- o global, seamless operation
- low power for battery use
- \circ no special permissions or licenses needed to use the LAN
- robust transmission technology
- simplified spontaneous cooperation at meetings
- o easy to use for everyone, simple management
- protection of investment in wired networks
- security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- transparency concerning applications and higher layer protocols, but also location awareness if necessary

Comparison: infrastructure vs. ad-hoc networks

IEEE 802.11 - ARCHITECTURE – SERVICES - ARCHITECTURE – SERVICES – MAC – PHYSICAL LAYER – IEEE 802.11A - 802.11B STANDARDS

802.11 - Architecture of an infrastructure network

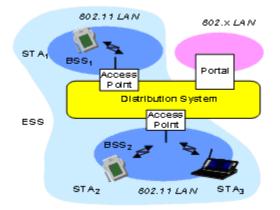
Station (STA)

 terminal with access mechanisms to the wireless medium and radio contact to the access point

Basic Service Set (BSS)

o group of stations using the same radio frequency

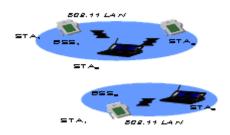
Access Point

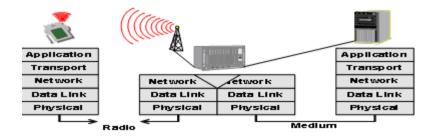

o station integrated into the wireless LAN and the distribution system

Portal

• bridge to other (wired) networks

Distribution System


 interconnection network to form one logical network (EES: Extended Service Set) based on several BSS


802.11 - Architecture of an ad-hoc network

Direct communication within a limited range

- Station (STA): terminal with access mechanisms to the wireless medium
- Basic Service Set (BSS): group of stations using the same radio frequency

IEEE standard 802.11

802.11 - Layers and functions

MAC

Access mechanisms, fragmentation, encryption

MAC Management

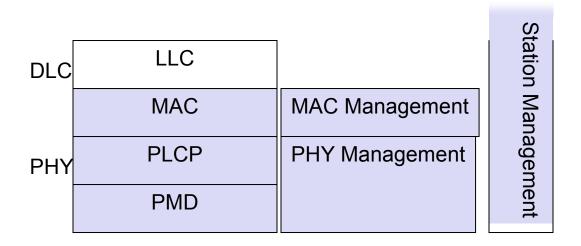
Synchronization, roaming, MIB, power management

PLCP Physical Layer Convergence Protocol

Clear channel assessment signal (carrier sense)

PMD Physical Medium Dependent

Modulation, coding


PHY Management

Channel selection, MIB

Station Management

Coordination of all management functions

802.11 - Layers

802.11 - Physical layer

3 versions: 2 radio (typ. 2.4 GHz), 1 IR

 \circ $\,$ data rates 1 or 2 Mbit/s $\,$

FHSS (Frequency Hopping Spread Spectrum)

- spreading, despreading, signal strength, typ. 1 Mbit/s
- o min. 2.5 frequency hops/s (USA), two-level GFSK modulation

DSSS (Direct Sequence Spread Spectrum)

- DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
- preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s
- chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
- o max. radiated power 1 W (USA), 100 mW (EU), min. 1mW

Infrared

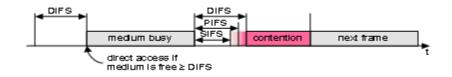
- 850-950 nm, diffuse light, typ. 10 m range
- o carrier detection, energy detection, synchronization

802.11 - MAC layer I - DFWMAC

Traffic services

- Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
- Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)

Access methods


- DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
- DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
- DFWMAC- PCF (optional)

• access point polls terminals according to a list

Priorities

- defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

802.11 - MAC layer

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

DS: Distribution System

AP: Access Point

DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier

- **RA: Receiver Address**
- TA: Transmitter Address

MAC management

Synchronization

- □ try to find a LAN, try to stay within a LAN
- □ timer etc.

Power management

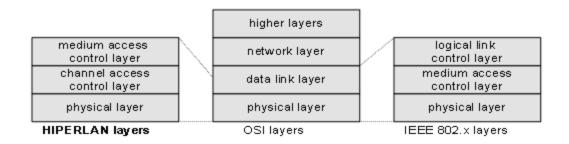
- □ sleep-mode without missing a message
- D periodic sleep, frame buffering, traffic measurements

Association/Reassociation

- □ integration into a LAN
- □ roaming, i.e. change networks by changing access points
- □ scanning, i.e. active search for a network

MIB - Management Information Base

□ managing, read, write


HIPERLAN

ETSI standard

- European standard, cf. GSM, DECT, ...
- Enhancement of local Networks and interworking with fixed networks
- integration of time-sensitive services from the early beginning

HIPERLAN family

- one standard cannot satisfy all requirements
 - range, bandwidth, QoS support
 - commercial constraints
- HIPERLAN 1 standardized since 1996

HIPERLAN 1 - Characteristics

Data transmission

- D point-to-point, point-to-multipoint, connectionless
- 23.5 Mbit/s, 1 W power, 2383 byte max. packet size

Services

- □ asynchronous and time-bounded services with hierarchical priorities
- compatible with ISO MAC

Topology

- □ infrastructure or ad-hoc networks
- transmission range can be larger then coverage of a single node ("forwarding" integrated in mobile terminals)

Further mechanisms

D power saving, encryption, checksums

Services and protocols

CAC service

- **D** definition of communication services over a shared medium
- □ specification of access priorities
- □ abstraction of media characteristics

MAC protocol

- □ MAC service, compatible with ISO MAC and ISO MAC bridges
- uses HIPERLAN CAC

CAC protocol

provides a CAC service, uses the PHY layer, specifies hierarchical access mechanisms for one or several channels

Physical protocol

□ send and receive mechanisms, synchronization, FEC, modulation, signal strength

HIPERLAN 1 - Physical layer

Scope

- □ modulation, demodulation, bit and frame synchronization
- □ forward error correction mechanisms
- □ measurements of signal strength
- □ channel sensing

Channels

- **G** 3 mandatory and 2 optional channels (with their carrier frequencies)
- mandatory
 - channel 0: 5.1764680 GHz
 - channel 1: 5.1999974 GHz
 - channel 2: 5.2235268 GHz
- optional (not allowed in all countries)
 - channel 3: 5.2470562 GHz
 - channel 4: 5.2705856 GHz

BLUETOOTH

Consortium: Ericsson, Intel, IBM, Nokia, Toshiba - many members

Scenarios

- connection of peripheral devices
 - loudspeaker, joystick, headset
- □ support of ad-hoc networking
 - small devices, low-cost
- □ bridging of networks
 - e.g., GSM via mobile phone Bluetooth laptop

Simple, cheap, replacement of IrDA, low range, lower data rates

2.4 GHz, FHSS, TDD, CDMA

Bluetooth MAC layer

- Synchronous Connection-Oriented link (SCO)

 symmetrical, circuit switched, point-to-point
- Asynchronous Connectionless Link (ACL)


 packet switched, point-to-multipoint, master polls
- Access code
 - synchronization, derived from master, unique per channel
- Packet header
 - 1/3-FEC, MAC address (1 master, 7 slaves), link type, alternating bit ARQ/SEQ, checksum

7.48.1

Scatternets

- Each piconet has one master and up to 7 slaves
- Master determines hopping sequence, slaves have to synchronize
- Participation in a piconet = synchronization to hopping sequence
- Communication between piconets = devices jumping back and forth between the piconets

7.49.1

<u>UNIT IV</u>

MOBILE NETWORK LAYER

Mobile IP – Dynamic Host Configuration Protocol - Routing – DSDV – DSR – Alternative Metrics

Mobile IP

A standard for mobile computing and networking

Computers doesn't stay put.

Change location without restart its application or terminating any ongoing communication

IP Networking

Protocol layer

Network Layer

Transport Layer

What does IP do

moving packets from source to destination

No 'end-to-end' guarantees

IP addresses

Network-prefix

Host portion

IP Routing

Packet Header

Network-prefix

Every node on the same link has the same network-prefix

Mobile IP Solves the following problems

f a node moves from one link to another without chnging its IP address, it will be unable to receive packets at the new link; and

If a node moves from one link to another without chnging its IP address, it will be unable to receive packets at the new link; and

Mobile IP Overview

Solution for Internet

Scalable, robust, secure, maintain communication

Use their permanent IP address

Routing protocol

Route packets to nodes that could potentially change location very rapidly

Layer 4-7, outside Mobile IP, but will be of major interest

Mobile IP: Terminology

- Mobile Node (MN)
 - node that moves across networks without changing its IP address
 - Correspondent Node (CN)
 - ost with which MN is "corresponding" (TCP)
- Home Agent (HA)
 - host in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP packets to the COA
- Foreign Agent (FA) ٠
 - host in the current foreign network of the MN, typically a router
 - forwards tunneled packets to the MN, typically the default router for MN
- Care-of Address (COA) .
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view

Tunneling

.

An encapsulating IP packet including a path and an original IP packet

IP-in-IP encapsulation

IP-in-IP encapsulation

IP-in-IP-encapsulation (mandatory in RFC 2003)

	 – tunnel between HA and COA 				
ver.	IHL	TOS	length		
IP identification		flags	fragment offs et		
T	TL	IP-in-IP	IP checksum		
IP address of HA					
Care-of address COA					
ver.	IHL	TOS	length		
IP identification		flags	fragment offs et		
T	Γ L	lay. 4 prot.	IP checksum		
IP address of CN					
IP address of MN					
T CP/UD P/ paylo ad					

Mobile IP and IPv6

Mobile IP was developed for IPv4, but IPv6 simplifies the protocols

- Security is integrated and not an add-on, authentication of registration is included
- COA can be assigned via auto-configuration (DHCPv6 is one candidate), every node has address auto configuration
- No need for a separate FA, **all** routers perform router advertisement which can be used instead of the special agent advertisement;
- Addresses are always *co-located*
- MN can signal a sender directly the COA, sending via HA not needed in this case (automatic path optimization)
- soft"hand-over, i.e. without packet loss, between two subnets is supported
- MN sends the new COA to its old router
- the old router encapsulates all incoming packets for the MN and forwards them to the new COA
- Authentication is always granted

ROUTING

Motivation for Mobile IP

Routing

- based on IP destination address, network prefix (e.g. 129.13.42)
- determines physical subnet
- change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables

Specific routes to end-systems?

- change of all routing table entries to forward packets to the right destination
- does not scale with the number of mobile hosts and frequent changes in the location, security problems

Changing the IP-address?

- adjust the host IP address depending on the current location
- almost impossible to find a mobile system, DNS updates take to long time

Requirements to Mobile IP

Transparency

- mobile end-systems keep their IP address
- continuation of communication after interruption of link possible
- point of connection to the fixed network can be changed

Compatibility

- support of the same layer 2 protocols as IP
- no changes to current end-systems and routers required
- mobile end-systems can communicate with fixed systems

Security

• authentication of all registration messages

Efficiency and scalability

- only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
- world-wide support of a large number of mobile systems in the whole
- Internet

<u>IPv6 availability</u>

- Generally available with (new) versions of most operating systems.
 - BSD, Linux 2.2 Solaris 8
- An option with Windows 2000/NT
- Most routers can support IPV6
- Supported in J2SDK/JRE 1.4

IPv6 Design Issues

- Overcome IPv4 scaling problem
 - Lack of address space.
- Flexible transition mechanism.
- New routing capabilities.
- Quality of service.
- Security.

Ability to add features in the future.

Mobile ad hoc networks

Standard Mobile IP needs an infrastructure

- Home Agent/Foreign Agent in the fixed network
- DNS, routing etc. are not designed for mobility •

Sometimes there is no infrastructure!

- remote areas, ad-hoc meetings, disaster areas Cost can also be an argument against an infrastructure! •
- no default router available
- every node should be able to forward

Traditional routing algorithms

Traditional algorithms are pro-active – i.e. operate independent of user-message demands. Suitable for wired networks.

Distance Vector

- periodic exchange of messages with all physical neighbors that contain information about who can be • reached at what distance
- selection of the shortest path if several paths available Link State
- periodic notification of all routers about the current state of all physical links
- routers get a complete picture of the network Example
- ARPA packet radio network (1973), DV-Routing, up to 138 nodes
- every 7.5s exchange of routing tables including link quality
- updating of tables also by reception of packets
- routing problems solved with limited flooding •

Problems of traditional routing algorithms

Dynamics of the topology

- Frequent changes of connections, connection quality, participants
- Limited performance of mobile systems
- periodic updates of routing tables need energy without contributing to the transmission of user data; sleep modes difficult to realize
- Limited bandwidth of the system is reduced even more due to the exchange of routing information
- Links can be asymmetric, i.e., they can have a direction dependent transmission quality
- Uncontrolled redundancy in links
- Interference 'unplanned links' (advantage?)

<u>DSDV</u>

DSDV (Destination Sequenced Distance Vector)

Early work

• on demand version: AODV (Ad-hoc On-demand Distance Vector Expansion of distance vector routing (but still pro-active)

Sequence numbers for all routing updates

- assures in-order execution of all updates
- avoids loops and inconsistencies

Decrease of update frequency ('damping')

- store time between first and best announcement of a path
- inhibit update if it seems to be unstable (based on the stored time values)

DYNAMIC HOST CONFIGURATION PROTOCOL

Dynamic Host Configuration Protocol (DHCP) is a network protocol for automatically assigning TCP/IP information to client machines. Each DHCP client connects to the centrally-located DHCP server which returns that client's network configuration, including the IP address, gateway, and DNS servers

DHCP is useful for automatic configuration of client network interfaces. When configuring the client system, the administrator can choose DHCP and instead of entering an IP address, netmask, gateway, or DNS servers. The client retrieves this information from the DHCP server. DHCP is also useful if an administrator wants to change the IP addresses of a large number of systems. Instead of reconfiguring all the systems, he can just edit one DHCP configuration file on the server for the new set of IP addresses. If the DNS servers for an organization changes, the changes are made on the DHCP server, not on the DHCP clients. Once the network is restarted on the clients (or the clients are rebooted), the changes take effect.

Furthermore, if a laptop or any type of mobile computer is configured for DHCP, it can be moved from office to office without being reconfigured as long as each office has a DHCP server that allows it to connect to the network.

Configuration File

The first step in configuring a DHCP server is to create the configuration file that stores the network information for the clients. Global options can be declared for all clients, while other options can be declared for individual client systems.

The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are case-insensitive and lines beginning with a hash mark (#) are considered comments.

Two DNS update schemes are currently implemented — the ad-hoc DNS update mode and the interim DHCP-DNS interaction draft update mode. If and when these two are accepted as part of the Internet Engineering Task Force (IETF) standards process, there will be a third mode — the standard DNS update method. The DHCP server must be configured to use one of the two current schemes. Version 3.0b2pl11 and previous versions used the ad-hoc mode; however, it has been deprecated.

There are two types of statements in the configuration file:

Parameters — State how to perform a task, whether to perform a task, or what network configuration options to send to the client.

Declarations — Describe the topology of the network, describe the clients, provide addresses for the clients, or apply a group of parameters to a group of declarations.

Some parameters must start with the **option** keyword and are referred to as options. Options configure DHCP options; whereas, parameters configure values that are not optional or control how the DHCP server behaves.

In **Example** the **routers**, **subnet-mask**, **domain-name**, **domain-name-servers**, and **time-offset** options are used for any **host** statements declared below it.

Additionally, a **subnet** can be declared, a **subnet** declaration must be included for every subnet in the network. If it is not, the DHCP server fails to start.

In this **example**, there are global options for every DHCP client in the subnet and a range declared. Clients are assigned an IP address within the range.

subnet 192.168.1.0 netmask 255.	255.255.0 {			
option routers 19	2.168.1.254;			
option subnet-mask	255.255.255.0;			
option domain-name option domain-name-server	"example.com"; s 192.168.1.1;			
option time-offset -	18000; # Eastern Standard Time			
range 192.168.1.10 192.168.1.100;				

Dynamic source routing

Split routing into discovering a path and maintaining a path

Discovering a path

Only if a path for sending packets to a certain destination is needed and no path is currently available (reactive algorithm)

Maintaining a path

Only while the path is in use: make sure that it can be used continuously

Path discovery

Broadcast a packet (Route Request) with destination address and unique ID

- if a station receives a broadcast packet
- if the station is the receiver (i.e., has the correct destination address) then return the packet to the sender (path was collected in the packet) ☑ if the packet has already been received earlier (identified via ID) then

Discard the packet

- otherwise, append own address and broadcast packet
- sender receives packet with the current path (address list)

Maintaining paths

- After sending a packet
- wait for a layer 2 acknowledgement (if applicable)
- listen into the medium to detect if other stations forward the packet (if possible)
- request an explicit acknowledgement
- if a station encounters problems it can inform the sender of a packet or look-up a new path locally

ALTERNATIVE METRICS.

Mobile IP with reverse tunneling

Router accepts often only "topological correct" addresses (firewall!)

- a packet from the MN encapsulated by the FA is now topological correct
- furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is to far away from the receiver)

Reverse tunneling does not solve

- problems with firewalls, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
- optimization of data paths, i.e. packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)
- The standard is backwards compatible
- the extensions can be implemented easily and cooperate with current implementations without these extensions

Agent Advertisements can carry requests for reverse tunneling

World Wide Web and mobility

Protocol (HTTP, Hypertext Transfer Protocol) and language

(HTML, Hypertext Markup Language) of the Web have not been designed for mobile applications and mobile devices, thus creating many problems!

Typical transfer sizes

- HTTP request: 100-350 byte
- responses avg. <10 kbyte, header 160 byte, GIF 4.1kByte, JPEG
- 12.8 kbyte, HTML 5.6 kbyte
- but also many large files that cannot be ignored
- The Web is no file system
- Web pages are not simple files to download
- static and dynamic content, interaction with servers via forms, content transformation, push technologies etc.
- many hyperlinks, automatic loading and reloading, redirecting
- a single click might have big consequences!

<u>UNIT V</u>

TRANSPORT AND APPLICATION LAYERS

Traditional TCP – Classical TCP improvements – WAP, WAP 2.0.

TRADITIONAL TCP

TCP is an alternative transport layer protocol over IP.

- TCP provides:
 - Connection-oriented
 - Reliable
 - Full-duplex
 - Byte-Stream

Connection-Oriented

- Connection oriented means that a virtual connection is established before any user data is transferred.
- If the connection cannot be established the user program is notified.
- If the connection is ever interrupted the user program(s) is notified.

Reliable

- *Reliable* means that every transmission of data is acknowledged by the receiver.
- If the sender does not receive acknowledgement within a specified amount of time, the sender retransmits the data

Byte Stream

- Stream means that the connection is treated as a stream of bytes.
- The user application does not need to package data in individual datagrams (as with UDP).

Buffering

- TCP is responsible for buffering data and determining when it is time to send a datagram.
- It is possible for an application to tell TCP to send the data it has buffered without waiting for a buffer to fill up.

Full Duplex

- TCP provides transfer in both directions.
- To the application program these appear as 2 unrelated data streams, although TCP can piggyback control and data communication by providing control information (such as an ACK) along with user data.

TCP Ports

- Interprocess communication via TCP is achieved with the use of ports (just like UDP).
- UDP ports have no relation to TCP ports (different name spaces).

TCP Segments

- The chunk of data that TCP asks IP to deliver is called a *TCP segment*.
- Each segment contains:
 - data bytes from the byte stream
 - control information that identifies the data bytes

TCP Lingon

- When a client requests a connection it sends a "SYN" segment (a special TCP segment) to the server port.
- SYN stands for synchronize. The SYN message includes the client's ISN.
- ISN is Initial Sequence Number.
- Every TCP segment includes a *Sequence Number* that refers to the first byte of *data* included in the segment.
- Every TCP segment includes an *Acknowledgement Number* that indicates the byte number of the next data that is expected to be received.
 - All bytes up through this number have already been received.
- There are a bunch of control flags:
 - URG: urgent data included.
 - ACK: this segment is (among other things) an acknowledgement.
 - RST: error connection must be reset.
 - SYN: synchronize Sequence Numbers (setup)
 - FIN: polite connection termination
- MSS: Maximum segment size (A TCP option)

• Window: Every ACK includes a Window field that tells the sender how many bytes it can send before the receiver will have to toss it away (due to fixed buffer size).

CLASSICAL TCP IMPROVEMENTS

TCP Connection Creation

- Programming details later for now we are concerned with the actual communication.
- A server accepts a connection.
 - Must be looking for new connections!
- A client requests a connection.
 - Must know where the server is!

Client Starts

- A client starts by sending a SYN segment with the following information:
 - Client's ISN (generated pseudo-randomly)
 - Maximum Receive Window for client.
 - Optionally (but usually) MSS (largest datagram accepted).
 - No payload! (Only TCP headers)

Server Response

- When a waiting server sees a new connection request, the server sends back a SYN segment with:
 - Server's ISN (generated pseudo-randomly)
 - Request Number is Client ISN+1
 - Maximum Receive Window for server.
 - Optionally (but usually) MSS
 - No payload! (Only TCP headers)
- When the Server's SYN is received, the client sends back an ACK with:
 - Acknowledgment Number is Server's ISN+1

TCP 3-way handshake

Client: "I want to talk, and I'm starting with byte number X".

Server: "OK, I'm here and I'll talk. My first byte will be called number *Y*, and I know your first byte will be number *X*+1".

Client: "Got it - you start at byte number Y+1".

Bill: "Monica, I'm afraid I'll syn and byte your ack"

TCP Data and ACK

- Once the connection is established, data can be sent.
- Each data segment includes a sequence number identifying the first byte in the segment.
- Each segment (data or empty) includes a request number indicating what data has been received

Buffering

- Keep in mind that TCP is part of the Operating System. The O.S. takes care of all these details asynchronously.
- The TCP layer doesn't know when the application will ask for any received data.
- TCP buffers incoming data so it's ready when we ask for it.

TCP Buffers

- Both the client and server allocate buffers to hold incoming and outgoing data
 - The TCP layer does this.
- Both the client and server announce with every ACK how much buffer space remains (the Window field in a TCP segment).

Send Buffers

- The application gives the TCP layer some data to send.
- The data is put in a send buffer, where it stays until the data is ACK'd.
- The TCP layer won't accept data from the application unless (or until) there is buffer space.

ACKs

- A receiver doesn't have to ACK every segment (it can ACK many segments with a single ACK segment).
- Each ACK can also contain outgoing data (piggybacking).
- If a sender doesn't get an ACK after some time limit, it resends the data.

TCP Segment Order

- Most TCP implementations will accept out-of-order segments (if there is room in the buffer).
- Once the missing segments arrive, a single ACK can be sent for the whole thing.
- Remember: IP delivers TCP segments, and IP is not reliable IP datagrams can be lost or arrive out of order.

Termination

- The TCP layer can send a RST segment that terminates a connection if something is wrong.
- Usually the application tells TCP to terminate the connection politely with a FIN segment.

TCP Sockets Programming

- Creating a *passive mode* (server) socket.
- Establishing an application-level connection.
- Sending/receiving data.
- Terminating a connection.

Establishing a passive mode TCP socket

Passive mode:

- Address already determined.
- Tell the kernel to accept incoming connection requests directed at the socket address.

• 3-way handshake

• Tell the kernel to queue incoming connections for us.

Accepting an incoming connection

- Once we start listening on a socket, the O.S. will queue incoming connections
 - Handles the 3-way handshake
 - Queues up multiple connections.
- When our application is ready to handle a new connection, we need to ask the O.S. for the next connection.

Terminating a TCP connection

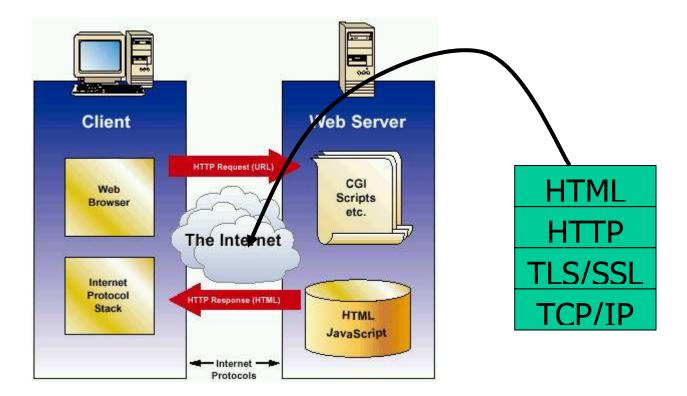
- Either end of the connection can call the close() system call.
- If the other end has closed the connection, and there is no buffered data, reading from a TCP socket returns 0 to indicate EOF

Client Code

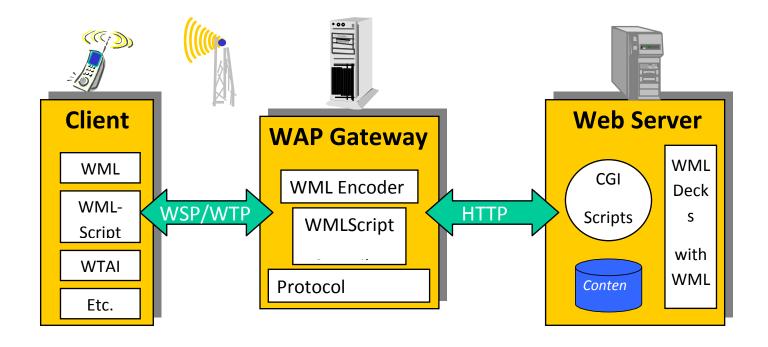
- TCP clients can connect to a server, which:
 - takes care of establishing an endpoint address for the client socket.
 - don't need to call bind first, the O.S. will take care of assigning the local endpoint address (TCP port number, IP address).
 - Attempts to establish a connection to the specified server.
 - 3-way handshake

Reading from a TCP socket

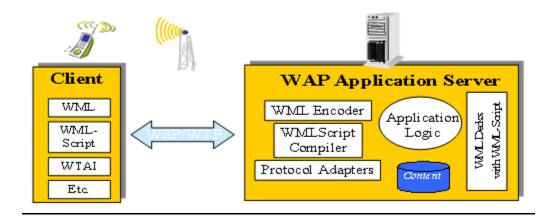
- By default **read()** will block until data is available.
- Reading from a TCP socket may return less than max bytes (whatever is available).
- You must be prepared to read data 1 byte at a time!

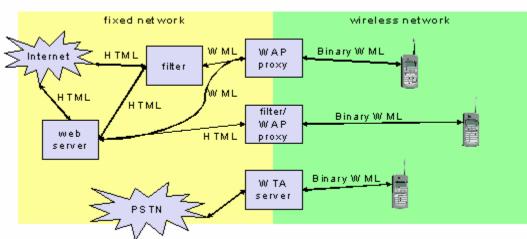

WIRELESS APPLICATION PROTOCOL (WAP)

- Empowers mobile users with wireless devices to easily access and interact with information and services.
- A "standard" created by wireless and Internet companies to enable Internet access from a cellular phone


WAP: Main Features

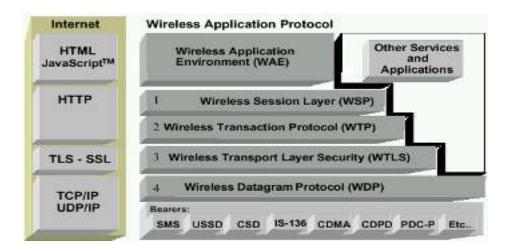
- Browser
 - "Micro browser", similar to existing web browsers
- Markup language
 - Similar to HTML, adapted to mobile devices
- Script language
 - Similar to Javascript, adapted to mobile devices
- Gateway
 - Transition from wireless to wired world
- Server
 - "Wap/Origin server", similar to existing web servers
- Protocol layers
 - Transport layer, security layer, session layer etc.
- Telephony application interface
 - Access to telephony functions


Internet Model


WAP Architecture

WAP Application Server

WAP: Network Elements



Binary W ML: binary file form at for clients

WAP Specifies

- Wireless Application Environment
 - WML Microbrowser
 - WMLScript Virtual Machine
 - WMLScript Standard Library
 - Wireless Telephony Application Interface (WTAI)
 - WAP content types
- Wireless Protocol Stack
 - Wireless Session Protocol (WSP)
 - Wireless Transport Layer Security (WTLS)
 - Wireless Transaction Protocol (WTP)
 - Wireless Datagram Protocol (WDP)
 - Wireless network interface definitions

WAP Stack

- WAE (Wireless Application Environment):
 - Architecture: application model, browser, gateway, server
 - WML: XML-Syntax, based on card stacks, variables, ...
 - WTA: telephone services, such as call control, phone book etc.
- WSP (Wireless Session Protocol):
 - Provides HTTP 1.1 functionality
 - Supports session management, security, etc.
- WTP (Wireless Transaction Protocol):
 - Provides reliable message transfer mechanisms
 - Based on ideas from TCP/RPC
- WTLS (Wireless Transport Layer Security):
 - Provides data integrity, privacy, authentication functions
 - Based on ideas from TLS/SSL
- WDP (Wireless Datagram Protocol):
 - Provides transport layer functions
 - Based on ideas from UDP

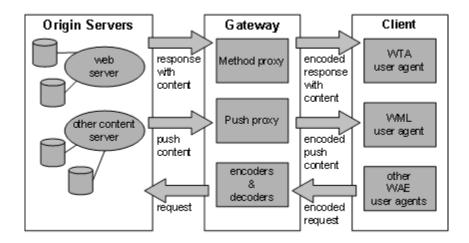
WHY WAP?

- Wireless networks and phones
 - have specific needs and requirements
 - not addressed by existing Internet technologies
- WAP
 - Enables any data transport
 - TCP/IP, UDP/IP, GUTS (IS-135/6), SMS, or USSD.
 - Optimizes the content and air-link protocols
 - Utilizes plain Web HTTP 1.1 servers
 - leverages existing development methodologies
 - utilizes standard Internet markup language technology (XML)
 - all WML content is accessed via HTTP 1.1 requests
 - WML UI components map well onto existing mobile phone user interfaces
 - no re-education of the end-users
 - leveraging market penetration of mobile devices
 - Several modular entities together form a fully compliant Internet entity

WAP: "Killer" Applications

- Location-based services
 - Real-time traffic reporting, Event/restaurant recommendation
- Enterprise solutions
 - Email access, Database access, "global" intranet access
 - Information updates "pushed" to WAP devices
- Financial services
 - Banking, Bill-paying, Stock trading, Funds transfers
- Travel services
 - Schedules and rescheduling, Reservations
- Gaming and Entertainment
 - Online, real-time, multi-player games
 - Downloadable horoscopes, cartoons, quotes, advice
- M-Commerce
 - Shopping on the go
 - Instant comparison shopping
 - Location-based special offers and sales

Wireless Application Environment (WAE)


- Goals
 - device and network independent application environment

- for low-bandwidth, wireless devices
- considerations of slow links, limited memory, low computing power, small display, simple user interface (compared to desktops)
- integrated Internet/WWW programming model
- high interoperability

WAE Components

- Architecture
 - Application model, Microbrowser, Gateway, Server
- User Agents
 - WML/WTA/Others
 - content formats: vCard, vCalendar, Wireless Bitmap, WML, ...
- WML
 - XML-Syntax, based on card stacks, variables, ...
- WMLScript
 - procedural, loops, conditions, ... (similar to JavaScript)
- WTA
 - telephone services, such as call control, text messages, phone book, ... (accessible from WML/WMLScript)
- Proxy (Method/Push)

WAE: Logical Model

WML: Wireless Markup Language

Tag-based browsing language:

- Screen management (text, images)
- Data input (text, selection lists, etc.)
- Hyperlinks & navigation support
- Takes into account limited display, navigation capabilities of devices
- XML-based language
 - describes only intent of interaction in an abstract manner
 - presentation depends upon device capabilities
- Cards and Decks
 - document consists of many cards
 - User interactions are split into cards
 - Explicit navigation between cards
 - cards are grouped to decks
 - deck is similar to HTML page, unit of content transmission
 - Events, variables and state mgmt
- The basic unit is a card. Cards are grouped together into **Decks** Document ~ Deck (unit of transfer)
- All decks must contain
 - Document prologue
 - XML & document type declaration
 - <WML> element
 - Must contain one or more cards

WML Example

WML>

<CARD>

<DO TYPE="ACCEPT">

<GO URL="#eCard"/>

</D0

Welcome!

</CARD>

<CARD NAME="eCard">

<DO TYPE="ACCEPT">

```
<GO URL="/submit?N=$(N)&S=$(S)"/>
```

</D0>

Enter name: <INPUT KEY="N"/>

Choose speed:

<SELECT KEY="S">

<OPTION VALUE="0">Fast</OPTION>

<OPTION VALUE="1">Slow</OPTION>

<SELECT>

</CARD>

</WML>

WMLScript

- Complement to WML
 - Derived from JavaScript[™]
- Provides general scripting capabilities
 - Procedural logic, loops, conditionals, etc.
 - Optimized for small-memory, small-cpu devices
- Features
 - local user interaction, validity check of user input
 - access to device facilities (phone call, address book etc.)
 - extensions to the device software
 - configure device, download new functionality after deployment
- Bytecode-based virtual machine
 - Stack-oriented design, ROM-able
 - Designed for simple, low-impact implementation
- WMLScript compiler resides in the network

WMLScript Libraries

- Lang VM constants, general-purpose math functionality, etc.
- String string processing functions
- URL URL processing

- Browser WML browser interface
- Dialog simple user interface
- Float floating point functions

Wireless Telephony Application (WTA)

- Collection of telephony specific extensions

 designed primarily for network operators
- Example
 - calling a number (WML) wtai://wp/mc;07216086415
 - calling a number (WMLScript)
 WTAPublic.makeCall("07216086415");
- Implementation
 - Extension of basic WAE application model
 - Extensions added to standard WML/WMLScript browser
 - Exposes additional API (WTAI)

WTA Features

- Extension of basic WAE application model
 - network model for interaction
 - client requests to server
 - event signaling: server can push content to the client
 - event handling
 - table indicating how to react on certain events from the network
 - client may now be able to handle unknown events
 - telephony functions
 - some application on the client may access telephony functions
 - WTAI includes:
 - Call control

•

- Network text messaging
- Phone book interface
- Event processing
- Security model: segregation
 - Separate WTA browser
 - Separate WTA port

WAP Push Services

- Web push
 - Scheduled pull by client (browser)
 - example: Active Channels
 - no real-time alerting/response
 - example: stock quotes
- Wireless push

_

- accomplished by using the network itself
 - example: SMS
- limited to simple text, cannot be used as starting point for service
 - example: if SMS contains news, user cannot request specific news item
- WAP push
 - Network supported push of WML content
 - example: Alerts or service indications
 - Pre-caching of data (channels/resources)

Push Access Protocol

- Based on request/response model
- Push initiator is the client
- Push proxy is the server
- Initiator uses HTTP POST to send push message to proxy
- Initiator sends control information as an XML document, and content for mobile (as WML)
- Proxy sends XML entity in response indicating submission status
- Initiator can
 - cancel previous push
 - query status of push
 - query status/capabilities of device

Push Proxy Gateway

- WAP stack (communication with mobile device)
- TCP/IP stack (communication with Internet push initiator)
- Proxy layer does
 - control information parsing
 - content transformation
 - session management
 - client capabilities
 - store and forward
 - prioritization

- address resolution
- management function

WTP Services and Protocols

- WTP (Transaction)
 - provides reliable data transfer based on request/reply paradigm
 - no explicit connection setup or tear down
 - optimized setup (data carried in first packet of protocol exchange)
 - seeks to reduce 3-way handshake on initial request
 - supports
 - header compression
 - segmentation /re-assembly
 - retransmission of lost packets
 - selective-retransmission
 - port number addressing (UDP ports numbers)
 - flow control
 - message oriented (not stream)
 - supports an Abort function for outstanding requests
 - supports concatenation of PDUs
 - supports User acknowledgement or Stack acknowledgement option
 - acks may be forced from the WTP user (upper layer)
 - default is stack ack

WAP 2.0.

WSP - Wireless Session Protocol

- Goals
 - HTTP 1.1 functionality
 - Request/reply, content type negotiation, ...
 - support of client/server transactions, push technology
 - key management, authentication, Internet security services
- WSP Services
 - provides shared state between client and server, optimizes content transfer
 - session management (establish, release, suspend, resume)
 - efficient capability negotiation
 - content encoding
 - push

- WSP/B (Browsing)
 - HTTP/1.1 functionality but binary encoded
 - exchange of session headers
 - push and pull data transfer
 - asynchronous requests

WSP Overview

- Header Encoding
 - compact binary encoding of headers, content type identifiers and other well-known textual or structured values
 - reduces the data actually sent over the network
- Capabilities (are defined for):
 - message size, client and server
 - protocol options: Confirmed Push Facility, Push Facility, Session Suspend Facility, Acknowledgement headers
 - maximum outstanding requests
 - extended methods
 - header code pages
- Suspend and Resume
 - server knows when client can accept a push
 - multi-bearer devices
 - dynamic addressing
 - allows the release of underlying bearer resources
- Session Context and Push
 - push can take advantage of session headers
 - server knows when client can accept a push
- Connection-mode
 - long-lived communication, benefits of the session state, reliability
- Connectionless-mode
 - stateless applications, no session creation overhead, no reliability overhead

WAP: Ongoing Work

- WDP
 - Tunnel to support WAP where no (end-to-end) IP bearer available
- WTLS

- support for end-to-end security (extending WTLS endpoint beyond WAP Gateway)
- interoperable between WAP and Internet (public key infrastructure)
- integrating Smart Cards for security functions
- WTP
 - efficient transport over wireless links (wireless TCP)
 - bearer selection/switching
 - quality of service definitions
- WSP
 - quality of service parameters
 - multicast data, multimedia support
- WAE

User agent profiles: personalize for device characteristics, preferences etc

ONLINE QUESTIONS

<u>UNIT-I</u>

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION4	ANSWERS
		01110112	Fixed		
The advantage of cable	No mobility	No	transmitter and	Limited no of	
based transmission is	of transmission	interference	receiver	interconnections	No interference
The range of wavelength and frequency of infrared is	Wavelength between 1.0 µm and 2.0 µm and (1.5 to 3) x 1014 Hz	Wavelength between 0.70 μm and 0.40 μm and (4.3 to 7.5) x 1014Hz	Wavelength between 0.90 µm and 0.85 µm and (3.3 to 3.35) x 1014Hz	Wavelength less than 0.40 and frequency greater than 750 THz	Wavelength between 0.90 μm and 0.85 μm and (3.3 to 3.35) x 1014Hz
In which shift keying technique the phase angle of a carrier shifts to one of eight different angles in one of eight octets between 0^0 to 360^0 as per eight combinations	Binary shift keying	Gaussian shift keying	Quadrature phase shift keying	Eight phase shift keying	Eight phase shift keying
In which modulation technique there is 4- PSK(QPSK) modulation with 16 distinct quadruplets.	Phase modulation	Frequency modulation	Quadrature amplitude modulation	Amplitude modulation	Quadrature amplitude modulation
The frequency rate at which a symbol XORs with the modulating signal to generate a rate is called as	Frequency rate	Modulation rate	Chipping rate	Signal rate	Chipping rate
This is the method of data transmission in which a communication channel is once established continues to be used till the transmission completes	Packet switching	Circuit switching	Channel switching	Data switching	Circuit switching
Line of Sight of propagation is the transmission of signals withoutn between the transmitter and receiver	Refraction	Diffraction	Scattering	All the above	All the above
Signal strength decreases due towhen obstacles in the path of signal are greater in size than wavelength of the signal	Blocking	Reflected	Attenuation	Scattering	Attenuation
. A dipole antenna is to be mounted on a conducting surface. Calculate the length of the required antenna for transmitting a GSM signal of frequency 600 MHz	12.5 cm	12 m	1.25 cm	1.25 m	12.5 cm

The reflected signal suffers					
ain reaching its destination	time	frequency	wavelength	delay	delay
is an access method which entails assignment of different frequency-slices to different users for accessing the same carrier.	SDMA	TDMA	FDMA	CDMA	FDMA
. Which mobile devices communicate at higher data rates	2.5G	3G	2G	2.5G+	3G
A standard which is used for object exchanges datas provided short distance upto 1m or 100m range as per radio spectrum is	GPRS	GSM	WiMax	Bluetooth	Bluetooth
A technique in which amplitude, frequency or phase angle parameters of carrier frequency or subcarrier frequencies varied with time according to signal bit 1 or 0	Amplitude modulation	Frequency modulation	Analog modulation	Digital modulation	Digital modulation
is a method for a multi-carrier and multi-tone access method for transmitting multiple carriers for a set of symbol	QPSK	OFDM	QAM	PSK	OFDM
Ais a part of data that can take a distinct path from other packets from the same source and each packet can have variable delays.	circuit	code	packet	signal	packet
is a technique in which phase angle of carrier shifts in one of four quadrants between 0^0 and 360^0	QPSK	ASK	PSK	BPSK	QPSK
A technique in which a wireless transmitter channel transmits a modulated signal and accesses in a time-slice another modulated signal accesses in another time.	SDMA	TDMA	FDMA	CDMA	TDMA
The delay time for given $t_{indirect} = 4.95 \mu s$ and $t_{direct} = 4.33 \mu s$ is	0.62 µs	6.2 μs	РЫМА 62 µs	0.062 µs	0.62 μs
The Electricals signals are transmitted by converting them into	wavelength	frequency	electromagnetic radiations	signal	electromagnetic radiations

A WPAN standard that is IEEE 802.15.4-based is					
called	Bluetooth	WiMax	iMode	ZigBee	ZigBee
based communication devices are also used for short distance communication when there are no obstacles such as walls between the devices.	visible light	ultravoilet	infrared	UHF	infrared
Which provides web contents to small area display devices	WAP	WML	GSM	GPRS	WAP
in mobile phones Which computing refers to blending of computing devices with environmental objects	Mobile computing	Ubiquitous computing	Pervasive computing	Soft computing	Ubiquitous computing
Which is the next generation computing technique which takes into account with communication technology used by everyone everywhere at all times.	Fuzzy logic	Genetic algorithm	Ubiquitous computing	Pervasive computing	Pervasive computing
means without the impact of location due to mobility, access protocol deployed and hardware or software failure.	Mobile	Adaptability	Transparency	None of the above	Transparency
Which mobile phone contains the additional polyphonic ring tone application for personalizing your device	Smart phones	Cordless	2G device	All the above	Smart phones
Which is the payment system employed during a purchase activated through text- message exchanges between the customer and retail outlet of service provider	m- commerce	Sensors	m-cheque	Smartcards	m-cheque
is called as producer-consumer problem	Music and video	Supply chain management	Sensors	m-commerce	Supply chain management
Which occurs in wireless signals and affects the quality of service(QOS)	Interference	Bandwidth	Network issues	Security constraint	Interference
The varying protocol standards prescribed and available between different regions may lead to glitches	Resources constraint	Dynamic changes	Interoperability	Bandwidth	Interoperability
The language used for mobile computing is	Java/J2SE	C/C++	Visual C++	All the above	All the above

What enables the user to run an application without					
considering the hardware					
specification and functionalities?	GUI	Phone API	OS	GUI API	OS
	for service	T Hone / a T		001/11	00
Middleware is used	discovery, application adaptability, retrieving backend database	for application adaptability and retrieving backend database	for connecting to a mobile service	as a software component between the OS and hardware	for service discovery, application adaptability, retrieving backend database
The interchanges between					
the two diversified and distributed components needs	Hardware and software	Protocols and standards	Gateway and network	Interface and network	Protocols and standards
Which layer is used for establishing end -to -end connectivity	Physical layer	Data link	Networking	Wireless transport	Wireless transport
A network in which space is divided into cells such that each has a base station for providing service to mobile devices when mobile device	Cellular	WLAN			
roams into another cell. A mobile device such as	Network	Network	LAN Network	System Network	Cellular Network
pocket computer or a laptop connects to an access point	Doutor		Hetenet	Davias point	Hotopot
called a	Router Pushes	LAN	Hotspot	Device point	Hotspot
. Data dissemination mechanisms are	data, pulling data and hybrid of push- pull	Pushes of database by server	Pulling database	Pulling the voice, data on server on demand	Pushes data, pulling data and hybrid of push-pull
Data Synchronization is "the ability for data in different databases to be keptso that repository contains the same information".	Without	Without virus	Up to date	Unicast data	Up to date
means maintaining uninterrupted signal connectivity when a mobile device changes location from within a cell to	Infrastructure	Registration	Location	Mobility	Mobility
another cell	management	management	management	management	management
. Which function is used to create a small digital fingerprint of the data to be transmitted?	Digital function	Decryption function	Hash function	Encryption function	Hash function
. A method by which multimedia files are distributed over the internet is	Podcasting	iTunes	Access point	Pushing and pulling	Podcasting

The pen based devices which enable the user to write on the LCD screen using a pen- like stick called	joystick	Pylons	PDA stick	Stylus	Stylus
An Access service that describes a WLAN network access IEEE technology or application using 802.11 standards is	WLAN	WiMax	WiFi	WPAN	WiFi
Which issues the authority of holders name, public key and expiration date	Digital signature	Digital certificate	MAC function	Certification authority	Certification authority
. In the case of a heavy load in one cell and light load in a neighboring cell it could make sense of	Dynamic allocation	Fixed allocation	Borrowing channel allocation	Channel allocation	Borrowing channel allocation
CDM cells are commonly said to	Clusters	Planning	Breathe	Drop out	Breathe
The primary goal of GSM was to provide a mobile phone system that allows users to thought Europe					
and provides voice services compatible to ISDN	Communicate	Data transmission	Voice transmission	Roam	Roam
GSM 1900 is also called as Digital cellular network	Personal communication service	GSM rail		GSM transit network	GSM rail
GSM rail containsexclusive channels	14	19	18	16	19
The transparent bearer services uses the function oflayer to transmit	Physical	Data link	Session		
data	layer	layer	layer	Network layer	Physical layer
Which is the heart of GSM	Radio subsystem	Network and switching subsystem	Operation subsystem	Maintenance subsystem	Network and switching subsystem
Which is an interesting interface?	А	Abis	0	Um	Um
is used to avoid overlapping with other burst due to different delay	Tail	User data	Guard space	Training	Guard space
Temporary mobile subscriber identity (TMSI) is selected by	VLR	HLR	EIR	BSC	VLR
In which handover mechanism MS moves from one cell to another but remains in same BSC.	Intra cell handover	Inter cell, Intra BSC handover	Inter BSC, Intra MSC handover	Inter MSC handover	Inter cell, Intra BSC handover

Which is the networking unit between the GPRS network and the external packet data networks?	GPRS support node	Gateway GPRS support node	Serving GPRS support node	Register GPRS support node	Gateway GPRS support node
. Which is used to convey routing and QoS-related information between the BSS and SGSN	LLC	UDP/TCP	RLC	BSSGP	BSSGP
. An MS having GPRS capability stores a in the SIM in GSM	PUK number	PIN number	Cipher key number	none of the above	Cipher key number

UNIT-II

QUESTION	А	В	С	D
The task of DLC is to establish a reliable point to point or point to multipoint connection between different devices over a	Network	Wired medium	Wireless medium	Wired medium o Wireless mediur
MAC comprises all mechanisms that regulate user access to a medium using multiplexing and is similar to		Multiplexing regulation		
	Modulation		TDM regulation	Traffic regulatio
In wireless network the CSMA/CD is not really interested in collision at	Sender	Receiver	Both sender and receiver	Either sender or receiver
A is outside is the interference range of C. Causing a 'collision' at B does not matter since the collision is too weak . What is the problem in this situation?	Hidden problem	Near and far problem	Exposed problem	None of these
The strength of a signal to the square of the distance to the	increase	decreases		
sender	proportionally	proportionally	drowns up	drowns high

The new application of SDMA comes up together withantenna arrays		Beam-forming	code-forming	frequency-formi
The frequencies from base station to mobile station and from mobile station to base station are		downlink	uplink and downlink	downlink and up
All uplinks and downlinks which are regulated by the national authority use the band between	890.2 and 915 MHz, and 935.2 to 960 MHz	880.2 and 915 MHz, and 935.2 to 970 MHz	890.2 and 915 MHz, and 945.2 to 960 MHz	880.2 and 915 N and 935.2 to 960 MHz
The classical aloha scheme was invented and used in ALOHANET wireless connection of several station by		University of Halsal	University of Greenland	University of O
In non-persistent CSMA stations sense the carrier and sending immediately if the medium is idle. If the medium is busy the station	Checks the priority	Uses backoff algorithm	Pauses for random time	Checks probabil
In which scheme the stations can reserve future slots in the transmission period	PRMA	CSMA	DAMA	DSMA
Hidden terminal problem is solved by	PRMA	CSMA	DAMA	MACA
Using the free slots can be based on a simple round- robin scheme guarantees	Fixed TDMA	Reservation TDMA	TDMA	CDMA
Inhibit sense multiple access is also called as	PRMA	CSMA	DAMA	DSMA
The two vectors $(2, 5,0)$ and $(0,0,17)$ are	Orthogonal	Auto correlation	Barker code	Spreading code
Integrating over noise results for a values close to	1	2	-1	0
If we use CDMA with only one code the resulting scheme is called	PRMA	SAMA	TSMA	DSMA

Comparing to other mechanisms which scheme comprises Flexible, less planning needed with soft handover		TDMA	CDMA	SAMA
Which scheme is standard in fixed networks together with FDMA/SDMA used in many mobile networks?		CSMA	FDMA	SDMA
is slotted and used for some reservation mechanisms are applied to guarantee access delay and bandwidth.	Time	Fixed TDMA	Codes	Aloha
The inner product of the vectors a and b with a=(a1,a2,an) and b=(b1,b2,,bn)Is defined as	a*b=∑a ib i	a+b=∑a _i *b _i	a*b=∑a _i /b _i	a*b=∑a
The power level spread signal can be muchthan that of original narrow band signal		Lower	All the above	Mediun
different channels use FDM for multiplexing which means that each channel has its own narrow frequency band for transmission		2	6	7
The combination of spread spectrum and CDM is becoming more and more attractive for applications	Mobile	Wireless	Everyday	Wired
system takes a user bit stream and performs an XOR to form chipping sequence	DSSS	CDM	ISSS	Narrowband

If the chipping sequence is generated properly it appears as random noise and is also called sequence		Pseudo code nose	Pseudo noise	Digital noise
Forsystem, total available bandwidth is split into many channels of smaller bandwidth	FHSS	DSSS	Race receiver	Integrator
In hopping sequence the time spend on a channel with a certain frequency is called as	Fast time	Decision time	Dwell time	Hopping time
the transmitter changes the frequency several times during the transmission of a single bit	Slow hopping	Fast hopping	Frequency hopping	Hopping sequen
Calculating the products of chips and signal, and adding the product in an integrator is also called as	Integration	Correlation	Decision unit	Rake receiver ur
The GSM hopping rate is	205.4 Hops/s	204.5 Hops/s	204.7 Hops/s	207.4 Hops/s
<u>codes</u> requires synchronization between the transmitter and receiver as they do not exhibit a strong autocorrelation property	Best	Wireless	Orthogonal	Scrambling
codes are generated from a matrix called Hadamard matrix		Walsh	Orthogonal	Scrambling
codes are used for channelization due to their orthoganality property	Walsh	Best	Carrier modulation	Scrambling
There arechannels in forward link	1	2	3	4

Data rate matching with a fixed rate for a channel is used to transmit multi- encoded signals using a constant spread factor andcodes	Fixed length	Same length	Different length	Equal length
is a technique which enables the use of idle time-slots in the frames has a predefined bit	Traffic channel	Data rate matching	Multi encoding	Block interleave
A is used for identifying a traffic channel.		Block code	Paging code	<i>Q</i> pilot
The synchronous channel message is used for synchronization of ships sequence at the	BS	MS	BTS	BSC
The objective of the ser signal waveform encoding is tothe bit error rate at the receiver.	Increase	Reduce	Deviate	Changes
SCI=1 indicatesof the message.	End	Beginning	Stop	Continues
The 1.25 MHz modulated output of the reverse link channel has access and traffic channels	Forward	Reverse	Direct	Indirect
The user signal waveform is mapped with the walsh codes	Orthogonal	Synchronous	Block	Pagging
IS-95 was with multiple analog channel forming one digital carrier.		834 -854 MHZ and 859 - 893 MHZ	844 -864 MHZ and 849 – 894 MHZ	824 -849 MHZ a 829 – 894 MHZ
Orthogonal codes have almost zero cross correlation and are used in identifying the	user	channel	carrier	All the above
The walsh code used in IS-95 CDMA one hasmatrix.		product	2*2	64*64

Two codes of n chips are orthogonal if the SOP of their component is	1	0	-1	+ or – 1
The vector with 16 elements is called	Orthogonal	Mask vector	Code vector	Sequence vector
WCDMA uses	State code	Gold code	Orthogonal code	mask code
The synchronization of last WS is more than that off slow FHSS	complex	simple	both	neither simple n complex
Each chipping frequency can be transmitted at muchpower as compared to the case of narrow band transmission.	less	high	medium	All the above
Chipping frequencies are coded distinctly for differentstation	wired	wireless	MS	BS
methods are used for enabling multiple access to the medium	modulation	multiplexing	MAC	CDMA
In techniques for a large number of channels and terminals accessing the medium at the same time using the same frequency band.	DSSS	FDMA	TDMA	CDMA
In which the data packet arrival follows a Poisson distribution.	Classical aloha	Slotted aloha	CSMA	DAMA
Assigning different slots for uplink and downlink using the same frequency is called	TDD	FDD	EY-NMPA	P-Persistant
Which is an explicit reservation scheme	DAMA	PRMA	CSMA	Polling
Round-Robin scheme is example for	Fixed TDM	Reservation TDMA	Slotted aloha	PRMA
With MACA A does not start its transmission at once but sends a	CTS	ACK	RTS	NAK

Fixed pattern that still allows some random	Reservation TDMA	Slotted aloha	
access is exhibited by			PRMA

UNIT-III

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWERS
within					
radio coveragenodes can					
communicate with out					
further restriction.	Flexibility	Planning	Design	Robustness	Flexibility
A 32 bit					
is used to protect the frame					
as its common practice in all			_ .	Sequence	
802.x networks.	Checksum	Arbitary data	Design	number	Checksum
The MAC frame contains	Frame			Arbitary	
·	control	Planning	Design	data	Arbitary data
Thefield					
determines the function of					
the					
frame:management(=00)con		Sequence			
trol(=01)or data(=10).	Туре	number	Arbitary data	Design	Туре
field					
indicates the mode of a					
station after sucessful		Power		Arbitary	Power
transmission of a frame.	Туре	management	Design	data	management
A contains		0			
a timestamp and other					
management information					
used for power				Arbitary	
management and roaming.	Wep	Beacon	Design	data	Beacon
allowing terminals and					
software from different					
vendors to communicate					
with networks from	Interoperabl			None of the	
different providers.	e	Scalable	Reliable	above	Scalable
The basis of transmission of		000.0010			
data is formed by different	Bearer		Application	Network	Bearer
	Services	Data Services	Services	service	Services
	JEI VICES	Data Jei Vices	JEIVICES	SEIVICE	JEIVILES

does not specify					
bearer services, but uses					
existing data services and					
will integrate further					
services	WAP	WDP	WCMP	WCSP	WAP
The is the					
common interface to be					
used by higher layers					
independent of the					
underlying network.	WTLS	T-SAP	WAE	W-SAP	T-SAP
The					
operates on top of many					
different bearer services				None of the	
capable of carrying data.	WAP	WDP	WTP	above	WDP
The service	T-				
primitive indicates the	DUnitdata.i			T-	T-
reception of data.	nd	T-DError.ind	T-Dinvoke.ind	Dinvoke.exe	DUnitdata.ind
	Wireless				Wireless
The	Control	Wireless	Wireless	Wireless	Control
Provides error handling	Message	Transaction	Application	Application	Message
mechanism for WDP.	Protocol	protocol	protocol	System	Protocol
The first Step in WTLS is to					
initiate the session with the	SEC_				
Primitive.	Connect	SEC_Create	SEC_Commit	SEC_direct	SEC_Create
offers an	Connect		020_001111	oro_uncor	oreate
unreliable transaction					
service without a result					
message.	WTP class 0	WTP class 1	WTP class 2	WTP class -4	WTP class 0
The responder signals the					
incoming invoke PDU via the					
primitive					
to the higher layer and				TR-	
acknowledges automatically	TR-			Invoke.res.r	
without user intervention.	Invoke.ind	TR-Invoke.res	TR-Invoke.reg	eq	TR-Invoke.ind
The has been	involtenitu		in involuence		
designed to operate on top	Wireless				
of the datagram service	Session	Wireless	Wireless	Wireless	Wireless
WDP or the transaction	Managemen	Session	Session	Session	Session
service WTP.	t	Protocol.	Control.	System.	Protocol.
A Wide range of mobile				-,	
telecommunication					
technologies have been	Wireless		Wireless		
adopted and integrated into	Application	Wireless	Control		Wireless
the	Environmen	Telephony	Message	None of the	Application
			-		
·	t	application	Application.	above	Environment

Decoders in a					
translate this encoded					
request into a standard					
request as understood by the origin servers.	Catoway	Router	Client	drive	Catoway
the origin servers.	Gateway Wireless	Koulei	Client	unve	Gateway Wireless
The		Wireless	Wireless		
The provides many functions to	Telephony application	identity	transport	None of the	Telephony application
handle telephony events.	interface.	module.	layer Security.	above	interface.
The	interface.	mouule.	layer Security.	abuve	interface.
library contains functions to					
set up, accept, and release					
calls.	Call control	Network text	Phone book	Call text	Call control
The can also	Call Control	Network text	PHONE DOOK		Call control
access a URI via the WTA					
server. In this case, the URI					
plus content was not stored					
in the repository.	User agent	Server	Gateway	Client	Server
In the repository.	User agent	Server	Galeway	Client	Server
The Repository represents a					
on the					
client for content required	Persistent	Permanent		Temporary	Persistent
to offer WTA services.	Storage	Storage	Partial Storage	Storage	Storage
The					
controls communication	Push access	Push over the	Pull access	None of the	Push access
between PI and PPG.	Protocol	air Protocol	Protocol	above	Protocol
is the common					
interface to be used by					
higher layers independent of					
the network .	T-SAP	SEC-SAP	TR-SAP	WSP	T-SAP
Setting up a secure					
connection between two					
peers ,user data can be					
exchanged using a primitive	SAP-unit			WSP-unit	
	data	SEC-unit data	TR-unit data	dat	SEC-unit data
Two types of					
acknowledgements					
andacknowl			user, automati	request	
edgements.	user,update	abort ,result	С	,response.	user, automatic
The mean also income CEC					
The peer also issues SEC-					
The peer also issues SEC- Exchange primitives, which					
	Client	compression	cipher	commit	compression
Exchange primitives, which	Client Certificate	compression certificate	cipher certificate	commit certificate	compression certificate
Exchange primitives, which requests afrom the originator.		•			
Exchange primitives,which requests afrom		•			

It is quite clear that due to computing power on the					
handled devices					
the provided				decompress	
cant be very strong.	Encryption	Decryption	Compression	ion.	Encryption
follows a deck	//	/			<i>,</i> ,
and card method.	WAE	WML	WSP	WSP/B	WML
WSP/B uses three classes of				, 2	
WTO are	class 0,1,2	class 1,2,3	class1,2,0	class 0,1,3	class 0,1,2
If any errors happen when			00351,2,0		
WDP datagrams are sent					
from one entity to another					
theprovides					
error handling mechanisms					
for WDP.	WCMP	WDP	WSP	WAE	WCMP
WTLS provides a different					
levels of security and has					
been optimized for					
bearer	low BW ,low	low BW ,high	high BW <i>,</i> high		low BW ,high
networks.	density	density	density	none	density
	Wireless	wireless		wireless	
	datagram	application	wireless	security	wireless
Which is not a component of	protocol(W	environment(session	protocol(WS	security
WAP The primitive is	DP)	WAE)	protocol(WSP)	P)	protocol(WSP)
used to request that an			S-	S-	
operation is executed by the	S-Method	S-	MethodInvok	MethodReq	S-
server in WSP.	PDU	MethodResult	e	uest	MethodInvoke
The call control, network		methoancourt		4650	methodimone
text, phonebook services are		common	network		common
associated mainly with	public	network	specific	private	network
· · ·	services	services	services	services	services
The client is connected via a					
mobile network with a	WTA server,			WTA server,	
other telephone	WAP	WTA gateway,	WAP server,	WTA	WTA server,
networks and a	gateway	WAP server	WAP gateway	gateway	WAP gateway
One difference between					
WTA servers and other					
servers besides security is					
the tighter control of	Certification	1.1.1.1.1	Acknowledge	Quality of	Quality of
	S	Integrity	ment	service	service
Infrared trmission having					
bandwidth compared				None of the	
to other LAN Technologies.	Low	High	Medium	above	Low
IEEE 802.11 Supports					
different physical layer.	Four	Three	Five	Six	Three

is a spread spectrum					1
technique which allows for					
the co- existence of multiple					
networks in the same area.	a.FHSS	b.DSSS	c.DHSS	d.FSSS	a.FHSS
The physical layer					
convergence protocol					
preamble starts with					
bit synchronization.	32	48	80	64	80
Mechanisms are					
also called distributed					
foundation wireless medium				Radio	
access control.	SAC	MAC	IR	trmission	MAC
	Simple inter			Single inter	
SIFS stands for	frame	Short inter	Slow inter	frame	Short inter
·:	spacing	frame spacing	frame spacing	spacing	frame spacing
	Managemen			Managemen	
	t		Management	t	Management
	information	Management	intermediate	interference	information
MIB stands for	base	interface base	base	base	base
scanning simply					
me listening into the					
medium to find other					
networks.	Active	Passive	Sensitive	Insensitive	Passive
scanning					
comprises sending a probe					
on each channel and waiting					
for a response.	Active	Passive	Sensitive	Insensitive	Active
Like IEEE 802.11b, Bluetooth					
operates in the ISM					
band.	2.3 GHZ	5 GHZ	2 GHZ	2.4 GHZ	2.4 GHZ
provides a fixed					
point to point connection				HIPERACCES	
with up to 155 Mbit/s.	HIPERLINK	HIPERLAN1	HIPERLAN2	S	HIPERLINK
In Bluetooth technology all					
the active devices are					
assigned a active					
member address.	4	8	3	6	3
Each piconet has a					
hopping pattern.	Unique	Different	Equal	Medium	Unique
support the	·		· ·		
association of a station to an					
access point and roaming	MAC			Control	
between different access	Managemen	PHY	Station	Managemen	MAC
points.	t	Management	Management	t	Management

is the alternative spread spectrum method					
separating by code and not					
frequency.	DHSS	FHSS	FSSS	DSSS	DSSS
The length of the long trport					
channel isbytes.	54	9	27	15	54
The in the access					
point splits the access time	Point	Point	Sequence	Sequence	Point
into super frame periods.	coordinator	controller	coordinator	controller	coordinator
TheService					
primitive indicates the	Tdes-	Т-			Т-
reception of data.	unit.ind	Dunitdata.ind	Tsorceunit.ind	T-Derror.ind	Dunitdata.ind
Wireless transport layer					
security (WTLS) supports					
datagram and					
transport layer	A.connectio	connection-	levels of	request/repl	connection-
protocols.	n-less	oriented	security	У	oriented
WTP transfers the					
to server S-SAP					
where an S-Connect.ind					
primitive indicates a new	connreply			Resume	
session.	PDU	connect PDU	post PDU	PDU	connect PDU

UNIT-IV

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWERS
layer is used					
for networking					
through a chain of in-				Applicatio	
between routers	Physical	L2	L3	n layer	L3
defines					
how the data from					
the port is to be					
presented of	Transport	Session	Application	Presentati	Presentation
formatted	layer	layer	layer	on layer	layer
Communication					
between two					
address on a					
physical network is					
carried out through					
	Routers	Bridges	Repeaters	IP	Routers
When a message or					
a packet is					
transmitted to one				Packet	
designated IP	Broadcst	Multicast	Unicast	switching	Unicast

address then it is called					
When a message					
or packet is transmitted to a					
group of IP address					
then the message or					
packet is said to be	Dedeest	Multicopt	Unicost	Point to	Multicost
A is	Podcast	Multicast	Unicast	point	Multicast
stateless meaning					
that a datagram is					
not a sequential					
successor of a previous one or a					
predecessor of the					
next.	Protocol	Datagram	Data	UDP	Datagram
is one					
such protocol used to send the					
datagram using a					
connectionless					
protocol	TCP	IP	ICMP	UDP	UDP
another is					
connectionless					
protocol which is a					
part of the IP					
network protocol suite	TCP/IP	UDP	MOBILE IP	ICMP	ICMP
The use of the					
existing IP protocol					
by a large number of					
MNs will lead to in the					
network throughput	increase	decrease	change	stability	decrease
Routing of packets					
through the routers					
is performed when an moves					
within one paging					
area	HA	HLR	MN	VLR	MN

transmit a message for connection establishment or a packet using the IP					
protocol	MN	CN	IP	TCP/IP	CN
When visiting a foreign network a mobile node must discover a	home	foreign	mobile	correspon	foreign
	agent	agent	node	dent node	agent
	ayem	agent	node		agent
	care of	correspondi	CO-	collocatin	care of
What is COA	address	ng address	address	g address	address
is a					
method by which an					
MN visits a network		Agent		Location	
and discovers the FA	Agent	Advertisem	Agent	Managem	Agent
and the COA	discovery	ent	Solicitation	ent	Solicitation
is a term used to specify a data stream					
between two			D :		D .
connected ends	COA	Lifetime	Pipe	Tunnel	Pipe
The data stream is inserted from one end and is retrieved					
as from			32 bit	Set of	
other end	LIFO	FIFO	word	words	FIFO
Packets received					
at the HA are					
transmitted through					
after	Dine	Degistration	Tunnal	Doutor	Tunnal
encapsulation. The FA reads the	Pipe	Registration	Tunnel	Router	Tunnel
first words					
in ME	6	7	5	9	5
The word					
in the sixth item is					
changed and					
specifies the CN IP					
address in case the					
flag bit is set to	7	7	9	10	10

The advantage of reverse tunneling is multicasting by using	Unidirecti onal	Point to point	Bidirectional	GRE	Bidirectional
Bi-directional tunneling refers to tunneling from	HA to FA	FA to HA	HA to MN	MN to HA	HA to FA
defines the number of attempts to hop before the expiry of					
packets at the network	GRE	Tunneling	Time to live	COA	Time to live
COA is obtained by the DHCP	Co- located	Bi- located	Home agent	Foreign agent	Co- located
The tunnel does not need an extra , though it has fixed source and destination end points	time	СОА	Нор	DHCP	Нор
is a process of recovering the original packet from A after using the header	DHCP	Encapsulati	Decapsulatio	Agent	Decapsulatio
is a process in which a computing system receives the packets on the internet in which it uses new protocol	DHCP	Encapsulati	Decapsulatio	Agent	Encapsulatio
is an agent presented either at an interconnected hosts or at a router of packets on the internet	Agent	Home agent	Foreign agent	СОА	Foreign agent

is anis an agent either at an					
interconnected host					
or presented at a			_ .		
router of packets on	Agent	Home	Foreign	COA	Home
the internet is a	Agent	agent	agent	CUA	agent
network providing					
services to a mobile					
terminal equipment	Home	Foreign	Home	Foreign	Home
and having a MSC	agent	agent	network	network	network
is an					
address of 32 bits					
assigned to a node					
such that IP packets					
can be transmitted or received by the node	home	foreign	IP	Source	IP
on the internet	address	address	address	address	address
is a set of		dddrooo		uuurooo	
32 bit words					
transmitted along					
with a packet after					
appending them as		D (;);	. IP		
per the IP protocol	Source	Destination	address	IP header	IP header
interconnected					
through the routers					
and the subnets on					
the internet using the	IP	Home	Foreign		
IP protocol	nodes	nodes	node	Nodes	IP nodes
A part of data is					
called which					
consists of a					
maximum of 216	ID podo	ID boodor	Dookot	IP	Dookot
bytes A	IP node	IP header	Packet	address	Packet
binding created for					
providing mobility to					
a mobile node after					
registration at a					
foreign	Agent	Mobility	Network	Source	Mobility
After the de-					
registering, the					
mobile node					
receives the IP	Encapsul		Decapsulatio		
packets which reach	ation	Tunneling	n	Binding	Tunneling

the home agent by to the new agent					
While routing, the routers use bits only for the routing addresses of other					
routers for the next	8,16,24	7,14,21	24,16,8	32	8,16,24
required for advertisement	Routing	Flooding	Subnets	Protocols	Flooding
When a packet is transmitted to all the IP addresses which are set for listening and this type of transmission is	Unicastin				
called as	g	Multicasting	Broadcasting	Flooding	Broadcasting
The problem with the use of IP protocol is that of in the routing table	Transpare ncy	Non- transparenc v	Both	None of the above	Non- transparency
A home network is a mobile radio subsystems network within an area known as area	Home	Foreign	Paging	Routing	Paging
When DHCP server confirms the binding through a message it sends	DHCPOF FER	DHCPDISC	DHCPACK	None of these	DHCPOFFE R
A router table is		deleted			data d
regularly Each router has a	changed	deleted	added	updated	updated
bit IP address	8	16	24	32	32

From the source computer the packet is transmitted to a					
source router using	ARP	Router	Subnet	RARP	RARP
has a					
home agent for a set of home networked					
MNs as well as a					
foreign agent for the	Mobile			Mobile	
visiting MNs	IP	ICMP	Router	node	Router
routing is a method in which the source of a packet					
provides the route information	GRE	HA	Source	FA	Source
Advantage of					
reverse tunneling					
become apparent when a is	Routing			Duplicatio	
employed	table	COA	Firewall	n	Firewall
filters					
the packets assigned					
to an IP address received from	Routing			Duplicatio	
another IP address	table	COA	Firewall	n	Firewall
are					
used by MNs to					
discover home and foreign agents while					
moving from one	Agent	Location		Agent	Agent
network area to	Advertise	manageme	Agent	Solicitatio	Advertiseme
another	ment	nt	discovery	n	nt
When					
is co-located the			Mobile	Home	
registration is simple is the	FA	HA	node	node	FA
mechanism of					
attaching a new					
header to the			Decapsulatio	Encapsula	Encapsulatio
existing packet.	Tunnel	Packets	n	tion	n
After receiving a COA the mobile					
node has to register			Home	Foreign	
with	FA	HA	network	network	HA

The function of is to inform the HA the current					
location for forward of packets	GRE	COA	НА	Registrati on	Registration
•		00/1			registration
Which is a method of encapsulation	registratio n	GRE	TTL	None of the above	GRE
A is required to limit the rate at which is sends broadcast or multicast agent advertisement	Mobility agent	Foreign agent	Home agent	Agent	Mobility agent
The advantage of multicasting is that there is no	Missing of entries	Additional entries	Reconfigurat ion	Duplicatio n	Reconfigurat ion
registry informs the current location of the mobile network with the help of current COA	home registry	foreign registry	home network	location	location
Domain name system is a which has logical name and its equivalent IP address	Directory	File	Table	Folder	Table
The mobile node informs all its partners about the change in	IP address	Home address	Location address	Network address	IP address

UNIT-V

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWERS
		Data flow			
		and			
In UDP there is no	Session	congestion	Both a		Both a &
	establishment	control	& b	Only a	b
A is a service					
access point for data input					
and output through which a					
service is rendered by a node	protocol	port	data	datagram	port

The function of the transport					
layer is the port data	Synchronize	Add	Identify	Transport	Transport
The application layer data is	Synchionize	Auu	luentity	папэрон	папэрон
transmitted and received as a					
consisting of					
sequences	bits	bytes	stream	node	stream
Handshaking of packets is					
used forand all					
transactions are sequentially		acknowledg		none of	acknowled
acknowledged	buffering	ement	receive	these	gement
The TCP transport layer	¥				
delivers the segments in a			Non	Conventio	
order	Linear	Sequential	linear	nal	Sequential
The congestion control					
method for TCP over wireless					
is	ECN	NCE	CEN	NEC	ECN
The TCPis used					
at the subsequent layers					
during transmission of data					
from ports up to the transport		data	data		
layer at the receiver	buffer	streams	ram	header	header
The sequence number field					
is reset to in the					
case that there are no more				F	
octets left to transmit from the	4	0	Flore	Fragment	0
segment	1	0	Flags	S	0
The field specifies					
the word from where the					
application layer data octets	header	sourco	offset	checksum	offset
	IIEdUEI	source	UISEL	CHECKSUIII	UNSEL
Thefield					
specifies the number of bytes		window	<i>c</i> ,	<i></i>	window
the sender is willing to receive	header	size	fragment	offset	size
Urgent field communicates					
anvalue to be added		sender	offset		offset
to get a sequence number	receiver value	value	value	data value	value
Data streams are delivered					
using a virtual connection				destinatio	
between	header	source	socket	n	socket
TPDU depends on					
presentable in a given	T 05				
network state	TCP	UDP	MTU	IP	MTU

The bytes that do not reach the receiver successfully					
within a timeout period are	discarded	transmitted	lost	retransmitt ed	retransmitt ed
in case of no					
acknowledgement ensures		re-	Non		re-
reliable guaranteed and error		transmissio	transpar	Transpare	transmissio
free data transfer	transmission	n	ent	nt	n
Window size is adjusted and					
throughput depends					
on interval for the				5.0.0	
acknowledgment	MTU	RTT	TTR	PACK	RTT
shows the					
recovery of lost packets or					
data received after a delay at	TOD	DAOK	DAOK	1.01/	DAOK
the TCP end	TCP tuning	PACK	DACK	ACK	DACK
One method of data flow			fragmont	window-	window-
control is to adjust the field	header	flog	fragment	size	size
	neauei	flag	S	SIZE	SIZE
During high speed data		duplicate			
transfer	cumulative	acknowledg	sliding	window	window
method is used	acknowledgement	ement	window	scaling	scaling
			oongooti		
The is known			congesti on		
as exponential growth phase		second	avoidan	fast	first
or slow start phase	first phase	phase	Ce	recovery	phase
•		•			•
Which method uses the split TCP?	Indirect TCD	Selective	Mobile-	All the	All the
	Indirect TCP	repeat TCP	end TCP	above	above
The word snoop means secretly looking into or			analyzin		
something	examining	calculating	g	reporting	examining
	CAdmining	calculating	9	reporting	Craming
Indirect TCP suggests					
splitting of the TCP layer into	000	two	five	four	two
TCP sub-layers A modification of the indirect	one	two	five	four	two
TCP is the					
repeat protocol	split	selective	socket	modified	selective
The MN has a mechanism for	эрш	361661176	JUCKEL	mounieu	361661176
retransmission in case of a					
request from					
the	MN	BTS	Protocol	Agent	Agent
The TCP split is			two		asymmetri
·	symmetric	asymmetric	layers	sub layers	с с

The FRR phase stes in after					
DACKS	one	two	three	four	three
The advantage of TCP Reno					
the window					
size after fast retransmission					
sets the larger RTT	increase	decrease	modifies	recovers	increase
Timeout freezing of					
transmission is also used in					
situations whose the MN					
faces long durations		disconnecti	transmis	retransmis	disconnecti
of	connection	on	sion	sion	on
The advantage of selective					
retransmission is that it is very					
as only the lost					
bytes from a sequence					
number are retransmitted	difficult	efficient	robust	portable	efficient
on the packets help				•	
in taking into account whether					
the delays are due to the			Timesta		
propagation path	Transmission	Data rates	mp	FEC	Timestamp
An has the utility			•		•
programs	TCP	UDP	OS	System	OS
A is a				, i i i i i i i i i i i i i i i i i i i	
program unit which runs when					
scheduled to do by OS and		file		applicatio	
each state is controlled by OS	software	manager	process	n	process
A is an			•		•
application process which					
runs according to its schedule					
set by the OS	Task	Process	Program	Message	Task
A is an					
application process or					
process unit which runs and					
controlled by OS as a light					
weight process	Task	Process	Program	Thread	Thread
An is a program					
unit which runs when a					
hardware or software event					
occurs	Task	ISR	lir	Process	ISR
A software even can be					
or illegal					
operation code provided to			Peripher		
ĊPU	Detection	Condition	al	Exception	Exception

is a unit of					
memory which can load from					
a program stored in a hard					
drive or from any other storage device	Task	Thread	Process	Page	Page
	TOSK	Thread	1100033	i age	T age
Atable is used for address mapping	Schedule	Exception	Page	Address	Page
The query development				7.00.000	
support platform is					
written using HTML and					
ported at Palm device	PQA	PAQ	AQP	APQ	PQA
The mobile OS enables the					
programmer tothe		Encapsulat		a 1	
devices.	Abstract	е	Close	Connect	Abstract
The OS provides the					
functions used for scheduling					
the multiple task in a system carried out					
through	files	process	tokens	threads	tokens
Palm OS assumes that there	1100	pr00000			
is amemory					
card	5GB	256GB	256MB	5MB	256MB
Palm OS file manager					
manages each file as a					
which has			D ()		
multiple records and	Tabla	Decerd	Databas	All the	Detekses
information fields	Table	Record	е	above	Database
PalmOS usesnet					HTTP/HTT
library for internet connectivity	HTTP/HTTPS	TCP/IP	UDP	IrDA	PS
		10171			
A has digitization			Embedd		
software which converts			ed	Phone	
analog signals to digital ones	smart phones	pocket Pc	system	pad	pocket Pc
The windows mobile					
microsoftplatform					
is an open platform	java	VB	.Net	C++	.Net
Windows CE					
manages data as	C 1 -	storage	program		file
a database or object file	file manager	memory	memory	cache	manager
Highest priority level		time			time
means priority	idle	critical	latency	thread	critical
Symbion based devices use					
synchronization	SyncML	MD5	RSA	ARM	SyncML

is a association					
which promotes linux and					
develops standards in					
embedded system	ELC	LEC	ECL	CEL	ELC
memory					
associated with the memory					
addresses for the LCD					
,printer, keyboard and serial					
port	File	Storage	Buffer	Flash	Buffer
is a mechanism is					
which a process or thread is			priority		
to provide a wait object to a			inheritan	none of	priority
higher priority process	paging	swapping	се	these	inheritance
Real time is a					
once set and then used for		_			
synchronization of all process		paging	applicati	active	system
and threads	system time	time	on time	time	time
The user gets a personal					
computer like feel and					
windows like GUI when using					Windows
adevice	Windows CE	Palm OS	Linux	Pocket PC	CE
is divided into					
two sublayers	page	OS	Code	Kernel	Kernel
consisting of					
source code and network					
abstraction sublayer	page	OS	Code	Kernel	Kernel
The Windows CE kernel is					
from the kernel					
of windows 98,2000 and					
developed versions of					
windows	same	different	compact	optimized	different
Application development					
means defining additional					
events and coding for the					
corresponding	File	Table	Process	Handler	Handler