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OBJECTIVES 

 To become familiar with propagation of signals through lines. 

 Calculation of various line parameters by conventional and graphical methods. 

 Need for impedance matching and different impedance matching techniques. 

 Design of different types of filters, equalizer and attenuators. 
 
 
INTENDED OUTCOMES: 

 Familiar with propagation of signals through lines. 

 Gain knowledge about calculation of various line parameters by conventional and graphical 

methods. 

 Gain knowledge about Need for impedance matching and different impedance matching 

techniques. 

 Ability to design no different types of filters, equalizer and attenuators. 

 
 

UNITI-TRANSMISSION LINE THEORY 
 

General theory of Transmission lines – the transmission line– general solution–The infinite line–

Wavelength, velocity of propagation– Waveform distortion– the distortion less line- Loading and 

different methods of loading– Line not terminated in Z0 –Reflection coefficient–Calculation of 

current, voltage, power delivered and efficiency of transmission–Input and transfer impedance- 

Open and short circuited lines–reflection factor and reflection loss. 

 

UNITII-HIGH FREQUENCY TRANSMISSION LINES 

Transmission line equations at radio frequencies–Line of Zero dissipation–Voltage   and current 

on the dissipation less line, Standing Waves, Nodes Standing Wave Ratio–Input impedance of 

the dissipation less line - Open and short circuited lines – Power and impedance measurement 

on lines – Reflection  losses– Measurement of VSWR and wavelength. 

 

UNITIII-IMPEDANCE MATCHING IN HIGH FREQUENCY LINES 

Impedance matching: Quarter wave transformer – Impedance matching by stubs–Single stub and 

double stub matching– Smith chart – Solutions of problems using Smith chart – Single and double 

stub matching using Smith chart. 

 

UNITIV-PASSIVE 

FILTERS 

Characteristic impedance of symmetrical networks– filter fundamentals. Design of filters: Constant 

K, Low Pass, High Pass, Band Pass, Band Elimination, m-derived sections and composite. 

 

UNITV-ATTENUATORS AND 

EQUALIZERS 

Attenuators: Lattice Attenuators, Bridged– T attenuator, L-Type Attenuator. Equalizers: Inverse 

network, series, full series, shunt, full shunt, constant resistance T, constant resistance constant   

resistance lattice and bridged T network. 
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UNIT -1   

A neper (Symbol: Np) is a logarithmic unit of ratio. It is not an SI unit but is 

accepted for use alongside the SI. It is used to express ratios, such as gain and loss, 

and relative values. The name is derived from John Napier, the inventor of 

logarithms. 
 

Like the decibel, it is a unit in a logarithmic scale, the difference being that where 

the decibel uses base-10 logarithms to compute ratios, the neper uses base e ≈ 

2.71828. The value of a ratio in nepers, Np, is given by 

where x1 and x2 are the values of interest, and ln is the natural logarithm. 

The neper is often used to express ratios of voltage and current amplitudes in 

electrical circuits (or pressure in acoustics), whereas the decibel is used to express 

power ratios. One kind of ratio may be converted into the other. Considering that 

wave power is proportional to the square of the amplitude, we have 
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The decibel and the neper have a fixed ratio to each other. The (voltage) level is  
 

 

Like the decibel, the neper is a dimensionless unit. The ITU recognizes both units.  
 

 

 
 

 

Decibel  
 

The decibel (dB) is a logarithmic unit of measurement that expresses  the 

magnitude of a physical quantity (usually power or intensity) relative to a specified 

or implied reference level. Since it expresses a ratio of two quantities  with the 

same unit, it is a dimensionless unit. A decibel is one tenth of a bel, a seldom-used 

unit. 

The decibel is widely known as a measure of sound pressure level, but is also used 

for a wide variety of other measurements in science and engineering (particularly 

acoustics, electronics, and control theory) and other disciplines. It confers a 

number of advantages, such as the ability to conveniently represent very large or 

small numbers, a logarithmic scaling that roughly corresponds to the human 

perception of sound and light, and the ability to carry out multiplication of ratios 

by simple addition and subtraction. 
 

The decibel symbol is often qualified with a suffix, which indicates which 

reference quantity or frequency weighting function has been used. For example, 

http://en.wikipedia.org/wiki/Dimensionless_unit
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Definitions 
 

A decibel is one-tenth of a bel, i.e. 1 B=10 dB. The bel (B) is the logarithm of the 

ratio of two power quantities  of 10:1,  and  for two  field  quantities  in the ratio 
[8]

. A field quantity is a quantity such as voltage, current, sound pressure, 

electric field strength, velocity and charge density, the square of which in linear 

systems is proportional to power. A power quantity is a power or a quantity 

directly proportional to power, e.g. energy density, acoustic intensity and luminous 

intensity. 
 

The calculation of the ratio in decibels varies depending on whether the quantity 

being measured is a power quantity or a field quantity. 
 

Power quantities 
 

When referring to measurements of power or intensity, a ratio can be expressed in 

decibels by evaluating ten times the base-10 logarithm of the ratio of the measured 

quantity to the reference level. Thus, if L represents the ratio of a power value P1 to 

another power value P0, then LdB represents that ratio expressed in decibels and is 

calculated using the formula: 
 

 

"dBm" indicates that the reference quantity is one milliwatt, while "dBu" is 

referenced to 0.775 volts RMS.[1] 

The definitions of the decibel and bel use base-10 logarithms. For a similar unit 

using natural logarithms to base e, see neper. 

P1 and P0 must have the same dimension, i.e. they must measure the same type of 

quantity, and the same units before calculating the ratio: however, the choice of 

scale for this common unit is irrelevant, as it changes both quantities by the same 

factor, and thus cancels in the ratio—the ratio of two quantities is scale-invariant. 

Note that if P1 = P0 in the above equation, then LdB = 0. If P1 is greater than P0 then 

LdB is positive; if P1 is less than P0 then LdB is negative. 
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Rearranging the above equation gives the following formula for P1 in terms of P0 

and LdB: 

Since a bel is equal to ten decibels, the corresponding formulae for measurement in 

bels (LB) are 

 

 
 

 

Field quantities 
 

When referring to measurements of field amplitude it is usual to consider the ratio 

of the squares of A1 (measured amplitude) and A0 (reference amplitude). This is 

because in most applications power is proportional to the square of amplitude, and 

it is desirable for the two decibel formulations to give the same result in such 

typical cases. Thus the following definition is used: 

The formula may be rearranged to give 

is of the standard properties of and equivalence of 

logarithms. 

This formula is sometimes called the 20 log rule, and similarly the formula for 

ratios of powers is the 10 log rule, and similarly for other factors.[citation needed] The 

Similarly, in electrical circuits, dissipated power is typically proportional to the 

square of voltage or current when the impedance is held constant. Taking voltage 

as an example, this leads to the equation: 
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where V1 is the voltage being measured, V0 is a specified reference voltage, and 

GdB is the power gain expressed in decibels. A similar formula holds for current. 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

An example scale showing x and 10 log x. It is easier to grasp and compare 2 or 3 

digit numbers than to compare up to 10 digits. 

 

Note that all of these examples yield dimensionless answers in dB because they are 

relative ratios expressed in decibels. 

 To calculate the ratio of 1 kW (one kilowatt, or 1000 watts) to 1 W in 

decibels, use the formula 



 

 

 
 

 

 

 

 

 

 

 

in decibels, use the to  To calculate the ratio of 

formula 

 To find the power ratio corresponding to a 3 dB change in level, use the 

formula 

 

A change in power ratio by a factor of 10 is a 10 dB change. A change in power 

ratio by a factor of two is approximately a 3 dB change. More precisely, the factor 

is 103/10, or 1.9953, about 0.24% different from exactly 2. Similarly, an increase of 

3 dB implies an increase in voltage by a factor of approximately  , or about 1.41, 

an increase of 6 dB corresponds to approximately four times the power and twice 

the voltage, and so on. In exact terms the power ratio is 106/10, or about 3.9811, a 

relative error of about 0.5%. 
 

Merits 

 
The use of the decibel has a number of merits: 

 The decibel's logarithmic nature means that a very large range of ratios can 

be represented by a convenient number, in a similar manner to scientific 

notation. This allows one to clearly visualize huge changes of some quantity. 

(See Bode Plot and half logarithm graph.) 

definitions above that GdB has the same value, , regardless of whether it is 

obtained with the 10-log or 20-log rules; provided that in the specific system being 

considered power ratios are equal to amplitude ratios squared. 

, illustrating the consequence from the Notice that 

 To calculate the ratio of 1 mW (one milliwatt) to 10 W in decibels, use the 

formula 
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dB(1 mW) — power measurement relative to 1 milliwatt. XdBm = XdBW + 30.  

 The mathematical properties of logarithms mean that the overall decibel gain 

of a multi-component system (such as consecutive amplifiers) can be 

calculated simply by summing the decibel gains of the individual 

components, rather than needing to multiply amplification factors. 

Essentially this is because log(A × B × C × ...) = log(A) + log(B) + log(C) + 

... 

 The human perception of, for example, sound or light, is, roughly speaking, 

such that a doubling of actual intensity causes perceived intensity to always 

increase by the same amount, irrespective of the original level. The decibel's 

logarithmic scale, in which a doubling of power or intensity always causes 

an increase of approximately 3 dB, corresponds to this perception. 

Absolute and relative decibel measurements 
 

Although decibel measurements are always relative to a reference level, if the 

numerical value of that reference is explicitly and exactly stated, then the decibel 

measurement is called an "absolute" measurement, in the sense that the exact value 

of the measured quantity can be recovered using the formula given earlier. For 

example, since dBm indicates power measurement relative to 1 milliwatt, 

 0 dBm means no change from 1 mW. Thus, 0 dBm is the power level 

corresponding to a power of exactly 1 mW. 

 3 dBm means 3 dB greater than 0 dBm. Thus, 3 dBm is the power level 

corresponding to 103/10 × 1 mW, or approximately 2 mW. 

 −6 dBm means 6 dB less than 0 dBm. Thus, −6 dBm is the power level 

corresponding to 10−6/10 × 1 mW, or approximately 250 μW (0.25 mW). 

If the numerical value of the reference is not explicitly stated, as in the dB gain of 

an amplifier, then the decibel measurement is purely relative. The practice of 

attaching a suffix to the basic dB unit, forming compound units such as dBm, dBu, 

dBA, etc, is not permitted by SI.[10] However, outside of documents adhering to SI 

units, the practice is very common as illustrated by the following examples. 
 

Absolute measurements 

Electric power 

dBm or dBmW 

http://en.wikipedia.org/wiki/Amplifiers
http://en.wikipedia.org/wiki/Logarithmic_scale
http://en.wikipedia.org/wiki/Logarithmic_scale
http://en.wikipedia.org/wiki/Decibel#cite_note-9
http://en.wikipedia.org/wiki/SI_units
http://en.wikipedia.org/wiki/SI_units
http://en.wikipedia.org/wiki/DBm


 

 

dBW  
 

 

 

 

dBu or dBv  
 

 

dBmV  
 

dB(1 W) — similar to dBm, except the reference level is 1 watt. 0 dBW = 

+30 dBm; −30 dBW = 0 dBm; XdBW = XdBm − 30. 

Voltage 
 

Since the decibel is defined with respect to power, not amplitude, conversions of 

voltage ratios to decibels must square the amplitude, as discussed above. 

 

 

 
 

 

 
 

A schematic showing the relationship between dBu (the voltage source) and dBm 

(the power dissipated as heat by the 600 Ω resistor) 

 

dBV 

dB(1 VRMS) — voltage relative to 1 volt, regardless of impedance.[1] 

dB(0.775 VRMS) — voltage relative to 0.775 volts.[1] Originally dBv, it was 

changed to dBu to avoid confusion with dBV.[11] The "v" comes from "volt", 

while "u" comes from "unloaded". dBu can be used regardless of impedance, 

but is derived from a 600 Ω load dissipating 0 dBm (1 mW). Reference 

voltage 

dB(1 mVRMS) — voltage relative to 1 millivolt across 75 Ω[12]. Widely used 

in cable television networks, where the nominal strength of a single TV 

signal at the receiver terminals is about 0 dBmV. Cable TV uses 75 Ω 

coaxial cable, so 0 dBmV corresponds to −78.75 dBW (-48.75 dBm) or ~13 

nW. 
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dBμV or dBuV  
 

 

Properties  of Symmetrical  Networks  and Characteristic impedance of 

Symmetrical Networks 
 

A two-port network (a kind of four-terminal network or quadripole) is an electrical 

circuit or device with two pairs of terminals connected together internally by an 

electrical network. Two terminals constitute a port if they satisfy the essential 

requirement known as the port condition: the same current must enter and leave a 

port. Examples include small-signal models for transistors (such as the hybrid-pi 

model), filters and matching networks. The analysis of passive two-port networks 

is an outgrowth of reciprocity theorems first derived by Lorentz[3]. 

A two-port network makes possible the isolation of either a complete circuit or part 

of it and replacing it by its characteristic parameters. Once this is done, the isolated 

part of the circuit becomes a "black box" with a set of distinctive properties, 

enabling us to abstract away its specific physical buildup, thus simplifying 

analysis. Any linear circuit with four terminals can be transformed into a two-port 

network provided that it does not contain an independent source and satisfies the 

port conditions. 
 

There are a number of alternative sets of parameters that can be used to describe a 

linear two-port network, the usual sets are respectively called z, y, h, g, and ABCD 

parameters, each described individually below. These are all limited to linear 

networks since an underlying assumption of their derivation is that any given 

circuit condition is a linear superposition of various short-circuit and open circuit 

conditions. They are usually expressed in matrix notation, and they establish 

relations between the variables 
 

dB(1 μVRMS) — voltage relative to 1 microvolt. Widely used in television 

and aerial amplifier specifications. 60 dBμV = 0 dBmV. 

Input voltage 

Output voltage 

Input current 

Output current 
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voltage and current ratios  
 

 

 

Impedance is defined as the ratio of these quantities.  
 

 

Substituting these into Ohm's law we have  
 

 

 

These current and voltage variables are most useful at low-to-moderate 

frequencies. At high frequencies (e.g., microwave frequencies), the use of power 

and energy variables is more appropriate, and the two-port current–voltage 

approach is replaced by an approach based upon scattering parameters. 
 

The terms four-terminal network and quadripole (not to be confused with 

quadrupole) are also used, the latter particularly in more mathematical treatments 

although the term is becoming archaic. However, a pair of terminals can be called  

a port only if the current entering one terminal is equal to the current leaving the 

other; this definition is called the port condition. A four-terminal network can only 

be properly called a two-port when the terminals are connected to the external 

circuitry in two pairs both meeting the port condition. 

.[7][8] 
commonly represented as complex-valued functions of time denoted as and 

In order to simplify calculations, sinusoidal voltage and current waves are 

Noting that this must hold for all t, we may equate the magnitudes and phases to 

obtain 
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Propagation constant  
 

The magnitude equation is the familiar Ohm's law applied to the voltage and 

current amplitudes, while the second equation defines the phase relationship. 

Validity of complex representation 
 

This representation using complex exponentials may be justified by noting that (by 

Euler's formula): 

i.e. a real-valued sinusoidal function (which may represent our voltage or current 

waveform) may be broken into two complex-valued functions. By the principle of 

superposition, we may analyse the behaviour of the sinusoid on the left-hand side 

by analysing the behaviour of the two complex terms on the right-hand side. Given 

the symmetry, we only need to perform the analysis for one right-hand term; the 

results will be identical for the other. At the end of any calculation, we may return 

to real-valued sinusoids by further noting that 

In other words, we simply take the real part of the result. 

Phasors 

A phasor is a constant complex number, usually expressed in exponential form, 

representing the complex amplitude (magnitude and phase) of a sinusoidal function 

of time. Phasors are used by electrical engineers to simplify computations 

involving sinusoids, where they can often reduce a differential equation problem to 

an algebraic one. 
 

The impedance of a circuit element can be defined as the ratio of the phasor 

voltage across the element to the phasor current through the element, as determined 

by the relative amplitudes and phases of the voltage and current. This is identical to 

the definition from Ohm's law given above,  recognising  that  the  factors  of 

cancel 

The propagation constant of an electromagnetic wave is a measure of the change 

undergone by the amplitude of the wave as it propagates in a given direction. The 

http://en.wikipedia.org/wiki/Euler%27s_formula
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quantity being measured can be the voltage or current in a circuit or a field vector 

such as electric field strength or flux density. The propagation constant itself 

measures change per metre but is otherwise dimensionless. 
 

The propagation constant is expressed logarithmically, almost universally to the 

base e, rather than the more usual base 10 used in telecommunications in other 

situations. The quantity measured, such as voltage, is expressed as a sinusiodal 

phasor. The phase of the sinusoid varies with distance which results in the 

propagation constant being a complex number, the imaginary part being caused by 

the phase change. 
 

Alternative names 
 

The term propagation constant is somewhat of a misnomer as it usually varies 

strongly with ω. It is probably the most widely used term but there are a large 

variety of alternative names used by various authors for this quantity. These 

include, transmission parameter, transmission function, propagation parameter, 

propagation coefficient and transmission constant. In plural, it is usually implied 

that α and β are being referenced separately but collectively as in transmission 

parameters, propagation parameters, propagation coefficients, transmission 

constants and secondary coefficients. This last occurs in transmission line theory, 

the term secondary being used to contrast to the primary line coefficients. The 

primary coefficients being the physical properties of the line; R,C,L and G, from 

which the secondary coefficients may be derived using the telegrapher's equation. 

Note that, at least in the field of transmission lines, the term transmission 

coefficient has a different meaning despite the similarity of name. Here it is the 

corollary of reflection coefficient. 
 

Definition 
 

The propagation constant, symbol γ, for a given system is defined by the ratio of 

the amplitude at the source of the wave to the amplitude at some distance x, such 

that, 
 

 

Since the propagation constant is a complex quantity we can write;  
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where  
 

 

That β does indeed represent phase can be seen from Euler's formula;  
 

 

 

 

 

 

where;  
 

 

α, the real part, is called the attenuation constant 

β, the imaginary part, is called the phase constant 

which is a sinusoid which varies in phase as θ varies but does not vary in amplitude 

because; 

The reason for the use of base e is also now made clear. The imaginary phase 

constant, iβ, can be added directly to the attenuation constant, α, to form a single 

complex number that can be handled in one mathematical operation provided they 

are to the same base. Angles measured in radians require base e, so the attenuation 

is likewise in base e. 

For a copper transmission line, the propagation constant can be calculated from the 

primary line coefficients by means of the relationship; 

, the series impedance of the line per metre and, 

, the shunt admittance of the line per metre. 

Attenuation constant 

 

In telecommunications, the term attenuation constant, also called attenuation 

parameter or coefficient, is the attenuation of an electromagnetic wave propagating 

through a medium per unit distance from the source. It is the real part of the 

propagation constant and is measured in nepers per metre. A neper is 

approximately 8.7dB. Attenuation constant can be defined by the amplitude ratio; 
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Optical fibre  

The propagation constant per unit length is defined as the natural logarithmic of 

ratio of the sending end current or voltage to the receiving end current or voltage. 

 

 

 

 
Copper lines 
 

The attenuation constant for copper (or any other conductor) lines can be 

calculated from the primary line coefficients as shown above. For a line meeting 

the distortionless condition, with a conductance G in the insulator, the attenuation 

constant is given by; 

however, a real line is unlikely to meet this condition without the addition of 

loading coils and, furthermore, there are some decidedly non-linear effects 

operating on the primary "constants" which cause a frequency dependence of the 

loss. There are two main components to these losses, the metal loss and the 

dielectric loss. 
 

The loss of most transmission lines are dominated by the metal loss, which causes 

a frequency dependency due to finite conductivity of metals, and the skin effect 

inside a conductor. The skin effect causes R along the conductor to be 

approximately dependent on frequency according to; 

Losses in the dielectric depend on the loss tangent (tanδ) of the material, which 

depends inversely on the wavelength of the signal and is directly proportional to 

the frequency. 
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The attenuation constant for a particular propagation mode in an optical fiber, the 

real part of the axial propagation constant. 

Phase constant 

 

In electromagnetic theory, the phase constant, also called phase change constant, 

parameter or coefficient is the imaginary component of the propagation constant 

for a plane wave. It represents the change in phase per metre along the path 

travelled by the wave at any instant and is equal to the angular wavenumber of the 

wave. It is represented by the symbol β and is measured in units of radians per 

metre. 
 

From the definition of angular wavenumber; 

This quantity is often (strictly speaking incorrectly) abbreviated to wavenumber. 

Properly, wavenumber is given by, 

which differs from angular wavenumber only by a constant multiple of 2π, in the 

same way that angular frequency differs from frequency. 

For a transmission line, the Heaviside condition of the telegrapher's equation tells 

us that the wavenumber must be proportional to frequency for the transmission of 

the wave to be undistorted in the time domain. This includes, but is not limited to, 

the ideal case of a lossless line. The reason for this condition can be seen by 

considering that a useful signal is composed of many different wavelengths in the 

frequency domain. For there to be no distortion of the waveform, all these waves 

must travel at the same velocity so that they arrive at the far end of the line at the 

same time as a group. Since wave phase velocity is given by; 

it is proved that β is required to be proportional to ω. In terms of primary 

coefficients of the line, this yields from the telegrapher's equation for a 

distortionless line the condition; 
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1. Filters  
 

The term propagation constant or propagation function is applied to filters and 

other two-port networks used for signal processing. In these cases, however, the 

attenuation and phase coefficients are expressed in terms of nepers and radians per 

network section rather than per metre. Some authors make a distinction between 

per metre measures (for which "constant" is used) and per section measures (for 

which "function" is used). 
 

The propagation constant is a useful concept in filter design which invariably uses 

a cascaded section topology. In a cascaded topology, the propagation constant, 

attenuation constant and phase constant of individual sections may be simply 

added to find the total propagation constant etc. 
 

Cascaded networks 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Three networks with arbitrary propagation constants and impedances connected in 

cascade. The Zi terms represent image impedance and it is assumed that 

connections are between matching image impedances. 
 

The ratio of output to input voltage for each network is given by, 

However, practical lines can only be expected to approximately meet this condition 

over a limited frequency band. 
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Filter fundamentals – Pass and Stop bands. 
 

filters of all types are required in a variety of applications from audio to RF and 

across the whole spectrum of frequencies. As such RF filters form an important 

element within a variety of scenarios, enabling the required frequencies to be 

passed through the circuit, while rejecting those that are not needed. 
 

The ideal filter, whether it is a low pass, high pass, or band pass filter will exhibit 

no loss within the pass band, i.e. the frequencies below the cut off frequency. Then 

above this frequency in what is termed the stop band the filter will reject all 

signals. 
 

In reality it is not possible to achieve the perfect pass filter and there is always 

some loss within the pass band, and it is not possible to achieve infinite rejection in 

the stop band. Also there is a transition between the pass band and the stop band, 

Thus for n cascaded sections all having matching impedances facing each other, 

the overall propagation constant is given by, 

image impedance article. 
 

The overall voltage ratio is given by, 

are impedance scaling terms[3] and their use is explained in the The terms 
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where the response curve falls away, with the level of rejection rises as the 

frequency moves from the pass band to the stop band. 

 

 

Basic types of RF filter 
 

There are four types of filter that can be defined. Each different type rejects or 

accepts signals in a different way, and by using the correct type of RF filter it is 

possible to accept the required signals and reject those that are not wanted. The 

four basic types of RF filter are: 
 

 Low pass filter 

 High pass filter 

 Band pass filter 

 Band reject filter 
 

As the names of these types of RF filter indicate, a low pass filter only allows 

frequencies below what is termed the cut off frequency through. This can also be 

thought of as a high reject filter as it rejects high frequencies. Similarly a high pass 

filter only allows signals through above the cut off frequency and rejects those 

below the cut off frequency. A band pass filter allows frequencies through within a 

given pass band. Finally the band reject filter rejects signals within a certain band. 

It can be particularly useful for rejecting a particular unwanted signal or set of 

signals falling within a given bandwidth. 
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filter frequencies 
 

A filter allows signals through in what is termed the pass band. This is the band of 

frequencies below the cut off frequency for the filter. 
 

The cut off frequency of the filter is defined as the point at which the output level 

from the filter falls to 50% (-3 dB) of the in band level, assuming a constant input 

level. The cut off frequency is sometimes referred to as the half power or -3 dB 

frequency. 
 

The stop band of the filter is essentially the band of frequencies that is rejected by 

the filter. It is taken as starting at the point where the filter reaches its required 

level of rejection. 

 

 

Filter classifications 
 

Filters can be designed to meet a variety of requirements. Although using the same 

basic circuit configurations, the circuit values differ when the circuit is designed to 

meet different criteria. In band ripple, fastest transition to the ultimate roll off, 

highest out of band rejection are some of the criteria that result in different circuit 

values. These different filters are given names, each one being optimised for a 

different element of performance. Three common types of filter are given below: 
 

 Butterworth: This type of filter provides the maximum in band flatness. 

 Bessel: This filter provides the optimum in-band phase response and 

therefore also provides the best step response. 

 Chebychev: This filter provides fast roll off after the cut off frequency is 

reached. However this is at the expense of in band ripple. The more in band 

ripple that can be tolerated, the faster the roll off. 

 Elliptical: This has significant levels of in band and out of band ripple, and 

as expected the higher the degree of ripple that can be tolerated, the steeper 

it reaches its ultimate roll off. 
 

Summary 
 

RF filters are widely used in RF design and in all manner of RF and analogue 

circuits in general. As they allow though only particular frequencies or bands of 

frequencies, they are an essential tool for the RF design engineer. 



 
 

 

 

 

2. Constant k filter  
 

Constant k filters, also k-type filters, are a type of electronic filter designed using 

the image method. They are the original and simplest filters produced by this 

methodology and consist of a ladder network of identical sections of passive 

components. Historically, they are the first filters that could approach the ideal 

filter frequency response to within any prescribed limit with the addition of a 

sufficient number of sections. However, they are rarely considered for a modern 

design, the principles behind them having been superseded by other methodologies 

which are more accurate in their prediction of filter response. 
 

Terminology 
 

Some of the impedance terms and section terms used in this article are pictured in 

the diagram below. Image theory defines quantities in terms of an infinite cascade 

of two-port sections, and in the case of the filters being discussed, an infinite  

ladder network of L-sections. Here "L" should not be confused with the inductance 

L – in electronic filter topology, "L" refers to the specific filter shape which 

resembles inverted letter "L". 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The sections of the hypothetical infinite filter are made of series elements having 

impedance 2Z and shunt elements with admittance 2Y. The factor of two is 

introduced for mathematical convenience, since it is usual to work in terms of half- 
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sections where it disappears. The image impedance of the input and output port of 

a section will generally not be the same. However, for a mid-series section (that is, 

a section from halfway through a series element to halfway through the next series 

element) will have the same image impedance on both ports due to symmetry. This 

image impedance is designated ZiT due to the "T" topology of a mid-series section. 

Likewise, the image impedance of a mid-shunt section is designated ZiΠ due to the 

"Π" topology. Half of such a "T" or "Π" section is called a half-section, which is 

also an L-section but with half the element values of the full L-section. The image 

impedance of the half-section is dissimilar on the input and output ports: on the 

side presenting the series element it is equal to the mid-series ZiT, but on the side 

presenting the shunt element it is equal to the mid-shunt ZiΠ . There are thus two 

variant ways of using a half-section. 
 

Derivation 
 

 

 

 
 

 

 

 

 

 

Constant k low-pass filter half section. Here inductance L is equal Ck2 
 

 

 

 

 

 

 

 
 

 

 

 

Constant k band-pass filter half section. 

L1 = C2k
2 and L2 = C1k

2 
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Image impedance ZiT of a constant k prototype low-pass filter is plotted vs. 

frequency ω. The impedance is purely resistive (real) below ωc, and purely reactive 

(imaginary) above ωc. 

The building block of constant k filters is the half-section "L" network, composed 

of a series impedance Z, and a shunt admittance Y. The "k" in "constant k" is the 

value given by,[6] 

Thus, k will have units of impedance, that is, ohms. It is readily apparent that in 

order for k to be constant, Y must be the dual impedance of Z. A physical 

interpretation of k can be given by observing that k is the limiting value of Zi as the 

size of the section (in terms of values of its components, such as inductances, 

capacitances, etc.) approaches zero, while keeping k at its initial value. Thus, k is 

the characteristic impedance, Z0, of the transmission line that would be formed by 

these infinitesimally small sections. It is also the image impedance of the section at 

resonance, in the case of band-pass filters, or at ω = 0 in the case of low-pass 

filters.[7] For example, the pictured low-pass half-section has 
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and  
 

 

 

 

The transition occurs at a cut-off frequency given by  
 

 

Below this frequency, the image impedance is real,  
 

 

Above the cut-off frequency the image impedance is imaginary,  
 

 

Transmission parameters  

Elements L and C can be made arbitrarily small while retaining the same value of 

k. Z and Y however, are both approaching zero, and from the formulae (below) for 

image impedances, 

Image impedance 
 

The image impedances of the section are given by[8] 

Provided that the filter does not contain any resistive elements, the image 

impedance in the pass band of the filter is purely real and in the stop band it is 

purely imaginary. For example, for the pictured low-pass half-section,[9] 
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and for a chain of n half-sections  
 

 

 

 

 

 

Prototype transformations  

 

 

 
 

 

 

 

 

 

 

 
 

 
The transfer function of a constant k prototype low-pass filter for a single half- 

section showing attenuation in nepers and phase change in radians. 

See also: Image impedance#Transfer function 

 
The transmission parameters for a general constant k half-section are given by[10] 

For the low-pass L-shape section, below the cut-off frequency, the transmission 

parameters are given by[8] 

That is, the transmission is lossless in the pass-band with only the phase of the 

signal changing. Above the cut-off frequency, the transmission parameters are:[8] 
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The presented plots of image impedance, attenuation and phase change correspond 

to a low-pass prototype filter section. The prototype has a cut-off frequency of ωc = 

1 rad/s and a nominal impedance k = 1 Ω. This is produced by a filter half-section 

with inductance L = 1 henry and capacitance C = 1 farad. This prototype can be 

impedance scaled and frequency scaled to the desired values. The low-pass 

prototype can also be transformed into high-pass, band-pass or band-stop types by 

application of suitable frequency transformations.[11] 

Cascading sections 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Gain response, H(ω) for a chain of n low-pass constant-k filter half-sections. 
 

Several L-shape half-sections may be cascaded to form a composite filter. Like 

impedance must always face like in these combinations. There are therefore two 

circuits that can be formed with two identical L-shaped half-sections. Where a port 

of image impedance ZiT faces another ZiT, the section is called a Π section. Where 

ZiΠ faces ZiΠ the section so formed is a T section. Further additions of half-sections 

to either of these section forms a ladder network which may start and end with 

series or shunt elements.[12] 

It should be borne in mind that the characteristics of the filter predicted by the 

image method are only accurate if the section is terminated with its image 

impedance. This is usually not true of the sections at either end, which are usually 

terminated with a fixed resistance. The further the section is from the end of the 

filter, the more accurate the prediction will become, since the effects of the 

terminating impedances are masked by the intervening sections.[13] 

3. m-derived filter  
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m-derived filters or m-type filters are a type of electronic filter designed using the 

image method. They were invented by Otto Zobel in the early 1920s.[1] This filter 

type was originally intended for use with telephone multiplexing and was an 

improvement on the existing constant k type filter.[2] The main problem being 

addressed was the need to achieve a better match of the filter into the terminating 

impedances. In general, all filters designed by the image method fail to give an 

exact match, but the m-type filter is a big improvement with suitable choice of the 

parameter m. The m-type filter section has a further advantage in that there is a 

rapid transition from the cut-off frequency of the pass band to a pole of attenuation 

just inside the stop band. Despite these advantages, there is a drawback with m- 

type filters; at frequencies past the pole of attenuation, the response starts to rise 

again, and m-types have poor stop band rejection. For this reason, filters designed 

using m-type sections are often designed as composite filters with a mixture of k- 

type and m-type sections and different values of m at different points to get the 

optimum performance from both types.[3] 
 

 

Derivation 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

m-derived series general filter half section. 
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The building block of m-derived filters, as with all image impedance filters, is the 

"L" network, called a half-section and composed of a series impedance Z, and a 

shunt admittance Y. The m-derived filter is a derivative of the constant k filter. The 

starting point of the design is the values of Z and Y derived from the constant k 

prototype and are given by 

section. half filter low-pass shunt m-derived 

where k is the nominal impedance of the filter, or R0. The designer now multiplies 

Z and Y by an arbitrary constant m (0 < m < 1). There are two different kinds of 

m-derived section; series and shunt. To obtain the m-derived series half section,  

the designer determines the impedance that must be added to 1/mY to make the 

image impedance ZiT the same as the image impedance of the original constant k 

section. From the general formula for image impedance, the additional impedance 

required can be shown to be[9] 

To obtain the m-derived shunt half section, an admittance is added to 1/mZ to 

make the image impedance ZiΠ the same as the image impedance of the original 

half section. The additional admittance required can be shown to be[10] 
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The pole of attenuation occurs at;  
 

 

The general arrangements of these circuits are shown in the diagrams to the right 

along with a specific example of a low pass section. 

A consequence of this design is that the m-derived half section will match a k-type 

section on one side only. Also, an m-type section of one value of m will not match 

another m-type section of another value of m except on the sides which offer the Zi 

of the k-type.[11] 

Operating frequency 
 

For the low-pass half section shown, the cut-off frequency of the m-type is the 

same as the k-type and is given by 

frequency and hence will have a sharper cut-off. Despite this cut-off,  it also  

brings the unwanted stop band response of the m-type closer to the cut-off 

frequency, making it more difficult for this to be filtered with subsequent sections. 

The value of m chosen is usually a compromise between these conflicting 

requirements. There is also a practical limit to how small m can be made due to the 

inherent resistance of the inductors. This has the effect of causing the pole of 

attenuation to be less deep (that is, it is no longer a genuinely infinite pole) and the 

slope of cut-off to be less steep. This effect becomes more marked as is brought 

closer to , and there ceases to be 

Image impedance 

closer to the cut-off From this it is clear that smaller values of m will produce 
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and is the same as that of the constant k section  
 

 

 

 

and is the same as that of the constant k section  

 
 

 

 

 

 

 

 

 
 

m-derived prototype shunt low-pass filter ZiTm image impedance for various values 

of m. Values below cut-off frequency only shown for clarity. 

 

The following expressions for image impedances are all referenced to the low-pass 

prototype section. They are scaled to the nominal impedance R0 = 1, and the 

frequencies in those expressions are all scaled to the cut-off frequency ωc = 1. 

Series sections 
 

The image impedances of the series section are given by[14] 

Shunt sections 
 

The image impedances of the shunt section are given by[11] 
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and for n half-sections  
 

As with the k-type section, the image impedance of the m-type low-pass section is 

purely real below the cut-off frequency and purely imaginary above it. From the 

chart it can be seen that in the passband the closest impedance match to a constant 

pure resistance termination occurs at approximately m = 0.6.[14] 

Transmission parameters 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

m-Derived low-pass filter transfer function for a single half-section 

 

For an m-derived section in general the transmission parameters for a half-section 

are given by[14] 
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the transmission is lossless: For 

For the particular example of the low-pass L section, the transmission parameters 

solve differently in three frequency bands.[14] 

For the transmission parameters are 

For the transmission parameters are 

Prototype transformations 
 

The plots shown of image impedance, attenuation and phase change are the plots 

of a low-pass prototype filter section. The prototype has a cut-off frequency of ωc = 

1 rad/s and a nominal impedance R0 = 1 Ω. This is produced by a filter half-section 

where L = 1 henry and C = 1 farad. This prototype can be impedance scaled and 

frequency scaled to the desired values. The low-pass prototype can also be 

transformed into high-pass, band-pass or band-stop types by application of suitable 

frequency transformations.[15] 

Cascading sections 

 

Several L half-sections may be cascaded to form a composite filter. Like 

impedance must always face like in these combinations. There are therefore two 

circuits that can be formed with two identical L half-sections. Where ZiT faces ZiT, 

the section is called a Π section. Where ZiΠ faces ZiΠ the section formed is a T 

section. Further additions of half-sections to either of these forms a ladder network 

which may start and end with series or shunt elements.[16] 
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4. Crystal filter  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be born in mind that the characteristics of the filter predicted by the 

image method are only accurate if the section is terminated with its image 

impedance. This is usually not true of the sections at either end which are usually 

terminated with a fixed resistance. The further the section is from the end of the 

filter, the more accurate the prediction will become since the effects of the 

terminating impedances are masked by the intervening sections. It is usual to 

provide half half-sections at the ends of the filter with m = 0.6 as this value gives 

the flattest Zi in the passband and hence the best match in to a resistive 

termination.[17] 

A crystal filter is a special form of quartz crystal used in electronics systems, in 

particular communications devices. It provides a very precisely defined centre 

frequency and very steep bandpass characteristics, that is a very high Q factor—far 

higher than can be obtained with conventional lumped circuits. 
 

A crystal filter is very often found in the intermediate frequency (IF) stages of 

high-quality radio receivers. Cheaper sets may use ceramic filters (which also 

exploit the piezoelectric effect), or tuned LC circuits. The use of a fixed IF stage 

frequency allows a crystal filter to be used because it has a very precise fixed 

frequency. 
 

The most common use of crystal filters, is at frequencies of 9 MHz or 10.7 MHz to 

provide selectivity in communications receivers, or at higher frequencies as a 

roofing filter in receivers using up-conversion. 
 

Ceramic filters tend to be used at 10.7 MHz to provide selectivity in broadcast FM 

receivers, or at a lower frequency (455 kHz) as the second intermediate frequency 

filters in a communication receiver. Ceramic filters at 455 kHz can achieve similar 

bandwidths to crystal filters at 10.7 MHz. 
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frequency power back toward the source, causing a condition called standing 

waves. This acts as a bottleneck, reducing the amount of power reaching the 

destination end of the cable. To hold the shield at a uniform distance from the 

central conductor, the space between the two is filled with a semirigid plastic 

dielectric. Manufacturers specify a minimum bend radius[2] to prevent kinks that 

would cause reflections. The connectors used with coax are designed to hold the 

correct spacing through the body of the connector. 
 

Each type of coaxial cable has a characteristic impedance depending on its 

dimensions and materials used, which is the ratio of the voltage to the current in 

the cable. In order to prevent reflections at the destination end of the cable from 

causing standing waves, any equipment the cable is attached to must present an 

impedance equal to the characteristic impedance (called 'matching'). Thus the 

equipment "appears" electrically similar to a continuation of the cable, preventing 

reflections. Common values of characteristic impedance for coaxial cable are 50 

and 75 ohms. 
 

http://en.wikipedia.org/wiki/Standing_wave
http://en.wikipedia.org/wiki/Standing_wave
http://en.wikipedia.org/wiki/Dielectric
http://en.wikipedia.org/wiki/Coaxial_cable#cite_note-1
http://en.wikipedia.org/wiki/Characteristic_impedance


 
 

 
 

 

UNIT II 

TRANSMISSION LINE PARAMETERS 

 

1. INTRODUCTION 
 

1. THE SYMMETRICAL T NETWORK 
 

Fig. 1 
 

The value of ZO (image impedance) for a symmetrical network can be easily 

determined. For the symmetrical T network of Fig. 1, terminated in its image 

impedance ZO, and if Z1 = Z2 = ZT then from many textbooks: 
 
 

(2.1)  

 
 

(2.2) 
 

 
Under ZO termination, input and output voltage and current are: 

 
 

(2.3) 
 

 
If there are n such terminated sections then the input and output voltages and 

currents, under ZO terminations are: 
 
 



 
 

 
 

 
 

Where γ is the propagation constant for one T section., eγ can be evaluated as: 

 

 

 

 

General solution of the transmission line: 
 

It is used to find the voltage and current at any points on the transmission line. 

Transmission lines behave very oddly at high frequencies. In traditional (low- 

frequency) circuit theory, wires connect devices, but have zero resistance. There is 

no phase delay across wires; and a short-circuited line always yields zero 

resistance. 
 

For high-frequency transmission lines, things behave quite differently. For 

instance, short-circuits can actually have an infinite impedance; open-circuits can 

behave like short-circuited wires. The impedance of some load (ZL=XL+jYL) can 

be transformed at the terminals of the transmission line to an impedance much 

different than ZL. The goal of this tutorial is to understand transmission lines and 

the reasons for their odd effects. 
 

Let's start by examining a diagram. A sinusoidal voltage source with associated 

impedance ZS is attached to a load ZL (which could be an antenna or some other 

device - in the circuit diagram we simply view it as an impedance called a load). 

The load and the source are connected via a transmission line of length L: 



 
 

 

 

 

In traditional low-frequency circuit analysis, the transmission line would not 

matter. As a result, the current that flows in the circuit would simply be: 
 

 

However, in the high frequency case, the length L of the transmission line can 

significantly affect the results. To determine the current that flows in the circuit, 

we would need to know what the input impedance is, Zin, viewed from the 

terminals of the transmission line: 
 

 

 

The resultant current that flows will simply be: 
 
 



 
 

 

Since antennas are often high-frequency devices, transmission line effects are often 

VERY important. That is, if the length L of the transmission line significantly 

alters Zin, then the current into the antenna from the source will be very small. 

Consequently, we will not be delivering power properly to the antenna. The same 

problems hold true in the receiving mode: a transmission line can skew impedance 

of the receiver sufficiently that almost no power is transferred from the antenna. 
 

Hence, a thorough understanding of antenna theory requires an understanding of 

transmission lines. A great antenna can be hooked up to a great receiver, but if it is 

done with a length of transmission line at high frequencies, the system will not 

work properly. 
 

Examples of common transmission lines include the coaxial cable, the microstrip 

line which commonly feeds patch/microstrip antennas, and the two wire line: 
 
 

. 
 

To understand transmission lines, we'll set up an equivalent circuit to model and 

analyze them. To start, we'll take the basic symbol for a transmission line of length 

L and divide it into small segments: 
 
 

 

Then we'll model each small segment with a small series resistance, series 

inductance, shunt conductance, and shunt capcitance: 



 
 

 
 

 
 

The parameters in the above figure are defined as follows: 
 

R' - resistance per unit length for the transmission line (Ohms/meter) 

L' - inductance per unit length for the tx line (Henries/meter) 

G' - conductance per unit length for the tx line (Siemans/meter) 

C' - capacitance per unit length for the tx line (Farads/meter) 

We will use this model to understand the transmission line. All transmission lines 

will be represented via the above circuit diagram. For instance, the model for 

coaxial cables will differ from microstrip transmission lines only by their 

parameters R', L', G' and C'. 
 

To get an idea of the parameters, R' would represent the d.c. resistance of one 

meter of the transmission line. The parameter G' represents the isolation between 

the two conductors of the transmission line. C' represents the capacitance between 

the two conductors that make up the tx line; L' represents the inductance for one 

meter of the tx line. These parameters can be derived for each transmission line. 

An example of deriving the paramters for a coaxial cable is given here. 
 

Assuming the +z-axis is towards the right of the screen, we can establish a 

relationship between the voltage and current at the left and right sides of the 

terminals for our small section of transmission line: 

http://www.antenna-theory.com/soon.html


 
 

 

 
 

Using oridinary circuit theory, the relationship between the voltage and current on 

the left and right side of the transmission line segment can be derived: 
 

 

Taking the limit as dz goes to zero, we end up with a set of differential equations 

that relates the voltage and current on an infinitesimal section of transmission line: 
 
 

 

These equations are known as the telegraphers equations. Manipulation of these 

equations in phasor form allow for second order wave equations to be made for 

both V and I: 
 



 
 

 

 

 

 

 

 

The solution of the above wave-equations will reveal the complex nature of 

transmission lines. Using ordinary differential equations theory, the solutions for 

the above differential equations are given by: 
 

 

 

The solution is the sum of a forward traveling wave (in the +z direction) and a 

backward traveling wave (in the -z direction). In the above, is the amplitude of 

the forward traveling voltage wave,  is the amplitude of the backward traveling 

voltage wave,   is  the amplitude of the  forward traveling current wave, and    is  

the amplitude of the backward traveling current wave. 
 

4. THE INFINITESIMAL LINE 
 

Consider the infinitesimal transmission line. It is recognized immediately that this 

line, in the limit may be considered as made up of cascaded infinitesimal T 

sections. The distribution of Voltage and Current are shown in hyperbolic form: 
 
 

(4.1) 

 

(4.2) 
 

 



 
 

 

And shown in matrix form: 
 
 

(4.3) 

 

 
Where ZL and YL are the series impedance and shunt admittance per unit length of 

line respectively. 
 

Where the image impedance of the line is: 
 
 

(4.4) 

 

 
And the Propagation constant of the line is: 

 
 

(4.5)  

 

 
And s is the distance to the point of observation, measured from the receiving end 

of the line. 
 

Equations (4.1) and (4.2) are of the same form as equations (3.13) and (3.14) and 

are solutions to the wave equation. 
 

Let us define a set of expressions such that: 
 
 

(4.6)  

 

(4.7) 
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Where 

 
 

Also note that: 

 
 

If we now substitute equations (4.6) and (4.7) into equations (4.4) and (4.5), and 

allowing we have: 
 
 

And so by 

choosing and then using equations (4.6) and (4.7) to find 

, both Real, Imaginary or Complex, then equations 

(4.3) will be equivalent to equation (3.15) and equation (3.16). 
 

So that the infinitesimal transmission line of distributed parameters, with Z and Y 

of the line as found from equations (4.6)and (4.7), a distance S from the generator, 

is now electrically equivalent to a line of N individual T sections whose 

. 
 

 

 

 

 

 

 

 

Quarter wave length 
 

For the case where the length of the line is one quarter wavelength long, or an odd 

multiple of a quarter wavelength long, the input impedance becomes 

Matched load 
 

Another special case is when the load impedance is equal to the characteristic 

impedance of the line (i.e. the line is matched), in which case the impedance 

reduces to the characteristic impedance of the line so that 

http://www.lhsorg.org/goldfinal77.htm#ZEqnNum362377
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum939952
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum962403
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum810880
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum362377
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum939952
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum683531
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum531255
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum478978
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum362377
http://www.lhsorg.org/goldfinal77.htm#ZEqnNum939952


 
 

 

 
 

 

 

 

 

 

for all l and all λ. 

Short 

For the case of a shorted load (i.e. ZL = 0), the input impedance is purely imaginary 

and a periodic function of position and wavelength (frequency) 

), the input impedance is once again 

Open 
 

For the case of an open load (i.e. 

imaginary and periodic 

Stepped transmission line 

 

 

 

 

 

 
A simple example of stepped transmission line consisting of three segments. 

 

Stepped transmission line is used for broad range impedance matching. It can be 

considered as multiple transmission line segments connected in serial, with the 

characteristic impedance of each individual element to be, Z0,i. And the input 

impedance can be obtained from the successive application of the chain relation 

where βi is the wave number of the ith transmission line segment and li is the  

length of this segment, and Zi is the front-end impedance that loads the ith 

segment. 

http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6WJX-4W2122T-1&amp;_user=5755111&amp;_rdoc=1&amp;_fmt&amp;_orig=search&amp;_sort=d&amp;_docanchor&amp;view=c&amp;_acct=C000000150&amp;_version=1&amp;_urlVersion=0&amp;_userid=5755111&amp;md5=fe79f204b33cf7eb6d03cb89ff250c91
http://en.wikipedia.org/wiki/Impedance_matching


 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

The impedance transformation circle along a transmission line whose characteristic 

impedance Z0,i is smaller than that of the input cable Z0. And as a result, the 

impedance curve is off-centered towards the -x axis. Conversely, if Z0,i > Z0, the 

impedance curve should be off-centered towards the +x axis. 
 

Because the characteristic impedance of each transmission line segment Z0,i is 

often different from that of the input cable Z0, the impedance transformation circle 

is off centered along the x axis of the Smith Chart whose impedance representation 

is usually normalized against Z0. 

Practical types 
 

Coaxial cable 
 

Coaxial lines confine the electromagnetic wave to the area inside the cable, 

between the center conductor and the shield. The transmission of energy in the line 

occurs totally through the dielectric inside the cable between the conductors. 

Coaxial lines can therefore be bent and twisted (subject to limits) without negative 

effects, and they can be strapped to conductive supports without inducing 

unwanted currents in them. In radio-frequency applications up to a few gigahertz, 

the wave propagates in the transverse electric and magnetic mode (TEM) only, 

which means that the electric and magnetic fields are both perpendicular to the 

direction of propagation (the electric field is radial, and the magnetic field is 

circumferential). However, at frequencies for which the wavelength (in the 

dielectric) is significantly shorter than the circumference of the cable, transverse 

electric (TE) and transverse magnetic (TM) waveguide modes can also propagate. 

http://en.wikipedia.org/wiki/Smith_Chart
http://en.wikipedia.org/wiki/Transverse_electric_and_magnetic_mode
http://en.wikipedia.org/wiki/Waveguide


 
 

 

When more than one mode can exist, bends and other irregularities in the cable 

geometry can cause power to be transferred from one mode to another. 
 

The most common use for coaxial cables is for television and other signals with 

bandwidth of multiple megahertz. In the middle 20th century they carried long 

distance telephone connections. 
 

Microstrip 
 

A microstrip circuit uses a thin flat conductor which is parallel to a ground plane. 

Microstrip can be made by having a strip of copper on one side of a printed circuit 

board (PCB) or ceramic substrate while the other side is a continuous ground 

plane. The width of the strip, the thickness of the insulating layer (PCB or ceramic) 

and the dielectric constant of the insulating layer determine the characteristic 

impedance. Microstrip is an open structure whereas coaxial cable is a closed 

structure. 
 

Stripline 
 

A stripline circuit uses a flat strip of metal which is sandwiched between two 

parallel ground planes. The insulating material of the substrate forms a dielectric. 

The width of the strip, the thickness of the substrate and the relative permittivity of 

the substrate determine the characteristic impedance of the strip which is a 

transmission line. 
 

Balanced lines 
 

A balanced line is a transmission line consisting of two conductors of the same 

type, and equal impedance to ground and other circuits. There are many formats of 

balanced lines, amongst the most common are twisted pair, star quad and twin- 

lead. 
 

Twisted pair 
 

Twisted pairs are commonly used for terrestrial telephone communications. In such 

cables, many pairs are grouped together in a single cable, from two to several 

thousand. The format is also used for data network distribution inside buildings, 

but in this case the cable used is more expensive with much tighter controlled 

parameters and either two or four pairs per cable. 
 

Single-wire line 

http://en.wikipedia.org/wiki/Long_distance
http://en.wikipedia.org/wiki/Long_distance
http://en.wikipedia.org/wiki/Parallel_(geometry)
http://en.wikipedia.org/wiki/Ground_plane
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Dielectric_constant
http://en.wikipedia.org/wiki/Telephone


 
 

 

Unbalanced lines were formerly much used for telegraph transmission, but this 

form of communication has now fallen into disuse. Cables are similar to twisted 

pair in that many cores are bundled into the same cable but only one conductor is 

provided per circuit and there is no twisting. All the circuits on the same route use 

a common path for the return current (earth return). There is a power transmission 

version of single-wire earth return in use in many locations. 
 

Waveguide 
 

Waveguides are rectangular or circular metallic tubes inside which an 

electromagnetic wave is propagated and is confined by the tube. Waveguides are 

not capable of transmitting the transverse electromagnetic mode found in copper 

lines and must use some other mode. Consequently, they cannot be directly 

connected to cable and a mechanism for launching the waveguide mode must be 

provided at the interface. 
 

Reflection coefficient 
 

The reflection coefficient is used in physics and electrical engineering when wave 

propagation in a medium containing discontinuities is considered. A reflection 

coefficient describes either the amplitude or the intensity of a reflected wave 

relative to an incident wave. The reflection coefficient is closely related to the 

transmission coefficient. 
 

 

 

Telecommunications 
 

In telecommunications, the reflection coefficient is the ratio of the amplitude of the 

reflected wave to the amplitude of the incident wave. In particular, at a 

discontinuity in a transmission line, it is the complex ratio of the electric field 

strength of the reflected wave (E − ) to that of the incident wave (E + ). This is 

typically represented with a Γ (capital gamma) and can be written as: 
 

 

The reflection coefficient may also be established using other field or circuit 

quantities. 

http://en.wikipedia.org/wiki/Unbalanced_line
http://en.wikipedia.org/wiki/Single-wire_earth_return
http://en.wikipedia.org/wiki/Transverse_mode#Types_of_modes
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Electrical_engineering
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http://en.wikipedia.org/wiki/Discontinuity_(mathematics)
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http://en.wikipedia.org/wiki/Telecommunication
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The reflection coefficient can be given by the equations below, where ZS is the 

impedance toward the source, ZL is the impedance toward the load: 

 

 
 

 
 

 

 
 
 
Simple circuit configuration showing measurement location of reflection 

coefficient. 

Notice that a negative reflection coefficient means that the reflected wave receives 

a 180°, or π, phase shift. 

The absolute magnitude (designated by vertical bars) of the reflection coefficient 

can be calculated from the standing wave ratio, SWR: 

Insertion loss: 
 

Insertion loss is a figure of merit for an electronic filter and this data is generally 

specified with a filter. Insertion loss is defined as a ratio of the signal level in a test 

configuration without the filter installed (V1) to the signal level with the filter 

installed (V2). This ratio is described in dB by the following equation: 

Filters are sensitive to source and load impedances so the exact performance of a 

filter in a circuit is difficult to precisely predict. Comparisons, however, of filter 

performance are possible if the insertion loss measurements are made with fixed 

http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/External_electric_load
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/Standing_wave_ratio
http://en.wikipedia.org/wiki/Figure_of_merit
http://en.wikipedia.org/wiki/Electronic_filter
http://en.wikipedia.org/wiki/Decibel


 
 

 

 
 

 

source and load impedances, and 50 Ω is the typical impedance to do this. This 

data is specified as common-mode or differential-mode. Common-mode is a 

measure of the filter performance on signals that originate between the power lines 

and chassis ground, whereas differential-mode is a measure of the filter 

performance on signals that originate between the two power lines. 

Link with Scattering parameters 

Insertion Loss (IL) is defined as follows: 

This definition results in a negative value for insertion loss, that is, it is really 

defining a gain, and a gain less than unity (i.e., a loss) will be negative when 

expressed in dBs. However, it is conventional to drop the minus sign so that an 

increasing loss is represented by an increasing positive number as would be 

intuitively expected 

 

 
 



 
 

 
 

 

 

 
 

 



 
 

 

Recall the expressions for the voltage and current on the line (derived on the 

previous page): 
 
 

 

If we plug this into equation [1] (note that z is fixed, because we are evaluating this 

at a specific point, the end of the transmission line), we obtain: 
 

 
The ratio of the reflected voltage amplitude to that of the forward voltage 

amplitude is the voltage reflection coefficient. This can be solved for via the above 

equation: 
 
 

 

The reflection coefficient is usually denoted by the symbol gamma. Note that the 

magnitude of the reflection coefficient does not depend on the length of the line, 

only the load impedance and the impedance of the transmission line. Also, note 

that if ZL=Z0, then the line is "matched". In this case, there is no mismatch loss 

and all power is transferred to the load. At this point, you should begin to 

understand the importance of impedance matching: grossly mismatched 

impedances will lead to most of the power reflected away from the load. 
 

Note that the reflection coefficient can be a real or a complex number. 

Standing Waves 

We'll now look at standing waves on the transmission line. Assuming the 

propagation constant is purely imaginary (lossless line), We can re-write the 

voltage and current waves as: 



 
 

 
 

 
 

If we plot the voltage along the transmission line, we observe a series of peaks and 

minimums, which repeat a full cycle every half-wavelength. If gamma equals 0.5 

(purely real), then the magnitude of the voltage would appear as: 
 

 
Similarly, if gamma equals zero (no mismatch loss) the magnitude of the voltage 

would appear as: 



 
 

 

 
 

Finally, if gamma has a magnitude of 1 (this occurs, for instance, if the load is 

entirely reactive while the transmission line has a Z0 that is real), then the 

magnitude of the voltage would appear as: 



 
 

 

 
 

One thing that becomes obvious is that the ratio of Vmax to Vmin becomes larger 

as the reflection coefficient increases. That is, if the ratio of Vmax to Vmin is one, 

then there are no standing waves, and the impedance of the line is perfectly 

matched to the load. If the ratio of Vmax to Vmin is infinite, then the magnitude of 

the reflection coefficient is 1, so that all power is reflected. Hence, this ratio, 

known as the Voltage Standing Wave Ratio (VSWR) or standing wave ratio is a 

measure of how well matched a transmission line is to a load. It is defined as: 
 
 

 

 

Input impedance of a transmission line: 

Determine the input impedance of a transmission line of length L attached to a 

load (antenna) with impedance ZA. Consider the following circuit: 



 
 

 

 

 
 

In low frequency circuit theory, the input impedance would simply be ZA. 

However, for high-frequency (or long) transmission lines, we know that the 

voltage and the current are given by: 
 
 

 

For simplicity, assume the transmission line is lossless, so that the propagation 

constant is purely imaginary. If we define z=0 to be at the terminals of the load or 

antenna, then we are interested in the ratio of the voltage to the current at location 

z=-L: 
 
 

 

Using the definition for gamma (the voltage reflection coefficient), the above 

equation can be manipulated algebraically, and when evaluated at z=-L, we obtain: 



 
 

 

 
 

This last equation is fundamnetal to understanding transmission lines. The input 

impedance of a load ZA is transformed by a transmission line as in the above 

equation. This equation can cause ZA to be transformed radically. An example will 

now be presented. 
 

Example 
 

Consider a voltage source, with generator impedance Zg, hooked to an antenna 

with impedance ZA via a transmission line. Suppose that Zg=50 Ohms, ZA=50 

Ohms, Z0=200 Ohm, and that the line is a quarterwavelength long. How much 

power does the generator deliver? 
 

Answer: The diagram for this problem is given in the following diagram: 
 

 
The above diagram also shows the "equivalent circuit". The input impedance 

becomes: 



 
 

 

 
 

Hence, the current that flows is given by: 
 

 

 

Note that if high frequency circuit theory was not taken into account, the current 

flow would have been V/100 Amps. This illustrates how transmission lines can 

upset the expected operation of high frequency circuits. 

Quarter-Wave Transformer 

 

Recall our formula for the input impedance of a transmission line of length L with 

characteristic impedance Z0 and connected to a load with impedance ZA: 
 

 

An interesting thing happens when the length of the line is a quarter of a 

wavelength: 



 
 

 

 
 

The above equation is important: it states that by using a quarter-wavelength of 

transmission line, the impedance of the load (ZA) can be transformed via the above 

equation. The utility of this operation can be seen via an example. 
 

Example. Match a load with impedance ZA=100 Ohms to be 50 Ohms using a 

quarter-wave transformer, as shown below. 
 

 
Solution: The problem is to determine Z0 (the characteristic impedance of our 

quarter-wavelength transmission line) such that the 100 Ohm load is matched to 50 

Ohms. By applying the above equation, the problem is simple: 
 



 
 

 

Hence, by using a transmission line with a characteristic impedance of 70.71 

Ohms, the 100 Ohm load is matched to 50 Ohms. Hence, if a transmitter has an 

impedance of 50 Ohms and is trying to deliver power to the load (antenna), no 

power will be reflected back to the transmitter. In general, impedance matching is 

very important in RF/microwave circuit design. It is relatively simple at a single 

frequency, but becomes very difficult if wideband impedance matching is desired. 
 

This technique is commonly employed with patch antennas. Circuits are printed as 

shown in the following figure. A 50 Ohm microstrip transmission line is matched 

to a patch antenna (impedance typically 200 Ohms or more) via a quarter- 

wavelength microstrip transmission line with the characteristic impedance chosen 

to match the load. 
 

 
 

 
Because the quarter-wavelength transmission line is only a quarter-wavelength at a 

single frequency, this is a narrow-band matching technique. In the next section, 

we'll look at more uses of transmission lines. 
 

 

Stub 
 

In microwave and radio-frequency engineering, a stub is a length of transmission 

line or waveguide that is connected at one end only. The free end of the stub is 

either left open-circuit or (especially in the case of waveguides) short-circuited. 

Neglecting transmission line losses, the input impedance of the stub is purely 

reactive; either capacitive or inductive, depending on the electrical length of the 

http://www.antenna-theory.com/antennas/patches/patch.php
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The length of a stub to act as an inductor L at the same frequency is given by:  
 

 

stub, and on whether it is open or short circuit. Stubs may thus be considered to be 

frequency-dependent capacitors and frequency-dependent inductors. 
 

Because stubs take on reactive properties as a function of their electrical length, 

stubs are most common in UHF or microwave circuits where the line lengths are 

more manageable. Stubs are commonly used in antenna impedance matching 

circuits and frequency selective filters. 
 

Smith charts can also be used to determine what length line to use to obtain a 

desired reactance. 

Short circuited stub 

 

The input impedance of a lossless short circuited line is, 

where j is the imaginary unit, Z0 is the characteristic impedance of the line, β is the 

phase constant of the line, and l is the physical length of the line. 

Thus, depending on whether tan(βl) is positive or negative, the stub will be 

inductive or capacitive, respectively. 
 

The Length of a stub to act as a capacitor C at an angular frequency of ω is then 

given by: 

Open circuited stub 

 
The input impedance of a lossless open circuit stub is given by 

http://en.wikipedia.org/wiki/Reactance_(electronics)
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The length of an open circuit stub to act as a capacitor C at the same frequency is:  
 

 

Stub matching 
 

 

 

 

 

 

 

 

 

 

In a stripline circuit, a stub may be placed just before an output connector to 

compensate for small mismatches due to the device's output load or the connector 

itself. 
 

Stubs can be used to match a load impedance to the transmission line characteristic 

impedance. The stub is positioned a distance from the load. This distance is chosen 

so that at that point the resistive part of the load impedance is made equal to the 

resistive part of the characteristic impedance by impedance transformer action of 

the length of the main line. The length of the stub is chosen so that it exactly 

cancels the reactive part of the presented impedance. That is, the stub is made 

capacitive or inductive according to whether the main line is presenting an 

inductive or capacitive impedance respectively. This is not the same as the actual 

impedance of the load since the reactive part of the load impedance will be subject 

to impedance transformer action as well as the resistive part. Matching stubs can 

be made adjustable so that matching can be corrected on test. 

It follows that whether cot(βl) is positive or negative, the stub will be capacitive or 

inductive, respectively. 

The length of an open circuit stub to act as an Inductor L at an angular frequency 

of ω is: 

http://en.wikipedia.org/wiki/Quarter_wave_impedance_transformer


 
 

 

single stub will only achieve a perfect match at one specific frequency. For 

wideband matching several stubs may be used spaced along the main 

transmission line. The resulting structure is filter-like and filter design techniques 

are applied. For instance, the matching network may be designed as a Chebyshev 

filter but is optimised for impedance matching instead of passband transmission. 

The resulting transmission function of the network has a passband ripple like the 

Chebyshev filter, but the ripples never reach 0dB insertion loss at any point in the 

passband, as they would do for the standard filter. 

 

 
Single stub impedance matching: 

•  The load should be matched to the characteristic impedance of the line so 

that as much power as possible is transmitted from the generator to the load for 

radio-frequency power transmission. 

•  The lines should be matched because reflections from mismatched loads and 

junctions will result in echoes and will distort the information-carrying signal for 

information transmission. 

•  Short-circuited (instead of open-circuited) stubs are used for impedance- 

matching on transmission lines. 

•  Single-stub method for impedance matching : an arbitrary load impedance 

can be matched to a transmission line by placing a single short-circuited stub in 

parallel with the line at a suitable location (Fig.8-12). 

http://en.wikipedia.org/wiki/Chebyshev_filter
http://en.wikipedia.org/wiki/Chebyshev_filter
http://en.wikipedia.org/wiki/Ripple_(electrical)#Frequency-domain_ripple


 
 

 

 
 

 

 

•  : the input admittance at BB’ looking toward the load without the 

stub. 

•  Our impedance- (or admittance-) matching problem : to determine 

the location d and the length of the stub such 

that 

WhereYo=1/Ro 

•  In terms of normalized admittance, the above equation 

becomes 

 

•  Ys purely imaginary (the input admittance of a short-circuited stub is 

purely susceptive). 

•  Thus, the above equation can be satisfied only 

if 

 



 
 

 

 

and 

 

 

 

where bB can be either positive or negative. 

•  Our objectives : (1) to find the length d  such that the admittance YB of the 

load section looking to the right of terminal BB’ has a unitary real part, and 

(2) to find the length of the stub required to cancel the imaginary part. 
 

 

 

 

 

 

Smith Chart: 

The Smith Chart is a fantastic tool for visualizing the impedance of a transmission 

line and antenna system as a function of frequency. Smith Charts can be used to 

increase understanding of transmission lines and how they behave from an 

impedance viewpoint. Smith Charts are also extremely helpful for impedance 

matching, as we will see. The Smith Chart is used to display a real antenna's 

impedance when measured on a Vector Network Analyzer (VNA). 
 

Smith Charts were originally developed around 1940 by Phillip Smith as a useful 

tool for making the equations involved in transmission lines easier to manipulate. 

See, for instance, the input impedance equation for a load attached to a 

transmission line of length L and characteristic impedance Z0. With modern 

computers, the Smith Chart is no longer used to the simplify the calculation of 

transmission line equatons; however, their value in visualizing the impedance of an 

antenna or a transmission line has not decreased. 
 

The Smith Chart is shown in Figure 1. A larger version is shown here. 

http://www.antenna-theory.com/basics/impedance.php
http://www.antenna-theory.com/tutorial/txline/transmissionline.php
http://www.antenna-theory.com/tutorial/txline/transmission4.php
http://www.antenna-theory.com/tutorial/txline/transmission4.php
http://www.antenna-theory.com/tutorial/smith/smith_chart.jpg


 
 

 

 
 

Figure 1. The basic Smith Chart. 
 

Figure 1 should look a little intimidating, as it appears to be lines going 

everywhere. There is nothing to fear though. We will build up the Smith Chart 

from scratch, so that you can understand exactly what all of the lines mean. In fact, 

we are going to learn an even more complicated version of the Smith Chart known 

as the immitance Smith Chart, which is twice as complicated, but also twice as 

useful. But for now, just admire the Smith Chart and its curvy elegance. 
 

This section of the antenna theory site will present an intro to the Smith Chart 

basics. 
 

Smith Chart Tutorial 



 
 

 

We'll now begin to explain the Smith Chart. The Smith Chart displays the complex 

reflection coefficient, in polar form, for an arbitrary impedance (we'll call the 

impedance ZL or the load impedance). For a primer on complex math, click here. 

 
Recall that the complex reflection coefficient ( ) for an impedance ZL attached 

to a transmission line with characteristic impedance Z0 is given by: 
 

        [1] 

For this tutorial, we will assume Z0 is 50 Ohms, which is often, but not always the 

case. 

 
The complex reflection coefficient, or , must have a magnitude between 0 and 

1. As such, the set of all possible values for must lie within the unit circle: 
 

Figure 2. The Complex Reflection Coefficient must lie somewhere within the unit 

circle. 
 

In Figure 2, we are plotting the set of all values for the complex reflection 

coefficient, along the real and imaginary axis. The center of the Smith Chart is the 

http://www.thefouriertransform.com/math/complexmath.php
http://www.antenna-theory.com/tutorial/txline/transmission2.php#impedance


 
 

 

point where the reflection coefficient is zero. That is, this is the only point on the 

smith chart where no power is reflected by the load impedance. 

 
The outter ring of the Smith Chart is where the magnitude of     is equal to 1. This 

is the black circle in Figure 1. Along this curve, all of the power is reflected by the 

load impedance. 
 

Normalized Load Impedance 
 

To make the Smith Chart more general and independent of the characteristic 

impedance Z0 of the transmission line, we will normalize the load impedance ZL 

by Z0 for all future plots: 
 

        [1] 

Equation [1] doesn't affect the reflection coefficient (  ). It is  just a convention   

that is used everywhere. 
 

Constant Resistance Circles 

 
for a given normalized load impedance zL, we can determine and plot it on the 

Smith Chart. 
 

Now, suppose we have the normalized load impedance given by: 
 

        [2] 

In equation [2], Y is any real number. What would the curve corresponding to 

equation [2] look like if we plotted it on the Smith Chart for all values of Y? That 

is, if we plotted z1 = 1 + 0*i, and z1 = 1 + 10*i, z1 = 1 - 5*i, z1 = 1 - .333*i, .... 

and any possible value for Y that you could think of, what is the resulting curve? 

The answer is shown in Figure 1: 



 
 

 

 
 

Figure 1. Constant Resistance Circle for zL=1 on Smith Chart. 
 

In Figure 1, the outer blue ring represents the boundary of the smith chart. The 

black curve is a constant resistance circle: this is where all values of z1 = 1 + i*Y 

will lie on. Several points are plotted along this curve, z1 = 1, z1 = 1 + i*2, and zL 

= 1 - i*4. 
 

Suppose we want to know what the curve z2 = 0.3 + i*Y looks like on the Smith 

Chart. The result is shown in Figure 2: 



 
 

 

 
 

Figure 2. Constant Resistance Circle for zL=0.3 on Smith Chart. 
 

In Figure 2, the black ring represents the set of all impedances where the real part 

of z2 equals 0.3. A few points along the circle are plotted. We've left the resistance 

circle of 1.0 in red on the Smith Chart. 
 

These circles are called constant resistance curves. The real part of the load 

impedance is constant along each of these curves. We'll now add several values for 

the constant resistance, as shown in Figure 3: 



 
 

 

 
 

Figure 3. Constant Resistance Circles on Smith Chart. 
 

In Figure 3, the zL=0.1 resistance circle has been added in purple. The zL=6 

resistance circle has been added in green, and zL=2 resistance circle is in black. 
 

look at the set of curves defined by zL = R + iY, where Y is held constant and R 

varies from 0 to infinity. Since R cannot be negative for antennas or passive 

devices, we will restrict R to be greater than or equal to zero. As a  first example, 

let zL = R + i. The curve defined by this set of impedances is shown in Figure 1: 



 
 

 

 
 

Figure 1. Constant Reactance Curve for zL = R + i*1. 
 

The resulting curve zL = R + i is plotted in green in Figure 1. A few points along 

the curve are illustrated as well. Observe that zL = 0.3 + i is at the intersection of 

the Re[zL] = 0.3 circle and the Im[zL]=1 curve. Similarly, observe that the zL = 2 

+ i point is at the intersection of the Re[zL]=2 circle and the Im[zL]=1 curve. (For 

a quick reminder of real and imaginary parts of complex numbers, see complex 

math primer.) 
 

The constant reactance curve, defined by Im[zL]=-1 is shown in Figure 2: 

http://www.thefouriertransform.com/math/complexmath.php
http://www.thefouriertransform.com/math/complexmath.php


 
 

 

 
 

Figure 2. Constant Reactance Curve for zL = R - i. 
 

The resulting curve for Im[zL]=-1 is plotted in green in Figure 2. The point zL=1-i 

is placed on the Smith Chart, which is at the intersection of the Re[zL]=1 circle  

and the Im[zL]=-1 curve. 
 

An important curve is given by Im[zL]=0. That is, the set of all impedances given 

by zL = R, where the imaginary part is zero and the real part (the resistance) is 

greater than or equal to zero. The result is shown in Figure 3: 



 
 

 

 
 

Figure 3. Constant Reactance Curve for zL=R. 
 

The reactance curve given by Im[zL]=0 is a straight line across the Smith Chart. 

There are 3 special points along this curve. On the far left, where zL = 0 + i0, this 

is the point where the load is a short circuit, and thus the magnitude of  is 1, so 

all power is reflected. 
 

In the center of the Smith Chart, we have the point given by zL = 1. At this 

location,  is 0, so the load is exactly matched to the transmission line. No power 

is reflected at this point. 
 

The point on the far right in Figure 3 is given by zL = infinity. This is the open 

circuit location. Again, the magnitude of  is 1, so all power is reflected at this 

point, as expected. 
 

Finally, we'll add a bunch of constant reactance curves on the Smith Chart, as 

shown in Figure 4. 



 
 

 

 

 
 
 

Figure 4. Smith Chart with Reactance Curves and Resistance Circles. 
 

In Figure 4, we added constant reactance curves for Im[zL]=2, Im[zL]=5, 

Im[zL]=0.2, Im[zL]=0.5, Im[zL]=-2, Im[zL]=-5, Im[zL]=-0.2, and Im[zL] = -0.5. 
 

Figure 4 shows the fundamental curves of the Smith Chart. 

Applications of smith Chart: 

Plotting an impedance 

Measurement of VSWR 

Measurement of reflection coefficient (magnitude and phase) 

Measurement of input impedance of the line 



 
 

 

UNIT IV 

GUIDED WAVES BETWEEN PARALLEL PLANES 

 
 

The waves guided or directed by the guided structures are called guided wave. 

In general wave equations are derived from Maxwell’s equation. To obtain the 

solution of this problem it is essential to apply certain restrictions or boundary 

conditions to the Maxwell’s equation. 

 

Maxwell's Equations are a set of four vector-differential equations that govern all 

of electromagnetics (except at the quantum level, in which case we as antenna 

people don't care so much). They were first presented in a complete form by James 

Clerk Maxwell back in the 1800s. He didn't come up with them all on his own, but 

did add the displacement current term to Ampere's law which made them complete. 
 

The four equations (written only in terms of E and H, the electric field and the 

magnetic field), are given below. 
 

 

In Gauss' law,  is the volume electric charge density, J is the electric current 

density (in Amps/meter-squared),    is the permittivity and is the permeability. 

The good news about this is that all of electromagnetics is summed up in these 4 

equations. The bad news is that no matter how good at math you are, these can  

only be solved with an analytical solution in extremely simple cases. Antennas 

don't present a very simple case, so these equations aren't used a whole lot in 

antenna theory (except for numerical methods, which numerically solve these 

approximately using a whole lot of computer power). 
 

The last two equations (Faraday's law and Ampere's law) are responsible for 

electromagnetic radiation. The curl operator represents the spatial variation of the 

fields, which are coupled to the time variation. When the E-field travels, it is 

http://www.antenna-theory.com/definitions/efield.php
http://www.antenna-theory.com/definitions/hfield.php
http://www.antenna-theory.com/definitions/permittivity.php
http://www.antenna-theory.com/definitions/permeability.php


 
 

 

altered in space, which gives rise to a time-varying magnetic field. A time-varying 

magnetic field then varies as a function of location (space), which gives rise to a 

time varying electric field. These equations wrap around each other in a sense, and 

give rise to a wave equation. These equations predict electromagnetic radiation as 

we understand it. 
 

 

 

 

 
 

 

 

Consider a parallel-plate waveguide of two perfectly conducting plates separated 

by a distance b and filled with a dielectric medium having constitutive parameter 

as shown in Fig. 9-3. The plates are assumed to be infinite in extent in the x- 

direction. (Fields do not vary in the x-direction.) 

a) Obtain the time-harmonic field expressions for TM modes in the guide. 

b) Determine the cutoff frequency. 

a) For TM modes, 

- Eq. becomes 



 
 

 

 
 

 

 

The general solution for Eq. (9-44) : 

- Boundary conditions (The tangential component of the electric field must vanish 

on the surface of the perfectly conducting plates.) : 

(i) At y=0 Ez=0 

(ii) At y=b Ez=0 

- The value of the eigenvalue h : 
 

 

Types of propagation: 

TE waves 

TM waves 

TEM waves 

Transverse electric(TE) wave has the magnetic field component in the direction of 

propagation, but no component of the electric field in the same direction. Hence 

the TE waves also known as M –waves or H-waves. 

 

Transverse magnetic(TM) wave has the electric field in the direction of 

propagation, but no component of the magnetic field in the same direction. Hence 

the TM waves are also called E-waves. 

 

Transverse electro magnetic(TEM) wave: 

No field in the direction of propagation 

 

Attenuation of parallel plane guides: 

When the electromagnetic wave propagates through the wave guide, the 

amplitude of the fields or the signal strength of the wave decreases as the distance 

from the source increases. This is because when the wave strike the walls of the 

guide, the loss in the power takes place The attenuation factor is denoted by α. 

 

Α=Power lost per unit length/2*power transmitted 



 
 

 

Attenuation due to finite wall conductivity is inversely proportional to the 

square root of wall conductivity, but depends on the mode and the frequency in 

a complicated way. 

Attenuation due to wall losses in rectangular copper waveguide : Figure 9-7. 

TE10 mode has the lowest attenuation in a rectangular waveguide. 

The attenuation constant increases rapidly toward infinity as the operating 

frequency approaches the cutoff frequency. 

Causes for attenuation in waveguides : lossy dielectric and imperfectly 

conducting walls. 

 

Cut-off frequency: 

The frequency at which wave motion ceases is called cut-off frequency 
 

 
 

 

Propagation Constant: 



 
 

 
 

 
 

 

 

 

 

Wave impedance: 

It is the ratio of the component of the electric field to that of magnetic field. 

Wave impedance for TEM wave 

 

Wave impedance for TM and TE wave 
 
 

 

Phase velocity: 

It is the velocity at which energy propagates along a wave guide 
 
 

 

 

• The phase velocity and the wave impedance for TEM waves are independent 

of the frequency of the waves. 

• TEM waves cannot exist in a single-conductor hollow (or dielectric-filled) 

waveguide of any shape. 



 
 

z 

z 

 

 

 

Rectangular waveguides are the one of the earliest type of the transmission lines. 

They are used in many applications. A lot of components such as isolators, 

detectors, attenuators, couplers and slotted lines are available for various standard 

waveguide bands between 1 GHz to above 220 GHz. 
 

A rectangular waveguide supports TM and TE modes but not TEM waves because 

we cannot define a unique voltage since there is only one conductor in a 

rectangular waveguide. The shape of a rectangular waveguide is as shown below. 

A material with permittivity e and permeability m fills the inside of the conductor. 
 

A rectangular waveguide cannot propagate 

below some certain frequency. This 

frequency is called the cut-off frequency. 
 

Here, we will discuss TM mode rectangular 

waveguides and TE mode rectangular 

waveguides separately. Let’s start with the 

TM mode. 

 

TM Modes 
 

Consider the shape of the rectangular waveguide above with dimensions a and b 

(assume a>b) and the parameters e and m. For TM waves Hz = 0 and Ez should be 

solved from equation for TM mode; 
 

Ñ2 E 0 + h2 E 0 = 0 
xy z z 

 

Since Ez(x,y,z) = E 0(x,y)e-gz, we get the following equation, 
 

If we use the method of separation of variables, that is E 0(x,y)=X(x).Y(y) we get, 
 



 
 

x 

z 

z 

z 

z 

z 

 

Since the right side contains x terms only and the left side contains y terms only, 

they are both equal to a constant. Calling that constant as k 2, we get; 
 

 

where k 2=h2-k 2 
y x 

 

Now, we should solve for X and Y from the preceding equations. Also we have the 

boundary conditions of; 
 

E 0(0,y)=0 

E 0(a,y)=0 

E 0(x,0)=0 

E 0(x,b)=0 

From all these, we conclude that 
 

X(x) is in the form of sin kxx, where kx=mp/a, m=1,2,3,… 

Y(y) is in the form of sin kyy, where ky=np/b, n=1,2,3,… 

So the solution for E 0(x,y) is 

 

 

 
From k 2=h2-k 2, we have; 

(V/m) 

y x 

 

 

For TM waves, we have 



 
 

 

 
 

 

 

 

From these equations, we get 
 

 

 

 

where 
 

Here, m and n represent possible modes and it is designated as the TMmn mode. m 

denotes the number of half cycle variations of the fields in the x-direction and n 

denotes the number of half cycle variations of the fields in the y-direction. 



 
 

 

When we observe the above equations we see that for TM modes in rectangular 

waveguides, neither m nor n can be zero. This is because of the fact that the field 

expressions are identically zero if either m or n is zero. Therefore, the lowest mode 

for rectangular waveguide TM mode is TM11 . 

Here, the cut-off wave number is 
 

and therefore, 
 

The cut-off frequency is at the point where g vanishes. Therefore, 
 

Since l=u/f, we have the cut-off wavelength, 
 

At a given operating frequency f, only those frequencies, which have fc<f will 

propagate. The modes with f<fc will lead to an imaginary b which means that the 

field components will decay exponentially and will not propagate. Such modes are 

called cut-off or evanescent modes. 
 

The mode with the lowest cut-off frequency is called the dominant mode. Since 

TM modes for rectangular waveguides start from TM11 mode, the dominant 

frequency is 



 
 

 

 
 

The wave impedance is defined as the ratio of the transverse electric and magnetic 

fields. Therefore, we get from the expressions for Ex and Hy (see the equations 

above); 
 

 

The guide wavelength is defined as the distance between two equal phase planes 

along the waveguide and it is equal to 
 

 

which is thus greater than l, the wavelength of a plane wave in the filling medium. 

The phase velocity is 

 
 

which is greater than the speed of light (plane wave) in the filling material. 
 

Attenuation for propagating modes results when there are losses in the dielectric 

and in the imperfectly conducting guide walls. The attenuation constant due to the 

losses in the dielectric can be found as follows: 
 

 

TE Modes 
 

Consider again the rectangular waveguide below with dimensions a and b (assume 

a>b) and the parameters e and m. 



 
 

z 

xy z z 

z 

x 

 

For TE waves Ez = 0 and Hz should be 

solved from equation for TE mode; 
 

Ñ2 H + h2 H = 0 

Since Hz(x,y,z) = H 0(x,y)e-gz, we get the 

following equation, 
 

 

 

 

 

If we use the method of separation of variables, that is H 0(x,y)=X(x).Y(y) we get, 
 

Since the right side contains x terms only and the left side contains y terms only, 

they are both equal to a constant. Calling that constant as k 2, we get; 
 

 

where k 2=h2-k 2 
y x 

 

Here, we must solve for X and Y from the preceding equations. Also we have the 

following boundary conditions: 
 

at x=0 

at x=a 

at y=0 



 
 

 

 

 

at y=b 

From all these, we get 

 

 

 
From k 2=h2-k 2, we have; 

(A/m) 

y x 

 

 

For TE waves, we have 
 

 

 

 

From these equations, we obtain 
 

 



 
 

 

 
 

 

where 
 

As explained before, m and n represent possible modes and it is shown as the TEmn 

mode. m denotes the number of half cycle variations of the fields in the x-direction 

and n denotes the number of half cycle variations of the fields in the y-direction. 
 

Here, the cut-off wave number is 
 

and therefore, 
 

The cut-off frequency is at the point where g vanishes. Therefore, 
 

Since l=u/f, we have the cut-off wavelength, 
 



 
 

 

At a given operating frequency f, only those frequencies, which have f>fc will 

propagate. The modes with f<fc will not propagate. 

The mode with the lowest cut-off frequency is called the dominant mode. Since 

TE10 mode is the minimum possible mode that gives nonzero field expressions for 

rectangular waveguides, it is the dominant mode of a rectangular waveguide with 

a>b and so the dominant frequency is 
 

 

 
 

 

The wave impedance is defined as the ratio of the transverse electric and magnetic 

fields. Therefore, we get from the expressions for Ex and Hy (see the equations 

above); 
 

 

The guide wavelength is defined as the distance between two equal phase planes 

along the waveguide and it is equal to 
 

 

which is thus greater than l, the wavelength of a plane wave in the filling medium. 

The phase velocity is 

 
 

which is greater than the speed of the plane wave in the filling material. 
 

The attenuation constant due to the losses in the dielectric is obtained as follows: 
 



 
 

 

After some manipulation, we get 
 

Example: 
 

Consier a length of air-filled copper X-band waveguide, with dimensions 

a=2.286cm, b=1.016cm. Find the cut-off frequencies of the first four propagating 

modes. 
 

Solution: 
 

From the formula for the cut-off frequency 
 



 
 

 

 

 
 

 

 

UNIT V 
 

WAVEGUIDES 

Waveguides are basically a device ("a guide") for transporting electromagnetic 

energy from one region to another. Typically, waveguides are hollow metal tubes 

(often rectangular or circular in cross section). They are capable of directing power 

precisely to where it is needed, can handle large amounts of power and function as 

a high-pass filter. 
 

The waveguide acts as a high pass filter in that most of the energy above a certain 

frequency (the cutoff frequency) will pass through the waveguide, whereas most of 

the energy that is below the cutoff frequency will be attenuated by the waveguide. 

Waveguides are often used at microwave frequencies (greater than 300 MHz, with 

8 GHz and above being more common). 
 

Waveguides are wideband devices, and can carry (or transmit) either power or 

communication signals. An example of a hollow metal rectangular waveguide is 

shown in the following figure. 



 
 

 

 

 
 

Waveguides can bend if the desired application requires it, as shown in the 

following Figure. 
 

The above waveguides can be used with waveguide to coaxial cable adapters, as 

shown in the next Figure: 



 
 

 

 
 

We now know what a waveguide is. Lets examine metal cavities with a rectangular 

cross section, as shown in Figure 1. Assume the waveguide is filled with vaccuum, 

air or some dielectric with the  permeability given by and the permittivity given 

by . 
 

The waveguide has a width a in the x-direction, and a height b in the y-direction, 

with a>b. The z-axis is the direction in which the waveguide is to carry power. 
 

Figure 1. Cross section of a waveguide with long dimension a and short dimension 

b. 
 

On this page, I'm going to give the general "rules" for waveguides. That is, I'll give 

the equations for key parameters and let you know what the parameters mean. On 

the next page, we'll go into the mathematical derivation (which you would do in 

engineering graduate school), but you can get away with not knowing all that math 

if you don't want to know it. 
 

First and possibly most importantly, this waveguide has a cutoff frequency, fc. The 

cutoff frequency is the frequency at which all lower frequencies are attenuated by 

the waveguide, and above the cutoff frequency all higher frequencies propagate 

http://www.antenna-theory.com/definitions/permeability.php
http://www.antenna-theory.com/definitions/permittivity.php


 
 

 

within the waveguide. The cutoff frequency defines the high-pass filter 

characteristic of the waveguide: above this frequency, the waveguide  passes 

power, below this frequency the waveguide attenuates or blocks power. 
 

The cutoff frequency depends on the shape and size of the cross section of the 

waveguide. The larger the waveguide is, the lower the cutoff frequency for that 

waveguide is. The formula for the cutoff frequency of a rectangular cross sectioned 

waveguide is given by: 
 

In the above, c is the speed of light within the waveguide, mu is the permeability of 

the material that fills the waveguide, and epsilon is the permittivity of the material 

that fills the waveguide. Note that the cutoff frequency is independent of the short 

length b of the waveguide. 
 

The cutoff frequency for a waveguide with a circular cross section of radius a is 

given by: 
 

Due to Maxwell's Equations, the fields within the waveguide always have a 

specific "form" or "waveshape" to them - these are called modes. Assume the 

waveguide is oriented such that the energy is to be transmitted along the  

waveguide axis, the z-axis. The modes are classified as either TE ('transverse 

electric' - which indicates that the E-field is orthogonal to the axis of the 

waveguide, so that Ez=0) or TM ('transverse magnetic' - which indicates that the 

H-field is orthogonal to the axis of the waveguide, so Hz = 0). The modes are 

further classified as TEij, where the i and j indicate the number of  wave 

oscillations for a particular field direction in the long direction (dimension a in 

Figure 1) and short direction (dimension b in Figure 1), respectively. 
 

Metal waveguides cannot support the TEM ('transverse electric and magnetic' - 

when Ez and Hz are zero) mode. Their exists no solution to Maxwell's equations 

that also satisfy the required boundary conditions for this mode to occur. 

http://www.antenna-theory.com/definitions/permeability.php
http://www.antenna-theory.com/definitions/permittivity.php
http://www.antenna-theory.com/definitions/maxwellsequations.php
http://www.antenna-theory.com/definitions/efield.php
http://www.antenna-theory.com/definitions/hplane.php


 
 

 

Maxwell's Equations are not easy to solve. Hence, every math trick someone can 

think of will be used in order to make the analysis tractable. We'll start with 

discussing the electric vector potential, F. In a source-free region (i.e., an area 

through which waves propagate that is away from sources), we know that: 
 

In the above, D is the Electric Flux Density. If a vector quantity is divergenceless 

(as in the above), then it can be expressed as the curl of another quantity. This 

means that we can write the solution for D and the corresponding electric field E 

as: 
 

In the above, epsilon is the permittivity of the medium through which the wave 

propagates. We are purely in the world of mathematics now. The quantity F is not 

physical, and is of little practical value. It is simply an aid in performing our 

mathematical manipulations. 
 

It turns out that waves (or electromagnetic energy) can not propagate in a 

waveguide when both Hz and Ez are equal to zero. Hence, what field 

configurations that are allowed will be classified as either TM (Transverse 

Magnetic, in which Hz=0) and TE (Transverse Electric, in which Ez=0). The 

reason that waves cannot be TEM (Transverse Electromagnetic, Hz=Ez=0) will be 

shown towards the end of this derivation. 
 

To perform our analysis, we'll assume that Ez=0 (i.e., we are looking at a TE mode 

or field configuration). In this case, working through Maxwell's equations, it can be 

shown that the E- and H- fields can be determined from the following equations: 

http://www.antenna-theory.com/definitions/electricfluxdensity.php
http://www.antenna-theory.com/definitions/permittivity.php


 
 

 

 
 

Therefore, if we can find Fz (the z-component of the vector F), then we can find 

the E- and H- fields. In the above equation, k is the wavenumber. 
 

Working through the math of Maxwell's Equations, it can be shown that in a 

source-free region, the vector potential F must satisfy the vector wave equation: 
 

         [1] 

To break this equation down, we will look only at the z-component of the above 

equation (that is, Fz). We will also assume that we are looking at a single 

frequency, so that the time dependence is assumed to be of the form given by (we 

are now using phasors to analyze the equation): 
 

 

Then the equation [1] can be simplified as follows: 
 

             [2] 

http://www.antenna-theory.com/definitions/wavenumber.php


 
 

 

To solve this equation, we will use the technique of separation of variables. Here 

we assume that the function Fz(x, y, z) can be written as the product of three 

functions, each of a single variable. That is, we assume that: 
 

           [3] 

(You might ask, how do we know that the separation of variables assumption 

above is valid? We don't - we just assume its correct, and if it solves the  

differential equation when we are done doing the analysis then the assumption is 

valid). Now we plug in our assumption for Fz (equation [3]) into equation [2], and 

we end up with: 

 

 

 

[4] 
 

In the above equation, the prime represents the derivative with respect to the 

variable in the equation (for instance, Z' represents the derivative of the Z-function 

with respect to z). We will break up the variable k^2 into components (again, just 

to make our math easier): 
 

           [5] 

Using equation [5] to breakdown equation [4], we can write: 
 

            [6] 

The reason that the equations in [6] are valid is because they are only functions of 

independent variables - hence, each equation must hold for [5] to be true 

everywhere in the waveguide. Solving the above equations using ordinary 

differential equations theory, we get: 



 
 

 

 

 

 

 

 

 
 

 

[7] 
 

The form of the solution in the above equation is different for Z(z). The reason is 

that both forms (that for X and Y, and that for Z), are both equally valid solutions 

for the differential equations in equation [6]. However, the complex exponential 

typically represents travelling waves, and the [real] sinusoids represent standing 

waves. Hence, we choose the forms given in [7] for the solutions. No math rules 

are violated here; again, we are just choosing forms that will make our analysis 

easier. 
 

For now, we can set c5=0, because we want to analyze waves propagating in the 

+z-direction. The analysis is identical for waves propagating in the -z-direction, so 

this is fairly arbitrary. The solution for Fz can be written as: 
 

[8] 
 

If you remember anything about differential equations, you know there needs to be 

some boundary conditions applied in order to determine the constants. Recalling 

our physics, we know that the tangential Electric fields at any perfect conductor 

must be zero (why? because  , so if the conductivity approaches infinity 

(perfect conductor), then if the tangential E-field is not zero then the induced 

current would be infinite). 
 

The tangential fields must be zero, so Ex must be zero when y=0 and when y=b 

(see Figure 1 above), no matter what the value for y and z are. In addition, Ey must 

be zero when x=0 and when x=a (independent of x and z). We will calculate Ex: 



 
 

 

 
 

Ex is given by the above equation. The boundary condition given by 

Ex( x, y=0, z)=0 [9] 

implies that c4 must be equal to zero. This is the only way that boundary condition 

given in [9] will be true for all x and z positions. If you don't believe this, try to 

show that it is incorrect. You will quickly determine that c4 must be zero for the 

boundary condition in [9] to be satisfied everywhere it is required. 
 

Next, the second boundary condition, 

Ex(x, y=b, z)=0 [10] 

implies something very unique. The only way for the condition in [10] to be true 

for all values of x and z whenever y=b, we must have: 
 

If this is to be true everywhere, c3 could be zero. However, if c3 is zero (and we 

have already determined that c4 is zero), then all of the fields would end up being 

zero, because the function Y(y) in [7] would be zero everywhere. Hence, c3 cannot 

be zero if we are looking for a nonzero solution. Hence, the only alternative is if 

the above equation implies that: 
 

This last equation is fundamental to understanding waveguides. It states that the 

only solutions for Y(y) function must end up being sinusoids, that an integer 

number of multiples of a half-wavelength. These are the only type of functions that 



 
 

 

satisfy the differential equation in [6] and the required boundary conditions. This is 

an extremely important concept. 
 

If we invoke our other two boundary conditions: 
 

Ey(x=0, y, z)=0 
 

Ey(x=a, y, z)=0 
 

Then (using identical reasoning to that above), we can determine that c2=0 and 

that: 
 

This statement implies that the only functions of x that satisfy the differential 

equation and the required boundary conditions must be an integer multiple of half- 

sinusoids within the waveguide. 
 

Combining these results, we can write the solution for Fz as: 
 

 

In the above, we have combined the remaining nonzero constants c1, c3, and c6 

into a single constant, A, for simplicity. We have found that only certain 

distributions (or field configurations) will satisfy the required differential equations 

and the boundary conditions. Each of these field configurations will be known as a 

mode. Because we derived the results above for the TE case, the modes will be 

known as TEmn, where m indicates the number of half-cycle variations within the 

waveguide for X(x), and n indicates the number of half-cycle variations within the 

waveguide for Y(y). 
 

Using the field relationships: 



 
 

 

 
 

We can write the allowable field configurations for the TE (transverse electric) 

modes within a waveguide: 
 



 
 

 

In the above, the constants are written as Amn - this implies that the amplitude for 

each mode can be independent of the others; however, the field components for a 

single mode must all be related (that is, Ex and Hy do not have independent 

coefficients). 
 

Cutoff Frequency (fc) 
 

At this point in the analysis, we are able to say something intelligent. Recall that 

the components of the wavenumber must satisfy the relationship: 
 

              [3] 

Since kx and ky are restrained to only take on certain values, we can plug this fact 

in: 

 

 

 
[4] 

 

An interesting question arises at this point: What is the lowest frequency in which 

the waveguide will propagate the TE mode? 
 

For propagation to occur,  . If this is true, then kz is a real number, so that 

the field components (equations [1] and [2]) will contain complex exponentials, 

which represent propagating waves. If on the other hand,  , then kz will be 

an imaginary number, in which case the complex exponential above in equations 

[1-2] becomes a decaying real exponential. In this case, the fields will not 

propagate but instead quickly die out within the waveguide. Electromagnetic fields 

that die off instead of propagate are referred to as evanescent waves. 
 

To find the lowest frequency in which propagation can occur, we set kz=0. This is 

the transition between the cutoff region (evanescent) and the propagation region. 

Setting kz=0 in equation [4], we obtain: 

http://www.antenna-theory.com/definitions/wavenumber.php


 
 

 

 

 

 

[5] 
 

If m and n are both zero, then all of the field components in [1-2] become zero, so 

we cannot have this condition. The lowest value the left hand side of equation [5] 

can take occurs when m=1 and n=0. The solution to equation [5] when m=1 and 

n=0, gives the cutoff frequency for this waveguide: 
 
 

 

Any frequency below the cutoff frequency (fc) will only result in evanescent or 

decaying modes. The waveguide will not transport energy at these frequencies. In 

addition, if the waveguide is operating at a frequency just above fc, then the only 

mode that is a propagating mode will be the TE10 mode. All other modes will be 

decaying. Hence, the TE10 mode, since it has the lowest cutoff frequency, is 

referred to as the dominant mode. 
 

Every mode that can exist within the waveguide has its own cutoff frequency. That 

is, for a given mode to propagate, the operating frequency must be above the cutoff 

frequency for that mode. By solving [5] in a more general form, the cutoff 

frequency for the TEmn mode is given by: 
 
 

 

Although we haven't discussed the TM (transverse magnetic) mode, it will turn out 

that the dominant TM mode has a higher cutoff frequency than the dominant TE 

mode. 
 

Determining the fields for the TMz (Transverse Magnetic to the z direction) modes 

follows a similar procedure to that for the TEz case. To begin, we'll start by 

discussing the magnetic vector potential, A. This is a non-physical quantity that is 

often in used antenna theory to simplify the mathematics of Maxwell's Equations. 

http://www.antenna-theory.com/tutorial/waveguides/waveguides2.php
http://www.antenna-theory.com/definitions/maxwellsequations.php


 
 

 

To understand the magnetic vector potential, note that since the magnetic flux 

density B must always be divergenceless: 
 

 

If a vector quantity is divergenceless, then it can be expressed as the curl of 

another vector quantity. In math notation, this means that B can be written as: 
 
 

 

In a source free region, it can be shown that A must satisfy the wave equation: 
 

 

In addition, the TMz fields can be found from the Az component of the magnetic 

vector potential, via the following relationships: 
 

To solve for Az (and hence determine the E- and H- fields), we follow the same 

procedure as for the TEz case. That is, we use separation of variables and solve the 

wave equation for the z-component of A, then apply boundary conditions that force 

the tangential components of the E-fields to be zero on the metallic surfaces. 

Performing this procedure, which will not be repeated here, we obtain the solution 

for Az: 

http://www.antenna-theory.com/tutorial/waveguides/waveguides2.php


 
 

 

 

 

 
 

[1] 
 

The corresponding TMz fields for waves propagating in the +z-direction are: 
 

In the above, k is again the wavenumber, and Bmn is a constant, which determines 

the amplitude of the mn mode (a function of how much power is applied to the 

waveguide at that frequency). 
 

Before discussing the modes, we must note that TM0n and TMm0 modes cannot 

exist; that is, m and n must be at least 1. The reason comes from equation [1] above 

- if either m or n are zero, then Az is equal to zero, so all the fields derived must 

also be zero. Hence, the lowest order mode for the TM case is the TM11 mode.  

The same procedures can be applied from the TE case to determine the cutoff 

frequencies for the TMmn mode: 
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Cylindrical waveguide 

Using the complete formulation in the simplest limit possible, global 

electromagnetic modes are here studied in a large aspect ratio, circular cross- 

section vacuum cavity equivalent to a cylindrical waveguide. 

 

Classical electrodynamics [43] show that the EM eigenmode spectrum consists of 

two types  of solutions,  the  transverse  electric  and the transverse magnetic 

polarizations with frequencies depending on l the radial and m the azimuthal 

mode numbers. These results are reproduced numerically to verify that the wave 

equations (16) can indeed be solved in the vacuum using standard LFEM and 

CFEM discretizations, without introducing spurious modes of numerical origin. It 

is also important to validate the numerical implementation using a simple test case, 

checking that the numerical solutions converge to the analytical values with rates 

expected from the order of the approximations. 
 

The cylindrical waveguide is modeled in 2-D, with a circular large aspect ratio 

equilibrium defined with a minor radius a chosen so as to obtain the analytical 

eigenmode frequencies in GHz exactly equal to the roots of the Bessel function 

(table 1). 
 

Table 1: Cylindrical waveguide parameters. 
 

As the equilibrium merely produces the geometry and the mesh, the safety factor 

does  not  affect  the  eigenfrequency  spectrum;  using  a  large value  for , it is 

however possible to everywhere align  with the axis of the cylinder and separate 

the components of the TE and the TM polarizations. The complete toroidal wave 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node28.html#Jackson
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#tab1
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equations (16) are then discretized in the large aspect ratio cavity, relying on 

numerical cancellations to recover the cylindrical limit. 
 

To compute the eigenmode spectrum, an oscillating source current (eq.22) is 

driven     with     a     small     imaginary     part     in     the     excitation   frequency 

. The power relation (eq.48) yields a complex response 

function which has poles along the real axis that correspond to the 

solutions of the discretized wave equations. The eigenfrequencies are calculated by 

scanning in the complex plane with an increment and a constant 

chosen so as to resolve the response peaks in . The structure of an 

eigenmode is obtained in the limit  when the cavity is resonantly excited at 

the maximum of a narrow response peak. 
 

In order to verify that the eigenfrequency spectrum of this cylindrical waveguide is 

complete and does not contain any spurious ''polluting`` mode, two broad scans are 

performed  from  10  kHz  to  10  GHz   with  a   high  resolution  in  frequency 

and  a  low  resolution  in  space  for LFEM, 

for CFEM). All the Fourier modes representable by the 

numerical discretization  are  excited  with azimuthal currents for TE modes, 

and axial currents  for TM modes. Fig.6 summarizes the result obtained with 

LFEM, showing that every mode found numerically could be identified in a one to 

one correspondence with the analytical result. Modes which have low quantum 

numbers (l,m) are, as expected, obtained with a better precision; pushing the 

resolution to the lowest limit of 2 mesh points per wavelength (m=4), the 

deviations become of course important, but the spectrum remains unpolluted 

(remember fig.3, root b). The same analysis has been repeated with CFEM and 

leads to results which are much more precise. As an illustration, the eigenmode 

has here been calculated on a coarse homogeneous mesh . The 

eigenfrequency obtained numerically GHz is  in excellent  agreement 

with the analytical result =5.3314 GHz; fig.5 shows the eigenmode structure in a 

vector plot of . 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node10.html#eqAntenna
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node15.html#eqPowBalDef
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig6
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node11.html#fig3
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig5
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Figure 5: Re(A_perp) for an eigenmode TE_11 calculated with CFEM. 
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Figure 6: Analytical (circles) and LFEM (x-marks) eigenfrequency spectrum. 
 

A question remained when the boundary conditions were defined in sect.2.2.2: it 

concerned the implementation of the regularity conditions which is formally not 

sufficient  to  forbid  a  weakly singular (  ) behavior of the field in the 

center of the mesh. Fig.5 shows that the field is regular all over the cylinder radius, 

suggesting that the singularity is not strong enough to show up using a FEM 

discretization on a regular mesh. The only way we have found to observe it, was to 

strongly accumulate the mesh points towards the center (for example by dividing 5 

times the radial mesh interval closest to the axis by two, leading to radial mesh 

spacings ). 

Having verified that the solutions calculated with the wave equations (eq.16) 

behave in a satisfactory manner, the quality of the LFEM and CFEM 

discretizations is finally best judged in a convergence study monitoring the 

precision of the frequency and the gauge as a function of the spatial resolution. 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node9.html#secWvBC
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig5
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
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Figure 7: Convergence to the analytical result: relative frequency deviation Delta f 

versus the number of mesh intervals (N=N_s=N_theta) for the eigenmodes 

TE_01,TE_02,TE_11,TM_00} using LFEM (x-marks) and CFEM (circles). 
 

Fig.7 shows the convergence of for the eigenmodes , 

,  and  , where  refers to the  frequency obtained numerically and 

to the analytical result. Eigenfrequencies converge to the analytical values as 

using  LFEM and almost using  CFEM,  with an excellent  initial precision 

better than 1% for two mesh points per wavelength. 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig7
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Figure 8: Precision of the gauge versus the number of mesh intervals 

(N=N_s=N_theta) for the eigenmodes TE_01,TE_02,TE_11,TM_00 using LFEM 

(x-marks) and CFEM (circles). 
 

Convergence is also achieved for the gauge: fig.8 shows that the volume averaged 

gauge precision  converges  to zero as using LFEM, and 

using CFEM. 
 

To summarize, the calculations performed with the toroidal PENN code used here 

in the simplest limit possible show that Maxwell's equations (16) solved in a 

cylindrical cavity produce the complete physical spectrum without introducing 

numerically produced ''polluting`` modes. Both, the LFEM and the CFEM 

discretization schemes yield solutions which are numerically sane and converge to 

the analytical value with rates expected from the order of the interpolations. 
 

Boundary conditions 

Let us review the general boundary conditions on the field vectors at a surface 

between medium 1 and medium 2: 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig8
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
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(37) 

 

 

 

 

where   is used for the surface change density (to avoid confusion with the 

conductivity), and is the surface current density. Here, is a unit vector normal 

to the surface, directed from medium 2 to medium 1. We have seen in Section 4.4 

that for normal incidence an electromagnetic wave falls off very rapidly inside the 

surface of a good conductor. Equation (4.35) implies that in the limit of perfect 

conductivity ( ) the tangential component of vanishes, whereas that of  

may remain finite. Let us examine the behaviour of the normal components. 

 

Let  medium 1 be a  good conductor  for which  , whilst medium 2 is a 

perfect insulator. The surface change density is related to the currents flowing 

inside the conductor. In fact, the conservation of charge requires that 

 

 

(38) 

 

 

 

However, , so it follows from Eq. (6.1)(a) that 
 

 

(39) 
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It is  clear that the  normal component of  within the conductor also becomes 

vanishingly small as the conductivity approaches infinity. 

 

If vanishes inside a perfect conductor then the curl of also vanishes, and the 

time rate of change of  is correspondingly zero. This implies that there are no 

oscillatory fields whatever inside such a conductor, and that the boundary values of 

the fields outside are given by 

 

   
(40) 
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(43) 

 

 

 
Here,  is a unit normal at the surface of the conductor pointing into the conductor. 

Thus, the electric field is normal and the magnetic field tangential at the surface of 

a perfect conductor. For good conductors these boundary conditions yield excellent 

representations of the geometrical configurations of external fields, but they lead to 

the neglect of some important features of real fields, such as losses in cavities and 

signal attenuation in wave guides. 

 

In order to estimate such losses it is useful to see how the tangential and normal 

fields compare when is large but finite. Equations (4.5) and (4.34) yield 

 

 

(44) 

 

 

 
at the surface of a conductor (provided that the wave propagates into the 

conductor). Let us assume, without obtaining a complete solution, that a wave with 
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very nearly tangential and very nearly normal is propagated along the surface 

of the metal. According to the Faraday-Maxwell equation 

 

 

(45) 

 

 

 
just outside the surface, where  is the component of the propagation vector along 

the  surface.  However,  Eq. (6.5)  implies  that  a  tangential  component  of   is 

accompanied  by a  small  tangential component  of  . By comparing these two 

expressions, we obtain 

 

 

(46) 

 

 

 

where    is  the skin depth (see Eq. (4.36)) and . It is clear that the ratio of 

the tangential component of to its normal component is of order the skin depth 

divided by the wavelength. It is readily demonstrated that the ratio of the normal 

component of to its tangential component is of this same magnitude. Thus, we 

can see that in the limit of high conductivity, which means vanishing skin depth,  

no fields penetrate the conductor, and the boundary conditions are those given by 

Eqs. (6.4). Let us investigate the solution of the homogeneous wave equation 

subject to such boundary conditions. 

 

Cavities with rectangular boundaries 

Consider a vacuum region totally enclosed by rectangular conducting walls. In this 

case, all of the field components satisfy the wave equation 

 

 

(47) 
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where     represents  any  component of  or  . The boundary conditions (6.4) 

require that the electric field is normal to the walls at the boundary whereas the 

magnetic field is tangential. If , , and are the dimensions of the cavity, then it 

is readily verified that the electric field components are 
 

 

 

 

  
(48) 

 

 

 

 

 

 
(49) 

 

 

 

 

 

 
(50) 

 

 

 
where 
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with , , integers. The allowed frequencies are given by 

 

 

(54) 

 
 

 
It is clear from Eq. (6.9) that at least two of the integers  , , must be different 

from zero in order to have non-vanishing fields. The magnetic fields obtained by 
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the use of automatically satisfy the appropriate boundary conditions, 

and are in phase quadrature with the electric fields. Thus, the sum of the total 

electric and magnetic energies within the cavity is constant, although the two terms 

oscillate separately. 

 

The amplitudes of the electric field components are not independent, but are 

related by the divergence condition , which yields 

 

 
(55) 

 

 

 
There  are,   in  general,  two   linearly  independent   vectors   that satisfy this 

condition, corresponding to two polarizations. (The exception is the case that one 

of the integers  , , is zero, in which case is fixed in direction.) Each vector 

is accompanied by a magnetic field at right angles. The fields corresponding to a 

given set of integers  ,  , and  constitute a particular mode of vibration of the 

cavity. It is evident from standard Fourier theory that the different modes are 

orthogonal (i.e., they are normal modes) and that they form a complete set. In other 

words, any general electric and magnetic fields which satisfy the boundary 

conditions (6.4) can be unambiguously decomposed into some linear combination 

of all of the various possible normal modes of the cavity. Since each normal mode 

oscillates at a specific frequency it is clear that if we are given the electric and 

magnetic fields inside the cavity at time  then the subsequent behaviour of the 

fields is uniquely determined for all time. 

 

The conducting walls gradually absorb energy from the cavity, due to their finite 

resistivity, at a rate which can easily be calculated. For finite the small tangential 

component of at the walls can be estimated using Eq. (6.5): 

 

 

(56) 
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Now, the tangential component  of  at the walls is slightly different from that 

given by the ideal solution. However, this is a small effect and can be neglected to 

leading order in . The time averaged energy flux into the walls is given by 

 

 

(57) 

 
 

 

where  is the peak value of the tangential magnetic field at the walls predicted 

by the ideal solution. According to the boundary condition (6.4)(d),  is equal to 

the  peak value of the surface current density  . It is helpful to define a surface 

resistance, 

 

 
(58) 

 

 

 
where 

 

 

(59) 

 

 

 
This approach makes it clear that the dissipation of energy is due to ohmic heating 

in a thin layer, whose thickness is of order the skin depth, on the surface of the 

conducting walls. 

 

The quality factor of a resonant cavity 

The quality factor of a resonant cavity is defined 
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THE LINE AT RADIO FREQUENCY 

 

 

There are two main forms of line at high frequency, namely 

Open wire line 

Coaxial line 
 

At Radio Frequency G may be considered zero 

Skin effect is considerable 

Due to skin effect ƜL>>R 

 

Coaxial cable is used as a transmission line for radio frequency signals, in 

applications such as connecting radio transmitters and receivers with their 

antennas, computer network (Internet) connections, and distributing cable 

television signals. One advantage of coax over other types of transmission line is 

that in an ideal coaxial cable the electromagnetic field carrying the signal exists 

only in the space between the inner and outer conductors. This allows coaxial cable 

runs to be installed next to metal objects such as gutters without the power losses 

that occur in other transmission lines, and provides protection of the signal from 

external electromagnetic interference. 

 

http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Radio_transmitter
http://en.wikipedia.org/wiki/Radio_receiver
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Electromagnetic_field
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Electromagnetic_interference


 

 
How it works  

 

 

Coaxial cable differs from other shielded cable used for carrying lower frequency 

signals such as audio signals, in that the dimensions of the cable are controlled to 

produce a repeatable and predictable conductor spacing needed to function 

efficiently as a radio frequency transmission line. 

 

 

 

 

 

 
 

 

 

 

 
Coaxial cable cutaway 

 

Like any electrical power cord, coaxial cable conducts AC electric current between 

locations. Like these other cables, it has two conductors, the central wire and the 

tubular shield. At any moment the current is traveling outward from the source in 

one of the conductors, and returning in the other. However, since it is alternating 

current, the current reverses direction many times a second. Coaxial cable differs 

from other cable because it is designed to carry radio frequency current. This has a 

http://en.wikipedia.org/wiki/Shielded_cable
http://en.wikipedia.org/wiki/Audio_signal
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/AC
http://en.wikipedia.org/wiki/Alternating_current
http://en.wikipedia.org/wiki/Alternating_current
http://en.wikipedia.org/wiki/Radio_frequency


 

frequency much higher than the 50 or 60 Hz used in mains (electric power) cables, 

reversing direction millions to billions of times per second. Like other types of 

radio transmission line, this requires special construction to prevent power losses: 
 

If an ordinary wire is used to carry high frequency currents, the wire acts as an 

antenna, and the high frequency currents radiate off the wire as radio waves, 

causing power losses. To prevent this, in coaxial cable one of the conductors is 

formed into a tube and encloses the other conductor. This confines the radio waves 

from the central conductor to the space inside the tube. To prevent the outer 

conductor, or shield, from radiating, it is connected to electrical ground, keeping it 

at a constant potential. 
 

The dimensions and spacing of the conductors must be uniform. Any abrupt 

change in the spacing of the two conductors along the cable tends to reflect radio 

frequency power back toward the source, causing a condition called standing 

waves. This acts as a bottleneck, reducing the amount of power reaching the 

destination end of the cable. To hold the shield at a uniform distance from the 

central conductor, the space between the two is filled with a semirigid plastic 

dielectric. Manufacturers specify a minimum bend radius[2] to prevent kinks that 

would cause reflections. The connectors used with coax are designed to hold the 

correct spacing through the body of the connector. 
 

Each type of coaxial cable has a characteristic impedance depending on its 

dimensions and materials used, which is the ratio of the voltage to the current in 

the cable. In order to prevent reflections at the destination end of the cable from 

causing standing waves, any equipment the cable is attached to must present an 

impedance equal to the characteristic impedance (called 'matching'). Thus the 

equipment "appears" electrically similar to a continuation of the cable, preventing 

reflections. Common values of characteristic impedance for coaxial cable are 50 

and 75 ohms. 
 

Description 
 

 

Coaxial cable design choices affect physical size, frequency performance, 

attenuation, power handling capabilities, flexibility, strength and cost. The inner 

conductor might be solid or stranded; stranded is more flexible. To get better high- 

frequency performance, the inner conductor may be silver plated. Sometimes 

copper-plated iron wire is used as an inner conductor. 

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Mains_(electric_power)
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Radio_wave
http://en.wikipedia.org/wiki/Electrical_ground
http://en.wikipedia.org/wiki/Standing_wave
http://en.wikipedia.org/wiki/Standing_wave
http://en.wikipedia.org/wiki/Dielectric
http://en.wikipedia.org/wiki/Coaxial_cable#cite_note-1
http://en.wikipedia.org/wiki/Characteristic_impedance


 

The insulator surrounding the inner conductor may be solid plastic, a foam plastic, 

or may be air with spacers supporting the inner wire. The properties of dielectric 

control some electrical properties of the cable. A common choice is a solid 

polyethylene (PE) insulator, used in lower-loss cables. Solid Teflon (PTFE) is also 

used as an insulator. Some coaxial lines use air (or some other gas) and have 

spacers to keep the inner conductor from touching the shield. 
 

Many conventional coaxial cables use braided copper wire forming the shield. This 

allows the cable to be flexible, but it also means there are gaps in the shield layer, 

and the inner dimension of the shield varies slightly because the braid cannot be 

flat. Sometimes the braid is silver plated. For better shield performance, some 

cables have a double-layer shield. The shield might be just two braids, but it is 

more common now to have a thin foil shield covered by a wire braid. Some cables 

may invest in more than two shield layers, such as "quad-shield" which uses four 

alternating layers of foil and braid. Other shield designs sacrifice flexibility for 

better performance; some shields are a solid metal tube. Those cables cannot take 

sharp bends, as the shield will kink, causing losses in the cable. 
 

For high power radio-frequency transmission up to about 1 GHz coaxial cable with 

a solid copper outer conductor is available in sizes of 0.25 inch upwards. The outer 

conductor is rippled like a bellows to permit flexibility and the inner conductor is 

held in position by a plastic spiral to approximate an air dielectric. 
 

Coaxial cables require an internal structure of an insulating (dielectric) material to 

maintain the spacing between the center conductor and shield. The dielectric losses 

increase in this order: Ideal dielectric (no loss), vacuum, air, 

Polytetrafluoroethylene (PTFE), polyethylene foam, and solid polyethylene. A low 

relative permittivity allows for higher frequency usage. An inhomogeneous 

dielectric needs to be compensated by a non-circular conductor to avoid current 

hot-spots. 
 

Most cables have a solid dielectric; others have a foam dielectric which contains as 

much air as possible to reduce the losses. Foam coax will have about 15% less 

attenuation but can absorb moisture—especially at its many surfaces—in humid 

environments, increasing the loss. Stars or spokes are even better but more 

expensive. Still more expensive were the air spaced coaxials used for some inter- 

city communications in the middle 20th Century. The center conductor was 

suspended by polyethylene discs every few centimeters. In a miniature coaxial 

cable such as an RG-62 type, the inner conductor is supported by a spiral strand of 

polyethylene, so that an air space exists between most of the conductor and the 
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Open wire transmission lines have the property that the electromagnetic wave 

propagating down the line extends into the space surrounding the parallel wires. 

These lines have low loss, but also have undesirable characteristics. They cannot 

be bent, twisted or otherwise shaped without changing their characteristic 

impedance, causing reflection of the signal back toward the source. They also 

cannot be run along or attached to anything conductive, as the extended fields will 

induce currents in the nearby conductors causing unwanted radiation and detuning 

of the line. Coaxial lines solve this problem by confining the electromagnetic wave 

to the area inside the cable, between the center conductor and the shield. The 

transmission of energy in the line occurs totally through the dielectric inside the 

cable between the conductors. Coaxial lines can therefore be bent and moderately 

twisted without negative effects, and they can be strapped to conductive supports 

without inducing unwanted currents in them. In radio-frequency applications up to 

a few gigahertz, the wave propagates primarily in the transverse electric magnetic 

(TEM) mode, which means that the electric and magnetic fields are both 

perpendicular to the direction of propagation. However, above a certain cutoff 

frequency, transverse electric (TE) and/or transverse magnetic (TM) modes can 

also propagate, as they do in a waveguide. It is usually undesirable to transmit 

signals above the cutoff frequency, since it may cause multiple modes with 

different phase velocities to propagate, interfering with each other. The outer 

diameter is roughly inversely proportional to the cutoff frequency. A propagating 

surface-wave mode that does not involve or require the outer shield but only a 

single central conductor also exists in coax but this mode is effectively suppressed 

in coax of conventional geometry and common impedance. Electric field lines for 

inside of the jacket. The lower dielectric constant of air allows for a greater inner 

diameter at the same impedance and a greater outer diameter at the same cutoff 

frequency, lowering ohmic losses. Inner conductors are sometimes silver plated to 

smooth the surface and reduce losses due to skin effect. A rough surface prolongs 

the path for the current and concentrates the current at peaks and thus increases 

ohmic losses. 
 

The insulating jacket can be made from many materials. A common choice is PVC, 

but some applications may require fire-resistant materials. Outdoor applications 

may require the jacket to resist ultraviolet light and oxidation. For internal chassis 

connections the insulating jacket may be omitted. 
 

The ends of coaxial cables are usually made with RF connectors. 
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this TM mode have a longitudinal component and require line lengths of a half- 

wavelength or longer. 

 

 

Connectors 

 
 

 

 

 

 

 

 

 
 

 

 

A coaxial connector (male N-type). 

 

Coaxial connectors are designed to maintain a coaxial form across the connection 

and have the same well-defined impedance as the attached cable. Connectors are 

often plated with high-conductivity metals such as silver or gold. Due to the skin 

effect, the RF signal is only carried by the plating and does not penetrate to the 

connector body. Although silver oxidizes quickly, the silver oxide that is produced 

is still conductive. While this may pose a cosmetic issue, it does not degrade 

performance. 
 

Important parameters 

 

Coaxial cable is a particular kind of transmission line, so the circuit models 

developed for general transmission lines are appropriate. See Telegrapher's 

equation. 
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Fundamental electrical parameters  
 

 
 

 Shunt capacitance per unit length, in farads per metre.  

 

 

 
 

 

 

 

 
Schematic representation of the elementary components of a transmission line. 

 
 

 

 

 

 
Schematic representation of a coaxial transmission line, showing the characteristic 

impedance Z0. 

 

Physical parameters 

 Outside diameter of inner conductor, d. 

 Inside diameter of the shield, D. 

 Dielectric constant of the insulator, ε. The dielectric constant is often quoted 

as the relative dielectric constant εr referred to the dielectric constant of free 

space ε0: ε = εrε0. When the insulator is a mixture of different dielectric 

materials (e.g., polyethylene foam is a mixture of polyethylene and air), then 

the term effective dielectric constant εeff is often used. 

 Magnetic permeability of the insulator. μ Permeability is often quoted as the 

relative permeability μr referred to the permeability of free space μ0: μ = 

μrμ0. The relative permeability will almost always be 1. 

http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Farad
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Dielectric_constant
http://en.wikipedia.org/wiki/Magnetic_permeability


 

 
 

 Series inductance per unit length, in henrys per metre.  
 

 

 

Derived electrical parameters  
 

 

 

 Series resistance per unit length, in ohms per metre. The resistance per unit 

length is just the resistance of inner conductor and the shield at low 

frequencies. At higher frequencies, skin effect increases the effective 

resistance by confining the conduction to a thin layer of each conductor. 

 Shunt conductance per unit length, in siemens per metre. The shunt 

conductance is usually very small because insulators with good dielectric 

properties are used (a very low loss tangent). At high frequencies, a 

dielectric can have a significant resistive loss. 

from the ratio of the inner (d) and outer (D) diameters and the dielectric 

constant (ε). The characteristic impedance is given by[3] 

). Those parameters are determined simplified expression is ( 

 Characteristic impedance in ohms (Ω). Neglecting resistance per unit length 

for most coaxial cables, the characteristic impedance is determined from the 

capacitance per unit length (C) and the inductance per unit length (L). The 

 
 
Assuming the dielectric properties of the material inside the cable do not 

vary appreciably over the operating range of the cable, this impedance is 

frequency independent above about five times the shield cutoff frequency. 

For typical coaxial cables, the shield cutoff frequency is 600 (RG-6A) to 

2,000 Hz (RG-58C).[4] 

 Attenuation (loss) per unit length, in decibels per meter. This is dependent 

on the loss in the dielectric material filling the cable, and resistive losses in 

the center conductor and outer shield. These losses are frequency dependent, 

the losses becoming higher as the frequency increases. Skin effect losses in 

the conductors can be reduced by increasing the diameter of the cable. A 
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 Peak Voltage  
 

cable with twice the diameter will have half the skin effect resistance. 

Ignoring dielectric and other losses, the larger cable would halve the 

dB/meter loss. In designing a system, engineers consider not only the loss in 

the cable, but also the loss in the connectors. 

 Velocity of propagation, in meters per second. The velocity of propagation 

depends on the dielectric constant and permeability (which is usually 1). 

 Cutoff frequency is determined by the possibility of exciting other 

propagation modes in the coaxial cable. The average circumference of the 

insulator is π(D + d) / 2. Make that length equal to 1 wavelength in the 

dielectric. The TE01 cutoff frequency is therefore 

 
 

Significance of impedance 
 

The best coaxial cable impedances in high-power, high-voltage, and low- 

attenuation applications were experimentally determined in 1929 at Bell 

Laboratories to be 30, 60, and 77 Ω respectively. For an air dielectric coaxial cable 

with a diameter of 10 mm the attenuation is lowest at 77 ohms when calculated for 

10 GHz. The curve showing the power handling maxima at 30 ohms can be found 

here: 

 

 

Consider the skin effect. The magnitude of an alternating current in a conductor 

decays exponentially with distance beneath the surface, with the depth of 

penetration being proportional to the square root of the resistivity. This means that 

in a shield of finite thickness, some small amount of current will still be flowing on 

the opposite surface of the conductor. With a perfect conductor (i.e., zero 

resistivity), all of the current would flow at the surface, with no penetration into 

and through the conductor. Real cables have a shield made of an imperfect, 

although usually very good, conductor, so there will always be some leakage. 
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The characteristic impedance of a transmission line, and that the tx line 

gives rise to forward and backward travelling voltage and current waves. We will 

use this information to determine the voltage reflection coefficient, which relates 

the amplitude of the forward travelling wave to the amplitude of the backward 

travelling wave. 
 

To begin, consider the transmission line with characteristic impedance Z0 attached 

to a load with impedance ZL: 
 

 

 

At the terminals where the transmission line is connected to the load, the overall 

voltage must be given by: 
 

 

 

 

[1] 

The gaps or holes, allow some of the electromagnetic field to penetrate to the other 

side. For example, braided shields have many small gaps. The gaps are smaller 

when using a foil (solid metal) shield, but there is still a seam running the length of 

the cable. Foil becomes increasingly rigid with increasing thickness, so a thin foil 

layer is often surrounded by a layer of braided metal, which offers greater 

flexibility for a given cross-section. 
 

This type of leakage can also occur at locations of poor contact between connectors 

at either end of the cable. 
 

Nodes and Anti nodes : 
 

At any point on the transmission line voltage or current value is zero called nodes. 

At any point on the line voltage or current value is maximum called Antinodes 

Reflection Coefficient: 



 

Recall the expressions for the voltage and current on the line (derived on the 

previous page): 
 
 

 

If we plug this into equation [1] (note that z is fixed, because we are evaluating this 

at a specific point, the end of the transmission line), we obtain: 
 

 
The ratio of the reflected voltage amplitude to that of the forward voltage 

amplitude is the voltage reflection coefficient. This can be solved for via the above 

equation: 
 
 

 

The reflection coefficient is usually denoted by the symbol gamma. Note that the 

magnitude of the reflection coefficient does not depend on the length of the line, 

only the load impedance and the impedance of the transmission line. Also, note 

that if ZL=Z0, then the line is "matched". In this case, there is no mismatch loss 

and all power is transferred to the load. At this point, you should begin to 

understand the importance of impedance matching: grossly mismatched 

impedances will lead to most of the power reflected away from the load. 
 

Note that the reflection coefficient can be a real or a complex number. 

Standing Waves 

We'll now look at standing waves on the transmission line. Assuming the 

propagation constant is purely imaginary (lossless line), We can re-write the 

voltage and current waves as: 



 
 

 
 

If we plot the voltage along the transmission line, we observe a series of peaks and 

minimums, which repeat a full cycle every half-wavelength. If gamma equals 0.5 

(purely real), then the magnitude of the voltage would appear as: 
 

 
Similarly, if gamma equals zero (no mismatch loss) the magnitude of the voltage 

would appear as: 



 

 
 

Finally, if gamma has a magnitude of 1 (this occurs, for instance, if the load is 

entirely reactive while the transmission line has a Z0 that is real), then the 

magnitude of the voltage would appear as: 



 

 
 

One thing that becomes obvious is that the ratio of Vmax to Vmin becomes larger 

as the reflection coefficient increases. That is, if the ratio of Vmax to Vmin is one, 

then there are no standing waves, and the impedance of the line is perfectly 

matched to the load. If the ratio of Vmax to Vmin is infinite, then the magnitude of 

the reflection coefficient is 1, so that all power is reflected. Hence, this ratio, 

known as the Voltage Standing Wave Ratio (VSWR) or standing wave ratio is a 

measure of how well matched a transmission line is to a load. It is defined as: 
 
 

 

 

Input impedance of a transmission line: 

Determine the input impedance of a transmission line of length L attached to a 

load (antenna) with impedance ZA. Consider the following circuit: 



 

 

 
 

In low frequency circuit theory, the input impedance would simply be ZA. 

However, for high-frequency (or long) transmission lines, we know that the 

voltage and the current are given by: 
 
 

 

For simplicity, assume the transmission line is lossless, so that the propagation 

constant is purely imaginary. If we define z=0 to be at the terminals of the load or 

antenna, then we are interested in the ratio of the voltage to the current at location 

z=-L: 
 
 

 

Using the definition for gamma (the voltage reflection coefficient), the above 

equation can be manipulated algebraically, and when evaluated at z=-L, we obtain: 



 

 
 

This last equation is fundamnetal to understanding transmission lines. The input 

impedance of a load ZA is transformed by a transmission line as in the above 

equation. This equation can cause ZA to be transformed radically. An example will 

now be presented. 
 

Example 
 

Consider a voltage source, with generator impedance Zg, hooked to an antenna 

with impedance ZA via a transmission line. Suppose that Zg=50 Ohms, ZA=50 

Ohms, Z0=200 Ohm, and that the line is a quarterwavelength long. How much 

power does the generator deliver? 
 

Answer: The diagram for this problem is given in the following diagram: 
 

 
The above diagram also shows the "equivalent circuit". The input impedance 

becomes: 



 

 
 

Hence, the current that flows is given by: 
 

 

 

Note that if high frequency circuit theory was not taken into account, the current 

flow would have been V/100 Amps. This illustrates how transmission lines can 

upset the expected operation of high frequency circuits. 

Quarter-Wave Transformer 

 

Recall our formula for the input impedance of a transmission line of length L with 

characteristic impedance Z0 and connected to a load with impedance ZA: 
 

 

An interesting thing happens when the length of the line is a quarter of a 

wavelength: 



 

 
 

The above equation is important: it states that by using a quarter-wavelength of 

transmission line, the impedance of the load (ZA) can be transformed via the above 

equation. The utility of this operation can be seen via an example. 
 

Example. Match a load with impedance ZA=100 Ohms to be 50 Ohms using a 

quarter-wave transformer, as shown below. 
 

 
Solution: The problem is to determine Z0 (the characteristic impedance of our 

quarter-wavelength transmission line) such that the 100 Ohm load is matched to 50 

Ohms. By applying the above equation, the problem is simple: 
 



 

Hence, by using a transmission line with a characteristic impedance of 70.71 

Ohms, the 100 Ohm load is matched to 50 Ohms. Hence, if a transmitter has an 

impedance of 50 Ohms and is trying to deliver power to the load (antenna), no 

power will be reflected back to the transmitter. In general, impedance matching is 

very important in RF/microwave circuit design. It is relatively simple at a single 

frequency, but becomes very difficult if wideband impedance matching is desired. 
 

This technique is commonly employed with patch antennas. Circuits are printed as 

shown in the following figure. A 50 Ohm microstrip transmission line is matched 

to a patch antenna (impedance typically 200 Ohms or more) via a quarter- 

wavelength microstrip transmission line with the characteristic impedance chosen 

to match the load. 
 

 
 

 
Because the quarter-wavelength transmission line is only a quarter-wavelength at a 

single frequency, this is a narrow-band matching technique. In the next section, 

we'll look at more uses of transmission lines. 
 

 

Stub 
 

In microwave and radio-frequency engineering, a stub is a length of transmission 

line or waveguide that is connected at one end only. The free end of the stub is 

either left open-circuit or (especially in the case of waveguides) short-circuited. 

Neglecting transmission line losses, the input impedance of the stub is purely 

reactive; either capacitive or inductive, depending on the electrical length of the 
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The length of a stub to act as an inductor L at the same frequency is given by:  
 

 

stub, and on whether it is open or short circuit. Stubs may thus be considered to be 

frequency-dependent capacitors and frequency-dependent inductors. 
 

Because stubs take on reactive properties as a function of their electrical length, 

stubs are most common in UHF or microwave circuits where the line lengths are 

more manageable. Stubs are commonly used in antenna impedance matching 

circuits and frequency selective filters. 
 

Smith charts can also be used to determine what length line to use to obtain a 

desired reactance. 

Short circuited stub 

 

The input impedance of a lossless short circuited line is, 

where j is the imaginary unit, Z0 is the characteristic impedance of the line, β is the 

phase constant of the line, and l is the physical length of the line. 

Thus, depending on whether tan(βl) is positive or negative, the stub will be 

inductive or capacitive, respectively. 
 

The Length of a stub to act as a capacitor C at an angular frequency of ω is then 

given by: 

Open circuited stub 

 
The input impedance of a lossless open circuit stub is given by 
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The length of an open circuit stub to act as a capacitor C at the same frequency is:  
 

 

Stub matching 
 

 

 

 

 

 

 

 

 

 

In a stripline circuit, a stub may be placed just before an output connector to 

compensate for small mismatches due to the device's output load or the connector 

itself. 
 

Stubs can be used to match a load impedance to the transmission line characteristic 

impedance. The stub is positioned a distance from the load. This distance is chosen 

so that at that point the resistive part of the load impedance is made equal to the 

resistive part of the characteristic impedance by impedance transformer action of 

the length of the main line. The length of the stub is chosen so that it exactly 

cancels the reactive part of the presented impedance. That is, the stub is made 

capacitive or inductive according to whether the main line is presenting an 

inductive or capacitive impedance respectively. This is not the same as the actual 

impedance of the load since the reactive part of the load impedance will be subject 

to impedance transformer action as well as the resistive part. Matching stubs can 

be made adjustable so that matching can be corrected on test. 

It follows that whether cot(βl) is positive or negative, the stub will be capacitive or 

inductive, respectively. 

The length of an open circuit stub to act as an Inductor L at an angular frequency 

of ω is: 
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single stub will only achieve a perfect match at one specific frequency. For 

wideband matching several stubs may be used spaced along the main 

transmission line. The resulting structure is filter-like and filter design techniques 

are applied. For instance, the matching network may be designed as a Chebyshev 

filter but is optimised for impedance matching instead of passband transmission. 

The resulting transmission function of the network has a passband ripple like the 

Chebyshev filter, but the ripples never reach 0dB insertion loss at any point in the 

passband, as they would do for the standard filter. 

 

 
Single stub impedance matching: 

•  The load should be matched to the characteristic impedance of the line so 

that as much power as possible is transmitted from the generator to the load for 

radio-frequency power transmission. 

•  The lines should be matched because reflections from mismatched loads and 

junctions will result in echoes and will distort the information-carrying signal for 

information transmission. 

•  Short-circuited (instead of open-circuited) stubs are used for impedance- 

matching on transmission lines. 

•  Single-stub method for impedance matching : an arbitrary load impedance 

can be matched to a transmission line by placing a single short-circuited stub in 

parallel with the line at a suitable location (Fig.8-12). 
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•  : the input admittance at BB’ looking toward the load without the 

stub. 

•  Our impedance- (or admittance-) matching problem : to determine 

the location d and the length of the stub such 

that 

WhereYo=1/Ro 

•  In terms of normalized admittance, the above equation 

becomes 

 

•  Ys purely imaginary (the input admittance of a short-circuited stub is 

purely susceptive). 

•  Thus, the above equation can be satisfied only 

if 

 



 

 

and 

 

 

 

where bB can be either positive or negative. 

•  Our objectives : (1) to find the length d  such that the admittance YB of the 

load section looking to the right of terminal BB’ has a unitary real part, and 

(2) to find the length of the stub required to cancel the imaginary part. 
 

 

 

 

 

 

Smith Chart: 

The Smith Chart is a fantastic tool for visualizing the impedance of a transmission 

line and antenna system as a function of frequency. Smith Charts can be used to 

increase understanding of transmission lines and how they behave from an 

impedance viewpoint. Smith Charts are also extremely helpful for impedance 

matching, as we will see. The Smith Chart is used to display a real antenna's 

impedance when measured on a Vector Network Analyzer (VNA). 
 

Smith Charts were originally developed around 1940 by Phillip Smith as a useful 

tool for making the equations involved in transmission lines easier to manipulate. 

See, for instance, the input impedance equation for a load attached to a 

transmission line of length L and characteristic impedance Z0. With modern 

computers, the Smith Chart is no longer used to the simplify the calculation of 

transmission line equatons; however, their value in visualizing the impedance of an 

antenna or a transmission line has not decreased. 
 

The Smith Chart is shown in Figure 1. A larger version is shown here. 
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Figure 1. The basic Smith Chart. 
 

Figure 1 should look a little intimidating, as it appears to be lines going 

everywhere. There is nothing to fear though. We will build up the Smith Chart 

from scratch, so that you can understand exactly what all of the lines mean. In fact, 

we are going to learn an even more complicated version of the Smith Chart known 

as the immitance Smith Chart, which is twice as complicated, but also twice as 

useful. But for now, just admire the Smith Chart and its curvy elegance. 
 

This section of the antenna theory site will present an intro to the Smith Chart 

basics. 
 

Smith Chart Tutorial 



 

We'll now begin to explain the Smith Chart. The Smith Chart displays the complex 

reflection coefficient, in polar form, for an arbitrary impedance (we'll call the 

impedance ZL or the load impedance). For a primer on complex math, click here. 

 
Recall that the complex reflection coefficient ( ) for an impedance ZL attached 

to a transmission line with characteristic impedance Z0 is given by: 
 

        [1] 

For this tutorial, we will assume Z0 is 50 Ohms, which is often, but not always the 

case. 

 
The complex reflection coefficient, or , must have a magnitude between 0 and 

1. As such, the set of all possible values for must lie within the unit circle: 
 

Figure 2. The Complex Reflection Coefficient must lie somewhere within the unit 

circle. 
 

In Figure 2, we are plotting the set of all values for the complex reflection 

coefficient, along the real and imaginary axis. The center of the Smith Chart is the 
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point where the reflection coefficient is zero. That is, this is the only point on the 

smith chart where no power is reflected by the load impedance. 

 
The outter ring of the Smith Chart is where the magnitude of     is equal to 1. This 

is the black circle in Figure 1. Along this curve, all of the power is reflected by the 

load impedance. 
 

Normalized Load Impedance 
 

To make the Smith Chart more general and independent of the characteristic 

impedance Z0 of the transmission line, we will normalize the load impedance ZL 

by Z0 for all future plots: 
 

        [1] 

Equation [1] doesn't affect the reflection coefficient (  ). It is  just a convention   

that is used everywhere. 
 

Constant Resistance Circles 

 
for a given normalized load impedance zL, we can determine and plot it on the 

Smith Chart. 
 

Now, suppose we have the normalized load impedance given by: 
 

        [2] 

In equation [2], Y is any real number. What would the curve corresponding to 

equation [2] look like if we plotted it on the Smith Chart for all values of Y? That 

is, if we plotted z1 = 1 + 0*i, and z1 = 1 + 10*i, z1 = 1 - 5*i, z1 = 1 - .333*i, .... 

and any possible value for Y that you could think of, what is the resulting curve? 

The answer is shown in Figure 1: 



 

 
 

Figure 1. Constant Resistance Circle for zL=1 on Smith Chart. 
 

In Figure 1, the outer blue ring represents the boundary of the smith chart. The 

black curve is a constant resistance circle: this is where all values of z1 = 1 + i*Y 

will lie on. Several points are plotted along this curve, z1 = 1, z1 = 1 + i*2, and zL 

= 1 - i*4. 
 

Suppose we want to know what the curve z2 = 0.3 + i*Y looks like on the Smith 

Chart. The result is shown in Figure 2: 



 

 
 

Figure 2. Constant Resistance Circle for zL=0.3 on Smith Chart. 
 

In Figure 2, the black ring represents the set of all impedances where the real part 

of z2 equals 0.3. A few points along the circle are plotted. We've left the resistance 

circle of 1.0 in red on the Smith Chart. 
 

These circles are called constant resistance curves. The real part of the load 

impedance is constant along each of these curves. We'll now add several values for 

the constant resistance, as shown in Figure 3: 



 

 
 

Figure 3. Constant Resistance Circles on Smith Chart. 
 

In Figure 3, the zL=0.1 resistance circle has been added in purple. The zL=6 

resistance circle has been added in green, and zL=2 resistance circle is in black. 
 

look at the set of curves defined by zL = R + iY, where Y is held constant and R 

varies from 0 to infinity. Since R cannot be negative for antennas or passive 

devices, we will restrict R to be greater than or equal to zero. As a  first example, 

let zL = R + i. The curve defined by this set of impedances is shown in Figure 1: 



 

 
 

Figure 1. Constant Reactance Curve for zL = R + i*1. 
 

The resulting curve zL = R + i is plotted in green in Figure 1. A few points along 

the curve are illustrated as well. Observe that zL = 0.3 + i is at the intersection of 

the Re[zL] = 0.3 circle and the Im[zL]=1 curve. Similarly, observe that the zL = 2 

+ i point is at the intersection of the Re[zL]=2 circle and the Im[zL]=1 curve. (For 

a quick reminder of real and imaginary parts of complex numbers, see complex 

math primer.) 
 

The constant reactance curve, defined by Im[zL]=-1 is shown in Figure 2: 

http://www.thefouriertransform.com/math/complexmath.php
http://www.thefouriertransform.com/math/complexmath.php


 

 
 

Figure 2. Constant Reactance Curve for zL = R - i. 
 

The resulting curve for Im[zL]=-1 is plotted in green in Figure 2. The point zL=1-i 

is placed on the Smith Chart, which is at the intersection of the Re[zL]=1 circle  

and the Im[zL]=-1 curve. 
 

An important curve is given by Im[zL]=0. That is, the set of all impedances given 

by zL = R, where the imaginary part is zero and the real part (the resistance) is 

greater than or equal to zero. The result is shown in Figure 3: 



 

 
 

Figure 3. Constant Reactance Curve for zL=R. 
 

The reactance curve given by Im[zL]=0 is a straight line across the Smith Chart. 

There are 3 special points along this curve. On the far left, where zL = 0 + i0, this 

is the point where the load is a short circuit, and thus the magnitude of  is 1, so 

all power is reflected. 
 

In the center of the Smith Chart, we have the point given by zL = 1. At this 

location,  is 0, so the load is exactly matched to the transmission line. No power 

is reflected at this point. 
 

The point on the far right in Figure 3 is given by zL = infinity. This is the open 

circuit location. Again, the magnitude of  is 1, so all power is reflected at this 

point, as expected. 
 

Finally, we'll add a bunch of constant reactance curves on the Smith Chart, as 

shown in Figure 4. 



 

 

 
 
 

Figure 4. Smith Chart with Reactance Curves and Resistance Circles. 
 

In Figure 4, we added constant reactance curves for Im[zL]=2, 

Im[zL]=5, Im[zL]=0.2, Im[zL]=0.5, Im[zL]=-2, Im[zL]=-5, Im[zL]=-

0.2, and Im[zL] = -0.5. 
 

Figure 4 shows the fundamental curves of the Smith 

Chart. Applications of smith Chart: 

Plotting an 

impedance 

Measurement 

of VSWR 



Measurement of reflection coefficient (magnitude 

and phase) Measurement of input impedance of the 

line 

 



 
 

 

UNIT IV 

GUIDED WAVES BETWEEN PARALLEL PLANES 

 
 

The waves guided or directed by the guided structures are called guided wave. 

In general wave equations are derived from Maxwell’s equation. To obtain the 

solution of this problem it is essential to apply certain restrictions or boundary 

conditions to the Maxwell’s equation. 

 

Maxwell's Equations are a set of four vector-differential equations that govern all 

of electromagnetics (except at the quantum level, in which case we as antenna 

people don't care so much). They were first presented in a complete form by James 

Clerk Maxwell back in the 1800s. He didn't come up with them all on his own, but 

did add the displacement current term to Ampere's law which made them complete. 
 

The four equations (written only in terms of E and H, the electric field and the 

magnetic field), are given below. 
 

 

In Gauss' law,  is the volume electric charge density, J is the electric current 

density (in Amps/meter-squared),    is the permittivity and is the permeability. 

The good news about this is that all of electromagnetics is summed up in these 4 

equations. The bad news is that no matter how good at math you are, these can  

only be solved with an analytical solution in extremely simple cases. Antennas 

don't present a very simple case, so these equations aren't used a whole lot in 

antenna theory (except for numerical methods, which numerically solve these 

approximately using a whole lot of computer power). 
 

The last two equations (Faraday's law and Ampere's law) are responsible for 

electromagnetic radiation. The curl operator represents the spatial variation of the 

fields, which are coupled to the time variation. When the E-field travels, it is 

http://www.antenna-theory.com/definitions/efield.php
http://www.antenna-theory.com/definitions/hfield.php
http://www.antenna-theory.com/definitions/permittivity.php
http://www.antenna-theory.com/definitions/permeability.php


 
 

 

altered in space, which gives rise to a time-varying magnetic field. A time-varying 

magnetic field then varies as a function of location (space), which gives rise to a 

time varying electric field. These equations wrap around each other in a sense, and 

give rise to a wave equation. These equations predict electromagnetic radiation as 

we understand it. 
 

 

 

 

 
 

 

 

Consider a parallel-plate waveguide of two perfectly conducting plates separated 

by a distance b and filled with a dielectric medium having constitutive parameter 

as shown in Fig. 9-3. The plates are assumed to be infinite in extent in the x- 

direction. (Fields do not vary in the x-direction.) 

a) Obtain the time-harmonic field expressions for TM modes in the guide. 

b) Determine the cutoff frequency. 

a) For TM modes, 

- Eq. becomes 



 
 

 

 
 

 

 

The general solution for Eq. (9-44) : 

- Boundary conditions (The tangential component of the electric field must vanish 

on the surface of the perfectly conducting plates.) : 

(i) At y=0 Ez=0 

(ii) At y=b Ez=0 

- The value of the eigenvalue h : 
 

 

Types of propagation: 

TE waves 

TM waves 

TEM waves 

Transverse electric(TE) wave has the magnetic field component in the direction of 

propagation, but no component of the electric field in the same direction. Hence 

the TE waves also known as M –waves or H-waves. 

 

Transverse magnetic(TM) wave has the electric field in the direction of 

propagation, but no component of the magnetic field in the same direction. Hence 

the TM waves are also called E-waves. 

 

Transverse electro magnetic(TEM) wave: 

No field in the direction of propagation 

 

Attenuation of parallel plane guides: 

When the electromagnetic wave propagates through the wave guide, the 

amplitude of the fields or the signal strength of the wave decreases as the distance 

from the source increases. This is because when the wave strike the walls of the 

guide, the loss in the power takes place The attenuation factor is denoted by α. 

 

Α=Power lost per unit length/2*power transmitted 



 
 

 

Attenuation due to finite wall conductivity is inversely proportional to the 

square root of wall conductivity, but depends on the mode and the frequency in 

a complicated way. 

Attenuation due to wall losses in rectangular copper waveguide : Figure 9-7. 

TE10 mode has the lowest attenuation in a rectangular waveguide. 

The attenuation constant increases rapidly toward infinity as the operating 

frequency approaches the cutoff frequency. 

Causes for attenuation in waveguides : lossy dielectric and imperfectly 

conducting walls. 

 

Cut-off frequency: 

The frequency at which wave motion ceases is called cut-off frequency 
 

 
 

 

Propagation Constant: 



 
 

 
 

 
 

 

 

 

 

Wave impedance: 

It is the ratio of the component of the electric field to that of magnetic field. 

Wave impedance for TEM wave 

 

Wave impedance for TM and TE wave 
 
 

 

Phase velocity: 

It is the velocity at which energy propagates along a wave guide 
 
 

 

 

• The phase velocity and the wave impedance for TEM waves are independent 

of the frequency of the waves. 

• TEM waves cannot exist in a single-conductor hollow (or dielectric-filled) 

waveguide of any shape. 



 
 

z 

z 

 

 

 

Rectangular waveguides are the one of the earliest type of the transmission lines. 

They are used in many applications. A lot of components such as isolators, 

detectors, attenuators, couplers and slotted lines are available for various standard 

waveguide bands between 1 GHz to above 220 GHz. 
 

A rectangular waveguide supports TM and TE modes but not TEM waves because 

we cannot define a unique voltage since there is only one conductor in a 

rectangular waveguide. The shape of a rectangular waveguide is as shown below. 

A material with permittivity e and permeability m fills the inside of the conductor. 
 

A rectangular waveguide cannot propagate 

below some certain frequency. This 

frequency is called the cut-off frequency. 
 

Here, we will discuss TM mode rectangular 

waveguides and TE mode rectangular 

waveguides separately. Let’s start with the 

TM mode. 

 

TM Modes 
 

Consider the shape of the rectangular waveguide above with dimensions a and b 

(assume a>b) and the parameters e and m. For TM waves Hz = 0 and Ez should be 

solved from equation for TM mode; 
 

Ñ2 E 0 + h2 E 0 = 0 
xy z z 

 

Since Ez(x,y,z) = E 0(x,y)e-gz, we get the following equation, 
 

If we use the method of separation of variables, that is E 0(x,y)=X(x).Y(y) we get, 
 



 
 

x 

z 

z 

z 

z 

z 

 

Since the right side contains x terms only and the left side contains y terms only, 

they are both equal to a constant. Calling that constant as k 2, we get; 
 

 

where k 2=h2-k 2 
y x 

 

Now, we should solve for X and Y from the preceding equations. Also we have the 

boundary conditions of; 
 

E 0(0,y)=0 

E 0(a,y)=0 

E 0(x,0)=0 

E 0(x,b)=0 

From all these, we conclude that 
 

X(x) is in the form of sin kxx, where kx=mp/a, m=1,2,3,… 

Y(y) is in the form of sin kyy, where ky=np/b, n=1,2,3,… 

So the solution for E 0(x,y) is 

 

 

 
From k 2=h2-k 2, we have; 

(V/m) 

y x 

 

 

For TM waves, we have 



 
 

 

 
 

 

 

 

From these equations, we get 
 

 

 

 

where 
 

Here, m and n represent possible modes and it is designated as the TMmn mode. m 

denotes the number of half cycle variations of the fields in the x-direction and n 

denotes the number of half cycle variations of the fields in the y-direction. 



 
 

 

When we observe the above equations we see that for TM modes in rectangular 

waveguides, neither m nor n can be zero. This is because of the fact that the field 

expressions are identically zero if either m or n is zero. Therefore, the lowest mode 

for rectangular waveguide TM mode is TM11 . 

Here, the cut-off wave number is 
 

and therefore, 
 

The cut-off frequency is at the point where g vanishes. Therefore, 
 

Since l=u/f, we have the cut-off wavelength, 
 

At a given operating frequency f, only those frequencies, which have fc<f will 

propagate. The modes with f<fc will lead to an imaginary b which means that the 

field components will decay exponentially and will not propagate. Such modes are 

called cut-off or evanescent modes. 
 

The mode with the lowest cut-off frequency is called the dominant mode. Since 

TM modes for rectangular waveguides start from TM11 mode, the dominant 

frequency is 



 
 

 

 
 

The wave impedance is defined as the ratio of the transverse electric and magnetic 

fields. Therefore, we get from the expressions for Ex and Hy (see the equations 

above); 
 

 

The guide wavelength is defined as the distance between two equal phase planes 

along the waveguide and it is equal to 
 

 

which is thus greater than l, the wavelength of a plane wave in the filling medium. 

The phase velocity is 

 
 

which is greater than the speed of light (plane wave) in the filling material. 
 

Attenuation for propagating modes results when there are losses in the dielectric 

and in the imperfectly conducting guide walls. The attenuation constant due to the 

losses in the dielectric can be found as follows: 
 

 

TE Modes 
 

Consider again the rectangular waveguide below with dimensions a and b (assume 

a>b) and the parameters e and m. 



 
 

z 

xy z z 

z 

x 

 

For TE waves Ez = 0 and Hz should be 

solved from equation for TE mode; 
 

Ñ2 H + h2 H = 0 

Since Hz(x,y,z) = H 0(x,y)e-gz, we get the 

following equation, 
 

 

 

 

 

If we use the method of separation of variables, that is H 0(x,y)=X(x).Y(y) we get, 
 

Since the right side contains x terms only and the left side contains y terms only, 

they are both equal to a constant. Calling that constant as k 2, we get; 
 

 

where k 2=h2-k 2 
y x 

 

Here, we must solve for X and Y from the preceding equations. Also we have the 

following boundary conditions: 
 

at x=0 

at x=a 

at y=0 



 
 

 

 

 

at y=b 

From all these, we get 

 

 

 
From k 2=h2-k 2, we have; 

(A/m) 

y x 

 

 

For TE waves, we have 
 

 

 

 

From these equations, we obtain 
 

 



 
 

 

 
 

 

where 
 

As explained before, m and n represent possible modes and it is shown as the TEmn 

mode. m denotes the number of half cycle variations of the fields in the x-direction 

and n denotes the number of half cycle variations of the fields in the y-direction. 
 

Here, the cut-off wave number is 
 

and therefore, 
 

The cut-off frequency is at the point where g vanishes. Therefore, 
 

Since l=u/f, we have the cut-off wavelength, 
 



 
 

 

At a given operating frequency f, only those frequencies, which have f>fc will 

propagate. The modes with f<fc will not propagate. 

The mode with the lowest cut-off frequency is called the dominant mode. Since 

TE10 mode is the minimum possible mode that gives nonzero field expressions for 

rectangular waveguides, it is the dominant mode of a rectangular waveguide with 

a>b and so the dominant frequency is 
 

 

 
 

 

The wave impedance is defined as the ratio of the transverse electric and magnetic 

fields. Therefore, we get from the expressions for Ex and Hy (see the equations 

above); 
 

 

The guide wavelength is defined as the distance between two equal phase planes 

along the waveguide and it is equal to 
 

 

which is thus greater than l, the wavelength of a plane wave in the filling medium. 

The phase velocity is 

 
 

which is greater than the speed of the plane wave in the filling material. 
 

The attenuation constant due to the losses in the dielectric is obtained as follows: 
 



 
 

 

After some manipulation, we get 
 

Example: 
 

Consier a length of air-filled copper X-band waveguide, with dimensions 

a=2.286cm, b=1.016cm. Find the cut-off frequencies of the first four propagating 

modes. 
 

Solution: 
 

From the formula for the cut-off frequency 
 



 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT V 
 

WAVEGUIDES 

Waveguides are basically a device ("a guide") for transporting electromagnetic 

energy from one region to another. Typically, waveguides are hollow metal tubes 

(often rectangular or circular in cross section). They are capable of directing power 

precisely to where it is needed, can handle large amounts of power and function as 

a high-pass filter. 
 

The waveguide acts as a high pass filter in that most of the energy above a certain 

frequency (the cutoff frequency) will pass through the waveguide, whereas most of 

the energy that is below the cutoff frequency will be attenuated by the waveguide. 

Waveguides are often used at microwave frequencies (greater than 300 MHz, with 

8 GHz and above being more common). 
 

Waveguides are wideband devices, and can carry (or transmit) either power or 

communication signals. An example of a hollow metal rectangular waveguide is 

shown in the following figure. 



 

 

 
 

Waveguides can bend if the desired application requires it, as shown in the 

following Figure. 
 

The above waveguides can be used with waveguide to coaxial cable adapters, as 

shown in the next Figure: 



 

 
 

We now know what a waveguide is. Lets examine metal cavities with a rectangular 

cross section, as shown in Figure 1. Assume the waveguide is filled with vaccuum, 

air or some dielectric with the  permeability given by and the permittivity given 

by . 
 

The waveguide has a width a in the x-direction, and a height b in the y-direction, 

with a>b. The z-axis is the direction in which the waveguide is to carry power. 
 

Figure 1. Cross section of a waveguide with long dimension a and short dimension 

b. 
 

On this page, I'm going to give the general "rules" for waveguides. That is, I'll give 

the equations for key parameters and let you know what the parameters mean. On 

the next page, we'll go into the mathematical derivation (which you would do in 

engineering graduate school), but you can get away with not knowing all that math 

if you don't want to know it. 
 

First and possibly most importantly, this waveguide has a cutoff frequency, fc. The 

cutoff frequency is the frequency at which all lower frequencies are attenuated by 

the waveguide, and above the cutoff frequency all higher frequencies propagate 

http://www.antenna-theory.com/definitions/permeability.php
http://www.antenna-theory.com/definitions/permittivity.php


 

within the waveguide. The cutoff frequency defines the high-pass filter 

characteristic of the waveguide: above this frequency, the waveguide  passes 

power, below this frequency the waveguide attenuates or blocks power. 
 

The cutoff frequency depends on the shape and size of the cross section of the 

waveguide. The larger the waveguide is, the lower the cutoff frequency for that 

waveguide is. The formula for the cutoff frequency of a rectangular cross sectioned 

waveguide is given by: 
 

In the above, c is the speed of light within the waveguide, mu is the permeability of 

the material that fills the waveguide, and epsilon is the permittivity of the material 

that fills the waveguide. Note that the cutoff frequency is independent of the short 

length b of the waveguide. 
 

The cutoff frequency for a waveguide with a circular cross section of radius a is 

given by: 
 

Due to Maxwell's Equations, the fields within the waveguide always have a 

specific "form" or "waveshape" to them - these are called modes. Assume the 

waveguide is oriented such that the energy is to be transmitted along the  

waveguide axis, the z-axis. The modes are classified as either TE ('transverse 

electric' - which indicates that the E-field is orthogonal to the axis of the 

waveguide, so that Ez=0) or TM ('transverse magnetic' - which indicates that the 

H-field is orthogonal to the axis of the waveguide, so Hz = 0). The modes are 

further classified as TEij, where the i and j indicate the number of  wave 

oscillations for a particular field direction in the long direction (dimension a in 

Figure 1) and short direction (dimension b in Figure 1), respectively. 
 

Metal waveguides cannot support the TEM ('transverse electric and magnetic' - 

when Ez and Hz are zero) mode. Their exists no solution to Maxwell's equations 

that also satisfy the required boundary conditions for this mode to occur. 

http://www.antenna-theory.com/definitions/permeability.php
http://www.antenna-theory.com/definitions/permittivity.php
http://www.antenna-theory.com/definitions/maxwellsequations.php
http://www.antenna-theory.com/definitions/efield.php
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Maxwell's Equations are not easy to solve. Hence, every math trick someone can 

think of will be used in order to make the analysis tractable. We'll start with 

discussing the electric vector potential, F. In a source-free region (i.e., an area 

through which waves propagate that is away from sources), we know that: 
 

In the above, D is the Electric Flux Density. If a vector quantity is divergenceless 

(as in the above), then it can be expressed as the curl of another quantity. This 

means that we can write the solution for D and the corresponding electric field E 

as: 
 

In the above, epsilon is the permittivity of the medium through which the wave 

propagates. We are purely in the world of mathematics now. The quantity F is not 

physical, and is of little practical value. It is simply an aid in performing our 

mathematical manipulations. 
 

It turns out that waves (or electromagnetic energy) can not propagate in a 

waveguide when both Hz and Ez are equal to zero. Hence, what field 

configurations that are allowed will be classified as either TM (Transverse 

Magnetic, in which Hz=0) and TE (Transverse Electric, in which Ez=0). The 

reason that waves cannot be TEM (Transverse Electromagnetic, Hz=Ez=0) will be 

shown towards the end of this derivation. 
 

To perform our analysis, we'll assume that Ez=0 (i.e., we are looking at a TE mode 

or field configuration). In this case, working through Maxwell's equations, it can be 

shown that the E- and H- fields can be determined from the following equations: 

http://www.antenna-theory.com/definitions/electricfluxdensity.php
http://www.antenna-theory.com/definitions/permittivity.php


 

 
 

Therefore, if we can find Fz (the z-component of the vector F), then we can find 

the E- and H- fields. In the above equation, k is the wavenumber. 
 

Working through the math of Maxwell's Equations, it can be shown that in a 

source-free region, the vector potential F must satisfy the vector wave equation: 
 

         [1] 

To break this equation down, we will look only at the z-component of the above 

equation (that is, Fz). We will also assume that we are looking at a single 

frequency, so that the time dependence is assumed to be of the form given by (we 

are now using phasors to analyze the equation): 
 

 

Then the equation [1] can be simplified as follows: 
 

             [2] 

http://www.antenna-theory.com/definitions/wavenumber.php


 

To solve this equation, we will use the technique of separation of variables. Here 

we assume that the function Fz(x, y, z) can be written as the product of three 

functions, each of a single variable. That is, we assume that: 
 

           [3] 

(You might ask, how do we know that the separation of variables assumption 

above is valid? We don't - we just assume its correct, and if it solves the  

differential equation when we are done doing the analysis then the assumption is 

valid). Now we plug in our assumption for Fz (equation [3]) into equation [2], and 

we end up with: 

 

 

 

[4] 
 

In the above equation, the prime represents the derivative with respect to the 

variable in the equation (for instance, Z' represents the derivative of the Z-function 

with respect to z). We will break up the variable k^2 into components (again, just 

to make our math easier): 
 

           [5] 

Using equation [5] to breakdown equation [4], we can write: 
 

            [6] 

The reason that the equations in [6] are valid is because they are only functions of 

independent variables - hence, each equation must hold for [5] to be true 

everywhere in the waveguide. Solving the above equations using ordinary 

differential equations theory, we get: 



 

 

 

 

 

 

 
 

 

[7] 
 

The form of the solution in the above equation is different for Z(z). The reason is 

that both forms (that for X and Y, and that for Z), are both equally valid solutions 

for the differential equations in equation [6]. However, the complex exponential 

typically represents travelling waves, and the [real] sinusoids represent standing 

waves. Hence, we choose the forms given in [7] for the solutions. No math rules 

are violated here; again, we are just choosing forms that will make our analysis 

easier. 
 

For now, we can set c5=0, because we want to analyze waves propagating in the 

+z-direction. The analysis is identical for waves propagating in the -z-direction, so 

this is fairly arbitrary. The solution for Fz can be written as: 
 

[8] 
 

If you remember anything about differential equations, you know there needs to be 

some boundary conditions applied in order to determine the constants. Recalling 

our physics, we know that the tangential Electric fields at any perfect conductor 

must be zero (why? because  , so if the conductivity approaches infinity 

(perfect conductor), then if the tangential E-field is not zero then the induced 

current would be infinite). 
 

The tangential fields must be zero, so Ex must be zero when y=0 and when y=b 

(see Figure 1 above), no matter what the value for y and z are. In addition, Ey must 

be zero when x=0 and when x=a (independent of x and z). We will calculate Ex: 



 

 
 

Ex is given by the above equation. The boundary condition given by 

Ex( x, y=0, z)=0 [9] 

implies that c4 must be equal to zero. This is the only way that boundary condition 

given in [9] will be true for all x and z positions. If you don't believe this, try to 

show that it is incorrect. You will quickly determine that c4 must be zero for the 

boundary condition in [9] to be satisfied everywhere it is required. 
 

Next, the second boundary condition, 

Ex(x, y=b, z)=0 [10] 

implies something very unique. The only way for the condition in [10] to be true 

for all values of x and z whenever y=b, we must have: 
 

If this is to be true everywhere, c3 could be zero. However, if c3 is zero (and we 

have already determined that c4 is zero), then all of the fields would end up being 

zero, because the function Y(y) in [7] would be zero everywhere. Hence, c3 cannot 

be zero if we are looking for a nonzero solution. Hence, the only alternative is if 

the above equation implies that: 
 

This last equation is fundamental to understanding waveguides. It states that the 

only solutions for Y(y) function must end up being sinusoids, that an integer 

number of multiples of a half-wavelength. These are the only type of functions that 



 

satisfy the differential equation in [6] and the required boundary conditions. This is 

an extremely important concept. 
 

If we invoke our other two boundary conditions: 
 

Ey(x=0, y, z)=0 
 

Ey(x=a, y, z)=0 
 

Then (using identical reasoning to that above), we can determine that c2=0 and 

that: 
 

This statement implies that the only functions of x that satisfy the differential 

equation and the required boundary conditions must be an integer multiple of half- 

sinusoids within the waveguide. 
 

Combining these results, we can write the solution for Fz as: 
 

 

In the above, we have combined the remaining nonzero constants c1, c3, and c6 

into a single constant, A, for simplicity. We have found that only certain 

distributions (or field configurations) will satisfy the required differential equations 

and the boundary conditions. Each of these field configurations will be known as a 

mode. Because we derived the results above for the TE case, the modes will be 

known as TEmn, where m indicates the number of half-cycle variations within the 

waveguide for X(x), and n indicates the number of half-cycle variations within the 

waveguide for Y(y). 
 

Using the field relationships: 



 

 
 

We can write the allowable field configurations for the TE (transverse electric) 

modes within a waveguide: 
 



 

In the above, the constants are written as Amn - this implies that the amplitude for 

each mode can be independent of the others; however, the field components for a 

single mode must all be related (that is, Ex and Hy do not have independent 

coefficients). 
 

Cutoff Frequency (fc) 
 

At this point in the analysis, we are able to say something intelligent. Recall that 

the components of the wavenumber must satisfy the relationship: 
 

              [3] 

Since kx and ky are restrained to only take on certain values, we can plug this fact 

in: 

 

 

 
[4] 

 

An interesting question arises at this point: What is the lowest frequency in which 

the waveguide will propagate the TE mode? 
 

For propagation to occur,  . If this is true, then kz is a real number, so that 

the field components (equations [1] and [2]) will contain complex exponentials, 

which represent propagating waves. If on the other hand,  , then kz will be 

an imaginary number, in which case the complex exponential above in equations 

[1-2] becomes a decaying real exponential. In this case, the fields will not 

propagate but instead quickly die out within the waveguide. Electromagnetic fields 

that die off instead of propagate are referred to as evanescent waves. 
 

To find the lowest frequency in which propagation can occur, we set kz=0. This is 

the transition between the cutoff region (evanescent) and the propagation region. 

Setting kz=0 in equation [4], we obtain: 

http://www.antenna-theory.com/definitions/wavenumber.php


 

 

 

 

[5] 
 

If m and n are both zero, then all of the field components in [1-2] become zero, so 

we cannot have this condition. The lowest value the left hand side of equation [5] 

can take occurs when m=1 and n=0. The solution to equation [5] when m=1 and 

n=0, gives the cutoff frequency for this waveguide: 
 
 

 

Any frequency below the cutoff frequency (fc) will only result in evanescent or 

decaying modes. The waveguide will not transport energy at these frequencies. In 

addition, if the waveguide is operating at a frequency just above fc, then the only 

mode that is a propagating mode will be the TE10 mode. All other modes will be 

decaying. Hence, the TE10 mode, since it has the lowest cutoff frequency, is 

referred to as the dominant mode. 
 

Every mode that can exist within the waveguide has its own cutoff frequency. That 

is, for a given mode to propagate, the operating frequency must be above the cutoff 

frequency for that mode. By solving [5] in a more general form, the cutoff 

frequency for the TEmn mode is given by: 
 
 

 

Although we haven't discussed the TM (transverse magnetic) mode, it will turn out 

that the dominant TM mode has a higher cutoff frequency than the dominant TE 

mode. 
 

Determining the fields for the TMz (Transverse Magnetic to the z direction) modes 

follows a similar procedure to that for the TEz case. To begin, we'll start by 

discussing the magnetic vector potential, A. This is a non-physical quantity that is 

often in used antenna theory to simplify the mathematics of Maxwell's Equations. 

http://www.antenna-theory.com/tutorial/waveguides/waveguides2.php
http://www.antenna-theory.com/definitions/maxwellsequations.php


 

To understand the magnetic vector potential, note that since the magnetic flux 

density B must always be divergenceless: 
 

 

If a vector quantity is divergenceless, then it can be expressed as the curl of 

another vector quantity. In math notation, this means that B can be written as: 
 
 

 

In a source free region, it can be shown that A must satisfy the wave equation: 
 

 

In addition, the TMz fields can be found from the Az component of the magnetic 

vector potential, via the following relationships: 
 

To solve for Az (and hence determine the E- and H- fields), we follow the same 

procedure as for the TEz case. That is, we use separation of variables and solve the 

wave equation for the z-component of A, then apply boundary conditions that force 

the tangential components of the E-fields to be zero on the metallic surfaces. 

Performing this procedure, which will not be repeated here, we obtain the solution 

for Az: 

http://www.antenna-theory.com/tutorial/waveguides/waveguides2.php


 

 

 

 
 

[1] 
 

The corresponding TMz fields for waves propagating in the +z-direction are: 
 

In the above, k is again the wavenumber, and Bmn is a constant, which determines 

the amplitude of the mn mode (a function of how much power is applied to the 

waveguide at that frequency). 
 

Before discussing the modes, we must note that TM0n and TMm0 modes cannot 

exist; that is, m and n must be at least 1. The reason comes from equation [1] above 

- if either m or n are zero, then Az is equal to zero, so all the fields derived must 

also be zero. Hence, the lowest order mode for the TM case is the TM11 mode.  

The same procedures can be applied from the TE case to determine the cutoff 

frequencies for the TMmn mode: 
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Cylindrical waveguide 

Using the complete formulation in the simplest limit possible, global 

electromagnetic modes are here studied in a large aspect ratio, circular cross- 

section vacuum cavity equivalent to a cylindrical waveguide. 

 

Classical electrodynamics [43] show that the EM eigenmode spectrum consists of 

two types  of solutions,  the  transverse  electric  and the transverse magnetic 

polarizations with frequencies depending on l the radial and m the azimuthal 

mode numbers. These results are reproduced numerically to verify that the wave 

equations (16) can indeed be solved in the vacuum using standard LFEM and 

CFEM discretizations, without introducing spurious modes of numerical origin. It 

is also important to validate the numerical implementation using a simple test case, 

checking that the numerical solutions converge to the analytical values with rates 

expected from the order of the approximations. 
 

The cylindrical waveguide is modeled in 2-D, with a circular large aspect ratio 

equilibrium defined with a minor radius a chosen so as to obtain the analytical 

eigenmode frequencies in GHz exactly equal to the roots of the Bessel function 

(table 1). 
 

Table 1: Cylindrical waveguide parameters. 
 

As the equilibrium merely produces the geometry and the mesh, the safety factor 

does  not  affect  the  eigenfrequency  spectrum;  using  a  large value  for , it is 

however possible to everywhere align  with the axis of the cylinder and separate 

the components of the TE and the TM polarizations. The complete toroidal wave 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node28.html#Jackson
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#tab1
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equations (16) are then discretized in the large aspect ratio cavity, relying on 

numerical cancellations to recover the cylindrical limit. 
 

To compute the eigenmode spectrum, an oscillating source current (eq.22) is 

driven     with     a     small     imaginary     part     in     the     excitation   frequency 

. The power relation (eq.48) yields a complex response 

function which has poles along the real axis that correspond to the 

solutions of the discretized wave equations. The eigenfrequencies are calculated by 

scanning in the complex plane with an increment and a constant 

chosen so as to resolve the response peaks in . The structure of an 

eigenmode is obtained in the limit  when the cavity is resonantly excited at 

the maximum of a narrow response peak. 
 

In order to verify that the eigenfrequency spectrum of this cylindrical waveguide is 

complete and does not contain any spurious ''polluting`` mode, two broad scans are 

performed  from  10  kHz  to  10  GHz   with  a   high  resolution  in  frequency 

and  a  low  resolution  in  space  for LFEM, 

for CFEM). All the Fourier modes representable by the 

numerical discretization  are  excited  with azimuthal currents for TE modes, 

and axial currents  for TM modes. Fig.6 summarizes the result obtained with 

LFEM, showing that every mode found numerically could be identified in a one to 

one correspondence with the analytical result. Modes which have low quantum 

numbers (l,m) are, as expected, obtained with a better precision; pushing the 

resolution to the lowest limit of 2 mesh points per wavelength (m=4), the 

deviations become of course important, but the spectrum remains unpolluted 

(remember fig.3, root b). The same analysis has been repeated with CFEM and 

leads to results which are much more precise. As an illustration, the eigenmode 

has here been calculated on a coarse homogeneous mesh . The 

eigenfrequency obtained numerically GHz is  in excellent  agreement 

with the analytical result =5.3314 GHz; fig.5 shows the eigenmode structure in a 

vector plot of . 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node10.html#eqAntenna
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node15.html#eqPowBalDef
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig6
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node11.html#fig3
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig5
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Figure 5: Re(A_perp) for an eigenmode TE_11 calculated with CFEM. 
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Figure 6: Analytical (circles) and LFEM (x-marks) eigenfrequency spectrum. 
 

A question remained when the boundary conditions were defined in sect.2.2.2: it 

concerned the implementation of the regularity conditions which is formally not 

sufficient  to  forbid  a  weakly singular (  ) behavior of the field in the 

center of the mesh. Fig.5 shows that the field is regular all over the cylinder radius, 

suggesting that the singularity is not strong enough to show up using a FEM 

discretization on a regular mesh. The only way we have found to observe it, was to 

strongly accumulate the mesh points towards the center (for example by dividing 5 

times the radial mesh interval closest to the axis by two, leading to radial mesh 

spacings ). 

Having verified that the solutions calculated with the wave equations (eq.16) 

behave in a satisfactory manner, the quality of the LFEM and CFEM 

discretizations is finally best judged in a convergence study monitoring the 

precision of the frequency and the gauge as a function of the spatial resolution. 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node9.html#secWvBC
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig5
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
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Figure 7: Convergence to the analytical result: relative frequency deviation Delta f 

versus the number of mesh intervals (N=N_s=N_theta) for the eigenmodes 

TE_01,TE_02,TE_11,TM_00} using LFEM (x-marks) and CFEM (circles). 
 

Fig.7 shows the convergence of for the eigenmodes , 

,  and  , where  refers to the  frequency obtained numerically and 

to the analytical result. Eigenfrequencies converge to the analytical values as 

using  LFEM and almost using  CFEM,  with an excellent  initial precision 

better than 1% for two mesh points per wavelength. 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig7
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Figure 8: Precision of the gauge versus the number of mesh intervals 

(N=N_s=N_theta) for the eigenmodes TE_01,TE_02,TE_11,TM_00 using LFEM 

(x-marks) and CFEM (circles). 
 

Convergence is also achieved for the gauge: fig.8 shows that the volume averaged 

gauge precision  converges  to zero as using LFEM, and 

using CFEM. 
 

To summarize, the calculations performed with the toroidal PENN code used here 

in the simplest limit possible show that Maxwell's equations (16) solved in a 

cylindrical cavity produce the complete physical spectrum without introducing 

numerically produced ''polluting`` modes. Both, the LFEM and the CFEM 

discretization schemes yield solutions which are numerically sane and converge to 

the analytical value with rates expected from the order of the interpolations. 
 

Boundary conditions 

Let us review the general boundary conditions on the field vectors at a surface 

between medium 1 and medium 2: 

http://www.nada.kth.se/~jaun/Research/pub/CPC95/node17.html#fig8
http://www.nada.kth.se/~jaun/Research/pub/CPC95/node8.html#eqWaveWF
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where   is used for the surface change density (to avoid confusion with the 

conductivity), and is the surface current density. Here, is a unit vector normal 

to the surface, directed from medium 2 to medium 1. We have seen in Section 4.4 

that for normal incidence an electromagnetic wave falls off very rapidly inside the 

surface of a good conductor. Equation (4.35) implies that in the limit of perfect 

conductivity ( ) the tangential component of vanishes, whereas that of  

may remain finite. Let us examine the behaviour of the normal components. 

 

Let  medium 1 be a  good conductor  for which  , whilst medium 2 is a 

perfect insulator. The surface change density is related to the currents flowing 

inside the conductor. In fact, the conservation of charge requires that 

 

 

(38) 

 

 

 

However, , so it follows from Eq. (6.1)(a) that 
 

 

(39) 
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It is  clear that the  normal component of  within the conductor also becomes 

vanishingly small as the conductivity approaches infinity. 

 

If vanishes inside a perfect conductor then the curl of also vanishes, and the 

time rate of change of  is correspondingly zero. This implies that there are no 

oscillatory fields whatever inside such a conductor, and that the boundary values of 

the fields outside are given by 

 

   
(40) 

 

 

 

 

 

 
(41) 

 

 

 

 

 

 
(42) 

 

 

 

 

 

 
(43) 

 

 

 
Here,  is a unit normal at the surface of the conductor pointing into the conductor. 

Thus, the electric field is normal and the magnetic field tangential at the surface of 

a perfect conductor. For good conductors these boundary conditions yield excellent 

representations of the geometrical configurations of external fields, but they lead to 

the neglect of some important features of real fields, such as losses in cavities and 

signal attenuation in wave guides. 

 

In order to estimate such losses it is useful to see how the tangential and normal 

fields compare when is large but finite. Equations (4.5) and (4.34) yield 

 

 

(44) 

 

 

 
at the surface of a conductor (provided that the wave propagates into the 

conductor). Let us assume, without obtaining a complete solution, that a wave with 
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very nearly tangential and very nearly normal is propagated along the surface 

of the metal. According to the Faraday-Maxwell equation 

 

 

(45) 

 

 

 
just outside the surface, where  is the component of the propagation vector along 

the  surface.  However,  Eq. (6.5)  implies  that  a  tangential  component  of   is 

accompanied  by a  small  tangential component  of  . By comparing these two 

expressions, we obtain 

 

 

(46) 

 

 

 

where    is  the skin depth (see Eq. (4.36)) and . It is clear that the ratio of 

the tangential component of to its normal component is of order the skin depth 

divided by the wavelength. It is readily demonstrated that the ratio of the normal 

component of to its tangential component is of this same magnitude. Thus, we 

can see that in the limit of high conductivity, which means vanishing skin depth,  

no fields penetrate the conductor, and the boundary conditions are those given by 

Eqs. (6.4). Let us investigate the solution of the homogeneous wave equation 

subject to such boundary conditions. 

 

Cavities with rectangular boundaries 

Consider a vacuum region totally enclosed by rectangular conducting walls. In this 

case, all of the field components satisfy the wave equation 

 

 

(47) 
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where     represents  any  component of  or  . The boundary conditions (6.4) 

require that the electric field is normal to the walls at the boundary whereas the 

magnetic field is tangential. If , , and are the dimensions of the cavity, then it 

is readily verified that the electric field components are 
 

 

 

 

  
(48) 
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where 
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with , , integers. The allowed frequencies are given by 

 

 

(54) 

 
 

 
It is clear from Eq. (6.9) that at least two of the integers  , , must be different 

from zero in order to have non-vanishing fields. The magnetic fields obtained by 
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the use of automatically satisfy the appropriate boundary conditions, 

and are in phase quadrature with the electric fields. Thus, the sum of the total 

electric and magnetic energies within the cavity is constant, although the two terms 

oscillate separately. 

 

The amplitudes of the electric field components are not independent, but are 

related by the divergence condition , which yields 

 

 
(55) 

 

 

 
There  are,   in  general,  two   linearly  independent   vectors   that satisfy this 

condition, corresponding to two polarizations. (The exception is the case that one 

of the integers  , , is zero, in which case is fixed in direction.) Each vector 

is accompanied by a magnetic field at right angles. The fields corresponding to a 

given set of integers  ,  , and  constitute a particular mode of vibration of the 

cavity. It is evident from standard Fourier theory that the different modes are 

orthogonal (i.e., they are normal modes) and that they form a complete set. In other 

words, any general electric and magnetic fields which satisfy the boundary 

conditions (6.4) can be unambiguously decomposed into some linear combination 

of all of the various possible normal modes of the cavity. Since each normal mode 

oscillates at a specific frequency it is clear that if we are given the electric and 

magnetic fields inside the cavity at time  then the subsequent behaviour of the 

fields is uniquely determined for all time. 

 

The conducting walls gradually absorb energy from the cavity, due to their finite 

resistivity, at a rate which can easily be calculated. For finite the small tangential 

component of at the walls can be estimated using Eq. (6.5): 

 

 

(56) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
 

 

Now, the tangential component  of  at the walls is slightly different from that 

given by the ideal solution. However, this is a small effect and can be neglected to 

leading order in . The time averaged energy flux into the walls is given by 

 

 

(57) 

 
 

 

where  is the peak value of the tangential magnetic field at the walls predicted 

by the ideal solution. According to the boundary condition (6.4)(d),  is equal to 

the  peak value of the surface current density  . It is helpful to define a surface 

resistance, 

 

 
(58) 

 

 

 
where 

 

 

(59) 

 

 

 
This approach makes it clear that the dissipation of energy is due to ohmic heating 

in a thin layer, whose thickness is of order the skin depth, on the surface of the 

conducting walls. 

 

The quality factor of a resonant cavity 

The quality factor of a resonant cavity is defined 
 


