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UNIT I SAMPLING AND QUANTIZATION
Sampling Process — Aliasing — Instantaneous sampling — Natural Sampling — Flat Sampling —
Quantization of signals — sampling and quantizing effects — channel effects — SNR for quantization
pulses — data formatting techniques — Time division multiplexing.

SAMPLING PROCESS

A message signal may originate from a digital or analog source. If the message signal is analog in nature, then it
has to be converted into digital form before it can transmitted by digital means. The process by which the
continuous-time signal is converted into a discrete— time signal is called Sampling. Sampling operation is
performed in accordance with the sampling theorem.

The Sampling Theorem

The link between an analog waveform and its sampled version is provided by what
is known as the sampling process. 'This process can be implemented in several ways,
the most popular being the sarmple-and-hold operation. In this operation, a switch
and storage mechanism (such as a transistor and a capacitor, or a shutter and a
filmstrip) form a sequence of samples of the continuous input waveform. The out-
put of the sampling process is called puise amplitrude modulation (PAM) because
the successive output intervals can be described as a sequence of pulses with ampli-
tudes derived from the input waveform samples. The analog wavciform can bc
approximately retrieved from a PAM waveform by simple low-pass filtering. An
important question: how closely can a filtered PAM wavelorm approximate the
original input waveform? This question can be answered by reviewing the sampling
theorcrt, which states the following [1]: A bandlimited signal having no spectral
componcnts above f,, hertz can be determined uniquely by wvalues sampled at
uniform intervals of

T, = sec (2.1)

i I yaa

'I'his particular statement is also known as the wuriform sampling theorem. Stated
another way, the upper limit on 7, can be expressed in terms of the sampling ratc.
denoted f, = 1/T,. The restriction, stated in terms of the sampling rate, is known as
the Nvguisr criterion. The statement is

I = 2fn (2.2)

The sampling rate f, = 2f,, is also called the Nyqguisr rare. The Nyquist criterion is a
theoretically sufficient condition to allow an analog signal to be reconsirucred con-
pletely from a set of uniformly spaced discrete-time samples. In the sections that
follow, the validity of the sampling thcorcm is demonstrated using different sam-
pling approaches.

Impnlse Sampling

Here we demonstrate the wvalidity of the sampling theorem using the fre-
gucncy convolution property of the Fourier transform. Let us first examine the
case of ideal sarmpling with a scquence of unit impulsc functions. Assume an analog
wavelorm, x(r), as shown in Figure 2.0a, with a Fourier transform. X{f). which i1s
zero outside the interval (— [, < < /,.,). as shown in Figure 2.6b. The sampling of
x(r) can be viewed as the product of x(r) with a periodic train of unit impulse func-
tions x;(¢), shown in Figure 2.6c and defined as

xa(1) = i d(r — nT,) (2.3)

n=—a

Karpagam Academy of Higher Education Page 1
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Sampling theorem using the frequency convolution prop erty of the Fourier transform.

where T, is the sampling period and () is the unit impulse or Dirac delta function
defined in Section 1.2.5. Let us choose T, = 1/2f,, so that the Nyquist criterion is

just satisfied.

The sifting property of the impulse function (see Section A.4.1) states that
x(0)d( = 1) = x(10)d(t — 1)) (2.4)

Using this property, we can see that x,(¢), the sampled version of x(¢) shown in

Figure 2.6e, is given by

x,(1) = x(1)x(7)

ac

= S x(0)d(t — nT,)

e (2.5)

a >, x(nT,)d(t — nT,)

n=—%

Using the frequency convolution property of the Fourier transform (see Section
A.5.3), we can transform the time-domain product x(t)x;(¢) of Equation (2.5) to the
frequency-domain convolution X(f) = X;(f), where
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X(f) =7 2 8(f = nf) (26)
is the Fourier transform of the impulse train x;(¢) and where f, = 1/7, is the sam-
pling frequency. Notice that the Fourier transform of an impulse train is another
impulse train; the values of the periods of the two trains are reciprocally related to
one another. Figures 2.6¢ and d illustrate the impulse train x;(#) and its Fourier
transform X;( f), respectively.

Convolution with an impulse function simply shifts the original function as
follows:

X(f) =8(f — nfs) = X(f — nfy) (2.7)

We can now solve for the transform X,(f) of the sampled waveform:

X(f) = X)* X(F) =X * | = 3 8(F — nf,)
Lins= (2.8)
E X(f — nfs)
§ H=—x

We therefore conclude that within the original bandwidth, the spectrum X, (f) of
the sampled signal x,(¢) is, to within a constant factor (1/7,), exactly the same as
that of x(¢). In addition, the spectrum repeats itself periodically in frequency every
1, hertz. The sifting property of an impulse function makes the convolving of an im-
pulse train with another function easy to visualize. The impulses act as sampling
functions. Hence, convolution can be performed graphically by sweeping the im-
pulse train X;(f) in Figure 2.6d past the transform |X(f)| in Figure 2.6b. This sam-
pling of | X(f)| at each step in the sweep replicates | X(f)| at each of the frequency
positions of the impulse train, resulting in |X(f)|, shown in Figure 2.6f.

When the sampling rate is chosen, as it has been here, such that f, = 2f,,, each
spectral replicate is separated from each of its neighbors by a frequency band ex-
actly equal to f; hertz, and the analog waveform can theoretically be completely re-
covered from the samples, by the use of filtering. However, a filter with infinitely
steep sides would be required. It should be clear that if f, > 2f,,, the replications will
move farther apart in frequency, as shown in Figure 2.7a, making it easier to per-
form the filtering operation. A typical low-pass filter characteristic that might be
used to separate the baseband spectrum from those at higher frequencies is shown
in the figure. When the sampling rate is reduced, such that f, < 2f,,, the replications
will overlap, as shown in Figure 2.7b, and some information will be lost. The
phenomenon, the result of undersampling (sampling at too low a rate), is called
aliasing. The Nyquist rate, f, = 2f,,, is the sampling rate below which aliasing occurs;
to avoid aliasing, the Nyquist criterion, f, = 2f,,, must be satisfied.

As a matter of practical consideration, neither waveforms of engineering in-
terest nor realizable bandlimiting filters are strictly bandlimited. Perfectly bandlim-
ited signals do not occur in nature (see Section 1.7.2); thus, realizable signals, even
though we may think of them as bandlimited, always contain some aliasing. These
signals and filters can, however, be considered to be “essentially” bandlimited. By

age 3
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Spectra for various sampling rates. (a) Sampled spectrum
(f, > 2f,). (b) Sampled spectrum (f; < 2f,).

this we mean that a bandwidth can be determined beyond which the spectral com-
ponents are attenuated to a level that is considered negligible.

Natural Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency shifting property of the Fourier transform. Although instantaneous sam-
pling is a convenient model, a more practical way of accomplishing the sampling of
a bandlimited analog signal x(t) is to multiply x(r), shown in Figure 2.8a, by the
pulse train or switching waveform x,(r), shown in Figure 2.8¢c. Each pulse in x,(f)
has width 7" and amplitude 1/T. Multiplication by x,(t) can be viewed as the open-
ing and closing of a switch. As before, the sampling frequency is designated f,, and
its reciprocal, the time period between samples, is designated T,. The resulting
sampled-data sequence, x,(¢), is illustrated in Figure 2.8e and is expressed as

x,(t) = x(0)x,(0) (29)

The sampling here is termed natural sampling, since the top of each pulse in the
x,(f) sequence retains the shape of its corresponding analog segment during the
pulse interval. Using Equation (A.13), we can express the periodic pulse train as a
Fourier series in the form

x "
2 Cné’-"'l 2anfet (210)

n=—%
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Sampling theorem using the frequency shifting property of the Fourier transform.

where the sampling rate, f, = 1/7,, is chosen equal to 2f,,, so that the Nyquist
criterion is just satisfied. From Equation (A.24), ¢, = (1/T,) sinc (nT/T,), where T is
the pulse width, 1/7 is the pulse amplitude, and
sin Ty
wy

sincy =

The envelope of the magnitude spectrum of the pulse train, seen as a dashed line in
Figure 2.8d, has the characteristic sinc shape. Combining Equations (2.9) and (2.10)
yields

x, (1) =x(t) D cnelr™s (2.11)
The transform X(f) of the sampled waveform is found as follows:

Ka &(f)=9'*{x(t) > c,,e”""fs'} (2.12)

n=—o

ww
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For linear systems, we can interchange the operations of summation and Fourier
transformation. Therefore, we can write

X,(f)= > ¢, F{x(t)e ™"} (2.13)
=

Using the frequency transiation property of the Fourier transform (see Section

A.3.2), we solve for X,(f) as follows:

oo

X,.(f} - 2 ':?EX(f - nfs) (?"14)

"=

Similar to the unit impulse sampling case, Equation (2.14) and Figure 2.8f illustrate
that X,( f) is a replication of X( f), periodically repeated in frequency every f; hertz.
In this natural-sampled case, however, we see that X,(f) is weighted by the Fourier
series coefficients of the pulse train, compared with a constant value in the
impulse-sampled case. It is satisfying to note that in the limit, as the pulse width, T,
approaches zero, ¢, approaches 1/7, for all n (see the example that follows), and

Flat Top Sampling

During transmission, noise is introduced at top of the transmission pulse which
can be easily removed if the pulse is in the form of flat top. Here, the top of
the samples are flat i.e. they hawve constant amplitude. Hence, it is called as
flat top sampling or practical sampling. Flat top sampling makes use of sample
and hold circwit.

l x(1) E y(t)
i - L

| T

Theoretically, the sampled signal can be obtained by convolution of
rectangular pulse p(t) with ideally sampled signal say yz(t) as shown in the
diagram:

i.e. g(t) = p(t) > ws(t) ... ... (1

)
1 TPm® y(t) y(t)
T2T
- =
-Tr2 T2

To get the sampled spectrum, consider Fourier transformm on both sides for
equation 1

Y[jw] = F.T[P(t) = ws(t)]

By the knowledge of convolution property,
¥Yw] = P(w) ¥Ys(w)

Here Plw) — TSa{‘—"g:] = 2 simewT /e
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Sample-and-Hold Operation

The simplest and thus most popular sampling method, sample and hold, can
be described by the convolution of the sampled pulse train, [x(¢)x;(f)], shown in
Figure 2.6e, with a unity amplitude rectangular pulse p(f) of pulse width T,. This
time, convolution results in the flattop sampled sequence

x,(t) = p(r) * [x(0)xs( }] : (2.15)

= p(t) * [ x(r) E ar—nT}}
The Fourier transform, X (f), of the time convolution in Equation (2.15) is the
frequency-domain product of the transform P(f) of the rectangular pulse and the
periodic spectrum, shown in Figure 2.6f, of the impulse-sampled data:

X() = PO#x0) 3 a(r—n:r)}

H=—

—P(f){X(f [ S 8 —f’»‘fs” - (216)

.s n=—-%

PUf) o Em X(f = nf.)

Here, P(f) is of the form T, sinc f7,. The effect of this product operation results in
a spectrum similar in appearance to the natural-sampled example presented in Fig-
ure 2.8f. The most obvious effect of the hold operation is the significant attenuation
of the higher-frequency spectral replicates (compare Figure 2.8f to Figure 2.6f),
which is a desired effect. Additional analog postfiltering is usually required to fin-
ish the filtering process by further attenuating the residual spectral components lo-
cated at the multiples of the sample rate. A secondary effect of the hold operation
is the nonuniform spectral gain P(f) applied to the desired baseband spectrum
shown in Equation (2.16). The postfiltering operation can compensate for this
attenuation by incorporating the inverse of P(f) over the signal passband.

Aliasing

A detailed view of the positive half of the baseband spectrum and one
of the replicates from Figure 2.7b. It illustrates aliasing in the frequency domain.
The overlapped region, shown in Figure 2.9b, contains that part of the spectrum
which is aliased due to undersampling. The aliased spectral components represent
ambiguous data that appear in the frequency band between (f, — f,,) and f,,. Figure
2.10 illustrates that a higher sampling rate f',, can eliminate the aliasing by separat-

Karpagam Academy of Higher Education Page 7
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ing the spectral replicates; the resulting spectrum in Figure 2.10b corresponds to
the case in Figure 2.7a. Figures 2.11 and 2.12 illustrate two ways of eliminating
aliasing using antialiasing filters. In Figure 2.11 the analog signal is prefiltered so
that the new maximum frequency, f’,,, is reduced to f/2 or less. Thus there are no
aliased components seen in Figure 2.11b, since f, > 2f",.. Eliminating the aliasing
terms prior to sampling is good engineering practice. When the signal structure is
well known, the aliased terms can be eliminated after sampling, with a low-pass
filter operating on the sampled data [2]. In Figure 2.12 the aliased components are
removed by postfiltering after sampling; the filter cutoff frequency, f”,,. removes
the aliased components; f”,, needs to be less than (f, - f,,). Notice that the filtering
techniques for eliminating the aliased portion of the spectrum in Figures 2.11 and
2.12 will result in a loss of some of the signal information. For this reason, the sam-
ple rate, cutoff bandwidth, and filter type selected for a particular signal bandwidth
are all interrelated.

Realizable filters require a nonzero bandwidth for the transition between the
passband and the required out-of-band attenuation. This is called the transition
bandwidth. To minimize the system sample rate, we desire that the antialiasing
filter have a small transition bandwidth. Filter complexity and cost rise sharply with
narrower transition bandwidth, so a trade-off is required between the cost of a
small transition bandwidth and the costs of the higher sampling rate, which are
those of more storage and higher transmission rates. In many systems the answer
has been to make the transition bandwidth between 10 and 20% of the signal band-

| X(f)]

| X(f) |

N #
o
S

il N f
Qm fs fs "‘flm fs + fin
fi—fm
(b)

|

0 f.:i""fm é

: 2
fm

B Sharper-cutoff filters eliminate aliasing. (a) Continuous
signal spectrum. (b) Sampled signal spectrum.
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Postfilter eliminates aliased portion of spectrum. (a) Con-

tinuous signal spectrum. (b) Sampled signal spectrum.

width. If we account for the 20% transition bandwidth of the antialiasing filter, we

have an engineer’s version of the Nyquist sampling rate:

fe = 2.2,

(2.17)

Figure 2.13 provides some insight into aliasing as seen in the time domain.
The sampling instants of the solid-line sinusoid have been chosen so that the sinus-
oidal signal is undersampled. Notice that the resulting ambiguity allows one to
draw a totally different (dashed-line) sinusoid, following the undersampled points.

Why Oversample?

Oversampling is the most economic solution for the task of transforming an analog |
signal to a digital signal, or the reverse, transforming a digital signal to an analog
signal. This is so because signal processing performed with high performance ana-

Karpagam Academy of Higher Education
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Sampling Signal at alias
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Alias frequency generated by sub-Nyquist sampling rate.
log equipment is typically much more costly than using digital signal processing
equipment to perform the same task. Consider the task of transforming analog
signals to digital signals. When this task is performed without the benefit of over-
sampling, the process is characterized by three simple steps, performed in the order
that follows.

Without Oversampling

1. The signal passes through a high performance analog lowpass filter to limit its
bandwidth.

2. The filtered signal is sampled at the Nyquist rate for the (approximated)
bandlimited signal. As described in Section 1.7.2, a strictly bandlimited signal
is not realizable.

3. The samples are processed by an analog-to-digital converter that maps the
continuous-valued samples to a finite list of discrete output levels.

When this task is performed with the benefit of over-sampling, the process is best
described as five simple steps, performed in the order that follows.
|
With Oversampling

1. The signal is passed through a low performance (less costly) analog low-pass
filter (prefilter) to limit its bandwidth.

2. The pre-filtered signal is sampled at the (now higher) Nyquist rate for the
(approximated) bandlimited signal.

3. The samples are processed by an analog-to-digital converter that maps the
continuous-valued samples to a finite list of discrete output levels.

4. The digital samples are then processed by a high performance digital filter to
reduce the bandwidth of the digital samples.

S. The sample rate at the output of the digital filter is reduced in proportion to
the bandwidth reduction obtained by this digital filter.

Karpagam Academy of Higher Education Page 11
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Quantization of Signals

A continuous signal, such as voice, has a continuous range of amplitudes and therefore its
samples have a continuous amplitude range. In other words, within the finite amplitude

Iy
Continuous Quantizar Discrete - - -— .
sample m - g() sample v m 1 my Up Mool Mg 2

Description of a memoryless quantizer.

range of the signal, we find an infinite number of amplitude levels. It is not necessary in
fact to transmit the exact amplitudes of the samples. Any human sense (the ear or the eye),
as ultimate receiver, can detect only finite intensity differences. This means that the origina|
continuous signal may be approximated by a signal constructed of discrete amplitudes
selected on a minimum error basis from an available set. The existence of a finite number
of discrete amplitude levels is a basic condition of pulse-code modulation. Clearly, if we
assign the discrete amplitude levels with sufficiently close spacing, we may make the ap-
proximated signal practically indistinguishable from the original continuous signal.

Amplitude quantization is defined as the process of transforming the sample ampli.
tude m(nT,) of a message signal m(t) at time t = nl into a discrete amplitude v (n'T,) taken
from a finite set of possible amplitudes. We assume that the quantization process is
memoryless and instantaneous, which means that the transformation at time ¢z = #nT, s
not affected by earlier or later samples of the message signal. This simple form of scalar
quantization, though not optimum, is commonly used in practice.

When dealing with a memoryless quantizer, we may simplify the notation by drop-
ping the time index. We may thus use the symbol # in place of #(#nT.), as indicated in the
block diagram of a quantizer shown in Figure 3.9a. Then, as shown in Figure. 3.9b, the
signal amplitude 7 is specified by the index k if it lies inside the partition cell

g‘k; {mk <m= mk+1}: k= ]_-s 2‘: s L (321)

where L is the total number of amplitude levels used in the quantizer. The discrete ampli-
tudes m, B = 1, 2, ..., L, at the quantizer input are called decision levels or decision
thresholds. At the quantizer output, the index k is transformed into an amplitude vy that
represents all amplitudes of the cell $,; the discrete amplitudes v, &k = 1, 2,..., L, are
called representation levels or reconstruction levels, and the spacing between two adjacent
representation levels is called a quantum or step-size. Thus, the quantizer output v equals
v, if the input signal sample 7 belongs to the interval $.. The mapping (see Figure 3.9a)

v = g{m) (3.22)

is the quantizer characteristic, which is a staircase function by definition.

Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the
representation levels are uniformly spaced; otherwise, the quantizer is nonuniform. In this
section, we consider only uniform quantizers; nonuniform quantizers are considered in
Section 3.7. The quantizer characteristic can also be of midtread or midrise type. Figure
3.10a shows the input—output characteristic of a uniform quantizer of the midtread type
which is so called because the origin lies in the middle of a tread of the staircaselike graph.
Figure 3.10b shows the corresponding input—output characteristic of a uniform quantizer
of the midrise type, in which the origin lies in the middle of a rising part of the staircasel_ﬂfe
graph.
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Cutput Output

level tavel
4 4
2 2
| | | | input | - [ { Input
-4 -2 0 2 4 level -4 -2 0 2 4 level
-2 - -2
el | -4 —

{a) ()]

Two types of quantization: (a) midtread and () midrise.

QUANTIZATION NOISE

The use of quantization introduces an error defined as the difference between the input
signal 2 and the output signal v. The error is called guantization noise. Figure 3.11 illus-
trates a typical variation of the quantization noise as a function of time, assuming the use
of a uniform quantizer of the midtread type.

Let the quantizer input = be the sample value of a zero-mean random variable M.
(If the input has a nonzerc mean, we can always remove it by subtracting the mean from
the input and then adding it back after quantization.) A quantizer g(-) maps the input

1 Input wave

2 Quantized output

Magnitude —

Difference between
curves 1 & 2

Illustration of the quantization process.
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random variable M of continuous amplitude into a discrete random variable V; thejr
respective sample values 72 and v are related by Equation (3.22). Let the quantization errg,
be denoted by the random variable Q of sample value g. We may thus write

q=m—1Uv (3.23)
or, correspondingly,
0=M-V (3.24

With the input M having zero mean, and the quantizer assumed to be symmetric as in
Figure 3.10, it follows that the quantizer output V and therefore the quantization error
Q, will also have zero mean. Thus for a partial statistical characterization of the quantizer
in terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider then an input s of continuous amplitude in the range {—#max, Mg
Assuming a uniform gquantizer of the midrise type illustrated in Figure 3.1 0b, we find that
the step-size of the quantizer is given by

zmmax

A=
L

(3.25)
where L is the total number of representation levels. For a uniform quantizer, the quan-
tization error O will have its sample values bounded by —AJ2 = g = A2, If the step-size
A is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable, and the interfering effect of the quantization noise on the quantizer input is similar
to that of thermal noise. We may thus express the probability density function of the
quantization error O as follows:

1 A _A
fola) = A’ 2 5473 (3.26)
0, otherwise

For this to be true, however, we must ensure that the incoming signal does not overload
the quantizer. Then, with the mean of the quantization error being zero, its variance 0p
is the same as the mean-square value:

ob = E[Q7] (3.27)

A2

= f 7 fola) dq

~ar2
Substituting Equation (3.26) into (3.27), we get
1 A2
76 =} f 7" dq
iz A (3.28)
12

Typically, the L-ary number k, denoting the kth representation level of the quantize!,
is transmitted to the receiver in binary form. Let R denote the number of bits per samp
used in the construction of the binary code. We may then write

L = 2R (3.29)
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or, equivalently,
R = log, L (3.30)
Hence, substituting Equation (3.29) into {3.25), we get the step size

2
N (3.31)

Thus the use of Equation {3.31) in {(3.28) yields
o5 = A2 2F {(3.32)

Let P denote the average power of the message signal »»(z). We may then express the owtput
sigrnal-to-noise ratio of a uniform-quantizer as

' P

3r
J— 22R
i)

Equation (3.33) shows that the output signal-to-noise ratio of the quantizer increases ex-
porentially with increasing number of bits per sample, R. Recognizing that an increase in
R requires a proportionate increase in the channel (transmission) bandwidth B+, we thus
see that the use of a binary code for the representation of a message signal (as in pulse-
code modulation) provides a more efficient method than either frequency modulation (FM)
or pulse-position modulation (PPM) for the trade-off of increased channel bandwidth for
improved noise performance. In making this statement, we presume that the FM and PPM
systems are limited by receiver noise, whereas the binary-coded modulation system is lim-
ited by quantization noise. ’ ’ o

(3.33)

SOURCES OF CORRUPTION

The analog signal recovered from the sampled, quantized, and transmitted pulses
will contain corruption from several sources. The sources of corruption are related
to (1) sampling and quantizing effects, and (2) channel effects.

Sampling and Quantizing Effects

Quantization Noise

The distortion inherent in quantization is a round-off or truncation error. The
process of encoding the PAM signal into a quantized PAM signal involves discard-
ing some of the original analog information. This distortion, introduced by the —
need to approximate the analog waveform with quantized samples, is referred to as
quantization noise; the amount of such noise is inversely proportional to the num-
ber of levels employed in the quantization process. (The signal-to-noise ratio of
quantized pulses is treated in Sections 2.5.3 and 13.2.)

Quantizer Saturation

The quantizer (or analog-to-digital converter) allocates I. levels to the task of
approximating the continuous range of inputs with a finite set of outputs. The
range of inputs for which the difference between the input and output is small is
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called the operating range of the converter. If the input exceeds this range, the
difference between the input and the output becomes large. and we say that the
converter is operating in saturation. Saturation errors, being large, are more ob-
Jectionable than quantizing noise. Generally, saturation is avoided by the use of
automatic gain control (AGC), which effectively extends the operating range of the
converter. (Chapter 13 covers quantizer saturation in greater detail.)

Timing Jitter

Our analysis of the sampling theorem predicted precise reconstruction of the
signal based on uniformly spaced samples of the signal. If there is a slight jitter in
the position of the sample, the sampling is no longer uniform. Although exact re-
construction is still possible if the sample positions are accurately known, the jitter
is usually a random process and thus the sample positions are not accurately
known. The effect of the jitter is equivalent to frequency modulation (FM) of the
baseband signal. If the jitter is random, a low-level wideband spectral contribution
is induced whose properties are very close to those of the quantizing noise. If the
jitter exhibits periodic components, as might be found in data extracted from a tape
recorder, the periodic FM will induce low-level spectral lines in the data. Timing
jitter can be controlled with very good power supply isolation and stable clock
references.

Channel Effects

Channel Noise

Thermal noise, interference from other users, and interference from circuit
switching transients can cause errors in detecting the pulses carrying the digitized
samples. Channel-induced errors can degrade the reconstructed signal quality quite
quickly. This rapid degradation of output signal quality with channel-induced
errors is called a threshold effect. If the channel noise is small, there will be no
problem detecting the presence of the waveforms. Thus, small noise does not
corrupt the reconstruct signals. In this case, the only noise present in the recon-
struction is the quantization noise. On the other hand, if the channel noise is large
enough to affect our ability to detect the waveforms, the resulting detection error
causes reconstruction errors. A large difference in behavior can occur for very
small changes in channel noise level.

Intersymbol Interference

The channel is always bandlimited. A bandlimited channel disperses or
spreads a pulse waveform passing through it (see Section 1.6.4). When the channel
bandwidth is much greater than the pulse bandwidth, the spreading of the pulse
will be slight. When the channel bandwidth is close to the signal bandwidth, the
spreading will exceed a symbol duration and cause signal pulses to overlap. This
overlapping is called intersymbol interference (ISI). Like any other source of
interference, ISI causes system degradation (higher error rates); it is a particularly

V.NANDHINI AP/ECE
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insidious form of interference because raising the signal power to overcome the in-
terference will not always improve the error performance. (Details of how ISI is
handled are presented in the next chapter, in Sections 3.3 and 3.4.)

Signal-to-Noise Ratio for Quantized Pulses

Figure illustrates an L-level linear quantizer for an analog signal with a peak-
to-peak voltage range of V,, =V, — (=V,) =2V, volts. The quantized pulses assume
positive and negative values, as shown in the figure. The step size between quanti-
zation levels, called the quantile interval, is denoted g volts. When the quantization
levels are uniformly distributed over the full range, the quantizer is called a uni-
form or linear quantizer. Each sample value of the analog waveform is approxi-
mated with a quantized pulse; the approximation will result in an error no larger
than g/2 in the positive direction or —¢/2 in the negative direction. The degradation
of the signal due to quantization is therefore limited to half a quantile interval,
+ /2 volts.

A useful figure of merit for the uniform quantizer is the quantizer variance
(mean-square error assuming zero mean). If we assume that the quantization error,
e, is uniformly distributed over a single quantile interval g-wide (i.e., the analog
input takes on all values with equal probability), the quantizer error variance is
found to be -

VP _________________________ M.
V. —ag/? A A
p—4 3 g volts
Vp, — 3g/2
Bq/2
3q/2
Quantized qf2
4 e —————— L levels Vi
values _q/2 pp
—3g/2
—5g/2
~V, + 3q/2
i _E"’ff'!f ______________ o __1_
A

Quantization levels.
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. i~ g
o’ = e'ple)de (2.18a)
‘J q/2
r‘ +q/2 , 1 ({"
= ¢ f.y = . .
] € q(f > (2.18b)

—g/2

where p(e) = 1/g is the (uniform) probability density function of the quantization
error. The variance, o°, corresponds to the average quantization noise power. The
peak power of the analog signal (normalized to 1 )) can be expressed as

Ve (V,;p)z _ (ﬂ)F’ :_quz
b 2 2 4

where L is the number of quantization levels. Equations (2.18) and (2.19) com-
bined yield the ratio of peak signal power to average quantization noise power
(8/N),. assuming that there are no errors due to ISI or channel noise:

L’q*/4

N/, ¢ 12 "

It is intuitively satisfying to see that (S/N), improves as a function of the number of
quantization levels squared. In the limit (as L — <), the signal approaches the
PAM format (with no quantization), and the signal-to-quantization noise ratio is
infinite; in other words, with an infinite number of quantization levels, there is zero

(2.19)

(2.20)

V.NANDHINI AP/ECE

quantization noise.,

Data Formatting Techniques

Encoding is the process of converting the data or a given sequence of characters,

symbols, alphabets etc.,

into a specified format,

for

the secured transmission of

data. Decoding is the reverse process of encoding which is to extract the information from the

converted format.

Data Encoding

Encoding is the process of using various patterns of voltage or current levels to
represent 1s and Os of the digital signals on the transmission link. The common types of line
encoding are Unipolar, Polar, Bipolar, and Manchester.

Karpagam Academy of Higher Education
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Encoding Techniques
The data encoding technique is divided into the following types, depending upon the type of
data conversion.

e Analog data to Analog signals — The modulation techniques such as Amplitude
Modulation, Frequency Modulation and Phase Modulation of analog signals, fall under
this category.

e Analog data to Digital signals — This process can be termed as digitization, which is
done by Pulse Code Modulation (PCM). Hence, it is nothing but digital modulation. As
we have already discussed, sampling and quantization are the important factors in this.
Delta Modulation gives a better output than PCM.

e Digital data to Analog signals — The modulation techniques such as Amplitude Shift
Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), etc., fall
under this category. These will be discussed in subsequent chapters.

¢ Digital data to Digital signals — These are in this section. There are several ways to map
digital data to digital signals. Some of them are —

Non Return to Zero (NRZ)

NRZ Codes has 1 for High voltage level and 0 for Low voltage level. The main behavior of
NRZ codes is that the voltage level remains constant during bit interval. The end or start of a
bit will not be indicated and it will maintain the same voltage state, if the value of the previous
bit and the value of the present bit are same.

The following figure explains the concept of NRZ coding.

e As there lis no observable bit interval, receiver may
face difficulty in distinguishing one 0 to another

1 0 0 0 0 0 0 1

NRZ Coding

If the above example is considered, as there is a long sequence of constant voltage level and
the clock synchronization may be lost due to the absence of bit interval, it becomes difficult for

the receiver to differentiate between 0 and 1.
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There are two variations in NRZ namely —

NRZ - L (NRZ - LEVEL)
There is a change in the polarity of the signal, only when the incoming signal changes from 1
to 0 or from O to 1. It is the same as NRZ, however, the first bit of the input signal should have

a change of polarity.

NRZ - I (NRZ - INVERTED)
If a 1 occurs at the incoming signal, then there occurs a transition at the beginning of the bit
interval. For a0 at the incoming signal, there is no transition at the beginning of the bit
interval.
NRZ codes has a disadvantage that the synchronization of the transmitter clock with the
receiver clock gets completely disturbed, when there is a string of 1s and 0s. Hence, a separate
clock line needs to be provided.
Bi-phase Encoding
The signal level is checked twice for every bit time, both initially and in the middle. Hence, the
clock rate is double the data transfer rate and thus the modulation rate is also doubled. The
clock is taken from the signal itself. The bandwidth required for this coding is greater.
There are two types of Bi-phase Encoding.

« Bi-phase Manchester

« Differential Manchester

Bi-phase Manchester
In this type of coding, the transition is done at the middle of the bit-interval. The transition for
the resultant pulse is from High to Low in the middle of the interval, for the input bit 1. While

the transition is from Low to High for the input bit 0.
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Differential Manchester

In this type of coding, there always occurs a transition in the middle of the bit interval. If there
occurs a transition at the beginning of the bit interval, then the input bit is 0. If no transition
occurs at the beginning of the bit interval, then the input bit is 1.

The following figure illustrates the waveforms of NRZ-L, NRZ-I, Bi-phase Manchester and

Differential Manchester coding for different digital inputs.

0 0 0 0 1 1 0

1 1
NRZ-L l
NRZ -1 ’ I*
BI-PHASE
Manchester
Differential
Manchester

Block Coding
Among the types of block coding, the famous ones are 4B/5B encoding and 8B/6T encoding.
The number of bits are processed in different manners, in both of these processes.

4B/5B Encoding

In Manchester encoding, to send the data, the clocks with double speed is required rather than
NRZ coding. Here, as the name implies, 4 bits of code is mapped with 5 bits, with a minimum
number of 1 bits in the group.

The clock synchronization problem in NRZ-I encoding is avoided by assigning an equivalent
word of 5 bits in the place of each block of 4 consecutive bits. These 5-bit words are
predetermined in a dictionary.

The basic idea of selecting a 5-bit code is that, it should have one leading 0 and it should
have no more than two trailing 0s. Hence, these words are chosen such that two transactions
take place per block of bits.

8B/6T Encoding

We have used two voltage levels to send a single bit over a single signal. But if we use more
than 3 voltage levels, we can send more bits per signal.
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Time-Division Multiplexing

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal m(¢) as a sequence of samples of »2(¢) taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the
sampling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent samples is cleared
for use hy other independent message sources on a time-shared basis. We thereby obtain
a time-division multiplex (TDM) system, which enables the joint utilization of a common
communication channel by a plurality of independent message sources without mutual
interference among them.

The concept of TDM is illustrated by the block diagram shown in Figure 3.19. Each
input message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to
remove the frequencies that are nonessential to an adequate signal representation. The
low-pass filter outputs are then applied to a commstator, which is usually implemented
using electronic switching circuitry. The function of the commutator is twofold: (1) to take
a narrow sample of each of the N input messages at a rate f; that is slightly higher than
2W, where W is the cutoff frequency of the anti-aliasing filter, and (2) to sequentially
interleave these N samples inside the sampling interval T. Indeed, this latter function is
the essence of the time-division multiplexing operation. Following the commutation pro-
cess, the multiplexed signal is applied to a pulse modulator, the purpose of which is to
transform the multiplexed signal into a form suitable for transmission over the common
channel. It is clear that the use of time-division multiplexing introduces a bandwidth ex-
pansion factor N, because the scheme must squeeze N samples derived from N independent
message sources into a time slot equal to one sampling interval. At the receiving end of
the system, the received signal is applied to a pulse demodulator, which performs the

- reverse operation of the pulse modulator. The narrow samples produced at the pulse de-
modulator output are distributed to the appropriate low-pass reconstruction filters by
means of a decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for a satisfactory operation of the system.
The way this synchronization is implemented depends naturally on the method of pulse
modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel, that is, to
variations of amplitude with frequency or lack of proportionality of phase with frequency.
Accordingly, accurate equalization of both magnitude and phase responses of the channel
is necessary to ensure a satisfactory operation of the system;

Low-pass Low-pass
M (anti-aliasing) {reconsruction)

fessage filters filters Message
inpuis o outputs

1] LeF — e Symebronized

, e Pra -
- o=
2 LPF ! TN Pulse Communication Pulse
A - ‘\ N I modulator channel demodulator
: 7/

. N ~ e
N _ﬁ.@/(:omﬁ'lutamr T T Decommutat::nr\i- 5
. Clock pulses Ciock pulses

Block diagram of TDM system.
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Howevet, unlike FDM, to a first-order approximation TDM is immune tq
nonlinearities in the channel as a source of cross-talk. The reason for this behavior is thag
different message signals are not simultaneously applied to the channel.

SYNCHRONIZATION

In applications using PCM, it is natural to multiplex different messages sources by time

division, whereby cach source keeps its individuality throughout the journey from the

transmitter to the receiver. This individuality accounts for the comparative ease with which
message sources may be dropped or reinserted in a time-division multiplex system. As the
number of independent message sources is increased, the time interval that may be allotted
to each source has to be reduced, since all of them must be accommodated into a time
interval equal to the reciprocal of the sampling rate. This, in turn, means that the allowable
duration of a code word representing a single sample is reduced. However, pulses tend i
become more difficult to generate and to transmit as their duration is reduced. Further-
more, if the pulses become too short, impairments in the transmission medium begin to
interfere with the proper operation of the system. Accordingly, in practice, it is necessary
to restrict the number of independent message sources that can be included within a time-
division group.

In any event, for a PCM system with time-division multiplexing to operate satisfac-
torily, it is necessary that the timing operations at the receiver, except for the time lost in
transmission and regenerative repeating, follow closely the corresponding operations at
the transmitter. In a general way, this amounts to requiring a local clock at the receiver
to keep the same time as a distant standard clock at the transmitter, except that the local
clock is somewhat slower by an amount corresponding to the time required to transport
the message signals from the transmitter to the recciver. One possible procedure to syn-
chronize the transmitter and receiver clocks is to set aside a code element or pulse at the
end of a frame (consisting of a code word derived from cach of the independent message
sources in succession} and to transmit this pulse every other frame only. In such a case,
the receiver includes a circuit that would search for the pattern of 1s and 0s alternating at
half the frame rate, and thereby establish synchronization between the transmitter and
receivetr. '

When the transmission path is interrupted, it is highly unlikely that transmitter and
receiver clocks will continue to indicate the same time for long. Accordingly, in carrying
out a synchronization process, we must set up an orderly procedure for detecting the
synchronizing pulse. The procedure consists of observing the code elements one by one
until the synchronizing pulse is detected. That is, after observing a particular code element
long enough to establish the absence of the synchronizing pulse, the receiver clock 1s set.
back by one code element and the next code element is observed. This searching process
is repeated until the synchronizing pulse is detected. Clearly, the time required for syn-
chronization depends on the epoch at which proper transmission is re-established.
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Time Division Multiplexing

1. TDM is the digital multiplexing technique.

2. In TDM, the channel/link is not divided on the basis of frequency but on the basis of time.
3. Total time available in the channel is divided between several users.

4. Each user is allotted a particular a time interval called time slot or time slice during which
the data is transmitted by that user.

5. Thus each sending device takes control of entire bandwidth of the channel for fixed
amount of time.

6. In TDM the data rate capacity of the transmission medium should be greater than the data
rate required by sending or receiving devices.

7. In TDM all the signals to be transmitted are not transmitted simultaneously. Instead, they
are transmitted one-by-one.

8. Thus each signal will be transmitted for a very short time. One cycle or frame is said to be
complete when all the signals are transmitted once on the transmission channel.

9. The TDM system can be used to multiplex analog or digital signals, however it is more
suitable for the digital signal multiplexing.

10. The TDM signal in the form of frames is transmitted on the common communication

medium.
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Time Division Multiplexing (TDM)
Types of TDM

1. Synchronous TDM

2. Asynchronous TDM

Synchronous TDM (STDM)

1. In synchronous TDM, each device is given same time slot to transmit the data over the link,
irrespective of the fact that the device has any data to transmit or not. Hence the name
Synchronous TDM. Synchronous TDM requires that the total speed of various input lines
should not exceed the capacity of path.
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2. Each device places its data onto the link when its time slot arrives i.e. each device is given
the possession of line turn by turn.

3. If any device does not have data to send then its time slot remains empty.

4. The various time slots are organized into frames and each frame consists of one or more time
slots dedicated to each sending device.

5. If there are n sending devices, there will be n slots in frame i.e. one slot for each device.

s =N
Synchronous TDM
Time slots
A Az A
— C: | B: | A C: | B8 | A C: | B | A
= - B M Frame 3 Frame 2 Frame 1 >
[____ﬁ‘ (9] No of input device=3
X No of slots per frame=3
C C: C
=]
& J

6. As show in fig, there are 3 input devices, so there are 3 slots in each frame.
Multiplexing Process in STDM
1. In STDM every device is given the opportunity to transmit a specific amount of data onto the
link.
2. Each device gets its turn in fixed order and for fixed amount of time. This process is known
as interleaving.
3. We can say that the operation of STDM is similar to that of a fast interleaved switch. The
switch opens in front of a device; the device gets a chance to place the data onto the link.
4. Such an interleaving may be done on the basis of a hit, a byte or by any other data unit.
5. In STDM, the interleaved units are of same size i.e. if one device sends a byte, other will also
send a byte and so on.
6. As shown in the fig. interleaving is done by a character (one byte). Each frame consists of
four slots as there are four input devices. The slots of some devices go empty if they do not
have any data to send.
7. At the receiver, demultiplexer decomposes each frame by extracting each character in turn.
As a character is removed from frame, it is passed to the appropriate receiving device.
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Multiplexing in STOM

Disadvantages of Synchronous TDM

1. The channel capacity cannot be fully utilized. Some of the slots go empty in certain frames.
As shown in fig only first two frames are completely filled. The last three frames have 6 empty
slot. It means out of 20 slots in all, 6 slots are empty. This wastes the I/4th capacity of links.

2. The capacity of single communication line that is used to carry the various transmission
should be greater than the total speed of input lines.

Asynchronous TDM

1. It is also known as statistical time division multiplexing.

2. Asynchronous TDM is called so because is this type of multiplexing, time slots are not
fixed i.e. the slots are flexible.

3. Here, the total speed of input lines can be greater than the capacity of the path.

4. In synchronous TDM, if we have n input lines then there are n slots in one frame. But in
asynchronous it is not so.

5. In asynchronous TDM, if we have ninput lines then the frame contains not more
than m slots, with m less than n (m < n).

6. In asynchronous TDM, the number of time slots in a frame is based on a statistical analysis of
number of input lines.

7. In this system slots are not predefined, the slots are allocated to any of the device that has
data to send.
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8. The multiplexer scans the various input lines, accepts the data from the lines that have data to
send, fills the frame and then sends the frame across the link.

9. If there are not enough data to fill all the slots in a frame, then the frames are transmitted
partially filled.

10. Asynchronous Time Division Multiplexing is depicted in fig. Here we have five input lines
and three slots per frame.

=~
=

_!;:J— Friifie 3 Frame?  Frame 1

= | «| COoO-—Oo0oog)
= imbarof o doces =S
O

L~

Asynchronous TDM

11. In Case 1, only three out of five input lines place data onto the link i.e. number of input lines
and number of slots per frame are same.

12. In Case 2, four out of five input lines are active. Here number of input line is one more than
the number of slots per frame.

13. In Case 3, all five input lines are active.

In all these cases, multiplexer scans the various lines in order and fills the frames and transmits
them across the channel.

The distribution of various slots in the frames is not symmetrical. In case 2, device 1 occupies
first slot in first frame, second slot in second frame and third slot in third frame.
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Advantages of TDM :

1. Full available channel bandwidth can be utilized for each channel.
2. Intermodulation distortion is absent.

3. TDM circuitry is not very complex.

4. The problem of crosstalk is not severe.

Disadvantages of TDM :
1. Synchronization is essential for proper operation.
2. Due to slow narrowband fading, all the TDM channels may get wiped out.
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UNIT II-DIGITAL MODULATION SYSTEMS
PCM Systems — Noise Considerations in PCM system — Overall Signal-to- noise ratio for PCM system — Threshold
effect — Channel Capacity — Virtues, Limitations & Modification of PCM system — PCM Signal Multiplexing —
Differential PCM - Delta Modulation — Noise Considerations in Delta Modulation — SNR Calculations —
Comparison of PCM, DPCM & DM.

Pulse-Code Modulatios -

With the sampling and guantization processes at our disposal, we are now ready to de-
scribe pulse-code modulation, which, as mentioned previously, is the most basic form of
digital pulse modulation. In pulse-code modiulation (PCM), a ymessage signal is represented
by a sequernce of coded pulses, whichk is accomplished by representing the signal in discrete
form in both tinte and amplitude. The basic operations performed in the transmitter of a
. PCM system are sampling, quantizing, and erccoding, as shown in Figure 3.134; the low-
pass filter prior to sampling is included to prevent aliasing of the message signal. The
quantizing and encoding operations are usually performed in the same circuit, which is
called an analog-to-digital converter. The basic operations in the receiver are regerneration
of impaired signals, decoding, and recornstruction of the train of quantized samples, as
shown in Figure 3.13c¢. Regeneration also occurs at intermediate points along the trans-
mission path as necessary, as indicated in Figure 3.136. When time-division multiplexing
is used, it becomes necessary to synchronize the receiver to the transmitter for the overall
system to operate satisfactorily, as discussed in Section 3.9. In whart follows, we describe
the various operations that constitute a basic PCM system.

SAMPLING

The incoming message signal is sampled with a train of narrow rectangular pulses so as
to closely approximate the instantaneous sampling process. To ensure perfect reconstruc-
tion of the message signal at the receiver, the sampling rate must be greater than twice the
highest frequency component W of the message signal in accordance with the sampling
theorem. In practice, a low-pass anti-aliasing filter is used at the front end of the sampler
to exclude frequencies greater than W before sampling. Thus the application of sampling

Scurce of :
s PCM signal
- Low-pass . ;
'c'cormnuouS OF?Etpers 1 Sampler Quantizer Encoder |—== applied to
smeSir;:aslsage channel! input

{@) Transmitter

. Regenerated
s?glitaolrf:ergdﬁlc;gd Regenerative | | Regenerative PCM signal
at channel output repeater repeater ap?—gi:;ﬁg,—the

{b) Transmission path
Final . .
channel ——s| Regqneratlon Decoder Recon‘structzon Destination
ouiput circuit filter

{c} Receiver

The basic elements of a PCM system.
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permits the reduction of the continuously varying message signal {of some finite duratic.n)
to a limited number of discrete values per second.

QUANTIZATION

The sampled version of the message signal is then quantized, thereby providing a ney,
representation of the signal that is discrete in both time and amplitude. The quantization
process may follow a uniform law as described in Section 3.6. In telephonic communica-
tion, however, it is preferable to use a variable separation between the representation levels,
For example, the range of voltages covered by voice signals, from the peaks of loud talk
to the weak passages of weak talk, is on the order of 1000 to 1. By using a nonuniform
gquantizer with the feature that the step-size increases as the separation from the origin of
the input—output amplitude characteristic is increased, the large end steps of the quantizer
can take care of possible excursions of the voice signal into the large amplitude ranges
that occur relatively infrequently. In other words, the weak passages, which need more
protection, are favored at the expense of the loud passages. In this way, a nearly uniform
percentage precision is achieved throughout the greater part of the amplitude range of the
input signal, with the result that fewer steps are needed than would be the case if a uniform
quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the baseband signal
through a compressor and then applying the compressed signal to a uniform quantizer. A
particular form of compression law that is used in practice is the so-called p-law,’ which
is defined by ’

o] = Lot = plml) (3.48)

log(1 + w)
where #z and v are the normalized input and output voltages, and u is a positive constant.
In Figure 3.14a, we have plotted the u-law for three different values of p. The case of
uniform quantization corresponds to u = 0. For a given value of u, the reciprocal slope
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(a) . (b}

Compression laws. {(a) p-law. (b) A-law.
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of the compression curve, which defines the quantum steps, is given by the derivative of
|72 | with respect to | ¢ [; that is,

+
dlr| _ Jog(l ¥4 (1 4 ) sm)) (3.49)
d|v| 7
We see therefore that the p-law is neither strictly linear not strictly logarithmic, but it is
approximately linear at low input levels corresponding to g |#2| <5< 1, and approximately
logarithmic at high input levels corresponding to wu|mz| == 1.
Another compression law that is used in practice is the so-called A-law defined by

M 0O = |m| = .]_
1+ log A’ o A
1 + log(A|#z]) 1

1+ logA ~° A
which is plotted in Figure 3.14& for varying A. The case of uniform quantization corre-
sponds to A = 1. The reciprocal slope of this second compression curve is given by

the derivative of |m2| with respect to ¢ |, as shown by (depending on the value assigned
to the normalized input |#z]|)

lv| = (3.50)

E‘m|£l

1+ log A 1

1 oA 0= |m|=—
dlm| _ A7 A (3.51)
> i
e+ aiml, E=imi=1

A

To restore the signal samples to their correct relative level, we must, of course, use
a device in the receiver with a characteristic complementary to the compressor. Such a
device is called an expander. Ideally, the compression and expansion laws are exactly
inverse so that, except for the effect of quantization, the expander ocutput is equal to the
compressor input. The combination of a compressor and an expander is called a
comparnder. :

For both the p-law and A-law, the dynamic range capability of the compander im-
proves with increasing @ and A, respectively. The SNR for low-level signals increases at
the expense of the SNR for high-level signals. To accomnmodate these two conflicting
requirements (i.e., a reasonable SNR for both low- and high-level signals), a compromise
is usually made in choosing the value of paramenter u for the w-law and parameter A for
the A-law. The typical values used in practice are: ;& = 255 and A = 87.6.

It is also of interest to note that in actual PCM systems, the companding circuitry
does not produce an exact replica of the nonlinear compression curves shown in Figure
3.14. Rather, it provides a piecewise linear approximation to the desired curve. By using
a large enough number of linear segments, the approximation can approach the true com-
pression curve very closely. This form of approximation is illustrated in Example 3.2.

ENCcOoDING

In combining the processes of sampling and quantization, the specification of a continuous
message (baseband) signal becomes limited to a discrete set of values, but not in the form
best suited to transmission over a telephone line or radio path. To exploit the advantages
of sampling and quantizing for the purpose of making the transmitted signal more robust
to noise, interference and other channel impairments, we require the use of an encoding
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Binary number system for R = 4 bits/sample

Ordinal Number of Level Number Expressed as Binary
Representation Level St of Powers of 2 Number
0 0000

1 2° 0001

2 21 0010

3 21 + 20 0011

4 22 0100

5 22 + 2° 0101

6 22 + 21 0110

7 27 + 21+ 2° 0111

8 273 1000

9 23 + 20 1001

10 23 + 27 1010

11 23 + 2% + 2° 1011

12 2%+ 22 1100

13 23 4+ 27 + 2° 1101

14 23 4+ 22 4 21 1110

15 23 + 22 + 20 4+ 2° 1111

process to translate the discrete set of sample values to a more appropriate form of signal,
Any plan for representing each of this discrete set of values as a particular arrangement of
discrete events is called a code. One of the discrete events in a code is called a code element
or symbol. For example, the presence or absence of a pulse is a symbol. A particular
arrangement of symbols used in a code to represent a single value of the discrete set is
called a code word or character.

In a binary code, each symbol may be either of two distinct values or kinds, such as
the presence or absence of a pulse. The two symbols of a binary code are customarily
denoted as 0 and 1. In a terrary code, each symbol may be one of three distinct values or
kinds, and so on for other codes. However, the maximum advantage over the effects of
noise in a transmission medium is obtained by using a binary code, because a binary
symbol withstands a relatively high level of noise and is easy to regenerate. Suppose that,
in a binary code, each code word consists of R bits: bét is an acronym for binary digit,
thus R denotes the number of bits per sarnple. Then, using such a code, we may represent
a total of 2% distinct numbers. For example, a sample quantized into one of 256 levels
may be represented by an 8-bit code word. '

There are several ways of establishing a one-to-one correspondence between repre-
sentation levels and code words. A convenient method is to express the ordinal number
of the representation level as a binary number. In the binary number system, each digit
has a place-value that is a power of 2, as illustrated in Table 3.2 for the case of four bits
per sample (i.e., R = 4).

Line Codes

Any of several line codes can be used for the electrical representation of a binary
data stream. Figure 3.15 displays the waveforms of five important line codes for the ex-
ample data stream 01101001. Figure 3.16 displays their individual power spectra (tor
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Binary data O 1 1 &} 1 &} a] 1

{a}

(b}

{c)

Ar - X —|
WL L

(ed
Line codes for the electrical representations of binary data. (#) Unipolar NRZ
signaling. (%) Polar NRZ signaling. {¢) Unipolar RZ signaling. () Bipolar RZ signaling.
{e) Split-phase or Manchester code.

Time —=

positive frequencies) for randomly generated binary data, assuming that (1) symbols 0 and
1 are equiprobable, (2) the average power is normalized to unity, and (3) the frequency f
is normalized with respect to the bit rate 1/T},. (For the formulas used to plot the power
spectra of Figure 3.16, the reader is referred to Problem 3.11.) The five line codes illustrated
in Figure 3.15 are described here:

1. Unipolar nonreturn-to-zero (NRZ) signaling

In this line code, symbol 1 is represented by transmitting a pulse of amplitude A for the
duration of the symbol, and symbol 0 is represented by switching off the pulse, as in Figure
3.15a. This line code is also referred to as on-off signaling. Disadvantages of on-off sig-
naling are the waste of power due to the transmitted DC level and the fact that the power
spectrum of the transmitted signal does not approach zero at zero frequency.

2. Polar nonreturn-to-zero (NRZ) signaling

In this second line code, symbols 1 and 0 are represented by transmirtting pulses of ampli-
tudes +A and —A, respectively, as illustrated in Figure 3.155. This line code is relatively
easy ro generate but its disadvantage is that the power spectrum of the signal is large near
zero frequency.
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Normalized power spectral density
Normalized power spectral density
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Power spectra of line codes: (2) Unipolar NRZ signal. (b) Polar NRZ signal.
{c) Unipolar RZ signal. (d) Bipolar RZ signal. (e) Manchester-encoded signal. The frequency is
normalized with respect to the bit rate 1/T),, and the average power is normalized to unity.
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3. Unipolar return-to-zero (RZ) signaling

In this other line code, symbol 1 is represented by a rectangular pulse of amplitude A and
half-symbol width, and symbol 0 is represented by transmitting #o pulse, as illustrated in
Figure 3.15¢. An attractive feature of this line code is the presence of delta functions at
f =0, =1/T, in the power spectrum of the transmitted signal, which can be used for bit-
timing recovery at the receiver. However, its disadvantage is that it requires 3 dB more
power than polar return-to-zero signaling for the same probability of symbol error; this
issue is addressed in Chapter 4 under Problem 4.10.

4. Bipolar return-to-zero (BRZ) signaling

This line code uses three amplitude levels as indicated in Figure 3.154d. Specifically, positive
and negative pulses of equal amplitude (i.e., +A and —A) are used alternately for symbol
1, with each pulse baving a half-symbol width; no pulse is always used for symbol 0. A
useful property of the BRZ signaling is that the power spectrum of the transmitted signal
has no DC component and relatively insignificant low-frequency components for the case
when symbols 1 and 0 occur with equal probability. This line code is also called alternate

mark inversion (AMI) signaling.

5. Split-phbase (Manchester code)

In this method of signaling, illustrated in Figure 3.15¢, symbol 1 is represented by a positive
pulse of amplitude A followed by a negative pulse of amplitude — A, with both pulses being
half-symbol wide. For symbol 0, the polarities of these two pulses are reversed. The Man-
chester code suppresses the DC component and has relatively insignificant low-frequency
components, regardless of the signal statistics. This property is essential in some
applications.

Differential Encoding

This method is used to encode information in terms of signal transitions. In partic-
ular, a transition is used to designate symbol 0 in the incoming binary data stream, while
no transition is used to designate symbol 1, as illustrated in Figure 3.17. In Figure 3.17b
we show the differentially encoded data stream for the example data specified in Figure

- 3.17a. The original binary data stream used here is the same as that used in Figure 3.15.
The waveform of the differentially encoded data is shown in Figure 3.17c, assuming the
use of unipolar nonreturn-to-zero signaling. From Figure 3.17 it is apparent that a differ-
entially encoded signal may be inverted without affecting its interpretation. The original
binary information is recovered simply by comparing the polarity of adjacent binary sym-
bols to establish whether or not a transition has occurred. Note that differential encoding
requires the use of a reference bit before initiating the encoding process. In Figure 3.17,
symbol 1 is used as the reference bit.

{a} Criginal binary data 0 1 i o 1 D O 1

(¥} Differentially encoded data 1 0 0 8] 1 1 0 1 1

{c) Waveform

Reference bit 0
Time —

) (@) Original binary data. (b) Differentially encoded data, assuming reference bit 1.
(e) Waveform of differentially encoded data using unipolar NRZ signaling.
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Block diagram of regenerative repeater.

BEGENERATION

The most important feature of PCM systems lies in the ability to control the effects of
distortion and noise produced by transmitting a PCM signal through a channel. This
capability is accomplished by reconstructing the PCM signal by means of a chain of re-
generative repeaters located at sufficiently close spacing along the transmission route. Ag
illustrated in Figure 3.18, three basic functions are performed by a regenerative repeater:
equalization, timing, and decision making. The equalizer shapes the received pulses so as
to compensate for the effects of amplitude and phase distortions produced by the nonideal
transmission characteristics of the channel. The timing circuitry provides a periodic pulse
train, derived from the received pulses, for sampling the equalized pulses at the instants of
time where the signal-to-noise ratio is a maximum. Each sample so extracted is compared
to a predetermined threshold in the decision-making device. In each bit interval, a decision
is then made whether the reccived symbol is a 1 or a 0 on the basis of whether the threshold
is exceeded or not. If the threshold is exceeded, a clean new pulse representing symbol
1 is transmitted to the next repeater. Otherwise, another clean new pulse representing
symbol 0 is transmitted. In this way, the accumulation of distortion and noise in a repeater
span is completely removed, provided that the disturbance is not too large to cause an
error in the decision-making process. Ideally, except for delay, the regenerated signal is
exactly the same as the signal originally transmitted. In practice, however, the regenerated
signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the regener-
ated signal.

2. If the spacing between received pulses deviates from its assigned value, a jitter is
introduced into the regenerated pulse position, thereby causing distortion.

DECODING

The first operation in the receiver is to regenerate (i.e., reshape and clean up) the received
pulses one last time. These clean pulses are then regrouped into code words and decoded
(i.e., mapped back) into a quantized PAM signal. The decoding process involves generating
a pulse the amplitude of which is the lincar sum of all the pulses in the code word, with
each pulse being weighted by its place value (2°,2", 2%, ..., 287"} in the code, where Ris
the number of bits per sample.

FILTERING

The final operation in the receiver is to recover the message signal by passing the decoder
output through a low-pass reconstruction filter whose cutoff frequency is equal to the
message bandwidth W. Assuming that the transmission path is error free, the recovere
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signal includes no noise with the exception of the initial distortion introduced by the
quantization process.

Noise Considerations isn PCM Systents

The performance of a PCM system is influenced by two major sources of noise:

1. Channel noise, which is introduced anywhere between the transmitter output and
the receiver input. Channel noise is always present, once the eguipment is switched
on. :

2. Quantization noise, which is introduced in the transmitter and is carried all the way
along to the receiver output. Unlike channel noise, quantization noise is sigrnal-
deperndent in the sense that it disappears when the message signal is switched off.

Naturally, these two sources of noise appear simultaneously once the PCM system is in
operation. However, the traditional practice is to consider them separately, so that we may
develop insight into their individual effects on the system performance. .

The main effect of channel noise is to introduce bit errors into the received signal.
In the case of a binary PCM system, the presence of a bit error causes symbol 1 to be
mistaken for symbol 0, or vice versa. Clearly, the more frequently bit errors occur, the
more dissimilar the receiver output becomes compared to the original message signal. The
fidelity of information transmission by PCM in the presence of channel noise may be
measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the transmit-
ted binary symbol, on the average. The average probability of symbol error, also referred
to as the bit error rate {(BER), assumes that all the bits in the original binary wave are of
equal importance. When, however, there is more interest in reconstructuring the analog
waveform of the original message signal, different symbol errors may need to be weighted
differently; for example, an error in the most significant bit in a code word (representing
a quantized sample of the message signal) is more harmful than an error in the least
significant bit.

To optimize system performance in the presence of channel noise, we need to mini-
mize the average probability of symbol error. For this evaluation, it is customary to model
the channel noise as additive, white, and Gaussian. The effect of channel noise can be
made practically negligible by ensuring the use of an adequate signal energy-to-noise den-
sity ratio through the provision of short-enough spacing between the regenerative repeaters
in the PCM system. In such a situation, the performance of the PCM system is essentially
limited by quantization noise acting alone.

From the discussion of quantization noise presented in Section 3.6, we recognize that
quantization noise is essentially under the designer’s control. It can be made negligibly
small through the use of an adequate number of representation levels in the quantizer and
the selection of a companding strategy matched to the characteristics of the type of message
signal being transmitted. We thus find that the use of PCM offers the possibility of building
a communication system that is r#gged with respect to channel noise on a scale that is
beyond the capability of any CW modulation or analog pulse modulation system.

ErRrROR THRESHOLD

The underlying theory of bit error rate calculation in a PCM system is deferred until
Chapter 4. For the present, it suffices to say that the average probability of symbol error
in a binary encoded PCM receiver due to additive white Gaussian noise depends solely on
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E,/No, which is defined as the ratio of the transmitted signal energy per bit, Eg, to the
noise spectral density. No. Note that the ratio Ei /N, is dimensionless even though the
quantities E; and Np have different physical meaning. In Table 3.3 we present a summary
of this dependence for the case of a binary PCM system using polar nonreturn-to-zero
signaling. The results presented in the last column of the table assume a bit rate of 10° bys,

From Table 3.3 it is clear that there is an error threshold (at about 11 dB). For
E./Ng below the error threshold the receiver performance involves significant numbers of
errors, and above it the effect of channel noise is practically negligible. In other words,
provided that the ratio E,/ N, exceeds the error threshold, channel noise has virtually ng
effect on the receiver performance, which is precisely the goal of PCM. When, however,
E./N, drops below the error threshold, there is a sharp increase in the rate at which errors
occur in the receiver. Because decision errors result in the construction of incorrect code
words, we find that when the errors are frequent, the reconstructed message at the receiver
output bears little resemblance to the original message.

Comparing the figure of 11 dB for the error threshold in a PCM system using polar
NRZ signaling with the 60—70 dB required for high-quality transmission of speech using
amplitude modulation, we see that PCM requires much less power, even though the av-
erage noise power in the PCM system is increased by the R-fold increase in bandwidth,
where R is the number of bits in a code word (i.e., bits per sample).

In most transmission systems, the effects of noise and distortion from the individual
links accumulate. For a given quality of overall transmission, the longer the physical sep-
aration between the transmitter and the receiver, the more severe are the requirements on
each link in the system. In a PCM system, however, because the signal can be regenerated
as often as necessary, the effects of amplitude, phase, and nonlinear distortions in one link
(if not too severe) have practically no effect on the regenerated input signal to the next
link. We have also seen that the effect of channel noise can be made practically negligible
by using a ratio E,/N, above threshold. For all practical purposes, then, the transmission
requirements for a PCM link are almost independent of the physical length of the com-
munication channel.

Another important characteristic of a PCM system is its ruggedness to interference,
caused by stray impulses or cross-talk. The combined presence of channel noise and in-
terference causes the error threshold necessary for satisfactory operation of the PCM sys-
tem to increase. If an adequate margin over the error threshold is provided in the first
place, however, the system can withstand the presence of relatively Jarge amounts of io-
terference. In other words, a PCM system is robust to channel noise and interference.

Influence of E,/Ng on the probability of error

For a Bit Rate of 10° b/s,

Probability of This Is About One
E,/Ng Error P, Error Every
4.3 dB 1072 103 second
8.4 10~ 10" second
10.6 10°° 10 seconds
12.0 108 20 minutes
13.0 10-1° 1 day
14.0 10712 3 months
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Virtues, Limitations, and Modifications of PCM

In a generic sense, pulse-code modulation (PCM) has emerged as the most favored mod-
ulation scheme for the transmission of analog information-bearing signals such as voice
and video signals. The advantages of PCM may all be traced to the use of coded pulses
for the digital representation of analog signals, a feature that distinguishes it from all other

analog methods of modulation. We may summarize the important advantages of PCM as
follows:

1. Robustness to channel noise and interference.
2. Efficient regeneration of the coded signal along the transmission path.

3. Efficient exchange of increased channel bandwidth for improved signal-to-noise ra-
tio, obeying an exponential law.

4. A uniform format for the transmission of different kinds of baseband signals, hence
their integration with other forms of digital data in a common network.

5. Comparative ease with which message sources may be dropped or reinserted in a
time-division multiplex system.

6. Secure communication through the use of special modulation schemes or encryption;
the encryption and decryption of data are discussed in Appendix 5.

These advantages, however, are attained at the cost of increased system complexity and
increased channel bandwidth. These two issues are considered in the sequel in turn.

Although the use of PCM involves many compie?c operat:lons, today th:ey can all be
implemented in a cost-effective fashion using commercially avadab!e_and/o:.: -.,ustohrn-made _
very-large-scale integrated (VLSI} chips. In other w?rds, the requisite de\rl‘cio?1 tec r"‘:’l?g‘y
for the implementation of a PCM system is already in place. Moreover, wit (}ontmmng
improvements in VLSI technology, we are likely to see an ever-expanding use of PCM fo,
the digital transmission of analog signals. - ‘ _ .

If, however, the simplicity of implementation is a necessary requuement,dt len' we
may use delta modulation as an alternative to pulse-code m(?dulatlon. In d.elta modulation,
the baseband signal is intentionally “oversampled” to permit th_e use ofa snTlple quantizing
strategy for constructing the encoded signal; delta modulation is dlscussed_nl Sectlc::ln 3.12,

Turning next to the issue of bandwidth, we do recognize that the increase band-
width requirement of PCM may have been a reason for justifiable co'm:v:rr;1 in the past.
Today, however, it is of no real concern for two different reasons. F}rst, the m;:reaslng
availability of wideband communication channels means jchat b_andW1dth is nl;) O(;]g‘er a

" system constraint in the traditional way it used to be. Liberation f-ron'.l the andwidth
constraint has been made possible by the deploy’me}lt of communication s'atelht,es for
broadcasting and the ever-increasing use of fiber optlcs.for nerworking:; a dlscussmn. of
these communication channel concepts was presented in the Background and Preview
Chapt'el']:—l:le second reason is that through the use of sophisticated data compression tech-
niques, it is indeed possible to remove the redupdancy 1nherf:ntly present in a PCCII\/I :51gnfal
and thereby reduce the bit rate of the transmlttfed data w1tl"10ut serious degra- ation in
system performance. In effect, increased processing c‘ornplemty (and therefocll:e }n:l:r{;:ased
cost of implementation) is traded off for a reduced bit rate apd therefore reduce ‘ apd-
width requirement. A major motivation for bit-rate rf:ductlon is for secure communication
over radio channels that are inherently of low capacity.
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Differential Pulse-Code Modulation

Wher a voice or video signal is sampled at a rate slightly higher than the Nyquist rate as

~usually done in pulse-code modulation, the resulting sampled signal is found to exhibit a
high degree of correlation between adjacent samples. The meaning of this high correlation
is that, in an average sense, the signal does not change rapidly from one sample to the
next, and as a result, the difference between adjacent samples has a variance that is smaller
than the variance of the signal itself. When these highly correlated samples are encoded,
as in the standard PCM system, the resulting encoded signal contains redundant infor-
mation. This means that symbols that are not absolutely essential to the transmission of
information are generated as a result of the encoding process. By removing this redundancy
before encoding, we obtain a more efficient coded signal, which is the basic idea behind
differential pulse-code modulation.

Now if we know the past behavior of a signal up to a certain point in time, we may
use prediction to make an estimate of a future value of the signal as described in Section
3.13. Suppose then a baseband signal m(t) is sampled at the rate fe = 1T, to produce the
sequence {s[»n]} whose samples are T, seconds apart. The fact that it is possible to predict
future values of the signal (t) provides motivation for the differential quantization scheme
shown in Figure 3.28a. In this scheme, the input signal to the quantizer is defined by

e[n] = mn] — wn] (3.74)

which is the difference between the unquantized input sample m([#] and a prediction of it,
denoted by #2[#]. This predicted value is produced by using a linear prediction filter whose
input, as we will see, consists of a quantized version of the input sample #[#n]. The differ-
ence signal ¢[#] is the prediction error, since it is the amount by which the prediction filter
fails to predict the input exactly. By encoding the quantizer output, as in Figure 3.284, we
obtain a variant of PCM known as differential pulse-code modulation® (DPCM).

The quantizer output may be expressed as

e, ln] = e[n] + g[n] (3.75)

where g|#) is the quantization error: According to Figure 3.284, the quantizer output e []
is added to the predicted value i[#] to produce the prediction-filter input

mgln] = #n] + e [n) (3.76)
Substituting Equation (3.75) into (3.76), we get
myn] = i[n] + e[n] + gln] (3.77)

However, from Equation (3.74) we observe that the sum term h[n] + eln] is equal to the
input sample #[n]. Therefore, we may simplify Equation (3.77) as

myln] = mln] + gqln] (3.78)
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which represents a quantized version of the input sample s[#n]. That is, irrespective of the
properties of the prediction filter, the quantized sample #1,[7] at the prediction filter input
differs from the original input sample 7n{#] by the quantization error g[#]. Accordingly, if
the prediction is good, the variance of the prediction error e[n] will be smaller than the
variance of #[#], so that a quantizer with a given number of levels can be adjusted to
produce a gquantization error with a smaller variance than would be possible if the input
sample mz[#n] were quantized directly as in a standard PCM system.

The receiver for reconstructing the quantized version of the input is shown in Figure
3.28b. Tt consists of a decoder to reconstruct the quantized error signal. The quantized
version of the original input is reconstructed from the decoder output using the same
prediction flter ased in the transmitter of Figure 3.28az. In the absence of channel noise,
we find that the encoded signal at the receiver input is identical to the encoded signal at
the transmitter output. Accordingly, the corresponding teceiver output is equal to m,ln
which differs from the original input #z{r] only by the quantization error g[r] incurred as
a result of quantizing the prediction error e[n].

From the foregoing analysis we observe that, in a noise-free environment, the pre-
diction filters in the transmitter and receiver operate on the same sequence of samples,
m 4[], It is with this purpose in mind that a feedback path is added to the guantizer in the
transmitter, as shown in Figure 3.28a.

Differential pulse-code modulation includes delta modulation as a special case. In
particular, comparing the DPCM system of Figure 3.28 with the DM system of Figure
3.23, we see that they are basically similar, except for two important differences: the use
of a one-bit (two-level) quantizer in the delta modulator and the replacement of the pre-
diction filter by a single delay element (i.e., zero prediction order). Simply put, DM is the
1-bit version of DPCM. Note that unlike a standard PCM system, the transmitters of both
the DPCM and DM involve the use of feedback.

DPCM, like DM, is subject to slope-overload distortion whenever the input signal
changes too rapidly for the prediction filter to track it. Also, like PCM, DPCM suffers
from gquantization noise.
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PROCESSING GAIN

The output signal-to-noise ratio of the DPCM system shown in Figure 3.28 is, by
definition, .

(SNR),, = T (3.79)

o™ 5 .
75

where o34 is the variance of the original input sample #[#], assumed to be of zero mean,
and o, is the variance of the quantization error g[#]. We may rewrite Equation (3.79) as
the product of two factors as follows:

2N oF
°\oz/\op (3.80)
= G,(SNR)g,

where of is the variance of the prediction error. The factor (SNR)q is the signal-to-
gquantization noise ratio, which is defined by
Ok
(SNR), = £ (3.81)
70
The other factor G, is the processing gain produced by the differential quantization
scheme; it is defined by

5

G, =—3 (3.82)
The quantity G,,, when greater than unity, represents a gain in signal-to-noise ratio that
is due to the differential quantization scheme of Figure 3.28. Now, for a given baseband
(message) signal, the variance o3 is fixed, so that G, is maximized by minimizing the
variance 0% of the prediction error e[n]. Accordingly, our objective should be to design
the prediction filter so as to minimize oZ.

In the case of voice signals, it is found that the optimum signal-to-quantization noise
advantage of DPCM over standard PCM is in the neighborhood of 4 to 11 dB. The greatest
improvement occurs in going from no prediction to first-order prediction, with some ad-
ditional gain resulting from increasing the order of the prediction filter up to 4 or 5, after
which little additional gain is obtained. Since 6 dB of quantization noise is equivalent to
1 bit per sample by virtue of Equation (3.35), the advantage of DPCM may also be ex-
pressed in terms of bit rate. For a constant signal-to-quantization noise ratio, and assuming
a sampling rate of 8 kHz, the use of DPCM may provide a saving of about 8 to 16 kb/s
(i.e., 1 to 2 bits per sample) compared to the standard PCM.
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Delta Modulation

In delta modulation® (DM), an incoming message signal is oversampled (i.e., at a rate
much higher than the Nyquist rate) to purposely increase the correlation between adjacent
samples of the signal. This is done to permit the use of a simple quantizing strategy for
constructing the encoded signal.

In its basic form, DM provides a staircase approximation to the oversampled version
of the message signal, as illustrated in Figure 3.22a. The difference between the inpur and
the approximation is quantized into only two levels, namely, =A, corresponding to positive
and negative differences. Thus if the approximation falls below the signal at any sampling
epoch, it is increased by A. If on the other hand, the approximation lies above the signal,
it is diminished by A. Provided that the signal does not change too rapidly from sample
to sample, we find that the staircase approximation remains within =A of the input signal.

Let #(z) denote the input {message) signal, and #1,(¢) denote its staircase approxi-
mation. For convenience of presentation, we adopt the following notation that is com-
monly used in the digital signal processing literature:

mn] = m{nTy), n=0,*1, x2 ...

where T, is the sampling period and m(»T,) is a sample of the signal () taken at time
t = nT,, and likewise for the samples of other continuous-time signals. We may thet

)1\ by
1\“‘* LT A Staircase .
approximation ~
—>'T5|-<— T m,, (7) —
0 t
(a}
Binary
sequence
stmodulater @ 9 1 0 1 1 1 1 1 0 1 ©0 0 0 O 0 O
output
(h)

Hiustration of delta modulation.
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formalize the basic principles of delta modulation in the following set of discrete-time
relations:

eln] = mln] — my[n — 1] (3.52)
e, = A sgnle[n]) (3.53)
my[n] = m,[n — 1] + e [n] (3.54)

where e[#] is an error signal representing the difference between the present sample (]
of the input signal and the latest approximation m,[n — 1] to it, e,[#] is the quantized
version of e[n], and sgn{‘) is the signum function. Finally, the quantizer output #i [n] 1s
coded to produce the DM signal.

Figure 3.22a illustrates the way in which the staircase approximation #s,() follows
variations in the input signal (¢} in accordance with Equations (3.52)~(3.54), and Figure
3.22b displays the corresponding binary sequence at the delta modulator output. It is
apparent that in a delta modulation system the rate of information transmission is simply
equal to the sampling rate f, = 1/T,,

The principal virtue of delta modulation is its simplicity. It may be generated by
applying the sampled version of the incoming message signal to a modulator that involves
a comparator, quantizer, and accumulator interconnected as shown in Figure 3.234. The
block labeled z™" inside the accumulator represents a unit delay, that is, a delay equal to
one sampling period. (The variable z is commonly used in the z-transform, which is basic
to the analysis of discrete-time signals and systems.) Details of the modulator follow di-
rectly from Equations (3.52)~(3.54). The comparator computes the difference between its
two inputs. The quantizer consists of a hard limiter with an input -output relation that is
a scaled version of the signum function. The quannzer output is then applied to an accu-
mulator, producing the result

my|n] = ;
S i

=1

(3.55)

T
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which is obtained by solving Equations (3.53) and (3.54) for m,[n]. Thus, at the sampling
instant nT,, the accumulator increments the approximation by a step A in a positive or
negative direction, depending on the algebraic sign of the error sample e[#]. If the input
sample m|n] is greater than the most recent approximation m.[7], a positive increment
+A is applied to the approximation. If, on the other hand, the input sample is smaller, a
negative increment —A is applied to the approximation. In this way, the accumulator does
the best it can to track the input samples by one step (of amplitude +A or —A) at a time.
In the receiver shown in Figure 3.23b, the staircase approximation r1,(f) is reconstructed
by passing the sequence of positive and negative pulses, produced at the decoder output,
through an accumulator in a manner similar to that used in the transmitter. The out-of-
band quantization noise in the high-frequency staircase waveform mi,(t) is rejected by
passing it through a low-pass filter, as in Figure 3.23b, with a bandwidth equal to the
original message bandwidth.

Delta modulation is subject to two types of quantization error: slope overload dis-
tortion and granular noise. We will discuss the case of slope overload distortion first.

We observe that Equation (3.54) is the digital equivalent of integration in the sense
that it represents the accumulation of positive and negative increments of magnitude 4
Also, denoting the quantization error by g[n], as shown by

myln] = mn] + gln] (3.56)
we observe from Equation (3.52) that the input to the quantizer is

eln] = mn) — mln — 1] — gln — 1] (3.57
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Hlustration of the two different forms of quantization error in delta modulation.

Thus except for the quantization error g[# — 1], the quantizer input is a first backward
difference of the input signal, which may be viewed as a digital approximation to the
derivative of the input signal or, equivalently, as the inverse of the digital integration
process. It we consider the maximum slope of the original input waveform #u(2), it is
clear that in order for the sequence of samples {#2,[n]} to increase as fast as the input
sequence of samples {#[#]} in a region of maximum slope of #(¢), we require that the
condition '

dmm(t)

- (3.58)

= max

A

T,
be satisfied. Otherwise, we find that the step-size A is too small for the staircase approxi-
mation #1,(¢) to follow a steep segment of the input waveform #(z), with the result that
m1,(t) falls behind #1{z), as illustrated in Figure 3.24. This condition is called slope overload,
and the resulting quantization error is called slope-overload distortion (noise). Note that
since the maximum slope of the staircase approximation #1,(z) is fixed by the step size A,
increases and decreases in 77,(¢) tend to occur along straight lines. For this reason, a delta
modulator using a fixed step size is often referred to as a linear delta smodulator.

In contrast to slope-overload distortion, granular noise occurs when the step size A
is too large relative to the local slope characteristics of the input waveform #1(t), thereby
causing the staircase approximation #1,(¢) to hunt around a relatively flat segment of the
input waveform; this phenomenon is also illustrated in Figure 3.24. Granular noise is
analogous to quantization noise in a PCM system.

We thus see that there is a need to have a large step-size to accommodate a wide
dynamic range, whereas a small step size is required for the accurate representation of
relatively low-level signals. It is therefore clear that the choice of the optimum step size
that minimizes the mean-square value of the quantization error in a linear delta modulator
will be the result of a compromise between slope-overiocad distortion and granular noise.
To satisty such a requirement, we need to make the delta modulator “‘adaptive,” in the
sense that the step size is made to vary in accordance with the input signal; this issue is
discussed further in a computer experiment presented in Section 3.16.

DELTA-SIGMA MODULATION

As mentioned earlier, the quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the incoming message signal. This
behavior leads to a drawback of delta modulation in that transmission disturbances such
as noise result in an accumulative error in the demodulated signal. This drawback can be

Karpagam Academy of Higher Education
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overcome by integrating the message signal prior to delta modulation. The use of integr,.
tion in the manner described here has also the following beneficial effects:

& The low-frequency content of the input signal is pre-emphasized.

& Correlation between adjacent samples of the delta modulator input is increased

* - - . 3

which tends to improve overall system performance by reducing the variance of the
error signal at the quantizer input.

> Design of the receiver is simplified.

A delta modulation scheme that incorporates integration at its input is called delta-sigmg
modulation (D-2M).° To be more precise, however, it should be called sigma-delta mod-
wlation, because the integration is in fact performed before the delta modulation. Never.
theless, the former terminology is the one commonly used in the literature.

Figure 3.25a shows the block diagram of a delta-sigma modulation system. In this
diagram, the message signal #1(t) is defined in its continuous-time form, which means that
the pulse modulator now consists of a hard-limiter followed by a multiplier; the latter
component is also fed from an external pulse generator (clock) to produce a 1-bit encoded
signal. The use of integration at the transmitter input clearly requires an inverse signal
emphasis, namely, differentiation, at the receiver. The need for this differentiation is, how-
ever, eliminated because of its cancellation by integration in the conventional DM receiver,

Pulse
generator

Pulse modulator

tntegrator 1 Comparater

-
|
I
!
|

Message Low-Dass Estimate of
signal ~—> 2 - T ﬁit%r S massage
m{z) 1 signal
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Two equivalent versions of delta-sigma modulation system.
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Thus the receiver of a delta-sigma modulation system consists simply of a low-pass filter,

Moreover, we note that integration is basically a linear operation. Accordingly, we
may simplify the design of the transmitter by combining the two integrators 1 and 2 of
Figure 3.25a into a single integrator placed after the comparator, as shown in Figure 3.25b.
This latter form of the delta-sigma modulation system is not only simpler than that of
Figure 3.254, but it also provides an interesting interpretation of delta-sigma modulation
as a “‘smoothed® version of 1-bit pulse-code modulation: The term smoothness refers to
the fact that the comparator output is integrated prior to quantization, and the term 7-biz
merely restates that the quantizer consists of a hard-limiter with only two representation
levels.

In delta modulation, simplicity of implementations of both the transmitter and re-
ceiver is attained by using a sampling rate far in excess of that needed for pulse-code
modulation. The price paid for this benefit is a corresponding increase in the transmission
and therefore channel bandwidth. There are, however, applications where channel band-
width is at a premium, in which case we have the opposite requirement to that in delta
modulation. Specifically, we may wish to trade increased system complexity for a reduced
channel bandwidth. A signal-processing operation basic to the attainment of this latter
design objective is prediction, the linear form of which is discussed next.

Sr. Parameter PCM Dhelta Adaptive Delta Diffarential Pulss
Ko modiulation Modulaticn Code Modulation
D) (AR [DPFCM]

1. Mumbsas af It camn wse 4, 8 It ees only one Only ane bat is Bits. can ba more

bits or 16 bils per Lit Mor ans usad o encods than ona bul are
EEmiple sample, il Sanm ke, legs than POM.

2, Levels, siep Tha number of Siop size i b the Fixed number of

EiFm leveis depend fored and signal varkation, lewels are used
on naumber of cEnncl b stap size waries
bits. Lewel size varied (Adapbed)
ia Tisesd

3 CuanEzatan Cuantizaticn Siopa gvarload OumnBEzaion Shope ocwerlocad
arror and amor depeands destorteon and |frof s presant disloriion ansd
dasineton on rumber of granular noise lbut cthar armors cuantization noise is

lenv s wsed. | is Pnu:l.q-rrl. |__are absent Fl'-l-rﬂ.

4. Bardwidith of Highask Lowasst Lowest Bandwidthy reguired
Transmiassomn bBandesdth s Earndwndts I8 Earvdveidts is s bovesr e POM.
chanmel requined sincms recy Ul reguired.

rimiber of bils
are high,

5 Feadback. Thera = mo Feedback axisis Feadback exisls. | Feedback axisbs.

faadiback n in trensmitiar.
bransmiibsr or
rECarar.

(13 Complexity of Sysham s Simpla, Sample, Simphe.
rega o amplas

T. Sigmal o Good, Pogr, Babtier than D& Fair,
naiss ratio o

a Area of Sudio and video Spesch and Spesch and Spaesch and video.
applications Telaphony images, lmnﬂ_".

Com betweesn PCM, Adaptive Delta Modulation

and Differential Pulse Code Modulation

Karpagam Academy of Higher Education

Page 20




DIGITAL COMMUNICATION V NANDHINI AP/ECE

UNIT 111 BASE BAND PULSE TRANSMISSION

Maximum likelihood receiver structure — Matched filter receiver — Probability error of the Matched filter — Inter symbol

interference — Nyquist criterion for distortion less baseband transmission — Correlative coding — Eye pattern.

Maximum Likelihood Receiver Structure

The decision-making criterion shown in step 2 of Figure 3.1 was described by
Equation (3.7) as

H,
—
(1) Fv

A popular criterion for choosing the threshold level v for the binary decision in
Equation (3.7) is based on minimizing the probability of error. The computation
for this minimum error value of v = vy, starts with forming an inequality expression
between the ratio of conditional probability density functions and the signal a pri-
ori probabilities. Since the conditional density function p(zls;) is also called the like-
lihood of s;, the formulation

p(zls,) H P(s,) (3.31)

P(Z|52} ;:1‘: P(sy)

is called the likelihood ratio test. (See Appendix B.) In this inequality, P(s,) and
P(s,) are the a priori probabilities that s,(7) and s,(r). respectively, are transmitted,
and H, and H, are the two possible hypotheses. The rule for minimizing the error
probability states that we should choose hypothesis H, if the ratio of likelihoods is
greater than the ratio of a priori probabilities, as shown in Equation (3.31).

It is shown in Section B.3.1, that if P(s,) = P(s,). and if the likelihoods,
p(zls;) (i =1, 2), are symmetrical, the substitution of Equations (3.5) and (3.6) into
(3.31) yields

H a; + a;
()= =5 = (3.32)
H, :

where a, is the signal component of z(7) when s,(¢) is transmitted, and a- is the
signal component of z(7) when s,(¢) is transmitted. The threshold level ,. repre-
sented by (a; + a,)/2, is the optimum threshold for minimizing the probability of
making an incorrect decision for this important special case. This strategy is known
as the minimum error criterion.
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For equally likely signals, the optimum threshold v, passes through the inter-
section of the likelihood functions, as shown in Figure 3.2. Thus by following Equa-
tion (3.32), the decision stage effectively selects the hypothesis that corresponds to
the signal with the maximum likelihood. For example, given an arbitrary detector
output value z,(7'). for which there is a nonzero likelihood that z,(7) belongs to
either signal class s5,(f) or s,(f), one can think of the likelihood test as a comparison
of the likelihood values p(z,ls;) and p(z,ls,). The signal corresponding to the maxi-
mum pdf is chosen as the most likely to have been transmitted. In other words, the
detector chooses s,(¢) if

P(zals1) > plzalsz) (3.33)

Otherwise, the detector chooses s5,(). A detector that minimizes the error prob-
ability (for the case where the signal classes are equally likely) is also known as a
maximum likelihood detector.

Figure 3.2 illustrates that Equation (3.33) is just a “common sense™ way to
make a decision when there exists statistical knowledge of the classes. Given the
detector output value z,(7), we see in Figure 3.2 that z,(7T) intersects the likeli-
hood of s,(r) at a value £,, and it intersects the likelihood of s,(r) at a value €,. What
is the most reasonable decision for the detector to make? For this example, choos-
ing class s,(¢#), which has the greater likelihood, is the most sensible choice. If this
was an M-ary instead of a binary example, there would be a total of M likelihood
functions representing the M signal classes to which a received signal might belong.
The maximum likelihood decision would then be to choose the class that had the
greatest likelihood of all M likelihoods. (Refer to Appendix B for a review of deci-
sion theory fundamentals.)

Error Probability

For the binary decision-making depicted in Figure 3.2, there are two ways
errors can occur. An error e will occur when s,(7) is sent, and channel noise results
in the receiver output signal z(¢) being less than v, The probability of such an oc-

currence is

Pels;) = P(H2|51) = f ’) P(Z|Sl) dz (3.34)

This is illustrated by the shaded area to the left of vy, in Figure 3.2. Similarly, an
error occurs when s,(¢) is sent, and the channel noise results in z(7) being greater
than vy,. The probability of this occurrence is

53) =f p(zls,) dz (3.

Yo

98]
(8]
N
~

P(e|s,) = P(H,
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The probability of an error is the sum of the probabilities of all the ways that an
error can occur. For the binary case, we can express the probability of bit error as

2 2
PH == 2 P(E,Si) = P(f’ |S:’) P(L\‘J) (3'36)
i=1 i=1
Combining Equations (3.34) to (3.36), we can write
Py = Plelsi)P(s1) + P(e|s;)P(s3) (3.37a)
or equivalently,
Py = P(H,|s|)P(s,) + P(H|s;)P(s3) (3.37b)

That is, given that signal s,(¢) was transmitted, an error results if hypothesis H,
is chosen; or given that signal s,(7) was transmitted, an error results if hypothesis
H, is chosen. For the case where the a priori probabilities are equal [that is,
P(s)) = P(s2) =53],

Py =1 P(Hyls,) + 3 P(Hyls») (H=8)
and because of the symmetry of the probability density functions,
PB= P(H2|Sl) :P(H]LS'Q) (339]

The probability of a bit error, Pg, is numerically equal to the area under the “tail”
of either likelihood function, p(zls;) or p(zls,), falling on the “incorrect™ side of the
threshold. We can therefore compute Py by integrating p(zls,) between the limits
—= and vy, or by integrating p(zls,) between the limits vy, and =:

Pg = f p(zls,) dz (3.40)

Yo=la,+a;)/2

Here, v, = (a, + a,)/2 is the optimum threshold from Equation (3.32). Replacing the
likelihood p(zls,) with its Gaussian equivalent from Equation (3.6), we have

* 1 1. /% —ills'\?
P — ¢ | < 7
B f =y o exp { 5 ( = ) } dz (3.41)

Yo=la;+a,y)/2 0

2 e . . . .
where o is the variance of the noise out of the correlator.
Let u =(z — a,)/oy. Then oy du = dz and

s 1 u’ a, — a,
P p— . o | 2
A f V2t SR ( 2 )du Q ( 20 ) 2)

u={a,—a,) 2o,
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where Q(x), called the complementary error function or co-error function, is a
commonly used symbol for the probability under the tail of the Gaussian pdf. It is
defined as

7553

Ox) = ﬁ f‘ exp (—;) du (3.43)

Note that the co-error function is defined in several ways (see Appendix B): how-
ever, all definitions are equally useful for determining probability of error in
Gaussian noise. Q(x) cannot be evaluated in closed form. It is presented in tabular
form in Table B.1. Good approximations to Q(x) by simpler functions can be found
in Reference [5]. One such approximation, valid for x > 3, is

1 x?2
O(x) == R P (‘?) (3.44)

We have optimized (in the sense of minimizing Pjy) the threshold level vy, but
have not optimized the receiving filter in block 1 of Figure 3.1. We next consider
optimizing this filter by maximizing the argument of Q(x) in Equation (3.42).

The Matched Filter

A matched filter is a linear filter designed to provide the maximum signal-to-noise
power ratio at its output for a given transmitted symbol waveform. Consider that a
known signal s(r) plus AWGN n(r) is the input to a linear, time-invariant (receiv-
ing) filter followed by a sampler, as shown in Figure 3.1. At time ¢= 7, the sampler
output z(7) consists of a signal component @; and a noise component n, The
variance of the output noise (average noise power) is denoted by o, so that the
ratio of the instantaneous signal power to average noise power, (S/N); at time

t =T, out of the sampler in step 1, is
S a?
— | a=meg 3.45
(%), 4 @49

We wish to find the filter transfer function H,(f) that maximizes Equation (3.45).
We can express the signal a,(r) at the filter output in terms of the filter transfer
function H(f) (before optimization) and the Fourier transform of the input
signal, as

oty = | HES(E af
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where S(f) is the Fourier transform of the input signal, s(¢). If the two-sided power
spectral density of the input noise is N;/2 watts/hertz, then, using Equations (1.19)
and (1.53), we can express the output noise power as

No

"%_2

f |H(f)|? df (3.47)

We then combine Equations (3.45) to (3.47) to express (S;‘N)T, as follows:

(%), -

We next find that value of H(f) = Hy(f) for whlch the maximum (5/N)y is achieved,
by using Schwarz’s inequality. One form of the inequality can be stated as

‘ f H(f)S(F)e’

(3.48)
No/2 ( |H(f)|? df

3 o =
= [ P [ iswlar @9

|f R

The equality holds if f,(x) = kf5(x), where k is an arbitrary constant and * indicates
complex conjugate. If we identify H(f) with f,(x) and S(f) e’*™ with f;(x), we can
write

a 2 -] - -]
| | _mpse = [ mpear [ Istirar @so)
Substituting into Equation (3.48) yields

or
2E
max (N) N, (3.52)

where the energy E of the input signal s(¢) is

E = f |S(f)|?df (3.53)

Thus, the maximum output (S/N); depends on the input signal energy and the
power spectral density of the noise, not on the particular shape of the waveform
that is used.

The equality in Equation (3.52) holds only if the optimum filter transfer func-
tion H,y(f) is employed, such that
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where S(f) is the Fourier transform of the input signal, s(¢). If the two-sided power
spectral density of the input noise is N;/2 watts/hertz, then, using Equations (1.19)
and (1.53), we can express the output noise power as

=5 | 1mnar (3.47)

We then combine Equations (3.45) to (3.47) to express (8/N)r, as follows:

(%), -

We next find that value of H(f) = Hy(f) for which the maximum (S5/N)r is achieved,
by using Schwarz’s inequality. One form of the inequality can be stated as

2 ® o
= f |£1(x) |2 dx f |Fa(x) |2 dx (3.49)

| | i H(f)S(f)e"-z"”dfr

= (3.48)
N2 [ a1 af

— o

| Aene ax

The equality holds if f,(x) = kf5(x), where k is an arbitrary constant and * indicates
complex conjugate. If we identify H(f) with f;(x) and S(f) /> with f(x), we can
write

H(f) = Hyf) = kS*(f)e 727 (3.54)
or

A(r) = F{kS*(f)e > T} (3.55)

Since s(¢) is a real-valued signal, we can write, from Equations (A.29) and (A.31),

hi(e) = {ks(T— t) 0=r=T

3.56
0 elsewhere (3:26)

Thus, the impulse response of a filter that produces the maximum output signal-to-
noise ratio is the mirror image of the message signal s(r), delaved by the symbol
time duration 7. Note that the delay of T seconds makes Equation (3.56) causal;
that is, the delay of T seconds makes h(f) a function of positive time in the interval
0 <t < 7. Without the delay of T seconds, the response s (—t) is unrealizable
because it describes a response as a function of negative time.

Correlation Realization of the Matched Filter

Equation (3.56) and Figure 3.7a illustrate the matched filter’s basic property: The
impulse response of the filter is a delayed version of the mirror image (rotated on
the ¢+ = 0 axis) of the signal waveform. Therefore, if the signal waveform is s(r), its
mirror image is s(—t), and the mirror image delayed by 7 seconds is s(7T — ). The
output z(¢) of a causal filter can be described in the time domain as the convolution
of a received input waveform r(¢) with the impulse response of the filter (see Sec-
tion A5
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s(t) s(—1) h@)=s(T —1t)
V\‘ . ‘A : \/\ l
A -7 T

Signal waveform Mirror image of Impulse response

signal waveform of matched filter

(a)
z(T)
_~~—— Correlator output

-,

22 r\« Matched filter
n output

~

A H:
! U

(b)

Correlator and matched filter. (a) Matched filter characteris-
tic. (b) Comparison of correlator and matched filter outputs.

output z,(7") is the signal that matches r(z) better than all the other s5;(7), j # i. We
will subsequently use this correlation characteristic for the optimum detection of
signals.

Error Rate Due o Noise

In Section 3.8 we presented a qualitative discussion of the effect of channel noise on the
performance of a binary PCM system. Now that we are equipped with the matched filter
as the optimum detector of a known pulse in additive white noise, we are ready to derive
a formula for the error rate in such a system due to noise.

To proceed with the analysis, consider a binary PCM system based on polar non-
return-to-zero (NRZ) signaling. In this form of signaling, symbols 1 and 0 are represented
by positive and negative rectangular pulses of equal amplitude and equal duration. The
channel noise is modeled as additive white Gaussian noise wi{t) of zero mean and power
spectral density Ny/2; the Gaussian assumption is needed for later calculations. In the
signaling interval 0 = ¢ = T, the received signal is thus written as follows:

+A + wiz), symbol 1 was sent

x(t) = (4.21)

—A + wit), symbol 0 was sent

where T, is the bit duration, and A is the transmitted pulse amplitude. It is assumed that
the receiver has acquired knowledge of the starting and ending times of each transmitted
pulse; in other words, the receiver has prior knowledge of the pulse shape, but not its
polarity. Given the noisy signal x(z), the receiver is required to make a decision in each
signaling interval as to whether the transmitted symbolisa 1 or a O.

Karpagam Academy of Higher Education Page 7



DIGITAL COMMUNICATION V NANDHINI AP/ECE

The structure of the receiver used to perform this decision-making process is shown

in Figure . It consists of a matched filter followed by a sampler, and then finally a
b= Say 1 ify =2
PCM wave SO Matched ~.. 7 Decision y iy
s{r} . filter : device Sav 0 if v
+ Sample at ayiry <4
timer =T, T
White Gaussian Threshold
noise w(z} i

Receiver for baseband transmission of binary-encoded PCM wave using polar NRZ signaling.

decision device. The filter is matched to a rectangular pulse of amplitude A and duratigy
Ty, exploiting the bit-timing information available to the receiver. The resulting marc}, a
filter output is sampled at the end of each signaling interval. The presence of channel Nojse
w(t) adds randomness to the matched filter output.

Let y denote the sample value obtained at the end of a signaling interval. The sample
value y is compared to a preset threshold A in the decision device. If the threshold
exceeded, the receiver makes a decision in favor of symbol 1; if not, a decision is made in
favor of symbol 0. We adopt the convention that when the sample value y is exactly eqyy
to the threshold A, the receiver just makes a guess as to which symbol was transmitteg.
such a decision is the same as that obtained by flipping a fair coin, the outcome of Which’
will not alter the average probability of error.

There are two possible kinds of error to be considered:

1. Symbol 1 is chosen when a 0 was actually transmitted; we refer to this error as ap
error of the first kind.

2. Symbol 0 is chosen when a 1 was actually transmitted; we refer to this error as ap
error of the second kind. =

To determine the average probability of error, we consider these two situations separately,
Suppose that symbol 0 was sent. Then, according to Equation (4.21}, the received
signal is

x{t) = —A + w(1), 0=t=T, (4.22)

Correspondingly, the matched filter output, sampled at time ¢t = T,, is given by (in light
of Example 4.1 with kAT, set equal to unity for convenience of presentation)

Th
y = ’( x(t) dt
° . (4.23)

1
——A+—T—b . w(t) dt
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which represents the sample value of a random variable Y, By virtue of the fact that the
noise w(t) is white and Gaussian, we may characterize the random variable Y as follows:

& The random variable Y is Gaussian distributed with a mean of —A.
# The variance of the random variable Y is

oly=ElY+A)2]

[ T i

1 (4.24}
= =73do Lo E[w w(u)] dt du

1 (T
= “,i:“%“ Rwlt, u) dt du

where RyAt, #) is the antocorrelation function of the white noise w/(t). Since w(t} is white
with a power spectral density Ny/2, we have

Rult, 1) = 52 8 — w) (4.29)

where 8(t — u) is a time-shifted delta function. Hence, substituting Equation (4.25) into
(4.24) yields

Ty Ty
f No S5(t — u) dt du

(4.26)

ZT;,
where we have used the sifting property of the delta function and the fact that its area is

unity. The conditional probability density function of the random variable Y, given that
symbol 0 was sent, is therefore

f (y\O) — ;ex (_M)
Y VAN T, T\ No/T,

_This function is plotted in Figure 4.5(a). Let p,, denote the conditional probability of error,
given that symbol 0 was sent. This probability is defined by the shaded area under the
curve of fy(y|0) from the threshold A to infinity, which corresponds to the range of values
assumed by y for a decision in favor of symbol 1. In the absence of noise, the matched
filter output y sampled at time ¢t = T}, is equal to —A. When noise is present, y occasionally
assumes a value greater than A, in which case an error is made. The probability of this
error, conditional on sending symbol 0, is defined by

(4.27)

P10 = P(y > A|symbol 0 was sent)

zf fy(:v\O dy (4.28)

[l 5):
\/m No/T, ] &
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To reformulate the conditional probability of error p4 in terms of the complemey,
tary error function, we first define a new variable
y + A
Z = =
N/,

Accordingly, we may rewrite Equation (4.28) in the compact form

N -
P =75 Lmnfﬁm exp(=2) dz
= — erfC gy ———se—
N/ T,

2
Assume next that symbol 1 was transmitted. This time the Gaussian random variable
Y represented by the sample value y of the matched filter output has a mean +A4 apg
variance N,/2T,,. Note that, compared to the situation when symbol O was sent, the meay
of the random variable Y has changed, but its variance is exactly the same as before, The
conditional probability density function of Y, given that symbol 1 was sent, is therefore

1 G -AP
MyID) = 7o, o ( No/T, ) 43

At this point in the discussion we digress briefly and introduce the definition of the
so-called complermnentary error function:’

erfc(x) = \%r J’m exp(—z~) dz (4.29)

which is closely related to the Gaussian distribution. For large positive values of 2, we
have the following upper bound on the complementary error function:

exp(—u’)
= (4.30)

erfc(u) <

Noise analysis of PCM system. (a) Probability density function of random variable ¥
at matched filter output when 0 is transmitted. (b} Probability density function of Y when 1 is
transmitted.
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which is plotted in Figure 4.5b. Let py, denote the conditional probability of error, given
that symbal 1 was sent. This probability is defined by the shaded area under the curve of
f¥{y|1) extending from — = to the threshold A, which corresponds to the range of values
assumed by y for a decision in favor of symbol 0. In the absence of noise, the matched
filter output y sampled at time ¢ = T}, is equal to +A. When noise is present, y occasionally
assumes a value less than A, and an error is then made. The probability of this etror,
conditional on sending symbol 1, is defined by

Por = P(y < A|symbol 1 was sent)

= f_m friy|1) dy (4.33)

- ;f‘ GXP(WM) dy
N aNG/ Ty, J—= No/T,

To express P, in terms of the complementary error function, this time we define a new
variable

Ay
T NN,
Accordingly, we may reformulate Equation (4.33) in the compact form
1 L=
Por = 7 S exp(—<") dz (4.34)

1 (A=A )
= = erfc| —
2 V' No/T,
Having determined the conditional probabilities of error, P and pg,, our next task
is to derive the formula for the average probability of symbol error, denoted by P,. Here

we note that these two possible kinds of error are mutually exclusive events in that ifilj
receiver, at a particular sampling instant, chooses symbol 1, then symbol 0 is exclu

from appearing, and vice versa. Let p, and p, denote the a priori probabilities of trans-

mitting symbols 0 and 1, respectively. Hence, the average probability of symbol error P,
in the receiver is given by

P, = poprio + P1pos

Po (A+A) P (A_A) (4.35)
= — erfc —_— + == erfc —_—
2 VN/T, 2 TT\VNL/T,

From Equation (4.35) we see that P, is in fact a function of the threshold A, which
immediately suggests the need for formulating an optimum threshold that minimizes P..
For this optimization we use Leibniz’s rule.

Consider the integral

5{e}

flz, u) dz

ald)
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Leibniz’s rule states that the derivative of this integral with respect to # is

d o _ db(s) d(a(u) P 5f(z, u)
ol flz, ) dz = f(b(an), u) 4y Slalu), u) e+ _};(“) BT dz

For the problem at hand, we note from the definition of the complementary error function
in Equation (4.29) that

The application of Leibniz’s rule to the complementary error function thus vields

5; erfc(u) = w\},’_r exp(—u?) (4.36)

Hence, differentiating Equation (4.35) with respect to A by making use of the formula in
Equation (4.36), then setting the result equal to zero and simplifying terms, we obtain the

optimum threshold as

Ny Po-
A = - .

or = AT, Iog(p}) (4.37)

For the special case when symbols 1 and 0 are equiprobable, we have

in which case Equation (4.37) reduces to
A'l:l"pt = O

This result is intuitively satisfying as it states that, for the transmission of equiprobable
binary symbols, we should choose the threshold at the midpoint between the pulse heights
—A and +A representing the two symbols 0 and 1. Note that for this special case we also
have

Po1 = Pio

A channel for which the conditional probabilities of error Po; and pyq are equal is sajd ¢,
be binary symmetric. Correspondingly, the average probability of symbol error in Equag on

(4.35) reduces to

Pwl f(L) (433
« = 2 TN\VNIT, )

Now the transmitted signal energy per bit is defined by
Eb = AlTb (439)
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Accordingly, we may finally formulate the average probability of symbol error for the

receiver in Figure 4.4 as
1 | Ey,
P,_, = E erfc( ﬁo) (440)

which shows that the average probability of symbol error in a binary symmetric channg
depends solely on E. /Ny, the ratio of the transmitted signal energy per bit to the nojse
spectral density. | '

Using the upper bound of Equation (4.30) on the complementary error function, we
may correspondingly bound the average probability of symbol error for the PCM receiver
as

exp{—Ey,/Ng)
2V#E /N,

The PCM receiver of Figure 4.4 therefore exhibits an exponential improvement in the
average probability of symbol error with increase in E,/No.

This important result is further illustrated in Figure 4.6 where the average probability
of symbol error P, is plotted versus the dimensionless ratio E./Np. In particular, we see
that P, decreases very rapidly as the ratio E,/Nj is increased, so that eventually a very
“small increase” in transmitted signal energy will make the reception of binary pulses
almost error free, as discussed previously in Section 3.8. Note, however, that in practical
terms the increase in signal energy has to be viewed in the context of the bias '

P, <

(441)

1072 —

10—4 e

1076

1078~

Probability of error, P,

10710 |-

10-—12 i
5 10 15

Probability of error in a PCM receiver.
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Intersymbol Interference

The next source of bit errors in a baseband-pulse transmission system that we wish to
study is intersymbol interference (ISI), which arises when the communication channel is
dispersive. First of all, however, we need to address a key question: Given a pulse shape
of interest, how do we use it to transmit data in M-ary form? The answer lies in the use
of discrete pulse modulation, in which the amplitude, duration, or position of the trans-
mitted pulses is varied in a discrete manner in accordance with the given data stream.
However, for the baseband transmission of digital data, the use of discrete pulse-amplitude
modulation (PAM) is one of the most efficient schemes in terms of power and bandwidth
utilization. Accordingly, we confine our attention to discrete PAM systems. We begin the
study by first considering the case of binary data; later in the chapter, we consider the
more general case of M-ary data.

Consider then a baseband binary PAM system, a generic form of which is shown in
Figure 4.7. The incoming binary sequence {&;} consists of symbols 1 and 0, each of du-
ration Ty,. The pulse-amplitude modulator modifies this binary sequence into a new se-
quence of short pulses (approximating a unit impulse), whose amplitude 4, is represented
in the polar form

+ if is 1
2 = { 1 symbol &, is (4.42)

-1 if symbol &, is O

The sequence of short pulses so produced is applied to a transmiit filter of impulse response
£(t), producing the transmitted signal

s(t) = >, apg(t — kT}) (4.43)
k&

The signal s(¢) is modified as a result of transmission through the channel of impulse
response A(t). In addition, the channel adds random noise to the signal at the receiver
input. The noisy signal x(¢} is then passed through a receive filter of impulse response ¢(¢).
The resulting filter output y{t) is sampled synchronously with the transmitter, with the
sampling instants being determined by a clock or tirning signal that is usually extracted
from the receive filter output. Finally, the sequence of samples thus obtained is used to
reconstruct the original data sequence by means of a decision device. Specifically, the
amplitude of each sample is compared to a threshold A. If the threshold A is exceeded, a
decision is made in favor of symbol 1. If the threshold A is not exceeded, a decision is made
in favor of symbol 0. If the sample amplitude equals the threshold exactly, the flip of a

input

i Pulse. a Transmit s{f J Receive ; .......................I_)- Say 1 ify(z) > A
%I:fary% amplitude { k];; fitter | channel, | % ’E\\ x0 filtir >0 O\cy(:;)_‘ Decision YR
iy modulator gn K1) Y elt) Sample at device s Say 0 if y(5;) <A
lr . time fz‘ = fTb
White
Clack Gaussian Threshold A
pulses noise w(f)
e Transmitter fe Channel »f Receiver

Baseband binary data transmission system.
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fair coin will determine which symbol was transmitted (i.c., the receiver simply makeg .
random guess).
The receive filter output is written as

Y(#8) = p 2 aplt = kTy) + n(t) | (4.44

where u is a scaling factor, and the pulse p(2) is to be defined. To be precise, an arbitry
time delay o should be included in the argument of the pulse p(t - k£T.) in Equation (4.44)
to represent the effect of transmission delay through the system. To simplify the eXPOositiop,
we have put this delay equal to zero in Equation (4.44) without loss of generality.

The scaled pulse up(t) is obtained by a double convolution involving the impulg,
response g{t) of the transmit filter, the impulse response /(¢ of the channel, and the impylg
response c(t) of the receive filter, as shown by

pp(t) = gl&) ¥ h(t) * cl) (4.45)
where the star denotes convolution. We assume that the pulse p(t) is zormalized by setting
POy =1 (4.45

which justifies the use of u as a scaling factor to account for amplitude changes incurred
in the course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the fre-
quency domain, we may use the Fourier transform to change Equation (4.45) into the
equivalent form ’

wP(f) = G(AH(FIC) (447)

where P(f), G(f), H(f}), and C(f) are the Fourier transforms of p(#), g(£), b(t), and <),
respectively.

Finally, the term »(¢) in Equation (4.44) is the noise produced at the output of the
receive filter due to the channel noise w/(t). It is customary to model 2/(z) as a- white Gaus-
sian noise of zero mean.

The receive filter output y(¢) is sampled at time t; = T, (with 7 taking on integer
values), vielding [in light of Equation (4.46)]

y(t) = p 2 awplli = BTl + niz)
e (4.48)
= pa;+ p 2 aplliz BTs] + nit)
Py
In Equation (4.48), the first term pa; represents the contribution of the ith transmitted bit
The second term represents the residual effect of all other transmitted bits on the decoding
of the ith bit; this residual effect due to the occurrence of pulses before and after the
sampling instant #, is called intersymbol interference (ISI). The last term #(t;} represents the
noise sample at time #;.
In the absence of both ISI and noise, we observe from Equation (4.48) that

, ylt) = pa;
which shows that, under these ideal conditions, the ith transmitted bit is decoded correctly:
The unavoidable presence of ISI and noise in the system, however, introduces errors mn t'he
decision device at the receiver output. Thercfore, in the design of the transmit and recelvt

filters, the objective is to minimize the effects of noise and ISI and thereby deliver the dig
data to their destination with the smallest error rate possible.
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VWhen the signal-to-noise ratio is high, as is the case in a telephone system, for ex-
ample, the operation of the system is largely limited by ISI rather than noise; in other
words, we may ignore #(f;}). In the next couple of sections, we assume that this condition
holds so that we may focus our attention on ISI and the techniques for its control. In
particular, the issue we wish to consider is to determine the pulse waveform g (¢) for which
the ISI is completely eliminated.

Nyquist's Criterion for Distortionless Basebond Binary Transmission

Typically, the frequency response of the channel and the transmitted pulse shape are spec-
ified, and the problem is to determine the frequency responses of the transmit and receive
filters so as to reconstruct the original binary data sequence {f,}. The receiver does this by
extracting and then decoding the corresponding sequence of coefficients, {4}, from the
output y(t). The extraction involves sampling the output y(¢} at time ¢ = iT,. The decoding
requires that the weighted pulse contribution a,p(iT, — kT,) for £ = i be free from ISI
due to the overlapping tails of all other weighted pulse contributions represented by k # i.
This, in turn, requires that we control the overall pulse p(t), as shown by

i, i=k

0, i#k (4.42)

piT, — kT,) = {
where p(0) = 1, by normalization. If p(¢) satisfies the conditions of Equation (4.49), the
receiver output ¥(z;} given in Equation (4.48) simpiifies to (ignoring the noise term)

v{t) = pa; for all ;

which implies zero intersymbol interference. Hence, the two conditions of Equation (4.49}
ensure perfect reception in the absence of noise.

From a design point of view, it is informative to transform the conditions of Equation
(4.49) into the frequency domain. Consider then the sequence of samples {p(#T,)}, where
n=0, x1, =2 +--. From the discussion presented in Chapter 3 on the sampling process,
we recall that sampling in the time domain produces periodicity in the frequency domain.
In particular, we may write

Pof) =R, S P(f — nRy) (4.50)

b S iande =}

where R, = 1/T, is the bit rate in bits per second (b/s); Ps(f) is the Fourier transform of
an infinite periodic sequence of delta functions of period T,, whose individual areas are
weighted by the respective sample values of p(t). That is, P5(f} is given by

Puf) = | 3 [pmTy) 8 — mTo)] exp(—s2mfe) dt (4.51)

= g

Let the integer 72 = i — k. Then, i = %k corresponds to 7z == O, and likewise i # k corresponds
to r# # 0. Accordingly, imposing the conditions of Equation (4.49) on the sample values
of p(t) in the integral of Equation (4.51), we get

Pif) = [ pl0) 8(2) exp(—j2mse) dt
= 1(0)

(4.52)
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where we have made use of the sifting property of the delta function. Since from Equaijgy
(4.46) we have p(0) = 1, it follows from Equations (4.50) and (4.52) that the conditig,
for zero intersymbol interference is satisfied if

> P(f —nRy) =T, (4.53

We may now state the Nyguist criterion® for distortionless baseband transmission iy,
the absence of noise: The frequency function P(f) eliminates intersymbol interference f,,
samples taken at intervals T, provided that it satisfies Equation (4.53). Note that Py £
refers to the overall system, incorporating the transmit filter, the channel, and the receiy,
filter in accordance with Equation (4.47}.

IDEAL NYQUIST CHANNEL

The simplest way of satisfying Equation (4.53) is to specify the frequency function P(f) g
be in the form of a rectangular function, as shown by

1
Pif) = ﬁ, "—W<f< W
0, | fl> W (4.54
1 f
=mrect(—2—ﬁ;7)

where rect(f) stands for a rectangular function of unit amplitude and unit support centered
on f = 0, and the overall system bandwidth W is defined by

_R,_ 1
=357 (4.55)

According to the solution described by Equations (4.54) and (4.55), no frequencies of
absolute value exceeding half the bit rate are needed. Hence, from Fourier-transform pair
2 of Table A6.3 we find that a signal waveform that produces zero intersymbol interference
is defined by the sinc function:

_ sin{27WT)
PO = o (4.56)
= sing¢(2 Wt}

The special value of the bit rate R, = 2W is called the Nyquis? rate, and W is itself
called the Nyguist bandwidth. Correspondingly, the ideal baseband pulse fransmission,
system described by Equation (4.54) in the frequency domain or, equivalently, Equation
(4.56) in the time domain, is called the ideal Nyguist channel.

Figures 4.8a and 4.8b show plots of P(f} and p(z), respectively. In Figure 4.8a, the
normalized form of the frequency function P(f) is plotted for positive and negative fre-
quencies. In Figure 4.86, we have also included the signaling intervals and the correspond-
ing centered sampling instants. The function p(z) can be regarded as the impulse respons
of an ideal low-pass filter with passband magnitude response 1/2W and bandwidth W.
The function p(t) has its peak value at the origin and goes through zero at integer multipies
of the bit duration T}. It is apparent that if the received waveform y(¢#} is sampled at the
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-1 _ R
W=3r, = 2
2WP(f)
1.0
I
-1 0 1 w

Ideal magnitude response.

mstants of time t =

pla)
1.0

/N [\ .

=7 —-2\7 0 1\/2 '3 Th
bt bt

Sampling instants

A=

Signalingv intervals

Ideal basic pulse shape.

0, £Ty, *27T,, -+, then the pulses defined by up(t — iT},) with

arbitrary amplitude w and index i = 0, =1, *2, -+, will not interfere with each other.

This condition is illustrated in Figure 4.9 for the binary sequence 1011010.
Although the use of the ideal Nyquist channel does indeed achieve economy in band-
width in that it solves the problem of zero intersymbol interference with the minimum

Binarysequence 1 0 1 1 0 1 0O

Amplitude

4 6 B 10 12
Time

A series of sinc pulses corresponding to the sequence 1011010.
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bandwidth possible, there are two practical difficulties that make it an undesirable objec
tive for system design: )

1. It requires that the magnitude characteristic of P(f) be flat from —Wto W, and zerg
elsewhere. This is physically unrealizable because of the abrupt transitions at g,
band edges = W.

2. The function p(t) decreases as 1/|z] for large |z|, resulting in a slow rate of decay
This is also caused by the discontinuity of P(f) at =W. Accordingly, there is Pl'ac:
tically no margin of error in sampling times in the receiver.

To evaluate the effect of this timing error, consider the sample of y(¢) at 1 = py
where Af is the timing error. To simplify the exposition, we may put the correct sampﬁng’
time %, equal to zero. In the absence of noise, we thus have (from Equation (4.48))

y{AL) = Ek} agp(At — RTy)

LS g, Sm2TWAL = ET,)] (4.57)
M gu C T WAL — kT
Since 2WT, = 1, by definition, we may rewrite Equation (4.5 7) as
. 1k
y(Af) = pao sinc@W Az) + & sinQaW Af) < _ | 1)a (4.58)

T T (2W At — k)

. ka0
The first term on the right-hand side of Equation (4.58) defines the desired symbol, whereas
the remaining series represents the intersymbol interference caused by the timing error At

in sampling the output y(#). Unfortunately, it is possible for this series to diverge, thereby
causing erroneous decisions in the receiver.

BAaisEp COSINE SPECTRUM

We may overcome the practical difficulties encountered with the ideal Nyquist channel by
extending the bandwidth from the minimum value W = R,/2 to an adjustable value be-
tween W and 2W. We now specify the overall frequency response P(f) to satisfy a con-
dition more elaborate than that for the ideal Nyquist channel; specifically, we retain thres
terms of Equation (4.53) and restrict the frequency band of interest to [— W, W], as shown
by

P(f) + P{f — 2W) + P(f + 2W) = S W=f=W (4.59)

2w’
We may devise several band-limited functions that satisfy Equation (4.5 9). A particular
form of P(f) that embodies many desirable features is provided by a raised cosine speciru
This frequency response consists of a flat portion and a rolloff portion that has a sinusoidal
form, as follows:

1
W’ | 0= |fl<fs
ppy =41 [, _ . [=Ufl=W) - B (4.60)
() 4W{1 51n[ SW — 2f, ]}, fa=s|fl<2W-—-f
0, | fl=2W - f:
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The frequency parameter f; and bandwidth W are related by

_ 4L
W

The parameter « is called the rolloff factor; it indicates the excess bandwidth over the
ideal solution, W. Specifically, the transmission bandwidth B is defined by

Br=2W - f;
= Wil + )

The frequency response P(f}, normalized by multiplying it by 2 W, is plotted in Figure
4,10a for three values of «, namely, 0, 0.5, and 1. We see that for &« = 0.5 or 1, the

a =1

(4.61)

2ZWP{f)
1.0

0.8

C.6

0.4

0.2

[\S]
i,

-2 -1

Nl

i
N |
N
mjt

(b}

Responses for different rolloff factors. (2) Frequency response. (k) Time response.
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function P(f) cuts off gradually as compared with the ideal Nyquist channel (i.e., o = 0)
and is therefore easier to implement in practice. Also the function P(f) exhibits odd syy,
metry with respect to the Nyquist bandwidth W, making it possible to satisfy the conditiq,
of Equation (4.59).

The time response p(t) is the inverse Fourier transform of the frequency respop,
P(f). Hence, using the P(f) defined in Equation (4.60), we obtain the result (see Probley,
4.13)

cos(2maWrt) ) 4
62)

plty = (sinc(?..Wt))(l T 162 W

which is plotted in Figure 4.105 for o = 0, 0.5, and 1.

The time response p(t) consists of the product of two factors: the factor sinc(2 Wy
characterizing the ideal Nyquist channel and a second factor that decreases as 1/||2 fo;
large | |. The first factor ensures zero crossings of p(#) at the desired sampling instants of
time # = #T with { an integer (positive and negative). The second factor reduces the taij
of the pulse considerably below that obtained from the ideal Nyquist channel, so that the
transmission of binary waves using such pulses is relatively insensitive to sampling time
errors. In fact, for &« = 1 we have the most gradual rolloff in that the amplitudes of the
oscillatory tails of p(t) are smallest. Thus the amount of intersymbol interference resulting
from timing error decreases as the rolloff factor « is increased from zero to unity.

The special case with & = 1 (i.e., f; = 0) is known as the full-cosine rolloff charac.
teristic, for which the frequency response of Equation (4.60) simplifies to

1 =f
P(f) = 14W [1 + COS(ZW’)]’ 0<|[fl=<2W (4.63)
0, |fl=2W

Correspondingly, the time response p(¢) simplifies to

_ sinc{(4Wz)
P = T 1ewie

This time response exhibits two interesting properties:

1. Atz = =T,J2 = £1/4W, we have p(z) = 0.5; that is, the pulse width measured at
half amplitude is exactly equal to the bit duration T5.

2. There are zero crossings at ¢ = +3T,/2, =5T,/2, -+ in addition to the usual zero
crossings at the sampling times ¢t = *T,, *2T,,--.

These two properties are extremely useful in extracting a timing signal from the received
signal for the purpose of synchronization. However, the price paid for this desirable prop-
erty is the use of a channel bandwidth double that required for the ideal Nyquist channel
corresponding to a = 0.
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Correlative-Level Coding

Thus far we have treated intersymbol interference as an undesirable phenomenon that
produces a degradation in system performance. Indeed, its very name connotes a nuisance
effect. Nevertheless, by adding intersymbol interference to the transmitted signal in a con-
trolled manner, it is possible to achieve a signaling rate equal to the Nyquist rate of 2W
symbols per second in a channel of bandwidth W Hertz. Such schemes are called correl-
ative-level coding or partial-response signaling schemes.” The design of these schemes is
based on the following premise: Since intersymbol interference introduced into the trans-
mitted signal is known, its effect can be interpreted at the receiver in a deterministic way.
Thus correlative-level coding may be regarded as a practical method of achieving the
theoretical maximum signaling rate of 2W symbols per second in a bandwidth of W Hertz,
as postulated by Nyquist, using realizable and perturbation-tolerant filters.

& DUORINARY SIGNALING

The basic idea of correlative-level coding will now be illustrated by considering the specific
example of duobinary signaling, where “duo” implies doubling of the transmission ca-
pacity of a straight binary system. This particular form of correlative-level coding is also
called class I partial response,

Consider a binary input sequence (b,] consisting of uncorrelated binary symbols 1
and 0, each having duration T,. As before, this sequence is applied to a pulse-amplitude
modulator producing a two-level sequence of short pulses (approximating a unit impulse),
whose amplitude 4, is defined by

+ : b, i
5 = { 1 if symbol b, is 1 (4.65)

—1  if symbol b, is 0

When this sequence is applied to a duobinary encoder, it is converted into a three-
level output, namely, =2, 0, and +2. To produce this transformation, we may use the
scheme shown in Figure 4.11, The two-level sequence {g,} is first passed through a simple
filter involving a single delay element and summer. For every unit impulse applied to the

Page 22
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Duabinary signaling scheme.

input of this filter, we get two unit impulses spaced T, seconds apart at the filter outpu,
We may therefore express the duobinary coder output ¢, as the sum of the present inpyt
pulse a, and its previous value @, as shown by

Cp = dp + Ap—1 (4.66)

One of the effects of the transformation described by Equation (4.66} is to change the
input sequence {a;} of uncorrelated two-level pulses into a sequence {cg} of correlated three-
* level pulses. This correlation between the adjacent pulses may be viewed as introducing
~ intersymbol interference into the transmitted signal in an artificial mmanner. However, the
intersymbol interference so introduced is under the designer’s control, which is the basis
of correlative coding.

An ideal delay element, producing a delay of T}, seconds, has the frequency response
exp(—j2f Ts), so that the frequency response of the simple delay-line filter in Figure 4.11
is 1 + exp{—j27fT;). Hence, the overall frequency response of this filter connected in
cascade with an ideal Nyquist channel is

H{f) = Huyquiel )1 + exp(—j27fTe)l
= Hygyquisel F)lexp(jmf T} + exp{—jmfTy)] expl(—jmfTs) {4.67)
bl ZHNyquist(f) COS(WfTb) exP(”?WfTb)

where the subscript I in Hy{f) indicates the pertinent class of partial response. For an ideal
Nyquist channel of bandwidth W = 1/2T,, we have (ignoring the scaling factor Tj)

1, | f| = 1/2T,

. (4.68)
0, otherwise

HNyquist(f) = {

Thus the overall frequency response of the duobinary signaling scheme has the form ofa
half-cycle cosine function, as shown by

2 cos{wfT,) exp(—jmfTe)s | fl = 1/27T,
0, _ otherwise

H(f) = { (4.69)

for which the magnitude response and phase response are as shown in Figures 4.124 and
4.12b, respectively. An advantage of this frequency response is that it can be easily ap-
proximated, in practice, by virtue of the fact that there is continuity at the band edges-
From the first line in Equation (4.67) and the definition of Hryquialf ) in Equatiod
(4.68), we find that the impulse response corresponding to the frequency response Hy(f)
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Magnitude response. Fhase response

Frequency response of the duobinary conversion filter.

consists of two sinc (Nyquist) pulses that are time-displaced by T, seconds with respect to
each other, as shown by (except for a scaling factor)
sin(w#/T,)  sin[w{t — T,)/T,]
ﬂ't/Tb W(t - Tb)/Tb
__sin(mt/Ty) sin(m/T,)
T wdT, w(t — T,)T, (4.70)
T% sin(mt/T,)
’ﬂ't(Tb - I)

bi(t) =

The impulse response k(t) is plotted in Figure 4.13, where we see that it has only o
distinguishable values at the sampling instants. The form of 4(z) shown here explains why
we also refer to this type of correlative coding as partial-response signaling. The response
to an input pulse is spread over more than one signaling interval; stated in another way,
the response in any signaling interval is “partial.”” Note also that the tails of bi(2) decay as
1/]¢]*, which is a faster rate of decay than the 1/| t| encountered in the ideal Nyquist
channel.

The original two-level sequence {4;} may be detected from the duobinary-coded
sequence {c;} by invoking the use of Equation (4.66). Specifically, let 4, represent the
estimate of the original pulse a, as conceived by the receiver at time ¢ = kt,. Then, sub-
tracting the previous estimate d,_, from ¢, we get

&k = G — Ez‘k_j (4.71)

It is apparent that if ¢, is received without error and if also the previous estimate d;_; at
time ¢ = (k — 1)T, corresponds to a correct decision, then the current estimate 4, will be

hI{t )

1.0

T — 0 T, 2T ~—"31, a7,

Impulse response of the ducbinary conversion filter.
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correct too. The technique of using a stored estimate of the previous symbol is calleq
decision feedback.

We observe that the detection procedure just described is essentially an inverse of the
operation of the simple delay-line filter at the transmirter. However, a major drawback of
this detection procedure is that once errors are made, they tend to propagate through the
output because a decision on the current input @, depends on the correctness of the decisiop
made on the previous input @;_;.

A practical means of avoiding the error-propagation phenomenon is to use precoding
before the duobinary coding, as shown in Figure 4.14. The precoding operation performed
on the binary data sequence {b,} converts it into another binary sequence {d,] defined by

dp, = b, @ dp1 {(4.72)

where the symbol @ denotes modulo-two addition of the binary digits b, and d;_,. This
addition is equivalent to a two-input EXCLUSIVE OR operation, which is performed ag
follows:

_ [|symbol 1 if either symbol b, or symbol d,_, (but not both) is 1
d, = (4.73)

symbol 0 otherwise

The precoded binary sequence {d,} is applied to a pulse-amplitude modulator, producing

a corresponding two-level sequence of short pulses {a;}, where @, = *1 as before. This

sequence of short pulses is next applied to the duobinary coder, thereby producing the
sequence {c,} that is related to {a,} as follows:

Cp — dp + ap_1 (4.74)

Note that unlike the linear operation of duobinary coding, the precoding described by
Equation (4.72} is a nonlinear operation.
The combined use of Equations (4.72) and (4.74) yields

0 if data symbol &, is 1 (4.75)
cp = .
k 2 if data symbol b, is 0

which is illustrated in Example 4.3. From Equation (4.75) we deduce the following decision
rule for detecting the original binary sequence {b,} from {c;}:

If|c| <1, say symbol b is 1

{4.76)
If leg| > 1, say symbol b, is 0
Input
binary T T T
sequence g Modulo-2 adder 1 Output
b {d,} Puise- {ay} )
bt 1 TN Pk amplitude Duobinary - three-level
; - i modulator coder sequence
1 : Sample at fegl)
| { £ = kTy
I 1
: {dg .1} t
|
| Delay I
! T ]
i i i
b o e e e e A
Precoder

A precoded duobinary scheme; details of the duobinary coder
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{eg Saybp=11if |eg] <1

—— Rectifier Decision

device

> Sayb,=01if }c,| > 1

Threshoid =1

Detector for recovering original binary sequesice from the precoded duocbinary coder output.

When |ck| = 1, the receiver simply makes a random guess in favor of symbol 1 or 0.
According to this decision rule, the detector consists of a rectifier, the output of which is
compared in a decision device to a threshold of 1. A block diagram of the detector is
shown in Figure 4.15. A useful feature of this detector is that no knowledge of any input
sample other than the present one is required. Hence, error propagation cannot occur in
the detector '

MoDIFIED DUOBINARY SIGNALING

In the duobinary signaling technique the frequency response H(f), and consequently the
power spectral density of the transmitted pulse, is nonzero at the origin. This is considered
to be an undesirable feature in some applications, since many communications channels
cannot transmit a DC component. We may correct for this deficiency by using the class
IV partial response or modified duobinary technique, which involves a correlation span
of two binary digits. This special form of correlation is achieved by subtracting amplitude-
modulated pulses spaced 2T}, seconds apart, as indicated in the block diagram of Figure

Mustrating o4 duobinary coding . -

Binary sequence {b,) 0 0 1 0 1 1 0
Precoded sequence {d,) 1 1 1 0 0 1 0 0
Two-level sequence {g,} +1 +1 +1 -1 -1 +1 -1 -1
Duobinary coder output {c,) +2 42 0 =2 0 0 =2
Binary sequence obtained by 0 0 1 0 1 1 0

applying decision rule of Eq. (4.76)
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Moedified ducbinary signaling scheme.

4.16. The precoder involves a delay of 2T, seconds. The output of the modified duobinary
conversion filter is related to the input two-level sequence {a,} at the pulse-amplitude mod-
ulator output as follows:

Cp = dp — dp-2 (4.77)

Here, again, we find that a three-level signal is generated. With a, = =1, we find that ,
takes on one of three values: +-2, 0, and —2.

The overall frequency response of the delay-line filter connected in cascade with an
ideal Nyquist channel, as in Figure 4.16, is given by

Hwlf) = HNyqu.is:(f)[l - exP(“f“"”TfTb)]
= 2fHnyquisd f)sin(27f Ty} exp({—j27fTs)

where the subscript IV in Hp(f) indicates the pertinent class of partial response and
Hiyquislf) is as defined in Equation (4.68). We therefore have an overall frequency re-
sponse in the form of a half-cycle sine function, as shown by

27 sin{27fT,) exp{—727fTy), | F| = 1/2T,
0, elsewhere

(4.78)

Hwi(f) = { (4.79)

The corresponding magnitude response and phase response of the modified duobinary
coder are shown in Figures 4.17a and 4.17b, respectively. A useful feature of the modified
duobinary coder is the fact that its output has no DC component. Note also that this

| Holf)| arg [Hy ()1
2.0

\
- 1 1. z
2T, 4T, aT, 2T, 2

Magnitude Response Phase response.

Frequency response of the modified duobinary conversion filter.
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second form of correlative-level coding exhibits the same continuity at the band edges as
in duobinary signaling. _

From the first line of Equation (4.78) and the definition of Hygyquis{ ) in Equation
(4.68), we find that the impulse response of the modified duobinary coder consists of two
sinc {Nyquist) pulses that are time-displaced by 2T, seconds with respect to each other, as
shown by (except for a scaling factor)

bolt) = sin{wre/Ty)  sinfw(z = 2T, }/T,)]
v /Ty, a(t — 2T T,
_sin(mt/T,)  sin(me/Ty)
- w@tT, wit — 2T )T, (4.80)
_ 2T7% sin{mt/T,)
2T, —1)

This impulse response is plotted in Figure 4.18, which shows that it has three distinguish-
able levels at the sampling instants. Note also that, as with duobinary signaling, the tails
of hry(t) for the modified duobinary signaling decay as 1/|¢|2.

To eliminate the possibility of error propagation in the modified duobinary system,
we use a precoding procedure similar to that used for the duobinary case. Specifically,
prior to the generation of the modified duobinary signal, a modulo-two logical addition
is used on signals 2T}, seconds apart, as shown by (see the front end of Figure 4.16)

die = b, ®dro>
_ {syrnbol 1 if either symbol &, or symbol d,_, {but not both) is 1 (4.81)
symbol 0 otherwise

where {b,} is the incoming binary data sequence and {d,} is the sequence at the precoder
output. The precoded sequence {dg} thus produced is then applied to a pulse-amplitude
modulator and then to the modified duobinary conversion filter.

In Figure 4.16, the output digit ¢, equals —2, 0, or +2, assuming that the pulse-
amplitude modulator uses a polar representation for the precoded sequence {d,}. Also we
find that the detected digit 5, at the receiver output may be extracted from ¢; by disre-
garding the polarity of ¢;. Specifically, we may formulate the following decision rule:

If |cp| > 1, say symbol b, is 1

4.82
If |cp| < 1, say symbol b, is O ( )

hry{r)
1.0
~J .
27, ~~——LT, D
-1.0

Impulse respense of the modified duobinary conversion fiiter.

Karpagam Academy of Higher Education Page 28



DIGITAL COMMUNICATION V NANDHINI AP/ECE

When |c;| = 1, the receiver makes a random guess in favor of symbol 1 or 0. As with },
duobinary signaling, we may note the following:

® In the absence of channel noise, the detected binary sequence (6.} is exactly the samge
as the original binary sequence {b,} at the transmitter input.

» The use of Equation {4.81) requires the addition of two extra bits to the precodeq

sequence {a.}. The composition of the decoded sequence {b;} using Equation (4.82)
is invariant to the selection made for these rwo bits.

GENERALIZED FORM OF CORRELATIVE-LEVEL CODING
(PARTIAL-RESPONSE SIGNALING)

The duobinary and modified duobinary techniques have correlation spans of 1 binary digj;
and 2 binary digits, respectively. It is a straightforward matter to generalize these twg
techniques to other schemes, which are known collectively as correlative-level coding or
partial-response signaling schemes. This generalization is shown in Figure 4.19, where
Hrgyquise f) is defined in Equation (4.68). It involves the use of a tapped-delay-line filter

with tap-weights twg, ty, =« - 5 Wn—1- Specifically, different classes of partial-response sig.
Input . [ Ideal Output
two-level > =—/>:\ \,/‘2“\ channel, “~ 5 Multilevel
Seq[';"e}”ce Hyyquistl ) Sample at Seq{ue}nce
* ‘ t=kT, “k
Delay
Ty

Delay
Ty
®
Wy—1

Generalized correlative coding scheme.
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Different classes of partial-response signaling schemes

type of Class N Wa W wa Wy 1y Comments
I 2 1 1 Duobinary coding
II 3 1 2 1
I 3 2 1 -1
v 3 1 0 -1 ) Modified duobinary coding
V 5 -1 0 2 0 -1

naling schemes may be achieved by using a weighted linear combination of N ideal Nyquist
(sinc) pulses, as shown by

MN=1 t
bity = > w, sim:(— - r:) (4.83)
n={) Tb

An appropriate choice of the tap-weights in Equation (4.83) results in a variety of spectral
shapes designed to suit individual applications. Table 4.2 presents the specific details of
five different classes of partial-response signaling schemes. For example, in the duobinary
case (class I partial response), we have

Wy = +1

wy = +1

and w, = 0 for n = 2. In the modified duobinary case (class IV partial response), we have

W1=D
w:,:_l

and w, = 0 for n = 3.
The useful characteristics of partial-response signaling schemes may now be sum-
marized as follows:

b Binary data transmission over a physical baseband channel can be accomplished at
a rate close to the Nyquist rate, using realizable filters with gradual cutoff
characteristics.

» Different spectral shapes can be produced, appropriate for the application at hand.

However, these desirable characteristics are achieved at a price: A larger signal-to-noise
ratio is required to yield the same average probability of symbol error in the presence of
noise as in the corresponding binary PAM systems because of an increase in the number
of signal levels used.
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Eye Pattern

An effective way to study the effects of ISI is the Eye Pattern. The name Eye Pattern was given from its
resemblance to the human eye for binary waves. The interior region of the eye pattern is called the eye
opening. The following figure shows the image of an eye-pattern.

Signal-to-noise ratio at

Amount of distortion . 0 -
(set by signal-to-noise ratio) - 9/53 pling poi

— \Q

Time variation
of zero crossing

_ Slope indicates
sensitivity to timing
error, the smaller,
the better

> Y W

Measure of jiter  Best time to sample (decision point)
Most open part of eye = best signal-to-noise ratio

Jitter is the short-term variation of the instant of digital signal, from its ideal position, which may lead to
data errors.

When the effect of ISI increases, traces from the upper portion to the lower portion of the eye opening
increases and the eye gets completely closed, if IS is very high.

An eye pattern provides the following information about a particular system.
o Actual eye patterns are used to estimate the bit error rate and the signal-to-noise ratio.

e The width of the eye opening defines the time interval over which the received wave can be
sampled without error from ISI.

« The instant of time when the eye opening is wide, will be the preferred time for sampling.

e The rate of the closure of the eye, according to the sampling time, determines how sensitive the
system is to the timing error.

e The height of the eye opening, at a specified sampling time, defines the margin over noise.

Hence, the interpretation of eye pattern is an important consideration.
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UNIT IV-PASS BAND DATA TRANSMISSION

Pass Band Transmission Model — Generation, Detection, Signal Space Diagram, Probability of Error
for BFSK, BPSK, QPSK, DPSK, and Schemes— Comparison.

Passhand Transmission Model

In a functional sense, we may model a passband data transmjs_sion.system as shown i
Figure 6.2. First, there is assumed to exist a message source that emits one symbol every
T seconds, with the symbols belonging to an alphabet of M symbols, whlch we denote by
My, Mo, .« ., My The a priori probabilities P(my), P(ma), . . - P({ﬂ u) specify Fhe message
source output. When the M symbols of the alphabet are equally likely, we write

i P (m,)
P 1 (6.6)
—  foralli

il

| The M-ary output of the message source is presented to a signal transmission encoder,

producing a corresponding vector s; made up of N real el.ements, one such set for each‘of
the M symbols of the source alphabet; the dimension N is lffss than or equal to M. With
the vector s; as input, the modulator then constructs a distinct signal s;(t) of duranfm T
seconds as the representation of the symbol generated by the message source. The signal
s,() is necessarily an energy signal, as shown by

T
Eimf sy d, i=12,...,M (6.7)
0 .

Note that s;(#) is real valued. One such signal is transmit'ted every T fseconc‘ls. The partlcula;
signal chosen for transmission depends in some'fashlon on Fhe incoming message atll]w,
possibly on the signals transmitted in preceding time sl‘ots. With a smuso@al carne;,
feature that is used by the modulator to distinguish one signal .from another is a step c; an%;
in the amplitude, frequency, or phase of the carrier. (Sometimes, 2 h}rbrld form of mo
ulation that combines changes in both amplitude and phase or amplitude and frequency

is used.)
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Functional model of passband data transmission system.

Returning to the functional model of Figure 6.2, the bandpass communication chan-
nel, coupling the transmitter to the receiver, is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of the modulated signal (¢} with negligible o no distortion.

1. The channel noise w(t) is the sample function of 2 white Gaussian noise process of
zero mean and power spectral density N2,

The assumptions made herein are basically the same as those invoked in Chapter § dealing

with signal-space analysis.

The receiver, which consists of a detector followed by a signal transmission decoder,

performs two functions:

1. It reverses the operations performed in the transmitter,
2, It minimizes the effect of channel noise on the estimate # computed for the trans-

mitted symbol 1,
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BiNnaRY FSK

In a binary FSK system, symbols 1 and 0 are distinguished from each other by transmitting
one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

2E,
s;(2) = Ty )
0, elsewhere

cos(2mfit), 0=t=T, (6.86)

where i = 1, 2, and E, is the transmitted signal energy per bit; the transmitted frequency
is

. + i
=
b

for some fixed integer 7. and i = 1, 2 {6.87)

Thus symbol 1 is represented by s4(¢), and symbol 0 by s,(z). The FSK signal described
here is known as Sunde’s FSK. It is a comntinuous-phase signal in the sense that phase
continuity is always maintained, including the inter-bit switching times. This form of dig-
ital modulation is an example of continuous-phase frequency- -shift keying (CPFSK), on
which we have more to say later on in the section.

From Equations (6.86) and (6.87), we observe directly that the signals s,(¢) and s,(¢)
are orthogonal, but not normalized to have unit energy. We therefore deduce that the most
useful form for the set of orthonormal basis functions is

|2
&ilt) = T, cos(2wfit), O0=t=T, (6.88)

0, elsewhere

where 7 = 1, 2. Correspondingly, the coefficient s, for i = 1, 2, and j = 1, 2 is defined by

g = L ’ si(2);(t) dt

Ty
J, ) c:os(2.fn-ft) ,'— cos(2ft) dt (6.89)
_— bs { = f
0, i+
Thus, unlike coherent binary PSK, a coherent binary FSK system is characterized by having

a signal space that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2},
as shown in Figure 6.25. The two message points are defined by the

s, = [ " E”] (6.90)
0
and
0 .
§; = |:\/E—b:| {6.91)

with the Euclidean distance between them equal to V2E,. Figure 6.25 also includes a
couple of inserts, which show waveforms representative of signals s,(z) and s»(z).
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Decision
boundary
-

Region

Message
point m;

Region

\_l.-/ 1

Signal-space diagram for binary FSK system. The diagram also includes twe
inserts showing example waveforms of the two modulated signals s, (¢} and s5,(2).

Ervor Probability of Binary FSK

The observation vector x has two elements x; and x, that are defined by, respectively,

Ty
x = L x(2)p(t) dt {6.92)
and
Ty
= [ xodan) de (6.99

where x(z) is the received signal, the form of which depends on which symbol was trans-
mitted. Given that symbol 1 was transmitted, x(z} equals s,(z) + w(t), where w/(t) is f}le
sample function of a white Gaussian noise process of zero mean and power spectral densiy
No/2. If, on the other hand, symbol 0 was transmitted, x(¢) equals s,(¢) + w(t). )
Now, applying the decision rule of Equation (5.59), we find that the observatioll
space is partitioned into two decision regions, labeled Z, and Z; in Figure 6.25. The
decision boundary, separating region Z, from region Z, is the perpendicular bisector O
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the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z;. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x,, in which case the receiver makes a random guess in favor of

symbol 1 or 0.
Define a new Gaussian random variable Y whose sample value y is equal to the

difference between x; and x.: that is,
Y =X T X3 (6.94)

The mean value of the random variable Y depends on which binary symbol was trans-
mitted. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,,
whose sample values are denoted by x, and x,, have mean values equal to VVE, and zero,
respectively. Correspondmgly, the conditional mean of the random variable Y, given that
symbol 1 was transmitted, is

E[Y|1] = E[X,|1] — E[X,|1]
= +YV Eb
On the other hand, given that symbol 0 was transmitted, the random variables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable ¥, given that symbol 0 was transmitted, is
E[Y|0] = E[X,|0] — E[X,|0]
E,
The variance of the random variable Y is independent of which binary symbol was trans-
mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that
var[Y] = var[X ] + var[X;]
= N,

Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

0y = 1 y + VE)
fy()’ )““ mﬁgexp 2N0

Since the condition x, > x,, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

(6.95)
(6.96)

(6.97)

{6.98)

P10 = P(y > 0|symbol 0 was sent)

=f0 fily|0) dy (6.99)
(y + \/E_b)z:I J |

1 f " exp| —
V2N, Jo exp[ 2Ny
Put

(6.100)

Karpagam Academy of Higher Education Page 5



DIGITAL COMMUNICATION V.NANDHINI AP/ECE

Then, changing the variable of integration from y to z, we may rewrite Equation (g 9g
as follows: 9

exp(—z?) dz
) (6.101)

_ 1 r
bro = 70 L oman,

=1rf' E,
2 T \V 2N,

Similarly, we may show the po,, the conditional probability of error given that symhg) 1
was transmitted, has the same value as in Equation (6.101). Accordingly, averaging b
and po1, we find that the average probability of bit error or, equivalently, the bit error mlﬂ
for coberent binary FSK is (assuming equiprobable symbols)

=1 i Ee
P, =3 erfc( ZNU) (6.102)

Comparing Equations (6.20) and (6.102), we see that, in a coherent binary Fsg
system, we have to double the bit energy-to-noise density ratio, E,/ Ny, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6.25, where we see that in a binary PSK
system the Euclidean distance between the two message points is equal to 2VE,, wheress
in a binary FSK system the corresponding distance is V/2E,. For a prescribed E,, the
minimum distance d..., in binary PSK is therefore /2 times that in binary FSK. Recall
from Chapter 5 that the probability of error decreases exponentially as d?,,, hence the
difference between the formulas of Equations (6.20) and (6.102).

Generation and Detection of Coherent Binary FSK Signals

To generate a binary FSK signal, we may use the scheme shown in Figure 6.26a. The
incoming binary data sequence is first applied to an on—off level encoder, at the output of
which symbol 1 is represented by a constant amplitude of \/E,, volts and symbol 0 is
represented by zero volts. By using an inverter in the lower channel in Figure 6.264, wein
effect make sure that when we have symbol 1 at the input, the oscillator with frequency
£, in the upper channel! is switched on while the oscillator with frequency f; in the lower
channel is switched off, with the result that frequency f; is transmitted. Conversely, when
we have symbol 0 at the input, the oscillator in the upper channel is switched off and the
oscillator in the lower channel is switched on, with the result that frequency £, is trans-
mitted. The two frequencies f; and f; are chosen to equal different integer multiples of the
bit rate 1/T,, as in Equation (6.87).

In the transmitter of Figure 6.264, we assume that the two oscillators are synchro-
nized, so that their outputs satisfy the requirements of the two orthonormal basis functions
$1(t) and ¢,(?), as in Equation (6.88). Alternatively, we may use a single keyed {voltage-
controlled) oscillator. In either case, the frequency of the modulated wave is shifted w
a continuous phase, in accordance with the input binary wave. 4

To detect the original binary sequence given the noisy received signal x(¢), we M4
use the receiver shown in Figure 6.26b. It consists of two correlators with a common inpib
which are supplied with locally generated coherent reference signals ¢,(t) and ¢ (). The
correlator outputs are then subtracted, one from the other, and the resulting difference,
is compared with a threshold of zero volts. If y > 0, the receiver decides in favor of 1.08
the other hand, if y < 0, it decides in favor of 0. If y is exactly zero, the receiver makes?
random guess in favor of 1 or 0.
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T

@) = +/2/Ty, cos(2mfy 1) .
Binary On-off . Binary
data —=~  level (E FSK
sequence enceder K+ s&g(r;)al
5

mlr) N
>

Inverter *

(8} = ~f 2/T, cos(2af,e)

{a)

—> Choose 1ify>0

() b,z D;ci_sion
BIcE Choose O ify < O
50 1\
\r Threshoid = Q
sz(t)

{b}
Block diagrams for (@) binary FSK transmitter and (b) coherent binary FSK receiver,

Power Spectra of Binary FSK Signals

Consider the case of Sunde’s FSK, for which the two transmitted frequencies f; and
f> differ by an amount equal to the bit rate 1/T,, and their arithmetic mean equals the
nominal carrier frequency f; phase continuity is always maintained, including inter-bit
switching times. We may express this special binary FSK signal as follows:

2F
s(t) = [ cos| 2mfit = T, o=¢= T, (6.103)
Ty T,

and using a well-known trigonometric identity, we get

/ ' 2E t
s(t) = %’3 cos(i_ %) cos{2mf.t) — —T: sin(t%) sin{2wft)
2E Tt _ [(2E, . fwt\ .
= /m]w:;-b« cos(ﬁ) cos(2mft) ¥ T: sm(ﬁ) sin{2+f ¢)

In the last line of Equation (6.104), the plus sign corresponds to transmitting symbol 0,
and the minus sign corresponds to transmitting symbol 1. As before, we assume that the
symbols 1 and 0 in the random binary wave at the modulator input are equally likely, and
that the symbols transmitted in adjacent time slots are statistically independent. Then,

(6.104)
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based on the representation of Equation {6.104), we may make the following observag,
pertaining to the in-phase and quadrature components of a binary FSK signal with CD“S
tinuous phase: o

1. The in-phase component is completely independent of the input binary way. It
equals \2E,/T, cos(wt/T,) for all values of time t. The power spectral density. of
this component therefore consists of two delta functions, weighted by the factor
E,/2Ts, and occurring at f = +1/27T,.

2. The quadrature component is directly related to the input binary wave. During t,
signaling interval 0 < ¢ = T,, it equals —g(z) when we have symbol 1, and +glt
when we have symbol 0. The symbol shaping function g() is defined by

RE, . (wt _
gty =9\ T, Sm(Tb)’ 0=t=T1, (6.105)

0, elsewhere
The energy spectral density of this symbol shaping function equals

8E,T, cos*(wT,f)
() = =T — 1) (6.106)

The power spectral density of the quadrature component equals W {f1/T,. It is also
apparent that the in-phase and quadrature components of the binary FSK signal are in-
dependent of each other. Accordingly, the baseband power spectral density of Sunde’s FSK
signal equals the sum of the power spectral densities of these two components, as shown

by
E, 1 1 8E, cos*(mT.f)

Substituting Equation (6.107) in Equation {6.4), we find that the power spectrum of
the binary FSK signal contains two discrete frequency components located at (£ + 1/2T})
= f; and (f. — 1/2T,) = f;, with their average powers adding up to one-half the total
power of the binary F5K signal. The presence of these two discrete frequency components
provides a means of synchronizing the receiver with the transmitter.

Note also that the baseband power spectral density of a binary FSK signal with
continuous phase ultimately falls off as the inverse fourth power of frequency. This is
readily established by taking the limit in Equation (6.107) as f approaches infinity. 1,
however, the FSK signal exhibits phase discontinuity at the inter-bit switching instants
(this arises when the two oscillators applying frequencies f; and f> operate independently
of each other), the power spectral density ultimately falls off as the inverse square
frequency; see Problem 6.23. Accordingly, an FSK signal with continuous phase does not
produce as much interference outside the signal band of interest as an FSK signal wi
discontinuous phase.

In Figure 6.5, we have plotted the baseband power spectra of Equations (6.22) and
(6.107). (To simplify matters, we have only plotted the results for positive frequenCY-_)I“
both cases, Sp{f) is shown normalized with respect to 2E,, and the frequency is normalize
with respect to the bit rate R, = 1/T,. The difference in the falloff rates of these spect
can be explained on the basis of the pulse shape g(). The smoother the pulse, the faste!
the drop of spectral tails to zero. Thus, since binary FSK {with continuous phase) has 2
smoother pulse shape, it has lower sidelobes than binary PSK.
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BiINARY PHASE-SHIFT KEYING

In a coherent binary PSK system, the pair of signals s;(¢) and s,(z) used to represent binary
symbols 1 and 0, respectively, is defined by

s.{t) = % cos(2mf.t) {6.8)
b

so(t) = % cos(2mfit + @) = — f*" cos(27f.t) (6.9)
& &

where 0 = ¢ = T, and E, is the transmitted signal energy per bit. To ensure that each
transmitted bit contains an integral number of cycles of the carrier wave, the carrier fre-
quency f; is chosen equal to #./T),, for some fixed integer #.. A pair of sinusoidal waves
that differ only in a relative phase-shift of 180 degrees, as defined in Eqautions (6.8) and
(6.9), are referred to as gntipodal sigrals.

From this pair of equations it is clear that, in the case of binary PSK, there is only
one basis function of unit energy, namely,

2
Ga(2) = T cos(2mft), O0=:t< T, {(6.10)
. ‘
Then we may express the transmitted signals s,(z) and s,(¢) in terms of ¢, (z) as follows:
s1(t) = V E,¢ (1), O0=z<T, (6.11)
and
s2(8) = —VEudql(t), O0=z:<T, (6.12)
Decision
boundary
1
Regicn { Region
Z, ! Z
| .
Message 0] Mes',sage
point i point
2 1 1

for coherent binary PSK system. The waveforms depicting the
= 2.

Signal-space diagram : '
transmitted signals s,(¢) and s3(2), displayed in the inserts, assume #.
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A coherent binary PSK system is therefore characterized by having a; signal space
i ] ] = I ' ' isti two messa
that is one-dimensional (i.e., N = 1), with a signal constgllat:on consisting 0 gt
points (i.e., M = 2). The coordinates of the message points are

T
Sy = J'O s1(t)4(t) dt (6.13)

’ = + \Y Eb
and

Ty
$21 = L sa{t)lt) dt (6.14)

= -VE,

The message point corresponding to s.{t) 1s located at sy = +\./E_b, and hthe.mesls—z;gz f:iiﬂxt
corresponding, to s,(¢) 18 located at s5; = —V'E,,. Figure 6.3 dlspiays the 51g1nz:’v aﬁeforms
agram for binary PSK. This figure also includes two inserts, showing examp ef e
of antipodal signals representing s:(?) and s,(2). Note that the constellation ot F1g

has minimum average energy.

Error Probability of Binary PSK

!
To realize a rule for making a decision in favor of symbol 1 or symbol 0, we app¥

.

. . . M fo
Equation (5.59) of Chapter 5. Specifically, we partition the signal space of Figure .3 m
two regions:

» The set of points closest to message point 1 at +VE,.
# The set of points closest to message point 2 at — V E,.

Th‘is s accomplished by constructing the midpoint of the line joining these two message
points, and then marking off the appropriate decision regions. In Figure 6.3 these decision

regions ate marked Z, and 7, according to the message point around which they are
constructed. |
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The decision rule is now simply to decide that signal s,(¢) (i.e., binary symbol 1) was
transmitted if the received signal point falls in region Z,, and decide that signal s,(¢) (i.e.,
binary symbol 0) was transmitted if the received signal point falls in region Z,. Two kinds
of erroneous decisions may, however, be'made. Signal s,(¢) is transmitted, but the noise is
such that the received signal point falls inside region Z; and so the receiver decides in favor
of signal s,(¢). Alternatively, signal s,(¢) is transmitted, but the noise is such that the re-
ceived signal point falls inside region Z, and so the receiver decides in favor of signal s,(z).

To calculate the probability of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(¢) is described by

21:0<x1<00

where the observable element x, is related to the received signal x(f) by

Ty
Xy ..—,.J. x(t)p((t) dt (6.15)
0

The conditional probability density function of random variable X,, given that symbol 0
[i.e., signal s,(¢)] was transmitted, is defined by

. 1
le(x1|0) - NZ= A exp[——ﬁl; (g — 521)2}
. 0

\/;—M) exp[—ﬁlg (%, + \//-E_b)z]

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol
0 was transmitted, is therefore

(6.16)

Pio = J‘o Fx,(x:1]0) dxy

- . (6.17)
= VN fo eXP[—E (x; + \/E_b)zjl dx,
Putting
t = (x, + VEy) (6.18)

VN,

and changing the variable of integration from x, to z, we may rewrite Equation (6.17) in
the compact form

_LF o
Plo—\/;_ vmﬂcp( z°) dz

z}wef E,
5 erfc N

where erfc(-) is the complementary error function.

(6.19)
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Consider next an error of the second kind. We note that the signal space of Figure
6.3 is symmetric with respect to the origin. It follows therefore that py., the conditiony
probability of the receiver deciding in faver of symbol 0, given that symbol 1 was trap
mitted, also has the same value as in Equation {6.19).

Thus, averaging the conditional error probabilities pio and po;, we find that the
average probability of symbol error or, equivalently, the bit error rate for coberent bingpy
PSK is (assuming equiprobable symbols) )

1 E
P, = 2 erfc( fﬁ%) (6.20)

As we increase the transmitted signal energy per bit, E;, for a specified noise spectry]
density Ny, the message points corresponding to symbols 1 and 0 move further apart, apq
the average probability of error P, is correspondingly reduced in accordance with Equatigy
(6.20), which is intuitively satisfying.

Generation and Detection of Coherent Binary PSK Signals

To generate a binary PSK signal, we see from Equations (6.8)—{6.10) that we have
to represent the input binary sequence in polar form with symbols 1 and O represented by
constant amplitude levels of +VE, and —VE,, respectively. This signal transmission en-
coding is performed by a polar nonreturn-to-zero (NRZ) level encoder. The resulting bi-
nary wave and a sinusoidal carrier ¢ (2}, whose frequency f. = (1,/Ty) for some fixed
integer #,, are applied to a product modulator, as in Figure 6.44. The carrier and the
timing pulses used to generate the binary wave are usually extracted from a common
master clock. The desired PSK wave is obtained at the modulator output.

To detect the original binary sequence of 1s and 0s, we apply the noisy PSK signal
x(t) (at the channel output) to a correlator, which is also supplied with a locally generated
coherent reference signal ¢ (), as in Figure 6.4b. The correlator output, x,, is compared
with a threshold of zero volts. If x; > 0, the receiver decides in favor of symbol 1. On the

Binary Polar nonreturn- Binary

data -~ to-zero . mzrggl'-;(tx BSK

sequence level enceder signal

1\ st

910 = /- 008 (@afs)
b
()
Correlator
x(t) Decisiaon [ Choose 1 if Iy > 0]
device | Choose 0 ifx; <0
(1) T
Threshold =0

(B
Block diagrams for (a) binary PSK transmitter and (b) coherent binary PSK receiver.
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other hand, if x, < 0, it decides in favor of symbol 0. If x, is exactly zero, the receiver
makes a random guess in favor of 0 or 1.

Power Specire of Binary PSK Signals

From the modulator of Figure 6.44, we see that the complex envelope of a binary
PSK wave consists of an in-phase component only. Furthermore, depending on whether
we have symbol 1 or symbol 0 at the modulator input during the signaling interval
0 =t = T, we find that this in-phase component equals +g(¢} or —g(t), respectively,
where g{¢t) is the symbol shaping function defined by

26,
gty = T,’
o, otherwise

0=t=T, (6.21)

We assume that the input binary wave is random, with symbols 1 and 0 equally likely and
the symbols transmitted during the different time slots being statistically independent. In
Example 1.6 of Chapter 1 it is shown that the power spectral density of a random binary
wave 50 described is equal to the energy spectral density of the symbol shaping function
divided by the symbol duration. The energy spectral density of a Fourier transformable
signal g(z) is defined as the squared magnitude of the signal’s Fourier transform. Hence,
the baseband power spectral density of a binary PSK signal equals

_ 2E, sin*(#T,f)

(T-"T&f)z (6.22)
= 2E, sinc*(T,f)

Ss(f)

This power spectrum falls off as the inverse square of frequency, as shown in Figure 6.5.

Figure 6.5 also includes a plot of the baseband power spectral density of a binary
FSK signal, details of which are presented in Section 6.5. Comparison of these two spectra
is deferred to that section.

1.0

Binary PSK

Delta functicn
(part of FSK spectrum)

Binary
FSK

Normalized power spectral densily, Sy{f)/2E;
[=)
[44]
I

| i |
la] 0.5 1.0 1.5 2.0
Normalized frequency, T

Power spectra of binary PSK and FSK signals.
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QUADRIPHASE-SHIFT KEYING

The provision of reliable performance, exemplified by a very low probability of error s
one important goal in the design of a digital communication system. Another import;nt
goal is the efficient utilization of channel bandwidth. In this subsection, we study a bayq.
width-conserving modulation scheme known as coherent quadriphase-shift keying, wh; o
is an example of quadrature-carrier multiplexing.

In guadriphase-shift keying (QPSK), as with binary PSK, information carried by th,
transmitted signal is contained in the phase. In particular, the phase of the carrier takeg
on one of four equally spaced values, such as n/4, 37/4, 5w/4, and 77/4. For this set of
values we may define the transmitted signal as

2E . ' -y
s:{2) = \/—?: cos[waCt + (2i — 1} Z], 0=r=T (6.23)

0, elsewhere

where i = 1, 2, 3, 4; E is the transmitted signal energy per symbol, and T is rhe symbg
duration. The carrier frequency f. equals n/T for some fixed integer 7.. Each possible
value of the phase corresponds to a unique dibit. Thus, for example, we may choose the
foregoing set of phase values to represent the Gray-encoded set of dibits: 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK

Using a well-known trigonometric identity, we may use Equation (6.23) to redefine
the transmitted signal s,(¢) for the interval 0 < ¢ = T in the equivalent form:

5;(8) = ‘/g cos[(Zi - 1) E:] cos(2mf.t) — \/%;‘E sin[(Zi - 1) -411] sin(2mf.t)  [6.24)

where i = 1, 2, 3, 4. Based on this representation, we can make the following observations:

# There are two orthonormal basis functions, ¢,(z) and ¢ (¢}, contained in the expan-
sion of s,(2). Specifically, ¢ ,(¢) and ¢ ,(¢) are defined by a pair of guadrature carriers:

bi(t) = \/%,COS(ZWfCt), 0=t=T (6.25)
baft) = \/%: sin(27f.t), 0=t=T (6.26)

Signal-space characterization of QPSK

Coordinates of

Phase _Of Message Points
Gray-encoded QPSK Signal
Input Dibit (radians) Si1 Si2
10 14 +VE/2 -V Ef2
00 34 -\ E/2 —\E/2
01 57/4 —VE/A +VE/2
11 7 l4 +VE/2 +VE/A2
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L)

Decision
boundary
. 1

Message
paint m,
{11)

Region
A

Signal-space diagram of coherent QPSK system.

# There are four message points, and the associated signal vectors are defined by

VE cos((Zi — 1) 2"3)
s, = ,  i=1,2,3,4 (6.27)

~VE sin((Zz' — 1) "ZT)

The eclements of the signal vectors, namely, s;; and s,», have their values summarized
in Table 6.1. The first two columns of this table give the associated dibit and phase
of the QPSK signal.

Accordingly, a QPSK signal has a two-dimensional signal constellation (i.e., N = 2) and
four message points (i.e., M = 4} whose phase angles increase in a counterclockwise di-
rection, as illustrated in Figure 6.6. As with binary PSK, the QPSK signal has minimum
average energy.

Error Probability of QPSK
In a coherent QPSK system, the received signal x(z) is defined by
O0=t=T

(6.28)
i = 1, 2-: 3:« 4

x(t) = s:(z) + w(z),
. . , . ;
where () is the sample function of a white Gaussian noise process of zero mean an

power spectral density Nqo/2. Correspondingly, the observation vector x has two elements,
x, and x5, defined by

i}
xo = [ xe)bi(e) de

= VE cos| (2i — 1) 5 | + wn (6.29)

= & |— 4+ w
2 )
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T
x; = f x(t)po(t) dt

0

= - EshJ}ZiWAl)EJ + 1w,

(6.30)

_ IE
TZ - "'i"'"'Wz

Thus the observable elements x, and x, are sample values of independent Gaussian random
variables with mean values equal to V' E/2 and ¥V E/2, respectively, and with a common

variance equal to Ny/2.

The decision rule is now simply to decide that s;(¢) was transmitted if the received
signal point associated with the observation vector x falls inside region Z,, decide that
s,(t) was transmitted if the received signal point.falls inside region Z,, and so on. An
erroneous decision will be made if, for example, signal s,(t} is transmitted but the noise
w(t) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol error, we note from Equation (6.24)
that a coherent QPSK system is in fact equivalent to two coherent binary PSK systems
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output x; and the quadrature channel output x; (i.e., the two elements of the
observation vector x) may be viewed as the individual outputs of the two coherent binary
PSK systems. Thus, according to Equations (6.29) and (6.30), these two binary PSK sys-

tems may be characterized as follows:

B The signal energy per bit is E/2.

& The noise spectral density is N/2.

Hence, using Equation (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in ezck channel of

the coherent QPSK system is

P =

Lol 2
2erc NO

(6.31)
l fc E
2 V2N,

Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the two bits constituting a symbol (dibit) of the QPSK signal,
and the quadrature channel takes care of the other bit. Accordingly, the average probabiliry
of a correct decision resulting from the combined action of the two channels working

together is
P,=(1— Py

2
1 E
= [1 3 erfc( ZNO)]
E
=1 erfc( /2N0

Karpagam Academy of Higher Education

(6.32)

1 » E
) + 3 erfc ( ZNO)
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The average probability of symbol error for coherent QPSK is therefore
P,=1—P,

~ EYN 1 . [E (6.33)
= erfc( ZNO) 4 erfc ( ZNO)

In the region where (E/2N,) > 1, we may ignore the quadratic term on the right-hapg
side of Equation (6.33), so we approximate the formula for the average probability
symbol error for coherent QPSK as

E
P, = erfc( ZND) (6.34)

The formula of Equation {6.34) may also be derived in another insightful way, using
the signal-space diagram of Figure 6.6. Since the four message points of this diagram are
circularly symmetric with respect to the origin, we may apply Equation (5.92), reproduced
here in the form

1 da ;
‘P‘f3 = -i 21 erfc(Z‘\/I\—[O) for all { (6.35)

Consider, for example, message point 71, (corresponding to dibit 10) chosen as the trans-
mitted message point. The message points »2, and 4 (corresponding to dibits 00 and 11}
are the closest to n1,. From Figure 6.6 we readily find that s, is equidistant from 1, and
1, in a Euclidean sense, as shown by

dip = dis = \/ﬁ

Assuming that E/N, is large enough to ignore the contribution of the most distant message
point #1; (corresponding to dibit 01) relative to 71,, we find that the use of Equation (6.35)
yields an approximate expression for P, that is the same as Equation (6.34). Note that in
mistaking either m1, or 1, for #124, a single bit error is made; on the other hand, in mistaking
ms for mi,, two bit errors are made. For a high enough E/No, the likelihood of both bits
of a symbol being in error is much less than a single bit, which is a further justification
for ignoring #; in calculating P, when 72, is sent.

In a QPSK system, we note that since there are two bits per symbol, the transmitted
signal energy per symbol is twice the signal energy per bit, as shown by

E = 2E, (6.36)

Thus expressing the average probability of symbol error in terms of the ratio E,/Ny, we

may write
P, = erfc( /i—z) (6.37)

With Gray encoding used for the incoming symbols, we find from Equations (6.31)
and (6.36) that the bit error rate of QPSK is exactly

BER = % erfc( E—”-) (6.38)

No

We may therefore state that a coherent QPSK system achieves the same average probability
of bit error as a coherent binary PSK system for the same bit rate and the same E;/No
but uses only half the channel bandwidth. Stated in a different way, for the same Ex/No
and therefore the same average probability of bit error, a coherent QPSK system transmts
information at twice the bit rate of a coherent binary PSK system for the same channe
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bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

Generation and Detection of Coherent QPSK Signals

Consider next the generation and detection of QPSK signals. Figure 6.82 shows a
block diagram of a typical QPSK transmitter. The incoming binary data sequence is first
transformed into polar form by a nonreturn-to-zero level encoder. Thus, symbols 1 and 0
are represented by +V/E, and ~V'E,, respectively. This binary wave is next divided by
means of a demultiplexer into two separate binary waves consisting of the odd- and even-
numbered input bits. These two binary waves are denoted by a,(¢) and 4,(¢). We note that
in any signaling interval, the amplitudes of a,(¢) and a(¢) equal s;; and s,, respectively,
depending on the particular dibit that is being transmitted. The two binary waves a,(¢)
and 4,(t) are used to modulate a pair of quadrature carriers or orthonormal basis functions:
¢ 4(t) equal to V2/T cos(27f.t) and ¢,(2) equal to V2/T sin(27f,z). The result is a pair of

a,{t) r;\

\f(

() = /2/T cos(Zmfe) o

Binary Polar nonreturn- QPSK
data to-zero level Demuitiplexer CEF signal
seguence encoder + (0

dz(t) /;\‘

T

{1} = 2T sin{2mf.5)

(a)

Threshold =0

!

fT d L | Decision
/3 :
o device

T

&1

Received In-phase channel Estimate of
signal b Multiplexer - tyansmitted binary
x(#) sequence

T xz e
j‘ di Decision
o}

/;7)7 device
|

o)

Threshoid = 0

Quadrature channel
5

Block diagrams of (a) QPSK transmitter and (5) coherent QPSK receiver.
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binary PSK signals, which may be detected independently due to the orthogonality of ()
and ¢,(t). Finally, the two binary PSK signals are added to produce the desired QPISK
signal.

The QPSK receiver consists of a pair of correlators with a common input and supplieq
with a locally generated pair of coherent reference signals ¢,(t) and ¢,(t), as in Figure
6.8b. The correlator outputs x; and x,, produced in response to the received signal x(1)
are each compared with a threshold of zero. If x; > 0, a decision is made in fayor 0;
symbol 1 for the in-phase channel output, but if x; < 0, a decision is made in favoy of
symbol 0. Similarly, if x, > 0, a decision is made in favor of symbol 1 for the quadratype
channel output, but if x, < 0, a decision is made in favor of symbol 0. Finally, these ty,
binary sequences at the in-phase and quadrature channel outputs are combined in a s
tiplexer to reproduce the original binary sequence at the transmitter input with the mip;.
mum probability of symbol error in an AWGN channel.

Power Spectra of QPSK Signals

Assume that the binary wave at the modulator input is random, with symbols 1 ang
0 being equally likely, and with the symbols transmitted during adjacent time slots being
statistically independent. We make the following observations pertaining to the in-phase
and quadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval — T, = t = T}, the in-phage
component equals +g(#) or —g(#), and similarly for the quadrature component. The
g(#) denotes the symbol shaping function, defined by

E
g() = \/; 0=r=T (6.39)

0, otherwise

Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc*(Tf).

1.0

Normalized power spectral density, Sz{fV4E,
a
o

o
=

0 C.25 0.5 0.75 1.0
Normalized frequency, fT,

Power spectra of QPSK and MSK signals.
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2. The in-phase and quadrature components are statistically independent. Accordingly,
the baseband power spectral density of the QPSK signal equals the sum of the indi-
vidual power spectral densities of the in-phase and quadrature components, so we
may write

Ss(f) = 2F sinc3(Tf)
= 4E, sinc?(2T,f)
Figure 6.9 plots Sg(f), normalized with respect to 4E,, versus the normalized fre-
quency fT,. This figure also includes a plot of the baseband power spectral density of a

certain form of binary FSK called minimum shift keying, the evaluation of which is pre-
sented in Section 6.5. Comparison of these two spectra is deferred to that section.

(6.40)

OFrrFsSeET QPSK

The signal space diagram of Figure 6.10a embodies all the possible phase transitions that
can arise in the generation of a QPSK signal. More specifically, examining the QPSK
waveform illustrated in Figure 6.7 for Example 6.1, we may make the following
observations:

1. The carrier phase changes by =180 degrees whenever both the in-phase and quad-
rature components of the QPSK signal changes sign. An example of this situation is
illustrated in Figure 6.7 when the input binary sequence switches from dibit 01 to
dibit 10.

2. The carrier phase changes by =90 degrees whenever the in-phase or quadrature
component changes sign. An example of this second situation is illustrated in Figure
6.7 when the input binary sequence switches from dibit 10 to dibit 00, during which
the in-phase component changes sign, whereas the quadrature component is
unchanged.

3. The carrier phase is unchanged when neither the in-phase component nor the quad-
rature component changes sign. This last situation is illustrated in Figure 6.7 when
dibit 10 is transmitted in two successive symbol intervals.

Situation 1 and, to a much lesser extent, situation 2 can be of a particular concern when
the QPSK signal is filtered during the course of transmission, prior to detection. Specifi-
cally, the 180- and 90-degree shifts in carrier phase can result in changes in the carrier
amplitude {i.e., envelope of the QPSK signal), thereby causing additional symbol errors on
detection.

& &3

PR A P R
(AN A ! o
I~ P \ !
l \\// 3 & ! i ¢
E ro ~ ; . ; o i :
‘ // \\ | | |
¥, ¥ ¥ ¥

[ ) SSN N

(e} {b}

Possible paths for switching between the message points in {a) QPSK and (b) offset QPSK.
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The extent of amplitude fluctuations exhibited by QPSK signals may be reduced },
using offset QPSK.* In this variant of QPSK, the bit stream responsible for generating th,
quadrature component is delayed (i.e., offset) by half a symbol interval with respect to the
bit stream responsible for generating the in-phase component. Specifically, the two basig
functions of offset QPSK are defined by

2
b)) = \/; cos(2mf.t), O0=r=T (6.41}
2 T 3T

Accordingly, unlike QPSK, the phase transitions likely to occur in offset QPSK are confined
to =90 degrees, as indicated in the signal space diagram of Figure 6.106. However, +9g
degree phase transitions in offset QPSK occur twice as frequently but with half the intensiry
encountered in QPSK. Since, in addition to =90-degree phase transitions, +180-degree
phase transitions also occur in QPSK, we find that amplitude fluctuations in offset QPsSK
due to filtering have a smaller amplitude than in the case of QPSK.

Despite the delay T/2 applied to the basis function ¢ () in Equation {6.42) compared
to that in Equation {6.26), the offset QPSK has exactly the same probability of symhoj
error in an AWGN channel as QPSK. The equivalence in noise performance between these
phase-shift keying schemes assumes the use of coherent detection. The reason for the equiv-
alence is that the statistical independence of the in-phase and quadrature components
applies to both QPSK and offset QPSK. We may therefore say that the error probability
in the in-phase or quadrature channel of a coherent offset QPSK receiver is still equal to
(1/2) erfc{\VE/2N,). Hence the formula of Equation (6.34) applies equally well to the offset
QPSK.

7/4-SHIFTED QPSK

An ordinary QPSK signal may reside in either one of the two commonly used constellations
shown in Figures 6.11a and 6.115, which are shifted by #/4 radians with respect to each
other. In another variant of QPSK known as @/4-shifted QPSK,? the carrier phase used
for the transmission of successive symbols (i.e., dibits) is alternately picked from one of
the two QPSK constellations in Figure 6.11 and then the other. It follows therefore thata
m/4-shifted QPSK signal may reside in any one of eight possible phase states, as indicated

¢ ba
/%“k\
pd N F\ /_?I
- AN | NN e :
|
{ 3 } $; } O\< 1 ¢
N ~ | -~ ~ |
\\ // I // \\ !
\\ // k‘_.._--_—;‘i
F

(@) &

Two commonly used signal constellations for QPSK; the arrows indicate the paths
along which the QPSK modulator can change its state.
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Eight possible phase states for the m/4-shifted QPSK modulator.
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in Figure 6.12. The four dashed lines emanating from each possible message point in
Figure 6.12 define the phase transitions that are feasible in 7/4-shifted QPSK.

Table 6.2 summarizes a possible set of relationships between the phase transitions
in this new digital modulation scheme and the incoming Gray-encoded dibits. For example,
if the modulator is in one of the phase states portrayed in Figure 6.115, then on receiving
the dibit 00 it shifts into a phase state portrayed in Figure 6.11a by rotating through #/4

radians in a counterclockwise direction.

Attractive features of the 7r/4-shifted QPSK scheme include the following:

The phase transitions from one symbol to the next are restricted to +7/4 and +3 /4
radians, which is to be contrasted with the = #/2 and *+ phase transitions in QPSK.
Consequently, envelope variations of 7/4-shifted QPSK signals due to filtering are
significantly reduced, compared to those in QPSK.

- Unlike offset QPSK signals, nr/4-shifted QPSK signals can be noncoherently detected,
thereby considerably simplifying the receiver design. Moreover, like QPSK signals,
w/4-shifted QPSK can be differently encoded, in which case we should really speak
of w/4-shifted DOPSK. ,

The generation of m/4-shifted DQPSK symbols, represented by the symbol pair {1, Q),

is described by the following pair of relationships (see Problem 6.13):

Ik = COS(Bk“T + Agk)

(6.43)
= cos O,
Qp = S-‘in(gk—l + At (6.44)
= sm @,

Correspondence between input

dibit and phase change for n/4-shifted
DQPSK

Gray-Encoded Input Dibit

Phase Change, A (radians)

00 /4
01 3n/4
11 —3 74
10 _ /4

Karpagam Academy ot Higher Education
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Detection of w/4-Shifted DQPSK Signals

Having familiarized ourselves with the generation of 77/4-shifted DQPSK signals, we
go on to consider their differential detection. Given the noisy channel output x{z), the
receiver first computes the projections of x{(z) onto the basis functions ¢ ;(t} and ¢ (f). The
resulting outputs, denoted by I and Q, respectively, are applied to a differential detector
that consists of the following components, as indicated in Figure 6.13:

» Arctangent computer for extracting the phase angle @ of the channel output (received
signal).

» Phase-differenice computer for determining the change in the phase 6 occurring over
one symbol interval.

e Modulo-2 correction logic for correcting errors due to the possibility of phase angles
wrapping around the real axis.

Elaborating further on the latter point, let A@, denote the computed phase difference be-
tween 0, and 8,_, representing the phase angles of the channel output for symbols & and
E — 1, respectively. Then the modulo-2 1 correction logic operates as follows:

IF A9, < —180 degrees THEN Ag, = A6, + 360 degrees

(6.45)
IF A9, > 180 degrees THEN A8, = Af, — 360 degrees
Phase-difference
camputer

In-phase "“““““““““‘““““““““‘___——_‘E

component, 7 : x I Modulo_z te of

odulo-2a Estimate
Arctan (?/‘” Ir Delay T > ! carraction ——>= transmitied data

computer | - ] logic sequence
Quadrature | 1
component, 2 | o o o e e e o e |

Block diagram of the 7/4-shifted DQPSK detectar.

Imaginary
Symbol &
/f— 9k= 600
Real
C
.= 350"\
Symbo!l £— 1

Hlustrating the possibility of phase angles wrapping around the positive real axis.
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To illustrate the need for this phase correction, consider the situation depicted in Figure
6.14, where 6,_, = 350 degrees and 8, = 60 degrees, both phase angles being measured
in a counterclockwise direction. From this figure we readily see that the phase change Ag,,
measured in a counterclockwise direction, is 70 degrees. However, without correction the
phase change Ag; is computed as 60 degrees — 350 degrees = —290 degrees. Applying
the first line of Equation (6.45), the modulo-24r correction logic compensates for the wrap-
around the positive real axis, yielding the corrected result

A8, = —290 degrees + 360 degrees = 70 degrees

The tangent type differential detector of Figure 6.13 for the demodulation of #/4-
shifted DQPSK signals is relatively simple to implement. It offers a satisfactory perfor-
mance in a Rayleigh fading channel as in a static multipath environment. However, when
the multipath environment is time varying as experienced in a commercial digital wireless
communication system, computer simulation results appear to show that the receiver per-
formance degrades very rapidly.-
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Differential Phase-Shift Keying

As remarked earlier in Section 6.1, we may view differential phase-shift keying (DPSK) a5
the noncoherent version of PSK. It eliminates the need for a coherent reference signal at
the receiver by combining two basic operations at the transmitter: (1) differential encoding
of the input binary wave and (2) phase-shift keying—hence, the name, differential phase.
shift keying (DPSK). In effect, to send symbol 0, we phase advance the cutrent signal
waveform by 180 degrees, and to send symbol 1 we leave the phase of the current signal
waveform unchanged. The receiver is equipped with a storage capability, so that it can
measure the relative phase difference between the waveforms reccived during two succes-
sive bit intervals. Provided that the unknown phase 6 contained in the received wave varies
slowly (that is, slow enough for it to be considered essentially constant over two bit inter-
vals), the phase difference between waveforms received in two successive bit intervals will
be independent of 6. _ _

DPSK is another example of noncoherent orthogonal modulation, when it is
considered over two bit intervals. Suppose the transmitted DPSK signal equals
VE,I2T, cos2mf.t) for 0 =t = T, where T} is the bit duration and E, is the signal
energy per bit. Let s,() denote the transmitted DPSK signal for 0 = ¢ = 2T, for the case
when we have binary symbol 1 at the transmitter input for the second part of this interval,
namely, T, < t = 2T,. The transmission of symbol 1 leaves the carrier phase unchanged
over the interval 0 < ¢ = 2T, and so we define s,(z) as

ZEIE cos(2mfr), 0=t=T,
sl =4 ’ (6.182)
2—12, cos2mft), Tp=t=2T,

\

Let s,{#} denote the transmitted DPSK signal for 0 = ¢ = 2T, for the case when we have
binary symbol O at the transmitter input for T, = ¢ = 27T, The transmission of 0 advances
the carrier phase by 180 degrees, and so we define s,(t) as

,

f% cos{2mf.t), O0=t=T,
sa{t) = < = ’ (6.183)
2—ng cos2mfit + m), T,=t=2T,

V.NANDHINI AP/ECE
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We readily see from Equations (6.182) and (6.183) that s,(#) and s,(#) are indeed orthog-
onal over the two-bit interval 0 = ¢ = 2T,. In other words, DPSK is a special case of
noncoherent orthogonal modulation with T = 2T}, and E = 2E,. Hence, using Equation
(6.163), we find that the &it errar rate for DPSK is given by

E
P, = 1 exp(——”) (6.184)

which provides a gain of 3 dB over noncoherent FSK for the same E,/N.

Generation and Detection o_f DPSK

The next issue to be considered i 1s the generatlon of DPSK signals. The differential
encoding process at the transmitter input starts with an arbitrary first bit, serving as ref-
erence. Let {d,} denote the differentially encoded sequence with this added reference bit.
We now introduce the following definitions in the generation of this sequence:

# If the incoming binary symbol b, is 1, leave the symbol d, unchanged with respect
to the previous bit.

& If the incoming binary symbol b, is 0, change the symbol d, with respect to the
previous bit.

The differentially encoded sequence {d,} thus generated is used to phase-shift a carrier
with phase angles 0 and # radians representing symbols 1 and O, respectively. The
differential-phase encoding process is illustrated in Table 6.7. Note that d;, is the comple-
ment of the modulo-2 sum of b, and d;,_,.

The block diagram of a DPSK transmitter is shown in Figure 6.434. It consists, in
part, of a logic network and a one-bit delay element interconnected so as to convert the
raw binary sequence {b,} into a differentially encoded sequence [d.}. This sequence is
amplitude-level encoded and then used to modulate a carrier wave of frequency f,, thereby
producing the desired DPSK signal.

Suppose next, in differentially coherent detection of binary DPSK, the carrier phase
is unknown. Then, in light of the receiver being equipped with an in-phase and a quad-
rature channel, we have a signal space diagram where the received signal points are
{A cos 8, A sin #) and (—A cos 8, —A sin 8), with 8 denoting the unknown phase and A
denoting the amplitude. This geometry of possible signals is illustrated in Figure 6.44. The
receiver measures the coordinates (x;, xg,) at time ¢t = T, and (x;, xg,) at time t = 2T},
The issue to be resolved is whether these two points map to the same signal point or
different ones. Recognizing that the two vectors x, and x;, with end points (x;, x¢,) and
(x1,, xg,) are pointed roughly in the same direction if their inner product is positive, we
may formulate the hypothesis test as follows:

Is the inner product xJx; positive or negative?

IMustrating the generation of DPSK signal

{b,} 1 0 0 1 0 0 1 1

{dy_1} 1 1 0 1 ‘

Differentially encoded 1 1 0 1 1 0 1 1 1
sequence {d}

Transmitted phase 0 0 b 0 0 b 0 0 0
(radians})

s
)
[ay
[uy
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Input R {d)} .

binary Legic Amplitude- Product DPSK
seguence network level shifter modulator signal

B 1
)
+/ 2/T, cos (2nf.5)
Delay
Ty
(a)

In-phase channel

Ty
da:

g

p—ea— COS (27 1)

Decision

) = device

> Sayiify>0

e

Threshold = 0

sin (2zf 1)

Ty
de

N

Quadrature channel
(h)

Block diagrams of (z) DPSK transmitter and (k) DPSK receiver.

Accordingly, we may write

say 1
X1o¥ 1y + Xa* o, 20 0
say

We now note the following identity:

1
4

xxr, + XoXQ, [(xr, + :tcfi)2 = (xg, — xh)2 + (xp, + xgl)" —

Hence substituting this identity into Equation (5.1 85)
test by 4, we get the equivalent test:

2s.a}r
)y o=

{xp, + xp Y + {xg, + xgi)z — {xp, — x11)2 — (xg, — X1,

(xQu -

%—Sayﬂif,\.q]

(6.185)

xgill]

and multiplying both sides of the

1

0 (6.186)

say 0

The decision-making process may therefore be thought of as testing
(%1, Xg,) 1S closer to (x,, xp,) or its image (—xr, —X0.1
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Signal-space diagram of received DPSK signal.

Thus, the optinmm receiver™ for differentially coherent detection of binary DPSK is
as shown in Figure 6.435, which follows directly from Equation {6.185). This implemen-
tation merely requires that sarzmple values be stored, thereby avoiding the need for fancy
delay lines that may be needed otherwise. The equivalent receiver implementation that
tests squared elements as in Equation (6.186} is more complicated, but its use makes the
analysis easier to handle in that the two signals to be considered are orthogonal over the
interval (0, 2T,); hence, the noncoherent orthogonal demodulation analysis applies.

Comparison of Digital Modulation
Schemes Using a Single Carrier

PRORBABILITY OF ERROR

we have summarized the expressions for the bit error rate (BER) for coherent
binary PSK, conventional coherent binary FSK with one-bit decoding, DPSK, noncoherent
binary FSK, coherent QPSK, and coherent MSK, when operating over an AWGN channel.
In Figure 6.45 we have used the expressions summarized in Table 6.8 to plot the BER as
a function of the signal energy per bit-to-noise spectral density ratio, E,/Nj.

Summary of formulas
Jor the bit error rate of different
digiial modulation schemes

Signaling Scheme Bit Error Rate
{a) Coherent binary PSK
Coherent QPSK 1 erfc{VE,/Ny)
Coherent MSK
(b) Caherent binary FSK £ erfc{V'E,/2Ng)
(e) DPSK 7 exp(—E./Ng)
{d) Noncoherent binary FSK 2 exp{—E,/2N,)
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0.5

— Noncoherent binary FSK

\\ Coherent binary FSK
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(b} Coherent QPSK \
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Comparison of the noise performance of different PSK and FSK schemes.

Based on the performance curves shown in Figure 6.45, the summary of formulas
given in Table 6.8, and the defining equations for the pertinent modulation formats, we
can make the following statements:

1. The bit error rates for all the systems decrease monotonically with increasing values
of E,/Ng; the defining curves have a similar shape in the form of a waterfall.

2. For any value of E,/N,, coherent binary PSK, QPSK, and MSK produce a smaller

! bit error rate than any of the other modulation schemes.

3. Coherent binary PSK and DPSK require an E,/N, that is 3 dB less than the corre-
sponding values for conventional coherent binary FSK and noncoherent binary FSK,
respectively, to realize the same bit error rate.

4. At high values of E,/N,, DPSK and noncoherent binary FSK perform almost as well
(to within about 1 dB) as coherent binary PSK and conventional coherent binary
FSK, respectively, for the same bit rate and signal energy per bit.

5. In coherent QPSK, two orthogonal carriers V2/T cos(2#f.t) and V2/T sin{27ft)
are used, where the carrier frequency £ is an integer multiple of the symbol rate
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1/T, with the result that two independent bit streams can be transmitted simulta-
neously and subsequently detected in the receiver.

6. In the case of coherent MSK, there are two orthogonal carriers, namely,
V2{T, cos(2mf.t) and V2/T, sin(27f.t), which are modulated by the two antipodal
symbol shaping pulses cos(7#/2T,) and sin{=t/2T,), respectively, over 2T}, intervals,
where T, is the bit duration. Correspondingly, the receiver uses a coherent phase
decoding process over two successive bit intervals to recover the original bit stream.

7. The MSK scheme differs from its counterpart, the QPSK, in that its receiver has
memory. In particular, the MSK receiver makes decisions based on observations over
two successive bit intervals. Thus, although the transmitted signal has a binary for-
mat represented by the transmission of two distinct frequencies, the presence of mem-
ory in the receiver makes it assume a two-dimensional signal space diagram. There
are four message points, depending on which binary symbol (0 or 1) was sent and
the past phase history of the FSK signal.
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UNIT V M-ARY SIGNALING AND INTRODUCTION TO SPREAD SPECTRUM TECHNIQUES
M-ary signaling, vectoral view of MPSK and MFSK signaling, symbol error performance of M-ary systems -
Introduction — Discrete Sequence Spread Spectrum technique — Use of Spread Spectrum with CDMA-Ranging
Using Discrete Sequence Spread Spectrum -  Frequency Hopping Spread Spectrum — Generation &
Characteristics of PN Sequence.

M-ary Signaling

Let us review M-ary signaling. The processor considers k bits at a time. It instructs
the modulator to produce one of M = 2* waveforms; binary signaling is the special
case where k = 1. Does M-ary signaling improve or degrade error performance?
(Be careful with your answer—the question is a loaded one.) Figure 4.28 illustrates
the probability of bit error Pz(M) versus E, /N, for coherently detected orthogonal
M-ary signaling over a Gaussian channel. Figure 4.29 similarly illustrates Pgz(M)
versus E, /N, for coherently detected multipfe phase M-ary signaling over a Gauss-
ian channel. In which direction do the curves move as the value of k& (or M) in-
creases? From Figure 4.27 we know the directions of curve movement for
improved and degraded error performance. In Figure 4.28, as k increases, the
curves move in the direction of improved error performance. In Figure 4.29, as k
increases, the curve move in the direction of degraded error performance. Such
movement tells us that M-ary signaling produces improved error performance with
orthogonal signaling and degraded error performance with multiple phase signal-
ing. Can that be true? Why would anyone ever use multiple phase PSK signaling if
it provides degraded error performance compared to binary PSK signaling? It is
true, and many systems do use multiple phase signaling. The question, as stated, is
loaded because it implies that error probability versus £, /N, is the only perfor-
mance criterion; there are many others (e.g., bandwidth, throughput, complexity,
cost), but in Figures 4.28 and 4.29 error performance is the characteristic that
stands out explicitly.

A performance characteristic that is not explicitly seen in Figures 4.28 and
4.29 is the required system bandwidth. For the curves characterizing M-ary
orthogonal signals in Figure 4.28, as k increases, the required bandwidth also
increases. For the M-ary multiple phase curves in Figure 4.29, as k increases, a
larger bit rate can be transmitted within the same bandwidth. In other words, for
a fixed data rate, the required bandwidth is decreased. Therefore, both the or-
thogonal and multiple phase error performance curves tell us that M-ary signaling
represents a vehicle for performing a system trade-off. In the case of orthogonal
signaling, error performance improvement can be achieved at the expense of
bandwidth. In the case of multiple phase signaling, bandwidth performance can be
achieved at the expense of error performance. Error performance versus band-
width performance, a fundamental communications trade-off.
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Vectorial View of MPSK Signaling

MPSK signal sets for M =2, 4, 8, and 16. In Figure 4.30a we
see the binary (k = 2, M = 2) antipodal vectors s, and s, positioned 180° apart. The
decision boundary is drawn so as to partition the signal space into two regions. On
the figure is also shown a noise vector n equal in magnitude to s;. The figure estab-
lishes the magnitude and orientation of the minimum energy noise vector that
would cause the detector to make a symbol error.

In Figure 4.30b we see the 4-ary (k = 2, M = 4) vectors positioned 90° apart.
The decision boundaries (only one line is drawn) divide the signal space into four
regions. Again a noise vector m is drawn (from the head of a signal vector, normal
to the closest decision boundary) to illustrate the minimum energy noise vector
that would cause the detector to make a symbol error. Notice that the minimum
energy noise vector of Figure 4.30b is smaller than that of Figure 4.30a, illustrating
that the 4-ary system is more vulnerable to noise than the 2-ary system (signal en-
ergy being equal for each case). As we move on to Figure 4.30c for the 8-ary case
and Figure 4.30d for the 16-ary case, it should be clear that for multiple phase sig-
naling, as M increases, we are crowding more signal vectors into the signal plane.
As the vectors are moved closer together, a smaller amount of noise energy is
required to cause an error.

Figure 4.30 adds some insight as to why the curves of Figure 4.29 behave as
they do as k is increased. Figure 4.30 also provides some insight into a basic trade-
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MPSK signal sets for M= 2, 4, 8, 16.

off in multiple phase signaling. Crowding more signal vectors into the signal space
is tantamount to increasing the data rate without increasing the system bandwidth
(the vectors are all confined to the same plane). In other words, we have increased
the bandwidth utilization at the expense of error performance. Look at Figure
4.30d, where the error performance is worse than any of the other examples in Fig-
ure 4.30. How might we “buy back” the degraded error performance? In other
words, what can we trade-off so that the distance between neighboring signal vec-
tors in Figure 4.30d is increased to that in Figure 4.30a? We can increase the signal
strength (make the signal vectors larger) until the minimum distance from the head
of a signal vector to a decision line equals the length of the noise vector in Figure
4.30a. Therefore, in a multiple phase system, as M is increased, we can either
achieve improved bandwidth performance at the expense of error performance, or
if we increase the E,/N, so that the error probability is not degraded, we can
achieve improved bandwidth performance at the expense of increasing E,/N,.

Note that Figure 4.30 has been sketched so that all phasors have the same
length for any of the M-ary cases. This is tantamount to saying that the compar-
isons are being considered for a fixed E,/N,,, where E_ is symbol energy. The figure
can also be drawn for a fixed E,/N,, in which case the phasor magnitudes would in-
crease with increasing M. The phasors for M =4, 8, and 16 would then have lengths
greater than the M = 2 case by the factors \/2, \/3, and 2 respectively. We would
still see crowding and increased vulnerability to noise, with increasing M, but the
appearance would not be as pronounced as it is in Figure 4.30.

BPSK and QPSK Have the Same Bit Error Probability

In Equation (3.30) we stated the general relationship between E,/N, and S/N
which is rewritten

Ey, S{W
— == = 4.
Ny N(R) (4.101)
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where S is the average signal power and R is the bit rate. A BPSK signal with the
available E,/N, found from Equation (4.101) will perform with a Py that can be
read from the k = 1 curve in Figure 4.29. QPSK can be characterized as two orthog-
onal BPSK channels. The QPSK bit stream is usually partitioned into an even and
odd (/ and Q) stream; each new stream modulates an orthogonal component of the
carrier at half the bit rate of the original stream. The / stream modulates the cos w7
term and the Q stream modulates the sin o,z term. If the magnitude of the original
QPSK vector has the value A, the magnitude of the / and O component vectors
each has a value of A/ \/2, as shown in Figure 4.31. Thus, each of the quadrature
BPSK signals has half of the average power of the original QPSK signal. Hence if
the original QPSK waveform has a bit rate of R bits/s and an average power of §
watts, the quadrature partitioning results in each of the BPSK waveforms having a
bit rate of R/2 bits/s and an average power of S/2 watts.

Therefore, the E,/N, characterizing each of the orthogonal BPSK channels,
making up the QPSK signal, is equivalent to the £, /N, in Equation (4.101), since it
can be written as

B SpRrwk srw
E, _S5/2 (_ ) =58 (_) (4.102)
Ny Mo WR2) T Mo\ R

Thus each of the orthogonal BPSK channels, and hence the composite QPSK
signal, is characterized by the same E, /N, and hence the same P performance as a
BPSK signal. The natural orthogonality of the 90° phase shifts between adjacent
QPSK symbols results in the bit error probabilities being equal for both BPSK
and QPSK signaling. It is important to note that the symbol error probabilities are
not equal for BPSK and QPSK signaling. The relationship between bit error proba-
bility and symbol error probability is treated in Sections 4.9.3 and 4.9.4. We see
that, in effect, QPSK is the equivalent of two BPSK channels in quadrature. This
same idea can be extended to any symmetrical M-ary amplitude/phase signaling,
such as quadrature amplitude modulation (QAM) described in Section 9.8.3.

sin wot

Quadrature
BPSK

cos wpt In-phase and quadra-
In-phase A/N?2 ture BPSK components of QPSK
BPSK signaling. Page 4
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Vectorial View of MFSK Signaling

In Section 4.8.3, Figure 4.30 provides some insight as to why the error performance
of MPSK signaling degrades as k (or M) increases. It would be useful to have a sim-
ilar vectorial illustration for the error performance of orthogonal MFSK signaling
as seen in the curves of Figure (4.28). Since the MFSK signal space is characterized
by M mutually perpendicular axes, we can only conveniently illustrate the cases
M =2 and M =3. In Figure 4.32a we see the binary orthogonal vectors s, and s, po-
sitioned 90 apart. The decision boundary is drawn so as to partition the signal
space into two regions. On the figure is also shown a noise vector n, which repre-
sents the minimum noise vector that would cause the detector to make an error.

In Figure 4.32b we see a 3-ary signal space with axes positioned 90° apart.
Here decision planes partition the signal space into three regions. Noise vectors n
are shown added to each of the prototype signal vectors s,, s,, and s;; each noise
vector illustrates an example of the minimum noise vector that would cause the de-
tector to make a symbol error. The minimum noise vectors in Figure 4.32b are the
same length as the noise vector in Figure 4.32a. In Section 4.4.4 we stated that for a
given level of received energy, the distance between any two prototype signal vec-
tors s; and s, in an M-ary orthogonal space is constant. It follows that the minimum
distance between a prototype signal vector and any of the decision boundaries re-
mains fixed as M increases. Unlike the case of MPSK signaling, where adding new
signals to the signal set makes the signals vulnerable to smaller noise vectors, here,
in the case of MFSK signaling, adding new signals to the signal set does nor make
the signals vulnerable to smaller noise vectors.

It would be convenient to illustrate the point by drawing higher dimensional
orthogonal spaces, but of course this is not possible. We can only use our “mind’s
eye” to understand that increasing the signal set M—by adding additional axes.
where each new axis is mutually perpendicular to all the others—does not crowd
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MFSK signal sets for M= 2, 3.
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the signal set more closely together. Thus, a transmitted signal from an orthogonal
set is not more vulnerable to a noise vector when the set is increased in size. In fact.
we see from Figure 4.28 that as k increases, the bit error performance improves.

Understanding the error performance improvement of orthogonal signaling,
as illustrated in Figure 4.28, is facilitated by comparing the probability of symbol
error (Pg) versus unnormalized SNR, with P, versus E,/N,,. Figure 4.33 represents
a set of Py performance curves plotted against unnormalized SNR for coherent
FSK signaling. Here we see that P, degrades as M is increased. Didn’t we say that a
signal from an orthogonal set is nor made more vulnerable to a given noise vector,
as the orthogonal set is increased in size? It is correct that for orthogonal signaling,
with a given SNR it takes a fixed size noise vector to perturb a transmitted signal
into an error region; the signals do not become vulnerable to smaller noise vectors
as M increases. However, as M increases, more neighboring decision regions are in-
troduced; thus the number of ways in which a symbol error can be made increases.
Figure 4.33 reflects the degradation in Py versus unnormalized SNR as M is in-
creased; there are (M — 1) ways to make an error. Examining performance under
the condition of a fixed SNR (as M increases) is not very useful for digital commu-
nications. A fixed SNR means a fixed amount of energy per symbol; thus as M in-
creases, there is a fixed amount of energy to be apportioned over a larger number
of bits, or there is less energy per bit. The most useful way of comparing one digital
system with another is on the basis of bir-normalized SNR or E, /N,. The error per-
formance improvement with increasing M (see Figure 4.28) manifests itself only
when error probability is plotted against E,/N,. For this case, as M increases, the
required E,/N, (to meet a given error probability) is reduced for a fixed SNR;
therefore, we need to map the plot shown in Figure 4.33 into a new plot, similar to
that shown in Figure 4.28, where the abscissa represents E,/N, instead of SNR.
Figure 4.34 illustrates such a mapping; it demonstrates that curves manifesting de-
graded P with increasing M (such as Figure 4.33) are transformed into curves
manifesting improved Py with increasing M. The basic mapping relationship is ex-
pressed in Equation (4.101), repeated here as

E-E(K>
No N\R

where W is the detection bandwidth. Since

log, Mk

R
where T is the symbol duration, we can then write

E, | ‘
S S ( il ) I (W—T) (4.103)
Ny, N\log, M N\ &

For FSK signaling, the detection bandwidth W (in hertz) is typically equal in value
to the symbol rate 1/7; in other words, WT = 1. Therefore,
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Figure 4.34 illustrates the mapping from Py versus SNR to Pg versus E, /N, for co-
herently detected M-ary orthogonal signaling, with “ballpark™ numbers on the
axes. In Figure 4.34a, on the k = 1 curve is shown an operating point corresponding
to Pr = 107* and SNR = 10 dB. On the k = 10 curve is shown an operating point at
the same Pz = 10~ but with SNR = 13 dB (approximate values taken from Figure
4.33). Here we clearly see the degradation in error performance as k increases. To
appreciate where the performance improvement comes from, let us convert the ab-
scissa from the nonlinear scale of SNR in decibels to a linear one—SNR expressed
as a factor. This is shown in Figure 4.34a as the factors 10 and 20 for the k£ =1 and
k = 10 cases, respectively. Next, we further convert the abscissa scale to SNR per
bit (expressed-as a factor). This is shown in Figure 4.34a as the factors 10 and 2 for
the kK = 1 and k = 10 cases, respectively. It is convenient to think of the 1024-ary
symbol or waveform (k = 10 case) as being interchangeable with its 10-bit meaning,.
Thus, if the symbol requires 20 units of SNR then the 10 bits belonging to that sym-
bol require that same 20 units; or, in other words, each bit requires 2 units.

Rather than performing such computations, we can simply map these same
k =1 and k = 10 cases onto the Figure 4.34b plane, representing Pg versus E,/Nj.
The k =1 case looks exactly the same as it does in Figure 4.34a. But for the k =10
case, there is a dramatic change. We can immediately see that signaling with the k =
10-bit symbol requires only 2 units (3 dB) of E,/N, compared with 10 units (10 dB)
for the binary symbol. The mapping that gives rise to the required E, /N, for the k=
10 case is obtained from Equation (4.104) as follows: E,/N, = 20 (1/10) = 2 (or
3-dB), which shows the error performance improvement as k is increased. In digital
communication systems, error performance is almost always considered in terms of
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E, /Ny, since such a measurement makes for a meaningful comparison between one
system’s performance and another. Therefore, the curves shown in Figures 4.33
and 4.34a are hardly ever seen.

Although Figure 4.33 is not often seen, we can still use it for gaining insight
into why orthogonal signaling provides improved error performance as M or k in-
creases. Let us consider the analogy of purchasing a commodity—say, grade A cot-
tage cheese. The choice of the grade corresponds to some point on the Py axis of
Figure 4.33—say, 10°. From this point, construct a horizontal line through all of
the curves (from M = 2 through M = 1024). At the grocery store we buy the very
smallest container of cottage cheese, containing 2 ounces and costing $1. On Figure
4.33 we can say that this purchase corresponds to our horizontal construct inter-
cepting the M = 2 curve. We look down at the corresponding SNR and call the in-
tercept on this axis our cost of $1. The next time we purchase cottage cheese, we
remember that the first purchase seemed expensive at 50 cents an ounce. So, we
decide to buy a larger carton, containing 8 ounces and costing $2. On Figure 4.33,
we can say that this purchase corresponds to the point at which our horizontal con-
struct intercepts the M = 8 curve. We look down at the corresponding SNR, and
call this intercept our cost of $2. Notice that we bought a larger container so the
price went up, but because we bought a greater quantity, the price per ounce went
down (the unit cost is now only 25 cents per ounce). We can continue this analogy
by purchasing larger and larger containers so that the price of the container (SNR)
keeps going up, but the price per ounce keeps going down. This is the age-old story
called the economy of scale. Buying larger quantities at a time is commensurate
with purchasing at the wholesale level; it makes for a lower unit price. Similarly,
when we use orthogonal signaling with symbols that contain more bits, we need
more power (more SNR), but the requirement per bit (E,/N,) is reduced.

SYMBOL ERROR PERFORMANCE
FOR M-ARY SYSTEMS (M > 2)

Probability of Symbo) Error for MPSK

For large energy-to-noise ratios, the symbol error performance Pz(M), for equally
likely, coherently detected M-ary PSK signaling, can be expressed [7] as

Pu(M) = ZQ( 2E; Gin 1) (4.105)

where Pg(M) is the probability of symbol error, E, = E,(log, M) is the energy per
symbol, and M = 2* is the size of the symbol set. The P.(M) performance curves for
coherently detected MPSK signaling are plotted versus E, /N, in Figure 4.35.

The symbol error performance for differentially coherent detection of M-ary
DPSK (for large E,/N,) is similarly expressed [7] as
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2E,
Pp(M) ~ ZQ(w/ N Sin \f;/w> (4.106)

Probability of Symbol Error for MFSK

The symbol error performance Pg(M), for equally likely, coherently detected
M-ary orthogonal signaling can be upper bounded [5] as

Pe(M)=(M—1)Q E, (4.107)
(V&%)

where E, = E,(log, M) is the energy per symbol and M is the size of the symbol set.
The Px(M) performance curves for coherently detected M-ary orthogonal signaling
are plotted versus E, /N, in Figure 4.36.

The symbol error performance for equally likely, noncoherently detected
M-ary orthogonal signaling is [9]
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Jx~ BN M E,
where
M) M!
e L P 4.109
(1 LM — ) s

is the standard binomial coefficient yielding the number of ways in which j symbols
out of M may be in error. Note that for binary case, Equation (4.108) reduces to

= 1 __E_h)
Py = > exp ( >N, (4.110)

which is the same result as that described by Equation (4.96). The Pg(M) perfor-
mance curves for noncoherently detected M-ary orthogonal signaling are plotted
versus E,/N, in Figure 4.37. If we compare this noncoherent orthogonal P, (M)
performance with the corresponding P;(M) results for the coherent detection of
orthogonal signals in Figure 4.36, it can be seen that for k > 7, there is a negligible
difference. An upper bound for coherent as well as noncoherent reception of
orthogonal signals is [9]

M—1 E,
: < xp | — 4.1
Pp(M) > C\p( 2m,> (4.111)

where E, is the energy per symbol and M is the size of the symbol sel.

Bit Error Probability versus Symbol Error Probability
for Orthogonal Signals

It can be shown [9] that the relationship between probability of bit error (£5) and
probability of symbol error (Pg) for an M-ary orthogonal signal set is
By, 25 Mj2

T =1 (4.112)

In the limit as k& increases, we get

oo 2p. = 1
Im — = —
k—» % PE 2

A simple example will make Equation (4.112) intuitively acceptable. Figure
4.38 describes an octal message set. The message symbols (assumed equally likely)
are to be transmitted on orthogonal waveforms such as FSK. With orthogonal sig-
naling, a decision error will transform the correct signal into any one of the (M —1)
incorrect signals with equal probability. The example in Figure 4.38 indicates that
the symbol comprising bits 0 1 1 was transmitted. An error might occur in any one
of the other 2¥ — 1 = 7 symbols, with equal probability. Notice that just because a
symbol error is made does not mean that all the bits within the symbol will be in
error. In Figure 4.38, if the receiver decides that the transmitted symbol is the bot-
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Example of Pg versus P

tom one listed, comprising bits 1 1 1, two of the three transmitted symbol bits will
be correct; only one bit will be in error. It should be apparent that for nonbinary
signaling, Py will always be less than Pg (keep in mind that Pz and Pg reflect the
frequency of making errors on the average.)

Consider any of the bit-position columns in Figure 4.38. For each bit position,
the digit occupancy consists of 50% ones and 50% zeros. In the context of the first
bit position (rightmost column) and the transmitted symbol, how many ways are
there to cause an error to the binary one? There are 2¥ ~! = 4 ways (four places
where zeros appear in the column) that a bit error can be made; it is the same for
each of the columns. The final relationship Pg/Pg, for orthogonal signaling, in
Equation (4.112), is obtained by forming the following ratio: the number of ways
that a bit error can be made (2~ ') divided by the number of ways that a symbol
error can be made (2% — 1). For the Figure 4.38 example, Pg/Py = 4/7.

Bit Error Probability Versus Symbol Error Probability
for Multiple Phase Signaling

For the case of MPSK signaling, Pj is less than or equal to Pg, just as in the case of
MFSK signaling. However, there is an important difference. For orthogonal signal-
ing, selecting any one of the (M — 1) erroneous symbols is equally likely. In the case
of MPSK signaling, each signal vector is not equidistant from all of the others. Fig-
ure 4.39a illustrates an 8-ary decision space with the pie-shaped decision regions
denoted by the 8-ary symbols in binary notation. If symbol (0 1 1) is transmitted, it
is clear that should an error occur, the transmitted signal will most likely be mis-
taken for one of its closest neighbors, (0 1 0) or (1 0 0). The likelihood that (0 1 1)
would get mistaken for (1 1 1) is relatively remote. If the assignment of bits to sym-
bols follows the binary sequence shown in the symbol decision regions of Figure
4.39a, some symbol errors will usually result in two or more bit errors, even with a
large signal-to-noise ratio.

For nonorthogonal schemes, such as MPSK signaling, one often uses a
binary-to-M-ary code such that binary sequences corresponding to adjacent sym-
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010 001 011 001
Transmitted
symbol
,011 000 010 000
7
100 111 110 100
101 110 111 101

(a) (b)

Binary-coded versus Gray-coded decision regions in an
MPSK signal space. (a) Binary coded. (b) Gray coded.

bols (phase shifts) differ in only one bit position; thus when an M-ary symbol error
occurs, it is more likely that only one of the k input bits will be in error. A code that
provides this desirable feature is the Gray code [7]; Figure 4.39b illustrates the bit-
to-symbol assignment using a Gray code for 8-ary PSK. Here it can be seen that
neighboring symbols differ from one another in only one bit position. Therefore,
the occurrence of a multibit error, for a given symbol error, is much reduced com-
pared to the uncoded binary assignment seen in Figure 4.39a. Implementing such a
Gray code, represents one of the few cases in digital communications where a ben-
efit can be achieved without incurring any cost. The Gray code is simply an assign-
ment that requires no special or additional circuitry. Utilizing the Gray code
assignment, it can be shown [5] that

Py
B log, M

(for P.<< 1) (4.113)

Recall from Section 4.8.4 that BPSK and QPSK signaling have the same bit error
probability. Here, in Equation (4.113), we verify that they do not have the same
symbol error probability. For BPSK, Pz = Pz. However, for QPSK, P, = 2P;.

An exact closed-form expression for the bit-error probability Pz of 8-ary
PSK, together with tight upper and lower bounds on Py for M-ary PSK with larger
M, may be found in Lee [10].

Effects of Intersymbol Interference

In the previous sections and in Chapter 3 we have treated the detection of signals
in the presence of AWGN under the assumption that there is no intersymbol inter-
ference (ISI). Thus the analysis has been straightforward, since the zero-mean
AWGN process is characterized by its variance alone. In practice we find that ISI is
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often a second source of interference which must be accounted for. As explained in
Section 3.3, ISI can be generated by the use of bandlimiting filters at the transmit-
ter output, in the channel, or at the receiver input. The result of this additional
interference is to degrade the error probabilities for coherent as well as for nonco-
herent reception. Calculating error performance in the presence of ISI in addition
to AWGN is much more complicated since it involves the impulse response of the
channel.

Direct-Sequence Spread Spectrum
with Coherent Binary Phase-Shift Keying

The spr_ead-spettruin technique described in the previous section s referred to as direct
sequence spread spectrum. The discussion presented there was in the context.of' baseband
transmission. To provide for the use of this technique in passband transmission Over 2
atellite channel, for example, we may incorporate coherent binary phase-shift kgymg
(PSK) into the transmitter and receiver, as shown in Figure 7.7, The transmitter of Figure |
774 first converts the incoming binary data sequence {by) into a polar NRZ waveform
bit), which is followed by two stages of modulation. The first stage consists of a product
modulator or multiplier with the data signal b(?) (representing a data sequence) .and the
PN signal c(t) (representing the PN sequence) as inputs. The second stage cons1sts'0f a
binary PSK modulator. The transmitted signal x(t) is thus a direct-sequence spread binary
phase-shift-keyed (DS/BPSK) signal. The phase modulation §(t) of x(¢) has one of two |
values, 0 and m, depending on the polarities of the message signal b(t) and PN signal cft)
at time ¢ in accordance with the truth table of Table 7.3. |
Figure 7.8 illustrates the waveforms for the second stage of modulation. Part of the
modulated waveform shown in Figure 7.6¢ is reproduced in Figure 7.8a; the wavefor®
shown here corresponds to one period of the PN sequence. Figure 7.8b shows the wave™
form of a sinusoidal carrier, and Figure 7.8¢ shows the DS/BPSK waveform that result

from the second stage of modulation.
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Binary Palar nonreturn- 1165} rm{e) .
data sequence — | to-zero level /x\\ Binary PSK F—— x(2)
B by} encoder modulatar
el) T
PN code Carrier
generator
(@)
Coherent detector
o e e
! i
) ] : .
REFB‘V?d ! Product Low-pass TR fTb ” v Decision == Saylifv >0
signal = : - .
) | moedulator filter ‘ 0 device Say O ifv <O
i ”l: E
Local
C:Ofilr PN code
4l generator
3]

Direct-sequence spread coherent phase-shift keying. (@) Transmitter. (b) Receiver.

The receiver, shown in Figure 7.7b, consists of two stages of demodulation. In the
first stage, the received signal y(¢) and a locally generated carrier are applied to a product
modulator followed by a low-pass filter whose bandwidth is equal to that of the original
message signal 771(¢). This stage of the demodulation process reverses the phase-shift keying
applied to the transmitted signal. The second stage of demodulation performs spectrum
despreading by multiplying the low-pass filter output by a locally generated replica of the
PN signal ¢(¢), followed by integration over a bit interval 0 =< ¢ < T, and finally decision-
making in the manner described in Section 7.3.

MODEL FOR ANALYSIS

In the normal form of the transmitter, shown in Figure 7.7a, the spectrum spreading is
performed prior to phase modulation. For the purpose of analysis, however, we find it
more convenient to interchange the order of these operations, as shown in the model of

Truih table for phase modulation @(.), radians

Polarity of Data
Sequence b(t) at Tone t

+ JE—
Polarity of PN + 0 T
sequerce c(t} at time t ’ - T 0
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m )

+1 - —

c : £

-1

{a)

Carrier

_..Acm

(b)Y

{c} i
{(a) Product signal m(t) = c(t)k(t). (b} Sinusoidal carrier. {c) DS/BPSK signal,

We are permitted to do this because the spectrum spreading and the binary
phase-shift keying are both linear operations; likewise for the phase demodulation and
spectrum despreading. But for the interchange of operations to be feasible, it is important
to synchronize the incoming data sequence and the PN sequence. The model of Figure 7.9
also includes representations of the channel and the receiver. In this model, it is assumed
that the interference f(2) limits performance, so that the effect of channel noise may be
ignored. Accordingly, the channel output is given by

y(t) = x(z) + jlz)

: . (7.12)
= c(#)s(2) + j(1) _
£ i I N
Transmitter ﬁ Channe! ; Receiver
: |
Data . {8 x{6) 1y ult) .
" Binary PSK N Lo ey ] 2N .| Coherent Estimaie
s;g(r;)ai 1 modulator x 1 \21\/ 1 x detector =" of b{9)
. I 1
| l
! ' | !
i .
Carrier PN code | j® | Phoccc?ilzle Local
generator I i generator carrier
i f
! Model of direct-sequence spread binary PSK system. —
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where s{¢) is the binary PSK signal, and ¢(¢) is the PN signal. In the channel model included
in Figure 7.9, the interfering signal is denoted by j{¢}. This notation is chosen purposely
to be different from that used for the interference in Figure 7.56. The channel model in
Figure 7.9 is passband in spectral content, whereas that in Figure 7.55 is in baseband form.

In the receiver, the received signal y(¢) is first multiplied by the PN signal ¢(#) yielding
an output that equals the coherent detector input #(¢). Thus,

u(t) = c(f)y(t)
= c*(t)s(t) + c(t)j(t) (7.13)

= s(z) + c(z)i(¢)

In the last line of Equation (7.13), we have noted that, by design, the PN signal ¢(#) satisfies
the property described in Equation (7.10), reproduced here for convenience:

Ay =1 for all ¢

Equation (7.13) shows that the coherent detector input #(¢} consists of a binary PSK signal
s(t) embedded in additive code-modulated interference denoted by ¢(#)j(z). The modulated
nature of the latter component forces the interference signal {jammer) to spread its spec-
trum such that the detection of information bits at the receiver output is afforded increased
reliability.

SYNCHRONIZATION

For its proper operation, a spread-spectrum communication system requires that the locally
generated PN sequence used in the receiver to despread the received signal be synchronized
to the PN sequence used to spread the transmitted signal in the transmitter.* A solution
to the synchronization problem consists of two parts: acquisition and tracking. In acqui-
sition, or coarse synchronization, the two PN codes are aligned to within a fraction of the
chip in as short a time as possible. Once the incoming PN code has been acquired, tracking,
or fine synchronization, takes place. Typically, PN acquisition proceeds in two steps. First,
the received signal is multiplied by a locally generated PN code to produce a measure of
correlation between it and the PN code used in the transmitter. Next, an appropriate
decision-rule and search strategy is used to process the measure of correlation so obtained
to determine whether the two codes are in synchronism and what to do if they are not. As
for tracking, it is accomplished using phase-lock techniques very similar to those used for
the local generation of coherent carrier references. The principal difference between them
lies in the way in which phase discrimination is implemented.

FREQUENCY HOPPING SYSTEMS

We now consider a spread-spectrum technique called frequency hopping (FH).
The modulation most commonly used with this technique is M-ary frequency shift
keying (MFSK), where k = log, M information bits are used to determine which
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one of M frequencies is to be transmitted. The position of the M-ary signal set is
shifted pseudorandomly by the frequency synthesizer over a hopping bandwidth
W... A typical FH/MFSK system block diagram is shown in Figure 12.11. In a con-
ventional MFSK system, the data symbol modulates a fixed frequency carrier; in an
FH/MFSK system, the data symbol modulates a carrier whose frequency is pseudo-
randomly determined. In either case, a single tone is transmitted. The FH system in
Figure 12.11 can be thought of as a two-step modulation process—data modulation
and frequency-hopping modulation—even though it can be implemented as a sin-
gle step whereby the frequency synthesizer produces a transmission tone based on
the simultaneous dictates of the PN code and the data. At each frequency hop time,
a PN generator feeds the frequency synthesizer a frequency word (a sequence of €
chips), which dictates one of 2¢ symbol-set positions. The frequency-hopping band-
width W,,. and the minimum frequency spacing between consecutive hop positions
Af, dictate the minimum number of chips necessary in the frequency word.

For a given hop, the occupied transmission bandwidth is identical to the
bandwidth of conventional MFSK, which is typically much smaller than W . How-
ever, averaged over many hops, the FH/MFSK spectrum occupies the entire
spread-spectrum bandwidth. Spread-spectrum technology permits FH bandwidths
of the order of several gigahertz, which is an order of magnitude larger than imple-
mentable DS bandwidths [8], thus allowing for larger processing gains in FH com-
pared to DS systems. Since frequency hopping techniques operate over such wide
bandwidths, it is difficult to maintain phase coherence from hop to hop. Therefore,
such schemes are usually configured using noncoherent demodulation. Neverthe-
less, consideration has been given to coherent FH in Reference [9].

In Figure 12.11 we see that the receiver reverses the signal processing steps of
the transmitter. The received signal is first FH demodulated (dehopped) by mixing
it with the same sequence of pseudorandomly selected frequency tones that was
used for hopping. Then the dehopped signal is applied to a conventional bank of M
noncoherent energy detectors to select the most likely symbol.

Frequency Word Size

A hopping bandwidth W, of 400 MHz and a frequency step size Af of 100 Hz are spec-
ificd. What is the minimum number of PN chips that are required for each frequency

word?
| |
Transmitter ———==— Channel —1- Receiver
| !
Data MFSK FH N FH - MFSK | Data
modulator " | modulator z demodulator " |demodulator

A A
Interference

PN PN

generator generator

FH/MFSK system.
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Solution

W, _ 400 MHz
Af ~ 100 Hz

=4 x 10°

Number of tones contained in W, =

Minimum number of chips = [log, (4 X 10%)]
= 22 chips

where [ x | indicates the smallest integer value not less than x.

Frequency Hopping Example

Consider the frequency hopping example illustrated in Figure 12.12. The input data
consist of a binary sequence with a data rate of R = 150 bits/s. The modulation 1s
8-ary FSK. Therefore, the symbol rate is R, = R/(log; 8) = 50 symbols/s (the symbol
duration 7 = 1/50 = 20 ms). The frequency is hopped once per symbol, and the hop-
ping is time synchronous with the symbol boundaries. Thus, the hopping rate is 50
hops/s. Figure 12.12 depicts the time-bandwidth plane of the communication re-
source; the abscissa represents time, and the ordinate represents the hopping band-
width, W. The legend on the right side of the figure illustrates a set of 8-ary FSK
symbol-to-tone assignments. Notice that the tone separation specified is 1/7 = 50
Hz, which corresponds to the minimum required tone spacing for the orthogonal
signaling of this noncoherent FSK example (see Section 4.5.4).

Legend
Tone Data
number Tone  symbol
. Tone 3 Tone 6 Tone 1
T\égltc;al 0- fo+175Hz 000
R =150

bits/s —] © 1 1 1 1 0 0 0 1 14 fo+125Hz 001
2+ fo+75Hz 010
———————————————— 3 5 fo + 25 Hz 011

Frequency L
hct))zgr)]ldng _________________ 4 - f0‘25 Hz 100
_________________ 5 f() — 75 Hz 101
6 fo—125Hz 110

Time
Symbol intervalA»‘

oot Int 74 fo—175Hz 1M

Frequency-hopping example using 8-ary FSK modulation.
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A typical binary data sequence is shown at the top of Figure 12.12. Since the
modulation is 8-ary FSK, the bits are grouped three at a time to form symboils. In a
conventional 8-ary FSK scheme, a single-sideband tone (offset from f;, the fixed
center frequency of the data band), would be transmitted according to an assign-
ment like the one shown in the legend. The only difference in this FH/MFSK exam-
ple is that the center frequency of the data band f, is nor fixed. For each new
symbol, f; hops to a new position in the hop bandwidth, and the entire data-band
structure moves with it. In the example of Figure 12.12, the first symbol in the data
sequence, 0 1 1, yields a tone 25 Hz above f,. The diagram depicts f, with a dashed
line and the symbol tone with a solid line. During the second symbol interval, f;
has hopped to a new spectral location, as indicated by the dashed line. The second
symbol, 1 1 0, dictates that a tone indicated by the solid line, 125 Hz below f;,
shall be transmitted. Similarly, the final symbol in this example, O 0 1, calls for a
tone 125 Hz above f,. Again, the center frequency has moved, but the relative
positions of the symbol tones remain fixed.

Robustnhess

A common dictionary definition describes the term robustness as the state of being
strong and healthy; full of vigor; hardy. In the context of communications, the
usage is not too different. Robustness characterizes a signal’s ability to withstand
impairments from the channel, such as noise, jamming, fading, and so on. A signal
configured with multiple replicate copies, each transmitted on a different fre-
quency, has a greater likelihood of survival than does a single such signal with
equal total power. The greater the diversity (multiple transmissions, at differ-
ent frequencies, spread in time), the more robust the signal against random
interference.

The following example should clarify the concept. Consider a message con-
sisting of four symbols: sy, 5, 53, 54. The introduction of diversity starts by repeating
the message N times. Let us choose NV = 8. Then, the repeated symbols, called chips,

can be written.
SIS 1518185181515 5282828288282 8,2838383838538385383595,48485,484385,4845,

Each chip is transmitted at a different hopping frequency (the center of the data
bandwidth is changed for each chip). The resulting transmissions at frequencies f;,
Ji» fx» - . . yield a more robust signal than without such diversity. A target-shooting
analogy is that a pellet from a barrage of shotgun pellets has a better chance of
hitting a target, compared with the action of a single bullet.

Frequency Hopping with Diversity

In Figure 12.13 we extend the example illustrated in Figure 12.12, with the addi-
tional feature of a chip repeat factor of N = 4. During each 20-ms symbol interval,
there are now four columns, corresponding to the four separate chips to be trans-
mitted for each symbol. At the top of the figure we see the same data sequence,
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with R = 150 bps, as in the earlier example; and we see the same 3-bit partitioning
to form the 8-ary symbols. Each symbol is transmitted four times. and for each
transmission the center frequency of the data band is hopped to a new region of
the hopping band, under the control of a PN code generator. Therefore. for this
example, each chip interval, 7., is equal to 7/N = 20 ms/4 = 5 ms in duration,
and the hopping rate is now

NR
lOgZ 8

= 200 hops/s

Notice that the spacing between frequency tones must change to meet the changed
requirement for orthogonality. Since the duration of each FSK tone is now equal to
the chip duration. that is, 7. = 7/N, the minimum separation between tones is 1/7, =
N/T=200 Hz. As in the earlier example, Figure 12.13 illustrates that the center of the
data band (plus the modulation structure) is shifted at each new chip time. The posi-
tion of the solid line (transmission frequency) has the same relationship to the dashed
line (center of the data band) for each of the chips associated with a given symbol.

Fast Hopping versus Slow Hopping

In the case of direct-sequence spread-spectrum systems, the term “chip” refers to
the PN code symbol (the symbol of shortest duration in a DS system). In a similar
sense for frequency hopping systems, the term “chip” is used to characterize the

Legend
Tone Data
number Tone symbol
04 fo+700Hz 000
Typical Tone 3 Tone 6 Tone 1 14 fo+500Hz 001
data
R =150 2+ fo+300Hz 010
bits/s*0|1|11|1|o o]o|1
o 34 fo+100Hz 0N
e P e R L
[ I T 4 fo-100Hz 100
Freque'ncy [ T [ ___ 5 f0—300 Hz 101
hopping
band i
6 fo—500Hz 110
- 74 fo—-700Hz 1M
: Time

Symbol interva .
(20 ms) »—{ 9—‘ ‘4—5 ms/chip

Frequency hopping example with diversity (N = 4).
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shortest uninterrupted waveform in the system. Frequency hopping systems are
classified as slow-frequency hopping (SFH), which means there are several modula-
tion symbols per hop, or as fast-frequency hopping (FFH), which means that there
are several frequency hops per modulation symbol. For SFH, the shortest uninter-
rupted waveform in the system is that of the data symbol; however, for FFH, the
shortest uninterrupted waveform is that of the hop. Figure 12.14a illustrates an ex-
ample of FFH; the data symbol rate is 30 symbols/s and the frequency hopping rate
is 60 hops/s. The figure illustrates the waveform s(r) over one symbol duration
(35 5). The waveform change in (the middle of) s(r) is due to a new frequency hop.
In this example, a chip corresponds to a hop since the hop duration is shorter than
the symbol duration. Each chip corresponds to half a symbol. Figure 14.14b illus-
trates an example of SFH; the data symbol rate is still 30 symbols/s, but the fre-
quency hopping rate has been reduced to 10 hops/s. The waveform s(¢) is shown
over a duration of three symbols (7 s). In this example, the hopping boundaries ap-
pear only at the beginning and end of the three-symbol duration. Here, the changes
in the waveform are due to the modulation state changes; therefore, in this

1 symbol duration = 1/30 s
2 hops for each symbol |

< Chip1—>|=~—Chip2 |

= 1/2 symbol
duration
=1/60 s

(a)

1 hop duration =1/10 s
3 symbols for each hop

.

Chip 2 —— Chip3— |

‘*-f—~—Chip 1 »-
=1 symbol
duration
=1/30s

i

{b)

Chip—in the context of an FH/MFSK system. (a) Example 1:
Frequency hopping MFSK system with symbol rate = 30 symbols/s and hopping
rate = 60 hops/s. 1 chip = 1 hop. (b) Example 2: Same as part (a) except hopping
rate = 10 hops/s. 1 chip = 1 symbol.
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example a chip corresponds to a data symbol, since the data symbol is shorter than
the hopo duration.

FFH example of a binary FSK system. The diver-
sity is N = 4. There are 4 chips transmitted per bit. As in Figure 12.13, the dashed
line in each column corresponds to the center of the data band and the solid line
corresponds to the symbol frequency. Here, for FFH, the chip duration is the hop
duration. Figure 12.15b illustrates an example of an SFH binary FSK system. In
this case, there are 3 bits transmitted during the time duration of a single hop.
Here, for SFH, the chip duration is the bit duration. If this SFH example were
changed from a binary system to an 8-ary system, what would the chip duration
then correspond to? If the system were implemented as an 8-ary scheme, each 3
bits would be transmitted as a single data symbol. The symbol boundaries and the
hop boundaries would then be the same, and the chip duration, the hop duration,
and the symbol duration would all be the same.

FFH/MFSK Demodulator

Figure 12.16 illustrates the schematic for a typical fast frequency hopping MFSK
(FFH/MFSK) demodulator. First, the signal is dehopped using a PN generator
identical to the one used for hopping. Then, after filtering with a low-pass filter that

Bits | 1 0
Frequency
Time
A‘ Chip
duration
(a)
Bits | 100 [ 101 | 0t1]110] 000 | 101 [ 011 110]]
Frequency
=i -1
- Time Fast hopping versus
———‘ }&d Chip slow hopping in a binary system.
uration (a) Fast-hopping example: 4 hops/bit.
{b) (b) Slow-hopping example: 3 bits/hop.
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has a bandwidth equal to the data bandwidth, the signal is demodulated using a
bank of M envelope or energy detectors. Each envelope detector is followed by a
clipping circuit and an accumulator. The clipping circuit serves an important func-
tion in the presence of an intentional jammer or other strong unpredictable inter-
ference; it is treated in a later section. The demodulator does not make symbol
decisions on a chip-by-chip basis. Instead, the energy from the N chips are accumu-
lated, and after the energy from the Nth chip is added to the N — 1 earlier ones, the
demodulator makes a symbol decision by choosing the symbol that corresponds to
the accumulator, z; (i =1, 2, ..., M), with maximum energy.

Processing Gain

Equation (12.27) shows the general expression for processing gain as G, = W/R. In
the case of direct-sequence spread-spectrum, W, was set equal to the chip rate Ry
In the case of frequency hopping, Equation (12.27) still expresses the processing
gain, but here we set W equal to the frequency band over which the system may
hop. We designate this band as the hopping band Wy,,nine, and thus the processing
gain for frequency hopping systems is written as

w oppin
G, = % (12.29)
Generation and Characteristics of PN Sequences
A piece of hardware used to generate the PN sequences. It is mainly formed of a
shift register made up of D flip-flops, with some selected outputs of the flip-flops
connected to a parity generator. The parity generator is constructed of an array of
exclusive-OR gates and it generates a logic 0 output when the input has an even number of

0's, and generates 1 when the input has an odd number of 1's.
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Karpagam Academy of Higher Education Page 26



DIGITAL COMMUNICATION V.NANDHINI AP/ECE

The code generated depends on the number N of the flip-flops and on the selection of
which flip-flop outputs are connected to the parity generator. At the beginning, all the Q's
take specific pattern of logic values. Then, with each clock pulse these values are shifted
and in general, the output of the parity generator will change. Since such hardware is
fixed, the sequence is not truly random, i.e. it is deterministic. Also at some particular
state, the sequence will start to repeat itself. In order to make that PN sequence almost
random, a large number of flip-flops is used (today MOS large-scale integration may have
2000 flip-flops on a single chip), hence the sequence length will be large enough to consider
the sequence as a random one. In fact, the maximum sequence length is L=2N-1. Note that
the all-0's-state has been excluded because if the register shall ever arrive at such a state,
it will remain in it permanently. The above maximal sequence length (L) can be attained
for every (N) using certain flip-flop outputs as inputs for the parity generator. For
example, at N=15, the sequence length can be made maximum, i.e. L = 2-1 = 32767, if the
outputs of the flip-flops number 13 and 14 are used as inputs for the parity generator. It is
worth noting that PN sequences are available at both outputs of any flip-flop. Yet, they
are not independent, i.e. one can be derived from the other by a simple time shift or by
complementing the bits or both. However, there are logic designs that produce sequences
with small correlation to one another. The number of such independent sequences has the
upper bound S given by S < (L-1)/N. Note that these independent sequences can be divided
into two groups, one has sequences that are the mirror images of those in the other.
Mirror image sequences have the same bit sequence when one is read forward and the
other IS read backward in time.

Iii. Autocorrelation of a PN sequence
The autocorrelation function Rgq(t) of a truly random sequence d(t) with bit duration Ty is
definedas

Rd(t) = E{d(t) d(T+t)} = Integral d(t)d(T+t) dT
And has the form shown in the figure below when d(t) = £ 1 volt

The autocorrelation function Rd(t) of a PN sequence is Rpn(t) = E{g(t) g(t + t)} Where g(t)
assumes the values + 1 volt. As might be expected Rpn(0) = 1. Rpn(t) for t = nTc, where n is
an integer and Tcis the chip duration.

Ren(t = nTc) = E{g(t)g(t + nTc)} = E{ -g(t+kTc)}

Now g(t + kTc) is a PN sequence and , in the course of L chips there is one more 1 than 0.
Hence the average value of -g(t + kTc) is -1/L. Finally,since the sequence has a period
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LTcso too has Ren(t).
From the above, we deduce that an SS signal modulated with a PN sequence can only be
demodulated by the exact PN sequence (t = exactly zero). For any other value of t, Rq(t)
will equal zero i.e. the energy of the received signal equals zero ( no signal is received).

Use of 35 with CDMA

In CDMA, each user 13 provided with a unique PN code which is almost uncorrelated with the other ones To illustrate
the principle of operation of CDMA, consider that at a given time, each of k users is transmitting data at the same
carrier frequency fo, using D5-55, and his particular code 13 git). Then, each receiver 1s prezented with the same input
waveform, where each signal 13 assumed to present the same power P, to the receiver, each psevdo-random sequence
g;(t) has the same chip rate £, and d;(t) 1s the data transmitted by the vser 1. The data rate for each vser 13 the zame,_ f},

'l —_—
w(t) = 3 28, 8, (), () cos(a,t + )
=1

If the receiver is required to receive each of the k users it needs k correlators. At receiver 1, the signal w(t) will be
multiplied by g1(t) and also by the corresponding carrier,

J2cos(mt+ )
to generate the signal v,) which is to be applied to the integrator to grve the output

k
V= E _.‘JEE] :.';:'g_; fi:iff_. |:f::| C"ﬁ'sl:'!ﬁl - {E.l:

i=l

k
= JB a0+ Y B 21 (g,(0)d; () cosldh - &)
S

Note that at the cutput, the required signal 15 no more a 55 signal. while all the other signals are still S5 signals. This
resulted from the fact that only glj{t}=1= while the product g (t)g;(t) 1z still a random sequence itzelf having the same
chip rate f. as has any of the gi's individually.

The total power spectral density of k-1 independent interferers iz the sum of the power spectral densities. The integrator
which 15 essentially a low-pass filter with cutoff frequency fi,(=1/Ty,) allows the k-1 interferers to pass with total power
spectral density

Gy I:i:—lxd—i;lﬂzfg,

The above approxmation 13 valid since fi<c, hence Gy{f) can be considered constant over the given interval. This
shows that, over that interval, the power of the interferers is much less than that of the required signal (G, (f=P,'f;).
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