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3 Cayley–Hamilton 
Theorem

Chapter Outline

 ● Introduction
 ● Cayley–Hamilton Theorem

3.1 ❑ iNTrODUcTiON

This theorem provides an alternative method for finding the inverse of a matrix, and 
any positive integral power of A can be expressed as a linear combination of those of 
lower degree.

3.2 ❑ cAYLEY–HAMiLTON THEOrEM

Every square matrix satisfies its own characteristic equation.

Application

The Cayley–Hamilton theorem can be used to find
 ● The power of a matrix, and
 ● The inverse of an n ¥ n matrix A, by expressing these as polynomials in A of 

degree < n.

SOLVED ExAMPLES

Example 1 Verify that the matrix A = 
2 1 2
1 2 1
1 1 2

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

 satisfies its characteristic 

equation and, hence, find A4. [KU May 2010, AU Jan. 2010]
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3.2	 Engineering Mathematics

Solution  The characteristic equation is |A – lI| = 0

i.e.,	
l

l
l

- -
- - -

- -

2 1 2
1 2 1

1 1 2
 = 0

i.e.,	 l3 – 6l2 + 8l – 3 = 0
According to Cayley–Hamilton theorem, to prove A3 – 6A2 + 8A – 3I = 0

	

2
2 1 2 2 1 2 7 6 9
1 2 1 1 2 1 5 6 6
1 1 2 1 1 2 5 5 7

A
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

	

A
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

3
7 6 9 2 1 2 29 28 38
5 6 6 1 2 1 22 23 28
5 5 7 1 1 2 22 22 29

Hence, A3 – 6A2 + 8A – 3I

	

È ˘ È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙ Í ˙= - - - - - + - - -Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

29 28 38 42 36 54 16 8 16 3 0 0
22 23 28 30 36 36 8 16 8 0 3 0
22 22 29 30 30 42 8 8 16 0 0 3

0 0 0
0 0 0
0 0 0

Thus, the given matrix A satisfies its own characteristic equation, i.e., A3 – 6A2 + 8A 
– 3I = 0
Multiplying on both sides by A, we get
	 A4 – 6A3 + 8A2 – 3A = 0
	 A4 = 6A3 – 8A2 + 3A

	

4
196 168 252 90 45 90 18 0 0
140 168 168 45 90 45 0 18 0
140 140 196 45 45 90 0 0 18

A
È ˘ È ˘ È ˘- -
Í ˙ Í ˙ Í ˙= - - - - - +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

	

4
124 123 162

95 96 123
95 95 124

A
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

	 Ans.

Example 2	 Verify Cayley–Hamilton theorem for the matrix A = 
1 2 2
2 1 2
2 2 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 and, 

hence, find A–1 and A4.� [KU Nov. 2010]

Solution  The characteristic equation is |A – lI| = 0,

i.e.,	
1 2 2

2 1 2
2 2 1

l
l

l

-
-

-
 = 0
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	 Cayley–Hamilton Theorem	 3.3

i.e.,	 l3 – 3l2 – 9l – 5 = 0
To prove A3 – 3A2 – 9A – 5I = 0

	

2
1 2 2 1 2 2 9 8 8
2 1 2 2 1 2 8 9 8
2 2 1 2 2 1 8 8 9

A
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

	

3
9 8 8 1 2 2 41 42 42
8 9 8 2 1 2 42 41 42
8 8 9 2 2 1 42 42 41

A
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

\	 3 2
41 42 42 27 24 24 9 18 18 5 0 0

3 9 5 42 41 42 24 27 24 18 9 18 0 5 0
42 42 41 24 24 27 18 18 9 0 0 5

A A A I
È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- - - = - - -Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚

	

0 0 0
0 0 0
0 0 0

È ˘
Í ˙= Í ˙
Í ˙Î ˚

Hence, the Cayley–Hamilton theorem is verified.
	 A3 – 3A2 – 9A – 5I = 0	 (1)
To find A–1

∏ by A fi A2 – 3A – 9I – 5A–1 = 0
i.e.,	 –5A–1 = –A2 + 3A + 9I

	

1
9 8 8 3 6 6 9 0 0

5 8 9 8 6 3 6 9 0 9
8 8 9 6 6 3 0 0 9

A-
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙- = - - - + +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

	

1
3 2 2

5 2 3 2
2 2 3

A-
È ˘- -
Í ˙- = - -Í ˙
Í ˙- -Î ˚

\	
1

3 2 2
1 2 3 2
5

2 2 3
A-

È ˘- -
Í ˙= - - -Í ˙
Í ˙- -Î ˚

To find A4, multiply (1) by A
	 A4 – 3A3 – 9A2 – 5A = 0
i.e.,	 A4 = 3A3 + 9A2 + 5A

	

123 126 126 81 72 72 5 10 10
126 123 126 72 81 72 10 5 10
126 126 123 72 72 81 10 10 5

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= + +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

	

4
209 208 208
208 209 208
208 208 209

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

	 Ans.
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Exercise

Part A

	 1.	 State Cayley–Hamilton theorem.
	 2.	 Give two uses of the Cayley–Hamilton theorem.

	 3.	 If 
1 0
0 5

È ˘
Í ˙
Î ˚

, write A2 in terms of A and I, using Cayley–Hamilton theorem.

	 4.	 Verify Cayley–Hamilton theorem for the matrix 
3 1
1 5

A
È ˘-

= Í ˙-Î ˚
.

	 5.	 Using Cayley–Hamilton theorem, find the inverse of 
1 4
2 3

È ˘
Í ˙
Î ˚

.

	 6.	 Verify Cayley–Hamilton theorem for 0 2
4 0

È ˘
Í ˙
Î ˚

.

	 7.	 Verify Cayley–Hamilton theorem for the matrix 
5 3
1 3

A
È ˘

= Í ˙
Î ˚

.

	 8.	 Using Cayley–Hamilton theorem, find the inverse of 
7 3
2 6

È ˘
Í ˙
Î ˚

	 9.	 The Cayley–Hamilton theorem is used to find ____________ 
	 (a)	 Eigen values	 (b)	 Eigen vectors
	 (c)	 inverse and higher powers of A	 (d)	 quadratic form

Part B

	 1.	 Using Cayley–Hamilton theorem, find A4 if 
1 0 3
2 1 1
1 1 1

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

�

7 30 42
. 18 13 46

6 14 17

Ê ˆÈ ˘-
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜- -Ë ¯Î ˚

Ans

	 2.	 Using Cayley–Hamilton theorem, find the inverse of the matrix 

		
1 0 3
8 1 7
3 0 8

A
È ˘-
Í ˙= -Í ˙
Í ˙-Î ˚

�
8 0 3

. 43 1 17
3 0 1

Ê ˆÈ ˘-
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans  
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	 Cayley–Hamilton Theorem	 3.5

	 3.	 Find the characteristic equation of the matrix 
1 3 7
4 2 3
1 2 1

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

. Show that the 

equation is satisfied by A and, hence, obtain the inverse of the given matrix.
� [KU April 2011]

�  

3 2 1
4 11 5

1. 4 20 35 0; 1 6 25
35

6 1 10
Al l l -

Ê ˆÈ ˘- -
Í ˙Á ˜- - - = = - -Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 4.	 Find the characteristic equation of the matrix 
1 2 3
2 1 4
3 1 1

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

. Show that the 

equation is satisfied by A.� (Ans. l3 + l2 – 18l – 40 = 0)

	 5.	 Using Cayley–Hamilton theorem, find the inverse of (i) 
2 3
3 5

È ˘
Í ˙
Î ˚

 (ii) 
7 1 3
6 1 4
2 4 8

È ˘-
Í ˙
Í ˙
Í ˙Î ˚

�

8 20 7
5 3 1. (i) (ii) 40 50 10
3 2 50

22 30 13

Ê ˆÈ ˘- -
È ˘- Í ˙Á ˜- -Í ˙ Í ˙Á ˜-Î ˚ Í ˙Á ˜-Ë ¯Î ˚

Ans

	 6.	 Find the characteristic equation of the matrix 
3 1 1
1 5 1
1 1 3

A
È ˘
Í ˙= - -Í ˙
Í ˙-Î ˚

. Verify Cayley–

Hamilton theorem for this matrix. Hence, find A–1.

�

1
7 2 3

1. 1 4 1
20

2 2 8
A-

Ê ˆÈ ˘- -
Í ˙Á ˜= Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 7.	 Use Cayley–Hamilton theorem to find the inverse of the matrix 

cos sin
sin cos

A
q q
q q

È ˘
= Í ˙-Î ˚ �

1 cos sin
.

sin cos
A

q q
q q

-Ê ˆÈ ˘-
= Í ˙Á ˜

Ë ¯Î ˚
Ans

	 8.	 Using Cayley–Hamilton theorem, find A–1 given that 
2 1 3
1 0 2
4 2 1

A
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

�

1
4 5 2

1. 7 10 1
5

2 0 1
A-

Ê ˆÈ ˘- -
Í ˙Á ˜= - - -Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans
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	 9.	 Using Cayley–Hamilton theorem, find the inverse of the matrix 

5 1 5
0 2 0
5 3 15

A
È ˘-
Í ˙= Í ˙
Í ˙- -Î ˚

.

�

1
3 0 1

1. 0 5 0
10

1 1 1
A-

Ê ˆÈ ˘
Í ˙Á ˜= Í ˙Á ˜
Í ˙Á ˜- -Ë ¯Î ˚

Ans

	 10.	 Find the characteristic equation of the matrix 
1 3 7
4 2 3
1 2 1

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

 and show that the 

equation is also satisfied by A.� (Ans. l3 – 4l2 – 20l – 35 = 0)
	 11.	 Verify Cayley–Hamilton theorem and hence find the inverse of the matrix  

1 0 1
3 4 5
0 6 7

A
È ˘-
Í ˙= Í ˙
Í ˙- -Î ˚

.�  

1 3 1
10 10 5
21 7 2.
10 20 5

9 3 1
10 10 5

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜

- -Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜-Í ˙Á ˜

Á ˜Í ˙Ë ¯Î ˚

Ans
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4 Diagonalization of 
Square Matrices

Chapter Outline

 ● Introduction
 ● Diagonalization of Square Matrices
 ● Diagonalization by Orthogonal Transformation or Orthogonal 

Reduction

4.1 ❑ iNTrODUcTiON

Two square matrices A and B are said to be similar if there exists a nonsingular 
matrix C such that B = C–1AC. The transformation A to C–1AC is called similarity 
transformation. The determinant, rank and Eigen values are preserved under 
similarity transformation. A matrix is said to be diagonalizable if it is similar to a 
diagonal matrix. The determinant of a diagonal matrix is simply the product of the 
diagonal elements; the rank is the number of nonzero diagonal elements and the Eigen 
values are the diagonal elements. Hence, it is very easy to deal with diagonal matrices.

4.2 ❑ DiAGONALiZATiON OF SQUArE MATricES

The process of finding a matrix M such that M–1AM = D, where D is a diagonal matrix, 
is called diagonalization of the matrix A. As M–1 AM = D is a similarity transformation, 
the matrices A and D are similar and, hence, A and D have the same Eigen values. The 
Eigen values of D are its diagonal elements. Thus, if we find a matrix M such that M–1 
AM = D, D is a diagonal matrix whose diagonal elements are the Eigen values of A. 
A square matrix which is not diagonalizable is called defective.

Application

The direct application of diagonalization is that it gives us an easy way to compute 
large powers of a matrix A. The Eigen values of a system determine sometimes 
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4.2 Engineering Mathematics

whether the system is stable or not. This has all to do with diagonalizing matrices. In 
quantum mechanical and quantum chemical computations, matrix diagonalization is 
one of the most frequently applied numerical processes.

  Note

 (i) M is called the modal matrix of A whose elements are the Eigen vectors of 
A.

 (ii) For this diagonalization process, A need not necessarily have distinct Eigen 
values. Even if two or more Eigen values of A are equal, the process holds 
good provided the Eigen vectors of A are linearly independent.

4.3 ❑  DiAGONALiZATiON BY OrTHOGONAL TrANSFOrMATiON Or 
OrTHOGONAL rEDUcTiON

The process of finding a normalized modal matrix N such that N–1 AN = D where 
D is a diagonal matrix is called orthogonal transformation or orthogonal reduction. 
The elements of N are the normalized Eigen vectors of A and it can be proved that N 
is an orthogonal matrix (i.e. N–1 = NT). It is important to note that diagonalization by 
orthogonal transformation is possible only for a real symmetric matrix.

SOLVED ExAMPLES

Example 1 Reduce the matrix 
10 2 5

2 2 3
5 3 5

È ˘- -
Í ˙-Í ˙
Í ˙-Î ˚

 to diagonal form. [AU Jan. 2010]

Solution Let 
10 2 5

2 2 3
5 3 5

A
È ˘- -
Í ˙= -Í ˙
Í ˙-Î ˚

Here, D1 = 17, D2 = 42, D3 = 0.
\ the characteristic equation is l3 – 17l2 + 42l = 0.
i.e., 2( 17 42) 0

( 14)( 3) 0
l l l
l l l

- + =
- - =

fi l = 0, 14, 3
\ the Eigen values are 0, 14, 3.
To find the Eigen vectors, [A – lI]X = 0.

i.e., 
1

2

3

10 2 5
2 2 3 0
5 3 5

x
x
x

l
l

l

È ˘ È ˘- - -
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

 

1 2 3

1 2 3

1 2 3

(10 ) 2 5 0
2 (2 ) 3 0
5 3 (5 ) 0

x x x
x x x
x x x

l
l

l

- - - =
- + - + =
- + + - =

 (i) M is called the modal matrix of A whose elements are the Eigen vectors of 
A.

 (ii) For this diagonalization process, A need not necessarily have distinct Eigen 
values. Even if two or more Eigen values of A are equal, the process holds 
good provided the Eigen vectors of A are linearly independent.

EM_UnitI_04.indd   2 8/18/2017   4:06:43 PM



	 Diagonalization of Square Matrices	 4.3

l = 0 gives 10x1 – 2x2 – 5x3 = 0; –2x1 + 2x2 + 3x3 = 0; –5x1 + 3x2 + 5x3 = 0.
Consider first two equations, which gives x1 = 1, x2 = –5, x3 = 4.

\	 1

1
5
4

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

l = 14 gives

	

1 2 3

1 2 3

1 2 3

4 2 5 0
2 12 3 0
5 3 9 0

x x x
x x x
x x x

- - - =
- - + =
- + - =

Considering first two equations gives x1 = –3, x2 = 1, x3 = 2.

\	 2

3
1
2

X
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

l = 3 gives

	

1 2 3

1 2 3

1 2 3

7 2 5 0
2 3 0
5 3 2 0

x x x
x x x
x x x

- - =
- - + =
- + + =

fi x1 = 1, x2 = 1, x3 = 1

\	
3

1
1
1

X
È ˘
Í ˙= Í ˙
Í ˙Î ˚

\	
1 3 1
5 1 1
4 2 1

M
È ˘-
Í ˙= -Í ˙
Í ˙Î ˚

1 1 Adj
| |

M M
M

- =  provided |M| π 0

	 |M| = –42
To find AdjM,
Co-factor of 1 = –1, Co-factor of –3 = 9, Co-factor of 1 = –14, Co-factor of 1 = –14,  
Co-factor of 1 = –3, Co-factor of –5 = 5
Co-factor of 4 = –4, Co-factor of 2 = –6, Co-factor of 1 = –14

\	
1 5 4

Adj 9 3 6
14 14 14

M
È ˘- -
Í ˙= - -Í ˙
Í ˙- - -Î ˚

fi	 1
1 5 4

1 9 3 6
42

14 14 14
M-

È ˘- -
Í ˙= - - -Í ˙
Í ˙- - -Î ˚
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Consider 

	

1
1 5 4 10 2 5 1 3 1

1 9 3 6 2 2 3 5 1 1
42

14 14 14 5 3 5 4 2 1

1 5 4 0 42 3
1 9 3 6 0 14 3
42

14 14 14 0 28 3

0 0 0 0 0 0
1 0 588 0 0 14 0
42

0 0 126 0 0 3

M AM

D

-
È ˘ È ˘ È ˘- - - - -
Í ˙ Í ˙ Í ˙= - - - - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - - -Î ˚ Î ˚ Î ˚
È ˘ È ˘- - -
Í ˙ Í ˙= - - -Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚
È ˘ È ˘
Í ˙ Í ˙= - - = =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

	Proved.

Example 2	 Diagonalize the matrix 
2 1 1
1 1 2
1 2 1

A
È ˘-
Í ˙= -Í ˙
Í ˙- -Î ˚

 by orthogonal transformation.

� [KU April 2011]

Solution  The characteristic equation is |A – lI| = 0

i.e.,	
2 1 1

1 1 2 0
1 2 1

l
l

l

- -
- - =

- - -

fi	 2(2 )( 2 3) ( 1) ( 1) 0l l l l l- - - - - - - - - =

fi	 3 24 4 0l l l- - + =

fi	 ( 1)( 1)( 4) 0l l l+ - - =

\ The Eigen values are –1, 1, 4.
The Eigen vectors are given by (A – lI)X = 0.
when l = –1

The Eigen vector is given by 
1

2

3

3 1 1
1 2 2 0
1 2 2

x
x
x

È ˘ È ˘-
Í ˙ Í ˙- =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

fi	 1

0
1
1

X
È ˘
Í ˙= Í ˙
Í ˙Î ˚

When l = 1, the Eigen vector is given by 
1

2

3

1 1 1
1 0 2 0
1 2 0

x
x
x

È ˘ È ˘-
Í ˙ Í ˙- =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

fi	 2

2
1
1

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚
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When l = 4, the Eigen vector is given by 
1

2

3

2 1 1
1 3 2 0
1 2 3

x
x
x

È ˘ È ˘- -
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚

fi	 3

1
1
1

X
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

Hence, the modal matrix 
0 2 1
1 1 1
1 1 1

M
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

\ normalized modal matrix is,

	

2 10
6 3

1 1 1
2 6 3

1 1 1
2 6 3

N

È ˘
Í ˙
Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙

-Í ˙
Î ˚

To prove N–1 AN = D, since N is an orthogonal matrix, it satisfies N–1 = NT.
\ it is enough to prove that N–1 AN = D.
Consider

	

1

2 11 1 00
6 32 2 2 1 1

2 1 1 1 1 1 1 1 2
6 6 6 2 6 31 2 1

1 1 1 1 1 1
3 3 3 2 6 3

2 41 1 00
6 32 2

2 1 1 1 1 4
6 6 6 2 6 3

1 1 1 1 1 4
3 3 3 2 6 3
1 0 0
0 1 0
0 0 4

N AN-

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙ È ˘-
Í ˙Í ˙ Í ˙= - - -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Í ˙Í ˙

- -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

= - - -Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

- - -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚
-

= D
È ˘
Í ˙ =Í ˙
Í ˙Î ˚

� Proved.
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Exercise

Part A

	 1.	 When are two matrices said to be similar?
	 2.	 Define diagonalizing a matrix.
	 3.	 What is the difference between diagonalization of a matrix by similarity and 

orthogonal transformations?

	 4.	 Diagonalize the matrix 2 1
1 2

A
È ˘

= Í ˙
Î ˚

.

	 5.	 Is it possible to diagonalize the matrix 
0 1
0 0

È ˘
Í ˙
Î ˚

?

		  [Ans: The Eigen values l = 0, 0 but there is only one Eigen vector 
1
0

È ˘
Í ˙
Î ˚

. So the 
matrix cannot be diagonalized.]

	 6.	 What type of matrices can be diagonalized using (i) similarity transformation, 
and (ii) orthogonal transformation?

	 7.	 In the orthogonal transformation NT AN = D, D refers to a/an __________ 
matrix.

	 (i)	 diagonal			   (ii)	 orthogonal
	 (iii)	 symmetric			   (iv)	 skew-symmetric
	 8.	 In a modal matrix, the columns are the Eigen vectors of __________
	 (i)	 A–1	 (ii)	 A2	 (iii)	 A	 (iv)	 adj A
	 9.	 If 1 2 2 3 3 10, 0, 0,T T TX X X X X X= = =  the Eigen vectors are said to be __________
	 (i)	 dependent			   (ii)	 pairwise orthogonal
	 (iii)	 skew-symmetric			   (iv)	 independent
	 10.	 If A is an orthogonal matrix, show that A–1 is also orthogonal.

Part B

	 1.	 Find the modal matrix of the following matrices.

	 (i)	
8 8 2
4 3 2
3 4 1

È ˘- -
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
1 0 0
0 3 1
0 1 3

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

�

4 3 2 1 0 0
(i) 3 2 1 (ii) 0 1 1

2 1 1 0 1 1

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

Ans.

	 2.	 If 
1 4
2 3

A
È ˘

= Í ˙
Î ˚

, express A5 – 4A4 – 7A3 + 11A2 – A – 10I in terms of A.
� (Ans. A + 5I)

	 3.	 Show that AT = A–1 for 
2 2 1

1 2 1 2
3

1 2 2
A

È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

.
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	 4.	 Diagonalize the following matrices:

	 (i)	
8 6 2
6 7 4
2 4 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
1 1 1
0 2 1
4 4 3

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

	 (iii)	
3 1 1
1 5 1
1 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

0 0 0 1 0 0 2 0 0
. (i) 0 3 0 (ii) 0 2 0 (iii) 0 3 0

0 0 15 0 0 0 0 0 6

È ˘È ˘ È ˘ È ˘
Í ˙Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚

Ans

	 5.	 A square matrix A is defined by 
1 2 2
1 2 1
1 1 0

A
È ˘- -
Í ˙= Í ˙
Í ˙- -Î ˚

. Find the modal matrix M 

and the resulting diagonal matrix D of A.

�

1 0 01 1 5 1 5
0 1 1 , 0 5 0
1 1 1 0 0 5

M D

Ê ˆÈ ˘ È ˘- + -
Í ˙ Í ˙Á ˜

= - - =Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜-Î ˚ Í ˙Ë ¯Î ˚

Ans.

	 6.	 Let 
6 2 2
2 3 1
2 1 3

A
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

. Find a matrix M such that M–1 AM is a diagonal matrix.

�

0 1 2 2 0 0
. 1 3 1 , 0 2 0

1 1 1 0 0 8
M D

Ê ˆÈ ˘ È ˘
Í ˙ Í ˙Á ˜= - =Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚

Ans

 
	 7.	 Obtain the modal matrix and diagonalize the following matrices:

	 (i)	

1 1 2
0 2 1
0 0 3

È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

	 (ii)	
3 1 1
1 5 1
1 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

1 1 1 1 0 0 1 1 1 2 0 0
. (i) 0 1 2 , 0 2 0 (ii) 0 1 2 , 0 3 0

0 0 2 0 0 3 1 1 1 0 0 6

È ˘È ˘ È ˘ È ˘ È ˘-
Í ˙Í ˙ Í ˙ Í ˙ Í ˙- - -Í ˙Í ˙ Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚ Î ˚Î ˚

Ans

	 8.	 Diagonalize the matrix 
7 2 0
2 6 2
0 2 5

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

.�
3 0 0

. 0 6 0
0 0 9

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans

	 9.	 Diagonalize 
2 2 3
2 1 6
1 2 0

È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

 by similarity transformation.�
5 0 0

. 0 3 0
0 0 3

Ê ˆÈ ˘
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 10.	 Diagonalize the matrix 
8 8 2
4 3 2
3 4 1

A
È ˘- -
Í ˙= - -Í ˙
Í ˙-Î ˚

.�

1 0 0
. 0 2 0

0 0 3

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans
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	 11.	 Diagonalize the following matrices by orthogonal transformation:

	 (i)	
3 1 0
1 2 1
0 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
2 1 1
1 2 1
1 1 2

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

1 0 0 4 0 0
. (i) 0 3 0 (ii) 0 1 0

0 0 4 0 0 1

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

Ans

	 12.	 Diagonalize the matrix 
2 0 4
0 6 0
4 0 2

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

 by means of an orthogonal trans-
formation.

�

2 0 0
0 6 0
0 0 6

Ê ˆÈ ˘-
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans.

	 13.	 Diagonalize the matrix 
1 1
1 1

A
È ˘

= Í ˙
Î ˚

 by orthogonal transformation.

� 2 0
0 0

Ê ˆÈ ˘
Í ˙Á ˜

Ë ¯Î ˚
Ans.

	 14.	 Diagonalize 
3 1 1
1 3 1
1 1 3

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

 by orthogonal transformation.

�
1 0 0
0 4 0
0 0 4

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans.   [AU May 2011]
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2 Eigen Values, Eigen 
Vectors and the 
Characteristic Equation

Chapter Outline

 ● Introduction
 ● Characteristic Equation of a Matrix
 ● Important Properties of Eigen Values
 ● Linear Dependence and Independence of Vectors
 ● Properties of Eigen Vectors

2.1 ❑ IntroDuCtIon

In this chapter, we shall discuss mainly square matrices A and throughout the ensuing 
discussion, any new facts and developments will be based on the determination of a 
vector X (to be called characteristic vector or Eigen vector) and a scalar l (to be called 
characteristic value or Eigen value) such that AX = lX. Based on these concepts of 
Eigen values and Eigen vectors, we shall indicate the conditions on A under which a 
nonsingular matrix P can be selected such that P–1AP is diagonal, i.e., A is similar to 
a diagonal matrix.

2.2 ❑ CHArACtErIStIC EQuAtIon of A mAtrIx

Characteristic matrix

For a given matrix A, A – lI matrix is called the characteristic matrix, where l is a 
scalar and I is the unit matrix.

Let 
2 2 1
3 1 1
1 2 2

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚
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2 2 1 1 0 0 2 2 1
3 1 1  – 0 1 0 3 1 1
1 2 2 0 0 1 1 2 2

A I
l

l l l
l

È ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙- = = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

Characteristic Polynomial

The determinant |A – lI| when expanded will give a polynomial, which we call the 
characteristic polynomial of the matrix A.

For example,

	

l
l

l

-
-

-

2 2 1
3 1 1
1 2 2

	  = (2 – l)(l2 – 3l) – 2(–3l + 5) + 1(l + 5)
	  = –l3 + 5l2 + l – 5

Characteristic Equation

The equation |A – lI| = 0 is known as the characteristic equation of A and its roots are 
called the characteristic roots or latent roots or Eigen values or characteristic values 
or latent values or proper values of A.

Spectrum of A

The set of all Eigen values of the matrix A is called the spectrum of A.

Eigen-value Problem

The problem of finding the Eigen values of a matrix is known as an Eigen-value 
problem.

Characteristic Vector

Any nonzero vector X is said to be a characteristic vector of a matrix A if there exists a 
number l such that AX = lX, where l is a characteristic root of a matrix A.

2.3  ❑  Important Properties of Eigen Values

	 (i)	 Any square matrix A and its transpose AT have the same Eigen values.
	 (ii)	 The sum of the Eigen values of a matrix is equal to the trace of the matrix.
		  [Note: The sum of the elements on the principal diagonal of a matrix is called 

the trace of the matrix.]
	 (iii)	 The product of the Eigen values of a matrix A is equal to the determinant of A.
	 (iv)	 If l1, l2 … ln are the Eigen values of A then the Eigen values of
	 (a)	 KA are kl1, kl2 … kln

	 (b)	 Am are l l lm m m
n1 2, ...

	 (c)	 A–1 are 
l l l



n1 2

1 1 1, .
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	 (iv)	 The Eigen values of a real symmetric matrix (i.e. a symmetric matrix with real 
elements) are real.

2.4  ❑  Linear Dependence and Independence of Vectors

n-dimensional Vector or n-vector

An ordered set of n elements xi of a field F written as
	 A = [x1, x2 … xn]	 (2.1)
is called an n-dimensional vector or n-vector over F and the elements x1, x2 … xn are 
called the first, second … nth components of A.

We find it more convenient to write the components of a vector in a column as

	

È ˘
Í ˙
Í ˙
Í ˙
Í ˙

= = Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

T T
n

n

x
x
x

A x x x x

x

1

2

3

1 2 3 .[ , , ... ]
.
.

	 (2.2)

Equation (2.1) is called a row-vector and Eq. (2.2) is called a column-vector.

Linear Dependence and Independence of Vectors

The vectors A1 = [x11, x12, x13 … x1m], A2 = [x21, x22, x23 … x2m] … An = [xn1, xn2, xn3 … xnm] 
are called linearly dependent over F if there exists a set of n elements l1, l2 … ln of F, 
li’s being not all zero, such that l1A1 + l2A2 + … lnAn = 0.

Otherwise the n-vectors are called linearly independent over F.

2.5  ❑  Properties of Eigen Vectors

	 (i)	 The Eigen vector X of a matrix A is not unique.
	 (ii)	 If l1, l2 … ln be distinct Eigen values of an n ¥ n matrix then the corresponding 

Eigen vectors X1, X2 … Xn form a linearly independent set.
	 (iii)	 If two or more Eigen values are equal, it may or may not be possible to get 

linearly independent Eigen vectors corresponding to the equal roots.
	 (iv)	 Two Eigen vectors X1 and X2 are called orthogonal vectors if =TX X1 2 0
	 (v)	 Eigen vectors of a symmetric matrix corresponding to different Eigen values 

are orthogonal.

Applications

The Eigen-value and Eigen-vector method is useful in many fields because it can be 
used to solve homogeneous linear systems of differential equations with constant 
coefficients. Furthermore, in chemical engineering, many models are formed on the 
basis of systems of differential equations that are either linear or can be linearized 
and solved using the Eigen-value, Eigen-vector method. In general, most ordinary 
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differential equations can be linearized and, therefore, solved by this method. Initial-
value problems can also be solved by using the Eigen-value and Eigen-vector method.

Eigen-value analysis is also used in the designing of car stereo systems so that the 
sounds are directed appropriately for the listening pleasure of both the drivers and 
the passengers. Eigen-value analysis can indicate what needs to be changed to reduce 
the vibration of the car due to the music being played.

Oil companies frequently use Eigen-value analysis to explore land for oil. Oil, dirt 
and other substances give rise to linear systems which have different Eigen values, 
so Eigen-value analysis can give a good indication of where oil reserves are located.

Eigen values and Eigen vectors are used widely in science and engineering, 
particularly in physics. Rigid physical bodies have a preferred direction of rotation, 
about which they can rotate freely. For example, if someone were to throw a football, 
it would rotate around its axis while flying through the air. If someone were to hit 
the ball in the air, the ball would be likely to flop in a less simple way. Although this 
may seem like common sense, even rigid bodies with more complicated shapes will 
have preferred directions of rotation. These are called axes of inertia, and they are 
calculated by finding the Eigen vectors of a matrix called the inertia tensor. The Eigen 
values are also important and they are called moments of inertia.

Solved Examples

Example 1	 Find the characteristic roots of the matrix 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 3
0 2 3
0 0 2

.

Solution

	
È ˘
Í ˙= Í ˙
Í ˙Î ˚

A
1 2 3
0 2 3
0 0 2

 and 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

I
1 0 0
0 1 0
0 0 1

\	
l

l l
l

- - -
- = - - -

- - -
A I

1 2 0 3 0
| | 0 0 2 3 0

0 0 0 0 2

	 = 
l

l
l

-
-

-

1 2 3
0 2 3
0 0 2

	 = 
l

l
l

-
-

-
2 3

(1 )
0 2

	 = l l- - 2(1 )(2 )
\ the characteristic equation of the matrix A is (1 – l)(2 – l)2 = 0 and its roots are 
1, 2, 2.� Ans.
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Example 2	 Find the characteristic roots and corresponding characteristic vectors 

for the matrix 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

8 6 2
6 7 4
2 4 3

A .

Solution  The characteristic equation is |A – lI| = 0,

i.e.,	
l

l
l

- -
- - - =

- -

8 6 2
6 7 4 0

2 4 3

fi	 (8 – l)[(7 – l)(3 – l) – 16] + 6[–6(3 – l) + 8] + 2[24 – 2(7 – l)] = 0
fi	 –l3 + 18l2 – 45l = 0
fi	 l(–l2 + 18l – 45) = 0
fi	 l = 0, 3, 15 are the characteristic roots of the matrix.
The characteristic vector X is obtained from (A – lI)X = 0.
Case (i) l = 0
If x, y, z are the components of a characteristic vector corresponding to the characteristic 
root 0, we have

	

8 6 2
( 0 ) 6 7 4 0

2 4 3

x
A I X y

z

È ˘ È ˘-
Í ˙ Í ˙- = - - =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

	 8x – 6y + 2z = 0
	 –6x + 7y – 4z = 0
	 2x – 4y + 3z = 0

\
	

-
= =

- - + -21 16 18 8 24 8
yx z

fi	

-
= =

-5 10 10
yx z

i.e., = =
1 2 2

yx z

\	
È ˘
Í ˙= Í ˙
Í ˙Î ˚

1

1
2
2

X

Case (ii) l = 3.

	

8 3 6 2
( 3 ) 0 6 7 3 4 0

2 4 3 3

x
A I X y

z

È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

i.e.,	
5 6 2
6 4 4 0
2 4 0

x
y
z

È ˘ È ˘-
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

fi	 5x –6y + 2z = 0
	 –6x + 4y – 4z = 0
	 2x – 4y = 0
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2.6 Engineering Mathematics

\ 
-

= =
- + -0 16 0 8 24 8

yx z

fi -
= =

-16 8 16
yx z

fi = =
- -2 1 2

yx z

\ 
È ˘-
Í ˙= -Í ˙
Í ˙Î ˚

2

2
1
2

X

Case (iii) l = 15

 (A – 15I) X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙- - -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

8 15 6 2
6 7 15 4

2 4 3 15

x
y
z

 = 0

i.e., 
È ˘ È ˘- -
Í ˙ Í ˙- - -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

7 6 2
6 8 4
2 4 12

x
y
z

 = 0

fi –7x – 6y + 2z = 0
 –6x – 8y –4z = 0
 2x – 4y – 12z = 0

\ 
-

= =
- + +96 16 72 8 24 16

yx z

fi -
= =

80 80 40
yx z

\ = =
-2 2 1
yx z

\ 3

2
2
1

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Hence, 
È ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙= = - = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

1 2 3

1 2 2
2 , 1 , 2
2 2 1

X X X  Ans.

  note

If 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a
 then the characteristic equation is given by |A – lI| = 0

or l3 – D1l2 + D2l – D3 = 0 where D1 = a11 + a22 + a33 (sum of the diagonals of A (or) 
trace of a matrix A)

If 
È ˘
Í ˙
È ˘
Í ˙
È ˘

Í ˙
Í ˙
Í ˙
Í ˙

Í ˙
Í ˙
Í ˙
Í ˙
Î ˚Í ˙Î ˚Í ˙

È ˘11 12 13È ˘
Í ˙11 12 13Í ˙
È ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘

Í ˙21 22 23Í ˙
Î ˚31 32 33Î ˚Í ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙

È ˘a a aÈ ˘È ˘
Í ˙
È ˘a a aÈ ˘
Í ˙
È ˘È ˘11 12 13È ˘a a aÈ ˘11 12 13È ˘È ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘a a aÈ ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘

A a a aÍ ˙A a a aÍ ˙=A a a a= Í ˙A a a aÍ ˙
Í ˙
Í ˙
Í ˙A a a aÍ ˙
Í ˙
Í ˙
Í ˙21 22 23Í ˙A a a aÍ ˙21 22 23Í ˙
Î ˚a a aÎ ˚Í ˙Î ˚Í ˙a a aÍ ˙Î ˚Í ˙Î ˚31 32 33Î ˚a a aÎ ˚31 32 33Î ˚Í ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙a a aÍ ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙

 then the characteristic equation is given by |A – lIlIl | = 0

or l3l3l  – D1l2l2l  + D2l – l – l D3 = 0 where D1 = a11 + a22 + a33 (sum of the diagonals of A (or) 
trace of a matrix A)
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= + +11 12 11 13 22 23
2

21 22 31 33 32 33

a a a a a a
D

a a a a a a

= sum of the second-order minors of A whose principal diagonals lie along the 
principal diagonal of A.
D3 = |A| = determinant of A.

Example 3 Find the characteristic roots and corresponding characteristic vectors 

of A = 
È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

6 2 2
2 3 1
2 1 3

. [KU Nov. 2010]

Solution The characteristic equation is l3 – D1l2 + D2l – D3 = 0
where  D1 = 6 + 3 + 3 = 12

 D2 = 
- -

+ +
- -

6 2 6 2 3 1
2 3 2 3 1 3

 = (18 – 4) + (18 – 4) + (9 – 1)
 = 14 +14 + 8
 = 36

 

-
= = - -

-
3

6 2 2
| | 2 3 1

2 1 3
D A

 = 6(9 – 1) + 2(–6 + 2) + 2(2 – 6)
 = 48 – 8 – 8
 = 32
\ the characteristic equation is l3 – 12l2 + 36l – 32 = 0 and the roots are 2, 2, 8.

Case (i) l = 2 (twice)

 

l
È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- - Î ˚Î ˚

6 2 2 2
( ) 0 2 3 2 1 0

2 1 3 2

x
A I X y

z

i.e., 
È ˘ È ˘-
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- Î ˚Î ˚

4 2 2
2 1 1 0
2 1 1

x
y
z

fi 4x – 2y + 2z = 0
 –2x + y – z = 0
 2x – y + z = 0
which are equivalent to a single equation . There is one equation in three unknowns.
\ taking two of the unknowns, say x = 1 and y = 0, we get z = –2 and taking x = 0 and 
y = 1, we get z = 1.

\ 1 2

1 0
0 , 1
2 1

X X
È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

= + += + += + += + += + +11 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 23= + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + +2
21 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 33

a a a a a aa a a a a aa a a a a aa a a a a aa a a a a a11 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 23D
a a a a a aa a a a a aa a a a a aa a a a a aa a a a a a21 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 33

= sum of the second-order minors of A whose principal diagonals lie along the 
principal diagonal of A.
D3 = |A| = determinant of A.
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Case (ii) l = 8

	

6 8 2 2
( 8 ) 0 2 3 8 1 0

2 1 3 8

x
A I X y

z

È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

i.e.,	 –2x – 2y + 2z = 0
	 –2x – 5y – z = 0
	 2x – y – 5z = 0

\	
-

= =
- + +

= =
-

25 1 10 2 2 10

24 12 12

yx z

yx z

\	
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

3

2
1
1

X

Hence, 
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= = = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

1 2 3

1 0 2
0 , 1 , 1
2 1 1

X X X � Ans.

Example 4	 The matrix A is defined as A = 
È ˘-
Í ˙
Í ˙
Í ˙-Î ˚

1 2 3
0 3 2
0 0 2

. Find the Eigen values of 

3A3 + 5A2 – 6A + 2I.

Solution  The characteristic equation is |A – lI| = 0

i.e.,	
l

l
l

- -
- =

- -

1 2 3
0 3 2 0
0 0 2

fi	 (1 – l)(3 – l)(–2 – l) = 0
i.e.,	 l = 1, 3, –2
	 Eigen values of A3 = 1, 27, –8
	 Eigen values of A2 = 1, 9, 4
	 Eigen values of A = 1, 3, –2
	 Eigen values of I = 1, 1, 1
\	 Eigen values of 3A3 + 5A2 – 6A + 2I
	 First Eigen value = 3(1)3 + 5(1)2 – 6(1) + 2 = 4
	 Second Eigen value = 3(27) + 5(9) – 6(3) + 2(1) = 110
	 Third Eigen value = 3( –8) + 5(4) – 6( –2) + 2(1) = 10
\	 Required Eigen values are 4, 110, 10.� Ans.

Example 5	 Find the Eigen values and Eigen vectors of the matrix 

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

1 0 1
1 2 1
2 2 3

A .� [KU May 2010]
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	 Eigen Values, Eigen Vectors and the Characteristic Equation	 2.9

Solution  The characteristic equation is given by |A – lI| = 0.

i.e.,	
l

l
l

- -
-

-

1 0 1
1 2 1
2 2 3

 = 0

i.e.,	 l3 – 6l2 + 11l – 6 = 0
fi	 (l – 1)(l2 – 5l + 6) = 0
	 (l – 1)(l – 2)(l – 3) = 0 fi l = 1, 2, 3
To find Eigen vectors for the corresponding Eigen values, we will consider the matrix 
equation (A – lI)X = 0.
Case (i) l = 1

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 1 0 1
1 2 1 1
2 2 3 1

x
y
z

 = 0

fi	 –z = 0
fi	 x + y + z = 0
fi	 2x + 2y + 2z = 0
Let x = 1 fi y = –1

\

	

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

1
1
0

X

Case (ii) l = 2

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 2 0 1
1 2 2 1
2 2 3 2

x
y
z

 = 0

fi	 –x – z = 0
	 x + z = 0
	 2x + 2y + z = 0

\	
= =

-2 1 2
yx z

\	

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

2
1
2

X

Case (iii) l = 3

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 3 0 1
1 2 3 1
2 2 3 3

x
y
z

 = 0

fi	 –2x – z = 0
	 x – y + z = 0
	 2x + 2y = 0

\	 -
= =

- -2 2 4
yx z
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\	
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

3

1
1
2

X

Hence, the Eigen vectors are 
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

1
1
0

X , 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

2
1
2

X , 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

3

1
1
2

X � Ans.

Exercise

Part A

	 1.	 If 1, 5 are the Eigen values of a matrix A, find the value of det A.

	 2.	 Find the constants a and b such that the matrix 
È ˘
Í ˙
Î ˚

4
1
a

b
 has 3 and –2 as its Eigen 

values.
	 3.	 If the sum of two Eigen values and trace of a 3 ¥ 3 matrix A are equal, find |A|.
	 4.	 What do you understand by the characteristic equation of the matrix A?
	 5.	 What is Eigen-value problem?

	 6.	 Find latent vectors of the matrix 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

0 0
0 0

a h g
b

c
.

	 7.	 Define linearly dependent and linearly independent set of vectors.
	 8.	 Show that the set of vectors X1 = [1, 2, 3], X2 = [1, 0, 1] and X3 = [0, 1, 0] are 

linearly independent.
	 9.	 Prove that the set of vectors X1 = [1, 2, 3], X2 = [1, 0, 1] and X3 = [0, 1, 0] are 

linearly independent.
	 10.	 Define spectrum of a matrix.
	 11.	 Prove that any square matrix A and its transpose AT have the same Eigen values.

	 12.	 Find the sum and product of the Eigen values of the matrix 
Í ˙
Í ˙= Í ˙
Í ˙Î ˚

2 2 1
3 1 1
1 2 2

A .

	 13.	 Given 
È ˘

= Í ˙
Î ˚

5 4
1 2

A , find the Eigen values of A2.

	 14.	 Find the sum of the squares of the Eigen values of 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

3 1 4
0 2 6
0 0 5

A .

	 15.	 Find the sum of the Eigen values of the inverse 
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

1 0 0
0 3 1
0 1 3

A .

	 16.	 If A and B are 2 square matrices then what can you say about the characteristic 
roots of the matrices AB and BA?
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	 17.	 If two of the Eigen values of a 3 ¥ 3 matrix, whose determinant equals 4, are –1 
and +2, what will be the third Eigen value of the matrix?

	 18.	 The matrix A is defined as A = 
È ˘-
Í ˙-Í ˙
Í ˙Î ˚

1 0 0
2 3 0
1 4 2

. Find the Eigen values of A2.

	 19.	 If 
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

1 2 3
0 3 5
0 0 2

A , find the Eigen values of A3 + 5A = 8I.

	 20.	 The Eigen values of a matrix A are 1, – 2, 3. Find the Eigen values of 3I – 2A + A2.

Part B

	 1.	 Find the Eigen values of the matrix 
È ˘-
Í ˙
Í ˙
Í ˙- -Î ˚

2 3 1
3 1 3
5 2 4

.� (Ans. 0, 1, – 2)

	 2.	 The matrix A is defined as A = 
È ˘
Í ˙-Í ˙
Í ˙-Î ˚

1 2 3
0 2 6
0 0 3

. Find the Eigen values of 

3A3 + 5A2 + 6A + I.	�  (Ans. 15, –15, –53)

	 3.	 Find the Eigen values and the corresponding Eigen vectors of 
È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

1 1 2
1 2 1
0 1 1

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜- Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

1 3 1
1, 1, 2, 0 , 2 , 3

1 1 1
Ans.

	 4.	 Show that the vectors [1, 2, 0], [8, 13, 0] and [2, 3, 0] are linearly dependent.
	 5.	 Show the set of vectors [1, 1, 1], [1, 2, 3] and [2, 3, 8] are linearly independent.

	 6.	 Given that 
È ˘-
Í ˙= -Í ˙
Í ˙-Î ˚

15 4 3
10 12 6
20 4 2

A , verify that the sum and product of the Eigen 

values of A are equal to the trace of A and |A| respectively.

	 7.	 Find the Eigen values and Eigen vectors of (adjA), where 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

2 1 1
1 2 1
1 1 2

A .

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜- -Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 2 1
1, 4, 4, 1 , 1 , 0

1 0 1
Ans.

.
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	 8.	 Verify that the Eigen vectors of the real symmetric matrix

		
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

3 1 1
1 5 1
1 1 3

A  are orthogonal in pairs. 

� (Hint: Prove that = = =1 2 2 3 3 1 0T T TX X X X X X )
	 9.	 Find the Eigen values and Eigen vectors of the following matrices:

	 (i)	
È ˘-
Í ˙
Í ˙
Í ˙-Î ˚

2 2 2
1 1 1
1 3 1

�

Ê ˆÈ ˘ È ˘-
Í ˙ Í ˙Á ˜-Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜Ë ¯Î ˚Î ˚

4 0
. – 2, 2, 2, 1 , 1

7 1
Ans

	 (ii)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 2 1
1 3 1
1 2 2

�

Ê ˆÈ ˘ È ˘
Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚

1 1
. 1, 1, 5, 2 , 1

5 1
Ans

	 (iii)	
È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

4 2 2
5 3 2
2 4 1

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

2 1 0
. 1, 2, 5, 1 , 1 , 0

4 2 1
Ans

	 (iv)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 1 1
1 2 1
3 2 3

�

Ê ˆÈ ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙Á ˜-Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

0 1 4
. 0, 1, 5, 1 , 0 , 5

1 1 11
Ans

	 (v)	
È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

2 2 3
2 1 6
1 2 0

� [KU April 2012]

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜-Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 2 3
. 5, – 3, – 3, 2 , 1 , 0

1 0 1
Ans

	 10.	 Find the Eigen values and Eigen vectors of (adjA), given that the matrix 
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

2 0 1
0 2 0
1 0 2

A 	�  [KU May 2010]

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 0 1
. 1, 2, 3, 0 , 1 , 0

1 0 1
Ans
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Part I

Unit I Matrices

Characteristic equation; Eigen values and Eigen vectors of a real matrix; Properties; 
Cayley–Hamilton theorem (excluding proof); Orthogonal transformation of a 
symmetric matrix to diagonal form; Quadratic forms; Reduction to canonical form 
through orthogonal reduction.

Unit II Three-Dimensional Analytical Geometry

Direction ratios of the Line Joining two points; The plane; Plane through the 
intersection of two lines; The straight line; The plane and the straight line; Shortest 
distance between two skew lines; Equation of a sphere.  

Unit III Geometrical Applications of Differential Calculus

Curvature in Cartesian coordinates; Centre and radius of curvature; Circle of 
curvature; Evolutes; Envelopes; Evolutes as envelope of normals.

Unit IV Functions of Several Variables

Partial derivatives; Euler’s theorem for homogeneous functions; Total derivatives; 
Differentiation of implicit functions; Jacobians; Maxima and minima of functions 
of two or more variables; Method of Lagrangian multipliers.

Unit V Differential Equations

Equations of the first order and higher degree; Linear differential equations of 
second and higher order with constant coefficients; Euler’s homogeneous linear 
differential equations; Mathematica software demonstration.
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Unit I

Matrices

Chapter 1: Matrices

Chapter 2:  Eigen Values, Eigen Vectors and the Characteristic  
Equation

Chapter 3: Cayley–Hamilton Theorem

Chapter 4: Diagonalization of Square Matrices

Chapter 5: Quadratic Forms
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1 Matrices

Chapter Outline

 ● Introduction
 ● Definition of a Matrix
 ● Special type of Matrices
 ● Properties of Matrix Addition and Scalar Multiplication
 ● Properties of Matrix Transposition
 ● Determinants
 ● Simultaneous Linear Equations

1.1 ❑ intRoDUCtion

Matrices were invented about a century ago in connection with the study of simple 
changes and movements of geometric figures in coordinate geometry.

J J Sylvester was the first to use the Latin word “matrix” in 1850 and later on in 
1858, Arthur Cayley developed the theory of matrices in a systematic way.

Matrices are powerful tools of modern mathematics and their study is becoming 
important day by day due to their wide applications in almost every branch of science 
and especially in physics (atomic) and engineering. These are used by sociologists in 
the study of dominance within a group, by demographers in the study of births and 
deaths, mobility and class structure, etc., by economists in the study of inter-industry 
economics, by statisticians in the study of ‘design of experiments’ and ‘multivariate 
analysis’, by engineers in the study of ‘network analysis’ used in electrical and 
communication engineering.

Matrix is an essential tool for engineers and scientists to solve a large number 
of problems in the branches of engineering such as in (i) electrical engineering, 
where the problems with electrical circuits are modelled with the help of matrix 
equations; (ii) structural engineering, where the problems are modelled in the form 
of matrix equations and then solved; (iii) a neural network, where a set of matrices 
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1.6	 Engineering Mathematics

represents a neural network and its activity can be explained with the help of matrix 
operations and also the knowledge gathered from a set of observations is stored in 
matrix form; (iv) image processing, where an image is considered as a big matrix 
and the templates for image processing operators like edge detection, thinning, 
filtering etc are basically matrices and the image-processing operations are directly 
or indirectly matrix operations; (v) graph theory, where a graph is represented by 
a matrix and the problem related to the graph can be solved using matrix algebra;  
(vi) control engineering, where the control problems are modelled using matrix 
or matrix differential equations; (vii) compiler design, where the grammar of a 
programming language may be expressed in terms of Boolean matrices and then the 
precedence of the operators used is the operator precedence grammar are computed; 
(viii) automata, where state transitions can be expressed using matrix theory.

Rectangular Array

Before we come to the formal definition of ‘matrices’ and to understand the same, let 
us consider the following example:

 In an inter-university debate, a student can speak either of the five languages: 
Hindi, English, Bangla, Marathi and Tamil. A certain university, say, A sent 25 students 
of which 7 offered to speak in Hindi, 8 in English, 2 in Bangla, 5 in Marathi and the 
rest in Tamil; another university, say B, sent 20 students of which 10 spoke in Hindi, 
7 in English and 3 in Marathi. Out of 25 students from the third university, say C,  
5 spoke in Hindi, 10 in English, 6 in Bangla and 4 in Tamil.

The information given in the above example can be put in a compact way if we 
present it in a tabular form as follows:

University  Number of speakers in
Hindi English Bangla Marathi Tamil

A 7 8 2 5 3
B 10 7 0 3 0
C 5 10 6 0 4

The numbers in the above arrangement form is known as a rectangular array. 
In this array, the lines down the page are called columns whereas those across the 
page are called rows. Any particular number in this arrangement is known as an 
entry or an element. Thus, in the above arrangement, we find that there are 3 rows 
and 5 columns and we observe that there are 5 elements in each row and so the total 
number of elements = 3 ¥ 5, i.e., 15.

If the data given in the above arrangement is written without lines enclosed by 

a pair of square brackets, i.e., in the form 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

7 8 2 5 3
10 7 0 3 0
5 10 6 0 4

 then this is called a 
matrix.

1.2  ❑  Definition of a Matrix

A system of any mn numbers arranged in a rectangular array of m rows and n columns 
is called a matrix of order m ¥ n or an m ¥ n matrix (which is read as m by n matrix).
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 Ø Column

For example, 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

n

n

m m mn

a a a
a a a

a a a

 ¨ row is an m ¥ n matrix where the symbols 

aij represent any numbers (aij lies in the ith row and jth column) and 
È ˘
Í ˙-Î ˚

1 5 2
3 6 4  is a 

2 ¥ 3 matrix.

  note 

 (i) A matrix may be represented by the symbols [aij], (aij), ||aij||. Generally, the 
first system is adopted.

 (ii) Each of the mn numbers constituting an m ¥ n matrix is known as an 
element of the matrix.

  The elements of a matrix may be scalar or vector quantities.
 (iii) When m = n, the matrix is square, and is called a matrix of order n or an 

n – square matrix.
 (iv) The plural of ‘matrix’ is ‘matrices’.

1.3 ❑ SPeCiAl tYPeS of MAtRiCeS

Row Matrix

Any 1 ¥ n matrix which has only one row is called a row matrix or a row vector.
The matrix A = [a11, a12 % aln] is a row matrix.

Column Matrix

Any m ¥ 1 matrix which has only one column is called a column matrix or a column 
vector.

The matrix A =  

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11

21

1

.

.

m

a
a

a

 is a column matrix.

null Matrix or Zero Matrix

If the elements of a matrix are all zero, it is called a null or zero matrix. A zero matrix 
of order m ¥ n is denoted by 0m,n or simply by 0. A zero matrix may be rectangular or 
square.

For example, 
È ˘
Í ˙
Î ˚

0 0
0 0

 and 
È ˘
Í ˙
Î ˚

0 0 0
0 0 0

 are null matrices which are square and 

rectangular respectively.

 (i) A matrix may be represented by the symbols [aij], (aij), ||aij||. Generally, the 
first system is adopted.

 (ii) Each of the mn numbers constituting an m ¥ n matrix is known as an 
element of the matrix.

  The elements of a matrix may be scalar or vector quantities.
 (iii) When m = n, the matrix is square, and is called a matrix of order n or an 

n – square matrix.
 (iv) The plural of ‘matrix’ is ‘matrices’.
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Diagonal Matrix

A square matrix with all the elements equal to zero except those in the leading 
diagonal is called a diagonal matrix.

For example, 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 0 0
0 3 0
0 0 5

 is a diagonal matrix.

Scalar Matrix

A diagonal matrix all of whose diagonal elements are equal is called a scalar matrix.

For example, 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

5 0 0
0 5 0
0 0 5

 is a scalar matrix of order 3.

Unit Matrix

A square matrix of order n which has unity for all its elements in the leading diagonal 
and whose all other elements are zero is called the unit matrix or the identity matrix 
of order n and is denoted by In. In other words, if each diagonal element of a scalar 
matrix is unity, the matrix is called a unit matrix.

For example, 
È ˘
Í ˙
Î ˚

1 0
0 1

 and 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 0 0
0 1 0
0 0 1

 are unit matrices of order 2 and 3 respectively.

Triangular Matrices (Echelon Form)

A square matrix in which all the elements below the leading diagonal are zero is 
called an upper triangular matrix. A square matrix in which all the elements above 
the leading diagonal are zero is called a lower triangular matrix.

For example, 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11

21 22

1 2

0 . . 0

0 . 0
. . . . .
. . . . .

. .n n nn

a

a a

a a a

 is lower triangular and 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

22 2

. .
0 . .
. . . . .
. . . . .
0 0 . .

n

n

nn

a a a
a a

a

 

is upper triangular.

Transpose of a Matrix

The matrix got from any given matrix A by interchanging its rows and columns is 
called the transpose of A and is denoted by A¢ or AT.

For example, if A = 
È ˘-
Í ˙
Î ˚

1 1 3
2 5 6

 then A¢ = 
È ˘
Í ˙-Í ˙
Í ˙Î ˚

1 2
1 5

3 6
 clearly (A¢)¢ = A.
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Conjugate of a Matrix

If A is an m ¥ n matrix then the m ¥ n matrix obtained by replacing each element of 
A by its complex conjugate is called the conjugate matrix of A and is denoted by A—.

Thus, if A = [ aij ] then È ˘= Î ˚ijA a  where ija  is the complex conjugate of aij .

For example, if A = 
È ˘+ -
Í ˙+ -Í ˙
Í ˙+Î ˚

3 5 7
6 3 2

2 7 8 9

i i
i i

i
 then 

È ˘- +
Í ˙= - +Í ˙
Í ˙-Î ˚

3 5 7
6 3 2

2 7 8 9

i i
A i i

i

  note 

 (i) If the elements of A are over the field of real numbers then the conjugate of 
A coincides with A, i.e., A  = A.

 (ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., ( )A  = A.

Symmetric Matrices

A square matrix A = [ aij ] is said to be symmetric if A = AT, i.e., aij = aji, and 
skew-symmetric if A = –AT, i.e., aij = –aji, where i and j vary from 1 to n.

The matrices 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

a h g
h b f
g f c

 and 
È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

0
0

0

h g
h f
g f

 are respectively symmetric and skew-

symmetric.

  note

In a symmetric matrix, all the elements placed symmetrically about the main 
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of 
–1.

Hermitian Matrices and Skew-Hermitian Matrices

A square matrix A = [aij] is said to be Hermitian if aij = jia  , i.e., the (i, j)th element is the 
conjugate complex of the (j, i)th element.

A square matrix A = [aij] is said to be skew-Hermitian if aij = – jia , i.e., (i, j)th element 
is the negative conjugate of the (j, i)th element.

For example, 
È ˘-
Í ˙+Î ˚

1 1 4
1 4 2

i
i  and 

È ˘+
Í ˙- +Î ˚

3 2
2

i i
i i  are respectively, Hermitian and 

skew-Hermitian matrices.

trace of a Square Matrix

The sum of the main diagonal elements of a square matrix A is called the trace of A 
and is denoted by tr A.

 (i) If the elements of A are over the field of real numbers then the conjugate of 
A coincides with A, i.e., A  = A.

 (ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., ( )( )A( ) = A.

In a symmetric matrix, all the elements placed symmetrically about the main 
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of 
–1.
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If A = 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

n

n

n n nn

a a a
a a a

a a a

 then 

trace (A) = tr A = a11 + a22 + % + ann

  note

 (i) If A and B are of the same order then tr(A + B) = tr A + tr B
 (ii) If A be of order m ¥ n and B of order n ¥ m, then tr AB = tr BA.

1.4 ❑  PRoPeRtieS of MAtRix ADDition AnD SCAlAR 
MUltiPliCAtion

Property (i) A + B = B + A
Property (ii)  (A + B) + C = A + (B + C)
Property (iii)  a(A + B) = aA + aB
Property (iv)  (a + b)A = aA + bA
Property (v) (ab) A = a(bA)

Thus, the matrix addition is commutative [Property (i)] and associative [Property 
(ii)]; and the scalar multiplication of a matrix is distributive over matrix addition 
[Property (iii)].

1.5 ❑ PRoPeRtieS of MAtRix tRAnSPoSition

If A and B are two matrices, and ‘a ’ is a scalar then
Property (i) (AT)T = A
Property (ii) (A + B)T = AT + BT

Property (iii) (aA)T = aAT

Property (iv)  (AB)T = BTAT

1.6 ❑ DeteRMinAntS

With each square matrix A, we can associate a determinant which is denoted by the 
symbol |A| or det A or D. When A is a square matrix of order n, the corresponding 
determinant |A| is said to be a determinant of order n. A matrix is just an arrangement 
and has no numerical value. A determinant has numerical value. In fact, every square 
matrix has its determinant and while finding inverse, rank, etc., of a matrix or solving 
the linear equations by matrix method, we come across it.

Further, 
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

2 5 2 6 9 5
, ,

6 9 5 9 6 2
 and 

È ˘
Í ˙
Î ˚

9 6
5 2  are different matrices but the 

corresponding determinants have the same value (–12). In matrices, numbers are 
enclosed by brackets or parenthesis or double bars. In determinants, numbers are 
enclosed by a pair of vertical lines (bars).

 (i) If A and B are of the same order then tr(A + B) = tr A + tr B
 (ii) If A be of order m ¥ n and B of order n ¥ m, then tr AB = tr BA.

EM_UnitI_01.indd   10 8/11/2017   4:56:54 PM



	 Matrices	 1.11

Determinants were first introduced for solving linear systems and have important 
engineering applications in systems of differential equations, electrical networks, 
Eigen-value problems, and so on. Many complicated expressions occurring in 
electrical and mechanical systems can be simplified by expressing them in the form 
of determinants.

The differences between matrices and determinants are as follows:

Matrices Determinants
1. �Number of rows and number of col-

umns can be equal or unequal. 
1. �Number of rows and number of 

columns are equal.
2. �Elements are enclosed by brackets or 

parentheses or double bars.
2. �Elements are enclosed by a pair of 

vertical lines (bars).
3. �A matrix has no numerical value. 3. �A determinant has a numerical value.
4. �Matrices are arrangements. By 

interchanging rows and columns in a 
matrix, a new matrix is obtained.

4. �Even after interchanging rows and 
columns in a determinant, the value 
of the determinant is unaltered.

Properties of Determinants

The following properties can be used in evaluating determinants.
	 (i)	 A determinant is unaltered if the corresponding rows and columns are  

interchanged.
	 (ii)	 If each element of a row or column be multiplied by a constant, the value of the 

determinant is multiplied by the same constant.
	 (iii)	 If two rows (or columns) of a determinant are interchanged, the sign of the 

determinant is changed.
	 (iv)	 If two rows (or columns) are identical, the value of the determinant is zero.
	 (v)	 A determinant is unaltered if the elements of any row (or column) be multiplied 

by a constant and added to the corresponding element of any other row (or 
column).

	 (vi)	 The determinant of a diagonal matrix is equal to the product of the elements in 
the diagonal.

	(vii)	 The determinant of the product of two matrices is equal to the product of the 
determinants of the two matrices, 
i.e.,	 |AB| = |A| ◊ |B|

Minors of a Matrix

The determinant of every square submatrix of a given matrix A is called a minor of 
the matrix A.

For example, if A = 
È ˘
Í ˙-Í ˙
Í ˙Î ˚

5 2 10
1 3 7

6 4 6

Some of the minors are -
-

5 2 10
5 2 3 7

1 3 7 , ,
1 3 4 6

6 4 6
, 3, 6, etc.
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Singular and Nonsingular Matrices

A square matrix A is said to be singular if its determinant is zero.
A square matrix A is said to be nonsingular if its determinant is not equal to zero.

For example, 

consider	 A = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 3
3 1 4
2 4 6

	 |A| = 1(6 – 16) – 2(18 – 8) + 3(12 – 2)
	  = –10 – 20 + 30
	  = 0

\ A is a singular matrix.

Consider	 B = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 1 3
2 3 1
1 1 2

	 |B| = 2(6 – 1) – 1(4 – 1) + 3(2 – 3)
	  = 10 – 3 – 3
	  = 4

Since |B| = 4 π 0, B is a nonsingular matrix.

Adjoint of a Square Matrix

Let A = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

The adjoint of A is defined to be the transpose of the co-factor matrix of A and is 
denoted by adjA.

	 adjA = (Aij)T, where Aij  = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

\	 adjA  = (Aij)T = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 21 31

12 22 32

13 23 33

A A A
A A A
A A A

Reciprocal Matrix or Inverse of a Matrix

●● Definition

If A be any matrix then a matrix B, if it exists such that AB = BA = I, B is called the 
inverse of A; I being a unit matrix.

For the products AB, BA to be both defined and equal, it is necessary that A and B 
are both square matrices of the same order. Thus, nonsquare matrices cannot possess 
inverses. Also, we can at once show that the inverse of a matrix, in case it exists, must 
be unique.
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nonsingular and Singular Matrices

A square matrix A is said to be nonsingular or singular according as |A| π 0 or 
|A| = 0.

Thus, only nonsingular matrices possess inverses.

  note

 (i) If A, B be two nonsingular matrices of the same order then the product AB 
is nonsingular and (AB)–1 = B–1 A–1.

 (ii) If A be a nonsingular matrix and k a positive integer then A–k = (Ak)–1.
 (iii) The operations of transposing and inverting are commutative, 

i.e., (AT)–1 = (A–1)T

 (iv) The operations of conjugate transpose and inverse are commutative,
 i.e., (Aq)–1 = (A–1)q.

orthogonal Matrix

A square matrix A is said to be orthogonal if AAT = AT A = I
But we know that A ◊ A–1 = A–1 ◊ A = I
Hence, we note that AT = A–1.
Hence, an orthogonal matrix can also be defined as follows:
A square matrix A is said to be orthogonal if AT = A–1 

For example, if  A = 
q q
q q

È ˘-
Í ˙
Î ˚

cos sin
sin cos  

then  AT = 
q q
q q

È ˘
Í ˙-Î ˚

cos sin
sin cos

 AAT =
q q q q
q q q q

È ˘ È ˘-
Í ˙ Í ˙-Î ˚ Î ˚

cos sin cos sin
sin cos sin cos

  = 
q q q q q q

q q q q q q

È ˘+ -
Í ˙
Í ˙- +Î ˚

2 2

2 2

cos sin cos sin sin cos

sin cos cos sin sin cos

  = 
È ˘
Í ˙
Î ˚

1 0
0 1

= I

Hence, A is orthogonal.

Rank of a Matrix

A number r is defined as the rank of an m ¥ n matrix A provided, 
 (i) A has at least one minor of order r which does not vanish, and
 (ii) there is no minor of order (r + 1) which is not equal to zero.

  note

 (i) The rank of a matrix A is denoted by r(A) (or) simply R(A).
 (ii) The rank of a zero matrix by definition is 0 (i.e.) r(0) = 0.
 (iii) The rank of a matrix remains unaltered by the application of elementary row 

or column operations, i.e., all equivalent matrices  have the same rank.

 (i) If A, B be two nonsingular matrices of the same order then the product AB 
is nonsingular and (AB)–1 = B–1 A–1.

 (ii) If A be a nonsingular matrix and k a positive integer then k a positive integer then k A–k = (k = (k Ak)–1.
 (iii) The operations of transposing and inverting are commutative, 

i.e., (AT)–1 = (A–1)T

 (iv) The operations of conjugate transpose and inverse are commutative,
 i.e., (Aq)q)q –1 = (A–1)q.

 (i) The rank of a matrix A is denoted by r(A) (or) simply R(A).
 (ii) The rank of a zero matrix by definition is 0 (i.e.) r(0) = 0.
 (iii) The rank of a matrix remains unaltered by the application of elementary row 

or column operations, i.e., all equivalent matrices  have the same rank.
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 (iv) From the definition of rank of a matrix, we conclude that:
 (a) If a matrix A does not possess any minor of order (r + 1) then r(A) £ r.
  (b) If at least one minor of order r of the matrix A is not equal to zero then 

r(A) ≥  r.
 (v) If every minor of order p of a matrix A is zero then every minor of order 

higher than p is definitely zero.

idempotent Matrix 

A matrix such that A2 = A is called an idempotent matrix.

For example, if A= 
È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

2 2 4
1 3 4

1 2 3
, 

A2 = 
È ˘ È ˘ È ˘- - - - - -
Í ˙ Í ˙ Í ˙- - = - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - - - - -Î ˚ Î ˚ Î ˚

2 2 4 2 2 4 2 2 4
1 3 4 1 3 4 1 3 4
1 2 3 1 2 3 1 2 3

A

Periodic Matrix

A matrix A will be called a periodic matrix if Ak + 1 = A, where k is a positive integer. If 
k is the least positive integer, for which Ak + 1 = A, then k is said to be the period of A. If 
we choose k = 1, we get A2 = A and we call it the idempotent matrix.

nilpotent Matrix

A matrix A will be called a nilpotent matrix if Ak = 0 (null matrix) where k is a positive 
integer; if however k is the least positive integer for which Ak = 0, then k is the index 
of the nilpotent matrix.

For example, if A = 
È ˘
Í ˙
Í ˙- -Î ˚

2

2

ab b

a ab
,

A2 = 
È ˘ È ˘ È ˘
Í ˙ Í ˙ = =Í ˙
Í ˙ Í ˙- - - - Î ˚Î ˚ Î ˚

2 2

2 2

0 0
0

0 0
ab b ab b

a ab a ab

Here, A is a nilpotent matrix whose index is 2.

involuntary Matrix

A matrix A will be called an involuntary matrix if A2 = I (unit matrix). Since I2 = I 
always, the unit matrix is involuntary.

equal Matrices

Two matrices are said to be equal if 
 (i) they are of the same order, and
 (ii) the elements in the corresponding positions are equal.

 (iv) From the definition of rank of a matrix, we conclude that:
 (a) If a matrix A does not possess any minor of order (r + 1) then r(A) £ r.
  (b) If at least one minor of order r of the matrix A is not equal to zero then 

r(A) ≥ r.
 (v) If every minor of order p of a matrix A is zero then every minor of order 

higher than p is definitely zero.
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		  Thus, if A = 
È ˘
Í ˙-Î ˚

2 1
3 4

, B = 
È ˘
Í ˙-Î ˚

2 1
3 4

		  Here, A = B.

1.7  ❑  Simultaneous Linear Equations

The concepts and operations in matrix algebra are extremely useful in solving 
simultaneous linear equations.

Let the equations be
a1x + a2y + a3z = d1 b1x + b2y +b3z = d2   c1x + c2y  + c3z = d3

fi	

È ˘ È ˘
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚Í ˙Î ˚

1 2 3 1

1 2 3 2

1 2 3 3

a x a y a z d
b x b y b z d
c x c y c z d

fi	

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙ =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚Í ˙Î ˚

1 2 3 1

1 2 3 2

1 2 3 3

a a a x d
b b b y d
c c c z d

\	 AX = B
	 A–1(AX) = A–1B
	 (A–1A)X = A–1B
	 IX = A–1B
	 X = A–1B

Hence, to solve linear equations, write down the coefficient matrix A and find its 
inverse A–1. Then find A–1B. This gives the value X which is the solution for the given 
linear equations.

Consistency of a System of Simultaneous Linear Equations

A system of simultaneous linear equations is AX = B in matrix form. Consider the 
coefficient matrix A. Augment A by writing the constants vector as the last column. 
The resulting matrix is called an augmented matrix and is denoted by (A : B) or 
(A o B) or simply [A, B].

A system of simultaneous linear equations is consistent if the ranks of the 
coefficient matrix and the augmented matrix are equal, 
i.e.,	 r(A) = r(A : B) (or) R[A] = R[A, B].

There are two possibilities:
	 (i)	 When r(A) = r(A : B) = n (the number of unknowns), the system has a unique 

solution.
	 (ii)	 When r(A) = r(A : B) < n (the number of unknowns), the system has infinite 

solutions. Let r(A) = r(A : B) = r < n ◊ (n – r) of the unknowns are to be assigned 
values arbitrarily and the remaining r unknowns can then be obtained in terms 
of those (n – r) values.

On the contrary, a system of simultaneous linear equations is inconsistent if the 
ranks of the coefficient matrix and the augmented matrix are not equal, i.e., r(A) π 
r(A : B)
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These different possibilities are presented in a chart as follows:
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5 Quadratic Forms

Chapter Outline

 ● Definition
 ● Quadratic Forms Expressed in Matrices
 ● Linear Transformation of Quadratic Form
 ● Canonical Form
 ● Index and Signature of the Quadratic Form
 ● Nature of Quadratic Forms
 ● Determination of the Nature of Quadratic Form (QF) 

without Reduction to Canonical Form

5.1 ❑ definiTion

A homogeneous polynomial of second degree in any number of variables is called a 
quadratic form.

For example,
 (i) ax2 + 2hxy + by2

 (ii) ax2 + by2 + cz2 + 2hxy + 2gyz + 2fzx
 (iii) ax2 + by2 + cz2 + dw2 + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw
are quadratic forms in two, three and four variables.

5.2 ❑ QuadraTic form expressed in maTrices

Quadratic form can be expressed as a product of matrices.
Quadratic form = XTAX.

where 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

1

2

3

x
X x

x
 and 

È ˘
Í ˙= Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a
 (symmetric matrix)
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XT is the transpose of X.

È ˘ È ˘
Í ˙ Í ˙= Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

È ˘
Í ˙= + + + + + + Í ˙
Í ˙Î ˚

= + + + + + + + +

11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

1

11 1 21 2 31 3 12 1 22 2 32 3 13 1 23 2 33 3 2

3
2 2

11 1 21 1 2 31 1 3 12 1 2 22 2 32 2 3 13 1 3 23 2 3

[ ]

[ ]

T
a a a x

X AX x x x a a a x
a a a x

x
a x a x a x a x a x a x a x a x a x x

x

a x a x x a x x a x x a x a x x a x x a x x a

= + + + + + + + +

= + + + + +

2
33 3

2 2 2
11 1 22 2 33 3 12 21 1 2 23 32 2 3 31 13 1 3

2 2 2
11 1 22 2 33 3 12 1 2 23 2 3 13 1 3

( ) ( ) ( )

2 2 2

x

a x a x a x a a x x a a x x a a x x

a x a x a x a x x a x x a x x

(As a21 = a12, a32 = a23, a31 = a13 in a symmetric matrix, in general, aij = aji = 1
2

 coefficient 
of xij if i π j.)

5.3  ❑  Linear Transformation of Quadratic Form

Let the given quadratic form in n variables be XTAX where A is a symmetric matrix.
Consider the linear transformation X = PY.

Then	 XT = (PY)T = YTPT.
\	 XTAX = (YTPT)A(PY) = YT(PTAP)Y = YTBY
where	 B = PTAP.

Therefore, YTBY is also a quadratic form in n variables. Hence, it is a linear 
transformation of the quadratic form XTAX under the linear transformation X = PY 
and B = PTAP.

5.4  ❑  Canonical Form

If a real quadratic form be expressed as a sum or difference of the squares of new 
variables by means of any real nonsingular linear transformation then the latter 
quadratic expression is called a canonical form of the given quadratic form.

5.5  ❑  Index and Signature of The Quadratic Form

When the quadratic form XTAX is reduced to the canonical form, it will contain only 
r terms, if the rank of A is r. The terms in the canonical form may be positive, zero or 
negative.

The number (p) of positive terms in the canonical form is called the index of the 
quadratic form.

Number of positive terms – Number of negative terms, i.e., p – (r – p) = 2p – r is 
called signature of the quadratic form.
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5.6 ❑ naTure of QuadraTic forms

definite, semi-definite and indefinite real Quadratic forms

Let XTAX be a real quadratic form in n – variables x1, x2, … xn with rank r and index p.
Then we say that the quadratic form is

 (i) positive definite if r = n, p = r.
 (ii) negative definite if r = n, p = 0.
 (iii) positive semi-definite if r < n, p = r.
 (iv) negative semi-definite if r < n, p = 0.

If the canonical form has both positive and negative terms, the quadratic form is 
said to be indefinite.
Examples:

 (i) +2 2
1 2x x  is positive definite.

 (ii) - -2 2
1 2x x  is negative definite.

 (iii) (x1 – x2)2 is positive semi-definite.
 (iv) –(x1 – x2)2 is negative semi-definite.

  -2 2
1 2x x  is indefinite.

  note

If XTAX is positive definite then |A| > 0.

5.7 ❑  deTerminaTion of The naTure of QuadraTic form (Qf) 
WiThouT reducTion To canonicaL form

Consider the quadratic form

 

È ˘ È ˘
Í ˙ Í ˙= Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

[ ]T
a a a x

X AX x x x a a a x
a a a x

Let = = 11 12
1 11 2

21 22
| |,

a a
D a D

a a  and =
11 12 13

3 21 22 23

31 32 33

a a a
D a a a

a a a

The QF is
 (i) positive definite if Di > 0 for i = 1, 2, 3;
 (ii) negative definite if D2 > 0 and D1 < 0, D3 < 0;
 (iii) positive semi-definite if Di > 0 and at least one Di = 0;
 (iv) negative semi-definite if some of the determinants are zero in case (ii); and
 (v) indefinite in all other cases.

If XTAXTAXT  is positive definite then |AX is positive definite then |AX A| > 0.
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Criteria for the Nature of Quadratic Form (or Value Class) in Terms of 
Nature of Eigen Values

Value Class Nature of Eigen Values
Positive definite Positive Eigen values
Positive semi-definite Positive Eigen values and at least one is zero
Negative definite Negative Eigen values
Negative semi-definite Negative Eigen values and at least one is zero
Indefinite Positive as well as negative Eigen values

Solved Examples

Example 1	 Discuss the nature of the quadratic form 8x2 + 7y2 + 3z2 – 12xy + 4xz – 
8yz.� [KU April 2011]

Solution  The matrix of the quadratic form is 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

8 6 2
6 7 4
2 4 3

A

-
-

= = > = = > = - - =
-

-
1 2 3

8 6 2
8 6

|8| 8 0, 20 0 and 6 7 4 0
6 7

2 4 3
D D D

\ the QF is positive semi-definite.� Ans.

Example 2	 Write down the matrix of the quadratic form + -2 2 2
1 2 32 7x x x  – 4x1x2 + 

8x1x2 + 5x2x3

Solution 
	 + - - + +2 2 2

1 2 3 1 2 1 3 2 32 7 4 8 5x x x x x x x x x 	 (1)

Coefficient of = =2
1 111 ,x a

Coefficient of 2
2 222x a= = ,

Coefficient of = - =2
3 337x a ,

1
2

 coefficient of = - = - =1 2 12
1 ( 4) 2
2

x x a

1
2

 coefficient of = = =1 3 13
1 (8) 4
2

x x a

1
2

 coefficient of = = =2 3 23
1 5(5)
2 2

x x a

\ Eq. (1) can be expressed as XTAX, where
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È ˘-È ˘ È ˘ Í ˙Í ˙ Í ˙ Í ˙= = = -Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚
Í ˙-
Î ˚

1 11 12 13

2 21 22 23

3 31 32 33

1 2 4
5, 2 2
2

54 7
2

x a a a
X x A a a a

x a a a

\ given quadratic form = 

È ˘- È ˘Í ˙ Í ˙Í ˙- Í ˙Í ˙ Í ˙Í ˙ Î ˚
Í ˙-
Î ˚

1

1 2 3 2

3

1 2 4
5[ ] 2 2
2

54 7
2

x
x x x x

x
� Ans.

Example 3	 Write down the quadratic form corresponding to the matrix 

È ˘
Í ˙= Í ˙
Í ˙Î ˚

1 2 5
2 0 3
5 3 4

A .

Solution  Quadratic form = XTAX

	

È ˘È ˘
Í ˙Í ˙= Í ˙Í ˙
Í ˙Í ˙Î ˚ Î ˚

È ˘
Í ˙= + + + + + Í ˙
Í ˙Î ˚

= + + + + + + +

= + + + +

1

1 2 3 2

3

1

1 2 3 1 3 1 2 3 2

3
2 2
1 1 2 3 1 1 2 2 3 1 3 2 3 3
2 2
1 3 1 2 1 3 2 3

1 2 5
[ ] 2 0 3

5 3 4

[ 2 5 2 3 5 3 4 ]

2 5 2 3 5 3 4

4 4 10 6 .

x
x x x x

x

x
x x x x x x x x x

x

x x x x x x x x x x x x x x

x x x x x x x x � Ans.

Example 4	 Reduce the quadratic forms + + + + +2 2 2
1 2 3 1 2 2 3 3 16 3 14 4 4 18x x x x x x x x x  

and + + +2 2
1 2 1 2 3 12 5 4 2x x x x x x  simultaneously to canonical forms by a real nonsingular 

transformation.� [KU May 2010]

Solution  The matrix of the first quadratic form is 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

6 2 9
2 3 2
9 2 14

A

The matrix of the second quadratic form is 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2 2 1
2 5 0
1 0 0

B

The characteristic equation is |A – lB| = 0.

i.e.,	
l l l
l l
l

- - -
- - =
-

6 2 2 2 9
2 2 3 5 2 0
9 2 14
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fi	 5l3 – l2 – 5l + 1 = 0
i.e.,	 (l – 1)(5l – 1)(l + 1) = 0

fi	 11, , 1
5

l = -

When l = –1, (A – lB)X = 0, given the equations,
	 8x1 + 4x2 + 10x3 = 0; 4x1 + 8x2 + 2x3 = 0; 10x1 + 2x2 + 14x3 = 0

by solving, 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

1

3
1
2

X

When l = 1 ,
5

 (A – lB)X = 0 gives

	 28x1 + 8x2 + 44x3 = 0; 8x1 + 10x2 + 10x3 = 0; 44x1 + 10x2 + 70x3 = 0

by solving, 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

5
1
3

X

When l = 1, (A – lB)X = 0 gives
	 4x1 + 8x3 = 0; –2x2 + 2x3 = 0; 8x1 + 2x2 + 14x3 = 0

fi	
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

3

2
1
1

X

Since X1, X2, X3 are not pairwise orthogonal, consider the modal matrix P.

Now, 
È ˘- -
Í ˙= -Í ˙
Í ˙-Î ˚

3 5 2
1 1 1
2 3 1

P

	

È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

3 1 2 6 2 9 3 5 2
5 1 3 2 3 2 1 1 1
2 1 1 9 2 14 2 3 1

1 0 0
0 1 0
0 0 1

TP AP

Hence, the quadratic form XTAX is reduced to the canonical form + +2 2 2
1 2 3 .y y y

Now 	
È ˘ È ˘È ˘ - --
Í ˙ Í ˙Í ˙= -- Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙ -- - Î ˚ Î ˚Î ˚

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2 2 1 3 5 23 1 2
2 5 0 1 1 15 1 3
1 0 0 2 3 12 1 1

1 0 0
0 5 0
0 0 1

TP BP

Hence, the quadratic form XTBX is reduced to the canonical form + +2 2 2
1 2 35 .y y y �Ans.
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Example 5	 Reduce + + - - +2 2 2
1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x  into canonical form. 

Find its nature, rank, index and signature.�
� [KU Nov. 2010, AU Jan. 2010, KU April 2012]

Solution  The matrix of the quadratic form is 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

6 2 2
2 3 1
2 1 3

A

The characteristic roots are given by |A – lI| = 0

i.e.,	
l

l
l

- -
- - - =

- -

6 2 2
2 3 1 0

2 1 3

fi	 l3 – 12l2 + 36l – 32 = 0
\ the Eigen values are l = 8, 2, 2
The Eigen vectors are obtained by (A – lI)X = 0
When l = 8, (A – lI)X = 0 gives

	

È ˘È ˘- -
Í ˙Í ˙- - - =Í ˙Í ˙
Í ˙Í ˙- -Î ˚ Î ˚

1

2

3

2 2 2
2 5 1 0
2 1 5

x
x
x

fi	 –2x1 – 2x2 + 2x3 = 0; –2x1 – 5x2 – x3 = 0; 2x1 – x2 – 5x3 = 0

fi	
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

2
1
1

X

When l = 2, (A – lI)X = 0 reduces to a single equation 2x1 – x2 + x3 = 0

Putting x1 = 0, we get 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2

0
1
1

X

Again, by putting x2 = 0, we get 
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

3

1
0
2

X

Now 
È ˘ È ˘
Í ˙ Í ˙= - =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

1 2

2 0
1 , 1
1 1

X X  and 
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

3

1
0
2

X

Here, X1, X2, X3 are not pairwise orthogonal.
(i.e., = π =1 2 2 3 3 10, 0, 0T T TX X X X X X )

X3 is orthogonal to X2, only when 
Ê ˆ
Á ˜= Á ˜
Á ˜-Ë ¯

3

1
1
1

X , so that = = =1 2 2 3 3 1 0T T TX X X X X X
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\ the normalized modal matrix is 

È ˘
Í ˙
Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

2 10
6 3
1 1 1
6 2 3

1 1 1
6 2 3

P

Consider

	

È ˘È ˘
- Í ˙Í ˙

Í ˙Í ˙ È ˘-
Í ˙Í ˙ Í ˙= - - -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Í ˙Í ˙

- -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2 1 1 2 10
6 6 6 6 36 2 2

1 1 1 1 10 2 3 1
2 2 6 2 32 1 3

1 1 1 1 1 1
3 3 3 6 2 3

8 0 0
0 2 0
0 0 2

TP AP

Hence, the quadratic form XTAX is transformed to the canonical form + +2 2 2
1 2 38 2 2y y y

Here, rank of the quadratic form = 3, index = 3, signature = 3.
\ it is positive definite.� Ans.

Exercise

Part A

	 1.	 If the canonical form of a quadratic form is +2 2
1 25 6y y  then the rank is ______.

	 (i)	 5	 (ii)	 0	 (iii)	 2	 (iv)	 1
	 2.	 The nonsingular linear transformation used to transform the quadratic form to 

canonical form is ______
	 (i)	 X = NTY	 (ii)	 X = NY	 (iii)	 Y = NX	 (iv)	 Y = X

	 3.	 Write down the quadratic form corresponding to the matrix 
È ˘-
Í ˙-Í ˙
Í ˙- -Î ˚

2 1 2
1 2 2
2 2 3

.

	 4.	 Define a quadratic form and give an example in two and three variables.
	 5.	 What do you mean by canonical form of a quadratic form?
	 6.	 Define index and signature of a quadratic form.
	 7.	 Discuss the nature of the quadratic form 2x2 + 5y2 + 3z2 + 4xy.
	 8.	 Discuss the nature of the quadratic form 2xy + 2yz + 2zx.
	 9.	 Determine the nature of the following quadratic forms without reducing them 

to canonical forms:
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	 (i)	 + + + + +2 2 2
1 2 3 1 2 2 3 3 13 6 2 2 4x x x x x x x x x

	 (ii)	 + - + - -2 2 2
1 2 3 1 2 2 3 3 12 3 12 8 4x x x x x x x x x

	 10.	 Find the index and signature of the quadratic form, - +2 2 2
1 2 32 5 7 .x x x

	 11.	 State the conditions for a quadratic form to be positive definite and positive 
semi-definite.

	 12.	 Write down the matrices of the following quadratic forms:
	 (i)	 2x2 + 3y2 + 6xy
	 (ii)	 2x2 + 5y2 – 6z2 – 2xy – yz + 8zx

	 (iii)	 + - - + +2 2 2
1 2 3 1 2 1 3 2 32 7 4 8 5x x x x x x x x x

	 (iv)	 + + + + + - - + -2 2 2 2
1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 42 3 4 2 4 6 4 8 12x x x x x x x x x x x x x x x x

	 13.	 Write down the quadratic forms corresponding to the following matrices.

	 (i)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 4 5
4 3 1
5 1 1

	 (ii)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 5
2 0 3
5 3 4

	 (iii)	

È ˘-
Í ˙-Í ˙
Í ˙- -
Í ˙

-Í ˙Î ˚

1 1 2 0
1 4 0 0
2 0 6 3
0 0 3 2

	 14.	 Write down the matrix of the QF

	
2 2 2
1 2 3 1 2 2 3 3 13 5 5 2 2 6x x x x x x x x x+ + - + +

	 15.	 Define pairwise orthogonal.

Part B

	 1.	 Reduce the QF + + - - +2 2 2
1 2 3 1 2 2 3 3 18 7 3 12 8 4x x x x x x x x x  to the canonical form 

through an orthogonal transformation and, hence, show that it is positive 
definite. Find also a nonzero set of values for x1, x2, x3 that will make the QF 
zero.

�

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜

-Í ˙Á ˜= = + = = =Í ˙Á ˜
Í ˙Á ˜-Í ˙Á ˜

Á ˜Í ˙Ë ¯Î ˚

2 2
2 3 1 2 3

1 2 2
3 3 3
2 1 2 ; 3 15 ; 1, 2, 2
3 3 3
2 2 1
3 3 3

P Q y y x x xAns.

	 2.	 Reduce the QF + + + - -2 2 2
1 2 3 2 3 3 1 1 210 2 5 6 10 4x x x x x x x x x  to a canonical form by 

orthogonal reduction. Find also a set of nonzero values of x1, x2, x3 which will 
make the QF zero.

�

Ê ˆÈ ˘-
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜-= = + = = - =Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜
Í ˙Ë ¯Î ˚

2 2
2 3 1 2 3

1 1 3
42 3 14
5 1 1 ; 3 14 ; 1, 5, 4
42 3 14
4 1 2
42 3 14

P Q y y x x xAns.
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	 3.	 Find the value of l so that the quadratic form
		  l + + + - +2 2 2

1 2 3 1 2 2 3 3 1( ) 2 2 2x x x x x x x x x  may be positive definite.� (Ans. l > 2)
	 4.	 Reduce the following quadratic forms to canonical forms or to sum of squares 

by orthogonal transformation. Write also rank, index and signature.
	 (i)	 3x2 + 5y2 + 3z2 – 2xy – 2yz + 2zx
	 (ii)	 2 2 2

1 2 3 1 2 1 3 2 32 2 2 2 2 2x x x x x x x x x+ + - + -
	 (iii)	 3x2 – 2x2 – z2 – 4xy + 8xz + 12yz
	 (iv)	 x2 + 3y2 + 3z2 – 2yz
� [Ans. (i) + +2 2 2

1 2 32 3 6 ;y y y  rank = 3, index = 3, signature = 3

� (ii) + +2 2 2
1 2 34 ;y y y  rank = 3, index = 3, signature = 3

� (iii) + -2 2 2
1 2 33 6 9 ;y y y  rank = 3, index = 2, signature = 1

� (iv) + +2 2 2
1 2 32 4 ;y y y  rank = 3, index = 3, signature = 3]

	 5.	 Reduce the QF 2x1x2 + 2x1x3 – 2x2x3 to the canonical form by an orthogonal 
transformation.� (Ans. + -2 2 2

1 2 32y y y )
	 6.	 Reduce the QF + + -2 2 2

1 2 3 2 33 3 2x x x x x  into the canonical by an orthogonal 
transformation.

� (Ans. + +2 2 2
1 2 32 4y y y )

	 7.	 Reduce the QF y2 + 2xy into the canonical form by an orthogonal reduction and 
state the nature of the QF.� (Ans. - + +2 2 2

1 2 3 ;y y y  indefinite)
	 8.	 Discuss the nature of the following quadratic forms:
	 (i)	 2x2 + 3z2 + 2xy
	 (ii)	 2

111x  + 14x1y1 + 14x1z1 + 8y1z1
	 (iii)	 x2 + 4xy + 6xz – y2 + 2yz + 4z2

� [Ans. (i) Positive definite (ii) Indefinite (iii) Positive semi-definite]
	 9.	 Reduce the following quadratic forms to canonical forms by orthogonal 

transformation. State the nature.
	 (i)	 - 2

1 2 316x x x

	 (ii)	 2 2 2
1 2 3 1 2 2 37 6 5 4 4x x x x x x x+ + - -

	 (iii)	 2 2 2
1 2 3 1 2 2 32 3 4 4x x x x x x x+ + + +

� [Ans. (i) - -2 2 2
1 3 38 8y y y ; indefinite (ii) + +2 2 2

1 2 39 6 3 ;y y y  positive definite 
(iii) + -2 2 2

1 2 35 2 ;y y y indefinite]
	 10.	 Find the nature of the following:
	 (i)	 3x2 – 2y2 – z2 – 4xy + 8xz + 12yz
	 (ii)	 + + - - +2 2 2

1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x
	 (iii)	 5x2 + 26y2 + 10z2 + 4yz + 14xz + 6xy
� [Ans.(i) Indefinite (ii) Positive definite (iii) Positive semi-definite]
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Questions opt1 opt2 opt3 opt4 opt5

The sum of the main diagonal elements of a matrix is called------ trace of a 

matrix 

quadratic 

form

eigen value  canonical 

form

Every square matrix satisfies its own ---------- characteristic 

polynomial        

characteristic 

equation

orthogonal 

transformati

on          

 canonical 

form

The orthogonal transformation used to diagonalise the symmetric matrix A 

is----
N

T
 AN   X

T
 AX     NAN

-1        NA

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then kλ1 ,kλ2, kλ3,……… 

,kλ n  are the eigen values of --------------

kA  kA
2         

kA
-1       

 A
-1

Diagonalisation of a matrix by orthogonal reduction is true only for a ----- matrix.diagonal triangular real 

symmetric

scalar

In a modal matrix, the columns are the ----------- eigen vectors 

of A

eigen vectors 

of adj A

eigen 

vectors of 

inverse ofA

eigen values 

of A

If atleast one of the eigen values of A is zero, then det A = ----- 0 1 10 5

If the canonical form of a quadratic form is  5y1
2
 - 6 y2

2
 , then the index is -

-------

4 0 2 1

det (A- λI ) represents------ characteristic 

polynomial

characteristic 

equation

quadratic 

form

canonical 

form

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then 1/λ1 ,1/λ2, 

1/λ3,……… ,1/λ n  are the eigen values of --------------

 A
-1 A         A

n
A

p           

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then λ1
p 

, λ 2 
p
 , ………. λ 

n 
p
 are the eigen values of 

 A
-1

 A
2         

A
-p            

A
p           

Cayley -Hamilton theorem is used to find ------------ inverse and 

higher powers 

of A  

eigen values eigen 

vectors

quadratic 

form

The eigen vectors corresponding to distinct eigen values of a real 

symmetric matrix are ------------

linearly 

dependent

orthogonal  singular not unique



 If all the eigen values of a matrix are distinct, then the corresponding 

eigen vectors are----------

linearly 

dependent

unique not unique linearly 

independent

The eigen values of a ---------------------- matrix are its diagonal elements diagonal  symmetric skew-matrix triangular

In the orthogonal transformation N
T
 AN = D , D refers to a ---------- 

matrix.

diagonal orthogonal symmetric skew- 

symmetric

In a modal matrix, the columns are the eigen vectors of----------  A
-1

A
2         A         adj A

If the eigen values of  8x1
2
 + 7 x2

2
 +3 x3

2
 –12 x1 x2 – 8 x2 x3 +4 x3x1 are 0,3 

& 15, then its nature is-----------

positive 

definite

positive 

semidefinite

indefinite negative 

definite

The elements of the matrix of the quadratic form x1
2
 + 3 x2

2
 + 4 x1 x2 are ---

---------

a11 = 1,a12 =2 , 

a 21 = 2 , a 22 = 

3

a11 = -1, a12 = -

2 , a 21 = 2 , a 

22 = 3

a11 = 1, a12 = 

4 , a 21 = 4 , 

a 22 = 3

a11 = 1, a12 = 

4 , a 21 = 3 , 

a 22 = 1

If the sum of two eigen values and trace of a 3x3 matrix A are equal, then 

det A = ---------

λ1 λ2 λ3 0 1 2

If 1,5 are the eigen values of a matrix A, then det A = ------- 5 0 25 6

If the canonical form of a quadratic form is  5y1
2
 + 6 y2

2
 , then the rank is --

------

4 0 2 1

The non –singular linear transformation used to transform the quadratic 

form to canonical form is ----------
 X= N

T
Y         X= NY          Y= NX         NXA

The eigen vector is also known as------- latent value latent vector column 

value

 orthogonal 

value

If 1,3,7 are the eigen values of A, then the eigen values of 2A are ------------ 1,3,7 1,9,21 2,6,14 1,9,49

If the eigen values of 2A are 2, 6, 8 then eigen values of A are _________ 1,3,4 2,6,8 1,9,16 12,4,3

The number of positive terms in the canonical form is called the ________ of the quadratic form.rank index Signature indefinite

If all the eigenvalues of A are positive then it is called as_______  Positive 

definite

Negative 

definite

Positive 

semidefinite

 Negative 

semidefinite

If all the eigenvalues of A are negative then it is called as_______ Positive 

definite

Negative 

definite

Positive 

semidefinite

Negative 

semidefinite

A homogeneous polynomial of the second degree in any number of 

variables is called the ______

characteristic 

polynomial

characteristic 

equation

quadratic 

form

canonical 

form



The Set of all eigen values of the matrix A is called the ___________ of A rank index Signature spectrum

A Square matrix A and its transpose have _______ eigen values. different  Same Inverse Transpose

The sum of the __________ of a matrix A is equal to the sum of the 

principal diagonal elements of A.

characteristic 

polynomial

characteristic 

equation

eigen values eigen 

vectors

The product of the eigenvalues of a matrix A is equal to_________  Sum of main 

diagonal

Determinant 

of A

Sum of 

minors of 

Main 

diagonal

Sum of the 

cofactors of 

A

The eigenvectors of a real symmetric are _______  equal  unequal real symmetric

When the quadratic form is reduced to the canonical form, it will contain 

only r terms, if the _____ of A is r.

 rank index  Signature spectrum

The excess of the number of positive terms over the number of negative 

terms in the canonical form is called the ___________ of the quadratic 

form.

 rank index  Signature spectrum

If all the eigen values of A are less than zero and atleast one eigen value is 

zero then the quadratic form is said to be ___________

 Positive 

definite

Negative definitePositive semidefinite Negative 

semidefinite

If all the eigen values of A are greater than zero and atleast one eigen 

value is zero then the quadratic form is said to be ___________

 Positive 

definite

Negative 

definite

Positive 

semidefinite

 Negative 

semidefinite

If the quadratic form has both positive and negative terms then it is said to 

be ___________

Positive 

definite

Negative 

definite

Positive 

semidefinite

 indefinite



opt6 Answer

trace of a 

matrix 

characteristi

c equation

N
T
 AN   

kA

real 

symmetric

eigen 

vectors of A

0

1

characteristi

c equation

 A
-1

A
p           

inverse and 

higher 

powers of A  

orthogonal



linearly 

independent

triangular

diagonal

A         

positive 

semidefinite

a11 = 1,a12 

=2 , a 21 = 2 , 

a 22 = 3

0

5

2

 X= NY          

latent vector

2,6,14

1,3,4

index

 Positive 

definite

Negative 

definite

quadratic 

form



spectrum

 Same

eigen values 

Determinant 

of A

real

 rank

 Signature

 Negative 

semidefinite

Positive 

semidefinite

 indefinite



Questions opt1 opt2 opt3 opt4 opt5

A polynomial fucntion in R is never 

continuous in 

R

may or may 

not be 

continuous in 

R

is always 

continuous 

in R

is 

continuous 

in R except 

at x = 0

The function f(x)=|x| is continuous for 

all x

discontinuous 

at x=0 only

continuous 

at x = 0 only

discontinuou

s for all x

Which of the following is continuous at x = 0 ? f(x) = 1/x f(x) = |x| / x f(x) = |x| x = x / |x|

If f is finitely derivable at c, then f is also _____ at c discontinuous continuous derivative limit

A function f is said to be ___ in an interval [a, b] if it is continuous at each 

and every point of the interval

discontinuous continuous derivative limit

A function f is said to be  continuous in an interval [a, b] if it is____ at 

each and every point of the interval

discontinuous continuous derivative limit

The exponential function is ___ at all points of R discontinuous continuous derivative limit

Which of the following is continuous function? e^x sin x cos x e^x, sinx, cosx

Every differentiable function is ____ constant discontinuous algebraic continuous 

Every polynomical function of degree n is ___ constant discontinuous algebraic continuous 

The derivative of (log x) is 1/x x x^2 0

The derivative of (e^x) is 1/x x x^2 e^x

The derivative of constant is 1/x 0 x^2 x

The derivative of (sin x) is cos x 0 x^2 x

The derivative of (cos x) is (cos x) (- sin x) tan x (-x)

The derivative of (tan x) is (cos x) (- sin x) tan x (sec^2 x)

The derivative of (cosec x) is (-cos x) (- cosec x. cot x)tan x (sec^2x)

The derivative of (sec x) is (sec x tan x) (- cosec x. cot x)tan x (sec^2x)

The derivative of (cot x) is (-cos x) (- cosec^2 x) tan x (sec^2x)

The derivative of (x^3) is 3x^2 3x^3 3x 3

The derivative of (5x) is 5x 5 1 0

The derivative of (10) is 0 2 3 10

The derivative of (5x^2) is 10 0 10x 5x



The derivative of (e^3x) is 6 e^3x 3 e^x 3 e^3x  e^3x

The derivative of (sin 4x) is (4cos 4x) (- 4sin x) tan4 x (cos 4x)

The derivative of (cos 2x) is (- 2sin x) (- 2sin 2x) tan x (- sin 2x)

The derivative of (cos 5x) is (- 5sin x) (- 5sin 2x) tan x (- sin 5x)

Find the first derivative of 6x^3 18x^2 18x 18 6x^2

Find the second derivative of 6x^3 36 18x^2 36x 18x

Find the third derivative of 6x^3 36 18x^2 36x 18x

Find the first derivative of (x^3+2) x^2+2 x^2 3x^2 3x

Find the second derivative of  (x^3+2) x^2+2 6x 3x^2 3x

Find the third derivative of  (x^3+2) x^2+2 6x 3x^2 6

Find the first derivative of (log x+2) 1/x x x^2 0

Find the first derivative of (e^x+2x) e^x e^x+2 e^x 0

Find the second derivative of (e^x+2x) e^x e^x+2 e^x 0

Find the first derivative of (kx) kx x k 1

Find the second derivative of (kx) kx x k 0

Find the derivative of y = (x^2) with respect to x x 2x x^2 0

Find the derivative of y = (sin 5x) with respect to x 5 cos 5x (-5 cos 5x) cos 5x 5 cos x



opt6 Answer

is always 

continuous 

in R

continuous 

at x = 0 only

f(x) = |x|

continuous 

continuous 

continuous 

continuous 

e^x, sinx, cosx

continuous 

continuous 

1/x

e^x

0

cos x

(- sin x)

(sec^2 x)

(- cosec x. cot x)

(sec x tan x)

(- cosec^2 x)

3x^2

5

0

10x



3 e^3x

(4cos 4x)

(- 2sin 2x)

(- 5sin 2x)

18x^2

36x

36

3x^2

6x

6

1/x

e^x+2

e^x

k

0

2x

5 cos 5x



Questions opt1 opt2

An  equation involving one dependent variable 
and its derivatives with respect to independent 
variable is called __________

Ordinary Differential 
Equation

Partial Differential 
Equation

The ODE of the first order can be written as F(x,y,s,t)  F(x,y,z,p,q)  

C.F+P.I is called_____solution Singular Complete 

The roots of the A.E of D.E,  (D^2-2D+1)y=0  
are (0 1) (3 2)

The quadratic equation of roots are  real and 
distinct. What is the Complementary function?

 The order of the (D^2+D)y=0  is 2 1

 The roots of the A.E of D.E, (D^4-1)y=0  are (1 ,1, 1, 1) (1, 1, -1, 1)

The roots of the A.E of D.E, (D^3-D^2+D-1)y=0  
are (1,-i, i)    (i, i, -i)

The roots of the A.E of D.E, (D^3-7D-6)y=0 are (1, 2, 3) (1, -2, 3)



opt3 opt4 opt5 opt6 Answer

Difference Equation
Integral 
Equation

Ordinary 
Differential 
Equation

F(x,y,z) F(x,y,y')=0 F(x,y,y')=0

General particular General 

(1 2) (1 1) (1 1)

0 -1 2

(1 ,-1, 1, -1) (1, -1, i, -i) (1, -1, i, -i)

(1, i, -i)    (1, 1, 1) (1, -i,  i)    

(3, 2, -1) (-1, -2, 3) (-1, -2, 3)



The degree of the (D^2+2D+2) y=0 is 1 3

The particular integral of (D^2-2D+1)y=e^x 
is__________ ((x^2)/2) e^x (x/2) e^x

The roots of the A.E of D.E, (D^2-4D+4)y=0 are (2, 1)   (2, 2) 

If y=ax+b then differentiating with respect to 
x=________ a a+b

A Differential Equation   is said to be 
_____________ if the dependent variable and its 
differential co-efficient occur only in the first 
degree. Linear equation                                 

Non-Linear 
equation   

The P.I of the Differential equation (D^2 -3D+2)
y=12 is________                                                           1  /  2     1  /  7

If f(D)=D^2 -2, (1/f(D))e^2x=______     (1  /  2) e^x     (1  /  4) e^2x

If f(D)=D^2 +5, (1/f(D)) sin 2x =______ sin x cos x

To transform  (xD^2+D+7)y=1/x into a linear 
differential equation with constant coefficient.
Put  x=______          e^(-t) e^(2t)



0 2 1

((x^2)/4) e^x ((x^3)/3) e^x ((x^2)/2) e^x

(2, -2)    (-2, 2) (2, 2) 

b ab a

Homogeneous equation

Non-
Homogeneous 
equation Linear equation                                 

6 10 6

    (1  /  2) e^(-2x)     (1  /  2) e^2x (1  /  2) e^2x

sin 2x    -sin 2x sin 2x

e^(t) e^(-2t) e^(t)



The particular integral of (D^2 +19D+60)y= e^x 
is______ (-e^(-x))/80 (e^(-x))/80

The particular integral of (D^2+25) y= cosx  is 
_________ (cosx)/24 (cosx)/25

The particular integral of (D^2+25) y= sin4x  is 
__________ (-sin4x)/9 (sin4x)/9

The particular integral of (D^2+1) y= sinx  is 
___________ xcosx/2 ( -xcosx)/2

The particular integral of  (D^2 -9D+20)y=e^
(2x) is___________ e^(2x) /6 e^(2x) /(-6)

The particular integral of (D^2 +D-72)y= e^(7x)  
is __________ e^(7x)/16 e^(-7x)/16

The particular integral of  (D^2-1) y= sin2x  is 
_________ (-sin2x)/5 sin2x/5

The particular integral of (D^2+2) y= cosx  is 
_________ (-cosx) (-sinx)

In a PDE, there will be one dependent variable 
and ____ independent variables only one two or more 



(e^x)/80 (-e^x)/80 (e^x)/80

(-cosx)/24 (-cosx)/25 cosx/24

(sin4x)/41 (-sin4x)/41 (sin4x)/9

( -xsinx)/2 xsinx/2 ( -xcosx)/2

e^(2x) /12 e^(2x) /(-12) e ^ (2x) /6

e^(7x)/(-16) e^(-7x)/(-16) e^(7x)/(-16)

sin2x/3 (-sin2x)/3 (-sin2x)/5

cosx sinx cosx

no
infinite number 
of two or more 



The ______ of a PDE is that of the highest order 
derivative occurring in it degree power

The degree of the a PDE is ______of  the higest 
order derivative power ratio

Afirst order PDE is obtained if______

Number of arbitrary 
constants is equal Number 
of independent variables

Number of 
arbitrary constants 
is lessthan Number 
of independent 
variables

In the form of PDE, f(x,y,z,a,b)=0. What is the 
order? 1 2

What is form of the z=ax+by+ab by eliminating 
the arbitrary constants? z=qx+py+pq z=px+qy+pq

A solution obtained from the complete integral 
by giving paticular values to the arbitrary 
constant is called a _____ solution. complete general

The solution f(x,y,z,a,b)= 0 of the first order 
PDE, Which contains two arbitrary constants is 
called a ____ solution. complete general

General solution of PDE F(x,y,z,p,q)=0 is any 
arbitray function F of specific functions u,v 
is____satisfying given PDE F(u,v)=0 F(x,y,z)=0

The Lagrange's linear PDE is of the form 
_______ Pp+Qq=r Pp+Qq= R



order ratio order 

degree order power

Number of arbitrary constants 
is  greater than Number of 
independent variables

Number of 
arbitrary 
constants is not 
equal to 
Number of 
independent 
variables

Number of arbitrary 
constants= Number 
of independent 
variables

3 4 1

z=px+qy+p z=py+qy+q z=px+qy+pq

particular singular particular

particular singular complete

F(x,y)=0 F(p,q)=0 F(u,v)=0

Pp+Qp= R Pq+Qq= R Pp+Qq= R



_________ is of the form of the Lagrange's 
auxiliary equation dx/P=dy/Q=dz/R dx/Q=dy/P=dz/R

The  complete solution  of the PDE, pq=1 is____ z=ax+(1/a)y+b z=ax+y+b

The order and degree of the solution  of the PDE 
is y=f(y+x)+g(y+x)+e^2x_______ 1 and 2 2 and 1

The complete solution of clairaut's equation is 
_____ z=bx+ay+f(a,b) z=ax+by+f(a,b)

The clairaut's equation can be written in the form z=px+qy+f(p,q) z= py+qx

From the PDE by eliminating the arbitrary 
function from z=f(x^2 -y^2) is xp+yq=0 p=-(x/y)

Which of the following is the type f(z,p,q)=0 ? p(1+q)=qx p(1+q)=qz

The equation (D^2 z+2xy(Dz)^2+D'=5 is of 
order ____and degree____ 2 and 2 2 and 1

The complementry function of (D^2 -4
DD'+4D'^2)z=x+y is f(y+2x)+xg(y+2x) f(y+x)+xg(y+2x)



dx/R=dy/Q=dz/P
dx/P=dy/R=dz/
Q dx/P=dy/Q=dz/R

z= ax+(1-2x)/y+c z=ax+b z=ax+(1/a)y+b

0 and 1 1 and 1 2 and 1

z=ax+by z=f(a,b) z=ax+by+f(a,b)

z=px+f(a,b) z=py+qy+f(p,q) z=px+qy+f(p,q)

q=yp/x yp+xq=0 yp+xq=0

p(1+q)=qy p=2x f(y+2x) p(1+q)=qz

1 and 1 0 and 1 2 and 1

f(y+x)+xg(y+x)
f(y+4x)+xg
(y+4x) f(y+2x)+xg(y+2x)



The solution of xp+yq=z is _____ f(x^2,y^2)=0 f(xy,yz)

The solution of p+q=z is ____ f(xy,ylogz)=0 f(x+y, y+logz)=0

The roots of the PDE(D^2-2DD'+D' ^2)z=0 are 0,1    i,-i

The particular integral of e^(ax+by)/ ( D-(aD’
/b))^2   is ------ e^(ax+by) (x2/2) e^(ax+by)

The particular integral of e^(ax+by)/ ( D-(aD’
/b))  is --------- ax-by+c                              e^(ax+by)
The subsidiary equations of the Lagrange's 
equation                                                      is____



f(x,y)=0 f(x/y ,y/z)=0 f(x/y ,y/z)=0

f(x-y, y-logz)=0 f(x-y,y+logz)=0 f(x-y, y-logz)=0

1,2 1,1 1,1

ax-by+c                              ax+by (x2/2)e^(ax+by)

ax+by xe^(ax+by) xe^(ax+by)







QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

The partial differentiation is a  function of_________  or 

more variables . two zero one three two 

 If z=f(x,y) where x and y are ______ function of another 

variable t continuous differential two one continuous

If f(x,y)=0 then xand y are said to be an _________ function implicit extremum explicit differential implicit

The concept of jacobian is used when we change the 

variables in________ multiple integrals

single 

integrals diffenential function multiple integrals

The extreme values of f(x,y,z) in such a situation are 

called________values extreme

constrained 

extreme boundry values initial 

constrained 

extreme

The jacobian were introduced by_________ C.G.Jacobi johon Gauss Euler C.G.Jacobi

f(a,b) is said to be extreme value of f(x,y) if it is either 

a______________ 

maximum or 

minimum zero minimum maximum

maximum or 

minimum

The Lagrange multiplier is denoted by ________________ l m n p l

Every extremum value is a stationary  value but a stationary 

value need not be an     ___________ value. infimum minimum maximum extremum extremum

F is differentiable and where not all of its first differential 

derivatives vanish simultaneously then the functions 

u1,u1…..un are said to be functionally_____ independent dependent explicit implicit dependent

f(a,b) is a maximum value of f(x,y) if there exists some 

neighbourhood of the point (a,b)  such that for every point 

(a+h,b+k) of the neighbourhood ________ f(a,b)>f(a+h,b+k)

f(a,b)<f(a+h,

b+k) f(a,b)<0 f(a,b)>0 f(a,b)>f(a+h,b+k)

  f(a,b) is a minimum value of f(x,y) if there exists some 

neighbourhood of the point (a,b)  such that for every point 

(a+h,b+k) of the neighbourhood ________ f(a,b)>f(a+h,b+k)

f(a,b)<f(a+h,

b+k) f(a,b)<0 f(a,b)>0 f(a,b)<f(a+h,b+k)

The necessary condition for maxima is __________ ∂f/∂x (a,b)=0

∂f/∂x (a,b)= 

1 ∂f/∂y (a,b)=5 ∂f/∂y (a,b)=1 ∂f/∂x (a,b)=0

The necessary condition for minimum is ____________ ∂f/∂x (a,b)=0

∂f/∂y 

(a,b)=0 ∂f/∂x (a,b)=1 ∂f/∂y (a,b)=1 ∂f/∂y (a,b)=0

UNIT - IV - FUNCTIONS OF SEVERAL VARIABLES 



f(a,b) is said to be a stationary value of f(x,y) if (x,y) 

is__________

∂f/∂x (a,b)=0 and  

∂f/∂y (a,b)=0

∂f/∂x 

(a,b)=1 ∂f/∂y (a,b)=0 ∂f/∂y (a,b)=1

∂f/∂x (a,b)=0 and  

∂f/∂y (a,b)=0

If f(a,b) is said to be _________of f(x,y) if it is either 

maximum or minimum. extremum value

boundary 

value end power extremum value

If u be a _____ of degree n in x and y. linear

homogeneou

s

non-

homogeneous polynonmial homogeneous

The _______ differentiation is a function of two or more 

variables. ODE PDE partial total partial

The ______ were introduced  by C.G.Jacobi. jacobian millian taylor Gauss jacobian

The concept of ________ is used when we change the 

variables in multiple integrals taylor gauss maculaurin jacobian jacobian

If  the function u,v,w of three independent variables x,y,z are 

not independent  then the Jacobian of u,v,w  with respect to 

x,y,z is always equal to 1 0 Infinity

Jacobian of x,y,z 

with respect ro 

u,v,w 0

The function f(x)=10+x^6

is a decrasing 

function of x

has a 

minimum at 

x=0

has neither a 

maximum nor 

a minimum at 

x=0 saddle point

has neither a 

maximum nor a 

minimum at x=0

The function f(x,y)=2x^2+2xy-y^3 has

only one stationary 

point at (0,0)

two 

stationary 

points at 

(0,0)and 

(1/6,1/3)

two stationary 

point at (0,0) 

and (1,-1)

not stationary 

points

two stationary 

points at (0,0)and 

(1/6,1/3)

If(a/3,a/3) is an extreme point on xy(a-x-y), the maxima is a^3/27 a/27 a^3/9 a/9 a^3/27

Any function of the type f(x,y)=c is called an 

_______function Implicit Explicit Constant composite Implicit

If u=f(x,y) ,where x=pi(t),y=si(t) then u is a function of t and 

is called the ____ function Implicit Explicit Constant composite composite

The point at which function f(x,y) is either maximum or 

minimum is known as ______ point Stationary Saddle point extremum implicit Stationary



If rt-s^2>0 and r<0 at (a,b) the f(x,y) is maximum at (a,b) and 

the_______ value of the function(a,b) Maximum Minimum

maximum or 

minimum zero Maximum 

If rt-s^2>0 and r>0 at (a,b) the f(x,y) is minimum at (a,b) and 

the_______ value of the function(a,b) Maximum Minimum

maximum or 

minimum zero Minimum

If rt-s^2>0  at (a,b) the f(x,y) is neither maximum nor 

minimum at (a,b) such point is known as _______ point Stationary Saddle point extremum implicit Saddle point

If f(x,y) is a function of two variables x,y then _________ lim  f(x,y)=1 lim  f(x,y=0 lim f(x,y)>0 lim f(x,y)<0 lim  f(x,y)=1



Questions opt1 opt2 opt3

The Taylor,s series of f(x,y) at the point 
(0,0) is ___________ series. Maclaurins Taylor power

The expansion of f(x,y) by Taylor series is 
__________ zero unique minimum

The period of cos nx, where n is the positive 
integer is ________. 2π/n n/2π 2π

f(x,y) =e^x siny at (1,π/2)then ___________ f=0 f=1 f=2

f(x,y) = e^xy at(1,1) then __________ f=1 f=e f=0

Which of the following functions has the 
period 2π? cos x sin nx tan nx

1/π ∫ f(x) sinnx dx between the limits c to 
c+2π gives the Fourier coefficient_____ a_0 a_n b_n

If f(x) = -x for -π< x< 0 then its Fourier 
coefficient a0 is_______- (π^2)/2 π/2 π/3

If a function satisfies the condition f(-x) = f
(x) then which is  true? a_0 = 0 a_n = 0 a_0 = a_n = 0



opt4 opt5 opt6 Answer

binomial Maclaurins 

maximum unique

nπ 2π/n

f=e f=e

f=2 f=2

tan x cos x

b_1 b_n

π π

b_n = 0 b_n = 0



If a function satisfies the condition f(-x) = -f
(x) then which is  true? a0 = 0 an = 0 a_0 = a_n = 0

Which of the following is an odd function? sin x cos x x^2

Which of the following is an even function? x^3 cos x sin x

The function f(x) is said to be an odd 
function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x)

The function f(x) is said to be an even 
function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x)

 ∫f(x) dx = 2∫f(x) dx  between the limits -a to 
a if f(x) is ------ even continuous odd

 ∫f(x) dx = 0  between the limits -a to a if f(x) 
is ------ even continuous odd

If a periodic function f(x) is odd, it’s Fourier 
expansion contains no ------ terms. coefficient an sine coefficient a0

If a periodic function f(x) is even, it’s 
Fourier expansion contains no ------ terms. cosine sine coefficient a_0



b_n = 0 a_0 = a_n = 0

x^4 sin x

sin^2x cos x

f(-x) = f(-x) f(-x) = - f( x)

f(-x) = f(-x) f(-x) = f( x)

discontinues even

discontinues odd

cosine cosine

coefficient 
a_n sine



In dirichlet condition, the function f(x) has 
only a ----- number of  maxima and minima. uncountable continuous infinite

In Fourier series, the function f(x) has only a 
finite number of maxima and minima. This 
condition is known as -------

Dirichlet Kuhn 
Tucker Laplace

In dirichlet condition, the function f(x) has 
only a ----- number of  discontinuities . uncountable continuous infinite

A sequence  {2^n}   is Convergent  divergent Oscillatory

A sequence   (-1)^n+2  is Convergent  divergent Oscillatory

A sequence {2n+1/3n-2}  is Convergent  divergent Oscillatory

A sequence  {2n^2+n/3n^2-3} is Convergent  divergent Oscillatory

A sequence    5+(-1)^n  is   Convergent  divergent Oscillatory

The series  ∑  cos(1/n)  is Convergent  divergent Oscillatory



finite finite

Cauchy Dirichlet

finite finite

unique divergent 

unique Oscillatory

unique Convergent  

unique Convergent  

unique Oscillatory

unique Convergent  



The series    ∑  x^n/(n^3+1)   at x=1 is Convergent  divergent Oscillatory

The series  1-(1/2^2)+(1/3^2)-(1-4^2)+… is Convergent  divergent Oscillatory

  The series  2-(3/2)+(4/3)-(5/4)+… is

Convergent   
but not 
absolutely divergent 

 absolutely 
Convergent 

 The series  1+(1/√2)+(1/√3)+… is

Convergent   
but not 
absolutely Oscillatory divergent 

 In a series positive terms  ∑ u_n if  limit n 
tends to ∞  u_n/u_n+1  is not equal to zero 
then the series    ∑ u_n  is Convergent  divergent 

not  
Convergent  

 The series  1-(1/2)+1-(3/4)+1-(7/8)+… is Convergent  

conditionall
y 
Convergent  

 absolutely 
Convergent 

 The series   (1/(a+1) -(1/(a+2) +(1/a+3)-(1
/a+4)+...convergent if a>0 a<0 a<-1

The series 1-2x+3x^2-4x^3+...  where 
0<x<1 is Convergent  divergent Oscillatory

The series  1/(1+2^(-1))  +1/(1+2^(-2))+1/
(1+2^(-3))… is Convergent  divergent Oscillatory



Not unique Convergent  

Not unique Convergent  

Oscillates 
finitely

Oscillates 
finitely

absolutely 
Convergent divergent 

Oscillatory not  Convergent  

Oscillatory Oscillatory

a≤0 a>0

unique Convergent  

unique divergent 



 The series  whose nth term is ∑  sin (1/n)   
is Convergent  divergent Oscillatory

The series  2+(3/4)+(4/9)+(5/16)+…+(n+1)
/n^2 +… is Convergent  divergent Oscillatory

If  p and q are positive real number, then the 
series  2^p/1^q+3^p/2^q+4^p/3^q+… 
converges p<q-1 p<q+1 p≥q-1

 An ordered set of real number  a_1,a_2,
…a_n  is called a____________ Series sequence

Montonic 
sequence 

 If a sequence has a ________,it is called a 
convergent sequence Finite limit 

Infinite 
limit limit

 A sequence  is said to be bounded above if 
there exists a number k, such that _____  for 
every n. a_n>k a_n≥k a_n≤k

Both increasing and decreasing sequence are 
called ______ sequence. Convergent Montonic Bounded

If  limit n tends to ∞  a_n  is equal to 
_______then the sequence is said to be 
Convergent

finite and 
unique Infinite unique

If u1,u2,….un,…be an infinite sequence or 
real  numbers,then u1+u2+….+un+…is 
called_________ infinite series finite series finite terms



Not unique Convergent  

Not unique divergent 

p≥q+1 p<q-1

Montonic 
sequence sequence

Bounded Finite limit 

a_n<k a_n≤k

divergent Montonic

not unique 
finite and 
unique 

infinite terms infinite series



The series 1+2+3+  +n+…+...∞ is Convergent divergent Oscillatory

Every absolutely convergent series is a 
______ series Convergent divergent Oscillatory

Any convergent series of ________ terms is 
also absolutely convergent negative positive zero

 If  limit n tends to  infinite   u_n/u_n+1  = m  
is a series of positive terms ∑ u_n  is 
convergent if _____ m>0 m<1 m>1

 If  limit n tends to ∞  u_n/u_n+1  = m is a 
series of positive terms ∑ u_n is divergent if 
_____ m>0 m<1 m>1

 If  limit n tends to ∞  u_n/u_n+1  = m is a 
series of positive terms .when the ratio test 
fails      m>0 m<1 m>1



not unique divergent 

not unique Convergent

unique positive

m=1 m>1

m=1 m<1

m=1 m=1






