15BTBT202

MATHEMATICS II

3204

OBJECTIVES:

- To impart analytical ability in solving mathematical problems as applied to the respective branches of Engineering.
- To understand the concepts of Multiple integrals, Functions of several variables and fourier • series
- To understand the concepts of Boundary value problems and Statistics.

INTENDED OUTCOMES:

- The students will be able to understand mathematical tools needed in evaluating multiple • integrals and their usage.
- The students will be able to familiarize functions of several variables which is used in many physical engineering problems.

UNIT -I **MULTIPLE INTEGRALS**

Double integration in Cartesian – Change of order of integration – Area as a double integral – Triple integration in Cartesian coordinates.

UNIT -II FUNCTIONS OF SEVERAL VARIABLES

Function of two variables - Taylor's expansion - maxima and minima - constrained maxima and minima by Lagrangian multiplier method – Jacobians.

UNIT-III **FOURIER SERIES**

Dirchlet's conditions – statement of Fourier theorem – Fourier coefficients – change of scale – Half range series – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS UNIT-IV

Method of separation of variables - one dimensional wave equation - one dimensional heat equation steady state conditions - zero and non - zero boundary conditions.

UNIT – V **STATISTICS**

Measures of central tendency - Mean, Median, Mode, Standard deviation - moments - skewness and kurtosis-correlation – rank correlation.

(12)

Total: 60

(12)

(12)

(12)

(12)

REFERENCES:

S.	AUTHOR(S)	TITLE OF THE	PUBLISHER	YEAR OF
No.	NAME	BOOK		PUBLICATIONS
1	Hemamalini. P.T	Engineering	McGraw-Hill Education	2014
		Mathematics I & II	Pvt.Ltd, New Delhi.	
	D D V 1			0010
2	Dr.P.Kandasamy,	Engineering	S.Chand&Co.,	2013
	Dr.K.Thilagavathy,	Mathematics Volume	New Delhi.	
	Dr.K.Gunavathy	III		
3	Veerarajan, T	Engineering	Tata McGraw Hill	2010
		Mathematics	Publishing Co.,	
			New Delh.	
4	Sundaram V.,	Engineering	Vikas publishing house	2005
	Balasubramanian R.,	Mathematics	Pvt. Ltd, New Delhi.	
	Lakshminarayanan K.A.			
5	Gupta S.C.,Kapoor V.K	Fundamentals of	Sultan chand& Sons, New	2006
		Mathematical	Delhi.	
		Statistics		

WEBSITES:

- 1. www.intmath.com
- 2. www.efunda.com
- 3. <u>www.mathcentre.ac.uk</u>

KARPAGAM UNIVERSITY KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) COIMBATORE-641 021 DEPARTMENT OF SCIENCE AND HUMANITIES FACULTY OF ENGINEERING B.Tech - Biotechnology - (Regular) - II Semester LESSON PLAN

Name:P.KARPAGAM Subject: MATHEMATICS-II

Subject Code: 15BTBT202

S.NO	Topics covered	No. of hours
	UNIT- I MULTIPLE INTEGRALS	nouis
1.	Introduction of integration and basic formulas	1
2.	Double integration in Cartesian coordinates	1
3.	Problems based on double integration in Cartesian coordinates	1
4.	Change of order of integration	1
5.	Problems based on change of order of integration	1
6.	Tutorial 1: Change of order of integration problems	1
7.	Area as a double integral	1
8.	Problems based on area as a double integral	1
9.	Tutorial 2: Area as a double integral problems	1
10.	Triple integration in Cartesian coordinates	1
11.	Problems based on Triple integration in Cartesian coordinates	1
12.	Tutorial 3: Triple integration in Cartesian coordinates.	1
	Total	12
	UNIT II FUNCTIONS OF SEVERAL VARIABLES	
13.	Introduction of functions of several variables	1
14.	Problems based on functions of several variables	1
15.	Taylor's expansion	1
16.	Problems based on Taylor's expansion	1
17.	Tutorial 4: Problems based on Taylor's expansion	1
18.	Concept of maxima and minima	1
19.	Problems based on maxima and minima	1
20.	Constrained maxima and minima by Lagrangian multiplier method	1
21.	Problems based on maxima and minima by Lagrangian multiplier method	1
22.	Tutorial 5: Maxima and minima by Lagrangian multiplier method problems	1
23.	Introduction of Jacobians and problems	1
24.	Tutorial 6: Problems on Jacobians	1
	Total	12
	UNIT III FOURIER SERIES	
25.	Introduction to basic integration and Bernoulli's integration	1
26.	Problems based on Bernoulli's integration	1
27.	Periodic function - Dirchlet's conditions and Statement of Fourier theorem	1
28.	Fourier coefficients and solving problems	1

29.	Full range series in the interval $(-\pi, \pi)$ and $(0, 2\pi)$	1
30.	Problems based on full range series in the interval $(-\pi, \pi)$ and $(0, 2\pi)$	1
31.	Tutorial:7 Problems based on full range series in the interval $(-\pi, \pi)$ and $(0, 2\pi)$	1
32.	Concept of change of scale and Half range series	1
33.	Problems based on half range series in the interval $(0, \pi)$	1
34.	Tutorial:8 Problems based on half range series in the interval $(0, \pi)$	1
35.	Harmonic Analysis	1
36.	Tutorial: 9 Problems on Harmonic Analysis	1
	Total	12
	UNIT IV BOUNDARY VALUE PROBLEMS	
37.	Introduction with application of partial differential equations	1
38.	Classification of second order quasi linear PDE	1
39.	Method of separation of variables	1
40.	Tutorial : 10 Problems on method of separation of variables	1
41.	Solution of One dimensional wave equation	1
42.	Problems on One dimensional wave equation	1
43.	Tutorial :11 Problems on One dimensional wave equation	1
44.	Solution of One dimensional heat equation	1
45.	Problems on One dimensional heat equation	1
46.	Steady state solution of two dimensional heat equations	1
47.	Problems based on zero boundary conditions	1
48.	Tutorial :12 Problems based on zero boundary conditions	1
	Total	12
	UNIT V STATISTICS	
49.	Introduction of Statistics	1
50.	Concept of measures of central tendency	1
51.	Concept of Mean, Median, Mode, Standard deviation	1
52.	Problems on Mean, Median, Mode, Standard deviation	1
53.	Problems on Mean, Median, Mode, Standard deviation	1
54.	Tutorial:13 Problems on Mean, Median, Mode, Standard deviation	1
55.	Moments – skewness and kurtosis	1
56.	Tutorial: 14 Problems based on moments – skewness and kurtosis	1
57.	Correlation – Types of correlation and formulas	1
58.	Concept of Rank correlation	1
59.	Problems based on rank correlation	1
60.	Tutorial:15 Problems based on rank correlation	1
	Total	12
	TOTAL	60

Unit -1 nation matices with Definition of a Matrices. A system of any mn mumbers arranged in a rectangular duray of m-rows and n-columns is called Matrices of order man and is denoted by $B = (a_{ij})mxn = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{nn} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{m_1} & a_{m_2} & \dots & a_{m_n} \end{bmatrix} mxn$ in pallal diasonal where aig's are called the enteries or dements of the Materices. Types of Matrices. A Materices having only one now is D Row's Matrices: Called as row Materices $\begin{array}{c} e^{2} \\ P = \int I & 2 & 3 \\ I \times 3 & . \end{array}$ Column's matrices:-A Matrices having only one Column is cutan Called as Column matrices. $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ 5×1

3) Square Matin during equal number of and columns is called isquare of realistic regions and columns is called isquare of realistic regions and columns is called isquare for the formation of the leading diagonal and all others along the leading diagonal and all others entries are given is salled diagonal matrices.
5) Isalar Matrix.
6) Analar Matrix.
7) Isalar Matrix.
7) Isalar Matrix.
7) Analar Matrix.
8) Analar Matrix.
8) Analar Matrix.
9) Analar

) Unit Matrix:-

A scalar mateix whose diagonal dements are one is called a Unit Matrix

Isiangulas Matrix. Types: Upper dailongulas Matrix. À isquare Materia in which all the demust below the reading diagonal are up is called Upper triangular Matrix. $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} 3 \times 3.$ lower touangular Matrix. A square Matrix in which all the elements above the deading diagonal are zero is called a dower toucingular Materix 3) Transpose of a Matrix. The Matrix got from a given Matrix by interchanging its rows and alumns is called Transpose of that reatmon. Then $A^{T} = \int_{2}^{7} \frac{4}{5} \frac{7}{8} \frac{7}{3\times 3}$

A square Matrix "I" is said to dre Symmetric if A=AT and Spen bre symmetric if $A = -A^T$. Symmetric if $A = -A^T$. $A = \begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} 3x3$. Then $A^T = \begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} 3x3$. which all the prestration and worder structure : A is an Symmetric Matain. Conjugate of a Matrix. A Matrix a obtained by replacing cach element of it by its complex Conjugate is called Conjugate of I and us denoted by A manan eg: i yourgener. Thomas ?? $\begin{array}{c} A = \begin{bmatrix} 1+i & 2 & 3-i \\ 4 & 5+i & i \\ 7 & 8+3i & 9 \end{bmatrix} 3 \times 3 \end{array}$ The the form $A = \begin{bmatrix} V - i & 2 & 3 + i \\ - i & 5 - i & -i \\ - i & 7 & 8 - 3i & 9 \end{bmatrix} 3x3$

1) Hermitian Matuces and show drawitian A square Matrix A is said to be Herinitian if A= 15^T. A square Matrix A is said to be Skew Mennitian if A ... AT. Eg: A= /1 1-4: 7 HA: 2 2x2 The $A^{T} = \begin{bmatrix} 1 & 1+4i \\ 1-4i & 2 \end{bmatrix} = \begin{bmatrix} T & T = \begin{bmatrix} 1 & 1-4i \\ 1+4i & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1-4i \\ 1+4i &$ A= AT . . A is Mernetian. Eg: $B = \int_{-2+i}^{3i} \frac{2+i}{2} \Big|_{2\times 2}^{2}$ The $B^{T} = \begin{bmatrix} 3i & -2+i \\ 2+i & i \end{bmatrix}_{e \ge 2} \begin{bmatrix} B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} 2-i & -i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} 2-i & -i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2} \\ B^{T} = \begin{bmatrix} -3i & -2-i \\ 2-i & -2-i \end{bmatrix}_{2 \ge 2}$ $\vec{B}^{T} = - \begin{bmatrix} \vec{3}_{1}^{L} & 2+i \\ -2+i & i \end{bmatrix} 2 \times 2^{-1}$ $\sum B = \sum_{x \in B^T} |x| = |a|$ House Bay is skew Mermitian. 8-9-5 2-1/2

Singular and non Sungular Maturices etemente of a inguare main diagonal Singular Materices If determinant of A is your is, INI=0 the A is said to be a singular Matri trace soft A and is denoted by non singular matricas. Torstand 4 (AI to this A is said to be a trace (n) as its (A). which and a taken the mode r d day non - isingular Matriz. 25010 H A= 1 2 3 Sec 2 7 8 9 3×3 A toler. satury Equal Mature. Two matrices p and B are said Carrierondury elements of B. Thin Trace (A) = 1+15+9 D A & B have are of same order ta(A)=15. ii) Each element of A is equal to the determinant of a Mathin. 13) Determinant is a Calculating the numerical Corresponding element of B. Value of a materin it is denoted by $\begin{array}{c} eq: & p = \begin{bmatrix} i & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} 3 \times 3 \end{array}$ (A) on det (a) on a (A). $B = \begin{cases} 1 & 2 & 3 \\ 4 & 5 & 16 \\ 7 & 8 & 9 \\ 7 & 8 & 9 \\ 1 & 3 \times 3 \\ 2 & 3 \times 3 \\ 3 \times 3 \\ 3 \times 3 \\ 1 & 1 \\ 3 \times 3 \\ 1 & 1$ $A = \int_{-1}^{1+c} \frac{1}{2} + \frac{1}{3} \int_{-3}^{1+c} \frac{1}{3} = \frac{1}{3}$ $Th_{n} = \int_{-1}^{1+c} \frac{1}{3} \int_{-3}^{1+c} \frac{1}{3} = \frac{1}{3}$ A=B. (7) Statumments (?) The $|A| = \int_{1}^{1} \frac{1}{2} \frac{1}{3} \frac{1}$ 16) sule matrix de mithered from A Matrix and obtained from A by elementary transmation is called LAI = 1 [6-2]-1[3+6] +1[-1-4] the Sub matrix of A. = 3-9-5 = -11/1.

Athen properties. Addition of two matrices 1) Two Matrices P. and B. Can be added if and only if A and & are of Sam. ordon i) Each obenunt of it is added with the sila . Corresponding element of B. struck (Eg: af such 8 4 7 ($A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 \\ - & 5 & 6 \\ - & 7 & 8 \\ - & & 7 & 1 \\ - & 7 & 8 \\ - & 7 & 8 \\ - & 7 & 1 \\ - & 7 &$ 1.2 $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 & 3 \\ x 3 \\ x$ Types: i) Commutative (ie) A+B=B+A. ii) Associative (ie) (A+B)+C = A+(B+C). = XA +BA. in Scalas Multiplication (ie) (x+B)A the sub materia of the

ţ.

Multiplications of two, matures, with it Two matrices A and B. can be multoplied only if the number of Columns of the first matrices is equal to the number of accord of the second matrices. (ie) eg' 4 A= [+ 76 ax3 $B = \begin{bmatrix} 2 & 4 \\ 5 & 5 \end{bmatrix} 3 \times 2$ Then $B = \int 1 + 4 + 9 + 10 + 18 = \int 1 + 4 + 9 + 10 + 18 = \int 1 + 4 + 9 = 10 + 18 = 16 + 25 + 36 = 2x2$ $2x^{2} = 2x^{2} = 2x^{2$ $= \int \frac{14}{32} = \frac{32}{77} =$ Propertus:-1) commutative (10) AB = BA. ii) Associative (ie) (AB)(=A(BC) iii) Scalar Multiplication (ic) $\kappa(A) = \kappa A$. Adjent Axed - 9

$$\begin{aligned} \text{finding aij adjoint of a Mathin.} \\ \text{Grown:} \\ A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 3 \end{bmatrix} \\ = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 1 & 3 \end{bmatrix} \\ = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 1 & 3 \end{bmatrix} \\ \text{The } \left(2 \cdot \int acbs, a & d \right) \cdot A \quad is. \\ \text{Agent:} \\ \text{Agent:}$$

Inverse soj Matuix.

$$\Rightarrow$$
 Inverse Matuix ûs also known as
 $recipnocal of Matuix.
 \Rightarrow Inverse of a matuix Can be obtained
only for a Square Matuix.
 \Rightarrow Inverse of a Matuix is denoted by
 \vec{p}^{T} and defined as
 $p^{T} = \frac{1}{|A|} (adj^{n} A) \cdot$
Hund the Problem. Inverse of the matuix
 $P = \begin{bmatrix} 1 & 2\\ -1 & -4 \end{bmatrix}$.
 $Palj^{n} P = \begin{bmatrix} -4 & -2\\ 1 & 1 \end{bmatrix}$.
 $|A| = (-4+2)$
 $z=2$.
 $P^{T} = \frac{1}{|A|} (adj^{n} P)$
 $= \frac{1}{-2} \begin{bmatrix} -4 & -2\\ 1 & 1 \end{bmatrix}$.
 $Palj^{n} = \begin{bmatrix} -2\\ -2 \end{bmatrix}$.
 $P = \begin{bmatrix} 2\\ -2\\ -2 \end{bmatrix}$.
 $P = \begin{bmatrix} 2\\ -2\\ -2\\ -2 \end{bmatrix}$.
 $P = \begin{bmatrix} 2\\ -2\\ -2\\ -2 \end{bmatrix}$.$

$$|A| = -2 - 4 \text{ introl} \quad [as \text{ suborn}]$$

$$|A| = -2 - 4 \text{ introl} \quad [as \text{ suborn}]$$

$$|A| = -6 \quad (A \quad A) \quad (A$$

$$\vec{P} = \begin{bmatrix} 3 & -2\\ 7 & 8 \end{bmatrix}^{2} \\ + Ady^{\circ} n = \begin{bmatrix} 8 & +a\\ -7 & 3 \end{bmatrix}^{2} \\ |n| = 2A + 1A \\ = 38^{\circ} \\ n^{1} = \frac{1}{|n|} \frac{\alpha dy^{\circ}(n)}{|n|} \\ + \frac{38}{|n|} \\ = \frac{1}{|n|} \frac{\alpha dy^{\circ}(n)}{|n|} \\ + \frac{1}{|n|} \frac{\pi^{2}}{|n|} \\ = \frac{1}{|n|} \frac{\pi^{2}}{|n|} \\ + \frac{\pi^{2}}{|n|} \\ = \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \\ + \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \\ = \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \\ = \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \\ = \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{|n|} \\ = \frac{\pi^{2}}{|n|} \frac{\pi^{2}}{$$

2/359

Scanned with CamScanner

 $= \left[\frac{12}{1} \frac{5}{1} \frac{1}{2} \frac{5}{1} + \frac{1}{2} \frac{5}{1} + \frac{1}{3} \frac{2}{1} \right]$ $\begin{vmatrix} - & 0 & -4 \\ - & 2 & + & 32 \\ - & 2 & - & 3-1 \end{vmatrix}$ $= \left[\frac{(4+5)}{(-4+5)} - \frac{(-4-15)}{(-4+5)} + \frac{(2-6)}{(-4)} \right]$ $= \left[\frac{(-4)}{(-4)} + \frac{(2+12)}{(-1)} - \frac{(-1)}{(-1)} \right]$ $= \left[\frac{(-4)}{(-4)} + \frac{(-4-15)}{(-4-15)} + \frac{(-4-15)}{(-4-15)} \right]$ $= \begin{bmatrix} 9 & 19 & -4 \\ 1 & 14 & 9 \\ 8 & 35 & 2 \\ \end{bmatrix} \in \mathbb{R}$ $ad_{j}(A) = (a_{jj})^{T} = \begin{pmatrix} 9 & 4 & 8 \\ 19 & 19 & 3 \\ -4 & 1 & 2 \end{pmatrix}$ $\mathcal{H}^{-1} = \frac{1}{|\mathcal{H}|} \int adj(\mathcal{H})$ $\vec{F}^{1} = \begin{pmatrix} 9 & 4 & 8 \\ 19 & 4 & 3 \\ 25 & 19 & 14 & 3 \\ -4 & 11 & 2 \\ 41 & 8 \\ 125 & 125 & 125 \\ 12$

 $-A = \begin{bmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix}.$ $|\mathbf{n}| = \mathbf{K} \begin{vmatrix} 4 & -3 \\ 1 & 6 \end{vmatrix} + \frac{5}{2} \begin{vmatrix} 7 & -3 \\ +4 \end{vmatrix} + \frac{7}{2} \begin{vmatrix} 7 & 4 \\ 2 & 1 \end{vmatrix}$ $= 5 \left(24+3 \right) + 6 \left(42+6 \right) + 4 \left(7-8 \right)$ = $5 \left(27 \right) + 6 \left(48 \right) + 4 \left(-1 \right)$ = 135 + 288 - 4 $\frac{135}{423} = \frac{13}{288}$ $+ \begin{vmatrix} -5 & 4 \\ 4 & -3 \end{vmatrix} - \begin{vmatrix} -5 & 4 \\ 7 & -3 \end{vmatrix} + \begin{vmatrix} 75 & -6 \\ 7 & -3 \end{vmatrix}$ $= \begin{bmatrix} 27 & -.48 & -1 \\ +40 & 22 & -17 \\ +2 & 43 & 62. \end{bmatrix}$ adj $H = \begin{bmatrix} 27 & 40 & 27 \\ -48 & 22 & 43 \\ -1 & -17 & 62 \end{bmatrix}.$ 5+12

 $A^{-1} = \frac{1}{|B|} \begin{cases} adj(B) & f = B \\ adj(B) & f = B \\ = \frac{1}{|B|} \\ =$ G $\vec{\mathbf{A}}^{T} = \begin{pmatrix} 27 & 40' & 2' \\ 419 & 419 & 419 \\ -48' & 22' & 43' \\ -48' & 419 & 419 \\ -419 & 419 & 419 \\ -1419 & 419 & 419 \\ -1/419 & 419 & 419 \\ \end{pmatrix}$ Rank of the Matrix-> The Rank of the Natica Used to find of any highest the degree of the non-vanishing minor of the Matrix. Eg! $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1}_{R_3 \to R_3 - 2R_1}.$ $\sim \int \frac{1}{0} \frac{1}{2} \frac{1}{R_3} - \frac{1}{R_2} + \frac{1}{R_3} - \frac{1}{R_3$ $\sim \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$

 $P = \begin{pmatrix} 4 & 3 & 2 \\ 2 & 1 & -4 \\ 1 & -7 & -1 \end{pmatrix}$ 5 $\sim \begin{bmatrix} 1 & -7 & -1 \\ 2 & 1 & -4 \\ 4 & 3 & 2 \end{bmatrix} \xrightarrow{P_1 \neq 3} P_3$ $\sim \begin{bmatrix} 1 & -7 & -1 \\ 0 & 15 & -2 \\ 0 & 1 & 6 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 - -2}_{R_3 \to R_3 - 2R_2}$ $\sim \begin{bmatrix} 1 & -7 & -1 \\ 0 & 15 & -2 \\ 0 & 0 & 88 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 15R_3 - 2R_3}_{R_3 \to R_3 - 15R_3 - 2R_3}$ 0 15-2 e(A) = 34. of the Matri Consistency and Inconnetincy Unique solution R(A= P(A.B)= n Consistent Infinite near solu e(A) = P(AB) No solution C(A) + C(A3) In Consistent.

$$\begin{array}{c} \begin{array}{c} 1 & 1+y+z=6 \\ x+2y+3z=10 \\ z+2y+3z=10 \\ z+2y+3z=\mu \end{array} \end{array}$$

$$\begin{array}{c} A= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, x= \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B= \begin{bmatrix} a \\ b \\ 1 \\ 1 \\ z \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 \\ 1 \\ z \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & \lambda \end{bmatrix}, B= \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 3 & \mu + 10 \\ B= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \lambda - 1 & 0$$

$$\begin{array}{c} 1 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 2x + 3y + 2x + 7 = 0 \\ 2x + y - 4x = -1 \\ 2x + y - 4x = -1 \\ 2x + y - 4x = -1 \\ x - 7y - x = 0 \\ \hline \\ 1 \\ x - 7y - x = 0 \\ \hline \\ 1 \\ x - 7y - x = 0 \\ \hline \\ 1 \\ x - 7y - x = 0 \\ \hline \\ 1 \\ x = \frac{5}{2} \\ 1 \\ x = \frac{5}{2} \\ \frac{1}{2} \\ 1 \\ x = \frac{5}{2} \\ \frac{1}{2} \\ \frac{1}{1} \\ -7y - 1 \\ \frac{7}{2} \\ \frac{7}$$

$$\frac{Q(R) = 3}{P(R_1R) = 3} = 1 + x + y + x + (1)$$

$$\frac{Q(R) = 3}{P(R_1R) = 3} = 1 + x + y + x + (1)$$

$$\frac{Q(R) = Q(R)R}{P(R_1R) = 1} = 0$$

$$\frac{Q(R) = Q(R)R}{P(R) = 1} = 0$$

AG

$$\begin{aligned} & Q(n) = 3, \\ & Q(n) = 3, \\ & Q(n) = n(n/B) = n = 3. \\ & The Jystem - CJ equation \bar{u} vanistent $\bar{n} \\ & has \quad a \text{ unique Jsdh} \\ & -608z = 2.96 \\ & Z = -\frac{2.76}{605} \\ & -2y - 20(-\frac{-37}{76}) = 10 \\ & -2y - 20(-\frac{-37}{76}) = 10 \\ & -2y + \frac{18}{19} = 10 \\ & y = (10 - \frac{18}{17})(\frac{-1}{2}) \\ & y = -\frac{5}{38} \\ & Ax + By + 2z = -7 \\ & Ax + By + 2z = -7 \\ & Ax + By + 2z = -7 \\ & Ax + 3(-\frac{5}{13}) + 2(-\frac{-37}{76}) = -7 \\ & X = -\frac{107}{76}. \end{aligned}$

$$\begin{aligned} \vec{x} + y + z = 3 \\ & x + y - z = 1 \\ & gx + 3y - 5z = 1 \end{aligned}$$$$

$$\begin{array}{c} \text{where } p \neq z = 9 \\ p = \left[\begin{array}{c} 1 & 1 & 1 \\ 3 & 3 & -5 & 1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & 3 & -5 & 1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & 3 & -5 & 1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & 3 & -5 & 1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 3 & -1 & -1 \end{array} \right] p = \left[\begin{array}{c} 2 & 3 & -1 \\ 0 & -1 & 3 & 9 \end{array} \right] p = 2$$

$$-ly + 3(z) = 9 \qquad p = x + y + x = 0$$

$$-ly + 3(\lambda) = 9 \qquad l = x + y + x = 0$$

$$-ly = 4 - 12 \qquad l = -3 \qquad l = -12 \qquad l = -1$$

$$\int_{1}^{1} \int_{1}^{1} \int_{$$

Scanned with CamScanner

tinding the restored Values and referen West
P = [1 2 2 2 2 2
The characteristic cap [n-AI] =0
In other would
The characteristic cap (n-AI] =0
In other would
The 2x3 matrix
CE A²-5, A+S = 0
When 3, - There of the Matrix
CE -5
$$\lambda^3$$
-5, λ^2 + 5, λ = S3 = 0
Where
S₁ - Thave of the Matrix.
S2 = Junn of the Matrix.
S2 = Junn of the Matrix.
S2 = Junn of the Matrix.
S3 = [A].
To Find the signer Values
timed the visote of the CE.
To Find Eegen Vector H:
(A - AI) × =0
Where X = 0.
25 the X

To trid the stark:

$$q_{1}=0$$

 $\lambda^{2}+tA+a=0$
 $(A+2)(A+2)=0$
 $\lambda=-2j=2$
 $eq: 0:$
 $2\lambda^{2}+tA+a=0.$
 $a\chi^{2}+b\chi+c=0$
 $\chi=-b\pm\sqrt{b^{2}-tac}$
 $=-A\pm\sqrt{16-4(2)(4)}$
 $=-A\pm\sqrt{-16}$
 $=-A\pm\sqrt{-16}$
 $=-A\pm\sqrt{-16}$
 $=-A\pm\sqrt{-16}$
 $=-A\pm\sqrt{-16}$
 $=-A\pm\sqrt{-1}$
 $=-A\pm\sqrt{$

$$A = -2 \pm \sqrt{4 - 400} (4)$$

$$= -2 \pm \sqrt{4 - 400} (4)$$

$$= -2 \pm \sqrt{4 - 16}$$

$$= -2 \pm \sqrt{-12}$$

$$= -2 \pm 2.43$$

$$A = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{1} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{2} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{3} = -1 \pm \sqrt{3} \sqrt{2}$$

$$A_{4} = -1 \pm \sqrt{3} \sqrt{2}$$

$$S_{2} = Sum of the minors of the main
diagonals element of P:
$$= \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 1 & 3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 3 & 2 & 1 \\ 1 & 2 & 2 \end{vmatrix}$$

$$= 4 + 3 + 4 = 11$$

$$S_{8} = |P|$$

$$= 4 + 3 + 4 = 11$$

$$S_{8} = |P|$$

$$= 2(4) - 2(1) + 1(-1) = S$$
The chosactuistic eqn is

$$\lambda^{3} - T\lambda^{2} + 11\lambda - F = 0$$

$$\lambda^{3} - T\lambda^{2} + 11\lambda - F = 0$$

$$1 \begin{vmatrix} 1 & -7 & 11 & -5 \\ 0 & 1 & -6 & F \\ \hline 0 & 1 & -7 \\ \hline 0 & 1 &$$$$

. The Not Eigen Values are [A=1]; [A_2=1], [A_3=F] To find the rectors. |A = AI| x = 0, where $x \neq 0$. ie, $\begin{bmatrix} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{bmatrix} \begin{bmatrix} 3_1 \\ 1 \\ 1 \\ 3_3 \end{bmatrix} = 0$ $\begin{bmatrix} 2-\lambda \\ 3_2 \\ 3_3 \end{bmatrix} = 0$ $\begin{bmatrix} 2-\lambda \\ 3_2 \\ 3_3 \end{bmatrix} = 0$ $\begin{bmatrix} 2-\lambda \\ 3_2 \\ 3_3 \end{bmatrix} = 0$ $\begin{bmatrix} 2-\lambda \\ 3_2 \\ 3_3 \end{bmatrix} = 0$ [121] [x]=0 x,+2x2+x3=0 X1+2x2+x3=0 71+272+23=0 put Mi =0 2×2+×3=0 2×2=: 3 $\frac{\chi_2}{-1} = \frac{\chi_3}{2}$ $\frac{1}{x_1} = \int_{-1}^{0} \int_{-1}^{0}$ Care(ii) A=1 put xy = 0 x,+x3=0 x,=-x3" 0= 74 $\frac{\chi_1}{-1} = \frac{\chi_3}{-1}$ ×2= 5-0/ · Frie BA

Case (III) A= 5 $\begin{bmatrix} 2-5 & 2 & 1 \\ 1 & 3-5 & 1 \\ 1 & 2 & 2-5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \end{bmatrix} = 0$ $\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0$ -8x1+2x2+x3=0 X1-2×2+×3=0 2 ->0 $\alpha_1 + 2\alpha_2 - 3\alpha_3 = 0^{-1}$ $\frac{\chi_1}{6^{-2}} = \frac{-\chi_2}{-3^{-1}} \frac{F\chi_3}{2+2}$ $\frac{\chi_1}{4} = \frac{\chi_2}{4} = \frac{\chi_3}{4}$ $\frac{\chi_1}{4} = \frac{\chi_2}{4} = \frac{\chi_3}{4}$ $\frac{\chi_1}{1} = \frac{\chi_2}{1} = \frac{\chi_3}{1}$ $\frac{\chi_3}{1} = \frac{\chi_3}{1}$ The eigen Vactors Coaresponding to the Eigen values $\lambda = 1, 1, 5$. are $X_1 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, X_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, X_3 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. respectively. Find the Eigen values and ligh vectors of the Materix: = ((+ =))

3 -1 2 Soln :-Let $\begin{array}{c} A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ The characteristic con of D is [A-TI]=0 i,e, 23-512+522 -53=01 ... where, S. = TBace & A. 2 3+2+3 = 8. S2: Sum of the minous of the main diagonals dement of A. $= \begin{bmatrix} 2 - 1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$ =(6-1)+(9-0)+(6-1)= F+9+F = 19. 53= A) = 3 -1 0 -1 2 -1 0 -1 3 = 3(6-1) +1 (-3+0)+0 ministra = 15-3 = 12.

The characteristic eye it 23-8x2+19A-12=0 Elen valu To glad the 1 -7 12 200 12 12-71+12=0/ 100 -6-16-40.0 - 7: 5-34 ha 7+ (A-3) =0 1-4 [3=3]. The Eigen values are $\lambda_2 = 1$, $\lambda_2 = 4$, $\lambda_3 = 3$

To find the ligen vectors [A-AI] x=0 Where x = 0 are (i) d=1 $\begin{pmatrix} 3-1 & -1 & 0 \\ -1 & 2-1 & -1 \\ 0 & -1 & 3-1 \\ \end{pmatrix} \begin{pmatrix} 3, \\ 12 \\ 12 \\ 713 \end{pmatrix} = 0$ $\begin{cases} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -1 & -1 \\ 0 & -1 &$ $-\chi_{1} + \chi_{2} - \chi_{3} = 0$ $-\chi_{2} + 2\chi_{3} = 0$ $\frac{-\chi_1}{-2-0} = \frac{\chi_2}{4=0} = \frac{-\chi_3}{-2-0} = 0$ $\frac{-\chi_{1}}{-2} = \frac{\chi_{2}}{4} = \frac{\chi_{3}}{4} = \frac{\chi_{3}}{4}$

 $X_{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $R_{1}^{2} = x$ $\begin{bmatrix} 3-4 & -1 & 0 \\ -1 & 2-4 & -1 \\ 6 & -1 & 3-4 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \times 3 \end{bmatrix} = 0$ $\begin{bmatrix} 1 & -1 & 0 \\ -1 & -2 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ x_4 \end{bmatrix}$ $\begin{array}{c} \chi_{1} - \chi_{2} = 0 \\ -\chi_{1} - 2\chi_{2} - \chi_{3} = 0 \\ -\chi_{2} - \chi_{3} = 0 \\ -\chi_{2} - \chi_{3} = 0 \\ -\chi_{1} - \chi_{2} - \chi_{3} = 0 \\ -\chi_{2} - \chi_{3} = 0 \\ -\chi_{1} - \chi_{3} = 0 \\ -\chi_{2} - \chi_{3} = 0 \\ -\chi_{2} - \chi_{3} = 0 \\ -\chi_{3} = 0 \\ -\chi_{3} - \chi_{3} = 0 \\ -\chi_{3} - \chi_{3} = 0 \\ -\chi_{3} - \chi_{3} = 0 \\ -\chi_{3} = 0 \\ -\chi_{3} - \chi_{3} = 0 \\ -\chi_{3} = 0 \\ -\chi_{3} - \chi_{3} = 0 \\ -\chi_{3} = 0 \\$ $\frac{-2\chi_{1}}{1} = \frac{-2\chi_{2}}{-1} = \frac{-2\chi_{3}}{-1}$ $\frac{-\chi_{1}}{-1} = \frac{-1}{-1}$ $\chi_{2} = \begin{bmatrix} -1\\ -1\\ -1\\ -1 \end{bmatrix}.$ $\begin{array}{c} Casa_{3} A_{8} = 3 \\ \hline 3 - 3 & -1 & 0 \\ -1 & 2 - 3 & -1 \\ 0 & -1 & 3 - 3 \end{array} \begin{pmatrix} x_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = 0$

 $\begin{bmatrix} 0 & -1 & 0 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ z_3 \\ z_4 \end{bmatrix} = 0$ 0-72+0=0 0-x,+0=0, xg=0 $\frac{0}{0-1} = \frac{-\chi_2}{0-0} = \frac{0}{0} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{0}{0}$ $x_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ -0 \\ 1 \end{bmatrix} = \frac{x_2}{1}$ The cigen Vectors Carresponding to the Eigen value $\lambda = 1, 9, 3$ are The Bright $X_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \neq \chi_2 = \begin{bmatrix} 0 \\ -0 \end{bmatrix}$ $\alpha_3 = \int_{-\alpha}^{-\alpha}$

1) $A = \begin{bmatrix} 2 & t & 1 \\ 0 & 10 \\ 1 & 12 \end{bmatrix}$ Soln: The Characteristic egn of A is (A-2]=0 $ie_{1} \lambda^{3} - s_{1}\lambda^{2} + \frac{1}{2}\lambda - s_{3} = 0$ SI = Trace of A. = 2+1+2 = 5 S2= Sum of the minor 5 of the main diagonals clement of A $= \begin{vmatrix} 1 & D \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$ =(2-0)+(A-1)+(2-0)= 2+3+2 J. = Sg= PP1 $= \begin{vmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{vmatrix}$ =2(2-0)-1(0-0)+1(0-1) = 1 @-1 = 3. Perts

Scanned with CamScanner

$$\begin{array}{c}
\lambda^{3} = 5, \lambda^{2} + 5, \lambda - 5, z = 0 \\
\lambda^{3} = 5, \lambda^{2} + 7, \lambda - 3 = 0
\end{array}$$
To find then
$$\begin{array}{c}
1 & 1 - 5 & 7 - 3 \\
0 & 1 - 4 & 3
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 4\lambda + 3 = 0 \\
(\lambda - 5) & (\lambda - 1) = 0
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 3 \\
\hline
\lambda^{2} = 1
\end{array}$$

$$\begin{array}{c}
\lambda^{2} = 1 \\
\lambda^{2} = 3 \\
\hline
\lambda^{2} = 1
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 3 \\
\hline
\lambda^{2} = 1
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 3 \\
\hline
\lambda^{2} = 1
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 3 \\
\hline
\lambda^{2} = 0 \\
1 & 1 & 2 \\
\end{array}$$

$$\begin{array}{c}
\lambda^{2} - 3 \\
\hline
\lambda^{2} = 0 \\
1 & 1 & 2 \\
\end{array}$$

$$\begin{array}{c} \hat{G}_{\lambda} \alpha_{1}^{(1)} & \lambda = 1 \\ \begin{pmatrix} 2-1 & + & 1 \\ 0 & 1-1 & 0 \\ 1 & 1 & 2-1 \\ \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \end{pmatrix} = 0 \\ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \end{pmatrix} = 0 \\ \chi_{1} + \chi_{0} + \chi_{3} = 0 \\ \chi_{1} + \chi_{0} + \chi_{3} = 0 \\ \chi_{1} = 0 \\ \chi_{2} = -\chi_{3} \\ \frac{\chi_{2}}{-1} = -\chi_{3} \\ \frac{\chi_{3}}{-1} = -\chi$$

$$\begin{array}{c} -\gamma_{1} + \pi_{2} + \pi_{3} = 0 \\ -2\pi_{2} = 0 \\ \pi_{1} + \pi_{2} - \pi_{3} = 0 \end{array}$$

$$\begin{array}{c} \frac{\tau_{1}}{\tau_{1}} = -\frac{\pi_{2}}{\tau_{2}} = -\frac{\pi_{3}}{\tau_{2}} \\ -\tau_{1} = -\frac{\pi_{2}}{\tau_{2}} = -\frac{\pi_{3}}{\tau_{2}} \\ \pi_{2} = \begin{bmatrix} -2 \\ 0 \\ -2 \end{bmatrix} \end{array}$$

$$\begin{array}{c} \alpha_{2} x : 3 \quad \lambda = 1 \\ \alpha_{3} x : 3 \quad \lambda = 1 \\ \alpha_{4} x : 3 \quad \lambda = 1 \\ \alpha_{4} x : 3 \quad \lambda = 1 \\ \alpha_{4} x : 3 \quad \lambda = 1 \\ \alpha_{4} x : 3 \quad \lambda = 1 \\ \alpha_{4} x : 3 \quad \lambda = 1 \\ \alpha_{5} x : 3 \quad \lambda = 1 \\ \alpha_{5} x : 3 \quad \lambda = 1 \\ \alpha_{5} x : 3 \quad \lambda = 1 \\ \alpha_{5} x : 3 \quad \lambda = 1 \\ \alpha_{5} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \lambda = 1 \\ \alpha_{7} x : 3 \quad \alpha_{7} x : 3 \\ \alpha_{7} x : 3 \quad \alpha_{7} x : 3 \\ \alpha_{7} x : 3 \quad \alpha_{7} x : 3 \\ \alpha_{7}$$

Ni) statics and do Scientific Studies iv) robotic and automotions ?) Used in Graph theory; Asia later Mehan Computer Graphics, Solving Equars Gytrography. Properties of Eigen values: Sum of the Eigen values is equal to Trace of the Matrix. 2) Protect of the Eigen Volues -[A). 3) 41 A is the Eigen Values of A then 1 is the Eigen value of A? If I is not eigen Value the of A the A) Am is the eigen value of Am. F) 97 A is the eigen Value of A ithen kit is the eigen value of KA. A and AT have the warne eigen values. 6) F) The eigen Values of a real Symmetric Matoux is all real numbers.) The eigen values of a triangulas Matrin are its elements in the main

diagonal Similar Mature have the same Eigen $\alpha)$ values. Problems! and $\lambda_i = 1$ 4 1 2 0 10 the Jourgenthe Sola! 3) 96 Sum Of the ages Values = Trace of the intrographic 143+ 3817 3+1+2 4+d, = Fi 13=5-4 -1 12 =1 If the Eigen values of a 3x3 mataix 2) 1, 3 and 7 ind the determinant of are [A] without expending. Paoduct 107 the Eigen Values = 191. Soln: 1×3×1 = (A) ie, 1, 1, 2, 3= lei WET: 3=10) : [FAI=3

Similas 3) ie, A=BAB. Properties of Eigen vectors-1) Eigen vectors of a Hatrix A is not Unique 2) Two Eigen vectors X1 X2 are called Outhogonal if x1 x2=0 3) Top . Li, 12 In vare distinct Eigen Values of a nxn materin then the Consusponding Rigon Vectors X, 1X2.....Xn. farm a clinearally inderpendent set.

30/c 1ª Equations: Relations between ary unit and roots. 2 Equations with nationals Co. and invationals scots. # Equations with rationals Co- efficient and invational isoots will worcus in prices. => Let +(x)=0 be a equation and Suppose that Q+VE is a root of the Equation where atto are national and vis is restationaly then a - vis also a root. Problems: Solve the equation := x4-6x3+4x7+8x-8=0 Given that one of the root is 1-55 Johnwe know that if 1-58 is a root then 1+15 is also an root. Therefore. The factors are (x-(-F)][2-(4)]

 $\chi^2 - \chi (1 + \sqrt{6}) - (1 - \sqrt{6})\chi + (1 - \sqrt{6})(1 + \sqrt{6}) = 0$ $\chi^2_{-\chi}$ $\chi \left[1 + \sqrt{F_1} + 1 - \sqrt{F_2} \right] + \left(1 - F_1 \right) = 0$ 1123- $\chi^2 - 2\chi - 4 = 0$ 1- SA 2 1+ SA Sum of the roots = 1- SF. + 1+VFF = d Product of the 200ts = (1 - JA)(1+JA)=1-5 =+ x2 - [sumoy the roots] n+ product of the roots =0 $\chi^2 - 2\chi - 4 = 0$. x4-5x3+4x2+8x-8=0 x2-3x +2 ·x4-5x2+4x2+8x-8 2-22-4 x - 2x - 4x 3+8x2+8x 2+6x2+12x 222-47-18 2x - 4x #8 χ^2 -3 π +2 is also a factor. : $\chi^4 - 5\chi^3 + 4\chi^2 + 8\chi - 8 = \chi^2 - 4\chi - 4)(\chi^2 - 3\chi)$ [2 - CI-V3][2 - CI+VA)] [(X-2)(X-1)]=0

1-STA) It JA 12; 1 are the role of the egn. or (A re) (AHAA ??) (: "the eqn 323-232+12x-70=0 2 Solve having (3+5=) as a soot. Sln! GAH 94 (3+(-F) is a root think (BEV-5) us also a root. There, El-Sum of the 200ts = 3+575. 73 75 = 600 . AT Product of the proots = (3+ 55)(3- -5) = 9-5 x2 - [Sum of the roots] + product of thereof = c $\chi^2 - 6\chi t / 4 = 0$. Surv. O. H. 3x 3-23x 2+72x -70=0 preduct of mi 3x 3-23x +72x -70 x -6x+14. 3x3-18x2+42x - 5x = 30x - 70 -5x2+30x-70 RADO, F-2J-T. 725-24 = store of the work.

$$3x^{2} \cdot 2yx^{2} + 72x - 70 = 0$$

$$\Rightarrow (x^{2} - bx + 4) (3x - 5) = 0$$

$$\Rightarrow (x^{2} - bx + 4) (3x - 5) = 0$$

$$\Rightarrow (x^{2} - bx + 4) (3x - 5) = 0$$

$$\Rightarrow (x^{2} - bx + 4) (3x - 5) = 0$$

$$\Rightarrow (x^{2} - bx + 4) (x^{2} - bx) = 0$$

$$\Rightarrow (x^{2} - bx) + 4(5) = 0$$

$$\Rightarrow (x^{2} - bx) + 4(5) = 0$$

$$\Rightarrow (x^{2} - bx) =$$

Product of the roots =
$$(5+2\sqrt{7})(5-2\sqrt{7})$$

 $x^{2} - [Sum of the roots] = $(5+2\sqrt{7})(5-2\sqrt{7})$
 $x^{2} - 10x + 29 = 0$
 $x^{2} - 10x + 29 = 0$
 $(x^{2} - 48)(x^{2} - 10x + 29) = 0$
 $(x^{2} - 48)(x^{2} - 10x + 29) = 0$
 $(x^{2} - 48x^{2} + 480x + 1392 = 0)$
 $x^{4} - 10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $x^{4} - 10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{2} + 480x - 1392 = 0$
 $10x^{3} - 19x^{3} + 480x - 1392 = 0$
 $10x^{3} - 10x^{3} - 19x^{3} + 10x^{3} + 10x^{3}$$

The factor istan in the trabard W 105-51, 5+51. Sum of the Hoat = 5-J-1+5+J-1. 25 +1 Product of the roots = (5- V-1) (5+F) 2'- [sum of the goots Jx+ Product of the goots f x-10x+26=0,->€ The eqn is, Or O. \$6×26 (22-2x+26)(x2-202+26)=0 $x^{4} - 10x^{3} + 26x^{2} - 2x^{3} + 20x^{2} - 52x + 26x^{2}$ -2602+676=0 $x^{4} - 12x^{3} + 72x^{2} - 312x + 676 = 0$. Relations between goots and Co-efficients of equit it at +1 = stook wit formul Let the eqn be $x^{n}+P_{1}x^{n-1}+P_{2}x^{n-2}+\cdots+P_{n-1}x+P_{n}=0.$ Harthe Egn har roots al, 1 a2 1 - - - - an.

thn Ex; = sum of the roots = COP; COP; P Ex, x= Sum gthe the scots 4= E1)2P2-Q ta Ren & atatime 7 282 Ex, xxx = Sum of the the adots 7=(-1)3P3 -R aB7 taken 3 at a time friggering = Product of the soots = ED"Pn. x+P1x+P2x+P==0 aB+ar+ BK+B=Q. web Ex. = 4.74 8+6+5 3-6x2+11x -6=0 If N, B, I are the goots of the x3+px2+qx+r=0., papress the Value Źα², Ź¹, Ź¹, Ź²αβ i+p+2= (-1)P=-P AB+ = Q(KB1 = R

soln: 1. The Given equ. $x^{3} + px^{2} + (x + R = 0)$ The goots are R, B, 2. 2x= \$+13+ >= -P-Lap= xB+B 2+ x R = R abov = - R 1) 22 1 12 2 a b $2\pi^{2} + 2\pi^{2} + \beta^{2} + \beta^{2}$ $(x^{2}\beta+v)^{2} = x^{2}+\beta^{2}+s^{2}+2\alpha\beta+2\alpha\gamma+2\beta^{2},$ -:= (a+B+V) = 2aB - 2BV - 2aV. = (-1)2-2(xB+13y+2) $| = p^2 = 2(a).$ VIII) ZIE - CONTROLE $\frac{1}{2} \frac{1}{k} = \frac{1}{k} \frac{1}{\beta} \frac{1}{\beta} \frac{1}{\beta} \frac{1}{\beta}$ = VB+av + Br a BD $=-\frac{Q}{R}$

III) & 1 KB $\xi_{IB}^{\dagger} = \frac{1}{\alpha_{I}^{3}} + \frac{1}{\alpha_{I}^{3}} + \frac{1}{\beta_{I}^{3}} + \frac{1}{\beta_{I}^{3}}$ = V+B+K &BV $= \frac{P}{P}$ = P/R - GAS-BAS-Light and Light WE XB. $\frac{2}{2}\alpha^{2}\beta = \alpha\beta + \kappa^{2}\gamma + \beta\alpha + \beta^{2}\gamma + \delta\alpha + \tau\beta^{-1}$ = aB[c+B]+ev[e+v]+Bv[s+v] = xB [x+13+2-2] +av [x+v+B-B]+. BY [B+ 2+a-a] = ~ B [~ + B+ v] - 2B v + av [a+B+v] - xBV +BY [~+B+ »] - ~BY = [x+B+r] [xB+xy+Br] - 3xBr = -PQ + 3R. 2. If a Bir be the roots of the eqn $\chi^3 - p \chi^2 + Q \chi^2 - R = 0$. This find. i) z_{α}^{\prime} , z_{α}^{\prime} ,

x+13+ 2=60 (p)=p xp=+13++2x-(+) &= Q ... ~BV = (-1)3 (-R = R. 1) 222 = 2 + 2 + 2 = (a + B + V) - 2xB - 2xV - 2BV = (x+B+v)=-2[~p+av+pv] = p²-2Q. 60 ii).<u>Z'-</u> $=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}$ Br+ar+ap aBr =Q R ii) 5 - 1 $=\frac{1}{\alpha_{\beta}}+\frac{1}{\alpha_{\gamma}}+\frac{1}{\beta_{\gamma}}$ $= \frac{y + B + z}{a \beta y}$ $= \frac{P}{R}$

· [1] 5 -2 p? = 2 B + B 2 + 2 2 - 2 2 - 2 2 2 - 2 2 2 - 2 2 2 - 2 2 2 - 2 2 2 - 2 2 2 - 2 2 2 - 2 - =[aB+Bv+av]-2(aB(BV)-2(aB)(av) -2(Br)(av) $= \left[\alpha \beta^{3+\beta} \gamma^{2+\alpha} \gamma^{2-2} \left[\alpha \beta^{2} \gamma^{2+\alpha} \beta^{2} \gamma^{2+\gamma} \alpha^{2} \beta^{\gamma} + \gamma^{2} \alpha \beta^{2} \right] \right]$ = [x B+ Bv+ x y]2 - 2[B(x Bv)+x(x Bv]+x(x Br) Q2-2 [EBV)[ec+B+V]] Q²-2RP $\mathcal{D}_{2i} \approx \frac{2}{2} \frac{2}{3i} \frac{2}{3i}$ $= (\alpha + \beta + \nu)^3$ (athtc) = at bt c3 - 3[(a+b+c) [abt bct E] +3abc (x+B+v)= x3+B3+y3-3 [[+B+v] [2]5+2]5+x]+3287 (++B+8) - 3 [PQ] +3R $= p^3 - 3pa + 3pa$ = P3-3 PQ 73e. (b)(q-) 2 #(si) + (q-) = (-P) # 3 E-+ 3 PB

be the acots of the equ I a + B+2 x +pz2+Qz+R=0 quied the Value of $\frac{\left(B^{2} + v^{2}\right)}{B^{\gamma}} + \frac{\left(b^{2} + x^{2}\right)}{aB^{2}} + \frac{\left(a^{2} + b^{2}\right)^{2}}{aB^{2}}$ $\alpha_{+B+} v = (\tau) p = -P$ xB+B>+++=[-1)2Q=Q xpv= fi)3(P) = -R: aps = - P $\frac{\beta^2 + \gamma^2}{\beta\gamma} + \frac{(\psi^2 + \alpha^2)(\omega^2 + \beta^2)}{\alpha\gamma^2} + \frac{(\psi^2 + \alpha^2)(\omega^2 + \beta^2)}{\alpha\gamma^2}$ $= \frac{\left(\alpha^{2} + \beta^{2} + \beta^{2} - \alpha^{2}\right)}{\beta^{\gamma}} + \frac{\left(\alpha^{2} + \beta^{2} +$ $= \frac{(\alpha^{2} + \beta^{2} + \nu^{2})}{\beta^{2}} - \frac{\alpha^{2}}{\beta^{2}} + \frac{(\alpha^{2} + \gamma^{2})}{\alpha^{2}} + \frac{\beta^{2}}{\alpha^{2}} + \frac{(\alpha^{2} + \beta^{2})}{\beta^{2}} + \frac{(\alpha^{2} + \beta^{2})}{\alpha^{2}} + \frac{\beta^{2}}{\alpha^{2}} + \frac{(\alpha^{2} + \beta^{2})}{\beta^{2}} + \frac{\beta^{2}}{\alpha^{2}} + \frac{\beta^$ $=\left(\alpha^{2}+\beta^{2}+\beta^{2}\right)\left[\frac{1}{\beta^{2}}+\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\beta^{2}}+\frac{\beta^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha\beta}\right]$ $= \left[\alpha + \beta + \gamma \right]^2 - 2 \left[\alpha \beta + \beta \gamma + \alpha \gamma \right] \left[\frac{\int \alpha + \beta + \gamma}{\pi \beta \gamma} / \left[\frac{\alpha^2 + \beta^3 + \gamma^3}{\pi \beta \gamma} \right] \right]$ $= \left[\left(-P \right)^2 - 2G_2 \left[\left(-\frac{P}{-R} \right)^2 - \int_{-R}^{-1} \left(\frac{3}{R} + \frac{3}{R} + y^3 \right) \right]$ Consider :a 3+ p 3 = (ac+p+2) 3+ 3x 132 - 3 (a+p+2) (ap+p+4) =(-p) + 2(r) = 3(-P)(Q) = (-P) # 3 R + 3 PQ.

Let $= \left[p^{2} - 2q \right] \left[\frac{p}{k} \right] + \frac{(-p^{2} - 3k + 3pq)}{k}$ $= p^{3} - 2pq - p^{5} - 3r + 3pq$ be the roots of or B and P 44 x 3+px+px+r=0 , find the Value 0 egn $\int \kappa^2 + l$ Son? We know that $(\Gamma (i))$ $d+\beta+\gamma=-P$ xp3+Bv+2a= Q $\alpha \beta \gamma = -R.$ $2x^{2} + 1 = x^{2} + 1 + \beta^{2} + 1 + y^{2} + 1$ $= \chi^2 + \beta^2 + \gamma^2 + 3.$ at13+ 2)2-2(2B+B3+12x)+3 C-p7= 2(a)+3 p2-2 Q)+3

Reafferd Equation Conditions: let the egn we. $x^{n}+p_{1}x^{n-1}+p_{2}x^{n-2}+\dots+p_{n-1}x+p_{n-1}x+p_{n-2}$)) If the Co-efficients have all like Sign. in The (1) is a root. 1 ED is a sect then (2+1) is a placker. 2) 4) the a-eficiente of the item equi * distance from the first and the last. have opposite sign. Then (+1) is a goot . then (2-1) is a lactor. (i) If the equation is of cold degree the (x-1) is a factor. (ii) If the equation is of even degree the Galternah tor -) thr (z-1) is a factor.

64

Problems find the roots of the equation. D x"+1x1+3x3+3x2+4x+1=0. (2+1) Som All the co-efficients are positive WKIA (-D is the abot. (ie) GetD is a factor. x + 4x + 32 + 3x + 4x +1 =0, x + x + 3x + 3x + 3x + 3x + 3x + x + 1 =0 x¹(x+1) + 3x³(x+1) + 3x(x+1)+bx+1)=0 (x+1) $(x^{4}+3x^{3}+3x+1)=0$ $(x+\frac{1}{2})^{2}x^{2}+\frac{1}{2}$ (n+1) => x=-1 is a abot ... The eqn is dividide by 2 2-1 $x^{2} \times \frac{1}{2^{2}} \int \frac{x^{4} + 3x^{3} + 3x + 1}{x^{2}} \int \frac{1}{x^{2}} \int \frac{1}{x^{2}}$ $\int x^{2} + \frac{3}{2} + \frac{3}{2} + \frac{1}{2} = 0.$ Dard. $\left(\begin{array}{c} 2 \\ \chi + 1 \\ \chi + 2 \\ \chi^2 \\ \chi^2 \\ \chi^3 \\$ (xent'x) Let put $x + \frac{1}{2} = z$ $x + \frac{1}{2} = z$ $(x_1+\frac{1}{x})^2 = x^2$

 $\left(\chi^{+}+\frac{i}{2}\right)=\chi^{-}$ 2+2+2+2+2=2 $\frac{2}{n+2} + \frac{1}{n^2} = z^2$ $\chi^2 + \frac{1}{\chi^2} = -\frac{1}{\chi^2 - 2}$ (1) =) $z^2 - 2 + 3z = 0$ z2+3x-2-0. $Z = -3 \pm \sqrt{9 - 4(1)(-2)}.$ 2). 2(1). Soln! = -3 = 19+8 $\overline{Z} = -\frac{3\pm\sqrt{17}}{2}$ We know. Z= 2+1. $\frac{-3\pm\sqrt{17}}{2} = 71 \pm \frac{1}{21}$ -0" × $-\frac{3\pm\sqrt{17}\pm\chi^2+1}{2}$ (-3+Jit)x = (x+1)2 2x2-(-3±(1-)x+2=0

 $\mathcal{H} = (-3 \pm \sqrt{17}) \pm \sqrt{(-3 \pm \sqrt{17})^2} - 4(2)(2)$ 2(2) $\chi = -3\pm\sqrt{17} \pm \sqrt{(3\pm\sqrt{17})^2}$ are the roots of the above dx =-1 equation 4 3x3+4 3x2+7-6= solve the HOKT! G1-1) is the factor These fore or =1 us a root. 67 5-24-4323+432+2-6=0 6x#(x-1)+5x3(x-1)=38x2(x-1)+5x(x-1) +6 (2-1)=0 (x-1) (6x++5x3-38x7+5x+6)=0 (x-1)=7 x=1 uita root. The eqn is divide by x2. $\frac{6\pi^{4}}{\sqrt{2}} + \frac{5\pi^{3}}{\sqrt{2}} - \frac{38\pi^{2}}{\sqrt{2}} + \frac{5\pi^{4}}{\pi^{2}} + \frac{5\pi^{2}}{\sqrt{2}} + \frac{5\pi^{2}$

$$\int 6x^{2} + 5x - 38 + \frac{5}{x} + \frac{6}{x^{2}} \int z = 0$$

$$b \left(\frac{2}{x^{2}} + \frac{1}{x^{2}} \right) + 5 \left(\frac{x + \frac{1}{x}}{x} \right) - 38 = 0 = 0$$

$$det = \frac{x = x + \frac{1}{x}}{x^{2} - 2} = \frac{x}{x} + \frac{1}{x^{2}}$$
Sub in Q .
$$6 \left(\frac{x^{2} - 2}{x^{2}} \right) + 5x - 58 = 0$$

$$6 \frac{x^{2} + 5x - 50 = 0}{6 \frac{x^{2} + 5x - 50 = 0}{8 \frac{2}{x^{2} + 5x - 50 = 0}}$$

$$= -\frac{5 \pm \sqrt{25 - 4(6)(-50)}}{\frac{2}{8}}$$

$$= -\frac{5 \pm \sqrt{1225}}{\frac{12}{12}}$$

$$= \frac{50}{12} \frac{10}{12}$$

$$= \frac{-5 \pm \sqrt{1225}}{\frac{12}{12}}$$

$$= \frac{50}{12} \frac{10}{12}$$

$$= \frac{-51}{2} \frac{\sqrt{12}}{\frac{12}{3}}$$

$$= \frac{50}{12} \frac{10}{12}$$

$$= \frac{50}{12} \frac{10}{12}$$

$$= \frac{50}{12} \frac{10}{12}$$

$$= \frac{50}{12} \frac{10}{2}$$

$$= \frac{10}{2} \frac{10}{2}$$

$$= \frac{10}{2} \frac{10}{2}$$

2.45

auelo put
$$x = \frac{\pi}{2}$$
.
 $x^{2} - \frac{\pi}{2}(x + i = 0)$
 $\pi = \frac{1}{2}(\frac{5}{2}) \pm \sqrt{\frac{2\pi}{2}} + \frac{1}{1}(\frac{1}{2}(0))$
 $= \frac{\pi}{2} \pm \frac{9}{2}(1 + \frac{2\pi}{2}) + \frac{1}{2}(1 + \frac{2\pi}{2}$

$$\begin{aligned} & \int x^{6} - 6 - 352^{5} + 35x^{2} + 56x^{4} - 56x^{2} = 0 \\ & \int (26^{6} - 1) - 35x^{2} (2^{4} - 1) + 56x^{2} (2^{2} - 1) = 0 \\ & (\text{omindus} \\ & x^{6} - 1 = (x^{2})^{5} - 1^{5} \\ & = (x^{2} - 1) (x^{4} + x^{2} + 1) \\ & \chi^{4} - 1 = (x^{2})^{2} - 1^{2} \\ & = (x^{2} + 1) (x^{2} - 1) \\ & \int \int (x^{2} - 1) (x^{4} + x^{2} + 1) \int -35x (x^{2} + 1) (x^{2} - 1) \\ & + 56x^{2} (2^{2} - 1) = 0 \end{aligned}$$

$$\begin{aligned} & \chi^{2} - 1 \int \int \delta (x^{4} + x^{2} + 1) - 35x (x^{2} + 1) + 56x^{2} = 0 \\ & \chi^{2} + 1 \\ & \text{K} \quad \alpha \quad \text{spoot} \end{aligned}$$

$$\begin{aligned} & \int \delta x^{4} + 6x^{2} + 6 - 35x^{3} + 35x + 56x^{2} = 2 \\ & \int \delta x^{4} - 35x^{3} + 60x^{2} + 26x^{2} + 35x + 56x^{2} = 2 \\ & \int \delta x^{4} - 35x^{3} + 60x^{2} + 26x^{2} + 35x + 56x^{2} = 2 \\ & \int \delta x^{4} - 35x^{3} + 60x^{2} + 26x^{2} + 6x^{2} - 0 \\ & \int x^{2} - \frac{35x^{3}}{x^{2}} + \frac{66x^{2}}{x^{2}} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + 46x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} - 35x + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\ & \int \delta x^{2} + \frac{6}{x^{2}} = 0 \\$$

10-

$$\begin{aligned}
6(x^2 - \lambda) - 35x + 6dx = 0; \\
6x^2 - 35x - 12 + 5dx = 0; \\
6x^4 - 35x^3 + 62x^2 - 35x + 6^{\pm 0}; \\
\vdots x^2 - \frac{6x^4}{x^2} - \frac{35x^3}{x^2} + \frac{62x^2}{x^2} - \frac{35x}{x^2} + \frac{4}{x^2} = 0; \\
6x^2 - 35x + 62 - \frac{35}{x} + \frac{6}{x^2} = 0; \\
6x^2 - 35x + 62 - \frac{35}{x} + \frac{6}{x^2} = 0; \\
6(x + \frac{1}{x^2}) - 35(x + \frac{1}{x}) + 62 = 0; \\
ket & z = x + \frac{1}{x}; \\
z^2 - d = x^2 + \frac{1}{x^2}; \\
6(x^2 - 2) - 35(x) + 6d = 0; \\
6x^2 - 35x + 62 = 0; \\
6x^2 - 35x + 62 = 0; \\
6x^2 - 35x + 62 = 0; \\
7 = 35 \pm \sqrt{1225 - 1200}; \\
10; \\
12; \\
12; \\
3d; \\
x = \frac{40}{12}; \\
x = \frac{40}{12}; \\
x = \frac{40}{12}; \\
x = \frac{40}{12}; \\
x = \frac{40}{3}; \\
x = \frac{35}{12}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{35}{2}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{35}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{36}{3}; \\
x = \frac{12}{3}; \\
x = \frac{40}{3}; \\
x = \frac{12}{3}; \\
x =$$

2

$$\begin{split} & \psi \cdot \xi T \\ & \chi = \chi + \frac{1}{\chi} \\ & \chi \chi = \chi^{2} + 1 \\ & \chi^{2} - \chi \chi + 1 = 0 \\ & (asb) \quad \chi = \frac{10}{3} \\ & \frac{100}{4} - \frac{10}{3} - \frac{10}{2} + 1 = 0 \\ & \chi^{2} - \frac{10}{3} - \frac{10}{2} + 1 = 0 \\ & \chi^{2} - \frac{10}{3} - \frac{1}{2} + \sqrt{\frac{100}{9} - 4(1)(1)} \\ & = \frac{10}{3} \pm \sqrt{\frac{64}{9}} \\ & \chi^{2} - \frac{10}{3} + \sqrt{\frac{100}{9}} \\ & \chi^{2} - \frac{100}{3} + \sqrt{\frac{100}{9}} \\ & \chi^{2} - \frac{100}{9} \\ & \chi^{2} - \frac{100}{9}$$

$$= \frac{5}{12} \frac{1}{2} + \frac{3}{2}$$

$$= \frac{5}{4} + \frac{2}{4}$$

$$\frac{1}{12} = 2\frac{1}{2} \frac{1}{2}$$
The argunial roots $\frac{1}{4} + 2\frac{5}{13} + \frac{1}{3} + \frac{1}{2}$

$$\frac{1}{12} = 2\frac{1}{2} \frac{1}{2}$$

$$\frac{1}{12} + \frac{2}{2} + \frac{1}{2} \frac{1}{2}$$

$$\frac{1}{12} + \frac{2}{2} + \frac{1}{3} +$$

6xt - 25x737x2-25x+6=0 ÷ 22. $\frac{6x^{2}}{\pi^{2}} - \frac{25x^{3}}{\pi^{2}} + \frac{37x^{2}}{\pi^{2}} - \frac{25x}{\pi^{2}} + \frac{6}{\pi^{2}} = 0$ 6x2-25x+37-25+6=0 $6\left(\chi^{2}+\frac{1}{\chi^{2}}\right)-25\left(\chi+\frac{1}{\chi}\right)+37=0$ J 37 12 25 ket z= x+1/2 $\chi^2 - 2 = \chi^2 + \frac{1}{\chi^2}$. 6 x2-12 -25 x+37=0 100×6 622-252+25=0. Z= 25 ± (225+4(6)(25) 2-(96) = 25 ± V625-600 150 12 = 25± v 25 5012 Z=25±5 5012

det z=n+n スス= 2+1 $\chi^2 - \chi \chi + 1 = 0$ Case (1) Z = 7/3. x²- 5/3 x+1 = 0 $\chi = \frac{5}{3} \pm \sqrt{\frac{45}{9}} - 4(1)(1)$ = $5\frac{1}{3} \pm \sqrt{\frac{20}{9}}$ 392/1 = 53 + 3 -11 $\chi = \frac{9}{6}, \frac{1}{6}$ $\frac{1}{2} = \frac{3}{2} = \frac{1}{6}$ Case (1) Z= F/2. n2-5/2x+1=0 $\chi = \frac{5}{2} \pm \sqrt{\frac{25}{4}} - 4(1)(1)$ $= \frac{5}{2} + \frac{2}{2} + \frac{$ $= \frac{8}{12/4} \frac{2}{12/4} \frac{1}{12} \frac{1$

$$Car(ii) = \frac{7}{8} + 1 = 0.$$

$$x^{2} - \frac{7}{8} + 1 = 0.$$

$$x = \frac{5}{3} \pm \sqrt{\frac{25}{9}} - \frac{1}{9}(1)(1).$$

$$x = \frac{5}{3} \pm \sqrt{\frac{25}{9}} - \frac{1}{9}(1)(1).$$

$$x = \frac{5}{3} \pm \sqrt{\frac{25}{9}} - \frac{1}{9}(1).$$

$$x = \frac{5}{3} \pm \sqrt{\frac{-11}{9}}.$$

$$x = \frac{5}{3} \pm \sqrt{\frac{-11}{9}}.$$

$$x = \frac{5}{3} \pm \sqrt{\frac{-11}{2}}.$$

$$x = \frac{5}{6} \pm \sqrt{\frac{-11}{6}}.$$

$$x = \frac{5}{6} \pm \sqrt{\frac{-11}{6}}.$$

$$x = \frac{5}{6} + \sqrt{\frac{-11}{6}}.$$

$$x = \frac{5}{6} + \sqrt{\frac{-11}{6}}.$$

$$x = \frac{5}{6} + \sqrt{\frac{-1}{6}}.$$

$$\begin{split} & \text{Holive } \chi^{10} - 3\chi^8 + 5\chi^6 - 5\chi^4 + 3\chi^2 - 1 = 0 \\ & \chi^{10} - 3\chi^8 + 5\chi^6 - 5\chi^4 + 3\chi^2 - 1 = 0 \\ & (\chi^2 - 1) \quad \text{is } a \quad \frac{1}{4} actor \\ & \chi^{10} - \chi^8 - 2\chi^8 + 2\chi^6 + 3\chi^6 - 3\chi^4 - 2\chi^4 + 2\chi^2 + \chi^2 - 1 = 0 \\ & \chi^8 (\chi^2 - 1) - \lambda\chi^6 (\chi^2 - 1) + 3\chi^4 (\chi^2 - 1) - 2\chi^2 (\chi^2 - 1) + (\chi^2 - 1) + 2\chi^6 (\chi^2 - 1) + 3\chi^4 (\chi^2 - 1) - 2\chi^2 (\chi^2 - 1) + (\chi^2 - 1) + 2\chi^4 + 3\chi^4 - 2\chi^2 + 1) = 0 \\ & (\chi^2 - 1) \quad (\chi^8 - 2\chi^6 + 3\chi^4 - 2\chi^2 + 1) = 0 \\ & (\chi^2 - 1) \quad (\chi^8 - 2\chi^6 + 3\chi^4 - 2\chi^2 + 1) = 0 \\ & -\chi^6 - 2\chi^6 + 3\chi^4 - 2\chi^2 + 1 = 0 \\ & -\chi^6 - 2\chi^6 + 3\chi^4 - 2\chi^2 + 1 = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2\chi}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2\chi}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - 2\chi^2 + 3 - \frac{2}{\chi^2} + \frac{1}{\chi^4} = 0 \\ & \chi^4 - \chi^4 + \frac{1}{\chi^4} - 2(\chi^2 + \frac{1}{\chi^2}) + 3 = 0 \\ & \chi^4 - \chi^4 + \frac{1}{\chi^4} - \chi^4 + \frac{1}{\chi^4} = \chi^4 + \frac{1}{\chi^4} =$$

37/17 Differential Calculus: And its Application:-Differentiation and desceratives of Simple Junctions. The sate of Change in Y with suspect to & Can be neasured Using the derivative &. dy un physics velocity is equal to dreat The method of finding the defendative of a function is called differentiation. Basic differtiation formula? $\int \frac{d}{dx} c = 0$ a) $\frac{d}{dx} x^n = n x^{n-1}$ 3) $\frac{d}{dn}e^{an}=ae^{an}$. 75°. A) du sinax = a Cosax ...

5) dx los an = - a sinax 6) de tanax = a bot sec²ax. 7) dx Secan = a Secan tahax. 8) de Cosecan = a Cosecan Cotan. 9) $\frac{d}{dx} = 60 \tan x = -a \cos e^2 a x \cdot \frac{e^2}{e^2} \cdot \frac{e^2}{e^2}$ 10) $\frac{d}{dx} s \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx} \cos^2 x = \frac{-1}{\sqrt{1-x^2}} \quad \text{sear}$ der 12) $\frac{d}{dx} + ax^{-1}x = \frac{1}{l+x}$ du: 2×dx 13) d (utv)=dut dv. 1A) d (uv) = udv + vdu. = uv' + vu' $(5) \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v u' - u v'}{v^2}$ $h = \frac{d}{dx} \left(u = C \frac{d}{dx} u = C u' \right)$

the dervative of the following :find i) dx [4x3] **Б**) A = 4 [3(2)] = 12 x² dr [qx3+5, sinx7. R) d [4x3+5 binx] = 7(3x3-1)+5 605x. 3 = #2x + 5605x . dn [e⁷⁹ + 8 cos 3x] 3) $\frac{d}{dx} \left[e^{7\alpha} + 8\cos 3x \right] = 7e^{7\alpha} = 8 \left[3 \sin 3x \right]$ = Te -2+ Sin 3x. $\frac{d}{dn}\left[\pi + n^{2} + \cos \pi x + 7e^{4n}\right]$ $\frac{d}{d\pi} \left[\overline{n} + \pi^{4} + \cos \overline{n} x + 7e^{\frac{4\pi}{2}} = 0 + 6\pi^{5} = 5 \sin 5x \right]$ $+74e^{4\chi}$. = 6x¹⁵-5,565x+28eAx

d [7 [7 605 2x + 6 Sin 2x + 7 sec 4 72]. $\frac{d}{dn} \left[F_{1} \cos 2x + 6 \sin 2x + 7 \sec 4x \right] = \frac{F(-2 \cos 2x)}{2 \cos 2x} + \frac{1}{2} \sec 4x = \frac{F(-2 \cos 2x)}{2 \cos 2x} + \frac{1}{2} \sec 4x = \frac{1}{2} + \frac{1}{2} +$ 6 (2 Gos 2x) +7 (4 sec 4x tan tx) =-10 500 + 12 COS2x + 28 Sectortan find the durivative of the following:-(T Sim d Eacot Fixt blow 35 = - 20 Cosec Fix + 18 600232 D. d. [4 6t 52+6+an32] 2) dr [3+7sec8x +7 cosec x] = 0+7[8sec8x tan8x] dr [3+7sec8x +7 cosec x] = 0+7[8sec8x tan8x] = F6 Sec 8 x tan 8 x - 4 Case 2 Cato $\frac{d}{dx} \left[8e^{4x} + 9a^{9} + be^{8x} \right] = 8(4)e^{4x} + 9(ax^{9-1}) + 6(8e^{8x})$ $= 32e^{4x} + 81x^{9} + 48e^{8x}.$ 3) $\frac{d}{dn} \left[\frac{8}{8} \cos^{-1} x + 4 \sin^{-1} x \right] = 8 \frac{1}{\sqrt{1-x^2}} + 4 \frac{1}{\sqrt{1-x^2}}$ 4) = -8+4 = - 4 025 -

= 46054x + 1/1+x2 ワ $\frac{4 \cos 4x}{1+\pi^2} = 4 \cos 4x + \frac{1}{1+\pi^2}$ inally I) sufformed $= \int u^2 x e^{-\int u^2 x^2} \cos x^2 (2x).$ a) $\frac{d}{dx} (x + 7x + 2) (e^{2} - log q)$. = $\left(\chi^{2} + \ln t_{2}\right) \left(e^{\chi} - \frac{1}{\chi}\right) - \left(e^{\chi} - \log \chi\right) \left(2\chi + 1\right)$ or [septimized, to [& Los ne + 4 5 Los 12 = 8 A

y=x+losx. or pat er proto and some 3 dy =1- Juny > aly - ex (es x = $\frac{d^2y}{dx^2} = -\cos x \cdot \frac{1}{2}$ a) y=xex+bea. $\frac{dy}{dx} = \pi \left(-e^{-x}\right) + e^{-x} (x) + b(e^{x})$ =- xextextex + bex + $\frac{d^{2}y}{dx^{2}} = -\pi(e^{-x}) + e^{-x}(-1) + (e^{-x}) + b(e^{x}) + o$ = xex - ex - ex + bex. $= \chi e^{-\chi} - 2 \bar{e}^{\chi} + b \bar{e}^{\chi}$ I of y=x+/2 shap that xy2+xy, y=x+/2. $y = \frac{dy}{dn} = (1) - \frac{1}{n^2}$ $y_{2} = \frac{d^{2}y}{dx^{2}} = \frac{2}{x^{3}}$ Consister $\frac{2}{2} \frac{1}{2} \frac{1}$ = 2/2-2/2 =0

a)
$$\begin{aligned} y_{1} = y_{1}e^{x}g_{1}ax \quad TT \quad y_{2}-2y_{1}+2y=0 \quad x = 0 + 1x \\ y_{1} = \frac{dy}{dx} = e^{x}(-sx) + sx e^{x} + sx + csx e^{x} \\ y_{2} = \frac{d^{2}y_{1}}{dx} = e^{x}(-sx) + sx + sx + sx + csx e^{x} \\ = -hinx e^{x} + (sx) e^{x} + sx + sx + csx e^{x} + sx + csx e^{x} \\ = 2csx e^{x} + (sx) e^{x} + sx + sx + csx e^{x} + sx + csx e^{x} \\ = 2csx e^{x} - 2e^{x}(sx + 2sx) x e^{x} + 2e^{x}s + sx \\ = 2csx e^{x} - 2e^{x}(sx + 2sx) x e^{x} + 2e^{x}s +$$

A)
$$y = x^{2} - 1$$
 $\forall T = x^{2}y_{8} - 2xy_{8} + 2y_{1} = 0$
 $y_{1} = \frac{dy}{dx^{9}} = 3(2x) = 6x$
 $y_{2} = \frac{d^{3}y}{dx^{3}} = 6(1) = 6$
 $x^{3}y_{3} - 2xy_{2} + 2y_{1} = x^{2}(6x^{2}) - 2x(6x) + 2(2x^{2})$
 $= 6x^{2} - 12x^{2} + 6x^{2}$
 $y_{1} = \frac{dy}{dx^{3}} = 0$
 $y_{1} = \frac{dy}{dx^{3}} = m(x + \sqrt{x^{2}}) y_{8} + xy_{1} - \frac{my}{y} = 0$. $(x^{3} - 1)^{2}$
 $y_{1} = \frac{dy}{dx^{3}} = m(x + \sqrt{x^{2}})^{m-1} (1 + \frac{1}{2}(x^{2} - 1)^{2}) (2x)$
 $= m(x + (x^{2} - 1)^{2})^{m-1} (1 + \frac{1}{2}(x^{2} - 1)^{2}) (2x)$
 $= m(x + (x^{2} - 1)^{2})^{m-1} (1 + \frac{1}{2}(x^{2} - 1)^{2}) (2x)$
 $y_{2} = \frac{d^{2}y_{1}}{dx^{2}} = m(m^{-1}) (x + (x^{2} - 1)^{2}) (1 + \frac{1}{2}(x^{2} - 1)^{2})(x)$
 $y_{2} = \frac{d^{2}y_{1}}{dx^{2}} = m(m^{-1}) (x + (x^{2} - 1)^{2}) (1 + \frac{1}{2}(x^{2} - 1)^{2})(x)$
 $y_{3} = \frac{(x^{2} - 1)^{2}(x^{2} - 1)^{2}(x^{2} - 1)^{2}(x^{2} - 1)^{2}(x)}{x^{2} - 1}$
 $(x^{2} - 1)^{2}(x - 1)^{2}(x^{2} - 1)^{2}(x^{2} - 1)^{2}(x^{2} - 1)^{2}(x)$
 $= \frac{(x^{2} - 1)^{2}(x^{2} - 1)^{2$

application 10/ differential. = [+4] % finding the Quere - 536 a radius of aconstance. Radius cannot be in negative Radius of $e = \frac{a \cdot 5^{3/2}}{7}$ [y'i (x'i) radius of amature P = [1+y] 7/2 where y = dy and y = dy at the 2) Find the radius of aurature point $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ on the angle $\sqrt{x} + \sqrt{y} = 1$. 1 Given $\sqrt{x} + \sqrt{y} = 1$ at $(\frac{1}{4}, \frac{1}{4})$ $i = \frac{1}{2} \frac{1}{2}$ Find the radius of annature n parabola $b_2 = 4ax$ 55/1 $y_1 = -\frac{1}{2} x^{-1/2} 2y^{1/2} = -\frac{y^{1/2}}{x^{1/2}} \quad e = \begin{bmatrix} 1+\frac{y}{2} \\ -\frac{y}{2} \end{bmatrix}^{1/2}$ Given y2= tax at (a, a) $2yy_{1} = 4a$ $y_{1} = \frac{4a}{2y} = \frac{2a}{y}$ $y_{1}(a_{1}a) = \frac{2a}{a} = 2$ $y_{1}(\frac{1}{4},\frac{1}{4}) = \frac{-(\frac{1}{4})^{\frac{1}{2}}}{\frac{1}{1/2}} = -1$ $y_{z} = -\left[\sum_{x'} \frac{y'}{2} \left(-\frac{1}{2} \frac{y'}{2} \right) - \frac{y'}{2} \left(-\frac{y'}{2} \right) \frac{x'}{2} \right]$ $y_2 = \frac{-2a}{y_p^2} \frac{dy}{dx}$ $= \frac{\binom{1}{2}}{\binom{1}{4}} \frac{\binom{1}{2}}{\binom{1}{2}\binom{$ $J_{2} = -\frac{2a}{y^{2}} y_{i}$ $Y_2 = \frac{-2a}{y^2} \times \frac{2a}{y}$ $y_1 = \frac{-2a}{y^2} \times \frac{2a}{y}$ $y_2 = \frac{-2a}{y^3} \times \frac{2a}{y}$ $y_{1} = -\frac{4a^{2}}{y^{3}}p$ $= -\frac{V_{4} + V_{2}}{V_{4}} = \frac{1}{V_{4}} = \frac{1}{V_{4}} = \frac{1}{V_{4}}$ $y_{a}^{(q,a)} = -\frac{4a^{2}}{a^{5}} = -\frac{4}{a}$ Radius of aurature $P = \frac{1+y_1^2}{4}$ $P = \frac{(1+y_1^2)^3}{1+y_1^2} = \frac{(1+(1+y_1^2)^2)^3}{1+y_1^2} = \frac{1}{y_2^2} = \frac{1}{y_2$

A) that the doubles of learnships
$$p = \frac{1}{2}$$

 $y = c - at (0, 1)$.
 $x = \frac{1}{dx} + y(t) = 0$
 $x = \frac{1}{dx} + y(t) = 0$
 $x = \frac{1}{dx} + \frac{1}{dt} + \frac{1}{dt}$
 $y_{1}(0, 1) = -\frac{1}{t} = -1$ view
 $y_{2} = \frac{1}{\sqrt{t}} + \frac{1}{\sqrt{t}}$
 $y_{1} = -\frac{x}{\sqrt{t}} + \frac{1}{\sqrt{t}}$
 $y_{1} = -\frac{x}{\sqrt{t}} + \frac{1}{\sqrt{t}}$
 $y_{2} = \frac{-\frac{x}{\sqrt{t}} + \frac{1}{\sqrt{t}}}{x^{2}}$
 $y_{1} = -\frac{\frac{1}{\sqrt{t}} + \frac{1}{\sqrt{t}}}{x^{2}}$
 $y_{2} = \frac{1}{\sqrt{t}} = \frac{2y}{\sqrt{t}} = 2$.
 $P = \frac{(1+1)^{\frac{1}{2}}}{2} = \frac{(2)^{\frac{3}{2}}}{2} = \frac{1}{2t} = 5^{\frac{3}{2}}$
Gradius of Eurie ature $p = 5^{\frac{3}{2}}$.

7) Jürd the Andlins of Casumitation of the
$$2if = a^{2} \cdot a^{2}$$

 $2 \cdot 2y \cdot y_{1} + y^{2} = -3x^{2} \cdot y_{1}^{2}$
 $y_{1} := \frac{-3x^{2} \cdot y_{1}^{2}}{2xy}$
 $y_{1} (a_{1}a) = \frac{-3(x^{2}) - (a)^{2}}{2(x)(x)}$
 $= -\frac{4}{x}a^{2}$
 $y_{2} = \frac{2xy[-bx - 2yy] - [-3x^{2} - y^{2}] 2(xy+y)}{4x^{2}y^{2}}$
 $y_{2} = \frac{2xy[-bx - 2yy] - [-3x^{2} - y^{2}] 2(xy+y)}{4x^{2}y^{2}}$
 $y_{2} (a_{1}a) = 2a^{2} [-b(a) - 2(a)(-2)] - [-3(a)^{2} - a^{2}]$
 $= \frac{2a^{2} [-2a] + 4a^{2} [-2a]}{4a^{4}}$
 $= \frac{2a^{2} [-2a] + 4a^{2} [-2a]}{4a^{4}} = \frac{-4a^{3} - 8a^{3}}{x+aa^{4}} = \frac{-12a^{3}}{x+aa^{4}} = \frac{-3a - 3a}{x+aa^{4}}$
 $p = [i+(y)^{2}]^{3/2}$
 $= \frac{[i+(y)^{2}]^{3/2}}{-3/a} = -\frac{565a}{3}$

sina addius connot be the negative. & Radius of Quarture p = 55 al. E) find the addius of Curvature of the Parabolow $x = dt^2 \cdot y = 2at$ $x = at^2 \quad y = 2at$ $\frac{dx}{dt} = 2at \quad \frac{dy}{dt} = 2a$ $J_1 = \frac{dy}{du} = \frac{dy}{dt} = \frac{2\alpha t}{2\alpha t} = \frac{1}{t}.$ $y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx} \begin{pmatrix} ay \\ ay \end{pmatrix} = \frac{d}{dx} \begin{pmatrix} ay \\ ay \end{pmatrix} = \frac{d}{dx} \begin{pmatrix} ay \\ ay \end{pmatrix} = \frac{d}{dx} \begin{pmatrix} ay \\ ax \end{pmatrix}$ $= \frac{d}{dt} \left(\frac{k}{4} \right) \frac{1}{2at}$ $= -\frac{1}{4^2} \frac{1}{2at}$ $y_e = \frac{-1}{2at^3}$ $\varphi = [1+(y_1)^2]^{3/2}$ (42) (42) $= \frac{1 + \frac{1}{42}}{-\frac{1}{2}at}^{3/2}$ $= -\left[\frac{t^{2}+J}{t^{2}}\right]^{3/2} \cdot 2at^{3}$ $= -(t^{2}+1)^{\frac{3}{2}} \cdot 2at^{3} \\ = -(t^{2}+1)^{\frac{3}{2}} \cdot 2a$

The radius cannot be in negative So radius of anvature e = (2+1)2.2a.

find the radius of cuavature at (a, o) on the anve ry = a ? - 23 Given xy2 = a3-x3 y2 = a3-x3 $\times 2yy_1 = \frac{\chi (-3\chi^2) - (a^3 - \chi^3)}{2}$ $\chi^{2}yy, = -2(x - (3\pi^{3}) - 4a^{3} + \pi^{3})$ X $2y_{1} = -\frac{2x^{3}}{2x^{2}} = -\frac{2x^{3}+a^{3}}{x^{2}}$ $y_1 = \frac{-2x^3 + a^3}{2yx^2}$

Velocity and Acceleration :-If as is the distance travelled by the positicle in time t (see), then the state of darsife displacement is given by ds it is denoted by V(velocity). ie, V= ds

Idealeration."-The state of change of velocity is ithe Acceleration and its given day acceleration = dv = d²s, = a.
Note: i) Initial Velocity V= ds at time t=0 ii) Initial velocity V= ds at time t=0.
iii) Initial acclescation a: d²s at time t=0. *The alistana* - time formalla of moving particles & S=2t³+3t²-72t+1 isfund i) Velocity and t=3 sec.

is) Initial velocity --

in Instial a caleration -

W) machantion after of Sec.

 $\begin{aligned}
\begin{aligned}
\text{Given}: & S = 2t^{3} + 3t^{2} - 72t + 4. \\
& V = \frac{dS}{dt} = 6t^{2} + 6t - 72. \\
& Q = \frac{d^{2}S}{dt^{2}} = \frac{dv}{dt} = 12t + 6. \\
& (i) \quad V(t = 3sec) = 6(3)^{2} + b(3) - 72 = -72 \quad Units/sec. \\
& (ii) \quad V(t = 0) = 6(0) + 6(0) - 72 = -72 \quad Units/sec. \\
& (iii) \quad Q(t = 0) = 12(0) + 6 = 6. \quad units/sec^{2}. \\
& (iv) \quad Q(t = 4) = 12(4) + 6 \quad r^{2}. \\
& = 54. \quad Units/sec^{2}. \\
& The distance - time formula of a moving
\end{aligned}$

2) The distance - fire formula of a moving positicle is $s = \frac{t^3}{3} - \frac{7}{2}t^2 + 6t - 10 = 16$ i) Velocity at $t = 3 \sec 1$. Solution Given $\Rightarrow S = \frac{t^3}{3} - \frac{7}{2}t^2 + 6t - 10$. $y = \frac{1}{3} = \frac{3t^2}{3} - \frac{14t}{2} + 10$ $y = \frac{1}{3} = \frac{3t^2}{2} - \frac{14t}{2} + 10$ $ds = \frac{3t^2}{2} - \frac{14t}{2} + 10$ $ds = t^2 - 7t + 10$.

$$a_{2} \frac{d^{2}_{2}}{dt^{2}} = \frac{2t_{1}-7}{2t^{1}-1}$$

$$p \text{ selectily out+3Sec}$$

$$V_{(t=3Sec)} = \frac{3^{2}-7(3)+6}{= q-21+4}$$

$$= -6 \text{ Units/Sec}$$

i) Velocity Initial

$$V_{(t=0)} = 0-0+6$$

$$= 6 \cdot \text{ Units/Sec}$$

ii) $\text{ occulonation Initial}$

$$a_{c+zo} \ge 0-7$$

$$= -7 \text{ Units/Sec}^{2}$$

iii) $\text{ occulonation at } t=4Sec$.

$$a_{c+zo} \le 8-7$$

$$= 1 \text{ Units/Sec}^{2}$$

The distana time formula of a moving particle is $s=t^{3}-5t^{2}+6t-10$. Find.

N Envided Veberty:
$$V = \frac{ds}{dt} = \frac{3t^{2/3}}{F_{2}} - 5t(2t) + 6$$

$$= \frac{t^{2}}{2} - 10t + 6$$

3

$$a = \frac{d^{2}s'}{dt^{2}} = \frac{2t}{2} - 10^{4} \text{ mean}^{2}$$

$$= t - 10^{4}$$

$$V(t=0) = \frac{2}{2} - 0^{4} + 6^{4} +$$

Engents and Normal Tangent: The steeright line which touches the anve at a paint is called the tangent. Noamal: Re Light d Normal is the straight line which is perpendicular to the tangent and passing through the point at which the tangent toushes the Curve. Note :i) slope of a tangent = dy (iii ii) slope q a Normal = - 1. (iii) Eqn of a dangent => $y - y_i = m(x - x_i)$ iv) Eqn of a normal =) $y - y_1 = \frac{1}{m} (n - n_1)$

Enter trapport and Problems !in (i) find the egn of targent and normal to the curve ily = 3-2 at (1,). dy = 24 - Given 2y = 3-2, at (1,1). $2 \frac{dy}{dn} = 3 - 2x$ $y dy = -\frac{1}{2}x$ $\frac{dy}{dy} = -\mathbf{x}.$ $\frac{dy}{dn}E_{i,i}) = -1$ Slope of a tangent m normal -1 = Slope of a Equ of a tangent => y-1=-1 (x-1) x+y=2=0 Eqn ofa normal => y-1 = 1 (x-1) = x-y=0 [n-y=0]

a) Find the agn of the Tangent and precimal to the drave y= 5-2x-3x iat (12, mi "Green. - P- main , 43 - AY $y=\overline{n}-2\chi-3\chi^2$ - 9 - 44 S $\frac{dy}{dn} = 0 - 2 - 3(2x)$ = -2-6x. dy = -bx - 2.JN = -6(2)-2 dy $dn(2_1-11) = -12-2$ are equilibrium . = -14. Slope of the tangent m=-19. Egn of the tangent y-y, = m(x-x1) 1 y+21= -14 (x-2) y+11 = -11x +28. 14x+y+11-28=0 1×x+y-17=0.

Egn of the Normal y-y: - (x-r) y+11 = 1 (x-2) 14x1 14y+154 = x-2 154 ... = x - 14 y - 156:0 x-14y-156=0. find the egn of the tangent and Acamal to the Guare y= 5x² at (2,4). 3) Given =) $y = \frac{5\pi^2}{1+\pi^2}$. $\frac{dy}{dn} = \frac{(1+n^2)(10n) - 5n^2(0+2n)}{(1+n^2)^2}$ dr = 1+x (10x) - 5x (2x) $(1+x^2)^2$ = 100+102 - 5+ 102. $(1+n^2)^2$ dy = 10x_. In (+++)2 $dy = \frac{10x}{(1+0)^2} = \frac{10(2)}{(5)^2} = \frac{25}{25} = \frac{3}{5}$

the tangart m= % Inter gration !normal m= -5/4. stope of recipaocal % Intergration 's Eqn of the tangent y-y=m(x-x,) basic formula ! $y - 4 = \frac{4}{5}(x - 2)$ $\int x^n dx = \frac{n+1}{n+1} + C$ e) Fy-20=4x-8 $\int e^{\alpha \eta} d\eta = \frac{e^{i\alpha \chi}}{\alpha} + C$ Ах-Бу +12=0. e) the tam (x-x) Jasax dx = Sinox + c 3) y-4 = - 2 (21-2) - COSOM + C Schandn= わ Ay-16 = - 5x +10 (os ar dr $\int \frac{1}{\pi} dn = \log n$ 5) Binarde Бx+4ý-10-16=0 f= logn+ Stanoxdu = 10g (Jeoux) + C Fin +4y -26=0 / 6) f seconda = log (Hanaa + vsecaa) + c 201 KH - 201401 7) for or F by See J Seconda = stanan + G Secor: 19 8) S Cosec and = - Cotan + C 9) \$31 $[\sigma]$ VU1-u12+u13 10) Jurda = Judr = ur- Srdu. II)

5 . is . 16 . 12) SEdx - cx+c. Juv dz = uv, - uv2+u"3-(1) definite intergral? Jzendr = x etx - 2xetx + 2e5x 25 + 225. Ts an integral where [0,5] = 0 = x = st the dimits are given. [0,0] = 0 = x = s [0,0] = 05 x = 5 Intelenite intergral !- (0,5]=0 = x =5 3) In2logn-du -Is an intergral where the hatricts D Raoblems Prattice parties Ander Authi Arthi (mathi 0"= 2 0"=0 $U = \log x$ $U = \frac{1}{x}$ $V = \frac{1}{x}$ Authi Parthe D (Fre3x + Cos q x + 1/ x+s + Sec² q x + 3) dn Partly $u' = \frac{1}{x}$ Party Anthy $V_2 = \frac{\kappa}{128}$ $V_3 = \frac{\kappa}{160}$ = 5 e 3x + ben 4x + log (2+3) + tan 4x $V'' = + \frac{2}{n^3}$ + 3x + c. (uv dn = Uvi - u'v2 + u" 1/2 - 5 Stenda. (r. Fe $= \log x \frac{\chi^3}{3} - \frac{\chi^4}{\chi} \frac{1}{12} \frac{\chi^2}{\chi^2} \frac{\chi^3}{60}$ ₩,= e 5% $\psi = \chi^2$ VI = CFX V, = 2x $= \log_{n} \frac{n^{3}}{2} - \frac{n^{4}}{12\pi} - \frac{n^{5}}{6\pi^{2}} - \cdots - t \in C$ V2 = 057 $V_3 = c^{57}$ $= \log \frac{x^3}{3} - \frac{x^3}{10} \cdot \frac{x^3}{10} + \dots + c.$ U'' 20 ' Why a un frithe.

Sitorloso = 1 \$) (tan'x dx . Sa O. tarto - 1 Jn J.m = - J dr Core 0 - 601 0 01 Sino- 350 - 5030 Slader - x J dx Vs Ser 650=-17 6520 4=7 VI = Mann 0'=1 Sin 0: 11 Cas20 Va = lag ser = U"=0 Jurda = uy - 0'12 + u"v3 -Jxtan xdx = ntanx - log seex - x H.S Smart 1) Jehr x hdx Cast = 2) $\int sin 4x = \frac{3}{2} dx$ 3) In³ sin³x dx A) J. x t Sin 2 x dx $5) \int x^{3} \cos^{2} 4x \, dx$

Asea. Asea bounded by a closed anve The definite interspel Jydx = Jx dy. gives the area of the region which is bounded by the Guare - y= /(x)) The mais of the and the two Ordinates of and and - 21=6.) Find the area bounded by the luque y= x2+x from x=1 and x=3. $\int_{a}^{b} y \, dx = \int_{a}^{b} x \, dy.$ a=1 1 b=3. $y = x^2 + x$. $\int_{a}^{b} y \, dx = \int_{a}^{g} \chi^{2} + \chi$ $= \left(\frac{x^3}{3} + \frac{x^2}{2}\right)^2$

= 1 + 2 - 5 + + + Set x olx $= \int \frac{32+10}{6} - \int \frac{2+3}{6} \int \frac{2+3}{6}$ 18 72 = [=] - [s] ferild. = 67 76 Jurida = UV, 21 $\int e^{57} x^5 dx = \frac{\chi^5 e^{5x}}{25} - \frac{5x e^{5x}}{25} + \frac{5e^{5x}}{125}$ 547 2) $\int \sin 4x e^{3} x dx^{(1)} \exp \left[\frac{1}{2} \frac{1}$ $\int Sunan e^{3n} dm = e^{3n} Junan - cos ze^{3n} - \frac{Gua}{7}$ $+ 2e^{3n} \frac{Gua x}{60} + 27e^{3x}$ $- \frac{cosa}{64}$ NS THE - SHE - EV for los Andre H allosen at 3nd loss white (3) or +

$$\begin{array}{c} 3) \int x^{2} \int x^{2} \int \frac{1}{2} \int \frac{1}{2}$$

D find the case a bounded by the hurre

$$y = x^2 + 1$$
 from $x = 1$, to 3
 $y = 1$, $y = 1$,

)

5) Find the town bounded by the Cuare,

$$y = \pi^2$$
 from $x = 0 - 16^{-12}$
 $\int y \, dx = \int x^2 \, d\pi$ Sin $0 = 0$
 $a = \begin{bmatrix} n & 1 & 9^{10} & 9^{10} & 10 = 1 \\ 0 & 50 & 70 = 1 \\ 0 & 50 & 70 = 1 \\ 1 & 1 & 10 \\ 1 & 1 & 1$

Scanned with CamScanner

a that the area of the arcle of radius 20 Volume ?b using integration me thad The volume of the solid obtained The egn of the Circle with Curte by rotating the agea bounded by the Cuave y= f (2) and x-axis between of the crig's it radius b x=a and x=b about the x axis is by aaty2=6 Here z varies from z=0 to x=b and integral Jxiydx is equal to The volume of when the dorea bounded by the Guare y= 1 (x) and y anis from x +y2 = b $y^2 = b^2 - x^2$ is revolved about the y arris between => $y = - \frac{1}{\sqrt{2}} \sqrt{2} - \chi^2$ y=a, y=b is instruged atoms Area of the Circle = 4 fux dr. daea: Pasabola -> y= 4ax, IJ $y = 2\sqrt{a}$ x: - y' 10 y x = Apx lingt ox=0, and x=b. It = De $= 4 \int \frac{\chi}{b} \sqrt{b^2 - \chi^2} +$ y= 2 50 50 - $= 4 \begin{bmatrix} b^2 & Sin^{-1}i & -0 \end{bmatrix}$ pubola := a la Ja Ja da $= \frac{4b^2 \hat{u}}{4} = b_{11}^2$ $=A\frac{b^{2}}{2}\frac{11}{2}$

find the Volume of the Spipere of radius of a cering integration is Sola' Volume of the Sphar is Obtained when the ware bounded by the Semicinele 2. x+y= 2 and the x axis when it is notated rabout the x-anis vote known That 12+y2=x2.13 a Circle when center at the origin with radius r, when we convited a Sinúciade, X, vouries from - r to r and y=r-x. .: Volume of the sphere of Tigda fiy2 dn $\int \pi y^2 dx = \int \pi (r^2 x^2) dx$ $= 2\pi \left(\frac{2}{\pi} - \pi \right) d\pi$ $x = 12\pi \sqrt{12} \sqrt{12} \sqrt{12} \sqrt{12} \sqrt{12}$

 $= 4\pi r^2 \int \frac{x^3}{3} \int h$ = 2n [y - 3/3]-0 = 717 2 LE mar = 117h Find the Warne of the right Circulas Cone of base sodius Y. Reduction goamula! $\int Sun \stackrel{m}{x} \cos^{n} x = -\frac{\cos^{-2} v \sin^{-1} x}{m + n} + \frac{m - k}{m + n}$. Janly area of POB cohien the bounded by the line $= \frac{bin^{m+r}(con^{-r})}{m+n} + \frac{n-1}{m+n}$ Sun x los x 1 OB and x-axis is notated solid Conp by about the x-axis, the By Sin x Cosn x Obtained ? :. Here I varies from O to h y= Vx y=mx and when mis odd (n= odd o reven) Cuse(i) where m= m= m ... Eng = m+n m+n-2 waparta 3+qn Att Case(ii) when mis even sin is odd) Try dx = af II re x dx. $I_{\text{MFD}} = \frac{(m-1)}{m+n} \cdot \frac{(m-3)}{m+n-2} \cdot \frac{(m-1)}{(m-3)} \cdot \frac{(m-3)}{(m-3)} \cdot$

Care (ii) : when m is even y n is even. In= Sunadx. nIn= -bin " + cosx + (n-1) In-2. $\int_{-\infty}^{\infty} dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n-3} \cdot \frac{$ O Juin du = n-1 - 2-3 5- 1/2 (n is was $\mathcal{I}_{h} = \int \cos^{n} x \, dx$ $n I_n = G e^{n-1} x S in x + (n-1) I_{n-2}$ - - 1/3 . (n ris odd $\int \log^{n} x \, dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2}$ 2 n=3 $\frac{\sqrt{2}}{6s^{n}} \cos dx = \frac{n-1}{n} \frac{n^{2}}{A^{2}} \frac{n^{2}}{A^{2}} \frac{1}{a^{2}} \frac{\sqrt{2}}{a^{2}} \left(n \text{ is even} \right)$ Evaluate Entragent Scos3x dx Using 3) Visual integration method ii) Reduction formula. iv) find if los scidx ...

Ma DUsual untregration method : lus x dx = Jas x Cosn dx put y= vsince = ((1-Sin x) 605x dx 3 (23) ((1-y) dy - xh x" 23 $= \left(\frac{y}{y} - \frac{y^{3}}{y} \right) + c$ = [13 in x - 13 in 32] +G ii) Using Reduction formula it and ar In= flosse der. nIn= Cash- Je Suise + (n-1) In-2.) co, 3 x dx = " 3 2 3 = 6 5 x Sin x + 2 2 3-2 who wing (7 Cos & Sinx + 2I, weat = 4 tol ub(hur fl...) = 2 [Cos x Sun x + 2 S

 $\frac{1}{10} \int \frac{1}{10} \frac{1}{100} \frac{1}{x} dx = \frac{1}{100} \int \frac{1}{100} \int \frac{1}{100} \frac{1}{10$ Na 2 : 12 Cos x dsc. O nove n=3 (odd) $\frac{1}{2} = \frac{1}{2} = \frac{(n-1)(n-3)(n-5)}{n(n-2)(n-4)} = \frac{2}{3}$ $\int \cos^3 x \, dx = \frac{2}{3}$ Evaluate intergrat Sin 5x vdx i) Using Usual substitutional method 2) 2) Reduction formula. 8) 1/2 Binsa dx. find . . . Sola: 1) Usual Substitution method. Sintada = Sinta Sinada $z \int (V_{sin}^2 n)^2 sin n d n$ Let y=losx x dy= sinxdx . = ((1-cosx) sinxdx -dy = sinxdx. $= \int (1-y^2)^2 dy = -\int (1-2y^2+y^2) dy$

 $= -\left[y - \frac{2y^3}{3} + \frac{y^5}{5}\right] = -\cos x + \frac{2}{3}\cos^3 x - \frac{\cos^5 x}{5}$ i) Reduction methodismating the $T_{n} = \frac{1}{n} \int_{-\infty}^{\infty} \frac{3 \sin^{n-1} x \cos x + (n-1) T_{n-2}}{x \tan^{n-1} x \tan^{n-1} x \tan^{n-1} x}$ Here $n = \overline{n}$ $I_6 = \frac{1}{5} \int -Sin^4 x \ (\partial S x + A D_5)$ === [-301x10x+=4;[-602x60x+2];] = 1 [- Sin 4 605x+ #3 [-sin 2 605x -260 2]+C. iii) ^{1/2} Sin Fin dx ... (odd) = xb et in. 1/2 Sin Tre dx = (n-1)(n-2)(n-5) ... 2/ Sin Tre dx = (n-1)(n-2)(n-4) ... /s = 7/-2/-= 8 .

2) Sunta dx. = ["H+242-p]-= A) 1) Cost da $\int \cos^{n} dx = \frac{1}{n} \int \cos^{n-1} d\cos^{n} dx$ I Usual Integration Acthod tude Sintx dx = En > Survide and the End of Las & Sinx + FI3 NR = 6+ Castra sin x+ 5 Cast Sinx+ BIT i) Using Reduction method. $\int \sin^{4}x \, dx = \frac{1}{4} \int \sin^{3}x \, \cos x + 3 I_{2}$ x me ()= 1 [loss resin x + 1/3 [los x Sin x + A Sure]. $\frac{1}{4} \left[-\frac{1}{2} \sin^2 x \cos x + \frac{3}{2} \left[-\frac{1}{2} \sin x \cos x + I_0 \right] \right]$ (osto) $(1) \begin{array}{c} y_{2} \\ (1) \\ y_{3} \\ (1)$ = 1 [- Sun cosx + 3/ [- Sinx Cosx +] + [+] $=\frac{5}{62}\cdot\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{1}{2}$ $=\frac{51}{32}\cdot\frac{3}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}$ (ii) (Sin Andre . $\int_{n}^{n} s_{n}^{n} 4 x \, dx = \frac{(n-1)(n-2)(n-3)}{(n-2)(n-4)} = \frac{1}{2} \frac{1}{2}$ Evaluate: Joint 2 65 7 2 dr Using (1) Antengration method = 311

 $\int Sin^{n} x \, dx = \frac{-1}{n} Sin^{n-1} x \cos x + \frac{62}{n} I_{n-2}$ Sol! 1) Intergrad method. JSin 5x 65 x dx. $\int \frac{\epsilon_1}{\sqrt{\sin^4 x}} dx = \frac{1}{4} \frac{1}{\sqrt{\sin^4 x}} \frac{1}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{2\pi}} - \frac{1}{\sqrt{2\pi}} \right)$ -1 + <u>m-1</u> Sin $= \frac{1}{7} \frac{5in^3 clax + \frac{3}{4} \left[\frac{5}{3} \frac{5in x bax + \frac{3}{4}}{5} \right]}{\frac{5}{7} \frac{5in x bax + \frac{3}{4}}{5} \frac{5in x bax + \frac{3}{4}}{5} \frac{5in x bax + \frac{3}{4}}{5}$ JSin 5x 65x dx = -605 x Sin x + 123 Sin 3x 605 x dx $Eq: \int Gos^{T} x \, dx = \frac{1}{7} Gs^{S} x \sin x + \frac{6}{7} I_{g} (n=7)$ $= -\cos^{2}x \cdot \sin^{2}x + \frac{1}{3} \int_{-\infty}^{\infty} -\cos^{2}x \cdot \sin^{2}x + \frac{2}{10} \int_{-\infty}^{\infty} \sin^{2}x + \frac{2}{10} \int_{-$ - + 65 x Sin x + 1/4 [5 63 7 x Sin 5 + Caszdz = - 605 x Sin x + 1/- los x Sin x + 5 [- 605 x] (ii) from 5x Cost x dx. = 1 cost e Sin x + 6/ [+ cost x Sin x + 1/5 [/3 cost x Sin x = 7 Jasnedre - Sinnadzie \$ 12. 10. 8. 4 t = (+1) (n-3) (n-5) when nu n-1) (n-3) (n-5) // / when A A-2)/n-4

Eg: $\int_{3}^{3} \sin^{4}x \, dx = \frac{3 \cdot 1}{4 \cdot 2} \frac{1}{2} \frac{1}{2} = \frac{5}{16}$ (m+n-4)(when both man is even) Eq: Jeas x dx = 6. 4.2 = 16 7 5 30 = 35 Sun x cost x dx = 4.2.6. 4.7 12.10.8:44.7 G Sint tos "x dx = -1 tos"+ x Sin m-1 + m-1 0 Sim z los x dx). $\int Sun^{4} x \log^{3} x dx = \frac{5 \cdot x \cdot 2}{7 5 \cdot 51} = \frac{2}{35}$ 9 -65 & Sin 1 x 4 + Sin 2 605 x =1/12 $= \frac{-1}{12} \cos \frac{3}{2} \cos \frac{3}{2} + \frac{1}{3} \int_{10}^{-1} \cos \frac{3}{2} \sin \frac{3}{2} + \frac{2}{10} \int_{10}^{10} \sin \frac{3}{2} \sin \frac{3}{$ $\int \sin^{6}x \ \cos^{6}x \ dx = \frac{5 \cdot 3 \cdot 1 \cdot 7 \cdot 5 \cdot 3 \cdot 1}{14 \cdot 12 \cdot 16 \cdot 8 \cdot 5 \cdot 4 \cdot 2} \begin{pmatrix} 11 \\ 2 \\ 2 \\ 14 \end{pmatrix}$ 87 $=\frac{-1}{12}\cos^{2}x\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\cos^{2}xx\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\cos^{2}x\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_{-1}^{-1}\frac{1}{3}\sin^{2}x+\frac{1}{3}\int_$ Sin my Cosn x de Sintx Cos x dz ì) 1) (m-1)(m-3)(m+5) (n-1)(n-3)(n-5)(m+n)(m+n-2)(m+n-4) The Sist x Cost x dx $\int (r 2r)^3$ 2) one value is Sing los n dr. . . . 3) Sin x los x dx .

Silog x dr organ. in trad tatu (usu) (rear as a last fix tan scdx. Stan Bordx + - (0BSZ Area of the Region bounded by x=a, x=b and) Cosx dx = winx a curve, Mies above the 2 axis is $\int \frac{1}{x} dx = \log x$ y dx . $\int o \, dx = C$ 2) Area of the region bounded by a aure, x=a, x=b à unskelow = f-y da. the x axis = aug a $\int F_{n} dx = 5 \int dx = F_{n} dx$ $\int \frac{1}{\pi+2} dx = \log (x+2)^{-1}$ $\int \frac{\chi}{\chi^2 + 3} dx = \int \frac{\chi}{\chi^2 + 3} dx = \int \frac{\chi}{\chi^2 + 3} dx = \int \log(x^2 + 3)$ Area wy the region bounded {= fady dy a cuare, y=9; y=67 thereight for to-y-aris is $\int \sqrt{5^2 - x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{25}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \sqrt{5^2 - x^2} + \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \int \frac{1}{x^2} \, dx = \frac{3}{x^2} \int \frac{1}{x^2} \int \frac$ 3) $\int \sqrt{n^2 - a^2} \, dx = \frac{\pi}{2} \sqrt{n^2 - a^2} - \frac{a^2}{2} \left(\frac{\partial \ln x}{\partial a} \right)$ a luave y=a, y=b à lues left (= j-ndy. to y-anis is i) strea of the sequence depunded by $\int \frac{d\pi}{2^{\frac{2}{2}-\chi^2}} = \frac{1}{a^{(2)}} \log \left(\frac{2+\chi}{2+\chi}\right) + C$ $\int (f_{7-2x})^{5} dx = \frac{(f_{7}-2x)^{6}}{6(-2)} = \frac{(f_{7}-2x)^{6}}{-12}$ 5) Area of the region bounded above 2 = Jydx+ 1. and below the x-axis & x=axx=b a c i 6) Area of the region bounded right = [xdy+f=x and reft of the y-axis & y=a & y=b] = [xdy+f=x $\int \frac{dx}{a^2 - x^2} = \frac{1}{a^2} \log \left(\frac{a + x}{a - x} \right) + C$ $\int (a_{x+b})^n dx = \frac{(a_{x+b})^{n+1}}{(n+i)(a)}$

Find the case of the region bounded by find area Sile ! 2) 21-1, 21=3 3x-2y+6=0 and Given: 3x-2y+6=0, 2c=1, x=3 and x-arti Sthi When x=1, -y dx. Area = when x=3, y Area & Sy dx 11 Area = J 3x+6 dx. $3\frac{x+6}{x}dx = \frac{1}{2}\int (3x+6)dx$ B $=\frac{1}{2}\int\frac{3x^2}{a}+6x\Big|$ $=\frac{1}{2}\left(\frac{3}{2}+6^{3}\right)-\left(\frac{3}{2}+6^{3}\right)$ = 1/27718 y=2x+1, y=3, y=5 7 $=\frac{1}{2}/\frac{24}{2}+12/2$ y=2x++ 2) = 1/ (24+24) T-18 12 sq. units ?

of the degion bounded by the Curr y=x2-5x+4, x=2, x=3 2 x-anis -10+when scal, y=+2 when X=3 x= -2 $-(n^2-5n+4)dx$ $= \sqrt{\frac{\pi^3}{3} - \frac{5\pi}{2} + 4\pi} \int_2^2$ - 2% +8)] $= - \left| \left(\frac{27}{3} - 4\frac{5}{2} + 12 \right) - \left(\frac{3}{3} \right) \right|$ =-[7-22.5+12-26+10-8 = 2.1 sq. units 2 y= axis. (+ight) =1, y=3 & y=axis (left).

y=2n+1 3 g= 2x++ Y-1 = 2= -1.5 $\chi = -\frac{3}{2}$ y=1 x = -1/2 y=3 = 71 = 9.00 [-rdy iderea = Szdy. Alaea = $= \int_{-}^{y} - \left(\frac{y-4}{2}\right) dy$ $=\int \left(\frac{y-1}{2}\right) dy$ $\frac{-15}{2} = \left(\frac{-\frac{1}{2}}{2}\right)$ $= -\frac{1}{2} \int \frac{y^2}{2} - \frac{1}{2} y \int_{1}^{3} \frac{y^2}{2} dy$ $=\frac{1}{2}\left(\frac{y^2}{2}-\frac{y}{2}\right)$ $= \frac{-1}{2} \left[\frac{9}{2} - 12 \right] = \left[\frac{1}{2} - 4 \right]$ $\int \frac{1}{2} \int \frac{y^2 - 2y}{2} \int \frac{5}{2}$ $\left[\frac{q-2}{a}\right]$ = -1/2 $-\frac{1}{2}$ 25- \$0 - - 9- 6 = 2 = + / + 8/2 = 2 $\begin{bmatrix} +15 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ = 2 Sg. Uno) × 15 \$ 2-2 Find the area bounded by the Curve -=5 Y=2 5) x=) y=-2 = 2 (10) = Zsg. Units 2=1, 2=5. y+3=x, J-ydn+ Jydx. $-\int x - 3 dx + \int (x - 3) dx + \int (x$ -=)

 $-\left(\begin{pmatrix} 9 - 1e \\ 2 \end{pmatrix} - \begin{pmatrix} 1 - e \\ 2 \end{pmatrix} \right) + \begin{pmatrix} 9 - 1e \\ 8 \end{pmatrix} - \begin{pmatrix} 9 - 1e \\ 9 \end{pmatrix}$ when x=2 thin y=3 thing $= \int \left(\int (x) - g(x) \right) dx$ $= \int \left[\left(x^{2} + 1 \right) - \left(x^{2} - 1 \right) \right] dx$ $= \frac{q}{2} = \frac{y}{2} - \frac{5}{2} + \frac{9}{2}$ $= \int \left[\frac{x^2}{2} + x \right] - \left[\frac{x^3}{3} - \frac{x^3}{3} \right]$ $= \sqrt{8} \frac{18}{5}, \frac{18}{2} \frac{-10}{2} = \frac{8}{7}$ = 9. Sq. Unts: $= \int_{2}^{2} \frac{1}{2} + \chi - \frac{\chi^{2}}{2} + \frac{1}{2} + \frac{1}{2}$ Hormula: Area enclosed between R= (f-g)dr two Cuares Ro a $=\int \frac{\chi^2}{2} - \frac{\chi^3}{3} + 2\chi^2 \int_{1}^{2}$ Find the close a between the lines y=n+1 $= \int \frac{4}{2} - \frac{8}{3} + \frac{4}{3} - \int \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3}$ and y=x-1 = [12-16+24]-<u>3+2-12</u> 1 y=n+1 -) y=x-1. x=0,y=1 x=0,y=-1 y=0,x=-1 y=0,x=+ = 20 + 1/ FROM DZO - 27 . 2+1=2x-x-2=0 (x-2)(x+1)=0 x=2:-1

I dose of linde with sodier & is Ray = 6 2 . . . ty. .. y' : n' - n' 41 . (h' +2 1:040 aus = + lyde . + Jydx = +) (5-2) dx = + /2 / 2 + 2/ Sin 2/ b = + / 5 sin 1 +0] = + [b'_4 =]] = A 511 = 511 Jg. Didg. Asea of epphellipse with radius is in n/e + y/2 =1 y/2 = 1 - 2 4 $y^{2} = b^{2} \left(1 - \frac{\pi^{2}}{a} \right)$ x=o to a. $y = b \sqrt{1 - \frac{n^2}{4^2}}$

dua + 1) y da = = 1 6 (JI-33) dx $=\frac{4b}{a}\int\sqrt{a^2}dx$. = -15 . [m] (2-12+ 0/ 5in + 2] a = bain ly. units 2 (23 + 2 5- 1) i) volume generated cabout . x - and Whene: V= J Tryda (aubie Duite) 2) Volume generated rabout y ranis Ve Jundy (cubic Unite). 1) Find the volume of the solid generated by the ellipse m/2 + 4/2 = 1 devolve about the x axis . Plan + pl alg

$$\frac{\chi^{2}}{\chi^{2}} = 1 - \frac{\chi^{2}}{\chi^{2}} = \frac{\chi^{2}}$$

limit x= - a to a.

-

$$volume = \int \pi y^{2} dx$$

$$= 2 \int \pi b^{2} (1 - \frac{x}{a}) dx$$

$$= \frac{2 \pi b^{2}}{a^{2}} \int (\frac{2}{a} - \frac{x}{a}) dx$$

$$= \frac{2 \pi b^{2}}{a^{2}} \int (\frac{2}{a} - \frac{x}{a}) dx$$

$$= 2 \pi b^{2} (\frac{a^{2} \pi - \frac{x^{3}}{3}}{a^{2}})^{2}$$

$$= \frac{2 \pi b^{2}}{a^{2}} (\frac{a^{5} - \frac{a^{3}}{3}}{a^{5}})$$

$$= \frac{2 \pi b^{2}}{a^{2}} \frac{2a^{8}}{a^{2}}$$

$$= \frac{4 \pi b^{2}}{3} \cdot \text{ (ubic Units)}$$

Find the volume to the shid generated by the ellispe $2^{2}/2 + 9^{2}/2 = 1$ revolve about the by -anis (on hos) and)

$$\frac{1}{a} + \frac{1}{b} = 1$$

$$\frac{1}{b} = 1$$

$$\frac{1}{b} + \frac{1}{b} = 1$$

$$\frac{1}{b} = 1$$

4

UNIT-I Multiple Inte	grals				
Objective type questions	Opt 1	Opt2	Opt3	Opt4	Answer
	x^(n+1)/(n+1)+	x^(n-1)/ (n-	nx^ (n-1)+	(n+1) x^	x^(n+1)/
$\int x^n dx = \dots$	С	1)+ C	С	(n+1)+ C	(n+1)+ C
$\int \cos x dx = \dots$	sinx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C	sinx + C
$\int \sin x dx = \dots$	sinx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C	(-cosx)+C
$\int e^{(x)} dx = \dots$	(-e^x)+ C	$e^{-x} + C$	(-e^(-x))+C	$e^{x} + C$	$e^x + C$
$\int e^{-x} dx = \dots$	(-e^x)+ C	e^(-x) + C	(-e^(-x))+C	$e^{x} + C$	(-e^(-x))+C
If u and v are differentiable functions then $\int u dv$					
=	uv+∫v du	uv+∫v du	(-uv)+∫v du	ı (-uv)-∫v du	uv+∫v du
$\int \cos^{4} x dx$ (from 0 to $\pi/2$) =	3π/16	5π/16	7π/16	9π/16	3π/16
$\int \cos^{6}(6) x dx$ (from 0 to $\pi/2$) =	3π/16	5π/16	7π/16	9π/16	5π/16
$\int \cos^{(9)} x dx$ (from 0 to $\pi/2$) =	3π/16	5π/16	7π/16	9π/16	5π/16
$\int \sin^{(5)} x dx$ (from 0 to $\pi/2$) =	π/15	$\pi/15$	8π/15	8π/15	8/15
$\int \sin^{(7)} x dx$ (from 0 to $\pi/2$) =	π/15	1/15	16π/35	16/35	16/35
$\int \cos 2x dx = \dots$	$(\sin 2x)/2 + C$	$(\cos 2x)/2 + C$	$(-\cos x)/2+C$	(-sinx)/2+C	$(\sin 2x)/2 + C$
$\int \sin 3x dx = \dots$	$(\sin 3x)/3 + C$	$(\cos 3x)/3 + C$	$(-\cos 3x)/3 + 6$	C (-sin3x)/3+C	(-cos3x)/3+C
$\int (1/x) dx = \dots$	1+ C	log x+C	(-1)+C	(-log x)+ C	log x+C
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^{2+y^{2}=a^{2}}$ about its diameter is	(4/3)πa^3	(2/3)πa^3	(1/3)πa^3	πa^3	(4/3)πa^3
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=2^2$ about its diameter is	(32/3)π	(1/3)π	(2/3)π	π	(32/3)π
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=3^2$ about its diameter is	16π	9π	36π	π	36π
The Volume of a sphere of radius 'a' is The surface are of the sphere of radius 'a'	2/3 π a^3	4/3 π a^3	1/3 π a^3	π a^3	4/3 π a^3
is	4πa^2	πa^2	3πa^2	2πa^2	4πa^2

$\int x e^{(x)} dx = \dots$	$(-x)e^{(x)}-e^{(x)}+$	$e xe^{(x)}+e^{(x)}$	$+(-x)e^{(x)+e^{(x)}}$	^ xe^(x)-e^(x)	$+xe^{(x)}-e^{(x)}+c$
$\int cosmx dx = \dots$	(sinmx)/m + C	$(\cos mx)/m + $	C (-cosmx)/m ⁻	+(-sinmx)/m+	C (sinmx)/m+ C
$\int sinnx dx = \dots$	(sinnx)/n + C	$(\cos nx)/n + C$	(-cosnx)/n+	C (-sinnx)/n+C	C (-cosnx)/n+C
∫ dx=	x+C	1	0	x^2	x+C
∫ 5dx=	x+C	5x+C	x^2+C	5+C	5x+C
$\int 3x^{(2)} dx = \dots$	3x^(2)+C	x+C	x^2+C	x^(3) +C	x^(3) +C
$\int \text{Sec}^{(2)} x dx = \dots$	secx.tanx+C	tanx+C	tan^(2) x +0	C Secx+C	tanx+C
\int Secx. tanx dx=	secx.tanx+C	tanx+C	tan^(2) x +0	C Secx+C	Secx+C
$\int e^{(2x)} dx = \dots$	(-e^2x)/2+ C	$e^{(-2x)/2} + C$	$(-e^{(-2x)})/2$	$+e^{2x/2+C}$	$e^{2x/2} + C$
$\int e^{(-2x)} dx = \dots$	(-e^(-2x))/2+ C	$e^{(-2x)/2} + C$	$(-e^{(-2x)})/2$	$+e^{(-2x)/2}+C$	$c e^{2x/2} + C$
The Volume of a sphere of radius '2' is	16/3 π	32/3 π	8/3 π	8 π	32/3 π
The surface area of the sphere of radius '3'					
is	36π	9π	27π	18π	36π
$\int x^{(2)} dx = \dots$	(x^(2)/2)+C	(x^(3)/3)+C	x+C	2x+C	(x^(3)/3)+C
$\int x \log x dx = \dots$	1-logx+C	logx+C	0	1	1-logx+C
$\int \operatorname{cosec}^{(2)} x dx = \dots$	cotx+C	tanx+C	(-tanx)+C	(-cotx)+C	(-cotx)+C
$\int \sec^{(2)} x dx = \dots$	cotx+C	tanx+C	(-tanx)+C	(-cotx)+C	tanx+C

UNIT-II

Functions of several variables QUESTIONS The partial differentiation is a function of or more variables	OPTION 1	OPTION 2	OPTION 3	OPTION 4	Answer
	two	zero	one	three	two
If z=f(x,y) where x and y are function of another variable z	continuous	differential	two	one	continuous
If f(x,y)=0 then xand y are said to be an function The concept of jacobian is used when we change the variables	implicit multiple	extrem	explicit	differential	implicit multiple
in	integrals	single integrals	diffenential	function	integrals
The extreme values of f(x,y,z) in such a situation are		constrained			constraine
calledvalues Theseries of f(x,y) at the point (0,0) is maclaurins series of	extreme	extreme	boundry values	initial	d extreme
f(x,y).	Maclaurins	Taylor	power	binomial	Taylor
The jacobian were introduced by	C.G.Jacobi	johon	Gauess		C.G.Jacobi
The Tayolr,s series of f(x,y) at the point (0,0) is series.	Maclaurins	Taylor	power	binomial	Maclaurins maximum
f(a,b) is said to be exturemum value of f(x,y) if it is either	maximum or				or
a	minimum	zero	minimum	maximum	minimum
The expansion of f(x,y) by Taylor series is	zero	unique	minimum	maximum	unique
If f(x,y)=e^x cosy at (0,1/2) then	f=1	f1=0	f=0	f=4cos x	f=0
The Lagrange multiplier is denoted by	а	b	I	d	а
Every extremum value is a stationary value but a stationary value need not be an value. If u1,u2un are functions of n variables x1,x2xn then the Jacobian of the transformation from x1,x2xn to u1,u2un is defined	infimum	minimum	maximum	extremum	extremum
by F is differentiable and where not all of its first differential derivatives vanish simultaneously then the functions u1,u2un are said to be	2	0	1	-1	1
functionally f(a,b) is a maximum value of f(x,y) if there exists some neighbourhood	independent	dependent	explicit	implicit	dependent
of the point (a,b) such that for every point (a+h,b+k) of the	f(a,b)>f(a+h,b				f(a,b)>f(a+h
neighbourhood	+k)	f(a,b) <f(a+h,b+k)< td=""><td>f(a,b)<0</td><td>f(a,b)>0</td><td><i>,</i>b+k)</td></f(a+h,b+k)<>	f(a,b)<0	f(a,b)>0	<i>,</i> b+k)

f(a,b) is a minimum value of f(x,y) if there exists some neighbourhood					
of the point (a,b) such that for every point (a+h,b+k) of the	f(a,b)>f(a+h,b			(()) 0	f(a,b) <f(a+h< td=""></f(a+h<>
neighbourhood	+k)	f(a,b) <f(a+h,b+k)< td=""><td>f(a,b)<0</td><td>f(a,b)>0 ðf/ðy</td><td>,b+k) ∂f/∂x</td></f(a+h,b+k)<>	f(a,b)<0	f(a,b)>0 ðf/ðy	,b+k) ∂f/∂x
The necessary condition for maxima is	∂f/∂x (a,b)=0	∂f/∂x (a,b)= 1	∂f/∂y (a,b)=5	(a,b)=1	(a,b)=0
				∂f/∂y	ðf/ðy
The necessary condition for minimum is	∂f/∂x (a,b)=0	∂f/∂y (a,b)=0	∂f/∂x (a,b)=1	(a,b)=1	(a,b)=0
					∂f/∂x
	∂f/∂x (a,b)=0				(a,b)=0
f(a,b) is said to be said to be a stationary value of f(x,y) if (x,y)	and $\partial f/\partial y$			∂f/∂y	and ∂f/∂y
is	(a,b)=0	∂f/∂x (a,b)=1	∂f/∂y (a,b)=0	(a,b)=1	(a,b)=0
$f(x,y) = e^x \sin y$ at $(1,\pi/2)$ then	f=0	f=1	f=2	f=e	f=e
f(x,y) = e^xy at(1,1) then	f=1	f=e	f=0	f=2	f=e
			nonhomogenio		
The equation of the degree 1 is called function	linear	homogenious	us	bilateral	linear
The expansion of f(x,y) byseries is unique.	Maclaurins	Taylor	power	binomial	Taylor
If f(a,b) is said to beof f(x,y) if it is either maximum or	extremum				extremum
minimum.	value	boundary value	end	power	value
The differentiation is a function of two or more variables.	ODE	PDE	partial	total	partial
The were introduced by C.G.Jacobi.	jacobian	millian	taylor	Gauss	jacobian
The series of $f(x,y)$ at the point(0,0) is maclaurins series of $f(x,y)$.	taylor	jacobian	gauss	maculaurin	taylor
The concept of is used when we change the variables in			Ū		
multiple integrals If the function u,v,w of three independent variables x,y,z are not	taylor	gauss	maculaurin	jacobian Jacobian of	jacobian
independent then the Jacobian of u,v,w with respect to x,y,z is always				x,y,z with	
equal to	1	0	Infinity	respect ro	0
			has neither a		neither a
	is a		maximum nor		maximum
	decrasing	has a minimum	a minimum at	saddle	nor a
The function f(x)=10+x^6	function of x	at x=0	x=0	point	minimum

					two
		two stationary			stationary
	only one	points at	two stationary	not	points at
	stationary	(0,0)and	point at (0,0)	stationary	(0,0)and
The function f(x,y)=2x^2+2xy-y^3 has	point at (0,0)	(1/6,1/3)	and (1,-1)	points	(1/6,1/3)
If(a/3,a/3) is an extreme point on xy(a-x-y), the maxima is	a^3/27	a/27	a^3/9	a/9	a^3/27
Any function of the type f(x,y)=c is called anfunction	Implicit	Explicit	Constant	composite	Implicit
If u=f(x,y) ,where x=pi(t),y=si(t) then u is a function of t and is called the					
function	Implicit	Explicit	Constant	composite	composite
The point at which function f(x,y) is either maximum or minimum is					
known as point	Stationary	Saddle point	extremum	implicit	Stationary
If rt-s^2>0 and r<0 at (a,b) the f(x,y) is maximum at (a,b) and			maximum or		
the value of the function(a,b)	Maximum	Minimum	minimum	zero	Maximum
If rt-s^2>0 and r>0 at (a,b) the f(x,y) is minimum at (a,b) and			maximum or		
the value of the function(a,b)	Maximum	Minimum	minimum	zero	Minimum
If rt-s^2>0 at (a,b) the f(x,y) is neither maximum nor minimum at (a,b)					Saddle
such point is known as point	Stationary	Saddle point	extremum	implicit	point
If f(x,y) is a function of two variables x,y then	lim f(x,y)=1	lim f(x,y=0	lim f(x,y)>0	lim f(x,y)<0	lim f(x,y)=1
The concept of jacobian is used when we change the variables in	multiple				multiple
	integrals	single integrals	diffenential	Function	integrals

UNIT III Foutier Series Questions	opt 1	opt 2	opt 3	opt 4	Answer
Which of the following functions has the period 2π ?	cos x	sin nx	tan nx	tan x	COS X
$1/\pi \int f(x) \sin nx dx$ between the limits c to c+2 π gives the Fourier coefficient	a_0	a_n	b_n	b_1	b_n
If $f(x) = -x$ for $-\pi < x < 0$ then its Fourier coefficient a_0 is	(π^2)/2	π/2	π/3	π	(π^2)/2
If a function satisfies the condition $f(-x) = f(x)$ then which is true?	a0 = 0	an = 0	a0 = an = 0	bn = 0	bn = 0
If a function satisfies the condition $f(-x) = -f(x)$ then which is true?	a ₀ = 0	a _n = 0	a0 = an = 0	bn = 0	a_ ₀ = a_ _n = 0
Which of the following is an odd function?	sin x	cos x	x^ ²	x^4	sin x
Which of the following is an even function?	x^ ³	cos x	sin x	sin^3x	cos x
The function f(x) is said to be an odd function of x if	f(-x) = f(x)	f(x) = - f(x)	f(-x) = - f(x)	f(-x) = f(-x)	f(-x) = - f(x)
The function f(x) is said to be an even function of x if	f(-x) = f(x)	f(x) = - f(x)	f(-x) = - f(x)	f(-x) = f(-x)	f(-x) = f(x)
$\int f(x) dx = 2 \int f(x) dx$ between the limits -a to a if $f(x)$ is	even	continuous	odd	discontinue s	even
$\int f(x) dx = 0$ between the limits -a to a if $f(x)$ is	even	continuous	odd	discontinue s	odd
If a periodic function f(x) is odd, it's Fourier expansion contains no terms.	coefficient a _n	sine	coefficient a ₀	cosine	cosine
If a periodic function f(x) is even, it's Fourier expansion contains no terms.	cosine	sine	coefficient a_0	coefficient a_ _n	sine
In dirichlet condition, the function f(x) has only a number of maxima and minima.	uncountable	continuous		finite	finite
In Fourier series, the function f(x) has only a finite number of maxima and minima. This condition is known as	Dirichlet	Kuhn Tucker	Laplace	Cauchy	Dirichlet
In dirichlet condition, the function f(x) has only a number of discontinuities .	uncountable	continuous	infinite	finite	finite
The Fourier series of f(x) is given by	a ₀ /2 + ∑ (a _n cosnx+ bn sin nx)	(a _n cos nx-		(a ₀ sin	a ₀ /2 + ∑ (a _n cosnx+ bn sin nx)

In Fourier series, the expansion $f(x) = a_0/2 + \sum (a_n + \sum c_1)^2$ is possible only if in the interval $c_1 \le x \le c_2$ the function.		kuhn- Tucker	Laplace	Dirichlet	Cauchy	Dirichlet
If the periodic function f(x) is even, then the Fourie the form	er expansion is of	a ₀ /2 + ∑a _n sin(nπx/ /)	a ₀ /2 + ∑a _n cos(nπx/ l)	a _n /2 + ∑ a _n cos(nπx/ I)	a ₀ /2 +∑ a ₀ sin(nπx/ I)	a _o /2 + ∑a _n cos(nπx/ l)
If the periodic function f(x) is even, then it's Fourie is of the form	er co- efficient a_n	2/ / ∫f(x) sin(nπx/ /) dx	2/ / ∫f(x) cos (nπx/ /) dx	1// ʃf(x)/ / dx	∫f(x) dx	, 2/ / ∫f(x) cos (nπx/ /) dx
If the periodic function f(x) is even, then it's Fourie of the form	er co- efficient a_0 is	2/ I ∫f(x) dx	1/ ʃf(x) dx	2/ I ∫f(x)/ I dx	∫f(x) dx	2/ / ∫f(x) dx
If the periodic function f(x) is odd, then it's Fourier of the form	co- efficient bn is	2/ / ʃf(x) cos (nπx/ /) dx	2/ / ∫f(x) sin(nπx/ /) dx	∫f(x) dx	1/ / ʃf(x) / / dx	2/ / ʃf(x) sin(nπx/ /) dx
If the periodic function f(x) is even, then it's Fourie - is zero.	er co- efficient	a ₀	a ₁	b _n	a _{0 &} a _n	b _n
If the periodic function f(x) is odd, then it's Fourier is zero.	co- efficient	a_0 _{&} a_n	a_1	b_n	b_1	a_0 _{&} a_n
If the periodic function f(x) is even, then the Fourie the form	er expansion is of	∑b_n sin nπx/ I	∑b_n sin nπx/ I	∑ b_n cos nπx/ /	a_0/2+∑ a_n cos (nπx/ /)	a_0/2+∑ a_n cos (nπx/ /)
If the periodic function f(x) is odd, then the Fourier the form	r expansion is of	∑b _n sin nπx/ /	∑a _n sin nπx/ I	∑ b _n cos nπx/ /	∑a _n cos nπx/ /	∑b _n sin nπx/ /
$1/\pi$ (x) cos nx dx gives the Fourier coefficient		a_0	b_1	b_n	a_n	a_n
$1/\pi$ [f(x) dx gives the Fourier coefficient $1/\pi$ [f(x)sin nx dx gives the Fourier coefficient		a_0 a_0	a_n a n	b_n b_n	b_1 b_1	a_0 b_n
The period of cos nx where n is the positive intege		a_0 2π/n	α_n π/2n	2π	0_1 nπ	2π/n
The Fourier co efficient a_0 for the function defined $0 < x < \pi$ is	d by $f(x) = x$ for	π	π/2	2π	0	π
If the function $f(x) = x \sin x$, in $-\pi < x < \pi$ then Four	rier coefficient	b _n = 0	a ₀ = 1	a ₀ = (π^2)/3	a ₀ = -1	b _n = 0
For the cosine series, which of the Fourier coefficient	ent will vanish?	a_n	b_n	a_1	Both a _o and a _n	b_n
For the sine series, which of the Fourier coefficient vanish?	t variables will be	b_n	a_n	Both a_0 and a_n	a_0	Both a_0 and a_n
For a function $f(x) = x^3$, in $-\pi < x < \pi$ the Fourier c	oefficient	b _n = 0	a _n = 1	a ₀ = 1	$a_0 = a_n = 0$	$a_0 = a_n = 0$

If $f(x) = x$, in $-\pi < x < \pi$ then Fourier co efficient $b_n = 0$ $a_n = \pi$ $a_n = 1$ $F(x) = e^x x$ is in $-\pi < x < \pi$.an odd functioneven functionBoth even and odd evenWhich of the coefficients in the Fourier series of the function $f(x) = x^2$ a_0 a_0 and a_n b_n a_n Which of the coefficients in the Fourier series of the function $f(x) = x^2$ a_0 a_0 and a_n b_n a_n If $f(-x) = -f(x)$, then the function $f(x)$ is said to beoddContinuouseven usdiscontinuous usIf $f(-x) = f(x)$, then the function $f(x)$ is said to beoddcontinuouseven us a_0	odd even
$F(x)=e^x is in -\pi < x < \pi$.an odd even functionodd or evenBoth even and oddWhich of the coefficients in the Fourier series of the function $f(x) = x^2$ 	odd or even b _n odd even
in $-\pi < x < \pi$ will vanish a_0 a_0 and a_n a_n If $f(-x) = -f(x)$, then the function $f(x)$ is said to beoddContinuous evenusIf $f(-x) = f(x)$, then the function $f(x)$ is said to beoddcontinuous evenus	odd even
If $f(-x) = -f(x)$, then the function $f(x)$ is said to beoddContinuous evenusIf $f(-x) = f(x)$, then the function $f(x)$ is said to beoddcontinuous evendiscontinuousIf $f(-x) = f(x)$, then the function $f(x)$ is said to beoddcontinuous evenus	odd even
If f(-x) = f(x), then the function f(x) is said to be odd continuous even us	even
) even
The function x sin x is a function in $-\pi < x < \pi$. even odd continuous us	-
The function x cos x is a function in $-\pi < x < \pi$. even odd continuous us	odd
$a_0/2 + \sum$ The formula for finding the fourier coefficient a_0 in Harmonic (2/N) Σ y cos (2/N) Σ y (a_n analysis is nx sin nx cosnx+ b_r sin nx)	(2/N)Σ y
$\begin{array}{ccc} a_0 / 2 + \sum & & a_0 / 2 + \sum \\ (a_n & & (2/N)\Sigma \ y \ cos & (2/N)\Sigma \ y & cos nx + \\ analysis \ is & nx & b_n \ sin \ nx & b_n \ sin \ nx &) \end{array}$	(2/N)Σ y cos nx
The formula for finding the fourier coefficient b_n in Harmonic analysis is $(2/N)\Sigma y$ $(2/N)\Sigma y$ $(2/N)\Sigma y$ $(2/N)\Sigma y$ $(a_n \cos nx + bn \sin nx)$	(2/N)Σ y sin nx
The term $a_1 \cos x + b_1 \sin x$ is called the harmonic. second first third end	first
The term is called the first harmonic in Furier Series $a_1 \cos x + b_1 = a_1 \cos 2x + a_1 \cos x + b_1 = a_1 \cos x + b_1$	$a_1 \cos x + b_1$
expansion. $\sin x$ $b_1 \sin x$ $\sin 2x$ $\sin x$	sin x
If $f(x)=x$ in $0 < x < 2\pi$ and $f(x)=f(x+2\pi)$ then the sum of the fourier series of $f(x)$ at $x=2\pi$ is 2π 0π	2π

If $f(x)=x^2$ in $0 < x < 2\pi$ and $f(x)=f(x+2\pi)$ then the sum of the fourier series of $f(x)$ at $x=0$ is	2π^2	C	6π	4π	2π^2
For any peroidic function f(x) in $-\pi < x < \pi$ the point x=- π is a point.	Continous	discontinou s	intermedia te	Continous and discontinou s	discontino us
For any peroidic function f(x) in 0< x<2 π the point x= π is a point.	Continous and discontinous	intermedia te	Continous	discontinou s	Continous
For any peroidic function f(x) in $0 \le x \le \pi$ the point x= 0 is a point.	discontinous	Continous and discontinou s	Continous	intermedia te	Continous
The process of finding the Fourier series for a function given by at equally spaced points is known as harmonic analysis.	initial value	numerical value	final value	fundament al value	numerical value
The process of finding the Fourier series for a function given by numerical values at points is known as harmonic analysis.	equally spaced	unequally spaced	intermedia te	both equally and unequally spaced	equally spaced
The process of finding the Fourier series for a function given by numerical values at equally spaced points is known as	mathematic al analysis	complex analysis	real analysis	harmonic analysis.	harmonic analysis.

UNIT -IV Boundary value probler

Boundary value problems					
Questions	opt 1	opt 2	opt 3	opt 4	Answer
Partial differential equation of second					
order is said to Elliptic at a point (x,y)	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC<0
in the plane if					
Partial differential equation of second	DA2 44C<0	$D \land 2 \land A = 0$	$D \land 2 \land A \land C > 0$	$D \land 2 = 4 \land C$	$D \land 2 \land 4 \land C = 0$
order is said to Parabolic at a point (x,y) in the plane if	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC=0
Partial differential equation of second					
order is said to Hyperbolic at a point	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC>0
(x,y) in the plane if					
Two dimensional Laplace Equation is	u_xx+u_yy=1	u_xx+u_yy=0	u_x=u_y	u_x+u_y=0	u_xx+u_yy=0
One dimensional heat Equation is	- u_xx=(1/α^2)u	u_xx=[(1/α^2) u t]+10	u_xx=u_tt	u_xx+u_tt=0	$u_xx=(1/\alpha^2)u$
One dimensional wave Equation is			u_xx=(1/α^2)u		$u^{t}xx=(1/\alpha^{2})u$
	t	u_xx+u_yy=0	 t^2	u_xx=u_t	tt^2
The D'Alembert's solution of the One	$y(x,t) = \phi(x-$	<pre>/</pre>	u xx= $(1/\alpha^2)$ u	u_xx=(1/α^2)u	v(x,t)=o(x-
dimensional wave Equation is	αt)+ $\psi(x+\alpha t)$	y(x,t)=0	t	t^2	αt)+ $\psi(x+\alpha t)$
	$y(x,t) = \phi(x-t)$	u xx= $(1/\alpha^2)$ u	$u_xx=(1/\alpha^2)u$	u xx+u vv=f(
The Possion equation is of the form	αt)+ $\psi(x+\alpha t)$	t	tt	x.v)	x.v)
The steady state temperature of a rod of	u(x) = 10x/l +				u(x) = 10x/l +
length l whose ends are kept at 30 and	30	u(x)=40x/l	u(x)=30x/l	None	30
40 is	20				20
Two dimensional heat Equation is	partial	Radio	laplace	Poisson	laplace
Two dimensional heat Equation is known asequation.	partial	Radio	laplace	Poisson	laplace
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation	partial	Radio	laplace	Poisson	laplace
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is	partial $u(x)=ax+b$	Radio u(x,t)= a(x,t)	laplace $u(t) = at + b$	Poisson $u(t) = at - b$	laplace $u(x)=ax+b$
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation					•
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution					•
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is	u(x)=ax+b	u(x,t)=a(x,t)	u(t) = at + b	u(t) = at - b	u(x)=ax+b
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a	u(x)= ax + b Elliptic	u(x,t)= a(x,t) Hyperbolic	u(t) = at + b Parabolic	u(t) = at - b circle	u(x)= ax + b Elliptic
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a f_xx=2f_yy is a	u(x)= ax + b Elliptic Elliptic	u(x,t)= a(x,t) Hyperbolic Hyperbolic	u(t) = at + b Parabolic Parabolic	u(t) = at - b circle circle	u(x)= ax + b Elliptic Hyperbolic
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a f_xx=2f_yy is a f_xx-2f_xy+f_yy=0 is a	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic	u(t) = at + b Parabolic Parabolic Parabolic k	u(t) = at - b circle circle circle	u(x)= ax + b Elliptic Hyperbolic Parabolic
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is $f_xx+2f_xy+4f_yy=0$ is a $f_xx=2f_yy$ is a $f_xx-2f_xy+f_yy=0$ is a The diffusivity of substance is Heat flows from a temperature	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc	u(t) = at + b Parabolic Parabolic Parabolic k	u(t) = at - b circle circle circle pc/k	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a f_xx=2f_yy is a f_xx-2f_xy+f_yy=0 is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc	u(t) = at + b Parabolic Parabolic Parabolic k	u(t) = at - b circle circle circle pc/k	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a f_xx=2f_yy is a f_xx=2f_yy=0 is a f_xx-2f_xy+f_yy=0 is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to produce a given temperature change in	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc	u(t) = at + b Parabolic Parabolic Parabolic k	u(t) = at - b circle circle circle pc/k	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is $f_xx+2f_xy+4f_yy=0$ is a $f_xx=2f_yy$ is a $f_xx-2f_xy+f_yy=0$ is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to produce a given temperature change in a bodies propostional to the of	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc higher to lower temperature	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc lower to higher	u(t) = at + b Parabolic Parabolic Parabolic k normal	u(t) = at - b circle circle circle pc/k high	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc higher to lower
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is f_xx+2f_xy+4f_yy=0 is a f_xx=2f_yy is a f_xx=2f_yy=0 is a f_xx-2f_xy+f_yy=0 is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to produce a given temperature change in	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc higher to lower temperature	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc lower to higher	u(t) = at + b Parabolic Parabolic Parabolic k normal	u(t) = at - b circle circle circle pc/k high	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc higher to lower
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is $f_xx+2f_xy+4f_yy=0$ is a $f_xx=2f_yy$ is a $f_xx-2f_xy+f_yy=0$ is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to produce a given temperature change in a bodies propostional to the of	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc higher to lower temperature	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc lower to higher	u(t) = at + b Parabolic Parabolic Parabolic k normal	u(t) = at - b circle circle circle pc/k high	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc higher to lower
Two dimensional heat Equation is known asequation. In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is $f_xx+2f_xy+4f_yy=0$ is a $f_xx=2f_yy$ is a $f_xx-2f_xy+f_yy=0$ is a The diffusivity of substance is Heat flows from a temperature The Amount of heat required to produce a given temperature change in a bodies propostional to the of the body and to the temperature change	u(x)= ax + b Elliptic Elliptic Hyperbolic k/pc higher to lower temperature equal	u(x,t)= a(x,t) Hyperbolic Hyperbolic Elliptic pc lower to higher	u(t) = at + b Parabolic Parabolic Parabolic k normal	u(t) = at - b circle circle circle pc/k high	u(x)= ax + b Elliptic Hyperbolic Parabolic k/pc higher to lower

In steady state conditions the temperature at any particular point does not vary with	Time	temperature	mass	none	Time
The wave equation is a linear and equation	non homogeneous	homogeneous	quadratic	none	homogeneous
In method of separation of variables we assume the solution in the form of	u(x,y)=X(x)	u(x,t)=X(x)T(t)	u(x,0)=u(x,y)	u(x,y)=X(y)Y(x)	u(x,t)=X(x)T(t)
$u(x,t)=(AcosAx+BsinAx)Ce^{(-(\alpha^{2}))}(\lambda^{2})t)$ is the possible solution of	- heat	wave	laplace	none	heat
$\overline{y} = (AX+B)(Ct+D)$ is the possible	heat	wave	laplace	none	wave
If the heat flow is one dimensional ,then the is a function x and t	heat	light	temperature	wave	temperature
only The stream lines are parallel to the X- axis ,then the rate of change of the temperature in the direction of the Y-	one	two	zero	five	zero
axis will be To solve $y_tt=(\alpha^2)yxx$, we need boundary conditions.	y(0,t)=0 if t>=0; y(l,t)=0 if t>=0	y(x,t)=0 if t>0; y(t)=0 if t=0	y(x,t)=0 if t>0	none	y(0,t)=0 if t>=0; y(l,t)=0 if t>=0
The boundary condition with non zero value on the R.H.S of the wave equation should be taken as the	First	Second	Last	none	Last
In one dimensional heat equation $u_t = (\alpha^2)u_xx$, What does α^2 stands for	k/pc	pc	k	pc/k	k/pc
The possible solution of wave equation is	y=(Ax+B)(Ct+ D)	u(x,t)=(Acosλx +Bsinλx)(Ce^(λy)+De^(-λy))	u(x,t)=Acosλx +Bsinλx	u(x,t)=Acosλx- Bsinλx	y=(Ax+B)(Ct+ D)
The possible solution of heat equation is	u(x,t)=(Acos λ x +Bsin λ x)Ce^(- (α ^2))(λ ^2)t)	u(x,t)=(Acosλx +Bsinλx)(Ce^(λy)+De^(-λy))	u(x,t)=Acosλx +Bsinλx	u(x,t)=Acosλx- Bsinλx	$u(x,t)=(A\cos\lambda x +B\sin\lambda x)Ce^{(-(\alpha^{2}))(\lambda^{2})t)}$
If $B^2-4AC = 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC > 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	hyperbolic
If $B^2-4AC < 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	elliptic

questions	opt1	opt2	opt3	opt4	Answer
Which of the following is the most unstable average	mode	median	geometric mean	harmonic mean	mode
The sum of deviations taken from arithmetic mean is	minimum	zero	maximum	one	minimum
The sum of square deviations taken from arithmetic mean is	zero	maximum	minimum	one	minimum
When calculating the average growth of economy, the correct mean to use is	weighted mean	Geometric mean	arithmetic mean	median	geometric mean
When observation in the data is zero, then its geometric mean is	Negative	zero	positive	normal	zero
The best measure of central tendency is	arithmetic mean	Geometric mean	Harmonic mean	median	arithmetic mean
The point of inersection of the less than and more than corresponds to	mean	median	geometric mean	mode	median
Median is same asquartile Median is aaverage	first first	second second	third positional	four normal	second positional
Median is dividing the series when arranged as an array into parts	two	three	four	normal	two
Median and mode are calledaverage The geometric mean of a set of values lies between arithmetic mean and	first harmonic mean	second Geometric mean	positional mean	normal median	positional harmonic mean
In a symmetrical distrbution meanmedianmode Harmonic mean is the of the arithmetic mean of the	is equal to,is equal to	is equal to,less than	less tnan or equal to	greater than or equal to	is equal to,is equal to
values	positional	proposional	reciprocal	equal	reciprocal
Theand mark off the limits with in which the middle 50 % of the items lie	quartile one and three	deviation and one	median and the three	deviation	quartile one and three
can be calculated from a frequeny distribution with open end classes	median or mode	mode	mean or median	deviation	median or mode
In the calculation of all the observations are taken into cosideraion	mean	mode	median	divation	mean
Median is the average suited forclasses When calculating the average rate of debt expansion for a company, the correct mean to use is the	open -end arithmetic mean	middle weighted mean	center geometric mean	sub either a (or) c	open-end geometric mean

The mode has all the following disadvantages except	a data set may have no modal value	every value in a data set may be a mode	a multimodal data set is difficult to analvze	the mode is unduly affected byy extream values	the mode is unduly affected by extreme value
If one event is unaffected by the outcome of another event, the two events are said to be	dependent	independent	mutually exclusive	event	independent
Calculate the mode of the data 13,13,14,15,13,15,14,15,13.	14 3 median –	13 2 median – 3	13.5 3 median +	15 3 mean – 2	13 3 median –
The empirical formula for Mode (m) =	2 mean	mean	2 mean	median	2 mean
is defined as the middle item of the given observations arranged in ascending order.	mean	mode	median	divation	median
The positional average is	mean	mode	median	divation	mean
Find the median 10, 15, 9, 25, 19.	15	9	25	19	15
Calculate the mode of the data 14,13,14,15,13,15,14,15,14.	13	14	15	13.5	14
What is the median of the numbers 4,12, 11, 6, 2?	2	4	5	11	6
What is the median of the numbers 3, 11, 6, 5, 4, 7, 12, 3 and 10?	4	5	6	7	6
What is the mean of the squares of the first ten natural numbers?	30.25	31.67	38.5	50.5	38.5
What is the mean of these numbers: 12, -1, 8, 2, -10, 0, -5, 3, 20, -2?	6.3	5.3	3.7	2.7	2.7
What is the mean of the numbers 8, 9, 13 and 18? A booklet has 12 pages with the following numbers of words: 271,	10	11	12	16	12
354, 296, 301, 333, 326, 285, 298, 327, 316, 287 and 314. What is	307	309	311	313	309
the mean number of words per page? The coefficient of correlation is independent of change of and	scale,origin	vector,origin	variable, constant	interer, origin	scale,origin
	scientific	favourable	relative	truncation	favourable
If r is more than six times it is called significant	error	Error	error	error	Error
The relationship between three or more variables is studied with the help of correlation.	multiple	rank	perferct	spearman's rank	multiple
The coefficient of correlation	has no limits	can be less than 1	can be more than 1	varies between + or one	varies - between + or - one
which of the following is the highest range of r	0 and 1	minus one and 0	minus one and one	zero	minus one and one

The coefficient of correlation is independent of	change of scale only	change of origin only	both change of scale and origin	change of variables	both change of scale and origin
The coefficient of correlation	cannot be positive	cannot be negative	can be either positive or negative	zero	can be either positive or negative
If X=Y , then correlation cofficient between them is	1	zero	less than one	gerater than one	1
Correlation means relationship between variables	two	one	two or more	three	two or more
The covariance of two independent random variable is	Zero	two	three	two or more	Zero
Two random variables are said to be orthogonal if	correlation is zero	rank is zero	covariance is zero	one	correlation is zero
Two random variables are said to be uncorrelated if correlation coefficient is	zero	one	two or more	orthogonal	zero
Perfect positive correlation is also called correlation.	direct	indirect	inverse	partial	direct
If the variation of one variable has no relation with the variation on the other is is called correlation.	positive	negative	partial	zero	zero
is an positional average.	harmonic mean	Geometric mean	mean	median	median
The correlation between volume and pressure of a perfect gas is	positive	negative	partial	multiple	negative
If the value of y decreases as the value of x increases then there is correlation between two variables.	positive	negative	partial	multiple	negative
The correlation between the income and expenditure is	positive	negative	partial	multiple	positive
When the correlation coefficient is equal to the correlation is perfect and positive.	1	2	0	3	1
If X & Y are independent then the correlation coefficient r =	1	2	0	3	0