15BECC202 ENGINEERING MATHEMATICS 1l 3204
OBJECTIVES:

° To understand the concepts and applications of partial differential equations
o To have knowledge in integral calculus and Vector calculus
o To expose to the concept of Analytical function and Complex integration.

INTENDED OUTCOMES:

The student will be able to
o Solve problems in Fluid Dynamics, Theory of Elasticity, heat and mass transfer etc.

° Find the areas and volumes using multiple integrals
o Improve their ability in Vector calculus
° Expose to the concept of Analytical function.
o Apply Complex integration in their Engineering problems
UNIT- | PARTIAL DIFFERENTIAL EQUATIONS (11)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions —
Solution of standard types of first order partial differential equations — Lagrange’s linear equation — Linear
partial differential equations of second and higher order with constant coefficients.

UNIT-II MULTIPLE INTEGRALS (11)
Double integral — Cartesian coordinates — Polar coordinates — Change of order of integration — Triple
integration in Cartesian co-ordinates — Area as double integrals.

UNIT-11I VECTOR CALCULUS (13)
Gradient, Divergence and Curl — Directional derivative — Irrotational and Solenoidal vector fields — Vector
integration— Green’s theorem, Gauss divergence theorem and Stoke’s theorems (Statement Only) - Surfaces
: hemisphere and rectangular parallelopipeds.

UNIT-IV ANALYTIC FUNCTIONS (12)
Analytic functions - Cauchy-Riemann equations in Cartesian and polar forms — Sufficient condition for
an analytic function (Statement Only) - Properties of analytic functions — Constructions of an analytic
function - Conformal mapping: w = z+a, az, 1/z, z2 and bilinear transformation.

UNIT-V COMPLEX INTEGRATION (13)
Complex Integration - Cauchy’s integral theorem and integral formula (Statement Only) — Taylor series
and Laurent series - Residues — Cauchy’s residue theorem (Statement Only) - Applications of Residue
theorem to evaluate real integrals around unit circle and semi circle (excluding poles on the real axis).

Total : 60
TEXT BOOKS:
S. Author(s) Name Title of the book Publisher Year of
No. Publication
1 Hemamalini. P.T Engineering McGraw-Hill Education | 2014
Mathematics | & 11 Pvt.Ltd, New Delhi
2 Grewal, B.S. Higher Engineering | Khanna Publishers, | 2014
Mathematics Delhi.




REFERENCES:

S. Author(s) Name Title of the book Publisher Year of
No. Publication
1 Erwin Kreyszig Advanced Engineering | John Wiley & Sons. | 2011
Mathematics. Singapore
2 Venkataraman, M. K. Engineering The National Publishing | 2005
Mathematics. Company, Chennai
3 Narayanan. S, | Advanced Mathematics | Viswanathan S.(Printers | 2002
Manicavachagam for Engineering | and Publishers) Pvt. Ltd.
pillay. T.K and | Students. Chennai.
Ramaniah.G
4 Michael D. Greenberg | Advanced Engineering | Pearson Education, India | 2009
Mathematics
WEBSITES:

1.www.efunda.com
2. www.mathcentre.ac.uk

3. www.sosmath.com/diffeq/laplace/basic/basic.html

4, www.mathworld.wolframe.com



http://www.mathcentre.ac.uk/
http://www.sosmath.com/diffeq/laplace/basic/basic.html
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Lecture Plan

S.No Topiccovered No. of Supporting
hours Material
PARTIAL DIFFERENTIAL EQUATIONS
1 Introduction - Formation of PDE by eliminating arbitrary constants 1 T1:16.5-16.8
2 Formation of PDE by eliminatingarbitrary functions 1 T1:16.9-16.13
3 Solution of PDE of first order (Standard type) — Type 1,2 1 T1:16.13-16.15
4 Solution of PDE of first order (Standard type) — Type 3,4 1 T1:17.1-17.2
5 Solution of PDE reducible to standard types 1 T1:17.2-174
6 Solution of PDE reducible to standard types 1
7 Lagrange’s linear equation 1 T1:17.10-17.14
8 Lagrange’s linear equation-Problems 1 T1:17.5-17.10
9 Linear PDE of second order with constant coefficients homogeneous type- 1 T1:17.14-17.18
Problems
10 Linear PDE of second order with constant coefficients homogeneous type- 1 T1:17.18-17.24
Problems
11 Linear PDE of second order with constant coefficients non- homogeneous 1 T1:17.24-17.27
type- Problems
12 Linear PDE of second order with constant coefficients non-homogeneous 1
type- Problems
Total 12
UNIT I : MULTIPLEINTEGRALS
13 Integration— Basic Problems 1 T1:18.3-184
14 Double integral 1 T2:294-295
15 Double integral - Problems 1 T1:18.3-184
16 Problemsin Cartesian coordinates 1 T1:18.5-18.8
17 Problems in Polar coordinates 1 T1:18.5-18.8
18 Area asdouble integrals 1 T1:18.7-18.8
19 Tutorial 3 - Double integral, Area as double integrals 1
20 Change the order of integration 1 T1:19.1-194
21 Change the order of integration 1 T2:297-302
22 Triple integration in Cartesian co-ordinates 1 T1:19.4-19.7
23 Triple integration in Cartesian co-ordinates 1 T2:305-310
24 Tutorial4 - Change the order of integration, Triple integration in Cartesian 1
co-ordinates
12
UNIT 111 : VECTOR INTEGRATION
25 Integration of vectors 1 T1:20.3-204
26 Line integralproblems 1 T1:20.5-20.8
27 Surfaceintegral problems 1 T1:20.3-204
28 Volume integral problems 1 T1:20.3-204
29 Green’s theorem problems 1 T1:20.9-20.28
30 Green’s theorem problems 1 R:485-490
31 Tutorial 5 — Line, Surface and Volume integral problems 1
32 Gauss divergence theorem problems 1 T1:20.9-20.28
33 Gauss divergence theorem problems 1 T2:376-381




34 Stoke’s theorems problems 1 T1:20.9-20.28
35 Stoke’s theorems problems 1 T2:372-375
36 Tutorial 6 — Gauss Divergence theorem and Stoke’s theorem problems 1
Total 12
UNIT IV : ANALYTICFUNCTIONS
37 Introduction— Analytic Function 1 T1:21.3-21.8
38 Necessary and Sufficient conditions forananalytic function 1 T1:21.9
39 Cauchy-Riemann equations —Cartesianform 1 R:740-744
40 Cauchy-Riemann equations— Polarform 1 R:740-744
41 Cauchy-Riemann equations — Properties 1 T1:21.9-21.12
42 Cauchy-Riemann equations — Problems based on Properties 1 T1:21.13-21.22
43 Construction ofan Analytic Function - Problems 1 T2:745-747
44 Tutorial 7 - Cauchy-Riemann equations, Construction ofan Analytic 1
Function
45 Conformal mapping: w=z+a,az 1 T1:22.1-22.12
46 Conformal mapping: w=1/z 1 T1:22.1-22.12
47 Bilineartransformation— Problems 1 T2:756-762
48 Tutorial 8 - Conformal mapping, Bilinear transformation 1
Total 12
UNIT V: COMPLEX INTEGRATION
49 Introduction - Complex Integration 1 T1:23.1-235
50 Problems solvingusing Cauchy’s integral theorem 1 T1:23.6-23.10
51 Problems solvingusing Cauchy’s integral formula 1 T2:765-769
52 Tutorial 10 - Problems solvingusing Cauchy’s integral theorem and integral 1
formula
53 Taylorand Laurent expansions 1 T1:24.1-24.11
54 Taylor Seriesand LaurentSeries Problems 1 T2:771-776
55 Tutorial 11 - Taylorand Laurent expansions 1
56 Theory of Residues 1 T1:25.1-25.3
57 Cauchy’s residue theorem 1 T1:25.3-25.13
58 Applications of Residue theorem to evaluate Unit circle 1 T1:25.3-25.13
59 Applications of Residue theorem to evaluate semi— circle. 1 T2:776-723
60 Tutorial 12 - Cauchy’s residue theorem, Applications 1
Total 12
TOTAL | 50+10=60
TEXT BOOKS:
S.NO. AUTHOR(S) TITLE OF THE PUBLISHER YEAR OF
NAME BOOK PUBLICATION
1 Hemamalini. P.T | Engineering McGraw-Hill 2017
Mathematics | & II Education Pvt.Ltd,
New Delhi
2 Grewal, B.S. Higher Engineering Khanna Publishers, | 2014
Mathematics Delhi.
REFERENCES:
S. AUTHOR(S) TITLE OF THE PUBLISHER YEAR OF
NO. | NAME BOOK PUBLICATION
1 Erwin Kreyszig Advanced John Wiley & Sons. 2011
Engineering Singapore

Mathematics.




SEMESTER I
17BECC202,17BTAR202, 17BTCE202
ENGINEERING MATHEMATICS I 3204

OBJECTIVES:

1. To have knowledge in integral calculus and Vector calculus
2. Toexpose the concept of Analytical function and Complex integration.

INTENDED OUTCOMES:

The student will be able to
1. Solve problems in Fluid Dynamics, Theory of Elasticity, Heat and Mass Transfer etc.
2. Find the areas and volumes using Multiple Integrals
3. Improve their ability in Vector calculus
4. Expose to the concept of Analytical function.
5. Apply Complex integration in their Engineering problems

UNIT I INTEGRAL CALCULUS (12)

Definite and indefinite integrals — Techniques of integration — Substitution rule, Trigonometric
integrals, Integration by parts, Integration of rational functions by partial fraction, Integration of
irrational functions — Improper Integrals.

UNIT I MULTIPLE INTEGRALS (12)

Double integral — Cartesian coordinates — Polar coordinates — Area as double integrals- Change the
order of integration — Triple integration in Cartesian co-ordinates.

UNIT VECTOR INTEGRATION (12)

Integration of vectors — line integral- surface integral- volume integral- Green’s theorem - Gauss
divergence theorem and Stoke’s theorems (Statement Only), hemisphere and rectangular
parallelopipeds problems.

UNIT IV ANALYTIC FUNCTIONS (12)

Analytic functions - Cauchy-Riemann equations in Cartesian and polar forms — Sufficient
condition for an analytic function (Statement Only) - Properties of analytic functions —
Constructions of an analytic function - Conformal mapping: w = z+a, az, 1/z and bilinear
transformation.

UNITV COMPLEX INTEGRATION (12)

Complex Integration - Cauchy’s integral theorem and integral formula (Statement Only) — Taylor
series and Laurent series - Residues — Cauchy’s residue theorem (Statement Only) - Applications
of Residue theoremto evaluate real integrals around unit circle and semi-circle (excluding poles on
the real axis).

Total: 60
TEXT BOOKS:
S.NO. AUTHOR(S) TITLE OF THE PUBLISHER YEAR OF
NAME BOOK PUBLICATION
1 Hemamalini. P.T | Engineering McGraw-Hill 2017
Mathematics | & |1 Education Pvt.Ltd,




New Delhi
2 Grewal, B.S. Higher Engineering Khanna Publishers, | 2014
Mathematics Delhi.
REFERENCES:
S. AUTHOR(S) TITLE OF THE PUBLISHER YEAR OF
NO. | NAME BOOK PUBLICATION
1 Erwin Kreyszig Advanced John Wiley & Sons. 2011
Engineering Singapore
Mathematics.
2 Venkataraman, M. K. | Engineering The National 2005
Mathematics. Publishing Company,
Chennai
3 Narayanan. S, Advanced Viswanathan 2002
Manicavachagam Mathematics for S.(Printers and
pillay.T.K and Engineering Students. | Publishers) Pvt. Ltd.
Ramaniah.G Chennai.
4 Michael D. Advanced Pearson  Education, | 2009
Greenberg Engineering India
Mathematics
WEBSITES:

1.www.efunda.com

2. www.mathcentre.ac.uk
3. www.sosmath.com/diffeg/laplace/basic/basic.html
4. www.mathworld.wolframe.com



http://www.mathcentre.ac.uk/
http://www.sosmath.com/diffeq/laplace/basic/basic.html
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Questions optl opt2

In a PDE, there will be one dependent variable and independent

variables only one two or more

The of a PDE is that of the highest order derivative occurring

in it degree power

The degree of the a PDE is of the higest order derivative power ratio
Number of
arbitrary Number of
constants is arbitrary constants

equal Number s lessthan Number
of independent  of independent

Afirst order PDE is obtained if variables variables
In the form of PDE, f(x,y,z,a,b)=0. What is the order? 1
What is form of the z=ax+by+ab by eliminating the arbitrary
constants? zZ=qgx+py+pq z=px+qy+pq
General solution of PDE F(x,y,z,p,q)=0 is any arbitray function F of
specific functions u,v is____satisfying given PDE F(u,v)=0 F(x,y,2)=0
The PDE of the first order can be written as-------------- F(x,y,s,t) F(x,y,z,p,q)=0
The complete solution of clairaut's equationis z=bx+ay+f(a,b) z=ax+by+f(a,b)
The Clairaut’s equation can be written in the form -------- z=px+ay+(pa z=(p-
) Dx+qy+f(x.y)
From the PDE by eliminating the arbitrary function from z=f(x"2 -
yr2) is Xp+yq=0 p=-(xy)
Which of the following is the type f(z,p,q)=0 ? p(1+qg)=qgx p(1+q)=qz
The equation (D"2 z+2xy(Dz)"2+D'=5 is of order ____and
degree 2and 2 2and 1
f(y+2x)+xg(y+2

The complementry function of (D2 -4DD'+4D'*2)z=x+y is X) f(y+x)+xg(y+2x)
The solution of xp+ygq=zis f(x~2,y"2)=0  f(xy,yz)
The solution of ptg=zis ____ f(xy,ylogz)=0  f(x+y, y+logz)=0
A solution which contains the maximum possible number of .

. . . singular complete
arbitrary functions is called------------- integral.

The lagrange's linear equation can be written in the form ---------

Pg+Qp=r Pg+Qp=R

. . z=ax+[(1- _
The complete solution of the PDE 2p+3q =1 is 28)13]y+c Z=ax+y+c

The complete solution of the PDE pg=1 is ------------------ z=ax+(l/a)y+b z=ax+y+b



The solution got by giving particular values to the arbitrary
constants in a complete integral is called a

The general solution of Lagrange's equation is denoted as

The subsidiary equations are px+qy=z is

The general solution of equation p+g=1 is
The separable equation of the first order PDE can be written in
the form of ------------

Complementary function is the solution of

C.F+P.I is called

Particular integral is the solution of

Which is independent varible in the equation z= 10x+5y
Which is dependent varible in the equation z=2x+3y

Which of the following is the type f(z,p,q)=0

Which is complete integral of z=px+qy+(p"2)(q"2)

The complete integral of PDE of the form F(p,q)=0 is

The relation between the independent and the dependent
variables which satisfies the PDE is called
A solution which contains the maximum possible number of
arbitrary constant is called
The equations which do not contain x & y explicitly can be
written in the form

The subsidiary equations of the lagranges equation 2y(z-3)p +

(2x-2)q = y(2x-3)

A PDE ., the partial derivatives occuring in which are of the
first degree is said to be
A PDE., the partial derivatives occuring in which are of the 2 or
more than 2 degree is said to be

The general solution of px-qy=xz is

general

f(u,v)=0

dx/y=dy/z=dz/
X
f(xyz,0)

f(x,y)=g(x.y)

f(a,b)
singular
f(a,b)=F(xy)

X&y
X

p(1+a)=ax

z=ax+by+(a"2)
(b"2)
z=ax+f(a)y+c

solution

general

f(z,p,q)=0

dx/2y(z-3) =
dy/(2x-z)
=dz/y(2x-3)

linear
linear

2X

z=ax+ay+c

f(u,v)=0

If z= f(x"2+y"@) then differentiating z partially with respectto p=2xf"’

(x"2+y"2)

singular
ZX

dx/x=dyly=dz/z
f(X-y,y-Z)
f(a,b)=g(x.y)
f(1,0)=0
complete

f(1,0)=0

p(1+0)=0z

z=a+b+ab
z=ax+f(a)+b

complet solution

complete

f(p,0)=0

dx/(2x-z)
=dy/2y(z-3)
=dz/y(2x-3)

non-linear
non-linear
3x(y*2+b)

a+b
ax+b

f(xy,x-logz)=0

p=2xf(x"2+y"2)



If z= f(x"2+y"2 +z2) thendifferentiating z partially with
respect to y is -----

The solution of differentiating z partially with respect to x twice

The auxiliary equation of (D*2-4DD +4 D"\2'2=0 is
The auxiliary equation of (D*3-7DD"2-6D"3)z=0 is

The auxiliary equation of (D*3+DD"2 -D*2D -D"*3)z=0 is
The auxiliary equation of (D*2-4DD +4 D""2)z=e"X is
The auxiliary equation of(D*3+7DD"*2+6D"*3 )z=cos ax is

The roots of the partial differential equation (D*2-4DD’+4
D'72)z=0 are

Theroots of the partial differential equation (D"3-7DD"2-
6D'"3)z=0 are

The roots of the partial differential equation (D3 -D*2D’
+DD"2 -D"3)z =0 are

The roots of the partial differential equation (D*3 -D"2D’ -
DD”2 +D"3)z z =0 are

The roots of the partial differential equation (D*2-2DD’+D'*2
)z=0 are

The particular integral of e*®*™/ (D-(aD’/b))"2 is ------

The particular integral of e*®*™/ (D-(aD’/b)) is ==-------

g=2xf(x"2+y"
2)

m”"2-4m+4=0

m”3+7m+6=0

m”3-m”~2+m-
1=0
m”2+4m+4=0

m”3+7m+6=0
2,1

1,2,3

Li-1i

1,1,1

0,1

eN(ax+by)

ax-by+c

q=(2y+2z7))
F'(x"2+y"2 +22)

ax+by+c
m”~2+4m+4=0
m~3-7m-6=0

m3+m?+m-1=0
m”2-4m-4=0

m”3-7m-6=0
2,2

2,1,3

1,1,

1,11

i-1

(x*/2) eM(ax+by)
eM(ax+by)



opt3
no
order

degree

Number of
arbitrary
constants is
greater than
Number of
independent
variables

Z=px+qy+p
F(x,y)=0
F(x,y,z,1,3,2)=0

z=ax+by

2=Pp+Qq

g=yp/x
p(1+q)=qy
land1

fy+x)+xg(y+x)
f(x,y)=0
f(x-y, y-logz)=0

general

Pp+Qq=R

z=ax+(1-
2x)ly+c

z=ax+ay/b+c

optd
infinite
number of

ratio

order

Number of
arbitrary
constants is
not equal to
Number of
independent
variables

Z=py+qy+q
F(p,q)=0
F(x,y)=0
z=f(a,b)
Pg+Qp=r

yp+xq=0
p=2x f(y+2x)

Oand 1

fy+4x)+xg(y
+4X)

f(xly \y/z)=0
f(x-
y,y+logz)=0

particular
F(x,y)=0
z=ax+b

Z=ax+b

opt5 opt6 Answer

two or more
order

power

Number of
arbitrary
constants=
Number of
independent
variables

Z=px+qy+pq
F(u,v)=0

F(X,y,Z,p,Q):O

z=ax+by+f(a,b)
z=px+qy+f(p,q)

yp+xq=0
p(1+q)=qz

2and 1
fly+2x)+xg(y+2x
)

f(xty ,y/z)=0
f(x-y, y-logz)=0

general

Pp+Qa=R

z=ax+[(1-
2a)/3]y+c

z=ax+(1/a)y+b



particular

f (xy)
xdx=ydy=zdz
f(x-y,y+2)
f(x,p)=9(y.q)
f(D,D)z=0

general
[1/£(D,D)]F(x,y
)

X,Y,Z
y

p(1+a)=ay

z=ax+by+ab
z=a+f(a)x

general solution

solution

(p,0)=0

dx/2y=dz/(z-3)

order

order
2x(y"2+b)

0

Z = ax"2+ay+c

f(x-y,y-2)=0

p=2xf"(x"2-
y*2)

complete

F(x,y,s,t)=0

dz/z=dx/y=d
y/x
F(x,y,s,t)=0

f(x)=g(a)

f(a,b)=F(x,y)
particular
f(a,b)=F(u,v)

x alone

X&Yy
p=2xf"(x"2)-
(y*2))

z=a+f(a)x

z=ax+f(a)
singular
solution

singular

f(x,p,q)=0

dx/2y=dz/(z-
3)=dy/2x

degree
degree
3X+y

b
z= ax+(b+c)

f(x-y,y+2)=0

p(1+a)=qy

particular
f(u,v)=0

dx/x=dyly=dz/z
f(x-y,y-2)
f(x,p)=9(y.a)

f(D,D')z=0

general
[1/f(D,DY]F(x,y

)
X&y
z

p(1+0)=qz

z=ax+by+(a"2)(
b"2)
z=ax+f(a)y+c

solution

complete

f(z,p,q)=0

dx/2y(z-3)
=dy/(2x-z)
=dz/y(2x-3)

linear
non-linear
2x(y"2+b)

b

Z = ax"2+ay+c
f(xy,x-logz)=0

p=2xf’
(x"2+y"2)



q=2y

ax+b
m”2-4m-4=0

m”"3-7m+6=0

m~3-
m”~2+m+1=0
m”2+4m-4=0

m”3-7m+6=0
2,-2

2,3,-1

i, 1

1-1-1

1,2

ax-by+c

ax+by

q=0

ax=p
m”~2+4m-
m~3+7m-
m”~3-m”~2-

m-1=0
none

m”~+7m-6=0
2,-2

3,-1,-2

1,11
-1,-1-1

11

ax+by

xe"N(ax+hy)

q=(2y+22z’)
F'(x"2+y"2
+2/\2)

ax+b
m”2-4m+4=0

m”~3-7m-6=0

m”3-m”~2+m-
1=0
none

m”3+7m+6=0
2,2

3,-1,-2

1i-1i

1,-1-1

1,1

(x*/2)e”(ax+by)

xeN(ax+hy)
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Obijective type questions

The triple integral [[[ dv gives the over the region v

The value of [[ dx dy, inner integral limt varies from 1 to 2 and the
outer integral limit varies from 0 to 1

[[J dx dy dz, the inner integral limit varies from 0 to 3, the central
integral limit varies from 0 to 2 and outer integral limit varies from 0

When the limits are not given, the integral is named as

The Double integral [ dx dy gives of the region R

The value of [J (x+y) dx dy, inner integral limt varies from 0 to 1 and
the outer integral limit varies from 0 to 1

to 2, the central integral limit varios from 0 to 2 and outer integral
limit various from O to 1

Evaluate [[ 4xy dx dy, the inner integral limit varies from 0 to 1 and
outer integral limit varies from 0 to 2

The value of [[ d xdy /xy, the inner integral limit varies from O to b
and the outer limit varies from 0 to a

If the limits are given in the integral , then the integral is name

as

The value of [f(x*2+3y~2) dy dx, the inner integral limit varies from 0
to 1, the outer integral limit varies from 0 to 3

The value od [[J dxdy d, the inner integral limit varies from Oto 3,
the central integral limit varies from 0 to 2 and outer integral limit

If the limits are not given in the integral , the the integral is name

as

The value of [[(x*2+y~2) dy dx ,the inner integral limit varies from 0
to x, the outer integral limit varies from 0 to 1

The value of [[dy dx, the inner integral limit various from 0 to x ,the
outer integral limit varies from -ato a

The Double integral [ dx dy gives of the region R

the central integral limit varies from 0 to a and the outer integral limit

varies from O to a

The value of [[(x+y) dx dy, the inner integral limit varies from 0 to 1

and the outer integral limit varies from O to 1

The concept of line integral as a generalization of the concept of
integral

The extension of double integral is nothing but
The concept of
of double integral
Evaluate [x*2/2 dx, the limit varies from O to 1

Evaluate [42y dy, the limit varies from 0 to 10

The value of [[2 xy dy dx, the inner integral limit varies from 0 to x
and the outer integral limit varies from 1 to 2

integral
integral as a generalization of the concept

Opt1

area

Definite integral

area

7/3

10

Definite integral

10

Definite integral

area

Single

Single

Single

10

15/4



The value of [[dy dx, the inner integral limit varies from 2 to 4 ,the
outer integral limit varies from 1to 5
The value of [[xy dy dx, the inner integral limit varies from 0 to 3, the
outer integral limit varies from 0 to 4
The value of [[dy dx, the inner integral limit varies from 0 to 2, the
outer integral limit varies from 0 to 1
The value of [[dx dy, the inner integral limit varies from y to 2, the
outer integral limit varies from 0 to 1
The value of [[dx dy, the inner integral limit varies from 2 to 4, the
outer integral limit varies from 1 to 2
When a function f(x) is integrated with respect to x between the
limits a and b, we get
In two dimensions the x and y axes divide the entire xy- plane into
quadrants

In three dimensions the xy and yz and zx planes divide the entire
space into parts called octants
Evaluate [(2x+3) dx, the integral limitvaries from 0 to 2

provides a relationship between a double integral
over a region R and the line integral over the closed curve C
bounding R.

is also called the first fundamental theorem of integral

vector calculus.

transforms line integrals into surface integrals.

transforms surface integrals into a volume integrals.

is stated as surface integral of the component of curl
F along the normal to the surface S, taken over the surface S
bounded by curve C is equal to the line integral of the vector
point function F taken along the closed curve C.

is stated as the surface integral of the normal
component of a vector function F taken around a closed surface
S is equal to the integral of the divergence of F taken over the
volume V enclosed by the surface S.

12

Definite integral

10

Cauchy's Theorem
Cauchy's Theorem
Cauchy's Theorem

Cauchy's Theorem

Cauchy's Theorem

Cauchy's Theorem
























Opt2

volume

Infinite integral
modulus

1/3

Infinite integral

15

Infinite integral

13

modulus

a3

Double
Line
Surface
1/6

2100

9/2

Opt3

Direction

volume integral
Direction

2/3

ab
volume integral

12

16
volume integral

273

2
Direction

an2

change of order
volume integral
Line
1710

2000

3/2

Opt4

weight

Surface integral
weight

logalogb
Surface integral

30

12
Surface integral

3/2

weight

ar

Triple

Triple

Triple
34
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36

infinite integralv

42

Green's Theorem
Green's Theorem
Green's Theorem

Green's Theorem

Green's Theorem

Green's Theorem

3/2

3/2

volume integral

51

Stoke's Theorem
Stoke's Theorem
Stoke's Theorem

Stoke's Theorem

Stoke's Theorem

Stoke's Theorem

Surface integral

4

Gauss Theorem
Gauss Theorem
Gauss Theorem

Gauss Theorem

Gauss Theorem

Gauss Theorem

12

3/2

Definite integral

10

Stoke's Theorem
Green's Theorem
Green's Theorem

Gauss Theorem

Stoke's Theorem

Gauss Theorem









































































































Unit VIII

Vector Integration

Chapter 20: Line Integral, Surface Integral and
Integral Theorems
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Line Integral, Surface
Integral and Integral
Theorems

fChapter Outline

Infroduction

Infegration of Vectors

Line Infegral

Circulation

Application of line Infegrals
Surfaces

Surface Infegrals

Volume Integrals

Integral Theorems

20.1 QO INTRODUCTION

In multiple integrals, we generalized integration from one variable to several
variables. Our goal in this chapter is to generalize integration still further to include
integration over curves or paths and surfaces. We will define integration not just of
functions but also of vector fields. Integrals of vector fields are particularly important
in applications involving the “field theories” of physics, such as the theory of
electromagnetism, heat transfer, fluid dynamics and aerodynamics.

In this chapter, we shall define line integrals and surface integrals. We shall see that
a line integral is a natural generalization of a define ¢
integral and a surface integral is a generalization of )
a double integral. Line integrals can be transformed
into double integrals or into surface integrals and
conversely. Triple integrals can be transformed into
surface integrals and vice versa. These transformations Y
are of great practical importance. Theorems of Green,
Gauss and Stokes serve as powerful tools in many  Fig.20.1
applications as well as in theoretical problems.

EM_UnitVIll_20.indd 3 @ 8/23/2017 10:29:44 AM



20.4 Engineering Mathematics

In this chapter, we study the three main theorems of Vector Analysis: Green’s
Theorem, Stokes’ Theorem and the Divergence Theorem. This is a fitting conclusion to
the text because each of these theorems is a vector generalization of the Fundamental
Theorem of calculus. This chapter is thus the culmination of efforts to extend the
concepts and methods of single-variable calculus to the multivariable setting.
However, far from being a terminal point, vector analysis the gateway to the field
theories of mathematics physics and engineering. This includes, first and foremost, the
theory of electricity and magnetism as expressed by the famous Maxwell’s equations.
It also includes fluid dynamics, aerodynamics, analysis of continuous matter, and at
a more advanced level, fundamental physical theories such as general relativity and
the theory of elementary particles.

Curves

Curves in space are important in calculus and in physics (for instance, as paths of
moving bodies).

A curve C in space can be represented by a vector function

r() =[x(t), y(t), 2(1)] (20.1)
=x(t)i +y(t)] +2(t)k

where x, y, z are Cartesian coordinates. This is called a parametric representation of
the curve (Fig. 20.1), t is called the parameter of the representation. To each value f, of
t, there corresponds a point of C with position vector r(t,), that is with coordinates
x(to), y(to) and z(ty).

The parameter t may be time or something else. Equation (20.1) gives the
orientation of C, a direction of travelling along C, so that ¢ increasing is called the
positive sense on C given by (20.1) and that of decreasing ¢ is the negative sense.

o Examples

Straight line, ellipse, circle, etc.
The concept of a line integral is a simple and natural generalization of a definite

b
integral J‘ f(x)dx (20.2)

In (20.2), we integrate the integrand f(x) from x = a to x = b along the x-axis. In a
line integral, we integrate a given function, called the integrand, along a curve C in
space (or in the plane).

Hence, curve integral would be a better turn, but line integral is standard.

We represent a curve C by a parametric representation

F(t)=x(t)i +y(t)] +2(t)k, (a<t<b) B
We call C the path of integration, A:7(a) its initial ‘
point and B:7(b), its terminal point. The curve C is C

now oriented. The direction from A to B, in which ¢
increases, is called the positive direction on C. Wecan 4

indicate the direction by an arrow [Fig. 20.2(a)]. (a) (b)
The points A and B may coincide [Fig. 20.2(b)]. .
Then C is called a closed path. Fig. 20.2
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> Note

(i) A plane curve is a curve that lies in a plane in space.
(if) A curve that is not plane is called a twisted curve.

20.2 0O INTEGRATION OF VECTORS
AG(t)

If two vector functions F(t) and é(t) be such that =F(#), then é(t) is called

an integral of F(t) with respect to the scalar variable t and we write | F (t)dt = é(t). If C
be an arbitrary constant vector, we have F t)= % = %[é(t) +C ], then
[F (t)dt = é(t) +C . This is called the indefinite integral of E(t) and its definite integral

b
is J.ﬁ(t)dt =[G(t)+Cl'=G(b) - G(a) .

20.3 QO LINE INTEGRAL

Any integral which is to be evaluated along a curve is
called a line integral. Consider a continuous vector

point function F(R) which is defined at each point
of the curve C in space. Divide C into n parts at the

points A=py, py ... iy, i --- P, =B
Let their position vectors be R, Rl...Ri_L R;..R,
Let v; be the position vector of any point on the
arc P, P;
1L — —
Now consider the sum § =2F(5i)"SRi where
SE:E_Ri—l : =

The limit of this sum as n — o in such a way that |5Ei| — 0, provided it exists,

is called the tangential line integral of ?(ﬁ) along C which is a scalar and is
symbolically written as

jﬁm)ﬁorﬁ.i_f.dt
C C

When the path of integration is a closed curve, this fact is denoted by using in
place of J.

If F(R)= flx,y, 2)i +¢(x, Y, z)} +y(x,y, z)lz and dR = dxi + dyf +dzk

then J' F(R)-dR = _[( fix+ ¢dy + ydz) .
C
C

Two other types of line integrals are J'lE xdR and J fdR which are both vectors.
C c
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20.4 Q CIRCULATION

In fluid dynamics, if F represents the velocity of a fluid particle then the line integral

Jﬁ .d7 is called the circulation of F around the curve. When the circulation of F

c
around every closed curve in a region E vanishes, F is said to be irrotational in E.

Conservative Vector
B

If the value of I? -dr does not depend on the curve C, but only on the terminal
A

points A and B, [ is called a conservative vector.

A force field F is said to be conservative if it is derivable from a potential function

¢, ie., F= grad ¢. Then curl (F) =curl (V¢) =0.
- if F is conservative then curl (F )=0 and there exists a scalar potential function ¢
such that F=Vg.

20.5 QO APPLICATIONS OF LINE INTEGRALS
Work Done by a Force
Let v (x,y,z) =v4(x, y, 2) i+ (X, Y, Z) ; +u3(x, Y, 2) k be a vector function defined and

continuous at every point on C. Then, the integral of the tangential component of v
along the curve C from a point P on to the point Q is given by

Q
J‘ﬁﬂz"‘?)-dr—J.vldx+vzdy+v3dz
P c o

where C is the part of C, whose initial and terminal points are P and Q.
Let v=F, variable force acting on a particle which moves along a curve C. Then

the work done W by the force F in displacing the particle from the point P to the
point Q along the curve C is given by

Q
W:IF-dF:jﬁ-dF
P C,

where C; is the part of C whose initial and terminal points are P and Q.

Suppose F is a conservative vector field; then F can be written as F = grad ¢,
where ¢ is a scalar potential.
Then, the work done

J.F dr—J-(gradq)

1

99 . . 99 -
E[[a dx +— % —dy+— dz} Id¢ [9(x,y, Z)]
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.. work done depends only on the initial and terminal points of the curve C;, i.e., the
work done is independent of the path of integration. The units of work depend on the

units of IF| and on the units of distance.

> Note

(i) Condition for F to be conservative
If F isirrotational then VxEF=0.

It is possible only when F=V¢.which= F is conservative.
- if F is an irrotational vector, it is conservative.

(ii) If F is irrotational (and, hence, conservative) and C is a closed curve then

95? _#7=0. [~ (A) = ¢(B), as A and B coincide].
C

20.6 O SURFACES

A surface S may be represented by F(x, y, z) = 0.
The parametric representation of S is of the form
7(u, v) = x(u, V)i + y(u, v)} +z(u, v)k
and the continuous functions u = ¢(t) and v = ¢(t) of a real parameter t represent a
curve C on this surface S.

If S has a unique normal at each of its points whose direction depends continuously
on the points of S then the surface S is called a smooth surface. If S is not smooth
but can be divided into finitely many smooth portions then it is called a piecewise
smooth surface. For example, the surface of a sphere is smooth while the surface of a
cube is piecewise smooth.

If a surface S is smooth from any of its points P, we may choose a unit normal
vector 1 of S at P. The direction of 7 is then called the positive normal direction
of S at P. A surface S is said to be orientable or two-sided, if the positive normal
direction at any point P of S can be continued in a unique and continuous way to the
entire surface. If the positive direction

of the normal is reversed as we move A B
around a curve on S passing through P /

then the surface is non-orientable (i.e.,

one-sided) (Fig. 20.4). 3 / C/ y
o Example Fig. 20.4

A sufficiently small portion of a smooth
surface is always orientable (Fig. 20.5).
A Mobius strip is an example of a
non-orientable surface. A model of a
Mobius strip can be made by taking a
long rectangular piece of paper, making
a half-twist and sticking the shorter
sides together so that the two points A
and the two points B coincide; then the
surface generated is non-orientable. Fig. 20.5
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>

20.7 QO SURFACE INTEGRALS F A

Any integral which is to be evaluated over a surface \
is called a surface integral.

Let S be a two-sided surface, one side of which
is considered arbitrarily as the positive side.

Let F be a vector point function defined at all
points of S. Let ds be the typical elemental surface
area in S surrounding the point P(x, y, z). P(x,y,z)

ds

Let 11 be the unit vector normal to the surface S S
at P(x, y, z), drawn in the positive side (or outward

direction). ~ Fig. 20.6
Let O be the angle between F and 7.

-. the normal component of F=F-n=Fcosf.
The integral of this normal component through the elemental surface area ds over

the surface S is called the surface integral of F over S and denoted as IF cos 0 -ds
or jﬁ -nds .

5

If ds is a vector whose magnitude is ds and whose direction is that of 1, then
ds=i-ds. . Jﬁ -nds can also be written as Jﬁci—s

S S
> Note

(i) If S in a closed surface, the outer surface is usually chosen as the positive
side.

(if) J. ¢ds and J. Fxds where ¢ is a scalar point function are also surface
s s

integrals.
(iii) The surface integral J. F-ds is also denoted as J F-ds.
s

(iv) If F represents the velocity of a fluid particle then the total outward flux of

F across a closed surface S is the surface integral J.I—: -ds .
s

(v) When the flux of F across every closed surface S in a region E vanishes, F
is said to be a solenoidal vector point function in E.

(vi) It may be noted that F could equally well be taken as any other physical
quantity such as gravitational force, electric force, magnetic force, etc.

20.8 0O VOLUME INTEGRALS

Any integral which is to be evaluated over a volume is called a volume integral.

If V is a volume bounded by a surface S then the triple integrals JJJ(MU and
J.J Fdv are called volume integrals. The first of these is a scalar and the second isa

Vector
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Line Integral, Surface Integral and Integral Theorems 20.9

20.9 QO INTEGRAL THEOREMS

The following three theorems in vector calculus are of importance from theoretical
and practical considerations:

(i) Green’s theorem in a plane

(ii) Stokes’ theorem
(iii) Gauss’ divergence theorem

Green’s theorem provides a relationship between a double integral over a region
R and the line integral over the closed curve C bounding R. Green’s theorem is also
called the first fundamental theorem of integral vector calculus.

Stokes’ theorem transforms line integrals into surface integrals and conversely.
This theorem is a generalization of Green’s theorem. It involves the curl.

Gauss’ divergence theorem transforms surface integrals into a volume integral. It
is named Gauss’ divergence theorem because it involves the divergence of a vector
function.

We shall give the statements of the above theorems (without proof) and apply
them to solve problems.

Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y),
Q(x, y) and its first-order partial derivatives are continuous in R then

q.)(de +Qdy) = J.J.(a—Q - B_P] dxdy where Cis described in the anticlockwise direction.

Stokes’ Theorem (Relation between Line Integral and Surface Integral)

Surface integral of the component of curl F along the normal to the surface S, taken
over the surface S bounded by curve C is equal to the line integral of the vector point

function F taken along the closed curve C.
Mathematically, @? -d7 = churl F-fi-ds
C
Gauss’ Divergence Theorem or Gauss’ Theorem of Divergence
(Relation between Surface Integral and Volume Integral)

The surface integral of the normal component of a vector function F taken around a

closed surface S is equal to the integral of the divergence of F taken over the volume
V enclosed by the surface S.

Mathematically, jjf ‘n-ds= ‘” divE dv.
s v

SOLVED EXAMPLES

Example 1 [RIWES 3xy1 -y ] evaluate J F-dr, where Cis the arc of the parabola
y=2x? from (0, 0) to (1, 2).
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20.10 Engineering Mathematics

Solution Tet x = t, then the parametric equations of the parabola y = 2x* are x = t,
y =2

At the point (0, 0), x=0and so = 0.

At the point (1, 2), x=1and so t =1

If 7 is the position vector of any pomt (x, y) in C, then

F=xi +y]
=t + 2> ]

Also in terms of t, F=3t(2t%)i — (2t2)2}
=6t —4tt]

JF dr = j(ﬁ —Jdt
- j(ét P-4ty (7 + 4]t

1
= j(6t3 —16t°)dt

1

4 6
={6t——16t—}
4 6l

_3.8_9-16_7 Ans.
23 6 6

Example 2 ERNVEIRELE -”A -fids where A=(x+ yz);' - 2xf + Zyzlz and S is the
s
surface of the plane 2x +y + 2z = 6 in the first octant. [KU May 2010]

Solution A vector normal to the surface S is given by
V(Qx+y+22)=2i +] +2k

‘. f1=a unit vector normal to the surface S

HA-&-dF”AﬂLiXdAy
Ik - nl
S R

where R is the projection of S

Now, (x+_1/)z—2x]+2yzk] (—z+;]+3k)
(x+ )—zx+4 z=— 2+é z
=3 y 3 ¥ y 3y
2 , 4 (6—2x—y)
=—y+—y| —
37 3N T2
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. 6—2x—
(smce on the plane 2x + y +2z=6,z= Ty)

2
=3y +6-2x-y)

4
= — 3—
3)y( x)
Hence, J.J.A - ds-JJA A’dxdy
lk-nl

= J;J.gy(S -X) -%dxdy

3 6-2x

:J. }!. 2y(3 — x)dydx

0

3 5 6-2x
=jz(3—x)[y—] dx
0 2 0

3
= J(3 — x)(6 — 2x)*dx
0

3
=4|(3-x)%dx
!

3
A2
A-1) |,

=81 Ans.

Example 3 [RIGENpRal 3z)i — 2xy] —4xk then evaluate J.J.J.V -F-dV, where V
is bounded by the planes x =0, y=0,z=0and 2x + 2y +z=4.

Solution V.F= (2x2 -3z)+ i(—zxy) + i(—4x)
ay 0z

—-2x=2x

IJ V-F-dv= J.J. 2xdxdydz
v

9
ox
—4x

2 x4-2x-2y
2xdzdydx

2-x

0
J. 2x[z]8 7 M dydx
0

1]
|

8/23/2017 10:29:48 AM
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20.12 Engineering Mathematics

2-x 22-x

J 2x(4 - 2x - 2y)dydx = J j [4x(2 — x) — 4xy]dydx
0

o o'—"\)

J[4x(2 x)y - 2xy* [ - dx
= J[4x(2 —x) = 2x(2 — x)?)dx
2
= JZx(Z —x)2dx

2
= 2J(4x —4x®+ 2%y dx

3 a4
=2{2x2—4x—+x—} - [8—2 4}:§ Ans.
34 3 3

Evaluate JF -d7 where F=(x>+ yz)f - ny] and the curve C is the

c
rectangle in the xy-plane bounded by y =0, y=b, x=0, x =a.

Solution In the xy-plane, z=0

F=xi +yj,dr =dxi +dyj

f f (x +y )dx 2xydy 1)
Jﬁdr—JF dr+IF dr+JF dr+JF i @
AB BC cO
yl\
s
C(0. b) ) B(a,b)
x=0Y AXx=a
y=0 A@,0)
0(0, 0)

Fig. 20.7

Along OA, y=0; dy =0 and x varies from 0 to a
Along AB, x =a; dx =0 and y varies from 0 to b
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Along BC, y =b; dy =0 and x varies from a to 0
Along CO, x =0; dx =0 and y varies from b to 0
Hence, from (1) and (2),

a

I b 0 0
JP-dr:Ixzdx— 2aydy+.[ (x2+b2)dx+j 0-dy
C y=0 x=a b

x=0
3\ 3 0
o T e e
3 0 3 a
3 3
a 2 a 2 2
=|——ab"———ab”° |=-2ab
(3 3 ] Ans.

Find the work done by the force F = (2xy + 2%)i + xzf +3xz%k when it
moves a particle from (1, -2, 1) to (3, 1, 4) along any path. [AU Dec. 2011]

Solution Since the equation of the path is not given, the work done by the force E
depends only on the terminal points.

i ik
Consider Vx F= i i i
ox dy oz

Qxy+z°) x* 3xz?

=i[0-0] - j[32% - 32°]+ k[2x - 2x] =0
= F is irrotational
Hence, [ is conservative
Since F is irrotational, we have F = Vo
It is easy to see that ¢ = x%y +xz°+ C

(3,1,4)
work done by F = j F-dF
1,-2,1)
(3,1,4) (3,1,4)
- j Vo.dr= J dé [as Vo- dr = do]
1,-2,1) 1,-2,1)
3,14
= [¢]21,_2,)1)
= [xzy +xzl+ C]g’l’}z‘%)l)
=(201+C) - (=1+C) =202 Ans.

IDEn (AW Find the circulation of F round the curve C, where F=e¢*sin y;'

+¢e* cos y}; and C is the rectangle whose vertices are (0, 0), (1, 0), (1, %ﬂ], (0, %ﬂ') .
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Solution YA
F=xi+yj = di =dxi +dyj
- Z] ) N Y C(0, m/2) < B(1, m'2)
F-dr=e'siny-dx+e cosy-dy h
Now along OA, y=0;dy=0 v 1
along AB, x=1;dx=0
along BC,y=%;dy=0 . A(1,0) -
along CO, x=0;dx =0 0(0, 0)
- circulation round the rectangle OABC is Fig. 20.7
j F-di = J.(ex sin ydx + e* cos ydy)
¢ c
= j o+ J e' cos ydy + J. exsin%dx + J. cos ydy
OA  AB BC co
z 0 0
=0+ Je cosy-dy+ je" sin%dx + Icos ydy
0 1 z
—[esinylZ +[e P +[sinyl=e+(1-¢)-1+0=0  Ans.
2

|penny (VAN Find the total work done in moving a particle in a force field given by
F= 3xy1—' - 52} +10xk along the curve x =*+ 1,y =2, z= from t =1 to t = 2.

Solution Total work done

- J E.di= _[ (3xyi — 52] +10xk) - (dx7 +dyj + dzk)
C C

[3xydx — 5zdy + 10xdz]

[3(F2 + D(22)d(t* + 1) — 583d(242) + 10(2 + 1)d(+)]

Te—n 5™

2

= j (62 (£ + 1)(2tdt) — 20¢4dt + 30£% (2 + 1)dt]
2

= f [12£° + 12¢° — 20* + 30t* + 30¢*]dt

2
= j [12£° + 10#* + 1242 + 30t dt

6 TP 572 4P 3P
:12H +10H mH +30H
6 1 54 4 5 34
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6 5 4 4 3 3

sl 2o 2Ll 2 g 2
6 6 5 5 4 4 3 3

=12- 63 —+10- —+12 E+30 —
6 5 4 3

=126 +62+45+70

=303

Ans.

Example 8 [ F =4xzi - yzf + yzlz , evaluate J F-fids where S is the surface of

S
the cube bounded by x=0,x=1,y=0,y=1,z=0,z=1. [AU Dec. 2009]
Solution The surface of the cube consists of the AZ 0
following six faces: r
(a) Face LMND L '
(b) Face TQPO
(c) Face QPNM
(d) Face TODL 0 P >y
(e) Face TQMI D N
(f) Face ODNP v
Now, for the face LMND:
. = Fig. 20.8
n=i,x=0D=1
Hence, jIF nds= jj (4xzi — ] + yzlz) . ;dydz
LMND
= J.J. dxzdydz=4 J. zdydz  (ox=1)
LMND LMND
1
4j '[ zdydz=4 [ ] (y)0 1)
z=0y=0
For the face TQPO: fi=—i,x=0
Hence, JJF f-ds= J (4xzi — y? ] + yzk) (- z)dydz
TQPO
= J (—4xz)dydz=0 (rx=0) (2)
TQPO
For the face OPNM: #1=],y=1
Hence, JJF nds= J. (4xzi — y? ] + yzk) ]dxdz
QPNM
= JI (—y dxdz)= '[ —dxdz (-y=1)
QPNM QPNM
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1 1
=- J' J' dxdz=—[x]y[z]y=-1 3)

z=0x=0
For the face TODL: fi=—],y=0

Hence, J-J.? -nds= J-J- (4xzi — %] + yzk) - (=] )dxdz
$

TODL

- j J (y2dxdz)=0 (v y=0) (4)

TODL

For the face TQML: i=k,z=1

Hence, J] F-nds= JJ (4xzi —y%] +yzk) - kdxdy .

TQML TQML
= J‘J‘ yzdxdy = ”. ydxdy (-z=1)
TQML TQML
11 5Tl .
- | ydxdy=[x]é[y7l:5 ©
y=0x=0

For the face ODNP: fi=—k,z=0

Hence, JJ F-nds= JJ (4xzi — y?] +yzk) - (—k) - dxdy
ODNP ODNP
= JJ (-yz)dxdy =0, (=z=0) (6)
ODNP
Adding (1), 2), 3), (4), (5) and (6), we get
J F-nds= 3 Ans.
: 2
Verify Stokes’ theorem for F = y—z+ 2)1—' +(yz +4) } —(xz) k over

the surface of acube x =0, y=0,z=0,x=2, y =2, z=2 above the XOY plane (open at
the bottom). [KU May 2010]

Solution Consider the surface of the cube as shown in the figure. Bounding path is
OABCO shown by arrows.

J'ﬁ 7 =j[(y—z+2)? T (yz +4)] — (x2)K] - (dxi +dyj +dzk)
C C
=J (y—z+2)dx + (yz +4)dy — xzdz
C

J.ﬁ-d?zJﬁ~d?+Jﬁ~d?+Iﬁ-d?+Iﬁ~d? (1)
¢ OA AB BC CcO
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Along OA,y=0,dy=0,2z=0,dz=0

2
Jﬁ.d?=jzdx=(2x)g=4

0A 0
Along AB, x=2,dx=0,z=0,dz=0

2
J?~d?:'[4dy:4(y)§:8

AB 0
llZ
F (Os 0’ 2)
E D
0 (Oa 2a O)
20,0 L4 ¢
A B
(2,2,0)
X

Fig. 20.9

Along BC,y=2,dy=0,z=0,dz=0

2
jid?:j(2—0+2)dx=(4x)3:—8
BC 0

Along CO,x=0,dx=0,z=0,dz=0
J'F-d?:J'(y—o+2)x0+(o+4)dy—o
CcO

—4[dy=ay)=-8
On putting the values of these integrals in (1), we get
[cE-di=4+8-8=—4

To obtain surface integral

i ik
vxE-| £ 2 2
ox dy oz

y—z+2 yz+4 -xz

=(0-y)i —(-z+1)j +(0-Dk=—vyi +(z—1)] -k
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Here, we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE: x =2, = i , ds =dydz

H(V x F)- fids = Lj[—yi F(z=1)] —K]-Tdydz

s
2 2 , TP
= .”.—ydydz =—J.ydyj.dz = —[%} [z]é: -4
s 0 0 0

Over the surface OCGF: x =0, n= —f, ds=dy dz

'U(V X F)-fids = J;J[—yi +(z-1)] —k]-(~1)dydz

2 2 >
- [[agte =y o[ ]
S 0 0

Over the surface BCGD: y =2, n= } ,ds=dx dz

2
=4
o

_[_[(VXF)MS:”[—W +(z=1)] - K] ] dxdz

= J;J(z —1)dxdz

2

2
= I[dxj(z -1)dz

0

) 2
=[xk {?}
0

=0

Over the surface OAEF: y =0, n= —] ,ds=dx dz

”(v X E)-fids = ”[—y?’ +(z=1)] — K] (-])dxdz

s 3
= _-[J(z —1)dxdz
2 2

= —J‘dx'(').(z —1)dz
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Over the surface DEFG:z=2, nn= k , ds=dx dy

H(v x E)-fids = J.J.[—yf +(z-1)] - k]-Kdxdy

s
2 2
- -”dxdy - —dejdy
0 0
=[x [yl =—4
Total surface integral=—4+4+0+0-4=-4
Thus [ curl F-fds=].F-di =-4

which verifies Stokes’ theorem. Verified.

DENNI BN Verify Green's theorem in the plane for [[(x* — xy )dx + (y* — 2xy)dy]
where C is a square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Solution Given integrand is of the form Mdx + Ndy, where M = x> — x>, N = /> - 2xy.
Now to verify Green’s theorem, we have to verify that

_|‘[(x2 = xy)dx + (i = 2xy)dy] = “ (-2y + 3xy*)dx dy (1)
C R

Consider J.[(xz — xy)dx + (y* - 2xy)dy] where the curve C is divided into four parts,
c

hence the line integral along C is nothing but the sum of four line integrals along four

lines OA, AB, BC and CO.

Along OA : y=0, dy =0 and x varies from 0 to 2.

2 32
Hence, J. [(x* = xy®)dx + (y* - 2xy)dy] = j Pdx= [%j =%
0
OA x=0

Along AB : x =2, dx =0, and y varies from 0 to 2.

Hence, j [(x% = xy®)dx + (y* - 2xy)dy] AY
AB ,
2 y= B(2,2)
2 3 2 C(0,2) < )
= | P-4y = (y— - 4y—J
_[0 (" —4y)dy =| =45 ;
(8) 3 16 x=0y Ax=2
3) 7 3
> > X
Along BC: y =2, dy =0 and x varies from 2 to 0. y=0 A2, 0)
0(0, 0)
Hence, J. [(x?- xy?’)dx + (y2 — 2xy)dy]
e Fig. 20.10

0 3 R\
= | (x*-8x)dx= (x_ - SX—J
s 3 2 )y

x=

=0—0—§+16=£
3 3

EM_UnitVIIl_20.indd 19 @ 8/23/2017 10:29:51 AM



20.20 Engineering Mathematics

Along CO : x =0, dx =0 and y varies from 2 to 0

Hence, J [(6® = xy)dx + (y* = 2xy)dy]

CcO
0 30 8
_ zd:y_j:__
.[yy (32 3
y=2

16 40 8
_[[(xz—xya)dxﬂy 2xy)dy]———3+?—§=8 )
C

Now consider

2 2
'[ (2y + 3xy*)dydx = J. J (—2y + 3xy*)dy dx
R x=0y=0

2

2 2 3
= J.[—Zy—+3xy—j dx
! 2 3 o

2

= J. [—4 + 3x(§):|dx = (—436 + 8%)2

x=0
=-8+16+0=8 ©)

From (2) and (3), we observe that the relation (1) is true.
Hence, Green’s theorem is verified. Ans.

[NV IREN Verify divergence theorem for F = (x* - yz) i+ (y* - zx) } + (22— xy) k
taken over the rectangular parallelepiped 0<x <a,0<y <b, 0 <z <c.[KU Now. 2010]

Solution For verification of the divergence theorem, we shall evaluate the volume
and surface integrals separately and show that they are equal.

Now div F=V-F :aix(x2 -yz) +%(y2 —zx) +a—az(z2 - xy)

=2(x+y+2z)
- AZ
JI div Fdv TA
C Al
I J. J- 2(x+y+z)dxdydz B!
I J. l(—+yx+zxﬂ dydz
0 i 0 i >y

c az B
= J‘JZ[T +ya+ zadedz A C!

0o . . ) X
_ J‘ 2“%]/ + % +azyﬂ iz Fig. 20.11
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ab? ab_ ab? abz? |
—2J —+—+abz dz=2|—z+——z+
2 2 2 1,
= a%bc + ab’c + abc* = abc(a + b + ¢) 1)

To evaluate the surface integral, divide the closed surface S of the rectangular
parallelepiped into 6 parts.

S, : Face OAC'B
S, : Face CB’PA’
S3:Face OBA’C
S, :Face AC'PB’
S5 : Face OCB’A
Se : Face BA” PC’

Also, J:[F I’ZdS—J.J.F nds+J.J.F nds+J.J.F nds
J'J'F nds+HF nds+_[ F.fds @

On S, :z=0, ﬁ:—E,ds=dxdy
so that F-ni=(x% +y%j - xyk) - (=k) = xy

a a
== [yay=-= ®

OnS,:z=c, n=k,ds=dxdy, F =(x®—cy)i +(@P-cx)] +(@-xy)k.
so that F-7 =[(x2— cy);' + (yz— (x)}) +(c2— xy)lZ] k=c2- Xy .

- ba b >
JJF~flds=JJ(CZ—xy)dxdyzj(cza—%yjdy
S, 00 0

22
b
—abr -2 4
abc 1 (4)
OnS;:x=0, i=—i,F=—yzi +y%j + 2%, dz = dydz
so that F-fi=(-yzi + y2] +2%k)-(=i) = yz, ds = dy dz
- cb < .5 20
JJF~ﬁds=JJyzdydz=Jb?zdz:ch 5)
Sy 00 0

OnS,:x=a, n=i, =(u —yz)1+(y —uz)]+(z —ay)k
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sothat F-n=[(a®-yz)i +(y*—az)j + (22— ay)k]-i
=a®-yz, ds=dydz

HF nds—J J (% - yz)dydz = '[( Zb——zjdz

22
=a’bc - ch )

OnSs:y=0, i=—j,F=x% —zxj + 2%k, ds = dxdz

sothat F-n=(x% - fo +2%k)- (—j) =zx

a2 22
jJ.F nds—J. J zxdzdx = I C—xdx—u: (7)

OnSs:y=b, ﬁ:],F:(xz—bz)i +(b? - 2x)] + (22 - bx)k

ds = dxdz
sothat F-ni=[(x2—bz)i +(b*— zx)] + (2> - bx)k]- ]
=b*—zx.
- apc
J F~ﬁ:.[ J (b* - zx)dzdx
[ [
3
6
a 2 2.2
='[ (b%—%x}dxzabzc—% (8)
[

By using (3), (4), (5), (6), (7) and (8), in (2), we get

_ 2,2 22 122 22 22 22
JJF~ﬁds=ab +abc2—ab L +a2bc—b—c+&+abzc—&
4 4 4 4 4 4

=abc(a+Db+c) )
The equalities (1) and (9) verify the divergence theorem. Ans.

Verify Green’s theorem in the plane for [(3x? — 8y%)dx + (4y — 6xy)dy
where C is the boundary of the region defined by (i) y = Jx, y=x*and (i) x=0,y =0,
x+y=1 [AU July 2010, June 2012 ; KU Now. 2011, KU April 2013]

Solution
(i y= \/; ,i.e., y*=x and y = x? are two parabolas intersecting at 0(0, 0) and A(1, 1).
Here, P =3x - 8% Q = 4y — 6xy

aP aQ
=-16y, —~=-6

ay o y

aQ odpP

—=-—=10

ox dy Y
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AY
V=Y
2 =x
C
_A7ALD
RA C,
> X
0,0)0

Fig. 20.12

If R is the region bounded by C then

.“‘[?9_8 - 3—5}1}( dy
R

:5|:l_lj|:5|:ij|:§ (1)
2 5 10] 2
Also, J. de+Qdy=J. (de+Qdy)+I (Pdx +Qdy)

C C G,

Along C;, x¥*=y. .. 2x dx = dy and the limits of x are from 0 to 1.

'[ (Pdx +Qdy)
o

1
= J. (3x? = 8y?)dx + (4y — 6xy)dy
0
1
= J.o (3x2 = 8x1)dx + (4x* — 6x - x%) - 2xdx (since x2 = Y)

1

:I (3x2 + 8x> — 20x*) dx
0

=[x+ 2x% - 4x5]3)=—1

Along C,, yz =x. .. 2y dy = dx and the limits of y are from 1 to 0.
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J (Pdx +Qdy)
C2
0 4 2 2
=L (By"—8y")2ydy +(4y -6y y) - dy

0 3 5 o 11 4 60 5
=L (4y —22y"+6y”)dy =| 2y B A =2

2
J.(de+Qdy)——1+§=§ @)
C 2 2
The equalities of (1) and (2) verify Green'’s theorem in the plane. Ans.

(ii) Here, JJ[ Q aPJ dy Y

B(0, 1)
1-x
=JJ 10y dy dx
070 x=0 x+y=1
1
=J S5ly* 1y " dx
0
1 3
1 3 = >
:5I (1_x)2dx:5{u} 00,00  y=0 A(1,0) x
0 I Fig. 20.13
-5 5
=—(0-1=— 1
5 0-D=7 1)

Along OA, y=0 .. dy =0 and the limits of x are from 0 to 1.
1
J' Pdx+Qdy =J 3t =[x =1
0
Along AB, y=1-x. .. dy =—dx and the limits of x are from 1 to 0.

0
I Pdx + Qdy = L [3x% - 8(1 — x)*]dx + [4(1 — x) — 6x(1 — x)](—dx)

0

=J (3x2— 8 +16x — 8x*— 4 + 4x + 6x — 6x)dx
1
0

=J (12 + 26x — 11x?) - dx
1

0
=|:—12x+13x2—ﬂx3] = [ 12+13—£}=§
37, 3] 3

Along BO, x =0. ... dx =0 and the limits of y are from 1 to 0
0
[ pax+Qay=[ aydy=r2°f=-
BO 1

~. line integral along C (i.e., along OABO) =1+ % -2 =§
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. 5
ie., J- (Pdx+Qdy)=— (2)
c 3
The equality of (1) and (2) verifies Green’s theorem in the plane. Verified.

|BEVIOENEN Evaluate |- (e*dx +2ydy —dz) by using Stokes’ theorem, where C is
the curve x> + y2 =4,z=2. [AU May 2010]

Solution
Jo(e¥dx +2ydy - dz)
= (e¥T +2yj — k) - (dxi +dyj +dzk)
:ch-awhereﬁzexz?+2y}—lz

=i(0-0)—j(0—0)+k(0-0)
=07 +0j +0k=0

.. by Stokes’ theorem, J F-dr= jjcurl F-n-ds
¢ S
=0 (since curl F =0) Ans.

1PNV I RN Find the work done by the force F= zi + x} + yE, when it moves a

particle along the arc of the curve 7 = cos ti +sin tf +tk from t=0tot=2n.
[AU Dec. 2007]

Solution From the vector equation of the curve C, we get the parametric equations
of the curve as x =cos t, y=sint, z=t.

Work done by the force F=] c F-dr
=J. (zf+xf+yl€)-(dx17+dyf+dzlz)
c
:f (zdx + xdy + ydz)
c

2r
= f [t(—sin t) + cos® t + sin ]dt
0

2

_ 1( sin2t) T
=|tcost—sint+—|t+ —cost

2 2 o

=Q2r+r-1)—-(-1)
=3 Ans.
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[NV IREN Verify Stokes’ theorem for F= xyf - Zyz} —zxk where S is the open
surface of the rectangular parallelepiped formed by the planes x=0,x=1,y=0,y =2
and z = 3 above the XOY-plane. [AU Dec. 2007]
Solution Stokes’ theorem is given by

fcﬁazﬂscurll—lﬁds

ik
Here, curl E= i i i

ox dy oz

xy -2yz -zx

=2yf+zf+xlz .'.J(xydx—2yzdy—zxdz)—JJ(ny+z;+xlz)-ﬁds 1)
c
s

The open cuboid S is made up of the five facesx=0,x=1,y=0,y=2 and z=3 and is
bounded by the rectangle OAC’B lying on the XOY plane. LHS of (1) is

= J (xydx — 2yzdy — zxdz)

OAC'B 47
C A
= J xydx
OAC’B B o’
(since the boundary C lies on the XOY plane, z =0)

o >
= nydx+ J xydx + nydx+ nydx §B Y
04 AC’ C'B BO / fod
Along OA,y=0,dy=0

X
Along AC’, x=1,dx=0 )
Along C'B,y=2,dy=0 Fig. 20.14
Along BO, x=0,dx=0

0
J- xydx=0+0+J. xydx+0=ijdx
OAC’B v 1

(as along C’B, x varies from 1 to 0).
=-1 @)
RHS of (1) is

J.[(2yz—' +2j +xk) - ds = J:[ (2yi +zj + xk) - nds + J‘J‘ (2yi +zj + xk) - ids
S o'C'AB A’BOC
+ J.J. (2yi +zj + xk) - hids + J.J. (2yi +zj + xk) - hds
ABCOY COAB’
+ J-J- (2yi + 2] + xk) - ds
AOBC
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302 302 103
=J. J Zydydz—J- J. Zydydz—J- I zdzdx
0Jo 0Jo 0Jo
1p3 2 01
—J. I zdzdx—J. I xdxdy
0Jo 0Jo

O

From (2) and (3), Stokes’ theorem is verified. Verified.

|DEININ  Verify the divergence theorem for F=x%+ z} + yzl; over the cube
formed by x =+1, y =+1, z= 1. [AU Dec. 2007, KU Nov. 2011]

Solution Gauss’ divergence theorem is

Hﬁ -fids = ” (div F)do (1)

s v
LHSof (1)= J‘[xz ds + J-[;xz ds + ;“J;zds + yIL—zds + J.‘[yz ds + ZJ.L—yzds =0 (2
Risof ()= [[[wivF)-ao

v

= L[ 2x+y)dxdydz

161 01
=J J. J 2x +y)dxdydz
-14-1d-1

1 61
=J J- 2ydydz=0 (3)
-1d

From (2) and (3), Gauss’ divergence theorem is verified. Verified.

RNV Use Stokes’ theorem to evaluate [~ F-dr, where F = (sinx— y)z—' —cos xf

2 2
[KU Novw. 2011]

and C is the boundary of the triangle whose vertices are (0, 0), [E, Oj and (1, 1) .

Solution By Stokes’ theorem, we have | c F-dr= I s curl E-n-ds.

|~
QO =
QU =

1F= - =
e ox dy oz
sinx—y —cosx 0
=(sin x + 1)k

.. the given line integral
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. oy
= Jj(l + sin x)dxdy (71 )
B|3,1
R 2
13 y=-x
=J. I(1+sin x)dxdy T
0 x==
2y 2
2
1 z
= .[ [x — cos x]iy dy
0 2
I'n my ny} Z > X
=| |Z-"L+cos=2|d 0(0, 0) y=0
J [ 272 2 Y 4 (g , o)
1
= {Ey oy _sinﬂ] Fig. 20.15
2 4 T o
T 2
=—4—
4 r
J Far=2+ 2 Ans.
C 4 r
EXERCISE
1. State Green’s theorem in a plane.
2. Give the relation between a line integral and a surface integral.
3. State Gauss’ divergence theorem.
4. Deduce Green’s theorem in a plane from Stokes’ theorem.
5. In Gauss’ divergence theorem, surface integral is equal to integral.
6

10.

11.

12.

EM_UnitVIIl_20.indd

CIf F =5xy1~'+2y}, evaluate jCﬁE where C is the part of the curve y = x

. The integral of E.d7 is

(i) line integral (ii) zero
(iii) surface integral (iv) one

. Using Green’s theorem, prove that the area enclosed by a simple closed curve C

is %J(xdy —ydx) .
3

between x =1 and x = 2.

CIf F=x% +xy} , evaluate |- F.dr along the straight line y = x from (0, 0) to

1, 1).

If C is a simple closed curve and 7 =xi + yj + zk , prove that [o7 dr=0.

Evaluate @ (yzdx + zxdy + xydz) where C is the circle given by x* + y? + 22 =1
c

and z=0.
Use the integral theorems to prove V- (V x F)=0.
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13. Evaluate J.(xdy - ydx), where Cis the circle x* + y* = a*.

14. Evaluate Jc F.dr where F = xyI-' + yz}' + zxk and Cisthe curve 7 =t + tzf +1%k, ¢
varying from -1 to 1.

1. If a force F= 2x2y17 + 3xy} displaces a particle in the xy plane from (0, 0) to

(1, 4) along a curve y = 4x?, find the work done. (Ans. %J

2. Find the work done when a force F=(x>— ¥+ xX)i — (2xy + y)} moves a particle

from the origin to (1, 1) along a parabola y = x. [Ans. %)

3. Verify Green'’s theorem in a plane with respect to c (x*dx + xydy), where C is
the boundary of the square formed by x=0, y=0,x=a,y=a. [AU Dec. 2009]

3
(Ans. a_]
2

4. Use Green’s theorem to evaluate | ¢ (x> + xy)dx + (x> + yz)dy where C is the
square formed by the lines y = +1, x = +1. (Ans. 0)

5. Use divergence theorem to evaluate J.J.(yzzz7 + zxzf +22%k) - ids where S is the
closed surface bounded by the XOY—pfane and the upper half of the sphere x> +
y? +z* = a* above this plane. (Ans. ma*)

6. Verify Stokes’ theorem for F=(x*+y - 4)i + 3xy} +(2xz +z2)k over the surface
of hemisphere x* + > + z2 = 16 above the XOY plane. (Ans. -167)

7. Use the divergence theorem to evaluate |, A-ds where A=x% + y3f +2°%k and

5
S is the surface of the sphere x* = y* + 22 = 2%, [Ans. 1275m )

8. Use the divergence theorem to evaluate II dydz + x*ydzdx + x*zdxdy where
s

S is the surface of the region bounded by the closed cylinder x* + y* = a? (0 < z

4
<b)z=0and z=bh. (AnS.SEZb)

9. Using Green’s theorem, evaluate IC[(y—sin x)dx +cos xdy] where C is the

2
triangle bounded by y =0, x = %, y= 2 . {Ans. - ( 7r4+ 8 J]
b2 77

10. Evaluate | C[(xz+ y?)dx — 2xydy] where C is the rectangle bounded by y = 0,
x=0,y=0b, x=a using Green’s theorem. (Ans. —2ab?)
11. Verify Stokes” theorem for F= y1—' + z} +xk , where § is the upper half surface of
the sphere x> + > + z = 1 and C is its boundary. (Ans. -m)

12. Verify Stokes’ theorem for F= ny + 3x} — 2% where S is the upper half of the
sphere x? + > + 22 =9 and C is the boundary. (Ans. 9m)
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2
13. Find the area of x*+y*?=4*? using Green’s theorem. (Ans. 37:: j
14. Using Stokes’ theorem, evaluate [ (xydx + xy*dy) taking C to be a square with
vertices (1, 1), (-1, 1), (-1, -1) and (1, -1). (Ans. %)

15. Verify Gauss’ divergence theorem for F= yz—' + x} +2°k over the cylindrical
region 2+ y2 =9,z=0,z=6. (Ans. 1944m)
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Questions

If V.F=0 then Fis

If VXF=0 then Fis

Any motion in which the curl of the velocity vector is zero
issaidtobe

A function is said to be if it associates a scalar

with every point in space.

A variable quantity whose value at any point in a region of
space depends upon the position of the point is called a

A function is said to be if it associates with vector

in every point in space.

If the divergence of a flow is zero at all points then it
is said to be

gives the rate of outflow per unit volume at a
point of the fluid.
If div V=0 everywhere in some region R of space then
V is called the vector point function.

is a vector which measures the extent to

which individual particles of the fluid are spnning or
rotating.

divFisa function.

If curl V=0 then V is said to be an

If r=x1+yJ+zK then div r=

If r=x1+yJ+zK then curl r=

div (curl V)=

curl (grad ¢)=

Two surfaces are said to cut orthogonally at a point of
intersection, if the respective normals at that point are
A sufficiently small portion of a smooth surface is
always

A curve that is not plane is called a curve.
Any integral which is to be evaluated over a surface is
calleda

When the circulation of F around every closed curve in
a region vanishes, then F is said to be in that
region.

optl opt2 opt3 optd
irrotational solenoidal rotational curl
irrotational solenoidal rotational curl
irrotational solenoidal rotational curl
) vector
Scalar Vector Point .
. . ) point
function function function .
function
. vector
Scalar Vector Point .
. . ) point
function  function function .
function
. vector
Scalar Vector Point .
. . . point
function function function .
function
. irrotation solenoida conservat
rotational )
al | ive
curl V divV curl V=0 div V=0
. irrotation solenoida conservat
rotational )
al | ive
curl V divVv curl V=0 div V=0
point vector scalar rotational
. irrotation solenoida conservat
rotational )
al | ive
0 1 2 3
0 1 2 3
0divVv curl vV V
0divV curlV. ¢
erpendic
parallel PETp equal zero
ular
. orientabl
plane smooth  twisted o
plane point twisted  closed
Line Volume surface closed
integral integral integral integral
. irrotation solenoida conservat
rotational )
al | ive



A force field F is said to be

. . : : irrotation solenoida conservat
derivable from a potential function ¢ such that F = rotational al I ive
grad ¢.
IFE is then cur E=0. rotational irrotation solenoida ponservat
E— al I ive
If S has a unique normal at each of its points whose Orientabl
direction depends continuously on the point of S then smooth  plane twisted
the surface S is called a surface.
provides a relationship between a double , , ,
T ) N Cauchy's Green's Stoke's  Gauss
integral over a region R and the line integral over the
. Theorem Theorem Theorem Theorem
closed curve C bounding R.
is also called the first fundamental theorem Cauchy's Green's  Stoke's  Gauss
of integral vector calculus. Theorem Theorem Theorem Theorem
transforms line integrals into surface Cauchy's Green's Stoke's  Gauss
integrals. Theorem Theorem Theorem Theorem
transforms surface integrals into a volume Cauchy's Green's Stoke's  Gauss
integrals. Theorem Theorem Theorem Theorem
is stated as surface integral of the
mponent of curl F along the normal to the surf
component of curl F along the normal to the surface S, Cauchy's Green's Stoke's Gauss

taken over the surface S bounded by curve C is equal
to the line integral of the vector point function F taken
along the closed curve C.

is stated as the surface integral of the
normal component of a vector function F taken around
a closed surface S is equal to the integral of the
divergence of F taken over the volume V enclosed by
the surface S.

Theorem Theorem Theorem Theorem

Cauchy's Green's Stoke's  Gauss
Theorem Theorem Theorem Theorem

If V¢ is solenoidal, then V/2(¢)= ) 1 0 -1
If (3x-2y+2)1+(4x+ay-z)J+(x-y-22)K is solenoidal

0 1 -1 2
then a=
If $=x+y+z-8 then grad ¢ is 1+J+K  1+J-K I-J+K 0

. 41+43+4 41+4]-  4l-
—y\ A\ ND_
If p=x"2+y"2+2z"2-8 then grad ¢ at(2,2,2) is K 4K 43+4K 0
If ¢ =x"2+y"2+2"2-8 then grad ¢ at(2,0,2) is 41+44K  4J+4K 41440 0
If F = (x+2y+az)l+(bx-3y-z)J+(4x+cy+2z)K is a=2, a=-1, a=4, zig o=
irrotational, then the values of a,b and c are b=4, c=-1 b=2,c=4 b=2,c=1 1_ ’
If F= xyl-yzJ-zxK then curl F = >l<<l+yJ+z x1-yJ-zK >|/<|+ZJ+X yl+zJ-xK
xl+yJ+z

If F= xyl-yzJ-zxK then div F = xI-yJ-zK yl-zJ-xK yl+zJ-xK

K



If F=xyl-yzJ-zxK then at (1,1,1), div F =

If F= x"2-y"2+2z"2 then at (1,2,3), div F =
divFisa function.

If curl V=0 then V is said to be an

If F= x"2+y"2+2z"2 then grad F at (2,0,2)is-----
If Fis an irrotational vector, itis

A _curve that lies in a plane in space.

If F is conservative then cur F=0 and there exists a
scalar potential function ¢ such that

Any integral which is to be evaluated along a curve is
calleda

Any integral which is to be evaluated over a volume is
calleda

If F is conservative then cur F=0 and there exists a scalar
potential function f such that

The integral of vector F.dr is ----- .

The integral of vector F.dr is is conservative if the terminal
points A and B

Greens theorem is called the theorem of integral
vector calculus.

If del x F then vector Fis

If a force moves a particle from one place to another place
in any curve then integral of vector F.dr is called ----------
by that force.

If a force-------- a particle from one place to another place
in any curve then integral of vector F.dr is called work
done by that force.

If S is not smooth but can be divided into finitely many
smooth portions then it is called a surface.

If Fis an irrotational vector, it is

A force field F is said to be if it is derivable
from a potential function f such that F = grad f.
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Analytic Functions

Chapter 21: Complex Numbers
Chapter 22: Conformal Mapping
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Complex Numbers

fChapter Outline

Infroduction

Complex Numbers

Complex Function

Limit of a Function

Derivative

Analytic Function

Cauchy—Riemann Equations

Harmonic Function

Properties of Analytic Functions

Construction of Analytic Function [Milne=Thomson Method)

21.1 O INTRODUCTION

Quite often, it is believed that complex numbers arose from the need to solve
quadratic equations. In fact, contrary to this belief, these numbers arose from the
need to solve cubic equations. In the sixteenth century, Cardano was possibly the

first to introduce a++/-b, a complex number, in algebra. Later, in the eighteenth

century, Euler introduced the notation i for J-1 and visualized complex numbers as
points with rectangular coordinates, but he did not give a satisfactory foundation for
complex numbers. However, Euler defined the complex exponential and proved the
identity €' = (cos ¢+ i sin ), thereby establishing connection between trigonometric
and exponential functions through complex analysis.

We know that there is no square root of negative numbers among real numbers.

However, algebra itself and its applications require such an extension of the
concept of a number for which the extraction of the square root of a negative number
would be possible.
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21.4 Engineering Mathematics

We have repeatedly encountered the notion of extension of a number. Fractional
numbers are introduced to make it possible to divide one integral number by another,
negative numbers are introduced to make it possible to subtract a large number from
a smaller one and irrational numbers become necessary in order to describe the
result of measurement of the length of a segment in the case when the segment is
incommensurable with the chosen unit of length.

The square root of the number 1 is usually denoted by the letter i and numbers of
the form a + ib where 2 and b are ordinary real numbers known as complex numbers.

The necessity of considering complex numbers first arose in the sixteenth century
when several Italian mathematicians discovered the possibility of algebraic solutions
of third-degree equations.

The theoretical and applied values of complex numbers are far beyond the scope
of algebra. The theory of functions of a complex variable, which was much advanced
in the nineteenth century, proved to be a very valuable apparatus for the investigation
of almost all the divisions of theoretical physics, such, for instance, as the theory of
oscillations, hydrodynamics, the divisions of the theory of elementary particles, etc.

Many engineering problems may be treated and solved by methods involving
complex numbers and complex functions. There are two kinds of such problems.
The first of them consists of elementary problems for which some acquaintances
with complex numbers are sufficient. This includes many applications to electric
circuits or mechanical vibrating systems. The second kind consists of more advanced
problems for which we must be familiar with the theory of complex analytic functions.
Interesting problems in heat conduction, fluid flow and electrostatics belong to this
category.

21.2 O COMPLEX NUMBERS

A number of the form x + iy, where x and y are real numbers and i= \/j (iis
pronounced as iota) is called a complex number. x is called the real part of x + iy and
is written as Re(x + iy) and y is called the imaginary part and is written as Im(x + iy).

A pair of complex numbers x + iy and x — iy are said to be conjugates of each other.

Properties

(i) If xg + iy, = x, + iy, then x; — iy, = x, — iy,

(if) Two complex numbers x; +iy; and x, + iy, are said to be equal when Re(x; + iy;)
=Re(x, +iy,), i.e, x; = x, and Im(x; + iy;) = Im(x, + iy,) i.e, y; =y,

(iii) Algebra of Complex Numbers
The arithmetic operations on complex numbers follow the usual rules of
elementary algebra of real numbers with the definition i* = —1. If z; = x; + iy
and z, = x, + iy, are any two complex numbers then we define the following
arithmetic operations.

Addition

zy+ 2, = (X +iyp) +(x, +1y,) = (X, + x,) +i(y; + )
Subtraction

2= 2y = (¥ +iyy) = (X +1y,) = (X = X,) + (Y, — )
Multiplication

212, = (2 + 1y ) (% + 1Y) = (X120 = Y1,) + (XY, + Y1)
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Complex Numbers 21.5

Division Let z, # 0. Then

z iy ()G -i,) | vy, il TNy,
Zy,  Xy+iy, (X iy, ) (X, —iy,) x§+y§ x§+y§

i.e., sum, difference, product and quotient of any two complex numbers is itself
a complex number.

(iv) Every complex number x + iy can always be expressed in the form r(cos 6 +
i sin 0).
ie, re® (Exponential form).

> Note

(i) The number r=+/x*+y? is called the module of x + iy and is written as

mod (x +iy) or |x +iyl. The angle @is called the amplitude or argument of
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude 6
has an infinite number of values. The value of 6 which lies between —7 and
mis called the principal value of the amplitude.

(if) cos 6+ i sin O1is briefly written as cis 8 (pronounced as “sis 6')

(iii) If the conjugate of z=x +iy be z then

(@) Re(z)= %(z +7),Im(z) = %(z )

(b) Izl=+/(Re(2))>+ (Im(z))> =IZ|

(c) zz=IzP

d) z,+z,=2z,+z
i| 2 = 25 50 2y

@) ziz,=2, 2,

) (2/2,)=2/2,,2,#0

(iv) De Moivre’s Theorem
(cos B+ i sin 0)" = cos n6+i sin nO

21.3 O COMPLEX FUNCTION

Recall from calculus that a real function f defined on a set S of real numbers is a rule
that assigns to every x in S a real number f(x), called the value of f at x. Now in the
complex region, S is a set of complex numbers. A function f defined on S is a rule that
assigns to every z in S a complex number w, called the value of f at z.

We write w = f(z). Here, z varies in S and is called a complex variable. The set S is
called the domain of f.

If to each value of z, there corresponds one and only one value of w then w is
said to be a single-valued function of z; otherwise, it is a multi-valued function. For

1. . . . . .
example, w=— is a single-valued function and w = \/; is a multi-valued function
z

of z. The former is defined at all points of the z-plane except at z = 0 and the latter
assumes two values for each value of z except at z=0.
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21.6 Engineering Mathematics

> Note

(i) If z=x+1iy then f(z) = u + iv (a complex number).
(if) Since e¥ = cos y + i sin y, e = cos y — i sin y, the circular functions are
. eV —eV eV +e
sin :T,cosy=7, and so on

e
.. circular functions of the complex variable z are given by sin z = —
i

iz —iz :
+ sinz . . .
cosz=———,tanz = with cosecz, secz and cot z as their respective
oS z

reciprocals.
(iii) Euler’s Theorem
e”=cosz+isinz
(iv) Hyperbolic Functions

X —X

If x be real or complex, % =sin hx (named hyperbolic sine of x)
ef+e ™ . .
———=cos hx (named hyperbolic cosine of x)

Also, we define,

sinhx e‘'—e”

tan hx = =
coshx e*+¢™
1 eX+e™
cot hx = =
tan hx e¥—¢*
1 2
sec hx = =
coshx ¥+~
1 2
cosec hx =

sinhx ¢*—¢7*

(v) Relations between Hyperbolic and Circular Functions
sin ix = i sin hx
cos ix = cos hx
tan ix = i tan hx
(vi) cos h*x —sin h*x =1, sec hx + tan h>x = 1
cot h’x — cosec h*x =1
(vii) sinh(x + y) = sin hx cos hy + cos hx sin hy
cos h(x + y) = cos hx cos hy + sinh x sinh y
tan hx £ tan hy

tan h(x £ y)= ———
anh(x+y) 1+ tan hx tan hy

(viii) sin h2x =2 sin hx cosh x
cos h2x = cos h2x + sin h?x =2 cos i2x —1=1+ 2 sin h®x
2 tan hx

tan 112x=—2
1+tan h*x
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Complex Numbers 21.7

(ix) sin h3x =3 sin hx + 4 sin h3x
cos h3x =4 cos hi®x — 3 cos hx

3 tan hx + tan h°x

tan h3x = >
1+3tanhx
sinhx+sinhy=Zsinhx+ycoshx_—y
) 2
sinhx—sinhy=2coshx+ysinh%
COth+COShy=2COth+yCOSh%
coshx—coshy=2sinhx;ysinh%

(xi) cos hx —sin h?x =1
(xii) Complex trigonometric functions satisfy the same identities as real
trigonometric functions.

sin(-z)=-sinz and cos(-z)=cosz
sin’z+cos’z=1

sin(z, £ z,) = sin z, cos z, * cos z, sin z,
cos(z; £ z,) = COS z, COS z, F Sin z, sin z,

sin2z=2sinzcosz and cos2z=cos’z—sin’z

sinz =sin z
sin(z + 2nm) = sin z, n is any integer
cos(z + 2nm) = cos z, n is any integer
(xiii) Inverse Trigonometric and Hyperbolic Functions
Complex inverse trigonometric functions are defined by the following:

1

cos™' z=—ilog(z ++/z°+1)

1

sin” z=—1log(iz + 1-2?%)

tan"'z= —%log(l il 12] :ilog l tz

1-iz

1

sec 'z=cos ! (l) =—ilog| ———
z z

1
cot'z=tan! (—
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21.8 Engineering Mathematics

Complex inverse hyperbolic functions are defined by the following:
cosh™ z=log(z +/z° - 1), sinh ' z = log(z + 2> +1)

1
tanh™ z =llog[i) z#+l1
2 1-z

i T
cosech 'z = sinh ™ [—j =log
z

21.4 O LIMIT OF A FUNCTION

A function f(z) is said to have the limit ‘0" as z approaches a point ‘a’, written
lim f(z)=b, if fis defined in a neighborhood of “a’ (except perhaps at ‘a” itself) and if
z—a

the values of f are close to ‘b’ for all z close to ‘a’, i.e., the number b is called the limit
of the function f(z) as z — a4, if the absolute value of the difference f(z) — b remains
less than any preassigned positive number € every time the absolute value of the
difference z — a for z # g, is less than some positive number 6 (dependent on €).

More briefly, the number b is the limit of the function f(z) as z — g, if the absolute
value |f(z) - bl is arbitrarily small when |z - al is sufficiently small.

21.5 O DERIVATIVE

A function f(z) is said to be differentiable at a point z = z, if the limit
lim fzo+A2) - f(2))
Az—0 Az

point z = z, and is denoted by f”(z).
If we write z =z + Az then

exists. This limit is then called the derivative of f(z) at the

f’(zo) — hm f(Z)_f(ZO)

z>2z, Z=2z,

21.6 O ANALYTIC FUNCTIONS

A function defined at a point z; is said to be analytic at z, if it has a derivative at z,
and at every point in some neighborhood of z. It is said to be analytic in a region R, if
itis analytic at every point of R. Analytic functions are otherwise named holomorphic
or regular functions.

A point at which a function f(z) is not analytic is called a singular point or
singularity of f(z).
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Complex Numbers 21.9

21.7 O CAUCHY-RIEMANN EQUATIONS

The necessary condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

ou Jdu dv v
point z =x + iy of a domain R is that the partial derivatives — and — must

ox 8 "ox dy
exist and satisfy the Cauchy-Riemann equations, namely,

qu _ av Ju_ dv
ox ay ay Cox
The sufficient condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

point z =x + iy of a domain R is that the four partial derivatives u,, u,, v, and v, exist,
are continuous and satisfy the Cauchy-Riemann equations u, =v, and u, =-v, at each

point of R.
> Note
(i) The two partial differential equations du_dv and Ju__ % are called
Jox dy dy  ox
the Cauchy-Riemann equations and they may be written as u, = v, and u,
= _vx
(ii) The Cauchy—Riemann equations are referred as C-R equations
ou _19dv dv _ 1du
iii) C-R tions i lar f —=——and —=——.
(iii) equations in polar form are > 7938 an > pEY:

21.8 O HARMONIC FUNCTION

A real function of two variables x and y that possesses continuous second-order
partial derivatives and satisfies the Laplace equation is called a harmonic function.

If u and v are harmonic functions such that u + iv is analytic then each is called the
conjugate harmonic function of the other.

> Note
? 9
(i) FY EE = is called the Laplacian operator and is denoted by V2.
bt Yy
7 o
(if) PY +— =0 is known as Laplace equation in two dimensions.
X~ dy

21.9 O PROPERTIES OF ANALYTIC FUNCTIONS

Property 1

The real and imaginary parts of an analytic function f(z) = u + iv satisfy the Laplace
equation in two dimensions.

e Proof
Since f(z) = u + iv is an analytic function, it satisfies C-R equations,
du _dv

ie., —=— and 21.1
ie ox oy an (21.1)
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21.10 Engineering Mathematics
du__ov (21.2)
dy  ox
Differentiating both sides of (21.1) partially with respect to x, we get
u _ 9%v
— = 21.3
x> Oxdy (21.3)
Differentiating both sides of (21.2) partially with respect to y, we get
2. 32
Ju_dv (21.4)
dy dyox
By adding (21.3) and (21.4), we get
2 2 2 2
8_121 + a_u =0 (since v = a—v, when they are continuous)
ox* oy’ dxdy  Jdyox

= u satisfies Laplace equation.
Now differentiating both sides of (21.1) partially with respect to y, we get

2 2
ou _9Jw (21.5)
oxdy  Jy?
Differentiating both sides of (21.2) partially with respect to x we get
o’u o*v
=—— 21.6
dyox x> (21.6)

Subtracting (21.5) and (21.6),

Pu_ du_oo o

oxdy dyox gy’  ox’
P v _
o oy’

.. v satisfies Laplace equation.

Hence, if f(z) is analytic then both real and imaginary parts satisfy Laplace’s equation.

0

ie.,

> Note

If f(z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are
any two harmonic functions then f(z) = u + iv need not be analytic.

Property 2

If f(z) = u + iv is an analytic function then the curves of the family u(x, y) = C; cut
orthogonally the curves of the family v(x, y) = C, where C; and C, are constants.

e Proof

Given u(x, y) =C,
Taking differentials on both sides, we get

du=0

ou Jou
ie., —dx+—dy=0
ie o X oy y
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5]
Cdy_ \ox
“dx (ou

%)

From the second curve v(x, y) = C,, we get dy =—

=m, (say), where m, is the slope of the curve u(x, y) = C; at (x, y)

(o)

=m,, where m, is the slope

of the curve v(x, y) = C, at (x, y). x (gvj
Y
5) (5]
NOVV, mlmz = a_x . ax
EANED
dy ) \ 9y

] ()

= _(al) . 5
ox/) | dy
= mym, =-1

Hence, the curves cut each other orthogonally.
Here, the two families are said to be orthogonal trajectories of each other.

(as f(z) is analytic, it satisfies C-R equation)

21.10 O CONSTRUCTION OF ANALYTIC FUNCTIONS
(MILNE-THOMSON METHOD)

To find f(z) when u is given

Ju .dv
We k that f'(z)=—+i—.
e know that f’(z) o +1ax
ie F)=2%_i% By CR equations) (21.7)
o ox  dy Y 1 ’
du(x, y)
Let oy =¢,(x, y) and then calculate ¢;(z, 0) (21.8)
ou(x, y)
and 3y =¢,(x, y) and then calculate ¢,(z, 0) (21.9)

Substituting (21.8) and (21.9) in (21.7), we get

f'(2) = ¢1(z, 0) - igs(z, 0)
Integrating, we get [f1(z)dz = [¢,(z, 0)dz — i [$,(z, 0)dz
ie., f(z) =10,(z, 0)dz — il (2, 0)dz.

To find f(z) when v is given

We know that f'(z) = g_u + ia—
X X
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21.12 Engineering Mathematics
ov .dv
=—4+i— 21.10
ay o ox ( )
Let W& Y) _ 4 (2, 0) @1.11)
Jy
and Bv(ax, Y _ (2,0 (21.12)
x

Substituting (21.11) and (21.12) in (21.10), we get

f'(2) = ¢1(z, 0) +igy(z, 0)
Integrating, we get [f"(z)dz = |¢,(z, 0)dz + i[¢,(z, 0)dz

ie., f(2) =10,(z, 0)dz + il (2, 0)dz

21.11 QO APPLICATIONS

Irrotational Flows

A flow in which the fluid particles do not rotate about their own axes while flowing
is said to be irrotational.
Let there be an irrotational motion so that the velocity potential ¢ exists such that

-3¢ —0¢
299 ,_9¢ 21.13
T ay ( )

In two-dimensional flow, the stream function y always exists such that

-y oy
W Y 21.14
! dy O o ( )
From (21.13) and (21.14), we have
99 _oy 499 _—oy (21.15)

ox 9y dy  ox

which are the well-known Cauchy-Riemann equations. Hence, ¢ + iy is an analytic
function of z = x + iyy. Moreover, ¢ and y are known as conjugate functions.
On multiplying and rewriting, (21.15) gives

99y 99 dy _, (21.16)
ox dx dy 9y
showing that the families of curves given by ¢ = constant and y = constant intersect
orthogonally. Thus, the curves of equi-velocity potential and the stream lines intersect

orthogonally.
Differentiating the equation given in (21.15) with respect to x and y respectively, we

%y 4 3’9 -y

90 99 _ , 21.17
8 a2 oxdy an oy*>  Ixdy ( )
Since Iy :82_1// (21.17) gives
oxdy odyox 8
2 2
99,99 (21.18)

ox* oy’ -
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Again differentiating Eq. (21.15) with respect to y and x respectively, we get

2 2 2 2
979 =B_l/land 0°¢ =—a|//
dyox oy’ oxdy  ox?

2 2
Subtracting these, v + v =0 (21.19)
8 o ay?

Equations (21.18) and (21.19) show that ¢ and y satisfy Laplace’s equation when a
two-dimensional irrotational motion is considered.
Complex Potential

Let w = ¢ + iy be taken as a function of x + iy
Thus, suppose that w = f(z)

ie. o+ iy=fix=iy) (21.20)
Differentiating (21.20) with respect to x and y respectively, we get
90 iV _ ity
ox  ox (21.21)
and 90 i i e tiy)
dy 9y
or 9 ;0 _ i(a—"’ + ’a—"’] by (21.22)
ady  dy ox  ox

Equating real and imaginary parts, we get

99 _ OV a0 _ 0V
ox 9y dy  ox

which are C-R equations. Then w is an analytic function of z and w is known as the
complex potential.

Conversely, if w is an analytic function of z then its real part is the velocity potential
and imaginary part is the stream function of an irrotational two-dimensional motion.
The curves ¢(x, y) = a and y(x, y) = b are called equipotential lines and stream lines
respectively.

In the study of electrostatics and gravitational fields, the curves ¢(x, y) = a and
y(x, y) = b are respectively called equipotential lines and lines of force.

In heat-flow problems, the curves ¢(x, y) =a and y(x, y) = b are respectively called
isothermals and heat-flow lines.

SOLVED EXAMPLES

1ENI NI Prove that the function f(z) = |z12 is differentiable only at the origin.

Solution Given f(z) = 1z12

ie., u+iv=lx+iy? =[Jx*+y* P (asz=x+1iy and f(z) = u + iv)

:x2+y2
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21.14 Engineering Mathematics
= u=x>+1y?

B_M =2x, 8_14 =2y

ox dy

v=0

w0y,

ox dy
If f(z) is differentiable then

u_d

ox dy
= 2x=0 = x=0
Also, ou = %

dy  ox
= 2y=0 = y=0
. C-R equations are satisfied only whenx =0, y=0
Hence, f(z) = |z1? is differentiable only at the origin (0, 0). Proved.

IDeiny (WA Prove that the function f(z) = zz is not analytic except at z=0.

Solution Given f(z) = zz

ie., u+iv=(x+iy)(x —iy)
u+iv=x>+y

Equating real and imaginary parts.

u=x*+1?
ou Ju
S, Z o2
- ox xay 4
v=0
v v
= —=0,—=0
ox ay

a—uia—vanda—u;t %
dx  dy dy  ox

= C-R equations are not satisfied
. flz) = zz is not analytic except at z=0. Proved.

|DEiy (M Show that (i) an analytic function with a constant real part is a
constant, and (ii) an analytic function with a constant modulus is also a constant.
[KU Nov. 2010, April 2012; AU Nov. 2010, Nov. 2011]

Solution Let f(z) = u + iv be an analytic function.
(i) Letu =C; (a constant)

u ou
Then —=u_=0 and —=u_=0.
ox gy Y
Since f(z) is an analytic function, by C-R equations u, = v, and u, = -0,
= v,=0and v, =0.
Aswv,=0and v, =0, v must be independent of x and y and must be a constant C,.

-~ flz) =u+iv=_C; +iC, which is a constant.
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(if) Let f{z) = u + iv be an analytic function.

Given | f(z)l=+/u*+v* =k (a constant)

Differentiating partially with respect to x and y, we get
ou v

2u—+2v—=0
”ax+ Uax

and 2ua—u+2vﬁ=0
dy  dy

Since f(z) is an analytic function, it satisfies C-R equations.
.. the above two equations may be written as,

Ju ou

90

P ay
and va—u + ua—u =0

ox  dy
. Ju ou
By solving, we get = =u,=0 and @ =u,= 0.
By C-R equations, it implies that B_v =v.=0 and B_v_ v =0
y q 4 p ax X ay Y :

Thus, f(z) = u + iv is a constant. Proved.

2 2

IDen (W [ff(z)isaregularfunctionofz, provethat [aa_z + :—z]l fz)P=41f"(2)*.
x Yy
[AU May 2006, KU Now. 2011, KU April 2013]

Solution Let f(z) = u(x, y) + iv(x, y)
Then If(z)1?=u?+v*and If’(z)1% = u§+v§

To prove i+i (u? +0?) = 4@ + v%)
p axZ ayZ X X
2
Now, %(u2)=2uux and ;?(u2)=%(2uux)

=2[uny +u ] =2un,, + ui ]
2

Similarly, ;7012) = 2[uuw + u;]

? P
—5 = ()= 2ufu 1+ 2]+ 0]

ox* oy’
=20’ + u;] (since u,, + u,, =0) 1)
2
Again, a—z(vz) =2[vo,, + vi]
ox
’ 5 2
and a—yz(v )=2[vvw+vy]
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21.16 Engineering Mathematics
9 9’ 2 2, .2
[y +W (v°)=20(v,, + ‘UW) +2(v; + vy)

=2(v3 + U;) (since v,, +0,, =0) )
Adding (1) and (2), we get

? 9
+— (u2+vz)=2[u§+u§+vz+v§]

oy
=20 + 0+ 02 + ] (by using C-R equations) = 4[u; +v2].
Hence i + 9 I f(z)P=41f"(z)” Proved
’ ox* oy’ i
9
IDEH N Show that if f(z) is a regular function of z then W + 37 loglf(z)!
x Yy
=0. [AU May 2012]

Solution Loglf(z)l= %log If(z)l2 = % log (12 +0?)

9 1
gloglf(z)l—ali

2uu, +20-0, _ Ul + 00,
u*+v? w?+ 02

(* + 02)(uuxx + ui + 00, + vi) = (uu, +vv,)(2uu, +20v,)

aZ
yloglf(z)lz

W*+0%)?
_ 1! 00, 4124 0]~ (uu+ 00, 1
_u2+vz[uux v, Fu;+0o;] (u2+v2)2(uux vv,) (1)
Similarly,
0* 1 2, 2 2 2
Wloglf(z)l= B [uuw+vvyy+uy+vy]—m(uuy+vvy) (2)

2 2

Adding (1) and (2), we get — 8_2+8_2 loglf(z)l
ox~  dy

_2
(u2 + 02)2

2

1
= 1y [u(u,, + uW) +0(v,,+ v

2, 2, 2, 2
W)+ux+vx+uy+z;y]

[(uu, +vv,)* + (uu, + vvy)z]
= ﬁ[z(%ﬁ + U,Zc)] - ﬁ[(uux +vo, )2+ (~uv, + vux)z]
_2wi+0d)

u?+ 02 W +v

2,2, .2 2,2, 2
2)2 [u(u + ) + 07 (u; + ;)]
_20p+0y) 2P+ 0%+ 0p)

u? + v? (u2 + 02)2

=0 Proved.
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|DEy I Show that the function u= 1 log(x* +
its conjugate. Also find f(z). 2

Solution Given u= % log(x? + )

21.17

?) is harmonic and determine
[KU May 2010, KU April 2013]

Qu__x . ou__y
o x2+y? oy KP4yt
82_u (Pry?)-22r AP 82 (x +y) -2y -y’
0w (PP @rP (PP @y
82_u+82_u_ Y222 . 2P _yz—x +x2 -y o
axz ayZ (x2+y2)2 (x2+y2)2 (x2+y2)2
Hence, u satisfies Laplace’s equation.
. u is harmonic.
To find conjugate of u
9 a9
We know that do=""dx —Udy
ox dy
—ou ou
=——dx+—d
y Y
—y x
= dx + d
e e y
_xdy-ydx  xdy-ydx 1
T2 2 2
( y9) 1+ (1)
x
1 Yy
)
1+ (1)
x
J‘d _J‘ d(y/x)
1+ (y/x)?
ie., v=tan™ (1)
x
.. the required analytic function is f(z) = u + iv
=%log (*+y*)+itan™ (%)
ie, flz)=log z Ans.

If u(x, y) = e"(x cos y — y sin y), find f(z) so that f(z) is analytic.

Solution Given u =¢*(x cos y —y sin y)

d
hlxy)=5-

¢,(z,0)=ze* +¢*

EM_UnitIX_21.indd 17

=cos y(xe* +e*) — y sin ye*

)

8/23/2017 4:13:44 PM



21.18 Engineering Mathematics

0,(x, ) =B_u= —xe*sin y —e*(sin y + y cos y)

$,(2,0)= 0 )
By Milne-Thomson method,
f'(2) = ¢:1(z, 0) = igy(z, 0)
=zef+e"+0
=eé¥(z+1)
f(z) =le*(z + 1)dz
=ze—e*+e"+C
ie., flz)=ze*+C Ans.

sin 2x

Example 8 Find the analytic function f(z) =u + iv given that u + v = ——————.
cosh 2y — cos 2x

[AU May 2006]
Solution Given u +iv=£(z) 1)
iu—-v=1if(z) 2)

Addmg (1) and (2), we get

(u—v) +i(u+0)=(1+0f(z)
Letu—-v=1U,
u+v=V and F(z)=(1+1i)f(z)
dV _ (cos h2y—cos2x)2 cos2x —sin 2x -2 sin 2x

ox (cosh 2y — cos 2x)>

0,00, ) = 2

_ 2cos 2x cosh 2y — 2(cos? 2x + sin” 2x)

(cos h2y — cos 2x)?
_ 2cos2xcosh2y -2

(COS h2y — cos 2x)*

—sin 2x(2sin h2
b (x,y)= 2= S 2X2In12))
9y (cosh2y —cos2x)
_ —2sinh 2y sin 2x

(cos h2y — cos 2x)?
By Milne-Thomson method, we have

F'(z)= ¢1(Zr 0)+ i¢2(zr 0)

2(cos2z-1
¢,(z,0) =(—2)
(1-cos 2z)
¢,(z,0)=0
and F(z)= 2(cos 2z-1)
(1 cos 2z)
B -2 iy -1
" 1-cos2z 1-cos2z
2
=i __2 =—i cosec’z
sin”z
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f(2)= —#jcoseczz dz
i

i+ 1
ie., f(2)= chot z+C Ans.

[2EI A Find the analytic function fz) =u + v if u+v=— al > and f(1)=1.
X +y

[AU Nov. 2010]

Solution Given u + iv = f(z) (1)
iu—-v=if(z) 2
Adding (1) and (2), we get
(u—0)+i(u+v)=(1+i)f(z)

ie., U+iV=F(z) 3)
where U=u—v,V=u+v=%,F(z)=(1+i)f(z) 4)
X4y

x
V=
2+
_oV _ 2wy
¢ (x, y)= y (x2+y2)2
¢I(Z/ O):O (5)
_a_v_ yZ_XZ
¢, (x, y) = x (x2+y2)2
—z? 1
/0 =0 ="
N (6)

By Milne’s method, we have
F'(z)=¢,(z,0) +i¢,(z,0)

Co-id
z

F(z)z—ijzizdz

e

F(z)= é +C @)

But F(z) = (1 +1) f(z) [from (4) and (8)]
From (7) and (8), we get

(1+i)f(z)=§+C

i C
f@=Can 1+
=&+Cl,wherecl=i,
A+)(1-i)z 1+
1+i
=—+C
f(2) 22 1
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21.20 Engineering Mathematics

Givenf(1)=1

ie., f(1)=%+C1=1
= Clzl_w
2
1-i
)
e Ans.
z
? 0*
Show that | ~—+—— [=4=—. [AU Nov. 2010]
ax°  dy 020z
Solution
Let z=x+1iy 1)
zZ =x-1iy )
From (1) and (2), we get
x_z+E —Z_E—_—i(z—f)
"2 VT T
ox 1 ox 1
N 7 — =T, ===
o dz 2 09z 2
y _-ioy i
9z 20z 2
d ddx 0 9y
Now, =t 3
ow oz axaz+ay oz ©)
_1fo ;9
2{ox oy
9 _0 ox 9ddy
dz dx dz dydz @)
2{ox dy
o __1@ &
8285_4 I ayz
2 2 2
= 8_2+8_2 =4 8_ Proved.
ox ay 020z

2 2
If f(z) = u + iv is analytic, prove that [;—2 + aa—z] loglf’(z)1 =0.
x
Y [AU Nov. 2010]

. 9° 0 9?
Solution We know that | —+— |=4——
ox? ayz 0z0z
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g 020z

9 0?
[ +$Jlog|f’(z)|=4 3 log | f'(2)!

91 .
=4 = -Elog L f ()l
92 , ,—
= Zazaz log[ f'(2) f'(2)]
09? _
=2-"—[log f'(2) +log f'2)]
oz f2) Proved.

Example 12 [RIFTESSRSVEE Y RIS 5 Y >, prove that both u and v satisfy Laplace’s
x

ty
equation but that u + iv is not a regular function of z. [KU Nov. 2011]
Solution Given u = x> —
u o%u du o%u
Then gzux:Zx;87:uxx=2;$=uy=—2y;a—2=uw=—2
ox* oy’
i.e., u satisfies Laplace’s equation.
Yy
v=-—
P
2, 2N o pea 2 2y
Then 8_020: 2xy P (X" +y7) —x-2(x"+y°)-2x
PRI 2+
_2y(y* - 3x%)
(*+y%)°
a_v_v _ (x2+y2).1_2y2 _ yz_xz
G (@ +y*) (@ +y?)?
9% (@ +y")* 2y - (y? - x")2(x* + y*)2y
52 Yy 2 2\
%y (+y7)
_ 2y’ -y
(o +y?)>
2 2
9_2 N B_Z 0
ox~  dy
i.e., v satisfies Laplace’s equation.
Now, u, # v, and u, # -0,
i.e,, C-R equations are not satisfied by u and .
Hence, u + iv is not an analytic (regular) function of z. Ans.
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PEVNIENEN Show that the function u(x, y) = 3x% + x* — y° — * is a harmonic
function. Find a function v(x, y) such that u + v is an analytic function.

[AU June 2010]

Solution Let f(z) = u + iv be an analytic function with u(x, y) = 3x*y + x> — > — 2

B_M %u

Then o =ux=6xy+2x;§=um=6y+2;
ou 2 2 . azu
$:”y23x -3y —Zy,ay—zzuw:—6y—2
2 2
. 8_1; + 8_124 =0, hence, u(x, y) is a harmonic function.
ox~  dy
dv v —ou du
dv=$~dx+$~dy:$dx+gdy=—uydx+uxdy
- dv=(=3x>+2y +3y?)dx + (6xy + 2x)dy where the RHS is a perfect differential equation.
u ou
dv=—|—dx+ | —d
¢ dy Tl

=—[(8x% - 3y* - 2y)dx + [ (6xy + 2x)dy

v=CBxy*+2xy - x>+ C
flz)=u +iv=3x2y+x2—y3—y2+i(3xy2+2xy—x3+C)
= —i[x® + 3x%(iy) + Bxi*y? + Py°] + [ + 2xiy + iPy*] + iC
=[x +iy]® + [x + iy]* + iC
flz) =iz + 22 +iC Ans.

EXERCISE

. Define analytic function of a complex variable.

. State any two properties of an analytic function.

Define a harmonic function with an example.

. Verify whether the function ¢(x, y) = ¢* sin y is harmonic or not.

. Find the constant ‘a’ so that u(x, y) = ax> — y* + xy is harmonic.

Is f(z) = z° analytic? Justify.

What do you mean by a conjugate harmonic function? Find the conjugate
harmonic of x.

. Show that an analytic function with a constant real part is constant.

9. Write down the necessary condition for w = f(z) = f(re'%) to be analytic.

N OO W=

[og)

10. Show that the function u =tan™! (l) is harmonic.
X

11. Show that xy* cannot be the real part of an analytic function.
12. f(z) = u +iv is such that u and v are harmonic. Is f(z) analytic always? Justify.
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13.
14.
15.

16.
17.

18.
19.

20.

Complex Numbers 21.23

State C-R equations in Cartesian coordinates.

Prove that u = 3x%y + 2x* — > — 2* is a harmonic function.

Show that the function f(z) = (x* — 3xy?) + i(3x%y — °) satisfies Cauchy-Riemann
equations.

Show that the real part u of an analytic function satisfies the equation V2u = 0.

N .
Check whether the function — is analytic or not.
z

Test the analyticity of the function 2xy + i(x* - y?).

State the basic difference between the limit of a function of a real variable and

that of a complex variable.

Find the analytic function f(z) = u + iv, given that (i) u = > — x%, (ii) v = sin hx sin y,
X

Pyt

and (iii) u=

1.

W

Prove that the following functions are not differentiable (and, hence, not
analytic) at the origin.

Yyy-i)
Q) =1 O+y?

0, z=0

xyz(x+iy) 2 %0
(i) f(2)=9 x*+y> '

0, z=0

Prove that for the following function, C-R equations are satisfied at the origin
but f(z) is not analytic there.

3 N3
1A+ -y’ (1 1){27&

0
fz)= Pyt
0, z=0
. Show that f(z) =sin z is not an analytic function of z.
. Find whether the Cauchy-Riemann equations are satisfied for the following
functions where w = f(z).
(i) w=2xy+i(x*-y?) (Ans. No)
(i) w= J;_ lyz (Ans. No)
x“+y
(iil) w=x*—y*-2xy +i(x* - y* + 2xy) (Ans. Yes)
(iv) w=cos x sin hy (Ans. Yes)
(v) w=2z%-27? (Ans. Yes)
. Show that an analytic function with a constant imaginary part is constant.
. Show that u+iv= xf—zy, where a #0, is not an analytic function of z = x + iy
x—iy+a

whereas u — iv is such a function.
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7. Find an analytic function w = u + iv whose real part is given by

() u=e{(x*—y? cosy +2xy sin y} [Ans. e™(x — iy)* (cos y — i sin y]
(i) u=—— (Ans.l+C)
X +y z
(i) u=e*(x cosy—ysiny) (Ans. z¢* + C)
(iv) u=x*-6x%>+y* (Ans. z*+ Q)
(v) u=-sinx sin hy (Ans. —i cos z +iC)
8. Find an analytic function w = u + iv whose imaginary part is given by
(i) v=e€*(x cosy+ysiny) (Ans. ize* + C)
(if) v=-2sinx(e¥-e7) (Ans.log z+C)
_ sinxsinhy 1+secz
(i o= cos 2x + cos h2y (Ans. T
(iv) v=x?—y*+2xy-3x -2y [Ans. 2% - 2z + i(z% - 32)]
(v) v=x>=3x%+2x+1+y°-3x° [Ans. (i—1)z° + 2z + C]
9. Show that the following functions are harmonic and find their harmonic
conjugates.
(i) u=cosx coshy (Ans. —sin x sin iy + C)
(if) u=e"(cosy—siny) (Ans. Not harmonic)
(iii) u=e>(y cosy—xsiny) (Ans. ¢*(x cos y +y sin y) + C)
(iv) u=e‘cosy (Ans. ¢*siny + C)
(v) u=2xy+3xy*-2y° (Ans. Not harmonic)
v . .
10. Find flz)=u+1v,if u—v =M, given that f(ﬁ) _3°1 .
cos hy —cos x 2 2

{AnS- = cor( 2+ (%ﬂ

11. Find f(z) = u + iv if 2u — 3v = 3y* - 2xy — 3x* + 3y — x and f(0) = 0.
(Ans. f(z) = iz* ~ 2)

82 82
12. If f(z) = u + iv is a regular function of z, then show that (a—z'*‘a—zj'f(z)'p:
x Y
PRI @)P.

13 If u 2sin 2x

T 2y , find f(z) such that f(z) is analytic.
¢ire-2cosax (Ans. f(z)=cotz + ()

X
2 2

X"ty

incompressible fluid flow. Also find the corresponding stream function and

14. Show that ¢=x"—y*+ can represent the velocity potential in an

1 .
complex potential. Ans.y =2xy— xzfyz +C; f(2)= 22+ ;+ iC
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Conformal Mapping

fChapter Outline

Infroduction

Conformal Transformation

Conformal Mapping by Elementary Transformations
Some Standard Transformations

Bilinear Transformation

22.1 QO INTRODUCTION

Many physical problems involving ideal fluid flow, steady-state heat flow,
electrostatics, magnetism, current flow etc., can be solved using conformal mapping
techniques. These problems generally involve Laplacian in three-dimensional
coordinates and also divergence and are of three-dimensional vector functions.

Geometrical Representation

To draw the curve of a complex variable (x, iy), we take two axes, i.e., the first one is
the real axis and the other is the imaginary axis. A number of points (x, y) are plotted
on the z-plane, by taking different values of z (different values of x and y). The curve
C is drawn by joining the plotted points. The diagram obtained is called an Argand
diagram.
Letw=f(z) =f(x +iy)=u +iv.

To draw a curve of w, we take the u-axis and v-axis. By plotting different points
(1, v) on the w-plane and joining them, we get a curve C on the w-plane.

Transformation

For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding
point (1, v) in the w-plane. We call this transformation or mapping of z-plane into
w-plane. If a point z; maps into the point w,, w, is also known as the image of z,.
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222 Engineering Mathematics

If the point P(x, y) moves along the curve C in the z-plane, the point P’(u, v) will
move along a corresponding curve C; in the w-plane. We then say that a curve C in
the z-plane is mapped into the corresponding curve C; in the w-plane by the relation

w = f(z).
YA VA
C2 C2*
14 Y *
o G Wo ¢
> X > 1y
z-plane w-plane

Fig. 22.1

22.2 O CONFORMAL TRANSFORMATION (OR CONFORMAL MAPPING)

A mapping w = f(z) is said to be conformal if the angle between any two smooth
curves C;, G, in the z-plane intersecting at the point z; is equal in magnitude and sense

to the angle between their images CI , C; in the w-plane at the point w, = f(z).

Thus, conformal mapping preserves angles both in magnitude and sense (which
is also known as conformal mapping of the first kind). If only the magnitude of the
angle is preserved, then the mapping is known as isogonal mapping (or conformal
mapping of the second kind).

Conformal mapping is used to map complicated regions conformally onto
simpler, standard regions such as circular disks, half-planes and strips for which the
boundary-value problems are easier.

Given two mutually orthogonal one-parameter family of curves, say ¢(x, y) =
C; and ¢(x, y) = C,. Their image curves in the w-plane ¢(u, v) = C; and ¢(u, v) = C,
under a conformal mapping are also mutually orthogonal. Thus, conformal mapping
preserves the property of mutual orthogonality of a system of curves in the plane.

> Note

(i) Critical point of a function w = f(z) is a point z,, where f’(z;) # 0.
(if) A mapping w = f(z) is conformal at each point z, where f(z) is analytic and

f(z9)#0

(iii) An analytic function f(z) is conformal everywhere except at its critical points
where f’(z) #0.

(iv) Solutions of Laplace’s equation are invariant under conformal
transformation.

(v) Conjugate functions remain conjugate functions after conformal
transformation. This is the main reason for the great importance of
conformal transformations in applications.
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22.3 O CONFORMAL MAPPING BY ELEMENTARY TRANSFORMATIONS

General linear transformation, or simply transformation, is defined by the function

w=fz)=az+b (22.1)
where a#0 and b are arbitrary complex constants. The function maps conformally the
extended complex z-plane onto the extended w-plane, since this function is analytic
and f’(z) =a #0 for any z. If 1= 0 (22.1) reduces to a constant function.

22.4 O SOME STANDARD TRANSFORMATIONS

Translation

The transformation w = z + ¢, where c is a complex constant, represents a translation.
Consider the transformation w = z + ¢, where ¢ = a + ib.

ie., u+iv=(x+iy)+ (a+ib)
= u=x+a and v=y+b
ie., x=u-a and y=v-Db

On substituting the values of x and y in the equation of the curve to be transformed,
we get the equation of the image in the w-plane.

The point P(x, y) in the z-plane is mapped onto the point P'(x + a, y + b) in the
w-plane. Similarly, other points of the z-plane are mapped onto the w-plane. Thus, if
the w-plane is superposed on the z-plane, the figure of the w-plane is shifted through

a vector c.
In other words, the transformation is a mere translation of the axes.
YA VA
D’ C’
D C D C
i i VE B
A B A B
> X > U
(0] (0]
z-plane w-plane
Fig. 22.2
Magnification and Rotation
Consider the transformation w = cz (22.2)
where ¢, z, w are all complex numbers.
Let z = r¢'®, w =Re', ¢ = ae'®
Substituting these values in (22.2), we have
Re™ = (ae™)(re'® = ar 0+ @
ie., R=ar and ¢=0+«
Thus, we see that the transformation w = cz corresponds to a rotation together with
magnification.

Algebraically, w=cz or u+iv=(a+ib)(x+iy)
u+iv=ax — by + i(ay + bx)
= u=ax-by and v=ay+bx.
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On solving these equations, we can get the values of x and y.

e x_au+bvl _ —bu+av
o u2+b21y >+ b2
YA
D C
A B
> X
(0]
z-plane
Fig. 22.3

VA

D/

A C
Dr""'.C
I
A B

> u
0
w-plane

On putting the values of x and y in the equation of the curve to be transformed, we

get the equation of the image.

Inversion and Reflection

. . 1
Consider the transformation w=—
z

z=re and w=Re?
Substituting these values in (22.3), we get

i 1 1

i _ -
Re =—0=—¢
re r

0

= R=1 and ¢=-6
r

Thus, the point P(r, ) in the z-plane is
mapped onto the point P'(l, —6] in the
r

w-plane. Hence, the transformation is an
inversion of z followed by reflection into
the real axis. The points inside the unit
circle IzI = 1 map onto points outside
it, and points outside the unit circle into
points inside it.

. . 1
Now consider the transformation w=—orz=—.

Z

ie. x+iy= -
’ u+iv

u—1iv

[KU April 2012]

(22.3)

Fig.22.4

1
w

u—iv

+1iy

Cwtin)u-iv)  u+0?

~N =

Y
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oM Y= -0
W02 w4 0P
Let the circle a(x* +y*) + bx +cy +d =0 (22.4)

be in the z-plane.
If a # 0, (22.4) represents a circle and if a = 0, it represents a straight line.
On substituting the values of x and y in (22.4), we get
a bu cv
+ - +d=0
ot ot P+ o?
= dw?+v*) +bu—-co+a=0 (22.5)
If d # 0 Eq. (22.5) represents a circle and if d = 0 it represents a straight line.
The various cases are discussed as follows:

® Whena=0,d=0

. 1 . . L
The transformation w=— transforms circles not passing through the origin into
z

circles not passing through the origin.

® Whena=0,d=0

. 1 . . L.
The transformation w =— transforms circles passing through the origin in the z-plane
z

and maps into the straight lines not passing through the origin in the w-plane.

® When a=0,d-0

. 1 . o .
The transformation w =— transforms straight lines in the z-plane not passing through
z

the origin into circles through the origin in the w-plane.
e When a=0,d=0

. 1 . . L.
The transformation w =— transforms straight lines through the origin in the z-plane

z
into straight lines through the origin in the w-plane.

22.5 0O BILINEAR TRANSFORMATION (OR MOBIUS

TRANSFORMATION)
. az+b
The transformation w = f(z)=—— (22.8)
cz+d
where g, b, ¢, d are complex or real constants subject to ad — bc # 0 is known as bilinear
transformation.

Differentiating (22.8), we get
dw _(cz+d)a—(az+Db)c

dz (cz +d)?
_ad-bc
(cz+d)*
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22.6 Engineering Mathematics

If ad — bc #0 then lZl_w #0 for any z and, therefore, bilinear transformation is conformal
Z

for all z, i.e., it maps the z-plane conformally onto the w-plane

If ad — bc = 0 then lz—w =0 for any z. Then every point of the z-plane is critical and
z

the function is not conformal.
From (22.8), we get w(cz+d)=az +b,
ie., cwz+dw-az-b=0 (22.9)
Equation (22.9)islinearinzand linearin w or bilinear in zand w. Bilinear transformation
is also known as linear fractional transformation or Mobius transformation.
For a choice of the constants 4, b, ¢, d, we get special cases of bilinear transformation
as
(i) w=z+b (Translation)
(i) w = az (Rotation)
(iii) w =az + b (Linear transformation)

. 1 L o
(iv) w=— (Inversion in the unit circle)
z

Thus, bilinear transformation can be considered as a combination of these
transformations.

Fixed Points (or Invariant Points)

Fixed (or invariant) points of a function w = f(z) are points which are mapped onto
themselves, i.e., w=f(z) = z.

o Example
w = z has every point as a fixed point.
w =z infinitely many.
1
w =— has two.
z

w =z + b has no fixed point.
az+b

=z
cz+d

. . s . az+b .
The fixed points of the bilinear transformation w = 7 are given by
cz+

As this is quadratic in z, we will get two fixed points for the bilinear transformation.

Cross-ratio

The cross-ratio, or anharmonic ratio, of four numbers z;, z,, z3, z, is the linear function
. Z,— 2,2, — 2

given by (E=5)(z5-2)

(21— 24)(23— 2,)

> Note

(i) The cross-ratio of four points is invariant under a bilinear transformation,
i.e., if w;, w,, w;, w, are the images of z;, z,, z3, z, respectively under a bilinear

W, — W, )(Wa— W Z,— 2.2, — 2
transformation, then (@, — w,)(w, 4)=( 1= %)z 4).

(w, —wy)(wy—w,)  (2,—23)(2,— 24)
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Conformal Mapping 22.7

(if) The bilinear transformation that maps three =~ —>—_ —
given points z,, z;, z, onto three given points Wi Wy, W3 Wy
w,, w3, W, is given by

—
(w—w W w,—w;)  (z— 2,02, — 23) \_y/

(w0, — w, )(w —w,) - (21— 2,)(z — 23) Fig.22.5

SOLVED EXAMPLES

1DEH NI Find the image of the circle |z| =2 by the transformation w =2z + 3 + 2i.

Solution Letz=x+iy,w=u+iv

Given w=z+3+2i

ie., u+iv=(x+iy)+ (3 +2i)

= u=x+3;v=y+2

Given the circle 1z| =2

ie., 2+ y2 =4

ie., (u-32%+@w-2)>%=4

Hence, the circle x* + 1> = 4 maps into (1 — 3)* + (v — 2)* = 4 in the w-plane which is also
a circle with centre at (3, 2) and radius of 2 units. Ans.

|Penny (PR Find the image of the triangular region in the z-plane bounded by the
lines x =0, y =0 and x + y = 1 under the transformation w = 2z. [KU May 2010]

Solution Given w =2z.1i.e., u +iv=2(x + iy)
u=2x and v=2
When x =0, u =0, the line x =0 is transformed into the line # =0 in the w-plane.
When y =0, v =0, the line y = 0 is transformed into the line v = 0 in the w-plane.
When x +y=1, we get
E + 2 — ]_
2 2
= u+tov=2
- the line x + y =1 is transformed into the line u + v =2 in the w-plane.

y Y
0,1 0,2)
x+y=1 utv=2
x=0 u=0
> X > U
o y=0 (1,0 o v=0 (2,0)
z Plane w Plane

Fig. 22.6
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|PEy A Find the image of the circle 1z—11 =1 in the complex plane under the

mapping w = l .
z

. . .. 1
Solution The given transformation is w=—
z

. 1
ie., z=—
w
The equation of the circleis l1z-11 =1
ie., lx+iy—11=1
x-1P%+12=1 = x¥*-2x+1*=0 (1)
Now, w=u+iv
1 1 wu-iv
w o u+iv yr+o?
X+i i
YR
u
x= 2)
u?+0?
-0
and = 3)
AR
Substituting (2) and (3) in (1), we get
u Y u v Y
-2 + =0
[u2+v2j (u2+sz [u2+vz]
ie., uw? = 2u(u®+ %) +v*=0
W2 +0v?)(1-2u)=0
= 1-2u=0 (since u* + v # 0)
i.e., 2u — 1 =0 which is a straight line in the w-plane. Hence, the circle 1z — 11 =1 is
mapped into a straight line under the transformation w = 1 . Ans.
z

1D Find the image of the infinite strips (i) i< y< % ; and (ii) O<y <%

under the transformation w = 1 . [KU April 2013]
z

Solution Letw=u+iv, z=x+iy.

Given w=l
z
ie., u+iv= — = J;_lyz
x+iy x*+y
. x
ie., U=——-: 1)
X"ty
v= 2_y 2 @)
X +y
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Conformal Mapping 22.9
Now, u_-x .
y
ie., =" 3)
v
Substituting (3) in (2), we get
2
- —v
T @y
2 Y
v
-0
or = (4)
Y
. . .1 1
(i) Considerastrip —<y<—.
4 2
When y= 1
Y=y
1 -0
From (4), —=
@ 4 uPvo?
ie., W+ +4v=0 or u’+(v+2)>=4.
which is a circle whose centre is at (0, —2) in the w-plane and radius is 2 units.
1
When y=—,
v 2
-0 1
From (4), =—
@ W+t 2
ie., W+ @w+1)2=1.

which is a circle whose centre is at (0, —1) in the w-plane and the radius is 1 unit.
o .1 1. . .

Hence, the infinite strip Z< y <E is transformed into the region common to

the circles u? + (v + 1)> = 1 and u? + (v + 2)* = 4 in the w-plane.

(ii) Consider a strip 0<y <% .

When y =0,
from (4), we get v=0.

1
When y—E,
from (4), we get l: -~
2 40P
ie., W+ +20=0
ie., W+ @+1)%2-1=0

which is a circle whose centre is at (0, 1) in the w-plane and radius is 1 unit.
- the infinite strip 0<y < 3 is mapped into the region outside the circle u? +

(v +1)* =1 in the lower half-plane. Ans.
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22.10 Engineering Mathematics
. . . . . 2z +4i
|DEy I Find the invariant points of the transformation w = —— .
iz +
. . . . . . 2z +4i
Solution The invariant points of the transformation are given by z=—-— 1
iz +

= iz’ +3z+4i=0
ie., z*-3iz+4=0
ie., (z—4i)(z+1i)=0
i.e, z=4i, -1 are the invariant points. Ans.

|Deny )M Find the image of 1z +2il =2 under the transformation w = 1 .

b4
[AU May 2010]
. . Lo 1
Solution The given transformation is w=—
z
. 1
ie., z=—
w
Given lz+2il =2
lx +iy +2il =2
ie., lx +i(y +2)1 =2
= X+ (y+2)° =4
ie., PP +4y=0 (1)
Now, w=u+iv
1 1 u-w
w o u+iv y+o?
ie Xty = io
o Y u* +v*
u
= xX= , )
u?+0?
-0
and = 3)
YT
Substituting (2) and (3) in (1), we get
u YV v Y -0
+ +4 =0
[u2+v2] (u2+v2J [u2+vzj
u’+ 02—4U(u2+ v*)=0
(12 +0%)(1-40)=0
= 1-4v=0 (as u® +v* #0)
which is a straight line in the w-plane. Ans.

1DE VAN Find the bilinear transformation that maps the points z; = —i, z, = 0,
zy =i into the points w; =-1, w, =i, w3 =1 respectively. [AU Oct. 2009, KU Nov. 2010]

EM_UnitIX_22.indd 10 @ 8/23/2017 4:16:07 PM
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Solution Let the bilinear transformation be

(w—wl)(wz—wS):(z—zl)(zz—ZS) )
(wy—wywy—w) (2, 2,)(23—2)
Givenz;=-1,2,=0,z3=0, w; =-1, wy, =1, w3 =1 )

Substituting (2) in (1), we get
(w+)(i-1) (z+i)(0-1i)
(-1-i)(1-w) B (-i-0)i-z)
(w+1) (-1(E-1) —(z+17)
(w-1)((+1)i-1) (z—1i)
w+1.—_2i_—(z+i)
w-1 =2 (z—i)

w+1l  i(z+1)

w-1 z-i

ie.,

ie.,

By componendo and dividendo,
W+ +w-1)  i(z+i)+(z—i)
(w+l)—(w-1) i(z+i)—(z—1)
2w _ z(1+i)—(1+i)
2 z(i-1)—(1-i)
C(1+i)(z-1)
S (i-1)(z+1)
_(+i(=i-1) (z-1)
T G-1(-i-1) (z+1)

-1
= w:—(z J Ans.
z+1

|DEy A Find the bilinear transformation which maps the points z; =-1, z, =0,
z5 =1 into the points w; = 0, w, =i, w; = 31 respectively.
[AU Nov. 2010, KU April 2012]

Solution Let the bilinear translation be

(w —wy)(w, - w,) _ (z—2)(zy— 25) )
(w,—wywy—w)  (z;—2,)(23—2)
Givenz,=-1,2,=0,2z3=1, w; =0, w, =1, w3 =3i )

Substituting (2) in (1), we get
(w-0)(i—3i) (z+1)(0-1)
(0-1)Bi-w) (-1-0)(1-2)
w(=2i) (z+1)
—i(Bi-w) 1-z

—2iw _ z+1
(w-3i)i |z-1

EM_UnitIX_22.indd 11 @ 8/23/2017 4:16:07 PM



22.12 Engineering Mathematics

. 2w z+1

ie., -=
w-3i z-1

2w(z —1)=(z + 1)(w — 3i)

=zw—3iz+w - 3i

= w[2(z-1) - (z+1)]=-3i(z+1)
or w=—3iM Ans.
z-3

|DEyIPA  Show that under the mapping w= :’ the image of the circle
i+z
x* =% <1 is the entire half of the w-plane to the right of the imaginary axis.
[AU Novw. 2011]

Solution Given w= l,_ z
i+z

ie., (+z)w=i-z

iw+zw=i-z

ie., z(w+1)=i(1 —w)
i(1-

N L ld-w)

1+w

Also given X2+ y2 <1

ie., Izl <1,1ie., i(1-w) <1
+w
ie., lil 11-wl <11+wl,ie, 1 1-u—-ivl <|1+u+ivl [as il =1]
ie., (1-u)?+0*< (1 +u)+0?
ie., 1+ -2u+v*<1+u?+2u+v?
= 4u>0
or u>0

Hence, the circle x* +y* <1, i.e,, |z| <1is mapped into the entire half of the w-plane
to the right of the imaginary axis.

When Izl =1 ie., x> + _1/2 =1 which is the unit circle, we get u = 0 which is the
imaginary axis of the w-plane. Proved.

EXERCISE

Define conformal mapping.

2. When is a transformation said to be isogonal? Prove that the mapping w=z is
isogonal.

3. Define critical point of a transformation.

—_
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Conformal Mapping 22.13

4. Find the images of the circle |z| =a under the transformations (i) w=z +2 + 3i,
and (ii) w = 2z.

5. Under the transformation w = iz + i, show that the half-plane x > 0 maps into the
half-plane w > 1.

6. Find the invariant point of the bilinear transformation w = L i .
7. Find the fixed points of w = 3;__14 .
8. Define Mobius transformation.
9. Find the invariant point of the transformation w = e
10. Find the image of x* + y* = 4 under the transformation w = 3z.
11. Find the image of the circle |z — ¢l = v by the mapping w =z + ¢ where cis a

constant.

12. Find the fixed points of the transformation w =

z+2i°

1+z
13. Find the invariant points of the transformation w =

— Z :
14. Find the image of the circle |z| =3 under the transformation w = 2z.
15. Find the image of the circle |z| =2 by the transformation w =z + 3 + 2i.

1
16. Find the image of the real axis of the z-plane by the transformation w=——.
17. Define cross-ratio of four points in a complex plane. z+i
18. Prove that a bilinear transformation has at most two fixed points.

1
1. For the mapping w =7 find the image of the family of circles x* + y* = ax,
where a is real. (Ans. u= l, is a straight linej
a
2. Determine the region of the w-plane into which the region bounded by x =1,
y=1,x+y=11is mapped by the transformation w = 22,
(Ans. 4u+v* =4, 4u —-v*=—4, u*=2,0°=1)

3. Determine the images of the regions under w = 1 .({)x>1L,y>0(i) O<y< ZL .
z c

w——

[Ans. @) 1 <1(ii) u2+(v+c)2>cz]
2] 2
4. Find an analytic function w = f(z) which maps the half-plane x > 0 onto the
region u > 2 such that z = 0 corresponds to w =2 +1.
Hint: wy =z, wy =w; +2, w=w, +1)
(Ans. w=z+2+1)

5. Determine and plot the images of the regions under the transformation w = z°.

) Izl =2 (ii) |argz|s% (i) %<Iz|<2,RezZO

[Ans. (i) 1w >4 (ii) larg wl< (iii)i< lwl<4,-n<¢< 7'E:|
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6. Find the invariant (fixed) points of the transformation:

. _z-1 .. _.2 _2z-5 . .
(i) w=—— (i) w=z (iil) w= — (iv) w=(z—i)
[Ans'(i)zzii (i) z=0,1 (iii) z=-1+2i (iv)zzw}

7. Find the bilinear transformation that maps z;, z,, z; onto w,, w,, w; respectively.
(i) z=-1,0,1ontow=0, i, 3i
(ii)) z=0,-,-1lontow=1,1,0
(iii) z=1,i,-1ontow=2,1i, -2
(iv) z=eo,i,0ontow =0, i, =
(v) z=1,0,-1lontow=1i,1, e

Ans. (i) w=—2ED Gy o= i 25 iy o = 2022
z-3 z-1 iz—3

_(-1+2))z+1

- z+1

@{iv) w =—1(V) w
z

1+
8. Verify that the equation w = 1 =

maps the exterior of the circle |zI =1 into
+z

the upper half-plane v > 0.
9. Find the bilinear transformation which maps 1, 7, -1 to 2, i, -2 respectively. Find
the fixed and critical points of the transformation. (Ans. i, 21)
i(1-2)
+z
axis of the w-plane and the interior of the circle |z| <1 into the upper half of the
w-plane.

10. Show that the transformation w = maps the circle |z| =1 into the real

2z+3
11. Show that the transformation w =~ maps the circle x* + y* — 4x =0 onto the
straight line 4u + 3 =0. z-4
12. Show that transformation w = t—z maps the circle 1z| =1 onto the imaginary
i+z

axis of the w-plane. Find also the images of the interior and exterior of this
circle.
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S.No Questions Opt 1 Opt 2 Opt 3 Opt4 Answer

1 An example of single valued function of z is . w=2z"2 w =z/\(1/2) w=SQRT(z) w=z"-1 w =272
2 An example of multiple valued function of z is . w=2z"2 w =2z7(1/2) w=SQRT(z) w=z"-1 w =2z"(1/2)
3 The distance between two points z and z, is [z-zo| [z+zo| z 2y [z-zo|
4 A circle of radius 1 with centre at origin can be represented by . |z>1 |z <1 |zl=1 |z]=0 lzZj=1
7 If f(z) is differentiable at z, then f(z) is at zg, discontinuous continuous regular irregular continuous
A function is said to be at a point if its derivative exists not only
8 at point but also in some neighborhood of that point. entire function integral function  analytic continuous analytic
A function which is analytic everywhere in the finite plane is called
9 . analytic function holomorphic functio regular function entire function entire function
11 The necessary condition for f(z) to be analytic is U y=Vv_yandv_,=-u_yu_,=-v_yandVv_,=u_,=v_ yandVv_,=u_u_,=-v_jandVv_,=-U_y Ux=v_yandv_,=-U_y

A real function of two variables x and y that possesses continuous second
order partial derivatives and that satisfies Laplace equation is called

12 . analytic function regular function holomorphic function harmonic function harmonic function
If u and v are harmonic functions such that u+iv is analytic then each is

13 called the of the other. conjugate harmonic analytic entire function not analytic conjugate harmonic



14

15
16

17

18

19

20

21
22

23

24

25
26
27
28
29

30
31

32
33
34
35
36
37

38
39
40
41
44
45
46

A transformation that preserves angles between every pair of curves through
a point, both in  magnitude and sense, is called at that point.
A transformation under which angles between every pair of curves through a
point are preserved in magnitude, but altered in sense is said to be

at that point.
A mapping w = f(z) is said to be conformal at z = z, if
The point at which the mapping w = f(z) is not conformal, that is, f'(z) = 0 is
called of the mapping.
A point of a mapping w = f(z) are points that are mapped onto
themselves, are kept fixed under the mapping.
The transformation w = a+z where a is a complex constant, represents a

The transformation
translation.

The transformation
magnification.

The transformation w = az where a is a real constant represents

where a is a complex constant represents a

where a is a real constant represents

In general linear transformation, w = az+b where a and b are complex
constants represents

The transformation w=(az+b)/(cz+d), where a, b, c, d are complex numbers is
called a

A bilinear transformation is also called a

The value of i=
represents the interior of the circle excluding its circumference.
represents the interior of the circle including its circumference.
represents the exterior of the circle.

Cauchy-Riemann equations are necessary conditions for a function w = f(z)

tobean__

Cauchy-Riemann equations are

The real and imaginary parts of an analytic function f(z) = u+iv satisfies the

equation in two dimensions.

An analytic function with a constant real part is

An analytic function with a constant modulus is

A fixed point is also called as .

The fixed point of w=(5z+4)/(z+5) is

The critical point of z=(2z+1)/(z+2) is

Solutions of Laplace's equation are under conformal transformation
If f(z) is analytic, and f'(z)=0 everywhere, thenf(z)is___

An analytic function with a constant imaginary part is

If u+iv is analytic, then v-iu is

w=z has every point as a point
w=1/z has fixed points
w=z+b has fixed points

Conformal
Conformal
(z) =0
common
common
translation
W =az

W =atz

translation

magnification

Linear transformation

linear transformation

SQRT(-1)

|z — zo| > delta
|z — zo| > delta
|z — zo| > delta

entire function

Ux=Vv_yandv_,=-u_ju_,=-v_jandv_, =

Cauchy-Riemann
a variable

a variable
invariant points
2,1

1,1

common
a variable

a variable
entire function
fixed

isogonal

isogonal
(z0) = f(2)

fixed

fixed
magnification
w =az+h

w=1/z
magnification

rotation
bilinear
transformation

inversion
SQRT(1)
|z — zo| < delta
|z — zo| < delta
|z — zo| < delta

integral function

Homogeneous
a constant

a constant
critical points
1-1

1,-1

fixed

a constant

a constant
integral function
critical

entire function

entire function
P(z0) #0

invariant
critical
rotation
W =atz
w = az+b

reflection

translation
fractional
transformation
fractional
transformation

|z — zo| > delta
|z — 7| > delta

|z — zo| > delta

analytic function

Uy =v_yandv_,=u_

Laplace

an analytic function
an analytic function
common point
-2,2

1,2

invariant

an analytic function
an analytic function
analytic

invariant

unconformal

unconformal
(zo) # f(2)

critical
variant
reflection
w=1/z
w=az
inversion
magnification,
rotation and
translation
translation
linear fractional

transformation

|z — 7| < delta
|z — zo| < delta

|z — 7| < delta

continuous function

Ux=-v_yandv_,=-u_,

Euler

an entire function
an entire function
origin

0,1

0,1

critical

an entire function
an entire function
continuous
common

Conformal

isogonal
£(z0) #0

critical
fixed
translation
W =atz

w=az
magnification
magnification,
rotation and
translation
bilinear
transformation
linear fractional
transformation
SQRT(-1)

|z — zo| < delta
|z — zo| < delta
|z — zo| > delta

analytic function

U=V yandVv_,=-U_y,

Laplace

a constant

a constant
invariant points
2,2

1,-1

invariant
a constant
a constant
analytic
fixed
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Complex Integration

fChapter Outline

Infroduction

line Integral in @ Complex Plane

Line Infegral

Basic Properties of Line Integrals

Simply Connected Region and Multiply Connected Region
Evaluation of Complex Infegrals

Cauchy’s Infegral Theorem

Extension of Cauchy's Integral Theorem to Multiply Connected
Regions

Cauchy’s Infegral Formula

Cauchy’s Infegral Formula for the Derivation of an Analytic
Function

23.1 QO INTRODUCTION

Integration of functions of a complex variable plays a very important role in many
areas of science and engineering. The advantage of complex integration is that certain
complicated real integrals can be evaluated and properties of analytical functions can
be established. Using integration, we shall prove a very important result in the theory
of analytic functions:

If a function f(z) is analytic in a domain D then it possesses derivatives of all
orders in D, that is f'(z), f”(z) ... are all analytic functions in D.

Such aresult does not exist in the real-variable theory. Also, the complex-integration
approach can be used to evaluate many improper integrals of a real variable, which
cannot be evaluated using real integral calculus. The concept of definite integral for
functions of a real variable does not directly extend to the case of complex variables.
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23.4 Engineering Mathematics

b
In the case of a real variable, the path of integration in the definite integralJ. f(x)dx
a

is along a straight line. In complex integration, the path could be along any curve
fromz=atoz=0.

23.2 O LINE INTEGRAL IN COMPLEX PLANE

o Continuous Arc

The set of points (x, y) defined by x = ¢(t), y = y(t), with parameter t in the interval
(a, b), defines a continuous arc provided ¢ and y are continuous functions.

o Smooth Arc

If ¢ and y are differentiable, the arc is said to be smooth.

o Simple Curve

It is a curve having no self-intersections, i.e., no two distinct values of t correspond to
the same point (x, v).

o Closed Curve
It is one in which end points coincide, i.e., ¢(a) = ¢(b) and y(a) = y(b).

o Simple Closed Curve

It is a curve having no self-intersections and with coincident end points.

e Contour

It is a continuous chain of a finite number of smooth arcs.

o Closed Contour

It is a piecewise smooth closed curve without points of self-intersection.

23.3 O LINE INTEGRAL

Definite integral or complex line integral or simply line integral of a complex function
f(z) from z, to z, along a curve C is defined as

[ f(z)dz =] (u+iv)(dx +idy)
=] (udx —vdy) +i ] (vdx +udy)
Here, C is known as path of integration. If it is a closed curve, the line integral is

denoted by Cﬁ .
c
When the direction is in positive sense, it is indicated as [, or simply, |- while
negative direction is denoted by J.. Counter integral is an integral along a closed
contour.
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Complex Integration 23.5

23.4 0O BASIC PROPERTIES OF LINE INTEGRALS

B
(i) Linearity: [ (k, f(z)+k,8(2))dz =k, [ f(z)dz + k, | g(z)dz
b a C G
(ii) Sense reversal: L f(z)dz= —J‘b f(z)dz
(iii) Partitioning of path: fc f(z)dz=JC] f(z)dz+fCZ f(z)dz “
where the curve C consists of the curves C; and C,.
Fig. 23.1

> Note

Although real definite integrals are interpreted as area, no such interpretation is
possible for complex definite integrals.

23.5 O SIMPLY CONNECTED REGION AND MULTIPLY
CONNECTED REGION

A simply connected region R is a domain such that every simple closed path in R
contains only points of R.

o Example

Interior of a circle, rectangle, triangle, ellipse, etc.
A multiply connected region is one that is not simply connected.

o Example

Annulus region, region with holes.

@ © D

Simply Doubly Triply Simply connected region (or)
connected connected connected Multiply connected region
region region region converted into simply

connected region by cross-cuts.

Fig. 23.2

23.6 O EVALUATION OF A COMPLEX INTEGRAL

To evaluate the integral |- f(z)dz, we have to express it in terms of real variables.

Let flz)=u+ivwherez=x+iy, dz=dx + idy
Jc flz)dz = [(u + iv)dz
= Jc(u +iv)(dx + idy)

= | c(udx — vdy) + i (vdx + udy)
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23.6 Engineering Mathematics
23.7 O CAUCHY’S INTEGRAL THEOREM OR CAUCHY’S
FUNDAMENTAL THEOREM

If a function f(z) is analytic and its derivative f’(z) is continuous at all points inside and
on a simple closed curve C then | f(z)dz = 0.

o Proof
Let the region enclosed by a curve C be R and let

f(2)=u+iv,z=x+iy,dz=dx +idy
'[ f(z)dz=J. (u+iv)(dx+idy):'[ (udx—vdy)+ij. (vdx + udy)
o

_”[_% - a_qu xdy _”(—u - —] dxdy (by Green's theorem)

Replacing —g— by gu d?by > , we get
ou
o _ O g ”(———)d d
[ e “
—0+10—0

or J-f(z)dz=0

> Note

(i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
(if) Cauchy’s theorem without the assumption that f* is continuous is known as
the Cauchy-Goursat theorem.
(iii) Simple connectedness is essential.

23.8 O EXTENSION OF CAUCHY’S INTEGRAL THEOREM TO MULTIPLY
CONNECTED REGIONS

If f(z) is analytic in the region R between two simple closed curves C; and C, then

) ¢ f(z)dz= I ¢, f(2)dz

e Proof G

By Cauchy’s integral theorem, we know that

I fiz)dz = 0 where the path of integration is along

AB and the curve C, in clockwise direction, and Fig. 23.3
BA and along C; in anticlockwise direction,

ie., [ g f(2)dz+] ¢, f(2)dz + Joq f(2)dz+] ¢, f(2)dz=0
or ICz f(z)dz + fcl f(z)dz=0(since | ,, f(z)dz=~,, f(z)dz)
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Complex Integration 23.7

Reversing the direction of the integral around C,, we get
e, f(2)dz=]c, f(z)dz
> Note

By introducing as many cross-cuts as the number of inner boundaries, we can
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

23.9 0O CAUCHY’S INTEGRAL FORMULA

If f(z) is analytic within and on a closed curve C and if a
A (=,

is any point within C then f(a)= Sl
widcz— u

o Proof o, ¢

f(2)

z—a

Consider the function

, which is analytic at all

points within C except z =a.
With a point a as centre and radius 7, draw a small

f()

—a

Fig. 23.4

circle C; lying entirely within C. Now,
in the region between C and C;;

is analytic

Hence, by Cauchy’s integral theorem for a multiply connected region, we have

[ L2, J @, I f@)= f@+ f@)
cz—a G zZ—a zZ—a

f(z) f( )dz+f( )J (23.1)

G

For any point on C;

Now,

T i0
) fe) [, [ Sla ) S0

[as z—a=re'® and dz = ire'® d6)

2r .
:j [f(a+7e)— f(a)]ido=0 (where r tends to zero]
0
27 510 2
J‘ dz :J‘ ire ,dezj. id6 = i[0 ]2,“_27“
cz—a Jo  re 0

Putting the values of the integrals of RHS in (23.1), we have

_[ SE 42— 0+ fay2miy
cz—a

or L f@ .

27rz
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23.8 Engineering Mathematics

23.10 O CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF
AN ANALYTIC FUNCTION

If a function f{z) is analytic in a region R then its derivative at any point z =4 of R is
also analytic in R and is given by

27:1 C (z a)

where C is any closed curve in R surrounding the point z =a.

e Proof
By Cauchy’s integral formula,

J f2) T (23.2)

Differentiating (23.2) with respect to a, we get

F=5] f()aa[z a]
e[ SO

2miJc (z—a)?

27rz

w200 f(2)
£ = )

=22 L@

2! Jc (Z _ a)n+1

Similarly,

SOLVED EXAMPLES

1DEH NI Use Cauchy’s integral formula to

. 2 2
evaluate dez, where C is the
c (z-2)(z-3)

Y

circle Iz =
[AU June 2009, April 2011; KU Now. 2011]

Solution

1 11
(z-2)(z-3) (z-3) (z-2)

Fig. 23.5
given integral &

sin 7z° + cos wz2 sin 722 + cos z2
= I dz — J dz
c z-3 c z—2
[ SO o[ SO "
c(z-3) c(z-2)
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Complex Integration 23.9

f(z) = sin 7z* + cos 7z is analytic on and inside C.
The points z=2 and z = 3 lie inside C.
.. by Cauchy’s integral formula, from (1), we get,

J‘ sin 71z + cos 7z*
c (z=-2)(z-3)
= 2mi(sin 71z” + cos 7rzz)Z:3 —27i(sin 7wz% + cos 7r22)Z:2

=2mi(sin 97 + cos 97) — 2wi(sin 47 + cos 47)

=27 —2mi=-4mi Ans.
zdz . . 1 .
Example 2 Evaluate '[ T — where C is the circle |z—-2l=—, using
c(z—-1)(z-2) 2
Cauchy’s integral formula. [AU May 2012]

1 1
Solution [z-2|= 5 is the circle with centre at z =2 and radius equal to 5

The point z =2 lies inside the circle |z - 2| =%

. . . AY
The given integral can be rewritten as

Jc (z-2)*

_[_f®
dz = -[c G2y dz (say)

zZ

fo=—

point z =2 lies inside C.
.. by Cauchy’s integral formula,

is analytic on and inside C and the

z 2mi
——dz=——f'(2
.[c(z—l)(z—z)2 1! f
=27i af =z
dz\ z-1
z=2
-1 .
=2ri 3 =-27i Ans.
(z=-1)
z=2
z+4 . . . .
Example 3 EESAEIIEL '[ —————4dz, where C is the circle Iz + 1 + il = 2 using
cz°+2z+5
Cauchy’s integral formula. [AU Novw. 2011] (-1,20) pY
[
Solution |z + 1 + il =2 is the circle whose centre is
-1 —iand radius is 2 units. 0 R
X
Consider —— 4 ztd )

Y

2412245 (z+1+20)(z+1-2)

- the integral is not analytic at z = -1 — 2i and -1 + 2i.
The point z =-1 - 2i lies inside C. ]
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23.10 Engineering Mathematics

We rewrite the given integral as

[ z+4 ]
zel-2i) £2)
Jc Z+1+2i dz_jcz—(—l—zi)dz(saw

f(z) is analytic on and inside C and the point (-1, -2i) lies inside C.
.. by Cauchy’s integral formula,

z+4
—————dz=2mi f(—-i—2i
-[cz2+2z+5 U )
o -1 —‘21+4 ‘
—1-2i+1-2i

= %(3 —2i) Ans.

EXERCISE

1. The value of the integral

3 where C is the circle |1z — 2| =1, traversed

cz -2z
in the counter-clockwise sense is
() -mi (i) 27 (iti) i (iv) 0
2 p—
2. The value of the integral f z—zfldz, where C is the circle |zl =% is
cC zZ-
@) 0 (i) 7 (iti) i (iv) —27i

3. What is the value of [o e dzif c: 1z] =1?
4. State Cauchy’s integral formula.

5. Evaluate'[ iz where C is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

czZ—

2

6. Evaluate J. mdz where C: |zl =2.

c (z-93)

dz . . 1

7. Evaluate J - where C is the circle |z -1l=—.

cz"-5z+6 2

5

State Cauchy’s formula for the first derivative of an analytic function.
9. State Cauchy’s fundamental theorem.

10. Evaluate I z where C: Iz| =1.

cz—

11. Evaluate J. 2 dzwhere C: |zl =2.
c(z+3)

12. Evaluate J 1
c2z—

dzwhere C: 1z| =1.
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2
13. Evaluate L 25

- dz where C is |z| =4 using Cauchy’s integral formula.
midc z-3

14. Evaluate J Lz where C: |zl =1.
c(z-3)

15. State the Cauchy-Goursat theorem.

1. Evaluate J Zz—_ldz where Cis lz—il =2. (Ans. —Zm)
c(z+1)*(z-2) 9
4
2. Evaluate I —3zdz using Cauchy’s integral formula. where C is the
cz(z=1)(z-2)
circle Izl =% . (Ans. 27i)
2
3. Find the value of | 2224z, (Ans. 37)
c 2% -1

4. Evaluate the following;:

J (;j—z4)z,whereCis lz—il =2
c(z"+

3

1

(if) J Z2+—Z+dz where C is the ellipse 4x* + 9> =1
Cz"=7z+6

3
z7+1 b4 2w

iii dz where Cis IzI =1. I:Ans. i)—, (ii) 0, (iii ——}

i) [ ()7 (i) 0, (i)~

. 2 2
5. Evaluate I SIMAZ TCOSTZ 4, where Cis Iz] = 3. (Ans. —4i)
c (z+1)(z+2)

2
6. If f(a)zj wdz where C is |z| =2, find the values of f(1), f(i), f'(-1)
c z-—a

and f”(-i). (Ans. 207; 27(i — 1); —147i; 167i)
7. Evaluate | 1z1? dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).
(Ans. -1 +1)
2241
8. Evaluate J- 3 ldz where (i) C: lz—=11=1,(1i)C: lz+1l=1,and (iii) C: |z—il
cz"—
- 1. [Ans. (i) 27 (ii) 27 (iii) 0]
in2
9. Evaluate I L‘szz where C is the rectangle with vertices at 3 + i,
c(z+3)(z+1) 4 eos2 4 sin2
24, -2-i,3-i [Ans.m’—( cos 2+ = )]
4 a2
10. Evaluate j #dz where C: 1z| =2. (Ans. —187i)
c (z+1)
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Taylor and Laurent Series
Expansions

Chapter Outline

® |Introduction
® Taylor's Series
® |aurent’s Series

24.1 Q INTRODUCTION

Power Series

A power series in powers of (z — z;) is a series of the form
zan(z—zo)”:a0+a1(z—zo)+a2(z—zO)+-~- (24.1)
n=0

Here, ay, a;, a, ... are complex (or real) constants known as coefficients of the series. z

is a complex variable and z is called the centre of the series. Equation (24.1) is also

known as the power series about the point z,.

Power series in powers of z is

Zanz” =ay+ 0,z +a,z +
n=0
obtained as a particular case with z;, = 0 in (24.1). The region of convergence of a
series is the set of all points z for which the series converges.
Three distinct possibilities exist regarding the region of convergence of a power
series (24.1).
(i) The series converges only at the point z = z,.
(ii) The series converges everywhere inside a circular disk |z —z,| <R and diverges
everywhere outside the disk |z — z;| > R. Here, R is known as the radius of
convergence and the circle |z - z,| =R as the circle of convergence.
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24.2 Engineering Mathematics

> Note

(i) Theseries may converge or diverge at the points on the circle of convergence.

oo

(if) Geometric Series: ZZ"’ =1+2z+2z’+--- converges absolutely when |z| <1
m=0

and diverges when [z| > 1. (i.e, R=1)

> n
. z .
(iii) Power series: E — converges for all z. (i.e., R = )
n!
n=0

Power series play an important role in complex analysis, since they represent
analytic functions and conversely every analytic function has a power series
representation called Taylor series similar to Taylor series in real calculus.

Analytic functions can also be represented by another type of series called Laurent
series, which consist of positive and negative integral powers of the independent
variable. They are useful for evaluating complex and real integrals.

24.2 0 TAYLOR’S SERIES (TAYLOR’S THEOREM)

If a function f{(z) is analytic at all points inside a circle C with its centre at the point a
and radius R then at each point z inside C,

f@=f@+ f@e-a+ L0 gt s LG gy

e Proof
Take any point z inside C. Draw a circle C; with centre g, enclosing the point z. Let w
be a point on the circle C;.
1 1 B 1
w-z w-a+a-z w—a—(z—a)
1 1
z

(w—a) |_Z-4a
w—a w

1 1 [z—a] [z—a]z [z—ajn 1
= 1+ + 4.4 + ..
w—z w-—a w—a w-—a w-—a

_ _ 2 o\
__1 z az (z a)3+m+ (z a)+1+m (24.2)
w-—a (w-a) (w-—a) (w—a)"
Aslz—al <lw-al or IZ_u|<1,
lw — al

so the series converges uniformly. Hence, the series is integrable.
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Taylor and Laurent Series Expansions 24.3

Multiplying (24.2) by f(w)
f@) @) |y SO gp S g S

w—-z w-—a (w — a)? (w - a)® (W—fl)n+1

On integrating with respect to w, we get

L f@) f S0 o u)j _f@)

w—z (w— a)
fw)

+(z-a)" o™

W+ (24.3)
We know that

J flw )dz 2mi f(z) J. fw )dw 27i f(a)
¢ (w=2)

@) 4y =21 f(a), and so on.
G (w - El)

Substituting these values in (24.3), we get

f@)= f+ fae-o+ LD e gt s LG gy

21

> Note

(i) Puttinga=0in the Taylor’s series, we get f(z)= f(0) +—— f (0) f 2(‘0) z2+
This series is called the McLaurin’s series of f(z).

(ii) Standard McLaurin’s Series

2 3
(a) =T+t i b for Izl <o
1 20 3!
3 .5
(b) Sinz=z———+——- for |zl <oco
3! 5!
2 4
(o) cosz=1-2—+2.. for Izl <eo
21 4!
3 5

(d) Sinhz=z+——+— 4. for |z] <oo
3! 5!

2 4

(e) coshz= 1+2+ 2 4. for Izl <eo
2! 4!

() A-z2)t=1+z+22+22+for Izl <1
(g) (I+2)'=1-z+22-2+-for |zl <1
(h) 1-2)2=1+2z+322+ for |zl <1
(iii) Expansion of a function f(z) about a singular point z = & means, expansion
of f(z) in powers of (z - h).
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24.3 O LAURENT’S SERIES (LAURENT’S THEOREM)

If f(z) is analytic on C; and C, and the annular region bounded by the two concentric
circles C; and C, of radii r; and r,(r, < r;) and with centre at a then for all in R,

bl +b—2+...
(z—a) (z-a)

f(2)=ay+a,(z—a)+a,(z—a)?+--+

where anzL‘J. f(—w)ldw,n=0,1,2,3...
2mi C, (w—g)n+
”=L'I ﬂdw,nzl,z,&..
27i Cz(w_a)—nﬂ
o Proof

By introducing a cross-cut AB, the multiply connected
region R is converted to a simply connected region. Now,

f(z) is analytic in this region. P
Now by Cauchy’s integral formula, Py P
a
A e (C)
2ridc, w—z 2mi
c
[ )y L[ Sy, L[ )y, !
ABW — Z 2midc, w -z 2niJpaw -z Fig,. 24.2
Integral along c, is clockwise, so it is negative.
Fay=— [ L@ gy L[ L@y, (24.4)

2nidc,w—z 2ridc, w—z

For the first integral, can be expended exactly as in Taylor’s series since w

w—2z
lies on C;,
lz—al<lw—alor |z—a|S1
lw — al
L, de:L. f(w)dw+(z—71) f(w) dw
2rid w—z 2nidc, w—a 2mi Cl(w—a)2

LE-a’ o fw)

- S dw+ -
2ri Je, (w—a)

:a0+al(z—a)+a2(z—a)2+--- (24.5)

-1 f(w)
[as a,= i J.c] oy dw]

In the second integral, w lies on C,

lw-al <lz-al or |w—a|<1
|z —al
So here, 1 = 1 = 1 = -1 1
w—-z w-a+a-z (w-a)—(z—a) (z—a) w-—a
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Multiplying by #, we get
T

1 f@) _ 1 f@), 1 (w-a) 1 (w-
2miw—z 27 z—a Zm' (z—a)’ flw)+ 27i (z - 3 f( )+
_ 1 —f( 1 1 f(w) . 1 1 f(w)
27mi u)2 2mi (w - a)71 (z—a)3 2mi (w—a)72
Integrating, we have
1 f@) 40 1 f(w)
2ridc,w—z (z a)Zm.[ flw)dw + (z—a)? Zni.’.c (w—a)™ rdw
1 1 f(w)
el Rl
b, by b . (24.6)

:(Z—ﬂ)+(z—a)2 (z-a)’

__L f(w)
[as b,= i J.cz e a)’”” dw}

Substituting the values of both integrals from (24.5) and (24.6) in (24.4), we get

f(z)=ay+a,(z—a)+a,(z—a)* +b(z—a) " +by(z—a) >+

or fz)- 2 Sy

n= 1(2 )”

> Note

(i) If f(z) is analytic at all points inside C; (i.e., no singular points inside C,)
then by Cauchy’s theorem, b, =0 for all n — 1 > 0. Hence, the Laurent series
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic
point a is Taylor series expansion about a.

(if) The region of convergence of Laurent’s series is the annulus region R; < |z
—al <R,

(iii) If f(z) has more than one singular point then several (more than one)
Laurent series expansions can be obtained about the same singular point
by appropriately considering analytic regions about (centred) at a.

(iv) The part Za (z—a)" consisting of positive integral powers of (z — a)
n=0
is called the analytic part of the Laurent’s series, while Zb (z—a)™
n=1
consisting of negative integral powers of (z — a) is called the principal part
of the Laurent’s series.
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24.6 Engineering Mathematics

SOLVED EXAMPLES

|DEy WM  Obtain Taylor’s series expansion to represent the function

2_
== in the region Iz| <2. [KU Novw. 2010]
(z+2)(z+3)
2
-1
Solution Let f(z)=z—
(z+2)(z+3)
—5z-7
=l+— )
(z+2)(z+3)
Consider Dz-7 _ A B
(z+2)(z+3) z+2 z+3
5z-7=A(z+3)+B(z+2)
Put z=-3 = B=-8
Put z=-2 = A=3
=5z-7 3 8
(z+2)(z+3) z+2 z+3
3 8
1) = 1+
M fz)= z+2 z+3
Iz] Iz]
Given Izl <2, i.e.,%<1, so clearly %<1
ie., ‘ <1 and |+ <l
2
fz)=1+
5 4
2 3
-1
=1+§(1+£j ( +£j
2 2 3
By using binomial theorem,
2 3
f(z):1+§|:1__+___+...:|_§|:1_£+Z__Z_+...:|
2 3 3 9 27
3N (= 1) (D"
YT
=0 nO
3 8
=1+ Z(—l)” [ o 3,7} z" Ans.
n=0

|peny ) (WA Expand _ in Laurent’s series valid for Iz| <1and 1< Izl
(z—1)(z-2)
<2. [AU Nov. 2010]
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1 _ 11
(z-1)(z-2) z-2 z-1

Solution Let f(z)=

Iz
(i) Given |zl <1 obviously %<1,i.e., E<1
111
(z=-1(z-2) z-2 z-1
1 1
=—+

f-3)

-1
1—%) +1-z)"

1+—+—+---i|+[1+z+zz+---]

2 4
. 1 3z 7,
ie., Z)=—+—+—
f(2) >t 23
(ii) Givenl1< Izl <2
1<zl = i<l, ie., |[—|<1
Izl z
IzI<2 = E<1, ie., E<1
2 2
1 1
z)= -
f@) z-2 z-1

oo n oo 1

=-3

n=0 ZWJrl n=0z

Ans.

n+1

z
If0<lz-1I <2, express f(z)=————— in a series of positive
p press f(z) Z-D-3) P
and negative powers of z - 1. [AU April 2011]
Solution Letz-1=u
s 0<lz-11<2becomesO0< lul <2
z A B
= +
(z-1)(z-3) z-1 z-3
z=A(z-3)+B(z-1)

Now,
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1
Put z=1, = A=——
2
Put z=3, = B= g
2
L3
z -2, 2
(z-1D)(z-3) z-1 z-3
+1
(or) u = L —— (asz-1=u=>z=u+1)
u(u—2) 2u  2(u-2)
So instead of expanding WZ(S) in powers of (z — 1), it is enough to expand
z—1)(z—

u+1
u(u—2)

in powers of u.

u+1 __i_'_ 3
u(u—2) 2u  2(u-2)

Since lul <2, we have %<1.i.e.,%<1.
u+1l _—_1_ 3
wu—2) 2u 4(1_9

=
2u 4 2
-1 3 u (u )2
=———|14+—=+|=| +
2u 4 2 \2
_1.3 (z]
u  44\2
=3 n
z __ 1 _32(_2_1) Ans.
(z-1)(z-3) 2(z-1) 44\ 2
1Deny )XW Obtain the Laurent’s expansion for (2-2)z+2) which are valid in
(z+1)(z+4)
(i) 1< Izl <4, and (ii) 1z > 4. [AU Nov. 2011]
Solution Let f(z)= (272)(z+2)
(z+1)(z+4)
—5z-8
= f2)=1+—"2 (1)
(z+1)(z+4)
(since the degrees of z in both numerator and in denominator are equal, divide it)
Consider 528 A B

D) (z+4) (z+1)  (z+4)
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Taylor and Laurent Series Expansions 24.9

5z-8=A(z+4)+B(z+1)
Put z=-1 = A=-1
Put z=—4 = B=-4

5z-8 -1 4
(z+1)(z+4) (z+1) (z+4)
Substituting (2) in (1), we get

f(e)=1-

(i) Givenl<lzl <4

@)

1 4

(z+1) (z+4)

1<lzl = i<1, ie., |- <1
[z]
Iz]
lzl<d = <1, ie, |F<1
f@) =14
z(1+fj 4(1+5)
z 4

n=1 z n=1
oo n
SysEsey
n=1 Zn 4
(ii) Given Izl >4
i<1,i.e.,—<1
[zl z
1 4
z)=1- -
f@ 1+z z+4
1 1 4

z(1+lj z(1+éj
z zZ
-1 -1

:1_1(1+1] _é(Hé)

z zZ z z

2

:1_1[1_1+L2_...]_é[1_é+(é) ]

z zZ z z z z
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24.10 Engineering Mathematics

2 St t5en)

n=0
= n n+1
1 (4

:1—2(—1) L”T% ) ]

n=0
LN DT e
_1+z (14

n=0
:1+2(—1)"(1+4”).in Ans.

ya
n=1

1IDEy M Find the Laurent’s series of f(z)= (11 ) valid in the region
z(1-z
() lz+11<1,({) 1< 1z+11 <2, and (iii) Iz+ 11 >2. [KU May 2010, Nov. 2011]
Solution ILetz+l=uorz=u-1

1 1 11
&= i oD —w  u-1 2-u

)

(i) Given lz+11<1 = lul<1

f(z):_—1+;

HE=
2

-1
PR T Y
=—(1-u) +2(1 2)

2
=—[1+u+u2+---]+l{1+(£)+(ﬂj +]
2 2 2

n=0 n=0
S 1
22 _1+2n+1 un
n=0
ie., f(z):Z(—1+%j(z+1)”
n=0
(i) Givenl<lz+1l<2.ie,1<lul<2
1 .
1<lul = —<1, ie, |—|<1
lul u
lul
lul<2 = i<1i.e., ﬁ<1
2 2
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1 1
Consider (1), =+
onsider (1), f(z) T 1t3 5

=
—

[

|
= =
N

N
—

—_

|

| =

S

R =k R

ie., f(z)=

(i) lz+11>2,ie, lul>2=

_1(1_%]_1(1_3
u u u u
:l|:1+l+i2+...i|_
u u u
w1 12"
- 1
=20-2=
n=0
or f@=Y a-2)—1
+1
~ (z+1)"

EM_UnitX_24.indd 11 @
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24.12 Engineering Mathematics

EXERCISE

Define radius and circle of convergence of power series.

State Taylor’s theorem and Laurent’s theorem.

State McLaurin’s series.

Give some standard McLaurin’s series.

What do you mean by analytic part and principal part of Laurent’s series of a
function of z?

G @

6. Expand 1) as Laurent’s series about z = 0 in the annulus 0 < z| <1.
z(z—
2z

7. Find the Laurent’s series expansion of f(z)= 3 aboutz=1.
8. Expand f(z) = ¢* in a Taylor’s series about z = 0.

T .
9. Expand coszat z= " in a Taylor’s series.

10. In the power series ay + a;(z — zy) + a5(z — 2p)* + ..., 2o is called the of the
series.
Part B
1. Find the Taylor’s series expansion of f(z)= — % aboutz=i
z(z+1)(z+2)

State also the region of convergence of the series.

)21 o
Ans. Z(_l) {(2_,’_ i)n+1 (1+ l-)n+l }(Z l)

n=0
z2—

2. Find the Laurent’s series expansion of f(z)=—; valid in the region

z°+5z+6
(i) 1z1 <2, (1) 2< IzI <3, and (iii) IzI >3 [KU April 2013]

Ans. (1) 1+ Z( ) {2"” 3n+1 } 3n+1
(i) 1+ 2(—1)"{3.2" ~8.3")1/2"

3. Find the Laurent’s series expansion of f(z)= ;, valid in the region

(z-1(z-2)

(i) lz+21 <3, (ii) 3< Iz +2] <4, and (iii) |1z + 2] > 4.

; o (z+2)" 3"
Ans. I)Z{ ot M}(Hz) (ii) - . gg(zu)"”

nO

2.4"-3".
(i) Z( (z+ 2)z"+1
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Taylor and Laurent Series Expansions 24.13
2
-6z-1
4. Expand z 6z in3<lz+2]<5.
(z=1)(z+2)(z-23)
2 +2 (z+2)* (z+2)°
Ans. 2 + 3 >+ 3 3+---+l{1+Z +(Z 2) +(Z 3) + e
z+2  (z+42)° (z+2) 5 5 5 5

about z = 1. Find the region of

5. Find Laurent’s series of f(z)=
z(1-z)

convergence.

Ans. f(z)= %{—ﬁ_%(z -1) +%(z _ 1)2+ }

Region of convergenceislz —1l<1

6. Obtain the Laurent’s series expansion for f(z)= ( ! D for i) 0< Izl <1, and
z(z—
y L1 R | 2 |
(i)0<lz-11<1. |Ans.(i)——(1+z+z"+--)(ii) 1(1—(z—1)+(z—1) )
z z—
2z
7. Find Laurent’s series about the indicated singularity. (i) W’ZZI
-
z
i) —————,z=-2 (iii) ———,2=3
(i (z+1)(z+2) (u) Z*(z-3)*
i 2 2 2 2 2 1
Ans. (i) —— +—2° —+ 2 A e
(z-1° (z-1* (z-1) 3 3
(ii) 2 +14+(z+2)+(z+2)*+-
2+z
4(z-3
(iii) ! >~ 2 +i— ( )+
9z-3)* 27(z-3) 27 243 |
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Theory of Residues

fChapter Outline

Infroduction

Classification of Singularities

Residues

Cauchy’s Residue Theorem

Evaluation of Real Definite Integrals by Contour Integration

25.1 O INTRODUCTION

The residue theorem is a very powerful and elegant theorem in complex integration.
Using the residue theorem, many complicated real integrals can be evaluated. It is also
used to sum a real convergent series and to find the inverse of a Laplace transform.

25.2 0O CLASSIFICATION OF SINGULARITIES

A point at which a function f(z) is not analytic is known as a singular point or
singularity of the function.

o Example
The function f(z)= LS has a singular pointatz—-5=0orz=>5.
z—

If z = a is a singularity of f(z) and if there is no other singularity within a small
circle surrounding the point z = a then z = a is said to be an isolated singularity of the
function f(z). Otherwise, it is called non-isolated.

EM_UnitX_25.indd 1 @ 8/24/2017 3:31:41 PM



25.2 Engineering Mathematics
o Example
1
(i) The function m has two isolated singular points, namely, z =2 and
z—2)(z~

z=7[since (z-2)(z-7)=0o0rz=2,7].

. . . . T .
is not analytic at the points where sin—=0, i.e., at the
z

(ii) The function p-
sin—
z

. T
points —=nrm .
z
. . 1
ie., at the points z=—(n=1,2,3...).
n

11
Thus, z=1, 23 z=0 are the points of singularity. But z =0 is the non-isolated

singularity of the function

because in the neighbourhood z = 0, there are
sin—
z

infinite number of other singularities z=—, where n is very large.
n

Let a function f(z) have an isolated singular point z = a. f(z) can be expanded in a
Laurent’s series expansion around z =4 as

b b
z)=ay+a,(z—a)+ay(z —a) +-- +——+ —2—
F(@)=ay+ ay(z—a)+ ay(z — a) s
b b

o+ m +m—+11
z-a)" (z-a)""

In some cases, it may happen that the coefficients b,,.; = b,,,, = ... =0,
Then the series reduces to

b b b,

f(z):ao+gl(z—a)+u2(z—a)2+...+(Z_a)+(z_a)2 +.“+(Z—‘Z)m

Then z = a is said to be a pole of order m of the function f(z).
When m = 1, the pole is said to be a simple pole.
b
(z-a)
If the number of terms of negative powers in the above expansion are infinite then
z=a is called an essential singular point of f(z).
If a single-valued function f(z) is not defined at z =4, but £1ir; f(z) exists thenz=a

In this case, f(z) = ay + a,(z — a) + ay(z —a)* + -+ +

is called a removable singularity.

o Example

z = 0 is a removable singularity of f(z):ﬁ, since f(0) is not defined, but
z

lim(smzjzl.
z—0 z
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Theory of Residues 25.3

25.3 QO RESIDUES

Residue of an analytic function f(z) at an isolated singular point z = a is the coefficient
say b, of (z—a)™ in the Laurent’s series expansion of f(z) about a. Residue of f(z) at a is

denoted by Res f(z). From Laurent’s series, we know that the coefficient b is given
z=a

by by=g | fai

Thus, the residue of f(z)atz=a,=Res f(z)=b =—J. f(z)dz.

z=a

where C is any closed contour enclosing a (and such that fis analytic on and within C).

Calculation of Residue at Simple Pole

(i) If f(z) has a simple pole at z = g, then Resf(z) =lim(z—a) f(z).

(if) Suppose f(z)= QE )) has a simple pole at a such that P(a) #

Then Res f(z) = R P@) P’(a)
220 =1 Q'(z) Q'(a)

Calculation of Residue at a Multiple Pole

If f(z) has a pole of order n at z =4, then

1 ) dn71 ;
Res f(z) = =) ?H; = [(z=a)" f(2)]

z=a

25.4 0O CAUCHY’S RESIDUE THEOREM

If f(z) is analytic within and on a simple closed curve C except at a finite number of
poles within C then ¢ f(z)dz=2mi (sum of residues at the poles within C).

c
Proof Let C;, C,, C; ... C, be the non-intersecting circles
with centre at a,, 4, ... a, respectively and radii so small
that they lie entirely within the closed curve C. Then f(z)

is analytic in the multiply connected legion lying between
the curves Cand C;, G, ... C,. Applying Cauchy’s theorem,

(ﬁc f(z)dz= q.)q f(z)dz + q.)cz f()dz+--+ ¢C,, f(z)dz
=2miRes f(z) +2miRes f(z) -~ + 27i Res f(z)

= 27ri[R_es f(z)+Res f(z)-++Res f(z)}

Fig. 25.1

. q.) f(2)dz=2mi (sum of residues at the poles within C)
C
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25.4 Engineering Mathematics

25.5 0O EVALUATION OF REAL DEFINITE INTEGRALS BY CONTOUR
INTEGRATION

Alarge number of real definite integrals, whose evaluation by usual methods become
sometimes very tedious, can be easily evaluated using Cauchy’s theorem of residues.
For finding the integrals, we take a closed curve C, find the poles of the function f(z)
and calculate residues at those poles only which lie within the curve C.

Then using Cauchy’s theorem of residues, we have fcf(z)dz = 27 (sum of the
residues of f(z) at the poles within C)

We call the curve a contour and the process of integration along a contour as
contour integration.

Iype 1

2z

Integrals of the form f(cos 8, sin 8)d6é where f is a rational function of cos 6
0
and sin 6

In this type of integrals, put z = ¢’
Differentiating with respect to 6, we get,

dz=ie" d6,i.e.,do = ﬁ
iz
0, -io
We know that cos 6 = ¢ +ze
ie., cos 0= l(z + l)
2 z
and sin9=l,(z—lj
i z

z+l z—l
z - |dz

2 "2 iz

2
f(cos B, sin 0)d6 = J. f[
0 C

where C is the unit circle 1z| =1

1 1 1)1 1)|dz
-1 [5(‘)?(‘]}—
= [ otz say)

Clearly, ¢(z) is a rational function of z.
Hence, by the residue theorem, |-¢(z)dz = 27i (sum of the residues of f(z) at its poles
inside C).

7

Type 2

Consider the integral [-¢(z)dz, where C is the positively r
oriented semicircle ', |z = R, Im z > 0 together with the

line segment L : [-R, R]. Such integrals can be evaluated by

integrating f(z) round a contour C consisting of a semicircle g Ol R X
I' of radius R large enough to include all the poles of f(z)
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Theory of Residues 25.5

and the part of the real axis from x = —R to x = R. Here, the only singularities of f(z) in
the upper half-plane are poles.
R
When ¢(z) has singularities on the real axis then J. #(z)dz= J. o(x)dx + J- o(z)dz .
c -R r

By the residue theorem, we have [¢(z)dz = 27 (sum of the residues of the function
¢(2) at its poles in the upper half-plane).

R
ie., J. o(x)dx +I #(z)dz=2mi (sum of the residues of the function ¢(z) at its poles
-R r
within C).
Putting R — oo we get, J. ¢(x)dx, provided [ ¢(z)dz — 0.

ype 3

Integrals of the form J. (sin ax) f(x)dx or J. (cos ax) f(x)dx.a>0 where f(z) is such

that f(z) — 0 as z — oo and it does not have a pole on the real axis.

SOLVED EXAMPLES

Find the residue of f(z)= ﬁ about each singularity.
z°+

1 1
Soluti Gi = =
olution - Given f&) = I Tl b s F

~ 1
C(z-i)X(z +i)>

Here, z =1, —i are poles of order 2.

Now, [Res f(2)],_;= Ltlli[(z - i)2 f(2)]
z—ill dz

=Lt i[(z —i)* (;:I

2oidz z—i)(z +i)

1
z=idz (z+1)

B -2 2 1
- t. w3 .3_4-
z=i(z4+1)°  (20) 1

—1

4
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25.6 Engineering Mathematics

[Res f(2)].__,= Lt ~L[(z+i f(2)]

z—-i1l dz

= Lt i|:(z+i)2 ;}

ioidz 2=z +i)

= Lt i 1 5
z-idz (z—i)

-2 -2 i
= Lt =—=— Ans.
zo-i(z — ,‘)3 8 4

-1
|Deniny (VAN Evaluate J — 2 4z where Cis the circle |z —il =2.

c(z+1*(z-2)

[AU June 2009, May 2012]
. z-1
Solution Letf(z)= ————
(z+1)(z-2)
Here, z=-1is a pole of order 2.

And z =2 is a simple pole.
Clearly, z =2 lies outside the circle 1z -il =2

[Res o). -2 =0
Now, [Res f(2)]._y= Lt 1oz +1) £

z—>

Lt i{(z +1)% &]

214z (z+1)*(z-2)

L 422t
z—-1dz| z-2

- Lt [w}

z-1 (z—2)

2+1 1
zEt—ll:(Z -2)? } B zl—?t—1|:_ (z— z)z:l

-1 _l

T(1-27 9

- by Cauchy’s residue theorem,

J Z—_ldz =2mi [sum of the residues]
o

(z+1)%*(z-2)
= Zni(—l) = —27i Ans.
9 9

Example 3 ERNVEIRELE J

C 6(22 + 9)3 ’
theorem. [KU Now. 2011]
1
Solution Let f(z)=———
Us) z22+9)°

where Cis |z—il =3 by using Cauchy’s residue
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The singularities of f(z) are

= z =+3i, of which z = 3i lies inside the circle |z —il =3

z = 3iis a triple pole of f(z).

[Res f(z)],_5;=

412
2! (z+3i)°

Theory of Residues

obtained by 22 +9 =0

R N
2! dz? (z +3i)°

:|z—31'
i|z—3i
6 1

65 1296i

12

By Cauchy’s residue theorem,

dz

4

J
ety (XA Show that

Solution Letz=¢"

=

=27
(z2+9)°

i X L
12961 648

a6 2w

JZR
0

a+bcos@=\/a2_b2

25.7
2Y
\ > X
1z=-3i
Fig. 25.3
Ans.
,a>b>0.

[KU May 2010; AU Nov. 2010, Nov. 2011, April 2013]

do-L
iz

a0 iz

J-2n
0

a+bcost9: c 1 ( 1)
a+—blz+—
2 z

dz

_lj_
ide [
z

dz

2z

de 2 dz

a+lb(z+
2

_1J'
i Cz 2az+bzz+b}

JDZIL'
0

u+bcos(9:7.|‘cbzz+2uz+b

2
= T.[c f(z)dz

where Cislzl=1

1)

)

The poles of f(z) are given by the roots of bz* + 2az +b=0

—2a
z=

+./4a? - 4b>

2b

B —at.ja* b’

EM_UnitX_25.indd 7
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25.8 Engineering Mathematics
. —a+«/a2—b2 —a—\/az—bz
e, z= ’
b b
—a+ja*-b* —a—ja*-b*
Let o= b ; ﬁ = b

Sincea>b>0, 18l >1
But the modulus of the product of the roots | o3| =1 (since if az> + b + ¢ =0, product

of the roots Iaﬁlzg).
a

Since 1Bl >1 and loffil =1, we get lal <1 so that z = o is the only simple pole

inside C.
Since z = orand z = B are the roots of bz? + 2az + b = 0, we can write bz? + 22z + b =
b(z - a)(z- P)
1
Hence, )=
f b(z-a)(z-B)
Now, [Res f(2)],_,= Lt (z—)- f(z)
z—oo
1
=Ltiz-o¢)——————
ey
—ab(z—B)  bla-P)
_ 1
b (—u+ a?—b? J [—a— a?—b? J
b b
_ 1
b 2./112 —v?
b
1

From (1), since 18I >1,
Blies outside the circle 1z =1

[Res f(z)].- =0

2 do 2
Honce, = [ oy
ence, (1) o a+bcos@® i Cf(z)z

= 2 [27i X (sum of the residues)]
i

NP R S
i 2,/a*-b?
J‘Z” do 2=
o a+bcos@ \/aZ_bZ

Ans.
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Theory of Residues 25.9

T adf
IEIEISAN  Evaluate J -5 4>0. [KU Nov. 2010]

.2’
0 a“+sin“ @

V1
Solution Let I= - ad6 5
0 a“+sin” 60

_J'” ad6
0 5 (1—c0529]

a+|—
2
J"‘ 2ad6

0 2a%+1-cos 26

Put20=¢ = 2d0=d¢
When 6=0, ¢=0and when 0=7, ¢ =271

2 Za(dﬁ)
= —\2J)
0 2a%+1-cos (]

_ J.z;z ad

0 2a2+1—cos¢

@™

Put z =¢'%, then d¢ = E
iz

1 1
cosp=—|z+—
¢ 2( zj

dz
a-—

Then H=1I= J- Lz
C 2 1 1

{211 +1- —[z +ﬂ
2 z

where C is the unit circle Iz| =1

_EJ' dz
ide[ 2 1_
2a2+1—;(z * ]

z
_EJ‘ dz

i C_4azz+22—zz—l}

2z

_Q dz
Cide@r+2)-2-1
2 :

i Jez?—(4a*+2)z +1

. dz
=2a1j#
Ccz:—(4a"+2)z+1

2ai

sI= ,fcf(z)dz, where f(Z) = m
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25.10 Engineering Mathematics

The poles of f(z) are the solutions of
22— (4a*+2)z+1=0
22— (4a®+2)z+1=0

(42 +2) +.)(4a* +2)>— 4
z=

2

2(2a% +1) + 4aya® + 1

2

=(2a2+1)£2a/a>+1
= z2=(2a%+1)+2a\a® +1 or 2a° +1) - 2ayJa +1
Let o =2a+1) +2ayJa’ +1 and B = (2a>+1) — 2a\Ja>+ 1

Since o, Bare the roots of z2 — (4a® + 2)z + 1 = 0, the product of the roots e =1
Since a >0, o> 1 also, f< 1.
.. out of the two poles crand S, z = S lies within the unit circle |z| =1 (since | Bl <1)

Now, [Res f(2)],_p5= thﬁ(z =B f(2)
2ai
R S ey
_ 2ai
5 a
_ 2ai
Q2@ +1-2a\Ja +1) - (207 +1-2a,/a’ + 1)
_ 2ai _ —i
—4a\/u2 +1 2\/512 +1
1=]Afz)dz

=2mi [sum of the residues of f(z) at its poles]

2.a%+1

T a4 0w A
5= ns.
0 a“+sin“ 6 \/a2+1

2

= X
Bvaluate | ——*— —ix,a>0,6>0.
i o (P4 )+ 1?)

[KU May 2010, Nov. 2011]

Z2

Solution Let Icq)(z)dz = J.Cmdz

where C consists of the semicircle I' and the bounding diameter [-R, R].

Now, -[c O(z)dz = I_RR O(x)dx + L o(z)dz 1)
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Theory of Residues 25.11

2
z

Z2

Tz +ia)z—ia)(z +ib)(z — ib)

Here, the poles are z = ia, —ia, ib, —ib

Here, z = ia and z = ib lie in the upper half-plane while z = -ia and z = —ib lie in the
lower half-plane.

We have to find the residues of ¢(z) at each of its poles which lies in the upper
half-plane.

Now, o(z) =

[Res f(z)],_;,,= Lt (z—1ia)- ¢(z)

2

Lt (2 — ia)—— e :
z—>ia (z +ia)(z — ia)(z + ib)(z — i)

PO SR
z—in (2 — ia) (2° + b?)
B )
zia (ig + ia) ((ia)* + b%)

_az
 2ia(—a? + )
_ a
 2i(@®-1?)

[Res f(2)],_;,= Lt (2= )9(2)

ZZ

Lt (z—ib
) (2% +a?)(z + ib)(z — ib)

ZZ
= (2% +a*)(z +ib)
_ (ib)*
(i) + a?][ib + ib]
R
C(@-b)2ib  2i(a® - 1Y)

In (1), making R — oo, we get
J-Cd)(z)dz = J.m(b(x)dx + J.r¢(z)dz
When R — e, |z — o0 and ¢(z) — 0

'[ #(z)dz= r ¢(x)dx [from (1)]
C —oo

J“’" 12 dx B J"” Z2dx
co (WP a?) (P + D7) e (2P a?) (2P + D)

=27
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25.12 Engineering Mathematics

[sum of the residues of ¢(z) at each pole in the upper half-plane]

=27 a - b
2i(a®-b*)  2i(a*-b?)

—omi|l — 2 |=omi L
2i(a® - b*) 2i(a—b)(a+D)

J‘“’ x2dx T

= Ans.
e (P +a’)(X*+b%) a+b

|peiny (VAN Evaluate J. :i_x [KU Nov. 2010]

0 x +1

oo

Solution Consider J

0o x*+1
J“” dx _J“” dx
0o x*+1 0 z¥+1
ie., 2 fx =J f"
0 x +1 —z 41

The poles are the roots of Z4+1=0

ie., =1

.

= z=(-1)

= [Cos(Zn + 1)%+ i sin(2n + 1)%} where n=0,1,2,3

T T in. 1 1
Whenn=0, z=cos—+isin—=e*=—+i—
4 4 \/E \/E
3¢ .. 3m iz
Whenn=1, z=cos—+isin—=¢ 4
4 4
When n =2, Z=C035—”+isin5_”=e”’7"
4 4
When n =3, z=cos%+isin%r=e%”

&
=

iSm
4

i i7r
Hence, the poles are z=e*,e * ,e * ,e*

Out of these poles, z= e%, ¢*" lies in the upper half-plane.

in
z—et

[Res¢(z)] .= Lt —
z=cd Tz +1
z—e

1 . , T
= Lt; —= ~ (applying L'Hospital's rule)

i

N
)
«
=
1N
—_—
S
|
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Theory of Residues 25.13

i3n

_p 4
[Res§(z)] o= Lt —°
e b He%" z°+1
~ 1 1
- i37t_3 ﬂlt3
zose 4 4(37)
1
10"

) J‘"“ dx J‘“’ dz
o x*+1 Jewzt41
=2mi [sum of the residues at each pole in the upper
half-plane]

R
I: dx _1(* dz 1=

=— = Ans.
A1 2)ztv1 242

EXERCISE

1. Define essential singularity with an example.

Define removable singularity with an example.

3. Define simple pole and multiple pole of a function f(z). Give one example for
each.

4. Define the residue of a function at an isolated singularity.

State the formula for finding the residue of a function at a multiple pole.

6. Find the residues at the isolated singularities of each of the following:

N

o

z ze® . zsinz

® (z+1)(z-2) & (z—-1) (1) (z—n)°

7. Evaluate the following integrals using Cauchy’s residue theorem:

(i) J- z+1 dz where C: |zl =2
cz(z—-1)
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25.14

-z
(ii) '[ 62 dz where C: Izl =1
cz

a rational function.

Engineering Mathematics

2
Explain how to convert J. f(sin 8, cos 8)dO into a contour integral, where fis
0

9. Obtain the poles of — 2t .
z°+2z+5
-2
10. By using residue theorem, find the value of J- z 1 dz where Cis |zl =2.
czZ—
22

11. Find the residue of f(z)=————— atz=-2.

(z=1)(z+2)

4
12. Find the singularities of f(z) =2L.
z°+2z+2

13. Find the residue of f(z)= 2z aboutz=1.

z°+1
14. Find the residue of f(z)=——— atz=ai

(z°+a”)
15. Find the residue of the function f(z)= _t at a simple pole.

23(z-2)
16. Find the poles of f(z) =;1 .
sin
z—a
17. Find the singularities of the function f(z)= (COt 71')23 .
z—a
18. Give the forms of the definite integrals which can be evaluated using the
infinite semicircular contour above the real axis.

19. Define Cauchy’s residue theorem.
20. Find the residue of atz=1.

3

(2°-1y

1. Evaluate the following using Cauchy’s residue theorem:

. 1-2z ) _é
(1) J;de,C.lZl— 2
.. 2z—1 o
I R e

e Z
(iii) J—Zdz,Czlzlzl
c

zZ
™ |

12z -7

mdz,&lz+il:\/§
z— y4

[Ans. (i) 3 (ii) % (iii) —27i (iv) 47r1}
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Theory of Residues 25.15
2
2. Evaluate J d—9 (Ans. Ej
o 13+5sin6 6
2
3. Evaluate J d—9 [Ans 2—”)
o 17—-8cos6 15
= dx T
4. Evaluate J . Ans.
o xt+at [ P2 j
o 2
5. Evaluate J %dx. (Ans. Ej
0 (X" +1)(x°+4) 6
6. Evaluate I % (Ans 3,u>0]
0 (x“+a%)
7. Evaluate I %dx. (Ans.lne’“j
0 x“+a 2
8. Evaluate I cos x2 dx . (Ans.ﬁe’”]
— X"+ a a
9. Prove thatJ. %:3—7?
—=(x+1)° 8
o 2
10. Evaluate I %dx. (Ans. Ej
0 (x*+1)(x"+4) 6
o .2
11. Evaluate the integral J f 1dx using contour integration.
0 X"+
12. Evaluatej ﬂdx. (Ans. l)
0 (1+x%)? 2e
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Questions

A curve is called a if it does not

intersect itself

A curve is called
closed curve

if it is not a simple

If f(z) is analytic in a simply connected domain D

and C is any simple closed path then J(from ¢)f(z)dz

If f(2) is analytic inside on a simple closed curve C

and a be any point inside C then [(from ¢)f(z)dz
/(z-a)=

The value of [(from ¢) [(32°2+7z+1)/(z+1)] dz
where Cis |z| = 1/2 is

The value of [(from c) (cos nz/z-1) dz if C is |z| =2

The value of [(from ¢) (1/z-1) dz if C is |z| =2
The value of [(from c) (1/z-3) dz if C is |z| =1

The value of [(from ¢) (1/(z-3)*3) dz if C is |z| =2

The Taylor's series of f(z) about the point z=0 is
called series

The value of [(from ¢) (1/z+4) dz if C is |z| =3

In Laurent's series of f(z) about z=a, the terms
containing the positive powers is called the
part

In Laurent's series of f(z) about z=a, the terms
containing the negative powers is called the
part

The poles of the function f(z) = z/((z-1)(z-2)) are at

Z=

The poles of cotz are

The poles of the function f(z) = cos z/((z+3)(z-4))
areatz=

The isolated singular point of f(z) = z/((z-4)(z-5))

The isolated singular point of f(z) = z/((z(z-3))
A simple pole is a pole of order

The order of the pole z= 2 for f(z) = z/((z+1)(z-
2)"2)

Residue of (cosz/z)atz=01is

The residue at z = 0 of ((1 + e"z) / (zcosz+sinz)) is

optl
Simple
closed
curve

connected
region

[ER

2ni f(a)

27l

27l

2mi
37l

37l

Maclaurin'
S
31

regular

regular

1,2

2nn

-3,4

0

opt2

multiple
curve

multiple
curve

27l

27

-6mi

-2m

37l
i

i

Laurent's

i

principal

principal

2,3

nmn

[EEY

opt3
simply
connected
region
simply
connected
region

i

i

i
/4

mi/5

Geometric

/4

real

real

1,1

3nn

optd
multiple
connected
region
multiple
connected
region

opt5

i

i

mi/2

mi/3
/4

Arithmetic
0

imaginary

imaginary

3,4

4nn



The residue of f(z) =cotzatz=0is
The singularity of f(z) =z / ((z-3)"3) is

A point z=a is said to be a point of f(z), if
f(z) is not analytic at z=a
A point z=a is said to be a point of f(z), if

f(z) is analytic except at z=a

In Laurent's series of f(z) about z=a, the terms
containing the negative powers is called the
_____point

In Laurent's series of f(z) about z=a, the terms
containing the positive powers is called the
____point

In contour integration, cos 6=

In contour integration, sin 6=

0
0

Singular

Singular

Singular

Singular

22+1)2 (2°2+1)2i

z

Z2+1)2 (2°2+1)2i

z

1
1
isolated
singular
isolated
singular

isolated
singular

isolated
singular

z

z

2
2

removable
removable

removable
singular

removable
singular

(z72-1)/2z

(z72-1)/2z

4
3

essential
singular
essential
singular

essential
singular

essential
singular

(z72-
1)/2iz
(z72-
1)/2iz



opt6 Answer
Simple
closed
curve

multiple
curve

2ni f(a)

-6

27l

27l

0
0

Maclaurin'
S
0

regular

principal

1,2

nm

-3,4

4,5



1
3

Singular

isolated
singular

essential
singular

removable
singular

(zr2+1)/2
z

(z72-
1)/2iz



