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OBJECTIVES:        

INTENDED OUTCOMES:        

 
UNIT- I PARTIAL DIFFERENTIAL EQUATIONS                               ( 11) 

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – 

Solution of standard types of first order partial differential equations – Lagrange’s linear equation – Linear 

partial differential equations of second and higher order with constant coefficients. 

 
UNIT-II MULTIPLE INTEGRALS                                   ( 11) 

Double integral – Cartesian coordinates – Polar coordinates – Change of order of integration – Triple 

integration in Cartesian co-ordinates – Area as double integrals. 

 

UNIT-III  VECTOR CALCULUS                          ( 13) 

Gradient, Divergence and Curl – Directional derivative – Irrotational and Solenoidal vector fields – Vector 
integration – Green’s theorem, Gauss divergence theorem and Stoke’s theorems (Statement Only)- Surfaces 

: hemisphere and rectangular parallelopipeds.  

                                    

UNIT-IV ANALYTIC FUNCTIONS                       ( 12) 

Analytic functions  - Cauchy-Riemann equations in Cartesian and polar forms –  Sufficient condition for 
an analytic function (Statement Only) - Properties of analytic functions – Constructions of an analytic 

function - Conformal mapping: w = z+a, az, 1/z, z2 and bilinear transformation. 

 

UNIT-V  COMPLEX INTEGRATION                             ( 13) 

Complex Integration - Cauchy’s integral theorem and integral formula (Statement Only) – Taylor series 
and Laurent series - Residues – Cauchy’s residue theorem (Statement Only) - Applications of Residue 

theorem to evaluate real integrals around unit circle and semi circle (excluding poles on the real axis).  

    

 Total : 60  

     

 
TEXT BOOKS:        

• To understand the concepts and applications of partial differential equations 

• To have knowledge in integral calculus and Vector calculus 

• To expose to the concept of Analytical function and Complex integration. 

The student will be able to  

• Solve problems in Fluid Dynamics, Theory of Elasticity, heat and mass transfer etc.  

• Find the areas and volumes using multiple integrals 

•  Improve their ability in Vector calculus 

• Expose to the concept of Analytical function. 

• Apply  Complex integration in their Engineering problems 
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Lecture Plan 

 

 
S.No Topic covered No. of 

hours 

Supporting 

Material  

PARTIAL DIFFERENTIAL EQUATIONS  

1 Introduction - Formation of PDE by eliminating arbitrary constants 1 T1:16.5-16.8 

2 Formation of PDE by eliminating arbitrary functions 1 T1:16.9-16.13 

3 Solution of PDE of first order (Standard type) – Type 1,2 1 T1:16.13-16.15 

4 Solution of PDE of first order (Standard type) – Type 3,4 1 T1:17.1-17.2 

5 Solution of PDE reducible to standard types 1 T1:17.2-17.4 

6 Solution of PDE reducible to standard types 1  

7 Lagrange’s linear equation 1 T1:17.10-17.14 

8 Lagrange’s linear equation-Problems 1 T1:17.5-17.10 

9 Linear PDE of second order with constant coefficients homogeneous type- 
Problems 

1 T1:17.14-17.18 

10 Linear PDE of second order with constant coefficients homogeneous type- 
Problems 

1 T1:17.18-17.24 

11 Linear PDE of second order with constant coefficients non- homogeneous 

type- Problems 

1 T1:17.24-17.27 

12 Linear PDE of second order with constant coefficients non-homogeneous 
type- Problems 

1  

 Total 12  

UNIT II : MULTIPLE INTEGRALS  

13 Integration – Basic Problems 1 T1:18.3-18.4 

14 Double integral 1 T2:294-295 

15 Double integral - Problems 1 T1:18.3-18.4 

16 Problems in Cartesian coordinates 1 T1:18.5-18.8 

17 Problems in Polar coordinates 1 T1:18.5-18.8 

18 Area as double integrals 1 T1:18.7-18.8 

19 Tutorial 3 - Double integral, Area as double integrals  1  

20 Change the order of integration 1 T1:19.1-19.4 

21 Change the order of integration 1 T2:297-302 

22 Triple integration in Cartesian co-ordinates 1 T1:19.4-19.7 

23 Triple integration in Cartesian co-ordinates 1 T2:305-310 

24 Tutorial 4 - Change the order of integration, Triple integration in Cartesian 
co-ordinates 

1  

  12  

UNIT III : VECTOR INTEGRATION    

25 Integration of vectors 1 T1:20.3-20.4 

26 Line integral problems 1 T1:20.5-20.8 

27 Surface integral problems 1 T1:20.3-20.4 

28 Volume integral problems 1 T1:20.3-20.4 

29 Green’s theorem problems 1 T1:20.9-20.28 

30 Green’s theorem problems 1 R:485-490 

31 Tutorial 5 – Line, Surface and Volume integral problems 1  

32 Gauss divergence theorem problems 1 T1:20.9-20.28 

33 Gauss divergence theorem problems 1 T2:376-381 



34 Stoke’s theorems problems 1 T1:20.9-20.28 

35 Stoke’s theorems problems 1 T2:372-375 

36 Tutorial 6 – Gauss Divergence theorem and Stoke’s theorem problems 1  

 Total 12  

UNIT IV : ANALYTIC FUNCTIONS  

37 Introduction – Analytic Function 1 T1:21.3-21.8 

38 Necessary and Sufficient conditions for an analytic function 1 T1:21.9 

39 Cauchy-Riemann equations –Cartesian form 1 R:740-744 

40 Cauchy-Riemann equations – Polar form 1 R:740-744 

41 Cauchy-Riemann equations – Properties 1 T1:21.9-21.12 

42 Cauchy-Riemann equations – Problems based on Properties 1 T1:21.13-21.22 

43 Construction of an Analytic Function - Problems 1 T2:745-747 

44 Tutorial 7 - Cauchy-Riemann equations , Construction of an Analytic 

Function 

1  

45 Conformal mapping: w = z+a, az  1 T1:22.1-22.12 

46 Conformal mapping: w = 1/z 1 T1:22.1-22.12 

47 Bilinear transformation – Problems 1 T2:756-762 

48 Tutorial 8 - Conformal mapping, Bilinear transformation 1  

 Total 12  

  

 UNIT V: COMPLEX INTEGRATION    

49 Introduction - Complex Integration 1 T1:23.1-23.5 

50 Problems solving using Cauchy’s integral theorem 1 T1:23.6-23.10 

51 Problems solving using Cauchy’s integral formula 1 T2:765-769 

52 Tutorial 10 - Problems solving using Cauchy’s integral theorem and integral 
formula 

1  

53 Taylor and Laurent expansions 1 T1:24.1-24.11 

54 Taylor  Series and Laurent Series Problems 1 T2:771-776 

55 Tutorial 11 - Taylor and Laurent expansions 1  

56 Theory of Residues 1 T1:25.1-25.3 

57 Cauchy’s residue theorem 1 T1:25.3-25.13 

58 Applications of Residue theorem to evaluate Unit circle 1 T1:25.3-25.13 

59 Applications of Residue theorem to evaluate semi – circle. 1 T2:776-723 

60 Tutorial 12 - Cauchy’s residue theorem, Applications 1  

 Total 12  

  

TOTAL 50+10=60  
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SEMESTER II 

17BECC202, 17BTAR202, 17BTCE202       

ENGINEERING MATHEMATICS II              3 2 0 4  
 

OBJECTIVES:  

1. To have knowledge in integral calculus and Vector calculus 
2. To expose the concept of Analytical function and Complex integration. 

 

INTENDED OUTCOMES:  

The student will be able to  
1. Solve problems in Fluid Dynamics, Theory of Elasticity, Heat and Mass Transfer etc. 

2. Find the areas and volumes using Multiple Integrals 
3. Improve their ability in Vector calculus 
4. Expose to the concept of Analytical function. 
5. Apply  Complex integration in their Engineering problems 

 

UNIT I  INTEGRAL CALCULUS                                  (12)    
 

Definite and indefinite integrals – Techniques of integration – Substitution rule, Trigonometric 
integrals, Integration by parts , Integration of rational functions by partial fraction, Integration of 
irrational functions – Improper Integrals. 
 

UNIT II  MULTIPLE INTEGRALS                                                                              (12)       
 

Double integral – Cartesian coordinates – Polar coordinates – Area as double integrals- Change the 
order of integration – Triple integration in Cartesian co-ordinates. 
 

UNIT III  VECTOR INTEGRATION            (12) 
 

Integration of vectors – line integral- surface integral- volume integral- Green’s theorem - Gauss 
divergence theorem and Stoke’s theorems (Statement Only), hemisphere and rectangular 

parallelopipeds problems.                                    
 

UNIT IV ANALYTIC FUNCTIONS                           (12) 
 

Analytic functions - Cauchy-Riemann equations in Cartesian and polar forms – Sufficient 
condition for an analytic function (Statement Only) - Properties of analytic functions – 

Constructions of an analytic function - Conformal mapping: w = z+a, az, 1/z and bilinear 
transformation. 
 

UNIT V  COMPLEX INTEGRATION                     (12)        
 

Complex Integration - Cauchy’s integral theorem and integral formula (Statement Only) – Taylor 
series and Laurent series - Residues – Cauchy’s residue theorem (Statement Only) - Applications 
of Residue theorem to evaluate real integrals around unit circle and semi-circle (excluding poles on 
the real axis). 

 

Total: 60 
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Questions opt1 opt2

In a PDE, there will be one dependent variable and ____ independent 

variables only one two or more 

The ______ of a PDE is that of the highest order derivative occurring 

in it degree power

The degree of the a PDE is ______of  the higest order derivative power ratio

Afirst order PDE is obtained if______

Number of 

arbitrary 

constants is 

equal Number 

of independent 

variables

Number of 

arbitrary constants 

is lessthan Number 

of independent 

variables

In the form of PDE, f(x,y,z,a,b)=0. What is the order? 1 2

What is form of the z=ax+by+ab by eliminating the arbitrary 

constants? z=qx+py+pq z=px+qy+pq

General solution of PDE F(x,y,z,p,q)=0 is any arbitray function F of 

specific functions u,v is____satisfying given PDE F(u,v)=0 F(x,y,z)=0

The  PDE of the first order can be written as-------------- F(x,y,s,t) F(x,y,z,p,q)=0

The complete solution of clairaut's equation is _____ z=bx+ay+f(a,b) z=ax+by+f(a,b)

The Clairaut’s equation can be written in the form --------
z=px+qy+f(p,q

)

 z=(p-

1)x+qy+f(x,y)

From the PDE by eliminating the arbitrary function from z=f(x^2 -

y^2) is xp+yq=0 p=-(x/y)

Which of the following is the type f(z,p,q)=0 ? p(1+q)=qx p(1+q)=qz

The equation (D^2 z+2xy(Dz)^2+D'=5 is of order ____and 

degree____ 2 and 2 2 and 1

The complementry function of (D^2 -4DD'+4D'^2)z=x+y is 

f(y+2x)+xg(y+2

x) f(y+x)+xg(y+2x)

The solution of xp+yq=z is _____ f(x^2,y^2)=0 f(xy,yz)

The solution of p+q=z is ____ f(xy,ylogz)=0 f(x+y, y+logz)=0

A solution which contains the maximum possible number of 

arbitrary functions is called-------------integral.
singular complete

The lagrange's linear equation can be written in the form ---------

----
Pq+Qp=r Pq+Qp=R

The complete solution of    the PDE 2p+3q =1 is ----------------  
z=ax+[(1-

2a)/3]y+c
z=ax+y+c

The complete solution of  the PDE  pq=1 is ------------------ z=ax+(1/a)y+b z=ax+y+b



The solution got by giving particular values to the arbitrary 

constants  in a complete integral is called a --------
general singular

The general solution of Lagrange's equation is denoted as------- f(u,v)=0 zx

The subsidiary equations are px+qy=z is --------------
dx/y=dy/z=dz/

x
dx/x=dy/y=dz/z

The general  solution of equation p+q=1 is ------------- f(xyz,0) f(x-y,y-z)

The separable equation  of the first order PDE can be written in 

the form of ------------
f(x,y)=g(x,y) f(a,b)=g(x,y)

Complementary function is the solution  of ------------------------ f(a,b) f(1,0)=0

C.F+P.I  is called -------------------   solution singular complete

Particular integral is the solution of ------------- f(a,b)=F(x,y) f(1,0)=0

Which is    independent  varible in the equation  z= 10x+5y x&y z

Which is dependent varible in the equation z=2x+3y x z

Which of  the following is the type f(z,p,q)=0 p(1+q)=qx p(1+q)=qz

Which is complete  integral of z=px+qy+(p^2)(q^2)
z=ax+by+(a^2)

(b^2)
z=a+b+ab

The complete integral of PDE of the form F(p,q)=0 is z=ax+f(a)y+c       z=ax+f(a)+b

The relation between the independent and the dependent 

variables which satisfies the PDE is called-------
solution complet solution

A solution which contains the maximum possible number of 

arbitrary constant is called---------
general complete

The equations which do not contain x & y explicitly can be 

written in the form---------------
f(z,p,q)=0 f(p,q)=0

The subsidiary equations of the lagranges equation 2y(z-3)p + 

(2x-z)q = y(2x-3)

dx/2y(z-3) = 

dy/(2x-z) 

=dz/y(2x-3)

dx/(2x-z) 

=dy/2y(z-3) 

=dz/y(2x-3)

A PDE ., the partial derivatives occuring in which are of the 

first degree is said to be --------------
linear non-linear

A PDE., the partial derivatives occuring in which are of the 2 or 

more than 2 degree is said to be------
linear non-linear

 If z=(x^2+a)(y^2+b) then differentiating z partially with respect 

to x is ----- 
2x 3x(y^2+b)

If z=ax+by+ab then differentiating z partially with respect to y is 

----- 
a a+b

The complete solution of    the PDE p=2qx is ----------------  z=ax+ay+c ax+b

The general solution of px-qy=xz is f(u,v)=0 f(xy,x-logz)=0

If z= f(x^2+y^@)  then differentiating z partially with respect to 

x is -----  

p=2xf ’ 

(x^2+y^2)  
p=2xf(x^2+y^2)  



 If z= f(x^2+y^2 +z^2) thendifferentiating z partially with 

respect to y is ----- 

q=2xf(x^2+y^

2)  

q=(2y+2zz') 

f'(x^2+y^2
 
+z^2) 

The solution of differentiating z partially with respect to x twice 

gives -----  
ax ax+by+c

The auxiliary equation of  (D^2-4DD
’
+4 D'^2

)
z=0 is   m^2-4m+4=0  m^2+4m+4=0   

 The auxiliary equation of  (D^3-7DD'^2-6D'^3)z=0 is m^3+7m+6=0 m^3-7m-6=0    

The auxiliary equation of  (D^3+DD'^2
  
-D^2D

’ 
-D'^3)z=0 is

m^3-m^2+m-

1=0 
m

3
+m

2
+m-1=0 

The auxiliary equation of  (D^2-4DD
’
+4 D'^2)z=e^x is m^2+4m+4=0 m^2-4m-4=0

The auxiliary equation of(D^3+7DD'^2+6D'^3  )z=cos ax is m^3+7m+6=0   m^3-7m-6=0

The roots of the partial differential equation (D^2-4DD’+4 

D'^2)z=0 are
2,1 2,2  

 Theroots of the partial differential equation  (D^3-7DD'^2-

6D'^3)z=0 are
1,2,3 2,1,3 

The roots of the partial differential equation  (D^3 -D^2D’ 

+DD'^2   -D'^3)z =0 are
1,i,- i      1,1,i

The roots of the partial differential equation (D^3 -D^2D’ -

DD'^2   +D'^3)z  z =0 are
1,1,1 1,1,-1 

The roots of the partial differential equation (D^2-2DD’+D'^2  

)z=0 are
0,1 i,-1

The particular integral of e^
(ax+by)

/ (
 
D-(aD’/b))^2

  
 is ------ e^(ax+by) (x

2
/2) e^(ax+by)

The particular integral of e^
(ax+by)

/ (
 
D-(aD’/b))

 
 is --------- ax-by+c                              e^(ax+by)



opt3 opt4 opt5 opt6 Answer

no

infinite 

number of two or more 

order ratio order 

degree order power

Number of 

arbitrary 

constants is  

greater than 

Number of 

independent 

variables

Number of 

arbitrary 

constants is 

not equal to 

Number of 

independent 

variables

Number of 

arbitrary 

constants= 

Number of 

independent 

variables

3 4 1

z=px+qy+p z=py+qy+q z=px+qy+pq

F(x,y)=0 F(p,q)=0 F(u,v)=0

F(x,y,z,1,3,2)=0 F(x,y)=0 F(x,y,z,p,q)=0

z=ax+by z=f(a,b) z=ax+by+f(a,b)

z=Pp+Qq Pq+Qp=r z=px+qy+f(p,q)

q=yp/x yp+xq=0 yp+xq=0

p(1+q)=qy p=2x f(y+2x) p(1+q)=qz

1 and 1 0 and 1 2 and 1

f(y+x)+xg(y+x)

f(y+4x)+xg(y

+4x)

f(y+2x)+xg(y+2x

)

f(x,y)=0 f(x/y ,y/z)=0 f(x/y ,y/z)=0

f(x-y, y-logz)=0

f(x-

y,y+logz)=0 f(x-y, y-logz)=0

general particular general

Pp+Qq=R F(x,y)=0 Pp+Qq=R

z=ax+(1-

2x)/y+c
z=ax+b

z=ax+[(1-

2a)/3]y+c

z=ax+ay/b+c z=ax+b z=ax+(1/a)y+b



particular complete particular

f   (x,y) F(x,y,s,t)=0 f(u,v)=0

xdx=ydy=zdz
dz/z=dx/y=d

y/x
dx/x=dy/y=dz/z

f(x-y,y+z) F(x,y,s,t)=0 f(x-y,y-z)

f(x,p)=g(y,q) f(x)=g(a) f(x,p)=g(y,q)

f(D,D')z=0 f(a,b)=F(x,y) f(D,D')z=0

general particular general

[1/f(D,D')]F(x,y

)
f(a,b)=F(u,v)

[1/f(D,D')]F(x,y

)

x,y,z x alone x&y

y x&y z

p(1+q)=qy
p=2xf’(x^2)-

(y^2))  
p(1+q)=qz

z=ax+by+ab z=a+f(a)x
z=ax+by+(a^2)(

b^2)

z=a+f(a)x z=ax+f(a) z=ax+f(a)y+c       

general solution
singular 

solution
solution

solution singular complete

(p,q)=0 f(x,p,q)=0 f(z,p,q)=0

dx/2y=dz/(z-3)
dx/2y=dz/(z-

3)=dy/2x

dx/2y(z-3) 

=dy/(2x-z) 

=dz/y(2x-3)

order degree linear

order degree non-linear

2x(y^2+b) 3x+y                                   2x(y^2+b)

0 b b

z = ax^2+ay+c     z= ax+(b+c)               z = ax^2+ay+c     

f(x-y,y-z)=0 f(x-y,y+z)=0 f(xy,x-logz)=0

p=2xf’(x^2-
  

y^2)  
p(1+q)=qy

p=2xf ’ 

(x^2+y^2)  



q=2y q=0

q=(2y+2zz') 

f'(x^2+y^2 
 

+z^2) 

ax+b ax=p ax+b

m^2-4m-4=0  
m^2+4m-

4=0                 
m^2-4m+4=0  

m^3-7m+6=0  
m^3+7m-

6=0
m^3-7m-6=0    

m^3-

m^2+m+1=0 

m^3-m^2-

m-1=0                                                                                             

m^3-m^2+m-

1=0 

m^2+4m-4=0   none none

m^3-7m+6=0   m^+7m-6=0 m^3+7m+6=0   

2,-2 2,-2   2,2  

2,3, -1 3,-1,-2 3,-1,-2

i,i,1  1,1,1                                    1,i,- i      

1,-1,-1 -1,-1,-1     1,-1,-1 

1,2 1,1                                       1,1                                       

ax-by+c                              ax+by (x
2
/2)e^(ax+by)

ax+by xe^(ax+by) xe^(ax+by)
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Objective type questions Opt 1

The triple integral ∫∫∫ dv gives the __________ over the region v area

The value of ∫∫ dx dy , inner integral limt varies from 1 to 2 and the 

outer integral limit varies from 0 to 1 0
∫∫∫ dx dy dz, the inner integral limit varies from 0 to 3, the central 

integral limit varies  from 0 to 2 and outer integral limit varies from 0 2

When the limits are not given, the integral is named as __________ Definite  integral

The Double integral ∫∫ dx dy gives _________ of the region R area

The value of ∫∫ (x+y) dx dy , inner integral limt varies from 0 to 1 and 

the outer integral limit varies from 0 to 1 0The value of ∫∫∫ x^2 yz   dx dy dz, the inner integral limit varies from 1 

to 2, the central integral limit varios from 0 to 2 and outer integral 

limit various from 0 to 1 7/3

Evaluate ∫∫ 4xy dx dy, the inner integral limit varies from 0 to 1 and 

outer integral limit varies from 0 to 2 10

The value of ∫∫ d xdy ∕xy, the inner integral limit varies from 0 to b 

and the outer limit varies from 0 to a 0

If the limits are given in the integral , then the integral is name 

as____________ Definite  integral

The value of ∫∫(x^2+3y^2) dy dx , the inner integral limit varies from 0 

to 1, the outer integral limit varies from 0 to 3 10
The value od ∫∫∫ dxdy d,  the inner integral limit varies from  0to 3, 

the central integral limit varies from 0 to 2 and outer integral limit 6

If the limits are not given in the integral , the the integral is name 

as____________ Definite  integral

The value of  ∫∫(x^2+y^2) dy dx ,the inner integral limit varies  from  0 

to x, the outer integral limit varies from 0 to 1 1

The value of ∫∫dy dx, the inner integral limit various from 0 to x ,the 

outer integral limit varies  from -a to a 0

The Double integral ∫∫ dx dy gives _________ of the region R areaThe value of ∫∫∫ dx dy dz, the inner integral limit varies from 0 to a , 

the central integral limit varies from 0 to a and the outer integral limit 

varies from 0 to a 0

The value of ∫∫(x+y) dx dy , the inner integral limit varies from 0 to 1 

and the outer integral limit varies from 0 to 1 0

The concept of line integral as a generalization of the concept of 

________ integral Single

The extension of double integral is nothing but ________ integral Single

The concept of _________ integral as a generalization of the concept 

of double integral Single

Evaluate ∫x^2∕2 dx, the limit varies from 0 to 1 2

Evaluate ∫42y dy, the limit varies from 0 to 10 10

The value of ∫∫2 xy dy dx, the inner integral limit varies from 0 to x 

and the outer integral limit varies from 1 to 2 15∕4



The value of ∫∫dy dx, the inner integral limit varies from 2 to 4 ,the 

outer integral limit varies from  1 to 5 8

The value of ∫∫xy dy dx, the inner integral limit varies from 0 to 3 , the 

outer integral limit varies from 0 to 4 12

The value of ∫∫dy dx, the inner integral limit varies from 0 to 2 , the 

outer integral limit varies from 0 to 1 2

The value of ∫∫dx dy, the inner integral limit varies from  y to 2 , the 

outer integral limit varies from 0 to 1 1∕2

The value of ∫∫dx dy, the inner integral limit varies from 2 to 4 , the 

outer integral limit varies from 1 to 2 2

When a function f(x) is integrated with respect to x between the 

limits a and b, we get _________ Definite  integral

In two dimensions the x and y axes divide the entire xy- plane into 

___________ quadrants 1

In three dimensions the xy and yz and zx planes divide the entire 

space into ___________ parts called octants 3

Evaluate ∫(2x+3) dx, the integral limitvaries from 0 to 2 10

_________ provides a relationship between a double integral 

over a region R and the line integral over the closed curve C 

bounding R.

Cauchy's Theorem

________ is also called the first fundamental theorem of integral 

vector calculus.
Cauchy's Theorem

_________ transforms line integrals into surface integrals. Cauchy's Theorem

_______ transforms surface integrals into a volume integrals. Cauchy's Theorem

_________ is stated as surface integral of the component of curl 

F along the normal to the surface S, taken over the surface S 

bounded by curve C is equal to the line integral of the vector 

point function F taken along the closed curve C.

Cauchy's Theorem

________ is stated as the surface integral of the normal 

component of a vector function F taken around a closed surface 

S is equal to the integral of the divergence of F taken over the 

volume V enclosed by the surface S.

Cauchy's Theorem

















Opt2 Opt3 Opt4 Opt5 Opt6 Answer 

volume Direction weight volume

1 2 3 1

4 6 8 6

Infinite integral volume integral Surface integral Infinite integral

modulus Direction weight

1 2 3 1

1/3 2/3 3 7/3

4 5 1 4

1 ab loga log b loga log b

Infinite integral volume integral Surface integral Definite  integral

15 12 30 12

1 16 12 6

Infinite integral volume integral Surface integral Infinite integral

1∕3 2∕3 3∕2 1∕3

1 2 3 0

modulus Direction weight area

a^3 a^2 a^4 a^3

1 2 3 1

Double change of order Triple Double

Line volume integral Triple Triple

Surface Line Triple Line 

1∕6 1∕10 34 1∕6

2100 2000 100 2100

9∕2 3∕2 4∕3 15∕4



2 4 5 8

36 1∕2 4 12

1 3∕2 4 2

1 3∕2 4 3∕2

6 3 1 2

infinite integralv volume integral Surface integral Definite  integral

2 3 4 2

2 8 4 8

42 51 1 10

Green's Theorem Stoke's Theorem Gauss Theorem Stoke's Theorem

Green's Theorem Stoke's Theorem Gauss Theorem Green's Theorem

Green's Theorem Stoke's Theorem Gauss Theorem Green's Theorem

Green's Theorem Stoke's Theorem Gauss Theorem Gauss Theorem

Green's Theorem Stoke's Theorem Gauss Theorem Stoke's Theorem

Green's Theorem Stoke's Theorem Gauss Theorem Gauss Theorem
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Chapter Outline

 ● Introduction
 ● Integration of Vectors
 ● Line Integral
 ● Circulation
 ● Application of Line Integrals
 ● Surfaces
 ● Surface Integrals
 ● Volume Integrals
 ● Integral Theorems

20.1 ❑ introDuCtion

In multiple integrals, we generalized integration from one variable to several 
variables. Our goal in this chapter is to generalize integration still further to include 
integration over curves or paths and surfaces. We will define integration not just of 
functions but also of vector fields. Integrals of vector fields are particularly important 
in applications involving the “field theories” of physics, such as the theory of 
electromagnetism, heat transfer, fluid dynamics and aerodynamics.

In this chapter, we shall define line integrals and surface integrals. We shall see that 
a line integral is a natural generalization of a define 
integral and a surface integral is a generalization of 
a double integral. Line integrals can be transformed 
into double integrals or into surface integrals and 
conversely. Triple integrals can be transformed into 
surface integrals and vice versa. These transformations 
are of great practical importance. Theorems of Green, 
Gauss and Stokes serve as powerful tools in many 
applications as well as in theoretical problems.

Fig. 20.1

20 Line Integral, Surface 
Integral and Integral 
Theorems
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20.4	 Engineering Mathematics

In this chapter, we study the three main theorems of Vector Analysis: Green’s 
Theorem, Stokes’ Theorem and the Divergence Theorem. This is a fitting conclusion to 
the text because each of these theorems is a vector generalization of the Fundamental 
Theorem of calculus. This chapter is thus the culmination of efforts to extend the 
concepts and methods of single-variable calculus to the multivariable setting. 
However, far from being a terminal point, vector analysis the gateway to the field 
theories of mathematics physics and engineering. This includes, first and foremost, the 
theory of electricity and magnetism as expressed by the famous Maxwell’s equations. 
It also includes fluid dynamics, aerodynamics, analysis of continuous matter, and at 
a more advanced level, fundamental physical theories such as general relativity and 
the theory of elementary particles.

Curves

Curves in space are important in calculus and in physics (for instance, as paths of 
moving bodies).

A curve C in space can be represented by a vector function
	 ( ) [ ( ), ( ), ( )]

( ) ( ) ( )
r t x t y t z t

x t i y t j z t k
=

= + +



 

	 (20.1)

where x, y, z are Cartesian coordinates. This is called a parametric representation of 
the curve (Fig. 20.1), t is called the parameter of the representation. To each value t0 of 
t, there corresponds a point of C with position vector 0( ),r t



 that is with coordinates 
x(t0), y(t0) and z(t0).

The parameter t may be time or something else. Equation (20.1) gives the 
orientation of C, a direction of travelling along C, so that t increasing is called the 
positive sense on C given by (20.1) and that of decreasing t is the negative sense.

●● Examples

Straight line, ellipse, circle, etc.
The concept of a line integral is a simple and natural generalization of a definite 

integral ( )
b

a

f x dxÚ � (20.2)

In (20.2), we integrate the integrand f(x) from x = a to x = b along the x-axis. In a 
line integral, we integrate a given function, called the integrand, along a curve C in 
space (or in the plane).

Hence, curve integral would be a better turn, but line integral is standard.
We represent a curve C by a parametric representation

	 ( ) ( ) ( ) ( ) , ( )r t x t i y t j z t k a t b= + + £ £
 



We call C the path of integration, : ( )A r a


 its initial 
point and : ( )B r b



, its terminal point. The curve C is 
now oriented. The direction from A to B, in which t 
increases, is called the positive direction on C. We can 
indicate the direction by an arrow [Fig. 20.2(a)].

The points A and B may coincide [Fig. 20.2(b)]. 
Then C is called a closed path. Fig. 20.2
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 Line Integral, Surface Integral and Integral Theorems 20.5

  note

 (i) A plane curve is a curve that lies in a plane in space.
 (ii) A curve that is not plane is called a twisted curve.

20.2 ❑ intEgration of VECtors

If two vector functions ( )F t


 and ( )G t


 be such that ( ) ( ),dG t F t
dt

=




 then ( )G t


 is called 

an integral of ( )F t


 with respect to the scalar variable t and we write ( ) ( )F t dt G tÚ =


. If C


 

be an arbitrary constant vector, we have ( )( ) [ ( ) ]dG t dF t G t C
dt dt

= = +


 

, then 

( ) ( )F t dt G t CÚ = +
 

. This is called the indefinite integral of ( )F t


 and its definite integral 

is ( ) [ ( ) ] ( ) ( )
b

b
a

a

F t dt G t C G b G a= + = -Ú
   

.

20.3 ❑ linE intEgral

Any integral which is to be evaluated along a curve is 
called a line integral. Consider a continuous vector 
point function ( )F R



 which is defined at each point 
of the curve C in space. Divide C into n parts at the 
points A = p0, p1 … pi–1, pi … pn = B

Let their position vectors be 0 1 1,, ... ...i i nR R R R R-

    

Let iv


 be the position vector of any point on the 
arc Pi–1 Pi

Now consider the sum 
0

( )
n

i i
i

S F v Rd
=

= ◊Â  

  where 

1i i iR R Rd -= -
  

.

The limit of this sum as n – • in such a way that | | 0iRd Æ


, provided it exists, 
is called the tangential line integral of ( )F R

 

 along C which is a scalar and is 
symbolically written as

 
( ) or

C C

dRF R dR F dt
dt

◊ ◊ ◊Ú Ú



  

When the path of integration is a closed curve, this fact is denoted by using Ú  in 
place of Ú.

If  ( ) ( , , ) ( , , ) ( , , )F R f x y z i x y z j x y z kf y= + +
  

 and dR dxi dyj dzk= + +
 

then ( ) ( )
C

C

F R dR fdx dy dzf y◊ = + +Ú Ú
  

.

Two other types of line integrals are 
C

F dR¥Ú
 

 and 
C

fdRÚ


 which are both vectors.

 (i) A plane curve is a curve that lies in a plane in space.
 (ii) A curve that is not plane is called a twisted curve.

Fig. 20.3
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20.6	 Engineering Mathematics

20.4  ❑  Circulation

In fluid dynamics, if F


 represents the velocity of a fluid particle then the line integral 

C

F dr◊Ú




 is called the circulation of F


 around the curve. When the circulation of F


 

around every closed curve in a region E vanishes, F


 is said to be irrotational in E.

Conservative Vector

If the value of 
B

A

F dr◊Ú




 does not depend on the curve C, but only on the terminal 

points A and B, F


 is called a conservative vector.

A force field F


 is said to be conservative if it is derivable from a potential function 
f, i.e., F =



 grad f. Then curl ( )F


 = curl (—f) = 0.
\ if F



 is conservative then curl ( ) 0F =


 and there exists a scalar potential function f 
such that F f= —



.

20.5  ❑  Applications of Line Integrals

Work Done by a Force

Let v


(x, y, z) = v1(x, y, z) i


 + v2(x, y, z) j


 + v3(x, y, z) k


 be a vector function defined and 
continuous at every point on C. Then, the integral of the tangential component of v



 
along the curve C from a point P on to the point Q is given by

	

1 1

1 2 3

Q

P C C

v dr v dr v dx v dy v dz◊ = ◊ = + +Ú Ú Ú


  

where C1 is the part of C, whose initial and terminal points are P and Q.
Let ,v F=





 variable force acting on a particle which moves along a curve C. Then 
the work done W by the force F



 in displacing the particle from the point P to the 
point Q along the curve C is given by

	 1

Q

P C

W F dr F dr= ◊ = ◊Ú Ú
 

 

where C1 is the part of C whose initial and terminal points are P and Q.
Suppose F



 is a conservative vector field; then F


 can be written as F


 = grad f, 
where f is a scalar potential.
Then, the work done

	

1 1

1

(grad )

( , , )

C C
Q

Q

P
C P

W F dr dr

dx dy dz d x y z
x y z

f

f f f f f

= ◊ = ◊

È ˘∂ ∂ ∂ È ˘= + + = =Í ˙ Î ˚∂ ∂ ∂Î ˚

Ú Ú

Ú Ú



 
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 Line Integral, Surface Integral and Integral Theorems 20.7

\ work done depends only on the initial and terminal points of the curve C1, i.e., the 
work done is independent of the path of integration. The units of work depend on the 
units of | |F



 and on the units of distance.

  note

 (i) Condition for 


F  to be conservative
  If F



 is irrotational then 0F— ¥ =


.

  It is possible only when F f= —


. which fi F


 is conservative.
  \ if F



 is an irrotational vector, it is conservative.
 (ii) If F



 is irrotational (and, hence, conservative) and C is a closed curve then 

0
C

F dr◊ =Ú






. [ f(A) = f(B), as A and B coincide].

20.6 ❑ surfaCEs

A surface S may be represented by F(x, y, z) = 0.
The parametric representation of S is of the form

 ( , ) ( , ) ( , ) ( , )r u v x u v i y u v j z u v k= + +
 



and the continuous functions u = f(t) and v = f(t) of a real parameter t represent a 
curve C on this surface S.

If S has a unique normal at each of its points whose direction depends continuously 
on the points of S then the surface S is called a smooth surface. If S is not smooth 
but can be divided into finitely many smooth portions then it is called a piecewise 
smooth surface. For example, the surface of a sphere is smooth while the surface of a 
cube is piecewise smooth.

If a surface S is smooth from any of its points P, we may choose a unit normal 
vector n



 of S at P. The direction of n


 is then called the positive normal direction 
of S at P. A surface S is said to be orientable or two-sided, if the positive normal 
direction at any point P of S can be continued in a unique and continuous way to the 
entire surface. If the positive direction 
of the normal is reversed as we move 
around a curve on S passing through P 
then the surface is non-orientable (i.e., 
one-sided) (Fig. 20.4).

 ● Example

A sufficiently small portion of a smooth 
surface is always orientable (Fig. 20.5).

A Mobius strip is an example of a 
non-orientable surface. A model of a 
Mobius strip can be made by taking a 
long rectangular piece of paper, making 
a half-twist and sticking the shorter 
sides together so that the two points A 
and the two points B coincide; then the 
surface generated is non-orientable.

 (i) Condition for 


F to be conservative
  If F



 is irrotational then 0— ¥ =F— ¥ =F


.

  It is possible only when F f= —


. which fi F


 is conservative.
  \ if F



 is an irrotational vector, it is conservative.
 (ii) If F



 is irrotational (and, hence, conservative) and C is a closed curve then 

0
C

F dr◊ =F dr◊ =F drÚ




F dr


F dr
ÚÚ . [ f(A) = f(B), as A and B coincide].

Fig. 20.4

Fig. 20.5
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20.8 Engineering Mathematics

20.7 ❑ surfaCE intEgrals

Any integral which is to be evaluated over a surface 
is called a surface integral.

Let S be a two-sided surface, one side of which 
is considered arbitrarily as the positive side.

Let F


 be a vector point function defined at all 
points of S. Let ds be the typical elemental surface 
area in S surrounding the point P(x, y, z).

Let n̂  be the unit vector normal to the surface S 
at P(x, y, z), drawn in the positive side (or outward 
direction).

Let q be the angle between F


 and n̂ .
\ the normal component of ˆ cosF F n F q= ◊ =

 

.
The integral of this normal component through the elemental surface area ds over 

the surface S is called the surface integral of F


 over S and denoted as cos
S

F dsq ◊Ú  

or ˆ
S

F nds◊Ú


.

If ds


 is a vector whose magnitude is ds and whose direction is that of n̂ , then 

ˆds n ds= ◊


. \ ˆ
S

F nds◊Ú


 can also be written as 
S

F ds◊Ú




.

  note

 (i) If S in a closed surface, the outer surface is usually chosen as the positive 
side.

 (ii) 
S

dsfÚ 

 and 
S

F ds¥Ú




 where f is a scalar point function are also surface 

integrals.

 (iii) The surface integral 
S

F ds◊Ú




 is also denoted as 
S

F ds◊ÚÚ




.

 (iv) If F


 represents the velocity of a fluid particle then the total outward flux of 

F


 across a closed surface S is the surface integral 
S

F ds◊Ú




.

 (v) When the flux of F


 across every closed surface S in a region E vanishes, F


 
is said to be a solenoidal vector point function in E.

 (vi) It may be noted that F


 could equally well be taken as any other physical 
quantity such as gravitational force, electric force, magnetic force, etc.

20.8 ❑ VolumE intEgrals

Any integral which is to be evaluated over a volume is called a volume integral.

If V is a volume bounded by a surface S then the triple integrals 
V

dvfÚÚÚ  and 

V

FdvÚÚÚ


 are called volume integrals. The first of these is a scalar and the second is a 

vector.

 (i) If S in a closed surface, the outer surface is usually chosen as the positive 
side.

 (ii) 
S

dsfÚSÚS



ds


ds  and 
S

F dsF ds¥F dsÚSÚS





F ds


F ds  where f is a scalar point function are also surface f is a scalar point function are also surface f

integrals.

 (iii) The surface integral 
S

F dsF ds◊F dsÚSÚS





F ds


F ds  is also denoted as 
S

F dsF ds◊F dsÚÚ




F ds


F ds .

 (iv) If F


 represents the velocity of a fluid particle then the total outward flux of 

F


 across a closed surface S is the surface integral 
S

F dsF ds◊F dsÚ




F ds


F ds .

 (v) When the flux of F


 across every closed surface S in a region E vanishes, F


is said to be a solenoidal vector point function in E.
 (vi) It may be noted that F



 could equally well be taken as any other physical 
quantity such as gravitational force, electric force, magnetic force, etc.

Fig. 20.6
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	 Line Integral, Surface Integral and Integral Theorems	 20.9

20.9  ❑  Integral Theorems

The following three theorems in vector calculus are of importance from theoretical 
and practical considerations:
	 (i)	 Green’s theorem in a plane
	 (ii)	 Stokes’ theorem
	 (iii)	 Gauss’ divergence theorem

Green’s theorem provides a relationship between a double integral over a region 
R and the line integral over the closed curve C bounding R. Green’s theorem is also 
called the first fundamental theorem of integral vector calculus.

Stokes’ theorem transforms line integrals into surface integrals and conversely. 
This theorem is a generalization of Green’s theorem. It involves the curl.

Gauss’ divergence theorem transforms surface integrals into a volume integral. It 
is named Gauss’ divergence theorem because it involves the divergence of a vector 
function.

We shall give the statements of the above theorems (without proof) and apply 
them to solve problems.

Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y), 
Q(x, y) and its first-order partial derivatives are continuous in R then 

( )
C R

Q PPdx Qdy dxdy
x y

Ê ˆ∂ ∂+ = -Á ˜∂ ∂Ë ¯Ú ÚÚ

 where C is described in the anticlockwise direction.

Stokes’ Theorem (Relation between Line Integral and Surface Integral)

Surface integral of the component of curl F


 along the normal to the surface S, taken 
over the surface S bounded by curve C is equal to the line integral of the vector point 
function F



 taken along the closed curve C.

Mathematically, ˆcurl
C S

F dr F n ds◊ = ◊ ◊Ú ÚÚ
 





Gauss’ Divergence Theorem or Gauss’ Theorem of Divergence  
(Relation between Surface Integral and Volume Integral)

The surface integral of the normal component of a vector function F


 taken around a 
closed surface S is equal to the integral of the divergence of F



 taken over the volume 
V enclosed by the surface S.

Mathematically, ˆ div
S V

F n ds F dv◊ ◊ = ◊ÚÚ ÚÚÚ
 

.

Solved Examples

Example 1	 If 23 ,F xyi y j= -
 

, evaluate 
C

F dr◊Ú


, where C is the arc of the parabola 
y = 2x2 from (0, 0) to (1, 2).
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Solution  Let x = t, then the parametric equations of the parabola y = 2x2 are x = t, 
y = 2t2.
At the point (0, 0), x = 0 and so t = 0.
At the point (1, 2), x = 1 and so t = 1.
If r


 is the position vector of any point (x, y) in C, then
	

22

r xi yj

ti t j

= +

= +

 



 

Also in terms of t, 2 2 2

3 4

3 (2 ) (2 )

6 4

F t t i t j

t i t j

= -

= -

 

 

\	

1
3 4

0
1

3 5

0
14 6

0

(6 4 ) ( 4 )

(6 16 )

6 16
4 6

C C

drF dr F dt
dt

t i t j i tj dt

t t dt

t t

Ê ˆ
◊ = ◊Á ˜Ë ¯

= - ◊ +

= -

È ˘
= -Í ˙

Î ˚

Ú Ú

Ú

Ú



 



   

	  
9 163 8 7

2 3 6 6
- -= - = = 	 Ans.

Example 2	 Evaluate ˆ
S

A nds◊ÚÚ


 where 2( ) 2 2A x y i xj yz k= + - +
 

 and S is the 

surface of the plane 2x + y + 2z = 6 in the first octant.� [KU May 2010]

Solution  A vector normal to the surface S is given by

	 (2 2 ) 2 2x y z i j k— + + = + +
 

\ n̂ a=  unit vector normal to the surface S

	
2 2 2

2 2 2 1 2
3 3 32 1 2

i j k
i j k

+ +
= = + +

+ +

 

 

	 2 1 2 2ˆ
3 3 3 3

k n k i j k
Ê ˆ

◊ = ◊ + + =Á ˜Ë ¯
   

\	 ˆ ˆ
ˆ| |

S R

dxdyA n ds A n
k n

◊ ◊ = ◊ ◊
◊ÚÚ ÚÚ

 



where R is the projection of S

Now,     2

2 2

2

2 1 2ˆ [( ) 2 2 ]
3 3 3

2 2 4 2 4( )
3 3 3 3 3

6 22 4
3 3 2

A n x y i xj yzk i j k

x y x yz y yz

x y
y y

Ê ˆ
◊ = + - + ◊ + +Á ˜Ë ¯

= + - + = +

Ê ˆ- -
= + Á ˜Ë ¯

    

EM_UnitVIII_20.indd   10 8/23/2017   10:29:48 AM



	 Line Integral, Surface Integral and Integral Theorems	 20.11

Ê ˆ- -
+ + = =Á ˜Ë ¯

= + - -

= -

6 2
since on the plane 2 2 6,

2
2 ( 6 2 )
3
4 (3 )
3

x y
x y z z

y y x y

y x

Hence, ˆ ˆ
ˆ| |

S R

dxdyA n ds A n
k n

◊ ◊ = ◊ ◊
◊ÚÚ ÚÚ

 

 .

	

-

= - ◊

= -

ÚÚ

Ú Ú
6 23

0 0

4 3(3 )
3 2

2 (3 )

R
x

y x dxdy

y x dydx

	

-Ê ˆ
= - Á ˜Ë ¯

= - -

= -

È ˘-
= Í ˙

-Í ˙Î ˚

Ú

Ú

Ú

6 23 2

0
0
3

2

0
3

3

0
34

0

2(3 )
2

(3 )(6 2 )

4 (3 )

(3 )
4

4( 1)

x
yx dx

x x dx

x dx

x

	  = 81	 Ans.

Example 3	 If 2(2 3 ) 2 4F x z i xyj xk= - - -
 

 then evaluate — ◊ ◊Ú Ú Ú


,F dV  where V 

is bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

Solution	   2(2 3 ) ( 2 ) ( 4 )

4 2 2

F x z xy x
x y z
x x x

∂ ∂ ∂— ◊ = - + - + -
∂ ∂ ∂

= - =



\	

- - -

-
- -

— ◊ ◊ =

=

=

ÚÚÚ ÚÚÚ

Ú Ú Ú

Ú Ú

2 4 2 22

0 0 0
22

4 2 2
0

0 0

2

2

2 [ ]

V V
x x y

x
x y

F dv xdxdydz

xdzdydx

x z dydx
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- -

-

= - - = - -

= - - ◊

= - - -

= -

= - + ◊

Ú Ú Ú Ú

Ú

Ú

Ú

Ú

2 22 2

0 0 0 0
2

2 2
0

0
2

2 2

0
2

2

0
2

2 3

0

2 (4 2 2 ) [4 (2 ) 4 ]

[4 (2 ) 2 ]

[4 (2 ) 2 (2 ) ]

2 (2 )

2 (4 4 )

x x

x

x x y dydx x x xy dydx

x x y xy dx

x x x x dx

x x dx

x x x dx

	  
23 4

2

0

32 82 2 4 2 8 4
3 4 3 3
x xx

È ˘ È ˘
= - + = - + =Í ˙ Í ˙Î ˚ Î ˚

	 Ans.

Example 4	 Evaluate 
C

F dr◊Ú




 where 2 2( ) 2F x y i xyj= + -
 

 and the curve C is the 

rectangle in the xy-plane bounded by y = 0, y = b, x = 0, x = a.

Solution  In the xy-plane, z = 0

	 ,r xi yj dr dxi dyj= + = +
   

 

	 2 2( ) 2C CF dr x y dx xydyÚ ◊ = Ú + -




	 (1)

	
C

OA AB BC CO

F dr F dr F dr F dr F dr◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú
    

    

	 (2)

Fig. 20.7

Along OA, y = 0; dy = 0 and x varies from 0 to a
Along AB, x = a; dx = 0 and y varies from 0 to b
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Along BC, y = b; dy = 0 and x varies from a to 0
Along CO, x = 0; dx = 0 and y varies from b to 0
Hence, from (1) and (2),

	

0 0
2 2 2

0
0

03 3
2 2

0
0

3 3
2 2 2

2 ( ) 0

( ) 0
3 3

2
3 3

a b

C y x a b
x

a
b

a

F dr x dx aydy x b dx dy

x xay b x

a aab ab ab

= =
=

◊ = - + + + ◊

Ê ˆ Ê ˆ
= - + + +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= - - - = -Á ˜Ë ¯

Ú Ú Ú Ú Ú




	 Ans.

Example 5	 Find the work done by the force 3 2 2(2 ) 3F xy z i x j xz k= + + +
 

 when it 
moves a particle from (1, –2, 1) to (3, 1, 4) along any path.� [AU Dec. 2011]

Solution  Since the equation of the path is not given, the work done by the force F


 
depends only on the terminal points.

Consider 

3 2 2(2 ) 3

i j k

F
x y z

xy z x xz

∂ ∂ ∂— ¥ =
∂ ∂ ∂

+

 



	 2 2[0 0] [3 3 ] [2 2 ] 0i j z z k x x= - - - + - =
 

fi  F


 is irrotational
Hence, F



 is conservative
Since F



 is irrotational, we have F f= —


It is easy to see that f = x2y + xz3 + C

\ work done by 
(3,1,4)

(1, 2,1)

F F dr
-

= ◊Ú
 



	   

(3,1,4) (3,1,4)

(1, 2,1) (1, 2,1)
(3,1,4)
(1, 2,1)

(3,1,4)2 3
(1, 2,1)

[as ]

[ ]

[ ]

(201 ) ( 1 ) 202

dr d dr d

x y xz C

C C

f f f f

f

- -

-

-

= — ◊ = — ◊ =

=

= + +

= + - - + =

Ú Ú
 

	 Ans.

Example 6	 Find the circulation of F


 round the curve C, where =


sinxF e yi

+


cos ;xe yj  and C is the rectangle whose vertices are 1 1(0, 0), (1, 0), 1, , 0,
2 2

p p
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯ .
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Solution

\	 sin cosx x

r xi yj dr dxi dyj

F dr e y dx e y dy

= + fi = +

◊ = ◊ + ◊

   

 





Now along OA, y = 0; dy = 0
along AB, x = 1; dx = 0

along , ; 0
2

BC y dyp= =

along CO, x = 0; dx = 0
\ circulation round the rectangle OABC is

	
p

◊ = +

= + + +

Ú Ú

Ú Ú Ú Ú





1

( sin cos )

cos sin cos
2

x x

C
C

x

OA AB BC CO

F dr e ydx e ydy

o e ydy e dx ydy

	

p

p

p

p

p
= + ◊ + +

= + + = + - - + =

Ú Ú Ú
2

2

2

2

0 0

0 1

0 0
0 1

0 cos sin cos
2

[ sin ] [ ] [sin ] (1 ) 1 0 0

x

x

e y dy e dx ydy

e y e y e e 	 Ans.

Example 7	 Find the total work done in moving a particle in a force field given by 
3 5 10F xyi zj xk= - +

 

 along the curve x = t2 + 1, y = 2t2, z = t3 from t = 1 to t = 2.

Solution  Total work done

	 =

= ◊ = - + ◊ + +

= - +

= + + - + +

Ú Ú
Ú

Ú

    



2
2 2 2 3 2 2 3

1

(3 5 10 ) ( )

[3 5 10 ]

[3( 1)(2 ) ( 1) 5 (2 ) 10( 1) ( )]

C C

C

t

F dr xyi zj xk dxi dyj dzk

xydx zdy xdz

t t d t t d t t d t

	

=

=

=

= + - + +

= + - + +

= + + +

È ˘ È ˘ È ˘ È ˘
= + + +Í ˙ Í ˙ Í ˙ Í ˙

Î ˚Î ˚ Î ˚ Î ˚

Ú

Ú

Ú

2
2 2 4 2 2

1

2
5 3 4 4 2

1

2
5 4 3 2

1

2 2 2 26 5 4 3

11 1 1

[6 ( 1)(2 ) 20 30 ( 1) ]

[12 12 20 30 30 ]

[12 10 12 30 ]

12 10 12 30
6 5 4 3

t

t

t

t t tdt t dt t t dt

t t t t t dt

t t t t dt

t t t t

Fig. 20.7
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È ˘ È ˘ È ˘ È ˘
= - + - + - + -Í ˙ Í ˙ Í ˙ Í ˙

Î ˚Î ˚ Î ˚ Î ˚

= ◊ + ◊ + ◊ + ◊

= + + +

=

6 5 4 4 3 32 1 2 1 2 1 2 112 10 12 30
6 6 5 5 4 4 3 3
63 31 15 712 10 12 30
6 5 4 3

126 62 45 70

303 	 Ans.

Example 8	 If 24F xzi y j yzk= - +
 

, evaluate ˆ
S

F nds◊ÚÚ


 where S is the surface of 

the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.� [AU Dec. 2009]

Solution  The surface of the cube consists of the 
following six faces:
	 (a)	 Face LMND
	 (b)	 Face TQPO
	 (c)	 Face QPNM
	 (d)	 Face TODL
	 (e)	 Face TQMl
	 (f)	 Face ODNP
Now, for the face LMND:

	 ˆ , 1n i x OD= = =


Hence,   2ˆ (4 )

4 4 ( 1)
S LMND

LMND LMND

F nds xzi y j yzk i dydz

xzdydz zdydz x

◊ = - + ◊

= = =

ÚÚ ÚÚ
ÚÚ Ú

  



	
11 1 2

2
0

0
0 0

4 4 ( ) 2
2

z y

zzdydz y
= =

È ˘Ê ˆÍ ˙= = =Á ˜Ë ¯Í ˙Î ˚Ú Ú 	 (1)

For the face TQPO: ˆ , 0n i x= - =


Hence, 2ˆ (4 ) ( )
S TQPO

F n ds xzi y j yzk i dydz◊ ◊ = - + ◊ -ÚÚ ÚÚ
  

	 ( 4 ) 0 ( 0)
TQPO

xz dydz x= - = =ÚÚ  	 (2)

For the face OPNM: ˆ , 1n j y= =


Hence,    2

2

ˆ (4 )

( ) ( 1)

S QPNM

QPNM QPNM

F nds xzi y j yzk j dxdz

y dxdz dxdz y

◊ = - + ◊

= - = - =

ÚÚ ÚÚ

ÚÚ ÚÚ

  



Fig. 20.8
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1 1

1 1
0 0

0 0

[ ] [ ] 1
z x

dxdz x z
= =

= - = - = -Ú Ú 	 (3)

For the face TODL: ˆ , 0n j y= - =


Hence,    2ˆ (4 ) ( )
S TODL

F nds xzi y j yzk j dxdz◊ = - + ◊ -ÚÚ ÚÚ
  

	 2( ) 0 ( 0)
TODL

y dxdz y= = =ÚÚ  	 (4)

For the face TQML: ˆ , 1n k z= =


Hence, 2ˆ (4 )
TQML TQML

F nds xzi y j yzk k dxdy◊ = - + ◊ÚÚ ÚÚ
  

.

	   
11 1 2

1
0

0
0 0

( 1)

1[ ]
2 2

TQML TQML

y x

yzdxdy ydxdy z

yydxdy x
= =

= = =

È ˘
= = =Í ˙

Î ˚

ÚÚ ÚÚ

Ú Ú



	 (5)

For the face ODNP: ˆ , 0n k z= - =


Hence, 2ˆ (4 ) ( )
ODNP ODNP

F nds xzi y j yzk k dxdy◊ = - + ◊ - ◊ÚÚ ÚÚ
  

	    ( ) 0, ( 0)
ODNP

yz dxdy z= - = =ÚÚ  	 (6)

Adding (1), (2), (3), (4), (5) and (6), we get

	 3ˆ
2

S

F nds◊ =ÚÚ


	 Ans.

Example 9	 Verify Stokes’ theorem for F


 = (y – z + 2) i


 + (yz + 4) j


 – (xz) k


 over 
the surface of a cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the XOY plane (open at 
the bottom).� [KU May 2010]

Solution  Consider the surface of the cube as shown in the figure. Bounding path is 
OABCO shown by arrows.

	

[( 2) ( 4) ( ) ] ( )

( 2) ( 4)
C C

C

C
OA AB BC CO

F dr y z i yz j xz k dxi dyj dzk

y z dx yz dy xzdz

F dr F dr F dr F dr F dr

◊ = - + + + - ◊ + +

= - + + + -

◊ = ◊ + ◊ + ◊ + ◊

Ú Ú
Ú

Ú Ú Ú Ú Ú

    



    

    

	 (1)
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Along OA, y = 0, dy = 0, z = 0, dz = 0

	

2
2
0

0

2 (2 ) 4
OA

F dr dx x◊ = = =Ú Ú




Along AB, x = 2, dx = 0, z = 0, dz = 0

	
2

2
0

0

4 4( ) 8
AB

F dr dy y◊ = = =Ú Ú




Fig. 20.9

Along BC, y = 2, dy = 0, z = 0, dz = 0

	 ◊ = - + = = -Ú Ú




2
0
2

0

(2 0 2) (4 ) 8
BC

F dr dx x

Along CO, x = 0, dx = 0, z = 0, dz = 0

	

0
2

( 0 2) 0 (0 4) 0

4 4( ) 8
CO

F dr y dy

dy y

◊ = - + ¥ + + -

= = = -

Ú Ú
Ú





On putting the values of these integrals in (1), we get

	 4 8 8 4C F drÚ ◊ = + - = -




To obtain surface integral

	

∂ ∂ ∂
— ¥ =

∂ ∂ ∂
- + + -

= - - - + + - = - + - -

 



    

2 4

(0 ) ( 1) (0 1) ( 1)

i j k

F
x y z

y z yz xz

y i z j k yi z j k
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Here, we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE: x = 2, n̂ i=



, ds = dydz

	

22 2 2
2
0

0
0 0

ˆ( ) [ ( 1) ]

[ ] 4
2

S S

S

F nds yi z j k i dydz

yydydz ydy dz z

— ¥ ◊ = - + - - ◊

È ˘
= - = - = - = -Í ˙

Î ˚

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Over the surface OCGF: x = 0, ˆ ,n i= -


 ds = dy dz

	

22 2 2

0
0 0

ˆ( ) [ ( 1) ] ( )

4
2

S S

S

F nds yi z j k i dydz

yydydz ydy dz

— ¥ ◊ = - + - - ◊ -

È ˘
= = = =Í ˙

Î ˚

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Over the surface BCGD: y = 2, n̂ j=


, ds = dx dz

	

2 2

0 0
22

2
0

0

ˆ( ) [ ( 1) ]

( 1)

( 1)

[ ]
2

0

S

S

F nds yi z j k j dxdz

z dxdz

dx z dz

zx z

— ¥ ◊ = - + - - ◊

= -

= -

È ˘
= -Í ˙

Î ˚
=

ÚÚ ÚÚ
ÚÚ

Ú Ú

  

Over the surface OAEF: y = 0, n̂ j= -


, ds = dx dz

	

2 2

0 0
22

2
0

0

ˆ( ) [ ( 1) ] ( )

( 1)

( 1)

[ ]
2

0

S S

S

F nds yi z j k j dxdz

z dxdz

dx z dz

zx z

— ¥ ◊ = - + - - ◊ -

= - -

= - -

È ˘
= - -Í ˙

Î ˚
=

ÚÚ ÚÚ
ÚÚ

Ú Ú

  
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Over the surface DEFG: z = 2, n̂ k=


, ds = dx dy

	

2 2

0 0
2 2
0 0

ˆ( ) [ ( 1) ]

[ ] [ ] 4

S

F nds yi z j k k dxdy

dxdy dx dy

x y

— ¥ ◊ = - + - - ◊

= - = -

= - = -

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Total surface integral = –4 + 4 + 0 + 0 – 4 = –4

Thus ÚÚS curl ˆ 4CF nds F dr◊ = Ú ◊ = -
 



which verifies Stokes’ theorem.	 Verified.

Example 10	 Verify Green’s theorem in the plane for ÚC[(x2 – xy3)dx + (y2 – 2xy)dy] 
where C is a square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Solution  Given integrand is of the form Mdx + Ndy, where M = x2 – xy3, N = y2 – 2xy.
Now to verify Green’s theorem, we have to verify that

	 Ú
C

[(x2 – xy3)dx + (y2 – 2xy)dy] = 
R
ÚÚ (–2y + 3xy2)dx dy	 (1)

Consider 
C
Ú [(x2 – xy3)dx + (y2 – 2xy)dy] where the curve C is divided into four parts, 

hence the line integral along C is nothing but the sum of four line integrals along four 
lines OA, AB, BC and CO.
Along OA : y = 0, dy = 0 and x varies from 0 to 2.

Hence, 
22 3

2 3 2 2

0
0

8[( ) ( 2 ) ]
3 3

OA x

xx xy dx y xy dy x dx
=

Ê ˆ
- + - = = =Á ˜Ë ¯Ú Ú

Along AB : x = 2, dx = 0, and y varies from 0 to 2.

Hence, 2 3 2

23 22
2

0 0

[( ) ( 2 ) ]

( 4 ) 4
3 2

8 168
3 3

AB

x xy dx y xy dy

y yy y dy

- + -

Ê ˆ
= - = -Á ˜Ë ¯

Ê ˆ
= - = -Á ˜Ë ¯

Ú

Ú

Along BC: y = 2, dy = 0 and x varies from 2 to 0.

Hence, 2 3 2

00 3 2
2

2
2

[( ) ( 2 ) ]

( 8 ) 8
3 2

8 400 0 16
3 3

BC

x

x xy dx y xy dy

x xx x dx
=

- + -

Ê ˆ
= - = -Á ˜Ë ¯

= - - + =

Ú

Ú

Fig. 20.10
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Along CO : x = 0, dx = 0 and y varies from 2 to 0

Hence, 
CO
Ú [(x2 – xy3)dx + (y2 – 2xy)dy]

	
00 3

2

2
2

8
3 3

y

yy dy
=

Ê ˆ
= = = -Á ˜Ë ¯Ú

\	 2 3 2 8 16 40 8[( ) ( 2 ) ] 8
3 3 3 3

C

x xy dx y xy dy- + - = - + - =Ú 	 (2)

Now consider

	

= =

=

- + = - +

Ê ˆ
= - +Á ˜Ë ¯

ÚÚ Ú Ú

Ú

2 2
2 2

0 0
22 2 3

0
0

( 2 3 ) ( 2 3 )

2 3
2 3

R x y

x

y xy dydx y xy dydx

y yx dx

	
=

Ê ˆÈ ˘Ê ˆ
= - + = - +Í ˙ Á ˜Á ˜ Ë ¯Ë ¯Î ˚

= - + + =

Ú
22 2

0
0

84 3 4 8
3 2

8 16 0 8
x

xx dx x

	 (3)

From (2) and (3), we observe that the relation (1) is true.
Hence, Green’s theorem is verified.	 Ans.

Example 11	 Verify divergence theorem for F


 = (x2 – yz) i


 + (y2 – zx) j


 + (z2 – xy) k


 
taken over the rectangular parallelepiped 0 £ x £ a, 0 £ y £ b, 0 £ z £ c.�[KU Nov. 2010]

Solution  For verification of the divergence theorem, we shall evaluate the volume 
and surface integrals separately and show that they are equal.

Now div 2 2 2( ) ( ) ( )

2( )

F F x yz y zx z xy
x y z

x y z

∂ ∂ ∂= — ◊ = - + - + -
∂ ∂ ∂

= + +

 

\	 div
V

FdvÚÚÚ


	

= + +

È ˘Ê ˆ
Í ˙= + +Á ˜Ë ¯Í ˙Î ˚

Ê ˆ
= + +Á ˜Ë ¯

È ˘Ê ˆ
Í ˙= + +Á ˜Ë ¯Í ˙Î ˚

Ú Ú Ú
Ú Ú

ÚÚ

Ú

2

0
2

0

22

2( )

2
2

2
2

2
2 2

c b a

o o o
a

c b

o o

c b

o
b

c

o
o

x y z dxdydz

x yx zx dydz

a ya za dydz

y aa y azy dz Fig. 20.11
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Ê ˆ È ˘
= + + = + +Í ˙Á ˜Ë ¯ Î ˚Ú

2 2 2 2 2
2 2

2 2 2 2 2

c
c

o o

a b ab a b ab abzabz dz z z

	  = a2bc + ab2c + abc2 = abc(a + b + c)	 (1)
To evaluate the surface integral, divide the closed surface S of the rectangular 
parallelepiped into 6 parts.
S1 : Face OAC¢B
S2 : Face CB¢PA¢
S3 : Face OBA¢C
S4 : Face AC¢PB¢
S5 : Face OCB¢A
S6 : Face BA¢ PC¢

Also,	 ◊ = ◊ + ◊ + ◊

+ ◊ + ◊ + ◊

ÚÚ ÚÚ ÚÚ ÚÚ

ÚÚ ÚÚ ÚÚ

   

  

1 2 3

4 5

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

S
S S S

S S S

F nds F nds F nds F nds

F nds F nds F nds 	 (2)

On S1 : z = 0, n̂ k= -


, ds = dx dy

so that 2 2ˆ ( ) ( )F n x i y j xyk k xy◊ = + - ◊ - =
  

\	

1

2
ˆ

2

ab a b

o
S o o o

xF nds xydxdy y dy
Ê ˆ

◊ = = Á ˜Ë ¯ÚÚ Ú Ú Ú


	
2 2 2

2 4

b

o

a a bydy= =Ú 	 (3)

On S2 : z = c, n̂ k=


, ds = dx dy, F


 = (x2 – cy) i


 + (y2 – cx) j


 + (c2 – xy) k


.

so that 2 2 2 2ˆ [( ) ( ( ) ) ( ) ]F n x cy i y x j c xy k k c xy◊ = - + - + - ◊ = -
  

.

\	

2

2
2 2ˆ ( )

2

b a b

S o o o

aF nds c xy dxdy c a y dy
Ê ˆ

◊ = - = -Á ˜Ë ¯ÚÚ Ú Ú Ú


	  
2 2

2

4
a babc= - 	 (4)

On S3 : x = 0, 2 2ˆ , ,n i F yzi y j z k dz dydz= - = - + + =
  

so that 2 2ˆ ( ) ( ) ,F n yzi y j z k i yz ds dydz◊ = - + + ◊ - = =
  

\	

3

2 2 2
ˆ

2 4

c b c

S o o o

b b cF nds yzdydz zdz◊ = = =ÚÚ Ú Ú Ú


	 (5)

On S4 : x = a, 2 2 2ˆ , ( ) ( ) ( )n i F a yz i y az j z ay k= = - + - + -
  
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so that 2 2 2ˆ [( ) ( ) ( ) ]F n a yz i y az j z ay k i◊ = - + - + - ◊
  

	  = a2 – yz, ds = dy dz

\	

4

2
2 2ˆ ( )

2

cc b

o o
S o

bF nds a yz dydz a b z dz
Ê ˆ

◊ = - = -Á ˜Ë ¯ÚÚ Ú Ú Ú


	  
2 2

2

4
b ca bc= - 	 (6)

On S5 : y = 0, 2 2ˆ , ,n j F x i zxj z k ds dxdz= - = - + =
  

so that 2 2ˆ ( ) ( )F n x i zxj z k j zx◊ = - + ◊ - =
  

\	

5

2 2 2
ˆ

2 4

a c a

o o o
S

c a cF nds zxdzdx xdx◊ = = =Ú Ú Ú Ú Ú


	 (7)

On S6 : y = b, 2 2 2ˆ , ( ) ( ) ( )n j F x bz i b zx j z bx k= = - + - + -
  

	 ds = dxdz

so that 2 2 2ˆ [( ) ( ) ( ) ]F n x bz i b zx j z bx k j◊ = - + - + - ◊
  

	 = b2 – zx.

\	

6

2ˆ ( )
a c

o o
S

F n b zx dzdx◊ = -ÚÚ Ú Ú


	    
2 2 2

2 2

2 4

a

o

c a cb c x dx ab c
Ê ˆ

= - ◊ = -Á ˜Ë ¯Ú 	 (8)

By using (3), (4), (5), (6), (7) and (8), in (2), we get

	

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2ˆ

4 4 4 4 4 4
S

a b a b b c b c a c a cF nds abc a bc ab c◊ = + - + + - + + -ÚÚ


	  = abc(a + b + c)	 (9)
The equalities (1) and (9) verify the divergence theorem.	 Ans.

Example 12	 Verify Green’s theorem in the plane for ÚC(3x2 – 8y2)dx + (4y – 6xy)dy 

where C is the boundary of the region defined by (i) y = x , y = x2 and (ii) x = 0, y = 0, 
x + y = 1.� [AU July 2010, June 2012 ; KU Nov. 2011, KU April 2013]

Solution

	 (i)	 y x= , i.e., y2 = x and y = x2 are two parabolas intersecting at 0(0, 0) and A(1, 1).
		  Here, P = 3x2 – 8y2, Q = 4y – 6xy

	 16 , 6P Qy y
y x

∂ ∂= - = -
∂ ∂

\	 10Q P y
x y

∂ ∂- =
∂ ∂

EM_UnitVIII_20.indd   22 8/23/2017   10:29:52 AM



	 Line Integral, Surface Integral and Integral Theorems	 20.23

Fig. 20.12

		  If R is the region bounded by C then

	

2 2

21 1

0 0
11 2 5

4

0
0

10 10
2

5 ( ) 5
2 5

1 1 3 35 5
2 5 10 2

R
x

x

x x

Q P dxdy
x y

yydydx dx

x xx x dx

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

Ê ˆ
= = Á ˜Ë ¯

È ˘
= - = -Í ˙

Î ˚

È ˘ È ˘
= - = =Í ˙ Í ˙Î ˚ Î ˚

ÚÚ

Ú Ú Ú

Ú
	 (1)

		  Also, 
1 2

( ) ( )
C C C

Pdx Qdy Pdx Qdy Pdx Qdy+ = + + +Ú Ú Ú
		  Along C1, x2 = y. \ 2x dx = dy and the limits of x are from 0 to 1.

\	
1

( )
C

Pdx Qdy+Ú

	

1
2 2

0
1

2 4 2 2 2

0
1

2 3 4

0
3 4 5 1

0

(3 8 ) (4 6 )

(3 8 ) (4 6 ) 2 (since )

(3 8 20 )

[ 2 4 ] 1

x y dx y xy dy

x x dx x x x xdx x y

x x x dx

x x x

= - + -

= - + - ◊ ◊ =

= + -

= + - = -

Ú
Ú
Ú

		  Along C2, y2 = x. \ 2y dy = dx and the limits of y are from 1 to 0.
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\	

2

0
4 2 2

1
00

3 5 2 4 6

1 1

( )

(3 8 )2 (4 6 )

11 5(4 22 6 ) 2
2 2

C
Pdx Qdy

y y ydy y y y dy

y y y dy y y y

+

= - + - ◊ ◊

È ˘
= - + = - + =Í ˙Î ˚

Ú
Ú
Ú

\	 5 3( ) 1
2 2C

Pdx Qdy+ = - + =Ú 	 (2)

		  The equalities of (1) and (2) verify Green’s theorem in the plane.� Ans.

	 (ii)	 Here, 
R

Q P dxdy
x y

Ê ˆ∂ ∂-Á ˜∂ ∂Ë ¯ÚÚ

	

1 1

0 0
1

2 1
0

0
131

2

0 0

10

5[ ]

(1 )
5 (1 ) 5

3

x

x

ydydx

y dx

x
x dx

-

-

=

=

È ˘-
= - = Í ˙

-Î ˚

Ú Ú
Ú

Ú
	 5 5(0 1)

3 3
-= - = 	 (1)

		  Along OA, y = 0 \ dy = 0 and the limits of x are from 0 to 1.

\	
1

2 3 1
0

0
3 [ ] 1

OA

Pdx Qdy x dx x+ = = =Ú Ú
		  Along AB, y = 1 – x. \ dy = –dx and the limits of x are from 1 to 0.

\	 + = - - + - - - -

= - + - - + + -

Ú Ú

Ú

0
2 2

1

0
2 2 2

1

[3 8(1 ) ] [4(1 ) 6 (1 )]( )

(3 8 16 8 4 4 6 6 )

AB

Pdx Qdy x x dx x x x dx

x x x x x x dx

	

= - + - ◊

È ˘ È ˘
= - + - = - - + - =Í ˙ Í ˙Î ˚ Î ˚

Ú
0

2

1
0

2 3

1

( 12 26 11 )

11 11 812 13 12 13
3 3 3

x x dx

x x x

		  Along BO, x = 0. \ dx = 0 and the limits of y are from 1 to 0

\	
0

2 0
1

1
4 [2 ] 2

BO
Pdx Qdy ydy y+ = = = -Ú Ú

		  \	 line integral along C (i.e., along OABO) 8 51 2
3 3

= + - =

Fig. 20.13

EM_UnitVIII_20.indd   24 8/23/2017   10:29:52 AM



	 Line Integral, Surface Integral and Integral Theorems	 20.25

i.e.,	 5( )
3C

Pdx Qdy+ =Ú 	 (2)

		  The equality of (1) and (2) verifies Green’s theorem in the plane.� Verified.

Example 13	 Evaluate ( 2 )x
C e dx ydy dzÚ + -  by using Stokes’ theorem, where C is 

the curve x2 + y2 = 4, z = 2.� [AU May 2010]

Solution

	

( 2 )

( 2 ) ( )

where 2

x
C

x
C

x
C

e dx ydy dz

e i yj k dxi dyj dzk

F dr F e i yj k

Ú + -

= Ú + - ◊ + +

= Ú ◊ = + -

    


  

	

curl

2 1

(0 0) (0 0) (0 0)
0 0 0 0

x

i j k

F
x y z

e y

i j k
i j k

∂ ∂ ∂=
∂ ∂ ∂

-

= - - - + -

= + + =

 



 

 

\ by Stokes’ theorem, ˆcurl
C

S

F dr F n ds◊ = ◊ ◊Ú ÚÚ


 

	 = 0 (since curl F


 = 0)	 Ans.

Example 14	 Find the work done by the force ,F zi xj yk= + +
 

 when it moves a 
particle along the arc of the curve cos sinr ti tj tk= + +

 



 from t = 0 to t = 2n.
� [AU Dec. 2007]

Solution  From the vector equation of the curve C, we get the parametric equations 
of the curve as x = cos t, y = sin t, z = t.

Work done by the force CF F dr= Ú ◊


 

	

2
2

0
2

0

( ) ( )

( )

[ ( sin ) cos sin ]

sin 21cos sin cos
2 2

(2 1) ( 1)
3

C

C

zi xj yk dxi dyj dzk

zdx xdy ydz

t t t t dt

t
t t t t t

p

p

p p
p

= + + ◊ + +

= + +

= - + +

È ˘Ê ˆ
= - + + -Í ˙Á ˜Ë ¯Î ˚
= + - - -
=

Ú
Ú
Ú

    

	 Ans.
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Example 15	 Verify Stokes’ theorem for 2F xyi yzj zxk= - -
 

 where S is the open 
surface of the rectangular parallelepiped formed by the planes x = 0, x = 1, y = 0, y = 2 
and z = 3 above the XOY-plane.� [AU Dec. 2007]

Solution  Stokes’ theorem is given by

	 ˆcurlC SF dr F ndsÚ ◊ = ÚÚ ◊


 

Here, curl 

2

i j k

F
x y z

xy yz zx

∂ ∂ ∂=
∂ ∂ ∂

- -

 



	   ˆ2 ( 2 ) (2 )
C

S

yi zj xk xydx yzdy zxdz yi zj xk nds= + + \ - - - + + ◊Ú ÚÚ
    

	 (1)

The open cuboid S is made up of the five faces x = 0, x = 1, y = 0, y = 2 and z = 3 and is 
bounded by the rectangle OAC¢B lying on the XOY plane. LHS of (1) is

	

( 2 )
OAC B

xydx yzdy zxdz
¢

= - -Ú

	 OAC B

xydx
¢

= Ú
(since the boundary C lies on the XOY plane, z = 0)

	 OA AC C B BO

xydx xydx xydx xydx
¢ ¢

= + + +Ú Ú Ú Ú
Along OA, y = 0, dy = 0
Along AC¢, x = 1, dx = 0
Along C¢B, y = 2, dy = 0
Along BO, x = 0, dx = 0

\	
0

1

0 0 0 2
C B

OAC B

xydx xydx xdx
¢

¢

= + + + =Ú Ú Ú
� (as along C ¢B, x varies from 1 to 0).
	  = –1	 (2)
RHS of (1) is

	

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢

+ + ◊ = + + ◊ + + + ◊

+ + + ◊ + + + ◊

+ + + ◊

ÚÚ ÚÚ ÚÚ
ÚÚ ÚÚ
ÚÚ

       

    

 

ˆ ˆ ˆ(2 ) (2 ) (2 )

ˆ ˆ(2 ) (2 )

ˆ(2 )

S O C AB A BOC

A BC O COAB

A O B C

yi zj xk nds yi zj xk nds yi zj xk nds

yi zj xk nds yi zj xk nds

yi zj xk nds

Fig. 20.14
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= - -

- -

Ê ˆ
= - = - = -Á ˜Ë ¯

Ú Ú Ú Ú Ú Ú
Ú Ú Ú Ú

Ú Ú Ú

3 2 3 2 1 3

0 0 0 0 0 0
1 3 2 1

0 0 0 0
122 1 2

0 0 0 0

2 2

1
2

ydydz ydydz zdzdx

zdzdx xdxdy

xxdxdy dy 	 (3)

From (2) and (3), Stokes’ theorem is verified.� Verified.

Example 16	 Verify the divergence theorem for 2F x i zj yzk= + +
 

 over the cube 
formed by x = ±1, y = ±1, z = ±1.� [AU Dec. 2007, KU Nov. 2011]

Solution  Gauss’ divergence theorem is

	 ˆ (div )
S V

F nds F dv◊ =ÚÚ ÚÚÚ
 

	 (1)

LHS of  2 2

1 1 1 1 1 1

(1) 0
x x y y z z

x ds x ds zds zds yzds yzds
= = - = = - = = -

= + - + + - + + - =ÚÚ ÚÚ ÚÚ ÚÚ ÚÚ ÚÚ 	 (2)

RHS of  (1) (div )
V

F dv= ◊ÚÚÚ


	  

1 1 1

1 1 1
1 1

1 1

(2 )

(2 )

2 0

V

x y dxdydz

x y dxdydz

ydydz

- - -

- -

= +

= +

= =

ÚÚÚ

Ú Ú Ú
Ú Ú 	 (3)

From (2) and (3), Gauss’ divergence theorem is verified.	 Verified.

Example 17	 Use Stokes’ theorem to evaluate C F drÚ ◊




, where (sin ) cosF x y i xj= - -
 

 

and C is the boundary of the triangle whose vertices are (0, 0), , 0
2
pÊ ˆ

Á ˜Ë ¯  and , 1
2
pÊ ˆ

Á ˜Ë ¯ .

� [KU Nov. 2011]

Solution  By Stokes’ theorem, we have C SF drÚ ◊ = ÚÚ




 curl ˆF n ds◊ ◊


.

	

curl

sin cos 0

(sin 1)

i j k

F
x y z

x y x

x k

∂ ∂ ∂=
∂ ∂ ∂

- -

= +

 





\ the given line integral
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p

p

p

p

p pp

= +

= +

È ˘= -Î ˚

È ˘
= - +Í ˙Î ˚

ÚÚ

Ú Ú

Ú
Ú

2

2

2

2

1

0

1

0
1

0

(1 sin )

(1 sin )

cos

cos
2 2 2

y

y

R

x dxdy

x dxdy

x x dy

y y dy

	

p pp
p

p
p

È ˘
= - +Í ˙

Î ˚

= +

12

0

2 sin
2 4 2

2
4

y yy

\	 2
4C

F dr p
p

◊ = +Ú




	 Ans.

Exercise

Part A

	 1.	 State Green’s theorem in a plane.
	 2.	 Give the relation between a line integral and a surface integral.
	 3.	 State Gauss’ divergence theorem.
	 4.	 Deduce Green’s theorem in a plane from Stokes’ theorem.
	 5.	 In Gauss’ divergence theorem, surface integral is equal to _______ integral.
	 6.	 The integral of F dr◊





 is
	 (i)	 line integral			   (ii)	 zero
	 (iii)	 surface integral			   (iv)	 one
	 7.	 Using Green’s theorem, prove that the area enclosed by a simple closed curve C 

is 1 ( )
2

xdy ydx-Ú .

	 8.	 If 5 2 ,F xyi yj= +
 

 evaluate C F drÚ ◊




 where C is the part of the curve y = x3 
between x = 1 and x = 2.

	 9.	 If 2F x i xyj= +
 

, evaluate C F drÚ ◊




 along the straight line y = x from (0, 0) to 
(1, 1).

	 10.	 If C is a simple closed curve and r xi yj zk= + +
 



, prove that 0C r drÚ ◊ =




.

	 11.	 Evaluate ( )
C

yzdx zxdy xydz+ +Ú  where C is the circle given by x2 + y2 + z2 = 1 

and z = 0.
	 12.	 Use the integral theorems to prove ( ) 0F— ◊ — ¥ =



.

Fig. 20.15
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	 13.	 Evaluate ( ),C xdy ydxÚ -  where C is the circle x2 + y2 = a2.

	 14.	 Evaluate C F drÚ ◊




 where F xyi yzj zxk= + +
 

 and C is the curve 2 3 ,r ti t j t k t= + +
 



 
varying from –1 to 1.

Part B

	 1.	 If a force 22 3F x yi xyj= +
 

 displaces a particle in the xy plane from (0, 0) to 

(1, 4) along a curve y = 4x2, find the work done.� 104
5

Ê ˆ
Á ˜Ë ¯Ans.

	 2.	 Find the work done when a force 2 2( ) (2 )F x y x i xy y j= - + - +
 

 moves a particle 

from the origin to (1, 1) along a parabola y2 = x.� 2
3

Ê ˆ
Á ˜Ë ¯Ans.

	 3.	 Verify Green’s theorem in a plane with respect to 2( ),C x dx xydyÚ +  where C is 
the boundary of the square formed by x = 0, y = 0, x = a, y = a.� [AU Dec. 2009]

�
3

2
aÊ ˆ

Á ˜Ë ¯Ans.

	 4.	 Use Green’s theorem to evaluate 2 2 2( ) ( )C x xy dx x y dyÚ + + +  where C is the 
square formed by the lines y = ±1, x = ±1.� (Ans. 0)

	 5.	 Use divergence theorem to evaluate 2 2 2 ˆ( 2 )
S

yz i zx j z k nds+ + ◊ÚÚ
 

 where S is the 

closed surface bounded by the XOY-plane and the upper half of the sphere x2 + 
y2 + z2 = a2 above this plane.� (Ans. pa4)

	 6.	 Verify Stokes’ theorem for 2 2( 4) 3 (2 )F x y i xyj xz z k= + - + + +
 

 over the surface 
of hemisphere x2 + y2 + z2 = 16 above the XOY plane.� (Ans. –16p)

	 7.	 Use the divergence theorem to evaluate S A dsÚ ◊




 where 3 3 3A x i y j z k= + +
 

 and 

S is the surface of the sphere x2 = y2 + z2 = a2.�
512

5
apÊ ˆ

Á ˜Ë ¯Ans.

	 8.	 Use the divergence theorem to evaluate 3 2 2

S

x dydz x ydzdx x zdxdy+ +ÚÚ  where 

S is the surface of the region bounded by the closed cylinder x2 + y2 = a2, (0 £ z 

£ b) z = 0 and z = b.�
45

4
a bpÊ ˆ

Á ˜Ë ¯Ans.

	 9.	 Using Green’s theorem, evaluate [( sin ) cos ]C y x dx xdyÚ - +  where C is the 

triangle bounded by 20, ,
2

xy x yp
p

= = = .�
2 8
4

p
p

È ˘Ê ˆ+Í ˙- Á ˜Ë ¯Í ˙Î ˚
Ans.

	 10.	 Evaluate 2 2[( ) 2 ]C x y dx xydyÚ + -  where C is the rectangle bounded by y = 0, 
x = 0, y = b, x = a using Green’s theorem.� (Ans. –2ab2)

	 11.	 Verify Stokes’ theorem for F yi zj xk= + +
 

, where S is the upper half surface of 
the sphere x2 + y2 + z2 = 1 and C is its boundary.� (Ans. –p)

	 12.	 Verify Stokes’ theorem for 22 3F yi xj z k= + -
 

 where S is the upper half of the 
sphere x2 + y2 + z2 = 9 and C is the boundary.� (Ans. 9p)
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20.30	 Engineering Mathematics

	 13.	 Find the area of 2/3 2/3 2/3x y a+ =  using Green’s theorem.�
23

8
apÊ ˆ

Á ˜Ë ¯Ans.

	 14.	 Using Stokes’ theorem, evaluate 2( )C xydx xy dyÚ +  taking C to be a square with 

vertices (1, 1), (–1, 1), (–1, –1) and (1, –1).� 4
3

Ê ˆ
Á ˜Ë ¯Ans.

	 15.	 Verify Gauss’ divergence theorem for 3F yi xj z k= + +
 

 over the cylindrical 
region x2 + y2 = 9, z = 0, z = 6.� (Ans. 1944p)
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Questions opt1 opt2 opt3 opt4

If .F=0 then F is irrotational solenoidal rotational curl 

If ×F=0 then F is irrotational solenoidal rotational curl 

Any motion in which the curl of the velocity vector is zero 

is said to be ___
irrotational solenoidal rotational curl 

A function is said to be _______ if it associates a scalar 

with every point in space.
Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

A variable quantity whose value at any point in a region of 

space depends upon the position of the point is called a 

___

Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

A function is said to be _______ if it associates  with vector 

in every point in space.
Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

If the divergence of a flow is zero at all points then it 

is said to be _______
rotational

irrotation

al

solenoida

l

conservat

ive

______ gives the rate of outflow per unit volume at a 

point of the fluid.
curl V div V curl V=0 div V=0

If div V=0 everywhere in some region R of space then 

V is called the _____ vector point function.
rotational

irrotation

al

solenoida

l

conservat

ive

_______ is a vector which measures the extent to 

which individual particles of the fluid are spnning or 

rotating.

curl V div V curl V=0 div V=0

div F is a ________ function. point vector scalar rotational

If curl V=0 then V is said to be an ___________. rotational
irrotation

al

solenoida

l

conservat

ive

If r=xI+yJ+zK then div r=________ 0 1 2 3

If r=xI+yJ+zK then curl r=________ 0 1 2 3

div (curl V)= 0 div V curl V V

curl (grad f)= 0 div V curl V f

Two surfaces are said to cut orthogonally at a point of 

intersection, if the respective normals at that point are 

______.

parallel
perpendic

ular
equal zero

A sufficiently small portion of a smooth surface is 

always _______
plane smooth twisted

orientabl

e

A curve that is not plane is called a _______ curve. plane point twisted closed

Any integral which is to be evaluated over a surface is 

called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral

When the circulation of F around every closed curve in 

a region vanishes, then F is said to be _______ in that 

region.

rotational
irrotation

al

solenoida

l

conservat

ive



A force field F is said to be ____________ if it is 

derivable from a potential function f such that F = 

grad f.

rotational
irrotation

al

solenoida

l

conservat

ive

If F is ______ then cur F=0. rotational
irrotation

al

solenoida

l

conservat

ive

If S has a unique normal at each of its points whose 

direction depends continuously on the point of S then 

the surface S is called a ______ surface.

Orientabl

e
smooth plane twisted

_________ provides a relationship between a double 

integral over a region R and the line integral over the 

closed curve C bounding R.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

________ is also called the first fundamental theorem 

of integral vector calculus.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

_________ transforms line integrals into surface 

integrals.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

_______ transforms surface integrals into a volume 

integrals.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

_________ is stated as surface integral of the 

component of curl F along the normal to the surface S, 

taken over the surface S bounded by curve C is equal 

to the line integral of the vector point function F taken 

along the closed curve C.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

________ is stated as the surface integral of the 

normal component of a vector function F taken around 

a closed surface S is equal to the integral of the 

divergence of F taken over the volume V enclosed by 

the surface S.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

If f is solenoidal, then ^2(f)= f 1 0 -1

If (3x-2y+z)I+(4x+ay-z)J+(x-y-2z)K is solenoidal 

then a=
0 1 -1 2

If f=x+y+z-8 then grad f is ____ I+J+K I+J-K I-J+K 0

If f=x^2+y^2+z^2-8 then grad f at(2,2,2) is ____
4I+4J+4

K

4I+4J-

4K

4I-

4J+4K
0

If f =x^2+y^2+z^2-8 then grad f at(2,0,2) is ____ 4I+4K 4J+4K 4I+4J 0

If F = (x+2y+az)I+(bx-3y-z)J+(4x+cy+2z)K is 

irrotational, then the values of a,b and c are _______

a=2, 

b=4, c=-1

a=-1, 

b=2, c=4

a=4, 

b=2, c=1

a=4, 

b=2,  c=-

1

If F= xyI-yzJ-zxK then curl F =
xI+yJ+z

K
xI-yJ-zK

yI+zJ+x

K
yI+zJ-xK

If F= xyI-yzJ-zxK then div F =
xI+yJ+z

K
xI-yJ-zK yI-zJ-xK yI+zJ-xK



If F= xyI-yzJ-zxK then at (1,1,1), div F = I+J+K I-J+K I-J-K I+J-K

If F= x^2-y^2+2z^2 then at (1,2,3), div F =
2I+4J+1

2K

2I-

4J+12K
2I-4J-6K

2I+4J-

12K

div F is a ________ function. point vector scalar rotational

If curl V=0 then V is said to be an ___________. rotational
irrotation

al

solenoida

l

conservat

ive

If F= x^2+y^2+2z^2 then grad F at (2,0,2)is----- 4i+4k 4j+4k 4i+4j 0

If F is an irrotational vector, it is ______ rotational
irrotation

al

solenoida

l

conservat

ive

A ______ _curve that lies in a plane in space. plane point twisted closed

If F is conservative then cur F=0 and there exists a 

scalar potential function f such that ____ 
rotational

irrotation

al

solenoida

l

conservat

ive

Any integral which is to be evaluated along a curve is 

called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral

Any integral which is to be evaluated over a volume is 

called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral

If F is conservative then cur F=0 and there exists a scalar 

potential function f such that ____ 
rotational

irrotation

al
solenoidal

conservati

ve

The integral of vector F.dr is -----.
line 

integral
 zero 

surface 

integral  
 one

The integral of vector F.dr is is conservative if the terminal 

points A and B ______
Coinside   split     different  deviate

Greens theorem is called the _____theorem of integral 

vector calculus.

second 

fundamen

tal

first 

fundamen

tal 

third 

fundamen

tal

 fourth 

fundamen

tal

If del x F  then vector F is _______
conservati

ve 

non 

conservati

ve

curl solenoidal

If a force moves a particle from one place to another place 

in any curve then integral  of vector F.dr is called ---------- 

by that force.

work 

done
rest taken

conservati

ve 

displacem

ent

If a force--------a particle from one place to another place 

in any curve then integral  of vector F.dr is called work 

done by that force.

moves still constant idle

If S is not smooth but can be divided into finitely many 

smooth portions then it is  called a ______ surface.
Orientable smooth

piecewise 

smooth
twisted

If F is an irrotational vector, it is ______ rotational
irrotation

al
solenoidal

conservati

ve

A force field F is said to be ____________ if it is derivable 

from a potential function f such that F = grad f.
rotational

irrotation

al
solenoidal

conservati

ve



opt5 opt6 Answer

solenoidal

irrotational

irrotational

Scalar function

Point function

Vector function

solenoidal

div V

solenoidal

curl V

scalar

irrotational

3

0

0

0

perpendicular

orientable

twisted

surface integral

irrotational



conservative

conservative

smooth

Green's Theorem

Green's Theorem

Stoke's Theorem

Gauss Theorem

Stoke's Theorem

Gauss Theorem

0

-1

I+J+K

4I+4J+4K

4I+4K

a=4, b=2,    c=-1

yI+zJ-xK

yI-zJ-xK



I-J-K

2I-4J+12K

scalar

irrotational

4i+4k

conservative

plane

F = grad f.

Line integral

Volume integral

F = grad f.

line integral

Coinside   

first fundamental 

conservative 

work done

moves 

piecewise smooth

conservative

conservative
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21 Complex Numbers

Chapter Outline

 ● Introduction
 ● Complex Numbers
 ● Complex Function
 ● Limit of a Function
 ● Derivative
 ● Analytic Function
 ● Cauchy–Riemann Equations
 ● Harmonic Function
 ● Properties of Analytic Functions
 ●  Construction of Analytic Function (Milne–Thomson Method)

21.1 ❑ iNtroduCtioN

Quite often, it is believed that complex numbers arose from the need to solve 
quadratic equations. In fact, contrary to this belief, these numbers arose from the 
need to solve cubic equations. In the sixteenth century, Cardano was possibly the 
first to introduce + - ,a b  a complex number, in algebra. Later, in the eighteenth 
century, Euler introduced the notation i for -1  and visualized complex numbers as 
points with rectangular coordinates, but he did not give a satisfactory foundation for 
complex numbers. However, Euler defined the complex exponential and proved the 
identity eij = (cos j + i sin j), thereby establishing connection between trigonometric 
and exponential functions through complex analysis.

We know that there is no square root of negative numbers among real numbers.
However, algebra itself and its applications require such an extension of the 

concept of a number for which the extraction of the square root of a negative number 
would be possible.
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21.4	 Engineering Mathematics

We have repeatedly encountered the notion of extension of a number. Fractional 
numbers are introduced to make it possible to divide one integral number by another, 
negative numbers are introduced to make it possible to subtract a large number from 
a smaller one and irrational numbers become necessary in order to describe the 
result of measurement of the length of a segment in the case when the segment is 
incommensurable with the chosen unit of length.

The square root of the number –1 is usually denoted by the letter i and numbers of 
the form a + ib where a and b are ordinary real numbers known as complex numbers.

The necessity of considering complex numbers first arose in the sixteenth century 
when several Italian mathematicians discovered the possibility of algebraic solutions 
of third-degree equations.

The theoretical and applied values of complex numbers are far beyond the scope 
of algebra. The theory of functions of a complex variable, which was much advanced 
in the nineteenth century, proved to be a very valuable apparatus for the investigation 
of almost all the divisions of theoretical physics, such, for instance, as the theory of 
oscillations, hydrodynamics, the divisions of the theory of elementary particles, etc.

Many engineering problems may be treated and solved by methods involving 
complex numbers and complex functions. There are two kinds of such problems. 
The first of them consists of elementary problems for which some acquaintances 
with complex numbers are sufficient. This includes many applications to electric 
circuits or mechanical vibrating systems. The second kind consists of more advanced 
problems for which we must be familiar with the theory of complex analytic functions. 
Interesting problems in heat conduction, fluid flow and electrostatics belong to this 
category.

21.2  ❑  Complex Numbers

A number of the form x + iy, where x and y are real numbers and 1i = -  (i is 
pronounced as iota) is called a complex number. x is called the real part of x + iy and 
is written as Re(x + iy) and y is called the imaginary part and is written as Im(x + iy).

A pair of complex numbers x + iy and x – iy are said to be conjugates of each other.

Properties

	 (i)	 If x1 + iy1 = x2 + iy2 then x1 – iy1 = x2 – iy2
	 (ii)	 Two complex numbers x1 + iy1 and x2 + iy2 are said to be equal when Re(x1 + iy1) 

= Re(x2 + iy2), i.e., x1 = x2 and Im(x1 + iy1) = Im(x2 + iy2) i.e., y1 = y2
	 (iii)	 Algebra of Complex Numbers
		  The arithmetic operations on complex numbers follow the usual rules of 

elementary algebra of real numbers with the definition i2 = –1. If z1 = x1 + iy 
and z2 = x2 + iy2 are any two complex numbers then we define the following 
arithmetic operations.

		  Addition

	 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )z z x iy x iy x x i y y+ = + + + = + + +

		  Subtraction

	 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )z z x iy x iy x x i y y- = + - + = - + -

		  Multiplication

	 1 2 1 1 2 2 1 2 1 2 1 2 1 2( )( ) ( ) ( )z z x iy x iy x x y y i x y y x= + + = - + +
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 Complex Numbers 21.5

  Division Let z2 π 0. Then

 

1 1 1 1 1 2 2 1 2 1 2 2 1 1 2
2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

( )( )
( )( )

z x iy x iy x iy x x y y x y x y
i

z x iy x iy x iy x y x y
È ˘ È ˘+ + - + -

= = = +Í ˙ Í ˙+ + - + +Í ˙ Í ˙Î ˚ Î ˚
  i.e., sum, difference, product and quotient of any two complex numbers is itself 

a complex number.
 (iv) Every complex number x + iy can always be expressed in the form r(cos q + 

i sin q).
  i.e., reiq (Exponential	form).

  Note

 (i) The number 2 2r x y= + +  is called the module of x + iy and is written as 
mod (x + iy) or |x + iy|. The angle q is called the amplitude or argument of 
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude q 
has an infinite number of values. The value of q which lies between –p and 
p is called the principal value of the amplitude.

 (ii) cos q + i sin q is briefly written as cis q (pronounced as ‘sis q’)
 (iii) If the conjugate of z = x + iy be z  then

 (a) 1 1Re( ) ( ), Im( ) ( )
2 2

z z z z z z
i

= + = -

 (b) 2 2| | (Re( )) (Im( )) | |z z z z= + =

 (c) 2| |zz z=

 (d) 1 2 1 2z z z z+ = +

 (e) 1 2 1 2z z z z= ◊

 (f) 1 2 1 2 2( / ) / , 0z z z z z= π

 (iv) De Moivre’s Theorem
 (cos q + i sin q)n = cos nq + i sin nq

21.3 ❑ Complex fuNCtioN

Recall from calculus that a real function f defined on a set S of real numbers is a rule 
that assigns to every x in S a real number f(x), called the value of f at x. Now in the 
complex region, S is a set of complex numbers. A function f defined on S is a rule that 
assigns to every z in S a complex number w, called the value of f at z.

We write w = f(z). Here, z varies in S and is called a complex variable. The set S is 
called the domain of f.

If to each value of z, there corresponds one and only one value of w then w is 
said to be a single-valued function of z; otherwise, it is a multi-valued function. For 

example, 1w
z

=  is a single-valued function and w z=  is a multi-valued function 

of z. The former is defined at all points of the z-plane except at z = 0 and the latter 
assumes two values for each value of z except at z = 0.

 (i) The number 2 2r x yr x y2 2r x y2 2= + += + +2 2= + +2 2r x y= + +r x yr x y= + +r x yr x y= + +r x y2 2r x y2 2= + +2 2r x y2 2  is called the module of x + iy and is written as 
mod (x + iy) or |x + iy|. The angle q is called the q is called the q amplitude or argument of 
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude q
has an infinite number of values. The value of q which lies between –q which lies between –q p and p and p
p is called the p is called the p principal value of the amplitude.

 (ii) cos q + q + q i sin q is briefly written as cis q is briefly written as cis q q (pronounced as ‘sis q (pronounced as ‘sis q q’)q’)q
 (iii) If the conjugate of z = x + iy be z  then

 (a) 1 1Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )1 1Re( ) ( ), Im( ) ( )1 11 1Re( ) ( ), Im( ) ( )1 1
2 2

Re( ) ( ), Im( ) ( )
2 2

Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )
i

Re( ) ( ), Im( ) ( )
i

Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )

 (b) 2 2| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2= + =2 2| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2z z z z2 2| | (Re( )) (Im( )) | |2 2= + =2 2| | (Re( )) (Im( )) | |2 2z z z z2 2| | (Re( )) (Im( )) | |2 2

 (c) 2| |zz z| |zz z| |zz z=zz z

 (d) 1 2 1 2z z z z1 2 1 2z z z z1 2 1 2+ = +z z z z+ = +z z z z1 2 1 2z z z z1 2 1 2+ = +1 2 1 2z z z z1 2 1 2

 (e) 1 2 1 2z z z z1 2 1 2z z z z1 2 1 2z z z z= ◊z z z z1 2 1 2z z z z1 2 1 2= ◊1 2 1 2z z z z1 2 1 2

 (f) 1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0z z z z z( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0= π( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2= π1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0z z z z z( / ) / , 0= π( / ) / , 0z z z z z( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2= π1 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2

 (iv) De Moivre’s Theorem
 (cos q + q + q i sin q)q)q n = cos nq + q + q i sin nq
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21.6 Engineering Mathematics

  Note

 (i) If z = x + iy then f(z) = u + iv (a complex number).
 (ii) Since eiy = cos y + i sin y, e–iy = cos y – i sin y, the circular functions are 

sin , cos
2 2

iy iy iy iye e e e
y y

i

- -- +
= = , and so on

  \ circular functions of the complex variable z are given by 
--

=sin ,
2

iz ize e
z

i
 

-+
= =

sin
cos , tan

2 cos

iz ize e z
z z

z
 with cosec z, sec z and cot z as their respective 

reciprocals.
 (iii) Euler’s Theorem
 eiz = cos z + i sin z
 (iv) Hyperbolic Functions

  If x be real or complex, sin
2

x xe e
hx

--
=  (named hyperbolic sine of x) 

cos
2

x xe e
hx

-+
=  (named hyperbolic cosine of x)

  Also, we define,

 

sin
tan

cos

1cot
tan

1 2sec
cos

1 2cosec
sin

x x

x x

x x

x x

x x

x x

hx e e
hx

hx e e

e e
hx

hx e e

hx
hx e e

hx
hx e e

-

-

-

-

-

-

-
= =

+

+
= =

-

= =
+

= =
-

 (v) Relations between Hyperbolic and Circular Functions
 sin ix = i sin hx
 cos ix = cos hx
 tan ix = i tan hx
 (vi) cos h2x – sin h2x = 1, sec h2x + tan h2x = 1
  cot h2x – cosec h2x = 1
 (vii) sin h(x ± y) = sin hx cos hy ± cos hx sin hy
  cos h(x ± y) = cos hx cos hy ± sinh x sinh y

 

±
± =

+
tan tan

tan ( )
1 tan tan

hx hy
h x y

hx hy

 (viii) 
2 2 2 2

2

sin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sin
2 tan

tan 2
1 tan

h x hx x

h x h x h x h x h x
hx

h x
h x

=

= + = - = +

=
+

 (i) If z = x + iy then f(f(f z) = u + iv (a complex number).
 (ii) Since eiy = cos y + i sin y, e–iy = cos y – i sin y, the circular functions are 

sin , cos
2 2

iy iy iy iye e e e
sin , cos

e e e e
sin , cos

iy iy iy iye e e eiy iy iy iy
y ysin , cosy ysin , cos

2 2
y y

2 2
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

i2 2i2 2
sin , cosy ysin , cos

i
sin , cosy ysin , cos

2 2
y y

2 2i2 2
y y

2 2
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

i
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

iy iy iy iy- -iy iy iy iyiy iy iy iy- +iy iy iy iye e e e- +e e e e
sin , cos

e e e e
sin , cos

- +
sin , cos

e e e e
sin , cos

iy iy iy iye e e eiy iy iy iy- +iy iy iy iye e e eiy iy iy iy
= =y y= =y ysin , cosy ysin , cos= =sin , cosy ysin , cossin , cosy ysin , cos= =sin , cosy ysin , cos , and so on

  \ circular functions of the complex variable z are given by sin ,sin ,=sin ,=
2

sin ,
2

sin ,
iz iz-iz iz-e e-e e-

sin ,
e e

sin ,
iz ize eiz iz

sin ,zsin ,
i

sin ,
i

sin ,

= =
sin

cos , tan
2 cos

cos , tan
2 cos

cos , tan
iz iz-iz iz-+iz iz+e e z+e e z+ sine e zsiniz ize e ziz iz+iz iz+e e z+iz iz+

z z= =z z= =cos , tanz zcos , tan= =cos , tan= =z z= =cos , tan= == =cos , tan= =z z= =cos , tan= =
z

with cosec z, sec z and cot z as their respective 

reciprocals.
 (iii) Euler’s Theorem

eiz = cos z + i sin z
 (iv) Hyperbolic Functions

  If x be real or complex, sin
2

x xe ex xe ex x
hx

x x-x xe e-e e
=  (named hyperbolic sine of x) 

cos
2

x xe ex xe ex x
hx

x x-x xx x+x xe e+e ex xe ex x+x xe ex x
=  (named hyperbolic cosine of x)

  Also, we define,

sin
tan

cos

1cot
tan

1 2sec
cos

1 2cosec
sin

x x

x x

x x

x x

x x

x x

hx e ex xhx e ex x
hx

hx e ex xe ex x

e ex xe ex x
hx

hx e ex xe ex x

hx
hx e ex xe ex x

hx
hx e ex xe ex x

x x-x x

x x-x x

x x-x x

x x-x x

x x-x x

x x-x x

hx e e-hx e e
= == = x x+x xe e+e ex xe ex x+x xe ex x

x x+x xe e+e ex xe ex x+x xe ex x
= == =

e e-e e

= == = x x+x xe e+e ex xe ex x+x xe ex x

= == =
e e-e e

 (v) Relations between Hyperbolic and Circular Functions
 sin ix = i sin hx
 cos ix = cos hx
 tan ix = i tan hx
 (vi) cos h2x – sin h2x = 1, sec h2x + tan h2x = 1
  cot h2x – cosec h2x = 1
 (vii) sin h(x ± y) = sin hx cos hy ± cos hx sin hy
  cos h(x ± y) = cos hx cos hy ± sinh x sinh y

± =
tan tan

tan ( )± =tan ( )± =
1 tan tan+1 tan tan+

hx hy±hx hy±tan tanhx hytan tan±tan tan±hx hy±tan tan±
h x ytan ( )h x ytan ( )± =tan ( )± =h x y± =tan ( )± =

hx hy1 tan tanhx hy1 tan tan

 (viii) 
2 2 2 2

2

sin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sin
2 tan

tan 2
1 tan

h x hx xsin 2 2 sin coshh x hx xsin 2 2 sin cosh

h x h x h x h x h x2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2

hx
h xtan 2h xtan 2

h x2h x2

sin 2 2 sin coshh x hx xsin 2 2 sin cosh=sin 2 2 sin coshh x hx xsin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin= + = - = +cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2= + = - = +2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2

=
1 tan+1 tan
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 Complex Numbers 21.7

 (ix) 3

3

3

2

sin 3 3 sin 4 sin

cos 3 4 cos 3 cos

3 tan tan
tan 3

1 3 tan

h x hx h x

h x h x hx

hx h x
h x

h x

= +

= -

+
=

+

 (x) 

+ -
+ =

+ -
- =

+ -
+ =

+ -
- =

sin sin 2 sin cos
2 2

sin sin 2 cos sin
2 2

cos cos 2 cos cos
2 2

cos cos 2 sin sin
2 2

x y x y
hx hy h h

x y x y
hx hy h h

x y x y
hx hy h h

x y x y
hx hy h h

 (xi) cos h2x – sin h2x = 1
 (xii) Complex trigonometric functions satisfy the same identities as real 

trigonometric functions.

 

- = - - =

+ =
± = ±
± =

= = -

=



2 2

1 2 1 2 1 2

1 2 1 2 1 2
2 2

sin( ) sin and cos( ) cos

sin cos 1
sin( ) sin cos cos sin
cos( ) cos cos sin sin

sin 2 2 sin cos and cos 2 cos sin

sin sin

z z z z

z z
z z z z z z
z z z z z z

z z z z z z

z z

 sin(z + 2np) = sin z, n is any integer
 cos(z + 2np) = cos z, n is any integer
 (xiii) Inverse Trigonometric and Hyperbolic Functions
  Complex inverse trigonometric functions are defined by the following:

 

1 2

1 2

1

2
1 1

2
1 1

1 1

cos log( 1)

sin log( 1 )

1
tan log log ,

2 1 2

1 11cosec sin log , 0

1 11sec cos log , 0

1cot tan log
2

z i z z

z i iz z

iz i zi iz z i
iz i z

z
z i z

z z

z
z i z

z z
iz

z

-

-

-

- -

- -

- -

= - + +

= - + -

Ê ˆ+ +
= - = π ±Á ˜- -Ë ¯

Ê ˆ+ -Ê ˆ Á ˜= = - πÁ ˜Ë ¯ Ë ¯
Ê ˆ+ -Ê ˆ Á ˜= = - πÁ ˜Ë ¯ Ë ¯

Ê ˆ -
= =Á ˜Ë ¯ ,

z i
z i

z i
Ê ˆ+

π ±Á ˜-Ë ¯
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21.8 Engineering Mathematics

  Complex inverse hyperbolic functions are defined by the following:

 

- -

-

- -

= + - = + +

Ê ˆ+
= π ±Á ˜-Ë ¯

Ê ˆ+ +Ê ˆ Á ˜= = πÁ ˜Ë ¯ Ë ¯

1 2 1 2

1

2
1 1

cosh log( 1), sinh log( 1)

11tanh log , 1
2 1

1 11cosech sinh log , 0

z z z z z z

z
z z

z

z
z z

z z

 

- -

- -

Ê ˆ+ -Ê ˆ Á ˜= = πÁ ˜Ë ¯ Ë ¯
Ê ˆÊ ˆ +

= = π ±Á ˜ Á ˜Ë ¯ -Ë ¯

2
1 1

1 1

1 11sech cosh log , 0

11 1coth tanh log , 1
2 1

z
z z

z z
z

z z
z z

21.4 ❑ limit of A fuNCtioN

A function f(z) is said to have the limit ‘b’ as z approaches a point ‘a’, written 
lim ( )
z a

f z b
Æ

= , if f is defined in a neighborhood of ‘a’ (except perhaps at ‘a’ itself) and if 

the values of f are close to ‘b’ for all z close to ‘a’, i.e., the number b is called the limit 
of the function f(z) as z Æ a, if the absolute value of the difference f(z) – b remains 
less than any preassigned positive number Œ every time the absolute value of the 
difference z – a for z π a, is less than some positive number d (dependent on Œ).

More briefly, the number b is the limit of the function f(z) as z Æ a, if the absolute 
value |f(z) – b| is arbitrarily small when |z – a| is sufficiently small.

21.5 ❑ derivAtive

A function f(z) is said to be differentiable at a point z = z0 if the limit 

0 0
0

( ) ( )
lim
z

f z z f z
zD Æ

+ D -
D

 exists. This limit is then called the derivative of f(z) at the 

point z = z0 and is denoted by f ¢(z0).
If we write z = z0 + Dz then

 0

0
0

0

( ) ( )
( ) lim

z z

f z f z
f z

z zÆ

-
=¢

-

21.6 ❑ ANAlytiC fuNCtioNs

A function defined at a point z0 is said to be analytic at z0, if it has a derivative at z0 
and at every point in some neighborhood of z0. It is said to be analytic in a region R, if 
it is analytic at every point of R. Analytic functions are otherwise named holomorphic 
or regular functions.

A point at which a function f(z) is not analytic is called a singular point or 
singularity of f(z).

  Complex inverse hyperbolic functions are defined by the following:

Ê ˆÊ ˆ+Ê ˆ
Ë ¯Á ˜Ë ¯Á ˜-Ë ¯-

Ê ˆÊ ˆÊ ˆ+ +Ê ˆÊ ˆ Á ˜Á ˜
Ê ˆ
Á ˜
Ê ˆ+ +
Á ˜

+ +Ê ˆ+ +Ê ˆ
Á ˜
Ê ˆ+ +Ê ˆÊ ˆ

Á ˜
Ê ˆ
Ë ¯ Ë ¯Á ˜Ë ¯ Ë ¯Á ˜

1 2 1 21 2 1 21 2 1 2

1

Ê ˆ2Ê ˆ
1 1

cosh log( 1), sinh log( 1)cosh log( 1), sinh log( 1)cosh log( 1), sinh log( 1)- -cosh log( 1), sinh log( 1)- -= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2cosh log( 1), sinh log( 1)1 2 1 21 2 1 2cosh log( 1), sinh log( 1)1 2 1 21 2 1 2cosh log( 1), sinh log( 1)1 2 1 2- -1 2 1 2- -cosh log( 1), sinh log( 1)- -1 2 1 2- -- -1 2 1 2- -cosh log( 1), sinh log( 1)- -1 2 1 2- -= + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + += + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + += + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + +

Ê ˆ1Ê ˆ1tanh log , 1-tanh log , 1- Ê ˆ
tanh log , 1

Ê ˆÊ ˆ+Ê ˆ
tanh log , 1

Ê ˆ+Ê ˆ
= π ±tanh log , 1= π ±

Ê ˆ
= π ±

Ê ˆ
tanh log , 1

Ê ˆ
= π ±

Ê ˆÊ ˆ
= π ±

Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ

tanh log , 1
Ê ˆ

= π ±
Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ
Á ˜Ë ¯Á ˜tanh log , 1Á ˜Ë ¯Á ˜= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±1tanh log , 11 Ê ˆ1Ê ˆ
tanh log , 1

Ê ˆ1Ê ˆ1tanh log , 11
2 1Ë ¯2 1Ë ¯Á ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜tanh log , 1
2 1

tanh log , 1Á ˜Ë ¯Á ˜tanh log , 1Á ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜tanh log , 1Á ˜Ë ¯Á ˜

Ê ˆ1 1Ê ˆÊ ˆ1 1Ê ˆÊ ˆ+ +Ê ˆ1 1Ê ˆ+ +Ê ˆÊ ˆ+ +Ê ˆ1 1Ê ˆ+ +Ê ˆ
Á ˜

1 1
Á ˜Á ˜

1 1
Á ˜
Ê ˆ
Á ˜
Ê ˆ1 1Ê ˆ
Á ˜
Ê ˆ+ +
Á ˜

+ +1 1+ +
Á ˜

+ ++ +
Á ˜

+ +1 1+ +
Á ˜

+ ++ +
Á ˜

+ +1 1+ +
Á ˜

+ +Ê ˆ+ +Ê ˆ
Á ˜
Ê ˆ+ +Ê ˆ1 1Ê ˆ+ +Ê ˆ
Á ˜
Ê ˆ+ +Ê ˆÊ ˆ+ +Ê ˆ
Á ˜
Ê ˆ+ +Ê ˆ1 1Ê ˆ+ +Ê ˆ
Á ˜
Ê ˆ+ +Ê ˆÊ ˆ1Ê ˆÊ ˆ

Á ˜
Ê ˆ1Ê ˆ
Á ˜
Ê ˆ

cosech sinh log , 0- -cosech sinh log , 0- - Á ˜cosech sinh log , 0Á ˜Á ˜cosech sinh log , 0Á ˜= = πcosech sinh log , 0= = πÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜= = πcosech sinh log , 0= = π
Ê ˆ
Á ˜
Ê ˆ

cosech sinh log , 0
Ê ˆ
Á ˜
Ê ˆÊ ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

cosech sinh log , 0
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ
Ë ¯ Ë ¯cosech sinh log , 0Ë ¯ Ë ¯= = πË ¯ Ë ¯= = πcosech sinh log , 0= = πË ¯ Ë ¯= = πÁ ˜Ë ¯ Ë ¯Á ˜cosech sinh log , 0Á ˜Ë ¯ Ë ¯Á ˜= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = π1 1cosech sinh log , 01 1- -1 1- -cosech sinh log , 0- -1 1- -= = π1 1= = πcosech sinh log , 0= = π1 1= = π
Ê ˆ
Á ˜
Ê ˆ1Ê ˆ
Á ˜
Ê ˆ

cosech sinh log , 0
Ê ˆ
Á ˜
Ê ˆ1Ê ˆ
Á ˜
Ê ˆ

cosh log( 1), sinh log( 1)z z z z z zcosh log( 1), sinh log( 1)cosh log( 1), sinh log( 1)z z z z z zcosh log( 1), sinh log( 1)cosh log( 1), sinh log( 1)z z z z z zcosh log( 1), sinh log( 1)= + - = + +cosh log( 1), sinh log( 1)= + - = + +z z z z z z= + - = + +cosh log( 1), sinh log( 1)= + - = + += + - = + +cosh log( 1), sinh log( 1)= + - = + +z z z z z z= + - = + +cosh log( 1), sinh log( 1)= + - = + += + - = + +cosh log( 1), sinh log( 1)= + - = + +z z z z z z= + - = + +cosh log( 1), sinh log( 1)= + - = + += + - = + +cosh log( 1), sinh log( 1)= + - = + +z z z z z z= + - = + +cosh log( 1), sinh log( 1)= + - = + += + - = + +cosh log( 1), sinh log( 1)= + - = + +z z z z z z= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2cosh log( 1), sinh log( 1)1 2 1 2z z z z z z1 2 1 2cosh log( 1), sinh log( 1)1 2 1 2= + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + +z z z z z z= + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + += + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + +z z z z z z= + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + += + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + +z z z z z z= + - = + +1 2 1 2= + - = + +cosh log( 1), sinh log( 1)= + - = + +1 2 1 2= + - = + +

Ê ˆzÊ ˆÊ ˆ
tanh log , 1

Ê ˆzÊ ˆ
tanh log , 1

Ê ˆ
tanh log , 1z ztanh log , 1= π ±tanh log , 1= π ±z z= π ±tanh log , 1= π ±= π ±tanh log , 1= π ±z z= π ±tanh log , 1= π ±= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±z z= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±z z= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±

Ê ˆ
= π ±

Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ

tanh log , 1
Ê ˆ

= π ±
Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ

z z
Ê ˆ

= π ±
Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ

tanh log , 1
Ê ˆ

= π ±
Ê ˆ
Á ˜
Ê ˆ

= π ±
Ê ˆ

= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±z z= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±tanh log , 1= π ±Á ˜= π ±
Ë ¯

= π ±Á ˜= π ±
Ë ¯zË ¯Á ˜Ë ¯Á ˜zÁ ˜Ë ¯Á ˜

Ê ˆzÊ ˆ
Á ˜

z
Á ˜
Ê ˆ
Á ˜
Ê ˆzÊ ˆ
Á ˜
Ê ˆ

cosech sinh log , 0z zcosech sinh log , 0= = πcosech sinh log , 0= = πz z= = πcosech sinh log , 0= = πÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜= = πcosech sinh log , 0= = πz z= = πcosech sinh log , 0= = π= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πz z= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = π
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

cosech sinh log , 0
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

z z
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

cosech sinh log , 0
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

= = πË ¯ Ë ¯= = πcosech sinh log , 0= = πË ¯ Ë ¯= = πz z= = πË ¯ Ë ¯= = πcosech sinh log , 0= = πË ¯ Ë ¯= = πÁ ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜cosech sinh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯
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Á ˜= = πÁ ˜= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πz z= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = π= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πz z= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πcosech sinh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = π1 1cosech sinh log , 01 1z z1 1cosech sinh log , 01 1= = π1 1= = πcosech sinh log , 0= = π1 1= = πz z= = π1 1= = πcosech sinh log , 0= = π1 1= = πË ¯ Ë ¯z zË ¯ Ë ¯

Ê ˆÊ ˆÊ ˆ+ -Ê ˆÊ ˆ Á ˜Á ˜
Ê ˆ
Á ˜
Ê ˆ+ -
Á ˜

+ -Ê ˆ+ -Ê ˆ
Á ˜
Ê ˆ+ -Ê ˆÊ ˆ

Á ˜
Ê ˆ
Ë ¯ Ë ¯Á ˜Ë ¯ Ë ¯Á ˜

Ê ˆÊ ˆ Ê ˆ+Ê ˆÊ ˆ
Á ˜
Ê ˆ
Ë ¯Á ˜Ë ¯Á ˜

Ë ¯Á ˜Ë ¯Á ˜

Ê ˆ2Ê ˆ
1 1

1 1

Ê ˆ1 1Ê ˆÊ ˆ1 1Ê ˆÊ ˆ+ -Ê ˆ1 1Ê ˆ+ -Ê ˆÊ ˆ+ -Ê ˆ1 1Ê ˆ+ -Ê ˆ
Á ˜

1 1
Á ˜Á ˜

1 1
Á ˜
Ê ˆ
Á ˜
Ê ˆ1 1Ê ˆ
Á ˜
Ê ˆ+ -
Á ˜

+ -1 1+ -
Á ˜

+ -+ -
Á ˜

+ -1 1+ -
Á ˜

+ -+ -
Á ˜

+ -1 1+ -
Á ˜

+ -Ê ˆ+ -Ê ˆ
Á ˜
Ê ˆ+ -Ê ˆ1 1Ê ˆ+ -Ê ˆ
Á ˜
Ê ˆ+ -Ê ˆÊ ˆ+ -Ê ˆ
Á ˜
Ê ˆ+ -Ê ˆ1 1Ê ˆ+ -Ê ˆ
Á ˜
Ê ˆ+ -Ê ˆÊ ˆ1Ê ˆÊ ˆ

Á ˜
Ê ˆ1Ê ˆ
Á ˜
Ê ˆ
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= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

z z
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ
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Ë ¯

= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
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z zË ¯z zË ¯ Ë ¯z zË ¯2 1z z2 1Ë ¯2 1Ë ¯z zË ¯2 1Ë ¯Á ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜z zÁ ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜
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 Complex Numbers 21.9

21.7 ❑ CAuChy–riemANN eQuAtioNs

The necessary condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the 

point z = x + iy of a domain R is that the partial derivatives , ,u u v
x y x

∂ ∂ ∂
∂ ∂ ∂

 and v
y

∂
∂

 must 
exist and satisfy the Cauchy–Riemann equations, namely,

 
andu v u v

x y y x
∂ ∂ ∂ ∂= = -
∂ ∂ ∂ ∂

The sufficient condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the 
point z = x + iy of a domain R is that the four partial derivatives ux, uy, vx and vy exist, 
are continuous and satisfy the Cauchy–Riemann equations ux = vy and uy = –vx at each 
point of R.

  Note

 (i) The two partial differential equations u v
x y

∂ ∂=
∂ ∂

 and u v
y x

∂ ∂= -
∂ ∂

 are called 

the Cauchy–Riemann equations and they may be written as ux = vy and uy 
= –vx

 (ii) The Cauchy–Riemann equations are referred as C-R equations

 (iii) C-R equations in polar form are 1u v
r r q

∂ ∂=
∂ ∂

 and 1v u
r r q

∂ ∂= -
∂ ∂

.

21.8 ❑ hArmoNiC fuNCtioN

A real function of two variables x and y that possesses continuous second-order 
partial derivatives and satisfies the Laplace equation is called a harmonic function.

If u and v are harmonic functions such that u + iv is analytic then each is called the 
conjugate harmonic function of the other.

  Note

 (i) 
2 2

2 2x y
∂ ∂+
∂ ∂

 is called the Laplacian operator and is denoted by —2.

 (ii) 
2 2

2 2 0
x y
∂ ∂+ =
∂ ∂

 is known as Laplace equation in two dimensions.

21.9 ❑ properties of ANAlytiC fuNCtioNs

property 1

The real and imaginary parts of an analytic function f(z) = u + iv satisfy the Laplace 
equation in two dimensions.

 ● proof

Since f(z) = u + iv is an analytic function, it satisfies C-R equations,

i.e., u v
x y

∂ ∂=
∂ ∂

 and (21.1)

 (i) The two partial differential equations u v
x y

∂ ∂u v∂ ∂u v=
∂ ∂x y∂ ∂x y

 and u v
y x

∂ ∂u v∂ ∂u v= -
∂ ∂y x∂ ∂y x

 are called 

the Cauchy–Riemann equations and they may be written as ux = vy and uy
= –vx

 (ii) The Cauchy–Riemann equations are referred as C-R equations

 (iii) C-R equations in polar form are u v
q

∂ ∂1∂ ∂1u v∂ ∂u v1u v1∂ ∂1u v1=
∂ ∂r r∂ ∂r r

 and v u
q

∂ ∂1∂ ∂1v u∂ ∂v u1v u1∂ ∂1v u1= -
∂ ∂r r∂ ∂r r

.

 (i) 
2 2

2 2x y2 2x y2 2
∂ ∂2 2∂ ∂2 2

+2 2+2 2∂ ∂2 2∂ ∂2 2x y∂ ∂x y2 2x y2 2∂ ∂2 2x y2 2  is called the Laplacian operator and is denoted by —2.

 (ii) 
2 2

2 2 0
x y2 2x y2 2
∂ ∂2 2∂ ∂2 2

+ =+ =2 2+ =2 2∂ ∂2 2∂ ∂2 2x y∂ ∂x y2 2x y2 2∂ ∂2 2x y2 2  is known as Laplace equation in two dimensions.
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 u v
y x

∂ ∂= -
∂ ∂

 (21.2)

Differentiating both sides of (21.1) partially with respect to x, we get

 
2 2

2
u v

x yx
∂ ∂=

∂ ∂∂
 (21.3)

Differentiating both sides of (21.2) partially with respect to y, we get

 
22

2
vu

y xy
-∂∂ =
∂ ∂∂

 (21.4)

By adding (21.3) and (21.4), we get

 
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

 (since 
2 2

,v v
x y y x
∂ ∂=

∂ ∂ ∂ ∂
 when they are continuous)

fi u satisfies Laplace equation.
Now differentiating both sides of (21.1) partially with respect to y, we get

 
2 2

2
u v

x y y
∂ ∂=

∂ ∂ ∂
 (21.5)

Differentiating both sides of (21.2) partially with respect to x we get

 
2 2

2
u v

y x x
∂ ∂= -

∂ ∂ ∂
 (21.6)

Subtracting (21.5) and (21.6),

i.e., 

2 2 2 2

2 2

2 2

2 2 0

u u v v
x y y x y x

v v
x y

∂ ∂ ∂ ∂- = +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂+ =
∂ ∂

\ v satisfies Laplace equation.
Hence, if f(z) is analytic then both real and imaginary parts satisfy Laplace’s equation.

  Note

If f(z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are 
any two harmonic functions then f(z) = u + iv need not be analytic.

property 2

If f(z) = u + iv is an analytic function then the curves of the family u(x, y) = C1 cut 
orthogonally the curves of the family v(x, y) = C2 where C1 and C2 are constants.

 ● proof

Given u(x, y) = C1
Taking differentials on both sides, we get
 du = 0

i.e., 0u udx dy
x y

∂ ∂+ =
∂ ∂

If f(f(f z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are 
any two harmonic functions then f(f(f z) = u + iv need not be analytic.
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\ 1

u
dy x m
dx u

y

Ê ˆ∂
Á ˜Ë ¯∂= - =
Ê ˆ∂
Á ˜∂Ë ¯

 (say), where m1 is the slope of the curve u(x, y) = C1 at (x, y)

From the second curve v(x, y) = C2, we get 2 ,

v
dy x m
dx v

y

Ê ˆ∂
Á ˜Ë ¯∂= - =
Ê ˆ∂
Á ˜∂Ë ¯

 where m2 is the slope 
of the curve v(x, y) = C2 at (x, y).

Now,	 1 2

u v
x xm m
u v
y y

Ê ˆ Ê ˆ∂ ∂
Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂= ◊
Ê ˆ Ê ˆ∂ ∂
Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯

	     

v v
y x
v v
x y

Ê ˆ∂ Ê ˆ∂
Á ˜ Á ˜∂Ë ¯ Ë ¯∂= ◊
Ê ˆ Ê ˆ∂ ∂-Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

	 (as f(z) is analytic, it satisfies C-R equation)

fi m1m2 = –1
Hence, the curves cut each other orthogonally.
Here, the two families are said to be orthogonal trajectories of each other.

21.10  ❑  �Construction of Analytic Functions 
(Milne–Thomson Method)

To find f(z) when u is given

We know that ( ) u vf z i
x x

∂ ∂= +¢
∂ ∂

.

i.e.,	 ( ) u uf z i
x y

∂ ∂= -¢
∂ ∂

  (By C-R equations)	 (21.7)

Let	 1
( , )

( , )
u x y

x y
x

f
∂

=
∂

 and then calculate f1(z, 0)	 (21.8)

and	 2
( , )

( , )
u x y

x y
y

f
∂

=
∂

 and then calculate f2(z, 0)	 (21.9)

Substituting (21.8) and (21.9) in (21.7), we get
	 f ¢(z) = f1(z, 0) – if2(z, 0)
Integrating, we get Úf 1(z)dz = Úf1(z, 0)dz – i Úf2(z, 0)dz
i.e.,	 f(z) = Úf1(z, 0)dz – iÚf2(z, 0)dz.

To find f(z) when v is given

We know that ( ) u vf z i
x x

∂ ∂= +¢
∂ ∂
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	     v vi
y x

∂ ∂= +
∂ ∂

	 (21.10)

Let	 1
( , )

( , 0)
v x y

z
y

f
∂

=
∂

	 (21.11)

and	 2
( , )

( , 0)
v x y

z
x

f
∂

=
∂

	 (21.12)

Substituting (21.11) and (21.12) in (21.10), we get
	 f ¢(z) = f1(z, 0) + if2(z, 0)
Integrating, we get Úf ¢(z)dz = Úf1(z, 0)dz + iÚf2(z, 0)dz
i.e.,	 f(z) = Úf1(z, 0)dz + iÚf2(z, 0)dz

21.11  ❑  Applications

Irrotational Flows

A flow in which the fluid particles do not rotate about their own axes while flowing 
is said to be irrotational.
Let there be an irrotational motion so that the velocity potential f exists such that

	 ,u v
x y
f f-∂ -∂= =

∂ ∂
	 (21.13)

In two-dimensional flow, the stream function y always exists such that

	 ,u v
y x
y y-∂ ∂= =

∂ ∂
	 (21.14)

From (21.13) and (21.14), we have

	 and
x y y x

yf y f -∂∂ ∂ ∂= =
∂ ∂ ∂ ∂

	 (21.15)

which are the well-known Cauchy–Riemann equations. Hence, f + iy is an analytic 
function of z = x + iy. Moreover, f and y are known as conjugate functions.
On multiplying and rewriting, (21.15) gives

	 0
x x y y
f y f y∂ ∂ ∂ ∂+ ◊ =

∂ ∂ ∂ ∂
	 (21.16)

showing that the families of curves given by f = constant and y = constant intersect 
orthogonally. Thus, the curves of equi-velocity potential and the stream lines intersect 
orthogonally.
Differentiating the equation given in (21.15) with respect to x and y respectively, we 

get 
2 2

2 x yx
f y∂ ∂=

∂ ∂∂
 and 

22

2 x yy
yf -∂∂ =

∂ ∂∂
.	 (21.17)

Since 
2 2

x y y x
y y∂ ∂=

∂ ∂ ∂ ∂
, (21.17) gives

	
2 2

2 2 0
x y
f f∂ ∂+ =

∂ ∂
	 (21.18)
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Again differentiating Eq. (21.15) with respect to y and x respectively, we get

	
2 2 2 2

2 2and
y x x yy x

f y f y∂ ∂ ∂ -∂= =
∂ ∂ ∂ ∂∂ ∂

Subtracting these, 
2 2

2 2 0
x y
y y∂ ∂+ =

∂ ∂
	 (21.19)

Equations (21.18) and (21.19) show that f and y satisfy Laplace’s equation when a 
two-dimensional irrotational motion is considered.

Complex Potential

Let w = f + iy be taken as a function of x + iy
Thus, suppose that w = f(z)
i.e.,	 f + iy = f(x = iy)	 (21.20)
Differentiating (21.20) with respect to x and y respectively, we get

	
( )i f x iy

x x
f y∂ ∂+ = +¢

∂ ∂ 	 (21.21)

and	 ( )i i f x iy
y y
f y∂ ∂+ = +¢

∂ ∂

or	
i

i i
y y x x

yf y fÊ ˆ∂∂ ∂ ∂+ = +Á ˜Ë ¯∂ ∂ ∂ ∂
 by	 (21.22)

Equating real and imaginary parts, we get

	
and

x y y x
yf y f -∂∂ ∂ ∂= =

∂ ∂ ∂ ∂

which are C-R equations. Then w is an analytic function of z and w is known as the 
complex potential.

Conversely, if w is an analytic function of z then its real part is the velocity potential 
and imaginary part is the stream function of an irrotational two-dimensional motion. 
The curves f(x, y) = a and y(x, y) = b are called equipotential lines and stream lines 
respectively.

In the study of electrostatics and gravitational fields, the curves f(x, y) = a and 
y(x, y) = b are respectively called equipotential lines and lines of force.

In heat-flow problems, the curves f(x, y) = a and y(x, y) = b are respectively called 
isothermals and heat-flow lines.

Solved Examples

Example 1	 Prove that the function f(z) = |z|2 is differentiable only at the origin.

Solution  Given f(z) = |z|2

i.e.,	 + = + = +

= +

2 2 2 2

2 2

| | [ ]u iv x iy x y

x y

  (as z = x + iy and f(z) = u + iv)
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fi	  u = x2 + y2

	

∂ ∂
= =

∂ ∂
=

2 , 2

0

u ux y
x y
v

	

∂ ∂
= =

∂ ∂
0, 0v v

x y

If f(z) is differentiable then

	

u v
x y

∂ ∂=
∂ ∂

fi	 2x = 0 fi x = 0

Also,	 u v
y x

∂ ∂= -
∂ ∂

fi	 2y = 0 fi y = 0
\ C-R equations are satisfied only when x = 0, y = 0
Hence, f(z) = |z|2 is differentiable only at the origin (0, 0).	 Proved.

Example 2	 Prove that the function f(z) = zz  is not analytic except at z = 0.

Solution  Given f(z) = zz
i.e.,	 u + iv = (x + iy)(x – iy)
	 u + iv = x2 + y2

Equating real and imaginary parts.
	 u = x2 + y2

fi	 2 , 2u ux y
x y

∂ ∂= =
∂ ∂

	 v = 0

fi	 0, 0

and

v v
x y
u v u v
x y y x

∂ ∂= =
∂ ∂
∂ ∂ ∂ ∂π π -
∂ ∂ ∂ ∂

fi C-R equations are not satisfied
\ f(z) = zz  is not analytic except at z = 0.	 Proved.

Example 3	 Show that (i) an analytic function with a constant real part is a 
constant, and (ii) an analytic function with a constant modulus is also a constant.

� [KU Nov. 2010, April 2012; AU Nov. 2010, Nov. 2011]

Solution  Let f(z) = u + iv be an analytic function.
	 (i)	 Let u = C1 (a constant)

		  Then 0x
u u
x

∂ = =
∂

 and 0y
u u
y

∂ = =
∂

.

		  Since f(z) is an analytic function, by C-R equations ux = vy and uy = –vx
fi	 vy = 0 and vx = 0.

		  As vx = 0 and vy = 0, v must be independent of x and y and must be a constant C2.
		  \	 f(z) = u + iv = C1 + iC2 which is a constant.
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	 (ii)	 Let f(z) = u + iv be an analytic function.

		  Given 2 2| ( )|f z u v k= + =  (a constant)
		  Differentiating partially with respect to x and y, we get

	 2 2 0u vu v
x x

∂ ∂+ =
∂ ∂

and	 2 2 0u vu v
y y

∂ ∂+ =
∂ ∂

		  Since f(z) is an analytic function, it satisfies C-R equations.
		  \ the above two equations may be written as,

	 0u uu v
x y

∂ ∂- =
∂ ∂

and	 0u uv u
x y

∂ ∂+ =
∂ ∂

		  By solving, we get 0x
u u
x

∂ = =
∂

 and 0y
u u
y

∂ = =
∂

.

		  By C-R equations, it implies that 0x
v v
x

∂ = =
∂

 and 0y
v v
y

∂ = =
∂

.

		  Thus, f(z) = u + iv is a constant.� Proved.

Example 4	 If f(z) is a regular function of z, prove that 
2 2

2 2
2 2 | ( )| 4| ( )|f z f z

x y

Ê ˆ∂ ∂+ = ¢Á ˜∂ ∂Ë ¯
.

� [AU May 2006, KU Nov. 2011, KU April 2013]

Solution  Let f(z) = u(x, y) + iv(x, y)
Then |f(z)|2 = u2 + v2 and |f ¢(z)|2 = 2 2

x xu v+

To prove 
2 2

2 2 2 2
2 2 ( ) 4( )x xu v u v

x y

Ê ˆ∂ ∂+ + = +Á ˜∂ ∂Ë ¯

Now, 2( ) 2 xu uu
x
∂ =
∂

 and 
2

2
2 ( ) (2 )xu uu

xx
∂ ∂=

∂∂

	 = 2[uuxx + uxux] = 2uuxx + 2
xu ]

Similarly, 
2

2 2
2 ( ) 2[ ]yy yu uu u

y
∂ = +
∂

\	
2 2

2 2 2
2 2 ( ) 2 [ ] 2[ ]xx yy x yu u u u u u

x y

Ê ˆ∂ ∂+ = + + +Á ˜∂ ∂Ë ¯

	 2 22[ ]x yu u= +   (since uxx + uyy = 0)	 (1)

Again,	 ∂ = +
∂

2
2 2

2 ( ) 2[ ]xx xv vv v
x

and	
2

2 2
2 ( ) 2[ ]yy yv vv v

y
∂ = +
∂
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\	
2 2

2 2 2
2 2 ( ) 2 ( ) 2( )xx yy x yv v v v v v

x y

Ê ˆ∂ ∂+ = + + +Á ˜∂ ∂Ë ¯

	 2 22( )x yv v= +   (since vzz + vyy = 0)� (2)
Adding (1) and (2), we get

	
2 2

2 2 2 2 2 2
2 2 ( ) 2[ ]x y x yu v u u v v

x y

Ê ˆ∂ ∂+ + = + + +Á ˜∂ ∂Ë ¯

	 2 2 2 22[ ]x x x xu v v u= + + + 	 (by using C-R equations) 2 24[ ]x xu v= + .

Hence,	
2

2 2
2 2 | ( )| 4| ( )|f z f z

x y

Ê ˆ∂ ∂+ = ¢Á ˜∂ ∂Ë ¯
	 Proved.

Example 5	 Show that if f(z) is a regular function of z then 
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
 log|f(z)| 

= 0.� [AU May 2012]

Solution  2 2 21 1Log| ( )| log| ( )| log ( )
2 2

f z f z u v= = +

\	
2 2 2 2

2 2 2 22

2 2 2 2

2 21log| ( )|
2

( )( ) ( )(2 2 )
log| ( )|

( )

x x x x

xx x xx x x x x x

uu v v uu vv
f z

x u v u v

u v uu u vv v uu vv uu vv
f z

x u v

È ˘+ ◊ +∂ = =Í ˙∂ + +Í ˙Î ˚
+ + + + - + +∂ =

∂ +

	   2 2 2
2 2 2 2 2

1 2[ ] ( )
( )x xx x x x xuu vv u v uu vv

u v u v
= + + + - +

+ +
	 (1)

Similarly,

	
2

2 2 2
2 2 2 2 2 2

1 2log| ( )| [ ] ( )
( )yy yy y y y yf z uu vv u v uu vv

y u v u v
∂ = + + + - +
∂ + +

	 (2)

Adding (1) and (2), we get –
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
 log|f(z)|

	

= + + + + + + + -
+ +

+ + +

= + - + + - +
+ +

+
= - + + +

+ +

2 2 2 2
2 2 2 2 2

2 2

2 2 2 2
2 2 2 2 2

2 2
2 2 2 2 2 2

2 2 2 2 2

1 2[ ( ) ( ) ]
( )

[( ) ( ) ]

1 2[2( )] [( ) ( ) ]
( ) ( )

2( ) 2 [ ( ) ( )]
( )

xx yy xx yy x x y y

x x y y

x x x x x x

x x
x x x x

u u u v v v u v u v
u v u v

uu vv uu vv

u v uu vv uv vu
u v u v

u v
u u v v u v

u v u v

	

+ + +
= -

+ +
=

2 2 2 2 2 2

2 2 2 2 2
2( ) 2( )( )

( )
0

x x x xu v u v u v
u v u v

	 Proved.
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Example 6	 Show that the function 1
2

u = log(x2 + y2) is harmonic and determine 
its conjugate. Also find f(z).� [KU May 2010, KU April 2013]

Solution  Given 1
2

u = log(x2 + y2)

\	

2 2 2 2

2 2 2 2 2 2 2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2

;

( ) 2 ( ) 2
;

( ) ( ) ( ) ( )

0
( ) ( ) ( )

yu x u
x yx y x y

x y x y x x y y x yu u
x x y x y y x y x y

y x x y y x x yu u
x y x y x y x y

∂ ∂= =
∂ ∂+ +

+ - - + - -∂ ∂= = = =
∂ + + ∂ + +

- - - + -∂ ∂+ = + = =
∂ ∂ + + +

Hence, u satisfies Laplace’s equation.
\ u is harmonic.
To find conjugate of u

We know that	  
v vdv dx dy
x y

∂ ∂= +
∂ ∂

	

-∂ ∂
= +

∂ ∂
-

= +
+ +

- -
= =

+ Ê ˆ
+ Á ˜Ë ¯

2 2 2 2

2 2 2 2
1

( )
1

u udx dy
y x

y xdx dy
x y x y
xdy ydx xdy ydx

x y x y
x

	

Ê ˆ
= Á ˜Ë ¯Ê ˆ

+ Á ˜Ë ¯

=
+Ú Ú

2

2

1

1

( / )
1 ( / )

yd
xy

x
d y x

dv
y x

i.e.,	 1tan yv
x

- Ê ˆ
= Á ˜Ë ¯

\ the required analytic function is f(z) = u + iv

	 2 2 11 log ( ) tan
2

yx y i
x

- Ê ˆ
= + + Á ˜Ë ¯

i.e.,	 f(z) = log z� Ans.

Example 7	 If u(x, y) = ex(x cos y – y sin y), find f(z) so that f(z) is analytic.

Solution  Given u = ex(x cos y – y sin y)

\	

1

1

( , ) cos ( ) sin

( , 0)

x x x

z z

ux y y xe e y ye
x

z ze e

f

f

∂= = + -
∂

= + 	 (1)
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\	

2

2

( , ) sin (sin cos )

( , 0) 0

x xux y xe y e y y y
y

z

f

f

∂= = - - +
∂

= 	 (2)
By Milne–Thomson method,
	 f ¢(z) = f1(z, 0) – if2(z, 0)
	 = zez + ez + 0
	 = ez(z + 1)
\	 f(z) = Úez(z + 1)dz
	 = zez – ez + ez + C
i.e.,	 f(z) = zez + C	 Ans.

Example 8	 Find the analytic function f(z) = u + iv given that 
sin 2

cosh 2 cos 2
x

u v
y x

+ =
-

.

� [AU May 2006]

Solution  Given	 u + iv = f(z)� (1)
\	 iu – v = i f(z)	 (2)
Adding (1) and (2), we get
	 (u – v) + i(u + v) = (1 + i)f(z)
Let u – v = U,
	 u + v = V and F(z) = (1 + i) f(z)

	

2

2

2 2

2

2

1 2

(cos 2 cos 2 )2 cos 2 sin 2 2 sin 2
(cosh 2 cos 2 )

( , )

2 cos 2 cosh 2 2(cos 2 sin 2 )
(cos 2 cos 2 )

2 cos 2 cosh 2 2
(cos 2 cos 2 )

sin 2 (2 sin 2 )
( , )

(cos 2 cos 2 )
2 sinh 2 sin 2

(co

h y x x x xV
x y x

Vx y
x

x y x x
h y x

x y
h y x

x h yVx y
y h y x

y x

f

f

- - ◊∂ =
∂ -

∂=
∂

- +
=

-
-

=
-

-∂= =
∂ -
-

= 2s 2 cos 2 )h y x-
By Milne–Thomson method, we have

	

1 2

2 2

1

( ) ( , 0) ( , 0)
2(cos 2 1)

( , 0)
(1 cos 2 )

( , 0) 0

F z z i z
z

z
z

z

f f

f

f

= +¢
-

=
-

=

and	 2

2
2

2(cos 2 1)
( )

(1 cos 2 )
2 1

1 cos 21 cos 2
2

1 cosec
sin

z
F z i

z

i i
zz

i i z
z

-
=¢

-
- -= =

--

-= = -
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\	 2( ) cosec
1

if z zdz
i

= -
+ Ú

i.e.,	
1

( ) cot
2

i
f z z C

+
= + 	 Ans.

Example 9	 Find the analytic function f(z) = u + iv if 2 2
xu v

x y
+ =

+
 and f(1) = 1.

� [AU Nov. 2010]

Solution  Given u + iv = f(z)� (1)
	 iu – v = if(z)	 (2)
Adding (1) and (2), we get
	 (u – v) + i(u + v) = (1 + i)f(z)
i.e.,	 U + iV = F(z)	 (3)

where	 U = u – v, V = u + v = 2 2
x

x y+
, F(z) = (1 + i) f(z)	 (4)

	
=

+2 2
xV

x y

\	

f

f

-∂
= =

∂ +
=

1 2 2 2

1

2( , )
( )

( , 0) 0

xyVx y
y x y

z 	 (5)

\	

2 2

2 2 2 2

2

2 4 2

( , )
( )

1( , 0)

y xVx y
x x y

zz
z z

f

f

-∂= =
∂ +

-= = -
	 (6)

By Milne’s method, we have

	

1 1 2

2

( ) ( 0) ( , 0)
10

F z z i z

i
z

f f= +¢

= -

\	

2
1( )

1

F z i dz
z

i C
z

= -

Ê ˆ
= - - +Á ˜Ë ¯

Ú

	 ( ) iF z C
z

= + 	 (7)

But F(z) = (1 + i) f(z) [from (4) and (8)]
From (7) and (8), we get

	

1 1

1

(1 ) ( )

( )
(1 ) 1

(1 )
, where

(1 )(1 ) 1
1

( )
2

ii f z C
z

i Cf z
z i i

i i CC C
i i z i

i
f z C

z

+ = +

= +
+ +

-
= + =

+ - +
+

= +
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Given f(1) = 1

i.e.,	 1
1

(1) 1
2

i
f C

+
= + =

fi	 1
(1 )

1
2

1
2

i
C

i

+
= -

-
=

\	
1 1

( )
2 2

i i
f z

z
+ -

= + 	 Ans.

Example 10	 Show that 
2 2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯
.� [AU Nov. 2010]

Solution
Let	 z = x + iy	 (1)
\	 z  = x – iy	 (2)
From (1) and (2), we get

	 , ( )
2 2 2

z z z z ix y z z
i

+ - -= = = -

Now,	 1 1,
2 2

,
2 2

x x
z z
y yi i
z z

∂ ∂= =
∂ ∂
∂ ∂-= =
∂ ∂

Now,	 yx
z x z y z

∂∂ ∂ ∂ ∂= + ◊
∂ ∂ ∂ ∂ ∂

	 (3)

	    

1
2

i
x y

Ê ˆ∂ ∂= -Á ˜∂ ∂Ë ¯

	

yx
z x z y z

∂∂ ∂ ∂ ∂= ◊ +
∂ ∂ ∂ ∂ ∂ 	 (4)

	    

1
2

i
x y

Ê ˆ∂ ∂= +Á ˜∂ ∂Ë ¯

\	
2 2 2

2 2
1
4z z x y

Ê ˆ∂ ∂ ∂= +Á ˜∂ ∂ ∂ ∂Ë ¯

fi	
2 2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯
	 Proved.

Example 11	 If f(z) = u + iv is analytic, prove that 
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
log|f ¢(z)| = 0.

� [AU Nov. 2010]

Solution  We know that 
2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯
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\	
2 2 2

2 2

2
2

2

2

log| ( )| 4 log| ( )|

14 log| ( )|
2

2 log[ ( ) ( )]

2 [log ( ) log ( )]

f z f z
z zx y

f z
z z

f z f z
z z

f z f z
z z

Ê ˆ∂ ∂ ∂
+ =¢ ¢Á ˜ ∂ ∂∂ ∂Ë ¯

∂
= ◊ ¢

∂ ∂
∂

= ¢ ¢
∂ ∂
∂

= +¢ ¢
∂ ∂

	  

( )2 0
( )

f z
z f z

È ˘¢¢∂= =Í ˙∂ ¢Î ˚ 	 Proved.

Example 12	 If u = x2 – y2 and 2 2
yv

x y
= -

+
, prove that both u and v satisfy Laplace’s 

equation but that u + iv is not a regular function of z.� [KU Nov. 2011]

Solution  Given u = x2 – y2

Then	
2 2

2 22 ; 2; 2 ; 2x xx y yy
u u u uu x u u y u
x yx y

∂ ∂ ∂ ∂= = = = = = - = = -
∂ ∂∂ ∂

\	
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

i.e., u satisfies Laplace’s equation.

	
2 2

yv
x y

= -
+

Then	
2 2 2 2

2 2 2 2 2 4

2 2

2 2 3

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 22

2 2 2 4

2 2

2 2

( ) 2( ) 22 ; 2
( ) ( )

2 ( 3 )
( )

( ) 1 2
( ) ( )

( ) 2 ( )2( )2
( )

2 (3 )
( )

x xx

y

yy

x y x x y xxyv v v y
x x y x y

y y x
x y

x y y y xv v
y x y x y

x y y y x x y yv v
y x y

y x y
x y

È ˘+ ◊ - ◊ + ◊∂ = = = Í ˙
∂ + +Í ˙Î ˚

-
=

+
È ˘+ ◊ - -∂ = = - =Í ˙

∂ + +Í ˙Î ˚
+ - - +∂ = =

∂ +

-
=

+ 3

\	
2 2

2 2 0v v
x y

∂ ∂+ =
∂ ∂

i.e., v satisfies Laplace’s equation.
Now, ux π vy and uy π –vx
i.e., C-R equations are not satisfied by u and v.
Hence, u + iv is not an analytic (regular) function of z.	 Ans.
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Example 13	 Show that the function u(x, y) = 3x2y + x2 – y3 – y2 is a harmonic 
function. Find a function v(x, y) such that u + iv is an analytic function.
� [AU June 2010]

Solution  Let f(z) = u + iv be an analytic function with u(x, y) = 3x2y + x2 – y3 – y2

Then	
∂ ∂

= = + = = +
∂ ∂
∂ ∂

= = - - = = - -
∂ ∂

2

2

2
2 2

2

6 2 ; 6 2;

3 3 2 ; 6 2

x xx

y yy

u uu xy x u y
x x
u uu x y y u y
y y

\ 
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

, hence, u(x, y) is a harmonic function.

	
y x

uv v udv dx dy dx dy u dx u dy
x y y x

-∂∂ ∂ ∂= ◊ + ◊ = + = - +
∂ ∂ ∂ ∂

\ dv = (–3x2 + 2y + 3y2)dx + (6xy + 2x)dy where the RHS is a perfect differential equation.

	
2 2(3 3 2 ) (6 2 )

u udv dx dy
y x
x y y dx xy x dy

∂ ∂= - +
∂ ∂

= - Ú - - + Ú +

Ú Ú

\	 v = (3xy2 + 2xy – x3) + C
\	 f(z) = u + iv = 3x2y + x2 – y3 – y2 + i(3xy2 + 2xy – x3 + C)
	 = –i[x3 + 3x2(iy) + 3xi2y2 + i3y3] + [x2 + 2xiy + i2y2] + iC
	 = –i[x + iy]3 + [x + iy]2 + iC
\	 f(z) = iz3 + z2 + iC	 Ans.

Exercise

Part A

	 1.	 Define analytic function of a complex variable.
	 2.	 State any two properties of an analytic function.
	 3.	 Define a harmonic function with an example.
	 4.	 Verify whether the function f(x, y) = ex sin y is harmonic or not.
	 5.	 Find the constant ‘a’ so that u(x, y) = ax2 – y2 + xy is harmonic.
	 6.	 Is f(z) = z3 analytic? Justify.
	 7.	 What do you mean by a conjugate harmonic function? Find the conjugate 

harmonic of x.
	 8.	 Show that an analytic function with a constant real part is constant.
	 9.	 Write down the necessary condition for w = f(z) = f(reiq) to be analytic.

	 10.	 Show that the function 1tan yu
x

- Ê ˆ
= Á ˜Ë ¯  is harmonic.

	 11.	 Show that xy2 cannot be the real part of an analytic function.
	 12.	 f(z) = u + iv is such that u and v are harmonic. Is f(z) analytic always? Justify.
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	 13.	 State C-R equations in Cartesian coordinates.
	 14.	 Prove that u = 3x2y + 2x2 – y3 – 2y2 is a harmonic function.
	 15.	 Show that the function f(z) = (x3 – 3xy2) + i(3x2y – y3) satisfies Cauchy–Riemann 

equations.
	 16.	 Show that the real part u of an analytic function satisfies the equation —2u = 0.

	 17.	 Check whether the function 1
z

 is analytic or not.

	 18.	 Test the analyticity of the function 2xy + i(x2 – y2).
	 19.	 State the basic difference between the limit of a function of a real variable and 

that of a complex variable.
	 20.	 Find the analytic function f(z) = u + iv, given that (i) u = y2 – x2, (ii) v = sin hx sin y, 

and (iii) 2 2
xu

x y
=

+
.

Part B

	 1.	 Prove that the following functions are not differentiable (and, hence, not 
analytic) at the origin.

	 (i)	

3

6 2
( )

, 0
( )

0, 0

x y y ix
z

f z x y
z

Ï -
πÔ

= +Ì
Ô =Ó

	 (ii)	

2

2 2
( )

, 0
( )

0, 0

xy x iy
z

f z x y
z

Ï +
πÔ

= +Ì
Ô =Ó

	 2.	 Prove that for the following function, C-R equations are satisfied at the origin 
but f(z) is not analytic there.

	

3 3

2 2
(1 ) (1 )

, 0
( )

0, 0

x i y i
z

f z x y
z

Ï + - -
πÔ

= +Ì
Ô =Ó

	 3.	 Show that f(z) = sin z  is not an analytic function of z.
	 4.	 Find whether the Cauchy–Riemann equations are satisfied for the following 

functions where w = f(z).
	 (i)	 w = 2xy + i(x2 – y2)� (Ans. No)

	 (ii)	 2 2
x iy

w
x y

-
=

+
� (Ans. No)

	 (iii)	 w = x2 – y2 – 2xy + i(x2 – y2 + 2xy)� (Ans. Yes)
	 (iv)	 w = cos x sin hy� (Ans. Yes)
	 (v)	 w = z3 – 2z2� (Ans. Yes)
	 5.	 Show that an analytic function with a constant imaginary part is constant.

	 6.	 Show that ,
x iy

u iv
x iy a

-
+ =

- +
 where a π 0, is not an analytic function of z = x + iy 

whereas u – iv is such a function.
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	 7.	 Find an analytic function w = u + iv whose real part is given by
	 (i)	 u = e–x{(x2 – y2) cos y + 2xy sin y}� [Ans. e–x(x – iy)2 (cos y – i sin y]

	 (ii)	 2 2
xu

x y
=

+
� 1 C

z
Ê ˆ

+Á ˜Ë ¯Ans.

	 (iii)	 u = ex(x cos y – y sin y)� (Ans. zez + C)
	 (iv)	 u = x4 – 6x2y2 + y4� (Ans. z4 + C)
	 (v)	 u = –sin x sin hy� (Ans. –i cos z + iC)
	 8.	 Find an analytic function w = u + iv whose imaginary part is given by
	 (i)	 v = ex(x cos y + y sin y)� (Ans. ize–z + C)
	 (ii)	 v = –2 sin x(ey – e–y)� (Ans. log z + C)

	 (iii)	
sin sin

cos 2 cos 2
x hy

v
x h y

=
+

� 1 sec
2

zÊ ˆ+
Á ˜Ë ¯Ans.

	 (iv)	 v = x2 – y2 + 2xy – 3x – 2y� [Ans. z2 – 2z + i(z2 – 3z)]
	 (v)	 v = x3 – 3x2y + 2x + 1 + y3 – 3xy2� [Ans. (i – 1)z3 + 2z + C]
	 9.	 Show that the following functions are harmonic and find their harmonic 

conjugates.
	 (i)	 u = cos x cos hy� (Ans. –sin x sin hy + C)
	 (ii)	 u = ex(cos y – sin y)� (Ans. Not harmonic)
	 (iii)	 u = e–x(y cos y – x sin y)� (Ans. ex(x cos y + y sin y) + C)
	 (iv)	 u = ex cos y� (Ans. ex sin y + C)
	 (v)	 u = 2xy + 3xy2 – 2y3� (Ans. Not harmonic)

	 10.	 Find f(z) = u + iv, if 
cos sin

,
cos cos

ye x x
u v

hy x
- +

- =
-

 given that 
3

2 2
i

f pÊ ˆ -
=Á ˜Ë ¯ .

�

1
( ) cot

2 2
izf z

È ˘Ê ˆÊ ˆ -
= +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Ans.

	 11.	 Find f(z) = u + iv if 2u – 3v = 3y2 – 2xy – 3x2 + 3y – x and f(0) = 0.
� (Ans. f(z) = iz2 – z)

	 12.	 If f(z) = u + iv is a regular function of z, then show that 
Ê ˆ∂ ∂

+ =Á ˜
∂ ∂Ë ¯

2 2

2 2 | ( )|pf z
x y

- ¢22 2| ( )| | ( )|pp f z f z .

	 13.	 If 2 2
2 sin 2

,
2 cos 2y y
x

u
e e x-=

+ -
 find f(z) such that f(z) is analytic.

� (Ans. f(z) = cot z + C)

	 14.	 Show that 2 2
2 2

xx y
x y

f = - +
+

 can represent the velocity potential in an 

incompressible fluid flow. Also find the corresponding stream function and 

complex potential.� 2
2 2

12 ; ( )yxy C f z z iC
zx y

y
È ˘

= - + = + +Í ˙+Í ˙Î ˚
Ans.
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22 Conformal Mapping

Chapter Outline

 ● Introduction
 ● Conformal Transformation
 ● Conformal Mapping by Elementary Transformations
 ● Some Standard Transformations
 ● Bilinear Transformation

22.1 ❑ introdUCtion

Many physical problems involving ideal fluid flow, steady-state heat flow, 
electrostatics, magnetism, current flow etc., can be solved using conformal mapping 
techniques. These problems generally involve Laplacian in three-dimensional 
coordinates and also divergence and are of three-dimensional vector functions.

geometrical representation

To draw the curve of a complex variable (x, iy), we take two axes, i.e., the first one is 
the real axis and the other is the imaginary axis. A number of points (x, y) are plotted 
on the z-plane, by taking different values of z (different values of x and y). The curve 
C is drawn by joining the plotted points. The diagram obtained is called an Argand 
diagram.
Let w = f(z) = f(x + iy) = u + iv.

To draw a curve of w, we take the u-axis and v-axis. By plotting different points 
(u, v) on the w-plane and joining them, we get a curve C on the w-plane.

transformation

For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding 
point (u, v) in the w-plane. We call this transformation or mapping of z-plane into 
w-plane. If a point z0 maps into the point w0, w0 is also known as the image of z0.
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If the point P(x, y) moves along the curve C in the z-plane, the point P¢(u, v) will 
move along a corresponding curve C1 in the w-plane. We then say that a curve C in 
the z-plane is mapped into the corresponding curve C1 in the w-plane by the relation 
w = f(z).

Fig. 22.1

22.2 ❑ Conformal transformation (or Conformal mapping)

A mapping w = f(z) is said to be conformal if the angle between any two smooth 
curves C1, C2 in the z-plane intersecting at the point z0 is equal in magnitude and sense 
to the angle between their images * *

1 2,C C  in the w-plane at the point w0 = f(z0).
Thus, conformal mapping preserves angles both in magnitude and sense (which 

is also known as conformal mapping of the first kind). If only the magnitude of the 
angle is preserved, then the mapping is known as isogonal mapping (or conformal 
mapping of the second kind).

Conformal mapping is used to map complicated regions conformally onto 
simpler, standard regions such as circular disks, half-planes and strips for which the 
boundary-value problems are easier.

Given two mutually orthogonal one-parameter family of curves, say f(x, y) = 
C1 and f(x, y) = C2. Their image curves in the w-plane f(u, v) = C3 and f(u, v) = C4 
under a conformal mapping are also mutually orthogonal. Thus, conformal mapping 
preserves the property of mutual orthogonality of a system of curves in the plane.

 ➢ note

 (i) Critical point of a function w = f(z) is a point z0, where f ¢(z0) π 0.
 (ii) A mapping w = f(z) is conformal at each point z0 where f(z) is analytic and 

f ¢(z0) π 0
 (iii) An analytic function f(z) is conformal everywhere except at its critical points 

where f ¢(z) π 0.
 (iv) Solutions of Laplace’s equation are invariant under conformal 

transformation.
 (v) Conjugate functions remain conjugate functions after conformal 

transformation. This is the main reason for the great importance of 
conformal transformations in applications.

 (i) Critical point of a function w = f(f(f z) is a point z0, where f ¢(z0) π 0.
 (ii) A mapping w = f(f(f z) is conformal at each point z0 where f(f(f z) is analytic and 

f ¢(z0) π 0
 (iii) An analytic function f(f(f z) is conformal everywhere except at its critical points 

where f ¢(z) π 0.
 (iv) Solutions of Laplace’s equation are invariant under conformal 

transformation.
 (v) Conjugate functions remain conjugate functions after conformal 

transformation. This is the main reason for the great importance of 
conformal transformations in applications.
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22.3  ❑  Conformal Mapping by Elementary Transformations

General linear transformation, or simply transformation, is defined by the function
	 w = f(z) = az + b	 (22.1)
where a π 0 and b are arbitrary complex constants. The function maps conformally the 
extended complex z-plane onto the extended w-plane, since this function is analytic 
and f ¢(z) = a π 0 for any z. If a = 0 (22.1) reduces to a constant function.

22.4  ❑  Some Standard Transformations

Translation 

The transformation w = z + c, where c is a complex constant, represents a translation.
Consider the transformation w = z + c, where c = a + ib.
i.e.,	 u + iv = (x + iy) + (a + ib)
fi	 u = x + a and v = y + b
i.e.,	 x = u – a and y = v – b
On substituting the values of x and y in the equation of the curve to be transformed, 
we get the equation of the image in the w-plane.

The point P(x, y) in the z-plane is mapped onto the point P¢(x + a, y + b) in the 
w-plane. Similarly, other points of the z-plane are mapped onto the w-plane. Thus, if 
the w-plane is superposed on the z-plane, the figure of the w-plane is shifted through 
a vector c.

In other words, the transformation is a mere translation of the axes.

Fig. 22.2

Magnification and Rotation

Consider the transformation w = cz� (22.2)
where c, z, w are all complex numbers.
Let z = reiq, w = Reif, c = aeia

Substituting these values in (22.2), we have
	 Reif = (aeiµ)(reiq) = ar ei(q + a)

i.e.,	 R = ar and f = q + a
Thus, we see that the transformation w = cz corresponds to a rotation together with 
magnification.
Algebraically,	 w = cz or u + iv = (a + ib)(x + iy)
	 u + iv = ax – by + i(ay + bx)
fi	 u = ax – by and v = ay + bx.

EM_UnitIX_22.indd   3 8/23/2017   4:16:05 PM



22.4	 Engineering Mathematics

On solving these equations, we can get the values of x and y.

i.e.,	 2 2 2 2;
au bv bu av

x y
a b a b

+ - +
= =

+ +

Fig. 22.3

On putting the values of x and y in the equation of the curve to be transformed, we 
get the equation of the image.

Inversion and Reflection� [KU April 2012]

Consider the transformation 1w
z

= � (22.3)

	 z = reiq and w = Reif

Substituting these values in (22.3), we get

	 1 1Rei i
i e

rre
f q

q
-= =

fi	 1R
r

=  and f = –q

Thus, the point P(r, q) in the z-plane is 

mapped onto the point 1 ,P
r

q
Ê ˆ

-¢Á ˜Ë ¯  in the 

w-plane. Hence, the transformation is an 
inversion of z followed by reflection into 
the real axis. The points inside the unit 
circle |z| = 1 map onto points outside 
it, and points outside the unit circle into 
points inside it.

Now consider the transformation 1 1orw z
z w

= = .

i.e.,	

2 2

1

( )( )

x iy
u iv

u iv u iv
x iy

u iv u iv u v

+ =
+

- -
+ = =

+ - +

Fig. 22.4
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\	 2 2 2 2,u vx y
u v u v

-= =
+ +

Let the circle a(x2 + y2) + bx + cy + d = 0	 (22.4)
be in the z-plane.
If a π 0, (22.4) represents a circle and if a = 0, it represents a straight line.
On substituting the values of x and y in (22.4), we get

	 2 2 2 2 2 2 0a bu cv d
u v u v u v

+ - + =
+ + +

fi	 d(u2 + v2) + bu – cv + a = 0	 (22.5)
If d π 0 Eq. (22.5) represents a circle and if d = 0 it represents a straight line.
The various cases are discussed as follows:

●  When a π 0, d π 0

The transformation 1w
z

=  transforms circles not passing through the origin into 

circles not passing through the origin.

●  When a π 0, d = 0

The transformation 1w
z

=  transforms circles passing through the origin in the z-plane 

and maps into the straight lines not passing through the origin in the w-plane.

●  When a = 0, d π 0

The transformation 1w
z

=  transforms straight lines in the z-plane not passing through 

the origin into circles through the origin in the w-plane.

●  When a = 0, d = 0

The transformation 1w
z

=  transforms straight lines through the origin in the z-plane 

into straight lines through the origin in the w-plane.

22.5  ❑  �Bilinear Transformation (or Möbius 
Transformation)

The transformation ( )
az b

w f z
cz d

+
= =

+
� (22.8)

where a, b, c, d are complex or real constants subject to ad – bc π 0 is known as bilinear 
transformation.
Differentiating (22.8), we get

	

2

2

( ) ( )
( )

( )

cz d a az b cdw
dz cz d

ad bc
cz d

+ - +
=

+
-

=
+
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If ad – bc π 0 then 0dw
dz

π  for any z and, therefore, bilinear transformation is conformal 

for all z, i.e., it maps the z-plane conformally onto the w-plane

If ad – bc = 0 then 0dw
dz

=  for any z. Then every point of the z-plane is critical and 

the function is not conformal.
From (22.8), we get w(cz + d) = az + b,
i.e., cwz + dw – az – b = 0 (22.9)
Equation (22.9) is linear in z and linear in w or bilinear in z and w. Bilinear transformation 
is also known as linear fractional transformation or Mobius transformation.

For a choice of the constants a, b, c, d, we get special cases of bilinear transformation 
as
 (i) w = z + b (Translation)
 (ii) w = az (Rotation)
 (iii) w = az + b (Linear transformation)

 (iv) 1w
z

=  (Inversion in the unit circle)

Thus, bilinear transformation can be considered as a combination of these 
transformations.

fixed points (or invariant points)

Fixed (or invariant) points of a function w = f(z) are points which are mapped onto 
themselves, i.e., w = f(z) = z.

 ● Example

 w = z has every point as a fixed point.
 w = z  infinitely many.

   1w
z

=  has two.

 w = z + b has no fixed point.

The fixed points of the bilinear transformation 
az b

w
cz d

+
=

+
 are given by 

az b
z

cz d
+

=
+

.

As this is quadratic in z, we will get two fixed points for the bilinear transformation.

Cross-ratio

The cross-ratio, or anharmonic ratio, of four numbers z1, z2, z3, z4 is the linear function 

given by 1 2 3 4

1 4 3 2

( )( )
( )( )
z z z z
z z z z

- -
- -

.

 ➢ note

 (i) The cross-ratio of four points is invariant under a bilinear transformation, 
i.e., if w1, w2, w3, w4 are the images of z1, z2, z3, z4 respectively under a bilinear 

transformation, then 1 2 3 4 1 2 3 4

2 3 1 4 2 3 1 4

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
.

 (i) The cross-ratio of four points is invariant under a bilinear transformation, 
i.e., if w1, w2, w3, w4 are the images of z1, z2, z3, z4 respectively under a bilinear 

transformation, then 1 2 3 4 1 2 3 4

2 3 1 4 2 3 1 4

( )( ) ( )( )1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4
( )( ) ( )( )2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4w w w w z z z z1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4
( )( ) ( )( )w w w w z z z z( )( ) ( )( )2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4w w w w z z z z2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
=1 2 3 4 1 2 3 4=1 2 3 4 1 2 3 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
.
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 Conformal Mapping 22.7

 (ii) The bilinear transformation that maps three 
given points z2, z3, z4 onto three given points 
w2, w3, w4 is given by

1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -

solVEd ExamplEs

Example 1 Find the image of the circle |z| = 2 by the transformation w = z + 3 + 2i.

solution Let z = x + iy; w = u + iv
Given w = z + 3 + 2i
i.e., u + iv = (x + iy) + (3 + 2i)
fi u = x + 3; v = y + 2
Given the circle |z| = 2
i.e., x2 + y2 = 4
i.e., (u – 3)2 + (v – 2)2 = 4
Hence, the circle x2 + y2 = 4 maps into (u – 3)2 + (v – 2)2 = 4 in the w-plane which is also 
a circle with centre at (3, 2) and radius of 2 units. Ans.

Example 2 Find the image of the triangular region in the z-plane bounded by the 
lines x = 0, y = 0 and x + y = 1 under the transformation w = 2z. [KU May 2010]

solution Given w = 2z. i.e., u + iv = 2(x + iy)
\ u = 2x and v = 2y
When x = 0, u = 0, the line x = 0 is transformed into the line u = 0 in the w-plane.
When y = 0, v = 0, the line y = 0 is transformed into the line v = 0 in the w-plane.
When x + y = 1, we get

 1
2 2
u v+ =

fi u + v = 2
\ the line x + y = 1 is transformed into the line u + v = 2 in the w-plane.

Fig. 22.6

 (ii) The bilinear transformation that maps three 
given points z2, z3, z4 onto three given points 
w2, w3, w4 is given by

1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3
( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3w w w w z z z z1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3
( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3w w w w z z z z1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
=1 2 3 1 2 3=1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( ) Fig. 22.5

EM_UnitIX_22.indd   7 8/23/2017   4:16:06 PM



22.8	 Engineering Mathematics

Example 3	 Find the image of the circle |z – 1| = 1 in the complex plane under the 

mapping 1w
z

= .

Solution  The given transformation is 1w
z

=

i.e.,	 1z
w

=

The equation of the circle is |z – 1| = 1
i.e.,	 |x + iy – 1| = 1
	 (x – 1)2 + y2 = 1 fi x2 – 2x + y2 = 0	 (1)
Now, w = u + iv

\	
2 2

2 2

1 1 u iv
z

w u iv u v
u iv

x iy
u v

-
= = =

+ +
-

+ =
+

\	 2 2
ux

u v
=

+
	 (2)

and	 2 2
vy

u v
-=
+

	 (3)

Substituting (2) and (3) in (1), we get

	

2 2

2 2 2 2 2 22 0u u v
u v u v u v

Ê ˆ Ê ˆ Ê ˆ-- + =Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

i.e.,	 u2 – 2u(u2 + v2) + v2 = 0
	 (u2 + v2)(1 – 2u) = 0
fi	 1 – 2u = 0  (since u2 + v2 π 0)
i.e., 2u – 1 = 0 which is a straight line in the w-plane. Hence, the circle |z – 1| = 1 is 

mapped into a straight line under the transformation 1w
z

= .	 Ans.

Example 4	 Find the image of the infinite strips (i) 1 1 ;
4 2

y< <  and (ii) 10
2

y< <  

under the transformation 1w
z

= .� [KU April 2013]

Solution  Let w = u + iv, z = x + iy.

Given	 1w
z

=

i.e.,	 2 2
1 x iy

u iv
x iy x y

-
+ = =

+ +

i.e.,	 2 2
xu

x y
=

+
	 (1)

	 2 2
yv

x y
-

=
+

	 (2)
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	 Conformal Mapping	 22.9

Now, u x
v y

-= .

i.e.,	 uyx
v

-
= 	 (3)

Substituting (3) in (2), we get

or	

2

2 2 2 2
2

2

2 2

( )
y vv

u y u v yy
v

vy
u v

- -= =
+ ◊+

-=
+

	 (4)

	 (i)	 Consider a strip 1 1
4 2

y< < .

		  When 1 ,
4

y =

		  From (4), 2 2
1
4

v
u v

-=
+

		  i.e.,	 u2 + v2 + 4v = 0 or u2 + (v + 2)2 = 4.
		  which is a circle whose centre is at (0, –2) in the w-plane and radius is 2 units.

		  When 1 ,
2

y =

		  From (4), 2 2
1
2

v
u v

- =
+

		  i.e.,	 u2 + (v + 1)2 = 1.
		  which is a circle whose centre is at (0, –1) in the w-plane and the radius is 1 unit.

		  Hence, the infinite strip 1 1
4 2

y< <  is transformed into the region common to 

the circles u2 + (v + 1)2 = 1 and u2 + (v + 2)2 = 4 in the w-plane.

	 (ii)	 Consider a strip 10
2

y< < .
		  When y = 0,
		  from (4), we get v = 0.

		  When 1
2

y = ,

		  from (4), we get 2 2
1
2

v
u v

-=
+

.

		  i.e.,	 u2 + v2 + 2v = 0
		  i.e.,	 u2 + (v + 1)2 – 1 = 0
		  which is a circle whose centre is at (0, –1) in the w-plane and radius is 1 unit.

		  \ the infinite strip 10
2

y< <  is mapped into the region outside the circle u2 + 

(v + 1)2 = 1 in the lower half-plane.� Ans.
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Example 5	 Find the invariant points of the transformation
2 4

1
z i

w
iz

+
= -

+
.

Solution  The invariant points of the transformation are given by 
2 4

1
z i

z
iz

+
= -

+
fi	 iz2 + 3z + 4i = 0
i.e.,	 z2 – 3iz + 4 = 0
i.e.,	 (z – 4i)(z + i) = 0
i.e., z = 4i, – i are the invariant points.	 Ans.

Example 6	 Find the image of |z + 2i| = 2 under the transformation 1w
z

= .

� [AU May 2010]

Solution  The given transformation is 1w
z

=

i.e.,	 1z
w

=

Given	 |z + 2i| = 2
	 |x + iy + 2i| = 2
i.e.,	 |x + i(y + 2)| = 2
fi	 x2 + (y + 2)2 = 4
i.e.,	 x2 + y2 + 4y = 0	 (1)
Now, w = u + iv

	 2 2
1 1 u iv

z
w u iv u v

-
= = =

+ +

i.e.,	 2 2
u iv

x iy
u v

-
+ =

+

fi	 2 2 ,ux
u v

=
+

	 (2)

and	 2 2
vy

u v
-=
+

	 (3)

Substituting (2) and (3) in (1), we get

	
2 2

2 2 2 2 2 2

2 2 2 2

2 2

4 0

4 ( ) 0

( )(1 4 ) 0

u v v
u v u v u v

u v v u v

u v v

Ê ˆ Ê ˆ Ê ˆ- -+ + =Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

+ - + =

+ - =

fi	 1 – 4v = 0  (as u2 + v2 π 0)
which is a straight line in the w-plane.	 Ans.

Example 7	 Find the bilinear transformation that maps the points z1 = –i, z2 = 0, 
z3 = i into the points w1 = –1, w2 = i, w3 = 1 respectively.	[AU Oct. 2009, KU Nov. 2010]
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Solution  Let the bilinear transformation be

	 1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
	 (1)

Given z1 = –i, z2 = 0, z3 = 0; w1 = –1, w2 = i, w3 = 1	 (2)
Substituting (2) in (1), we get

i.e.,	

+ - + -
=

- - - - - -

+ - - - +
=

- + - -

( 1)( 1) ( )(0 )
( 1 )(1 ) ( 0)( )

( 1) ( 1)( 1) ( )
( 1) ( 1)( 1) ( )

w i z i i
i w i i z

w i i z i
w i i z i

i.e.,	 1 ( )2
1 2 ( )

1 ( )
1

w z ii
w z i

w i z i
w z i

+ - +-◊ =
- - -

+ +
=

- -

By componendo and dividendo,

	

+ + - + + -
=

+ - - + - -
+ - +

=
- - -

+ -
=

- +

( 1) ( 1) ( ) ( )
( 1) ( 1) ( ) ( )

(1 ) (1 )2
2 ( 1) (1 )

(1 )( 1)
( 1)( 1)

w w i z i z i
w w i z i z i

z i iw
z i i

i z
w

i z

fi	

+ - - -
= ◊

- - - +
Ê ˆ-

= -Á ˜+Ë ¯

(1 )( 1) ( 1)
( 1)( 1) ( 1)

1
1

i i z
i i z

z
w

z
	 Ans.

Example 8	 Find the bilinear transformation which maps the points z1 = –1, z2 = 0, 
z3 = 1 into the points w1 = 0, w2 = i, w3 = 3i respectively.

� [AU Nov. 2010, KU April 2012]

Solution  Let the bilinear translation be

	 1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
	 (1)

Given z1 = –1, z2 = 0, z3 = 1; w1 = 0, w2 = i, w3 = 3i	 (2)
Substituting (2) in (1), we get

	

- - + -
=

- - - - -

+-
=

- - -

Ê ˆ+-
= -Á ˜- -Ë ¯

( 0)( 3 ) ( 1)(0 1)
(0 )(3 ) ( 1 0)(1 )

( 1)( 2 )
(3 ) 1

12
( 3 ) 1

w i i z
i i w z

zw i
i i w z

ziw
w i i z

EM_UnitIX_22.indd   11 8/23/2017   4:16:07 PM



22.12	 Engineering Mathematics

i.e.,	
12

3 1
2 ( 1) ( 1)( 3 )

3 3

zw
w i z

w z z w i
zw iz w i

+
=

- -
- = + -

= - + -
fi	 w[2(z – 1) – (z + 1)] = –3i(z + 1)

or	
( 1)

3
3

z
w i

z
+

= -
-

	 Ans.

Example 9	 Show that under the mapping ,
i z

w
i z

-
=

+
 the image of the circle 

x2 = y2 < 1 is the entire half of the w-plane to the right of the imaginary axis.
� [AU Nov. 2011]

Solution  Given 
i z

w
i z

-
=

+

i.e.,	 (i + z)w = i – z
	 iw + zw = i –z
i.e.,	 z(w + 1) = i(1 – w)

fi	
(1 )
1

i w
z

w
-

=
+

Also given x2 + y2 < 1

i.e.,	 |z| < 1, i.e., 
(1 )

1
1

i w
w

-
<

+

i.e.,	 |i| |1 – w| < |1 + w|, i.e., |1 – u – iv| < |1 + u + iv|  [as |i| = 1]
i.e.,	 (1 – u)2 + v2 < (1 + u)2 + v2

i.e.,	 1 + u2 – 2u + v2 < 1 + u2 + 2u + v2

fi	 4u > 0
or	 u > 0
Hence, the circle x2 + y2 < 1, i.e., |z| < 1 is mapped into the entire half of the w-plane 
to the right of the imaginary axis.

When |z| = 1 i.e., x2 + y2 = 1 which is the unit circle, we get u = 0 which is the 
imaginary axis of the w-plane.� Proved.

Exercise

Part A

	 1.	 Define conformal mapping.
	 2.	 When is a transformation said to be isogonal? Prove that the mapping w z=  is 

isogonal.
	 3.	 Define critical point of a transformation.
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	 4.	 Find the images of the circle |z| = a under the transformations (i) w = z + 2 + 3i, 
and (ii) w = 2z.

	 5.	 Under the transformation w = iz + i, show that the half-plane x > 0 maps into the 
half-plane w > 1.

	 6.	 Find the invariant point of the bilinear transformation 
1
1

z
w

z
+

=
-

.

	 7.	 Find the fixed points of 
3 4

1
z

w
z

-
=

-
.

	 8.	 Define Mobius transformation. 

	 9.	 Find the invariant point of the transformation 1
2

w
z i

=
-

.

	 10.	 Find the image of x2 + y2 = 4 under the transformation w = 3z.
	 11.	 Find the image of the circle |z – a| = r by the mapping w = z + c where c is a 

constant.

	 12.	 Find the fixed points of the transformation 1
2

w
z i

=
+

.

	 13.	 Find the invariant points of the transformation 
1
1

z
w

z
+

=
-

.

	 14.	 Find the image of the circle |z| = 3 under the transformation w = 2z.
	 15.	 Find the image of the circle |z| = 2 by the transformation w = z + 3 + 2i.

	 16.	 Find the image of the real axis of the z-plane by the transformation 1w
z i

=
+

.
	 17.	 Define cross-ratio of four points in a complex plane.
	 18.	 Prove that a bilinear transformation has at most two fixed points.

Part B

	 1.	 For the mapping 
1 ,w
z

=  find the image of the family of circles x2 + y2 = ax, 

where a is real.� 1 , is a straight lineu
a

Ê ˆ
=Á ˜Ë ¯Ans.

	 2.	 Determine the region of the w-plane into which the region bounded by x = 1, 
y = 1, x + y = 1 is mapped by the transformation w = z2.

� (Ans. 4u + v2 = 4, 4u – v2 = –4, u2 = 2, v2 = 1)

	 3.	 Determine the images of the regions under 1w
z

= . (i) x > 1, y > 0 (ii) 10
2

y
c

< < .

�
2 2 21 1(i) (ii) ( )

2 2
w u v c c

È ˘
- < + + >Í ˙

Î ˚
Ans.

	 4.	 Find an analytic function w = f(z) which maps the half-plane x ≥ 0 onto the 
region u ≥ 2 such that z = 0 corresponds to w = 2 + i.

� (Hint: w1 = z, w2 = w1 + 2, w = w2 + i)
� (Ans. w = z + 2 + i)
	 5.	 Determine and plot the images of the regions under the transformation w = z2.

	 (i)	 |z| = 2	 (ii)	 |arg |
2

z p£ 	 (iii)	 1 | | 2, Re 0
2

z z< < ≥

� 1(i) 1 4 (ii)|arg | (iii) | | 4,
4

w w wp p f p
È ˘

> £ < < - £ £Í ˙Î ˚
Ans.
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	 6.	 Find the invariant (fixed) points of the transformation:

	 (i)	
1
1

z
w

z
-

=
+

	 (ii)	 w = z2	 (iii)	
2 5

4
z

w
z

-
=

+
	 (iv)	 w = (z – i)2

�
(1 2 ) 1 4

(i) (ii) 0, 1 (iii) 1 2 (iv)
2

i i
z i z z i z

È ˘+ ± +
Í ˙= ± = = - + =
Î ˚
Ans.

	 7.	 Find the bilinear transformation that maps z1, z2, z3 onto w1, w2, w3 respectively.
	 (i)	 z = –1, 0, 1 onto w = 0, i, 3i
	 (ii)	 z = 0, –i, –1 onto w = i, 1, 0
	 (iii)	 z = 1, i, –1 onto w = 2, i, –2
	 (iv)	 z = •, i, 0 onto w = 0, i, •
	 (v)	 z = 1, 0, –1 onto w = i, 1, •

�

3 ( 1) 1 6 2
(i) , (ii) (iii)

3 1 3
( 1 2 ) 11(iv) (v)

1

i z z z i
w w i w

z z iz
i z

w w
z z

È ˘Ê ˆ- + + - +
= = - =Í ˙Á ˜- - -Ë ¯Í ˙

Í ˙- + +Í ˙= - =
+Í ˙Î ˚

Ans.

	 8.	 Verify that the equation 
1
1

iz
w

z
+

=
+

 maps the exterior of the circle |z| = 1 into 
the upper half-plane v > 0.

	 9.	 Find the bilinear transformation which maps 1, i, –1 to 2, i, –2 respectively. Find 
the fixed and critical points of the transformation.� (Ans. i, 2i)

	 10.	 Show that the transformation 
(1 )
1

i z
w

z
-

=
+

 maps the circle |z| = 1 into the real 

axis of the w-plane and the interior of the circle |z| < 1 into the upper half of the 
w-plane.

	 11.	 Show that the transformation 
2 3

4
z

w
z

+
=

-
 maps the circle x2 + y2 – 4x = 0 onto the 

straight line 4u + 3 = 0.

	 12.	 Show that transformation 
i z

w
i z

-
=

+
 maps the circle |z| = 1 onto the imaginary 

axis of the w-plane. Find also the images of the interior and exterior of this 
circle.
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S.No Questions Opt 1 Opt 2 Opt 3 Opt 4 Answer

1 An example of single valued function of z is ________. w = z^2 w = z^(1/2)  w=SQRT(z) w=z^-1 w = z^2

2 An example of multiple valued function of z is _______. w = z^2 w = z^(1/2)  w=SQRT(z) w=z^-1 w = z^(1/2)  

3 The distance between two points z and z0 is |z-z0| |z+z0|          z z0 |z-z0|

4 A circle of radius 1 with centre at origin can be represented by _______. |z|>1        |z| < 1         |z|=1     |z| = 0 |z| = 1

7 If  f(z) is differentiable at z0 then f(z) is ________  at z0. discontinuous         continuous          regular irregular continuous          

8

A function is said to be _________ at a point if its derivative exists not only 

at point but   also in some neighborhood of that point. entire function       integral function      analytic       continuous analytic       

9

A function which is analytic everywhere in the finite plane is called 

___________. analytic function       holomorphic function     regular function   entire function entire function

11 The necessary condition for f(z) to be analytic is_________ u_x = v_y and v_x = -u_y u_x = -v_y and v_x = u_y                u_x = v_y and v_x = u_y                   u_x = -v_y and v_x = -u_y     u_x = v_y and v_x = -u_y

12

A real function of two variables x and y that possesses continuous second 

order partial    derivatives and that satisfies Laplace equation is called 

__________. analytic function regular function           holomorphic function       harmonic function harmonic function

13

If u and v are harmonic functions such that u+iv is analytic then each is 

called the _________        of the other. conjugate harmonic       analytic entire function       not analytic conjugate harmonic       



14

A transformation that preserves angles between every pair of curves through 

a point, both in      magnitude and sense, is called _______ at that point. Conformal           isogonal           entire function           unconformal Conformal           

15

A transformation under which angles between every pair of curves through a 

point are  preserved in magnitude, but altered in sense is said to be 

__________ at that point.   Conformal           isogonal           entire function           unconformal isogonal           

16 A mapping w = f(z) is said to be conformal at z = z0 if __________. f’(z0) = 0          f’(z0) = f(z)        f’(z0) ≠ 0      f’(z0) ≠ f(z)  f’(z0) ≠ 0      

17

The point at which the mapping w = f(z) is not conformal, that is, f’(z) = 0 is 

called     ________ of the mapping. common          fixed            invariant          critical critical

18

A _________  point of a mapping w = f(z) are points that are mapped onto 

themselves, are   kept fixed under the mapping. common          fixed           critical            variant fixed           

19

The transformation w = a+z where a is a complex constant, represents a 

__________. translation        magnification            rotation            reflection  translation        

20

The transformation _________ where a is a complex constant represents a 

translation. w = az w = az+b        w = a+z        w = 1/z       w = a+z        

21

The transformation _________ where a is a real constant represents 

magnification. w = a+z        w = 1/z       w = az+b        w = az w = az

22 The transformation w = az where a is a real constant represents __________. translation      magnification        reflection        inversion magnification        

23

In general linear transformation, w = az+b where a and b are complex 

constants represents    _______. magnification      rotation      translation    

magnification, 

rotation and 

translation

magnification, 

rotation and 

translation

24

The transformation w=(az+b)/(cz+d), where a, b, c, d are complex numbers is 

called a    ______. Linear transformation          

bilinear 

transformation       

fractional 

transformation                          translation

bilinear 

transformation       

25 A bilinear transformation is also called a _______. linear transformation           inversion           

fractional 

transformation                   

linear fractional 

transformation

linear fractional 

transformation

26 The value of  i = SQRT(-1)                  SQRT(1)                   -1 1 SQRT(-1)                  

27 _________ represents the interior of the circle excluding its circumference. |z – z0| > delta              |z – z0| < delta           |z – z0| ≥ delta               |z – z0| ≤ delta         |z – z0| < delta           

28 _________ represents the interior of the circle including its circumference. |z – z0| > delta              |z – z0| < delta           |z – z0| ≥ delta               |z – z0| ≤ delta         |z – z0| ≤ delta         

29 _________ represents the exterior of the circle. |z – z0| > delta              |z – z0| < delta           |z – z0| ≥ delta               |z – z0| ≤ delta         |z – z0| > delta              

30

Cauchy-Riemann equations are necessary conditions for a function w = f(z) 

to be an _____. entire function      integral function     analytic function    continuous function analytic function    

31 Cauchy-Riemann equations are u_x = v_y and v_x = -u_y u_x = -v_y and v_x = u_y                u_x = v_y and v_x = u_y                   u_x = -v_y and v_x = -u_y     u_x = v_y and v_x = -u_y

32

The real and imaginary parts of an analytic function f(z) = u+iv satisfies the 

______ equation in two dimensions. Cauchy-Riemann Homogeneous      Laplace       Euler   Laplace       

33 An analytic function with a constant real part is __________. a variable       a constant      an analytic function     an entire function a constant      

34 An analytic function with a constant modulus is __________. a variable       a constant      an analytic function     an entire function a constant      

35 A fixed point is also called as _________. invariant points      critical points    common point     origin invariant points      

36 The fixed point of w=(5z+4)/(z+5) is 2,1    1,-1   -2, 2 0, 1 -2, 2

37 The critical point of z=(2z+1)/(z+2) is 1, 1    1, -1    1,2 0,1 1, -1    

38 Solutions of Laplace's equation are ________ under conformal transformation common          fixed            invariant          critical invariant          

39 If f(z) is analytic, and f'(z)=0 everywhere,  then f(z) is _____ a variable       a constant      an analytic function     an entire function a constant      

40 An analytic function with a constant imaginary part is __________. a variable       a constant      an analytic function     an entire function a constant      

41 If u+iv is analytic, then v-iu is _______ entire function       integral function      analytic       continuous analytic       

44 w=z has every point as a _______ point fixed critical invariant          common          fixed 

45 w=1/z has _______ fixed points 1 2 3 4 2

46 w=z+b has ________ fixed points 0 1 2 3 0
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Chapter Outline

 ● Introduction
 ● Line Integral in a Complex Plane
 ● Line Integral
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Function

23.1 ❑ introDuCtion

Integration of functions of a complex variable plays a very important role in many 
areas of science and engineering. The advantage of complex integration is that certain 
complicated real integrals can be evaluated and properties of analytical functions can 
be established. Using integration, we shall prove a very important result in the theory 
of analytic functions:

If a function f(z) is analytic in a domain D then it possesses derivatives of all 
orders in D, that is f ¢(z), f ≤(z) … are all analytic functions in D.

Such a result does not exist in the real-variable theory. Also, the complex-integration 
approach can be used to evaluate many improper integrals of a real variable, which 
cannot be evaluated using real integral calculus. The concept of definite integral for 
functions of a real variable does not directly extend to the case of complex variables. 

23 Complex Integration
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In the case of a real variable, the path of integration in the definite integral ( )
b

a
f x dxÚ  

is along a straight line. In complex integration, the path could be along any curve 
from z = a to z = b.

23.2  ❑  Line Integral in Complex Plane

●● Continuous Arc

The set of points (x, y) defined by x = f(t), y = y(t), with parameter t in the interval 
(a, b), defines a continuous arc provided f and y are continuous functions.

●● Smooth Arc

If f and y are differentiable, the arc is said to be smooth.

●● Simple Curve

It is a curve having no self-intersections, i.e., no two distinct values of t correspond to 
the same point (x, y).

●● Closed Curve

It is one in which end points coincide, i.e., f(a) = f(b) and y(a) = y(b).

●● Simple Closed Curve

It is a curve having no self-intersections and with coincident end points.

●● Contour

It is a continuous chain of a finite number of smooth arcs.

●● Closed Contour

It is a piecewise smooth closed curve without points of self-intersection.

23.3  ❑  Line Integral

Definite integral or complex line integral or simply line integral of a complex function 
f(z) from z1 to z2 along a curve C is defined as

	

( ) ( )( )
( ) ( )

C C

C C

f z dz u iv dx idy
udx vdy i vdx udy

Ú = Ú + +
= Ú - + Ú +

Here, C is known as path of integration. If it is a closed curve, the line integral is 
denoted by 

CÚ .

When the direction is in positive sense, it is indicated as ÚC+ or simply, ÚC while 
negative direction is denoted by ÚC. Counter integral is an integral along a closed 
contour.
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 Complex Integration 23.5

23.4 ❑ BaSiC propertieS oF Line integraLS

 (i) Linearity: 1 2 1 2( ( ) ( )) ( ) ( )C C Ck f z k g z dz k f z dz k g z dzÚ + = Ú + Ú

 (ii) Sense reversal: ( ) ( )
b a

a b
f z dz f z dz= -Ú Ú

 (iii) Partitioning of path: 
1 2

( ) ( ) ( )C C Cf z dz f z dz f z dzÚ = Ú + Ú
  where the curve C consists of the curves C1 and C2.

  note

Although real definite integrals are interpreted as area, no such interpretation is 
possible for complex definite integrals.

23.5 ❑  SimpLy ConneCteD region anD muLtipLy 
ConneCteD region

A simply connected region R is a domain such that every simple closed path in R 
contains only points of R.

 ● example

Interior of a circle, rectangle, triangle, ellipse, etc.
A multiply connected region is one that is not simply connected.

 ● example

Annulus region, region with holes.

Fig. 23.2

23.6 ❑ evaLuation oF a CompLex integraL

To evaluate the integral ÚC f(z)dz, we have to express it in terms of real variables.
Let f(z) = u + iv where z = x + iy, dz = dx + idy
\ ÚC f(z)dz = ÚC(u + iv)dz
 = ÚC(u + iv)(dx + idy)
 = ÚC(udx – vdy) + iÚC(vdx + udy)

Although real definite integrals are interpreted as area, no such interpretation is 
possible for complex definite integrals.

Fig. 23.1
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23.6 Engineering Mathematics

23.7 ❑  CauChy’S integraL theorem or CauChy’S 
FunDamentaL theorem

If a function f(z) is analytic and its derivative f ¢(z) is continuous at all points inside and 
on a simple closed curve C then ÚC f(z)dz = 0.

 ● proof

Let the region enclosed by a curve C be R and let

( ) , ,

( ) ( )( ) ( ) ( )

(by Green's theorem)

C C C C

R R

f z u iv z x iy dz dx idy

f z dz u iv dx idy udx vdy i vdx udy

v u u vdxdy i dxdy
x y x y

= + = + = +

= + + = - + +

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
= - - + -Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

Ú Ú Ú Ú
ÚÚ ÚÚ

Replacing by and byv u v u
x y y x

∂ ∂ ∂ ∂-
∂ ∂ ∂ ∂

, we get

 0 0 0
R R

u u u udxdy i dxdy
y y x x

i

Ê ˆ Ê ˆ∂ ∂ ∂ ∂= - + -Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯

= + =

ÚÚ ÚÚ

or ÚC f(z)dz = 0

  note

 (i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
 (ii) Cauchy’s theorem without the assumption that f ¢ is continuous is known as 

the Cauchy–Goursat theorem.
 (iii) Simple connectedness is essential.

23.8 ❑  extenSion oF CauChy’S integraL theorem to muLtipLy 
ConneCteD regionS

If f(z) is analytic in the region R between two simple closed curves C1 and C2 then

 1 2
( ) ( )C Cf z dz f z dzÚ = Ú

 ● proof

By Cauchy’s integral theorem, we know that 
ÚC f(z)dz = 0 where the path of integration is along 
AB and the curve C2 in clockwise direction, and 
BA and along C1 in anticlockwise direction,

i.e.,  
2 1

( ) ( ) ( ) ( ) 0AB C BA Cf z dz f z dz f z dz f z dzÚ + Ú + Ú + Ú =

or 
2 1

( ) ( ) 0 (since ( ) ( ) )C C AB BAf z dz f z dz f z dz f z dzÚ + Ú = Ú = - Ú

 (i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
 (ii) Cauchy’s theorem without the assumption that f ¢f ¢f  is continuous is known as 

the Cauchy–Goursat theorem.
 (iii) Simple connectedness is essential.

Fig. 23.3
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 Complex Integration 23.7

Reversing the direction of the integral around C2, we get

 
1 2

( ) ( )C Cf z dz f z dzÚ = Ú

  note

By introducing as many cross-cuts as the number of inner boundaries, we can 
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

23.9 ❑ CauChy’S integraL FormuLa

If f(z) is analytic within and on a closed curve C and if a 

is any point within C then ( )1( )
2 C

f zf a dz
i z ap

=
-Ú .

 ● proof

Consider the function ( ) ,f z
z a-

which is analytic at all 

points within C except z = a.
With a point a as centre and radius r, draw a small 

circle C1 lying entirely within C. Now, ( )f z
z a-

 is analytic 
in the region between C and C1;

Hence, by Cauchy’s integral theorem for a multiply connected region, we have

 

1 1

1 1

( ) ( ) ( )( ) ( )

( ) ( )
( )

C C C

C C

f z f a f af z f zdz dz dz
z a z a z a

f z f a dzdz f a
z a z a

- +
= =

- - -
-

= +
- -

Ú Ú Ú
Ú Ú  (23.1)

For any point on C1

Now, 
1

2

0

( ) ( ) ( ) ( )i
i

iC

f z f a f a re f a
dz ire d

z a re

qp
q

q q
- + -

=
-Ú Ú

 [as z – a = reiq and dz = ireiq dq]

 
2

0
[ ( ) ( )] 0if a re f a id

p
q q= + - =Ú  (where r tends to zero]

 1

2 2
2
0

0 0
[0] 2

i
i

iC

dz ire d id i i
z a re

qp p
p

q
q q p= = = =

-Ú Ú Ú
Putting the values of the integrals of RHS in (23.1), we have

 

( ) 0 ( )(2 )
C

f z dz f a i
z a

p= +
-Ú

or ( )1( )
2 C

f zf a dz
i z ap

=
-Ú

By introducing as many cross-cuts as the number of inner boundaries, we can 
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

Fig. 23.4
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23.8	 Engineering Mathematics

23.10  ❑  �Cauchy’s Integral Formula for The Derivative of 
An Analytic Function

If a function f(z) is analytic in a region R then its derivative at any point z = a of R is 
also analytic in R and is given by

	
2

( )1( )
2 ( )C

f zf a dz
i z ap

=¢
-Ú

where C is any closed curve in R surrounding the point z = a.

●● Proof

By Cauchy’s integral formula,

	 ( )1( )
2 C

f zf a dz
i z ap

=
-Ú 	 (23.2)

Differentiating (23.2) with respect to a, we get

	  
2

1 1( ) ( )
2

( )1( )
2 ( )

C

C

f a f z dz
i a z a

f zf a dz
i z a

p

p

Ê ˆ∂= ◊¢ Á ˜∂ -Ë ¯

=¢
-

Ú
Ú

Similarly,	 3

1

( )2!( )
2 ( )

( )!( )
2 ! ( )

C

n
nC

f zf a dz
i z a

f znf a dz
z a

p

p +

=¢¢
-

=
-

Ú
Ú

Solved Examples

Example 1	 Use Cauchy’s integral formula to 

evaluate 
2 2sin cos

,
( 2)( 3)C

z z
dz

z z
p p+
- -Ú  where C is the 

circle |z| = 4.
� [AU June 2009, April 2011; KU Nov. 2011]

Solution

	

1 1 1
( 2)( 3) ( 3) ( 2)z z z z

= -
- - - -

\ given integral

	
2 2 2 2sin cos sin cos

3 2C C

z z z z
dz dz

z z
p p p p+ +

= -
- -Ú Ú

	 ( ) ( )
( 3) ( 2)C C

f z f zdz dz
z z

= -
- -Ú Ú 	 (1)

Fig. 23.5
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	 Complex Integration	 23.9

f(z) = sin pz2 + cos pz2 is analytic on and inside C.
The points z = 2 and z = 3 lie inside C.

\ by Cauchy’s integral formula, from (1), we get,

	

2 2

2 2 2 2
3 2

sin cos
( 2)( 3)

2 (sin cos ) 2 (sin cos )

2 (sin 9 cos 9 ) 2 (sin 4 cos 4 )

C

z z

z z
dz

z z

i z z i z z

i i

p p

p p p p p p

p p p p p p
= =

+
- -

= + - +

= + - +

Ú

	     = –2pi – 2pi = –4pi	 Ans.

Example 2	 Evaluate 2 ,
( 1)( 2)C

zdz
z z- -Ú  where C is the circle 1| 2| ,

2
z - =  using 

Cauchy’s integral formula.� [AU May 2012]

Solution 
1| 2|
2

z - =  is the circle with centre at z = 2 and radius equal to 1
2

.

The point z = 2 lies inside the circle 1| 2|
2

z - =

The given integral can be rewritten as

	 2

1
( 2)C

z
z

dz
z

Ê ˆ
Á ˜-Ë ¯

-Ú  2
( )

( 2)C

f z dz
z

=
-Ú  (say)

( )
1

zf z
z

=
-

 is analytic on and inside C and the 

point z = 2 lies inside C.
\ by Cauchy’s integral formula,

	

p

p

p p

=

=

= ¢
- -

Ï ¸Ê ˆÔ Ô= Ì ˝Á ˜-Ë ¯Ô ÔÓ ˛
Ï ¸-Ô Ô= = -Ì ˝-Ô ÔÓ ˛

Ú 2

2

2
2

2
(2)

1!( 1)( 2)

2
1

12 2
( 1)

C

z

z

iz dz f
z z

d zi
dz z

i i
z

	 Ans.

Example 3	 Evaluate 2
4

,
2 5C

z
dz

z z
+

+ +Ú  where C is the circle |z + 1 + i| = 2 using 

Cauchy’s integral formula.� [AU Nov. 2011]

Solution  |z + 1 + i| = 2 is the circle whose centre is 
–1 – i and radius is 2 units.

Consider 2
4 4

( 1 2 )( 1 2 )2 5
z z

z i z iz z
+ +

=
+ + + -+ +

\ the integral is not analytic at z = –1 – 2i and –1 + 2i. 
The point z = –1 – 2i lies inside C.

Fig. 23.6

Fig. 23.7
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23.10	 Engineering Mathematics

We rewrite the given integral as

	

4
1 2 ( ) (say)
1 2 ( 1 2 )C C

z
z i f zdz dz
z i z i

Ê ˆ+
Á ˜+ -Ë ¯

=
+ + - - -Ú Ú

f(z) is analytic on and inside C and the point (–1, –2i) lies inside C.
\ by Cauchy’s integral formula,

	

2
4

2 ( 2 )
2 5

1 2 4
2

1 2 1 2

(3 2 )
2

C

z
dz i f i i

z z
i

i
i i

i

p

p

p

+
= - -

+ +
Ï ¸- - +Ô Ô= Ì ˝- - + -Ô ÔÓ ˛

-= -

Ú

	 Ans.

Exercise

Part A

	 1.	 The value of the integral 2 2C

dz
z z-Ú  where C is the circle |z – 2| = 1, traversed 

in the counter-clockwise sense is
	 (i)	 –pi	 (ii)	 2pi	 (iii)	 pi	 (iv)	 0

	 2.	 The value of the integral 
2 1

,
1C

z z
dz

z
- +

-Ú  where C is the circle 1| |
2

z =  is

	 (i)	 0	 (ii)	 pi	 (iii)	 –pi	 (iv)	 –2pi
	 3.	 What is the value of ÚC ez dz if c : |z| = 1?
	 4.	 State Cauchy’s integral formula.

	 5.	 Evaluate 
2C

dz
z -Ú  where C is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

	 6.	 Evaluate 
23 7 1
( 3)C

z z
dz

z
+ +

-Ú where C : |z| = 2.

	 7.	 Evaluate 2 5 6C

dz
z z- +Ú  where C is the circle 1| 1|

2
z - = .

	 8.	 State Cauchy’s formula for the first derivative of an analytic function.
	 9.	 State Cauchy’s fundamental theorem.

	 10.	 Evaluate 
2C

zdz
z -Ú  where C : |z| = 1.

	 11.	 Evaluate 2
( 3)C

dz
z +Ú where C : |z| = 2.

	 12.	 Evaluate 1
2 3C

dz
z -Ú where C : |z| = 1.
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	 Complex Integration	 23.11

	 13.	 Evaluate 
2 51

2 3C

z
dz

i zp
+
-Ú where C is |z| = 4 using Cauchy’s integral formula.

	 14.	 Evaluate 2( 3)C

dz
z -Ú  where C : |z| = 1.

	 15.	 State the Cauchy–Goursat theorem.

Part B

	 1.	 Evaluate 2
1

( 1) ( 2)C

z
dz

z z
-

+ -Ú where C is |z – i| = 2.� 2
9

ipÊ ˆ-
Á ˜Ë ¯Ans.

	 2.	 Evaluate 
4 3

( 1)( 2)C

z
dz

z z z
-

- -Ú using Cauchy’s integral formula. where C is the 

circle 3| |
2

z = .� (Ans. 2pi)

	 3.	 Find the value of 
2

2
2

1C

z z
dz

z
+
-Ú .� (Ans. 3pi)

	 4.	 Evaluate the following:

	 (i)	 2 2 ,
( 4)C

dz
z +Ú where C is |z – i| = 2

	 (ii)	
3

2
1

7 6C

z z
dz

z z
+ +

- +Ú where C is the ellipse 4x2 + 9y2 = 1

	 (iii)	
3

2
1

3C

z
dz

z iz
+

-Ú where C is |z| = 1.� 2(i) , (ii) 0, (iii)
16 3
p pÈ ˘

-Í ˙Î ˚
Ans.

	 5.	 Evaluate 
2 2sin cos

( 1)( 2)C

z z
dz

z z
p p+

+ +Ú  where C is |z| = 3.� (Ans. –4pi)

	 6.	 If 
24 5

( )
C

z z
f a dz

z a
+ +

=
-Ú where C is |z| = 2, find the values of f(1), f(i), f ¢(–1) 

and f ≤(–i).� (Ans. 20pi; 2p(i – 1); –14pi; 16pi)
	 7.	 Evaluate ÚC |z|2 dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

� (Ans. –1 + i)

	 8.	 Evaluate 
2

2
1
1C

z
dz

z
+
-Ú  where (i) C : |z – 1| = 1, (ii) C : |z + 1| = 1, and (iii) C : |z – i| 

= 1.� [Ans. (i) 2pi (ii) –2pi (iii) 0]

	 9.	 Evaluate 2
sin 2

( 3)( 1)C

z
dz

z z+ +Ú  where C is the rectangle with vertices at 3 + i, 

–2 + i, –2 – i, 3 – i.�
(4 cos 2 sin 2)

2
ip

È ˘+
Í ˙Î ˚
Ans.

	 10.	 Evaluate 
4 2

3
3 6

( )C

z z
dz

z i
- +

+Ú  where C : |z| = 2.� (Ans. –18pi)
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Chapter Outline

 ● Introduction
 ● Taylor’s Series
 ● Laurent’s Series

24.1 ❑ introduction

Power series

A power series in powers of (z – z0) is a series of the form

 0 0 1 0 2 0
0

( ) ( ) ( )n
n

n

a z z a a z z a z z
•

=

- = + - + - +Â   (24.1)

Here, a0, a1, a2 ... are complex (or real) constants known as coefficients of the series. z 
is a complex variable and z0 is called the centre of the series. Equation (24.1) is also 
known as the power series about the point z0.

Power series in powers of z is

 

2
0 1 2

0

n
n

n

a z a a z a z
•

=

= + + +Â 

obtained as a particular case with z0 = 0 in (24.1). The region of convergence of a 
series is the set of all points z for which the series converges.

Three distinct possibilities exist regarding the region of convergence of a power 
series (24.1).
 (i) The series converges only at the point z = z0.
 (ii) The series converges everywhere inside a circular disk |z – z0| < R and diverges 

everywhere outside the disk |z – z0| > R. Here, R is known as the radius of 
convergence and the circle |z – z0| = R as the circle of convergence.

24 Taylor and Laurent Series 
Expansions
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24.2 Engineering Mathematics

  note

 (i) The series may converge or diverge at the points on the circle of convergence.

 (ii) Geometric Series: 2

0

1m

m

z z z
•

=

= + + +Â  converges absolutely when |z| < 1 

and diverges when |z| > 1. (i.e., R = 1)

 (iii) Power series: 
0

!

n

n

z
n

•

=
Â  converges for all z. (i.e., R = •)

Power series play an important role in complex analysis, since they represent 
analytic functions and conversely every analytic function has a power series 
representation called Taylor series similar to Taylor series in real calculus.

Analytic functions can also be represented by another type of series called Laurent 
series, which consist of positive and negative integral powers of the independent 
variable. They are useful for evaluating complex and real integrals.

24.2 ❑ taYLor’s series (taYLor’s theorem)

If a function f(z) is analytic at all points inside a circle C with its centre at the point a 
and radius R then at each point z inside C,

2( ) ( )( ) ( ) ( )( ) ( ) ( )
2! !

n
nf a f af z f a f a z a z a z a

n
¢¢

= + - + - + + - +¢  

 ● Proof

Take any point z inside C. Draw a circle C1 with centre a, enclosing the point z. Let w 
be a point on the circle C1.

 

-

= =
- - + - - - -

=
- Ê ˆ-

-Á ˜-Ë ¯

È ˘-
= -Í ˙- -Î ˚

1

1 1 1
( )

1 1
( )

1

1 1

w z w a a z w a z a

w a z a
w a

z a
w a w a

Applying the binomial theorem,

 +

È ˘Ê ˆ Ê ˆ Ê ˆ- - -Í ˙= + + + + +Á ˜ Á ˜ Á ˜Í ˙- - - - -Ë ¯ Ë ¯ Ë ¯Î ˚
- - -

= + + + + +
- - - -

 

 

2

2

2 3 1

1 1 1

( ) ( )1
( ) ( ) ( )

n

n

n

z a z a z a
w z w a w a w a w a

z a z a z a
w a w a w a w a

 (24.2)

As |z – a| < |w – a| or 
-

<
-

| |
1,

| |
z a
w a

so the series converges uniformly. Hence, the series is integrable.

 (i) The series may converge or diverge at the points on the circle of convergence.

(ii) Geometric Series: 2

0

1m

m

z z z1z z z1mz z zm
•

=

= + + +2= + + +21= + + +1z z z= + + +z z z1z z z1= + + +1z z z1Â  converges absolutely when |z| < 1 

and diverges when |z| > 1. (i.e., R = 1)

(iii) Power series: 
0

!

n

n

z
n

•

=
Â converges for all z. (i.e., R = •)

Fig. 24.1
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 Taylor and Laurent Series Expansions 24.3

Multiplying (24.2) by f(w),

+= + - + - + + - +
- - - - -

 

2
2 3 1

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

n
n

f w f w f w f w f wz a z a z a
w z w a w a w a w a

On integrating with respect to w, we get

 +

= + - +
- - -

+ - +
-

Ú Ú Ú
Ú





1 1 1

1

2

1

( ) ( ) ( )( )
( )

( )( )
( )

C C C

n
nC

f w f w f wdw dw z a dw
w z w a w a

f wz a dw
w a

 (24.3)

We know that

 
p p= =

- -Ú Ú
1 1

( ) ( )2 ( ), 2 ( )
( )C C

f w f wdz i f z dw i f a
w z w a

 p= ¢
-Ú

1
2

( ) 2 ( )
( )C

f w dw i f a
w a

, and so on.

Substituting these values in (24.3), we get

 
2( ) ( )( ) ( ) ( )( ) ( ) ( )

2! !

n
nf a f af z f a f a z a z a z a

n
¢¢

= + - + - + + - +¢  

  note

 (i) Putting a = 0 in the Taylor’s series, we get 2(0) (0)( ) (0)
1! 2!

f ff z f z z¢ ¢¢
= + + +

  This series is called the McLaurin’s series of f(z).
 (ii) Standard McLaurin’s Series

 (a) 
2 3

1
1! 2! 3!

z z z ze = + + + +  for |z| < •

 (b) 
3 5

sin
3! 5!
z zz z= - + -  for |z| < •

 (c) 
2 4

cos 1
2! 4!
z zz = - +   for |z| < •

 (d) 
3 5

sin
3! 5!
z zhz z= + + +  for |z| < •

 (e) 
2 4

cos 1
2! 4!
z zhz = + + +  for |z| < •

 (f) (1 – z)–1 = 1 + z + z2 + z3 + ... for |z| < 1
 (g) (1 + z)–1 = 1 – z + z2 – z3 + ... for |z| < 1
 (h) (1 – z)–2 = 1 + 2z + 3z2 + ... for |z| < 1
 (iii) Expansion of a function f(z) about a singular point z = h means, expansion 

of f(z) in powers of (z – h).

 (i) Putting a = 0 in the Taylor’s series, we get 2(0) (0)
1! 2!

f f(0) (0)f f(0) (0)f z f z z(0) (0)f z f z z(0) (0)( ) (0)f z f z z( ) (0)
1! 2!

f z f z z
1! 2!

f ff z f z zf f(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)¢ ¢¢(0) (0)¢ ¢¢(0) (0)f f¢ ¢¢f f(0) (0)f f(0) (0)¢ ¢¢(0) (0)f f(0) (0)
= + + +2= + + +2f z f z z= + + +f z f z zf z f z z= + + +f z f z zf z f z z= + + +f z f z z(0) (0)f z f z z(0) (0)
= + + +

(0) (0)f z f z z(0) (0)( ) (0)f z f z z( ) (0)= + + +( ) (0)f z f z z( ) (0) f ff z f z zf f
= + + +

f ff z f z zf f(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)
= + + +

(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)


  This series is called the McLaurin’s series of f(f(f z).
 (ii) Standard McLaurin’s Series

(a) 
2 3

1
1! 2! 3!

z z z z2 3z z z2 3
e = + + + += + + + += + + + += + + + +1= + + + +1   for |z| < •

 (b) 
3 5

sin
3! 5!
z z3 5z z3 5

z z= - + -= - + -= - + -z z= - + -z z   for |z| < •

 (c) 
2 4

cos 1
2! 4!
z z2 4z z2 4

cos 1zcos 1= - += - +cos 1= - +cos 1   for |z| < •

 (d) 
3 5

sin
3! 5!
z z3 5z z3 5

hz z= + + += + + += + + +hz z= + + +hz z   for |z| < •

 (e) 
2 4

cos 1
2! 4!
z z2 4z z2 4

hzcos 1hzcos 1= + + += + + += + + +cos 1= + + +cos 1   for |z| < •

 (f) (1 – z)–1 = 1 + z + z2 + z3 + ... for |z| < 1
 (g) (1 + z)–1 = 1 – z + z2 – z3 + ... for |z| < 1
 (h) (1 – z)–2 = 1 + 2z + 3z2 + ... for |z| < 1
 (iii) Expansion of a function f(f(f z) about a singular point z = h means, expansion 

of f(f(f z) in powers of (z – h).
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24.4	 Engineering Mathematics

24.3  ❑  Laurent’s Series (Laurent’s Theorem)

If f(z) is analytic on C1 and C2 and the annular region bounded by the two concentric 
circles C1 and C2 of radii r1 and r2(r2 < r1) and with centre at a then for all in R,

	

2 1 2
0 1 2 2( ) ( ) ( )

( ) ( )
b b

f z a a z a a z a
z a z a

= + - + - + + + +
- -

 

where	
1

2

1

1

( )1 , 0, 1, 2, 3...
2 ( )

( )1 , 1, 2, 3...
2 ( )

n nC

n nC

f wa dw n
i w a

f wb dw n
i w a

p

p

+

- +

= =
-

= =
-

Ú
Ú

●● Proof

By introducing a cross-cut AB, the multiply connected 
region R is converted to a simply connected region. Now, 
f(z) is analytic in this region.

Now by Cauchy’s integral formula,

1

2

( )1 1( )
2 2

( ) ( ) ( )1 1
2 2

C

AB C BA

f wf z dw
i w z i

f w f w f wdw dw dw
w z i w z i w z

p p

p p

= +
-

- +
- - -

Ú
Ú Ú Ú

Integral along c2 is clockwise, so it is negative.

\	
1 2

( ) ( )1 1( )
2 2C C

f w f wf z dw dw
i w z i w zp p

= -
- -Ú Ú 	 (24.4)

For the first integral, 
( )f w

w z-
 can be expended exactly as in Taylor’s series since w 

lies on C1, 

	

1 1
1

1

2

2

3

2
0 1 2

| |
| | | |or 1

| |
( )( ) ( ) ( )1 1

2 2 2 ( )

( ) ( )
2 ( )

( ) ( )

C C
C

C

z a
z a w a

w a
z af w f w f wdw dw dw

i w z i w a i w a

z a f w dw
i w a

a a z a a z a

p p p

p

-
- £ - £

-
-

= +
- - -

-
+ +

-

= + - + - +

Ú Ú Ú

Ú 

 	 (24.5)

	 1
1

( )1as
2 ( )n nC

f wa dw
i w ap +

È ˘
=Í ˙

-Í ˙Î ˚
Ú

In the second integral, w lies on C2

\	 |w – a| < |z – a| or 
| |

1
| |
w a
z a

-
<

-

So here,	 1 1 1 1 1
( ) ( ) ( ) 1 w aw z w a a z w a z a z a

z a

-= = = ◊
-- - + - - - - - -
-

Fig. 24.2
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1

2 1

1 1

1 1
n

w a
z a z a

w a w a w a
z a z a z a z a

-

+

È ˘-
= - -Í ˙- -Î ˚

È ˘Ê ˆ Ê ˆ- - -Í ˙= - + + + + +Á ˜ Á ˜Í ˙- - - -Ë ¯ Ë ¯Î ˚
 

Multiplying by ( ) ,
2
f w

ip
-  we get

2

2 3

2 1 3 2

( ) ( )( ) ( )1 1 1 1( ) ( )
2 2 2 2( ) ( )

( ) ( )1 1 1 1 1 1( )
2 2 2( ) ( ) ( ) ( )

w a w af w f w f w f w
i w z i z a i iz a z a

f w f wf w
z a i i iz a w a z a w a

p p p p

p p p- -

- -
- = + + +

- - - -
Ê ˆ

= + + +Á ˜-Ë ¯ - - - -





Integrating, we have

 

2 2 2

2

2 1

3 2

31 2
2 3

( ) ( )1 1 1 1 1( )
2 ( ) 2 2( ) ( )

( )1 1
2( ) ( )

( ) ( ) ( )

C C C

C

f w f wdw f w dw dw
i w z z a i iz a w a

f w dw
iz a w a

bb b
z a z a z a

p p p

p

-

-

- = +
- - - -

+ +
- -

= + + +
- - -

Ú Ú Ú
Ú 

  (24.6)

   2
1

( )1as
2 ( )n nC

f wb dw
i w ap - +

È ˘
=Í ˙

-Í ˙Î ˚
Ú

Substituting the values of both integrals from (24.5) and (24.6) in (24.4), we get

 
2 1 2

0 1 2 1 2( ) ( ) ( ) ( ) ( )f z a a z a a z a b z a b z a- -= + - + - + - + - +

or 
0 1

( ) ( )
( )

n n
n n

n n

b
f z a z a

z a

• •

= =

= - +
-Â Â

  note

 (i) If f(z) is analytic at all points inside C1 (i.e., no singular points inside C2) 
then by Cauchy’s theorem, bn = 0 for all n – 1 ≥ 0. Hence, the Laurent series 
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic 
point a is Taylor series expansion about a.

 (ii) The region of convergence of Laurent’s series is the annulus region R1 < |z 
– a| < R2.

 (iii) If f(z) has more than one singular point then several (more than one) 
Laurent series expansions can be obtained about the same singular point 
by appropriately considering analytic regions about (centred) at a.

 (iv) The part 
0

( )n
n

n

a z a
•

=

-Â  consisting of positive integral powers of (z – a) 

is called the analytic part of the Laurent’s series, while 
1

( ) n
n

n

b z a
•

-

=

-Â  

consisting of negative integral powers of (z – a) is called the principal part 
of the Laurent’s series.

 (i) If f(f(f z) is analytic at all points inside C1 (i.e., no singular points inside C2) 
then by Cauchy’s theorem, bn = 0 for all n – 1 ≥ 0. Hence, the Laurent series 
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic 
point a is Taylor series expansion about a.

 (ii) The region of convergence of Laurent’s series is the annulus region R1 < |z
– a| < R2.

 (iii) If f(f(f z) has more than one singular point then several (more than one) 
Laurent series expansions can be obtained about the same singular point 
by appropriately considering analytic regions about (centred) at a.

 (iv) The part 
0

( )n
n

n

a z a( )a z a( )na z an

•

=

( )a z a( )-( )a z a( )Â  consisting of positive integral powers of (z – a) 

is called the analytic part of the Laurent’s series, while 
1

( ) n
n

n

b z a( )b z a( )nb z an

•
-

=

( )b z a( )-( )b z a( )Â
consisting of negative integral powers of (z – a) is called the principal part 
of the Laurent’s series.
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Solved Examples

Example 1	 Obtain Taylor’s series expansion to represent the function 
2 1

( 2)( 3)
z

z z
-

+ +
 in the region |z| < 2.� [KU Nov. 2010]

Solution  Let 
2 1

( )
( 2)( 3)

z
f z

z z
-

=
+ +

	
5 7

1
( 2)( 3)

z
z z

- -
= +

+ +
	 (1)

Consider	
5 7

( 2)( 3) 2 3
z A B

z z z z
- -

= +
+ + + +

	 –5z – 7 = A(z + 3) + B(z + 2)
Put	 z = –3 fi B = –8
Put	 z = –2 fi A = 3

\	
5 7 3 8

( 2)( 3) 2 3
z

z z z z
- -

= -
+ + + +

\	 3 8(1) ( ) 1
2 3

f z
z z

fi = + -
+ +

Given |z| < 2, i.e., 
| |

1,
2
z

<  so clearly 
| |

1
3
z

<

i.e.,	 1
2
z <  and 1

3
z <

\	

1 1

3 8( ) 1
2 1 3 1

2 3

3 81 1 1
2 2 3 3

f z
z z

z z
- -

= + -
Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= + + - +Á ˜ Á ˜Ë ¯ Ë ¯

By using binomial theorem,

	 1

2 3 2 3

0 0

1
0

3 8( ) 1 1 1
2 2 4 8 3 3 9 27

( 1)3 8 ( 1)1
2 32 3

3 81 ( 1)
2 3

n

n n n n

n n
n n

n n
n

n

z z z z z zf z

z z

z+

• •

= =

•

+
=

È ˘ È ˘
= + - + - + - - + - +Í ˙ Í ˙

Î ˚ Î ˚

- -= + -

È ˘
= + - -Í ˙

Î ˚

Â Â

Â

 

	 Ans.

Example 2	 Expand 1
( 1)( 2)z z- -

 in Laurent’s series valid for |z| < 1 and 1 < |z| 

< 2.� [AU Nov. 2010]
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	 Taylor and Laurent Series Expansions	 24.7

Solution  Let 1 1 1( )
( 1)( 2) 2 1

f z
z z z z

= = -
- - - -

	 (i)	 Given |z| < 1 obviously 
| |

1
2
z

< , i.e., 1
2
z <

		  \	

1
1

2
2

1 1 1
( 1)( 2) 2 1

1 1
12 1

2

1 1 (1 )
2 2
1 1 [1 ]
2 2 4

z z z z

zz

z z

z z z z

-
-

= -
- - - -

= - +
-Ê ˆ

-Á ˜Ë ¯

Ê ˆ
= - - + -Á ˜Ë ¯

È ˘
= - + + + + + + +Í ˙

Î ˚
 

		  i.e.,	                21 3 7( )
2 4 8

zf z z= + + +

	 (ii)	 Given 1 < |z| < 2

	

1 11 | | 1, i.e., 1
| |
| |

| | 2 1, i.e., 1
2 2

z
z z
z zz

< fi < <

< fi < <

		  \	

1 1

2

2

0 0

1 1( )
2 1

1 1 11 1
2 2

1 1 1 11 1
2 2 2

1 1 1
2 2

nn

n n

f z
z z

z
z z

z z
z z z

z
z z

- -

• •

= =

= -
- -

Ê ˆ Ê ˆ-= - - -Á ˜ Á ˜Ë ¯ Ë ¯
È ˘Ê ˆ È ˘Í ˙= - + + + - + + +Á ˜ Í ˙Ë ¯Í ˙Î ˚ Î ˚

Ê ˆ Ê ˆ
= - -Á ˜ Á ˜Ë ¯ Ë ¯Â Â

 

	 1 10 0

1
2

n

n nn n

z
z

• •

+ += =
= - Â - Â 	 Ans.

Example 3	 If 0 < |z – 1| < 2, express ( )
( 1)( 3)

zf z
z z

=
- -

 in a series of positive 

and negative powers of z – 1.� [AU April 2011]

Solution  Let z – 1 = u
\ 0 < |z – 1| < 2 becomes 0 < |u| < 2

Now,	
( 1)( 3) 1 3

( 3) ( 1)

z A B
z z z z

z A z B z

= +
- - - -

= - + -
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24.8	 Engineering Mathematics

Put	 11,
2

z A= fi = -

Put	 33,
2

z B= fi =

\	

1 3
2 2

( 1)( 3) 1 3
z

z z z z

-
= +

- - - -

(or)	
1 1 3

( 2) 2 2( 2)
u

u u u u
+

= - +
- -

 (as z – 1 = u fi z = u + 1)

So instead of expanding 
( 1)( 3)

z
z z- -

 in powers of (z – 1), it is enough to expand 

1
( 2)
u

u u
+
-

 in powers of u.

	

1 1 3
( 2) 2 2( 2)
u

u u u u
+

= - +
- -

Since |u| < 2, we have 
| |

1
2
u

< . i.e., 1
2
u < .

\	

1

2

0

1 1 3
( 2) 2 4 1

2

1 3 1
2 4 2

1 3 1
2 4 2 2

1 3
2 4 2

n

n

u
u u u u

u
u

u u
u

u
u

-

•

=

+ -
= -

- Ê ˆ
-Á ˜Ë ¯

Ê ˆ-
= - -Á ˜Ë ¯

È ˘Ê ˆ- Í ˙= - + + +Á ˜Ë ¯Í ˙Î ˚

Ê ˆ-
= - Á ˜Ë ¯Â



\	
0

11 3
( 1)( 3) 2( 1) 4 2

n

n

zz
z z z

•

=

Ê ˆ--= - Á ˜Ë ¯- - - Â 	 Ans.

Example 4	 Obtain the Laurent’s expansion for 
( 2)( 2)
( 1)( 4)
z z
z z

- +
+ +

 which are valid in 

(i) 1 < |z| < 4, and (ii) |z| > 4.� [AU Nov. 2011]

Solution  Let 
( 2)( 2)

( )
( 1)( 4)
z z

f z
z z

- +
=

+ +

fi	
5 8

( ) 1
( 1)( 4)

z
f z

z z
- -

= +
+ +

	 (1)

(since the degrees of z in both numerator and in denominator are equal, divide it)

Consider	
5 8

( 1)( 4) ( 1) ( 4)
z A B

z z z z
- -

= +
+ + + +
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	 Taylor and Laurent Series Expansions	 24.9

	 –5z – 8 = A(z + 4) + B(z + 1)
Put	 z = –1 fi A = –1
Put	 z = –4 fi B = –4

\	
5 8 41

( 1)( 4) ( 1) ( 4)
z

z z z z
- - --= -
+ + + +

	 (2)

Substituting (2) in (1), we get

	

1 4( ) 1
( 1) ( 4)

f z
z z

= - -
+ +

	 (i)	 Given 1 < |z| < 4

	

1 11 | | 1, i.e., 1
| |
| |

| | 4 1, i.e., 1
4 4

z
z z
z zz

< fi < <

< fi < <

		  \	

1 1

2

2 3

2

2 3

1 1

1 1( ) 1 4
11 4 1

4

1 11 1 1
4

1 1 1 11 1 1
4 4

1 1 1
4 4

1( 1) ( 1)
4

( 1)

n
n n

n
n n

n

n

f z
zz

z

z
z z

z z
z z z z

z z
z z z

z
z

- -

• •

= =

=

= - -
Ê ˆ Ê ˆ

+ +Á ˜Á ˜ Ë ¯Ë ¯

Ê ˆ Ê ˆ
= - + - +Á ˜Á ˜ Ë ¯Ë ¯

È ˘È ˘ Ê ˆÍ ˙= - - + - + - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚
È ˘È ˘ Ê ˆÍ ˙= - + - + - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚

Ê ˆ
= - - - ◊ Á ˜Ë ¯

= -

Â Â

 

 

1

1
4

n

n
z

z

• È ˘Ê ˆÍ ˙- Á ˜Ë ¯Í ˙Î ˚Â
	 (ii)	 Given |z| > 4

	

4 41, i.e., 1
| |z z

< <

		  \	

- -

= - -
+ +

= - -
Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= - + - +Á ˜ Á ˜Ë ¯ Ë ¯

È ˘È ˘ Ê ˆÍ ˙= - - + - - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚
 

1 1

2

2

1 4( ) 1
1 4

1 41
1 41 1

1 1 4 41 1 1

1 1 1 4 4 41 1 1

f z
z z

z z
z z

z z z z

z z z z zz
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• •

= =

+•

+
=

• +
+

+
=

Ê ˆ
= - - - - Á ˜Ë ¯

È ˘Ê ˆÍ ˙= - - + Á ˜Ë ¯Í ˙Î ˚

-
= + +

Â Â

Â

Â

0 0

1

1
0

1
1

1
0

1 1 4 41 ( 1) ( 1)

1 41 ( 1)

( 1)1 (1 4 )

n
n n

n
n n

n n

n
n

n
n

n
n

z z zz

zz

z

	
1

11 ( 1) (1 4 )n n
n

n z

•

=

= + - + ◊Â 	 Ans.

Example 5	 Find the Laurent’s series of 1( )
(1 )

f z
z z

=
-

 valid in the region 

(i) |z + 1| < 1, (ii) 1 < |z + 1| < 2, and (iii) |z + 1| > 2.� [KU May 2010, Nov. 2011]

Solution  Let z + 1 = u or z = u – 1

\	 1 1 1 1( )
(1 ) ( 1)(2 ) 1 2

f z
z z u u u u

= = = +
- - - - -

	 (1)

	 (i)	 Given |z + 1| < 1 fi |u| < 1

		  \	

1
1

2
2

0 0

1
0

1 1( )
1 2 1

2

1(1 ) 1
2 2

1[1 ] 1
2 2 2

1
2 2

11
2

n
n

n
n n

n
n

n

f z
u u

uu

u uu u

uu

u

-
-

• •

= =

•

+
=

-= +
- Ê ˆ

-Á ˜Ë ¯

Ê ˆ
= - - + -Á ˜Ë ¯

È ˘Ê ˆ Ê ˆÍ ˙= - + + + + + + +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

= - +

Ê ˆ
= - +Á ˜Ë ¯

Â Â

Â

 

		  i.e.,	 1
0

1( ) 1 ( 1)
2

n
n

n

f z z
•

+
=

Ê ˆ
= - + +Á ˜Ë ¯Â

	 (ii)	 Given 1 < |z + 1| < 2. i.e., 1 < |u| < 2

	

1 11 | | 1, i.e., 1
| |
| |

| | 2 1 i.e., 1
2 2

u
u u
u uu

< fi < <

< fi < <
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		  Consider (1), 1 1( )
1 2

f z
u u

= +
- -

	

1 1

1 1
11 2 1

2

1 1 11 1
2 2

uu
u

u
u u

- -

= +
Ê ˆ Ê ˆ

- -Á ˜Á ˜ Ë ¯Ë ¯

Ê ˆ Ê ˆ
= - + -Á ˜Á ˜ Ë ¯Ë ¯

	

2

2

0 0

1 1
0 0

1 1 1 11 1
2 2 2

1 1 1
2 2

1
2

n

n n
n n

n

n n
n n

u u
u u u

u
u u

u
u

• •

= =

• •

+ +
= =

È ˘È ˘ Ê ˆ Ê ˆÍ ˙= + + + + + + +Á ˜ Á ˜Í ˙ Ë ¯ Ë ¯Í ˙Î ˚Î ˚

= +

= +

Â Â

Â Â

 

		  i.e.,	 1 1
0 0

1 1( ) ( 1)
( 1) 2

n
n n

n n

f z z
z

• •

+ +
= =

= + +
+Â Â

	 (iii)	 |z + 1| > 2, i.e., |u| > 2 fi 2 1
u

<

		  \	

1 1

2

2

0 0

1
0

1 1( )
1 21 1

1 1 1 21 1

1 1 1 1 2 21 1

1 1 1 2

1(1 2 )

n

n n
n n

n
n

n

f z
u u

u u

u u u u

u u u u uu

u uu u

u

- -

• •

= =

•

+
=

= -
Ê ˆ Ê ˆ

- -Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= - - -Á ˜ Á ˜Ë ¯ Ë ¯

È ˘È ˘ Ê ˆÍ ˙= + + + - + + +Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚

= -

= -

Â Â

Â

 

		  or	 1
0

1( ) (1 2 )
( 1)

n
n

n

f z
z

•

+
=

= -
+Â � Ans.
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Exercise

Part A

	 1.	 Define radius and circle of convergence of power series.
	 2.	 State Taylor’s theorem and Laurent’s theorem.
	 3.	 State McLaurin’s series.
	 4.	 Give some standard McLaurin’s series.
	 5.	 What do you mean by analytic part and principal part of Laurent’s series of a 

function of z?

	 6.	 Expand 1
( 1)z z -

 as Laurent’s series about z = 0 in the annulus 0 < |z| < 1.

	 7.	 Find the Laurent’s series expansion of 
2

3( )
( 1)

zef z
z

=
-

 about z = 1.

	 8.	 Expand f(z) = ez in a Taylor’s series about z = 0.

	 9.	 Expand cos z at 
4

z p=  in a Taylor’s series.

	 10.	 In the power series a0 + a1(z – z0) + a2(z – z0)2 + …, z0 is called the ______ of the 
series.

Part B

	 1.	 Find the Taylor’s series expansion of ( )
( 1)( 2)

zf z
z z z

=
+ +

 about z = i.

		  State also the region of convergence of the series.

�
1 1

0

2 1( 1) ( )
(2 ) (1 )

n n
n n

n

z i
i i

•

+ +
=

È ˘Ï ¸Ô ÔÍ ˙- - -Ì ˝Í ˙+ +Ô ÔÓ ˛Î ˚
ÂAns.

	 2.	 Find the Laurent’s series expansion of 
2

2
1

( )
5 6

z
f z

z z
-

=
+ +

 valid in the region 

(i) |z| < 2, (ii) 2 < |z| < 3, and (iii) |z| > 3� [KU April 2013]

�

1 1 1 1
0

1

3 8 2(i) 1 ( 1) (ii) 1 3 ( 1) 8 ( 1)
2 3 3

(iii) 1 ( 1) {3.2 8.3 }1/

n nnn n n
n n n n

n

n n n n

zz
z

z

•

+ + + +
=

+

È ˘Ï ¸Í ˙+ - - + - - -Ì ˝
Í ˙Ó ˛
Í ˙
Í ˙+ - -Î ˚

Â Â Â
Â

Ans.

	 3.	 Find the Laurent’s series expansion of ( ) ,
( 1)( 2)

zf z
z z

=
- -

 valid in the region 

(i) |z + 2| < 3, (ii) 3 < |z +2| < 4, and (iii) |z + 2| > 4.

�

1 1
0 0 0

1
0

( 2)1 1 1 3(i) ( 2) (ii)
22.4 3 4 ( 2)

1(iii) (2.4 3 )
( 2)

n n
n

n n n n
n n n

n n
n

n

z
z

z

z z

• • •

+ +
= = =

•

+
=

È ˘È ˘ +Í ˙- + + - -Í ˙Í ˙+Î ˚
Í ˙
Í ˙
Í ˙- ◊
Í ˙+Î ˚

Â Â Â

Â

Ans.
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	 Taylor and Laurent Series Expansions	 24.13

	 4.	 Expand 
2 6 1

( 1)( 2)( 3)
z z

z z z
- -

- + -
 in 3 < |z + 2| < 5.

�

2 32

2 3 2 3
2 ( 2) ( 2)2 3 3 1 1

2 5 5( 2) ( 2) 5 5
z z z

z z z

È ˘È ˘+ + +Í ˙+ + + + + + + +Í ˙
+Í ˙+ + Î ˚Î ˚

Ans.  

	 5.	 Find Laurent’s series of ( )
(1 )

zef z
z z

=
-

 about z = 1. Find the region of 
convergence.�

�

21 1 3 1( ) ( 1) ( 1)
1 2 3

Region of convergence is| 1| 1 

f z z z
e z

z

È ˘È ˘
= - - - + - +Í ˙Í ˙-Í ˙Î ˚

Í ˙- <Î ˚

Ans. 

	 6.	 Obtain the Laurent’s series expansion for 1( )
( 1)

f z
z z

=
-

 for (i) 0 < |z| < 1, and 

(ii) 0 < |z – 1| < 1.� 2 21 1(i) (1 ) (ii) (1 ( 1) ( 1) ...)
1

z z z z
z z

È ˘
- + + + - - + -Í ˙-Î ˚

Ans. 

	 7.	 Find Laurent’s series about the indicated singularity. (i) 
2

3 , 1
( 1)

ze z
z

=
-

 

(ii) , 2
( 1)( 2)

z z
z z

= -
+ +

 (iii) 2 2
1 , 3

( 3)
z

z z
=

-
�

�

( )

2 2 2 2 2

3 2

2

2

2 2 4 2(i) ( 1)
( 1) 3 3( 1) ( 1)

2(ii) 1 ( 2) ( 2)
2

4 31 2 1(iii)
27( 3) 27 2439( 3)

e e e e e z
zz z

z z
z

z
zz

È ˘
+ + + + - +Í ˙

-- -Í ˙
Í ˙
Í ˙+ + + + + +
Í + ˙
Í ˙

-Í ˙- + - +Í ˙--Î ˚

Ans. 




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Chapter Outline

 ● Introduction
 ● Classification of Singularities
 ● Residues
 ● Cauchy’s Residue Theorem
 ● Evaluation of Real Definite Integrals by Contour Integration

25.1 ❑ inTRoduCTion

The residue theorem is a very powerful and elegant theorem in complex integration. 
Using the residue theorem, many complicated real integrals can be evaluated. It is also 
used to sum a real convergent series and to find the inverse of a Laplace transform.

25.2 ❑ ClassifiCaTion of singulaRiTiEs

A point at which a function f(z) is not analytic is known as a singular point or 
singularity of the function.

 ● Example

The function =
-
1( )

5
f z

z
 has a singular point at z – 5 = 0 or z = 5.

If z = a is a singularity of f(z) and if there is no other singularity within a small 
circle surrounding the point z = a then z = a is said to be an isolated singularity of the 
function f(z). Otherwise, it is called non-isolated.

25 Theory of Residues
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25.2	 Engineering Mathematics

●● Example

	 (i)	 The function 
- -

1
( 2)( 7)z z

 has two isolated singular points, namely, z = 2 and 

z = 7 [since (z – 2)(z – 7) = 0 or z = 2, 7].

	 (ii)	 The function 
p

1

sin
z

 is not analytic at the points where p =sin 0,
z

 i.e., at the 

points p p= n
z

.�

		  i.e., at the points = = º1 ( 1, 2, 3 )z n
n

.

Thus, = º =1 11, , , 0
2 3

z z  are the points of singularity. But z = 0 is the non-isolated 

singularity of the function 
p

1

sin
z

 because in the neighbourhood z = 0, there are 

infinite number of other singularities = 1 ,z
n

 where n is very large.

Let a function f(z) have an isolated singular point z = a. f(z) can be expanded in a 
Laurent’s series expansion around z = a as

	

2 1 2
0 1 2 2

1
1

( ) ( ) ( )
( )

( ) ( )
m m

m m

b b
f z a a z a a z a

z a z a
b b

z a z a
+

+

= + - + - + + +
- -

+ + + +
- -



 

In some cases, it may happen that the coefficients bm+1 = bm+2 = … = 0,
Then the series reduces to

= + - + - + º + + + º +
- - -

2 1 2
0 1 2 2( ) ( ) ( )

( ) ( ) ( )
m

m
bb b

f z a a z a a z a
z a z a z a

Then z = a is said to be a pole of order m of the function f(z).
When m = 1, the pole is said to be a simple pole.

In this case, f(z) = a0 + a1(z – a) + a2(z – a)2 + … + 
-
1

( )
b

z a
.

If the number of terms of negative powers in the above expansion are infinite then 
z = a is called an essential singular point of f(z).

If a single-valued function f(z) is not defined at z = a, but 
Æ

lim ( )
z a

f z  exists then z = a 
is called a removable singularity.�

●● Example

z = 0 is a removable singularity of =
sin

( ) ,
z

f z
z

 since f(0) is not defined, but 

Æ

Ê ˆ
=Á ˜Ë ¯0

sin
lim 1
z

z
z

.�

EM_UnitX_25.indd   2 8/24/2017   3:31:42 PM



	 Theory of Residues	 25.3

25.3  ❑  Residues

Residue of an analytic function f(z) at an isolated singular point z = a is the coefficient 
say b1 of (z – a)–1 in the Laurent’s series expansion of f(z) about a. Residue of f(z) at a is 
denoted by 

=
Re ( )

z a
s f z . From Laurent’s series, we know that the coefficient b1 is given 

by 
p

= Ú1
1 ( )

2 C
b f z dz

i
.�

Thus, the residue of 
p=

= = = = Ú1
1( ) at , Res ( ) ( ) .

2 Cz a
f z z a f z b f z dz

i
where C is any closed contour enclosing a (and such that f is analytic on and within C).

Calculation of Residue at Simple Pole

	 (i)	 If f(z) has a simple pole at z = a, then 
Æ=

= -Res ( ) lim( ) ( )
z az a

f z z a f z .

	 (ii)	 Suppose = ( )( )
( )

P zf z
Q z

 has a simple pole at a such that P(a) π 0.

		  Then 
==

= =
¢ ¢
( ) ( )Res ( ) Res
( ) ( )z az a

P z P af z
Q z Q a

Calculation of Residue at a Multiple Pole

If f(z) has a pole of order n at z = a, then

	

-

-Æ=

Ï ¸Ô Ô
= -Ì ˝

- Ô ÔÓ ˛

1

1
1Res ( ) lim [( ) ( )]

( 1)!

n
n

nz az a

df z z a f z
n dz

25.4  ❑  Cauchy’s Residue Theorem

If f(z) is analytic within and on a simple closed curve C except at a finite number of 

poles within C then ( ) 2
C

f z dz ip=Ú  (sum of residues at the poles within C).

Proof Let C1, C2, C3 … Cn be the non-intersecting circles 
with centre at a1, a2 … an respectively and radii so small 
that they lie entirely within the closed curve C. Then f(z) 
is analytic in the multiply connected legion lying between 
the curves C and C1, C2 … Cn. Applying Cauchy’s theorem,

1 2

1 2

1 2

( ) ( ) ( ) ( )

2 Re ( ) 2 Re ( ) 2 Re ( )

2 Re ( ) Re ( ) Re ( )

n

n

n

C C C C

z a z a z a

z a z a z a

f z dz f z dz f z dz f z dz

i s f z i s f z i s f z

i s f z s f z s f z

p p p

p
= = =

= = =

= + + +

= + +

È ˘= + +
Í ˙Î ˚

Ú Ú Ú Ú





   

\ ( ) 2
c

f z dz ip=Ú  (sum of residues at the poles within C)

Fig. 25.1
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25.4	 Engineering Mathematics

25.5  ❑  �Evaluation of Real Definite Integrals by Contour 
Integration

A large number of real definite integrals, whose evaluation by usual methods become 
sometimes very tedious, can be easily evaluated using Cauchy’s theorem of residues. 
For finding the integrals, we take a closed curve C, find the poles of the function f(z) 
and calculate residues at those poles only which lie within the curve C.

Then using Cauchy’s theorem of residues, we have ÚCf(z)dz = 2pi (sum of the 
residues of f(z) at the poles within C)

We call the curve a contour and the process of integration along a contour as 
contour integration.

Type 1

Integrals of the form Ú
2

0
(cos , sin )

p
q q qf d  where f is a rational function of cos q 

and sin q
In this type of integrals, put z = eiq

Differentiating with respect to q, we get,

	
q q q= =, i.e.,i dzdz ie d d

iz

We know that cos
2

i ie eq q
q

-+
=

i.e.,	 1 1cos
2

z
z

q
Ê ˆ

= +Á ˜Ë ¯

and	 1 1sin
2

z
i z

q
Ê ˆ

= -Á ˜Ë ¯

\	
2

0

1 1

(cos , sin ) ,
2 2C

z z dzz zf d f
i iz

p
q q q

Ê ˆ
+ -Á ˜

= Á ˜Ë ¯Ú Ú
where C is the unit circle |z| = 1

	

1 1 1 1 1,
2 2

( ) (say)

C

C

dzf z z
i z i z z

z dzf

È ˘Ê ˆ Ê ˆ
= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

=

Ú
Ú

Clearly, f(z) is a rational function of z.
Hence, by the residue theorem, ÚCf(z)dz = 2pi (sum of the residues of f(z) at its poles 

inside C).

Type 2

Consider the integral ÚCf(z)dz, where C is the positively 
oriented semicircle G, |z| = R, Im z ≥ 0 together with the 
line segment L : [–R, R]. Such integrals can be evaluated by 
integrating f(z) round a contour C consisting of a semicircle 
G of radius R large enough to include all the poles of f(z) 

Fig. 25.2
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	 Theory of Residues	 25.5

and the part of the real axis from x = –R to x = R. Here, the only singularities of f(z) in 
the upper half-plane are poles.

When f(z) has singularities on the real axis then ( ) ( ) ( )
R

C R
z dz x dx z dzf f f

- G
= +Ú Ú Ú .

By the residue theorem, we have ÚCf(z)dz = 2pi (sum of the residues of the function 
f(z) at its poles in the upper half-plane).

i.e., ( ) ( ) 2
R

R
x dx z dz if f p

- G
+ =Ú Ú  (sum of the residues of the function f(z) at its poles 

within C).�

Putting R Æ • we get, ( ) ,x dxf
•

-•Ú  provided ÚGf(z)dz Æ 0.

Type 3

Integrals of the form (sin ) ( )ax f x dx
•

-•Ú  or (cos ) ( )ax f x dx
•

-•Ú . a > 0 where f(z) is such 

that f(z) Æ 0 as z Æ • and it does not have a pole on the real axis.

Solved Examples

Example 1	 Find the residue of 2 2
1( )

( 1)
f z

z
=

+
 about each singularity.

Solution  Given 
2 2 2

2 2

1 1( )
( 1) [( )( )]

1
( ) ( )

f z
z z i z i

z i z i

= =
+ - +

=
- +

Here, z = i, –i are poles of order 2.

Now,	 = Æ

Æ

= -

È ˘
= - ◊Í ˙- +Í ˙Î ˚

2

2
2 2

1[Res ( )] Lt [( ) ( )]
1!

1Lt ( )
( ) ( )

z i z i

z i

df z z i f z
dz

d z i
dz z i z i

	

2

3 3

1Lt
( )
2 2 1Lt

4( ) (2 )

4

z i

z i

d
dz z i

iz i i
i

Æ

Æ

È ˘
= Í ˙+Í ˙Î ˚

- -
= = =

+
-

=
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25.6	 Engineering Mathematics

	

= - Æ -

Æ -

Æ -

Æ -

= +

È ˘
= + ◊Í ˙- +Í ˙Î ˚

È ˘
= Í ˙-Í ˙Î ˚

- -
= = =

-

2

2
2 2

2

3

1[Res ( )] Lt [( ) ( )]
1!

1Lt ( )
( ) ( )

1Lt
( )
2 2Lt

8 4( )

z i z i

z i

z i

z i

df z z i f z
dz

d z i
dz z i z i

d
dz z i

i
iz i

	 Ans.

Example 2	 Evaluate 2
1

( 1) ( 2)C

z
dz

z z
-

+ -Ú  where C is the circle |z – i| = 2.�

� [AU June 2009, May 2012]

Solution  Let f(z) = 2
1

( 1) ( 2)
z

z z
-

+ -
�

Here, z = –1 is a pole of order 2.
And z = 2 is a simple pole.
Clearly, z = 2 lies outside the circle |z – i| = 2
\	 [Res f(z)]z = 2 = 0

Now,	 = - Æ -

Æ -

Æ -

Æ -

Æ - Æ -

= +

È ˘-
= + ◊Í ˙

+ -Í ˙Î ˚
È ˘-

= Í ˙-Î ˚
È ˘- - -

= Í ˙
-Í ˙Î ˚

È ˘ È ˘- +
= = -Í ˙ Í ˙- -Í ˙ Í ˙Î ˚ Î ˚

-
= = -

- -

2
1 1

2
21

1

21

2 21 1

2

1[Res ( )] Lt [( 1) ( )]
1!

( 1)
Lt ( 1)

( 1) ( 2)

1
Lt

2

( 2) ( 1)
Lt

( 2)

2 1 1Lt Lt
( 2) ( 2)

1 1
9( 1 2)

z z

z

z

z

z z

df z z f z
dz

zd z
dz z z

zd
dz z

z z
z

z z

\ by Cauchy’s residue theorem,

	 2
1

2
( 1) ( 2)C

z
dz i

z z
p

-
=

+ -Ú  [sum of the residues]

	 1 22
9 9

ii pp
Ê ˆ -= - =Á ˜Ë ¯ 	 Ans.

Example 3	 Evaluate 2 3 ,
( 9)C

dz
c z +Ú  where C is |z – i| = 3 by using Cauchy’s residue 

theorem.� [KU Nov. 2011]

Solution  Let 2 3
1( )

( 9)
f z

z
=

+
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	 Theory of Residues	 25.7

The singularities of f(z) are obtained by z2 + 9 = 0
fi z = ±3i, of which z = 3i lies inside the circle |z – i| = 3 
z = 3i is a triple pole of f(z).

\	 =
=

=

È ˘
= Í ˙

+Í ˙Î ˚

È ˘
= Í ˙+Í ˙Î ˚

= =

2

3 2 3
3

5
3

5 5

1 1[Res ( )]
2! ( 3 )

1 12
2! ( 3 )

6 1
12966

z i
z i

z i

df z
dz z i

z i

ii
By Cauchy’s residue theorem,

	 2 3
12

1296 648( 9)C

dz i
iz

pp= ¥ =
+Ú 	 Ans.

Example 4	 Show that 
2

2 20

2 , 0
cos

d a b
a b a b

p q p
q

= > >
+ -Ú .

� [KU May 2010; AU Nov. 2010, Nov. 2011, April 2013]

Solution  Let z = eiq

fi	

1 1cos
2

dzd
iz

z
z

q

q

=

Ê ˆ
= +Á ˜Ë ¯

\	
2

0

2

where is| |= 1
cos 1 1

2
1

1 1
2

1
2

2

C

C

C

dz
d iz C z

a b a b z
z

dz
i

z a b z
z

dz
i az bz bz

z

p q
q

=
+ Ê ˆ

+ +Á ˜Ë ¯

=
È ˘Ê ˆ

+ +Í ˙Á ˜Ë ¯Î ˚

=
È ˘+ +
Í ˙
Î ˚

Ú Ú

Ú

Ú

 

i.e.,	
2

20

2
cos 2C

d dz
a b i bz az b

p q
q

=
+ + +Ú Ú

	 2 ( )
C

f z dz
i

= Ú 	 (1)

The poles of f(z) are given by the roots of bz2 + 2az + b = 0

\	
2 2

2 2

2 4 4
2

a a b
z

b
a a b

b

- ± -
=

- ± -
=

Fig. 25.3
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25.8	 Engineering Mathematics

i.e.,	
2 2 2 2

,
a a b a a b

z
b b

- + - - - -
=

Let	
2 2 2 2

;
a a b a a b

b b
a b

- + - - - -
= =

Since a > b > 0, |b| > 1
But the modulus of the product of the roots |ab| = 1 (since if az2 + b + c = 0, product 

of the roots | | c
a

a b = ).

Since |b| > 1 and |ab| = 1, we get |a| < 1 so that z = a is the only simple pole 
inside C.

Since z = a and z = b are the roots of bz2 + 2az + b = 0, we can write bz2 + 2az + b = 
b(z – a)(z – b)

Hence,	 1( )
( )( )

f z
b z za b

=
- -

Now,	 a a

a

a

a

a
a b

b a b

= Æ

Æ

Æ

= - ◊

= -
- -

= =
- -

=
È ˘Ê ˆ Ê ˆ- + - - - -Í ˙Á ˜ Á ˜-Í ˙Ë ¯ Ë ¯Î ˚

=
-

=
-

2 2 2 2

2 2

2 2

[Res ( )] Lt ( ) ( )

1Lt ( )
( )( )

1 1Lt
( ) ( )

1

1

2

1

2

z z

z

z

f z z f z

z
b z z

b z b

a a b a a b
b

b b

a b
b

b

a b

From (1), since |b| > 1,
b lies outside the circle |z| = 1
\	 [Res f(z)]z = b = 0

Hence, (1) fi	
2

0

2 ( )
cos C

d f z dz
a b i

p q
q

=
+Ú Ú

	 2
i

= [2pi ¥ (sum of the residues)]

	
2 2

2 12
2

i
i a b

p
È ˘

= ◊ Í ˙
-Í ˙Î ˚

\	
2

2 20

2
cos

d
a b a b

p q p
q

=
+ -Ú 	 Ans.
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	 Theory of Residues	 25.9

Example 5	 Evaluate 2 20
, 0

sin
ad a

a

p q
q

>
+Ú .� [KU Nov. 2010]

Solution  Let	 2 20

0 2

20

sin

1 cos 2
2

2
2 1 cos 2

adI
a

ad

a

ad
a

p

p

p

q
q
q

q

q
q

=
+

=
Ê ˆ-

+ Á ˜Ë ¯

=
+ -

Ú
Ú

Ú
Put 2q = f fi 2dq = df
When q = 0, f = 0 and when q = p, f = 2p

\	
2

20

2
2

2 1 cos

da
I

a

p
f

f

Ê ˆ
Á ˜Ë ¯

=
+ -Ú

	
2

20 2 1 cos
ad

a

p f
f

=
+ -Ú 	 (1)

Put z = eif, then dzd
iz

f =

	    

1 1cos
2

z
z

f
Ê ˆ

= +Á ˜Ë ¯

Then	
2

(1)
1 12 1
2

C

dza
izI

a z
z

◊
fi =

È ˘Ê ˆ
+ - +Í ˙Á ˜Ë ¯Î ˚

Ú

where C is the unit circle |z| = 1

	

2
2

2 2

2 2

2 2

2 2

112 1
2

4 2 1
2

2
(4 2) 1

2
(4 2) 1

2
(4 2) 1

C

C

C

C

C

a dz
i z

a
z

a dz
i a z z z

z
a dz
i a z

a dz
i z a z

dzai
z a z

=
È ˘Ê ˆ+Í ˙+ - Á ˜Ë ¯Í ˙Î ˚

=
È ˘+ - -
Í ˙
Î ˚

=
+ - -

= -
- + +

=
- + +

Ú

Ú

Ú
Ú

Ú
\ I = ÚCf(z)dz, where	 2 2

2( )
(4 2) 1

aif z
z a z

=
- + +
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The poles of f(z) are the solutions of
	 z2 – (4a2 + 2)z + 1 = 0
	 z2 – (4a2 + 2)z + 1 = 0

\	
2 2 2

2 2

2 2

(4 2) (4 2) 4
2

2(2 1) 4 1
2

(2 1) 2 1

a a
z

a a a

a a a

+ ± + -
=

+ ± +
=

= + ± +

fi	 2 2 2 2(2 1) 2 1 or (2 1) 2 1z a a a a a a= + + + + - +

Let	 2 2 2 2(2 1) 2 1 and (2 1) 2 1a a a a a aa b= + + + = + - +

Since a, b are the roots of z2 – (4a2 + 2)z + 1 = 0, the product of the roots ab = 1
Since a > 0, a > 1 also, b < 1.

\ out of the two poles a and b, z = b lies within the unit circle |z| = 1 (since |b| < 1)

Now,	

2 2 2 2

2 2

[Re ( )] Lt ( ) ( )

2Lt ( )
( )( )

2

2

(2 1 2 1) (2 1 2 1)
2

4 1 2 1

z z

z

s f z z f z

aiz
z z

ai

ai

a a a a a a
ai i

a a a

b b

b

b

b
a b

b a

= Æ

Æ

= - ◊

= - ◊
- -

=
-

=
+ - + - + - +

-= =
- + +

\	 I = ÚCf(z)dz
	 = 2pi [sum of the residues of f(z) at its poles]

	
2

2
2 1

ii
a

p
È ˘-= Í ˙

+Í ˙Î ˚

\	 2 2 20 sin 1

ad
a a

p q p
q

=
+ +Ú 	 Ans.

Example 6	 Evaluate 
2

2 2 2 2 , 0, 0
( )( )

x dx a b
x a x b

•

-•
> >

+ +Ú .

� [KU May 2010, Nov. 2011]

Solution  Let 
2

2 2 2 2( )
( )( )C C

zz dz dz
z a z b

f =
+ +Ú Ú

where C consists of the semicircle G and the bounding diameter [–R, R].

Now,	 ( ) ( ) ( )
R

C R
z dz x dx z dzf f f

- G
= +Ú Ú Ú 	 (1)
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	 Theory of Residues	 25.11

Now,	
2

2 2 2 2

2

( )
( )( )

( )( )( )( )

zz
z a z b

z
z ia z ia z ib z ib

f =
+ +

=
+ - + -

Here, the poles are z = ia, –ia, ib, –ib
Here, z = ia and z = ib lie in the upper half-plane while z = –ia and z = –ib lie in the 

lower half-plane.
We have to find the residues of f(z) at each of its poles which lies in the upper 

half-plane.
\	

2

2

2 2

2

2 2

2

2 2

2 2

[Re ( )] Lt ( ) ( )

Lt ( )
( )( )( )( )

Lt
( )( )

( )Lt
( )(( ) )

2 ( )

2 ( )

z ia z ia

z ia

z ia

z ia

s f z z ia z

zz ia
z ia z ia z ib z ib

z
z ia z b

ia
ia ia ia b

a
ia a b

a
i a b

f= Æ

Æ

Æ

Æ

= - ◊

= -
+ - + -

=
- +

=
+ +

-
=

- +

=
-

	

2

2 2

2

2 2

2

2 2

2

2 2 2 2

[Re ( )] Lt ( ) ( )

Lt ( )
( )( )( )

Lt
( )( )

( )
[( ) ][ ]

( )2 2 ( )

z ib z ib

z ib

z ib

s f z z ib z

zz ib
z a z ib z ib

z
z a z ib

ib
ib a ib ib

b b
a b ib i a b

f= Æ

Æ

Æ

= -

= -
+ + -

=
+ +

=
+ +

- -
= =

- -

In (1), making R Æ •, we get

	
( ) ( ) ( )

C
z dz x dx z dzf f f

•

-• G
= +Ú Ú Ú

When R Æ •, |z| Æ • and f(z) Æ 0

\	 ( ) ( )
C

z dz x dxf f
•

-•
=Ú Ú  [from (1)]

\	
2 2

2 2 2 2 2 2 2 2( )( ) ( )( )
2

x dx z dx
x a x b z a z b

ip

• •

-• -•
=

+ + + +
=

Ú Ú
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25.12	 Engineering Mathematics

[sum of the residues of f(z) at each pole in the upper half-plane]

	

2 2 2 2

2 2

2
2 ( ) 2 ( )

2 2
2 ( )( )2 ( )

a bi
i a b i a b

a bai i
i a b a bi a b

p

p p

È ˘
= -Í ˙- -Í ˙Î ˚

È ˘È ˘ -
= = Í ˙Í ˙ - +-Í ˙ Î ˚Î ˚

fi	
2

2 2 2 2( )( )
x dx

a bx a x b
p•

-•
=

++ +Ú 	 Ans.

Example 7	 Evaluate 40 1
dx

x

•

+Ú .� [KU Nov. 2010]

Solution  Consider 
40

4 40 0

1

1 1

dx
x

dx dx
x z

•

• •

+

=
+ +

Ú
Ú Ú

i.e.,	 4 40
2

1 1
dx dx

x z

• •

-•
=

+ +Ú Ú
The poles are the roots of z4 + 1 = 0
i.e.,	 z4 = –1

fi	
1
4( 1)z = -

	 cos(2 1) sin(2 1)
4 4

n i np pÈ ˘
= + + +Í ˙Î ˚

 where n = 0, 1, 2, 3

When n = 0,  4
1 1cos sin

4 4 2 2

i
z i e i

pp p= + = = +

When n = 1, 
3
4

3 3cos sin
4 4

i
z i e

pp p= + =

When n = 2, 
5
4

5 5cos sin
4 4

i
z i e

pp p= + =

When n = 3, 
7
4

7 7cos sin
4 4

i
z i e

pp p= + =

Hence, the poles are 
3 5 7

4 4 4 4, , ,
i i i i

z e e e e
p p p p

= .

Out of these poles, 
3

4 4,
i i

z e e
p p

=  lies in the upper half-plane.

\	

( )

p

p
p

p p

f

p

= Æ

Æ

-
=

+

= =

=

4

4
4

4 4

4

3 3

[Res ( )] Lt
1

1 1Lt (applying L'Hospital's rule)
4 4

1
34
4

i

i
i

i i

z e z e

z e

z e
z

z

z e

ie
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	 Theory of Residues	 25.13

	

( )

p

p
p

p p

p

f
= Æ

Æ

-
=

+

= =

=

3
4

3
3

4
4

3 3
4 4

9
4

4

3 3

[Res ( )] Lt
1

1 1Lt
4 4

1

4

i

i
i

i i

z e z e

z e

i

z e
z

z

z e

e

\	 4 40
2

1 1
dx dz

x z

• •

-•
=

+ +Ú Ú
	 = �2pi [sum of the residues at each pole in the upper 

half-plane]

	

3 9
4 4

93
4 4

1 12
4 4

2
3 3 9 9cos sin cos sin

2 4 4 4 4
1 1 2

2 22 2 2 2 2 2

i i

ii

i
e e

i e e

i i i

i i i i i

p p

pp

p

p

p p p p p

p p p

- -

È ˘
= +Í ˙

Î ˚
È ˘= +Í ˙Î ˚

È ˘Ê ˆ Ê ˆ
= - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘ È ˘-
= - - + - = =Í ˙ Í ˙

Î ˚ Î ˚

\	 4 40

1 1
2 21 1 2

dx dz
x z

p• •

-•
= =

+ +Ú Ú 	 Ans.

Exercise

Part A

	 1.	 Define essential singularity with an example.
	 2.	 Define removable singularity with an example.
	 3.	 Define simple pole and multiple pole of a function f(z). Give one example for 

each.
	 4.	 Define the residue of a function at an isolated singularity.
	 5.	 State the formula for finding the residue of a function at a multiple pole.
	 6.	 Find the residues at the isolated singularities of each of the following:

	 (i)	
( 1)( 2)

z
z z+ -

	 (ii)	 2( 1)

zze
z -

	 (iii)	 3
sin

( )
z z
z p-

	 7.	 Evaluate the following integrals using Cauchy’s residue theorem:

	 (i)	
1

( 1)C

z
dz

z z
+
-Ú  where C : |z| = 2
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25.14	 Engineering Mathematics

	 (ii)	 2

z

C

e dz
z

-

Ú  where C : |z| = 1

	 8.	 Explain how to convert 
2

0
(sin , cos )f d

p
q q qÚ  into a contour integral, where f is 

a rational function.�

	 9.	 Obtain the poles of 2
4

2 5
z

z z
+

+ +
.

	 10.	 By using residue theorem, find the value of 
2
1C

z
dz

z
-
-Ú  where C is |z| = 2.

	 11.	 Find the residue of 
2

2( )
( 1) ( 2)

zf z
z z

=
- +

 at z = –2.

	 12.	 Find the singularities of 2
4

( )
2 2

z
f z

z z
+

=
+ +

.

	 13.	 Find the residue of 2( )
1

zf z
z

=
+

 about z = i.

	 14.	 Find the residue of 2 2 2
1( )

( )
f z

z a
=

+
 at z = ai

	 15.	 Find the residue of the function 3
4( )

( 2)
f z

z z
=

-
 at a simple pole.

	 16.	 Find the poles of 1( )
1sin

f z

z a

=

-

.

	 17.	 Find the singularities of the function 3
cot

( )
( )

z
f z

z a
p

=
-

.

	 18.	 Give the forms of the definite integrals which can be evaluated using  the 
infinite semicircular contour above the real axis.

	 19.	 Define Cauchy’s residue theorem.

	 20.	 Find the residue of 3 2
1

( 1)z -
 at z = 1.

Part B

	 1.	 Evaluate the following using Cauchy’s residue theorem:

	 (i)	
1 2 3, :| |

( 1)( 2) 2C

z
dz C z

z z z
-

=
- -Ú

	 (ii)	
2 1

, :| | 1
( 2)(2 1)C

z
dz C z

z z z
-

=
+ +Ú

	 (iii)	 2 , :| | 1
z

C

e dz C z
z

-
=Ú

	 (iv)	 2
12 7

, :| | 3
( 1) (2 3)C

z
dz C z i

z z
-

+ =
- +Ú

�

5(i) 3 (ii) (iii) 2 (iv) 4
3

ii i ipp p p
È ˘

-Í ˙Î ˚
Ans.
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	 2.	 Evaluate 
2

0 13 5 sin
dp q

q+Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 3.	 Evaluate 
2

0 17 8 cos
dp q

q-Ú .� 2
15
pÊ ˆ

Á ˜Ë ¯Ans.

	 4.	 Evaluate 4 40

dx
x a

•

+Ú .� 3 2a
pÊ ˆ

Á ˜◊Ë ¯
Ans.

	 5.	 Evaluate 
2

2 20 ( 1)( 4)
x dx

x x

•

+ +Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 6.	 Evaluate 2 2 20 ( )
dx

x a

•

+Ú .� 3 , 0
4

a
a
pÊ ˆ

>Á ˜Ë ¯
Ans.

	 7.	 Evaluate 2 20

sinx x
dx

x a

•

+Ú .� 1
2

aep -Ê ˆ
Á ˜Ë ¯Ans.

	 8.	 Evaluate 2 2
cos x

dx
x a

•

-• +Ú .� ae
a
p -Ê ˆ

Á ˜Ë ¯Ans.

	 9.	 Prove that 2 3
3
8( 1)

dx
x

p•

-•
=

+Ú .

	 10.	 Evaluate 
2

2 20 ( 1)( 4)
x dx

x x

•

+ +Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 11.	 Evaluate the integral 
2

40 1
x dx

x

•

+Ú  using contour integration.

	 12.	 Evaluate 2 20

cos
(1 )

x
dx

x

•

+Ú .�
2e
pÊ ˆ

Á ˜Ë ¯Ans.
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Questions opt1 opt2 opt3 opt4 opt5

A curve is called a____________ if it does not 

intersect itself

Simple 

closed 

curve

multiple 

curve

simply 

connected 

region

multiple 

connected 

region

A curve is called ________ if it is not a simple 

closed curve

connected 

region

multiple 

curve

simply 

connected 

region

multiple 

connected 

region

If f(z) is analytic in a simply connected domain D 

and C is any simple closed path then ∫(from c)f(z)dz 

=

1 2πi 0 πi

If f(z) is analytic inside on a  simple closed curve C 

and  a be any point inside C  then ∫(from c)f(z)dz 

/(z-a)=

2πi f(a) 2πi 0 πi

The value of ∫(from c) [(3z^2+7z+1)/(z+1)] dz 

where C is |z| = 1/2 is
2πi          -6πi πi πi/2

The value of  ∫(from c) (cos πz/z-1) dz if C is |z| =2 2πi          -2πi πi πi/3

The value of  ∫(from c) (1/z-1) dz if C is |z| =2 2πi 3πi πi πi/4

The value of  ∫(from c) (1/z-3) dz if C is |z| =1 3πi πi πi/4 0

The value of  ∫(from c) (1/(z-3)^3) dz if C is |z| =2 3πi πi πi/5 0

The Taylor's series of f(z) about the point z=0 is 

called ___________series

Maclaurin'

s
Laurent's Geometric Arithmetic

The value of  ∫(from c) (1/z+4) dz if C is |z| =3 3πi πi πi/4 0

In Laurent's series of f(z) about z=a, the terms 

containing the positive powers is called the ____ 

part

regular principal real imaginary

In Laurent's series of f(z) about z=a, the terms 

containing the negative powers is called the ____ 

part

regular principal real imaginary

The poles of the function f(z) = z/((z-1)(z-2)) are at 

z = ______
1, 2 2,3 1,-1 3,4

The poles of cotz are______ 2nπ  nπ 3nπ 4nπ

The poles of the function f(z) = cos z/((z+3)(z-4)) 

are at z = _____
 - 3, 4 2,3 1,-1 3,4

The isolated singular point of f(z) = z/((z-4)(z-5)) 1,2 2,3 0,2 4,5

The isolated singular point of f(z) = z/((z(z-3)) 1,3 2,4 0,3 4,5

A simple pole is a pole of order ______ 1 2 3 4

The order of the pole z= 2 for  f(z) = z/((z+1)(z-

2)^2)
1 2 3 4

Residue of (cosz / z) at z = 0 is 0 1 2 4

The residue at z = 0 of ((1 + e^z) / (zcosz+sinz)) is 0 1 2 4



The residue of f(z) = cot z at z= 0 is_____ 0 1 2 4

The singularity of f(z) = z / ((z-3)^3) is______ 0 1 2 3

A point z=a is said to be a _______point of f(z), if 

f(z) is not analytic at z=a
Singular

isolated 

singular
removable

essential 

singular

A point z=a is said to be a _______point of f(z), if 

f(z) is  analytic except at z=a
Singular

isolated 

singular
removable

essential 

singular

In Laurent's series of f(z) about z=a, the terms 

containing the negative powers is called the 

____point

Singular
isolated 

singular

removable 

 singular

essential 

singular

In Laurent's series of f(z) about z=a, the terms 

containing the positive powers is called the 

____point

Singular
isolated 

singular

removable 

 singular

essential 

singular

In contour integration, cos θ=_______
(z^2+1)/2

z

(z^2+1)/2i

z
(z^2-1)/2z

(z^2-

1)/2iz

In contour integration,  sin θ=_______
(z^2+1)/2

z

(z^2+1)/2i

z
(z^2-1)/2z

(z^2-

1)/2iz



opt6 Answer

Simple 

closed 

curve

multiple 

curve

0

2πi f(a)

         -6πi

         -2πi

2πi

0

0

Maclaurin'

s

0

regular 

principal 

1, 2 

nπ

 - 3, 4

4,5

0,3

1

2

1

1



1

3

Singular

isolated 

singular

essential 

singular

removable 

 singular

(z^2+1)/2

z

(z^2-

1)/2iz


