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Scope: Study of Classical Mechanics gives an idea about how classical physics deal with 
matter and energy.  Even though classical physics cannot explain many observed phenomena 

in the case of microparticles and relativistic velocities, it is still valid in the case of macro 
objects at non-relativistic velocities.   

Objective: The objective of this course is to give an insight into the classical methods of 
physics. 
 

UNIT - I                 

Conservation laws:  Mechanics of a system of particles – Conservation laws: linear 

momentum, angular momentum, energy – Constraints, Degrees of freedom – Generalised co-
ordinates – Generalized notations – Brachistocrone problems – Atwood’s machine. 
Hamilton’s variational principle – Lagrange’s equation of motion from Hamilton’s principle, 

D’Alembert’s principle – Applications of Lagrange’s equation of motion – particle moving 
under a central force – particle moving on the surface of earth– Superiority of Langrange’s 

approach over Newtonian’s approach.  
 

UNIT – II                 

Phase space: Hamiltonian – Hamilton’s canonical equations of motion – Physical 
significance of H – Advantage of Hamiltonian approach – Hamilton’s canonical equation of 
motion in different coordinate systems – Hamilton-Jacobi method – Kepler’s problem 

solution by Hamilton-Jacobi method – Action and angle variables – Solution of Harmonic 
oscillator by action angle variable method – canonical or contact transformation – Condition 

for a transformation to be canonical.  
 

UNIT – III                 

General features of central force motion : General features of orbits – Centre of mass and 
laboratory coordinates – Virial theorem – Stable and unstable equilibrium – Properties of T, 

V and ω for small oscillations .  
Generalized coordinates for rigid body motion : Euler’s angles – Angular velocity, 
momentum of rigid body – moment and products of inertia – Principal axis transformation – 

rotational kinetic energy of a rigid body – Moment of inertia of a rigid body – motion of a 
symmetric top under action of gravity.  

 
UNIT - IV           

Special Theory of Relativity: Introduction – Galilean transformation and invariance of 

Newton’s laws of motion – Non variance of Maxwell’s equations – Michelson Morley 
experiment and explanation of the null result.  

Concept of inertial frame – Postulates of special theory – simultaneity – Lorentz 
transformation along one of the axes – length contraction – time dilatation and velocity 
addition theorem – Fizeau’s experiment – Four vectors – Relativistic dynamics – Variation of 

mass with velocity – Energy momentum relationship. 
 

UNIT - V                 

General theory of Relativity: Introduction – Limitation of special theory of relativity and 
need for a relativity theory in non- inertial frames of reference.  Concept of gravitational and 

inertial mass and the basic postulate of GTR, gravitation & acceleration and their relation to 



non- inertial frames of reference – principle of equivalence of principle of general co-variance 
– Minkowski space and Lorentz transformation.  
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Company,   London. 

2. Gupta. S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19 th Edition, 
Pragati Prakashan, Meerut.  

3. Banerji Sriranjan and Asit Banerjee, 2nd Edition 2013, The Special Theory of 
Relativity, Printice-Hall of India, New Delhi 

4. Aruldhas G.,1st edition,  2008, Classical Mechanics, Printice Hall of India, New Delhi 
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S.No Lecture 

Duration 
(Hr) 

                           Topics to be covered Support material 

1 1 Mechanics of a system of particles  T1(75-76) 

2 1 Conservation laws: linear momentum  T1(67-69) 

3 1 Angular momentum, energy  T1(78-79) 

T1(80) 

4 1 Constraints, Degrees of freedom  T1(188-189) 
T1(191-192) 

5 1 Generalised co-ordinates – Generalized notations  T1(193-194) 

6 1 Brachistocrone problems – Atwood’s machine  T1(189-190) 

T1(204-205) 

7 1 Hamilton’s variational principle . 
 

T1(210-211) 

8  1 Lagrange’s equation of motion from Hamilton’s principle  

D’Alembert’s principle 

 

9 1 Application of Lagrange equation of motion  

10 1 particle moving under a central force,  particle moving on 
the surface of earth 

 

11 1 Superiority of Langrange’s approach over Newtonian’s 

approach 

 

12 1 Revision  

                                              Total no.of Hours planned for unit –I 
 

 12 hrs 
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3. Goldstein.H.A. 2000, Classical Mechanics, 2nd Edition, Wesley Publishing 
Company,   London. 

4. Gupta. S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19th Edition, 
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S.No Lecture 
Duration 

(Hr) 

                         Topics to be covered Support material 

1 1 Hamiltonian – Hamilton’s canonical equations of motion T1(293-294) 

2 1 Physical significance of H  T1(269-297) 
T1(305-306) 

3 1 Advantage of Hamiltonian approach T1(309-310) 

T1(318-319) 

4 1 Hamilton’s Canonical equation of motion in different 
systems 

T1(319-320) 
T1(323-324) 

5 1 Hamilton’s Canonical equation of motion in different 

systems 

T1(323-324) 

6 1 Hamilton Jacobi method T1(324-326) 

7 1 Kepler’s problem solution by Hamilton Jacobi method 
 

T1(340-341) 

8  1 Action and angle variables 

 

 

9 1 Solution of Harmonic oscillator by action angle variable 
method 

 

10  Canonical or contact transformation   

11  Condition for a transformation to be canonical  

12  Revision  

                                      Total no.of Hours planned for unit –II 

 

12 
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Company,   London. 
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Pragati Prakashan, Meerut.  
 

REFERENCES: 

 

5. Sardesai D.L., 1st edition, 2004, A Primer of Special Relativity, New Age 
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Relativity, Dorling Kindersley (India) Pvt. Ltd., Delhi.  
 

 

S.No Lecture 

Duration 
(Hr) 

                           Topics to be covered Support material 

1 1 General features of  orbits T1(665-672) 

2 1 Centre of mass and laboratory coordinates  T1(673-676) 

T1(680) 

3 1 Virial theorem  T1(680-683) 

4 1 Stable and unstable equilibrium  
 

T1(689-697) 

5 1 Properties of T, V and ω for small oscillations T1(689-697) 

T1 (701-702) 

6 1 Euler’s angles  
 

T1(709-710) 

7 1 Angular velocity, momentum of rigid body  T1(712-714) 

8  1 moment and products of inertia  

 

 

9  Principal axis transformation  

10  rotational kinetic energy of a rigid body,  Moment of inertia 
of a rigid body 

 

11  motion of a symmetric top under action of gravity  

12  Revision  

                                      Total no.of Hours planned for unit –III 

 

12 
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7. Goldstein.H.A. 2000, Classical Mechanics, 2nd Edition, Wesley Publishing 
Company,   London. 

8. Gupta. S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19 th Edition, 

Pragati Prakashan, Meerut.  
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7. Sardesai D.L., 1st edition, 2004, A Primer of Special Relativity, New Age 

International Publishers, New Delhi 
8. Hartle B. James, 1st edition ,2009, Gravity, An Introduction to Einstein’s General 

Relativity, Dorling Kindersley (India) Pvt. Ltd., Delhi.  
 

 

 

 

S.No Lecture 
Duration 
(Hr) 

                           Topics to be covered Support material 

1 1 Introduction – Galilean transformation  T1(527-531) 

2 1 Invariance of Newton’s laws of motion  T1(541-543) 

3 1 Non variance of Maxwell’s equations T1(543) 
T1(411-415) 
 

4 1 Michelson Morley experiment and explanation of the null 

result 

T1(411-415) 

5 1 Concept of inertial frame  T1(418-419) 

6 1 Postulates of special theory simultaneity T1(421-422) 

7 1 Lorentz transformation along one of the axes  T1(485-491) 

8  1 length contraction – time dilatation and velocity addition 

theorem  

 

9 1 Fizeau’s experiment – Four vectors –   

10 1 Relativistic dynamics -Variation of mass with velocity  

11 1 Energy momentum relationship.  

12 1 Revision  

                                      Total no.of Hours planned for unit –IV 
 

12 
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Lecture Plan - V 

 

 

 

TEXT BOOKS: 

 

9. Goldstein.H.A. 2000, Classical Mechanics, 2nd Edition, Wesley Publishing 
Company,   London. 

10. Gupta. S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19 th Edition, 
Pragati Prakashan, Meerut.  

 
REFERENCES: 

 

9. Sardesai D.L., 1st edition, 2004, A Primer of Special Relativity, New Age 
International Publishers, New Delhi 

10. Hartle B. James, 1st edition ,2009, Gravity, An Introduction to Einstein’s General 
Relativity, Dorling Kindersley (India) Pvt. Ltd., Delhi.  

 

 

S.No Lecture 

Duration 
(Hr) 

                           Topics to be covered Support material 

1 1 Introduction – Limitation of special theory of relativity  T1(444-445) 

2 1 Need for a relativity theory in non-inertial frames of 

reference  

T1(457-458) 

446-447 

3 1 Concept of gravitational and inertial mass  T1 (472) 

4 1 The basic postulate of GTR T1(475-477) 

5 1 The basic postulate of gravitation T1(480-481) 

6 1 The basic postulate of acceleration T1(482-483) 

7 1 Relation to non-inertial frames of reference T1(735-736) 

8  1 principle of equivalence   

9 1 principle of general co-variance   

10 1 Minkowski space and  Lorentz transformation  

11 1 Revision  

12 1 Five years question discussion  

                                      Total no.of Hours planned for unit –V 
 

12 
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UNIT-I 

 

SYLLABUS 

  

Conservation laws:  Mechanics of a system of particles – Conservation laws: linear momentum, 

angular momentum, energy – Constraints, Degrees of freedom – Generalised co-ordinates – 

Generalized notations – Brachistocrone problems – Atwood’s machine.Hamilton’s variational 

principle – Lagrange’s equation of motion from Hamilton’s principle, D’Alembert’s principle – 

Applications of Lagrange’s equation of motion – particle moving under a central force – particle 

moving on the surface of earth– Superiority of Langrange’s approach over Newtonian’s approach. 

 

 

  Mechanics of a system of particles     

Mechanics is the study of the motion of physical bodies .The possible and actual motions of 

physical objects, whether large or small, fall under the domain of mechanics. In the present century the 

term “Classical mechanics” has come in to wide to denote this branch of physics in the contradiction to 

the newer theories especially quantum mechanics. “Classical mechanics has been customarily used to 

denote that part of the mechanics which deals with the description and explanation of the motion of the 

objects, neither too big so there exists a close agreement between theory and experiment nor too small 

interacting objects, more precisely like the systems  on molecular or subatomic scale.” We shall 

follow this usage, interpreting theories the name to include the type of mechanics.  Classical 

mechanics may be classified in to three subsections (i) Kinematics (ii) Dynamics (iii) Statics.   

In this unit we deals with the structure and law of mechanics with the applications, starting 

from basic fundamental concepts .Having established the essential pre-requisites, the Lagrangian 

formulation known for its mathematical elegance.  
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CONSTRAINTS  

 

Constraints are the geometrical or kinematical restrictions on the motion of the particle or system of 

the particles. Systems with such constraints of motion are called as  

 

Constrained systems and their motion is known as constrained or restricted motion. Some 

examples of restricted motions are-  

 The motion of the rigid body is restricted to the condition that the distance between any two 

particles remains unchanged. 

 The motion of the gas molecules with in the container is restricted by the walls of the vessels.  

 A particle placed on the surface of a solid sphere is restricted so that it can only move either on 

the surface or outside the surface.  

 

Classification of Constraints  

The constraints can be classified in to the following categories: 

(i) Holonomic and non-holomonic constraints (ii) Scleronomic and rhenomic constraints   

Holonomic constraints:-Constraints are said to be holomonic if the conditions of all the constraints 

can be expressed as equations connecting the coordinates of the particles and possible time in the form  

f ( r1,r2,r3……..,rn,t) =0 (1.1) 

Where r1, r2, r3……..,rn represent the position vectors of the particles of a system and t the time. In 

Cartesian coordinates equation (1.1) can be written as,  

f (x1, y1, z1; x2, y2, z2,……… xn, yn, zn,t) =0 (1.2) 

 

Examples of holonomic constraints:-  

1. The constraints involved in the motion of rigid bodies. In rigid bodies, the distance between 

any two particles is always constant and the condition of constraints are expressed as- 

ri - rj
2 - Cij

2 =0 (1.3) 

2. Constraints involved in the motion of  the point mass of a simple pendulum. 

         

  
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3. The constraints involved when a particle is restricted to move along any curve (circle or 

ellipse) or in a given surface. 

Non-holonomic constraints: - If the conditions of the constraints can not be expressed as equations 

connecting the coordinates of particles as in case of holomonic, they are called as non-holomonic 

constraints. The conditions of these constraints are expressed in the form of inequalities. The motion of 

the particle placed on the surface of sphere under theaction of the gravitational force is bound by non-

holonomic constraints, for it can be expressed as an inequality,  r2 - a2  0. 

Examples of non-holonomic constraints 

1. Constraints involved in the motion of a particle placed on the surface of  a solid sphere 

2. An object rolling on the rough surface without slipping.  

3. Constraints involved in the motion of gas molecules in a container.  

(ii) Scleronomic and Rhenomic Constraints: - The constraints which are independent of time are 

called Scleronomic constraints and the constraints which contain time explicitly, called rhenomic 

constraints  

Examples: - A bead sliding on a rigid curved wire fixed in space is obviously subjected to 

Scleronomic constraints and if the wire is moving is prescribed fashion the constraints become 

Rhenomic. 

 

GENERALISED COORDINATES  

Generalised co-ordinates:- These are the coordinates which are used to eliminate the dependent 

coordinates and can be expressed in another way by the introduction of (3N-p) independent 

coordinates of variables called the Generalised coordinates, where N represent  the number of particles 

of a system and p represent the holonomic constraints. Thus any ‘q’ quantities which completely 

define the configuration of the system having ‘f’ degree of freedom are called Generalised co-ordinates 

of the system  and are denoted by q1, q2, q3,…… qf , or just qi ( i=1,2,3,4…f ) 

 

Principles for the choosing a suitable set of Generalised co-ordinates - For this three principles are 

used – 

1. They should specify the configuration of the system. 
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2. They may be varied arbitrarily and independently of each other, with out violating the 

constraints on the system. 

3. There is no uniqueness in  the choice of the generalised coordinates  

 

It may be noted that generalised co-ordinates need not to have the dimensions of  length or angles. 

Generalised co-ordinates need not to be Cartesian co-ordinates of the particles and the condition of the 

problem may render some other choice of co-ordinates which may be more convenient. 

Generalised Notations  

(i)  Generalised Displacement – A small displacement of an N particle system is defined by 

changes ri in position co-ordinates ri ( i =1,2,3….,N) with time ‘t’ held fixed. An arbitrary virtual 

displacement ri,   remembering that ri ’s are function of generalised co-ordinates i.e. ri = ri (q1, q2,….. 

q3N,t), can be written by using Euler’s theorem as,  

  

(1.5) 

  

qj is called the generalised displacement or  virtual displacement. If qj is an angle co-ordinate, qj is 

an angular displacement. 

(ii) Generalised velocity – The time derivative of the generalised qk ,is called generalised velocity 

associated with particular co-ordinates qk for an unconstrained system, 

ri = ri (q1, q2,….. q3N,t), 

Then,   

 

(1.6) 

  

If N-particle system contains k-constraints, the number of generalised co-ordinates are 3N-k=f  and, 

(1.7) 

 

 

 

 
 

 

ri 

qj 
 

qj 

 

ri =  
3N 

j =1 

  

  

 
  

ri 

qj 

 

 qj 

 
  ri =  

f 

j =1 

  
 

ri 

t 

 
 

 

  
ri 

qj 
 

 qj 
 

  ri =  
3N 

j =1 

  

 

ri 

t 
 

 

 
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(iii) Generalised Acceleration- components of generalised acceleration are obtained by differentiating 

equation (1.6) or (1.7) w.r.t. time and finally we obtain the expression  

 

 

 

 

(1.8) 

 

From the above equation it is clear that the cartesian components are not linear functions of 

components of generalised acceleration qj alone, but depend quadratically and linearly on generalised 

velocity component qj as well. 

(iv) Generalised Force – Let us consider the amount of work done W by the force Fi during an 

arbitrary small displacement ri  of the system  

 

 

 

 

 

(1.9) 

 

        (1.10) 

Where,  

 

Here we note that Qj depends on the force acting on the particles and on the co-ordinate qj and possibly 

on time t. Therefore, Qj is called the generalised force. 

Advantages of Generalised co-ordinates  

The main advantage in the formulating laws of mechanics in terms of generalised co-ordinates and the 

associated mechanical quantities is that the equation of motion looks simpler and can be solved 

 
 
ri 

qj 
 

 qj 
 

  ri =  
3N 

j =1 

 
   

3N 

j =1 
 
3N 

k =1 

+ 
    2ri 

qj qk 

 
 

qjqk 
  

+ 2  
3N 

j =1 

    2ri 

qj t 
 

 

qj 
      2ri 

     2t 
 

 

+ 

 
 

 

 

i 

i 

W =         Fi .ri  =         Fi .                 qj =                   Fi .             qj  
N 

i 

  

 
N 

i=1 

 

 
3N 

j=1 

ri 

qj 

 

 
N 

i=1 
 
3N 

j=1 

ri 

qj 

 
 

 
3N 

i=1 
              =         Qj .qj 

 
 N 

j=1 

ri 

qj 

 
 

Qj      =                         Fi . 

 
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independently of each other since generalised co-ordinates are all independent and constraints have no 

effect on them. The equations of motion are then called Lagrange’s equation of motion.  

 

D’ALEMBERT’S PRINCIPLE  

 

This method is based on the principle of virtual work. The system is subjected to an infinitesimal 

displacement consistent with the forces and constraints imposed on the system at a given time t. This 

change in the configuration of the system is not associated with a change in time i.e., there is no actual 

displacement during which forces and constraints may change and hence the displacement is termed 

virtual displacement. 

From the principle of virtual work 

 

 

(1.11) 

 

Here Fi
a represent the applied force and ri denote the virtual displacement.  

To interpret the equilibrium of the systems, D’Alembert adopted an idea of reverse force. He 

conceived that a system will remain in equilibrium under the action of a force equal to the actual force 

Fi plus reversed effective force pi. Thus  

 (1.12) 

 

or, 

 

Thus the principle of virtual work takes the form,  

 

 

 

Again writing Fi = Fi
a + fi 

 

 
N 

i 

Fi  
a
 . ri = 0 

  

 
 

 
 
. 

   

 
i 

.ri + fi.ri = 0 

 

   

Fi + (- pi) = 0 

 

Fi – pi =  0 

  

  

. 

. 

 
i 

.ri = 0 

 

(Fi - pi) 
  

. 

 

(Fi 
a- pi) 

  

. 
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Dealing with the systems for which the virtual work of the forces of constraints is zero, we write  

 

 

Since force of constraints are no more in picture, it is better to drop the superscript ‘a’. Thus  

(1.13) 

 

The equation (1.13) is called D’Alembert principle. To satisfy the above equation, we can not equalate 

the coefficient of  ri to zero since ri are not independent of each other and  

hence it is necessary to transform ri in to generalised co-ordinates , qj which are independent of each 

other .The coefficient of qj will then equated to zero. 

 

DERIVATION OF LAGRANGE’S EQUATION  

 

The Lagrange’s equations can be obtained from Hamilton’s variational principle, velocity dependent 

potentials and also by Rayleigh’s dissipation function. In the present article we shall discuss the 

derivation of Lagrange’s equations from velocity dependent potential and by Rayleigh’s dissipation 

function. 

Lagrange’s Equations from velocity dependent potential 

The co-ordinate transformation equations are  

ri = ri ( q1,q2……,qn,t) 

So that, 

 

 

 

So that  

 

 (1.14) 

 

 

  

 

  

dri              dri   dq1         dri    dq2                 dri     dt 

dt           q1 dt        q2   dt                   t    dt 

     

+ +………... = + 

 
ri 

qj 

 

 
ri 

t 

 

 

j 
  vi =            qj + 

. 

 

(Fa
i - pi) 

  
. 

 
i 

.ri = 0 

 

(Fi - pi) 
  

. 

 
i 

.ri = 0 
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Further infinitesimal displacement ri can be connected with qi 

 

 

 

But the last term is zero since in virtual displacement only co-ordinate displacement is considered and 

not that of time. Therefore, 

 

 

Now we write equation (1.13) as,  

 

 

 

 

(1.15) 

 

 

We define as the component of generalised force. So the above equation 

becomes  

(1.16) 

 

Lagrangian Mechanics 

The evaluation of second term in equation (1.16) gives the expansion as  

 

 

(1.17) 

 

 

With this substitution equation (1.16) becomes  

  

= Qj 

t  
 

j 

ri  =          qj + 

 
ri 

qj 

 

 
ri 

t 

 

 

j 
ri  =          qj                   

 
ri 

qj 
 

 

(Fi - pi) 
  

. 

 
i 

j 
                   qj   = 0,               

 
ri 

qj 

 

i,j i,j 

. 

 - 

 

  Fi .  
 

                   

qj                

 
ri 

qj 

 

 
 

  pi .  
 

                   

qj                

 
ri 

qj 

 

 

  Fi .  
                    

qj                
 
ri 

qj 

 

 

 
                   

Qj qj                 
 

  pi .  
                    

qj                

 
ri 

qj 
 

. 
- 

j 
i,j 

= 0 

                   
qj                 

j 
 

 

  pi .  
                    

qj                
 
ri 

qj 

 

. 

i,j 

=   
d 

dt 
. 

 

qj i 
(  (½) mivi

2 )  

qj 
( ( ½) mivi

2 ) 

qj 
d 

dt  
                   

Qj qj                 - 

j j 

= 0 . 
 

T 

qj 

 

T 

qj 
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Where (1/2) mivi
2 = T, is written since it represents the total kinetic energy of the system, further the 

above equation may be   

 

 

 

Since the constraints are holonomic, qj are independent of each other and hence to satisfy above 

equation the coefficient of each qj should necessary vanish, i.e.  

 

(1.18) 

 

As j ranges 1 to n, there will be ‘n’ such second order equations.  

If potential are velocity dependent, called generalised potentials, then through the system is not 

conservative, yet the above form Lagrange’s equations can be obtained provided Q j, the components of 

the generalised force, are obtained from a function U(qj,qj) such that  

(1.19) 

 

Hence the from equation (1.18) and equation (1.19) ,we have   

 

 

 

If we take L = T-U, the Lagrangian function, where U is generalised potential, then above equation 

becomes   

(1.20) 

 

 

Which are the Lagrangian equations for holonomic constraints systems.   

 

 

+ 

. 

d 

dt  - Qj 

j 

qj = 0 . 
 

T 

qj 

 

T 

qj 
 

Qj = 

Qj 

d 

dt 
=  Qj . 

 

T 

qj 

 

T 

qj 

 

U 

qj 
 

d 

dt 
. 

U 

qj 
 

d 

dt 

 (T-U) 

     qj 
. 

 (T-U) 

     qj 
= 0 

d 

dt 

     L 

     qj 
. 

     L 

     qj 
= 0 

. 
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Lagrange’s equations from Rayleigh’s dissipation function  

 

It can be shown that if a system involves frictional forces or dissipative forces, then in suitable 

circumstance, such  a system can also be described in terms of extended Lagrangian formulation. 

Frictional forces are found to be proportional to the velocity of the particle so that in cartesian co-

ordinates components are, 

  (1.21) 

Where kj are constants. Such frictional forces are defined in terms of a new quantity called Rayleigh 

dissipation function given as, 

                =(1/2)kix
2

j 

Which yields 

  Fj
d = -   (1.22) 

 

Writing equation (1.18) in cartesian co-ordinates, assuming that this still holds for such a system,  

 

 

Where L contains the potential of conservative forces as described  earlier; Qj represents the forces 

which do not arise from a potential, i.e.   

 

(1.23) 

Thus equation (1.18) can be written as, 

  

 

 

 

 

The above equation may be expressed as in terms of generalised co-ordinates qj 

 

(1.24) 

Fj
d = - kixj , 

. 

. 

 

 xj 
. 

d 

dt 
=  Qj . 

 

L 

qj 

 

L 

qj 

 

Qj
d = Fj

d = -  

 

xj 

 

. 

 

xj 
 

. 
d 

dt =  0 . 
 

L 

xj 

 

L 

xj 
 

+ 

 

qj 

 

. 
d 

dt 
=  0 . 

 

L 

qj 
 

L 

qj 

 

+ 
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Thus for such a system, to obtain equations of motion, two scalar L and  are to be specified.  

 

VARIATIONAL PRINCIPLE 

 

This principle state that the integral                    shall have a stationary value or extremum value, where 

T, kinetic energy of the mechanical system, is a function of co-ordinates and their derivatives and V is 

the potential energy of the mechanical system, is a function of co-ordinate only. Such a system for 

which V is purely a function of co-ordinates is called conservative system.  

Statement: The variational principle for the conservative system is stated as follows  

 

“The motion of the system from time t1 to time t2 is such that the line integral 

  

                                              is  extemum for the path of motion” .Here L=T-V is  

 

the Lagrangian function . 

 

 EULER –LAGRANGE EQUATION 

  

The integral I, representing a path between the two points 1 and 2 will be written as  

 

 

(1.25) 

Now to account for all possible curves between the two points1,2,we assign different values of a 

parameter  to these curves, so that yj will also be a function of , i.e. curves being represented by yj 

(x, ).The family of the curves may be represented as  

 

 

 

 t1 

t2 

( T-V )dt 

I =                     =         t1 

t2 

( T-V )dt  t1 

t2 

L dt, 

I =       f [y1(x) y2(x),……. ……..y1(x)y2(x)……..….,x]dx 
. . 

 t1 

t2 

y1(x,) = y1(x,0) + 1(x) 

y2(x,) = y2(x,0) + 2(x) 

…………………………... 
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Where 1 and 2 etc. are completely arbitrary functions of x,which vanishes at end points and the 

curves y1(x,0), y2(x,0) etc. for =0 are paths for which the integral I is extemum 

The integral I will be the function of  and hence its variation can be represented as 

 

 

 

 

Integrating by parts the second term of the integrand we get,  

 

 

(1.26) 

 

Lagrangian and Hamiltonian Mechanics 

 

Since at end  points, which are held fixed, all paths meet,so                     . Therefore equation (1.26) 

becomes  

 

 

 

 

  f    

                                       yj   

Let us put    

 

 

 

So that  

                                       f       

                           yj   

 I()                 f   yj              f     yj 

 ()                 yj   ()          yj    ()   

 
 

d d = d +  
j 

 

.  t1 

t2 

dx 

 t1 

t2 
 I()                 f   yj                        f     yj 

 ()                 yj   ()                    yj    ()   
 

 

d = d  
j 

. 

.  
t1 

t2 

. dx +  
j 

d 

1 

2 

 
j 

d      f      yj 

dx    yj      
d dx 

 

yj 

 
1 

2 

= 0 

d = I    & 
 I 

 
   d = yj 

 yj 

  

 I()                 f   yj                        

 ()                 yj   ()                 

 
 

d = d  
j  t1 

t2 

dx  t1 

t2 

.  
j 

d      f      yj 

dx    yj      
d dx 

 

 

 
t1 

t2 

 
j 

. 
d      f       yj 

dx    yj       
d dx 

= 

 

 
t1 

t2 

 
j 

. 
d      f       

dx    yj      
yj dx 

I= 
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For the integral to be extremum 

  f       

  yj   

 

Since yj are independent of each other, coefficient of yj should separately vanish if above equation is 

to be satisfied. Thus. 

  f       

  yj   (1.27) 

The set of differential equations represented by equation (1.27)are known as Euler-Lagrange 

differential equations. Thus solutions of Euler-Lagrange equation represent those curves for which the 

integral assumes an extremum value. 

 

1.8  DERIVATION OF LAGRANGE’S EQUATION FROM HAMILTON’S PRINCIPLE 

 

According to Hamiltonian’s variational principle, motion of a conservative system from time t1 to time 

t2 is such that the variation of the line integral  

                                                                       ,   is zero 

 

i.e.  (1.28) 

 

Now we shall show that Lagrange’s equations of motion follow directly from Hamilton’s principle. If 

we account for all possible paths of motion of the system in configuration space and  label each with a 

value of a parameter ,then since paths are being represented by qj(t,),I also becomes a function of  

so that we can writ, 

(1.29) 

 

So that, 

 

 

 
t1 

t2 

 
j 

d      f       

dx    yj      
. yj dx =0 

I= 

 
d      f       

dx    yj      
.  = 0, j=1,2,3,…n 

I=       f (yj, yj, x)dx 
1 
 

2 

I =          L [qj(t),   qj(t),  t]dt 
t1 
 

t2 . 

I () =       L [qj(t, ),   qj(t, ),  t]dt 
t1 
 

t2 . 

. 
I()              L qj        L qj         L t 

 ()              qj          qj         t   
 

 

t1 
 

t2 

 
j 

= + + . dt 

 
I =          L [qj(t),   qj(t),  t]dt =0 t1 

 
t2 
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Since in  variation, there is no time variation along any path and also at end points and hence (I/) 

is zero along all paths. Therefore, on multiplying by d, above equation is  

 

 (1.30) 

 

Integrating second term of L.H.S.  by parts  

 

 

 

The middle term is zero since  variation involves fixed end points.  

 

So, 

 

 

 (1.31) 

 

Since qj are independent of each other, the variations qj will be independent. Hence         I()=0 if 

and only if the coefficients of qj separately vanish, i.e. 

(1.32) 

 

Which are Lagrange equations of motions for a conservative system. It is obvious that these equations 

follow directly from Hamilton’s principle.  

  

Application Of Lagrange’s Equation Of Motion: 

Simple Pendulum: 

Consider a simple pendulum of mass m which is deflected by an angle θθ from its mean position. Let l 

be the length of the pendulum and x be its linear displacement fro equilibrium position.  

From fig we have, 

I()              L qj                       L qj          

 ()              qj                         qj          
 

 

. 

t1 
 

t2 
 
j 

d = + . d dt   
j 

t1 
 

t2 
. 

d dt 

 
j t1 

 
t2 

t1 
 

t2 

 
j 

L qj 

qj  
d dt 
 

+  
j 

L qj 

qj  
d  
 t1 

t2 
- 

    d     L       qj 

    dt    qj        
d dt 

 
. . = 

 I()                 L   qj                        

 ()                 qj   ()                 

 
 

d = 
d  

j 
 
t1 

t2 

dt  t1 

t2 

.  
j 

d      L     qj 

dt    qj     t 
d dt 

 

 

 t1 

t2 

 
j 

d      L      qj 

dt    qj      t dt 
= 

. 
 L  

qj     

. 
 L  

qj     

d      L      

dt    qj      =  0 
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X=lθ 

 

X˙=lθ˙ 

The kinetic energy of the system is,  

T=12mx˙2 

 

=12ml2θ2 

The pendulum gains height AC at extreme position so that its potential energy is,  

V=mgAC 

 

             =mg(OA−OC) 

 

           =mg(l−lcosθ) 

 

         V=mgl(1−cosθ) 

The Lagrangian of the pendulum is,  

L=T−V=1/2ml2θ˙2−mgl(1−cosθ) 

 

The equation of motion is given by, 

d/dt(δL/δθ˙)−δL/δθ=0 

Here, δL/δθ˙=ml2θ˙ and δL/δθ=−mglsinθ 

So, equation of motion becomes, 

ddt(ml2θ˙)+mglsinθ=0 

 

ml2θ¨+mglsinθ=0 

 

lθ¨+gsingθ=0 
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θ¨+glsingθ=0 

 

For small angle θ , sinθ=θ 

θ¨+ω2θ=0 

where, ω2=glω2=g/l 

and T=2π/ω=2π√1/g,which is the equation of motion of simple pendulum. 

Compound Pendulum: 

  

Compound pendulum is a rigid object capable of oscillating in a vertical plane about horizontal axis.  

 

Consider a compound pendulum of mass m oscillating in xy plane. In the figure the point 'o' is the 

point of suspension through which the horizontal axis passes and C is the center of mass.  

Now the kinetic energy of system is 

                      T=1/2Iω2 

                        =1/2Iθ˙2⋯(1) 

Where θ˙ is the generalized co-ordinate for the system. 

and potential energy (v)=−mglcosθ⋯(2) 

So Lagrangian of system is 

L=T−V 

                     =1/2Iθ˙2+mglcosθ 

We have, lagrangian equation of motion is 

d/dt(δL/δq˙j)−δL/δqj=0 

 

In this case, d/dt(δL/δθ˙)−δL/θθ=0 

so, 

δL/δθ=−mglsinθ 

and 
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d/dt(δL/θθ˙)=Iθ¨ 

 

Now the Lagrangian equation of motion reduces to  

Iθ¨+mglsinθ=0Iθ¨+mglsinθ=0 

Iθ¨+mglθ=0    [∵For smallθ]] 

 

                                                θ¨+mglθI=0⋯(3) 

 IN equation (3) mgl/I refers to ω2 

ω2=mgl/I 

 

T=2π√I/mgl−−−−√⋯(4) 

 

Equation (4) gives the time period of compound pendulum. 
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KARPAGAM ACADEMY OF HIGHER EDUCATION,COIMBATORE-21
DEPARTMENT OF PHYSICS

I M.Sc., PHYSICS (2017-2019)

CLASSICAL MECHANICS AND RELATIVITY (16PHP201)

UNIT - I

QUESTIONS A B C D ANSWER
Total energy of body is sum of kinetic energies  potential energies. forces.  both a and b.  both a and b.

Energy can neither be created nor be destroyed, but it can be changed from one form to another. This law is known as kinetic energy. potential energies. conservation of energy  conservation principle. conservation of energy
An artificial Satellite revolves round the Earth in circular orbit, which quantity remains constant? Angular Momentum Linear Momentum Angular Displacement None of these Angular Momentum
 A man presses more weight on earth at : Sitting position Standing Position Lying Position None of these Standing Position
The rotational effect of a force on a body about an axis of rotation is described in terms of the Centre of gravity Centripetal force Centrifugal force Moment of force Moment of force

 If no external force acts on a system of bodies, the total linear momentum of the system of bodies remains constant. Which law states that ?Newton's first law  Newton's Second Law  Newton's Third Law Principle of conservation of linear momentum

Principle of conservation 

of linear momentum

 Which law is also called the law of inertia ? Newton's first law Newton's Second Law Newton's Third Law All of these Newton's first law
 Energy possessed by a body in motion is called  kinetic energy. potential energies. conservation of energy  conservation principle. kinetic energy.
Lagrangian L = T-V T+V (T-V)2 (T+V)1/2 T-V
The path adopted by the system during its motion can be represented by a space of _______________ dimensions. 3N 6N 9N N 6N
Co-ordinate transformation equations should not involve ______________ explicitly. time position momentum velocity time

The frequency of Harmonic oscillator is given by [1/2p(k/m)5/2] [1/2p(k/m)3/2] [1/2p(k/m)1/2] [1/2p(k/m)] [1/2p(k/m)1/2]
   If the total energy of the particle is conserved then, T+V =constant  b. T-V=0   c.  T-V =constant   None of these T+V =constant  
 Constraint relations do not depend on time is scleronomic  b. rheonomic c. unilateral    None of these scleronomic
 Constraint relations  depend on time is scleronomic  b. rheonomic c. unilateral    None of these rheonomic 
Constraint relations can be made independent of velocities scleronomic b. rheonomic c. unilateral  .d holonomic unilateral  

The Branchistochrone problem is to find shape of a curve blength of a curve c. elasticity of a curve electrons  None of these shape of a curve 
"If no external torque is applied on a body, then total angular momentum remains constant" stated law is called A. law of conservation of angular velocity. A. law of conservation of angular acceleration.A. law of conservation of angular momentum.A. law of conservation of angular speed. A. law of conservation of angular momentum.
Which one of the following choices is an example of a non-conservative force? elastic spring force kinetic frictional force torque gravitational force kinetic frictional force
Which one of the following choices is an example of a conservative force? elastic spring force kinetic frictional force torque gravitational force elastic spring force 

  A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s2) 50J 500J 12J 30J 500J
 The type of energy possessed by a simple pendulum, when it is at the mean position is KE PE KE+PE KE-PE KE
  If air resistance is negligible, the sum total of potential and kinetic energies of a freely falling body increases increases becomes zero remains the same remains the same

    Name the physical quantity which is equal to the product of force and velocity. WORK ENERGY POWER ACCELERATION POWER
The P.E. of a body at a certain height is 200 J. The kinetic energy possessed by it when it just touches the surface of the earth is>PE <PE P.E Not Known >PE

The point, through which the whole weight of the body acts, irrespective of its position, is known as centre of mass centre of percussion moment of inertia centre of gravity centre of gravity
According to the law of moments, if a number of coplaner forces acting on a particle are in equilibrium, then the algebraic sum of their moments about any point in their plane is zero the algebraic sum of their moments about any point is equal to the moment of their resultant force about the same point.their lines of action are at equal distances their algebraic sum is zero the algebraic sum of their moments about any point in their plane is zero
The motion of a particle round a fixed axis is translatory as well as rotatry translatory rotary circular circular
The principle of transmissibility of forces states that, when a force acts upon a body, its effect is different at different points on its line of action maximum, if it acts at the centre of gravity of the bodyminimum, if it acts at the centre of gravity of the bodysame at every point on its line of action minimum, if it acts at the centre of gravity of the body
The centre of gravity of a semi-circle lies at a distance of __________ from its base measured along the vertical radius. 3r/4π 4r/ 3π  3r/ 8 8r/3 4r/ 3π

Concurrent forces are those forces whose lines of action meet on the same plane lie on the same line meet at one point none of these meet at one point
The velocity ratio in case of an inclined plane inclined at angle θ to the horizontal and weight being pulled up the inclined plane by vertical effort iscos θ sin θ tan θ cot θ sin θ
One complete round trip of a vibrating body about it's mean position is  frequency  time period amplitude vibration  vibration
Potential energy of mass attached to spring at mean position is  maximum  moderate  zero  minimum  zero
Velocity of bob in SHM becomes zero at  mean position  in air extreme position middle of mean and extreme position  extreme position

If potential energies and kinetic energies are equal then displacement of an object in SHM is 4 0 3 1 0
 Kinetic energy of mass attached to spring at extreme position is  maximum  moderate  zero  minimum  zero
Potential energy of mass attached to spring at extreme position is  maximum  moderate  zero  minimum  maximum
Hamiltonian H = T-V T+V (T-V)2 (T+V)1/2 T+V
Advantage of Action and Angle variable is that one can obtain the frequencies of Vibratory motion periodic motion circular mation all the above periodic motion

For non-interacting particle in a quantum state the energy E is given by p/2m p2/m p/m p2/2m p2/2m
Co-ordinate transformation equations should not involve ___________ explicity. position momentum time force time
Generating function have _____________ forms. four two three five four
Hamilton’s principal function is denoted by ______________. H K P S S
Hamilton’s characteristic function W is identified as _____________. kinetic energy potential energy work action A action A

Hamilton’s characteristic function is denoted by _______________. S K W H W
The number of independent ways in which a mechanical system can move without violating any constraint which may be imposed is called the ______________.action-angle variables generalized variables degrees of freedom co-ordinates degrees of freedom
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UNIT-II 

SYLLABUS 

 

. 

 

 

 

PHASE SPACE: 

The origin of the term phase space is somewhat murky. For the purpose of this explanation 

let's just say that in 1872 the term was used in the context of classical and statistical mechanics. It 

refers to to the positions and momenta as the Bewegungsphase in German - phase motion. It is often 

erroneously cited that the term was first used by Liouville in 1838. 

              In classical mechanics, the phase space is the space of all possible states of a system; the 

state of a mechanical system is defined by the constituent positions p and momenta q. p and q 

together determine the future behavior of that system. In other words if you know p and q at time t 

you will be able to calculate the p and q at time t+1 using the theorems of classical mechanics - 

Hamilton's equations. 

            To describe the motion of a single particle you will need 6 variables, 3 positions and 3 

momenta. You can imagine a 6 dimensional space; three positions and three momenta. Each point in 

this 6 dimensional space is a possible description of the particles' possible states, of course constraint 

by the laws of classical mechanics.  

If you have N particles to describe the system, you have a 6N-dimensional phase space. 

           Let's make a simple example. The Pendulum. The Pendulum consists of a single particle mass 

that swings in a plane. The pendulum is thus fully described by one position and one momentum. Its 

momentum is zero at the top and maximum at bottom. The position perhaps is denoted by angle and 

varies between plus/minus a. If you draw states p and a in a Cartesian plane coordinate system you 

Phase space: Hamiltonian – Hamilton’s canonical equations of motion – Physical 

significance of H – Advantage of Hamiltonian approach – Hamilton’s canonical equation of 

motion in different coordinate systems – Hamilton-Jacobi method – Kepler’s problem solution 

by Hamilton-Jacobi method – Action and angle variables – Solution of Harmonic oscillator by 

action angle variable method – canonical or contact transformation – Condition for a 

transformation to be canonical 
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will get an ellipsoid (or if chose adequate coordinates a circle) that fully describes all possible  states 

of the pendulum. 

In quantum mechanics the term phase re-appeared: it refers to the complex phase of the complex 

numbers that wave functions take values in.  

In quantum mechanics, the coordinates p and q of phase space normally become operators in a 

Hilbert space. 

         A quantum mechanical state does not necessarily have a well-defined position or a well-defined 

momentum (and never can have both according to Heisenberg's uncertainty principle). The notion of 

phase space and of a Hamiltonian H, can be viewed as a crucial link between what otherwise looks 

like two very different theories. A state is now not a point in phase space, but is instead a complex 

valued wave function. The Hamiltonian H becomes an operator and describes the observable 

quantity. 

HAMILTONIAN FUNCTION: 

Hamiltonian function, also called Hamiltonian, mathematical definition introduced in 1835 

by Sir William Rowan Hamilton to express the rate of change in time of the condition of a  

dynamic physical system—one regarded as a set of moving particles. The Hamiltonian of a system 

specifies its total energy—i.e., the sum of its kinetic energy (that of motion) and its potential 

energy (that of position)—in terms of the Lagrangian function derived in earlier studies 

of dynamics and of the position and momentum of each of the particles.  

The Hamiltonian function originated as a generalized statement of the tendency of physical systems 

to undergo changes only by those processes that either minimize or maximize the abstract quantity 

called action. This principle is traceable to Euclid and the Aristotelian philosophers. 

When, early in the 20th century, perplexing discoveries about atoms and subatomic particles forced 

physicists to search anew for the fundamental laws of nature, most of the old formulas became 

obsolete. The Hamiltonian function, although it had been derived from the obsolete formulas, 

nevertheless proved to be a more correct description of physical reality. With modifications, it 

survives to make the connection between energy and rates of change one of the centres of the 

new science. 

https://www.britannica.com/biography/William-Rowan-Hamilton
https://www.merriam-webster.com/dictionary/dynamic
https://www.britannica.com/science/kinetic-energy
https://www.britannica.com/science/potential-energy
https://www.britannica.com/science/potential-energy
https://www.britannica.com/science/Lagrangian-function
https://www.britannica.com/science/dynamics-physics
https://www.britannica.com/topic/function-mathematics
https://www.britannica.com/science/action-physics
https://www.britannica.com/topic/science
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HAMILTON’S VARIATIONAL PRINCIPLE: 

Lagrange’s equations have been shown to be the consequence of a variational principle, namely, the 

Hamilton’s principle. Indeed the variational method has often proved to be the preferable method of 

deriving equations, for it is applicable to types of systems not usually comprised with in the scope of 

mechanics. It would be similarly advantageous if a variational principle could be found that leads 

directly to the Hamilton’s equation of motion. 

Hamilton’s principle is stated as  

 

 

Expressing L in terms of Hamiltonian by the expression by the expression 

 

  

We find,      

 

 

 

 

 

The above equation  is some times is referred as the modified Hamilton’s principle. Although it will 

be used most frequently in connection with transformation theory ,the main interest is to show that 

the principle leads to the Hamilton’s canonical equations of motions.  

I=        L dt  

= 0   t
1 

t

2 

H=  piqi – L,  
. 

i 

 I =         pi            -  H (qi, pi, t) 
dqi 

 dt 
 t1 

t2 

dt 

                 pi  dqi  -    H (qi, pi, t)dt =0 
i  t1 

t2 

 t1 

t2 
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The modified Hamilton’s principle is exactly of the form of the variational problems in a space of 2n 

dimensions as 

 

 

For which the 2n Euler-Lagrange equations are  

  

 J=1,2,3….n 

 

  

 J=1,2,3….n 

 

The integrand f as given as (2.29) contains qj only through the  piqi term, qj only in H. Hence equation 

(2.30) leads to  

 

 

 

On the other hand there is no explicit dependence of the integrand in equation (2.30) on p j.  The 

above equation  therefore reduce simply to 

 

The above two equations are exactly Hamilton’s equations of motion .The Euler –Lagrange equations 

of  the modified Hamilton’s principle are thus the desired canonical equations of motion .From the 

I =    f (q, q, p, p, t) dt =0  t1 

t2 
 

. 

. 

d         f                  f 

dt        qj               qj 

 

 

 

 
d         f             f 

dt      pj            pj 

. 

. . 

pj +  
H 

qj 

. 
= 0 

. 

qj -  
H 

pj 

. 
= 0 
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above derivation of  Hamilton’s equations we can consider that Hamiltonia n and Lagrangian 

formulation and therefore their respective variational principles, have the same physical content.   

Hamilton's Equations: 

The equations defined by 

  

 

(1) 

  

 

(2) 

where  and  is fluxion notation and  is the so-called Hamiltonian, are called 

Hamilton's equations. These equations frequently arise in problems of celestial mechanics.  

The vector form of these equations is 

 
 

 

(3) 

 
 

 

(4) 

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980, p. 1005). 

Another formulation related to Hamilton's equation is  

 

(5) 

where  is the so-called Lagrangian. 

 

 

http://mathworld.wolfram.com/Fluxion.html
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HAMILTON’S CANONICAL EQUATIONS OF MOTION: 
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PHYSICAL SIGNIFICANCE OF H: 
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APPLICATION OF HAMILTONIAN EQUATION OF MOTION TO  

(i)SIMPLE PENDULUM: 
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 (II)LINEAR HARMONIC OSCILLATOR: 
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KARPAGAM ACADEMY OF HIGHER EDUCATION,COIMBATORE-21
DEPARTMENT OF PHYSICS
I M.Sc., PHYSICS (2017-2019)
CLASSICAL MECHANICS AND RELATIVITY (16PHP201)
                                   UNIT-II

 Canonical transformations are the transformations of Phase space Hillbert space Minkowski space Space phase Phase space

 The Hamilton’s principle function is a generating function, which give rise to canonical transformation involvingboth constant moments and co-ordinatesconstant moments onlyco-ordinates only constant momenta and co-ordinates

both constant moments 

and co-ordinates

 All function whose Poisson bracket with the Hamiltonian vanishes will beconstant of motion constant of momentumconstant of co-ordinatesall the above constant of motion
 Let L and P represent the matrices of Lagrange and Poisson brackets respectively, thenLP = 1 LP = -1 LP = -1/2 LP = 1/2 LP = -1

  The given transformation is not canonical when [Q,P] = 1 [Q,P] = -1 [Q,P] = 1/2 [Q,P] = 0 [Q,P] = 0
  The function  p =1/Q and  q = PQ2 is conjugate canonical identical hyrebolic canonical
   In point transformation one set of co-ordinates qj to a new set Qj can be expressed as Qj = Qj (qj, t) Qj = -Qj (qj, t) Qj = Pj (qj, t) Qj = -Pj (qj, t) Qj = Qj (qj, t)
The problem consists on finding the path of a charged particle under the action if a central force is Jacobi problem cononical problem   Kepler problem Poission problem Kepler problem
 Hamilton – Jacobi method is used to find the solution of problem in Vibratory motion periodic motion circular mation   all the above periodic motion
 Hamilton equation of motion is convergent divergent variant invariant invariant
Poisson and Lagrange brackets are _______ under Canonical Transformationconvergent divergent invariant variant invariant
Equation of motion in Poisson bracket from depends on position momentum time all the three all the three

In Kepler problem, the path of the particle is circular parabolic elliptical zig-zag elliptical
In Poisson bracket [X,Y] =  [Y,X] [X,Y] = - [Y,X] [X,Y] = 2[Y,X] [X,Y] = - 2[Y,X] [X,Y] = - [Y,X]
In Poisson bracket [X,X] =0 [X,X] =1 [X,X] =2 [X,X] = -2 [X,X] =0
In Poisson bracket [X,Y+Z] = [X,Y] - [X,Z][X,Y+Z] = [X,Y] * [X,Z][X,Y+Z] = [X,Y] + [X,Z][X,Y+Z] = [X,Y] / [X,Z][X,Y+Z] = [X,Y] + [X,Z]
In Poisson bracket [X,YZ] = Y[X,Z] * [X,Y]Z[X,YZ] = Y[X,Z] - [X,Y]Z[X,YZ] = Y[X,Z] / [X,Y]Z[X,YZ] = Y[X,Z] + [X,Y]Z[X,YZ] = Y[X,Z] + [X,Y]Z
In Lagrange bracket [X,qj]Q,P = - [qj,X]Q,P[X,qj]Q,P =  [qj,X]Q,P[X,qj]Q,P = 2 [qj,X]Q,P2[X,qj]Q,P = - [qj,X]Q,P2[X,qj]Q,P = - [qj,X]Q,P
In of Lagrange bracket [X,Y]Q,P = -[X,Y]q,p [X,Y]Q,P = [X,Y]q,p[X,Y]Q,P = 2[X,Y]q,p[X,Y]Q,P = -2[X,Y]q,p[X,Y]Q,P = [X,Y]q,p
In of Lagrange bracket [X,X]q,p  = [X,X]Q,P = 1[X,X]q,p  = [X,X]Q,P = -1[X,X]q,p  = [X,X]Q,P = 0[X,X]q,p  = [X,X]Q,P = 1/2[X,X]q,p  = [X,X]Q,P = 0
Poisson bracket of two operator X and Y in quantum mechanics is given by[X,Y] = - 2p/h[XY-YX][X,Y] = - 2p/h[XY+YX][X,Y] = - p/h[XY-YX][X,Y] =  2p/h[XY-YX][X,Y] = - 2p/h[XY-YX]
If the Lagrangian of the system does not contain a paricular co-ordinate q, thencyclic co-ordinates cylindrical co-ordinatespolar co-ordinates spherical polar co-ordinatescyclic co-ordinates
Hamilton-Jacobi is a partial differential equation in ________ variables.n n+1 n-1 n+2 n+1
_____________ is a partial differential equation in (n+1) variables.Hamilton-Jacobi equationLagrangian Hamiltonian Jacobian Hamilton-Jacobi equation
Hamilton’s characteristic function W is identified as _____________.kinetic energy potential energy work action A action A
Hamilton’s characteristic function is denoted by _______________.S K W H W
The number of independent ways in which a mechanical system can move without violating any constraint which may be imposed is called the ______________.action-angle variables generalized variablesdegrees of freedom co-ordinates degrees of freedom

Path in phase space almost refers to actual ____________path.statistical N 3N dynamical dynamical
The one way of obtaining the solution of mechanical problem is to transform _________ set of co-ordinates to __________ set of co-ordinates that are all cyclic.old to new new to old new to new old to old old to new
If the operators X, Y commute, then [X, Y] = _____________. 1 -1 0 -2 0



If [X, Y] = 0, then X and Y behave like __________ variables of classical mechanics.statistical  dynamical proportional inversely proportional dynamical
If Poisson bracket of two variables in classical mechanics is zero, then the operators which represent these variables in quantum theory should _____________.vanish be multiplied twice proportional commute commute
The Lagrange’s bracket is ____________ under canonical transformation.invariant variant not applicable exponentially variantinvariant
Lagrange’s equation of motion are second order equations with __________ degrees of freedom.n+1 n 2n+1 3n 2n+1
The greatest advantage of action and angle variable is that we can obtain the ______________ of periodic motion without finding a complete solution for the motion of the system.displacement  frequencies total time accelerations  frequencies
The generalized co-ordinate conjugate to Jj are called _______________.action variable dynamic variable statistical variable angle variable angle variable
Jj has the dimension of ____________. angular momentum angular velocity linear momentum linear velocity angular momentum
If F does not involve time explicitly, then the Poisson bracket of F with H ______________. is proportional with F is proportional with KVanishes exist Vanishes
If the Poisson bracket of F with H vanishes then F will be a _______________. positive value constant of motion negative value same value constant of motion
If Poisson bracket of momentum with H vanishes, then ________________ is conserved.linear velocity energy angular momentum linear momentum linear momentum
If Poisson bracket of momentum with H vanishes, then the co-ordinate momenta is _____________.cyclic rotational irrotational spherical cyclic
Lagrange’s bracket does not obey the ____________law.  associative  kepler’s commutative Hamilton's variational lawcommutative
H = ____________. T- V T + V T V T + V
L = _________. T + V T V T-V T-V
In case of either of the set of conjugate variables with (q, p)  or with (Q, P), the value of the Poisson bracket remains  ____________.same proportional inversely proportionalexponentially proportionalsame
In new set of co-ordinates all Qj are ______________. rotational irrotational cyclic variable cyclic
In new set of co-ordiantes all Pj are ________. cyclic  constant rotational irrotational  constant
If H is conserved then the new Hamiltonian K is __________.same variable different constant of motion constant of motion
 An assembly of particles with _________inter-particle distance is called as rigid bodyfixed different 1 mm 2 mm fixed
Degree of freedom to fix the configuration of a rigid body is 3 6 5 0 6
These are most useful set of generalised co-ordinates for a rigid body and are anglesLagrangian angle azimuthal angle Euler’s angle Larmor's precession angleEuler’s angle
Angular momentum of a rigid body is L = Iw/2 L = 2Iw L = Iw2 L = Iw L = Iw
A mathematical structure having nine components in 3-D is termed as tensor of rank2 3 4 0 2
The rotation about space z-axis ( angle f ) is called ________translation precession nutation spin. precession
Rotation about intermediate X1 axis ( angle q ) or line of nodes is calledtranslation precession nutation spin. nutation
The rotation about z’ axis ( angle Y ) is called translation precession nutation spin. spin.
The variation of angle q is referred as ________of the symmetry axis of the top and istranslation precession nutation spin. nutation
Precession can be slow or fast always slow always fast neither fast nor slowalways slow
 ______is ordinarily observed with a rapidly spinning top. fast precession slow precession slow nutation fast nutation slow precession
     In case of ______ top amplitude of nutation is small, nutation is sinusoidal,slow rotating fast both a & b fast
The minimum spin angular velocity below which top cannot spin stably about vertical     wmin = (4mglI1/I32) wmin = (4mglI1/I32)3/2wmin = (4mglI1/I32)2wmin = (4mglI1/I32)1/2wmin = (4mglI1/I32)1/2
When wz < wmin  then the top begins to wobble precesse nutate spin. wobble
Angular velocity of a rigid body is given by Vi = w2 x ri Vi = (w x ri)1/2 Vi = w x ri Vi = w3 x ri Vi = w x ri
Angular momentum of a rigid body is L = S m2(ri  x Vi ) S m(ri  x Vi )2 S m2(ri  x Vi )2 S m(ri  x Vi ) S m(ri  x Vi )
The diagonal elements Ixx, Iyy, Izz of inertia _______I are moments of inertia  tensor vector scalar donar tensor
Tensor I is __________to principal axes symmetric antisymmetric parallel perpendicular symmetric
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General features of central force motion 

In classical mechanics, a central force is a force whose magnitude only depends on the distance r of the 

object from the origin and is directed along the line joining them: [1] 

 

where  is the force, F is a vector valued force function, F is a scalar valued force function, r is 

the position vector, ||r|| is its length, and  = r/||r|| is the corresponding unit vector. 

Equivalently, a force field is central if and only if it is spherically symmetric. 

A central force is a conservative field, that is, it can always be expressed as the negative gradient of 

a potential: 

 

(the upper bound of integration is arbitrary, as the potential is defined up to an additive constant). 

In a conservative field, the total mechanical energy (kinetic and potential) is conserved: 

 

(where ṙ denotes the derivative of r with respect to time, that is the velocity), and in a central force field, 

so is the angular momentum: 

 

General features of central force motion : General features of orbits – Centre of mass and 
laboratory coordinates – Virial theorem – Stable and unstable equilibrium – Properties of T, V 
and ω for small oscillations .  

Generalized coordinates for rigid body motion : Euler’s angles – Angular velocity, 

momentum of rigid body – moment and products of inertia – Principal axis transformation – 

rotational kinetic energy of a rigid body – Moment of inertia of a rigid body – motion of a 

symmetric top under action of gravity. 

KAHE

KAHE

http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Force_(physics)
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Origin_(mathematics)
http://en.wikipedia.org/wiki/Central_force#cite_note-wolfram-0
http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Position_vector
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Spherically_symmetric
http://en.wikipedia.org/wiki/Conservative_field
http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Mechanical_energy
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Angular_momentum


KARPAGAM ACADEMY OF HIGHER EDUCATION 

      CLASS: I MSC PHYSICS        COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY   

        COURSE CODE: 17PHU201  UNIT: III (GENERAL FEATURES OF CENTRAL FORCE MOTION)               

                                                                                                                                                 BATCH-2017-2019     

 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 2/49 
 

because the torque exerted by the force is zero. As a consequence, the body moves on the plane 

perpendicular to the angular momentum vector and containing the origin, and obeysKepler's second law. 

(If the angular momentum is zero, the body moves along the line joining it with the origin.)  

As a consequence of being conservative, a central force field is irrotational, that is, its curl is 

zero, except at the origin: 

 

General features of orbit 

The essential elements of the object are described by a set, and the symmetries of the object are 

described by the symmetry group of this set, which consists of bijectivetransformations of the set. In this 

case, the group is also called a permutation group (especially if the set is finite or not a vector space) 

or transformation group (especially if the set is a vector space and the group acts like linear 

transformations of the set). 

A group action is an extension to the definition of a symmetry group in which every element of the 

group "acts" like a bijective transformation (or "symmetry") of some set, without being identified with 

that transformation. This allows for a more comprehensive description of the symmetries of an object, 

such as a polyhedron, by allowing the same group to act on several different sets of features, such as the 

set ofvertices, the set of edges and the set of faces of the polyhedron. 

If G is a group and X is a set then a group action may be defined as a group homomorphism from G to 

the symmetric group of X. The action assigns a permutation of X to each element of the group in such a 

way that the permutation of X assigned to: 

 The identity element of G is the identity transformation of X; 

 A product gh of two elements of G is the composite of the permutations assigned to g and h. 

Since each element of G is represented as a permutation, a group action is also known as a permutation 

representation. 

The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be 

applied to more abstract objects. Many objects in mathematics have natural group actions defined on 

them. In particular, groups can act on other groups, or even on themselves. Despite this generality, the 

theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, which can 

be used to prove deep results in several fields.  
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Laboratory Frame and the Center-of-Mass Frame  

When the potential is central, the problem can be reduced to the one we have just studied; this can be 

achieved through the separation of the motion of the center of mass.  

Let us assume that we have two particles with masses m 1 and m 2, at coordinates  and , interacting 

through a central potential. The equations for the motion can be written as  

   

where  is the gradient operator, which has the following form in spherical coordinates  

   

Since the potential energy depends only on the relative separation of the two particles, let us define the 

variables: 

   

where  denotes the coordinate of m 1 relative to m 2, and  defines the coordinate of the center-of-

mass of the system (see Fig. 1.5). From Eqs. (1.42) and (1.44) we can easily obtain the following:  

   

where we have used the fact that V( ) =V( r) depends only on the radial coordinate r, and not on the 

angular variables associated with , and where we have defined 
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Virial theorem 

A theorem in classical mechanics which relates the kinetic energy of a system to the virial of 

Clausius, as defined below. The theorem can be generalized to quantum mechanics and has widespread 

application. It connects the average kinetic and potential energies for systems in which the potential is a 

power of the radius. Since the theorem involves integral quantities such as the total kinetic energy, 

rather than the kinetic energies of the individual particles that may be involved, it gives valuable 

information on the behavior of complex systems. For example, in statistical mechanics the virial 

theorem is intimately connected to the equipartition theorem; in astrophysics it may be used to connect 

the internal temperature, mass, and radius of a star and to discuss stellar stability.  

The virial theorem makes possible a very easy derivation of the counterintuitive result that as a  

star radiates energy and contracts it heats up rather than cooling down. The virialtheorem states that the 

time-averaged value of the kinetic energy in a confined system (that is, a system in which the velocities 

and position vectors of all the particles remain finite) is equal to the virial of Clausius. The virial of 

Clausius is defined to equal −½ times the time-averaged value of a sum over all the particles in the 

system. The term in this sum associated with a particular particle is the dot product of the particle's 

position vector and the force acting on the particle. Alternatively, this term is the product of the 

distance, r, of the particle from the origin of coordinates and the radial component of the force acting on 

the particle. 

In the common case that the forces are derivable from a power- law potential, V, proportional to rk, 

where k is a constant, the virial is just −k/2 times the potential energy. Thus, in this case the virial 

theorem simply states that the kinetic energy is k/2 times the potential energy. For a system connected 
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by Hooke's- law springs, k = 2, and the average kinetic and potential energies are equal. For k = 1, that 

is, for gravitational or Coulomb forces, the potential energy is minus twice the kinetic energy.  

Stable and unstable equilibrium 

Equilibrium is a state of a system in which the variables which describe the system are not changing 

(note that a system can be in a dynamic equilibrium where things might be moving or changing, but 

some variable(s) which describe the system as a whole is(are) constant). One example you are all 

familiar with is a mechanical system in equilibium where positions of objects are not changing (ie. no 

net forces acting). 

In a Stable equilibrium if a small perturbation away from equilibrium is applied, the system will return 

itself to the equilibrium state. A good example of this is a pendulum hanging straight down. If you 

nudge the pendulum slightly, it will experience a force back towards the equilibrium position. It may 

oscillate around the equilibrium position for a bit, but it will  

return to its equilibrium position. 

In an Unstable equilibrium if a small perturbation away from equilibrium is applied, the system will 

move farther away from its equilibrium state. A good example of this is a pencil balanced on it's end. If 

you nudge the pencil slightly, it will experience a force moving it away from equilibrium. It will simply 

fall to lying flat on a surface. 
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Properties of T, V and ω for small oscillations  

Consider a small mass on the free end of a spring. If we displace the mass slightly away from 

equilibrium, the elastic force will accelerate it back toward its equilibrium position. When it reaches 

equilibrium, however, it has a nonzero momentum and overshoots that position. The elastic force now 

accelerates the mass in the opposite direction, back toward the equilibrium position. This periodic 

motion is called oscillation. 

If we combine Hooke's Law with Newton's Law, we find that 

m a = - k x, 

or 

a = (-k / m) x. 

In words, this means that the rate of change of the rate of change of position is proportional to the 

position. Graphically, we can try to picture the position as an oscillatory function of time: perhaps a sine 

function: 

  

At each point on that graph, the slope gives us the velocity of the mass at that time. The velocity graph 

must also be an oscillatory function of time: 
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and the slope at any point on this graph gives us the acceleration of the mass. Clearly, the graph of 

acceleration versus time must also be oscillatory, and to satisfy our equation, every point on it must be 

proportional to the value of the position at that time, but reflected about the x axis because of the minus 

sign: 

 

 Both the sine and cosine functions have this property: the slope of the slope of the function at any point 

is proportional to the negative of the function. To be specific, our simple harmonic oscillator could be 

described by either 

x(t) = sin (ω t) 

or 

x(t) = cos (ω t), 

where 
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ω = (k / m)1/2. 

In this case, we choose the cosine function, because at time t = 0 the mass was displaced a small 

distance from the origin; since sin (t) is zero at time zero, only the cosine can describe these oscillations.  

When we plot the position in black, the square of the velocity, which is proportional to the mass' kinetic 

energy, in red, and the square of the position, which is proportional to its potential energy, in blue: 

 

  

The kinetic energy is always a maximum at the equilibrium position, where the potential energy is zero, 

and the potential energy is always a maximum at the extremes of the oscillation, where the velocity (and 

kinetic energy) is zero. Conservation of energy then tells us that the total energy of the oscillator is just 

the potential energy at the maximum displacement from equilibrium. This displacement is called the 

amplitude A, and the total energy is 

k A2 / 2. 

In fact, the position and velocity of this oscillator are 

A cos (ω t) and 

-A ω sin (ω t), 

so that the sum of the kinetic and potential energies is  
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m (-A ω sin (ω t))2 / 2 + k (A cos (ω t))2 / 2,  

= m ω2 A2 sin (ω t)2 / 2 + k A2 cos (ω t)2 / 2 

= k A2 (sin (ω t)2 + cos (ω t)2) / 2 

= k A2 / 2 

at every point along its trajectory.  

The arguments of trigonometric functions must always be unitless. The variable ω (which in rotational 

motion was used to denote the angular velocity) is called the angular frequency and has units of 1 / s, so 

that the argument of the cosine function is indeed unitless. Dividing ω by 2π we find the frequency ν 

(the Greek letter nu) which is the number of oscillations or cycles per second from the maximum 

amplitude through zero to the minimum amplitude and back to the maximum again (each of the graphs 

above was one cycle). The inverse of the frequency is the period T, which is the time in seconds for one 

oscillation (and is therefore always positive).  

In general, the argument of an oscillatory function is called the phase. The phase can also be a function 

of x: k x. This k is called the wave number and has units of 1 / m. The wavelength λ (the Greek letter 

lambda) is 2π / k and is analogous to the period. Like the period, the wavelength is always positive.  

The phase can also include a term which is a unitless number (denoted by the Greek letter delta), so in 

its most general form the phase is written 

k x +- ω t +- δ.δ is called the phase angle, and effectively allows us to specify the relative starting point 

of the oscillator at time zero. By experimenting with various values of δ (ie., 0, π/2, π, 3π/2, 2π), we see 

that we can produce oscillations which have any given initial value (between -A and A)attimezero. 

Parallel pendula 
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This shows a parallel pendula of lengths    and masses    are not equal and/or the 

equilibrium length of the spring is not equal to the horizontal distance between the pendulum supports.  

So let's make the simplifying assumptions that   ,   , and the relaxed 

spring length    the distance between the supports. Then the small oscillations Lagrangian is  

 

and the force and mass matrices are 

 

This system has two normal modes with frequencies 

 

Double pendulum 
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Let us consider a double pendulum as shown in a below figure.  

 

Although the double pendulum is often introduced in many textbooks of the classical mechanics, its 

dynamics are seldom analyzed in them. Actually, it is known that it easily exhibits chaotic behaviors.  

In the double pendulum, the effect of the friction around the axis of rotation is not considered. 

Therefore, the energy of the system is conserved, and such a system is called a Hamiltonian system or a 

conservative system.  

The energy E of the system is a sum of the kinetic energy K and the potential energy U written as 

 

 

KAHE

KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION 

      CLASS: I MSC PHYSICS        COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY   

        COURSE CODE: 17PHU201  UNIT: III (GENERAL FEATURES OF CENTRAL FORCE MOTION)               

                                                                                                                                                 BATCH-2017-2019     

 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 12/49 
 

Using the Lagrange differential equation, a set of differential equations which governs the dynamics of 

the double pendulum is obtained, and it is written as  

 

From the above equations, the second derivatives of angles are obtained as follows. 

 

Regarding the above differential equations as a differential equation  for a 

vector , behaviors of a double pendulum can be analyzed.  

Because the double pendulum is a Hamiltonian system (a conservative system) where the energy of the 

system is conserved, one must use numerical integration methods which conserve the energy.  
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Here we used the fourth order implicit Gaussian method written as  

 

Triatomic Molecule 

Consider the simple model of a linear triatomic molecule (e.g., carbon dioxide) illustrated in Figure. The 

molecule consists of a central atom of mass  flanked by two identical atoms of mass . The 

atomic bonds are represented as springs of spring constant . The linear displacements of the flanking 

atoms are  and , whilst that of the central atom is . Let us investigate the linear modes of 

oscillation our model molecule. 

 

Figure 38: A model triatomic molecule.  

The kinetic energy of the molecule is written  

  

 

whereas the potential energy takes the form  
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Clearly, we have a three degree of freedom dynamical system. However, we can reduce this to a two 

degree of freedom system by only considering oscillatory modes of motion, and, hence, 

neglectingtranslational modes. We can achieve this by demanding that the center of mass of the system 

remains stationary. In other words, we require that  

  

 

This constraint can be rearranged to give  

  

Eliminating  from Equations, we obtain  

  

and  

 ) 

 

respectively, where . 

A comparison of the above expressions with the standard forms and yields the following expressions for 

the mass matrix, , and the force matrix, :  
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Now, the equation of motion of the system takes the form  

  

where  is the column vector of the  and  values. The solubility condition for the above 

equation is  

  

which yields the following quadratic equation for the eigenvalue :  

  

 

The two roots of the above equation are  

    

    

The fact that the roots are negative implies that both normal modes are indeed oscillatory in nature. The 

characteristic oscillation frequencies are  

    

    

Equation can now be solved, subject to the normalization condition to give the two eigenvectors:  
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Thus, we conclude from Equations  that our model molecule possesses two normal modes of oscillation. 

The first mode oscillates at the frequency , and is an anti-symmetric mode in which 

 and . In other words, in this mode of oscillation, the two end atoms move in opposite 

directions whilst the central atom remains stationary. The second mode oscillates at the frequency , 

and is a mixed symmetry mode in which  but . In other words, in this mode 

of oscillation, the two end atoms move in the same direction whilst the central atom moves in the 

opposite direction. 

Finally, it is easily demonstrated that the normal coordinates of the system are  

    

    

When expressed in terms of these coordinates,  and  reduce to  

    

    

respectively.  

 

Rigid Body 
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A macroscopic object can often be approximated by a "particle", which has a mass and 

position in space. A particle has one physical parameter, its mass, and three translational degress of 

freedom because it can move in 3-dimensional space. 

The equations of motion of a particle can be generalized to a system of    particles. Such 

a system is defined by    mass parameters, and has    translational degrees of freedom. Its 

configuration at any time can be represented by    points in 3-dimensional space, or by a single 

point in    dimensional configuration space. 

When the size and shape of a macroscopic object matters, it can often be approximated by a "rigid 

body". A rigid body is a system of particles in which every pair of particles has fixed relative 

displacement. This is an approximation because the smallest parts of objects are atoms which do 

not have definite positions according to quantum theory. It is also an approximation because a 

change in position of one particle cannot affect the position of another particle instantaneously 

according to the theory of relativity.  

Suppose that the rigid body is made of    particles or "atoms", how many degrees of 

freedom does it have, and how many physical parameters are needed to describe it? Its location and 

orientation are completely fixed by specifying the positions in space of any three non-collinear 

particles. A rigid triatomic molecule, which can translate and rotate but not vibrate, has 6 degrees 

of freedom, 3 translational and 3 rotational. Therefore a rigid body also has 6 degrees of freedom. 

The configuration space of a rigid body is the product space of a 3-dimensional Euclidean space of 

translational motion with a 3-dimensional closed ball of radius    with antipodal points identified. 

The rotations of a rigid body belong to the rotation group SO(3), which is an extremely important 

concept in physics. 

The number of physical parameters required to describe a rigid body approximated by    

particles is    masses plus    parameters to specify the fixed relative locations of all the 

particles. 

 

Generalized coordinates 

Eulerian Angles and Euler's Equations 

The description of a rigid body is simplest in the body-fixed reference frame which uses the 

principal axes coordinate system. The moment of inertia tensor is diagonal and constant. The 
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equations of motion are easily expressed in terms of the angular veloc ity components  

  along the principal axes directions.  

Rigid bodies are usually observed from a space-fixed inertial reference frame. The moment of 

inertia tensor is not diagonal in general, and its components change with time. We would like to 

write the equations of motion in terms of vector components in the inertial reference frame.  

Euler introduced a very convenient notation for relating quantities in the two frames in 

terms of Euler angles. 

To focus on rotational motion, suppose that the origin of coordinates in the inertial frame is 

chosen to coincide with the origin in the body-fixed frame at a particular instant of time   , and 

that the inertial frame is moving with the same instantaneous velocity as the rigid body at this time 

  . Of course this will change with time if the body is accelerating, but we just want to obtain the 

form of the equations in the fixed frame at this instant: by Galilean invariance, this form will hold 

in all inertial frames. 

 

Figure shows a standard definition of the Euler angles   . The intersection of the 

inertial and body-fixed   -   planes is called the line of nodes. The coordinate systems are both 

right-handed,    is a polar angle in the range   , and    are azimuthal angles in the range 

  . 

The figure also shows the instantaneous angular velocity    of the rigid body about the 

origin. As the body rotates, the Euler angles will change with rates    about the space-fixed 

   axis, the line of nodes, and the body-fixed    axis, respectively: 

 

where    are principal axes unit vectors, and    is the unit vector along the line of nodes.  
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The dot products above are most easily evaluated by noting that the    axis direction has 

polar angle    and azimuthal angle    with respect to the principal axes 

 

and that 

 

Moment and products of Inertia  

The symmetric rank-2 tensor 

 

where    is the unit    matrix, represents the moment of inertia tensor of the rigid body 

relative to the body-fixed coordinate system. The kinetic energy of the rigid body, which is a 

scalar, is compactly represented in tensor notation: 

 

An important theorem of linear algebra states that a real symmetric matrix can be diagonalized by 

an orthogonal transformation: 
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where the orthogonal matrix    transforms from the body-fixed coordinate system to a "principal 

axes" coordinate system. The constants    are called the "principal moments of inertia" 

of the rigid body. 

The moment of inertia tensor is defined relative to a point in space. A very simple and useful 

formula relates the moment of inertia tensor    about the origin of coordinates defined above to 

the moment of inertia tensor    defined relative to the center of mass of the rigid body.  

 

where 

 

is the position of the center of mass relative to the body-fixed coordinate system. 

To prove this result write 

 

where    is the position of    relative to the center of mass. Then 

 

because 

 

and 
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Rotational Kinetic Energy of the rigid body 

The equations of motion can be derived from the Lagrangian of the system   . The 

kinetic energy is given by 

 

The middle term is zero if we choose the body-fixed origin at the center of mass of the rigid body 

 

The third term can simplified using 

 

to obtain 

 

Angular Momentum of a rigid body 

The angular momentum of the system of particles comprising the rigid body about the origin 

of the inertial space-fixed coordinate system is 
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where the location of the body-fixed origin at the center of mass, and the vector triple product 

identity 

 

have been used. The angular momentum of the rigid body is the sum of an "orbital" angular 

momentum of a equivalent particle of mass   , and an internal "spin" angular momentum 

about its center of mass 

 

Using Lagrange's equations of motion we see that orbital and spin angular momentum of a 

rigid body are separately conserved in the absence of external forces:  

 

Moment of inertia of rigid body 

Consider a rigid body rotating with angular velocity ω around a certain axis. The body 

consists of N point masses mi whose distances to the axis of rotation are denoted ri. Each point mass will 

have the speed vi = ωri, so that the total kinetic energy T of the body can be calculated as 

 

In this expression the quantity in parentheses is called the moment of inertia of the body (with respect 

to the specified axis of rotation). It is a purely geometric characteristic of the object, as it depends only 

on its shape and the position of the rotation axis. The moment of inertia is usually denoted with the 

capital letter I: 

 

It is worth emphasizing that ri here is the distance from a point to the axis of rotation, not to the origin. 

As such, the moment of inertia will be different when considering rotations about different axes.  

Similarly, the moment of inertia of a continuous solid body rotating about a known axis can be 

calculated by replacing the summation with the integral: 
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where r is the radius vector of a point within the body, ρ(r) is the mass density at point r, and d(r) is the 

distance from point r to the axis of rotation. The integration is evaluated over the volume V of the body. 

Motion of Symmetric Top under action of gravity 

Consider a symmetric top spinning about a tip of its symmetric axis as shown in Figure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that its center of mass is a distance    from the tip. The moments of inertia about the tip are 

 

The rotational kinetic energy of a rigid body with axis of symmetry    in 

terms of Euler angles is 

 

The gravitational potential energy relative to the level of the tip is  
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and the Lagrangian function is 

 

Note that the Lagrange function does not depend on    and    The Lagrange equations of motion 

for    and    

 

show that the angular momentum components along the vertical and symmetric directions are 

conserved 

 

These equations can be solved for 

 

The equation of motion for    is 

 

 

 

General features of central force motion 

In classical mechanics, a central force is a force whose magnitude only depends on the distance r of the 

object from the origin and is directed along the line joining them: [1] 

 

where  is the force, F is a vector valued force function, F is a scalar valued force function, r is 

the position vector, ||r|| is its length, and  = r/||r|| is the corresponding unit vector. 
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Equivalently, a force field is central if and only if it is spherically symmetric. 

A central force is a conservative field, that is, it can always be expressed as the negative gradient of 

a potential: 

 

(the upper bound of integration is arbitrary, as the potential is defined up to an additive constant). 

In a conservative field, the total mechanical energy (kinetic and potential) is conserved: 

 

(where ṙ denotes the derivative of r with respect to time, that is the velocity), and in a central force field, 

so is the angular momentum: 

 

because the torque exerted by the force is zero. As a consequence, the body moves on the plane 

perpendicular to the angular momentum vector and containing the origin, and obeysKepler's second law. 

(If the angular momentum is zero, the body moves along the line joining it with the origin.)  

As a consequence of being conservative, a central force field is irrotational, that is, its curl is 

zero, except at the origin: 

 

General features of orbit 

The essential elements of the object are described by a set, and the symmetries of the object are 

described by the symmetry group of this set, which consists of bijectivetransformations of the set. In this 

case, the group is also called a permutation group (especially if the set is finite or not a vector space) 

ortransformation group (especially if the set is a vector space and the group acts like linear 

transformations of the set). 

A group action is an extension to the definition of a symmetry group in which every element of the 

group "acts" like a bijective transformation (or "symmetry") of some set, without being identified with 

that transformation. This allows for a more comprehensive description of the symmetries of an object, 

such as a polyhedron, by allowing the same group to act on several different sets of features, such as the 

set ofvertices, the set of edges and the set of faces of the polyhedron. 
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If G is a group and X is a set then a group action may be defined as a group homomorphism from G to 

the symmetric group of X. The action assigns a permutation of X to each element of the group in such a 

way that the permutation of X assigned to: 

 The identity element of G is the identity transformation of X; 

 A product gh of two elements of G is the composite of the permutations assigned to g and h. 

Since each element of G is represented as a permutation, a group action is also known as a permutation 

representation. 

The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be 

applied to more abstract objects. Many objects in mathematics have natural group actions defined on 

them. In particular, groups can act on other groups, or even on themselves. Despite this generality, the 

theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, which can 

be used to prove deep results in several fields.  

Laboratory Frame and the Center-of-Mass Frame  

When the potential is central, the problem can be reduced to the one we have just studied; this can be 

achieved through the separation of the motion of the center of mass.  

Let us assume that we have two particles with masses m 1 and m 2, at coordinates  and , interacting 

through a central potential. The equations for the motion can be written as  

   

where  is the gradient operator, which has the following form in spherical coordinates  

   

Since the potential energy depends only on the relative separation of the two particles, let us define the 

variables: 
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where  denotes the coordinate of m 1 relative to m 2, and  defines the coordinate of the center-of-

mass of the system (see Fig. 1.5). From Eqs. (1.42) and (1.44) we can easily obtain the following:  

   

where we have used the fact that V( ) =V( r) depends only on the radial coordinate r, and not on the 

angular variables associated with , and where we have defined 

   

   

Virial theorem 

A theorem in classical mechanics which relates the kinetic energy of a system to the virial of 

Clausius, as defined below. The theorem can be generalized to quantum mechanics and has widespread 

application. It connects the average kinetic and potential energies for systems in which the potential is a 

power of the radius. Since the theorem involves integral quantities such as the total kinetic energy, 

rather than the kinetic energies of the individual particles that may be involved, it gives valuable 

information on the behavior of complex systems. For example, in statistical mechanics the virial 

theorem is intimately connected to the equipartition theorem; in astrophysics it may be used to connect 

the internal temperature, mass, and radius of a star and to discuss stellar stability.  

The virial theorem makes possible a very easy derivation of the counterintuitive result that as a 

star radiates energy and contracts it heats up rather than cooling down. The virialtheorem states that the 

time-averaged value of the kinetic energy in a confined system (that is, a system in which the velocities 

and position vectors of all the particles remain finite) is equal to the virial of Clausius. The virial of 
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Clausius is defined to equal −½ times the time-averaged value of a sum over all the particles in the 

system. The term in this sum associated with a particular particle is the dot product of the particle's 

position vector and the force acting on the particle. Alternatively, this term is the product of the 

distance, r, of the particle from the origin of coordinates and the radial component of the force acting on 

the particle. 

In the common case that the forces are derivable from a power- law potential, V, proportional to rk, 

where k is a constant, the virial is just −k/2 times the potential energy. Thus, in this case the virial 

theorem simply states that the kinetic energy is k/2 times the potential energy. For a system connected 

by Hooke's- law springs, k = 2, and the average kinetic and potential energies are equal. For k = 1, that 

is, for gravitational or Coulomb forces, the potential energy is minus twice the kinetic energy. 

Stable and unstable equilibrium 

Equilibrium is a state of a system in which the variables which describe the system are not changing 

(note that a system can be in a dynamic equilibrium where things might be moving or changing, but 

some variable(s) which describe the system as a whole is(are) constant). One example you are all 

familiar with is a mechanical system in equilibium where positions of objects are not changing (ie. no 

net forces acting). 

In a Stable equilibrium if a small perturbation away from equilibrium is applied, the system will return 

itself to the equilibrium state. A good example of this is a pendulum hanging straight down. If you 

nudge the pendulum slightly, it will experience a force back towards the equilibrium position. It ma y 

oscillate around the equilibrium position for a bit, but it will  

return to its equilibrium position. 

In an Unstable equilibrium if a small perturbation away from equilibrium is applied, the system will 

move farther away from its equilibrium state. A good example of this is a pencil balanced on it's end. If 

you nudge the pencil slightly, it will experience a force moving it away from equilibrium. It will simply 

fall to lying flat on a surface. 
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Parallel pendula 

 

This shows a parallel pendula of lengths    and masses    are not equal and/or the 

equilibrium length of the spring is not equal to the horizontal distance between the pendulum supports.  

So let's make the simplifying assumptions that   ,   , and the relaxed 

spring length    the distance between the supports. Then the small oscillations Lagrangian is  

 

and the force and mass matrices are 
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This system has two normal modes with frequencies 

 

 

 

Double pendulum 

Let us consider a double pendulum as shown in a below figure.  

 

Although the double pendulum is often introduced in many textbooks of the classical mechanics, its 

dynamics are seldom analyzed in them. Actually, it is known that it easily exhibits chaotic behaviors.  

In the double pendulum, the effect of the friction around the axis of rotation is not considered. 

Therefore, the energy of the system is conserved, and such a system is called a Hamiltonian system or a 

conservative system.  

The energy E of the system is a sum of the kinetic energy K and the potential energy U written as 
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Using the Lagrange differential equation, a set of differential equations which governs the dynamics of 

the double pendulum is obtained, and it is written as  

 

From the above equations, the second derivatives of angles are obtained as follows. 

 

Regarding the above differential equations as a differential equation  for a 

vector , behaviors of a double pendulum can be analyzed.  

Because the double pendulum is a Hamiltonian system (a conservative system) where the energy of the 

system is conserved, one must use numerical integration methods which conserve the energy.  

KAHE

KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION 

      CLASS: I MSC PHYSICS        COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY   

        COURSE CODE: 17PHU201  UNIT: III (GENERAL FEATURES OF CENTRAL FORCE MOTION)               

                                                                                                                                                 BATCH-2017-2019     

 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 32/49 
 

Here we used the fourth order implicit Gaussian method written as  

 

Triatomic Molecule 

Consider the simple model of a linear triatomic molecule (e.g., carbon dioxide) illustrated in Figure. The 

molecule consists of a central atom of mass  flanked by two identical atoms of mass . The 

atomic bonds are represented as springs of spring constant . The linear displacements of the flanking 

atoms are  and , whilst that of the central atom is . Let us investigate the linear modes of 

oscillation our model molecule. 

 

Figure 38: A model triatomic molecule.  

The kinetic energy of the molecule is written  

  

 

whereas the potential energy takes the form  
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Clearly, we have a three degree of freedom dynamical system. However, we can reduce this to a two 

degree of freedom system by only considering oscillatory modes of motion, and, hence, 

neglectingtranslational modes. We can achieve this by demanding that the center of mass of the system 

remains stationary. In other words, we require that  

  

 

This constraint can be rearranged to give  

  

Eliminating  from Equations, we obtain  

  

and  

 ) 

 

respectively, where . 

A comparison of the above expressions with the standard forms and yields the following expressions for 

the mass matrix, , and the force matrix, :  
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Now, the equation of motion of the system takes the form  

  

where  is the column vector of the  and  values. The solubility condition for the above 

equation is  

  

which yields the following quadratic equation for the eigenvalue :  

  

 

The two roots of the above equation are  

    

    

The fact that the roots are negative implies that both normal modes are indeed oscillatory in nature. The 

characteristic oscillation frequencies are  

    

    

Equation can now be solved, subject to the normalization condition to give the two eigenvectors:  

KAHE

KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION 

      CLASS: I MSC PHYSICS        COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY   

        COURSE CODE: 17PHU201  UNIT: III (GENERAL FEATURES OF CENTRAL FORCE MOTION)               

                                                                                                                                                 BATCH-2017-2019     

 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 35/49 
 

    

    

Thus, we conclude from Equations  that our model molecule possesses two normal modes of oscillation. 

The first mode oscillates at the frequency , and is an anti-symmetric mode in which 

 and . In other words, in this mode of oscillation, the two end atoms move in opposite 

directions whilst the central atom remains stationary. The second mode oscillates at the frequency , 

and is a mixed symmetry mode in which  but . In other words, in this mode 

of oscillation, the two end atoms move in the same direction whilst the central atom moves in the 

opposite direction. 

Finally, it is easily demonstrated that the normal coordinates of the system are  

    

    

When expressed in terms of these coordinates,  and  reduce to  

    

    

respectively.  
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Rigid Body 

A macroscopic object can often be approximated by a "particle", which has a mass and 

position in space. A particle has one physical parameter, its mass, and three translational degress of 

freedom because it can move in 3-dimensional space. 

The equations of motion of a particle can be generalized to a system of    particles. Such 

a system is defined by    mass parameters, and has    translational degrees of freedom. Its 

configuration at any time can be represented by    points in 3-dimensional space, or by a single 

point in    dimensional configuration space. 

When the size and shape of a macroscopic object matters, it can often be approximated by a "rigid 

body". A rigid body is a system of particles in which every pair of particles has fixed relative 

displacement. This is an approximation because the smallest parts of objects are atoms which do 

not have definite positions according to quantum theory. It is also an approximation because a 

change in position of one particle cannot affect the position of another particle instantaneously 

according to the theory of relativity.  

Suppose that the rigid body is made of    particles or "atoms", how many degrees of 

freedom does it have, and how many physical parameters are needed to describe it? Its location and 

orientation are completely fixed by specifying the positions in space of any three non-collinear 

particles. A rigid triatomic molecule, which can translate and rotate but not vibrate, has 6 degrees 

of freedom, 3 translational and 3 rotational. Therefore a rigid body also has 6 degrees of freedom. 

The configuration space of a rigid body is the product space of a 3-dimensional Euclidean space of 

translational motion with a 3-dimensional closed ball of radius    with antipodal points identified. 

The rotations of a rigid body belong to the rotation group SO(3), which is an extremely important 

concept in physics. 

The number of physical parameters required to describe a rigid body approximated by    

particles is    masses plus    parameters to specify the fixed relative locations of all the 

particles. 
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Generalized coordinates 

Eulerian Angles and Euler's Equations 

The description of a rigid body is simplest in the body-fixed reference frame which uses the 

principal axes coordinate system. The moment of inertia tensor is diagonal and constant. The 

equations of motion are easily expressed in terms of the angular velocity components  

  along the principal axes directions.  

Rigid bodies are usually observed from a space-fixed inertial reference frame. The moment of 

inertia tensor is not diagonal in general, and its components change with time. We would like to 

write the equations of motion in terms of vector components in the inertial reference frame.  

Euler introduced a very convenient notation for relating quantities in the two frames in 

terms of Euler angles. 

To focus on rotational motion, suppose that the origin of coordinates in the inertial frame is 

chosen to coincide with the origin in the body-fixed frame at a particular instant of time   , and 

that the inertial frame is moving with the same instantaneous velocity as the rigid body at this time 

  . Of course this will change with time if the body is accelerating, but we just want to obta in the 

form of the equations in the fixed frame at this instant: by Galilean invariance, this form will hold 

in all inertial frames. KAHE
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Figure shows a standard definition of the Euler angles   . The intersection of the 

inertial and body-fixed   -   planes is called the line of nodes. The coordinate systems are both 

right-handed,    is a polar angle in the range   , and    are azimuthal angles in the range 

  . 

The figure also shows the instantaneous angular velocity    of the rigid body about the 

origin. As the body rotates, the Euler angles will change with rates    about the space-fixed 

   axis, the line of nodes, and the body-fixed    axis, respectively: 

 

where    are principal axes unit vectors, and    is the unit vector along the line of nodes. 
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The dot products above are most easily evaluated by noting that the    axis direction has 

polar angle    and azimuthal angle    with respect to the principal axes 

 

and that 

 

Moment and products of Inertia  

The symmetric rank-2 tensor 

 

where    is the unit    matrix, represents the moment of inertia tensor of the rigid body 

relative to the body-fixed coordinate system. The kinetic energy of the rigid body, which is a 

scalar, is compactly represented in tensor notation: 

 

An important theorem of linear algebra states that a real symmetric matrix can be diagonalized by 

an orthogonal transformation: 

 

where the orthogonal matrix    transforms from the body-fixed coordinate system to a "principal 

axes" coordinate system. The constants    are called the "principal moments of inertia" 

of the rigid body. 

The moment of inertia tensor is defined relative to a point in space. A very simple and useful 

formula relates the moment of inertia tensor    about the origin of coordinates defined above to 

the moment of inertia tensor    defined relative to the center of mass of the rigid body.  
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where 

 

is the position of the center of mass relative to the body-fixed coordinate system. 

To prove this result write 

 

where    is the position of    relative to the center of mass. Then 

 

because 

 

and 

 

Rotational Kinetic Energy of the rigid body 

The equations of motion can be derived from the Lagrangian of the system   . The 

kinetic energy is given by 

 

The middle term is zero if we choose the body-fixed origin at the center of mass of the rigid body 
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The third term can simplified using 

 

to obtain 

 

Angular Momentum of a rigid body 

The angular momentum of the system of particles comprising the rigid bod y about the origin 

of the inertial space-fixed coordinate system is 

 

where the location of the body-fixed origin at the center of mass, and the vector triple product 

identity 

 

have been used. The angular momentum of the rigid body is the sum of an "orbital" angular 

momentum of a equivalent particle of mass   , and an internal "spin" angular momentum 

about its center of mass 
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Using Lagrange's equations of motion we see that orbital and spin angular momentum of a 

rigid body are separately conserved in the absence of external forces: 

 

Moment of inertia of rigid body 

Consider a rigid body rotating with angular velocity ω around a certain axis. The body 

consists of N point masses mi whose distances to the axis of rotation are denoted ri. Each point mass will 

have the speed vi = ωri, so that the total kinetic energy T of the body can be calculated as 

 

In this expression the quantity in parentheses is called the moment of inertia of the body (with respect 

to the specified axis of rotation). It is a purely geometric characteristic of the object, as it depends only 

on its shape and the position of the rotation axis. The moment of inertia is usually denoted with the 

capital letter I: 

 

It is worth emphasizing that ri here is the distance from a point to the axis of rotation, not to the origin. 

As such, the moment of inertia will be different when considering rotations about different axes.  

Similarly, the moment of inertia of a continuous solid body rotating about a known axis can be 

calculated by replacing the summation with the integral: 

 

where r is the radius vector of a point within the body, ρ(r) is the mass density at point r, and d(r) is the 

distance from point r to the axis of rotation. The integration is evaluated over the volume V of the body. 

Motion of Symmetric Top under action of gravity 

Consider a symmetric top spinning about a tip of its symmetric axis as shown in Figure  

KAHE

KAHE

http://en.wikipedia.org/wiki/Rigid_body
http://en.wikipedia.org/wiki/Angular_velocity
http://en.wikipedia.org/wiki/Axis_of_rotation
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Multiple_integral
http://en.wikipedia.org/wiki/Radius_vector
http://en.wikipedia.org/wiki/Density
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Note that its center of mass is a distance    from the tip. The moments of inertia about the tip are 

 

The rotational kinetic energy of a rigid body with axis of symmetry    in 

terms of Euler angles is 

 

The gravitational potential energy relative to the level of the tip is  

 

and the Lagrangian function is 

 

Note that the Lagrange function does not depend on    and    The Lagrange equations of motion 

for    and    
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show that the angular momentum components along the vertical and symmetric directions are 

conserved 

 

These equations can be solved for 

 

The equation of motion for    is 
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KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION,COIMBATORE-21
DEPARTMENT OF PHYSICS
I M.Sc., PHYSICS (2017-2019)
CLASSICAL MECHANICS AND RELATIVITY (16PHP201)

UNIT - III
Rotational kinetic energy of a rigid body is   ½ w2 I2 w2 I  ½ w2 I 2w2 I.  ½ w2 I
In certain system of body axes with respect to which the off-diagonal elements  symmetric antisymmetric principal perpendicular principal
If wz  = wz’ > wmin, atop will spin with its axis vertical continuously , therefore it issleeping top spinning top rotating top symmetric top sleeping top
 A rigid body with N particles have _____________degrees of freedom.2N 3N N 4N 3N
The configuration of a rigid body with respect to some cartesian co-ordinate system in spacemomentum inertia orientation angular momentum orientation
The most useful set of generalised co-ordinates for a rigid body are ________ angles.rotation specified auxillary euler’s euler’s
The transformation worked out through three _________ rotations performed only in asuccessive different independent dependent successive
The distance between any two points of a rigid body is ___________ varied fixed proportional exponentially proportional fixed
 A rigid body can possesses simultaneously the translational and _________ motionarbitrary circular rotational orbital rotational
 A mathematical structure having nine components in three dimensions is termed as atensor matrix covariant tensor contravariant tensor tensor
The products of inertia of all vanish when one of the axes of the body lies along the axisrotation vibration motion symmetry symmetry
If the symmetry axis of the body is taken as axis of rotation and the origin of body axes liesunsymmetry rotational symmetry b and c symmetry
The motion of a rigid body with one point fixed will take place under the action of torque N indisplacement torque time rotational motion torque
The assembly of particles with fixed inter-particle distance is called_________fluid vapor colloidal rigid body rigid body
The orientation of the body by locating a cartesian set of co-ordinates fixed in the rigidbody set of axes space set of axes  both a and b rotational set of axes body set of axes
The fixed point in the body which registers its translation and coincident with the center ofbody set of axes space or external set of axesrotational set of axis vibrational set of axes space or external set of axes
The generation of body set of axes from the space set of axes through three successivedirection cosines successive angles rotational angles Euler’s angles Euler’s angles
The system of body axes in which off-diagonal elements disappear and the diagonal elementsprinciple axes secondary axes primary axes catesian axes secondary axes
The system of body axes in which off-diagonal elements disappear, and the diagonal elementsprinciple moment of inertia secondary moment of inertiamoments of inertia inertia inertia
The secular equation of inertia tensor and its solution is called ____________constant of motion tensor of rank two covariant tensor eigen values eigen values
A rigid body can possesses simulataneous the ________ and ___________ motion.translation and rotational linear and harmonic periodic and non-harmonicsymmetrical around translation and rotational
Rigid body possessing rotational and translational motion simulataneously will havepolar and cartesian generalised and canonical translation and rotationalboth a and b translation and rotational
If we consider three non-collinear points in a rigid body, then each particle will havefour three six nine three
Three non-collinear points in a rigid body will have the total of ________degrees ofsix three nine tweleve nine
All the space set of axis if rotated wbout the space z-axis, then the yz plane takes ______same alternate orthogonal new new
The inverse transformation matrix from body set of axes to space set of axes is givenAT adj (A) co-factor of A determinant of A AT
The position vector of any point p relative to the origin O of the body set of axes isDifferent constant proportional both a and c constant
The configuration of a rigid body is completely specified by ________degrees of freedom.two three six  nine six
If a is the column matrix representing the co-ordinates having single frequency and aT is 0  l a 1 1
If a is the column matrix representing the co-ordinates having single frequency and  0  l 1 a2  l
The generalised co-ordinate in which each one of them executing oscillations of onenormal co-ordinate cartesain co-ordinate polar co-ordinate rectangular co-ordinate normal co-ordinate
In parallel pendula the two pendula oscillates in ________ out or phase phase damped motion undamped motion phase
 In parallel pendular, if the two pendula are independent i.e., there is no ________unstretching rarefying transiting stretching stretching
In paralle pendula ___________ force due to spring will come into action.impulsive repulsive restoring attractive restoring
 If the system possesses two identical frequencies, then it is therefore said to be __________degenerate  generate distorted in harmonic motion degenerate
 A continuous string has infinite number of normal modes and _______________velocities  frequencies vibrations motion  frequencies
The use of nomal co-ordinate in the coupled system reduces it to one of a system ofdependent single independent double independent
A continuous string has a linear ___________ velocity acceleration displacement mass density mass density
If the system is in stable equilibrium, then the frequency wl2 should be a ______ quantity.real imaginary complex integer real
 If wl2 are real and positive, then all co-ordinate always remain _______ for any time.infinite same different finite finite
 If wl2 are not real and positive, then all the co-ordinate becomes ______ for any time.infinite finite equal exponential infinite
 The system is said to be unstable if the frequency wl2 are not _________equal finite real infinite real
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UNIT-IV 

SYLLABUS 

 

 

 

 

 

 

 

Special theory of relativity – Introduction 

The Special Theory of Relativity was the result of developments in physics at the end of the 

nineteenth century and the beginning of the twentieth century. It changed our understanding of 

older physical theories such as Newtonian Physics and led to early Quantum Theory and General 

Relativity. 

Special Relativity does not just apply to fast moving objects, it affects the everyday world 

directly through "relativistic" effects such as magnetism and the relativistic inertia that underlies 

kinetic energy and hence the whole of dynamics.  

Special Relativity is now one of the foundation blocks of physics. It is in no sense a 

provisional theory and is largely compatible with quantum theory; it not only led to the idea of 

matter waves but is the origin of quantum 'spin' and underlies the existence of the antiparticles. 

Special Relativity is a theory of exceptional elegance, Einstein crafted the theory from simple 

postulates about the constancy of physical laws and of the speed of light and his work has been 

refined further so that the laws of physics themselves and even the constancy of the speed of light 

are now understood in terms of the most basic symmetries in space and time.  

 

 

 

 

 

 

Special Theory of Relativity: Introduction – Galilean transformation and invariance of Newton’s 
laws of motion – Non variance of Maxwell’s equations – Michelson Morley experiment and 

explanation of the null result.  
Concept of inertial frame – Postulates of special theory – simultaneity – Lorentz transformation 

along one of the axes – length contraction – time dilatation and velocity addition theorem – 

Fizeau’s experiment – Four vectors – Relativistic dynamics – Variation of mass with velocity – 

Energy momentum relationship. 
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The Galilean Transformation Invariance of Newton’s law of motion 

Suppose there are two reference frames (systems) designated by S and S' such that the co-

ordinate axes are parallel (as in figure 1). In S, we have the co-ordinates  and in S' we 

have the co-ordinates . S' is moving with respect to S with velocity  (as measured 

in S) in the  direction. The clocks in both systems were synchronised at time  and they run 

at the same rate. 

 

Figure 1: Reference frame S' moves with velocity  (in the x direction) relative to reference frame 

S. 

We have the intuitive relationships  

     

     

     

     

This set of equations is known as the Galilean Transformation. They enable us to relate a 

measurement in one inertial reference frame to another. For example, suppose we measure the 

http://psi.phys.wits.ac.za/teaching/Connell/phys284/2005/lecture-01/lecture_01/node5.html#ref_frames
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velocity of a vehicle moving in the in -direction in system S, and we want to know what would 

be the velocity of the vehicle in S'.  

  

 

The laws of physics to be the same in all inertial reference frames, as this is indeed our experience 

of nature. Physically, we should be able to perform the same experiments in different reference 

frames, and find always the same physical laws. Mathematically, these laws are expressed by 

equations. So, we should be able to ``transform'' our equations from one inertial reference frame to 

the other inertial reference frame, and always find the same answer.  

Suppose we wanted to check that Newton's Second Law is the same in two different 

reference frames. We put one observer in the un-primed frame, and the other in the primed frame, 

moving with velocity  relative to the un-primed frame. Consider the vehicle of the previous case 

undergoing a constant acceleration in the -direction,  
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Indeed, it does not matter which inertial frame we observe from, we recover the same Second Law 

of Motion each time. In the parlance of physics, we say the Second Law of Motion is invariant 

under the Galilean Transformation.  

Non-variance of Maxwell’s equation 

Experiments on electric and magnetic fields, as well as induction of one type of field from changes 

in the other, lead to the collection of a set of equations, describing all these phenomena, known as 

Maxwell's Equations.  

  

 

Now, these equations are considered to be rock solid, arising from and verified by many 

experiments. Amazingly, they imply the existence of a previously not guessed at phenomenon. This 

is the electromagnetic wave. To see this in detail, take the time derivative of the second last 

equation and the curl of the last.  

     

    

Now note that space and time derivatives commute  

  

so  

  

Now, we use the identity  
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The second term of the above equation drops out due to the vanishing of the divergence of the 

electric field (the second of Maxwell's Equations). So, we finally have the three dimensional wave 

equation  

  

 

To see this is a wave equation, note the analogy in one dimension  

  

 

which is solved by the wave function  

  

 

which represents a wave traveling along the x axis with velocity c. 

It is clear therefore that Maxwell's Equations are highly predictive.  

1. A diversity is unified in a simplicity. The various phenomena of radiowaves, microwaves, infrared, 

visible and ultra-violet light, X-rays and gamma rays are all electromagnetic waves, differing only 

in their frequency. 

2. They all travel at the same speed.  

3. Even that speed is specified : m/s. 

4. The speed appears independent of the source and the observer.  

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

  CLASS: I MSC PHYSICS    COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY   

 COURSE CODE: 17PHU201   UNIT: IV (SPECIAL THEORY OF RELATIVITY)  BATCH-2017-2019  

    

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 6/18 
 

Michelson Morley experiment and explanation of the null result. 

 After the development of Maxwell's theory of electromagnetism, several experiments were 

performed to prove the existence of ether and its motion relative to the Earth. The most famous and  

successful was the one now known as the Michelson-Morley experiment, performed by Albert 

Michelson (1852-1931) and Edward Morley (1838-1923) in 1887. 

 

Michelson and Morley built a Michelson interferometer, which essentially consists of a light 

source, a half-silvered glass plate, two mirrors, and a telescope.  The mirrors are placed at right 

angles to each other and at equal distance from the glass plate, which is obliquely oriented at an 

angle of 45° relative to the two mirrors. In the original device, the mirrors were mounted on a rigid 

base that rotates freely on a basin filled with liquid mercury in order to reduce friction.  

Prevailing theories held that ether formed an absolute reference frame with respect to which 

the rest of the universe  was stationary. It would therefore follow that it should appear to be moving 

from the perspective of an observer on the sun-orbiting Earth. As a result, light would sometimes 

travel in the same direction of the ether, and others times in the opposite direction. Thus, the idea 

was to measure the speed of light in different directions in order to measure speed of 

the ether relative to Earth, thus establishing its existence.  

Michelson and Morley were able to measure the speed of light by looking for interference 

fringes between the light which had passed through the two perpendicular arms of their apparatus. 

These would occur since the light would travel faster along an arm if oriented in the "same" 

direction as the ether was moving, and slower if oriented in the opposite direction. Since the two 

http://scienceworld.wolfram.com/physics/Ether.html
http://scienceworld.wolfram.com/biography/Michelson.html
http://scienceworld.wolfram.com/biography/Michelson.html
http://scienceworld.wolfram.com/biography/MorleyEdward.html
http://scienceworld.wolfram.com/physics/MichelsonInterferometer.html
http://scienceworld.wolfram.com/astronomy/Telescope.html
http://scienceworld.wolfram.com/astronomy/Universe.html
http://scienceworld.wolfram.com/physics/Ether.html
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arms were perpendicular, the only way that light would travel at the same speed in both arms and 

therefore arrive simultaneous at the telescope would be if the instrument were motionless with 

respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive 

and interfere slightly out of synchronization, producing a diminution of intensity. (Of course, the 

same effect would be achieved if the arms of the interferometer were not of the same length, but 

these could be adjusted accurately by looking for the intensity peak as one arm was moved. 

Changing the orientation of the instrument should then show fringes.)  

Although Michelson and Morley were expecting measuring different speeds of light in each 

direction, they found no discernible fringes indicating a different speed in any orientation or at any 

position of the Earth in its annual orbit around the Sun.  

In 1895, Lorentz concluded that the "null" result obtained by Michelson and Morley was caused by 

a effect of contraction made by the ether on their apparatus and introduced the length contraction 

equation 

 

where L is the contracted length,  is the rest length, v is the velocity of the frame of reference, 

and c is the speed of light. 

Concept of inertial frame of reference  

A “frame of reference” is a standard relative to which motion and rest may be measured; 

any set of points or objects that are at rest relative to one another enables us, in principle, to 

describe the relative motions of bodies. A frame of reference is therefore a purely kinematical 

device, for the geometrical description of motion without regard to the masses or forces involved. A 

dynamical account of motion leads to the idea of an “inertial frame,” or a reference frame relative 

to which motions have distinguished dynamical properties. For that reason an inertial frame has to 

be understood as a spatial reference frame together with some means of measuring time, so that 

uniform motions can be distinguished from accelerated motions.  

The laws of Newtonian dynamics provide a simple definition: an inertial frame is a 

reference-frame with a time-scale, relative to which the motion of a body not subject to forces is 

always rectilinear and uniform, accelerations are always proportional to and in the direction of 

applied forces, and applied forces are always met with equal and opposite reactions. It follows that, 

http://scienceworld.wolfram.com/biography/Lorentz.html
http://scienceworld.wolfram.com/physics/Ether.html
http://scienceworld.wolfram.com/physics/SpeedofLight.html
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in an inertial frame, the center of mass of a system of bodies is always at rest or in uniform motion. 

It also follows that any other frame of reference moving uniformly relative to an inertial frame is 

also an inertial frame. For example, in Newtonian celestial mechanics, taking the “fixed stars” as a 

frame of reference, we can determine an (approximately) inertial frame whose center is the center 

of mass of the solar system; relative to this frame, every acceleration of every planet can be 

accounted for (approximately) as a gravitational interaction with some other planet in accord with 

Newton's laws of motion. 

Postulates of special theory of relativity 

(i) Statement: "The laws of physics are the same in any inertial frame, regardless of 

position or velocity". 

Physically, this means that there is no absolute spacetime, no absolute frame of reference with 

respect to which position and velocity are defined. Only relative positions and velocities between 

objects are meaningful. 

(ii) Statement: "The speed of light c is a universal constant, the same in any inertial frame".  

Simultaneity 

Consider a rocket traveling at speed v, as shown in Fig. 4. There is an observer O at rest with 

respect to the rocket and an observer O' riding with the rocket. Two lightbulbs at the ends of the 

rocket were timed such that their flashes arrive at the observers at the same time. Light from the 

bulbs traveled towards the observers at the speed of light, c, in the reference frames of both 

observers. The figure shows how O andO' are lined up when the light arrives.  

 

For O' (on the rocket), the bulbs must have flashed simultaneously because O' is right in the 

middle. The bulbs are at rest in the frame of O'. 

The other observer, O, draws a different conclusion. When the flashes were emitted, the rocket was 

not centered on O; it was to the left. The pulse from the bulb on the left must have been emitted 

first; it had farther to travel. Likewise, the pulse from the bulb on the right had a shorter distance to 

travel. Observer O concludes that the bulbs were not flashed simultaneously. 
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So, observer O' thinks the events (flashing of the bulbs) were simultaneous while observer O does 

not. Simultaneity is not independent of reference frame. 

 

Length contraction 

Moving rod contracts in length by factor of  

 

Time dilation 

Moving clock dilates in time interval measured by factor of 

 

Relativistic Law of Velocity Addition 

If an object is in motion with velocity  (u'x, u'y, u'zcomponents) in frame S' and the velocity of 

the object measured in S is (ux, uy, uzcomponents) then , 
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Relativistic Mass 

The concept of 'Absolute Mass' of Newtonian Mechanics is no longer tenable in special Relativity; 

the requirement that Law of Conservation of momentum is a fundamental Law of nature imposes 

the relation 

 

then only consistency between the Lorentz-Transformations and Law of Conservation of 

momentum can be obtained. This expression given relativistic mass m in motion with Velocity V in 

a given frame of reference; in terms of the mass m0 called rest mass of the object when at rest in the 

given frame of reference. 

The Experiment of Fizeau 

In 1851, Fizeau carried out an experiment which tested for the aether convection coefficient. 

This was the first such test of Fresnel’s formula, derived without experimental evidence, over 

twenty years earlier. Fresnel, in fact, had died more than twenty years before this experiment took 

place, a point of interest only because many texts derive Fresnel’s formula based on the results of 

experiment, rather than the other way around. Experimental results, within the level of error 

available in the mid-1800’s, are not sufficient to derive Fresnel’s formula. These results can only 

confirm that, within error limits, the formula provides answers consistent with experiment. In fact, 

Fizeau’s experimental results were so course that the only conclusion he could draw was that the 

displacement was less than should have been produced by the motion of the liquid if light were 

http://www.pinkmonkey.com/studyguides/subjects/physics/chap35/p3535701.asp
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completely convected by the medium. From this, he assumed the validity of Fresnel’s formula on 

the partial convection of the aether.  

Fizeau’s experiment involved passing light two ways through moving water (v ~ 7 m/s) and 

observing the interference pattern obtained, as illustrated in figure 1. The experiment was repeated 

by Michelson in 1886 with much more rigor, and quantitative results were obtained. Working 

backwards from the observed fringe shift, Michelson was able to calculate an apparent convection 

coefficient equivalent to Fresnel’s formula. Varying the velocity and direction of the flow allowed 

for a variety of test points. By observing the change in interference pattern, the effective velocity of 

light through the moving medium, as measured in the lab frame, was calculated. Within 

experimental limits, the results obtained by measuring the fringe shift agreed with the results 

predicted by Fresnel’s formula. However, Michelson neglected to take into account the Doppler 

effect of light from a stationary source interacting with moving water, and therefore concluded that 

the aether convection concept of Fresnel was essentially correct.  

 

Figure 1. The experiment of Fizeau. 

We now examine this experiment in a purely Galilean environment, taking into account the 

Doppler shift (change in wavelength) experienced by each beam of light. Michelson’s paper gives 

an excellent analysis whereby the retarded velocity, b, seen in the water may be considered as due 

to the number of collisions with atoms, the "velocity of light through the atoms," and the width of 

the atoms. Since there will likely be objections to that analysis based on current understandings of 

the microscopic world, we present a more general approach. In what follows, the retarded velocity 

is again considered as due to the "collisions" (absorptions and re-emissions) of the photons in the 
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medium, as it must be, but we do not require any assumptions as to "atom width," or "velocity 

through the atom." 

For light traveling through a medium, the effective wavelength changes: 

 (1) 

The phase shift for light in such a medium is: 

 (2) 

The optical path length is defined from (2) as lh. The optical path difference between the medium 

and air is then: 

 (3) 

The phase difference compared with the same path in air is: 

 (4) 

In the Fizeau experiment we must consider Doppler effects. Since the water is moving with respect 

to the source, the two paths of light will experience Doppler shifts upon entering the water. Light 

moving in the opposite direction to the flow of water will be blue-shift (l1). Light moving with the 

flow will be red shifted (l2): 

 (8) 
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To see why the Doppler shift cannot be ignored in Fizeau’s experiment, imagine the apparatus 

depicted in figure 2. All mirrors, the source and the observing screen are sealed in water filled 

containers. The water is not flowing, but is stationary in the containers. Alternatively, the containers 

could be made of solid glass, so long as the refractive index is different than air. The entire 

apparatus, with the exception of mirror (detector) M1 moves through the lab frame at a velocity 

of v. Thus, air is moving through the gap, l, at a velocity of v in the equipment frame. To first order 

in v/c, the wavelengths of the light detected at M1 is given by equation (8). 

  We now fill the apparatus containers with air and pass the entire apparatus through water. In 

the equipment frame, water is moving through the gap at a ve locity v. The motion induced Doppler 

in the water, experienced by M1, remains unchanged. If we, the observers, move along with the 

apparatus, this setup is indistinguishable from the actual Fizeau experiment. From our frame of 

reference, the equipment is at rest, water is moving through the gap at a velocity v, and the image 

on the screen reflects the fringe shift due to that motion. Thus we can replace the gap with a tube of 

flowing water, hold the rest of the apparatus stationary in the lab frame, and obtain a one-sided 

Fizeau experiment. Clearly, whatever analysis one uses to derive the formulas for the observed 

fringe shift, one must take into account the fact that the wavelength of the light in the moving 

medium is different from that of the source due to the motion induced Doppler effect of (8).  

Substituting (8) into (2), we see that the phase shift including Doppler effects becomes: 

 (9) 

The optical path length is defined from the above as: 

 (10) 

The optical path difference between the medium and air is then: 

 (11) 

The phase difference compared with the same path in air is: 

  

 (12) 
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For light traveling different paths and experiencing different Doppler effects, the total phase shift is 

given by: 

 (13) 

In the Fizeau experiment, l1 and l2 are given by (8). The path lengths l1 and l2 are respectively given 

below, where the factor of two is included because the light travels through two tubes of length l, 

and b is the velocity of light in the reference frame of the liquid.  

 (14) 

Substituting these values into (13) for each path gives the following results: 

 (15) 

 (16) 
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Notice how these results were obtained without invoking "aether" drag, or relativistic velocity 

addition. 

In the special relativistic analysis of this experiment, the velocity of light in the moving 

liquid as measured in the lab frame is no longer b + v, but is given by the relativistic velocity 

addition formula: 

 (17) 

As a result, the path lengths derived in (14) become: 

 (18) 

The derivation of the total phase shift then becomes: 

 (19) 
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 (20) 

The two results, (16) and (20), differ in the exponent of the last h term. When Michelson 

and Morley performed the experiment, they obtained sixty one trials, using three different 

combinations of water velocity and tube length. The graph below shows the distribution of these 

results, normalized to a tube length of ten meters and a water velocity of one meter per second. The 

line marked RCM represents the value obtained from equation (16). The line marked SRT reflects 

the value obtained from (20). While there is a distribution of results, owing to experimental error, 

Michelson claimed an overall shift of 0.184 + 0.02 fringe. This is completely consistent with (16), 

but eliminates the special relativistic result, with a value of 0.247, from consideration. 

Summary 

It is very difficult to find adequate tests between special relativity and other competing theories. 

Most theories overlap with SRT on a vast majority of the prediction made by each, yet are based on 

different underlying physical principles. Ultimately one must find a test that checks not only the 

results of the application of the mathematical theory, but also the underlying assumptions. The 

major conceptual difference between SRT and most competing theories is the idea of relative 

simultaneity—that distant events that are simultaneous for one observer will not be simultaneous 

for and observer in motion relative to the first. The relativistic velocity addition rule is a direct 

consequence of relativistic simultaneity, and the Fizeau experiment represents a direct test of the 

velocity addition formula. Regardless of what the correct theory is or may be, it is clear that SRT 

fails to give predictions consistent with results in this experiment—an experiment performed almost 

ten years before the development of SRT. 

Four-vectors 

Although the use of 4-vectors is not necessary for a full understanding of Special Relativity, 

they are a most powerful and useful tool for attacking many problems. A 4-vectors is just a 4-
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tuplet A = (A 0, A 1, A 2, A 3) that transforms under a Lorentz Transformation in the same way 

as (cdt, dx, dy, dz) does. That is: 

A 0 = γ(A 0' + (v/c)A 1')       

A 1 = γ(A 1' + (v/c)A 0')       

A 2 = A 2'       

A 3 = A 3'       

Lorentz transformations are very much like rotations in 4-dimensional spacetime. 4-vectors, 

then, generalize the concept of rotations in 3-space to rotations in 4-dimensions. Clearly, any 

constant multiple of (cdt, dx, dy, dz) is a 4-vector, but something like A = 

(cdt,mdx, dy, dz) (where m is just a constant) is not a 4-vector because the second component has 

to transform like mdxâÉáA 1 = γ(A 1' + (v/c)A 0')âÉáγ((mdx') +vdt') from the definition of a 4-

vector, but also like mdx = mγ(dx' + (v/c)dt') ; these two expression are inconsistent. Thus we can 

transform a 4-vector either according to the 4- vector definition given above, or using what we 

know about how the dx i transform to transform each A i independently. There are only a few 

special vectors for which these two methods yield the same result. Several different 4-vectors are 

now discussed: 

Velocity 4-vector 

We can define a quantity τ =  which is called the proper time, and 

is invariant between frames. Dividing out original 4-vector ( (cdt, dx, dx, dz) ) bydτ gives: 

V = (cdt, dx, dy, dz) = γ  c, , ,   = (γc, γ      

 

 

This arises because  = γ . 

Energy-momentum 4-vector 

If we multiply the velocity 4-vector by m we get: 

P = mV = m(γc, γ      

This is an extremely important 4-vector in Special Relativity. 

Relation between momentum and kinetic energy 
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Sometimes it's desirable to express the kinetic energy of a particle in terms of the momentum. 

That's easy enough. Since  and the kinetic energy  so 

 

Note that if a massive particle and a light particle have the same momentum, the light one will have 

a lot more kinetic energy. If a light particle and a heavy one have the same velocity, the heavy one 

has more kinetic energy.  
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When the forces acting on the particle vanishes, then the particle is said to be in equilibrium stable equlibrium unstable neutral equilibrium equilibrium
Potential energy is minimum at stable equilibrium and ________at unstable    maximum minimum zero infinity maximum
 In case of stable equilibrium the system undergoes bounded motion and in case of         same unbounded harmonic distorted unbounded
 When a system at stable equilibrium is disturbed its potential energy increases and kinetic   increases decreases zero constant decreases
 When a system at unstable equilibrium is disturbed its potential energy decreases and  increases decreases constant   neither increase nor decreaseincreases
The example for stable equilibrium. Bar pendulum at rest compound pendulum at restsimple pendulum at rest pendulum in motion Bar pendulum at rest
If a slight displacement of a system from its equilibrium results only in smallunstable stable neither stable nor unstable neutral stable
If a slight displacement of a system from its equilibrium results only in unboundedunstable stable neither stable nor unstable neutral stable
The example for unstable equilibrium. Rod standing on its one end rod stretched on two ends rod in motion rod in simple harmonic motionRod standing on its one end
The two modes of motion involving a single frequency are called ________ modesabnormal normal transverse longitudinal normal
The eigen frequency in case of oscillatory motion about the point of stableimaginary real complex whole number real
The generalised co-ordinates each of them executing oscillations of one singlenormal co-ordinates genaral co-ordinates spherical co-ordinates polar co-ordinates normal co-ordinates
Two pendula in parallel pendula oscillate in phase with frequencyw = ( g/l )1/2 w = ( g/l )1/3 w = ( g/l )1/4 w = ( g/l ) w = ( g/l )
Two pendula in parallel pendula oscillate out of phase with frequencyw = ( g/l +2k/m ) w = ( g/l +2k/m )1/4 w = ( g/l +2k/m )1/3 w = ( g/l +2k/m )1/2 w = ( g/l +2k/m )1/3
Triple pendulum is a generate system stable system degenerate system unstable system unstable system
Triple pendulum is a degenerate system, since the two normal modes frequency   w1 =  w2 = ( g/l +2k/m ) w1 =  w2 = ( g/l +2k/m )1/3w1 =  w2 = ( g/l +2k/m )1/4w1 =  w2 = ( g/l +2k/m )1/2w1 =  w2 = ( g/l +2k/m )1/3
Example for linear triatomic molecule is HPO3 H2SO4 HNO3 CO2 HNO3
In case of linear triatomic molecule when   w1 = 0 , the system undergoesperiodic motion non-periodic motion translatory motion SHM motion periodic motion
In case of linear triatomic molecule when   w2 = (K/M)1/2 and  Oscillatory motion translatory motion periodic motion SHM motion Oscillatory motion
In case of linear triatomic molecule when __________ the central atom does notw = (K/M)1/2 w = (K/M) w = (K/M)1/3 w = (K/M)1/4 w = (K/M) 
In linear triatomic molecule when ____________ , the end atoms vibratew = { K/M(1+2m/M)} w = { K/M(1+2m/M)}1/2w = { K/M(1+2m/M)}3  w = { K/M(1+2m/M)}4 w = { K/M(1+2m/M)}
The example for continuous system is Continuous string string stretched at one endString stretched at two endsString with load at one end string stretched at one end
A continuous system has ________ number of normal modes of frequency.Finite infinite Constant Same infinite 
If the linear triatomic molecule is stretched symmetrically, the absorption bandUltra-violet region  Infra-red region Visible region Microwave region Visible region
A system of mutually interacting particles is called ___________uncoupled system Translatory system Coupled system harmonic system uncoupled system
When the forces acting on a particle vanishes, the particle is said to be _______Equilibrium Stable equilibrium unstable equilibrium Neutral equilibrium Stable equilibrium
The two modes of motion involving a single frequency are referred to as the _______abnormal normal Damped undamped undamped
The system of two equal masses joined by identical springs to each other is called_______Uncoupled single coupled Three-coupled two-coupled Uncoupled
A system of particles is said to be in stable equilibrium if all the particles _______rest periodic motion damped motion simple harmonic motion damped motion
The system consists of two identical simple pendula, each of mass m, length l and coupledseries pendula compound pendula paralled pendula complex pendula complex pendula
All the other co-ordinates except one co-ordinate are zero for all times, then it correspondsabnormal standard variable normal standard
If the motion for a given wl2 is completely oscillatory about the position of stableimaginary Real complex integer imaginary
If the eigenfunctions is imaginary, then the motion is said to be ________ equilibriumunstable Stable neutral neither stable nor neutral neither stable nor neutral
If the solution of equation of motion has one single frequency, then in such a case theCartesian canonical polar normal canonical
If the parallel pendula move in a vertical plane in equilibrium position, then the twodifferent  identical relative to each other Away from each other relative to each other
In the two pendula it can vibrate as if they are independent i.e., there is no stretching orrest oscillate infinitely action neither action nor oscillate infinitelyneither action nor oscillate infinitely
In triple pendulum, if the system possesses two identical frequencies, then it is thereforeperiodic non-periodic degenerate harmonic non-periodic
In linear triatomic molecule, the displacement of all the atoms are in the same direction andunequal equal infinite finite unequal
The continuous string has infinite number of normal modes and ________________vibrations displacement a & b together frequencies frequencies
A continuous string has a linear _________ momentum volume density mass density specific density volume density
The use of normal co-ordinates in the coupled system reduces it to one of a system of ____dependent harmonic periodic independent periodic



The volume integral of the function of the Lagrangian functions within the bracesHamiltonian Lagrangian linear volume Hamiltonian
Lagrangian density is a function of _______ and _____________ derivative ofspace and time angle and r x and y co-ordiantes y and z co-ordinates x and y co-ordiantes
The system consists of two equal masses joined by identical springs to each other and todamped harmonic periodic undamped harmonic
In case of two-coupled oscillators, the potential energy V of the system is the sum ofkinetic potential rest energy a & b a & b
The force tending to change any generalised co-ordinate depends on the _______ ofvelocity accelecration displacement momentum displacement
If two pendula oscillate in phase, then the frequency of motion is wl =Ög/l wl =g/l wl =1/2pÖg/l wl =2pÖg/l  wl =Ög/l
In case of linear triatomic molecule there exists _______ bond between the centralInelastic covalent Elastic ionic Elastic
The system consists of infinite chain of equal mass points spaced equally at a distanceDiscontinus continuous harmonic linear continuous
The continuous system is a function of the continuous variables ____ and _____ tow and t x,y and z r and w x and t x and t
In discrete system, the continuous variables changes only by_________twice thrice unity 0 unity
The propagation velocity of the wave in continuous system is similar to that velocityinelastic elastic damped undamped elastic
In linear triatomic molecule if the molecule is assymmetrically stretched, then __________magnetic quadrapole oscillating dipole both a & b oscillating dipole
For small oscillation, the displacement of the particles are restricted to ___________stable periodic non-periodic small small
The motion with imaginary frequency would give rise to an unbounded exponential riseUj Vj pj qj Uj
If the particle oscillates about the equilibrium point performing bound motion, then theunstable stable neutral neither neutral nor stable stable
In the conservative force-field, generalised forces acting on each particle must _________finite infinite vanish a constant vanish
The displacement of the generalised co-ordinates from their equilibrium value will beVj wj pj Uj Uj

Michelson-Morley experiment proves The existence of ether mediumThe non-existence of ether medium (i.e. absolute rest frame)  None Ether pervades

The non-existence of ether medium 
(i.e. absolute rest frame)

Michelson-Morley experiment proves that The speed of light in free space in invariant The speed of light is changingNone variable light velocity

The speed of light in free space in
 invariant

The special theory of relativity was proposed by Einstein newton eigen galileo Einstein
If we transform set into another form of n equations, then it involves only a________Single double triple more than three Single
Michelson-Morley experiment proved that speed of light is relative there is no preferred frame like etherearth is an inertial frame. earth is a non-inertial framethere is no preferred frame like ether
Special theory of relativity deals with the events in the frames of reference which move with constant-----------------speed velocity acceleration momentum. velocity
Michelson-Morley experiment to detect the presence of either is based on the phenomenon of:interference diffraction polarization dispersion interference

Michelson and Morley experiment showed that Newtonian mechanics is correct for all low and high velocitiesThere is an absolute ether frameThere is no absolute ether frame, but all frames are relativeVelocity of light is relative in all cases.

There is no absolute ether frame, but
 all frames are relative

Length contraction happens only perpendicular to direction of motionalong the direction of motionparallel to direction of motionboth a and b along the direction of motion
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UNIT V 

SYLLABUS 

 

 

 

 

 

 

 

 

General relativity - Introduction 

Prior to the 20th century all physics theories assumed space and time to be absolutes. 

Together they formed a background within which matter moved. The role of a physical theory 

was to describe how different kinds of matter would interact with each other and, by doing so, 

predict their motions. With the development of special and later general relativity theory in the 

early 20th century, the role of space and time in our theories of physics changed dramatically. 

Instead of being a passive background, space and time came to be viewed as dynamic actors in 

physics, capable of being changed by the matter within them and in turn changing the way that 

matter behaves. 

In GR, spacetime becomes curved in response to the effects of matter. I will discuss below 

what it means for spacetime to be curved, but just to give a flavor of this idea I can note here that 

in a curved spacetime the laws of Euclidean geometry no longer hold: the angles of a triangle do 

not in general add up to 180°, the ratio of the circumference of a circle to its diameter is in general 

not p, and so on. This curvature in turn affects the behavior of matter. In Newtonian physics a 

particle with nothing pushing or pulling it (no forces acting on it) will move in a straight line. In a 

curved spacetime what used to be straight lines are now twisted and bent, and particles with no 

forces acting on them are seen to move along curved paths.  

Limitations of special theory of relativity 

γ can be expanded into a Taylor series or binomial series for , obtaining: 

General theory of Relativity: Introduction – Limitation of special theory of relativity and 

need for a relativity theory in non- inertial frames of reference.  Concept of gravitational and 

inertial mass and the basic postulate of GTR, gravitation & acceleration and their relation to 

non- inertial frames of reference – principle of equivalence of principle of general co-variance 

– Minkowski space and Lorentz transformation 

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Binomial_series
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and consequently 

 

 

For velocities much smaller than that of light, one can neglect the terms with c2 and higher in the 

denominator. These formulas then reduce to the standard definitions of Newtoniankinetic 

energy and momentum. This is as it should be, for special relativity must agree with Newtonian 

mechanics at low velocities. 

 

Inertial and Gravitational Mass   

Mass, from the traditional physics viewpoint, arises from two sources, its inertia and the 

gravitational attraction of other masses.  This has led in physics to a distinction between inertial 

mass and gravitational mass -- a distinction which can be easily demonstrated in a 

simple Experiment. One can be thought of as resistive force to change in motion (speed and /or 

direction), while the other stems from an attractive force between masses.   

Gravitation seems a simple concept, wherein two objects with mass are attracted to each 

other, dependent upon the inverse square of the distance between them, their respective  masses, 

and a Gravitational Constant.  These masses are attracted to each other is never really addressed, 

while the means by which a force connects them -- what physics thinks of as “action-at-a-

distance” -- has been under debate since Galileo.  Or longer.  Thus gravity, while experientially 

easy to deal with -- i.e. no support, one fall down! -- the physics itself is still in flux.  (To add 

insult to injury, there is evidence from such a diverse field as Hyperdimensional Physics to 

suggest that the Gravitational Constant... is not a constant, and has changed notably over the 

eons.  Even some 0.06% in the last twenty years or so!  It may be just a matter of time before 

“what goes up... stays”, i.e. Levitation and/or the worst fears of the Anti-Gravity Defamation 

League come true.)   

http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Kinetic_energy
http://www.halexandria.org/dward168.htm
http://www.halexandria.org/dward118.htm
http://www.halexandria.org/dward135.htm
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Inertia’s case, on the other hand, is even more difficult.  Galileo’s attempt was to define 

inertia as a property of matter that kept an object in uniform motion, unless acted upon by a force 

external to the object.  Sir Isaac Newton formalized this in his Principia, and in his first and 

second laws.  His first law is actually a special case of the second, the latter which states that the 

acceleration (a) -- change in velocity (speed and direction) is proportional to the force (F) applied 

on the object, and that the constant of proportionality is the mass (m).  I.e. F = ma.  Inertial mass 

can thus be viewed as the resistance of an object to being accelerated by an external force.  When 

there is no force, or when the force ceases, the acceleration is zero, and the object moves in 

uniform motion (maintaining the same speed and same direction).  Massive objects are 

therefore assumed to resist acceleration because such resistance is an innate property of matter.  

Postulates of a general theory  

The general theory is based on a seemingly common observation about gravity and accelerations. 

The two postulates of Einstein's general theory of relativity are: 

 All the laws of nature have the same form for observers in any frame of reference, whether 

accelerated or not. 

 In the vicinity of any point, a gravitational field is equivalent to an accelerated frame of 

reference in the absence of gravitational effects. This is the principle of equivalence, which 

forms the basis of the general theory of relativity.  

Mass have seemingly different properties: a gravitational attraction and an inertial property that 

resists acceleration. To designate these two attributes, we use the subscripts g and i and write: 

Gravitational property        Fg = mgg 

Inertial property                . 

The second postulate implies that gravitational mass and inertial mass are completely 

equivalent, not just proportional.  

Gravitation and acceleration 

It is easy to verify that, if air resistence is negligable, all objects accelerate towards the 

earth at the same rate. This mystery, first verified experimentally by Galileo, is at least partially 

explained by Newton's law of gravity. The ``reason'' is that the gravitational force on an object is 

proportional to its inertial mass. According to Newton's second law, in order to calculate the 

acceleration of an object caused by gravity, we must take the gravitational force on that object and 

http://myfundi.co.za/e/File:Img00886
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divide by the inertial mass. Thus, the inertial mass of the object cancels o ut of the resulting 

expression for the acceleration. In fact the acceleration of any object at the Earth's surface is 

determined by the distance of the object form the center of the Earth (RE), Newton's constant (G) 

and the mass of the Earth: 

g =  

If you put the value of Newton's constant, the radius of the Earth ( 6 x 106 meters) and the 

mass of the Earth ( 6 x 1024kg) into the above expression you will get approximately 9.8m/s2, 

which is the rate at which all objects accelerate downwards at the surface of the Earth. 

Although the magnitude of the acceleration due to gravity, g, is the same everywhere on 

the Earth's surface, its direction changes depending on where you are. It is a vector that always 

points towards the center of the Earth, so, for example, it is in the opposite direction at the North 

Pole than at the South Pole. This effect is not very relevant to us because the Earth is so big. If we 

move from one end of the room to another, or even one end of the city to another, we are only 

moving across a very small fraction of the total circumference of the Earth, so the direction of the 

gravitational acceleration changes very little. Our notion of ``down'' only changes significantly 

when we travel very large distances. However, as we will see later, if you happen to be near a 

very massive, but small object, such as a black hole, the fact that gravitational acceleration 

changes direction depending on your location becomes very significant indeed: it gives rise to so-

called tidal gravitational forces that can tear a spaceship apart in microseconds.  

Lorentz transformation 

In flat space in three dimensions, the distance between two points is given by ds where  

ds^2 = dx^2 + dy^2 + dx^2 

This expression tells us how we measure distances and is called the "metric". If we can write the 

metric in the form above, we say that space if Euclidean (or "flat"). Let's say you want to change 

to another coordinate system (X,Y,Z) where you can make the same combination of dX and dY 

and dZ and come up with the same distance (this will be useful since distances are invariant in 

Newtonian physics) 

Then ds^2 = dX^2 + dY^2 + dZ^2 

If you calculate the transformations allowed from {x,y,z} to {X,Y,Z} you find that they're the  

orthogonal transformations, which just describe rotations in R^3. 
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Now suppose you're not interested in keeping how you measure distances constant, but you want 

the speed of light, c, constant. Then it's not difficult to show that you want a system of coordinates 

in which 

ds^2 = -c^t dt^2 + dx^2 + dy^2 + dẑ 2 =0 

and 

ds^2 = -c^t dt^2 + dx^2 + dy^2 + dẑ 2 is a constant between two events.  

This describes a space (space-time really) which is obviously different from Euclidean space, and 

we call the space-time Minkowski space-time. So Minkowski space-time is a space-time where 

we can set up coordinates (t,x,y,z) so that light travels along lines where  

-c^2 dt^2 + dx^2 + dy^2 + dẑ 2 = 0. 

Now you can ask yourself, if I have a set of coordinates {t,x,y,z}, what transformations am I 

allowed from {t,x,y,z} to {T,X,Y,Z} that keep the form of the Minkowski metric. Those 

transformations are the Lorentz transformations. They generalise the rotations in R^3.  

So Lorentz transformations describe how we can change coordinates systems between two inertial 

frames 

Minkowski Diagrams 

A Minkowski diagram or spacetime diagram is a convenient way of graphically 

representing the lorentz transformations between frames as a transformation of coordinates. They 

are especially useful for gaining a qualitative understanding of relativistic problems. We make a 

spacetime diagram by representing frame F as the coordinate axes x (horizontal) and ct(vertical). 

We are ignoring the y and z directions, since they are uninteresting. The plot of an object's x - 

position versus time on the Minkowski diagram is called its worldline. Notice that light, traveling 

one unit of ct for every unit of xwill follow the line x = ct , inclined at a 45 o angle. 
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Figure %: Minkowski or spacetime diagram. 

What do the axes of F' , moving with velocity v along the x -axis of F look like? Take the 

point (x', ct') = (0, 1) . From the lorentz transformations we can find that this point transforms 

to (x, ct) = (γv/c, γ) . As shown in the angle between the ct' and ct axes is given 

by: tanθ 1 = x/ct = v/c . Actually, the ct' axis is just the worldline of the origin of F' . The 

point (x, ct) = (γv/c, γ) is a distance  = γ  from the origin, so 

the ratio of units on the ct' axis to those on the ct axis is just this value, namely: 

 =      

This approaches infinity as v→c and is one if v = 0 . Similar analysis shows that the x' axis 

is an equal angle from the x -axis and that the ratio of units is also equal (see ). Thus, the 

faster F' relative to F , the more its coordinates are squished towards the x = ct line. 

The advantage of a Minkowski diagram is that the same worldline applies to both sets of 

coordinate axes (that is, to x and ct , as well as to x' and ct' ). The Lorentz transformation is made 

by changing the coordinate system underneath the worldline rather than the worldline itself. In 

many situations this allows us to visualize the perspectives of the different observers more easily. 

If we had a very detailed and accurate Minkowski diagram we could use it to read off the values 
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for Δx , Δct , Δx' , and Δct' . To find the spacetime coordinates of an event in F , one can read the 

value off the x and ct axes; to find the coordinates in a moving frame the x' and ct' axes 

corresponding to the appropriate velocity can be constructed (using the angle formulas explained 

above), and the value read off using the units derived for x' and ct' , above. 
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The mass of 70 kg man moving in car at 66kmh is 70 kg 100 kg infinite zero 70 kg

Special theory of relativity treats problems involvinginertial frame of reference non-inertial frame of reference non-accelerated frame of reference accelerated frame of reference inertial frame of reference

According to special theory of relativity which one is not an absolute quantitytime mass height both a and b both a and b

Conversion of solar energy into carbohydrates and starch by leaf of a plant is an example for energy into mass mass in to energy momentum into velocity velocity into momentum energy into mass

A reference frame attached to the earth: is an inertial frame by definition is an inertial frame because Newton’s laws are applicable in the frameCannot be an inertial frame because the earth is revolving round the sunCannot be an inertial frame because the earth is rotating about its own axis.is an inertial frame by definition

Two photons approach each other, their relative velocity will bec/2 Zero c/8 c c

An inertial frame is Accelerated decelarated Moving with uniform velocity or at rest.May be accelerated, decelerated or moving with constant velocityMoving with uniform velocity or at rest.

All the inertial frames are equivalent” this statement is called the principle of -----------relative motion equivalence inertia Correspondence. relative motion

According to relativity, the length of a rod in motion:is same as its rest length is more than its rest length is less than its rest length may be more or less than or equal to rest length depending on the speed of rod.is less than its rest length

If v = c, the length of a rod in motion is: zero equal to proper length less than proper length more than proper length. zero

According to special theory of relativity: speed of light is relative speed of light is same in all inertial framestime is relative mass is relative speed of light is same in all inertial frames

James travels at high speed from the Earth to the star Alpha Centauri, four light years away. In James’s framethe trip takes more time than it does in the Earth’s frame.James travels to Alpha Centauri over a length that is shorter than four light years.clocks on Earth and on Alpha Centauri are synchronized.Alpha Centauri travels to James over a length that is shorter than four light years.

Alpha Centauri travels to James over
 a length that is shorter than four light years.

Relativity mechanics is applicable for a particle which is moving with a velocityàGreater than that of light Less than that of light Comparable to that of light equal to velocity of light Comparable to that of light

The relativistic measurement depends uponà The state of motion of the observer as well as upon the quality that is being measured.The state of motion of the observer onlyThe quantity that is being measured absolute motion The quantity that is being measured

A frame which is moving with zero acceleration is calledNon-inertial frame Inertial frame rest frame decelerated frame Inertial frame

When we specific the place of occurrence of a phenomenon as well as the time of occurrence it is considered asa point an event an incident an accident an event

Newton’s law’s remain unchanged or invariant Under Galilean transformation under lorentz transformation cartesean transformation new transformation Under Galilean transformation

The laws of mechanics in all initial frame of reference aresame different none variable same

The acceleration of a particle under Galilean transformation isinvariant non-variant none variable invariant

The mass energy relation was proposed by Newton Einstein Kepler Michelson Einstein

The Lorentz transformation will converted to Galilean transformation when the relative velocity v between two inertial frames will satisfy the conditionv>>c v=c  v<<c v=0  v<<c

the length of an object is maximum in a reference frame in which it isat rest in motion neither rest nor in motion varying speed at rest

the length of a rod in uniform motion relative to an observer  appears to be shortened when it at rest w.r.t. to the observer appears to be lengthened when it is at rest w.r.t. to the observerequal to aboslute length invariant length

  appears to be shortened when it at rest 
w.r.t. to the observer

The time interval between two event in a reference in a reference frame which is in motion isMaximum minimum zero varying speed Maximum

A moving clock Runs slower than a stationary identical clockRuns than a stationary identical clockneither slow nor fast very fast Runs slower than a stationary identical clock

If the velocity of a moving particle is comparable to velocity of light then the mass of the moving object isGreater than when it is rest Smaller than when it is at rest Equal very smaller Greater than when it is rest

Einistein’s  mass energy equation E=mc2 implies thatEnergy disappears to reappear as mass Mass disappears  to reappear as energyAll the above statements are correct except dnothing can be done All the above statements are correct except d

How fast a particle must travel so that its mass becomes twice its rest mass?  0.5 c 2 c 0.866 c 0.9c 0.866 c

Relative velocity of two particles moving with velocity of light of light in opposite direction is0 2c c 3c c

For a photon particle which is moving with a velocity of light, the rest mass is 0 1 2 3 0

The fictitious force, which acts on particle in motion relative to a rotating frame of reference is calledCoriolis force  Newtonian force Pseudo force centripetal force Coriolis force

If the particle is at rest relative to the rotating frame of reference the coriolis force is 0 1 10 2 0

When the particle is at a non-rotating of reference the Coriolis force 1 0 2 3 0

The Coriolis acceleration on a freely falling body under the action of gravitational force isDirected towards the east Directed towards the west directed towards north directed towards south Directed towards the east

 According to theory of relative mass of an object is depends on particles.  speed of light.  volume of object.  area of object.  speed of light.

Radiation with energy that is easily detected as quanta 1 eV.  1 keV. 1 MeV. . 10-10 eV. 1 MeV.

lf the kinetic energy of a body becomes four times its initial value, the new momentum will be Three times the initial value  Four times the initial value  Two times the initial value  unchanged Two times the initial value

Lorentz transformation equations hold for Non-relativistic velocities only Relativistic velocities only . All velocities: relativistic & non-relativistic Photons only  All velocities: relativistic & non-relativistic

lf the kinetic energy of a body becomes four times its initial value, the new momentum will beThree times the initial value Four times the initial value . Two times the initial value  unchanged Two times the initial value

If the radius of the earth were to shrink, its mass remaining the same, the value of acceleration due to gravity at the pole and at the equator will Increase and decrease respectively  Decrease and increase respectively  Increase at both places  Decrease at both places  Increase at both places

What do we mean by the straightest possible path between two points on Earth's surface? a path that actually is a perfectly straight line a path that follows a circle of longitude a path that follows a circle of latitude the shortest path between the two points the shortest path between the two points 

Which of the following statements is not a prediction of the general theory of relativity? Time runs slightly slower on the surface of the Sun than on the surface of Earth. The Universe has no boundaries and no center. The curvature of spacetime can distort the appearance of distant objects. Different observers can disagree about the fundamental structure of spacetime. 

Different observers can disagree about the 
fundamental structure of spacetime. 

What does the equivalence principle say? Gravity is the same thing as curvature of spacetime. The effects of gravity are exactly equivalent to the effects of acceleration. All observers must always measure the same (equivalent) weights for moving objects. The effects of relativity are exactly equivalent to those predicted by Newton's laws of motion. 

The effects of gravity are exactly equivalent to 
the effects of acceleration. 

Each of the following is a prediction of the theory of relativity. Which one is crucial to understanding how the Sun provides light and heat to Earth? If you observe someone moving by you, you'll see their time running slowly. Gravity is curvature of spacetime. E = mc2 Time runs slower on the surface of the Sun than on Earth. E = mc2 

According to general relativity, how is time affected by gravity? Time is not affected by gravity. Time is stopped by any gravitational field. Time runs slower in stronger gravitational fields. Time is stopped by any gravitational field. Time runs slower in stronger gravitational fields. 

According to general relativity, a black hole is an object that cannot be seen. a hole in the observable universe a place where there is no gravity. a place where light travels faster than the normal speed of lighta hole in the observable universe

According to general relativity, why does Earth orbit the Sun? Earth is following the straightest path possible, but spacetime is curved in such a way that this path goes around the SunEarth is following the straightest path possible, but spacetime is curved in such a way that this path goes around the SunThe mysterious force that we call gravity holds Earth in orbit. The mysterious force that we call centripetalforce holds Earth in orbit. 

Earth is following the straightest path possible,
 but spacetime is curved in such a way that this 
path goes around the Sun



If you draw a spacetime diagram, the worldline of an object that is accelerating away from you is vertical. curved.  horizontal. slanted. curved. 

If you draw a spacetime diagram, the worldline of an object that is traveling by you at constant speed is vertical. curved.  horizontal. slanted. slanted. 

If you draw a spacetime diagram, the worldline of an object that is stationary in your reference frame is vertical. curved.  horizontal. slanted. vertical. 

What do we mean by dimension in the context of relativity? the size of an object the number of independent directions in which movement is possible the letter used to represent length mathematically the height of an object 

the number of independent directions in which 
movement is possible 

Suppose you claim that you are feeling the effects of a gravitational field. How can you explain the fact that Al is weightless? She is weightless because she is moving at constant velocity. She is weightless because she is in a free-float frame. She is weightless because she is in free-fall. If you are in a gravitational field, then she cannot be weightlessShe is weightless because she is in free-fall. 

Einstein's Theory of General Relativity states that gravity and acceleration are equivalent. the speed of light is constant. physics for accelerated and nonaccelerated frames are not the same.physics for nonmoving and moving frames are not the same.gravity and acceleration are equivalent.

Einstein said that gravity exists because massive objects warp space. massive objects attract one another. light moves randomly throughout the universeof the existence of black holes. massive objects warp space

According to Einstein, what is considered the fourth dimension?horizontal dimension curled dimension me dimension space dimension me dimension

Einstein's famous equation E = mc2 states that mass is always greater than energy. energy and mass are equivalent. energy and the speed of light are equivalent.mass and the speed of light are equivalent.energy and mass are equivalent.

A person is riding a moped that is traveling at 20.0 m/s. What is the speed of a ball if the moped rider throws a ball forward at 4.00 m/s while riding the moped? 20.0 m/s 3.00 × 108 m/s 24.0 m/s 3.00 × 108 m/s + 20.0 m/s 24.0 m/s

A beam of light travels at 3.00 × 108 m/s. If a moped moving at 20.0 m/s turns on its headlight, how fast does the light travel?20.0 m/s 3.00 × 108 m/s 3.00 × 108 m/s + 20.0 m/s 3.00 × 108 m/s – 20.0 m/s 3.00 × 108 m/s

Einstein's Second Postulate of Special Relativity states that the speed of light 

is constant regardless of the speed of the 
observer or the light source.

can increase if the speed of the 
light source increases.

can decrease if the speed of the 
observer decreases.

randomly changes depending 
upon its original light source.

is constant regardless of the speed of the 
observer or the light source.

A particular task requires 3.46 J of energy. Using E = mc2, how much mass is needed to accomplish this task?3.11 × 1017 kg 3.84 × 10–17 kg 3.46 × 10–8 kg 1.15 × 10–8 kg 3.84 × 10
–17

 kg

Mass of 700 N man moving in car at 66 kmh
-1

 is  70 kg. 100Kg 0 10Kg  70 kg.

Special theory of relativity treats problems 
involving  inertial frame of reference. non-inertial frame of reference.

 non-accelerated frame of 
reference.  accelerated frame of reference.  inertial frame of reference.
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