Enable | Enlighten | Enrich (Deemed to be University) (Under Section 3 of USC Ast 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE-21.

FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES

13BECS601 NUMERICAL ANALYSIS 3 1 0 4 100

INTENDED OUTCOMES:

- To make the students acquainted with the basic concepts in numerical methods and their uses.
- To impart the procedure for solving different kinds of problems occur in engineering numerically.

UNIT- I TYPES OF ERRORS, SOLUTION OF ALGEBRAIC EQUATIONS Different types of errors- Newton Raphson method, Modified Newton Raphson method, Method of false position.

UNIT -II SOLUTION OF ALGEBRAIC SIMULTANEOUS EQUATIONS

Gauss - Jordan elimination, Cholesky method, Crout's method, Gauss - Jacobi method, Gauss - Seidel method. Matrix Inverse by Gauss - Jordan method.

Eigenvalues and eigenvectors: Power method for finding dominant eigenvalue and inverse power method for finding smallest eigenvalue, Jacobi method for symmetric matrices.

UNIT- III FINITE DIFFERENCES AND INTERPOLATION

Finite difference operators $-E, \Delta, \nabla, \delta, \mu, D$ - Interpolation-Newton-Gregory forward and backward interpolation, Lagrange's interpolation formula, Newton divided difference interpolation formula.

UNIT- IV DIFFERENTIATION AND INTEGRATION

Numerical differentiation using Newton-Gregory forward and backward polynomials. Numerical Integration-Gaussian quadrature, Trapezoidal rule and Simpson's one third rule.

Ordinary differential equations: Taylor series method, Euler and Modified Euler method, (Heun's method). Runge-Kutta method, Milne's method, Adams-Moulton method, Solution of boundary value problems of second order by finite difference method.

UNIT- V PARTIAL DIFFERENTIAL EQUATIONS

Classification of partial differential equations of second order. Liebmann's method for Laplace equation and Poisson equation, Explicit method and Crank - Nicolson method for parabolic equations. Explicit method for hyperbolic equations.

MATLAB: Matlab – Toolkits – 2D Graph Plotting – 3D Graph Plotting.

TEXT BOOKS:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publication
1	Burden, R. L. and Faires, T. D	Numerical Analysis	Thomson Asia Pvt. Ltd., Singapore.	2002
2	Curtis F. Gerald and Patrick O. Wheatley	Applied Numerical Analysis	Pearson Education, South Asia	2009

REFERENCES:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publication
1	Steven C.Chapra and Raymond P.Canale	Numerical Methods for Engineers with Software and Programming Applications	Tata McGraw Hill, New Delhi	2004
2	Gerald, C.F. and Wheatley, P.O	Applied Numerical Analysis	Pearson Education Asia, New Delhi	2002
3	Balagurusamy.E	Numerical Methods	Tata McGraw Hill Pub.Co.Ltd, New Delhi.	2009

WEBSITES:

- 1.www.nr.com
- 2. www.numerical-methods.com
- 3. www.math.ucsb.edu
- 4. www.mathworks.com

Enable | Enlighten | Enrich (Deemed to be University) (Under Section 3 of USC Act 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE-21.

FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES

13BECS601 NUMERICAL ANALYSIS LESSON PLAN

S.NO.	TOPICS TO BE COVERED	HOUR(S)	
	UNIT I :TYPES OF ERRORS, SOLUTION OF		
	ALGEBRAIC EQUATIONS		
	Different types of errors	1	
	Different types of errors	1	
	Newton Raphson method	1	
	Newton Raphson method	1	
Unit-I	Tutorial1Newton Raphson method	1	
	Modified Newton Raphson method	1	
	Modified Newton Raphson method	1	
	Method of false position	1	
	Method of false position	1	
	Tutorial 2 Method of false position	1	
	TOTAL	10	
	UNIT II : SOLUTION OF ALGEBRAIC SIMI	ULTANEOUS	
	EQUATIONS		
	Gauss - Jordan elimination	1	
	Cholesky method	1	
	Crout's method	1	
	Gauss - Jacobi method	1	
	Gauss - Seidel method	1	
	Tutorial 3Gauss - Jordan elimination, Cholesky	1	
	method, Crout's method, Gauss - Jacobi method	1	
	Matrix Inverse by Gauss - Jordan method	1	
Unit-II	Matrix Inverse by Gauss - Jordan method	1	
UIIIt-II	Power method for finding dominant eigenvalue	1	
	Inverse power method for finding smallest eigenvalue	1	
	Power method for finding dominant eigenvalue		
	and inverse power method for finding smallest	1	
	eigenvalue		
	Tutorial4Power method for finding dominant		
	eigenvalue and inverse power method for	1	
	finding smallest eigenvalue	_	
	Jacobi method for symmetric matrices	1	
	Jacobi method for symmetric matrices	1	
	TOTAL	14	
Unit-III	UNIT III : FINITE DIFFEREN		

	INTERPOLATION	
	,	
	Finite difference operators $-E, \Delta, \nabla, \delta, \mu, D$	1
	Finite difference operators $-E, \Delta, \nabla, \delta, \mu, D$	1
	Interpolation	1
	Newton-Gregory forward and backward interpolation	1
	Newton-Gregory forward and backward interpolation	1
	Tutorial 5Finite difference operators – $E, \Delta, \nabla, \delta, \mu, D$ - Interpolation-Newton-Gregory forward and backward interpolation	1
	Lagrange's interpolation formula	1
	Lagrange's interpolation formula	1
	Newton divided difference interpolation formula	1
	Newton divided difference interpolation formula	1
	Tutorial 6 Lagrange's interpolation formula, Newton divided difference interpolation formula.	1
	TOTAL	11
	UNIT IV : DIFFERENTIATION AND INTEG	RATION
	Numerical differentiation using Newton- Gregory forward and backward polynomials	1
	Gaussian quadrature	1
	Trapezoidal rule	1
	Simpson's one third rule	1
	Tutorial 7Numerical differentiation using Newton-Gregory forward and backward polynomials. Numerical Integration-Gaussian quadrature, Trapezoidal rule and Simpson's one third rule.	1
Unit-IV	Taylor series method	1
	Euler and Modified Euler method	1
	Runge-Kutta method	1
	Runge-Kutta method	1
	Milne's method	1
	Adams-Moulton method	1
	Tutorial 8Taylor series method, Euler and Modified Euler method, (Heun's method). Runge-Kutta method, Milne's method, Adams-Moulton method	1
	Solution of boundary value problems of second order by finite difference method.	1
	Solution of boundary value problems of second	1

	order by finite difference method.	
	TOTAL	14
	UNIT V : PARTIAL DIFFERENTIAL EQUAT	TIONS
	Classification of partial differential equations of second order	1
	Liebmann's method for Laplace equation	1
	Liebmann's method for Laplace equation	1
	Liebmann's method for Poisson equation	1
	Liebmann's method for Poisson equation	1
	Tutorial 9Liebmann's method for Laplace	1
	equation and Poisson equation	1
	Explicit method for parabolic equations	1
Unit-V	Crank - Nicolson method for parabolic	1
	equations	_
	Crank - Nicolson method for parabolic	1
	equations	
	Explicit method for hyperbolic equations	1
	Tutorial 10 Explicit method and Crank -	
	Nicolson method for parabolic equations.	1
	Explicit method for hyperbolic equations.	1
		44
	TOTAL	11
	GRAND TOTAL	50
		+ 10

STAFF

```
Unit - I
             Solutions of Equations and Eigen Value Problems.
        1) Write the gn egn f(x) = 0 into the form x = \sigma(x)
            Iterative Method :
       1) Write the given x = \varphi(x)

Form x = \varphi(x)

Assume that x = x_0 be the groot \varphi the given eqn

The first approximation to the groot is \varphi(x) = \varphi(x_0)

is \varphi(x) = \varphi(x_0)

\varphi(x) = \varphi(x_0)

\varphi(x) = \varphi(x_0)

\varphi(x) = \varphi(x_0)

\varphi(x) = \varphi(x_0)
             = \varphi(x_{n-1})
= \chi_n \text{ is the not } q \text{ the } qn \text{ egp}
= \chi_n \text{ is the noot } q \text{ the } qn \text{ egp}
Find the noot of the equation of x = 3x-1, using iteration Method
              30ln
(800) \circ f(x) = \cos x - 3x + 1
               .. The groot lies between o and 1 1/2
```

The egn can be written as

$$0.5 \times -3 \times +1 = 0$$
 $-3 \times -6.5 \times -1$
 $3 \times = 0.5 \times +1$
 $4 \times = \frac{1}{3} [1 + 0.5 \times]$

Let $\phi(x) = \frac{1}{3} (1 + 0.5 \times)$
 $|\phi'(x)| = \frac{1}{3} \sin x$
 $|\phi'(x)| = \frac{1}{3} \sin x$
 $|\phi'(x)| = \frac{1}{3} \sin x$

Let $x_0 = 0$
 $x_1 = \phi(x_0) = \frac{1}{3} (1 + 0.5 \times 0) = \frac{1}{3} (1 + 0.5 \times 0)$
 $x_1 = \phi(x_0) = \frac{1}{3} (1 + 0.5 \times 0) = \frac{1}{3} (1 + 0.5 \times 0)$
 $x_2 = \phi(x_1) = \frac{1}{3} (1 + 0.5 \times 0) = \frac{1}{3} (1 + 0.5 \times 0)$
 $x_3 = \phi(x_2) = \frac{1}{3} (1 + 0.5 \times 0) = \frac{1}{3} (1 + 0.5 \times 0)$
 $x_4 = \phi(x_3) = \frac{1}{3} (1 + 0.5 \times 0) = \frac{1}{3} (1 + 0.5 \times 0)$
 $x_4 = 0.6067$
 $x_4 = 0.6067$

```
x_5 = \varphi(x_4) = \frac{1}{3} (1 + \cos x_4) = \frac{1}{3} (1 + \cos x_5)
          x_{5} = 6.6072
x_{5} = 9(x_{5}) = \frac{1}{3}(1+\cos x_{5}) = \frac{1}{3}(1+\cos x_{5})
  x_6 = 0.6071
x_7 = 9(x_6) = \frac{1}{3}(1+\cos x_6) = \frac{1}{3}(1+\cos 0.6071)
             The orequired Groot is 6.6071.
   Solve the equation x^2 - 2x - 3 = 0
for the tre stoot by iteration metho
f(x) = x^{2} - 2x - 3
f(0) = 0 + 2(0) - 3 = -3 -  -ve
f(1) = -4 -  -ve
f(2) = -3 -  -ve
f(3) = 0 -  +ve
f(3) = 0 -  +ve
if the 9100t lies between
                         \chi^2 = 2x + 3
                            x= \2x+3
```

```
\varphi(x) = \sqrt{2x+3} = (2x+3)^{1/2}
\varphi'(x) = \frac{1}{2}(2x+3)^{-1/2} = \frac{1
                                                                                          |9'(x)| = |(2x+3)^{-1/2}|
  19'(2) | = 19'(3) | = 1
                                     Take x_0 = 2.5

x_1 = \varphi(x_0) = \sqrt{2x_0+3} \pm \sqrt{2(2.5)+3} = 2.8284

x_2 = \varphi(x_1) = \sqrt{2x_1+3} = \sqrt{2(2.8284)+3} = 2.9422

x_3 = \varphi(x_2) = \sqrt{2x_3+3} = \sqrt{2(2.9422)+3} = 2.9807

x_4 = \varphi(x_3) = \sqrt{2x_3+3} = \sqrt{2(2.9807)+3} = 2.9936

x_4 = \varphi(x_4) = \sqrt{2x_4+3} \pm \sqrt{2(2.9936)+3} = 2.9979

x_5 = \varphi(x_4) = \sqrt{2x_4+3} \pm \sqrt{2(2.9936)+3} = 2.9979
                                                     y_6 = \varphi(x_5) = \sqrt{2x_5+3} = \sqrt{2(2.979)+3} = 2.9993
                                                        x_1 = \varphi(x_6) = \sqrt{2x_6+3} = \sqrt{2(2.9998)+3} = 2.9998

x_2 = \varphi(x_1) = \sqrt{2x_1+3} = \sqrt{2(2.9998)+3} = 2.9999
                                                             9/9 = 9(x8) = \sqrt{2x8+3} = \sqrt{2(2.9999)+3} = 2.9999
                                                                        The graquired groot is 2.9999
```

3 solve by iteration Method
$$3x - \log_{10} x = 7$$
 3000
 $2x - \log_{10} x - 7 = 0$
 $f(x) = 9x - \log_{10} x - 9$
 $f(x) = -5 - 9 - 9e$
 $f(x) = -3 \cdot 3010 - 9 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 9e$
 $f(x) = -1 \cdot 4711$

X X	$a = \varphi(x_1) = \frac{1}{2} \left[\frac{109_{10}}{2} x_1 + 7 \right]$ $= \frac{1}{2} \left[\frac{109_{10}}{3} x_1 + 7 \right]$	
×	$x_{2} = 3.7886$ $3 = 9(x_{2}) = \frac{1}{2} [109_{10} x_{2} + 7]$ $= \frac{1}{2} [109_{10} x_{2} + 7]$	
X	$x_{3} = 3.7892$ $= 9(x_{3}) = \frac{1}{2} \left[\frac{109}{10} x_{3} + 7 \right]$ $= \frac{1}{2} \left[\frac{109}{10} x_{3} + 7 \right]$	ie.
(a, 2) ni	The graguired root is 3.7.893	7
H.W. Jind egn	the negative goot 9 the $x^3-2x+5=0$	
	6811.8-	

$$= \begin{cases} \frac{5}{13} & 0 & 1 & \frac{44}{13} \\ 0 & 0 & 1 & \frac{5}{13} \\ 0 & 0 & 1 & \frac{7}{13} \\ 0 & 0 &$$

$$[A,B] = \begin{cases} 1 & 3 & 3 & 16 \\ 1 & 4 & 3 & 18 \\ 1 & 3 & 4 & 19 \end{cases}$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 1 & 3 & 4 & 19 \end{cases}$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 2 & 1 & 0 \\ 0 & 0 & 1 & 3 \end{cases} R_{2} - > R_{2} - R,$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{cases} R_{1} - > R_{1} - > R_{2}$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{cases} R_{1} - > R_{1} - R_{2}$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{cases} R_{1} - > R_{1} - R_{2}$$

$$= \begin{cases} 1 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{cases} R_{1} - > R_{2}$$

$$= \begin{cases} 1 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 &$$

3 Solve
$$10x + y + z = 12$$
 $2x + 10y + z = 13$
 $2x + y + 5z = 7$

30 10

$$\begin{bmatrix}
A, B \end{bmatrix} = \begin{bmatrix}
10 & 1 & 1 & 1 \\
2 & 10 & 1 & 1 \\
1 & 1 & 5 & 7
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
1 & 1_{10} & 1_{10} & 1_{10} \\
1 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

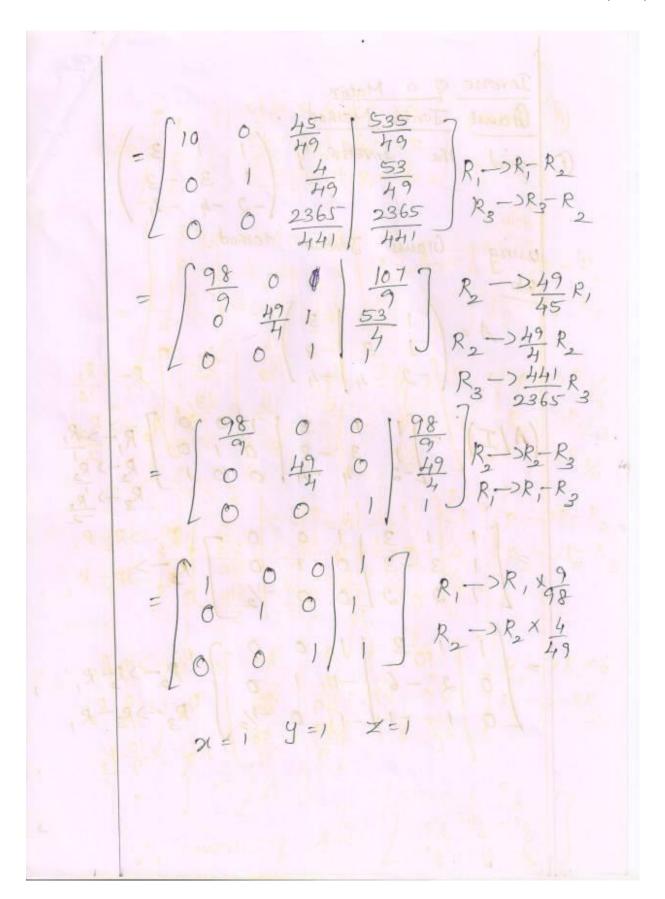
$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$


$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

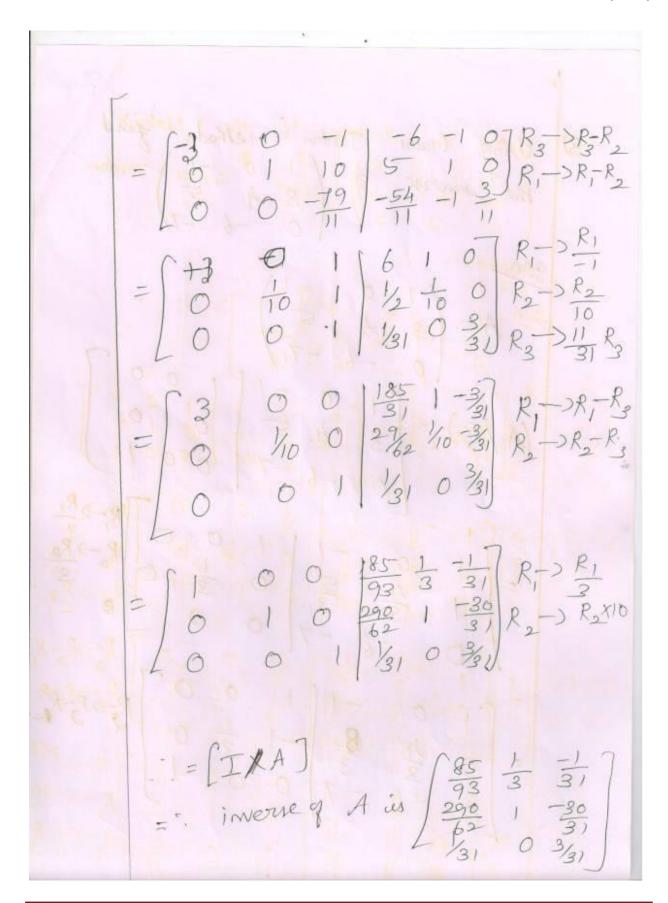
$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} \\
0 & 1_{10} & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

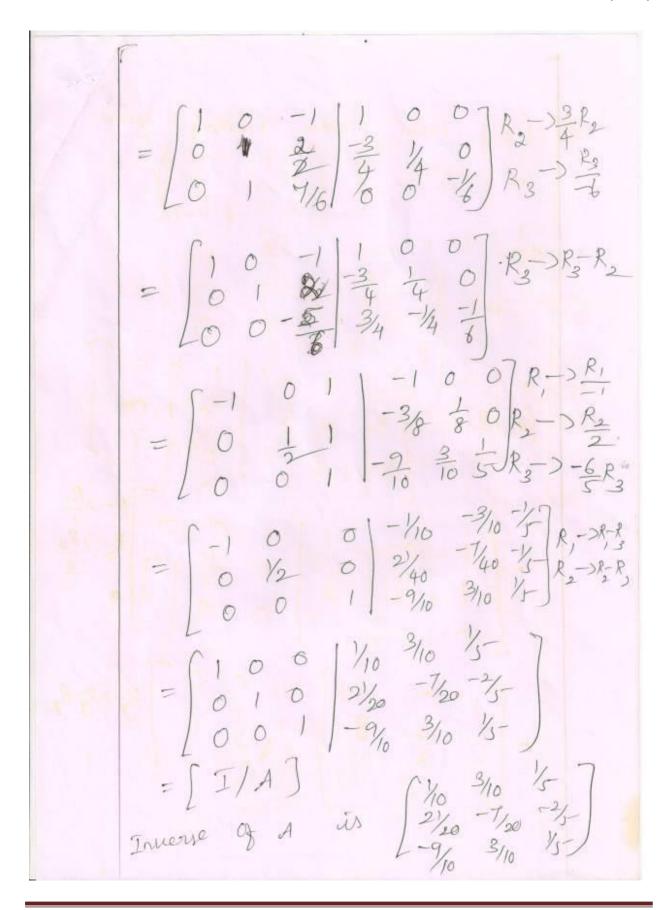
$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{10} & 1_{1$$

Inverse of a Matrix Graus Jordan Method


gind the inverse of
$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$$

using Graus Jordan Method.


A = $\begin{pmatrix} 1 & 3 & 3 & 1 & 0 & 0 \\ 1 & 3 & -3 & 0 & 1 & 0 \\ -2 & -4 & -4 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} R_1 - S_1 \\ R_2 - S_2 \\ R_3 - 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 & 0 & 0 \\ R_1 - S_2 \\ R_2 - 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 & 0 & 0 \\ R_2 - 1 & S_2 \\ R_3 - 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 & 0 & 0 \\ R_2 - 1 & S_2 \\ R_3 - 1 & S_2 - 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 & 0 & 0 \\ R_2 - 1 & S_2 - 1 \\ R_3 - 1 & S_3 - 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & -6 & -1 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 & -1/2 \end{bmatrix} \begin{bmatrix} R_2 - 1 & R_3 - 1 & R_3 - 1 & R_3 \\ R_3 - 1 & S_3 - 1 \end{bmatrix}$

$$= \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} R_1 - 3R_1 \\ R_2 - 3R_3 \\ R_3 - 3R_3 - R_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 6 & 3_2 & -\frac{1}{2} & 0 \\ 0 & 0 & 2 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 2 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2$$

3)	Using Grauss Jordan Method find the inverse of (3 4 5)
190	Solo -1 -1
9 11 2	$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & -6 & -7 \end{pmatrix}$
18-74C	$(A/I) = \begin{vmatrix} 3 & 4 & 5 \\ 0 & -6 & -7 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & -6 \end{vmatrix}$
a de	$= \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $
dix'd	1 3 3 1 0 0 1 B
下卡	= \[\begin{pmatrix} 0 & \lefta & \left
18/2	10 -6 -11 sie ani

Aur		
100	Graus Jacobi Method	8 7 7 7
. 0	Solve the following egns by a	Taus Talebi
The same	20x +4-2Z=11	
1914.	3x + 20y - 2 = -18 2x - 3y + 20z = 25	
1999	$x = \frac{17 - y + 2z}{20}$ $y = \frac{-18 + z - 3x}{20}$	Z = 25 - 2x + 3y
	20	
7.0	$x_0 = 0$ $y_0 = 0$ $x = 0.85$ $y_1 = -0.9$	Zo = 0 Z, = 1.25
PATTERNAL >	0.9/-	Z2=1.03
	2 1 - 1.0015	Z3 = 1.0033 a
A 100 A	3	24 = 0.9996
	4	Z5-=0.9999
19.18	$x_5 = 0.9999$ $y_5 = -1.0001$ $y_6 = -1$	Z6 = 1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z7 = 1
=3311/6-5	Drozel-P. Kenp	Se in
	x = 1, y = -1, z	=),
2	Solve 28x + 4y-z=32	30.08 6
(2)	x+3y +10x = 24	
	2x +174 +4x=35	

	$\chi = \frac{32 - 49 + 7}{28} y = \frac{35 - 4x - 2x}{17} z = \frac{24 - x - 3y}{10}$
PP199	$y_0 = 0$ $y_0 = 0$ $y_1 = 1.1429$ $y_1 = 2.0588$ $y_2 = 0.9345$ $y_2 = 1.3597$ $y_3 = 1.0082$ $y_4 = 1.4935$ $y_4 = 1.8323$ $y_4 = 1.4935$ $y_5 = 1.8323$ $y_6 = 0.9931$ $y_7 = 1.5058$ $y_7 = 1.8490$ $y_7 = 1.8490$ $y_8 = 0.9936$ $y_8 = 1.5070$ $y_8 = 0.9936$ $y_8 = 1.5070$ $y_8 = 1.8486$ $y_9 = 1.5070$ $y_9 = 1.8485$
3	$y_{11} = 0.9936$ $y_{11} = 1.5070$ $y_{11} = 1.8485$ x = 0.9936 $y = 1.5076$ $z = 1.8485x = 0.9936$ $y = 1.5076$ $z = 1.8485801Ve 27x + 6y - z = 85x + y + 54z = 1106x + 15y + 21 = 72$

$\chi = \frac{85 - 69 + 2}{27}$	y=72-6x-2z	Z= 110-X-Y-
$n_0 = 0$ $x_1 = 3.148$ $x_2 = 2.157$ $x_3 = 2.492$ $x_4 = 2.401$ $x_5 = 2.432$ $x_6 = 2.426$ $x_8 = 2.426$	$y_0 = 0$ $y_1 = 4.8$ $y_2 = 3.269$ $y_3 = 3.685$ $y_4 = 3.545$ $y_5 = 3.583$ $y_6 = 3.570$ $y_7 = 3.574$ $y_8 = 3.573$	$Z_{0} = 0$ $Z_{1} = 2.037$ $Z_{2} = 1.890$ $Z_{3} = 1.937$ $Z_{4} = 1.923$ $Z_{5} = 1.926$ $Z_{7} = 1.926$ $Z_{7} = 1.926$ $Z_{8} = 1.926$
0.0	y = 3.573	

	Solve $20x + y - 2z = 17$ 3x + 20y - z = -18 2x - 3y + 20z = 25 Solve $3x + 20y - z = -18$ 2x - 3y + 20z = 25 $x = \frac{17 - y + 2z}{20}$ $y = \frac{-18 - 3x + z}{20}$ $z = \frac{95 - 2x + 3y}{20}$ $x = \frac{17 - y + 2z}{20}$ $y = 0$ $z = 0$ x = 0.82 $y = -1.0275$ $z = 0.9998$
2	Solve $4x + 2y + z = 14$ x + 5y - z = 10 x + y + 8z = 20

$\mathcal{H} = \frac{85 - 6y + Z}{27}$	y= 72-6x-2z	Z=110-x-154
$n_0 = 0$ $n_1 = 3.148$ $n_2 = 2.432$ $n_3 = 2.426$ $n_4 = 2.426$	$y_0 = 0$ $y_1 = 3.541$ $y_2 = 3.572$ $y_3 = 3.573$ $y_4 = 3.573$	$z_0 = 0$ $z_1 = 1.913$ $z_2 = 1.926$ $z_3 = 1.926$ $z_4 = 1.926$
x = 2.42 $y = 3.57$ $z = 1.92$	3	

100			
Krestle.	$x = \frac{14 - 2y - z}{4}$	$y = \frac{10 - \chi + Z}{5}$	Z=20-x-y
0 1	$x_0 = 0$ $x_1 = 3.5$	Y ₀ = 0 Y ₁ = 1.3	Z0=0 Z1=1.9
150-10	N2 = 2.375	$y_2 = 1.905$ $y_3 = 1.982$	$Z_2 = 1.965 Z_3 = 1.995 -$
706.11	$x_3 = 2.056$ $x_4 = 2.010$	y ₄ = 1.997 y ₋ = 1.999	Z4=1.999 Z5=2
	$x_5 = 2.002$ $x_7 = 2.001$ $x_7 = 2$	y ₆ = 2 y ₇ = 2	Zb=2 " Zy=2
	Ng = 2	y8 = 2	Z8 = 2
	·: X=	&, y = &, Z=	2
3	n + y	-6y-Z = 85 +542 = 110 15y+2Z = 72	

Eigen Values g a Matrix by power Method
Find the numerically largest eigen Value of A = \begin{pmatrix} 25 & 1 & 2 & 7 \\ 1 & 3 & 0 & 3 \\ 2 & 0 & -4 & 5 \end{pmatrix} and its corresponding the
eigen vector as (100) (upto
eigen veitor by power initial eigen veitor as (100) (upto three decimal places
Three decimal)
$\frac{Solo}{x}$
O Cruien $X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
10/
$A = \begin{pmatrix} 25 & 1 & 2 \\ 2 & 2 & 0 \end{pmatrix}$
$A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$
2 125 11
$A \times_{1} = \begin{pmatrix} 25 & 12 \\ 1 & 30 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 25 \\ 1 \\ 2 \end{pmatrix} = 25 \begin{pmatrix} 0.04 \\ 0.08 \end{pmatrix} = 25 \times_{2}$
AX1 (20-4/0/ 2/ 10.08)
$A \times_{2} = \begin{pmatrix} 25 & 12 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0.04 \\ 0.08 \end{pmatrix} = \begin{pmatrix} 25.2 \\ 1.12 \\ 0.08 \end{pmatrix} = 25.2 \begin{pmatrix} 1 \\ 0.0444 \\ 0.0667 \end{pmatrix}$
= 25.2 X ₃
$A \times_{3} = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0.0444 \\ 0.0667 \end{pmatrix} = \begin{pmatrix} 25.1778 \\ 1.1232 \\ 1.7337 \end{pmatrix} = 25.1778 \times_{9} \begin{pmatrix} 0.0450 \\ 0.0689 \end{pmatrix}$ $= 25.1778 \times_{9}$
9

A
$$X_{4} = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0.0450 \\ 0.06887 \end{pmatrix} = \begin{pmatrix} 25.1826 \\ 1.1353 \\ 0.0685 \end{pmatrix} = 25.1826 X_{5}$$

A $X_{5} = \begin{pmatrix} 25.1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0.0451 \\ 0.0685 \end{pmatrix} = \begin{pmatrix} 25.1821 \\ 1.1353 \\ 1.7260 \end{pmatrix}$

$$= 25.1821 \begin{pmatrix} 0.0451 \\ 0.0685 \end{pmatrix} = 25.1821 X_{5}$$

Dominant eigen Value $\lambda = 25.1821 X_{5}$

Oversponding eigen Vector is $\begin{pmatrix} 0.0451 \\ 0.0685 \end{pmatrix}$

Determine by Power need the largest eigen Value and the Genespending largest eigen Value and the Genespending eigen Vector of the Hatrin $\begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases}$

$$A = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases}$$

$$A \times_{1} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 & 2 & 1 \end{cases} = \begin{cases} 1 & 3 & -1 \\ 4 &$$

$$A \times_{q} = \begin{pmatrix} 0.4172 \\ 5-0869 \\ 11.7473 \end{pmatrix} = 11.7475 \begin{pmatrix} 0.0253 \\ 0.4330 \end{pmatrix} = 11.7475 \times_{g}$$

$$A \times_{g} = \begin{pmatrix} 0.3345 \\ 4.9735 \\ 11.6965 \end{pmatrix} = 11.6965 \begin{pmatrix} 0.0280 \\ 0.425 \\ 0.4229 \end{pmatrix} = 11.6718 \begin{pmatrix} 0.0260 \\ 0.4229 \\ 0.4229 \end{pmatrix}$$

$$A \times_{q} = \begin{pmatrix} 0.3039 \\ A.936 \\ 11.6718 \\ 0.4229 \\ 11.6656 \end{pmatrix} = 11.6718 \begin{pmatrix} 0.0263 \\ 0.4229 \\ 0.4221 \\ 11.6656 \\ 1.7618 \end{pmatrix} = 11.6656 \times_{11}$$

$$A \times_{11} = \begin{pmatrix} 0.2946 \\ 4.920 \\ 4.9128 \\ 11.6631 \end{pmatrix} = 11.6631 \begin{pmatrix} 0.0253 \\ 0.4221 \\ 0.4219 \end{pmatrix} = 11.6631 \times_{12}$$

$$A \times_{12} = \begin{pmatrix} 0.2907 \\ 4.9128 \\ 11.6631 \end{pmatrix} = 11.6624 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6623 \times_{14}$$

$$A \times_{13} = \begin{pmatrix} 0.2907 \\ 4.9128 \\ 11.6623 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6623 \times_{14}$$

$$A \times_{15} = \begin{pmatrix} 0.29 \\ 4.9181 \\ 11.6619 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6619 \times_{15}$$

$$A \times_{15} = \begin{pmatrix} 0.29 \\ 4.9181 \\ 11.6619 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6619 \times_{15}$$

The dominant eigen value is

11.6619

The corresponding eigen Vector is

$$\begin{pmatrix}
0.0249\\
0.4214
\end{pmatrix}$$
Find the dominant eigen value and the corresponding eigen vector 9 $A = \begin{cases} 161\\ 120\\ 003 \end{cases}$

Solo $A = \begin{pmatrix} 161\\ 120\\ 003 \end{pmatrix}$

$$A \times 1 = \begin{pmatrix} 161\\ 120\\ 003 \end{pmatrix} = 1 \begin{pmatrix} 161\\ 120\\ 003 \end{pmatrix} = 1 \cdot X_2$$

$$A \times 2 = \begin{pmatrix} 7\\3\\0 \end{pmatrix} = 7 \begin{pmatrix} 0.4286\\0 \end{pmatrix} = 7 \cdot X_3$$

$$A \times 3 = \begin{pmatrix} 3.5714\\ 1.8572 \end{pmatrix} = 3.5714 \begin{pmatrix} 0.52\\0.52 \end{pmatrix} = 3.5714 \times 4$$

$$A \times 4 = \begin{pmatrix} 4.12\\2.04\\0 \end{pmatrix} = 4.12 \begin{pmatrix} 0.4951\\0.52 \end{pmatrix} = 4.12 \times 5$$

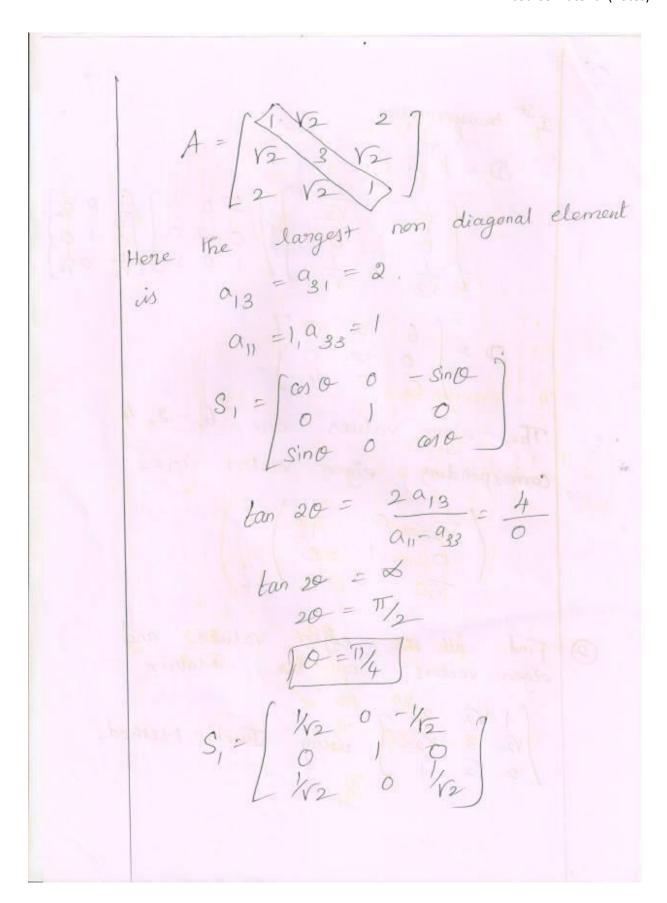
-	
E	igen Value of a Matrix by Jacobi 1ethod for Symmetric Matrix (CALO - Sin O)
	Let $P = \begin{pmatrix} a & a & -\sin a \\ \sin a & \cos a \end{pmatrix}$ $\int \tan^{-1} \left(\frac{2ai}{a} \right)$
	$O = \frac{1}{2} \tan^{-1} \left(\frac{2 a_{ij}}{a_{ii} - a_{ji}} \right)$ $D = P^{T} A P$
0	Apply Jacobi process to evaluate. The eigen values and eigen vectors The eigen Matrix (5 0 1) The Matrix (5 0 1)
	30lm A = (5 0 1)
	The largest non diagonal element is $a_{13} = a_{31} = 1$ $a_{11} = 5 a_{33} = 5$

$$\begin{aligned}
\tan 2\theta &= \begin{bmatrix} 2893 \\ a_{11} - a_{33} \end{bmatrix} = \frac{2}{5-5} \\
\tan 3\theta &= 8 \\
20 &= \tan^{3} 4 \\
20 &= \pi_{2}
\end{aligned}$$

$$\begin{aligned}
P &= \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
-\sin \pi/4 & 0 & -\sin \pi/4 \end{bmatrix}
\end{aligned}$$

$$P &= \begin{bmatrix} \cos \pi/4 & 0 & -\sin \pi/4 \\
-\sin \pi/4 & 0 & \cos \pi/4 \end{bmatrix}$$

$$P &= \begin{bmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ \sqrt{2} & 0 & \sqrt{2} \end{bmatrix}$$


Ist transformation

$$D = P^{T}AP$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

The eigen Values are $6, -2, 4$
corresponding eigen vectors are
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Find all the eigen values and eigen vectors at the Matrix
$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \end{bmatrix} \text{ using Javobi Method.}$$

$$B_{1} = S_{1}^{-1}AS_{1} = \begin{cases} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} &$$

$$S = S_1 S_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\therefore \text{ eigen vectors are } \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Questions	opt1	opt2	opt3	opt4	
In Regula-Falsi method, to reduce the number of iterations we start with interval	Small	large	equal	no	
The rate of convergence in Newton-Raphson method is of order		1	2	3	4
The condition for convergence for Newton-Raphson method is	f(x) < f'(x) ^2	f(x) > f'(x) ^2	f(x)f"(x) < f'(x) ^2	f(x) <1	
Newton's method is useful when the graph of the function crosses the x-axis is nearly	vertical	horizontal	close to zero	zero	
If the initial approximation to the root is not given we can find any two values of x say a and b such that f (a) and f(b) are				
ofsigns.	opposite	same	positive	negative	
f(a) f(b) then 'a' can be taken as the first approximation to the root.	<	>	=	≥	
The Newton – Raphson method is also known as method of	secant	tangent	iteration	interpolation	
The Newton- Raphson method will fail if in the neighborhood of the root	f(x)=0	f'(x) >0	f'(x) <0	f'(x) >1	
If f(x)=0 method should be used.	Newton - Raphson	Regula-Falsi	iteration	interpolation	
The rate of convergence of Newton – Raphson method is	quadratic	cubic		4	5
If f (a) and f (b) are of opposite signs the actual root lies between	(a, b)	(0, a)	(0, b)	(0, 0)	
The convergence of root in Regula-Falsi method is slower than	Gauss – Elimination	Gauss – Jordan	Newton - Raphson	Power method	
Regula-Falsi method is known as method of	secant	tangent	chords	elimination	
method converges faster than Regula-Falsi method.	Newton - Raphson	Power method	elimination	interpolation	
f(x) is continuous in the interval (a, b) and if f (a) and f (b) are of opposite signs the equation f(x) = 0 has at least one					
lying between a and b.	equation	function	root	polynomial	
$x^2 + 3x - 3 = 0$ is a polynomial of order		2	3	1	0
x is a root of f(x)=0 with multiplicity p,then method is used.	Generalized Newton - Raphson	Newton - Raphson	Regula-Falsi	Power	
Errors which are already present in the statement of the problem are called errors.	Inherent	Rounding	Truncation	Absolute	
Rounding errors arise during	Solving	Computation	Truncation	Absolute	
The other name for truncation error is error.	Absolute	Rounding	Inherent	Algorithm	
Rounding errors arise from the process of the numbers.	Truncating	Rounding off	Approximating	Solving	
Absolute error is denoted by	E_a	E_r	E_p	E_x	
Truncation errors are caused by using results.	Exact	True	Approximate	Real	
Truncation errors are caused on replacing an infinite process by one.				Exact	
Graffe's root squaring method is used for solving equation.	Approximate	True	Finite	EXact	
Crance 5 root squaring method is used for solving equation.	Approximate Polynomial	True Algebraic	Finite transcendental	wave	
Bairstow's method is used for finding roots of a polynomial equation.	**				
	Polynomial	Algebraic	transcendental	wave	
Bairstow's method is used for findingroots of a polynomial equation.	Polynomial Complex	Algebraic real	transcendental second order	wave first order	16
Bairstow's method is used for findingroots of a polynomial equation. The actual root of the equation lies between a and b when f (a) and f (b) are of signs.	Polynomial Complex	Algebraic real same	transcendental second order negative	wave first order positive	16 16

opt7 Small 2 $|f(x)f''(x)| < |f'(x)|^2$ vertical opposite tangent
 f'(x)=0
 Regula-Falsi
 quadratic
 (a, b)
 Newton – Raphson
 chords
 Newton – Raphson root Generalized Newton – Raphson Inherent
Computation
Algorithm
Rounding off
E_a
Approximate
Finite
Polynomial
Complex
Opposite 2

15.75 15.76

Numerical Methods

Unit -
$$\frac{\lambda}{2}$$

Interpolation and Approximation

 $y = \beta(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$, y_0
 $+ \frac{(x - x_0)(x - x_2)(x_0 - x_3)}{(x_1 - x_0)(x_1 - x_3)(x_1 - x_3)}$, y_1
 $+ \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_3)}$, y_2
 $+ \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_3)}$, y_3

1) Using Lagranges formula, find $\frac{\lambda}{y} = \frac{\lambda}{y} = \frac{\lambda}{y}$

$$= \frac{(x-1)(x-3)}{3}(5) + \frac{x(x-3)}{-2}(6) + \frac{x(x-1)}{6}(5)$$

$$= \frac{5}{3}[x^2-4x+3] - 3[x^2-3x] + \frac{50}{6}[x^2-x]$$

$$= x^2[\frac{5}{3}-3+\frac{50}{6}] + x[-\frac{30}{3}+9-\frac{50}{6}]$$

$$+ [\frac{15}{3}]$$

$$= 7x^2 + (-6)x + 5$$

$$y = p(x) = 7x^2-6x+5$$

2)

Using Lagranges interpolation yind $y(2)$

$$prom \text{ fine following data}$$

$$x = 0 + 1 + 3 + 5 + 625$$

$$y = 0 + 1 + 3 + 5 + 625$$

$$y = 0 + 1 + 3 + 3 + 5 + 625$$

$$y = p(x) = (x-x_1)(x-1_2)(x-x_3)(x-x_4)$$

$$+ (x-x_0)(x-x_2)(x-x_3)(x-x_4)$$

$$+ (x-x_0)(x-x_2)(x-x_3)(x-x_4)$$

$$+ (x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)$$

```
y(2) = \frac{(2-1)(2-3)(2-4)(2-5)}{(0-1)(0-3)(0-4)(0-5)} (0)
             + (2-0)(2-3)(2-4)(2-5-)
            \frac{(1-0)(1-3)(1-4)(1-5)}{+(2-0)(2-1)(2-4)(2-5)}(81)
\frac{(3-0)(3-1)(3-4)(3-5)}{(3-5)(3-1)(3-4)(3-5)}
              + (2-0)(2-1)(2-3)(2-5)
                 (4-0)(4-1) (4-3)(4-5) (256)
               +(2-0)(2-1)(2-3)(2-4) (625)
    =\frac{(2)(-1)(-2)(-3)}{(1)(-2)(-3)(-4)}+\frac{(2)(1)(-2)(-3)}{(3)(2)(-1)(-2)}(81)
    +(2)(1)(-1)(-3)(256) + (2)(1)(-1)(-2)(625)
(4)(3)(1)(-1)(-1)(-2)(625)
     =\frac{12}{24}+\frac{12}{12}(81)-\frac{6}{12}(256)+\frac{4}{40}(625)
    = 1 + 81 - 128 + 62.5
       = 0.5 + 81 - 128 + 62.5 = 16
3) Use Lagranges Method to find log 656, given that \log 654 = 2.8156, \log 658 = 2.8182, \log 659 = 2.8189 and \log 660 = 2.8202.
    soln
                   654 658 659
                   2.8156 2.8182 2.8189
    y=109, x
```

```
y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} \cdot y_0
                     \frac{+(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} \cdot y,
\frac{+(x-x_0)(x-x_1)(x_1-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} \cdot y
                 +\frac{(x_2-x_0)(x_2-x_1)(x_1-x_2)}{(x_2-x_0)(x_2-x_1)(x_2-x_2)}
      Put x=656
       y = f(656) = \frac{(656 - 658)(656 - 659)(656 - 661)}{(654 - 658)(654 - 659)(654 - 661)} \cdot (2.8156)
                  + (656-654) (656-659) (656-661)
              (658-654) (658-659) (658-661) (2-8182)
           +(656-654)(656-658)(656-661) (2.8189)
                          + (656-654) (656-659) (656-659). (2.8202)
(661-654) (661-659) (661-659)
        = \frac{(-2)(-3)(-5)}{(-4)(-5)(-7)} (2 \cdot 8156) + \frac{2(-3)(-5)}{4(-1)(-3)} (2 \cdot 8182).
     + \frac{(2)(-2)(-5)}{(5)(1)(-2)}(2-8189) + \frac{(2)(-2)(-3)}{(7)(3)(2)}(2-8208)
           =0.6033+7.0455 -5.6378 +0.8058
           =2.8168
4) Use Lagrangès formula to find the Value of y at n=6 from the following data

| x : 3 7 9 10
```

5) Gruien the values $ x $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cripp the values
Find $f(27)$ by $(37-17)(27-31)$ f(27-14)(27-17)(27-31)	2 14 17 31 39.1
Find $f(27)$ by $(37-17)(27-31)$ f(27-14)(27-17)(27-31)	P(M) 68-7 640 44.0 interpolation
Solo $x_{0} = 14 \qquad x_{1} = 17 \qquad x_{2} = 31 \qquad x_{3} = 35$ $y_{0} = 68 \cdot 7 \cdot y_{1} = 64 \qquad y_{2} = 44 \qquad y_{3} = 39 \cdot 1$ $y_{0} = 68 \cdot 7 \cdot y_{1} = 64 \qquad y_{2} = 44 \qquad y_{3} = 39 \cdot 1$ $y_{0} = (x_{0} - x_{1}) (x_{0} - x_{3}) (x_{0} - x_{3}) \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{3})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{3})(x_{1} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{2} - x_{3})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1}$	(Fint) by using Lagranges men
Solo $x_{0} = 14 \qquad x_{1} = 17 \qquad x_{2} = 31 \qquad x_{3} = 35$ $y_{0} = 68 \cdot 7 \cdot y_{1} = 64 \qquad y_{2} = 44 \qquad y_{3} = 39 \cdot 1$ $y_{0} = 68 \cdot 7 \cdot y_{1} = 64 \qquad y_{2} = 44 \qquad y_{3} = 39 \cdot 1$ $y_{0} = (x_{0} - x_{1}) (x_{0} - x_{3}) (x_{0} - x_{3}) \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{3})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{3})(x_{1} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{2} - x_{3})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{1})(x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})}{(x_{1} - x_{1})(x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2}) \cdot (x_{1} - x_{2})} \cdot (x_{1} - x_{2}) \cdot (x_{1}$	Find F(2+)
$y_{0} = 68 \cdot 7 \cdot y_{1} = 64 y_{2} = 44 y_{3} = 39 \cdot 1$ $y_{0} = 68 \cdot 7 \cdot y_{1} = 64 y_{2} = 44 y_{3} = 39 \cdot 1$ $y_{0} = (3x - x_{1}) (x - x_{2}) (x - x_{3}) \cdot y_{0} + \frac{(x - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})} \cdot y_{0} + \frac{(x - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x - x_{0})(x_{1} - x_{1})(x_{1} - x_{3})}{(x_{1} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} \cdot y_{0} + \frac{(x - x_{0})(x_{1} - x_{1})(x_{2} - x_{3})}{(x_{1} - 17)(x_{1} - 31)} \cdot y_{0} + \frac{(27 - 14)(27 - 31)(27 - 35)}{(17 - 14)(27 - 31)(17 - 35)} \cdot y_{0} + \frac{(27 - 14)(27 - 31)(27 - 31)}{(37 - 14)(37 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(27 - 17)(27 - 31)}{(35 - 17)(35 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(35 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(35 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(37 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-8)(35 - 17)(27 - 31)}{(37 - 17)(27 - 31)} \cdot y_{0} + \frac{(27 - 14)(-17)(27 - 31)}{(37$	formula 2 = 35
$y = \beta(\pi) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_3)(x_0-x_3)} \cdot y_0 + \frac{(x-x_0)(x_1-x_3)(x_1-x_3)}{(x_1-x_0)(x_1-x_3)(x_1-x_3)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_1-x_0)(x_1-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_1-x_0)(x_2-x_1)(x_2-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_1-x_0)(x_2-x_1)(x_2-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_1-x_0)(x_2-x_1)(x_2-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_0-x_0)(x_1-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_0-x_0)(x_1-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_0-x_0)(x_1-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_0-x_0)(x_1-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_1-x_1)(x_0-x_2)}{(x_0-x_0)(x_0-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_1)(x_0-x_2)}{(x_0-x_0)(x_0-x_1)(x_0-x_2)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_0)(x_0-x_1)(x_0-x_2)}{(x_0-x_0)(x_0-x_0)(x_0-x_0)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_0)(x_0-x_0)}{(x_0-x_0)(x_0-x_0)(x_0-x_0)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_0)(x_0-x_0)}{(x_0-x_0)(x_0-x_0)(x_0-x_0)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_0)(x_0-x_0)}{(x_0-x_0)(x_0-x_0)} \cdot y_0 + \frac{(x_0-x_0)(x_0-x_0)(x_0-x_0)}{(x_0-x_0)(x_0-x_0)(x_0-x_0)} \cdot y_0 + \frac$	$ Solo_{1}\rangle$ $ \chi\rangle = 1\rangle$ $ \chi\rangle = 1\rangle$
$y = \beta(\pi) = \frac{(\pi - \chi_{1})(\pi - \chi_{2})(\pi - \chi_{3})}{(\pi_{0} - \chi_{1})(\pi_{0} - \chi_{3})(\pi_{0} - \chi_{3})} \cdot y_{2} + \frac{(\pi - \chi_{0})(\pi - \chi_{1})(\pi_{2} - \chi_{2})}{(\pi_{0} - \chi_{0})(\pi_{2} - \chi_{1})(\pi_{2} - \chi_{3})} \cdot y_{2} + \frac{(\pi - \chi_{0})(\pi - \chi_{1})(\pi_{2} - \chi_{2})}{(\pi_{3} - \chi_{0})(\pi_{3} - \chi_{1})(\pi_{3} - \chi_{2})} \cdot y_{3} + \frac{(\pi - \chi_{0})(\pi_{1} - \chi_{1})(\pi_{2} - \chi_{2})}{(\pi_{1} - 1\pi)(14 - 31)(14 - 35)} \cdot (68 \cdot 7)$ $+ \frac{(27 - 14)(27 - 131)(27 - 35)}{(17 - 14)(31 - 17)(27 - 31)} \cdot (39 \cdot 1)$ $+ \frac{(27 - 14)(31 - 17)(27 - 31)}{(35 - 17)(35 - 31)} \cdot (39 \cdot 1)$ $+ \frac{(27 - 14)(35 - 17)(27 - 31)}{(35 - 17)(35 - 31)} \cdot (39 \cdot 1)$ $= \frac{(10)(-4)(-2)}{(-3)(-17)(-21)} \cdot (68 \cdot 7) + \frac{13}{(3)(-14)(-8)} \cdot (44)$ $+ \frac{(13)(10)(-8)}{(13)(10)(-8)} \cdot (44) + \frac{(13)(10)(-4)(5)}{(13)(10)(-9)(4)} \cdot (44)$	$y = 68.7. y_1 = 64$ $y = 64$ $y = 68.7. y_1 = 64$ $y = 68.7. y_2 = 64$
$P_{i}dt = 27$ $y = \beta(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} \cdot (68 \cdot 7)$ $y = \beta(27) = \frac{(27-14)(27-131)(27-35)}{(14-17)(14-31)(17-31)(17-35)} \cdot (64 \cdot 0)$ $+ \frac{(27-14)(27-13)(27-35)}{(17-14)(31-17)(31-35)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(27-31)}{(35-17)(35-17)(35-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(35-17)(35-31)} \cdot (39 \cdot 1)$ $= \frac{(10)(-4)(-\beta)}{(-3)(-17)(-21)} \cdot (68 \cdot 7) + \frac{13(-4)(-\beta)}{(3)(-14)(-\beta)} \cdot (44 \cdot 0)$ $= \frac{(10)(-4)(-\beta)}{(-3)(-17)(-21)} \cdot (44 \cdot 0) + \frac{(13)(10)(-4)(35-17)}{(33)(-14)(-3)(35-17)(35$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$P_{i}dt = 27$ $y = \beta(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} \cdot (68 \cdot 7)$ $y = \beta(27) = \frac{(27-14)(27-131)(27-35)}{(14-17)(14-31)(17-31)(17-35)} \cdot (64 \cdot 0)$ $+ \frac{(27-14)(27-13)(27-35)}{(17-14)(31-17)(31-35)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(27-31)}{(35-17)(35-17)(35-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(35-17)(35-31)} \cdot (39 \cdot 1)$ $= \frac{(10)(-4)(-\beta)}{(-3)(-17)(-21)} \cdot (68 \cdot 7) + \frac{13(-4)(-\beta)}{(3)(-14)(-\beta)} \cdot (44 \cdot 0)$ $= \frac{(10)(-4)(-\beta)}{(-3)(-17)(-21)} \cdot (44 \cdot 0) + \frac{(13)(10)(-4)(35-17)}{(33)(-14)(-3)(35-17)(35$	y= f(x) = (x0-x1) (x0-x1) (x0-x1) (x1-x1) (x1-x2).
$y = \beta(27) = \frac{(27-17)(27-31)(27-33) \cdot (68 \cdot 4)}{(14-17)(14-31)(14-35)} + \frac{(27-14)(27-38)(27-35)}{(17-14)(17-31)(17-35)} + \frac{(27-14)(27-31)(27-35)}{(31-14)(31-17)(27-31)} + \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(-2)(35-17)(35-31)}{(35-14)(-2)(35-17)(35-31)} + (13)(-4)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2$	$+(x-x_6)(x-x_1)(x-x_2)$ y_2 $(x_3-x_0)(x_3-x_1)(x_3-x_2)$ y_3
$y = \beta(27) = \frac{(27-17)(27-31)(27-33) \cdot (68 \cdot 4)}{(14-17)(14-31)(14-35)} + \frac{(27-14)(27-38)(27-35)}{(17-14)(17-31)(17-35)} + \frac{(27-14)(27-31)(27-35)}{(31-14)(31-17)(27-31)} + \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(-27-17)(27-31)}{(35-14)(-27-17)(27-31)} + \frac{(27-14)(-27-17)(27-31)}{(35-14)(35-17)(35-31)} + \frac{(27-14)(-27-17)(27-31)}{(35-14)(-27-17)(27-31)} + \frac{(27-14)(-27-17)(27-31)}{(35-17)(27-31)} + \frac{(27-14)(-27-31)}{(35-17)(27-31)} + \frac{(27-14)(27-31)}{(35-17)(27-31)} + \frac{(27-14)(27-31)}{(35-17)(27-31$	(N2-N0) (N2-N1) (N2 3)
$+ \frac{(27-14)(37-31)(17-35^{-})}{(17-14)(17-31)(17-35^{-})}$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(31-14)(31-17)(27-31^{-})} (44.0)$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(35-17)(27-31^{-})} (39.1)$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(35-17)(35-31^{-})} (39.1)$ $= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} (68-7) + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44)$ $+ \frac{(13)(10)(-8)}{(44)} (44) + \frac{(13)(10)(-4)(3)}{(4)(4)} (44)$	(27-35), $(68-7)$
$+ \frac{(27-14)(37-31)(17-35^{-})}{(17-14)(17-31)(17-35^{-})}$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(31-14)(31-17)(27-31^{-})} (44.0)$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(35-17)(27-31^{-})} (39.1)$ $+ \frac{(27-14)(27-17)(27-31^{-})}{(35-17)(35-31^{-})} (39.1)$ $= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} (68-7) + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44)$ $+ \frac{(13)(10)(-8)}{(44)} (44) + \frac{(13)(10)(-4)(3)}{(4)(4)} (44)$	$\rho_{12}(1) = (27-17)(2-31)(14-35)$
$ \frac{(17-14)(17-17)(27-35)}{(31-14)(31-17)(31-35)} (44.0) $ $ + \frac{(27-14)(31-17)(31-35)}{(37-17)(27-31)} (39.1) $ $ + \frac{(27-14)(27-17)(27-31)}{(35-31)} (39.1) $ $ = \frac{(10)(-4)(-2)}{(-3)(-17)(-21)} (68-7) + \frac{13(-4)(-8)}{(3)(-14)(-8)} $ $ = \frac{(10)(-4)(-2)}{(-3)(-17)(-21)} (44) $ $ = \frac{(13)(10)(-8)}{(44)} (44) $	
$ \frac{+(27-14)(27-17)(27)}{(37-14)(31-17)(31-35)} + (27-14)(27-17)(27-31) + (39.1) $ $ \frac{+(27-14)(27-17)(27-31)}{(35-17)(35-31)} + (39.1) $ $ \frac{-(35-14)(35-17)(35-31)}{(35-17)(35-31)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} + \frac{13(-4)(-8)(-8)}{(3)(-14)(-8)} + \frac{13(-4)(-8)(-8)}{(3)(-8)(-8)} + \frac{13(-4)(-8)(-8)}{(3)(-8)(-8)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(17-17)(27-17)(27-35) $= (44.0)$
$ \frac{1}{(35-14)} \frac{(35-17)}{(35-31)} \frac{(35-31)}{(35-31)} = \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} \frac{(68-7)}{(44)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} \frac{(13)(10)(-4)(3)}{(4)} = \frac{(13)(10)(-8)}{(44)} \frac{(13)(10)(-4)(3)}{(4)} = \frac{(13)(10)(-8)}{(44)} \frac{(13)(10)(-4)(3)}{(4)} = \frac{(13)(10)(-8)}{(44)} \frac{(13)(10)(-8)}{(44)} = \frac{(13)(10)(10)(-8)}{(44)} = \frac{(13)(10)(10)(10)(10)}{(44)} = \frac{(13)(10)(10)(10)(10)}{(44)} = \frac{(13)(10)(10)(10)}{(44)} = (13)(10)(10)(10$	
$ \frac{1}{(35-14)} \frac{(35-17)}{(35-31)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} = \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} \frac{(68-7)}{(3)(-14)(-8)} \frac{(13)(10)(-4)(3)}{(-4)(3)(10)(-8)} \frac{(13)(10)(-4)(3)}{(44)} = \frac{(13)(10)(-4)(10)}{(44)} = \frac{(13)(10)(10)(-4)}{(44)} = \frac{(13)(10)(10)(10)}{(44)} = (13)(10$	(37-14)(37-31)(27-31)(39.1)
$= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} + \frac{13(-4)(-8)}{(3)(-14)(-8)}$ $= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} + \frac{(13)(10)(-4)}{(3)(10)(-4)(3)}$ $= \frac{(13)(10)(-8)}{(44)} + \frac{(13)(10)(-4)}{(4)(12)(4)}$	+ (27-14) (35-31)
$= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} $ $= \frac{(13)(-17)(-21)}{(-3)(-18)(-8)} $ $= \frac{(13)(-14)(-8)}{(-3)(-14)(-8)} $ $= \frac{(13)(-14)(-8)}{(-3)(-14)(-8)} $ $= \frac{(13)(-14)(-8)}{(-3)(-14)(-8)} $	(35-14) (33) (33) (33) $(-4)(-8)$ (33)
$(-3)(10)(-8)(44)$ $+ \frac{(13)(10)(4)}{(10)(4)}$	(1)(-8) (68-1) 7 (-8)
1 (13)((-3)(-17)(-21) $+ (13)(10)(-4)(3)$
7 - 111/-4)	1 (13)(
= -20.52 + 35.22 + 48.07 - 13.45	(17) (14)
= -20.52 + 30	= -20.52 + 30

1) - 1 le Miving tomm in the following
Find the Missing term in the following table using Lagranges interpolation
table way 5 1 2 3 1.4
1 0 1 2 3 4 4 4 4 4 4 4 4 4
9 1 3 1 - 101
800 N = 2 N = 4
1
y = 3 $y = 9$ $y = 8$
(x-x1) (x-x2) (x-x3) y
$y = \beta(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} \cdot y_0$
() () () () ()
17/2-x0) (N-x1) (N2-x2) 2
$+(n-n_0)(n-n_1)(n-n_2)$ $+(n-n_0)(n-n_1)(n_3-n_2)$ $+(n-n_0)(n-n_1)(n_3-n_2)$
$+(\chi_{3}-\chi_{0})(\chi_{3}-\chi_{1})(\chi_{3}-\chi_{2})$ 3.
$y = \beta(3) = \frac{(3-1)(3-2)(3-4)}{(0-1)(0-2)(0-4)} (1) + \frac{(3-0)(3-2)(3-4)}{(1-0)(1-2)(1-4)} (3)$
$y = p(3) = \frac{(0-1)(0-2)(0-4)}{(0-1)(0-2)(0-4)}$
(2-0)(3-1)(3-1)(3-1)(3-1)(3-1)(3-1)(3-1)(3-1
(2-0)(2-1)(2-4) (1) (4-0)(4-1)(4-2)
$= -\frac{2}{8} \left\{ -3 \right\} + \frac{27}{2} + \frac{81}{4}$
=31.
7) Using Lagranges formula frove
1) wang 5 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$y_1 = y_3 - 0.3 (y_5 - y_{-3}) + 0.2 (y_{-3} + y_{-5})$

901n
$$y_{-5}$$
, y_{-3} , y_{3} , y_{5} occurs in the answers?

80 We can have the table

 $x = -5 = -3 = 3 = 5$
 $y = f(x) = (x-x_1)(x_1-x_2)(x_2-x_3) = y_{-5}$
 $+(x-x_0)(x_2-x_1)(x_0-x_2)(x_2-x_3) = y_{-5}$
 $+(x-x_0)(x_2-x_1)(x_2-x_3) = y_{-5}$
 $+(x-x_0)(x_2-x_1)(x_2-x_3) = y_{-5}$
 $+(x-x_0)(x_2-x_1)(x_3-x_3) = y_{-5}$
 $+(x-x_0)(x_3-x_1)(x_3-x_3) = y_{-5}$
 $+(x-x_0)(x_3-x_1)(x_3-x_2) = y_{-5}$

$$+ \frac{(0+3\circ)(0+13)(0-18)}{(8+3\circ)(3+13)(3-18)} \cdot (38)$$

$$+ \frac{(0+3\circ)(0+13)(0-3)}{(18+3\circ)(18+3)(8-3)} \cdot (48)$$

$$= 34 \cdot 23.$$

$$= 36 \cdot 23.$$

$$=$$

Newton's divided difference formula (unequal)

$$y = \beta(x) = y_0 + (x-x_0) \Delta \beta(x_0) + (x-x_0)(x-x_1) \Delta \beta(x_0) + (x-x_0)(x-x_1) \Delta \beta(x_0) + \cdots$$

O using Newton's divided difference formula find

 $\beta(x) = \beta(x) = \beta(x_0) = \beta(x_$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} -\frac{4}{6} \end{bmatrix} \frac{3}{14} \frac{7}{14} \\ + x \begin{bmatrix} 4 + \frac{12}{6} + \frac{2}{14} + \frac{2}{14} \end{bmatrix} + \begin{bmatrix} -\frac{4}{6} - \frac{8}{6} - \frac{14}{14} \end{bmatrix}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} -\frac{4}{6} \end{bmatrix} \frac{3}{14} \frac{7}{14}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14} \end{bmatrix} \frac{3}{14} + \frac{1}{14} \end{bmatrix}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14} \end{bmatrix} \frac{3}{14} + \frac{1}{14} \end{bmatrix}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + \frac{1}{14} \end{bmatrix}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + \frac{1}{14} \end{bmatrix}$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} \frac{1}{14}$$

 $y = \beta(x) = \beta(x_0) + (x - x_0) \Delta \beta(x_0) + (x - x_0)(x - x_0) \Delta^2 \beta(x)$ + (x-x0) (x-x,)(x-x2) B3 F(x) +(x-x0) (x-x1)(x-x2) (x-x3) 54 F(x) =1245 + (x+4)(-404) + (x+4)(x+1)(94)+ (x+4)(x+1)(x-0)(-4)+(x+4)(x+1)(x-0)(x-2)(3) =1245 - 404x - 1616 + (x2+5x+4) 94 + (x2+5x+4) x6(-14x) + (x2+5x+4)(5x2-6x) $=1245-404\times-1616+94x^2+470x+376$ $-14x^{3}-30x^{2}-50x+3x^{4}+15x^{3}+12x^{2}$ = |244 + 24 + 44 + 470 - 46 + 42 + 42 + 40 + 12 - 30 = 20 + 12 --6x3-30x2-24x +x[-404+470-56-24]+[1245-1616+376] $= 3x^{4} + 5x^{3} + 6x^{2} - 14x + 5$ the cubic Polynomial from the following using Newton's divided difference formula table find f(4) and hence

/	×	y=F(x)	1 DEIN)	1 SP(x)	1 13p(x)
OX.	0	2	2-2		
	Klinky	TAN ALAK	3-2 = 1	9-1 = 4	
	1	3	$\frac{12-3}{2-1} = 9$		9-4 =
	2	12	2-1	$\frac{45-9}{5-1} = 9$	5-0
			147-12 5-2=45	5-1	
	5	147	ic. In		
	y = f(x)	$= y_0 + (x - x)$	-xo) DF(N) xx	(n-no) (n-	$(x,)\Delta^2 f(n)$
	. (3	+(x-	(4) + (x-0)(x-1)	$3 \beta(x)$.	
	= 2,+((x-0)(x-1)	$(4)+(\chi-0)(\chi$	(-1)(x-2)	(1)
	= 254	$\alpha^2 4x +$	$(\chi^2 \chi)(\chi-2)$)	
	= 2+4	n2-4n+	n3-x2-2x2	+21	
	$= \chi^3$	+22-2	+2		
	Put x=		3 2		
	y = f		+4-4+2		
paramoti s lun		= 7	8		(3)
parmet s lucy	is no	/			
paradi	1 310	2 6		Posteri la	(4)

Cubic Spline Interpolation formula.

$$g(x) = \frac{1}{6R} \int_{R} (x_{1} - x)^{3} M_{1-1} - (x_{1} - x)^{3} M_{1} \int_{-\frac{1}{6}} (x_{1} - x)^{3} M_{1-1} - (x_{1} - x)^{3} M_{1} \int_{-\frac{1}{6}} (x_{1} - x)^{3} M_{1} \int_{-\frac{1}{6}} (x_{1} - x)^{3} \int_{R} (x$$

Solve
$$0 \neq 0$$
 $M_1 = -12$
 $M_2 = 48$

The cubic speine polynomial is $3M; 7$
 $S(x) = \frac{1}{6} \left[(x_1 - x)^3 M_{1-1} - (x_{1-1} - x)^3 M_{1} \right] + (x_1 - x) \int y_{1-1} - \frac{1}{6} M_{1-1} \int -(x_{1-1} - x) \int y_{1} - \frac{1}{6} M_{1} \int -(x_{1-1} -$

$$S(x) = \frac{1}{6} \left[(x_2 - x_1)^3 M_1 - (x_1 - x)^3 M_2 + (x_2 - x) \right] \left[y_1 - \frac{1}{6} M_1 \right]$$

$$- (x_1 - x) \left[y_2 - \frac{1}{6} M_2 \right]$$

$$= \frac{1}{6} \left[(1 - x)^3 (-12) - (0 - x)^3 (48) \right]$$

$$+ (1 - x) \left[1 - \frac{1}{6} (-12) \right] - (0 - x)$$

$$= \frac{1}{6} \left[-12 (1 - x)^3 + 48 x^3 \right] + 3 (1 - x) - 5 x$$

$$= \frac{1}{6} \left[-12 (1 - x)^3 + 3x + 3x^2 \right] + 48 x^3$$

$$= \frac{1}{6} \left[-12 (1 - x)^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12x^3 + 36x - 36x^2 + 48x^3 + 18x^3 +$$

The cubic 3pline Polynomial is
$$3(x) = \frac{1}{b} \int (x_{1} - x)^{3} M_{1-1} - (x_{1-1} - x)^{3} M_{1} \int +(x_{1} - x)^{3} M_{1-1} - (x_{1-1} - x)^{3} M_{1} \int +(x_{1} - x)^{3} \int (x_{1} - x)^{3} \int$$

John @ 7 3

= 3 M, +1,M2 + M3 = -12

4 x 3 = 3 M₂ + 16 M₃ = 48

M₁ - 15 M₃ = -60

Solve A 7 ©

M₁ = -60 + 15 M₃

M₂ = 12 - 4M,

M₃ = 30

M₁ = -60 + 450

The cubic Spline Polynomial is

$$S(x) = \frac{1}{6} \int (x_1 - x_1)^3 M_{1-1} - (x_1 - x_1)^3 M_{1-1}^2$$
 $+(x_1 - x_1) \int y_1 - \frac{1}{6} M_{1-1}^2$
 $-(x_1 - x_1) \int y_2 - \frac{1}{6} M_1^2$
 $S(x) = \frac{1}{6} \int (x_1 - x_1)^3 M_0 - (x_0 - x_1)^3 M_1^2$
 $-(x_1 - x_1) \int y_3 - \frac{1}{6} M_1^2$
 $S(x) = \frac{1}{6} \int (x_1 - x_1)^3 M_0 - (x_0 - x_1)^3 M_1^2$
 $-(x_0 - x_1) \int y_3 - \frac{1}{6} M_0^2$
 $-(x_0 - x_1) \int y_3 - \frac{1}{6} M_1^2$
 $= \frac{1}{6} \int (2 - x_1)^3 (0) - (1 - x_1)^3 (\frac{30}{7})$
 $+(x_1 - x_1) \int (1 - \frac{1}{7}(0))^3$

$$= \frac{1}{6} \left[-(1-x)^{3} \left(\frac{39}{7} \right) \right] + (2-x) \left[1 \right]$$

$$- \frac{1}{6} \left[-\frac{39}{7} \right]$$

$$= \frac{1}{6} \left[-\frac{39}{7} \left(1-x \right)^{3} + (2-x) + \frac{5}{7} \left(1-x \right) \right]$$

$$= \frac{1}{6} \left[-\frac{39}{7} \left(1^{3} - x^{3} - 3x + 3x^{2} \right) + 2 - x + \frac{5}{7} - \frac{5}{7} x \right]$$

$$= -\frac{5}{7} + \frac{5}{7} x^{3} + \frac{15}{7} x + \frac{15}{7} x^{2} + 2 - x + \frac{5}{7} - \frac{5}{7} x$$

$$= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 + \frac{5}{7} x + \frac{5}{7} x$$

$$= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 + \frac{5}{7} x + \frac{5}{7} x$$

$$= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 + \frac{5}{7} x + \frac{5}$$

$$= \frac{1}{6} \left[\frac{30}{7} (3-x)^{3} + \frac{36}{7} (2-x) \right] + (3-x) \left(-\frac{5}{7} \right)$$

$$= (2-x) \left[1 + \frac{5}{7} \right]$$

$$= \frac{5}{7} \left[27 - 27x + 9x^{2} - x^{3} \right] + \frac{6}{7} \left[\frac{1}{7} + x^{2} - 4x \right]$$

$$= x^{3} \left[-\frac{5}{7} \right] + x^{2} \left[\frac{45}{7} + \frac{6}{7} + \frac{13x}{7} \right]$$

$$+ x \left[-\frac{135}{7} - \frac{24}{7} + \frac{5}{7} + \frac{13}{7} \right] + \frac{135}{7} + \frac{24}{7} - \frac{15}{7}$$

$$= x^{3} + \frac{51}{7} x^{2} - \frac{95}{7} + \frac{118}{7} + \frac{13}{7} + \frac{135}{7} + \frac{24}{7} - \frac{15}{7}$$

$$= \frac{26}{7}$$

$$(3x) = -\frac{5}{7} x^{3} + \frac{51}{7} x^{2} - \frac{95}{7} + \frac{118}{7} + \frac{12}{7} + \frac{24}{7} - \frac{15}{7} + \frac{118}{7} + \frac{12}{7} + \frac$$

$$=\frac{1}{6}\int \frac{36}{7}\int \frac{64}{64} - \frac{48}{12}x^{2} - x^{3}\int \frac{36}{7}\int \frac{64}{7} - \frac{27}{12}x + 9x^{2} - x^{3}\int \frac{36}{7}\int \frac{136}{7}\int \frac{27}{7} - \frac{27}{12}x + 9x^{2} - x^{3}\int \frac{136}{7}\int \frac{136}{7}\int \frac{136}{7}\int \frac{38}{7}\int \frac{136}{7}\int \frac{136}{7}\int \frac{38}{7}\int \frac{136}{7}\int \frac{136}{7}\int \frac{38}{7}\int \frac{136}{7}\int \frac{136}{7}\int \frac{36}{7}\int \frac{36}{7}$$

$$= \frac{1}{6} \left[(2-x)^{3} (0) + (x-1)^{3} (18) \right] + (2-x) \left[-6 - \frac{1}{6} (0) \right] + (x-1) \left[-1 - \frac{1}{6} (18) \right] + (x-1) \left[-1 - \frac{1}{6} (18) \right] + (x-1) (-1-3) + (x-1) (-1-3)$$

$$= \frac{1}{6} \left[(x-1)^{3} (18) \right] + (2-x) (-6-6) + (x-1) (-1-3)$$

$$= 3(x^{3} - 3x^{2} + 3x - 1) - 12 + 6x - 4x + 4$$

$$g(x) = 3x^{3} - 9x^{2} + 11x - 11$$

$$g(x) = \frac{1}{6} \left[(x_{2} - x)^{3} M_{1} - (x_{1} - x)^{3} M_{2} \right] + (x_{2} - x) \left[y_{1} - \frac{1}{6} M_{2} \right]$$

$$= \frac{1}{6} \left[(3-x)^{3} \left[18 - (2-x)^{3} (0) \right] + (3-x) \left[-1 - \frac{1}{6} (18) \right] - (x-2) \left[-1 - \frac{1}{6} (18) \right]$$

$$= \frac{18}{6} \left[27 - 27x + 9x^{2} - x^{3} \right]$$

$$= \frac{18}{6} \left[27 - 27x + 9x^{2} - x^{3} \right]$$

$$= \frac{18}{6} \left[27 - 27x + 9x^{2} - x^{3} \right]$$

9 = 8 To zir	$(x) = -3x^{3} + 27x^{2} - 61x + 37$ $(x) = \int 3x^{3} - 9x^{2} + 11x - 11, 1 \le x \le 2$ $-3x^{3} + 27x^{2} - 61x + 37, 2 \le x \le 3$ $2d y(1.5)$ $= -4.625$
	4,025

_					
- phunele	Neuton's	10rw a	and inter	polation	somula
	regual	intervals).		
- + 6 V/6	Victory to a		, u Ay	+ 4 (4-1)	Δy
	y = f	$P(x) = J_0$	70 11 200	2 (1-9) (3.	
		1-12) (+ u(u-1) (u-2) 13y +	5) [4]
	Where	$u = \frac{x - x_1}{f}$	11- 8-10	(0.10)	
0	18ing 1	Veutons	forward	interpola	tion yormula, ying the y at x=5.
10 4	seind th	e polyno	omial f	(n) Satisf	ying the
	following	g data	. Heme	Evaluare	y a n=5.
	1 0/	4 6		101	
	y	1 3	8	10	
	1		- X		
	Solo	u = 21-	no, h	= 2	7 - 4
	4	u= x-		1	1 3
	×	y	14	134	29
+				68.0	212161212
	4	0	2		
beet	6	3		(3)	
	0		5	Mental	(6)
	8	8	2	-3	ob and Black

The Newlon's forward interpolation form.

is

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)(u-2)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)(u-2)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)(u-2)}{2!}$$

Solo_	$ \begin{array}{c c} \chi & \chi_0 \\ y & \chi_0 \\ y & \chi_0 \end{array} $ $ u = \chi - \chi_0 $ $ u = \chi - \chi_0 $		10 ys 10 ys	Day.	
2	1 10	9	10	12	
-	1 + 71 -1 + 2x	(2) + 1 + (2 ² -	$\frac{x(x-1)}{2!}(-\frac{x}{2!}) + \frac{1}{6}$	I Cu - m	× (10)
:	= 170	2	2	$\sum_{3} \left[x^{3} - 2 \right]$ $\times \left[2 - \frac{1}{2} + \frac{1}{2} \right]$	

3	From the number of behiveen	60 to	70,-		U L	nd the
	weight in kgs	0-40	40-60	60-80	80-100	100-120
	No-9 Students	250	/20	100	70	50
	U = 2	R	h =	20		8.2164-2
	×	y	Dy	Dy	Δ³y	5 5 y.
- 320	Below 40 Below 60	250	120	(-20	(F10	
w(ev)	Below 80	470	100	-30		20
[(-	Below 100 Below 120	540	50	- 21 Man		
C+ X-		Dy + ac	nucord u-1) D	intemp	otation	formula is

$$y = 250 + (\frac{x-40}{20}) \frac{120}{120} + (\frac{x-40}{20}) (\frac{x-40}{20} - 1) \frac{x-20}{20}$$

$$+ (\frac{x-40}{20}) (\frac{x-40}{20} - 1) (\frac{x-40}{20} - 2) \frac{x-10}{20}$$

$$+ (\frac{x-40}{20}) (\frac{x-40}{20} - 1) (\frac{x-40}{20} - 2) (\frac{x-40}{20} - 3)$$

$$- \frac{24}{3} (\frac{x-40}{20}) (\frac{x-60}{20}) (\frac{x-80}{20})$$

$$+ \frac{5}{6} (\frac{x-40}{20}) (\frac{x-60}{20}) (\frac{x-80}{20}) (\frac{x-100}{20})$$

$$+ \frac{70-60}{6} (\frac{x-60}{20}) (\frac{70-40}{20}) (\frac{70-40}{20}) (\frac{70-80}{20})$$

$$+ \frac{5}{6} (\frac{70-40}{20}) (\frac{70-60}{20}) (\frac{70-80}{20}) (\frac{70-80}{20})$$

$$+ \frac{5}{6} (\frac{70-40}{20}) (\frac{70-60}{20}) (\frac{70-60}{20}) (\frac{70-60}{20})$$

$$+ \frac{5}{6} (\frac{70-60}{20}) (\frac{70-60}{20}) (\frac{70-60}{20}) (\frac{70-60}{20})$$

$$+ \frac{5}{6} (\frac{70-60}) (\frac{70-60}{20}) (\frac{70-60}{20}) (\frac{70-60}{20})$$

$$+ \frac{5}{6}$$

Neuton's Backward Interpolation germula

$$y = y_0 + \frac{y}{1!} \nabla y_n + \frac{y(y+1)}{2!} \nabla^2 y_n + \frac{y(y+1)(y+2)}{3!} \nabla^2 y_n$$

Where $y = \frac{x-x_0}{k}$

(1) Use Newton's backward difference formula to construct an interpolating polynomial of degree 3 for the data

 $f(-0.75) = -0.07181250$ $f(-0.5) = -0.024750$
 $f(-0.25) = 0.33493750$, $f(0) = 1.10100$.

Hence find $f(-\frac{1}{3})$.

38h.

 $y = \frac{x-x_0}{k}$
 $y = \frac{x}{0.25}$
 $y =$

The Newton's backward interpolation formule is
$$y = y_n + \frac{y}{1!} \quad \forall y_n + \frac{y(y+1)}{2!} \quad \forall y_n + \frac{y(y+1)}{3!} \quad \forall y_n + \frac{y(y+1)(y+2)}{3!} \quad \forall y_n + \frac{y(y+$$

	TI	(min)	2	5	8	2	11
		~	,,, 0	81.9		1.3	75.1
	Obtain using	n H	e valu	e g itenpola		13.18	N
	T	Ay	*	y	\$ 2y	1	73y
	2	94.8	-6	; . 9	0 - 2		
	5	87.9	-6	5.6		7	0.1
	8	81.3	F	5.2	0.7		
	1)	45-1					
126	14 0 E 6	V=	x-x h	<u>n</u>	R = 3	3	
		Neuton		releman	d int	enpol	ation Jormu
	is	2	2	, recu	2+1)	V 2	-) [
inio (m	y =	9, + -	- Pyn	+ 12(1)	1	1 dr	$\frac{1}{2} p^{3}y + .$

Questions The numerical method of solving linear equations is of two types one is direct, other is	opt1	opt2	opt3	opt4	opt7
method.	iterative	elimination	Newton	none	iterative
In Gauss – Jordan method the coefficient matrix is transformed into matrix	scalar	unit	diagonal	column	unit
The convergence in Gauss –Jacobi method can be achieved only when coefficient of thematrix is dominant Gauss –Elimination and Gauss –Jordan are direct methods while Gauss –Jacobi and Gauss –	row wise	column wise	diagonally	none	diagonally
Seidal are methods	iterative	elimination	interpolation	none	iterative
The convergence of Gauss - Seidal method istimes as fast as in Jacobi's method	1	2	3	4	3
The power method will work satisfactorily only if A has a Eigen value	small	large	equal	dominant	dominant
In power method the element in vector in each iteration will become very large, to avoid this we	11 .	1	141		1
divide each vector by its component	smallest	largest	positive	negative	largest
Gauss – Jordan method is method	direct	indirect	iteration	interpolation	direct
Gauss – Jacobi method is method Gauss – Jacobi method is method	direct	indirect	iteration	interpolation	indirect
	direct	indirect	iteration	interpolation	iteration
Gauss – Seidal method is method	direct	indirect	iteration	interpolation	indirect
Gauss – Jordan method fails if the element in top of first column is	0	1	2	3	0
The successive approximations are called	interpolation	elimination	iterates	approximation	iterates
method is a self - correcting method.	interpolation	elimination	iterates	approximation	iterates
In Gauss – Jacobi and Gauss – Seidal methods the co-efficient matrix must bedominant.	row wise	column wise	none	diagonally	diagonally
The matrix is if the numerical value of the leading diagonal element in each row is					
greater than or equal to the sum of the numerical value of other element in that row.	orthogonal Gauss	symmetric	diagonally dominant	singular	diagonally dominant
The Gauss – Jordan method is the modification of method.	-Elimination	Gauss – Jacobi	Gauss – Seidal	interpolation	Gauss –Elimination
The iterative procedure for finding the dominant Eigen value of the matrix is called Power					
method.	Rayleigh's	Gaussian	Newton's	inverse	Rayleigh's
$x^2 + 5x + 4 = 0$ is a equation.	algebraic	transcendental	wave	heat	algebraic
$a + b \log x + c \sin x + d = 0 \text{ is a}$ equation.	algebraic	transcendental	wave	heat	transcendental
In Gauss – Jordan method, the augmented matrix is reduced into matrix	upper triangular	lower triangular	diagonal	scalar	diagonal
The 1st equation in Gauss – Jordan method, is called equation.	pivotal	dominant	reduced	normal	pivotal
The element in Gauss – Jordan method is called element.	Eigen value	Eigen vector	pivot	root	pivot
		o .			
Power method generally gives the largest Eigen value of A provided the Eigen values are The system of simultaneous linear equation in n unknowns $AX = B$ if A is diagonally Dominant	equal	negative	positive	real and distinct	real and distinct
then the system is said to be system	dominant	diagonal	scalar	singular	diagonal
The convergence of Gauss - Seidal method is roughly that of Gauss - Jacobi method	twice	thrice	once	4times	twice
In power method iterative process is repeated until becomes negligibly small.	X_r- X_(r-1)	X_(r-1)- X_r	X_r-X_(r+1)	$X_(r+1) - X_r$	X_r- X_(r-1)
Cholesky's method is used for finding the of a matrix.	determinant	value	inverse	rank	determinant
The smallest eigen value of A is the reciprocal of the dominant eigen value of	A^(-1)	det A	A^T	A	A^(-1)
Choleskey's method is used only when the matrix is	symmetric	skew-symmetric	singular	non-singular	symmetric
The Power method is used for findingeigen value	dominant	least	central	positive	dominant
The Inverse Power method is used for findingeigen value	dominant	least	central	positive	dominant
Jacobi's method is used only when the matrix is	symmetric	skew-symmetric	singular	non-singular	symmetric
Crout's method is a method to solve simultaneous linear equations.	Direct	Indirect	real	inverse	Direct
In Crout's method, if AX=B, then	LX=B	UX=B	L=B	LUX=B	LUX=B

	UNIT - 3 8015290573
	Numerical Differentiation and Integration
	Numerical objectentiation: It is the Process of finding the Values of $\frac{dy}{dx}$, $\frac{dy}{dx^2}$ of $\frac{d^3y}{dx^3}$, for some particular value of x .
	find the first derivatives $g = f(x)$ at $x = 2$ for the data $f(-1) = -21$, $f(1) = 15$, $f(2) = 12$ $f(3) = 3$ using Newton's divided difference formula.
i bu	y -21 15 12 3 The Newton's divided difference
5	$y + (x - x_0) + (x - x_0) (x - x_1) + (x - x_0)(x - x_1) + (x - x_0)(x$

	- William	N I	44	A3	43y
	χ	y	1 -		
	-1 -38	-21	18	The state of the	(Servey)
	1	15	10	-7	Laure V
			-3	-3	1
-	2	12	-9		box
1 = 12	3	3		orlab g	
		$\frac{21}{21} + 18x$ $\frac{3}{2} - 9x^2 + 17$ $\frac{2}{1} - 18x + 1$ $\frac{2}{1} - 7$	x+6	The Trans	Demoils y
Į.	1'(2) =	= -7.			
				ollowing dat	a 34

%	P(x)	(x-x0) \$ 40 0) (x-x,) (x	4° fm)	A ⁸ f(x)	AFIN.
3 5	-13 23 899	18	16		0
27	17315 35606	2613	69		
y =	f(x) = -13 = -13	+18(x-3) +(x-3)(x-3) +18x-54 +16x +54+16x	+ 16 /x2	8x+15] 5)(x+11)	

Newlows gorward formula for derivatives
$$y = f(x) = y_0 + \frac{u}{1!} \xrightarrow{\Delta y_0} + \frac{u(u-1)}{2!} \xrightarrow{\Delta y_0} + \frac{u(u-1)(u-2)}{3!} \xrightarrow{\Delta y_0} + \frac{u(u-1)(u-2)(u-3)}{3!} \xrightarrow{\Delta y_0} + \frac{u(u-1)(u-2)(u-3)}{4!} \xrightarrow{\Delta y_0} + \frac{u(u-1)(u-2)(u-3)}{3!} \xrightarrow{\Delta y_0} + \cdots$$

$$y'' = \frac{1}{R^2} \int \Delta y_0 + \frac{(3u^2 + 32u - 6)}{3!} \xrightarrow{\Delta y_0} + \frac{(12u^2 - 36u + 32)}{4!} \xrightarrow{\Delta y_0} + \frac{1}{4!}$$

$$y''' = \frac{1}{R^2} \int \Delta y_0 + \frac{(2u - 6)}{3!} \xrightarrow{\Delta y_0} + \frac{(12u^2 - 36u + 32)}{4!} \xrightarrow{\Delta y_0} + \frac{1}{4!}$$

$$y''' = \frac{1}{R^2} \int \Delta y_0 + \frac{(2u - 6)}{3!} \xrightarrow{\Delta y_0} + \frac{(2u^2 - 36u + 32)}{4!} \xrightarrow{\Delta y_0} + \frac{1}{4!}$$

$$y''' = \frac{1}{R^2} \int \Delta y_0 + \frac{(2u - 6u + 2)}{4!} \xrightarrow{\Delta y_0} \xrightarrow{\Delta y_0} + \frac{1}{4!}$$

$$y''' = \frac{1}{R^2} \int \Delta y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta y_0} \xrightarrow{\Delta y_0} + \frac{1}{4!} \xrightarrow{\Delta y_0} + \frac{1}{4!}$$

$$y''' = \frac{1}{R^2} \int \Delta y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta y_0} \xrightarrow{\Delta y_0} + \frac{2u^2 - 6u + 2}{3!} \xrightarrow{\Delta y_0} + \frac{1}{4!} \xrightarrow{\Delta y_0}$$

To the	$\beta''(x) = \frac{1}{h^2} \left[\Delta \hat{y}_0 + \left(\frac{6u - 6}{3!} \right) \Delta^3 \hat{y}_0 + \left(\frac{12u^2 - 36u + 22}{4!} \right) \right]$) Syt
	$F''(y) = \frac{1}{R^3} \left[\Delta^3 y_0 + (244 - 36) \Delta^4 y_0 + \cdots \right]$	
	$u = \frac{\chi - \chi_0}{R} = \frac{\chi - 1.5}{0.5}$ When $\chi = 1.5$ $u = 0$	
	when $x=1.5$ $x = 1.5$ $x = 1.$	D ⁵ y
	1.5 3.375 (3.625)	1 -
	2.5 13.625 3.75	
(-1)-4	3 24 H·5 0 14.815 0.75	0
	3.5 38.875 5.25 20.125	
	4 59	
	1937 K - Non with	

$$F'(1.5) = \frac{1}{0.5} \left[3.625 + (0-1) \cdot \frac{3}{2} + \frac{2}{6} (0.75) \right]$$

$$= \frac{1}{0.5} \left[3.625 - 1.5 + 0.25 \right]$$

$$= 4.75$$

$$F''(1.5) = \frac{1}{0.52} \left[3 + (-6) \times \frac{0.75}{6} \right]$$

$$= \frac{1}{0.5} \cdot \left[3 - 0.75 \right] = 9$$

$$= \frac{1}{0.5} \cdot \left[3 - 0.75 \right] = 6$$
Newton's Backward Interpolation formula
$$y' = \frac{1}{F} \left[\nabla y_n + \frac{(3v+1)}{2!} \nabla^2 y_n + \frac{(3v+6v+2)}{2!} \nabla^2 y_n + \frac{(4v+3+18v^2 + 22v+6)}{4!} \nabla^2 y_n + \frac{(12v+36v+22)}{4!} \nabla^2 y_n + \frac{(3hv+36)}{4!} \nabla^2 y_n + \frac{(3hv+36)$$

×	
T	$\beta''(x) = \frac{1}{h^2} \left[\Delta \hat{y}_0 + (\frac{6u-6}{3!}) \Delta^3 y_0 + (\frac{12u^2-36u+22}{4!}) \Delta^4 y_0 + \cdots \right]$
	$F''(n) = \frac{1}{8^3} \left[\Delta_y^3 + (24u - 36) \Delta_y^4 + \cdots \right]$
	$u = \frac{\chi - \chi_0}{R} = \frac{\chi - 1.5}{0.5}$
	when $x=1.5$ $\boxed{u=0}$ $x=1.5$ \boxed{y} \sqrt{y} \sqrt{y} \sqrt{y} \sqrt{y} \sqrt{y} \sqrt{y}
	1.5 3.375
	2 7 6.625 3
	2.5 13.625 3.75 0.75
	3 24 H·875 0·75
	3.5 38.875 5.25 20.65
	4 59
	Wife on the Street

$$y' = \frac{1}{0.5} \left[20.125 + \frac{1}{2} \times 5.25 + \frac{8}{6} \times 0.75 \right]$$

$$= \frac{1}{6}$$

$$y'' = \frac{1}{0.5^{2}} \left[5.25 + \frac{1}{6} \times 0.75 \right] = 24$$

$$y''' = \frac{1}{0.5^{2}} \left[5.25 + \frac{1}{6} \times 0.75 \right] = 24$$

$$y''' = \frac{1}{0.5^{2}} \left[0.75 \right] = 6$$

$$x = 1.0$$

$$x = 1.0$$

$$y = \frac{1}{1.0} \left[\frac{1}{1.0} \right] \frac{1}{1.0} \frac{1}{1.0}$$

		11/6	N. L.				
	$\frac{g}{\alpha}$	10/ D.	A Dy	Δý	By	By	sy
	1.0	7.989	0-4140	28.2	21	10 65	
	1.1	8-403	0.3780	-0.0360	0 0060	'y	
	1.2	8-781	0-3480	-0.03	0.0040	-0.0020	060)
1120	1.3	9-451	0.3220	-00260	0.003	-0 0010	0.003
		9.750	0.2990	-0.0230	0 - 0050	0.002	
-	1.5	10.03)	0.2810		1==	y'	D
- Carrie	y(1.1)=	1 [0.4 3.9480)=1_2	+ (<u>H</u> -18	(-1) (-0.0)	(-0.00. 0010 -0	2)	

3	$= -36 + 0.00016$ $= -35 - 9998 - 3.584$ gind the first two derivatives 9×3 at $x = 50$ and $x = 56$ for the given data									
	+	2c 50 51 52 53 54 55 56 y-x ^{1/2} 3.6840 3.7084 3.7325 3.7563 3.778 3.8030 3.8249								
	Solo	y	D.	Δ2	D ³	Δ41	15	1,96		
	50 51	3-6840	0.0244	-0.0003	0		1			
	52 53	3.1325	0.0238	-0.0003	6	0	0	0		
	54	3.7198	0.0232	- D·0003	0	0	0			
	55	3.825	0.0229	-0.0003	95	V		ļ. ,		
	N/a	uctoris = 1 [gorward Ayo + (24)	gormula: -1) Dy + (1847 224-6	3u2-6u+	-2) 	370			

3	$=$ $\frac{-35-9998}{2}$ -3.584 gind the joint two derivatives $9 \times \frac{1}{3}$ at $x = 50$ and $x = 56$ for the given data									
	+-	50 51 52 53 54 55 56 50 51 52 53 54 55 56 2x ^{1/3} 3.6840 3.7084 3.7325 3.7563 3.7198 3.8030 3.8249								
	90ln	y	0	Δ2	D ³	Δ [†]	5	100		
	50	3-6840	0.0244	-0.0003	0			2 -		
	52 53	3.1325	0.0238	-0.0003	6	0	0	0		
	54	3:7198	0.0232	- D · 0003	0	0	0			
	55	3.825	0.0229	-0.0003	38 =	V		ļ.,		
	D/0	uitons	forward	201mula:	3u2-6u+	-a) A	340			

$$y'' = \frac{1}{R^{2}} \left[\Delta^{2}y_{0} + \left(\frac{6u-6}{3!} \right) \Delta^{3}y_{0} + \left(\frac{12u^{2}-36u+32}{4!} \right) \Delta^{4}y_{0} + \cdots \right)$$

$$u' = \frac{x-x_{0}}{R} = \frac{50-50}{6} = 0$$

$$y' = \frac{1}{1} \left[0.02414 + \frac{(-1)}{2} \left(-0.0003 \right) \right]$$

$$= 0.0244 + 0.0002$$

$$= 0.0246$$

$$y'' = \frac{1}{1} \left[-0.0003 \right] = -0.0003$$
Neuton's Backward Interpolation formula
$$y' = \frac{1}{R} \left[\nabla y_{0} + \frac{(2v+1)}{3!} \nabla^{2}y_{0} + \frac{(3v^{2}+6v+4)}{3!} \nabla^{2}y_{0} + \frac{(3v^{2}+6v+4)}{3!} \nabla^{2}y_{0} + \frac{(4v^{2}+18v^{2}+22v+6)}{4!} \nabla^{4}y_{0} + \cdots \right]$$

$$y'' = \frac{1}{R^{2}} \left[\nabla^{2}y_{0} + \frac{(6v+6)}{3!} \nabla^{2}y_{0} + \frac{(12v^{2}+36v+22)}{4!} \nabla^{4}y_{0} + \cdots \right]$$

$$y'' = \frac{1}{R^{2}} \left[\nabla^{2}y_{0} + \frac{(6v+6)}{3!} \nabla^{2}y_{0} + \frac{(12v^{2}+36v+22)}{4!} \nabla^{4}y_{0} + \cdots \right]$$

$$y'' = \frac{1}{R^{2}} \left[0.0299 + \frac{(0+1)}{2!} \left(-0.0003 \right) + \frac{2}{3!} \left(0.0 \right) + 0 \right]$$

$$= \frac{1}{0.5} \left[0.0299 + \frac{0.0003}{2!} + \frac$$

```
Numerical Integration
     Trapemoidal sule
T = \int_{a}^{b} F(x) dx = \frac{h}{2} \int_{a}^{b} (sum g first and last ordinate) + 2 (sum g grandining ordinates)
 f = b - a
Simpsois 1/3 grule
     I= \int f(n) dn = \frac{f}{3} \int (\frac{f_{inst}}{3} + \text{Last}) + 4 (\frac{g_{um}}{3} \text{odd})

ordinates) + 2 (\frac{g_{um}}{3} \text{ordinates}) = \text{ordinates})
                  R= b-a multiples & 2)
       Simpson's 3/2 grule
         T= 3h [(first Last) +2 (Sum g nultiples 93)
+3 (Sum g non-multiples 93)]
               h = \frac{b-a}{b} [multiples g 3]
   O Using Traperpoidal rule, evaluate July
      taking & intervals.
```

$$T = \frac{h}{2} \left[(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{(y_6)}{2} \left[(1 + y_2) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{4}{5^2} + \frac{9}{13} + \frac{36}{67} \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 2(3.9554) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 7.9108 \right]$$

$$= 0.7842$$
(3) Evaluate
$$\int_{0}^{6} \frac{1}{1 + x_2} dx \quad \text{by Traperpoidal solute}$$

$$Also \quad \text{cheek up the greaths by actual}$$

$$\text{Integration}$$

$$\text{Solin}$$

$$\text{F(n)} = \frac{1}{1 + x_2} dx \quad \text{by actual}$$

$$\text{Your observe of the greaths of the properties of the propert$$

By actual Integration
$$T = \int_{6}^{6} \frac{1}{1+x^{2}} dx = \int_{1}^{1} \tan^{-1}x \int_{0}^{6} = \tan^{-1}6 - \tan^{-1}6$$

$$T = \int_{6}^{6} \frac{1}{1+x^{2}} dx = \int_{1}^{1} \tan^{-1}x \int_{0}^{6} = \tan^{-1}6 - \tan^{-1}6$$

$$= 1.40564765$$

Evaluate
$$\int_{1.0}^{1.3} 4x dx = \int_{1.0}^{1.3} 4x dx = \int_{1.00247}^{1.00247} 4x dx = \int_{1.$$

$$T = \frac{h}{2} \left[(y_0 + y_0) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{(y_0)}{2} \left[(1 + y_2) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{1}{5} + \frac{9}{12} + \frac{36}{67} \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 2 \left(3 \cdot 9554 \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 7 \cdot 9108 \right]$$

$$= 0.7842$$
(3) Evaluate
$$\int_{0}^{6} \frac{1}{1 + x^2} dx \quad \text{by Trapersoidal soule}$$

$$Also cheek \quad up \quad \text{the orientes by actival}$$

$$The gration$$

$$Soin \qquad f(x) = \frac{1}{1 + x^2}$$

$$x \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

$$y \qquad 1.00 \quad 0.500 \quad 0.200 \quad 0.100 \quad 0.05824 \quad 0.03846 \quad 0.27026$$

$$y \qquad 1.00 \quad 0.500 \quad 0.200 \quad 0.100 \quad 0.05824 \quad 0.03846 \quad 0.27026$$

$$T = \frac{h}{2} \left[(y_0 + y_6) + 2 \left(y_1 + y_2 + y_4 + y_4 + y_5 \right) \right]$$

$$\pm \frac{1}{2} \left[(1 + 0.027027) + 2 \left(0.5 + 0.2 + 0.1 + 0.058246 \right) \right]$$

$$= 1.41079850$$

By actual Integration

$$I = \int_{6}^{6} \frac{1}{1+x^{2}} dx = \int_{1}^{2} \tan^{3} x \int_{0}^{6} = \tan^{3} 6 - \tan^{3} 6$$

$$= 1.40 \times 64.765$$

Evaluate
$$\int_{1.0}^{1.3} \sqrt{x} dx \quad taking \quad h = 0.05 \quad by$$

$$traperpoidal \text{ Trule}$$
Soin

$$f(x) = \sqrt{x}$$

$$h = \frac{b-a}{0} = 0.05$$

$$2x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$3x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$3x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$3x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$3x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$3x \quad 1.0 \quad 1.05 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3$$

$$y \quad 1 \quad 1.0247 \quad 1.0484 \quad 1.0724 \quad 1.0954 \quad 1.1160$$

$$= 0.05 \quad 1 \quad 1.1 \quad 1.402 \quad 1.07247 \quad 1.0484 \quad 1.0160$$

$$= 0.05 \quad 1 \quad 1.1 \quad 1.402 \quad 1.07247 \quad 1.0484 \quad 1.0160$$

$$= 0.05 \quad 1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.2 \quad 1.25 \quad 1.3593$$

$$= 0.1 \quad 1.1 \quad 1.15 \quad 1.25 \quad 1.3593$$

```
Dividing the range into 10 equal parts find the value of Sinx dx by
    Simpsois 1/3 gule.
         f(x) = \sin x f_1 = \frac{b-a}{a} = \frac{\pi}{a} = \frac{\pi}{a}
    90 0 11/20 211/20 311/20 411/20 511/20 61/20 411/20 81/20 81/20 F(X) 0 0 1564 0 3090 0 4540 0 5818 0 1011 0 8090 0 8910 0 9511 .
   I = \frac{h}{3} [(yo+ y8) + 4 (y, + 43 + 45 + 47)
                       +2(4, +4, +4,)]
  =\frac{11/20}{3}\int_{0.00}^{\infty} (0+1) + 4(0.1564 + 0.4540 + 0.7071 + 0.8910)
                  +2(0.3090+0.5878+0.8090)]
   = 11/60 *19.0986 = 1
   The velocity of a particle at a distance of from a point on its path is go by the table below.
   S 0 10 20 30 40 50 60

& 47 58 64 65 61 52 38
   Estimate the time taken to travel 60 meters by simpsons 1/3 rule:
```

$$V = \frac{ds}{dt}$$

$$V = \frac{ds}{dt}$$

$$V = \frac{ds}{dt}$$

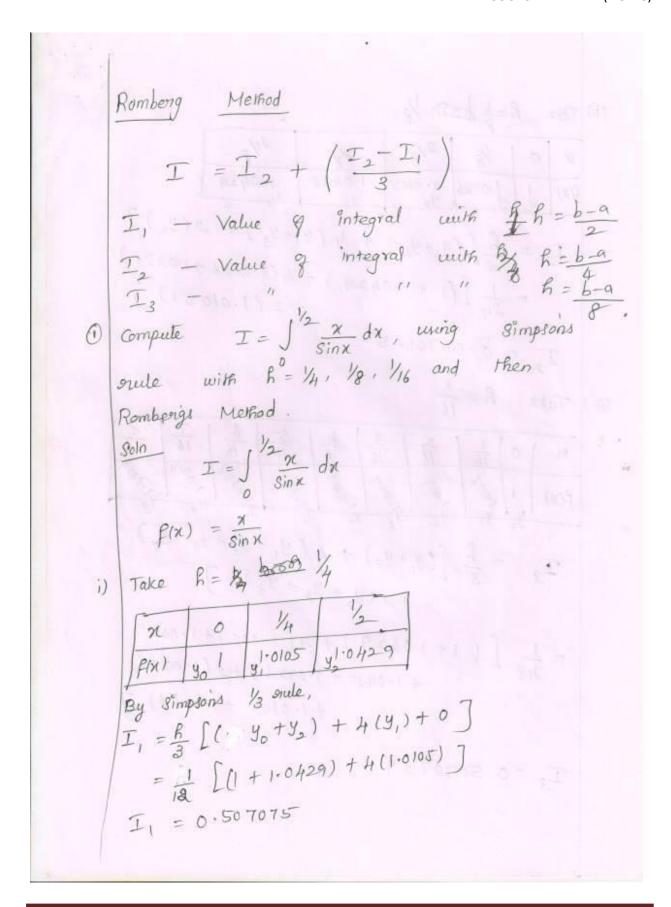
$$V = \int_{0}^{1} \frac{ds}{$$

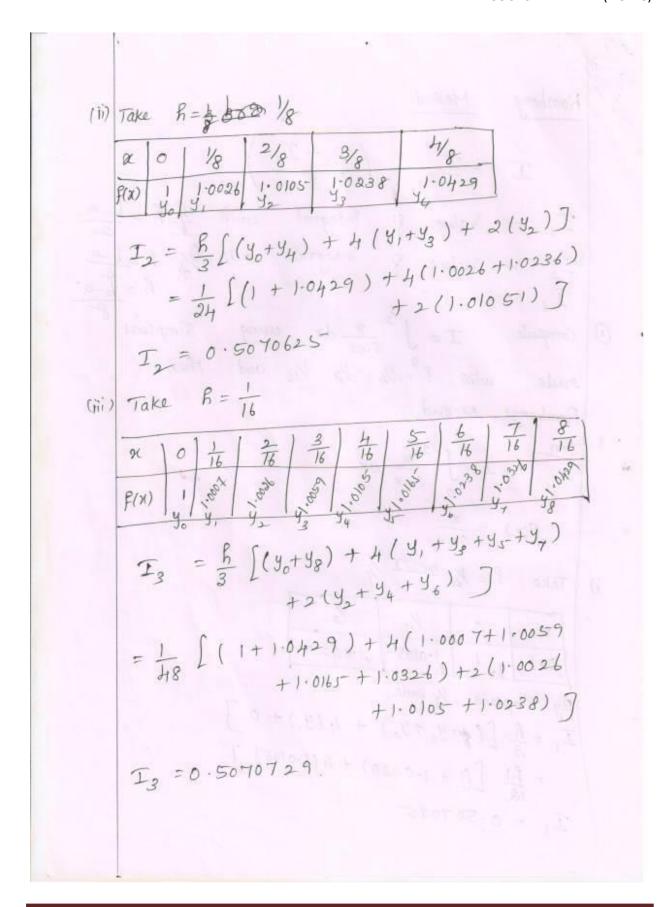
$$Soln = \int_{Sin \times dx}^{T/2} Sin \times dx$$

$$F(M) = Sin \times \int_{R}^{R} \frac{T_{2} - 0}{9} = \frac{T}{18}$$

$$91 \quad 0 \quad T_{18} \quad 2T_{18} \quad 3T_{18} \quad 4T_{18} \quad 5T_{14}$$

$$91 \quad 0 \quad 0.173.4 \quad 0.3420 \quad 0.350 \quad 0.6436 \quad 0.7660$$


$$F(M) \quad 0 \quad 0.173.4 \quad 0.3420 \quad 0.350 \quad 0.6436 \quad 0.7660$$


$$6T_{18} \quad T_{11} = \frac{8}{8} \int_{R}^{R} (y_{0} + y_{9}) + 3(y_{1} + y_{2} + y_{4} + y_{5} + y_{7} + y_{8})$$

$$1 = \frac{3R}{8} \int_{R}^{R} (y_{0} + y_{9}) + 3(y_{1} + y_{2} + y_{4} + y_{5} + y_{7} + y_{8})$$

$$+ 2(y_{3} + y_{6}) \int_{R}^{R} + 2(y_{3} + y_{6}) \int_{R$$

The velocities
$$g$$
, a can summing on a straigh road at intervals g 2 minutes are gn below f and f and f are g and f are g below f and f are g below f and f are g simplicity. O 22 30 27 18 7 0 velocity (km/h.) O 22 30 27 18 7 0 velocity f and f are f and f are f and f are f are f and f are f and f are f are f are f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f and f are f are f and f are f are f and f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f a

for
$$I_1, I_2$$
Romberg formula is

$$I = I_2 + \left(\frac{I_2 - I_1}{3}\right)$$

$$= 0.5070625 + \left(\frac{0.5070625 - 0.507075}{3}\right)$$

$$I = 0.507058$$
for I_3, I_3

$$I_5 = I_3 + \left(\frac{I_3 - I_2}{3}\right)$$

$$= 0.5070729 + \left(\frac{0.5070729 - 0.507062J}{3}\right)$$

$$= 0.5070729 + \left(\frac{0.5070729 - 0.507062J}{3}\right)$$

$$= 0.507076366$$
Romberg for $R \cdot I_4 + I_5$

$$I = I_5 + \left(\frac{I_5 - I_4}{3}\right)$$

Evaluate
$$I = \int_{0}^{1} \frac{dn}{1+x^{2}} dn$$
 by using Rombergs method. Hence deduce as approximate value of $I = \int_{0}^{1} \frac{dn}{1+x^{2}} dn$

Solo

 $a = 0$; $b = I$
 $f(n) = \frac{1}{1+x^{2}}$
 $R = \frac{b-a}{2} = \frac{I-0}{2} = 0.55$
 $R = \frac{b-a}{2} = \frac{I-0}{2} = 0.55$
 $R = \frac{b-a}{2} = \frac{I-0}{2} = 0.25$
 $R = \frac{b-a}{4} = \frac{I-0}{4} = 0.25$

	to the lawing
(2)	Evaluate $I = \int \frac{dx}{1+x^2} dx $ using
	Rombergs method. Hence deduce an
	approximate value of "
	$\frac{Soln}{\alpha = 0 ; b = 1}$
	$f(n) = \frac{1}{1+n^2}$
I	$h = \frac{b-a}{2} = \frac{1-0}{2} = 0.5$
	2 0 0.5
	P(M) 1 0.8 0.3
	$I_1 = \frac{h}{2} \left[(y_0 + y_2) + 2(y_1) \right]$
	11 - 2 1 (11.0.E) + 2×0.8]
	$= 0.5 \left[(1+0.5) + 2 \times 0.8 \right]$
	I, = 0.7750
	$\beta = \frac{b-a}{4} = \frac{1-0}{4} = 0.25$
	A
	2 0 0.23
	f(M) 1 0-94/2 000

$$I_{2} = \frac{0.25}{2} \int (1+0.5) + 2(0.9412 + 0.8 + 0.64) J$$

$$I_{2} = 0.7828$$

$$R = \frac{b-a}{8} \frac{1-0}{8} = 0.125$$

$$X = 0.012 = 0.25 = 0.375 = 0.5$$

$$P(N) = 0.9246 = 0.9412 = 0.8767 = 0.8$$

$$0.625 = 0.75 = 0.8767 = 0.8$$

$$0.419 = 0.5664 = 0.9412 = 0.8767 = 0.8$$

$$0.419 = 0.5664 = 0.9412 = 0.8767 = 0.8$$

$$1. = 0.5 = 1.0 = 0.9666 = 0.19666 = 0.96$$

Romberg for
$$J_{2}$$
, J_{3}

$$I_{5} = I_{3} + \left(\frac{I_{3} - I_{2}}{3}\right) = 0.7855$$

Romberg for I_{4} , I_{5}

$$I = I_{5} + \left(\frac{I_{5} - I_{4}}{3}\right) = 0.7855$$

$$I = \int_{0.7855} \frac{dN}{1 + x^{2}}$$

$$0.7855 = \int_{0.7855} \tan^{-1}(1) - \tan^{-1}(0)$$

$$I = 0.7855$$

$$I = 3.1420$$

8 Using Romberg Integration, evaluate
$$\int_{0}^{1} \frac{dx}{1 + x}$$
Soln

Here $a = 0$, $b = 1$

	$\begin{bmatrix} x & 0 & 0.5 \\ 1 & 0.6667 & 0.5 \end{bmatrix}$
	$T_{1} = \frac{h}{2} \left[(y_{0} + y_{2}) + 2(y_{1}) \right]$ $= 0.5 \left[(1+0.5) + 2(0.6667) \right]$
	I, = 0.7084
1)	$f_{1} = \frac{b-a}{4} = \frac{1-0}{4} = 0.25$
	x 0 0.25 0.5 0.75 1 P(x) 1 0.8 0.6667 0.5714 0.5
	$T_2 = \frac{0.25}{2} \left[(1+0.5) + 2(0.8+0.6667 + 0.5714) \right]$
	$\int I_2 = 0.6970$
111	$h = \frac{b-9}{8} = \frac{1-0}{8} = 6.125$

						ę.
	101	pl a				
	n	0	0.125	6.25	0.375	0.5
	P(x)	j	0.8889	0.8	0.7273	0.6667
			0.625	0.75	0.875	1
			0.6154	0.5714	0.5333	05
	T -	0.1	25 [(1+0	15) +2	10-8889	+0.8
	3	0	2 1 10.7	273+0	6667+0.6	5154
			4		, + 0 .533	Att.
	JI) = (0.6941.			
	Rombe	219	for I, ?	T2		ia ia
			I2 +(
	7	7	= 0.697		6910-0.7	1084
	100		= 0.697	0+1-	3	-)
		TA	= 0.6932			
Alth:	and a	1	mass this	mai.		
	Rembi	erg	for Iz i	I3 /		
		I	5 = I3	$+\frac{2g-2}{3}$	2	
				= d) = xi		

Romberg for
$$I_{4}$$
, I_{5}
 $I_{6} = I_{5} + \left(\frac{I_{5} - I_{4}}{3}\right)$

(raws Quadrature formula

Quadrature

The Process of finding a definite integral from a labulated values of function is known as Quadrature

Grawsian two Point Quadrature formula

 $I_{6} = I_{5} + \left(\frac{I_{5} - I_{4}}{3}\right)$
 $I_{7} = 0.6931$

(raws Quadrature formula

 $I_{8} = I_{7} + I_{7} +$

By using this transformation

$$I = \int g(t) dt = g(\frac{1}{\sqrt{3}}) + g(\frac{1}{\sqrt{3}})$$

Evaluate $\int_{e^{-X^{2}}}^{e^{-X^{2}}} dx dx dx dx$ by Gaus two

Point Quadrative formula:

$$Soln$$

$$I = \int_{e^{-X^{2}}}^{e^{-X^{2}}} dx dx$$

$$I = \int_{e^{-X^{2}}}^{e^{-X^{2}}} dx dx$$

$$I = f(\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \int_{e^{-\frac{1}{\sqrt{3}}}}^{e^{-\frac{1}{\sqrt{3}}}} dx (\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \int_{e^{-\frac{1}{\sqrt{3}}}}^{e^{-\frac{1}{\sqrt{3}}}} dx (\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \int_{e^{-\frac{1}{\sqrt{3}}}}^{e^{-\frac{1}{\sqrt{3}}}} dx (\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \int_{e^{-\frac{1}{\sqrt{3}}}}^{e^{-\frac{1}{\sqrt{3}}}} dx$$

$$= e^$$

$$f(x) = \frac{1}{1+x^{2}}$$

$$T = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$= \frac{1}{1+(\frac{1}{\sqrt{3}})^{2}} + \frac{1}{1+(\frac{1}{\sqrt{3}})^{2}}$$

$$= \frac{3}{4} + \frac{3}{4}$$

$$= \frac{6}{4}$$

$$= 1.5$$

(3) Evaluate the integral $T = \int_{1+x}^{2} \frac{2x}{1+x} dx$

$$uing Crausian two Point formula
$$\int_{1+x}^{2} \frac{2x}{1+x^{4}} dx$$

$$f(x) = \frac{2x}{1+x^{4}}, \quad a = 1, \quad b = 2$$

$$x = \frac{a+b}{a} + (\frac{b-a}{2})t$$

$$x = \frac{3}{a} + \frac{1}{a}t$$

$$dx = \frac{1}{2}dt$$$$

$$I = \int \frac{A'(\frac{3}{2} + \frac{1}{3}t)}{1 + (\frac{3}{2} + \frac{1}{2}t)^{4}} \cdot \frac{dt}{A'}$$

$$= \int \frac{(\frac{3+t}{2})}{1 + (\frac{3+t}{2})^{4}} dt$$

$$g(t) = \frac{3+t}{1 + (\frac{3+t}{2})^{4}}$$

$$I = g(\frac{1}{3}) + g(\frac{1}{3})$$

$$= \frac{3-\frac{1}{3}}{2} + \frac{3+\frac{1}{3}}{2}$$

$$= \frac{1 \cdot 2113}{3 \cdot 1530} + \frac{1 \cdot 7887}{11 \cdot 2359}$$

$$= 0 \cdot 3841 + 0 \cdot 1592$$

$$= 0 \cdot 5434.$$

$$= \frac{T}{4} \left[0.3259 + 0.9454 \right]$$

$$= 0.9985$$
Gaurian Three Point Quadrature Jornula:
$$T = \int_{a}^{b} f(x) dx$$

$$Take \quad \chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right) t$$

$$d\chi = \left(\frac{b-a}{2}\right) dt$$

$$T = \int_{a}^{b} g(t) dt = \frac{5}{4} \left[g\left(-\sqrt{\frac{3}{5}}\right) + g\left(\sqrt{\frac{3}{5}}\right) \right] + \frac{8}{9} g(t)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) d$$

$$dx = \left(\frac{b-a}{2}\right) dt$$

$$= \left($$

Apply three point Gaussian Quadrature formula to enaluate
$$\int \frac{\sin x}{n} dx$$

$$T = \int \frac{\sin x}{n} dx$$

$$T = \int \frac{\sin x}{n} dx$$

$$T = \left(\frac{b+a}{2}\right) + \left(\frac{b-a}{2}\right) + \left($$

$$g(-\sqrt{3}) = \sin \left(-\sqrt{3} + \frac{1}{2}\right) = \frac{0.1125}{0.2254} = 0.499$$

$$I = \frac{5}{9} \left(g(-\sqrt{3}) + g(\sqrt{3})\right) + \frac{8}{9}g(0)$$

$$= \frac{5}{9} \left(0.499 + 0.437\right) + \frac{8}{9}(0.47943)$$

$$= 0.52 + 0.42616$$

$$= 0.94616$$

(3) Evaluate
$$\int_{0.1 + (x+1)^{\frac{1}{4}}}^{2x+2x+1} dx \quad \text{by Gaussian Free}$$

$$I = \int_{0.1 + (x+1)^{\frac{1}{4}}}^{2x+3x+1} dx \quad \text{by Gaussian Free}$$

$$I = \int_{0.1 + (x+1)^{\frac{1}{4}}}^{2x+3x+1} dx \quad \text{by Gaussian Free}$$

$$I = \int_{0.1 + (x+1)^{\frac{1}{4}}}^{2x+3x+1} dx \quad \text{deg}$$

$$I = \int_{0.1 + (x+1)^$$

```
Integration
Double
Trapemoidal orule:

I = \iint_{C} f(x,y) dx dy
I = \iint_{C} Sum q fown Corners + I
I = \iint_{H} Sum q one maining boundary values)
              + 4 ( Sum q interier values ) ]
Simpsons grule
I = \frac{hk}{9} \int Sum g form corners +
   2 ( Sum of odd position values) + 4 (Sum of even position values)
   + 4 (Surn g odd position values) + 8 (Sum g even position values)
  +8 (Sum & odd position values) + 16 (Sum q even position values)?
I = RK Sylon of John com
```

```
I = 0.1x0.1 [0.5 + 0.4167 + 0.4545 + 0.3846
  +210.4762 +0.4545 +0.4348 +0.4762
             +0.4+0.4348 +0.4167+0.4)
        + 4(0.4545 + 0.4348 + 0.4167) ]
    = 0.1×0.1 [1.7558 + 6.9864+5.2246]
     = \frac{0.1 \times 0.1}{4} \times 13.9662 = 0.0349
Evaluate \int \int \frac{1}{x^2 + y^2} dx dy, numerically with h = 0.2, along x - direction and k = 0.25 along y - direction.
   \frac{300}{T} = \int \int \frac{1}{\chi^2 + y^2} dx dy
  f(x,y) = x2+42
   By Trapemoidal
   I = file I sum of your corners + 2 (Sum of remaining boundary)
                   + 4 ( Sum of interiors)]
```

748	y x 1 1.2 1.4 1.6 1.8 2
glitps	1 6.5 0.4098 0.3378 0.2809 0.2359 0.2
	1.25 0.3902 0.3331 0.2839 0.2426 0.2082 0-1798
	1.5 0.30170-2710 0.2375 0.2079 0.1821 0.16
	1.75 0.2462 0.2221 0.1991 0.1779 0.1587 0.1416
	2 0.2 0.1838 0.1679 0.1524 0.1381 0.125
	$T = \frac{(0.2)(0.25)}{4} \int 0.5 + 0.2 + 0.2 + 0.2 + 0.125$ $+ 2(0.4098 + 0.3378 + 0.2809 + 0.2359$ $+ 0.1798 + 0.16 + 0.1416$
	+ 0.01778 + 0.16 + 0.1381 + 0.1524 + 0.1679 + 0.1838 + 0.2462 + 0.2710 + 0.3331) + 0.3331 + 0.2839 + 0.2426 + 4(0.3331 + 0.2839 + 0.2426 + 0.2082 + 0.2710 + 0.2375
	+ 0.2019 + 0.18211 + 0.1991 + 0.1779 + 0.1587)
· (200	$= (0.2)(0.25) \left[1.025 + 6.6642 + 10.8964)\right]$ $= 0.2323.$

3. Evaluate $I = \int_{0}^{1/2} \int_{0}^{1/2} \frac{\sin(xy)}{1 + xy} dx dy$ using Simpson's rule with $f_1 = k = 1/2$
$T = \int_0^{1/2} \frac{3in(xy)}{1+xy} dx dy$
$f(x,y) = \frac{\sin xy}{1+xy}$ By Simpsons $\frac{1}{3}$ onle,
$I = \frac{hk}{9} \left[Sum g \ fown \ comers + 2 \left(\frac{8um g}{9} \ odd \ Position \right) + 4(3EP) \right]$ $+ 4(30P) + 8(3EP)$
+ 8 (SOP) + 16 (SEP)] even mous
TO 1 0 120 0 10 8
11/2 3 (0) 3 30,1108 30.1979

```
T = \frac{0.1 \times 0.1}{9} \left[ 0.5 + 0.4167 + 0.3571 + 0.2976 \right]
               + 2[0.4545+0.4167+0.326740.340)
               + 450.4762 + 0.4348 + 0.3788+ 0.3205
                    + 0.3401+0.3106+0.4545+0.3846)
                74(0.3788) +8 (0.3968+0.3623)
                +8(0.4132+0.3497)
                 + 6 (0.4329 + 0.3953
                       +0.3663+0.3344) 7
   = 0.1x0. 1.5714 + 3.0862 + 12.4004
             +1.5152 +6.0728+6.1032
                    +24.46247
   I=0.0613
5 Evaluate I I 4xy dx dy using
  Simpsons grule by taking h= 1/4 + k= 1/3
 Solo I = S S 4xy dx dy
  Here f(x,y) = 4xy
```

1/ per 0 -	y x	0	10.25	0.5	0.15	
7042-13-4	0	0	0	0	0	0
(200-0-4)	0.5	0	0.5	-1	1.5	2
k.	(1/6)	0	man de la	2	3	4
-	1.5	0	1.5	3	4.5	6
	2	0	2	4	6	8
		$\frac{0.25\times}{9}$	05 [8		64+8+ +1.	32+32 28 J
	1 + 1/2	t gin	of just			
					arak a	

Questions	opt1	opt2	opt3	opt4	opt7
The process of computing the value of the function inside the given range is called	Interpolation	extrapolation	reduction	expansion	Interpolation
If the point lies inside the domain $[x_0, x_n]$, then the estimation of $f(y)$ is called	Interpolation	extrapolation	reduction	expansion	Interpolation
The process of computing the value of the function outside the given range is called	Interpolation	extrapolation	reduction	expansion	extrapolation
If the point lies outside the domain $[x_0, x_n]$, then the estimation of f(y) is called	Interpolation	extrapolation	reduction	expansion	extrapolation
Δ is called difference operator.	forward	backward	central	none	forward
∇ is calleddifference operator.	forward	backward	central	none	backward
In the forward difference table y ₀ is calledelement.	leading	ending	middle	positive	leading
In the forward difference table Δy_0 , $\Delta^2 y_0$, are called difference.	leading	ending	middle	positive	leading
The difference of first forward difference is called	divided difference	2nd forward difference	3rd forward difference	4th forward difference	2nd forward difference
Gregory – Newton forward interpolation formula is also called as Gregory – Newton forward formula Gregory – Newton backward interpolation formula is also called as Gregory – Newton backward		iteration	difference	distance	difference
formula Gregory – Newton backward interpolation formula is also called as Gregory – Newton backward	Elimination	iteration	difference	distance	difference
formula .	Elimination	iteration	difference	distance	difference
The divided differences are in their arguments. In Gregory – Newton forward interpolation formula 1st two terms of this series give the result for the	constant	symmetrical	varies	singular	symmetrical
interpolation. Gregory – Newton forward interpolation formula 1st three terms of this series give the result for the	Ordinary linear	ordinary differential	parabolic	central	Ordinary linear
interpolation. Gregory – Newton forward interpolation formula is mainly used for interpolating the values of y near the	Ordinary linear	ordinary differential	parabolic	central	parabolic
of the set of tabular values. Gregory – Newton backward interpolation formula is mainly used for interpolating the values of y near the	beginning	end	centre	side	beginning
the set of tabular values.	beginning	end	centre	side	end
From the definition of divided difference (u-u 0)/(x-x 0) we have =	(y, y 0)	(x, y)	(x 0, y 0)	(x, x 0)	(x 0, y 0)
If f(x) =0, then the equation is called	Homogenous	non-homogenous	first order	second order	Homogenous
The order of y $(x+3) - 5y(x+2) + 7y(x+1) + y = 10x$ is	2	0	1	3	3
A function which satisfies the difference equation is a of the difference equation.	Solution	general solution	complementary solution	particular solution	Solution
The degree of the difference equation is	The highest powers of v's	erence between the argum	The difference between the constant	The highest value of x	The highest powers of y's
The degree of (E2-5E+6)yx=e^x is	2	0	1	3	1
The order of $y(x+3) - y(x+2) = 5x^2$ is	3	2	1	0	1
The difference between the highest and lowest subscripts of y are called of the difference equation	degree	order	power	value	order
E-1=	∇	Λ.	, n	δ	Λ
Which of the following is the central difference operator?	∇	Δ	u u	δ	δ
1+Δ=	ν̈	E		δ	E
u is called the operator	Central	average	backward	displacement	average
The other name of shifting operator is operator	Central	average	backward	displacement	displacement
The difference of constant functions are	0	1	2	3	0
The nth order divided difference of xn will be a polynomial of degree .	0	1	2	3	2
The operator Δ is	homogenous	heterogeneous	linear	a variable	linear
	-	,			

The state of the s
1 Paro & Co Unit - solv x 803 = 1x
Initial Value Peroblem for Jor Ordinary differential Equation
Memod-2 Taylor Senies: The taylor Senies formula is $y = y_0 + (x - x_0) \frac{y_0'}{1!} + (x - x_0) \frac{y_0''}{2!}$ $+ (x - x_0)^3 \frac{y_0''}{3!} + \cdots$

1. Use taylor sevies method to find y(0.1) and y(0.2). Given that dy = 3ex+2 y(0) = 0; Soln: given dy = y = sex+2y; y(0)=0; The taylor sevies tormula is; y=y_0+(x-x_0)y_0' + (x-x_0)^2 y_0' + (x-x_0)^3 y_0'
$y'' = 3e^{x} + 2y''$ $y''' = 3e^{x} + 2y''$ $y''' = 3e^{x} + 2y''$ $y''' = 3e^{x} + 2y''$ $y'' = 3e^{x} + 3y''$ $y'' = 3e^{x} + 3y$

use taylor series prethod, solve
$$\frac{dA}{dx} = x^2 - y$$
,

 $y(0) = 1$ at $x = 0.1 \times 0.2$, 0.3.

Solve $\frac{dA}{dx} = x^2 - y$,

 $y = y_0 + (x - x_0) \frac{y_0}{1!} + (x - x_0)^2 \frac{y_0}{2!} + (x - x_0)^3 \frac{y_0}{3!} + (x - x_0)^3 \frac{y_0}{3!}$
 $y' = x^2 - y$; if $y(0) = 1$
 $y'' = x^2 - y'$; if $y''' = y'''$
 $y''' = x - y''$
 $y'' = x - y''$
 $y''' = x - y''$

- T 1 1 1 7 3
= 7/6 x + 1/3 x 3
y = 7/6 x 4+ 4/8 x 5+x 2+x+1
y(0-1) - 1.1115 - 0532-1- (2.57)
y (0.2) = 1.2525
Levilor soiles
that $y'=xy+1$; $y(0)=1$; for $x=0.1$; $x=0.2$; correct to four decimal places.
Solo: The torrida is?
y = y = + (x-x0) 11 + (x-x0) 20 7
(x-x0)4 40 +
x 0 x0
y 1 4.
$y'=xy+1$ y_0'
y"=-y+xy' 1 yo"
y"= y'+y'+8xy" & yo
y" = y"+y"+y"+y"+" 3 y."
$y = 1 + (x-0)\frac{1}{12} + (x-0)^{2}\frac{1}{2} + (x-0)^{3}\frac{4}{6} +$
(x-0)4 9

	y = 1+ x + 1 x + 1 x + 1 x + 1 x + .
	14 K + K4 K LINES TO SE
	y (0.1) = 1.1053
	y (0-2) = 1-2229.
1, 1,00	Obtain the value of y for x=0.1 & method.
	x=0.2;0.3 by taylor series method.
+ 1/2/0	30tn: The staylor series formula in,
	y= yo+ (x-xo) yo + (x-xo)2 yo" + (x-xo) yo"
4	(2-20) 40 +···
	2
	y 1 40
	y' 0 45 - 1 - 1
	y"=-xy'-y1 y."
	y"=-xy"-y'-y' 0 %"
	y'' = -xy"'-y"-y"-y" +3 40
	8 (0-10)

$y = 1 + (x-0)\frac{0}{1!} + (x-0)^{2} + (x-0)^{3} + (x-0)^{4} + 3$
dam there areas con
1- 2/2 + x1/2
y = 1+ 2/2 + x/8
y (0.1) = 0.9950
4(0.2):0.9802
y(0.8) 2 0.9560 - 1 - MARE - 1
Method-D: Euler's rethod:
consider dy = f(x14)
Called Activities
yn+1 = yn + h f (xmyn) (m)
y = ynthyn
1. Serve y'= y-x , y(0)=1 acc x-
by taking h= 0.00; by using
Laking h= 0.00 ; by using
surel's method.
100 00000
olon: $y' = \frac{y-x}{y+x}$; $y(0)=1$
3 9+2
The tuler's formula is,
d + h + cho sist
(00)
ynt) = ynt h. yn

18 (CO)	х 0 0.02 0.04 0.06 0.08 0
4.4	U 1.02 1.0392 1.0577 1.0756 /
	y'= 4-x 1 0.9615 0.9259 0.8926 0.86/5 0
	y = q x 1 Dapp of = Coary
	1486-0 - (2-07h
	11 1 hu = 1 1 n 02x1 = 1.02
	$y_1 = y_0 + y_0 = 1 + 0$ $y_2 = y_1 + y_2' = 1.02 + 0.02 \times 0.9615 = 1.0392$
	n=2; y=y2+h-y2'=1.0892+0.02 x 0.9259=1.0577.
5 100	n=3;
	у _д = 1.0456
	n=4; y= y++ hy+ = 1.0456+0.02 x 0.8645
	7= (0) 9 ₅ = 1.0928.
2	Fully method
	dy = very, you = 1. radeing h = 0-8.

given dy = x+y, y(0)=1. The Euler's formula is Your Yothyo' y'=x+y 1 1.4 1.88 n=0=) $y_1=y_0+hy_0'=1+(0.2xi)=1.2$ N=1=) 48= 8+48, = 1.5+0.2x1.4)=1.48. 3. Using Euler's method find the solution of the initial value problem (2VP) dy elog(xy) y(6)= 2 at x=0.6 by assuming h=0.2. given y'= log (x+y); y(0)=2. The fuleu's formula is ynti = ynthyn' N O 0.2 0.4 0.6 y 2 2.0602 2.1810 2.2114. y'elog (x+y) 0-3010 0-3541 0-4033 0-4490n=0=) y,=yothyo'= 2+(0.2x0.3010)= 4.0602. n=1=) 42= 4,+ hy, = 2.0602+(0.2 x0.3541)= 2.1810. n=2=) y3=4, +hy2 = 2-1818+ (0-2x0-4083)=2.2117. 2- Using Euler's method, find y (4.17 & y (4.0) if 5x dy +y = 2 = 0 ; y(4) =1

Soln:
tiven 5 dy + yo- 2=0; y(H)=1
,,2,,
$\frac{dy}{dx} = -\frac{y^2 + 2}{5x}$
an 1 4 = 4 + h 4 - 1
The tulen's formula is ynt = ynthyn'
The second secon
A 4.1
1 +0 12
$y = \frac{3}{5\pi}$ 0.0h $n = 0 \Rightarrow y_1 = y_0 + hy_0' = 1 + 0.11(0.05)$
2-2-) u = yo+hyo = 1+0.
. 5050
= 1.0060 $= 1.0060$ $n = 1 = 1.006 + 0.1(0.0463)$
n=1=) y2= 4+kg,
=1-0098 //
11/24+21
5. find y (0.2) 40 3
Find y (0.2) 400 g Find y (0.2) 400 g Take h=0.1
given y'= y+ex, y(0)=0 Given y'= y+ex, y(0)=0 Given y'= y+ex, y(0)=0
given g = y + hy
The Guler's formula is yne yn hy The Guler's formula is yne yn hy The Guler's formula is yne yn hy
X 0 0.1 0.220 F
9 6

```
y, = yothy = 0+0.1(1) = 0.1
     n=1=)
        y = 4,+ h y = 0.1+0.1 x (1.2052) = 0.2205.
    Fowith order Range-leutta method
    consider, g (x, y, y') = 0.
             y'= + (x,y)
         k, = hf(x,y)

k2 = h-f(x+1/2 1 4 + 1/2)
      103 = hf (x+ Ha, y+ 62/2)
104 = h f (x+h, y+63)
        y = 40 + 1/6 ( k+212+ 2k3+ k4)
114 using Runge-routta method of order 4;
    find y value when x=1.0in steps of 0.1
    given that y'= x3+y2, y(1)=1.5.
    soln!
      The Rurge-Kutta formula is
       K, = h. + (x,y)
K= h. f (x+h/2 14+ 2/2)
        ra = 4. f(x+ h/a, y+ k2/2)
```

Ky = h. f(x+h, y+kg) 41-x2+42 here, f(x,y) = x2+y2 ; h=0.1 2 1 1.1 1.2 У 1.5 1.8955 2.5044. 70 Aind y, (MAN) x=1 ; y=1-5. le,=hf(x,y) = 0.1x f(1,1.5). = 0.1 x 3. an = 0.32 h. · Ka= h + (x+h/21 4+x1/2) = 0.1x +(1.05,1.662 = 0.1 x 3.866 4 = 0.3866 K3 = h. f(x+h)2/y+ k2/2) = 0-1 f(1.05,1.6933) = 0.1x8.9698 - 0.3970. Kn=h. flx+h, y+x3)=0.1xf(1.1,1.8970) =0.4809. 4, = 40+ 1 [10,+2 k2+2 k3+ k4] = 1.5+ 1 0.325+210.3866+2×09990

$$f(x,y) = x^{2} + y^{4}$$

$$f(x,y) = x^{2} + y^$$

2. Find y(0.7) &y(0.8) given that y'= y-xe y(0.6)=1.7379 by using Rx method 08 (+ 4th order : = 1 - = (problem) Aln: $k = h - f(\alpha, y)$ Ke = h. f(x+h/2, y+k/2) k3=h. f(x+h/2 14+ x2/2) Kn=h. flathi y+k3) 4) won $y'=y-x^2$ Home $f(x,y)=y-x^2$; h=0.1X 0.68 0.4 y 1.4579 1.8463 2.0148. x=0.6; y=1.7379. k,= h. f(x,y) = 0.1x f (0.6,1.\$379) Theore - 4688 - 0 1348 CONT OK2 - 10 0. 1x \$ 66-10/21 - 0.1 x f (0.6+0.1/2 1 1.4379+0-1398/2)

```
= 0.1 x $ (0.65, 1.8091)

= 0.1585.

RA = 0.1 x $ (0.4, 7.8964)

= 0.1886.
      4,=1.7379-16 (0.1348+0.138440.1385x2+
                                 0.1386)
         - 1.8763/ La Amy of
   70 find y2.
       x=0.4 ; y=1.8763.
   K1 = 0-1x f (0.7, 1.8763) = 0.1366
    Ra = 0.1x $ (0.75, 1-9456) = 0.1383
    1c3 20.1x $ (0.45) 1.9455) = 0.1383.
  KA = 0.1x + (0.8, 8.0146) - 0.1395
ya=y,+1/6 [K,+21e2+2k3+t4)
        · 1.8763 + 1/6 (0.1386+2x0.1383+
                        2x 0-1883 + 0-1402
```

3. using R.k method to find
$$y(0.a)$$
?

 $y(0.4)$. Given by $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$

Soln:

 $y' = \frac{y^2 - x^2}{y^2 + x^2}$

Here, $f(x_1 y) = \frac{y^2 - x^2}{y^2 + x^2}$; $h = 0.2$
 $x = 0$, $y = 1$
 $x_1 = h \cdot f(x_1 y) = 0.4x + f(0,1)$
 $x_2 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_3 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_4 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_5 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_7 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_7 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_7 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_7 = 0.4x + f(0.1, 1.0) = 0.1964$.

 $x_7 = 0.4x + f(0.1, 1.0) = 0.1964$.

no find ys !x = 0. A; y=1.1960 K1 = 6.2x \$(0.2,1.1960) = 0.1891 Ka = 0.2x + (0.25, 1.2906) = 0.1795 K3 = 0.2x + (0.3, 1.2842) = 0.1798 Ky = 0. 2x + (0.4 , 1.3753) - 0.1688 42=1.1960+1/6/0.1891+2x0.1763+0.1793 + 0.1688) - 1.3753 -

1न(१)14	Using R.K method for solving simultaneous Equalism:
Final	consider, $\frac{dy}{dx} = f(x,y,z); \frac{dz}{da} = g(x,y,z)$
	f(x,y,z) $g(x,y,z)$
	k, = h. f(x, y, x)
(8-	kg = h. f (x+h6, y+kg, x+13) l3 = h.g(x+h/y+ky, x+1/2) ky = h. f(x+h, y+kg, x+1/3) l4 = h.g (x+h/y+kz, x+1/3)
\$	y,= 40+ 6 [k,+2k2+2k3+ k4]. x,= x0+1/6 [l,+2l2+2l3+l4].
(for	Solve for y(a1) and z(0.1) from the
	Simultaneous equation dy = dy+2; dx= y-32 y(0) = 0; z(0) = 0.5; using RK method 8 order 4.
	Sdn! 201 00 3 4 (1120, 1300 1-3) + x1000 Cisven, dy = y-8x; 9(n. 4,2)=y-3x.

	y(0 o.1	(michago)
	Z 0.6 0.372	a Maines
	2 0.6 0.372	6 2 4 5
	h=0.19.818	(2.8.9)
	AND	Second L
¥1+4.	+(x,y,z)= 2y+z	g(x1412)=4-32.
	$K_1 = h. f(x, y, x)$	1,=0.1 ×9 (0,0,0.5)
100	K1: h. fox, y, x) =0.1x4(0,0,0.5)	1, = - D. 15.
	KIE 6.06 - 1 - 11 (1)	State profession in the
	ka = h. + (n+h/2, y+ k/3, z+1/3)	la=0.1×9 (0.05, 0.025, 0.4
	=0.1×\$(0.05,0.005,0.425)	Ja = -0.125.
	K = 0.0445 .	17-7-31, 49x 3-12
	Kg: h. f(x+h)2, y+kg, 12+dg/) 13 = 0.1x9(0.05x0.238x
	20-1 x \$ (0-05, 0.0388, 0.4875)	135-0-1289.
	1 0 0000	= (a) a · a = (a) h
	k4 = h.flx+h,y+k3,x+ls)	Ju = 0.1x9 (0.1,0.0485,0.87
	=0.1× = (0.1, 0.0486, 0.8711)	= -0.1065 : also
	= 0.0468 HE 10) 8 - 4	2 - 10 - 100 or 100 cts

y, = y0 + 1/6 (161+2K2+2K3+K4) · 0+1/6 (0.05+2 X 0.04 95+ 0.04 85+ 0.0466) ₹1 = 0.5+1/6 (-0.15-2×0.125-2×0.1289 -0.1065) - 0.3726 P R. K method for solving second order
Equation: Consider) 4 (x, y, y', y") = 0 - 0 take y = 2 - 0 By using @ in @ , we get z'= g(x, y, z) find the value of y(0.1) by using R. K method Soln Person-4inen, y"+xy+y=0. _ @ 200-3-Take 41=12; 11 (21+x 12x+12.11+10)+ 12 - 111

1800.0= 21+xx +y =0. 0010-0- 3

	1331 Zzy' 0 -0	99%0 1 3/1+4-3 = 1 3/1 0995-
	f(x,y,x)=x	g(x,y,x) = -xx-y.
	$k_1 = h \cdot f(y_1, y_1, z)$ $= 0.1 \times f(0, 1, 0)$ $k_1 = 0.$ $k_2 = h \cdot f(x+y_2 + y+k_2 + z+h_3)$ $= 6.1 \times f(0.5, 1, -0.5)$ = -0.005.	2= 0.1xg (0.05,1,-0.05)
Intitut s	kg: 从. 年(x+h)2+4+ xx+x+	3) d3=0.1 xg (0.05, 0.9975,
	= 0.1x \$ (0.05, 0.9975, -0.00	$\frac{1}{3} = 0.1 \times g \left(0.05, 0.7725\right) \\ -0.0499$ $= -0.0995$
		on president and the
	K4 = h. 4[x+h, y+k3 , x+15]	14: 0.1×9(0.1,0.9950,0.09
	= 0.1x f(0.1, 0.9950,-0.09	n) = = 0.1015 = 0.0986

4,= 40+ + (K1+21c2+21c3+K4) = 1+ 1/4 (0-220.005-2x0.005-0.01) = 0.9950 //. 21:0+1/6 (-0.1-220.0998-220.0999 2 Consider the 2nd Order unitial value pbm: $y'' - ay' + ay = e^{at} sint$; y(0) = -0.4; y'(0) = -0.6 using R 4th order R. k method find y(0) = 0.6 using y(0) = 0.6(dead-o-given y"-ay"+ay = e sinx =)+. Take y'=x. f(x,y,x)=x. TI - az + ay = edy Bin x in which had a $z' = e^{x} \sin x - ay + ax$ g(x,y,x) = e x sinx - 2y+22.

	x 0 0.	
	- 0. N . O	3 12/21 2
	7:4' -0.6	
(4.65	W-0.9	detti a s
	f(x,y,z):z	g(x1y12):ex sinx-ay+ax.
	K - h - 1 (x 14, 5)	
	= 0.1 x f(0,-0.4,-0.6)	l1 = 0.axg(0,-0.4,-0)
30	The Total Control of the Control of	1, =-0.08-
TA-9	2 -0.12. Alexander	the air relation to
balder	Ka=h. + (x+1/2, y+x/2, x+x/2)	la = 0.2 × g(0.1/0.46, -0.6
	= 0.2xf (0.1, -0.46, -0.64)	= -0-0442 -0-0446
1	= -0.1680 .	if they but .
8	kg=h. +(x+ No14+ kg/x+ 1/2)	13 = 0-2x g(0-1,-0-4640,
	= 0.2x f(0.1, 0.9360, -0.628)	-0.6286)
		0.039 5
	= -0-12440-1248.	= [2 y, m; = n = 12]
	Kn= h. f(x+h, y+kz, x+lz)	14 = 0.2×g(0.2, -0.5457)
- N	OV 50 A9, -0-6195	-0-6595ii)
	=0.2× \$(0.2, -0.5195)	-0.01841 - +0.0086
	= -0.13020.1279	Carband Land

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	y, = y0 + 1/6 (K1 + 2 k2 + 2 k3 + k4)
	= -0-47 /6 (20-12-8x0.1280-8x8-1299-0-1902)
	The second secon
	2 -0.5263/ 6.5256//. IM
	0.0476 0.0398
	Z1 = -0.6 + 1/6 (-0.08 - 0x 0.0574 - 0x 0.051) + -0.0140.0086)
	That has single and the same of the same o
80.1	- 2 - 0.6480 /
7.8	12-10-6401/L
Hint-s Kin	the state of
ralel IA	Milne's Prediction - corrector Method.
	consider dy = f(x,y) Draws = 19
	-12+ H-48 1-41 -41- 101-17
	p: ynti = yns + 4h [29n-2-41 + 24n]
FARPI	THORES A ZENE BLESS AND A THE A STATE OF THE ASSESSMENT OF THE ASS
	$c: y_{n+1} = y_{n+1} + \frac{h}{3} \left[y_{n-1} + y_{n} + y_{n+1} \right]$
	11 la voctor formula
0	By using Milne's predictor-corrector formula
	do find y (0.4) & y (0.5). G. T dy = (1+x2)y2,
	(12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	y(0)=1; y(0.1)=1.06; y(0.2)=1.12; y(0.3)=1.21
	THAT STANDS + IN X B- TOTAL S - OF THE PER
	(Sidling - 1044) -
	13 - 1988-10 Hb 13
	day de.

	Str. The Neilene's predictor - corrector
(2031-0-	formula is a second of the second
	$p: Y_{n+1} = Y_{n-3} + \frac{Ah}{3} \left[a Y_{n-2} - Y_{n-1} + a Y_n' \right] = 0$
6	$c: y_{n+1} = y_{n+1} + \frac{h}{3} \left[y_{n+1} + y_{n+1} \right] - \emptyset$
	9 0 20 0.1 0.2 0.3 0.4 0 20 20 20 20 20 20 20 20 20 20 20 20 2
	y 1 y 1.06 1.12 1.21 1.2771 1277 1.
	y' (1+78) 9 0.5 0.5674 0.6523 0.4979 0.9460 0.978 1.
	Put n=3 in () () () () 1 = 1/2 = 1/2 () ()
1	P: y = y + + h (24, 1 - 42 + 243)
	= 1+ Axb. 1 (.8 x 0. 56 74 - 0. 6523 + 2 x 0. 7979
-damed	P. C. Sand Manuel . Similar Price P. 19
1 1	put no g in eqn O a (no) y both at
16.13	(4 = 42+ h/s (42+443+44)
	= 1.12+ 0.1 (0.6523+4×0.7979+0.9460)
	C: 94 = 1-8494.

P: $y_5 = y_1 + \frac{hh}{3} \left[ay_1 - y_3 + ay_4 \right]$ = 1.06+ $\frac{h \times 0.1}{3} \left[a \times 0.6525 - 0.794942 \times 0.9496 \right]$ P: $y_5 = 1.3608$. Put n=4 in \bigcirc C: $y_5 = y_3 + \frac{h}{3} \left(y_3 + hy_4 + y_5 \right)$ = 1.41 + $\frac{0.1}{3} \left(0.7949 + h \times 0.9296 + 1.1916 \right)$. Y ₅ = 1.4030. Shiven $y' = \frac{1}{244y}$, $y(0) = a_3$, $y(0.2) = a.0933$; $y(0.4) = a.1955$, $y(0.6) = a.0293$. Find $y(0.8)$ by $y(0.4) = a.1955$, $y(0.6) = a.0293$. Sin: The Milnel's formula is, P: $y_{n+1} = y_{n-3} + \frac{hh}{3} \left[ay_{n-2} - y_{n-1} + ay_n \right] - \bigcirc$ C: $y_{n+1} = y_{n-1} + \frac{h}{3} \left[ay_{n-2} - y_{n-1} + ay_n \right] - \bigcirc$ C: $y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + hy_n + y_{n+1} \right] - \bigcirc$	18	put n= a in 10,
P: $y_5 := 1.3608$. Put n=A in \emptyset , C: $y_5 := y_3 + \frac{h}{3} (y_3' + h y_h' + y_h')$. 1.335. Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Given $y' := \frac{1}{3} + \frac{h}{3} (y_0) = a$; $y(0, 1) = 0.0933$; Find $y(0, 1) = 0.0933$; P: $y_{n+1} := y_{n-3} + \frac{h}{3} (y_{n-2} + y_{n-3} + y_{n-3$		5-0 0-0 A-0 L C1-5 ,0 ,-10
$p: \ \ $		P: 45 = 4, + 45 [24, -43 + 84,)
p: $y_5 = 1.3808$. Put $n=1$ in \emptyset , $C: g_5 = y_3 + \frac{h}{3} (y_3 + hy_4 + y_5)$ 106 1.288. Given $y' = \frac{1}{2} (0.7979 + 4x 0.9x96 + 1.1916)$. $y_6 = 1.4030$. Given $y' = \frac{1}{2} (0.7979 + 4x 0.9x96 + 1.1916)$. $y_6 = 1.4030$. Given $y' = \frac{1}{2} (0.7979 + 4x 0.9x96 + 1.1916)$. $y_6 = 1.4030$. Given $y' = \frac{1}{2} (0.7979 + 4x 0.9x96 + 1.1916)$. $y_6 = 1.4030$. Given $y' = \frac{1}{2} (0.7979 + 4x 0.9x96 + 1.1916)$. Given $y' = \frac{1}{2} (0.7979 + 1.1916)$. Given $y' = \frac{1}{2} (0.7979 + 1.1916)$. Given $y' = \frac{1}{2} (0.7979 + 1.1916)$.		Service of Contract of Contrac
p: $y_{5} = 1.3808$. Put $n=h$ in \emptyset , $C: g_{5} = y_{3} + \frac{h}{3} (y_{3} + hy_{3} + y_{5})$ 108 114830 $y_{5} = 1.4030$. Given $y' = \frac{1}{24y}$; $y(0) = 3$; $y(0.2) = 0.0733$; $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. P: $y_{n+1} = y_{n+1} + \frac{h}{3} [2y_{n-2} - y_{n-1} + 2y_{n-1}] - \emptyset$ $y_{n+1} = y_{n+1} + \frac{h}{3} [y_{n-1} + hy_{n} + y_{n+1}] - \emptyset$		= 1.06+ 4x0-1 [2x0.6523-0.7949+2x0.9498]
Put $n=A$ in \emptyset , $C: g_5 = 4g + \frac{h}{3}(4g_3' + h4g_1' + 4g_5')$ $= 1.41 + \frac{0.1}{3}(0.7979 + hx0.9148 + 1.1916.)$ $y_6 = 1.4030$ Griven $y' = \frac{1}{24y}$; $y(0) = a$; $y(0.2) = 8.0933$; $y(0.h) = 9.1755$, $y(0.6) = 8.2893$. Find $y(0.8)$ by $y(0.h) = 9.1755$, $y(0.6) = 8.2893$. Find $y(0.8)$ by wing hillerly method. 85th: The Milnely formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} [ay_{n-2} - y_{n-1} + 2y_n] = 0$ $c: y_{n+1} = y_{n-3} + \frac{y_n}{3} [y_{n-1} + y_n] + y_{n+1}] = 0$		20 3 440 700
Put $n=A$ in \emptyset , $C: g_5 = 4g + \frac{h}{3}(4g_3' + h4g_1' + 4g_5')$ $= 1.41 + \frac{0.1}{3}(0.7979 + hx 0.9898 + 1.1916.)$ $y_6 = 1.4030$ Griven $y' = \frac{1}{24y}$; $y(0) = a$; $y(0.2) = 8.0933$; $y(0.4) = 8.1755$, $y(0) = 6$; $y(0.2) = 8.0933$; $y(0.4) = 8.1755$, $y(0) = 6$; $y(0.2) = 8.0933$; wing Ailers method. Soln: The Milness formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[ay_{n-2} - y_{n-1} + 2y_n \right] - \emptyset$ $c: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[y_{n-1} + y_n + y_{n+1} \right] - \emptyset$		1 00 08
put $n=1$ in \emptyset , $C: g_{5} = 43 + \frac{1}{3} (43 + 144 + 45)$ $= 1.41 + \frac{0.1}{3} (0.7979 + 4x0.9498 + 1.1916)$. 16 1.288. $y_{5} = 1.4030$. Griven $y' = \frac{1}{24y}$; $y(0) = 4$; $y(0.8) = 0.0933$; $y(0.8) = 0.1955$, $y(0.6) = 0.4893$. Find $y(0.8)$ by $y(0.8) = 0.1955$, $y(0.6) = 0.4893$. Find $y(0.8)$ by wing ruleurly muthood. 80th: The Milnels formula is, $p: y_{n+1} = y_{n-3} + \frac{11}{3} [2y_{n-2} - y_{n-1} + 2y_n] - \emptyset$ $c: y_{n+1} = y_{n-3} + \frac{11}{3} [2y_{n-2} + 3y_n] + 2y_n]$		p: 96.= 1.3800.
C: $y_5 = y_3 + \frac{h}{3} (y_3 + hy_1 + y_6)$ = 1.41 + 0.1 (0. 1979 + 4x0.9x98 + 1.1916.). $y_5 = 1.4030$. Given $y' = \frac{1}{24y}$; $y(0) = a$; $y(0.2) = 0.0933$; $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by $y(0.4) = 0.1755$, $y(0.6) = 0.4293$. Find $y(0.8)$ by wing Nilou's method. 801n: The Nilou's formula is, $p: y_{n+1} = y_{n-3} + \frac{1}{3} [ay_{n-2} - y_{n-1} + 2y_n] = 0$ $c: y_{n+1} = y_{n-3} + \frac{1}{3} [ay_{n-2} - y_{n-1} + 2y_n] = 0$	Н	in the same during
1.288. $y_6 = 1.21 + \frac{0.1}{3} (0.7979 + 4x0.9x98 + 1.1916.)$ 1.288. $y_6 = 1.4030$. 1.4030. 1.500		put nea and
1.288. 1.4030. 16 1.288. 1.4030. 16 1.288. 17 1.4030. 18 1.4030. 19 1.4030. 19 1.4030. 10 1.4030. 10 1.4030. 11 1.4030. 11 1.4030. 11 1.4030. 12 1.4030. 13 1.4030. 14 1.4030. 15 1.4030. 16 1.288. 17 1.4030. 18 1.4030. 18 1.4030. 19 1.4030. 19 1.4030. 10 1.4		C: 9 = 43 + 4 (43 + 44 + 45)
Given $y' = \frac{1}{x+y}$; $y(0) = a$; $y(0,2) = a \cdot 0933$; $y(0,4) = a \cdot 1955$, $y(0) = a \cdot 2893$. Find $y(0,8)$ by $y(0,4) = a \cdot 1955$, $y(0) = a \cdot 2893$. Find $y(0,8)$ by wing nulleuts method. Soln: The Nilne's formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[ay_{n-2} - y_{n-1} + ay_n' + y_{n+1} \right] - \bigcirc$ $c: y_{n+1} = y_{n-1} + h \left[y_{n-1} + h y_n' + y_{n+1} \right] - \bigcirc$	808	
Given $y' = \frac{1}{x+y}$; $y(0) = a$; $y(0,2) = a \cdot 0933$; $y(0+1) = a \cdot 1966$; $y(0+6) = a \cdot 2893$. Find $y(0+8)$ by $y(0+1) = a \cdot 1966$; $y(0+6) = a \cdot 2893$. Find $y(0+8)$ by wing nulleus method. Soln: The Milne's formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[ay_{n-2} - y_{n-1} + ay_n' + y_{n+1} \right] - \bigcirc$ $c: y_{n+1} = y_{n-1} + h_3 \left[y_{n-1} + ay_n' + y_{n+1} \right] - \bigcirc$	Ц	= 1.21+ 0.1 (0.7979+ 4x0.9898+1710).
Given $y' = \frac{1}{x+y}$; $y(0) = a$; $y(0,2) = a \cdot 0933$; $y(0+1) = a \cdot 1966$; $y(0+6) = a \cdot 2893$. Find $y(0+8)$ by $y(0+1) = a \cdot 1966$; $y(0+6) = a \cdot 2893$. Find $y(0+8)$ by wing nulleus method. Soln: The Milne's formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[ay_{n-2} - y_{n-1} + ay_n' + y_{n+1} \right] - \bigcirc$ $c: y_{n+1} = y_{n-1} + h_3 \left[y_{n-1} + ay_n' + y_{n+1} \right] - \bigcirc$	16	1-298.
Given $y' = \frac{1}{x+y}$; $y(0) = a$; $y(0, a) = a \cdot 0933$; $y(0, +) = a \cdot 1966$, $y(0, 6) = a \cdot 4893$. Find $y(0, 8)$ by $y(0, +) = a \cdot 1966$, $y(0, 6) = a \cdot 4893$. Find $y(0, 8)$ by wing rulearly method. 80th: The Milnel's formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[ay_{n-2} - y_{n-1} + ay_n' + 2y_n' \right] \longrightarrow 0$ $c: y_{n+1} = y_{n-1} + h_3 \left[y_{n-1} + h_3 y_n' + y_{n+1} \right] \longrightarrow 0$		4- 1.4030.
$y(0+1) = 2.1966$, $y(0+6)$ using Rillow's method. Soln: The Milnels formula is, $p: y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[2y_{n-2} - y_{n-1} + 2y_n' \right] = \emptyset$ $c: y_{n+1} = y_{n-1} + \frac{y_n}{3} \left[y_{n-1} + y_{n+1} \right] = \emptyset$		
$y(0+h) = 2.1966$, $y(0+6)$ wing killer's method. Soln: The Milne's formula is, $p: y_{n+1} = y_{n-3} + \frac{4n}{3} \left[2y_{n-2} - y_{n-1} + 2y_n \right] = \emptyset$ $c: y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + y_{n} + y_{n+1} \right] = \emptyset$		4 (0.2) - 0.0933;
$y(0+h) = 2.1966$, $y(0+6)$ wing killer's method. Soln: The Milne's formula is, $p: y_{n+1} = y_{n-3} + \frac{4n}{3} \left[2y_{n-2} - y_{n-1} + 2y_n \right] = \emptyset$ $c: y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + y_{n} + y_{n+1} \right] = \emptyset$		Given y'= x+y , y(0) = 3 at 8 = a + a
wing pullers method. Sofn: The Milnels formula is, $p: y_{n+1} = y_{n-3} + \frac{4n}{3} \left[\frac{3y_{n-2} - y_{n-1} + \frac{3y_n}{3} - 0}{4y_{n-2} + \frac{3y_n}{3} + \frac{3y_n}$	П	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sotn: The Milnels toomula is, p: $y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[\frac{\partial y_{n-2} - y_{n-1} + 2y_n}{\partial y_{n-2}} \right] - 0$ c: $y_{n+1} = y_{n-1} + \frac{y_n}{3} \left[y_{n-1} + 2y_n + y_{n+1} \right] - 0$	1	y(0+4) = 2-1959, 9(000)
80tn: The Milnels formula is, $p: y_{n+1} = y_{n-3} + \frac{4n}{3} \left[2y_{n-2} - y_{n-1} + 2y_n' \right] - 0$ $c: y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + 2y_n' + y_{n+1} \right] - 0$		pulpers method.
p: $y_{n+1} = y_{n-3} + \frac{4n}{3} \left[2y_{n-3} - y_{n-1} + 2y_n \right] - 0$ c: $y_{n+1} = y_{n-1} + h_3 \left[y_{n-1} + 2y_n + y_{n+1} \right] - 0$		A CONTROL DE LA
p: $y_{n+1} = y_{n-3} + \frac{4n}{3} \left[2y_{n-3} - y_{n-1} + 2y_n \right] - 0$ c: $y_{n+1} = y_{n-1} + h_3 \left[y_{n-1} + 2y_n + y_{n+1} \right] - 0$		80tn: somula is,
Le miles aft sunding (200) bril. Solve M		The Millian of the 17
be received with surplines (200) both solve of		4 + 4h 2y -4n + 24n -0
In order that you continue the solution of		
In order that you continue the solution of		+ h, Tu + 444 + 4 m = @
It order that you continue the solution of		Sc: 100 n+10 3 = 3 = 3 = 1 = (3 = 1)
bostan Kudan guide Krand		
9		- Loudain Walling price 4-518

y 2 2.0933 2.1955 2.2493 2.3162 2.3 y 3.0933 2.1955 2.2493 2.3162 2.316 put ness in O p: y = y + + + (2 y ' - y + 2 y ') $= 2 + \frac{4 \times 0.2}{3} \left[2 \times 0.4861 - 0.3893 + 2 \times 0.3510 \right]$ P: 44 2 2.3162. Put n= 3 in @

c: y4 = y2 + h [y2 + 4y3 + 44] = 2.1455+ 0.2 0.3883+ 4x0.3510+0.3209 alslin. c: 4 = 2-3164 /. 3. Given y'= xy+y2, y(0)=1; y(0.1)=1.1169; y(0.2)=1.2774. using R.k method & 4th order, find y(0.8). Continue the solution x:0.4 using milne's method.

```
win: A popular to the control of the control
         Here , h=0.1; - 12 ] = + 1 = 1 = 1 = 1 = 1 = 1
           y'= 24+42
           f(x,y) = xy+y2
        To find 43;
   2411-4 2 20-2; y=1-244 h . EAR-1 1 PAUX E
         k1 = h.f(4.4) = 0.1xf (0-2,11.2794) = 0.1887-
         Ko = h. f(x+h/2), y+ (0.25, 1.3718)
          c 0.2225 .
    13 = ch + (x+h/2! y+ 12) = 0.1x+(0.85, 1.3687)
          = 0.2276
         KA = h. f(x+h, y+k3) = 0.1xf(0.3,1.5050)=0.2711.
         48 = 42+ 16 [1c, +21c2+21c3+1c4] 8 -1 104
         = 1.2974 + 1/6 0.1884 + 2x0.2225 + 2x0.2296+
1 2770-4+ PEIP Z TH + 2188-1 7 10+ 4775.15 0.2414]
```

Milne's formula is,

p:
$$y_{n+1} = y_{n-3} + \frac{y_n}{3} \left[y_{n-2} - y_{n-1} + 2y_n' \right]$$

c: $y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + hy_n' + y_{n+1} \right]$

9: 0 0.1 0.2 0.3 0.4

9: 1.1169 1.294h 1.5042 1.8845 1.5

9: $y'=x_1+y^2$ 1.3592 1.8872 2.41159 4.0992 4.1

Aut n=3 in 0

p: $y_h = y_0 + \frac{h}{3} \left[2y_1' - y_2' + 3y_3' \right]$

= 1.8345:

Put n=3 in 0

1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

2.1.8345:

3.1.8312 + hy_3' + y_h' = 1.8472 + 2.727139 + 3.7972 + 3.7772 + 3.7972 + 3.7772 + 3.7972 + 3.7772 + 3.7972 + 3.7772 + 3.7972 + 3.7772 + 3.7972 +

4. Given that y"+xy'+y=0, y(0)=1; y'(0)=0 obtain y for x=0.1,0.2 and 0.3. by Taylor series method and find the soln for y (000) by railne's method. Soin: The Taylor series in paper as (Engle 4= 40 + (x-x0) 40 + (x-x0)2 40 + (x-x0)34. X +315.0- 0391-0- 70990-0 y=1+ (x-0) % + (x-0) x-1/2 + (x-0) 96+

P: $y_{n+1} = y_{n-3} + \frac{4h}{3} \left[2y_{n-2} - y_{n-1} + 2y_{n-1} \right]$ c: $y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + hy_{n} + y_{n+1} \right]$ $x = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ Pick $y_{n+1} = y_{n-1} + \frac{h}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n+1} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$ $y = \frac{x_{n-1}}{3} \left[\frac{x_{n-1}}{3} + hy_{n} + y_{n} + y_{n} \right]$
c: 4 put n= 8; c: 4 put n= 8; c: 4 y + 4 y 4 + 4 y +

 $= 0.9802 + 0.1 \left[-0.1960 - 4x 0.2865 + 0.9282 \right]$ CHAP PIOPENTE Adam's Bashforth productor- corrector formula: P: 4n+ = 4n+ = 155 yn - 59 yn-1 + 374n-2 - 9 4n-3 e: yn+1 = yn+ h [194n' - 54n-1 + 44n-2 + 94n+1] 1. Using Adam's method find y (14 y(14) given y'= x2 (1+4), y(1)=1; y(1.1)=1.233; y(1.2): 1. 548 & y(1.3) = 1.979. Soln 2 brof at bouttern Kingely wo en-so() & The Adam's formula is, P: Yn+1 = Yn+ 1 [554" - 594" + 374"-2 c: Yn+1 = Yn+ \(\frac{h}{2h}\) \[\frac{19\n' - 5\yn-1 + \yn-2 + 9\yn+1 \]

\[\frac{h}{2h}\] \[\frac{1}{2h}\] \[\frac 1 4 40 1 1-23 1-548 1-979 2-5783 2-5749

1-23 1-4

1-24 1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-25 1-4

1-

Put
$$n=8$$
;

p: $y_h = y_3 + \frac{1}{a_h} [55y_3 - 59y_4 + 34y_1] - 9y_0]$

= $1.949 + \frac{0.1}{2h} [55x 5.03h5 - 59x 3.6691 + 34x 3.699 - 9x4]$

P: $y_h = 3.5743$.

Pothenes in 0

= $1.949 + \frac{0.1}{a_h} [19y_3 - 5y_3] + y_1 + 9y_h$

= $1.949 + \frac{0.1}{a_h} [19x 5.03h5 - 5x 3.6691 + 3.70]$

= $1.949 + \frac{0.1}{a_h} [19x 5.03h5 - 5x 3.6691 + 3.70]$

= $1.949 + \frac{0.1}{a_h} [19x 5.03h5 - 5x 3.6691 + 3.70]$

C: $y_h = 3.5449$

2. Use Adam's mathod to And $y(a)$ if

 $y' = \frac{x+y}{a}$, $y(0) = a'$; $y(0.5) = 3.636$; $y(1) = 1$

and $y(1.5) = 1.968$

The Adam's Hormula is

F. P: $y_{n+1} = y_n + \frac{1}{a_h} [55y_{n-1} - 59y_{n-1} + y_{n-2} + 9y_{n+1}]$

C: $y_{n+1} = y_n + \frac{1}{a_h} [19y_n - 5y_{n-1} + y_{n-2} + 9y_{n+1}]$

y:
$$\frac{3}{3}$$
, $\frac{3}{6}$, $\frac{3}{6$

	$c: y_{n+1} = y_n + \frac{h}{2h} \left[19y_n' - 5y_{n-1} + y_{n-2} + 9y_n \right]$
1919 35	y 1 7.1169 1.2474 1.5041 1.5541
MARK COM	10 W 35 9 9 5 9 5
	पु । क्राहित् । २ वर्गम । ५०म। १ - १८५।
Part Part	dy = xyty 6 0-0895 0-1566 2.7185. 1.079
	but n= 3 in
376	P: Yh = Y3+ h [5543'-594,1+874,1-9
	1 - 33 an [5,093 - 11 35
11.22	- 1.5041+ 0.1 (55x2.7/85-59x1.8872 +
	= 1.50 HI + 0.1 STX2.7185-59 X1.8872 - 37x 1.8572 - 9×1]
[918	Put n= 3 un - 1.8341
	c: yn: y3+ h [1943'- 542'+4, +941]
	1.5041+ 0.1 [19 x 2.7185 - 5x1.8872 +
	# 211-1 = (1-0) y 1 = (0) y 1.3592 +9×4.0976
	1 hod (= (80)) by here : HTP & 1 = (3 -0) p
100	in a time of make the formula is
in the	p: your - 40+ 10 - 100 - 5 + 100 - 1 + 5 + 100 - 2 -
	DD

unit-IV

Numerical differentiation and Integration

Questions Formula can be used for interpolating the value of f(x) near the end of the tabular values.	opt1 Newton's forward	opt2 Newton's backward	opt3 Lagrange	opt4 stirling	opt5	opt6	Answer Newton's backward
Formula can be used for interpolating the value of $f(x)$ near the beginning of the tabular values.	Newton's forward	Newton's backward	Lagrange	stirling			Newton's forward
In Numerical integration, the length of all intervals is in distances.	Greater than the other	less than the other	equal	not equal			equal
When the function is given in the form of table values instead of giving analytical expression we use	numerical differentiatio n	numerical elimination	approximation	addition			numerical differentiation
is the process of computing the value of the definite integral from the set of numerical values of the integrand.	numerical differentiatio n	numerical integration	Simpsons rule	Trapezoidal rule			numerical integration
Numerical integration is the process of computing the value of a from a set of numerical values of the integrand.	indefinite integral	definite integral	expression	equation			definite integral
Numerical evaluation of a definite integral is called	integration	differentiation	interpolation	triangularisati on			integration
What is the value of h if a=0,b=2 and n=2.	1	2	3	4			1
Integral $(f(x) dx)=(h/2)$ [Sum of the first and last ordinates + 2(sum of the remaining ordinates)] is called	Constant rule	Simpsons rule	Trapezoidal rule	Rombergs rule			Trapezoidal rule
If the given integral is approximated by the sum of 'n' trapezoids, then the rule is called as	Newton's method	Trapezoidal rule	simpson's rule	none			Trapezoidal rule
What is the formula for finding the length interval h in trapezoidal tule?	h=(b-a)/n	h=(b/a)/n	h=(b*a)/n	h=(b+a)/n			h=(b-a)/n

The accuracy of the result using the Trapezoidal rule can be improved by	Increasing the interval h	Decreasing the length of the interval h	Increasing the number of	altering the given function	Decreasing the length of the interval h
The order of error in Trapezoidal rule is		h^2	h^3	h^4	h^2
Simpson's rule is exact for a even though it was derived for a Quadratic.	cubic	less than cubic	linear	quadratic	linear
The order of error in Simpson's rule is	h	h^2	h^3	h^4	h^4
For what type of functions, Simpsons rule and direct integration will give the same result?	parabola	hyperbola	ellipse	cardiod	parabola
Simpson's rule gives exact result if the entire curve $y=f(x)$ itself is a	parabola	hyperbola	ellipse	cardiod	parabola
To apply Simpsons one third rule the number of intervals must be	odd	even	equally spaced	unequal	even
The end point coordinates y_0 and y_n are included in the Simpsons 1/3 rule, so it is called formula.	Newton's	open	closed	Gauss	closed
Simpson's one-third rule on numerical integration is called a formula.	closed	open	semi closed	semi opened	closed
The order of error in Simpson's formula is	1	2	3	4	4
In two point Gaussian quadrature Formula n =	1	2	3	4	2
In Simpsons 1/3 rd rule, the number of ordinates must be	odd	even	0	3	odd
In three point Gaussian quadrature Formula n =	1	2	3	4	3
Two point Gaussian quadrature Formula requires only functional evaluations and gives a good estimate of the value of the integral.	1	2	3	4	2
formula is based on the concept that the accuracy of numerical integration can be improved by choosing the sampling wisely, rather than on the basis	Newtons	elimination	Gauss quadrature	hermite	Gauss quadrature

Gauss Quadrature formula is also called as	Newton's	Gauss-Legendre	Gauss-seidal	Gauss-Jordan	Gauss-Legendre
The 2 point Gauss-quadrature is exact for the polynomial up to degree	1	2	3	4	3
The 3 point Gauss-quadrature is exact for the polynomial up to degree	1	5	3	4	5
Integrating $f(x)=5x^4$ in the interval [-1,1] using Gaussion two point formula gives	1/2	9/5	10/9	5/9	10/9
The modified Eulers method is based on the of points	sum	multiplication	average	subratction	average
prior values are required to predict the next value in Milne's method	1	2	3	4	4
prior values are required to predict the next value in Adams method	1	2	3	4	3
The Eulers method is used only when the slope at point in computing is y(n+1)	(x(n), y)	(x, y(n))	(x(n), y(n))	(0, 0)	(x(n), y(n))
The Runge Kutta method agrees with Taylor series solution upto the terms	h^2	h^3	h^4	h^r	h^r
Runge Kutta method agree with solution upto the terms h^4	Taylor Series	Eulers	Milnes	Adams	Taylor Series
method is better than Taylor's series	Runge Kutta	Milnes	Adams	Eulers	Runge Kutta
Taylors series method belongs to method	Single step	multi step	step by step	limination	Single step
If all the n conditions are specified at the initial point	Initial value	final value	boundary value	e semi defined	Initial value
only then it is called a problem The problem $dy/dx = f(x,y)$ with the initial condition $y(x(0)) = y(0)$ is problem	initial value	final value	boundary value	e multistep	initial value

The solution of an ODE means finding an explicit expression for y, in terms of a number of	finite	infinite	positive	negative	finite
The solution of an ODE is known assolution	infinite	open-form	closed-form	negative form	closed-form
The differential equation of the 2 nd order can be solved by reducing it to a differential equation	lower order	higher-order	partial	simultaneous	lower order
The Eulers method is used only when the slope at point $(x(n), y(n))$ in computing is	y(n+1)	y(n-1)	(dy/dx)(n+1)	(dy/dx)(n-1)	y(n+1)
The Eulers method is used only when the slope at point in computing is y(n+1)	(x(n),y)	(x, y(n))	(x(n), y(n))	(0, 0)	(x(n), y(n))
The modified Eulers method is a method of predictor-corrector type	Self- correcting	Self-starting	Self-evaluating	Self-predicting	Self-starting
The modified Eulers method has greater accuracy than method	Taylor's	Picard's	Euler's	Adam's	Taylor's
The formula $y(n+1) = y(n) + hf(x(n), y(n))$ isformula	Euler's	modified Euler's	Picard's	Taylor's	Euler's
Modified Eulers method is the Runge-kutta method of order	1 st	2 nd	3 rd	4 th	2 nd
Modified Eulers method is same as the method of 2 nd order	Eulers	Taylors	Picards	Runge Kutta	Runge Kutta
The process used in Eulers method is very slow and to obtain reasonable accuracy we need to take a value of h	Smaller	Larger	negative	Positive	Smaller
The process used in Eulers method is very slow and to obtain reasonable accuracy we need to take a smaller value of	h	h^2	h^3	h^4	h
The formula is given by $y(i+1) = y(i) + hf$ (x(i), y(i))	Taylors	predictor	Corrector	Eulers	Eulers
The predictor formula and formula are one and the same	Taylors	Eulers	Modified Eulers	Eulers	Eulers
The formula is given by $y(i+1) = y(i) + h/2[f(x(i), y(i)) + f(x(i+1), y(i+1))], i = 1,2,3$	Taylors	predictor	Corrector	Picards	Corrector
The formula is used to predict the value $y(i+1)$ of y at $x(i+1)$	Predictor	Corrector	Corrector	Picards	Predictor

The formula is used to improve the value of	Predictor	Corrector	Taylors	Picards	Corrector
y(i+1)					
In predictor corrector methods, prior values of y	1	2	3	4	4
are needed to evaluate the value of y at $x(i+1)$					
In methods, 4 prior values of y are needed to	Taylor's	predictor	Predictor-	Euler's	Predictor-corrector
evaluate the value of y at $x(i+1)$			corrector		
In predictor corrector methods 4 prior values of	У	y^2	y^3	y^4	у
are needed to evaluate of values of are					
needed to evaluate of value of y at $x(i+1)$					

	BOUNDARY VALUE PROBLEM IN ORDINARY
	The state of the s
	AND PARTIAL DIFFERENTIAL EQUATION.
	Finite difference Method:
	Replace & by Xx
	by L ky yk - 10
	y' by 4x+1. 4x
	y" by yk-1-24 + 4k+1
	where, $h = \frac{b-a}{h}$
	acordo ac est product - p
1.	some y" = x+y with the boundary.
	Condition y (O) = y(1) = 0.
	Soln: Example of Market Action of the Action
	x 0 040 000
	y 0 -0.0349 -0.0564 -0.08 0
	BAAA SAA
3.1-57	h= ba 1-0 = 0.25.
	y"= x+y.
	4-1-24+4x+1
	yk-1-24+4k+1 = xk+4c.

Yamandas	yk+ - 24 + 4 k+1 = h2xx+h2yk
	yk-1 - 2yx+ yk+ het he he wk
	yk-1 + yk (-2-12) + yk+1 = 12xk
	yk+1 - 2.0629 yk + yk+1=0.0629 7/k
	K=1; 21-100 Pd P
	yo- 2.06254, + 4, = 0.0625 x,
	-2.062541+42=0.0156-0.
	K22; y2.0625y2+y320.0625x2
	4 = 2.062 F 42 + 43 = 0.0313 - 0
	K=3:
	42-5, y2-2.0625 43+44 = 0.062508
	y,-2.0629 y3 =0.0469 -3.
	Solve 0,0 & 0
	y, = -0.0349; 42 2-0.0564; 43 = -0.0501;
	- 1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2

2- using a finite difference method compute 343/14. y(0.5). Given y"-64y+10=0; y(0)=y(1)=0. Slub dividing the interval into i) 4 Equal parts. 11) a equal parts. soin : 4 iven y"_6 hy + 10 = 0 yk-1- ayx+ yk+1 _ 644 x + co = 0. $y_{k-1} - ay_k + y_{k+1} - 64 y_k h^2 + 10 h^2 = 0$ 1) subdiving into Aparts. $h = \frac{b - a}{n} = \frac{1 - 0}{A} = 0.2\pi$ X 0 0.85 0.5 0.75 y 0 0.1287 0.1271 0.1287 for k=0. an , O becomes, yk-1-68x+4x+1 > -0.627 - @. put R=1 40-64,+40=-0.625 F -64, +4 = -0,625 - ®

put le 2 d'un annualiste Minister de partir
y - 64. + 4. = -0.62 5 B
but le=8;
92-643+44 = -0.625
42-643 = -0,625 - DATE BY
satisfy by 360 85.
y, = 0.1287; [92,=0.1471] \$3=0.1287.
ii) sub dividing its & parts:
$h = \frac{b-a}{n} = \frac{1-0}{a} = 0.5.$
y y 0 0.1589. 0. participated of
for h= 0.5. Eqn @ bocomes.
The AME
yk-1-184k+1 = - 2.5 0.
Carried Williams Committee
40-184, +42=-2.5. Md = 1-11
71847 = 62.5 2 4 M2 = 4
9 - 4 2 0 · 1889

solve by finite oligheunce method, the BNP y"-y=0 where y(0)=1; take Soln: yk-1-27k+41-7k=0. y - 84 + 4 + 1 - 4 + 2 - 0 -07 M + 70 3 4 WH N 195 V yk+ tyk yk+1 =0. -0

yk+ tyk yk+1 =0. -0

put x 0 0.28 - 0.5 0.79 1 y 0 0.2151 0.4487 0697 k=1 2 110 = 100 000 150 000 yo - 2.0625 4, + 4 = 0. -2.06284, +42 =0. 4, -2-068842 743 -0 -

. qva	to the state of the state of state of
	42-8-062543+44=0.
	y 2.06 a x y 3 + 1 = 0.
	y 2.0629 43 = -1
	Solve by 3,680
	4, 6.8151 3 92 = 0.4484 3 93 -0.4000
atls/14	Classification & positial differential Equalion
	Consider, A grant + 8 grant + C grant + D grant + E grant + Fu = 0
1	B2-4ac to the p.D.E is parapolic . B2-4ac = 0 The p.D.E is parapolic
	Be-Hac >0 The P. D.E is hyperbolic.
	One dimensional heat Equation:
(a)	The One dimensional heat egn is
	Bu = a ge (en) Vxx = a V6
	of the production of the state
	A= 1, 820; c20 , u = , uasta = ,

BR-HACED-AXIXD. to less & walls in north The one dimensional heat egn is parabolic There are two methods to solve one dimensional head equations i) Bender-Schmidt formula (Explicit) ii) Crank - Mcolsion method (Implicit) Bender-schmidt formula: ui,5+1 = U1-1 5 + U1+1 5 Here, k-ah2 Solve U+= Unx In orx cs, too given that u(o,t)=0, u(x,t)=0, u(x,0)=x2 (0x-x2) Compute u upt 3000 with 1x: 1 by using sender schmidt formula. 1911

10 +1716 - 0 - 104 - 18 90/n: given uz = uxx = a=1 whole is the Axel leminants are all $h = \frac{\alpha h^2}{a} = \frac{1x}{a} = 0.5 \cdot \text{and} \quad \text{loss around}$ $U_i, j+1 = \frac{1x-1}{a} + \frac{1}{2} \cdot \text{mod } s = \frac$ Tollyand when and from 3 hours A" 5 24 84 14A 14A 0 0.5 0 42 8H 11H 72 0 2.5 0 29.875 35.0625 32.25 2).75 0 done the the orken, the given make 2. Solve un = 32 ut / h-0.25 for to) orax11 mill ((011)=0 - 11(x10)=0; went) tourist demines formula total

	soln:
	Una = 82 mg a=80.
	h= 0.25.
	$k = \frac{ah^2}{a} = \frac{32 \times 0.25}{200} = 1$
	Ui, j+1 = U2-1/3 + U2+1/3
	W. solumnity whiteness whose
	2 0 0.00 0.00 0.75
	0 0 0 0 0 0 0 0
	18.0 0 00 0 00 0 00 0
04	2 0 0 0 0 0 0 0 0 0 0 0
	3 0 0 0 0 25 1 3
	5 0 0.25 0.875 d. 25 5.
3.	Sive ou subjected to u(o,t) = u(1,t) = 0
	and u(x,0)=sin(xx) using Bender schmidt
	method.

801n:					
A Comment	oru Du oru	411	Unex = Se		
,	ti - UL	0021			
				±34	
1	$n = \frac{B-A}{N} = \frac{1}{N}$	5 - 0,2.			
	hand	1 18 1 11	1	e (f	
North State	K = ahe = 12	10.2 = 0.0	2.	7/4	
	ما دیاره	-lame la	``a` .		
	schmidth				
	U3,341 =			1	
		2	0	0 0	
30	0 0.2				
0	0 0.7818	0.9811	0-9510	5-5846	П
0.03	० ०।मपत	6 ० लहिन्ह	०.५५१	०.भषक6	п
0.04	6 · 38 h	o.6886	0.6426	0.8848	0
7	0 0.3113	Pine big	6-5037	0.3118	
	0 6-2516 10031 de 1				
1	0 0.28	0.3297	0.3297	6-2038	
simula 2 an	bood priva	(Oct) ni			
THE WAY				batten	

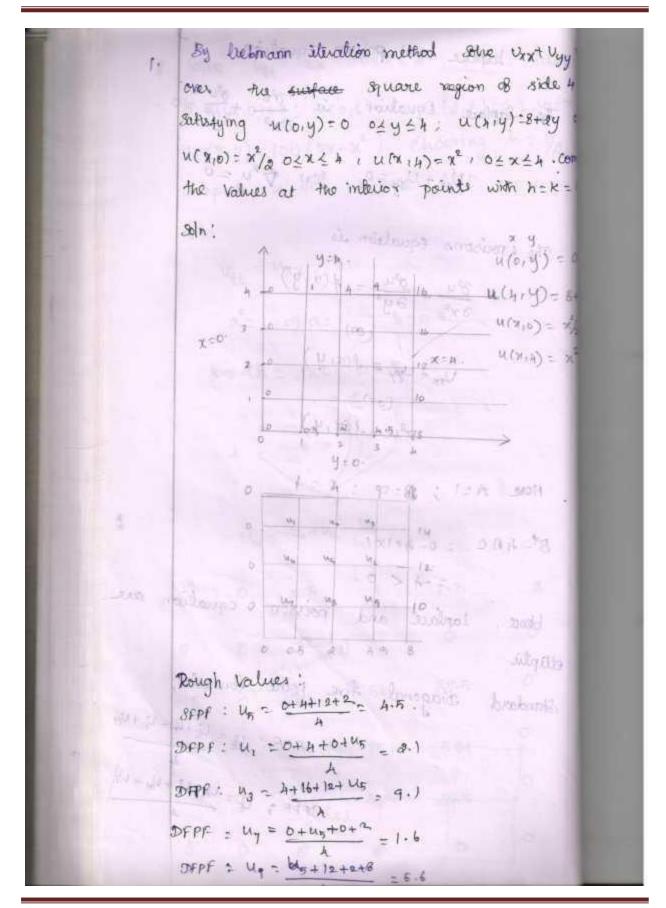
अविधः	Crank - Nicotson's Mathod (Implicit method):
	Consider, $\frac{\partial^2 u}{\partial x^2} = a \frac{\partial u}{\partial t}$ (one dimensional head tqn).
	* k= ah2-
	A 1-1 B 1 3+1 C C (1,1) O (1,1) O (1,1)
	6+1 D 6 FO (1+1,1+1) (1+2) (-2,0-1,0) (1+1,1+1) (-2,0-1,0)
	ANE = MA+MC+MD+MF
- (*	Using crank - Nicolson's scheme solve
	26 36 = 320 , OXXXI, £>0.
1	Subjected to $u(r, 0) = 0$; $u(\mathbf{e}, t) = 0$; $u(1, t) = 100t$. Compute u for one step in
3	t-direction. Taking
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 Du Den
(Here)	h=0. a 5 /8 - 25 (0.25) (0.00)

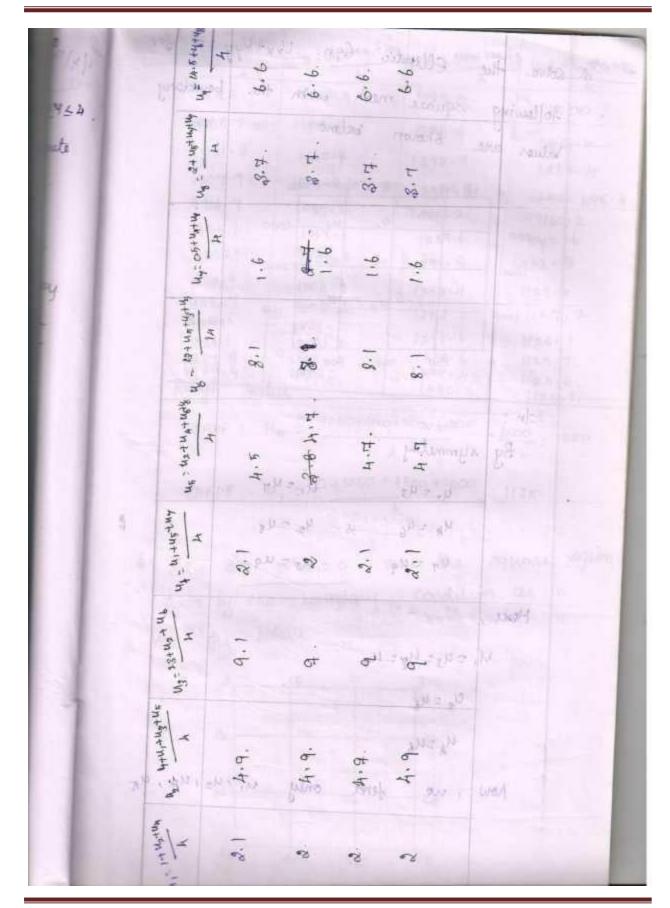
.()	Aly O Olan Ola Olan
	mps tank
	1 0 u, u, u, us too
	hu, = ue
	4 u 1 - u2 =0 -0
	$\mu_{u_{2}} = u_{1} + u_{3}$ $u_{1} - \mu_{1} + u_{3} = 0 \bigcirc$
	443 = 42+100000 M - Mane? pmal?
	-ua +4u3 = 100 - 3
ini.	Athe O. O & O Court of the State of the Stat
	4, = 1.4864. 4, = 1.4864. 4, = 1.4864. 4, = 7.1429.
	48 = 26. 7857. 200 5083 CHIE
2.	And wexit) for one time step
	the Equation 224 = Bu given 49
	2 = 0 = 1 = u(1) = u(1) = u(1)
	Take h=0.2 uses implacit method.

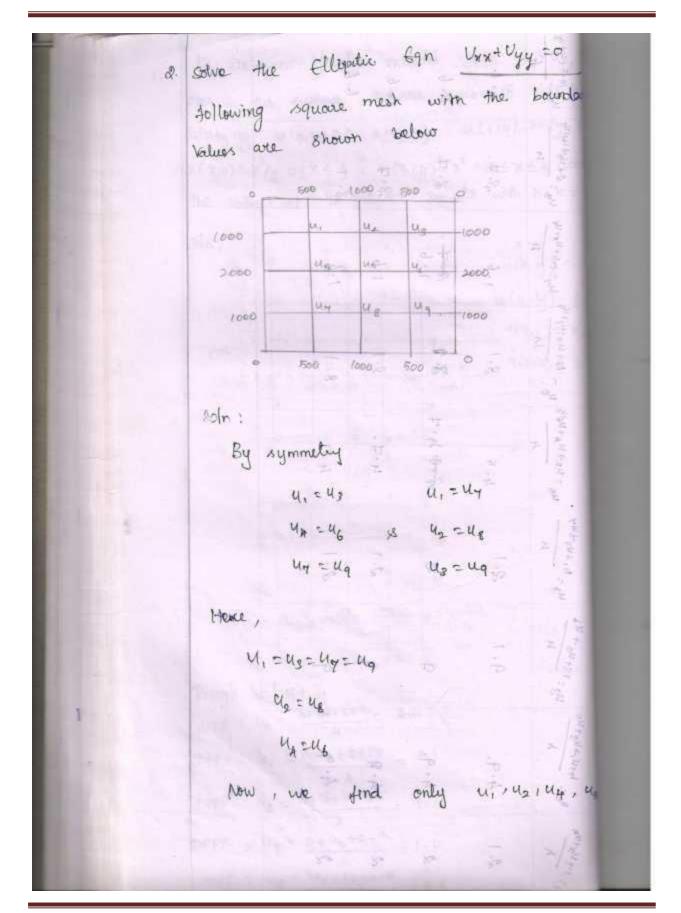
	80ln:			
	$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$			
	a=1	M + -NA		
	h=0.d. h=ah2=110.d)2=			
			R.E.	0-8 1
	t/x 0 -0.2	0.4	0.6	0
	0 0 0.5878		o who	
	o.04 O	W.	W ₃	V4, C
	441 = 40.			
. 5	4 u, - u = 0-95H	61-0:11		
	HU2 = 41+45+1	-5389.		
	u, -1	1 W2 + W3 ?	-1.538	1 —@
1	443 = 42444			
-29	u 4 u. + u. = 3	-1. 5589 -	- 0	- 47/4/1-0 - 5
	AUA = 0.9811	-t u3		
	_ U3 + 4 U4 = 0		-0-	
	u4 = 40 + 0		(h)	

Sub @ in 3 U2 - 4 U3 + U4 = -1.5389. 42-443 + 49 +0.2378:-1.5389. 42 - 15 43 2 -1.4767. u, - 3.75 u3 = -1.476 7 -- 6 solve egn 0,0,6 W, =0.3993 - O NO 42 = 0.6461 U3 : 0.646 1 (F) =) U4 = 0-646) +0.2878 = 0.3993. TRETTO TO THE PROPERTY OF THE PARTY OF UH = 0.3993. 2-1/3/14. Solve by crank nicolson's method, ean voca = u. Subjected to u(x10)20; uco, e) = 0; u(1, t) = t for two time Step.

445 = 44+46 + 0.0198. MA+ U4- HUB+U6=-0.0178-5 Aug = un+ 0.1920. -45+4U6 = 0.1920 -- 0 extre by B.O. &B Ux = 0.0089 U5 = 0.0191 46 = 0.0548 Tales and a links o may . One dimentional name Equation: The One dimentioned wave Equation is, gu = a gu ; k=ah Uxx = a UH - - - WHEN - W Uxx - a2 V6 = 0 1000000 - 804 A = 1; 8 = 0; C = 2 1 + 1 - 1 B2-HAC = 0+4a2 = 4a2 >0 The pole is hyperbolic.


1	172 200 0/200
1	8 0 / 0
70\$710	BI/alan
	The formula is,
	or room von UB + Ve - Vp
į,).	solve glu = ore, orxe, to
	Given u(x,0)=0; du (x,0)=0; u(0,0)=0; u(1,6)=100 sin(xt). compute u(x,0) for 4
	times steps with an-
. 5	$\frac{\partial t^2}{\partial t^2} = \frac{\partial x^2}{\partial x^2} - \frac{\partial x^2}{\partial x^2}$
	Alan a=1 100 N - 1103 110 N - 1103
4-64	h=0.4h;
1	k=ah=1x0.2n=0.ah.
	b) Oran
	0/25 W. 1: 0+0 + 1C.A.
	o. F add side two.


	£%	0	0.25	0.5	০-৭দ	ı
	f,			**************************************		
	0	0	0	0	0	
\\\\.	0.25	0	0+0+1×0·	и ₂ О	M ³	70
oge/14.	0-5	0		10		1.0
	0.75	0	0	40.7107	100 7	0
	< 1	0	70.7107	loo	70.7107	0
0	2 (3.8)			a Je		
it rel	(4.5			Car Carl	IN NOVE	
			diam's	17-14-11	M=(3(+),	
		15	5			
	-		60		inhs	1
		U _D	= Un + Uc -	ω_{ϵ}	14	
a	Solve	the	Ean. 1/4	gu = gu	a with	
	uso. F	20 :	u(hit)=0	i meni	0)= 11.4	N)
	at (n	0)=0	; by	talking -	h=1; up	b
	n.le.					
			= 320			
	15.	de a	2°= 1/4			
		0	1=1/2.			


	2/		(Annuals)		1001-		
		10	В	1/2			
	- No		1.5				
		00	= Un A U	c, -VE			
			18.024		3	14	
	th	0		3 27.0	8	· ·	
	0	0	xinve	Ala 4	3	0	
	0.5	0	22	3	2	0	
	i	0	0	0	0	0	
5.	1.5	0	-2	-3	-2	0	
	2	6	-3	-h	-3	0	5/.
	2.5	C	- 2	- 3	-2	0	3.3
	3	c	0	o	0	0	3
	3.5	0	+2	3	2	0	7 0
	24 .	0	3	4	3.	D	
	7 .		e e	-1		2 7 7 7	

4	. Solve (He DXX	OLXLA	; 670.	subjec
	to u(x,p)):0 · u(0)	t)=0; 1	(a,t)=0	; uf (x)
	11 12 5	= 100 (3x-3	¿) cl	roosing 1	~= 1/2
	nt (xin)	n, tex	h Ames	step.	
	compute	n do	A 1.0.00		
	soln'.				
	u _{tt}	- Unix.	3- ,0%		
	20	1 5) az 1			
			1		
	10 = 0	in = 100.7	20.15.		
		0	6		0
	A.	2 80	UL		
	0:1	9	Ue		8.1
	3 (D = UA+Ve	- 30		
	121	o.h	-	1-5	2
	t) c				0
	0 0	0 0 0 1 K- 1/4K3 14) 0	0	
		0 1 1 K 1 K	দৃত	37.5	0
1	0.5	מיויף כ	- 8-		0
	1	0 50	75	50	- 1
			For	9H. E	0
	1+5	5 87.5	দত	39-5	
	2	0 0	0	-0	0

1/4/14-	laplace and poisson Equation
64720	The Saplace Equation is $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
Buga	Unx + Uyy = 0 · (€n)
	The poisons Equation is
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$
	Uxx + Uyy = f(x, y)
	Ju = +(x, y)
	HONE A=1; B=0 : C=1
5	B-40C = 0-4x1x1
	4 < 0. Honce, Laplace and poisson equation are
	offinta
	Standard Diagonal five point formula, (+) SPPF: UE = 4+4+4+4+4 4.
	(+) SEPT. VE 4.
	SPERT & W Westerns

	U1 = mootustus	Up = 1600+241+ Uh	U 2000 +24,	3 Un = 242 to
	4	4	4	4
	MAS	1187-5	利男丁・万	1500
	1068.810114	+150-0	1380-9	18 34 . 11
	1031.3.	1140+7 .	1390.4 .	1465-4
	1007.9.	1007-0 1070-3	1320 - 47	1454 119
	9-12-7	(085.2	1286.2	R 7160- 2
	955.1	1014-6	1269-6	1142.6
	946.3	1008.8	1458.8	1133 - 8
	921.9	1004.4	1254·H	1129.4
	989.4	1002-2	(2n2.2	1127.2
	938.6	1001 .1	1251.1	1126-1
	934.1	(000 · A	1250.6	1125.7.
	934.9	(000.3	1250.4	1125.4.
	SPPF :	15 - 1000+RDX	0+2000+1000	6000 : 1500
	DFPF :	U, = 0+1000-	A	1125
a.	2.	A SUPPLY	over the	square x
3.	Solve of the	Den = 0	over the	square x
بالد	Solve of the	SI - CHORE	over the condition	square of
بالد	Solve of the	Den = 0	over the condition	square of as in
بالد	Solve of the	Den = 0 ne boundary	over the condition	square re
بالد	solve of the given by the stig.	Den = 0 ne boundary bolow	over the condition	square ro

200	U1= 30+443	4= 60+urt.ua	u3 = 100+ u1+u4	U4 = 110+
H	14	- 1	*	PL.
	4	18.8	8.8	3110
-4-	19.4	F 1919	29.9.	
	ao	20	\$100 P	8 1 201
6-991		30.	of House	Par Ma
	10 %	38.5	48.5.	46.8
	26.3	33.2	43.8	46.6
	26.6	33-3	д В · З	H6.4
	26.4.	33·H	43.4	46.4
. 4	26.7.	33-4	48.A	46.7
	LANDE 3	F:4,50+20+40.		
H-	ertur	Dog + Vyy =	o over the	he Iqua
.X	Solve region g	Uxx + Vyy =	o over the boundary	he Iqua
A. A.	ertur	Uxx + Vyy =	o over the	he Iqua
A I	Solve region g	Unx + Vyy = then by the	o over the boundary	he Iqua
A L	Solve region g	Uxx + Vyy =	o over the boundary	he Iqua
, X	Solve region g	Unx + Vyy = then by the	o over the boundary	he Iqua
A. A.	Solve region g	Uxx + Vyy = iven by fi fig.	o over the boundary	he Iqua

+49	Last	orth (OUR	H+" 10101 7 (1	MANY - TP-NOPN		
	10	By symmetry , uz=uz.				
		Rough; R	Assume ,			
		1 03		31010		
П		My DF	pr : u, = 29	4		
		2+242+112	mana a	104 437443		
		4=2+242	Uz = B+U+Us	14 = 10+200		
		1	1.6	- Ey symmetry o		
	out the	1·A.	1.9	3.500,0		
	15	1.5	8.8	8.9° 51+04 00 = , 10		
	041	1.9	0812 111	H. W.		
1.1		2	3	A		
	5	0 2	3	A		
	3/4/14.	Polision	equation	problems wat Un = - f(x,y)		
		solve th	e equation	V24 =- +0 (x2+y2+10)		
1 KS						
		1100 : N - 8	1 4=3 W1	n a super		
		boundary	with mest	r length 1 unit.		
		Soln: given	D2u = -10	(x2+y2+10)		
		U _{XX} +	vy= -f(x,	1)		
		fany)=	10(x2y410)	and the same of		

	"fenig) = femin	1) = 10 (x = 4 4 = 4	(10)
	4 300	pri - pholograps	ys h:
	(0.3) e (0.5)	6 4 70,8) 0 (8,8)	100
	2=0. 100)0 110	F (2.2) (3.2)	Rough:
	450.	10 X=3	
Billion -	4.50° (a,1) 0 (1)	(2) (3) (5) (5)	and a
	0	(210) (310)	7×
	(00) (10)	(210) (310)	Wate ou
		N. A.	The second
	By symmetry ?	261	77.4
	प्रध्य .	76.0	at Pill
	U1= U2+U3+150	4= 41+44+80	uz: urt
	4	= 241+180	P = = <u>au1</u> +
		A	1
	0	00	9 .0
	37-5	68.8	148-8
	65.9 0012000	नग-१	62.9
(are	1-50 9a. 4 0 9	81.4	66.4.
	44.5	000	64.3
	191 119 3 230 4	Non-the	67.5.
	THIS THIS	8d-h	67.5.
	Tingh, I will	named street	boundard
47	760	82.5 301 US	64.8.
	.4.2.5.4.4	A Wad	You fig.
		1 x 1 4 (x +	, D
		(orther x los	

-	bounded by the lines $x = -2$; $x = 2$, $y = -2$,
	y= 2 with u=0 on the boundary and
	y = 2 0 with u=0
	mesh length =1 490
-	8th ? 3.0.2
	Given $p^2u = 8x^2y^2$
	W.K.7 24 = - f(x,y)
	$4(m,y) = -8x^2y^2$
	$4(x_1y) = -6x^3$ $4^2 + (x_1y) = -8x^2y^2$ 8 (.: h=1)
lato -	32 28 24 2 48 48°
0	Contraction of the second
	and the wife who was
	28 2 CO 20 C
male -	200 10 10 10 10 10 10 10 10 10 10 10 10 1
	By symmetry:
	4, -44 W1 = 43 W2 = W4 W1 = W9
	M2 = Ug M4 = U6 M3 = M4 MB = UB
	43= na 44= na ne = ne
	41 = 44 = 43 = 49
	y = u = u = u .

The second	41 = 43+44-8 = 242-8	Us H	Un = 42+44+46+	
	4 4	2 241745	Un = 14	
	ne togradees			
	0	0 : 1/1		
	-2	-1	prisi-1 digire	
	-8.5.	-1.5	-1+6 MB	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	riaviy ³	
	- 2-8	-1.8	-1-8	
	-2.9	-4-6	-1:9	
	2	-2	-2	
	The Barret	18 U.W	* N=2.	
	- 3	-2	-d,	
	and the second second	Anti La Janei		
	THE STREET			
		-		
	The Thirty			
	The same of		ly symmetry	
		41/2 64 1-51/2		
		And the first		
	947 - 971	go - ph light ?	at purity	
	The same			
	NEW STREET		F EMPENS IN	
	-	20 3	$gH = gH \Rightarrow gH$	

Questions	opt1	opt2	opt3	opt4	Answer
If B^2-4AC = 0, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If B^2-4AC > 0, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	hyperbolic
If $B^2-4AC < 0$, then the differential equation is said to be ($f(x+h)-f(x)$)/h is known as the	parabolic difference quotient	elliptic average	hyperbolic derivative	equally spaced f(x)	elliptic difference quotient
The equation $del^2(u) = 0$ is equation.	Laplace	Poisson	Heat	Wave	Laplace
One dimensional heat equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Parabolic
One dimensional wave equation is the evenue of	T l	Deimon	D I II.	Hannak II.	H
One dimensional wave equation is the example of equation. The differential equation is said to be parabolic, if	Laplace B^2-4AC	Poisson B^2-4AC > 0	Parabolic B^2-4AC < 0	Hyperbolic B^2-4AC =0	Hyperbolic B^2-4AC
The differential equation is said to be elliptic, if	B^2-4AC	$B^2-4AC > 0$	$B^{\wedge}2\text{-}4AC \leq 0$	B^2-4AC =0	$B^2-4AC < 0$
The differential equation is said to be hyperbolic, if $[x f(xx)+yf(yy)]=0 x>0$, $y>0$ is type of equation.	B^2-4AC elliptic	B^2-4AC > 0 Poisson	B^2-4AC < 0 Parabolic	B^2-4AC =0 Hyperbolic	B^2-4AC > 0 elliptic
[f(xx)-2f(xx)]=0, x>0, y>0 is type of equation. $[f(xx)-2f(xx)]=0, x>0, y>0 is type of equation.$	elliptic	Poisson	Parabolic	Hyperbolic	Hyperbolic
				T.1 5 2	T:1 2 2
process is used to solve two dimensional heat equations The equation (\tilde{N}^2) u = 0 is known as equation	Newtons Laplace	Gaussian Poisson	Laplace heat	Liebmanns iteration wave	Liebmanns iteration heat
<u> </u>					
The formula is used to complete the improved value of u, The value of u can be improved by process	Newtons	elimination	Liebmanns iteratio Liebmanns iteratio		Liebmanns iteration Liebmanns iteration
The value of u can be improved by process The value of u is obtained at any lattice points which is	Newtons	elimination	Lieomanns iteratio	reduction	Lieomanns iteration
the arithmetic mean of the values of u at 4 lattice points near to it	interior	exterior	positive	negative	interior
The value of $u_{i,j}$ in the difference equation are defined only at the points	equal	unequal	apex	lattice	lattice
The points of intersection of these families of lines are called	equai	unequai	apex	attice	attice
points	equal	unequal	apex	lattice	lattice
If B^2 - 4AC > 0 then the given equation is in a region R if B^2. The differential equation is said to be in a region R if B^2.	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	hyperbolic
4AC < 0 at all points of a region	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	elliptic
The differential equation is said to be in a region R if	Develop E.	.11041	Lance and a U.		D L. E.
$B^2-4AC=0$ at all points of the region	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	Parabolic
If (ka)/h < 1, it is stable but the accuracy of the solution decrease with the increasing value of	k	a	(ka)/h	k/h	(ka)/h
If (ka)/h < 1, it is stable but the accuracy of the solution decrease with	-	-	()		(-1), 1
the increasing value of	k	a	k/h	(ka)/h	(ka)/h
The differential equation is said to be in a region R if $B^2 - 4AC = 0$ at all points of the region	Parabolic	elliptic	hymorholio	raatangular hymarhalia	Parabolic
The differential equation is said to be in a region R if B^2.		emptic	hyperbolic	rectangular hyperbolic	rarabolic
4AC < 0 at all points of a region	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	elliptic
The points of intersection of these families of lines are called points	equal	unequal	apex	lattice	lattice
	-	-	-		
Schmidt method belongs to type	explicit	implicit	elliptic	hyperbolic	explicit
The Poisson's equation belongs to type One dimensional heat flow equation belongs to type	explicit explicit	implicit parabolic	elliptic elliptic	hyperbolic hyperbolic	hyperbolic parabolic
Laplace equation in two dimensions belongs to type	explicit	parabolic	elliptic	hyperbolic	explicit
The error in solving Poisson equation by methods is of order h^2	Difference	itamatia m	alimination	interpolation	Difference
The error in solving equation by difference method is of order	Difference	iteration	elimination	interpolation	Difference
h^2	Newton's	Jacobi's	Poisson	Gaussian	Poisson
The error in solving Poisson's equation by difference methods is of order	h	h^2	h^3	h^4	h^2
The equation $del^2(u) = f(x, y)$ is known as equation	Poisson	Newtons	Jacobis	Gaussian	Poisson
The value of u _{i,j} is the average of its value at the neighbouring					
diagonal mesh points	2	3	4	5	4
The value of u(i,j) is the of its values at the four		1:00			
neighbouring diagonal mesh points The value of u(i,j) is the average of its values at the four neighbouring	sum	difference	average	product	average
mesh points	Square	rectangle	diagonal	column	diagonal
The mesh points are also called	grid point	starting point	Ending point	bisection	grid point
The points of intersection of the dividing lines are called	bisection	mesh points	vertex	end point	mesh points
The differential equation is said to be hyperbolic, if	$B^2-4AC=0$	B^2-4AC > 0	B^2-4AC < 0	$B^2-4AC \le 0$	B^2-4AC > 0
The differential equation is said to be elliptic, if	$B^2-4AC = 0$	$B^2-4AC > 0$	B^2-4AC < 0	B^2-4AC <=0	$B^2-4AC < 0$
The differential equation is said to be parabolic, if	$B^2-4AC = 0$	B^2-4AC > 0	B^2-4AC < 0	B^2-4AC <= 0	$B^2-4AC = 0$
One dimensional wave equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Parabolic
One dimensional heat equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Poisson
The equation del^2(u) = 0 is equation	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC = 0$, then the differential equation is said to be If $B^2-4AC > 0$, then the differential equation is said to be	parabolic parabolic	elliptic elliptic	hyperbolic hyperbolic	equally spaced equally spaced	parabolic hyperbolic
If B^2-4AC < 0, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	elliptic