

KARPAGAM ACADEMY OF HIGHER EDUCATION

FACULTY OF ENGINEERING

DEPARTMENT OF SCIENCE AND HUMANITIES

SYLLABUS

14BECS401

PROBABILITY AND QUEUEING THEORY 3104100

OBJECTIVES:

- To understand the fundamental knowledge of probability theory.
- To acquire skills in handling situations involving more than one random variable and functions of random variables.
- To understand and characterize phenomena which evolve with respect to time in a probabilistic manner.

UNIT- I PROBABILITY AND RANDOM VARIABLE

Axioms of probability - Conditional probability - Total probability - Baye's theorem- Random variable - Probability mass function - Probability density function - Properties - Moments - Moment generating functions and their properties.

UNIT- II STANDARD DISTRIBUTIONS

Functions of a random variable - Binomial, Poisson, Geometric, Negative Binomial, Uniform, Exponential, Gamma, Weibull and Normal distributions and their properties.

UNIT- III TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and conditional distributions – Covariance - Correlation and regression - Transformation of random variables - Central limit theorem.

UNIT -IV RANDOM PROCESS AND MARKOV CHAINS

Classification - Stationary process - Markov process - Poisson process - Birth and death process - Markov chains - Transition probabilities - Limiting distributions.

UNIT-V QUEUEING THEORY

Markovian models - M/M/1, M/M/C, finite and infinite capacity - M/M/ ∞ queues - Finite source model - M/G/1 queue (steady state solutions only) - Pollaczek - Khintchine formula - Special cases.

TEXT BOOKS:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publicatio n
1	Ross,S	A first course in probability	Pearson Education, Delhi	2002
2	Medhi,J	Stochastic Process	New Age Publishers ,New Delhi	2009

REFERENCES:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publicatio
1	Veerarajan,T	Statistics and	Tata McGraw-Hill, 2 nd	2003
		Random Processes	Edition, New Delhi.	
2	Allen,O	Probability, Statistics and Queuing Theory	Academic press, New Delhi.	1999
3	Gross,D. and	Fundamentals of	John Wiley and Sons, New	1998
	Harris, C.M	Queuing theory	York.	
4	Taha,H.A	Operations Research - An Introduction	Pearson Education Edition Asia, Delhi.	2002

WEBSITES:

- 1. http://www.cut-theknot.org/probability.shtml
- 2. http://www.ece.uah.edu/courses/ee420-500
- 3. http://www.andrewferrier.com/oldpages/queueing_theory
- 4. http://www.cse.iitb.ac.in/perfnet/cs681/QueuingAnalysis.pdf

STAFF IN-CHARGE

FACULTY OF ENGINEERING

DEPARTMENT OF SCIENCE AND HUMANITIES

PROBABILITY AND QUEUEING THEORY

Subject Code: 14BECS401 TEXT BOOK, REFERENCES and WEBSITES

TEXT BOOKS:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publication
1	Ross,S	A first course in probability	Pearson Education, Delhi	2002
2	Medhi,J	Stochastic Process	New Age Publishers ,New Delhi	2009

REFERENCES:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publication
1	Veerarajan,T	Statistics and Random Processes	Tata McGraw-Hill, 2 nd Edition, New Delhi.	2003
2	Allen,O	Probability, Statistics and Queuing Theory	Academic press, New Delhi.	1999
3	Gross,D. and Harris, C.M	Fundamentals of Queuing theory	John Wiley and Sons, New York.	1998
4	Taha,H.A	Operations Research - An Introduction	Pearson Education Edition Asia, Delhi.	2002

WEBSITES:

- 1. <u>http://www.cut-theknot.org/probability.shtml</u>
- 2. http://www.ece.uah.edu/courses/ee420-500
- 3. http://www.andrewferrier.com/oldpages/queueing_theory
- 4. http://www.cse.iitb.ac.in/perfnet/cs681/QueuingAnalysis.pdf

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641021 FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES B.E- AUTOMOBILE ENGINEERING Subject Code:14BECS401 Subject Name: PROBABILITY AND QUEUEING THEORY

OBJECTIVES OF THE COURSE

- To understand the fundamental knowledge of probability theory.
- To acquire skills in handling situations involving more than one random variable and functions of random variables.
- To understand and characterize phenomena which evolve with respect to time in a probabilistic manner.

KARPAGAM ACADEMY OF HIGHER EDUCATION COIMBATORE-21. EACULTY OF ENCINEEPINC

FACULTY OF ENGINEERING II B.E COMPUTER SCIENCE AND ENGINEERING (2014 Batch) FOURTH SEMESTER PROBABILITY AND QUEUEING THEORY LESSON PLAN

S.NO.	TOPICS TO BE COVERED	HOUR(S)					
	UNIT I : PROBABILITY AND RAMDOM VAR	RIABLES					
	Axioms of Probability	1					
	Conditional Probability	1					
	Total Probability	1					
	Baye's theorem	1					
	Tutorial 1 (Baye's theorem)	1					
	Random variable	1					
Unit-I	Probability mass function	1					
	Probability density function	1					
	Properties - Probability	1					
	Tutorial 2 (Probability density function)	1					
	Moments	1					
	Moment generating functions – properties and	1					
	problems	1					
	TOTAL	12					
	UNIT II : STANDARD DISTRIBUTION						
	Binomial Distribution(mean, variance, mgf)	1					
	Binomial Distribution - problems	1					
	Poisson Distribution (mean, variance, mgf)	1					
	Geometric Distribution and properties	1					
	Tutorial 3(Binomial, Poisson Distribution)	1					
	Negative Binomial Distribution	1					
Unit II	Uniform Distribution and properties	1					
01111-11	Exponential Distribution and properties	1					
	Tutorial 4 (Uniform, Exponential Distribution)	1					
	Gamma Distribution and properties	1					
	Weibull Distribution and properties	1					
	Normal Distribution (mean, variance, mgf)	1					
	Normal Distribution- problems and Functions	1					
	of random variable	1					
	TOTAL	13					
Unit-III	UNIT III : TWO DIMENSIONAL RANDOM V	ARIABLES					
	Joint distribution	1					
	Marginal Distributions	1					
	Conditional Distributions	1					

	Tutorial 5 (Marginal distributions)	1
	Covariance and Correlation	1
	Correlation	1
	Regression	1
	Regression	1
	Tutorial 6 (Correlation & Regression)	1
	Transformation of random variables and Central	-
	limit theorem	1
	TOTAL	10
	UNIT IV : RANDOM PROCESSES AND MARK	COV CHAINS
	Classification	1
	Stationary process	1
	Stationary process	1
	Markov Process	1
	Tutorial 7 (Stationary process)	1
T T • / T T 7	Poisson Process	1
Unit-IV	Birth and death process	1
	Markov chains	1
	Markov chains - problems	1
	Tutorial 8 (Poisson process)	1
	Transition probabilities	1
	Limiting distributions	1
	TOTAL	12
	UNIT V : QUEUEING THEORY	
	Introduction to queueing theory	1
	M/M/1 infinite capacity	1
	M/M/C infinite capacity	1
	M/M/1 finite capacity	1
	M/M/C finite capacity	1
	Tutorial 9(M/M/1 infinite capacity)	1
	Finite source model	1
Unit-V	Finite source model M/G/1 queues	1
	M/G/1 queues	1
	Steady state solution	1
	Tutorial 10 (Steady state solution, M/G/1 queues)	1
	Pollaczek - Khinchin formula	1
	Pollaczek - Khinchin formula and Special cases	1
	TOTAL	13
	CRAND TOTAL	50
		+ 10

UNIT-I PROBABILITY

Introduction:

The word 'Probability or change' is very frequency used in day-to-day conversation. The Statistician I.J. Good, suggests in his "kinds of Probability" that "the theory of Probability is much older than the human species.

The concept and applications of probability, which is a formal term of the popular word "Change" while the ultimate objective is to facilitate calculation of probabilities in business and managerial, science and technology etc., the specific objectives are to understand the following terminology.

Random Experiment: The term experiment refers to describe, which can be repeated under some given conditions. The experiment whose result (outcomes) depends on change is called Random Experiment.

Example:

- 1. Tossing of a coin is a random experiment.
- 2. Throwing a die is a random experiment.
- 3. Calculation of he mean arterial blood pressure of a person under ideal environmental conditions,

by using the formula, Blood pressure = $=\frac{Systoloic \ pressure}{Diastolic \ pressure} \ mm / Hg$ is a random experiment.

Sample Space:

The totality of all possible outcomes of a random experiment is called a sample space and it is denoted by s and a possible outcome are element.

The no. of the coins in a sample space denoted by n(s).

Example:

Tossing a coin $n(s)=2=\{H,T\}$

Event:

The output or result of a random experiment is called an event or result or outcome.

Example:

- 1. In tossing of a coin, getting head or tail is an event.
- 2. In throwing a die getting 1 or 2 or 3 or 4 or 5 or 6 is an event.

Events are generally denoted by capital letters A, B, C etc. The events can be of two types. One is simple event and the other is compound event

Favorable event:

The no. of events favorable to an event in a trail is the no.of outcomes which entire the happening of the event.

Mutually Exclusive Events:

Two or more events are said to be mutually exclusive events if the occurrence of one event precludes (excludes or prevents) the occurrence of others, i.e., both cannot happen simultaneously in a single trail.

Example:

- 1. In tossing of a coin, the events head and tail are mutually exclusive.
- 2. In throwing a die, all the six faces are mutually exclusive.

Equally Likely Events: Two or more events are said to be equally likely, if there is no reason to expect any one case (or any event) in preference to others. i.e., every outcome of the experiment has equal possibility of occurrence. These are equally likely events.

Exhaustive Number of Cases or Events: The total number of possible outcomes in an experiment is called exhaustive number of cases or events.

Dependent event:

Two events are said to be dependent if the occurance or non occurance of a event in any trail affect the occurance of the other event in other trail.

Classical Definition of Probability: Suppose that an event 'A' can happen in 'm' ways and fails to happen (or non-happen) in 'n' ways, all these 'm+n' ways are supposed equally likely. Then the probability of occurrence (or happening) of the event called its success is denoted by 'P(A)' or simply

'p' and is defined as $P(A) = \frac{m}{m+n} \dots (1)$ and the probability of non-occurrence (or non-happening) of _____

the event called its failure is denoted by $P(\overline{E})$ or simply 'q' and is defined as. $P(\overline{A}) = \frac{n}{m+n}...(2)$

From (1) and (2) we observe that the probability of an event can be defined as

 $P(event) = \frac{The number of favourable cases for the event}{Total number of possible cases}$

Definition:

Let S be the sample space and A be the event associated with a random experiment. Let n(S) and n(A) be the no .of elements of S & A. Then the probability of the event A occurring denoted as P(A) is defined by

$$P(event) = \frac{The number of favourable cases for the event}{Total number of possible cases} = \frac{n(A)}{n(S)}$$

Note:

It follows that, $P(A) + P(\overline{A}) = lor p + q = l$.

This implies that p=1-q or q=1-p.

Hence $0 \le P(A) \le 1$.

Axiomatic Definition of Probability: Let S be the sample space and A be an event associated with a random experiment. Then the probability of the event A, denoted by P(A), is defined as a real number satisfying he following axioms.

(i)
$$0 \le P(A) \le 1$$

- (ii) P(S)=1
- (iii) If A and B are mutually exclusive events, $P(A \cup B) = P(A) + P(B)$
- (iv) If $A_1, A_2, \dots, A_n, \dots$ are a set of mutually exclusive events, $P(A_1 \cup A_2 \cup \dots \cup A_n, \dots) = P(A_1) + P(A_2) + \dots + P(A_n) + \dots$

Theorem 1: The probability of the impossible event is zero, i.e., if ϕ is the subset (event) containing no sample point, $P(\phi)=0$.

Proof: The certain event S and the impossible event ϕ are mutually exclusive.

Hence $P(S \cup \phi) = P(S) + P(\phi)$ [axiom (iii)]

But $S \cup \phi = S$.

Therefore, $P(S) = P(S) + P(\phi)$

Hence $P(\phi) = 0$.

Theorem 2: If \overline{A} is the complementary event of A, $P(\overline{A}) = 1 - P(A) \le 1$.

Proof: A and \overline{A} are mutually exclusive events, such that $A \cup \overline{A} = S$

Therefore, $P(A \cup \overline{A}) = P(S) = 1$ (Since axiom (ii))

i.e., $P(A) + P(\overline{A}) = 1$.

Therefore, $P(\overline{A}) = l - P(A)$

Since $P(A) \ge 0$, it follows that $P(\overline{A}) \le 1$.

Theorem 3: If $B \subset A$ then $P(B) \leq P(A)$.

Proof: B and $A\overline{B}$ are mutually exclusive events such that $B \cup A\overline{B} = A$.

Therefore, $P(B \cup A\overline{B}) = P(A)$

i.e., $P(B) + P(A\overline{B}) = P(A)$ [axiom (iii)]

Therefore, $P(B) \leq P(A)$.

Theorem 4: Addition theorem of probability

Statement: For any two events A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof: Since $(A \cup B) = A \cup (A' \cap B)$ here A and $(A' \cap B)$ are mutually exclusive.

 $P(A \cup B) = P[A \cup (A' \cap B)] \dots (1)$ = $P(A) + P(A' \cap B)$ Again $B = (A \cap B) \cup (A' \cap B)$ Here $(A \cap B) & (A' \cap B)$ are mutually exclusive events. $P(B) = P[(A \cap B) \cup (A' \cap B)] \dots (2)$

 $= P(A \cap B) + P(A' \cap B)$

Therefore $P(A' \cap B) = P(B) - P(A \cap B)$

happened, is denoted by P(B|A) and defined

From (1), $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Conditional Probability: The Conditional probability of an event B, assuming that the event A has

as,
$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
, $P(A) \neq 0$.

Rewriting the definition of conditional probability, we get $P(A \cap B) = P(A) \times P(B/A)$. [Product theorem of probability]

Properties:

1. If
$$A \subset B$$
, $P(B/A) = 1$, Since $A \cap B = A$.
 $B \subset A$, $P(B/A) \ge P(B)$, Since $A \cap B = B$, and $\frac{P(B)}{P(A)} \ge P(B)$, as $P(A) \le P(S) = 1$.
2. If $P(A) \ge P(B)$, as $P(A) \le P(S) = 1$.

- 3. If A and B are mutually exclusive events, P(B/A)=0, since $P(A \cap B) = 0$
- 4. If P(A) > P(B), P(A/B) > P(B/A).
- 5. If $A_1 \subset A_2$, $P(A_1 / B) \le P(A_2 / B)$.

Independent Events: A set of events is said to be independent if the occurrence of any one of them does not depend on the occurrence or non-occurrence of the others.

The product theorem can be extended to any number of independent events: $A_1, A_{2,...,}A_n$ are n independent events. $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \times P(A_2) \times ... \times P(A_n)$, when this condition is satisfied, the events $A_1, A_{2,...,}A_n$ are also said to be totally independent. A set of events $A_1, A_{2,...,}A_n$ is said to be mutually independent if the events are totally independent when considered in sets of 2,3,... n events.

Theorem 5: If the events A and B are independent, then so are $\overline{A} & \overline{B}$.

Proof.
$$P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$$

= $1 - [P(A) + P(B) - P(A \cap B)]$ (By addition theorem)
= $1 - P(A) - P(B) + P(A) \times P(B)$ {since A and B are independent)

$$= [1 - P(A)] - P(B)[1 - P(A)]$$
$$= P(\overline{A}) \times P(\overline{B})$$

Example 1: In how many different ways can the director of a research laboratory choose two chemists from among seven applicants and three physicists from among nine applicants?

Solution:

The two chemists can be chosen in ${}^{7}C_{2}=21$ ways

The three physicists can be chosen in ${}^{9}C_{3} = 84$ ways

Then these two things can be done in $21 \times 84 = 1764$ ways.

Example 2: What is the probability that a non-leap year contains 53 Sundays?

Solution:

A non-leap year consists of 365 days, of these there are 52 complete weeks and 1 extra day. That day may be any one of the 7 days. So already we have 52 Sundays. For one more Sunday, the probability that getting a one more Sunday is 1/7.

Hence the probability that a non-leap year contains 53 Sundays is 1/7.

Example 3: A bag contains 7 white, 6 red and 5 black balls. Two balls are drawn at random. Find the probability that they will both the white?

Solution:

Given that Balls White(7), Red(6) & Black(5), total 18 balls.

Two balls are drawn at random from 18 balls in ${}^{I8}C_2$ ways

Two white balls are drawn at random from 7 balls in ${}^{7}C_{2}$ ways.

Hence the required probability = $\binom{7}{C_2} / \binom{18}{C_2} = 21 / 153$.

Example 4 : Determine the probability that for a non-defective bolt will be found if out of 600 bolts already examined 12 were defective.

Solution:

Given that out of 600 bolts 12 were defective.

Therefore, probability that a defective bolt will be found = $\frac{12}{600} = \frac{1}{50}$

Therefore, Probability of getting a non-defective bolt = $l - \frac{1}{50} = \frac{49}{50}$.

Example 5: A fair coin is tossed 4 times. Define the sample space corresponding to this experiment.

Also give the subsets corresponding to the following events and find the respective probabilities:

a).More heads than tails are obtained.

b). Tails occur on the even numbered tosses.

Solution:

S= {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTTT, TTHH, TTTT}

a). Let A be the event is which more heads occur than tails

Then A= {HHHH, HHHT, HHTH. HTHH, THHH}

b).Let B be the event is which tails occur is the second and fourth tosses.

Then B= {HTHT, HTTT, TTHT, TTTT}

$$P(A) = \frac{n(A)}{n(S)} = \frac{5}{16}; \ P(B) = \frac{n(B)}{n(S)} = \frac{1}{4}.$$

Example 6: A box contains 4 bad & 6 good tubes. Two are drawn out from the box at a time. One of them is tested and found to be good. What is probability that the other one is also good?

Solution:

Let A =one of the tubes drawn is good and B =the other tube is good .

 $P(A \cap B) = P(\text{ both tubes drawn are good})$

$$=\frac{{}^{6}C_{2}}{{}^{10}C_{2}}=\frac{1}{3}$$

Knowing that one tube is good, the conditional probability that the other tube is also good is required, i.e., P(B/A) is required.

By definition,
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{1/3}{6/10} = \frac{5}{9}$$
.

Example 7: In a shooting test, the probability of hitting the target is $\frac{1}{2}$ for A , $\frac{2}{3}$ for B , $\frac{3}{4}$ for C. If all of them five at the target, find the probability that

i). none of them hits the target.

ii). Atleast one of them hits the target.

Solution:

Let A = event of A hitting the target.

$$P(\overline{A}) = \frac{1}{2}, P(\overline{B}) = \frac{1}{3}, P(\overline{C}) = \frac{1}{4}.$$

$$P(\overline{A} \cap \overline{B} \cap \overline{C}) = P(\overline{A}) \times P(\overline{B}) \times P(\overline{C}) \text{ (by independence)}$$

i.e., P(none hits the target) = $\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{24}$

P(atleast one hits the target) = 1 - P(none hits the target)

$$= 1 - \frac{1}{24} = \frac{23}{24}.$$

Example:8

Three coins are tossed together find they are exactly 2 head? **Solution:**

Total no. of chances by throwing 3 coins are n(S)=8.

The event A to get exactly 2 heads are A = {HHT, THH,HTH}

n(A) = 3

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$$

Example:9

A bag contains 4 red, 5 white and 6 black balls. What is the probability that 2 balls drawn are red and black?

Solution:

Given that Balls White(5), Red(4) & Black(6), total 15 balls.

Two balls are drawn at random from 15 balls in 13C_2 ways

n(A)= 4C₁X 6C₁, Hence the required probability =
$$\frac{4C_1X 6C_1}{15C_2} = \frac{8}{35}$$

Example :10

A bag contains 3 red and 4 white balls. Two draws are made without replacement.

What is the probability that both balls are red

Solution:

Total no. of balls = 3Red + 4 White = 7 balls

P(Drawing a red ball in the first drawn is red) = $P(A) = \frac{3}{7}$

P(Drawing a red ball in the second drawn is red) =
$$P(B/A) = \frac{2}{6}$$

$$P(A \mid B) = P(A)P(B)$$

$$P(B \mid A) = \frac{P(A \mid B)}{P(A)}$$

$$P(A \mid B) = P(A)P(B \mid A)$$

$$= \frac{1}{7}$$

Theorem of Total Probability

Statement: If $B_1, B_{2,...,}B_n$ be a set of exhaustive and mutually exclusive events, and A is another event associated with (or caused by) B_i , then $P(A) = \sum_{i=1}^n P(B_i) P(A/B_i)$

Proof. The inner circle represents the event A. A can occur along with (or due to) $B_1, B_{2,...,}, B_n$ that are exhaustive and mutually exclusive.

Therefore, $AB_1, AB_{2,...,}AB_n$ are also mutually exclusive.

Therefore, $A = AB_1 + AB_2 + ... + AB_n$ (by addition theorem) Hence $P(A) = P(\sum AB_i)$ $= \sum P(AB_i)$ (since $AB_1, AB_2, ..., AB_n$ are mutually exclusive) $P(A) = \sum_{i=1}^{n} P(B_i) P(A/B_i)$

Baye's theorem on Probability (or) Rule of inverse probability

Statement: If $B_i, B_{2,...,}B_n$ be a set of exhaustive and mutually exclusive events associated with a random experiment and A is another event associated with (or caused by) B_i , then $P(B_i/A) = \frac{P(B_i) \times P(A/B_i)}{\sum_{i=1}^{n} P(B_i) \times P(A/B_i)}, i = 1, 2, ..., n$

Proof. Since by product theorem, $P(A \cap B_i) = P(B_i) \times P(A / B_i) \dots (1)$ or $P(A \cap B_i) = P(A) P(B_i / A) \dots (2)$

From (1) and (2), $P(A)P(B_i / A) = P(B_i) P(A / B_i)$

$$P(B_i / A) = \frac{P(B_i) P(A / B_i)}{P(A)} \dots (3)$$

Therefore from total probability, $P(A) = \sum_{i=1}^{n} P(B_i) P(A/B_i)$ substitute in (3), we get

$$P(B_i / A) = \frac{P(B_i) \times P(A / B_i)}{\sum_{i=1}^{n} P(B_i) \times P(A / B_i)}, i = 1, 2, ..., n$$

Example 11: A bag contains 5 balls and it is not known how many of them are white. Two balls are drawn at random from the bag & they are note to be white. What is the chance the all the balls in the bag are white?

Solution:

Since 2 white balls have been drawn out, the bag must have contained 2, 3, 4, or 5 white balls.

Let B_1 = Event of the bag containing 2 white balls.

 B_2 = Event of the bag containing 3 white balls.

 B_3 = Event of the bag containing 4 white balls.

 B_4 = Event of the bag containing 5 white balls.

Let A = Event of drawing 2 white balls.

$$P(A/B_1) = \frac{{}^{2}C_2}{{}^{5}C_2} = \frac{1}{10}, P(A/B_2) = \frac{{}^{3}C_2}{{}^{5}C_2} = \frac{3}{10}$$

$$P(A/B_3) = \frac{{}^4C_2}{{}^5C_2} = \frac{3}{5}, \ P(A/B_4) = \frac{{}^5C_2}{{}^5C_2} = 1$$

Since the number of white balls in the bag is not known, B_i's are equally likely.

Therefore
$$P(B_1) = P(B_2) = P(B_3) = P(B_4) = \frac{1}{4}$$

By Baye's theorem,

$$P(B_4 / A) = \frac{P(B_4) \times P(A / B_4)}{\sum_{i=1}^{4} P(B_i) \times P(A / B_i)} = \frac{\frac{1}{4} \times 1}{\frac{1}{4} \times \left(\frac{1}{10} + \frac{3}{10} + \frac{3}{5} + 1\right)} = \frac{1}{2}.$$

Example 12: There are 3 true coins and 1 false coin with 'head' on both sides. A coin is closer at random and tosses 4 times, If 'head' occurs are the 4 times, What is the probability that the false coin has been chosen and used?

Solution:

P(T) = P(the coin is a true coin) = 3/4

P(F) = P(the coin is a false coin) = 1/4

Let A = Event of getting all heads is 4 tosses,

Then, $P(A/T) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{16}$ and P(A/F) = 1

$$P(F/A) = \frac{P(F) \times P(A/F)}{P(F) \times P(A/F) + P(T) \times P(A/T)} = \frac{\frac{1}{4} \times 1}{\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{16}} = \frac{16}{19}.$$

1

By Baye's theorem,

Example 13:

There are three bags, bag one contains 3 white balls, 2 red balls and 4 black balls. Bag two contains 2 white balls, 3 red balls and 5 black balls. Bag three contains 3 white balls, 4 red balls and 2 black balls. One bag is chosen at random and from it 3 balls were drawn out of which 2 balls were white and 1 is red. What is the probability that it is drawn from bag one, two and three?

Solution:

Selection of bags are mutually exclusive events. The selection of the 2 white and 1 red ball is an independent event.

 $P(B_1)=P(B_2)=P(B_3)=1/3$ $P(A/B_1) = P(Bag \ 1 \text{ selected from } 2W\&1R \text{ ball chosen})$ $= \frac{3C_2X2C_1}{9C_3}$ = 0.07 $P(A/B_2) = P(Bag \ 2 \text{ selected from } 2W\&1R \text{ ball chosen})$ $= \frac{2C_2X3C_1}{10C_3}$ = 0.025 $P(A/B_3) = P(Bag \ 3 \text{ selected from } 2W\&1R \text{ ball chosen})$

$$3C_2X4C_1$$

$$= 9C_3$$

= 0.14

By using Baye's theorem we have

$P(B_i)$	$P(A/B_i)$	$P(B_i) P(A/B_i)$
1/3	0.07	0.0233
1/3	0.025	0.0083
1/3	0.14	0.0466
	$\sum P(B_i) P(A/B_i)$	0.0782

 $P(B_1 / A) = P(\text{The balls selected from the first bag})$

$$= \frac{0.0233}{0.0782}$$

$$= 0.29$$

$$P(B_2 / A) = P(\text{The balls selected from the second bag})$$

$$= \frac{0.008}{0.0782}$$

$$= 0.102$$

$$P(B_3 / A) = P(\text{The balls selected from the third bag})$$

$$= \frac{0.046}{0.0782}$$

$$= 0.58$$

Exercise:

P(

1. In a bolt factory machines A,B,C manufactures 25%,35% and 40% of the total respectively. Out of their output 5%,4% and 2% are defective bolts respectively. A bolt is drawn at random and is found to be defective. What are the probabilities that it was manufactured by the machines A,B and C respectively?

2. A bag contains five balls and it is not known how many of them are white. Two balls are drawn at random from the bag and they are found to be white. What is the probability that all the balls in the bag are white?

RANDOM VARIABLES

Definition: A real-valued function defined on the outcome of a probability experiment is called a random variable. A Random variable (RV) is a rule that assigns a numerical value to each possible outcome of an experiment.

- 1. Discrete Random Variables.
- 2. Continuous Random Variables

Probability distribution function of X: If X is a random variable, then the function F(x) defined by

 $F(x) = P\{X \le x\}$ is called the distribution function of X.

1. Discrete Random Variable: A random variable whose set of possible values is either finite or countable infinite is called discrete random variable.

Probability Mass Function (pmf): If X is a discrete variable, then the function p(x) = P[X = x] is called the pmf of X. It satisfies two conditions

i)
$$p(x_i) \ge 0$$

ii) $\sum_{i=1}^{\infty} p(x_i) = 1$

Cumulative distribution [discrete R.V] or distribution function of X: The cumulative distribution

F(x) of discrete random variable X with probability f(x) is given by

$$F(x) = P(X \le x) = \sum_{t \le x} f(t) \text{ for } -\infty < x < \infty$$

Properties of distribution function:

- 1. $F(-\infty) = 0$
- 2. $F(\infty) = l$
- 3. $0 \le F(x) \le l$
- 4. $P(x_1 < X \le x_2) = F(x_2) F(x_1)$
- 5. $P(x_1 \le X \le x_2) = F(x_2) F(x_1) + P[X = x_1]$
- 6. $P(x_1 < X < x_2) = F(x_2) F(x_1) P[X = x_2]$
- 7. $P(x_1 \le X < x_2) = F(x_2) F(x_1) P[X = x_2] + P[X = x_1]$

Results:

1. $P(X \le \infty) = l$

$$2. \quad P(X \le -\infty) = 0$$

- 3. $P(X > x) = l P[X \le x]$
- 4. $P(X \le x) = 1 P[X > x]$

Example: 14

A continuous random variable 'X' has a probability density function f(x) = K, $0 \le x \le 1$. Find 'K'. **Solution:**

Given
$$f(x) = k, 0 \le x \le 1$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
$$\int_{0}^{\infty} k dx = 1$$
k=1

Example 15: A R.V X has the following probability distribution.

X:	-2	-1	0	1	2	3
p(x):	0.1	k	0.2	2k	0.3	3k

Find (1) The value of k, (2) Evaluate $P(X \le 2)$ and $P(-2 \le X \le 2)$.

Solution:

(1) Since
$$\sum_{i=1}^{n} p(x_i) = 1$$

 $0.1+k+0.2+2k+0.3+3k = 1$
 $K = 1/15.$
(2) $P[X<2] = P[x=-2] + P[x=-1] + P[x=0] + P[x=1]$
 $= 0.1 + 1/15 + 0.2 + 2/15$
 $= \frac{1}{2}$
 $P[-2 < X < 2] = P[x=-1] + P[x=0] + P[x=1]$

$$= 1/15 + 0.2 + 2/15 = 2/5$$

Example 16:

A random variable X has the following probability function

Values of x	0	1	2	3	4	5	6	7	8
Probability P(x)	a	3a	5a	7a	9a	11a	13a	15a i)	17a

Determine the value of 'a'.

ii) Find P(X<3), P(X \ge 3) and P (0 < X< 5).

iii) Find the distribution function of X.

Solution: i) To find 'a' value:

Given discrete random variable,
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

 $a+3a+5a+7a+9a+11a+13a+15a+17a = 1$
 $81a=1$
 $a=1/81$
ii) To find P(X<3):
 $P(X<3) = P(X=0)+P(X=1)+P(X=2)$
 $=a+3a+5a$
 $=9a$
 $=1/9$
iii) To find $P(X \ge 3)$:
 $P(X \ge 3) = 1 - P(X < 3)$
 $=1-1/9 = 8/9$
iv) To find $P(0 < X < 5)$:
 $P(0 < X < 5) = P(X = 1) + \dots P(X = 4)$
 $= 3a+5a+7a+9a$

PROBABILITY AND STATISTICS

v) To find the distribution function of X:									
Value	0	1	2	3	4	5	6	7	8
of x									
P(x)	а	3a	5a	7a	9a	11a	13a	15a	17a
P(x)	1/81	3/81	5/81	7/81	9/81	11/81	13/81	15/81	17/81
F(x)	1/81	4/81	9/81	16/81	25/81	36/81	49/81	64/81	1

= 24/81v) To find the distribution function of X:

Example 17: A R.V X has the following function:

X:	0	1	2	3	4	5	6	7
P(X):	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2_+k$

(a) find k (b) Evaluate P[X<6], P[x≥6], (c) Evaluate P[1.5<X<4.5 / X>2] (d) Find P[X<2], P[X>3], P[1<X<5].

Solution:

Since $\sum_{i=l}^{n} p(x_i) = l$ (a). i.e., $0+k+2k+2k+3k+k^2+2k^2+7k^2+k = 1$ $10k^{2} + 9k - 1 = 0$ K = -1 or 1/10 (since k=-1 is not permissible, P(X)>0) Hence k = 1/10. (b). $P[x \ge 6] = P[X=6] + P[X=7]$ $= 2k^{2}+7k^{2}+k$ = 2/100 + 7/100 + 1/10 = 19/100P[X < 6] = 1 - P[x > 6]= 1 - 19/100= 81/100 $=\frac{p[(1.5 < x < 4.5) \cap x > 2]}{p(x > 2)}$ (by conditional probability) (c). P[1.5<X<4.5 / X>2] $=\frac{p[2 < x < 4.5]}{1 - p(x \le 2)}$ $=\frac{p(3)+p(4)}{1-[p(0)+p(1)+p(2)]}$ $=\frac{\frac{2}{10}+\frac{3}{10}}{1-\left[0+\frac{1}{10}+\frac{2}{10}\right]}=\frac{\frac{5}{10}}{\frac{7}{10}}=\frac{5}{7}$ (d). p(X < 2) = p[x=0] + p[x=1]= 0 + k = k = 1/10

$$P(X>3) = 1 - p(x \le 3)$$

= 1 - [p(x=0)+p(x=1)+p(x=2)+p(x=3)]
= 1 - [0+k+2k+2k]
= 1/2
$$P(1
= 2k + 2k + 3k
= 7/10$$

Example 18: If the R.V. X takes the values 1,2,3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4). Find the probability distribution and cumulative distribution function of X.

Solution:

Since X is a discrete random variable.

Let 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = k 2P(X = 1) = k implies that P(X = 1) = k/2 3P(X = 2) = k implies that P(X = 2) = k/3P(X = 3) = k

5P(X = 4) = k implies that P(X = 4) = k/5

Since $\sum_{i=1}^{n} p(x_i) = I$ i.e., k/2 + k/3 + k + k/3 = 1k[1/2 + 1/3 + 1 + 1/5] = 1

k = 30/61

Xi	p(x _i)	F(X)
1	P(1) = k/2 = 15/61	F(1) = p(1) = 15/61
2	P(2) = k/3 = 10/61	F(2) = F(1) + p(2) = 15/61 + 10/61 = 25/61
3	P(3) = k = 30/61	F(3) = F(2)+p(3) = 25/61 + 30/61 = 55/61
4	P(4) = k/5 = 6/61	F(4) = F(3)+p(4) = 55/61 + 6/61 = 61/61 = 1

Example 19: A discrete random variable X has the following probability mass function:

X	0	1	2	3	4	5	6	7
P(X)	0	а	2a	2a	3a	a ²	$2a^2$	$7a^2+a$
$\mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} + $								

Find (i) the value of 'a' (ii) P(X < 6), $P(X \ge 6)$ (iii) P(0 < X < 5) (iv) the distribution function of X (v) If $P(X \le x) > 1/2$, find the minimum value of X.

Solution:

(i) Since $\sum_{i=1}^{n} p(x_i) = l$
i.e., $0+a+2a+2a+3a+a^2+2a^2+7a^2+a = 1$
$10a^{2}+9a-1=0$
$a = -1$ or $1/10$ (since $a=-1$ is not permissible, $P(X) \ge 0$)
Hence $a = 1/10$.
(ii). $P[x \ge 6] = P[X=6] + P[X=7]$
$=2a^{2}+7a^{2}_{+}a$
= 2/100 + 7/100 + 1/10 = 19/100
(iii). $P[X \le 6] = 1 - P[x \ge 6]$
$= 1 - \frac{19}{100}$
= 81/100
(iv). To find P(0 <x<5):< th=""></x<5):<>
$P(0 \le X \le 5) = P(X=1) + \dots + P(X=4)$
= a + 2a + 2a + 3a
= 8a = 8/10

(v). To find distribution function of X :

X	0	1	2	3	4	5	6	7
P(x)	0	а	2a	2a	3a	a ²	2 a ²	$7 a^{2}+a$
F(x)	0	1/10	3/10	5/10	8/10	81/100	83/100	1

Minimum value of X:

 $P(X \le x) \quad 1/2$

The minimum value of X for which $P(X \le x) = 0.5$, is the x value is 4.

2. Continuous Random Variables: A random variable X is said to be continuous if it takes all possible values between certain limits say from real number 'a' to real number 'b'.

Example: The length time during which a vacuum tube installed in a circuit functions is a continuous random variable, number of scratches on a surface, proportion of defective parts among 1000 testes, number of transmitted in error.

Probability density function (pdf): For a continuous R.V X, a probability density function is a

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
(3)

function such that (1)

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx =$$
area under f(x) from a to b for any a and b.

Cumulative distribution function: The Cumulative distribution function of a continuous R.V. X is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt \text{ for } -\infty < x < \infty.$$

f

Mean and variance of the Continuous R.V. X: Suppose X is continuous variable with pdf f(x). The mean or expected value of X, denoted as μ or E(X)

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
And the variance of X, denoted as V(X) or is $E[X^2] - [E(X)]^2$

Example 20: Given that the pdf of a R.V X is f(x)=kx, $0 \le x \le 1$. Find k and $P(X \ge 0.5)$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
$$\int_{0}^{1} kx dx = 1$$
$$k \left[\frac{x^2}{2} \right]_{0}^{1} = 1$$
$$K = 2$$
$$P(X > 0.5) = \int_{0.5}^{\infty} f(x) dx$$
$$= \int_{1/2}^{1} 2x dx$$
$$= 2 \left[\frac{x^2}{2} \right]_{1/2}^{1}$$
$$= 3/4$$

 $f(x) = \langle f(x) = \langle f$

 $f(x) = \begin{cases} kxe^{-x}, & x > 0\\ 0, & elsewhere \text{ is the pdf of a R.V. X. Find k.} \end{cases}$

Solution:

For a pdf
$$\int_{-\infty}^{\infty} f(x) dx = l$$

Here
$$\int_{0}^{\infty} kxe^{-x} dx = I$$
 [since x>0]
 $k \left[x \left(\frac{e^{-x}}{-1} \right) - I \left(\frac{e^{-x}}{-1} \right) \right]_{0}^{\infty} = I$
K =1

Example 22: A continuous R.V. X has he density function $f(x) = \frac{k}{1+x^2}, -\infty < x < \infty$. find the value of k and the distribution function.

Solution:

Given is a pdf
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
, $f(x) = \frac{k}{1+x^2}, -\infty < x < \infty$.
 $k \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = 1$
 $2k \int_{0}^{\infty} \frac{1}{1+x^2} dx = 1$
 $2k \left[\tan^{-1} x \right]_{0}^{\infty} = 1$
 $2k \left[\frac{\pi}{2} - 0 \right] = 1$
 $\pi k = 1; k = \frac{1}{\pi}$
 $F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} \frac{1}{\pi} \left(\frac{1}{1+x^2} \right) dx$
 $= \frac{1}{\pi} \left[\tan^{-1} x \right]_{-\infty}^{x} = \frac{1}{\pi} \left[\tan^{-1} x - \left(\frac{-\pi}{2} \right) \right]$
 $= \frac{1}{\pi} \left[\tan^{-1} x + \left(\frac{\pi}{2} \right) \right] for - \infty < x < \infty$

Example:23

A continuous random variable X has a pdf $f(x) = 3x^2$, $0 \le x \le 1$. Find a and b such that (i) $P(X \le a) = P(X > a)$ and (ii) P(X > b) = 0.05. **Solution:**

A continuous random variable X has a pdf $f(x) = 3x^2$, $0 \le x \le 1$. i) To find $P(X \le a) = P(X = a)$

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$\int_{0}^{1} 3x^2 dx = 1$$

 $P(X \le a) = P(X \quad a) P(X \le a) = \frac{1}{2} = 0.5$ Since $\int_{0}^{a} f(x)dx = \frac{1}{2} \int_{0}^{a} 3x^{2}dx = a^{3} = \frac{1}{2}$ a = 0.7937 ii) To find $P(X \quad b) = 0.05$ $\int_{b}^{1} f(x)dx = 0.05 \int_{0}^{1} 3x^{2}dx = 1 - b^{3} = 0.05$ $b^{3} = 0.95$ $b = (0.95)^{1/3}$

 $f(x) = \begin{cases} ax, & 0 \le x \le 1\\ a, & 1 \le x \le 2\\ 3a - ax, & 2 \le x \le 3\\ 0, & otherwise \end{cases}$ Example 24: If the density function of a continuous R.V. X is given by

- (1) Find the value of a.
- (2) The cumulative distribution function of X.
- (3) If x₁, x₂, x₃ are 3 independent observations of X. What is the probability that exactly one of these 3 is greater than1.5?

Solution:

(1) Since f(x) is a pdf, then
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

i.e.,
$$\int_{0}^{3} f(x) dx = 1$$

i.e.,
$$\int_{0}^{1} ax dx + \int_{1}^{2} a dx + \int_{2}^{3} (3a - ax) dx = 1$$

i.e.,
$$a = \frac{1}{2}$$

(2). (i) If x < 0 then F(x) = 0

(ii) If

$$0 \le x \le 1 \text{ then } F(x) = \int_{0}^{x} ax \, dx = \int_{0}^{x} \frac{x}{2} \, dx$$

$$= \frac{x^{2}}{4}$$
(iii) If $1 \le x \le 2 \text{ then } F(x) = \int_{-\infty}^{x} f(x) \, dx$

$$= \int_{0}^{1} ax \, dx + \int_{1}^{-\infty} a \, dx$$

$$= \frac{x}{2} - \frac{1}{4}$$

(iv) If
$$2 \le x \le 3$$
 then $F(x) = \int_{-\infty}^{x} f(x) dx$

$$= \int_{ax}^{1} ax dx + \int_{a}^{\infty} a dx + \int_{2}^{x} (3a - ax) dx$$

$$= \frac{3x}{2} - \frac{x^{2}}{4} - \frac{5}{4}$$
(v) If x>3, then $F(x) = \int_{-\infty}^{x} f(x) dx$

$$= \int_{0}^{1} ax dx + \int_{1}^{2} a dx + \int_{2}^{3} (3a - ax) dx + \int_{3}^{x} f(x) dx$$

$$= 1$$
(3). $P(X > 1.5) = \int_{1.5}^{3} f(x) dx = \int_{1.5}^{2} \frac{1}{2} dx + \int_{2}^{3} \left(\frac{3}{2} - \frac{x}{2}\right) dx$

$$= \frac{1}{2}$$

Choosing an X and observing its value can be considered as a trail and X>1.5 can be considered as a success.

Therefore, p=1/2, q=1/2.

As we choose 3 independent observation of X, n = 3.

By Bernoulli's theorem, P(exactly one value > 1.5) = P(1 success)

$$={}^{3}C_{l}\times(p)^{l}\times(q)^{2}=\frac{3}{8}.$$

	Example 25:	А	RV X	[has	the	follc	wing	distribution
--	-------------	---	------	-------	-----	-------	------	--------------

Х	-2	-1	0	1	2	3
P(X)	0.1	k	0.2	2k	0.3	3k

(a) find k (b) Evaluate $P(X \le 2) \& P(-2 \le X \le 2)$

Solution:

(a) $\Sigma P(X)=1$

6K+0.6=1

K = 1/15

Since the distribution is

Х	-2	-1	0	1	2	3
P(X)	1/10	1/15	1/5	2/15	3/10	1/5

(b)
$$P(X<2) = P(X=-2) + P(X=-1) + P(X=0) + P(X=1)$$

= 1/10 + 1/15 + 1/5 + 2/15 =1/2
& $P(-2$

$$= 1/15 + 1/5 + 2/15 = 2/5$$

Example:26

A continuous random variable X is having the probability density function

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & \text{otherwise} \end{cases}$$

Find the cumulative distribution function of x.

Solution:

 $f(x) = \begin{cases} x, & 0 < x < 1\\ 2 - x, & 1 < x < 2\\ 0, & \text{otherwise} \end{cases}$

Given

To find cumulative distribution function of x: 0 < x < 1

i) If
i) If

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

$$= \int_{0}^{x} x dx = \frac{x^{2}}{2}$$

$$1 < x < 2$$
ii) If

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

$$= \int_{0}^{1} x dx + \int_{1}^{x} (2 - x) dx$$

$$= 2x - \frac{x^{2}}{2} - 1$$
iii) If

$$x > 2$$

$$\int_{-\infty}^{x} f(x) dx$$

$$= \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx$$

$$= 1$$

$$F(x) = \begin{cases} \frac{x^2}{2}, & 0 < x < 1\\ 2x - \frac{x^2}{2} - 1, & 1 < x < 2\\ 1, & x > 2 \end{cases}$$

The cumulative distribution function of x is

UNIT-II

RANDOM VARIABLES

Introduction:

In the last chapter, we introduced the concept of a single random variable. We observed that the various statistical averages or moments of the random variable like mean, variance, standard derivation, skewness give an idea about the characteristics of the random variable.

But in many practical problems several random variables interact with each other and frequently we are interested in the joint behavior of the health conditions of a person, doctors measure many parameters like height, weight, blood pressure, sugar level etc. we should now introduce techniques that help us to determine the joint statistical properties of several random variables.

The concepts like distribution function, density function and moments that we defined for single random variable can be extended to multiple random variables also.

Definition:

Let S be the sample space. Let X=X(S) and Y=Y(S) be two functions each assigning a real no. to each outcome $s \in S$. Then (X,Y) is a two dimensional random variable.

Types of random variables:

- 1. Discrete random variables
- 2. Continuous random variables

Two dimensional discrete random variables:

If the possible values of (X,Y) are finite or countably infinite then (X,Y) is called a two dimensional discrete random variables when (X,Y) is a two dimensional discrete random variable the possible values of (X,Y) may be represented as (x_i, y_j) i = 1,2,...,n, j=1,2,...,m.

Two dimensional continuous random variables:

If (X,Y) can assume all values in a specified region R in the XY plane (X,Y) is called a two dimensional continuous random variables.

Joint distributions - Marginal and conditional distributions:

(i) Joint Probability Distribution:

The probabilities of two events $A = \{X \le x\}$ and $B = \{Y \le y\}$ have defined as functions of x and y respectively called probability distribution function.

 $F_X(x) = P(X \le x)$ $F_Y(y) = P(Y \le y)$

Discrete random variable important terms:

i) Joint probability function (or) Joint probability mass function:

For two discrete random variables x and y write the probability that X will take the value of x_{i} . Y will take the value of y_i as, $P(x, y) = P(X = x_i, Y = y_j)$

ie) $P(X = x_i, Y = y_j)$ is the probability of intersection of events $X = x_i \& Y = y_j$.

 $P(X = x_i, Y = y_j) = P(X = x_i \cap Y = y_j)$, The function $P(X = x_i, Y = y_j) = P(x_i, y_j)$ is called a joint probability function for discrete random variables X,Y and it is denoted by P_{ij} .

P_{ij} satisfies the following conditions

(i)
$$P_{ij} > 0$$
, for every i, j

(ii)
$$\sum_{j} \sum_{i} P_{ij} = 1$$

Continuous random variable (or) Joint Probability Density Function:

Definition:

The joint probability density function if (x,y) be the two dimensional continuous random variable then f(x,y) is called the joint probability density function of (x,y) the following conditions are satisfied.

(i)
$$f(x, y) \ge 0, \forall x, y \in R$$

(ii)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1.$$
 Where R is a sample space.

 $P(a \le x \le b, c \le y \le d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$ Note:

Joint cumulative distributive function:

If (x,y) is a two dimensional random variable then $F(X,Y) = P(X \le x, Y \le y)$ is called a cumulative distributive function of (x,y) the discrete case $F(X,Y) = \sum_{j} \sum_{i} P_{ij} = 1$, $y_i \le y, x_i \le x$.

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(x,y) dx dy$$

In the continuous case

Properties of Joint Probability Distribution function:

1. $O \leq P(x_i, y_j) \leq 1$ 2. $\sum_{i} \sum_{j} P(X_i, Y_j) = 1$ 3. $P(X_i) = \sum_{j} P(X_i, Y_j)$ 4. $P(y_i) = \sum_{j} P(X_i, Y_j)$ 5. $P(x_i) \geq P(x_i, y_j) \text{ for any } j$ 6. $P(y_j) \geq P(x_i, y_j) \text{ for any } i$

Properties:

1. The joint probability distribution function $F^{xy}(X, Y)$ of two random variable X and Y have the following properties. They are very similar to those of the distribution function of a single random variable.

$$2. \quad 0 \le f_{XY}(x, y) \le 1$$

3.
$$f_{XY}(\infty,\infty) = 1$$

4. $f_{XY}(x, y)$ is non decreasing

5.
$$f_{XY}(-\infty, y) = F_{xy}(x_1, \infty) = 0$$

6. For $x_1 < x_2$ and $y_1 < y_2$, $P(x_1 < X \le x_2, Y \le y_1) = F(x_2, y_1) - F(x_1, y_1)$

7.
$$P(X \le x_1, y_1 < Y \le y_2) = F(x_1, y_2) - F(x_1, y_1)$$

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_1, y_2) - f(x_2, y_1) + f(x_1, y_1)$$

8.

9.
$$F_Y(y) = F_{XY}(\infty, y) = P(X \le \infty, y \le y) = P(y \le y)$$

10.
$$F_X(x) + F_y(y) - 1 \le F_{XY}(x, y) \le \sqrt{F_X(x)F_Y(y)}$$
 for all x and y .

These properties can also be easily extended to multi dimensional random variables.

Marginal Probability Distribution function:

(i) Discrete case:

- Let (x,y) be a two dimensional discrete random variable, $P_{ij} = P[X = x_i, Y = y_j]$ then $P(X = x_i) = P_i^*$ is called a marginal probability of the function X. Then the collection of the pair $\{x_i, P_i^*\}$ is called a marginal probability of X.
- If $P(Y = y_j) = P_{*j}$ is called a marginal probability of the function Y. Then the collection of the pair $\{y_i, P_{*j}\}$ is called a marginal probability of Y.

(ii) Continuous case:

• The marginal density function of X is defined as $f_x(x) = g(x) = \int_{-\infty}^{\infty} f_x(x) dx$

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 and
$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

• The marginal density function of Y is defined as $f_y(y) = h$

Conditional distributions:

(i) Discrete case:

• The conditional probability function of X given Y=y *j* is given by

$$P[X = x_i / Y = Y_j] = P[X = x_i, Y = y_j] / P[Y = y] = P_{ij} / P^* j$$

The set $\{X = x_i, P_{ij} / P^* j\}$, I =^{1,2,3},...is called the conditional probability distribution of X given $Y = y_j$

• The conditional probability function of Y given X=xi is given by

$$P = [Y = y_j / X = x_i] = P[Y = y_j, X = x_i] / P[X = x_i] = P_{ij} / P_i^*$$

The set $\{\mathcal{Y}_{ij} \ P/P_i^*\}$, j=1,2,3,...is called the conditional probability distribution of Y given $X = x_i$

(ii) Continuous case:

• The conditional probability density function of X is given by $Y = y_j$ is defined as

$$f(x/y) = \frac{f(x, y)}{h(y)}$$
, where h(y) is a marginal probability density function of Y.

• The conditional probability density function of Y is given by $X = x_i$ is defined as

$$f(y/x) = \frac{f(x, y)}{g(x)}$$
, where g(x) is a marginal probability density function of X.

Independent random variables:

(i) Discrete case:

Two random variable (x,y) are said to be independent if $P(X = x_i \cap Y = y_j) = P(X = x_i)(Y = y_j)$ (ie) $P_{ij} = P_i^* P_{*j}$ for all i, j.

(ii) Continuous case:

Two random variables (x,y) are said to be independent if f(x, y) = g(x)h(y), where f(x, y) = joint probability density function of x and y,

g(x) = Marginal density function of x,

h(y) = Marginal density function of y.

Marginal Distribution Tables:

Table – I

To calculate marginal distribution when the random variables X takes horizontal values and Y takes vertical values

Y/X	x1	x2	x3	p(y) = p(Y=y)
y1	p11	p21	p31	p(Y=y1)
y2	p12	p22	p32	p(Y=y2)
y3	p13	p23	p33	p(Y=y3)
$P_X(X) = P(x = x)$	P(x = x1)	p(x=x2)	p(x=x3)	

Table – II

To calculate marginal distribution when the random variables X takes vertical values and Y takes horizontal values

Y\X	y1	y2	y3	$P_X(x) = P(X=x)$
x1	p11	p21	p31	p(X=x1)
x2	p12	p22	p32	p(X=x2)
x3	p13	p23	p33	p(X=x3)
p(y) = p(y = y)	P(y = y1)	P(y = y2)	P(y=y3)	

Solved Problems on Marginal Distribution:

Example :1

From the following joint distribution of X and Y find the marginal distribution

X/Y	0	1	2
0	3/28	9/28	3/28
1	3/14	3/14	0
2	1/28	0	0

Solution:

The marginal distribution are given in the table below

	Y\X	0	1	2	$P_{Y}(y) = P(Y=y)$
	0	3/28	9/28	3/28	15/28
	1	3/14	3/14	0	6/14
	2	1/28	0	0	1/28
P_{χ}	P(X) = P(Y = X)	$y \mathcal{P}_X(0) =$	$P_{X}(1) =$	$P_{X}(2) =$	1
		5/14	15/28	3/28	

The marginal Distribution of X

$$P_X(0) = P(X = 0) = p(0,0) + p(0,1) + p(0,2) = 3/28 + 3/14 + 1/28 = 5/14$$

$$P_X(1) = P(X = 1) = p(1,0) + p(1,1) + p(1,2) = 9/28 + 3/14 + 0 = 15/28$$

$$P_X(2) = P(X = 2) = p(2,0) + p(2,1) + p(2,2) = 3/28 + 0 + 0 = 3/28$$

$$P_X(x) = \frac{5}{14} + \frac{1}{14} = 0$$

$$P_{x}(x) = \begin{cases} 5/14, x = 0\\ 15/28, x = 1\\ 3/28, x = 2 \end{cases}$$

Marginal probability function of X is

The marginal distributions are

Y/X	1	2	3	$P_{Y}(y) = p(y = y)$
1	2/21	3/21	4/21	9/21
2	3/21	4/21	5/21	12/21

5/21	7/21	9/21	1

The marginal distribution of X

$$P_{x}(1) = p(1,1) + (1,2) = 2/21 + 3/21$$

$$P_{x}(1) = 5/21$$

$$P_{x}(2) = p(2,1) + (2,2) = 3/21 + 4/21$$

$$P_{x}(2) = 7/21$$

$$P_{x}(3) = p(3,1) + p(3,2) = 4/21 + 5/21$$

$$P_{x}(3) = 9/21$$

$$P_{x}(x) = \frac{5/21}{7/21, x = 2}$$

Marginal probability function of X is, $= \frac{9/21, x = 3}{2}$

The marginal distribution of Y

$$P_{Y}(1) = p(1,1) + p(2,1) + p(3,1) = 2/21 + 3/21 + 4/21$$

$$P_{Y}(1) = 9/21$$

$$P_{Y}(2) = p(1,2) + p(2,2) + p(3,2) = 3/21 + 4/21 + 5/21$$

$$P_{Y}(2) = 12/21$$

$$P_{Y}(y) \begin{cases} 3/21, \ y = 1 \\ 4/21, \ y = 2 \end{cases}$$

Marginal probability function of Y is

Example :2

From the following table for joint distribution of (X, Y) find

i)
$$P(X \le 1)$$
 ii) $P(Y \le 3)$ iii) $P(X \le 1, Y \le 3)$ iv) $P(X \le 1/Y \le 3)$
v) $P(Y \le 3/X \le 1)$ vi) $P(X + Y \le 4)$.

=

X/Y	0	2	3	4	5	6
0	0	0	1/32	2/32	2/32	3/32

PROBABILITY AND STATISTICS

1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

Solution:

The marginal distributions are

	X / Y	1	2	3	4	5	6	$P_X(x) = P(X = x)$
	0	0	0	1/32	2/32	2/32	3/32	8/32 P(x=0)
	1	1/16	1/16	1/8	1/8	1/8	1/8	10/16 P(x=1)
	2	1/32	1/32	1/64	1/64	0	2/64	8/64 P(x=2)
P_{1}	P(Y) = P(Y = y)	y) 3/32	3/32	11/64	13/64	6/32	16/64	1
		P(Y=1)	P(Y=2)	P(Y=3)	P(Y=4)	P(Y=5)	P(Y=6)	

i) $P(X \le 1)$ $P(X \le 1) = P(X = 0) + P(X = 1)$ = 8/32 + 10/16 $P(X \le 1) = 28/32$

ii)
$$P(Y \le 3)$$

 $P(Y \le 3) = P(Y = 1) + P(Y = 2) + P(Y = 3)$
 $= 3/32 + 3/32 + 11/64$
 $P(Y \le 3) = 23/64$

- iii) $P(X \le 1, Y \le 3)$ $P(X \le 1, Y \le 3) = P(0,1) + P(0,2) + P(0,3) + P(1,1) + P(1,2) + P(1,3)$ = 0 + 0 + 1/32 + 1/16 + 1/16 + 1/8 $P(X \le 1, Y \le 3) = 9/32$
- iv) $P(X \le 1/Y \le 3)$ By using definition of conditional probability

$$P[x = x_i / y = y_j] = \frac{P[X = x_i, Y = y_j]}{P[Y = y_j]}$$

The marginal distribution of Y

$$P_{Y}(0) = P(Y = 0) = p(0,0) + p(1,0) + p(2,0) = 3/28 + 9/28 + 3/28 = 15/28$$
$$P_{y}(1) = P(y = 1) = p(0,1) + p(1,1) + p(2,1) = 3/14 + 3/14 + 0 = 3/7$$

$$P_y(2) = P(y=2) = p(0,2) + p(1,2) + p(2,2) = \frac{1}{28+0+0} = \frac{1}{2}$$

$$P_{y}(Y) = \begin{cases} 15/28, y = 0\\ 3/7, y = 1\\ 1/28, y = 2 \end{cases}$$

Marginal probability function of Y is

Example 3:

The joint distribution of X and Y is given by f(X, Y) = X+Y/21, x=1,2,3 y=1,2.Find the marginal distributions.

Solution:

Given
$$f(X, Y) = X+Y/21, x=1, 2, 3 y=1, 2$$

 $f(1,1) = 1+1/21 = 2/21 = P(1,1)$
 $f(1,2) = 1+2/21 = 3/21 = P(1,2)$
 $f(2,1) = 2+1/21 = 3/21 = P(2,1)$
 $f(2,2) = 2+2/21 = 4/21 = P(2,2)$
 $f(3,1) = 3+1/21 = 4/21 = P(3,1)$
 $f(3,2) = 3+2/21 = 5/21 = P(3,2)$

$$P[X \le 1/Y \le 3] = \frac{P[X \le 1, Y \le 3]}{P[Y \le 3]} = \frac{9/23}{23/64}$$
$$P[X \le 1/Y \le 3] = 18/32$$

v) $P[Y \le 3 / X \le 1]$

$$P[Y \le 3 / X \le 1] = \frac{P[X \le 3, Y \le 1]}{P[Y \le 1]} = \frac{9/23}{7/8}$$
$$P[Y \le 3 / X \le 1] = 9/28$$

vi) $P(X+Y \le 4)$

$$\begin{split} P(X + Y \leq 4) &= P(0,1) + P(0,2) + P(0,3) + P(0,4) + P(1,1) + \\ &P(1,2) + P(1,3) + P(2,1) + P(2,2) \\ &= 0 + 0 + 1/32 + 2/32 + 1/16 + 1/16 + 1/8 + 1/32 + 1/32 \\ P(X + Y \leq 4) &= 13/32 \end{split}$$

Example : 4

If the joint P.D.F of (X,Y) is given by p(X,Y)=K(2x+3y),x=0,1,2, y=1,2,3. Find all the marginal probability distribution .Also find the probability of (X+Y) and P(X+Y >3).
Solution:

Given P(X,Y) = K(2x+3y) P(0,1) = K(0+3) = 3K P(0,2) = K(0+6) = 6K P(0,3) = K(0+9) = 9K P(1,1) = K(2+3) = 5K P(1,2) = K(2+6) = 8K P(1,3) = K(2+9) = 11K P(2,1) = K(4+3) = 7K P(2,2) = K(4+6) = 10KP(2,3) = K(4+9) = 13K

To find K:

The marginal distribution is given in the table.

Y\X	0	1	2	$P_Y(y) = P(Y = y)$
1	3K	5K	7K	15K
2	6K	8K	10K	24K
3	9K	11K	13K	33K
PX(x)=P(X=x)	18K	24K	30K	72K

Total Probability =1

72K = 1	
K = 1/72	

Marginal probability of X & Y:

Substituting K = 1/72 in the above table, we get

Y∖X	0	1	2	$P_{Y}(y)=P(Y=y)$	
КАНЕ					

1	3/72	5/72	7/72	5/24
2	6/72	8/72	10/72	1/3
3	9/72	11/72	13/72	11/24
$P_X(\mathbf{x}) = \mathbf{P}(\mathbf{X} = \mathbf{x})$	1/4	11/72	5/12	1

From table, $P_x(0) = 1/4$, $p_x(1) = 1/3$, $p_x(2) = 5/12$

$$P_x(X) = \begin{cases} 1/4, x = 0\\ 1/3, x = 1\\ 5/2, x = 2 \end{cases}$$

Marginal probability function of x is,

From table, $P_y(1) = 5/24$, $P_y(2) = 1/3$, $P_y(3) = 11/24$

$$P_{Y}(Y) = \begin{cases} 5/24, Y = 1\\ 11/24, y = 2 \end{cases}$$

Marginal Probability function of Y is,

Example :5

From the following table for joint distribution of (X, Y) find

The marginal distributions are

Y/X	1	2	3	
				$P_Y(y) = P(Y = y)$
1	2/21	3/21	4/21	9/21
2	3/21	4/21	5/21	12/21
$P_X(x) = P(X = x)$	5/21	7/21	9/21	1

The marginal distribution of X

$$P_{X}(1) = P(1,1)+P(1,2) = 2/21 + 3/21 = P^{X}(3)=9/21$$

$$P_{X}(2) = P(2,1)+P(2,2) = 3/21 + 4/21 = Py(2)=7/21$$

$$P_{X}(3) = P(3,1)+P(3,2) = 4/21 + 5/21 = P_{X}(3)=9/21$$

$$P_{x} = \begin{cases} 5/21, x = 1\\ 7/21, x = 2\\ 9/21, x = 3 \end{cases}$$

Marginal probability function of X is

The marginal distribution of Y

P
$$_{y}(1) = P(1, 1) + P(2, 1) + P(3, 1)$$

= 2/21 + 3/21 +4/21= 9/21
 $P_{y}(2) = P(1, 2) + P(2, 2) + P(3, 2)$
= 3/21 + 4/21 +5/21= 12/21
ability function of Y is
 $P_{y}(y) = \begin{cases} 3/21, y = 1\\ 4/21, y = 2 \end{cases}$

Marginal probability function of Y is

Exercises:

1. Given is the joint distribution of X and Y

Y/X	0	1	2
0	0.02	0.08	0.10
1	0.05	0.20	0.25
2	0.03	0.12	0.15

Obtain 1) Marginal Distribution.

2) The conditional distribution of X given Y = 0.

2. The joint probability mass function of X & Y is

X/Y	0	1	2
0	0.10	0.04	0.02
1	0.08	0.20	0.06
2	0.06	0.14	0.30

Find the M.D.F of X and Y. Also $(X \le 1, Y \le 1)$ and check if X & Y are independent.

3. Let X and Y have the following joint probability distribution

Y/X	2	4
1	0.10	0.15

3	0.20	0.30
5	0.10	0.15

Show that X and Y are independent.

4. The joint probability distribution of X and Y is given by the following table.

X/Y	1	3	9
2	1/8	1/24	1/12
4	1/4	1/4	0
6	1/8	1/24	1/12.

i) Find the probability distribution of Y.

- ii) Find the conditional distribution of Y given X=2.
- ii) Are X and Y are independent.
- 5. Given the following distribution of X and Y. Find
 - i) Marginal distribution of X and Y.
 - ii) The conditional distribution of X given Y=2.

X/Y	-1	0	1
0	1/15	2/15	1/15
1	3/15	2/15	1/15
2	2/15	1/15	2/15

Example : 6

If the joint probability density function of (X, Y) is given by f(x, y) = 2, $0 \le x \le y \le 1$. Find marginal density function of X.

Solution:

Given f(x, y) = 2, $0 \le x \le y \le 1$

To find marginal density function of x:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{1} 2dy = 2[1 - x], \quad 0 \le x \le y.$$

Example:7

If the joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} \frac{1}{8}(6 - x - y), & 0 < x < 2, 2 < y < 4 \\ 0, & \text{otherwise} \end{cases}$$

Find (i)
$$P(X < 1 \cap Y < 3) P(X < \frac{1}{Y} < 3) f(\frac{y}{x}).$$

Solution:

$$f(x, y) = \begin{cases} \frac{1}{8} (6 - x - y), & 0 < x < 2, 2 < y < 4 \\ 0, & \text{otherwise} \end{cases}$$

Given

i) To find
$$P(X < 1 \cap Y < 3)$$
:
 $P(X < 1 \cap Y < 3) = \int_{0}^{1} \int_{2}^{3} f(x, y) dy dx$
 $= \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) dy dx$
 $= \frac{3}{8}$
ii) To find $P(X < \frac{1}{Y} < 3)$

To find P(Y < 3):

$$P(Y < 3) = \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} f(x, y) dy dx$$
$$= \int_{0}^{2} \int_{0}^{3} \frac{1}{8} (6 - x - y) dy dx$$
$$= \frac{5}{8}$$
$$P(X < 1/x) = 0$$

Equation (1) becomes $P(X < 1/Y < 3) = \frac{3}{5}$

iii) To find f(y/x):

We know that

$$f(y/x) = \frac{f(x, y)}{f_x(x)}$$

$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy = \frac{1}{8} \int_{2}^{4} (6 - x - y) dy$$

$$= \frac{1}{4} (3 - x), 0 < x < 2.$$

$$0 < x < 2, \quad 2 < y < 4.$$

$$f(y/x) = \frac{\frac{1}{8} (6 - x - y)}{\frac{1}{4} (3 - x)} = \frac{6 - x - y}{2(3 - x)},$$

Example:8

If the joint distribution of X and Y is given by $F(x, y) = (1 - e^{-x})(1 - e^{-y}), \text{ for } x > 0, y > 0$ = 0, otherwise(i) Find the marginal densities of X and Y (ii) Are X and Y independent? (iii) P(1 < X < 3, 1 < Y < 2)

Solution:

Given
$$F(x, y) = (1 - e^{-x})(1 - e^{-y})$$

= $1 - e^{-x} - e^{-y} + e^{-(x+y)}$

The joint pdf is given by
$$f(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y}$$

$$f(x, y) = \frac{\partial^2}{\partial x \partial y} (1 - e^{-x} - e^{-y} + e^{-(x+y)})$$
$$= e^{-(x+y)}$$

$$f(x, y) = e^{-(x+y)}, x \ge 0, y \ge 0$$

i) The marginal density function of X is
$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f(x) = \int_{0}^{\infty} e^{-(x+y)} dy = e^{-x}, x \ge 0$$

The marginal density function of Y is $f(y) = \int_{-\infty}^{\infty} f(x, y) dx$

$$f(y) = \int_{0}^{\infty} e^{-(x+y)} dx = e^{-y}, y \ge 0$$

ii) Consider $f(x).f(y) = e^{-x}e^{-y} = e^{-(x+y)} = f(x,y)$

ie) X and Y are independent.

iii) P(1 < X < 3, 1 < Y < 2) = P(1 < X < 3).P(1 < Y < 2)

$$= \int_{1}^{3} f(x)dx \int_{1}^{2} f(y)dy = \int_{1}^{3} e^{-x}dx \int_{1}^{2} e^{-y}dy$$
$$= \frac{(1-e^{2})(1-e)}{e^{5}}$$

Exercises:

1. The joint p.d.f. of the two dimensional random variable is,

$$f(x, y) = \begin{cases} \frac{8xy}{9}, & 1 < x < y < 2\\ 0, & \text{otherwise} \end{cases}$$

(i) Find the marginal density functions of X and Y.

(ii) Find the conditional density function of Y given X=x.

2. If the joint Probability density function of two dimensional R.V (X,Y) is given by

$$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 \le x \le 1, 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$

Show that X and Y are not independent.

Covariance

It is useful to measure of the relationship between two random variables is called covariance. To define the covariance we need to describe the expected value of a function of two random variables C(x,y).

Covariance:

If X and Y are random variables, than covariance between X and Y is defined as

 $Cov(X,Y) = E\{[X - E(x)][Y - E(y)]\}$

$$= E\{XY - XE(Y) - E(x)y + E(X)E(Y)\}$$

$$= E(XY) - E(X) - E(Y) - E(X)E(Y) + E(X)E(Y)$$

Covariance (X, Y) = E(XY) - E(X)E(Y)(A)

If X and y are independent, then E(XY) = E(X)E(Y)(B)

Substituting (B) in (A), we get Covariance (x, y) = 0

If X and Y are independent, then Cov(X|Y) = 0

Correlation:

If the change in are variable affects a change in the other variable, the variable are said to be correlated In a invariable distribution we may be interested to find out if there is any correlation or co-variance between the two variables under study.

Types of correlation:

- 1) Positive correlation
- 2) Negative Correlation

Positive Correlation:

If the two variables deviate in the same direction i.e. If the increase (or decrease) in one results in a corresponding increase (or decrease) in the other, correlation is said to be direct or positive.

Example: The Correlation between

- a) The height, and weight of a group of person and
- b) Income and expenditure

Negative Correlation:

If the two variable constancy deviate in opposite directions i.e. if (increase 9or decrease) in one result in corresponding decrease (or increase) in the other correlation, is said to be negative.

Example: The Correlation between

- a) Price and demand of a commodity and
- b) The correlation between volume and pressure of a perfect gas.

Measurement of Correlation:

We can measure the correlation between the two variables by using Karl-Pearson's co -efficient of correction.

Karl-Pearson's Co-Efficient of Correlation:

Correlation co-efficient between two random variable X and Y usually denotes by (X,Y) is a numerical measure of linear. Karl Pearson's co-efficient of correlation between x & y is

r = 1 - 6
$$\sum_{i=1}^{n} d_i^2 / n(n^2 - 1)$$
, $d_i x_i - y_i$
, where =

Relationship between them and detained as

$$r(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y} \quad \text{Where COV} = \frac{1}{n} \sum XY - \overline{XY}$$
$$\sigma_X = \sqrt{\frac{1}{n} \sum X^2 - \overline{X_2}}, \quad \overline{X} = \frac{\sum X}{n}$$
$$(n \quad \sigma_Y = \sqrt{\frac{1}{n} \sum Y^2 - \overline{Y_2}} \text{ is the number of items in the given data})$$

- 1. Correlation coefficient may also be denoted by r(x,y)
- 2. If r(x,y) = 0, we say that x & y are uncorrelated.
- 3. When r = 1, the correlation is perfect.

Example :9

Calculate the Correlation co-efficient for the following heights (in inches) of father x and their sons y.

Solution:

Method : 1

X	Y	XY	X ²	Y ²
67	67	4355	4225	4489
66	68	4488	4356	4624
67	65	4355	4489	4225
67	68	4556	4489	4624
68	72	4896	4624	5184
69	72	4968	4761	5184

70	69	4836	4900	4761
72	71	5112	5184	5041
$\sum(x) = 544$	$\sum (y) = 552$	$\sum XY = 37560$	$\sum x^2 = 37028$	$\sum y^2 = 38132$

Now

 $\overline{X} = 544/8 = 68$

 $\overline{Y} = 544/8 = 69$

 \overline{X} $\overline{Y} = 68 * 69 = 4692$

$$\sigma_{x} = \sqrt{1/n \sum x^{2} - \overline{x^{2}}}$$

$$= \sqrt{37028/8 - 4624} = 2.121$$

$$= \sqrt{38132/8 - 4761} = 2.345$$

$$r(X,Y) = \frac{Cov(X,Y)}{\sigma_{x}\sigma_{y}}$$

$$= 1/n \sum xy - \overline{x \ y} / \sigma_{x} \sigma_{y}$$

$$= 1/8 * 37560 - 4692/2.121 * 2.345$$

= 3/4.973

=0.6032

It is positive correlation.

Example:10 Find the co-efficient of Correlation between industrial productions and expose using the following data

Production (x)	55	56	58	59	60	60	62
Export (y)	35	38	37	39	44	43	44

Solution :

Х	Y	U =X-58	V=Y-40	UV	U2	V2
55	35	-3	-5	15	9	25
56	38	-2	-2	4	4	4

58	37	0	-3	0	0	9
59	39	1	-1	-1	1	1
60	44	2	4	8	4	16
60	43	2	3	6	4	9
62	44	4	4	16	16	16
		∑ U=4	∑ U=0	∑ UV=48	$\sum U^2 = 38$	$\sum V^2 = 8$

Now $\overline{U} = \sum U/n = 4/7 = 0.5714$

$$\overline{V} = \sum V/n = 0 \dots (1)$$

$$\sigma_U = \sqrt{\sum U^2 / n - \overline{U}^2} = \sqrt{38/7} - (0.5714)^2 = 2.2588 \dots (2)$$

$$\sigma_V = \sqrt{\sum V^2 - \overline{V}} = \sqrt{80/7 - 0} = 3.38 \dots (3)$$

$$\therefore r = (X, Y) = r(U, V) = COV(U, V) / \sigma_U * \sigma_V = 6.857 / 2.258 * 3.38 = 0.898 [using (1), (2) \& (3)]$$

$$r = 0.79$$

The value between 0 to 1. So it is positive correlation.

Example :11

Find the Correlation co-efficient for the following data.

Х	10	14	18	22	26	30
Y	18	12	24	6	30	36

Solution:

X	Y	U =X-22/4	V=Y-24/6	UV	U ²	\mathbf{V}^2
10	18	-3	-1	3	9	1
14	12	-2	-2	4	4	4
18	24	-1	0	0	1	0
22	6	0	-3	0	0	9
26	30	1	1	1	1	1
30	36	2	2	4	4	4

	$\Sigma II - 2$	$\Sigma V = 2$	$\Sigma IIV - 12$	$\Sigma U^2 = 10$	$\Sigma V^2 - 10$
	<u> </u>	∑ v3	$\sum UV - 12$	$\sum 0^{2} - 19$	$\sum V^{2} - 19$

Now
$$\overline{U} = \sum U/n = -3/6 = -0.5$$
(1)
 $\overline{V} = \sum V/n = -3/6 = 0.5$ (2)
 $COV(U,V) = \frac{\sum UV}{n\overline{UV}} = 1.75$
 $\sigma_U = \sqrt{\sum U^2 - \overline{U}^2}$
 $= \sqrt{19/6} - (0.5)^2 = 1.708$ (3)
 $\therefore r(x, y) = 0.6$

The value between 0 to 1. So it is positive correlation

Rank Correlation:

Let us suppose that a group of n individuals are arranged in order of merit or proficiently in possession of two characteristics A & B.

$$r = 1 - 6 \sum_{i=1}^{n} d_i^2 / n(n^2 - 1),$$
, where =

Note:

This formula is called a Spearman's formula .

Solved Problems on Rank Correlation:

Example :12

Find the rank correlation co-efficient from the following data:

Rank in X	1	2	3	4	5	6	7
Rank in Y	4	3	1	2	6	5	7

Solution

X	Y	$d = x_i - y_i$	di^2
1	4	-3	9

2	3	-1	1
3	1	2	4
4	2	2	4
5	6	-1	1
6	5	1	1
7	7	0	0
		$\sum d_i = 0$	$\sum d_i^2 = 20$

Rank Correlation co-efficient

r = 1 - 6
$$\sum_{i=1}^{n} d_i^2 / n(n^2 - 1)$$
, $d_i = x_i - y_i$
= 1 - 6 x 20/7(49-1) = 0.6429

Example : 13 The ranks of some 16 students in mathematics & physics are as follows. Calculate rank correlation co-efficient for proficiency in mathematics & physics.

Rank in Mathematics	1	2	3	4	5	6	7	8	9	1 0	11	1 2	1 3	14	1 5	16
Rank in Physics	1	1 0	3	4	5	7	2	9	8	1 1	15	9	1 4	12	1 6	13

Solution:

Rank in Mathematics(X)	Rank in Physics(Y)	$d_i = X_i - Y_i$	d_i^2
1	1	0	0
2	10	-8	64
3	3	0	0
4	4	0	0
5	5	0	0

6	7	-1	1
7	2	5	25
8	9	-1	1
9	8	1	1
10	11	-1	1
11	15	-4	16
12	9	3	9
13	14	-1	1
14	12	2	4
15	16	-1	1
16	13	3	9
		$\sum \overline{d_i} = 0$	$\sum d_i^2 = 136$

Rank correlation co-efficient

r = 1 - 6
$$\sum_{i=1}^{n} d_i^2 / n(n^2 - 1)$$
, $d_i x_i - y_i$
where =

r = 0.8

Example: 14

10 competitors in a musical test were ranked by the 3 judges X, Y, Z in the following order

	A	В	С	D	E	F	G	Н	Ι	J
Rank in X	1	6	5	10	3	2	4	9	7	8
Y	3	5	8	4	7	10	2	1	6	9
Ζ	6	4	9	8	1	2	3	10	5	7

Using Rank correlation method, discuss which panel of Judges has the nearest approach to common likings of music.

Х	Y	Ζ	$\mathbf{D}_1 = \mathbf{x}_i - \mathbf{y}_i$	$\mathbf{D}_2 = \mathcal{Y}_i - \mathbf{Z}_i$	$D_3 = x_i - z_i$	D_1^2	D_{2}^{2}	D_{3}^{2}

1	3	6	-2	-3	-5	4	9	25
6	5	4	1	1	2	1	1	4
5	8	9	-3	-1	-4	9	1	16
10	4	8	6	-4	2	36	16	4
3	7	1	-4	6	2	16	36	4
2	10	2	-8	8	0	64	64	0
4	2	3	2	-1	1	4	1	1
9	1	10	8	-9	-1	64	81	1
7	6	5	1	1	2	1	1	4
8	9	7	-1	2	1	1	4	1
$\sum d_1^2 =$	= 200	Σ						

The rank correlation between X & Y is

$$r^{1} = 1 - 6 \sum_{i=1}^{n} d_{i}^{2} / n(n^{2} - 1) = -0.212$$

The rank correlation between Y& Z is

 $r^{2} = 1 - 6 \sum_{i=1}^{n} d_{i}^{2} / n(n^{2} - 1) = -0.296$

The rank correlation between X & Z is

$$r^{3} = 1 - 6 \sum_{i=1}^{n} d_{i}^{2} / n(n^{2} - 1) = 0.636$$

Since the rank correlation between X & Z is maximum and also positive, We conclude that the pair of Judges X & Z has the nearest approach to common likings of music.

Exercises:

1) Calculate the Karl Pearson's co-efficient of correlation from the following data

Х	25	26	27	30	32	35
Y	20	22	24	25	26	27

2) Find the co-efficient of correlation of the advertisement cost & sales from the following data

	REGRESSION								
Sales:	47	53	58	86	62	68	91	51	84
Cost:	39	65	62	90	82	75	98	36	78

Definition:

Regression is a mathematical measure of the average relationship between two or more variables in terms of the original limits of the data.

Lines of regression:

If the variables in a bivariate distribution are related we will cluster around some curve called of regression. If the curve is a straight line, it is and called the line of regression and there is said to be linear regression is said to be curve linear.

The line of regression of y on x is given by $y - \overline{y} = r \cdot \frac{\partial y}{\partial r} (x - \overline{x})$

where r is the correlation coefficient, O_y and O_X are standard deviation.

The line of regression of X on Y is given by $x - \overline{x} = r \cdot \frac{\partial y}{\partial x} (y - \overline{y})$

Angle between two line of regression:

If the equation of lines of regression of Y on X and X on Y are

$$y - \overline{y} = r \cdot \frac{\partial y}{\partial x} (x - \overline{x})$$
 and $x - \overline{x} = r \cdot \frac{\partial x}{\partial y} (y - \overline{y})$

The angle ' θ ' between the two line of regression is given by

$$\tan\theta = \frac{l-r^2}{r} \left(\frac{\partial y \partial x}{\partial x^2 + \partial y^2}\right)$$

Regression coefficients:

Regression coefficient of Y on X,
$$r \frac{\partial Y}{\partial X} = b_{YX}$$
(1)

Regression coefficient of X on Y,
$$r \frac{\partial X}{\partial Y} = b_{XY}$$
(2)

From (1) and (2) we get

$$r\frac{\partial Y}{\partial X}r\frac{\partial X}{\partial Y} = b_{YX} * b_{YX}$$

Correlation coefficient $r = \pm \sqrt{b_{XY} * b_{YX}}$

The regression coefficients b_{yx} and b_{yx} can be easily obtained by using the following formula.

$$b_{YX} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$
$$b_{XY} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (y - \overline{y})^2}$$

Solved Problems on Regression:

Example:15

The equations of two regression lines are 3x+12y=19, 3y+9x=46. Obtain the mean value of X

and Y.

Solution:

Given the lines are 3x+12y=19,

3y+9x=46

Since both are passing through $(\overline{x}, \overline{y})$, we get

 $3\bar{x} + 12\bar{y} = 19$(1)

 $9\bar{x} + 3\bar{y} = 46$ (2)

Solving equation (1) & (2) we get $33\overline{y} = 11$

$$\overline{y} = \frac{11}{33} = 0.33$$
, \overline{y} value sub in equation (1) we get
 $\overline{(x, y)} = (5, 0.33)$

Example:16

From the following data, find

i)The two regression equations.

ii) The co-efficient of correlation between the marks in economics and statistics.

iii)The most likely marks in statistics when marks in economics are 30.

Marks in	25	28	35	32	31	36	29	38	34	32
Economics										
Marks in	43	46	49	41	36	32	31	30	33	39
Statistics										

Solution:

X	Y	$X - \overline{X} = X - 32$	$Y - \overline{Y} = Y - 38$	$(X-\overline{X})^2$	$(Y-\overline{Y})^2$	$(X-\overline{X})(Y-\overline{Y})$
25	43	-7	5	49	25	-35
28	46	-4	8	16	64	-32
35	49	3	11	9	121	33
32	41	0	3	0	9	0
31	36	-1	-2	1	4	2
36	32	4	-6	16	36	-24
29	31	-3	-7	9	49	21
38	30	6	-8	36	64	-48
34	33	2	-5	4	25	-10
32	39	0	1	0	1	0
$\sum X = 320$	$\begin{array}{c} \Sigma Y = \\ 380 \end{array}$	$\sum (X - \overline{X}) = 0$	$\sum (Y - \overline{Y}) = 0$	$\sum (X - \overline{X})^2 = 140$	$\sum (Y - \overline{Y})^2 = 398$	$\sum (X - \overline{X})(Y - \overline{Y}) =$ -93

Here
$$\overline{X} = \frac{\sum X}{n}$$
 and $\overline{Y} = \frac{\sum y}{n}$
 $= \frac{320}{10} = 32$ $= \frac{380}{10} = 38$

Coefficient of regression of Y on X is

$$b_{YX} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} = \frac{-93}{140}$$

Coefficient of regression of X on Y is

$$b_{XY} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (Y - \overline{Y})} = \frac{-93}{398} = -0.2337$$

Equation of the line of regression of X on Y is

$$x - \overline{x} = b_{XY}(y - \overline{y})$$

X - 32 =0.2337(Y-38)
X= -0.2337 y+0.2337 *38 +32
X=-0.23374 +40.8806

Equation of the line of regression of Y on X is

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

Y-38 = -0.6643(x-32)
Y = - 0.6643 x+38+0.6643*32 =-0.6642x+59.2576

Now we have to find the most likely marks in statistics (Y) when marks in economics (X) are 30.we use the line of regression of Y on X.

Y = -0.6643x + 59.2575

Put x=30, we get

Y = -0.6643*30+59.2536 = 39.3286 = 39

Example :17

Height of father and sons are given in centimeters

X:Height of father	150	152	155	157	160	161	164	166
Y:Height of son	154	156	158	159	160	162	161	164

Find the two lines of regression and calculate the expected average height of the son when the height of the father is 154 cm.

Solution:

X	у	U=X-160	V=Y- 159	u ²	v ²	uv
150	154	-10	-5	100	25	50
152	156	-8	-3	64	9	24
155	158	-5	-1	25	1	5
157	159	-3	0	9	0	0
160	160	0	1	0	1	0
161	162	1	3	1	9	3
164	161	4	2	16	4	8
166	164	6	5	36	25	30
		$\sum U = -15$	$\sum V = 2$	$\sum U^2 = -15$	$\sum V^2 = 74$	$\sum UV = 120$

Let 160 and 159 be assured means of x and y.

Now $\overline{X} = 158.13$ and $\overline{Y} = 159.25$

Since regression coefficient are independent of change and of origin we have regression coefficient of \boldsymbol{Y} on \boldsymbol{X}

Coefficient of regression of Y on X is

$$b_{YX} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} = \frac{990}{1783} = 0.555$$

Coefficient of regression of X on Y is

$$b_{XY} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (Y - \overline{Y})} = 1.68.$$

Exercise:

1. The two lines of regression are 8x-10y = 66 and 40x-18y-214 = 0. The variance of X is 9. Find i) the mean values of X and Y ii) Correlation between X and Y.

MA2262 / 80250008 / MA1252 / MA44 / 10177 PQ401 PROBABILITY AND QUEUEING THEORY

NOTES

SEMESTER-IV

<u>QUESTION BANK – III</u> UNIT– III – MARKOV PROCESSES AND MARKOV CHAINS

PART -A

Problem 1 Distinguish between wide sense stationary (WSS) and strict sense stationary (SSS) random processes.

Solution:

A process is said to be wide sense stationary if it satisfies the following conditions.

i) $E[X(t)] = \overline{X} = \text{Constant}$

ii)
$$E[X(t)X(t+\tau)] = R_{XX}(\tau)$$
, a function of τ only

A process is said to be strict sense stationary of it is stationary if all its finite dimensional distributions are invariant under translation of time parameter. i.e.,

 $f_X(x_1, x_2, ..., x_n; t_1, t_2, ..., t_n) = f_X(x_1, x_2, ..., x_n; t_1 + \Delta, t_2 + \Delta, ..., t_n + \Delta)$ for all $t_1, t_2, ..., t_n$ and any real number Δ .

Problem 2 Find the invariant probabilities for the Markov chain $\{X_n : n \ge 1\}$ with state space

$$\{0,1\}$$
 and one step tpm $P = \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$

Solution:

$$\pi P = \pi \ is \left[\pi_{0}, \pi_{1}\right] \left[\begin{array}{c} 0 & 1 \\ 1 & 1 \\ 2 & 2 \end{array} \right] = \left[\pi_{0}, \pi_{1}\right] with \pi_{0} + \pi_{1} = 1$$
$$=> \frac{1}{2}\pi_{1} = \pi_{0} \ and \ \pi_{0} + \frac{1}{2}\pi_{1} = \pi_{1}.$$
$$=> 2\pi_{0} = \pi_{1} \ and \ 2\pi_{0} = 1 - \pi_{0} => 3\pi_{0} = 1 => \pi_{0} = \frac{1}{3} \therefore \pi_{1} = \frac{2}{3}$$

Problem 3 What is a Markov process? **Solution:**

If for
$$t_1 < t_2 < t_3 < \dots < t_n < t$$
, $P[X(t) \le x / X(t_1) = x_1, X(t_2) = x_2 \dots X(t_n) = x_n]$
= $P[X(t) \le x / X(t_n) = x_n]$,

then the process $\{X(t)\}$ is called a Markov Process.

Problem 4 Define irreducible Markov chain. **Solution:**

If in the tprn, $P_{ij}^{(n)} > 0$ for some n and for all i and j, then every state can be reached from every other state. When this condition is satisfied, the Markov chain is said to be irreducible.

Problem 5 State four properties of a Poisson process. **Solution:**

- i) Poisson process is a Markov process.
- ii) Sum of two independent Poisson processes is a Poisson process.
- iii) The difference of two independent Poisson processes is not a Poisson process.
- iv) The inter-arrival time of a Poisson process with parameter λ has a exponential
 - distribution with mean $\frac{1}{\lambda}$.

Problem 6 Consider the random process $X(t) = \cos(\omega_0 t + \theta)$ where θ is uniformly distributed in the interval $-\pi$ to π . Check whether {X (t)} is stationary or not?

Solution:

Since θ is uniformly distributed in $(-\pi,\pi)f(\theta) = \frac{1}{2\pi} - \pi < 0 < \pi$

$$E[X(t)] = E[Cos(\omega_0 t + \theta)] = \int_{-\pi}^{\pi} Cos(\omega_0 t + \theta) \cdot \frac{1}{2\pi} d\theta$$
$$= \frac{1}{2\pi} [-Sin(\omega_0 t + \theta)]_{-\pi}^{\pi}$$
$$= \frac{-1}{2\pi} [Sin(\pi + \omega_0 t) - Sin(\omega_0 t - \pi)]$$
$$= \frac{-1}{2\pi} [Sin(\omega_0 t) + Sin(\pi - \omega_0 t)]$$
$$= \frac{-1}{2\pi} [2.Sin(\omega_0 t)] = -\frac{Sin\omega_0 t}{\pi}$$

which is a function of t. Therefore $\{X(t)\}$ is not a stationary process.

Problem 7 Prove that a first order stationary process has a constant mean. **Solution:**

Consider a random process $\{X(t)\}$ at two different instants t_1 and t_2 .

$$E\left[X\left(t_{1}\right)\right] = \int_{-\infty}^{\infty} x f_{x}\left(x,t_{1}\right) dx$$

$$E\left[X\left(t_{2}\right)\right] = \int_{-\infty}^{\infty} x f_{x}\left(x,t_{2}\right) dx$$

$$t_{2} = t_{1} + C$$

$$E\left[X\left(t_{2}\right)\right] = \int_{-\infty}^{\infty} x f_{x}\left(x,t_{1}+C\right) dx = \int_{-\infty}^{\infty} x f_{x}\left(x,t_{1}\right) dx \quad (X(t) \text{ is first order stationary })$$

$$= E \left[X \left(t_1 \right) \right]$$

$$\therefore E \left[X \left(t_1 \right) \right] = E \left[X \left(t_2 \right) \right] \quad \therefore E \left[X \left(t \right) \right] \text{ is a constant.}$$

Problem 8 If patients arrive at a clinic according to poisson process with mean rate of 2 per minutes, find the probabilities that during a 1-minute interval, no patient arrives. **Solution:**

Mean arrival rate = $\lambda = 2/\min$.

P[no patient arrives during a 1-minute interval]

$$= P[X(t) = 0] = \frac{e^{-\lambda t} (\lambda t)^{0}}{0!} = e^{-2} = 0.135$$

Problem 9 Define Poisson random process. Is it a stationary process? Justify the answer. **Solution:**

If X(t) represents the number of occurrences of a certain event in (0,t), then the discrete random process $\{X(t)\}$ is called the Poisson process, provided the following postulates are satisfied.

- i) P[1 occurrence in $(t, t + \Delta t)$] = $\lambda \Delta t + 0(\Delta t)$
- ii) P[0 occurrence in $(t, t + \Delta t)$] = 1 $\lambda \Delta t$ + 0(Δt)
- iii) P[2 or more occurrences in $(t, t + \Delta t)$] = 0(Δt)
- iv) X(t) is independent of the number of occurrences of the event in any interval prior and after the interval (0,t).

v) The probability that the event occurs a specified number of times in $(t_0, t_0 + t)$ depends only on t, but not on t_0 . Poisson process is not a stationary process, as its satisfied properties are time dependent.

Problem 10 What is meant by steady state distribution of a Markov chain?

Solution:

If a homogenous Markov chain is regular, then every sequence of state probability distributions approaches a unique fixed probability distribution called steady state distribution of Markov chain.

Problem 11 What is the super position of n independent Poisson processes with respective average rate $\lambda_1, \lambda_2, \dots, \lambda_n$?

Solution:

The super position of n independent Poisson processes with average rates $\lambda_1, \lambda_2, \dots, \lambda_n$ is another Poisson process with average rate $\lambda_1 + \lambda_2 + \dots + \lambda_n$.

Problem 12 What is a stochastic matrix? When is it said to be regular?

Solution:

If $P_{ij} \ge 0$ and $\sum_{i} P_{ij} = 1$ for all i, then the matrix (P_{ij}) is called a stochastic matrix.

A stochastic matrix is said to be a regular matrix, if all the entries of P^m (for some positive integer m) are positive.

PART –A

Problem 13 Two random processes X(t) and Y(t) are defined by $X(t) = A\cos\omega\tau + B\sin\omega\tau$ and $Y(t) = B\cos\omega\tau - A\sin\omega\tau$ show that X(t) and Y(t) are jointly wide sense stationary if A and B are uncorrelated random variables with zero means and the same variances and ω is a constant.

Solution:

Given E(A) = E(B) = 0 and V(A) = V(B) 0 $\therefore E(A^2) = E(B^2)$ A and B are uncorrelated. E(AB) = 0 $R_{YY}(t_1, t_2) = E \left[X(t_1) Y(t_2) \right]$ $= E \left[(A \cos \omega t_1 + B \sin \omega t_1) (B \cos \omega t_2 + A \sin \omega t_2) \right]$ $= E \left[AB \cos \omega t_1 \cos \omega t_2 - A^2 \cos \omega t_1 \sin \omega t_2 + B^2 \sin \omega t_1 \cos \omega t_2 - AB \sin \omega t_1 \sin \omega t_2 \right]$ $= \cos \omega t_1 \cos \omega t_2 E(AB) - \cos \omega t_1 \sin \omega t_2 E(A^2) + \sin \omega t_1 \cos \omega t_2 E(B^2) - \sin \omega t_1 \sin \omega t_2 E(AB)$ $= -E(A^{2})\left[\cos\omega t_{1}\sin\omega t_{2} - \sin\omega t_{1}\cos\omega t_{2}\right]$ $= E(A^2) \left[\sin \omega t_1 \cos \omega t_2 - \cos \omega t_1 \sin \omega t_2 \right]$ $=\sigma^{2}\sin\omega(t_{1}-t_{2}) \quad \left(E(A^{2})=E(B^{2})=\sigma^{2}say \right)$ = a function of $(t_1 - t_2)$ Now to show that individually they are WSS $X(t) = A\cos\omega t + B\sin\omega t$ $E[X(t)] = \cos \omega t E(A) + \sin \omega t E(B) = 0$ $\therefore E[X(t)]$ is a constant. $R_{XX}(t_1, t_2) = E \left[X(t_1) \cdot X(t_2) \right]$ $= E \left[\left(A \cos \omega t_1 + B \sin \omega t_2 \right) + \left(A \cos \omega t_2 + B \sin \omega t_2 \right) \right]$ $= E \left[A^2 \cos \omega t_1 + \cos \omega t_2 + AB \cos \omega t_1 \sin \omega t_2 + BA \sin \omega t_1 \cos \omega t_2 + B^2 \sin \omega t_1 \sin \omega t_2 \right]$ $= \cos \omega t_1 \cos \omega t_2 E(A^2) + E(AB)(\cos \omega t_1 \sin \omega t_2 + \sin \omega t_1 \cos \omega t_2) + \sin \omega t_1 \sin \omega t_2 E(B^2)$ $= E(A^{2})[\cos \omega t_{1} \cos \omega t_{2} + \sin \omega t_{1} \sin \omega t_{2}]$ $=\sigma^2 \cos \omega (t_1 - t_2)$ = a function of $(t_1 - t_2)$

Thus
$$X(t)$$
 is WSS.
Now $Y(t) = B \cos \omega \tau - A \sin \omega \tau$
 $E[Y(t)] = E[B \cos \omega t - A \sin \omega t]$
 $= \cos \omega t E(B) - \sin \omega t E(A) = 0$
 $\therefore E[Y(t)]$ is a constant.
 $R_{YY}(t_1, t_2) = E[Y(t_1)Y(t_2)]$
 $= E[(B \cos \omega t_1 - A \sin \omega t_1)(B \cos \omega t_2 - A \sin \omega t_2)]$
 $= E[B^2 \cos \omega t_1 \cos \omega t_2 + BA \cos \omega t_1 \sin \omega t_2 - AB \sin \omega t_1 \cos \omega t_2 + A^2 \sin \omega t_1 \sin \omega t_2]$
 $= \cos \omega t_1 \cos \omega t_2 E(B^2) - E(AB)(\cos \omega t_1 \sin \omega t_2 - \sin \omega t_1 \cos \omega t_2) + (\sin \omega t_1 \sin \omega t_2)E(A^2)$
 $= E(A^2)[\cos \omega t_1 \cos \omega t_2 + \sin \omega t_1 \sin \omega t_2]$
 $= \sigma^2 \cos \omega (t_1 - t_2)$
 $= a function of $(t_1 - t_2)$
 $\therefore \{Y(t)\}$ is a WSS.
Problem 14 Find the mean and auto correlation of the Poisson process
Solution:
For a Poisson process, $E[X(t)] = V[X(t)] = \lambda t$ and $E[X^2(t)] = \lambda t + \lambda^2 t^2$$

$$\begin{aligned} R_{XX}(t_{1},t_{2}) &= E\left[X(t_{1})X(t_{2})\right] \\ &= E\left[X(t_{1})\left\{X(t_{2}) - X(t_{1}) + X(t_{1})\right\}\right] \\ &= E\left\{X(t_{1})\left[X(t_{2}) - X(t_{1})\right]\right\} + E\left[X^{2}(t_{1})\right] \\ &= E\left[X(t_{1})\right]E\left[X(t_{2}) - X(t_{1})\right] + E\left[X^{2}(t_{1})\right] \\ &= \lambda t_{1}\lambda(t_{2} - t_{1}) + \lambda t_{1} + \lambda^{2}t_{1}^{2} \\ &= \lambda^{2}t_{1}t_{2} + \lambda t_{1} \\ \therefore R_{XX}(t_{1},t_{2}) &= \lambda^{2}t_{1}t_{2} + \lambda t_{1} \\ C_{XX}(t_{1},t_{2}) &= R_{XX}(t_{1},t_{2}) - E\left[X(t_{1})X(t_{2})\right] \\ &= \lambda^{2}t_{1}t_{2} + \lambda t_{1} - \lambda^{2}t_{1}t_{2} = \lambda t_{1} \\ r_{XX}(t_{1},t_{2}) &= \frac{C_{XX}(t_{1},t_{2})}{\sqrt{V\left[X(t_{1})\right]V\left[X(t_{2})\right]}} = \frac{\lambda t_{1}}{\sqrt{\lambda t_{1}\lambda t_{2}}} = \sqrt{\frac{t_{1}}{t_{2}}} \end{aligned}$$

5

Problem 15 Given a random variable Y with characteristic function $\phi(\omega) = E(e^{i\omega y})$ and a random process defined by $X(t) = \cos(\lambda t + y)$; show that $\{X(t)\}$ is stationary in the wide sense if $\phi(1) = \phi(2) = 0$.

Solution:

$$\begin{split}
\phi(1) &= 0 \Rightarrow E\left[e^{b}\right] = 0 \Rightarrow E\left[\cos y + i\sin y\right] = 0 \\
&\Rightarrow E\left(\cos y\right) = 0 \text{ and } E\left(\sin y\right) = 0 \\
&\Rightarrow E\left(\cos y\right) = 0 \text{ and } E\left(\sin 2y\right) = 0 \\
&\therefore E\left[X\left(t\right)\right] = E\left[\cos\left(\lambda t + y\right)\right] \\
&= E\left[\cos\lambda t\cos y - \sin\lambda t E\left[\sin y\right] = 0 \\
&\therefore E\left[X\left(t\right)\right] = Constant \\
&E\left[X\left(t\right)\right] = Constant \\
&E\left[X\left(t\right)\right] = E\left[\cos\left(\lambda t_{1} + y\right)\cos\left(\lambda t_{2} + y\right)\right] \\
&= E\left[\cos\lambda t_{1}\cos\lambda t_{2}\cos^{2}y - \cos\lambda t_{1}\sin\lambda t_{2}\cos y - \sin\lambda t_{2}\sin y\right]\right] \\
&= E\left[\cos\lambda t_{1}\cos\lambda t_{2}\cos^{2}y - \cos\lambda t_{1}\sin\lambda t_{2}\cos y - \sin\lambda t_{2}\sin y\right] \\
&= \cos\lambda t_{1}\cos\lambda t_{2} E\left[\cos^{2}y\right] - \left(\cos\lambda t_{1}\sin\lambda t_{2} + \sin\lambda t_{1}\cos\lambda t_{2}\right) \\
&E\left[\cos y\sin y\right] + \sin\lambda t_{1}\sin\lambda t_{2} E\left[\sin^{2}y\right] \\
&= \cos\lambda t_{1}\cos\lambda t_{2} E\left[\cos^{2}y\right] + \sin\lambda t_{1}\sin\lambda t_{2} E\left[\sin^{2}y\right] \\
&= \cos\lambda t_{1}\cos\lambda t_{2} E\left[\left(1 + \cos 2y\right)\right] \\
&= \cos\lambda t_{1}\cos\lambda t_{2} E\left[\left(1 + \cos 2y\right)\right] \\
&= \cos\lambda t_{1}\cos\lambda t_{2} E\left[\left(1 + \sin\lambda t_{1}\sin\lambda t_{2}\right)\right] \\
&= \frac{1}{2}\left[\cos\lambda t_{1}\cos\lambda t_{1} + \sin\lambda t_{1}\sin\lambda t_{2}\right] + \frac{1}{2}\cos\lambda t_{1}\cos\lambda t_{2} E\cos2 y - \frac{1}{2}\sin\lambda t_{1}\sin\lambda t_{2} E\left(\cos2 y\right) \\
&-\sin\lambda \left(t_{1} + t_{2}\right)\frac{1}{2}E\left[\sin 2y\right] \\
&= \frac{1}{2}\cos\lambda \left(t_{1} - t_{2}\right) \\
&= a \text{ function of } \left(t_{1} - t_{2}\right) \\
&= x \left[x\left(t_{1}\right) \right] = x \left[x\left(t_{1}\right)\right] = x \left[x\left(t_{1}\right)\right] \\
&= x \left[x\left(t_{1}\right] + \frac{1}{2}\cos\lambda x\right] \\
&= x \left[x\left(t_{1}\right] + \frac{1}{2}\cos\lambda x\right] \\
&= x \left[x\left(t_{1}\right] + \frac{1}{2}\cos\lambda x\right] \\
&= x \left[x\left(t_{1}\right] + \frac{1}{2}\sin\lambda x\right] \\
&= x \left[x\left(t_{1}\right] + \frac{1$$

Problem 16 If $\{X(t)\}$ is a Gaussian Process with $\mu(t) = 10$ and $C(t_1, t_2) = 16e^{-|t_1-t_2|}$, Find the probability that i) $X(10) \le 8$ ii) $|X(10) - X(6)| \le 4$.

Solution:

X(10) is a normal variant with mean $\mu(10) = 10$ and C(10,10) = 16. Therefore SD = 4.

i)
$$P[X(10) \le 8] = P\left[\frac{X(10) - 10}{4} \le \frac{8 - 10}{4}\right]$$

$$= P[Z \le -0.5] = 0.5 - P[Z \le 0.5]$$

= 0.5 - 0.1915 (from Normal tables)
= 0.3085
ii) X (10) - X (6) is a normal variant with mean $\mu(10) - \mu(6) = 10 - 10 = 0$
 $V[X(10) - X(6)] = V[X(10)] + V[X(6)] - 2Cov(X(10), X(6))$
= $C(10,10) + C(6,6) - 2C(10,6)$
= $16e^{0} + 6e^{0} - 2e^{-|4|}$
= 31.414
 \therefore SD of $[X(10) - X(6)] = 5.6048.$
 $\therefore P[|X(10) - X(6)| \le 4] = P[\frac{|X(10) - X(6) - 0|}{5.6045}| \le \frac{4}{5.6048}]$
= $P(|Z| \le 0.2611) = 2 \times 0.2611 = 0.5222$

Problem 17 A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by trains but if he drives one day, then the next day he is just as likely to drive again he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if a '6' appeared. Find i) The probability that he takes a train on the third day. ii) The probability that he drives to work in the long ran.

Solution:

Solution: i) Here train (T) and car(C) are the states. The tpm $P = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

Initial state probability distribution

$$P^{(1)} = \left| \frac{5}{6}, \frac{1}{6} \right|$$

 $P[\text{traveling by car}] = P[\text{getting } 6] = \frac{1}{6}$ $P[\text{traveling by train}] = \frac{5}{6}$

$$P^{(2)} = P^{1}P = \begin{bmatrix} 5\\6\\, \frac{1}{6} \end{bmatrix} \begin{bmatrix} 0 & 1\\1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} \frac{1}{12}, \frac{11}{12} \end{bmatrix}$$
$$P^{(3)} = P^{2}P = \begin{bmatrix} \frac{1}{12}, \frac{11}{12} \end{bmatrix} \begin{bmatrix} 0 & 1\\1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} \frac{11}{24}, \frac{13}{24} \end{bmatrix}$$

Probability that the man travels by train on $3^{rd} day = \frac{11}{24}$

ii) Let $\pi = (\pi_1, \pi_2)$ be the stationary state distribution of the Markov chain. By property of $\pi P = \pi$

$$(\pi_1, \pi_2) \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = (\pi_1, \pi_2)$$

$$\frac{1}{2} \pi_2 = \pi_1 \text{ and } \pi_1 + \frac{1}{2} \pi_2 = \pi_2$$

$$2\pi_1 = \pi_2$$

Also $\pi_1 + \pi_2 = 1$ (Since π is the probability distribution)

$$\therefore \pi_1 + 2\pi_1 = 1 \Longrightarrow \pi_1 = \frac{1}{3} \therefore \pi_2 = \frac{2}{3}$$

 \therefore Probability that he travels by car in the long run= $\frac{2}{3}$.

Problem 18 Prove that the difference of two independent Poisson processes is not a Poisson process. 50

Solution:

Let
$$X(t) = X_1(t) - X_2(t)$$

 $E[X(t)] = E[X_1(t)] - E[X_2(t)] = (\lambda_1 - \lambda_2)t$
 $= E[X^2(t)] = E\{[X_1(t) - X_2(t)]^2\}$
 $= E[X_1^2(t)] + E[X_2^2(t)] - 2E[X_1(t)X_2(t)]$
 $= E[X_1^2(t)] + E[X_2^2(t)] - 2E[X_1(t)]E[X_2(t)]$
 $= (\lambda_1^2 t^2 + \lambda_1 t) + (\lambda_2^2 t^2 + \lambda_2 t) - 2(\lambda_1 t)(\lambda_2 t)$
 $= (\lambda_1 + \lambda_2)t + (\lambda_1^2 + \lambda_2^2)t^2 - 2\lambda_1\lambda_2 t^2$
 $= (\lambda_1 + \lambda_2)t + (\lambda_1 - \lambda_2)^2 t^2$
 $\neq (\lambda_1 - \lambda_2)t + (\lambda_1 - \lambda_2)^2 t^2$
 $\therefore X_1(t) - X_2(t)$ is not a Poisson process.

Problem 19 Show that the random process $X(t) = A\cos(\omega t + \theta)$ is wide sense stationary if A and ω are constant and θ is uniformly distributed random variable $(0, 2\pi)$ Solution:

Since θ is uniformly distributed in $(0, 2\pi)$ p.d.f. $f(\theta) = \frac{1}{2\pi} (0 \le 0 \le 2\pi)$ $X(t) = A\cos(\omega t + \theta)$

$$E[X(t)] = \int_{0}^{2\pi} \frac{1}{2\pi} A\cos(\omega t + \theta) d\theta = \frac{A}{2\pi} [\sin(\omega t + \theta)]_{0}^{\pi}$$
$$= \frac{A}{2\pi} [\sin(\omega t + 2\pi) - \sin(\omega t)]$$
$$= \frac{A}{2\pi} [\sin\omega t - \sin\omega t] = 0$$

$$R(t_{1},t_{2}) = E\left[X(t_{1})X(t_{2})\right]$$

$$= E\left[A\cos(\omega t_{1}+\theta).A\cos(\omega t_{2}+\theta)\right]$$

$$= E\left[A^{2}\cos(\omega t_{1}+\theta)\cos(\omega t_{2}+\theta)\right]$$

$$= \frac{A^{2}}{2}E\left[\cos\omega(t_{1}+t_{2})+2\theta+\cos\omega(t_{1}-t_{2})\right]$$

$$= \frac{A^{2}}{2}\int_{0}^{2\pi} \frac{1}{2\pi}\left[\cos\omega(t_{1}+t_{2})+2\theta\right] + \cos\left[\omega(t_{1}-t_{2})\right]d\theta$$

$$= \frac{A^{2}}{2}\left\{\left[\sin\left(\omega(t_{1}+t_{2})+2\theta\right)\right]_{0}^{2\pi} + \cos\omega(t_{1}-t_{2})\left[0\right]_{0}^{\nu}\right\}$$

$$= \frac{A^{2}}{4\pi}\left\{\sin\left(\omega(t_{1}+t_{2})+4\pi\right) - \sin\left(\omega(t_{1}+t_{2})\right) + \left(\cos\omega(t_{1}+t_{2})\right)\right\}2\pi$$

$$= \frac{A^{2}}{4\pi}\left[\sin\omega(t_{1}+t_{2}) - \sin\omega(t_{1}+t_{2}) - 2\pi\cos\omega(t_{1}-t_{2})\right]$$

$$= \frac{A^{2}}{4\pi}.2\pi\cos\omega(t_{1}-t_{2}) = \frac{A^{2}}{2}\cos\omega(t_{1}-t_{2})$$

$$= a \text{ function of } t_{1}-t_{2}$$

$$\therefore \text{ The process } X(t) \text{ is W.S.S.}$$

Problem 20 Given a random process $X(t) = 10\cos(100t + \theta)$ where θ is uniformly distributed over $(-\pi, \pi)$, prove that the process $\{X(t)\}$ is correlation ergodic. Solution:

The p.d.f of
$$\theta$$
 is $f(\theta) = \frac{1}{2\pi}in(-\pi,\pi)$
 $R_{XX}(\tau) = E[X(t)X(t+\tau)]$
 $= E[10\cos(100t+\theta).10\cos(100(t+\tau)+\theta)]$
 $= \frac{100}{2}E[\cos(200t+100\tau+2\theta)+\cos 100\tau]$
 $NowE[\cos(200t+100\tau+2\theta)] = \frac{1}{2\pi}\int_{-\pi}^{\pi}\cos(200t+100\tau+2\theta)d\theta$
 $= \frac{1}{2\pi}\left[\frac{\sin(200t+100\tau+2\theta)}{2}\right]_{-\pi}^{\pi}$
 $= \frac{1}{4\pi}[(\sin 200t+100\tau+2\pi)-\sin(200t+100\tau-2\pi)]$
 $= 0$
 $E[\cos(100\tau)] = \cos 100\tau$
 $R_{XX}(\tau) = 50\cos 100\tau$

Ensemble correlation

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t+\tau) X(t) dt$$

$$= \lim_{T \to \infty} \left\{ \frac{1}{2T} \int_{-T}^{T} \left[50 \cos 100\tau + 50 \cos \left(200t + 100\tau + 2\theta \right) \right] dt \right\}$$

$$= \lim_{T \to \infty} \left\{ 50 \cos 100\tau + \frac{25}{T} \int_{-T}^{T} \cos \left(200t + 100\tau + 2\theta \right) dt \right\}$$

$$= \lim_{T \to \infty} \left\{ 50 \cos 100\tau + \frac{25}{T} \left[\sin \left(\frac{200t + 100\tau + 2\theta}{200} \right) \right]_{-T}^{T} \right\}$$

$$= \lim_{T \to \infty} \left\{ 50 \cos 100\tau + \frac{25}{T} \times \frac{1}{200} \left[\sin \left(200T + 100\tau + 2\theta \right) - \sin \left(-200T + 100\tau + 2\theta \right) \right] \right\}$$

$$= 50 \cos 100\tau + 0$$

$$= R_{XX}(\tau)$$

A process $\{X(t)\}$ is said to be ergodic in correlation if

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t+\tau) X(t) dt = R_{XX}(\tau)$$

Hence the given process is correlation ergodic

Problem 21 Define a random process (stochastic process). Explain the classification of random processes. Give an example to each class.

Solution:

A stochastic process is a family of random variable $\{X(s,t) | s \in S, t \in T\}$, where S is called the state space and T is called the index set/space.

Type I

Discrete S and discrete T

Eg: X(t) is the number of defective items found at trials t = 1, 2, 3, ... (Discrete random sequence)

Type II

Discrete S and continuous T

Eg : X(t) is the number of telephone calls received during the interval $(0,t), t \ge 0$ (Discrete random process)

Type-III

Continuous S and discrete T

Eg: X(t) is the amount of rainfall measured at time t = 1, 2, 3.... (Continuous random sequence)

Type IV

Continuous S and discrete T

Eg : X(t) is the amount of rainfall measured at time $t, t \ge 0$ (Continuous random process)

Problem 22 If the process $\{N(t): t \ge 0\}$ is a Poisson process with parameter λ , obtain P[N(t) = n] and E[N(t)]

Solution:

Let λ be the number of occurrences of the event in unit time.

Let $P_n(t)$ represent the probability of *n* occurrences of the event in the interval (0,t). i.e., $P_n(t) = P\{N(t) = n\}$ $\therefore P_n(t + \Delta t) = P\{N(t + \Delta t) = n\}$ = $P\{n \text{ occurences in the time } (0,t+\Delta t)\}$ (n occurences in the interval (0,t) and no occurences in $(t,t+\Delta t)$ or $= P \left\{ n - 1 \text{ occurences in the interval } (0,t) \text{ and } 1 \text{ occurences in } (t,t + \Delta t) \text{ or } \right\}$ n-2 occurences in the interval (0,t) and 2 occurences in $(t,t+\Delta t)$ or... $= P_n(t)(1-\lambda\Delta t) + P_{n-1}(t)\lambda\Delta t + 0 + \dots$ $\therefore \frac{P_n(t+\Delta t)-P_n(t)}{\Delta t}=\lambda\left\{P_{n-1}(t)-P_n(t)\right\}$ Taking the limits as $\Delta t \rightarrow 0$ This is a linear differential equation. $\therefore P_n(t)e^{\lambda t} = \int_0^t \lambda P_{n-1}(t)e^{\lambda t} - \dots (2)$ Now taking n = 1 we get $e^{\lambda t}P_1(t) = \lambda \int_0^t P_0(t)e^{\lambda t}dt$ (3) Now, we have, $P_0(t + \Delta t) = P[0 \text{ occurences in } (0, t + \Delta t)]$ $= P[0 \text{ occurences in } (0,t) \text{ and } 0 \text{ occurences in } (t,t+\Delta t)]$ $= P_0(t)[1-\lambda t]$ $P_0(t+\Delta t) - P_0(t) = -P_0(t)(\lambda \Delta t)$ $\frac{P_0(t+\Delta t)-P_0(t)}{\Delta t}=-\lambda P_0(t)$ $\therefore \text{ Taking limit } \Delta t \to 0$ $Lt \quad \frac{P_0(t + \Delta t) - P_0(t)}{\Delta t \to 0} = -\lambda P_0(t)$ $\frac{dP_0(t)}{dt} = -\lambda P_0(t)$

$$\frac{dP_0(t)}{P_0(t)} = -\lambda dt$$

$$\log P_0(t) = -\lambda t + c$$

$$P_0(t) = e^{-\lambda t + c}$$

$$P_0(t) = e^{-\lambda t + c}$$

$$P_0(t) = e^{-\lambda t} A^{--------}(4)$$
Putting $t = 0$ we get
$$P_0(0) = e^0 A = A$$
i.e., $A = 1$

$$\therefore (4)$$
 we have
$$P_0(t) = e^{-\lambda t}$$

$$\therefore \text{ substituting in (3) we get}$$

$$e^{\lambda t} P_1(t) = \lambda \int_0^t e^{-\lambda t} e^{\lambda t} dt = \lambda \int_0^t dt = \lambda t$$

$$P_1(t) = e^{-\lambda t} \lambda t$$
Similarly $n = 2$ in (2) we have,
$$P_2(t) e^{\lambda t} = \lambda \int_0^t P_1(t) e^{\lambda t} dt = \lambda \int_0^t e^{-\lambda t} \lambda t e^{\lambda t} dt = \lambda^2 \left(\frac{t^2}{2}\right)$$

$$P_2(t) e^{\lambda t} = \frac{e^{-\lambda t} (\lambda t)^2}{2!}$$
Proceeding similarly we have in general
$$P_n(t) = P\{N(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, n = 0, 1, ...$$

Thus the probability distribution of N(t) is the Poisson distribution with parameter λt .

Mean =
$$E[N(t)] = \sum n e^{-\lambda t} \frac{(\lambda t)^n}{n!} = (\lambda t) e^{-\lambda t} \sum \frac{(\lambda t)^{n-1}}{(n-1)!}$$

= $(\lambda t) e^{-\lambda t} \cdot e^{\lambda t} = \lambda t$

Problem 23 Let $X(t) = A\cos(\lambda t) + B\sin(\lambda t)$ where A and B are independent normally distributed random variables $N(0,\sigma^2)$. Obtain the covariance function of $\{X(t); -\infty < t < \infty\}$. Solution:

$$\overline{E[X(t)]} = \cos \lambda t E(A) + \sin \lambda t E(B) = 0$$

$$R_{XX}(t_1, t_2) = E[X(t_1) X(t_2)]$$

$$= E[A(\cos \lambda t_1 + B \sin \lambda t_1)(A \cos \lambda t_2 + B \sin \lambda t_2)]$$

$$= E[A^2 \cos \lambda t_1 \cos \lambda t_2 + B^2 \sin \lambda t_1 \sin \lambda t_1 + B^2 \sin \lambda t_1 \sin \lambda t_1 + B^2 \sin \lambda$$

www.csetube.in

$$AB \sin \lambda t_1 \cos \lambda t_2 + AB \sin \lambda t_1 \cos \lambda t_2]$$

= $E[A^2 \cos \lambda t_1 \cos \lambda t_2 + B^2 \sin \lambda t_1 \sin \lambda t_2]$ $E(AB) = E(A)E(B) = 0$
= $E(A^2) \cos \lambda (t_1 - t_2)$
= $\sigma^2 \cos \lambda (t_1 - t_2)$

Problem 24 The auto correlation function for a stationary process X(t) is given by $R_{XX}(T) = 9 + 2e^{-|T|}$. Find the mean value of the R.V. $y = \int_{0}^{2} X(t) dt$ and variance of X(t).

Solution:

$$E[X(t)] = \lim_{T \to \infty} \sqrt{9 + 2e^{|T|}} = 3$$

$$E[X^{2}(t)] = R_{XX}(0) = 11.$$

$$E[Y(t)] = \int_{0}^{2} E[X(t)]dt = \int_{0}^{2} 3dt = 3(t)_{0}^{2} = 6$$

$$V[X(t)] = E[X^{2}(t)] - \{E[X(t)]\}^{2} = 11 - 9 = 2$$

Problem 25 If $\{X(t)\}$ is a WSS process with auto correlation function $R_{XX}(\tau)$ and if y(t) = X(t+a) - X(t-a). Show that $R_{YY}(\tau) = 2 R_{XX}(\tau) - R_{XX}(\tau+2a) - R_{XX}(\tau-2a)$ Solution:

$$\begin{aligned} R_{YY}(\tau) &= E \Big[y(t) y(t+\tau) \Big] \\ &= E \Big[\Big(X (t+a) - X (t-a) \Big) \Big(X (t+a+\tau) - X (t+\tau-a) \Big) \Big] \\ &= E \Big[X (t+a) X (t+\tau+a) \Big] - E \Big[X (t+a) X (t+\tau-a) \Big] \\ - E \Big[X (t-a) X (t+\tau+a) \Big] + E \Big[X (t-a) X (t+\tau-a) \Big] \\ R_{XX}(\tau) - E \Big[X (t+a) X (t+a+\tau-2a) \Big] - E \Big[X (t-a) X (t-a+\tau+2a) \Big] + R_{XX}(\tau) \\ &= 2R_{XX}(\tau) - R_{XX}(\tau-2a) - R_{XX}(\tau+2a) \end{aligned}$$

Problem 26 Consider two random processes $X(t) = 3\cos(\omega t + \vartheta)$ and $Y(t) = 2\cos(\omega t + \vartheta - \frac{\pi}{2})$ where θ is a random variable uniformly distribution in $(0, 2\pi)$. Prove that $\sqrt{R_{XX}(0)R_{YY}(0)} \ge |R_{XY}(\tau)|$.

Solution:

$$R_{XX}(\tau) = E\left[X(t)X(t+\tau)\right]$$
$$= E\left[9\cos(\omega t+\theta)\cos(\omega(t+\tau)\theta)\right]$$
$$= 9E\left[\cos(\omega t+\theta)\cos(\omega t+\omega\tau+\theta)\right]$$

13

www.csetube.in

$$=9E\left[\frac{\cos(2\omega t + \omega t + 2\theta) + \cos \omega \tau}{2}\right]$$

$$=\frac{9}{2}\int_{0}^{2\pi}\cos\left(\frac{(2\omega t + \omega t + 2\theta) + \cos \omega \tau}{2}\right)\frac{d\theta}{2\pi}$$

$$=\frac{9}{2}\cdot\frac{1}{2\pi}\left[\frac{\sin(2\omega t + \omega \tau + 2\theta)}{2}\right]_{0}^{2\pi} + \cos \omega \tau \frac{1}{2\pi}(\theta)_{0}^{2\pi}$$

$$=\frac{9}{2}\cos \omega \tau$$

$$\therefore R_{XX}(0) = \frac{9}{2}$$

$$R_{YY}(\tau) = E\left[2\cos\left(\omega t + \theta - \frac{\pi}{2}\right)2\cos\left(\omega(t + \tau) + \theta - \frac{\pi}{2}\right)\right]$$

$$=4E\left[\sin(\omega t + \theta)\sin(\omega t + \omega \tau + \theta)\right]$$

$$=\frac{4}{2}E\left[\cos((\omega t + \theta) - (\omega t + \omega \tau + \theta)) - \cos((\omega t + \theta) - (\omega t + \omega \tau + \theta))\right]$$

$$=2\cos \omega \tau - \int_{0}^{2\pi}\cos(2\omega t + \omega \tau + 2\theta) \cdot \frac{1}{2\pi}d\theta$$

$$=2\cos \omega \tau$$

$$\therefore R_{YY}(\tau) = E\left[3\cos((\omega t + \mu)2\cos\left(\omega(t + \tau)\theta - \frac{\pi}{2}\right)\right]$$

$$=E\left[6\cos((\omega \tau + \mu)\sin((\omega t + \omega \tau + \mu))\right]$$

$$=3E\left[\sin((\omega t + \mu + \omega t + \omega \tau + \mu) - \sin((\omega t + \mu)) + (\omega t + \omega \tau + \mu)\right]$$

$$=3E\left[\sin((\omega t + \mu + \omega t + \omega \tau + \mu) - \sin((\omega t + \mu)) + (\omega t + \omega \tau + \mu)\right]$$

$$=3E\left[\sin((2\omega t + 2\mu + \omega \tau) + \sin\omega \tau\right]$$

$$=3\int_{0}^{2\pi}\sin(2\omega t + 2\mu + \omega \tau) \cdot \frac{1}{2\pi}d\theta + 3\int_{0}^{2\pi}\sin(\omega t \theta)$$

$$=0 + 3\sin \omega \tau$$

$$R_{XY}(\tau) = 3\sin \omega \tau$$

$$R_{XX}(0) = \frac{9}{2}$$

$$R_{YY}(\tau) = |3\sin \omega \tau| \le 3 = \sqrt{9} = \sqrt{R_{XX}(0) = R_{YY}(0)}$$

www.csetube.in

Problem 27 Define Markov chain and explain how you would classify the states and identify different classes of a Markov chain. Given an example to each class **Solution:**

The sequence $\{X_n\}$ is a Markov chain if each X_n is a r.v. and if

$$P[X_{n+1} = a_{n+1} / X_n = a_n, X_{n-1} = a_{n-1}, \dots X_0 = a_0]$$

= $P[X_{n+1} = a_{n+1} / X_n = a_n]$

Let $P = (P_{ii})$ be the one-step transition probability matrix.

The state i is recurrent iff $\sum_{n=0}^{\infty} P_{ii}^{n} = \infty$ The state i is transient iff $\sum_{n=0}^{\infty} P_{ii}^{n} < \infty$ Example: Consider the p.t.m $P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 4 \end{bmatrix}$ State '0' is recurrent since $P_{00} = 1$ and $\sum_{n=0}^{\infty} 1^{n} = \infty$.

State 1 and 2 are transcent since $\sum_{n=0}^{\infty} P_{11}^n = \sum_{n=0}^{\infty} (1/4)^n$ and $\sum_{n=0}^{\infty} P_{22}^n = \sum_{n=0}^{\infty} (1/4)^n$ are $<\infty$

 $\therefore \{0\}$ is the recurrent class and $\{1,2\}$ is the transient class.

Problem 28 State the postulates of a Poisson process. State its properties and establish the additive property for the Poisson process.

Solution:

If X(t) represents the number of occurrences of a certain event its (o,t), then the discrete random process $\{X(t)\}$ is called the Poisson process provided the following postulates are satisfied.

- i) P[1 Occurrence in $(t, t + \Delta t)$] = $\lambda \Delta t + 0(\Delta t)$
- ii) P[0 Occurrence in $(t, t + \Delta t)$] = 1 $\lambda \Delta t + 0(\Delta t)$
- iii) P[2 Or more Occurrence in $(t, t + \Delta t)$] = 0(Δt)
- iv) X(t) is independent of the number of occurrences of the event in any interval prior and after the interval (0,t).
- v) The probability that the event occurs a specified number of limit in $(t_0 + t_0 + t)$ depends only on t, but not on t_0 .

Properties of Poisson process:

- 1. Poisson process is a Markov Process
- 2. Sum of two independent Poisson processes is a Poison process.
- 3. Difference of two independent Poisson processes is not a Poisson process.
- 4. The inter-arrival time, i.e., the interval between two successive occurrence of a

Poisson process with parameter λ has an exponential distribution with mean $\frac{1}{\lambda}$

5. If the number of occurrences of an event E in an interval of length t is a Poisson process $\{X(t)\}$ with parameter λ and if each occurrence of E has a content probability p of being recorded and the recordings are independent of each other, then the number N(t) of the recorded occurrences in t is also a Poisson process with parameter λ P.

Additive property of Poisson process

Let $X(t) = X_1(t) + X_2(t)$ where $\{X_1(t)\}$ and $\{X_2(t)\}$ and independent Poisson processes.

$$P[X(t) = n] = \sum_{r=0}^{n} P[X_{1}(t) = r] P[X_{2}(t) = n - r]$$

= $\sum_{r=0}^{n} \frac{e^{-\lambda_{1}t} (\lambda_{1}t)^{r}}{r!} \frac{e^{-\lambda_{2}t} (\lambda_{2}t)^{n-r}}{(n-r)!}$
= $e^{-(\lambda_{1}+\lambda_{2})t} \frac{1}{n!} \sum_{r=0}^{n} nC_{r} (\lambda_{1}t)^{r} (\lambda_{2}t)^{n-r}$
= $\frac{1}{n!} e^{-(\lambda_{1}+\lambda_{2})t} (\lambda_{1}t + \lambda_{2}t)^{n} = \frac{1}{n!} e^{-(\lambda_{1}+\lambda_{2})t} ((\lambda_{1}+\lambda_{2})t)^{n}$

 $\therefore X_1(t) + X_2(t)$ is a Poisson process with parameter $(\lambda_1 + \lambda_2)t$

Problem 29 Let X be the random variable which gives the intervals between two successive occurrences of a Poisson process with parameter λ . Find out the distribution of X.

Solution:

Let E_i and E_{i+1} be two consecutive occurrences. Let E_i takes place at time instant t_i . X is a continuous r.v.

 $P[X > t] = P[E_i + 1 \text{ did not occur in } (t_i, t_i + t)]$ = P[No event in an interval of length t] = $e^{-\lambda t} \left(\therefore P[X = 0] = \frac{e^{-\lambda t} (\lambda t)^0}{0!} \right)$ The c.d.f of X is

 $F(t) = P[X \le t] = 1 - e^{-\lambda t}.$ $\therefore f(t) = \lambda e^{-\lambda t}; t \ge 0 \quad \text{, which is an exponential distribution with parameter } \lambda.$

Problem 30 Draw the state diagram of a birth-death process. Write down the balance equations and obtain expressions for the steady-state probabilities.

Unit 3. Markov Processes and Markov Chains

Solution:

$$\lambda_{\kappa} \rho_{\kappa} - \mu_{\kappa+1} = \lambda_{\kappa-1} \rho_{\kappa-1} - \lambda_{\kappa} \rho_{\kappa}, R \ge 1, \text{ or } -(\lambda_{\kappa} + \mu_{\kappa}) \rho_{\kappa} + \lambda_{\kappa-1} \rho_{\kappa-1} + \mu_{\kappa+1} \rho_{\kappa+1} = 0, K \ge 1$$

$$\lambda_{0} P_{0} = \mu_{1} P_{1}$$

$$P_{1} = \frac{\lambda_{0}}{\mu_{1}} P_{0}$$

$$K = 1$$

$$-(\lambda_{1} + \mu_{1}) P_{0} + \lambda_{0} \lambda_{0} + \mu P_{2} = 0$$

$$P_{2} = \frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0}$$
Similarly
$$P_{\kappa} = \frac{\lambda_{0} \lambda_{1} \dots \lambda_{\kappa-1}}{\mu_{1} \mu_{2} \dots \mu_{\kappa}} P_{0} = \frac{K - 1}{11} \left(\frac{\lambda_{i}}{\mu_{i+1}} \right) P_{0}$$
Since $\sum_{\kappa=0}^{\infty} P_{\kappa-1}, P_{0} = \frac{1}{1 + \sum_{\kappa=1}^{\infty} \frac{\pi^{\kappa-1}}{\kappa} \frac{\lambda_{i}}{\mu_{i+1}}}$
Problem 31 Find the nature of the states of the Markov chain with the TPM $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{pmatrix}$

and the state space (1, 2, 3). Solution:

$$P^{2} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

$$P^{3} = P^{2} \cdot P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix} = P$$
$$P^{4} = P^{2} \cdot P^{2} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} = P^{2}$$
$$\therefore P^{2n} = P^{2} \quad \& P^{2n+1} = P$$
Also $P_{00}^{2} > 0, P_{01}^{1} > 0, P_{02}^{2} > 0$
$$P_{10}^{1} > 0, P_{11}^{2} > 0, P_{12}^{1} > 0$$
$$P_{20}^{2} > 0, P_{21}^{1} > 0, P_{22}^{2} > 0$$
$$\Rightarrow \text{ The Markov shain is implicit.}$$

 \Rightarrow The Markov chain is irreducible

Also
$$P_{ii}^2 = P_{ii}^4 = ... > 0$$
 for all

 \Rightarrow The states of the chain have period 2. Since the chain is finite irreducible, all states are non null persistent. All states are not ergodic.

Problem 32 The one-step T.P.M of a Markov chain $\{X_n; n = 0, 1, 2, ...\}$ having state space $S = \{1, 2, 3\}$ is $P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ and the initial distribution is $\pi_0 = (0.7, 0.2, 0.1)$. Find (i) $P(X_2 = 3/X_0 = 1)$ (ii) $P(X_2 = 3)$ (iii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 1)$. Solution: (i) $P(X_2 = 3/X_0 = 1) = P(X_2 = 3/X_1 = 3)P(X_1 = 3/X_0 = 1) + P(X_3 = 3/X_1 = 2)P(X_1 = 2/X_0 = 1) + P(X_2 = 3/X_1 = 1)P(X_1 = 1/X_0 = 1)$ = (0.3)(0.4) + (0.2)(0.5) + (0.4)(0.1) = 0.26 $P^2 = P.P = \begin{cases} 0.43 & 0.31 & 0.26 \\ 0.24 & 0.42 & 0.34 \\ 0.36 & 0.35 & 0.29 \end{cases}$ (ii). $P(X_2 = 3) = \sum_{i=1}^{3} P(X_2 = 3/X_0 = i)P(X_0 = i)$ $= P(X_2 = 3/X_0 = 1)P(X_0 = 1) + P(X_2 = 3/X_0 = 2)P(X_0 = 2) + P(X_2 = 3/X_0 = 3)P(X_0 = 3)$ $= P_{13}^2P(X_0 = 1) + P_{23}^2P(X_0 = 2) + P_{33}^2P(X_0 = 3) = 0.26 \times 0.7 + 0.34 \times 0.2 + 0.29 \times 0.1 = 0.279$

www.csetube.in

(iii).
$$P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 1)$$

 $= P[X_0 = 1, X_1 = 3, X_2 = 3]P[X_3 = 2/X_0 = 1, X_1 = 3, X_2 = 3]$
 $= P[X_0 = 1, X_1 = 3, X_2 = 3]P[X_3 = 2/X_2 = 3]$
 $= P[X_0 = 1, X_1 = 3]P[X_2 = 3/X_0 = 1, X_1 = 3]P[X_3 = 2/X_2 = 3]$
 $= P[X_0 = 1, X_1 = 3]P[X_2 = 3/X_1 = 3]P[X_3 = 2/X_2 = 3]$
 $= P[X_0 = 1]P[X_1 = 3/X_0 = 1]P[X_2 = 3/X_1 = 3]P[X_3 = 2/X_2 = 3]$
 $= (0.4)(0.3)(0.4)(0.7) = 0.0336$

Problem 33 Let $\{X_n; n = 1, 2, 3, \dots\}$ be a Markov chain with state space $S = \{0, 1, 2\}$ and 1 - step

Transition probability matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix}$ (i) Is the chain ergodic? Explain (ii) Find the invariant probabilities.

invariant probabilities. Solution:

$$P^{2} = P.P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$
$$P^{3} = P^{2}P = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 \end{pmatrix} = \begin{bmatrix} \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{3}{16} & \frac{5}{8} & \frac{3}{16} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \end{bmatrix}$$
$$P^{(3)} \geq 0, P^{(2)} \geq 0, P^{(2)} \geq 0, P^{(2)} \geq 0, P^{(2)} \geq 0, \text{ and ell other } P^{(2)} = 0$$

 $P_{11}^{(3)} > 0, P_{13}^{(2)} > 0, P_{21}^{(2)} > 0, P_{22}^{(2)} > 0, P_{33}^{(2)} > 0$ and all other $P_{ij}^{(1)} > 0$

Therefore the chain is irreducible as the states are periodic with period 1 i.e., aperiodic since the chain is finite and irreducible, all are non null persistent \therefore The states are ergodic.

$$\begin{bmatrix} \pi_0 & \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \pi_0 & \pi_1 & \pi_2 \end{bmatrix}$$
$$\frac{\pi_1}{4} = \pi_0 - \dots - \dots - \dots - \dots - (1)$$
$$\pi_0 + \frac{\pi_1}{2} + \pi_2 = \pi_1 - \dots - \dots - \dots - (2)$$

19

www.csetube.in

 $\frac{\pi_{1}}{4} = \pi_{2} - \dots - \dots - (3)$ $\pi_{0} + \pi_{1} + \pi_{2} = 1 - \dots - \dots - (4)$ From (2) $\pi_{0} + \pi_{2} = \pi_{1} - \frac{\pi_{1}}{2} = \frac{\pi_{1}}{2}$ $\therefore \pi_{0} + \pi_{1} + \pi_{2} = 1$ $\frac{\pi_{1}}{2} + \pi_{1} = 1$ $\frac{3\pi_{1}}{2} = 1$ $\pi_{1} = \frac{2}{3}$ From (3) $\frac{\pi_{1}}{4} = \pi_{2}$ $\pi_{2} = \frac{1}{6}$ Using (4) $\pi_{0} + \frac{2}{3} + \frac{1}{6} = 1$ $\pi_{0} + \frac{4 + 1}{6} = 1$ $\pi_{0} + \frac{5}{6} = 1 \Rightarrow \pi_{0} = \frac{1}{6}$ $\therefore \pi_{0} = \frac{1}{6}, \pi_{1} = \frac{2}{3} & \pi_{2} = \frac{1}{6}.$

Problem 34 Define autocorrelation function and state its properties. Given that the autocorrelation function for a stationary process $\{X(t)\}$, $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$. Find the mean and variance of the process $\{X(t)\}$.

Solution:

Let $\{X(t)\}$ be a random process. Then the auto correlation function of the process $\{X(t)\}$ is the expected value of the product of any two members $X(t_1)$ and $X(t_2)$ of the process and is given by $R_{XX}(t_1,t_2) = E[X(t_1)X(t_2)]$ or $R_{XX}(t,t+\tau) = E[X(t)X(t+\tau)]$ Properties:

- (i) $R(\tau)$ is an even function of τ . i.e., $R_{XX}(-\tau) = R_{XX}(\tau)$
- (ii) $R(\tau)$ is maximum at $\tau = 0$ i.e., $|R_{XX}(\tau)| \le R_{XX}(0)$
- (iii) $R_{XX}\left(0\right) = E\left(X^{2}\left(t\right)\right)$

(iv)
$$\mu_X^2 = \overline{X}^2 = \frac{Lt}{|\tau| \to \infty} R_{XX}(\tau)$$

 $\mu_X^2 = \frac{Lt}{\tau \to \infty} R(\tau) = \frac{Lt}{\tau \to \infty} 25 + \frac{4}{1 + 6\tau^2} = 25$
 $\therefore \mu_X = 5$
 $E(X^2(t)) = R_{XX}(0) = 25 + 4 = 29$
 $Var(X(t)) = E[X^2(t)] - E[X(t)]^2 = 29 - 25 = 4$

Problem 36 Three are 2 white marbles in urn A and 3 red marbles in urn B. At each step of the process, a marble is selected from each urn and the 2 marbles selected are inter changed. Let the state a_i of the system be the number of red marbles in A after *i* changes. What is the probability that there are 2 red marbles in A after 3 steps? In the long run, what is the probability that there are 2 red marbles in urn A?

Solution:

State Space $\{X_n\} = (0,1,2)$ Since the number of ball in the urn A is always 2.

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$X_{n} = 0, \ A = 2W \text{ (Marbles) } B = 3R \text{ (Marbles)}$$

$$X_{n+1} = 0 \qquad P_{00} = 0$$

$$X_{n+1} = 1 \qquad P_{01} = 1$$

$$X_{n+1} = 2 \qquad P_{02} = 0$$

$$X_{n} = 0, \ A = 1W \& 1R \text{ (Marbles) } B = 2R \& 1W \text{ (Marbles)}$$

$$X_{n+1} = 0 \qquad P_{10} = \frac{1}{6}$$

$$X_{n+1} = 1 \qquad P_{12} = \frac{1}{3}$$

$$X_{n+1} = 2, \ A = 2R \text{ (Marbles) } B = 1R \& 2W \text{ (Marbles)}$$

$$X_{n+1} = 0 \qquad P_{20} = 0$$

$$X_{n+1} = 1 \qquad P_{20} = 0$$

$$X_{n+1} = 1 \qquad P_{21} = \frac{2}{3}$$

$$X_{n+1} = 2 \qquad P_{22} = \frac{1}{3}$$

$$P^{(0)} = (1,0,0) \text{ as there is not red marble in } A \text{ in the beginning.}$$

$$P^{(1)} = P^{(0)}P = (0,1,0)$$

$$P^{(2)} = P^{(1)}P = \left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$$

$$P^{(3)} = P^{(2)}P = \left(\frac{1}{12}, \frac{23}{36}, \frac{5}{18}\right)$$

 $\therefore P \text{ (There are 2 red marbles in } A \text{ after 3 steps)} = P \{X_3 = 2\} = P_2^{(3)} = \frac{5}{18}$ Let the stationary probability distribution of the chain be $\pi = (\pi_0, \pi_1, \pi_2)$. By the property of π , $\pi P = \pi$ & $\pi_0 + \pi_1 + \pi_2 = 1$

$$(\pi_0 \ \pi_1 \ \pi_2) \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix} = (\pi_0 \ \pi_1 \ \pi_2)$$

$$\frac{1}{6} \pi_1 = \pi_0$$

$$\pi_0 + \frac{1}{2} \pi_1 + \frac{2}{3} \pi_2 = \pi_1$$

$$\frac{1}{3} \pi_1 + \frac{1}{3} \pi_2 = \pi_2$$

$$\& \ \pi_0 + \pi_1 + \pi_2 = 1$$
Solving $\pi_0 = \frac{1}{10}, \ \pi_1 = \frac{6}{10}, \ \pi_2 = \frac{3}{10}$
P {here are 2 red marbles in A in the long run} = 0.3.

Random Process:-Process is a giality o o nandom tunction of time t. and the outcomes of a nandom experiment. ival nat h npiers er 80-1 1.0+ 10- Random Process Randomvariable - or to Ka It is a function on the It is a tundion on Sly. 3- Sample Spale, T. Time set sample space & 5 Random variable X(s) is X(s,t) is a voice turition (pitet Jauran Network a real number i cuntomena and not allowed clamitication of Random Process: System Or leave the Random Process can be clarified varie aginov securionen may visual into tourtypes depending on the nature of S and T. 1. Districte random Sequence. 3-) Discrute T -) Discrete ENJ The outcome of n th tass of a tain die. 5-51-2

Stationary Random Processi-A random - Process is stationary it au its statistical Properties (mean, va, Auto convueltation,); q do es not depend of MA 28. P pairet 2 A random Prous is not stationary then it is called evolutionary. 3 Continuous Rappin H m thru Jur Alb 1. Einst onder stationary whitnes L @ 2. Second onder Mationary Ext The temperature at the end of n Find order stationary: - pobo po Find Onder For First onder stationary Mours (E [x(t)] is worstant. Second order Atationaly :--por record order stationary Process, Rxx (t, t+ 2) is a terretion of 2. wide venue stationary (WAS) A Random Process is Call wide sense stationary it ETX(+)] is densted, by constant and Rxx (t, t+q) is a fendion of ?. The cintro considering the second and Alar scipiacity by nevils ai (+1x (m++++) = (+) = (+++++)

The flow x (t) where Probability attraction
Under centrain condition is given by

$$P[x(t) = n] = \begin{cases} (at)^{n-1} & n = 1/2/3 \\ (1+at)^{n+1} & n = 0 \\ (1+at)^{n+1} & n = 0 \end{cases}$$
Now that $x(t)$ is Not stationary
Allow that $x(t)$ is Not stationary
Goln:-
(in at)^{n+1} & n = 1/2/3

$$P[x(t) = n] = \begin{cases} (at)^{n-1} & n = 1/2/3 \\ (1+at)^{n+1} & n = 0 \end{cases}$$

$$\frac{at}{1+at} & n = 0 \end{cases}$$

$$\frac{at}{1+at} & n = 0 \end{cases}$$

$$P[x(t) = n] = \begin{cases} (at)^{n-1} & n = 1/2/3 \\ (1+at)^{n+1} & n = 0 \end{cases}$$

$$\frac{at}{1+at} & n = 0 \end{cases}$$

$$P[x(t) = n] = \begin{cases} (at)^{n-1} & n = 1/2/3 \\ (1+at)^{n+1} & n = 0 \end{cases}$$

$$\frac{at}{1+at} & (n = 0 \end{cases}$$

$$P[x(t) = n] = \begin{cases} (at)^{n-1} & (at)^{n} \\ (1+at)^{n+1} & (at)^{n} \\ (1+at)^{n} & (at)^{n} \end{cases}$$

$$E[x(t+1)] = 5x(t) - p[x(t+1)]$$

$$[at - (1+at)^{n} & (1+at)^{n} \\ (1+at)^{n} & (1+at)^{n} \end{cases}$$

$$\frac{at}{1+at} + \frac{x(t+1)^{n}}{1+at} + \frac{x(t+1)^{n}}{1+at} + \cdots$$

$$W k \pi (1 + 3x + 3x^{2}) = (1 - x)^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at - at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

$$= \frac{1}{(1 + at)^{2}} \left[\frac{1 + at}{1 + at} \right]^{-2}$$

W k T,
$$(+3x+6x^2+\dots = (1-x)^{-3}$$

$$= \frac{2}{(1+at)^2} \left[1 + \frac{at}{1+at} \right]^{-3} - 1$$

$$= \frac{2}{(1+at)^2} \left[\frac{1+at}{1+at} \right]^{-3} - 1$$

$$= \frac{2}{(1+at)^2} \left[\frac{1+at}{1+at} \right]^{-3} - 1$$

$$= \frac{2}{(1+at)^2} \left[\frac{1+at}{1+at} \right]^{-3} - 1 = \frac{2}{(1+at)^{-1}}$$

$$= \frac{2}{(1+at)^2} \left[\frac{1+at}{1+at} \right]^{-3} - 1 = \frac{2}{(1+at)^{-1}}$$

$$= \frac{2}{1+at} + \frac{2}{3} + \frac{$$

sodn:
Here, A and B are random variable.
With
$$E Leg = EEBJ = 0$$
; $E (P^2J = EIB^2JR EDBJre)$
Cliven, $= x (H) = D (aA(P+J) + B in (PH))$
 $E[X(H)J = cos(PAD - EEDJ + sin(PAD) EEBJ$
 $= 0$, ionstant
 $R_{12} (H, H+P) = E[X(H) \cdot X(H+P)]$
 $x(H) = A (as(PAD) + B in (PAD))$
 $x(H) = A (as(PAD) + A in (PAD))$
 $x(H) = A (as(PAD)$

$$= E [AT] \int (cos (At) cos (At + AT) + AT + AT) + AT + AT) \int (cos (At - A) - AT) \int (cos (At + AT - AT)) = (cos (AT + A)) = ($$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2\pi t} \left[(\lambda i \eta (\omega t + 2\pi i)) - \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 1) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i)) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda i \eta (\omega t + 2\pi i) + \lambda i \eta (\omega t + 2\pi i) \right]$$

$$= \frac{A}{2} \left[(\lambda$$

$$F[ws(awt+ab+wr)] = \int ws(at+automation)$$

$$= \int_{a}^{2} \int_{a}^{2} \cos(awt+ab+wr)da$$

$$= \int_{a}^{2} \int_{a}^{2} \cos(awt+ab+wr)da$$

$$= \int_{a}^{2} \int_{$$

The transition Probability metry

$$q$$
 at morphicov chain have status
 $1,2,3,13$, $P= \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$
the initial distribution is $P_{0,1}^{(0)} = \begin{bmatrix} 0.1 & 0.2 & 0.1 \end{bmatrix}$
Find Probability $q_1 P[x_2 = 3]$ and $P_{1,2,1,2,3}$, $x_0 = 2]$.
 $odn: f$
 $Griven that , for a f$

i)
$$P(x_2 = 3) = 0.219$$

ii) $P(x_3 = 2.7, x_2 = 3.7, x_1 = 3.7, x_0 = 2.)$
 $= P_{3x2} + P_{3x} + P_{2x} + P(x_0 = 2.)$
 $= 0.4 \times 0.3 \times 0.2 \times 0.2$
 $= 0.0048$
 $T_{10} + transition Robability matrix of a$
Markov than have there states 1.2.2 is
 $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$ and the initial
 $distribution P_{02}^{(0)} = [0.5 & 0.3 & 0.2]$
 $i) Find P(x_2 = 2) and P(x_2 = 3) = 2, x_{21}, x_{02}$
 $distribution P_{02}^{(0)} = [0.5 & 0.3 & 0.2]$
 $p^{(0)} = [0.5 & 0.3 & 0.3]$
 $p^{(0)} = 0.4 & 0.3 & 0.3]$
 $p^{(0)} = 0.5 & 0.3 & 0.3]$

$$F [0.21 \ 0.39 \ 0.5]$$

$$F [0.21 \ 0.39 \ 0.5]$$

$$F^{(2)} = F^{(1)} = F^{(2)} = [0.21 \ 0.35 \ 0.4] \begin{bmatrix} 0.2 \ 0.3 \ 0.5 \\ 0.1 \ 0.6 \ 0.3 \\ 0.4 \ 0.3 \ 0.5 \end{bmatrix}$$

$$F [0.24 \ 0.417 \ 3.42]$$

$$F [0.224 \ 0.417 \ 3.42]$$

$$F [0.224 \ 0.417 \ 3.42]$$

$$F [0.23 \ 0.427 \ 2.471 \ 3.42]$$

$$F [0.23 \ 0.477 \ 3.42]$$

$$F [0.24 \ 0.417 \ 3.41$$

suppose that the Robability of a dry day
following a nainy day is
$$k_3$$
 and the
Robability of tainy day tollowing a brydry
is k_2 given that May 1 is dryday.
i) Find the Robability that may 3 is dryday.
ii) Find the Robability that may 5 is also a
dryday.
 $day day$.
 $definition of the Robability that may 5 is also a
dryday.
Here, status are Dry big Rainy
 $Here, status are Dry big Rainy
Here, status are Dry big Rainy
 $Here, for the robability that may 5 is also a
 $dryday$.
 $day 1 : p^{(0)} = \begin{bmatrix} 1 & 0 \end{bmatrix}$
May 2 $p^{(1)} = p^{(0)} \cdot p = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p = \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p = \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
May 3 $p^{(2)} = p^{(2)} = p^{(1)} \cdot p = \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
May 4 $p : p^{(3)} = p^{(2)} \cdot p = \begin{bmatrix} 0 \cdot 1 & 16b \cdot 0 \cdot 583 & 3 \end{bmatrix} \begin{bmatrix} 1/4 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$$$$

May
$$4 : p_{1}^{(3)} = p_{1}^{(2)} p = [0.466 \cdot 0.5823] \begin{bmatrix} 2 & 2 \\ 3 & 2 \end{bmatrix}$$

 $= [0.4027 \quad 0.5971] \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $Hay 5 : P_{0}^{(4)} = p_{1}^{(3)} p = [0.4021 \quad 0.5971] \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}$
 $p \begin{bmatrix} 1$

Soln: - dait of - 9 9 9 -Here the states are car, train. C T TRM 1 & PZ 1 0 2001 3 PLANTSON OJ - F Day 1: pto) = [16 516] Days : p"= p (0). p = [Y6 516] 1 0 $p_{0y3} = p^{(2)} = p^{(1)} \cdot p = [0.9166 \cdot 0.08330] \begin{bmatrix} y_2 \\ y_2 \end{bmatrix}$ 0 100 0 marine = [0.5476 04583] pine taken train on days) = 0-4583 The Rimiting dist is TT(I-P)=0 $\begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \gamma_2 & \gamma_2 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix}$ Blie and at move to work it and on $\frac{\pi_1}{12} - \pi_2 = 0 \longrightarrow 0$ $-\frac{\pi}{2} + \pi 2 = 0 \rightarrow 0$ Π, +Π2 = 1 ->3

(v) P (event in (to, to to v)) alpende V and not on
to)
(a)
The bability law of Poisson Process:-
The resolution of P[x (t) = n] =
$$e^{-\Lambda t} (xt)^n$$

then Probability of P[x (t) = n] = $e^{-\Lambda t} (xt)^n$
(the resolution of the resolution o

Taxe
$$\operatorname{Qim}^{At \to 0}$$

 $\operatorname{At \to 0}^{At \to 0}$
 $\operatorname{Pn}^{1}(t) = \lambda \operatorname{Pn}_{1}(t) - \lambda \operatorname{Pn}_{1}(t) \longrightarrow 0$
Let the add be $\operatorname{Pn}_{1}(t) = (\lambda t)^{n} t(t)$
 $\operatorname{Pn}^{1}(t) = (\lambda t)^{n} t(t) + t(t) \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} = (\lambda t)^{n} t(t)$
 $\operatorname{Pn}^{1}(t) = (\lambda t)^{n} t(t) + t(t) \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} = \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} t(t)$
 $(\lambda t)^{n} t'(t) + t(t) \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} = (\lambda t)^{n} t(t)$
 $= \lambda (\lambda t)^{n} t(t)^{n} t(t)$
 $= \lambda (\lambda t)^{n} t(t)^{n} t(t)^$

$$f(t_0) = t$$

$$Pn(t_1) = \frac{(xt_1)^n}{n!}$$

$$Po(t_0) = t(t_0)$$

$$Fo(t_0) = t(t_0)$$

$$Fo(t_0)$$

Variance of pointion Proteons:-
In pointion Proteons:-
P[x(t)] =
$$e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}$$
, $n = 0, 1, 2, ...$
 $E[x^{2}(t)] = E[x^{2}(t)] P[x(t)]$
 $= e^{\lambda t} (\lambda t) P[x(t)]$
 $= e^{\lambda t} (n + n) P(n)$
 $= e^{\lambda t} (n + n) P(n)$
 $= e^{\lambda t} (n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) P(n) + e^{\lambda t} n t P(n)$
 $= e^{\lambda t} n(n + n) e^{-\lambda t} (n + n) + e^{\lambda t} n(n + n) + e$

$$E [x^{2}(t)] = (xt)^{2} + \lambda t$$

$$Von [x(t)] = E [x^{2}(t)] - mean^{2}$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$L = x(\lambda t)^{2} + \lambda t - (\lambda t)^{2} = \lambda t$$

$$Von [x(t)] = \lambda_{1}t$$

$$E [x(t)] = \lambda_{1}t$$

$$E [x(t)] = \lambda_{1}t$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$L = x(t) + y(t)$$

$$E [x(t)] = \lambda_{1}t$$

$$Von [x(t)] = \lambda_{1}t$$

$$Von [x(t)] = \lambda_{1}t$$

$$Von [x(t)] = \lambda_{1}t$$

$$L = x(t) - y(t)$$

WKT Var [axtby] = a2 var(x)+62 var(y) VON TXIE) T = E [X "(E)] "I washit E Van [xit)]+ van [yit] KAR ====(JR)= JR +==(IR) = + 22 + $=(\lambda_1+\lambda_2)$. JOLA In point zit) is not pointon. constant pointing Process is not stationa Note:-The inter avoival time of a poisson process tollows exponential LOVON distnibution. In exponential p(+>t) = e

Let x(t), (x(t), and two independent

UNIT 5 Queue is tormed it the sorvice is not immediately available. Queue may be decreated in size by giving additional service st taulities Long Queues may nerult in lost sales and lost curtomers Queue refers to curtomer waiting to service in sa line Characteristics of Queening System: -1. Input (07) Avoival pattern 2. service pattern 3 No. 7 service channels 4. system capacity 5. Queue cliscipline. When \$ =1850 12 = 32.2748 32.2 Input (or) arrival pattern Since the customers corrive in a handom onder, the arrival curtomer follows poinon process. 1) Amival Rating-1002520)9-Annival Rate = 1 curtomer per writ time.

UNIT 5

UNIT 5 i) Inter avoiral time trugues it want of Now you Inter avoiral time: I time Service Pattern Estable to mendality is known It is specified when it is known how many curtomers can be served at a z PCFS SPIRAL COMENTIAL SMITH i)service Rate:-2. LIFO - I Lan In FIND out Service Rate = M curtomer per unit time finserviervine U-2 - 09IZE Service time = the time. 3. No of service channel:-2March Kendall's Notalismenumber de Two Provide service we may have one countre on many counters in Series or Parallel. (310): (2)d/01 No of service channels is denoted by C. - noised in tails tou sous - 0 sy tim caparity -- sives ed It any no of customers or allowed to Joint in a queene, then the capacity is infinite sometime there is a limited waiting space, show so that the queue beomes large further customer cannot be allowed to joint in the queue.

UNIT 5

Hodult - Bowerterm - grind labor
(MMM / 1) · Loo / F(FS) - A subar
Single server with intrite capatity
is general to the intent capatity

$$f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$$
 (viscore tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p} = \frac{1}{p}$ (reduce to tator
 $f = \frac{1}{p} =$

UNIT 5 . A Super Market as a single carrier During the prex hours, wromens arrive at a nate of 20 per hour, The average no. 56 customers that can be prolessed by the canic is 24 perhaus. i) Find the aug the ob unloners in the system and in grenn. ii) The average fime a customer spend in the System and in the guesse and (1) Probability that the carier is idle. (v) Probablity that the correct is being. 501n'.urtomer-) Peoples (into) qui server rannier quie internet la surve de surver Mathatine e require -) as assard maring of Criven model is (MIMII): (ao / FIFS) to min; and the securia Annival nate = 20 cus / hour - DFIND The average not & centamed in a n= 20 cus thous Service nate = 04 us thous M= 34 cus / how and ent al goet goet and a good with a f bailor (iii 24
i)
$$LS = \frac{S}{1-S} = \frac{20/24}{1-20/24} = \frac{20/24}{4/24} = \frac{3}{34} + \frac{5}{34}$$

 $= 5$
 $MLQ = LS - S = 5 = \frac{3}{26} = \frac{1}{4} + 1666$
 $igt WS = \frac{LS}{2} = \frac{5}{26} = \frac{1}{4} + 6001$
 $Wq = \frac{LQ}{2} = \frac{4 \cdot 1666}{20} = 0 \cdot 3083 \text{ mout}$
 $Wq = \frac{LQ}{2} = \frac{4 \cdot 1666}{20} = 0 \cdot 3083 \text{ mout}$
 $Wq = 1 + \frac{Q}{2} = \frac{4 \cdot 1666}{20} = 0 \cdot 3083 \text{ mout}$
 $Wq = \frac{LQ}{2} = \frac{4}{24} = \frac{4}{24} = \frac{1}{6}$
 $W) p Classifier is bury $S = S = \frac{20}{24}$
 $E = 1 - S = 1 - \frac{20}{24} = \frac{4}{24} = \frac{1}{6}$
 $W) p Classifier is bury $S = S = \frac{20}{24}$
 $E = \frac{5}{6}$.

... curbonness are at a math herais shop in
a poiston process at a math of one per every
to min and the security time is exponential
with mean 8 mins.
i) Find the average no 6 curtimes in the sho
and in the gues.
I) Average waiting timing, A curtames spent
in the shop and in the queue.
Ii) what is the probability that the secure is
idle ?$$

UNIT S
Solutioner -> people
Solutioner -> Repairman
No = souver -> Repairman
No = souver -> 1
Copairly -> 0
(riven Model (MIMII): (co [FLFS)
Arrival mate = 1 cus liamin

$$h = \frac{1}{10}$$
 cus liamin
 $h = \frac{1}{10}$ cus liamin
 $f =$

UNIT 5 iii) p (sewer is idle) = Po= 1- 3 and the it to be bolo Boryer - Depainmen No 4 Serien - 1 sales countre, manage 3 curtomers arrive at a sales countre, by a single "Person according to a (D) poirson process with mean rate of 20 per how the time required to serve a curtomer has a Exponential distribution with a mean of 100 second Find the aug waiting time of a curtomer. nimiau 1 = 4 = 4/6 automer -> peoples 501n: -Server i sales man capacity 3 00. Geven model is (MIMII): (00/P(PS) Annival nate := 20 cus lhow astitutes A = 20 Lus / how sorvice time = 100 a sectous The = 100 secleus

$$\mu = \frac{1}{100} \quad \text{iso} 1 \text{ sec}$$

$$= \frac{1}{100} \times \frac{3600}{3600} \quad \text{cus} 1 \text{ sec}$$

$$= \frac{1}{100} \times \frac{3600}{3600} \quad \text{frows} = \frac{1}{3600}$$

$$\mu = 36 \quad \text{cus} 1 \text{ hows}$$

Model 2 (banic torms) = (J. Pa, A)
(M/M/1) : (N/FCFS) - single server with
thits capacity
1.
$$S = \frac{\lambda}{\mu}$$
 -) Utilisation tato
 $Tratic internity$
 $1. S = \frac{\lambda}{\mu}$ -) Utilisation tato
 $Tratic internity$
 $2. Po = \int \frac{1-\delta}{1-g^{N+1}} S \neq 1$
 $2. Po = \int \frac{1-\delta}{1-g^{N+1}} S \neq 1$
 $Pn = S^{n}Po$
 $3. Attestive arrival nate $x = \mu(1 - Po)$
 $A. LS = \int \frac{J}{1-g} \frac{(N+1)}{1-g^{N+1}} P \neq 1$
 $\frac{N}{2} = 1$ and $p = 1$
 $F = \frac{1}{2} \frac{1}{$$

UNIT 5

8. P (curtomens twined away) = PN Trains arrive at a yard every 15 mins and service time is 33 minutes. It the line capcuity of the yard is limited to 5 thains, Find (1) Probability that the yard is empty. ii) Effed we avoid nate. (ii) Average NO 7 trains in the system, in the queue. N) Average time a train is Expected to Stend in the yard and in the queue. 501n! - 178 1+mg-1 2. Po = austomer Inain Jerven - yand and 3. Attentive concerts that X= M(1-Po No. Terresto. No. 139, 1+19 Capacity 21, 5 21. A (Criven model is [[m]m]r] : [N]FIFS) Here N=5 R 1=2-1 Aptididay Inter arrival time = 15 min / Inain $\frac{1}{\chi} = 15$ min |Thain $A = \frac{1}{15}$ main Imin

Service time c 33 min linain

$$f_{L} = 33 \text{ min linain.}$$

$$f_{L} = \frac{33}{12} \text{ min linain.}$$

$$f_{L} = \frac{33}{12} \text{ min linain.}$$

$$f_{L} = \frac{33}{12} \text{ min linain.}$$

$$f_{L} = \frac{3}{12} \text{ min linain.}$$

$$f_{L} = \frac{1}{12} \text{ min linain.}$$

$$f_{L} = \frac{1$$

1) pluntomer dineitly into parent
upparts)
$$z = p(y \circ cuntomer)$$

 $y = p(y \circ cuntomer)$
 $z = \frac{3}{1-3} = \frac{6+10}{1-3} \frac{3}{1-3} \frac{5}{1-3} \frac{6+10}{1-3} \frac{3}{1-3} \frac{5}{1-3} \frac{6}{1-3} \frac{$

$$= 1 - \frac{1}{1 - 1} \cos(118 + 0.15(0.2118))$$

$$= 1 - \frac{1}{1 - 1} \cos(118 + 0.15(0.2118))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 0.64 - 24 \frac{1}{2}$$

$$= 0.35 - 16$$

$$= 0.035 - 16$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15))$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

$$= 1 - \frac{1}{1 - 1} \cos(128 + 0.15) \cos(128 + 0.15)$$

UNIT 5

vi) Ls = Latt (f vii) WS T. Thu ix) Wq = 100 mother with u (- 1 (prust 81 remos A 1= supplimanted has two girls munning upsales 16gail at the wenters. It the service time to each Customin with mean 4 min and It people coorive in poinor Farmion of the nation 6 per hour i Find the tollowing. probability that a curlomer i) what is the Has to wait for service) Average system and overe length Average time sport by the customer vite Super Market & in the onene ?? what is the Expected prescentage of idle time for eachquil? Dro acoulad 11 29 (privid (4) customen + people 4. Pn = Server of Sale fins NO. 07 server + 2 Capacity- 200 ver medel is (MIMIC) ! (0)

UNITS
Service time = 4 minimus

$$\frac{1}{\mu} = 4 minimus
\int = 4 minimus
\int \frac{1}{\mu} = 4 minimus
\int \frac{1}{\mu} = 4 minimus
\int \frac{1}{\mu} = 4 minimus
A = 1 cus/how
$$\frac{1}{\mu} = \frac{1}{\mu} cus/how
\int \frac{1}{\mu} \frac{1}{\mu$$$$

UNIT 5 f pener (05 montholines) 0.3333 x0.1666 [q = 0.0832 200 01 = dan Loving $L_S = L_q + c_p^{-1} | s_{10} | s_{10} = c_1^{-1}$ = 0,0832 + 0,6666 Lg = 0.05 0. 7498 Non It People = 0.4498 = 4.4988 mut 16 $L_{2} = \frac{0.0832}{10.4992}$ min Wqz indle) = 1-8 = 1-0.3333 =0.6667. Monter + a di tha 1. value 566.677. There are three typiets in an office. Each typists can type an average of blotters Per hour. It letters arrive to seing nati 7 15 lettor Perkong type at the EVENTS - PEANSERVICES

$$= \sqrt{1 + \frac{2.4999}{1} + \frac{2.4999}{2} + \frac{2.4999}{6(1-0.8333)} \int_{1}^{1}$$

$$= \sqrt{1 + \frac{2.4999}{1} + \frac{2.4999}{2} + \frac{2.4999}{6(1-0.8333)} \int_{1}^{1}$$

$$= \sqrt{1 + 2.4999} + 3.12 + 7 + 15.6200 g^{-1}$$

$$p_{0} = 0.0449$$

$$p_{0} = 0.0449$$

$$p_{0} = \frac{(28)^{2}}{3} p_{0} = 15.6300 x 0.0449$$

$$= 0.7013$$

i) $p_{0} = 4 \frac{3}{1-3} p_{0} N \ge 0$

$$= \frac{0.8333}{1-0.8333} x 0.7al3$$

$$= \frac{3}{1-3} p_{0} N \ge 0$$

$$= \frac{0.8333}{1-0.8333} x 0.7al3$$

$$= \frac{1}{2} q + (\frac{3}{2} = 6.0055)$$

$$= \frac{1}{2} q + (\frac{3}{2} = 6.0055)$$

$$= \frac{1}{2} q + (\frac{3}{2} = 6.0055)$$

$$= \frac{1}{2} q + (\frac{3}{2} = 6.0055)$$

Model A :
$$IMIMIC$$
) : $[NIFCFS] \rightarrow Muttiple
Server with Finite capainty
1. $g = \frac{\lambda}{C\mu} \rightarrow \frac{\pi}{\pi}$ motific intensity
 $P(F)$ server is bury)
2. $Po = \left\{ l + \frac{CF}{12} + \frac{(CS)^2}{2!} + \dots + \frac{(CS)^2LHB+S^2-S}{C!} \right\}$
3. $Pn = \left\{ \frac{e^n}{n!} \frac{S^n}{P^0} \frac{P_0}{P^0} + \frac{n \le C}{1 \le C!} \right\}$
3. $Pn = \left\{ \frac{e^n}{n!} \frac{S^n}{P^0} \frac{P_0}{P^0} + \frac{n \le C}{1 \le C!} \right\}$
 $Fn = \left\{ \frac{e^n}{C!} \frac{S^n}{P^0} \frac{P_0}{P^0} + \frac{n \le C}{1 \le C!} \right\}$
 $A - \lambda \ge \lambda(1 - Pw)$ ($S = n > C$
 $C! = \frac{C(S)^C}{C!} + \frac{SP_0}{(1 - S)^2} + \frac{1}{P^1} + \frac{$$

01115
A Barber shop has & barbers and 3
chains to waiting customers. Assume that
curtomers coorive in Poirmon famion at a
nate of 5 per how and that each barber service
customers according to Exponential with a brean
of 15 mins Further It à curtomer arriver and
there are no empty chains in the shop, he will
Recue.
i) What is the probability that in the shop?
ii) what is the expected no of watomer in the grow?
iv) what is the expected waiting time and in the queues
V) Find the steady state Probabilities of various nord
- Customers in the shop?
soin:-egge liss !!
Curtomer -> People
server -> Banber,
No. of server -> 2
Capacity -) 5
Cuiven model is (MIMIL) = (NIFUES)
Here c= 2; N=5; N-C=3

,

Annival nate
$$x = 5$$
 cust how
 $A = 5$ cust how
 $A = \frac{1}{2}$ us [hom
 $A = \frac{1}{2}$ us [

in) what is the average average average?

overblow taulity?

Soln:-
(wr/tomes.) ship
Server. J crew
No. qserver. J 4
(apaulty J6
Given Model is (MIMIC): (NIFCES)
(=4; N=6; N=c:2:1.1
Arrival nate = 1.7 kep 1.3 hour.
No. qserver. J
(=4; N=6; N=c:2:1.1
Arrival nate = 1.7 kep 1.3 hour.
No. qserver. J
Arrival nate = 1.7 kep 1.3 hour.
Serviu time = 10 hms 1.8 hip

$$f_{\mu} = 10$$
 hmplhours
 $g = \frac{\lambda}{\mu} = \frac{1}{2}$
 $f = \frac{\lambda}{(\mu} = \frac{1}{2}$
 $f = \frac{\lambda}{(\mu)} = \frac{1}{2}$
 $f = \frac{1}{(\mu)} + \frac{1}{(\mu)} + \frac{1}{(\mu)} = \frac{1}{(\mu)} + \frac{1}{$

$$f_{1}^{2} + 5 + 12.5 + 20.8333 + 99.2838 \int_{1}^{2} 1$$

$$P_{0} = 0.0073$$

$$P_{N} = \frac{C}{c_{1}} + \frac{C}{2} + \frac{C}{4} + \frac{C}{4} + \frac{1225}{4} + \frac{1225}{4$$

$$Var(T) = ET^{2}J - Mean^{2}$$

$$Var(T) = ET^{2}J - G ETTJG^{2}$$

$$ETT^{2}J = Var(T) + \int ETJG^{2} \rightarrow 0$$

$$Tet m denote the no G avrivab during T
$$N' = \int N - 1HMm N N = 0$$

$$J = \int 0 + N > 0$$

$$J = \int 0 + N > 0$$

$$N = \int 0 + N > 0$$

$$N = \int 0 + N > 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0 + M = \int 0$$

$$M = \int 0$$$$

UNIT 5 At steady state, Smja-1 & Chijas FINT = FENJ-14FEMJ+EESJ SEM13 - EM13 + EM13 0 = - I + EM1 + E[0] - EM13 E[J]=I-E[M] -> @ $3^2 = 2 N^{12} = (N - 1 + M + d)^2 (a + b + (+d)^2)^2$ Yan (MIT) = AT $N^{12} = N^2 + 1 + M^2 + S^2 - 2N + 2NM + 2NS$ TR= 2M - 28 + 2MS $N^{12} = N^2 + L + M^2 - \delta - aN + aNM - aM + aM\delta$ TER+TR = ETISM] 3 Taking E EINIZJ = EINZJ + 1+ EIMZJ - EIJ- DEINJ-PARTIAN - TOREENJEEMJ - DEEMJ+ DEEMJEEdJ ELST=1-ELMT At steady state $a_{j} \in [N^{2}] = E [N^{2}] + 1 + E[M^{2}] - 1 + E [M] - 2E [N]$ +2 ELNJELMI - 3 ELMI +2 ELMI-JELM TAX OFTELMET + ELEMI - & EENJ + & EENJEEMJ = -29 ETMJZ2 DEMJ DEENJEEMJ = EEM 2 JIEEMJ-DEEMJ -

UNITS

$$\partial E[NJ] = 1 - E[MJ] = E[MJ] = E[MJ] - 2 + E[MJ] - 2 + E[MJ] = -2 + E[MJ] + E[MJ] + E[MJ] + 2 + E[MJ] + 2$$

UNIT 5

$$= \frac{\lambda^{2} \in [\tau^{2}]}{\beta (1 - \lambda \in [\tau])^{2}} + \beta \in [\tau^{2}]$$

$$= \frac{\lambda^{2} (1 - \lambda \in [\tau])^{2}}{\beta (1 - \lambda \in [\tau^{2}])^{2}}$$

$$= \frac{\lambda^{2} + \lambda^{2} (var(\tau) + \lambda^{2}) (z = [\tau^{2}])^{2}}{\beta (1 - \lambda \in [\tau^{2}])^{2}}$$

$$Ta ke,$$

$$= [\tau^{2}] = \frac{1}{\mu}$$

$$Ls = \frac{\lambda}{\mu} + \frac{\lambda^{2} (var(\tau) + \frac{\lambda^{2}}{\mu})}{\beta (1 + \frac{\lambda}{\mu})^{2}}$$

$$= \frac{\lambda}{\mu} + \frac{\lambda^{2} (var(\tau) + \frac{\lambda^{2}}{\mu})}{\beta (1 + \frac{\lambda}{\mu})^{2}}$$

$$= \frac{\lambda}{\mu}$$

$$Ls = \frac{\lambda}{\mu} + \frac{\lambda^{2} (var(\tau) + \frac{\lambda^{2}}{\mu})}{\beta (1 - \frac{\lambda}{\mu})^{2}}$$

$$Molz = \frac{1}{\lambda}$$

$$The pre tommula becomes as$$

$$Ls = \frac{\beta}{\lambda} + \frac{\beta^{2}}{\beta (1 - \beta)}$$

Sotn:-
(whomen
$$\rightarrow$$
 People
Server \rightarrow Barber
No. Freuer \rightarrow :
Capacity $\rightarrow \infty$
Given Madel is (MIGI); (∞ |F(FS))
Servicetime $= 25$ min 1 cus
 $\frac{1}{\mu} = 35$ min 1 cus
 $\frac{1}{\mu} = 35$ min 1 cus
 $\mu = \frac{1}{35}$ cus 1 min.
Arrowal state $= 1$ cus 1 min.
 $\lambda = \frac{1}{40}$ cus 1 min.
 $\beta = \frac{1}{40} = \frac{1}{125} = \frac{1}{40} \times \frac{25}{10}$
Service time is constant
 $\beta = 0.625^{2}$
Service time is constant
 $= 3 \vee an(r_{1}) = 0$
 $(1 - 5) = 3 + \frac{1}{2} \vee an(r_{1}) + g^{2}$
 $a(1 - g)$

Sotn:-
(Invtome) -> People
Server -> People
No. 9, server -> 1
Caparity -> 0
Given modul is (MIGII): (oolFCES)
Service time = 25 min 1 cus

$$f_{\mu} = 25 min 1 cus$$

 $f_{\mu} = 25 min 1 cus$
 $f_{\mu} = \frac{1}{25} cus 1 min$
Arrowal mate = 1 cus 140 min
 $\lambda = \frac{1}{40} cus 1 min$
 $\beta = \frac{1}{40} = \frac{1}{725} = \frac{1}{40} + \frac{25}{10}$
Service time is constant
 $\beta = 0.625$
 $1 \leq s = 3 + \frac{3^{2} van(r) + 8^{2}}{4(1-g)}$

We =
$$\frac{L_s}{\lambda} = \frac{1.1458}{.748} = 1.1458 \times 40 = 245.832 \text{ min}$$

i) Ly = LS - S = 1.1458 = 0.625 = 0.5308
 $Hq = \frac{Ly}{\lambda} = 0.5308 \times 40 = 20.833 \text{ min}$
An atomatic carbox taillity operates with
only one bay. and arrive according to primos
cli Atrivitation with a mean 4 years Reshows and
may weight in the facilities panking let. 24 the
Pay is bury. The parking let is large enough
to accordiate any no. 9 cars petermine
) mean No. 9 with mean in the system
i) Mean waiting of a withoman in the system
ii) Mean waiting time of withoma in the queue.
Ii) Mean waiting time of withoma in the queue.
Is the recurse time ton all the cars
a jistonstate and equal to lomins
b) Follows Normal distribution with means
No of control distribution with means
No of control distribution with means
b) Follows Normal distribution between
8 mins and Kandad deviation anins.
B mins and to mins.

.

i)
$$Lq = Ls \cdot g = 1:3330 \pm 0.6666 \pm 0.666 \pm 1$$

ii) $ws = \frac{LS}{R} = p\cdot3330 \times 15 = 19\cdot995$ min
iv) $wq = \frac{LQ}{R} = 0.66664 \times 15 = 9.995$ min
b) derivice time follows hormal with mass L3min
g standard deviative 3 min
 $f = \frac{1}{R} = 1.3 \text{ min} 1 \text{ (as}$
 $\frac{1}{R} = 1.3 \text{ min} 1 \text{ (as}$
 $\frac{1}{R} = \frac{1}{12} \text{ (as 1 min)}$
 $g = \frac{1}{R} = \frac{1}{12} \text{ (as 1 min)}$
 $y = \frac{1}{12} \text{ (as 1 min)}$

ii)
$$L_{3} = L_{5} - g = g \cdot 5 + 0 \cdot g = 1 \cdot 7$$

iii) $W_{5} = \frac{L_{5}}{\lambda} = 2 \cdot 5 \times 15 = 37 \cdot 5 \text{ mA}$
iv) $W_{7} = \frac{L_{7}}{\lambda} = 1 \cdot 7 \times 15 = 25 \cdot 5 \text{ mA}$
c) service time tollows unitor between θ min
 $f_{\mu} = 1 \text{ formal } a_{1}$
 $\mu = 1 \text{ formal } a_{1}$
 $\mu = 1 \text{ formal } a_{1}$
 $\mu = \frac{L_{5}}{L_{5}} = \frac{L_{5}}{L_{5}} = \frac{L_{5}}{L_{5}} = \frac{L_{5}}{L_{5}} = \frac{1}{2} \cdot \frac{1$
PROBABILITY AND QUEUEING THEORY

UNIT V

S.NO	Questions	opt 1	opt 2	opt 3	opt 4	opt 5	opt 6	Answer
1	Non markovian queueing model, the inter arrival and inter							
	service times were assumed to follow distribution	exponential	possion	binomial	normal			exponential
•	For the way Malancian and a	Delle seels						
2	For the non Mirkovian queues formula is used to	Pollaczek -	ovpopoptial	noncion	hinomial			Dolloozok Khinchino
	In PK formula the follow a poission process with rate of	Kninchine	exponential	possion	DITIONIAI			Pollaczek - Kninchine
3	arrival λ	service	arrival	queue	closed			arrival
	In PK formula the arrival follow a process with rate			44040	0.0000			
4	of arrival λ	exponential	possion	binomial	normal			poission
5	In PK formula the arrival follow a poission process with rate of							
3	arrival	μ	α	λ	β			λ
6	of queues can be described as a group of nodes	network	service	arrival	infinte			network
7	Network of queues can be described as a group of							
'		exponential	possion	nodes	normal			nodes
	In an network, customers enter the sysyem from outside							
8	and after service at one or more queues, eventually leave the			arrival	service			
	system	closed queueing	open queueing	queueing	queueing			open queueing
0	In an open queueing network, customers enter the system from							
9	and after service at one or more queues, eventually	hotwoon	incido	outoido	none of this			outoido
	In an open queueing network, customers enter the system from	Detween	Inside	outside				outside
10	outside and after service at one or more queses, eventually							
10	the system	enter	leave	inside	none of this			leave
	A network doesnot have any external arrival or		louro	arrival	service			
11	departures	closed queueing	open queueing	queueing	queueing			closed queueing
12	A closed queueing network doesnot have anyor							
12	departures	external service	internal service	external arrival	internal arrival			external arrival
13	Arrival rate is denoted by	μ	α	λ	β			λ
14	Service rate is denoted by	μ	α	λ	β			μ
15	In multi server queues, there are many channels which provides		different					
15	the facilities	same serivice	serivice	same arrival	different arrival			same service
16	Inqueues, there are many channels which provides							
10	the same serivice facilities	single server	two server	three server	multi server			multi server
17	If any number of customers are allowed to join the queues then		<i>c</i>	<i>a</i>				
1 .	the capacity of the system is	one	tive	finite	Infinite			infinite

18	No of customers in the system	queue size	service size	arrival pattern	service pattern	queue size
19	No of customers in the system is denoted by	n	а	с	d	n
20	The state in which there are n customers in the system	S_n	P_n	µ_n	L_q	S_n
21	Transient state probability that exactly n customers are in the system at the time t	S_n	P_n(t)	P_n	λ_n	P_n(t)
22	Steady state probability of having n customers in the system	S_n	P_n(t)	P_n	λ_n	P_n
23	Mean arrival rate	μ	α	λ	β	λ
24	Mean arrival rate when there are n customers in the system	λn	µ_n	Ls	L_q	λn
25	Mean service rate	μ	α	λ	β	μ
26	Mean service rate when there are n customers in the system	λ_n	µ_n	L_s	L_q	μ_n
27	In (M/M/1):(infinity /FIFO), the expected number of customers in the system L_s =	λ/(μ-λ)	μ/(μ-λ)	μ/(μ+λ)	λμ/(μ-λ)	λ/(μ-λ)
28	In (M/M/1):(infinity /FIFO), the expected queue size L_s =	λ/(μ-λ)	μ/(μ-λ)	μ/(μ-λ)	λμ/(μ-λ)	λ/(μ-λ)
29	In (M/M/1):(infinity /FIFO), the expected number of customers in the queue $L_q = $	W_s/(λ/μ)	W_q/(λ/μ)	L_s-(λ/μ)	L_q/(λ/μ)	L_s-(λ/μ)
30	In (M/M/1):(infinity /FIFO), the expected waiting time of a customers in the system W_s =	W_s/λ	W_q/(λ/μ)	L_s/λ	L_q/λ	L_s/λ
31	In (M/M/1):(infinity /FIFO), the expected waiting time of a customers in the queue W_q=	W_s/λ	W_q/(λ/μ)	L_s/λ	L_q/λ	L_q/λ
32	In (M/M/1):(infinity /FIFO), the avereage number of customers in non-empty queues L_w =	λ/(μ-λ)	μ/(μ-λ)	μ/(μ+λ)	λμ/(μ-λ)	μ/(μ-λ)
33	Avereage waiting time of a customer in the system	W_s	W_q	L_s	L_q	W_s
34	Avereage waiting time of a customer in the queue	W_s	W_q	L_s	L_q	W_q
35	Average number of customers in the system is also denoted by	N_s	E(N_s)	L_s	E(L_s)	E(N_s)
36	By in the system we mean the number of customer in the queue + the person who is getting serviced	W_s	W_q	L_s	L_q	L_s
37	Let N be the number of customers in the system, then the number of customer in the queue is	N	N-1	n	n-1	N-1
38	The average number of customers in the queues can also denoted as	N_q	E(N_q)	E(L_q)	E(L_s)	E(N_q)
39	If λ is the parameter of the exponetial distribution then the mean of the distribution is	λ	1-λ	1/λ	1+λ	1/λ
40			both interarrival and			
	distribution follows Markovian process.	arrival	Inter service	Inter service	Inter arrival	 arrival
41	FCFS stands for	irst come first serve	finish service	serve	tinish come first serve	first come first serve

42	The probability of the number of customers in the system	p[N > k]	p[N < k]	p[N > k]	p[N < k]	p[N > k]
	exceeds k is given by	p[IN > K]		p[in ≥ k]		p[N ~ K]
43	Kendall's notation for representing queueing model is	(a/b/c) : (d/e)	(a/b) : (c/d)	(a/b) : (c/d/e)	(a) : (b/c/d/e)	(a/b/c) : (d/e)
43	(a/b/c/):(d/e) is called notation for representing queueing models.	Kendall's	cauchy's	lagrrange's	Newton's	Kendall's
4.4			mean arrival		mean service	
44	$r = \lambda/\mu$ stands for	traffic intensity	rate	expectation	rate	traffic intensity
45	Arrival distribution followsprocess.	Poisson	exponential	Uniform	Normal	Poisson
46	Probability of the system being empty is given by	1- (λ/μ)	(λ/μ)-2	2- (λ/μ)	1+ (λ/μ)	1- (λ/μ)
47	Inter arrival distribution followsprocess.	Poisson	exponential	Uniform	Normal	exponential
48	If the characteristics of a ququqing system are independent of time, then the system is said to be instate	steady	unsteady	transient	idle	steady
		otoday	unotoday			louuj
49	mean service rate is 24 per nour. The average number of	1	2	2	4	1
	If the traffic intensity is 0.7 and the average arrival rate is 4 per	1	2	5	4	1
50	minute then mean service rate is	5 71/3	6 71/3	7 71/3	8 71/3	5 71/3
	In M/M/1 queueing system if the mean arrival rate is 6 per	0.7 140	0.7 140	7.7 140	0.1140	0.7 140
51	minute and mean service rate is 8 per minute then the average					
-	number of customers in the system is	½ minute	1 minute	3 minutes	1/3 minute	3 minutes
	In M/M/1 queueing system mean arrival rate is 10 per hour and					
52	mean service rate is 12 per hour then the traffic intensity is					
		3/4	1 1/3	5/6	1 1/5	5/6
	A super market has two girls attending to sales at the counters.					
53	If the service rate is 1/4 and the mean arrival rate is 1/6 then the					
	traffic intensity in given by	1/2 minute	1 minute	3 minutes	1/3 minute	1/3 minute
5 4						
54	The Inter arrival rate is 6 per minute and mean service rate is 8	2	4	F	2	4
	If people arrive at one man barbaraban and if the arrival rate is	3	4	5	2	4
	1/12 per minute and mean service rate is 1/10 per minute then					
55	the probability of the customer go straight to the barbers chair is					
		1/6	1/5	2/5	1	1/6
	If people arrive at one man barbershop and if the arrival rate is					
56	1/12 per minute and mean service rate is 1/10 per minute then					
30	the expected number of customers in the barber sh5op					
	is	5	6	4	3	5
	In M/M/1 queueing system mean arrival rate is 3 per hour and					
57	mean service rate is 4 per hour then the traffic intensity is				a/a	
		3/4	1 1/3	1 1/2	2/3	3/4
50	In M/M/1 queueing system mean arrival rate is 12 per hour and					
58	mean service rate is 30 per nour then the probability that there is	0.6	0.5	0.0	0.05	0.6
50	Inter convice distribution follows	U.U Dojogon	U.S Exponential	U.Z	U.20	U.U Exponential
57	inter service distribution followsprocess.	FUISSUIT	Exponential		Nuttia	Exponential

1/λ

PROBABILITY AND QUEUEING THEORY UNIT IV

S.NO	Questions	opt 1	opt 2	opt 3	opt 4	Answer
1						
2	is a function of the possible outcomes of an experiment and also time.	Random variable	Random process	Random line	Random Number	Random process
2	If t is fixed, then {X(s,t)} is a	Random variable	Number	function	function	Random variable
3	If s and t is fixed, then $\{X(s,t)\}$ is a	Random variable	Number	Single time function	Double time function	Number
4			. tumber	Single time	Double time	. tumber
	If s is fixed, then {X(s,t)} is a	Random variable	Number	function	function	Single time function
5	If the index set 'T' is direct ,then the random process denoted by	{x(n)}	X (n)	x	N	${x(n)}$
6		.		Stochastic		
7	A function of the possible outcomes of an experiment is	Random variable	Random process	process	Number	Random variable
8	The probabilistic moder used for characterizing a random signal is caned	Stochastic process				
0	In random process outcomes are mapped into form which is function at time t	line	wave	perpendicular	parellel	wave
9		<i>c</i> 1	r , 1	continuous	r (1	<i></i>
	If X is continuous and t can have any of a continuum of values, then X(t) is called as	continuous random	discrete random	random	discrete random	continuous random
10	If X is continuous and t can have any of a continuum of values, then X(t) is caned as	process	process	continuous	sequences	process
		continuous random	discrete random	random	discrete random	
	If X assumes only discrete and t is continuous, then X(t) is called as	process	process	sequences	sequences	discrete random process
11				continuous		
	If V is continuous but time t takes sub-discuster solves then it is called as	continuous random	discrete random	random	discrete random	continuous random
12	If X is continuous but time t takes only discrete values, then it is caned as	variable	variable	continuous	sequences	sequences
		continuous random	discrete random	random	discrete random	discrete random
	A random process X(s,t) in which both s and t are discrete is called	process	process	sequences	sequences	sequences
13	A process is called process if the future values of any sample function cannot be	datarministia	non datarministia	strong stationary	iointhy stationary	non datarministia
14	A process is called non deterministic process if the future values of any sample function cannot be	deterministic	non deterministic	strong stationary	Jointry stationary	non deterministic
	predicted exactly from	past values	observed values	future values	joint values	observed values
15	A process is called process if the future values of any sample function cannot be					
	predicted exactly from past values	deterministic	non deterministic	strong stationary	jointly stationary	deterministic
16	A process is called deterministic process if the future values of any sample function cannot be predicted exactly from	nget valuee	observed values	future values	joint values	nast values
17		past values	observed values	inture values	Joint values	past values
	A random process is called a, if all its finite dimensional distributions are invariant under translation of time parameter	wide sence stationary	Strict sense	evolutionary	covariance	Strict sense stationary
18	A random process is said to be stationary if its etc are constants	mean	variance	moments	all the above	all the above
19	A random process is said to be stationary if its mean, variable, moments, etc are	past values	observed values	constant	variable	constant
20		-	discrete	continuous		
	A continuous random process satisfying markov property is known as	continuous paramerter markov process	paramerter markov process	paramerter markov chain	discrete paramerter markov chain	continuous paramerter markov process

21			discrete	continuous			
		continuous paramerter	paramerter	paramerter	discrete paramerter	discrete paramerter	
	A continuous random sequence satisfying markov property is known as	markov process	markov process	markov chain	markov chain	markov process	
22		continuous naramerter	naramerter	paramerter	discrete paramerter	discrete naramerter	
	A discrete random sequence satisfying markov property is known as	markov process	markov process	markov chain	markov chain	markov chain	
23		-	discrete	continuous			
		continuous paramerter	paramerter	paramerter	discrete paramerter	continuous paramerter	
74	A discrete random process satisfying markov property is known as	markov process	markov process	markov chain	markov chain	markov chain	
24	P (ii)(n)>0 for some n.	irreducible	non - irreducible	recurrent state	return state	irreducible	
25	P_(ii)(n)>0, for some n>1, then we call the state I of the markov chain as	irreducible	non - irreducible	recurrent state	return state	return state	
26							
	A sum of two independent poisson process is	normal process	stochastic process	poisson process	binomial process	poisson process	
27	A order stationary process has a constant mean	hrst	second	third	fourth	hrst	
20	A first order process has a constant mean	stochastic	non deterministic	stationary	nonstationary	stationary	
29	A first order stationary process has a constant	mean	variance	moments	all the above	mean	
30	A first order stationary process has a mean	constant	variable 'x'	variable 't'	none of this	constant	
31					evolutionary		
	A random process that is not stationary in any sense is called as	normal process	stochastic process	poisson process	process	evolutionary process	
52	A state I is said to be if and only if there is positive probability that the process will not return to this state.	transient	irregular	periodic	aperiodic	transient	
32				· · · · · · ·	-1		
	A random process is called a if its mean is constant and the autocorrelation depends only on the time		strict sense	strong sense			
	difference.	weakly stationary proces	stationary process	stationary process	evolutionary	weakly stationary proces	
33	The tpm of a chain is matrix, since all $Pij \ge 0$ and the sum of all elements of any row of the transition matrix is equal to 1.	stoohastia	singular	non cincular	FOR	stochastic	
34	A stochastic matrix is said to be a regular matrix if all the entries of P^{\wedge} m are	nositive	negative	zero	fractional	nositive	
35	r storaste mark is said to be a regard mark, if an are entres of r - in are	positive	negative	2010	nuouonai	positive	
	The state i is said to be if the return to state i is uncertain.	transient	persistent	recurrent	non null persistent	transient	
36				continuous			
	$\mathbf{I} \rightarrow \mathbf{Y}$ denote the number of talendary calls are sized in the interval (0, t). Then $(\mathbf{Y}(t))$ is a	continuous random	discrete random	random	discrete random	d:	
37	Let X denote the number of telephone can's received in the interval $(0,t)$. Then $\{X(t)\}$ is a	process	process	sequences	sequences	discrete random process	
			Strict sense	weak sense			
	The Poisson process is a	Markov process	stationary process	process	weak sense process	Markov process	
38	The tpm of an irreducible chain is anmatrix.	Irreducible	reducible	singular	non singular	Irreducible	
39	D: 11	strict sense stationary	. 1	weak sense	r	strict sense stationary	
10	Binomiai process is a	process	wide sense proces	continuous	ergodic process	process	
	The maximum temperature of a particular place is (0, t). The set of possible values of X is continuous	continuous random	discrete random	random	discrete random	continuous random	
	in continuous time is an example of	process	process	sequences	sequences	process	
41			not a first-order	second-order			
	If more dependent then the more is called	first-order stationary	stationary	stationary	stationary process	not a first-order	
12	If mean ≠ constant then the process is caned Markov process is classified into types	process.	process.	process.	of order tilree.	stationary process.	
43	The transition probability matrix of a finite state Markov chain is a	Row matrix	column matrix	square matrix	identity matrix	square matrix	
44	The family of all functions X(s,t) is called	random process	random signal	discrete process	discrete signal	random process	
45							
	There exists processes where the statistical value like mean, variance are constants. Such processes are	4-4	non-deterministic				
16	called	strict sense stationary	process	stationary process	wide sense process	stationary process	
10	SSS process is	process	wide sense proces	process	ergodic process	process	
47	A random process in which the future value depends only on the present value and not on the past	-	-	-		-	
	values is called a	Markov process	Markov chain	Irreducible chain	Periodic state	Markov process	
48	The derivative of mean of a stationary process is	1	3	4	0	0	
49 50	RXY(t) = 0 if the processes are	independent	orthogonal	dependent	same	orthogonal	
.0			$C_{\rm var}(t_1, t_2) =$	$C_{var}(t, t_2) =$	$C_{\text{var}}(t, t_2) =$		
			$R_{XY}(t_1,t_2) =$	$R_{XY}(t_1,t_2) =$	$Rxy(t_1,t_2) =$		
	Two random processes are said to be uncorrelated if	$C_{XY}(t_1, t_2) = 0$	$E[X(t_1)] E[Y(t_2)]$	$E[X(t_1)] E[Y(t_2)]$	$E[X(t_1)] E[Y(t_{21})]$	$C_{XY}(t_1, t_2) = 0$	
51	The state i is said to be if its mean recurrence time is finite	non null persistent	null persistent	transient	recurrent	non null persistent	
52	The state i is state to be in its incur recurrence time is initic.						
22	The state i is said to be if its mean recurrence time is infinite.	non null persistent	null persistent	transient	recurrent	null persistent	
53	The state i is said to be the fit mean recurrence time is infinite. If the transition probability matrix is regular, then the homogeneous Markov chain is	non null persistent regular	null persistent irregular	transient periodic	recurrent aperiodic	null persistent regular	
53 54	The state is said to be if its mean recurrence time is infinite. If the transition probability matrix is regular, then the homogeneous Markov chain is If the period di =1, then state i is said to be	non null persistent regular regular	null persistent irregular irregular	transient periodic periodic	recurrent aperiodic aperiodic	null persistent regular aperiodic	

57	 Possion	· u.ueo o. u,	 	·· ····	 P.000000	 	-p
51							

		vector	state	random	universal	state
58	77 I' () () () I I	11		.,		
	The discrete parameter Markov process is called a	weakly stationary	covariance	stationary process	Markov abain	Markov abain
50	Two states i and i which are accessible to each other are said to	Irraduaible	raduaibla	stationary process	absorbing	aommunicate
60	A state is said to be anstate if no other state is accessible from it	Irraducible	reducible	communicate	absorbing	abcorbing
61	A state is said to be an state in no other state is accessible from it.	recurrent	reducible	communicate	absorbing	recurrent
62	All regular Markov chain are	Markov process	ergodic process	WSS	SSS	ergodic process

0	UNIT III Questions	opt 1	opt 2	opt 3	opt 4	Answer
0	Let S be the sample space. Let X &Y be two functions each	two dimensional	one dimensional	opt 5	opt 4	two dimensional rand
1	assigning a real number to each outcome. Then (X,Y) is a	random variable	random variable	Marginal distribution	Conditional distribution	variable
2	If the possible values of (X,Y) are finite or countably infinite, then (X,Y) is called a	two dimensional contiouous random variable	one dimensional discrete random variable	two dimensional contiouous random variable	one dimensional contiouous random variable	two dimensional conti random variable
3	The function $f(x,y) = P(X=xi, Y=yj) = P(xi,yj)$ is called thefor continuous random variable X & Y.	joint probability density function	joint probability mass function	joint probability function	cumulative distribution function	joint probability densi function
	The correlation between the heights and weights in increasing order	positive	negative	zero	partial	positive
4	The value of the correlation coefficient lies	between -1 and 1	between 1 and 2	between 2 and 3	between 0 and 1	between -1 and 1
	If the curve is a straight line, then it is called the	the line of correlation	the line of regression	the line of covariance	the line of variance	the line of regression
6	The function $f(x,y) = P(X=xi, Y=yj) = P(xi,yj)$ is called thefor continuous random variable X & Y	joint probability density	joint probability	joint probability	cumulative distribution	joint probability mass
	The set (yj. pj.) is called	distribution function	marginal distribution function	marginal distribution function of X.	cumulative distribution	marginal distribution
8 9	The value of F(- infinity, y) =	1	of Y 2	3	0	0
10	If X & Y are independent then the correlation coefficient $r\!=\!$	1	2	0	3	0
	is a mathematical measure of the average relationship between two or more variables interms of the original limits of the	Correlation	Regression	covariance	mean	Regression
11 12	data If the correlation coefficient r =0, we get	tanq=π	$tanq=\pi/3$	$tanq=\pi/4$	tang=π/2	$tanq=\pi/2$
	The coefficient of correlation is independent of change of and	scale, origin	vector, origin	variable, constant	interer, origin	scale, origin
13	The regression analysis confined to their study of only two variable at	Simple	Multiple	Linear	two	Simple
14	Joint probability is the probability of theoccurrence of two or more events	Simultaneous (or) joint	Conditional	Marginal probability	density function	Simultaneous (or) joir
10	If X=Y, then correlation coefficient between them is	1	zero	less than one	greater than one	1
10	If the possible values of (X,Y) are finite, then (X,Y) is called a	continuous	Two dimensional	one dimensional	both one dimensional and	Two dimensional rand
10	If X & Y arerandom variable, then f(x,y) is called joint	Discrete	continuous	both discrete and	one dimensional random	continuous
18	The regression analysis confined to their study of only two variable	two	Simple	Multiple	Linear	Simple
19	In Rank correlation the correction factor is added for each	Repeated	Non-repeated	single	fractional	Repeated
20	When the correlation coefficient is equal to the	1	2	0	3	1
21	The set {xi. pj.) is called	distribution function	marginal distribution function	marginal distribution function of X.	cumulative distribution function	marginal distribution of X.
22	The correlation between volume and pressure of a perfect gas is	positive	negative	partial	multiple	negative
23	If the value of y decreases as the value of x increases then there is correlation between two variables.	positive	negative	partial	multiple	negative
25	The correlation between the income and expenditure is	positive	negative	partial	multiple	positive
20	Two random variables X and Y with joint probability density function of $f(x, y)$ is said traindomendant if	f(x,y)=f(x)+f(y)	f(x,y)=f(x)-f(y)	f(x,y)=f(x)*f(y)	f(x,y)=f(x)/f(y)	f(x,y)=f(x)*f(y)
20	The value of F(- infinity, infinity) =	1	2	3	0	1
28	The ordinal number indicating the position of a given attributes in the ranking is called	Deviation	Karl Pearson's	Rank	Regression	Rank
29	If the variation of one variable has no relation with the variation on the other is called correlation.	positive	negative	zero	multiple	zero
30	method gives us exact measure of degree of correlation between two variables.	Spearman's	Karl Pearson's	Rank	Cauchy's	Spearman's
31 32	If $fx(x)>0$, then $f(y x) =$ Cov(aX, bY) =	f(x,y)*f(x). b Cov(X,Y)	f(x,y)-f(x) a Cov(X,Y)	f(x,y)+f(x). ab Cov(X,Y)	f(x,y)/f(x) Cov(aX, bY)	f(x,y)/f(x) ab Cov(X,Y)
33	If X and Y are statically independent then $Cov(X,Y) = $	1	0	2	3	0
34	If $f_Y(Y)>0$, then $f(X Y) =$ The points in the scatter diagram will cluster around some curve	f(x,y)*f(x).	f(x,y)-f(x) the curve of	f(x,y)+f(x).	f(x,y)/f(x)	f(x,y)/f(y)
35	called	the curve of correlation	regression	correlation	regression	the curve of regressio
36	variance.	Baye's	Central limit	Einstein-Wiener	Binomial	Central limit
37	If two random variables are independent, then the density function of their is given by the convolution of their density functions.	quotient	multiply	subtract	sum	sum
38	The coefficient of variation is defined as	(standard deviation / mean) + 100	(standard deviation / mean) * 100	(standard deviation / mean) - 100	(mean / standard deviation) * 100	(standard deviation / 1 100
39	Relation between corellation and regression is given by	r = Square root [b_(yx) * b_(xy)]	r = Square root [b_(yx) / b_(xy)]	$\label{eq:square root} \begin{split} r &= Square \ root \ [b_(yx) \\ &+ \ b_(xy)] \end{split}$	$r = Square root [b_(yx) - b_(xy)]$	r = Square root [b_(yr b_(xy)]
40	In correlation relationship between three or more variables is studied.	simple	partial	multiple	linear	multiple
41	Perfect positive correlation is also called correlation.	direct	indirect	inverse	partial	direct
4.2	Two random variables are said to be orthogonal if	correlation is zero	rank is zero	covariance is zero	one	correlation is zero
42	Two random variables are said to be uncorrelated if correlation coefficient is	zero	one	two or more	orthogonal	zero
44	The coefficient of correlation	cannot be positive	cannot be negative	can be either positive or negative	zero	can be either positiv
	If X=Y, then correlation cofficient between them is	1	7870	less than one	gerater than one	1
45 AC	Correlation means relationship between variables	two	one	two or more	three	two or more
40	Correlation means relationship between variables	two	one	two or more	unce	two or more

STANDARD DISTRIBUTIONS UNIT II

5.NC 1	Questions Binomial distribution is symmetrical if	opt 1 $p = q = \frac{1}{2}$	opt 2 $p = q = \frac{3}{4}$	opt 3 $p = q = 4/5$	opt 4 p = q = 2/3	Answer $p = q = \frac{1}{2}$
2	A normal curve has an	Elliptic	parabolic	hyperbolic	asymptote	asymptote
3	Variance of binomial distribution is	npq	np	nq	square root of (npq)	npq
4 e	The number of printing errors at each page of a book" is a xample of distribution.	Normal	Uniform	Binomial	Poisson	Poisson
۱ 5	Aoment generating function of Uniform density function is	e^bt- e^at/ t (b- a)	e^bt+ e^at/ t (b+a)	e^bt+ e^at/ t (b-a)	e^bt- e^at/ t (b+a)	e^bt- e^at/ t (b- a)
6 ^I	or binomial distribution	variance -1= mean	variance = mean	variance > mean	variance < mean	variance < mean
- 7	is a non negative continuous random variable.	Binomial distribution	Gamma distribution	Poisson distribution	negative binomial distribution	Gamma distributio n
8 5	standard deviation of binomial distribution is	√npq	np(q-p)	npq	npq(q-p)	√npq
9	The density function of the Uniform distribution is	1/ ba a <x<b< td=""><td>1/ (b+a) a<x<b< td=""><td>1/ba a>x>b</td><td>1/ (b-a) a<x<b< td=""><td>1/ (b-a) a<x<b< td=""></x<b<></td></x<b<></td></x<b<></td></x<b<>	1/ (b+a) a <x<b< td=""><td>1/ba a>x>b</td><td>1/ (b-a) a<x<b< td=""><td>1/ (b-a) a<x<b< td=""></x<b<></td></x<b<></td></x<b<>	1/ba a>x>b	1/ (b-a) a <x<b< td=""><td>1/ (b-a) a<x<b< td=""></x<b<></td></x<b<>	1/ (b-a) a <x<b< td=""></x<b<>
N 10	Moment generating function of Binomial distribution	Mx (t) = (1 – p) ^n	Mx (t) = (pe^t + q)^ n	Mx (t) = (pe^t – p) ^n	Mx (t) = (e^t + q)^ n	(pe^t +q)^ n
11	The mean and variance of a standard normal distribution is	N(1,2)	N(0,1)	N(0,2)	N(0,40)	N(0,1)
12	Variance of Uniform density function is	b /2	[(b-a)^2]/12	ba /2	[(b+a)^2] /12	[(b-a)^2]/12
/ 13 f	A continuous random variable X has a probability density function $f(x)=K$, $0 \le x \le 1$. Find K.	1	2	3	4	1
14 r	If X is normally distributed with mean 1 and S.D. $\frac{1}{2}$, find the probability that X > 2	0.0288	0.0544	0.0228	0.0882	0.0228
14 F 15 I	Aean of Uniform density function is	b /2	(b-a) /2	ba /2	(b+a) /2	(b+a) /2
16	The formula of variance is	Var[X] = E(X^2) - [E(X)]^ 2	$Var[X] = E(X^2) - [E(X)]$	Var[X] = E(X) – [E(X)]^ 2	Var[X] = E(X) - [E(X)].	Var[X] = E(X^2) - [E(X)]^ 2
17	Binomial distribution is	nCx(p^x)q^(n-x)	nCx(p^x)q^(n+x)	nCx(p^-x)q^(n-x)	nCx(p^-x)q^(n+x)	nCx(p^x)q ^(n-x)
18 M 19	Aean of Poisson distribution is Gamma of n =	λ (n-1) !	λ/t (n +1) !	λ-t n!	λ+t 0!	λ (n-1) !
20	Moment generating function of Exponential distribution is	$\lambda/(\lambda-t)$	$2\lambda/(\lambda-t)$	$\lambda/(\lambda+t)$	$2\lambda/(\lambda-t)$	$\lambda/(\lambda-t)$
20 21 22	Variance of Poisson distribution is Exponential distribution is	λ $\lambda e^{\lambda}(\lambda x)$	2λ λe^(-λx)	3λ λe^(-2λx)	4λ λe^(2λx)	λ λe^(-λx)
23	Gamma of $(1/2) =$	$(\pi^{2})/2$	square root of $\pi/2$	square root of $\pi/3$	square root of π	square root of π
24	Moment generating function of Poisson distribution	$e^{\lambda}[\lambda(e^{t-1})]$	$e^{\lambda}[\lambda(e^{t+1})]$	$e^{\lambda}[\lambda(e^{t-2})]$	$e^{-\lambda(e^{-t-1})]}$	e^ [λ(e^t- 1)]
25 N	Mean of Exponential distribution is	$1/\lambda$	λ	$\lambda/2$	2/λ	1/λ
26	Geometric distribution is given by $P{X=x}=$ where $x=1,2,$	pq^(x-1)	pq^(x-2)	pq^(x+1)	pq^(2x-1)	pq^(x-1)
I 27 t	f the mean and variance of a binomial variate are 8 and 6, then he probability of failure is given by	q=3/4	q=4/3	q=1/4	q=1/3	q=3/4
1 28 t	the mean and variance of a binomial variate are 20 and 16, then he probability of success is given by	p=1/5	p=2/5	p=3/5	p=3/4	p=1/5
29 ^l	f n=5 and p=1/2 then the mean of a binomial variate is	0.50	2.50	3.5	4.5	2.5
30 1	he mean of a poisson variate is 2 . Find its variance.	2	3	1	2.5	2
F 31 ⁻	oisson distribution is the limiting case ofdistribution.	Binomial distribution	Gamma distribution	Poisson distribution	negative binomial distribution	Binomial distributio n

32	The other name of uniform distribution is	Binomial distribution	Gamma distribution	Poisson distribution	rectangular distribution	rectangula r distributio n
33	In a Uniform distribution if X is distributed uniformly on (0,30) then its density function is given by	F(x)= 1/13	F(x)= 2/13	F(x)= 1/3	F(x)= 1/30	F(x)= 1/30
34	is larger than the mean for a negative binomial distribution	Variance	Standard deviation	Mean deviation	Quartile deviation	Variance
35	Mean of binomial distribution is	np	npq	n+1	n	np
36	Third moment of Binomial distribution is	n(q-p)	np(q-p)	npq	npq(q-p)	npq(q-p)
37	For a negative binomial distribution	Var(X) > E(X)	$Var(X) \le E(X)$	Var(X) = E(X)	Var(X) / E(X)	Var(X) > E(X)
38	If X follows a Poisson distribution such that $P(X=1) = 1/4$ and $P(X=2) = 3/8$, find $P(X=3)$.	0.123	1.234	2.34	0.375	0.375
39	The height of persons in a country is a random variable of the type	continuous random variable	neither discrete nor continuous random vaiables	Continuous as well as discrete random variable	discrete random variable	continuous random variable
40	A family of parametric distrbution in which mean is equal to variance is	Binomial distribution	Gamma distribution	normal Distribution	Poissson distribution	Poissson distributio n
41	A family of parametric distrbution in which mean is always greater than its variance is	Binomial distribution	Gamma distribution	Geometric Distribution	Poissson distribution	Geometric Distributi on
42	The distribution has the memory less property.	Gamma distribution	Geometric distribution	Geometric distribution	Poissson distribution	Geometric distributio n
43	The mean of the binomial distribution is than its variance	greater than	Less than	more	normal	greater than
44	Mean and variance of geometric distribution are	related	correlated	rectangle	range	related
45	A distribution where the mean and median have different values is not a distribution	normal	binomial	poisson	gamma	normal
46	Normal distribution was invented by	Laplace	De-Moivre	Gauss	all the above	all the above

PROBABILITY AND RAMDOM VARIABLES

UNIT I

5.NC 1	Questions "It is possible to live without water" There is	opt 1 Certainty	opt 2 uncertainty	opt 3 possibility	opt 4 impossibility	opt 5	opt 6
2	In drawing a card from the pack of cards, the numbers of cases favorable to the event of getting a diamond card is	7	12	10	3		
3	Probability of the possible events is "Everyday the sun rises in the east" Look the statement and there is	1 certainty	0 uncertainty	2 possibility	3 impossibility		
6	In the theory of probability we represent 'certainty' by	1	2	10	0		
7	In the theory of probability we represent 'uncertainty' by	1	2	a positive fraction	0		
8	In the theory of probability we represent 'impossibility' by	1	2	a positive fraction	0		
9 10	The value of uncertainty lies between An action or an operation which can produce any result or outcome is called a	1 to 10 Random experiment	10 to 15 Probability	0 and 1 Statistics	-1 to 1 mathematics		
11	The outcomes of an action is known as	event	Trial	Random experiment	Theory		
12	The another name of Random experiment is	event	Trial	Random experiment	Theory		
13	The another name of events is	event	Trial	Random experiment	cases		
14	Rolling of die is a	Trial	event	Random experiment	cases		
15	In a rolling of die, getting 6 is	Trial	event	Random experiment	cases		
16	An event whose occurrence is inevitable when an experiment is performed is called as	cases	Trial	Certain Event	Random experiment		

17	Another name of certain event is	event	Uncertain event	Compound event	Sure event
18	An event which can never occur when an experiment is performed is called an	Impossible event	Compound event	Sure event	Certain Event
19	There are types of events.	7	9	10	2
20	An event is called if it corresponds to a single possible out come of the experiment.	simple	Compound event	Certain event	Composite event
21	An event is called if it does not correspond to a single possible out come of the experiment.	simple	Compound event	Certain event	Uncertain event
22	Another name of compound event is	simple	Composite event	Certain event	Uncertain event
23	In rolling of single die, occurrence of 8 is an	simple	Compound event	Certain event	Impossible event
24	In rolling of single die, the chance of getting 5 is a	simple	Compound event	Certain event	Impossible event
25	In rolling of single die, the chance of getting 2,4,6(even numbers) are	simple	Compound event	Certain event	Impossible event
26	The totality of all possible outcomes of a random experiment is called a	Sample space.	Certain event	Impossible event	Compound event
27	A possible outcome or element in a sample space is called a	Sample event	Certain event	Sample point	Compound event
28	In throwing a die, all the outcomes 1,2,3,4,5 and 6 are together constitute a sample space. Getting any on eof the face upwards is called	Sample event	Certain event	Sample point	Compound event
29	The number of cases favorable to an event in a trial are the number of outcomes which entail the happening of the event is called	Favourable event	Certain event	Sample point	Compound event
30	In a tossing of two coins, the number if cases favorable to the event of getting a head are	7	9	10	3
31	In drawing a card from the pack of cards, the numbers of cases favorable to the event of getting a court card are	7	12	10	3
32	The out comes are said to beif none of them is expected to occur in preference to other.	Equally likely	Exhaustive events	Dependent events.	Complementar y events.

33	Two events are said to bewhen both cannot happen simultaneously in a single trial.	Mutually exclusive	Exhaustive events	Dependent events.	Complementar y events.
34	Out comes are said to be when they include all possible outcomes.	Mutually exclusive	Exhaustive events	Dependent events.	Complementar y events.
35	Two or more events are considered to beif the occurrence of an event does not affect the occurrence of the other.	Mutually exclusive	Exhaustive events	Dependent events.	Independent events.
36	Two events are said to be, if the occurrence or nonoccurrence of an event in any trial affects the occurrence of the other event in other trials.	Mutually exclusive	Exhaustive events	Dependent events.	Independent events.
37	Let A and B are two events. Then A is called of B if A and B are mutually exclusive and exhaustive.	Complementary event	Exhaustive events	Dependent events.	Independent events.
38	p + q =	7	9	1	3
39	If P(A) is 1, the event A is called a	Cases	Trial	Certain Event	Random experiment
40	If P(A) is 0, the event A is called a	Cases	Trial	Certain Event	Impossible event
41	Probability of the impossible events is	0	9	8	3
42	The rule from the original sample space to a numerical sample space, subjected to constraints is called a	Random variable	Random constant	constant	variable
43	Random variable is a which maps the numerical or non- numerical sample space of the random experiment to real values.	Imaginary valued function	Real valued function	Complex valued function	Rational valued function
44	Random variable is a real valued function which is also	Multi-valued function	double-valued function	Single valued function	triple-valued function
45	The set of values which the random variable X takes is called	Random variable	One-dimensional random variable	Two dimensional random variable	Spectrum
46	is one which takes on real values.	Real random variable	Complex random variable	Multi dimensional random variable	Continuous random variable

47	is defined in terms of real random variable.	Real random variable	Complex random variable	Multi dimensional random variable	Continuous random variable
48	A random variable X is if it assumes only discrete values.	spectrum	complex	continuous	discrete
49	The vector random variable is also known as	random vector	scalar vector	one- dimensional random variable	two dimensional random variable
50	A function which assigns a vector to each point of sample space is called a	vector random variable	scalar vector	one- dimensional random variable	two dimensional random variable
51	One-dimensional random variable is also called as	scalar-valued random variable	scalar vector	one- dimensional random variable	two dimensional random variable
52	The spectrum of random variable can have	positive value	negative value	positive integer value	negative integer value
53	Probability of a single real value in a continuous random variable is	two	three	four	zero
54	Probability distribution function and probability density function of a continuous random variable are	continuous	discrete	single	partial
55	For a discrete random variable, probability distribution function is right continuous and probability density function is	continuous	discrete	single	partial
56	For a mixed random variable, probability distribution function and probability density function are	continuous	discrete	single	mixed
57	For a discrete random variable, the probability density function represents the	probability mass function	probability distribution function	probability density function	none of these

58	If $P(X \le or =k) = P(X \ge k)$, then each probability is equal to	1	2	3	1/2
59	A density function may correspond to different	probability mass function	probability distribution function	probability density function	random variable
60	A discrete random variable can be considered as a limiting case of with impulse distribution.	continuous random variable	discrete random variable	single random variable	mixed random variable

Answor
Answer
impossibility
10
12
1
certainty
-
uncertainty
1
a positive
fraction
0
0 and 1
Random
experiment
enpermient
event
Trial
cases
Cubeb
Trial
event
~
Certain Event

Sure event
Impossible event 2
simple
Compound event Composite event Impossible event
simple
Compound event
Sample space.
Sample point
Sample point
Favourable event
3
12
Equally likely

Mutually exclusive Exhaustive events Independent events. Dependent events. Complementary event 1 Certain Event Impossible event 0 Random variable Real valued function Single valued function Spectrum Real random

variable

Complex random variable
discrete
random vector
vector random variable
scalar-valued random variable
negative value
zero
continuous
discrete
mixed
probability mass function

1/2

random variable

continuous random variable