

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2018 onwards) **DEPARTMENT OF PHYSICS**

SUBJECT : MATHEMATICAL PHYSICS - I SUBJECT CODE: 18PHU103

SEMESTER : I CLASS : I B.Sc.Phy

Syllabus

2018-2021Batch

SCOPE:

To make use of the mathematical methods to solve physics problems and to provide students with basic skills necessary for the application of mathematical methods in physics

Objective:

The main objective of this course is to provide the student with a repertoire of mathematical methods that are essential to the solution of advanced problems encountered in the fields of applied physics and engineering. In addition, this course is intended to prepare the student with mathematical tools and techniques that are required in advanced courses offered in the applied physics

UNIT 1

Basic of C language: Introduction, Data types, Operators and Expressions, Conditional Statements, Input and output Statements (Programs)

UNIT 2

Complex Analysis: Brief revision of Complex numbers & their graphical representation. Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. Integration of a function of a complex variable. Cauchy's Integral formula.

UNIT 3

Special Functions Definition – The Beta function – Gamma function – Evaluation of Beta function – Other forms of Beta function – Evaluation of Gamma function – Other forms of Gamma function - Relation between Beta and Gamma functions – Problems.

UNIT4

Matrices Introduction – special types of Matrices – Transpose of a Matrix – The Conjugate of a Matrix – Conjugate Transpose of a Matrix – Symmetric and Anti symmetric – Hermitian and skew Hermitian – Orthogonal and Unitary Matrices – Properties – Characteristics equation – Roots and characteristics vector – Diagonalization of matrices – Cayley – Hamilton theorem – Problems

UNIT 5

Vector Calculus ∇ Operator – Divergence – Second derivative of Vector functions or fields – The Laplacian Operator – Curl of a Vector – Line Integral – Line Integral of a Vector field around an infinitesimal rectangle – Curl of Conservative field – Surface Integral – Volume Integral (without problem) – Gauss's Divergence theorem and it's proof in the simple problems – Stoke's and its proof with simple problems.

SUGGESTED READINGS:

- 1. Mathematical Physics by Sathya prakash, S.Chand & company, New Delhi.
- 2. Mathematical Physics by B.D.Gupta, Vikas Publishing house Pvt Ltd, New Delhi.
- Introduction to Mathematical Physics: Methods & Concepts, By Chun Wa Wong, 2013, Oxford University press, ISBN -978-0-19-964139-0.
- 4. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- 5. Essential Mathematical Methods, K.F.Riley and M.P.Hobson, 2011, Cambridge University Press.
- Mathematical Physics by By Shigeji Fujita, Salvador V. Godoy, 2010, Wiley VCH Verlag GmbH & Co. KGaA, ISBN- 978-3-527-40808-5.
- 7. Mathematical Physics by Pavan Kumar Chaurasya, Campus Books International publisher, 2013, ISBN 8180303160, 9788180303166.
- 8. Mathematical Physics by Harper. C, Prentice Hall of India, 2013.

Letter teleform (fore) External teleform (fore) Example teleform (fore) Comend to be University (Established University) (Call, 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2018 onwards) **DEPARTMENT OF PHYSICS**

SUBJECT : MATHEMATICAL PHYSICS -I SUBJECT CODE: 18PHU103

SEMESTER : I CLASS : I B.Sc.Phy

S.No	Lecture	Topics to be covered	Support
5.110	Duration	Topies to be covered	Material/Page Nos
	Hour		Material, 1 agen (05
		UNIT-I	
1	1	Introduction	T9:1
2	1	Data types	T9:11,12
3	1	Operators and Expressions	T9:16-27
4	1	Conditional Statements	
5	1	Continuation	
6	1	Input and output Statements	T9:27-44
7	1	Continuation	
8	1	(Programs)	
9	1	Continuation	
10	1	Revision	
	Total No Of Hours Planned ForUnit-I=10		
		UNIT-II	
1	1	Introduction	T1:287
2	1	Brief revision of Complex numbers & their	T1:289
		graphical representation.	
3	1	Roots of Complex Numbers.	
4	1	Functions of Complex Variables	T1:293
5	1	Analyticity and Cauchy-Riemann Conditions.	T1:296
		Examples of analytic functions	
6	1	Continuation	
7	1	Singular functions: poles and branch points, order of singularity.	T1:331

LECTURE PLAN DEPARTMENT OF PHYSICS

8	1	Integration of a function of a complex variable.		
9	1	Cauchy's Integral formula	T1:318	
10	1	Continuation		
11	1	Revision		
	Total No Of Hours Planned ForUnit-II=11			
		UNIT-III		
1	1	Introduction		
2	1	Special Functions Definition	T1:262	
3	1	The Beta function	T1:262	
4	1	Gamma function	T1:262	
5	1	Evaluation of Beta function	T1:263	
6	1	Other forms of Beta function	T1:263	
7	1	Evaluation of Gamma function	T1:264	
8	1	Other forms of Gamma function.	T1:265	
9	1	Relation between Beta and Gamma functions	T1:266	
10	1	Problems		
11	1	Revision		
	Т			
		UNIT-IV		
1	1	Matrices Introduction	T1:109	
2	1	special types of Matrices	T1:109-113	
3	1	Transpose of a Matrix	T1:112	
4	1	The Conjugate of a Matrix	T1:114	
5	1	Conjugate Transpose of a Matrix		
6	1	Symmetric and Anti symmetric	T1:114	
7	1	Hermitian and skew Hermitian	T1:117	
8	1	Orthogonal and Unitary Matrices, Properties	T1:127,129	
9	1	Characteristics equation, Roots and characteristics	T1:159,160	
		vector		
10	1	Diagonalization of matrices	T1:173	
11	1	Cayley – Hamilton theorem	T1:165-166	
12	1	Problems		
13	1	Problems		
14	1	Problems		
15	1	Revision		
	Total No (Of Hours Planned ForUnit-IV=15		
		UNIT-V		

1	1	Vector Calculus ∇ Operator	T1:18	
2	1	Divergence – Second derivative of Vector functions or fields	T1:24-28	
3	1	The Laplacian Operator	T1:29	
4	1	Curl of a Vector.		
5	1	Line Integral – Line Integral of a Vector field around an infinitesimal rectangle	T1:22	
6	1	Curl of Conservative field – Surface Integral – Volume Integral (without problem)	T1:22,23	
7	1	Gauss's Divergence theorem and it's proof in the simple problems	T1:36	
8	1	Stoke's and its proof with simple problems	T1:47	
9	1	Problems		
10	1	Revision		
11	1	Old Question paper Discussion		
12	1	Old Question paper Discussion		
13	1	Old Question paper Discussion		
Total No Of Hours Planned ForUnit-V=13				
	Total No Of Hours Planned = 60			

SUGGESTED READINGS:

- 1. Mathematical Physics by Sathya prakash, S.Chand & company, New Delhi.
- 2. Mathematical Physics by B.D.Gupta, Vikas Publishing house Pvt Ltd, New Delhi.
- Introduction to Mathematical Physics: Methods & Concepts, By Chun Wa Wong, 2013, Oxford University press, ISBN -978-0-19-964139-0.
- 4. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- 5. Essential Mathematical Methods, K.F.Riley and M.P.Hobson, 2011, Cambridge University Press.
- Mathematical Physics by By Shigeji Fujita, Salvador V. Godoy, 2010, Wiley VCH Verlag GmbH & Co. KGaA, ISBN- 978-3-527-40808-5.
- 7. Mathematical Physics by Pavan Kumar Chaurasya, Campus Books International publisher, 2013, ISBN 8180303160, 9788180303166.

- 8. Mathematical Physics by Harper. C, Prentice Hall of India, 2013.
- 9. C Programming and Oops by I.Edwin Dayanand and R.K.Selvakumar, N.V.Publications, pollachi.

UNIT I

Basic of C language: Introduction, Data types, Operators and Expressions, Conditional Statements, Input and output Statements (Program)

BASICS OF C LANGUAGE:

C is a general-purpose high level language that was originally developed by Dennis Ritchie for the Unix operating system. It was first implemented on the Digital Equipment Corporation PDP-11 computer in 1972.

The Unix operating system and virtually all Unix applications are written in the C language. C has now become a widely used professional language for various reasons.

- Easy to learn
- Structured language
- It produces efficient programs.
- It can handle low-level activities.
- It can be compiled on a variety of computers.

Facts about C

- C was invented to write an operating system called UNIX.
- C is a successor of B language which was introduced around 1970
- The language was formalized in 1988 by the American National Standard Institue (ANSI).
- By 1973 UNIX OS almost totally written in C.
- Today C is the most widely used System Programming Language.
- Most of the state of the art software have been implemented using C

Why to use C?

C was initially used for system development work, in particular the programs that make-up the operating system. C was adopted as a system development language because it produces code that runs nearly as fast as code written in assembly language. Some examples of the use of C might be:

- Operating Systems
- Language Compilers
- Assemblers
- Text Editors
- Print Spoolers
- Network Drivers
- Modern Programs
- Data Bases
- Language Interpreters
- Utilities

DATA TYPES:

C has a concept of 'data types' which are used to define a variable before its use. The definition of a variable will assign storage for the variable and define the type of data that will be held in the location. The value of a variable can be changed any time.

C has the following basic built-in data types.

- int
- float
- double
- char

Please note that there is not a boolean data type. C does not have the traditional view about logical comparison, but thats another story.

```
int - data type
```

int is used to define integer numbers.

```
{
    int Count;
    Count = 5;
}
```

float - data type

float is used to define floating point numbers.

```
{
  float Miles;
  Miles = 5.6;
}
```

```
double - data type
```

double is used to define BIG floating point numbers. It reserves twice the storage for the number. On PCs this is likely to be 8 bytes.

```
{
double Atoms;
Atoms = 2500000;
}
```

char - data type

char defines characters.

```
{
    char Letter;
    Letter = 'x';
}
```

Modifiers

The data types explained above have the following modifiers.

- short
- long
- signed
- unsigned

The modifiers define the amount of storage allocated to the variable. The amount of storage allocated is not cast in stone. ANSI has the following rules:

```
short int <= int <= long int
```

```
float <= double <= long
```

double

What this means is that a 'short int' should assign less than or the same amount of storage as an 'int' and the 'int' should be less or the same bytes than a 'long int'. What this means in the real world is:

COURSE NAME: MATHEMATICAL PHYSICS-I

BATCH-2018-2021

UNIT: I

Type Bytes	Range	
short int 2	-32,768 -> +32,767	(32kb)
unsigned short int 2	0 -> +65,535	(64Kb)
unsigned int 4	0 -> +4,294,967	,295 (4Gb)
int 4 -2,14	7,483,648 -> +2,147,48	33,647 (2Gb)
long int 4 -2,	147,483,648 -> +2,147,	483,647 (2Gb)
signed char 1	-128 -> +127	
unsigned char 1	0 -> +255	
float 4		
double 8		
long double 12		

These figures only apply to todays generation of PCs. Mainframes and midrange machines could use different figures, but would still comply with the rule above.

OPERATORS AND EXPRESSION:

CLASS: I BSC Physics

COURSE CODE: 18PHU103

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called operands and + is called operator. C language supports following type of operators.

- Arithmetic Operators
- Logical (or Relational) Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators

Arithmetic Operators:

There are following arithmetic operators supported by C language:

Assume variable A holds 10 and variable B holds 20 then:

Operator	Description	Example
+	Adds two operands	A + B will give 30
-	Subtracts second operand from the first	A - B will give -10
*	Multiply both operands	A * B will give 200
/	Divide numerator by denumerator	B / A will give 2
%	Modulus Operator and remainder of after an integer division	B % A will give 0
++	Increment operator, increases integer value by one	A++ will give 11
	Decrement operator, decreases integer value by one	A will give 9

Logical (or Relational) Operators:

The following are the logical operators supported by C language.

Assume variable A holds 10 and variable B holds 20 then:

EVEN INFORMATION

UNIT: I

CLASS: I BSC Physics COURSE CODE: 18PHU103

BATCH-2018-2021

Operator	Description	Example
==	Checks if the value of two operands is equal or not, if yes then condition becomes true.	(A == B) is not true.
!=	Checks if the value of two operands is equal or not, if values are not equal then condition becomes true.	(A != B) is true.
>	Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.	(A > B) is not true.
<	Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.	(A < B) is true.
>=	Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.	(A >= B) is not true.
<=	Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.	(A <= B) is true.
&&	Called Logical AND operator. If both the operands are non zero then then condition becomes true.	(A && B) is true.
	Called Logical OR Operator. If any of the two operands is non zero then then	(A B) is true.

CLASS: I BSC Physics COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: I BATCH-2018-2021

	condition becomes true.	
	Called Logical NOT Operator. Use to	
,	reverses the logical state of its operand.	$I(\Lambda \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
:	If a condition is true then Logical NOT	(A & B) is faise.
	operator will make false.	

Bitwise Operators:

Bitwise operator works on bits and perform bit by bit operation.

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

 $B = 0000 \ 1101$

A&B = 0000 1100

 $A|B = 0011 \ 1101$

A^B = 0011 0001

 $\sim A = 1100\ 0011$

There are following Bitwise operators supported by C language

UNIT: I

COURSE NAME: MATHEMATICAL PHYSICS-I

CLASS: I BSC Physics COURSE CODE: 18PHU103

BATCH-2018-2021

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) will give 12 which is 0000 1100
	Binary OR Operator copies a bit if it exists in eather operand.	(A B) will give 61 which is 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) will give 49 which is 0011 0001
~	Binary Ones Complement Operator is unary and has the efect of 'flipping' bits.	(~A) will give -60 which is 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 will give 240 which is 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 will give 15 which is 0000 1111

Assignment Operators:

There are following assignment operators supported by C language:

Operator Description	Example
----------------------	---------

UNIT: I

COURSE NAME: MATHEMATICAL PHYSICS-I

CLASS: I BSC Physics COURSE CODE: 18PHU103

BATCH-2018-2021

=	Simple assignment operator, Assigns values from right side operands to left side operand	C = A + B will assigne value of $A + B$ into C
+=	Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand	C += A is equivalent to $C = C + A$
-=	Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand	$C \rightarrow A$ is equivalent to $C = C - A$
*_	Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand	C *= A is equivalent to $C = C * A$
/=	Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand	$C \neq A$ is equivalent to $C = C \neq A$
%=	Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand	C %= A is equivalent to $C = C$ % A
<<=	Left shift AND assignment operator	$C \ll 2$ is same as $C = C \ll 2$
>>=	Right shift AND assignment	C >>= 2 is same as $C = C >> 2$

CLASS: I BSC Physics COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: I

COURSE CODE: 18PHU103

BATCH-2018-2021

	operator	
&=	Bitwise AND assignment operator	C &= 2 is same as $C = C \& 2$
^=	bitwise exclusive OR and assignment operator	C 2 c 2 c 2 c 2 c 2
=	bitwise inclusive OR and assignment operator	$C \models 2$ is same as $C = C \mid 2$

Short Notes on L-VALUE and R-VALUE:

x = 1; takes the value on the right (e.g. 1) and puts it in the memory referenced by x. Here x and 1 are known as L-VALUES and R-VALUES respectively L-values can be on either side of the assignment operator where as R-values only appear on the right.

So x is an L-value because it can appear on the left as we've just seen, or on the right like this: y = x; However, constants like 1 are R-values because 1 could appear on the right, but 1 = x; is invalid.

Misc Operators

There are few other operators supported by C Language.

Operator	Description	Example
sizeof()	Returns the size of an variable.	sizeof(a), where a is interger, will return 4.
&	Returns the address of an variable.	&a will give actaul address of the variable.
*	Pointer to a variable.	*a; will pointer to a variable.
?:	Conditional Expression	If Condition is true ? Then value X : Otherwise value Y

Operators Categories:

All the operators we have discussed above can be categorised into following categories:

- Postfix operators, which follow a single operand.
- Unary prefix operators, which precede a single operand.
- Binary operators, which take two operands and perform a variety of arithmetic and logical operations.
- The conditional operator (a ternary operator), which takes three operands and evaluates either the second or third expression, depending on the evaluation of the first expression.
- Assignment operators, which assign a value to a variable.
- The comma operator, which guarantees left-to-right evaluation of comma-separated expressions.

Precedence of C Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher precedenace than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedenace operators will be evaluated first.

Category	Operator	Associativity
Postfix	() [] -> . ++	Left to right

Earlier (Teigener Javer) Earlier (Teigener Javer) ACADEWY OF HIGHER EDUCATION (Derend to be University)

COURSE NAME: MATHEMATICAL PHYSICS-I

CLASS: I BSC Physics COURSE CODE: 18PHU103

UNIT: I BATCH-2018-2021

Unary	+ - ! ~ ++ (type) * & sizeof	Right to left
Multiplicative	* / %	Left to right
Additive	+ -	Left to right
Shift	<<>>>	Left to right
Relational	<<=>>=	Left to right
Equality	== !=	Left to right
Bitwise AND	&	Left to right
Bitwise XOR	^	Left to right
Bitwise OR		Left to right
Logical AND	&&	Left to right
Logical OR	П	Left to right
Conditional	?:	Right to left
Assignment	=+=-=*=/=%=>>=<<=&=^= =	Right to left
Comma	,	Left to right

CONDITIONAL STATEMENTS:

C provides two styles of flow control:

• Branching

• Looping

Branching is deciding what actions to take and looping is deciding how many times to take a certain action.

Branching:

Branching is so called because the program chooses to follow one branch or another.

if statement

This is the most simple form of the branching statements.

It takes an expression in parenthesis and an statement or block of statements. if the expression is true then the statement or block of statements gets executed otherwise these statements are skipped.

NOTE: Expression will be assumed to be true if its evallated values is non-zero.

if statements take the following form:

```
if (expression) statement:
```

or

```
if (expression)
```

```
{
```

```
Block of statements;
```

}

or

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: IBATCH-2018-2021

```
if (expression)
 {
  Block of statements;
 }
else
 {
  Block of statements;
 }
or
if (expression)
 {
  Block of statements;
 }
else if(expression)
 {
  Block of statements;
 }
else
 {
  Block of statements;
 }
```

?: Operator

The ? : operator is just like an if ... else statement except that because it is an operator you can use it within expressions.

?: is a ternary operator in that it takes three values, this is the only ternary operator C has.

? : takes the following form:

if condition is true ? then X return value : otherwise Y value;

switch statement:

The switch statement is much like a nested if .. else statement. Its mostly a matter of preference which you use, switch statement can be slightly more efficient and easier to read.

```
switch( expression )
```

```
{
```

```
case constant-expression1:statements1;[case constant-expression2:statements2;][case constant-expression3:statements3;][default : statements4;]
```

Using break keyword:

If a condition is met in switch case then execution continues on into the next case clause also if it is not explicitly specified that the execution should exit the switch statement. This is achieved by using *break* keyword.

What is default condition:

If none of the listed conditions is met then default condition executed.

Looping

Loops provide a way to repeat commands and control how many times they are repeated. C provides a number of looping way.

while loop

The most basic loop in C is the while loop. A while statement is like a repeating if statement. Like an If statement, if the test condition is true: the statements get executed. The difference is that after the statements have been executed, the test condition is checked again. If it is still true the statements get executed again. This cycle repeats until the test condition evaluates to false.

Basic syntax of while loop is as follows:

```
while (expression)
```

```
{
```

```
Single statement
or
Block of statements;
```

}

for loop

for loop is similar to while, it's just written differently. for statements are often used to proccess lists such a range of numbers:

Basic syntax of for loop is as follows:

```
for( expression1; expression2; expression3)
```

```
Single statement
or
Block of statements;
```

In the above syntax:

}

- expression1 Initialisese variables.
- expression2 Conditional expression, as long as this condition is true, loop will keep executing.
- expression3 expression3 is the modifier which may be simple increment of a variable.

do...while loop

do ... **while** is just like a while loop except that the test condition is checked at the end of the loop rather than the start. This has the effect that the content of the loop are always executed at least once.

Basic syntax of do...while loop is as follows:

do

{

Single statement

or

Block of statements;

while(expression);

Break and continue statements

C provides two commands to control how we loop:

- break -- exit form loop or switch.
- continue -- skip 1 iteration of loop.

```
Examples:
```


This will produce following output:

Hello 0

Hello 1

Hello 2

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: IBATCH-2018-2021

Hello 3 Hello 4 Hello 6 Hello 7 Hello 8 Hello 9 Hello 10

INPUT AND OUTPUT STATEMENTS:

Input : In any programming language input means to feed some data into program. This can be given in the form of file or from command line. C programming language provides a set of built-in functions to read given input and feed it to the program as per requirement.

Output : In any programming language output means to display some data on screen, printer or in any file. C programming language provides a set of built-in functions to output required data.

Here we will discuss only one input function and one output function just to understand the meaning of input and output. Rest of the functions are given into C - Built-in Functions.

printf() function:

This is one of the most frequently used functions in C for output.

Try the following program to understand **printf**() function.

```
#include <stdio.h>
```

main()

{

int dec = 5;

```
char str[] = "abc";
char ch = 's';
float pi = 3.14;
```

printf("%d %s %f %c\n", dec, str, pi, ch); }

The output of the above would be:

5 abc 3.140000 c

Here %d is being used to print an integer, %s is being used to print a string, %f is being used to print a float and %c is being used to print a character.

A complete syntax of printf() function is given in C - Built-in Functions

scanf() function:

This is the function which can be used to read an input from the command line.

Try following program to understand **scanf**() function.

#include <stdio.h>

main()

{

int x;

int args;

```
printf("Enter an integer: ");
if (( args = scanf("%d", &x)) == 0) {
    printf("Error: not an integer\n");
} else {
    printf("Read in %d\n", x);
}
```

Here %d is being used to read an integer value and we are passing &x to store the vale read input. Here &indicates the address of variable x.

This program will prompt you to enter a value. Whatever value you will enter at command prompt that will be output at the screen using printf() function. If you enter a non-integer value then it will display an error message.

```
Enter an integer: 20
Read in 20
```

A complete set of input output functions is given in C - Built-in Functions

POSSIBLE QUESTIONS

- 1. Discuss the different types Of Operators?
- 2. What is Expressions?
- 3. What is C Language?
- 4. Explain about the Data types?
- 5. Explain about the input and output functions?
- 6. Give an account on conditional statements?
- 7. Discuss the Nested if ..else statement with an example?
- 8. What are the features of C language?
- 9. Define data type.
- 10. Define decision making statements.
- 11. Define operator and mention its types.
- 12. What is the main function()?
- 13. Write an example for C program
- 14. Define Expressions.
- 15. What is conditional statements?
- 16. what are data types?.Explain it briefly.
- 17. Write a detailed account on input and output statements
- 18. Define conditional statements and discuss its types.(Any two)
- 19. Write a short note on data types.
- 20. Write a short note on (i)Enumerated data type (ii)Derived data type
- 21. Write a detailed note on printf and scanf statements in C.

- 22. Describe the Ladder else if condition with flow chart.
- 23. What are operators and explain its types?
- 24. Write a short note on: i)conditional operator (ii)Bitwise operator (iii)Special operator
- 25. Write a C program for Nested if else statement.

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

MATHEMATICAL PHYSICS-I

QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
UNIT-I					
C programming language is developed in	1988	1972	1970	1958	1972
C was designed and written by	Charles	Dennis	Ken		Dennis
	Babbage	Ritchie	Thompson	Peter Norton	Ritchie
A character variable can at a time store	8	4	1	2	1
How many keywords are in C?	32	30	25	29	32
C programs written for one computer can	efficiency	simple	highly	fast	highly
be run in another without any			portable		portable
modifications is called					
C language is a	structured	object	operating	platform	strucutured
	programming	oriented	system		programming
		programming			
Which makes debugging, testing and	modules	functions	class	loops	modules
maintenance of a program easire?					
C program is a collection of	software	functions	syntax	operations	functions

The execution of the C program begins at	arguments	declaration	error	main	main
The empty paranthesis immediately following main indicates that the main function has	arguments	no arguments	end of main	syntax error	no arguments
printf is a predefined standard C function for	compliling	reading inout	printing output	terminating	printing output
Every statement in C should end with	colon	comma	semicolon	no symbol	semicolon
The information contained between the paranthesis is called of the function	arguments	values	address	void	arguments
Which is the newline character?	\t	\n	\0	Л	\n
#define instruction defines values to a	variables	constants	symbolic constants	identifires	symbolic constants
Statement tests value of a given variable against list of case values.	switch	ifelse	case	while	case
statement causes exit from switch statement.	switch	break	goto	end	break
Operator takes 3 operand for making logical decisions.	+	?:	:?	*	?:
Statement branches unconditionally from one point to another in program	switch	break	goto	end	goto
The is powerful decision making statement and is used to control the flow of execution of statements.	if	switch	goto	while	if
is two way decision making statement and is used in conjunction with an expression.	if	switch	goto	while	if
In if condition control is transferred to statements if the value of the expression is	TRUE	FALSE	one	zero	TRUE
In C multiway decision statement is	while	if else	switch	for	switch

The function is used to check whether the argument is lower case alphabet.	islower	isupper	tolower	toupper	islower
The functionconverts the lower case argument into an upper case alphabet.	islower	isupper	tolower	toupper	toupper
The default statement is executed when	all the case	one of the	one of the	all the case	all the case
	statements	case is true	case is	statements are	statements
	are false		false	true	are false
The main function section contains	declaration	executable	definition	declarations	declarations
	part and	part and	part	part and	part and
	defintion part	initialization		executable	executable
		part		part	part
The user defined functions are in	subprogram	main funtion	link	documentation	subprogram
	section	section	section	section	section
The sub progarm section contains	main	user defined	assignment	defining	user defined
	function	funtions	opaerator	variables	section
user defined funtions are placed	link section	global	main	definition	main
immediately after the		declaration	function	section	function
		section	section		section
A proper will make the	style	numbering	execution	intendation	intendation
progarm easily readable					
Steps in executing a C program remains	operating	editor	compiler	language	operating
same irrespective of the	system				system
A is a progarm that controls	functions	operating	loops	decision	operaing
the entire operation of a computer		system		making	system
system.				statements	
Which is the interface between the	input	outpt	operating	compiler	operating
hardware and the software?			system		system
Syntax errors are checked during	compiling	executing	linking	printing	compiling
Logical errors are checked during	compiling	executing	linking	printing	executing

The file is created with the help of	compiler	system library	text editor	linker	text editor
What is the process of putting together other program files and functions that are required by the program?	compiling	executing	editing	linking	linking
The compiled and the linked program is called the	executable object code	source code	file	data	executable object code
Every C word is classified as either a keyword or a	identifier	data type	constants	variables	identifier
refers to finding value that do not change during execution of program.	identifier	data type	constants	variables	constants
integer consists of set of digits from 0 to 9 preceded by + or - sign	hexa decimal	decimal	octal	binary	decimal
constant is sequence of character enclosed in double quotes.	string	variable	character	integer	string
Floating point numbers are stored in bits.	8	16	32	24	32
is data name that may be used to store a data value.	string	variable	character	integer	variable
lines are not executable statements and are ignored by the complier.	functions	comment	main	argument	comment
Execution of C Program begins from function.	main function	user defined function	declaration	definition section	main function
class provides information about location and visibility of variables.	functions	storage	structure	enum	storage
An arithmetic expression will be evaluated from using rules of precedence of operation.	left to right	righ to left	top to bottom	bottom to top	left to right
operator can be used to link related expression together.	comma	dot	AND	OR	comma
function writes character one at a time to terminal.	getchar	putchar	gets	puts	putchar
Reading a single character can be done	getchar	putchar	gets	puts	getchar

by using function.					
header file should be included for	conio.h	stdio.h	math.h	iostream.h	math.h
calling math function in source program					
operator returns number of bytes	logical	bitwise	arithmetic	size of	size of
the operand occupies.					
operator is used for manipulating	logical	bitwise	arithmetic	size of	bitwise
data at bit level.					
Which is the assignment operator.	=	==		?:	=
Characters are usually stored in	8	16	32	24	8
bits.					
C Language supports logical	2	3	4	5	3
operators.					
may appear anywhere in program	commands	#define	#include	function	#define
but before it is referenced.					
All C compliers support	5	4	6	8	4
fundamental data types.					
constant contains single character	string	variable	character	integer	character
enclosed within pair of single quote					
marks.					
In a passage of text, individual word,	keyword	identifier	constants	token	token
punctuation mark are called					
C has types of token	10	6	5	9	6
Which refers to the name of the	Identifiers	constants	keywords	data type	Identifiers
variables, functions and arrays?					
First character in an identifier should be	number	alphabet or	a symbol	space	alphabet or
		underscore			underscore

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I BSC Physics
 COURSE NAME: MATHEMATIC

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: II BATCH-2018-2021

UNIT-II

Complex Analysis: Brief revision of Complex numbers & their graphical representation. Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. Integration of a function of a complex variable. Cauchy's Integral formula.

I. Introduction

The complex number system is merely a logical extension of the real number system. The set of complex numbers includes the real numbers and still more. All complex numbers are of the form

x + iy

where $i = \sqrt{-1}$. In other words $i^2 = -1$. If y = 0, then the complex number x + iy becomes the real number x. This is why we say that the complex numbers are still "more" than the reals. The real numbers form a proper subset of the reals. We do not mean that the complex numbers are more numerous. We simply mean that they subsume the reals.

Because there are two real numbers (x and y) associated with each complex number, we are able to depict complex numbers using a plane, as opposed to the reals which are depicted on a line. Unlike the real number system, complex numbers are not ordered. This means that it is not meaningful to say $z_1 < z_2$ in the complex number system, even though such a thing is posssible in the reals.

It is possible to define addition and multiplication of complex numbers in the following intuitive ways:

Addition: $(x_1+iy_1) + (x_2+iy_2) = (x_1+x_2) + i(y_1+y_2)$

Multiplication: $(x_1+iy_1)(x_2+iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2+x_2y_1)$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.
The complex number 0 + i0 is the complex counterpart of zero in the reals. It is the complex additive identity. We will at times simply denote it as 0. The multiplicative identity is equal to 1 + i0, which we will at times denote as 1.

A complex number can be written as z, so long as we understand that z = x + iy. It is possible to discuss subtracting and dividing complex numbers. For example

$$z_1 - z_2 = (x_1 + iy_1) + (-x_2 + i(-y_2)) = (x_1 - x_2) + i(y_1 - y_2)$$

$$\frac{z_1}{z_2} = (x_1 + iy_1)(\frac{x_1}{x_1^2 + y_1^2} - i\frac{y_1}{x_1^2 + y_1^2}) = 1$$

In addition to the basic operations of addition, subtraction, multiplication, and division, we can also perform more complicated operations – such as taking the square root.

$$\sqrt{z_1} = a + ib$$
 where $(a+ib)(a+ib) = z_1 = x_1 + iy_1$.

Example: Find $\sqrt{3+i4}$

Note that there are two solutions: $\sqrt{3+i4} = 2+i$ and $\sqrt{3+i4} = -2-i$

To check this we note that (2+i)(2+i) = 3 + i4 as is the case with -2-i.

It is not hard to show that there will be *exactly* two complex square roots for any (nonzero) complex number.

The complex conjugate of a complex number z = x + iy is denoted \overline{z} and is defined as (x - iy). The modulus of a complex number is defined as $|z| = \sqrt{z\overline{z}}$.

Representation in the 2-Dimensional Plane

Each complex number can be written as z = x+iy. This means that we can associate an ordered pair (x,y) with each and every complex number z = x+iy. Luckily, this gives us a graphical representation of the complex number system. We can visualize the complex numbers. The 2-dimensional plane that represents the complex numbers is sometimes called the **Argand plane** but was first employed by Gauss. The horizontal axis represents the real numbers which is

a 1-dimensional subspace of the plane. The vertical axis represents "pure" complex numbers; or numbers which have no real part, x. A good question is whether or not the complex numbers (field) is isomorphic to R^2 under addition and multiplication.

The unit circle plays an important role in complex numbers since any (non-zero) complex number can be written as a scalar multiple of its corresponding point on the unit circle. For example, the point z = x + iy is a $(x^2 + y^2)$ - multiple of

$$\frac{x}{x^2+y^2} + i\frac{y}{x^2+y^2}$$

which lies on the unit circle. Seen in this way, the unit circle can generate the entire set of complex numbers through the appropriate multiplication of scalars to points on the unit circle. This is analogous to a point on the real number line (e.g., 1 and -1) being able to generate any other number on the real number line by the appropriate multiplication of a scalar. The unit circle is not unique in this regard, though. Other types of geometric objects containing the origin can do this as well. The value of the circle is that each point on the circle is equidistant from the origin and this distance is equal to 1. Note that the *real* numbers 1 and -1 have distance from zero equal to unity and can generate any real number through multiplication of a scalar. It is interesting, in this regard, that the inverse of a complex number involves the normalization of both the real and (negative) imaginary parts of the number. That is, the denominator is the formula for a circle.

The unit circle separates the plane into two regions. The set of points that are strictly inside the circle (called the open unit disk) and the set of points on and outside the unit circle. The interior of the unit circle (i.e. the unit disk) is particularly important to the stability of certain difference equations. It is similarly involved in determining whether a time series is covariance stationary.

III. Functions of a Complex Variable

We can define complex valued functions of a complex variable. That is, the domain of the function is the complex variable field and the range is also the complex field. We can write this as

w = f(z)

where both w and z are complex numbers. Such functions have complex numbers as parameters, as well. For example, we can write the following function

$$w = f(z) = \frac{z_o}{z} = \frac{1 - i2}{x + iy} = \frac{(x - 2y) + i2(x + y)}{x^2 + y^2} = u + iv$$

Clearly, w is complex, as is z. The parameter z_0 is also complex, but it is a fixed complex number. Note how that u and v have become real multivariate functions of x and y. That is,

$$u = u(x, y) = \frac{x - 2y}{x^2 + y^2}$$
 and $v = v(x, y) = \frac{2(x + y)}{x^2 + y^2}$

As x and y run over all the values in \mathbb{R}^2 , both u and v are determined, and hence z is determined accordingly. This complex z then determines the value of w.

One of the most useful of all the complex functions is the exponential function. This function has a straightforward relation to the trigonometric functions. We can understand this relation by using a MacLaurin series for the e^x function. To begin with

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$$

Which, if we substitute $i\theta$ for x, we get

$$e^{\theta i} = 1 + \frac{(\theta i)}{1!} + \frac{(\theta i)^2}{2!} + \cdots$$
$$= 1 + \frac{\theta i}{1!} - \frac{\theta^2}{2!} - \frac{\theta^3 i}{3!} + \frac{\theta^4}{4!} + \frac{\theta^5 i}{5!} - \frac{\theta^6}{6!} \cdots$$

$$= \{1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} \cdots\} + \{\frac{\theta i}{1!} - \frac{\theta^3 i}{3!} + \frac{\theta^5 i}{5!} - \frac{\theta^7 i}{7!} \cdots\}$$

 $=\cos(\theta) + i\sin(\theta)$

Note that the point ($\cos(\theta)$, $\sin(\theta)$) is on the unit circle and as θ runs from 0 to 2π , the point moves completely around the circle in a counterclockwise fashion. We can therefore write any complex number as a scalar multiple of $e^{i\theta}$. Usually this is written as

$$z = x + iy = rcos(\theta) + i rsin(\theta) = re^{i\theta}$$

with $\theta = \arctan(y/x)$ and $r^2 = x^2 + y^2$.

The complex exponential and its relation to the trigonometric functions is of the greatest imporance in of mathematics. It is incredibly useful and leads to some rather extraordinary and unexpected results.

For example, it allows us to easily compute the following *real* number

$$z = i^i = \frac{1}{\sqrt{e^\pi}} \approx 0.207$$

where $i = \sqrt{-1}$. It also allows us to write out the logarithm of a negative number, which was a great controversy during the time of Euler and Leibnitz. That is, we can write

$$z = \ln(-1) = i\pi$$

from which all other negative logarithms can be derived.¹ The logarithm of a complex number can also be derived using this relation. Hence, we have

$$\ln(z) = \ln(x+iy) = \ln(re^{i\theta}) = \ln(r) + i\theta$$

where θ is the angle formed by vectors (x, 0) and (0, y) and where $r^2 = x^2 + y^2$.

Polynomial equations, even simple ones, have solutions which are surprising to those who look only for real solutions. For example, even the very simple equation

$$z^4 + 1 = 0$$

has FOUR distinct roots (consider $z^2 = i$ and $z^2 = -i$). In general, the Fundamental Theorem of Algebra tells us that there will be exactly n complex roots (possibly repeated) which solve an nth order polynomial equation. Once again, it is important to remember that the coefficients on these polynomial equations can also be complex numbers, as well.

The familiar trigonometric functions of sin(x) and cos(x) can be defined for complex numbers. This is done in the perfectly logical manner as follows:

$$\sin(z) = \sin(x+iy) = \frac{e^{ix} - e^{-ix}}{2i}$$
 and $\cos(z) = \cos(x+iy) = \frac{e^{ix} + e^{-ix}}{2}$

where we remember that $\frac{1}{i} = -i$.

IV. Limits and Derivatives of Complex Functions

Limits in the complex system are complicated by the fact that z = x + iy depends on (x, y)and therefore one can approach $z_0 = x_0 + iy_0$ along infinitely many paths. For example,

$$z_n = (x_o + \frac{1}{n}) + i(y_o + \frac{1}{n})$$
 and $z'_n = (x_o - \frac{1}{n}) + i(y_o - \frac{1}{n})$

both limit to $z_0 = x_0 + iy_0$, but do so along different paths. Obviously, other more complicated paths are possible. This makes it a little more difficult to define a derivative, which makes use of limits in its definition.

The derivative of w = f(z), if it exists, is defined by the unique limit

$$\frac{dw}{dz} = \lim_{\delta \to (0+i0)} \frac{f(z+\delta) - f(z)}{\delta}$$

where $\delta \rightarrow (0+i0) = 0$, the origin, along ANY path.

Example: $w = f(z) = z^2$ is differentiable. To see this, assume (g(n), h(n)) are functions parametrized such that they limit to the origin as $n \to \infty$. The ordered pair we have assumed maps out any path to the origin and is perfectly general. It is not difficult to show that

$$f'(z) = \lim_{n \to \infty} \frac{\{(x + g(n)) + i(y + h(n))\}^2 - \{x + iy\}^2}{g(n) + ih(n)}$$
$$= \lim_{n \to \infty} [2\{x + iy\} + \{g(n) + ih(n)\}]$$

=

and thus, regardless of the path we take to the origin, the limit remains the same and thus the derivative of f(z) is equal to f'(z) = 2z.

V. The Cauchy-Riemann Equations and Complex Differentiation

Suppose that we consider $f(z) = z^2$ and substitute into this z = x+iy. We can therefore write this function again in the following way:

$$f(z) = z^{2} = F(x,y) = (x+iy)^{2} = (x^{2} - y^{2}) + i2xy = u(x,y) + iv(x,y)$$

where $u(x,y) = (x^2 - y^2)$ and where v(x,y) = 2xy. Now since z = x+iy, we know that

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$

from which it follows that $\frac{\partial x}{\partial z} = \frac{1}{2}$ and $\frac{\partial y}{\partial z} = \frac{1}{2i}$. Now consider the complex derivative f'(z).

$$f'(z) = \frac{\partial F}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial z} = (2x - 2yi)(\frac{1}{2}) + (-2y + 2xi)(\frac{1}{2i})$$

This of course reduces to f'(z) = 2z and the result agrees with the derivative computed in the previous section using limits.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: IIBATCH-2018-2021

Now suppose that F(x,y) = u(x,y) + iv(x,y) is *any* differentiable complex function. What must be true about the functions u and v? This is the subject of the Cauchy - Riemann equations.

First, suppose that z changes by x changing alone. Then, assume that z changes by y changing alone. This would give us two expressions for the derivative of

 $\mathbf{f}(\mathbf{z}) = \mathbf{F}(\mathbf{x}, \mathbf{y}).$

The first (*holding y constant*) can be written as

$$f'(z)|_{y \text{ constant}} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial z} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial z} + i \frac{\partial v}{\partial x} \frac{\partial x}{\partial z} = \frac{1}{2} \{ \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \}$$

while the second (*holding x constant*) can be written as

$$f'(z)|_{x \text{ constant}} = \frac{\partial F}{\partial y} \frac{\partial y}{\partial z} = \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} + i \frac{\partial v}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \{-i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}\}.$$

Now, the derivative of f(z) cannot depend on which way that z is changing (either by x changing alone or alternatively by y changing alone) and so the two expressions for f'(z) must be equal if the derivative exists. This implies that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and that $-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$

These two equalities are known as the Cauchy-Riemann Equations.

VI. Complex Integration

The first thing to note about complex integration is that it is done in the plane and therefore uses contour or line integration as its basis. A strong understanding of line integration is therefore useful when discussing complex variables. This is not so unexpected since the 2 dimensional plane in complex variables now operates analogously to the real line in elementary

calculus. Instead of integrating over some interval, or collection of intevals, we must integrate along some curve or line in 2-space.

The second thing to note about complex integration is that integration no longer implies the measurement of some area. That is, one does not necessarily get a "clean" real number associated with an integral in complex variables. What this implies is that integrals cannot be ordered by size as they can be in real integration. One cannot say that *this area is larger than that area*. This is because there is no ordering of the complex numbers, unlike the reals. Indeed, the integral of a complex function of a complex variable typically yields a complex number.

Here is a simple example to show complex integration:

Example: Let f(z) = z, where z = x+iy. It is obvious that the image of the function f is not a real number; it is complex. Now suppose that we integrate this in the x-y plane along the line y = x from (0,0) to (1,1). We are integrating the function f(z) along the ray from the origin to the point (1,1). This directed line segment is sometimes denoted C for curve, even though it is a straight line segment. We assume that we move from the point (0,0) to the point (1,1), since direction is important. Now let's actually do the integration.

$$\int_C f(z) dz = \int_C z dz = \int_C (x + iy)(dx + idy)$$

 $= \int (x+ix)(1+i)dx$

$$= \int_{0}^{1} x(1+i)^{2} dx$$
$$= i\int_{0}^{1} 2x dx$$
$$= ix^{2} |_{0}^{1}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: I BSC Physics** COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: II BATCH-2018-2021

= i

This example shows that the complex definite integral of the complex function

f(z) = z is itself a complex number; in fact, it is equal to z = i.

CAUCHY'S INTEGRAL FORMULA:

Cauchy's integral formula states that

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z) dz}{z - z_0},$$
(1)

where the integral is a contour integral along the contour γ enclosing the point z_0 .

It can be derived by considering the contour integral

$$\oint_{\gamma} \frac{f(z) dz}{z - z_0},$$
(2)

defining a path γ as an infinitesimal counterclockwise circle around the point z_0 , and defining the path γ_0 as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel each other out) so as to go around ²⁰. The total path is then

$$\gamma = \gamma_0 + \gamma_r \,, \tag{3}$$

so

KARPAGAM

$$\oint_{\gamma} \frac{f(z) dz}{z - z_0} = \oint_{\gamma_0} \frac{f(z) dz}{z - z_0} + \oint_{\gamma_r} \frac{f(z) dz}{z - z_0}.$$
(4)

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. Therefore, the first term in the above equation is 0 since \mathcal{W} does not enclose the pole, and we are left with

$$\oint_{r} \frac{f(z) dz}{z - z_{0}} = \oint_{r, r} \frac{f(z) dz}{z - z_{0}}.$$
(5)
Now, let $z \equiv z_{0} + r e^{i\theta}$, so $dz = ir e^{i\theta} d\theta$. Then

$$\oint_{r} \frac{f(z) dz}{z - z_{0}} = \oint_{r, r} \frac{f(z_{0} + r e^{i\theta})}{r e^{i\theta}} ir e^{i\theta} d\theta$$
(6)

$$= \oint_{r, r} f(z_{0} + r e^{i\theta}) i d\theta.$$
(7)
But we are free to allow the radius r to shrink to 0, so

$$\oint_{r} \frac{f(z) dz}{z - z_{0}} = \lim_{r \to 0} \oint_{r, r} f(z_{0} + r e^{i\theta}) i d\theta$$
(8)

$$\oint_{r, r} f(z_{0}) i d\theta$$
(9)

$$= i f(z_{0}) \oint_{r, r} d\theta$$
(10)

$$= 2\pi i f(z_0),$$
 (11)

giving (1).

If multiple loops are made around the point **z**₀, then equation (11) becomes

$$n(\gamma, z_0) f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z) dz}{z - z_0},$$
(12)

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: IIBATCH-2018-2021

where $n(\gamma, z_0)$ is the contour winding number.

A similar formula holds for the derivatives of f(z),

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
(13)

$$= \lim_{h \to 0} \frac{1}{2 \pi i h} \left[\oint_{\gamma} \frac{f(z) dz}{z - z_0 - h} - \oint_{\gamma} \frac{f(z) dz}{z - z_0} \right]$$
(14)

$$= \lim_{h \to 0} \frac{1}{2 \pi i h} \oint_{\gamma} \frac{f(z) [(z - z_0) - (z - z_0 - h)] dz}{(z - z_0 - h) (z - z_0)}$$
(15)
$$= \lim_{h \to 0} \frac{1}{2 \pi i h} \oint_{\gamma} \frac{h f(z) dz}{(z - z_0 - h) (z - z_0)}$$
(16)

$$= \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z) dz}{(z-z_0)^2}.$$
 (17)

Iterating again,

(ARPAG

$$f''(z_0) = \frac{2}{2\pi i} \oint_{\gamma} \frac{f(z) dz}{(z - z_0)^3}.$$
(18)

Continuing the process and adding the contour winding number n,

$$n(\gamma, z_0) f^{(r)}(z_0) = \frac{r!}{2 \pi i} \oint_{\gamma} \frac{f(z) dz}{(z - z_0)^{\gamma + 1}}.$$
(19)

TAYLOR'S VARIABLE:

The Taylor's series specifies the value of a function at one point in terms of the value of the function and its derivatives at a reference point say. It is an expansion in powers of the change in variable here say (z - a).

Fig.53: Contouri *C* defined in the anticlockwise direction, with parametric equation |z - a| < R

Let f(z) be an analytic function inside and on a simple closed curve C, with the center as a and

radius R. Then at each point inside the contour C we define

The power series here converges to f(z) when |z - a| < R.

Here R will be the radius of convergence which is defined as the distance from the reference point to the nearest singularity of the function f(z). On |z - a| = R the series may or may not converge while for |z - a| > R the series diverges. If the nearest singularity of f(z) is at ∞ , the radius of convergence is at , i.e. the series converges for all values of z.

If a = 0 then the resulting series is often called the **Maclaurin series**.

Fig.53: Contouri C defined in the anticlockwise direction, with parametric equation |z - a| < R

Let f(z) be an analytic function inside and on a simple closed curve *C*, with the center as a and radius R. Then at each point inside the contour *C* we define

The power series here converges to f(z) when |z - a| < R.

Here R will be the radius of convergence which is defined as the distance from the reference point to the nearest singularity of the function f(z). On |z - a| = R the series may or may not converge while for |z - a| > R the series diverges. If the nearest singularity of f(z) is at ∞ , the radius of convergence is at , i.e. the series converges for all values of z.

If a = 0 then the resulting series is often called the **Maclaurin series**.

Proof of the Taylor's series

Let us consider an analytic function f(z) in a neighborhood of a point z = a. Also let *C* be a circle which lies in this neighborhood and has the center a. Then by Cauchy's integral formula

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(s)ds}{(s-z)} \quad ---(1)$$

where,

z: any arbitrary fixed point inside the contour C

s: be the complex variable of integration.

The radius of convergence of the Taylor series is at least equal to the shortest distance from a to the boundary C. It may be larger but then the series may not represent f(z) at all points of Cwhich lie in the interior of the circle of convergence.

KARPAG

Fig.54: Contour C, with center at a and having the variable of integration as s and any point in the interior as z

We shall first develop $\overline{(s-z)}$ in powers z-a of

$$\frac{1}{(s-z)} = \frac{1}{s-a-(z-a)} = \frac{1}{(s-a)\left(1-\frac{z-a}{s-a}\right)} \quad ----(2)$$

Since s is on C while z is inside C, therefore

$$\left|\frac{z-a}{s-a}\right| < 1 \qquad \qquad ----(3)$$

Now, from the geometric progression for |q| < 1

$$1 + q + q^2 + q^n = \frac{1 - q^{n+1}}{1 - q}$$
 $q \neq 1$

We obtain the relation,

$$\frac{1}{1-q} = 1 + q + q^2 + q^n + \frac{q^{n+1}}{1-q}$$

Here,

KARPAG

$$q = \frac{z-a}{s-a}$$

Then

$$\frac{1}{1 - \left(\frac{z - a}{s - a}\right)} = 1 + \frac{z - a}{s - a} + \left(\frac{z - a}{s - a}\right)^2 + \dots + \left(\frac{z - a}{s - a}\right)^n + \frac{\left(\frac{z - a}{s - a}\right)^{n+1}}{1 - \left(\frac{z - a}{s - a}\right)}$$

Using 2

$$= 1 + \frac{z-a}{s-a} + \left(\frac{z-a}{s-a}\right)^2 + \dots + \left(\frac{z-a}{s-a}\right)^n + \frac{\left(\frac{z-a}{s-a}\right)^{n+1}}{\left(\frac{s-z}{s-a}\right)} - \dots - (A)$$

Inserting (A) in (2) which is then put back in (1) to get

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(s)ds}{(s-a)} + \frac{(z-a)}{2\pi i} \oint_C \frac{f(s)ds}{(s-a)^2} + \dots + \frac{(z-a)^n}{2\pi i} \oint_C \frac{f(s)ds}{(s-a)^{n+1}} + R_n(z)$$

Since z and a are constants we take the powers of z-a out from under the integral sign and the last term is

$$R_{n}(z) = \frac{(z-a)^{n+1}}{2\pi i} \oint_{\mathcal{C}} \frac{f(s)ds}{(s-a)^{n+1}(s-z)} \quad ---(5)$$

Using Cauchy's integral formula

$$f^{n}(a) = \frac{n!}{2\pi i} \oint_{C} \frac{f(z)dz}{(z-a)^{n+1}} \qquad n = 1, 2, 3, \dots$$

We comprehend the series as

$$f(z) = f(a) + \frac{(z-a)}{1!} f'(a) + \dots + \frac{(z-a)^n}{n!} f^n(a) + R_n(z) \quad ---(6)$$

This representation is called the Taylor's series

Rn (z) is called the Remainder. Since the analytic functions has derivatives to all orders we may take n as large as possible i.e. As $n \rightarrow \infty$ we write

$$f(z) = \sum_{m=0}^{\infty} f^{m}(a) \frac{(z-a)^{m}}{m!} \quad ----(7)$$

This is the Taylor's series for the function f(z) with center at a. The series in (7) above will clearly converge and represent f(z) if and only if

$$\lim_{n\to\infty} R_n(z) = 0 \qquad \qquad ---(8)$$

This we can prove as s is on the contour C while z is inside C thus we will have |s-z| > 0. Since f(z) is analytic inside C and on C it follows that the absolute value of $\frac{f(z)}{(z-z)}$ is bounded thus we can say

$$\left| \frac{f(s)}{(s-z)} \right| < M$$
, for all values of s on C

Let r be the radius of C then |s-a|=r, for all s on C and C has the length as $2\pi r$

Therefore,

$$|R_{n}(z)| = \left| \frac{(z-a)^{n+1}}{2\pi i} \oint_{C} \frac{f(s)ds}{(s-a)^{n+1}(s-z)} \right|$$

$$\leq \frac{|(z-a)|^{n+1}}{2\pi} \left| \frac{M 2\pi r}{r^{n+1}} \right| = \frac{M r |(z-a)|^{n+1}}{r^{n+1}}$$

As $n \rightarrow \infty$ then the right hand side is zero.

Example: Express the Taylor series for $f(z) = e^{z}$

Soln.: The f(z) is an analytic function. We can express the Taylor series about z=0. In general an expansion about z=a is

$$f(z) = f(a) + \frac{f'(a)}{1!} (z - a) + \frac{f''(a)}{2!} (z - a)^2 + \dots + \frac{f^n(a)}{n!} (z - a)^n + \dots +$$

The power series here converges to f(z) when |z - a| < R. While about z=0 can be written as

 $\begin{aligned} f(z) &= f(0) + \frac{f'(0)}{1!} z + \frac{f''(0)}{2!} z^2 + \dots + \frac{f^n(0)}{n!} z^n + \dots + \\ f(z) &= e^z = e^0 = 1 \\ f'(z) &= e^z = e^0 = 1 \\ f''(z) &= e^z = e^0 = 1 \\ \text{Thus,} \\ f(z) &= 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots + \qquad ; \quad |z| < \infty \end{aligned}$

The first singularity of this function lies at infinity thus the radius of convergence is infinity.

Example: Express the Taylor series for (i) $f(z) = \sin z$ (ii) $f(z) = \cos z$ (iii) $f(z) = \sinh z$ (iv) $f(z) = \cosh z$

Soln.: The given functions in all the cases are analytic functions. The first singularity of these function lies at infinity thus the radius of convergence is infinity. We can express the Taylor series about z=0 as

KARPAGAM ACADEMY OF HIGHER EDUCATION

Earthe L Englature LEvrad. KARPAGAM ACADEMY OF HIGHER EDUCATION

 $f(z) = f(0) + \frac{f'(0)}{1!} z + \frac{f''(0)}{2!} z^2 + \frac{f'''(0)}{3!} z^3 \dots + \frac{f^n(0)}{n!} z^n + \dots + \quad ; |z| < \infty$ (i) $f(z) = \sin z$ $f(z) = \sin z = \sin 0 = 0$ $f'(z) = \cos z = \cos 0 = 1$ $f''(z) = -\sin z = -\sin 0 = 0$

 $f'''(z) = -\cos z = -\cos 0 = -1$

Thus, we find that $f^{2n}(0) = 0$ while $f^{2n+1}(0) = (-1)^n \underbrace{So}_{n-1}$,

$$f(z) = 0 + \frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots + \quad ; |z| < \infty$$

$$\sin z = (-1)^n \frac{z^{2n+1}}{(2n+1)!} \quad ; |z| < \infty \quad ---(A)$$

Differentiating each side of (A) with respect to z and interchanging the symbols for differentiation and summation we have we can write the expansion as

$$\cos z = (-1)^n \frac{z^{2n}}{(2n)!} ; |z| < \infty - - - (B)$$

Such a case is possible as term by term differentiation of a power series is allowed. Here the power series is a Maclaurin or Taylor series.

(iii) We can use the identity $\sin iz = i \sinh z$, So using (A) by replacing every z by iz

$$sin \ i \ z = (-1)^n \frac{(iz)^{2n+1}}{(2n+1)!}$$
$$i \ sinh \ z = (i \ i)^n \frac{i^{2n+1} \ z^{2n+1}}{(2n+1)!} = \frac{i \ z^{2n+1}}{(2n+1)!}$$

(ii)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BSC Physics COURSE CODE: 18PHU103

KARPAGAM

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: II BATCH-2018-2021

The first singularity of this function lies at infinity thus the radius of convergence is infinity.

$$\sinh z = \frac{z^{2n+1}}{(2n+1)!}$$
; $|z| < \infty$, $----(C)$

(iv) A term by term differentiation of equation (C) yields

$$\cosh z = \frac{z^{2n}}{(2n)!}$$
; $|z| < \infty$, $---(C)$

Example: Find the geometric series for the function

(i)
$$f(z) = \frac{1}{1-z}$$
 (iii) $f(z) = \frac{1}{1+z}$

Soln. : The function f(z) is singular at z=1, this point lies on the circle of convergence

Derivative of the function $f(z) = \frac{1}{1-z}$ are of type

$$f^{n}(z) = \frac{n!}{(1-z)^{n+1}}$$
; $n = 0,1,2,...$

So the series and in particular the Maclaurin series has

 $f^{n}(0) = n!$

Thus,

Entre | Engene | Error KARPAGAM ACADEMYO FURGHERE DUCATION Denned to be University

$$f^{n}(0) = n!$$

Thus,

$$\begin{aligned} f(z) &= f(0) + \frac{f'(0)}{1!} z + \frac{f''(0)}{2!} z^2 + \frac{f'''(0)}{3!} z^3 \dots + \frac{f^n(0)}{n!} z^n + \dots + \quad ; |z| < 1 \\ \frac{1}{1-z} &= 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^n}{n!} + \dots + \quad ; |z| < 1 \\ \frac{1}{1-z} &= \sum_{n=0}^{\infty} z^n \qquad ; |z| < 1 \end{aligned}$$

Replace every z by (-z) we get

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n \qquad ; |z| < 1$$

RESIDUE AND CAUCHY'S RESIDUE THEOREM:

Residue

We recall that if a function f(z) is analytic in a simply connected region, then according to Cauchy's integral theorem the value of the integral

$$\oint_C f(z)dz = 0$$

is always zero, where C is a closed contour lying wholly in R.

If, on the other hand, the function f(z) fails to be analytic at a finite number of points in the interior of the contour C in R, then there is a specific number called the **residue**, which each of these points (points of singularity) contribute to the value of the integral.

We note that a point 'a' is an isolated singularity if the function fails to be analytic at that point and in addition there is some neighborhood throughout which the function is analytic except at

the point itself. *The contribution of the singularity towards the integral is the residue*. Thus for a non-analytic function the integral

$$\oint_C f(z)dz \neq 0$$

In this case we may represent the function by a Laurent series which converges in the domain 0 < |z-a| < R, where R is the distance from 'a' to the nearest singular point of the function f(z). Thus in general we can write

$$f(z) = \sum_{n=-\infty}^{\infty} A_n (z-a)^n$$

= \dots + A_n(z-a)^n + \dots A_2(z-a)^2 + A_1(z-a) + A_0 + \frac{A_{-1}}{z-a} + \frac{A_{-2}}{(z-a)^2} + \frac{A_{-3}}{(z-a)^3} + \frac{A_{-n}}{(z-a)^n} + \dots - ---(i)

where we can write

$$A_{n} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)dz}{(z-a)^{n+1}} \qquad ; n = 0, \pm 1, \pm 2, \pm 3$$

For the special case n=-1 we have

$$2\pi i A_{\cdot 1} = \oint_C f(z) dz$$

The coefficient A₋₁ which is the coefficient of $\frac{1}{a-a}$ in the above expansion of the Laurent series is called the RESIDUE of the function at the isolated singular point 'a'. Thus

$$A_{-1} = \underset{z=a}{\overset{Res}{}} f(z) = Residue$$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.

...

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics KARPAG COURSE CODE: 18PHU103

Example: Find the integral of the function $f(z) = \frac{\sin z}{z^4}$ around the unit circle C in the counterclockwise sense.

Soln.

Fig.61: Isolated singular point at z=0 inside a unit circle.

We obtain the Laurent series for an isolated singularity at z=0 of the function as

$$f(z) = \frac{\sin z}{z^4} = \frac{1}{z^4} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots \right) = \frac{1}{z^3} - \frac{1}{3!} \frac{1}{z} + \frac{z}{5!} - \frac{z^3}{7!} + \cdots$$

Comparing it with (i) we find that the residue is

Existe Federate Force Existe Federate Force EXACPENDENTIAL CACEPTOR FEDERATION Detend to be University

$$A_{-1} = -\frac{1}{3!}$$

Hence,
$$\oint_{C} f(z)dz = 2\pi i A_{-1} = 2\pi i \left(-\frac{1}{3!}\right) = -\frac{\pi i}{3}$$

Example: Show that the integral of the function $f(z) = e^{1/z^2}$ around the circle C, |z|=2 described in the counterclockwise sense is zero.

Soln.

Fig.62: Isolated singular point at z=0 inside a circle |z|<2.

The isolated singularity at point z=0 lies interior to the contour C. By Maclaurin series we know that

$$f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Thus we can write a series for $f(z) = e^{1/z^2}$

$$f(z) = e^{1/z^2} = \sum_{n=0}^{\infty} \frac{1}{z^{2n} n!} = 1 + \frac{1}{z^2 1!} + \frac{1}{z^4 2!} + \frac{1}{z^6 3!} + \cdots$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: II BATCH-2018-2021

and comparing it with (i) we find that the residue is $A_{-1} = 0$

Hence,

$$\oint_C f(z)dz = 2\pi i A_{\cdot 1} = 0$$

 $f(z) = \frac{2-5z}{z^2-z}$ Example: Find the residue at simple poles for the function

Soln. Using the definition

$$\lim_{z=a}^{Res} f(z) = A_{-1} = \lim_{z \to a} (z-a)f(z)$$

 $f(z) = \frac{2-5z}{z^2-z}$ has simple poles at z=0 and z=1. To evaluate the residue we see that the function Thus, we have at these simple poles

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} (z - 0) \frac{2 - 5z}{z^2 - z} = -2$$
$$\lim_{z \to 1} f(z) = \lim_{z \to 1} (z - 1) \frac{2 - 5z}{z^2 - z} = -3$$

 $f(z) = \frac{z}{(z-2)(z+1)^2}$ Example: Find the residue for the function

 $f(z) = \frac{z}{(z-2)(z+1)^2}$ we see that we have simple pole at z=2 and a pole of Soln. In this function order 2 at z=-1. So, for the simple pole we calculate the residue as

$$\lim_{z \to 2} f(z) = \lim_{z \to 2} (z-2) \frac{z}{(z-2)(z+1)^2} = \frac{2}{9}$$

For the pole of order k=2 we find the residue at z=-1 by using the general formula

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: I BSC Physics**

COURSE CODE: 18PHU103

$$A_{-1} = \lim_{z \to a} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \{ (z-a)^k f(z) \} = \lim_{z \to -1} \frac{1}{1!} \frac{d}{dz} \{ (z+1)^2 \frac{z}{(z-2)(z+1)^2} \}$$
$$= \lim_{z \to -1} \frac{d}{dz} \{ \frac{z}{z-2} \} = \lim_{z \to -1} \frac{z-2-z}{z-2^2} = -\frac{2}{9}$$

Example: Obtain the Laurent series expansion of the following functions in the neighborhood of the singular points and calculate the residues: (i) (ii)

$$f(z) = \frac{\cos z}{z} \text{ (ii)} f(z) = \frac{e^z}{(z-1)^2}$$

Solution

(i) Note that z=0 is the isolated singular point of the function $f(z) = \frac{\cos z}{z}$

We recall the series expansion of cos z as

 $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots, \qquad -\infty < z < \infty$

Thus,

$$f(z) = \frac{\cos z}{z} = \frac{1}{z} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots \right) = \left(\frac{1}{z} - \frac{z}{2!} + \frac{z^3}{4!} - \frac{z^5}{6!} + \cdots \right)$$

We note that in this series the coefficient of the 1/z term is 1. Thus, A₋₁= 1, therefore is the residue of the given function.

(ii) The function has a double pole at z=1. We expand the exponential series in powers of (z-1)

$$f(z) = \frac{e^z}{(z-1)^2} = \frac{e^{-1}e^{z-1}}{(z-1)^2} = \frac{e^{-1}e^{-1}}{(z-1)^2} \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}$$
$$= \frac{e^{-1}e^{-1}e^{-1}}{(z-1)^2} + \frac{e^{-1}e^{-1}e^{-1}}{(z-1)^2} + \frac{e^{-1}e^{-1}e^{-1}}{3!} + \cdots$$

This is the required Laurent series expansion. We observe the coefficient of 1/(z-1) is the residue

What have we achieved so far? We agree that now we can evaluate the residue of a function f(z)with one singular point in a contour using Laurent series expansion. However, how do we proceed when encloses more than one isolated singular points? In such a situation, we have to extend the concept of residue developed so far to more than one singularity. The theorem of residues deals with such a general case and we discuss it in the following section.

Residue Theorem:

We extend the concept of residue developed so far to the case when the integrand has several singularities. Let us consider a positively oriented simple closed contour C, within and on which a function is analytic except for a finite number of singular points $z_1, z_2, z_3, \dots z_n$ interior to C. If $A_1, A_2, A_3..., A_n$ denote the residues of 'f(z)' at those respective points then

$$\oint_C f(z)dz = 2\pi i \left(A_1 + A_2 + A_3 + \cdots A_n\right)$$

Proof:

Fig.63: A finite number of singular points $z_1, z_2, z_3 \dots z_n$ interior to C.

Let the singular points z_j (j=1,2,...n) be the centers of positively oriented circles C_j which are interior to C and are so small that no two of the circles have points in common. That is to say that all the singularities are isolated by small contours.

The circles C_j along with the simple closed contour C form the boundary of a closed region. As we can see in the figure the function is analytic throughout the shaded region, which is a multiply connected domain. Hence, by Cauchy Goursat theorem

$$\begin{split} \oint_{C} f(z)dz - \oint_{C_{1}} f(z)dz - \oint_{C_{2}} f(z)dz - \cdots - \oint_{C_{n}} f(z)dz &= 0 \\ \oint_{C} f(z)dz &= \oint_{C_{1}} f(z)dz + \oint_{C_{2}} f(z)dz + \cdots + \oint_{C_{n}} f(z)dz \\ &= 2\pi i \operatorname{Res}[(f(z)_{C_{1}}) + (f(z)_{C_{2}}) + \cdots + (f(z)_{C_{n}}) = 2\pi i [A_{1} + A_{2} + A_{3} + \cdots + A_{n}] = 2\pi i \sum_{j=1}^{n} A_{j} \end{split}$$

We note that **this theorem is valid only for isolated singularities.** The immense utility of this theorem stems from the fact that it facilitates calculation of a contour integral indirectly through the residues of f(z) at the singularities inside C.

Example: Use the residue theorem to evaluate the integral

$$\oint_C \frac{5z-2}{z(z-1)} dz$$

Where, C is the circle |z|=2 described in counterclockwise sense. Verify your result using (i) Laurent series (ii) partial fractions.

Solution.: The integrand has two singularities at z=0 and z=1 and both of which are interior to

the contour C as we see in the figure. We need to find the residues for both the singularities.

(i) Laurent Series approach.

We know that

$$\frac{1}{(1-z)} = 1 + z + z^2 + z^3 + \dots + ; |z| < 1$$

So we expand the function in the different domains and observe in 0 < |z| < 1

$$f(z) = \frac{5z-2}{z(z-1)} = \frac{5z-2}{z} \left(\frac{-1}{(1-z)}\right) = \frac{5z-2}{z} \left(-1-z-z^2-z^3-\cdots\right)$$
$$= \frac{2}{z} - 3 - 3z - \cdots$$

The coefficient of 1/z is the residue $A_{-1} = \frac{Res}{z=0}f(z) = 2$.

KARPAGAM

Fig.65: Different domains. Darker circle is for |z|<1 case. The lighter is the annular domain 1<|1|<2

Now we observe in the domain 1 < |z| < 2

$$f(z) = \frac{5z-2}{z(z-1)} = \frac{5(z-1)+3}{z-1} \left(\frac{1}{1+(z-1)}\right)$$
$$\left[5 + \frac{3}{z-1}\right] (1-(z-1)+(z-1)^2 - \cdots) \quad ; 0 < |z-1| < 1$$

The coefficient of 1/(z-1) is the residue $A_{-1} = \frac{Res}{z=1}f(z) = 3$.

Thus by residue theorem

$$\oint_{\mathcal{C}} \frac{5z-2}{z(z-1)} dz = 2\pi i \left(\sum_{z=0}^{\text{Res}} f(z) + \sum_{z=1}^{\text{Res}} f(z) \right) = 2\pi i (2+3) = 10\pi i$$

(ii) Partial fractions approach

The given function can be expressed as

$$\frac{5z-2}{z(z-1)} = \frac{2}{z} + \frac{3}{(z-1)}$$

Thus we can write the integral clearly as

$$\oint \frac{5z-2}{z(z-1)} dz = \oint \frac{2}{z} dz + \oint \frac{3}{(z-1)} dz = 2\pi i (2+3) = 10\pi i$$

Both the results lead to the same result.

Example: Use the residue theorem to evaluate the integral

$$\oint_C \frac{dz}{z^3(z+3)}$$

where, C is the circle (i)|z|=2 or (ii) |z+2|=3 described in counterclockwise sense

Soln.: The given function is $f(z) = \frac{1}{z^3(z+3)}$. It has singularities at z=0, which is a pole of order 3 and a simple pole at z=-3

(i) We pick the case |z|=2. In this we see that the simple pole z=-3 does not lie in the concerned region. Thus there exists only one singularity at z=0. We evaluate that using the standard formula of the residue for order m

$$A_{\cdot 1} = \lim_{x \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z-a)^m f(z) \}$$

=
$$\lim_{x \to 0} \frac{1}{2!} \frac{d^2}{dz^2} \{ (z)^3 \frac{1}{z^3(z+3)} \} = \lim_{x \to 0} \frac{1}{2!} \frac{d}{dz} \{ \frac{-1}{(z+3)^2} \} = \lim_{x \to 0} \frac{1}{2!} \frac{2}{(z+3)^3} = \frac{1}{27}$$

Thus using the residue theorem

$$\oint_{C} \frac{1}{z^{3}(z+3)} dz = 2\pi i \left(\sum_{z=0}^{Res} f(z) \right) = \frac{2\pi i}{27}$$

(ii) We pick the case |z+2|=3. In this we see that the simple pole z=-3 as well as pole of order 3 at z=0 lie inside the contour. We have already calculated the residue at z=0 in the above

part. We need to evaluate not the residue at z=-3 only. It is a simple pole thus we have

$$A_{-1} = \lim_{z \to a} \{ (z-a) \ f(z) \}$$

=
$$\lim_{z \to -3} \{ (z+3) \ \frac{1}{z^3(z+3)} \} = \lim_{z \to -3} \{ \frac{1}{z^3} \} = \frac{-1}{27}$$

Thus using the residue theorem

$$\oint_C \frac{1}{z^3(z+3)} dz = 2\pi i \left(\frac{\text{Res}}{z=0} f(z) + \frac{\text{Res}}{z=-3} f(z) \right) = \frac{2\pi i}{27} + \frac{-2\pi i}{27} = 0$$

Applications of Residues

The residue theorem is one of the most powerful results of complex variable theory since it finds so many and so varied applications in mathematical analysis and physical sciences. Actually, the usefulness of the *residue theorem* stems from the fact that, even when the integrand is not innocent-looking, it *facilitates the evaluation of the integral by way of a rather straight forward calculation of residues at the singular points of the given function*. Further, the detailed shape of the contour is not relevant, except in so far as it encloses certain singular points. From pragmatic considerations, the residue theorem is of special importance in the evaluation of real integrals. It is not possible to cover all the applications in an elementary course such as this. Therefore, we shall concentrate only on the evaluation of some types of definite integrals using the method of residues. Once you get familiar with the basic principles of this method, you should be able to apply these to more advanced applications. KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BSC Physics COURSE CODE: 18PHU103

ARPAG

POSSIBLE QUESTIONS

- State and Prove the Cauchy's integral theorem.
- Find the value of the integral ,(i)along the straight line from z=0 to z=1+I; (ii)along real axis from z=0 to z=1 and then along a line parallel to the imaginary axis from z=1 to z=1+i.
- State and prove Cauchy's integral formula.
- Find the different values of (1+i) 1/3
- Mention the properties of Moduli and Arguments.
- Write a short note on complex conjugates.
- Test the analyticity of the function $w=\sin z$ and hence derive that $(\sin z)=\cos z$
- Derive the Cauchy's Riemann differential equations.
- Find the value of the integral (i)along y=x 2 ,having (0,0)(3,9)end points (ii)along y=3x between the same points. Do the values depend upon path.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

MATHEMATICAL PHYSICS-I

QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
UNIT-I					
The exponential form of a complex		$z = e^{iq}$	$z = \cos q / r$	$z = r / \cos q$	
number is	$z = re^{iq}$				$z = re^{iq}$
Any function which satisfies the	harmonic	conjugate		analyticc	harmonic
Laplace equation is known as	function	function	single function	function	function
A single valued function f(z) which					
is differentiable at $z = zo$ it is said to	irregular	analytic	periodic		analytic
be	function	function	function	all the above	function
If a given number is wholly real, it					
is found in/on	a real axis	imaginary	x-y plane	space	imaginary
A set which entirely consists of		a bounded			
interior points is known as	a null set	set	a closed set	an open set	an open set
The symbol i with the property $i^2 =$					
-1 was introduced by	Euler	Gauss	Cauchy	Reimann	Euler
In the Argand diagram, the fourth	rectangle	square	cube	none	square

roots of unity forms a					
The Conjugate of 1/i is	—i	i	1	-1	-i
	irregular	regular	infinite		
The value of $i^{1} + i^{3} + i^{4}$ is	function	function		С	С
The sum of n th roots of unity are	0	1	2		0
				3	
In the Argand diagram, the fourth	square	rectangle	circle		square
roots of unity forms a				rombus	
The order of convergence of Newton	1	2	3		2
Raphson method is				4	
A number of the form a+ib is called	complex		imaginary		complex
a	number	real numbers	numbers	all the above	numbers
who represented argand diagram in a			ramanujam		
complex number	Argand	macmillain		H.K.Dass	Argand
The function of a complex variable			simple problems		
is important in solving		a large			a large
in the field of engineering and	small	number of		none of the	number of
science	problems	problems		above	problems
what is the order of the Euler's			h^2		h^2
method?	h	h/2		h^3	
The point at which the function is			singular points		singular
not differeniable is called a		branch		none of the	points
point of a function	poles	points		above	
In which method the accuracy			Euler's method		Euler's
cannot be obtained as the number of	bisection	newtons			method
the intervals increases	method	method		all the above	
A function which satisfies			Bessels equation		
the is known as a	laplace	wave			laplace
harmonic function	equation	equation		all the above	equation
conjucate harmonic function is also	harmonic	analytic	cosine function		analytic
a function	function	function		sine function	function
cauchy's intergral theorem is	simply	multiple	multiconnected		simply
applicable only for the	connected	curve		meromorphic	connected

region enclosed by a					
simple curve					
A simple curve is one which		doesnot	deviate	none of the	doesnot
itself	cross	cross		above	cross
A multi curve is one which		doesnot	deviate	none of the	
itself	cross	cross		above	cross
Multiply connected region is	more than		two	none of the	more than
bounded by curves	two	one		above	two
curve encloses more	simple	multiple	semi simple	semi	multiple
than one separate region	curve	curve		multiple	curve
If the function $f(z)$ is analytic for all			two		
finite values of z and is bounded is					
the	constant	zero		three	constant
An important fact in one			non isolated		
dimensional case is the singularities				none of the	
are	constant	isolated		above	isolated
Analytic point is almost equivalent	irregular		poles		regular
to	point	regular point		branch point	point
ordinary points and analytic points		non-	zero		
are	equivalent	equivalent		constant	equivalent
Two equivalent terms holomorphic			poles		
points and analytic points often	regular	irregular			regular
occur with	point	points		branch point	point
A is a point, where y is			holomorphic		holomorphic
differentiable in a open set around	meromorp	holonomic	points	none of the	points
the point	hic points	point		above	
points which include			branch points		
regular points and removable	ordinary			extraordinary	ordinary
singularities	points	poles		points	points
	а				
	simple			a simple	a simple
	pole at $z =$	a simple	a pole at $z = 1$	pole at $z = 1$	pole at $z = 1$
The function $z^2/(z-1)^3$ has	1	pole at $z = -1$	of order 2	of order 3	of order 3

The residue of the function					
$2z+1/z^2-z-2$ at $z=2$ is	1/3	4-Mar	2/3	5/3	5/3
If a given number is wholly real, it is		imaginary			
found in/on	a real axis	axis	x-y plane	space	x-y plane
A set which entirely consists of	an open				
interior points is known as	set	a closed set	a banded set	domain	an open set
If a contour is a unit circle around					
the origin, then z is	1	0	e ^{iq}	e ^q	1
	an open				
A connected open set is called	set	a closed set	a banded set	domain	an open set
Which is the analytic function of					
complex variable $z = x + iy$	Z	Re Z	Z^{-1}	Log Z	Z ⁻¹
Which is the analytic function of	Ζ				
complex variable Z=x +iy		sin Z	Log Z	Re Z	Sin Z
Which is the analytic function of					
complex variable z=X+iY	Z	Re Z	Log Z	e ^{sınz}	e ^{sınz}
Which is not the analytic function of					
complex variable z=X+iY	Z	Re Z	Log Z	Z	Z
Which is not the analytic function of					
complex variable z=X+iY	Z	Re Z	Sin Z	Re Z	Re Z
	a simple				a pole at
	pole at	a simple	a pole at Z=a of	a pole at Z=a	Z=a of order
The function $Ze^2/(Z-a)^3$ has	Z=a	pole at Z=-a	order 2	of order 3	3
The symbol i with the property i $^2=1$					
was introduced by	Euler	Gauss	Cauchy	Reimann	Euler
	arg Z_1 +	arg Z ₁₋ arg			arg Z ₁₋ arg
arg (Z_1 / Z_2) is equal to	arg Z ₂	Z ₂	real	imaginary	Z ₂
A single valued function $f(z)$ which					
is differentiable at $z = zo$ it is said to	irregular	analytic	periodic		analytic
be	function	function	function	all the above	function
	at	at all	at all		
The function $1/(Z-1)(Z+1)$ is	allpointsy	points,except	points,exceptZ=-		
analytic	=x	Z=1	1	both b and c	both b and c
In order that the function $f(z) = Z ^2 / z ^2$					
---	-----------------------	-------------------------	------------------------------	-------------------------------	-------------------------------
Z, Z ¹ 0, be continuous at $z = 0$. we					
should define f(0) equal to	2	1	0	-1	0
The conjugate of $1/1+i$ is	1-i	1-i/√ 2	1-i/2	1+i	1-i/√ 2
The conjugate of $(1+i)$ $(3+4i)$ is	1+7i	1-7i	7-i	(-1-7i)	(-1-7i)
The conjugate of 1/i is	(-i)	i	1	(-1)	(-i)
The value of $i^2 + i^3 + i^4$ is	(-i)	i	1	(-1)	(-i)
If $Z=a+ib$, then real part of Z^{-1} is					
-	a/a^2+b^2	$-b/a^2+b^2$	a/ $\sqrt{a^2+b^2}$	$-b/\sqrt{a^2+b^2}$	a/a^2+b^2
If $Z=a+ib$, then Im(Z^{-1}) is	a/a^2+b^2	$-b/a^2+b^2$	$a/\sqrt{a^2+b^2}$	$-b/\sqrt{a^2+b^2}$	$-b/\sqrt{a^2+b^2}$
The modulus and argument of $\sqrt{3}$ -					
i are	2, ∏/6	2, -∏/6	4, ∏/3	4, -∏/3	2, -∏/6
$Z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $Z_2 =$					
$r_2(\cos \theta_2 + i\sin \theta_2)$, then arg $Z_1 Z_2$ is					
	$\theta_1 + \theta_2$	θ_1 - θ_2	$\theta_1 \ \theta_2$	θ_1 / θ_2	$\theta_1 + \theta_2$
The argument of -1 + I is	- ∏/4	3∏/4	∏/4	3∏/2	3∏/4
	$\cos \theta +$	$\cos \theta$ - isin			$\cos \theta + i \sin \theta$
$(1+e^{-i\theta})/(1+e^{i\theta}) =$	isin θ	θ	$\sin \theta$ -icos θ	$\sin \theta + i \cos \theta$	θ
The sum of n th roots of unity are					
-	0	1	2	3	0

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics

UNIT 3

Special Functions Definition - The Beta function - Gamma function - Evaluation of Beta function - Other forms of Beta function - Evaluation of Gamma function - Other forms of Gamma function - Relation between Beta and Gamma functions - Problems.

BETA FUNCTION:

The first Eulerian function is generally known as Beta function β (m, n) and is defined by the definite integral

$$\beta(\mathbf{m},\mathbf{n}) = \int_0^1 x^{m-1} (1-x)^{n-1} dx \begin{cases} m > 0\\ n > 0 \end{cases}$$

GAMMA FUNCTION:

The second Eulerian function is generally known as Gamma function Γn and is defined by the definite integral

$$\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx, \quad n > 0$$

ERROR FUNCTION:

The error function, erf(x) or the probability integral is defined as

$$erf(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy$$

This integral occupies a central position in the theory of probability and arises in the solution of certain partial differential equations of physical interest.

COURSE NAME: MATHEMATICAL PHYSICS-I

CLASS: I BSC Physics COURSE CODE: 18PHU103

APPAG

UNIT: III BATCH-2018-2021

SYMMETRY PROPERTY OF BETA FUNCTION:

$$\beta$$
 (m, n) = β (n, m)

By definition β (m, n) = $\int_0^1 x^{m-1} (1-x)^{n-1} dx \begin{cases} m > 0 \\ n > 0 \end{cases}$

Substituting x = 1 - y

 \therefore dx=-dy in the above equation we get

----- (1)

----- (2)

$$\beta(\mathbf{m}, \mathbf{n}) = \int_0^1 (1 - y)^{m - 1} y^{n - 1} dy$$
$$= \int_0^1 x^{n - 1} (1 - x)^{m - 1} dx = \beta(\mathbf{n}, \mathbf{m})$$

i.e., Beta function β (m, n) is symmetric with respect to m and n. This property is called the symmetry property of Beta function.

EVALUTION OF BETA FUNCTION:

By definition
$$\beta$$
 (m, n) = $\int_0^1 x^{m-1} (1-x)^{n-1} dx \begin{cases} m > 0 \\ n > 0 \end{cases}$ ------(1)

Integrating by parts keeping $(1 - x)^{n-1}$ as first function, we have

$$\beta(\mathbf{m},\mathbf{n}) = \left[(1-x)^{n-1} \frac{x^m}{m} \right]_0^1 + \int_0^1 (n-1)(1-x)^{n-2} \frac{x^m}{m} dx$$
$$= \frac{n-1}{m} \int_0^1 (1-x)^{n-2} x^m dx$$

Integrating again by parts, we get

$$\beta(\mathbf{m},\mathbf{n}) = \frac{(n-1)(n-2)}{m(m+1)} \int_0^1 (1-x)^{n-3} x^{m+1} dx$$

Continuing the process of integration by parts and assuming that n is a positive integer, we obtain

$$\beta(\mathbf{m},\mathbf{n}) = \frac{(n-1)(n-2)\dots(m+n-2) \cdot 1}{m(m+1)\dots(m+n-2)} \int_0^1 x^{m+n-2} dx$$
$$= \frac{(n-1)(n-2)\dots(m+n-2) \cdot 1}{m(m+1)\dots(m+n-2)} \left[\frac{x^{m+n-2}}{m+n-1} \right]_0^1$$

CLASS: I BSC Physics COURSE CODE: 18PHU103 COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: III BATCH-2018-2021

$$=\frac{n-1!}{m(m+1)....(m+n-2)(m+n-1)}$$
 ------ (2)

Again, if m is also a positive integer, then

 $\beta(\mathbf{m},\mathbf{n}) = \frac{(n-1)!(m-1)!}{(m+n-1)!}$ ------(3)

In case m alone is a positive integer, then in view of the symmetry property β (m, n), we have

 β (m, n) = $\frac{(m-1)!}{n(n+1)...(n+m-1)}$

----- (4)

OTHER FORMS OF BETA FUNCTION (OR) TRANSFORMATIONS OF BETA FUNCTION:

By definition β (m, n) = $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ ------(1) (a) Substituting $x = \frac{y}{1+y}$: $dx = \frac{dy}{(1+y)^2}$ and $1-x = \frac{1}{1+y}$, we get β (m, n) = $\int_0^\infty \frac{y^{m-1}}{(1+y)^{m-1}} \cdot \frac{1}{(1+y)^{n-1}} \cdot \frac{dy}{(1+y)^2} = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} dy$ ------(2) (b) Also since β (m, n) = β (n, m) $\therefore \beta$ (m, n) = $\int_0^\infty \frac{y^{n-1}}{(1+y)^{m+n}} dy$ ------(3)

This equation can be obtained from equation (1) by substituting $x = \frac{1}{1+y}$. Equations (2) and (3), represent other forms of Beta function.

EVALUTION OF GAMMA FUNCTION:

From definition $\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx$

Integrating by parts keeping x^{n-1} as first function, we get

$$\Gamma n = \left[-x^{n-1} e^{-x} \right]_0^\infty + \int_0^\infty (n-1) x^{n-2} e^{-x} dx$$

Cater (Fighter (Fight CATER) CHICKE (CATER) CATER OF HIGHER EDUCATION (Stablished Under Section 2 of USC Act (Section 2	KARPAGAM ACAI CLASS: I BSC Physics COURSE CODE: 18PHU103	DEMY OF HIGHER E COURSE NAME: M UNIT: III I	DUCATION ATHEMATICAL PHYSICS-I BATCH-2018-2021
= ($(n-1)\int_0^\infty x^{n-2}e^{-x}dx = (n-1)\Gamma(x)$	n — 1)	
Th	us we have $\Gamma n = (n-1)\Gamma(n-1)$		(1)
Sin	nilarly, $\Gamma(n-1) = (n-2)\Gamma(n-2)$		
He	nce it follows that		
Гп	$= (n-1) (n-2)\Gamma(n-2)$		
If r	is positive integer, then proceeding a	s above repeatedly, we	get
Гп	$= (n-1)(n-2)(n-3)\dots\dots.3.2$.1Г 1	
Bu	t $\Gamma 1 = \int_0^\infty e^{-x} dx = [-e^{-x}]_0^\infty = 1$		(2)
He	nce when n is positive integer		
Гп	$= (n-1)(n-2) \dots \dots 3.2.1 = (n$	- 1)!	(3)
Th	us, if n is a positive integer, then for a	ll values of n	
Гп	$= (n-1) \Gamma(n-1) = (n-1)!$		(4)
Th	is is the fundamental property of the C	Gamma functions,	
Fro	om this property we may write		
Г(1	$(n + 1) = n \Gamma n$ <i>i.e.</i> , $\Gamma n = \frac{\Gamma(n+1)}{n}$		(5)
Put	ting n=0, we get		
Г0	$\infty = \infty$		(6)
It c	an be further shown that		
Г(-	$-n) = \infty$		(7)

CLASS: I BSC Physics COURSE CODE: 18PHU103

(ARPAGAM

OTHER FORMS OF GAMMA FUNCTION(OR) TRANSFORMATIONSOF GAMMA FUNCTION:

By definition
$$\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx$$
 -------(1)
(a) Substituting $x = \lambda y : dx = \lambda . dy$ in equation (1), we get
 $\Gamma n = \int_0^\infty e^{-\lambda y} \lambda^{n-1} . \lambda \, dy = \lambda^n \int_0^\infty e^{-\lambda y} y^{n-1} dy$ -------- (2a)
 $\therefore \int_0^\infty e^{-\lambda y} y^{n-1} dy = \frac{\Gamma n}{\lambda^n}$ ------- (2b)
(b) Substituting $e^{-x} = y : x = \log_e \frac{1}{y}$ and $dx = -\frac{dy}{y}$ in equation (1), we get
 $\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx = -\int_1^0 (\log_e \frac{1}{y})^{n-1} dy = \int_0^1 (\log_e \frac{1}{y})^{n-1} dy$ ------- (3)
(c) Substituting $x^n = y : x = y^{1/n}$ and $dx = \frac{1}{n} y^{(1-n)/n} dy$ in equation (1) we get,
 $\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx = \int_0^\infty e^{-y^1/n} y^{(n-1)/n} \cdot \frac{1}{n} y^{(1-n)/n} dy$
 $= \frac{1}{n} \int_0^\infty e^{-y^1/n} dy$ -------(4)
Equations (2a), (3) and (4) represent other forms of Gamma function.

RELATION BETWEEN BETA AND GAMMA FUNCTION:

 β (m, n) = $\frac{\Gamma m \Gamma n}{\Gamma (m+n)}$

The other form of Gamma function Γm is given by

Multiply both sides by $e^{-\lambda} x^{n-1}$ and integrating with respect to λ between the limits 0 and ∞ , we get

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: I BSC Physics** COURSE NAME: MATHEMATICAL PHYSICS-I COURSE CODE: 18PHU103 **UNIT: III** BATCH-2018-2021 And $\int_0^\infty e^{-\lambda(1+x)} \lambda^{m+n-1} d\lambda = \frac{\Gamma(m+n)}{(i+x)^{m+n}}$ Substituting these values in equation (2), we get $\Gamma m \Gamma n = \int_0^\infty \frac{\Gamma(m+n)}{(1+x)^{m+n}} x^{m-1} dx$ ----- (3) $= \Gamma m \Gamma n \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} \, \mathrm{d}x$ $= \Gamma m \Gamma n \beta (m, n)$ β (m, n) = $\frac{\Gamma m \Gamma n}{\Gamma (m+n)}$ (4)This is an important relation between Beta and Gamma function. **PROBLEMS:** 1. Evaluate: $\int_0^\infty e^{-x^2} dx$ Solution: Let $I = \int_0^\infty e^{-x^2} dx$ ----- (1) Substituting $x = \lambda y$. $dx = \lambda dy$ (where λ is constant) in equation (1), we get $\mathbf{I} = \int_0^\infty e^{-\lambda^2 y^2} . \, \lambda \, dy$ Multiplying both sides by $e^{-\lambda^2}$ and integrating with respect to λ between the limits 0 and ∞ , we get I $\int_0^\infty e^{-\lambda^2} d\lambda = \int_0^\infty \int_0^\infty e^{-\lambda^2(1+y^2)} \lambda d\lambda dy$ ----- (2) But $\int_0^\infty e^{-\lambda^2(1+y^2)} \lambda d\lambda = \left[\frac{-e^{-\lambda^2(1+y^2)}}{2(1+y^2)}\right]_0^\infty = \frac{1}{2(1+y^2)}$ And $\int_0^\infty e^{-\lambda^2} d\lambda = I$ $\therefore I^{2} = \int_{0}^{\infty} \frac{1}{2(1+y^{2})} dy = \frac{1}{2} [tan^{-1}y]_{0}^{\infty} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$ \therefore I = $\frac{\sqrt{\pi}}{2}$ ----- (3)

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.

Page 6/10

COURSE NAME: MATHEMATICAL PHYSICS-I

CLASS: I BSC Physics COURSE CODE: 18PHU103

UNIT: III BATCH-2018-2021

2. To show that $\Gamma m \Gamma(1-m) = \frac{\pi}{\sin m\pi}$

Solution:

The relation between Beta and Gamma function is

$$\beta(\mathbf{m},\mathbf{n}) = \frac{\Gamma \mathbf{m} \Gamma \mathbf{n}}{\Gamma(\mathbf{m}+\mathbf{n})}$$
 ------ (1)

The transformed form of Beta function β (m, n) is

 $\beta(\mathbf{m},\mathbf{n}) = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} \, dy$ $\frac{\Gamma \mathbf{m} \Gamma \mathbf{n}}{\Gamma(\mathbf{m}+\mathbf{n})} = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} \, dy$

Substituting m + n = 1, n = 1 - m in equation (2), we get

$$\frac{\Gamma \mathrm{m}\,\Gamma(1-\mathrm{m})}{\Gamma\,1} = \int_0^\infty \frac{y^{m-1}}{1+y}\,dy$$

Using equation $\int_0^\infty \frac{y^{p-1}}{1+y} dy = \pi \operatorname{cosec} p\pi = \frac{\pi}{\sin p\pi}$ and keeping in mind that $\Gamma = 1$, we get

$$\Gamma m \Gamma (1-m) = \frac{\pi}{\sin m}$$

3. To show that
$$\Gamma \frac{1}{2} = \sqrt{\pi}$$

Solution:

The relation between Beta and Gamma function is

$$\beta(\mathbf{m},\mathbf{n}) = \frac{\Gamma \mathbf{m} \Gamma \mathbf{n}}{\Gamma(\mathbf{m}+\mathbf{n})}$$
 (1)

The transformed form of Beta function β (m, n) is

$$\beta(\mathbf{m},\mathbf{n}) = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} dy$$
$$\frac{\Gamma\mathbf{m}\,\Gamma\mathbf{n}}{\Gamma(\mathbf{m}+\mathbf{n})} = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} dy$$

Substituting m + n = 1, n = 1 - m in equation (2), we get

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.

----- (2)

(2)

----- (3)

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: III BATCH-2018-2021

$$\frac{\Gamma m \Gamma (1-m)}{\Gamma 1} = \int_0^\infty \frac{y^{m-1}}{1+y} \, dy$$

Using equation $\int_0^\infty \frac{y^{p-1}}{1+y} dy = \pi \operatorname{cosec} p\pi = \frac{\pi}{\sin p\pi}$ and keeping in mind that $\Gamma = 1$, we get

$$\Gamma m \Gamma (1-m) = \frac{\pi}{\sin m\pi}$$

----- (3)

(4)

----- (1)

Replacing m by $\frac{1}{2}$ in equation (3), we get

CLASS: I BSC Physics

COURSE CODE: 18PHU103

$$\Gamma \frac{1}{2} \Gamma \frac{1}{2} = \frac{\pi}{\sin \frac{\pi}{2}} =$$

 $\therefore \Gamma \frac{1}{2} = \sqrt{\pi}$

4. To show that
$$\Gamma(1-m)\Gamma(1-m) = \frac{m\pi}{\sin m\pi}$$

Solution:

The relation between Beta and Gamma function is

$$\beta$$
 (m, n) = $\frac{\Gamma m \Gamma n}{\Gamma (m+n)}$

The transformed form of Beta function β (m, n) is

$$\beta(m, n) = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} \, dy$$

$$\frac{\Gamma m \Gamma n}{\Gamma (m+n)} = \int_0^\infty \frac{y^{m-1}}{(1+y)^{m+n}} \, dy$$
 ------(2)

Substituting m + n = 1, n = 1 - m in equation (2), we get

$$\frac{\Gamma m \Gamma (1-m)}{\Gamma 1} = \int_0^\infty \frac{y^{m-1}}{1+y} \, dy$$

Using equation $\int_0^\infty \frac{y^{p-1}}{1+y} dy = \pi \operatorname{cosec} p\pi = \frac{\pi}{\sin p\pi}$ and keeping in mind that $\Gamma = 1$, we get $\Gamma m \Gamma(1-m) = \frac{\pi}{\sin m\pi}$ ------(3)

CLASS: I BSC Physics COURSE CODE: 18PHU103 COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: III BATCH-2018-2021

Multiplying both sides of (3) by m and using

$$m\Gamma m = \Gamma(1 - m)$$
, we get

$$\Gamma(1-m)\Gamma(1-m) = \frac{m\pi}{\sin m\pi}$$

----- (4)

5. If n is positive integer prove that $2^n \Gamma\left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n-1)\sqrt{\pi}$

Solution:

KARPAGAM

We know that $\Gamma(n-1) = n\Gamma n$

$$\therefore \Gamma\left(n + \frac{1}{2}\right) = \left(n - \frac{1}{2}\right) \Gamma\left(n + \frac{1}{2}\right)$$

$$= \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \Gamma\left(n - \frac{3}{2}\right)$$

$$= \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) \dots \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma \frac{1}{2}$$

$$= \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) \dots \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi} \quad (\text{since } \Gamma \frac{1}{2} = \sqrt{\pi})$$

$$= \frac{(2n - 1)(2n - 3)(2n - 5)\dots(5 - 3 - 1)\sqrt{\pi}}{2^{n}}$$

$$2^{n} \Gamma\left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n - 1)\sqrt{\pi}$$

CLASS: I BSC Physics COURSE CODE: 18PHU103 COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: III BATCH-2018-2021

POSSIBLE QUESTIONS

- 1. Define Beta function .
- 2. Define Gamma function .
- 3. Define Error function.
- 4. Evaluation of Beta function
- 5. Other forms of Beta function
- 6. Evaluation of Gamma function
- 7. Other forms of Gamma function
- 8. Relation between Beta and Gamma functions
- 9. If n is positive integer prove that $2^n \Gamma\left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n-1)\sqrt{\pi}$
- 10. To show that $\Gamma(1-m)\Gamma(1-m) = \frac{m\pi}{\sin m\pi}$
- 11. To show that $\Gamma \frac{1}{2} = \sqrt{\pi}$
- **12.** To show that $\Gamma m \Gamma(1-m) = \frac{\pi}{\sin m\pi}$
- **13.** Evaluate: $\int_0^\infty e^{-x^2} dx$

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

MATHEMATICAL PHYSICS-I

QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
UNIT-III					
			generalised		generalised
The Gamma function is	harmonic	generalised	factorial		factorial
otherwise called	function	funtion	function	none of these	function
are special function of					
mathematics	Bessels	Legendre	Algebraic	Both a and b	Both a and b
Singular points are of					
types	1	2	3	4	2
The value of $Jo(x)$ at the origin					
is	1	0	-1	Х	0
From Bessel's functions, the	$nJ_n(x) +$	$(n / x) J_n(x)$	$nJ_n(x)$ -	(n / x)	(n / x)
value of $J_{n+1}(x)$ is	$J_n'(x)$	- J _n '(x)	$J_n'(x)$	$J_n(x) + J_n'(x)$	$\mathbf{J}_{n}(\mathbf{x})$ - $\mathbf{J}_{n}'(\mathbf{x})$
When 'n' is an integer, $J_n(x)$	harmonic	linearly	linearly		linearly
and $J_{-n}(x)$ are	function	dependent	independent	orthonormal	independent
Bessel's functions are	indeterminate	simple	oscillatory	critically	oscillatory

		harmonic	function	damped	function
The value of $P_1(x)$ is	х	1	x ² /2	$\frac{1}{2}(x^2-1)$	Х
The identical roots of the			m = 0 or m	m = 0 or m =	
Legendre's functions are	$m = \pm n$	$m = \pm 1$	= 1	-1	$m = \pm 1$
If Jo and J_1 are Bessel's	Jo(x) –		Jo(x) +	Jo(x) -1/x	Jo (x) –
functions then $J_1'(x)$ is given by	$1/x J_1(x)$	– Jo	$1/x J_1(x)$	$J_1(x)$	$1/x J_1(x)$
If $J_{n+1}(x) = (2/x) J_n(x) - J_0(x)$					
where Jn is the Bessel function					
of first kind order 'n'. Then 'n'					
is	0	2	-1	1	1
The value of Po(x) is	1	Х	0	-1	1
Let $Pn(x)$ be the Legendre					
polynomial, then Pn(-x) is	$(-1)^{n+1}$	(-1) ⁿ	(-1) ⁿ		
equal to	$P_n'(x)$	$P_n'(x)$	$\mathbf{P}_{\mathbf{n}}(\mathbf{x})$	P_n "(x)	$(-1)^n \mathbf{P}_n(\mathbf{x})$
If $P_n(x)$ is the Legendre					
polynomial of order 'n', then					
$3x^2 + 3x + 1$ can be expressed		$4P_2 + 2P_1 +$	$3P_2+3P_1$	$2P_2 + 3P_1 +$	$2P_2+3P_1$
as	$3P_2 + 3P_1$	Po	+ Po	2Po	+ 2Po
		n zeros of			
	n real	which only	2n-1 real		n real
	zeros	one 1s	zeros		zeros
The Legendre polynomial	between 0	between -1	between -1	C .1	between 0
Pn(x) has	and I	and $+1$	and I	none of these	and I
			$P_n(-x) =$		
The incorrect equation among	$\mathbf{D}(-) = 1$	D ()	$(-1)^{n+1}$ P_n	$P_n(x) = (-1)^{n+1} P_n(x)$	$P_n(-x) =$
the following is	$P_0(X) = 1$	$P_1(x) = x$	(\mathbf{X})	$(1)^{n} P_n(X)$	$(-1)^{n+1} P_n(X)$
$T_{\rm r} = 1$	D ()	\mathbf{D} ()	$(-1)^{n} P_{n}$	$(-1)^n P_n (-1)^n (-1$	D ()
The value of $P_n(-x)$ is	$-P_n(X)$	$P_n(X)$	(X)	X)	$P_n(X)$
The value of $2J_n$ ' is	$J_{n-1} - J_{n+1}$	$J_{n-1} + J_{n+1}$	$J_{n+1} - J_{n+1}$	2 J _{n+1}	$J_{n+1} - J_{n+1}$
The direct method fails if any					Zero
one of the pivot elements					-
become	Zero	one	two	negative	

Γ1/2=	$\sqrt{\pi}$	π	0	1	$\sqrt{\pi}$
Which of the following is the					regula falsi
alter name for the method of	Method of	method of	method of		-
false position	chords	tangents	bisection	regula falsi	
	Direct				Direct
	method				method
Gauss elimination method is a -	indirect	iterative		indirect	
	method	method	convergent	method	
The rate of convergence in					2
Gauss – Seidel method is					
roughly times than that					
of Gauss Jacobi method.	2	3	4	0	
Example for iterative method	Gauss		Gauss		Gauss Seidal
	elimination	Gauss Seidal	Jordan	Romberg	
In the absence of any better					x = 0, y = 0,
estimates, the initial	x = 0, y = 0,	x = 1, y = 1,	x=2, y=2,	x=1, y=2,	z = 0
approximations are taken as	z = 0	z = 1	z = 2	z = 3	
When Gauss Jordan method is			Upper	lower	diagonal
used to solve $AX = B$, A is	Scalar	diagonal	triangular	triangular	matrix
transformed into	matrix	matrix	matrix	matrix	
The modification of Gauss –					Gauss
Elimination method is called	Gauss		Gauss		Jordan
	Jordan	Gauss Seidal	Jacobbi	Romberg	
The Method					direct.
produces the exact solution					
after a finite number of steps.	Gauss Seidal	Gauss Jacobi	iterative	direct.	
In the upper triangular					non – zero
coefficient matrix, all the					
elements above the diagonal are					
	Zero	non – zero	unity	negative.	
In the upper triangular					zero
coefficient matrix, all the					
elements below the diagonal	Positive	non zero	zero	negative.	

are					
			Coefficient		Coefficient
	Coefficient		matrix is		matrix is
Condition for convergence of	matrix is		not		diagonally
Gauss Seidal method is	diagonally	pivot element	diagonally	none of	dominant
	dominant	is Zero	dominant	these.	
In Gauss elimination method by					back
means of elementary row					substitution
operations, from which the				both forward	
unknowns are found by	Forward	back		and	
method.	substitution	substitution	random	backward	
In iterative methods, the					greater than
solution to a system of linear					or equal to
equations will exist if the					
absolute value of the largest					
coefficient is the					
sum of the absolute values of					
all remaining coefficients in		greater than			
each equation.	less than	or equal to	equal to	equal to 0	
In iterative method,					Gauss Seidal
the current values of the					
unknowns at each stage of					
iteration are used in proceeding			Gauss	Gauss	
to the next stage of iteration.	Gauss Seidal	Gauss Jacobi	Jordon	elimination.	
The direct method fails if any					Zero
one of the pivot elements					
become	Zero	one	two	negative	
In Gauss elimination method			Upper	lower	Upper
the given matrix is transformed		diagonal	triangular	triangular	triangular
into	Unit matrix	matrix	matrix	matrix	matrix
If the coefficient matrix is not				interchanging	interchanging
diagonally dominant, then by	Interchanging	interchanging	adding	rows and	rows and
that diagonally	rows	columns	zeros	columns	columns

dominant coefficient matrix is					
formed.					
Gauss Jordan method is a	Direct	indirect	iterative		Direct
	method	method	method	convergent	method
Gauss Jocobi method is a	Direct	indirect	iterative		indirect
	method	method	method	convergent	method
The modification of Gauss –					Gauss Seidal
Jordan method is called	Gauss		Gauss		
	Jordan	Gauss Seidal	Jacobbi	Crouts	
Gauss Seidal method always					Only the
converges for of	Only the		quadratic	none of	special type
systems.	special type	all types	type	these.	
In solving the system of linear					AX = B
equations, the system can be					
written as	$\mathbf{B}\mathbf{X} = \mathbf{B}$	AX = A	AX = B	AB = X	
In solving the system of linear					(A, B)
equations, the augment matrix					
is	(A, A)	(B, B)	(A, X)	(A, B)	
In the direct methods of solving					An augment
a system of linear equations, at					matrix
first the given system is written	An augment	a triangular	Constant	coefficient	
as form.	matrix	matrix	matrix	matrix	
All the row operations in the					pivot element
direct methods can be carried			negative	positive	
out on the basis of	all elements	pivot element	elements	elements	
		the first	first row		first row and
	The first row	column	and column		column
The direct method fails if	elements are	elements are	elements	None of	elements are
	zero	zero	are zero	these	zero
The elimination of the					Gauss Jordan
unknowns is done not only in					
the equations below, but also in	Gauss		Gauss		
the equations above the leading	elimination	Gauss Jordan	Jacobi	Gauss Seidal	

diagonal is called					
	without using	by using	by using	without using	without using
	back	back	forward	forward	back
In Gauss Jordan method, we get	substitution	substitution	substitution	substitution	substitution
the solution	method	method	method	method	method
If the coefficient matrix is					Gauss Seidal
diagonally dominant, then	Gauss				
method converges quickly.	elimination	Gauss Jordan	direct	Gauss Seidal	
Which is the condition to apply				upper	Diagonally
Jocobi's method to solve a	First row is	First column	Diagonally	triangular	dominant
system of equations.	dominant	is dominant	dominant	matrix	
Iterative method is a					indirect
method.	Direct	indirect	step by step	difficult	

UNIT 4

Matrices Introduction – special types of Matrices – Transpose of a Matrix – The Conjugate of a Matrix – Conjugate Transpose of a Matrix – Symmetric and Anti symmetric - Hermitian and skew Hermitian - Orthogonal and Unitary Matrices -Properties – Characteristics equation – Roots and characteristics vector – Diagonalization of matrices – Cayley – Hamilton theorem – Problems

MATRICES:

A rectangular array of numbers is called a matrix. We shall mostly be concerned with matrices having real numbers as entries. The horizontal arrays of a matrix are called its ROWS and the vertical arrays are called its COLUMNS. A matrix having m rows and *n* columns is said to have the order $m \times n$.

A matrix A of order $m \times n$ can be represented in the following form:

	a11	a_{12}	•••	ain
	a21	a ₂₂	• • •	a _{2n}
A =	1	:	٠.	:
	a_{m1}	a_{m2}		amn

where a_{ij} is the entry at the intersection of the *i*th row and *j*th column.

In a more concise manner, we also denote the matrix A by $[a_{ij}]$ by suppressing its order. Note: Some books also use

(a11	a_{12}		a1n)
a ₂₁	a_{22}		a _{2n}
÷	÷	٠.	:
(a _{m1}	a_{m2}		amn)

to represent a matrix.

A matrix having only one column is called a column vector and a matrix with only one row is called a row vector. Whenever a vector is used, it should be understood from the context whether it is a row vector or a column vector.

Here are a couple of examples of different types of matrices:

Symmetric:

3]		2	1
5	10	0	2
6		-5	3

Diagonal

1	0	0
0	4	0
0	0	6

Upper Triangular

1	2	3
0	7	-5
0	0	-4

Lower Triangular

1	0	0
-4	7	0

12 5 3

Fields Frighten Brick		CC. 1	KARPAGA	M ACA	DEMY OF	F HIGHER E	EDUCATION	UVSICS I
ARPAGAN ADEMY OF HIGHER EDUCATION (Deemed to be University) tablished Under Section 3 of UGC Act, 1956)	COU	RSE	CODE: 18PI	HU103	UNI	Γ: IV	BATCH-2018-2	2021
Ze	ro							
]	0	0	٥]					
	0	0	o					
Į	0	0	o					
Ide	entity							
[1	0	0]					A
	0	1	0					
Į	0	0	1					
Ex	ample	e 1:	-					
		1	3 6					
-	A =	4	6 0	_				
Lei	t • • •	L	J, list	out the <i>a</i>	$_{ij}$'s values 1	n A .		
50	-1		$3 a_{12} = 6$					
u]] (12)	= 1, 0 = 2, 0	$u_{12} =$	$3, a_{13} = 0$					
a31	= 4, c	$a_{32} =$	$4, a_{33} = 0$					
	,							
Ex	ample	e 2:		-	-			
				9 8	7			
			A	= 6 5	4			
				3 2	1			
Sta	ate the	<i>a_{ij}</i> 's	values in	4 0	0			
So	lution	:						

CLASS: I BSC Physics COURSE CODE: 18PHU103 COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: IV BATCH-2018-2021

 $a_{11} = 9, a_{12} = 8, a_{13} = 7$ $a_{21} = 6, a_{22} = 5, a_{23} = 4$ $a_{31} = 3, a_{32} = 2, a_{33} = 1$ $a_{41} = 4, a_{42} = 6, a_{43} = 8$

Example 3: Provide two examples of column and row matrices each.

Solution:

We know that, a matrix having only one column is called a column vector or column matrix and a matrix with only one row is called a row vector or row column.

$$1.A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 5 \\ 7 \\ 9 \end{bmatrix}$$

$$2.A = \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}, B = \begin{bmatrix} 4 & 5 & 9 & 0 \end{bmatrix}$$

Example 4: Is the following matrix classified under the category of matrices?

	9	7	8
<i>A</i> =	8	7	9
	6	9	

Solution:

A is not a matrix because column three or we can say row three is incomplete.

Example 5: What is the order of the following matrix?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \\ 7 & 8 & 9 \end{bmatrix}$$

Solution:

We know that a matrix having *m* rows and *n* columns is said to have the order $m \times n$, therefore the order of *A* is 4×3 .

Types of matrices — triangular, diagonal, scalar, identity, symmetric, skew-

symmetric, periodic, nilpotent

Upper triangular matrix. A square matrix in which all the elements below the diagonal are zero i.e. a matrix of type:

a_{11}	a_{12}	a_{13}	•••	a_{1n}
0	a_{22}	a_{23}		a_{2n}
0	0	a ₃₃		<i>a</i> _{3n}
0	0	0	0	a_{nn}

Lower triangular matrix. A square matrix in which all the elements above the diagonal are zero i.e. a matrix of type

 a_{11} 0 0 . . . 0 0 0 a_{21} a_{22} . . . 0 a_{31} a_{32} a_{33} a_{nn} a_{n2} . . . a_{n1} a_{n3}

Diagonal matrix. A square matrix in which all of the elements are zero except for the diagonal elements i.e. a matrix of type

COURSE NAME: MATHEMATICAL PHYSICS-I

COURSE CODE: 18PHU103 UNIT: IV BATCH-2018-2021

 $D = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_{nv} \end{bmatrix}$

KARPAGAM CLASS: I BSC Physics

It is often written as $D = diag(a_{11}, a_{22}, a_{33}, \dots, a_{nn})$

Scalar matrix. A diagonal matrix in which all of the diagonal elements are equal to some constant "k" i.e. a matrix of type

 $\begin{bmatrix} k & 0 & 0 & \cdots & 0 \\ 0 & k & 0 & \cdots & 0 \\ 0 & 0 & k & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & k \end{bmatrix}$

Identity matrix. A diagonal matrix in which all of the diagonal elements are equal to "1" i.e. a matrix of type

 $I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$

An identity matrix of order nxn is denoted by I_n .

Transpose of a matrix.

The matrix resulting from interchanging the rows and columns in the given matrix. The transpose of

ARPAGAM CLASS: I BSC Physics COURSE CODE: 18PHU103

$$A = \begin{bmatrix} 3 & 2 & 8 \\ 1 & 5 & 4 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 3 & 1 \\ 2 & 5 \\ 8 & 4 \end{bmatrix}$$

is

The first row of A becomes the first column of A^T, the second row of A becomes the second column of A^T, etc.. It corresponds to a "flip" of the matrix about the diagonal running down from the upper left corner.

Symmetric matrix.

A square matrix in which corresponding elements with respect to the diagonal are equal; a matrix in which $a_{ij} = a_{ji}$ where a_{ij} is the element in the i-th row and j-th column; a matrix which is equal to its transpose; a square matrix in which a flip about the diagonal leaves it unchanged. Example:

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & 5 \\ -3 & 5 & 6 \end{bmatrix}$$

Skew-symmetric matrix.

A square matrix in which corresponding elements with respect to the diagonal are negatives of each other; a matrix in which $a_{ij} = -a_{ij}$ where a_{ij} is the element in the i-th row and j-th column; a matrix which is equal to the negative of its transpose. The diagonal elements are always zeros. Example:

Example 1 Engineers I Forsite CALOR OF A HIGH AND A HIGH AN A HIGH AND A HIG

0	-2	3
2	0	-5
_ 3	5	0

Direct Sum. Let $A_1, A_2, ..., A_s$ be square matrices of respective orders $m_1, m_2, ..., m_s$.

The generalization

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & A_s \end{bmatrix} = Diag(A_1, A_2, \dots, A_s)$$

of the diagonal matrix is called the direct sum of the A_i .

Inverse of a matrix.

If A and B are square matrices such that AB = BA = I where I is the identity matrix, then B is called the inverse of A and we write $B = A^{-1}$. The matrix B also has A as an inverse and we can write $A = B^{-1}$.

Commutative and anti-commutative matrices. If A and B are square matrices such that AB = BA, then A and B are called commutative or are said to commute. If AB = -BA, the matrices are said to **anti-commute.**

Periodic matrix. A matrix A for which $A^{k+1} = A$, where k is a positive integer. If k is the least positive integer for which $A^{k+1} = A$, then A is said to be of**period k**. If k = 1, so that

 $A^2 = A$, then A is called **idempotent**.

Nilpotent matrix. A matrix A for which $A^{p} = 0$, where p is some positive integer. If p is the least positive integer for which $A^{p} = 0$, then A is said to benilpotent of index p.

DETERMINANT OF A MATRIX:

Determinants are mathematical objects that are very useful in the analysis and solution of systems of linear equations. As shown by Cramer's rule, a nonhomogeneous system of linear equations has a unique solution iff the determinant of the

system's matrix is nonzero (i.e., the matrix is nonsingular). For example, eliminating x, y, and z from the equations

$a_1 x + a_2 y + a_3 z = 0$		(1)
$b_1 x + b_2 y + b_3 z = 0$		(2)
$c_1 x + c_2 y + c_3 z = 0$		(3)

gives the expression

$$a_1 b_2 c_3 - a_1 b_3 c_2 + a_2 b_3 c_1 - a_2 b_1 c_3 + a_3 b_1 c_2 - a_3 b_2 c_1 = 0,$$
(4)

which is called the determinant for this system of equation. Determinants are defined only for square matrices.

If the determinant of a matrix is 0, the matrix is said to be singular, and if the determinant is 1, the matrix is said to be unimodular.

The determinant of a matrix A,

 $\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & \ddots & \vdots \\ z_1 & z_2 & \cdots & z_n \end{vmatrix}$ (5)

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics COURSE CODE: 18PHU103 COURSE C

is commonly denoted det (A), |A|, or in component notation as $\sum (\pm a_1 \ b_2 \ c_3 \ \cdots)$, $D(a_1 \ b_2 \ c_3 \ \cdots)$, or $|a_1 \ b_2 \ c_3 \ \cdots|$ (Muir 1960, p. 17). Note that the notation det (A) may be more convenient when indicating the absolute value of a determinant, i.e., $|\det(A)|$ instead of ||A||. The determinant is implemented in the Wolfram Language as Det[m].

(6)

A 2×2 determinant is defined to be

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{vmatrix} a & b \\ c & d \end{vmatrix} \equiv a \, d - b \, c.$$

A $k \times k$ determinant can be expanded "by minors" to obtain

$\begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{k1} \end{vmatrix}$	$a_{12} \\ a_{22} \\ \vdots \\ a_{k 2}$	a_{13} a_{23} \vdots a_{k3}	···· ···	a_{1k} a_{2k} \vdots a_{kk}	$= a_{11} \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k2} & a_{k3} & \cdots & a_{kk} \end{vmatrix}$	(7)
- <i>a</i> ₁₂	$\begin{vmatrix} a_{21} \\ \vdots \\ a_{k1} \end{vmatrix}$	a_{23} : a_{k3}	 	a_{2k} : a_{kk}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

A general determinant for a matrix A has a value

$$|\mathsf{A}| = \sum_{i=1}^{k} a_{ij} C_{ij}, \tag{8}$$

with no implied summation over j and where C_{ij} (also denoted a^{ij}) is the cofactor of a_{ij} defined by

$$C_{ij} \equiv (-1)^{i+j} M_{ij}.$$
 (9)

and M_{ij} is the minor of matrix A formed by eliminating row i and column j from A. This process is calleddeterminant expansion by minors (or "Laplacian expansion by minors," sometimes further shortened to simply "Laplacian expansion").

KARPAGAM ACADEMY OF HIGHER EDUCATION AM CLASS: I BSC Physics

COURSE NAME: MATHEMATICAL PHYSICS-I COURSE CODE: 18PHU103 UNIT: IV BATCH-2018-2021

A determinant can also be computed by writing down all permutations of $\{1, \dots, n\}$, taking each permutation as the subscripts of the letters a, b, ..., and summing with signs determined by $\epsilon_p = (-1)^{i(p)}$, where i(p) is the number of permutation inversions in permutation *P* (Muir 1960, p. 16), and $\epsilon_{n_1 n_2 \cdots}$ is the permutation symbol. For example, with n = 3, the permutations and the number of inversions they contain are 123 (0), 132 (1), 213 (1), 231 (2), 312 (2), and 321 (3), so the determinant is given by

 $a_1 \ a_2 \ a_3$ $b_1 \ b_2 \ b_3 = a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1.$ (10) $c_1 \ c_2 \ c_3$

If *a* is a constant and A an $n \times n$ square matrix, then

$$|a \mathsf{A}| = a^n |\mathsf{A}|. \tag{11}$$

Given an $n \times n$ determinant, the additive inverse is

$$|-\mathbf{A}| = (-1)^n |\mathbf{A}|.$$
(12)

Determinants are also distributive, so

$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| |\mathbf{B}|. \tag{13}$$

This means that the determinant of a matrix inverse can be found as follows:

$$|\mathbf{I}| = |\mathbf{A} \mathbf{A}^{-1}| = |\mathbf{A}| |\mathbf{A}^{-1}| = 1,$$
(14)

where *I* is the identity matrix, so

$$|\mathsf{A}| = \frac{1}{|\mathsf{A}^{-1}|}.$$
(15)

Determinants are multi linear in rows and columns, since

KARPAGAM ACADEMY OF HIGHER EDUCATION KARPAGAM CLASS: I BSC Physics COURSE NAME: MATHEMATICAL PHYSICS-I COURSE CODE: 18PHU103 UNIT: IV BATCH-2018-2021 $|0 a_2 0| |0 0 a_3|$ $a_1 \ 0 \ 0$ $a_1 \ a_2 \ a_3$ $a_4 \ a_5 \ a_6 = |a_4 \ a_5 \ a_6| + |a_4 \ a_5 \ a_6| + |a_4 \ a_5 \ a_6|$ (16) $a_8 a_9$ $a_7 \ a_8 \ a_9$ $a_7 \ a_8 \ a_9$ $|a_7 \ a_8 \ a_9|$ and $\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix} \quad \begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix} \quad \begin{vmatrix} 0 & a_2 & a_3 \end{vmatrix} \quad \begin{vmatrix} 0 & a_2 & a_3 \end{vmatrix}$ $\begin{vmatrix} a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix} = \begin{vmatrix} 0 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} a_4 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} 0 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix} = \begin{vmatrix} 0 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix}$ (17)The determinant of the similarity transformation of a matrix is equal to the determinant of the original matrix $|BAB^{-1}| = |B| |A| |B^{-1}|$ (18) $= |\mathbf{B}| |\mathbf{A}| \frac{1}{|\mathbf{B}|}$ (19)(20) $= |\mathbf{A}|$. The determinant of a similarity transformation minus a multiple of the unit matrix is given by $|\mathbf{B}^{-1} \mathbf{A} \mathbf{B} - \lambda \mathbf{I}| = |\mathbf{B}^{-1} \mathbf{A} \mathbf{B} - \mathbf{B}^{-1} \lambda \mathbf{I} \mathbf{B}|$ (21) $= |\mathbf{B}^{-1} (\mathbf{A} - \lambda \mathbf{I}) \mathbf{B}|$ (22)

$$= |\mathbf{B}^{-1}| |\mathbf{A} - \lambda \mathbf{I}| |\mathbf{B}| \tag{23}$$

(24)

The determinant of a transpose equals the determinant of the original matrix,

 $= |\mathbf{A} - \lambda \mathbf{I}|.$

$$|\mathsf{A}| = |\mathsf{A}^{\mathrm{T}}|,\tag{25}$$

and the determinant of a complex conjugate is equal to the complex conjugate of the determinant

$$|\overline{\mathbf{A}}| = \overline{|\mathbf{A}|}.\tag{26}$$

(27)

Let ϵ be a small number. Then

$$|\mathbf{I} + \boldsymbol{\epsilon} \mathbf{A}| = 1 + \boldsymbol{\epsilon} \operatorname{Tr} (\mathbf{A}) + O(\boldsymbol{\epsilon}^2),$$

where $\operatorname{Tr}(A)$ is the matrix trace of A. The determinant takes on a particularly simple form for a triangular matrix

$ a_{11} $	a_{21}	•••	a_{k1}			
0	a_{22}		a_{k2}			
1	:	$\gamma_{\rm e}$: =	$= \prod_{n \in \mathbb{N}} a_{nn}$		(28)
0	0	•••	a_{kk}	n=1		

Important properties of the determinant include the following, which include invariance under elementary row and column operations.

1. Switching two rows or columns changes the sign.

2. Scalars can be factored out from rows and columns.

3. Multiples of rows and columns can be added together without changing the determinant's value.

4. Scalar multiplication of a row by a constant *c* multiplies the determinant by *c*.

5. A determinant with a row or column of zeros has value 0.

6. Any determinant with two rows or columns equal has value 0.

Property 1 can be established by induction. For a 2×2 matrix, the determinant is

 $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - b_1 a_2 \tag{29}$

$$= -(b_1 a_2 - a_1 b_2) \tag{30}$$

$$= - \begin{vmatrix} b_1 & a_1 \\ b_2 & a_2 \end{vmatrix}$$
(31)

KARPAGAM ACADEMY OF HIGHER EDUCATION KARPAGAM CLASS: I BSC Physics COURSE NAME: MATHEMATICAL PHYSICS-I COURSE CODE: 18PHU103 UNIT: IV BATCH-2018-2021

For a 3×3 matrix, the determinant is

ity) SC Act. 1956)

$$\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = a_{1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - b_{1} \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \begin{vmatrix} a_{2} & b_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \begin{vmatrix} a_{2} & b_{2} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix} = - \begin{vmatrix} a_{1} & c_{1} & b_{1} \\ a_{2} & c_{2} & b_{2} \\ a_{3} & c_{3} & b_{3} \end{vmatrix}$$

$$= - \left(-a_{1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} + b_{1} \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} + c_{1} \begin{vmatrix} b_{2} & a_{2} \\ b_{3} & a_{3} \end{vmatrix} \right) = - \begin{vmatrix} b_{1} & a_{1} & c_{1} \\ b_{2} & a_{2} & c_{2} \\ b_{3} & a_{3} & c_{3} \end{vmatrix}$$

$$= - \left(a_{1} \begin{vmatrix} c_{2} & b_{2} \\ c_{3} & b_{3} \end{vmatrix} - b_{1} \begin{vmatrix} c_{2} & a_{2} \\ c_{3} & a_{3} \end{vmatrix} + c_{1} \begin{vmatrix} b_{2} & a_{2} \\ b_{3} & a_{3} \end{vmatrix} \right) = - \begin{vmatrix} c_{1} & b_{1} & a_{1} \\ c_{2} & b_{2} & a_{2} \\ c_{3} & b_{3} & a_{3} \end{vmatrix} .$$

$$(32)$$

Property 2 follows likewise. For 2×2 and 3×3 matrices,

$$\begin{vmatrix} ka_{1} & b_{1} \\ ka_{2} & b_{2} \end{vmatrix} = k(a_{1} b_{2}) - k(b_{1} a_{2})$$
(33)
$$= k \begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix}$$
(34)
and
$$\begin{vmatrix} ka_{1} & b_{1} & c_{1} \\ ka_{2} & b_{2} & c_{2} \\ ka_{3} & b_{3} & c_{3} \end{vmatrix} = ka_{1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} - b_{1} \begin{vmatrix} ka_{2} & c_{2} \\ ka_{3} & c_{3} \end{vmatrix} + c_{1} \begin{vmatrix} ka_{2} & b_{2} \\ ka_{3} & b_{3} \end{vmatrix}$$
(35)

$$= k \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$
(36)

Property 3 follows from the identity

$$\begin{vmatrix} a_1 + k b_1 & b_1 & c_1 \\ a_2 + k b_2 & b_2 & c_2 \\ a_3 + k b_3 & b_3 & c_3 \end{vmatrix} = (a_1 + k b_1) \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 + k b_2 & c_2 \\ a_3 + k b_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 + k b_2 & b_2 \\ a_3 + k b_3 & b_3 \end{vmatrix}.$$
(37)

(38)

If a_{ij} is an $n \times n$ matrix with a_{ij} real numbers, then $\det[a_{ij}]$ has the interpretation as the oriented *n*-dimensional content of the parallelepiped spanned by the column vectors $[a_{i,1}]$, ..., $[a_{in}]$ in \mathbb{R}^n . Here, "oriented" means that, up to a change of + or - sign, the number is the *n*-dimensional content, but the sign depends on the "orientation" of the column vectors involved. If they agree with the standard orientation, there is a + sign; if not, there is a - sign. The parallelepiped spanned by the *n*-dimensional vectors \mathbf{v}_1 through \mathbf{v}_i is the collection of points

 $t_1 \mathbf{v}_1 + \ldots + t_i \mathbf{v}_i,$

where t_j is a real number in the closed interval [0, 1].

Several accounts state that Lewis Carroll (Charles Dodgson) sent Queen Victoria a copy of one of his mathematical works, in one account, *An Elementary Treatise on Determinants*. Heath (1974) states, "A well-known story tells how Queen Victoria, charmed by *Alice in Wonderland*, expressed a desire to receive the author's next work, and was presented, in due course, with a loyally inscribed copy of *An Elementary Treatise on Determinants*," while Gattegno (1974) asserts "Queen Victoria, having enjoyed *Alice* so much, made known her wish to receive the author's other books, and was sent one of Dodgson's mathematical works." However, in *Symbolic Logic* (1896), Carroll stated, "I take this opportunity of giving what publicity I can to my contradiction of a silly story, which has been going the round of the papers, about my having presented certain books to Her Majesty the Queen. It is so constantly repeated, and is such absolute fiction, that I think it worth while to state, once for all, that it is utterly false in every particular: nothing even resembling it has occurred" (Mikkelson and Mikkelson).

Hadamard (1893) showed that the absolute value of the determinant of a complex $n \times n$ matrix with entries in the unit disk satisfies

 $|\det A| \le n^{n/2}$

(Brenner 1972). The plots above show the distribution of determinants for random $n \times n$ complex matrices with entries satisfying $|a_{ij}| < 1$ for n = 2, 3, and 4.

RANK OF A MATRIX:

The DETERMINANT of a matrix det A or |A|

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 $|A| = a_{11} - a_{12}$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 16/29

(39)

COURSE NAME: MATHEMATICAL PHYSICS-I

$ A = +a_{11}$		23	$-a_{12}$	21	23	$+a_{13}$	21	
	a_{32}	a_{33}	$ \mathcal{L} $	a_{31}	a_{33}	15	a_{31}	a_{32}

 $a_{11}(a_{22}a_{33}-a_{23}a_{32}) - a_{12}(a_{21}a_{33}-a_{23}a_{31}) + a_{13}(a_{21}a_{32}-a_{22}a_{31})$

 $(a_{22}a_{33}-a_{23}a_{32})$ is called the minor of a_{11} and is usually denoted $|A_{ij}|$ - in this case $|A_{11}|$

$$A = \begin{bmatrix} 3 & 5 & 4 \\ 6 & 9 & 7 \\ 2 & 8 & 1 \end{bmatrix}$$

KARPAGAM CLASS: I BSC Physics

$$|A| = +3\begin{vmatrix} 9 & 7 \\ 8 & 1 \end{vmatrix} - 5\begin{vmatrix} 6 & 7 \\ 2 & 1 \end{vmatrix} + 4\begin{vmatrix} 6 & 9 \\ 2 & 8 \end{vmatrix}$$

= 3(9-56) - 5(6-14) + 4(48-18)

= -141 + 40 + 120

The COFACTOR of the elements of a_{ij} denoted by c_{ij}

is

 $c_{ij} = (-1)^{i+j} \left| A_{ij} \right|$

Exakle | Didgeter | Ersch KARPAGAI ACADEMY OF HIGHER EDUCATI

$$|A| = \sum_{j=1}^{n} a_{ij} c_{ij} = \sum_{i=1}^{n} a_{ij} c_{ij}$$

PROPERTIES OF DETERMINANTS

1. $|A^{\mathrm{T}}| = |A|$

2.
$$\begin{vmatrix} a_{11} & ka_{12} \\ a_{21} & ka_{22} \end{vmatrix} = ka = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

3. If A is (n x n) then
$$|kA| = k^n |A|$$

- 4. If a square matrix has two equal rows or columns its determinant is zero
- 5. If any row (or column) is the multiple of any other row (or column) then its determinant is zero
- 6. The value of a determinant is unchanged if a multiple of one row (or column) is added to another row (or column)
- 7. If A is a diagonal matrix of order n then its determinant is $a_{11}a_{22}...a_{nn}$
- 8. If A is a triangular matrix of order n then its determinant is $a_{11}a_{22} \dots a_{nn}$
- 9. If *B* is the matrix obtained from a square matrix *A* by interchanging any two rows (or columns) then det $B = -\det A$

KARPAGAM ACAI KARPAGAM CLASS: I BSC Physics

KARPAGAM ACADEMY OF HIGHER EDUCATIONBSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-I

COURSE CODE: 18PHU103

UNIT: IV BATCH-2018-2021

10. If *A* and *B* are square matrices of the same order then |AB| = |A| |B|

11. If A_1, A_2, \dots, A_s are square matrices then $|\operatorname{diag}(A_1, A_2, \dots, A_s)| = |A_1| |A_2|$ $\dots |A_s|$

12. In general |A + B| does not equal |A| + |B|
KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics COURSE CODE: 18PHU103 UNIT: IV BATCH-2018-2021

The RANK of a matrix is equal to the highest order non-zero determinant that can be formed from its sub-matrices

$$A = \begin{bmatrix} 4 & 5 & 2 & 14 \\ 3 & 9 & 6 & 21 \\ 8 & 10 & 7 & 28 \\ 1 & 2 & 9 & 5 \end{bmatrix}$$

 $\det A = 0$

$$\begin{array}{cccc}
4 & 5 & 2 \\
3 & 9 & 6 \\
8 & 10 & 7
\end{array} = 63$$

Rank of A = 3

The rank of a matrix can also be measured by the maximum number of linearily independent columns of *A*

This also equals the maximum number of linearily independent rows

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 20/29

COURSE NAME: MATHEMATICAL PHYSICS-I

BATCH-2018-2021

UNIT: IV

 $\begin{bmatrix} 4\\3\\8\\1 \end{bmatrix} + 2\begin{bmatrix} 5\\9\\10\\2 \end{bmatrix} + 0\begin{bmatrix} 2\\6\\7\\9 \end{bmatrix} + (-1)\begin{bmatrix} 14\\21\\28\\5 \end{bmatrix} = 0$

COURSE CODE: 18PHU103

 $c_1a_1 + c_2a_2 + c_3a_3 + c_4a_4 = 0$

ARPAGAM CLASS: I BSC Physics

A FULL COLUMN RANK matrix has the same number of linearily independent columns (rows) equal to the number of columns

A FULL ROW RANK matrix has the same number of linearily independent rows (columns) equal to the number of rows

If *A* does not have full row and column rank it is SINGULAR If *A* does have full row and column rank it is NON-SINGULAR

rank $(I_n) = n$ rank (kA) = rank (A)rank $(A^T) = rank (A)$ If A is $(m \ge n)$ then rank (A) is $\le min \{m, n\}$ rank $AB \le min\{rank (A), rank (B)\}$ **INVERSES**

If *A* and *B* are matrices of order n such that $AB = BA = I_n$ then *B* is called the inverse of *A*

A has an inverse iff it is of full column and row rank - non-singular

 $A^{-1} = C^{\mathrm{T}} / |A|$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 21/29

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I BSC Physics COURSE NAME: MATHEMATICA

COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: IV BATCH-2018-2021

 C^{T} is the transpose of the matrix of co-factors

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

|A| = 4 - 6 = -2

 $c_{11}=4 \ c_{12}=-3 \ c_{21}=-2 \ c_{22}=1$

$$A^{-1} = \frac{-1}{2} \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}^{T}$$
$$A^{-1} = \begin{bmatrix} 2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

PROPERTIES OF INVERSES

- 1. $I^{-1} = I$
- 2. $(A^{-1})^{-1} = A$
- 3. AB = I BA = I
- 4. A non-singular A^{-1} non-singular
- 5. A and B non-singular $(AB)^{-1} = B^{-1}A^{-1}$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 22/29

CLASS: I BSC Physics COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: IV BATCH-2018-2021

LEFT INVERSE of a (m x n) matrix A is the (n x m) matrix B such that $BA = I_n$

RIGHT INVERSE of a (m x n) matrix A is the (n x m) matrix C such that $AC = I_m$

(T x k) design matrix *X* which has rank k < T has an infinite number of left inverses including $(X^{T}X)^{-1}X^{T}$

IDEMPOTENT MATRICES

AA = A

$$A = \begin{bmatrix} 0.4 & 0.8 \\ 0.3 & 0.6 \end{bmatrix}$$

Consider $M = [I - X(X^{T}X)^{-1}X^{T}]$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 23/29

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 24/29

ARPAGAM CLASS: I BSC Physics

EIGEN VALUE AND EIGEN VECTORS:

Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic roots, characteristic values (Hoffman and Kunze 1971), proper values, or latent roots (Marcus and Minc 1988, p. 144).

The determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering, where it is equivalent to matrix diagonalization and arises in such common applications as stability analysis, the physics of rotating bodies, and small oscillations of vibrating systems, to name only a few. Each eigenvalue is paired with a corresponding so-called eigenvector (or, in general, a corresponding right eigenvector and a corresponding left eigenvector; there is no analogous distinction between left and right for eigenvalues).

The decomposition of a square matrix A into eigenvalues and eigenvectors is known in this work as eigen decomposition, and the fact that this decomposition is always possible as long as the matrix consisting of the eigenvectors of A is square is known as the eigen decomposition theorem.

The Lanczos algorithm is an algorithm for computing the eigenvalues and eigenvectors for large symmetric sparse matrices.

Let A be a linear transformation represented by a matrix A. If there is a vector $\mathbf{X} \in \mathbb{R}^n \neq \mathbf{0}$ such that

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 25/29

KARPAGAM ACADMON FINGHER EDUCATION Developed to Waterwith COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: IV BATCH-2018-2021

$A \mathbf{X} = \lambda \mathbf{X}$

for some scalar λ , then λ is called the eigenvalue of **A** with corresponding (right) eigenvector **X**.

Letting A be a $k \times k$ square matrix

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix}$

with eigenvalue λ , then the corresponding eigenvectors satisfy

	a_{11} a_{21} \vdots $a_{k,1}$	a_{12} a_{22} \vdots a_{12}	···· ··· ···	a_{1k} a_{2k} \vdots a_{kk}	$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$	$=\lambda$	$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$	3)
l	a_{k1}	a_{k2}	•••	a_{kk}	$ [x_k]$	J	$[x_k]$	

which is equivalent to the homogeneous system

 $\begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$ (4)

Equation (4) can be written compactly as

 $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{X} = \mathbf{0}, \tag{5}$

where is the identity matrix. As shown in Cramer's rule, a linear system of equations has nontrivial solutions iff thedeterminant vanishes, so the solutions of equation (5) are given by

$$\det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \mathbf{0}. \tag{6}$$

This equation is known as the characteristic equation of **A**, and the left-hand side is known as the characteristic polynomial.

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 26/29

(1)

(2)

AM CLASS: I BSC Physics

For example, for a 2×2 matrix, the eigenvalues are

$$\lambda_{\pm} = \frac{1}{2} \left[(a_{11} + a_{22}) \pm \sqrt{4 \, a_{12} \, a_{21} + (a_{11} - a_{22})^2} \, \right],\tag{7}$$

which arises as the solutions of the characteristic equation

$$x^{2} - x(a_{11} + a_{22}) + (a_{11} a_{22} - a_{12} a_{21}) = 0.$$
(8)

If all k eigenvalues are different, then plugging these back in gives k-1 independent equations for the k components of each corresponding eigenvector, and the system is said to be nondegenerate. If the eigenvalues are n-fold degenerate, then the system is said to be degenerate and the eigenvectors are not linearly independent. In such cases, the additional constraint that the eigenvectors be orthogonal,

$$\mathbf{X}_{i} \cdot \mathbf{X}_{j} = |\mathbf{X}_{i}| \left| \mathbf{X}_{j} \right| \delta_{i \, j},\tag{9}$$

where δ_{ij} is the Kronecker delta, can be applied to yield *n* additional constraints, thus allowing solution for the eigenvectors.

Eigenvalues may be computed in the Wolfram Language using Eigenvalues[matrix]. Eigenvectors and eigenvalues can be returned together using the command Eigensystem[matrix].

Assume we know the eigenvalue for

$$\mathbf{A} \mathbf{X} = \lambda \mathbf{X}.$$
 (10)

Adding a constant times the identity matrix to A,

$$(\mathbf{A} + c \mathbf{I}) \mathbf{X} = (\lambda + c) \mathbf{X} \equiv \lambda' \mathbf{X}, \tag{11}$$

so the new eigenvalues equal the old plus c. Multiplying A by a constant c

$(c A) \mathbf{X} = c \ (\lambda \mathbf{X}) \equiv \lambda' \mathbf{X},$	(12)
---	------

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 27/29

so the new eigenvalues are the old multiplied by *c*.

Now consider a similarity transformation of A. Let A be the determinant of A, then

 $\left|\mathbf{Z}^{-1} \mathbf{A} \mathbf{Z} - \lambda \mathbf{I}\right| = \left|\mathbf{Z}^{-1} \left(\mathbf{A} - \lambda \mathbf{I}\right) \mathbf{Z}\right|$ (13)

$$= |\mathbf{Z}| |\mathbf{A} - \lambda \mathbf{I}| |\mathbf{Z}^{-1}| \tag{14}$$

$$= |\mathbf{A} - \lambda \mathbf{I}|,$$

(15)

so the eigenvalues are the same as for A.

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 28/29

AM CLASS: I BSC Physics COURSE CODE: 18PHU103

COURSE NAME: MATHEMATICAL PHYSICS-I

BATCH-2018-2021

POSSIBLE QUESTIONS

UNIT: IV

8 MARK

K Show that the matrix $A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ is orthogonal. $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} \end{pmatrix}$ Show that the matrix B =is unitary. 1 1 1 Find the eigen values of matrix $\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1+i \\ 0 \end{pmatrix}$ is Skew – symmetric but not Skew Show that the matrix A = 1 - 1 - iHermitian. Explain the different types of matrices.(any 5) 1 + iis Skew – symmetric but not Skew Show that the matrix $A = \int_{-\infty}^{\infty} dx \, dx$ Hermitian. 0 20 05 Find the Eigen values of the matrix A =Find the Rank of following matrices i) -2 -2 1 4 Find the eigen values of matrix A =Find the Rank of following matrices i) $\begin{pmatrix} 2 & 1 & 3 \\ 4 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ $\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}$ -5 3 2 2 2 4 2 $\mathbf{B} =$ Find A.B If matrix A =and 0 2 0 Find the eigen values and eigen vectors of the matrix $\sqrt{6}$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE. Page 29/29

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

MATHEMATICAL PHYSICS-I

QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
UNIT-IV					
A diagonal matrix in which all the					
diagonal elements are equal is called	scalar	diagonal			scalar
	matrix	matrix	unit matrix	null matrix	matrix
[3 8 9 -2] is a row matrix of order					
	1x 4	4 x 1	1x 1	4 x 4	1x 4
in a square matrix A, $a_{ij} = 0$ for $i < j$, then	lower	upper			lower
it is called a matrix.	triangular	triangular	diagonal	triangular	triangular
The matrix multiplication of two	order of A is				
matrices A and B is possible only if	m x n and	m x n and	m xm and	m x n and	m x n and
matrices A and B is possible only if	order of B is				
	m x n	n x p	n x n	p x n	n x p
If the order of the matrix A is 4 x 5 and					
the order of the matrix B is 2 x 4 then	2 x 5	2 x 4	4 x 5	4 x 4	2 x 5

the resultant matrix BA has the order					
A Square matrix such that $A' = -A$ is		skew			skew
called	symmetric	symmetric	hermit ion	scalar	symmetric
The sum of the diagonal elements in a			Transpose of		
matrix A is the	Trace of A	unit of A	А	inverse of A	Trace of A
If a square matrix A of order n is of the					
form $A^n = 0$, then it is an					
matrix.	Identity	Idempotent	Nilpotent	Orthogonal	Nilpotent
If a square matrix A of order n is of the A^{n}					
form $A^{n} = A$, then it is an	T1 /	T1 4 4			T1 ()
matrix.	Identity	Idempotent	Nilpotent	Orthogonal	Idempotent
$(AB)^{-1} =$	A ⁻¹	B ⁻¹	$A^{-1}B^{-1}$	$B^{-1}A^{-1}$	$B^{-1}A^{-1}$
$(A^{T})^{-1} =$	(A^{T})	$(A^{-1})^{T}$	(A^{-1})	$(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}}$	$(A^{-1})^{T}$
The of a square matrix A is					
the transpose of the matrix formed by					
replacing the elements of A by their					
corresponding cofactors.	Transpose	Inverse	Cofactor	Ad joint	Ad joint
The formula for solving the system of					
simultaneous linear equations by matrix		_			
inversion method is	X = A B	$\mathbf{X} = \mathbf{A} \ \mathbf{B}^{-1}$	$\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$	$\mathbf{X} = \mathbf{B} \ \mathbf{A}^{-1}$	$X = A^{-1} B$
The transpose of a matrix A is getting by	Interchanging rows into columns only.	Interchanging columns into rows only	Interchanging rows into columns and columns into rows	Taking the same matrix without interchanging the rows and columns.	Interchanging rows into columns only.
The subtraction of any two matrices A and B are possible only if	A and B have same elements	A and B have same order	A and B have different order	A and B have different elements	A and B have same order
Two matrices A and P said to be equal	A and B have		A and B have	A and B have	A and B have
i wo matrices A and B said to be equal	same	A and B have	different	same	same
11	elements	same order	order	elements and	elements and

				same order	same order
Every matrix is a of					
it self.	sub matrix	unit matrix	equal matrix	none	sub matrix
	(-1) ^{i+j} *	(-1) *	-	(-1) ^{i+j} *	(-1) ^{i+j} *
	Determinant	Determinant	Determinant	Determinant	Determinant
The co – factor of an element A_{ii} is	obtained by	obtained by	obtained by	obtained by	obtained by
defined as	deleting i th	deleting i th	deleting i th	deleting j th	deleting i th
	row and i th	row and i th	row and i th	row and i th	row and i th
	column of A	column of A	column of A	column of A	column of A
			Identity		Identity
$A^{-1}A =$	0	1	matrix	Zero matrix	matrix
			Identity		
I*A =	А	0	matrix	Zero matrix	Α
An identity matrix is also found as a				scalar and	scalar and
matrix	Scalar	Diagonal	triangular	diagonal	diagonal
			U	opposite	U
In a 3x3 square matrix the minor and the	Same sign	same sign	Opposite sign	sign and	Opposite sign
cofactor of the element a ₂₃ have	and same	and different	and	different	and
	value	values	same value	values	same value
If every element of a matrix is					
multiplied by a constant k, then the					
determinant value of the matrix is					
multiplied by	k	k-1	k ²	k+1	k
The determinant value of the unit					
matrix of order 2 is	1	0	-1	2	1
If any one of the row or column of a					
matrix is zero then the determinant	0	positive	negative	one	0
value of the matrix is	0	Positive	negutive	one	Ŭ
If A is singular, its inverse is		does not			does not
	null matrix	exists	1/Adj A	$1/ \mathbf{A} $	exists
A rectangular matrix will not possesses-					
	inverse	cofactor	determinant	transpose	inverse
For any square matrix (adj A), $A = A$.	A .I	A	1 / A	A ^T	A .I
$- \cdots \cdots$	L	1 1 1		-	1 -1

(adj A) is					
For any two square matrices A and B	(adj A). (adj B)	(adj B). (adj	(adj BA)	(adj B +adj	(adj B). (adj

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

UNIT-V

Vector Calculus ∇ Operator – Divergence – Second derivative of Vector functions or fields – The Laplacian Operator – Curl of a Vector – Line Integral – Line Integral of a Vector field around an infinitesimal rectangle – Curl of Conservative field – Surface Integral – Volume Integral (without problem) – Gauss's Divergence theorem and it's proof in the simple problems – Stoke's and its proof with simple problems.

Vector Differential Operator Del i.e.(∇)

the vector differential operation Del is denoted by ∇ . It is defined as

$$\nabla = i \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

Gradient Of a Scalar Function

If $\phi(x, y, z)$ be a scalar function then $\hat{\iota} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$ is called the gradient of the scalar function ϕ .

and is denoted by grad ϕ .

thus,
$$grad \phi = \hat{i}\frac{\partial \phi}{\partial x} + \hat{j}\frac{\partial \phi}{\partial y} + \hat{k}\frac{\partial \phi}{\partial z}$$

 $grad \phi = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\phi(x, y, z)$
 $arad \phi = \nabla \phi$

Divergence of a vector function

The Divergence of a vector point function \vec{F} is denoted by div \vec{F} and is defined as below.

$$\operatorname{let} \vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$$

$$div F = \vec{\nabla}.\vec{F} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\left(\hat{i}F_1 + \hat{j}F_2 + \hat{k}F_3\right) = \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right)$$

it is evident that div F is scalar function.

Physical Interpretation of Divergence

Let us consider the case of a fluid flow. consider a small rectangular parallopiped of dimensions dx, dy, dz parallel to x ,y and z axes respectively.

Let $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$ be the velocity of the fluid at P(x,y,z)

∴Mass of fluid flowing in through the face ABCD in unit time

=velocity \times Area of the face = V(dy dz)

mass of fluid flowing out across the face PQRS per unit time

$$= \left(V_x + \frac{\partial V}{\partial x}dx\right)(dy\,dz)$$

Net decrease in mass of fluid in the parallelopiped corresponding to the flow along x-axis per unit time

$$V_x \, dy \, dz - \left(V_x + \frac{\partial V}{\partial x} dx\right) dy \, dz$$

= $-\frac{\partial V_x}{\partial x} dx \, dy \, dz$ (minus sign decrease)

similarly, the decrease in mass of fluid to the flow along y-axis $=\frac{\partial V_y}{\partial y} dx dy dz$

and the decrease in mass of fluid to the flow along z-axis= $\frac{\partial V_z}{\partial z} dx dy dz$

total decrease of the amount of fluid per unit time = $\left(\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}\right) dx dy dz$

Thus the rate of loss of fluid per unit volume $=\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$

$$= \left(\hat{\imath}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\left(\hat{\imath}V_x + \hat{\jmath}V_y + \hat{k}V_z\right) = \vec{\nabla}.\vec{V} = di\vec{v}\vec{V}$$

If the fluid is compressible, there can be gain or less in the volume element. hence $div \vec{V} = 0$ and V is called a solenoidal vector function.

<u>Curl</u>

the curl of a vector point function F is defined as below

$$curl\,\vec{F}=\vec{\nabla}\times\vec{F}$$

$$= \left(\hat{\imath}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \times \left(F_{1}\hat{\imath} + F_{2}\hat{\jmath} + F_{3}\hat{k}\right)$$
$$\begin{vmatrix}\hat{\imath} & \hat{\jmath} & \hat{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ F_{1} & F_{2} & F_{3}\end{vmatrix} = \hat{\imath}\left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z}\right) - \hat{\jmath}\left(\frac{\partial F_{3}}{\partial x} - \frac{\partial F_{1}}{\partial z}\right) + \hat{k}\left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right)$$

curl \vec{F} is a vector quantity

Physical Meaning Of Curl

CLASS: I BSC Physics

COURSE CODE: 18PHU103

We know that $\vec{V} = \vec{\omega} \times \vec{r}$, where ω is the angular velocity, \vec{V} is the linear velocity and \vec{r} is the position vector of a point on the rotating body.

$$curl \vec{V} = \vec{\nabla} \times \vec{V} \qquad \qquad \begin{bmatrix} \vec{\omega} = \omega_1 \hat{\imath} + \omega_2 \hat{\jmath} + \omega_3 \hat{k} \end{bmatrix} \\ \begin{bmatrix} \vec{r} = r_1 \hat{\imath} + r_2 \hat{\jmath} + r_3 \hat{k} \end{bmatrix}$$

$$\begin{aligned} = \vec{\nabla} \times (\vec{\omega} \times \vec{r}) &= \vec{\nabla} \times \left[(\omega_1 \hat{\imath} + \omega_2 \hat{\jmath} + \omega_3 \hat{k}) \times (x \hat{\imath} + y \hat{\jmath} + z \hat{k}) \right] \\ \vec{\nabla} \times \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \omega_1 & \omega_2 & \omega_3 \\ x & y & z \end{vmatrix} &= \vec{\nabla} \times \left[(\omega_2 z - \omega_3 y) \hat{\imath} - (\omega_1 z - \omega_3 x) \hat{\jmath} + (\omega_1 y - \omega_2 x) \hat{k} \right] \\ &= \left(\hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \times \left[(\omega_2 z - \omega_3 y) \hat{\imath} - (\omega_1 z - \omega_3 x) \hat{\jmath} + (\omega_1 y - \omega_2 x) \hat{k} \right] \\ &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \omega_2 z - \omega_3 y & \omega_3 x - \omega_1 z & \omega_1 y - \omega_2 x \end{vmatrix} \\ &= (\omega_1 + \omega_1) \hat{\imath} - (-\omega_2 - \omega_2) j + (\omega_3 + \omega_3) \hat{k} = 2(\omega_1 \hat{\imath} + \omega_2 \hat{\jmath} + \omega_3 \hat{k}) = 2\omega \end{aligned}$$

curl $\vec{V} = 2\omega$ which shows that curl of a vector field is connected with rotational properties of the vector field and justifies the name rotation used for curl.

If $\operatorname{Curl} \vec{F} = 0$, the field F is termed as irrational.

KARPAGAM ACADEMY OF HIGHER EDUCATIONAMCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

EXAMPLES:

1. Find the divergence and curl of a vector $\vec{V} = (x \ y \ z)\hat{\imath} + (3x^2y)\hat{\jmath} + (xz^2 - y^2z)\hat{k}$ at (2,-1,1). solution,

here, we have

$$\vec{V} = (x \ y \ z)\hat{\imath} + (3x^2y)\hat{\jmath} + (xz^2 - y^2)\hat{k}$$

$$Div \ \vec{V} = \nabla . \vec{V}$$

$$Div \ \vec{V} = \frac{\partial}{\partial x}(x \ y \ z) + \frac{\partial}{\partial y}(3x^2y) + \frac{\partial}{\partial z}(xz^2 - y^2)$$

$$= yz - 3x^2 + 2xz - y^2$$

$$= -1 + 12 + 4 - 1 = 14 \ at(2, -1, 1)$$

$$curl \ \vec{V} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xyz & 3x^2y & xz^2 - y^2z \end{vmatrix}$$

$$= 2yz\hat{\imath} - (z^2 - xy)\hat{\jmath} + (6xy - xz)\hat{k}$$

$$= -2yz\hat{\imath} + (xy - z^2)\hat{\jmath} + (6xy - xz)\hat{k}$$

$$at(2, -1, 1) = -2(-1)(1)\hat{\imath} + \{(2)(-1) - 1\}\hat{\jmath} + \{6(2)(-1 - 2(1))\}\hat{k}$$

$$= 2\hat{\imath} - 3\hat{\jmath} - 14\hat{k}$$

2. Prove that $(y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidial and irrational.

solution,

here
$$F = (y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$$

for solenoidial. we have to prove $\vec{\nabla}.\vec{F} = 0$

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.

 $\operatorname{now}, \vec{\nabla}. \vec{F} = \left[\hat{\imath}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right] \cdot \left[(y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}\right]$

= -2 + 2x - 2x + 2 = 0

Thus, \vec{F} is solenoidal. for irrational, we have to prove curl $\vec{F} = 0$

$$curl \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ y^2 - z^2 + 3yz - 2x & 3xz + 2xy & 3xy - 2xz + 2z \end{vmatrix}$$
$$= (3x - 3x)\hat{i} - (-2x + 3y - 3y + 2z)\hat{j} + (3z + 2y - 2y - 3z)$$
$$= 0\hat{i} + 0\hat{j} + 0\hat{k} = 0$$

thus \vec{F} is irrational. hence \vec{F} is solenoidal and irrational.

3.Determine the constants a and b such that curl of vector

$$\vec{A} = (2xy + 3yz)\hat{\imath} + (x^2 + axz - 4z^2)\hat{\jmath} - (3xy - byz)\hat{k} \text{ is zero.}$$

solution,

$$curl \vec{A} = \left(\frac{\partial}{\partial x}\hat{\imath} + \frac{\partial}{\partial y}\hat{\jmath} + \frac{\partial}{\partial z}\hat{k}\right) \times ((2xy + 3yz)\hat{\imath} + (x^2 + axz - 4z^2)\hat{\jmath} - (3xy - byz)\hat{k})$$
$$\begin{vmatrix}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + 3yz & x^2 + axz - 4z^2 & 3xy - byz\end{vmatrix}$$
$$= [-3x - bz - ax]\hat{\imath} - [-3y - 3y]\hat{\jmath} + [2x + az - 2x - 3z]\hat{k}$$
$$= (-x(3 + a) + z(8 - b))\hat{\imath} + 6y\hat{\jmath} + z(-3 + a)\hat{k} = 0$$

3+a=0 and 8-b=0

and a=-3,b=8.

4.Find the constants a, b, c so that

$$\vec{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$$

is irrational and hence find function ϕ such that $\vec{F} = \nabla \phi$.

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ x + 2y + az & bx - 3y - z & 4x + cy + 2z \end{vmatrix}$$

$$= (c+1)\hat{i} - (4-a)\hat{j} + (b-2)\hat{k}$$

As \vec{F} is irrational, $\vec{\nabla} \times \vec{F} = 0$

$$= (c+1)\hat{\imath} - (4-a)\hat{\jmath} + (b-2)\hat{k} = 0\hat{\imath} - 0\hat{\jmath} + 0\hat{k}$$

$$c + 1 = 0$$
 $4 - a = 0$ $b - 2 = 0$
 $a = 4, b = 2, c = -1$

now, we have to find ϕ such that $\vec{F} = \nabla \phi$

we, know that

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$
$$= \left(\hat{\imath}\frac{\partial \phi}{\partial x} + \hat{\jmath}\frac{\partial \phi}{\partial y} + \hat{k}\frac{\partial \phi}{\partial z}\right)\left(\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz\right)$$
$$= \left(\hat{\imath}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\phi.\left(\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz\right)$$

$$= \vec{\nabla}\phi. \left(\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz\right)$$
$$\vec{F}. \left(\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz\right)$$
$$= \left[(x + 2y + 4z)\hat{\imath} + (2x - 3y - z)\hat{\jmath} + (4x - y - 2z)\hat{k}\right]. \left(\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz\right)$$

Page 6/20

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

$$= (x + 2y + 4z)dx + (2x - 3y - z)dy + (4x - y - 2z)dz$$

$$= x dx - 3y dy + 2z dz + (2y dy + 2x dx) + (4z dx + 4x dz) + (-z d - y dz)$$

$$\phi = \int x dx - 3 \int y dy + 2 \int z dz + \int (2y dx + 2x dy) + \int (4z dx + 4x dz)$$

$$- \int (z dy + y dz)$$

$$\left(\frac{x^2}{2} - \frac{3y^2}{2} + z^2 + 2xy + 4zx + c\right)$$

Line Integral

Let $\vec{F}(x, y, z)$ be a vector function and a curve AB.

Line integral of a vector function \vec{F} along the curve AB is defined as integral of the components of \vec{F} along the curve AB.

component of \vec{F} along a tangent PT at P

=Dot product of \vec{F} and unit vector along PT

$$=\overrightarrow{F}\cdot\frac{\overrightarrow{dr}}{ds}\left(\frac{\overrightarrow{dr}}{ds} \text{ is a unit vector along tangent PT}\right)$$

Line Integral = $\sum \vec{F} \cdot \frac{\vec{dr}}{ds}$ from A and B along the curve

$$\therefore Line Integral = \int_{c} \left(\vec{F} \cdot \frac{\vec{dr}}{ds} \right) ds = \int_{c} \vec{F} \cdot \vec{dr}$$

Note (1) work. If \vec{F} represent the variable force acting on a particle along are AB, then the total work done= $\int_{A}^{B} \vec{F} \cdot \vec{dr}$

(2)Circulation. If \vec{V} represent the velocity of a liquid then $\oint_c \vec{v} \cdot \vec{dr}$ is called the circulation of V round the closed curve c.

If the circulation of V round every closed curve is zero then V is said to be irrational there.

(3) when the path of integration is a closed then notation of integration is $\oint in$ place of \int .

If a force $\vec{F} = 2x^2y\hat{i} + 3xy\hat{j}$ displace a particle in the x y-plane from (0,0) to (1,4) along a curve $y = 4x^2$. find the work done.

solution,

Work done =
$$\int_c \vec{F} \cdot \vec{dr}$$

$$\int_c (2x^2y\hat{\imath} + 3xy\hat{\jmath}) \cdot (dx\hat{\imath} + dy\hat{\jmath})$$

$$= \int_c (2x^2ydx + 3xydy)$$

putting the values of y and dy, we get

$$= \int_0^1 [2x^2(4x^2)dx + 3x(4x^2)8xdx]$$
$$= 104 \int_0^1 x^4 dx = 104 \left(\frac{x^5}{5}\right)$$

104 5

EXAMPLES:

1.Evaluate $\int_c \vec{F} \cdot \vec{dr}$ when $\vec{F} = x^2 \hat{\imath} + xy\hat{\jmath}$ and C is the boundary of the square in the plane z=0 and bounded by the lines x=0, y=0, x=a, y=a.

solution,
$$\int_{c} \vec{F} \cdot \vec{dr} = \int_{OA} \vec{F} \cdot \vec{dr} + \int_{AB} \vec{F} \cdot \vec{dr} + \int_{BC} \vec{F} \cdot \vec{dr} + \int_{CO} \vec{F} \cdot \vec{dr}$$

here $\vec{r} = x\hat{\imath} + y\hat{\jmath}, \vec{dr} = dx\hat{\imath} + dy\hat{\jmath}, \vec{F} = x^{2}\hat{\imath} + xy\hat{\jmath}$
 $\vec{F} \cdot \vec{dr} = x^{2} dx$

on OA, y=0,

$$\int_{OA} \vec{F} \cdot \vec{dr} = \int_0^a x^2 \, dx = \left[\frac{x^3}{3}\right]_0^a = \frac{a^3}{3}$$

 $\langle 2 \rangle$

On AB, x=a,

$$dx = 0$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

(1) becomes

$$\therefore \vec{F} \cdot \vec{dr} = ay \, dy$$
$$\int_{AB} \vec{F} \cdot \vec{dr} = \int_0^a ay \, dy = a \left[\frac{y^2}{2}\right]_0^a = \frac{a^3}{2}$$
$$(3)$$

On BC, y=a,

becomes,

$$dy = 0$$
$$\vec{F} \cdot \vec{dr} = x^2 dx$$
$$\int_{BC} \vec{F} \cdot \vec{dr} = \int_0^a x^2 dx = \left[\frac{x^3}{3}\right]_0^a = \frac{-a^3}{3}$$
(4)

On, CO, x=0,

(1) becomes,

$$\vec{F}.\vec{dr} = 0$$
$$\int_{co} \vec{F}.\vec{dr} = 0$$
(5)

adding $\langle 2 \rangle \langle 3 \rangle \langle 4 \rangle \langle 4 \rangle$ we get

$$\int_c \vec{F} \cdot \vec{dr} = \frac{a^3}{2}$$

Surface integral

surface r=f(u, v) is called smooth if f(u, v) posses continuous first order partial derivative.

Let \vec{F} be a vector function and S is the given surface.

surface integral of a vector function \vec{F} over the surface S is defined as the integral of the components \vec{F} of along the normal to the surface.

Prepared by N.Geetha, Assistant Professor, Department of physics, KAHE.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I BSC Physics
 COURSE NAME: MATHEMATICAL PHYSICS-I

 COURSE CODE: 18PHU103
 UNIT: V
 BATCH-2018-2021

components of \vec{F} along the normal $= \vec{F} \cdot \hat{n}$, where n is the unit vector to an element ds and

$$\hat{n} = \frac{grad f}{|grad f|}$$
$$ds = \frac{dx \, dy}{(\hat{n}, \hat{k})}$$

surface integral of F over S is ,

$$=\sum \vec{F}.\,\hat{n}=\iint_{s}(\vec{F}.\,\hat{n}).\,ds$$

note(1)

flux= $\iint_{s} (\vec{F} \cdot \hat{n}) \cdot ds$ where \vec{F} represents the velocity of the liquid.

If then is said to be a solenoid vector point function.

EXAMPLES:

1.Evaluate $\iint_{S} (\vec{A}. \hat{n}) ds$ where $\vec{A} = (x + y^{2})\hat{\imath} - 2x\hat{\jmath} + 2yz\hat{k}$

and S is the surface of the plane 2x+y+2z=6 in the first octant .

solution,

A vector normal to the surface "S" is given by,

$$\nabla(2x+y+2z) = \left(\hat{\imath}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)(2x+y+2z) = 2\hat{\imath} + \hat{j} + 2\hat{k}$$

and \hat{n} is the unit vector to surface "s" is given by

$$=\frac{2\hat{\imath}+\hat{\jmath}+2\hat{k}}{\sqrt{4+1+4}} = \left(\frac{2}{3}\hat{\imath}+\frac{1}{3}\hat{\jmath}+\frac{2}{3}\hat{k}\right)$$

$$\hat{k}.\,\hat{n} = \hat{k}\left(\frac{2}{3}\hat{\imath} + \frac{1}{3}\hat{\jmath} + \frac{2}{3}\hat{k}\right)$$

$$\iint \hat{A}\hat{n}.\overrightarrow{ds} = \iint \vec{A}\hat{n}.\frac{dx.dy}{\hat{n}.\hat{k}}$$

where R is the projection of S.

CLASS: I BSC Physics

COURSE CODE: 18PHU103

now,
$$\vec{A} \cdot \hat{n} = \left[(x + y^2)\hat{\iota} - 2x\hat{\jmath} + 2yz\hat{k} \right] \cdot \left(\frac{2}{3}\hat{\iota} + \frac{1}{3}\hat{\jmath} + \frac{2}{3}\hat{k} \right)$$
$$= \frac{2}{3}(x^2 + y^2) - \frac{2}{3}x + \frac{4}{3}yz = \frac{2}{3}y^2 + \frac{4}{3}yz$$

putting the value of z in (1), we get

$$= \frac{2}{3}y^{2} + \frac{4}{3}y\left(\frac{6-2x-y}{2}\right)$$
$$= \frac{2}{3}y(y+6-2x-y) = \frac{4}{3}y(3-x)$$

Hence,

$$\iint_{S} \vec{A} \cdot \hat{n} \cdot \vec{ds} = \iint_{R} \vec{A} \cdot \hat{n} \frac{dx \, dy}{|\hat{k} \cdot \vec{n}|}$$

putting the value of \vec{A} . \hat{n} . from (2) and (3), we get

$$\iint_{S} \vec{A} \cdot \hat{n} \cdot \vec{ds} = \iint_{R} \frac{4}{3} y(3-x) \cdot \frac{3}{2} dx \, dy = \int_{0}^{3} \int_{0}^{6-2x} 2y(3-x) \, dy dx$$
$$= \int_{0}^{3} 2(3-x) \left[\frac{y^{2}}{2}\right]_{0}^{6-2x} = \int_{0}^{3} (3-x)(6-2x)^{2} \, dx = 4 \int_{0}^{3} (3-x)^{3} \, dx = -(0-81) = 81$$

Volume Integral

let be a vector point function and volume V enclosed by a closed surface.

The volume integral = $\iiint_{v} \vec{F} \cdot dv$

KARPAGAM ACADEMY OF HIGHER EDUCATIONAGGAMCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

EXAMPLES:

1.If $\vec{F} = 2z\hat{\imath} - x\hat{\jmath} + y\hat{k}$, evaluate $\iiint_{\nu} \vec{F} \cdot d\nu$ where, v is the region bounded by the surfaces. x=0, y=0, x=2, y=4, z=x^2, z=2.

solution,

$$\begin{aligned} \iiint_{v} \vec{F} \cdot dv &= \iiint_{v} (2z\hat{\imath} - x\hat{\jmath} + y\hat{k}) dx \, dy \, dz \\ \int_{0}^{2} dx \int_{0}^{4} dy \int_{x^{2}}^{2} (2z\hat{\imath} - x\hat{\jmath} + y\hat{k}) dz = \\ \int_{0}^{2} dx \int_{0}^{4} dy \left[z^{2}\hat{\imath} - xz\hat{\jmath} + yz\hat{k} \right]_{x^{2}}^{2} = \\ \int_{0}^{2} dx \int_{0}^{4} dy \left[4\hat{\imath} - 2x\hat{\jmath} + 2y\hat{k} - x^{4}\hat{\imath} + x^{3}\hat{\jmath} - x^{2}y\hat{k} \right] = \\ \int_{0}^{2} dx \left[4\hat{y}\hat{\imath} - 2xy\hat{\jmath} + y^{2}\hat{k} - x^{4}y\hat{\imath} + x^{3}y\hat{\jmath} - \frac{x^{2}y^{2}}{2}\hat{k} \right]_{0}^{4} \\ \int_{0}^{2} \left(16x\hat{\imath} - 8x\hat{\jmath} + 16\hat{k} - 4x^{4}\hat{\imath} + 4x^{3}\hat{\jmath} - \frac{8x^{3}}{3}\hat{k} \right) dx = \\ \left[16x\hat{\imath} - 4x^{2}\hat{\jmath} + 16x\hat{k} - \frac{4x^{5}}{5}\hat{\imath} + x^{4}\hat{\jmath} - \frac{8x^{3}}{3}\hat{k} \right]_{0}^{4} = \\ = \frac{32}{5}\hat{\imath} + \frac{32}{3}\hat{k} = \frac{32}{15}(3\hat{\imath} + 5\hat{k}) \end{aligned}$$

Stoke's theorem

statement: surface integral of the component of curl \vec{F} along the normal to the surface S, taken over the surface bounded by curve C is equal to the line integral of the vector point function.

 \vec{F} taken along the closed curve C mathematically

$$\oint \vec{F} \cdot \vec{dr} = \iint_{s} curl \, \vec{F} \cdot \hat{n} \cdot ds$$

where $\hat{n} = \cos\alpha \hat{i} + \cos\beta \hat{j} + \cos\gamma \hat{k}$ is a unit external normal to any surface ds,

proof,

let
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$

 $d\vec{r} = \hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz$
 $F = F_1\hat{\imath} + F_2\hat{\jmath} + F_3\hat{k}$

on putting the values of \vec{F} , \vec{dr} in the statement of theorem

$$\begin{split} \oint_{c} (F_{1}\hat{i} + F_{2}\hat{j} + F_{3}\hat{k}).(\hat{i}dx + \hat{j}dy + \hat{k}dz) \\ &= \iint_{s} \left(i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z} \right) \times (F_{1}\hat{i} + F_{2}\hat{j} + F_{3}\hat{k}).(\cos\alpha\hat{i} + \cos\beta\hat{j} + \cos\gamma\hat{k})ds \\ \oint (F_{1} dx + F_{2} dy + F_{3}dz) \\ &= \iint_{s} \left[\left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right)\hat{i} + \left(\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right)\hat{j} + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right)\hat{k} \right] (\cos\alpha\hat{i} + \cos\beta\hat{j} + \cos\gamma\hat{k})ds \end{split}$$

$$\oint (F_1 \, dx + F_2 \, dy + F_3 dz) \\= \iint_s \left[\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \cos \alpha + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \cos \beta + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \cos \gamma \right] ds$$

let us prove,

$$\oint F_1 \, dx = \iint_s \left[\left(\frac{\partial F_1}{\partial z} \cos \beta - \frac{\partial F_1}{\partial y} \cos \gamma \right) \right] ds$$

let the equation of the surface S be z=g(x, y). the projection of the surface on x-y plane is region R.

$$\oint F_1(x, y, z) = \oint_c F_1[x, y, g(x, y)] dx$$
$$= -\iint_R \frac{\partial}{\partial y} F_1(x, y, g) dx dy$$
$$= -\iint_R \left(\frac{\partial F_1}{\partial y} + \frac{\partial F_1}{\partial z} + \frac{\partial g}{\partial y}\right)$$

the direction cosines of the normal to the surface S be z=g(x, y) are given by $\frac{\cos \alpha}{\frac{-\partial}{\partial x}} = \frac{\cos \beta}{\frac{-\partial}{\partial y}} = \frac{\cos \beta}{\frac{-\partial}{\partial y}}$

and dx dy = projection of ds on the x-y plane =ds $\cos \gamma$

9

putting the value of ds in R.H.S

$$\iint_{S} \left(\frac{\partial F_{1}}{\partial z} \cos \beta - \frac{\partial F_{1}}{\partial y} \cos \gamma \right) ds = \iint_{R} \left(\frac{\partial F_{1}}{\partial z} \cos \beta - \frac{\partial F_{1}}{\partial y} \cos \gamma \right) \frac{dx \, dy}{\cos \gamma}$$
$$= \iint_{R} \left(\frac{\partial F_{1}}{\partial z} \frac{\cos \beta}{\cos \gamma} - \frac{\partial F_{1}}{\partial y} \right) dx \, dy = \iint_{R} \left(\frac{\partial F_{1}}{\partial z} \left(\frac{-\partial g}{\partial y} \right) - \frac{\partial F_{1}}{\partial y} \right) dx \, dy$$
$$- \iint_{R} \left(\frac{\partial F_{1}}{\partial y} + \frac{\partial F_{1}}{\partial z} \frac{\partial g}{\partial y} \right) dx \, dy$$

from (3) and (4), we get,

$$\oint_{c} F_{1} dx = \iint_{S} \left(\frac{\partial F_{1}}{\partial z} \cos \beta + \frac{\partial F_{1}}{\partial y} \cos \gamma \right) ds$$

$$\oint_{c} F_2 \, dy = \iint_{s} \left(\frac{\partial F_2}{\partial} \cos \gamma + \frac{\partial F_2}{\partial} \cos \alpha \right) ds$$

$$\oint_{c} F_{3} dz = \iint_{S} \left(\frac{\partial F_{3}}{\partial} \cos \alpha + \frac{\partial F_{3}}{\partial} \cos \beta \beta \right) ds$$

on adding (5), (6), (7)

$$\oint_{c} (F_1 \, dx + F_2 \, dy + F_3 \, dz) = \iint_{S} (\frac{\partial F_1}{\partial z} \cos \beta - \frac{\partial F_1}{\partial y} \cos \gamma + \frac{\partial F_2}{\partial x} \cos \gamma - \frac{\partial F_2}{\partial z} \cos \alpha + \frac{\partial F_3}{\partial y} \cos \alpha - \frac{\partial F_3}{\partial x} \cos \beta) \, ds \, \mathbf{proved}$$

EXAMPLES:

1.Evaluate by strokes theorem $\oint_c (yz \, dx + zx \, dy + xy \, dz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

solution,

here we have $\oint_c (yz \, dx + zx \, dy + xy \, dz)$

$$= \int (yz \, dx + zx \, dy + xy \, dz) \cdot \left(\hat{i} dx + \hat{j} dy + \hat{k} dz\right)$$
$$= curl \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^2 & x & z^2 \end{vmatrix} =$$
$$(x - x)\hat{i} + (y - y)\hat{j} + (z - z)\hat{k} = 0$$
$$\oint \vec{F} \cdot \vec{dr}$$

Using strokes theorem or otherwise evaluate,

$$\int_c (2x - y)dx - (yz^2dy) - (y^2dz)$$

solution,

$$\int_{c} (2x - y)dx - (yz^{2}dy) - (y^{2}dz) = \int_{c} (2x - y)\hat{\imath} - (yz^{2})\hat{\jmath} - (y^{2})\hat{k} \cdot (\hat{\imath}dx + \hat{\jmath}dy + \hat{k}dz)$$

by strokes theorem , $\oint \vec{F} \cdot \vec{dr} = \iint Curl \vec{F} \cdot \hat{n} \cdot \vec{ds}$

$$Curl \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - y & -yz^2 & -y^2z \end{vmatrix} = (2zy - 2yz)\hat{\iota} + (0+1)\hat{k} = \hat{k}$$

COURSE NAME: MATHEMATICAL PHYSICS-I UNIT: V BATCH-2018-2021

$$\oint \vec{F} \cdot \vec{dr} = \iint \hat{k}\hat{n} \cdot \vec{ds} = \iint \hat{k}\hat{n} \cdot \frac{dx \cdot dy}{\hat{n} \cdot \hat{k}} = \iint dx \cdot dy = \text{Area of the circle} = \pi$$
$$i.e, \vec{ds} = \frac{dx \cdot dy}{\hat{n} \cdot \hat{k}}$$

2. Find $\iint \vec{F} \hat{n} \cdot \vec{ds}$ where $\vec{F} = (2x + 3y)\hat{i} - (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having centre (3, -1, 2) and radius 2.

solution, Let V be the volume enclosed by the surface S.

CLASS: I BSC Physics

COURSE CODE: 18PHU103

$$\iint_{S} \vec{F} \hat{n}.\vec{ds} = \iiint_{v} div \vec{F} dv$$

now, $div \vec{F} = \frac{\partial}{\partial x}(2x + 3y) + \frac{\partial}{\partial y}[-(xz + y)] + \frac{\partial}{\partial z}(y^{2} + 2z) = 2 - 1 + 2 = 3$
$$\iint_{S} \vec{F} \hat{n}.\vec{ds} = \iiint_{v} div \vec{F} dv = 3 \iiint_{v} dv = 3V$$

again, V is the volume of a sphere of radius 3 .therefore,

$$V = \frac{4}{3}\pi r^{3} = 36$$
$$\iint_{s} \vec{F} \hat{n}. \, \vec{ds} = 3V = 3 * 36\pi = 108\pi$$

Use Divergence theorem to evaluate $\iint_S \vec{A} \cdot \vec{ds}$ where $\vec{F} = x^3\hat{\imath} + y^3\hat{\jmath} + z^3\hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$

solution,

$$\iint_{S} \vec{A} \cdot \vec{ds} = \iiint_{v} div \, \vec{A} \cdot dV$$
$$= \iiint_{v} \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \cdot \left(x^{3} \hat{i} + y^{3} \hat{j} + z^{3} \hat{k} \right) dV$$
$$= \iiint_{v} (3x^{2} + 3y^{2} + 3z^{2}) dV = 3 \iiint_{v} (x^{2} + y^{2} + z^{2}) dV$$

on putting $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, we get

$$= 3 \iiint_{v} r^2 (r^2 \sin\theta \, dr \, d\theta \, d\phi) = 3 \times 8 \int_0^{\frac{\pi}{2}} d\phi \int_0^{\frac{\pi}{2}} \sin\theta \, d\theta \, \int_0^a r^4 \, dr$$

$$= 24(\phi)_0^{\frac{\pi}{2}} - (\cos\theta)_0^{\frac{\pi}{2}} \left(\frac{r^5}{5}\right)_0^a = 24 \times \frac{\pi}{2}(-0+1)\left(\frac{a^5}{5}\right) = \frac{12\pi a^5}{5}$$

GAUSS'S DIVERGENCE THEOREM:

Let **B** be a solid region in \mathbb{R}^3 and let **S** be the surface of **B**, oriented with outwards pointing normal vector. Gauss Divergence theorem states that for a \mathbb{C}^1 vector field **F**, the following equation holds:

$$\iint_{S} F \cdot ds = \iiint_{B} (\nabla \cdot F) dV$$

Note that for the theorem to hold, the orientation of the surface must be pointing outwards from the region **B**, otherwise we'll get the minus sign in the above equation. Note that since **S** is the boundary of **B**, then it is always a closed surface ie: it has no boundary. In other words, the integral of a continuously differentiable vector field across a boundary (flux) is equal to the integral of the divergence of that vector field within the region enclosed by the boundary.

Applications of Gauss Theorem:

- The Aerodynamic Continuity Equation
- 1. The surface integral of mass flux around a control volume without sources or sinks is equal to the rate of mass storage.
- 2. If the flow at a particular point is incompressible, then the net velocity flux around the control volume must be zero.
- 3. As net velocity flux at a point requires taking the limit of an integral, one instead merely calculates the divergence.
- 4. If the divergence at that point is zero, then it is incompressible. If it is positive, the fluid is expanding, and vice versa.

 Gauss's Theorem can be applied to any vector field which obeys an inverse-square law (except at the origin) such as gravity, electrostatic attraction, and even examples in quantum physics such as probability density.

EXAMPLES:

1. Use the divergence theorem to calculate $\iint_{S} F \cdot ds$, where **S** is the surface of the box **B**with vertices $(\pm 1, \pm 2, \pm 3)$ with outwards pointing normal vector and $F(x, y, z) = (x^2 z^3, 2xyz^3, xz^4)$. **Solution:** Note that the surface integral will be difficult to compute, since there are six different components to parameterize (corresponding to the six sides of the box) and so one would have to compute six different integrals. Instead, using Gauss Theorem, it is easier to compute the integral $(\nabla \cdot F)$ of **B**.

First, we compute (∇F) = $2xz^3 + 2xz^3 + 4xz^3 = 8xz^3$. Now we integrate this function over the region B bounded by S:

$$\iint_{S} F \cdot ds = \iiint_{B} (\nabla \cdot F) dV$$
$$= \int_{-3}^{3} \int_{-3}^{2} \int_{-3}^{1} 8xz^{3} dx dy dz$$
$$= 0$$

which is easy to verify.

2. Evaluate
$$\iint_{S} (3x \mathbf{i} + 2y \mathbf{j}) \cdot dA$$
, where **S** is the sphere given by $x^{2} + y^{2} + z^{2} = 9$.

Solution: We could parametrize the surface and evaluate the surface integral, but it is much faster to use the divergence theorem. Since

$$\operatorname{div}(3x\,\mathbf{i}+2y\,\mathbf{j}) = \frac{\partial}{\partial x}(3x) + \frac{\partial}{\partial y}(2y) + \frac{\partial}{\partial z}(0) = 3 + 2 = 5$$

The divergence theorem gives:

KARPAGAM ACADEMY OF HIGHER EDUCATIONAMCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

$$\iint_{S} (3x \, \mathbf{i} + 2y \, \mathbf{j}) \cdot d\mathbf{A} = \iiint_{R} 5 dV = 5 \times (\text{Volume of the sphere}) = 180\pi$$

3. Let **R** be the region in \mathbb{R}^3 by the paraboloid $z = x^2 + y^2$ and the plane z = I and let **S** be the

$$\iint (y\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}) \cdot dA$$

boundary of the region **R.** Evaluate

Solution:

div
$$(y \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}) = \frac{\partial}{\partial x}(y) + \frac{\partial}{\partial y}(x) + \frac{\partial}{\partial z}(z^2) = 2z$$

Since

The divergence theorem gives:

$$\iint_{S} z^2 \mathbf{k} \cdot d\mathbf{A} = \iiint_{R} 2z dV$$

It is easiest to set up the triple integral in cylindrical coordinates:

$$\iiint_{R} 2z dV = \int_{0}^{2\pi} \int_{0}^{1} 2z \cdot r \cdot dz dr d\theta$$
$$= 2\pi \int_{0}^{1} \left[z^{2} r \right]_{z=r^{2}}^{1} dr$$
$$= 2\pi \int_{0}^{1} \left[r - r^{5} \right] dr$$
$$= 2\pi \int_{0}^{1} \left(\frac{1}{2} - \frac{1}{6} \right) dr = \frac{2\pi}{3}$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I BSC PhysicsCOURSE NAME: MATHEMATICAL PHYSICS-ICOURSE CODE: 18PHU103UNIT: VBATCH-2018-2021

POSSIBLE QUESTIONS

8 MARK

- 1. Find $\iint \vec{F}\hat{n}.\vec{ds}$ where $\vec{F} = (2x + 3y)\hat{\imath} (xz + y)\hat{\jmath} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having centre (3, -1, 2) and radius 2.
- 2. Evaluate by strokes theorem $\oint_c (yz \, dx + zx \, dy + xy \, dz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.
- 3. 1.If $\vec{F} = 2z\hat{\imath} x\hat{\jmath} + y\hat{k}$, evaluate $\iiint_{\nu} \vec{F} \cdot d\nu$ where, v is the region bounded by the surfaces. x=0, y=0, x=2, y=4, z=x^2, z=2.
- 4. Evaluate $\iint_{s}(\vec{A}.\hat{n}). ds$ where $\vec{A} = (x + y^{2})\hat{i} 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x+y+2z=6 in the first octant.
- 5. Evaluate $\int_{c} \vec{F} \cdot \vec{dr}$ when $\vec{F} = x^{2}\hat{\imath} + xy\hat{\jmath}$ and C is the boundary of the square in the plane z=0 and bounded by the lines x=0, y=0, x=a, y=a.
- 6. Find the divergence and curl of a vector $\vec{V} = (x \ y \ z)\hat{\imath} + (3x^2y)\hat{\jmath} + (xz^2 y^2z)\hat{k}$ at (2,-1,1).
- 7. Prove that $(y^2 z^2 + 3yz 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy 2xz + 2z)\hat{k}$ is both solenoidal and irrational
- 8. Determine the constants a and b such that curl of vector

 $\vec{A} = (2xy + 3yz)\hat{\imath} + (x^2 + axz - 4z^2)\hat{\jmath} - (3xy - byz)\hat{k}$ is zero.

- 9. Find the constants a, b, c so that $\vec{F} = (x + 2y + az)\hat{\imath} + (bx 3y z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrational and hence find function ϕ such that $\vec{F} = \nabla \phi$.
- 10. Verify Stoke's theorem with its proof.
- 11. State and verify the Gauss's Divergence Theorem.

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

MATHEMATICAL PHYSICS-I

QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
UNIT-V					
$\tilde{N} x (\tilde{N} f) =$	1	0	2	-1	0
\tilde{N}^2 (r ^m) is equal to	mr ^{m-1}	$m^2 r^{m-2}$	m(m+1) r ^{m-2}	(m+1) m r ^{m-1}	m(m+1) r ^{m-2}
The divergence theorem enables to					
convert a surface integral		volume	surface		volume
on a closed surface into a	line integral	integral	integral	None	integral
If A is solenoidal, then	div A=0	curl A =0	A = 0	div (curlA) =0	div A=0
If r is position vector, then $\tilde{N}x r =$	3	2	1	0	0
If $f=4xi+yj-2k$ then \tilde{N} .f=?	1	0	3	2	3
The function f is said to satisfify					
the laplace equation if	$ ilde{N}^2$ f	Ñf	$ ilde{\mathbf{N}}^4\mathbf{f}$	$\tilde{N}^3 f$	$ ilde{N}^2$ f
If r is position vector , then $\tilde{N}.r =$	0	1	2	3	3
If A is irrotational, then	A = 1	$\tilde{N}xA = 0$	A =0	Ñ.A=0	$\tilde{N}xA = 0$

The divergence of the position					
vector r is	1	2	r	3	3
If $r = xi + yj + zk$, then $\tilde{N}.(ar)$ is					
equal to	a	r	0	3a	0
Which of the following is a scalar					
function ?	Ñ.A	Ñf	$\tilde{N}(\tilde{N}.A)$	ÑxA	Ñ.A
Given that $f = x^2 + y^2 + z^2$, then \tilde{N}^2					
f is	1	3	6	0	6
If i, j and k are the unit vectors \mathbf{I}					
along the coordinate axes, then (i					
.i) is	0	1	р	j	1
If i , j and k are the unit vectors					
along the coordinate axes, then					
(jxj) is	1	k	0	р	0
If i and j are the unit vectors					
along x and y projections, then					
(i.j) is	0	1	k	3	0
If $\mathbf{r} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j} + \mathbf{z}\mathbf{k}$, then $\mathbf{\tilde{N}} \cdot \mathbf{r} = ?$	1	2	0	3	3
If i, j and k are the unit vectors					
along the x, y, z axes, then jxk is					
equal to	0	1	Ι	3	Ι
If $r = 2xi - yj + 2zk$, then $\tilde{N}.r = ?$	0	4	2	3	3
If $A = 3i-5j+2k$ and $B = 4i+3j$					
then A.B is equal to	-3	19	-14	11	-3
If A is irrotational, then	Ñ.A =0	ÑxA=0	Ñ.A ¹ 0	ÑxA 10	ÑxA=0
A vector A is said to be solenoidal					
if	ÑxA ¹ 0	ÑxA=0	Ñ.A ¹ 0	Ñ.A =0	Ñ.A =0
If F is solenoidal, then	Ñ.F =0	ÑxF=0	$\tilde{N}^2F=0$	Ñ . ÑXF =0	Ñ.F =0
In Stoke's theorem, $\delta_c A.dr =$	òò (Ñ.A) ds	òò (ÑxA) ds	0	òò (ÑA) ds	òò (ÑxA) ds
Ñ (kf) =	$\tilde{N} x k(f)$	k (Ñ x f)	$k(\tilde{N} f)$	\tilde{N} . $k(f)$	k (Ñ f)
$\tilde{N}(f+Y) =$	\tilde{N} f + \tilde{N} Y	Ñf-ÑY	none	Ñ f * Ñ Y	\tilde{N} f + \tilde{N} Y
$\tilde{N}(fY) =$	(Ñf)Y -	$\tilde{N}(fY) +$	$\tilde{N}(fY)$ -	$(\tilde{N}f)Y + f(\tilde{N}Y)$	$(\tilde{N}f)Y +$
	f(ÑY)	f(ÑY)	f(ÑY)		f(ÑY)
---	--	--	---	--	---------------------------------------
	[(Ñf)Y -	$[(\tilde{N}f)Y +$	$[(\tilde{N}f)Y +$	$[(\tilde{N}f)Y * f(\tilde{N}Y)]/$	[(Ñf)Y -
\tilde{N} (f/Y) =	$f(\tilde{N}Y)]/Y^2$	$f(\tilde{N}Y)]/Y^2$	$f(\tilde{N}Y)]/Y^3$	Y^2	$f(\tilde{N}Y)]/Y^2$
	$\tilde{N} \cdot A - \tilde{N} \cdot$	$\tilde{N} \cdot A + \tilde{N} \cdot$	\tilde{N} . $A \times \tilde{N}$.		$\tilde{N} \cdot A + \tilde{N} \cdot$
$\tilde{N}(A + B) =$	В	В	В	\tilde{N} . B / \tilde{N} . A	В
Ñ. (kA) =	$\tilde{N} x k(A)$	k (Ñ x A)	k (Ñ . A)	$\tilde{N} \cdot k(A)$	k (Ñ . A)
	$(\tilde{N}f) . A + f$			(Ñf) .A - f ((Ñ .	$(\tilde{N}f) . A + f$
Ñ.(fA) =	((Ñ . A) .A	k (Ñ x f)	k (Ñ f)	A) .A	((Ñ . A) .A
	Ñ x A - Ñ	$\tilde{N} \ge A + \tilde{N} \ge X$	$\tilde{N} x A . \tilde{N} x$		$\tilde{N} \ge A + \tilde{N}$
$\tilde{N} \ge (A + B) = \dots$	x B	В	В	$\tilde{N} \ge A / \tilde{N} \ge B$	x B
$\tilde{N}x(kA) = \dots$	$\tilde{N} \cdot k(A)$	k x(Ñ x A)	$k x(\tilde{N} . A)$	k .(Ñ x A)	k .(Ñ x A)
	$(\tilde{N}f) \ge A + f$	$(\tilde{N}f) \cdot A + f$	$(\tilde{N}xf) \ge A +$	$(\tilde{N}f) \ge A - f((\tilde{N} \ge x))$	$(\tilde{N}f) \ge A + f$
Ñ x (fA) =	((Ñ x A)	((Ñ . A)	f x(Ñ x A)	A)	((Ñ x A)
	¶/¶x -¶/¶y -	¶/¶x +¶/¶y -	¶/¶x -¶/¶y		¶/¶x +¶/¶y
The operator Ñ defined by	¶/¶z	¶/¶z	+¶/¶z	/ x + / y + / z	+¶/¶z
	$\P^2 / \P x^2$	■ 2./ ■ _2 ■ 2./ ■ _2.	π 2./ π _2. π 2./ π _2.	■ 2.4 ■ 2. ■ 2.4 ■ 2.	$\P^2 / \P x^2$
The operator \tilde{N}^2 defined by	$+ \frac{1}{9} \frac{y^2}{y^2}$ + $\frac{1}{9} \frac{y^2}{y^2}$	$ ^2/ X^2 + ^2/ y^2 $ $- ^2/ z^2 $	$ ^{2}/ X^{2} - ^{2}/ Y^{2} $ + $ ^{2}/ Z^{2} $	$ ^{2}/ x^{2} - ^{2}/ y^{2} - ^{2}/ z^{2}$	$+ \frac{y^2}{y^2} + \frac{y^2}{y^2}$
A single valued function $f(x,y,z)$ is					
said to be a hormonic function					
if its second partial derivatives					
exist and are continuous and					
if the function satisfies the					
equation	Integral	Laplace	continuous	Differential	Laplace
If $\mathbf{r} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j} + \mathbf{z}\mathbf{k}$ then, $\tilde{N}(1/r) =$					
	$-r/r^2$	r/r ³	$1/r^{3}$	$-\mathbf{r}/\mathbf{r}^3$	$-\mathbf{r}/\mathbf{r}^3$
The divergence of a curl of a vector					
is	one	three	zero	two	zero
If $A = A_1i + A_2j + A_3k$, where A1,					
A2, A3 have continuous second					
partials, then $\tilde{N} \cdot (\tilde{N} \times A) = \cdots$	2	1	-1	-2	2
If $\tilde{N} \cdot V = 0$, then the vector V is	Irrotational	Position	Solenoidal		Solenoidal
said to be	vector	vector	vector	Zero vector	vector

If $\tilde{N} \ge 0$, then the vector V is	Irrotational	Position			Irrotational
said to be	vector	vector	Zero vector	Solenoidal vector	vector
The vector $A = x^2 z^2 i + xy z^2 j - xz^3 k$	Irrotational	Solenoidal			Solenoidal
is	vector	vector	Zero vector	Position vector	vector
If f is a hormonic function, then Ñf	Irrotational	Position	Solenoidal		
is	vector	vector	vector	Zero vector	Zero vector
If A and B are irrotational, then	Irrotational	Position	Solenoidal		
AxB is	vector	vector	vector	Zero vector	Zero vector
If A is irrotational, then ÑxA is	1	-1	2	0	0
If A is solenoidal, then \tilde{N} . A is	1	-1	0	-2	0
div (curl A) =	0	1	-1	2	0
Curl (grad f) =	1	non zero	2	0	1
	Curl A –	curl A + Curl	curl A * Curl		curl A + Curl
Curl (A+B) =	Curl B	В	В	curl A / Curl B	В
	A.dA/dt	A.dB/dt	A.dA/dt -		A.dA/dt -
d/dt(A.B) =	+dB/dt. B	+dA/dt .B	dB/dt	A.dA/dt + dB/dt	dB/dt
If F is constant vector, then curl F					
=	1	2	non zero	0	0
Ñ. (Ñf) =	$\tilde{N}^2 f$	0	Ñf	f	$\tilde{N}^2 f$
Grad $r^n =$	nr ⁿ⁻¹ r	nr ⁿ⁻² r	$(n-1)r^{n-2}r$	r ⁿ⁻¹ r	nr ⁿ⁻² r
is a vector quantity.	Mass	.pressure	volume	force	force
If f is a scalar function and f(t) is a					
vector function then (ff)	ff ' - f'f.	.ff ' + f'f.	ff ' x f'f	ff ' / f'f.	ff ' - f'f.
Gradient of a constant is	Constant	1	0	gradiant	0
The derivative of the sum of two					
derivable vector functions f(t) and					
g(t) of the scalar variable t, is equal					
to the of their derivatives.	sum	difference	multiple	division	sum
Any scalar function f which					
satisfies the partial differential	harmonic	Homogeneous	Nonharmonic	Nonhomogeneous	harmonic
equation	function	function	function	function	function
.If $f=(x+y)i+xj+zk$ and s is the	1	2	4	6	6

surface of the cube bounded by the					
planes $x=0,x=1,y=0,y=1,z=0$ and					
z=1 then the surface integral is					
.∭ ∆f dv=	.∬f.n ds	∭ f.n ds	∬ fxn ds	∭ fxn ds	.∬f.n ds
.∭ ∆xB dv=	∬ nxB ds	.∭nxB ds	∬ n.B ds	. ∭ n.B ds	∬ nxB ds
In a Gauss divergence theorem, f is			finite		
a vector point function and	finite and	infinite and	andNon	in finite and	finite and
in a region v of space	differentiable	differentiable	differentiable	Nondifferentiable	differentiable

			(c) loops
	R	leg No	9. C Langu
		leg nu	(a) 2
	(18)	PHU103)	10. Every st
		IIIGHED	(a) colon (b
KARPAGAN	1 ACADEMY OF	HIGHER	symbol
DFPAR'	TMENT OF PHV	UKE. SICS	11. In C mu
I	B.Sc PHYSICS	5105	(a) while
-	First Semester		12. Which i
I-Inter	rnal Examination		and the soft
Mat	hematical physics-	Ι	(a) input
Time: 2 hours	Maximu	ım: 50 marks	(d) compile
PAR	T_A (20v1-20Mar	(Jac)	13. All C co
	1-A (2011–20191a)	K5)	data types.
Answer all quest	ions:		(a) 5
			14. How ma
1. C was designed	and written by	·	(a) 32
(a) Charles Babba	ige (b) Dennis Rite	chie	15. The use
(c) Ken Thompson	n (d) Peter Norto	on .	(a) Subprog
2 statemer	it causes exit from s	switch	(c) Link sec
statement.			16. Any fur
(a) switch (b) bre	ak (c) goto	(d) end	equation is
3. A proper	will make th	e program	(a) harmoni
easily readable			(c) single fu
(a) style (b) numb	pering (c) execution	1	17. A
(d) intendation			differentiab
4 operator r	eturns number of b	ytes the	(a) meromo
operand occupies.			(c) holomor
(a) logical (b) bity	vise (c) arithmetic	(d) size of	18. The Co
5. Any function w	which satisfies the L	aplace	(a) —i
equation is known	1 as		19. Analytic
(a) harmonic func	tion(b) conjugate fi	unction	·
(c) single function	n (d) analytic fu	nction	(a) regular j
6. C language is a	main function sect	ion	points (d)b
(a) structured prog	gramming (b) objec	t oriented	20. A set w
programming (c)	operating system (d	l) platform	is known as
7. The is pow	erful decision maki	ing statement	(a) an open
and is used to con	trol the flow of exe	cution of	(d)domain
statements.			
(a) if (b) switch	(c) goto	(d) while	
8. A i	s a program that co	ntrols the	
entire operation of	t a computer system	n.	
(a) functions	(b) operating s	ystem	

age supports _____ logical operators. (b) 3 (c) 4(d) 5 tatement in C should end with o) comma (c) semicolon (d) no Itiway decision statement is _____. (b) if else (c) switch (d) for is the interface between the hardware tware? (b) output (c) operating system r ompliers support _____fundamental (b) 4 (c) 6 (d) 8 any keywords are in C? (b) 30 (c) 25 (d) 29 er defined functions are in gram section (b) main function section ction (d) documentation section nction which satisfies the Laplace known as ic function (b) conjugate function (d) analytic function unction ____ is a point, where y is ble in a open set around the point. (b) holonomic point orphic points rphic points (d) none of the above njugate of 1/i is (b) i (c) 1 (d) -1 c point is almost equivalent to points (b)irregular points (c)pole branch points. hich entirely consists of interior points

(d) decision making statements

(a) an open set(b)a closed set(c)a banded set(d)domain

PART-B (3x2=6 Marks)

Answer all the questions

- 21. What are the special features of C language?
- 22. Define Expression with an example.
- 23. Define Complex numbers.

PART-C (3x8=24 Marks)

Answer all the questions

24. a. Discuss the various types of Operators.(any 5) OR

b. Explain the ifelse statement with an example.

25. a. Discuss the types of data in C language..

OR

b. Explain the printf() and scanf() functions in C.

26. a. (i)Write the properties of moduli and Arguments.
(ii)Separate log_eZ into real and imaginary parts.
OR

b. (i)If $a^2+b^2+c^2=1$ and b+ic=(i+a)z Prove

that (a+ib)/(1+c)=(1+iz)/(1-iz).

(ii)Write about the functions of a

complex variable.