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OBJECTIVES:

e To gain knowledge in measures of central tendency and probability.

e Acquire skills in handling situations involving more than one random variable and
functions of random variables.

e To understand the knowledge of random process.

UNIT- I MEASURES OF CENTRAL TENDENCY AND PROBABILITY

Measures of central tendency — Mean, Median, Mode and Standard Deviation - SPSS Software
Demonstration.

Probability - Random variable - Axioms of probability - Conditional probability - Total
probability — Baye’s theorem - Probability mass function - Probability density functions.

UNIT- 11 STANDARD DISTRIBUTIONS
Functions of a random variable - Binomial, Poisson, Uniform, Exponential, Gamma, and Normal
distributions - Moment generating functions, Characteristic function and their properties.

UNIT -IIl TWO DIMENSIONAL RANDOM VARIABLES
Joint distributions - Marginal and conditional distributions — Covariance - Correlation and
regression - Transformation of random variables - Central limit theorem.

UNIT-1V  CLASSIFICATION OF RANDOM PROCESS

Definition and examples - first order, second order, strictly stationary, wide — sense stationary
and Ergodic processes - Markov process - Binomial, Poisson and Normal processes - Sine wave
process.

UNIT -V CORRELATION AND SPECTRAL DENSITIES

Auto correlation - Cross correlation - Properties — Power spectral density — Cross spectral density
- Properties — Wiener-Khintchine relation — Relationship between cross power spectrum and
cross correlation function - Linear time invariant system - System transfer function —Linear
systems with random inputs — Auto correlation and cross correlation functions of input and
output.
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PROBABILITY AND STATISTICS UNIT -1

UNIT -1
BASIC PROBABILITY
Introduction:

The word ‘Probability or change’ is very frequency used in day-to-day conversation. The
Statistician I.J. Good, suggests in his “kinds of Probability” that “the theory of Probability is much older
than the human species.

The concept and applications of probability, which is a formal term of the popular word
“Change” while the ultimate objective is to facilitate calculation of probabilities in business and
managerial, science and technology etc., the specific objectives are to understand the following
terminology.

Random Experiment: The term experiment refers to describe, which can be repeated under some given
conditions. The experiment whose result (outcomes) depends on change is called Random Experiment.
Example:

1. Tossing of a coin is a random experiment.

2. Throwing a die is a random experiment.

3. Calculation of he mean arterial blood pressure of a person under ideal environmental conditions,

. Systoloic pressure . .
by using the formula, Blood pressure = = y - P mm / Hg is a random experiment.
Diastolic pressure

Sample Space:
The totality of all possible outcomes of a random experiment is called a sample space and it is
denoted by s and a possible outcome are element.
The no. of the coins in a sample space denoted by n(s).
Example:
Tossing a coin n(s)=2={H,T}
Event:
The output or result of a random experiment is called an event or result or outcome.
Example:
1. Intossing of a coin, getting head or tail is an event.
2. Inthrowing a die getting 1 or 2 or 3 or 4 or 5 or 6 is an event.
Events are generally denoted by capital letters A, B, C etc. The events can be of two types. One is

simple event and the other is compound event
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PROBABILITY AND STATISTICS UNIT -1

Favorable event:

The no. of events favorable to an event in a trail is the no.of outcomes which entire the happening of
the event.
Mutually Exclusive Events:
Two or more events are said to be mutually exclusive events if the occurrence of one event precludes
(excludes or prevents) the occurrence of others, i.e., both cannot happen simultaneously in a single trail.
Example:

1. Intossing of a coin, the events head and tail are mutually exclusive.

2. Inthrowing a die, all the six faces are mutually exclusive.
Equally Likely Events: Two or more events are said to be equally likely, if there is no reason to expect
any one case (or any event) in preference to others. i.e., every outcome of the experiment has equal
possibility of occurrence. These are equally likely events.
Exhaustive Number of Cases or Events: The total number of possible outcomes in an experiment is
called exhaustive number of cases or events.
Dependent event:
Two events are said to be dependent if the occurance or non occurance of a event in any trail affect the
occurance of the other event in other trail.
Classical Definition of Probability: Suppose that an event ‘A’ can happen in ‘m’ ways and fails to
happen (or non-happen) in ‘n’ ways, all these ‘m+n’ ways are supposed equally likely. Then the
probability of occurrence (or happening) of the event called its success is denoted by ‘P(A)’ or simply

‘p’ and is defined as P( A):ﬁ ...(1) and the probability of non-occurrence (or non-happening) of
+

n
m+n

the event called its failure is denoted by P(E )or simply ‘q’ and is defined as. P(A) = 2

From (1) and (2) we observe that the probability of an event can be defined as

Thenumber of favourablecases for the event

P(event) =
( ) Total number of possible cases

Definition:

Let S be the sample space and A be the event associated with a random experiment. Let n(S)
and n(A) be the no .of elements of S & A. Then the probability of the event A occurring denoted as P(A)

is defined by
The number of favourablecases fortheevent _ n(A)
P(event)= : -
Total number of possible cases n(S)
Note:

It follows that, P(A)+P(A)=1or p+q=1.

KAHE Page 2



PROBABILITY AND STATISTICS UNIT -1

This implies that p=1-q or g=1-p.

Hence 0 <P(A)<1.
Axiomatic Definition of Probability: Let S be the sample space and A be an event associated with a
random experiment. Then the probability of the event A, denoted by P(A), is defined as a real number
satisfying he following axioms.

(i) 0<P(A)<1

(i)  P(S)=1

(1ii) If A and B are mutually exclusive events, P(AUB)=P(A)+P(B)

(iv) If ALA, A are a set of mutually exclusive events,

P(AUA U..UA )=P(A)+P(A)+..+P(A)+..
Theorem 1: The probability of the impossible event is zero, i.e., if ¢ is the subset (event) containing no
sample point, P(¢)=0.
Proof: The certain event S and the impossible event ¢ are mutually exclusive.
Hence P(Suw¢)=P(S)+P(¢) [axiom (iii)]
But SU@=S.
Therefore, P(S)=P(S)+P(¢)
Hence P(¢)=0.
Theorem 2: If Ais the complementary event of A, P(A)=1—P(A)<1.

Proof: Aand Aare mutually exclusive events, such that AUA=S
Therefore, P(AU A)=P(S)=1 (Since axiom (ii))

i.e., P(A)+P(A)=1.

Therefore, P(A)=1—P(A)

Since P(A)>0,it follows that P(A)<1.

Theorem 3: If B < AthenP(B)<P(A).

Proof: B and AB are mutually exclusive events such that Bu AB=A.
Therefore, P(B U AB)=P(A)

i.e., P(B)+P(AB)=P(A) [axiom (iii)]

Therefore, P(B)< P(A).

Theorem 4: Addition theorem of probability
Statement: For any two events Aand B, P(AuB)=P(A)+P(B)-P(ANB).
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Proof: Since (AuB)=AU(A ' nB)here Aand (A"~ B)are mutually exclusive.
P(AUB)=P[AU(A "B)]..(1)
=P(A)+P(A'nB)

Again B=(AnB)U(A'nB)
Here (AnB)&( A'nB)are mutually exclusive events.
P(B)=P[(ANB)U(A' NB)]..(2)

=P(ANB)+P(A'nB)
Therefore P(A'\nB)=P(B)-P(ANB)
From (1), P(AUB)=P(A)+P(B)-P(ANB).

Conditional Probability: The Conditional probability of an event B, assuming that the event A has
P(ANB)
P(A
Rewriting the definition of conditional probability, we get P(AnB)=P(A)xP(B/ A). [Product

happened, is denoted by P(B/A) and defined as, P(B/ A)= , provided P(A)=0.

theorem of probability]
Properties:
1. If AcB,P(B/A)=1Since AnB =A.

P(B) _
P(A)ZP(B),asP(A)S P(S)=1.

2. IfBc A,P(B/A)>P(B),Since AnB =B,and

3. If Aand B are mutually exclusive events, P(B/A)=0, since P(AnB)=0

4. If P(A)>P(B), P(A/B)>P(B/A).

5 If AcA ,P(A/B)<XP(A/B).
Independent Events: A set of events is said to be independent if the occurrence of any one of them
does not depend on the occurrence or non-occurrence of the others.

The product theorem can be extended to any number of independent events: A ,A, A aren

independent events. P(A NA, Nn..nA )=P(A )xP(A,)x..xP(A,), when this condition is satisfied,

the events A, A, A, is said to be

mutually independent if the events are totally independent when considered in sets of 2,3,. . . n events.

Theorem 5: If the events A and B are independent, then so are A&B.

Proof. P(AnB)=P(AUB)=1-P(AUB)
=1-[P(A)+P(B)-P(AnB)] (By addition theorem)
=1-P(A)-P(B)+P(A)xP(B) {since A and B are independent)
=[1-P(A)]-P(B)[1-P(A)]
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—P(A)xP(B)
Example 1: In how many different ways can the director of a research laboratory choose two chemists
from among seven applicants and three physicists from among nine applicants?
Solution:

The two chemists can be chosen in 'C, =21 ways
The three physicists can be chosen in °C, = 84 ways

Then these two things can be done in 21 x 84 = 1764 ways.

Example 2: What is the probability that a non-leap year contains 53 Sundays?

Solution:

A non-leap year consists of 365 days, of these there are 52 complete weeks and 1 extra day. That day
may be any one of the 7 days. So already we have 52 Sundays. For one more Sunday, the probability
that getting a one more Sunday is 1/7.

Hence the probability that a non-leap year contains 53 Sundays is 1/7.

Example 3: A bag contains 7 white, 6 red and 5 black balls. Two balls are drawn at random. Find the
probability that they will both the white?

Solution:

Given that Balls White(7), Red(6) & Black(5), total 18 balls.

Two balls are drawn at random from 18 balls in **C, ways
Two white balls are drawn at random from 7 balls in 'C, ways.

Hence the required probability = ('C, )/(**C, )=21/153.

Example 4 : Determine the probability that for a non-defective bolt will be found if out of 600 bolts
already examined 12 were defective.

Solution:

Given that out of 600 bolts 12 were defective.

Therefore, probability that a defective bolt will be found = 12 1
600 50

- . . 1 49
Therefore, Probability of getting a non-defective bolt = 1—%:%.

Example 5: A fair coin is tossed 4 times. Define the sample space corresponding to this experiment.
Also give the subsets corresponding to the following events and find the respective probabilities:
a).More heads than tails are obtained.
b).Tails occur on the even numbered tosses.

Solution:
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S= {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT,
TTHH, TTHT, TTTH, TTTT}
a). Let A be the event is which more heads occur than tails
Then A= {HHHH, HHHT, HHTH. HTHH, THHH}
b).Let B be the event is which tails occur is the second and fourth tosses.
Then B={HTHT, HTTT, TTHT,TTTT}

_N(A)_5 gy n(B)_1
n(s) 16° n(s) 4

P(A)
Example 6: A box contains 4 bad & 6 good tubes. Two are drawn out from the box at a time. One of
them is tested and found to be good. What is probability that the other one is also good?

Solution:
Let A =one of the tubes drawn is good and B = the other tube is good .
P(AnB) =P(both tubes drawn are good)
GCZ
= 1oC2

1
3

Knowing that one tube is good, the conditional probability that the other tube is also good is
required, i.e., P(B/A) is required.
P(AnB)_1/3 _5
P(A) 6/10 9
Example 7: In a shooting test, the probability of hitting the target is % for A, 2/3 for B, 3/4 for C. If all

By definition, P(B/ A)=

of them five at the target, find the probability that
i). none of them hits the target.
ii). Atleast one of them hits the target.
Solution:
Let A = event of A hitting the target.

P(Z):%,P(E):%,P(E):%.

P(ANBANC)=P(A)xP(B)xP(C) (by independence)

i.e., P(none hits the target) = %x%x%:i
P(atleast one hits the target) = 1 — P(none hits the target)
1.2
24 24

Example:8

Three coins are tossed together find they are exactly 2 head?

KAHE Page 6



PROBABILITY AND STATISTICS UNIT -1

Solution:
Total no. of chances by throwing 3 coins are n(S)= 8.
The event A to get exactly 2 heads are A = {HHT, THH,HTH}

n(A)=3
_nAy)_3

P(A) = n(s) 8

Example:9

A bag contains 4 red, 5 white and 6 black balls. What is the probability that 2 balls drawn are red and
black?
Solution:

Given that Balls White(5), Red(4) & Black(6), total 15 balls.
Two balls are drawn at random from 15 balls in 15C,ways

4C,X6C, 8

n(A)= 4C1X 6Cy, Hence the required probability = —
15C, 35

Example :10

A bag contains 3 red and 4 white balls. Two draws are made without replacement.
What is the probability that both balls are red

Solution:

Total no. of balls = 3Red + 4 White = 7 balls

P(Drawing a red ball in the first drawn isred ) = P(A) =$

P(Drawing a red ball in the second drawn isred ) = P(B/A) :%
P(ANB)=P(A)P(B)
P(ANB)
P(A)
P(ANB)=P(A)P(B/A)

P(B/A) =

1
7

Theorem of Total Probability

Statement: If B,,B, B, be a set of exhaustive and mutually exclusive events, and A is another event

associated with (or caused by) B, then P(A)= i P(B, )P(A/B;)
i=1

Proof. The inner circle represents the event A. A can occur along with (or

due to) B,,B, B, that are exhaustive and mutually exclusive.

AB, are also mutually exclusive.

Therefore, A= AB, + AB, +...+ AB, (by addition theorem)
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Hence P(A)=P(> AB,)

=> P(AB;)(since AB,,AB,,...,AB, are mutually exclusive)
P(A)=3 P(B )P(A/B))
i=1

Baye’s theorem on Probability (or) Rule of inverse probability

Statement: If B,,B, B, be a set of exhaustive and mutually exclusive events associated with a random

experiment and A is another event associated with (or caused by) B, then

P(B.)xP(A/B)

P(B/A)=— i=12,..,n
> P(B;)xP(A/B;)
i=1
Proof. Since by product theorem, P(AnB, )=P(B, )xP(A/B,) ... (1)
or P(AnB;)=P(A) P(B,/A) ...(2)

From (1) and (2), P(A)P(B,/ A)=P(B,) P(A/B,)

P(B;) P(A/B,)
P(A) -

P(B,/ A)= .(3)

Therefore from total probability, P(A)= i‘, P(B, )P( A/ B, )substitute in (3), we get
i=1

P(B [ A)= nP(Bi)xP(A/Bi) |
>.P(B,) xP(A/B,)

i=12,...,n

Example 11: A bag contains 5 balls and it is not known how many of them are white. Two balls are
drawn at random from the bag & they are note to be white. What is the chance the all the balls in the bag
are white?
Solution:
Since 2 white balls have been drawn out, the bag must have contained 2, 3, 4, or 5 white balls.
Let B1 = Event of the bag containing 2 white balls.
B> = Event of the bag containing 3 white balls.
Bs = Event of the bag containing 4 white balls.
B4 = Event of the bag containing 5 white balls.

Let A = Event of drawing 2 white balls.

’C, 1 ’C, 3
P(A/B,)=—2=—, P(A/B,)=—%="—
( 1) 5C2 10 ( 2) 5C2 10
P(A/B )—4&—E P(A/B )—5&—1
e, 5 *775c,
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Since the number of white balls in the bag is not known, Bj’s are equally likely.
Therefore P(B,)=P(B,)=P(B;)=P( B4):%

By Baye’s theorem,

1
2x1
P(B, )xP(A/B % 1
P(B, / A)=— e P “)=1 33 2
P(B, ) xP(A/B) =x| —+—+=+1
2.P(B)P( )4X(10105j

Example 12: There are 3 true coins and 1 false coin with ‘head’ on both sides. A coin is closer at
random and tosses 4 times, If ‘head’ occurs are the 4 times, What is the probability that the false coin
has been chosen and used?

Solution:
P(T) = P(the coin is a true coin) = 3/4
P(F) = P(the coin is a false coin) = 1/4
Let A = Event of getting all heads is 4 tosses,
Then, P(AIT) =% * % * ¥ * Y% = 1/16 and P(A/F) = 1

1
=x1
By Baye’s theorem, P(F/ A)= P(F)xP(A/F) = 4 =E_
P(F)xP(A/F)+P(T)xP(A/T) 1x1+§xi 19

4 4 16
Example 13:

There are three bags , bag one contains 3 white balls , 2 red balls and 4 black balls. Bag two contains 2
white balls, 3 red balls and 5 black balls. Bag three contains 3 white balls, 4 red balls and 2 black balls.
One bag is chosen at random and from it 3 balls were drawn out of which 2 balls were white and 1 is
red. What is the probability that it is drawn from bag one, two and three?

Solution:

Selection of bags are mutually exclusive events. The selection of the 2 white and 1 red ball is an

independent event.
P(B1)=P(B2)=P(B3)=1/3
P(A/B,) =P(Bag 1 selected from 2W&1R ball chosen)
_3C,X2C,
- oC,
=0.07
P(A/B,) =P(Bag 2 selected from 2W&1R ball chosen)
_ 2C,X3C,
~10C,
0.025
P(A/B,) =P(Bag 3 selected from 2W&1R ball chosen)

_ 3C,XA4C,
9C,
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=0.14
By using Baye’s theorem we have
P(B)) P(A/B)) P(B;) P(A/B,)
1/3 0.07 0.0233
1/3 0.025 0.0083
1/3 0.14 0.0466
> P(B)) P(A/B;) | 0.0782

P(B,/A) = P(The balls selected from the first bag)
_0.0233

©0.0782
=0.29

P(B,/A) =P(The balls selected from the second bag)
0.008
0.0782
=0.102
P(B,/ A) =P(The balls selected from the third bag)
0.046

0.0782
=0.58

Exercise:

1. In a bolt factory machines A,B,C manufactures 25%,35% and 40% of the total respectively. Out of
their output 5%,4% and 2% are defective bolts respectively. A bolt is drawn at random and is found to
be defective. What are the probabilities that it was manufactured by the machines A,B and C
respectively?

2. A bag contains five balls and it is not known how many of them are white. Two balls are drawn at
random from the bag and they are found to be white. What is the probability that all the balls in the bag
are white?
RANDOM VARIABLES

Definition: A real-valued function defined on the outcome of a probability experiment is called a
random variable. A Random variable (RV) is a rule that assigns a numerical value to each possible
outcome of an experiment.

1. Discrete Random Variables.

2. Continuous Random Variables
Probability distribution function of X: If X is a random variable, then the function F(x) defined by
F(x)=P{X <x}is called the distribution function of X.

1. Discrete Random Variable: A random variable whose set of possible values is either finite or

countable infinite is called discrete random variable.
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Probability Mass Function (pmf): If X is a discrete variable, then the function p(x)=P[ X =x] is
called the pmf of X. It satisfies two conditions
) p(x)=0

i)Y px) =1

Cumulative distribution [discrete R.V] or distribution function of X: The cumulative distribution
F(x) of discrete random variable X with probability f(x) is given by
F(x)=P(X <x)=) f(t)for—oo<x<oo

tex
Properties of distribution function:
1. F(-»)=0
F(o0)=1
0<F(x)<1
P(x, <X <X,)=F(x,)-F(x,)
P(x, <X <x,)=F(x,)—F(x)+P[X=x]
P(x, <X <X, )=F(x,)—F(x )-P[X=x,]

N o &~ w D

P(x, <X <X, )=F(x,)-F(x)-P[X=x]1+P[ X =x]
Results:

1. P(X<w)=1

2. P(X <-0)=0

3. P(X>x)=1-P[X <x]

4. P(X <x)=1-P[X >X]
Example 14: A R.V X has the following probability distribution.
X: -2 -1 0 1 2 3
p(x): 01 k 02 2k 03 3k
Find (1) The value of k, (2) Evaluate P(X<2) and P(-2<X<2) .

Solution:
(1) Since 3" p(x )=1
i=1

0.1+k+0.24+2k+0.3+3k = 1
K = 1/15.
(2) P[X<2] = P[x=-2] + P[x=-1] + P[x=0] + P[x=1]

KAHE Page 11



PROBABILITY AND STATISTICS UNIT -1

=0.1+1/15+0.2+2/15
=%
P[-2 < X < 2] = P[x=-1]+ P[x=0]+ P[x=1]
=1/15+0.2+ 2/15=2/5

Example 15:
A random variable X has the following probability function

Values of x 0 |1 2 3 4 5 6 7 8
Probability P(x) |a |3a |5a |[7a |9a |1lla |13a |15a |17a

i) Determine the value of ‘a’.
i) Find P(X<3), P(X > 3) and P (0 < X<5).
i) Find the distribution function of X.

Solution:
i) To find ‘a’ value:

Given discrete random variable, > p(x,) =1
i=1
at+3at+ba+7a+9a+lla+13a+15a+17a =1
8la=1
a=1/81
il) To find P(X<3):
P(X<3) = P(X=0)+P(X=1)+P(X=2)
=a+3a+5a
=9a
=1/9
iii) To find P(X >3):
P(X =3)=1-P(X <3)
=1-1/9 =8/9
iv) Tofind P(O< X <5):
PO< X <5)= P(X =D +.....P(X =4)

= 3at+ba+7a+9a
= 24/81
v) To find the distribution function of X:
Value |0 1 2 3 4 5 6 7 8
of x
P(X) a 3a 5a 7a %a 1la 13a 15a 17a

P(x) 1/81 3/81 5/81 7/81 9/81 11/81 | 13/81 |15/81 |17/81

F(X) 1/81 4/81 9/81 16/81 | 25/81 |36/81 |49/81 |64/81 |1

Example 16: A R.V X has the following function:

X: 0 1 2 3 4 5 6 7

P(X): 0 k 2k 2k 3k k2 2k?  Tk%k

(a) find k (b) Evaluate P[X<6], P[x>6], (c) Evaluate P[1.5<X<4.5/ X>2] (d) Find P[X<2], P[X>3],
P[1<X<5].
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Solution:
(@). Since Zn: p(x)=1
i=1
i.e., 0+k+2k+2k+3k+k? +2k?+7k?*+k = 1
10k 2+ 9k —-1=0
K =-1or 1/10 (since k=-1 is not permissible, P(X)>0)
Hence k = 1/10.
(b). P[x>6] = P[X=6] + P[X=7]
= 2k2+7k%k
= 2/100 + 7/100 + 1/10 = 19/100
P[X<6] =1 - P[x>6]
=1-19/100
= 81/100

(0). P[15<x<45 | x>2] =PLS <;(§4'52 ))“ X>21 4y conditional probability)
>

_pl[2<x<4.5]
C 1-p(x<2)

_ p(3)+p(4)
1-[p(0)+p(1)+p(2)]

(d). p(X<2) = p[x=0] + p[x=1]
=0+k=k=1/10
P(X>3) =1 - p(x<3)
=1 - [p(x=0)+p(x=1)+p(x=2)+p(x=3)]
= 1 — [0+k+2Kk+2K]
=%
P(1<x<5) = p(x=2) + p(x=3)+ p(x=4)
=2k + 2k + 3k
=7/10
Example 17: If the R.V. X takes the values 1,2,3 and 4 such that 2P(X = 1) = 3P(X=2) =P(X = 3) =
5P(X = 4). Find the probability distribution and cumulative distribution function of X.

Solution:
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Since X is a discrete random variable.
Let 2P(X =1)=3P(X=2)=P(X =3) =5P(X =4) =k
2P(X = 1) = k implies that P(X = 1) = k/2
3P(X =2) = kimplies that P(X = 2) = k/3
P(X=3)=k
5P(X =4) = k implies that P(X = 4) = k/5

Since Zn: p(x )=1
i=1

e, ki2+k/i3+k+k/3=1
k[1/2+1/3+1+1/5]=1

Therefore k = 30/61

Xi p(x) F(X)

1 |P(1)=k/2=15/61 F(1) = p(1) = 15/61

2 |P(2)=k/3=10/61 F(2) = F(1) + p(2) = 15/61 + 10/61 = 25/61
3 |P@3)=k=30/61 F(3) = F(2)+p(3) = 25/61 + 30/61 = 55/61

4 | P(4)=k/5=6/61 F(4) = F(3)+p(4) = 55/61 + 6/61 = 61/61 =1

Example 18: A discrete random variable X has the following probability mass
function:

X 0 1 2 3 4 5 |6 7

P(X) 0 a 2a 2a |3a |a® Pa® | 7a’+a
Find (i) the value of ‘a’ (ii) P(X <6), P(X >6)(iii) P(0< X <5) (iv) the
distribution function of X (v) If P(X <x) >1/2, find the minimum

value of X.
Solution:

() Since > p(x)=1

i.e., O+a+2a+2a+3a+a’ +2a%+7a*+a =1
10a%+9a—-1=0
a=-1or 1/10 (since a=-1 is not permissible, P(X)>0)
Hence a = 1/10.

(ii). P[x>6] = P[X=6] + P[X=7]

= 2a’+7a%a

= 2/100 + 7/100 + 1/10 = 19/100
(iii). P[X<6] =1 - P[x>6]

=1-19/100

=81/100
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(iv). To find P(0<X<5):
P(0<X<5) =P(X=1)+.....P(X=4)

= at+Za+2a+3a
=8a=8/10
(v). To find distribution function of X :
X 0 1 2 3 4 5 6 7
P(X) 0 a 2a 2a 3a a’ 222 | 7a*+a
F(X) 0 1/10 3/10 5/10 8/10 | 81/100 | 83/100 1

Minimum value of X:
P(X <x)>1/2

The minimum value of X for which P(X <x) > 0.5, is the x value is 4.

Example 19: A RV X has the following distribution
X -2 -1 0 1 2 3
P(X) 0.1 Kk 0.2 2k 0.3 3k
(@) find k (b) Evaluate P(X<2) & P(-2<X<2)
Solution:
(@ XP(X)=1
6K+0.6=1
K=1/15
Since the distribution is
X -2 -1 0 1 2 3
P(X) 1/10 1/15 | 1/5 2/15 | 3/10 | 1/5

(b) P(X<2) = P( X=-2) + P(X=-1) + P(X=0) + P(X=1)
=1/10 + 1/15 + 1/5 + 2/15 =1/2
& P(-2<X<2) = P(X=-1) + P(X=0) + P(X=1)
=1/15 + 1/5 + 2/15 = 2/5.

Moments
The moment generating function (MGF) of a random variable X (about origin) whose probability
function f(x) is given by

M, (t) =E(e*) =) e“P(x), foradiscrete probability distribution

where t is real parameter and the integration or summation being extended to the entire range of x.
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Example 20
The probability function of an infinite discrete distribution is given by

P(X=x) = ix,x =1,2,....00. Find the mean and variance of the distribution. Also find P(X is even).
Solution

We know that

M, (t) = iet*p(x)

[Using (1-X) " =14+ X+ X +.......]

|v|x(t):2e —(2—e")te!

M, '(t)=—e'(2—e")?(-e") +(2-e") e

—e?(2-e") 2+ (2—e') 6!
M, "(t)=2(2-e")%e* +e*(-2)(2—e")*(-e" )+ (2—-e") "e' +e' (-] +(2—e") ?(~e")
Now E(X) = Mean=M,'(0) =1+1=2
E(X2)=M,"(0)=6
Mean p, =2
Variance = E(X?) —[E(X)]?

= 6-4=2

Now p(X =even) =p(x=2) +p(x=4)+......

@ @ b
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MGF Mean Variance p(x=even)

t ty-1
e'(2-e) 2 2 %
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UNIT - 1l

RANDOM VARIABLES

Introduction:

In the last chapter, we introduced the concept of a single random variable. We observed
that the various statistical averages or moments of the random variable like mean, variance, standard
derivation, skewness give an idea about the characteristics of the random variable.

But in many practical problems several random variables interact with each other and frequently
we are interested in the joint behavior of the health conditions of a person, doctors measure many
parameters like height, weight, blood pressure, sugar level etc. we should now introduce techniques that
help us to determine the joint statistical properties of several random variables.

The concepts like distribution function, density function and moments that we defined for single
random variable can be extended to multiple random variables also.

Continuous Random Variables: A random variable X is said to be continuous if it takes all possible

values between certain limits say from real number ‘a’ to real number ‘b’.
Example: The length time during which a vacuum tube installed in a circuit functions is a continuous

random variable, number of scratches on a surface, proportion of defective parts among 1000 testes,
number of transmitted in error.
Probability density function (pdf): For a continuous R.V X, a probability density function is a

function such that (1) f(x)=0 (2) T f(x)dx=1 3)

b
P(la< X < b):j f (x)dx=area under f(x) fromato b for any a and b.
Cumulative distribution function: The Cumulative distribution function of a continuous R.V. X is
F(x)=P(X <x)= [ f(t)dt for—oo<x <.

Mean and variance of the Continuous R.V. X: Suppose X is continuous variable with pdf f(x). The

mean or expected value of X, denoted as ¢ or E(X)
p=E(X)= [ xf(x)dx. And the variance of X, denoted as V(X) or & is E[X?] - [E(X)]?

Example: 1

A continuous random variable ‘X’ has a probability density function f(x) = K,0<x <1. Find ‘K".
Solution:

Given f(x) =k,0<x<1

T f(x)dx =1
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T kdx =1
0
k=1

Example 2: Given that the pdf of a R.V X is f(x)=kx, 0<x<1. Find k and P(X>0.5)

Solution:

[ f(x)dx=1
1
[kxdx=1
0

2 1
k{x—} -1
2 0

K=2

P(X>05)= [ f(x)dx

1
= j 2xdx

1/2

2 1
zz[x_}

2 1/2
=3/4

kxe™, x>0

is the pdf of a R.V. X. Find k.
0, elsewhere

Example 3: If f(x):{

Solution:

Forapdf [ f(x)dx=1

Here [kxe™dx=1 [since x>0]
0

kx| |- & ]| =1
-1 -1 .

Example 4: A continuous R.V. X has he density function f(x)= 1 K

> ,— < X<oo, find the value of
X

k and the distribution function.
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Solution:

,— 0 < X<,

Givenisapdf | f(x)dx=1, f(x)=—
i 1+x

dx=1

K[t

21+

< 1
2I(£1+x

dx=1

2

Zk[tan‘l x]: =1
Zk{z—o}:l
2

7zk=1;k=£
V4

F(x)= T f(x)dx:ii(l L 2jdx

—o0

Lriantx] = L|tantx-[ ==
:;[tan 1x]w_”{tan 1x ( 5 ﬂ

:i{tan‘1 x+(£ﬂ for—oo< X< oo
T 2

A continuous random variable X has a pdf f(x) =3x*, 0<x<1.Findaand b
such that (i) P(X <a)=P(X >a) and (ii) P(X >b)=0.05.
Solution:

A continuous random variable X has a pdf f(x) =3x*, 0<x<1.

i) To find P(X <a)=P(X > a)

Example:5

T f(x)dx =1
Jl.3x2dx =1
0

Since P(X <a)=P(X >a), P(X ga):%:O.S

Jf(x)dx=1 : J‘3x2dx=a3:1
0 2 0 2
a=0.7937

i) To find P(X = b) =0.05
1 1
[f0)dx=005, [3x*dx=1-b*=0.05
b b

b® =0.95
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b =(0.95)"2
ax, 0<x<1
. . . - a, 1<x<2
Example 6: If the density function of a continuous R.V. X is given by f(x)=
3a—ax, 2<x<3
0, otherwise

(1) Find the value of a.

(2) The cumulative distribution function of X.

(3) If x1, X2, x3 are 3 independent observations of X. What is the probability that exactly one of these
3 is greater thanl.5?

Solution:

(1) Since f(x) is a pdf, then T f(x)dx=1
3

e, [f(x)dx=1
0

ie., iaxdx +Tadx+i(3a—ax)dx =1
0 1 2

a=%
(2). (i) If x<O then F(x) =0

(i) If 0.< x < Lthen F(x) = [ axcix=] - dx
0

0

(i) Iflsx£2thenF(x):j f(x)dx
1 %
=[axdx+[adx
0 1
_x 1

2 4
(iv) If2<x<3thenF(x) = T f(x)dx

:iaxdx+jadx+j(3a—ax)dx

(i) If x>3, then F(x):j f(x)dx
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:jaxdx +Tadx+}(3a—ax)dx+f f(x)dx
0 1 2 3

1

3 2 l 3 3 X
(3). P(X >15)= | f(x)dx = j—dx+j(———}dx

15 152 N2 2

=%

Choosing an X and observing its value can be considered as a trail and X>1.5 can be considered as a
success.
Therefore, p=1/2, q=1/2.
As we choose 3 independent observation of X, n = 3.

By Bernoulli’s theorem, P(exactly one value > 1.5) = P(1 success)

=%C,x(p) x(a) =3
Example:7
A continuous random variable X is having the probability density function
X, O<x<1
f(x)=42-%, 1<x<2
0, otherwise

Find the cumulative distribution function of x.

Solution:
X, O<x<l1
f(x)=42-%, 1<x<2
Given 0, otherwise

To find cumulative distribution function of x:
i) If 0<x<1 F()= [f(x)dx

X2

= ixdx:7

i Ifl<x<2, FX = If(x)dx

= j.xdx+JX'(2— X)dx
0 1

X2

= 2x—2——1
2

iii) If x>2, F(x) = ff(x)dx

—0
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:j.xdx+j.(2—x)dx
0 1
=1

— O<x<1

| X

2
The cumulative distribution function of x is F(x)={2x —X? -1, 1<x<2

1 X > 2

CONTINUOUS RANDOM VARIABLE DISTRIBUTIONS
Normal distribution:
Definition:
A continuous random variable X is said to follow a normal distribution with mean x and variance
2, if its density function is given by the probability law

~(x—4)?
1 2 2
o —0<X<w0, 0>0, —o< u<on,

0= z" '

If X follows normal distribution with mean x and standard deviation o, then it is denoted by

(o}

N ~ (u,o) sometimes N(ﬂ,az)can also be used.

Solution:
—(x=p)?

t t 1 2
My )= [ eXf(x)dx= [e*———e 20° dx
x®= (%) | e

—00 —0o0
o x=p)?
- ete o dx
o271 e
put 7= X8 If X=-00, z=-om
© If X=ow, zZ=w
cdz =dx ’
00 _22
=% Iet(C’Z“‘).e 2 odz
(o2 T
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)2
2,2 _(z-0)" |

0'2'[2

2
—(z°-2toz)
ettt % ~@Z% - 2tez) -1 2
=— 2 dz o = "l (z-o0t)" -
e ( )- -0
N27 Cw 2 2
© 1 2 t
— ™! % _[e 2 gy
T %
o?t? o -1 2
p.t+T 1 ?(Z—Gt)
=e .—27[ [O d
2¢2 o —u?
_ee L fe 2 du
N
Uu=z-oct Z=00, U=00
du=dz Z=—-—o0,U=—0©
22 o —u?
_ HHT 1 T _
e T ~2n !e du=+/2n
2t?
AM () =2

Example: 8

A normal distribution has mean p =20 and S.D ¢=10. Find P(15 < X < 40).

Solution:
Given n=20, =10

X—p X-20
o 10

The normal variate Z =

X-20 15-20
10 10

-05

When X =15, Z =

40-20

X=40,7Z= =2

. PA5< X <40)=P(-0.5<Z<?2)
=P(-0.5<Z<0)+P(0<Z<?2)
—P(0<Z<05)+P(0<Z<2)
=0.1915+0.4772  [Usin g normal table |
=0.6687

Example 9

2 2

If X is a normal variate with mean 1 and variance 4. Y is another normal variate independent of

X with mean 2 and variance 3. What is the distribution of X+2Y.
Solution:
Given X and Y are independent normal variates.
X+2Y is also a normal variate by additive property.
. Mean of (X+2Y) = E(X+2y)

KAHE
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= E(X) +E(2Y)

= E(X) +2E(Y)
=142x2 [E(X)=1, E(Y)=2]
=5

Var(X+2Y) = Var(X) + Var(2Y)
= 1*Var(X) +2*Var(Y)
=1x4+4x3=16
- X+2Y follows normal distribution with mean 5 and variance 16.

Gamma Distribution:
The continuous random variable X is said to follow a Gamma distribution with parameter A if its

probability function is given by,

X A-1
f(x):{L, A>0,0<Xx<o

I'(4)
0, otherwise
Note: 1
A continuous random variable X whose probability density function is
ate~ x4l . o
f(x)= T a>0,1>0,0< x<o iscalled a Gamma distribution with two parameters a
and A.
Note: 2
When a=1
e XxA L o o
f(x)= W which is called the sample Gamma distribution or standard Gamma distribution.
Note: 3

Sometimes the definition of Gamma distribution is given by taking

—X

B A1
azl, f(x)= ! .eﬂx , x>0
B st T

Find the moment generating function of Gamma distribution:

Solution:

e—x Xk—l

M, (t) = E(e) = ! e%f (x)dx = ! e, 0
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1% 1 %
__ L Ietx.e_x.xﬂ“_ldx __ 1 J'e—(l—t).xﬂ—ldx
Ir'(A) (1)
0 0
put (1-t)x=u If x=0, u=0
(1-t)dx=du If X=o, U=

© A-1 © A-1.-u
1 e_u.[u) (duj 1 oume ™

_ﬁo 1-t 1-t _1"(/1)0 Y
1 1 Ton-1—x
= TIT(1)=—"—"+ ['(n) | x" ~e “dx
ra).a-14 1-nHt (I)

M, () =@1-t)7", [t|<1.

Find the mean and variance of Gamma distribution:

Solution:

Mx () =@-t) %

Mx () = -A@-t) 471D =My (0)=2 1
Mx () = A(-2-DA-1) 4721 1 =Mx (0)=A(2+1) 2

Variance = 1o — '2—/1 _q2 =52 _ 22
M2 =HD—Hy = A+)-A"=A"+1-4

. Variance = A.
Hence mean and variance of Gamma distribution = A4

Gamma
p.d.f MGF Mean Variance
X A-1 1-t)"4 A A
L, A>0, O<x<w -0
I'(4)

Exponential distribution:
A continuous random variable X is said to follow an exponential distribution with

parameter A > Qif its probability density function is given by,

—AX
f(x) = Ae , x>0
0, otherwise
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Find the moment generating function of exponential distribution:
Solution:

7 tx }Le_ﬂ“x x>0
My (t) = j e X f (x)dx Here f(x)= '
0 0, otherwise

o0 o0
= .[etx/le_’lxdx = ﬂje_(ﬂ_t)xdx
0 0

o~ (A-)x 1" o, e
= ﬂ[w . Ie dx = T

0

) —(j—t) [e—oo_e—O}

— ﬁ [ e ® =0, 0 :1}

.. The MGF :L, A>t
A—-t

Find the mean and variance of exponential distribution:
Solution:
We know that MGF is,

A 1
My ()= —2— =~
X (t) F "

Mx (t) = i(ﬂ

r=0

. Mean ,ui = coefficient of

t_1
(L)
' t2
up = coefficient of EZ

o| o
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: o2 2 1
Now , variance up = up —p, =

22 2
- 1 — 2
Variance = — =1/ X
A
Exponential
p.d.f MGF Mean Variance

/Ie_’b(,x>0 L,;Ly[ 1 1
A-t A 22

Memoryless property of the Exponential distribution:

If X is exponentially distributed , then P(X > 5+%( S s): P(X >t) forany s,t >0

Proof:

o0
P(X > k)= [2e™*dx

k
—ax*
= /{e ] =P e KgAK
A
k
P(X >s+tand X >5)
X >s+t -
Also, P( A S s)_ P(X > )
_ P(X >s+t)
O P(X >5s)
B e—ﬂ(s+t)
o= 1S
—As —At
_E € —eA P(X >t)
o= As

P(X >S+if >s)= P(X >1)

Thus P(X >t) e At
Example: 10

The time (in hours) required to repair a machine is exponentially distributed with parameter A = 1.

(a) What is the probability that the repair time exceeds 2h?
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(b) What is the conditional probability that a repair takes atleast 11h given that its duration
exceeds 8h?

Solution:

Let X be the random variable which represents the time to repair the machine then the density
function of X is given by,

f(x) = 2o~ X =%e_%x, x>0

(a) P(X >k)=e 2K

0 PX>114  )=p(X=8+3 )-P(x>3) |PX>stY  )-p(x>s)

by memoryless property

BIVARITE RANDOM VARIABLES

Definition:

Let S be the sample space. Let X=X(S) and Y=Y(S) be two functions each assigning a real no. to each
outcome seS. Then (X,Y) is atwo dimensional random variable.

Types of random variables:

1. Discrete random variables

2. Continuous random variables

Two dimensional discrete random variables:

If the possible values of (X,Y) are finite or countably infinite then (X,Y) is called a two dimensional
discrete random variables when (X,Y) is a two dimensional discrete random variable the possible values
of (X,Y) may be represented as (xi,yj) i=1,2,.....n, j=1,2,....m.

Two dimensional continuous random variables:

If (X,Y) can assume all values in a specified region R in the XY plane (X,Y) is called a two
dimensional continuous random variables.

Joint distributions — Marginal and conditional distributions:

(i) Joint Probability Distribution:

The probabilities of two events A={X <x} and B ={Y <y} have defined as functions of x and y
respectively called probability distribution function.

Fy (X) =P(X £x)

F (y)=P(Y <)
Discrete random variable important terms:
i) Joint probability function (or) Joint probability mass function:
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For two discrete random variables x and y write the probability that X will take the value of x;, Y will
take the value of yj as, P(x,y) =P(X =x;,Y =Y,)

ie) P(X =x;,Y =y;) is the probability of intersection of events X =x; &Y =y;.

P(X =x.,Y =y,)=P(X =x,nY =Yy,), The function P(X =x;,Y =y;) =P(x;,y;) is called a joint

probability function for discrete random variables X,Y and it is denoted by Pj;.
Pij satisfies the following conditions
(i) Pij> 0, for every i,j

(i)Y YR =1

Continuous random variable (or) Joint Probability Density Function:

Definition:

The joint probability density function if (x,y) be the two dimensional continuous random variable then
f(x,y) is called the joint probability density function of (x,y) the following conditions are satisfied.

(M f(x,y)=0, ¥x,yeR

(ii) I j f., (X, y)dxdy=1. Where R is a sample space.

bd
Note: P(a<x<b,c< ygd)=”f(x,y)dydx

Joint cumulative distributive function:
If (X,y) is a two dimensional random variable then F(X,Y)=P(X <x,Y <vy) is called a cumulative

distributive function of (x,y) the discrete case F(X,Y)=>" > P, =1, y, <y,x <X
j i
y X
In the continuous case F(Xx,Yy) = I I fy (X, y)dxdy

—00 —00

Properties of Joint Probability Distribution function:
1. O <P(x,y;)<1

2. 2 2 P(X.Y)=1
3. P(X)=) P(X.Y))
4. P(yi):Z P(Xi'Yj)

5. P(x)=P(x,y;)forany j
6. P(y;)=P(x,y;)forany i

Properties:
1. The joint probability distribution function F xy (X, Y) of two random variable X and Y have the

following properties. They are very similar to those of the distribution function of a single
random variable.

2. 0<f,(xy)=1
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3. fy(0,0)=1

4. f,,(x, y)is non decreasing

o

fXY (_CO! y) = ny (Xl,OO) =0

6. For x, <X, and y, <Y,, P(X <X <x,,Y <) =F(X, ¥1) —F (%, y)

~

P(X <X,y <Y <Yy,)=F(x,¥,)—F(X, Y1)

P, <X <X,,Y, <Y <VY,)=F(X,Y,)—F(X,Y,)— (X, y)+ (X, y,)

9. R (Y)=Fy(0y)=P(X <o0,y<y)=P(y<y)

10. Fe(X)+F, () -1<F (X y) <JF(X)F, (y) forall x and y.

These properties can also be easily extended to multi dimensional random variables.

Marginal Probability Distribution function:

(i) Discrete case:

Let (x,y) be a two dimensional discrete random variable, P, =P[X =Xx;,Y =y,]

P(X =x)=P*

then

is called a marginal probability of the function X. Then the collection of the
pair i, Pi*} is called a marginal probability of X.
¢ pr(Y =Y;) =P, is called a marginal probability of the function Y. Then the collection of the
pair iRy is called a marginal probability of .
(ii) Continuous case:

e The marginal density function of X is defined as f,(x) = g(x) = J. f(x,y)dy and
e The marginal density function of Y is defined as f (y) =h(y) = _[ f (X, y)dx

Conditional distributions:
(i) Discrete case:
e The conditional probability function of X given Y=y ; is given by

P[X =x/Y =Y;]=P[X =x,Y =y;1/P[Y =y]=P,;/P*]
The set {X =x,P;/P*j}, | =1,2,3,...is called the conditional probability distribution of X given
Y=y,

e The conditional probability function of Y given X=xi is given by

P=IY =y, / X=x1= PIY =y, X =x]/P[X =x] =R, /R’

Theset{y, P/ Pi*}, j7=1,2,3,...is called the conditional probability distribution of Y given X =X,
(i1) Continuous case:

e The conditional probability density function of X is given by Y=Y is defined as
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f(X/ )_f(X,Y) ) ; . . -
y)= h(y) - where h(y) is a marginal probability density function of Y.

e The conditional probability density function of Y is given by X=X is defined as

Fy/x) = 1Y) _ _ g . .
yixy= g(x) - where g(x) is a marginal probability density function of X.
Independent random variables:

(i) Discrete case:

Two random variable (x,y) are said to be independent if P(X=xnY=y;)=P(X=x)(=y;) (&)

P, =P'P, foralli,j.

(if) Continuous case:

Two random variables (x,y) are said to be independent if f(x,y)=g(x)h(y), where f(x,y)= joint
probability density function of x and vy,

g(x) = Marginal density function of x,

h(y) = Marginal density function of y.

Marginal Distribution Tables:

Table — |
To calculate marginal distribution when the random variables X takes horizontal values and Y takes

vertical values

Y/X x1 X2 X3 p (y) = p(Y=y)
yl pll p21 p31 p(Y=yl)

y2 pl2 p22 p32 p(Y=y2)

y3 pl3 p23 p33 p(Y=y3)

P, (X) =P(x=x) P(x=x1) p(Xx=x2) p(x=x3)

Table - 11
To calculate marginal distribution when the random variables X takes vertical values and Y takes

horizontal values

Y\X yl y2 y3 P« (X) = P(X=X)
x1 pll p21 p31 p(X=x1)
X2 pl2 p22 p32 p(X=x2)
x3 pl3 p23 p33 p(X=x3)
p(y)=p(y=y)| P(y=yl) | P(y=yYy2) P(y =y3)

Solved Problems on Marginal Distribution:

Example :11
From the following joint distribution of X and Y find the marginal distribution
XIY 0 1 2
0 3/28 9/28 3/28
1 3/14 3/14 0
2 1/28 0 0
Solution:
The marginal distribution are given in the table below

Y\X 0 1 2| R (y)=P(Y=y)

0 3/28 9/28 3/28 15/28
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UNIT - 1I

1 314 | 3/14 0 6/14
2 1/28 0 0 1/28
P () =P P¥O) =| P@=| P(2)7 1
5/14 | 15/28 | 3/28

The marginal Distribution of X

P, (0) = P(X =0) = p(0,0)+ p(0) + p(0,2) = 3/28 +3/14 + 1/28 =5/14
P, (1) = P(X =1) = p(1,0) + p(L1) + p(L2) =9/28 +3/14 + 0 = 15/28
P, (2)=P(X =2) = p(20)+ p(2D) + p(2,2) =3/28+0+0 = 3/28

5/14, x=0
Marginal probability function of X'is P (x)= <15/28 x=1
3/28,x=2
The marginal distributions are
Y/X ! % 3 | RMM=ply=yY)
1 2/21 | 3/21 | 4/21 9/21
2 3/21 | 4/21 | 5/21 12/21
P(X)=P(x=x) | 5/21 | 7/21 | 9/21 1
The marginal distribution of X
PD=plh)+@2) =2/21+3/21
P, (1) =5/21
P(2)=p2)+(2,2) =3/21+4/21
P, (2) =7/21]
P.(3)=pBl+pR2 =4/21+5/21
P, (3)=9/21]
5/21, x=1
Marginal probability function of X is, P (x)= <{7/2L,x=2
9/21,x=3

The marginal distribution of Y
R@®=p@lY+p2D+ p(31)=2/21 + 3/21 +4/21
R@®=9/21
R (2)=p@2)+ p(2,2)+ p(3,2) =3/21+4/21 +5/21
P,(2)=12/21
3/21, y=1
Marginal probability function of Y is R, (y)= 14/2Ly=2

Example :12
From the following table for joint distribution of (X, Y) find

) P(X <1) i) P(Y <3) iii) P(X <1Y <3) iv) P(X <1/Y <3)

V) P(Y <3/X <1)  Vi)P(X +Y <4).
XY |0 2 3 4 5 6
0 0 0 132 | 2/32 |2/32 |3/32
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1 1/16 | 1/16 | 1/8 1/8 1/8 | 1/8
2 1/32 | 1/32 | 1/64 1/64 |0 2/64
Solution:
The marginal distributions are
XIY 1 2 3 4 5 6 P, (X)=P(X =x)
0 0 0 1/32 2/32 2/32 3/32 8/32 P(x=0)
1 1/16 1/16 1/8 1/8 1/8 1/8 10/16 P(x=1)
2 1/32 1/32 1/64 1/64 0 2/64 8/64 P(x=2)
P, (y) =P(Y|=3/32 3/32 11/64 13/64 6/32 16/64 1
P(Y=1) P(Y=2) P(Y=3) P(Y=4) | P(Y=5) | P(Y=6)
i) P(X<1)
P(X <1)=P(X =0)+P(X =1)
=8/32 + 10/16
P(X <1) =28/32
i) P(Y <3)
P(Y <3)=P(Y =1)+ P(Y =2) + P(Y =3)
=3/32 + 3/32 + 11/64
P(Y <3) =23/64
iii) P(X <1Y <3)
P(X <1Y <3) =P(0,1) + P(0,2) + P(0,3) + P(1,1) + P(1,2) + P(1,3)
= 0+0+1/32 + 1/16 + 1/16 + 1/8
P(X <1Y <3) =9/32
iv) P(X <1/Y <3)
By using definition of conditional probability
P[X=x,Y =y,
P[X=Xi/y=yj]= [ XI yj]
P[Y = Yj]
The marginal distribution of Y
R (0)=P(Y =0) = p(0,0) + p(L,0) + p(2,0) = 3/28+9/28+3/28 = 15/28
P,(D)=P(y=1=p01)+ p@l)+ p(21) =3/14+3/14+0=3/7
P,(2)=P(y=2)=p(0,2) + p(1,2) + p(2,2) =1/28+0+0=1/2
15/28,y=0
Marginal probability function of Y isP,(Y) = {3/7, y=1
1/28, y=2
Example 13:
The joint distribution of X and Y is given by f(X, Y) =X+Y/21, x=1,2,3  y=1,2.Find the

marginal distributions.

Solution:

Given f(X,Y)=X+Y/21,x=1, 2,3 y=1,2

KAHE
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f(1,1) = 1+1/21 =2/21 =P(1,1)
f(1,2) = 1+2/21 =3/21 =P(1,2)
f(2,1) = 2+1/21 =3/21 =P(2,1)
f(2,2) = 2+2/21 =4/21 =P(2,2)
f(3,1) = 3+1/21 =4/21 =P(3,1)
f(3,2) = 3+2/21 =5/21 =P(3,2)

P[X <1Y <3] _ 9/23
P[Y <3] 23/64
P[X <1/Y <3] = 18/32

P[X <1/Y <3] =

V) P[Y <3/ X <1]

P[X <3Y <1 _9/23
PlY<1  7/8

P[Y<3/ X<I]= 9/28

P[Y <3/X <1]=

vi) P(X +Y <4)
P(X+Y<4))=P(0,1)+P(0,2)+P(0,3)+ P(0,4)+ P(1,1)+
P(1,2)+P(1,3)+P(2,1)+ P(2,2)
= 0+0+1/32 +2/32 + 1/16 + 1/16 + 1/8+1/32 +1/32
P(X+Y<4)=13/32

Example : 14
If the joint P.D.F of (X,Y) is given by p(X,Y)=K(2x+3y),x=0,1,2, y=1,2,3,. Find all the marginal
probability distribution .Also find the probability of (X+Y) and P(X+Y >3).
Solution:
Given P(X,Y)= K(2x+3y)
P(0,1)= K(0+3) = 3K
P(0,2)= K(0+6) = 6K
P(0,3)= K(0+9) = 9K
P(1,1)= K(2+3) = 5K
P(1,2)= K(2+6) = 8K
P(1,3)= K(2+9) = 11K
P(2,1)= K(4+3) = 7K
P(2,2)= K(4+6) = 10K
P(2,3)= K(4+9) = 13K

To find K:
The marginal distribution is given in the table.
YiX o | 1] 2 P.(Y)=P(Y =)
1 3K 5K 7K 15K
2 6K 8K 10K 24K
3 9K 11K | 13K 33K
PX(x)=P(X=x) | 18K | 24K | 30K 72K
Total Probability =1
72K =1
|K=172 |

Marginal probability of X & Y:
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Substituting K = 1/72 in the above table, we get

Y\X 0 1 2 P, (y)=P(Y=y)
1 3/72 5/72 7172 5/24

2 6/72 8/72 10/72 1/3

3 9/72 11/72 13/72 11/24

P, (X)=P(X=x) 1/4 11/72 5/12 1

Fromtable, P, (0)=1/4, p,(1)=1/3, p,(2)=5/12

1/4,x=0

Marginal probability function of xis, P,(X)=41/3,x=1

5/2,x=2

From table, p, () =5/24, P,(2)=1/3, R,(3)=11/24

5/24,Y =1

Marginal Probability function of Y is, p_(y) = {11/ 24,y =2

Example :15

From the following table for joint distribution of (X, Y) find
The marginal distributions are

Y/X 1 2 3
R (y)=P(Y =Y)
1 2121 | 321 | 421 0/21
2 321 | 4/21 | 5/21 12/21
P,(x)=P(X =x) | 5/21 | 7/21 | 9/21 1

The marginal distribution of X
P, (1) =P(1,1)+P(1,2) =2/21 +3/21=Px(3)=9/21
P, (2) =P(2,1)+P(2,2) = 3/121 + 4/21= Py(2)=7/21
P, (3) =P(3,1)+P(3,2) =4/21 +5/21=P, (3)=9/21

UNIT - 1I

5/21,x=1
Marginal probability function of X is P,(X)=<7/2,x=2
9/21,x=3
The marginal distribution of Y
P,(1)=P(L1)+P(21)+P (3 1)
= 2/21 + 3/21 +4/21=9/21
P,(2=P(1,2)+P(2,2)+P (3, 2)
=3/21 + 4/21 +5/21= 12/21
Marginal probability function of Y is R, (y) = {3/ 2ly=1
Y 4/21,y=2
Exercises:
1. Given s the joint distribution of X and Y
Y/X 0 1 2
KAHE Page 19
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0 0.02 0.08 0.10
1 0.05 0.20 0.25
2 0.03 0.12 0.15

Obtain 1) Marginal Distribution.
2) The conditional distribution of X given'Y =0.

2. The joint probability mass function of X & Y is

XY 0 1 2

0 0.10 0.04 0.02
1 0.08 0.20 0.06
2 0.06 0.14 0.30

Find the M.D.F of X and Y. Also (X <1,Y <1) and check if X & Y are independent.

3. Let X and Y have the following joint probability distribution

Y/X 2 4

1 0.10 0.15
3 0.20 0.30
5 0.10 0.15

Show that X and Y are independent.

4. The joint probability distribution of X and Y is given by the following table.

i) Find the probability distribution of Y.

XY 1 3 9
2 1/8 1/24 1/12
4 Ya Ya 0
6 1/8 1/24 1/12.

ii) Find the conditional distribution of Y given X=2.
i) Are X and Y are independent.

5. Given the following distribution of X and Y. Find

i) Marginal distribution of X and Y.
i) The conditional distribution of X given Y=2.

Example : 16

KAHE
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If the joint probability density function of (X, Y) is given by f(x,y)=2, 0<x<y<1. Find

marginal density function of X.
Solution:

Given f(x,y)=2,0<x<y<1
To find marginal density function of x:

g(x) = Tf(x, y)dy = jZdy:Z[l—x], 0<x<y.

Example:17
If the joint probability density function of X and Y is given by

1
~(6-x-y) 0<x<2,2<y<4
N
0, otherwise
Find (i) P(X <1Y < 3) (ii) P(X <% <3) (il f[%}
Solution:
E(G-x-y) 0<x<2,2<y<4
Given f(x,y)=18 ’
0, otherwise
i) Tofind P(X <1nY <3).

13
P(X <1nY <3) - [[ f(x,y)dydx
02

“(6— X — y)dydx

w|lw |k

i) Tofing PIX <X <3)

X _ P(X <1NY <3)
Pl K< )- P(Y<3) (1)
Tofind & <%

P(Y <3)= T T f (x, y)dydx

—00—00

_ ”%(6— X — y)dydx

©|ol ©
N

3
p(X < -2
Equation (1) becomes ( % < 3) 5
iii) To find f(y/x):
f(xy)

We know that f(y/x) =
f.(x)
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00 = [ F(uy)dy = £ [6-x-y)dy

=2B-x)0<x<2

1
J6-x=y) o
f(y/x):8 :6 X y’ O<x<2, 2<y<A4.
1 2(3-x)
~(3-x)
4
Example : 18

If the joint distribution of X and Y is given by
F(x,y)=@-e™)1-e” g5 x>0,y>0
=0 , otherwise
(1) Find the marginal densities of X and Y (ii) Are X and Y independent?
(lll) P(1< X <3,1<Y < 2)
Solution:
Given F(x,y)=(l-e™)(1-e”
=l-e*—e ¥+

2
The joint pdf s given by f (x,y) = 2 Y)
oxoy
o (x+Y)
f X, = 1_e—x_e—y+e— X+y
(xy)=——( )
= e*(Xer)

f(x,y)=e " x>0,y>0

i) The marginal density function of X is f(x) = j f(x,y)dy
f(x)=[e ™V dy=e”,x=0
0
The marginal density function of Y is f(y) = j f (X, y)dx

f(y)= Ie“”y)dx =eV,y>0
0

i) Consider f(x).f(y)=ee” =e " = f(x,y)
ie) X and Y are independent.
i) PL<X <31<Y<2)=P(1<X<3).Pl<Y <2

= i f(x)dx.J% f(y)dy = iexdxieydy
1 1 1 1

_ (1-¢)(1-¢)
=
Exercises:
1. The joint p.d.f. of the two dimensional random variable is,
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8xy

— l<x<y<?2
fx,y)=1 9 d

0, otherwise

(1) Find the marginal density functions of X and Y.
(i) Find the conditional density function of Y given X=x.

2. If the joint Probability density function of two dimensional R.V (X,Y) is given by
Xy
x>+, 0<x<1,0<y<?2
f(x,y)= 3 y=e

0, otherwise
Show that X and Y are not independent.
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a2 Probability ang Rang,

: m
3.1 DEFINITION AND EXAMPLES ?on

3.1. (a) Random process

A random process is a collection (or ensembe
{XG, 1)} that are functions of a real variable,
s €S (Sample space) and t € T (parameter set

Or indey set) My
Examples :
1. The daily stock price.
2. The wireless signal received by a cell phone gye, tim
e,
3. The image intensity over 1 c.m® regions.
State space
The set of possible values of any individual member of th
process is called state space. © Tandy

~ Any individual member itself is called a sample functj,
a realisation of the processes. u

Note (i) If ‘s’ and ¢ are fixed, {X(s,£)} is a number,

(i) If 7 is fixed, {X(s,0)} is a random variable.

(iii) If s’ is fixed. {X(s,f)} is a single time function.

(iv) If s’ and ¢ are variables, {X(s,£)} is a collection of random
variables that are time functions.

Notation : As the dependence of a random process on s ks
obvious, ‘s’ will be omitted in the notation of a random process. If the
parameter set ‘T’ is discrete, the random process will be noted by
{X(n)} or {Xn}. If the parameter set ‘T" is continuous, the procts
will be denoted by {X(r)}.

[A.U CBT Dec. 20

the
g 1o
. We
in ¢

3.1 (b) Classification of process

It is convenient to classify random processes wooon&.:
characteristics of ¢ and the random variable X = X(f) & me
shall consider only four cases based on ¢ and X having values
ranges —® < f<w and — @ <x < ®

ﬂgnmw ZE@ .«..wnﬁzﬂ <

s random process

dom sequence

noasnsocm Fas
ta srete random Process
pis
o oretC random scquence
pis
4
Continuous t .
Discrete t
g . -
C 1. Contnous ndom 12, Continuous random 2
5 process o L
n If both X and ¢ are If X is continuous and ¢ : m
t continuous, the random  |is discrete, the random ; 5
1 ﬁnonmww 18 called as process is called as ﬁJ#
” continuous random continuous random z»m
o process. sequence. e
o |Example : X(f) represents |Example : X, represents .mm“
$ the maximum temperature |the temperature at the i
40 at a place in the interval |end of the nth hour of 5

©, t) day, in the interval (1, 24).

T

D 3. Discrete random 4. Discrete random
i process. sequence. 4
; i R |
: If X is discrete and tis |lf both X and t are ) A
1 ] andom &
M continuous, the random discrete, .EMM_ awn .“w m,
e process is called as process is calle = ;
t discrete random process. discrete random sequenct. _
e
X

Example : X(f) r€pr
the number of telephone
calls received in the

interval (0, f)
s =1{0,123 )
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a4
We can classify random process in another
Y alsg,

classified as

1. Deterministic random process

t
g,

2. Zon-mnnmaiummzo random process

pr 0CESS

1. Deterministic random 2.

Zcﬂlﬁmﬂmﬂamﬂmm:n r
Q|

H:.Qﬂnmm. :noE

A random process is called
a deterministic random
process, if all the future
values can be predicted
from past observations.

~ Example : Consider a

" random process X0 = A
cos (ot +6). This consists
of a family of pure sine
waves and it is completely
specified in terms of the |
random variables A and 6.
Hence, it is a deterministic
random process.

A random Process &

a nou-anﬂnasmﬁmmn X Calley
process, if futyre éwgoa
any sample functioy ., "
be predicted from ey
observations, st

Example : In the cy
dissolving of su -
Tre 8Ar crystals
in coffee, it consists of a
family of functions that
cannot be described in
terms of finite number of
parameters. The future
sample function cannot be
determined from the past
sample functions and so it
is a non-deterministic

random process.

3.1. (c) Statistical (Ensemble) Averages :

| ezgs B L0l uw xf(x, 1) dx

@ ‘Auto correlation ‘,anmcﬁ of [X ‘3_

Rt = @) X (o)

Nu% J x 0 f ey, xy, by, tp) A1 402

—00—00
B

= EXOX(t+1)

?a where 1 = {ime difference — ty—t
uto covariance of [X (1)) ﬂ
o A
) a3 = Rxx (t1, 12) = E[X (t7)] E X (ty))
T EROI-EXOI" [ g=n=q
= Var [X ()]
o clation coefficient of [X (1))
Q& v = ﬁ.voﬂ QH. HNV
t1, Y ==
nxx: 2 Cxx (t1:11) Cxx (82, 12)

zan%xx?a =1
() Cross correlation
Ryy () = EX(®) Y (@)
(or) Ryy(tt + 7) = EX(®) Y(+71)
() Cross covariance
Cxy (f1.12)
(or) Cxy (6t +7)
(vit) Cross correlation coefficient

: __ Gelbd
PQT. t) =

QNA Q..H. :V Cxy (t2 S.v

I

Ry (ty, 1) —EIX (D1 E &)
Ryy (@t + T) - EX ) E[Y(+ )]

Il

[

Example 3.1.1.
random process-

sification of

Define a random process. Explain the clas

3 .nza an example to each case.

wo_ﬂnmoﬁ .

See Page No. 32 and 33.
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- Probability and

3.6 Rando, p,

= ;
EXERCISE 3.1 : \
1. What is the difference between an RV mbg
k o)

5. What is the difference between random sequence ang
) ‘T

provesses 7 Wy,
3. - What w,m discrete random sequence ? Give an ey ple

4 What is a continuous random sequence ? Give an eXamp,

. : N

5. What is a continuous random process ? Give an exampe

6. What do you mean by the mean and variance of a random Procegg

32. m‘nwwﬂ ORDER STRICTLY STATIONARY
PROCESSES

3.2. (a) Stationary process (or) Strictly stationary
process (or) Strict sense stationary process
[SSS processes] [A.U. N/D. 2004]

A random process X (f) is said to be stationary in the strict senst,
if its statistical characteristics do not change with time.

i.e, the random processes X(¢;) and X(¢;) where t; = 4 + A wil

have all statistical properties the same.

- STATIONARY PROCESS

SXQ& = Constant

i ‘ ?E.._n E[X(r)] = Constant and

3

s

PR
) 300

de

n

®

E.ﬁ:cna random processes {X(®)} and

ationary in the strict sense, if e

: .ﬁﬁﬁ are said to
omt distributigy of

ntly .
o time,

are invariant under translation of

First order stationary process

c) ) .
L ( dom Process is called stationary to order one, if its first-

ran . A
.> function does not change with a shift in time origin.
psity

g otherwords
: = fy (r1:t1t A) must be true for any {; and any real

order

b Q..H pd :v .
e A i X (f) is to be a first order stationary process.

rem 1: A first order stationary random process has a
Theo .

{ant mean (OR) The first order stationary random process
cons *

X(t) has independent of t.
Let X (f) be a first order stationary random process

> ft+e) = f@&D

To prove : E [X (f)] = constant

ie, To Prove: E[X(t+¢)] = EIX 0)

(-]

Mool i EX (t+¢)] = J x flut+e)®

— 0

.||. M. k %AH.D& by 3

— 0

- EX )
Hence, E[X (f)] = constant.

... (1) where t,¢ are arbitrary.

4

.|;"\t§!!7

S
o s ST S
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ili Rt .mf 2 47
Sl T Probabilty and Randgy, ¢ Random Processes et 4
- . T n e Y
Theorem 2 : & first order stationary random procesg hae Q¢ 3
constant variance. a vﬂm
Let X () be a first order stationary random process, m.m,
=

> flntte) = 0 w (1) where ¢, are g ot the random process X () = Asin (o t+ ¢) where A and . m

I N P R . : poa

= tragy, gt th stants; ¢ is 2 random variable uniformly distributeq in -

To prove: Var[X (f)] = constant e nwc it o Jer stationary. =

k. S . 5]

a ¢ = 1 e

ie, To prove: Var [X(t +¢)] = Var X @) e,n .vu _Given - X Asin(@t +¢) ¢wm

gtio? * e ‘ .

= sol s niformly distributed in (0,2 ) M

2 e 1 : _

Proof : VadX(+e)] = ] @—a) St +e)de zrﬂox:mx % iy .\\H\\@ ==  OSPSen {

e = = _ 3

: (t (4 2z 3
) 2l [ From the definition of uniform distribution} m,

by |

= [ @-w’f@ndx by (1)

X (1) is first order stationary.

EX@®l = constant

G T X©r@)deé
B ; x n = L‘.W t Q
m_ Hence,  Var [X(f)] = constant. proof * EX O] 55
: S 21 1-4b5
Note 1 :  First-order densities of a SSS process are independen = [ Asin(@t+9) 37 4
of time. i.e., E [X ()] = a constant. 0 .
A F Gn(et+o)d
Note 2 : A random process that is not stationary in any sense = 2= w sin (0t +4)4¢
is called an evolutionary process. , A2
= .m\w; Mlna (ot +3.T
Note 3 : The mean and variance of a first-order stationary S N
—A 23
process are constants. = ﬁn@w (@t+ ﬁ@o
Note 4 : If the process is first order stationary, then —A cos (@t + 27) — Swn:.w
Mean = E [X (f)] = constant - 2n ,,r
3] . _ I|\w i —_ OOwE [
Noie 5 : A second order stationary process is also a first order = o= TOm @n+ I) w \
station - e E
0 =) ary process. _ _ -4 Moome_..nae; [+ eosl
{ e Zon_n 6 : IfE[X()] = constant and o , e constant
3 23 i R QH. umv. =a function' of Anu = an. the random pro =0=2a 0CESS.

tionary Pr

X () n : , g a
X (©) need not be a SSS process. Hence, X (1) is @ first order S
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Probabil

ity and Rang

3.10

\

: Example for SSS Process

\

05 Tw

onmgma

)

Consider the random process X (t) = cos (wy t + 6), where T

nif,,
sistributed in the interval — 7 to 7- Check whether X (¢ ;o "0y
or not ? Find the first and second moments of the Process

[AU. AM. 2004] [Ay y,,

Solution: Given : X (f) = €0S (wot +6), where

9’ is uniformly distributed in (-, 7)

1 1

> IOz " 2n

—-T<0<g

[ From the definition of uniform distributig ]
n

To prove : X () is a SSS process.

i, To prove : (i) E[X (¢)] = constant,

(ii) Var [X ()] = constant.

Proof : (i) E[X()] = |.mo X f@6)de

4

1

= 46
lhanoﬂeoﬁ+$mau

H b4
= MI%« cos (wot +0)d6

o W Tiei i&

1

a
-7

; el [sin (wg t + 7r) = sin (wot — )]

j RS e
= 3 lin@+ o) +

sin (7t — wg 1)

[ sin(-0) =

—sinf]

Random Processes

3.11
1

= o —im::co_ + sinwgr)

) [ sin(z+0) = —sin6 sin (7 - ) = Sin |
=5, 0
=0 [First moment]
= stant
o, EWX @) = consan
2
— E[cos” (wot +6)]
o0 _
14 cos[2(wgt+6 )
= E — NA. 0 )l ~monac~w.,nOmrmn~+anme
= .w.m:+8m 2wyt +26))
m_km 0] = W E[1] +W E [cos Quqgt +26)] . (1)
S |
M— — e Nuﬂ
~ b( 1
= MWM. l-.‘,qn Qm
1 11
= _— |8
27 ﬂ wlﬁ
1
o e—— T - luﬂ#
- ()
1
= —(2xn
waA )
=1

!
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a1z
; ty
m?om%&o“+u$_ .nmnnom@EoN+N$ do
= cos Qwgt +26
Na .mn (Zwg Yde
1 sin 2wyt +26)
T 2n 2
-
[Formula : [ COsfqg _
1 -
= — |sin (2wt +286
s _” (2w vu“ .
sl 2wt +2
= MITEA W) ﬁvlm_n@eilwi
4 eé
[ sin (-6 = ~sinf)
= A|H§| _HmENSoNImm:NEom_
[ sin(2x +6)=sin0 ; sin (27 - 6) = - snf)
1
=3 0 =0
(1) = E[X? 0] = WAC +0 .w. [Second moment]

Probability and mm:aoa
Prog
8

VarlX ()] = E X2 (1)] - T, 2¢ 8: :

1
~5=(07

= constant

N | =

Eo
: es the value 1 with e—.ovug_:a, » find whether X() is 5
{8
ol i process or not.
fioB:
ﬁ —
P g [XO=r ] U1
golutt P n .
3 3
To prove: X (¢) is a SSS process
_ e i) EX(®)] = Constant
7. To prove: 6]
Ve (ii) Var[X ()] = Constant -
proof : .
HEX®M = S nPy
n=-1
2
Dzl + @135 = -3+3 =
= a constant.
2 1 2
@ EX> @ = 2, Hz P,
n=-
1 2 W th+w
-1 5]+ @ (5] =373
2
Varfx (o] = E ¢ ©) - [EX O]
2 8
1 8
NERRES %
= a constant

Hence,

X (1) is a SSS process

Hence, X (f) is a SSS process:

ocess X(t) takes the valye =1 with —.3—.&:—5.

w |-

|
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Probability and Ran

Show that,
¢’ are independent random variables, then they

@ = acoswt+bsinwt

‘a’ and

Solution : Given : X

do
Q

if the process X(t) =acoswt+ bsing ¢ is s
S

) W
are raJ

:E.Sa.

E [a] = E[b] .. (1) and E[ab] = m—n_mgﬂ

El = Ep = -0 -
To prove: X (f) is a SSS process

ie, To prove: () E[X (0] = constant

(i) Var[X ()] constant

: mneo... :
PR DER

@) E [X2 ()]

e vaix)

. Hence,

= m_n,o_ou,,en+vmgea
= cosw! m—n_+,mmne,~ E [b]
cosw t (0) + sin ot (0)

I

by (1)

= (0 = constant

Il

E _H? oOmSH+w.&=EOd

=E Twoommeu..vvmmmbmeﬁ+mmv cosw tsinwt

= E[d} costwt + E [b7] sin®w t + 2 E [ab] cos w ¢ sinu!
Pcostwt+?sinfwet+0 by ) & @)

o? _oo% wt+sin’w f]

o (1)

= o

= ERC ()] - [EIX S_ﬁ
-0

= QN = constant

X (t) is a SSS process.

dom process X (1) =
nonmanu. the ran A v €os An + ﬂv. where ¢isa ra
e with density function f(¢) = 1, lm . ndom
a2l . ¢ < l. check whether
0CeSS js stationary or not .
4 AU CBT M/J 2010, AU Tvii (AU. May 2000)
: 2= LA ss:?c NID 2019)
: X(¢
guion : Given  XO = <8049, gy < L 2
EXOl= J X [(#) d¢
/2
= [ cos(t+¢) luﬁ
-n/2
1 /2
= — [ cos(t+¢)de
-/2
1 p=x/2
= o TEQ +.3..ru|a\~
= 7 |sm 2 sin 2
. [x PN
= .QHM sin ﬂmw + & + sin A.M - s/.' _.w_aﬁlmvllmss
=1 [cost + cos ]
E/11
(7 _g) =
[- sin ﬂmlu = cosf ; sin ﬁu& cos ]
2 cost # constanl.
/4
Hence, X(t) is not a SSS process.
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z
Q
Q)

process ?.Sw whose probability distribution Unde

3.16

conditions is given BY, Sry,
. _wouu
1*1’:*“& = :* = Aﬂ + ””V —. ? n= ﬂa Ead LYY
at _
T 1+at » R =10

Show that it is "not stationary” (or evolutionary).
[A.U. M/J 2006]1[A.U. N/D 2007][A.y. A/

1
(AU Tvli M/ 2010, Trichy A/M 2010, N/D 2010, Np m”“g
[AU M/J 2012, Npp g_“
Solution : The probability distribution of X(r) is
| X()=n 0 1 2 3 il
B at . at (ar)?
1+a | a+a)? | A+a)’ | (1 +a)
(Po) ®Py) P2 (P3)

x

REXQOl = 3 n

n=0
= Q) @P)+ D) PY+ @) F)+3)(F3) + ..

L_+@—2—+03
1+ ar)” 1+ no

e ﬁ+uo

& Dta? H+@H+a+@a+ﬁ5 a3

=t _ at at
= Q+Ev~ 1+2 kot +3 + ...

2

!

\

EROl =

(1 + a)” 1+ Eqw

1 “‘ru + at — Elwtw
—-— T T/

(1 + ar)?

1 ﬁﬂ o=
(+an® [1ta

1 1,
( + at)?

n=0 ‘ - (1)

e, EIX ()] = constant

i) EX*©

=> [r(@+1)-n]P,

Il

1 =3 n?P,
n=0

=]

[ =~H=Q+5|=_

© @

S n(n+1)P,—- X nbk

n=0 n=0

]

M nin+1) P, —

n=0

. by (D

weea+eﬁzisaéigsy -1

0+12 G+5~ (1 + al) (1+a

=
W
- |
t
A
£
-~

EENRRS
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Probability and Rang

om p |
. at +3. at
= ara) 12+23 T+L m;:au el
-3
. P -1
- —— @ 1+at
Q.+n® 5 —3_1
[ 1-x) NM—#.N+N.wx+u.ax~+
_(2) ﬁ:alav-uup
= a+3 e
L
-1
= G+&v 2 T+av
ﬁ+n®
=2(1+at)—1
=2+2at—-1
ie, EPP(Q)] = 1+2at w2

(ii) varlX (0] = E[X* ()] - T, X SQN

1+2a — (1)° by 1) & (@
1+2at-1

= 2at

# constant

Here E [X ®] = Constant but Var X (O] # constant.

The given process is not a stationary process.

ion of Random Processes
I

he random process X(t) = Acos (@qt+6) is not
N

tation;
tant : . ary,
mww and €0 are constants and § is uniformly distributeq random
.m aple 10 () 7) [AU Dec. 2005, April 2007)
E‘_u. N Given : X () = A cos (gt +6),
mo_.==o = 2 Lo
where ‘€@ is uniformly distributed i O, m)
1
= ——, 0<f<=x
»f0 T x-0
1 * F . . -
= [" From the definition of uniform distribution]
(- -]
z 1
= [ Acos(wot+6) 7d6
0
\.m ;. cos (wot +8)d8
0
: - =sinf
_ 4 —..qu?co~+$ﬁ [ fcosfdf=sn ]
T 0
= £ [sin(wpt +®) ~sineol]
oo o (r +6) = —sinb]
\Nﬁ [~ sinwgt — sin@ol] [ sn@+0)
2 m. [—2sinwp!]
24

= .Inm‘l mmbnboaﬂ Oonmﬁwbr

i cess.
. X(f) is not a stationary pro

a
7]
g

&
i

et T T2
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Example 3.2.8

Verify whether the sine
Y is uniformly

wave process X(t), where X ® <
distributed in (0, 1) is a strict sense statiq

Given : X (f) = Ycoswt ,

where Y is uniformly distributed in (o 1)

[ From the definition of uniform distriy
. ::o___

CEX@ = J XOYdY
: <ot EXERCISE 3.2

o

1
coswt [ dY

coswt _..U\H_w

coswt [1—0]

a function of ¢

# constant

~

< X (1) is not a SSS process.

_ pcos(@! +0) in which A and ¢ are cons form
riable. Prove this process is poy statio

n HETE
&mmﬁ.md:ﬁm& over a range of 27, ary, if it is not

golutio® : It is given that the random variable 6 is not uniformy
tmly

Let the distribution be f(6), it is not a constant
2n

EX®Ol = ._Hw Acos(@t+6)f(6)d6 » constant

This involves 2 time component and is not constant which indicates
the process 1S not a stationary process.

Define a strict-sense stationary process and give an example.

2 Define a k! order stationary process. When will it become a SSS
process ?

What is the first order stationary process ?

Show that the random process X (f) = 100 sin (@ t + 6) is first order
stationary, if it is assumed that ® is constant and 8 is uniformly
distributed in (0, 2 7).

Consider the random process X (f) =4 cos (wt + ¢) where @ is
a random variable with density functions f (w) and ¢, 2 random
variable uniform in the interval (-7, 7) and independent of
prove that X (f) is a first order stationary with zero means.

is uniformt
Consider the process X (f) = 10sin (200t + @) where ﬁ is cnw nmm M
distributed in the interval (=7,7)- Check whether the P

stationary or not.
d .Em@ your
GHE s teminiole * of tationary random process and ]
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33 (a) Second-order stationary process

A process
density function satisfies.

flpx b ) = fla

33 (b)

is said to be second order stationary,

t the 204 Org
Cr

Xy ity +90,t, +
21 2 3.<;L~§f

SSS

minm Sense Stationary Process
(or) Strictly stationary process
|(or) Stationary process

Smwj
Wide-Sense S

tationary py,
oce,
Weak-Sense Stationary EoonH

(or) Covariance stationary
process

|Def. : A random process X (£)
is said to be SSS, if its
statistical characteristics do not
change with time

ie. (i) E[X()] = constant
(i) Var[X (f)] = constant

.Uum. E A random process x )
is said to be WSS, if it satisfies,
WD) EX@® =

constant
(ii)) R (t1,t;) = function of time
difference,

] i.e. a function of (t; —t)

Note : 7 = nwlnN

Note : Every WSS process need
not be a SSS process of order 2.

Note : A SSS process of order
two is a WSS process but the
converse is not true.

2. Strong sense white noise.

|3. Weak sense white noise

Example for SSS :
1. Bernoulli’s process is a SSS.

Example for WSS :

1. A random telegraph signd
process is a WSS. N

2. Random binary :mnmamm.%
a process is a WSS which 15
not mean-ergodic.

3. Sinusoid with %

- [Example for not SSS°
25 H.__ﬁ Semi random telegraph

2.

signal process [
~ Poisson- process is not a

mnmmonqu‘ Uﬁono.mm.

Example for not WSS s
1. Poisson process is 1ot 2

¢ a WSS

¢h order stationary.

(jonary concept can be defined by consi
ariables of the process.

order N.

dering any numbe
gom

al, a process is stationary to order N, if for N random
¢ the process considered at times 1) ¢y 1 their Ny

@i ¢ density function is invariant with time origin shift.
tppty - NI LY NI 0, 6+, L 1+ 0)

) is a second-order process, then its second-order probability
”_:MA_Q function is a function only of time differences.
n

or] If X(t) is a second-order stationary process, the

[OR] Prove that the autocorrelation of a SSS process X(t)

is a function of (t; —t)

Proof : Let X (f) be a second-order stationary process.
= fepXz 5ty ) = [, X25 t;+8, +9) for any O.

2. Random walk is no

Put & = —ty, then f(xp, %25 f1, 1) = foeg, X2 i
ie, flr,Xz; by, ) = flas X25 t— )
We know that the autocorrelation function
R(t,6) = EX(t) X (@)
= [ J nxfE.ah 1) dry 2
- 00— 00
0 [+ -] &
=f [uxnfE n =&
-0 —o
= R(t; —t2) - time difference-
] o o
*+ Autocorrelation function 15 2 functiO

autocorrelation function is a function of time difference.

0)
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ey
3.24 Probability ang mm:ao_.a 4 Random Processes
Note : Proe \‘a
1. A maooum-oamnq stationary process is alg, 2 fing %
stationary. Ordey, 1558 WSS process with anty enrratyy; - %
2. The second-order densities of a SSS Proces; 4, ‘3 X(1+3) X (t— a). Show tha «(7) md
ofr=4—-10 n?...ck. :& \“Nnuu?ulwlaﬂinmvnnﬁ?l&\

ﬁ»gagNﬁv@Smmgwﬂ—nagruﬂ WRW‘BF R () Hmﬁnsxn.wum -
Proof : Given : X () is WSS il Ok Y@ =X@+g-%t-g _a
= (MEX@] =p = aconstant,
() R, = a function of (1) -y QlMMm - Ry =E[Y Y+ _6G
The autocovariance function is given by - g (2) B (3), w2 2t

Clpt) = Rt —EX (1) X (1)) 1) = E {Xe+a) - Xt —z)) [Kr+z+71) -3 ., J.nnrvm
= Rl - 1) — E[X ()] EX (t) S ey + X 6o X e )
=Rty — 1) — (#) (») = E[X(t+a) Xt +a+ THEIX( - 5) Ki—z+(2=+7)
=R (4 —1z) —i* “EX (+a) X (e -2

+ E[X(t—g) X t—2a+73)]

which depends only on the time difference.

Hence, X (tj is covariance stationary.

[ft+e+1 =t—a+2a+7

e t—a+71 =t+a—-28+7] Mmaw
Ru tty W = z =t+ta; u =1-8 ) M
= £ s F.nds EX@XEio)-EX@XETETE S
H!EEENSE%QVE«BEE > oy s EXE ﬁw.a =2
Stationary nmmﬁ @ XE+r-2) 1)+ Rext) &7 (1)

) X() 52 WSS process
{z) Y(t) & 2 WSS process

= Ryx (1) - Ry (22 # 1) —Rx -
= Wy (1) — Ry (s 28) ~ Rex

@ Rl = EX @) Y(y)) = R - 1) )
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Q.Nm mivuaiiy alia mm

Jaog _Uwoo
I. Example for Stationary of mmoo=n7

meau_m u.u.\i

A random process is described by X (t) =A sin ¢+ B2
A and B are independent random variables with zerq nes S t s_:z

J

variances (or equal S.D). Show that the process is statj o:”.““n tquy
order. Secoy
Solution : Given : X (f) = Asinf + B cost - (1)
E[4] =0, E[B] =0 - (2)
E[AB] = E[A4] E[B] [ A wwn B are indepenge
_ ndom variables] it
= (0) (0)
ie, E[AB] =0 - (3
E[4) = E[B] = . (4
To prove: X (f) is a stationary of second order

i, To prove: (i) E[X (f)] = constant
(i) E [X° ()] = constant.
Proof: (i) E[X (¢)] = E[Asint + B cost]

= sint E [A] + cost E [B]

sint (0) + cos ¢t (0)

.. by @

= 0 = a constant.
i) EX*()] = E T\m sinf + B cos ON“_
= E[4%sin’t + B?cos’t + 2AB sin t cos ]
= sin?t E[4%] + cos?( E |BY) + 2sint cost EWD
= sin’t (?) + cos?t (F) +0 - by O &)
= o*[sin?t + cos? ]
= (1) = * = a constant
Hence, the process X (¢) is stationary of second order.

ion of Random Processes

dom process V (t) —
jder the ran (9 = cos
consid (0t .” 9), Where 6 is 3 g, dom
iable with probability density v ®) = 250 Tsb<g
Va
0

’ ﬁﬁnﬂgms
ghow that first and second moments of V(®) are ind
€

U of time.

Pendent

i If g is a constant, will be ensemble mean of V(1) be
:En-muanumsnnuﬁ

ution : Given = V() = cos (@ +6), Esumw. —nsf<n

() Evel =E [cos (w £ + 6)]
= [ cos (wt + 6) %nm

17
= .Nlﬁh‘. cos (wt+6)d6

Tiels.._ﬁ,
_“mmuﬁen+nvlmgﬂe_lav“_

_”wmu (v + wf) +sin (r-o o.._ [ sin (~6) = —sinf]

*

Sl= S|~ Sl I

ﬁlmmben + w.Eeu.._ [ sin (z +0) = —sinf

sin(r-0) = sinf ]

1 = tant.
= —_— =0=a cons
27 O

= independent of time.

¥
H
I
H
!
i
H
v
i
|
|
|
|
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AutO correlation

w

¢ PrOCESS {X ()} is either wide sense stationary or strict
ionary then E {X (f) X (t + 1)} is a function of 7, denoted
’ ) or R (r) or Rx (7). This function Ryx(r) is called the ;
prelation function of the process {X (1)}

L Ryx (@) = E {(X @ X (t+7)}

\ Properties

HRTY 1 : The mean square value of the Random process may
ined from the Amto correlation function. Ryx (7), by putting

|
~ We know that Ryx(z) = E X () X ¢+
Ryx (0) = EX O X )
_ E X
:L‘" Rex (0) is the xhcan_ square value-
S g moment of the random proces* (AU A/M 2011]
Ry 5, : Ry (7) is an even functio” al cpr WJ 2010
iie, Ryy (7)=Ryx (77"
kuow that Ry (7) = E X ¢ : N
Hlly Ry (—-7) = EX® —

1,
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.nmwa. 4.2 Probability and Rand
g an
4 2200 Procegg,, 328
i Putt—7r =P . (i 3
m t =P+ 1 w«_%ﬁ mANHv = EXp = NOO N
W Ryx (-7)= E [X (P + 1) X (P)] e Rxx @ = [EQOP
m - EX®XP+ Rl
i (X®)X P+ variables have zero mean th stion
i = Ryx (¢) e random V€ 40, then the auto correlatiy
; . i . . o8
W PROPERTY 3 : The w:cn:::: <m._=a of Rxx (v) is attained at g, M L Rxx (tp)= Lt E (X (). X (4 + 1) 1)
! point 7 = 0 ie, |Rxx(7)] =< Ryxx(0) e [7] = o
1

" [A.U Trichy N/D 2019 = EX@)]-EX(G+1) = 0
t Proof : Consider E {[X () £ X ()I’} = 0 gRTY 5 ° If X (t) is periodic, then its auto correlation function
{ P 2
: > E [X2(t) + X2 () £2X (1) X (;)] = 0 %ms periodic. 2
,“ & _fnoaaﬁw @xTo) = EX(@®).X(+1xT)]
! =~ E @] +EX )] * 2E X)X ()] 20 - o,
m ’ ‘éhn N AQ nm munnoen &mN‘w
_ Since Rxx (0) = E [X* (9] X (+1=T) =X (+7)
m > Ryx (0) + Ryx (0) 2 2Ryx (11, 1) = 0 WR@ExTY)= EX®. X+
1
1 > 2Ryx(0) =2 |[Rxx (7)] = R (7)
m = Rxx(0) = |[Rxx (@] : Hence, R (7) is periodic.
w HNOMHN.—”% 4 : If a random process X (t) has no periodic components  gopERTY 6 : If the random Pprocess Z )=X(O +Y(t) where
W and if X (t) is of non zero mean, then [() and Y () are random process, then
m It R @ =[EXP? lu(f) = Rex (7) + Ryy (@) + Ryy () + Rx ()

7] » ©

o ; Consider Ryz, (1) = E [Z (0 - Z (+7)

T 28 b

Proof : We have Rxx (r) = E [X(f) - X ()]
- EXX) SEUX (@ + Y O KEFD +A<+A_H%
= 1 T
- FX0O-Y0
{ where t, =+t =EKX A.w WNA% +Mvc +1) Y@ -Y ¢+l
m . . Y (¢ +7))
be Sﬁmmwaaw H&MMHHMHSBERE. o Irl o X a2 T2 & =EX(@.X0t Hw_zw +w__x+qw? QM Y+l
. + E[Y () - |

- Ryx @) = E(Xy).E(Xy)
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4.4

Probability and Rang

‘é

State any two properties of an auto correlation functiqp,

[A.U. A7 2004)
Solution : See property 1, 2 & 3. [
§S. >ﬁﬁ Umn.N
‘32 iven : Rxx (7) = E =
glotio® ¢ = 62572 4 4
Given that the autocorrelation function for a stationary ergogje Proces gince the nm.bmoB process is stationary, by Property 4 of the Auto
s .on function,
with no periodic components is Ryx () = 25 + ’lal Find g:n_n:on _
14672 the m_x_u_wu [XT = lim Ryy ()
. have —” XX
mean and variance of the process {X(®}. [A.U. ND 2004, N/p 2005) We 7] » o
Solution : Given Ryx(t) = 25+ —2 [A.U N/D 201y = lim 25 + 36
1+67° _u_$8m.whﬂ~+a
We know that [X]? = lim Ryx ()
4 225435
b p&ﬂ— 25 + ﬁ ﬂN
[l e 4
4 | 72625+ =)
=25+ [ =0 ﬂ L
= 25+0 . T F .&y
= 25 ;
7 = lim
Mean of the process X (t) = E X@l=5
S I
By the property of the auto correlation, we have _ B _ 4 (% = 0
EX*()] = Ryxx(0) : 25+ —— = 2544 = 29 — o - @
1+ 0 - Zﬂg = X = 2
: 2 . :
ValX 1= EX* 0] - [Ex )] ie, E [X ()] = 2 .0

2
= Nwlavu = 29-25 H 4 Variance o2 = E _”NNAOQ - ﬁm—xs_”_

tion

D

?)

&MNW

\tion

e e
-
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el 4.6 Probability and Random p =
an 25 (0) + 36 é 22
bt 2 = - =
B EX°O] = Rex @ = 535 0) +4 9 by property 1 3) 7 pean and variance of the Stationary of
B : the - -2 Process Chp
=ik (2) = Variance o> = E[X?] - [E[X]]? ’ Wl R() =2 +4e72r] Fcﬁw__,ssz
Mu@ =9-4=275 ¢ Lgiven Rxx(®) = 2+4¢7211) gy
Mmﬂm E__ou ' —q2 ) ction
Example 4.1.4 o know that [X]7 = lim Ry
am we T>®
%ﬁw 5 —.m sH
w.m Find the mean and variance of a stationary M..oanmm whose gy, = lim 24 4¢20 _ . 1)
WH,!M correlation function is given by Ryy (7) = Hw+a T ~ T ¢

= +
o 2 T MY e =2+4(0) =2
WMW Solution : Given : Rxx(r) = 18 + P X =v3 2
e :
R = = =
e We know that [X]> = lim Ryy(r) , Mean of the process X () = E[X ()] = vz
wwnw T y the property of the auto correlation, we have
b i . 2 de
=J = IC 2
..WL ool e ER* (0] = Rxx(0) = 2+4e’ =244 =5 |
i 2
i 2
= - 8+ vV K@) = ERE O - [EXQ] 1
m)‘m N
3 = 1840 = 6-(V2)
7 X = V8 =3vZ =4
M. Mean of the process X(t) = E[X ()] = 3V2 ] Eample A;.m”_ -

! 1t
73 By the property of the auto correlation, we have ACF is given o
WKMM ) i ) ) s4+1 wsn the variance of the MSROHE ﬁ—.@ﬁﬂmw *Nﬁcw whose .
-\ = = _— = + = = Hm + == "2 1
W,m _ 55 1+6r1 (A (AU AM 2011]
W ’ Yo . Given : Ryy (1) = 16+ —— 2012]
<3 . 2 2 - [Axyx 1+ mah (AU Mi
« Var K] = ERC @] - [EX ]
ez fn _

=P _g.5-5_1 faow (g _“NH_N = lim Rxx(®)
3 3 3 :

T>®

i

W
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4.8 Probability and Random Proc
mmmmm
= lim |16 ¢..||sw||||
7> 00 1+ 672
9
=16+ =16+0 = 16
X =4

= Mean of the process X (f) = E[X (t)] = 4

By the property of the auto correlation, we have

9
EIX*®] = Rxx(0) = 16+ 727 = 1649 = o5

EX @)~ [Ex @]
=25-16 = 9

__mxm:_u_m A;.q__

The auto correlation function for a stationary process X (t) is given

I

“. Var [X (0]

by Ryx(r) = 9+2e” I"l. Find the mean of the random variable
2

Y = [ X(t) dt and variance of X (.
0 [A.U. A/M 2003]

Solution : Given : Ryx (7) = 9+ 2¢~ 17

By the property of auto correlation function

(X)? = 4k =[EX O]’ = lm Ryxx ()

T—>®

= lim 9 + 2~ 1"l

T.s
=9+2¢ "
—9+0
=9 [Je% =10

- ux = EX@] = 3

TE [X2()]= Ryx(0) = 9+27 19 =9 +2 =11

u—

— 2
: yar Hvﬁ ADH = E [X Qv_ - [E X AG__N -
1% =11-9 = 2

-~ va~

2
given YO = w. X@ar

2
Yy(@® =EN@l =E el iR
of Y ( ﬁxsa _.éuﬁxs&

m?é&uwﬁumg
g 0

(=R Y ]

=3[ =3@2-0=¢

o random process X (©) is stationary with E [X ()] = 1 and
1

) = 1+ e 217l, Find the mean and variance of §=[X(t).dt
0.

Sulution :

1
Consider E[S] = E T X (t).dt
0

= w Ex@l.a=1 [ E[X()] u\m\
0
W . 1 =2Itly gr
I.H -
1 =%
; _p(te)dE
_ Fa+na+dyatfadt
-2 .

€
15+5 .

Va (5) = E@)-BOF _

tion

1)

2)

m«.&

tion
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on and Spectral Densities
4.10 Probability and Random vqgmmuoa %%.m" H )
- ) _Ta- A -
= H.m+.mN’m.n.H .M.HG. _.n_v 4+¢ Sv&ﬁ
uwﬁ+m|v = .“.ﬁ+.nv T+nmlov.&..+.wﬁ -4
-1 0 l,&?+n Svuﬂ
_E = 200¢"%1 —176

A stationary random process X (t) with mean 2 h
as the auto ¢ :
ksl ,ez.a_uceu

function Ryy(z)=4+e 19, Find the mean ang variance of
0

1
Y=/[X@®.d
0

[A.U M/) 2012)
Solution :

Let Z (r) be a WSS random process. Consider a random variable

K+T
w=[ Z@©.d
K

where T > 0
) T
Then  E (@%) = [(T~ |1])Ryz (1) .dv
~T
Consider

1
E[Y]= E |[[ X () .at
0 ,

1
= [E[X(@)].at
0

Comparing @ and Y, we have K = 0 and T = 1

_.
o E(Y}) = ..._Gl I7]) Rxx (7). dr

psider Var () = B (¥) = [E(y?
= 200.e - 1764
= 200 . e”%1_ 1)
= 20 (10.e7%1 _g)

rX(f) is a random process with mean ‘3’ and auto correlation of
9+ 4.e %27, find the mean and variance of the random variable

1= X(5).
Solution : E(Z) = E [X(9)]
Since the mean of X(f) = 3,

E[X(5)] = 3

Var (Z) = E(@) - [E@F
nsider  E (22) = E [X2(5)]

E [X(5) . X(9)

This ig same as Auto correlation of X(t) atf1 = samdlr25
"EX(5).X(5)] = Ryx @)
= Ryx(tz—t)
= Ryx (0)
SE (@) = b 0=

“Var[z] = 13-9 =4

ction

Ry

2)

hmn*

nary

tion
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4.12 Probability and Random p 10 :
\ /mm.gm E[S]= E %NS& 52
[Exampie 4.1.11] o of
Let X(t) be a WSS random process with auto Correlag; = H._o EX @] :
io
Ryx(r)=A.e”“ I*l. Find the second moment of the random vari _.n i
1a —m

Y = X(5) - X().

10 iction
Solution : The second moment of Y is E (Y?) ie, B .qo o
E[IX®)-XQ@1=EXO+XQ-2X(5)X() ~ s [P ®
=EX@I+EX()]-2.E[X @ X (35 ’
Since E [X (). X (&2)] = Rxx (&~ fy) = 8110-q
= E[X©2.X(05)] =Rxx(3 =A.e ¥ = & 2
~E[X®)-X@1=EROI+ER@]-2a. % _ s = [ X@a=0%
We have the mean square value g \dey)
E [X2 ()] = Rxx(0) are X (¢) is defined in (0, 10) so that T=10
EpCo) =a. <M _ = a V(S) = V10X = 100 V(Xp) dey
= EX3(5] = A frmula : If X (f) is defined in (0,7)
- EX@]-A e v@Ey =L ) ﬁ L] aer
~E[X®-X@] = EXEOI+EX @]-2A.e7" -
=A+A-2A.¢¥ L V() = 100 Hpm H..ﬁ., ~ |._..HWL [Cxx (147 ynary
_2A — 24737 = 24 (1-¢7 ¥, -10 it

2 _ dt ation
Example 4.1.12 ﬁ E# [Fx) 0 i

10 .
If S= [ X(dt Find also the mean and variance of S if
o .

E [X(t)] =8 and Ry (7) =64 + 102 Il
Solution : Given : E X@®) =8

X
{
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4.14 ..
Probability and Randon, Procegs, %:m_ ) 1 1 4.15 5.23
= (100)(2) [ T!ﬂ& 2171 40 pex ( 1+4(-1)° 1442 = Ry ;
0 Ov _1 0
10 wuc%
u§aﬁThT¢£ﬂ 7, Rxx (@) < Ry (0 .
0 = g X% O 50 the g gy valig

10 \ction
.14
= 20 .‘. AHO - .ﬂv NIN,—.&._.. m%naﬂ_m 4.1.1 ..
A 3 :

g_%w whether the following functions are valid >.=§c=.~_um8 @
-27 - 10 .
=20 [(10-71) T L - (-1) T Nw octions: 2512
- -2 = (b) R T H._.u+
SN R (=3 52 xx (1) | 2
w.. 10-7) _ -27]10 _ E )
gt =20 |= 271, € 7) = cos (7) + Y
ﬂﬁ %ﬁwvn+gv 0B . [AU Dec. 2005
TR w_w o guution : If Rxx (7) is an auto correlation function then
M e i = — € | _ — “I—.
. G.ﬂ# 20 &xﬁ 0+ 4 u A S+ Avg Rxx () = Rxx (-7) am&
sl -20
_ e ™ (=19 = |m.nnl
- S 4 ﬁ 4 : 0 Ra® = 5P iey
= 2 e+ 19] 2572 |
= = le®+19 Ryx (-7) = = Rxx(v)
4 ) 4+57
= 5[19+¢ % *. Given is a valid Autocorrelation function.
__mxmau_m 4.1.13 b Rx(@) =2+7
, —_) — _3
Check whether the following are valid autocorrelation function. Rex (=7) = -7 + 12 # Rxx(?) : e nan
. 1 — - . Given is not a valid Autocorrelation functio™ -
(@) 2sinzT (b)
1+ 472 ! © R |z _ , tio:
) . : _ xx(r) = cos(¥)+-7
Solution : (a) Given : Ryx(r) = 2sinzwt
. 3 -7
Ryx (-7)= 2sinz (-7) = —2snx7 xxx?d = cos (—7) +._.|m.\_.
As Ryx (r) # Ryx (~7) this function is invalid. ,
xx (v) # Ryx (-7) ction is inv _ 8m«+._.|w.\_.n.x§3
. 1 . )
G R = y L : o functio
(b) Given : Ryx () T ed * Given is a valid Autocorrelaio®
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Note 1 : The above relations are collectively referred to as the
mss-spectral densities of the random processes {x (f)} and {y (t)}.

Note 2 : The power of the two processes is defined as
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Find the PSD of a random process X (t) if E [X ()] = 1 and
Ry (@ =1 + eIl

Solution : S (w) = [ Rxx()e™ “*.dr

- .‘. T. + nla _q:mlmE«.&ﬂ
-0

*® : 0 s p —ar —iowt
fe T dr+ [T 7T dr J e%.e .dr
0

— 00 —00

1 1
= mA8v+Ql~.E+n+~.e

2a
= ) +||
&Av a +8N

Probability and Random vﬂoommmmm

X0 and Y (¢) are jointly wide S€Ose stationary,
Ry G+ D = Rxy @)
sxy @) = Ma Ry ™" ar

Sxy (@) Fourier Transform Ryy (1)

petermine the cross-correlation function corresponding to the

(ross-power density spectrum mﬁ?& = 8 5
(@ + jw)

' :
Solution : Rxy (7) = P ._. Sxy (W) €™ dw

4. % 2. ;
= — [ ———"dw
2 2o (@ + jw)’
The integral cannot be evaluated to consider Sxy w) = 4G (W)
2

where Qn«tv = Q

By Fourier transform pairs
- @)

— 2 -1 o G ?&
g(r) = u(r)te iy ) e

From the linearity property of Fourier transfo
Ryy () = au@re

Yote under power spectrum
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4.86 Probability and Random Processeg

— %S

Sxx (W) = .nm A[Pxx (6t +1)] e Mar

where A [Ryx (t,t+7)] =
‘H.Iv ﬂ

where A is the time average.

Note under cross spectrum

Hmv.waaa

Sxy (W) = M ARxy (1 +7)]e ™ dr

where A [Rxy(tt+7)] = lim > :fi t+7)dt
o<t —T

‘H.lv

where A is the time average.

Example Pmm_

If the Q.omm.no!.m_mnou of two processes

Ryy (Lt+7) =
where A, B are w, and constants.

(X@®} and {Y(®} is

HmE (wgT) + €08 (@, (2t+1))]
Find the cross power spectrum.

Solution : We know that the Time average is given by

1 T J

= lim —= tt+1)dt

WuOn ‘Hrnwuuﬂ 2T nm.‘.H.WNA\ ( v
1 | AB :
= lim ) [sin (woT) + COS Wo (2 +71)]dt
2T 2
A.& ~T
1 [ dt
._. cos (wo (2 +7)

-T

+72

A\

ion and Spectral _um:mamm
in (wgt) + im — 1g
% amg A v Tow #.H —E AEO ANn + ﬂvvl_dl,.ﬂlw
AB gin (@o7) + 0
2

[ me.é_ano:ﬁmmpwuaw

e cross POWeErT spectrum is given by

Fourier Transform of M?M sin (og)
[v)

SxY @ =
< AB . s
= Q.llw sin (ogr) e ™" dr

>w8
uw.ﬁ

—oc

sin (@47) [cos ot — i sinwr] dr

[ e = cosf—isinf]

o«

2 e

[

= % ._.—mEmeo

- AE\EoVﬂ+—.OOwQW+.Envw.ME‘

— i cos
[

..—,lvo wm.HIVBM

_ u)% m &uﬁeoanoiaav&.._.w mwieoaaieaﬁw
-5 T (sin (0 + ©) T + 50 (@~ @)

._.N..”_u.sﬁooie~|eouﬂ|8mﬁe+etc&‘z
cos (A-B) — €08 (A+B) = 2 sin A sin B
sin (A+B) sin (A-B) =

po)r+sin@=e)0
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4.88 Probability and Random Processeg

T ——

= _é4§ f [i (cos (w + wy) T —isin (w + wy) 7)

—i [cos (w — wg) T — i sin (@ — wy) 7]] df]

CEESETREREE

[ sin(—0) = —sing]
iy AB ©  _., ;
2 = T [ Ti@meor i@t e
g - __'ITAB f e—l(w—wo)'th_ fe—i‘(w+wo)1dr
W —iAB
? = [270 (w —wy) — 276 (w + w,)]

I where d (w) = % [ e ®gr is the dirac delta function such
that [ é (w)dw = 1.

HCDCC, Sxy (CU) = '__”;_AB [5 (w - wo) +0 (w + wo)]

g
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51 Linear Time Invariant System - System transffer
function - Linear system with random inputs

5.1(a) System

A system is defined by a functional relationship between the input
:(f) and the output y(¢) as
y©) = f {x(®)}, —><t<e
5.1.(b) Linear system

A system with functional relationship f {x ()} is linear, if, for any
two inputs x; (t) and x, (¢), the output of the system can be defined

asf {(ayx; () + 2% (0} = aif {11 O} + af 2O}
where a; and a, are constants
5.1.(c) Time invariance

Time invariance is defined as a property of linear ?ystcms that 'if
the input is time shifted by an amount 7, the corresponding output will

also be time shifted by the same amount.
le,if £ {x(} = y () then

—0 <T<®
flx(-1} =yt-—o ~2=<T=" . |
A system that does not meet the condition 15 called time varying

System,

S.1.(d) Causality

esp i em
Causality is defined as 2 property of hm:arvalsyzs:n:)sf t:: it:;usgst

r at time ¢ depends oaly of the past valu

o 2ol \rﬂf,"ﬁ;" g
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54 Probability and Random Pr

o

L EXE+9Y) = J EX(+DX(-a)}h(@)da

==}

- [RuGrah@da  [siuce (x()) j Wy

= [ Ra@—Bh(-p)dp [putting g < _,

ie., Ry(r) = R () *h(-7) -« ()

Similarly, Ry, (r) = Ry ONAO) .. (1a)

Now Y(®) Y(t—1) Hl.om Xt—a)Y(t—1)h(a)da

m?svﬁn& nu‘a Ry (t—a)h(a)da

assuming that {X (f)} and {Y (f)} are jointly WSS

Le, Ry (1) = Ry (v) *h (7) )
Taking Fourier transforms of (1) and (2), we get

Siy @) = Sxx (0) H* (w) - 3)
where H * (w) is the conjugate of H (w) and

Syy (@) = Syy (w) H (@) .. (4)

2
 Inserting (3) in (4), S,y @) = | H@) |* S (@)
d
PROPERTY 2 : If the input X (¢) and its output Y (f) are relate

-}

g . T iant
byY () = .\. h(u) X (t — u) du, then the system is a linear time invarian
- [A.U. M/J 2012]

system.
Proof. First, we prove the linearily,
Consider, X (f) = a1X1()) + a2 X5 (t) v ()

Then Y (0 ulmoxﬁzvxolzvuz

l.‘.ﬂm_ sz —EH vhH Q - :v + a, uﬁw Q _ :: du

Il

n@sizv Xi(t~u)du+a, [, @) X, (t — u) du
= aYi() +aY, ()
Hence the system is linear.

Now, we prove that the system is a time invariant system.
Replacing t by t + k, we get

Y = nm h @)X [(t + k) — u] du

=Y(t+k)
The system is time invariant.
Hence the system is linear time invariant system.

PROPERTY 3 : If {X (t)} is a WSS process and if

Y() = M. h(u) X (t— u) du, then Ryy (7) = Ryy (7) * h(7)

[A.U N/D 2011]{A.U. M/J 2012]

(D)

Proof : Given, Y (f) = u. h(u) X (t — u) du

We know that
Ryy( = EPX ()Y (¢+7)]

E xSTExfT&%

TEX©OX@+7-uw)h@de

l

M,Wxx (t — u)h(w) du

“Rxy(®) = Rxx (r) *h(z) (By convolution)

By (1)

By (1)

[since {X () is 2 WSS]

. (2)
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5.6 Probabiiity and Random prq

R

PROPERTY 4. If {X (t)} is a WSS process and if

Y() = w h(u) X (t— u)du, then

i’?ﬁ%t] ]

8 D

Ryy (t) = Rxy(7) *h (—7) where * denotes the
convolution.

[A.U N/p 2011

Proof : Given : Y () = M h(@) X(t—u)du

- @
Ryy(®) =E[Y@®Y(+71)]
=E .mc h@X(E—u) Y(t+1)dy
Hl.mom.~\<~nlzvuxﬁ+ﬂv_k?vm‘:
n.ss Ryy (v +u) h () du
Putu=—a = du = —da

— 00

= [ Bxx(c=a)h(-a) (-da)

n.ss Rxy(t —a)h(—a)da

= Ryy (@) *h (-7)
PROPERTY 5. If {X(t)} is a WSS process and if
Y(t) = .ss h (u) X (t — u) du then

Sxy (@) = Syx (0) = H (w)

[A.U. M/J 2012]

Proof : Given Y@ .ﬂ h ()X (¢ - u)

Rxy () = E[X () Y(t + 1)

Linear S

e Sy i o e

=E _“—N o1 |._.8 h)X{+z- u) B@

ystems with Random Inputs

=L EXO X+ - u)h @y au

= l.‘.sxxx (T —u)h (u)du

= Rx (6) *h (2)
Taking Fourier Transform on both sides we get
FRxy(1)] = F[Rxx(r) *h (r)]

F[Rxx (M1 F [ (7))

Sxx (w) H (w) by the definition of spectrum.

ES Sxy (@)

__mxman_m 5.1.1 __

A WSS process X(t) with R () = A.e 2!l where ‘A’ and ‘@’ are
real positive constants is applied to the i/P of an LTI systems with

I

h(t) = ¢ ™.u (t) where b is a real positive constant. Find the PSD
[A.U A/M 2010]

of the O/P of the system.
Solution : The transfer functions is given by

1
H@) = 7,57

_1
o+ b?
PSD of the i/P X () = FT [Rxx (®)]
FT T.alu I g

2

. 2
E~+n-

So, | H() |* =

A

PSD of the O/P of the system be Syy (@)-

§E

e R

2P
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is Probability and Random p

é
Syy(@) = _.._Eev & x {PSD of the i/P]

w?+b? a* + o?

Linear Systems with Random Inputs

5.9

JM@ is nm_a i/P voltage to a circuit and Y(t) is the O/P voltage. X(t)
is a stationary random process with zero mean and auto correlation

meau_m m._.m&._

- a2 .
Rxx(@) = e =1, Find the mean of Y(t) uum its PSD if the system

. - i = #
A WSS random process X(t) with PSD Syy (v) is applied a4 the function H(w) Ty
“i/p to the system expressed as Solution : H (0) = 1
) w?+4
x(t) x(t) - 1
+ y(®) ~HO= S
E[Y()] = EX®O].HO) =0
2 _ 1
| UO—N% _mﬁev — EN + b.
2T
ilP PSD Syx (@)= F[Rxx(®]
= 4
‘Find the PSD of Y(t). , -5l o +4

Th _
COF YO =XO+X(-27) ~ OP PSD Syy(@) = |H(@) - 5x@)

S Y(w) = X (w) +&luNEH.\\M\ASv .‘ % AEN“..»%_
’ - Y = -J20T 2 -T
@ =xe@) T+m .._ | CE@ nm @+7)@+2)dT+] @-DO*2e s
The system transfer function _. " =2 0 5
| oﬂu T(r—1
H(w) = MAFMW = 14¢720T = (1Br+ad ¥ TIE U vi 2
uﬂlmwn.~m|£ﬂ+s
OF  PSD= (|H@) ) x (irp PSD) u + |87 77 0
= 2 . i
[+ cos2ay +5in’20 7] Sy @) SE@) =
~N+N8mmedu.xx?v <E3|MQMW|H& o

Syy (@) = 4cos’w T Sy (o) | B
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5.10 g

||[Example 5.1.4 :
=1 for —oo

A random process n(t) has a PSD G () = 5 S5 The

random process is passed through a low pass filter whjcp, has
transfer function H(f) = 2 for —fyy = f<fy and H(f) = ¢ o:.o..ﬁmn

n.
Find the PSD of the waveform at the O/P of the filter,

Solution : H(f) = 2 for -fu=f=fu
=0 otherwise.
PSD of the O/P of the filter = |H () |>%Xi/P PSD
=vd 5L =
4 X 2 2y

_mxman_m m.._.m_

Determine the power spectral density of a random signal shown in

the figure where the signal assumes either +A or -A with equal
probability and the probability of ‘1’ such changes occur in the time
interval 7 by the poisson distribution

_ A" "
P(n,7) = o € ¥ where 1 is the average number of changes per

unit time.  x(t)

+A]

TI0T
o OO

Solution : First, let us find the auto correlation function of the

given signal x (¢).

Linear Systems with Random Inputs
L L 511

Since X (1) and X (t+7) are tw

the two possible
to +\mm or

Rx®) = Ex x40y

0 discrete random variables havin
&
values +A and A, the product X (1) X (t + 1) is equal

—A2 :
A" depending on  whether XO)=X@e+1) or

X (@) =—X(+7). This is tumn depends on whether the number of

changes during

Therefore,

the time interval 7 is even or odd.

using Poisson distribution,

PX()= X(t+1)} = P[n cven]

and

=0 @)

_ aL..W an® _ i W @n™
n!
n=0
n=cven

= ¢7*" cosh @*1)

PIX(t) = —X(t+1) = P[n odd]

n L] P.ﬂNs.fﬂ

| AT _ At F

=e" ) wl__.wlln 2 ot
n=0 : n=0

n=odd

= ¢} sinh (A7)

Thus, auto correlation function is given by

Rxx (@) =

Il

Since Ryx (¥) is an eve

Rxx (1) = 4°¢

The pow

er spectral density, Oxx (@)

(+4%) PX () = X(+D1+ (- PX (@O ==X+

A2e T [cosh (A7) - sich (A 7)]

kAN NlN»ﬂ |
n function of 7, we may write,

22 |7}
- ] Rx®)e7TdT

\»ann»_q_ P Ll

-1
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ﬁoowmmmo
Using the results we get, \\F

434> = E{Y(@l =
Oxx (@) = Py ) | Y o} ,Haiém_x t-u)]

Since {X (f)} is a Wss Eooo.ﬁ Mean is a constant
|[Example 5.1.6

(ie.) E [X (t—u)] is a constant,

Prove that the system Y (b)= .om h(§) X (t - &) dt

is a lineg, Hence, E [ Y ()] = E X' (t-y) mi&& o
..m.m.a.mnﬁlm:ﬁ system. N
Solution : Let X (1) = a; X; () + 4, X, ® . Xy [ b
Then Y () = l.s h(€)[ay X1 (- &) + ay (t — &)] dt ,, = a finite constant, independent of t.

[ system is a stable system]
= @ <H Aﬂv + a, *N AO

. P . = tant.
- the system is linear. If X (¢) is replaced by X (t + k) then . ~ E[Y 0] a consl ‘,
P! Next, we show that the autocorrelation Ryy (¢, t+7) depends
Y+h) = [h®X@+n-Eat .
. definitio
- the system is time invariant. Now, by de B

Ryy (, t+7) = E[Y (O . Y (+7)]

[Example s.1.7]

| = mmw Mw?vxahlfv:?NVANA:nl:NVB:&J_

Show that {X ()} is a WSS process then the output {Y ()} is a [By using (1]
| WSS process. [A.U N/D 2010, N/D 2011, N/D 2012, Trichy N/D 2011] rr—up)] duydiy - ()
0 Lo

Solution : If the input to a Euo-masnmnr stable linear system is = [ h()h () EIX (t-up) X (t |
a WSS process, then mﬂn output will also be a WSS process. (ie.,) To —oo-w y
show that if {X, (£)} is a WSS process then the output {Y (f)} is a ince {X ()} is 2 WSS procss.
WSS process. i )]isa function of 7, 53y & (®)-

-Uu 1S
: : t—uy) X (7
Proof : We know that the '0put and output are related by ! EX (-
) mes
mﬂﬂgu AHV go
Y (0 = .\.m?vxﬁl:v&: )
e
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——98ses
¢ (1) M., [ h@y)h (1) duy du

-0 X

mNJJ. Anu §+~.V =
— a function of T.

Hence the output {Y (f)} is also WSS process.

|[Example 5.1.8 ‘

Find the mean square value of the processes whose power Spectra]

density is as given below :

1 8N+N

5 ; (b) -
¥ +100* +9 o+ 13 0% +36

@)

x.H..Ww To find mean-square value of the process, we can find its auto
W% correlation function and substitute 7 = 0.
= @ ——5—
WWWM ) "ot +100?+9
et
=

_ 1
x(@) = o'+ 1002 +9

'i 3';:‘

7,

iy

_ g
" @2 +9) @2 +1)

1(_1 1
mem+pem+o

=3
T
-

Iy

Rxx (r) is Fourier inverse transform of

1 1 1 1

8 |?+1] 8 |w?+9

Hul HHI
R =i= zgilfl 2 2 —3]7]
xx (%) 3 ¢ m.aa

"PNl,_,ﬂ_ ..—. |w_ﬂ_

16 VT

The mean square value is Ryx (t) at 7 = 0
1

1 _2
R0 = 1673 = y

8"

R

Linear Systems with Random |npyg

\\!

(b) Sx(w) = #

Ea+Hwe~+WQ

2
Sx@ =R dles
- @rH-2

@9 Wt 4)

= 2
EN.T@ ASN.TGV A€~+3

1 2(_1 1
@*+9 5 |o?+4 o’ +9
7 1 1
o +4

= - Im
570?49 5

Taking Fourier inverse transform of Sx (@), we get Rxx (7),

71 - 21
mou anxﬁﬂv = .W.N (4 u_n_ |W.N.w Il
_ 13l Z 2 20
N %n°
7 2 _14-6_38
Rxx(®) =33"20 " " 60 60

__mxm:_u_m 5.1.9

i i : process Is
The auto correlation function of the Poisson incremeni P
sfor|7|>€

»N .
H. Mm
»u+|>m| A I_\m.& +for | 7|
density is given by

given by R(1) =

Prove that its spectral

20111
' S (@) = 2w A20 (@) + =20 [AU M/ 2007, N/D

< n 44 #44
Bt il Laatedt
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Probability and Random _u_,oommmmw

s@=J g Tlhmﬁf s
e

5.16

Solution :
€ 2 —ioT . 2 —iwrt
+ [A2e71¢TdTr + [ AT Tar
-t €
€ .
Im\.ﬁ“—ll_l_.mwml_eq&ﬂ+

S
€

8 .
PeTl9Tgr
o0

H .Nm\w.‘. ?IWV oomsq&ﬂ+m§$
0
where F (1) is the Fourier transform of A%

24 [ ¢ r) sinwr . 1 (—coswt)]€ 2
2 [z et 2] e

(2] 0
24 2
= 1-— e)+F@A
= (1—cosw €) | )
4 sin’® (w €/2
S @) = m_w NAMN ) L F @ - (1)

The Fourier inverse transform of S (w) is given by
R () =F'{S@)}

H. .
Nl.qM I.\.Bm AEV m_«e dw
Let us now find R (7) corresponding to S (w) = 27428 (),
where J (w) is the unit impulse function.

(ie.) R () = F! 22226 (0)}
272 % .

> n .\. &?Cvmmnm_ue&e

= A2 [since m @ Q.: ® = ¢ 0]
o F (% = 272226 () . () -
Inserting (2) in (1) we get

44 sin® (w €/2)
€2 »?

(1) =S8 (@) = + @&.N 5 (w)

gxample 5.1.10

The short-time moving ayers,

e
H _ ge of a Process ﬁxev is defined as
Yy =7 _ X (s) ds. Prove that mean:
A.— X(t) and Y(t) are related by S
of a convolution type integral, Find n
£ ® ) the unit impulse response of the

Solution : Given : Y () = y() = 1
T

t
Max () ds - (1)

Putting s =t —u and treating f as a parameter, (1) becomes

Y@ = X (¢ - u) du - ()

o t—-

1
T
Now we define the unit impulse response of the system as follows

1
R = {T ; for0=<t=T
0 , otherwise

2 = YO nm h (1) X (t — u) du

Which is a convolution type integral.

Example m;.E_

ut y(t) are connected by the differential

If the input x(t) and the outp

n be related by
¢ _
equation T mm% +y@®=x®

prove that they ca
(t) and y(t) are

i Assume that X
means of a convolution tYP integral-
zero for t < 0. .
1 =Ly () is a lincaf equation.
Solution : Giveny' () 7Y O=7
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y@ = %waalbmé\e% - (1)

Given : x(@) =0, fort<0

S x(t-u)= 0, fort<u
W = y@ = w [ x@-ue ™ du e
0

Now if we define

1 —vr
h() = T € , fort =0
0 , Otherwise

@ = y@ HIM h(@)x(t—u)du

Hence the result.

mxm:_u_m- 5.1.12|

A system has an impulse response h (t) = e P ﬁd@. find the power
spectral density of the output Y(t) corresponding to the input X(t).
[AU N/D 2010, N/D 2012]

Solution : Given : X () = input process

Y (f) = output process

~

We know that Syy (@) = | H (@)]? Sxx (@) . (1)

H (w) is the Fourier transform of the function 4 (¢)

. ) _J0,t<0
The unit step function U (f) = 1, t=0
0 £<0
AW = g 4
1 () e Pt >0

o H() = m Bt e tdr

- m..“e_ols
1
T BHiw
= H = H
O = T et -
|H@)|? = WNM
(1) = Syy(@) = m”ewis

_ Example mu_;u_._

Examine whether the following systems are linear :
(a) y(t) = ax(f), where & is a scalar.
®) y® =tx(®
©yH=20

Tvii AM 2011]

[AU CBT M/J 2010,

) be the output signals e
) and X2 ), respectively, 1.€.

Solution : (a) Let 1 () and 2 (¢

corresponding to the inP
= aXx S and ¥ 3

ut signals 11 ¢
= ax AO
n®
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—-5Ses Linear Systems wity Randon |
_ ignal for the input si Nputs
For any scalars ¢, and ¢y, the OUP™ m._mnm o_, SRS S But €11 () +eyy, (< 2 5.21
x () = cyx1 () + c2x2 (1) 1s gven by . 1% () + 02 (1
Since y Anv # nﬂu\“— Anv +c
y () = ax() = algx @) +c2x2 0] < non-linear, 292 (0),

Wi
€ conclude that the given system

c1fax O]+ czlaxz (1] E

= ¢1y1 (f) + c2y2 () from this we get Examine whether the following sysy
€IS are time-invariant.

@y®=ax(® @®)ymp=
© icuxsuuanwve tx (t)

Solution : (a) Given : Y@ =7 k@)

the given system is linear.

(b) Let y, () and y, (¢) be the output signals corresponding to the - (AU CBT AM 2011)

input signals x; (f) and x; (f), respectively, ie., ; = ax(f) - (1)
1 2 v. Let the input x (f) alone be shifted by h time units so that
y1(@) = txy(©) and y, () = txz () @D = O = fRE+h)] = ax(+n) =5i(3)
. . . Now, if the output is shifted by A time units
For any scalars ¢; and c,, EW o:.ﬁ:: signal for the input signal (1) =yE+th) =ax(t+ h) - (3)
x (£) = c1x1 () + cx5 () is given by From (2) & (3) we get  y(t+h) = y()
YO = 2@ = tlern O +cx )] * The given system is time-invariant.
. ® Given : y() = fE@)] = tx() . @
= ¢ [t )] + c2 [ 02 (1)] Let the input x () alone be shifted by h time units so that
= ¢1y1 (€) + ¢y, () from this we get = @ =y® =fEE+n] =t x@+h) - @
. . Now, if the output is shifted by h time units
the given system is linear. Q) = y@E+h) = (+th) x(t+h)
(c) Let y; (¢) and y, (t) be the output signals corresponding to the =t x(t+h)th x(t+h) - ()
input signals x; (f) and x (f), respectively, ie., From (2) & (3) we get  y(t+h) uwe.v .
. The given system is not time-invariant. /
- - (1
YO = Z@ and y, () = %5 () © Given: y(@ = flk@®) =x@O-x¢~9) its E,:
. : : . i ) alone be shifted by A time units S0 1
For any scalars c¢; and c,, the output signal for the input signal Hﬁhv" the .M_chﬁ x\m i (6 +R) - Ly .0
-y 1) =y = B .
x(0) = cix1 (f) +Coxy () is given by v 8 ; ts
O = cgxy(+exn@)isg Now, if the output is shifted bY a+a”n “__ K
- -x(th-
yO =2 = lax@+anOf (1) = y(+h) = 2D

K =y®
From (2) & (3) ve £t yt Vn-agﬁ.

= dd @O +350) 210 () . The given system 8 57
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__mxmau_m m.:m_

Examine whether the following systems are causal :

5.2 Auto correlation and cross correlation functions of
input and output.

@ y@®=x() —x(t—a) 1 .
®) y() = x(t) 5.2.(a) Auto - correlation function of response
©@y@®)=x(t+2) Let X (f) be wise-sense stationary. The aufo correlation function

5o . . ] of Y () is
~ Solution : (2) and (b) The given systems are causal because the
present value of y (f) depends only on the present or previous valyeg : Ryy (t+17) = E{Y () Y (t+7)} - (D)

of the input x (f).

(c) The given system is not causal because the present value of | WKT Y (@ =h)*XO = Msr (X (—¢e)de

y (t) depends on the future values of the input x ().
Y (+1)= [h(DX(+T—e)der )]

|[Example .5.1.16]

Sub (2) in (1)
The power spectral density of a signal X(t) is Sxyx (w) and its power . .
o Ryy (Gt + cumﬁ J h(e) X (£ —¢1) %L.ar ()X (E+T—¢) ni

is P. Find the power of the signal aX(t). [A.U CBT M/J 2010]
Solution : The lm%m/ﬁnw mnmnnmvnm is linear. ® de
Let ¥(9) be- aX () TTE emw X @i e
S0, Syy@) = |H@)I* Sxx(@) whAEEEE
= @ Sxx (w) Ryy (¥) = M.Mawxx (t+e& —e)h(e)h (D%
Power of Y()) = 2 .N.. Syy (@) df because X (f) is assumed wide-sense uﬁco“_.w.m.m -

. . . £ X
Y (1) is a wide-sense stationary : -
conmﬁoﬁws«@ does not depend on ¢ and E {y ()} is a constan

T i i clation
o i Ryy (¢) shown the two fold convalution of the input auto coIT
/ i ith the network’s impulse response.
3 =24 [ Sxx @) df function with the o
M. o | ie, Ryy ® = Rxx(®)* h(-7)
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8
524 - T Linear Systems wi

z th
ation functions of input and outpyy W_ \% 5.25
5.2.(b) Cross - correla ion between the input X (g __ From the above it is very clear ghy .
The cross-correlation function b and th, | depend on 7 and not op absolute time .w o e fundtioes
tY () is given by “
output Y (f) 20 __mxm:i_m 5.2.1
- () Rxy(® = h(@®)*Rxx , :
(i) Ryx () = Rxx (@) *h(-7) [A.U CBT M) 2010) Consider a linear system as shown below.
Proof : [A.U Tvli. M/J 2010] [A.U N/D 201 x() ) ‘ %0
The cross-correlation function of X (t) and Y (¢) is 6+jw
tt+0)=E{XOY([+7) P ) . . .
Ryy (¢ ( ) X(t) is the input and Y(t) is the output of the system. The auto
Now

correlation of x(t) is Ry, (r) = 3.4 (z). Find the PSD, auto correlation

Y (t+7)=h@)«X(+7) function and mean square value of the output Y(t).

® Solution : We have the relation
= L REX e - @ Output PSD = | H () |? x input PSD
Input PSD = F[R, (T
Sub (2) in (1) . P )
3 = F33 @) = 3
Rxy (tt+7) = E ,_xeuss} ()X (t+7—¢)de -~ Output PSD = —3 i
36+ o
® , -1 4
=J EX@OX(+t-e}h(e)de ..() Ryy(@) = F (input PSD) ,
- = blm 3y Jus
If X (r) is wide-sense stationary, equation (3) reduces to T 27 Je 36+t
p -a |7| ul 2
Rxy(®) = [ Ryx(r—¢€)h(e)de We have e > 2
N ] : —1|_3%x326
which is the convolution Ryx (r) with () s F71 (output PSD) = F 12(@ + o)
Rxy (r) = Rxx (%) *h (z) \ = 2 exp(-6171)
N A similar development shown that
« ” Mean square value E[Y @] = Rey @)
7 Ryx() = Ryx (t = &) h (—¢) de = 3 _1
- —co - 12 4
Ryx (1) = Rxx (1) ¢h(~1)
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Example 5.2.2|

function . . An input signg|
Consider a system with transfer func [+iw ity

: 2 is fed as input to th
autocorrelation function En:ﬂv +m” is fed p ¢ &.205.

Find the mean and mean-square value of the output.

Solution : Given, H (@) = THio

and Ryx(r) = mo(r) + m?

Sx(@) = m+2xm*d (@)

I

We know that, Sy(@) = | H(@) |*Sx (@)

N. _”3 +2xm?é Aevu_

1
1+iw

= Wd _”3 +~a§~m?¢u_
w

Ryy (v) is the Fourier inverse transform of Sy (w).
So, Ryy (1) = W e 171 4 m?

We know that lim Ryxy () =X 2

T—> 0

So M..\N"SN

We know that Y = H(0)Y

So, mean of the output = Y = 1, m = m

Mean-square value of the output = Y2 = Ryy (0) = M. +m

1 [AU AM 2011, M/J 2013

|
|
|

" A signal x(t) =

Linear Systems with Random

e Inputs

gxample 5.2.3

5.27

sinc 2Bt Is applied to an integrator with transfer
1

gunction |H(@D| = ; 3+ Find the output power density spectrum
-k

w
and output autocorrelation function when B < W,

- : in
Note : The function sinc x = R
nx

Om<0= X Qv = mmzn 2Bt

X\ = W. -B<f<B

2
1 1
Sx() = —I.ML = Mum

Sy(h = |H@ 1*Sx ()

1 1
= —_— -B<f<B
ol
1+ §
When B < W,
1
S =1.— = Sx(
48 Amu
1 T L oty = = sin2B7
Ry (7). = 2n I._.B AB® WL 2B R

_mxma_u_m m.nh_

lation
Find the output power density spectrum and output autocorre

= h power
function for a system with h(t)=¢ .. t =0, for an input with p

Mo
density spectrum -, ~ w<f< .

-t
Solution : Given h(f) = € > tz0
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1
So, HN= T+i(2x))
2
Hl\ll\u..\!\M.MNbg |8A\.A8
1+ @2xf)

The autocorrelation of th

70 - | __

-0 <T<®
Ryy(®) = 7

Example 5.2.5|

ﬂ

A linear mu.ﬁn:. is described by the impulse response

B = pg ¢ =

Assume an input signal whose autocorrelation function is B d (7). Find
the autocorrelation, mean and power of the output. [A.U A/M 2011]

o 1 - Tnu
Given : h(t) = RC ¢ RC
Let y (¢) be the output.
Mean value of the output = y() = x(©) [ h(@dt =0

The autocorrelation of the output y (¢) is

Ryy(r) = h(=7)*h(r)*Rxx(r)

[ | h@h@Ryx@+a—-P)dadp

- -0

Given  Rxx(7) B4 (r)

-]

[ J h@.h(@).BSG+a—-pP)dadp

-00 —00

Il

Ryy (7)

¢ output Ryy () is Fourier inverse of Sy (f)

1o J

|
1

Linear Systems with Random Inputs
\\I‘I/

5.29

= wuﬁ h (@) .Ha hB)3(+a-p)dfda

=B b.o h(@h(@+a)da

>m :3" bFﬁ mn ﬂwkog.

= — (& T+a
Ry@=87 L o) L (5 g
0

RC
= = 2 % nl% nlwm da
RO o
T w  _2a
= B N.n RC ._- e RC da
(RC) 0
T I
-2 ket Mn
(RC) —
RC

As Ryy (7) is an cven function of 7,

T
u —
mﬂiﬁﬂv = IN.NN&WO..«MO
B fud L1
RC -0 <7<
So, Ryy(® =3pg ¢ "0 77 °F

The power spectral density of the output y(0) is the Fouricr

transform of Ryy (¥)

s A A e S
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d

B RC

Sy un%n,.ﬁpﬁ 2np?
— + 2xf)”

1+ (RC? + @2af)
Power = [ Sy(Ndf

B d
1+ (RO (2= f)?

|

@

I

(]

T

3
nba

@EEQ m.n.&

X (1) is the input voltage to a circuit (system) and Y (1) is the output
voltage. {X (1)} is a stationary random process with #y =0 and
R (1) =e 1" Find u, Y, (w), if the power transfer function is

R
R+ iLw

H (w) =
[A.U N/D 2008]

Solution : Y (1) = lm.o h(E)X(t—e)de
~ E[Y (9] nl.mo> (e) E{X (t —¢)} de

=0 [VE{X(-¢} = u, =0

Yo (W) = |.‘. Ry (7) e ™ gy

0

. -]

—1 Qv _—IwT .

= Je e dar + —ar —iwr
J, J e e

Linear Systems with Random R —
S

—nﬁn —iw)T
) /.* *Qlﬁn : mfw —.’8
a =i i —

=(a + iw)
. 0
= e 1
g P a2
a — 1w a+w Q~+E~
i Now
H 2
W Yyy (%) = Yo w) [H w))2 ¥
- 2 R?
= N > x N/
a+w RI412
- {QaRY®R V)| far¥@? - rU12)
? +w? T ) R? + 12 W i
[Using partial fraction]
2
R
NNN —
_ L o« 1 2a R*/L2 1
2 2 + Rl
R & a” +wz 2 (R R + w2
L “ L 2
1 1
Xyy W) = ds5—+u——s (say)
aw R
Hﬂu +—e~

_mxms_u_w m.».u._.

Assume a random process X(t) is given as input to a system with
v transfer function H(@) = 1 for —@g < < g If the autocorrelation
| | . No
ﬂ function of the input process is =~
[AU A/M 2010, Trichy M/J 2011}

4 (t), find the autocorrelation

function of the output process.
No
Solution : Given : Rxx(¥) = 3 0]

H@) = 1 —@0<@ <%

e T e A PR

16 s
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Np
Sxx (@) = - i

| H @) |? Sxx (w)

If X(t) is the input voltage to 5 circuit ang Y(t) is the output _Wm
ut voltage.

Power spectral density of Y () = Syy («)

Mo t is a stationa ]
- 2 3 ! ~217l, ping 7 process iy Hx=0 and
N, Ry (0 =¢ . + ik the mean Ay and power spectrum Syy(@) of
= %  the output if the system trangfer function is given by
1 :
1 H(@)= ; .
The output of ACF = Ryy(¥) = F '[Syy(@)] @0 +2i [AU N/D 2010, N/D 2012)
1 7 : Solution : Given : g, =0, Ryx (1) = ¢ 21!
== [ Syy@) ¢®"do | . .
e We know that for a linear time invariant system
)
= IH. @q .>|\.m mmeﬂ do = %Qv = va*NQv
2z % < ’ | o0
e_, _ = [ h(u) X(t—u)du
Ny “0 . , e
= m m_e.ﬂ&e ) " ]
- _ -~ EXY@®] =E|J h@X(-u)du |
?.,e mmEn “o ., o
LT ey puy = J h@) EXE-u)ds
N, . _ a . . .
P Aawﬂ T_Eu.‘_nhﬂ A J = [ h(u) pxdu [ X () is stationary
0 —c0
N Um.—.x.s_ntxumﬂkclzx
. 2 T_. DT _ g~ n“_ . : |
drit : _ 0 [ .:xuc_
Mo |, fit i M | | s . ()
T 2x1 n_eonlmnlm ‘ We know that Syy (@) = Sxx @) | H @)
., st —-iwT
.’2 | . R Aﬂvm dt
= Naon sinwy T Syx (@) |._.s XX
2 m 2l Prals sy &
T &lmEd&.ﬂ.

o0 -lN
0 —iwT A1 e
21 gm0t dT ..m

Scanned by CamScanner



5.34 Probability and Random Processe

_ .w. aﬁmlmevﬂ&ﬂ+ f mlﬁu+meva&.n
—® 0

-]

[ee-ior 0 N S Hio)T
T 2-ie |_, |- @tiw)|,
1 1
- -0l + |0 - |—=
ﬁﬁulmucv L _HA ) ﬁl AN+~SVWH—
1, 1 _2tiet2-ie
2—io 2+iw 4+ w?
4
Sy (@) = ———
% (%) 22 + w?
1 1 w-—2i w—2i
H@) =052 “o+2i 0-2i 242
2 2 2 |
2 w”+4 1
|H @)] = |+ = -
w? + 4 w?+4 A8N+$~ Vol + 4
4 f 1 4
% AHV = .W:AEV = =
4+0?| |0?+4 A8~+3N

EXERCISE 5.1 & 5.2

1. Check whether the following systems are time in invariance Or -

time-variant. :
@y@=x(-; (®)y@)=x()coswot

[Ans. Time-Variant, time-variant]

2. Check whether the following systems are linear or non-linear

@y@®=x@; ® y)=Ac(t)+B
'[Ans. Linear, non-lincar]

———]

Lin
3.

ear Systems with Random Inputs

Check whether the followig 5.35

— g Systemg are
@y 6 =x(@) - ®; _ causal or non-
[Ans. Causal, Non-causal) (®) y (1) =x (%)

causal.

A random signal with po [ I
4 Power spectral density 5 1S given as input

to a system with transfe i 1 n |
y: 1 function 1+i22fRC Find the power

and the autocorrelation function of the output.

ﬁ S. 4RC 170 4RC _

5. A circuit has an impulse response h () = %. for 0<t=sT
= 0, otherwise

Find an expression for the power density spectrum of the output

in terms of that of input.

sin? (2 f T) s ]

A2 ey

. .. .ﬁ
6. X(t), a stationary random process with zero mean 18 w&; as inpu

i = ————— The
to a system with transfer function H " = R+ @rpL
B 7| Find the mean and power

ion of the input is € o
autocorrelation er output process 1S stationary.

of output process. Check wheth

2
[Ans. 0, .mm|mﬂm_ Yes |
n function

ce with mEonoqa_mao

om sequent
7. A zero mean rand pulse response

1, auow?msw%aa&a_.a
xxxeauo.wao

PRI o
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\NQQH * M“ MH w.m. E:n_Eanmnmba@oinaannme SPectryy,

of the output sequence.

[Ans. 0, 4 + 4 cos 2xf]

processing of signals in cg icati
: mmuy;
systems and over which we have incomplete control e

8. A system has a transfer function as 1 . If the input zo_mwa
14+j I |
! ?Sow ) |
to the system is a zero-mean stationary random process with Uncorrelated _Zown Correlated Noise
power density spectrum as 10™°, find the power of the output ,_\ @
[Ans. 1077 (1000 )] Enaﬂ_ Noise External Noise
9. A random process has a power density spectrum Sx (@ = White  Shot: Partition Atmospheric Zmnr—\numan
987 S (w) +49. It is applied to a system with transfer function Noise, Noise  Noise Noise Noise
4 . Thermal
H(s) = P Find the mean value of the output process. Noise
[Ans. W (a) Shot Noise .
The discrete nature of electrons causes a signal disturbance called
Shot Noise.
10. A signal has a power spectrum as Sy (o) = 10 |w| < 10x icnm : Shot noise arises in electronic devices such as &o.anm and
) 0 |w|>10x - transistors because of the discrete nature of current flow in these
It is passed through a system with transfer function devices.
Jo|
|[H@)|? = {1~ 20, l@l=2x (b) Thermal Noise

- Find the output power :
0 || >20x This noise is due to the random motion of free electrons in a

conducting medium such as a resistor.

(or)
Thermal noise is the name given to the electrical noise arising
from the random motion of electrons in a conductor.

of the system.
[Ans. 75 watts]

(c) White Noise (or) Gaussian Noise [A.U Tvli. M/J 2010]
The noise analysis of communication systems 1S based ow an
idealized form of noise called White Noise. [A.U A/M 2011}
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(d) Power spectral density of thermal noise
The power spectral density of the noise current due to the free

electrons is given by

e 2KT G2 2KTG
W) = |5——]| = 3
! o+ w w -
1+ P
where K is the Boltzmann’s constant

« is the average number of collision/second.
T is the ambient temperature in degrees kelvin.

G is the conductance of the conducting medium.

(e) Power spectral density of shot noise.
The power spectral density of i, (f) is given by

Siw) =7 L.l

The shot noise current consists of two components, a constant
current component I, and the time varying component i (f)

The component i, (f) as it is random, cannot be specified as a
function of time. However i, (f) represents a stationary random signal

and can be specified by its power density spectrum. Since there are
n pulses per second it is reasonable to expect that the power density
spectrum at iy (f) will be n times the energy density spectrum of

i. (t). Thus if i, () —= I (w).

(f) Band-Limited White Noise [A.U Tvli. M/J 2010]

Noise having a non-zero and constant spectral density over a finite
frequency band and zero elsewhere is called band-limited white noise
(ie.,) if {N (1)} is a band-limited white noisc then

2‘O

et <
S W) = {2 0 1w =ws

0, elsewhere

Linear Systems with Random Inputs
] 5.
Properties =
1. EN (] = Nes -
2z
N .
2. Ryy (1) = MEm smwgT
T «cw‘H
3. N(@) and N |+ X2 i
. (£) an t+——| are independent
wp 2
where K is a non-zero integer. -
(g) Filters

Filtering is commonly used in electrical systems to reject undesirable
signals and niose and to select the desired signal.

The commonly used filters are narrow-band filters (ie.,) band pass
and low pass filters.

(i) If the system function H (w) is defined as

H (w) ﬂo,mo_.zolmMA€A€o+.w

= 0, otherwise
then the filter is called a band pass filter.

(ii) If the system function H (w) is defined as
€ £

m?\vﬂoumo—.EIMAEAE+m

= (0, otherwise
then the filter is called a low pass filter.
2
Note : The equation Sy, (W) = [H (W) |* S (w) shows that the

spectral properties of a signal can be Eo&mna. by passing _M n:.ocmr
a lincar time-invariant system with the appropriate transfer function.

[Example 5.3.1|

Calculate the rms noise voltage generated in 2

2 °C. Find
f 2 kQ operating at 20
e PSD.

bandwidth of 15 kHz,

the available noise

by a resistor 0 .
power over this bandwidth. Find the nols
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¢ value of thermal noise voltage is

Solution : The mean squar
y2 = 4Rk TB

_ 138 x 1072 J/°k

b

where
T =20 + 273 = 293°k
B = 15 kHZ ; and R = 2000 Q
2 _ 4% 2000 % 138 x 1072 x 293 X 15 X 103

<
E)
Il

48.52 X 1074 ?Q_EN

I

6.96 X 10~7 volts

Il

~ -~ rms noise voltage
Available noise power = KTB watts

138 x 1072 x 293 x 15 x 10°

Il

— 606 x 10717 watts

Noise PSD = Noise POWET _ 1 y/Hz
Bandwidth

(138 x 1072 x 293) w/Hz = 40434 X 10”2 w/Hz.

[Example 5.3.2 |

Find the PSD of the thermal noise voltage across the terminals 1 and
2 for the following circuit.

) |
/

Bw

Fig.
Solution : The PSD of thermal noise voltage is

Linear Systems with Random Inputs

OSHNSWS

1

Consider Yy, () = 14

147y T Iw

= LW 14 Q4 Jw)sw
1+Jw

- 2-w)+ow

1+Jw

Zy, () 1+Jw
2-wh) +2Jw

_ 1+Jw thfnzwuus
AN|€~V+~?\ Aulsmvlm?‘
The real part of above Z (f) is

R () = 2-w+2 2+ W
@-w)+a?  4+v
The thermal noise PSD is G (f)

2kT.R(f)

2%T (2 +w)
4 +w

_mxm_:v_m m.u.&

The O/P thermal noise <c_8mm. of a parallel RC circuit is passed
through an LPF with cutoff frequency ‘I’ and then through an amplifier

of gain 9. Find the O/P noise power of the amplifier.
Solution : We have the i/p PSD of the above cascade section is
" G; () = kTR
The overall transfer function is the product of the transfer functions
of RC section,
LPF section and the amplifier section.

H () 1for f<|fel
= (0 elsewhere
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5.42 ——=5Ses
1 1.9
= The overall H () = 71 jwRC ~
) for {f] = f,
= 1+JWRC ¢
=0 elsewhere
2
. 0/pPSDG, (N =IHOI-Gi
2
_|—2 | xR
1+ JwRC
: %
nﬁ = | 8| 2R
R 1+ 472 R*C
G _ 162.kTR
1+4m2f R C
f
< 162kTR
o/p Noise power = [ ———— 5 . df
i P %:Aawmxw%
f
162kTR ¢ 1
= == —df
fmmNnN.hﬂ PRy 2
2n RC
»-n
= 182MR 2xRC.tan" 27 fRC]
41 R*C?
|mn
162kT

IH
i wC . tan " (27 f, RC) watts.

‘mxm:_u_m m.u.n_

A white noise signal of zero mean and PSD NNN is applied to an ideal

LPF whose bandwidth is B. Find the auto correlation of the O/P noise
signal.
Solution : We have i/p PSD G; () = W.

A A e e i st i e

Linear Systems with Random Input
s
and LPF transfe, function is i (1))

= 0 elsewhere

“O0/pPSD Gy - BEGE 1
2

I

NN:E Ifl <B

FT

Since auto correlation R (¥ «— psp

I

B
R (7) .—.QoSm.;a?.&.
-B

B

-_. H..NHNR:.&.

I

J2n1 L5

_7 m._ua? B
2

_ 7 «.—NHmnlnluuamn
2- J2nt

sin2z Bt

=7n.B.
1 2nBz

__meau_m mulmu__

A white noise signal with PSD m is applied to an RC LPF. Find the

auto correlation of the O/P signal of the filter.
Solution : The transfer function of RC LPF is

1 _
Hp = 1+J2xfRC

The o/p PSD = |H(f) _N.w
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544 e T TR Linear Systems wi
i 7 | yStems with Random Inputs .
\\\\\u\‘l. 1
is [+ a2 fRC | =C00,10) + ¢ 56 - 2 g o
* i -1 - ) ?
i Auto correlation = F~' [OP PSD] ! 16416 -2 x 16074
£G ' 1 “ —
FE= =y H_ | = 31413
i =P 21 +adfRC g |
WM_WJT 2 Now P {|X (10)- x ©® <4 =p X10)-X(6 4
e FT 2 w 5 = So0)
= - : ! . .6048 5.6048 |
m;wn& We have ¢ 21t . a(r) < ey |
G : 2+ 472 f w_ = P {|Z| = 07137}
using the above result = 2% 02611
g -kl " = 05222
~ R ﬁ.ﬂv = A.NNQ . € RC \ _,H N
where 4y = E {X (1)} and A is the third order square matrix

_ ».Jr»..n .
:mxm:.__u_m m.u.m__ m A __vﬁnao __ O*x?v.x S.Zwbafw _:.nnommoﬁonom »m
i i i = d qu

If {X (v} is a Gaussian w_.onnmm with u () . 10 an . | E (X O} =fim R, () = fm ¢ 191 = o
C (t,t) = 16e” [, =% find the probability that (i) X (10) < 8 w eyl e
and (i) |X (10)— X (6) |=< 4. [A.U CBT Dec. 2009] | Sl =CX®X®=REG-1)

mo_.. If {X 3@ is a Gaussian process, then any member of the “dn =R, 1) = R (0
process is a normal RV.

.Hrnnmmoa. X (10) is a normal RV with mean x (10) = 10 and
variance C (10, 10) = 16.

R (0) =1

]

Az =R (,t+1) =R (1) =e et

( 1

1
. - T = L
= | : ! e 2
P {X (10) = 8} uix 2 SMLL | “l . i
4 . A b 1 1
. | SA=12 1 S| ad Al = 1o
= P {Z < —0.5} (where Z is the standard normal RV) € €
1 1
- 05-P {0 < Z < 05} 2 e !
\ /

= 0.5 — 0.1915 (from normal tables)
= 0.3085

X(10)—X(6) is also a normal RV with mean | m
- 4 (10)—x(6)=10 — 10=0. . B

1
Ay = HIMM [ A2

o=

1
+M | Az = 0ete

Var {X (10) - X (6)} = Var {X (10)} + Var {X (6)} Therefore, the required joint pdf is given by .
= 2 Co var {X (10), X (6)} |
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- HH = *A IMHMVRHN.|MN|AH|MHMVHHHN+AHIWVNW
Nﬁlmv
|WAHlM_.|NvH~Hm+AHIMHkaW
-.-u N ’ — H m%
e @r)¥? AHI.WV

€

1 2
||H||. *Hw |W.HHHN+ AH + |Nv HW |.&I.M.N.Nw +N\WW
e

_mxmau_m m.u.ﬂ__

If {Y (t)} is the square law detector process and if
Z () =Y () — E {Y (t)} show that the spectral density of {Z (¢)}

is given by S, (w) = muun .w S (@) Sx (W —a) da, irn-.n S, (W) is the

input spectral density.

Solution :

E{Z() Z(t - 7)}

I

E[{Y() - E[Y 0]} {Y(-7)~E[Y (¢t -7)}]
=E{Y(®Y(¢-9} -E{Y(@®}E{Y (-7}
(ie.) Rz (1) = Ry ()~ E{Y O} E {Y (- 7)}
= R%(0) + 2R% (1) - RZ (0)

[see square law detector process]

e s i A T Al e s

Linear Systems with Random Inputs

547
= 2RZ ()

Taking Fourier transforms

MNNAS.V = uWn.l.—. quﬁﬂvhxx?‘lﬂv&ﬂ

Example 5.3.8)

Obtain the autocorrelation for an ideal low pass stochastic process.

Solution : Let the spectral density function of the low pass process
{X@®}be Sy W), iIn |w| < wg

Let the complex form of Fourier series of S, (W) in
(—wp, wp) be

S W) = 3 ¢y P s - (1)
n=-—cw
where ¢, is given by

wg ;
[ S, (W) € BTV gy )

-wg

1

nn"ﬂwl

Taking the inverse Fourier inverse tansforms of (1)

) T inzw'/wg iTW' 3.
R (@) =55 [ cue™™" e dw
-
wp W i /
- M.lHl I|H|. “.Muuctwn —BHQQE&S_
2r wwew “wg

¢ me.:wa&s. [since {X (©)} is low pass]

B
=3 ng.wm Ry - mﬂw&e.:,%.

N %Nlﬂw vtm
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I

BBl

nm
sin |tan — ﬂm wp

3 i [Changing 7 to —n]
- % nm
:lMI ) = WB r——| WB

= =
=n ‘HJ n=..=-
Let us assume that the values of X () at ! g 3,

1 2 3, .. are given using which we can construct X (),
le I|”_.- Ov ) ] y

7
where T = ﬂcm.
% sinwg (t — nT)
smWwp\ 7
?Sumb%dswalé

n=—o
Thus, when {X (f)} is a low process, its autocorrelation is found

out by summation.

_M_Msau_m m.um_

Consider a white Gaussian noise of zero mean and power munn:d_
density Ny2 applied to a low pass RC filter whose transfer function

1
1+i2xfRC

output random process.

is H () = Find the autocorrelation function of the

Solution : Given : H(f) = m%

{
i

i

1
|
{
i
|

l

Linear Systems with Random Inputs

5.49
H{)| = L - 1
OV = Teaarrer - Vita2fRQ
H()? = )
|H{) | 1142 FRC = (1
) Ny
Given : Sxyx(f) = EX « (2) [ the input is a white noise}

The simple RC circuit for which the transfer function is given in
a linear time invariant system.

The power spectral densities of the input *X g and the output
Tx Qé of a linear system are connected by

Syy (@) = | H @) |*Sxx (@) . (3)

In the given problem the transfer function is expresed interms .of”
the frequency f.

@3) = Syy(® = |H{@) *Sxx

1 M
1+4n*fR2C 2

by 1) & (2)

NNANJ.A.J = |Mur|uﬂ -_. hﬁs mmEaRe

_ 15 1 Wm%na?am
= 3w J1TaR FRC 2 )

Since @ = 2xnf

i i No ji2ztf 5pqf
K 2% w1+ 402 fRECE 2

H277f 4

Zc b 1 1 N.m.mﬁﬂ.q.&%
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Probability and Random _uaomwmm - Linear Systems with Random Inputs N
5.50 o ——. Solution : Given : Y 5.51
. . ieanf PN Y = Acos @yt + )+ v
. l\@.w\\ \.\m\.\\m.\\\ df - (4) Y(+7) = Acos [w t+
Ryy(® = g 2R2C <= A 1 w +f _Ho a+ﬁ+2c+a
BeRG | = Acos[wgt+ gt +6] + N 47y
o WX YO YE+T) = [Acos(w
. . dx, 0f +6)+N(t)| [Acos(wyt
Compare the integral 1n ©) with l.—.a &+ e | _H “__” (@, +€ca+$+ZQ+.&‘.—

— 42
= 4 nom?o+$8mﬁeo_+8oﬂ+$

+ .Anomaeon+$ZQ+J+\~8mﬁeo~+e
+ NON(+71)

. tour integration technique
which can be evaluated by con | o

@ NmBN _ m m|_3_m _
I.‘,.”_o nN+H~R« T a m Ryy(t,t+71) = E[Y(®)Y(t+1)
1
@ - R - —ss T 11 g = E [ A% cos (@ + 6) cos (wy! + w7 +6)
= Y¥ 872 R*C* T2 RC + hnoﬂecn+$~<ﬁ+d+h8mﬁeon+eoq+323
+ NN (+7)]
Ng 2 I_Naq_h ! L _ .2
= — > 22°RC e 2z RC = A"E [cos (wg + 6) cos (wyt + wq T + 6)]
8x*R*C* .
, N + AE [cos (wpt +O) N (t +7)] + 4 E [cos (wpt + gt +B) N (1))
0 —[7|/RC
" Ry(® = ZRrc ¢ e + E[N ()N (¢ +1)]
= L | 2
The mean square value of *%QL is given by | = \w E [2cos (wpt + w7 + 6) cos (wgt + )]
Ng 0 No o Mo ., _ M
E[V@O = Rvv(0) = 3rc € RC = 3rC ¢ ~ arc YD = are + AE [cos (wgt + B) N (¢ + 7))

E + AE[cos (wgt +wyT +6) N (f)]
Example 5.3.10 :

: i + EN@N((E+7)]
IfY () = A cos (wpt+6)+ N(t), where A is a constant, 6 is 8

LA
random variable with a uniform distribution in (-7, %) and | = Wm [cos (wg t + wpT+0+wyt + 6)+cos (wg t+wg T+6—wot=6)]
{N ()} is a band-limited Gaussian white noise with a power Spe m + 4 Efcos (ot + 6N +7)
_ density. |
N i + A E|[cos (gt + @y +6) N ()]
0 )
Sw@) =7 Prle-ol<op + EN@ON(+7)]
0, elsewhere [A.U N/D Nos_‘

find the power spectral density of {Y (t)}. Assume that N () and

8 are in independent. [AU M/J 2007, N/D 2012

LI T RO WL AR A

ias

g
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( +26-+apn) * 205 07

(+0)E Azeivv
+6)] EINO)

2
= \Mm.m [cos (2wo

+ A E|[cos(@o
+ 4 E[cos(wot t @07

+ R @) [ N () is stationary] (1)
22 .

Given 6 is uniformly distributed in (=7 )
1 - g<m
A .\.A%v = mu T <

E [cos (wot + 0)] um noﬁeo~+$:®vnm

1l

\ nomﬁeo~+3||| de

JT ] .
= MW;. _HnOmeohoOmmlmEeoZESum

1 - L tsin6db
= 57x .mﬁ cos wgtcos6db o Mﬁ sin wg

i T cos8df — ——sinwg! a §in0d6
= moom‘ec&..s:oom 55 S

1
= o (coswgt) (2) .‘. 8mmnmlwa sinwgt (0)

TEnn cosB is even, sin@ is odd]

= mpm cos wq ! _”mwnmu_mlo

1
= o coswg! [0-0 =0 )

E[cos (wgt +wgTt+6] =0 E)

E[cos 2wgt +20 + wy1)] = ... cos Qwgt +260 +woT) 3 \\mm

probability and Random Procesgeg

i

|

Linear Systems with Random Inputs .

H

11
|..‘. _“oOM (2wgt + wT) cos26 — sin 2wyt + wgT) m.Emm..’ ae

1 f 1
oF cos 2wyt + wyT) N.Nu. c0s26d6 — =— sin 2wyt + wy7) (0)

2n

[since cos28 is even sin26 is odd]

1 sin26 "
= T OOMANeoanEO.ﬂv ﬁ 2 Q
0

1 . VT
= G cos 2wyt +wyT) _HmENm”—o

1
= cos Qugt + w7) [0 - 0]

=0 G
\AN .
(1) = Ryy(,t+7) = = coswyT + 0+ 0+ 0+ Ryn (7)
by using (2), (3) & ()

2
Ryy(t,t+71) = .MNI cos (wg7) + RN )
® |4 -iwT 4
Syy (@) = |~|8meoﬂ+-223 e
—c0
\_.N L —ioT M.x ANVNI_WEAEN
== [ coswoT € dr+ ) KNN
—00

I &
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é

X A? [0 (@—wp) +O @ + wp)] + Snn (@)
2

5.54 .

2 No
ZA 16 @ —wg) +0 @+ @0l + 5

"q.

Ny

[" Given Sny (@) =
2

___mxn_:u_o m.u.:__

White noise with two sided PSD w is passed through a low pass ge
network with time constant 7 = RC and thereafter through jdey
- amplifier with a voltage gain 10.

(a) Write the expression for auto correlation function R, (7) of the
white noise (b) Write the expression for the PSD of the noise at the
O/P of the amplifier.

Solution : (a) R, (1) = [ G,().¢ 2" " af

= .om mu . mumu:.&\

LK

(b) O/P noise PSD Gy, () = | H(f) |* X Gy (f)

= = 10 | 2 HS
20 H+\N§\.q‘"v,_,m8,_, - H+a.ﬂN\aN
Gno() = 100 1
H+AN.§\.&~ 2
= 307
1+ @afr)?

Sxx@) = Mo
XX 5> When Ny is a Positive real valyed constant, ;
Rx® = 55§ S@)eee - L5 Mo bi-
27 . W = ml._.s M n_ea&e 3
Ng = . Ny = ,
- N iwt _ ‘o
= |h.8 e "do = NMI_.s (coswt+isinwr)de
= 5= .h Cosw Tdw, since sinw7 is an odd function
Ny

Where d(7) = [ coswrdo
0

Example 5.3.13 _

If a white Gaussian noise X(t) with zero-mean and spectral density
N
2 is applied to a low-pass R filter shown in the figure, determine

2
the auto correlation of the output Y(t). [A.U N/D 2011]

N, :
Solution : Given Sxx (@) = .mp and we know R filter has filter

transfer function as
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1
5.56 e T e

Output
Input c Y(t)
X(t)
—0
O—
) 1
iwnC  _ S S
H(w) = 1~ 1+ioRC
R+7,cC
12 Sxx (@)
Hence, Syy(@) = | # (@) s
1 1 v No
- Tiexnv 1—iwRC| 2

Ny |1 1 + .u : by partial fraction
=72 T rf.exm 1-iwRC

No 1 + .H g
=% |1+iwRC 1-ioRC

To find the auto correlation, take the inverse Fourier transform

of both the terms.

[ Zc 1 1 |
— m,lu — + .
Hence Ryy(?) = 4 |1+iwRC 1—-iwRC]|
.
Zo [ Iuﬁ 1 -1 1
_ 0 +F .
T4 F\T¥iwRC 1-iwRC||
No [o-1[L _RC | p1 1 __RC
=% |" |RC'T+iwRC RC'1-iwRC
No [.-1[1 1 1f1 1
= — — . +F 1 =.
2 |¥ |Re T .. RC' L _iw
L m0+~e RC

&

Linear Systems with Random Input
S

2
Niﬁﬂv = Alzcﬁ.ml |t|/RC

_Waiu_m m.u.ﬂ

Define thermal noise and white noise

Solution : It is noise occurring

because of thy :
. ¢ random
free electrons in some conductin -

; : ! ucting medium. Thermal noise generated
In resistors, semiconductors is assumed to have zer

Gaussian rardom process [N (] with power spec
flat over a wide range frequencies. Such noise is saj

0 mean, stationary
tral density that is
d to be white noise.

Usually the spectral density of white noise is denoted by wa.

Example m.u.ﬂ

Define band-limited white noise. [A.U N/D 2010]

Solution : Noise with non-zero and constant spectral density over a
finite frequency band is called band-limite white noise i.e.,
Ny
Sl@) = {20 1el=es
0 , otherwise

[Example m.u.a__

Find the autocorrelation, and average power of white noise.
No .
(OR) If the PSD of white noise is 2 find its ACF.

No
Solution : We know that S\n (@) = & Hence, as
N
© N iy N
i %uan hdr = =
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Bss. o |

Zo
- 90
the autocorrelation Rn(@) =

dw = ®

© wo Mo
_r w)dw = 2
Average POWer l\._.s Sn (@) e

——

[Bampe =317

.4 limited process such that Sxx (@) =0, whe,
@)1 < T Rxx (0).

If {X(@} is a ba
|w | > o, prove that 2 [Rxx (0) — Rxx
|

Solution :

—ﬂEQe
WNN Aﬂv Nuﬂ l.—.oo .wa AEV €

I

= s Syx (w) cosT@d @ [since Sxx (@) is even]
Nals

Ryx (0) —Rxx(¥) = Na._. Syx (@) (1 —cosTw)d @

“{X ()} 1s band limited]

= 5= ._..wxxﬁevxwmﬁ hwev dw w (D)
T —g

We know that, | sin6 | <6

- sin?f < 6%
2 2
-, 2sin’ AHMI.V < qwe )
g 2
Rix® B < 7 [ Sie(o) S do by O
Q~ o
S I m Sxx (@)dw

Gl amg warhssare -

< —

ie.,

IA

[Example 5.3.18]

It is given that R, (r) = ¢~ || for a certain stationary Gaussian random

process {X(t)}. Find the joint pdf of the Random variables
X0, X(t+1),X(t+2).

Solution : Let the RVs by X (t;), X (t), X (t3)
The joint pdf of ? (t), X (t), X (t3)] is given by
F (x1,x2, %3, b1, 1, 13) =

1 1 3 3
@2 A2 TP | T21Al 2 WH AL 6= ) &5 = &)

where #; = E[X ()] and A is the third order square matrix @),
where 4 = OTN (D), Nﬁvw and | A | = cofactor of A; in |Al.
E{x@®} = lm R = lim e =0

4 = Clx@®X@)} = RE-1)
. M: = NQH.:V = NQ.O = NAOV =

R(t+1) =R(Q) = e ! etc.

1 1)
€ QN

Ll and |Al = |1-73
(4 €
1

-

- =
a = =

/

“l
[ ]
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1,1
_ 1 \H\ _>_HN“ [4 au
[Afn =172

given by

- the required joint pdf 15

f (1, %2 x3) =

€xp —_— 5
2 AH -
1

IS S
..ﬂ.“ .NH“R.N“H&V - |uul
i fe en¥? (1- )

e
2
2 LV 22— Zxyx5 + 45

exp ltllm.\uH\ Hm — MNHHN + AH + NNV X2 e 243 3¢

| 2 (1= MN.V !
_mnm:__o_m m.w.Pm.__

Let Z and 6 be independen
density function

0 ,FNAo

= 2
(@ 222, in z>0

and 6 is uniformly distributed in (0, 2n).
ﬁx& -0 <t< Bw is a Gaussian process, if X; = Z coS EARL)

Solution :

Now first we find the density function of

W = cos(2nt + 6), where fp (6)

Since w = cos (27t +6), 6 = cos™! w) — 27t

robablly = — ——— " "OCegqy,

t random variables such that Z has a

Show that M

Let tham be 6; and 6,.

By the transformation rule

W) =h6y | T2 + 56y 6,
faw

Let us now find the first ord Sy
er density of X = -
been taken as X, ty ZW, where X, has

Now we introduce the auxili

ary variable Y = .
find the joint pdf of &, Y) e W, so that we may ;

X

m.ﬂ.. z = and w = y

X
y
S fxy@®Y) = 1T | fzw zw)

3z 3z 1 x

where J = |9% 9y| _ 5 5| . 1
9w awj a " Iy
dx 0dy 1

. fx (x) is the marginal density function of X.

I |

ie, fx(x) = 1 fz.@) fwy (W) dy, where Nuw and w=y
-1
[by independence of Z and W]
H 2 N
= [ 1 X — dy, £>0
-1 Iyl vy N(Hl\cm y
)
= .w. lhm..um\.&N 1 dy, wherex <0andy <0 (1)
T 5 wN :lvm !
= A i
1 .w. mlmlxnxym . dy , where x>0 andy >0 @
ﬁ.ﬁ 0 .v_n )\Hlvh
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5.62 .
: to —y', Wt note that the integral 10 (1) becomes
Changing y to =Y

] s 3 ame .
1 w -8 «JN\N%N \\W\N\% , which 15 the m as integra) o
Ty oy /\H\H\mw.

by L —dy, —e<x<®

s
aQ

N .
put X = tin (3), treating X as @ parameter,
2
%y
17 Lt
Then fx®@ =% J T—2 B
. /2 xA-—-x
2 . .
Put t =75 = u, treating x as a parameter,
-4 2
1 —x72 ,—1/2 —u g
= —F7= e u e u
Then fx (¥) V2 .M
2
H : . e " \N. o <x<ow

2
r 2 V2m

cess {X,} follows a normal distribution

= al e
Thus each member of the pro
with mean zero and variance 1.
g Xt tap Xt .. + a, Xt also follows a normal distribution,
for any set of @1, @2, -+ @n-

s X, X, e X, } are jointly normal for any n

~. the process {Xi} is Gaussian.

Example 5.3.20

If {N(t)} is a band limited white noise centered at a carrier frequent
No

w, such that Syy (@) =12’ |o—wy| <wg
10 , otherwise

Find the autocorrelation of {N(t)}. — [AU M/ NQE :

Linear Systems with Random Input
S

Soluti A =
olution : Given : § =2
. 7«2A8V” y —wWpR+
oN B EcA8A8w+Eo
» Otherwise
R 17
() = wlmlsxmzzﬂev doriy g Lol NeBloes
o M .—. m_eane
. Twgt o
wg T 0,
B H ZO N_Sd
=37 7 1 _ 1 Ny g wg +
T 2 T T2 97 Te@ .
—wg + w, 2 2it —og +w,
_ 1 ZO - ]
- m ﬂ.ﬂ ,—ma_ﬁEw+ecvalm;IEm+Eouuu
1 N [eerenst_ o taois
2x T 2i
B 1 Ny mEm:ImIEm: .
= o= e Wi T
2% T 2i e’
-1 Mg
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EXERCISE 5.3

1. Calculate the rms noise <o_8m.n generated in a bandwidth of 30 kHz,
C. Find the available noise

by a resistor of 4 kQ2 operating at 40°
power over this bandwidth. Find the noise PSD.

2. IF{X@®}isa Gaussian process with 4 (t) = 10 and

- |ti-t2] find the probability that

C (1 2). 3 16e
X (6) |2 4

(i) X (10) = 8 and (@) |X (10) -
(i) X (8) = 6

B ]
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S.No Questions OPT 1 OPT 2 OPT3 OPT 4 ANSWERS

1 |This single expression in statistics is known as measures average skew group average
Which average is affected most by extreme . geometric arithmetic geometric

2 . mode median
observations mean mean mean
Which of the following is the most unstable . geometric harmonic

3 mode median mode
average mean mean

4 |The sum of deviations taken from arithmetic mean is minimum zero maximum one minimum
The sum of square deviations taken from arithmetic mean . . -

5 is zZero maximum minimum one minimum
6 When calculating the average growth of economy,the correct  |weighted Geometric arithmetic median geometric
mean to use is mean mean mean mean

When observation in the data is zero, then its geometric mean . .
7 is Negative zero positive normal zero
8 |The best measure of central tendency is arithmetic Geometric Harmonic median arithmetic
mean mean mean mean
The point of inersection of the less than and more than gives . geometric .
9 mean median mode median
correspponds_to mean
10 |Median is same as quartile first second third four second
11 |Median is a average first second positional normal positional
12 Medlan is dividing the series when arranged as an array WO three four normal WO
into parts
13 |Median and mode are called average first second positional normal positional
The geometric mean of a set of values lies between arithmetic [harmonic Geometric . harmonic
14 mean median
mean and mean mean mean
15 In a symmetrical distrbution is equal to,is |[is equal lesstnan or  [greater than [is equal to,is
mean median mode equal to to,less than  [equal to or equal to  |equal to
Harmonic mean is the of the arithmetic mean of the . . . .
16 values positional proposional  [reciprocal equal reciprocal
17 The __and mark off the limits with in which the |quartile one |deviation and |median and deviation quartile one
middle 50 % of the items lie and three one the three and three
can be calculated from a frequeny distribution median or mean or e median or
(RSB ror—— mode . deviation
with open end classes mode median mode
In the calculation of all the observations are taken into . A
19 . . mean mode median divation mean
cosideraion
20 [Median is the average suited for classes open -end middle center sub open-end




21 When calculating the average rate of debt expansion for a arithmetic weighted geometric either a (or) ¢ geometric
company, the correct mean to use is the mean mean mean mean
. the mode is .
every value [a multimodal the mode is
a data set inadataset [datasetis unduly undul
22 |The mode has all the following disadvantages except may have no e affected by Y
may be a difficult to affected by
modal value extream
mode analyze extreme value
values
23 If one event is un_affected by the outcome of another event, the dependent independent mutual_ly event independent
two events are said to be exclusive
Aand B are Aand B are
24 |If P(A or B)=P(A), then mutually venn diagram |P(A)+P(B) |deviation mutually
exclusive exclusive
25 The simple probability of an occurrence of an eventis called [bayesian joint mariginal conditional  |marginal
the probability probability probabiity probability probability
the out com'e both ahead |the probabiity both a head
of any toss is . . .
not affected and a tail of getting a and tail
26 |Why are the events of a coin toss mutually exclusive by the out cannotturn  |head and the |all of these cannot turn
Y up on any probability of up on any
come of those - .
. one toss getting a tail one toss
preceding
97 Wha_lt is the probabiity that a ball drawn at random from the 01 04 06 1 06
urn is blue
28 The set of all possible outomes of an activity is the sample space [event independent |mode sample space
29 Events that cannot happen together are mutual_ly event exclusive mode mutual_ly
called exculsive exculsive
30 |What is the median of the numbers 4,12, 11, 6, 2? 2 4 5 11 4
31 \1I\éf;at is the median of the numbers 3, 11, 6, 5, 4, 7, 12, 3 and 4 5 6 7 6
39 What is the mean of the squares of the first ten natural 30.25 3167 385 505 385
numbers?
33 \zl\éheiltzl)s the mean of these numbers: 12, -1, 8, 2, -10, 0, -5, 3, 6.3 53 37 27 27
34 [What is the mean of the numbers 8, 9, 13 and 18? 10 11 12 16 12
A booklet has 12 pages with the following numbers of words:
35 |271, 354, 296, 301, 333, 326, 285, 298, 327, 316, 287 and 307 309 311 313 309

314. What is the mean number of words per page?




The classical school of thought on probability assumes that all . Mutually Mutua_l ly Mutua_l ly
36 - . Equally likely . exclusive and |Independent |exclusive and
possible outcomes of an experiment are exclusive . .
E— equally likely equally likely
37 What is the probability of getting an even number when a die 13 12 16 19 12
is tossed
38 :/g/szitdls the probability of getting more than 2 when a die is 13 12 213 19 213
39 ;I;he probability of drawing a spade from a pack of cards 1/52 113 413 1/ 1/
40 If the outcome of one event does not influence another event, mutual_ly Dependent independent  |Equally likely |independent
then the two events are exculsive
- probability  [probability
41 |A density function may correspond to different probablllty. distribution  [density ranFiom ranFiom
mass function . . variable variable
function function
For a discrete random variable, the probability density probability p.mb?b”!ty probgblllty probability
42 . . |distribution  [density none of these .
function represents the mass function . . mass function
— function function
43 Pro.babll{ty of a single real value in a continuous random Wo three four ze10 ze10
variable is
44 |A random variable X is if it assumes only discrete values. [spectrum complex continuous discrete discrete
45 |If P(A)is 1, the event A is called a Cases Trial Certain Event Randgm Certain Event
- experiment
46 |p+q= , here p is success and q is failure events 7 9 1 3 1
47 In rolling of single die, the chance of getting 2,4,6 (even simple Compound Certain event impossible Compound
numbers) are event event event
48 A numerical measure of uncertainty is practiced by the Theory of Theory of Theory of Theory of Theory of
important branch of statistics called mathematics |physics statistics probability probability
49 )j/\i/:;t is the probability of getting a sum 9 from two throws of a 16 19 8/9 2/9 19
50 |Three unbiased coins are tossed. What is the probability of 3/4 1/4 3/8 7/8 7/8
getting at most two heads?
51 A bag contains 6 black and 8 white balls. One ball is drawn at 3/ A7 18 3/7 A7

random. What is the probability that the ball drawn is white?
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S.No [Questions OPT1 OPT 2 OPT3 OPT 4 ANSWERS
1 |Binomial distribution is symmetrical if p=qg=% p=09=% p=q=4/5 p=q=2/3 [p=q=%
2 |Anormal curve hasan Elliptic parabolic hyperbolic  [asymptote asymptote
. . e square root
3 |Variance of binomial distribution is n n n n
= . pq p q of (npq) Pq
4 The number of p_rmFmg_errors at each page of a book” is a Normal Uniform Binomial POisson POisson
example of _distribution.
. . . . L ebt-efat/t |e“bt+etat/t | e”bt+efat/t |ebt-etat/t |e”bt- eMat/ t
5 |Moment generating function of Uniform density function is (b-a) (b+a) (b-a) (b+a) (b-a)
. T variance -1= |variance = variance > variance < variance <
6 |For binomial distribution
mean mean mean mean mean
7 is a non negative continuous random variable Binomial Gamma Poisson E?r?c?rt:]\i/; Gamma
g ' distribution |distribution |distribution o distribution
distribution
8 [Standard deviation of binomial distribution is \npq np(g-p) npq npq(g-p) \npq
9 The density function of the Uniform distribution is 1ba a<x<b 1/ (b+a) 1Uba a>x>b 1/ (b-a) 1/ (b-a)
a<x<h a<x<b a<x<b
. . . T Mx(@®) =1 |Mx(@)= Mx (t) = Mx (t) = (et | Mx () =
10 [Moment generating function of Binomial distribution O (MM + Q)N |(pert—p)*n |+ a)in (Dt +q)~ n
11 |The mean and variance of a standard normal distribution is ___ | N(1,2) N(0,1) N(0,2) N(0,40) N(0,1)
12 | Variance of Uniform density function is b/2 [(b-2)"21/12 [ba/2 [ (b+a)"2] /12 |[(b-a)"2 ]/12
13 A continuous random variable X has a probability density 1 9 3 4 1
function f(x)= K, 0 <= x <= 1. Find K.
- — - ——
14 If X |s.n.ormally distributed with mean 1 and S.D. %2, find the 0.0288 0.0544 0.0228 0.0882 0.0228
probability that X > 2.
15 |Mean of Uniform density function is b /2 (b-a) /2 ba /2 (b+a) /2 (b+a) /2
Var[X] = _ Var[X] = E( _ Var[X] =
16 |The formula of variance is E(X2) — xfrz[)xj [}E(E)(()] X) - [ECOI ;?rf?]]a&f]( E(X"2) -
[EX)IM2 2 _[EX)N2
A N A N A A A N
17 | Binomial distribution is NCX(E)a™(n InCx(p™X)a™(n InCx(p nCx(p NCx(P™)an(n
-X) +X) X)gq"(n-x) )N N+x)  |-X)
18 |Mean of Poisson distribution is A Mt At At A
19 | Gammaofn = (n-1)! (n+1)! n! 0! (n-1)!
20 [Moment generating function of Exponential distribution is M(\-t) 2M(A-t) M(A+t) 2M(A-+t) M(-t)
21 [Variance of Poisson distribution is A 2\ 3\ 40 A
22 |Exponential distribution is Ae(Ax) AeN(-Ax) AeN(-2Ax) AeN(22x) AeN(-Ax)




square root of

square root of

square root of

square root of

23 |Gamma of (1/2) = (n"2)/2
/2 /3 T b
24 | Moment generating function of Poisson distribution et [MerM-1D)] et [MerMtD)] e [MeM=2)]  [e” [-Mert-1)] [en [Ment-1)]
25 |Mean of Exponential distribution is 1/A A A2 2/h 1/A
Geometric distribution is given byP{X=x}= where
26 | S0t given byPXXY preel) [P0 [paeert)  [pr@x D) [pgnecd)
If the mean and variance of a binomial variate are 8 and 6, then | _ _ _ _ _
27 the probability of failure is given by q=3/4 q=4/3 q=1/4 q=1/3 q=3/4
If the mean and variance of a binomial variate are 20 and 16, _ _ _ _ _
28 then the probability of success is given by . p=1/5 p=2/5 p=3/5 p=3/4 p=1/5
29 If n=5 and p=1/2 then the mean of a binomial variate is 0.50 250 35 45 25
30 [The mean of a poisson variate is 2 . Find its variance. 2 3 1 2.5 2
31 Poisson distribution is the limiting case of Binomial Gamma Poisson E?r?c?rt:l\i/; Binomial
distribution. distribution |distribution |distribution o distribution
distribution
. S Binomial Gamma Poisson rectangular  [rectangular
32 | The other name of uniform distribution is distribution _|distribution _|distribution _|distribution _|distribution
In a Uniform distribution if X is distributed uniformly on _ _ _ _ _
33 (0,30) then its density function is given by ) FOO=113  [F()=2/13  F(x)=1/3 F0)=1/30  1F(x)=1/30
is larger than the mean for a negative binomial . Standard Mean Quartile .
4 |\, Variance . L. .. Variance
distribution deviation deviation deviation
35 |Mean of binomial distribution is np npg n+1 n np
36 | Third moment of Binomial distribution is n(g-p) np(g-p) npg npqg(q-p) npqg(q-p)
L S Var(X) > Var(X) < Var(X) = Var(X) >
37 |For a negative binomial distribution___ E(X) E(X) E(X) Var(X) / E(X) E(X)
If X follows a Poisson distribution such that P(X=1) = 1/4 and
38 P(X=2) = 3/8. find P(X=3). 0.123 1.234 2.34 0.375 0.375
neither Continuous
The height of persons in a country is a random variable of the continuous dlscr.ete norjas well as discrete continuous
39 random continuous discrete random random
type . . .
variable random random variable variable
vaiables variable
40 A family of parametric distrbution in which mean is equal to  |Binomial Gamma normal Poissson Poissson
variance is distribution  |distribution  |Distribution |distribution |distribution
a1 A family of parametric distrbution in which mean is always Binomial Gamma Geometric Poissson Geometric
greater than its variance is distribution  [distribution  |Distribution |distribution [Distribution
42 |The distribution has the memorv less propert Gamma Geometric Geometric Poissson Geometric
y property. distribution  |distribution  |distribution |distribution  |distribution




43 Th? mean of the binomial distributionis _ than its greater than  [Less than more normal greater than
variance
44 |Mean and variance of geometric distribution are related correlated rectangle range related
A distribution where the mean and median have different . . .
45 . S normal binomial poisson gamma normal
values is not a distribution
46 [Normal distribution was invented by Laplace De-Moivre  |Gauss all the above [all the above
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The coefficient of correlation is independent of change . .. |variable, . . .
1 scale,origin  |vector,origin interer, origin [scale,origin
of and constant
2 |Whenr =0 the line of regression are to each other. parallel perpendicular [straight line |circular perpendicular
The relationship between three or more variables is studied . spearman's .
3 . . multiple rank perferct multiple
with the help of correlation. rank
4 |The coefficient of correlation is under-root of two regre_ss_l on rank - Regre_ssmn r_e gresston regre§5_| on
— coefficients  |coefficient equation line coefficient
can be less can be more varies varies
5 |The coefficient of correlation has no limits between + or -|between + or -
- than 1 than 1
one one
6 |which of the following is the highest range of r Oand 1 minus one minus one zero minus one
and 0 and one and one
change of change of both change change of both change
7 |The coefficient of correlation is independent of g ang of scale and ng of scale and
scale only origin only . variables .
origin origin
can be either can be either
- . cannot be cannot be . .
8 |The coefficient of correlation o . positive or Zero positive or
— positive negative . .
negative negative
E(XY)- E(XY)+E(X) E(XY)-
9 [COV(X,Y)= E(XY Var(X,Y
(X.Y) E(X)E(Y) E(Y) (XY) (X.Y) E(X)E(Y)
Two random variables with non zero correlation are said to . . . .

10 be correlation regression rank variables regression
11 |Correlation means relationship between variables two one two or more  |three two or more
A Mathematical measure of the average relationship between . . . .

12 . . correlation regression rank variables correlation
two variables is called




The covariance of two independent random variable is

13 Zero two three two or more |Zero
14 |Two random variables are said to be orthogonal if correlation is rank is zero  |COvantance s e correlation is
zero zero zero
Two random variables are said to be uncorrelated if correlation
15 L zero one two or more  |orthogonal zero
coefficient is
16 Regr_essmh analysis is a mathematlf:al measures of the average wo or more  lone Two variables |three 1O Or More
relationship between variable
17 Thg regresmgn ar?aly5|s confined to ther study of only two Simple Multiple Linear Wo Simple
variable at a time is called regression
18 |If r=0, then the regression coefficient are zero one threee constant zero
19 |The equation of the fitted stright line is y=ax+h y=a+hx y=mx+c y=mx y=ax+b
20 | If X=Y , then correlation cofficient between them is 1 Zero less than one gf}reater than 1
21 The greater the value of r obtained through the better are |the worst are |really makes |good the better are
regression analysis estimates the estimates |no difference |estimates estimates
29 Where r is zero the regression lines cut each other making an 30 degree 60 degree 90 degree neither of the |neither of the
angle of above above
Greater will | The less will does not the worst are the less will
23 |The father the two regression lines cut each other be degree of |be the degree . be the degree
- . |matter the estimates -
correlation of correlation of correlation
average of
N . A fX |A fX |A fYy f X
24 |The regression lines cut each other at the point of : Verage o Verage o Verage o both(a) and average o
and Y only only (b) and Y
25 [When the two regression lines coincide, then r is : 0 -1 1 0.5 1
. . L i D
26 |[The variable , we are trying to predict is called the depentent |nd.epent constant normal ependent
variable variable variable
27 |Both the regression coefficients cannot one exceed exact plus or minus [negative exceed
28 |The regression analysis measures between variables dependence |independence |constant normal Dependence
two onedimension two
29 If the possible values of (X,Y) are finite, then (X,Y) is called  [dimensional al random bothaandb linfinte dimensional
a random . random
. variable .
variable variable




joint

joint -
30 [If X &Y are continuous random variable , then f(x,y) is____ |probability z;cr)]t;iblllty bothaand b |infinte both aand b
function Y
function
Joint probability is the probability of the Simultaneous . Mariginal density Simultaneous
31 . Conditional e . .
occurrence of two or more events. (or) joint probability  [function (or) joint
32 |The order of arrangement is important in permutation |Gambling joint density Permutation
33 ITX & Y ae___ random variable , then f(xy) is called joint discrete continuous  |bothaandb |infinte continuous
probability function.
If the value of y decreases as the value of x increases then . perfect s .
34 there is correlation between two variables. negative positive bothaand b infinte negative
35 [The correlation between the income and expenditure is positive negative finite bothaandb |positive
36 |correlation between price and demand of commaodity is positive finite negative bothaand b ([negative
. E(XY) = E(XY) = E(XY) = E(XY) = E(XY) =
37 [If Xand Y are independent , then EO) + E(Y) |ECQO-E(Y) |E(X) ECY) E(X)VECY) E(X) ECY)
38 |correlation coefficient does not exceed unity 5 0 2 unity
39 |Two independent variables are correlated uncorrelated |bothaand b [positive uncorrelated
40 In Ran\lfaclzsérelatlon the correction factor is added for each repeated Non-repeated |indefinite bothaandb |repeated
41 X\t/:sr r=1or-1the the line of regression are __ to each parallel perpendicular [straight line |circular parallel
42 |If the curve is a straight line, then it is called the the Ime.of the Ime. of covariance both aand b the I|ne. of
- correlation regression regression
43 |If the curve is not a straight line, then it is called the covariance the Ime_of the curvilinear the I|ne_ of the curvilinear
— correlation regression
44 |whenris the correlation is perfect and positive. 1 2 3 0 1
45 |If X and Y are independent , then E(XY)=0 E(X) E(Y)=0 [Cov(X,Y) =0 |E(XY)=1 Cov(X,Y) =0
46 Two random variables X and Y with joint pdf f(x,y) is said to  [f(x,y) =f(x) [|f(x,y) =f(x) / [f(x,y) = f(x) * |f(x,y) = f(X) - [f(x,y) = f(x) *
independent if +f(y) f(y) f(y) f(y) f(y)
E[{ X-E(X) [E[{ X-E(X) |E[{X-EX) [E[{X-E(X) |E[{X-EX)
47 |Cov(X,Y)=__ LY - H{Y - F{Y-EY) |} {Y-EX) [} {Y-EX)
EM 1 EM 1 1 1 1




A specific A specific The strength The strength
value of the y-|value of the x-
. . of the of the
variable variable . . . . .
. S . . . relationship  [is the same as |relationship
48 |The correlation coefficient is used to determine given a given a
o o between the x |r-square between the x
specific value |specific value
andy andy
of the x- of the y- . .
. . variables variables
variable variable
is the square |is the square is the square
. . of the root of the is the same as |can never be (root of the
49 |The coefficient of correlation - - - -
— coefficient of [coefficient of |r-square negative coefficient of
determination [determination determination
50 |[The correlation between two variables is of order 2 1 0 3 0
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The probabilistic model used for characterizing a ------- is random . random random
random signal [random model | " .
1 |called a random process process variable process
. Mark hasti hasti
The Random process is also called as__ arkov WSS SSS stochastic stochastic
2 process process process
The family of all functions X(s,t) is called ----
random . random random
random signal . random model
3 process variables process
A---- is a collection of Random variables that are functions of t
ands. Random random . Random
; random signal [random model
process function process
4
5 |A non null persistent and aperiodic state is called --- stochastic ergodic WSS SSS ergodic
If X is continuous and t can have any of a continous of values, [Continuous |Discrete Continuous . Continuous
. Discrete
then X(t) is called as Random random random Random
sequence
6 process process sequence process
If X assumes only discrete and t is continuous, then X(t) is Continuous Discrete Continuous . Discrete
Discrete
called as Random random random random
sequence
7 process process sequence process




Let X denote the number of telephone calls received in the Continuous |Discrete Continuous . Discrete
. . Discrete
interval (0,t). Then {X(t)} isa Random random random sequence random
8 process process sequence a process
o L . Continuous  |Discrete Continuous . Continuous
Thermal agitation noise in conductors is an example of ------ Discrete
Random random random Random
sequence
9 process process sequence process
Let X denote the maximum temperature at a place in the Continuous |Discrete Continuous . Continuous
. . Discrete
interval (0,t). Then {X(t)} is a Random random random sequence Random
10 process process sequence a process
Discrete Discrete
random random
The outcome of the n-th toss of a fair dice is an example of ----- Continuous |Discrete Continuous  [sequence sequence
- Random random random
process process sequence
11
Discrete
. . . . . . . sequence .
A random process for which X is continuous but time takes Continuous Discrete Continuous Continuous
only discrete values is called a --- Random random random random
process process sequence sequence
12
Discrete Discrete
random random
A random process for which X is discrete and time takes only [Continuous Discrete Continuous  [sequence sequence
discrete values is called a --- Random random random
process process sequence
13
The set of possible values of any individual members of the
random process is called space. .
P — P vector state random universal state
14
15 |If the process is first order stationary, then mean is negative positive constant unique constant
A stochastic matrix is said to be a regular matrix, if all the . . . .
. positive negative zero square matrix [positive
16 |entries of Pm are---
. . weakly covariance  [wide-sense
The discr rameter Markov pr is called a . . . . .
e discrete parameter Markov process is ca E— stationary stationary stationary Markov chain |Markov chain
17 process process process




A random process is called a --- if its mean is constant and the |weakly covariance wide-sense
autocorrelation depends only on the time difference. stationary stationary stationary All the above |All the above
18 process process process
If the transition probability matrix is regular, then the reqular irreaular square matrix |uniaue reqular
19 |homogeneous Markov chain is 9 9 a q 9
The n-th order stationary process is stationary to order 0 N+l n*n -1 -1
20
A random pri is called a ------- if all its fini . . . .
. a d(.) P o.ces.s ss:a ed a. ! all its finite . Wide-sense  |Strict sense Covariance  |Strict sense
dimensional distributions are invariant under translation of . . Markov . .
. stationary stationary stationary stationary
time parameter. process
21 process process process process
All regular Markov chain ar Mark rgodi rgodi
egular Markov chain are arkov ergodic WSS ssS ergodic
22 process process process
The transition probability matrix of a finite state Markov chain
isa__ matrix. . .
- row column square identity square
23
A random process is if it is ergodic in the mean and the .
. - first-order ] -
auto correlation function. . Wide-sense Wide-sense
stationary . WSS SSS .
r0ces ergodic ergodic
24 P
A random process that is not stationary in any sense is called Evolutionary Strl_ct sense Markov Evolutionary
85 = rocess stationary WSS rocess rocess
25 P process P P
Continuous  |discrete . . discrete
. L . discrete Continuous
A continuous random sequence satisfying Markov property is  |parameter parameter parameter
. . . parameter parameter
known as ---- as t is discrete &{Xi} is continuous. Markov Markov . . |Markov
26 Markov chain |Markov chain
process process process
The Markov chain i if there is only one class. . . . . . .
97 & Markov chain Is __ I there Is only one class Irreducible reducible Poisson Binomial Irreducible
The Binomial processis ___. stro_ngly Markov W'd.e “sense - |covarlance Markov
stationary stationary stationary
process process
28 process process process
A state is said to be ____if its period is 1. Markov . - - -
ergodic aperiodic periodic aperiodic
29 process
A state is said to be aperiodic if its period is 0 1 9 3 1

30




The state ‘i’ is called an state if it communications with

essential

ergodic

aperiodic

identity

essential

31 |every state it leads to.
. The Poisson process is a process Markov WSS WSE sss Markov
A Random process in which all type of ensemble averages are
interchangeable with the corresponding time averages is called |Markov WSS WSE ergodic ergodic
33 [an  process
A Random processis__, if it is ergodic in the mean and the Markov Wide ergodic WSS ssS Wide ergodic
34 auto correlation funtion process process
- S Wide ergodi
___process has limited historical dependency Markov de ergodic WSS SSS Markov
process
35
A first order linear differential equationisa__ WSS Wide ergodic Markovian SSS Markovian
36 process
Two states i and j which are accessible to each other are said to . . . . .
37 Irreducible reducible communicate |absorbing communicate
38 chr?tii Is said to be an _ state if no other state is accessible Irreducible reducible communicate |absorbing absorbing
Astate iis___, if starting in i, the expected time until the negative positive . positive
R recurrent Irreducible
39 |[process returns to state i is finite. recurrent recurrent recurrent
Inafintie ___, all recurrent states are positive recurrent negative markov chain [recurrent Irreducible markov chain
40 recurrent
. . negativ itivi . itivi
In a fintie markov chain, all recurrent states are . egative positive recurrent Ireducible  [P%° tive
41 recurrent recurrent recurrent
42 |All states of a finite irreducible markov chainare recurrent reducible communicate |absorbing recurrent
43 |All states of a finite markov chain are recurrent. Irreducible reducible communicate |absorbing Irreducible
A state i is called an --- state if ti communicates with every . . . . .
. Irreducible reducible essential absorbing essential
44 |state it leads to.
45 A special case of ergodic markov chainis ___ markov chain  [reducible essential aperiodic regular regular
6 A special case of ___ markov chain is regular markov chain reducible essential aperiodic ergodic ergodic
47 |Positive recurrent, aperiodic states are called reducible essential aperiodic ergodic ergodic
A random pr is call random pr ifall th non- .
andom process is called a__ random process if all the 0 deterministic |stationary markov deterministic

48

future values can be predicted from past observations.

deterministic




A random process is called a deterministic random process if

49 all the future values be predicted from past observations. ean cannot should may ean
A random process is called a ___ random process if all the
. . non- R . non-
future values of any sample function cannot be predicted from .. . |deterministic |stationary markov L
. deterministic deterministic
50 |past observations.
A random process is called a non-deterministic random
process if all the future values be predicted from past can cannot should may cannot
51 [observations.
___explains the time invariance of certain properties of the reducible stationarity  |aperiodic ergodic stationarity
52 |random process
Continuous  [discrete . . Continuous
. o . discrete Continuous
A continuous random process satisfying Markov property is parameter parameter parameter
. . o . parameter parameter
known as ---- as t is continuous &{Xi} is also continuous. Markov Markov . . |Markov
Markov chain [Markov chain
53 process process process
Continuous  [discrete . . .
. o . discrete Continuous  |discrete
A discrete random sequence satisfying Markov property is parameter parameter
L o . parameter parameter parameter
known as ---- as t is discrete &{Xi} is also discrete. Markov Markov . . .
Markov chain [Markov chain [Markov chain
54 process process
Continuous  [discrete . . .
. s . discrete Continuous  |Continuous
A discrete random process satisfying Markov property is parameter parameter
. . N parameter parameter parameter
known as ---- as t is continuous & {Xi} is discrete. Markov Markov . . .
Markov chain [Markov chain [Markov chain
55 process process
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O |QUESTIONS OPTION 1|OPTION 2 |OPTION 3[OPTION 4 |ANSWER
Rxx(t1,t2) | Rxx(t1,t2) [Rxx(t1,t2) | Rxx(t1,t2) | Rxx(t1,t2)
1 |The Cross covariance, Cyx (t3,t,) is E[X(t1)] |/ E[X(t1)] [+ E[X(t1)] |- E[X(t1)] |- E[X(t1)]
E[X(2)] |E[X(t2)] [E[X(t2)] [E[X(t2)] |E[X(t2)]
L .. . Cross auto .
2 |Ergodicity is a weaker condition than----. stationary . . SSS stationary
correlation |correlation
3 |If X(t) & Y(t) are orthogonal, then Syx(f) = 0 1 i:);:ti/veen 0 4 0
A - is defined by a functional relationship . . .
4 system linear non-linear [unique system

between the input and the output as y(t) = f{x(t)}




The mean of the derivative of a stationary process is-

5| 1 3 4 0 0
Rxy(t1,t2) [Rxy(t1,t2) [Rxx(t1,t2) [Rxy(t1,t2) [Rxy(t1,t2)
6 |The cross correlation of the two random processes is |= E[X(t1) |= E[X(t1) |=E[X(t1) |=E[X(t1) |=E[X(t1)
+Y(12)] 1Y (t2)] Y (t2)] Y (t2)] Y (t2)]
7 A random process {X(t)} is called'--- |f_aII its stochastic |ergodic WSS SsS ergodic
ensemble averages equals appropriate time averages.
If the auto correlation function of a random process
8 |exists over a finite time range, the power density infinite finite unique Zero infinite
spectrum exists over--- frequency range.
A system is --- if the principle of superposition does . . . .
9 system linear non-linear [unique non-linear
not hold good.
10 :I;:ig?(\)/\r/]er density spectrum of a linear system is a - imaginary |real valued |constant  |identity  |real valued
When the correlation is defined between two
random variables each from two different processes Cross AUo Cross
11 |or two sample functions each from different . . SSS WSS .
. . correlation |correlation correlation
processes, the correlation function are called as -----
function.
Cross — correlation does not necessarily have a . _ . _
12 . point origin constant  |unique origin
maximum at ------
13 The auto correlation function of E(sinwt) and E sin same odd even not defined lsame
(wt + q) are---
The auto covariance of the random process is the --- auto
14 |of the random variables obtained by observing the  [mean covariance |time . covariance
. . correlation
process at time t; and t2 respectively.
Einstein — Einstein —
The important time and frequency parameters Fourier Wienern-  |Markov Binomial |Wiener-
15 . . . - oo oo
relationship of random process is called as series Khinchine |process process Khinchin

relationship

relationship




16 |— theorem provides an alternative method for Einstein Wienern- Poisson Binomial Wienern-
finding the power spectral density function. Khinchine Khinchine
17 The cross _spectral density of two orthogonal 0 1 5 3 0
processes is----
18 |The imaginary part of Sxv(f) is an ---- function of f. [odd even constant unique odd
If the auto correlation function of a stationary
19 _random process exists over an infinite time range, infinite finite unigue 2610 finiite
its power density spectrum exists over--- frequency
range.
. in nden random
20 |Rxy(t) =0 if the processes are--- ; depende orthogonal |random s?grc]ia?l orthogonal
____isdefined as a property of linear systems that if
he input is time shif n amount, th Tim . Tim
21 the Input s_t €s ted_by ana Ol.J L ? . e_ Causality |Causal stable . e_
corresponding output will also be time shifted by invariance invariance
the same amount.
22 |The auto correlation function isa __ order moment. [first second higher nth second
23 |The function is a second order moment. correlation cross - auto . time €ross auto .
correlation |correlation |correlation |correlation
. . . . i watts per  |watts per
24 [The unit of power density spectrumis km/hour  [sq.units cu.units P P
hertz hertz
25 The __ spectral density of two orthogonal auto Cross correlation |time cross |cross
processes is 0
Cross-
o power o
. . . Einstein- . Einstein-
26 The r_elz_atlonshlp relates time and frequency Wiener- Egler - RMS density and Wiener-
characteristics of a random process. S Einstein Cross- S
Khinchin . Khinchin
correlation

function




If the __ function has periodic components, then

autocorrelat

crosscorrel

autocorrelat

27 |the corresponding process also will have periodic . correlation |time cross
ion ation ion
components.
If the autocorrelation function has periodic
28 [components, then the corresponding process also aperiodic  |WSS periodic ergotic periodic
will have components.
S(f) gives the distribution of power of {X()}asa autocorrelatlcrosscorrel power _ power
29 |[funtion of frequency and hence is called the o ation spectral ergotic spectral
function. density density
The mean square value of a process is equal to .
— . (W WSE rgoti w
30 the total area under the graph of the spectral denstiy. S5 5SS S ergotic S5
The mean square value of a wise-sense stationary
31 [process is equal to the total under the graph of |volume amount density area area
the spectral denstiy.
The value of the ___ funtion at zero frequency is
autocorrelat|crosscorrel |spectral . spectral
32 [equal to the total area under the graph of the . . . ergotic .
. . ion ation density density
autocorrelation funtion.
The value of the spectral density funtion at
33 [frequency is equal to the total area under the graph |0 1 2 3 0
of the autocorrelation funtion.
Th ral density function of a real random .
34 y spet_:t al density u ction of a real rando odd even constant unique even
process isan __ funtion
The spectral density function ofa___ random L
35 . . complex  |real imaginary [constant real
process is an even funtion
. . . Fourier Fourier . Fourier
The spectral density and the autocorrelation Fourier ou_ € oune Fourier oune
36 ; . cosine sine . cosine
function of a real WSS process forma ___ pair. transform series
transform  [transform transform
37 If the system operates only on the varibale t treating linear deterministi stochastic |system deterministi

S as a parameter, it is called a .




38 If the system_operates on both t (time) and s linear deterministi stochastic |system stochastic
(parameter), it is called c
39 |If Y(t+h)=f[X(t+h)], then fis called a___ system time- invariant o 0> auto- time-
— invariant invariant  |invariant  |invariant
If the value of the output Y(t) depends only on the deterministi
40 [past values on the input X(t), then the system is linear c stochastic |causal causal
calleda __ system
If the output Y (t) at a given time depends only on
power power
41 [X(t) and not an any other past or future values X(t), . memoryless |causal memoryless
. density transfer
then the system f is called a system
unit unit unit
If the input of the system is the unit impulse unit ) C impulse impulse
42 . . . . impulse weighting
function, then the output is the system funtion. [impulse reSDONSe response or [response or
P weighting | weighting
unit unit time- unit
43 [h(t) is denoted as function impulse . . . causal impulse
impulse invariant
response response
If a system is such that its input X(t) and its output |Einstein- . .
. . Euler - convolution |convolution
44 |Y(t) are related by a ___, then the system is a linear |Wiener- o RMS . .
T . s Einstein integral integral
time-invariant system. Khinchin
If a system is such that its input X(t) and its output |.. .
.. time- i . Cross- auto- time-
45 |Y(t) are related by a convolution integral then the . . invariant |, . . . . .
. invariant invariant  |invariant  |invariant
system is a linear system.
If the i ime-invarian le li m .
26 |! the input to a time-invariant, _s.tab e linear syste sss WSS WSE ergotic WSS
is a WSS process, the output will a __ process
. . . . . ime- ime-
If the input to a linear system is a WSS process, |time- . . unit t e t e
47 o . . invariant |. invariant, [Invariant,
the output will also a WSS process invariant impulse stable stable




____is the Fourier transform of the unit impulse power power power power
48 . density transfer density causal transfer
response funtion of the system. . . .
function function spectrum function
. . . . non- non-
49 [The spectral denstiy of any WSS processis positive negative  |very small hegative  |negative
ower time- system or  |system or
50 [H(omega) is called as ___ function system P . . power power
transfer invariant
transfer transfer
s . unit . . unit
The another name of the system weighting function |. unit time- .
51 |. . impulse . . . causal impulse
is___ function impulse invariant
response response
. . rrelatfcr rrel |time- . rrel
52 |R (tau) is called the function gutoco elat|c osscorre F' & ergotic gutoco elat
ion ation invariant ion
53 [R (tau) is an function odd even unique constant  |even
54 [R(tau) is maximum at (tau) = 1 -1 0 infinity 0
55 If the processes {X(t)} and {Y(t)} are orthogonal, 1 1 0 infinity 0
then Rxy(tau) =
56 The concepts of ergodicity deals with equality of continuous, |time, time, discrete, time,
___averages and __ averages. ensemble |ensemble |stationary |ensemble |ensemble
____theorem provides a sufficient condition for the [Wiener- . Mean- Mean-
57 L S Euler Einstein . .
mean-ergodicity of a random process. Khinchin Ergodic Ergodic
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S.No [Questions OPT 1 OPT 2 OPT3 OPT 4 ANSWERS
1 |Binomial distribution is symmetrical if p=q=% p=q=% p=qg=4/5 p=qg=2/3 p=q=%
2 |[Anormal curve hasan Elliptic parabolic hyperbolic asymptote asymptote
3 |Variance of binomial distribution is npq np ng (iqptaa;re root of npq
4 |“The number of printing errors at each page of a book” is a example of ___ distribution. Normal Uniform Binomial Poisson Poisson
. . . . L eMbt-eMat/t  [enbt+enat/t | etbt+etat/t |etbt-efat/t [enbt-etat/t
5 |Moment generating function of Uniform density function is (b-a) (b+a) (b-a) (b+a) (b-a)
. e variance -1=  |variance = variance > variance < variance <
6 |For binomial distribution
mean mean mean mean mean
7 is a non negative continuous random variable Binomial Gamma Poisson E?r?:rtrl]\i/ael Gamma
g ' distribution distribution distribution o distribution
distribution
8 |Standard deviation of binomial distribution is \npq np(g-p) npq npq(q-p) \npq
9 | The density function of the Uniform distribution is Uba a<x<b |V 0+ N 1/ (b-3)
a<x<b a<x<b a<x<b
. . . S Mx (t)=(1- | Mx () = Mx (t) = (pe™t |Mx () = (et | Mx (t) =
10 |Moment generating function of Binomial distribution b) "n e +a)rn |- p)rn +q)°n (Dt +q)~ n
11 [The mean and variance of a standard normal distributionis N(1,2) N(0,1) N(0,2) N(0,40) N(0,1)
12 [ Variance of Uniform density function is b/2 [(b-a)"21/12 |ba/2 [ (b+a)"2] /12 |[(b-a)"2]/12
A continuous random variable X has a probability density function f(x)= K, 0 <= x <= 1.
13 Find K 1 2 3 4 1
14 | If X is normally distributed with mean 1 and S.D. %, find the probability that X > 2. 0.0288 0.0544 0.0228 0.0882 0.0228
15 [Mean of Uniform density function is b/2 (b-a) /2 ba /2 (b+a) /2 (b+a) /2
Var[x] = VarX]=E(  |[VarX]=E( |Varx]=g( |VATXI=
16 |The formula of variance is E(X"2) — o - - E(X"2) —
A\ N\ - A\ N\ N_ A\ _ A\ VA -
17 | Binomial distribution is NCX(P™X)g™(n-|nCx(p™)a(n \nCx(p nCx(p NCX(P™)a™(n
X) +X) X)9™(n-x) X)g™(n+x) X)
18 [Mean of Poisson distribution is A Mt -t A+t A
19 [ Gammaofn= (n-1) ! (n+1)! n! 0! (n-1) !
20 |Moment generating function of Exponential distribution is M(A-t) 20/ (A-t) M(OHt) 20 (A-+t) M(A-t)
21 |Variance of Poisson distribution is A 2\ 3 4\ A
22 |Exponential distribution is Ae(Ax) AeMN(-Ax) Ae™(-2Ax) Ae™N(22x) Ae(-Ax)
23 |Gamma of (1/2) = (2)2 square root of |square root of |square root of |square root of
/2 /3 b T
24 | Moment generating function of Poisson distribution e [Mert-1)]  [en [Mert+D)] et [MeM-2)]  [eN [FMeM-1)] [en [MeNt-1)]




25 |Mean of Exponential distribution is 1/A A N2 2/ 1/
26 | Geometric distribution is given byP {X=x}= where x=1,2,... pg~(x-1) pg’\(x-2) pg(x+1) pg”(2x-1) pg’\(x-1)
97 ;\t,r;] rt‘;];an and variance of a binomial variate are 8 and 6, then the probability of failure is q=3/4 q=4/3 q=1/4 4=1/3 q=3/4
28 II: g:\e/er:es; and variance of a binomial variate are 20 and 16, then the probability of success p=1/5 0=2/5 0=3/5 0=3/4 0=1/5
29 |If n=5 and p=1/2 then the mean of a binomial variate is 0.50 2.50 3.5 4.5 2.5
30 [The mean of a poisson variate is 2 . Find its variance. 2 3 1 2.5 2
. . . negative . .
31 |Poisson distribution is the limiting case of distribution. B.lno.mla'I G.am.ma' Ppls§on . binomial B'mo'mla.l
distribution distribution distribution N distribution
distribution
. T Binomial Gamma Poisson rectangular rectangular
32 |The other name of uniform distribution is distribution distribution distribution distribution distribution
33 gr;vz;L]JE;‘orm distribution if X is distributed uniformly on (0,30) then its density function is F(x)= 1/13 F(x)= 2/13 F(x)=1/3 F(x)= 1/30 F(x)= 1/30
34 is larger than the mean for a negative binomial distribution Variance Star_1da_1rd Megn_ Quqrtl_le Variance
deviation deviation deviation
35 [Mean of binomial distribution is np npq n+1 n np
36 [Third moment of Binomial distribution is n(g-p) np(g-p) npq npq(g-p) npq(g-p)
37 [For a negative binomial distribution Var(X) > E(X) |Var(X) < E(X) |Var(X) = E(X) |Var(X) / E(X) |Var(X) > E(X)
38 [If X follows a Poisson distribution such that P(X=1) = 1/4 and P(X=2) = 3/8, find P(X=3). 0.123 1.234 2.34 0.375 0.375
neither Continuous as
continuous discrete nor  [well as discrete continuous
39 [The height of persons in a country is a random variable of the type random continuous discrete random random
variable random random variable variable
vaiables variable
. - L . . . . Binomial Gamma normal Poissson Poissson
40 |A family of parametric distrbution in which mean is equal to variance is distribution distribution Distribution |distribution distribution
A1 A family of parametric distrbution in which mean is always greater than its variance is Binomial Gamma Geometric Poissson Geometric
distribution distribution Distribution  |distribution Distribution
S Gamma Geometric Geometric Poissson Geometric
42 |The distribution has the memory less property. distribution distribution distribution distribution distribution
43 |The mean of the binomial distribution is than its variance greater than  [Less than more normal greater than
44 |Mean and variance of geometric distribution are related correlated rectangle range related
A distribution where the mean and median have different values is not a . . .
45 | normal binomial poisson gamma normal
distribution
46 |Normal distribution was invented by Laplace De-Moivre Gauss all the above |all the above
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S.No Questions OPT1 OPT 2 OPT3 OPT 4 ANSWERS
1 |The coefficient of correlation is independent of change of and scale,origin [vector,origin Zi::tk;ft‘ interer, origin|scale,origin
2 [Whenr =0 the line of regression are to each other. parallel perpendicular(straight line |circular perpendicular

The relationship between three or more variables is studied with the help of . spearman's .
3 . multiple rank perferct multiple
correlation. rank
4 |The coefficient of correlation is under-root of two regre_ss_lon rank - Regre_ssmn r_e gresston regre'_ss_lon
coefficients |coefficient [equation line coefficient
can be less  |can be more varies varies
5 |The coefficient of correlation has no limits between + or |between + or
- than 1 than 1
- one - one
6 [which of the following is the highest range of r Oand 1 MINUS One — MINUS oné 1, 0 MINus one
and 0 and one and one
both change both change
- L hange of hange of hange of
7 |The coefficient of correlation is independent of change o ¢ .a .ge 0 of scale and ¢ a. geo of scale and
scale only  |origin only . variables .
origin origin
can be either can be either
. . cannot be cannot be . .
8 |The coefficient of correlation - . positive or  |zero positive or
- positive negative . .
negative negative
E(XY)- E(XY)+E(X) E(XY)-
V(X,Y)= E(XY Var(X,Y
) ooV EQQE(Y) _|E(Y) o) ) EEM)
10 |Two random variables with non zero correlation are said tobe correlation  |regression  |rank variables regression
11 |[Correlation means relationship between variables two one two or more |[three two or more
12 |A Mathematical measure of the average relationship between two variables is called correlation  [regression  |rank variables correlation
13 [The covariance of two independent random variable is Zero two three two or more |Zero
14 |Two random variables are said to be orthogonal if correlation is rank is zero |COVANANCEIS | e correlation is
zero zero zero
15 [Two random variables are said to be uncorrelated if correlation coefficient is zero one two or more |orthogonal |zero
Regression analysis is a mathematical measures of the average relationship between Two
16 . two or more |one . three two or more
variable variables
17 The regresision analysis cgnflned to ther study of only two variable at a time is Simple Multiple Linear WO Simple
called regression
18 |[If r=0, then the regression coefficient are Zero one threee constant Zero
19 |The equation of the fitted stright line is y=ax+h y=a+bx y=mx+c y=mx y=ax+b




gerater than

20 | If X=Y, then correlation cofficient between them is 1 Zero less than one one 1
21 [The greater the value of r obtained through regression analysis the_ better are the Wo_rst are really makes g0(_)d the_ better are
estimates the estimates |no difference |estimates estimates
22 |Where r is zero the regression lines cut each other making an angle of 30 degree 60 degree 90 degree neither of neither of
the above the above
. | The less will the less will
Greater will be the does not the worst are |be the
23 [The father the two regression lines cut each other be degree of .
- degree of matter the estimates |degree of
correlation - -
correlation correlation
average of
24 [The regression lines cut each other at the point of : Average of | Average of |Average of both(a) and average of X
XandY X only Y only (b and 'Y
25 [When the two regression lines coincide, then r is : 0 -1 1 0.5 1
26 |The variable , we are trying to predict is called the depentent mdgpent constant normal Dependent
variable variable variable
27 [Both the regression coefficients cannot one exceed exact plus or minus |negative exceed
28 |The regression analysis measures between variables dependence |independence|constant normal Dependence
two . . two
dimensional onedimensio dimensional
29 |If the possible values of (X,Y) are finite, then (X,Y) is called a nal random |bothaandb [infinte
P random . random
. variable .
variable variable
. joint
Joint robabilit
30 |If X &Y are continuous random variable , then f(x,y) is probability zensit Y |bothaandb |infinte bothaand b
function .y
function
31 [Joint probability is the probability of the occurrence of two or more events Simultaneous Conditional Mariginal density Simultaneous
P Y P Y ' (or) joint probability  |function (or) joint
32 |The order of arrangement is important in permutation |Gambling joint density Permutation
33 [If X &Y are random variable , then f(x,y) is called joint probability function. discrete continuous [bothaand b |infinte continuous
34 If the value of y Fiecreases as the value of x increases then there is correlation negative perf.e.ct bothaand b linfinte negative
between two variables. positive
35 |The correlation between the income and expenditure is positive negative finite bothaand b |positive
36 |correlation between price and demand of commaodity is positive finite negative bothaand b |negative
. E(XY) = E(XY) = E(XY) = E(XY) = E(XY) =
37 [If X and Y are independent , then E(x) + ECY) [ECQ - E(Y) [ECQ E(Y) EC)VECY)  |E) EY)




38 |correlation coefficient does not exceed unity 5 0 2 unity
39 |Two independent variables are correlated uncorrelated |both aand b |positive uncorrelated
40 |In Rank correlation the correction factor is added for each value. repeated Non-repeated |indefinite bothaand b |repeated
41 |Whenr =1 or -1 the the line of regression are to each other. parallel perpendicular|straight line |circular parallel
42 |If the curve is a straight line, then it is called the the line .Of the Ime_ of covariance |bothaandb the Ime_ of
— correlation  |regression regression
43 |If the curve is not a straight line, then it is called the covariance the I|ne_of the - the I|ne_ of  |the -
correlation  |curvilinear  |regression  [curvilinear
44 |whenris the correlation is perfect and positive. 1 2 3 0 1
45 |If X and Y are independent , then E(XY)=0 E(X) E(Y)=0 |Cov(X,Y) =0 [E(XY)=1 Cov(X,Y) =0
- A emid . fxy) =f(x) [f(xy) =f(x) [f(xy) = f(x) f(xy) =f(x)
46 |Two random variables X and Y with joint pdf f(x,y) is said to independent if f(x,y) = f(x) -
joint pdf f(x,y) p +(y) /%(y) *£(y) (xy) =f(x) - | f(y)
E[{ X- E(X) |[E[{ X- E(X) [E[{ X- E(X) [E[{X-E(X) |E[{X-E(X)
47 |Cov(X,Y)=___ P*Y - H{Y - -{Y- LY -E(Y) [} { Y -E(Y)
ENY_ [EMNH_ [EC) H H
Aspecific A specific The strength The strength
value of the |value of the
. . of the of the
y-variable x-variable . .. . .
. S . . . relationship |is the same |[relationship
48 |The correlation coefficient is used to determine given a given a
— o L between the |as r-square |between the
specific specific
xandy xandy
value of the |value of the ] .
. . variables variables
x-variable y-variable
is the square |is the square is the square
of the root of the root of the
49 |The coefficient of correlation coefficient  [coefficient |is the same |can never be |coefficient
— of of asr-square [negative of
determinatio [determinatio determinatio
n n n
50 |[The correlation between two variables is of order 2 1 0 3 0
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S.No Questions OPT 1 OPT 2 OPT3 OPT 4 ANSWERS
1 The probabilistic model used for characterizing a ------- is called a random process |random process random signal  [random model |random variable |random process
2 The Random process is also called as__ Markov process WSS SSS stochastic process ;tr(;(;t;e;ss,tlc

The family of all functions X(s,t) is called ---- random
random process random signal . random model random process
3 variables
A---- is a collection of Random variables that are functions of t and s.
. . Random
Random process  [random function [random signal  [random model
4 process
5 |A non null persistent and aperiodic state is called --- stochastic ergodic WSS SSS ergodic
If X is continuous and t can have any of a continous of values, then X(t) is called . . Continuous Continuous
Continuous Discrete .
as random Discrete sequence [Random
Random process  [random process
6 sequence process
. . . . . . Continuous .
If X assumes only discrete and t is continuous, then X(t) is called as Continuous Discrete . Discrete
random Discrete sequence
Random process random process random process
7 sequence
Let X denote the number of telephone calls received in the interval (0,t). Then . . Continuous . .
. Continuous Discrete Discrete Discrete
{X({®)}isa random
Random process  [random process sequence random process
8 sequence
Thermal agitation noise in conductors is an example of ------ Continuous Discrete Continuous . Continuous
random Discrete sequence |[Random
Random process random process
9 sequence process
Let X denote the maximum temperature at a place in the interval (0,t). Then . . Continuous . Continuous
] Continuous Discrete Discrete
{X@®)}isa random Random
Random process  [random process sequence
10 sequence process
. Di
Discrete random Iscrete
Continuous sequence random
The outcome of the n-th toss of a fair dice is an example of ------ Continuous Discrete random sequence
Random process  [random process
sequence
11
Discrete
A random process for which X is continuous but time takes only discrete values is . . Continuous sequence Continuous
Continuous Discrete
called a --- random random
Random process  [random process
sequence sequence

12




Discrete random

Discrete

. - . . . . random
A random process for which X is discrete and time takes only discrete values is . . Continuous sequence
Continuous Discrete sequence
called a --- random
Random process random process
sequence
13
The set of possible values of any individual members of the random process is
called __ space. vector state random universal state
14
15 [If the process is first order stationary, then mean is negative positive constant unique constant
16 A stochastic matrix is said to be a regular matrix, if all the entries of Pm are--- positive negative Zero square matrix positive
. . . covariance wide-sense
The discrete parameter Markov process is called a weakly stationar . . . .
P P — y y stationary stationary Markov chain Markov chain
process
17 process process
A random process is called a --- if its mean is constant and the autocorrelation weaklv stationar covariance wide-sense
depends only on the time difference. rocesys Y stationary stationary All the above All the above
18 P process process
If the transition probability matrix is regular, then the homogeneous Markov chain . . .
19 lis regular irregular square matrix  |unique regular
" The n-th order stationary process is stationary to order ___ 0 41 n*n 1 -1
A random process is called a ------- , if all its finite dimensional distributions are . Strict sense . Strict sense
. . . . Wide-sense . Covariance .
invariant under translation of time parameter. . stationary Markov process - stationary
stationary process stationary process
21 process process

All regular Markov chain are

29 Markov process ergodic process |WSS SSS ergodic process
The transition probability matrix of a finite state Markov chain isa__ matrix.
row column square identity square
23
A random process is if it is ergodic in the mean and the auto correlation
function. flrs_t-order Wlde-_sense WSS ssS Wlde-_sense
stationary proces  |ergodic ergodic
24
. . . . . Strict sense .
A random process that is not stationary in any sense is called as ------ Evolutionar . Evolutionar
P ! ionary in any ! volutionary stationary WSS Markov process Vot y

25

process

process

process




discrete

. e . . |Continuous discrete discrete Continuous
A continuous random sequence satisfying Markov property is known as ---- as t is parameter
. o . parameter Markov |parameter parameter parameter
discrete &{Xi} is continuous. . . Markov
process Markov process |Markov chain  |Markov chain
26 process
27 The Markov chain is_if there is only one class. Irreducible reducible Poisson Binomial Irreducible
The Binomial processis . strongly stationary Wld.e ~sense covariance Markov
Markov process |stationary .
process stationary process [process
28 process
A is sai if i riod is 1. . - - -
29 state is said to be __ if its period is Markov process ergodic aperiodic periodic aperiodic
A state is said to be aperiodic if its period is 0 1 9 3 1
30
31 The state ‘i’ is called an ___state if it communications with every state it leads to. [essential ergodic aperiodic identity essential
- The Poisson process is a process Markov WSS WSE sSS Markov
A Random pr in which all f ensemble aver. re interchan | . .
_ andom process inwh ch all type o_ ensemble averages are interchangeable Markov WSS WSE ergodic ergodic
33 with the corresponding time averages is called an ___ process
A Rgndom process is ___, if itis ergodic in the mean and the auto correlation Markov Wide ergodic WSS ssS Wide ergodic
34 |funtion process process
L S Wide ergodi
____process has limited historical dependency Markov de ergodic WSS SSS Markov
35 process
A first order linear differential equationisa___ WSS Wide ergodic Markovian SSS Markovian
36 process
37 |Two states i and j which are accessible to each other are said to Irreducible reducible communicate  [absorbing communicate
38 |A state is said to be an state if no other state is accessible from it. Irreducible reducible communicate  [absorbing absorbing
Astate iis___, if starting in i, the expected time until the process returns to state i . positive . positive
g negative recurrent recurrent Irreducible
39 |is finite. recurrent recurrent
40 |Inafintie |, all recurrent states are positive recurrent negative recurrent [markov chain  [recurrent Irreducible markov chain
In a fintie markov chain, all recurrent states are ___. negative recurrent positive recurrent Irreducible positive
41 recurrent recurrent
42 | All states of a finite irreducible markov chain are recurrent reducible communicate  [absorbing recurrent
43 |All states of a finite markov chain are recurrent. Irreducible reducible communicate  [absorbing Irreducible
44 |Astateiis called an --- state if ti communicates with every state it leads to. Irreducible reducible essential absorbing essential
45 | A special case of ergodic markov chain is markov chain reducible essential aperiodic regular regular
46 |A special case of markov chain is regular markov chain reducible essential aperiodic ergodic ergodic
47 |Positive recurrent, aperiodic states are called reducible essential aperiodic ergodic ergodic




A random process is called a random process if all the future values can be

48 |predicted from past observations non-deterministic  |deterministic stationary markov deterministic
A random process is called a deterministic random process if all the future values can cannot should ma can
49 be predicted from past observations. Y
A random process is called a____ random process if all the future values of any non-deterministic |deterministic stationar markov non-
50 [sample function cannot be predicted from past observations. Y deterministic
A random process is called a non-deterministic random process if all the future can cannot should ma cannot
51 |values be predicted from past observations. Y
5 |— explains the time invariance of certain properties of the random process reducible stationarity aperiodic ergodic stationarity
. . . . Continuous
. o . . Continuous discrete discrete Continuous
A continuous random process satisfying Markov property is known as ---- as t is parameter
. o . parameter Markov [parameter parameter parameter
continuous &{Xi} is also continuous. . . Markov
process Markov process |Markov chain  |Markov chain
53 process
. s . . Continuous discrete discrete Continuous discrete
A discrete random sequence satisfying Markov property is known as ---- as t is
parameter Markov [parameter parameter parameter parameter

54

discrete &{Xi} is also discrete.

process

Markov process

Markov chain

Markov chain

Markov chain

55

A discrete random process satisfying Markov property is known as ---- as t is
continuous & {Xi} is discrete.

Continuous
parameter Markov
process

discrete
parameter
Markov process

discrete
parameter
Markov chain

Continuous
parameter
Markov chain

Continuous
parameter
Markov chain




PRP - UNIT -V - ONLINE

S.NO|QUESTIONS OPTION1 |[OPTION2 |OPTION3 |OPTION4 [ANSWER
Rxx(t1,t2) Rxx(t1,t2) / [Rxx(t1,t2) + [ Rxx(tl,t2) - [ Rxx(tl,t2)—
1 |The Cross covariance, Cyx (t;,t) is E[X(t1)] E[X(D)] E[X(tD)] E[X(t1)] E[X(t1)]
E[X(t2)] E[X(t2)] E[X(t2)] E[X(t2)] E[X(t2)]
. . . Cross auto .
2 |Ergodicity is a weaker condition than----. stationary . . SSS stationary
correlation correlation
3 |If X(t) & Y(t) are orthogonal, then Syx(f) = 0 1 ?etween Oto 4 0
4 A - is defined by a functional relationship between the input svste linear non-linear unique svstem
and the output as y(t) = f{x(t)} y a y
5 |The mean of the derivative of a stationary process is--- 1 3 4 0 0
Rxy(t1,t2) = [Rxy(t1,t2) = [Rxx(t1,t2) = [Rxy(t1,t2) = Rxy(tL.12) =
6 |The cross correlation of the two random processes is E[X(t1) E[X(t1) E[X(t1) E[X(t1) E[)Bé (tly) Yy (t_2)]
+Y(12)] 1Y (t2)] Y(t2)] Y (t2)]
7 A random proc_ess {_X(t)} is called --- if all its ensemble averages stochastic ergodic WSS sssS ergodic
equals appropriate time averages.
If the auto correlation function of a random process exists over a
8 |finite time range, the power density spectrum exists over--- infinite finite unique zero infinite
frequency range.
9 goz)(/jstem is --- if the principle of superposition does not hold system linear non-linear unique non-linear
10 |The power density spectrum of a linear system is a ---function.  [imaginary real valued  |constant identity real valued
When the correlation is defined between two random variables
each from two different processes or two sample functions each |Cross Auto Cross
11 . . i . . SSS WSS .
from different processes, the correlation function are called as --- |correlation correlation correlation
-- function.
12 [Cross — correlation does not necessarily have a maximum at ------ point origin constant unique origin
13 |The auto correlation function of E(sinwt) and E sin (wt + q) are--- |[same odd even not defined  [same




The auto covariance of the random process is the --- of the

auto

14 |random variables obtained by observing the process at time t; mean covariance time correlation covariance
and t2 respectively.
Einstein — Einstein —
The important time and frequency parameters relationship of . . |Wienern- Markov Binomial Wiener-
15 . Fourier series S S
random process is called as Khinchine process process Khinchin
relationship relationship
____theorem provides an alternative method for finding the L Wienern- . . . Wienern-
16 . - Einstein N Poisson Binomial L
power spectral density function. Khinchine Khinchine
17 |The cross spectral density of two orthogonal processes is---- 0 1 2 3 0
18 |[The imaginary part of Sxy(f) is an ---- function of f. odd even constant unique odd
If the auto correlation function of a stationary random process
19 [exists over an infinite time range, its power density spectrum infinite finite unique zero finite
exists over--- frequency range.
20 [Rxy(t) =0 if the processes are--- independent |orthogonal random random signal |orthogonal
____isdefined as a property of linear systems that if the input is Time Time
21 [time shifted by an amount, the corresponding output will also be |. . Causality Causal stable . .
. . invariance invariance
time shifted by the same amount.
22 |The auto correlation function isa __ order moment. first second higher nth second
23 |The function is a second order moment. correlation cross correlatiqauto correlatio time €ross auto )
correlation correlation
24 | The unit of power density spectrumis km/hour sg.units cu.units watts per hertz|watts per hertz
25 [The _ spectral density of two orthogonal processes is 0 auto Cross correlation  [time cross Cross
Cross-power
. . . - Einstein- density and  [Einstein-
26 ;’i::namrelfot(l:cér;:hlp relates time and frequency characteristics of Wiener- E:Jr:g:e-in RMS Cross- Wiener-
P ' Khinchin correlation Khinchin
function
If the ___ function has periodic components, then the autocorrelatio |crosscorrelati . . .
27 correlation  [time cross autocorrelation

corresponding process also will have periodic components.

n

on




If the autocorrelation function has periodic components, then the

28 . . aperiodic WSS periodic ergotic periodic
corresponding process also will have components.
S(f) gives the distribution of power of {X(t)} as a funtion of autocorrelatio |crosscorrelati |Po o' . power
29 . . spectral ergotic spectral
frequency and hence is called the ___ function. n on . .
density density
30 The mean square value ofa ___ progess is equal to the total area WSS ssS WSE ergotic WSS
under the graph of the spectral denstiy.
31 The mean square value of a wise-sense stationary process is volume amount densit area area
equal to the total under the graph of the spectral denstiy. y
The value of the ___ funtion at zero frequency is equal to the autocorrelatio [crosscorrelati |spectral . spectral
32 . . . ergotic .
total area under the graph of the autocorrelation funtion. n on density density
The value of the spectral density funtion at frequency is
33 |equal to the total area under the graph of the autocorrelation 0 1 2 3 0
funtion.
34 The_spectral density function of a real random process isan __ odd even constant unique even
funtion
The spectral density function of a__ random process is an even o
35 | complex real imaginary constant real
funtion
. . . . Fourier _— . .
The spectral density and the autocorrelation function of a real Fourier . Fourier sine . . |Fourier cosine
36 . cosine Fourier series
WSS process forma ___ pair. transform transform transform
transform
37 If the system _operates only on the varibale t treating s as a linear deterministic [stochastic system deterministic
parameter, itiscalleda .
38 If the system operates on both t (time) and s (parameter), itis linear deterministic [stochastic system stochastic

called

39

If Y (t+h)=f[X(t+h)], thenfiscalleda _ system

time-invariant

invariant

cross-invariant

auto-invariant

time-invariant

40

If the value of the output Y(t) depends only on the past values on
the input X(t), then the system is called a __ system

linear

deterministic

stochastic

causal

causal




If the output Y(t) at a given time depends only on X(t) and not an

41 |any other past or future values X(t), then the system f is called a |power density |power transfer{memoryless |causal memoryless
___system
. . - . - nit impul nit impul
If the input of the system is the unit impulse function, then the - unit impulse N ! pulse | U pulse
42 . . unit impulse weighting response or | response or
output is the system ___ funtion. response S N
weighting weighting
43 |h(t) is denoted as ____ function unit impulse unit impulse [time-invariant |causal unit impulse
response response
. . . Einstein- . .
44 If a system is such that its input X(t) and its output Y(t) are Wiener- Euler - RMS convolution |convolution
related by a ___, then the system is a linear time-invariant system. Khinchin Einstein integral integral
If a system is such that its input X(t) and its output Y(t) are
o . o . . . Cross- . . . .
45 |related by a convolution integral then the system is a linear time-invariant |invariant invariant auto-invariant |time-invariant
system.
46 If the input to a tlme-!nvarlant, stable linear system is a WSS ssS WSS WSE ergotic WSS
process, the output will a _ process
. . - Tme- Tme-
If the inputtoa ___ linear system is a WSS process, the output L . . . - t ¢ . t ¢ .
47 . time-invariant |Iinvariant unit impulse |invariant, Invariant,
will also a WSS process
stahle stahle
____is the Fourier transform of the unit impulse response funtion |power power . power transfer
48 . power density {causal .
of the system. density transfer function
49 |The spectral denstiy of any WSS process is positive negative very small non-negative [non-negative
. . o ., |system or system or
50 |H(omega) is called as ___ function system power transfer|time-invariant y y
power transfer [power transfer
The another name of the system weighting functionis unit impulse - L . unit impulse
51 . unit impulse [time-invariant |causal
function response response
. . lati lati |,. . . . .
52 |R (tau) is called the function iutocorre atio g:]osscorre a time-invariant |ergotic autocorrelation
53 |R (tau) is an function odd even unique constant even
54 [R(tau) is maximum at (tau) = 1 -1 0 infinity 0




55 I_fthe processes {X(t)} and {Y(t)} are orthogonal, then Rxy(tau) 1 1 0 infinity 0
The concepts of ergodicity deals with equality of __ averages  |continuous, |[time, time, discrete, .

56 . time, ensemble
and __ averages. ensemble ensemble stationary ensemble

57 |— th_egrem provides a sufficient condition for the mean- ngner? Euler Einstein Mean-Ergodic |Mean-Ergodiic
ergodicity of a random process. Khinchin




