15BECC102 ENGINEERING MATHEMATICS | 3204
OBJECTIVES:

o To develop analytical skills for solving different engineering problems.
° To understand the concepts of Matrices, sequences and series.
o To solve problems by applying Differential Calculus and Differential equations.

INTENDED OUTCOMES:

The student will be able to
o Apply advanced matrix knowledge to Engineering problems.
o improve their ability in solving geometrical applications of differential calculus problems
o solve engineering problems involving hyperbolic functions, Beta and Gamma functions
o expose the concept of sequences and series
UNIT I MATRICES (12)

Review of Matrix Algebra - Characteristic equation — Eigenvalues and Eigenvectors of a real matrix —
Properties — Cayley-Hamilton theorem (excluding proof) — Orthogonal transformation of a symmetric
matrix to diagonal form — Quadratic forms — Reduction to canonical form through orthogonal reduction.

UNIT I DIFFERENTIAL CALCULUS (12)
Overview of Derivatives - Curvature in Cartesian co-ordinates — Centre and radius of curvature — Circle of
curvature — Evolutes — Envelopes- Evolutes as Envelope of normals — Maxima and Minima of functions of
two or more Variables — Method of Lagrangian Multipliers

UNIT 11 SEQUENCES AND SERIES (13)
Sequences: Definition and examples — Series: Types and Convergence — Series of positive terms — Tests
of convergence: Comparision test, Integral test and D’ Alembert’s ratio test — Alternating series— Leibnitz’s
test — Series of positive and negative terms — Absolute and conditional convergence.

UNIT IV HYPERBOLIC FUNCTIONS, BETA AND GAMMA FUNCTIONS

(12)
Hyperbolic functions: Hyperbolic functions and Inverse Hyperbolic functions — Identities — Real and
imaginary parts — solving problems using hyperbolic functions.
Beta And Gamma Functions : Definitions — Properties — Relation between beta and gamma integrals —
Evaluation of definite integrals in terms of beta and gamma functions.

UNIT V DIFFERENTIAL EQUATIONS (11)
Linear Differential equations of second and higher order with constant coefficients - Euler’s form of
Differential equations — Method of variation parameters.
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S.NO Topics covered No. of
hours
UNIT-1 MATRICES
1 Introduction of Matrix Algebra 1
2 Characteristic Equation - Eigen values and Eigen vectors 1
3 Characteristic Equation - Eigen values and Eigen vectors 1
4 Tutorial 1: Characteristic Equation - Eigen values and Eigen vectors 1
5 Problems based on Properties 1
6 Problems based on Cayley — Hamilton theorem 1
7 Problems based on Cayley — Hamilton theorem 1
8 Tutorial 2: Problems based on Properties and Cayley — Hamilton 1
theorem
9 Orthogonal transformation of a symmetric matrix to diagonal form 1
10 | Tutorial 3: Orthogonal transformation of a symmetric matrix to 1
diagonal form
11 | Quadratic forms and Reduction to canonical formthrough orthogonal 1
reduction
12 Canonical form through orthogonal reduction 1
13 | Tutorial 4: Canonical form through orthogonal reduction 1
Total 13
UNIT Il DIFFERENTIAL CALCULUS
14 Introduction of Derivatives and Curvature in Cartesian co-ordinates 1
15 | Curvature in Cartesian co-ordinates, Radius of curvature 1
16 Problems based on Centre of curvature 1
17 | Tutorial 5: Radius and Centre of curvature
18 | Problems based on Circle of curvature 1
19 [ Tutorial 6: Circle of curvature
20 | Evolute — Problems 1
21 | Evolute — Problems 1
22 | Tutorial 7: Problems based on Evolute 1
23 | Problems based on Envelope and Problems on Evolutes as Envelope 1
of normal
24 | Problems based on Envelope and Problems on Evolutes as Envelope
of normal
25 | Tutorial 8: Problems based on Envelope 1
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UNIT Il SEQUENCES AND SERIES
26 Introduction of Sequences and Series - Definition - examples 1
27 | Series: Types and Convergence - Series of positive terms 1
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30 D’ Alembert’s ratio test 1
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34 | Tutorial 11: Problems based on Leibnitz’s test 1
35 Series of positive and negative terms and Absolute and conditional 1
convergence
36 | Tutorial 12: Problems based on Absolute and conditional convergence 1
Total 11
UNIT-1V- HYPERBOLIC FUNCTIONS, BETA AND GAMMA
FUNCTIONS
37 Basic Definition of Hyperbolic functions 1
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38 Introduction to Hyperbolic functionsand Inverse Hyperbolic functions 1
39 Identities — Real and imaginary parts — solving problems using 1
hyperbolic functions
40 Definition of Beta And Gamma Functions 1
41 | Tutorial 13:Properties of Beta and Gamma Function 1
42 Properties of Beta and Gamma Function 1
43 Relation between beta and gamma integrals 1
44 | Tutorial 14: Relation between beta and gamma integrals 1
45 | Evaluation of definite integrals in terms of beta and gamma functions. 1
46 | Tutorial 15: Evaluation of definite integrals in terms of beta and gamma 1
functions.
47 | Tutorial 16: Evaluation of definite integrals in terms of beta and gamma 1
functions.
Total 11
UNIT — VDIFFERENTIALEQUATIONS
48 Introduction of Differential Equations and Equations of the first order 1
and Higher Order
49 Linear Differential equations of second order with constant coefficients 1
50 Linear Differential equations of higher order with constant coefficients 1
51 | Tutorial 17: Linear Differential equations of higher order with constant 1
coefficients
52 Euler’s form of Differential equations 1
53 | Euler’s form of Differential equations 1
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55 Method of variation parameters 1
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Cayley-Hamilton
Theorem

Chapter Outline

® Infroduction
® Cayley-Hamilton Theorem

3.1 O INTRODUCTION

This theorem provides an alternative method for finding the inverse of a matrix, and
any positive integral power of A can be expressed as a linear combination of those of
lower degree.

3.2 O CAYLEY-HAMILTON THEOREM

Every square matrix satisfies its own characteristic equation.

Application

The Cayley-Hamilton theorem can be used to find
e The power of a matrix, and
e The inverse of an n X n matrix A, by expressing these as polynomials in A of

degree <n.
SOLVED EXAMPLES
2 -1 2
| DEV NI Verify that the matrix A = [-1 2 -1| satisfies its characteristic
1 -1 2
equation and, hence, find A*. [KU May 2010, AU Jan. 2010]
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3.2 Engineering Mathematics

Solution The characteristic equation is |A - AIl =0
2-2 -1 2

ie, -1 2-4 -1|=0
1 -1 2-2
ie., B-622+81-3=0

According to Cayley-Hamilton theorem, to prove A% — 6A%+8A —31=0
[2 -1 22 -1 2] [7 -6 9
A’=|-1 2 -1||-1 2 -1|=|-5 6 —6
1 -1 2 1-1 2 5 5 7

7 -6 9|2 -1 2 29 28 38
A’=|-5 6 —6|-1 2 -1|=[-22 23 -28
5 5 7 1 -1 2 2 22 29

Hence, A - 6A% +8A - 31
29 28 38] [ 42 -36 54| [16 -8 16] [3 0 0
22 23 -28|-|-30 36 -36|+|-8 16 -8|-|0 3 0
| 22 22 29| | 30 -30 42 8 -8 16|/ [0 0 3
0 0 0
000
000

Thus, the given matrix A satisfies its own characteristic equation, i.e., A3 - 6A% + 8A
-31=0
Multiplying on both sides by A, we get

A*—6A3+8A%-3A=0

At=6A3-8A%+3A
[ 196 —168 252 2 -45 90 18 0 0
A*=|-140 168 -168|—-|-45 90 —45|+| 0 18 O

| 140 -140 196 45 —45 90 0 0 18

(124 —123 162

A*=-95 96 -123 Ans.
|95 95 124

1 2 2

Verify Cayley—Hamilton theorem for the matrix A= |2 1 2| and,
2 21

hence, find A™! and A*. [KU Nov. 2010]

Solution The characteristic equationis |A - AIl =0,

1-A 2 2
ie., 2 1-1 2 =0
2 2 1-1
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Cayley—Hamilton Theorem 3.3

ie, 2-32%-91-5=0
To prove A®-3A%-9A - 5[=0

1 2 2][1 2 2] [9 8 8
A%=[2 1 2{|2 1 2|=|8 9 8
2 2 1f[2 2 1] |8 8 9
(9 8 8][1 2 2] [41 42 42
A’=|8 9 8|2 1 2|=]42 41 42
8 8 9)[2 2 1| |42 42 4

41 42 42] [27 24 24 9 18 18] [5 0 ©
AS-3A%2-9A-51=|42 41 42|-|24 27 24|-[18 9 18|-{0 5 0
42 42 41| (24 24 27| |18 18 9| |0 0 5

Il
o O O
o O O
o O O

Hence, the Cayley—-Hamilton theorem is verified.
A®-3A2-9A-5[=0 (1)
To find A™
+by A= A?-3A-91-5A7"=0
ie., S5A =A% +3A+9]
[0 -8 8] [3 6 6] [9 00
S5A=|-8 9 -8|+|6 3 6[+|9 0 9
-8 -8 9| |6 6 3| |0 0 9

3 2 2
S5A=|2 3 2
|2 2 3]

3 2 2
Al=—Z|2 3 =2
2 2 3

To find A%, multiply (1) by A

A*—3A%-9A2_5A=0
ie., A*=3A%+9A%+5A
(123 126 126 [81 72 72 5 10 10
=126 123 126|+|72 81 72|+|10 5 10
126 126 123| |72 72 81| |10 10 5

209 208 208
A*=|208 209 208 Ans.
208 208 209
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3.4 Engineering Mathematics

EXERCISE

State Cayley—Hamilton theorem.
2. Give two uses of the Cayley-Hamilton theorem.

—_

10
3. If [0 5] , write A% in terms of A and I, using Cayley—Hamilton theorem.

3 -1
4. Verify Cayley-Hamilton theorem for the matrix A =|: 1 5] .

1 4
5. Using Cayley-Hamilton theorem, find the inverse of {2 3] .

6. Verify Cayley—Hamilton theorem for B é]

5 3
7. Verify Cayley-Hamilton theorem for the matrix A= { 1 3:| .

7 3
8. Using Cayley-Hamilton theorem, find the inverse of |:2 6:|

9. The Cayley-Hamilton theorem is used to find
(a) Eigen values (b) Eigen vectors
(c) inverse and higher powers of A (d) quadratic form

1 0 3

1. Using Cayley-Hamilton theorem, find A*if A=2 1 -1

1 -1 1
7 -30 42]
Ans.|18 -13 46
-6 -14 17_

2. Using Cayley-Hamilton theorem, find the inverse of the matrix

-1 0 3 8 0 -3
A=| 8 1 -7 Ans.|-43 1 17
-3 0 8 30 1]
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Cayley-Hamilton Theorem 3.5
137
3. Find the characteristic equation of the matrix A=|4 2 3|. Show that the
1 21
equation is satisfied by A and, hence, obtain the inverse of the given matrix.
[KU April 2011]
) -4 11 -5
Ans. 2’ -4A*-202-35=0; A™' =51 6 B
| 6 1 -10
1 2 3]
4. Find the characteristic equation of the matrix A=|2 -1 4|. Show that the
3 1 -]
equation is satisfied by A. (Ans. 2% + 22 - 181 - 40 = 0)
- 7 -1 3]
5. Using Cayley-Hamilton theorem, find the inverse of (i) {3 5} gy|6 1 4
2 4 8]
-8 20 -7
IR 2 I |
Ans. (i) (i))—|-40 50 -10
-3 2 50
22 =30 13
31 1
6. Find the characteristic equation of the matrix A=|-1 5 -1|. Verify Cayley-
1 -1 3
Hamilton theorem for this matrix. Hence, find A™.
7 -2 -3
a1
Ans A7 =—| 1 4 1
20
-2 2

7. Use Cayley—Hamilton theorem to find the inverse of the matrix

A:[ cos@ sine} [Ans. A_lz[cose —sin6 |

—sin@ cos@ sinf  cosd |
2 -1 3
8. Using Cayley-Hamilton theorem, find A™ given that A=|1 0 2
4 21
. 4 5 2
Ans. A™'= -5 7 10 -1
-2 0 1
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3.6 Engineering Mathematics

9. Using Cayley-Hamilton theorem, find the inverse of the matrix

5 -1 5 30 1
A= 0 2 0] Ans.A_1=% 05 0
-5 3 -15 -1 1 -1
13 7
10. Find the characteristic equation of the matrix A=|4 2 3| and show that the
1 21
equation is also satisfied by A. (Ans. 2% - 42% - 20135 =0)
11. Verify Cayley-Hamilton theorem and hence find the inverse of the matrix
1 3 1
10 10 5
A:;Z_;. Ans.g_—7_—2
10 20 5
0 -6 -7 9 3 1
10 10 5
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Diagonalization of
Square Matrices

fChapter Outline

® Infroduction
Diagonalization of Square Matrices

® Diagonalization by Orthogonal Transformation or Orthogonal
Reduction

4.1 QO INTRODUCTION

Two square matrices A and B are said to be similar if there exists a nonsingular
matrix C such that B = C'AC. The transformation A to C'AC is called similarity
transformation. The determinant, rank and Eigen values are preserved under
similarity transformation. A matrix is said to be diagonalizable if it is similar to a
diagonal matrix. The determinant of a diagonal matrix is simply the product of the
diagonal elements; the rank is the number of nonzero diagonal elements and the Eigen
values are the diagonal elements. Hence, it is very easy to deal with diagonal matrices.

4.2 1 DIAGONALIZATION OF SQUARE MATRICES

The process of finding a matrix M such that M~'AM = D, where D is a diagonal matrix,
is called diagonalization of the matrix A. As M™' AM = D is a similarity transformation,
the matrices A and D are similar and, hence, A and D have the same Eigen values. The
Eigen values of D are its diagonal elements. Thus, if we find a matrix M such that M1
AM =D, D is a diagonal matrix whose diagonal elements are the Eigen values of A.
A square matrix which is not diagonalizable is called defective.

Application

The direct application of diagonalization is that it gives us an easy way to compute
large powers of a matrix A. The Eigen values of a system determine sometimes
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4.2 Engineering Mathematics

whether the system is stable or not. This has all to do with diagonalizing matrices. In
quantum mechanical and quantum chemical computations, matrix diagonalization is
one of the most frequently applied numerical processes.

> Note

(i) M is called the modal matrix of A whose elements are the Eigen vectors of
A.

(if) For this diagonalization process, A need not necessarily have distinct Eigen
values. Even if two or more Eigen values of A are equal, the process holds
good provided the Eigen vectors of A are linearly independent.

4.3 O DIAGONALIZATION BY ORTHOGONAL TRANSFORMATION OR
ORTHOGONAL REDUCTION

The process of finding a normalized modal matrix N such that N' AN = D where
D is a diagonal matrix is called orthogonal transformation or orthogonal reduction.
The elements of N are the normalized Eigen vectors of A and it can be proved that N
is an orthogonal matrix (i.e. N = NT). It is important to note that diagonalization by
orthogonal transformation is possible only for a real symmetric matrix.

SOLVED EXAMPLES

10 -2 -5
Reduce the matrix |—-2 2 3| to diagonal form. [AU Jan. 2010]
-5 3 5

10 -2 -5
Solution Let A=-2 2 3
-5 3 5

Here, D, =17, D, =42, D, =0.
.. the characteristic equation is 1722 +421=0.

ie, MA? =174 +42)=0
MA—-14)(A-3)=0
= A=0,14,3

.. the Eigen values are 0, 14, 3.
To find the Eigen vectors, [A — AI]X =0.
10-14 =2 -5 || x
ie., -2 2-1 3 |x|=0
-5 3 5-4)x,

(10 - A)x; —2x, = 5x,=0
=2x;+ (2= A)x,+3x,=0
—5x,+3x,+(5-A)x;=0
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Diagonalization of Square Matrices 4.3

A=0 gives 10x; — 2x, — 5x3 = 0; —2x; + 2x, + 3x3 = 0; =5x; + 3x, + 5x5=0.
Consider first two equations, which gives x; =1, x, = -5, x3=4.

X,=|-5
4
A=14 gives
—4x,—2x,—5x;=0
—2x,—12x,+3x,=0
=5x;+3x,—-9x,=0

Considering first two equations gives x; =-3, x, =1, x;=2.

A=3 gives
7x,—2x,—5x,=0
—2x,—x,+3x;=0
=5x;+ 3x,+2x,=0

=x=1Lx=1x=1

1
X,=[1
1
1 31
M=|-5 1
4
M_lzﬁAde provided IM| #0
IMI| =-42
To find AdjM,

Co-factor of 1 = -1, Co-factor of -3 = 9, Co-factor of 1 = =14, Co-factor of 1 = -14,

Co-factor of 1 =-3, Co-factor of -5=5
Co-factor of 4 = -4, Co-factor of 2 = -6, Co-factor of 1 =-14

-1 5 -4

AdiM=| 9 3 -6

~14 -14 -14

-1 5 -4
a1

= - 3 -6
42

-14 -14 -14
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4.4

Consider

Example 2 Diagonalize thematrix A=| 1

Engineering Mathematics

1'—1 5 —4{10 -2 5| 1 -3 1
M*IAMZ_E 9 3 -6-2 2 3|5 1
|-14 -14 -14||-5 3 5[ 4 21
: [ -1 5 -4[o0 —42 3
=——| 9 -3 -6|l0 14 3
42
-14 -14 -14)0 28 3
) 0 0 o] o 0o o
:—E 0 -588 0|=|0 14 0|=D Proved.
0 0 -126| [0 0 3

2 1 -1
1 -2 | byorthogonal transformation.
-1 2 1

[KU April 2011]

Solution The characteristic equationis |A - AIl =0

=

2-2 1 -1
1 1-4 -21|=0
-1 -2 1-2

2-M)(A2=21-3)—(-A-1)—(-A-1)=0
A2—4A2-21+4=0
A+1)(A-1)(A-4)=0

.. The Eigen values are -1, 1, 4.
The Eigen vectors are given by (A - AI)X =0.

when A=-1
31 -1
The Eigen vector is givenby | 1 2 2|l x, =0
12 2|
0
= X,=[1
1
1 1 -]x

When 1 =1, the Eigen vector is givenby | 1 0 -2 x, [=0
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Diagonalization of Square Matrices

-2 1 -1fx
When 2 =4, the Eigen vector is givenby | 1 -3 -2 x,|=0
-1 -2 3f|x
1
= X3=| 1
-1
0 2 1
Hence, the modal matrix M={1 -1 1
1 1 -]
. normalized modal matrix is,
- ) .
0 =
NG
1 1 1
N=|—= —&— —
2 VY6 B
B
7 % G

To prove N AN =D, since N is an orthogonal matrix, it satisfies N1=NT.

- it is enough to prove that N' AN =D.

Consider
o L L 0
2 JE \15 2 1
-1
A P S [ o
11 1 1
o L i, 2 4
V22 NN
2zt 1y 1 1 4
|6 U | 2 B
1 01 1t 1 4
V3 B B V2 Ve B
(-1 0 0
=l 0 1 0|=D
100 4
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4.6 Engineering Mathematics

EXERCISE

. When are two matrices said to be similar?

. Define diagonalizing a matrix.

3. What is the difference between diagonalization of a matrix by similarity and
orthogonal transformations?

N =

4. Diagonalize the matrix A= [i ;] .

01
5. Isit possible to diagonalize the matrix [ 0 0} ?

[Ans: The Eigen values A = 0, 0 but there is only one Eigen vector {1] . So the
matrix cannot be diagonalized.] 0

6. What type of matrices can be diagonalized using (i) similarity transformation,
and (ii) orthogonal transformation?

7. In the orthogonal transformation NT AN = D, D refers to a/an

matrix.
(i) diagonal (if) orthogonal
(iii) symmetric (iv) skew-symmetric
8. In a modal matrix, the columns are the Eigen vectors of
(i A7 (ii) A? (i) A (iv) adjA
9. If XlTX2 =0, XZTX3 =0, X3TX1 =0, the Eigen vectors are said to be
(i) dependent (ii) pairwise orthogonal
(iii) skew-symmetric (iv) independent

10. If A is an orthogonal matrix, show that A™ is also orthogonal.

1. Find the modal matrix of the following matrices.

8 -8 -2 1 0 0
G |4 -3 -2 G [0 3 -1
3 -4 1 0 -1 3

4 32 10 0
Ans.(i)|3 2 1|Gi)|o 1 1
2 1 1 01 -1

1 4 5 4 3 2 :
2. If A= 2 3 , express A” —4A"-7A° +11A° - A - 10l in terms of A.

(Ans. A +5I)
2
3. Show that AT=A"for A :% -2 1
1 -2 2
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Diagonalization of Square Matrices 4.7

4. Diagonalize the following matrices:

8 -6 2 111 3 -1 1
G |-6 7 -4| G| 0 2 1| i) |-1 5 -1
2 -4 3 -4 4 3 1 -1 3

00 0 100 200
Ans.(i)|0 3 0|@i)|0 2 0]Gi)|o 3 0
00 15 (000 00 6

-1 2 =2
5. A square matrix A is defined by A=| 1 2 1|. Find the modal matrix M
-1 -1 0
and the resulting diagonal matrix D of A.
-1 1+\/§ 1_\/§ 1 0 0
Ans.M=|0 -1 -1 |,D=l0 5 0
1 1 1 0 0 —5
6 -2 2
6. Let A=|-2 3 -1|.Find a matrix M such that M~' AM is a diagonal matrix.
2 -1 3 01 2 200
Ans.M=|1 3 -1|,D=|0 2 0
11 1 0 0 8
7. Obtain the modal matrix and diagonalize the following matrices:
-1 1 2 3 -1 1
@ |0 -2 1 ¢ |-1 5 -1
0 0 -3 1 -1 3
1 1 1][-1 o o 11 1][2 o 0]
Ans.(i)|0 -1 2|,/ 0 =2 0G| 0 1 -24,{0 0
0 0 -2 0 0 -3 -11 1|0 0 6]
7 -2 0 (3 0 0]
8. Diagonalize the matrix | -2 6 -2]. Ans.|0 6 O
0 -2 5 10 0 9]
-2 2 -3 5 0 0]
9. Diagonalize | 2 1 -6/ by similarity transformation. | Ans.|0 -3 0
-1 -2 0 0 0 -3]
8 -8 -2 10 0]
10. Diagonalize the matrix A={4 -3 -2|. Ans.|0 2 0
3 -4 1 00 3]
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4.8 Engineering Mathematics

11. Diagonalize the following matrices by orthogonal transformation:

3 -1 0 2 -1 1
@ [-1 2 -1 G (-1 2 -1
0 -1 3 1 -1 2 100 4 00
Ans.(i)|0 3 0|@G)|0 1 0
0 0 4 001
2 0 4
12. Diagonalize the matrix A=|0 6 0| by means of an orthogonal trans-
formation. 4 0 2
-2 0 0]
Ans. 0
6

11
13. Diagonalize the matrix A= [1 1] by orthogonal transformation.

ola o)

31 1
14. Diagonalize A=|1 3 -1| by orthogonal transformation.
t-hs 100
Ans.|0 4 O [AU May 2011]
0 0 4
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Eigen Values, Eigen
Vectors and the
Characteristic Equation

fChapter Outline

Infroduction

Characteristic Equation of a Matrix

Important Properties of Eigen Values

linear Dependence and Independence of Vectors
Properties of Eigen Vectors

2.1 O INTRODUCTION

In this chapter, we shall discuss mainly square matrices A and throughout the ensuing
discussion, any new facts and developments will be based on the determination of a
vector X (to be called characteristic vector or Eigen vector) and a scalar A (to be called
characteristic value or Eigen value) such that AX = 1X. Based on these concepts of
Eigen values and Eigen vectors, we shall indicate the conditions on A under which a
nonsingular matrix P can be selected such that PlAP is diagonal, i.e., A is similar to
a diagonal matrix.

2.2 0O CHARACTERISTIC EQUATION OF A MATRIX

Characteristic Matrix

For a given matrix A, A — Al matrix is called the characteristic matrix, where 1 is a
scalar and I is the unit matrix.

Let A=

=W N
N = DN
N = =
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2.2 Engineering Mathematics

Characteristic Polynomial

The determinant |A — AIl when expanded will give a polynomial, which we call the
characteristic polynomial of the matrix A.
For example,

2-42 2 1
1-12 1
1 2 2-2

= (2= (A2 =32) —2(=3A+5) + 1(A+5)
=-2+502+1-5

Characteristic Equation

The equation | A — Al =01is known as the characteristic equation of A and its roots are
called the characteristic roots or latent roots or Eigen values or characteristic values
or latent values or proper values of A.

Spectrum of A

The set of all Eigen values of the matrix A is called the spectrum of A.

Eigen-value Problem

The problem of finding the Eigen values of a matrix is known as an Eigen-value
problem.

Characteristic Vector

Any nonzero vector X is said to be a characteristic vector of a matrix A if there exists a
number A such that AX = AX, where 1 is a characteristic root of a matrix A.

2.3 O IMPORTANT PROPERTIES OF EIGEN VALUES

(i) Any square matrix A and its transpose AT have the same Eigen values.

(if) The sum of the Eigen values of a matrix is equal to the trace of the matrix.
[Note: The sum of the elements on the principal diagonal of a matrix is called
the trace of the matrix.]

(iii) The product of the Eigen values of a matrix A is equal to the determinant of A.

(iv) If Ay, A, ... 4, are the Eigen values of A then the Eigen values of
(a) KA arekAy, kA, ... kA,

(b)y A™are A", A .. A
1

(c) Alare i,i—
Moy A

n
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(iv) The Eigen values of a real symmetric matrix (i.e. a symmetric matrix with real
elements) are real.

2.4 O LINEAR DEPENDENCE AND INDEPENDENCE OF VECTORS

n-dimensional Vector or n-vector

An ordered set of 1 elements x; of a field F written as
A=[xy, %5 ...x,] (2.1)
is called an n-dimensional vector or n-vector over F and the elements xy, x, ... x,, are

called the first, second ... nth components of A.
We find it more convenient to write the components of a vector in a column as

]T — (2.2)

T_
A’ =[xy, Xy, X5 X,

Xy

Equation (2.1) is called a row-vector and Eq. (2.2) is called a column-vector.

Linear Dependence and Independence of Vectors

The vectors A; =[x11, X1 X153 -+ X1, Ao = [Xo1, X0, X3 - X ] oo Ay =[X,00 X Xz - Xy
are called linearly dependent over F if there exists a set of n elements 4;, 4, ... A, of F,
A/'s being not all zero, such that L;A; + LA, +... 1,A,=0.

Otherwise the n-vectors are called linearly independent over F.

2.5 O PROPERTIES OF EIGEN VECTORS

(i) The Eigen vector X of a matrix A is not unique.
(if) If Ay, 4, ... 4, be distinct Eigen values of an 1 X n matrix then the corresponding
Eigen vectors X;, X, ... X,, form a linearly independent set.
(iii) If two or more Eigen values are equal, it may or may not be possible to get
linearly independent Eigen vectors corresponding to the equal roots.

(iv) Two Eigen vectors X; and X, are called orthogonal vectors if XIT X,=0
(v) Eigen vectors of a symmetric matrix corresponding to different Eigen values
are orthogonal.

Applications

The Eigen-value and Eigen-vector method is useful in many fields because it can be
used to solve homogeneous linear systems of differential equations with constant
coefficients. Furthermore, in chemical engineering, many models are formed on the
basis of systems of differential equations that are either linear or can be linearized
and solved using the Eigen-value, Eigen-vector method. In general, most ordinary
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2.4 Engineering Mathematics

differential equations can be linearized and, therefore, solved by this method. Initial-
value problems can also be solved by using the Eigen-value and Eigen-vector method.

Eigen-value analysis is also used in the designing of car stereo systems so that the
sounds are directed appropriately for the listening pleasure of both the drivers and
the passengers. Eigen-value analysis can indicate what needs to be changed to reduce
the vibration of the car due to the music being played.

Oil companies frequently use Eigen-value analysis to explore land for oil. Oil, dirt
and other substances give rise to linear systems which have different Eigen values,
so Eigen-value analysis can give a good indication of where oil reserves are located.

Eigen values and Eigen vectors are used widely in science and engineering,
particularly in physics. Rigid physical bodies have a preferred direction of rotation,
about which they can rotate freely. For example, if someone were to throw a football,
it would rotate around its axis while flying through the air. If someone were to hit
the ball in the air, the ball would be likely to flop in a less simple way. Although this
may seem like common sense, even rigid bodies with more complicated shapes will
have preferred directions of rotation. These are called axes of inertia, and they are
calculated by finding the Eigen vectors of a matrix called the inertia tensor. The Eigen
values are also important and they are called moments of inertia.

SOLVED EXAMPLES

123
Example 1 Find the characteristic roots of the matrix |0 2 3
Solution 002
12 3 100
A=l0 2 3land I=|0 1 O
0 0 2 0 01
1-4 2-0 3-0
IA-AIl=|0-0 2-4 3-0
0-0 0-0 2-2
1-A 2 3
=0 2-A 3
0 0o 2-2
2-1 3
=(1-2
( ) 0o 2- /’t‘
= (1-1)2-2)7
<. the characteristic equation of the matrix A is (1 — A)(2 — A)* = 0 and its roots are
1,2 2. Ans.
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|PEny I (PAN  Find the characteristic roots and corresponding characteristic vectors

8 -6 2
for the matrix A={-6 7 —4].
2 -4 3

Solution The characteristic equationis |A - All =0,
8—-1 -6 2
ie., -6 7-41 -4|=0
2 -4 3-1

B=-V[T-HB-1)-16]+6[-6(3—-A) +8] +2[24-2(7-A)] =0
A+ 1847 -452=0

M-A*+181-45)=0

A=0, 3, 15 are the characteristic roots of the matrix.

The characteristic vector X is obtained from (A — A)X = 0.

Case (i) =0

If x, y, z are the components of a characteristic vector corresponding to the characteristic
root 0, we have

Ly el

8 -6 2|«
(A-0DX=|-6 7 —-4|y|=0
2 -4 3|z
8x—6y+2z=0
—6x+7y—4z=0
2x -4y +3z=0
x -y z

21-16 —18+8 24-8

X _ -y _z
- 5 -10 10
je, X_Y_Z
1 2 2 .
X, =2
2

Case (ii) 1 =3.
8-3 -6 2 |lx
(A-3)X=0=| -6 7-3 -4 ||y|=0
2 -4 3-3|z

5 -6 2|«
ie, -6 4 —4|y|=0
2 -4 0|z
= 5x -6y +2z=0
-6x +4y—-4z=0
2x -4y =0
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x -y oz
0-16 0+8 24-8

X -y oz
16 8 16
X _y _z
2 -1 2
-2
X,=| -1
2

Case (iii) A =15

8-15 -6 2 |[x
(A-15)X=0=| 6 7-15 —4 |y|=0

2 -4 3-15|z
-7 -6 2| x
ie., -6 -8 —4(y|=0
2 -4 12|z
= -7x—-6y+2z=0
—6x -8y —4z=0
2x -4y -12z=0
x -y oz
9%6-16 72+8 24+16
= *_V_Z
80 80 40
X_y_z
2 21
2
Xy=|-2
1
1 -2 2
Hence, X,=[2|, X, =|-1|, X;=|-2 Ans.
2 2 1
> Note

g
If A=|a, 4, 4a,;| then the characteristic equation is givenby |A-AIl =0
L1 %30 O3]
or 2>~ D;2% + DyA — Dy =0 where D; = a;; + ay, + a5, (sum of the diagonals of A (or)
trace of a matrix A)
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a, a a;, 4a a, 4a

D2 — |[H 12 e 11 13 o 22 23
Ay G| |31 A33| [F32 33

= sum of the second-order minors of A whose principal diagonals lie along the
principal diagonal of A.
D, = | Al = determinant of A.

|PEny A Find the characteristic roots and corresponding characteristic vectors

6 -2 2
ofA=|-2 3 -1|. [KU Nov. 2010]
2 -1 3
Solution The characteristic equation is A* -~ D;A* + D,A— D3 =0
where D;=6+3+3=12
b 6 —2+6 2+ 3 -1
22 3 |2 3 |1 3
=(18-4)+(18-4)+(9-1)
=14+14+38
=36
6 2 2
D,=lAl=|-2 3 -1
2 -1 3
=6(9-1)+2(-6+2)+2(2-06)
=48-8-8
=32

.. the characteristic equation is A3 —122% + 364 - 32 =0 and the roots are 2, 2, 8.
Case (i) A =2 (twice)
6-2 =2 2 X
(A—ADX=0=| -2 3-2 -1 |ly|=0

2 -1 3-2|z
4 -2 2|«x
ie., -2 1 -1jjy|=0
2 -1 1|z
= 4x -2y +2z=0
2x+y-z=0
2x-y+z=0

which are equivalent to a single equation . There is one equation in three unknowns.
.. taking two of the unknowns, say x =1 and y =0, we get z =-2 and taking x =0 and
y=1 wegetz=1.
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2.8 Engineering Mathematics
Case (ii) 1=8

(A-8)X=0=| -2 3-8 -1 |y|=0
2 -1 3-8z

ie., 2x-2y+2z=0
—2x-5y-z=0
2x-y-5z=0
x -y oz
25-1 10+2 2+10
x y z

24 -12 12
2
X,=[-1
1
1 0 2
Hence, X;=| 0|, X,=|1|,X;=|-1 Ans.
-2 1 1
1 2 -3
Example 4 The matrix A is defined as A= |0 3 2|.Find the Eigen values of
00 -2

3A%3+5A% - 6A +2I.

Solution The characteristic equation is |A - AIl =0
1-2 2 -3
ie., 0 3-14 2 |=0
0 0 -2-2

1-HB-H(-2-1=0
ie., A=1,3,-2
Eigen values of A%=1,27,-8
Eigen values of A%=1,9,4
Eigen valuesof A=1, 3, -2
Eigen valuesof I=1,1, 1
Eigen values of 34% + 5A% - 6A + 21
First Eigen value = 3(1)% + 5(1)* - 6(1) + 2 =4
Second Eigen value = 3(27) + 5(9) — 6(3) + 2(1) = 110
Third Eigen value = 3( -8) + 5(4) — 6( -2) + 2(1) =10
Required Eigen values are 4, 110, 10. Ans.

|DEnny (M Find the Eigen values and Eigen vectors of the matrix

10 -1
A=|1 2 1] [KU May 2010]
2 2 3
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Solution The characteristic equation is given by 1A — AIl =0.

1-4 0 -1
ie., 1 2-A2 1 |=0
2 2 3-A
ie., B-6A2+111-6=0
= (A-1)(A*-51+6)=0

A-1)(A-2)(A-3)=0 = A1=1,2,3
To find Eigen vectors for the corresponding Eigen values, we will consider the matrix
equation (A - AX =0.

Case (i) A=1
1-1 0 -1 |[x
(A-ADX=0 = 1 2-1 1 ||y|=0
2 2 3-1|z
= —=z=0
= x+y+z=0
= 2x+2y+2z=0
Letx=1 = y=-1
1
X;=/-1
0

Case (ii) 1 =2

(A-ADX=0 = | 1 2-2 1 |y|=0

= —x—-z=0
x+z=0
2x+2y+z=0
x_y_z
-2 1 2
-2
X,= 1
2

Case (iii)) 1=3
1-3 0 -1 ||«
(A-ADX=0 = 1 2-3 1 ||ly|=0
2 2 3-3|z
= 2x-2z=0
x-y+z=0
2x+2y=0
X -y _ z
2 2 4
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-1
X,=| 1
2
1 -2 -1
Hence, the Eigen vectors are X =|-1{, X,=| 1|, X3=| 1 Ans.
0

EXERCISE

1. If 1, 5 are the Eigen values of a matrix A, find the value of det A.

a 4

2. Find the constants 2 and b such that the matrix has 3 and -2 as its Eigen

1 10
values.

If the sum of two Eigen values and trace of a 3 x 3 matrix A are equal, find |Al.

What do you understand by the characteristic equation of the matrix A?

5. What is Eigen-value problem?

Ll

a h
6. Find latent vectors of the matrix |0 b
00
7. Define linearly dependent and linearly independent set of vectors.
8. Show that the set of vectors X; =[1, 2, 3], X, =[1, 0, 1] and X; = [0, 1, 0] are
linearly independent.
9. Prove that the set of vectors X; =[1, 2, 3], X, =[1, 0, 1] and X5 = [0, 1, 0] are
linearly independent.
10. Define spectrum of a matrix.
11. Prove that any square matrix A and its transpose AT have the same Eigen values.

8
0].
c

2 21
12. Find the sum and product of the Eigen values of the matrix A={3 1 1].
1 2 2

5 4
13. Given A= |:1 2] , find the Eigen values of A2

14. Find the sum of the squares of the Eigen values of A=

o O W

1
2
0

4]
6
5]
15. Find the sum of the Eigen values of the inverse A=|0 ]

16. If A and B are 2 square matrices then what can you say about the characteristic
roots of the matrices AB and BA?
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17.

18.

19.

20.

Eigen Values, Eigen Vectors and the Characteristic Equation 211

If two of the Eigen values of a 3 x 3 matrix, whose determinant equals 4, are -1
and +2, what will be the third Eigen value of the matrix?

-1 00
The matrix A is defined as A= | 2 -3 0. Find the Eigen values of A%
1 4 2
-1 2 3
If A= 0 3 5], find the Eigen values of A3 +5A =8I

00 -2

The Eigen values of a matrix A are 1, - 2, 3. Find the Eigen values of 3] - 2A + A2

L

EM_Unitl_02.indd 11

2 -3 1
Find the Eigen values of the matrix | 3 1 3. (Ans.0,1,-2)
-5 2 —4
2
The matrix A is defined as A = |0 -2 6. Find the Eigen values of
0 0 -3
3A3+5A%+6A+ 1. (Ans. 15, 15, -53)
11 -2
Find the Eigen values and the corresponding Eigen vectors of | -1 2 1
01 -1
11131
Ans.—-1,1,2,{0(,|21,/3
11111

Show that the vectors [1, 2, 0], [8, 13, 0] and [2, 3, 0] are linearly dependent.
Show the set of vectors [1, 1, 1], [1, 2, 3] and [2, 3, 8] are linearly independent.

-15 4 3
Given that A=| 10 -12 6|, verify that the sum and product of the Eigen
20 -4 2
values of A are equal to the trace of A and | Al respectively.
[2 -1 1
Find the Eigen values and Eigen vectors of (adjA), where A=|-1 2 -1]|.
|1 -1 2
1] 2
Ans.1,4,4,|-1(,|-1|,| O
| 1] 0|1
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8. Verify that the Eigen vectors of the real symmetric matrix

3 -1 1
A=|-1 5 -1| areorthogonal in pairs.
1 -1 3

(Hint: Prove that X/ X,=X] X,=X; X,;=0)
9. Find the Eigen values and Eigen vectors of the following matrices:

2 2 2 -4
@1 1 1 Ans.-2,2,2,| -1],|1
1 3 -1 7] (1]
(2 2 1 1
Gi |1 3 1 Ans.1,1,5,| 2|1
122 -5] 1]
(4 2 -2 21 1] [0]
(i) [-5 3 2 Ans.1,2,5,(1(,|1],|0
-2 4 1 4] 2] 1]
(1 1 1 ol [-1][4
(v) |1 2 1 Ans.0,1,5,|-1|,| ol,| 5
323 1] | 1] [11]
(-2 2 -3
v | 2 1 -6 [KU April 2012]
-1 =2 0
1] 2
Ans.5,-3,-3,| 21,|-11,{0
-1{| of |1

10. Find the Eigen values and Eigen vectors of (adjA), given that the matrix

2 0 -1
A=[ 0 2 0 [KU May 2010]
10 2
1] o] 1
Ans.1,2,3,[0(,|1],| 0
1] |o]|-1
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Unit | Matrices

Characteristic equation; Eigen values and Eigen vectors of a real matrix; Properties;
Cayley-Hamilion theorem (excluding proof]; Orthogonal fransformation of a
symmetric matrix to diagonal form; Quadratic forms; Reduction to canonical form
through orthogonal reduction.

Unit Il Three-Dimensional Analytical Geometry

Direction ratios of the Line Joining two points; The plane; Plane through the
intersection of two lines; The straight line; The plane and the straight line; Shortest
distance between two skew lines; Equation of a sphere.

Unit il Geometrical Applications of Differential Calculus
Curvature in Cartesian coordinates; Centre and radius of curvature; Circle of
curvature; Evolutes; Envelopes; Evolutes as envelope of normals.

Unit IV  Functions of Several Variables

Partial derivatives; Euler’s theorem for homogeneous functions; Total derivatives;
Differentiation of implicit functions; Jacobians; Maxima and minima of functions
of two or more variables; Method of Lagrangian multipliers.

Unit V Differential Equations

Equations of the first order and higher degree; Linear differential equations of
second and higher order with constant coefficients; Euler's homogeneous linear
differential equations; Mathematica software demonstration.
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Chapter 1: Matrices

Chapter 2: Eigen Values, Eigen Vectors and the Characteristic
Equation

Chapter 3: Cayley-Hamilton Theorem
Chapter 4: Diagonalization of Square Matrices

Chapter 5: Quadratic Forms
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Matrices

fChapter Outline

Infroduction

Definition of a Matrix

Special type of Matrices

Properties of Matrix Addition and Scalar Multiplication
Properties of Matrix Transposition

Detferminants

Simultaneous Linear Equations

1.1 O INTRODUCTION

Matrices were invented about a century ago in connection with the study of simple
changes and movements of geometric figures in coordinate geometry.

J J Sylvester was the first to use the Latin word “matrix” in 1850 and later on in
1858, Arthur Cayley developed the theory of matrices in a systematic way.

Matrices are powerful tools of modern mathematics and their study is becoming
important day by day due to their wide applications in almost every branch of science
and especially in physics (atomic) and engineering. These are used by sociologists in
the study of dominance within a group, by demographers in the study of births and
deaths, mobility and class structure, etc., by economists in the study of inter-industry
economics, by statisticians in the study of ‘design of experiments” and ‘multivariate
analysis’, by engineers in the study of ‘network analysis” used in electrical and
communication engineering.

Matrix is an essential tool for engineers and scientists to solve a large number
of problems in the branches of engineering such as in (i) electrical engineering,
where the problems with electrical circuits are modelled with the help of matrix
equations; (ii) structural engineering, where the problems are modelled in the form
of matrix equations and then solved; (iii) a neural network, where a set of matrices
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1.6 Engineering Mathematics

represents a neural network and its activity can be explained with the help of matrix
operations and also the knowledge gathered from a set of observations is stored in
matrix form; (iv) image processing, where an image is considered as a big matrix
and the templates for image processing operators like edge detection, thinning,
filtering etc are basically matrices and the image-processing operations are directly
or indirectly matrix operations; (v) graph theory, where a graph is represented by
a matrix and the problem related to the graph can be solved using matrix algebra;
(vi) control engineering, where the control problems are modelled using matrix
or matrix differential equations; (vii) compiler design, where the grammar of a
programming language may be expressed in terms of Boolean matrices and then the
precedence of the operators used is the operator precedence grammar are computed;
(viii) automata, where state transitions can be expressed using matrix theory.

Rectangular Array

Before we come to the formal definition of “‘matrices” and to understand the same, let
us consider the following example:

In an inter-university debate, a student can speak either of the five languages:
Hindji, English, Bangla, Marathi and Tamil. A certain university, say, A sent 25 students
of which 7 offered to speak in Hindi, 8 in English, 2 in Bangla, 5 in Marathi and the
rest in Tamil; another university, say B, sent 20 students of which 10 spoke in Hindji,
7 in English and 3 in Marathi. Out of 25 students from the third university, say C,
5 spoke in Hindji, 10 in English, 6 in Bangla and 4 in Tamil.

The information given in the above example can be put in a compact way if we
present it in a tabular form as follows:

University Number of speakers in
Hindi English Bangla Marathi Tamil
A 7 8 2 5 3
B 10 7 0 3 0
C 5 10 6 0 4

The numbers in the above arrangement form is known as a rectangular array.
In this array, the lines down the page are called columns whereas those across the
page are called rows. Any particular number in this arrangement is known as an
entry or an element. Thus, in the above arrangement, we find that there are 3 rows
and 5 columns and we observe that there are 5 elements in each row and so the total
number of elements =3 x 5, i.e., 15.

If the data given in the above arrangement is written without lines enclosed by

7 8 25 3
a pair of square brackets, i.e,, in the form [10 7 0 3 0| then this is called a
matrix. 5 10 6 0 4

1.2 O DEFINITION OF A MATRIX

A system of any mn numbers arranged in a rectangular array of m rows and n columns
is called a matrix of order m x n or an m X n matrix (which is read as m by n matrix).
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J Column
My Ay My
Ay Ay Ay
For example, | - * | « row is an m X n matrix where the symbols
a a a

ml m2 mn 1 5 2
a;; represent any numbers (4; lies in the ith row and jth column) and {3 6 4} isa
2 x 3 matrix.

> Note

(i) Amatrix may be represented by the symbols [a;], (a;), |la;!1. Generally, the

first system is adopted.

(ii) Each of the mn numbers constituting an m x n matrix is known as an
element of the matrix.
The elements of a matrix may be scalar or vector quantities.

(iii) When m = n, the matrix is square, and is called a matrix of order n or an
n — square matrix.

(iv) The plural of ‘matrix” is ‘matrices’.

1.3 QO SPECIAL TYPES OF MATRICES

Row Matrix

Any 1 x n matrix which has only one row is called a row matrix or a row vector.
The matrix A = [ayy, 4y, ... a3,,] is a row matrix.

Column Matrix

Any m x 1 matrix which has only one column is called a column matrix or a column

vector.
M
Ay
The matrix A = - | is a column matrix.
aml

Null Matrix or Zero Matrix

If the elements of a matrix are all zero, it is called a null or zero matrix. A zero matrix
of order m x n is denoted by 0,, , or simply by 0. A zero matrix may be rectangular or
square.

00
For example, and
00

rectangular respectively.

mn

00

0
0 0 0} are null matrices which are square and
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Diagonal Matrix

A square matrix with all the elements equal to zero except those in the leading
diagonal is called a diagonal matrix.

100
Forexample, |9 3 (| is a diagonal matrix.

005

Scalar Matrix

A diagonal matrix all of whose diagonal elements are equal is called a scalar matrix.
500
Forexample, |0 5 0| is a scalar matrix of order 3.
005

Unit Matrix

A square matrix of order n which has unity for all its elements in the leading diagonal
and whose all other elements are zero is called the unit matrix or the identity matrix
of order n and is denoted by I,,. In other words, if each diagonal element of a scalar
matrix is unity, the matrix is called a unit matrix.
100
For example, {O } and |0 1 O] areunitmatrices of order 2 and 3 respectively.

0 01

Triangular Matrices (Echelon Form)

A square matrix in which all the elements below the leading diagonal are zero is
called an upper triangular matrix. A square matrix in which all the elements above
the leading diagonal are zero is called a lower triangular matrix.

a,; 0 ... 0 ay Ay . . a4,

ay 4y 0 . 0 0 ay . . a4y,
For example, | . .. . . | islower triangular and

A By - - Ay 0 0 co Ay

is upper triangular.

Transpose of a Matrix

The matrix got from any given matrix A by interchanging its rows and columns is
called the transpose of A and is denoted by A”or A”.

3 1 2
6] then A”= | -1 5| clearly (A") = A.
3 6

-1

1
For example, if A = |:
2 5
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Conjugate of a Matrix

If A is an m X n matrix then the m x n matrix obtained by replacing each element of
A by its complex conjugate is called the conjugate matrix of A and is denoted by A .

Thus, if A =[a;] then A= [Z] where a; is the complex conjugate of a;;.

3+i 5-1 7 3-i 5+i 7
For example,if A=| 6 34i 2—i|then A=| 6 3-i 2+i
2+7i 8 9 2-7i 8 9

> Note

(i) If the elements of A are over the field of real numbers then the conjugate of
A coincides with A, i.e., A = A.

(ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., (A) = A.

Symmeltric Matrices

A square matrix A = [al-]-] is said to be symmetric if A = AT e, a; = aj and
skew-symmetric if A = AT e, a;=—aj; where i and j vary from 1 to n.
a h g 0 h g
The matrices | b f|and |-h 0 f| arerespectively symmetric and skew-
symmetric. 8§ f ¢ 8 ~f 0

> Note

In a symmetric matrix, all the elements placed symmetrically about the main
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of
-1.

Hermitian Matrices and Skew-Hermitian Matrices

A square matrix A = [a;] is said to be Hermitian if ;= “_]1 i.e,, the (i, j)th element is the
conjugate complex of the (j, 7)th element.

A square matrix A = [a] is said to be skew-Hermitian if 2;= —a_ﬁ, i.e, (i, j)th element
is the negative conjugate of the (j, i)th element.

; I S I I B el Hermitian and
or example, 14 4i > an o4 i are respectlve Yy ermitian an

skew-Hermitian matrices.

Trace of a Square Matrix

The sum of the main diagonal elements of a square matrix A is called the trace of A
and is denoted by tr A.
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by A - - Ay
Ay Ay Ay
IfA=| - - - - - | then
anl anZ ann

trace (A)=trA=a;; tan+..+a,,

> Note

(i) If A and B are of the same order then tr(A+B)=tr A+tr B
(ii) If A be of order m x n and B of order n x m, then tr AB = tr BA.

1.4 O PROPERTIES OF MATRIX ADDITION AND SCALAR
MULTIPLICATION

Property (i) A+B=B+A
Property (ii) (A+B)+C=A+B+0)
Property (iii) oA+ B)= oA+ aB
Property (iv)  (o+ B)A=aA+BA
Property (v) (af) A= a(BA)
Thus, the matrix addition is commutative [Property (i)] and associative [Property
(ii)l; and the scalar multiplication of a matrix is distributive over matrix addition
[Property (iii)].

1.5 O PROPERTIES OF MATRIX TRANSPOSITION

If A and B are two matrices, and ‘o is a scalar then
Property (i) (AHT=A

Property (i)  (A+B)T=AT+BT

Property (iii)  (0A)! = AT

Property (iv)  (AB)T = BTAT

1.6 0O DETERMINANTS

With each square matrix A, we can associate a determinant which is denoted by the
symbol Al or det A or A. When A is a square matrix of order , the corresponding
determinant | Al is said to be a determinant of order n. Amatrix is just an arrangement
and has no numerical value. A determinant has numerical value. In fact, every square
matrix has its determinant and while finding inverse, rank, etc., of a matrix or solving
the linear equations by matrix method, we come across it.

2 5|12 6|9 5 9 6 . .
Further, , , and are different matrices but the
6 9|5 9|6 2 5 2

corresponding determinants have the same value (-12). In matrices, numbers are
enclosed by brackets or parenthesis or double bars. In determinants, numbers are
enclosed by a pair of vertical lines (bars).
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Matrices 1.11

Determinants were first introduced for solving linear systems and have important
engineering applications in systems of differential equations, electrical networks,
Eigen-value problems, and so on. Many complicated expressions occurring in
electrical and mechanical systems can be simplified by expressing them in the form
of determinants.

The differences between matrices and determinants are as follows:

Matrices Determinants

1. Number of rows and number of col- 1. Number of rows and number of

umns can be equal or unequal. columns are equal.

2. Elements are enclosed by brackets or 2. Elements are enclosed by a pair of
parentheses or double bars. vertical lines (bars).

3. A matrix has no numerical value. 3. A determinant has a numerical value.

4. Matrices are arrangements. By 4. Even after interchanging rows and
interchanging rows and columns in a columns in a determinant, the value
matrix, a new matrix is obtained. of the determinant is unaltered.

Properties of Determinants

The following properties can be used in evaluating determinants.
(i) A determinant is unaltered if the corresponding rows and columns are
interchanged.

(if) If each element of a row or column be multiplied by a constant, the value of the
determinant is multiplied by the same constant.

(iif) If two rows (or columns) of a determinant are interchanged, the sign of the
determinant is changed.
(iv) If two rows (or columns) are identical, the value of the determinant is zero.

(v) A determinantis unaltered if the elements of any row (or column) be multiplied
by a constant and added to the corresponding element of any other row (or
column).

(vi) The determinant of a diagonal matrix is equal to the product of the elements in
the diagonal.

(vii) The determinant of the product of two matrices is equal to the product of the
determinants of the two matrices,

ie, |ABI = 1Al - IBI

Minors of a Matrix

The determinant of every square submatrix of a given matrix A is called a minor of
the matrix A.

5 2 10
For example, if A=|-1 3 7
6 4 6
5 2 10
. 5 2[13 7
Some of the minorsare -1 3 7|, , , 3,6, etc.
6 1 6 -1 3|'|4 6
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Singular and Nonsingular Matrices

A square matrix A is said to be singular if its determinant is zero.
A square matrix A is said to be nonsingular if its determinant is not equal to zero.
For example,

1 2 3
consider A=|3 1 4
2 4 6
[Al =1(6-16) —2(18 —8) + 3(12 - 2)
=-10-20+30
=0
. Ais a singular matrix.
21 3
Consider B=|2 3 1
11 2
IBI =2(6-1)-1(4-1)+3(2-3)
=10-3-3
=4

Since |Bl =4 #0, B is a nonsingular matrix.

Adjoint of a Square Matrix

Ay Gy i3
LetA=|a, a,, ay
A3 O3 Az

The adjoint of A is defined to be the transpose of the co-factor matrix of A and is

denoted by adjA.
All A12 A13
adjA = (A;)", where A; = | Ay, A, Ay
A3l A32 A33
All A21 A31
adjA =(A)"=|Ap Ay Ay
Ay Ay A

13 23

Reciprocal Matrix or Inverse of a Mafrix

o Definition

If A be any matrix then a matrix B, if it exists such that AB = BA =1, B is called the
inverse of A; I being a unit matrix.

For the products AB, BA to be both defined and equal, it is necessary that A and B
are both square matrices of the same order. Thus, nonsquare matrices cannot possess
inverses. Also, we can at once show that the inverse of a matrix, in case it exists, must
be unique.
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Nonsingular and Singular Matrices

A square matrix A is said to be nonsingular or singular according as Al # 0 or
Al =0.
Thus, only nonsingular matrices possess inverses.

> Note

(i) If A, B be two nonsingular matrices of the same order then the product AB
is nonsingular and (AB) ! =B AL
(ii) If A be a nonsingular matrix and k a positive integer then A™ = (A%
(iii) The operations of transposing and inverting are commutative,
ie, (ADT=@ADT
(iv) The operations of conjugate transpose and inverse are commutative,
ie., (A9 =41

Orthogonal Matrix

A square matrix A is said to be orthogonal if AAT=ATA=1
But we know that A- A=A - A=1]
Hence, we note that AT= AL,
Hence, an orthogonal matrix can also be defined as follows:
A square matrix A is said to be orthogonal if AT= A
|:COS 6 —sind]
For example, if A=

sin@ cos@

. |:C059 sin@ |
then A =

—sinf cosf

AAT [Cose —sine}_cose sin@}

sin@ cos@ ||—sinf cos6

sinf cosf — cosH sin O sin® 6 + cos? 0

b 1)

I: cos’ 6 +sin’ 6 cos 6 sinf — sin O cos 9:|

Hence, A is orthogonal.

Rank of a Matrix

A number r is defined as the rank of an m x n matrix A provided,
(i) A has at least one minor of order r which does not vanish, and
(ii) there is no minor of order (r + 1) which is not equal to zero.

> Note

(i) The rank of a matrix A is denoted by p(A) (or) simply R(A).
(if) The rank of a zero matrix by definition is 0 (i.e.) p(0) = 0.
(iif) The rank of a matrix remains unaltered by the application of elementary row
or column operations, i.e., all equivalent matrices have the same rank.
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1.14 Engineering Mathematics

(iv) From the definition of rank of a matrix, we conclude that:
(a) If a matrix A does not possess any minor of order (r + 1) then p(A) <r.
(b) If at least one minor of order r of the matrix A is not equal to zero then
p(A) = 7.
(v) If every minor of order p of a matrix A is zero then every minor of order
higher than p is definitely zero.

Idempotent Matrix

A matrix such that A? = A is called an idempotent matrix.

2 2 -4
For example, if A= -1 3 4|,
1 -2 -3

2 -2 4| 2 2 4 2 -2 -4
A’=|-1 3 4||-1 3 4|=|-1 3 4|=A
1 2 3|1 -2 3 1 2 -3
Periodic Matrix

A matrix A will be called a periodic matrix if A**!= A, where k is a positive integer. If
k is the least positive integer, for which A¥*! = A, then k is said to be the period of A. If
we choose k =1, we get A” = A and we call it the idempotent matrix.

Nilpotent Matrix

A matrix A will be called a nilpotent matrix if A*= 0 (null matrix) where k is a positive
integer; if however k is the least positive integer for which A¥ =0, then k is the index
of the nilpotent matrix.

. ab  b?
F if A= ,
or examp e, 1 —a2 —Ilb

2 2
A2 = ab b ab b:OO:0
—a* —ab||-a® -ab 00
Here, A is a nilpotent matrix whose index is 2.

Involuntary Matrix

A matrix A will be called an involuntary matrix if A% = I (unit matrix). Since I = I
always, the unit matrix is involuntary.
Equal Matrices

Two matrices are said to be equal if
(i) they are of the same order, and
(ii) the elements in the corresponding positions are equal.
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Th 'fA21B21
us, i =l 4Bz 4

Here, A =B.

1.7 QO SIMULTANEOUS LINEAR EQUATIONS

The concepts and operations in matrix algebra are extremely useful in solving
simultaneous linear equations.
Let the equations be
ax+ay+azz=d; bix+by+byz=d, cix+cy +cz=ds
[ax ay az | | d,
= bjx by byz|=|d,
X Gy 3z| |d,

a4, aylfx| [4

= by b, bylly|=|d,
6 ¢z d,
AX =B
AN AX)=A"'B
(A'A)X=A"'B
IX=A"B
X=A"B

Hence, to solve linear equations, write down the coefficient matrix A and find its
inverse AL, Then find A™!B. This gives the value X which is the solution for the given
linear equations.

Consistency of a System of Simultaneous Linear Equations

A system of simultaneous linear equations is AX = B in matrix form. Consider the
coefficient matrix A. Augment A by writing the constants vector as the last column.
The resulting matrix is called an augmented matrix and is denoted by (A : B) or
(A:B)orsimply [A, B].

A system of simultaneous linear equations is consistent if the ranks of the
coefficient matrix and the augmented matrix are equal,
ie, p(A)=p(A : B) (or) R[A] = R[A, B].

There are two possibilities:

(i) When p(A) = p(A : B) = n (the number of unknowns), the system has a unique

solution.

(i) When p(A) = p(A : B) < n (the number of unknowns), the system has infinite
solutions. Let p(A) = p(A : B) =r <n - (n —r) of the unknowns are to be assigned
values arbitrarily and the remaining » unknowns can then be obtained in terms
of those (n —r) values.

On the contrary, a system of simultaneous linear equations is inconsistent if the
ranks of the coefficient matrix and the augmented matrix are not equal, i.e., p(A) #
p(A:B)
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These different possibilities are presented in a chart as follows:

EM_Unitl_01.indd 16

Consistent system
p(A) = p(A:B)

Inconsistent system

p(A) # p(d:B)

Unique solution
plA)=n

Infinite number of solutions

pd)<n
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Quadratic Forms

fChapter Outline
® Definition
® Quadratic Forms Expressed in Matrices
® Llinear Transformation of Quadratic Form
® Canonical Form
® Index and Signature of the Quadratic Form
® Nature of Quadratic Forms
® Determination of the Nature of Quadratic Form (QF)
without Reduction to Canonical Form

5.1 QO DEFINITION

A homogeneous polynomial of second degree in any number of variables is called a
quadratic form.
For example,
(i) ax?+2hxy + by?
(ii) ax?+by? +cz® + 2hxy + 2gyz + 2fzx
(iil) ax?+by* + cz* + dw* + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw
are quadratic forms in two, three and four variables.

5.2 1O QUADRATIC FORM EXPRESSED IN MATRICES

Quadratic form can be expressed as a product of matrices.
Quadratic form = XTAX.

X Ay
where X =|x, | and A=|ay a, 4, | (Symmetric matrix)

X5 A3 O3 dgg
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5.2 Engineering Mathematics

X" is the transpose of X.

Ay Ay 3 || X%
XTAX = vy % x3llay ay ay | x,
A3 Az Az || X3

Xy

=[ag02) + X, + A3y Xy A Xy Ay X, FA3pXg 13X+ AyX, +a55X5]| Xy

X3

= 03] By Xy Xy 13y X0+ XX + (X5 F g Xy X 53, X F By Xy X F 3305
= X5+ X5 + Ayg X5 (g F gy )Xy X+ (g 1) X, X+ (a3 + y5)3, X,

_ 2 2 2
= A X] F Ay X5+ Aga X5+ 20,,X, X, + 2053X, X5 + 20,5X, X4

(As ay; = a1y, A3, = dy3, A3 = a13 in @ symmetric matrix, in general, 2;; =2

5 = 1 coefficient
of x; if i #1.) 2

5.3 O LINEAR TRANSFORMATION OF QUADRATIC FORM

Let the given quadratic form in 1 variables be X’AX where A is a symmetric matrix.
Consider the linear transformation X = PY.

Then XT=(Py)T=YTPT.
XTAX = (YTPHA(PY) = YI(PTAP)Y = YTBY
where B=PTAP.

Therefore, Y'BY is also a quadratic form in n variables. Hence, it is a linear
transformation of the quadratic form X'AX under the linear transformation X = PY
and B = PTAP.

5.4 O CANONICAL FORM

If a real quadratic form be expressed as a sum or difference of the squares of new
variables by means of any real nonsingular linear transformation then the latter
quadratic expression is called a canonical form of the given quadratic form.

5.5 0O INDEX AND SIGNATURE OF THE QUADRATIC FORM

When the quadratic form X”AX is reduced to the canonical form, it will contain only
r terms, if the rank of A is r. The terms in the canonical form may be positive, zero or
negative.

The number (p) of positive terms in the canonical form is called the index of the
quadratic form.

Number of positive terms — Number of negative terms, i.e., p — (r —p) =2p —r is
called signature of the quadratic form.
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5.6 O NATURE OF QUADRATIC FORMS

Definite, Semi-definite and Indefinite Real Quadratic Forms

Let XTAX be a real quadratic form in 1 — variables x;, X,, ... x,, with rank r and index p.
Then we say that the quadratic form is
(i) positive definiteif r=n,p=r.
(if) negative definite if r=n, p=0.
(iii) positive semi-definite if r <, p=r.
(iv) negative semi-definite if r <n, p=0.
If the canonical form has both positive and negative terms, the quadratic form is
said to be indefinite.

Examples:
(1) xl2 + x% is positive definite.
(ii) —x]2 - x% is negative definite.

(i) (x; - x,)*is positive semi-definite.
(iv) —(x; — x,)* is negative semi-definite.

2 2. . .
X] —X; is indefinite.

> Note

If XTAX is positive definite then | Al > 0.

5.7 O DETERMINATION OF THE NATURE OF QUADRATIC FORM (QF)
WITHOUT REDUCTION TO CANONICAL FORM

Consider the quadratic form

Ay Gy Mz || X
T _
XTAX =[x, x, x]lay ay ay |l X,

31 3 A3 || X3
A1 A g
D,=la,l, D=1 12
Let D;=lay;l, 2=, and Dy=|a,; 4y, fy
21 2
A31 A3 f33
The QF is
(i) positive definite if D;>0fori=1, 2, 3;
(if) negative definite if D, >0 and D; <0, D;<0;
(iii) positive semi-definite if D;> 0 and at least one D, = 0;
(iv) negative semi-definite if some of the determinants are zero in case (ii); and
(v) indefinite in all other cases.
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Criteria for the Nature of Quadratic Form (or Value Class) in Terms of
Nature of Eigen Values

Value Class Nature of Eigen Values
Positive definite Positive Eigen values
Positive semi-definite Positive Eigen values and at least one is zero
Negative definite Negative Eigen values

Negative semi-definite ~ Negative Eigen values and at least one is zero

Indefinite Positive as well as negative Eigen values

SOLVED EXAMPLES

1ENNI NI Discuss the nature of the quadratic form 8x* + 7y? + 32> — 12xy + 4xz —

8yz. [KU April 2011]
8 -6 2
Solution The matrix of the quadratic formis A=|-6 7 —4
2 4 3
8 6 8 6 2
D,=181=8>0,D,= 6 7‘=20>OandD3=—6 7 —4(=0
2 4 3
- the QF is positive semi-definite. Ans.

Example 2 Write down the matrix of the quadratic form x12 + 2x§ - 7x§ —4xx, +
8x1x5 + 5xyx3

Solution
X7+ 2x3 = 723 — 42, %, + 82, %5 + 5X, X, (1)
Coefficient of X7 =1=a,,,
Coefficient of x3=2=a,,
Coefficient of x% =—7=a5,
1 .. 1
5 coefficient of x;x,= E(—4) =-2=a,

1 coefficient of x,x;= %(8) =4=a,

= N

— coefficient of x,x;= %(5) = ; =0y,

N

= Eq. (1) can be expressed as X"AX, where
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1 2 4
X Ay Gy g 5
X=|x,|,A=|ay a, a,|=|-2 2 E
X3 A3 O3 Az 5
4 - -7
2
1 2 4
X
5
.. given quadratic form = [x; x, x3]|-2 2 7|1 Ans.
X3
4 2
2

|Denny (M Write down the quadratic form corresponding to the matrix

1 25
A=2 0 3|
5 3 4

Solution Quadratic form = XTAX

1 2 5||x
=[x, x, x%]|2 0 3||x,
5 3 4||x,;

X
=[x;+2x,+5x; 2x;+3x; 5x;+3x,+4x;]| x,

X3
= xl2 + 23,2, + 552+ 220X, + 3%,X5 + 505 + 3x,x5 + 4x§

—,2 2
=x; +4x5+4x,x, + 10xx5 + 6x,X5. Ans.

1DENNIIF I Reduce the quadratic forms 6x] +3x; + 14x5 + 4x,x, + 4x,%; + 18%,x,

and 2x7 +5x3 + 4x,x, + 2x,x; simultaneously to canonical forms by a real nonsingular
transformation. [KU May 2010]

Solution The matrix of the first quadratic formis A=

O N O
N W N
—_

=~ N O

The matrix of the second quadratic formis B=

= NN
S G N
S O =

The characteristic equation is | A — ABI = 0.

6-21 2-24 9-1
ie., 2-22 3-54 2 |=0
9-1 2 14
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5.6 Engineering Mathematics
= 50 -2*-51+1=0
ie., A-1)(5A-1)(A+1)=0
= A=-1, l, 1
5

When A=-1, (A - AB)X =0, given the equations,
8x; +4xy + 10x53 = 0; 4x; + 8xy + 2x3=0; 10x; + 2x, + 14x3=0
-3
by solving, X,=| 1
2

When A= %, (A-AB)X =0 gives
28x; + 8x, + 44x3 = 0; 8xy + 10x, + 10x5 = 0; 44x; + 10x, + 70x3=0
-5
by solving, x,=| 1
3

When 1=1, (A-AB)X =0 gives
4x, +8x3=0; —2x, + 2x3=0; 8x; + 2x, + 14x3=0

2
= Xy=|-1
-1
Since X, X,, X3 are not pairwise orthogonal, consider the modal matrix P.
-3 -5 2
Now, P=| 1 1 -1
2 3 -1
(3 1 2|6 2 9][-3 -5 2
P'AP=|-5 1 3|2 3 2| 1 1 -1
| 2 -1 -1]|9 2 14| 2 3 -1
(100
=0 1 0
0 01

Hence, the quadratic form X"AX is reduced to the canonical form y2 + y3 + yg.

(3 1 2][2 2 1][-3 -5 2

Now P'BP=|-5 1 3|2 5 0/ 1 1 -1
2 -1 -1]|[1 0 0] 2 3 -1
-1 0 0
=050
00 1

Hence, the quadratic form X"BX is reduced to the canonical form yf + 5y§ + y§. Ans.
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Example 5 Reduce 6x12 + 3x§ + 3x§ —dxyxy — 2x,x5 + 4y, into canonical form.
Find its nature, rank, index and signature.

[KU Nov. 2010, AU Jan. 2010, KU April 2012]

6 2 2
Solution The matrix of the quadratic formis A=|-2 3 -1
2 -1 3
The characteristic roots are given by 1A - AIl =0
6-1 2 2
ie., -2 3-14 -1]|=0
2 -1 3-4
= A —122%+364-32=0
. the Eigen values are =8, 2, 2
The Eigen vectors are obtained by (A — AI)X =0
When 1=8, (A-A)X =0 gives
2 2 2][x
-2 -5 -1||x,[=0
2 -1 -5||x,
= —2x1 = 2xy + 2x3=0; 2x; = 5x, —x3=0; 2x; —x, = 5x3=0
2
= X=|-1
1

When A=2, (A - Al)X =0 reduces to a single equation 2x; —x, + x3=0
0

Putting x, = 0, we get X,=|1
1

1
Again, by putting x, =0, we get X,=| 0
-2

1

2 0
Now X =|-1|,X,=|1| and X;=| 0
1 1 -2

Here, X;, X,, X; are not pairwise orthogonal.
(e, X{ X,=0,X]X;#0, X3 X;=0)

1
Xj is orthogonal to X, only when X,=| 1|, so that XlTX2 = XzT X, = X3TX1 =0
-1
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%l
G-t -

.. the normalized modal matrixis P =

-5

&

T
L

Consider

- -
-t 5

(o)}

|

N

N
S-SIIN

PTAP=

=
5l 5

- = &
&

5
5
S5l o

Il
o O ®©
S N O

N © O
=225 S

Hence, the quadratic form XZAX is transformed to the canonical form 8y12 + 2y§ + 2y§
Here, rank of the quadratic form = 3, index = 3, signature = 3.
.. it is positive definite. Ans.

EXERCISE

1. If the canonical form of a quadratic form is 5y12 + 6y§ then the rank is
@i 5 (i) 0 (iii) 2 (iv) 1
2. The nonsingular linear transformation used to transform the quadratic form to
canonical form is

(i) X=NTy (i) X=NY (iii) Y=NX (iv) Y=X
2 1 2

3. Write down the quadratic form corresponding to the matrix | 1 2 -2].
-2 2 3

Define a quadratic form and give an example in two and three variables.

What do you mean by canonical form of a quadratic form?

Define index and signature of a quadratic form.

Discuss the nature of the quadratic form 2x* + 5y + 3z% + 4xy.

Discuss the nature of the quadratic form 2xy + 2yz + 2zx.

Determine the nature of the following quadratic forms without reducing them
to canonical forms:

O 0 NG
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(1) xl2 + 3x§ + 6x§ + 23,2, + 20,05 + 4x5%;
(i) 27 + x5 — 323 +12x,x, — 8x,%; — 4x,,
10. Find the index and signature of the quadratic form, 2x? - 5x3 +7x2.

11. State the conditions for a quadratic form to be positive definite and positive
semi-definite.
12. Write down the matrices of the following quadratic forms:
(i) 2x%+3y*+ 6xy
(ii) 2x%+5y* - 62* — 2xy — yz + 8zx
(iti) x7 +2x5 — 75 — 4x,%, + 8x,X5 + 5, %,

(iV) X2+ 203+ 323 + 4x7 + 2x,%, + 4x, x5 — 62X, — 4x,25 + 8x,x, — 122,37,

13. Write down the quadratic forms corresponding to the following matrices.

1 1 -2 0

. 2 4 5 ) 1 2 5 N 14 0 o0
i (4 3 1 (i) |2 0 3 (iii) 2 0 6 -3
51 1 5 3 4 0 0 -3 2

14. Write down the matrix of the QF
3x2 +5x3 + 5x§ = 27X, + 2X,X5 + 6X3%;

15. Define pairwise orthogonal.

1. Reduce the QF 83512 + 7x§ + 3x§ —12x,x, — 8x,x; +4x,x, to the canonical form
through an orthogonal transformation and, hence, show that it is positive
definite. Find also a nonzero set of values for x;, x,, x5 that will make the QF
Z€T0.

;Q=3y3+15y5; x,=1,x,=2,x,=2

WIN W[ W=
wl,l, W= W[
W= wl,'o w|N

2. Reduce the QF 10x7 +2x + 5x3 + 6x,x, — 10x,x, — 4x,x, to a canonical form by
orthogonal reduction. Find also a set of nonzero values of x;, x,, x3 which will
make the QF zero.

Ans. P = ;Q:3y§+14y§;x1=1,x2=—5,x3=4

&l 5l 8-
&= &= &=
i £l 1
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3. Find the value of A so that the quadratic form
l(xlz + x; + xg) +2x,x, — 2x,%, + 2x,x, may be positive definite. (Ans. 1>2)
4. Reduce the following quadratic forms to canonical forms or to sum of squares
by orthogonal transformation. Write also rank, index and signature.
3x? + 5y% + 327 — 2xy — 2yz + 2zx

X2+ 3y +32% - 2z
[Ans. (i) 2y7 + 3y; + 6y3; rank = 3, index = 3, signature = 3
(ii) 4yf + y% + y§ ; rank = 3, index = 3, signature =3
(iii) 3y12 + 6y§ - 9y§; rank = 3, index = 2, signature = 1
(iv) yi+2y; +4y3; rank =3, index = 3, signature = 3]
5. Reduce the QF 2x;x, + 2x;x3 — 2x,x3 to the canonical form by an orthogonal

transformation. (Ans. y12+ yg_ 2y§)
6. Reduce the QF x12+3x§+3xg—2x2x3 into the canonical by an orthogonal
transformation.

(Ans. 7 +2y;+4y3)
7. Reduce the QF y? + 2xy into the canonical form by an orthogonal reduction and

state the nature of the QF. (Ans. —ylz + y% + yg ; indefinite)
8. Discuss the nature of the following quadratic forms:
(i) 2x*+32%+2xy
(i) 11x} +1dxyy, + 14x,z; + 8y2,
(i) »+ 4xy + 6x2 — y2 +2yz + 422
[Ans. (i) Positive definite (ii) Indefinite (iii) Positive semi-definite]
9. Reduce the following quadratic forms to canonical forms by orthogonal
transformation. State the nature.

(i) 16xx, - x§
(ii) 73(12 + 6x§ + 5x§ —4x,x, —4x,%,
(i) %2+ 203 + 33 + dyx, + 4%,%,
[Ans. (i) 8Y1— y3— 83 ; indefinite (i) 9y; +6y3 +3y3; positive definite
(iii) 5y; +2y; — y3; indefinite]
10. Find the nature of the following:
(i) 3x%—2y> -2 —dxy + 8xz + 12yz
(i) 6x7 + 325+ 317 — dxyx, — 22,%, + 45X,

(i) 5x% +26y* + 10z* + 4yz + 14xz + 6xy
[Ans.(i) Indefinite (ii) Positive definite (iii) Positive semi-definite]
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For the curve /9 = a, find the value of ds/dy,
5.

413, CURVATURE

et Pbe any point on a given curve and @ a neij
Let arc AP =35 and arc PQ = & Let the tangents at

pom‘d- @ make angles y and y + 8y with the x-axis, so that 1

pan ngle between the tangents at P and Q = by, (Fig. 49),

the 8 moving from P to @ through a distance &s, th

% Itr:J rned through the angle 8y. This is

:?:dzng or total curvature of the arc PQ.

ghbouring

e tangent
called the total

5
. The average curvature of arc PQ = -8!5

The limiting value of average curvature when Q O

pmaches P (i.e. 8 — 0) is defined as the curvature of the Fig. 49,
ap
L.“rl'e at P

!

Thus curvature K (at P) = %‘f

Obs. Since 8y is measured in radians, the unit of curvature is radians per unit length e.g. radians per
centimetre.

(2) Radius of curvature. The reciprocal of the curvature of a curve at any point P is called
the radius of curvature at P and is denoted by p, so that p = ds/dy.

(3) Centre of curvature. A point C on the normal at any point P of a curve distant p from
it. is called the centre of curvature at P.

(4) Circle of curvature. A circle with centre C (centre of curvature at P) and radius p is
called the circle of curvature at P,

414.(1) Radius of curvature for cartesian curve y =f (x), is given by
(1+y,%*2
85
We know that tan y=dy/dx =y, or y=tan ! )
Differentiating both sides w.r.t. x,

dy - 71" diyyuds
dx_1+y12 dx g

ds ds dx 1*)’12 (1*'.712)3/2
O - A

? e p ¢
y2

(2) Radius of curvature for parametric equations

x=f(),y=0().
Denoting differentiations with respect to ¢ by dashes,
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g in (
Substituting the values of vy and ys in (1)

2 372
’ 2 2
JEr =Yy s &
-x'y” E

r x

.'1 :’.‘LJ
=¢ ', ’
P l \x

@)’ A
3 Radius of curvature at the origin. Newton’s formulae p
If x-xis is tangent to a curve at the origin, then !
it v
2
pat (0,0)= Lt (!-]
x—-0
Since x-axis is a tangent at (0, 0), (dy/dx)g or (y,)g =0 |
0
. 2 1 1 ( = !’orm) :
Als g b = t o i
g xl:.to [23'] ,I_'.to [2dy/¢ir) ,I:. o d*/dx® (2o 0 ~
2, ,372 2 o
e (o.o)=(1+0'1 )o P ST Lt g__ (From (1)
02)o 020 L0 %

(@0) Similarly, if y-axis is tangent to a curve at the origin, then

pat(0,0)= Lt (5]

x—0
(1) In case the curve passes throu

gh the origin but neither x-axis nor y-axis is tangent at
the origin, we write the equation of the

curve as

2 &.rg .
Y=F@=fO +xf" 0+ 55f"(0) + ... (By Maclaurin’s series]

=px+qx%/2+ ... {22 110 =_0
where p = £’ (0) and e=f"(0)

Substituting this in the equation y = f(x), we find the values of
coefficients of like powers of x. Then p (0, 0) = (1 +p2) 3/2/q,

Obs. Tangents at the origin to a curve are found by equating to zero the lowest degree terms in its
eguation.

pand g by equating

#

] point (3a/2, 3a/2) of the Foli
x*+ v = 3axy.

(Mangalore, 18
Differentiating with respect to x, we get s
dy dy !
3.x2+3_v2‘—ilr=3a(y+x‘—§) ‘
or 0'2 - a.r)::—': =ay ~x2 () gx‘! at (3a/2, 3a/2) =~ )
Diﬁerentiating (1),
0,4y _dy d% _ dy d? |
{2ydx—a)£+0 ‘a-r)d—x'g-adx— ;;‘E at (30/2‘30/2),3'3, 19 f
2,32 i
Hencepat(30/2,3a/2)= 1+ (dy/dx)?) _=w

dzy/drz ~-32/3a
Example 443 Show that the radius o

: f curvature qf ; iy
SOt 8R 0,y =a (1 -co00) iy duoog 875 o pom:a: the
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_,c‘:/// d
e dX _ 4 (1+¢080), % =asin@
ave do a8
we h@

dy dy dx__asin® _2sin08/2cos0/2

dx  do Tde a(l+cos6) g cog? 0/2 Bl
d?y _d (dy P P A s R
;z‘de(dx dx 2°° 2 a(1+cos )

1 a8

o By’ 2¢1c0520/2—4¢15ec 2.

Mdy/dx)zla/ 2 4a(l+ tan? 6/2)%/2
aizy/dx2 sec? 6/2
_ 4a - (sec? 0/2)% . cos® 6/2 = 4a cos 6/2.
e 444, Prove that the radius of curvature at any point of the astroid
2/3 _ g3, is three times the length of the perpendicular from the origin to the tangent at

hat point: , : (Patna, 1997 S)
The parametric equation of the curve 18

p:

x=a cos’t,y=a sin ¢.
x'( = dx/dt) =~ 3a cos’tsint,y =3a sin’ ¢ cos t.
x"=-3a (cosgl t-2cost sin? t) =3acost (2 sin? ¢t - cos® t)
y” =3a (2 sin t cos® t — sin® t)=3asint (2 cos? t - sin® t)
%'+ y’2 = 9a* (cos4 tsin%t + sin ¢ cos? t)= 9a? sin® ¢ cos? t
Xy -yx'=- 9a? cos® t sin? ¢ (2 cos? t - sin® t)
- 9a? cos® ¢t sinZt (2 sin? t - cos? t) = - 9a? sin? t cos? t
= %y,z?a/f = 270’ sin’ ¢ cos’ ¢ =-3asintcost.
XL Y CETN - 9a? sin ¢t cos? ¢t
Since dy/dx =y'/x' =-tant,

(Madras, 1992)

., Equation of the tangent at (a cos’ t, a sindt)isy -a sint=-tant(x-a cos® t)
ie. xtant+y-asint=0 48
p, length of L from (0, 0) on (i) = 97:'7:;—2%5 = -asintcost. Thus p =3p.
Example 4-46. Find p at the origin for the curves
(i;y"+x3+a(x2+y2)—a2y=0 (Marathwada, 1998) (ii)y—x=x2+2xy +y2
(i) Equating to zero the lowest degree terms, we gety=0.
- x-axis is the tangent at the origin. Dividing throughout by y, we have

2 2
y¥irx-Eia X +yl-a®=0
Y y
Let x — 0, so that Lt (x%/2y)=p.
x—0

0+0-2p+a(2p+0)—a2=0 or p=a/2.

(i) Equating to zero the lowest degree terms, we gety = x, as the tangent at the origin, which
18 neither of the coordinate axes.

*. Putting y = px + qx2/2 F i in the given equation, we get
PX+qx2/2+ ...... -x=x2+2:(px+q12/2+ ...... )+(px+qx2/2+

------

‘




e

178 HIGHER ENGINEERING

Equating coefficients of x and 2,
p-1=0,g/2=1+20+p® ie. p=landg=2+4 1+2 1°=8
p(0,0)=(1 +«pd a“‘/q::(l-r V8= 1/2v2

Problems 4 14
1. Find the radius of curvature at any point
(i) (at*, 2at) of the parabola y* = dax. (Madurai, 1990)
(11) (0, ) of the catenary y = ¢ cosh x/¢. (Madras, 1993)
2. Show that formmmhrhmqnc’,p-&ﬁﬂf {Madras, 2000 PT)
3. Show that the radius of curvature at .
(i) (@, 0) on the curve y* =a? (a - x)\/x is a/2. (V.T.U, 2000 S)
(i) (a/4, a/4) on the curve \x + Yy = Va is a/V2. (Osmania, 2000 §)

4. Find the radius of curvature at any point on the
(i) ellipse : x=a cos 8,y = b sin 8. (i) cycloid : x=a (8 -sin8),y =a (1-cos ).  (Mangalore, 1999)
(iti) curve x =@ (cos £ + £ sin ¢), y =a (sin ¢ - { cos £). (Kuvempu, 1998 ; Madras, 1996)

8. Show that the radius of curvature at the point (a cos’ 8, a sin’ 8) on the curve

x23 4 y¥3 2 5% s 3a 8in B cos 6. (Madras, 2000 S ; Rewa, 1998)

6. If p be the radius of curvature at any point P on the parabola y* = dax and S be its focus, then show
that p? varies as (SP)’. W.N.T.U, 1998

7. If p1 and p3 be the radii of curvature at the ends of a focal chord of the p.nhdny’-‘u.lhondww
that 1?3+ p2™ ¥ = 20" ¥, AMILE, 1996 S

8. Prove that for the ellipse x*/a® + y?/b? = 1, p = a® b%/p", p being the perpendicular from the centre on
the tangent at (x, y). (Nagpur, 1997)

9. Show that the radius of curvature at an end of the major axis of the ellipse Prats y'/b’ = 1 is equal
to the semi-latus rectum. (Osmania, 2000 S)

10. Show that the radius of curvature p at P on an ellipse Prat+y b'=1isgivenbyp = CD'iab where

CD is the semi-diameter conjugate to CP. (Raipur, 1998)

11. Find the radius of curvature at the origin for

P +y -22+6y=0 (N2x'+P*+aPy+xy-y*+2c=0 (Marathwada, 1992)
Uu'l_\r2 =x° (@ +x)/(a - x).

(4) Radius of curvature for polar curve r = (8), is given by

(2 +
o4 r?+2r-rr,
? v
With the usual notations, we have from Fig. 410. 0 Pria
gy,

y=6+0
Differentiating w.r.t. s,
1

de
2 oY
P

de
ds " ds

d
:(1+d0
Also we know that
= d—e _f_ -1 —r- | '.
. ’dr.r,“.'m (rlJ where

d
= __htveala =

Sle

si&
&%
/
=

[~
-]

=

1N
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CNHATION AN
i ﬁ“r('ntmtlng w.it. 6,
pitle |
+(r/ _nit=rry
1 (r/ry) ri ,-2”12 o

‘d‘\? = \J(r2 + '.12)
«(3)

NEL
/ (uting the value from (2) and (3) in (1),

Sub:’“
1 ! rlz-rrz
= = ——a gLl
pNre+ry P2 42
(r2 + 5%

p_r +2}'12—rr2

Hence
(5) Radiu$ of curvature for pedal curve p = £ (r) is given by
dr
P=Y4p
with the usual notation (Fig. 4-10), we have y =0+ ¢
D‘,fferentiating w.r.t. 8,
1_dy_db do
by e wl1)
Also we know that p=rsin ¢
: éB-sm¢+rc05¢_Q
do. .ldn
“Tds " ds 22 (By (3) and (4) of § 412 (2)
do _Q
[ds ds) P (By (1)

Hence
gxample 446. Show that the radius of curvature at any point of the cardioid
r=a (I -cos 6) vartes as \Nr.

Differentiating w.r.t. 8, we get
ri=asin®,rp=acos 6
3/2

4+ 2)3/2 a® (1 - cos 9)2+02 sin? 9]3/2=a3 [2 (1 - cos 6))
2 _rro+2ry“=a“(1-cos 6) — a2 (1 - cos 0) cos 6 + 2a° sin MRS

r
3/2

92 _a®242(1-cos6)

Th (r2+r)
s = A
; ¢ r? - rrg + 2n° 3a” (1 - cos )
1/2
:Ma(l e)l/2=.2ﬁ_a_(£) «\jr.
3 |a
()

Otherwise : The pedal equation of this cardioid is 2ap” = r

Differentiating w.r.t. p, we get
dr dr _4ap __dar®’? 8 :
dap = 3re 25 e OO BAD e I - H 5
ap = 3r 25 whence p rdp 3r = 3r-V2a) ritid pE=r (2a) from (i)
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Problems 415
L. Find the radius of Curvature at the poj

nt(r, 6) on each of the curves
hre=ua(] ~cos 0)

) r'" =a” cosn 6.
show that p?/r is constant,
the parabola 2a/r = 1 + cos 6,

2. For the cardioid r = a(1+cos @),
» Find the radius of curvature for
4. If py, pz be the radii of curvature at the extremities of any chord of the cardioid r =a (1 + €08 8 whi

passes through the pole, show that 1%+ ps? = 16a%/9, (Kuruhshetra, 199g,
5. For any curve r = [(8), prove that

4Bangalar¢, 1992 8

La dy
0 sin ¢ 1+d6

416.(1) CENTRE OF CURVATUL t ] Y
on the curvey =f (x) ig given by Ea any point P (x,y) Y,

(Bhopal, 1997,

-
\
\
]
'

fey Y1 +yY joy, Lont?
§ il 4 bl

ve at P(r,y) (Fig. 4.11). Draw
PL and CM 1st0 OX and PN | CM. Let the tangent at P make _|

an 2y with the x-axis, Then 4NCP =90°- «NPC O] T WL $
gt Fig. 411.
5=0M::OL_ML=OL_NP
2.3/2 ' -
=x-painy=y- 1191 L S¥ o e inye 21
Y2 v(1 +*51") (1 +y19)
2
my 21001
Y2 I
and i:MC:MN«#NC:LP-&pcos\y [ BeCV=Wl+tan2V)=\(l+y%)
+(1+y12)_3—/2. 1 ~-y+l+y]2
Y2 V(1 +y,%) Y2

Cor. Equation of the circle of curvature at Pis (x - x)% + (y - y)? = pZ.
(2) Evolute. The locus of the centre of
curvature for a curve is called its evolute

and the curve is called an involute of its
evolute. Evolute

Example 4-47. Find the coordinates of
the centre of curvature at any point of the
parabola y2 =4ax.

Hence show that its evolute is

27ay’ =4 (x - 20  (V.T.U, 2000)
We have 2yy; =4a ie. y; = 2a/y

2 4a?
and y2='-z'y’='y_3

If (z, ) be the centre of curvature, then
7o 2D 2a/y (14402
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2 2
:I+Z + 4a =x+4a-x+4az
2a % =3x + 2a [ o2

1+y2 3%id Y" =4ax L)
Ly pitda’ /iy

y =y +
y °+4a® - y3  uB2
4a” 4a?  Va

J the evolute, we have to eliminate x from (/) and (i)

=y =
i)
To fin
= 3
—2_4_1_3.._4. x-2a —9
0 =73 "a| 3 | F2la0) =4 x=2),

Thus the locus of (%, ¥) Le. evolute, is 27 ay? = 4 (x - 2a)°,

gxample 4.48. Show that the evolute of the cyclioid x =a (8 - sin 8),y =a (I - cos 8) is

qual Cyd,o,‘d_d 4 L (Pondicherry, 1998 S)
g -

_dy  dx | asinOTWEIES
We have yl‘de"de'a(l-cose)_cot?
d 3o SHee
20 1 1 1
2 2 a(l-c0s0)  4asint6/2
If %, 7) be the centre of curvature, then

gll(/mer e

(1+ 2
= —y—l——y;y—ll=a(9-sin6)+cot-g—(—4asin‘-g-)(l+cot2-g)
1 * 2% cos 6/2 48 20
=a (0 - sin 9)+—_sin 0,2 4a sin ) cosec 2
=a(9—sin9)+4asin9/2cose/2=a(6-sin9)+2asin0=0(9+sin0)
e 20 wiy
y=y+ Y -a(l—cose)+[1+cot 2)(-4asm EJ

= a (1 -cos 8) —4a sin* 6/2- cosec? 6/2

=a (1 - cos 0) - 4a sin? 6/2

—a(l-cos8)—-2a(l1-cosB)=-a(1l-cosb)
Hence the locus of (%, ¥) i.e. the evolute, is given by

x=a (0 +sin0),y =-a (1 - cos 8) which is another equal cycloid.
Problems 416

1. Find the coordinates of the centre of curvature at (at?, 2at) on the parabola y* = 4ax. (V.T.U., 2000 S)
2. Show that the equation of the evolute of the parabola P=4ayisd(y - 2a)® = 27ax®. (J.N.T.U., 1998)
3. Show that the evolute of the ellipse x =a cos 8, y = b sin 8 (i.e. x*/a® +y*/b* = 1) is

(ax)?’3 + (by)?’? = @* - bH*"2. (Madurai, 1998 S ; Triputi, 1998 S)
4. Show that the evolute of the rectangular hyperbola xy = ¢ (i.e. x=ct, y =c/t) is the curve
(x+)2/3 = (x =32 = (4c)*°, (Madras, 2000 S)

5. Show that the evolute of the cycloid x =a (¢ + sin ¢), y =a (1 - cos {) is the curve
x=a(t-sint),y-2a=a(l+cosl).

6. Find the evolute of the curve x = a cos’ 8, y =a sin® 8 i.e. x*" +y¥3 =02, (Mangalore, 1999)
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regresnte & Wragh love far o green value of @ If iferent values are green
| 00 mght anee A (Rewar atraght loves [hue bt aned are
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| In gemeral e ruroee cwreagueding o he ngsatioa
| Sy w0 for dfevent cadwes of 9, comatute o family
of cwrves and a 12 colled the parsmeter of the family

The emvwboge of & famdy of crrves @ the curve whah

S raeh mewmbur of the famiiy Far example we know

| Tt adh Vhe straaght ies of the famaly | loweh the arcle
‘}. f'oy’cl AR
(e the envelape of the family of Boes (11w the arcle
T Pag 418 which may slee be seen as the locus of the
S rmate prmats of imtaraetn of the oo o0 ¢ members :
of the luomily of Times (15 Thas leads tn the fllowing Fig 412

,, Dt Wiiny .-.dyu_,_..h\-0~mmm10hum¢[w
| mmbu.(n-“.—ndm.nummmwm.
| *.-Mb.ﬂumdwhtydmlm.y.-)-h

| m.hluvu-0.d¥".‘~].}c0

to o we get
¥

| Example 480 Pind the envelope of the famsly of lines y « mx & """"“;:a
| parameter (Madras,
We have — I L

Differentiating « partasdly with resgeet 1o =
2 - wmm -,uh---nu‘ 1
Now eliminate m from . and &)
Substituting the value of m w1 we got
f 4

y (=} 2 2 2

N “ieolF | ¢ y°» « b ox’y

i‘ -1 o ¥

i ey o1 wheeh s the required equation of the envelope.

s Semetimes the squation t the Tty of curves contains two parameters which are connected |
o volmtson In such cases. we climunste ane of the parsaseters by means of the given relation, then
1o find the envelope &
wcnhﬂ&w1am4n~'mm¢n¢em%4m "

(Tirupati, 1998

R

cllipee of the famly »
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(TATON AND 1S APPLICATIONS
1".2 4+ y! = l h 'g
ad bl where a and b are the parametors,

| III“,
area of the ellipse = xab which is given to be constant, wny ne?
. ’
‘ nb'c ® or bwelsa. '
2 2 LAl

gubstituting in (1 g+ 779 Srg Lora¥a ®y %0t .0 W

(e n':)n
ch is the gven family of ellipses with a as the only parameter,
wh wn.‘\“\mmting partially (i) with respect to a,
- 2\-20 RN 2()‘2/0‘)0'0 or a‘.cax/y
a from (1) and (),

The

oliw)

F]mun:m‘
ng the value of a® in (iif), we got

Y *x) + Ly"’/c‘) (cax/y) =1 or 2uywe?
ich1s the required equation of the envelope.

(3) Evolute of a curve is the envelope of the normals to that curve (Fig, 412),
gxample 451. Find the evolute of the parabola y2 = dax, (Madras, 1996)
i)

urdd)

SUL\sti(uti

W h

Any normal to the parabola is y = mx - 2 am -~ am
Differentiating it with respect to m partially,

0=x - 2a-3am?® or m = ((x - 2a)/3a)'"?
Qubstituting this value of m in (i),

1/2
_(x-2a x~2a
,v-( 3a ) [x-2a-a- 3 ]

Squaring both sides, we have
27ay” = 4 (x - 20’
b is the evolute of the parabola. (cf. Example 4:47).
Problems 417

Find the envelope of the following family of lines :
1. y = mx + am®, m being the parameter. (Madras, 1998 8)

whic

Xeosa+ i sin a = 1, a being the parameter. (Coimbatore, 1990)
a

.y =mx-2am - am®. (Madurai, 1998 S)
& v = mx + V(a’m? + b%), m being the parameter. (Madras 1996)

o

w

2
< Find the envelope of the family of parabolas y = x tan & - E—f—‘-——, « being the parameter.

°' u® cos o
(Madras, 1998 S)

6. Find the envelope of the straight line x/a +y/b = 1, where the parameters a and b are connected by
the relation :
(a+b=c (ii) ab = ¢* (J.N.T.U., 1998) (iii) a* + b* = c*
7. Find the envelope of the family of ellipses x2/a’ +y*/b* = 1 for whicha + b =c. (Madras, 2000 8)
Prove that the evolute of the
/%90 A ,
8. ellipse \_z + “—2 =1is (ax)*? + (by)z/:l = (a® - bz)z/J-
a® b
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2 y ’
XE =1is @)~ b)Y = @+ b

9. hyperbola i—z 5
(Osmania, 1995)

10. parabola 1t =4byis 27bx% =4 (y - 2b)°

4.17. (1) INCREASING AND DECREASING FUNCTIONS

In the function y = f (x), if y tncreases as x increases (as
at A), it is called an increasing function of x. y
On the contrary, if y decreases as X increases
(as at C), it is called a decreasing function of x.
Let the tangent at any point on the graph of the
function make an Z y with the x-axis (Fig. 4-14) so that

dy/dx =tan y
At any point such a

increasing Z v is acute Le.
such as C, where the functio

Hence the derivative of an increasing function is + ve, an
function is — ve.

Obs. If the derivative is zero (as at
we say that the function is stationary.

(2) Concavity, Convexity and Poin . SR
(i) If a portion of the curve on both sides of a point, however small it may be, lies a ofut e

s sal ds at D where d2y/dx? is positive.

tangent (as at D), then the curve is said to be cancave upards at D W ‘y il
(ii) If a portion of the curve on both sides of a point Iizes below the tangent (as at B), then the
curve is said to be Convex upwards at B where d?y/dx* is negative. ;
(iii) If the two portions of the curve lie on different sides of th.e tang.ent the.reat (;.er.‘ the l(’::;lrve
crosses the tangent (as at C), then the point C is said to be a point of inflexion of the curve.

2 3

Gy 0 and é—% #0.
dx

At a point of inflexion =5 =
dx

s A, where the function is 0
Fig. 414.

dy/dx is positive. At a point . :
n is decreasing £ Y is obtuse i.e. dy/dx is negative. |
d the derivative of a decreasing

B or D), then y is neither increasing nor decreasing. In such cases,

t of inflexion

4.18. (1) MAXIMA AND MINIMA
Consider the graph of the continuous function y =f(x) in t

Clearly the point P; is the highest in its own immediate 4 5

neighbourhood. So also is P3. At each of these points s r

Py, P; the function is said to have a maximum value.
On the other hand, the point Py is the lowest in its

he interval (x, x2) (Fig. 4:15).

U
| I
I !
| |
i
own immediate neighbourhood. So also is Py. At each of Lo ﬁ?
these points Py, P4 the function is said to have a '3 E E ®
minimum value, AL 25
Thus, we have ] L, L, X
Def. A function f(x) is said to have a maximum Fla. 40
value at x=a, if there exists a small number h, however small, such that

f(a) > both f (a - h) and f (a+ h)
A function f (x) is said to have a minimum value at x = a, if the ist
however small, such that f (a) < both f (@ - h) and f (a + h). i there et 4 S

-
3y
¢




HATION AND ITS APPLICATIONS
.;FER&N

-~

\ ' ima values occur alternately,
Conditions for maxima and minima. At each point of extre

415 that the tangent to the curve is parallel to the y.a

1 fthe function is maximum or minimum at x = a, then (

Thus ! 4 a maximum point say, P, (x = a), the curve is increasing in a small interval (a - h, a) before
Aroun .asing in (a,a + h) after L; where h is positive and small.

L and decrﬁ;l a),dy/dx20;atx=a,dy/dx =0 and in (@,a+h),dy/dx <0.

je,in@- /dx (which is a function of x) changes si

Thus dy/ e. it is a decreasing function in the i

me value
Xis, i.e. its slo
dy/dx)a =0,

, it is seen from

pe (= dy/dx) is zero.
the

gn from positive to negative in passing

: nterval (@ - h,a +h) and therefore, its
through P

g 2 is negative at Py (x = a).
jerivative @ y/dx” 18 neg

larly around a minimum point say Py, dy/dx changes sign from negative to positive in
Slmlt: rot;gh P,, i.e. it is an increasing function in the small interval around L, and therefore
ssing thr " it
# derivative dzy/d:c2 is positive at Py,
1ts

(i) f (x) is maximum at x =a if f* (@) = 0 and f” (a) is - ve [i.e. f* (a) changes sign from
Hence

i 2 Ufji) f (x) is minimum at x =a, if f* (@) =0 and " (a) is + ve [i.e. f’ (a) changes sign from
_ ve to +ve)

A maximum or a minimum value is a stationary value but a stationary value may neither be a
bs. A m ;
maxi(r)num nor a minimum value.

(3) Procedure for finding maxima and minima.
) Put the given function = f (x) _ , A
“)) Find f' (x) and equate it to zero. Solve this equation and let its roots be a, b, ¢,
() K1 iy 2
(iii) Find " (x) and substitute in it by turnsx =a, b, ¢, ......
Iff” (a) is - ve, f (x) is maximum at x = a.
Iff” (@)is +ve, " (x) is minima at x = a.

metim i f 1 y be zeroatx =a.In such cases,
) S 1 f G may be difficult to find out or (x) ma : J ) .
'(fl‘vf)' (1’0) c‘;ltalngfs sig(n)/rom + ve to — ve as x passes through a, then f(x) s maximumat x =a
see 1

AL S o
Iff’ (x) changes sign from — ve to + ve as x passes through a, f (x) is minimum at x
X

1 = 1 1 aximum nor
If f’ (x) does not change sign while passing through x =a, f(x) is neither m
minimum at x = a.

E

Let fx)=08x" - 2x3 ~ 62 +6x+1 2
Th frx)=124° - 6x2 - 12 +6 =6 (x* - 1) (2 - 1)
en
f’(x)=0whenx=:tl,%-

1
i ini == ord.
So in the interval (0, 2), f (x) can have maximum or minimum at x 3

4 ! i .
= 7 7 g il “l=|=-9a (l)— 1
f” (x) 36x° - 12x - 12 12 (3x X 1) S0 thﬂtf (2] lldf =12
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~ f(x) has a maximum at x = ; and a minimum at x = 1

' 3
| 1) 1 | 1 at
‘l‘huulhemnxlmumvuluexf(ijza[zl -2[2/' -8(2r06[2J0 1=248
2

and the minimum value = /(=3 (1)* -2 (1)’ - 61 +6(1) + 1 =
Example 4 53. Show that sin x (1 + cos x) is @ maximum when x = r/J.
Let f{x)=s8inx (1 + cos x)
Then f*(x)=cos x (1 +cosx) + sin x (- sin x)

=cosx (1 +cosx)~-(] ~cos®x)=(1 +cosx)(2cosx - 1)
f'tx)=0whenco¢x=;or—l 1e. whenx =n/3 orx.

Now f”(x)=-sinx(2cosx-1)+(1+cosx)(-2sinx)=-sinx(dcosx+1)
s0 that [7(x/3)=-3v2/2and f" (x) = 0.

Thus f (x) has a maximum at x = x/3.

Since f” (n) 15 0, let us see whether /' (x) changes sign or not.

When x is slightly < x, f (x) is - ve, when x is slightly > &, f(x) is again - ve re [’ (x) does
not change sign as x passes through . So f (x) is neither maximum nor minimum at x = f.

Problems 4 18

1. Find the maximum and minimum values of r* - 5x* + 5x” - 1

2. Find the extreme values of the function tx - 1)" (x + 1)’
3. The function / (x) defined by f (x) =a/x + bx_/(2) = 1, has an extremum at x = 2. Determine a and b.
Is this point (2, 1), a point of maximum or minimum on the graph of f(x)?

4. Show that the function sin 3r - 3 sin r is minimum when ¢ = x/2 and maximum when x = 3n/2.
5. If a beam of weight w per unit length i1s built-in horizontally at one end A and rests on a support (0]
at the other end. the deflection y at a distance x from O is given by

Ely = :a 2 -2 « P,
where [ is the distance between the ends. Find x for y to be maximum
6. The horse-power developed by an aircraft travelling horizontally with velocity v feet per second is
given by
aw’

H= + be,

where a, b and w are constants Find for what value of v the horse-power is maximum.
7. The power output of a radio valve 1s proportional to x/(x + r* where r, the valve resistance is constant
and r is a vaniable impedance Find x for the vutput to be maximum, (Andhra, 1990)
8. The velocity of waves of wave-length A on deep water is proportional to N(A/a + a/R), where a is a
certain constant, prove that the velocity is minimum when A = a.

9. In a submanne telegraph cable, the speed of signalling varies as £ log, (1/x), where x is the ratio of
the radius of the core to that of the covering. Show that the greatest speed is attained when this ratio
is 1/Ve (Marathwada, 1990)

10. The efficiency ¢ of a screw-jack is given by ¢ = tan 8/tan (6 + «), where « is a constant. Find 0 if this
efficiency is to be maximum. Also find the maximum efficiency. (Ranchi, 1998)

419. PRACTICAL PROBLEMS :
In many problems, the function (whose maximum or minimum value is required) is not 3

directly given. It has to be formed from the given data. If the function contains two variables,

one of them has to be eliminated with the help of the other conditions of the problem. A num




_,<circle. If the perimeter is 40 ft 4 WM.,
",,_f:;(s: amount of light may &M“ s dimensions so that ,:
S (Madras, 2000 )

The greatest amount of light may be ”
; ': «indow may be maximum. admitted means that the area T RN G IR
Let x ft. be the radius of the =g ;
_iangle is 2x ft. (Fig. 416). Let the ﬁ:'*d":‘: one side of the >
Then the perimeter of the whole figure rectangle be y f

—mx - 2:~2y=40(givm)andﬂnuu4=}n’¢2q.

Fig 416

~ A

Here A 1s a function of two variables x and 5 1 :
bsutute the value of y from 1) in it. - To express A ini terms of ene vanable z (say).

we SUU
A:%n’+xm-u+2jﬂ=ﬂx-{;42}|’
e .
Then ’d—t=40-(!+4)1’

For A to be maximum or minimum, we must have dA/ds =0 ie 40 -(z+ §) =0
& x=40/(x + 4)
- ans
from (i), y =3 140-“*2)11=iHO—(I*Z)Q/(304!=4O/(:+4)L¢.I=!
_ d’A SO
Also —dxz = - (x + 4), which is negative.

Thus the area of the window is maximum when the radius of the semi-cirdle is egual 1o the

height of the rectangle.

Example 4 55. A rectangular sheet of metal of length 6 metres and width 2 metres is given.

Four equal squares are removed from the corners. The sides of this sheet are now turned up %o

form an open rectangular box. Find approximately, the height of the box, such that the volume of

the box 1s maximum.

Let the side of each of the squares cut off be x m. so that the height of the box is x m. and
the sides of the base are 6 - 2x, 2 - 2x m. (Fig. 417). .

Volume V of the box
=x(6-20)(2-2x)=4 & - 4x* + 31)

Then %V= (3:'2—8!4»3)

For V to be maximum or minimum, we must have
dV/dx=0 ie. 3> -8x+3=0
LD [64-4x3x3]=22“_‘5n

X
6
The value x = 22 m. is inadmissible, as no box is possible for this value.
dZV }

=4 (6x - 8),whichis-veforx=45m.
dIz . ; "4 o

Hencethevolumeofthehaxk-aximumwhenitshmiﬁu‘ g

Also
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linder of given surface (including the ends) |

Example 4.56. Show that the right circular cy
| to the diameter of the base. |

and maximum volume is such that its height is equa
Let  be the radius of the base and h, the height of the cyli
Then given surface S = 2nrh + onr? .0 and the volume V=1 r2h
Hence V is a function of two variables r and . To express V in terms of one variable only
(say r), we substitute the value of & from (i) in (11).

nder.
L)

aof8=2mt) 1 3 L dV_le_gns2
Then V=nr [ o ]_2Sr—nr G ZS rr

For V to be maximum or minimum, we must have dV/dr =90,
i.e. 1S - 3m® = 0 or r = (S/6m).

d*v 7 :
Also Sy 6nr, which is negative for r = V(S/6m).
r
Hence V is maximum for r = V(S/6n).
[by (i)

ie. for 6mr2 =8 =2nrh + 2nr?i.e for h =2r, which proves the required result.
Example 4.57. Show that the diameter of the right circular cylinder of greatest curved surface ‘
which can be inscribed in a given cone is equal to the radius of the cone. |
Let r be the radius OA of the base and a the semi-vertical angle of the given cone |
(Fig. 4-18). Inscribe a cylinder in it with base- radius OL = x. ‘
Then the height of the cylinder LP
=LA cot o= (r —x) cot o
. The curved surface S of the cylinder
= 9nx. LP = 2nx (r —x) cot o

= 2n cot o (rx — xz)

4d%=21tcota(r-2x)=0 for x =r/2.

2
and gi_g_ =—4ncot o
dx
Hence S is maximum when x =r/2.
Example 458, Find the altitude and the semi-vertica
be circumscribed to a sphere of radius a.
Let h be the height and o the semi-vertical angle of the con
BD = h tan a (Fig. 4:19).
- The volume V of the cone is given by

I angle of a cone of least volume which can

e so that its radius
A

=?31-n(h tana)2h=%nh3tan2a.

Now we must express tan a in terms of .
In the rt. Zd AAEO,

h
EA =V(0A? - a®) =V((h - a)? - a®) = V(h* - 2ha)

tan o = EO =3 B C
EA " \(h? - 2ha) Nl 3D U

2

T a
Thus V==mh’-——
3 h? - 2ha

e

h - 2a
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 ATION AND 1S APPUCATIONS
C‘:;iER‘N i
dV _1_ 2 (h=2a)2h-h% 1
— = T . »_:l 2h(h"4a
dh (h - 2a)? B '(,,_202)
dV _0for h=4a, thediia :
Thus dh ) other value (h = () being not possible.

Also dV/dh is - ve when h is slightly < 4a, and it is + ve wh
Hence v is minimum (i.e. least) when A = 44

. ~1(_a
a=sin" |2 |cein-1({a ). ..
and (OA) sin [30]_ S
gxample 4.59. Find the volume of the larg
ibed in @ sphere of radius a.

en h is slightly > 4a.

o _l_ .
3
est possible right-circular cylinder that can be
(Gorakhpur, 1991)
Let O be the centre of the sphere of radius a, Construct a cylinder as shown in the Fig.
42()11(3‘0/*:’.- 8
Then  AB=Y(OB?-0A%=4(@%-p
.. Height h of the cylinder=2.AB =2 \l(a2 - ’,2).
Thus volume V' of the cylinder

= r?h = 2rr?2 \ (@ - 1) g_i#% A

jnscr

%‘;’ =2n (2r V @%-r?) + r2. % @ - 1?12 (_gp)
_2nr (2% - 3r%)
= N (02 & r2) T D =
Fig. 4 20.

Thus dV/dr = 0 when r? = 2a%/3, the other value (r = 0) being not admissible.

d2v A \J(az - r2) (2a2 - 9;-2) -r (2a2 - 3r2) X % (a2 <12y 12, (-2n
Now ;"5 =2n D
(A=)
2 2) e 0 S Y S s n 5
=2n (@ —r” (e =9r)+ (20 ZAF) which is - ve for % = 2a%/3.

@ - r2)2

Hence V is maximum for r? = 2a%/3 and maximum volume
=2nr? \ (@? - r?) = 4na®/3 V3.

Example 4.60. Assuming that the petrol burnt (per hour) in driving a motor boat vartes as
the cube of its velocity, show that the most economical speed when going against a current of ¢
miles per hour is }’ ¢ miles per hour.

Let v m.p.h. be the velocity of the boat so that its veiocity relative to water (when going
against the current) is (v - ¢) m.p.h.

: : ; s :
.. time required to cover a distance of s miles = PR hours.

Since the petrol burnt per hour = kva, k being a constant.
.. the total petrol burnt, y, is given by

3 3 RS
o v aniigliapys S dyiaan + () Sty Sulisulid
y-kv_c-ksv_c e ks Priore
_ks_u2(2v—3c)

(v=-c)
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INFINITE SERIES

39.1 SEQUENCE

A sequence is a succession of numbers or terms formed according to some definite rule. The

nth term in a sequenge j; denoted by u,,.

For example,if u, = 2n + 1.
By giving different values of 12-in-u.-we-get-different terms of the sequence. ..
Thus, u, =3, u, =5 =T

Pe)
S 9
FAE |

5

i |

, RN +1 4

A sequence having unlimited number of terms is known as an infinite sequence.

39.2 LIMIT

I 2 sequence-tends-to-a-limit-I -then-we-write lim (u,) =/
n— o

9.3 CONVERGENT SEQUENCE

If the limit of a sequence is {inite, the sequence is convergent. If (he limit of a sequence does
not tend to a finite number, the sequence is said to be divergent. N

eg.,

1

I 1 1

39167
3,57, .., (2n + 1), ... is a divergent sequence.

39.4 BOUNDED SEQUENCE

+... . is a convergent sequence.

Uy, Uy, Uy ..., U, ... IS @ bounded sequence if u, < k for every n.

39.5 MONOTONIC SEQUENCE

P
\_ The sequence is either increasing or decreasing, such sequences are called monofonic.
1, 4,7, 10, ... is a monotonic sequence.

e.g.,

1’

N | —

1 . .
3R is also a monotonic sequenece.

1,-1, 1, -1, 1, ... is not a monotonic sequence.

A sequence which is monotoni

Determine the general term of each

convergent,
L e
24’8’ 16’
3 1’-1: 1) -1

EXERCISE 39.1

2.

1005

: \
¢ and bounded is a convergent sequence. )

123 4
273745
12 22\32‘
12103

>

. * o

‘\11.2,, 52_)

:4!: S',

of the following sequence. Prove that the following sequences are

n
n+1

Ans.

2

n
Ans, —
n!
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. nces are convergent N
ik of e - 6. u, = 3n An
= fj—-—l- Ans. Convergent n
5. "n n 1 Ans- Convcrgent
7 =n Ans. Divergent 8. u, =
u, =
39.6 REMEMBER THE FOLLOWING LIMITS
n H - : ‘H = 00 ifx > 1
— @ Ii)mmx =0 ifx<1and nlx_fnm.x
log n
n i _ O
@) lim —Y—l = 0 for all values of x @ii) "ll_r’nm ;
n—>o 1!
: ) ) g i), — 1
@¢v) Ilim (] -r—} =e v) H]._{nw(n)
1=ro ”
1/n
. nh) _1
1 1 - - —
04 lim [21]"" =0 iy gnw[ n e
”n—r o
i i 3 . no_
(Viif) r11-1—>H}o nx" =0ifx <1 (ix) uh—l)nmn —w
. P
O et e
Uax - ‘,,_\ A a iy
i) 1m | =iog aor lim l=loga
== w\‘ * nso 1/n
. . tan x
(xit) lim S G (xiii) Hm =1 \
x>0 Xx 0 ¥ //

39.7 SERIES

( A series is the sum of a sequence.
| BC 70 T — N R be a given sequence. Then, the expression
iyl i T e Bl B mmams is called the series associated with the given sequence.
For example, 1 +3 + 5+ 7 + .. is a series
K If the number of terms of a series is limited, the series is called Jinite. When the number of

terms of a series are unlimited, it is called an infinite series.
u, + Uy + Uy + u, + .o+ u, + .. o

is called an infinite series and it is denoted by > u, orZ u,. The sum of the first » terms of
n=1

a series is denoted by S \;
/
39.8 CONVERGENT, 15IVERGENT AND OSCILLATORY SERIES

Consider the infinite seriecs % Uy = Uy b Uy + U b o1 b o
K n
S, = Uy + Uy + 1, +

‘ B p Uyt U+ L+
Three cases arise: '
@ IfS tend ini -
(7 » l€10ds 10 a finite number I is sai
) 175 e o i as n — oo, he series T« is said to be convergent,

2 nfinity as n -4 ies T w,_ is sai j
y » 0, the series T u, is said to be divergent,

n G0CS not tend to g unique limit, finite or infinite, the series T i ig called oscillatory )
F n < V.
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Infinite Series 1007
39.9 PROPERTIES OF INFINITE SERIES

1. The nature of an infinite sehigs does not change:
(/) by multiplication of all Ysgms by a constant k.
(i) by addition or deletion of axjnite number of terms.
2. If two series  u, and £ v, are convergéitythen Z (u, + v,) is also convergent.
Example 1. Examine the nature of the series 1 + 2+ 3 + 4 + ... +n+ .. o

Solution. Let S = 1424344+, +n=0tD [Serics in A.P]
Since lim S, = lim nle 31y
n— o n— o
Hence, this series is divergent. Ans
Example 2. Test the convergence of the series 1 + i + 1 + 1 o ® '
2 4 8 7
. B 111
Solution. Let S, = 1+ 5 + 7y + & + . [Serics in GP]
1 N\
= =2 S, =—
oy 1-r
2
lim S, = 2
Ans.

Jence, ihe series Is convergent.
EByxample 3. Prove that the Jollowing series:

Sl 4
- + — + ... is convergent and find its suni. M.U. 2008)

31 4| 51

. n+1 n+2-1_ n+2 1
Solution. Qere, U, = ——— =
' (n+2)! (n+2)! (n+2)I (n+2)!
1 1

(n+D (n+ 2)!
o (5o G4 G
\ ) 21 31 31 41 41 3!
+.1’__i_ _1 1
\ el @+ 20 (n+2)!

] : 1 1 1
lim 11 ==
[2' (n+2)l] 2

t\lS—.

Example 4. Discuss the nature of the series 2 -

T u, converges and its
+2—2 +2—.. 0

Solution. Let S, =2-2+2-2+% 2 -
= 0 if n is even
= 2 if n is odd.
Hence, S, does not tend to a unique limit, and, therefore, the given series is oscillatory.
Ans.

P\(o % 3& bvic MU,
w TR L C A o S
) Convmgmb 4 MI<] ) divergenl i 2|

\

;@ opuﬂcdma ! ¥ L£-).

n—" \= !
lim Ans.

i

g

s

R
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Infinite Series . “+.-a0.
o2 Jim Ups M B - f )
EXERCISE 39.4 <360 noe g =
n
Examine for convergence:
1 L+i+i+.._+2—"+.ao Ans. Divergent = l’:)::o
IR B Jit 1 a@mnuhﬁ Wm(oud'xbé
© ) n . -
2. Z n Ans. Divergent 3. Z — Ans. Divergent WMQ-&,%
n+1 \Vn+1
n=1 n=1 dk’V neL % ,
1 1 1 1 . : by y ‘@“uj
. = . Di . = —+3+—=+4+.. Ans Divergent . A
4. > cos " Ans. Divergent 5. 1+ 42+ +3+ s gent ¢ OL‘V L.
6. £ (6 -n) Ans. Divergent 7. (2" Ans. Divergent
8. 311 +1

Ans. Divergent
39.14 p-SERIES

1

o . .
The series 17 > + 37 + .. is (i) convergent if p > |
Solution. Case 1: (p > 1)

The given series can be grouped as

@ity Divergent if p < 1.

(MDU, Dec. 2010)

1 (1 1Y) (1 1 1 1)
A e e e g
1P \7_}’ ) ar  w g 7P
(,‘_J-‘. 1]-'L+_1>+ - ﬁif—i L
8" 9" 10" 11’ 12" 13P  14P 157
1
T =
Now 7 «(1)
1,1 1,1 2 ,
R U Y ~(2)
1,l,1,1 11 1 1 g
47 5F 67 7P 4¥ 4V 47 47 B 4_}1 (3)
1 1 1 1 1 1 8
—+ — +. — —+— 4+ —=—
8;! 9;1 15)1 < 8;) + 8;1 Tt 8;1 - 8,: (4)
On adding (1), (2), (3) and (4), we get:
A E R R E R SR Y S U I
b 28 ar 4" 5 g g Poogr 15
N ‘ < —+—+4 4. + i +
- ‘ 1’ 2}’ 47 g¥

2
< Finite number if p > 1

4 s 1 p-1 1\2]' -2 1
9 AR 43 (E) * (EJ +(

3p-3
AL
2

1 p-1
< = el [G.P., r :(lJ A5 = L
1,_(1) 2 1-r

Scanned by CamScanner



1012

Higher Engineering Mathematics
Hence, the given series is conver

Case2: p=1
When p

gent when p > 1.

= 1, the given series becomes

1. (1.1 1 1
T+—4|242 1.1 11
+2+(3+4)+(§+€+;+—]+[—+—+ +l)+...

8 9 10 716
1
_ i (1)
1.1 1 1 1
—+—= > _ 4=
372 177173 (2)
Ly 1 4 1
5°6 78 8 3'Ets 3 % -3)
Pl g 2 o b 1 |8 3
On adding (1), (2), (3) and (4), we get
1 1 1 1 1
R HCE I
p— — + — —_— —
2 \3 " 4 567773 9+10+“|16+
sz 1 1 9
Tt~ -+ —+—+ ..
2 .22 g ,
s — o e (SAVSS A -
> oo
Hence, the given series is divergent when p = 1.
Case3: p<1
1 1
- P i>_l_’ ot l}>landsoon
? 2 2 3 3 4’ 4
¢ 1 1 1 1 1
' Therefore,i+i+——+—,+..> 1+=+=—+—+..
1Y P kld 4t 2
> divergent series (p = 1) [From Case 2]

1 1
{As the serieson R.H.S. (l * ot % + ) + ) is divergent]

Hence, the given series is divergent when p < 1.
39.15 COMPARISON TEST
C If two positive terms X «, and Z v, be such that

lim —* =k (finite number), then both series converge or diverge together. \\
n— o 'U" o
Proof. By definition of limit there exists a positive number €, however small, such that
u u
£ <egforn>m ie,-e<—L-k<+e
'0” .

n

u
k-e < L <k+deforn>m
vll

Ignoring the first m terms of both serics, we have

O

&
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k-¢ < Hu < g+ g for all n. ‘ U0}
n
Case 1. v, 1 convergent, then

lim (v, + Uy + - V) = h (say) ~ wherehisa finite number.

n—N

From (1), #, < (k + g) v, for all n.

lim (U + Uy + o F u) < (k+ g) lim (v, + 0+ ¥ v) = (k+ g)h

n—>o

1 — 0

Hence, T 1, is also convergent.

Case 2. T v, is divergent, then )
Hm (v, + 0y + o + 7)) > @ |
=

u”
Now from (1) k-¢e< .
i
u, > (k-e, forall n
Wm (g + Uy + o uy > (k-¢ m (v, + ) + ... + v,)
11— 0 nH—= o

From (2), WM (U + ty + ..+ U) > ©
L
Hence, T u, is also divergent.

Note. For testing the convergence of a series, this Comparison Test is very useful. We
choose T v, (p-series) in such « way that

N u,
um —

= [inite number.
" = 0 U,I

Then the nature of both the series is the same. The nature of T v, (p-series) is already knovin,
so the nature of X u, is also known.

2]

Example 8. Test the series Z

n=1

0 Jfor convergence or divergence.

Solution. Here, u, = 1
n+10
I! 5
Let v, = —
n
lim &+ = lim : = lim
N2, noon+ 10

lim 0~ 1 = finite number,
1+ —

. . n

According to Comparison Test both series converge or diver

asp=1, ge together, but ¥ v, 1s divergent
Z u, is also divergent.

Example 9. Test the convergence of the following series:

Ans,
=t 1 1
NIRRT A P A
. 3 M.D.
Solution. Here, we have S (M.D.U., 2000)
1 i 1 . 1
R RN FIN N oy
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l+--—F
o, n n
Im — =
noo Y,

Which is finite and non-zero.

2t and ZV,., converge or div

1

n?
o D.v, is convergent = 3 u, is convergent.

5
where P = i I

Example 13. Test the convergence and divergence of

= 20?4 3n

5+n’
w=1
2
" (
2 4+ 3n _
Solution. Here, Uy = ===—p T =
54 n n° (
1
Let i, o
. n
By Comparison Test
N A\
0t ,(Z‘. + —3/'
., u . \ 1
lim =% = lim
n— o nN—wo 1
n n

lim

e N [
) n—o I

1 (—_ + 1] — +1
o] e
n n

Higher Engineering

erge together since Z"n,

Mathematics

= Z—J— is of the form

i

n

Ans.

the following series.

(Gujarat, I Semester, Jan. 2009)

2+§

n
—57_+1
n

= 2 = Finite number.

According to comparison test both series converge or diverge together but X v_is convergent

asp=2.
Hence, the given series is convergent.

2
Example 14. Test the following series for convergence il
] )

. . oome 2 3 4
Solution. Given series is — + — + — + —5- +
LA L "
1
1+ =
n+1
Here .= ===l
n' o oal!
Let y = 1 U, _
n nV 1 _—=
v,
Lou
lim 2+ =1
ooy,

Therefore, both the series are either convergent or divergent.

But Zv, is convergent if p — 1 > 1, ie., ifp>2
and is divergent if p - 1 < 1, ie., fp<2

_7P

The given series is convergent if p > 2 and divergent if p=<2

' %
FE LR CASINTIN e
‘» © ‘,,5* ) . N \\(
@ N o 6,' S A >/ X rﬁ\.g,’ ‘

—_—

3"

Aus.
4
q¥
/'L/ A «/L’ ~ J..
2 ¢ r 7
S - /
| . \/?
!. {“ ;
1+ l A VI—“
n =7
A/’n%/
Y
= 1 IRV P
—~ | SY'
N (”L n
(P series)
\ Ans, 4
( \- C
\ \‘ 7 n« N
i
) .
o R s
) ’ //:\\
6 79
WY
\ \"q ) /\,\'\
WY s

il
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Infinite Series 1017
EXERCISE 39.5

Examine the convergence or divergence of the following series:

4
1. 2+§,4l +§4—2 +§';:T+"'°° Ans. Convergent
1.2 123 123
2 14+ =4+ =+ 234 + .. Ans. Convergent

Ans. Divergent

1
3. —+ + + .00
1.2 34 56
1 1 1 .
4 = + 554 "B at Forenn © Ans. Convergent (M.D. University, Dec. 2004)
2 2 2
2 3 4
5 1+ TR + il + ... 0 Ans. Convergent
1 2 3 L
6. 7 Tt Ans. Convergent (M.D. University, 2001)
1+2 1+2 1+2
2! !
l 5 * 3—3 + .00 Ans. Convergent
3 3 3
, 2 2n +5
Z Ans. Divergent 9. Z = Ans. Convergent
”_1\/—"'\}”4' L 4n° +1 .‘
@0 " !
10. Z n a Ans. If x > a, convergenl; if x < a, Divergent
n=1 X +n
1 \_‘ \/_ = 2 o
11. =y = Ans. Convergent  12. Z‘ J@#e +1) - n Ans. Divergent
= 1 Lo n=1
13. Zl ’(-r; +1) - \/(71 = 1)_/ Ans. Convergentt
n=1
o n
14. F 2 Ans. Convergent
4 3" +n
«© n i 712 t
15 n_ Ans. Convergent  16. Z - Ans, Convergen
' e
n=1

n=1

39.16 D’ALEMBERT’S RATIO TEST

un +1
. 9 ; lim —— =k then
Statement. If T u, is a posilive lerm series such that Ly

(i) the series is divergent if k > 1

(i) the series is convergent if k < 1
Solution. L Z | N oI DA 1)
Uy, q L ‘
Case I. When lim =k<l1
n— 9 l,[“
By definition of a limit, we can find a number r (< 1) such that
u u u
u 2 3 4
"l < pforalln>m [—<r——<r—<r J
U, t L) U
Omitting the first m terms, let the series be
u, +u, +uy tou, + ...
u u u Uy Uy Uy Uy Uy Uy
= 1 1+—l+—1+—4—+...J = u][l+—+—-—.—+—.——.——
u o u U u]2 Uy U Uy Uy Uy
(r<1

<u (l+rtr +77 4. o)
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1018

! , which is a finite quantity.
1-r

]

i L.
Hence, X u, is convergen

u
8 n+l
Case 2. When lim =k>1
n—»o ll”

u,

>1forallnz=zm

imi hat
By definition of limit, we can find a number m such t 0

u
u Uy Uy
2 >, —=>1, == 1
! ) {)‘2 3
i m terms, let the series be
Amonng:te.first uytu, tuytu, o l
Uy L
u u Wy Uy Mg Uy My
= f1+22 .8 B =uf1+2+2 244 sg= &
1 u u u u Uy Uy Uy Uy Uy
1 1 1 1 2
2 (1 +1+1+1..tonterms) = nu, - ]
[ lm (u, + uy + ..+ u,) = nu,

n— o
lim S > lim gy =oc
n—s>wo 7 "n—w
Hence, = #«, is divergent.
i,
Note. When "*+1 _ 1 *k=1)
1
The ratio test fals,
For Example. Consider the series whose n™ term = —
“;. +1 1 -
im —— = lim -3 =1 (l/
nm— o i, It =y n 1 _1.
n n
. . o1
Consider the second series whose ™ term is — -
2
1
LTS . (n+ 1)2 . n )2
lim = lim = lim =1 (2)
n=e 1, n— o i n=owol\n+41]
n2
> x Uy 4
Thus, from (1) and (2) in both cases lim — = =1
. n— o ””
¢ But we know that the first series is divergent as p=1

The second series is convergent as p = 2,

: My 41
Hence, when lim
n— o I{“

Thus, ratio test fails when k = 1;

= 1, the series may be convergent or divergent.

2
Example 15. Zest Jor convergence of the series whose n'™ term is n—.
2}!
2 2
) n
Solution. Here, we have u, = —, u = w
n ntl 2u+ 1
By D’Alembert’s Test
e vl 1+ 1) 24 ' -
Iim = lim —(\)—.—zlim 1(14. i) =1<1
"oy, now Ml T e n/ 2
Hence, the series js convergent by D’Alembert’s Ratio Test Ans.
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—)"

th <
{ se term 1s —3 .
Example 16. Test for convergence the series whose n 3

n 211 +1
Solution. Here, we have u, = "—3 i m
By D’Alembert’s Ratio Test
1 3 u 1 ) 2
U, 41 _ ol + .n— _ __2__1 = lim nel _ lim =
U, (71 + 1)3 i - l 3 n—oe U, T (1 N l)
n n

Hence, the series is divergent. '
Example 17, Discuss the convergence of the series.

Jn

n
2 \/;m Yoo (x>0
Solution. Here, we have
n n
= nt 41 !

" = n+1 \‘"*1
LT A ()

2 2
{,—_ +7 + =
M n n+2n+2 1 . noon

u, ‘n-.'—]l\." w4l x pe f|¢LJ
L ” k 2 "2
2 24

| (“‘J“_‘} I

) u =

lim —— = lim . R

noou, n—o [14 J_ 1+ L XX
n 112

1019

Ans.

(M.D. University, Dec., 2007)

1
.. By D’ Alembert’s Ratio Test, y u, converges if g I,ie x <1 and diverges if

1 .
;<1 ie, x> 1.
When x = 1, the Ratio Test fails.

1
When x =1, u, = J 2n = l L =—. 1
ne+1 \j”2(1+ ] n 1+L
n n?
0 = 1
,,"‘T/
n
mo o L1
v, ~n 11 1
" 1+— [
n2 n2
lim 2% _ lim =]
oy, n—ym 1+1
o

Which is finite and non-zero.
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e or diverge together.

1020 .
ver
., By comparison test, Zun and Zvn converg 1
& 1
= ~ with p=7<L.
Since Zvn :ZT; is of the form Z " >
erges.
d diverges if x = 1. Ans.

3 v, diverges = > u, div

i i 1 an
Hence, the given series Zu,, converges is X <

EXERCISE 39.6

n
Ans. Convergent

n!

Test the convergence for series:
i 2

1 — Ans. Convergent 5

' 3" n=1"

n=1

2 2 g
3. 1 & Lol = 12.3) o Ans. Convergent
3 3.5 3.5.7
2 258 25811 o —
1

+ +
1.5.9 1.5.9.13

4.
Ans. Convergent

5. = nt.2"
n=1 '
D L= 1
it 6. Z,; 3" Ans. Convergent if x > 3, Divergent if x <3
n= :

= , where k > 0, 1; > 0, the: the serles 2. 1, converges to the

7. Prove that, if u, , ,
; 1+,
positive root of the equation *+x =k
39.17 RAARE’S TEST (HIGHER RATIO TEST)
li ",
e “ 1\ =k, then

If T u, is a positive term series such that [, u, .
(ii) the series is divergent if k < 1.

(i) the series is convergent if k> 1

Proof. Case I. k > 1
Let p be such that k > p > 1 and compare the given series £ u, with Z 1 which is
p
n

convergent as p > 1.
u n+ 1y P
x >( P) or |t >(1+lj >1+BwLML
Uy 41 n Uy v 1 i I 2! n’
(Binomial Theorem)
n uil _1 > p + M l +
Uy s1 2! n

I lim a2 1| >,
= U s
zénd k > p which is true as k > p > 1; Zu, is convergent when k > 1.
ase IL k <1 Same steps as in Case 1.

Notes:

1.Raabe’s Test fails if k = 1
2. Raabe’ . X
aabe’s Test is applied only when D’Alembert’s Ralio Test [fails.
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CHAPTER 6
FOURIER SERIES

Definition ; A function f (x) is said to be periodic if and only if
f(x+ p)=/(x) is true for some value of p and every value of x. The ﬁm:.n\mﬁ“
positive value of p for which this equation is true for every value of x is calle
the period of the function.

For example, for any integer », sin (x + 2nm) = sin x for all x. Therefore,
sin x is periodic. For n=1, sin (x + 27m) = sin x. There is no positive E::wm.n
‘2’ which is less than 27 such that sin (a + x) = sin x for all x. Therefore, 21 1s
the period of sin x. Similarly, 27 is the period for cos x. But tan (7 + x)=tanx
and T is the least positive value such that tan (1 + x) = tan x.

So, tan x is periodic of period .

; = : 5 IEATT
Sin nx, cos nx are periodic functions of period i

Standard Results in integrals. If m, n are integers,

o

.+~= T
. Ifrn#0, h sinnxdx=0 .. hmizfﬁuo

—

2n +2n
Ifn=0 h m::;%uh 0dx=0

+2n . 27
2, Ifn=0, H cosnxdx=0 .. hnowzx%uo

+2n 27
3. ._w sinmx cos nxdx =0 .. .H sin mx cos nx dx =0

i

+2n 2T
4. Ifm#n. .ﬂ sinmxsin nxdx=0 .. ._‘ sinmxsinnxdx=0if m#n
)

o

+2n .2 2T

5. Ifn=0, H sin" nxdx=m .. h sin“ nxdx=m7
+2n 2 27 2

6. Ifn=0, ._” cos“ nxdx=m .. hnOw nxdx =7

+2n
7. Ifn#m, H. cos mx cos nxdx =0

ax

w. .Ta m::c:? HTT sin bx — b cos bx]+ k
a’+b.

140

Fo arier Series

141

@
g __¢
e cos bx dx = oy, [a cos bx + b sin bx]+ k

9. Bernoulli’s generalised formula of integration by parts

Integration by parts : .—: dv=yy- ._.< din.

We extend this result.

= ot
.?3\ dx Et_ u <~ + ::w\w e ::J\& +

where suffix denotes the integration and primes denote the differentiation

Example. Evaluate (i) ?f 7x+5) cos 3x dx (i) va&

Here take u = polynomial =x* + 7x + 5
and v = cos 3x
0 ?\& u ._‘Qf 7x +5) cos 3x dx
= (P +7x+5) hlmawwu —(2x47) ﬁullsm mau
9
L@ hlmmn uau+a
m 27 '
w 2x 2x 2
| .- 2 2x x
(id) T =) |G- G+ = Jre

Some results. If » is any integer, sin nn =0, cos nn = (-1)".
Fourier series of f(x) :

If f(x) is defined in (0, 27) and if f (x) can be expressed as
‘W / \

@ Y i
a < s 2
f(x) = % + M?: cos nx + b, sin‘nx),
n=1

——

N

then the R.H.S. series of sines and cosines is called the Fourier series of
f(x) in the interval (0, 27) .

Theorem. Iff(x) is defined in (0, 2r) and if f(x) can be represented by
the trigonometric series as

f) n% + M?: cos nx + b, sin nx) (D)

n=1

»

then 0 = L [ ra

a = gl .ﬂa.\?vnom nx dx
n 1
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Allied Zm:_mamﬁ

m.c.+M§ cos nx + by sinnx)
2

_ Series

n

- 149

.\ O& cos nx dx

—

-~ - W W

n=1

m_m._.ﬁ? Na\ () dx

then

P._.?La.\ (x)cos nx dx
MmJde

c+2
b = w._. ! nxﬁvmmzz\«&
n nJde

Taking ¢ =0, we get previous results.

Taking ¢ = —7, we get that in (-7, T0)

f(x) W + ME: cos nx + b, sinnx)

where

4 = 2| fwa
- .q_m._.“\?voom nx dx

H T

B = % f (9sin nx dx
Even and odd functions : In (o0, ),
i) If

g Fx) = f(x) for all x then £ (x) is even.
A F(=x) = <) forall X, then £ (x) is odd.
O [ =2 [T

A 2 ._.o f(x)dx if f(x)is even.
(i) LSO =0 £y is oqa.

) ["finnae - o™

@BEE.: Find
- he Fou .
(0, 2m). ! Tier series of period;
ciy 2m .\ow%ﬂkv
Um&:ﬂm 3 F -2
M = n/6
Sol. Let
.\.C.\v =
An
:M_ SoSEED » Sinnx)
where o - L=
e A

2@ sin nx dx

!——.‘—.

=
S~ al— al-

e
<. 5
=
[ ]
&

1l
al-
>
u)l”‘
w
w =) [5)

COSs nx

1
(e
gl

i 271
sin nx
+@Q))| ——
n 0
,, . 112 @m) cos2nTt|  since other terms vanish
= n| W
_ 4 since cos 2nmt =1
= D
n
2n
B = W.a x* sin nx dx
n nJ0
sin nx
{ CcOSs nx
= I~| AHNV AJHV
T n n
270
| cos nx

| +§

3

Ll 47’ +||Aoomm== 1)

n

= % T on n oo
_ _4n
- n
Substituting ay, a,, b, values in (1)
4n
A—v . ,\.AHV - HN — qun +M ‘OOw;H.l\IIm:u nx

x =0 is an end point of the range.
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Value of Fourier seriesat x =0 is fO+f (2m)

.
O

4
2

Nl'—

Example
%

Sol. Let f(x)

a,

Substituting a,, a,, b

f(x)
7

2
kﬁ:ﬂ—:o 3. Find Fourier series of f (x) = (=)

Em!b&&@ 27,

2. Find Fourier series of f (x)

]

[}
Ex

o +M€ COs nx + b, sin nx)

u 2n 1 2n 1 2 an
- 1 =11 ==X | -
= a.—o f@dr=2[xde LLO

1 2n
= m.-.o f (x) cos nx dx

1

2n ,
= l._. X COS nx dx ,
mJo

2n |
. I Q\%m_: iulcvﬁtnomgﬁz ,_
P

L i ) |

n

_ 4,
FNATLno ,
Lh

2n A — 2n
f (x)sinnxdx=2 _. X sin nx dx
0 mJo

. 2n
1 - COs nx _ _SIin nx
= ﬁcah w )

al—

al-

2
n n

_ 1 MJ 2

L n n

Lin (1), we get

=x=n-2 M wm::cﬁ.
1

T in (0, 2m) of

¢ Series
Allied Mathemat
pl. Let f®
/
2
0” + 41
= M = Nu.nu Qo
2 2
4n° _2n
= N._HN _——
3 3
-
-6
= 16,
=xin (0, 2m) of periodicity

Example 4.
eriodicity 2T
Deduce 1 —

Sol. Let

147
m~p+Mn€=8m§+Fm5§v
\ 2
PN S
" nd 4
2n
3
1| (n-%)
Tl D L
I laul:J
- 12n
2
_
T 6
2
w.ﬂ:QTb cos nx dx
n T mdo 4 . N OOm:Hu
sin nx m—x)|— 2
_ .wlﬁyﬁﬁ|b~ﬂ - /V+wn ﬂ i
41 21
sin nx
+(D| —
n o

Mwa (n- %) sin nx dx

. oofcn/fmﬁlbhlm._:wiu
Mrﬂn|u& ﬂl n "

2n
cos nx %
+Q )b

) (m—x)in 0,2m) asa Fourier series of
mxmnzm fx)=

w
3t ) - A1)
@.+MG= cos nx + by, sinnx

n=1
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148 Allied Mathematics — Il !
, Fourler Series .
n _. n ' ¥ ,_
a = L r@a=L] m-na _,_, - Leemay
1 x* " , - Ly
= S| m-% .j < a ="2J) f (%) cos nx dx
1 . il 1,
= ﬁo_u . = m._.c e " cos nxdx
a, = nr.—.u:% (X)c 1 . 1| e™* R e
=g os nx dx i =5 ~+=n78m§+=m5~5
2n 0
= ._nn._;o (T — x) cos nx dx = Sl Tunaﬁlc - TS.‘,
) n(1+ n?)
. =T
_ 1 (m— b sin nx 1) lnoﬂ:k _ _ 1- i
n n n- 0 r. - 2
| ,n v q.nc +n w
DA S W P -
ﬁ a-ni= 1| b, = W_.o e sinnxdx
1 | \
b, = I.— f (x) sin nx dx A —x ™
b1 ! = ..__m € 5 (=sin nx — n cos nx)
1 & , 1+n
= —| (m—x)sinnxdx |
2n ‘_. 4 .n
L = I:m
1 Cos nx sinnx [ -l n(l+n® V_..
= m;‘,ﬁ b " u Dl - {
: 0 I - Q IMHV
= P n, m el | m c +n’)
mn N n A Substituting ag, a,, b, in (1), we get
fx) = .:. Mu—. sin nx . e’ = E I+ M“ > (cos nx + n sin nx)
: n=1 | 11+ n* ..
Put x = 2. f(x)iscontinuous atx = w2 ¥ : )
P
linZ+ Mm:_ T+ Lsin mmm + Mm_s hﬂﬁ .= m il In (0, 27), ¢ * is continuous. Therefore, at x =, the value of the Fourier
12 2 3 f. series equals the value of the function. Hence replacing x by min (2),
: _n
Le., ~|w+w ....... HOOO'I&. ; o w |+MA wv
s e -X . e =
\ Example 5. Obtain the Fourier series of periodicity 2 for f(x) =e " in — 1+ n*
D" -1 =
(  the interval 0 < x < 2m. Hence deduce the value of M 5 | e = Bl M -
l+n . l_e™ 2 2 41
ol n=
Sol. Le ST YA b, si S (D" 2
ol. Let fx) = =2+ ) (a, cos nx+b, sinnx) . M =" _ n __n =T cosechn
2 B i 14nt -t 2 e 2
. =
_ P .-Nﬂ R.H" Wbuuﬂ Nlh N wﬁlmrk VN.Z
%= Tl f@® 7 Jo T d




e
n (o) ) = A= 2
; | 02_,0\ Eait NI L=
¢o = S ¥ 7
LJ UCC—’Q 2 h;l
)
ﬂv - 2= f 7L)Ax
e
i Dc,e%“‘”wb( i j
b = 2zl L ;’ \
n 9 %
) g 2~ (v |

g
-~ 2\
)
(&)
_ |
- /{ |
20 47 o Ty
T ==
Xy = é’ 5 L ?w}\/ o
T « W : )3\ fr-") ~ n
2.t _pn 5‘?\’]“, *Vr"?‘“ .’J -,
2\((TF §g+§ e WSl
= 4 g _ JR
17 © Qﬁ%”’ugﬂ’—
o7 5{,/\»/\7’L = e
\ /
2 Q’L@fo"‘{"@“ﬂ) [,ﬁ,___x)gmmtéﬁg v
—_— y\
+1 . o
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- ﬁ:&f")(’bﬁ;}>> =TT X%

i © ”kl&:"’dk
e
l Coshre A w] A = STn e
—
145 I}':.—LO&W)(
. T —
4 T ce8 O __L%’:‘WL
E = [QD‘*— el Vi N lo
nil N
. v ('Sr,m ﬂ—n’,,_flﬁw) \
A W —
sl "
Ly
= ZETL e 25 \
n>= Tl g5 \
/ W
P “~t (L= V) 2
AT = i
J =25 e |
N
[ 2
(j'[",.)\,) = ,/}/ MV% 2

o
2 /2’ RS
T =L 4
2 2
R S, 2 2T
421/)?"/ i 3 S
2
v )*f*f‘;*-—lz—f—wj:_g:'ﬂ
2 3 4 35 2
}+l—#l~+_:/—”ﬂ f/}
2> & 3 X H) i
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fz) = k(L—xD 17

s/ne Se¥ 'éW

C@,@D -

Sol 2
)}Cv{) WZ;’ 2

[ ——————p R ] —
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_zm>m PARTIAL DIFFERENTIAL EQUAITONS
OF mmoozo AND HIGHER ORDER WITH
'CONSTNAT COEFFICENTS

partial differential equation of nth order

A linear homogeneous
with constant coefficients is represented as:

n
= n Jdz
d"z e J"z iz \lw.\.\ + ...+ a’ — H.\ﬂ\ﬁ ) (D)
"l Lox' ! dy a2 & dy

¢ of same 0rder,

I \:, the &w ,:.2:{3 involved at
the 35:8: is QESN NSEQA.S:SE

%Abﬁ.vu.l.\? vv Q
:E EVEE@R» solution Q\ 3 \ 8:?5
\::CS: { O. ﬁ i ant

procedure to find the complementary function (C.F.)
Consider a third order P.D.E.

mum mum 3 PE!
QO —+a +a Z + k4 =
o laddy ooy @&m Sx9) - (1)
Put RH.S=0
@wN muN mwwN @uN
ao|u+a_ — +am|m+nml|lno
ox ox” dy dx dy dy
) 9’
Put — % 2 =D%
2
|m|uanmMnbm
dy dy
AnQbuuTQHbNQ:TQNbb\MnTQMD\mvN“ o= ANV
AAD,D)z=0 o (3)
Put D=m,D"=1, fim,1)=0 or AD,D)=0 (@)

(4) is called the auxiliary equation or A.E. m, m,, m5 are the roots
of (4).

If m; #m, #ms (real or complex and different) Solution is:

z=fi0+mpx)+H+mpx)+fz3 (0 + 113X) .. (i)

If my =m,=my (real and equal)

z=f] (y +my x) +xfo (¥ +myx) +>.N\m (v +myx) .. (i)

Scanned by CamScanner



Engineering Mathematic,

SOLVED EXAMPLES

U Example 1

z Jodd, 3

1 |m|~MI.MW~|N.+a.m|IN\H=

g‘ i mwkn @Hmwv_ w.v.N

: H 5 SOLUTION: E-[ivt +6D"” v =0
fiD,D)z=0

Put D=m,D'=1,the AE. is

2 _Sm+6=0

(m=-2)(m-3)=0
m=2,m=3
The complementary function is
CF. isi z=fi(y+20) + f (y + 3x)

P IPY
ot dxdy w..v

b

Solve

=0

63" SOLUTION: (D= 6DD + 9Dy Z=0
D=m,D =1
AE: (Auxilary equation) m> = 6m+9=0

m=3,3
Complementary function is:

Z=fiy+30)+xfh(yt 3x)

Example 3

3 3
/:}..ollla 9z +.u.m|,."=

o ox~ 9 oy’

£ SOLUTION: (D 3D D’ +4D™) z=0
AD.D)z=0

Partial US@&:&& Equationg

1.89
t
Pu Dem o,

AE.: le +4=0
Put: 3"1~.l~lw+&”o “Mm==1 isaroot
= roo

2
m —4m+ 4 Solve
e I/
m==1 13?1 4 P
m-4m+4=0
m+1) |,3,,2
R (m=2)(m-2)=0
I&EN.TA m=272.
lezulez
}
4m+4
4m+4
o0

roots are m=272 -1

. Solution is 2=0+2) +xf, (y+20) +f(-x)

(Anna Uni. Oct/Noy. 1996)
Solve (D* - 4D* I’ + 4DD* 7 = .
%5 SOLUTION: Given (D’ - 4D I + 4D D) 7 =0,

AE m- 4m* + 4m = 0.
m=0, 2, 2
. Solutionis z=f; (+0-x)+f, (y+2x) + x f; (y+ )

(Anna Uni. April/May 2001)

2 a2
Solve 4 w,n =y wlunl 0.
ox” Oy
% SOLUTION: (4D*- D) z=0.
AE: 4m*-1=0; m= M \

Solution is: z =f, (v +0.5x) +f, (y —0.5%)
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: Engineering Matherygy; 4

1.90 S\ S
“Example 6.|(Anna Uni. AprilMay 2003) Y P Dol Epaios 1.91

3 2 Ay W -hk+k-1=0.
-3DD”"+2D")z=0
Solve (D ) PR

15> SOLUTION: m —3m+2=0. complete solution is

m=11 -2 : z=3¢ %+@+Ma~%;:a+¢.
A ! —f (V=20+f (VX + X (42 . =
Solution 1s z=fi0 )t 3 (v %) z2=€" 0, 0)+e ¥ o, (v +)
(Anna Uni. Nov/Dec. 2003)
% . 9z 909k — .
e R.H.S =fx,y), if RH.S.#0, we need to find the particular Integral

Find the general solution of 4 ——12 =0.
a? ox dy m.gu

(P.I.) Here there are three cases.

1 SOLUTION: 4m>—12n+9=0

EN”N .M z.:.mﬂmﬁ+~¢~
22
ma.x+$\ ma.«+@\<
z=fi0+1L5x)+xf (y+ 1.5x) = w.Nn\mb,Qvu\?,S

e Provided f(a, b) # 0, if fla, b)=0, it is a case of failure.
“Example 8:|(Anna Uni. April/May 2005) -

Solve (D°+DD"*—~D* D’ = D)z =0.
(@) R.H.S=sin (ax+ by) (or) cos (ax+ by)

0 : om—mP+m-1=0.

SOLUTION: m™ —m™+m If \QVN. DU, b\NVNu sin (ax + by), then

m=1, m=*i .

’ sin (ax+ by) . 2 2
4 : Pl= . provided f—a“, —ab,—56")#0
Nu\_Q+Hv+\.~Q+§v+\uQ\E \Alaw,lav,lvmv p n
—~ i If RH.S. = cos (ax + by)
xample ‘9:|(Anna Uni. May 1996 . * :
e Al ) P1=— @) orovided fi- o, —ab=b)#0
o fi- %, - ab, - b

[Type: Non. homogeneous]

. 2 , T e
Solve (D" =DD'+D' -1)z=0. Case (i)

5" SOLUTION: Take the solution as: . | RH.S. =x y? (p, q being positive integers), then

) B
A , 1 &wvhnm\mb,b\v_ _Hs.v.a.

Toe + ky "
Pl =D

=ce

Replace D by h, D’ by k=

bt HH"H
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—+7 == Z
ox>  Oxdy * Bw’vml.m

2x+ 5y

I3 SOLUTION: Given 0%z 0% 92

RHS=0: (D +7DD’ + 12D?) ;=
fD,D)z=0

AE. (put D=m, D' = 1)
m+Tm+12=0
m=-3-4

CE.=f, ()=3%) + £, (y - 4%) A
_ 2x+5
RHS=¢"""=¢™*" Using RH.S find PlI)
a=2b=5

AD,D’)y=D*+ 7DD’ + 12 D*
fa,b)=£(2,5)=4+70+300=374%0

_ m§+3_ ~ m@l@ )
fab) - 374

Complete solution is: z= CF+ P.I

PI

5
mw«+ y

2=A -3+ 0 -4+
-

3
Solve Whul 5 mnu
' aly o
& SOLUTION: (D’ - SD* D’ +6D) z=¢**7
f,D)-z=€"**?
RHS=0, putD=m,D' =1

m -5m*+6=0

m=—1:-1-5+6=0 ..m=-1is a root

m+1l p?—6m+6

m=+1|m? - 5m*+6 m*—6m+6=0
m’ +m’ _6+V36-24
m=TT20)
—6n"+6 6+2\3
m= >
—6m* - 6m
6m +6 _6x2\3
6m+6 m=—y
0 m=3+\3
roots are Snlru+/®|,m|)\ml
o.mubQéi&iﬁﬁ?ﬁbQimu&nz )
Using R.H.S. find the P.I
RHS=e*t7=e®*Poa=4,b=1
AD,D)=D*-5D*D’ +6D°
fla, b) =fi4, 1)=64-80+6=—10#0.
Huulm§+3.|\r«+w .. 3
7 fa,b)  —10
Solution is:
z=CF+PlI
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1.94 Engineering g&rmgm

Cs .~
/\l /e Partial Differential Equations ’ 1.95
dx 4
=f0-0)+th(yt(C+ Sx*bﬁfal«wku-w it .
! ﬂ . #ol AE. Emlmefino, m=1,1
This is the Complete solution. CF. =fi(+x)+xf, (y +x) - @
T T——— Using R.H.S find P.I
U&:.:u_o 12 sin (ax+ by) =sin 2x+3y)=a=2,b=3
Solve (D -2D) (D =D’ 2=+ Substitute: ~ D*=-da’=-4
57 DD’ =—ab=—6
S TION: Gi AN — DS - 3x+2y
% SOLUTION: Given (D-2D')(D-D')’ z= ) () D= o
Put RH.S=0 pl= sin (2x+3y) _ sin (2x+2y)
T2 _app et —4+12-9
(D-2D')(D-D'y z=0 D*-2DD'+ I
AD.D)-2=0 =—sin (2x+ 3y) - (3)
Put D= D= 1 Complete solution is
. 5 ied =CF+PI
AE: (m=2)(m-1)" = z=f, @+ x) +xf (y+x)—sin(2x +3y)
m=2m=1,11. :
CEF=fiy+2)+L(+0)+x3(+ x)+ .nu.b (y+x) - Q)
RHS.= 2 =e®t? Solve (D*—4D* D’ +4DD’®) z=12 sin (2x + 3y)
=3, b=2 ¢ SOLUTION: Given (D’ -4D*D’+4  Nz=12sin (2x+3y)
fla,b)y=G-4(3-2y=-1 o (D)
actby  Ac+ly -0 RHS.=0: Em —4D’ D' +4DD%) ="
P.l=
>= by -1 fD,D)-z=0
Complete solution 1s AE:putD=mD'=1= m° — dm* +4m =0
z=CF.+Pl 3+ m QNN|A5+£HO
z=f(y+2 $+§C+&+>b©+\&+>E m=0,2,2 |
CE=f,(y+0-X)+ (¢ +20)+xf; (y +2) e
Example 13 R.H.S = sin (ax + by) =sin (2x + 3y)
Solve ..WI\NI %M WIN.I,,.EANH+M6 ) ) = ) "
ox xdy gy 0 D*=—d?=—4 | DD =—ab=—6 | D*=-b"=
s SOLUTION: Given (D*—2DD’+ D) z=sin@+¥)  * Plop.  SREEI) SO+ H)
D’ - 4D” D’ +4DD" DD —4D° D' + 4DD’

RH.S.=0
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1.96

Engineering Mo, ematicg

sin ANN + wvo _ sin AN» + wM.M
-4D+ 16D -36D " 1% 16 D" - 40D

(multiply in numerator and Denominator by 40D + 16D)
Ple_ 12sin (2x+3y) -12(40D+ 16 D’) sin (2x + 3y)

40D - 16D’ 1600 bmluum D2
-——12 :oUAmEAN»+uEV+EQ?EQ&%&@ ]

PI=12

— 6400 + 2304
=
=" 2006 (40 cos (2x+3y) - 2+ 16 cos (2x+3y)-3)
_ 1536 )

Pl = 2096 COS (2x+3y) - (3)
Complete solution is

z=CF+PlI

=1+ L +2x)+ xf, O+2x) + 536 cos (2x +3

3 206 )

15° SOLUTION:

mn % %
Solve o2 2T o Tm.v. cos (3x + 2y)

(D?+ DD’ - 6D") z=cos (3x +2y)
D, D’y z=cos (3x + 2y)
D=m,D' =1

E~+§|muo
m=-3,2

R.H.S.=0, Put

CF.=f, (y-3%) +, (v + 2x) W

R.H.S. = cos (ax + by) = cos (3x + 2y)
. a=3,b=2
put D*=-a*>=-9,DD' —ab=-6, D?=-p=-
cos (3x+2y) _ cos (3x+2y) _cos(3x+2y) )

D?+ DD’ —6p? —9-6+24 9
cos (3x +2
Complete solution is z=f; (y = 3x) + £, (v + 2x) +.|h|@\.NN

—

PI=

/-S

partial Differential Equations

% _ % 3k
ox? w.«mu, A’

Solv =sin 4x cos 3y

0% _ o ok

L gz 3
= mOHd‘:OZ Given 5 axdy +6 sin 4x cos 3y

x> ww
Em =0
(D*-5DD’ +6D*)z=0
A.E: m>—5m+6=0
=2,3
CFE.=f 0+2)+f; (y + 3x) (1)
(using RHS find the P.I)

RHS= sin 4x cos 3y uw [ sin (4x + 3y) +sin (4x — 3y) ]

D, D'y=D*-5DD"* + 6D”

w.NHH

P, =

(i) sin (4x +3y) (ii) sin (4x—3y)
a=4, b=3 a=4,b=-3
D*=-16,DD'=-12,D"= D*=-16, DD’ =12,D*=-9
sin (4x + 2y) PL = sin (4x — 3y)
- 16+ 60 — 54 27 -16-60-54
sin (4x + 2y) _ sin (4x = 3y)
10 .2 PL= ~130 .-(3)

Solution is 7= CF + PI, + PI,

1

;b 0+ 2x) + f, (9 +3%) = 55 sin (4x +2y) = 55 sin (4x = 3)
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.m|nmlu mnu wNN

+2—== u.n+&.< .
F Ox dy m.vm £ +m5®.&lw.6

Solve

55 SOLUTION: Given:
(D*-3DD’ + 2D%) 7= ¥+ +sin (dx - 3y)
RHS=0= (0*-3DD' +20%) ;¢
AE: =~N|w§+wno, m=1,2
CFE.=fi 5+x)+f (y+2)
(D, D)y =D*-3DD + 2D

RIS,
XAy _ jax+by sin (4x — 3x) = sin (ax + by)
a=3, b=4 d=4," b==3
fla,b)y=9-36+32 |p2— _2-—16
DD’ =—-ab=12
fla, b)=35 D*=—b=-9
Sty PL = sin (4x —3y) _sin (4x—3y) .0
Plj="— (2 |77 -16-36-18 -0

. Solution 1is
2= CF+ Pl + Pl

gy _ sin (4x=3y)
prilMay 2004)
2 +y

z=f1 0+ X))+ 0+ 2x}+

Example 18 |(Anna Uni. April 2000, A
Solve Quu —ID D - 6D)z=sin(x+ 2y)+e

1 SOLUTION: RH.S= 0

AE: me =Tm—-6=0
m=-1,-2,3 L

CFefy -0+ 0- 290+

partial Differ ential Equations

1.99

)

RHLS. |
(i) sin (ax+ by) =sin (x +2y)
a=1, b=2
D*=-d=—1,DD'=—ab=-2,D*=—p*=—4
sin (x + 2y) sin (x+ 2y)
PI, = u” ’
1" D _7pp?*-6D 27D +24D
_1sin(x+2y) _1(9D—8D) sin (x+2y)
"3 (9D+8D) 3 (81D*-64D?)
_ (9D —8D") (sin (x + 2y))
- 3(175)
uwWwﬂonom (x+2y)—16cos (x+2y) ]
PI, = =L cos (x+2y) = =-cos (x +2y)
TS5 TS Y
i) et ="V=a=2b=1

AD,D)=D°-7TDD* - 6D
fla, b)=fi2, 1)=—12
mmh+w

Complete Solution is
z=CF+PI + PI,

=10-0)+H Y -2X)+f Q+m».v|..w_w8m C.+Nvo|m

. (3

2c+y

12

2 2 2
Solve mlun+ww% Iaw|wua+.<
w.ﬁ xoy m.v«

¥ SOLUTION: RHS.=0
(D*+ DD’ - 6D z=0
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En

NNENNJ.EN M,
AE m*+m-6=0 g

AS..TQVAS.INV“O

m=-32
O.TH\._QIwRV.T.\.NQ.TNHV
Pl= X1y {0
(D + DD’ - 61r%
= wl&
4 2
D*| 1+ Nlob
i D D?
[ 1-1
H Nb\ N&\N
T — + Ill.a e »
1 104
o Bt [ 4 3,

o -
1 1 X7y bll&.
Pl=—([x+y—-x)]=—(@O)=—7= =
D? D 2 id
2 d
i 2 DY sy
Pl = > (2) dy
et soluion i 1 fa
Complete solution 1s: D
2 1
Xy —=|d
2=f, =3 +f ¢ +20) + 555 7% fay
\\
Example 20
Pz, z_ 2
R Lo4+4 -5 ==y“+x
Solve 2 axdy @m

65 SOLUTION: RH.S=0
(D? +4DD’ =50 2=0

Partial Differential Equations 1.101

m*+4m—-5=0
m=-=5,1

CE=fi(y-50+f (+%) ()

Pl= (x+ %nv 1

O*+4DD'-5D%) o o7 © )
Dl 1+4%-5=
D 2

-1
1 4D’ &
ST (x+y)

)
[
o

o
~N

1
==l s a5 Iy
um bbu bs

2.2 3 4
pr=YX X _4Xy Tx
2 6 3 4

Complete solution is z=CF+PL

40’ _D?*| 16D? P+

2.2 3 4
Nu\_Q|mav+b©+a+wﬁ+mlamw+$

3 3
Solve w|wl 2 mnn
ox ox“dy

=2 +3x7y

IS SOLUTION: m° -2m*=0
m=0,0,2
CE=f,0)+xf,0)+f; 0 +2%) - @
1 1

2x:
Pl=——— (2 + ————
ouuubmbx ) D -20* D’
2x
2e 3 D) 2
% =125 |
21=097:0 buﬁ wu
.3

=& +||Tw.+m%xmu

.Hbu D

(35%)
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o "Tdinematicy n

Xy 38
+ —_— —_— —
20 *60
—
N v ’
Solve (D* = 6DD’ +9D'%) 7= 6x + 2y
5" SOLUTION: R.H.S=0
(D* - 6DD’ +9D?) =0
AE: m>-6m+9=0
m=3,3
CF=fi ¢+3x) +xf, (v +3x) - @
Pli=s— : — (6x+2Y)
(D* - 6DD’ +9D"%)
_ 1 — (6x + 2y)
o2l ([ ep_on?
D D>
4 At
nFa 1 — o.@llob\q (6x +2y)
D> L-

(As the function is Gx+2y, go upto D, D’ is enough, higher order &
D and D’ may be neglected)

’ aw mw
1 5.0 I Dl prad
Hl.mUN _+m|m (6x + 2y) ™ X
1 (. L_|&
nlgﬂ Amk+wvo+am~wb\a.«+~vo .W|.TF D, _.
D
=Lla+2y+6l @
Rl 2D _

D

Partial Different Fopinssiarm g 1.103
|| 1. ]
=—=| 6x+2y+ 12 —=(1} |
i I v
| 2 > )
=—= [Gr+ 2y + 124}
I
I I " ...
H.‘..__wayu,dum 18 — & 2ry
N-. - .
3 3
r . X
< 340 !.4«
2 N B >
Pl-= v 4 y=x° ﬁ.a~ b y) (=)

Complete solution 1s
:=CF+PlI
=L+ tx (v 3 e (a s y)

General Method for finding P.L

e e e ———————————— s b

- " g If the above caxes fuids o fimd PI @ well a2

”no\ if the KIS function s in different fosst, we seed
X_HU :.:?::.._.:.w:.:;::..:::R._:..m_.xu_,..ya..T...
“ m

1 »
,,,,,,, J(x, ¥) %\m X, C - mx) X, in owhick O g B

b 3.\::.: ed by y+ mx afler integrats

Example 23 _

Solve (> -DIY =20 z=(y - 1)

e —————————————p——— e e e

Y5 SOLUTION: Given (U7 - DIY -20") 2= (y - 1) &'

»

AE m -m-2=0

m=-12
CF=fiy-x)+L(v+ ) {H
Pl= Arl—vn‘- . 1

o -1pe" |

(D* - DU - 207 NUE RS}
D=my=D+1

LI _M‘l
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Engineering 3&5«5&5 Uy
m==1, fx,y)=@-1)¢

replace y by ¢ - pix = put y=c+x

WEK: fix,y)=(y- e*

fxec-x)=(c+x-1)¢

1 :
w.Huclme.:iMus o i
Pl= Su_ubgTa QtTwL =~ Q)

Substitute c=y+tmx=y—xin (I

— 1 = X
Enbrwb\ho\ e w
(Again use the same formula)

PI=[(c=2x-2) ¢ ax

PI=(c-2v ¢ (1) (replace cby y+ 2xin (In)
PI=ye* w2

Complete Solution is =H0-0+4+2x) +e'y

&%%
Solve — 4+ 2= _ —==y cos
QHN Wﬁ W.v. QEN J *

“¥'SOLUTION: RH.S=0, (p%4pp -6D%) 7=0
AE: 5~+Slmuo
m=2 -3
CF=fi (+29) + £, (y- 3v) . ()

Pls—r- 1
(D" + DD’ - 6D

(v cos x)

Partial Differentia] Equations

I|/ 1.105
/

”mﬂj?é
n@l%ﬁﬂ@ﬂww.w@o&b
SM&BT?E COs x d
(D +~w3 ((¢=29) sinx - (2) (- cos x))
57355 (€~ 2 smx-2e0my)

1 .
oU+wD\v Qm_zklwoom».v

_ (replacing (c - 2x by y)
= ((c+ 3 sinx—2.cos 5 )dv  @eplacing y by (c+3x)
= (¢ +3x) (—cos x) +sin x
PI=-ycosx+sinx (replace ¢+ 3x by y)
.. complete solution is

z=f Q+N®+\m@lu&l%nomk+m5h

(replacing y by ¢-2x)

Example Nm._gzsm Uni. April/May 2003)

Solve (D* - Nﬁb\+b\wnnm«.ﬁ+@

*>"SOLUTION:  Given (D*-2DD' + D) 7= 8¢5+ - (1)
. RHS =0
(D*-2DD’ +D?) 7 =0.
AE m*-2m+1-=0.

m=1,1

CF=f G+x)+xf, (y+x) - (2)
x+2y x+2y
Pl=g—° =8.-%
D*-2pp +p?  1-4+4
PI=8*t% =&
. complete solution is
x+2y

=L+ txf(y+x)+8e
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1.106

Engineering >§E§§F

Example 26 |(Anna Uni. Oct/Nov. 1996)

Solve (D*+ DD’ - 6D z=cos 2x+y) +¢" 7Y
¥ SOLUTION:  Given
(D* + DD’ - 6D z=cos (x+y) +¢* 7
RH.S=0= (D’+DD’'-6D%z=0.

AE: m +m—-6=0

m=-3,2
CF=fi(¢—-3)+f(+2x) ~0
Pl = qn.cum.».+.< - Wmmhm..»‘fé
D*+DpD'—6D% - 3
X —y Xy N
Pl,=—F s -8

D*+DD' +6D?  ©
complete solution is:

z=CF.+ HUHw + T.HN

2= 0-39+f @+N».V+Wm5 AN,.+.¢.V|WQ.T.<

Example 27 |(Anna Uni. March 1996)

Solve (D*~7DD" - 6D"°) £ = cos (x+2y)+x

6 SOLUTION:  Given (D* - 7DD - 6D") z = cos (x + 2y) +x - !

put RH.S. =0

(D’-1DD? - 6D z=0

AE:m’ - Tm—-6=0
m=-1, -2 3,

>

CF=fi0-0)+LH0-2)+f (y+31) .a

cos (x+ 2v)

PI, = 3 vano_uooww.ul_. DD =-2. - =-4

(D’ - 1DD"* — 6D

1.107
partial Differential Equations
Pard 2
cos (x+2y) (38D + D) {cos x * 2v)
@D =D st -
(3)
1m— =
” 4
Pl =~ () = -
- (D -7DDT-6D") (i e
D = —
. I7a ol )
f D v‘ Y i
||||—| 1 —| IHI fm\Fw' _ m {x)
'l |0 Pl
1 ﬂ
P.1, l:?lﬂf_ =31

complete solution

+
sin (x + 2y) X
2=fi =X+ for (= 2)+f (v +30) + —=——+ 37

75 24
Example 28 |(Anna Uni. April/May 2003)

Solve (D*=DIY =20’z =¥ +sin (dc —y)

t3 SOLUTION: Given (D” - DD’

R.H.S =
(D’ - DD’ - 20D%) 2 =
AE: Eu -m=20=0
m=35, -4
CF=f (y+5x +\u C. - 4x)

St+y

PIl. = e, xe™* " (Replace D=5
== F ) — =
(O°-DD -2007) 9
P.L, = sin (4x — v) _ T XCOs (44— )
T (= DD’ - 2007 0

(Replace D e 16, DY =-4 CL _

=—1)

20D =>4 sm(dr-¥)

(hH

(2)
= ‘—v

e (@)

ol L Al
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¢
Omplete solution js-

Y=CF+ v.__ +P L partial Differential Equations 1.109
; partial DI —=
/ s : 1630 (Anna Uni. Nov/Dec 2003)
Y=/i O +5x)+ x>y eo
.y, S (4x — 2 ’_ — X =y 4 s =
LH(y-4x)+ 5 FIE Solve (D™ +4DD 5Dy z=3e + sin (x — 2y)

E A vl ’ 2, - NNIVV
“ |Example 5 SOLUTION: (D™ +4DD’=5D") z=3e
_P/mm_::::. Uni. April 2003, 2005) RHSSE

Solve Cu+t~ ’_ 2 3 i ' 2
( D'-DD” ~p nunP+v+2m©.+$ (D’ +4DD’ ~5D7) =0
" SOLUTION: Given: AE:m*+4m-5=0
(D* 4+ D D' = pp2 iy e Y+ cos (v +y) i
. > & o -] = )+f, (y— 5% v oyl
RH.S: (D’ + D> - DD - pPy . = CR=fO+D /O™
= 3 2 - _xTY . (3
AEm +m”—m-1=0. m.:nt@W D) (=5
m=1-1-1
CF: = T4y _ sin (x —2y)
SEEfi ) (-0 s (v - x) .0 PL,= DD - D2
_.4__ = i = & () PL = sin (x —2y) _ sin (x —2y) ... (4)
D+ p-ppt-p? 9 2TT1¥8+20 27
Pl = cos (x+y) Put .. complete solution is Mwﬂ I
A — V) = - = -
T (D-D)(D*+2DD + D) DiEs z=CF+PI,+Pl, DD =- =2
= COS (X + y) b‘w i 77 sin(x—2y) D= .
T(D-D)(-1-2-1) Do =[O0 -
=1 1 g L ) :L ———
- 4 D-D xample 31. c_::;. Uni. Apri/May 2004)
= ) — ox + oy mwN mN
§+: bg
= ) - (¢ Solve 2% gz 3
= WvA« tlt (¢ ) ! olve 32 uw&&+m =8 sin (x + 3y)
P.1, = —cos (x +) 55 SOLUTION: Given (D* - 3DD’ +2D) z=8sin (x+3))
- RHS=0.
i BOULIAN 13 m’=3m+2=0, m=2,1
_ ) j 2|
10m+~u:+ 2 AT O.mnb@+w&+%~@+b
-NI.\‘\MOOmAH+V_V

unb C,+b+\~ C...».V+H\wﬁ<|xv+k\u@|b+\o\\w\\

—
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M:n..:wmz.:n EQSQE_.R 0
Pl= 8 n/_l i /~
(" =301y 5 %) Sl 3) zn%_una . .
pioBsinGis 3y Do
- 10 DD’ = -
<.osolution s D?=- 9

Z=f1(y+x) + fo (v + 2x) - g

3 sin (x + 3y)

| EXERCISE 1.5
Solve the following P.D.E
-.... o )= 4
1 .I.x.wua'h,?..lpui._ )
;n. ;.-.;r .:,.
g S5 g OE gl R
da datdy dy

(D 4 t..:\ + 4 t::, VA 6 sin Bx +2y)

4 0% . q.9  28% ooy
.7. dady oy
S, (s Dy)y 72 ¢ ?
3 ) 2 B 2T
6. (D + D°D-DD"=-D" )1=¢
) by 8
7] A\~ { \v. vn ||.¢\|||q
' 4 ,_.a
o | .- ,Nl
g 92, L cnlmu. cos (3x +Y)
- a dudy 0y
o | .4
9 h.l..uu.ln..u sin X cos 2y

o dxdy

10. u\..u. Ay 9y

+cos (X + C

partial Differential Equations

11.

12.

17.

18.
19-
20.

mun mum 2 3
dx dy
Po_, Pz _ 3%y
ar w».www
2 2 2
7 0
.w|w1 gw#mwknmw:f sin (x - 2y)
X ¥

AblND~VAD|b;UNNH@k+!
(D> -2DD’'+ D) z=sin (x - 2y) + € (x+2y)
(2D*-2DD' -D?)z=26Y + &1 + )

:um..ubbibbvmua:koomv
(D* = 7DD? -6 D) z=x’y +sin (x + 2y)
(D*+D*D' —=DD?—D? ) z=¢"cos 2y
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Definition : . : :
efinition: A partial differential equation is g
cquation, which involves partial derivatives such

» e
as J: d: dJ°z ;
- T'-' TR amt— » - ,"" - o - . :
% Iy etc. Which can b simply
2 oh
denoted as (P.D.F). Which can also be denoted

as F(x,v, a2, U U, .. U, ..)=0

i 3
. «): - )
Ixample: 4 —4 3 ==+ =X
th ()\'
12, o
%z Oz
—————— o -w—-]“ o ()
().1 ay
du o :) i
i 22 LN —
At ()_\

(i) The order of the P.D.L is the order of I}rt

highest partial derivazive occur in it
(ii) The degree of the P.D.E is the degree of zlu'

hiehest order d(mmm occir m it

%) %
E (T‘ () 7 6 (") z Jz 5 9
Fxample: —+4— d st =AY
o R 0xdyei gy o s

order =3; degree =1
(iii) The solution of a PDE is a Sfunction of
independent variables, which satisfies the P. D.E::
(iv) - The general solution of the P.D.E ronmms
arbitrary wmfanzc or a;bm ary funawns or baﬂf
(v) 1f the number of constants to be. :.?lmunat'afE

s f'qual 0. rhe number ()f mdependengz";angbl
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___INTRODUCTION

(i) Consider a Single variable function y=f(x), for example:
: d
y= 3x% + 20 + 11, y=sinx, y=cosx +x2, y=logx...efc. Then :L\X
&y dy
dx“ dx’
equation which involves the above differentials are said to be ordinary

differential équations (O.D.E).

dj 5. 1.7 dy+y—bmx
dx” ax

. are said to be differential coefficients or differentials. An

Example:

(x2D2+4xD+3)y=ex ... elc.
~ (ii) Consider a multiple variable or several variable function
((function having two or more independent variable), z =f(x, x, ... x), and
u=f(x,y,2z...) which are common occurrence in so many engineering
application problems; particularly in Theory of Vibration, Heat transfer,
Fluid mechanics, Thermodynamics....etc.
Example: u=sin (2x + 4y — 52)

Z.:ezx—3y cee etC

oz 9z 9%z 9%z 07z
ox’ dy’ gy*’ 0xady’ 52

Then

are said to be partial derivatives (or) partial differential coefficients.
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111 FORMATION OF PIME BY ELIMINATING
ARBITRARY CONSTANTS

SOLVED EXAMPLES |

Form the P.D.E from =ax + by + ‘\/a?‘ 4 b*
i SOLUTION: Given = av+ Dbyt N+ b

0z
differentiate W.r.t x:s—=p=a-+t 0+0

ox
1) =a
. : 0z
differentiate w.r.t y: ==
oy
q=>
substitute @ and b in (1)

2 2
z=px+qy+\p +4q

This is the P.D.E of first order

. (1)

e 1)

“Example 2 |(Anna Uni. Nov/Dee 2004)

Form the PD from z= (Jc2 + az) (Vz + bz)

& SOLUTION: Given z= (> +d) ¢ + 1)
differentiate w.r.tx: p = (2x) @2 + [)2)
differentiate w.r.ty: g=(2y) (,x,2 + az)
substitute (2) and (3) in (1)

msle ey Ao
z=57 2y =» 4xyz = (|

This is the P.D.E. of first order.

L (D
L2
L3

_Example 3 |(Anna Uni. Nov/Dec. 2003)

From the P.D.E from (x — a)2 +(y — b)2 +z0=1
¥ SOLUTION: Given (x —a)> + (y— b)> +2° = |

. (D
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& Uieeh. (Defportinl Equation)

Dhp ogebon  wieh il difpential
T " %ﬁ% hec&w%.
¢ 0T o
?E% pqpuakFors
9%.%,@ a% Bqpuations (oox:) mﬁmﬁ %q&e%%é.
e (B
A @%ﬁﬁ&x Lqpakion A %aﬁ% pqpateon méﬁm
?éf.ﬁ@ duevalsves  with | paeal  derivedeve with
gﬁ% e 4 \vﬂ.@? ﬂs%ﬁmﬂw w@w\ﬁu 6 move bran  one
voble 3 alld onoDBe findsndent vaheable Ji ol
A PDE,
. dy _ pSeman
L93: 1 Yy — . 2
w vaﬂ / &.u:VmWNMV\I\WN.WN
?) @\%«p*zw@uo my) x> o
' \ P 2% gy br_g
ox 24
i %« ddlpuctial  covljecront peogeat e Jgu.
F T dum o 2 gy

mogos /\& 2 %

N

Ko hny swlaffon  bebuwmn
Vakables  ohech, when  aubsetabd n Al 2am
S bt an tdenisl b Gk o goldm
mmf.sﬁq ve)  op Yo defforental dp ,w\n\ug \P.w..,uﬁ u&fn&hm
¥y  Th AoutFon 5 I whih He ywwmbs &\DP_?._\%P@%
convtant becuwvng A M ) E?.&B&E&\ “_

5
g b alld b Qo gl oy compbl
wisimﬁf .

ot fpom Y g
4 alded o g@ g,.

= o%ﬂ.“._.wm\‘\uw{@ébgw &B\.T«u%dtgm_\@@“_.
o Coplon o Guond wed |
whh fwmob Gfpady
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\A/ILL WQ}‘ %(‘)\{M (9} o ,QJ:MW\ &“W’l{, \,Oh!/h?, m I,W"L,» Wy O Yo Yoo{I %K@_E 2 CIJ CZJ"Glij
¥ % i A e wike constants Coofferonty Odee  (Gukonks, :
4 " ™y Que D~ @m At ho gob el ool somegy whih |

()‘ X 0y — ‘ I i
(ho /()\{F\ ) e ﬂ%/uaij, i

"
: s and X a , Lt
wiwe 0 (F9), M1,02) - an o O W 4wy = =wy  Ham

P Ve o NS

tonavanb - ‘ _ sy Lgm (AE), B
aux D Be M Wmaﬁ Dfﬁmi’m ; o (y 4?(m)=o.tn'®. od oo tae ot 078 Jond |
o Ty = e e L T oo Wit age |
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A7 - T e 0T e e g b dekonet | ‘

E
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= w | ‘
(0w é‘[D)a X ] @M [9* M\;W’s'/_“/’tiP km,}:m& :,(—L:Fj

& ; = 0 [S&:‘J;U’)' |
¥ Powotonous &g& \:5( JlD)‘a, L2 N i g o
¥ Non—\mé?o%,w\o\u VRV 4[9)2@( whe X o o/ ,,,\3 = o [{C|M+Cw)(ﬁbpx + (Cioty) an\qpe

Mp A
+--- +Cn L
1o dnd Grrplmrtony Jundloon, - |
Lk Dy =0 ./@‘ iy

Scanned by CamScanner



- drlo ol
g’ $md % 5 — V (007 = a3 e
T g Y 7 - y
Lok | 2) (1) = )- 2 s 2 e
{ ,mr:c o doporddon %] ) ( p ]~ ot :
v 0, T i L= Ok : 3) (1) = |4an +DCHoR .
i [D . )
§ ” _ 2 hwe & S o tonAbunb W (Y T2 oo APl |
b A whn A =5 5) (a+20"  — ang o n ™ 4 ongn-) P G TR
| = an lote uv_o o;.\aq %?u# Y !
| _V.H“un\,%\v‘p \E 0 cé%r;?ubpx/\sg V i ay |
,, e n p”
‘ * D\MQ%OIN &‘ T J 9.3.@ — &.X ._
et flo) =© \m:sc \D- & pT = _ ot o ax | |
m .% * T.QE\ %QC nTc FMQIV‘ ¢ < - b . .< ,
e b0 DV ) &wﬁk
(1§ ' A~
N Y ox = Vey vty kDG
a) ) i
Ty (on) (o8 ant whe ay PT = o L_WNey _ £ '(») V () i
Bl2 whe X = o ‘ £ (D) Gy .
. D" by —a” f_&dsﬁg g () o, bt Y X b aeyohe Jn o x I
alL n . 1
AW i} ;_E.J \u\ _ (gor w)i@ ﬁoH = Auw\_ﬁl\u\ Vm — i \.‘l/»\x ﬂ
} &N a”) =0 i : y &39m.s€u?>w$(&ﬁ. .. D . mbig_vglgv--!@lso@ g
x@r? Cinam P*ra* e b oNae Ton e ﬂgpp *;QUE mokhod.  0nd Aalie “
= T e ¥oam ru using e  above &LE .,m_,ﬁ
Rub> @ wohn X =" wmdo.
e mﬁé S |
And  we bene watad apyvemion 4o M%a&u_ . | 7
. ; ) | y

h

Scanned by CamScanner



ot 177,

g I

i Wﬁ\ _am

xﬂ.& W Sluston & (p* \%@iﬁmuo-
)

o The

o mP—hm —Lm +l6=0.
2 wm(m-L) —h(m-k)=°

& ﬁg\rw = O- ' ‘_.\,\
2 m= hLH. Y - 9y
. v, 2./
..& = ?Imi\w \\ K
/o) 9
3), Sobwe &y gy thay =0
. d* /m@ )
ﬁ.\. The NE A mf¥ —Gm 44 =0. \/
~1) ~|
D (m-k) (m-1) =0 o
.“v g“r \g\\‘ / /
s
(.F = Ag° 4Be .

gé%.p»m \ﬁ\cpqg A 3m\%3+_wuo.

Scanned by CamScanner

fitl oiksan ﬁo\wlnﬂuuno. e ——— IJ
W\\W 8 b m*—) =o. 2 mi=g
Dws g
A e S G
,m.v ..W.OVCP mlUN*.b..IU& —0.
i
m@\) i A wmEtm 4 =o.
m = .Ll.w/\ﬂrl _ nw,m,
2 N
= =\ = =i = B
2 a 2
LA -
,u r@»ﬁpgﬁw#uﬁ .m%sﬁ%.o@
¥ mv Tuw\rbitm -0 .
D (D% +bD ,;Q& =0.
Q& IWWMJP\JPL;Q&\O |u,s)_mN
! h\ml - =i ) ..Urll._ =0.
y dodt ,m ° ﬁ pm_
g. AE L 3:1_:uo.. .
2
& m\Sp alﬁ\_p ms\fcp (a-b)
2 @3 +G ?3 \O _ S
9 (m2x1) (m-+1) T)DIO“ it [
=, 3“_\\_\u_nm - =

L)
+

Ao+ B

m“

&? Q“ (s + DSen >



L
* 97 %

S, B

o B RN
‘ - 1 =T
2 g.u\“ _ &
Stnn.
“ﬁ.ﬂ = DQmwx‘ +@ M :
L , A N
= \\/\l.“\l‘l )‘
p.3 () -
« \ &PX =
- — % _
(h*Y A

et ol @Wp\w\uun C.F+P.IT
t m — Ale -+ BSINLY

& Gl {070 713)y =2 g™
WVW‘ Drm S?PLw Lhm+4i3 = 0.

pE = _J 2L
(P> +LD13)
B 2 o A
(e0* 41 (-015)
= B o
10

m o= —h FJlb-s2 = -z 36

\\
o
)

Sy T CFrez -

®_® mbwibibu.m = .@px.._ﬂ.@oﬁ.
AE B wmr-wm -3 =o.
3 W —am4+m2 =0

Ay

S (m-2) (w+1) =©
.& 3“p\\_
C.F =— Db\# N merK,

(e ™)

-
— U\\/_

TN EENT TTUTIE BRI Y 47 m——

—— s eSS B - § § 1

|

= o7 [ A FBSm 3]+
32 12) Solrie ?bviv.::vﬁ e =

|
J
o

Scanned by CamScanner



L IR 1 A —

b %%Nf 5 g
(Y]
ma g Smar .

u\jﬂl\vxr =0 .

c\\_|\|\.\ , %..3 N,Vﬁ

mefﬁ 6

O BS. P

BaED),

S
Al an gStnaAn —

- -—
P

=

1

(p

+:b¢5m =[Sm0,

mE Hyw L = ©

AE W

%@ﬁ,

Fwn =3,
\MX

= (Pt g
L R Sean
(DHup+l)

. \|\_|\I\| LSt
(AP

.W:. ,,w,mqswx dnc

2 Sl

2

G L

“CF
v s LY

—_—
=

p.I

L

—_—
s

-

- ]

Sen 3 A

g Solve t o
. 39“(@ &.3;4 o \w o _mv,% B + (o8 Lx.
=4 oy, PAE b Wo4lb=0 4 mi=—lb A wm=th
A B
S G \ P
. = A4 + BSin L. ,‘
hoe a=3, il |
PE = -3 ,
. = + Ceslen) |
&%bﬂ& bruwiuulb,p @P\ZTV m\ h
_J\._ = |J |
| = 4 (st ”
(2%+16) %ﬁ_s |
\wx a
= .\\J +1 mb&'m.;w @» m m
25 ?ﬁ@ i
/ £ 4 Redpty _L__e o
= < +
BE cxr,@
M —_
S (m+y)” = L Relpoy L xe” :
L i T@Stm,;,@
= \P\m\\ + ﬁ»&«?ﬁ& A\\ [4 .v e
N 2
D = —4. -2 rxm@rg % .mfs_gu
= i SF Road w?ﬁ& ~“ ﬁ”
o 5 _ w
D -2 n o Sinh™
= L— t 7 ,w
o b\\wﬂ 4 2 8nl |
N T B ey 8 .l
- r& _ A loc ¥ BN | . 9® \\ |
O o) 3 |
€ Cove  (DDY
8&”# 0 >\ =0 2 vo =£1-
(o2 2 o nE b ) ..

Scanned by CamScanner



\.x \—\@Q\Qﬂ.
LF =,R8 y
O =) B Lty

“ I

Pt (%)

) %A .

) (- V) .
~) .
el ﬁ— Hv @vdf =0,

= = 14 P4t I

W\

o ﬂﬁ + T 4@:343@
2 —m
.,Am = DP\? -+ be (.x.\\.
:V Solve. (»° L:c.w =t Fand 1

0

g B B mi43

\
#

T R 4 2 [ewEw 4 CSn/E
_ |
—— [t
(D +39) .
= _| (t wanw) | s =
mﬁ:\%v nl+2n +1

g Sy

D(n4+an+) = b,xw._‘b

—|
RO O
N pbwmx; FA¥ 4 _Uv UMPY. :

1

n

_ m. .Su‘
LI @. l-«bW \T uw.lllu ?:\Tpx M@
3 P

ﬁ?: A1) — ,“%. (HFot]) +- g
8

0
wa ﬂﬁfuxi \%Ww
.

|

!

. [
e B mt-an = /\/l_
5 pr(m* —am+Y =0
P>
P> (- =

Scanned by CamsScanner



NS FAR———

C.F

p.T

-
-

mb +®.u© ‘®
piex ¥ (c+P 2"

_ 3

mcr \Ubwlwwwp

W\

\\\l\\\\\\
o[+ (0"

[+ & \p&

=

\ -
2

D

\

\\

\

FL

'

\@\ (9>-2D) + [t

ot %.H* D) &N

Jﬁuw

D) = 3
.@w?%up = wbm#u

=6 >

S%

-] e

(5 L i%\@_,@.&

T _ 124%) +2063)+ D6eY b

pe

i

0

20) Qwimbiw

(25

2. Fend

Gl

=

v
’ ALFbD) — D%y o6 DB
4800+ -
i} % Tw\ g + %™ yo —2y o2
40 -0 \:&M\._
uwﬂ Tw A1+ b 2] &

P.

-—
—

=

\\

\\

-

(e

i

A B+ (CADW L w2 ok

(p*

3§02 1195 ¢ bzt 21,]

DA \p 7 0

ot Qut + 2%+ |doe.
) ]

) /

Uﬁmr \&orm. + \&u% +\NW#P
20 ey %v =
vﬁm g ,wn\..r\ \TWuﬁw \TEXP.
20 2

Jor ).
We

—
pe

20

= mmo;bv

— 0D DY =L

L

PT = 29

PT 4

2.6

Ll . X

f (P49

_ X

e L
(D*Y

m@i p

- X
[i+ ogw&

o Ty

2

x*+3

(B*+) 4 =

mlq.u N
BNTCH e

~ Scanned by CamScanner

+2%3F1Q RN |
_



3 hw:\\u@\v(;k?# Aplatorn. s
= N, ’ V/nmgﬁ (= 84 (o 2ol o 97 O

Elwmod n an RLC ot

37%\ yotadcon g it \ &vﬂmn

?Ew Nepth oY AMM— IR Ohwis sistante - | ghmA(R)| RI=KS |

N\

Scanned by CamsScanner

by = | L Spduckane | honays (W) L dr “,_ﬂ
2™ [ \b oy —— | C topautpne | fahads(F) WP,\meﬂl__m
o o \MnNH, \ g 3 4, ,(, ..)\.%n:;.ﬁ,ﬂz mm bmu,%f.c.m mmukbr?r\vb. \o,« mn\uﬂ\.“«m.;w.cf ) < _,
A = o | (-Gt ~po S g - e ) R
. (D +2 m = £ Lt LC- e . RLC —Crtus 1
‘_ Colvie L. c > 0H - ;
\ ( AE \D @3 ...T@.M\“D 2 M UI\M\IN, | _\_\H\_*.WMH\*INU“”W ﬂml ”.
| & . . g , |
—2% , |
\ pifFE mb\:&c& : R L
L i g , }
| | 0 Oin> ESnwkE | J
Pl = T 2 % =z RSt o
m p12) L AL* ¢ i EBle) = ExSmwt- N
A Sin o G R =l
= 3 a=) R [ thruak. J.E 18" .6 Sz Butn, |
m 3)9) | T T zag |
(p- e T | . CR@he |
_ I
1 ) . Sent ] volkag Jor, |
“E Ty iy e
_ , 3
—~2
= -2  Sen?t. E. vichaol s Ly
2 —2n . . af =E (el Jouo) 2 S e
& e Tfrmuﬁ& M _p p?,sx\\ R: +_\m=n\ \a_\ 2
2 A 4 Ri=E ,
ot L L | L




X 6 (o) =0 B ~0_ 0.0092
LI 1§ 33~ 121 <
0 :
| 7 o.egqb +?oocmm 4+ 0.0048 =0
® A & B = . 0.2997
7
@x?oo& w 0.0007A + 0.0007T7B — o.oooN..
—0.
w @i@ 0. 0001 T 0.00068 _— _p.oof
3@ ooolA “4 400018 L33, B0 5
.\?gowm = = 0-004g
3 B= p.0048 _oa
0.0002
2 ® 3 A= p.2997 -2 =-23-T

B3 Il =3 g 105 ta, m\_wmb.qoqw

—0.299 7t ,To.ooww%msww

> Find b et ke pe ot
Qs o i) puwent  ond capacd”
&émm wiks Yo &QQE?& daka mn:m&w

L=0.954 ) (=0.00F , E[p = h\wb.so@mw V.

3 QMQ\NS ] NU =
%\Y Lso. 00

, L= 0.95H, € =it 0T

B(t) = Lﬂ?_ 3EV-_ ¢ m,\ﬁc i
m.h& W = mm\ € e m@umﬁ =25m”
T2 -L um_%nn@
o n@\ «We;mw lf\N\_“VN u,bjrwwul\p
i)
— l\®1¢ I.W
- = .hSmW —+ 7137 7
<2 w
T
0.95 T + pooT! + T - 435 5nst
o

0.071 (o
. — i ._\».h.. e
wihh  T(0) =¢ 5 &m&noE?P?Z 3@5&.[@

R-B o @ Aobm,:p +bmg3+l_|‘vho. |
0.01 |

m = —uso + \[302500 — 21 |

.9 |

= —0.03175 y — 1473662 |

o _ouoBliSt — 173, 68 |

CF =p, L g lTAeR |

. _ JTYV et
(095 D+isoD+ -1 mo WF UL bt

4 ! gl ot

u? a5 D* 50D ﬂm

Scanned by CamScanner



-t
, U
0 oo 115 Lo 0, 099{80/@ ﬂlhéét

22 wios om0t 0. 0oltasyt

s Ov()oOoBIJd @f’b (366

g
= 0.,00[1G¢ a@o_OOogg@-g
\ Ul

0001/ @,“b(wbﬁf

Scanned by CamScanner



Ly

Fd He  (went N Jng RLC  wnuat
‘ \,Lmafrg 3o tneteal Cunhg nk and 0apa ey
thotge itk wa éo,u{)wt’hg Aaba R = L,oo_Q,
L =0<124 C——‘ 0« Ol F BE(E) = IQO;S’m&L’ V.

b Q\%MQJL Spadon Jor an RLC
OAULE I Rl & ——EC@
CZ
bven  R=ppon, |- 0-RH, (C=o.04F ’!
Elt) =1208marV |

IC’C) 120 (jes;gb x2 = Lo

) M e |
- The Mdf dopn. Lo comes !
.12 T 4+ Loo T 4 L = Ao

| | | ooh ]
Wit T (o) =0 x B(o) =0 & i

|
|

o.1a T+ hoo T + 25T = ‘Dhow&t'%

| — L0 (et
5 [p1aD” +hooD +35) T

p.1am> -+ Loow * 82 =0

ANE W 4
TS _ 400 4 HOOF)'F’L([O‘D)QF'
2 M = -
2(0-12) |
|
L‘ —-—_‘,J

Scanned by CamScanner



.\:oo 2
= \\\
0.24
oo = 399985,
a0 5 . T
. 0.2l
_ _p.obag , —3333.271
0,063 F ~2333.2715
LY + BL
0 (os 2L .
\n\\‘\l .
@e_puvo\+rn%+b.mv * PM(WA
| Replate
‘\P\.:M\\\l\l\l\l\l\\ g&bf\\ U\pﬂ\
%o. 1) (-1 +rcov+umv =—h.
= ,Im.iw.w\ttl\ (o 2 J
LiooD AR
wr._ﬁ\ub &
PR YIY hfoo D (e 2
> S AR
oo (Mo ol \@r.m& g (¥
gl -
_ ol.2304
\b 0000 h\rp . ¢
5988 227

. mromo_ .Uwar

PI = 0.299718 Smat  + p.00918 @At
o HQUV“ mem + T»H
= p &\o.omDMW +®b\wwwmbi¢.
0299718 Sthat + p.009186 (a8t
@b. Hhak I (o) =0. L—@
2 ®» 0= A +B + 0.009186 m..bwwoounw
0% =1)
= A4B -—p.007186 —&) b___
W-KT, 8B = [T dr.
_0.0625t ~3333.27F |
. Q?v “/\,ﬁbb +B L
. poq L& gp@%ﬂ
" yp.aqa7ig Stmat A0 ,
A= 0
— E
Vs At

pea kR

Scanned by CamScanner



R S
_0.0625% R £*3333°Q“11{71

-—

FENPTRN ) &
alt) = B2 L 333%

/D’

40299718 Gt D.20918} O
“Tar.. - |

e above 2au  bocomy

o Qo) =°
s /’f’.ﬁ? - §;§3.27l 'Q%W
> |6bA + 0.0003 B = — 014 9EE9
D xlb — @ L@

2 lejwba = — 0.4

_ -
& 1ga ,f)p‘,ooolﬁﬁzgéuu[qgaq
g S T
15.9997 R — 0 -002883
B = 0. 000§
¢ @? A= =00, 009 16 — O0.000l&

. —_ — OoOOqL-r 3333’1
‘ —0.0625 o
@7 T = ooy g O° 4 0.0008 L

Y
~+0.29971¢S1n 2 b+ 0007 '”//

Scanned by CamScanner



Questions optl opt2 opt3 optd opt5

The sum of the main diagonal elements of a matrix is called------ trace of a quadratic eigen value canonical
matrix form form
Every square matrix satisfies its own ---------- characteristic characteristic orthogonal  canonical
polynomial  equation transformati form
on
The orthogonal transformation used to diagonalise the symmetric matrix A NT AN X' AX NAN* NA
is----
If Ay, Ay Agyeenennnn A, are the eigen values of A ,then kA ,kA,, KAg,......... kA kA2 kAT Al
kX , are the eigen values of --------------
Diagonalisation of a matrix by orthogonal reduction is true only for a ----- n diagonal triangular real scalar
symmetric
In a modal matrix, the columns are the ----------- eigen vectors eigen vectors eigen eigen values
of A of adj A vectors of  of A
inverse of A
If atleast one of the eigen values of A is zero, then det A = ----- 0 1 10 5
If the canonical form of a quadratic form is 5y,” - 6y, , then the index is - 4 0 2 1
det (A- Al) represents------ characteristic characteristic quadratic ~ canonical
polynomial  equation form form
A, Ao, Agyeennnnne. A, are the eigen values of A ,then 1/A; ,1/A;, Al A A" AP
1 gyennn... ,1/\ , are the eigen values of --------------
If A, Ao, Agyerennen. A are the eigen values of A ;then A", 1,7, .......... A Al A? A® AP
.7 are the eigen values of
Cayley -Hamilton theorem is used to find ------------ inverse and  eigen values eigen quadratic
higher powers vectors form
of A
The eigen vectors corresponding to distinct eigen values of a real linearly orthogonal singular not unique

symmetric matrix are ------------ dependent



If all the eigen values of a matrix are distinct, then the corresponding
eigen vectors are----------
The eigen values of a matrix are its diagonal elements
In the orthogonal transformation N"AN =D, D refers to a ----------
matrix.

In a modal matrix, the columns are the eigen vectors of----------

linearly
dependent
diagonal
diagonal

Al

If the eigen values of 8x,° + 7 X, +3 Xs° —12 x; X,— 8 X, X3 +4 XzX, are 0,3 Positive

& 15, then its nature is-----------

The elements of the matrix of the quadratic form x12 +3 x22 +4 %, X, are —an = 1,872,
a=2,a=

definite

3

If the sum of two eigen values and trace of a 3x3 matrix A are equal, then A, A, A3

det A = ---------
If 1,5 are the eigen values of a matrix A, then det A = -------

5

If the canonical form of a quadratic form is 5y12 +6 y22 , then the rank is -- 4

The non —singular linear transformation used to transform the quadratic
form to canonical form is ----------
The eigen vector is also known as-------

If 1,3,7 are the eigen values of A, then the eigen values of 2A are -----------

If the eigen values of 2A are 2, 6, 8 then eigen values of A are
The number of positive terms in the canonical form is called the
If all the eigenvalues of A are positive then it is called as

If all the eigenvalues of A are negative then it is called as

A homogeneous polynomial of the second degree in any number of
variables is called the

X=N'"Y

latent value

1,34

rank

Positive
definite
Positive
definite
characteristic
polynomial

unique

symmetric
orthogonal

A2
positive
semidefinite

not unique

skew-matrix
symmetric

A
indefinite

a=-1,8,=-a;=1,8,=
2,ax=2,a 4,a,,=4,

2=3

0

X=NY
latent vector
1,9,21

2,6,8
index
Negative
definite
Negative
definite

a22:3
1

25
2

Y=NX

column
value
2,6,14

1,9,16
Signature
Positive
semidefinite
Positive
semidefinite

characteristic quadratic

equation

form

linearly
independent
triangular
skew-
symmetric
adj A
negative
definite

app =1 a,=
4,82123,
a22:1

2

NXA

orthogonal
value
1,9,49

12,4,3
indefinite
Negative
semidefinite
Negative
semidefinite
canonical
form



The Set of all eigen values of the matrix A is called the of A rank

A Square matrix A and its transpose have eigen values.
The sum of the of a matrix A is equal to the sum of the
principal diagonal elements of A.

The product of the eigenvalues of a matrix A is equal to

The eigenvectors of a real symmetric are
When the quadratic form is reduced to the canonical form, it will contain
only r terms, if the of Aisr.

The excess of the number of positive terms over the number of negative
terms in the canonical form is called the of the quadratic
form.

If all the eigen values of A are less than zero and atleast one eigen value is
zero then the quadratic form is said to be

If all the eigen values of A are greater than zero and atleast one eigen
value is zero then the quadratic form is said to be

If the quadratic form has both positive and negative terms then it is said to
be

different
characteristic
polynomial
Sum of main
diagonal

equal
rank

rank

Positive
definite

Positive
definite
Positive
definite

index Signature  spectrum
Same Inverse Transpose
characteristic eigen values eigen
equation vectors
Determinant  Sum of Sum of the
of A minors of  cofactors of
Main A
diagonal
unequal real symmetric
index Signature  spectrum
index Signature  spectrum

Negative defin Positive semi Negative

semidefinite
Negative Positive Negative
definite semidefinite semidefinite
Negative Positive indefinite

definite semidefinite



opt6

Answer
trace of a
matrix
characteristi
C equation

N' AN

KA

real
symmetric
eigen
vectors of A

characteristi
C equation

Al

AP

inverse and
higher
powers of A

orthogonal



linearly
independent
triangular
diagonal

A

positive
semidefinite
a;; =1,
=2,a,=2,
ap=3

0

X=NY
latent vector
2,6,14

1,3,4
index
Positive
definite
Negative
definite
quadratic
form



spectrum

Same
eigen values

Determinant
of A

real
rank

Signature

Negative
semidefinite
Positive
semidefinite

indefinite



Questions
A polynomial fucntion in R

The function f(x)=|x| is

Which of the following is continuous at x =0 ?

If fis finitely derivable at ¢, thenfisalso ___ atc

A function fissaidtobe __ inan interval [a, b] if it is continuous at each
and every point of the interval

A function f is said to be continuous in an interval [a, b] if itis___ at

each and every point of the interval

The exponential function is ____ at all points of R
Which of the following is continuous function?
Every differentiable functionis

Every polynomical function of degreenis
The derivative of (log X) is

The derivative of (e"x) is

The derivative of constant is

The derivative of (sin X) is

The derivative of (cos Xx) is

The derivative of (tan x) is

The derivative of (cosec x) is

The derivative of (sec X) is

The derivative of (cot x) is

The derivative of (x*3) is

The derivative of (5x) is

The derivative of (10) is

The derivative of (5x"2) is

optl

is never
continuous in
R

continuous for
all x

f(x) = 1/x
discontinuous
discontinuous

discontinuous

discontinuous
enx
constant
constant
1/x

1/x

1/x

COS X

(cos x)

(cos x)
(-cos x)

(sec x tan x)
(-cos x)
3x"2

5X

0

10

opt2

may or may
not be
continuous in
R
discontinuous
at x=0 only

f(x) = x|/ x
continuous
continuous

continuous

continuous
sin X
discontinuous
discontinuous
X

X
0

0

(- sin x)

(- sin x)

(- cosec x. cot
(- cosec x. cot
(- cosec”2 x)
3x"3

5

2
0

opt3

is always
continuous
inR

continuous
atx =0only

f(x) = x|
derivative
derivative

derivative

derivative
COS X
algebraic
algebraic
X2

X2

X2

X2

tan x

tan x

tan x

tan x

tan x

3X

1

3

10x

optd

is
continuous
in R except
atx=0
discontinuou
s for all x

X=x/x|
limit
limit

limit

limit

e”\x, sinx, cosx
continuous
continuous
0

enx

X

X

(-x)

(sec™2 x)
(sec™2x)
(sec2x)
(sec™2x)

3

0

10

5x

opt5



The derivative of (e73X) is

The derivative of (sin 4x) is

The derivative of (cos 2x) is

The derivative of (cos 5x) is

Find the first derivative of 6x"3

Find the second derivative of 6x*3
Find the third derivative of 6x"3

Find the first derivative of (x"3+2)
Find the second derivative of (x"3+2)
Find the third derivative of (x*3+2)
Find the first derivative of (log x+2)
Find the first derivative of (e”x+2x)
Find the second derivative of (e"x+2x)
Find the first derivative of (kx)

Find the second derivative of (kx)
Find the derivative of y = (x*2) with respect to x

Find the derivative of y = (sin 5x) with respect to x

6 e"3x
(4cos 4x)
(- 2sin x)
(- 5sin x)
18x"2
36

36
xXN2+2
XN2+2
xXN2+2
1/x

enx

enx

kx

kx

X

5 cos 5x

3 enXx

(- 4sin x)
(- 2sin 2x)
(- Bsin 2x)
18x
18x"2
18x"2
X"2

6X

6X

X

enx+2
enx+2

X

X

2X

(-5 cos 5x)

3 e"3x
tan4 x
tan x
tan x
18
36X
36X
3x"2
3x"2
3x"2
X2
enXx
enx

X2
€0oS 5x

COS X



opt6 Answer
is always
continuous
inR

continuous
atx =0only

f(x) = x|
continuous
continuous

continuous

continuous
e”\X, Sinx, cosx
continuous
continuous
1/x

enx

0

C0Ss X

(- sin x)

(sec"2 x)

(- cosec x. cot x)
(sec x tan x)

(- cosec”2 x)
3x"2

5

0

10x



3 e"3x
(4cos 4x)
(- 2sin 2x)
(- 5sin 2x)
18x"2
36x

36

3xN2

6X

6

1/x
enx+2
enx

k

0

2X

5 cos 5x



Questions

The Taylor,s series of f(x,y) at the point
(0,0) is series.

The expansion of f(x,y) by Taylor series is

The period of cos nx, where n is the positive
integer is

f(x,y) =e”x siny at (1,m/2)then

f(x,y) = e”xy at(1,1) then
Which of the following functions has the

period 2n?

1/n [ f(x) sinnx dx between the limits ¢ to
ct+2mn gives the Fourier coefficient

If f(x) = -x for -n< x< 0 then its Fourier
coefficient a0 is -

If a function satisfies the condition f(-x) = f
(x) then which is true?

optl

Maclaurins

Z€1ro

2n/n

=0

COoS X

("2)/2

opt2

Taylor

unique

n/2n

=1

sin nx

/2

opt3

power

minimum

2n

=2

=0

tan nx

/3

al0=an=0



opt4 opts opté

binomial

maximum

nn

tan x

b 1

Answer

Maclaurins

unique

2n/n

COS X



If a function satisfies the condition f(-x) = -f .
(x) then which is true?

S
Il
=)

Which of the following is an odd function?  sin x
Which of the following is an even function? x"3

The function f(x) is said to be an odd _
function of x if i) =1(%)
The function f(x) is said to be an even _
function of x if i) =1(x)
[f(x) dx = 2[f(x) dx between the limits -a to even

aif f(x) is ------ v

[f(x) dx =0 between the limits -a to a if f(x)

. even

is ------

If a periodic function f(x) is odd, it’s Fourier

. . coefficient an
expansion contains no ------ terms.

If a periodic function f(x) is even, it’s

: ; . cosine
Fourier expansion contains no ------ terms.

an=0

COs X

COS X

f(x) =- f( x)

f(x) = - f( x)

continuous

continuous

sine

sine

al0=an=0

sin X

f(-x) = - f( x)

f(-x) = - f( x)

odd

odd

coefficient a0

coefficienta 0



x4

sin”\2x

f(-x) = f(-x)

f(-x) = f(-x)

discontinues

discontinues

cosine

coefficient
an

al0=an=0

sin X

COS X

f(-x) = - f( x)

f(-x) = f( x)

cven

odd

cosine

sine



In dirichlet condition, the function f(x) has
only a ----- number of maxima and minima.

In Fourier series, the function f(x) has only a
finite number of maxima and minima. This
condition is known as -------

In dirichlet condition, the function f(x) has
only a ----- number of discontinuities .

A sequence {2”n} is

A sequence (-1)"n+2 is

A sequence {2n+1/3n-2} is

A sequence {2n"2+n/3n"2-3} is

5+(-1)*n is

A sequence

The series ). cos(1/n) is

uncountable

Dirichlet

uncountable

Convergent

Convergent

Convergent

Convergent

Convergent

Convergent

continuous

Kuhn
Tucker

continuous

divergent

divergent

divergent

divergent

divergent

divergent

infinite

Laplace

infinite

Oscillatory

Oscillatory

Oscillatory

Oscillatory

Oscillatory

Oscillatory



finite finite

Cauchy Dirichlet
finite finite
unique divergent
unique Oscillatory
unique Convergent
unique Convergent
unique Oscillatory

unique Convergent



The series Y x*n/(n"3+1) atx=11is

The series 1-(1/2"2)+(1/3/2)-(1-4"2)+... is

The series 2-(3/2)+(4/3)-(5/4)+... is

The series 1+(1/V2)+(1/N3)+... is

In a series positive terms Y u n if limitn
tends to o u_n/u_n+1 is not equal to zero
then the series ) u n is

The series 1-(1/2)+1-(3/4)+1-(7/8)+... is

The series (1/(a+1) -(1/(a+2) +(1/a+3)-(1
/at+4)+...convergent if

The series 1-2x+3x"2-4x"3+... where
0<x<l1 is

The series 1/(1+27(-1)) +1/(1+27(-2))+1/
(1+27(-3))... is

Convergent

Convergent

Convergent
but not
absolutely

Convergent
but not
absolutely

Convergent

Convergent

a>0

Convergent

Convergent

divergent

divergent

divergent

Oscillatory

divergent

conditionall

y
Convergent

a<0

divergent

divergent

Oscillatory

Oscillatory

absolutely
Convergent

divergent

not
Convergent

absolutely

Convergent

a<-1

Oscillatory

Oscillatory



Not unique

Not unique

Oscillates
finitely

absolutely

Convergent

Oscillatory

Oscillatory

a<0

unique

unique

Convergent

Convergent

Oscillates

finitely

divergent

not Convergent

Oscillatory

a>0

Convergent

divergent



The series whose nth term is ). sin (1/n)
is Convergent  divergent  Oscillatory

The series 2+(3/4)+(4/9)+(5/16)+...+(n+1)
m"2 +...1s Convergent  divergent  Oscillatory

If p and q are positive real number, then the
series 2°p/1°q+3"p/2"q+4"p/3"q+...

converges p<qg-1 p<qt+1 p>q-1

An ordered set of real number a_l,a 2, Montonic
...a_n iscalled a Series sequence  sequence
If a sequence has a ,itis called a Infinite

convergent sequence Finite limit limit limit

A sequence is said to be bounded above if
there exists a number k, such that for
every n. a n>k a n>k a n<k

Both increasing and decreasing sequence are
called sequence. Convergent  Montonic  Bounded

If limitntends to o a_n is equal to
then the sequence is said to be finite and
Convergent unique Infinite unique

Iful,u2,....un,...be an infinite sequence or
real numbers,then ul+u2+....+un+...is
called infinite series finite series finite terms



Not unique

Not unique

p>qt+1

Montonic

sequence

Bounded

a n<k

divergent

not unique

infinite terms

Convergent

divergent

p<q-1

sequence

Finite limit

a n<k

Montonic

finite and

unique

infinite series



The series 1+2+3+ +n+...+...0is Convergent  divergent  Oscillatory

Every absolutely convergent series is a

series Convergent  divergent  Oscillatory
Any convergent series of terms is
also absolutely convergent negative positive Z€ero

If limit n tends to infinite u n/u nt+l =m
is a series of positive terms ) u n is
convergent if m>0 m<l m>1

If limitntendstoo u n/u ntl =misa
series of positive terms Y, u_n is divergent if
m>0 m<] m>1

If limitntendstooo u n/u ntl =misa
series of positive terms .when the ratio test
fails m>0 m<I m>1



not unique

not unique

unique

m=1

m=1

m=1

divergent

Convergent

positive

m>1

m<l]

m=1









Questions optl

An equation involving one dependent variable
and its derivatives with respect to independent ~ Ordinary Differential

variable is called Equation
The ODE of the first order can be written as F(x,y,s,t)
C.F+P.1 is called solution Singular

The roots of the A.E of D.E, (D"2-2D+1)y=0
are 01)

C.F = Ae™ + Be™™

The quadratic equation of roots are real and
distinct. What is the Complementary function?

The order of the (D*2+D)y=0 is 2

The roots of the A.E of D.E, (D"4-1)y=0 are (1,1, 1,1)

The roots of the A.E of D.E, (D"3-D"2+D-1)y=0

are (1,-1, 1)

The roots of the A.E of D.E, (D"3-7D-6)y=0 are (1, 2, 3)

opt2

Partial Differential

Equation

F(XaY7Z9p7q)

Complete

(32)

(1,1,-1, 1)

(1,1, -1)

(1,-2,3)



opt3 opt4 optS opté Answer

Ordinary
Integral Difterential
Difference Equation Equation Equation
F(x.y,2) F(x,y,y)=0 F(x,y,y)=0
General particular General
(12) 11 (1D

C.F =Ae™ + Be™"

0 -1 2
(1,-1,1,-1) (1, -1, 1, -i) (1,-1,1, -i)
(laia 'l) (13 17 1) (la'ia 1)

3,2,-1) (-1,-2,3) (-1,-2,3)



The degree of the (D*2+2D+2) y=0 is 1

The particular integral of (D"2-2D+1)y=e"x
is ((x"2)/2) e™x

The roots of the A.E of D.E, (D*2-4D+4)y=0 are (2, 1)

If y=ax+b then differentiating with respect to
X= a

A Differential Equation is said to be
if the dependent variable and its
differential co-efficient occur only in the first

degree. Linear equation

The P.I of the Differential equation (D2 -3D+2)

y=121is 1/2
If f(D)=D"2 -2, (1/f(D))e"2x= (17 2)e™x
If f(D)=D"2 +5, (1/f(D)) sin 2x = sin X

To transform (xD”*2+D+7)y=1/x into a linear
differential equation with constant coefficient.
Put x= e”(-t)

(x/2) e"x

(2,2)

atb

Non-Linear

equation

1/7

(1 / 4)er2x

COS X

e (21)



(x"2)/4) e”x

(27 '2)

Homogeneous equation

(1 / 2)er-2x)

sin 2x

e™(t)

((x*3)/3) e™x

('29 2)

ab

Non-
Homogeneous
equation

10

(1 /2)er2x

-sin 2x

e™(-2t)

((x"2)/2) e’x

(2,2)

Linear equation

(1 /2)er2x

sin 2x

e™(t)



The particular integral of (D2 +19D+60)y= e"x
is

The particular integral of (D"2+25) y= cosx is

The particular integral of (D*2+25) y= sin4x is

The particular integral of (D*2+1) y= sinx is

The particular integral of (D”2 -9D+20)y=e”

(2x) is

The particular integral of (D*2 +D-72)y= e"(7x)
is

The particular integral of (D”2-1) y=sin2x is

The particular integral of (D"2+2) y= cosx is

In a PDE, there will be one dependent variable
and independent variables

(-e"(-x))/80

(cosx)/24

(-sin4x)/9

XCOSX/2

er(2x) /6

eN7x)/16

(-sin2x)/5

(-cosx)

only one

(e(-x))/80

(cosx)/25

(sin4x)/9

( -xcosx)/2

e’(2x) /(-6)

eN-7x)/16

sin2x/5

(-sinx)

two or more



(ex)/80

(-cosx)/24

(sindx)/41

( -xsinx)/2

eN2x) /12

eN(TX)/(-16)

sin2x/3

COSX

no

(-e"x)/80

(-cosx)/25

(-sin4x)/41

Xsinx/2

e (2x) /(-12)

eN-TX)/(-16)

(-sin2x)/3

sinx

infinite number

of

(ex)/80

cosx/24

(sin4x)/9

( -xcosx)/2

e (2x) /6

e"(7x)/(-16)

(-sin2x)/5

COSX

two or more



The of'a PDE is that of the highest order
derivative occurring in it

The degree of the a PDE is of the higest
order derivative

Afirst order PDE is obtained if

In the form of PDE, f(x,y,z,a,b)=0. What is the
order?

What is form of the z=ax-+by-+ab by eliminating
the arbitrary constants?

A solution obtained from the complete integral
by giving paticular values to the arbitrary
constant is called a solution.

The solution f(x,y,z,a,b)= 0 of the first order
PDE, Which contains two arbitrary constants is
called a solution.

General solution of PDE F(x,y,z,p,q)=0 is any
arbitray function F of specific functions u,v
is satistying given PDE

The Lagrange's linear PDE is of the form

degree

power

Number of arbitrary

constants is equal Number
of independent variables

Z=qx+py+pq

complete

complete

F(u,v)=0

Pp+Qqg=r

power

ratio

Number of
arbitrary constants
is lessthan Number
of independent
variables

Z=px+qy+pq

general

general

F(x.y,2)=0

Pp+Qgq=R



order

degree

Number of arbitrary constants
is greater than Number of
independent variables

Z=pX+qy+p

particular

particular

F(x,y)=0

Pp+Qp=R

ratio

order

Number of
arbitrary
constants is not
equal to
Number of
independent
variables

z=py+qy+q

singular

singular

F(p,q)=0

Pg+Qgq=R

order

power

Number of arbitrary
constants= Number
of independent
variables

Z=px+qy+pq

particular

complete

F(u,v)=0

Pp+Qg=R



is of the form of the Lagrange's
auxiliary equation dx/P=dy/Q=dz/R dx/Q=dy/P=dz/R

The complete solution of the PDE, pg=1 is z=ax+(1/a)y+b z=ax+y+b

The order and degree of the solution of the PDE
is y=f(y+x)+g(y+x)+e"2x 1 and 2 2 and 1

The complete solution of clairaut's equation is

- z=bx+ay+f(a,b) z=ax+by+f(a,b)
The clairaut's equation can be written in the form z=px+qy+f(p,q) 7= py+qgx
From the PDE by eliminating the arbitrary

function from z=f(x"2 -y"2) is xp+yq=0 p=-(x/y)
Which of the following is the type f(z,p,q)=0 ?  p(1+q)=gx p(1+q)=qz

The equation (D2 z+2xy(Dz)"2+D'=5 is of

order and degree 2 and 2 2 and 1

The complementry function of (D*2 -4
DD'+4D'"*2)z=x+y is f(y+2x)+xg(y+2x) fy+x)+xg(y+2x)



dx/R=dy/Q=dz/P

z= ax+(1-2x)/y+c

Oand 1

z=ax-+by

z=px+f(a,b)

q=yp/x

p(1+q)=qy

land 1

fly+x)+xg(y+x)

dx/P=dy/R=dz/
Q

z=ax+b

1 and 1

z=f(a,b)

z=py+qy+(p,q)

yp+xq=0

p=2x f(y+2x)

Oand 1

fy+4x)+xg
(y+4x)

dx/P=dy/Q=dz/R

z=ax+(1/a)y+b

2and 1

z=ax+tby-+f(a,b)

z=px+qy+(p,q)

yp+xq=0

p(1+q)=qz

2and 1

fy+2x)+xg(y+2x)



The solution of xp+yq=z is

The solution of p+q=z is

The roots of the PDE(D"2-2DD'+D' #2)z=0 are

The particular integral of e”(ax+by)/ ( D-(aD’
/b)) 2 1S ------

The particular integral of e”(ax+by)/ ( D-(aD’
/b)) 1§ ---------
The subsidiary equations of the Lagrange's

equation (z - }V)p + (x - z)q =y—-x is

f(x"2,y"2)=0

f(xy,ylogz)=0

f(xy.,yz)

f(x+y, y+logz)=0

0,1 1,-1
e™N(ax+by) (x2/2) eMNax+by)
ax-by+c e™(ax+by)
dx  dy dz
z-y x-z y-—x



f(x,y)=0

f(x-y, y-logz)=0

12

ax-by+c

ax+by

f(x/y ,y/z)=0

f(x-y,y+logz)=0

1,1

ax+by

xeN(ax+by)

de dy dz

X-y z-y y-x

f(x/y ,y/z)=0

f(x-y, y-logz)=0

1,1
(x2/2)e"(ax+by)
xe"\(ax+by)

dv dy dz

Z=y X-z y-x









