
B.E-CSE 2018-2019

14BECS304 COMPUTER ARCHITECTURE 3H-5C

Instruction Hours/week: L: 3 T:0 P:4 Marks: Internal:40 External:60

Total:100

End Semester Exam:3 Hours

COURSE OBJECTIVES:

To expose the students to the following :

 How Computer Systems work & the basic principles

 Instruction Level Architecture and Instruction Execution

 The current state of art in memory system design

 How I/O devices are accessed and its principles.

 To provide the knowledge on Instruction Level Parallelism

 To impart the knowledge on micro programming

 Concepts of advanced pipelining techniques.

COURSE OUTCOMES:

 Draw the functional block diagram of a single bus architecture of a computer
and describe the function of the instruction execution cycle, RTL
interpretation of instructions, addressing modes, instruction set.

 Write assembly language program for specified microprocessor for

computing

16 bit multiplication, division and I/O device interface

(ADC,

Control circuit, serial port communication).

 Write a flowchart for Concurrent access to memory and cache coherency in

Parallel
Processors and describe the process.

 Given a CPU organization and instruction, design a memory module and

analyze its
operation by interfacing with the CPU.

 Given a CPU organization, assess its performance, and apply design

techniques to
enhance performance using pipelining, parallelism and RISC methodology

UNIT 1:
Functional blocks of a computer: CPU, memory, input-output subsystems,
control unit.
Instruction set architecture of a CPU – registers, instruction execution cycle,

RTL interpretation of instructions, addressing modes, instruction set. Case study

– instruction sets of some common CPUs.

Data representation: signed number representation, fixed and

floating point representations, character representation. Computer arithmetic –

integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc.

multiplication – shift-andadd, Booth multiplier, carry save multiplier, etc. Division

restoring and non-restoring techniques, floating point arithmetic.

UNIT 2:

Introduction to x86 architecture. CPU control unit design: hardwired and

micro-programmed design approaches, Case study – design of a simple hypothetical

CPU. Memory system design: semiconductor memory technologies, memory

organization.

UNIT 3:

Peripheral devices and their characteristics: Input-output subsystems,

I/O device interface, I/O transfers – program controlled, interrupt driven and

DMA, privileged and non-privileged instructions, software interrupts and

exceptions. Programs and processes – role of interrupts in process state

transitions, I/O device interfaces – SCII, USB

UNIT 4:
Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards. Parallel

Processors: Introduction to parallel processors, Concurrent access to memory and
cache coherency.

UNIT 5:

Memory organization: Memory interleaving, concept of

hierarchical memory organization, cache memory, cache size vs. block size,

mapping functions,

replacement algorithms, write policies.

TEXT BOOKS:

1. “ Computer Organization and Design: The Hardware/Software

Interface” ,

5th Edition by David A. Patterson and John L. Hennessy,

Elsevier.

2. “ Computer Organization and Embedded Systems” , 6th Edition by

CarlHamacher, McGraw Hill Higher Education.

REFERENCES:

1. “Computer Architecture and Organization” , 3rd Edition by John P. Hayes,

WCB/McGraw-Hill

2. “Computer Organization and Architecture: Designing for Performance” , 10th Edition

by William Stallings, Pearson Education.

3. “Computer System Design and Architecture”, 2nd Edition by Vincent P. Heuring

and Harry F. Jordan, Pearson Education.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Faculty of Engineering

Lecture Plan

 Subject Name: COMPUTER ARCHITECTURE Subject Code: 14BECS304

S.No Topic Name
No.of

Periods

Supporting

Materials

Teachi

ng

Aids

 UNIT- I Functional blocks of a computer

1 Functional blocks of a computer 1 Web BB

2 CPU, memory, input-output subsystems, control unit 1 T[1]3 BB

3 Instruction set architecture of a CPU 1 T[1]5 PPT

4 registers, instruction execution cycle 1 T[1]5 PPT

5

RTL interpretation of instructions, addressing modes,

instruction set. Case study – instruction sets of some

common CPUs.

1

T[1]3 PPT

6
Data representation: signed number

representation, fixed and floating point
representations, character representation

1

T[1]56 PPT

7
Computer arithmetic – integer addition and

subtraction, ripple carry adder, carry look-ahead adder
1

T[1]95 PPT

8
Multiplication – shift-andadd, Booth multiplier, carry

save multiplier
1

T[1]68 BB

9 Division restoring and non-restoring techniques 1 Web PPT

10 Floating point arithmetic 1 T[1]12 BB

11 Tutorial : Data Representation 1 Web BB

Total 11

 UNIT- II INTRODUCTION TO X86 ARCHITECTURE

12 Introduction to x86 architecture 1 T[1]200 PPT

13 CPU control unit design 1 web PPT

14 Hardwired and micro-programmed design approaches 1 R[1] 201 BB

15 micro-programmed design approaches 1 web PPT

16 Case study – design of a simple hypothetical CPU 1 R[1]214 PPT

17 Memory system design 1 R[1]218 PPT

18 semiconductor memory technologies 1 R[1]218 PPT

19 Memory organization.
 1 T[1]218 PPT

20 Memory organization.-Example 1 T[1]221 BB

21 Tutorial : X86 Architecture 1 R[1]221 PPT

Total 10

 UNIT- III PERIPHERAL DEVICES AND THEIR CHARACTERISTICS

22 Input-output subsystems 1 web PPT

23 I/O device interface, I/O transfers 1 web PPT

24 Program controlled, interrupt driven 1 web PPT

25 DMA 1 T[1]-488 BB

26 privileged and non-privileged instructions 1 T[1]-193 PPT

27 software interrupts and exceptions 1 T[1]-266 BB

28 Programs and processes 1 T[1]-305 PPT

29 role of interrupts in process state transitions 1 T[1]-343 BB

30 I/O device interfaces, SCII, USB 1 web PPT

31 Tutorial: Implementation 1 web PPT

 Total 10

 UNIT- IV PIPELINING

32
Basic concepts of pipelining

1

T[1]139

PPT

33 Throughput in pipelining 1 T[1]139 PPT

34 Speedup in pipelining 1 T[1]-140 PPT

35 Pipeline hazards 1 T[1]152 BB

36 Parallel Processors 1 T[1]159 PPT

37 Introduction to parallel processors 1 T[1]162 BB

38
Concurrent access to memory
 1 T[1]163 PPT

39 Cache coherency 1 T[1]133 PPT

40 Revision 1 web PPT

41 Tutorial : Implementation of pipelining 1 T[1]133 BB

Total 10

 UNIT- V MEMORY ORGANIZATION

42 Memory organization 1 T[1]248 PPT

43 Memory interleaving 1 T[1]465 BB

44
concept of hierarchical memory

organization 1 T[1]465 BB

45 cache memory 1 T[1]255 PPT

46 cache size vs. block size 1 T[1]248 PPT

47
mapping functions

 1 T[1]-1087 PPT

48 write policies 1 T[1]-1087 PPT

49 Tutorial-Illustration 1 T[1]-690 BB

50 Tutorial: Cache Memory 1 T[1]-690 PPT

51 Revisions 1 T[1]-752 BB

52 Discussion on Previous University Question Papers

Total 10

 Total Hours 52

TEXT BOOKS

S.NO Title of the book

Year of

publica

tion

1
Computer Organization and Design: The Hardware/Software Interface” ,

5th Edition by David A. Patterson and John L. Hennessy, Elsevier.

2012

2

Computer Organization and Embedded Systems” , 6th

Edition by CarlHamacher, McGraw Hill Higher

Education

2013

REFERNCE BOOKS

S.NO Title of the book

Year of

publica

tion

1
“Computer Architecture and Organization” , 3rd Edition by John P. Hayes,

WCB/McGraw-Hill
2011

2

“Computer Organization and Architecture: Designing for Performance” , 10th Edition

by William Stallings, Pearson Education.

2012

3

“Computer System Design and Architecture”, 2nd Edition by Vincent P. Heuring and

Harry F. Jordan, Pearson Education.

2011

WEBSITES

1. https://www.javatpoint.com/COA-tutorial

2. https://nptel.ac.in/content/syllabus_pdf/106106132.pdf

https://www.javatpoint.com/COA-tutorial
https://nptel.ac.in/content/syllabus_pdf/106106132.pdf

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 1

Chapter – 1

Introduction

1.1 Computer Organization and Architecture

 Computer Architecture refers to those attributes of a system that have a direct impact on

the logical execution of a program. Examples:

o the instruction set

o the number of bits used to represent various data types

o I/O mechanisms

o memory addressing techniques

 Computer Organization refers to the operational units and their interconnections that

realize the architectural specifications. Examples are things that are transparent to the

programmer:

o control signals

o interfaces between computer and peripherals

o the memory technology being used

 So, for example, the fact that a multiply instruction is available is a computer architecture

issue. How that multiply is implemented is a computer organization issue.

• Architecture is those attributes visible to the programmer

o Instruction set, number of bits used for data representation, I/O mechanisms,

addressing techniques.

o e.g. Is there a multiply instruction?

• Organization is how features are implemented

o Control signals, interfaces, memory technology.

o e.g. Is there a hardware multiply unit or is it done by repeated addition?

• All Intel x86 family share the same basic architecture

• The IBM System/370 family share the same basic architecture

• This gives code compatibility

o At least backwards

• Organization differs between different versions

1.2 Structure and Function

• Structure is the way in which components relate to each other

• Function is the operation of individual components as part of the structure

• All computer functions are:

o Data processing: Computer must be able to process data which may take a wide

variety of forms and the range of processing.

o Data storage: Computer stores data either temporarily or permanently.

o Data movement: Computer must be able to move data between itself and the

outside world.

o Control: There must be a control of the above three functions.

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 2

Fig: Functional view of a computer

Fig: Data movement operation Fig: Storage Operation

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 3

Fig: Processing from / to storage Fig: Processing from storage to i/o

• Four main structural components:

o Central processing unit (CPU)

o Main memory

o I / O

o System interconnections

• CPU structural components:

o Control unit

o Arithmetic and logic unit (ALU)

o Registers

o CPU interconnections

Fig: Computer: Top level structure

Computer

Main

Memory

Input

Output

 Systems

Interconnection

Peripherals

Communication lines

Central

Processing

Unit

Computer

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 4

Fig: The central processing unit

Fig: The control unit

1.3 Designing for performance

Some of the driving factors behind the need to design for performance:

• Microprocessor Speed

 Pipelining

 On board cache, on board L1 & L2 cache

 Branch prediction: The processor looks ahead in the instruction code fetched from

memory and predicts which branches, or group of instructions are likely to be

processed next.

 Data flow analysis: The processor analyzes which instructions are dependent on

each other’s results, or data, to create an optimized schedule of instructions to

prevent delay.

Computer
Arithmetic

and

Login Unit

Control

Unit

Internal CPU

Interconnection

Registers

CPU

I/O

Memory

System

Bus

CPU

CPU

Control

Memory

Control Unit

Registers and

Decoders

Sequencing

Login Control

Unit

ALU

Registers

Internal

Bus

Interconn

ection

Bus

Control Unit

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 5

 Speculative execution: Using branch prediction and data flow analysis, some

processors speculatively execute instructions ahead of their actual appearance in

the program execution, holding the results in temporary locations.

• Performance Mismatch

 Processor speed increased

 Memory capacity increased

 Memory speed lags behind processor speed

Below figure depicts the history; while processor speed and memory capacity have grown

rapidly, the speed with which data can be transferred between main memory and the processor

has lagged badly.

Fig: Evolution of DRAM and processor Characteristics

The effects of these trends are shown vividly in figure below. The amount of main memory

needed is going up, but DRAM density is going up faster (number of DRAM per system is going

down).

Fig: Trends in DRAM use

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 6

Solutions

 Increase number of bits retrieved at one time

o Make DRAM “wider” rather than “deeper” to use wide bus data paths.

 Change DRAM interface

o Cache

 Reduce frequency of memory access

o More complex cache and cache on chip

 Increase interconnection bandwidth

o High speed buses

o Hierarchy of buses

1.4 Computer Components

• The Control Unit (CU) and the Arithmetic and Logic Unit (ALU) constitute the Central

Processing Unit (CPU)

• Data and instructions need to get into the system and results need to get out

o Input/output (I/O module)

• Temporary storage of code and results is needed

o Main memory (RAM)

• Program Concept

o Hardwired systems are inflexible

o General purpose hardware can do different tasks, given correct control signals

o Instead of re-wiring, supply a new set of control signals

Fig: Hardware and Software Approaches

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 7

Fig: Computer Components; Top-Level View

1.5 Computer Function

The basic function performed by a computer is execution of a program, which consists of a set of

instructions stored in memory.

• Two steps of Instructions Cycle:

o Fetch

o Execute

Fig: Basic Instruction Cycle

• Fetch Cycle

o Program Counter (PC) holds address of next instruction to fetch

o Processor fetches instruction from memory location pointed to by PC

o Increment PC

 Unless told otherwise

o Instruction loaded into Instruction Register (IR)

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 8

• Execute Cycle

o Processor interprets instruction and performs required actions, such as:

 Processor - memory

o data transfer between CPU and main memory

 Processor - I/O

o Data transfer between CPU and I/O module

 Data processing

o Some arithmetic or logical operation on data

 Control

o Alteration of sequence of operations

o e.g. jump

 Combination of above

Example of program execution.

Fig: Example of program execution (consists of memory and registers in hexadecimal)

• The PC contains 300, the address of the first instruction. The instruction (the value 1940

in hex) is loaded into IR and PC is incremented. This process involves the use of MAR

and MBR.

• The first hexadecimal digit in IR indicates that the AC is to be loaded. The remaining

three hexadecimal digits specify the address (940) from which data are to be loaded.

• The next instruction (5941) is fetched from location 301 and PC is incremented.

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 9

• The old contents of AC and the contents of location 941 are added and the result is stored

in the AC.

• The next instruction (2941) is fetched from location 302 and the PC is incremented.

• The contents of the AC are stored in location 941.

Fig: Instruction cycle state diagram

Interrupts:

• Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of

processing

• Program

o e.g. overflow, division by zero

• Timer

o Generated by internal processor timer

o Used in pre-emptive multi-tasking

• I/O

o from I/O controller

• Hardware failure

o e.g. memory parity error

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 10

Figure: Program flow of control without and with interrupts

• Instruction Cycle

o Added to instruction cycle

o Processor checks for interrupt

 Indicated by an interrupt signal

o If no interrupt, fetch next instruction

o If interrupt pending:

 Suspend execution of current program

 Save context

 Set PC to start address of interrupt handler routine

 Process interrupt

 Restore context and continue interrupted program

Fig: Transfer of control via interrupts

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 11

Fig: Instruction Cycle with Interrupts

Fig: Instruction cycle state diagram, with interrupts

• Multiple Interrupts

o Disable interrupts (approach #1)

 Processor will ignore further interrupts whilst processing one interrupt

 Interrupts remain pending and are checked after first interrupt has been

processed

 Interrupts handled in sequence as they occur

o Define priorities (approach #2)

 Low priority interrupts can be interrupted by higher priority interrupts

 When higher priority interrupt has been processed, processor returns to

previous interrupt

1.6 Interconnection structures

The collection of paths connecting the various modules is called the interconnecting structure.

• All the units must be connected

• Different type of connection for different type of unit

o Memory

o Input/Output

o CPU

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 12

• Memory Connection

o Receives and sends data

o Receives addresses (of locations)

o Receives control signals

 Read

 Write

 Timing

Fig: Memory Module

• I/O Connection

o Similar to memory from computer’s viewpoint

o Output

 Receive data from computer

 Send data to peripheral

o Input

 Receive data from peripheral

 Send data to computer

o Receive control signals from computer

o Send control signals to peripherals

 e.g. spin disk

o Receive addresses from computer

 e.g. port number to identify peripheral

o Send interrupt signals (control)

Fig: I/O Module

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 13

• CPU Connection

o Reads instruction and data

o Writes out data (after processing)

o Sends control signals to other units

o Receives (& acts on) interrupts

Fig: CPU Module

1.7 Bus interconnection

• A bus is a communication pathway connecting two or more devices

• Usually broadcast (all components see signal)

• Often grouped

o A number of channels in one bus

o e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

• There are a number of possible interconnection systems

• Single and multiple BUS structures are most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

• Lots of devices on one bus leads to:

o Propagation delays

o Long data paths mean that co-ordination of bus use can adversely affect

performance

o If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to overcome these problems

Fig: Bus Interconnection Scheme

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 14

• Data Bus

o Carries data

 Remember that there is no difference between “data” and “instruction” at

this level

o Width is a key determinant of performance

 8, 16, 32, 64 bit

• Address Bus

o Identify the source or destination of data

o e.g. CPU needs to read an instruction (data) from a given location in memory

o Bus width determines maximum memory capacity of system

 e.g. 8080 has 16 bit address bus giving 64k address space

• Control Bus

o Control and timing information

 Memory read

 Memory write

 I/O read

 I/O write

 Transfer ACK

 Bus request

 Bus grant

 Interrupt request

 Interrupt ACK

 Clock

 Reset

Multiple Bus Hierarchies

 A great number of devices on a bus will cause performance to suffer

o Propagation delay - the time it takes for devices to coordinate the use of the bus

o The bus may become a bottleneck as the aggregate data transfer demand approaches

the capacity of the bus (in available transfer cycles/second)

 Traditional Hierarchical Bus Architecture

o Use of a cache structure insulates CPU from frequent accesses to main memory

o Main memory can be moved off local bus to a system bus

o Expansion bus interface

 buffers data transfers between system bus and I/O controllers on expansion bus

 insulates memory-to-processor traffic from I/O traffic

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 15

Traditional Hierarchical Bus Architecture Example

 High-performance Hierarchical Bus Architecture

o Traditional hierarchical bus breaks down as higher and higher performance is

seen in the I/O devices

o Incorporates a high-speed bus

 specifically designed to support high-capacity I/O devices

 brings high-demand devices into closer integration with the processor and at

the same time is independent of the processor

 Changes in processor architecture do not affect the high-speed bus, and vice

versa

o Sometimes known as a mezzanine architecture

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 16

High-performance Hierarchical Bus Architecture Example

Elements of Bus Design

• Bus Types

o Dedicated

 Separate data & address lines

o Multiplexed

 Shared lines

 Address valid or data valid control line

 Advantage - fewer lines

 Disadvantages

o More complex control

o Ultimate performance

• Bus Arbitration

o More than one module controlling the bus

 e.g. CPU and DMA controller

o Only one module may control bus at one time

o Arbitration may be centralised or distributed

• Centralised Arbitration

o Single hardware device controlling bus access

 Bus Controller

 Arbiter

o May be part of CPU or separate

• Distributed Arbitration

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 17

o Each module may claim the bus

o Control logic on all modules

• Timing

o Co-ordination of events on bus

o Synchronous

 Events determined by clock signals

 Control Bus includes clock line

 A single 1-0 is a bus cycle

 All devices can read clock line

 Usually sync on leading edge

 Usually a single cycle for an event

• Bus Width

o Address: Width of address bus has an impact on system capacity i.e. wider bus

means greater the range of locations that can be transferred.

o Data: width of data bus has an impact on system performance i.e. wider bus

means number of bits transferred at one time.

• Data Transfer Type

o Read

o Write

o Read-modify-write

o Read-after-write

o Block

1.8 PCI

 PCI is a popular high bandwidth, processor independent bus that can function as mezzanine

or peripheral bus.

 PCI delivers better system performance for high speed I/O subsystems (graphic display

adapters, network interface controllers, disk controllers etc.)

 PCI is designed to support a variety of microprocessor based configurations including both

single and multiple processor system.

 It makes use of synchronous timing and centralised arbitration scheme.

 PCI may be configured as a 32 or 64-bit bus.

 Current Standard

o up to 64 data lines at 33Mhz

o requires few chips to implement

o supports other buses attached to PCI bus

o public domain, initially developed by Intel to support Pentium-based systems

o supports a variety of microprocessor-based configurations, including multiple

processors

o uses synchronous timing and centralized arbitration

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 18

Typical Desktop System

Note: Bridge acts as a data buffer so that the speed of the PCI bus may differ from that of the

processor’s I/O capability.

Typical Server System

Note: In a multiprocessor system, one or more PCI configurations may be connected by bridges

to the processor’s system bus.

PCI Bus Lines

• Systems lines

o Including clock and reset

• Address & Data

o 32 time mux lines for address/data

o Interrupt & validate lines

• Interface Control

• Arbitration

o Not shared

o Direct connection to PCI bus arbiter

Computer Organization and Architecture Chapter 1 : Introduction

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 19

• Error lines

• Interrupt lines

o Not shared

• Cache support

• 64-bit Bus Extension

o Additional 32 lines

o Time multiplexed

o 2 lines to enable devices to agree to use 64-bit transfer

• JTAG/Boundary Scan

o For testing procedures

PCI Commands

• Transaction between initiator (master) and target

• Master claims bus

• Determine type of transaction

o e.g. I/O read/write

• Address phase

• One or more data phases

PCI Enhancements: AGP

 AGP – Advanced Graphics Port

o Called a port, not a bus because it only connects 2 devices

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 1

Chapter – 2

Central Processing Unit

The part of the computer that performs the bulk of data processing operations is called the

Central Processing Unit (CPU) and is the central component of a digital computer. Its purpose is

to interpret instruction cycles received from memory and perform arithmetic, logic and control

operations with data stored in internal register, memory words and I/O interface units. A CPU is

usually divided into two parts namely processor unit (Register Unit and Arithmetic Logic Unit)

and control unit.

 Fig: Components of CPU

Processor Unit:

The processor unit consists of arithmetic unit, logic unit, a number of registers and internal buses

that provides data path for transfer of information between register and arithmetic logic unit. The

block diagram of processor unit is shown in figure below where all registers are connected

through common buses. The registers communicate each other not only for direct data transfer

but also while performing various micro-operations.

Here two sets of multiplexers select register which perform input data for ALU. A decoder

selects destination register by enabling its load input. The function select in ALU determines the

particular operation that to be performed.

For an example to perform the operation: R3 R1 + R2

1. MUX A selector (SELA): to place the content of R1 into bus A.

2. MUX B selector (SELB): to place the content of R2 into bus B.

3. ALU operation selector (OPR): to provide arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output bus into R3.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 2

 Fig: Processor Unit

Control unit:

The control unit is the heart of CPU. It consists of a program counter, instruction register, timing

and control logic. The control logic may be either hardwired or micro-programmed. If it is a

hardwired, register decodes and a set of gates are connected to provide the logic that determines

the action required to execute various instructions. A micro-programmed control unit uses a

control memory to store micro instructions and a sequence to determine the order by which the

instructions are read from control memory.

The control unit decides what the instructions mean and directs the necessary data to be moved

from memory to ALU. Control unit must communicate with both ALU and main memory and

coordinates all activities of processor unit, peripheral devices and storage devices. It can be

characterized on the basis of design and implementation by:

 Defining basic elements of the processor

 Describing the micro-operation that processor performs

 Determining the function that the control unit must perform to cause the micro-operations

to be performed.

Control unit must have inputs that allow determining the state of system and outputs that allow

controlling the behavior of system.

The input to control unit are:

 Flag: flags are headed to determine the status of processor and outcome of previous ALU

operation.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 3

 Clock: All micro-operations are performed within each clock pulse. This clock pulse is

also called as processor cycle time or clock cycle time.

 Instruction Register: The op-code of instruction determines which micro-operation to

perform during execution cycle.

 Control signal from control bus: The control bus portion of system bus provides interrupt,

acknowledgement signals to control unit.

The outputs from control unit are:

 Control signal within processor: These signals causes data transfer between registers,

activate ALU functions.

 Control signal to control bus: These are signals to memory and I/O module. All these

control signals are applied directly as binary inputs to individual logic gate.

 Fig: Control Unit

2.1 CPU Structure and Function

Processor Organization

 Things a CPU must do:

- Fetch Instructions

- Interpret Instructions

- Fetch Data

- Process Data

- Write Data

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 4

Fig: The CPU with the System Bus

 A small amount of internal memory, called the registers, is needed by the CPU to fulfill

these requirements

Fig: Internal Structure of the CPU

 Components of the CPU

- Arithmetic and Logic Unit (ALU): does the actual computation or processing of

data

- Control Unit (CU): controls the movement of data and instructions into and out of

the CPU and controls the operation of the ALU.

Register Organization

 Registers are at top of the memory hierarchy. They serve two functions:

1. User-Visible Registers - enable the machine- or assembly-language programmer

to minimize main-memory references by optimizing use of registers

2. Control and Status Registers - used by the control unit to control the operation

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 5

 of the CPU and by privileged, OS programs to control the execution of programs

User-Visible Registers

Categories of Use

- General Purpose registers - for variety of functions

- Data registers - hold data

- Address registers - hold address information

- Segment pointers - hold base address of the segment in use

- Index registers - used for indexed addressing and may be auto indexed

- Stack Pointer - a dedicated register that points to top of a stack. Push, pop, and

other stack instructions need not contain an explicit stack operand.

- Condition Codes (flags)

Design Issues

 Completely general-purpose registers or specialized use?

- Specialized registers save bits in instructions because their use can be implicit

- General-purpose registers are more flexible

- Trend is toward use of specialized registers

 Number of registers provided?

- More registers require more operand specifier bits in instructions

- 8 to 32 registers appears optimum (RISC systems use hundreds, but are a

completely different approach)

 Register Length?

- Address registers must be long enough to hold the largest address

- Data registers should be able to hold values of most data types

- Some machines allow two contiguous registers for double-length values

 Automatic or manual save of condition codes?

- Condition restore is usually automatic upon call return

- Saving condition code registers may be automatic upon call instruction, or may be

manual

Control and Status Registers

 Essential to instruction execution

- Program Counter (PC)

- Instruction Register (IR)

- Memory Address Register (MAR) - usually connected directly to address lines

of bus

- Memory Buffer Register (MBR) - usually connected directly to data lines of bus

 Program Status Word (PSW) - also essential, common fields or flags contained

include:

- Sign - sign bit of last arithmetic operation

- Zero - set when result of last arithmetic operation is 0

- Carry - set if last op resulted in a carry into or borrow out of a high-order bit

- Equal - set if a logical compare result is equality

- Overflow - set when last arithmetic operation caused overflow

- Interrupt Enable/Disable - used to enable or disable interrupts

- Supervisor - indicates if privileged ops can be used

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 6

 Other optional registers

- Pointer to a block of memory containing additional status info (like process

control blocks)

- An interrupt vector

- A system stack pointer

- A page table pointer

- I/O registers

 Design issues

- Operating system support in CPU

- How to divide allocation of control information between CPU registers and first

part of main memory (usual tradeoffs apply)

Fig: Example Microprocessor Register Organization

The Instruction Cycle

Basic instruction cycle contains the following sub-cycles.

 Fetch - read next instruction from memory into CPU

 Execute - Interpret the opcode and perform the indicated operation

 Interrupt - if interrupts are enabled and one has occurred, save the current process

state and service the interrupt

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 7

Fig: Instruction Cycles

Fig: Instruction Cycle State Diagram

The Indirect Cycle

- Think of as another instruction sub-cycle

- May require just another fetch (based upon last fetch)

- Might also require arithmetic, like indexing

Fig: Instruction Cycle with Indirect

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 8

Data Flow

- Exact sequence depends on CPU design

- We can indicate sequence in general terms, assuming CPU employs:

 a memory address register (MAR)

 a memory buffer register (MBR)

 a program counter (PC)

 an instruction register (IR)

Fetch cycle data flow

- PC contains address of next instruction to be fetched

- This address is moved to MAR and placed on address bus

- Control unit requests a memory read

- Result is

 placed on data bus

 result copied to MBR

 then moved to IR

- Meanwhile, PC is incremented

Fig: Data flow, Fetch Cycle

t1: MAR (PC)

t2: MBR Memory

 PC PC + 1

t3: IR(Address) (MBR(Address))

Indirect cycle data flow
- Decodes the instruction

- After fetch, control unit examines IR to see if indirect addressing is being used. If so:

- Rightmost n bits of MBR (the memory reference) are transferred to MAR

- Control unit requests a memory read, to get the desired operand address into the

MBR

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 9

t1: MAR (IR(Address))

t2: MBR Memory

t3: IR(Address) (MBR(Address))

Fig: Data Flow, Indirect Cycle

Execute cycle data flow

- Not simple and predictable, like other cycles

- Takes many forms, since form depends on which of the various machine instructions

is in the IR

- May involve

 transferring data among registers

 read or write from memory or I/O

 invocation of the ALU

For example: ADD R1, X

t1: MAR (IR(Address))

t2: MBR Memory

t3: R1 (R1) + (MBR)

Interrupt cycle data flow

- Current contents of PC must be saved (for resume after interrupt), so PC is

transferred to MBR to be written to memory

- Save location’s address (such as a stack ptr) is loaded into MAR from the control unit

- PC is loaded with address of interrupt routine (so next instruction cycle will begin by

fetching appropriate instruction)

t1: MBR (PC)

t2: MAR save_address

 PC Routine_address

t3: Memory (MBR)

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 10

Fig: Data Flow, Interrupt Cycle

2.2 Arithmetic and Logic Unit

ALU is the combinational circuit of that part of computer that actually performs arithmetic and

logical operations on data. All of the other elements of computer system- control unit, registers,

memory, I/O are their mainly to bring data into the ALU for it to process and then to take the

result back out. An ALU & indeed all electronic components in computer are based on the use of

simple digital logic device that can store binary digit and perform simple Boolean logic function.

Figure indicates in general in general term how ALU is interconnected with rest of the processor.

Data are presented to ALU in register and the result of operation is stored in register. These

registers are temporarily storage location within the processor that are connected by signal path

to the ALU. The ALU may also set flags as the result of an operation. The flags values are also

stored in registers within the processor. The control unit provides signals that control the

operation of ALU and the movement of data into an out of ALU.

The design of ALU has three stages.

1. Design the arithmetic section

The basic component of arithmetic circuit is a parallel adder which is constructed with a

number of full adder circuits connected in cascade. By controlling the data inputs to the

parallel adder, it is possible to obtain different types of arithmetic operations. Below

figure shows the arithmetic circuit and its functional table.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 11

Fig: Block diagram of Arithmetic Unit

Functional table for arithmetic unit:

Select Input

Y

Output Microoperation

S1 S0 Cin = 0 Cin = 1 Cin = 0 Cin = 1

0 0 0 A A+1 Transfer A Increment A

0 1 B A+B A+B+1 Addition Addition with

carry

1 0 B’ A+B’ A+B’+1 Subtraction with

borrow

Subtraction

1 1 -1 A-1 A Decrement A Transfer A

2. Design the logical section

The basic components of logical circuit are AND, OR, XOR and NOT gate circuits

connected accordingly. Below figure shows a circuit that generates four basic logic

micro-operations. It consists of four gates and a multiplexer. Each of four logic

operations is generated through a gate that performs the required logic. The two selection

input S1 and S0 choose one of the data inputs of the multiplexer and directs its value to

the output. Functional table lists the logic operations.

4 X 1

MUX
Ei

S1S0

Ai

Bi

Fig: Block diagram of Logic Unit

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 12

Functional table for logic unit:

S1 S0 output Microoperation

0 0 Ai && Bi AND

0 1 Ai || Bi OR

1 0 Ai XOR Bi XOR

1 1 Ai’ NOT

3. Combine these 2 sections to form the ALU

Below figure shows a combined circuit of ALU where n data input from A are combined

with n data input from B to generate the result of an operation at the G output line. ALU

has a number of selection lines used to determine the operation to be performed. The

selection lines are decoded with the ALU so that selection lines can specify distinct

operations. The mode select S2 differentiate between arithmetic and logical operations.

The two functions select S1 and S0 specify the particular arithmetic and logic operations

to be performed. With three selection lines, it is possible to specify arithmetic operation

with S2 at 0 and logical operation with S2 at 1.

Fig: Block diagram of ALU

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 13

Example: Design a 2-bit ALU that can perform addition, AND, OR, & XOR.

4 X 1

MUX
Result0

4 X 1

MUX
Result1

FA

A0

B0

A1

B1

Cin

S0S1

Cout

2.3 Instruction Formats

The computer can be used to perform a specific task, only by specifying the necessary steps to

complete the task. The collection of such ordered steps forms a ‘program’ of a computer. These

ordered steps are the instructions. Computer instructions are stored in central memory locations

and are executed sequentially one at a time. The control reads an instruction from a specific

address in memory and executes it. It then continues by reading the next instruction in sequence

and executes it until the completion of the program.

A computer usually has a variety of Instruction Code Formats. It is the function of the control

unit within the CPU to interpret each instruction code and provide the necessary control

functions needed to process the instruction. An n bit instruction that k bits in the address field

and m bits in the operation code field come addressed 2
k
 location directly and specify 2

m

different operation.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 14

 The bits of the instruction are divided into groups called fields.

 The most common fields in instruction formats are:

o An Operation code field that specifies the operation to be performed.

o An Address field that designates a memory address or a processor

register.

o A Mode field that specifies the way the operand or the effective address is

determined.

n-1 m-1 k-1 0

Fig: Instruction format with mode field

The operation code field (Opcode) of an instruction is a group of bits that define various

processor operations such as add, subtract, complement, shift etcetera. The bits that define the

mode field of an instruction code specify a variety of alternatives for choosing the operands from

the given address. Operation specified by an instruction is executed on some data stored in the

processor register or in the memory location. Operands residing in memory are specified by their

memory address. Operands residing in processor register are specified with a register address.

Types of Instruction

 Computers may have instructions of several different lengths containing varying

number of addresses.

 The number of address fields in the instruction format of a computer depends on

the internal organization of its registers.

 Most computers fall into one of 3 types of CPU organizations:

Single accumulator organization:- All the operations are performed with an

accumulator register. The instruction format in this type of computer uses one address

field. For example: ADD X, where X is the address of the operands .

General register organization:- The instruction format in this type of computer needs

three register address fields. For example: ADD R1,R2,R3

Stack organization:- The instruction in a stack computer consists of an operation code

with no address field. This operation has the effect of popping the 2 top numbers from the

stack, operating the numbers and pushing the sum into the stack. For example: ADD

Computers may have instructions of several different lengths containing varying number of

addresses. Following are the types of instructions.

1. Three address Instruction

With this type of instruction, each instruction specifies two operand location and a result

location. A temporary location T is used to store some intermediate result so as not to

alter any of the operand location. The three address instruction format requires a very

complex design to hold the three address references.

Format: Op X, Y, Z; X Y Op Z

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 15

Example: ADD X, Y, Z; X Y + Z

 ADVANTAGE: It results in short programs when evaluating arithmetic

expressions.

 DISADVANTAGE: The instructions requires too many bits to specify 3

addresses.

2. Two address instruction

Two-address instructions are the most common in commercial computers. Here again

each address field can specify either a processor register, or a memory word. One address

must do double duty as both operand and result. The two address instruction format

reduces the space requirement. To avoid altering the value of an operand, a MOV

instruction is used to move one of the values to a result or temporary location T, before

performing the operation.

Format: Op X, Y; X X Op Y

Example: SUB X, Y; X X - Y

3. One address Instruction

It was generally used in earlier machine with the implied address been a CPU register

known as accumulator. The accumulator contains one of the operand and is used to store

the result. One-address instruction uses an implied accumulator (Ac) register for all data

manipulation. All operations are done between the AC register and a memory operand.

We use LOAD and STORE instruction for transfer to and from memory and Ac register.

Format: Op X; Ac Ac Op X

Example: MUL X; Ac Ac * X

4. Zero address Instruction

It does not use address field for the instruction like ADD, SUB, MUL, DIV etc. The

PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack. The name “Zero” address is given because of the absence

of an address field in the computational instruction.

Format: Op; TOS TOS Op (TOS – 1)

Example: DIV; TOS TOS DIV (TOS – 1)

Example: To illustrate the influence of the number of address on computer programs, we will

evaluate the arithmetic statement X=(A+B)*(C+D) using Zero, one, two, or three address

instructions.

1. Three-Address Instructions:

ADD R1, A, B; R1 M[A] + M[B]

ADD R2, C, D; R2 M[C] + M[D]

 MUL X, R1,R2; M[X] R1 * R2

It is assumed that the computer has two processor registers R1 and R2. The symbol M[A]

denotes the operand at memory address symbolized by A.

2. Two-Address Instructions:

MOV R1, A; R1 M[A]

 ADD R1, B; R1 R1 + M[B]

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 16

 MOV R2, C; R2 M[C]

 ADD R2, D; R2 R2 + M[D]

 MUL R1, R2; R1 R1 * R2

 MOV X, R1; M[X] R1

3. One-Address Instruction:

LOAD A; Ac M[A]

 ADD B; Ac Ac + M[B]

 STORE T; M[T] Ac

 LOAD C; Ac M[C]

 ADD D; Ac Ac + M[D]

 MUL T; Ac Ac * M[T]

 STORE X; M[X] Ac

Here, T is the temporary memory location required for storing the intermediate result.

4. Zero-Address Instructions:

PUSH A; TOS A

 PUSH B; TOS B

 ADD; TOS (A + B)

 PUSH C; TOS C

 PUSH D; TOS D

 ADD; TOS (C + D)

 MUL; TOS (C + D) * (A + B)

 POP X ; M[X] TOS

2.4 Addressing Modes

 Specifies a rule for interpreting or modifying the address field of the instruction before

the operand is actually referenced.

 Computers use addressing mode techniques for the purpose of accommodating the

following purposes:-

o To give programming versatility to the user by providing such facilities as

pointers to memory, counters for loop control, indexing of data and various other

purposes.

o To reduce the number of bits in the addressing field of the instructions.

 Other computers use a single binary for operation & Address mode.

 The mode field is used to locate the operand.

 Address field may designate a memory address or a processor register.

 There are 2 modes that need no address field at all (Implied & immediate

modes).

Effective address (EA):

 The effective address is defined to be the memory address obtained from the computation

dictated by the given addressing mode.

 The effective address is the address of the operand in a computational-type instruction.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 17

The most well known addressing mode are:

 Implied Addressing Mode.

 Immediate Addressing Mode

 Register Addressing Mode

 Register Indirect Addressing Mode

 Auto-increment or Auto-decrement Addressing Mode

 Direct Addressing Mode

 Indirect Addressing Mode

 Displacement Address Addressing Mode

 Relative Addressing Mode

 Index Addressing Mode

 Stack Addressing Mode

Implied Addressing Mode:

 In this mode the operands are specified implicitly in the definition of the instruction.

For example:- CMA - “complement accumulator” is an implied-mode instruction because

the operand in the accumulator register is implied in the definition of the instruction. In

fact, all register reference instructions that use an accumulator are implied-mode

instructions.

Opcode
Instruction

Advantage: no memory reference. Disadvantage: limited operand

Immediate Addressing mode:

 In this mode the operand is specified in the instruction itself. In other words, an

immediate-mode instruction has an operand field rather than an address field.

 This instruction has an operand field rather than an address field. The operand field

contains the actual operand to be used in conjunction with the operation specified in the

instruction.

 These instructions are useful for initializing register to a constant value;

For example MVI B, 50H

Opcode Operand
Instruction

It was mentioned previously that the address field of an instruction may specify either a memory

word or a processor register. When the address field specifies a processor register, the instruction

is said to be in register-mode.

Advantage: no memory reference. Disadvantage: limited operand

Register direct addressing mode:

 In this mode, the operands are in registers that reside within the CPU.

 The particular register is selected from the register field in the instruction.

For example MOV A, B

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 18

Opcode Register
Instruction

Operand

Register

 Effective Address (EA) = R

Advantage: no memory reference. Disadvantage: limited address space

Register indirect addressing mode:

 In this mode the instruction specifies a register in the CPU whose contents give the

address of the operand in the memory.

 In other words, the selected register contains the address of the operand rather than the

operand itself.

 Before using a register indirect mode instruction, the programmer must ensure that the

memory address of the operand is placed in the processor register with a previous

instruction.

For example LDAX B

Opcode Register
Instruction

Register

Operand

Memory

Effective Address (EA) = (R)

Advantage: Large address space.

The address field of the instruction uses fewer bits to select a register than would have been

required to specify a memory address directly.

Disadvantage: Extra memory reference

Auto increment or Auto decrement Addressing Mode:

 This is similar to register indirect mode except that the register is incremented or

decremented after (or before) its value is used to access memory.

 When the address stored in the registers refers to a table of data in memory, it is

necessary to increment or decrement the registers after every access to the table.

 This can be achieved by using the increment or decrement instruction. In some computers

it is automatically accessed.

 The address field of an instruction is used by the control unit in the CPU to obtain the

operands from memory.

 Sometimes the value given in the address field is the address of the operand, but

sometimes it is the address from which the address has to be calculated.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 19

Direct Addressing Mode

 In this mode the effective address is equal to the address part of the instruction. The

operand resides in memory and its address is given directly by the address field of the

instruction.

For example LDA 4000H

Opcode Address
Instruction

Operand

Memory

Effective Address (EA) = A

Advantage: Simple. Disadvantage: limited address field

Indirect Addressing Mode

 In this mode the address field of the instruction gives the address where the effective

address is stored in memory.

 Control unit fetches the instruction from the memory and uses its address part to access

memory again to read the effective address.

Opcode Address
Instruction

Operand

Memory

 Effective Address (EA) = (A)

Advantage: Flexibility. Disadvantage: Complexity

Displacement Addressing Mode

 A very powerful mode of addressing combines the capabilities of direct addressing and

register indirect addressing.

 The address field of instruction is added to the content of specific register in the CPU.

Opcode R A
Instruction

Operand

MemoryRegister

+

Effective Address (EA) = A + (R)

Advantage: Flexibility. Disadvantage: Complexity

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 20

Relative Addressing Mode

 In this mode the content of the program counter (PC) is added to the address part of the

instruction in order to obtain the effective address.

 The address part of the instruction is usually a signed number (either a +ve or a –ve

number).

 When the number is added to the content of the program counter, the result produces an

effective address whose position in memory is relative to the address of the next

instruction.

Effective Address (EA) = PC + A

Indexed Addressing Mode

 In this mode the content of an index register (XR) is added to the address part of the

instruction to obtain the effective address.

 The index register is a special CPU register that contains an index value.

 Note: If an index-type instruction does not include an address field in its format, the

instruction is automatically converted to the register indirect mode of operation.

Effective Address (EA) = XR + A

Base Register Addressing Mode

 In this mode the content of a base register (BR) is added to the address part of the

instruction to obtain the effective address.

 This is similar to the indexed addressing mode except that the register is now called a

base register instead of the index register.

 The base register addressing mode is used in computers to facilitate the relocation of

programs in memory i.e. when programs and data are moved from one segment of

memory to another.

Effective Address (EA) = BR + A

Stack Addressing Mode

 The stack is the linear array of locations. It is some times referred to as push down list or

last in First out (LIFO) queue. The stack pointer is maintained in register.

Instruction

Top of Stack
Implicit

Effective Address (EA) = TOS

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 21

Let us try to evaluate the addressing modes with as example.

Fig: Numerical Example for Addressing Modes

Fig: Tabular list of Numerical Example

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 22

2.5 Data Transfer and Manipulation

Data transfer instructions cause transfer of data from one location to another without changing

the binary information. The most common transfer are between the

 Memory and Processor registers

 Processor registers and input output devices

 Processor registers themselves

Typical Data Transfer Instructions

Data manipulation Instructions

Data manipulation instructions perform operations on data and provide the computational

capabilities for the computer. These instructions perform arithmetic, logic and shift

operations.

Arithmetic Instructions

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 23

Logical and Bit Manipulation Instructions

Shift Instructions

Program Control Instructions

The program control instructions provide decision making capabilities and change the

path taken by the program when executed in computer. These instructions specify

conditions for altering the content of the program counter. The change in value of

program counter as a result of execution of program control instruction causes a break in

sequence of instruction execution. Some typical program control instructions are:

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 24

Subroutine call and Return

A subroutine call instruction consists of an operation code together with an address that

specifies the beginning of the subroutine. The instruction is executed by performing two

tasks:

 The address of the next instruction available in the program counter (the return

address) is stored in a temporary location (stack) so the subroutine knows where

to return.

 Control is transferred to the beginning of the subroutine.

The last instruction of every subroutine, commonly called return from subroutine;

transfer the return address from the temporary location into the program counter. This

results in a transfer of program control to the instruction where address was originally

stored in the temporary location.

Interrupt

The interrupt procedure is, in principle, quite similar to a subroutine call except for three

variations:

 The interrupt is usually initiated by an external or internal signal rather than from

execution of an instruction.

 The address of the interrupt service program is determined by the hardware rather

than from the address field of an instruction.

 An interrupt procedure usually stores all the information necessary to define the

state of the CPU rather than storing only the program counter.

2.6 RISC and CISC

 Important aspect of computer – design of the instruction set for processor.

 Instruction set – determines the way that machine language programs are

constructed.

 Early computers – simple and small instruction set, need to minimize the

hardware used.

 Advent of IC – cheaper digital software, instructions intended to increase both in

number of complexity.

 Many computers – more than 100 or 200 instructions, variety of data types and

large number of addressing modes.

Complex Instruction Set Computers (CISC)

 The trend into computer hardware complexity was influenced by various factors:

o Upgrading existing models to provide more customer applications

o Adding instructions that facilitate the translation from high-level language

into machine language programs

o Striving to develop machines that move functions from software

implementation into hardware implementation

 A computer with a large number of instructions is classified as a complex

instruction set computer (CISC).

 One reason for the trend to provide a complex instruction set is the desire to

simplify the compilation and improve the overall computer performance.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 25

 The essential goal of CISC architecture is to attempt to provide a single machine

instruction for each statement that is written in a high-level language.

 Examples of CISC architecture are the DEC VAX computer and the IBM 370

computer. Other are 8085, 8086, 80x86 etc.

The major characteristics of CISC architecture

 A large number of instructions– typically from 100 to 250 instructions

 Some instructions that perform specialized tasks and are used infrequently

 A large variety of addressing modes—typically from 5 to 20 different modes

 Variable-length instruction formats

 Instructions that manipulate operands in memory

 Reduced speed due to memory read/write operations

 Use of microprogram – special program in control memory of a computer to

perform the timing and sequencing of the microoperations – fetch, decode,

execute etc.

 Major complexity in the design of microprogram

 No large number of registers – single register set of general purpose and low cost

Reduced Instruction Set Computers (RISC)

A computer uses fewer instructions with simple constructs so they can be executed much

faster within the CPU without having to use memory as often. It is classified as a reduced

instruction set computer (RISC).

 RISC concept – an attempt to reduce the execution cycle by simplifying the

instruction set

 Small set of instructions – mostly register to register operations and simple

load/store operations for memory access

 Each operand – brought into register using load instruction, computations are

done among data in registers and results transferred to memory using store

instruction

 Simplify instruction set and encourages the optimization of register

manipulation

 May include immediate operands, relative mode etc.

The major characteristics of RISC architecture

 Relatively few instructions

 Relatively few addressing modes

 Memory access limited to load and store instructions

 All operations done within the registers of the CPU

 Fixed-length, easily decoded instruction format

 Single-cycle instruction execution

 Hardwired rather than microprogrammed control

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 26

Other characteristics attributed to RISC architecture

 A relatively large number of registers in the processor unit

 Use of overlapped register windows to speed-up procedure call and return

 Efficient instruction pipeline – fetch, decode and execute overlap

 Compiler support for efficient translation of high-level language programs into

machine language programs

 Studies that show improved performance for RISC architecture do not

differentiate between the effects of the reduced instruction set and the effects of a

large register file.

 A large number of registers in the processing unit are sometimes associated with

RISC processors.

 RISC processors often achieve 2 to 4 times the performance of CISC processors.

 RISC uses much less chip space; extra functions like memory management unit or

floating point arithmetic unit can also be placed on same chip. Smaller chips

allow a semiconductor mfg. to place more parts on a single silicon wafer, which

can lower the per chip cost dramatically.

 RISC processors are simpler than corresponding CISC processors, they can be

designed more quickly.

Comparison between RISC and CISC Architectures

S.N. RISC CISC

1 Simple instructions taking one cycle Complex instructions taking multiple cycles

2 Only load and store memory references Any instructions may reference memory

3 Heavily pipelined Not/less pipelined

4 Multiple register sets Single register set

5 Complexity is in compiler Complexity is in micro-programming

6 Instructions executed by hardware Instructions interpreted by micro-

programming

7 Fixed format instructions Variable format instructions

8 Few instructions and modes Large instructions and modes

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 27

Overlapped register windows

 Some computers provide multiple-register banks, and each procedure is allocated its own

bank of registers. This eliminates the need for saving and restoring register values.

 Some computers use the memory stack to store the parameters that are needed by the

procedure, but this required a memory access every time the stack is accessed.

 A characteristic of some RISC processors is their use of overlapped register windows to

provide the passing of parameters and avoid the need for saving and restoring register

values.

 The concept of overlapped register windows is illustrated in below figure.

 In general, the organization of register windows will have the following relationships:

 Number of global registers = G

 Number of local registers in each window = L

 Number of registers common to two windows = C

 Number of windows = W

 The number of registers available for each window is calculated as followed:

 Window size = L + 2C + G

 The total number of registers needed in the processor is

 Register file = (L + C)W + G

 Fig: Overlapped Register Window

 A total of 74 registers

 Global Registers = 10 common to all procedures

 64 registers divided into 4 windows A, B, C & D

 Each register window = 10 registers local

 Two sets of 16 registers common to adjacent procedures

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 28

Berkeley RISC I

 The Berkeley RISC I is a 32-bit integrated circuit CPU.

o It supports 32-bit address and either 8-, 16-, or 32-bit data.

o It has a 32-bit instruction format and a total of 31 instructions.

o There are three basic addressing modes: Register addressing, immediate operand,

and relative to PC addressing for branch instructions.

o It has a register file of 138 registers; 10 global register and 8 windows of 32

registers in each

o The 32 registers in each window have an organization similar to overlapped

register window.

 Fig: Instruction Format of Berkeley RISC I

 Above figure shows the 32-bit instruction formats used for register-to-register

instructions and memory access instructions.

 Seven of the bits in the operation code specify an operation, and the eighth bit indicates

whether to update the status bits after an ALU operation.

 For register-to-register instructions :

o The 5-bit Rd field select one of the 32 registers as a destination for the result of

the operation

o The operation is performed with the data specified in fields Rs and S2.

o Thus the instruction has a three-address format, but the second source may be

either a register or an immediate operand.

 For memory access instructions:

o Rs to specify a 32-bit address in a register

o S2 to specify an offset

o Register R0 contains all 0’s, so it can be used in any field to specify a zero

quantity

 The third instruction format combines the last three fields to form a 19-bit relative

address Y and is used primarily with the jump and call instructions.

o The COND field replaces the Rd field for jump instructions and is used to specify

one of 16 possible branch conditions.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 29

2.7 64 – bit Processor

 The brain of the PC is processor or CPU.

 It performs the system’s calculating and processing operations.

 The term N-bits means that its ALU, internal registers and most of its instructions are

designed to work with N-bit binary words.

 The major components of CPU are:

 64-bit processors have 64-bit ALUs, 64-bit registers, and 64-bit buses.

 A 64-bit register can address up to 2
64

 bytes of logical address.

 64-bit processors have been with us since 1992.

 Eg: 64-bit AMD processor.

Internal Architecture

 The internal logic design of microprocessor which determines how and when various

operations are performed.

 The various function performed by the microprocessor can be classified as:

o Microprocessor initiated operations

o Internal operations

o Peripheral operations

 Microprocessor initiated operations mainly deal with memory and I/O read and write

operations.

 Internal operations determines how and what operations can be performed with the

data.The operations include:

 1. storing

 2. performing arithmetic and logical operations

 3. test for conditions

 4. store in the stack

 External initiated operations are initiated by the external devices to perform special

operations like reset, interrupt, ready, etc.

 The block diagram of 64-bit microprocessor is shown below.

 The major parts of the block diagram are:

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 30

o General register unit

o Control and decoding unit

o Bus unit

o Cache memory unit

o Floating point register unit

o Issue ports

 Fig: Block diagram of 64-bit internal architecture

Architecture Elements

 Addressing Modes

 General Purpose Registers

 Non-modal and modal Instructions

 New Instructions in Support of 64-bit

 New immediate Instructions

Addressing modes

 This addressing mode determines the working environment. i.e 24,32 or 64 bit mode

 PSW bits 31 and 32 designate addressing mode (out of 64 bit).

o Addressing modes bits:00=24 bit-mode

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 31

 01=32 bit-mode

 11=64 bit-mode

General purposes register (GPR)

 The register is treated as 64-bits for:

o Address generation in 64-bit mode.

 The register is treated as 32-bits for:

o Address generation in 24/32-bit mode.

New instructions in 64-bit:

 Load Reversed - LRV, LRVR

 Multiply Logical - ML, MLR

 Divide Logical - DL, DLR

 Add Logical w/ Carry - ALC

 Subtract Logical w/ Borrow - SLB

 Store Reversed - STRV

 Rotate Left Single Logical – RLL

New immediate Instructions

 Load Logical Immediate

 Insert Logical Immediate

 AND Immediate

 OR Immediate

 Test Under Mask (High/Low)

Comparison of 64-bit with 32-bit

 Contains 32-bit data lines whereas 64-bit contains 64 data lines.

 Can address max 2^32(4 GB) of data whereas 64 bit can address 2^64(18 billion GB).

 Speed and execution is both fast in 64-bit processors.

 64-bit processors can drive 32-bit applications even faster, by handling more data per

clock cycle than a 32-bit processor.

 The table shows the basic difference between two:

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] References: W. Stalling & M. Mano | 32

Advantages and disadvantages:

advantages

 Previous processors can have

max 4 Gb of physical memory

but 64-bit can handle more.

 More general purpose

registers than in older

processors.

 Significant increase in speed

due to wider data bus and

processing is fast.

Disadvantages

 Compatibility difficulty with existing software as

they are mostly developed to the 32-bit processors.

 64-bit OS must have 64-bit drivers, for working

efficiently.

 They are costly.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 1

Chapter – 3

Control Unit
3.1 Control Memory

 The function of the control unit in a digital computer is to initiate sequences of

microoperations.

 When the control signals are generated by hardware using conventional logic design

techniques, the control unit is said to be hardwired.

 Microprogramming is a second alternative for designing the control unit of a digital

computer.

o The principle of microprogramming is an elegant and systematic method for

controlling the microoperation sequences in a digital computer.

 In a bus-organized systems, the control signals that specify microoperations are groups of

bits that select the paths in multiplexers, decoders, and arithmetic logic units.

 A control unit whose binary control variables are stored in memory is called a

microprogrammed control unit.

 A memory that is part of a control unit is referred to as a control memory.

o Each word in control memory contains within it a microinstruction.

o A sequence of microinstructions constitutes a microprogram.

o Can be either read-only memory(ROM) or writable control memory (dynamic

microprogramming)

 A computer that employs a microprogrammed control unit will have two separate

memories:

o A main memory

o A control memory

 The general configuration of a microprogrammed control unit is demonstrated in the

block diagram of Fig. 3.1.

o The control memory is assumed to be a ROM, within which all control

information is permanently stored.

o The control address register specifies the address of the microinstruction.

o The control data register holds the microinstruction read from memory.

 Thus a microinstruction contains bits for initiating microoperations in the data processor

part and bits that determine the address sequence for the control memory.

Extra Stuff:

Microprogram

 Program stored in memory that generates all the control signals required to execute the

instruction set correctly

 Consists of microinstructions

Microinstruction

 Contains a control word and a sequencing word

 Control Word - All the control information required for one clock cycle

 Sequencing Word - Information needed to decide the next microinstruction address

 Vocabulary to write a microprogram

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 2

Control Memory (Control Storage: CS)

 Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)

 CS whose contents can be modified

 Allows the microprogram can be changed

 Instruction set can be changed or modified

Dynamic Microprogramming

 Computer system whose control unit is implemented with a microprogram in WCS

 Microprogram can be changed by a systems programmer or a user

Microrogrammed Sequencer

 The next address generator is sometimes called a microprogram sequencer, as it

determines the address sequence that is read from control memory.

 Typical functions of a microprogram sequencer are:

o Incrementing the control address register by one

o Loading into the control address register an address from control memory

o Transferring an external address

o Loading an initial address to start the control operations

Pipeline Register

 The data register is sometimes called a pipeline register.

o It allows the execution of the microoperations specified by the control word

simultaneously with the generation of the next microinstruction.

 This configuration requires a two-phase clock

o The system can operate by applying a single-phase clock to the address register.

 Without the control data register

 Thus, the control word and next-address information are taken directly

from the control memory.

Advantages

 The main advantage of the microprogrammed control is the fact that once the hardware

configuration is established; there should be no need for further hardware or wiring

change.

 Most computers based on the reduced instruction set computer (RISC) architecture

concept use hardwired control rather than a control memory with a microprogram.

(Why?)

A Microprogram Control Unit that determines the Microinstruction Address to be executed

in the next clock cycle

 In-line Sequencing

 Branch

 Conditional Branch

 Subroutine

 Loop

 Instruction OP-code mapping

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 3

External Control

Input Word

 Next address information

Fig 3-1: Microprogrammed Control Organization

3.2 Addressing sequencing

 Microinstructions are stored in control memory in groups, with each group specifying

a routine.

 Each computer instruction has its own microprogram routine in control memory to

generate the microoperations that execute the instruction.

 To appreciate the address sequencing in a microprogram control unit:

o An initial address is loaded into the control address register when power is

turned on in the computer.

o This address is usually the address of the first microinstruction that activates

the instruction fetch routine.

o The control memory next must go through the routine that determines the

effective address of the operand.

o The next step is to generate the microoperations that execute the instruction

fetched from memory.

 The transformation from the instruction code bits to an address in control memory

where the routine is located is referred to as a mapping process.

 The address sequencing capabilities required in a control memory are:

o Incrementing of the control address register

o Unconditional branch or conditional branch, depending on status bit

conditions

o A mapping process from the bits of the instruction to an address for control

memory

o A facility for subroutine call and return

 Fig. 3-2 shows a block diagram of a control memory and the associated hardware

needed for selecting the next microinstruction address.

 The microinstruction in control memory contains

o a set of bits to initiate microoperations in computer registers

o Other bits to specify the method by which the next address is obtained

Sequencing Capabilities Required in Control Storage

 Incrementing of the control address register

 Unconditional and conditional branches

 A mapping process from the bits of the machine instruction to an address for control

memory

 A facility for subroutine call and return

Next

Address

generator

(Sequencer)

Control

Address

Register

Control

Memory

(ROM)

Control

Data

Register

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 4

Fig 3-2: Selection of address for control memory

Conditional Branching

 The branch logic of Fig. 3-2 provides decision-making capabilities in the control unit.

 The status conditions are special bits in the system that provides parameter

information.

o e.g. the carry-out, the sign bit, the mode bits, and input or output status

 The status bits, together with the field in the microinstruction that specifies a branch

address, control the conditional branch decisions generated in the branch logic.

 The branch logic hardware may be implemented by multiplexer.

o Branch to the indicated address if the condition is met;

o Otherwise, the address register is incremented.

 An unconditional branch microinstruction can be implemented by loading the branch

address from control memory into the control address register.

 If Condition is true, then Branch (address from the next address field of the current

microinstruction)

else Fall Through

 Conditions to Test: O(overflow), N(negative), Z(zero), C(carry), etc.

Unconditional Branch

 Fixing the value of one status bit at the input of the multiplexer to 1

Mapping of Instructions

 A special type of branch exists when a microinstruction specifies a branch to the first

word in control memory where a microprogram routine for an instruction is located.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 5

 The status bits for this type of branch are the bits in the operation code part of the

instruction.

 One simple mapping process that converts the 4-bit operation code to a 7-bit address

for control memory is shown in Fig. 3-3.

o Placing a 0 in the most significant bit of the address

o Transferring the four operation code bits

o Clearing the two least significant bits of the control address register

 This provides for each computer instruction a microprogram routine with a capacity

of four microinstructions.

o If the routine needs more than four microinstructions, it can use addresses

1000000 through 1111111.

o If it uses fewer than four microinstructions, the unused memory locations

would be available for other routines.

 One can extend this concept to a more general mapping rule by using a ROM or

programmable logic device (PLD) to specify the mapping function.

Fig 3-3: Mapping from instruction code to microinstruction address

Fig 3-3 (a): Direct mapping

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 6

Fig 3-3 (b): Mapping Function Implemented by ROM and PLD

Mapping from the OP-code of an instruction to the address of the Microinstruction which

is the starting microinstruction of its execution microprogram.

Subroutine

 Subroutines are programs that are used by other routines to accomplish a particular

task.

 Microinstructions can be saved by employing subroutines that use common sections

of microcode.

 e.g. effective address computation

 The subroutine register can then become the source for transferring the address for

the return to the main routine.

 The best way to structure a register file that stores addresses for subroutines is to

organize the registers in a last-in, first-out (LIFO) stack.

3.3 Computer configuration

 Once the configuration of a computer and its microprogrammed control unit is

established, the designer’s task is to generate the microcode for the control memory.

 This microcode generation is called microprogramming.

 The block diagram of the computer is shown in Below Fig.

 Two memory units

o A main memory for storing instructions and data

o A control memory for storing the microprogram

 Four registers are associated with the processor unit

o Program counter PC, address register AR, data register DR, accumulator

register AC

 The control unit has a control address register CAR and a subroutine register SBR.

 The control memory and its register are organized as a microprogrammed control

unit, as shown in Fig. 3-2.

 The transfer of information among the registers in the processor is done through

multiplexers rather than a common bus.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 7

Fig 3-4: Computer hardware configuration

3.4 Microinstruction Format

Computer Instruction Format

 The computer instruction format is depicted in Fig. 3-5(a).

 It consists of three fields:

o A 1-bit field for indirect addressing symbolized by I

o A 4-bit operation code (opcode)

o An 11-bit address field

 Fig. 3-5(b) lists four of the 16 possible memory-reference instructions.

Fig. 3-5 (a): Instruction Format

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 8

Fig 3-5 (b): Four Computer Instructions

 Microinstruction Format

 The microinstruction format for the control memory is shown in Fig. 3-6.

 The 20 bits of the microinstruction are divided into four functional parts.

o The three fields F1, F2, and F3 specify microoperations for the computer.

o The CD field selects status bit conditions.

o The BR field specifies the type of branch.

o The AD field contains a branch address.

Fig 3-6: Microinstruction code format

Microoperations

 The three bits in each field are encoded to specify seven distinct microoperations

as listed in Table 3-1.

o No more than three microoperations can be chosen for a microinstruction,

one from each field.

o If fewer than three microoperations are used, one or more of the fields will

use the binary code 000 for no operation.

 It is important to realize that two or more conflicting microoperations cannot be

specified simultaneously. e.g. 010 001 000

 Each microoperation in Table 3-1 is defined with a register transfer statement and

is assigned a symbol for use in a symbolic microprogram.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 9

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 10

 Table 3-1 : Symbols and Binary code for Microinstruction Fields

 Condition and Branch Field

 The CD field consists of two bits which are encoded to specify four status bit

conditions as listed in Table 3-1.

 The BR field consists of two bits. It is used, in conjunction with the address

field AD, to choose the address of the next microinstruction.

o The jump and call operations depend on the value of the CD field.

o The two operations are identical except that a call microinstruction stores

the return address in the subroutine register SBR.

o Note that the last two conditions in the BR field are independent of the

values in the CD and AD fields.

3.5 Symbolic Microinstructions

 The symbols defined in Table 3-1 cab be used to specify microinstructions in

symbolic form.

 Symbols are used in microinstructions as in assembly language

 The simplest and most straightforward way to formulate an assembly

language for a microprogram is to define symbols for each field of the

microinstruction and to give users the capability for defining their own

symbolic addresses.

 A symbolic microprogram can be translated into its binary equivalent by a

microprogram assembler.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 11

Sample Format

Five fields: label; micro-ops; CD; BR; AD

 The label field: may be empty or it may specify a symbolic address

terminated with a colon

 The microoperations field: of one, two, or three symbols separated by

commas , the NOP symbol is used when the microinstruction has no

microoperations

 The CD field: one of the letters {U, I, S, Z} can be chosen where

U: Unconditional Branch

 I: Indirect address bit

 S: Sign of AC

 Z: Zero value in AC

 The BR field: contains one of the four symbols {JMP, CALL, RET,

MAP}

 The AD field: specifies a value for the address field of the

microinstruction with one of {Symbolic address, NEXT, empty}

o When the BR field contains a RET or MAP symbol, the AD field

is left empty

Fetch Subroutine

During FETCH, Read an instruction from memory and decode the instruction and update PC.

 The first 64 words are to be occupied by the routines for the 16 instructions.

 The last 64 words may be used for any other purpose.

o A convenient starting location for the fetch routine is address 64.

 The three microinstructions that constitute the fetch routine have been listed in three

different representations.

o The register transfer representation:

o The symbolic representation:

o The binary representation:

3.6 Symbolic Microprogram

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 12

 Control Storage: 128 20-bit words

 The first 64 words: Routines for the 16 machine instructions 0, 4, 8, …, 60 gives four

words in control memory for each routine.

 The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

 The execution of the third (MAP) microinstruction in the fetch routine results in a

branch to address 0xxxx00, were xxxx are the four bits of the operation code. e.g.

ADD is 0000

 In each routine we must provide microinstructions for evaluating the effective address

and for executing the instruction.

 The indirect address mode is associated with all memory-reference instructions.

 A saving in the number of control memory words may be achieved if the

microinstructions for the indirect address are stored as a subroutine.

 This subroutine, INDRCT, is located right after the fetch routine, as shown in Table

3-2.

 Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

 To see how the transfer and return from the indirect subroutine occurs:

o MAP microinstruction caused a branch to address 0

o The first microinstruction in the ADD routine calls subroutine INDRCT when

I=1

o The return address is stored in the subroutine register SBR.

o The INDRCT subroutine has two microinstructions:

 INDRCT: READ U JMP NEXT

 DRTAR U RET

o Therefore, the memory has to be accessed to get the effective address, which

is then transferred to AR.

o The execution of the ADD instruction is carried out by the microinstructions

at addresses 1 and 2

o The first microinstruction reads the operand from memory into DR.

o The second microinstruction performs an add microoperation with the content

of DR and AC and then jumps back to the beginning of the fetch routine.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 13

Table 3-2: Symbolic Microprogram for Control Memory (Partial)

Binary Microprogram

 The symbolic microprogram must be translated to binary either by means of an

assembler program or by the user if the microprogram is simple.

 The equivalent binary form of the microprogram is listed in Table 7-3.

 Even though address 3 is not used, some binary value, e.g. all 0’s, must be

specified for each word in control memory.

 However, if some unforeseen error occurs, or if a noise signal sets CAR to the

value of 3, it will be wise to jump to address 64.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 14

Table 3-3: Binary Microprogram for control memory (Partial)

Control Memory

 When a ROM is used for the control memory,the microprogram binary list

provides the truth table for fabricating the unit.

o To modify the instruction set of the computer, it is necessary to generate a

new microprogram and mask a new ROM.

 The advantage of employing a RAM for the control memory is that the

microprogram can be altered simply by writing a new pattern of 1’s and 0’s

without resorting to hardware procedure.

 However, most microprogram systems use a ROM for the control memory

because it is cheaper and faster than a RAM.

3.7 Control Unit Operation

Microoperations

 A computer executes a program consisting instructions. Each instruction is

made up of shorter sub-cycles as fetch, indirect, execute cycle, interrupt.

 Performance of each cycle has a number of shorter operations called micro-

operations.

 Called so because each step is very simple and does very little.

 Thus micro-operations are functional atomic operation of CPU.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 15

 Hence events of any instruction cycle can be described as a sequence of

micro-operations

 Fig 3-7: Constituent Elements of Program Execution

Steps leading to characterization of CU

 Define basic elements of processor

 Describe micro-operations processor performs

 Determine functions control unit must perform

Types of Micro-operation

 Transfer data between registers

 Transfer data from register to external interface

 Transfer data from external interface to register

 Perform arithmetic/logical ops with register for i/p, o/p

Functions of Control Unit

 Sequencing

 Causing the CPU to step through a series of micro-operations

 Execution

 Causing the performance of each micro-op

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 16

These are done using Control Signals

Fig 3-8: Control Unit Layout

Inputs to Control Unit

 Clock

o CU causes one micro-instruction (or set of parallel micro-instructions) per

clock cycle

 Instruction register

o Op-code for current instruction determines which micro-instructions are

performed

 Flags

o State of CPU

o Results of previous operations

 From control bus

o Interrupts

o Acknowledgements

CU Outputs (Control Signals)

 Within CPU(two types)

o Cause data movement

o Activate specific ALU functions

 Via control bus(two types)

o To memory

o To I/O modules

 Types of Control Signals

o Those that activate an ALU

o Those that activate a data path

o Those that are signal on external system bus or other external interface.

 All these are applied as binary i/p to individual logic gates

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 17

Hardwired Implementation

 In this implementation, CU is essentially a combinational circuit. Its i/p signals

are transformed into set of o/p logic signal which are control signals.

 Control unit inputs

 Flags and control bus

o Each bit means something

 Instruction register

o Op-code causes different control signals for each different instruction

o Unique logic for each op-code

o Decoder takes encoded input and produces single output

o Each decoder i/p will activate a single unique o/p

 Clock

o Repetitive sequence of pulses

o Useful for measuring duration of micro-ops

o Must be long enough to allow signal propagation along data paths and

through processor circuitry

o Different control signals at different times within instruction cycle

o Need a counter as i/p to control unit with different control signals being

used for t1, t2 etc.

o At end of instruction cycle, counter is re-initialised

Fig 3-9: Control Unit With Decoded Input

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 18

Implementation

 For each control signal, a Boolean expression of that signal as a function of the

inputs is derived

 With that the combinatorial circuit is realized as control unit.

Problems With Hard Wired Designs

 Complex sequencing & micro-operation logic

 Difficult to design and test

 Inflexible design

 Difficult to add new instructions

Micro-programmed Implementation

 An alternative to hardwired CU

 Common in contemporary CISC processors

 Use sequences of instructions to perform control operations performed by micro

operations called micro-programming or firmware

 Fig 3-10: Microprogrammed Control Unit

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 19

 Set of microinsrurctions are stored in control memory

 Control address register contains the address of the next microinstruction to be read

 As it is read, it is transferred to control buffer register.

 For horizontal micro instructions, reading a microinstruction is same as executing it.

 Sequencing unit loads the control address register and issues a read command

CU functions as follows to execute an instruction:

 Sequencing logic issues read command to control memory

 Word whose address is in control address register is read into control buffer register.

 Content of control buffer register generates control signals and next address instruction

for the sequencing logic unit.

 Sequencing logic unit loads new address into control address register depending upon the

value of ALU flags, control buffer register.

 One of following decision is made:

o add 1 to control address register

o load address from address field of control buffer register

o load the control address register based on opcode in IR

 Upper decoder translates the opcode of IR into control memory address.

 Lower decoder used for veritcal micro instructions.

Micro-instruction Types

 Each micro-instruction specifies single or few micro-operations to be performed -

vertical micro-programming

 Each micro-instruction specifies many different micro-operations to be performed in

parallel - horizontal micro-programming

Horizontal Micro-programming

 Wide memory word

 High degree of parallel operations possible

 Little encoding of control information

Vertical Micro-programming

 Width is narrow

 n control signals encoded into log2 n bits

 Limited ability to express parallelism

 Considerable encoding of control information requires external memory word

decoder to identify the exact control line being manipulated

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 20

3.8 Design of Control Unit

 The bits of the microinstruction are usually divided into fields, with each field

defining a distinct, separate function.

 The various fields encountered in instruction formats provide:

o Control bits to initiate microoperations in the system

o Special bits to specify the way that the next address is to be evaluated

o An address field for branching

 The number of control bits that initiate microoperations can be reduced by grouping

mutually exclusive variables into fields by encoding the k bits in each field to provide

2
k
 microoperations.

 Each field requires a decoder to produce the corresponding control signals.

o Reduces the size of the microinstruction bits

o Requires additional hardware external to the control memory

o Increases the delay time of the control signals

 Fig. 3-11 shows the three decoders and some of the connections that must be made

from their outputs.

 Outputs 5 or 6 of decoder F1 are connected to the load input of AR so that when

either one of these outputs is active; information from the multiplexers is transferred

to AR.

 The transfer into AR occurs with a clock pulse transition only when output 5 (from

DR (0-10) to AR i.e. DRTAR) or output 6 (from PC to AR i.e. PCTAR) of the

decoder are active.

 The arithmetic logic shift unit can be designed instead of using gates to generate the

control signals; it comes from the outputs of the decoders.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 21

Fig 3-11: Decoding of Microoperation fields

Microprogram Sequencer

 The basic components of a microprogrammed control unit are the control memory and

the circuits that select the next address.

 The address selection part is called a microprogram sequencer.

 A microprogram sequencer can be constructed with digital functions to suit a particular

application.

 To guarantee a wide range of acceptability, an integrated circuit sequencer must provide

an internal organization that can be adapted to a wide range of application.

 The purpose of a microprogram sequencer is to present an address to the control memory

so that a microinstruction may be read and executed.

 The block diagram of the microprogram sequencer is shown in Fig. 3-12.

o The control memory is included to show the interaction between the sequencer

and the attached to it.

o There are two multiplexers in the circuit; first multiplexer selects an address from

one of the four sources and routes to CAR, second multiplexer tests the value of

the selected status bit and result is applied to an input logic circuit.

o The output from CAR provides the address for control memory, contents of CAR

incremented and applied to one of the multiplexers input and to the SBR.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 22

o Although the diagram shows a single subroutine register, a typical sequencer will

have a register stack about four to eight levels deep. In this way, a push, pop

operation and stack pointer operates for subroutine call and return instructions.

o The CD (Condition) field of the microinstruction selects one of the status bits in

the second multiplexer.

o The Test variable (either 1 or 0) i.e. T value together with the two bits from the

BR (Branch) field go to an input logic circuit.

o The input logic circuit determines the type of the operation.

Fig 3-12: Microprom Sequencer for a Control Memory

Design of Input Logic

 The input logic in a particular sequencer will determine the type of operations that are

available in the unit.

 Typical sequencer operations are: increment, branch or jump, call and return from

subroutine, load an external address, push or pop the stack, and other address

sequencing operations.

Computer Organization and Architecture Chapter 3 : Control Unit

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: M. Mano & W. Stallings | 23

 Based on the function listed in each entry was defined in Table 3-1, the truth table for the input

logic circuit is shown in Table 3-4.

 Therefore, the simplified Boolean functions for the input logic circuit can be given as:

TIIL

TIIIS

IS

01

1010

11

Table 3-4: Input logic truth table for microprogram sequencer

o The bit values for S1 and S0 are determined from the stated function and the path in the

multiplexer that establishes the required transfer.

o Note that the incrementer circuit in the sequencer of Fig. 7-12 is not a counter constructed

with flip-flops but rather a combinational circuit constructed with gates.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 COIMBATORE-21

 Faculty of Engineering

 Department of Computer Science and Engineering

 POSSIBLE QUESTIONS

Title of the paper : COA

Answer All the Questions (5*2=18)

1. Define pipelining.

2. What is a Cache memory?

3. Define parallel processing

4. What is memory interleaving?

5. Define SSID.

6. What are the characteristics of memory systems?

7. Define Exceptions.

8. What is a data hazard?

9. Define memory latency.

ANSWER all the Questions(3*14=42)

10. a. What is branch hazard? Describe the method for dealing with the branch

hazard? (14)

(OR)

 b. Draw and explain data path modified for pipelined execution. (14)

11. a. Explain Discuss any six ways of improving the cache performance. (14)

(OR)

 b. What do you mean by virtual memory? Discuss how paging helps in

implementing virtual memory. (14)

12.a) Discuss the different mapping techniques used in cache memories and their

relative merits and demerits. (14)

(OR)

 b). What is Memory Interleaving? Explain the addressing of multiple modules

Memory system. (14)

MULTIPLE CHOICE QUESTIONS - COA

1. In Reverse Polish notation, expression A*B+C*D is written as
(A) AB*CD*+ (B) A*BCD*+ (C) AB*CD+* (D) A*B*CD+
Ans: A

2. SIMD represents an organization that ______________.

(A) refers to a computer system capable of processing several programs at the same time.
(B) represents organization of single computer containing a control unit, processor unit and a
memory unit.
(C) includes many processing units under the supervision of a common control unit
(D) none of the above.
Ans: C

3. Floating point representation is used to store
(A) Boolean values (B) whole numbers (C) real integers (D) integers
Ans: C

4. Suppose that a bus has 16 data lines and requires 4 cycles of 250 nsecs each to transfer data. The
bandwidth of this bus would be 2 Megabytes/sec. If the cycle time of the bus was reduced to 125
nsecs and the number of cycles required for transfer stayed the same what would the bandwidth of
the bus?
(A) 1 Megabyte/sec (B) 4 Megabytes/sec (C) 8 Megabytes/sec (D) 2 Megabytes/sec
Ans: D

5. Assembly language
(A) uses alphabetic codes in place of binary numbers used in machine language
(B) is the easiest language to write programs
(C) need not be translated into machine language
(D) None of these
Ans: A

6. In computers, subtraction is generally carried out by
(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement Ans: D

7. The amount of time required to read a block of data from a disk into memory is composed of
seek time, rotational latency, and transfer time. Rotational latency refers to (A) the time its takes
for the platter to make a full rotation
(B) the time it takes for the read-write head to move into position over the appropriate track
(C) the time it takes for the platter to rotate the correct sector under the head
(D) none of the above Ans: A

8. What characteristic of RAM memory makes it not suitable for permanent storage?
(A) too slow (B) unreliable (C) it is volatile (D) too bulky Ans: C

9. Computers use addressing mode techniques for _____________________.
(A) giving programming versatility to the user by providing facilities as pointers to memory counters
for loop control
(B) to reduce no. of bits in the field of instruction
(C) specifying rules for modifying or interpreting address field of the instruction
(D) All the above
Ans: D

10. The circuit used to store one bit of data is known as
(A) Register (B) Encoder (C) Decoder (D) Flip Flop
Ans: D

11. (2FAOC) 16 is equivalent to
(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these
Ans: B

12. The average time required to reach a storage location in memory and obtain its contents is
called the
(A) seek time (B) turnaround time (C) access time (D) transfer time
Ans: C

13. Which of the following is not a weighted code?
(A) Decimal Number system (B) Excess 3-cod
(C) Binary number System (D) None of these
Ans: B

14. The idea of cache memory is based
(A) on the property of locality of reference (B) on the heuristic 90-10 rule
(C) on the fact that references generally tend to cluster (D) all of the above
Ans: A

15. Which of the following is lowest in memory hierarchy? (A) Cache memory (B) Secondary
memory (C) Registers (D) RAM (E) None of these
Ans (B)

16. The addressing mode used in an instruction of the form ADD X Y, is
(A) Absolute (B) indirect (C) index (D) none of these
Ans: C

17. If memory access takes 20 ns with cache and 110 ns with out it, then the ratio (cache uses a 10
ns memory) is
(A) 93% (B) 90% (C) 88% (D) 87%
Ans: B

18. In a memory-mapped I/O system, which of the following will not be there?
(A) LDA (B) IN (C) ADD (D) OUT

Ans: A

19. In a vectored interrupt.
(A) the branch address is assigned to a fixed location in memory.
(B) the interrupting source supplies the branch information to the processor through an interrupt
vector.
(C) the branch address is obtained from a register in the processor
(D) none of the above
Ans: B

20. Von Neumann architecture is
(A) SISD (B) SIMD (C) MIMD (D) MISD
Ans: A

21. The circuit used to store one bit of data is known as
(A) Encoder (B) OR gate (C) Flip Flop (D) Decoder
Ans: C

22. Cache memory acts between
(A) CPU and RAM (B) RAM and ROM (C) CPU and Hard Disk (D) None of these
Ans: A

23. Write Through technique is used in which memory for updating the data
(A) Virtual memory (B) Main memory
(C) Auxiliary memory (D) Cache memory
Ans: D

24. Generally Dynamic RAM is used as main memory in a computer system as it
(A) Consumes less power (B) has higher speed
(C) has lower cell density (D) needs refreshing circuitary
Ans: B

25. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then the
result is
(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2
Ans: B

26. Virtual memory consists of
(A) Static RAM (B) Dynamic RAM
(C) Magnetic memory (D) None of these
Ans: A

27. In a program using subroutine call instruction, it is necessary
(A) initialise program counter (B) Clear the accumulator
(C) Reset the microprocessor (D) Clear the instruction register
Ans: D

28. A Stack-organised Computer uses instruction of
(A) Indirect addressing (B) Two-addressing (C) Zero addressing (D) Index addressing
Ans: C

29. If the main memory is of 8K bytes and the cache memory is of 2K words. It uses associative
mapping. Then each word of cache memory shall be
(A) 11 bits (B) 21 bits (C) 16 bits (D) 20 bits
Ans: C

30 A-Flip Flop can be converted into T-Flip Flop by using additional logic circuit
(A) n TQD =• (B) T D = (C) D = T . Q n (D) n TQD =⊕
Ans: D

31. Logic X-OR operation of (4ACO) H & (B53F) H results
(A) AACB (B) 0000 (C) FFFF (D) ABCD
Ans: C

32. When CPU is executing a Program that is part of the Operating System, it is said to be in (A)
Interrupt mode (B) System mode (C) Half mode (D) Simplex mode
Ans: B

33. An n-bit microprocessor has
(A) n-bit program counter (B) n-bit address register
(C) n-bit ALU (D) n-bit instruction register
Ans: D

34. Cache memory works on the principle of
(A) Locality of data (B) Locality of memory
(C) Locality of reference (D) Locality of reference & memory
Ans: C

35. The main memory in a Personal Computer (PC) is made of
(A) cache memory. (B) static RAM
(C) Dynamic Ram (D) both (A) and (B) .
Ans: D

36. In computers, subtraction is carried out generally by
(A) 1's complement method (B) 2's complement method
(C) signed magnitude method (D) BCD subtraction method
Ans: B

37. PSW is saved in stack when there is a
(A) interrupt recognised (B) execution of RST instruction
(C) Execution of CALL instruction (D) All of these
Ans: A

38. The multiplicand register & multiplier register of a hardware circuit implementing booth's
algorithm have (11101) & (1100). The result shall be
(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10
Ans: A

39. The circuit converting binary data in to decimal is
(A) Encoder (B) Multiplexer (C) Decoder (D) Code converter
Ans: D

40. A three input NOR gate gives logic high output only when
(A) one input is high (B) one input is low
(C) two input are low (D) all input are high
Ans: D

41. n bits in operation code imply that there are ___________ possible distinct operators (A) 2n (B)
2n (C) n/2 (D) n2
Ans: B

42. _________ register keeps tracks of the instructions stored in program stored in memory.
(A) AR (Address Register) (B) XR (Index Register)
(C) PC (Program Counter) (D) AC (Accumulator)
Ans: C

43. Memory unit accessed by content is called
(A) Read only memory (B) Programmable Memory
(C) Virtual Memory (D) Associative Memory
Ans: D

44. ‘Aging registers’ are
(A) Counters which indicate how long ago their associated pages have been referenced.
(B) Registers which keep track of when the program was last accessed.
(C) Counters to keep track of last accessed instruction.
(D) Counters to keep track of the latest data structures referred.
Ans: A

45 The instruction ‘ORG O’ is a
(A) Machine Instruction. (B) Pseudo instruction.
(C) High level instruction. (D) Memory instruction.
Ans: B

46 Translation from symbolic program into Binary is done in
(A) Two passes. (B) Directly (C) Three passes. (D) Four passes.
Ans: A

47 A floating point number that has a O in the MSB of mantissa is said to have

(A) Overflow (B) Underflow (C) Important number (D) Undefined
Ans: B

48 The BSA instruction is
(A) Branch and store accumulator (B) Branch and save return address
(C) Branch and shift address (D) Branch and show accumulator
Ans: B

49 State whether True or False.
(i) Arithmetic operations with fixed point numbers take longer time for execution as compared to
with floating point numbers.
Ans: True.

(ii) An arithmetic shift left multiplies a signed binary number by 2. Ans: False.

50 Logic gates with a set of input and outputs is arrangement of
(A) Combinational circuit (B) Logic circuit (C) Design circuits (D) Register
Ans: A

51. MIMD stands for
(A) Multiple instruction multiple data (B) Multiple instruction memory data
(C) Memory instruction multiple data (D) Multiple information memory data
Ans: A

52 A k-bit field can specify any one of
(A) 3k registers (B) 2k registers
(C) K2 registers (D) K3 registers
Ans: B

53 The time interval between adjacent bits is called the
(A) Word-time (B) Bit-time (C) Turn around time (D) Slice time
Ans: B

54 A group of bits that tell the computer to perform a specific operation is known as
(A) Instruction code (B) Micro-operation (C) Accumulator (D) Register
Ans: A

55 The load instruction is mostly used to designate a transfer from memory to a processor register
known as
(A) Accumulator (B) Instruction Register
(C) Program counter (D) Memory address Register
Ans: A

56 The communication between the components in a microcomputer takes place via the address
and
(A) I/O bus (B) Data bus (C) Address bus (D) Control lines

Ans: B

57 An instruction pipeline can be implemented by means of
(A) LIFO buffer (B) FIFO buffer (C) Stack (D) None of the above
Ans: B

58 Data input command is just the opposite of a
(A) Test command (B) Control command (C) Data output (D) Data channel
Ans: C

59 A microprogram sequencer
(A) generates the address of next micro instruction to be executed.
(B) generates the control signals to execute a microinstruction.
(C) sequentially averages all microinstructions in the control memory.
(D) enables the efficient handling of a micro program subroutine.
Ans: A

60 . A binary digit is called a
(A) Bit (B) Byte (C) Number (D) Character
Ans: A

61 A flip-flop is a binary cell capable of storing information of
(A) One bit (B) Byte (C) Zero bit (D) Eight bit
Ans: A

62 The operation executed on data stored in registers is called
(A) Macro-operation (B) Micro-operation
(C) Bit-operation (D) Byte-operation
Ans: B

63 MRI indicates
(A) Memory Reference Information. (B) Memory Reference Instruction.
(C) Memory Registers Instruction. (D) Memory Register information
Ans: B

64 Self-contained sequence of instructions that performs a given computational task is called
(A) Function (B) Procedure (C) Subroutine (D) Routine
Ans: A

65 Microinstructions are stored in control memory groups, with each group specifying a (A) Routine
(B) Subroutine (C) Vector (D) Address
Ans: A

66 An interface that provides a method for transferring binary information between internal
storage and external devices is called
(A) I/O interface (B) Input interface (C) Output interface (D) I/O bus

Ans: A

67 Status bit is also called
(A) Binary bit (B) Flag bit (C) Signed bit (D) Unsigned bit
Ans: B

68 An address in main memory is called
(A) Physical address (B) Logical address (C) Memory address (D) Word address
Ans: A

69 If the value V(x) of the target operand is contained in the address field itself, the addressing
mode is
(A) immediate. (B) direct. (C) indirect. (D) implied.
Ans: B

70 can be represented in a signed magnitude format and in a 1’s complement format as (A) 111011
& 100100 (B) 100100 & 111011
(C) 011011 & 100100 (D) 100100 & 011011
Ans: A

