14BEAR401

INTENDED OUTCOMES:

- The roots of algebraic or transcendental equations, solutions of large system of linear equations and Eigen value problem of a matrix can be obtained numerically.
- When huge amounts of experimental data are involved, the methods discussed on interpolation will be useful in constructing approximate polynomial to represent the data and to find the intermediate values.
- The numerical differentiation and integration find application when the function in the analytical form is too complicated or the huge amounts of data are given such as series of measurements, observations or some other empirical information.

UNIT -I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Method of false position - Newton's method - Statement of fixed point theorem - Fixed point iteration: x = g(x) method – Solution of linear system by Gaussian elimination and Gauss-Jordon methods - Iterative methods: Gauss Jacobi and Gauss-Seidel methods - Inverse of a matrix by Gauss Jordon method – Eigen value of a matrix by power method.

INTERPOLATION AND APPROXIMATION UNIT-II

Lagrangian Polynomials - Divided differences Interpolation formula - Newton's forward and backward difference formulas.

NUMERICAL DIFFERENTIATION AND INTEGRATION UNIT-III

Derivatives from difference tables -Derivatives using interpolation formula-Numerical integration by trapezoidal and Simpson's 1/3 and 3/8 rules - Romberg's method - Two and Three point Gaussian quadrature formulas - Double integrals using trapezoidal and Simpson's rules.

UNIT -IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL **EQUATIONS**

Single step methods: Taylor series method – Euler and modified Euler methods (Heun's method) - Fourth order Runge - Kutta method for solving first and second order equations - Multistep methods: Milne's and Adam's predictor and corrector methods.

UNIT- V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL **DIFFERENTIAL EQUATIONS**

Finite difference solution of second order ordinary differential equation - Finite difference solution of one dimensional heat equation by explicit and implicit methods – One dimensional wave equation and two dimensional Laplace and Poisson equations. MATLAB : Matlab – Toolkits – 2D Graph Plotting.

TEXT BOOKS:

S.	Author(s) Name	Title of the book	Publisher	Year of
No.				Publication

1	Burden, R. L. and Faires, T. D	Numerical Analysis	Thomson Asia Pvt. Ltd., Singapore.	2002
2	Curtis F. Gerald and Patrick O. Wheatley	Applied Numerical Analysis	Pearson Education, South Asia	2009

REFERENCES:

S. No.	Author(s) Name	Title of the book	Publisher	Year of Publication
1	Sankar Rao. G	Numerical Methods	Prentice Hall of India Pvt. Ltd, New Delhi.	2003
2	Gerald. C. F. and Wheatley. P. O	Applied Numerical Analysis	Pearson Education Asia, New Delhi.	2002
3	Balagurusamy. E	Numerical Methods	Tata McGraw Hill Pub. Co. Ltd., New Delhi.	2009
4	Kandaswamy, P., Thilagavathy, K. and Gunavathi, K.	Numerical Methods	S. Chand Publishing, New Delhi.	2010

WEBSITES:

- 1. www.nr.com
- 2. www.numerical-methods.com
- 3. www.math.ucsb.edu
- 4. www.mathworks.com

KARPAGAM UNIVERSITY, COIMBATORE-21. FACULTY OF ENGINEERING B.E Aeronautical Engineering- Fourth Semester 14BEAR401-NUMERICAL METHODS-- LECTURE PLAN

S.No	Topic covered	No. of hours
	UNIT I : SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS	
1	Basics – Scientific Calculator usage, Equation, Simultaneous equation, algebraic equation, ODE, PDE, Trigonometric function	5
2	Method of false position – Formula, methodology, Problems	1
3	Method of false position –Problems	1
4	Newton's method - Formula, methodology, Problems	1
5	Modified Newton's method - Formula, methodology, Problems	1
6	Fixed point iteration - Formula, methodology, Problems	1
7	Tutorial 1 – Regular Falsi and Newton's Method	1
8	Gauss elimination method - Methodology, Problems	1
9	Gauss-Jordan method - Methodology, Problems	1
10	Gauss-Jacobi method - Methodology, Problems	1
11	Gauss-Seidal method - Methodology, Problems	1
12	Tutorial 2 – Gauss Jordan, Jacobi, Seidal	1
13	Inverse of the matrix by Gauss-Jordan method	1
14	Inverse of the matrix by Gauss-Jordan method	1
15	Eigenvalue of the matrix by power method	1
16	Tutorial 3 – Eigen value by Power method	1
17	MATLAB – Toolkits	1
	Total	21
	UNIT II : INTERPOLATION AND APPROXIMATION	
1	Introduction – Interpolation, equal interval and Unequal interval	1
2	Lagrange's polynomial - Formula, methodology, Problems	1
3	Lagrange's polynomial – Problems	1
4	Newton's divided difference formula - Formula, methodology, Problems	1
5	Newton's divided difference formula - Problems	1
6	Newton's forward difference formula - Formula, methodology, Problems	1
7	Newton's backward difference formula-Formula, methodology, Problems	1
8	Newton's forward and backward difference formula	1
9	Tutorial 4-Newton's Forward and Backward difference formula	1
	Total	9
<u> </u>	UNIT III : NUMERICAL DIFFERENTIATION AND INTERGRATION	
1	Derivatives from difference table - Formula, methodology, Problems	1
2	Derivatives from difference table - Problems	1
3	Derivatives at initial final values	1
4	Tutorial 5 – Derivatives from difference table	1
5	Numerical integration by trapezoidal rule	1
6	Numerical integration by Simpson's 1/3 rd and 3/8 th rules	1
7	Romberg's method	1
8	Romberg's method	1
9	Two point Gaussian quadrature formula	1
10	Three point Gaussian quadrature formula	1
11	Double integral's using trapezoidal rule	1
12	Double integral's using Simpson's rule	1
13	Double integral – Problems	1
14	Tutorial 6 – Trapezoidal and Simpson's methods	1
.		14
	NIT IV: INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQ	
1	Taylor's series method - Formula, methodology, Problems	1
2	Taylor's series method – Problems	1
3	Taylor's series method – Second order Problems	1
4	Euler Finite difference solution	1
5	Modified Euler Finite difference solution	1
6	Euler's method – Problems	1
7	Tutorial 7 – Taylor's and Euler's methods	1

0		1
8	Fourth order Runge-Kutta method for solving 1 st order equations	1
9	Fourth order Runge-Kutta method for solving 2 nd order equations	1
10	Runge- Kutta – Problems	1
11	Milne's predictor method	1
12	Milne's corrector method	1
13	Adam's predictor method	1
14	Adam's corrector method	1
15	Tutorial 8 – Runge-Kutta method	1
	Total	15
UN	IT V:BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFF	ERENTIAL
	EQUATIONS	
1	Finite difference solution of 2 nd order ODE	1
2	Finite difference method – Problems	1
3	Finite difference solution of one dimensional heat equation by explicit method	1
4	Finite difference solution of one dimensional heat equation by implicit method	1
5	Tutorial 9 – Finite difference Explicit and implicit methods	1
6	One dimensional wave equation and two dimensional Laplace equation	1
7	Two dimensional Laplace equation	1
8	Two dimensional Laplace equation – Problems	1
9	Two dimensional Poisson equation	1
10	Two dimensional Poisson equation – Problems	1
11	Tutorial 10 – Laplace equation	1
		11
	TOTAL	60 +10

Reference Books:

- 1. Gerald, C.F, and wheatly, P.O, 2002. Applied Numerical Analysis, Sixth Edition, Pearson Education Asia, New Delhi
- 2. Balagurusamy.E., 1999; Numerical Methods, TataMcGraw, Hill Pub.Co.Ltd., New Delhi.
- 3. Kandasamy.P, Thilagavathy, K.Gunavathy, K., 1999, Numerical Methods; S.Chand Co. New Delhi.
- 4. Burden, R.L and T.D., 2002 numerical Analyis, 7th Edition, Thomson asia Pvt. Ltd., Singapore.
- 5. Venkataraman M.K.1991.Numerical Methods National Pub.Co, Chennai.
- 6. Sankara Rao., 2004. Numerical Methods for Scientists and engineers, 2nd Ed.Prentice Hall.India

Unit - I Solutions of Equations and Eigen Value Problems. () Write the gr eqn f(x) = 0 into the form $x = \sigma(x)$ Itenative Method : () Write the given $\chi = \varphi(\chi)$ form $\chi = \varphi(\chi)$ (2) Assume that $\chi = \chi_0$ be the proof q the given eqn (3) The joint approximation to the proof is qn by $\chi_1 = \varphi(\chi_0)$ $\eta = \chi_2 = \varphi(\chi_1)$ $\eta = \chi_3 = \varphi(\chi_2)$ $= \Re(x_{n-1})$ $= \Re(x_n)$ $= \Re(x$ ● Find the most of the equation as x = 3x - 1, using iteration Method soln (2004 0 - 3x + 1) f(x) = (05x - 3x + 1)f(0) = 00 - 3(0) + 1 = 2 -> + ve f(1) = 00 - 3(1) + 1 = 0 - 3(1) + 1 - 2. The groot lies between 0 and 1 3

The opn can be written an

$$(3 \times -3 \times +1) = 0$$

 $-3 \times - (3 \times -1)$
 $3 \times -3 \times +1$
 $x = \frac{1}{3} \int 1 + (3 \times)$
 $1 \times (x) = \frac{1}{3} \int 1 + (3 \times)$
 $q'(x) = -\frac{1}{3} \sin x$
 $|q'(x)| = \frac{1}{3} \sin x$
 $|q'(x)| = \frac{1}{3} \sin x$
 $|q'(x)| = \frac{1}{3} \sin x$
 $1q'(x)| = \frac{1}{3} \sin x$
 $1q'(x) = \frac{1}{3} (1 + (3 \times)) = \frac{1}{3} (1 + (3 \times))$
 $x_1 = q(x_0) = \frac{1}{3} (1 + (3 \times)) = \frac{1}{3} (1 + (3 \times))$
 $x_2 = q(x_1) = \frac{1}{3} (1 + (3 \times)) = \frac{1}{3} (1 + (3 \times))$
 $x_2 = q(x_2) = \frac{1}{3} (1 + (3 \times)) = \frac{1}{3} (1 + (3 \times))$
 $x_3 = 0.66073$
 $x_3 = 0.6073$
 $x_4 = q(x_3) = \frac{1}{3} (1 + (3 \times)) = \frac{1}{3} (1 + (3 \times))$
 $x_4 = 0.6067$

$$\begin{aligned} &\mathcal{X}_{5} = \varphi(x_{4}) = \frac{1}{3} (1 + 01 \times 4) = \frac{1}{3} (1 + 03 \circ 6067) \\ &\mathcal{X}_{5} = 0.6072 \\ &\mathcal{X}_{6} = \varphi(x_{5}) = \frac{1}{3} (1 + 01 \times 5) = \frac{1}{3} (1 + 01 \circ 607) \\ &\mathcal{X}_{6} = \varphi(x_{5}) = \frac{1}{3} (1 + 01 \times 5) = \frac{1}{3} (1 + 01 \circ 607) \\ &\mathcal{X}_{7} = \varphi(x_{5}) = \frac{1}{3} (1 + 01 \times 6) = \frac{1}{3} (1 + 01 \circ 607) \\ &\mathcal{X}_{7} = 0.6071 \\ &\mathcal{X}_{7} = 0.6071 \\ &\vdots. The stequired store is 0.6071. \end{aligned}$$

(read) $\varphi(x) = \sqrt{2x+3} = (2x+3)^{1/2}$ (cros) $\varphi'(x) = \frac{1}{2}(2x+3)^{-1/2} \frac{1}{2}$ $|q'(x)| = |(2x+3)^{-1/2}|$ $|q'(2)| \neq |q'(3)| < |$ $\begin{aligned} \text{Take} \quad \begin{array}{l} \mathcal{N}_{0} &= 2.5 \\ \mathcal{N}_{1} &= \varphi(\mathbf{x}_{0}) = \sqrt{2\mathbf{x}_{0}+3} \pm \sqrt{2(2.5)+3} = 2.8284 \\ \mathcal{N}_{2} &= \varphi(\mathbf{x}_{1}) = \sqrt{2\mathbf{x}_{1}+3} = \sqrt{2(2.8284)+3} = 2.9422 \\ \mathcal{N}_{2} &= \varphi(\mathbf{x}_{1}) = \sqrt{2\mathbf{x}_{1}+3} = \sqrt{2(2.9422)+3} = 2.9807 \\ \mathcal{N}_{3} &= \varphi(\mathbf{x}_{2}) = \sqrt{2\mathbf{x}_{3}+3} = \sqrt{2(2.9422)+3} = 2.99807 \\ \mathcal{N}_{4} &= \varphi(\mathbf{x}_{2}) = \sqrt{2\mathbf{x}_{3}+3} = \sqrt{2(2.9807)+3} = 2.9936 \\ \mathcal{N}_{5} &= \varphi(\mathbf{x}_{4}) = \sqrt{2\mathbf{x}_{4}+3} \pm \sqrt{2(2.9807)+3} = 2.9977 \\ \mathcal{N}_{5} &= \varphi(\mathbf{x}_{4}) = \sqrt{2\mathbf{x}_{4}+3} \pm \sqrt{2(2.9936)+3} = 2.99972 \end{aligned}$ $\mathcal{H}_{6} = \varphi(\mathcal{H}_{5}) = \sqrt{2\mathcal{H}_{5}^{+3}} = \sqrt{2(2.979)+3} = 2.999.3$ $\begin{aligned} &\mathcal{H}_{7} = \varphi(\mathcal{H}_{6}) = \sqrt{2\mathcal{H}_{6}^{+3}} = \sqrt{2(2.9993)} = 2.9998 \\ &\mathcal{H}_{8} = \varphi(\mathcal{H}_{7}) = \sqrt{2\mathcal{H}_{7}^{+3}} = \sqrt{2(2.9998)} = 2.99999 \end{aligned}$ $\mathcal{H}_{g} = \varphi(x_{g}) = \sqrt{2x_{g}+3} = \sqrt{2(2\cdot9999)+3} = 2\cdot9999$ The required groot is 2.9999

(3) Solve 1 by "tertation Method
$$\Im x - \log_{10} x = 7$$

Bolo
 $\Im x - \log_{10} x - 7 = 0$
 $\varphi(x) = \Im x - \log_{10} x - 9$
 $\varphi(x) = \Im x - \log_{10} x - 9$
 $\varphi(x) = \Im x - \log_{10} x - 9$
 $\varphi(x) = \Im x - \log_{10} x - 9$
 $\varphi(x) = -3 \cdot 3010 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 5 - 922$
 $\varphi(x) = -1 \cdot 4717 - 522$
 $\varphi(x) = -1 \cdot 4717 - 52$

 $\chi_{2} = \varphi(\chi_{1}) = \frac{1}{2} [109_{10}\chi_{1} + 7]$ = 1 [log 3.7782 +7] 2= 3.7886 x3 = q(x2) = 1/2 [109, x2 + 7] = 1 [109 3.7886+7] x3 = 3.7892 $x_{4} = \varphi(x_{3}) = \frac{1}{2} \left[\log_{10} x_{3} + 7 \right]$ = 1 [109 10 3.7892 +7] 24=3.7893 $x_{5} = \varphi(x_{4}) = \frac{1}{2} [\log_{10} x_{4} + 7]$ Bal = 1 [log 3.7892+7] ×5=3.7893 The magnined root is 3.7.893 H. W find the negative proof q the eqn $\chi^3 - 2\chi + 5 = 0$

Grauss Jordan Method 2x - y + 6z = 22 x + 7y - 3z = -225x - 2y+3z = 18 Soln $-2 \quad 1 \quad -6 \quad | \quad -22 \quad]R_1 - 2 - 2R_1 \\ R_2 - 2R_1 \\ R_2 - 2R_2 \\ R_3 - 2R_2 \\ R_3 - 2R_3 \\$.

-> R, X-5-26 3 0 5/35/2 0 -5 0 R2 -2 $R_2 - 2R_2 \times \frac{7}{5}$ $R_1 - 2R_1 \times \frac{13}{5}$ 0 オニ3. -2 y = $\chi + 3y + 3z = 16$ $\chi + 4y + 3z = 18$ $\chi + 3y + 4z = 19$ Solve 2

3 3 b 343 (A,B] = 33 16/3 C 2 0 3 0 3 C 3 2 2 2 0 0 3 x = 1, y = 2,Z=3

Solve 10x + y + z = 12 2x + 10y + z = 13 x + y + 5z = 7soln $\begin{bmatrix} A, B \end{bmatrix} = \begin{bmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 13 \\ 1 & 1 & 5 & 7 \end{bmatrix}$ X=1, y=2, 223

49 0 53 49 2365 R,-Ra 10/9 3/4 8 0 0 北 R2 $R_3 -$ 98 99 49 0 0 O a 0 C B 4

Inverse of a Matin Gauss Jordan Method invour of the Method. Jordan Grauss ung colo 3 - 3 100-2

100 Ri-3 -1/20 Ri-3 -1/20 Ri-3 1 4 6 6 3/2 1/2 0/2 $R_{1} - 2R_{1} - R_{2}$ $R_{3} - 2R_{3} - R_{2}$ 2 -1/2 0] R_1->R/6 -1/2 0] R_2->R_2/3 -1/6 -1/4] R_2->R_3/2 06 1/2 1/6 1/4 5/12 -1/4 -1/1 -1/4 $R_1 \rightarrow R_1 - R_2$ $R_2 \rightarrow R_2 - R_3$ 0-0 16 0 3 1 22 0 -5/4 -1/4 -3/4 0 -1/4 -1/4 -1/4 R,-7R, × 6 3 -5/4 -1/4 -1/4 -1/4 is 1 7

he Matrin Grauss Jordan the inverse the 8 find D 3-15 -521 using Method. Soln 3 15 6 0 -15 -5 0 C 64 0 0 3 B 3 10 C 3 2 57 0

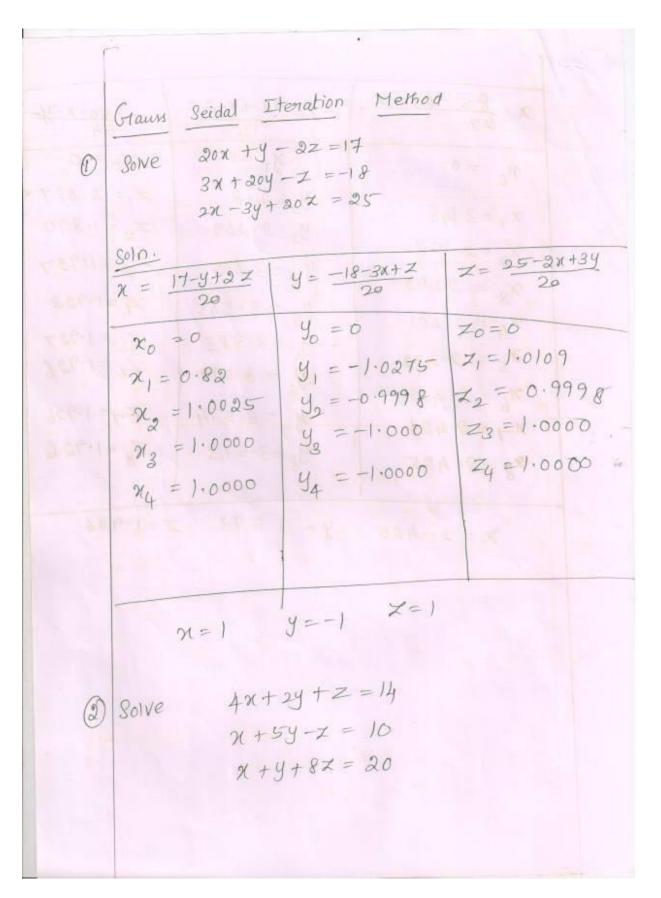
 $= \frac{1}{10} \begin{bmatrix} 6 & 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1$ 0 0 1 35 1 -3 R - 28; 10 0 29/2 1/0 3 R - 28; 0 1 1/3 0 3/3 R - 28; = [I] (A)= [I] (A)

٠ find Jordan Method Grauss re onve he 3 C Solo 2 0 0 C B 0 D 2

 $\begin{bmatrix} -1 & 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & -1 & 0 & 0 \\ \hline -3 & 5 & 0 & R_{-} & -2 \\ \hline 0 & 1 & -2 & 3 & 5 & R_{-} & -2 \\ \hline 0 & 0 & 0 & 1 & -2 & 3 & 5 & R_{-} & -2 \\ \hline 0 & 0 & 0 & 1 & -2 & 3 & 5 & R_{-} & -2 \\ \hline 0 & 0 & 0 & 1 & -2 & 3 & 5 & R_{-} & -2 \\ \hline 0 & 0 & 0 & 0 & 1 & -2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -2 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 &$ $= \begin{bmatrix} 1 & 0 & 0 & 1/10 & 3/10 & 5 \\ 0 & 1 & 0 & 21/20 & -7/20 & -3/5 \\ 0 & 0 & 1 & -9/10 & 3/10 & 1/5 \\ = \begin{bmatrix} 1/A \end{bmatrix} \qquad (10 & 1/5) & -9/10 & 1/5 \\ = \begin{bmatrix} 1/A \end{bmatrix} \qquad (10 & 3/10 & 1/5) & -9/10 & 1/5 \\ = \begin{bmatrix} 2/A \end{bmatrix} \qquad (10 & 3/10 & 1/5) & -7/100$

X= 24-X-39 y=35-4x-2x $\chi = \frac{32 - 4y + z}{28}$ 70=0 Y0 = 0 No = 0 y,=2.0588 Z,=2.4 21 = 1.1429 y2=1.3597 Z= 1.6681 2=0.9345 yg=1.5564 Z2 = 1.898 2 = 1.0082 $M_4 = 0.9883$ $Y_4 = 1.4935$ $Z_4 = 1.832 = 3$ x5-=0.9949 JS-=1.514 Z5=1.8531 $\varkappa_6 = 0.9931$ $y_6 = 1.5058$ $z_6 = 1.847$ $\chi_7 = 0.9937$ $y_7 = 1.5074$ $Z_7 = 1.8490$ 28 = 0.9936 Y8 = 1.5069 Z8 = 1.8484 - 21g = 0.9936 Jg = 1.5070 Zg = 1.8486 2210=0.9936 410=1.5070 Z10=1.8485 Z1=1-8485n = 0.9936 Y = 1.5070 . The Soln is x = 0.9936 y=1.5076 z=1.8485 Solve 27x + 6y - Z = 85 (3) 2+4+547=110 6x + 15y + 2 = 72

Z= 110-X-Y 20=0 20=0 210 = 0 Y,=4.8 Z,=2.037 x, = 3.148 y2=3.269 Z2=1.890 2=2.157 Y3=3.685 Z3=1.937 N3 = 2.492 94 = 2.401 75= 2.432 N6 = 2. 423 27=3.574 Zy=1.926 03 po- xy = 2.426 yg=3.573 Zg=1.926 a 2. 425 y= 3.573 Z=1.926, x=2.425



y= 72-6x-22 Z= 110-x-y 15 Z= 10-x-y 54 $\mathcal{H} = \frac{85 - 6y + Z}{27}$ y0=0 Z0=0 No = 0 $\chi_1 = 3.148$ $\chi_2 = 2.432$ $\chi_3 = 2.426$ $\chi_4 = 2.426$ 94 = 3.573 Z4=1.926 $\chi = 2.4 26$ $\gamma = 3.573$ $\chi = 1.926$

$$\begin{aligned} \begin{array}{c} \begin{array}{c} \hline Figen \quad Values \quad \underline{q} \quad \underline{a} \quad Matrix \quad \underline{by} \quad powen \quad Method \\ \hline \hline Find \quad Hie \quad numerically \quad largest \quad eigen \quad Value \\ \hline q \quad A = \begin{bmatrix} 25 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix} \quad and \quad ids \quad Corresponding \\ eigen \quad Vector \quad by \quad powen \quad method, \quad baking \quad Hie \\ \hline initial \quad eigen \quad Vector \quad as \quad (1 \ 0 \ 0)^T \quad (upto \\ Hince \quad decimal \quad places \\ \hline Hince \quad decimal \quad places \\ \hline \end{array} \end{aligned}$$

$$\begin{aligned} \begin{array}{c} \hline A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \\ \hline A \times_1 = \begin{pmatrix} 1 \\ 0 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \\ \hline A \times_2 = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 25 \\ 1 \\ 2 \end{pmatrix} = 25 \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 08 \end{pmatrix} = 25 \times \frac{1}{2} \\ \hline 0 & 08 \\ 0 & 0667 \end{pmatrix} \\ \hline = 25 \cdot 2 \times \frac{3}{3} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

I.

$$A X_{\mu} = \begin{pmatrix} 25 & i & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0 & 0450 \\ 0 & 0698P \\ 0 & 069PP \end{pmatrix} = \begin{pmatrix} 25 & 1926 \\ 1 & 1935 \\ 0 & 0685 \\ \end{pmatrix} = 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 0 & 0685 \\ \end{pmatrix} = 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 1 & 13353 \\ 1 & 17240 \\ \end{pmatrix}$$

$$= 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 0 & 0685 \\ \end{pmatrix} = 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 0 & 0685 \\ \end{pmatrix} = 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 0 & 0685 \\ \end{pmatrix}$$

$$Dominant eigen Value \lambda = 25 \cdot 1821 \\ 0 & 0685 \\ 0 & 0685 \\ \end{pmatrix}$$

$$Determine by Powen ruemod the larger value and the conseptending largest eigen Value and the conseptending largest eigen Value A = 25 \cdot 1824 \begin{pmatrix} 1 \\ 0 & 0457 \\ 0 & 0685 \\ 0 & 0685 \\ \end{pmatrix}$$

$$\begin{array}{l} y_{0}b_{0} \\ X_{1} = \int_{0}^{1} \int_{0}^{1$$

$$A_{X_{1}} = \begin{pmatrix} 1 & 6 & 1 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 24 & 9 \\ 0 & 0 & 0 & 24 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 & 9 \\ 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0$$

$$A \times_{5^{-}} = \begin{pmatrix} +3 \cdot 97 \ 0 \cdot 6 \\ 1 \cdot 99 \ 0 \cdot 2 \end{pmatrix} = 3 \cdot 970 \cdot 6 \begin{pmatrix} 0 \cdot 502 \\ 0 \cdot 92 \\ 0 \end{pmatrix} = 3 \cdot 970 \cdot 6 \begin{pmatrix} 0 \cdot 4997 \\ 0 \end{pmatrix} = 4 \cdot 0072 \times_{7}$$

$$A \times_{7} = \begin{pmatrix} 3 \cdot 9982 \\ 1 \cdot 9994 \\ 0 \end{pmatrix} = 3 \cdot 9782 - (0 \cdot 500 \ 0) = 3 \cdot 9787 \times_{7}$$

$$A \times_{7} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 4 \times_{9}$$

$$A \times_{9} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$A \times_{9} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$Do \text{Minant eigen Value in } = 4$$

$$Grresponding eigen Vector in \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

<u>Eigen Value q a Matrix by Jacobi</u> Method for Symmetric Matrix Let $P = \begin{pmatrix} Coro & -\sin O \\ \sin O & \end{pmatrix}$ $Q = \frac{1}{2} \tan^{-1} \left(\frac{2a_{ij}}{a_{ij} - a_{jj}} \right)$ D=PAP D Apply Jacobi process to evaluate Apply Jacobi process to evaluate the eigen values and eigen vectors the eigen Matrix (5001 9 the Matrix (5001 0-20) 105) Solo A = (5 -2 0) Solo The langest non diagonal element is a13 = 3, = 1 a. = 5 = 0 a₁₁ = 5 , a₃₃ = 5

tan 20 a, tan 20 20 0 TI -000 0 Sinto 5 Sing 630 C Sin 0 C 61 7) O 1) 6

I St transformation $D = P^T A P$ $= \left(\frac{1}{10} \circ \frac{1}{10}\right) \left[\frac{1}{10} \circ \frac{1}{10}\right] \left[$ $D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ The eigen values are 6, -2, 4 corresponding eigen vectors are 120 - 12 120 - 12 120 - 12 Find all the eigen values and eigen vectors of the Matrix [1 V2 2 V2 3 V2] using Jacobi Method. 2 V2 1]

5 12 Here the largest non diagonal element is $a_{13} = a_{31} = 2$. $a_{11} = 1, a_{33} = 1$ $S_{1} = \begin{bmatrix} a_{10} & 0 & 0 & -sin0 \\ 0 & 1 & 0 \\ sin0 & 0 & an0 \end{bmatrix}$ $\tan 20 = 2a_{13}$ $a_{11} - a_{33}$ $\tan 20 = 8$ 20 = TT/2 0=11/4 S,= (1/2) / 1/2]

$$B_{1} = S_{1}^{-1}AS_{1} \circ = \begin{cases} \frac{1}{12} \circ \frac{1}{12} \circ \frac{1}{12} \\ \frac{1}{22} \\ \frac{1}{22} \circ \frac{1}{12} \\ \frac{1}{22} \\$$

Sa (12 12 0) 12 12 0 12 12 0 $B_{2} = S_{1}^{-1}B_{1}S_{2}$ $= \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & 0 \\ \frac{1}{12} & 0$ $= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 72 \end{pmatrix} \begin{pmatrix} 9 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 72 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 72 \end{pmatrix}$ $= \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ $= \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ $\therefore A \text{ is preduced to the diagonal}$ Matrix B₂: Hence the eigen values g A is 5, 1, -)

S= S, S_2 = (t2 0 t2)(t2 t2 0) (t2 0 t2 0)(t2 t2 0) (t2 0 t2 0)(t2 0) -12-12-12 -12-12-12 -12-12-12 eigen vectors are (ta 1/2 $\begin{pmatrix} -1\\ V_{2} \end{pmatrix}$ \neq $\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$

Questions	opt1	opt2		opt3	opt4	Answer	
In Regula Falsi method, to reduce the number of iterations we start with interval	Small	large		equal	no	Small	
The rate of convergence in Newton Raphson method is of order	1		2		3	4	2
The condition for convergence for Newton Raphson method is Newtons method is useful when the graph of the function crosses	f(x) < f'(x) ^2	f(x) > f'(x) ^2		f(x)f"(x) < f'(x) ^	-	4 f(x)f"(x) < f'(x)	
the x-axis is nearly If the initial approximation to the root is not given we can find	vertical	horizontal		close to zero	zero	vertical	
any two values of x say a and b such that f (a) and f(b) are of	opposite	same		positive	negative	opposite	
f(a) = f(b) then a can be taken as the first approximation to the root.	<	>		=	greaterthan or equal	<	
The Newton Raphson method is also known as method of				-, ,-	· · · · ·		
The Newton Raphson method will fail if in the	secant	tangent		iteration	interpolation	tangent	
neighborhood of the root	f(x)=0	f(x) >0		f(x) < 0	f(x) > 1	f'(x)=0	
If $f(x)=0$ method should be used.	Newton Raphson	Regula Falsi		iteration	interpolation	Regula Falsi	
The rate of convergence of Newton - Raphson method is							
$\overline{\text{If } f(a) \text{ and } f(b)}$ are of opposite signs the actual root lies between	quadratic	cubic		·	4	5 quadratic	
If I (a) and I (b) are of opposite signs the actual root lies between	(a,b)	(0,a)		(0,b)	(0,0)	(a,b)	
The convergence of root in Regula Falsi method is slower than	(4,0)	(0,4)		(0,0)	(0,0)	(4,0)	
	Gauss Elimination	Gauss Jordan		Newton Raphson		Newton Raphson	n
Regula Falsi method is known as method of	secant	tangent		chords	elimination	chords	
method converges faster than Regula Falsi method.	Nouton Bonhoon	Dower method		elimination	intermolation	Nouton Banka	
f(x) is continuous in the interval (a, b) and if f (a) and f (b) are of	Newton – Raphson	Fower method		emmination	interpolation	Newton – Raphs	-011
opposite signs the equation $f(x) = 0$ has at least one							
lying between a and b.	equation	function		root	polynomial	root	
$x^2 + 3x - 3 = 0$ is a polynomial of order	2	2	3		1	0	2
x is a root of f(x)=0 with multiplicity p,then method is							
used.	Generalized Newton	n Newton Raphs	on	Regula-Falsi	Power	Generalized New	vton Raphson
Errors which are already present in the statement of the problem are called errors.	Inherent	Rounding		Truncation	Absolute	Inherent	
Rounding errors arise during	Solving	Computation		Truncation	Absolute	Computation	
The other name for truncation error is error.	Absolute	Rounding		Inherent	Algorithm	Algorithm	
Rounding errors arise from the process of the		-			-	-	
numbers.	Truncating	Rounding off		Approximating	Solving	Rounding off	
Absolute error is denoted by	E_a	E_r		E_p	E_x	E_a	
Truncation errors are caused by using results. Truncation errors are caused on replacing an infinite process by	Exact	True		Approximate	Real	Approximate	
one.	Approximate	True		Finite	Exact	Finite	
Graffes root squaring method is used for solving							
equation.	Polynomial	Algebraic		transcendental	wave	Polynomial	
Bairstows method is used for finding roots of a	G 1				~ · 1	G 1	
polynomial equation. The actual root of the equation lies between a and b when f (a)	Complex	real		second order	first order	Complex	
and f (b) are of signs	Opposite	same		negative	positive	Opposite	
and f (b) are of signs. If a word length is 4 digits, then the truncation of 15.758 is	Opposite 15.75	same	5.76	negative 15.75	positive 8	Opposite 16	15.75
and f (b) are of signs. If a word length is 4 digits, then the truncation of 15.758 is If a word length is 4 digits, then rounding off of 15.758 is		5 1:	5.76 5.76	15.75	8	••	15.75 15.76

$$= \frac{(\chi - 1)(\chi - 3)}{3}(5) + \frac{\chi(\chi - 3)}{-2}(6) + \frac{\chi(\chi - 1)}{6}(5)$$

$$= \frac{5}{3}[\chi^{2} + 4\chi + 3] - 3[\chi^{2} - 3\chi] + \frac{50}{6}[\chi^{2} - \chi]$$

$$= \chi^{2}[\frac{5}{3} - 3 + \frac{50}{6}] + \chi[-\frac{30}{3} + 9 - \frac{50}{6}]$$

$$= \chi^{2}[\frac{5}{3} - 3 + \frac{50}{6}] + \chi[-\frac{30}{3} + 9 - \frac{50}{6}]$$

$$= \chi^{2}[\frac{5}{3} - 3 + \frac{50}{6}] + \chi[-\frac{30}{3} + 9 - \frac{50}{6}]$$

$$= \chi^{2}[\frac{5}{3} - 3 + \frac{50}{6}] + \chi[-\frac{5}{3}]$$

$$= -\chi^{2} + (-6)\chi + 5$$

$$\frac{\chi}{9} = \rho(\chi) = -\chi^{2} - 6\chi + 5$$

$$\frac{\chi}{9} = \rho(\chi) = -\chi^{2} - 6\chi + 5$$

$$\frac{\chi}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3 \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3 \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3 \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad \chi_{3} = 4, \quad \chi_{4} = 5$$

$$\frac{\chi_{0}}{9} = 0 \quad \chi_{1} = 1 \quad \chi_{2} = 3, \quad (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{4}), \quad y_{0}$$

$$+ (\chi_{2} - \chi_{0}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{4}), \quad y_{0}$$

$$+ (\chi_{2} - \chi_{0}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{4}), \quad y_{2}$$

$$+ (\chi_{2} - \chi_{0}) (\chi_{2} - \chi_{1}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{4}), \quad y_{2}$$

$$+ (\chi_{2} - \chi_{0}) (\chi_{2} - \chi_{1}) (\chi_{2} - \chi_{3}) (\chi_{2} - \chi_{4})$$

$$\begin{aligned} p_{ut} = x = 2 \\ y(z) &= \frac{(2-1)(2-3)(2-4)(2-5^{-1})}{(2-1)(2-3)(2-4)(2-5^{-1})} \\ + \frac{(2-0)(2-3)(2-4)(2-5^{-1})}{(1-0)(1-3)(1-4)(1-5^{-1})} \\ (1) \\ + \frac{(2-0)(2-1)(2-4)(2-5)}{(3-0)(2-4)(2-5)} \\ (81) \\ (3-0)(3-1)(3-4)(3-5) \\ + \frac{(2-0)(2-1)(2-3)(2-5)}{(4-0)(4-1)(4-3)(4-5)} \\ (550) \\ + \frac{(2-0)(2-1)(2-3)(2-4)}{(5-0)(5-3)(5-4)} \\ (625) \\ &= \frac{(2)(-1)(-2)(-3)}{(1)(-2)(-3)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(1)(-2)(-3)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-2)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-1)(-3)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-3)(-3)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-3)(-3)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-3)}{(2-5)(-4)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-3)}{(2-5)(-4)(-4)(-4)} \\ + \frac{(2)(1)(-3)}{(2-5)(-4)(-4)} \\ + \frac{(2)(1)(-3)}{(2-5)(-4)} \\ + \frac{(2)(1$$

$$\begin{array}{c} y = f(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} \cdot y_{0} \\ + \frac{(x - x_{0})(x - x_{1})(x_{0} - x_{3})}{(x_{1} - x_{0})(x - x_{1})(x_{0} - x_{3})} \cdot y_{1} \\ + \frac{(x - x_{0})(x - x_{1})(x_{0} - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{3} - x_{3})} \cdot y_{2} \\ + \frac{(x - x_{0})(x - x_{1})(x_{0} - x_{3})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{3})} \cdot y_{3} \\ p_{ut} = f(65b) = \frac{(65b - 658)(65b - 659)(65b - 66b)}{(65y - 658)(65y - 659)(65b - 66b)} \cdot (2.8182) \\ + \frac{(656 - 65y)(65b - 659)(65b - 659)(65b - 66b)}{(659 - 65y)(65b - 66b)}(2.8182) \\ + \frac{(656 - 654)(65b - 659)(65b - 659)(65b - 66b)}{(65b - 659)(65b - 659)(65b - 66b)} \cdot (2.8182) \\ + \frac{(656 - 654)(65b - 659)(65b - 659)(65b - 659)}{(65b - 659)(65b - 659)(65b - 659)} \cdot (2.8182) \\ - \frac{(-2)(-3)(-5)}{(-x)(-7)}(2 - 8156) + \frac{2(-3)(-5)}{4(-1)(-3)}(2 - 8182) \\ - \frac{(-2)(-3)(-5)}{(-x)(-2)}(2 - 8189) + \frac{(2)(-2)(-3)}{(-3)(2)}(2 - 8202) \\ (5)(1)(-2)(-2)(-5) - 5(-538)(-538) + 0.8058 \\ = 2 \cdot 8168 \\ \end{array}$$

$$\begin{aligned} \frac{\Im f_{0}}{\Im_{0}} & \begin{array}{l} \chi_{0} = 3 & \chi_{1} = 7 & \chi_{2} = 9 & \chi_{3} = 10 \\ \chi_{0} = 168 & \chi_{1} = 120 & \chi_{2} = 72 & \chi_{3} = 63 \\ \Im & y = f(x) = \frac{(\chi - \chi_{1}) (\chi - \chi_{2}) (\chi - \chi_{2}) (\chi - \chi_{3})}{(\chi_{0} - \chi_{1}) (\chi_{0} - \chi_{2}) (\chi_{0} - \chi_{3})} & \chi_{0} \\ & + \frac{(\chi - \chi_{0}) (\chi - \chi_{1}) (\chi - \chi_{3}) (\chi - \chi_{3})}{(\chi_{2} - \chi_{0}) (\chi_{1} - \chi_{2}) (\chi_{1} - \chi_{3})} & y_{1} \\ & + \frac{(\chi - \chi_{0}) (\chi - \chi_{1}) (\chi - \chi_{3})}{(\chi_{3} - \chi_{0}) (\chi_{3} - \chi_{1}) (\chi_{3} - \chi_{3})} & y_{3} \\ & H(\chi - \chi_{0}) (\chi - \chi_{1}) (\chi_{3} - \chi_{3}) & \chi_{3} \\ & H(\chi - \chi_{0}) (\chi - \chi_{1}) (\chi_{3} - \chi_{3}) & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{3} - \chi_{3}) & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{3} - \chi_{3}) & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) & (\chi_{3} - \chi_{3}) \\ & + \frac{(K - \chi_{0}) (K - \gamma) (K - \gamma_{1})}{(\chi_{3} - \chi_{0}) (\chi_{3} - \chi_{1}) (\chi_{3} - \chi_{3})} & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{3} - \chi_{3}) & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) & (\chi_{1} - \chi_{1}) \\ & + \frac{(K - \chi_{0}) (K - \gamma_{1}) (\chi_{1} - \chi_{1})}{(\chi_{3} - \chi_{0}) (\chi_{3} - \chi_{1}) (\chi_{3} - \chi_{3})} & y_{3} \\ & H(\chi - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) & (\chi_{1} - \chi_{1}) \\ & + \frac{(K - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1})}{(\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1})} & (\chi_{1} - \chi_{1}) \\ & + \frac{(K - \chi_{0}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1})}{(\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1})} \\ & = \frac{(-1) (-3) (-1)}{(-\chi_{1}) (-1) (-1)} (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) \\ & = \frac{(-1) (-3) (-1)}{(\chi_{1}) (-1)} (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1}) (\chi_{1}) \\ & = \frac{(-1) (-1) (-1)}{(\chi_{1}) (-1)} (\chi_{1} - \chi_{1}) (\chi_{1} - \chi_{1}) (\chi_{1}) (\chi_{1})$$

6) Find the Mining both in the following
has been using Lagranges interpolation

$$\frac{\pi}{y} = 0 \quad x_1 = 1 \quad x_2 = 3 \quad x_3 = 1, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_0 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_1 = 1 \quad y_1 = 3 \quad y_2 = 9 \quad y_3 = 8, \\
y_1 = y_3 \quad 0 \quad (x_1 - x_1) \quad (x_1 - x_3) \quad (x_1 - x_3) \quad y_3 \\
+ (x_1 - x_0) \quad (x_1 - x_1) \quad (x_1 - x_3) \quad y_1 \\
+ (x_1 - x_0) \quad (x_1 - x_1) \quad (x_1 - x_3) \quad y_2 \\
+ (x_1 - x_0) \quad (x_1 - x_1) \quad (x_1 - x_3) \quad y_3 \\
y_1 = y_3 \quad (x_3 - x_1) \quad (x_3 - x_3) \quad y_3 \\
y_1 = y_3 \quad (x_3 - x_1) \quad (x_3 - x_3) \quad y_3 \\
y_1 = y_3 \quad (x_3 - x_1) \quad (x_3 - x_3) \quad (x_3 - x_3) \quad y_3 \\
y_1 = y_3 \quad (x_3 - x_1) \quad (x_3 - x_3) \quad (x_4 - x_3) \quad (x_5 - x_5) \quad (x_5 - x_5$$

+
$$(0+2\circ)(0+13)(0-18).(38)$$

+ $(0+3\circ)(0+13)(8-19)$
+ $(0+3\circ)(0+13)(8-3)$
(18+30) (18+13) 18-3)
= $31\cdot 23.$
(3) Find the value of 0 guien $F(0) = 0.3887$
where $f(0) = \int \frac{do}{do}$ using the table
 $0 \sqrt{1-\frac{1}{5}\sin^{2}\theta}$ using the table
 $\sqrt{1-\frac{1}{5}\sin^{2}\theta}$
 $\boxed{0}$ $\frac{21^{\circ}}{23^{\circ}}$ $\frac{25^{\circ}}{25^{\circ}}$
 $\boxed{1}$ $\frac{1}{160}$ 0.3706 0.4068 0.4433 .
 $3eln$ Let $0 = \pi$
 $f(0) = F(\pi) = y$
 $\boxed{\frac{\chi}{2}}$ $\frac{21^{\circ}}{23^{\circ}}$ $\frac{25^{\circ}}{25^{\circ}}$
 $\boxed{\frac{\chi}{9}}$ 0.3706 0.4068 0.4433 .
 $\chi = f(y) = (\frac{y-y_{1}}{y}, (\frac{y-y_{2}}{y}), \pi_{0} + (\frac{y-y_{0}}{y}, (\frac{y-y_{2}}{y}), \pi_{1})$
 $+ (\frac{y-y_{0}}{y}, (\frac{y-y_{1}}{y}), \pi_{2} + (\frac{y-y_{0}}{y}, (\frac{y-y_{1}}{y}), \pi_{2})$
 $\Re t$ $y = 0.3887$ $(\frac{y-y_{1}}{y}, (\frac{y-y_{1}}{y})$ $(0.3887-0.4433)$ (21)
 $\frac{1}{0.3766}$ -0.37061 $(0.3887-0.4433)$ (25)
 $\frac{1}{0.4688}$ $-0.37062(0.03887-0.4433)$ (25)

Newton's divided difference formula: (unequal)

$$y = \beta(x) = y_0 + (x - x_0) \ \Delta \beta(x_0) + (x - x_0)(x - x_1) \ \Delta \beta(x_0) + \dots + (x - x_0)(x - x_1) \ \Delta \beta(x_0) + \dots + (x - x_0)(x - x_1)(x - x_2) \ \Delta \beta \beta(x_0) + \dots + (x - x_0)(x - x_1)(x - x_2) \ \Delta \beta \beta(x_0) + \dots + (x - x_0)(x - x_1) \ \Delta \beta \beta(x_0) \ \Delta \beta(x_0) = \frac{1}{2} \ \Delta \beta \beta(x_0) \ \Delta \beta(x_$$

$$= x^{3} \begin{bmatrix} \frac{1}{14} \end{bmatrix} + x^{2} \begin{bmatrix} -\frac{1}{6} \end{bmatrix} -\frac{3}{14} - \frac{7}{14} \end{bmatrix} + x \begin{bmatrix} 4 + \frac{12}{6} + \frac{2}{16} \end{bmatrix} + \frac{21}{16} \end{bmatrix} + \begin{bmatrix} -\frac{1}{6} - \frac{8}{6} - \frac{14}{14} \end{bmatrix} + x \begin{bmatrix} 4 + \frac{12}{6} + \frac{2}{16} + \frac{21}{16} \end{bmatrix} + \begin{bmatrix} -\frac{1}{6} - \frac{8}{6} - \frac{14}{14} \end{bmatrix} + x \begin{bmatrix} 6 + \frac{12}{6} + \frac{2}{16} + \frac{21}{16} \end{bmatrix} + \begin{bmatrix} -\frac{1}{6} - \frac{8}{6} - \frac{14}{14} \end{bmatrix} + \begin{bmatrix} \frac{1}{6} \end{bmatrix} + \frac{3}{6} \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 6 \end{bmatrix}^{3} - \frac{39}{24} \begin{bmatrix} 6 \end{bmatrix}^{2} + \begin{bmatrix} 07(6) - 1\frac{169}{24} \end{bmatrix} + \frac{16}{16} \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 6 \end{bmatrix}^{3} - \frac{39}{24} \begin{bmatrix} 6 \end{bmatrix}^{2} + \begin{bmatrix} 07(6) - 1\frac{169}{24} \end{bmatrix} + \frac{16}{36} = \frac{16}{16} \end{bmatrix} + \frac{16}{14} + \frac{16}{36} = \frac{16}{16} + \frac{16}{14} + \frac{16}{36} = \frac{16}{16} + \frac{16}{24} + \frac{16}{14} + \frac{16}{36} = \frac{16}{36} + \frac{16}{16} + \frac{16}{24} + \frac{16}{36} + \frac{16}{36} + \frac{16}{16} + \frac{16$$

$$\begin{aligned} y = f(x_{0}) = f(y_{0}) + (x - x_{0}) \Delta f(x_{0}) + (x - x_{0})(x - x_{1}) \Delta^{2} f(x) \\ &+ (x - x_{0})(x - x_{1})(x - x_{2}) \Delta^{3} f(x) \\ &+ (x - x_{0})(x - x_{1})(x - x_{2}) \Delta^{4} f(x) \end{aligned} \\ = 1245 + (x + 4)(-404) + (x + 4)(x + 1)(94) \\ &+ (x + 4)(x + 1)(x - 0)(-4) + (x + 4)(x + 1)(x - 0)(x - 2)(3) \\ &= 1245 - 404x - 1616 + (x^{2} + 5x + 4) 94 \\ &+ (x^{2} + 5x + 4) \times (-44x_{0}) + (x^{2} + 5x + 4) 5x^{2} - 6x \times (-4x^{2} + 5x + 4) - 94 \\ &+ (x^{2} + 5x + 4) \times (-44x_{0}) + (x^{2} + 5x + 4) 5x^{2} - 6x \times (-4x^{2} - 50x + 3x^{2} + 15x^{3} + 12x^{2} - 6x^{2} - 30x^{2} - 30x^{2} - 24x \\ &= 1245 - 404x - 1616 + 94x^{2} + 470x + 876 \\ &= 1245 - 404x - 1616 + 94x^{2} + 470x + 876 \\ &= 1245 - 404x - 1616 + 94x^{2} + 470x + 876 \\ &= 1245 - 404x - 1616 + 94x^{2} + 470x + 876 \\ &= 1245 - 404x - 1616 + 94x^{2} - 16x^{2} + 3x^{2} + 12x^{3} + 12x^{2} - 6x^{2} - 30x^{2} - 24x \\ &= 1245 - 404x - 1616 + 94x^{2} + 64x^{2} + 94x^{2} + 94x^{2} + 20x^{2} + 230 \\ &= x^{4} [3] + x^{3} [-14x + 15x - 6] + x^{2} [94x - 30 + 12x^{2} + 30] \\ &= x^{4} [3] + x^{3} [-14x + 15x - 6] + x^{2} [94x - 30 + 12x^{2} + 30] \\ &= x^{4} [x^{3} - 404x + 470 - 56x^{3} + 5x^{2} + 1245 - 16164x^{2} + 371] \\ &+ x [-404x + 470 - 56x^{3} + 5x^{2} + 51245 - 16164x^{2} + 371] \\ &= 3x^{4} + 5x^{3} + 6x^{2} - 14x + 5 \\ &\hline \hline S Find the cubic following divided difference following table using treations divided difference formula \\ &\frac{x 0x_{0}}{y} - \frac{1}{x} + \frac{2x_{0}}{x} + \frac{5x_{0}}{y} \\ &= \frac{1}{x} - \frac{1}{y} + \frac{2}{x} - \frac{1}{x} + \frac{5x_{0}}{y} \\ \hline \end{bmatrix}$$

$$\frac{gg_{12}}{x} \frac{y = f(x)}{x} \frac{\Delta f(x)}{1 - o} \frac{\Delta^2 f(x)}{y} \frac{\Delta^2 f(x)}{\Delta^2 f(x)} \frac{\Delta^2 f(x)}{x} \frac{\Delta^2 f(x)}{y} \frac{\Delta^2 f(x)}$$

Solve
$$\bigcirc \varphi \oslash$$

 $M_{1} = -12$ $M_{2} = 48$
The cubic gpline polynomial is
 $S(x) = \frac{1}{b} \int (x_{1}, -x)^{3}M_{1-1} - (x_{1-1}, -x)^{3}M_{1}$
 $= \frac{1}{b} \int (x_{1}, -x) \int y_{1-1} - \frac{1}{b} M_{1-1}$
 $+ (x_{1}, -x) \int y_{1-1} - \frac{1}{b} M_{1-1}$
 $- (x_{1-1}, -x) \int y_{1} - \frac{1}{b} M_{1}$
Case(i) $-1 < x < 0$
Put $i = 1$
 $S(x) = \frac{1}{b} \int (x_{1}, -x) M_{0} - (x_{0} - x)^{3}M_{1}$
 $= \frac{1}{b} \int -((-1 - x)^{3}(-12)) + (0 - x) \int (-1)$
 $-(-1 - x) \int 1 + \frac{12}{b}$
 $= \frac{1}{b} \int -12 (1 + x)^{3} J + x + (1 + x) (3)$
 $= -2 \int 1 + x^{3} + 3x + 3x^{2} J + x + 3 + 3x$
 $= -2 - 2x^{3} - 6x^{2} - 2x + 1$, $-1 < x < 0$
Case (ii) $0 < x < 4$
Put $i = 2$

$$\begin{split} & S(x) = \frac{1}{6} \int (x_2 - x_1)^3 M_1 - (x_1 - x)^3 M_2 \\ & + (x_2 - x) \int y_1 - \frac{1}{6} M_1 \int \\ & - (x_1 - x) \int y_2 - \frac{1}{6} M_2 \int \\ & = \frac{1}{6} \int (1 - x)^3 (-12) - (0 - x)^3 (48) \int \\ & + (1 - x) \int 1 - \frac{1}{6} (-12) \int - (0 - x) \\ & + (1 - x) \int 1 - \frac{1}{6} (-12) \int - (0 - x) \\ & = \frac{1}{6} \int -12 (1 - x)^3 + 48 x^3 \int + 3(1 - x) - 5x \\ & = \frac{1}{6} \int -12 (1 - x^3 - 3x + 3x^2) + 48 x^3 \\ & + 3 - 3x - 5x \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & + 3 - 3x - 5x \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & = \frac{1}{6} \int -12 + 12x^3 + 36x - 36x^2 + 48x^3 \\ & = \frac{2 + 3}{1 - 3x - 5x} \\ & = \frac{-2 + 3}{1 - 5x} \\ \hline & Gwe(iii) \quad 1 < x < 2 \\ Pat \quad i = S \\ S(x) &= \frac{1}{6} \int (x_3 - x)^3 M_2 - (x_2 - x)^3 M_3 \int \\ & + (x_3 - x) \int y_2 - \frac{1}{6} M_2 \int -(x_3 - x)^3 M_3 \\ & = \frac{1}{6} \int (2 - x)^3 H_8 \int +(2 - x) \int S -\frac{1}{6} x + 8 \\ \end{bmatrix}$$

$$= 8 (2-x)^{3} + (2-x) (-5) - 35^{-}(1-x)$$

$$= 8 [8-x^{2} - 12x + 6x^{2}] - 10 + 5x - 35 + 35,$$

$$= 64 - 8x^{3} - 96x + 48x^{2} - 10 + 5x - 35 + 35x$$

$$\boxed{S(x) = -8x^{3} + 48x^{2} - 56x + 19, 1 - x < 2}$$

$$\boxed{Ke \ cubie \ Spline \ Polynomial \ is}$$

$$\int -2x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1$$

$$\int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1$$

$$\int -8x^{3} + 48x^{2} - 56x + 19, 1 < x < 2$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\int -8x^{3} + 48x^{2} - 56x + 19, 1 < x < 2$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 0 < x < 1}$$

$$\boxed{S(x) = \int 10x^{3} - 6x^{2} - 2x + 1 + 1 = 6x^{2} + 18x^{2} - 10x^{2} - 10x^{2} + 18x^{2} - 10x^{2} -$$

The cubic Spline Polynomial is

$$S(x) = \frac{1}{b} \left[(x_{1} - x)^{3} M_{1-1} - (x_{1-1} - x)^{3} M_{1} \right] + (x_{1} - x) \left[y_{1-1} - \frac{1}{b} M_{1-1} \right] - (x_{1-1} - x) \left[y_{1-1} - \frac{1}{b} M_{1-1} \right] - (x_{1-1} - x) \left[y_{1-1} - \frac{1}{b} M_{1-1} \right] \right] + (x_{1} - x) \left[y_{1} - \frac{1}{b} M_{1} \right] \\ Case (i) \quad 1 < x < 2 \\ Put \quad i = 1 \\ S(x) = \frac{1}{b} \left[(x_{1} - x)^{3} M_{0} - (x_{0} - x)^{3} M_{1} \right] + (x_{1} - x) \left[y_{0} - \frac{1}{b} M_{0} \right] \\ - (x_{0} - x) \left[y_{1} - \frac{1}{b} M_{1} \right] \\ = \frac{1}{b} \left[(a - x)^{3} (a) - (1 - x)^{3} (a) e \right] \\ + (a - x) \left[x - 8 - \frac{1}{b} (a) \right] \\ - (1 - x)^{2} (1 - x)^{3} (a) - (1 - x)^{3} (a) e \right] \\ = \frac{1}{b} \left[- (1 - x)^{3} (1e) + (2 - x) (-8) \right] \\ = -18 (1 - x)^{3} - 8 (2 - x) + 4 (1 - x) \\ - 18 (1 - x)^{3} - 16 + 8x + 4 - 4x \right] \\ \overline{S(x)} = -18 (1 - x)^{3} + 4x - 12 , 1 < x < 2 \\ Put \quad x = 1 \cdot 5 \\ y(1 \cdot 5) = S(1 \cdot 5) = -18 (1 - 1 \cdot 5)^{3} + 4 (1 \cdot 5) - 12 \\ = -5 \cdot 625 - 3$$

$$y'(1) = 9(0) + 4 = 4$$

$$y'(1) = 4$$

$$y'(1) = 4$$

$$y'(1) = 4$$

$$y'(1-5) = -5-625$$

$$y'(1) = 4$$

$$y'(1-5) = -5-625$$

$$y'(1) = 4$$

$$y'(1-5) = -5-625$$

$$y'(1$$

$$\begin{aligned} \begin{bmatrix} (a-b)^{2} \\ = a^{2}-3 \end{bmatrix} &= \frac{1}{6} \left[\left[-(1-x)^{3} \left(\frac{3}{27} \right) \right] + (2-x) \left[2 \right] \right] \\ &= \frac{1}{6} \left[\left[-\frac{3}{27} \left((1-x)^{3} + (2-x) \right) + \frac{5}{7} \left((1-x) \right) \right] \right] \\ &= \frac{1}{6} \left[\left[-\frac{3}{27} \left(1 \right]^{3} - x^{3} - 3x + 3x^{2} \right] + 2 - x \\ &+ \frac{5}{7} - \frac{5}{7} x \right] \\ &= -\frac{5}{7} \left[1 + \frac{5}{7} x^{3} + \frac{15}{7} x + \frac{15}{7} x^{2} + 2 - x \\ &+ \frac{5}{7} - \frac{5}{7} x \right] \\ &= -\frac{5}{7} \left[x^{3} + \frac{15}{7} x^{2} + x \left(\frac{15}{7} - \frac{3}{7} - \frac{5}{7} \right) \right] \\ S(x) &= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 \\ &= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 \\ S(x) &= \frac{1}{6} \left[\left(\frac{3}{2} - x \right)^{3} \frac{M_{1}}{7} - \left(\frac{x}{7} - x \right) \right] \\ &= \frac{1}{6} \left[\left(\frac{3}{2} - x \right)^{3} \frac{M_{1}}{7} - \left(\frac{x}{7} - x \right) \left[\frac{y}{2} - \frac{1}{6} \frac{M_{2}}{7} \right] \\ &= \frac{1}{6} \left[\left(\frac{3}{2} - x \right)^{3} \frac{39}{7} - \left(2 - x \right) \left(-\frac{36}{7} \right) \right] \\ &= \frac{1}{6} \left[\left(\frac{3}{2} - x \right) \frac{39}{7} - \left(2 - x \right) \left(-\frac{36}{7} \right) \right] \\ &= \left(2 - x \right) \left[1 - \frac{1}{6} \left(-\frac{36}{7} \right) \right] \end{aligned}$$

$$= \frac{1}{6} \left[\frac{29}{7} (3-x)^{3} + \frac{36}{7} (2-x) \right] + (3-x) \left(-\frac{5}{7} \right) \\ - (2-x) \int 1 + \frac{5}{7} \right]$$

$$= \frac{5}{7} \left[27 - 27x + 9x^{2} - x^{3} \right] + \frac{6}{7} \int 4 + x^{2} - 4x \right]$$

$$= x^{3} \int -\frac{5}{7} \int + x^{2} \int 4\frac{5}{7} + \frac{6}{7} + \frac{5}{7} + \frac{5}{7} + \frac{5}{7} \right]$$

$$+ x \int -\frac{15}{7} + \frac{5x}{7} - \frac{34}{7} + \frac{5}{7} + \frac{6}{7} + \frac{5}{7} + \frac{18}{7} \right]$$

$$+ x \int -\frac{135}{7} - \frac{24}{7} + \frac{5}{7} + \frac{13}{7} + \frac{135}{7} + \frac{24}{7} - \frac{57}{7} \right]$$

$$= \frac{-\frac{26}{7}}{7} x^{3} + \frac{51}{7} x^{2} - \frac{951}{7} + \frac{118}{7} + \frac{2}{7} - \frac{2}{7} + \frac{2}{7} + \frac{13}{7} \right]$$

$$= \frac{-5}{7} x^{3} + \frac{51}{7} x^{2} - \frac{951}{7} + \frac{118}{7} + \frac{2}{7} - \frac{2}{7} + \frac{2}{7} + \frac{13}{7} \right]$$

$$= \frac{-5}{7} x^{3} + \frac{51}{7} x^{2} - \frac{951}{7} + \frac{118}{7} + 2x - 3$$

$$= \frac{26}{7}$$

$$= \frac{1}{6} \left[(x_{3} - x)^{3} M_{2} - (x_{2} - x) M_{3} \right]$$

$$+ (x_{3} - x) \int y_{3} - \frac{1}{6} M_{3} \int -\frac{1}{7} (x_{3} - x) \int y_{3} - \frac{1}{6} M_{3} \int -\frac{1}{6} M_{3} \right]$$

$$= \frac{1}{6} \int (4r - x)^{3} \left[-\frac{36}{7} \right] + (3r - x)^{3} \left(\frac{39}{7} \right) \right]$$

$$+ (4r - x) \int 1 - \frac{1}{6} \left(-\frac{36}{7} \right) \int 4\pi (3r - 3r) \int 9r - \frac{1}{6} \left(\frac{29}{7} \right) \int 7r + 76$$

$$= \frac{1}{6} \int -\frac{36}{7} \int \frac{64}{64} - \frac{48}{8} + \frac{12}{12} x^2 - x^3 \int \frac{36}{7} \int \frac{27}{7} - \frac{27}{8} + \frac{9}{8} x^2 - \frac{27}{7} x^3 \int \frac{1}{7} + \frac{1}{7} + \frac{1}{7} (1 + \frac{6}{7}) - (3 - x) \left(-\frac{5}{7}\right)$$

$$= \int \frac{38}{7} \frac{38}{7} + \frac{13}{7} x^3$$

$$= \frac{1}{7} \int -\frac{38}{7} + \frac{288}{7} x - \frac{7}{2} x^2 + \frac{6}{8} x^3 - \frac{810}{7} + \frac{810}{7} x + \frac{270}{7} x^2 + \frac{30}{3} x^3,$$

$$+ 52 - 13x + 15 - 5x \int \frac{1}{7} + \frac{1}{8} \int \frac{36}{7} x^3 \int \frac{30}{6} + \frac{810}{7} + \frac{1}{2} - \frac{72}{7} - \frac{270}{7} \int \frac{1}{7} + x \int \frac{288}{7} + \frac{810}{7} - \frac{1}{3} - \frac{77}{7} - \frac{2770}{7} \int \frac{1}{7} \int \frac{36}{7} \frac{x^3 - 6}{7} + \frac{1}{7} \int \frac{36}{7} x^3 - \frac{342}{7} x^2 + \frac{1080}{7} x - \frac{1127}{7}, \frac{32}{7} - \frac{27}{7} \int \frac{1}{7} \int \frac{36}{7} x^3 - \frac{342}{7} x^2 + \frac{1080}{7} x - \frac{1127}{7}, \frac{32}{7} - \frac{2}{7} \sqrt{4} \int \frac{1}{7} \int \frac{1}{7}$$

$$= \frac{1}{6} \left[(2-x)^{3} (0) + (x-1)^{3} (18) \right] + (2-x) \left[-6 - \frac{1}{6} (0) \right] + (x-1) \left[-1 - \frac{1}{5} (18) \right] = \frac{1}{6} \left[(x-1)^{3} (18) \right] + (2-x) (-6-6) + (x-1) (-1-3) \\= 3 (x^{3} - 3x^{2} + 3x - 1) - 12 + 6x - 4x + 4 g(x) = 3x^{3} - 9x^{2} + 11x - 11 Gase (ii) 2 \le x \le 3 Pat i = 2 . g(x) = \frac{1}{6} \left[(x_{2} - x)^{3} M_{1} - (x_{1} - x)^{3} M_{2} \right] + (x_{3} - x) \left[y_{1} - \frac{1}{6} M_{1} \right] - (x_{1} - x) \left[y_{2} - \frac{1}{6} M_{2} \right] \\= \frac{1}{6} \left[(3 - x)^{3} 18 - (2 - x)^{3} (0) \right] + (3 - x) \left[-1 - \frac{1}{6} (18) \right] - (x - 2) \left[16 - \frac{1}{7} (0) \right] = \frac{18}{6} \left[27 - 27x + 9x^{2} - x^{3} \right] - (2 + 4x) + 16x - 32$$

$$g(x) = -3x^{3} + 27x^{2} = 61x + 37$$

$$y = g(x) = \int 3x^{2} - 9x^{2} + 11x - 11, \quad 1 \le x \le 2$$

$$\int -3x^{3} + 27x^{2} - 61x + 37, \quad 2 \le x \le 3$$

To gived $y(1:5)$

$$g(1:5) = g(1:5)^{2} - 9(1:5)^{2} + 11(1:5) - 11$$

$$= -4 - 625^{-1}$$

Neutoris jorward interpolation jornula
(equal intervals).

$$y = p(x) = y_0 + \frac{u}{11} \Delta y_0 + \frac{u(u-1)}{2} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^2 y_0 + \frac{u(u-1)(u-2)$$

The Newton's forward interpolation form.
is

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta \frac{v}{y}_0 + \frac{u(u-1)(u-2)}{3!} \int_{y+1}^{y} \int_{y+1}^{y} \int_{y}^{y} \int_{y}^{y}$$

$$\begin{split} & \frac{\overline{x} + \overline{y} + \overline$$

$$\begin{split} y - 4 & = 250 + (\frac{\pi}{20} - 40) + 120 + (\frac{\pi}{20} - 40) (\frac{\pi}{20} - 1) (\frac{\pi}{$$

Newton's Backword Interpolation formula

$$y = 40 + \frac{1}{11} \nabla y_{n} + \frac{1}{2} \nabla (y+1) \nabla^{2} y_{n} + \frac{1}{2} \frac{1}{31} \nabla y_{n}$$
Where $V = \frac{1}{R}$
Where $V = \frac{1}{R}$
(1) Use Newton's backword dyjenence formula to
Construct an interpolating polynomial q degree 3
for the data
f(-0.15) = -0.07181250 f(-0.5) = -0.024750
f(-0.25) = 0.32493750, f(0) = 1.10100.
Hence find f(-\frac{1}{3}).
3dn.
 $V = \frac{1}{R} - \frac{1}{R} q = \frac{1}{R} = 0.25$
 $V = \frac{1}{R} - \frac{1}{R} q = \frac{1}{R} = 0.25$
 $\frac{1}{R} \frac{1}{2} \frac$

The Newton's backward interpolation zormule.
is

$$y = y_{0} + \frac{v}{1!} \quad \forall y_{0} + \frac{v(v+1)}{2!} \quad \forall^{2}y_{1} + \frac{v(v+1)(v+2)}{3!} \quad \forall^{2}y_{1}^{*}$$

= 1.10100 + $\left(\frac{\pi}{0\cdot2s}\right)$ (0.7660625)
+ $\left(\frac{\pi}{0\cdot2s}\right)$ (0.7660625)
+ $\left(\frac{\pi}{0\cdot2s}\right)$ (0.7660625)
+ $\left(\frac{\pi}{0\cdot2s}\right)$ (0.7660625)
= 1.10100 + (-1.33333) (0.7660625)
+ $\left(-1.33333\right)$ (0.7660625)
+ $\left(-1.33333\right)$ (0.7660625)
+ $\left(-1.33333\right)$ (0.7660625)
+ $\left(-1.33333\right)$ (0.7660625)
= 1.10100 - 1.021414 + 0.05030442.6
+ 0.004629 5
y (-1/3) = 0.165260.
The amount A g a Substance remaining
in a greating System agter an interval
g vine t in a contain chemical experiment

$$y = 45 \cdot 1 - 6 \cdot 2 \left(\frac{x_{1} - 11}{2}\right) + \left(\frac{x_{1} - 11}{8}\right) \left(\frac{x_{1} - 8}{8}\right) \frac{x_{0} \cdot y_{1}}{8}$$

$$+ \frac{(x_{1} - 11)(x_{1} - 8)(x_{1} - 5)}{162} - x_{0} \cdot 1$$

$$P_{ut} = x_{2} \cdot 9$$

$$y(9) = 45 \cdot 1 - 6 \cdot 2 \left(\frac{9 - 11}{3}\right) + \left(\frac{9 - 11}{19}\right) \left(\frac{9 - 8}{18}\right) \frac{x_{0} \cdot y_{1}}{182}$$

$$+ \frac{(9 - 11)(9 - 8)(9 - 5)}{162} - x_{0} \cdot 1$$

$$= 45 \cdot 1 + 6\frac{1}{15} - \frac{2}{75} - \frac{2}{403} - \frac{2}{95} - \frac{2}{403} - \frac{2}{95} - \frac{2}$$

UNIT- II Solution of Simultinous Linear equations

Questions	opt1	opt2	opt3	opt4	opt 5	opt 6	Answer
The numerical method of solving linear equations is of two types one is direct, other is method.	iterative	elimination	Newton	exact			iterative
The direct method fails if any one of the pivot elements become	Zero	one	two	negative			Zero
The given system of equations can be taken as in the form of	A = B	BX= A	AX= B	AB = X			AX= B
Method produces the exact solution after a finite number of steps.	Gauss Siedal	Gauss Jacobbi	Iterative method	Direct			Direct
Gauss elimination method is a	Direct method	InDirect method	Iterative method	convergent			Direct method
Gauss Elimination and Gauss Jordan are direct methods while Gauss Jacobi and Gauss Seidal are methods	iterative	elimination	interpolation	none			iterative
The modification of Gauss – Elimination method is called	Gauss Jordan	Gauss Siedal	Gauss Jacobbi	Gauss Elimination			Gauss Jordan
When Gauss Jordan method is used to solve AX = B, A is transformed into	Scalar matrix	diagonal matrix	Upper triangular matrix	lower triangularmatrix			diagonal matrix
In Gauss Jordan method the coefficient matrix is transformed into matrix	upper triangular	lower triangular	diagonal	column			diagonal
Gauss Jordan method is method	direct	indirect	iteration	interpolation			direct
The first equation in Gauss – Jordan method, is called equation. The element a_l1not equal to zero in	pivotal	dominant	normal	reduced			pivotal
Gauss – Jordan method is calledelement.	Eigen value	root	Eigen vector	pivot			pivot
The Gauss Jordan method is the modification of method.	Gauss Elimination	Gauss Jacobi	Gauss Seidal	interpolation			Gauss Elimination
In Crouts method, if AX=B, then	LX=B	UX=B	L=B	LUX=B			LUX=B
Crouts method is a method to solve simultaneous linear equations.	Direct	Indirect	real	inverse			Direct
Choleskeys method is used only when the matrix is	symmetric	skew- symmetric	singular	non-singular			symmetric
Choleskys method is used for finding the of a matrix.	determinant	value	inverse	rank			determinant
In the absence of any better estimates, theof the function are taken as $x = 0, y = 0, z = 0$.	initialapproxima tions	roots	points	final value			initialapproximati ons
In the absence of any better estimates, the initial approximations are taken as	x = 0, y = 0, z = 0		x = 2, y = 2, z = 2	x = 3, y = 3, z = 3			x = 0, y = 0, z = 0
Gauss Jordan method fails if the element in top of first column is	0	1	2	3			0
Gauss Jacobi method is method	direct	indirect	elimination	interpolation			indirect
Gauss Jacobi method is method	direct	elimination	iteration	interpolation			iteration
Gauss Seidal method is method	direct	indirect	elimination	interpolation			indirect
The successive approximations are called	interpolation	elimination	iterates	approximation			iterates
method is a self correcting method.	interpolation	elimination	Iteration	approximation			Iteration
The convergence in Gauss Jacobi method can be achieved only when coefficient of the matrix is dominant	row wise	column wise	diagonally	none			diagonally
The convergence of Gauss Seidal method istimes as fast as in Jacobis method	1	2	3	4			2
The convergence of Gauss Seidal method is							

The convergence of Gauss Seidal method is roughly _____ that of Gauss Jacobi method

once

4times

twice

thrice

The convergence in Gauss Seidal method can be achieved only when coefficient of the matrix is dominant	row wise	column wise	diagonally	none	diagonally
The matrix is if the numerical value of the leading diagonal element in each row is greater than or equal to the sum of the numerical value of other element in that row.	orthogonal	symmetric	diagonally dominant	singular	diagonally dominant
The system of simultaneous linear equation in n unknowns AX = B if A is diagonally Dominant then the system is said to be system	dominant	diagonal	scalar	singular	diagonal
In Gauss Jacobi and Gauss Seidal methods the co-efficient matrix must be dominant.	row wise	column wise	none	diagonally	diagonally
In finding the inverse of the matrix using Gauss Jordan method the condition for convergence is achieved by changing the given matrix into a matrix.	upper triangular	lower triangular	diagonal	unit	unit
The iterative procedure for finding the dominant Eigen value of the matrix is called Power method.	Rayleighs	Gaussian	Newtons	inverse	Rayleighs
The power method will work satisfactorily only if A has a Eigen value	small	unequal	equal	dominant	dominant
In power method the element in vector in each iteration will become very large, to avoid this we divide each vector by its	smallest	largest	positive	negative	largest
component Power method generally gives the largest Eigen value of A provided the Eigen values are	equal	negative	positive	real and distinct	real and distinct
In power method iterative process is repeated until becomes negligibly small.	X_r-X_(r-1)	X_(r-1)- X_r	X_r- X_(r+1)	$X_{(r+1)} - X_r$	X_r-X_(r-1)
If the eigen values of A are -3,3,1 then the dominant eigen value of A is	3	1	-3	No dominant eigen value	No dominant eigen value
The smallest eigen value of A is the reciprocal of the dominant eigen value of	A^(-1)	det A	A^T	А	A^(-1)
If the Eigen values of A are -6, 2, 4 then is dominant.	2	4	-6	-2	-6
If the eigen values of A are 4,3,1 then the dominant eigen value of A is	3	1	4	none	4
The Power method is used for finding eigen value	dominant	least	central	positive	dominant
The Inverse Power method is used for finding eigen value	dominant	least	central	positive	dominant
Jacobis method is used only when the matrix is	symmetric	skew- symmetric	singular	non-singular	symmetric

UNIT - 3 8015290573 Numerical Differentiation and Integration Numerical differentiation It is the Process of Finding the Values of dy, dy + dy, for some particular value q x. find the first derivatures of f(x) at x=2for the data f(-1) = -21, f(1) = 15, f(2) = 120 F(3) = 3 using Newton's divided difference formula. Poln 3 2 X -1 y -21 15 12 3 The Newton's divided diggenence formula is $y = y_0 + (n - x_0) + y_0 + (n - n_0) (x - x_0) + y_0^2$ +(x-x0)(x-x,)(x-x,) \$ 43/ +

The neuton's divided difference formula is $y = p(x) = y_0 + (x - x_0) \neq y_0 + (x - x_0) (x - x_1) \neq y_0$ +(x-x0)(x-x,)(x-x2) 43/0+ 4 ==== (x) (4===) AFIX) FIX) X 3 -13 18 16 23 5 146 0 899 40 11 1026 69 27 17315 2613 35606 34 y = f(x) = -13 + 18(x - 3) + 16(x - 3)(x - 5)+ (x-3)(x-5)(x-11) $= -13 + 18 \times -54 + 16 [x^2 + 8x + 15]$ $= -13 + 18x - 54 + 16x^{2} - 128x + 240$ +x3-11x2-8x2+88x +15x-165 $f(x) = x^3 - 3x^2 - 7x + 8$ $f(x) = 3x^2 - 6x - 7$ f (10) = 233.

Neuton's forward formula for derivatives $y = p(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0 + \frac{u(u-1)(u-2)}{3!} \delta y_0 + \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \cdots$ with 1 in $y' = \frac{1}{5} \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{(3u^2 - 6u + 2)}{2!} \Delta^2 y_0 + \cdots \right]$ (4u3-18u2+22u-6) 24y,+....] $y'' = \frac{1}{p^2} \left[\Delta^2 y_0 + \frac{(6u-6)}{3!} \Delta^3 y_0 + \frac{(12u^2 - 36u + 22)}{4!} \Delta^3 y_{1} \cdots \right]$ $y'' = \frac{1}{\beta^3} \int \Delta^3 y_0 + (244 - 36) \Delta^4 y_0 + \cdots]$ O Find the first three derivatives of Find the first three derivatives of Find at x = 1.5 & at x = 4.0 using Newlon's forward interpolation formula to the data given below. x 1.5 2 2.5 3 3.5 4 Y 3.375 7 13.625 24 38.875 59 solo $f(x) = \frac{1}{6} \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta y_0 + \frac{Bu^2 - 6u + 2}{2!} \Delta^3 y_0 \right]$ + (4u³-18u²+22u-6) D⁴y, +...]

 $F''(x) = \frac{1}{h^2} \left[\Delta_{y_0}^2 + (\frac{6u-6}{3!}) \Delta_{y_0}^3 + (\frac{12u^2-36u+22}{4!}) \Delta_{y_0}^4 + \frac{12u^2-36u+22}{4!} \Delta_{y_0}^4 + \frac{12u+36u+22}{4!} \Delta_{y_0}^4 + \frac{12u+36u+22}{4!} \Delta_{y_0}^4 + \frac{12u+36u+22}{4!} \Delta_{y_0}^2 + \frac{12u+36u+22}{4!} \Delta_{y_0}^4 + \frac{12u+36u+22}{4!} \Delta_{y_0$ $F''(y) = \frac{1}{p^3} \int \Delta^3 y_0 + (\frac{24y - 36}{4!}) \Delta^4 y_0 + \cdots$ $u = \frac{\chi - \chi_0}{E} = \frac{\chi - 1.5}{0.5}$ when $\chi = 1.5$ $\int u = 0$ x y Δy Δy Δy Sy sy 1.5 3.375 (3.625) 3 6.625 0.75 2 0 2.5 13.625 3.75 10.375 0.75 4.5 3 24 14.875 0.75 0 5-25-3.5 38.875 20.125 4 59

$$\begin{aligned} f'_{(1,5)} &= \frac{1}{0.5} \int 3.625 + (0-1) \cdot \frac{3}{2} + \frac{3}{6} (0.75) \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 \\ &= \frac{1}{0.5} \int 3.65 - 1.5 \\ &= \frac{1}{0.5} \int 3.65$$

 $F''(x) = \frac{1}{R^2} \left[\Delta_y^2 + (\frac{6u-6}{3!}) \Delta_y^3 + (\frac{12u^2 - 36u+22}{4!}) \Delta_y^4 + \frac{12u^2 - 36u+22}{4!} \Delta_y^4 + \frac{12u+22}{4!} \Delta_$ $u = \frac{\chi - \chi_0}{R} = \frac{\chi - 1.5}{0.5}$ When $\chi = 1.5$ $\int u = 0$ y sy sy sy Sy x 1.5 3.375 (3.625) 3 0.15 2 6.625 0 3.75 13.625 0 0.75 10:375 4.5 0 24 3 14.875 0.75 5.25 3.5 38.875 20.125 4 59

y = 1 20.125 + 1×5.25 + 2×0.75] $y'' = \frac{1}{0.5^2} \left[5.25 + 6 \times \frac{0.75}{6} \right] = 24$ $y''' = \frac{1}{0.53} \int 0.75 \int = 6$. For the given data, find the first two desirvatives at x = 1.1x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 y 7.989 8.403 8.781 9.129 9.451 9.750 10.031 $\begin{aligned} y' &= \frac{1}{R} \left[\Delta y_0 + (\frac{2u-1}{2!}) \Delta^2 y_0 + (\frac{3u^2 - 6u + 2}{3!}) \Delta^2 y_0 \right] \\ &+ (\frac{4u^3 - 18u^2 + 22u - 6}{3!}) \Delta^4 y_0 + \cdots \end{aligned}$ $y'' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(6u-6)}{31} \Delta^3 y_0 + \frac{(12u^2 - 36u + 22)}{4} \Delta^3 y_$ $u = \frac{\chi - \chi_0}{h} = \frac{\chi - 1.0}{0.1}$ At $x = 1 \cdot 1$ $u = \frac{1 \cdot 1 - 1 \cdot 0}{0 \cdot 1} = 1$.

=-36 + 0.00016 = -35 - 9998 - 3.5843 find the first two derivatives $9 \times \frac{1}{3}$ at x = 50 and x = 56 for the given data 56 51 52 53 54 155 y=x"3 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 × 3-8259 545 55 1 1º Solo D D ry. x 3-6840 SD 0.0244 -0.0003 51 3-1084 C 0.0241 0 -0.0003 3.7325 52 0.0238 6 0 -0.0003 3.7563 0 53 0 0.0235 0 0 - 0.0003 3.7198 0 54 0 0.0232 -0.0003 3 8036 55 0.0229 3.8259 56 Neuton's Jonward Jornula: $y' = \frac{1}{R} \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(4u^3 - 18u^2 + 22u - 6)}{2!} \Delta^4 y_0^2 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(2u$ 41

=-36 + 0.00016 = -35 - 9998 - 3.5843 find the first two derivatives 9×3 at x = 50 and x = 56 for the given data 2 50 51 52 53 54 55 y=x^{1/2} 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 56 3-8259 545 55 1 1º Solo A xryro 3-6840 50 0.0244 -0.0003 51 3.7084 00241 0 -0.0003 3.1325 52 0.0238 3.7563 0.0235-6 0 -0.0003 0 0 53 0 0 - 0.0003 0 3.7198 54 0 0.0232 -0.0003 55 3 8036 0.0229 3.8259 56 Neutonis Jonward Jornula: $y' = \frac{1}{R} \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(2u^2 - 18u^2 + 28u - 6)}{2!} \Delta^4 y_0 + \frac{(2u^2 - 18u^2 + 28u - 6)}{2!} \Delta^4 y_0 + \frac{(2u^2 - 18u^2 + 28u - 6)}{2!} \Delta^4 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^3 y_0 + \frac{(2u^2 - 6u + a)}{2!} \Delta^4 y_0 + \frac{(2u^2 - 6u + a)}{2!}$ 41

$$\begin{split} y'' &= \frac{1}{R^{2}} \left[A^{2}y_{0} + \left(\frac{6u-6}{2i} \right) A^{3}y_{0} + \left(\frac{i_{2}u^{2}-36u+2i}{4i} \right) A^{4}y_{0} + \cdots \right) \\ u &= \frac{v-v_{0}}{R} = \frac{50-50}{1} = 0 \\ y' &= \frac{1}{R} \left[0 \cdot 02414 + \frac{(-1)}{2} \right] \left(-0.0003 \right) \\ &= 0.0244 + 0.0002 \\ &= 0.0244 \\ y'' &= \frac{1}{R} \left[-0.0003 \right] = -0.0003 \\ &, \\ Neulon's Backward Intempolation formula \\ y' &= \frac{1}{R} \left[\nabla y_{0} + \frac{(2v+1)}{2i} \nabla^{2}y_{0} + \frac{(3v^{2}+6v+3)}{3i} \nabla^{2}y_{0} \\ &+ \left(\frac{3v^{2}+18v^{2}+22v+6}{3i} \right) \nabla^{4}y_{0} + \frac{(-1)v^{2}+26v+22}{4i} \nabla^{4}y_{0} \right] \\ y'' &= \frac{1}{R^{2}} \left[\nabla^{2}y_{0} + \frac{(6v+6)}{3i} \nabla^{3}y_{0} + \frac{(-1)v^{2}+26v+22}{4i} \nabla^{4}y_{0} \right] \\ \psi'' &= \frac{1}{R^{2}} \left[\nabla^{2}y_{0} + \frac{(6v+6)}{3i} \nabla^{3}y_{0} + \frac{(-1)v^{2}+26v+22}{4i} \nabla^{4}y_{0} \right] \\ \psi'' &= \frac{v-x_{0}}{R} = \frac{v-56}{0.5} \\ y' &= \frac{1}{0.5} \left[0.0299 + \frac{(0+1)}{2i} (-0.0003) + \frac{2}{3i} (0) + 0 \right] \\ &= \frac{1}{0.5} \left[0.0299 + \frac{0.0003}{2} + 0 \right] \\ y''' &= \frac{1}{0.5} \left[-0.0008 \right] = -0.0012. \end{split}$$

Numerical Integration
Trapensidal suble

$$T = \int_{a}^{b} F(x) dx = \frac{h}{2} \int_{a}^{b} (\beta um q) first and last
ordinate) + 2(\beta um q)
R = \frac{b-a}{n}$$
Simpsions 1/3 suble

$$I = \int_{a}^{b} F(x) dx = \frac{h}{3} \int_{a}^{b} (2jinst + last) + h(\beta um q) odd
ordinates) + 2(\beta um q) even
ordinates)]
R = \frac{b-a}{n} - [nutliples q 2]$$
Simpsions 3/0 suble

$$T = \frac{3h}{8} \int_{a}^{b} (jinst + last) + 2(\beta um q) nutliples q 3)$$

$$R = \frac{b-a}{n} - [nutliples q 2]$$

$$R = \frac{b-a}{n} \int_{a}^{b} (jinst + last) + 2(\beta um q) nutliples q 3)$$

$$R = \frac{b-a}{n} \int_{a}^{b} (linst + last) + 2(\beta um q) nutliples q 3)$$

$$R = \frac{b-a}{n} \int_{a}^{b} (linst + last) + 2(\beta um q) \int_{a}^{b$$

$$\begin{split} \frac{Soln}{h} & h = \frac{b-a}{n} = \frac{1+i}{8} = \frac{2}{8} = 0.25^{\circ} \\ \frac{x}{y} & -1 & -0.75 & -0.5 & -0.25 & 0 & 0.27 & 0.5 & 0.77 & 1 \\ \frac{y}{y} & 0.5^{\circ} & 0.65 & 0.8 & 0.94i2 & 1 & 0.94i0 & 0.8 & 0.64i & 0.57 \\ \hline I & = \frac{R}{2} \left[\left(y_0 + y_0 \right) + 2 \left(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 \right] \\ & = \frac{0.25}{2} \left[(0.57 + 0.5^{\circ}) + 2 \left(0.67 + 0.8 + 0.94i2 + 1 + 0.94i2 + 0.8 + 0.64i \right) \right] \\ & = \frac{0.25}{2} \left[12.5248 \right] \\ & = 1.5656 \\ \hline 2) Evaluale \int_{0}^{1} \frac{1}{1+x^2} dx \quad with \quad h = V_6 \quad by \\ Trapeopoidal \quad 5nule \\ & \frac{30in}{p(x)} = \frac{1}{1+x^2} \quad h = \frac{1}{8} \\ & \frac{9}{1} \quad 0 \quad \frac{1}{22} \frac{2}{6} \quad \frac{3}{2} \quad \frac{41}{6} \quad \frac{5}{6} \quad 1 \\ & \frac{3}{3} \quad \frac{3}{37} \quad \frac{9}{16} \quad \frac{4}{7} \quad \frac{7}{3} \quad \frac{3}{61} \quad \frac{1}{2} \end{split}$$

By actual Integration

$$I = \int_{0}^{1} \frac{1}{1+x^{2}} dx = \int \tan^{-1}x \int_{0}^{1} \frac{1}{2} = \tan^{-1} 6 - \tan^{-1} 6$$

$$I = \int_{0}^{1} \frac{1}{1+x^{2}} dx = \int \tan^{-1}x \int_{0}^{1} \frac{1}{2} = \tan^{-1} 6 - \tan^{-1} 6$$

$$= 1 \cdot 40564745^{2}$$
Evaluate $\int \frac{1\cdot 3}{\sqrt{x}} dx = \tan \pi \frac{1}{2} + \frac{1}{2$

$$\begin{aligned} \mathbf{T} &= \frac{h}{2} \left[\left(y_{0} + y_{1} \right) + 2 \left(y_{1} + y_{2} + y_{3} + y_{4} + y_{5} \right) \right] \\ &= \left(\frac{h}{2} \right) \left[\left(1 + \frac{h}{2} \right) + 2 \left(\frac{36}{374} + \frac{9}{10} + \frac{h}{5} + \frac{9}{13} + \frac{36}{61} \right) \right] \\ &= \frac{1}{12} \left[\frac{3}{2} + 2 \left(3 \cdot 9554 \right) \right] \\ &= \frac{1}{12} \left[\frac{3}{2} + 7 \cdot 9108 \right] \\ &= 0.78 + 2. \end{aligned}$$

$$(3) Evaluate \int \frac{6}{1 + x^{2}} dx \quad by \quad Trapemoidal \ \text{ortule} \\ Also \quad check \quad up \quad hic \quad grenults \quad by \quad actual \\ Tritegration \\ &\vdots \\ x \quad 0 \quad 1 \quad 2 \quad 3 \quad h \quad 5 \quad 6 \\ y \quad 100 \quad 0.500 \quad 0.200 \quad 0.100 \quad 0.05824 \quad 0.038446 \quad 0.27026 \\ &= \int \left(\frac{y_{0} + y_{0}}{1 + x^{2}} + 2 \left(\frac{y_{1} + y_{2} + y_{3} + y_{3} + y_{3} + y_{5} \right) \right] \\ &= \frac{h}{2} \int \left((1 + 0 \cdot 0.27037) + 2 \left(0.5 + 0.9 + 0.7 + 1 + 2 \right) \\ &= 1 \cdot 41079 550 \end{aligned}$$

By actual Integration

$$I = \int_{\delta} \frac{1}{1+x^{-}} dx = \int tan^{-1}x \int_{0}^{\delta} = tan^{-1} \delta - tan^{-1} \delta$$

$$I = \int_{\delta} \frac{1}{1+x^{-}} dx = \int tan^{-1}x \int_{0}^{\delta} = tan^{-1} \delta - tan^{-1} \delta$$

$$= 1 + h0 5 6 h7 4 5^{-}$$
Evaluate
$$\int \frac{1 \cdot 3}{1 \cdot 0} dx taking h = 0.05 \quad by$$

$$trapenyoidal = 5 nale$$
Soln
$$f(x) = \sqrt{x}$$

$$h = \frac{b-\alpha}{n} = 0.0J^{-}$$

$$x = 1 \cdot 0 + 05 \quad 1 \cdot 1 + 15 \quad 1 \cdot 2 + 124^{-} + 1.3$$

$$y = 1 + 0247 + 10 h84 + 10724 + 10754 + 1180 + 14622$$

$$I = \frac{\beta}{2} \left[(t_{0} + y_{0}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5}) \right]$$

$$= 0.05 \quad \left[(1 + 1 \cdot h\alpha^{2}) + 2(1 \cdot 0247 + 1 \cdot 0488 + 1 \cdot 07244 + 1 \cdot 0954 + 1 \cdot 1186) \right]$$

$$= 0.1 \quad \left[2 \cdot 1402 + 10 \cdot 7186 \right]$$

$$= 0.1 \quad \left[2 \cdot 1402 + 10 \cdot 7186 \right]$$

$$= 0.1 \quad \left[2 \cdot 1402 + 10 \cdot 7186 \right]$$

$$= 0.1 \quad \left[2 \cdot 1402 + 10 \cdot 7186 \right]$$

(5) Dividing the range into 10 equal parts find the value of 5 The dx by Simpsons 1/3 sule. Solo $f(x) = \sin x$ $f_{h} = \frac{b-q}{n} = \frac{\pi}{20} = \frac{\pi}{20}$ 20 0 T1/20 2T1/20 3T1/20 4T1/20 5T1/20 6T5/20 TT1/20 8T1/20 F1X1 0 0.1564 0.3070 0.4540 0.5818 0.7071 0.8070 0.8910 0.9511 . $I = \frac{h}{3} \left[(y_0 + y_8) + 4 (y_1 + y_3 + y_5 + y_7) \right]$ +2(4,+4,+4,)] $= \frac{11}{20} \int (0+1) + 4 (0.1564 + 0.4540 + 0.7071 + 0.8910)$ +2(0.3090+0.5878+0.8090)] = 11/0 × 19.0986 = 1 The velocity 2° 9° a particle at a distance 3° prom a point on its path is gn by the table below. S 0 10 20 30 40 50 60 V 47 58 64 65 61 52 38 Estimate the time taken to travel bo meters by simpsons 1/3 oule.

COURSE MATERIAL(NOTES)

Velouty = distance time $v = \frac{ds}{4t}$ $dt = \int \frac{1}{60} ds = 10$ $t = \int \frac{1}{5} ds = 10$ $T = \int_{V}^{60} \frac{1}{4s} = \frac{h}{3} \left[(y_0 + y_6) \right]$ $+q(y_1 + y_3 + y_5) + q(y_2 + y_4)]$ V 47 58 64 65 61 52 38 V 0.02127 0.01724 0.015625 6.01828 0.01625 0.01923 0.026311 $\begin{aligned} \overline{I} &= \frac{10}{3} \left[(0.02127 + 0.026316) \\ &+ 4 (0.07124 + 0.01538 + 0.0923) \\ &+ 2 (0.015625 + 0.01639) \right] \\ &+ 2 (0.015625 + 0.01639) \right] \end{aligned}$ (F) Compute J^{T/2} Sinx dx using Simpson's 3/6 th orule of numerical integration

 $\frac{Solo}{I} = \int \frac{\pi}{2} \sin x \, dx$ $F(x) = \sin x$ $h = \frac{\pi}{2} = \frac{\pi}{18}$ 91 0 TT /18 2TT /18 3TT/18 4TT/18 5TT/18 F(M) 0 0.1193.4 0.3420 0.50 0.6428 0.7660 617/18 TU118 817/18 977/18 0.8610 0.9397 0.9848 1 $I = \frac{3R}{8} \int (y_0 + y_9) + 3(y_1 + y_2 + y_4 + y_5 - + y_7 + y_9)$ +2(4,+46)) $=\frac{317}{8\times18}\int(0+1)+3(0.1736+0.3428+0.6428)$ +0.7660+0.9397+0.9848) + 2 (0:5-+0.8660)] I=0.99998541 I~1 1 102 12 + 0 FID 1 = .

11

Romberg Merrod $I = I_2 + \left(\frac{I_2 - I_1}{2}\right)$ sule with h = 1/4, 1/8, 1/16 and then Rombergs Method $\frac{Soln}{I} = \int_{0}^{1/2} \frac{\pi}{\sin x} dx$ $f(\pi) = \frac{\pi}{\sin x}$ i) Take R = 1/4 I1 = 0.507075

(1) Take h= \$ 500 1/8 0 1/8 2/8 3/8 1/8 1 1-0026 1.0105 1-0238 1-0429 4 4 4 4 4 x f(x)
$$\begin{split} I_{2} &= \frac{R}{3} \Big[\left(y_{0} + y_{4} \right) + 4 \left(y_{1} + y_{3} \right) + 2 \left(y_{2} \right) \Big] \\ &= \frac{1}{24} \Big[\left(1 + 1 \cdot 0429 \right) + 4 \left(1 \cdot 0026 + 1 \cdot 0236 \right) \\ &\quad + 2 \left(1 \cdot 010 51 \right) \Big] \\ I_{2} &= 0 \cdot 5070625 \end{split}$$
(iii) Take R = 1/1 $T_{3} = \frac{h}{3} \left[(y_{0} + y_{8}) + 4 (y_{1} + y_{3} + y_{5} + y_{7}) \right]$ +2(42+44+46)] $= \frac{1}{48} \int (1+1.0429) + 4(1.0007+1.0059) + 1.0165 + 1.0326) + 2(1.0026)$ + 1.0105 + 1.0238)] I3 = 0.5070729.

for
$$\overline{I}_{1}$$
, \overline{I}_{2}
Romberg formula is
 $\overline{I}_{4} = \overline{I}_{2} + \left(\frac{\overline{I}_{3}-\overline{I}_{1}}{3}\right)$
 $= 0.5070625 + \left(\frac{0.5070625-0.507075}{3}\right)$
 $\overline{I} = 0.5070558$
for \overline{I}_{3} , \overline{I}_{3}
 $\overline{I}_{5} = \overline{I}_{3} + \left(\frac{\overline{I}_{5}-\overline{I}_{2}}{3}\right)$
 $= 0.5070729 + \left(\frac{0.5070729 - 0.5070(2)}{3}\right)$
 $= 0.507076566$.
Romberg for $\Re \cdot \overline{I}_{4} \neq \overline{I}_{5}$
 $\overline{I} = \overline{I}_{5} + \left(\frac{\overline{I}_{5}-\overline{I}_{4}}{3}\right)$

T Evaluate $I = \int_{1+x^2}^{1} \frac{dx}{1+x^2}$ by using Rombergs method. Hence deduce an approximate value 9^{-11} . a=0; b=1 Solo $f(x) = \frac{1}{1+x^2}$ $I h = \frac{b-a}{2} = \frac{1-a}{2} = 0.5^{-1}$ x 0 0.5 1 P(M) 1 0.8 0.5-
$$\begin{split} I_{1} &= \frac{h}{2} \left[(y_{0} + y_{1}) + 2(y_{1}) \right] \\ &= 0.5 \left[(1 + 0.5) + 2 \times 0.8 \right] \end{split}$$
I, = 0.7750

Stratuate $I = \int_{1+x^2}^{1} \frac{dx}{1+x^2}$ by using Rombergs method. Hence deduce an approximate value q = 11. a = 0; b = 1Solo $f(x) = \frac{1}{1+x^2}$ $Th = \frac{b-a}{2} = \frac{1-0}{2} = 0.5$ ж 0 0.5- 1 Р(м) 1 0.8 0.5-
$$\begin{split} I_{1} &= \frac{h}{2} \left[(y_{0} + y_{1}) + 2(y_{1}) \right] \\ &= \frac{0.5}{2} \left[(1 + 0.5) + 2 \times 0.8 \right] \end{split}$$
I, = 0.7750

COURSE MATERIAL(NOTES)

$$\begin{split} I_{2} &= \frac{0.25}{2} \int (1+0.5) + 2(0.94/2+0.8 + 0.64) J \\ \overline{I_{2}} &= 0.7828 \\ R &= \frac{b-a}{8} \frac{J-a}{8} = 0.125 \\ \hline R &= \frac{b-a}{8} \frac{J-a}{8} = 0.125 \\ \hline \frac{x}{9} &= 0.12 \frac{0.375}{0.9046} \frac{0.375}{0.94/2} \frac{0.5}{0.8} \\ \hline \frac{0.625}{0.7191} \frac{0.77}{0.84} \frac{0.8757}{0.8} \\ \hline \frac{0.625}{0.7191} \frac{0.77}{0.84} \frac{0.8757}{0.8} \\ + 0.94/2 + 0.8767 + 0.8 \\ + 0.7191 + 6.64 + 0.5644 \end{pmatrix} J \\ \hline \overline{I_{3}} &= 0.7848 \\ \hline \overline{I_{3}} &= 0.7848 \\ \hline Romberg \quad Jox \quad \overline{I_{1}} , \overline{I_{2}} \\ \hline I_{4} &= \overline{I_{2}} + \left(\frac{\overline{I_{2}}-\overline{I_{1}}}{3}\right) = 0.7854 \end{split}$$

Romberg for
$$\overline{J}_{2}$$
, \overline{T}_{3}
 $\overline{L}_{5-} = \overline{J}_{3} + \left(\frac{\overline{J}_{3} - \overline{J}_{4}}{3}\right) = 0.7855$
Romborg for \overline{L}_{4} , \overline{L}_{5-}
 $\overline{I} = \overline{I}_{5-} + \left(\frac{\overline{L}_{5-} - \overline{L}_{4}}{3}\right) = 0.7855$
 $\overline{I} = \int_{0}^{1} \frac{dN}{1 + x^{2}}$
 $0.7855 = \int \tan^{-1}N \int_{0}^{1}$
 $= \tan^{-1}(1) - \tan^{-1}(0)$
 $\overline{L}_{4-} = 0.7855^{-}$
 $\overline{H}_{4-} = 3.1420$.
(2) Using Romberg Integration, evaluate
 $\int_{0}^{1} \frac{dx}{1 + x}$
Solon
Here $a = 0$, $b = 1$

$$\frac{7}{10} 0 0.125 0.25 0.375 0.5}{0.467} 0.5}{\frac{7}{10} 1 0.8889 0.8 0.7273 0.467}{0.625 0.75 0.875} 1}{0.6154 0.5714 0.5333 0.5}$$

$$T_3 = \frac{0.125}{2} \int (1+0.5) + 2(0.8889 + 0.8 + 0.7273 + 0.6674 + 0.6154 + 0.5714 + 0.5333)]$$

$$T_5 = 0.69714 + 0.5333)]$$

$$T_5 = 0.69714 + 0.5333)]$$

$$T_4 = T_2 + (\frac{T_2 - T_1}{3})$$

$$= 0.6970 + (0.6970 - 0.7084)$$

$$T_4 = 0.6932$$

$$Romberg for T_1, T_3$$

$$T_5 = T_3 + (\frac{T_3 - T_2}{3})$$

 $= 0.6941 + \left(\frac{0.6941 - 0.6970}{8}\right)$ $\overline{I_5} = 0.6931$ Romberg for I_4, I_5 $I_{6} = I_{5} + \left(\frac{I_{5} - I_{4}}{2}\right)$ $\int I_{6} = 0.6931$ Grauss Quadrature Jornula Quadrature The process of finding a depinite integral prom a tabulated values q a Jundion is known as Quadralione. Graussian two point Quadrature formula Let $I = \int_{a}^{b} f(x) dx$. Take $\chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right)t$ $dx = \left(\frac{b-a}{2}\right) dt$

By using this transformation

$$I = \int_{-1}^{1} g(t) dt = g(-\frac{1}{\sqrt{3}}) + g(\frac{1}{\sqrt{3}})$$

() Evaluate $\int_{-1}^{1} e^{-x^{2}} \cos x dx$ by Gauss two
Point Quadrative formula:
Sola

$$I = \int_{-1}^{1} e^{-x^{2}} \cos x dx$$

$$F(x) = e^{-x^{2}} \cos x$$

$$I = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \cos(-\frac{1}{\sqrt{3}}) + e^{-\frac{1}{\sqrt{3}}} \cos(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \cos(-\frac{1}{\sqrt{3}}) + e^{-\frac{1}{\sqrt{3}}} \cos(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \left[\cos(-\frac{1}{\sqrt{3}}) + \cos(\frac{1}{\sqrt{3}}) \right]$$

$$I = 1 \cdot 2008$$

(2) Apply Gauss two point formula
to evaluate $\int_{-1}^{1} \frac{1}{1+x^{2}} dx$

$$I = \int_{-1}^{1} \frac{1}{1+x^{2}} dx$$

$$f(x) = \frac{1}{1+x^{2}}$$

$$T = F\left(\frac{1}{\sqrt{3}}\right) + F\left(\frac{1}{\sqrt{3}}\right)$$

$$= \frac{1}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}} + \frac{1}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$$

$$= \frac{3}{4} + \frac{3}{4}$$

$$= \frac{6}{4}$$

$$= \frac{1}{4}$$

$$= \frac{1}{4}$$

$$= \frac{1}{4} + \frac{3}{4}$$

$$= \frac{6}{4}$$

$$= \frac{1}{1+x^{4}}$$

$$T = \int_{1}^{2} \frac{2x}{1+x^{4}} dx$$

$$f(x) = \frac{2x}{1+x^{4}}, \quad a = 1, \quad b = 2$$

$$x = \frac{a+b}{2} + \left(\frac{b-a}{2}\right)t$$

$$x = \frac{3}{2} + \frac{1}{2}t$$

$$dx = \frac{1}{2}dt$$

÷

$$\begin{split} \overline{L} &= \int \frac{A'\left(\frac{3}{2} + \frac{1}{2}t\right)}{1 + \left(\frac{3}{2} + \frac{1}{2}t\right)} + \frac{dt}{A'} \\ &= \int \frac{1}{1 + \left(\frac{3}{2} + \frac{1}{2}t\right)} dt \\ = \int \frac{1}{1 + \left(\frac{3+t}{2}\right)} dt \\ g(t) &= \frac{3+t}{1 + \left(\frac{3+t}{2}\right)} dt \\ \overline{T} &= g(\frac{1}{\sqrt{3}}) + g(\frac{1}{\sqrt{3}}) \\ &= \frac{3-\frac{1}{\sqrt{3}}}{1 - \left(\frac{3-\frac{1}{\sqrt{3}}}{2}\right)} + \frac{3+\frac{1}{\sqrt{3}}}{1 + \left(\frac{3+\frac{1}{\sqrt{3}}}{2}\right)} \\ &= \frac{1\cdot 2^{11}3}{3\cdot 1530} + \frac{1\cdot 7887}{11\cdot 2359} \\ &= 0\cdot 5434. \end{split}$$

$$= \frac{1}{74} \left[0 \cdot 3259 + 0 \cdot 9454 \right]$$

= 0 \cdot 9985
Graussian Three Point Quadrature pormula:
$$T = \int_{a}^{b} f(x) dx$$

$$Take \quad \chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right) t$$

$$dx = \left(\frac{b-a}{2}\right) dt$$

$$T = \int_{a}^{b} g(t) dt = \frac{5}{9} \left[g\left(-\sqrt{3}\right) + g\left(\sqrt{3}\right) \right] + \frac{8}{9} g(0)$$

O Evaluate
$$\int_{0}^{t} \frac{dx}{1+x^{2}} \quad using \quad 3 \text{ point Quadrature}$$

formula
Solo
$$T = \int_{0}^{t} \frac{dx}{1+x^{2}}, \quad q = 0, \quad b = 1$$

$$Take \qquad \chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right)t$$

 $dx = \left(\frac{b-a}{2}\right) dt$ =) x= - + - t $dx = \frac{1}{2} dt$ $T = \int \frac{\frac{1}{2} dt}{1 + (\frac{1+t}{2})^2} = \frac{1}{2} \int \frac{dt}{1 + (\frac{t+t}{2})^2}$ $g(t) = \frac{1}{1 + \frac{1+t}{2}}$ $I = \frac{1}{2} \left[\frac{5}{3} \left[\frac{9(-\sqrt{3})}{2} + \frac{9(\sqrt{3})}{2} \right] + \frac{8}{3} \frac{9(0)}{2} \right]$ $=\frac{1}{2}\left[\frac{5}{9}\left(\frac{1}{1+\left(\frac{1+(\sqrt{3}r)}{2}\right)^{2}}+\frac{1}{1+\left(\frac{1+(\sqrt{3}r)}{2}\right)^{2}}\right]$ + 8 [1+1/2)] $=\frac{1}{2}\int \frac{5}{9}\left(0.9875 + 0.5595 + 0.7111\right)$ =0.7853.

(2) Apply three point Graundan Quadratione
yormula to evaluate
$$\int_{0}^{1} \frac{\sin n}{\pi} dn$$

 $T = \int_{\infty}^{1} \frac{\sin n}{\pi} dn$
 $p(n) = \frac{\sin n}{\pi}, a=0, b=1$
 $n = (\frac{b+a}{2}) + (\frac{b-a}{2}) t$
 $dn = (\frac{b-a}{2}) dt$
 $=) n = \frac{1}{2} + \frac{1}{2}t = \frac{1}{2}(1+t)$
 $dn = \frac{1}{2} dt$
 $T = \int_{-1}^{1} \frac{\sin k(1+t)}{\frac{1}{2}(1+t)} \cdot \frac{1}{2} dt$
 $= \int_{-1}^{1} \frac{\sin k(1+t)}{\frac{1}{2}(1+t)} dt$
 $i = g(t) = \frac{\sin k}{1+t} = 0.47943$
 $g(n) = \sin k = 0.47943$
 $g(n) = \sin k = 0.47943$
 $g(n) = \sin k = 0.47943$

$$\begin{split} \Im(-\sqrt{\frac{3}{5}}) &= \sin \left[\frac{-\sqrt{\frac{3}{5}} + 1}{2} \right] \\ = \frac{0 \cdot 1125}{0 \cdot 2254} = 0 \cdot 493 \\ \overline{I} &= \frac{5}{7} \left[\Im(-\sqrt{\frac{3}{5}}) + \Im(\sqrt{\frac{3}{7}}) \right] + \frac{8}{7} \Im(0) \\ &= \frac{5}{7} \left[0 \cdot 499 + 0 \cdot 4377 \right] + \frac{8}{7} (0 \cdot 47943) \\ &= 0 \cdot 52 + 0 \cdot 42616 \\ &= 0 \cdot 94616. \end{split}$$

$$= \sum_{i=1}^{n} \chi = \frac{1+i}{i}$$

$$dx = dt$$

$$\int = \int \frac{(x+i)^{2}}{(1+1)^{2} + \frac{3}{4}(2+i)+1} dx$$

$$g(t) = \frac{(x+i)^{2} + \frac{3}{4}(2+i)+1}{1+1(x+i)+1/4} dx$$

$$g(t) = \frac{(x+i)^{2} + \frac{3}{4}(2+i)+1}{1+((x+i))+1/4}$$

$$g(t) = \frac{x^{2} + \frac{9x+1}{4} + \frac{9x+2}{4} + 1}{1+((x+2))^{4}}$$

$$g(t) = \frac{4}{1+(x+2)^{4}}$$

Integration Double + 4 (Sum q interier Values)] Simpson's grule $I = \frac{kk}{9} \int Sum 9 four corners +$ 2 (Sum of odd position values) + 4 (Sum of even position values) Boundary + 4 (Sum q odd position values) + 8 (Sum q even position values) add mus +8 (Sum g odd position values) + 16 (Sum g even position values) even rours I = hk & Sylon of Jown com

$$\begin{aligned} \overline{T} &= \frac{0!x_{0}\cdot 1}{4} \left[0.5 + 0.4167 + 0.4545 + 0.3846 \\ &+ 2\left[0.4762 + 0.4545 + 0.4348 + 0.4762 \\ &+ 0.4 + 0.4348 + 0.4167 + 0.4 \right] \\ &+ 10.4545 + 0.4348 + 0.4167 \right] \\ &= \frac{0.1\times0.1}{4} \left[1.7558 + 6.9864 + 5.2246 \right] \\ &= \frac{0.1\times0.1}{4} \times 13.9662 = 0.0349 \\ &= \frac{0.1\times0.1}{4} \times 13.9662 = 0.0349 \\ &= \frac{1}{4} \int_{1}^{2} \frac{2}{x^{2}+y^{2}} dx dy, \quad \text{numerically using along y-direction and } k = 0.257 \\ &\text{along y-direction} \\ &\text{gills} \quad \overline{T} = \int_{1}^{2} \int_{1}^{2} \frac{2}{x^{2}+y^{2}} dx dy \\ &f(x, y) = \frac{1}{x^{2}+y^{2}} \\ &\text{By Traperpoidal} \\ &\overline{T} = \frac{f_{1}k}{4} \int 8um & g \text{ Jown Corners } + \\ &= 2(Sum & g \text{ intervious}) \end{bmatrix} \end{aligned}$$

1.6 1.8 100 1.2 1.4 2 x 0.4098 0.3378 0.2809 0.2359 0.2 0.5 0-3902 0-3331 0-2839 0-2426 0.2082 0-1798 1.25 0-30170-2710 0-2375 0-2019 0-1821 0.16 1.5 0.2462 0.222 0.1991 0.1779 0.1587 0.1416 1.75 0.2 0.1838 0.1679 0.1524 0.1381 0.125 2 $I = \frac{(0.2)(0.25)}{4} \int 0.5 + 0.2 + 0.2 + 0.125$ +2 (0.4098+0.3378+0.2809+0.2359 + 0.-1798+ 0-16 + 0-1416 + 0.1381+0.1524+0.1679+0.1838 +0.2462+0.2710+0.3331) +4(0.3331+0.2839+0.2426 +0.2082+0.2710+0.2375 +0.2079+0.1821+0.222) + 0.1991 + 0.1779 + 0.1587)] $\frac{(0\cdot 2)(0\cdot 25)}{4} \left[1\cdot 025 + 6\cdot 6642 + 10\cdot 8964\right]$ = 0.2323.

3. Evaluate
$$T = \int_{0}^{1/2} \int_{0}^{1/2} \frac{\sin(2y)}{1 + xy} dx dy using$$

Simpton's stude with $R = k = 2k_{y}$
Set
$$T = \int_{0}^{1/2} \int_{0}^{1/2} \frac{\sin(2xy)}{1 + xy} dx dy$$

$$F(x,y) = \frac{\sin xy}{1 + xy}$$
By Simpsons $\frac{1}{2}$ stude,

$$T = \frac{Rk}{9} \int Sum g \quad forus \quad corners + 2(\frac{2}{3} \frac{um g \quad odd \quad position} + H(3 EP) + H(3 EP) + H(\frac{30p}{2}) + 8(\frac{3EP}{2}) + H(\frac{30p}{2}) + 1H(S EP) + H(\frac{30p}{2}) + 1H(S EP) + \frac{1}{2} \frac{1}{2$$

 $T = \frac{0.1 \times 0.1}{9} \int 0.5 + 0.4167 + 0.3571 + 0.2976$ + 2 [0.4545+0.4167+0.3267+0.340] + 4/0.4762 + 0.4348 + 0.3788+ 0.3205-+ 0.3401+0.3106+0.4545+0.3846) +4(0.3788) +8 (0.3968+0.363) + 8 (0.4132+0.3497) + 6 (0.4329 + 0.3953 +0.3663+0.3344) 7 = 0.1x0 1.5714 + 3.0862 + 12.4004 +1.5152 +6.0728+6.1032 +24.4624] I=0.0613 5 Evaluate JJ 4xy dx dy using Simpsons suche by taking h= 1/4 + k= 1/2 Solo I = J J Havy dx dy Here f(x,y) = 4xy R=0.25 k=0.5

0.15 0.5 0.25 0 X 0 0 0 0 0 0.5 0.5 1.5 2 6971 0 2 3 4 0 6 1.5 3 4.5 1.5 6 O 8 4 2 2 0.25×0.5 [8+16+64+8+32+32 9 +128] F= I=4.

Unit-III Interpolation Questions	ont1	ont?	ont2	ont/	ontE ontE	Answer
The process of computing the value of the function inside the given range is called	opt1 Interpolation	opt2 extrapolatio	opt3 reduction	opt4 expansio n	opt5 opt6	Interpolation
If the point lies inside the domain $[x_0, x_n]$, then the estimation of $f(y)$ is called	Interpolation	n extrapolatio		expansio n		Interpolation
The process of computing the value of the function outside the given range is called	Interpolation	extrapolatio n	reduction	expansio n		extrapolation
If the point lies outside the domain $[x_0, x_n]$, then the estimation of $f(y)$ is called	Interpolation	extrapolatio n	reduction	expansio n		extrapolation
Interpolation is the process of computing values of a function from a given set of tabular values of a function The estimation of values between well-known discrete points are called is the process of finding the most appropriate estimate for missing data.	positive Interpolation	negative extrapolatio n	constant reduction	intermed iate expansio n		intermediate Interpolation
For making the most probable estimate the changes in the series are must be within a period.	uniform	Normal	Exponentially	periodic		uniform
For making the most probable estimate the frequency distribution must be	Normal	uniform	periodic	Exponent ially		Normal
Lagrange's interpolation formula can be used when the values of independent variable x are	equally – spaced	unequally – spaced	both equally andunequally – spaced	positive		both equally andunequally – spaced
To find the unknown value of x for some y, which lies at the unequal intervals we use formula.	Newton's forward	Newton's backward		inverse interpola tion		Newtons divided difference
If the values of the variable y are given, then the method of finding the unknown variable x is called	Newton's forward	Newton's backward	interpolation	inverse interpola tion		inverse interpolation
In Newton's backward difference formula, the value of n is calculated by	$n = (x - x_n) / h$	$n = (x_n - x) / h$	$n = (x - x_0) / h$	n = (x_0-x) / h		$\mathbf{n} = (\mathbf{x} - \mathbf{x}_{n}) / \mathbf{h}$
In Newton's forward difference formula, the value of n is calculated by	$n = (x - x_n) / h$		$n = (x - x_0) / h$	n = (x_0-x) / h		$\mathbf{n} = (\mathbf{x} - \mathbf{x}_0) / \mathbf{h}$
In the forward difference table y_0 is called element.	leading	ending	middle	positive		leading
In the forward difference table forward symbol ((y_0)), forward symbol(^2(y_0)), are called difference.	leading	ending	middle	positive		leading
The difference of first forward difference is called	divided difference	2nd forward difference	3rd forward difference	4th forward differenc e		2nd forward difference
Formula can be used for interpolating the value of $f(x)$ near the end of the tabular values.	Newton's forward	Newton's backward	Lagrange	stirling		Newton's backward
Gregory Newton forward interpolation formula is also called as Gregory Newton forward formula.	Elimination	iteration	difference	distance		difference
Gregory Newton backward interpolation formula is also called as Gregory Newton backward formula	Elimination	iteration	difference	distance		difference
Gregory Newton backward interpolation formula is also called as Gregory Newton backward formula .	Elimination	iteration	difference	distance		difference

The divided differences are in their arguments.	constant	symmetrical	varies	singular	symmetrical
In Gregory Newton forward interpolation formula 1st two terms of this series give the result for the	Ordinary linear	ordinary differential	parabolic	central	Ordinary linear
interpolation. Gregory Newton forward interpolation formula 1st three terms of this series give the result for the interpolation.	Ordinary linear	ordinary differential	parabolic	central	parabolic
Gregory Newton forward interpolation formula is mainly used for interpolating the values of y near the of the set of tabular values.	beginning	end	centre	side	beginning
Gregory Newton backward interpolation formula is mainly used for interpolating the values of y near the of the set of tabular values.	beginning	end	centre	side	end
From the definition of divided difference (u-u_0)/(x-x_0) we have=	(y,y_0)	(x,y)	(x_0, y_0)	(x,x_0)	(x_0, y_0)
If $f(x) = 0$, then the equation is called	Homogenou s	non- homogeno us	first order	second order	Homogenous
If the values $x_0 = 0$, $y_0 = 0$ and $h = 1$ are given for Newton's forward method, then the value of x is	0		n	Х	n
The n th order difference of a polynomial of n th degree is	constant	zero	polynomial in first degree	polynom ial in n- 1 degree	constant
What will be the first difference of a polynomial of degree four?	Polynomial of degree one	l of	degree three	Polynom	Polynomial of degree three
A function which satisfies the difference equation is aof the difference equation.	Solution	general solution	complement ary solution	particula	Solution
The degree of the difference equation is	The highest powers of y's	The difference between the arguments of y	The difference between the constant	The highest	The highest powers of y's
The degree of the difference equation is	2	•) 1	. 3	1
The difference between the highest and lowest subscripts of y are called of the difference equation	degree	order	power	value	order
E-1=	backward difference operator	forward difference operator	μ	δ	forwarddifferenc e operator
Which of the following is the central difference operator?	E		μ	δ	δ
1+(forward difference operator)=	backward difference symbol	Е	μ	δ	E
μ is called the operator	Central	average	backward	displace ment	average
The other name of shifting operator is operator	Central	average	backward	displace ment	displacement
The difference of constant functions are	C) 1	. 2		0

The nth order divided difference of x_n will be a	C)	1	2	3	2
polynomial of degree						
The operator forward symbol is	homogenou	heterogen	e linear	а		linear
	s	ous		variabl	le	

Unit - W Initial Value Psychlem for Ordinary dyperential Equation Merrid - 1 Taylor Series: The taylor Series formula $\begin{aligned} y &= y_0 + (x - x_0) \frac{y_0'}{11} + (x - x_0) \frac{y_0''}{21} \\ &+ (x - x_0)^3 \frac{y_0''}{3!} + \cdots \\ & 3! \end{aligned}$ is

1. Use raylor seves method is find

$$y(0,1)$$
 and $y(0,2)$. Given that $\frac{dy}{dx} = 3e^{2} + 2y$
 $y(0) = 0$;
 $3dn$: finen $\frac{dy}{dx} = y = 5e^{2} + 2y$; $y(0) = 0$;
 $The traylor sevies tormula is;
 $y = y_{0} + (2e^{-x_{0}})\frac{y_{0}}{dx} + (x - x_{0})^{2}\frac{y_{0}}{dx} + (2e^{-x_{0}})\frac{y_{0}}{dx} + (x - x_{0})^{2}\frac{y_{0}}{dx} + (x - x_{0})\frac{y_{0}}{dx} + (x - x_{0})\frac{y_{0}}{dx$$

Numerical Methods – MA6459

$$= \frac{7}{16} \frac{x^{4} + \frac{1}{18} x^{3}}{y^{2} + x^{2} + x + 1}$$

$$y(0,1) = 1.1115$$

$$y(0,2) = 1.2525$$
A Obtain y by taylor solies method given
that y' = xy + 1; y(0) = 1; dox x = 0.1;
x = 0.2; convect to down desimal places.
Sola: The tornula ist
y = y_{0} + (x - x_{0})\frac{y_{0}}{1!} + (x - x_{0})^{2} \frac{y_{0}}{2!} + (x - x_{0})\frac{y_{0}y_{0}}{3!} + (x - x_{0})\frac{y_{0}y_{0

$$\begin{aligned} y &= 1 + (x_{-0}) \underbrace{o}_{11} + (x_{-0})^{2} \underbrace{d}_{2} + (x_{-0})^{3} \underbrace{o}_{2} + (x_{-0})^{3} \underbrace{d}_{3} \\ y &= 1 + \frac{x_{12}^{2} + \frac{x_{12}^{2}}{3}}{y_{1}(o, 1)} = 0.9950 \\ y &= 0.23 : 0.9950 \\ y &= 0.23 : 0.9560 \\ y &= 0.23 : 0.9560 \\ y &= 0.23 : 0.9560 \\ y &= 0.056 : y \\ y &=$$

Selnciven dy = x+y, y(0)=1 The Euler's formular is your yothyn' x 0 02 0.4 ý 1 1-2 7:48 y'= x+y 1 1.4 1.88 n=0= $y_1 = y_0 + h y_0' = 1 + (0.2xi) - 1.2.$ N=1=2 48=B1+K41, = 1.240.2×1.4)=1.48 3. Using Euler's method find the solution of the initial value problem (IVP) dy log(xy) y(0)= a at x=0.6 by assuming h=0.2. given y'= log (x+y); y(0)=2. solo. The fuleu's formula is ynti yn thyn' × 0 0.2 0.4 0.6 y 2 2.0602 2.1810 2.2114. y'elog (x+y) 0-3010 0-3541 0-4033 0-4490n=0=) y1=y0+hy0'= 2+(0.2×0.3010)= 2.0602. no1=) 42 = 41+ hy = 2.0602+ (0.2 ×0.3541)= 2.1810. n=2=) y3= y2+hy2 = 2-1810+ (0-2x0.4053)=2.2117. 2. Using Euler's method, find y (H.1) & y (W.0) if 5x dy + y2 = 2 = 0 ; y(4) = 1

80 hr:
4 iven
$$5 \frac{dy}{dx} + y^2 - 2 = 0$$
; $y(4) = 1$
 $\frac{dy}{dx} = -\frac{y^2 + 2}{5x}$.
The tellows formule is $y_{n+1} = y_n + hy_n'$
 $x + 4 + 1 + 4 \cdot 2$
 $y + 1 + 0050 + 00083$
 $y' = \frac{y^2 + 2}{7x} \cos 000483 + 00465 + 0.1(0.0463)$
 $= 1.0060$.
 $n = 1 = 1 \cdot y_2 = y_n + hy_1' = 1.005 + 0.1(0.0463)$
 $= 1.0098 h'$.
5 find $y(0, 2)$ for $y' = y + e^x$, $y(0) = 0$ by
Euler's mithind. Take $h = 0.1$
Bin:
 $q_i ven y' = y_n + e^x$, $y(0) = 0$
 $y_i = 0$, $0.1 = 0.2$
 $y = 0 = 0.1 = 0.2$

$$\begin{aligned} & n=0 = 3 \\ & y_1 = y_0 + hy_0' = 0 + 0 \cdot 1(1) = 0 \cdot 1 \\ & n=1 = 3 \\ & y_2 = y_1 + h \cdot y_1' = 0 \cdot 1 + 0 \cdot 1 \times (1 \cdot 2052) = 0 \cdot 3205 \\ \end{aligned}$$
Fowith code Range - kutta method.
Consider $g(\alpha, q, y, y') = 0$
 $y' = f(\alpha, y)$
 $k_1 = A \cdot f(\alpha, y)$
 $k_2 = A \cdot f(\alpha + y_2 + y' + \frac{1}{2})$
 $k_3 = A \cdot f(\alpha + y_2 + y' + \frac{1}{2})$
 $k_4 = A \cdot f(\alpha + y_4 + y' + \frac{1}{2})$
 $k_5 = A \cdot f(\alpha + y_4 + y' + \frac{1}{2})$
 $k_4 = A \cdot f(\alpha + h_4 + y' + \frac{1}{2})$
 $y = y_0 + 1/6 (x_1 + 2k_3 + 2k_3 + k_4)$
 $y = y_0 + 1/6 (x_1 + 2k_3 + 2k_3 + k_4)$
 f^{10} using Runge - kutta method & order h ;
And y value other $x = 1 \cdot 3in$ atops $0 \cdot 1$
given that $g' = \alpha^2 + y^{\circ}$, $y(1) = 1 \cdot 5$.
Soln:
The Runge - kutta formula i_4
 $k_1 = h \cdot f(\alpha + h_6) + y_1 + \frac{1}{2}$
 $k_5 = h \cdot f(\alpha + h_6) + y_1 + \frac{1}{2}$
 $k_5 = h \cdot f(\alpha + h_6) + y_1 + \frac{1}{2}$

$$k_{\mu} = h \cdot f(x+h, y+k_{3})$$

$$qiven \quad y' = x^{2} + y^{2}$$

$$hese, \quad f(x, y) = x^{2} + y^{2} \quad (k = 0, 1)$$

$$x \quad 1 \quad 1 \cdot 1 \quad 1 \cdot 2$$

$$y \quad 1 \cdot 5 \quad 1 \cdot 8975 \quad g_{1} \cdot 5 \cdot 4 = 0 \cdot 1$$

$$ro \quad find \quad y_{1}$$

$$x = 1 \quad y = 1 \cdot 5 \cdot 5$$

$$k_{1} = h \cdot f(x_{1}, y) = 0 \cdot 1x \quad f(1, 1 + 5) \cdot 5$$

$$= 0 \cdot 1x \quad 3 \cdot 45 = 0 \cdot 325 \cdot 5$$

$$\cdot k_{3} = h \cdot f(x+h_{3}x, y+k_{3}/2) = 0 \cdot 1x \quad f(1 \cdot 05, 1 \cdot 642)$$

$$= 0 \cdot 1x \quad 3 \cdot 866 h = 0 \cdot 3866 \cdot 5$$

$$k_{3} = h \cdot f(x+h_{3}x, y+k_{3}/2) = 0 \cdot 1x \quad f(1 \cdot 05, 1 \cdot 642)$$

$$= 0 \cdot 1x \quad 3 \cdot 866 h = 0 \cdot 3866 \cdot 5$$

$$k_{3} = h \cdot f(x+h_{3}x, y+k_{3}/2) = 0 \cdot 1x \quad f(1 \cdot 05, 1 \cdot 642)$$

$$= 0 \cdot 1x \quad 5 \cdot 666 h = 0 \cdot 39770 \cdot 5$$

$$k_{h} = A \cdot f(x+h_{3}y + k_{3}/2) = 0 \cdot 1x \quad f(1 \cdot 05, 1 \cdot 693)$$

$$= 0 \cdot 1x \quad 5 \cdot 6698 = 0 \cdot 39770 \cdot 5$$

$$k_{h} = A \cdot f(x+h_{3}y + k_{3}/2) = 0 \cdot 1x \quad f(1 \cdot 0, 1 \cdot 2976)$$

$$= 0 \cdot 14809 \cdot 5$$

$$y_{1} = y_{0} + \frac{1}{6} \cdot \left[k_{1} + k_{3} + 2k_{3} + k_{4}\right]$$

$$= 1 \cdot 5 + \frac{1}{6} \begin{bmatrix} 0 \cdot 325 + 9 \cdot 10 \cdot 3866 + 2 \times 0.59717 + 10 \cdot 42897 \end{bmatrix}$$

$$g_{1} = 1.8955$$

$$f(w, y) = x^{2} + y^{2}$$

$$f_{1} = 4n + 4(w_{1}y) = 0.1x + (1+4)(.0955)$$

$$f_{2} = 4n + 4(w_{1}y) = 0.1x + (1+4)(.0955)$$

$$f_{3} = -4n + 5f(x+1y_{2} + y + 1x_{1}y_{2}) = 0.4508$$

$$h_{2} = -4n + 5f(x+1y_{2} + y + 1x_{1}y_{2}) = 0.4508$$

$$h_{3} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{3} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{3} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{3} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{4} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{5} = -4n + 5f(x+1y_{3} + y + 1x_{1}y_{3}) = 0.4508$$

$$h_{$$

2. Find
$$y(0.7) \ge y(0.6)$$
 given that $y' = y - x'^{e}$
 $y(0.6) = 1.7879$ by using Rx method rds
 $y(0.6) = 1.7879$ by using Rx method rds
 $y(0.6) = 1.7879$
 $k_{0} = h \cdot f(r_{0} + h)_{2}$ $y + k_{2}/2$
 $k_{0} = h \cdot f(r_{0} + h)_{2}$ $y + k_{2}/2$
 $k_{0} = h \cdot f(r_{0} + h)_{2}$ $y + k_{2}/2$
 $k_{1} = h \cdot f(r_{1} + h)_{2}$ $y + k_{2}/2$
 $k_{1} = h \cdot f(r_{1} + h)_{2}$ $y + k_{2}/2$
Hease $f(x, y) = y - x^{2}$; $h = 0.1$
 $x = 0.6$ 0.4 0.8
 $y = 1.7879$ 1.8763 $x^{2.014}h^{2.01}$
 $r_{1} = 0.6$ $y = 1.7879$.
 $k_{1} = h \cdot f(r_{1} + y) = 0.1x + (0.6, 1.74379)$
 $k_{1} = h \cdot f(r_{1} + y) = 0.1x + (0.6, 1.74379)$
 $k_{2} = 40 \cdot 0.1x + f(r_{2} + h)^{2} t^{1}$
 $r_{1} = 0.1x + f(r_{2} + h)^{2} t^{1}$
 $r_{1} = 0.1x + f(r_{2} + h)^{2} t^{1}$

$$k_{4} = 0.0346 \quad 0.1384$$

$$k_{3} = 0.1 \times 4 \left[0.6 + \frac{0.1}{8} , 1.4849 + 0.1849_{4} \right]$$

$$= 0.1 \times 4 \left[0.655 + 1.8041 \right]$$

$$= 0.1585 + 0.1585 + 0.13844 + 0.18849_{4} + 0.18849_{4} + 0.18849_{4} + 0.18849_{4} + 0.18849_{4} + 0.18855_{4} + 0.1885_{4} + 0.18855_{4} + 0.18855_{4} + 0.18855_{4} + 0.188$$

8. Using R-K method to find
$$y(0,a)$$
,
 $y(0,h)$. Given by $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$
Soln:
 $y' = \frac{y^2 - x^2}{y^2 + x^2}$
Here, $f(x_1y_1) = \frac{y^2 - x^2}{y^2 + x^2}$; $h = 0.2$.
 $x = 0 = 0.2$ 0.4
 $y = 1$ (1960
To yind y, :
 $x = 0$; $y = 1$
 $k_1 = -h \cdot f(x_1y_1) = 0.4x + f(0, 1)$
 $= 0.3$
 $k_2 = 0.3x + (0.1, 1.1) = 0.1963$.
 $k_3 = 0.3x + (0.1, 1.1064) = 0.1863$.
 $k_3 = 0.3x + (0.1, 1.1064) = 0.1863$.
 $k_3 = 0.3x + (0.1, 1.1064) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.3x + (0.3, 1.1867) = 0.1863$.
 $k_3 = 0.1891$.

To find
$$y_3$$
:
 $x = 0.8$; $y = 1.1960$.
 $k_1 = 40.4x \pm (0.4, 1.1960) = 0.1891$.
 $k_2 = 0.4x \pm (0.4, 1.1960) = 0.198$.
 $k_3 = 0.4x \pm (0.4, 1.18942) = 0.198$.
 $k_4 = 0.4x \pm (0.4, 1.19753) = 0.1683$.
 $y_4 = 1.1960 \pm \frac{1}{6} \frac{1}{6.1891 \pm 2x} 0.1963 \pm 0.1993}{\pm 0.1683}$.
 $y_4 = 1.1960 \pm \frac{1}{6} \frac{1}{6.1891 \pm 2x} 0.1963 \pm 0.1993$.
 ± 0.1683 .

$$\begin{array}{c} y_{1} = y_{0} + y_{0} \left((k_{1} + 3k_{3} + 2k_{3} + k_{4}) \right) \\ & \cdot 0 + y_{0} \left(0 \cdot 0 + 2 \times 0 \cdot 0 + 9 + 4 \times 0 \cdot 0 + 85 + 0 \cdot 0 + 65 \right) \\ & \cdot 0 + 8 + 1 \\ & \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & -0 \cdot 1065 \right) \\ & \cdot 0 \cdot 3746 \\ \end{array}$$

$$\begin{array}{c} \chi_{1} = 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & -0 \cdot 1065 \right) \\ & \cdot 0 \cdot 3746 \\ \end{array}$$

$$\begin{array}{c} \chi_{1} = 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & -0 \cdot 1065 \right) \\ & \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & -0 \cdot 1065 \right) \\ & \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & \cdot 0 \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & \cdot 0 \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 1269 \right) \\ & \cdot 0 \cdot 0 \cdot 5 + y_{0} \left(-0 \cdot 15 - 4 \times 0 \cdot 125 - 4 \times 0 \cdot 12$$

$$\begin{aligned} x' = -xxz-y'. \\ x = 0 = 0.1 \\ y = 1 = 0.09950 \\ \hline Z_{\Xi}y' = 0 = -0.0995. \\ ch_{\Xi} = 0.1 \\ \hline \frac{f(x_1y_1x) = x}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = -xx - y}{h_1 \equiv 0.1} \\ \hline \frac{f(x_1y_1x) = x}{h_1 \equiv 0.1} \\ \hline \frac{f$$

$$y_{1} = y_{0} + \frac{1}{6} \left(k_{1} + 2k_{2} + 2k_{3} + k_{4} \right)$$

$$= 1 + \frac{1}{4} \left(0 - \frac{1}{6} \times 0.005 - \frac{1}{6} \times 0.0091}{0.0091} - \frac{1}{6} \times 0.0991} \right)$$

$$= 0.99450 \text{ M}.$$

$$2_{1} = 0 + \frac{1}{4} \left(-0.1 - \frac{1}{6} \times 0.0094 + \frac{1}{6} \times 0.0991}{0.0040} \right)$$

$$= -0.0995 \text{ M}.$$

$$(\text{ensider fix and order initial value})$$

$$y_{1}^{0} = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{0}(0) = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{0}(0) = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{0}(0) = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{0}(0) = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{0}(0) = -0.6 \text{ using } \text{ R ath order } \text{ R.k. matricel}$$

$$y_{1}^{1}(0) = -\frac{1}{6} \times \frac{1}{9} + \frac{1}{6} \times \frac{1}{9} \text{ sinx}$$

$$y_{1}^{1} = \frac{1}{6} \times \frac{1}{9} \text{ sinx}$$

$$y_{1}^{1} = \frac{1}{6} \times \frac{1}{9} \text{ sinx}$$

$$y_{1}^{1} = \frac{1}{6} \times \frac{1}{9} \text{ sinx} - \frac{1}{6} + \frac{1}{9} \times \frac{1}{6}$$

$$y_{1}^{1}(0) = -\frac{1}{6} \times \frac{1}{9} \text{ sinx} - \frac{1}{6} + \frac{1}{9} \times \frac{1}{6} \times \frac{1}{9} \text{ sinx}$$

$$y_{1} = y_{0} + \frac{1}{6} \left(k_{1} + 2k_{2} + \frac{1}{6}k_{3} + \frac{1}{$$

Shi. The Nulleve's productor connector
formula is ,
P:
$$4_{n+1} = 4_{n-3} + \frac{h}{3} \int e^{4} y_{n-2}^{\prime} - y_{n-1}^{\prime} + e^{4} y_{n}^{\prime} \int - 0$$

 $c: 4_{n+1} = 4_{n-3} + \frac{h}{3} \int e^{4} y_{n-2}^{\prime} - y_{n-1}^{\prime} + e^{4} y_{n}^{\prime} \int -0$
 $\frac{2}{3} \frac{0}{2n} \frac{0}{2n} \frac{0}{2n} \frac{1}{2n} \frac{0}{2n} \frac{1}{2n} + \frac{1}{2n} \frac{1}{2$

$$y = \frac{2}{2} + \frac{2}{2} +$$

$$dn:$$

$$(x,y) = x(y+y^{2})$$

$$($$

Milks & formula is,
p:
$$y_{n+1} = y_{n-3} + \frac{h}{3} \int y_{n-2} - y_{n-1} + 2y_n^{T} \int (1 + y_{n+1} - y_{n-1} + \frac{h}{3} \int y_{n-1} + \frac{h}{3} y_{n-1} + \frac{h}{3$$

4 Given that
$$y'' + xy' + y = 0$$
, $y(b) = 1$; $y'(b) = 0$
suites method and Aind the soin to suites method.
50(0-7) by suither's method.
51n:
The souldon sames is:
 $y = y_0 + (x - x_0) \frac{y_0}{y_1!} + (x - x_0)^2 \frac{y_0''}{y_1!} + (x - x_0)^3 \frac{y_1''}{y_1!}$
 $y'' = -xy'' - y$.
 $y'' = -xy'' - y$.
 $y'' = -xy'' - y'' -$

 $y = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{8}$ $y' = -\frac{x^{4}}{2} + \frac{x^{2}}{8} = 3y' = -x + \frac{x^{5}}{2}$ y(0.1) = 0.9950y(0.2) = 0.980 2 y(0.3) = 0.9560 1 100 miger 11 The Neilne's formula in, P: yn+1 = yn-3 + 4h [2yn-2 - yn-1 +2 yn.] c: $y_{n+1} = y_{n-1} + \frac{h}{3} \left[y_{n-1} + h y_n' + y_{n+1} \right]$ sols/m-×7 0.4 x. v. 0.1 0.2 10.3 0 x 0.9980 0.9802 0.9560 0.9232 0.9252 101 y -0.0995 -0.1960 -0.2865. -0.366 -0.56 0 y'======= put n= s; p: $y_{4} = y_{0} + \frac{hx_{0}}{3} \left[ay_{1}' - y_{2}' + ay_{3}' \right]$ = 1+ 0.4 [ax(-0.0995)+0.1960+ax(-0.2 0-9282. 4 put n= 3; c: y= y2 + 1/3 [y2 + 443 + 44]

$$= 0.9803 + \frac{0.1}{3} \left[-0.1960 - hx - 2865 + \frac{0.3880}{4.9832} \right]$$

Adam's Dashforth Predictor Corrector Formula:

$$P: Y_{n+1} = Y_n + \frac{h}{24} \left[5\pi y_n - 59 y_{n-1} + 37 y_{n-2} - 9 y_{n-3}^{*} \right]$$

a: $y_{n+1} = y_n + \frac{h}{24} \left[19 y_n - 5 y_{n-1} + y_{n-2} + 9 y_{n+3} - 1 \right]$
busing Adam's method find $y \left[\frac{1}{2} \frac{1}{2} y(1+3) \right]$
given $y' = x^2 \left(1+\frac{1}{3} \right) - \frac{1}{2} (1+3) = 1 + \frac{1}{2} (1+3) = 1 + \frac{1}{24} \left[55 \frac{1}{2} \frac{1}{8} - 59 \frac{1}{8} \frac{1}{14} + \frac{57 y_{n-2}}{4} - 9 \frac{1}{8} \frac{1}{14} \right]$
D: $y_{n+1} = y_n + \frac{h}{24} \left[55 \frac{1}{2} \frac{1}{8} - 59 \frac{1}{8} + \frac{1}{8} \frac{1}{9} \frac{1}{14} - \frac{1}{24} - \frac{1}{9} \frac{1}{14} + \frac{1}{14} \right]$
c: $y_{n+1} = y_n + \frac{h}{24} \left[55 \frac{1}{8} \frac{1}{8} - 59 \frac{1}{8} + \frac{1}{8} \frac{1}{14} + \frac{9}{14} \frac{1}{14} + \frac{1}{14} \right]$
d: $y_n = \frac{1}{2} \frac{1}{8} \frac{1}{14} \frac{1}{14} + \frac{1}{14} \frac{1}{14} + \frac{1}{14$

$$x = 0 \qquad 0.45 \qquad 1.1 \qquad 1.5 \qquad x = 2$$

$$y = \frac{3}{2} \qquad \frac{3}{2} \qquad \frac{3}{2} \qquad \frac{5}{2} \qquad \frac{5}{$$

$$c: y_{n+1} = y_n + \frac{1}{2n} \left[1ay_n' - sy_{n-1} + y_{n-2} + ay_n + \frac{1}{2n} + \frac{1}{2$$

unit-IV

Numerical differentiation and Integration

Questions Formula can be used for interpolating the value of $f(x)$ near the end of the tabular values.	opt1 Newton's forward	opt2 Newton's backward	opt3 Lagrange	opt4 stirling	opt5	opt6	Answer Newton's backward
Formula can be used for interpolating the value of $f(x)$ near the beginning of the tabular values.	Newton's forward	Newton's backward	Lagrange	stirling			Newton's forward
In Numerical integration, the length of all intervals is in distances.	Greater than the other	less than the other	equal	not equal			equal
When the function is given in the form of table values instead of giving analytical expression we use	numerical differentiatio n	numerical elimination	approximation	addition			numerical differentiation
is the process of computing the value of the definite integral from the set of numerical values of the integrand.	numerical differentiatio n	numerical integration	Simpsons rule	Trapezoidal rule			numerical integration
Numerical integration is the process of computing the value of a from a set of numerical values of the integrand.	indefinite integral	definite integral	expression	equation			definite integral
Numerical evaluation of a definite integral is called	integration	differentiation	interpolation	triangularisat on	i		integration
What is the value of h if a=0,b=2 and n=2.	1	2	3	4			1
Integral $(f(x) dx)=(h/2)$ [Sum of the first and last ordinates + 2(sum of the remaining ordinates)] is called	Constant rule	Simpsons rule	Trapezoidal rule	Rombergs rule			Trapezoidal rule
If the given integral is approximated by the sum of 'n' trapezoids, then the rule is called as	Newton's method	Trapezoidal rule	simpson's rule	none			Trapezoidal rule
What is the formula for finding the length interval h in trapezoidal tule?	h=(b-a)/n	h=(b/a)/n	h=(b*a)/n	h=(b+a)/n			h=(b-a)/n

The accuracy of the result using the Trapezoidal rule can be improved by	Increasing the interval h	Decreasing the length of the interval h	Increasing the number of	altering the given function	Decreasing the length of the interval h
The order of error in Trapezoidal rule is	h	h^2	h^3	h^4	h^2
Simpson's rule is exact for a even though it was derived for a Quadratic.	cubic	less than cubic	linear	quadratic	linear
The order of error in Simpson's rule is	h	h^2	h^3	h^4	h^4
For what type of functions, Simpsons rule and direct integration will give the same result?	parabola	hyperbola	ellipse	cardiod	parabola
Simpson's rule gives exact result if the entire curve $y=f(x)$ itself is a	parabola	hyperbola	ellipse	cardiod	parabola
To apply Simpsons one third rule the number of intervals must be	odd	even	equally spaced	unequal	even
The end point coordinates y_0 and y_n are included in the Simpsons 1/3 rule, so it is called formula.	Newton's	open	closed	Gauss	closed
Simpson's one-third rule on numerical integration is called a formula.	closed	open	semi closed	semi opened	closed
The order of error in Simpson's formula is	1	2	3	4	4
In two point Gaussian quadrature Formula n =	1	2	3	4	2
In Simpsons 1/3 rd rule, the number of ordinates must be	odd	even	0	3	odd
In three point Gaussian quadrature Formula n =	1	2	3	4	3
Two point Gaussian quadrature Formula requires only functional evaluations and gives a good estimate of the value of the integral.	1	2	3	4	2
formula is based on the concept that the accuracy of numerical integration can be improved by choosing the sampling wisely, rather than on the basis	Newtons	elimination	Gauss quadrature	hermite	Gauss quadrature

Gauss Quadrature formula is also called as	Newton's	Gauss-Legendre	Gauss-seidal	Gauss-Jordan	Gauss-Legendre
The 2 point Gauss-quadrature is exact for the polynomial up to degree	1	2	3	4	3
The 3 point Gauss-quadrature is exact for the polynomial up to degree	1	5	3	4	5
Integrating $f(x)=5x^4$ in the interval [-1,1] using Gaussion two point formula gives	1/2	9/5	10/9	5/9	10/9
The modified Eulers method is based on the of points	sum	multiplication	average	subratction	average
prior values are required to predict the next value in Milne's method	1	2	3	4	4
prior values are required to predict the next value in Adams method	1	2	3	4	3
The Eulers method is used only when the slope at point in computing is y(n+1)	z (x(n), y)	(x, y(n))	(x(n), y(n))	(0, 0)	(x(n), y(n))
The Runge Kutta method agrees with Taylor series solution upto the terms	h^2	h^3	h^4	h^r	h^r
Runge Kutta method agree with solution upto the terms h^4	Taylor Series	Eulers	Milnes	Adams	Taylor Series
method is better than Taylor's series	Runge Kutta	Milnes	Adams	Eulers	Runge Kutta
Taylors series method belongs to method	Single step	multi step	step by step	limination	Single step
If all the n conditions are specified at the initial point	Initial value	final value	boundary value	e semi defined	Initial value
only then it is called a problem The problem $dy/dx = f(x,y)$ with the initial condition y(x(0)) = y(0) is problem	initial value	final value	boundary value	e multistep	initial value

The solution of an ODE means finding an explicit expression for y, in terms of a number of	finite	infinite	positive	negative	finite
The solution of an ODE is known as solution	infinite	open-form	closed-form	negative form	closed-form
The differential equation of the 2 nd order can be solved by reducing it to a differential equation	lower order	higher-order	partial	simultaneous	lower order
The Eulers method is used only when the slope at point $(x(n), y(n))$ in computing is	y(n+1)	y(n-1)	(dy/dx)(n+1)	(dy/dx)(n-1)	y(n+1)
The Eulers method is used only when the slope at point in computing is y(n+1)	(x(n),y)	(x, y(n))	(x(n), y(n))	(0, 0)	(x(n), y(n))
The modified Eulers method is a method of predictor-corrector type	Self- correcting	Self-starting	Self-evaluating	Self-predicting	Self-starting
The modified Eulers method has greater accuracy than method	Taylor's	Picard's	Euler's	Adam's	Taylor's
The formula $y(n+1) = y(n) + hf(x(n), y(n))$ is formula	Euler's	modified Euler's	Picard's	Taylor's	Euler's
Modified Eulers method is the Runge-kutta method of order	1 st	2^{nd}	3 rd	4 th	2^{nd}
Modified Eulers method is same as the method of 2 nd order	Eulers	Taylors	Picards	Runge Kutta	Runge Kutta
The process used in Eulers method is very slow and to obtain reasonable accuracy we need to take a value of h	Smaller	Larger	negative	Positive	Smaller
The process used in Eulers method is very slow and to obtain reasonable accuracy we need to take a smaller value of	h	h^2	h^3	h^4	h
The formula is given by $y(i+1) = y(i) + hf$ (x(i), y(i))	Taylors	predictor	Corrector	Eulers	Eulers
The predictor formula and formula are one and the same	Taylors	Eulers	Modified Eulers	Eulers	Eulers
The formula is given by $y(i+1) = y(i) + h/2[f(x(i), y(i)) + f(x(i+1), y(i+1))], i = 1,2,3$	Taylors	predictor	Corrector	Picards	Corrector
The formula is used to predict the value $y(i+1)$ of y at x(i+1)	Predictor	Corrector	Corrector	Picards	Predictor

The formula is used to improve the value of	Predictor	Corrector	Taylors	Picards	Corrector
y(i+1)					
In predictor corrector methods, prior values of y	1	2	3	4	4
are needed to evaluate the value of y at $x(i+1)$					
In methods, 4 prior values of y are needed to	Taylor's	predictor	Predictor-	Euler's	Predictor-corrector
evaluate the value of y at $x(i+1)$			corrector		
In predictor corrector methods 4 prior values of	у	y^2	y^3	y^4	у
are needed to evaluate of values of are					

needed to evaluate of value of y at x(i+1)

UNIT-V
BOUNDARY UNLUE PROBLEM IN ORDINARY
AND PARTIAL DIFFERENTIAL EQUATION.
Functe difference Method:
Applace x by
$$x_k$$

y by $y_{k+1} - y_k + y_{k+1}$
y' by $y_{k+1} - y_k + y_{k+1}$
where, $h = \frac{b-a}{h}$
1. Selve $y'' = x_{k+1}y$ with the boundary
conduction $y(e) = y(1) = 0$.
Seth:
 $x = 0 = 0.45$ 0.5 0.7 n
 $y = 0 = -0.034q$ -0.0564 -0.05 0
 $h = \frac{b-a}{h} = \frac{1-0}{h} = 0.45$.
 $y'' = x_{k}y$.
 $y'' = x_{k}y$.

$$y_{k+1} - ay_{k} + y_{k+1} = h^{2}y_{k} + h^{2}y_{k}$$

$$y_{k+1} - ay_{k} + y_{k+1} = h^{2}y_{k} = h^{2}x_{k}$$

$$y_{k+1} - y_{k}(-a-h^{2}) + y_{k+1} = h^{2}y_{k}$$

$$y_{k+1} + y_{k}(-a-h^{2}) + y_{k+1} = 0.062\pi n$$

$$y_{k-1} - a.062\pi y_{k} + y_{k} = 0.066\pi x,$$

$$y_{2} - a.062\pi y_{2} + y_{3} = 0.066\pi x,$$

$$y_{3} - a.062\pi y_{2} + y_{3} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{4} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} + y_{5} = 0.062\pi x,$$

$$y_{3} - a.062\pi y_{3} = 0.064\pi y,$$

$$y_{3} = -0.054\pi y,$$

$$y_{3} = -0.$$

2. Using a finite difference mutical compute
y(cons). Given
$$y'' = 6hy + (0 = 0, y(0) = y(1) = 0$$
.
We dividing the interval inter(y) to equal parts.
i) a equal parts.
soln:
yiven $y'' = 6hy + 10 = 0$
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} = ay'_{K} + y'_{K-1} = 6hy'_{K} + 0 = 0$.
 $y'_{K-1} + y'_{K} (-3 - 6hy'_{K})^{0} + y'_{K-1} = -10h^{0}$
() subdiving into honors.
 $h = \frac{b - a}{h} = \frac{1 - 0}{h} = 0.62h$
 $y''_{K} = 0$ or $ab = 0.62h$ or a'_{K}
 $y''_{K} = 0$ or $ab = 0.62h$ or a'_{K}
y''_{K} = 0 or $ab = -0.62h$ or a'_{K}

Put
$$k = 3$$
,
 $y_1 = 4y_2 + y_3 = -0.625$, $--0$
Put $k = 3$;
 $y_2 = 6y_3 + 4y_4 = -0.625$.
 $y_2 = 6y_3 + 4y_4 = -0.625$.
 $y_2 = 6y_3 + 4y_4 = -0.625$.
 $y_2 = 6y_3 + 6y_4 = 0.625$.
 $y_1 = 0.1887$; $y_2 = 0.1471$, $y_3 = 0.1207$.
1) Sub dividing de 8 pauls.
 $f = \frac{b-a}{a} = \frac{1-0}{3} = 0.5$.
 $x = 0$, 0.1853 . 0 .
 $f = b + 5$. Eqn O bacemes.
 $y_{2-1} = y_{3-1} + y_{3-2}$.
 $f = 1 + \frac{y_{3-1}}{2} + \frac{y_{3-1}}{2}$.
 $f = 1 + \frac{y_{3-1}}{2} + \frac{y_{3-1}}{2} = -4.5$.
 $y_{3-1} = 18y_3 + 4y_5 = -4.5$.
 $y_{1-2,0.1589}$.

solve by finite difference multiply, the ENP

$$y'' - y = 0$$
 where $y(0) = 0; y(1) = 1$; take
 $4x = 0.45$
 $y_{k-1} - 2 y_k + y_{k+1} - y_k = 0$
 $\frac{y_{k-1} - 2 y_k + y_{k+1} - y_k h^2}{h^2} = 0.$
 $y_{k-1} - 4y_k + y_{k+1} - y_k h^2$
 $y_{k-1} - 4y_k + y_{k+1} - y_k h^2$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k-1} = 0.$
 $y_{k-1} + y_k (-2 - h^2) + y_{k+1} = 0.$
 $y_{k-1} + y_{k-1} + y_{k-1} = 0.$
 $y_{k-1} + y_{k-1} + y_{k-2} = 0.$
 $y_{k-1} - 2.0625y_{k-1} + y_{k-2} = 0.$

$$I = S;$$

$$I_{2} = 9 \cdot 062 + I_{3} + I_{4} = 0;$$

$$I_{3} = 9 \cdot 0645 + I_{3} + I = 0;$$

$$I_{3} = 9 \cdot 0645 + I_{3} = -1 - -(S);$$
Solve by (B, B, AS)

$$I_{1} = 5 \cdot 8151 + I_{3} = 0.14154 + I_{3} + I_{3} = 0.7600$$
Antistration & pothal differential Equation
consider:

$$I_{3} = \frac{1}{2} \frac{1}$$

BI-HACSO-AXIXO. CANON DALE NOV D OF 1 . 02 The one dumensional heat egn is parabolic There are two methods to solve one dimensional head equations i) pender-schmidt formula (Exepticite) i) Crank - Mcolsion method (Implicit) Bender-schmidt formula: (i,1+i,) (i,i) (i,i) 0(2,41) uzisti = uzis + Uzis Mars in the second seco Hove, k-ah² solve Us = Usex in orn in, the given that 1. u(o,t)=0, $u(x_1,t)=0$, $u(x_1,o)=x^2(ax-x^2)$ Compute u. upto see. with Ax : 1 by Using Bendes Schmidt formula.

St-hat = 0- Arts 0 goln: cliven uterna 2 a=1 0 while a mile and longer in mounts $b = \frac{ah^2}{a} = \frac{1\pi}{a} = 0.5$ $U_{i}, j + i = \frac{bi - bi \dot{s}}{a} + \frac{bi + i \dot{s}}{a}$ $u_{i}, j + i = \frac{bi - bi \dot{s}}{a} + \frac{bi + i \dot{s}}{a}$ X 0 1 2 3 4 3 4 5 24 84 14A 14A 0 0 0 0.5 0 ha 84 114 72 0 1 0 42 78 78 57 0 हन् ० 67.5 89 0. 60 1.5 0 39 53.25 Ag.5 33.75 O 2.5 0 26.625 39.75 43.5 24.95 0 3 0 19.875 35.0625 32.25 2).75 0 adve Us - Ver to orx in the given mat 2. solve un = saut 1 h-0.25 for t >0, 01x211 with u(011)=0 u(x10)=0; ucert) E columnos internas present

soln:

$$u_{0xx} = 52.44$$
 a.s.s.
 $h= 0.45$.
 $k = \frac{ah^2}{a} = \frac{32.00.25}{a} = 1$
 $u_{i,j+1} = \frac{u_{2.1,i,j} + u_{2.41,i}}{a}$
 $\frac{x}{a} = \frac{0.0.35}{0.000} = 0.5$ 0.715 1
 $0 = 0 = 0.0$ 0 0 1
 $1 = 0 = 0.0$ 0 0 1
 $1 = 0 = 0.0$ 0 0 1
 $a = 0 = 0.0$ 0 0 1
 $a = 0 = 0.0$ 0 0 1
 $a = 0 = 0.0$ 0 0 5
 $a = 0 = 0.0$ 0 0.5 3
 $a = 0 = 0.0$ 0 0.5 3
 $b = 0.025$ 0.575 $b.85$ 5.
 $b = 5.0$ 0.875 $b.85$ 5.
 $b = 5.0$ 0.976 $c.875$ $b.85$ 5.
 $c = 0.875$ $c.875$ $c.875$ $b.85$ 5.
 $c = 0.875$ $c.875$ $b.85$ 5.
 $c = 0.875$ $c.875$ $c.875$

solut:
Solut: Crank - Nicolson's Method (Implicit method):
Consider
$$\frac{\partial u}{\partial x^2} = a \frac{\partial u}{\partial t}$$
 (one dimensional
head 49n).
 $\mathbf{x} = ah^2$
 $a + \frac{a}{b_{1,1}} = \frac{a}{b_{1,1}} = \frac{a}{b_{1,1}} + \frac{a}{b_{1,1}} = \frac{a}{b_{1,1}} + \frac{a}{b_{1,2}} + \frac{a}{$

$$\begin{aligned} \frac{4j_{x}}{2} & 0 & 0.4s & 0.5 & 0.4h \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & u & u_{x} & u_{x} & u_{x} \\ hu_{x} = u_{x} \\ hu_{x} = u_{x} \\ hu_{x} = u_{x} \\ u_{x} - hu_{x} = 0 \\ u_{x} = u_{x} + u_{y} \\ u_{y} = u_{x} + 00 \\ u_{x} + hu_{y} = 00 \\ u_{x} = 1.70644 \\ u_{y} = u_{x} + 00 \\ u_{y} = 1.71644 \\ u_{y} = u_{x} + 0.544 \\ u_{y} = u_{y} + 0.544 \\ u_{y} = u_{x} + 0.544 \\ u_{y} = u_{y} + 0.544 \\ u_{y} = u_{x} + 0.544 \\ u_{y} = u_{y} + 0.544 \\ u_{y} = u_{x} + 0.544 \\ u_{y} = u_{y} + 0.5$$

80 80 1

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial u}{\partial t}$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial u}{\partial t}$$

$$\frac{\partial u}$$

Sub () in ()

$$u_{2} - 4u_{3} + u_{4} = -1.5389.$$

 $u_{2} - 4u_{3} + \frac{u_{3}}{4} + 0.2578 = -1.57887.$
 $u_{2} - 4u_{3} + \frac{u_{3}}{4} + 0.2578 = -1.57887.$
 $u_{2} - 1.575u_{3} = -1.47469.$
 $u_{2} - 3.775u_{3} = -1.47469.$
 $u_{2} - 3.775u_{3} = -1.47469.$
Solve eq. (), (), (), ().
Solve eq. (), (), (), ().
 $u_{1} = 0.5993.$
 $u_{3} = 0.56461.$
 $u_{4} = 0.5993.$
Solve by crane nicoloon's method,
eq. Use u_{4} Subjected & u(u_{10})=0;
 $u(0, e) = 0; u(1, e) = e dor two time
 $Stop.$$

$$\begin{aligned} & \chi_{n} : \\ & u_{nx} = u_{k} : \\ & a_{\pm 1} \\ & h : \frac{b - a}{n} = \frac{1 + 0}{h} = 0 \cdot d^{25} : \\ & k : a h^{2} = 1 x 0 \cdot a s^{2} = 0 \cdot 0 6 2 5 : \\ & k : a h^{2} = 1 x 0 \cdot a s^{2} = 0 \cdot 0 6 2 5 : \\ & \frac{1}{2} \frac{\sqrt{3}}{2} = 0 = 0 \cdot \frac{1}{2} \frac{\sqrt{3}}{2} = 0 \cdot 0 6 2 5 : \\ & \frac{1}{2} \frac{\sqrt{3}}{2} = 0 = 0 \cdot \frac{1}{2} \frac{\sqrt{3}}{2} = 0 \cdot$$

$$hu_{5} = u_{4}+u_{5} + 0.0198.$$

$$hu_{5} = u_{5} + u_{5} + u_{5} + 4u_{5} + u_{5} = 0.0198 - 0.0198 - 0.0198 - 0.0198 - 0.0198 - 0.0191 + 4u_{5} = 0.0191 + 4u_{5} = 0.0191 + 4u_{5} = 0.00191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00188$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00188$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + u_{5} = 0.0191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + u_{5} = 0.00191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + 4u_{5} = 0.00191 + 4u_{5} = 0.00088$$

$$u_{5} = 0.00059 + 4u_{5} = 0.0008$$

$$u_{5} = 0.00059 + 4u_{5} = 0.0008$$

$$u_{5} = 0.00059 + 4u_{5} = 0.0008$$

$$u_{5} = 0.00059 + 4u_{5} = 0.00059$$

The formula is,

$$U_{0} = U_{0} + U_{0} - U_{0}$$
The formula is,

$$U_{0} = U_{0} + U_{0} - U_{0}$$

$$U_{0} = U_{0} + U_{0} + U_{0} + U_{0}$$

$$U_{0}(x_{1}, 0) = 0; \quad \partial U_{0}(x_{1}, 0) = 0; \quad U(0, 1, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

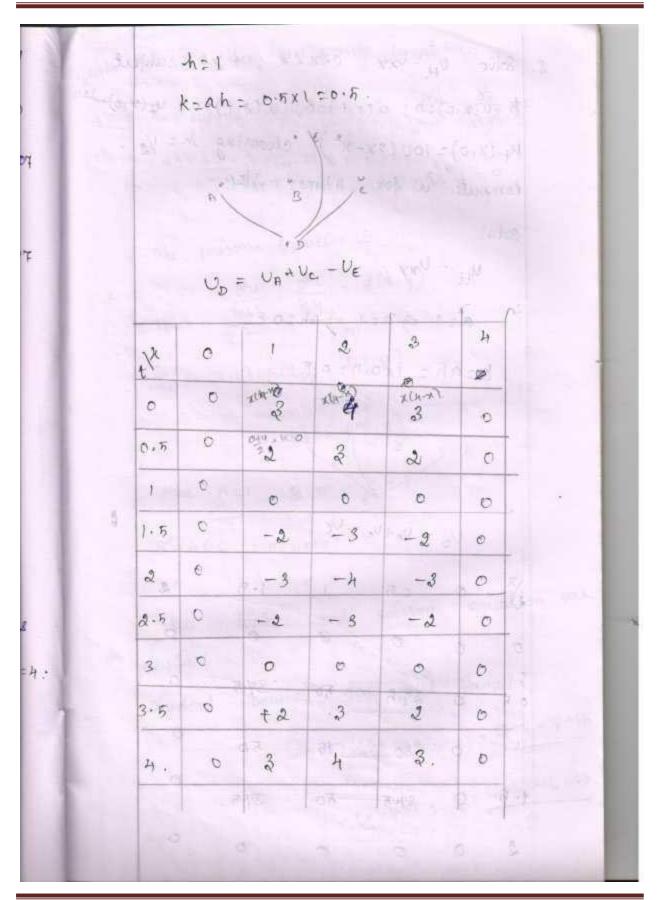
$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$u(x_{1}, 0) = 100 \text{ sin}(x_{1}) \cdot \text{ compute } U(x_{1}, 0) = 0;$$

$$get n;$$

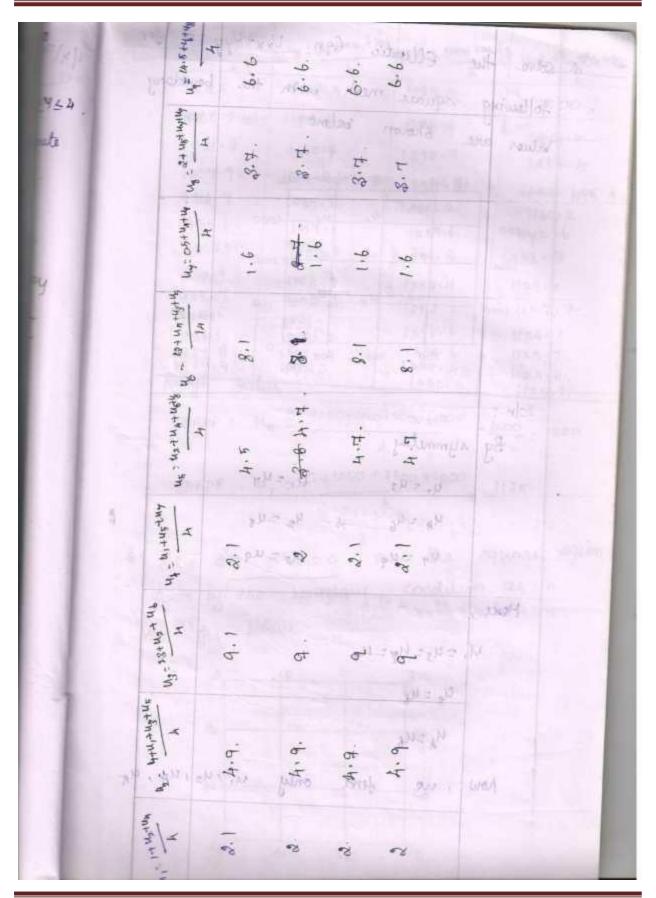
$$\frac{\partial U_{0}}{\partial t^{2}} = \frac{\partial^{2} U_{0}}{\partial x^{2}} - \frac{\partial^{2} U_{0}}{\partial t^{2}} - \frac{\partial^{2} U_{0}}$$



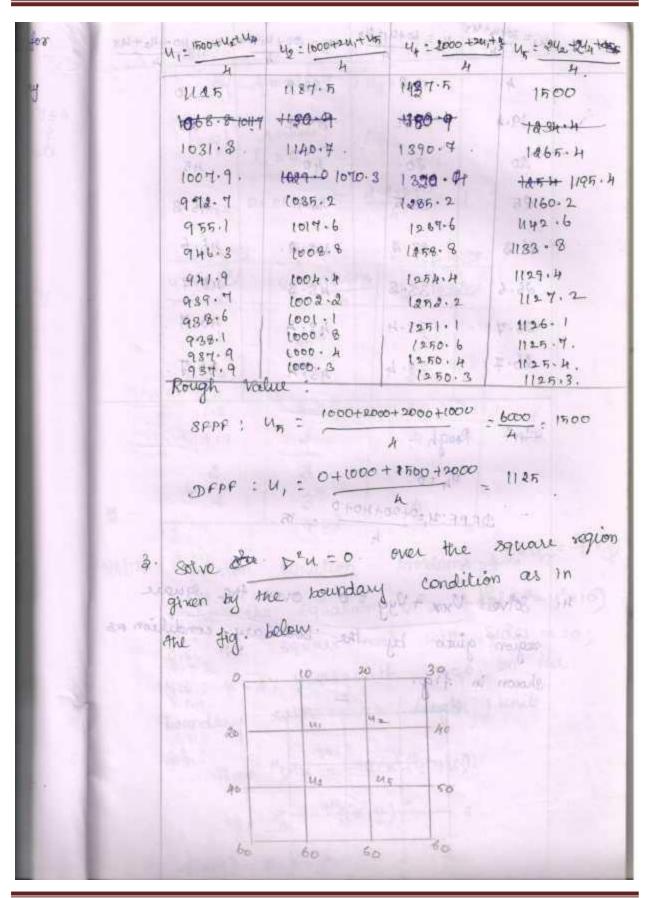
8. Solve
$$0_{44} = 0xx + 0xx \lambda a ; 6 > 0 . subject
15. $u(x, 0) \ge 0; u(0, t) \ge 0; u(ta), t) \ge 0; u_{4}^{t} + 1 = 0; (x_{1}, 0) \ge 100 (9x - x^{2}) choosing h = 1/2
compute 'u' for hitmes step .
solvi:
 $u_{44} = 0 = 0 = 0.7$.
 $u_{5} = 0 = 1 ; h \ge 0.7$.
 $u_{5} = 0 = 1 ; h \ge 0.7$.
 $u_{5} = 0 = 0 = 0.7$.
 $u_{5} = 0.7$$$$

1/200 1/2011
The Suplace and poisson Equation.
The Suplace Equation is
$$\frac{2^{4}u}{2^{4}x^{2}} + \frac{2^{4}u}{2^{4}y^{2}} = 0$$
.
 $\frac{1}{14}u^{4} + \frac{1}{14}u^{4} + \frac{1}{14}u^{4}$

By bebrann iteration method she want by 1. over the surface square region of side 4 Satisfying ulory)=0 0 = y = 4; ulary)=8+2y U(x10)=x2/2 01×14 1 U(x14)=x2101×14. Con the values at the interior points with h= k= Soln ! in micharph amazin (0, 4) = y=A u(4,y)= X=A. Ц(HA) = 97 - A + 1 - 1 - K Kepti BLANC 10 Juni 0 05 2 Silgella Rough values: $SFPF: U_{5} = \frac{0+4+12+2}{4} = 4.5$ DFPF: U1 = 0+4+0+45 = 8.1 $DAPF: u_3 = \frac{1}{2} + \frac{16}{12} + \frac{115}{2} = 9.1$ $DFPF = u_{y} = \underbrace{0 + u_{y} + 0 + 2}_{i} = 1.6$ DEPF : 49 - 645+12+2+8 - 5.6



2. Solve the Ellipstic Egn Unx+Uyy=0 following square mesh with the bounda Values are shown below 500 1000 500 0 U.a (000) 1000 Un-45-2000 2000 UN UR 1000 1000 500 1000 500 0 Soln : By symmetry 4, c 43 4, = 44 4x = 46 38 42 = 48 un - un us - un Hence, M, = us = Uy = ug Cla = Ug Masub Now, we find only 142144, u,



30-14+ 43 43 = 60 + Urt. UA 43 = 100 + 41+HA U4 = 110-4 18.8 28.8 0 P. 19.9 29.9. 19.4 40 11ADEC ao 30. 40 45 71.4.1-42.5. 46.8 30% 38.5 1-1101 46.6 26.3 33.2 43.2. 26.6 38-8 48.3 H6.4 46.4 · 33.4 26.7 48.4 1.900 46.7 33.4 26.7. 43.4 ASU a) 1001-0000-0008-0001 Soln Rough : UH =0. 1145 DEFF DFPF:4, 50+ 20+ 40+ 0 199100 sult ways h Solve Uxx + Vyy gua over 4. boundary condil region given by the shown in fig. 16 WE 199. 4 100 il.p. 2 5

10 (1x + 4 + 10) Nº G(x,y) ч A same y=3 (2,2) = (5,2) 0136 10.3)2 112 12 Em 100) 4440 (0,1)0 (31) (1.0) (2.0) (3,0) (010 4=01+0 -64810 By symmetry, 4,= 44 alt ant Ro 42 41= U2+U3+150 4 241+180 A 0 . .0 0 68.8 48.8 37-5 -62.9 77.9.0 65.9 66 - 4 81.4 67.3 82.8 TH.5. SIG. M.L. 67.5 84.5 74.9 tions 1 Mignal 67.5 danga. shi w 67.5. 82.5 7501+82+81201-(or shink & Vot = (Howster

so solve
$$\frac{y^2u}{y^2} = \frac{9x^2y^2}{16x^2}$$
 our the square
bounded by the lines $x = -3$; $x = 2$, $y = -2$;
 $y = 3$ with $u = 0$ on the boundary and
megh dength $=1.497$
Solve $y^2u = 8x^2y^2$
 $wk = 7$ $y^2u = -f(x_1y_1)$
 $-f(x_1y_1) = -8x^2y^2$ (..., $h = 1$)
 $\frac{10}{16x^2}$
 $\frac{10}{16x^2}$

41= 42+U4+8 Un = 42+44+46+ 242-8 42 = 4+HS + HB QUITUS H Un = U2 houldow 0 2/1 1/20 0 2 14 -1 - April-1 diput -2 -1+5 MB - 8.5. -1.5 -1-8 - 2.8 -1.8 -1.9 1-0 - 2.9 - = (h 2 -2 -2 -2. - 3 harmon a $\gamma_{\rm p} M < 12$ With the start was a start with the start and a start and a start a start a start a pline wit ALL HALKS HAL 10 - 11 = 11 - 12

Questions	opt1	opt2	opt3	opt4	Answer
If $B^2-4AC = 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC > 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	hyperbolic
If $B^2-4AC < 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	elliptic
(f(x+h)-f(x))/h is known as the	difference quotient	average	derivative	f(x)	difference quotient
The equation $del^2(u) = 0$ is equation.	Laplace	Poisson	Heat	Wave	Laplace
One dimensional heat equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Parabolic
One dimensional wave equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Hyperbolic
The differential equation is said to be parabolic, if	B^2-4AC		B^2-4AC < 0	B^2-4AC =0	B^2-4AC
The differential equation is said to be elliptic, if	B^2-4AC		$B^2-4AC < 0$	B^2-4AC =0	$B^2-4AC < 0$
The differential equation is said to be hyperbolic, if	B^2-4AC		B^2-4AC < 0	B^2-4AC =0	$B^2-4AC > 0$
[x f(xx)+yf(yy)]=0 x>0, y>0 is type of equation.	elliptic	Poisson	Parabolic	Hyperbolic	elliptic
[f(xx)-2f(xx)]=0, x>0, y>0 is type of equation.	elliptic	Poisson	Parabolic	Hyperbolic	Hyperbolic
process is used to solve two dimensional heat equations	Newtons	Gaussian	Laplace	Liebmanns iteration	Liebmanns iteration
The equation (\tilde{N}^2) u = 0 is known as equation	Laplace	Poisson	heat	wave	heat
	Euplace	1 0135011	neut	wave	neut
The formula is used to complete the improved value of u,	Newtons	elimination	Liebmanns iteratio	reduction	Liebmanns iteration
The value of u can be improved by process	Newtons	elimination	Liebmanns iteratio		Liebmanns iteration
The value of u is obtained at any lattice points which is					
the arithmetic mean of the values of u at 4 lattice points near to it	interior	exterior	positive	negative	interior
The value of $u_{i,j}$ in the difference equation are defined only at the					
points	equal	unequal	apex	lattice	lattice
The points of intersection of these families of lines are called					
points	equal	unequal	apex	lattice	lattice
If $B^2 - 4AC > 0$ then the given equation is	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	hyperbolic
The differential equation is said to be in a region R if B^2					
4AC < 0 at all points of a region The differential equation is evid to be	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	elliptic
The differential equation is said to be in a region R if $B^2 - 4AC = 0$ at all points of the region	Parabolic	allintia	humarhalia	raatangular hymorhalia	Parabolic
B 2-4AC = 0 at an points of the region	rarabolic	elliptic	hyperbolic	rectangular hyperbolic	rarabolic
If $(ka)/h < 1$, it is stable but the accuracy of the solution decrease with					
the increasing value of	k	a	(ka)/h	k/h	(ka)/h
If $(ka)/h < 1$, it is stable but the accuracy of the solution decrease with					
the increasing value of	k	a	k/h	(ka)/h	(ka)/h
The differential equation is said to be in a region R if					
$B^2 - 4AC = 0$ at all points of the region	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	Parabolic
The differential equation is said to be in a region R if B^2					
4AC < 0 at all points of a region	Parabolic	elliptic	hyperbolic	rectangular hyperbolic	elliptic
The points of intersection of these families of lines are called points	aqual	unaqual	anov	lattice	lattice
points	equal	unequal	apex	lattice	lattice
Schmidt method belongs to type	explicit	implicit	elliptic	hyperbolic	explicit
The Poisson's equation belongs to type	explicit	implicit	elliptic	hyperbolic	hyperbolic
One dimensional heat flow equation belongs to type	explicit	parabolic	elliptic	hyperbolic	parabolic
Laplace equation in two dimensions belongs to type	explicit	parabolic	elliptic	hyperbolic	explicit
The error in solving Poisson equation by methods is of	1	1	1	51	1
order h^2	Difference	iteration	elimination	interpolation	Difference
The error in solvingequation by difference method is of order					
h^2	Newton's	Jacobi's	Poisson	Gaussian	Poisson
The error in solving Poisson's equation by difference methods is of					
order	h	h^2	h^3	h^4	h^2
The equation del ^{\land} 2(u) = f(x, y) is known as equation	Poisson	Newtons	Jacobis	Gaussian	Poisson
The value of ui,j is the average of its value at the neighbouring					
diagonal mesh points	2	3	4	5	4
The value of u(i,j) is the of its values at the four					
neighbouring diagonal mesh points	sum	difference	average	product	average
The value of u(i,j) is the average of its values at the four neighbouring					
mesh points	Square	rectangle	diagonal	column	diagonal
The mesh points are also called	grid point	starting point	Ending point	bisection	grid point
The points of intersection of the dividing lines are called	bisection	mesh points	vertex	end point	mesh points
The differential equation is said to be hyperbolic, if	$B^2-4AC = 0$	$B^2-4AC > 0$	$B^2-4AC < 0$	B^2-4AC <= 0	$B^2-4AC > 0$
The differential equation is said to be elliptic, if	$B^2-4AC = 0$	$B^2-4AC \ge 0$	$B^2-4AC \le 0$	B^2-4AC <=0	$B^2-4AC \le 0$
The differential equation is said to be parabolic, if	$B^2-4AC = 0$	$B^{2}-4AC \ge 0$	$B^2-4AC \le 0$	$B^2-4AC \le 0$	$B^2-4AC = 0$
One dimensional wave equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Parabolic
One dimensional heat equation is the example of equation.	Laplace	Poisson	Parabolic	Hyperbolic	Poisson
The equation $del^2(u) = 0$ is equation	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC = 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC > 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	hyperbolic
If $B^2-4AC < 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	elliptic
		-	-		-