

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2017 onwards) **DEPARTMENT OF PHYSICS**

SUBJECT : ELECTROMAGNETIC THEORY SUBJECT CODE: 17PHU303

SEMESTER : III CLASS : II B.Sc.Phy

SCOPE:

Electromagnetic theory is very important to understand the propagation of waves in different media, its transmission and reception. This paper is intended to give information about the theories of electromagnetic waves and their propagation through different media.

OBJECTIVE:

- To define electric and magnetic fields.
- To calculate electric and magnetic fields from stationary and dynamic charge and current distributions.
- To solve simple electrostatic boundary problems.
- To describe simple models for electromagnetic interaction with media.
- To choose adequate models and solution methods for specific problems.
- To solve problems analytically and numerically.

UNIT- I

Maxwell Equations: Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density.

UNIT -II

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave

propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere.

UNIT -III

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence).

UNIT -IV

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light

UNIT -V

Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. **Optical Fibres:-** Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).

SUGGESTED READINGS:

- 1. Introduction to Electrodynamics by David Jeffery Griffiths, Pearson, 2013, ISBN 9780321856562.
- 2. Electromagnetic Theory, By P.K. Basu, H. Dhasmana, 2010, Ane Books Ltd, ISBN 978-93-8015-678-1.
- Elements of Electromagnetics by Matthew N. O. Sadiku, Oxford University Press, 2015, ISBN - 9780199321407.
- 4. Paul Lorrain and Dale R Corson, Electromagnetic fields and waves, 3rd Edition, W. H. Freeman and Company New York
- 5. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning.
- 6. Electromagnetic Field Theory: A Collection of Problems, By Gerd Mrozynski, Matthias Stallein, Springer Vieweg, 2013, ISBN -978-3-8348-1711-2.
- 7. Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning, Engineering Electromagnetic, Willian H. Hayt, 8th Edition, 2012, McGraw Hill.
- 8. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2017 onwards) **DEPARTMENT OF PHYSICS**

SUBJECT : ELECTROMAGNETIC THEORY SUBJECT CODE: 17PHU303

SEMESTER : III CLASS : II B.Sc.Phy

S.No	Lecture	Topics to be covered	Support
	Duration		Material/Page.Nos
	Hour		
		UNIT-I	
1	1	Review of Maxwell's equations. Displacement	T1:174-182
		Current. Vector and Scalar Potentials.	
2	1	Gauge Transformations: Lorentz and Coulomb	T1:214-220
		Gauge	
3	1	Boundary Conditions at Interface between Different	T1:265-269
		Media	
4	1	Wave Equations. Plane Waves in Dielectric Media	
5	1	Poynting Theorem and Poynting Vector	T1:188-201
6	1	Electromagnetic (EM) Energy Density. Physical	
		Concept of Electromagnetic Field Energy Density	
7	1	Momentum Density and Angular Momentum	T1:202-206
		Density	
8	1	Continuation	
9	1	Revision	
		Total No Of Hours Planned ForUnit-I=9	
		UNIT-II	
1	1	Plane EM waves through vacuum and isotropic	T1:231-239
		dielectric medium	
2	1	Transverse nature of plane EM waves	
3	1	Refractive index and dielectric constant, wave	
		impedance	
4	1	Propagation through conducting media, relaxation	T1:243-253
		time, skin depth.	
5	1	Wave propagation through dilute plasma	

LECTURE PLAN DEPARTMENT OF PHYSICS

Department of physics, Karpagam Academy Of Higher Education Page 1/4

6	1	Electrical conductivity of ionized gases, plasma	T1:254-259
U		frequency, refractive index, skin depth,	11.237-237
7	1	Continuation	
8	1	Application to propagation through ionosphere.	
9	1	Revision	
	Total No	Of Hours Planned ForUnit-II=9	
		UNIT-III	
1	1	Boundary conditions at a plane interface between	T1:265-268
		two media.	
2	1	Reflection & Refraction of plane waves at plane	T1:269-270
-		interface between two dielectric media-	
3	1	Laws of Reflection & Refraction	
4	1	Fresnel's Formulae for perpendicular & parallel	T1:272-278
		polarization cases, Brewster's law	
5	1	Continuation	
6	1	Brewster's law. Reflection & Transmission	
		coefficients.	
7	1	Total internal reflection, evanescent waves.	T1:281-283
8	1	Metallic reflection (normal Incidence).	T1:286-289
9	1	Revision	
		Total No Of Hours Planned ForUnit-III=9	
		UNIT-IV	
1	1	Description of Linear, Circular and Elliptical	T1:239-243
		Polarization. Propagation of E.M. Waves in	
		Anisotropic Media.	
2	1	Symmetric Nature of Dielectric Tensor. Fresnel's	T1:272-278
2	1	Formula.	T 1.259
3	1	Uniaxial and Biaxial Crystals. Light Propagation in	T1:358
-	1	Uniaxial Crystal.	
4	1	Double Refraction. Polarization by Double	
_	1	Refraction.	T1.264.265
5	1	Nicol Prism. Ordinary & extraordinary refractive	T1:364-367
	1	indices.	
6	1	Production & detection of Plane, Circularly and	
		Elliptically Polarized Light.	
7	1	Phase Retardation Plates: Quarter-Wave and Half-	T1:368-370
0		Wave Plates.	
8	1	Babinet Compensator and its Uses.	T1:372-375

9	1	Analysis of Polarized Light	T1:376
10	1	Revision	
	Total No	Of Hours Planned ForUnit-IV=10	
		UNIT-V	
1	1	Planar optical wave guides. Planar dielectric wave guide.	T1:388-389
2	1	Condition of continuity at interface.	T1:390-392
3	1	Phase shift on total reflection. Eigenvalue equations	T1:402-405
4	1	Phase and group velocity of guided waves.	
5	1	Field energy and Power transmission.	T1:408-410
6	1	Numerical Aperture.	T1:413
7	1	Step and Graded Indices (Definitions Only).Single and Multiple Mode Fibres (Concept and Definition Only).	T1:415-420
8	1	Revision	
9	1	Old Question paper Discussion	
10	1	Old Question paper Discussion	
11	1	Old Question paper Discussion	
		Total No Of Hours Planned ForUnit-V=11	
		Total No Of Hours Planned = 48	

SUGGESTED READINGS:

- 1. Introduction to Electrodynamics by David Jeffery Griffiths, Pearson, 2013, ISBN 9780321856562.
- 2. Electromagnetic Theory, By P.K. Basu, H. Dhasmana, 2010, Ane Books Ltd, ISBN 978-93-8015-678-1.
- Elements of Electromagnetics by Matthew N. O. Sadiku, Oxford University Press, 2015, ISBN - 9780199321407.
- 4. Paul Lorrain and Dale R Corson, Electromagnetic fields and waves, 3rd Edition, W. H. Freeman and Company New York
- 5. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning.
- 6. Electromagnetic Field Theory: A Collection of Problems, By Gerd Mrozynski, Matthias Stallein, Springer Vieweg, 2013, ISBN -978-3-8348-1711-2.
- 7. Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning, Engineering Electromagnetic, Willian H. Hayt, 8th Edition, 2012, McGraw Hill.
- 8. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

UNIT-I

SYLLABUS

Maxwell's Equations

Maxwell Equations: Review of maxwell's equation.Displacement Current-Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density.

MAXWELL EQUATIONS

The four fundamental equation of electromagnetism and corresponds to a generalization of certain experimental observations-regarding electricity and magnetism. The following four laws of electricity and magnetism constitutes the so called differential form of Maxwell's equation.

div $\mathbf{D} = \nabla \cdot \mathbf{D} = \mathbf{0}$

div $\mathbf{B} = \nabla \mathbf{B} = \mathbf{0}$

1. Guass law for the electric field of charge yields

D – electric displacement in coulombs / m 2

 $\rho-$ free charge density in coulombs / m ³

2. Guass law for magnetic field yields

B – magnetic induction in web / m 3

3. Ampere's Law in circuital form for the magnetic field accompanying a current when modified by Maxwell yields

Curl H = ∇ x H = J + ∂ D / ∂ t ------(C)

 (\mathbf{R})

H - magnetic field intensity in amperes / m

I – current density amperes / m 2

4. Faradays law in circuital form for the induced electromotive force produced by the rate of change of magnetic flux linked with the path yields.

Curl E = ∇ **X E** = - ∂ **B** / ∂ **t** -----(D)

E – electric field intensity in Volts / m

DERIVATIONS

1. div $\mathbf{D} = \nabla \mathbf{D} = \rho$

Let us consider a surface S bounding a volume τ with in a dielectric. The volume τ contains no net charge but we allow the dielectric to be polarised say by placing it is an electric field. Some charge on the dielectric body are placed. Thus we have two types charges

a) real charge of density ρ

b) bound charge density $\boldsymbol{\rho}$, Guass law then can be written as,

$$\oint_{s} E \cdot ds = \frac{1}{\varepsilon o} \int (\rho + \rho') d\tau$$

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: I

CLASS: II BSC Physics COURSE CODE: 17PHU303

BATCH-2017-2020

$$\varepsilon_0 \oint_{s} E.\mathrm{ds} = \int_{\tau} \rho d + \tau \int \rho' d\tau - \dots (1)$$

But as the bound charge density ρ' is defined as

 $\rho' = - div P$

$$\oint_{s} E ds = \int_{\tau} div E d\tau$$

Equation (1) can be written as,

$$\varepsilon_0 \int_{\tau} div \ E \ d\tau = \int_{\tau} \rho \ \tau - \int_{\tau} div \ P \ d\tau$$
$$\int_{\tau} div \ (\ \varepsilon 0 \ E + P) \ d\tau = \int_{\tau} \rho \ d\tau \qquad [\varepsilon_0 E + P \triangleq D]$$

$$\int_{\tau} (div D - \rho) d\tau = 0$$

This equation is true for all volumes, the integration must vanish.

div D =
$$\nabla$$
.D = ρ

2. div $\mathbf{B} = \nabla \mathbf{B} = \mathbf{0}$

Experiments to data have shown that magnetic poles do not exist. This in turn implies that the magnetic lines of force are either closed group or go off to infinity. Hence the no of magnetic lines of force entering any arbitrary closed surface is exactly the same as leaving it. The flux of magnetic induction B across any closed surface is always zero.

$$\oint_{s} B.\,ds = 0$$

Transforming this surface integral to volume integral by Guass theorem, we get,

 $div B d\tau = 0$

But as the surface bounding the volume is quite arbitrary the above equation will be true only when the integrated vanishes.

div $\mathbf{B} = \nabla \mathbf{B} = \mathbf{0}$

3. Curl H = ∇ x H = J + ∂ D / ∂ t

From Ampere's circuital law the work done in carrying unit magnetic pole once round a closed arbitrary path linked with the current I is expressed by,

H.dI = I

 $\oint_{C} H.d I = \int J.ds \quad [I = \int I.ds]$

Where S is the surface bounded by the closed path C.

Now changing the line integral into surface integral by Stokes theorem, we get

$$\int_{s} curl \ H.ds = \int_{s} J.ds$$

CLASS: II BSC Physics

Curl H = J -----(2)

But Maxwell found it to be incomplete for changing electric fields and assumed that a quantity,

 $J_d = \partial D / \partial t$ is called displacement current must also be included in it so that it may satisfy the continuity equation, J must be replaced by $J + J_d$, so the law becomes,

$$Curl H = J + J_{d}$$
$$Curl H = J + \partial D / \partial t$$

4. Curl E = ∇ X E = - ∂ B / ∂ t

According to Faradays law of electromagnetic induction, we know that the induced e.m.f is proportional to the rate of change flux

$$\epsilon = -d \Phi_{\rm B} / dt ----- (3)$$

Now if E be the electric intensity at a point the work done in moving a unit charge through a small distance d I is E. d I. So the work done in moving the unit charge once round the circuit is $\oint_c E.dI$. Now as e.m.f is defined as the amount of work done in moving a unit charge once round the electric circuit.

$$\epsilon = \oint_c E. dI \qquad (4)$$

Comparing equation (3) and (4), we get,

 $\oint_{c} E. dI = d \Phi_{B} / dt \qquad -----(5)$ $\Phi_{B} = \int_{s} B. ds$ So $\oint_c E \cdot dI = -\frac{d}{dt} \int B \cdot ds$

Now changing the line integral into surface integral by Stokes theorem, we get

$$\int_{s} curl \ E. \, ds = -\frac{d}{dt} \int B. \, ds$$

The surface S is fixed in space and only B changes with time, above equation yields,

$$\int_{s} (curl + \frac{\partial B}{\partial T}) . ds = 0$$

Integrated vanish is the integral is true for arbitrary,

 $Curl \: E = \: \text{-} \: \partial B \: / \: \partial t$

Special Cases :

1. In a conducting medium of relative permittivity ϵ_r and permeability μ_r as

$$D = \varepsilon E = \epsilon_{r} \epsilon_{0} E$$

$$B = \mu H = \mu_{r} \mu_{0} H - \dots (A)$$
And Maxwell equation reduced to
(i) $\nabla . E \neq \rho / \epsilon_{r} \epsilon_{0}$
(ii) $\nabla . H = 0$
(iii) $\nabla . H = J + \epsilon_{r} \epsilon_{0} \frac{\partial E}{\partial t}$

(iv)
$$\nabla x E = -\mu_t \mu_0 \frac{\partial H}{\partial t}$$

2. In a non-conducting media of relative permittivity ϵ_r and permeability μ_r as

 $\rho = \sigma = 0$

$$J = \sigma E = 0 \dots (B)$$

And Maxwell equation reduced to

(i) $\nabla \cdot \mathbf{E} = 0$ (ii) $\nabla \cdot \mathbf{H} = 0$

(iii)
$$\nabla X H = \epsilon_r \epsilon \ 0 \frac{\partial E}{\partial t}$$

(iv)
$$\nabla x E = -\mu_r \mu_0 \frac{\partial n}{\partial t}$$
(C)

3. In free space as

 $\epsilon_r = \mu_r = 1$

 $\rho = \sigma = 0$

And Maxwell equation reduced to

(i) **∇**.E = 0

- (ii) **∇**. H = 0
- (iii) $\nabla X H = \epsilon 0 \frac{\partial E}{\partial t}$

(iv)
$$\nabla x E = - \mu_0 \frac{\partial H}{\partial t}$$

Discussion :

(i) The equation are based on experimental observations the equation (A) and (C) correspond to electricity and (B) and (D) to magnetism.

(ii) These equations are general and apply to all electromagnetic phenomena in media, which are at rest with to respect to the co-ordinate system.

(iii) These equation are not independent of each other as form equation (D) we can derive (B) and from (C), (A). The equation (B) and (D) are called first pair of Maxwell's equation while (A) and (C) are called the second pair.

(iv) The equation A represents coulombs law while C the law of conservation of charge (i.e.) continuity equation.

DISPLACEMENT CURRENT

Ampere's circuital law in its most general form is given by

$$\oint_{c} H.d I = \int_{s} J.ds$$
 J – Current density

 $\int_{s} curl \ H.ds = \int_{s} J.ds$

Curl H = J ----- (1)

Let us now examine the validity of this equation in the event that the fields are allowed to vary with time. If we take the divergence of both sides of equation (1) then,

Now as div of curl of any vector is zero, we get from equation (2),

div J = 0 ----- (3)

Now the continuity equation in general state

div J = $-\frac{\partial \rho}{\partial t}$ ----- (4)

and will therefore vanish only in the special case that the charge density is static. We must conclude that Ampere's law as stated in equation (1) is valid only for steady state conditions and

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC PhysicsCOURSE NAME: ELECTROMAGNETIC THEORYCOURSE CODE: 17PHU303UNIT: IBATCH-2017-2020

is insufficient for the case of time-dependent fields. Because of this Maxwell assumed that equation (1) is not complete but should have something be denoted be J_d , then equation (1) can be written as

 $\partial D / \partial t$ called the displacement current to distinguish it from J, the conduction current. By adding this term to Ampere's law, Maxwell assumed that the time rate of change of displacement produce a magnetic field just as a conduction current.

 $\operatorname{Curl} \mathbf{H} = \mathbf{J} + \frac{\partial D}{\partial \mathbf{r}}$

ELECTROMAGNETIC POTENTIALS A AND ϕ

The analysis of an electromagnetic field is often facilitated by the use of auxiliary functions know as electromagnetic potentials. At every point of space the field vectors satisfy the equations,

div D $\rho = \rho$	(A)
div B =0	(B)
$\operatorname{Curl} \mathbf{H} = \mathbf{J} + \partial \mathbf{D} / \partial \mathbf{t}$	(C)

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: I

CLASS: II BSC Physics COURSE CODE: 17PHU303

BATCH-2017-2020

Curl = $-\partial \mathbf{B} / \partial t$ ----- (**D**)

According to equation (B), the field of vector B is always solenoidal, B can be represented as the curl of another vector say A.

> B = curl A----- (1)

Where A is a vector which is function of space (x, y, z) and time (t) both. Now sub the value B in equation (1) we get,

Curl E =
$$-\frac{\partial}{\partial t}$$
 curl A
Curl (E + $\frac{\partial A}{\partial t}$) = 0 (2)

(3)

(i.e.) E + $\frac{\partial A}{\partial t}$ is a irrotational and must be equal to the gradient of some scalar function.

$$E + \frac{\partial A}{\partial t} = - \operatorname{grad} \varphi$$
$$E = - \operatorname{grad} \varphi - \frac{\partial A}{\partial t} - \cdots - \cdots$$

Thus we have introduced a vector A and a scalar φ both being functions of position and time.

These are called electromagnetic potentials. The scalar φ is called the scalar potential and vector

A, vector potential.

Properties of scalar and vector potential :

(i) These are mathematical function, which are not physically measurable.

(ii) They are not independent of each other.

(iii) They play an important role in relativistic electrodynamics.

NON-UNIQUENESS OF ELECTROMAGNETIC POTENTIALS AND CONCEPT OF GAUGE

In terms of electromagnetic potentials field vectors are given by,

And
$$B = \operatorname{curl} A \qquad ------(1)$$
$$E = -\operatorname{grad} \varphi - \frac{\partial A}{\partial t} \qquad ------(2)$$

From equations (1) and (2) it is clear that for a given A and φ , each of the field vectors B and E has only value i.e. A and φ determine B and E uniquely. However the converse is not true i.e. field vectors do not determine the potentials A and φ completely. This in turn implies that for a given A and φ there will be only one E and B while for a given E and B there can be infinite

number of A' S and ϕ ' S. This is because the curl of the gradient of any scalar vanishes identically and hence we may add to A the gradient of a scalar Λ without affecting B. That is A may be replaced by,

 $A' = A + \text{grad } \Lambda -----(3)$

But if this is done equation (2) becomes,

$$E = -\operatorname{grad} \varphi - \frac{\partial}{\partial t} (A' - \operatorname{grad} \Lambda)$$
$$E = -\operatorname{grad} (\varphi - \frac{\partial A'}{\partial t}) - \frac{\partial A'}{\partial t}$$

So if we make the transformation given by equation (3). We must also replace φ by

$$\Phi' = \varphi - \frac{\partial \Lambda}{\partial t} - \dots$$
 (4)

The expressions for field vectors **E** and **B** remain unchanged under transformations equations (3) and (4).

$$B = \operatorname{curl} A = \operatorname{curl} (A' - \operatorname{grad} A) = \operatorname{curl} A$$

And

E = - grad
$$\varphi - \frac{\partial A}{\partial t} = -$$
 grad $(\varphi' + \frac{\partial A}{\partial t}) - \frac{\partial}{\partial t} (A' - \text{grad } \Lambda)$

$$E = \operatorname{grad} \varphi' - \frac{\partial A}{\partial t}$$

We get the same field vectors whether we use the set (A, ϕ) or (A', ϕ') . So electromagnetic potentials define the field vectors uniquely through they themselves are non-unique.

The transformations given by equations (3) and (4) are called gauge transformations and the arbitrary scalar Λ gauge function. From the above it is also clear that even though we add the gradient of a scalar function, the field vectors remain unchanged. Now it is the field quantities and not the potentials that possess physical meaningfulness. We therefore Say that the field vectors are invariant to gauge transformations i.e. they are gauge invariant.

LORENTZ GAUGE

The Maxwell's field equations in terms of electromagnetic potentials are,

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC Physics COURSE NAME: ELECTROMAGNETIC THEORY COURSE CODE: 17PHU303 UNIT: I BATCH-2017-2020

A casual glance at equations (1) and (2) reveals that these equations will be much more simplified (i.e. will become identical and uncoupled) if we choose

div A +
$$\mu \varepsilon \frac{\partial \phi}{\partial t} = 0$$
(3)

This requirement is called the Lorentz condition when the vector and scalar potential satisfy it, the gauge is called is known as Lorentz gauge.

-- (4)

(5)

So with Lorentz condition field equation reduce to

$$\nabla^{2} \mathbf{A} - \mu \varepsilon \, \frac{\partial 2\phi}{\partial t^{2}} = - \, \mu \, \mathbf{J} \quad \cdots$$
$$\nabla^{2} \phi - \mu \varepsilon \, \frac{\partial 2\phi}{\partial t^{2}} = - \, \frac{\rho}{\varepsilon} \quad \cdots$$

 $\square^2 \mathbf{A} = -\mu \mathbf{I}$

 $\mathbf{O}^2 \quad \mathbf{\varphi} = -\frac{\mathbf{\rho}}{\mathbf{s}}$

With

<u>ð</u>2Ø

But as $\mu \varepsilon = 1/v^2$

So equations (4) and (5) can be written as

Equations (6) and (7) are inhomogeneous wave equations and are known as D' Alembertian equations and can be solved in general by a method similar to that we use to solve Poisson's equation. The potentials obtained by solving these equations are called retarted potentials.

 $\mathbf{D}^2 = \nabla^2 - \frac{1}{\sqrt{2}} \frac{\partial 2}{\partial t^2}$

In order to determine the requirement that Lorentz condition places on Λ , we substitute A' and φ ' from equations (3) and (4).

$$div (A - grad \Lambda) + \mu \varepsilon \frac{\partial}{\partial t} (\phi' + \frac{\partial \Lambda}{\partial t}) = 0$$
$$div A' + \mu \varepsilon \frac{\partial \phi}{\partial t} = \nabla^2 \Lambda - \mu \varepsilon \frac{\partial 2\Lambda}{\partial t^2}$$

So A' and φ ' will also satisfy equation (3) i.e. Lorentz condition provided that

$$\nabla^2 \Lambda - \mu \varepsilon \frac{\partial^2 \Lambda}{\partial t^2} = 0$$

i.e.
$$\boxdot^2 \Lambda = 0 \qquad ----- (8)$$

Lorentz condition is invariant under those gauge transformations for which the gauge functions are solutions of the homogeneous wave equations.

The advantages of this particular gauge are :

(i) It makes the equations for A and ϕ independent of each other.

(ii) It leads to the wave equations which treat φ and A on equivalent footings.

(iii) It is a concept which is independent of the co-ordinate system chosen and so fits naturally

into the considerations of special theory of relativity.

COULOMB GAUGE

An inspection of field equations in terms of electromagnetic potentials,

$$\nabla^{2}A - \mu\varepsilon \frac{\partial 2A}{\partial t^{2}} - \operatorname{grad} \left(\operatorname{div} A + \mu\varepsilon \frac{\partial \phi}{\partial t}\right) = -\mu j \qquad (1)$$

$$\nabla^{2}\phi - \mu\varepsilon \frac{\partial 2\Box}{\partial t^{2}} + \frac{\partial}{\partial t} (\operatorname{div} A + \mu\varepsilon \frac{\partial \Box}{\partial t}) = -\frac{\rho}{\varepsilon}$$
i.e.
$$\nabla^{2}\phi + \frac{\partial}{\partial t} (\operatorname{div} A) = -\frac{\rho}{\varepsilon} \qquad (2)$$
we assume ,

Shows that if we assume,

div A = o

equation (2) reduces to Poisson's equation

$$\nabla^2 \varphi(\mathbf{r},t) = -\frac{\rho}{\varepsilon} (\mathbf{r}',t) - \dots (4)$$

(3)

Whose solution is,

$$\varphi_{(r,t)} = \frac{1}{4\pi\varepsilon} \int \frac{\rho(r',\varepsilon)}{R} d\tau' \qquad (5)$$

i.e. the scalar potential is just the instantaneous Coulombian potential due to charge ρ (x', y', z',

t). This is the origin of the name Coulomb gauge. Equation (1) in the light of (3) reduced to

$$\nabla^{2} \mathbf{A} - \frac{1}{\nabla^{2}} \frac{\partial 2\mathbf{A}}{\partial t^{2}} = -\mu J + \mu \varepsilon \nabla \frac{\partial \Box}{\partial t} \qquad (6)$$

Now to express equation (6) in more convenient way we use Poisson's equation (4) which with the help of (5) can be written as

Now as Poisson's equation holds good for scalar and vectors both, replacing $\rho(r^{\prime}\,,\,t)$ by J' we get,

$$\nabla^2 \left\{ \frac{1}{4\pi\varepsilon} \int \frac{J'}{R} \, \mathrm{d}\tau' \right\} = -\frac{J'}{\varepsilon} \tag{8}$$

Now from the vector identity

Enable | Ensighters | Envice CARPAGAM ACADEWY OF HIGHER EDUCATION (Denoid to b Ubinently) (Enableded Under Section 3 of UEG. Act, 1956)

CLASS: II BSC Physics

COURSE CODE: 17PHU303

 $\nabla \mathbf{x} \nabla \mathbf{x} \mathbf{G} = \nabla (\nabla, \mathbf{G}) - \nabla^2 \mathbf{G}$ $\nabla^2 \mathbf{G} = \nabla (\nabla \cdot \mathbf{G}) - \nabla \mathbf{X} \nabla \mathbf{X} \mathbf{G}$ Taking G = $\int \left(\frac{J}{r}\right) d\tau'$, we get $\nabla^2 \int \left(\frac{J}{r}\right) d\tau' = \nabla \left(\nabla \cdot \int \frac{J'}{r} d\tau'\right) - \nabla x \nabla x \int \frac{J'}{r} d\tau'$ Which in the light of equation (8) reduces to $-4\pi J' = \nabla \left(\nabla \cdot \int \frac{J'}{r} d\tau'\right) - \nabla x \nabla x \int \frac{J'}{r} d\tau'$ *i.e.* $J' = -\frac{1}{4\pi} \nabla (\nabla \cdot \int \frac{J'}{P} d\tau') + \frac{1}{4\pi} \nabla x \nabla x \int \frac{J'}{P} d\tau'$ ------ (9) Now as $\nabla . \int \frac{J'}{R} d\tau'$ $= \int \left[\frac{1}{R}\nabla J' + J' \cdot \nabla \left(\frac{1}{R}\right)\right] \{ as \nabla (sv) = s \nabla \cdot v + v \cdot \nabla s \}$ = $\int J' \cdot \nabla \frac{1}{R} d\tau' \{ \text{ as } J' \text{ is not a function } x, y \text{ and } z \}$ $= -\int J' \cdot \nabla' \frac{1}{p} d\tau' \{ as \nabla \left(\frac{1}{p} \right) = -\nabla' \left(\frac{1}{p} \right) \}$ $= \int \left[\nabla' \cdot \frac{J'}{p} - \nabla' \cdot \left(\frac{J'}{p} \right) \right] d\tau' \{ as \nabla' \cdot \frac{J'}{p} = \left(\frac{1}{p} \right) \nabla' \cdot J' + J' \cdot \nabla' \left(\frac{1}{p} \right) \}$ $= \int \nabla' \cdot \frac{J'}{R} d\tau' - \oint_{\mathfrak{s}} \left(\frac{J'}{R} \right) \cdot d\mathfrak{s} \{ as \int \nabla' \left(\frac{J'}{R} \right) d\tau' = \oint_{\mathfrak{s}} \left(\frac{J'}{R} \right) \cdot d\mathfrak{s} \}$ As J' is confined to the vol τ' , the surface contribution will vanish so

$$\nabla \cdot \int \left(\frac{J'}{R}\right) d\tau' = \nabla' \cdot \frac{J'}{R} d\tau' \qquad (10)$$

And $\nabla x \int \left(\frac{J'}{R}\right) d\tau'$

 $= \int \left[\nabla x_{R}^{J'} - J'X \nabla \left(\frac{1}{R}\right) \right] d\tau' \{ \text{ as curl } SV = S \text{ curl } V - V X \text{ grad } S \}$ $= -\int J'X \nabla \left(\frac{1}{R}\right) d\tau' \{ \text{ as } J' \text{ is not a function of } x, y, \text{ and } z \}$ $= \int J'X \nabla \left(\frac{1}{R}\right) d\tau' \{ \text{ as } \nabla \left(\frac{1}{R}\right) = -\nabla' \left(\frac{1}{D}\right) \}$ $= \int \left[\nabla' X \frac{J'}{R} - \nabla' X \left(\frac{J'}{R}\right) \right] d\tau' \{ \text{ as } \nabla x \left(J'/R\right) = (1/R) \nabla' X J' - J' X \nabla' (1/R) \}$ $= \int \nabla' X \frac{J'}{R} d\tau' + \oint \frac{J'}{R} X ds \{ \text{ as } \int \nabla X V d\tau' = -\oint_{s} V X ds \}$

CLASS: II BSC Physics COURSE CODE: 17PHU303

As J' is confined to vol', surface contribution will vanish so

$$\nabla x \int \left(\frac{J'}{R}\right) d\tau' = \int \nabla' X \frac{J'}{R} d\tau'$$
 (11)

So equation (9) becomes

Now as

$$J' = -\frac{1}{4\pi} \nabla \int \nabla' \cdot \frac{J'}{R} d\tau' + \frac{1}{4\pi} \nabla X \int \nabla' X \frac{J'}{R} d\tau'$$

i.e. $J' = J'_1 + J'_T$ (12)
With $J'_1 = -\frac{1}{4\pi} \nabla \int \nabla' \cdot \frac{J'}{R} d\tau'$ and $J'_T = \frac{1}{4\pi} \nabla X \int \nabla' X \frac{J'}{R} d\tau'$ (13)
 $\nabla X J'_1 = \nabla X \left[-\frac{1}{4\pi} \nabla \int \nabla' \cdot \frac{J'}{R} d\tau' \right]$
 $\nabla' X J'_1 = 0$ { as curl grad $\varphi = 0$ } (14)
And $\nabla J'_T = \nabla \cdot \left[\nabla X \int \nabla' X \frac{J'}{R} d\tau' \right]$
 $\nabla \cdot J'_T = 0$ { as div curl $V = 0$ } (15)

The first term on R.H.S of equation (12) is irrotational and second is solenoid. The first term is called longitudinal current and the other transverse current.

So in the light of equation (12),(6) can be written as

$$\nabla^{2}A - \frac{1}{v_{2}}\frac{\partial^{2}A}{\partial t^{2}} = -\mu (J_{1} + J_{T}) + \mu\varepsilon\nabla \frac{\partial\phi}{\partial t}$$

$$\nabla^{2}A - \frac{1}{v^{2}}\frac{\partial^{2}A}{\partial t^{2}} = -\mu J_{T} - \mu J_{1} + \mu\varepsilon\nabla \frac{\partial}{\partial t} [\frac{1}{4\pi\varepsilon} \int \frac{\rho(r',t)}{R} d\tau']$$
 { Substituting ϕ from equation (5) }

$$\nabla^{2}A - \frac{1}{v_{2}}\frac{\partial^{2}A}{\partial t^{2}} = -\mu J_{T} - \mu J_{1} + \mu \frac{1}{4\pi}\nabla \int -\frac{-\nabla J}{R} d\tau'$$
 { as from continuity equation $\partial \frac{\rho(r',t)}{R} = -\nabla J$ }

$$-\nabla J$$
 }

$$\nabla^{2}A - \frac{1}{v_{2}}\frac{\partial^{2}A}{\partial t^{2}} = -\mu J_{T} - \mu J_{1} + \mu J_{1}$$
 { from equation (13) }

$$\nabla^{2}A - \frac{1}{v_{2}}\frac{\partial^{2}A}{\partial t^{2}} = -\mu J_{T}$$
 (16)

The equation for A can be expressed entirely in terms of the transverse current. So this gauge sometimes is also called as transverse gauge.

The Coulomb gauge has a entire advantage. In it the scalar potential is exactly the electrostatic potential and electric field,

$$E = - \operatorname{grad} \varphi - \frac{\partial A}{\partial t}$$

Is separable into an electrostatic field $V = \varphi$ and a wave field given by $-(\partial A/\partial t)$.

This gauge is often used when no sources are present. Then according to equation 5, $\phi = 0$ and A satisfies the homogeneous wave equation 16. The fields are given by,

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial \mathbf{t}}$$
 and $\mathbf{B} = \nabla \mathbf{X} \mathbf{A}$

POYNTING THEOREM (OR) ENERGY IN ELECTROMAGNETIC FIELDS :

"The rate of decrease of energy in the electrodynamic fields in a specific region in equal to the sum of rate of work done on charges and rate of escape of energy through the surface in the form of electromagnetic radiation."

According to Lorentz law, the force acting in a electromagnetic field is given by

----- (1)

For an elementary volume $d\tau'$, the force experienced in an electromagnetic field is given by

 $\vec{\mathbf{F}} = \oint_{v} \left[\vec{\mathbf{E}} + (\vec{v} + \vec{B}) \right] \rho d\tau \left[q = \oint_{v} \rho d\tau \right]$

The work done in causing a displacement dl in the electromagnetic field is given by

 $\vec{\mathbf{F}} = [\vec{\mathbf{E}} + (\vec{\mathbf{v}} + \vec{\mathbf{B}})]$

Rate of work done in an electromagnetic field is given by

Assuming the rate of work done in the electric field only, we get

We know that the modified Ampere's law is applicable to electrodynamics.

COURSE NAME: ELECTROMAGNETIC THEORY BATCH-2017-2020

CLASS: II BSC Physics COURSE CODE: 17PHU303 UNIT: I

Putting the value of J from equation (5) in equation (4), we get

$$\oint_{\mathbf{v}} (\vec{\mathbf{E}} \cdot \vec{\mathbf{J}}) d\tau = \oint_{\mathbf{v}} \vec{\mathbf{E}} \cdot [\frac{\nabla \mathbf{X} \vec{\mathbf{E}}}{\mu 0} - \epsilon 0 \frac{\partial \vec{\mathbf{E}}}{\partial t}] d\tau$$

$$= \oint_{\mathbf{v}} [\vec{\mathbf{E}} \cdot \frac{\nabla \mathbf{X} \vec{\mathbf{E}}}{\mu 0}] d\tau - \oint_{\mathbf{v}} \epsilon 0 \vec{\mathbf{E}} \cdot \frac{d\vec{\mathbf{E}}}{dt} d\tau \qquad (6)$$
We know that $\nabla \cdot [\vec{\mathbf{E}} \cdot \mathbf{X} \frac{\vec{\mathbf{E}}}{\mu 0}] = [\frac{\vec{\mathbf{E}}}{\mu 0} \cdot (\nabla \mathbf{X} \vec{\mathbf{E}}) - \vec{\mathbf{E}} \cdot \frac{\nabla \mathbf{X} \vec{\mathbf{E}}}{\mu 0}]$
Now $\oint_{\mathbf{v}} \vec{\mathbf{E}} \cdot \vec{\mathbf{J}} \cdot d\tau = \oint_{\mathbf{v}} \frac{\vec{\mathbf{E}}}{\mu 0} (\nabla \mathbf{X} \vec{\mathbf{E}}) d\tau - \oint_{\mathbf{v}} \nabla \cdot [\vec{\mathbf{E}} \cdot \mathbf{X} \frac{\vec{\mathbf{E}}}{\mu 0}] d\tau - \oint_{\mathbf{v}} \epsilon 0 \vec{\mathbf{E}} \cdot \frac{d\vec{\mathbf{E}}}{dt} d\tau$

$$= \oint_{\mathbf{v}} \frac{\vec{\mathbf{E}}}{\mu 0} (\nabla \mathbf{X} \cdot \vec{\mathbf{E}}) d\tau - \oint_{\mathbf{v}} \nabla \cdot [\vec{\mathbf{E}} \cdot \mathbf{X} \frac{\vec{\mathbf{E}}}{\mu 0}] d\tau - \frac{\epsilon 0}{2} \oint_{\mathbf{dt}} \frac{d\mathbf{E} \cdot 2}{dt} d\tau$$
According to Maxwell's third equation in the differential form,
$$\nabla \mathbf{x} \cdot \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{E}}}{\partial t}$$

No

$$\oint_{\mathbf{v}} \vec{\mathbf{E}} \cdot \vec{\mathbf{j}} \cdot d\mathbf{\tau} = \frac{\mathbf{u}}{\mu 0} \oint_{\mathbf{v}} [\vec{\mathbf{B}} \cdot (-\frac{\partial \vec{\mathbf{B}}}{\partial t})] d\mathbf{\tau} - \oint_{\mathbf{v}} \nabla \cdot (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{\tau} - \frac{\varepsilon_{0}}{2} \oint_{\mathbf{v}} \frac{d\mathbf{E} \cdot \mathbf{2}}{dt} d\mathbf{\tau}$$

$$\oint_{\mathbf{v}} \vec{\mathbf{E}} \cdot \vec{\mathbf{j}} \cdot d\mathbf{\tau} = -\frac{1}{2\mu 0} \oint_{\mathbf{v}} \frac{d\mathbf{B} \cdot \mathbf{2}}{dt} d\mathbf{\tau} - \frac{\varepsilon_{0}}{2} \oint_{\mathbf{v}} \frac{d\mathbf{E} \cdot \mathbf{2}}{dt} d\mathbf{\tau} - \oint_{\mathbf{v}} \nabla \cdot (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{\tau}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{\tau} - \oint_{\mathbf{v}} \nabla \cdot (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{\tau}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{\tau} - \oint_{\mathbf{s}} (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{\tau}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{\tau} - \oint_{\mathbf{s}} (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{t}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{\tau} - \oint_{\mathbf{s}} (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{t}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{\tau} - \oint_{\mathbf{s}} (\vec{\mathbf{E}} \cdot \vec{\mathbf{H}}) d\mathbf{t}$$

$$= -\frac{\partial}{\partial t} \oint_{\mathbf{v}} [\frac{\mathbf{B} \cdot \mathbf{2}}{2\mu 0} + \frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}] d\mathbf{t} = (\mathbf{B} \cdot \vec{\mathbf{E}} \cdot \vec{\mathbf{E}}) \mathbf{t}$$

 $\vec{E}X \vec{H}$ is called the pointing vector or power density. It is denoted by symbol S.

$$\vec{S} = \vec{E} X \vec{H}$$

The unit of pointing vector is Watts/m². The pointing theorem,

 $-\frac{\partial}{\partial t}\oint_{v} \left[\frac{B^{2}}{2u^{0}}+\frac{1}{2}\varepsilon_{0}E^{2}\right]d\tau = \oint_{v} \left(\vec{E}\cdot\vec{j}\right) d\tau + \oint_{s} \left(\vec{E}\cdot\vec{X}\cdot\vec{H}\right) \cdot d\vec{a} \text{ is integral form.}$

POYNTING VECTOR (OR) POWER DENSITY

According to the law of conservation of energy is an electromagnetic fields,

S = E X H

E – the electric field H – magnetic field

The amount of the field energy passing through unit area of the surface in a direction perpendicular to the plane containing E and H per unit time.

MOMENTUM DENSITY :

The momentum density of an electromagnetic wave is given by,

$$P = \frac{1}{4\pi c} E X B$$

Where,

C-speed of light, E-electric field, B-magnetic field, S-pointing vector

$$P = \frac{s}{4\pi c} = \frac{s}{c}$$

ANGULAR MOMENTUM DENSITY :

For an electromagnetic waves the angular momentum is defined as

$$L = r x p$$
$$= \frac{1}{4\pi c} r x (E X B)$$
$$= (E X B) X r^{2}/c^{2}$$

 $L = \frac{s}{c_2} X r$

Where

r-position, p-momentum density, E-electric field, B-magnetic field, C-speed of light

BOUNDARY CONDITIONS :

In general the field E,D,B and H will be discontinuous at a boundary between two different media or at a surface that carries charge density σ or current density k. The discontinuous can be deduced from Maxwell's equations as,

(1) $\oint_{s} D. da = 0_{\text{fenc}}$ Over any closed surface S

$$(2) \oint_{s} B. \, da = 0$$

$$(3) \oint_p E. dl = -\frac{d}{dt} \int_s B. da$$

$$(4) \oint_{\mathcal{D}} H.\,dJ = I_{\text{fenc}} + \frac{d}{ds} \int_{\mathcal{S}} D.\,da$$

for any surface S bounded by the closed loop p.

Apply equation (1) to tiny water thin Gaussian pill box extending just slightly into the material on either side of the boundary, we obtain

$$D_1 a - D_2 a = \sigma_f a$$
 -----(5)

The component of D_1 that is perpendicular to the interface is discontinuous in the amount

CLASS: II BSC Physics COURSE CODE: 17PHU303

 $D_1 \ - \ D_2 = \ \pmb{\sigma}_f$

----- (6)

----- (7)

Identical reasoning applied to equation (2) yields,

$$B_1 - B_2 = 0$$

Turning to equation (3), a very thin Amperian loop straddling the surface

$$E_1 I - E_2 I = -\frac{d}{dt} \int_s B. da$$

But in the limit as the width of the loop goes to zero, the flux vanishes,

 $E_1^{ll} - E_2^{ll} = 0$ ------ (8)

The component of E parallel to the interface are continuous across the boundary, By the same equation (4) implies,

$$H_1 I - H_2 I = I_{fenc}$$

Where I fencis the free current passing through the Amperian loop. No volume current density will contribute but a surface current can, in face if \hat{n} is a unit vector

r to the interface, so that $(\hat{n} \times 1)$ is normal to the Amperian loop, then

$$I_{\text{fenc}} = k_f . (\hat{n} x 1) = K_f (\hat{n} x 1) I$$

And hence

 $H_1^{ll} - H_2^{ll} = K_f x \hat{n}$ ------ (9)

So the parallel components of H are discontinuous by an amount perpendicular to the free surface density. Equation (6) & (9) are the general boundary conditions for electrodynamics. In case of linear media, they can be expressed in terms of E and B alone.

(i)
$$\epsilon_{1} E_{1} - \epsilon_{2} E_{2} = \sigma_{f}$$

(ii) $B_{1} - B_{2} = 0$
(iii) $E_{1}^{II} - E_{2}^{II} = 0$
(iv) $\frac{1}{\mu 1} B_{1}^{II} - \frac{1}{\mu 2} B_{2}^{II} = 0$

CLASS: II BSC Physics COURSE CODE: 17PHU303

Possible Questions

8 marks

- 1. Obtain Maxwell equations.
- 2. Derive Poynting Theorem and pointing vector.
- 3. Explain the non uniqueness of electromagnetic potential.
- 4. Derive Lorentz Gauge.
- 5. Derive Coulomb Gauge.
- Obtain an equation for electromagnetic potential (A and φ) and Maxwell equation in terms of electromagnetic potential.
- 7. Discuss about displacement current.
- 8. What is the concept of gauge? Explain Lorentz gauge.

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

ELECTROMAGNETIC THEORY

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWER
UNIT-I					
The total electric flux linked with a					
closed surface is times					
the charge enclosed by it.	e ₀	m_0	$1/e_0$	$1/m_0$	$1/e_0$
The differential form of Gauss's law					
is	div $E = r/e_0$	-div $E = r/e_0$	div $E = 0$	div $E = r$	div $E = r/e_0$
The insulators whose behaviour gets					
modified in an electric field are called			p-type		
	semiconductor	superconductor	semiconductor	dielectrics	dielectrics
The force between two magnetic					
poles varies with the distance					
between them. The variation is			Directly	Inversely	Inversely
to the square of that distance.	Equal	Greater than	proportional	proportional	proportional
The property of magnetic materials of					
retaining magnetism after withdrawal					
of the magnetizing force is known as	Retentivity	Reluctivity	Resistivity	Conductivity	Retentivity
	The	The	the strength of	The strength	The
	conductivity of	magnetization	an	of the	conductivity of
Permeability means	the material for	test in the	electromagnet	permanent	the material for

	magnetic lines	material after		magnet	magnetic lines
	of force	exciting field		U	of force
		has			
		beenremoved			
				decreases	
				with	
			increases with	distance	
			distance from	from the	
The magnetic field inside a solenoid	is constant	is uniform	the axis	axis	is uniform
				Very much	
Paramagnetic substance has a relative	Slightly less		Slightly greater	greater than	Slightly greater
permeability of	than one	Equal to one	than one	one	than one
The point in a magnet where the					
intensity of magnetic lines of force is					
maximum	Magnetic pole	South pole	North pole	Unit pole	Unit pole
For which of the following substance,					
the magnetic susceptibility is				None of	
independent of temperature	Dia	Para	Ferro	these	Dia
Atoms may or may not have an					
dipole moments.	Extrinsic	Intrinsic	Intermediate	Extreme	Intrinsic
The group of parallel oriented atomic					
dipoles is called a	domain	co-domain	N-domain	V-domain	domain
All magnetic moments within a					
domain will point in the					
direction.	Different	Same	Positive	Negative	Same
The unit of magnetization M is					
·	Am ⁻¹	Am-2	Am	A/m	Am ⁻¹
The unit of magnetic induction (B) is					
·	Weber	Weber/m	Weber/m ²	Weber.meter	Weber/m ²
The field vectors are invariant to	gauge		Maxwell's	ampere's	gauge
	transformations	Hertz potential	equation	law	transformations
Gauge functions are solutions of		non			
wave equations.	homogenous	homogenous	Independent	dependent	homogenous
The magnetic lines of force are					
always closed may be expressed by					
· · · ·	$\Delta x B=0$	Δ .B=0	ΔxB=μ0J	$\Delta x A=0$	Δ .B=0

A magnetic dipole of moment m					
placed in a nonuniform magnetic				none of	
field B experience a force	$\Delta(m.B)$	mxB	m.B	these	$\Delta(m.B)$
			both electric		both electric
A moving charge produces	electric field	magnetic field	and magnetic	none of	and magnetic
	only	only	fields	these	fields
Differential form of Ampere's law for					
a steady current is	$\Delta x H = J + \partial D / \partial t$	$\Delta x B = \mu_0 J$	Δ .B=0	∫B.dl= µ0I	$\Delta x B = \mu_0 J$
The magnetic dipole moment induced			magnetic	magnetic	
per unit volume of the material is	magnetization	polarization	induction	intensity	magnetization
		Physical		Vector	
Magnetic intensity is a	Phasor quantity	quantity	Scalar quantity	quantity	Vector quantity
The time dependent electromagnetic	Maxwell's				Maxwells
field equation are	equation	Ampere's law	Faraday's law	Gauss law	equation
<i>div of curl</i> of any vector is	0	infinity	1	J	0
			applied	applied	
Dielectric polarization is proportional	applied electric	applied	electromagnetic	electrostatic	applied electric
to	field	magnetic field	field	field	field
The unit of polarization is					
·	coul/m	coul/m ²	coul/m ³	coul ² /m ²	coul/m ²
The addition of to					
Ampere's law results in the					
unification of electric and magnetic	displacment			vector	displacment
phenomena.	current	curent density	scalar potential	potential	current
The unit for electric displacement D					
is	coul ² /m	coul/m ²	coul/m ³	coul ² /m ²	coul/m ²
The continuity equation is	div J - $\partial r / \partial t =$	- div J + $\partial r / \partial t$	div J + $\partial r / \partial t$	-div J - ∂r/	div J + $\partial r / \partial t$
	0	= 0	=0	$\partial t = 0$	=0
The flux of magnetic induction B					
across any closed surface is always					
	0	unity	varying	constant	0
Electric and magnetic phenomena are					
·	symmetric	asymmetric	same	converse	asymmetric
Electric and magnetic phenomena are					
asymmetry arises due to the non-					
existense of	dipoles	electric field	magnetic field	monopole	monopole

Maxwell's first equation signifies that					
the total flux of electric displacement					
linked with a closed surface is				inversely	
the total charge				proportional	
enclosed by the closed surface.	equal to	lesser than	greater than	to	equal to
Maxwell's second equation signifies					
that the total flux of magnetic					
induction linked with a closed surface					
is	unity	same	zero	constant	zero
is Maxwell's third equation signifies	•				
that force around a					
closed path is equal to the conducting					
current plus displacement current				none of the	
linked with the path.	magnetomotive	electromotive	restoring	above	magnetomotive
Maxwell's fourth equation signifies	0				0
that is equal to the					
negative rate of change of magnetic					
flux linked with the path.	magnetomotive	electromotive	electric	magnetic	electromotive
is the amount of field	mugnetonioure				
energy passing through unit area of					
the surface in a direction					
perpendicular to the plane containing		magnetic		mechanical	poynting
E and H per unit time.	electric energy	energy	poynting vector	energy	vector
Poynting vector at any arbitrary point		energy	poynting vector	energy	Vector
in the field varies as					
the square of the distance from the					
point source of radiation.	inversely	directly	sinusoidally	abnormally	inversely
The definition of a poynting vector is	mversery	directly	sinusoiduny	none of the	mversery
not a	vector	scalar	mandatory	above	mandatory
If the poynting vector is	Vector	sealar	mandatory	a00vc	mandatory
then no					
electromagnetic energy flows across					
a closed surface.	unity	finite	infinite	7070	7070
	unity	mine	mmme	zero	zero
In case of time varying fields $S = E X$					
H gives the value of the pounting vector	instantanaana	total	random	half tha	instantanceus
the poynting vector.	instantaneous	total	random	half the	instantaneous
According to Ampere's law of force,	inversely	independently	directly	infinitely	independently

the force between current carrying					
conductors varies as the					
produce of magnitudes of current.					
According to Ampere's law of force,					
the force between current carrying					
conductors depends on					
of the medium.	colour	nature	property	length	nature
According to Ampere's law of force,					
the force is if the					
current flows in the same direction.	repulsive	infinite	attractive	finite	attractive
According to ampere's law of force,					
the force is if the current					
flows in the opposite direction.	attractive	infinite	finite	repulsive	4
The vector B is called		magnetic	magnetic	magnetic	magnetic
vector.	magnetic flux	intensity	induction	force	induction
The unit of B is	Tesla	Web	Web/m	Web ² /m	Tesla
The line integral of magnetic					
induction vector B around a closed					
path is equal to					
times the total current crossing any					
surface bounded by the line integral					
path.	e ₀	m ₀	$1/e_0$	$1/m_0$	m ₀
The div of curl of any vector is					
·	1	-1	Grad	0	0
The magnitude of displacement	electric				electric
current is equal to the time rate of	displacement	current density		none of the	displacement
change of	vector D	J	charge density r	above	vector D
The displacement current in a good		proportional to	(1 ···	11 1	11 1
conductor is	constant	time	current density	negligible	negligible
J _d =	$-\partial D/\partial t$	$J + \partial D / \ \partial t$	$\partial D / \partial t$	J - $\partial r / \partial t$	$\partial D / \partial t$
Maxwell's fourth equation signifies					
that is equal to the					
negative rate of change of magnetic					
flux linked with the path.	magnetomotive	electromotive	electric	magnetic	electromotive

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: II BATCH-2017-2020

<u>UNIT-II</u>

SYLLABUS

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere.

PLANE ELECTROMAGNETIC WAVE IN FREE SPACE:-

Let's Start with Maxwell's equations in derivative form for empty space.

 $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial D}{\partial t}$ $\nabla \times \mathbf{E} = \frac{-\partial S}{\partial t}$

where,

 $J=\sigma E$ $B=\mu_0 H$ $D=\epsilon_0 E$

and for free space (i.e.) vacuum

CLASS: II BSC Physics

COURSE CODE: 17PHU303

$\rho=0$ $\sigma=0$
$\epsilon_r=1$
$\mu_r = 1$

and the Maxwell's equation reduces to, $\nabla E = 0$

 $\nabla H = 0$

 $\nabla \times H = \varepsilon_0 \frac{\partial E}{\partial t}$ $\nabla \times E = -\mu_0 \frac{\partial H}{\partial t}$ taking curl for third

taking curl for third equation $\nabla \times (\nabla \times H) = \varepsilon_0 \nabla \times \left(\frac{\partial E}{\partial E}\right)$

$$\nabla . (\nabla . H) - \nabla^2 H = \varepsilon_0 \frac{\partial}{\partial t} (\nabla \times E)$$

since $\nabla H = 0$ and $\nabla \times E = -\mu_0 \frac{\partial H}{\partial t}$

$$\nabla^2 H - \frac{1}{C^2} \frac{\partial^2 H}{\partial t^2} = 0$$

same is repeated for fourth equation

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times (\nabla \times E) = \nabla \times \left(-\mu_0 \frac{\partial H}{\partial t}\right)$$

solving,

$$\nabla^2 E - \frac{1}{C^2} \frac{\partial^2 E}{\partial t^2} = 0$$

these two equations satisfies the wave equation which is,

$$\nabla^2 \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

the last equation is a standard wave equation representing unattenuated wave travelling at a speed of light. so we conclude that field vector E and H are propagated in free space at a velocity equal to the speed of light.

PROPAGATION OF ELECTRO-MAGNETIC WAVES IN FREE SPACE:-

- 1. The wave propagates with a speed equal to that of light in free space.
- 2. The electromagnetic waves are transverse in nature.
- 3. The electromagnetic energy is transmitted in the direction of wave propagation at speed "C".
- 4. The wave vector E and H are mutually perpendicular to each other.
- 5. The vector E and H are in phase with each other.

ELECTRO-MAGNETIC WAVES IN ISO-TROPIC DI-ELECTRIC MEDIUM:-

With respect to the Maxwell's equation

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial L}{\partial t}$$
$$\nabla \times \mathbf{E} = \frac{-\partial B}{\partial t}$$

for isotropic medium,

 $I = \sigma E$ $B = \mu H$ $D = \varepsilon E$ here. $\sigma = 0$ $\rho = 0$

CLASS: II BSC Physics COURSE CODE: 17PHU303 COURSE NAME: ELECTROMAGNETIC THEORY UNIT: II BATCH-2017-2020

then the Maxwell's equation reduces to,

 $\nabla \cdot E = 0$ $\nabla \cdot H = 0$ $\nabla \times H = \varepsilon \frac{\partial E}{\partial t}$ $\nabla \times F = \psi \frac{\partial H}{\partial t}$

$$\nabla \times E = -\mu \frac{\partial t}{\partial t}$$

taking curl for third and fourth equation, for third equation,

$$\nabla^2 H - \frac{1}{v^2} \frac{\partial^2 H}{\partial t^2} = 0$$

for fourth equation,

$$\nabla^2 E - \frac{1}{v^2} \frac{\partial^2 E}{\partial t^2} = 0$$

these two waves satisfies the wave equation,

$$\nabla^2 \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

the solution for the wave equation is,

$$\Psi = \Psi_0 e^{-i(\omega t - kr)}$$

the solution of equations are will be of the given in the form,

 $E = E_0 e^{-i(\omega t - kr)}$ $H = H_0 e^{-i(\omega t - kr)}$

where k is the wave vector

$$k = k_n = \frac{2\pi}{\lambda}n = \frac{2\pi f_n}{c} = \frac{\omega_n}{c}$$

with n as the unit vector in the direction of wave propagation

The equation can be written as

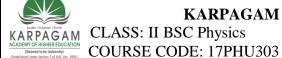
k.E = 0

k.H=0

 $-k \times H = \omega \varepsilon_0 E$

 $k \times E = \mu_0 H$

propagation of electromagnetic waves in dielectric:-


- 1. The waves E and H are orthogonal.
- 2. The electromagnetic wave is transverse in nature.
- 3. The electric and magnetic vectors are also mutually orthogonal.

TRANSVERSE NATURE OF ELECTROMAGNETIC WAVES:-

consider an electromagnetic wave propagating in free space along z-direction. Then the E and H vary only in z-direction.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0$$
 and $\frac{\partial}{\partial z} \neq 0$

such wave is called as planar wave, since it's vector are functions of (z, t) only then we write,

UNIT: II

BATCH-2017-2020

E = E(z,t)H = H(z,t)

from first Maxwell's equation, $\nabla D = 0 \text{ or } \varepsilon_0(\nabla E) = 0$

$$\nabla E = 0 \text{ or } \frac{\partial E_z}{\partial t} = 0$$

 $E_z = constant$ in time

from second Maxwell's equation, $\nabla B = 0 \text{ or } \mu_0(\nabla H) = 0$

$$\nabla . H = 0 \text{ or } \frac{\partial H_z}{\partial z} = 0$$

 $H_z = constant$ in time from third Maxwell's equation,

$$\nabla \times E = -\frac{\partial B}{\partial t}$$
$$(\nabla \times E)_z = -\mu_0 \frac{\partial H_z}{\partial t}$$
$$K\left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) = -\mu_0 \frac{\partial H_z}{\partial t}$$
$$\frac{\partial H_z}{\partial t} = 0$$

$$dt$$

 $H_z = constant in time$
similarly by using fourth equation,

 $E_z = constant$ in time

Thus we have concluded that E_z and H_z are constant as regards for time and space. they represent the static components and consequently, no part of wave motion. we can therefore write.

$$E_z = H_z = 0$$

$$E = iE_x + jE_y$$

$$H = iH_x + jH_y$$

the electric E and magnetic H vector don't have any Z-component, the Z-direction being the direction of propagation,

both these vectors are perpendicular to the direction of propagation ,Maxwell's electromagnetic waves are purely transverse in nature

PROPAGATION OF ELECTROMAGNETIC WAVES IN CONDUCTING MEDIUM:-

considering the Maxwell's equations,

 $\begin{aligned} \nabla . D &= \rho \\ \nabla . B &= 0 \\ \nabla \times H &= J + \frac{\partial D}{\partial t} \end{aligned}$

KARPAGAM CLASS: II BSC Physics COURSE NAME: ELECTROMAGNETIC THEORY COURSE CODE: 17PHU303 UNIT: II BATCH-2017-2020 $\nabla \times E = -\frac{\partial B}{\partial t}$ here, $J = \sigma E$ $D = \varepsilon E$ $B = \mu H$ $\sigma = 0$ $\rho = 0$ Then, $\nabla D = 0$ $\nabla H = 0$ $\nabla \times H = \sigma E + \frac{\partial H}{\partial t}$ $\nabla \times E = -\mu \frac{\partial H}{\partial t}$ taking curl for the third and fourth equation, for third equation, $\nabla \times (\nabla \times H) = \nabla \times \left(\sigma E + \frac{\partial H}{\partial t}\right)$ solving we get, $\nabla^2 H - \sigma \mu \frac{\partial H}{\partial t} - \mu \varepsilon \frac{\partial^2 H}{\partial t^2} = 0$ for fourth equation, $\nabla \times (\nabla \times E) = -\mu \nabla \times \left(\frac{\partial H}{\partial t}\right)$

solving we get, $\nabla^2 E - \sigma \mu \frac{\partial E}{\partial t} - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$

These two equations are called as the equation of telegraphy,

EQUATION OF TELEGRAPHY:-

$$\nabla^2 H - \sigma \mu \frac{\partial H}{\partial t} - \mu \varepsilon \frac{\partial^2 H}{\partial t^2} = 0$$

$$\nabla^2 E - \sigma \mu \frac{\partial E}{\partial t} - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$

IMPEDANCE IN PHASE:-

Easting Instance (Free Action of the Control of the

$$\left|\frac{E}{H}\right| = \frac{E_0}{H_0} = \sqrt{\left(\frac{\mu_r}{\varepsilon_r}\right)} z_0 = z$$

PROPAGATION OF ELECTROMAGNETIC WAVES IN IONIZED GASES:-

In certain situations such as the ionosphere or a tenuous plasma there is so little air that the electrons may vibrate without colliding

with the molecules. so the force on a charged particle is an electromagnetic field, neglecting the earth's magnetic field will be

$$F = e[E + (v \times B)]$$

now as in a plane wave
$$B = \frac{n \times E}{c}$$
$$|v \times B| = vB = \frac{v}{c}E$$

and also,
$$E = E_0 e^{-i(\omega t - kr)}$$
$$E = E_0 e^{-i(\omega t - (2\pi \setminus \lambda)nr)}$$
$$E = E_0 e^{-i(\omega t - (2\pi \setminus \lambda)nr)}$$
so equation reduces to,
$$F = eE_0 e^{-i\omega t}$$
$$m\frac{d^2r}{dt^2} = eE_0 e^{-i\omega t}$$
$$\frac{d^2r}{dt^2} = eE_0 e^{-i\omega t}$$
$$\frac{d^2r}{dt^2} = \frac{e}{m}E_0 e^{-i\omega t}$$
$$\frac{dr}{dt} = \frac{eE_0 e^{-i\omega t}}{m(-i\omega)}$$
$$v = i\frac{e}{m\omega}E$$

now if there are N electrons per unit volume then as

$$J = Nev$$

substituting the value of v from equation we get,

$$J=i\frac{Ne^2}{m\omega}E$$

$J = \sigma E$

we find that the conductivity is purely imaginary,

$$\sigma=i\frac{Ne^2}{m\omega}$$

various shortcuts are possible in deriving equations of wave propagation in an ionized medium but it seems worthwhile to go all the way both Maxwell's equation.

$$\nabla . D = \rho$$

 $\nabla B = 0$

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

which for the present situation reduces to

$$\nabla \cdot E = 0$$

 $\nabla . H = 0$

$$\nabla \times H = \sigma E + \varepsilon_0 \frac{\partial E}{\partial t}$$

$$\nabla \times E = -\mu_0 \frac{\partial H}{\partial t}$$

in case of ionized medium $\rho = 0$, $\varepsilon_r = 1$ and $\mu_r = 1$

now taking curl for fourth equation,

$$\nabla \times (\nabla \times E) = -\mu_0 \frac{\partial}{\partial t} (\nabla \times H)$$

solving this we get,

$$\nabla^2 E - \sigma \mu_0 \frac{\partial E}{\partial t} - \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = 0$$

similarly taking curl for third equation,

$$\nabla^2 H - \sigma \mu_0 \frac{\partial H}{\partial t} - \mu_0 \varepsilon_0 \frac{\partial^2 H}{\partial t^2} = 0$$

the solution of these two equations be,

$$\Psi = \Psi_0 e^{-i(\omega t - kr)}$$

then,

$$\binom{E}{H} = \binom{E_0}{H_0} e^{-i(\omega t - kr)}$$

so that field equation reduces,

$$\nabla (K^2 - i\mu_0 \omega \sigma - \mu_0 \varepsilon_0 \omega^2) {E \choose H} = 0$$

as vector E or H is not zero,

$$K^{2} = \mu_{0}\varepsilon_{0}\omega^{2} \left[1 + \frac{i\sigma}{\varepsilon_{0}\omega}\right]$$
$$K^{2} = \frac{\omega^{2}}{c^{2}} \left[1 - \frac{\omega_{p}}{c^{2}}\right]$$
$$m = \frac{c}{v} = \frac{c}{\omega/k} = \frac{kc}{\omega}$$

so the index of refraction in this case will be given by,

$$n = \sqrt{\left(1 - \frac{\omega_p^2}{\omega^2}\right)}$$

from this equation it is clear that for frequencies $\omega^2 > \omega_p^2$

in region of vanishing small ionization and high frequency range index of refraction is real and so waves propagate freely as in dielectric, however if the plasma frequency increases with distance, the index of refractive will decreases according. this is turn means that the beam will bends in a direction away from the normal as it moving from a region of higher index of refraction to that of lower index of refraction. thisbending of high frequency or short wavelength electromagnetic wave by earth's ionosphere is used in long distance radio transmission.

in the limit $\omega^2 \gg \omega_p^2$ as $n \to 1 = constant$, the transmission is unaffected by the presences of ionosphere this is why the radar signals that have been received after reflection from the moon had to be rather higher frequency waves to pass through the ionized part of earth's atmosphere.

for frequency $\omega^2 < \omega_p^2$ in heavily ionized region and for low frequencies ranges the index of refraction is purely imaginary. so if we write $n \rightarrow$ in then from equation

CLASS: II BSC Physics COURSE CODE: 17PHU303

$$k = \frac{\omega}{c}(in) = i\frac{\omega}{c} \sqrt{\left(\frac{\omega_p^2}{\omega^2} - 1\right)}$$

so that

$$\binom{E}{H} = \binom{E_0}{H_0} e^{-\beta(n,r)} e^{-i(\omega,t)}$$

with $\beta = \frac{\omega_n}{2}$

SKIN DEPTH:-

Thus we see that attenuation of wave will result in the medium and there will be no propagation in the medium. therefore electromagnetic waves with frequency below the plasma frequency ω_p will be reflected at the plasma boundary in the plasma the field will fall off exponentially with distance from surface depth for plasma will be,

$$\delta_{plasma} = \frac{1}{\beta} = \frac{1}{\frac{\omega_n}{c}} = \frac{1}{\frac{\omega}{c}\sqrt{\left[\left(\frac{\omega_p}{\omega}\right)^2 - 1\right]}}$$
$$\delta_{plasma} = \frac{c}{\sqrt{\omega_p^2 - \omega^2}} \propto \frac{c}{\omega_p} \text{ when } \omega \ll \omega_p$$

the field from within a plasma is a well know effect in process and is exploited in attempts at hot plasma.

SEFRACTIVE INDEX :

Refractive index, also called index of refraction, measure of the bending of a ray of light when passing from one medium into another. If i is the angle of incidence of a ray in vacuum (angle between the incoming ray and the perpendicular to the surface of a medium, called the normal) and r is the angle of refraction (angle between the ray in the medium and the normal), the refractive index n is defined as the ratio of the sine of the angle of incidence to the sine of the angle of refraction; i.e., $n = \sin i / \sin r$. Refractive index is also equal to the velocity of light c of a given wavelength in empty space divided by its velocity v in a substance, or n = c/v

Some typical refractive indices for yellow light (wavelength equal to 589 nanometres [10-9 metre]) are the following: air, 1.0003; water, 1.333; crown glass, 1.517; dense flint glass, 1.655; and diamond, 2.417. The variation of refractive index with wavelength is the source of chromatic aberration in lenses. The refractive index of X-rays is slightly less than 1.0, which means that an X-ray entering a piece of glass from air will be bent away from the normal, unlike a ray of light, which will be bent toward the normal. The equation n = c/v in this case indicates, correctly, that the velocity of X-rays in glass and in other materials is greater than its velocity in empty space.

DIELECTRIC CONSTANT :

A quantity measuring the ability of a substance to store electrical energy in an electric field.

COURSE NAME: ELECTROMAGNETIC THEORY

CLASS: II BSC Physics COURSE CODE: 17PHU303

UNIT: II BATCH-2017-2020

Possible Questions:

- 1. Derive the propagation of Plane EM waves through vacuum.
- 2. Derive the propagation of Plane EM waves through Free space.
- 3. Derive the propagation of Plane EM waves through Isotropic dielectric medium.
- 4. Explain the transverse nature of EM wave.
- 5. Derive the propagation of Plane EM waves through Conducting media.
- 6. Explain the electrical conductivity of ionized gases.
- 7. Describe the application of propagation through ionosphere.
- **8.** Explain the equation of Telegraphy.

KARPAGEMET INC. KACHARY OF INSTALLED CALASS: II BSC Physics COURSE CODE: 17PHU303

COURSE NAME: ELECTROMAGNETIC THEORY BATCH-2017-2020

UNIT: II

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

ELECTROMAGNETIC THEORY

QUESTIONS	OPTION1	OPTION2	OPTION3	OPTION4	ANSWER
The ratio $\epsilon/\epsilon 0$ is a dimensionless quantity known as	relative permeability	relative permittivity	absolute permittivity	permeability	relative permittivity
Gauss law is	€₀∫E.ds=q	Δ .D= ρ/ϵ_0	Δ .D=q/ ϵ_0	∫E.ds= ρ	ε₀∫E.ds=q
Gauss's law in a dielectric medium takes the form ∫D.ds=q,where q is	total free charge enclosed	polarization charges	total of both free and polarization charges	zero	total free charge enclosed
In gauss's law the electric flux E through a closed surface (s) depends on the value of net charge	Inside the surface	outside the surface	on the surface	None of the above	Inside the surface
The Flux of electric field is	scalar	vector	zero	infinity	scalar
The unit of permittivity is	c ² N ⁻¹ M -2	${\mathop{\mathrm{C}}_{2}}^{2}{\mathop{\mathrm{N}}_{2}}^{1}{\mathop{\mathrm{M}}_{2}}$	${}_{2}^{C}{}^{2}N {}^{1}M$	C ⁻² N ⁻¹ M ⁻²	C ⁻² N ⁻¹ M ⁻²
Dielectric constant of any medium is always than permittivity.	greater	lesser	neither greater not lesser	neither lesser nor greater	greater
Gauss law for magnetic field yields, div B =	0	1	ρ	σ	0

The unit of electric					
field intensity is	Volts/m	amp/m	weber/m	volts/m2	Volts/m
· · · · ·	v onts/ m	amp/m	weber/m	VOR5/ III2	V OICS/ III
The equation of	S-E-II	S-E/H	S-E II	S-ourl (EvII)	S-E-II
poynting vector is	S=ExH	S=E/H	S=E+H	S=curl (ExH)	S=ExH
		Ampere's			
The unit watt/ m^2 is a		circuital	Faraday's	Poynting	Poynting
unit of	Gauss law	law	law	vector	vector
$div \mathbf{B} = 0$, the field of					
vector B is always					
	scleronomic	rheonomic	unilateral	solenoidal	solenoidal
The electromagnetic					
energy is transmitted					
in the direction of the					
wave propagation at					
speed of	light	time	position	momentum	light
The unit of capacitance					
is	farad	coulomb	volt	henry	farad
Gaussian surface is					
a		open	Imaginary	Smooth	Imaginary
·	real surface	surface	surface	surface.	surface
Which of the					
following is a					
ferromagnetic material	Tungsten	Aluminum	Copper	Nickel	Nickel
The symbol of relative					
permitivity of a					
medium is	ε0	εr	εre0	μ	εre0
The field vector				1	
operator ¶/¶t is					
equivalent to					
· .	-iw	iw	iw ²	$i^2 w^2$	-iw
The noth followed by					
The path followed by a unit positive charge					
in an electric field	The line of	coulombs	Electric	Electromagnet	The line of
called as	force	forces	force	ic field	force
Δ .D=		0	1		
	ρ			μ	ρ
Δ.B=	π	0	1	μ	0
	div J + $\partial r/$				
$\Delta xH=$	$\partial t = 0$	$J + \partial D / \partial t$	J - $\partial D / \partial t$	0	$J + \partial D / \partial t$
$\Delta x E =$	ρ	π	J - $\partial D / \partial t$	- $\partial \mathbf{B} / \partial \mathbf{t}$	- $\partial \mathbf{B} / \partial \mathbf{t}$
Electromagnetic waves	light	sound	electron	proton	light

propagates in free					
space with the velocity					
of					
The velocity of					
electromagnetic waves					
in free space is					
	30×10^8	356 X 10 ⁸			
	m/s	m/s	330 m/s	3 X 10 ⁸ m/s	3 X 10 ⁸ m/s
The elecromagnetic					
energy density is equal	magnetostat	1			magnetostat
to	ic energy	charge	energy		ic energy
	density	density	density	space energy	density
The flow of energy in					
a electromagnetic					
wave in free space is in	1				
the direction of		magnetic		wave .	wave
	field	field	electrons	propagation	propagation
The electromagnetic					
energy density is equal					
to the	magnetostat	electrostati	magnetic		magnetostat
energy density.	ic	с	flux	electric flux	ic
The electromagnetic					
field vectors E and H			proportion	none of the	
are in	out of phase	phase	al	above	phase
In plane					
electromagnetic wave,					
the wave vectors E, H					
and K are			irrotationa		
·	parallel	rotational	1	orthogonal	orthogonal
The field vector					
operator ¶/¶t is					
equivalent to					
·	-iw	iw	iw ²	$i^2 w^2$	-iw
The speed of					
electromagnetic wave					
in isotrophic					
dielectrics is					
than					
the speed of					
electromagnetic waves				none of the	
in free space.	greater	lesser	absolute	above	lesser
In an anisotrophic					
medium, the energy is					
	1 .			1	
in the wave	not				not

propagation.					
In case of propagation					
of EMW in conducting					
medium the wave gets					
with					
penetration.	reflected	refracted	attenuated	scattered	attenuated
In case of propagation					
of EMW in conducting					
medium, the wave is				6 (1	
with	langitudinal	monollal	tronovoro	none of the	transversa
respect to the E and H.	longitudinal	parallel	transverse	above	transverse
In case of propagation of EMW in conducting					
medium, magnetic					
energy is				inversely	
				proportional	
electric energy density.	greater than	lesser than	equal to	to	greater than
* *	8				8
The wave vectors E	nomendiaul				nonnandiaul
and H are mutually	perpendicul ar	parallel	equal	greater	perpendicul ar
When high energy	ai	paraner	equal	greater	ai
particles having					
velocities greater than					
c passes through a					
dielectric a					
light					
known as cerenkov					
radiation is emitted.	greenish	bluish	reddish	greenish-blue	bluish
The flow of energy in					
a electromagnetic					
wave in free space is in					
the direction of		magnetic		wave	wave
·	field	field	electrons	propagation	propagation
modiation is smitted					
radiation is emitted due to the interaction					
of uniformly moving					
charged particles with					
the dielectric medium.	X-rays	Gamma	Alpha	Cerenkov	Cerenkov
The total energy		Carmin	·		
density in case of					
electromagnetic waves					
in isotrophic					
dielectrics is					
times of	m _r	-m _r	er	-e _r	er

the energy density if					
the wave propagates					
through free space.					
When electromagnetic					
waves crosses a					
boundary surface, then					
•					
the normal component					
of the electric					
displacement is					
by an amount equal to					
the free density of			proportion		discontinuo
charge.	equals	continuous	al	discontinuous	us
	cquais	continuous	ai	discontinuous	us
The poynting vector in					
case of propagation of					
electromagnetic waves					
in iotrophic dielectric					
is					
times of the poynting					
vector if the same					
wave propagates					
	nla	n/m _r	nla	-n/m _r	n/m _r
through free space.	n/e _r	11/111 _r	-n/e _r	-11/111 _r	11/111 _r
In plane					
electromagnetic wave,					
the wave vectors D, H					
and K are			irrotationa		
•	parallel	rotational	1	orthogonal	orthogonal
In plane					
electromagnetic wave,					
the wave vectors D, E					
and K are	11 1		1	.1 1	1
··	parallel	rotational	co-planer	orthogonal	co-planer
The field vectors are					
spatially					
		unattenuat			
	attenuated	ed	rotated	conducted	attenuated
The vectors E and H					
are both zero inside					
	super			semi	super
	conductors	conductors	insulators	condcutors	conductors
	conductors	conductors	msulators	condcutors	conductors
Poynting vector is					
as		unattenuat			
the wave progress.	attenuated	ed	rotated	conducted	attenuated
the wave gets	attenduced		100000		atteriuuteu
		tranmissis			
attenuated with		tranmissio	-1 ·	and from the	
	penetration	n	absorption	refraction	penetration

The current flows					
through the surface					
and the effect is called	strong skin	sound			strong skin
	effect	effect	light effect	wave effect	effect
	NeV	0	1	Н	NeV
The earth's magnetic					
field will be					F=e[E+(vx
	e[E+(vxB)	ExH	D	J	B)
Light waves consists					,
of	protons	electrons	photons	neutrons	photons
White light is incident					
on the interface of					
glass and air medium.					
If green light is just					
totally internally					
reflected, then the		violet,			
emerging ray in air	yellow,	indigo,		all colours	yellow,
contains	orange, red	blue	all colours	except green	orange, red
If the EMW incident					
on a system of charged					
particles, the electric					
and magnetic fields of					
the wave exert a					
		Mechanica			
force on the charges.	Lorentz	1	Electrical	No	Lorentz
If the energies of the					
incident and scattered					
radiations are equal the					
scattering is called					
·	inelastic	coherent	elastic	incoherent	elastic
If the energies of the					
incident and scattered					
radiations are not					
equal, the scattering is					
called					
·	inelastic	coherent	elastic	incoherent	inelastic

CLASS: II BSC Physics COURSE CODE: 17PHU303 COURSE NAME: ELECTROMAGNETIC THEORY UNIT: III BATCH-2017-2020

UNIT-III

SYLLABUS

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence).

REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVE :

We now need to consider that what happens when plane electromagnetic waves which are travelling in one medium are incident upon an infinite plane surface separation this medium from another, with different electromagnetic properties. When an electric waves is travelling through space there is an exact balance between the electric and magnetic field. Half of the energy of wave as a matter of fact is in electric field and half in the magnetic. If the wave enters some different medium, there must be a new distribution of energy whether the new medium is a dielectric a magnetic a conducting or an ionised region, there will have to be a readjustment of energy relation as the wave reaches its surface. Since no energy can be added to the wave as it only way that a new balance can be achieved is for some of the incident energy to be reflected.

This is what actually happens, the transmitted energy constitutes the reflected wave and the reflected one the reflected wave. The reflection and refraction of light at a plane surface between two media of different dielectric properties is a familiar, example of reflection and refraction of electromagnetic waves. The various aspects of the phenomenon divide themselves into two classes.

Kinematic properties :

Following are the kinematic properties of reflection and refraction.

(i) Law of frequency :

The frequency of the wave remains unchanged by reflection or refraction.

(ii) The reflected and refracted waves are in the same plane as the incident wave and the normal to the boundary surface.

(iii) Law of reflection :

In case of reflection the angle of reflection is equal to the angle of incident. $\theta_{I} = \theta_{R}$

(IV) Snell's Law :

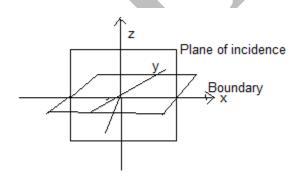
In case of reflection the ration of the sin of the angle of refraction to the sin of angle of incident is equal to the ratio of the refractive indices of two media.

 $n_1 \sin \theta_i = n_2 \sin \theta_R$

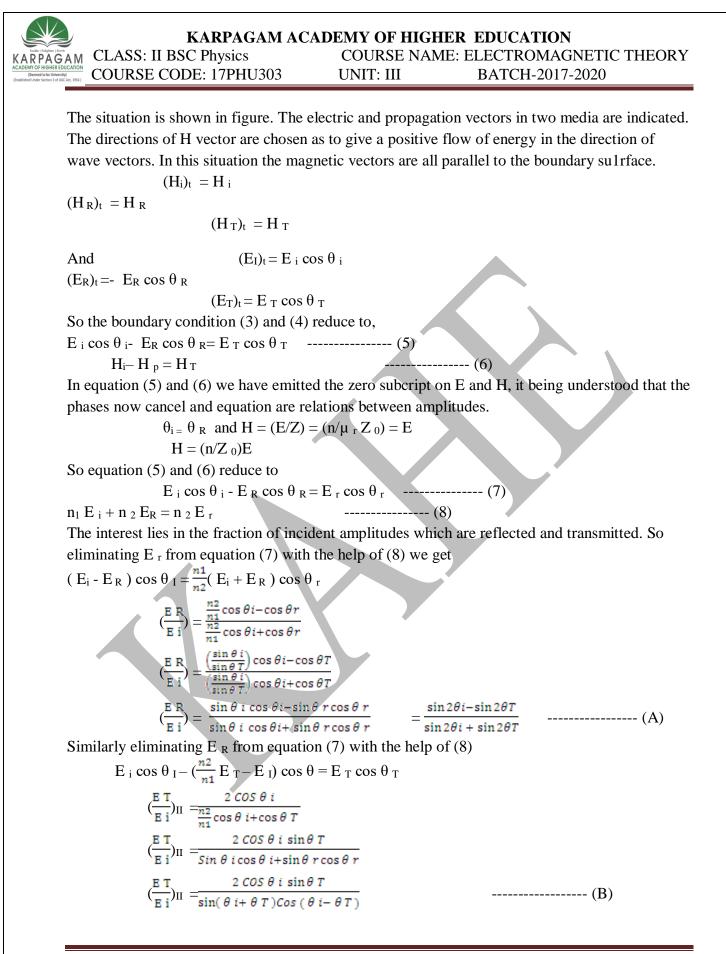
Dynamic properties :

These properties are concerned with the

- (i) intensities of reflected and refracted waves
- (ii) Phase changes and polarisation of waves


The kinematic properties follow immediately from the wave nature of phenomenon and the fact that these are boundary condition to be satisfied. But they do not depends on the nature of the wave or the boundary conditions.

FRESNEL FORMULAE : (DYNAMIC PROPERTIES)


The formulae relating the amplitude of the reflected and transmitted electromagnetic waves with that of incident one when the boundary is between two dielectrics are called Fresnel formulae. These are contained in the boundary condition.

$(D_i)_n + (D_R)_n = (D_T)_n$	(1)
$(\mathbf{B}_i)_n + (\mathbf{B}_R)_n = (\mathbf{B}_T)_n$	(2)
$(E_i)_t + (E_R)_t = (E_T)_t$	(3)
$(H_i)_t + (H_R)_t = (H_T)_t$	(4)

The condition (1) and (2) when coupled with Snell's law yield no information not included in the (3) and (4) conditions. So it is necessary to consider only condition (3) and (4). Now to derive the desired formulae we consider a plane EMW in x-z plane incident on a plane boundary and consider it as a superposition of two waves one with the electric vector perpendicular to the plane of incidence. Therefore it is sufficient to consider these two cases separately. The general result may be obtained from the appropriate linear combination of the two cases.

CASE I : E parallel to the plane of incidence

CLASS: II BSC Physics COURSE CODE: 17PHU303

- (9)

-- (10)

CASE II : E perpendicular to the plane of incidence

 $(E_T)_t = E_T$

The situation is shown the magnetic field vectors and the propagation vectors are indicated. The electric vectors all directed into the plane of the figure.

Since the electric vectors are all parallel to the boundary surface,

 $(E_I)_t = E_i$

ΑM

 $(\mathbf{E}_{\mathbf{R}})_t = \mathbf{E}_{\mathbf{R}}$

And

 $(H_i)_t = -H_I \cos \theta_i$

 $(H_R)_t = H_R \cos \theta_p$

 $(H_T)_t = -H_T \cos \theta_T$ So boundary condition (3) and (4) reduce to

 $E_I - E_R = E_T$

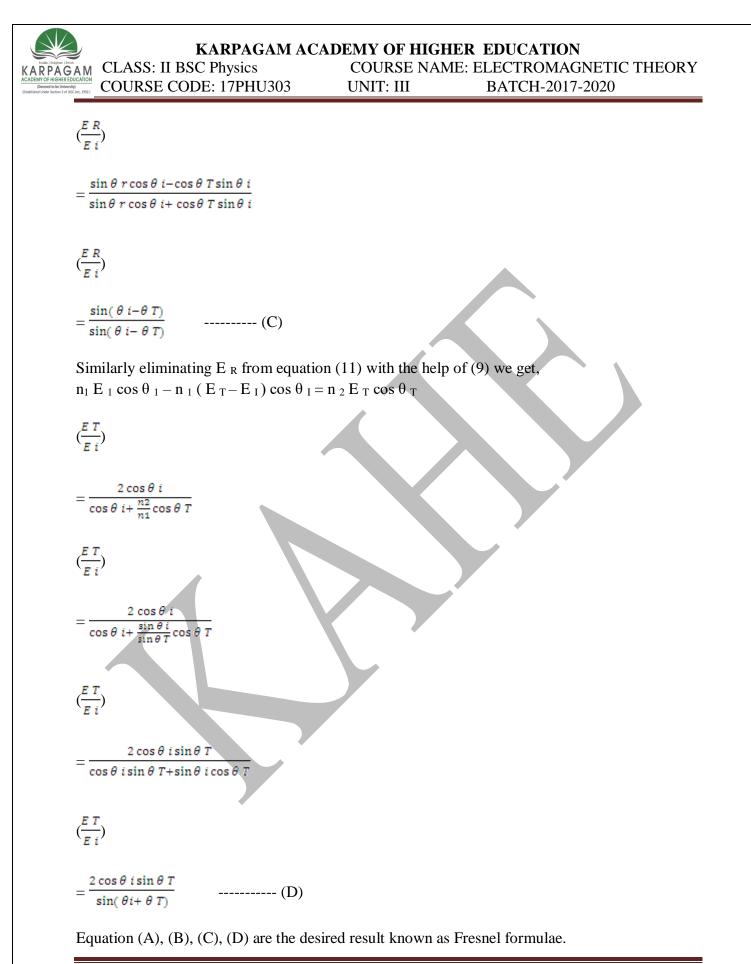
 $H_i \cos \theta_i - H_R \cos \theta_R = H_T \cos \theta_T$

 $\theta_{i} = \theta_R$ and $H = (E/Z) = (n\epsilon / Z_0)$

So equation (10) reduce to

 $n_{1} E_{1} \cos \theta_{1} - n_{2} E_{R} \cos \theta_{R} = n_{2} E_{T} \cos \theta_{T}$ (11)

Now eliminating E $_{R}$ from equation (11) with help of (9) we get,


 $(E_i - E_R) n 1\cos \theta_I = n_2 \cos \theta_T (E_i + E_R)$

 $\left(\frac{E R}{E i}\right)$

 $=\frac{\cos\theta\ i-\frac{n2}{n1}\cos\theta\ T}{\cos\theta\ i+\frac{n2}{n1}\cos\theta\ T}$

 $\left(\frac{E R}{E i}\right)$

 $= \frac{\cos\theta \, i - \frac{\sin\theta \, i}{\sin\theta \, T} \cos\theta \, T}{\cos\theta \, i + \frac{\sin\theta \, i}{\sin\theta \, T} \cos\theta \, T}$

CLASS: II BSC Physics COURSE CODE: 17PHU303

REFLECTION FROM A METALLIC SURFACE :

We now consider the case in which the boundary surface separates a dielectric from a conducting medium, for simplicity we shall treat only the case of normal incidence here. The boundary condition for the continuity of the tangential components of electric and magnetic vectors E and H for the situation depicted in figure.

And

 $E_i - E_R = E_T$ ------ (1) $H_i + H_R = H_T$ ------ (2)

But as IH I = $\frac{n}{\mu r Z_0} \&$ I E I = $\frac{n}{Z_0}$ I E I as

Equation (2) reduces to

 $n_1 (E_i + E_R) n_2 E_r$ ------(3)

So substituting the value of E_r from (3) in (1) we get,

$$(E_i - E_R) = \frac{n1}{n2}(E_i + E_R)$$

 $\frac{ER}{Ei} = \frac{n \, 2 - n \, 1}{n \, 2 + n \, 1}$ ------ (4)

And substituting the value of E_R from

Sub equation (3) in equation (1) we get,

 $E_{i} = \left[\frac{n^{2}}{n^{2}}E_{R} - E_{I}\right] + E_{T}$

$$\left[\frac{ET}{Ei}\right] = \frac{2n1}{n2+n1}$$
 ------(5)

Now as index of refraction is related to propagation vector by the relation

$$I = n \frac{\omega}{c} \qquad I.e. \quad n = \frac{c}{\omega} K$$

Interaction of EMW with matter on microscopic scale and as in case of good conductor.

Now if , $(n - n_1) + ik = a e^{i \phi_1}$ $(n - n_1) + ik = b e^{i \phi_2}$

Prepared by Mrs.N.Geetha, Asst Prof, Department of Physics, KAHE

(7)

n+n1

CLASS: II BSC Physics COURSE CODE: 17PHU303 COURSE NAME: ELECTROMAGNETIC THEORY UNIT: III BATCH-2017-2020

$$a = \left[\sqrt{(n-n\,1)^2 + k\,2} \qquad ; \phi_1 = \tan^{-1}\frac{k}{n-n\,1} - \dots \right]$$

$$b = \left[\sqrt{(n-n\,1)^2 + k\,2} \qquad ; \phi_2 = \tan^{-1}\frac{k}{n-n\,1} - \dots \right]$$
(9)

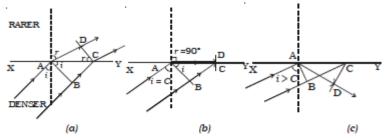
So equation (7) and (8) reduce to,

$$\left[\frac{ET}{E_{i}}\right] = a e^{i\phi_{1}}/b e^{i\phi_{2}} = \left[(n-n_{1})^{2} + k^{2}/(n+n_{1})^{2} + k^{2}\right]^{\frac{1}{2}} e^{i(\phi_{2} - \phi_{1})} - \cdots - e^{i(\phi_{2} - \phi_{1})}$$

---(11)

$$\begin{bmatrix} \frac{ET}{Ei} \end{bmatrix} = 2 n_1 / b e^{i\phi_2} = 2 n_1 / [(n + n_1)^2 + k^2] e^{-i\phi_2} -----(12)$$

Equation (11) and (12) are our final equation representing the reflected and transmitted waves φ_1 and φ_2 are given by equation (9) and (10) while n and k by equation (6). From these it is clear that both reflected and transmitted waves exist and they are not in phase with the incident wave. Further the amplitude of the transmitted wave is very small due to large values of n and k in the denominator, waves which are most strongly absorbed are very strongly reflected. i.e. All good conductors are good absorbers and good reflectors. Light are complementary. A good example is offered by the optical properties of thin sheets of gold. They appears yellowish by reflection. This mean that of the white light is incident on thin gold foils. Then the transmitted light will be devoid of yellow component. As a result the transmitted light appears greenish or bluish.


TOTAL INTERNAL REFLECTION :

Let XY be a plane surface which separates a rarer medium (air) and a denser medium. Let the velocity of the wavefront in these media be Ca and Cm respectively. A plane wavefront AB passes from denser medium to rarer medium. It is incident on the surface with angle of incidence *i*. Let *r*be the angle of refraction.

- $\frac{\sin i}{BC} \frac{BC}{AC} \frac{c_m t}{BC} \frac{c_m t}{C_m}$
- $sin r (AD/AC) AD c_a t c_a$

Since $\frac{c_m}{c_n} < 1$ is less than r. This means that the refracted wavefront is deflected away from the surface XY.

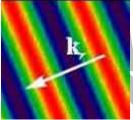
In right angled triangle ADC, there are three possibilities (i) AD < AC (ii) AD = AC and (iii) AD > AC

(i) AD <AC :For small values of i, BC will be small and so AD > BC but less than AC (Fig.a) $\sin r = AD/AC$, which is less than unity

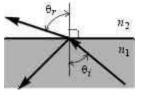
i.e r < 900

For each value of *i*, for which r < 900, a refracted wavefront is possible

(ii) AD = AC : As *i*increases *r* also increases. When AD = AC, sin r = 1 (or) r = 900. i.e. a refracted wavefront is just possible (Fig.b). Now the refracted ray grazes the surface of separation of the two media. The angle of incidence at which the angle of refraction is 900 is called the critical angle C.


(iii) AD > AC: When AD > AC, sin r > 1. This is not possible (Fig. c). Therefore no refracted wave front is possible, when the angle of incidence increases beyond the critical angle. The incident wavefront is totally reflected into the denser medium itself. This is called total internal reflection.

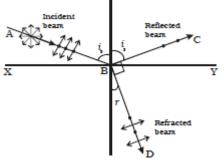
Hence for total internal reflection to take place (i) light must travel from a denser medium to a rarer medium and (ii) the angle of incidence inside the denser medium must be greater than the critical angle. i.e. i > C.


EVANSCENT WAVES :

"Evanescent" means "tending to vanish", which is appropriate because the intensity of evanescent waves decays exponentially (rather than sinusoidally) with distance from the interface at which they are formed. Evanescent waves are formed when sinusoidal waves are (internally) reflected off an interface at an angle greater than the critical angle so that total internal reflection occurs.

The colors in the image at right indicate the instantaneous electric field magnitude of the incident light. In this view, the plane of the page is the plane of incidence (contains the wave vector ki and the normal to the interface, the latter indicated by the black line). Surfaces on which the electric field magnitude is uniform are planes normal to the wave vector ki. Hence the incident light is a linearly polarized plane wave (LPPW). As time progresses, these planes move at the speed of light in a direction given by the wave vector ki. A LPPW is the type of wave produced by a laser.

The next image at right shows the reflected wave, which is also a LPPW. The direction of the wave vector kr is determined such that the angle of incidence equals the angle of reflection.


A wave (called the refracted wave) also arises on the other side of the interface where the reflection occurs. The three arrows in the sketch at left represent the 3 wave vectors for the

incident, reflected and refracted waves. All 3 wave vectors lie in the same plane (the plane of incidence). The angle of incidence qi and the angle of refraction qr are related by Snell's law: $n_1 \sin \theta_i = n_2 \sin \theta_R$

where n1 and n2 are indexes of refraction on either side of the interface. When n1 < n2 Snell's law predicts that the refracted wave vector will be bent toward to the normal. This is called an external reflection because it often occurs when the incident light strikes the outside surface of a solid object. External reflections of LPPW's always produce a refracted wave which is also a LPPW. Our interest is in internal reflections.

Brewster's law :

Sir David Brewster conducted a series of experiments with different reflectors and found a simple relation between the angle of polarisation and the refractive index of the medium. It has been observed experimentally that the reflected and refracted rays are at right angles to each other, when the light is incident at polarising angle.

From $i p + 90^{\circ} + r = 180^{\circ}$

 $r = 90^{\circ} - i p$

From Snell's law, $\sin i p / \sin r = \mu$

where μ is the refractive index of the medium (glass) Substituting for r, we get

$$\frac{\sin i_p}{\sin(90 - i_p)} = \mu \quad ; \quad \frac{\sin i_p}{\cos i_p} = \mu$$

The tangent of the polarising angle is numerically equal to the refractive index of the medium.

TRANSMISSION AND REFLECTION CO-EFFICIENT :

The transmission coefficient is used in physics and electrical engineering when wave propagation in a medium containing discontinuities is considered. A transmission coefficient describes the amplitude, intensity, or total power of a transmitted wave relative to an incident wave.

In physics and electrical engineering the reflection coefficient is a parameter that describes how much of an electromagnetic wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC PhysicsCOURSE NAME: ELECTROMAGNETIC THEORYCOURSE CODE: 17PHU303UNIT: IIIBATCH-2017-2020

is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a "reflection coefficient".

Possible Question:

8 mark

- 1. Boundary conditions at a plane interface between two media.
- 2. Reflection & Refraction of plane waves at plane interface between two dielectric media
- 3. Explian the concept of Reflection & Transmission coefficients.
- 4. Write a short note on (i)Total internal reflection (ii) evanescent waves.
- 5. Explain the Fresnel's Formulae for perpendicular & parallel polarization.
- 6. Write a short note on Brewster's law.
- 7. Write a short note on Metallic reflection.

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

ELECTROMAGNETIC THEORY

QUESTIONS	OPTION1	OPTION2	OPTION3	OPTION4	ANSWER
is defined as the ratio of the energy scattered by the system per unit time per unit solid angle to the energy flux density of the incident radiation.	surface cross- section	area cross- section	cross-section	differential scattering cross- section	differential scattering cross- section
is defined as the ratio of the power scattered to the intensity of the incident radiation.	cross section	area cross section	total scattering cross-section	differential scattering cross section	total scattering cross- section

The factor is	-1/2 (1+	$1/2 (1 - \cos^2)$		$1/2 (1 + \cos^2)$	$1/2 (1 + \cos^2)$
called degree of polarization.	$\cos^2 f$	f)	-1/2 (1- cos ² f)	f)	f)
Scattering depends on the nature				none of the	
of the particles.	charged	uncharged	elementary	above	charged
Thomson formula for scattering is					
appropriate for the scattering for					
·	alpha	neutrons	cosmic	electrons	electrons
Scattering occurs in all directions	-				
and is maximum when $f =$					
·	0°	270°	90°	45°	0°
Scattering occurs in all directions					
and is minimum when f =					
	180°	0	90° or 270°	360°	$90^{\circ} \text{ or } 270^{\circ}$
The total scattering cross-section					
according to Thomson's					
scattering is s _T =					
	$-8p/3 r_0^2$	$8p/3 r_0^2$	8p/3 r ₀	$-8p/3 r_0$	$8p/3 r_0^2$
In general the scattered radiation					
is more concentrated in the				none of the	
direction.	forward	backward	random	above	forward
Scattering of electromagnetic					
waves is of the					
nature of the incident wave.	dependent	independent	infinite	finite	independent
An oscillating charge behave like					
an oscillating dipole with dipole		_	_		
moment p =	-qx	qx ²	qx ²	$-qx^2$	qx^2
The relation between the					
wavelength of the scattered					
radiation at an angle f and the				$l_s = -l_i +$	
incident radiation is	· / · ·		$l_s = l_i + (h/mc)$. , , ,
·	cos f)	cos f)	(1+ cos f)	cos f)	cos f)

If the amount of scattered light is					
proportional to $1/l^4$ where 1 is the					
wavelength of the incident					
radiation, then scattering is					
known as					
scattering.	Thomson	Compton	Inelastic	Rayleigh	Rayleigh
The blue color of the sky is due to	Thomson	Compton	Inclustic	None of the	Ruyleigii
scattering.	Rayleigh	Compton	Thomson	above	Rayleigh
scattering.	Rayleigh	Compton	Thomson	a007C	Rayleigh
longest wavelength in the visible					
•	blue	violet	red	graan	red
region. In a medium, the index of	blue	violet	leu	green	leu
,					
refraction varies with frequency,					
then the medium is said to be		1	4	none of the	1
··	rarer	dispersive	denser	above	dispersive
The rate of change of refractive					
index with wavelength is known		refreactive	dispersive	none of the	dispersive
as .	dispersion	index	power	above	power
The index of refraction					-
as the					
frequency increases.	equals	decreases	varies	increases	increases
As an electromagnetic wave	-				
passes through a gas the electric					
field induces in	electrostatic	dipole	magnetostatic	none of the	dipole
the gas molecules.	energy	moment	energy	above	moment
	- 01				
The electrons are bound to the					linear
nucleus in an atom by	covalent		linear restoring	none of the	restoring
In polarization the positions of the	bond	ionic bond	force	above	force
electrons are altered from their					
equilibrium value while					
remains	nuclei	neutron	proton	muon	nuclei

stationary.					
The classical radius of the					
electron $r_0 = $	$-q^2/4pe_0mc^2$	$q^2/4pe_0mc$	$q^2/4pe_0mc^2$	$q/4pe_0mc^2$	$q^2/4pe_0mc^2$
In a plane wave B =					
	– (n X E)	(n X E)	-(n X E)/c	(n X E)/c	(n X E)/c
If the index of refraction					
decreases with the increase in					
frequency over small frequency					
range, then it is called	-		~ .	-	_
dispersion.	normal	abnormal	finite	anomalous	anomalous
In dispersion in gases, there is a					
damping proportional to the					
velocity of the		1			1
· · · · · · · · · · · · · · · · · · ·	proton	electron	neutron	muon	electron
The dipole moment results from					
the displacement of the electron is			2	2	
<u>p=</u> .	er	-er	er ²	-er ²	er
In case of gases, e_r ®	1	0	1	2	1
· · · · · · · · · · · · · · · · · · ·	-1	0	1	2	1
If w® 0, the frequency of the					
incident wave is					
in comparison to the natural frequency of the				none of the	
electron.	very large	very small	zero	above	very small
Thomson scattering is known as	very large	very small		a00ve	very small
	resonance	abnormal	normal	anomalous	resonance
Oscillating charge is equivalent to	resonance	aunorman		anomaious	resonance
an induced of	electric	magnetic	electromagnetic	none of the	electric
moment $p = qx$.	dipole	dipole	dipole	above	dipole
	arpoie				un poie

		1	1	1	1
Thomson result become					
significant for incident photon					
energy hu which is comparable					
with or larger than rest energies				2	
of the scattering electron.	mc	mv	mc ²	mv ²	mc ²
According to quantum					
mechanical calculations, the					
frequency of the scattered					
radiation is that of				none of the	
the incoming waves.	greater than	lesser than	equal to	above	lesser than
According to quantum					
mechanical calculations, the					
frequency of the scattered					
radiation depends on					
of the					
scattering.	angle	nature	energy	momentum	angle
The restoring force is					
·	$mw_0^2 x$	$-mw_0^2x$	-mw ₀ x	$-m^2w_0x$	$-mw_0^2 x$
		mercury			sodium
Example of resonance scattering		vapour	fluorescent	sodium	vapour
is	neon lamp	lamp	lamp	vapour lamp	lamp
The color of the sky during sunset	F			yellowish	
or sunrise is	red	blue	yellow	red	red
light has					
	red	blue	violet	green	violet
				Ŭ	
the refractive index is					
	Real	imaginary	complex	rational	Real
According to normal dispersion.			<u> </u>		
the refractive index					
of the incident waves.	proportional	equals	increases	decreases	increases
shorter wavelength in visible region. According to normal dispersion, the refractive index is According to normal dispersion, the refractive index with frequency	Real	imaginary	complex		Real

For a given medium					
light has the					
lowest index of refraction in the					
optical range of frequencies.	blue	green	yellow	red	red
For a given medium					
light has the largest					
index of refraction in the optical					
range of frequency.	red	violet	blue	green	violet
For anomalous dispersion, there is					
natural frequency.	one	two	four	three	one
The index of refraction is a					
function of					
frequency of the electromagnetic					
waves propagating through the					
gas.	linear	logarithmic	complex	exponential	complex
At very low frequencies, the					
index of refraction is slightly				proportional	
unity.	lesser than	greater than	equal to	to	greater than
The imaginary part of index of					
refraction corresponds to the					
of					
electromagnetic waves					
propagating through gases.	emission	reflection	absorption	refraction	absorption
For any real gas, there exists					
resonant					
frequencies.	many	two	three	four	many
The tangential component of E is					
across a					
surface of discontinuity.	discontinuous	Proportional	continuous	equals	continuous
According to law of frequency,					
the frequency of the wave					
remains by					
reflection or refraction.	multiplied	changed	decreased	unchanged	unchanged

According to low of reflection					
According to law of reflection, the angle of reflection is				none of the	
e			1		
angle of incidence.	equal to the	greater than	lesser than	above	equal to the
In case of refraction, the ratio of					
the sine of the angle of refraction					
to the sine of the angle of					
incidence is					
ratio of the refractive index of the				none of the	
two media.	greater than	equal to the	lesser than	above	equal to the
For all angles of incidence there					
is a phase change of					
on reflection for EMW whose					
vibrations are perpendicular to the					
plane of incidence.	2π	π/2	π	π/3	π
angle is also	brewster's	Snell's		None of the	brewster's
called as polarizing angle.	angle	angel	Fresnel's angle	above	angle
If light is incident on a glass plate					
at 56°, the reflected light will	circularly	plane	spherically	elliptically	plane
	polarized	polarized	polarized	polarized	polarized
Water reflect					
radiowaves which are polarized					
with vibration in the plane of					
incidence and are incident on it at				none of the	
84°.	cannot	can	multi relfection	above	cannot
All the light is reflected as the					
angle of incidence approaches					
90° , the angle is called		Brewster's		Grazing	Grazing
	Snell's angle	angle	Fresnel's angle	angle	angle
glasses transmit	6	<i>U</i>	6		<u> </u>
only one direction of vibration.	light	dark	colour	crown	dark
The value of angle of incidence					
for which $\theta_{\rm T}$ becomes 90° is		Brewster's		Snell's	critical
called .	critical angle	angle	Fresnel's angle	angle	angle
•••••••	erniour ungio		- resiler 5 ungle		

The velocity is a					
function of angle of incidence.	group	angular	phase	linear	phase
The waves which do not have	group	ungului	phase	Inicui	phase
energy are called					
waves.	cerenkov	Radio	Microwaves	Evanescent	Evanescent
If a linearly polarized wave is		Tuulo		Livuneseent	
reflected from the boundary at an					
incident angle greater than the					
critical angle, the reflected wave					
will be	circularly	elliptically	spherically	plane	elliptically
The phenomena of total internal		· · ·			· · ·
reflection is used to produce					
polarized				none of the	
lights.	elliptically	spherically	plane	above	elliptically
All good conductors are good		absorbers			absorbers
and good	absorber and	and	absorber and	none of the	and
	scatterer	reflectors	refractor	above	reflectors
Good conductor of electricity are					
to light.	opaque	absorbers	reflectors	scatterers	opaque
If white light is incident on thin					
gold foils, then the transmitted	yellowish or	brownish or	brownish or	greenish or	0
light appears The reflection coefficient of	reddish	greenish	bluish	bluish	bluish
substance of high conductivity at					
low frequency will					will be
··	not be unity	be infinite	will be unity	be finite	unity
Transmission of electromagnetic					
waves by successive reflections					
from inner walls of the tube is	transmission		<u> </u>	total-internal	
called	tube	wave guide	reflection tube	reflection	wave guide
If the cross-section of the					
waveguide is rectangular, it is	1. 1. 1				
called waveguide.	cylindrical	circular	square	rectangular	rectangular

If the cross-section of waveguide					
is circular, it is called				none of the	
,	cylindrical	circular	elliptical	above	cylindrical
waveguide.			emptical	none of the	cymuncar
The walls of the waveguide are	non-	semi-	aanduating		aandusting
perfectly	conducting	conducting	conducting	above	conducting
The tangential component of E					
and normal component of B					
surface of the walls of the wave					
	1. • •	· 1	1	none of the	• 1
guide.	multipies	vanishes	coincides	above	vanishes
The electromagnetic fields E and					
B are propagated as waves in the					
waveguides at a speed equal to			. .	a a	
·	С	0.9 c	0.3 c	0.2 c	с
The phase velocity becomes					
exactly at cutoff	~ .				
frequency.	finite	zero	infinite	unity	infinite
In the waveguide the Maxwell's					
first equation for the propagation		div $E = -$			
of EMW is	div $E = \rho$	ρ/ϵ_0	div $E = -\rho$	div $E = 0$	div $E = 0$
If the EMW propagates in a					
waveguide, the Maxwell's second					
equation is	H = 0	Div $B = 0$	H = 1	$\text{Div } \mathbf{B} = \mathbf{H}$	Div $B = 0$
waves cannot be					
propagated along the axis of a					
waveguide.	stationary	TE	TEM	TM	TEM
In mode all the					
transverse components of E and B					
can be expressed in terms of					
longitudinal component of					
magnetic vector B _z .	ТМ	TE	TEM	Transverse	TE
The mode is called					
the principal or dominant mode.	TE_{11}	TE_{10}	TE_{01}	TE ₀₀	TE ₀₁

In mode, all the					
transverse components of E and B					
can be expressed in terms of					
longitudinal component of the					
electric field E _z .	ТМ	TE	TEM	Longitudinal	ТМ
In waveguide TE					
and TM have the same set of					
cutoff frequencies.	circular	all	square	rectangular	rectangular
The reflection of the					
electromagnetic waves at the					
conducting plane involves no					
change in	frequency	amplitude	phase	energy	amplitude
If the magnetic field H of					
electromagnetic wave has a					
component along the assumed					
axis of propagation then the wave				Transverse	
is called	H-wave	E-wave	EH-wave	wave	H-wave

CLASS: II BSC Physics COURSE COURSE CODE: 17PHU303 UNIT: IV

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: IV BATCH-2017-2020

UNIT-IV

SYLLABUS

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light

HUYGENS EXPLANATION OF DOUBLE REFRACTION IN UNIAXIAL CRYSTALS:

Huygens explained the phenomenon of double refraction with the help of the principal of secondary wavelets. A point source of light in a double refracting medium is the origin of two wave fronts. For the ordinary ray, for which the velocity of light is same in all directions. The wavefront is spherical. For extraordinary ray the velocity varies with the directions and wavefront is ellipsoid. The velocities of ordinary and extraordinary rays are the same along the optic axis.

Consider a point source of light S in a calcite crystal, the sphere is the wave surface of the ordinary ray and ellipsoid is the wave surface of the extraordinary ray. The ordinary wave surface lies within the extraordinary wave surface. Such crystals are known as negative crystals. For crystals like quartz, which are known as positive crystals, The extraordinary wave surface lies within the ordinary wave surface

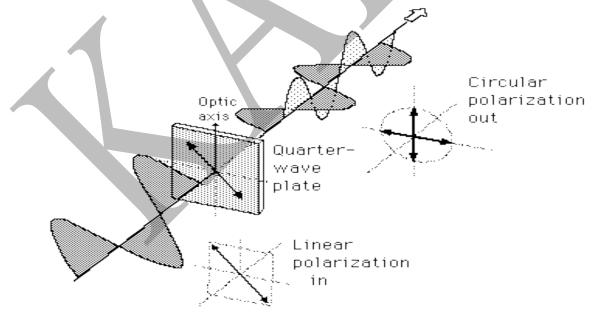
1) For the negative uniaxial crystals $\mu_0 > \mu_E$:

The velocity of the extraordinary ray varies as the radius vector of the ellipsoid. It is least and equal to the velocity of the ordinary ray along the optic axis but it is maximum at right angle to the direction of the optic axis. 2) For the positive uniaxial crystals $\mu_E > \mu_0$: Laule I Edgare Jarco Laule I Edgare Jarco CADE A Control Control Control to Bullewing (Inableted Units Section 34 (Julic Are, 1956)

The velocity of the extraordinary ray is least in the direction at the right angles to the optic axis. It is maximum and equal to the velocity of the ordinary ray along the optic axis. Hence from the Huygens theory, The wavefronts or surfaces in uniaxial crystals are a sphere and an ellipsoid and there are two points where these two wavefronts touch each other. The direction of the line joining these two point is the optic axis.

QUARTER WAVE PLATE:

It is a plate of doubly refracting uniaxial crystal of calcite (or) quartz of suitable thickness whose refracting faces are cut parallel to the direction of the optic axis. The incident plane –polarized light is perpendicular to its surface and the ordinary and the extraordinary rays travel along the same direction with different velocities. If the thickness of the plate is t and the refractive indices for the ordinary and the extraordinary rays are μ_0 and μ_E respectively. Then the path difference introduced between the two rays is given by,

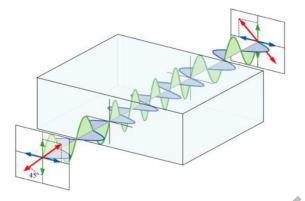

For negative crystals, path difference= $(\mu_0 - \mu_E)t$

For positive crystals, path difference= $(\mu_E - \mu_0)t$

To produce a path difference of $\lambda/4$, in calcite

 $(\mu_0 - \mu_E) t = \lambda/4$ $t = \lambda/4 (\mu_0 - \mu_E) - \dots (1)$

and in case of quartz, If the plane-polarized light, whose plane of vibration is inclined at an angle of 45° to the optic axis, is incident on a quartz wave plate, the emergent light is circularly



polarized.

HALF WAVE PLATE:

KARPAGAM ACADEMY OF HIGHEREDUCATIONCLASS: II BSC PhysicsCOURSE NAME: ELECTROMAGNETIC THEORYCOURSE CODE: 17PHU303UNIT: IVBATCH-2017-2020

This plate is also made from a doubly refracting uniaxial crystal of calcite (or) quartz of suitable thickness whose refracting faces are cut parallel to the direction of the optic axis. the thickness of the plate is t and the refractive indices for the ordinary and the extraordinary rays have a path difference= $\lambda/2$ after passing through the crystals

For negative crystal, path difference = $(\mu_0 - \mu_E)t$ For positive crystals, path difference= $(\mu_E - \mu_0)t$ To produce a path difference of $\lambda/2$, in calcite

$$(\mu_0 - \mu_E)t = \lambda/2$$

and in case of quartz,

 $t = \lambda/2 \ (\mu_E - \mu_0)$ ------ (2)

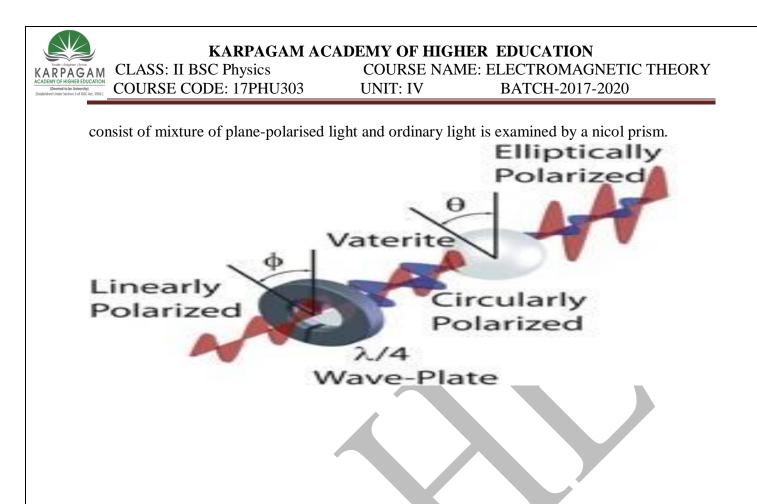
 $t = \lambda/2 (\mu_0 - \mu_E)$ (1)

When plane polarised light is incident on a half waveplate, such that it makes an angle of 45° with the optic axis a path difference of $\lambda/2$ is introduced between the extraordinary and the ordinary rays. The emergent light is plane-polarized and the direction of polarization of the linear incident light is rotated through 90°. Thus a half waveplate rotates the azimuth of a beam of plane-polarized light by 90°, provided the incident light makes an angle 45° with the optic axis of the half wave plate.

PRODUCTION OF PLANE, CIRCULAR AND ELLIPTICALLY POLARIZED LIGHT:

Production of plane polarized light:

A beam of monochromatic light is passed through a nicol prism. While passing through the nicol prism, the beam is spilt up into extraordinary ray and ordinary ray. The ordinary


ray is totally internally reflected back at the Canada balsam layer, while the extra ordinary ray passes through the nicol prism. The emergent beam is plane polarized <u>Production of circularly polarized light:</u>

To produce circularly polarized light, the two waves vibrating at right angle to each other having the same amplitude and time period should have a phase difference of $\pi/2$ (or)a path difference of $\lambda/4$. for this purpose a parallel beam of monochromatic light is allowed to fall on a nicol prism N₁. The beam after passing through the prism N₁ is plane polarized.

The nicol prism N_2 is placed at some distance from N_1 so that N_1 and N_2 are crossed. The field of view will be dark as viewed by the eye in this position. A quarter waveplate p is mounted on a tube A .The tube A can rotate about the outer fixed tube B introduced between the nicol prism N_1 and N_2 .The plane polarised light from N_1 falls normally on P and the field of view may be bright. The quarter waveplate is rotated until the field of view may be dark keeping P fixed, A is rotated such that the mark S on P coincides with 0 mark on A. Afterwards, By rotating the quarter waveplate P,the mark S is made to coincide with the 45° mark on A.

The quarter waveplate is in the desired position. In this case, the vibration of plane polarised light falling on the quarter waveplate makes an angle 45° with the direction of optic axis of the quarter wave plate. The polarised light is split up into two rectangular components having equal amplitude and time period and on coming out of the quarter waveplate, the beam is circular polarised if the nicol prism N₂ is rotated at this stage, the field of view is uniform in intensity similar to the ordinary light passing through the nicol prism Elliptically polarised light:

To produce elliptically polarised light, the two waves vibrating at right angle to each other having unequal amplitudes should have a phase difference of $\pi/2$ or a path difference of $\lambda/4$. The arrangement of figure can be used for this purpose. A parallel beam of monochromatic light is allowed to fall on the nicol prism N₁. The prisms N₁ and N₂ are crossed and the field of view is dark. A quarter wave plate is introduced between N₁ and N₂. The plane polarised light from the nicol prism N₁ falls normally on the quarter wave plate. The field of view is illuminated and the light coming out of the quarter wave plate is elliptically polarised. The only precaution in the case is that the vibrations of the plane polarised light falling on the quarter plate should not make an angle of 45° with the optic axis,in which case,the light will be circularly polarised. When the nicol prism N₂ is rotated,it is observed that the intensity of illumination of the field of view varies between a maximum and a minimum. This is just similar to the case when a beam

DOUBLE REFRACTION :

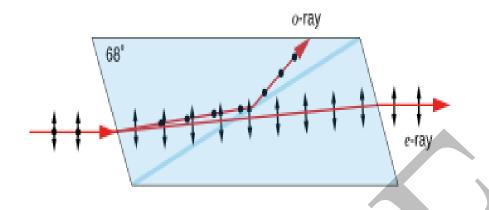
Erasmus Bratholinus discovered in 1669, that when a ray of light is refracted by a crystal of calcite it gives two refracted rays. The phenomenon is called double refraction. Calcite or Iceland spariscrystalised calcium carbonate($c_a c_{o3}$) and was found in large quantities in Iceland as very large transparent crystals. Due to this reason calcite is known as Iceland spar. It crystallises in many forms and can be reduced by cleavage or breakage into a rhombohedron, bounded by six parellograms with angle equal to 102° and 78° . (more accurately $101^{\circ}55^{\circ}$ and $78^{\circ}5^{\circ}$).

Optic Axis:

At two opposite corners A and H, of the rhombohedron all the angles of the faces are obtuse. These corners A and H are known as the blend corners of the crystal . A line draw through A making equal angles with each of the three edges gives the direction of the optic axis. In fact any line parallel to this line is also an optic axis. Therefore optic axis is not a line but it is a direction .Moreover, it is not defined by joining the two blunt corners . Only is a spherical case, when the three edges of the crystal are equal , the line joining the two blunt corners A and H coincides with the crystallographic axis of the crystal and it gives the direction of the optic axis . If a ray of light is incident along the optic axis or in a direction parallel to the optic axis, then it will not break into two rays . Thus the phenomenon of double refraction is absent . When a light

Prepared by Mrs.N.Geetha, Asst Prof, Department of Physics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: II BSC Physics** COURSE NAME: ELECTROMAGNETIC THEORY COURSE CODE: 17PHU303 UNIT: IV BATCH-2017-2020 is allowed to enter the crystal along the optic Optic **≜**Optic E-ray faster in calcite medium $n_{\rm F} = 1.4864$ n₀ = 1.6584 axis. crystal unpolarize ordinary ray light extraordinary ray

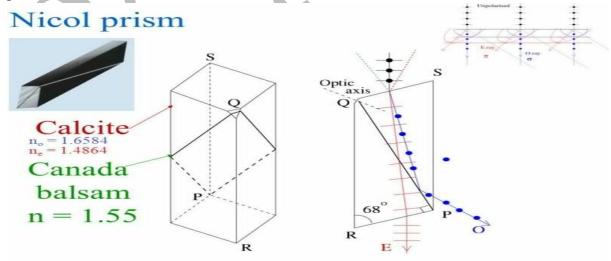

NICOL PRISM :

It is an optical device for producing and analysing plane polarised light. It was invented by William Nicol, in 1828 who was expert in cutting and polishing germs and crystals . we have discussed that when a beam of light is transmitted through a calcite crystal, it breaks up into two rays (1) the ordinary ray which has its vibrations perpendicular to the principal section of the crystal and (2) the extraordinary ray which has its vibrations parallel to the principal section.

The nicol prism is made in such a way that it eliminates one of the two rays by total internal reflection. It is generally found that the ordinary ray is eliminated and only the extraordinary ray is transmitted through the prism. A calcite crystal whose length is three times its breadth is taken. Let A'BCDEFG'H represent such a crystal having A' and G' as its blunt corners and A'CG'E is one of the principle sections with $<A'CG'=70^{\circ}$.

CLASS: II BSC Physics COURSE CODE: 17PHU303

The faces A'BCD and EFG'H are grounded such a way that the angle ACG becomes=68° instead of 71°. The crystal is then cut along the plane AKGL. The two out surfaces are grounded and polished optically flat and then cemented together by Canada balsam whose refractive index lies between the refractive indices for the ordinary and the extraordinary rays for calcite.

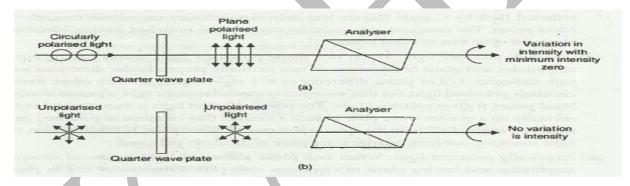

Refractive index for the ordinary μ_0 =1.658

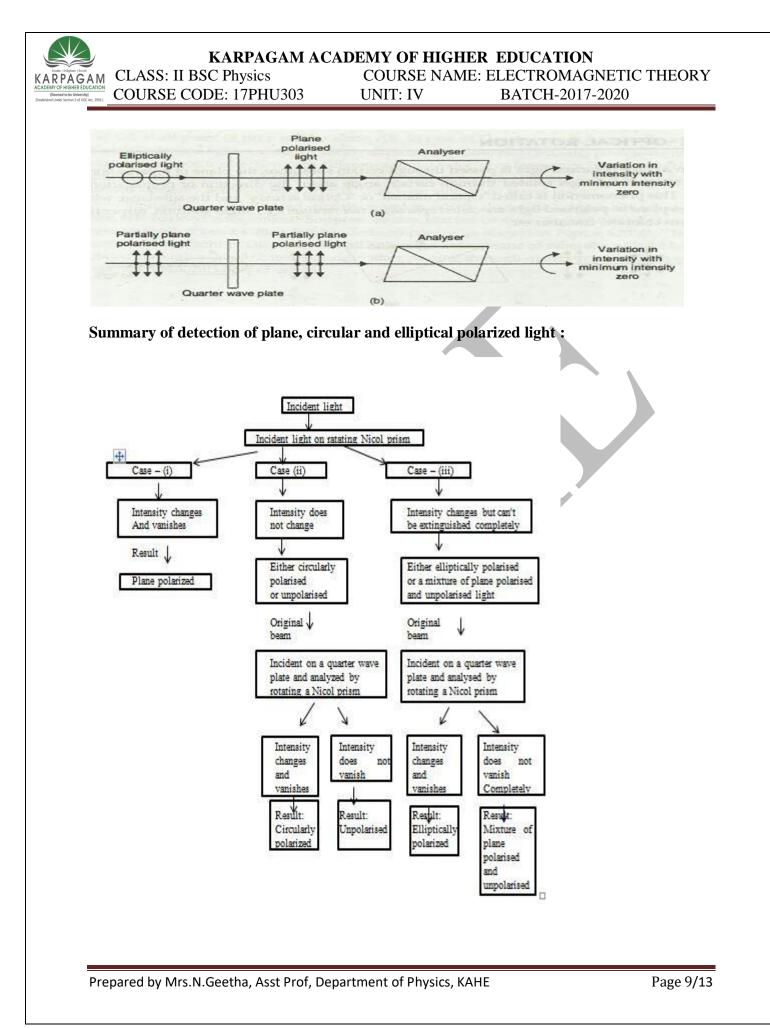
Refractive index for Canada balsam $\mu_B = 1.55$

Refractive index for the extraordinary =1.486

The diagonal AC represents the Canada balsam layer in the plane ALKG.

It is clear that Canada balsam act as a rarer medium for an ordinary ray and it act as a denser medium for the extraordinary ray. Therefore, when the ordinary ray passes from a portion of the crystal into the layer of Canada balsam it passes from a denser to a rarer medium. When the angle of incidence is greater than the critical angle, the ray is totally internally reflected and is not transmitted. The extraordinary ray is not affected and is therefore transmitted through the prism.




DETECTION OF PLANE, CIRCULAR AND ELLIPTICALLY POLARIZED LIGHT:

<u>Plane Polarised Light:</u> The light beam is allowed to fall on Nicol prism. If on rotation of Nicol prism, intensity of emitted light can be completely extinguished at two places in each rotation, then light is plane polarised.

<u>Circularly Polarised Light:</u> The light beam is allowed to fall on a Nicol prism. If on rotation of Nicol prism the intensity of emitted light remains same, then light is either circularly polarised or unpolarised. To differentiate between unpolarised and circularly polarised light, the light is first passed through quarter wave plate and then through Nicol prism. Because if beam is circularly polarised then after passing through quarter wave-plate an extra difference of $\lambda/4$ is introduced between ordinary and extraordinary component and gets converted into plane polarised. Thus on rotating the Nicol, the light can be extinguished at two plates. If, on the other hand, the beam is unpolarised, it remains unpolarised after passing through quarter wave plate and on rotating the Nicol, there is no change in intensity of emitted light (Figure).

Elliptically Polarised Light: The light beam is allowed to fall on Nicol prism. If on rotation of Nicol prism, the intensity of emitted light varies from maximum to minimum, then light is either elliptically polarised or a mixture of plane polarized and unpolarised. To differentiate between the two, the light is first passed through quarter wave plate and then through Nicol prism. Because, if beam is elliptically polarised, then after passing through quarter wave plate, an extra path difference of $\lambda/4$ is introduced between 0-ray and E-ray and get converted into plane polarized Thus, on rotating the Nicol, the light can be extinguished l'lt two places. If, on the other hand, beam is mixture of polarised and unpolarised it remains mixture after passing through quarter wave plate and on rotating the Nicol intensity of emitted light varies from maximum to minimum (Figure 6.19).

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: II BSC Physics** COURSE CODE: 17PHU303 UNIT: IV

COURSE NAME: ELECTROMAGNETIC THEORY BATCH-2017-2020

BABINET COMPENSATOR:

A quarter wave plate or a half wave plate produces only a fixed path difference between the ordinary and the extraordinary rays and can be used only for light of a particular wavelength. For different wavelengths, different quarter wave plates are to be used. To avoid this difficulty, Babinet designed a compensator by means of which a desired path difference can be introduced. It consists of two wedge-shaped sections A andB of quartz. The optic axis is lengthwise in A and transverse in B. The outer faces of the compensator are parallel to the optic axis. Therefore, the ordinary and the extraordinary rays travel with different velocities along the same direction inside the compensator. Moreover, the extraordinary ray in A behaves as ordinary in Bwhile the ordinary in A behaves as extraordinary in B. Suppose a plane polarized parallel beam of light is incident normally at the point C of the Babinet's compensator. The beam is split up into extraordinary and ordinary rays. The path difference introduced between them after they have travelled a distance CD in A is.

 $(\mu_{\rm E} - \mu_{\rm O}) t_1$

In B, the path difference introduced by B is,

 $(\mu_0 - \mu_E) t_2$

Therefore, the resultant path difference

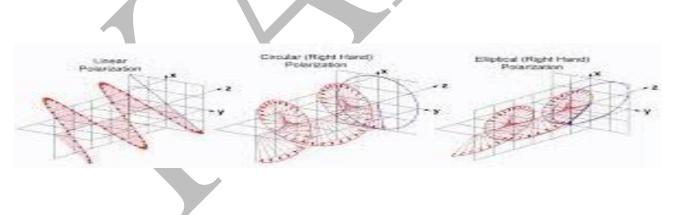
 $(\mu_{\rm E} - \mu_{\rm O}) (t_1 - t_2)$

The crystals A and B are mounted such that A is fixed and B can slide along the surface of A with the help of a rack and pinion arrangement. In this way (t1 - t2) can be made to have any desired value. Hence any path difference can be introduced with the help of the Babinet's Compensator and it can be used for light of any wavelength.

DESCRIPTION OF PLANE, CIRCULAR AND ELLIPTICALLY POLARIZATION :

Light in the form of a plane wave in space is said to be linearly polarized. Light is a transverse electromagnetic wave, but natural light is generally unpolarized, all planes of propagation being equally probable. If light is composed of two plane waves of equal amplitude by differing in phase by 90° , then the light is said to be circularly polarized. If two plane waves of differing amplitude are related in phase by 90° , or if the relative phase is other than 90° then the light is said to be elliptically polarized.

Plane Polarization :

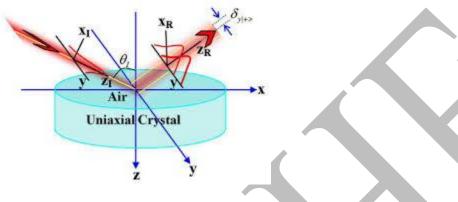

A plane electromagnetic wave is said to be linearly polarized. The transverse electric field wave is accompanied by a magnetic field wave as illustrated.

Circular Polarization :

Circularly polarized light consists of two perpendicular electromagnetic plane waves of equal amplitude and 90° difference in phase. The light illustrated is right- circularly polarized. If light is composed of two plane waves of equal amplitude but differing in phase by 90°, then the light is said to be circularly polarized. If you could see the tip of the electric field vector, it would appear to be moving in a circle as it approached you. If while looking at the source, the electric vector of the light coming toward you appears to be rotating counterclockwise, the light is said to be right-circularly polarized. If clockwise, then left-circularly polarized light. The electric field vector makes one complete revolution as the light advances one wavelength toward you. Another way of saying it is that if the thumb of your right hand were pointing in the direction of propagation of the light, the electric vector would be rotating in the direction of your fingers. Circularly polarized light may be produced by passing linearly polarized light through a quarterwave plate at an angle of 45° to the optic axis of the plate.

Elliptical Polarization :

Elliptically polarized light consists of two perpendicular waves of unequal amplitude which differ in phase by 90°. The illustration shows right- elliptically polarized light. If the thumb of your right hand were pointing in the direction of propagation of the light, the electric vector would be rotating in the direction of your fingers.


UNIAXIAL CRYSTAL

Uniaxial crystals are transmissive optical elements in which the refractive index of one crystal axis is different from the other two crystal axes (i.e. $ni \neq nj = nk$). This unique axis is called the extraordinary axis and is also referred to as the optic axis. Light travels with a higher phase velocity through an axis that has the smallest refractive index and this axis is called the fast axis. Similarly, an axis which has the highest refractive index is called a slow axis since the phase

Prepared by Mrs.N.Geetha, Asst Prof, Department of Physics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC Physics COURSE NAME: ELECTROMAGNETIC THEORY COURSE CODE: 17PHU303 UNIT: IV BATCH-2017-2020

velocity of light is the lowest along this axis. The optic axis can be the fast or the slow axis for the crystal depending upon the material. Negative uniaxial crystals (e.g. calcite CaCO3, ruby Al2O3) have ne < no so for these crystals, the extraordinary axis (optic axis) is the fast axis whereas for positive uniaxial crystals (e.g. quartz SiO2, sellaite (magnesium fluoride) MgF2, rutile TiO2), ne > n o and thus the extraordinary axis (optic axis) is the slow axis.These crystals show birefringent property.

BIAXIAL CRYSTAL :

Biaxial Crystal - A birefringent crystal which has two axes along which the polarized vectors of a monochromatic light beam will travel with the same speed, or along which no double refraction occurs. This type of crystal may be monoclinic, orthorhombic, or triclinic. Sulfur, mica, and turquoise form biaxial crystals.

CLASS: II BSC Physics COURSE NAME: ELECTROMA

COURSE CODE: 17PHU303

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: IV BATCH-2017-2020

Possible Question:

8 mark

- 1. Describe the Linear, Circular and Elliptical Polarization.
- 2. Write a short note on Uniaxial and Biaxial Crystals.
- **3.** Explain the Nicol Prism.
- 4. Ordinary & extraordinary refractive indices.
- 5. Write a short note on Double Refraction.
- 6. Briefly explain the Babinet Compensator and its Uses.
- 7. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates.
- 8. Propagation of E.M. Waves in Anisotropic Media.
- 9. Symmetric Nature of Dielectric Tensor.
- **10.** Light Propagation in Uniaxial Crystal.
- 11. Fresnel's Formula.

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

ELECTROMAGNETIC THEORY

QUESTIONS	OPTION1	OPTION2	OPTION3	OPTION4	ANSWER
The experiments on					
interference and					
diffraction have shown					
that light is form of	transverse	particle	light		
	waves	motion	waves	wave motion	wave motion
The light waves are					
	circular	longitudinal	ellipitical	transverse	transverse
The light is not propagated					
as	circular	longitudinal	ellipitical	transverse	longitudinal
After paasinf through a					
crystal light waves vibrate			perpendic		
in direction	all	only in one	ular	parallel	only in one
Light coming from a					
crystal is known as				transverse	
	polarized	non polarized	refraction	waves	polarized
Its experimentally proved					
that light waves are					
in nature	circular	longitudinal	ellipitical	transverse	transverse

When light is passed					
through a					
crystal,					
the light is polarized to					
only one direction	quartz	diamond	ruby	tourmaline	tourmaline
The plane of polarization					
is that plane in which no	disturbanc		polarizati		
occur	e	attenuation	on	vibration	vibration
The plane of vibration					
occurs at					
angle	acute	optuse	straight	right	right
Polarization of light by					
from the					
surface of glass was	~ .		polaraizat		~ .
discovered by Malus	reflection	refraction	ion	diffraction	reflection
Polarized light is obtained					
when ordinary light is					
reflected by a plane sheet					
of	glass	tourmaline	mica	quartz	glass
Brewster performed no of					
experiments to study the					
polarization of light by			polaraizat	1:66	n flandin n
	reflection	refraction	ion	diffraction	reflection
Reflection from a	angle of				
transparent medium at a	angle of	anala of	diffractio		anala of
particular angle is known	polarizatio	angle of vibration		vibration	angle of polarization
as	n • • • • •		n		1
Snells law	sin i/sin r	sin r/sin i	tan i	tan r	sin i/sin r
Brewster law	sin i/sin r	sin r/sin i	tan i	tan r	tan i
The refractive index of					
glass is	1.52	0	1.98	2	1.52

	ſ		Γ	[Γ
window type of window is used in laser	Brewster	snells	langivian	Malus	Brewster
The pile of plates consists of plates	glass	cearamic	FTO	Si	glass
A beam of light is allowed to fall on the pile of plates at the polarizing angle	sodium	mercury	dichroma tic	monochromat ic	monochromatic
Who discovered the double refarction phenomenon ?	Malus	Brewster	Snell	Erasmus Bartholinus	Erasmus Bartholinus
calcite is also known as	ice	iceland	calcium	iceland spar	iceland spar
The phenomenon of double refraction is absent when is allowed to enter the crystal along the optic axis	light	sound	wave	particle	light
The stationary image is known as	ordinary image	extraordinary image	imaginar y image	standing image	ordinary image
The image which rotates with the roataion of the crystal is known as	ordinary image	extraordinary image	imaginar y image	standing image	extraordinary image
The velocity of light for the ordinary ray inside the crystal will be	less	high	zero	one	less

The ordinary and the					
extradinary rays are			cirucularl		
polarized	plane	elliptically	у	optically	plane
is a	T ··· ·		5		I ····
device used for producing					
and analysing plane					
polarised light	prism	gratting	lens	nicol prism	nicol prism
William nicol is expert in	1	0 0		1	1
cutting and polishing					
gems and	prism	quatrz	crystal	glass	crystal
In calcite crystal the	-	1		0	5
ordinary ray has its					
vibrtion to its			perpendic		
direction	all	only in one	ular	parallel	perpendicular
In calcite crystal the		ž		•	
extraordinary ray has its					
vibrtion to its			perpendic		
direction	all	only in one	ular	parallel	parallel
can be		· ·			-
used in the detection of	nicol		Snells		
plane polarizer light	prism	brewster law	law	calcite crystal	nicol prism
Nicol prism are coated					
with paint to					
absorb ordianr ray	blue	red	green	black	black
Canada balsam acts as					
medium for					
ordinary ray	rarer	denser	thinner	thicker	rarer
Canada balsam acts as					
medium for					
extraordinary ray	denser	thinner	rarer	thicker	denser
Huygens explained the					
phenomenon of double					
refraction with the help of	primary	secondary	tetra	zero	secondary
remaction with the help of	prinary	secondary	iella	2010	secondar y

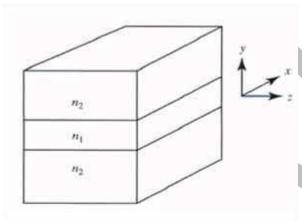
his principle of					
wavelets					
wavelets					
The velocities of ordinary					
and extraordinary rays are					
same along the					
	wave axis	particle axis	optic axis	sound axis	optic axis
The is the					
wave surface for ordinary					
ray	sphere	ellipsoid	triangle	circular	sphere
ray The is the					
wave surface for					
extraordinary ray	sphere	ellipsoid	triangle	circular	ellipsoid
The ordinary wave surface					
lies with in the					
extraordinary wave					
surface and the crystal is					
known as					
crystal	negative	positive	quartz	calcite	negative
crystal are			tourmalin		
known as positive crystal	quartz	calcite	e	calcium	quartz
The direction of the line	quality	culotte		culoium	quarte
joining the two points is					
5 C I	wave axis	particle axis	optic axis	sound axis	optic axis
the of the		puriore units		sound unio	optio unio
extraordinary ray through					
a uniaxial crystal depends					
upon the direction of the					
ray	velocity	time	speed	distance	velocity
The refractive index of	velocity		speed		velocity
extraordinary ray is known	refractive	angle of	angle of	refractive	refractive
as principle of	index	vibration	refraction	media	index
as principle of	muex	vioration	renaction	meula	IIIUEX

The plane of vibration					
inclined at an angle of					
to the optic axis, is					
incident on a quater wave	45°	90°	75°	180°	45°
The ordinary and					
extraordinary rays have a					
path difference of					
after passing					
through the crystal	$\lambda/2$	λ/4	λ	0	$\lambda/2$
A half wave plate rotates					
the azimuth of a beam of					
plane polarized light by					
	45°	90°	75°	180°	90°
The ordinary and					
extraordinary rays travel					
with different velocities					
along the same direction					
inside the	crystal	media	glass	compensator	compensator
Polaroids are widely used					
as polarizing	windows	sun glasses	gems	crystal	sunglasses

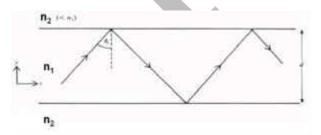
Exatle | Dirighter | Dirighter Exatle | Dirighter | Dirighter Exatle | Dirighter | Dirighter Exatlement of be University| [Tetableted University] [Tetableted University]

BATCH-2017-2020

<u>UNIT-V</u>


UNIT: V

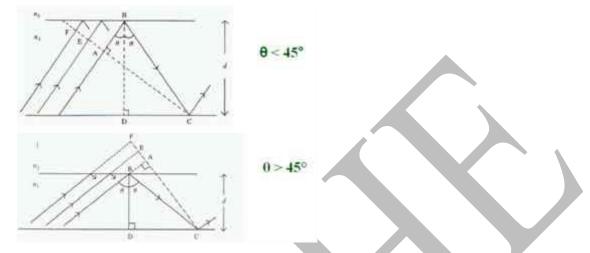
SYLLABUS


Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. **Optical Fibres:-** Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).

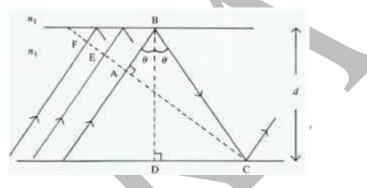
PLANER DIELECTRIC WAVE GUIDE :

COURSE CODE: 17PHU303

Planar (slab) waveguides are the basis of waveguides used in integrated optoelectronics. The same mathematical ideas can be applied (with minor modifications) to circular waveguides. The waveguide consists of a semi-infinite slab of dielectric materials with thickness d and refractive index n1 (the core) that is sandwiched between two regions (the cladding) both of refractive index n2, and where n1>n2.


A beam propagating down a waveguide within the core layer

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC PhysicsCOURSE NAME: ELECTROMAGNETIC THEORYCOURSE CODE: 17PHU303UNIT: VBATCH-2017-2020


A ray of light may propagate down the core provided that total internal reflection occurs at the core/cladding interface.

this requires that: 90 deg> θ_{I} > θ_{c}

Where θ_{i} is the internal ray angle (from now on written as θ)

In fact there are 'infinite" number of rays, all slightly displaced from each other, also propagating down the guide. The dotted line that is perpendicular to the wave lines is the wave front of the propagating beam. The rays represent lines drawn normally to the plane wave fronts.

The wave front FC intersects tow the upwardly traveling portions of the same ray at points A and C. Therefore the phase at C and A must be the same or differ by a multiple of 2π .

Otherwise there would be destructive interference between out-of-phase waves and the light will not propagate. It also requires very specific angles θ above the critical angle. Consider the phase difference between A and C.

There are two factors -the path length of AB + BC -the phase change due to reflection at B and C. We write the phase change resulting from reflection simply as $\delta(\theta)$. For perpendicular radiation $\varphi(\theta)$ is 2 ψ , for parallel radiation $\varphi(\theta) = 2 \delta$. The total phase change is equivalent to:

$$(AB + BC) \frac{2\pi n 1}{\lambda 0} - 2\varphi(\theta)$$

CLASS: II BSC Physics COURSE CODE: 17PHU303 COURSE NAME: ELECTROMAGNETIC THEORY UNIT: V BATCH-2017-2020

Where $\lambda 0$ is the wavelength of light in the medium. To determine the path of the light from a to b to c using trigonometry: AB = BC cos 20 Thus AB + BC = BC (1 + cos 20) Since $\cos 2\theta = 2 \cos^2 \theta - 1$ $AB + BC = 2 BC \cos^2 \theta$ that is the thickness of the slab So that $AB + BC = 2d \cos \theta$ The thickness of the slab determines the number of modes or angles that light will propagate at. In order for the mode to propagate the total phase change must be a multiple of 2π : $\frac{4\pi n 1 d \cos \theta}{\lambda 0} - 2\phi(\theta) = 2m\pi$

Where m is an integer, S $_0$ for each value of m there will be an angle θ m that satisfies the equation.

Each value of θ m (those > θ c) has a distinct distribution of electric field across the guide. This distribution is known as a mode. Depending on the mode there may a distribution that is centered in the core or may have 2 spots, 4 spots etc when view in cross section.

When $:\theta_m$ is = θc the mode is at cut-off

If $\theta_m < \theta c$: the mode is below cut off resulting in rapid attenuation and light will not be propagated.

If $\theta_m > \theta_c$: the mode is above cut-off which can propagate.

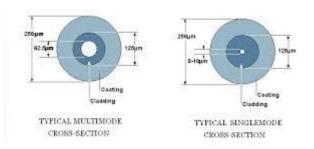
SINGLE AND MULTI MODE FIBRE :

Fibre Optics is sending signals down hair-thin strands of glass or plastic fibre. The light is "guided" down the center of the fibre called the "core". The core is surrounded by a optical material called the "cladding" that traps the light in the core using an optical technique called "total internal reflection."

The core and cladding are usually made of ultra-pure glass. The fibre is coated with a protective plastic covering called the "primary buffer coating" that protects it from moisture and other damage. More protection is provided by the "cable" which has the fibres and strength members inside an outer covering called a "jacket".

Multicom's Fibre Optic Product Line and services also includes stocking and same day shipment of a large quantity and variety of custom-cutfibre optic cable (including loose tube, ADSS, Armored, etc), Corning fibre optics-based products and a wide selection of fibre.

opticTransmitters, EDFAs, Receivers, Nodes, accessories, splitters, jumpers, pigtails, and media converters designed to meet the demanding requirements of data, video, and voice networks.



COURSE NAME: ELECTROMAGNETIC THEORY

CLASS: II BSC Physics COURSE CODE: 17PHU303

UNIT: V

BATCH-2017-2020

Single Mode Fibre Optic Cable :

Single Mode fibre optic cable has a small diametral core that allows only one mode of light to propagate. Because of this, the number of light reflections created as the light passes through the core decreases, lowering attenuation and creating the ability for the signal to travel further. This application is typically used in long distance, higher bandwidth runs by Telcos, CATV companies, and Colleges and Universities.

Left: Single Mode fibre is usually 9/125 in construction. This means that the core to cladding diameter ratio is 9 microns to 125 microns.

Multimode Fibre Optic Cable :

Multimode fibre optic cable has a large diametral core that allows multiple modes of light to propagate. Because of this, the number of light reflections created as the light passes through the core increases, creating the ability for more data to pass through at a given time. Because of the high dispersion and attenuation rate with this type of fibre, the quality of the signal is reduced over long distances. This application is typically used for short distance, data and audio/video applications in LANs. RF broadband signals, such as what cable companies commonly use, cannot be transmitted over multimode fibre.

Above: Multimode fiber is usually 50/125 and 62.5/125 in construction. This means that the core to cladding diameter ratio is 50 microns to 125 microns and 62.5 microns to 125 microns. What's Happening Inside The Multimode Fibre Step-Index Multimode Fibre.

Due to its large core, some of the light rays that make up the digital pulse may travel a direct route, whereas others zigzag as they bounce off the cladding. These alternate paths cause the different groups of light rays, referred to as modes, to arrive separately at the receiving point. The pulse, an aggregate of different modes, begins to spread out, losing its well-defined shape. The need to leave spacing between pulses to prevent overlapping limits the amount of information that can be sent. This type of fibre is best suited for transmission over short distances.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC Physics
 COURSE NAME: ELECTROMAGNETIC THEORY

 OURSE CODE: 17PHU303
 UNIT: V

 BATCH-2017-2020

Single-mode fiber
Multi-mode fiber

NUMERICAL APERTURE :

Numerical Aperture (also termed Object-Side Aperture) is a value (often symbolized by the abbreviation NA) originally defined by Abbe for microscope objectives and condensers. It is given by the simple expression:

Numerical Aperture (NA)= $n \times sin(\mu)$ or $n \times sin(\alpha)$ Numerical Aperture (NA) μ or α

Note: Many authors use the variable μ to designate the one-half angular aperture while others employ the more common term α , and in some instances, θ .

In the numerical aperture equation,n represents the refractive index of the medium between the objective front lens and the specimen, and μ or α is the one-half angular aperture of the objective. The numerical aperture of a microscope objective is a measure of its ability to gather light and resolve fine specimen detail at a fixed object distance. Image-forming light waves pass through the specimen and enter the objective in an inverted cone as illustrated in Figure 1 (above). A longitudinal slice of this cone of light reveals the angular aperture, a value that is determined by the focal length of the objective.

Numerical aperture is a measure of the highly diffracted light rays captured by the objective. In practice, it is difficult to achieve numerical aperture values above 0.95 with dry objectives. Figure 1 illustrates a series of light cones derived from objectives of varying focal length and numerical aperture. As the light cones grow larger, the angular aperture (α) increases from 7° to 60°, with a resulting increase in the numerical aperture from 0.12 to 0.87, nearing the limit when air is utilized as the imaging medium. Higher numerical apertures can be obtained by increasing the imaging medium refractive index (n) between the specimen and the objective front lens. Microscope objectives are now available that allow imaging in alternative media such as water (refractive index = 1.33), glycerin (refractive index = 1.47), and immersion oil (refractive index = 1.51). The numerical aperture of an objective is also dependent, to a certain degree, upon the amount of correction for optical aberration.

CONDITION OF CONTINUITY AT INTERFACE :

Maxwell's equations describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields E, D, B and H are not differentiable. In other words, the medium must be continuous.

On the interface of two different media with different values for electrical permittivity and magnetic permeability, that condition does not apply. However the interface conditions for the electromagnetic field vectors can be derived from the integral forms of Maxwell's equations.

PHASE SHIFT ON TOTAL REFLECTION :

The absolute, average, and differential phase shifts that p- and s-polarized light experience in total internal reflection (TIR) at the planar interface between two transparent media are considered as functions of the angle of incidence φ . Special angles at which quarter-wave phase shifts are achieved are determined as functions of the relative refractive index N. When the average phase shift equals $\pi/2$, the differential reflection phase shift Δ is maximum, and the reflection Jones matrix assumes a simple form. For N> $\sqrt{3}$, the average and differential phase shifts are equal (hence $\delta p=3\delta s$) at a certain angle φ that is determined as a function of N. All phase shifts rise with infinite slope at the critical angle. The limiting slope of the Δ -versus- φ curve at grazing incidence ($\partial \Delta/\partial \varphi$) $\varphi=90^\circ=-(2/N)(N2-1)1/2=-2\cos\varphi c$, where φc is the critical angle and ($\partial 2\Delta/\partial \varphi 2$) $\varphi=90^\circ=0$. Therefore Δ is proportional to the grazing incidence angle $\theta=90^\circ-\varphi$ (for small θ) with a slope that depends onN. The largest separation between the angle of maximum Δ and the critical angle is 9.88° and occurs when N=1.55377. Finally, several techniques are presented for determining the relative refractive index N by using TIR ellipsometry.

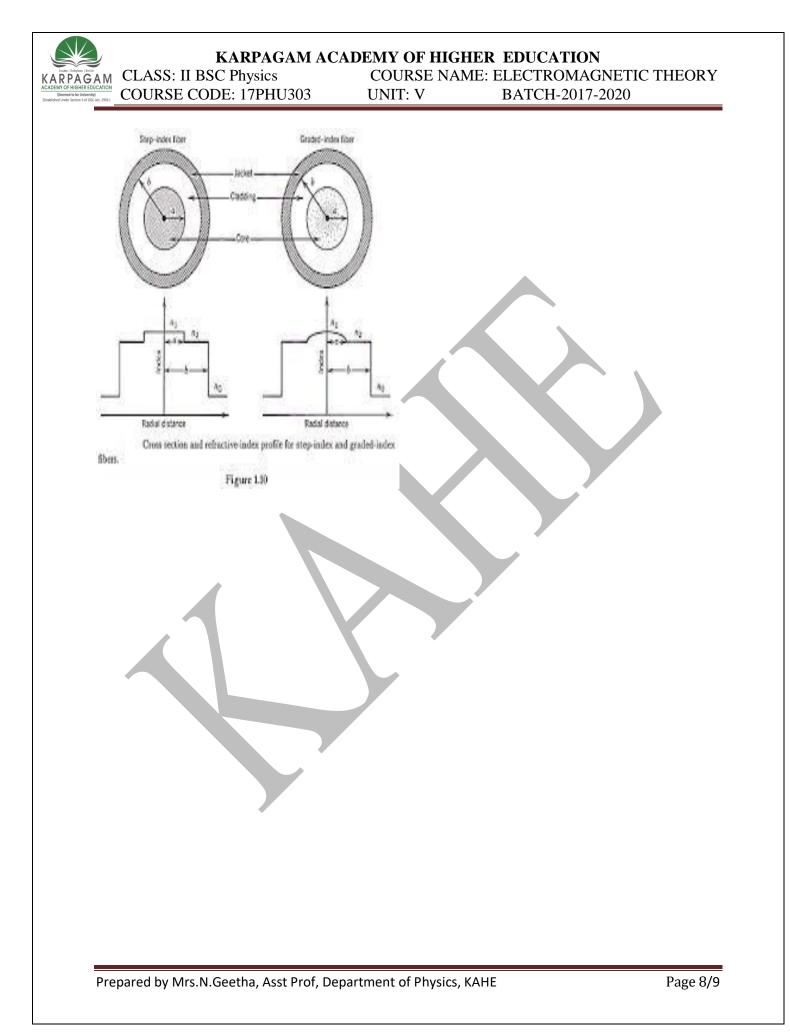
PLANER OPTICAL WAVE GUIDE :

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fibre and rectangular waveguides.

Optical waveguides are used as components in integrated optical circuits or as the transmission medium in local and long haul optical communication systems.

Optical waveguides can be classified according to their geometry (planar, strip, or fibre waveguides), mode structure (single-mode, multi-mode), refractive index distribution (step or gradient index) and material (glass, polymer, semiconductor).

STEP AND GRANDED INDICES FIBRE :


n fibre optics, a graded index is an optical fibre whose core has a refractive index that decreases with increasing radial distance from the optical axis of the fibre.

Because parts of the core closer to the fibre axis have a higher refractive index than the parts near the cladding, light rays follow sinusoidal paths down the fibre. The most common refractive index profile for a graded-index fiber is very nearly parabolic. The parabolic profile results in continual refocusing of the rays in the core, and minimizes modal dispersion.

Multi-mode optical fibre can be built with either graded index or step index. The advantage of the multi-mode graded index compared to the multi-mode step index is the considerable decrease in modal dispersion. Modal dispersion can be further decreased by selecting a smaller core size (less than $5-10\mu m$) and forming a single mode step index fibre.

An optical fibre, a step-index profile is a refractive index profile characterized by a uniform refractive index within the core and a sharp decrease in refractive index at the core-cladding interface so that the cladding is of a lower refractive index. The step-index profile corresponds to a power-law index profile with the profile parameter approaching infinity. The step-index profile is used in most single-mode fibres and some multimode fibres.

A step-index fibre is characterized by the core and cladding refractive indices n1 and n2 and the core and cladding radii a and b. Examples of standard core and cladding diameters 2a/2b are 8/125, 50/125, 62.5/125, 85/125, or 100/140 (units of μ m). Step-index optical fibre is generally made by doping high-purity fused silica glass (SiO2) with different concentrations of materials like titanium, germanium, or boron.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC Physics COURSE CODE: 17PHU303

COURSE NAME: ELECTROMAGNETIC THEORY UNIT: V BATCH-2017-2020

Possible Question:

8 MARK

- 1. Write a note on (i)Numerical Aperture (ii)Step and Graded Indices.
- 2. Write a note on Single and Multiple Mode Fibres.
- 3. Phase and group velocity of guided waves.
- 4. Field energy and Power transmission.
- **5.** Condition of continuity at interface

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF PHYSICS

UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

ELECTROMAGNETIC THEORY

QUESTIONS	OPTION1	OPTION2	OPTION3	OPTION4	ANSWER
The principle of fibre is same					
as that of	light	waves	particle	sound	light
Snells law states that refraction cannot take place when angle of incidence is not	large	small	same	unity	large
The core fibre is typically made of doped with impurities	impuriti es	silica	glass	copper	silica

	1				
The which surrounds the fibre core is made from pure silica and has lower refractive index than core	cladding	gratting	prism	silica	cladding
The first type of fibre optics put to use was called	step index fibre	gradded index fibre	bending	core	step index fibre
The change in index also has the effect of the light back towards the centre of the core	bending	tagging	covarien t	invareint	bending
The property of rotating the plane of vibration by certain crystals is known as	wave axis	particle axis	optic axis	optical activity	optical activity
The beams are treated with a quarter wave plate and a nicol prism, both are found to be polarized	ellipitica lly	circurlar ly	plane	optically	circurlarly

50-200	20-50	50-200	20-50	
μm	μm	cm	cm	50-200 µm
				•
helical	sperical	circular	ellipsoid	helical
neneur	sperieur	eneului	empsoid	heneur
		1 .1 .1		
-	4.01.0	U		h a la anom
m	telegram	am	nce	hologram
MUE	VUE	OUE	OWE	OHF
		-		UIII
				microwave
vc	VIOICE	Icu	wave	Interowave
single	double	multi	tetra	single
commun	transmis	modulati	propagat	
ication	sion	on	ion	communication
	helical hologra m MUF microwa ve single	μm μm helical sperical hologra m telegram MUF VHF microwa ultra- ve violet single double	μmcmhelicalspericalcircularhelicalspericalcircularhologra mtelegrambibilogr amMUFVHFOHFmicrowa voultra- violetinfra- redsingledoublemultisingletransmismodulati	μmcmcmhelicalspericalcircularellipsoidhologra mtelegrambibilogr aminterfere nceMUFVHFOHFOWFmicrowa voultra- violetinfra- radio- wavesingledoublemultitetrasingletransmismodulatipropagat

The source can be a laser	semicon ductor	conduct or	signal	receiver	semiconductor
	uuctor	01	Signai	ICCCIVCI	senneonductor
The fibre optical system is widely used in services	defence	compute r	signal	none	defence
The loss of optical fibre is measured in terms of the	decibel	ampere	hertz	intensity	decibel
is used as a joint in connecting 2 fibres	fiber slices	fiber splices	conncet ors	coupler	fibre splices
is a passive devices	optical fiber coupler	fibre splices	connect ors	jointer	optical fiber coupler
Fiber connectors are joints	removab le	fixed	connecti ng	jointer	removable
The loss of in a fibre occurs because of	light	sound	energy	particle	light
of light in a fibre is also wavelength dependent	scatterin g	dispersi on	attenuati on	absorbti on	scattering

1	1	1	1	
one	double	multi	none	one
light	sound	particle	wave	light
microwa ve	microbe nd	nanoben d	milliben d	microbend
splices	slices	couplers	fibres	splices
depende nt	indepen dent	greater	smaller	dependent
fourth	third	second	zeroth	fourth
laser	optics	fiber	satellite	laser
	light microwa ve splices depende nt fourth	light sound microwa microbe ve nd splices slices depende indepen nt dent	light sound particle microwa microbe nanoben ve slices slices couplers depende indepen nt greater	light sound particle wave microwa microbe nanoben d ve nd d splices slices couplers fibres depende indepen greater smaller fourth third second zeroth

The scattered wavefront are	spherica			ellpticall	
	1	circular	plane	y y	spherical
	1	circulai	plane	У	spherical
When a phottograph is illuminated by laser light the	construc	reconstr		covarien	
object is	ted	ucted	varient	t	reconstructed
The photographic record is called	hologra m	intrefere nce pattern	telegram	wavefro nt	hologram
Light travels in aline	straight	brnd	loop	ninety	straight
Total internal reflection is the theory for	optical fiber coupler	optical fibre	hologra m	silica	optical fibre
Optical fibre is made of	glass	mica	silica	iron	glass
Only fundamental mode is used to transmit in fibre	energy	particle	quantas	packets	energy
The size of the step index fibre are µm	125	25	500	350	125
Marginal ray travels more distance than ray	axial	coaxial	paraboli c	heleical	axial

The refractive index of fibre	increase	decrease	remains		
for parabolic	S	S	constant	zero	decreases

Reg No.....

(17PHU303)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE-21

(Under Section3 of UGC Act 1956)

DEPARTMENT OF PHYSICS

II B.Sc PHYSICS

Third Semester

I-Internal Examination

Electromagentic Theory

Time:2 hours

Maximum:50 marks

PART-A (20x1=20Marks)

Answer all questions

- 1. The time dependent electromagnetic field equation are called
 - a. Maxwell's equationb. Ampere's lawc. Faraday's lawd. Gauss law
- *div of curl* of any vector is

 Zero b. infinity c. one d. J
- The addition of ______ to Ampere's law results in the unification of electric and magnetic phenomena.
 a. displacement current b. current density
 c. scalar potential
 d. vector potential
- 4. Gauss law for magnetic field yields, div $\mathbf{B} =$ a. 0 b. 1 c. ρ d. σ
- 5. The unit of electric field intensity is a.Volts/m b. amp/m c. weber/m d. volts/m²
- 6. The equation of poynting vector is a. S=ExH b. S=E/H c. S=E+H d. S=curl (ExH)

7. The unit watt/ m^2 is a unit of a. Gauss law b. Ampere's circuital law c. Faraday's law d. Poynting vector 8. $div \mathbf{B} = 0$, the field of vector B is always a. scleronomic b. rheonomic c. unilateral d. solenoidal 9. The field vectors are invariant to a. gauge transformations b. Hertz potential c.Maxwell's equation d. ampere's law 10. Gauge functions are solutions of wave equations. a. homogenous b. non homogenous c. Independent d. dependent 11. Electomagnetic waves are in nature. a. transverse b. longitudinal c. circular d.spherical 12. The vector E and H are mutually a. perpendicular b. parallel c. variant d. invariant 13. The electromagnetic energy is transmitted in the direction of the wave propagation at speed of a. light b. time c. position d. momentum 14. The unit of B is d. Web/ m^2 b. Web c. Web/m a. Tesla 15. The unit of capacitance is . a.farad b. coulomb c.volt d.henry 16. Gaussian surface is a a. Real surface b.open surface c.imaginary surface d. smooth surface 17. Which of the following is a ferromagnetic material a. Tungsten b. Aluminium c.copper d.Nickel

- 18. The symbol of relative permitivity of a medium is_____
 - a. ϵ_r b. ϵ_0 c. $\epsilon_r \epsilon_0$ d. μ
- 19. The path followed by a unit positive charge in an electric field called as
 - a.The line of force b. coulombs forces
 - c. Electric force d. Electromagnetic field
- 20. The point in a magnet where the intensity of magnetic lines of force is maximum
 - a.Magnetic pole b.South pole c.North pole d.Unit pole

PART-B (3x2=6 Marks) Answer all the questions

- 21. What is Displacement current?
- 22. State poynting vector.
- 23. When E.M.W. propagate in free space?

PART-C (3x8=24 Marks)

Answer all the questions

24. a. Obtain maxwells's equation of electromagnetic field and discuss their empirical basis.

OR

b. Obtain Poynting theorem for the conservation of energy in an electromagnetic field.

- 25. a. Discuss in detail about coulomb gauge.
 - OR

- b. Establish the non uniqueness of electromagnetic potentials and concept of gauge.
- 26. a. Making use of maxwell's field equations derive the equation for plane electromagnetic waves in free space. OR

b. Show that inside the conducting medium the wave is damped and obtain an expression for the skin depth.

Reg. No. : ------

[17PHU303]

KARPAGAM ACADEMY OF HIGHER EDUCATION,

COIMBATORE – 641 021

(Under Section 3 of UGC Act 1956)

DEPARTMENT OF PHYSICS

II B.Sc PHYSICS

(For the candidates admitted from 2017 onwards)

Third Semester II INTERNAL EXAMINATION, August, 2018 ELECTROMAGNETIC THEORY

Time:2 hours

Maximum:50 marks

PART-A(20x1=20Marks)

Answer all questions

- 1. The velocity of electromagnetic waves in free space is _____. a)30 X 10⁸ m/s b)356 X 10⁸ m/s c)330 m/s d)3 X 10⁸ m/s

- 4. The reflection of EMW by metallic boundaries is subjected to _____

a) wave guides b) waves c) unilateral d) None of these

- 5. The wave gets attenuated with ______a) penetration b) transmission c) absorption d) refraction
- 6. Dielectric polarization is proportional to ______.
 a) applied electric field b) applied magnetic field
 c) applied electromagnetic field d) applied electrostatic field
- 7. When electromagnetic waves crosses a boundary surface, then the normal component of the electric displacement is----- by an amount equal to the free density of charge.a) equals b) continuous c) proportional d) discontinuous
- 8. In plane electromagnetic wave, the wave vectors D, H and K

are _____

a) parallel b) rotational c) irrotational d) orthogonal

- 10. Electric and magnetic phenomena are asymmetry arises due to the non-existense of ______.a)Dipoles b) electric field c) magnetic field d)monopoles
- 11. The unit watt/m² is a unit of
 a) Gauss law b)Ampere's circuital law c)Faraday's law
 d) Poynting vector
- 12. The unit of capacitance is_____. a) farad b)coulomb c)volt d)Henry
- 13. When an _____ wave is traveling through a space there is an exact balance between the electric and magnetic fields.

a) convergent b)divergent c) electric d) magnetic

- 14. The frequency of the waves remains unchanged by _____. a)Polarization b)diffraction c)Absorption d)Refraction
- 15. Dynamic properties are concerned with _____. a)Position b)Time c)Momentum d)Intensity
- 16. In case of reflection tha angle of reflection is equal to angle of _____

a) incidence b) diffraction c) absorption d) refraction

- 17. The ratio of refractive index of two media is_____
 a) n1 sinΘ i=n2 sin ΘT b) sin i/sin T c) n2/n1 d) refraction
- 18. The transmitted wave tt incident on th boundary between two dielectrics are called ______ formulae a) snells b) Lens c) fresnel d) fraunhofer
- 20. ______is some times called as the polarization angle

a) Brewster angle b) right angle c) snells law d) incidence angle

PART-B (2x3=6 Marks)

Answer all the questions

- 21. Define the law of reflection.
- 22. State Brewster's law.
- 23. State snells law.

PART-C (3x8=24 Marks) Answer all the questions

24. a. Making use of the Maxwell's field equation derives the equation for plane E.M.waves in ionosphere.

OR

b. Discuss the propagation of electromagnetic waves in ionized gases.

25. a. Discuss about the reflection and refraction of EMW.

OR

b. Discuss about the reflection from a metallic surface

26. a . Obtain the laws of reflection and refraction and write about the dynamic properties.

OR

b. Discuss about the fresnel formulae for perpendicular polarization condition.