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Scope: Classical mechanics was the first branch of Physics to be discovered, and is the foundation upon 
which all other branches of Physics are built. Moreover, classical mechanics has many important 

applications in other areas of science, such as Astronomy (e.g., celestial mechanics), Chemistry (e.g., the 

dynamics of molecular collisions), Geology (e.g., the propagation of seismic waves, generated by 
earthquakes, through the Earth's crust), and Engineering (e.g., the equilibrium and stability of structures). 

Classical mechanics is also of great significance outside the realm of science. 

 

 
Objective: The emphasis of the course is on applications in solving problems of interest to physicists. 

Students are to be examined on the basis of problems, seen and unseen. 
 

UNIT I 

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application to the motion of 
a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- 

gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates 

and velocities, Hamilton’s principle, Lagrangian and the Euler-Lagrange equations, one-dimensional 
examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling 

body in uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta 

& Hamiltonian. Hamilton's equations of motion. 

 

UNIT II 

Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for Simple 

Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy.  

 

UNIT III 

Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion 

of the potential energy around a minimum, small amplitude oscillations about the minimum, normal 
modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical 

springs.  

 

UNIT IV 

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. 

Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -
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dilation, length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-
velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum 

relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-

momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. 

 

UNIT V 

Fluid Dynamics: Density  and pressure P in a fluid, an element of fluid and its velocity, 

continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille’s 
equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of 

turbulence, Reynolds number.  

 

Suggested Readings 
1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002,Pearson Education.  

2. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.  

3. Classical Electrodynamics, J.D. Jackson, 3rd Edn., 1998, Wiley.  
4. The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Elsevier.  

5. Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education.  

6. Classical Mechanics, P.S. Joag, N.C. Rana, 1st Edn., McGraw Hall.  
7. Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.  

8. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.  

9. Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press  

 



Lecture Plan 2016 – 2019 
Batch 

 

____________________________________________________________________________________ 

Dr. B. Janarthanan, Associate Professor, KAHE, Coimbatore-21 Page 1/3 

Department of Physics  

 

    KARPAGAM ACADEMY OF HIGHER EDUCATION  
(Deemed to be University)  

(Established Under Section 3 of UGC Act 1956)  

Coimbatore - 641021.  

(For the candidates admitted from 2016 onwards) 

          DEPARTMENT OF PHYSICS 
_________________________________________________________________________________ 

SUBJECT: Classical Mechanics 

SEMESTER: III 
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S.No Lecture  

Duration 

(Hr) 

Topics to be covered Support 

Materials 

Unit - 1 

1. 1 Hr Review of Newtonian Mechanics T1(26-27) 

2.  1 Hr Application to the motion of charged partical in electric and 

Magnetic field, Charged particle in uniform electric field, 

magnetic field 

T1(47-48), T1(49-

50), T1(50-51) 

3. 1 Hr Gyroradius and gyrofrequency, motion of charged particle in 

crossed electric and magnetic field 

T1(51), T1(53-54) 

4. 1 Hr Generalized coordinates and velocities, Hamilton’s principle T1(17), T1(18), 

T1(21) 

5.  1 Hr Lagrangiana and Euler-lagrangian equation T1(39-40) 

6. 1 Hr One dimensional simple harmonic oscillator, falling body in 

uniform gravity 

T1(125-126), 

T1(137-138) 

7.  1 Hr Application to coupled oscillator, canonical momenta and 

Hamiltonian 

T1(377-378), 

T1(379) 

8.  1 Hr Hamilton’s equation of motion T1(334-335) 

9.  1 Hr Revision  

Total number of Hours planned for unit-1 9 Hrs 

Unit - 2 

1.  1 Hr Hamiltonian for a Harmonic oscillator T1(123-126) 

2. 1Hr Continuation of Hamiltonain for a harmonic oscillator T1(123-126) 

3. 1 Hr Solution of Hamilton’s equation for simple harmonic 

oscillator 

T1(126-128) 

4. 1 Hr Contination of Hamilton’s equation for simple harmonid 

oscillator 

T1(126-128) 

5. 1 Hr Particle in a central force field T1(133-134) 

6. 1 Hr Conservation of angular momentum T1(3-4) 

7. 1 Hr Conservation of Energy T1(4-5) 

8.  1 Hr Revision  
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Total number of Hours planned for unit - 2 8 Hrs 

Unit – 3 

1. 1 Hr Minima of potential energy and and points of stable 

equilibrium 

T1(243-244) 

2. 1 Hr Expansion of the potential energy around a minimum T1(244-245) 

3. 1 Hr Small amplitude oscillations about the minimum T1(246-248) 

4. 1 Hr Small amplitude oscillations about the minimum - 

Continuation 

T1(246-248) 

5. 1 Hr Normal modes of oscillations T1(249-250) 

6.  1 Hr Examples ofr N identical masses connected in a linear 

fashion to (N-1) identical springs 

T1(251-254) 

7.  1 Hr Contination of normal modes of oscillation T1(251-254) 

8. 1 Hr N-identical masses to (N-1) identical springs - Derivation T1(261-263) 

9.  1Hr Revision  

Total number of hours planned for unit - 3 9 Hrs 

Unit - 4 

1. 1 Hr Postulates of special theory of relativity, Lorentz 

transformation 

T1(277), T1(279-

281) 

2. 1 Hr Minkowski space, The invariant interval, light cone and 

world lines 

T1(281-282), 

T1(283) 

3. 1 Hr Space time diagram, Time dilation T1(284-285) 

4. 1 Hr Length contraction, Twin paradox T1(286-287) 

5. 1 Hr Four vectors-space-like, time-like and light-like T1(288-290) 

6. 1 Hr Four velocity and acceleration, Metric and alternating tensors T1(290-291), 

T1(291-293) 

7. 1 Hr Four momentum and energy-momentum relation T1(298-299) 

8. 1 Hr Doppler Effect from a four-vector prospective, concept of 

four force, Conservation of four momentum 

T1(301-302), 

T1(303), T1(304) 

9. 1 Hr Relativistic kinematics, two body decay T1(306-307) 

10. 1 Hr Revision  

Total number of hours planned for unit - 4 10 Hrs 

Unit – 5 

1. 1 Hr Density and pressure P in a fluid T1(323) 

2. 1 Hr An element of fluid and its velolcity T1(324-325) 

3. 1 Hr Contuinuty equation and mass conservation T1(326-327) 

4. 1 Hr Stream-lined motion T1(327-328) 

5. 1 Hr Laminar flow T1(329) 

6. 1 Hr Poiseuille’s equation for flow of a liquid through a pipe T1(329-330) 

7. 1 Hr Navier’s – Stokes equation T1(330-331) 

8. 1 Hr Qualitativ description of turbulence T1(331-332) 

9. 1 Hr Reynolds number, Revision T1(333) 

10. 1 Hr Previuous year question paper discussion  

11. 1 Hr Previous year question paper discussion  



Lecture Plan 2016 – 2019 
Batch 

 

____________________________________________________________________________________ 

Dr. B. Janarthanan, Associate Professor, KAHE, Coimbatore-21 Page 3/3 

Department of Physics  

 

12. 1 Hr Previous year question paper discussion  

Total number of hours planned for Unit - 5 12 Hrs 

 

 

 

 

Textbooks 

 

T1- Classical Mechanics, H. Goldstein, C.P. Poole and J. L. Safko, 3rd Edition, 2002. Pearson Education 

 

Reference Book 

 

R1 – Classical Mechanics, R. S. Joag, N. C. Rana, Ist Edition, McGraw Hill  
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UNIT I 

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application to the motion of a 

charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- 

gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and 

velocities, Hamilton’s principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples 

of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling body in 

uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta & 

Hamiltonian. Hamilton's equations of motion. 
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Review of Newtonian Mechanics 

Newton's first law of motion 

Newton's first law was actually discovered by Galileo and perfected by Descartes (who 

added the crucial proviso ``in a straight line''). This law states that if the motion of a given body is 

not disturbed by external influences then that body moves with constant velocity. In other words, 

the displacement  of the body as a function of time  can be written  

 

 

where  and  are constant vectors. As illustrated in Figure, the body's trajectory is a straight-

line which passes through point  at time  and runs parallel to . In the special case in 

which  the body simply remains at rest. 

 

 

 

Figure. Body’s trajectory 

Nowadays, Newton's first law strikes us as almost a statement of the obvious. However, in 

Galileo's time this was far from being the case. From the time of the ancient Greeks, 

philosophers--observing that objects set into motion on the Earth's surface eventually come to 
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rest--had concluded that the natural state of motion of objects was that they should remain at rest. 

Hence, they reasoned, any object which moves does so under the influence of an external 

influence, or force, exerted on it by some other object. It took the genius of Galileo to realize that 

an object set into motion on the Earth's surface eventually comes to rest under the influence of 

frictional forces, and that if these forces could somehow be abstracted from the motion then it 

would continue forever. 

Newton's second law of motion 

Newton used the word ``motion'' to mean what we nowadays call momentum. The 

momentum  of a body is simply defined as the product of its mass  and its velocity : i.e.,  

 

 

Newton's second law of motion is summed up in the equation  

 

 

where the vector  represents the net influence, or force, exerted on the object, whose motion is 

under investigation, by other objects. For the case of a object with constant mass, the above law 

reduces to its more conventional form  

  
In other words, the net force exerted on a given object by other objects equals the product 

of that object's mass and its acceleration. Of course, this law is entirely devoid of content unless 

we have some independent means of quantifying the forces exerted between different objects. 

Newton's third law of motion 

Suppose, for the sake of argument, that there are only two bodies in the Universe. Let us 

label these bodies  and . Suppose that body  exerts a force  on body . According to to 

Newton's third law of motion, body  must exert an equal and opposite force  on 
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body . See Fig. 22. Thus, if we label  the ``action'' then, in Newton's language,  is the 

equal and opposed ``reaction''. 

Suppose, now, that there are many objects in the Universe (as is, indeed, the case). According to 

Newton's third law, if object  exerts a force  on object  then object  must exert an equal 

and opposite force  on object . It follows that all of the forces acting in the 

Universe can ultimately be grouped into equal and opposite action-reaction pairs. Note, 

incidentally, that an action and its associated reaction always act on different bodies. 

 

Figure 23: Newton's third law 

Why do we need Newton's third law? Actually, it is almost a matter of common sense. Suppose 

that bodies  and  constitute an isolated system. If  then this system exerts a non-

zero net force  on itself, without the aid of any external agency. It will, therefore, 

accelerate forever under its own steam. We know, from experience, that this sort of behaviour 

does not occur in real life. For instance, I cannot grab hold of my shoelaces and, thereby, pick 

myself up off the ground. In other words, I cannot self-generate a force which will spontaneously 

lift me into the air: I need to exert forces on other objects around me in order to achieve this. 

Thus, Newton's third law essentially acts as a guarantee against the absurdity of self-generated 

forces. 

 

 

 

http://farside.ph.utexas.edu/teaching/301/lectures/node45.html#f22
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Application to the motion of a charge particle in external electric and magnetic fields 

Consider a particle of mass  and electric charge  moving in the uniform electric and 

magnetic fields,  and . Suppose that the fields are ``crossed'' (i.e., perpendicular to one 

another), so that . 

The force acting on the particle is given by the familiar Lorentz law:  

 

 

 

where  is the particle's instantaneous velocity. Hence, from Newton's second law, the particle's 

equation of motion can be written  

 

 

 

It turns out that we can eliminate the electric field from the above equation by transforming to a 

different inertial frame. Thus, writing  

 

 

Equation reduces to  

 

 

 

where we have made use of a standard vector identity, as well as the fact that . Hence, 

we conclude that the addition of an electric field perpendicular to a given magnetic field simply 

causes the particle to drift perpendicular to both the electric and magnetic field with the fixed 

velocity  

 

 

 



                                KARPAGAM ACADEMY OF HIGHER EDUCATION                                              

 

                         CLASS: III B.Sc PHYSICS                                 COURSE NAME: Classical Mechanics  

                         COURSE CODE:16PHU504A                            UNIT-1 : Classical Mechanics of Point Particles 

   BATCH: 2016 – 2019 

 

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE  6/19 
 

irrespective of its charge or mass. It follows that the electric field has no effect on the particle's 

motion in a frame of reference which is co-moving with the so-called E-cross-B velocity given 

above. 

Let us suppose that the magnetic field is directed along the -axis. As we have just seen, in 

the  frame, the particle's equation of motion reduces to Equation, which can be written:  

 

 

 

 

 

 

 

 

 

  

 

Here,  

 

 

is the so-called cyclotron frequency. Equations can be integrated to give  

 

 
 

 

 

 
 

 

 

  

 

where we have judiciously chosen the origin of time so as to eliminate any phase offset in the 

arguments of the above trigonometrical functions. According to Equations, in the  frame, 

our charged particle gyrates at the cyclotron frequency in the plane perpendicular to the magnetic 

field with some fixed speed , and drifts parallel to the magnetic field with some fixed 

speed . The fact that the cyclotron frequency is positive for positively charged particles, and 
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negative for negatively charged particles, just means that oppositely charged particles gyrate in 

opposite directions in the plane perpendicular to the magnetic field. 

Equations can be integrated to give  

 

 
 

 

 

 
 

 

 

  

 

where we have judiciously chosen the origin of our coordinate system so as to eliminate any 

constant offsets in the above equations. Here,  

 

 

is called the Larmor radius. Equations are the equations of a spiral of radius , aligned along the 

direction of the magnetic field (i.e., the -direction). 

 

Figure 12: The spiral trajectory of a negatively charged particle in a magnetic field. 

We conclude that the general motion of a charged particle in crossed electric and magnetic field is 

a combination of  drift and spiral motion aligned along the direction of the magnetic field 
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Motion of charged particle in uniform magnetic field 

We know that the magnetic force acting on a charged particle moving in a magnetic field 

is perpendicular to the velocity of the particle and that consequently the work done on the particle 

by the magnetic force is zero. Let us now consider the special case of a positively charged particle 

moving in a uniform magnetic field with the initial velocity vector of the particle perpendicular to 

the field. Let us assume that the direction of the magnetic field is into the page. Figure shows that 

the particle moves in a circle in a plane perpendicular to the magnetic field. 

  

 

The particle moves in this way because the magnetic force FB is at right angles 

to v and B and has a constant magnitude qvB. As the force deflects the particle, the directions 

of v and FB change continuously, as Figure 29.17 shows. Because FB always points toward the 

center of the circle, it changes only the direction of v and not its magnitude. As Figure 29.17 

illustrates, the rotation is counter-clockwise for a positive charge. If q were negative, the rotation 

would be clockwise. We can use Equation 6.1 to equate this magnetic force to the radial force 

required to keep the charge moving in a 
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circle: 

 

That is, the radius of the path is proportional to the linear momentum mv of the particle and 

inversely proportional to the magnitude of the charge on the particle and to the magnitude of the 

magnetic field. The angular speed of the particle is 

  

The period of the motion (the time that the particle takes to complete one revolution) is 

equal to the circumference of the circle divided by the linear speed of the particle:

These results show that the angular speed of the particle and the period of the circular motion do 

not depend on the linear speed of the particle or on the radius of the orbit. The angular speed ω is 

often referred to as the cyclotron frequency because charged particles circulate at this angular 

speed in the type of accelerator called a cyclotron.  

Motion of Charged Particles in a Uniform Electric Field 

When a particle of charge q and mass m is placed in an electric field E, the electric force 

exerted on the charge is qE. If this is the only force exerted on the particle, it must be the net force 

and so must cause the particle to accelerate. In this case, Newton’s second law applied to the 

particle 

gives 
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The acceleration of the particle is 

therefore  

If E is uniform (that is, constant in magnitude and direction), then the acceleration is 

constant. If the particle has a positive charge, then its acceleration is in the direction of the electric 

field. If the particle has a negative charge, then its acceleration is in the direction opposite the 

electric field. 

Generalized Coordinates 

Let the , for , be a set of coordinates which uniquely specifies the 

instantaneous configuration of some dynamical system. Here, it is assumed that each of 

the  can vary independently. The  might be Cartesian coordinates, or polar coordinates, or 

angles, or some mixture of all three types of coordinate, and are, therefore, termed generalized 

coordinates. A dynamical system whose instantaneous configuration is fully specified by 

independent generalized coordinates is said to have  degrees of freedom. For instance, the 

instantaneous position of a particle moving freely in three dimensions is completely specified by 

its three Cartesian coordinates, , , and . Moreover, these coordinates are clearly 

independent of one another. Hence, a dynamical system consisting of a single particle moving 

freely in three dimensions has three degrees of freedom. If there are two freely moving particles 

then the system has six degrees of freedom, and so on. 

Suppose that we have a dynamical system consisting of  particles moving freely in three 

dimensions. This is an  degree of freedom system whose instantaneous configuration 

can be specified by  Cartesian coordinates. Let us denote these coordinates the , 

for . Thus,  are the Cartesian coordinates of the first 
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particle,  the Cartesian coordinates of the second particle, etc. Suppose that the 

instantaneous configuration of the system can also be specified by  generalized coordinates, 

which we shall denote the , for . Thus, the  might be the spherical coordinates of 

the particles. In general, we expect the  to be functions of the . In other words,  

 

 

 

for . Here, for the sake of generality, we have included the possibility that the 

functional relationship between the  and the  might depend on the time, , explicitly. This 

would be the case if the dynamical system were subject to time varying constraints. For instance, 

a system consisting of a particle constrained to move on a surface which is itself moving. Finally, 

by the chain rule, the variation of the  due to a variation of the  (at constant ) is given by  

 

 

 

for . 

 

Euler- Lagrangian equation of motion 

The Cartesian equations of motion of our system take the form  
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for , where  are each equal to the mass of the first 

particle,  are each equal to the mass of the second particle, etc.Furthermore, the 

kinetic energy of the system can be written  

 

 

Now, since , we can write  

 

 

for . Hence, it follows that . 

According to the above equation,  

 

 

where we are treating the  and the  as independent variables. 

Multiplying Equation by , and then differentiating with respect to time, we obtain  

 

 

Now,  

 

 

Furthermore,  
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and  

 

 

 

  

  

 

 

  

  

 

 

 

where use has been made of Equation . Thus, it follows from Equations that  

 

 

Let us take the above equation, multiply by , and then sum over all . We obtain  

 

 

where use has been made of Equations. Thus, it follows from Equation  that  

 

 

Finally, making use of Equation, we get  

 

 

It is helpful to introduce a function , called the Lagrangian, which is defined as the difference 

between the kinetic and potential energies of the dynamical system under investigation:  
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Since the potential energy  is clearly independent of the , it follows from Equation that  

 

 

for . This equation is known as Lagrange's equation. 

Hamilton's Principle 

We can specify the instantaneous configuration of a conservative dynamical system 

with  degrees of freedom in terms of independent generalized coordinates , 

for . 

Let   and  represent the 

kinetic and potential energies of the system, respectively, expressed in terms of these generalized 

coordinates. Here, . The Lagrangian of the system is defined  

 

 

Finally, the  Lagrangian equations of motion of the system take the form  

 

 

for . 

Note that the above equations of motion have exactly the same mathematical form as the Euler-

Lagrange equations. Indeed, it is clear, from Section that the  Lagrangian equations of motion 

can all be derived from a single equation: namely,  
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In other words, the motion of the system in a given time interval is such as to maximize or 

minimize the time integral of the Lagrangian, which is known as the action integral. 

Simple Harmonic Oscillator Equation 

Suppose that a physical system possessing a single degree of freedom--that is, a system whose 

instantaneous state at time  is fully described by a single dependent variable,  --obeys the 

following time evolution equation [cf., Equation (2)], 

 

 

where  is a constant. As we have seen, this differential equation is called the simple 

harmonic oscillator equation, and has the solution 

 

 

where  and  are constants. Moreover, this solution describes a type of oscillation 

characterized by a constant amplitude,  , and a constant angular frequency,  . The phase 

angle,  , determines the times at which the oscillation attains its maximum value. The frequency 

of the oscillation (in hertz) is  , and the period is  . The frequency and 

period of the oscillation are both determined by the constant  , which appears in the simple 

harmonic oscillator equation, whereas the amplitude,  , and phase angle,  , are determined by 

the initial conditions.  In fact,  and  are the two arbitrary constants of integration of the 

second-order ordinary differential equation. Recall, from standard differential equation theory 

(Riley 1974), that the most general solution of an  th-order ordinary differential equation (i.e., 

an equation involving a single independent variable, and a single dependent variable, in which the 

http://farside.ph.utexas.edu/teaching/315/Waves/node3.html#eshm
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highest derivative of the dependent with respect to the independent variable is  th-order, and the 

lowest zeroth-order) involves  arbitrary constants of integration. (Essentially, this is because we 

have to integrate the equation  times with respect to the independent variable to reduce it to 

zeroth-order, and so obtain the solution. Furthermore, each integration introduces an arbitrary 

constant. For example, the integral of  , where  is a known constant, is  , 

where  is an arbitrary constant.) 

Multiplying Equation by  , we obtain 

 

 

However, this can also be written 

 

 

or 

 

 

where 

 

 

According to Equation,  is a conserved quantity. In other words, it does not vary with time. 

This quantity is generally proportional to the overall energy of the system. For 

instance,  would be the energy divided by the mass in the mass-spring system. The 
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quantity  is either zero or positive, because neither of the terms on the right-hand side of 

Equation can be negative. 

Let us search for an equilibrium state. Such a state is characterized by  , so 

that  . It follows from Equation that  , and from Equation that  . We 

conclude that the system can only remain permanently at rest when  . Conversely, the 

system can never permanently come to rest when  , and must, therefore, keep moving for 

ever. Because the equilibrium state is characterized by  , we deduce that  represents a 

kind of ``displacement'' of the system from this state. It is also apparent, from Equation, 

that  attains it maximum value when  . In fact, 

 

 

where  is the amplitude of the oscillation. Likewise,  attains its maximum value, 

 

 

when  . 

The simple harmonic oscillation specified by Equation can also be written in the form 
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where  and  . Here, we have employed the trigonometric 

identity  .Alternatively, Equation can be written 

 

 

where  , and use has been made of the trigonometric 

identity  .  It follows that there are many different ways of representing a 

simple harmonic oscillation, but they all involve linear combinations of sine and cosine functions 

whose arguments take the form  , where  is some constant. However, irrespective of its 

form, a general solution to the simple harmonic oscillator equation must always contain two 

arbitrary constants. For example,  and  in Equation, or  and  in Equation. 

The simple harmonic oscillator equation, is a linear differential equation, which means that 

if  is a solution then so is  , where  is an arbitrary constant. This can be verified by 

multiplying the equation by  , and then making use of the fact 

that  . Linear differential equations have the very important and useful 

property that their solutions are superposable. This means that if  is a solution to Equation , 

so that 

 

 

and  is a different solution, so that 
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then  is also a solution. This can be verified by adding the previous two equations, 

and making use of the fact that  . Furthermore, it can 

be demonstrated that any linear combination of  and  , such as  , 

where  and  are constants, is also a solution. It is very helpful to know this fact. For instance, 

the special solution to the simple harmonic oscillator equation, with the simple initial 

conditions  and  can be shown to be 

 

 

Likewise, the special solution with the simple initial conditions  and  is 

 

 

Thus, because the solutions to the simple harmonic oscillator equation are superposable, the 

solution with the general initial conditions  and  becomes 

 

 

or 

 

 



UNIT - I

QUESTIONS Choice1 Choice2 Choice3 Choice4 ANSWER
 Canonical 
transformations are the 
transformations of

Phase 
space

Hillbert 
space

Minkows
ki space

Space 
phase

Phase 
space

 The Hamilton’s principle 
function is a generating 
function, which give rise 
to canonical 
transformation involving

both 
constant 
moments 
and co-
ordinates

constant 
moments 
only

co-
ordinates 
only

constant 
momenta 
and co-
ordinates

both 
constant 
moments 
and co-
ordinates

 All function whose 
Poisson bracket with the 
Hamiltonian vanishes will 
be

constant of 
motion

constant of 
momentu
m

constant 
of co-
ordinates

all the 
above

constant of 
motion

 Let L and P represent the 
matrices of Lagrange and 
Poisson brackets 
respectively, then LP = 1 LP = -1 LP = -1/2 LP = 1/2 LP = -1
The frequency of 
Harmonic oscillator is 
given by

[1/2p(k/m)5

/2]
[1/2p(k/m)
3/2]

[1/2p(k/m
)1/2] [1/2p(k/m)]

[1/2p(k/m)
1/2]

  The given transformation 
is not canonical when [Q,P] = 1 [Q,P] = -1

[Q,P] = 
1/2 [Q,P] = 0 [Q,P] = 0

  The function  p =1/Q 
and  q = PQ2 is conjugate canonical identical hyrebolic canonical

   In point transformation 
one set of co-ordinates qj 

to a new set Qj can be 
expressed as 

Qj = Qj (qj, 
t)

Qj = -Qj 

(qj, t)
Qj = Pj 

(qj, t)
Qj = -Pj (qj, 
t)

Qj = Qj 

(qj, t)

The problem consists on 
finding the path of a 
charged particle under the 
action if a central force is 

Jacobi 
problem

cononical 
problem   

Kepler 
problem

Poission 
problem

Kepler 
problem

 Hamilton – Jacobi 
method is used to find the 
solution of problem in 

Vibratory 
motion

periodic 
motion

circular 
mation   

all the 
above

periodic 
motion

 Hamilton equation of 
motion is convergent divergent variant invariant invariant
Poisson and Lagrange 
brackets are _______ 
under Canonical 
Transformation convergent divergent invariant variant invariant
Equation of motion in 
Poisson bracket from 
depends on position

momentu
m time all the three

all the 
three

In Kepler problem, the 
path of the particle is circular parabolic elliptical zig-zag elliptical

DEPARTMENT OF PHYSICS
III B.Sc., PHYSICS (2016-2019)

CLASSICAL MECHANICS (16PHU504A)

KARPAGAM ACADEMY OF HIGHER EDUCATION



In Poisson bracket
[X,Y] =  
[Y,X]

[X,Y] = - 
[Y,X]

[X,Y] = 
2[Y,X]

[X,Y] = - 
2[Y,X]

[X,Y] = - 
[Y,X]

In Poisson bracket [X,X] =0 [X,X] =1 [X,X] =2 [X,X] = -2 [X,X] =0

In Poisson bracket

[X,Y+Z] = 
[X,Y] - 
[X,Z]

[X,Y+Z] = 
[X,Y] * 
[X,Z]

[X,Y+Z] 
= [X,Y] + 
[X,Z]

[X,Y+Z] = 
[X,Y] / 
[X,Z]

[X,Y+Z] = 
[X,Y] + 
[X,Z]

In Poisson bracket

[X,YZ] = 
Y[X,Z] * 
[X,Y]Z

[X,YZ] = 
Y[X,Z] - 
[X,Y]Z

[X,YZ] = 
Y[X,Z] / 
[X,Y]Z

[X,YZ] = 
Y[X,Z] + 
[X,Y]Z

[X,YZ] = 
Y[X,Z] + 
[X,Y]Z

In Lagrange bracket
[X,qj]Q,P = - 
[qj,X]Q,P

[X,qj]Q,P =  
[qj,X]Q,P

[X,qj]Q,P 

= 2 
[qj,X]Q,P

2[X,qj]Q,P 

= - 
[qj,X]Q,P

2[X,qj]Q,P 

= - 
[qj,X]Q,P

In of Lagrange bracket
[X,Y]Q,P = -
[X,Y]q,p

[X,Y]Q,P = 
[X,Y]q,p

[X,Y]Q,P 

= 
2[X,Y]q,p

[X,Y]Q,P = -
2[X,Y]q,p

[X,Y]Q,P = 
[X,Y]q,p

In of Lagrange bracket

[X,X]q,p  = 
[X,X]Q,P = 
1

[X,X]q,p  = 
[X,X]Q,P = -
1

[X,X]q,p  

= 
[X,X]Q,P = 
0

[X,X]q,p  = 
[X,X]Q,P = 
1/2

[X,X]q,p  = 
[X,X]Q,P = 
0

Poisson bracket of two 
operator X and Y in 
quantum mechanics is 
given by

[X,Y] = - 
2p/h[XY-
YX]

[X,Y] = - 
2p/h[XY+
YX]

[X,Y] = - 
p/h[XY-
YX]

[X,Y] =  
2p/h[XY-
YX]

[X,Y] = - 
2p/h[XY-
YX]

If the Lagrangian of the 
system does not contain a 
paricular co-ordinate q, 
then

cyclic co-
ordinates

cylindrical 
co-
ordinates

polar co-
ordinates

spherical 
polar co-
ordinates

cyclic co-
ordinates

Lagrangian L = T-V T+V (T-V)2 (T+V)1/2 T-V
Hamiltonian H = T-V T+V (T-V)2 (T+V)1/2 T+V
Advantage of Action and 
Angle variable is that one 
can obtain the frequencies 
of

Vibratory 
motion

periodic 
motion

circular 
mation

all the 
above

periodic 
motion

For non-interacting 
particle in a quantum state 
the energy E is given by p/2m p2/m p/m p2/2m p2/2m

Co-ordinate 
transformation equations
should not involve
___________ explicity. position

momentu
m time force time

Generating function have 
_____________ forms. four two three five four
Hamilton’s principal
function is denoted by
______________. H K P S S
Hamilton-Jacobi is a
partial differential
equation in ________
variables. n n+1 n-1 n+2 n+1
_____________ is a
partial differential
equation in (n+1)
variables.

Hamilton-
Jacobi 
equation

Lagrangia
n

Hamiltoni
an Jacobian

Hamilton-
Jacobi 
equation

Hamilton’s characteristic
function W is identified as
_____________.

kinetic 
energy

potential 
energy work action A action A



Hamilton’s characteristic
function is denoted by
_______________. S K W H W
The number of
independent ways in
which a mechanical
system can move without
violating any constraint
which may be imposed is
called the
______________.

action-
angle 
variables

generalize
d variables

degrees of 
freedom

co-
ordinates

degrees of 
freedom

The path adopted by the
system during its motion
can be represented by a
space of
_______________ 
dimensions. 3N 6N 9N N 6N

Co-ordinate 
transformation equations
should not involve
______________ 
explicitly. time position

momentu
m velocity time

Path in phase space
almost refers to actual
____________path. statistical N 3N dynamical dynamical

The one way of obtaining
the solution of mechanical
problem is to transform
_________ set of co-
ordinates to __________
set of co-ordinates that are
all cyclic. old to new new to old

new to 
new old to old old to new

Prepared by Dr. B. Janarthanan, Associate Professor, Department of Physics, KAHE
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UNIT II 

 

Hamiltonain 

Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for Simple 

Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy.  
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Hamiltonian for a harmonic oscillator 

A simple realization of the harmonic oscillator in classical mechanics is a particle which is acted 

upon by a restoring force proportional to its displacement from its equilibrium position. 

Considering motion in one dimension, this means 

F=−kx(5.1)(5.1)F=−kx 

Such a force might originate from a spring which obeys Hooke’s law, as shown in Figure. 

According to Hooke’s law, which applies to real springs for sufficiently small displacements, the 

restoring force is proportional to the displacement—either stretching or compression—from the 

equilibrium position. 

 

Figure: Spring obeying Hooke’s law. 

The force constant kk is a measure of the stiffness of the spring. The variable xx is chosen equal 

to zero at the equilibrium position, positive for stretching, negative for compression. The negative 

sign in Equation reflects the fact that FF is a restoring force, always in the opposite sense to the 

displacement xx. 

Applying Newton’s second law to the force from Equation, we find xx 

F=−kx 

where mm is the mass of the body attached to the spring, which is itself assumed massless. This 

leads to a differential equation of familiar form, although with different variables: 

x¨(t)+ω2x(t)=0 

with 

ω2≡km 

The dot notation (introduced by Newton himself) is used in place of primes when the independent 

variable is time. The general solution to Equation is 
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x(t)=Asinωt+Bcosωt) 

which represents periodic motion with a sinusoidal time dependence. This is known as simple 

harmonic motion and the corresponding system is known as a harmonic oscillator. The oscillation 

occurs with a constant angular frequency 

ω=km−−−√radians per second  

This is called the natural frequency of the oscillator. The corresponding circular (or angular) 

frequency in Hertz (cycles per second) is 

ν=ω2π=12πkm 

The general relation between force and potential energy in a conservative system in one 

dimension is 

F=−dVdx)  

Thus the potential energy of a harmonic oscillator is given by 

V(x)=12k x2 

which has the shape of a parabola, as drawn in Figure. A simple computation shows that the 

oscillator moves between positive and negative turning points ±xmax±xmax where the total 

energy EE equals the potential energy 12kx2max12kxmax2 while the kinetic energy is 

momentarily zero. In contrast, when the oscillator moves past x=0, the kinetic energy reaches its 

maximum value while the potential energy equals zero. 
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Figure. Potential energy function and first few energy levels for harmonic oscillator. 

 

HAMILTONIAN FUNCTION: 

Hamiltonian function, also called Hamiltonian, mathematical definition introduced in 

1835 by Sir William Rowan Hamilton to express the rate of change in time of the condition of a 

dynamic physical system—one regarded as a set of moving particles. The Hamiltonian of a 

system specifies its total energy—i.e., the sum of its kinetic energy (that of motion) and its 

potential energy (that of position)—in terms of the Lagrangian function derived in earlier studies 

of dynamics and of the position and momentum of each of the particles. 

The Hamiltonian function originated as a generalized statement of the tendency of physical 

systems to undergo changes only by those processes that either minimize or maximize the abstract 

quantity called action. This principle is traceable to Euclid and the Aristotelian philosophers. 

When, early in the 20th century, perplexing discoveries about atoms and subatomic particles 

forced physicists to search anew for the fundamental laws of nature, most of the old formulas 

became obsolete. The Hamiltonian function, although it had been derived from the obsolete 

https://www.britannica.com/biography/William-Rowan-Hamilton
https://www.merriam-webster.com/dictionary/dynamic
https://www.britannica.com/science/kinetic-energy
https://www.britannica.com/science/potential-energy
https://www.britannica.com/science/Lagrangian-function
https://www.britannica.com/science/dynamics-physics
https://www.britannica.com/topic/function-mathematics
https://www.britannica.com/science/action-physics
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formulas, nevertheless proved to be a more correct description of physical reality. With 

modifications, it survives to make the connection between energy and rates of change one of the 

centres of the new science. 

HAMILTON’S VARIATIONAL PRINCIPLE: 

Lagrange’s equations have been shown to be the consequence of a variational principle, namely, 

the Hamilton’s principle. Indeed the variational method has often proved to be the preferable 

method of deriving equations, for it is applicable to types of systems not usually comprised with 

in the scope of mechanics. It would be similarly advantageous if a variational principle could be 

found that leads directly to the Hamilton’s equation of motion. 

Hamilton’s principle is stated as  

 

 

Expressing L in terms of Hamiltonian by the expression by the expression 

 

  

We find,      

 

 

 

 

 

 t1 

t2 

dt dqi 

 dt 

 I =         pi            -  H (qi, pi, t) 

                 pi  dqi  -    H (qi, pi, t)dt =0 
i  t1 

t2 

 t1 

t2 

I=        L dt  

= 0   t
1 

t

2 

H=  piqi – L, 
. 

i 

https://www.britannica.com/topic/science
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The above equation  is some times is referred as the modified Hamilton’s principle. Although it 

will be used most frequently in connection with transformation theory ,the main interest is to 

show that the principle leads to the Hamilton’s canonical equations of motions. 

The modified Hamilton’s principle is exactly of the form of the variational problems in a space of 

2n dimensions as 

 

 

For which the 2n Euler-Lagrange equations are  

  

 J=1,2,3….n 

 

  

 J=1,2,3….n 

 

The integrand f as given as (2.29) contains qj only through the  piqi term, qj only in H. Hence 

equation (2.30) leads to  

 

 

 

On the other hand there is no explicit dependence of the integrand in equation (2.30) on pj.  The 

above equation  therefore reduce simply to 

I =    f (q, q, p, p, t) dt =0  t1 

t2 
 

. 

. 

d         f                  f 

dt        qj               qj 

 

 

 

 
d         f             f 

dt      pj            pj 

. 

. . 

pj +  
H 

qj 

. 
= 0 

. 

qj -  
H 

pj 

. 
= 0 
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The above two equations are exactly Hamilton’s equations of motion .The Euler –Lagrange 

equations of  the modified Hamilton’s principle are thus the desired canonical equations of 

motion .From the above derivation of  Hamilton’s equations we can consider that Hamiltonian 

and Lagrangian formulation and therefore their respective variational principles, have the same 

physical content.   

Hamilton's Equations: 

The equations defined by 

  

 

(1) 

  

 

(2) 

where  and  is fluxion notation and  is the so-called Hamiltonian, are called 

Hamilton's equations. These equations frequently arise in problems of celestial mechanics. 

The vector form of these equations is 

 

 

 

(3) 

 

 

 

(4) 

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980, p. 1005). 

Another formulation related to Hamilton's equation is 

 

(5) 

http://mathworld.wolfram.com/Fluxion.html
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where  is the so-called Lagrangian. 

 

 

HAMILTON’S CANONICAL EQUATIONS OF MOTION: 
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PHYSICAL SIGNIFICANCE OF H: 
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APPLICATION OF HAMILTONIAN EQUATION OF MOTION TO  

(i)SIMPLE PENDULUM: 
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 (II)LINEAR HARMONIC OSCILLATOR: 
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Energy Conservation 
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In the gravitational physics of orbits that we have been considering there are two important forms 

of energy that are being exchanged. GRAVITATIONAL POTENTIAL ENERGY and KINETIC 

ENERGY. The kinetic energy is the energy associated with a object's motion and is given by 

Ekin= Mb V
2/2. 

where Mb is the mass, say of a ball, and V is the magnitude of the velocity (the speed). 

Now the gravitational potential energy is the energy that a body has which can subsequently be 

used to accelerate the body to a larger magnitude of velocity. For example, if I hold a ball at arms 

length at rest, and let the ball drop to the Earth, the ball will speed up before hitting the Earth. 

This potential energy, as I was holding the ball at rest, is given by 

Egrav=Mbg H, 

where H is the height of the ball above the Earth's surface, and g, the acceleration on the Earth is 

g=(GMe/R
2

e) = 9.8 meters/s2 (see the inset figure in the discussion of weight on our earlier packet 

of notes The Universal Law of Gravitation ). 

Now here's the deal: the gravitational potential energy of the ball at rest in my extended arm, is 

equal to the maximum kinetic energy that the ball can have just before it reaches the ground. As 

the ball falls, H decreases. Thus the gravitational energy decreases. Where does it go? Well, the 

speed of the ball increases. Thus the kinetic energy of the ball increases from the equation for 

kinetic energy above. Gravitational potential energy is being converted into kinetic energy. This is 

how energy is conserved. 

It is also why you slow down and speed up as you travel up and down in a roller coaster. 

Is it consistent with planets in elliptical orbits around the sun speeding up near the the perihelion 

and slowing down near the aphelion? and Kepler's second law? 

A bit more on the Ball 

Back to the ball: note that when I drop the ball, it bounces back up it slows down as its 

gravitational potential energy is regained. Why does does the ball always return to a height 

slightly lower than that from which is was originally dropped? The reason is that there are other 

sources of energy loss: heat, compression, stresses on the ball itself which cannot be regained as 

gravitational energy. However, when all these energies are added up, their total is equal to the 

same as the initial gravitational potential energy. 

http://www.pas.rochester.edu/~blackman/ast104/newtongrav.html
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Energy conservation is fundamental. Physics can describe to us only how energy in the Universe 

transforms from one form to another. 

Angular Momentum Conservation 

Objects executing motion around a point possess a quantity called 

ANGULAR MOMENTUM. This is an important physical quantity 

because all experimental evidence indicates that angular momentum 

is rigorously conserved in our Universe. It can be transferred, but it 

cannot be created or destroyed. For the simple case of a small mass 

executing uniform circular motion around a much larger mass (so that we can neglect the effect of 

the center of mass) the amount of angular momentum takes a simple form. As the adjacent figure 

illustrates the magnitude of the angular momentum in this case is 

L = mvr 

where L is the angular momentum, m is the mass of the small object, v is the magnitude of its 

velocity, and r is the separation between the small and large objects 
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If the operators X, Y commute, then [X, Y] = 
_____________. 1 -1 0 -2 0
If [X, Y] = 0, then X and Y behave like 
__________ variables of classical 
mechanics. statistical

 
dynamical

proportio
nal

inversely 
proportio
nal

 
dynamical

If Poisson bracket of two variables in 
classical mechanics is zero, then the 
operators which represent these variables 
in quantum theory should _____________. vanish

be 
multiplied 
twice

 
proportio
nal commute commute

The Lagrange’s bracket is ____________ 
under canonical transformation. invariant variant

not 
applicable

exponenti
ally 
variant invariant

Lagrange’s equation of motion are second 
order equations with __________ degrees 
of freedom. n+1 n 2n+1 3n 2n+1
The greatest advantage of action and angle 
variable is that we can obtain the 
______________ of periodic motion 
without finding a complete solution for the 
motion of the system.

displacem
ent

 
frequenci
es total time

accelerati
ons

 
frequenci
es

The generalized co-ordinate conjugate to Jj 
are called _______________.

action 
variable

dynamic 
variable

statistical 
variable

angle 
variable

angle 
variable

Jj has the dimension of ____________.

angular 
momentu
m

angular 
velocity

linear 
momentu
m

linear 
velocity

angular 
momentu
m

If F does not involve time explicitly, then 
the Poisson bracket of F with H 
______________.

 is 
proportio
nal with F

is 
proportio
nal with K Vanishes exist Vanishes

If the Poisson bracket of F with H vanishes 
then F will be a _______________.

 positive 
value

constant 
of motion

negative 
value

same 
value

constant 
of motion

If Poisson bracket of momentum with H 
vanishes, then ________________ is 
conserved.

linear 
velocity energy

angular 
momentu
m

linear 
momentu
m

linear 
momentu
m



If Poisson bracket of momentum with H 
vanishes, then the co-ordinate momenta is 
_____________. cyclic rotational

irrotation
al spherical cyclic

Lagrange’s bracket does not obey the 
____________law.

 
associativ
e  kepler’s 

commutat
ive

Hamilton'
s 
variationa
l law

commutat
ive

H = ____________. T- V T + V T V T + V
L = _________. T + V T V T-V T-V
In case of either of the set of conjugate 
variables with (q, p)  or with (Q, P), the 
value of the Poisson bracket remains  
____________. same

proportio
nal

inversely 
proportio
nal

exponenti
ally 
proportio
nal same

In new set of co-ordinates all Qj are 
______________. rotational

irrotation
al cyclic variable cyclic

In new set of co-ordiantes all Pj are 
________. cyclic  constant rotational

irrotation
al  constant

If H is conserved then the new Hamiltonian 
K is __________. same variable different

constant 
of motion

constant 
of motion

The matrix of Lagrange’s bracket is the 
____________ as the matrix of Poisson 
bracket with sign changed. same

proportio
nal

inversely 
proportio
nal

 
exponenti
ally 
proportio
nal same

61.     An assembly of particles with 
_________inter-particle distance is called 
as rigid body fixed different 1 mm 2 mm fixed
Degree of freedom to fix the configuration 
of a rigid body is 3 6 5 0 6

These are most useful set of generalised co-
ordinates for a rigid body and are angles

Lagrangia
n angle

azimuthal 
angle

Euler’s 
angle

Larmor's 
precessio
n angle

Euler’s 
angle

Angular momentum of a rigid body is L = Iw/2 L = 2Iw L = Iw2 L = Iw L = Iw
A mathematical structure having nine 
components in 3-D is termed as tensor of 
rank 2 3 4 0 2
The rotation about space z-axis ( angle f ) is 
called ________

translatio
n

precessio
n nutation spin.

precessio
n

Rotation about intermediate X1 axis ( 
angle q ) or line of nodes is called

translatio
n

precessio
n nutation spin. nutation

The rotation about z’ axis ( angle Y ) is 
called

translatio
n

precessio
n nutation spin. spin.

The variation of angle q is referred as 
________of the symmetry axis of the top 
and is

translatio
n

precessio
n nutation spin. nutation



Precession can be
slow or 
fast

always 
slow

always 
fast

neither 
fast nor 
slow

always 
slow

 ______is ordinarily observed with a 
rapidly spinning top.

fast 
precessio
n

slow 
precessio
n

slow 
nutation

fast 
nutation

slow 
precessio
n

     In case of ______ top amplitude of 
nutation is small, nutation is sinusoidal, slow rotating fast both a & b fast

The minimum spin angular velocity below 
which top cannot spin stably about vertical     

wmin = 
(4mglI1/I3
2)

wmin = 
(4mglI1/I3
2)3/2

wmin = 
(4mglI1/I3
2)2

wmin = 
(4mglI1/I3
2)1/2

wmin = 
(4mglI1/I3
2)1/2

When wz < wmin  then the top begins to wobble precesse nutate spin. wobble

Angular velocity of a rigid body is given by 
Vi = w2 x 
ri

Vi = (w x 
ri)1/2 Vi = w x ri

Vi = w3 x 
ri Vi = w x ri

Angular momentum of a rigid body is L = 
S m2(ri  x 
Vi )

S m(ri  x 
Vi )2

S m2(ri  x 
Vi )2

S m(ri  x 
Vi )

S m(ri  x 
Vi )

The diagonal elements Ixx, Iyy, Izz of 
inertia _______I are moments of inertia  tensor vector scalar donar tensor

Tensor I is __________to principal axes
symmetri
c

antisymm
etric parallel

perpendic
ular

symmetri
c

Prepared by Dr. B. Janarthanan, Associate Professor, Department of Physics, KAHE
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UNIT III 

 

Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, 

expansion of the potential energy around a minimum, small amplitude oscillations about the 

minimum, normal modes of oscillations example of N identical masses connected in a linear 

fashion to (N -1) - identical springs.  
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Minima of potential energy and points of stable equilibrium 

Stable , Unstable and Neutral Equilibrium 

Equilibrium can be further classified as stable, unstable and neutral equilibrium. 

On being slightly disturbed from its equilibrium position, if a body 

(i) tends to acquire the original configuration then the body is said to be in stable equilibrium. 

(ii) tends to acquire a new position then the body is said to be in unstable equilibrium 

(iii) remains at that position then the body is said to be in neutral equilibrium. 

Stable, Unstable and neutral equilibrium in terms of potential energy 

If potential energy of a body does not change with any change in its configuration then it is said to 

be in neutral equilibrium. 

If potential energy of a body changes with change in its configuration then the body will have 

maximum potential energy at unstable equilibrium and minimum potential energy at stable 

equilibrium. 

Stable Equilibrium And Oscillation : 

Oscillation is intimately related with stable equilibrium. 

To illustrate it, let us consider a typical curve between the position (x) of the particle and its 

potential energy (U) for a one dimensional particle motion in a conservative field. 

 

Tangents drawn at B, C, D and E are parallel to the x-axis. This means, at these points, slope 

(dU/dx) is zero. 
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Recalling F = − (dU/dx) , we can further say that at B , C , D and E , force acting on the particle is 

zero i.e. these are equilibrium positions. 

For portions BC and DE, an increase in the value of x corresponds to an increase in the value of 

U. 

The slope of the curve at any point in this portion is positive and hence , force( F = − dU/dx ) is 

negative. 

It means, in BC and DE region, the force acting on the particle tends to pull it in a region of lower 

potential energy. 

Similarly it can be shown that for the portions AB and CD (where slope is negative and hence 

force is positive) again the force pulls the particle in the region of lower potential energy. 

Thus any slight displacement of the particle, either way from the position of minimum potential 

energy results into a force tending to bring the particle back to its original position. 

This force is often referred to as restoring force and site of minimum potential energy, as recalled 

earlier, is the position of stable equilibrium. 

Expansion of the potential energy around a minimum 

If we make a Taylor expansion of the potential energy around the local minima (let’s call 

it xminxmin) we obtain: 

U(x)=U(xmin)+U′(xmin)(x−xmin)+12U′′(xmin)(x−xmin)2+⋯ 

For small values of xxwe can use the first three terms of the Taylor expansion, and still get a 

pretty good approximation. Now, the term U′(xmin) is equal to zero, because the derivative of any 

function vanishes at minimum value, and let’s assume U(xmin)=0, this doesn’t alter our physical 

system: the shift of a potential energy doesn’t alter the physics of the problem. We now obtain: 

U(x)≈12U′′(xmin)(x−xmin)2 

Which looks (almost) exactly like the potential energy from Hooke’s Law: 

U(x)=12kx2 
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Small amplitude oscillations about the minimum 

We begin with the one-dimensional case of a particle oscillating about a local minimum of the 

potential energy  We'll assume that near the minimum, call it , the potential is well 

described by the leading second-order term, , so we're taking the 

zero of potential at  assuming that the second derivative , and (for now) 

neglecting higher order terms.

 

To simplify the equations, we'll also move the origin to , so 

 

replacing the second derivative with the standard "spring constant" expression. 

This equation has solution 
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(This can, of course, also be derived from the Lagrangian, easily shown to 

be ) 

 

Normal modes of oscillations 

The physical motion corresponding to the amplitudes eigenvector has two constants of 

integration (amplitude and phase), often written in terms of a single complex number, that is,  

 

with  real. 

Clearly, this is the mode in which the two pendulums are in sync, oscillating at their natural 

frequency, with the spring playing no role. 

In physics, this mathematical eigenstate of the matrix is called a normal mode of oscillation. In a 

normal mode, all parts of the system oscillate at a single frequency, given by the eigenvalue. 

The other normal mode, 

 

where we have written . Here the system is oscillating with the single 

frequency , the pendulums are now exactly out of phase, so when they part the spring pulls 

them back to the center, thereby increasing the system oscillation frequency. 

The matrix structure can be clarified by separating out the spring contribution: 
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All vectors are eigenvectors of the identity, of course, so the first matrix just contributes to the 

eigenvalue. The second matrix is easily found to have eigenvalues are 0,2, and eigenstates 

and . 

Example of N identical masses connected in a linear fashion to (N -1) - identical springs. 

Consider the motion of three identical particles, each of mass m,  connected as shown in 

the diagram by two springs, each of force constant k.  We wish to find the normal modes of 

oscillation of the system, i.e. the frequencies with which all the masses oscillate. 

   

   

  

            Let  be the displacements of the particles from their 

equilibrium positions.  Note that the motion of the mass  on the left compresses the spring 

attached to it by an amount , whereas the motion of the mass in the middle extends it by an 

amount .  The net extension is therefore .  Similarly, the spring on the right 

is extended by an amount .  The equations of motion are therefore 

  

  

                                    (1.1) 

  

  

      (1.2) 

  

  

                               (1.3) 
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These equations may be written in the form 

  

 

(1.4

) 

  

   

o

r 

 

(1.

5) 

  

  

We see that the equations of motion (1.1) to (1.3) are coupled.  This is indicated by the fact that 

the matrix 

 
  

                          (1.6) 

  

is not diagonal.  Note, however, that A is Hermitian, and can therefore be diagonalized by a 

unitary, similarity transformation 

  

  

                             (1.7) 

  

where the diagonal elements of  are the eigenvalues of A, and the orthonormalized 

eigenvectors of A are the columns of the unitary matrix A. 

https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum769791
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum407596
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Eigenvalues of A 

  

            These are obtained from the relations 

  

  

(2.1) 

  

 

 

(2.2) 

  

  

 
 

(2.3

) 

  

  

(2.4) 

  

whence 
 

                                      (2.5) 

  

Normalized eigenfunctions of A 

  

            These are obtained from the eigenvalue equation 

  

  

                                         (2.6) 

  

using the eigenvalues derived above.  To simplify the notation, the eigenvalues will be denoted 

by  and the corresponding eigenfunctions by . 
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                                                                                                                 (2.7) 

  

(2.8) 

  

  

                 (2.9) 

  

  

(2.10) 

  

and the normalized eigenfunction is 

  

 

 

                                   (2.11) 

  

                                   

                                                                         (2.12) 

  

  

(2.13) 

  

 
 

(2.14) 
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(2.15) 

  

and a normalized eigenfunction, orthogonal to  is 

  

 

 

(2.16) 

  

                                  

                                    (2.17) 

  

 
 

(2.18

) 

  

 
 

(2.

19) 

  

 
 

(2.20

) 

  

and the normalized eigenfunction, which is orthogonal to both 

 is 
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(2.21) 

  

The unitary matrix U, whose columns are the orthonormalized eigenfunctions of the matrix A, is 

therefore given by 

  

 

 

(2.

22) 

  

  

 

 

(2.

23) 

  

as we expect.  It can also be shown that . 

  

Transformation to Normal Coordinates 

  

            Now, Equation (1.5) may be written in the form 

  

  

(3.1) 
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which gives the transformation of the vector 

  

 

 

(3.2) 

into the vector 

  

 

 

(3.3) 

  

in the unprimed coordinate system.  Under a rotation of the coordinate system, the relation (1.31) 

becomes 

  

  

(3.4) 

  

(in the primed coordinate system), or 

  

  

(3.5) 

  

where we have used the fact that U is unitary.  We thus obtain 

  

 

(3

.6

) 
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and a little simplification shows that 

  

 

 

(3.7) 

  

The matrix A has therefore been diagonalized , giving rise to the uncoupled equations 

  

  

(3.8) 

  

  

(3.9) 

  

  

(3.10) 

  

whose solutions are (for oscillatory behavior) 

  

  

(3.11) 

  

 
 

(3.1

2) 

  

 
 

(3.1

3) 
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What we require, however, are the unprimed solutions .  Recall 

that 

  

 
 

(3.1

4) 

  

Comparing Equations (3.5) and (3.14), we see that 

  

 

 

(3.

15) 

  

  

o

r 

 

(3.16

) 

  

Using the solutions (3.11), (3.12) and (3.13), we get 

  

 

 

(3.1

7) 

  

https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum464536
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum849480
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum326713
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum887108
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum341854
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(3.18) 

  

 

 

(3.1

9) 

  

Now the normal modes refer to the common frequencies of vibration of all the masses.  There are 

three possibilities: 

  

  This yields the result 

  

  

(3.20) 

  

which represents a pure translational motion of the particles (corresponding to an 

eigenfrequency  ). 

  

  This gives 

  

 

 

(3.2

1) 

  

and the two outer masses oscillate  out of phase, with the same amplitude, and with 

frequency given by . 

  

  Here we get 
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(3.2

2) 

  

The two outer masses oscillate in phase, with the same amplitude, but with frequency given 

by .  The mass in the middle oscillates 

 out of phase with the other two, and with twice the amplitude. 

  

            It has been tacitly assumed in the foregoing analysis that the masses move on a frictionless 

horizontal surface.  The total (horizontal) momentum of the system must therefore remain 

constant, as can easily be verified from Equations (3.21) and (3.22). 

 

 

 

https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum651318
https://www.morehouse.edu/facstaff/cmoore/CoupledOscillations.htm#ZEqnNum809791
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Rotational kinetic energy of a rigid body is   ½ w2 I2 w2 I  ½ w2 I 2w2 I.  ½ w2 I

In certain system of body axes with respect 
to which the off-diagonal elements  

symmetri
c

antisymm
etric principal

perpendic
ular principal

If wz  = wz’ > wmin, atop will spin with its 
axis vertical continuously , therefore it is

sleeping 
top

spinning 
top

rotating 
top

symmetri
c top

sleeping 
top

 A rigid body with N particles have 
_____________degrees of freedom. 2N 3N N 4N 3N
The configuration of a rigid body with 
respect to some cartesian co-ordinate 
system in space

momentu
m inertia

orientatio
n

angular 
momentu
m

orientatio
n

The most useful set of generalised co-
ordinates for a rigid body are ________ 
angles. rotation specified auxillary euler’s euler’s
The transformation worked out through 
three _________ rotations performed only 
in a successive different

independ
ent

dependen
t successive

The distance between any two points of a 
rigid body is ___________ varied fixed

proportio
nal

exponenti
ally 
proportio
nal fixed

 A rigid body can possesses simultaneously 
the translational and _________ motion arbitrary circular rotational orbital rotational
 A mathematical structure having nine 
components in three dimensions is termed 
as a tensor matrix

covariant 
tensor

contravari
ant tensor tensor

The products of inertia of all vanish when 
one of the axes of the body lies along the 
axis rotation vibration motion symmetry symmetry
If the symmetry axis of the body is taken as 
axis of rotation and the origin of body axes 
lies

unsymme
try rotational symmetry b and c symmetry

The motion of a rigid body with one point 
fixed will take place under the action of 
torque N in

displacem
ent torque time

rotational 
motion torque



The assembly of particles with fixed inter-
particle distance is called_________ fluid vapor colloidal rigid body rigid body
The orientation of the body by locating a 
cartesian set of co-ordinates fixed in the 
rigid

body set 
of axes

space set 
of axes

 both a 
and b

rotational 
set of 
axes

body set 
of axes

The fixed point in the body which registers 
its translation and coincident with the 
center of

body set 
of axes

space or 
external 
set of 
axes

rotational 
set of axis

vibrationa
l set of 
axes

space or 
external 
set of 
axes

The generation of body set of axes from the 
space set of axes through three successive

direction 
cosines

successive 
angles

rotational 
angles

Euler’s 
angles

Euler’s 
angles

The system of body axes in which off-
diagonal elements disappear and the 
diagonal elements

principle 
axes

secondary 
axes

primary 
axes

catesian 
axes

secondary 
axes

The system of body axes in which off-
diagonal elements disappear, and the 
diagonal elements

principle 
moment 
of inertia

secondary 
moment 
of inertia

moments 
of inertia inertia inertia

The secular equation of inertia tensor and 
its solution is called ____________

constant 
of motion

tensor of 
rank two

covariant 
tensor

eigen 
values

eigen 
values

A rigid body can possesses simulataneous 
the ________ and ___________ motion.

translatio
n and 
rotational

linear and 
harmonic

periodic 
and non-
harmonic

symmetri
cal 
around

translatio
n and 
rotational

Rigid body possessing rotational and 
translational motion simulataneously will 
have

polar and 
cartesian

generalise
d and 
canonical

translatio
n and 
rotational

both a 
and b

translatio
n and 
rotational

If we consider three non-collinear points in 
a rigid body, then each particle will have four three six nine three

Three non-collinear points in a rigid body 
will have the total of ________degrees of six three nine tweleve nine
All the space set of axis if rotated wbout 
the space z-axis, then the yz plane takes 
______ same alternate

orthogona
l new new

The inverse transformation matrix from 
body set of axes to space set of axes is 
given AT adj (A)

co-factor 
of A

determina
nt of A AT

The position vector of any point p relative 
to the origin O of the body set of axes is Different constant

proportio
nal

both a 
and c constant



The configuration of a rigid body is 
completely specified by ________degrees 
of freedom. two three six  nine six
If a is the column matrix representing the 
co-ordinates having single frequency and 
aT is 0  l a 1 1

If a is the column matrix representing the 
co-ordinates having single frequency and  0  l 1 a2  l

The generalised co-ordinate in which each 
one of them executing oscillations of one

normal co-
ordinate

cartesain 
co-
ordinate

polar co-
ordinate

rectangul
ar co-
ordinate

normal co-
ordinate

In parallel pendula the two pendula 
oscillates in ________

out or 
phase phase

damped 
motion

undampe
d motion phase

 In parallel pendular, if the two pendula are 
independent i.e., there is no ________

unstretchi
ng rarefying transiting stretching stretching

In paralle pendula ___________ force due 
to spring will come into action. impulsive repulsive restoring attractive restoring
 If the system possesses two identical 
frequencies, then it is therefore said to be 
__________

degenerat
e  generate distorted

in 
harmonic 
motion

degenerat
e

 A continuous string has infinite number of 
normal modes and _______________ velocities

 
frequenci
es vibrations motion

 
frequenci
es

The use of nomal co-ordinate in the 
coupled system reduces it to one of a 
system of

dependen
t single

independ
ent double

independ
ent

A continuous string has a linear 
___________ velocity

accelerati
on

displacem
ent

mass 
density

mass 
density

If the system is in stable equilibrium, then 
the frequency wl2 should be a ______ 
quantity. real imaginary complex integer real
 If wl2 are real and positive, then all co-
ordinate always remain _______ for any 
time. infinite same different finite finite

 If wl2 are not real and positive, then all the 
co-ordinate becomes ______ for any time. infinite finite equal

exponenti
al infinite

 The system is said to be unstable if the 
frequency wl2 are not _________ equal finite real infinite real
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UNIT IV 

 

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. 

Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -dilation, 

length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-velocity and 

acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler 

effect from a four-vector perspective. Concept of four-force. Conservation of four-momentum. 

Relativistic kinematics. Application to two-body decay of an unstable particle. 
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Special theory of relativity – Introduction 

The Special Theory of Relativity was the result of developments in physics at the end of 

the nineteenth century and the beginning of the twentieth century. It changed our understanding of 

older physical theories such as Newtonian Physics and led to early Quantum Theory and General 

Relativity. 

Special Relativity does not just apply to fast moving objects, it affects the everyday world 

directly through "relativistic" effects such as magnetism and the relativistic inertia that underlies 

kinetic energy and hence the whole of dynamics. 

Special Relativity is now one of the foundation blocks of physics. It is in no sense a 

provisional theory and is largely compatible with quantum theory; it not only led to the idea of 

matter waves but is the origin of quantum 'spin' and underlies the existence of the antiparticles. 

Special Relativity is a theory of exceptional elegance, Einstein crafted the theory from simple 

postulates about the constancy of physical laws and of the speed of light and his work has been 

refined further so that the laws of physics themselves and even the constancy of the speed of light 

are now understood in terms of the most basic symmetries in space and time. 

 

 

 

 

 

 

The Galilean Transformation Invariance of Newton’s law of motion 

Suppose there are two reference frames (systems) designated by S and S' such that the co-

ordinate axes are parallel (as in figure 1). In S, we have the co-ordinates  and in S' 

we have the co-ordinates . S' is moving with respect to S with velocity  (as 

measured in S) in the  direction. The clocks in both systems were synchronised at 

time  and they run at the same rate. 

http://psi.phys.wits.ac.za/teaching/Connell/phys284/2005/lecture-01/lecture_01/node5.html#ref_frames
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Figure 1: Reference frame S' moves with velocity  (in the x direction) relative to reference 

frame S. 

We have the intuitive relationships  

     

     

     

     

This set of equations is known as the Galilean Transformation. They enable us to relate a 

measurement in one inertial reference frame to another. For example, suppose we measure the 

velocity of a vehicle moving in the in -direction in system S, and we want to know what would 

be the velocity of the vehicle in S'.  

  

 

The laws of physics to be the same in all inertial reference frames, as this is indeed our experience 

of nature. Physically, we should be able to perform the same experiments in different reference 
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frames, and find always the same physical laws. Mathematically, these laws are expressed by 

equations. So, we should be able to ``transform'' our equations from one inertial reference frame 

to the other inertial reference frame, and always find the same answer. 

Suppose we wanted to check that Newton's Second Law is the same in two different 

reference frames. We put one observer in the un-primed frame, and the other in the primed frame, 

moving with velocity  relative to the un-primed frame. Consider the vehicle of the previous 

case undergoing a constant acceleration in the -direction,  

    

      

      

      

      

      

Indeed, it does not matter which inertial frame we observe from, we recover the same Second 

Law of Motion each time. In the parlance of physics, we say the Second Law of Motion is 

invariant under the Galilean Transformation. 

Non-variance of Maxwell’s equation 

Experiments on electric and magnetic fields, as well as induction of one type of field from 

changes in the other, lead to the collection of a set of equations, describing all these phenomena, 

known as Maxwell's Equations.  
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Now, these equations are considered to be rock solid, arising from and verified by many 

experiments. Amazingly, they imply the existence of a previously not guessed at phenomenon. 

This is the electromagnetic wave. To see this in detail, take the time derivative of the second last 

equation and the curl of the last.  

     

    

Now note that space and time derivatives commute  

  

so  

  

Now, we use the identity  

  

The second term of the above equation drops out due to the vanishing of the divergence of the 

electric field (the second of Maxwell's Equations). So, we finally have the three dimensional wave 

equation  
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To see this is a wave equation, note the analogy in one dimension  

  

 

which is solved by the wave function  

  

 

which represents a wave traveling along the x axis with velocity c. 

It is clear therefore that Maxwell's Equations are highly predictive. 

1. A diversity is unified in a simplicity. The various phenomena of radiowaves, microwaves, 

infrared, visible and ultra-violet light, X-rays and gamma rays are all electromagnetic waves, 

differing only in their frequency. 

2. They all travel at the same speed. 

3. Even that speed is specified : m/s. 

4. The speed appears independent of the source and the observer. 

 

Michelson Morley experiment and explanation of the null result. 

 After the development of Maxwell's theory of electromagnetism, several experiments were 

performed to prove the existence of ether and its motion relative to the Earth. The most famous 

http://scienceworld.wolfram.com/physics/Ether.html
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and successful was the one now known as the Michelson-Morley experiment, performed 

by Albert Michelson (1852-1931) and Edward Morley (1838-1923) in 1887. 

 

Michelson and Morley built a Michelson interferometer, which essentially consists of a light 

source, a half-silvered glass plate, two mirrors, and a telescope.  The mirrors are placed at right 

angles to each other and at equal distance from the glass plate, which is obliquely oriented at an 

angle of 45° relative to the two mirrors. In the original device, the mirrors were mounted on a 

rigid base that rotates freely on a basin filled with liquid mercury in order to reduce friction. 

Prevailing theories held that ether formed an absolute reference frame with respect to 

which the rest of the universe  was stationary. It would therefore follow that it should appear to be 

moving from the perspective of an observer on the sun-orbiting Earth. As a result, light would 

sometimes travel in the same direction of the ether, and others times in the opposite direction. 

Thus, the idea was to measure the speed of light in different directions in order to measure speed 

of the ether relative to Earth, thus establishing its existence. 

Michelson and Morley were able to measure the speed of light by looking for interference 

fringes between the light which had passed through the two perpendicular arms of their apparatus. 

These would occur since the light would travel faster along an arm if oriented in the "same" 

direction as the ether was moving, and slower if oriented in the opposite direction. Since the two 

arms were perpendicular, the only way that light would travel at the same speed in both arms and 

therefore arrive simultaneous at the telescope would be if the instrument were motionless with 

http://scienceworld.wolfram.com/biography/Michelson.html
http://scienceworld.wolfram.com/biography/MorleyEdward.html
http://scienceworld.wolfram.com/physics/MichelsonInterferometer.html
http://scienceworld.wolfram.com/astronomy/Telescope.html
http://scienceworld.wolfram.com/astronomy/Universe.html
http://scienceworld.wolfram.com/physics/Ether.html
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respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive 

and interfere slightly out of synchronization, producing a diminution of intensity. (Of course, the 

same effect would be achieved if the arms of the interferometer were not of the same length, but 

these could be adjusted accurately by looking for the intensity peak as one arm was moved. 

Changing the orientation of the instrument should then show fringes.) 

Although Michelson and Morley were expecting measuring different speeds of light in 

each direction, they found no discernible fringes indicating a different speed in any orientation or 

at any position of the Earth in its annual orbit around the Sun. 

In 1895, Lorentz concluded that the "null" result obtained by Michelson and Morley was caused 

by a effect of contraction made by the ether on their apparatus and introduced the length 

contraction equation 

 

where L is the contracted length,  is the rest length, v is the velocity of the frame of reference, 

and c is the speed of light. 

Concept of inertial frame of reference 

A “frame of reference” is a standard relative to which motion and rest may be measured; 

any set of points or objects that are at rest relative to one another enables us, in principle, to 

describe the relative motions of bodies. A frame of reference is therefore a purely kinematical 

device, for the geometrical description of motion without regard to the masses or forces involved. 

A dynamical account of motion leads to the idea of an “inertial frame,” or a reference frame 

relative to which motions have distinguished dynamical properties. For that reason an inertial 

frame has to be understood as a spatial reference frame together with some means of measuring 

time, so that uniform motions can be distinguished from accelerated motions.  

The laws of Newtonian dynamics provide a simple definition: an inertial frame is a 

reference-frame with a time-scale, relative to which the motion of a body not subject to forces is 

always rectilinear and uniform, accelerations are always proportional to and in the direction of 

applied forces, and applied forces are always met with equal and opposite reactions. It follows 

http://scienceworld.wolfram.com/biography/Lorentz.html
http://scienceworld.wolfram.com/physics/Ether.html
http://scienceworld.wolfram.com/physics/SpeedofLight.html
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that, in an inertial frame, the center of mass of a system of bodies is always at rest or in uniform 

motion. It also follows that any other frame of reference moving uniformly relative to an inertial 

frame is also an inertial frame. For example, in Newtonian celestial mechanics, taking the “fixed 

stars” as a frame of reference, we can determine an (approximately) inertial frame whose center is 

the center of mass of the solar system; relative to this frame, every acceleration of every planet 

can be accounted for (approximately) as a gravitational interaction with some other planet in 

accord with Newton's laws of motion. 

Postulates of special theory of relativity 

(i) Statement: "The laws of physics are the same in any inertial frame, regardless of 

position or velocity". 

Physically, this means that there is no absolute spacetime, no absolute frame of reference with 

respect to which position and velocity are defined. Only relative positions and velocities between 

objects are meaningful. 

(ii) Statement: "The speed of light c is a universal constant, the same in any inertial 

frame". 

Simultaneity 

Consider a rocket traveling at speed v, as shown in Fig. 4. There is an observer O at rest with 

respect to the rocket and an observer O' riding with the rocket. Two lightbulbs at the ends of the 

rocket were timed such that their flashes arrive at the observers at the same time. Light from the 

bulbs traveled towards the observers at the speed of light, c, in the reference frames of both 

observers. The figure shows how O andO' are lined up when the light arrives. 

 

For O' (on the rocket), the bulbs must have flashed simultaneously because O' is right in the 

middle. The bulbs are at rest in the frame of O'. 
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The other observer, O, draws a different conclusion. When the flashes were emitted, the rocket 

was not centered on O; it was to the left. The pulse from the bulb on the left must have been 

emitted first; it had farther to travel. Likewise, the pulse from the bulb on the right had a shorter 

distance to travel. Observer O concludes that the bulbs were not flashed simultaneously. 

So, observer O' thinks the events (flashing of the bulbs) were simultaneous while 

observer O does not. Simultaneity is not independent of reference frame. 

 

Length contraction 

Moving rod contracts in length by factor of  

 

Time dilation 

Moving clock dilates in time interval measured by factor of 

 

Relativistic Law of Velocity Addition 

If an object is in motion with velocity  (u'x, u'y, u'zcomponents) in frame S' and the velocity of 

the object measured in S is (ux, uy, uzcomponents) then , 
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Relativistic Mass 

The concept of 'Absolute Mass' of Newtonian Mechanics is no longer tenable in special 

Relativity; the requirement that Law of Conservation of momentum is a fundamental Law of 

nature imposes the relation 

 

then only consistency between the Lorentz-Transformations and Law of Conservation of 

momentum can be obtained. This expression given relativistic mass m in motion with Velocity V 

in a given frame of reference; in terms of the mass m0 called rest mass of the object when at rest 

in the given frame of reference. 

The Experiment of Fizeau 

In 1851, Fizeau carried out an experiment which tested for the aether convection 

coefficient. This was the first such test of Fresnel’s formula, derived without experimental 

evidence, over twenty years earlier. Fresnel, in fact, had died more than twenty years before this 

experiment took place, a point of interest only because many texts derive Fresnel’s formula based 

on the results of experiment, rather than the other way around. Experimental results, within the 

level of error available in the mid-1800’s, are not sufficient to derive Fresnel’s formula. These 

results can only confirm that, within error limits, the formula provides answers consistent with 

http://www.pinkmonkey.com/studyguides/subjects/physics/chap35/p3535701.asp
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experiment. In fact, Fizeau’s experimental results were so course that the only conclusion he 

could draw was that the displacement was less than should have been produced by the motion of 

the liquid if light were completely convected by the medium. From this, he assumed the validity 

of Fresnel’s formula on the partial convection of the aether. 

Fizeau’s experiment involved passing light two ways through moving water (v ~ 7 m/s) 

and observing the interference pattern obtained, as illustrated in figure 1. The experiment was 

repeated by Michelson in 1886 with much more rigor, and quantitative results were obtained. 

Working backwards from the observed fringe shift, Michelson was able to calculate an apparent 

convection coefficient equivalent to Fresnel’s formula. Varying the velocity and direction of the 

flow allowed for a variety of test points. By observing the change in interference pattern, the 

effective velocity of light through the moving medium, as measured in the lab frame, was 

calculated. Within experimental limits, the results obtained by measuring the fringe shift agreed 

with the results predicted by Fresnel’s formula. However, Michelson neglected to take into 

account the Doppler effect of light from a stationary source interacting with moving water, and 

therefore concluded that the aether convection concept of Fresnel was essentially correct. 

 

Figure 1. The experiment of Fizeau. 

We now examine this experiment in a purely Galilean environment, taking into account 

the Doppler shift (change in wavelength) experienced by each beam of light. Michelson’s paper 

gives an excellent analysis whereby the retarded velocity, b, seen in the water may be considered 

as due to the number of collisions with atoms, the "velocity of light through the atoms," and the 

width of the atoms. Since there will likely be objections to that analysis based on current 
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understandings of the microscopic world, we present a more general approach. In what follows, 

the retarded velocity is again considered as due to the "collisions" (absorptions and re-emissions) 

of the photons in the medium, as it must be, but we do not require any assumptions as to "atom 

width," or "velocity through the atom." 

For light traveling through a medium, the effective wavelength changes: 

 (1) 

The phase shift for light in such a medium is: 

 (2) 

The optical path length is defined from (2) as lh. The optical path difference between the medium 

and air is then: 

 (3) 

The phase difference compared with the same path in air is: 

 (4) 

In the Fizeau experiment we must consider Doppler effects. Since the water is moving with 

respect to the source, the two paths of light will experience Doppler shifts upon entering the 

water. Light moving in the opposite direction to the flow of water will be blue-shift (l1). Light 

moving with the flow will be red shifted (l2): 

 (8) 
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To see why the Doppler shift cannot be ignored in Fizeau’s experiment, imagine the apparatus 

depicted in figure 2. All mirrors, the source and the observing screen are sealed in water filled 

containers. The water is not flowing, but is stationary in the containers. Alternatively, the 

containers could be made of solid glass, so long as the refractive index is different than air. The 

entire apparatus, with the exception of mirror (detector) M1 moves through the lab frame at a 

velocity of v. Thus, air is moving through the gap, l, at a velocity of v in the equipment frame. To 

first order in v/c, the wavelengths of the light detected at M1 is given by equation (8). 

  We now fill the apparatus containers with air and pass the entire apparatus through water. 

In the equipment frame, water is moving through the gap at a velocity v. The motion induced 

Doppler in the water, experienced by M1, remains unchanged. If we, the observers, move along 

with the apparatus, this setup is indistinguishable from the actual Fizeau experiment. From our 

frame of reference, the equipment is at rest, water is moving through the gap at a velocity v, and 

the image on the screen reflects the fringe shift due to that motion. Thus we can replace the gap 

with a tube of flowing water, hold the rest of the apparatus stationary in the lab frame, and obtain 

a one-sided Fizeau experiment. Clearly, whatever analysis one uses to derive the formulas for the 

observed fringe shift, one must take into account the fact that the wavelength of the light in the 

moving medium is different from that of the source due to the motion induced Doppler effect of 

(8). 

Substituting (8) into (2), we see that the phase shift including Doppler effects becomes: 

 (9) 

The optical path length is defined from the above as: 
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 (10) 

The optical path difference between the medium and air is then: 

 (11) 

The phase difference compared with the same path in air is: 

  

 (12) 

For light traveling different paths and experiencing different Doppler effects, the total phase shift 

is given by: 

 (13) 

In the Fizeau experiment, l1 and l2 are given by (8). The path lengths l1 and l2 are respectively 

given below, where the factor of two is included because the light travels through two tubes of 

length l, and b is the velocity of light in the reference frame of the liquid. 

 (14) 

Substituting these values into (13) for each path gives the following results: 
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 (15) 

 (16) 

Notice how these results were obtained without invoking "aether" drag, or relativistic velocity 

addition. 

In the special relativistic analysis of this experiment, the velocity of light in the moving 

liquid as measured in the lab frame is no longer b + v, but is given by the relativistic velocity 

addition formula: 

 (17) 

As a result, the path lengths derived in (14) become: 
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 (18) 

The derivation of the total phase shift then becomes: 

 (19) 

 (20) 

The two results, (16) and (20), differ in the exponent of the last h term. When Michelson 

and Morley performed the experiment, they obtained sixty one trials, using three different 

combinations of water velocity and tube length. The graph below shows the distribution of these 

results, normalized to a tube length of ten meters and a water velocity of one meter per second. 

The line marked RCM represents the value obtained from equation (16). The line marked SRT 

reflects the value obtained from (20). While there is a distribution of results, owing to 

experimental error, Michelson claimed an overall shift of 0.184 + 0.02 fringe. This is completely 
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consistent with (16), but eliminates the special relativistic result, with a value of 0.247, from 

consideration. 

Summary 

It is very difficult to find adequate tests between special relativity and other competing theories. 

Most theories overlap with SRT on a vast majority of the prediction made by each, yet are based 

on different underlying physical principles. Ultimately one must find a test that checks not only 

the results of the application of the mathematical theory, but also the underlying assumptions. The 

major conceptual difference between SRT and most competing theories is the idea of relative 

simultaneity—that distant events that are simultaneous for one observer will not be simultaneous 

for and observer in motion relative to the first. The relativistic velocity addition rule is a direct 

consequence of relativistic simultaneity, and the Fizeau experiment represents a direct test of the 

velocity addition formula. Regardless of what the correct theory is or may be, it is clear that SRT 

fails to give predictions consistent with results in this experiment—an experiment performed 

almost ten years before the development of SRT. 

Four-vectors 

Although the use of 4-vectors is not necessary for a full understanding of Special 

Relativity, they are a most powerful and useful tool for attacking many problems. A 4-vectors is 

just a 4-tuplet A = (A 0, A 1, A 2, A 3) that transforms under a Lorentz Transformation in the same 

way as (cdt, dx, dy, dz) does. That is: 

A 0 = γ(A 0' + (v/c)A 1')       

A 1 = γ(A 1' + (v/c)A 0')       

A 2 = A 2'       

A 3 = A 3'       

Lorentz transformations are very much like rotations in 4-dimensional spacetime. 4-

vectors, then, generalize the concept of rotations in 3-space to rotations in 4-dimensions. Clearly, 

any constant multiple of (cdt, dx, dy, dz) is a 4-vector, but something like A = 

(cdt,mdx, dy, dz) (where m is just a constant) is not a 4-vector because the second component has 

to transform like mdxâÉáA 1 = γ(A 1' + (v/c)A 0')âÉáγ((mdx') +vdt') from the definition of a 4-

vector, but also like mdx = mγ(dx' + (v/c)dt') ; these two expression are inconsistent. Thus we can 
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transform a 4-vector either according to the 4- vector definition given above, or using what we 

know about how the dx i transform to transform each A i independently. There are only a few 

special vectors for which these two methods yield the same result. Several different 4-vectors are 

now discussed: 

Velocity 4-vector 

We can define a quantity τ =  which is called the proper time, 

and is invariant between frames. Dividing out original 4-vector ( (cdt, dx, dx, dz) ) bydτ gives: 

V = (cdt, dx, dy, dz) = γ  c, , ,   = (γc, γ      

 

 

This arises because  = γ . 

Energy-momentum 4-vector 

If we multiply the velocity 4-vector by m we get: 

P = mV = m(γc, γ      

This is an extremely important 4-vector in Special Relativity. 

Relation between momentum and kinetic energy 

Sometimes it's desirable to express the kinetic energy of a particle in terms of the momentum. 

That's easy enough. Since  and the kinetic energy  so 

 

Note that if a massive particle and a light particle have the same momentum, the light one will 

have a lot more kinetic energy. If a light particle and a heavy one have the same velocity, the 

heavy one has more kinetic energy. 
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QUESTIONS Choice1 Choice2 Choice3 Choice4 ANSWER
When the forces acting on the 
particle vanishes, then the particle is 
said to be in 

equilibriu
m

stable 
equlibriu
m unstable

neutral 
equilibriu
m

equilibriu
m

Potential energy is minimum at stable 
equilibrium and ________at unstable    maximum minimum zero infinity maximum
 In case of stable equilibrium the 
system undergoes bounded motion 
and in case of         same

unbounde
d harmonic distorted

unbounde
d

 When a system at stable equilibrium 
is disturbed its potential energy 
increases and kinetic   increases decreases zero constant decreases

 When a system at unstable 
equilibrium is disturbed its potential 
energy decreases and  increases decreases constant  

 neither 
increase 
nor 
decrease increases

The example for stable equilibrium.

Bar 
pendulum 
at rest

compoun
d 
pendulum 
at rest

simple 
pendulum 
at rest

pendulum 
in motion

Bar 
pendulum 
at rest

If a slight displacement of a system 
from its equilibrium results only in 
small unstable stable

neither 
stable nor 
unstable neutral stable

If a slight displacement of a system 
from its equilibrium results only in 
unbounded unstable stable

neither 
stable nor 
unstable neutral stable

The example for unstable 
equilibrium.

Rod 
standing 
on its one 
end

rod 
stretched 
on two 
ends

 rod in 
motion 

rod in 
simple 
harmonic 
motion

Rod 
standing 
on its one 
end

The two modes of motion involving a 
single frequency are called ________ 
modes abnormal normal

transvers
e

longitudin
al normal

The eigen frequency in case of 
oscillatory motion about the point of 
stable imaginary real complex

whole 
number real



The generalised co-ordinates each of 
them executing oscillations of one 
single

normal co-
ordinates

genaral co-
ordinates

spherical 
co-
ordinates

polar co-
ordinates

normal co-
ordinates

Two pendula in parallel pendula 
oscillate in phase with frequency

w = ( g/l 
)1/2

w = ( g/l 
)1/3

w = ( g/l 
)1/4 w = ( g/l ) w = ( g/l )

Two pendula in parallel pendula 
oscillate out of phase with frequency

w = ( g/l 
+2k/m )

w = ( g/l 
+2k/m 
)1/4

w = ( g/l 
+2k/m 
)1/3

w = ( g/l 
+2k/m 
)1/2

w = ( g/l 
+2k/m 
)1/3

Triple pendulum is a 
generate 
system 

stable 
system

degenerat
e system

unstable 
system

unstable 
system

Triple pendulum is a degenerate 
system, since the two normal modes 
frequency   

w1 =  w2 
= ( g/l 
+2k/m )

w1 =  w2 
= ( g/l 
+2k/m 
)1/3

w1 =  w2 
= ( g/l 
+2k/m 
)1/4

w1 =  w2 
= ( g/l 
+2k/m 
)1/2

w1 =  w2 
= ( g/l 
+2k/m 
)1/3

Example for linear triatomic molecule 
is HPO3 H2SO4 HNO3 CO2 HNO3

In case of linear triatomic molecule 
when   w1 = 0 , the system undergoes

periodic 
motion

non-
periodic 
motion

translator
y motion

SHM 
motion

periodic 
motion

In case of linear triatomic molecule 
when   w2 = (K/M)1/2 and  

Oscillator
y motion

translator
y motion

periodic 
motion 

SHM 
motion

Oscillator
y motion

In case of linear triatomic molecule 
when __________ the central atom 
does not

w = 
(K/M)1/2 w = (K/M) 

w = 
(K/M)1/3

w = 
(K/M)1/4 w = (K/M) 

In linear triatomic molecule when 
____________ , the end atoms 
vibrate

w = { 
K/M(1+2
m/M)}

w = { 
K/M(1+2
m/M)}1/2

w = { 
K/M(1+2
m/M)}3  

w = { 
K/M(1+2
m/M)}4

w = { 
K/M(1+2
m/M)}

The example for continuous system is
Continuou
s string

string 
stretched 
at one 
end

String 
stretched 
at two 
ends

String 
with load 
at one 
end

string 
stretched 
at one 
end

A continuous system has ________ 
number of normal modes of 
frequency. Finite infinite Constant Same infinite 
If the linear triatomic molecule is 
stretched symmetrically, the 
absorption band

Ultra-
violet 
region

 Infra-red 
region

Visible 
region

Microwav
e region

Visible 
region

A system of mutually interacting 
particles is called ___________

uncouple
d system

Translator
y system

Coupled 
system

harmonic 
system

uncouple
d system

When the forces acting on a particle 
vanishes, the particle is said to be 
_______

Equilibriu
m

Stable 
equilibriu
m

unstable 
equilibriu
m

Neutral 
equilibriu
m

Stable 
equilibriu
m



The two modes of motion involving a 
single frequency are referred to as 
the _______ abnormal normal Damped

undampe
d

undampe
d

The system of two equal masses 
joined by identical springs to each 
other is called_______

Uncouple
d

single 
coupled

Three-
coupled

two-
coupled

Uncouple
d

A system of particles is said to be in 
stable equilibrium if all the particles 
_______ rest

periodic 
motion

damped 
motion

simple 
harmonic 
motion

damped 
motion

The system consists of two identical 
simple pendula, each of mass m, 
length l and coupled

series 
pendula

compoun
d pendula

paralled 
pendula

complex 
pendula

complex 
pendula

All the other co-ordinates except one 
co-ordinate are zero for all times, 
then it corresponds abnormal standard variable normal standard
If the motion for a given wl2 is 
completely oscillatory about the 
position of stable imaginary Real complex integer imaginary

If the eigenfunctions is imaginary, 
then the motion is said to be 
________ equilibrium unstable Stable neutral

neither 
stable nor 
neutral

neither 
stable nor 
neutral

If the solution of equation of motion 
has one single frequency, then in such 
a case the Cartesian canonical polar normal canonical

If the parallel pendula move in a 
vertical plane in equilibrium position, 
then the two different  identical

relative to 
each 
other

Away 
from each 
other

relative to 
each 
other

In the two pendula it can vibrate as if 
they are independent i.e., there is no 
stretching or rest

oscillate 
infinitely action

neither 
action nor 
oscillate 
infinitely

neither 
action nor 
oscillate 
infinitely

In triple pendulum, if the system 
possesses two identical frequencies, 
then it is therefore periodic

non-
periodic

degenerat
e harmonic

non-
periodic

In linear triatomic molecule, the 
displacement of all the atoms are in 
the same direction and unequal equal infinite finite unequal
The continuous string has infinite 
number of normal modes and 
________________ vibrations

displacem
ent

a & b 
together

frequenci
es

frequenci
es

A continuous string has a linear 
_________

momentu
m

volume 
density

mass 
density

specific 
density

volume 
density



The use of normal co-ordinates in the 
coupled system reduces it to one of a 
system of ____

dependen
t harmonic periodic

independ
ent periodic

The volume integral of the function of 
the Lagrangian functions within the 
braces

Hamiltoni
an

Lagrangia
n linear volume

Hamiltoni
an

Lagrangian density is a function of 
_______ and _____________ 
derivative of

space and 
time

angle and 
r

x and y co-
ordiantes

y and z co-
ordinates

x and y co-
ordiantes

The system consists of two equal 
masses joined by identical springs to 
each other and to damped harmonic periodic

undampe
d harmonic

In case of two-coupled oscillators, the 
potential energy V of the system is 
the sum of kinetic potential

rest 
energy a & b a & b

The force tending to change any 
generalised co-ordinate depends on 
the _______ of velocity

accelecrat
ion

displacem
ent

momentu
m

displacem
ent

If two pendula oscillate in phase, then 
the frequency of motion is  wl =Ög/l wl =g/l

wl 
=1/2pÖg/l

wl 
=2pÖg/l  wl =Ög/l

In case of linear triatomic molecule 
there exists _______ bond between 
the central Inelastic covalent Elastic ionic Elastic
The system consists of infinite chain 
of equal mass points spaced equally 
at a distance

Discontin
us

continuou
s harmonic linear

continuou
s

The continuous system is a function 
of the continuous variables ____ and 
_____ to w and t x,y and z r and w x and t x and t

In discrete system, the continuous 
variables changes only by_________ twice thrice unity 0 unity
The propagation velocity of the wave 
in continuous system is similar to that 
velocity inelastic elastic damped

undampe
d elastic

In linear triatomic molecule if the 
molecule is assymmetrically 
stretched, then __________ magnetic

quadrapol
e

oscillating 
dipole both a & b

oscillating 
dipole

For small oscillation, the 
displacement of the particles are 
restricted to ___________ stable periodic

non-
periodic small small

The motion with imaginary frequency 
would give rise to an unbounded 
exponential rise Uj Vj pj qj Uj



If the particle oscillates about the 
equilibrium point performing bound 
motion, then the unstable stable neutral

neither 
neutral 
nor stable stable

In the conservative force-field, 
generalised forces acting on each 
particle must _________ finite infinite vanish a constant vanish
The displacement of the generalised 
co-ordinates from their equilibrium 
value will be Vj wj pj Uj Uj
If we transform set into another form 
of n equations, then it involves only 
a________ Single double triple

more than 
three Single

Prepared by Dr. B. Janarthanan, Associate Professor, Department of Physics, KAHE
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UNIT V 

Fluid Dynamics: Density  and pressure P in a fluid, an element of fluid and its velocity, 

continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille’s 

equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of 

turbulence, Reynolds number.  
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Density  and pressure P in a fluid 

In SI units, the unit of pressure is the Pascal (Pa), which is equal to a Newton / meter2 (N/m2). 

Other important units of pressure include the pound per square inch (psi) and the standard 

atmosphere (atm). The elementary mathematical expression for pressure is given by: 

pressure=ForceArea=FApressure=ForceArea=FA 

where p is pressure, F is the force acting perpendicular to the surface to which this force is 

applied, and A is the area of the surface. Any object that possesses weight, whether at rest or not, 

exerts a pressure upon the surface with which it is in contact. The magnitude of the pressure 

exerted by an object on a given surface is equal to its weight acting in the direction perpendicular 

to that surface, divided by the total surface area of contact between the object and the surface. 

shows the graphical representations and corresponding mathematical expressions for the case in 

which a force acts perpendicular to the surface of contact, as well as the case in which a force 

acts at angle θ relative to the surface. 

 

Representation of Pressure: This image shows the graphical representations and corresponding 

mathematical expressions for the case in which a force acts perpendicular to the surface of 

contact, as well as the case in which a force acts at angle θ relative to the surface. 

Pressure as a Function of Surface Area 

Since pressure depends only on the force acting perpendicular to the surface upon which it is 

applied, only the force component perpendicular to the surface contributes to the pressure 

exerted by that force on that surface. Pressure can be increased by either increasing the force or 

by decreasing the area or can oppositely be decreased by either decreasing the force or increasing 
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the area. illustrates this concept. A rectangular block weighing 1000 N is first placed 

horizontally. It has an area of contact (with the surface upon which it is resting) of 0.1 m2, thus 

exerting a pressure of 1,000 Pa on that surface. That same block in a different configuration (also 

in Figure 2), in which the block is placed vertically, has an area of contact with the surface upon 

which it is resting of 0.01 m2, thus exerting a pressure of 10,000 Pa—10 times larger than the 

first configuration due to a decrease in the surface area by a factor of 10. 

 

Pressure as a Function of Surface Area: Pressure can be increased by either increasing the 

force or by decreasing the area or can oppositely be decreased by either decreasing the force or 

increasing the area. 

A good illustration of this is the reason a sharp knife is far more effective for cutting than a blunt 

knife. The same force applied by a sharp knife with a smaller area of contact will exert a much 

greater pressure than a blunt knife having a considerably larger area of contact. Similarly, a 

person standing on one leg on a trampoline causes a greater displacement of the trampoline than 

that same person standing on the same trampoline using two legs—not because the individual 

exerts a larger force when standing on one leg, but because the area upon which this force is 

exerted is decreased, thus increasing the pressure on the trampoline. Alternatively, an object 

having a weight larger than another object of the same dimensionality and area of contact with a 

given surface will exert a greater pressure on that surface due to an increase in force. Finally, 

when considering a given force of constant magnitude acting on a constant area of a given 

surface, the pressure exerted by that force on that surface will be greater the larger the angle of 

that force as it acts upon the surface, reaching a maximum when that force acts perpendicular to 

the surface. 
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Liquids and Gases: Fluids 

Just as a solid exerts a pressure on a surface upon which it is in contact, liquids and gases 

likewise exert pressures on surfaces and objects upon which they are in contact with. The 

pressure exerted by an ideal gas on a closed container in which it is confined is best analyzed on 

a molecular level. Gas molecules in a gas container move in a random manner throughout the 

volume of the container, exerting a force on the container walls upon collision. Taking the 

overall average force of all the collisions of the gas molecules confined within the container over 

a unit time allows for a proper measurement of the effective force of the gas molecules on the 

container walls. Given that the container acts as a confining surface for this net force, the gas 

molecules exert a pressure on the container. For such an ideal gas confined within a rigid 

container, the pressure exerted by the gas molecules can be calculated using the ideal gas law: 

p=nRTVp=nRTV 

where n is the number of gas molecules, R is the ideal gas constant (R = 8.314 J mol-1 K-1), T is 

the temperature of the gas, and V is the volume of the container. 

The pressure exerted by the gas can be increased by: increasing the number of collisions of gas 

molecules per unit time by increasing the number of gas molecules; increasing the kinetic energy 

of the gas by increasing the temperature; or decreasing the volume of the container. offers a 

representation of the ideal gas law, as well as the effect of varying the equation parameters on the 

gas pressure. Another common type of pressure is that exerted by a static liquid or hydrostatic 

pressure. Hydrostatic pressure is most easily addressed by treating the liquid as a continuous 

distribution of matter, and may be considered a measure of energy per unit volume or energy 

density. 

An element of fluid and its velocity 

Flow Rate 

Volumetric flow rate is defined as 

Q=v∗aQ, 

where Q is the flow rate, v is the velocity of the fluid, and a is the area of the cross section of the 

space the fluid is moving through. Volumetric flow rate can also be found with 
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Q=VtQ 

where Q is the flow rate, V is the Volume of fluid, and t is elapsed time. 

Continuity 

The equation of continuity works under the assumption that the flow in will equal the flow out. 

This can be useful to solve for many properties of the fluid and its motion: 

 

Flow in = Flow out: Using the known properties of a fluid in one condition, we can use the 

continuity equation to solve for the properties of the same fluid under other conditions. 

Q1=Q2 

This can be expressed in many ways, for example: A1∗v1=A2∗v2. The equation of continuity 

applies to any incompressible fluid. Since the fluid cannot be compressed, the amount of fluid 

which flows into a surface must equal the amount flowing out of the surface. 

Continuity equation and mass conservation 

When a fluid is in motion, it must move in such a way that mass is conserved. To see 

how mass conservation places restrictions on the velocity field, consider the steady flow of fluid 

through a duct (that is, the inlet and outlet flows do not vary with time). The inflow and outflow 

are one-dimensional, so that the velocity V and density \rho are constant over the area A (figure 

14). 

 

 

Figure 14. One-dimensional duct showing 

control volume. 



KARPAGAM ACADEMY OF HIGHER EDUCATION                                              

 

                         CLASS: III B.Sc PHYSICS                                 COURSE NAME: Classical Mechanics  

                         COURSE CODE:16PHU504A                            UNIT- V : Fluid Dynamics 

   BATCH: 2016 – 2019 

 

Prepared by Dr. B. Janarthanan, Associate Professor, Dept. Of Physics, KAHE 6/15 
 
 

 

Now we apply the principle of mass conservation. Since there is no flow through the side walls 

of the duct, what mass comes in over A_1 goes out of A_2, (the flow is steady so that there is no 

mass accumulation). Over a short time interval \Delta t, 

 

 

This is a statement of the principle of mass conservation for a steady, one-dimensional flow, with 

one inlet and one outlet. This equation is called the continuity equation for steady one-

dimensional flow. For a steady flow through a control volume with many inlets and outlets, the 

net mass flow must be zero, where inflows are negative and outflows are positive. 

Streamlines and Streamtubes 

A streamline is a line that is tangential to the instantaneous velocity direction (velocity is a 

vector, and it has a magnitude and a direction). To visualize this in a flow, we could imagine the 

motion of a small marked element of fluid. For example, we could mark a drop of water with 

fluorescent dye and illuminate it using a laser so that it fluoresces. If we took a short exposure 

photograph as the drop moves according to the local velocity field (where the exposure needs to 

be short compared to the time it takes for the velocity to change appreciably), we would see a 

short streak, with a length V \Delta t, and with a direction tangential to the instantaneous velocity 

direction. If we mark many drops of water in this way, the streamlines in the flow will become 

visible. Since the velocity at any point in the flow has a single value (the flow cannot go in more 

than one direction at the same time), streamlines cannot cross. except at points where the 

velocity magnitude is zero, such as at a stagnation point. 

There are other ways to make the flow visible. For example, we can trace out the path followed 

by our fluorescent drop using a long-exposure photograph. This line is called a pathline, and it is 

https://www.princeton.edu/~asmits/Bicycle_web/Bernoulli.html#dynamic_pressure
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similar to what you see when you take a long-exposure photograph of car lights on a freeway at 

night. It is possible for pathlines to cross, as you can imagine from the freeway analogy: as a car 

changes lanes, the pathline traced out by its lights might cross another pathline traced out by an 

adjoining vehicle at a different time. 

Another way to visualize flow patterns is by streaklines. A streakline is the line traced out 

by all the particles that passed through a particular point at some earlier time. For instance, if we 

issued fluorescent dye continuously from a fixed point, the dye makes up a streakline as it passes 

downstream. To continue the freeway analogy, it is the line made up of the lights on all the 

vehicles that passed through the same toll booth. If they all follow the same path (a steady flow), 

a single line results, but if they follow different paths (unsteady flow), it is possible for the line to 

cross over itself. In unsteady flow, streamlines, pathlines and streaklines are all different, but in 

steady flow, streamlines, pathlines and streaklines are identical. 

Continuity Equation (Mass conservation): 

Mass Conservation – 

In the previous chapter we learned that Gauss’ Theorem allows us to express surface area 

integrals in terms of the volume of the object of interest. In the notation of figure 1,  

 

 

A  

^

n  

^

n

 

^

n

 

^

n
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Figure 1.  Diagram showing an arbitrary fixed volume V and associated surface area A with a 

unit vector 
^

n  pointing outward normal to the surface. 1 

for a fixed volume element V, enclosed by a surface A ,  Gauss’ theorem is expressed as 

   


AV
dAnudVu

^

     (1) 

We will now see the usefulness of equation (1) by using it to derive conservation of mass.   

For a fluid with density field,  ,  defined over a fixed volume, V,  the change in mass, 

M,  with respect to time is represented as  




VV
dV

t
dV

dt

d

dt

dM 
 . Conservation of mass 

states that matter can neither be created or destroyed so  

any increase or decrease in mass must be due to the flux of matter through the surface bounding 

the volume V.  The density flux through the surface A bounding the volume V is defined as  

 
A

dAnu
^

 .  Now there is an ambiguity about whether the flux integral represents the outflow or 

inflow of mass through the surface.  Utilizing the standard convention that the normal vector, 
^

n , 

points outward on the closed surface A  as shown in figure 1,  we can see that  
A

dAnu
^

  

represents the outflow of mass through the surface.  Thus conservation of mass shows us that  

 







AV
dAnudV

tdt

dM ^




     (3) 

Using Gauss’ theorem, we can write the final term in equation (3) as a volume integral as 

 dVudAnu
VA   

^

 and equation (3) can then be written as: 

      0

















  dVu

t
dVudV

t
dVu

dt

dM

VVVV






  

There are two possibilities for    0












 dVu

tV



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I. The first is that there exists a unique boundary, shape or symmetry leading to the integral 

being zero.  As an example of these unique symmetries, we notice that   

  

2

0

0sin dxx  

We know the above integral is zero because we are adding up an equal positive area to an equal 

negative area of the sine curve.  This possibility that there is unique boundary leading to equation 

(5) being 0 is too restrictive to our analysis since we wish for our result to be true for any 

arbitrary volume or shape.  This leads to our second possibility. 

II. The second option is that the integrand itself is equal to zero for the entire domain. 

This might seems like a trivial possibility but this leads to the exact result we are looking for: 

  0



u

t



       (4) 

Equation (4) is called the continuity equation and is the differential equation form of 

conservation of mass. Given the definition of the material derivative of the density field as 








 u

tDt

D
 , equation (4) can be expressed in the alternate form as 

0
1

 u
Dt

D


       (5) 

Equation (5) shows that the fractional rate of change of the density (or volume) of a fluid 

element fluid is related to the divergence of the flow field.   

Conditions under which incompressible flow is valid:  

If variations in density are small compared to the background density the fluid is said to 

be incompressible.  Equation (4) then takes the simple form:  

0 u         (6) 

The flow field is also said to be solenoidal under these circumstances.  For most applications in 

the ocean and many in the atmosphere it is safe to assume that the fluid medium is approximately 

incompressible.  To formally examine the necessary conditions in which it is safe to assume a 
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medium is solenoidal; we need to perform dimensional analysis on equation (5).  For a flow field 

scale, U which varies slightly over a length scale L, the requirement for incompressibility is 

 

L

U
u

Dt

D






1
. 

 

To gain further insight into these necessary conditions we must assume an equation of state.  

Now we are going to formally define the fluid as incompressible provided that the density does 

not depend on the pressure of the fluid medium.  The details of the analysis will be seen next 

semester in SO414 but the result is still of interest here.  What we find is that the medium can be 

considered incompressible provided that   

1 
2

2


c

U
           (7) 

 Where c  is the sound speed of the fluid medium and U  is an approximation of the fluid flow.  

We can see from equation (7) that most examples that we consider in both the ocean and 

atmosphere allows us to use the incompressibility requirement. 

POISEUILLES EQUATION FOR FLOW OF LIQUID THROUGH A PIPE 

The Poiseuille’s law states that the flow of liquid depends on following factors like 

the pressure gradient (∆P), the length of the narrow tube (L) of radius (r) and the 

viscosity of the fluid (η) alongwith relationship among them. 

The entire relation or the Poiseuille’s Law formula is given by, 

Q = ΔPπr4 / 8ηl 

Wherein, 

The Pressure Gradient (∆P) : Shows the difference in the pressure between the two 

ends of the tube, determined by the fact any fluid will always flow from high pressure 

(p1) to low pressure region(p2) and the flow rate is determined by the pressure 

gradient (P1 – P2) 

Radius of tube: The liquid flow varies directly with the radius to the power 4.  
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Viscosity (η): The flow of the fluid varies inversely with the viscosity of the fluid and 

as the viscosity of the fluid increases, the flow decreases vice versa.  

Length of the Tube (L): The liquid flow is inversely proportional to the length of the 

tube, therefore longer the tube, greater is the resistance to the flow.  

Resistance(R): The resistance is described by 8Ln / πr4 and therefore the Poiseuille’s 

law becomes 

Q= (ΔP) R 

Laminar Flow 

Laminar flow consists of a regular-flow pattern with constant-flow velocity throughout the fluid 

volume and is much easier to analyze than turbulent flow. 

 

Relative Magnitudes of Velocity Vectors: Laminar fluid flow in a circular pipe at the same 

direction. 

Laminar flow is often encountered in common hydraulic systems, such as where fluid flow is 

through an enclosed, rigid pipe; the fluid is incompressible, has constant viscosity, and the 

Reynolds number is below this lower critical threshold value. It is characterized by the flow of a 

fluid in parallel layers, in which there is no disruption or interaction between the different layers, 

and in which each layer flows at a different velocity along the same direction. The variation in 

velocity between adjacent parallel layers is due to the viscosity of the fluid and resulting shear 

forces. 

This figure (see ) gives a representation of the relative magnitudes of the velocity vectors of each 

of these layers for laminar fluid flow through a circular pipe, in a direction parallel to the pipe 

axis. 
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Poiseuille’s Equation: Can be used to determine the pressure drop of a constant viscosity fluid 

exhibiting laminar flow through a rigid pipe. 

Considering laminar flow of a constant density, incompressible fluid such as for a Newtonian 

fluid traveling in a pipe, with a Reynolds number below the upper limit level for fully laminar 

flow, the pressure difference between two points along the pipe can be found from the 

volumetric flow rate, or vice versa. For such a system with a pipe radius of r, fluid viscosity η, 

distance between the two points along the pipe Δx = x2 – x1, and the volumetric flow rate Q, of 

the fluid, the pressure difference between the two points along the pipe Δp is given by 

Poiseuille’s equation (see ). 

This equation is valid for laminar flow of incompressible fluids only, and may be used to 

determine a number of properties in the hydraulic system, if the others are known or can be 

measured. In practice, Poiseuille’s equation holds for most systems involving laminar flow of a 

fluid, except at regions where features disrupting laminar flow, such as at the ends of a pipe, are 

present. 

Poiseuille’s equation as given in this example is analogous to Ohm ‘s equation for determining 

the resistance in an electronic circuit and is of great practical use in hydraulic-circuit analysis. 

 

Poiseuille’s Equation: Analogous to Ohm’s Law Analogy 
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Turbulent Flow: 

Turbulent flow is a type of fluid (gas or liquid) flow in which the fluid undergoes 

irregular fluctuations, or mixing, in contrast to laminar flow, in which the fluid moves in smooth 

paths or layers. In turbulent flow the speed of the fluid at a point is continuously undergoing 

changes in both magnitude and direction. The flow of wind and rivers is generally turbulent in 

this sense, even if the currents are gentle. The air or water swirls and eddies while its overall bulk 

moves along a specific direction. 

Most kinds of fluid flow are turbulent, except for laminar flow at the leading edge of 

solids moving relative to fluids or extremely close to solid surfaces, such as the inside wall of a 

pipe, or in cases of fluids of high viscosity (relatively great sluggishness) flowing slowly through 

small channels. Common examples of turbulent flow are blood flow in arteries, oil transport in 

pipelines, lava flow, atmosphere and ocean currents, the flow through pumps and turbines, and 

the flow in boat wakes and around aircraft-wing tips. 

Navier-Stokes equation 

In fluid dynamics, the Navier-Stokes equations are equations, that describe the three-

dimensional motion of viscous fluid substances. These equations are named after Claude-Louis 

Navier (1785-1836) and George Gabriel Stokes (1819-1903). In situations in which there are no 

strong temperature gradients in the fluid, these equations provide a very good approximation of 

reality. 

The Navier-Stokes equations consists of a time-dependent continuity 

equation forconservation of mass, three time-dependent conservation of momentum 

equations and a time-dependent conservation of energy equation. There are four independent 

variables in the problem, the x, y, and z spatial coordinates of some domain, and the time t. 

http://abyss.uoregon.edu/~js/glossary/laminar_flow.html
https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/
https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/continuity-equation/
https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/continuity-equation/
https://www.nuclear-power.net/laws-of-conservation/law-of-conservation-of-matter/
https://www.nuclear-power.net/laws-of-conservation/law-of-conservation-of-energy/
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As can be seen, the Navier-Stokes equations are second-order nonlinear partial 

differential equations, their solutions have been found to a variety of interesting viscous flow 

problems. They may be used to model the weather, ocean currents, air flow around an airfoil and 

water flow in a pipe or in a reactor. The Navier–Stokes equations in their full and simplified 

forms help with the design of aircraft and cars, the study of blood flow, the design of nuclear 

reactors and many other things. 

Reynolds number 

The Reynolds number is the ratio of inertial forcesto viscous forces and is a 

convenient parameter for predicting if a flow condition will be laminar or turbulent. It can be 

https://www.nuclear-power.net/wp-content/uploads/2017/11/Navier-Stokes-Equations-definition.png
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interpreted that when the viscous forces are dominant (slow flow, low Re) they are sufficient 

enough to keep all the fluid particles in line, then the flow is laminar. Even very low Re indicates 

viscous creeping motion, where inertia effects are negligible. When the inertial forces 

dominate over the viscous forces (when the fluid is flowing faster and Re is larger) then the flow 

is turbulent. 

 

It is a dimensionless number comprised of the physical characteristics of the flow. An 

increasing Reynolds number indicates an increasing turbulence of flow. 

It is defined as: 

 

where: 

V is the flow velocity, 

D is a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter etc.) 

ρ fluid density (kg/m3), 

μ dynamic viscosity (Pa.s), 

ν kinematic viscosity (m2/s);  ν = μ / ρ. 

https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/internal-flow/hydraulic-diameter-2/
https://www.nuclear-power.net/wp-content/uploads/2016/05/Reynolds-Number.png
https://www.nuclear-power.net/wp-content/uploads/2016/05/Reynolds-number-formula.png
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QUESTIONS Choice1 Choice2 Choice3 Choice4 ANSWER
The mass of 70 kg man moving in car at 
66kmh is 70 kg 100 kg infinite zero 70 kg

Special theory of relativity treats problems 
involving

inertial 
frame of 
reference

non-
inertial 
frame of 
reference

non-
accelerate
d frame 
of 
reference

accelerate
d frame 
of 
reference

inertial 
frame of 
reference

According to special theory of relativity 
which one is not an absolute quantity time mass height

both a 
and b

both a 
and b

Length contraction happens only

perpendic
ular to 
direction 
of motion

along the 
direction 
of motion

parallel 
to 
direction 
of motion

both a 
and b

along the 
direction 
of motion

Conversion of solar energy into 
carbohydrates and starch by leaf of a plant 
is an example for 

energy 
into mass

mass in 
to energy

momentu
m into 
velocity

velocity 
into 
momentu
m

energy 
into mass

A reference frame attached to the earth:

is an 
inertial 
frame by 
definition

is an 
inertial 
frame 
because 
Newton’s 
laws are 
applicable 
 in the 
frame

Cannot 
be an 
inertial 
frame 
because 
the earth 
is 
revolving 
round the 
sun

Cannot 
be an 
inertial 
frame 
because 
the earth 
is 
rotating 
about its 
own axis.

is an 
inertial 
frame by 
definition



Michelson and Morley experiment showed 
that

Newtonia
n 
mechanic
s is 
correct 
for all 
low and 
high 
velocities

There is 
an 
absolute 
ether 
frame

There is 
no 
absolute 
ether 
frame, 
but all 
frames 
are 
relative

Velocity 
of light is 
relative 
in all 
cases.

There is 
no 
absolute 
ether 
frame, 
but all 
frames 
are 
relative

Two photons approach each other, their 
relative velocity will be c/2 Zero ( c/8 c c

An inertial frame is
Accelerat
ed

decelarat
ed

Moving 
with 
uniform 
velocity 
or at rest.

May be 
accelerate
d, 
decelerat
ed or 
moving 
with 
constant 
velocity

Moving 
with 
uniform 
velocity 
or at rest.

Michelson-Morley experiment proved that

speed of 
light is 
relative

there is 
no 
preferred 
frame 
like ether

earth is 
an 
inertial 
frame.

earth is a 
non-
inertial 
frame

there is 
no 
preferred 
frame 
like ether

All the inertial frames are equivalent” this 
statement is called the principle of -----------

relative 
motion

equivalen
ce inertia

Correspon
dence.

relative 
motion

Special theory of relativity deals with the 
events in the frames of reference which 
move with constant----------------- speed velocity

accelerati
on

momentu
m. velocity

Michelson-Morley experiment to detect the 
presence of either is based on the 
phenomenon of:

interferen
ce diffraction

polarizati
on dispersion

interferen
ce



According to relativity, the length of a rod 
in motion:

is same 
as its rest 
length

is more 
than its 
rest 
length

is less 
than its 
rest 
length

may be 
more or 
less than 
or equal 
to rest 
length 
dependin
g on the 
speed of 
rod.

is less 
than its 
rest 
length

If v = c, the length of a rod in motion is: zero

equal to 
proper 
length

less than 
proper 
length

more 
than 
proper 
length. zero

According to special theory of relativity:

speed of 
light is 
relative

speed of 
light is 
same in 
all 
inertial 
frames

time is 
relative

mass is 
relative

speed of 
light is 
same in 
all 
inertial 
frames

James travels at high speed from the Earth 
to the star Alpha Centauri, four light years 
away. In James’s frame

the trip 
takes 
more 
time than 
it does in 
the 
Earth’s 
frame.

James 
travels to 
Alpha 
Centauri 
over a 
length 
that is 
shorter 
than four 
light 
years.

clocks on 
Earth and 
on Alpha 
Centauri 
are 
synchroni
zed.

Alpha 
Centauri 
travels to 
James 
over a 
length 
that is 
shorter 
than four 
light 
years.

Alpha 
Centauri 
travels to 
James 
over a 
length 
that is 
shorter 
than four 
light 
years.

Relativity mechanics is applicable for a 
particle which is moving with a velocityà

Greater 
than that 
of light

Less than 
that of 
light

Comparab
le to that 
of light

equal to 
velocity 
of light

Comparab
le to that 
of light



The relativistic measurement depends 
uponà

The state 
of motion 
of the 
observer 
as well as 
upon the 
quality 
that is 
being 
measured
.

The state 
of motion 
of the 
observer 
only

The 
quantity 
that is 
being 
measured

absolute 
motion

The 
quantity 
that is 
being 
measured

A frame which is moving with zero 
acceleration is called

Non-
inertial 
frame

Inertial 
frame rest frame

decelerat
ed frame

Inertial 
frame

When we specific the place of occurrence 
of a phenomenon as well as the time of 
occurrence it is considered as a point an event

an 
incident

an 
accident an event

Newton’s law’s remain unchanged or 
invariant

Under 
Galilean 
transform
ation

under 
lorentz 
transform
ation

cartesean 
transform
ation

new 
transform
ation

Under 
Galilean 
transform
ation

The laws of mechanics in all initial frame of 
reference are same different none variable same
The acceleration of a particle under 
Galilean transformation is invariant

non-
variant none variable invariant

Michelson-Morley experiment proves

The 
existence 
of ether 
medium

The non-
existence 
of ether 
medium 
(i.e. 
absolute 
rest 
frame)   None

Ether 
pervades

The non-
existence 
of ether 
medium 
(i.e. 
absolute 
rest 
frame)

Michelson-Morley experiment proves that

The 
speed of 
light in 
free 
space in 
invariant

 The 
speed of 
light is 
changing None

variable 
light 
velocity

The 
speed of 
light in 
free 
space in 
invariant

The special theory of relativity was 
proposed by Einstein newton eigen galileo Einstein

The mass energy relation was proposed by Newton Einstein Kepler Michelson Einstein



The Lorentz transformation will converted 
to Galilean transformation when the 
relative velocity v between two inertial 
frames will satisfy the condition v>>c v=c  v<<c v=0  v<<c

the length of an object is maximum in a 
reference frame in which it is at rest in motion

neither 
rest nor 
in motion

varying 
speed at rest

the length of a rod in uniform motion 
relative to an observer

  appears 
to be 
shortened 
 when it 
at rest 
w.r.t. to 
the 
observer

 appears 
to be 
lengthene
d when it 
is at rest 
w.r.t. to 
the 
observer

equal to 
aboslute 
length

invariant 
length

  appears 
to be 
shortened 
 when it 
at rest 
w.r.t. to 
the 
observer

The time interval between two event in a 
reference in a reference frame which is in 
motion is Maximum minimum zero

varying 
speed Maximum

A moving clock

Runs 
slower 
than a 
stationary 
 identical 
clock

Runs 
than a 
stationary 
 identical 
clock

neither 
slow nor 
fast very fast

Runs 
slower 
than a 
stationary 
 identical 
clock

If the velocity of a moving particle is 
comparable to velocity of light then the 
mass of the moving object is

Greater 
than 
when it is 
rest

Smaller 
than 
when it is 
at rest Equal

very 
smaller

Greater 
than 
when it is 
rest

Einistein’s  mass energy equation 
E=mc2 implies that

Energy 
disappear
s to 
reappear 
as mass

Mass 
disappear
s  to 
reappear 
as energy

All the 
above 
statement
s are 
correct 
except d

nothing 
can be 
done

All the 
above 
statement
s are 
correct 
except d

How fast a particle must travel so that its 
mass becomes twice its rest mass?   0.5 c 2 c 0.866 c 0.9c 0.866 c
Relative velocity of two particles moving 
with velocity of light of light in opposite 
direction is 0 2c c 3c c
For a photon particle which is moving with 
a velocity of light, the rest mass is 0 1 2 3 0



The fictitious force, which acts on particle in 
motion relative to a rotating frame of 
reference is called

Coriolis 
force

 Newtonia
n force

Pseudo 
force

centripeta
l force

Coriolis 
force

If the particle is at rest relative to the 
rotating frame of reference the coriolis 
force is 0 1 10 2 0
When the particle is at a non-rotating of 
reference the Coriolis force 1 0 2 3 0
The Coriolis acceleration on a freely falling 
body under the action of gravitational force 
is

Directed 
towards 
the east

Directed 
towards 
the west

directed 
towards 
north

directed 
towards 
south

Directed 
towards 
the east

Prepared by Dr. B. Janarthanan, Associate Professor, Department of Physics, KAHE
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