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Scope: Classical mechanics was the first branch of Physics to be discovered, and is the foundation upon
which all other branches of Physics are built. Moreover, classical mechanics has many important
applications in other areas of science, such as Astronomy (e.qg., celestial mechanics), Chemistry (e.g., the
dynamics of molecular collisions), Geology (e.g., the propagation of seismic waves, generated by
earthquakes, through the Earth's crust), and Engineering (e.g., the equilibrium and stability of structures).
Classical mechanics is also of great significance outside the realm of science.

Objective: The emphasis of the course is on applications in solving problems of interest to physicists.
Students are to be examined on the basis of problems, seen and unseen.

UNIT I

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application to the motion of
a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field-
gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates
and velocities, Hamilton’s principle, Lagrangian and the Euler-Lagrange equations, one-dimensional
examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling
body in uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta
& Hamiltonian. Hamilton's equations of motion.

UNIT 1
Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for Simple
Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy.

UNIT 111

Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion
of the potential energy around a minimum, small amplitude oscillations about the minimum, normal
modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical
springs.

UNIT IV
Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations.
Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -
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dilation, length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-
velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum
relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-
momentum. Relativistic kinematics. Application to two-body decay of an unstable particle.

UNIT V

Fluid Dynamics: Density [ and pressure P in a fluid, an element of fluid and its velocity,
continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille’s
equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of
turbulence, Reynolds number.

Suggested Readings

1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3™ Edn. 2002,Pearson Education.
Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.

Classical Electrodynamics, J.D. Jackson, 3 Edn., 1998, Wiley.

The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4" Edn., 2003, Elsevier.
Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education.

Classical Mechanics, P.S. Joag, N.C. Rana, 1* Edn., McGraw Hall.

Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.

Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.

Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press

©CoNoOk~WN

Bachelor of Science, Physics, 2016, Karpagam Academy of Higher Education, Coimbatore - 21

2/2



Lecture Plan

2016 -2019
Batch

Enable | Enlighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 )

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

SUBJECT: Classical Mechanics

SEMESTER: 111

SUBJET CODE: 16PHP504A

CLASS: 111 B.Sc Physics

S.No | Lecture Topics to be covered Support
Duration Materials
(Hr)
Unit- 1

1. 1 Hr Review of Newtonian Mechanics T1(26-27)

2. 1 Hr Application to the motion of charged partical in electricand | T1(47-48), T1(49-
Magnetic field, Charged particle in uniform electric field, 50), T1(50-51)
magnetic field

3. 1 Hr Gyroradius and gyrofrequency, motion of charged particle in | T1(51), T1(53-54)
crossed electric and magnetic field

4. 1 Hr Generalized coordinates and velocities, Hamilton’s principle | T1(17), T1(18),

T1(21)

5. 1 Hr Lagrangiana and Euler-lagrangian equation T1(39-40)

6. 1 Hr One dimensional simple harmonic oscillator, falling body in | T1(125-126),
uniform gravity T1(137-138)

7. 1 Hr Application to coupled oscillator, canonical momenta and T1(377-378),
Hamiltonian T1(379)

8 1 Hr Hamilton’s equation of motion T1(334-335)

9 1 Hr Revision

Total number of Hours planned for unit-1 9 Hrs
Unit - 2

1. 1 Hr Hamiltonian for a Harmonic oscillator T1(123-126)

2. 1Hr Continuation of Hamiltonain for a harmonic oscillator T1(123-126)

3. 1Hr Solution of Hamilton’s equation for simple harmonic T1(126-128)
oscillator

4. 1Hr Contination of Hamilton’s equation for simple harmonid T1(126-128)
oscillator

5. 1 Hr Particle in a central force field T1(133-134)

6. 1 Hr Conservation of angular momentum T1(3-4)

7. 1 Hr Conservation of Energy T1(4-5)

8. 1 Hr Revision
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Total number of Hours planned for unit - 2

8 Hrs

Unit-3
1. 1 Hr Minima of potential energy and and points of stable T1(243-244)
equilibrium
2. 1 Hr Expansion of the potential energy around a minimum T1(244-245)
3. 1 Hr Small amplitude oscillations about the minimum T1(246-248)
4. 1 Hr Small amplitude oscillations about the minimum - T1(246-248)
Continuation
5. 1 Hr Normal modes of oscillations T1(249-250)
6. 1 Hr Examples ofr N identical masses connected in a linear T1(251-254)
fashion to (N-1) identical springs
7. 1 Hr Contination of normal modes of oscillation T1(251-254)
8. 1 Hr N-identical masses to (N-1) identical springs - Derivation T1(261-263)
9. 1Hr Revision
Total number of hours planned for unit - 3 9 Hrs
Unit - 4
1. 1 Hr Postulates of special theory of relativity, Lorentz T1(277), T1(279-
transformation 281)
2. 1 Hr Minkowski space, The invariant interval, light cone and T1(281-282),
world lines T1(283)
3. 1 Hr Space time diagram, Time dilation T1(284-285)
4, 1 Hr Length contraction, Twin paradox T1(286-287)
5 1 Hr Four vectors-space-like, time-like and light-like T1(288-290)
6 1 Hr Four velocity and acceleration, Metric and alternating tensors | T1(290-291),
T1(291-293)
7. 1 Hr Four momentum and energy-momentum relation T1(298-299)
8. 1 Hr Doppler Effect from a four-vector prospective, concept of T1(301-302),
four force, Conservation of four momentum T1(303), T1(304)
9. 1 Hr Relativistic kinematics, two body decay T1(306-307)
10. | 1Hr Revision
Total number of hours planned for unit - 4 10 Hrs
Unit-5
1. 1 Hr Density and pressure P in a fluid T1(323)
2. 1 Hr An element of fluid and its velolcity T1(324-325)
3. 1 Hr Contuinuty equation and mass conservation T1(326-327)
4, 1 Hr Stream-lined motion T1(327-328)
5. 1 Hr Laminar flow T1(329)
6. 1 Hr Poiseuille’s equation for flow of a liquid through a pipe T1(329-330)
7. 1 Hr Navier’s — Stokes equation T1(330-331)
8. 1 Hr Qualitativ description of turbulence T1(331-332)
9. 1 Hr Reynolds number, Revision T1(333)
10. | 1Hr Previuous year question paper discussion
11. | 1Hr Previous year question paper discussion

Dr. B. Janarthanan, Associate Professor, KAHE, Coimbatore-21
Department of Physics

Page 2/3




Lecture Plan

2016 -2019

Batch

12.

| 1 Hr | Previous year question paper discussion

Total number of hours planned for Unit - 5

12 Hrs

Textbooks

T1- Classical Mechanics, H. Goldstein, C.P. Poole and J. L. Safko, 3" Edition, 2002.

Reference Book

R1 — Classical Mechanics, R. S. Joag, N. C. Rana, It Edition, McGraw Hill

Pearson Education
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UNIT I

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Application to the motion of a
charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field-
gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and
velocities, Hamilton’s principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples

of the Euler-Lagrange equations- one-dimensional Simple Hafmonic Oscillations and falling body in

uniform gravity; applications to simple systems such ed oscillators Canonical momenta &

Hamiltonian. Hamilton's equations of motion.

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 1/19



\&/ KARPAGAM ACADEMY OF HIGHER EDUCATION

_— N
KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
ACADEITOTHEIEREDLCAOY COURSE CODE:16PHUS04A UNIT-1 : Classical Mechanics of Point Particles
(Established Under Section 3 of UGC Act, 1956 BATCH: 2016 _ 2019

Review of Newtonian Mechanics
Newton's first law of motion

Newton's first law was actually discovered by Galileo and perfected by Descartes (who
added the crucial proviso "in a straight line"). This law states that if the motion of a given body is
not disturbed by external influences then that body moves with constant velocity. In other words,

the displacement r of the body as a function of time £ cangoe written

r=rg+vi,

Tg

where and W are constant vectors. As ill 's trajectory is a straight-

gy

line which passes through point attime £ = to w. In the special case in

which v = 0 the body simply re

trajectory

Figure. Body’s trajectory

Nowadays, Newton's first law strikes us as almost a statement of the obvious. However, in
Galileo's time this was far from being the case. From the time of the ancient Greeks,

philosophers--observing that objects set into motion on the Earth's surface eventually come to

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 2/19
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rest--had concluded that the natural state of motion of objects was that they should remain at rest.
Hence, they reasoned, any object which moves does so under the influence of an external
influence, or force, exerted on it by some other object. It took the genius of Galileo to realize that
an object set into motion on the Earth's surface eventually comes to rest under the influence of
frictional forces, and that if these forces could somehow be abstracted from the motion then it

would continue forever.

Newton's second law of motion

Newton used the word —“motion" to me at we nowadays call momentum. The

P
momentum  of a body is simply defined as and its velocity wv:i.e.,

p=mv.

of that object's ion. ourse, this law is entirely devoid of content unless
we have some indepe
Newton's third law of m

Suppose, for the sake ument, that there are only two bodies in the Universe. Let us

label these bodies a and b. Suppose that body & exerts a force on body a. According to to

fhu. = _fn.l'l

Newton's third law of motion, body a must exert an equal and opposite force on

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 3/19
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fu_j_., fhu.
body &. See Fig. 22. Thus, if we label the “action" then, in Newton's language, is the

equal and opposed "reaction".

Suppose, now, that there are many objects in the Universe (as is, indeed, the case). According to

Newton's third law, if object  exerts a force f‘} on object z then object z must exert an equal
f.=-1; J

and opposite force on object . It fo at all of the forces acting in the

Universe can ultimately be grouped into equal opposite action-reaction pairs. Note,

incidentally, that an action and its associated i ent bodies.

a

Why do we nee 1 law2 Ae it i ost a matter of common sense. Suppose

myself up off the ground: cannot self-generate a force which will spontaneously
lift me into the air: | need t t forces on other objects around me in order to achieve this.
Thus, Newton's third law essentially acts as a guarantee against the absurdity of self-generated

forces.

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 4/19
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Application to the motion of a charge particle in external electric and magnetic fields

q
Consider a particle of mass 1 and electric charge moving in the uniform electric and
magnetic fields, E and B. Suppose that the fields are ““crossed" (i.e., perpendicular to one
another), sothat E- B = 0.

The force acting on the particle is given by the familiar Logéntz law:

f—q (E+vxB),
where V is the particle's instantaneous velocl second law, the particle's
equation of motion can be written

It turns out that we can e tion by transforming to a

different inertial frame. Thus

ExB
_|_

v =
Equation

dv’
m — —=
dt

where we have made use 0 ndard vector identity, as well as the fact that E - B = 0. Hence,

we conclude that the addition electric field perpendicular to a given magnetic field simply
causes the particle to drift perpendicular to both the electric and magnetic field with the fixed

velocity

ExB
BZ '’

VEB =

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 5/19
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irrespective of its charge or mass. It follows that the electric field has no effect on the particle's
motion in a frame of reference which is co-moving with the so-called E-cross-B velocity given

above.
Let us suppose that the magnetic field is directed along the z-axis. As we have just seen, in

ExB
the frame, the particle's equation of motion reduces.to Equation, which can be written:
dv!

x

dt

I
dvy

dt

where we have judiciousl en the origin of time so as to eliminate any phase offset in the

ExB

arguments of the above trigonometrical functions. According to Equations, in the frame,

our charged particle gyrates at the cyclotron frequency in the plane perpendicular to the magnetic

Vi
field with some fixed speed , and drifts parallel to the magnetic field with some fixed

v
speed . The fact that the cyclotron frequency is positive for positively charged particles, and

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 6/19
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negative for negatively charged particles, just means that oppositely charged particles gyrate in
opposite directions in the plane perpendicular to the magnetic field.
Equations can be integrated to give

x' = —p cos((Q 1),
y’ = p sin(Q)t)
z' = V| t,

where we have judiciously chosen the origin of ou dinate system so as to eliminate any

constant offsets in the above equations. Here,

L)
is called the Larmor radius. Equations ar Igned along the

direction of the magnetic he., the z-dir

iral trajectory negatively charged particle in a magnetic field.

We conclude that ed particle in crossed electric and magnetic field is

E x

a combination of nd spiral motion aligned along the direction of the magnetic field

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 7/19
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Motion of charged particle in uniform magnetic field

We know that the magnetic force acting on a charged particle moving in a magnetic field
is perpendicular to the velocity of the particle and that consequently the work done on the particle
by the magnetic force is zero. Let us now consider the special case of a positively charged particle

moving in a uniform magnetic field with the initial velocityuector of the particle perpendicular to

the field. Let us assume that the direction of the magn d is into the page. Figure shows that

the particle moves in a circle in a plane perpendicul

The particle move this way because the magnetic force Fgis at right angles

to vand B and has a constant itude gqvB. As the force deflects the particle, the directions
of v and Fg change continuously, as Figure 29.17 shows. Because Fg always points toward the
center of the circle, it changes only the direction of v and not its magnitude. As Figure 29.17
illustrates, the rotation is counter-clockwise for a positive charge. If g were negative, the rotation
would be clockwise. We can use Equation 6.1 to equate this magnetic force to the radial force

required to keep the charge moving in a

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 8/19
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circle:
21" = ma,
9
muo-
[v‘B — qu =
¥
muo
=
qB

That is, the radius of the path is proportional to ear momentum mv of the particle and

inversely proportional to the magnitude of thegcharge to the magnitude of the
magnetic field. The angular speed of the partic\
v B
Ww=—= q—
7 m

When a particle o e g and mass m is placed in an electric field E, the electric force
exerted on the charge is qE. | is the only force exerted on the particle, it must be the net force
and so must cause the particle to accelerate. In this case, Newton’s second law applied to the
particle

gives

F,= ¢E = ma

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 9/19
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The acceleration of the particle [
E
o = R
therefore n

If E is uniform (that is, constant in magnitude and direction), then the acceleration is

constant. If the particle has a positive charge, then its acceleration is in the direction of the electric

field. If the particle has a negative charge, then its acc jon is in the direction opposite the
electric field.

Generalized Coordinates

qi .
Let the Cfor i=1,F, be a se ich uniquely specifies the
instantaneous configuration of so is assumed_that each of
di
the can vary independently. The coordinates, or
angles, or some mixture erefore, termed generalized
coordinates. A dynamical i i ionts fully specified by JF
independent ge i rees of freedom. For instance, the

instantaneous po nsions is completely specified by

its three C 1 L and z. Moreover, these coordinates are clearly

independent of mical system consisting of a single particle moving

Suppose that we have a dy | system consisting of N particles moving freely in three

dimensions. This is an J = 3 N degree of freedom system whose instantaneous configuration

'x_.
j
can be specified by J Cartesian coordinates. Let us denote these coordinates the :

]':]:‘?: X1, %2, X3
for . Thus, are the Cartesian coordinates of the first

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 10/19
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X4,%5, X6
particle, the Cartesian coordinates of the second particle, etc. Suppose that the

instantaneous configuration of the system can also be specified by JF generalized coordinates,

i . i
which we shall denote the ~ , for 1 = 1, F. Thus, the might be the spherical coordinates of

di

Xj
e . In other words,

the particles. In general, we expect the  to be function

X5 :xi[qhql:' ..qult]

j=1F

for . Here, for the sake of generalit ded the possibility that the

The Cartesian equations of motion of our system take the form

m;X; = fj,

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 11/19



\é@/ KARPAGAM ACADEMY OF HIGHER EDUCATION

A — ~—
KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
ACipE OTHERER SO COURSE CODE:16PHUS04A UNIT-1 : Classical Mechanics of Point Particles
(Established Under Section 3 of UGC Act, 1956 ) BATCH: 2016 _ 2019
j:]lj:- my, Ma, M3
for , Where are each equal to the mass of the first
My, Mg, Mg
particle, are each equal to the mass of the second particle, etc.Furthermore, the

kinetic energy of the system can be written

X; =%;(q1,d2," -, dF, 1)
Now, since

i=1F

for . Hence, it follows that

According to the above eg

Now,

k=1,F
Furthermore,
l Bx,z Bx,
PAGIH 0d;’

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 12/19
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and
10%7 | %
— — x- =
2 0q; : aq;

Finally, making use

It is helpful to introduce a function L, called the Lagrangian, which is defined as the difference

between the kinetic and potential energies of the dynamical system under investigation:

L=K-1.

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 13/19
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di
Since the potential energy Ll is clearly independent of the  , it follows from Equation that

da(aL)_aL
dt\ 94g; qu_'

for 1= 1. . This equation is known as Lagrange's equation.
Hamilton’s Principle

We can specify the instantaneous configuratio nservative dynamical system

fori=1,F.

Kldg1,d2,- -, dr, d1,42,
Let nt the

for i=1,F.
Note that the above eq exactly the same mathematical form as the Euler-

Lagrange equations. Indeed, lear, from Section that the J Lagrangian equations of motion

can all be derived from a single tion: namely,

1z
BJ L[qhqzl'”'qulqhqll'"quit]dtzo'
f

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 14/19
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In other words, the motion of the system in a given time interval is such as to maximize or
minimize the time integral of the Lagrangian, which is known as the action integral.

Simple Harmonic Oscillator Equation

Suppose that a physical system possessing a single degree of freedom--that is, a system whose

t s(t)

instantaneous state at time is fully described by a single dependent variable, --obeys the
following time evolution equation [cf., Equation (2)],

§+w's=0,

w >0

where is a constant. As we have see ation is called the simple

harmonic oscillator equation, and ha:
s(t) = a cos(wt — @),

a>0 ¢

where and ibes a type of oscillation

W
t angular frequency, . The phase

¢
angle, its maximum value. The frequency
of the oscilla i i , and the period is . The frequency and
W
period of the oscilla i py the constant  , which appears in the simple
a
harmonic oscillator equation, eas the amplitude, , and phase angle, , are determined by

the initial conditions. In fact, and are the two arbitrary constants of integration of the

second-order ordinary differential equation. Recall, from standard differential equation theory

n
(Riley 1974), that the most general solution of an  th-order ordinary differential equation (i.e.,

an equation involving a single independent variable, and a single dependent variable, in which the

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 15/19
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n

highest derivative of the dependent with respect to the independent variable is  th-order, and the

n
lowest zeroth-order) involves  arbitrary constants of integration. (Essentially, this is because we

n
have to integrate the equation  times with respect to the independent variable to reduce it to

zeroth-order, and so obtain the solution. Furthermore, e integration introduces an arbitrary

§S=da .T:ﬂ.t+b

constant. For example, the integral of , wh

b

where s an arbitrary constant.)

is a known constant, is

5
Multiplying Equation by, we ob

§f+wis=0.

However, this can also b

where

1.1
E=—5i"+=-w 5.
2% ta

&
According to Equation, is a conserved quantity. In other words, it does not vary with time.

This quantity is generally proportional to the overall energy of the system. For

&
instance, would be the energy divided by the mass in the mass-spring system. The
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&

quantity is either zero or positive, because neither of the terms on the right-hand side of
Equation can be negative.

§ = constant
Let us search for an equilibrium state. Such a state is characterized by , SO
s=5§=0 s=10 &E=0
that . It follows from Equation that d from Equation that . We
&E=0
conclude that the system can only remain perma at rest when . Conversely, the

system can never permanently come to rest erefore, keep moving for

5
that attains it maximu

5
amplitude of ion. Li se, attains its maximum value,

The simple harmonic oscillati cified by Equation can also be written in the form

s(t) = A cos(wit)+ B sin(w t
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A =acos¢ B=asing
where and . Here, we have employed the trigonometric

cos(x —y) =cosx cosy + sinx siny
identity Alternatively, Equation can be written

s(t) = a sin(fwt — ¢'),

¢ =¢—n/2 _ _
where , and use has of the trigonometric
cos @ = sin(f + 7 /2)
identity . It follows that th many different ways of representing a
simple harmonic oscillation, but they all inv i inati ine and cosine functions
wt+c
whose arguments take the form However, irrespective of its

constant. This can be verified by

making use of the fact

s51(2)

property that their soluti e. This means that if is a solution to Equation ,

so that

v 2
81 = — §,

54(1)

and is a different solution, so that

.- 3
87 = —W §q,
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51(f) + s3(f) _ _ » _ _ _
then is also a solution. This can be verified by adding the previous two equations,

dg.'.i']f‘dtz +d‘232;d‘2 = dz(.'f] + Jz}fdfz

and making use of the fact that . Furthermore, it can

51 83 as) + b Fa
be demonstrated that any linear combination of and , such as :

a b

where and are constants, is also a solution. It is

pful to know this fact. For instance,
the special solution to the simple harmonic

s0)=1 50)=0

conditions and

tor equation, with the simple initial

51(t) = cos(w t).

= 5’:]
becomes

s(t) = sy cos(wt)
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UNIT -1
QUESTIONS Choicel Choice2 |Choice3 |Choiced |ANSWER
Canonical
transformations are the Phase Hillbert  |Minkows [Space Phase
transformations of space space ki space  [phase space
The Hamilton’s principle |both both
function is a generating  [constant constant  |constant
function, which give rise [moments |constant |co- momenta (moments
to canonical and co- moments |ordinates [and co- and co-
transformation involving |ordinates  |only only ordinates |ordinates
All function whose
Poisson bracket with the constant of |constant
Hamiltonian vanishes will |constant of |momentu |of co- all the constant of]
be motion m ordinates [above motion
Let L and P represent the
matrices of Lagrange and
Poisson brackets
respectively, then LP=1 LP=-1 LP=-12 [LP=12 |LP=-1
The frequency of
Harmonic oscillator is [1/ 2p(k/m)5 [1/2p(k/m) |[1/2p(k/m [1/2p(k/m)
given by A i )" [1/2p(/m)]| ]
The given transformation [Q,P]=
is not canonical when [QP]=1 [[Q,P]=-1[1/2 [Q,P1=0 |[Q,P]=0
The function p =1/Q
and q= PQ2 is conjugate |canonical |identical [hyrebolic |canonical
In point transformation
one set of co-ordinates g;
to a new set Q; can be Q=Qi(qs |Q;=-Q; [Q;=P; Q;=-P;(q;|Q=Q
expressed as t) (g, 1) (g; 1) 1) (g;, 1)
The problem consists on
finding the path of a
charged particle under the |Jacobi cononical |Kepler Poission  Kepler
action if a central force is [problem problem |problem [problem  |problem
Hamilton — Jacobi
method is used to find the |Vibratory |periodic |circular [all the periodic
solution of problem in motion motion mation above motion
Hamilton equation of
motion is convergent |divergent |variant invariant  |invariant
Poisson and Lagrange
brackets are
under Canonical
Transformation convergent |divergent |invariant [variant invariant
Equation of motion in
Poisson bracket from momentu all the
depends on position m time all the three [three
In Kepler problem, the
path of the particle is circular parabolic |elliptical |zig-zag elliptical




(X Y]= |[XY]=- |[XY]= [[XY]=- |[XY]=-
In Poisson bracket [Y,X] [Y,X] 2[Y,X]  [2[Y.X] [Y,X]
In Poisson bracket [XX]=0 [[X,X]=1 |[X,X]=2 [[X,X]=-2 [[X,X]=0
[X,Y+Z] = [[X,Y+Z] =|[X,Y+Z] [[X,Y+Z]= [[X,Y+Z] =
[X,Y] - XY]* [=IXY]+|[XY]/ X, Y]+
In Poisson bracket [X,Z] [X,Z] [X,Z] [X,Z] [X,Z]
X,YZ]= [[X,YZ]= |[X,YZ]= [[X,YZ]= [[X,YZ]=
Y[X,Z]* |Y[X,Z]- |Y[X,Z]/ |Y[X,Z]+ |Y[X,Z]+
In Poisson bracket [X,Y]Z [X,Y]Z XY]Z |[XY]Z [X,Y]Z
X.ailor |2X.dgilor [2[X.qilor
[X.qjlor ={[X.ailop =|=2 =- =-
In Lagrange bracket [9,Xlor [0, Xlor [[9.Xlor [[9.Xlor [[9i.X]or
X.Ylor
[X.Ylopr=-|[X.Ylor=|= [X.Y]op =[X.Ylor =
In of Lagrange bracket X, Ylqp (XYl 2[X Y], [20XY]ep [[X Y]
[X.X]qp
(X Xlgp = [[XXlap = |= X Xlgp = [[XXlqp =
(X Xlop= |[XXlop=1{[XX]lop=|[XXlor= |[X.Xlopr=
In of Lagrange bracket 1 1 0 1/2 0
Poisson bracket of two
operator X and Y in [XY]=- |[XY]=- [[XY]=-|[X)Y]= [X,Y]=-
quantum mechanics is 2p/h[XY- [2p/h[XY+ |p/h[XY- [2p/h[XY- |2p/h[XY-
given by YX] YX] YX] YX] YX]
If the Lagrangian of the
system does not contain a cylindrical spherical
paricular co-ordinate q,  |cyclic co- |co- polar co- |polar co- [cyclic co-
then ordinates |ordinates |ordinates [ordinates |ordinates
Lagrangian L = T-V T+V T-vy _|m+wn'”? |1-v
Hamiltonian H = T-V T+V (T-V)*  |[(T+0)'"?  |T+v
Advantage of Action and
Angle variable is that one
can obtain the frequencies |Vibratory |periodic |circular [all the periodic
of motion motion mation above motion
For non-interacting
particle in a quantum state
the energy E is given by  [p/2m pz/m p/m p2/2m p2/2m
Co-ordinate
transformation equations
should not involve momentu
explicity.  |position m time force time
Generating function have
forms.  [four two three five four
Hamilton’s principal
function is denoted by
. H K P S S
Hamilton-Jacobi is a
partial differential
equation in
variables. n n+l1 n-1 n+2 n+l1
is a
partial differential| Hamilton- Hamilton-
equation in (n+1)|Jacobi Lagrangia |Hamiltoni Jacobi
variables. equation  |n an Jacobian  [equation
Hamilton’s characteristic
function W is identified as|kinetic potential
energy energy work action A |action A




Hamilton’s characteristic
function is denoted by

The number of|
independent  ways  in
which a  mechanical
system can move without
violating any constraint
which may be imposed is|action-
called the|angle generalize |degrees of|co- degrees of
variables  |d variables |freedom [ordinates |freedom

The path adopted by the
system during its motion
can be represented by a
space of|

dimensions. 3N 6N 9N N 6N

Co-ordinate
transformation equations
should not involve

momentu
explicitly. time position  |m velocity time
Path in phase space
almost refers to actual
path. statistical  |N 3N dynamical |dynamical

The one way of obtaining
the solution of mechanical
problem is to transform

set of co-
ordinates to
set of co-ordinates that are new to
all cyclic. old to new |new to old |new old to old |old to new
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UNIT 11
Hamiltonain

Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton’s equation for Simple

Harmonic Oscillations; particle in a central force field- conservation of angular momentum and energy.
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Hamiltonian for a harmonic oscillator

A simple realization of the harmonic oscillator in classical mechanics is a particle which is acted
upon by a restoring force proportional to its displacement from its equilibrium position.
Considering motion in one dimension, this means

F=kx(5.1)(5.1)F=kx
Such a force might originate from a spring which obeys Hooke’s law, as shown in Figure.
According to Hooke’s law, which applies to real springs for sufficiently small displacements, the
restoring force is proportional to the displacement—either stretching or compression—from the

equilibrium position.

Tt

Figure: Spring obeying Hooke'’s law.

The force constant kk is a measure of the stiffness of the spring. The variable xx is chosen equal
to zero at the equilibrium position, positive for stretching, negative for compression. The negative
sign in Equation reflects the fact that FF is a restoring force, always in the opposite sense to the
displacement xx.
Applying Newton’s second law to the force from Equation, we find XX

W P=—kx
where mm is the mass of the body attached to the spring, which is itself assumed massless. This
leads to a differential equation of familiar form, although with different variables:

x"(t)+m2x(t)=0
with
®2=km

The dot notation (introduced by Newton himself) is used in place of primes when the independent

variable is time. The general solution to Equation is
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x(t)=Asinot+Bcosot)
which represents periodic motion with a sinusoidal time dependence. This is known as simple
harmonic motion and the corresponding system is known as a harmonic oscillator. The oscillation
occurs with a constant angular frequency
o=km——radians per second
This is called the natural frequency of the oscillator. The corresponding circular (or angular)
frequency in Hertz (cycles per second) is
v=m2n=12(
The general relation between force and potential energy in a conservative system in one

dimension is

Thus the potentia iven by
which has the shape of a parabola, as drawn in Figure. A simple computation shows that the
oscillator moves between positive and negative turning points txmaxtxmax where the total
energy EE equals the potential energy 12kx2max12kxmax2 while the Kinetic energy is
momentarily zero. In contrast, when the oscillator moves past x=0, the kinetic energy reaches its

maximum value while the potential energy equals zero.
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0 X

Figure. Potential energy function and first few energy levels for harmonic oscillator.

A 4
HAMILTONIA‘UNCTIO

Hamiltonian function, also called Hamiltonian, mathematical definition introduced in

1835 by Sir William Rowan Hamilton to express the rate of change in time of the condition of a

dynamic physical system—one regarded as a set of moving particles. The Hamiltonian of a
system specifies its total energy—i.e., the sum of its kinetic energy (that of motion) and its

potential energy (that of position)—in terms of the Lagrangian function derived in earlier studies

of dynamics and of the position and momentum of each of the particles.

The Hamiltonian function originated as a generalized statement of the tendency of physical

systems to undergo changes only by those processes that either minimize or maximize the abstract

quantity called action. This principle is traceable to Euclid and the Aristotelian philosophers.

When, early in the 20th century, perplexing discoveries about atoms and subatomic particles
forced physicists to search anew for the fundamental laws of nature, most of the old formulas

became obsolete. The Hamiltonian function, although it had been derived from the obsolete
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formulas, nevertheless proved to be a more correct description of physical reality. With
modifications, it survives to make the connection between energy and rates of change one of the

centres of the new science.

HAMILTON’S VARIATIONAL PRINCIPLE:

Lagrange’s equations have been shown to be the consequemee of a variational principle, namely,

the Hamilton’s principle. Indeed the variational met s often proved to be the preferable

method of deriving equations, for it is applicable t s of systems not usually comprised with
in the scope of mechanics. It would be simil jational principle could be

found that leads directly to the Hamilton’s equa

Hamilton’s principle is stated as

dl=0 r Ldt
t

Expressing L in he expression

H= Z pidi
We find,

¥)
o1=9% I E{pi
t
| ¥)

aj S o dgi - & _[H (a Py )it =0
t, ! t
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The above equation is some times is referred as the modified Hamilton’s principle. Although it
will be used most frequently in connection with transformation theory ,the main interest is to

show that the principle leads to the Hamilton’s canonical equations of motions.

The modified Hamilton’s principle is exactly of the form of the variational problems in a space of

2n dimensions as
t

d1=3 f(q,q,p, p t)dt=0
11

For which the 2n Euler-Lagrange equations ar

The integrand f gj only through the pigi term, gjonly in H. Hence

equation (2.30) leads

. OH
B+ —— =0

odi

On the other hand there is no explicit dependence of the integrand in equation (2.30) on p;. The

above equation therefore reduce simply to

. OH
9- - e
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The above two equations are exactly Hamilton’s equations of motion .The Euler —Lagrange
equations of the modified Hamilton’s principle are thus the desired canonical equations of
motion .From the above derivation of Hamilton’s equations we can consider that Hamiltonian
and Lagrangian formulation and therefore their respective variational principles, have the same

physical content.

Hamilton's Equations:

The equations defined by

i M
e 2)
where p=dp/d gnd ¢=dq /i [ is the so-called Hamiltonian, are called
Hamilton : ! arise i ems of celestial mechanics.

The vec

g; = Hy, (t,q.p) (3)
pi= —Hy (1,9, p) (4)
(Zwillinger 1997, p. 136; lyana d Kawada 1980, p. 1005).

Another formulation related to Hamilton's equation is

P ©)
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where L is the so-called Lagrangian.

HAMILTON’S CANONICAL EQUATIONS OF MOTION:
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Theorem 6 : Define the Hamiltonian and hence derive the Hamilton's canonical
equations of motion.

Proof : We know the Hamiltonian H is defined as

H=H(g.p,t)= Y. p ;L. (1)
1

Consider ~ H=H(q,.p,.1). )

We find from equation (2) that
JH  dH
dH = Z—dp Za—dqura—dr. ...(3)
: f
1

I

Now consider H=) p.g;-L.
i
Similarly we find
dH =% gdp;+Y dg,p,-dL,
j j

= dH = qup +qup—2j—dq Z dq —C:]—dr. ()

Iy

We know the generalized momentum is defined as
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, L
it
dqj
Hence equation (4) reduces to
_ dL oL
dH:ZqJ.dpJ.—Z_—dqj——dr .. (5)

Now comparing the coefficients of dp;,dg; and dt in equations (3) and (5) we get

COH L O0H oL oM

qj—a, a—%——a—%, E)_r__a_r‘ ... (6)
However, from Lagrange’s equations of motion we have
p = d—L
dgq,
Hence equations (6) reduce to
;| _ oH )

dap, dq,
These are the required Hamilton’s canonical equations of motion. These are the set of

2n first order differential equations of motion and replace the n Lagrange’s second

order equations of motion.

‘v
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PHYSICAL SIGNIFICANCE OF H:

1. For conservative scleronomic system the Hamiltonian H represents both a
constant of motion and total energy.

2. For conservative rheonomic system the Hamiltonian H may represent a
constant of motion but does not represent the total energy.

Proof : The Hamiltonian H is defined by

H:ZPJ“?;_L- (D
j
where L is the Lagrangian of the system and
dl.
P ==— -(2)
J CJ'Q"J,—

is the generalized momentum. This implies from Lagrange’s equation of motion that

a YW Y

o d{oL)|_ oL
Pi=—l |75 . (3)
dt{ dq; | oq,
Differentiating equation (1) w. r. t. time t, we get
dH dL JL . dL
— =N"pag+Spi -5 —"Tg -5 —Yj —— ()
R R R R
On using equations (2) and (3) in equation (4) we readily obtain
dH  dL
== (5
dr ot
Now if L does not contain time t explicitly, then from equation (5), we have
ﬁ: 0
dt
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This shows that H represents a constant of motion.

However, the condition L does not contain time t explicitly will be satisfied by
neither the kinetic energy nor the potential energy involves time t explicitly.

Now there are two cases that the kinetic energy T does not involve time t explicitly.

1. For the conservative and scleronomic system :

In the case of conservative system when the constraints are scleronomic, the
kinetic energy T is independent of time t and the potential energy V is only function
of co-ordinates. Consequently, the Lagrangian L. does not involve time t explicitly
and hence from equation (5) the Hamiltonian H represents a constant of motion.
Further, for scleronomic system, we know the kinetic energy is a homogeneous

quadratic function of generalized velocities.
T=3%a;4,4,. .- (6)
.k

Hence by using Euler’s theorem for the homogeneous quadratic function of

genera]ized velocities we have
1 L = 2 1 - -
E fi‘J _j (;]

| AN 2

For conservative system we have

oL arT

P = a = d—qJ . - (8)
Using (7) and (8) in the Hamiltonian H we get

H=2T—(T-V),

H=T+V=FE. )

where E is the total energy of the system. Equation (9) shows that for conservative

scleronomic system the Hamiltonian H represents the total energy of the system.
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2. For conservative and rheonomic svstem :

In the case of conservative rheonomic system, the transformation equations
do involve time t explicitly, though some times the kinetic energy may not involve
time t explicitly. Consequently, neither T nor V involves t, and hence L does not
involve t. Hence in such cases the Hamiltonian may represent the constant of motion.
However, in general if the system is conservative and rheonomic, the kinetic energy

is a quadratic function of generalized velocities and is given by

T=Zk“aﬁ¢jc}*+z.ﬁjcj'j+a ... (10)
g d
where
ﬂj* :Zlfﬂ‘- -a": _arj N
T 2 dq}' d'?.t (11)
a _me o; i
! 7 3gJ ar,
1 (or \
a= —m. | — .
ZZ l ot ,J

We see from equation (10) that each term is a homogeneous function of generalized
velocities of degree two, one and zero respectively. On applying Euler’s theorem for

the homogeneous function to each term on the right hand side, we readily get

A 4
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Z_qjg—_TﬂTzH?. ...(12)
j q;
where

=2 a.4,4;.

7k

n= za,-qj,

T,=a
are homogeneous function of generalized velocities of degree two, one and zero
respectively. Substituting equation (12) in the Hamiltonian (1) we obtain

H=T,-T,+V
showing that the Hamiltonian H does not represent total energy. Thus for the

conservative rheonomic systems H may represent the constant of motion but does not

represent total energy.

APPLICATION OF HAMILTONIAN

(i)SIMPLE PENDULU

-

Lzémfzéz—mg:’(]—cosé?}, (1)
where the generalized momentum is given by
L e . P
=—=ml"6=> 6=-%. ... (2)
Pe 068 mi”

The Hamiltonian of the system is given by
H=pb6-1L,

= H= peé—%mfzéjz +mgl(1—cos@).
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Eliminating & we obtain

2

sz‘:;frmgf(l—cosﬁ}‘ .. (3)
Hamilton’s canonical equations of motion are
‘?; = EJ_H’ p.=- B_H i
dp, ' dq,

These equations give

Py
ml*’

= p, =—mglsiné . Y
Now eliminating p, from these equations we get

§+%sin9:{l (5

Now we claim that H represents the constant of motion.
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Thus differentiating equation (3) with respect to t we get

ﬂ:%hmg.-'sinrfﬁ 6,
d ml*
= ml*68 + mglsin 66,

=mi*6 §+§sin9 ‘

—=0.
dt

This proves that H is a constant of motion. Now to see whether H represents total

energy or not, we consider

1 b I
T+V =Emi'£?2 +mgl(1-cos@).

o WY N

Using equation (4) we eliminate & from the above equation, we obtain

7

T+V =—Le_+mgl(1-cos@). . .(6)
2ml”
This is as same as the Hamiltonian H from equation (3). Thus Hamiltonian H

represents the total energy of the pendulum.

\‘
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(IMLINEAR HARMONIC OSCILLATOR:

Solution: The one dimensional harmonic oscillator consists of LA iAiiedd i iy

a mass attached to one end of a spring and other end of the
spring is fixed. If the spring is pressed and released then on
account of the elastic property of the spring, the spring exerts a
force F on the body in the opposite direction. This is called FT @
restoring force. It is found that this force is proportional :'j

to the displacement of the body from its equilibrium position.

Focx

F=—kx

where k is the spring constant and negative sign indicates the force is opposite to the

displacement. Hence the potential energy of the particle is given by
a W N\ Vv

V:—[Fdx,
V= [kxdx+c,
V:E'FC,

2

where c¢ is the constant of integration. By choosing the horizontal plane passing
through the position of equilibrium as the reference level, then V=0 at x=0. This
gives c=0. Hence potential energy of the particle is

1
V=—kx". L (1
5 (1)

The kinetic energy of the one dimensional harmonic oscillator is

1 5
T=—mi". R
5 (2)
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Hence the Lagrangian of the system is

L=tmi?— L .3
2 2
The Lagrange’s equation motion gives
k

i+x=0, o =—. Y
m

This is the equation of motion. @ is the frequency of oscillation.
The Hamiltonian H of the oscillator is defined as
H=ixp - L,

H=ip, —%m.x2 +%kx3,

o BN NN

dL _ P,
=—=mi=> xi=—2.
X m

where
P,

Substituting this in the above equation we get the Hamiltonian

=P 12 .5

- v
Solving the Hamilton’s canonical equations of motion we readily get the equation (4)

as the equation of motion.

Energy Conservation
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In the gravitational physics of orbits that we have been considering there are two important forms
of energy that are being exchanged. GRAVITATIONAL POTENTIAL ENERGY and KINETIC
ENERGY. The kinetic energy is the energy associated with a object's motion and is given by
Ekin= Mp V?/2.

where My, is the mass, say of a ball, and V is the magnitude of the velocity (the speed).

Now the gravitational potential energy is the energy that a;body has which can subsequently be

used to accelerate the body to a larger magnitude of ve
length at rest, and let the ball drop to the Earth, t

or example, if | hold a ball at arms
will speed up before hitting the Earth.
This potential energy, as | was holding the bal

Egrav:Mbg H,
where H is the height of the ball above the Earth's acceleration on the Earth is
0=(GMe/R?) = 9.8 meters/s? (see th rlier packet

equal to the maximum kiné

the ball falls, H . TF ati ecreases. Where does it go? Well, the

and slowing down near
A bit more on the Ball
Back to the ball: note that w | drop the ball, it bounces back up it slows down as its
gravitational potential energy is regained. Why does does the ball always return to a height
slightly lower than that from which is was originally dropped? The reason is that there are other
sources of energy loss: heat, compression, stresses on the ball itself which cannot be regained as
gravitational energy. However, when all these energies are added up, their total is equal to the

same as the initial gravitational potential energy.
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Energy conservation is fundamental. Physics can describe to us only how energy in the Universe
transforms from one form to another.

Angular Momentum Conservation

Objects executing motion around a point possess a quantity called
ANGULAR MOMENTUM. This is an important physical quantity

¥

-

fEF

is rigorously conserved in our Universe. It can be tran [ ooy L = mvr
executing uniform circular motion around a much large e can neglect the effect of
the center of mass) the amount of angular mo i rm. As the adjacent figure

L = mvr
where L is the angular momentum, m i j gnitude of its
velocity, and r is the sep
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Il B.Sc., PHYSICS (2016-2019)

CLASSICAL MECHANICS (16PHU504A)

UNIT -1l

QUESTIONS Choicel |Choice2 [Choice3 |Choiced |[ANSWER

If the operators X, Y commute, then [X, Y] =

. 1 -1 0 -2 0
If [X, Y] =0, then X and Y behave like inversely
variables of classical proportio |proportio

mechanics. statistical [dynamical|nal nal dynamical

If Poisson bracket of two variables in

classical mechanics is zero, then the be

operators which represent these variables multiplied |proportio

in quantum theory should .|vanish twice nal commute [commute

exponenti

The Lagrange’s bracket is not ally

under canonical transformation. invariant |variant applicable |variant invariant

Lagrange’s equation of motion are second

order equations with degrees

of freedom. n+1 n 2n+1 3n 2n+1

The greatest advantage of action and angle

variable is that we can obtain the

of periodic motion

without finding a complete solution for the [displacem |frequenci accelerati [frequenci

motion of the system. ent es total time [ons es

The generalized co-ordinate conjugate to Jj|action dynamic [statistical |angle angle

are called variable [variable |variable |variable |variable
angular linear angular
momentu |angular |momentu [linear momentu

Jj has the dimension of m velocity [m velocity [m

If F does not involve time explicitly, then is is

the Poisson bracket of F with H proportio |proportio
nal with F |nal with K [Vanishes |exist Vanishes

If the Poisson bracket of F with H vanishes | positive [constant |negative [same constant

then F will be a . value of motion |value value of motion

If Poisson bracket of momentum with H angular [linear linear

vanishes, then is linear momentu [momentu |[momentu

conserved. velocity [energy m m m




If Poisson bracket of momentum with H

vanishes, then the co-ordinate momenta is irrotation
cyclic rotational |al spherical [cyclic
Hamilton'
S
Lagrange’s bracket does not obey the associativ commutat|variationa |commutat
law. e kepler’s [ive | law ive
H= T-V T+V T Vv T+V
L= . T+V T \ T-V T-V
In case of either of the set of conjugate exponenti
variables with (q, p) or with (Q, P), the inversely |ally
value of the Poisson bracket remains proportio |proportio |proportio
. same nal nal nal same
In new set of co-ordinates all Qj are irrotation
. rotational |al cyclic variable [cyclic
In new set of co-ordiantes all Pj are irrotation
cyclic constant [rotational |al constant
If H is conserved then the new Hamiltonian constant |constant
Kis same variable |[different |of motion [of motion
exponenti
The matrix of Lagrange’s bracket is the inversely |ally
as the matrix of Poisson proportio |proportio |proportio
bracket with sign changed. same nal nal nal same
61. Anassembly of particles with
inter-particle distance is called
as rigid body fixed different |1 mm 2 mm fixed
Degree of freedom to fix the configuration
of arigid body is 3 6 5 0 6
Larmor's
These are most useful set of generalised co{lLagrangia [azimuthal |Euler’s precessio |Euler’s
ordinates for arigid body and are angles |nangle |angle angle nangle |angle
Angular momentum of a rigid body is L=Iw/2 |[L=2lw L=1Iw2 L=Iw L=Iw
A mathematical structure having nine
components in 3-D is termed as tensor of
rank 2 3 4 0 2
The rotation about space z-axis ( angle f ) is [translatio |precessio precessio
called n n nutation |[spin. n
Rotation about intermediate X1 axis ( translatio [precessio
angle q ) or line of nodes is called n n nutation |[spin. nutation
The rotation about 2’ axis ( angle Y) is translatio [precessio
called n n nutation |[spin. spin.
The variation of angle q is referred as
of the symmetry axis of the top [translatio |precessio
and is n n nutation |spin. nutation




neither

slowor [always always fast nor [always
Precession can be fast slow fast slow slow
fast slow slow
is ordinarily observed with a precessio |precessio [slow fast precessio
rapidly spinning top. n n nutation |nutation [n
In case of top amplitude of
nutation is small, nutation is sinusoidal, slow rotating |fast both a & bjfast
wmin= [wmin= |wmin= |[wmin= [wmin=
The minimum spin angular velocity below [(4mgli1/13{(4mgll1/13]|(4mgli1/I3[(4mgli1/13](4mgll1/I3
which top cannot spin stably about vertical |2) 2)3/2 2)2 2)1/2 2)1/2
When wz < wmin then the top beginsto |[wobble |precesse |nutate spin. wobble
Vi=w2x [Vi=(wx Vi=w3x
Angular velocity of a rigid body is given by |[ri ri)1/2 Vi=wxri |ri Vi=wxri
Sm2(ri x [Sm(ri x [Sm2(ri x |Sm(ri x |Sm(ri x
Angular momentum of a rigid bodyisL=|Vi) Vi )2 Vi )2 Vi) Vi)
The diagonal elements Ixx, lyy, 1zz of
inertia | are moments of inertia tensor vector scalar donar tensor
symmetri [antisymm perpendic |[symmetri
Tensor | is to principal axes C etric parallel  Jular C
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Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium,
expansion of the potential energy around a minimum, small amplitude oscillations about the

minimum, normal modes of oscillations example of N identical masses connected in a linear
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Minima of potential energy and points of stable equilibrium

Stable , Unstable and Neutral Equilibrium

Equilibrium can be further classified as stable, unstable and neutral equilibrium.
On being slightly disturbed from its equilibrium position, if a body

(1) tends to acquire the original configuration then the bodyds,said to be in stable equilibrium.

(ii) tends to acquire a new position then the body is sai e in unstable equilibrium

If potential energy of a body does n i i figuration then it is said to
be in neutral equilibrium.

If potential energy of a b i i body will have
maximum potential ener i ini otential energy at stable

equilibrium.

Tangents drawn at B, C, D and E are parallel to the x-axis. This means, at these points, slope
(dU/dx) is zero.
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Recalling F = — (dU/dx) , we can further say that at B, C, D and E , force acting on the particle is

zero i.e. these are equilibrium positions.

For portions BC and DE, an increase in the value of x corresponds to an increase in the value of
u.

The slope of the curve at any point in this portion is positive and hence , force( F = — dU/dx ) is

negative.

It means, in BC and DE region, the force acting on icle tends to pull it in a region of lower

potential energy.

Similarly it can be shown that for the portion ope is negative and hence
force is positive) again the force pull iclei i r potential energy.

If we he cntial ©F around the local minima (let’s call

U(x)=U(xmin)+

For small values of x three terms of the Taylor expansion, and still get a
pretty good approximation. the term U’(xmin) is equal to zero, because the derivative of any
function vanishes at minimum , and let’s assume U(xmin)=0, this doesn’t alter our physical

system: the shift of a potential energy doesn’t alter the physics of the problem. We now obtain:
U(x)=12U"(xmin)(x—xmin)2
Which looks (almost) exactly like the potential energy from Hooke’s Law:

U(x)=12kx2
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Small amplitude oscillations about the minimum

We begin with the one-dimensional case of a particle oscillating about a local minimum of the

potential energy ( ) We'll assume that near the minimum, call it IE‘, the potential is well

-

V()=1V"(x, ) (x—x,)
described by the leading second-order term, ( ) = ( D)( D) , SO we're taking the

. . _ - V'(x,)=0
zero of potential at o, assuming that the secon ative ( D) , and (for now)

neglecting higher terms.

To simplify the equ
mi=-V"(0)x=-

replacing the second derivative the standard "spring constant™ expression.

This equation has solution

x= Acos(ex+3J), ersze(Bef”), B=4Adée°, w=k/m.
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(This can, of course, also be derived from the Lagrangian, easily shown to

L=imi"—imox.
be )

Normal modes of oscillations

: : _ _ 1.1
The physical motion corresponding to the amplitud nvector ( ’ )has two constants of

integration (amplitude and phase), often written in t

(o<

with 4.6 real.

f a single complex number, that is,

Clearly, this is the modé oscillating at their natural

In physics, this i X d a normal mode of oscillation. In a

normal mode, all | : ) cy, given by the eigenvalue.

where we have written . Here the system is oscillating with the single

frequency @ , the pendulums are now exactly out of phase, so when they part the spring pulls

them back to the center, thereby increasing the system oscillation frequency.

The matrix structure can be clarified by separating out the spring contribution:
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‘o +k -k (1 0y (1 -1

I=| ° , =y + k‘ .
. —k oy +k 0 1 -1 1
b - A - -

-

. . ) - . x
All vectors are eigenvectors of the identity, of course, so the first matrix just contributes ™ to the

3

: L : _ 1.1
eigenvalue. The second matrix is easily found to have eig lues are 0,2, and eigenstates ( )

d {]--_]-] .

an

tical springs.

m, connected as shown in

find the normal modes of

cements of the particles from their

attached to it by motion of the mass in the middle extends it by an

amount *2 . Then ! x,—x. Similarly, the spring on the right

m-fl =k(x_2 _x1) mE =kx-x) (1-1)
mi, =—k(x, —x)+k(x,—x,) iy =—k(r- A ik(n-n) (12
4 i—E == k_(xz - xz) mi, =—Fkix,—x) (1.3)
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These equations may be written in the form

X im  —kim 0 X,
X |=—|-kim 2kim —-kim||x,
i 0 —kim  kim )\ x

Elm —kim 1] X
=—|-kim 2kIm -klm]| z,
0 -kfm Elm )z

'.fl
'.x:?
Ay

j‘:-l
i |=—-a
o| * (L.
r % 5)
¥ 1
i |=-a'-1 2
% 0
We see that the i . This is indicated by the fact that
the matri
0 (L6)
1

is not diagonal. Note, ho , that A is Hermitian, and can therefore be diagonalized by a

unitary, similarity transformatio

A A-U'AU A SA=U-AU (1.7)

where the diagonal elements of A" a' are the eigenvalues of A, and the orthonormalized

eigenvectors of A are the columns of the unitary matrix A.
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Eigenvalues of A

These are obtained from the relations

|A-4i1|=0

whence (2.5)

Normalized ei

These are obtai

(2.6)

;L!,&f By =Aap

using the eigenvalues derived above. To simplify the notation, the eigenvalues will be denoted

by '1;:- 4, and the corresponding eigenfunctions by '.Jf(pj ',
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1 -1 0Yyg?
-1 2 -1||g?|=0
Ay =0 A0 0 -1 1)[w®

1 -1 0o
12 o
0 -1 1)
(1)
¥

=0

(2.7)

M e

-y =0 = =y o -y =0 = ypt = yp(28)

_ wlm ) wﬂcn _ 3(1) —0 (2.9

P20 = s pl210)
and the normalized eigenfunction is

(2.112)

i

_ wgzj

iy = 2%
(2.12)

'.Jffgj—!-ffggj:!-fﬁm = !-ffégjzﬂ pi —pl =yl = w%”='3(2'13)

(2) (2) (23 _, (2 (2 _ (2)

—p 2y T =y = T =y, 2.14

k1 ) (I ) 0 ]
-2 - =l = M=l
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~y? =y —y gt =y (2 19)

: : : ( :
and a normalized eigenfunction, orthogonal to ¥~ ¥™ is

(%)

b
3
)
— 3
k=3 5
(%) (3 _ 2.18
p —yy =3 (
pri — )
(3] (3 (3 (31
-y + 2y ('ﬁrfz T ) (2.
i - =3 = = () 19)
3 3 2.20
—y? =3y (
AR =T el )
. . : L (1) (2)
and the normalized eigenfunction, which is orthogonal to both ¥ and yr p and pt?

is
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. 1
@ __* | _ 1 3(2.21)
ks JE 2 Pt = L -1
1 Jo 1

The unitary matrix U, whose columns are the orthonormalized eigenfunctions of the matrix A, is

therefore given by

2B
v-L 12 o
W

as we expect. It can also

Transformation to Normal Coordinates

Now, Equation (1.5) may be written in the form

G=_AF Go_nf (3.1)
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which gives the transformation of the vector

into the vector

iy
Il

in the unprimed coordinate system. rotation i ation (1.31)

becomes

&= & - (U au)F = (0'au) #35)

& -1 V2B %
i, =_% 30 -1 2 1 % oo a2l (:
% b2 1 0 -1 1 VI -1 %)
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% 7T 7 S A G T B N7 X
% -l NI | £} [-1 2 -1]L Lo 2 m?[;;}
% A R n—11£(_ﬁ1 A

and a little simplification shows that

x=Csin(mt+8,) ; (3.1
ry=Csin{mf+d,] o af=a‘=kim 2)
x=Cysin(ayt+8,) ;3 s =3 =3kim (3.1
=Clesin(md+d,) @y =3w' =3kIm 3)
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What we require, however, are the unprimed solutions 1, and x, x, x andx, Recall
that
G=-AF = U'G=-(UTAUUF (3.1
G——AF = U E-—[u AU F 4)

Comparing Equations (3.5) and (3.14), we see that

(3.
15)
(3.16
)
x =quiﬂ(ﬂ] t+ & )+LC‘3‘sin[m t+ 6 J
-JE 2 2 'JE 3 3 (3.1
7)
x =%C§sm[mif +Ji)+%c’35i‘n [m3f+53:|
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X, = —irf_-f; sin[m3r+ 53)

.JE xi=—%cgsm[m3f+53)(3'18)
x =—iC;sin(m2r+52)+%C;sin(m33+ 53) (3.1

)

%, =—LC‘;sin[m?f +§i:|+iC;sin[msf +3, ]

2 3

9)

Now the normal modes refer to the common frequen vibration of all the masses. There are

three possibilities:

which represents a pure (corresponding to an

eigenfrequency

(3.2
1)

and the two outer masses oscillate 180°  1g0- out of phase, with the same amplitude, and with

frequency given by ®; =& = klm @y =m=aflcfm,
€;=0;6;20 Here we get

Prepared by Dr. B. Janarthanan, Associate Professor, Dept. Of Physics, KAHE 15/16



\Sa/ KARPAGAM ACADEMY OF HIGHER EDUCATION

_—
KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
ACipE OTHERER SO COURSE CODE:16PHUS04A UNIT- IV : Small Amplitude Oscillations
(Established Under Section 3 of UGC Act, 1956 BATCH: 2016 _ 2019

X, =x, = ;sin(m3r+§3) s X, =—2x, (3.2

1

—
]
1 2)
ro=x=—=Csinfwf+d,) 1 x,=-2x,

N3

1

The two outer masses oscillate in phase, with the same amplitude, but with frequency given

W=y = il m=m3=.|§k.l'm_

by in the middle oscillates 180" 1g0-

out of phase with the other two, and with twice the

It has been tacitly assumed in the forego sses move on a frictionless

horizontal surface. The total (hori m must therefore remain

constant, as can easily be verified fro
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UNIT - I
QUESTIONS Choicel |Choice2 [Choice3 |Choice4 |[ANSWER
Rotational kinetic energy of a rigid bodyis |% w212 [|w2] w2 | 2w2 I. w2 |
In certain system of body axes with respect [symmetri |antisymm perpendic
to which the off-diagonal elements C etric principal |ular principal
If wz =wz’ >wmin, atop will spin with its |sleeping |spinning [rotating |symmetri |sleeping
axis vertical continuously , therefore it is top top top ctop top
A rigid body with N particles have
degrees of freedom. 2N 3N N 4N 3N
The configuration of a rigid body with angular
respect to some cartesian co-ordinate momentu orientatio [momentu |orientatio
system in space m inertia n m n
The most useful set of generalised co-
ordinates for a rigid body are
angles. rotation |specified [auxillary |euler’s euler’s
The transformation worked out through
three rotations performed only independ |dependen
ina successive|different [ent t successive
exponenti
ally
The distance between any two points of a proportio |proportio
rigid body is varied fixed nal nal fixed
A rigid body can possesses simultaneously
the translational and motion arbitrary |[circular |rotational |orbital rotational
A mathematical structure having nine
components in three dimensions is termed covariant |contravari
asa tensor matrix tensor ant tensor [tensor
The products of inertia of all vanish when
one of the axes of the body lies along the
axis rotation |vibration [motion symmetry [symmetry
If the symmetry axis of the body is taken as
axis of rotation and the origin of body axes |unsymme
lies try rotational |symmetry [b and ¢ symmetry
The motion of a rigid body with one point
fixed will take place under the action of displacem rotational
torque N in ent torque time motion torque




The assembly of particles with fixed inter-

particle distance is called fluid vapor colloidal [rigid body |rigid body
The orientation of the body by locating a rotational
cartesian set of co-ordinates fixed in the body set |space set | botha set of body set
rigid of axes of axes and b axes of axes
space or space or
The fixed point in the body which registers external vibrationa [external
its translation and coincident with the body set |set of rotational |l set of set of
center of of axes axes set of axis [axes axes
The generation of body set of axes from the|direction |successive|rotational |Euler’s Euler’s
space set of axes through three successive |[cosines |angles angles angles angles
The system of body axes in which off-
diagonal elements disappear and the principle |secondary|primary |catesian |secondary
diagonal elements axes axes axes axes axes
The system of body axes in which off- principle |secondary
diagonal elements disappear, and the moment |moment [moments
diagonal elements of inertia |of inertia |of inertia [inertia inertia
The secular equation of inertia tensor and |constant |tensor of [covariant |eigen eigen
its solution is called of motion |rank two [tensor values values
translatio periodic |symmetri [translatio
A rigid body can possesses simulataneous |nand linear and |and non- |cal n and
the and motion. rotational |harmonic [harmonic |around rotational
Rigid body possessing rotational and generalise [translatio translatio
translational motion simulataneously will |polar and |d and n and both a n and
have cartesian [canonical [rotational |and b rotational
If we consider three non-collinear points in
a rigid body, then each particle will have four three Six nine three
Three non-collinear points in a rigid body
will have the total of degrees of |six three nine tweleve [nine
All the space set of axis if rotated wbout
the space z-axis, then the yz plane takes orthogona
same alternate |l new new
The inverse transformation matrix from
body set of axes to space set of axes is co-factor |determina
given AT adj (A) of A nt of A AT
The position vector of any point p relative proportio |both a
to the origin O of the body set of axes is Different [constant [nal andc constant




The configuration of a rigid body is

completely specified by degrees

of freedom. two three Six nine Six

If a is the column matrix representing the

co-ordinates having single frequency and

aTis ol | a 1 1

If a is the column matrix representing the

co-ordinates having single frequency and of | 1|a2 I
cartesain rectangul

The generalised co-ordinate in which each [normal co{co- polar co- |ar co- normal co-

one of them executing oscillations of one  |ordinate [ordinate |ordinate [ordinate [ordinate

In parallel pendula the two pendula out or damped [undampe

oscillates in phase phase motion d motion [phase

In parallel pendular, if the two pendula are [unstretchi

independent i.e., there is no ng rarefying |transiting [stretching [stretching

In paralle pendula force due

to spring will come into action. impulsive |repulsive |[restoring [attractive |restoring

If the system possesses two identical in

frequencies, then it is therefore said to be |degenerat harmonic |degenerat

e generate |distorted [motion e

A continuous string has infinite number of frequenci frequenci

normal modes and velocities [es vibrations [motion es

The use of nomal co-ordinate in the

coupled system reduces it to one of a dependen independ independ

system of t single ent double ent

A continuous string has a linear accelerati |displacem |mass mass

velocity |on ent density  |density

If the system is in stable equilibrium, then

the frequency wi2 should be a

quantity. real imaginary |complex [integer real

If wi2 are real and positive, then all co-

ordinate always remain for any

time. infinite same different |[finite finite

If wi2 are not real and positive, then all the exponenti

co-ordinate becomes for any time. [infinite finite equal al infinite

The system is said to be unstable if the

frequency wl2 are not equal finite real infinite real
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UNIT IV

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations.
Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -dilation,
length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-velocity and
acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler

effect from a four-vector perspective. Concept of four- Conservation of four-momentum.

Relativistic kinematics. Application to two-body decay of
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Special theory of relativity — Introduction

The Special Theory of Relativity was the result of developments in physics at the end of
the nineteenth century and the beginning of the twentieth century. It changed our understanding of
older physical theories such as Newtonian Physics and led to early Quantum Theory and General
Relativity.

Special Relativity does not just apply to fast moving objects, it affects the everyday world
directly through "relativistic" effects such as magnetism and the relativistic inertia that underlies
kinetic energy and hence the whole of dynamics.

Special Relativity is now one of the foundation blocks of physics. It is in no sense a
provisional theory and is largely compatible with quantum theory; it not only led to the idea of
matter waves but is the origin of quantum 'spin’ and underlies the existence of the antiparticles.
Special Relativity is a theory of exceptional elegance, Einstein crafted the theory from simple
postulates about the constancy of physical laws and of the speed of light and his work has been
refined further so that the laws of physics themselves and even the constancy of the speed of light

are now understood in terms of the most basic symmetries in space and time.

| o  Azny,zt
ordinate axes are parallel (as in figure 1). In S, we have the co-ordinates and in S'

{2, 9,7, '}

we have the co-ordinates . S' is moving with respect to S with velocity o (as
measured in S) in the z direction. The clocks in both systems were synchronised at

time ¢ = () and they run at the same rate.
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Figure 1: Reference frame S' moves with vel ction) relative to reference

frame S.
We have the intuitive relationships
a = T—wl

This set of equa ilean Transformation. They enable us to relate a

0 another. For example, suppose we measure the

velocity of a vehicle movi the in 2 -direction in system S, and we want to know what would

be the velocity of the vehicle i
o = de’ _d{z—wt)

T dt Y

The laws of physics to be the same in all inertial reference frames, as this is indeed our experience

of nature. Physically, we should be able to perform the same experiments in different reference
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frames, and find always the same physical laws. Mathematically, these laws are expressed by
equations. So, we should be able to ““transform" our equations from one inertial reference frame
to the other inertial reference frame, and always find the same answer.

Suppose we wanted to check that Newton's Second Law is the same in two different
reference frames. We put one observer in the un-primed frame, and the other in the primed frame,

moving with velocity o relative to the un-primed frame.4Consider the vehicle of the previous

case undergoing a constant acceleration in the x-dire

Indeed, it does not matter which inertial frame we observe from, we recover the same Second
Law of Motion each time. In the parlance of physics, we say the Second Law of Motion is
invariant under the Galilean Transformation.

Non-variance of Maxwell’s equation

Experiments on electric and magnetic fields, as well as induction of one type of field from
changes in the other, lead to the collection of a set of equations, describing all these phenomena,

known as Maxwell's Equations.

Prepared by Dr. B. Janarthanan, Associate Professor, Dept. Of Physics, KAHE 4/19



\\'___\’__‘// KARPAGAM ACADEMY OF HIGHER EDUCATION

Enable | Enlighten | Enrich

KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
ACAROTIe 9 COURSE CODE:16PHU504A UNIT- IV : Special theory of relativity
(Established Under Section 3 of UGC Act, 1956 ) BATCH: 2016 _ 2019

Now, these equations are considered to be rock solid, sarising from and verified by many

experiments. Amazingly, they imply the existence of ously not guessed at phenomenon.

This is the electromagnetic wave. To see this in det e the time derivative of the second last

equation and the curl of the last.

Now, we use the ide

Vx(VxE)=VV.
The second term of the above tion drops out due to the vanishing of the divergence of the
electric field (the second of Maxwell's Equations). So, we finally have the three dimensional wave

equation

Prepared by Dr. B. Janarthanan, Associate Professor, Dept. Of Physics, KAHE 5/19




\é%;j KARPAGAM ACADEMY OF HIGHER EDUCATION

Enable | Enlighten | Enrich

KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
RO S COURSE CODE:16PHUS04A UNIT- IV : Special theory of relativity
(Established Under Section 3 of UGC Act, 1956 BATCH: 2016 _ 2019

To see this is a wave equation, note the analogy in one dimension

Py _1&y
922~ P o

which is solved by the wave function

y(z,t) =sin(z — ct),

infrared, visible and ultra-violet light netic waves

cy.

differing only in their fre

2. They all travel at the sam

Even that speed ecified :

4. The speed appear

Michelson Morley experiment and explanation of the null result.
After the development of Maxwell's theory of electromagnetism, several experiments were

performed to prove the existence of ether and its motion relative to the Earth. The most famous
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and successful was the one now known as the Michelson-Morley experiment, performed
by Albert Michelson (1852-1931) and Edward Morley (1838-1923) in 1887.

mirror

Source

mirror

ists of a light

ight in different directions in order to measure speed
of the ether relative to Earth, stablishing its existence.
Michelson and Morley were able to measure the speed of light by looking for interference
fringes between the light which had passed through the two perpendicular arms of their apparatus.
These would occur since the light would travel faster along an arm if oriented in the "same"
direction as the ether was moving, and slower if oriented in the opposite direction. Since the two
arms were perpendicular, the only way that light would travel at the same speed in both arms and

therefore arrive simultaneous at the telescope would be if the instrument were motionless with
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respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive
and interfere slightly out of synchronization, producing a diminution of intensity. (Of course, the
same effect would be achieved if the arms of the interferometer were not of the same length, but
these could be adjusted accurately by looking for the intensity peak as one arm was moved.
Changing the orientation of the instrument should then show fringes.)

Although Michelson and Morley were expecting measuring different speeds of light in

each direction, they found no discernible fringes indic ifferent speed in any orientation or

at any position of the Earth in its annual orbit aroun

In 1895, Lorentz concluded that the "null” re i and Morley was caused
by a effect of contraction made by the et i d introduced the length

contraction equation
v?

L=ILyy\1- 5,

where L is the contracted

and c is the speed of light.
a

Concept of inertial frame of reference
- -

of the frame of reference,

A “frame of reference” is a standard relative to which motion and rest may be measured;
A \ A ANy W

any set of points or objects that are at rest relative to one another enables us, in principle, to
-— WA -— ~

describe the relative motions of bodies. A frame of reference is therefore a purely kinematical
- WA -—

device, for the geometrical description of motion without regard to the masses or forces involved.
- -—

b

A dynamical account of motion leads to the idea of an “inertial frame,” or a reference frame

relative to which motions have distinguished dynamical properties. For that reason an inertial
-

frame has to be understood as a spatial reference frame together with some means of measuring
time, so that uniform motions can‘be distinguished from accelerated motions.

The laws of Newtonian dynamics provide a simple definition: an inertial frame is a
reference-frame with a time-scale, relative to which the motion of a body not subject to forces is
always rectilinear and uniform, accelerations are always proportional to and in the direction of

applied forces, and applied forces are always met with equal and opposite reactions. It follows
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that, in an inertial frame, the center of mass of a system of bodies is always at rest or in uniform
motion. It also follows that any other frame of reference moving uniformly relative to an inertial
frame is also an inertial frame. For example, in Newtonian celestial mechanics, taking the “fixed
stars” as a frame of reference, we can determine an (approximately) inertial frame whose center IS
the center of mass of the solar system; relative to this frame, every acceleration of every planet
can be accounted for (approximately) as a gravitational interaction with some other planet in
accord with Newton's laws of motion.
Postulates of special theory of relativity
Q) Statement: "The laws of physics are the same in any inertial frame, regardless of
position or velocity".
Physically, this means that there is no absolute spacetime, no absolute frame of reference with
respect to which position and velocity are defined. Only relative positions and velocities between
objects are meaningful.
(i) Statement: "The speed of light cis a universal constant, the same in any inertial
frame".

Simultaneity

There is an observer O at rest with
cket. Two lightbulbs at the ends of the

Consider ar i in Fi

rocket wer rive at the obServers at the same time. Light from the
bulbs traveled speed of light, c, in the reference frames of both

observers. The figu ined up when the light arrives.

—_—i
[y 0 Y
—_—i -
C ] C
Fig. 4

For O' (on the rocket), the bulbs must have flashed simultaneously because O"is right in the

middle. The bulbs are at rest in the frame of O'.
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The other observer, O, draws a different conclusion. When the flashes were emitted, the rocket
was not centered on O; it was to the left. The pulse from the bulb on the left must have been
emitted first; it had farther to travel. Likewise, the pulse from the bulb on the right had a shorter
distance to travel. Observer O concludes that the bulbs were not flashed simultaneously.

So, observer O' thinks the events (flashing of the bulbs) were simultaneous while

observer O does not. Simultaneity is not independent of refience frame.

Length contraction

Moving rod contracts in length by factor of C

ie, lengthofarodin = lengthofthesamerod

2
motioninagiven ~— Whenat rest x ¥
frame ofreference  inthe given frameof oL

referenice

2
— ki )
ot I = I I_F:'f_

Time dilation

Moving clock dilates in time interval measured by factor of

ie Titneinterval meaared = Timeinterval measured y 1
tya clockinmotionin thE_SE'mECEIUCkWhEﬂ 5
agiven frame of reference atrestinthegiven frame j1-—

by reference. C
o (5
|
Y2
c?

Relativistic Law of Velocity Addition

_}
If an object is in motion with velocity ' (u'x, u'y, u’;components) in frame S' and the velocity of

the object measured in S is o (ux, uy, u;components) then ,
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1, = uly + V
C2
by = uwyN1 - vZic2 (b RO ()
1+ uyV
c2
o= uwgW 1-VAC D)
1+ uhy W
e —

Relativistic Mass
The concept of 'Absolute Mass' of Newtonian Mechanics is no longer tenable in special
Relativity; the requirement that Law of Conservation of momentum is a fundamental Law of

nature imposes the relation

m = Mo )
2
¥

o2

then only consistency between the Lorentz-Transformations and Law of Conservation of

momentum can be obtained. This expression given relativistic mass m in motion with Velocity V
in a given frame of reference; in terms of the mass mO called rest mass of the object when at rest
in the given frame of reference.
The Experiment of Fizeau

In 1851, Fizeau carried out an experiment which tested for the aether convection
coefficient. This was the first such test of Fresnel’s formula, derived without experimental
evidence, over twenty years earlier. Fresnel, in fact, had died more than twenty years before this
experiment took place, a point of interest only because many texts derive Fresnel’s formula based
on the results of experiment, rather than the other way around. Experimental results, within the
level of error available in the mid-1800’s, are not sufficient to derive Fresnel’s formula. These

results can only confirm that, within error limits, the formula provides answers consistent with
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experiment. In fact, Fizeau’s experimental results were so course that the only conclusion he
could draw was that the displacement was less than should have been produced by the motion of
the liquid if light were completely convected by the medium. From this, he assumed the validity
of Fresnel’s formula on the partial convection of the aether.

Fizeau’s experiment involved passing light two ways through moving water (v~ 7 m/s)
and observing the interference pattern obtained, as illustrated in figure 1. The experiment was
repeated by Michelson in 1886 with much more rigor, and quantitative results were obtained.
Working backwards from the observed fringe shift, Michelson was able to calculate an apparent
convection coefficient equivalent to Fresnel’s formula. Varying the velocity and direction of the
flow allowed for a variety of test points. By observing the change in interference pattern, the
effective velocity of light through the moving medium, as measured in the lab frame, was
calculated. Within experimental limits, the results obtained by measuring the fringe shift agreed
with the results predicted by Fresnel’s formula. However, Michelson neglected to take into
account the Doppler effect of light from a stationary source interacting with moving water, and

therefore concluded that the aether convection concept of Fresnel was essentially correct.

SCTREN Ii!lilil
ey == Ll_

T mls

Figure 1. The experiment of Fizeau.

We now examine this experiment in a purely Galilean environment, taking into account
the Doppler shift (change in wavelength) experienced by each beam of light. Michelson’s paper
gives an excellent analysis whereby the retarded velocity, b, seen in the water may be considered
as due to the number of collisions with atoms, the "velocity of light through the atoms," and the

width of the atoms. Since there will likely be objections to that analysis based on current
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understandings of the microscopic world, we present a more general approach. In what follows,
the retarded velocity is again considered as due to the "collisions” (absorptions and re-emissions)
of the photons in the medium, as it must be, but we do not require any assumptions as to "atom
width," or "velocity through the atom."
For light traveling through a medium, the effective wavelength changes:
_A
T ()
The phase shift for light in such a medium is:
o4 _ 1 _In
A A @

The optical path length is defined from (2) as Ih. The optical path difference between the medium

and air is then;

1
In-11=i1-—
[77-1]= /1 q]

®)
The phase difference compared with the same path in air is:
6¢ _In
2 Al N
(4)

In the Fizeau experiment we must consider Doppler effects. Since the water is moving with
respect to the source, the two paths of light will experience Doppler shifts upon entering the
water. Light moving in the opposite direction to the flow of water will be blue-shift (I1). Light

moving with the flow will be red shifted (I.):

A =01-v/c)d

A, =(1+vic)d ()
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To see why the Doppler shift cannot be ignored in Fizeau’s experiment, imagine the apparatus
depicted in figure 2. All mirrors, the source and the observing screen are sealed in water filled
containers. The water is not flowing, but is stationary in the containers. Alternatively, the
containers could be made of solid glass, so long as the refractive index is different than air. The
entire apparatus, with the exception of mirror (detector) M1 moves through the lab frame at a
velocity of v. Thus, air is moving through the gap, |, at a velocity of v in the equipment frame. To
first order in v/c, the wavelengths of the light detected at M1 is given by equation (8).

We now fill the apparatus containers with air and pass the entire apparatus through water.
In the equipment frame, water is moving through the gap at a velocity v. The motion induced
Doppler in the water, experienced by M1, remains unchanged. If we, the observers, move along
with the apparatus, this setup is indistinguishable from the actual Fizeau experiment. From our
frame of reference, the equipment is at rest, water is moving through the gap at a velocity v, and
the image on the screen reflects the fringe shift due to that motion. Thus we can replace the gap
with a tube of flowing water, hold the rest of the apparatus stationary in the lab frame, and obtain
a one-sided Fizeau experiment. Clearly, whatever analysis one uses to derive the formulas for the
observed fringe shift, one must take into account the fact that the wavelength of the light in the
moving medium is different from that of the source due to the motion induced Doppler effect of
(8).

Substituting (8) into (2), we see that the phase shift including Doppler effects becomes:

o _ 1 In Ine

2 A (+vicdy (c+vA -

The optical path length is defined from the above as:
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oty (10)
The optical path difference between the medium and air is then:
icn
g1 -
c+y c+y T (1)

The phase difference compared with the same path in air is:

2.

2z (c+v)4 7 (12)

For light traveling different paths and experiencing different Doppler effects, the total phase shift

is given by:

o s} / 1 / 1
A28y

2z 2% (C +v ) A (- R 7 (13)

In the Fizeau experiment, I and |, are given by (8). The path lengths 1 and I, are respectively
given below, where the factor of two is included because the light travels through two tubes of

length I, and b is the velocity of light in the reference frame of the liquid.

2]
bt =2{+vt,, or Il:b—v
| e = 21h L= 2ib
R (14)

Substituting these values into (13) for each path gives the following results:

N
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d-¢_ o4 _ 2b 1

27 2m {5 —v) I[ 7-1=
2ib o« r}[l—l]
(A—v) (c—w)A 7

&b - gfr ¢, b B

r 2m (b +v) /‘IQ[H 1=
2ib o« r}[l—l]

(b+v) {(c+v)d 7 (15)

o085
27 Zfr

2iberfl-1n]  2lberfl-Ym]
[&—+][c —v]A [&+v][c+v]A

2inl1 - 1f7]
e [2ve + 2vh]
4irv[1- 1/n11 +1/7] i 4ty - 1 ]

Notice how these results were obtained without invoking "aether” drag, or relativistic velocity
addition.

In the special relativistic analysis of this experiment, the velocity of light in the moving
liquid as measured in the lab frame is no longer b + v, but is given by the relativistic velocity

addition formula:

b—v b—v
b= vh "
__2 1__

¢ e an

As a result, the path lengths derived in (14) become:
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b1 - —
-

Ty 0 BT

2Ub(1+—)
He

E+vy (18)

The derivation of the total phase shift then becomes:

)
60 & w1
2x . (-v) AT

2ib(1 - )
[

_ ¢ 21
C (b-v) (.::—V)A,”[l ;;,-]

,
2b(1+ )
- o e’ 1

. BT

m 2z (b+v) A

,
2b(1+—
o

. 1
(5 +v) (c +V);LT}[ 7 (19)

2n1-1 b v
M[Zvc +2vb +2V—+2V—] s
hod 7 e
41y
Ae

[1-1n[1+1/g+1/]~

The two results, (16) and (20), differ in the exponent of the last h term. When Michelson

and Morley performed the experiment, they obtained sixty one trials, using three different

combinations of water velocity and tube length. The graph below shows the distribution of these

results, normalized to a tube length of ten meters and a water velocity of one meter per second.

The line marked RCM represents the value obtained from equation (16). The line marked SRT

reflects the value obtained from (20). While there is a distribution of results, owing to

experimental error, Michelson claimed an overall shift of 0.184 + 0.02 fringe. This is completely
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consistent with (16), but eliminates the special relativistic result, with a value of 0.247, from
consideration.

Summary

It is very difficult to find adequate tests between special relativity and other competing theories.
Most theories overlap with SRT on a vast majority of the prediction made by each, yet are based
on different underlying physical principles. Ultimately one must find a test that checks not only
the results of the application of the mathematical theory, but also the underlying assumptions. The
major conceptual difference between SRT and most competing theories is the idea of relative
simultaneity—that distant events that are simultaneous for one observer will not be simultaneous
for and observer in motion relative to the first. The relativistic velocity addition rule is a direct
consequence of relativistic simultaneity, and the Fizeau experiment represents a direct test of the
velocity addition formula. Regardless of what the correct theory is or may be, it is clear that SRT
fails to give predictions consistent with results in this experiment—an experiment performed
almost ten years before the development of SRT.

Four-vectors

Although ‘the use of 4-vectors is not neceggaf"y for a full understanding of Special
Relativity, they are a most powerful and useful tool for attacking many problems. A 4-vectors is

just a 4-tuplet A = (Ao, A1, A2, A3) that transforms under a Lorentz Transformation in the same

|\

Lorentz transformations are very much like rotations in 4-dimensional spacetime. 4-

way as (cdt, dx, dy, dz) does. That is:
Ao=7y(Ao + (V.

A1=v(A1 + (VIO)A
AzZAz'
A3:A3'

vectors, then, generalize the concept of rotations in 3-space to rotations in 4-dimensions. Clearly,
any constant multiple of (cdt, dx, dy, dz)is a 4-vector, but something like A=
(cdt,mdx, dy, dz) (where m is just a constant) is not a 4-vector because the second component has
to transform like mdxaE4A 1 = y(A 1' + (VIC)A o")aE4y((mdx') +vdt') from the definition of a 4-

vector, but also like mdx = my(dx' + (v/c)dt’) ; these two expression are inconsistent. Thus we can

Prepared by Dr. B. Janarthanan, Associate Professor, Dept. Of Physics, KAHE 18/19



\&/ KARPAGAM ACADEMY OF HIGHER EDUCATION

_—
KARPAGAM CLASS: 111 B.Sc PHYSICS COURSE NAME: Classical Mechanics
S ey COURSE CODE:16PHU504A UNIT- 1V : Special theory of relativity
(Established Under Section 3 of UGC Act, 1956 BATCH: 2016 _ 2019

transform a 4-vector either according to the 4- vector definition given above, or using what we
know about how the dx  transform to transform each A independently. There are only a few
special vectors for which these two methods yield the same result. Several different 4-vectors are
now discussed:

Velocity 4-vector

We can define a quantity T = y/dt? —dx® —dy® — d2® \hich is called the proper time,

and is invariant between frames. Dividing out original 4-vector ( (cdt, dx, dx, dz) ) bydr gives:

1 ( dzr dy d:
dr (cdt, dx, dy, dz) =y \ c, dt, dt , dt

\

If we multiply the velocity 4-vector by m we get:

P=mV = m(ye,y V)= ’r“\fﬂ P’?\

This is an extremely important 4-vector in Special Relativity l

V =

= (ye,

L. i
This arises because @ =7v.

Energy-momentum 4-vector

A 4

Note that if a massive pa nd a light particle have the same momentum, the light one will

have a lot more Kinetic energ light particle and a heavy one have the same velocity, the

heavy one has more Kinetic energy.
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QUESTIONS Choicel |Choice2 [Choice3 |Choiced |[ANSWER

When the forces acting on the stable neutral

particle vanishes, then the particle is |equilibriu [equlibriu equilibriu |equilibriu

said to be in m m unstable |m m

Potential energy is minimum at stable

equilibrium and at unstable |maximum [minimum |zero infinity maximum

In case of stable equilibrium the

system undergoes bounded motion unbounde unbounde

and in case of same d harmonic |distorted |d

When a system at stable equilibrium

is disturbed its potential energy

increases and kinetic increases |decreases |zero constant |decreases

neither

When a system at unstable increase

equilibrium is disturbed its potential nor

energy decreases and increases |decreases [constant [decrease |increases

compoun

Bar d simple Bar
pendulum |pendulum [pendulum |pendulum [pendulum

The example for stable equilibrium. |at rest at rest at rest in motion |at rest

If a slight displacement of a system neither

from its equilibrium results only in stable nor

small unstable |stable unstable |neutral stable

If a slight displacement of a system neither

from its equilibrium results only in stable nor

unbounded unstable |stable unstable |neutral stable
Rod rod rodin Rod
standing |[stretched simple standing

The example for unstable on its one |on two rodin harmonic |on its one

equilibrium. end ends motion motion end

The two modes of motion involving a

single frequency are called transvers [longitudin

modes abnormal [normal e al normal

The eigen frequency in case of

oscillatory motion about the point of whole

stable imaginary |real complex [number [real




The generalised co-ordinates each of spherical
them executing oscillations of one normal co-genaral co{co- polar co- |normal co-
single ordinates |ordinates |ordinates |ordinates |ordinates
Two pendula in parallel pendula w=(g/l [w=(g/l |w=(g/l
oscillate in phase with frequency )1/2 )1/3 )1/4 w=(g/l) [w=(g/l)
w=(g/l |w=(g/l |w=(g/l |w=(g/l
Two pendula in parallel pendula w=(g/l [+2k/m +2k/m +2k/m +2k/m
oscillate out of phase with frequency [+2k/m) |)1/4 )1/3 )1/2 )1/3
generate [stable degenerat|unstable |unstable
Triple pendulum is a system system e system |system system
wl=w2 [wl=w2 |wl=w2 |wl= w2
Triple pendulum is a degenerate wl=w2 [=(g/l =(g/l =(g/l =(g/l
system, since the two normal modes (= ( g/l +2k/m +2k/m +2k/m +2k/m
frequency +2k/m) |)1/3 )1/4 )1/2 )1/3
Example for linear triatomic molecule
is HPO3 H2S04 HNO3 Cc0o2 HNO3
non-
In case of linear triatomic molecule |[periodic |periodic |translator [SHM periodic
when w1 =0, the system undergoes |motion motion y motion [motion motion
In case of linear triatomic molecule  |Oscillator |translator |periodic [SHM Oscillator
when w2 =(K/M)1/2 and y motion [y motion |motion motion y motion
In case of linear triatomic molecule
when the central atom |w= w = w =
does not (K/M)1/2 Jw = (K/M) [(K/M)1/3 |(K/M)1/4 |w = (K/M)
In linear triatomic molecule when w = { w = { w = { w = { w = {
, the end atoms K/M(1+2 [K/M(1+2 |K/M(142 [K/M(1+2 |K/M(1+2
vibrate m/M)} m/M)}1/2 |m/M)}3  |[m/M)}4  [m/M)}
string String String string
stretched |[stretched |with load |stretched
Continuou|at one at two atone atone
The example for continuous system is |s string end ends end end
A continuous system has
number of normal modes of
frequency. Finite infinite Constant [Same infinite
If the linear triatomic molecule is Ultra-
stretched symmetrically, the violet Infra-red |Visible Microwav [Visible
absorption band region region region e region |[region
A system of mutually interacting uncouple |Translator [{Coupled [harmonic |uncouple
particles is called d system [y system |system system d system
When the forces acting on a particle Stable unstable |Neutral [Stable
vanishes, the particle is said to be Equilibriu [equilibriu |equilibriu |equilibriu [equilibriu
m m m m m




The two modes of motion involving a

single frequency are referred to as undampe |undampe
the abnormal [normal Damped |d d
The system of two equal masses
joined by identical springs to each Uncouple |[single Three- two- Uncouple
other is called d coupled [coupled |coupled |d
A system of particles is said to be in simple
stable equilibrium if all the particles periodic |damped [harmonic |damped
rest motion motion motion motion
The system consists of two identical
simple pendula, each of mass m, series compoun [paralled |complex [complex
length | and coupled pendula |d pendula|pendula |pendula [pendula
All the other co-ordinates except one
co-ordinate are zero for all times,
then it corresponds abnormal [standard |variable [normal standard
If the motion for a given wl2 is
completely oscillatory about the
position of stable imaginary |Real complex [integer imaginary
If the eigenfunctions is imaginary, neither |neither
then the motion is said to be stable nor [stable nor
equilibrium unstable |Stable neutral neutral neutral
If the solution of equation of motion
has one single frequency, then in such
a case the Cartesian [canonical |polar normal canonical
If the parallel pendula move in a relative to|Away relative to
vertical plane in equilibrium position, each from each [each
then the two different | identical |other other other
neither  |neither
In the two pendula it can vibrate as if action nor |action nor
they are independenti.e., there is no oscillate oscillate |oscillate
stretching or rest infinitely |action infinitely |infinitely
In triple pendulum, if the system
possesses two identical frequencies, non- degenerat non-
then it is therefore periodic |periodic |e harmonic |periodic
In linear triatomic molecule, the
displacement of all the atoms are in
the same direction and unequal |equal infinite finite unequal
The continuous string has infinite
number of normal modes and displacem|a &b frequenci [frequenci
vibrations [ent together |es es
A continuous string has a linear momentu |volume [mass specific  |volume
m density |density |density [density




The use of normal co-ordinates in the

coupled system reduces it to one of a |dependen independ
systemof t harmonic |periodic |ent periodic
The volume integral of the function of
the Lagrangian functions within the  |Hamiltoni |Lagrangia Hamiltoni
braces an n linear volume [an
Lagrangian density is a function of

and space and |angle and |x and y co-|y and z co-|x and y co-
derivative of time r ordiantes |ordinates |ordiantes
The system consists of two equal
masses joined by identical springs to undampe
each other and to damped [harmonic |periodic |d harmonic
In case of two-coupled oscillators, the
potential energy V of the system is rest
the sum of kinetic potential |energy a&b a&b
The force tending to change any
generalised co-ordinate depends on accelecrat |displacem |momentu |displacem
the of velocity [ion ent m ent
If two pendula oscillate in phase, then wi wi
the frequency of motion is wl =0Og/l |wl=g/l |=1/2p0g/I|=2p0Og/I | wl=0g/I
In case of linear triatomic molecule
there exists bond between
the central Inelastic [covalent [Elastic ionic Elastic
The system consists of infinite chain
of equal mass points spaced equally |Discontin |continuou continuou
at a distance us S harmonic |linear S
The continuous system is a function
of the continuous variables _ and
___to wandt ([xyandz |randw |xandt xandt
In discrete system, the continuous
variables changes only by twice thrice unity Olunity
The propagation velocity of the wave
in continuous system is similar to that undampe
velocity inelastic |elastic damped |[d elastic
In linear triatomic molecule if the
molecule is assymmetrically guadrapol|oscillating oscillating
stretched, then magnetic |e dipole both a & b|dipole
For small oscillation, the
displacement of the particles are non-
restricted to stable periodic |periodic [small small
The motion with imaginary frequency
would give rise to an unbounded
exponential rise Uj Vj o] qj Uj




If the particle oscillates about the

neither

equilibrium point performing bound neutral

motion, then the unstable |stable neutral nor stable |stable
In the conservative force-field,

generalised forces acting on each

particle must finite infinite vanish a constant|vanish
The displacement of the generalised

co-ordinates from their equilibrium

value will be Vj wj pj Uj Uj

If we transform set into another form

of n equations, then it involves only more than

a Single double triple three Single
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Fluid Dynamics: Density p and pressure P in a fluid, an element of fluid and its velocity,
continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille’s
equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of
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Density p and pressure P in a fluid

In SI units, the unit of pressure is the Pascal (Pa), which is equal to a Newton / meter? (N/m?).
Other important units of pressure include the pound per square inch (psi) and the standard
atmosphere (atm). The elementary mathematical expression for pressure is given by:
pressure=ForceArea=FApressure=ForceArea=FA

where p is pressure, F is the force acting perpendicular to the surface to which this force is
applied, and A is the area of the surface. Any object that possesses weight, whether at rest or not,
exerts a pressure upon the surface with which it is in contact. The magnitude of the pressure
exerted by an object on a given surface is equal to its weight acting in the direction perpendicular
to that surface, divided by the total surface area of contact between the object and the surface.
shows the graphical representations and corresponding mathematical expressions for the case in
which a force acts perpendicular to the surface of contact, as well as the case in which a force

acts at angle 0 relative to the surface.

A
V| T=F/A u

v

Representation of Pressure: This image shows the graphical representations and corresponding

mathematical expressions for the case in which a force acts perpendicular to the surface of
contact, as well as the case in which a force acts at angle 0 relative to the surface.

Pressure as a Function of Surface Area

Since pressure depends only on the force acting perpendicular to the surface upon which it is
applied, only the force component perpendicular to the surface contributes to the pressure
exerted by that force on that surface. Pressure can be increased by either increasing the force or

by decreasing the area or can oppositely be decreased by either decreasing the force or increasing
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the area. illustrates this concept. A rectangular block weighing 1000 N is first placed
horizontally. It has an area of contact (with the surface upon which it is resting) of 0.1 m?, thus
exerting a pressure of 1,000 Pa on that surface. That same block in a different configuration (also
in Figure 2), in which the block is placed vertically, has an area of contact with the surface upon

which it is resting of 0.01 m?, thus exerting a pressure of 10,000 Pa—10 times larger than the

first configuration due to a decrease in the surface area by a factor of 10.
4

> Vi

—

Pressure as a Function of Surface Area: Pressure can be increased by either increasing the

force or by decreasing the area or can oppositely be decreased by either decreasing the force or
increasing the area.

A good illustration of this is the reason a sharp knife is far more effective for cutting than a blunt
knife. The same force applied by a sharp knife with a smaller area of contact will exert a much
greater pressure than a blunt knife having a considerably larger area of contact. Similarly, a
person standing on one leg on a trampoline causes a greater displacement of the trampoline than
that same person standing on the same trampoline using two legs—not because the individual
exerts a larger force when standing on one leg, but because the area upon which this force is
exerted is decreased, thus increasing the pressure on the trampoline. Alternatively, an object
having a weight larger than another object of the same dimensionality and area of contact with a
given surface will exert a greater pressure on that surface due to an increase in force. Finally,
when considering a given force of constant magnitude acting on a constant area of a given
surface, the pressure exerted by that force on that surface will be greater the larger the angle of
that force as it acts upon the surface, reaching a maximum when that force acts perpendicular to

the surface.
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Liquids and Gases: Fluids

Just as a solid exerts a pressure on a surface upon which it is in contact, liquids and gases
likewise exert pressures on surfaces and objects upon which they are in contact with. The
pressure exerted by an ideal gas on a closed container in which it is confined is best analyzed on
a molecular level. Gas molecules in a gas container move in a random manner throughout the
volume of the container, exerting a force on the container walls upon collision. Taking the
overall average force of all the collisions of the gas molecules confined within the container over
a unit time allows for a proper measurement of the effective force of the gas molecules on the
container walls. Given that the container acts as a confining surface for this net force, the gas
molecules exert a pressure on the container. For such an ideal gas confined within a rigid
container, the pressure exerted by the gas molecules can be calculated using the ideal gas law:
p=nRTVp=nRTV

where n is the number of gas molecules, R is the ideal gas constant (R = 8.314 J mol K?), T is
the temperature of the gas, and V is the volume of the container.

The pressure exerted by the gas can be increased by: increasing the number of collisions of gas
molecules per unit time by increasing the number of gas molecules; increasing the Kinetic energy
of the gas by increasing the temperature; or decreasing the volume of the container. offers a
representation of the ideal gas law, as well as the effect of varying the equation parameters on the
gas pressure. Another common type of pressure is that exerted by a static liquid or hydrostatic
pressure. Hydrostatic pressure is most easily addressed by treating the liquid as a continuous
distribution of matter, and may be considered a measure of energy per unit volume or energy
density.

An element of fluid and its velocity

Flow Rate

Volumetric flow rate is defined as

Q=v=aqQ,

where Q is the flow rate, v is the velocity of the fluid, and a is the area of the cross section of the

space the fluid is moving through. Volumetric flow rate can also be found with
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Q=VtQ

where Q is the flow rate, V is the Volume of fluid, and t is elapsed time.
Continuity
The equation of continuity works under the assumption that the flow in will equal the flow out.

This can be useful to solve for many properties of the fluid and its motion:

f“ A,

N A

T —
'\ \

//// g —

\\
1
Flow in = Flow out: Using the known properties of a fluid in one condition, we can use the

continuity equation to solve for the properties of the same fluid under other conditions.

Q1=Q2

This can be expressed in many ways, for example: Alxv1=A2xv2. The equation of continuity
applies to any incompressible fluid. Since the fluid cannot be compressed, the amount of fluid

which flows into a surface must equal the amount flowing out of the surface.

Continuity e i mass conserva

ove in such a way that mass is conserved. To see
how mass conservat i e velocity field, consider the steady flow of fluid
lows do not vary with time). The inflow and outflow

locity V and density \rho are constant over the area A (figure

14).
I_ilt ______ ‘\_E‘F_ ________ _i T, it
4D E ! . Figure 14. One-dimensional duct showing
PV — s, ~ control volume.
L.,"__E"__R’:____________i P2 %
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Now we apply the principle of mass conservation. Since there is no flow through the side walls
of the duct, what mass comes in over A_1 goes out of A_2, (the flow is steady so that there is no
mass accumulation). Over a short time interval \Delta t,

voline flow in over A, = A,V A
volume flow out over A, = A, V41

Therefore
LAY ff]' over A = lﬂ."l; 'l":l ;"*-i‘

mass ol over A = pAV,Af

S PA YV, = pAsl,

Streamlines and
A streamline is

short streak, with a length a t, and with a direction tangential to the instantaneous velocity

direction. If we mark many drop§iof water in this way, the streamlines in the flow will become
visible. Since the velocity at any point in the flow has a single value (the flow cannot go in more
than one direction at the same time), streamlines cannot cross. except at points where the

velocity magnitude is zero, such as at a stagnation point.

There are other ways to make the flow visible. For example, we can trace out the path followed

by our fluorescent drop using a long-exposure photograph. This line is called a pathline, and it is
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similar to what you see when you take a long-exposure photograph of car lights on a freeway at
night. It is possible for pathlines to cross, as you can imagine from the freeway analogy: as a car
changes lanes, the pathline traced out by its lights might cross another pathline traced out by an
adjoining vehicle at a different time.

Another way to visualize flow patterns is by streaklines. A streakline is the line traced out

by all the particles that passed through a particular point me earlier time. For instance, if we

issued fluorescent dye continuously from a fixed poin e makes up a streakline as it passes

downstream. To continue the freeway analogy, it e line made up of the lights on all the
vehicles that passed through the same toll bo me path (a steady flow),
it is possible for the line to

ines are all different, but in
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Figure 1. Diagram showing an arbitrary fixed volume V and associated surface area A with a

N

unit vector n pointing outward normal to the surface. *

for a fixed volume element V, enclosed by a surface 0A, Gauss’ theorem is expressed as

L(v-u)dv =§u-ndA (1)
We will now see the usefulness of equation (1) by using i erive conservation of mass.
For a fluid with density field, o, defined o ed volume, V, the change in mass,

\ =L6—p \/ . Conservation of mass

There are two possibilities for L(%D +V- (ﬁp)jdv =0
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I. The first is that there exists a unique boundary, shape or symmetry leading to the integral

being zero. As an example of these unique symmetries, we notice that
2z

I sin(x)dx = 0

0

We know the above integral is zero because we are adding up an equal positive area to an equal

negative area of the sine curve. This possibility that theredSienique boundary leading to equation

(5) being 0 is too restrictive to our analysis since h for our result to be true for any

This might seems like a trivial possibility but th

%O+V-(pa)=0

be incompressible. Equati then takes the simple form:

V-u=0 (6)
The flow field is also said to be solenoidal under these circumstances. For most applications in

the ocean and many in the atmosphere it is safe to assume that the fluid medium is approximately

incompressible. To formally examine the necessary conditions in which it is safe to assume a
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medium is solenoidal; we need to perform dimensional analysis on equation (5). For a flow field
scale, U which varies slightly over a length scale L, the requirement for incompressibility is

Now we are going to formally define the fluid as i ressible provided that the density does
not depend on the pressure of the fluid medi@im. i alysis will be seen next
semester in SO414 but the result is still of inter is that the medium can be

considered incompressible provided ghat

2
—<x1

(7)

Where c is the sound sp@ of the fluid medium and U is an approximation of the fluid flow.
We can see from equation (7) that most examples that we consider in both the ocean and
atmosphere allows us to use the incompressibility requirement.

POISEUILLES EQUATION FOR FLOW OF LIQUID THROUGH A PIPE

The Poiseuille’s law states that the flow of liquid depends on following factors like
the pressure gradient (AP), the length of the narrow tube (L) of radius (r) and the
viscosity of the fluid (n) alongwith relationship among them.

The entire relation or the Poiseuille’s Law formula is given by,

Q = APnr4 / 81l

Wherein,

The Pressure Gradient (AP) : Shows the difference in the pressure between the two
ends of the tube, determined by the fact any fluid will always flow from high pressure
(pl) to low pressure region(p2) and the flow rate is determined by the pressure
gradient (P1 — P2)

Radius of tube: The liquid flow varies directly with the radius to the power 4.
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Viscosity (n): The flow of the fluid varies inversely with the viscosity of the fluid and
as the viscosity of the fluid increases, the flow decreases vice versa.

Length of the Tube (L): The liquid flow is inversely proportional to the length of the
tube, therefore longer the tube, greater is the resistance to the flow.

Resistance(R): The resistance is described by 8Ln / nr4 and therefore the Poiseuille’s
law becomes

Q=(AP)R

Laminar Flow

Laminar flow consists of a regular-flow pattern with constant-flow velocity throughout the fluid

volume and is much easier to analyze than turbulent flow.

I >
I > Vi
—
A A\ A A

Relative Magnitudes of Velocity Vectors: Laminar fluid flow in a circular pipe at the same
direction.

Laminar flow is often encountered in common hydraulic systems, such as where fluid flow is
through an enclosed, rigid pipe; the fluid is incompressible, has constant viscosity, and the
Reynolds number is below this lower critical threshold value. It is characterized by the flow of a
fluid in parallel layers, in which there is no disruption or interaction between the different layers,
and in which each layer flows at a different velocity along the same direction. The variation in
velocity between adjacent parallel layers is due to the viscosity of the fluid and resulting shear
forces.

This figure (see ) gives a representation of the relative magnitudes of the velocity vectors of each
of these layers for laminar fluid flow through a circular pipe, in a direction parallel to the pipe

axis.
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Poiseuille’s Equation: Can be used to determine the pressure drop of a constant viscosity fluid
exhibiting laminar flow through a rigid pipe.

Considering laminar flow of a constant density, incompressible fluid such as for a Newtonian
fluid traveling in a pipe, with a Reynolds number below the upper limit level for fully laminar
flow, the pressure difference between two points along the pipe can be found from the
volumetric flow rate, or vice versa. For such a system with a pipe radius of r, fluid viscosity n,
distance between the two points along the pipe Ax = x2 — X1, and the volumetric flow rate Q, of
the fluid, the pressure difference between the two points along the pipe Ap is given by
Poiseuille’s equation (see ).

This equation is valid for laminar flow of incompressible fluids only, and may be used to
determine a number of properties in the hydraulic system, if the others are known or can be
measured. In practice, Poiseuille’s equation holds for most systems involving laminar flow of a
fluid, except at regions where features disrupting laminar flow, such as at the ends of a pipe, are
present.

Poiseuille’s equation as given in this example is analogous to Ohm ‘s equation for determining

the resistance in an electronic circuit and is of great practical use in hydraulic-circuit analysis.

Rh_)Re

V 8nQAx Ap 8nAx
«—F I}:_)Q - p rt - £ 0 trt
A N

Poiseuille’s Equation: Analogous to Ohm’s Law Analogy
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Turbulent Flow:

Turbulent flow is a type of fluid (gas or liquid) flow in which the fluid undergoes
irregular fluctuations, or mixing, in contrast to laminar flow, in which the fluid moves in smooth
paths or layers. In turbulent flow the speed of the fluid at a point is continuously undergoing

changes in both magnitude and direction. The flow of wiad and rivers is generally turbulent in

this sense, even if the currents are gentle. The air or w. rls and eddies while its overall bulk
moves along a specific direction.

Most kinds of fluid flow are turbule at the leading edge of
ch as the inside wall of a

pipe, or in cases of fluids of high viscosity (relativ ess) flowing slowly through

the flow in boat wakes amaircraft-w

Navier-Stokes equation

In fluid dynamics, the Navier-Stokes equations are equations, that describe the three-
dimensional motion of viscous fluid substances. These equations are named after Claude-Louis
Navier (1785-1836) and George Gabriel Stokes (1819-1903). In situations in which there are no
strong temperature gradients in the fluid, these equations provide a very good approximation of
reality.

The Navier-Stokes equations consists of a time-dependent continuity

equation forconservation of mass, three time-dependent conservation of momentum

equations and a time-dependent conservation of energy equation. There are four independent

variables in the problem, the x, y, and z spatial coordinates of some domain, and the time t.
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Navier-tokes Equations

Continuity Equation
V.- V=0

Momentum Equations

DV y

| AN \

Total derivative Pressure gradient Body force term Diffusion term
oV Fluid flows in the External forces, that For a Newtanian
p[— =1 (VV)V] direction of largest act on the fluid fluid, viscosity
ot change in pressure. (qravitational force operates as a
or electromegnetic).  diffusion of
/ momentum.
Change of velocity Convective term

with time

As can be seen, the Navier-Stokes equationsare second-order nonlinear partial
differential equations, their solutions have been found to a variety of interesting viscous flow
problems. They may be used to model the weather, ocean currents, air flow around an airfoil and
water flow in a pipe or in a reactor. The Navier-Stokes equations in their full and simplified
forms help with the design of aircraft and cars, the study of blood flow, the design of nuclear

reactors and many other things.

Reynolds number

The Reynolds number is the ratio of inertial forcesto viscous forces and is a

convenient parameter for predicting if a flow condition will be laminar or turbulent. It can be
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interpreted that when the viscous forces are dominant (slow flow, low Re) they are sufficient
enough to keep all the fluid particles in line, then the flow is laminar. Even very low Re indicates
viscous creeping motion, where inertia effects are negligible. When the inertial forces
dominate over the viscous forces (when the fluid is flowing faster and Re is larger) then the flow

is turbulent.

~ viscous forces

Ra = inertiaforces _ p.V.D laminar flow
M

' Velocity

v Characteristic

dimension ——0< -~
i : | Re = " - S
pensity, ————— = — e~
Viscosity

It is a dimensionless number comprised of the physical characteristics of the flow. An
increasing Reynolds number indicates an increasing turbulence of flow.

It is defined as:
_pVD VD

L Y

Re,

where:

V is the flow velocity,

D is a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter etc.)
p fluid density (kg/md),

p dynamic viscosity (Pa.s),

v kinematic viscosity (m?/s); v=p/p.
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UNIT - IV
QUESTIONS Choicel |Choice2 ([Choice3 |Choiced |[ANSWER
The mass of 70 kg man moving in car at
66kmbh is 70 kg 100 kg infinite zero 70 kg
non-
non- accelerate|accelerate
inertial inertial d frame |dframe [inertial
Special theory of relativity treats problems [frame of |frame of [of of frame of
involving reference |reference [reference |reference |reference
According to special theory of relativity both a both a
which one is not an absolute quantity time mass height and b and b
perpendic parallel
ular to along the [to along the
direction |direction [direction |both a direction
Length contraction happens only of motion |of motion |of motion [and b of motion
velocity
Conversion of solar energy into momentu |into
carbohydrates and starch by leaf of a plant |energy massin |minto momentu |energy
is an example for into mass |to energy [velocity [m into mass
Cannot Cannot
isan be an be an
inertial inertial inertial
frame frame frame
because |because [because
Newton’s [the earth [the earth
isan laws are |is is isan
inertial applicable [revolving |rotating [inertial
frame by |[inthe round the |about its [frame by
A reference frame attached to the earth: definition [frame sun own axis. |definition




Newtonia There is There is
n no no
mechanic absolute absolute
sis ether ether
correct Thereis |frame, Velocity [frame,
for all an but all of lightis [but all
lowand |absolute [frames relative  |frames
Michelson and Morley experiment showed [high ether are inall are
that velocities [frame relative  |cases. relative
Two photons approach each other, their
relative velocity will be c/2 Zero ( c/8 C C
May be
accelerate
d,
decelerat
Moving |ed or Moving
with moving |with
uniform |with uniform
Accelerat |decelarat |velocity [constant [velocity
An inertial frame is ed ed or at rest. |velocity |or at rest.
there is there is
no earthis |earthisa [no
speed of [preferred |an non- preferred
light is frame inertial inertial frame
Michelson-Morley experiment proved that [relative [like ether |frame. frame like ether
All the inertial frames are equivalent” this [relative |equivalen Correspon|relative
statement is called the principle of ----------- motion ce inertia dence. motion
Special theory of relativity deals with the
events in the frames of reference which accelerati [momentu
move with constant----------------- speed velocity |on m. velocity
Michelson-Morley experiment to detect the
presence of either is based on the interferen polarizati interferen
phenomenon of: ce diffraction|on dispersion|ce




may be

more or
less than
or equal
to rest
length
ismore |is less dependin [is less
issame |thanits [thanits |[gonthe [thanits
According to relativity, the length of arod |as its rest |rest rest speed of |[rest
in motion: length length length rod. length
more
equal to [lessthan |than
proper proper proper
If v=c, the length of a rod in motion is: zero length length length. zero
speed of speed of
light is light is
same in same in
speed of |all all
light is inertial time is mass is inertial
According to special theory of relativity: relative  |frames relative |relative [frames
James Alpha Alpha
travels to Centauri [Centauri
Alpha travels to [travels to
the trip  [Centauri James James
takes overa clocks on |overa overa
more length Earth and |length length
time than [that is on Alpha [thatis thatis
itdoesin |shorter [Centauri |shorter [shorter
James travels at high speed from the Earth |the than four [are than four [than four
to the star Alpha Centauri, four light years |Earth’s light synchroni [light light
away. In James’s frame frame. years. zed. years. years.
Greater [Less than |Comparab|equalto |Comparab
Relativity mechanics is applicable for a than that [that of le to that |velocity [le to that
particle which is moving with a velocitya of light light of light of light of light




The state

of motion

of the

observer

as well as

upon the

quality The state [The The
thatis of motion |quantity guantity
being of the thatis that is

The relativistic measurement depends measured |observer [being absolute [being

upona only measured |motion measured

Non-

A frame which is moving with zero inertial Inertial decelerat [Inertial

acceleration is called frame frame rest frame|ed frame [frame

When we specific the place of occurrence

of a phenomenon as well as the time of an an

occurrence it is considered as a point anevent [incident |accident [anevent

Under under Under
Galilean [lorentz cartesean |new Galilean

Newton’s law’s remain unchanged or transform [transform |transform [transform [transform

invariant ation ation ation ation ation

The laws of mechanics in all initial frame of

reference are same different |none variable [same

The acceleration of a particle under non-

Galilean transformation is invariant |variant none variable [invariant
The non- The non-
existence existence
of ether of ether
medium medium

The (i.e. (i.e.
existence |absolute absolute
of ether |rest Ether rest

Michelson-Morley experiment proves medium |frame) None pervades |frame)

The The
speed of speed of
lightin The lightin
free speed of variable |[free
spacein |[lightis light space in

Michelson-Morley experiment proves that [invariant |changing |None velocity [invariant

The special theory of relativity was

proposed by Einstein [newton [eigen galileo Einstein

The mass energy relation was proposed by [Newton |[Einstein |Kepler Michelson|Einstein




The Lorentz transformation will converted
to Galilean transformation when the
relative velocity v between two inertial

frames will satisfy the condition v>>C v=C v<<c v=0 v<<c
neither
the length of an object is maximum in a rest nor |varying
reference frame in which it is at rest in motion |in motion [speed at rest
appears | appears appears

to be to be to be
shortened |lengthene shortened
whenit |dwhenit when it
atrest is at rest atrest
w.r.t.to [w.rt.to Jequalto w.r.t. to

the length of a rod in uniform motion the the aboslute [invariant |the

relative to an observer observer |observer |length length observer

The time interval between two eventin a

reference in a reference frame which is in varying

motion is Maximum |minimum |zero speed Maximum
Runs Runs
slower Runs slower
thana thana thana
stationary [stationary |neither stationary
identical |identical |slow nor identical

A moving clock clock clock fast very fast [clock
Greater |Smaller Greater

If the velocity of a moving particle is than than than

comparable to velocity of light then the whenitis [whenitis very when itis

mass of the moving object is rest at rest Equal smaller [rest

All the All the

Energy Mass above above
disappear |disappear [statement statement
sto s to sare nothing |sare

Einistein’s mass energy equation reappear |reappear [correct can be correct

E=mc2 implies that asmass |as energy |exceptd [done except d

How fast a particle must travel so that its

mass becomes twice its rest mass? 0.5c 2¢c 0.866 ¢ 0.9c 0.866 ¢

Relative velocity of two particles moving

with velocity of light of light in opposite

direction is 0|2c C 3c C

For a photon particle which is moving with

a velocity of light, the rest mass is 0 1 2 0




The fictitious force, which acts on particle in

motion relative to a rotating frame of Coriolis Newtonia|Pseudo |centripeta|Coriolis
reference is called force n force force | force force

If the particle is at rest relative to the

rotating frame of reference the coriolis

force is 1 10 2 0
When the particle is at a non-rotating of

reference the Coriolis force 0 2 3 0
The Coriolis acceleration on a freely falling [Directed |Directed |directed |[directed |Directed
body under the action of gravitational force |towards [towards [towards |towards [towards

is the east [the west |north south the east
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