SEMESTER V CLASSICAL MECHANICS (PRACTICAL)

LTPC --42

Any 8 experiments

16PHU514A

- 1. To determine the coupling coefficient of coupled pendulums.
- 2. To determine the coupling coefficient of coupled oscillators.
- 3. To determine the coupling and damping coefficient of damped coupled oscillator.
- 4. To study population models e.g. exponential growth and decay, logistic growth, species competition, predator-prey dynamics, simple genetic circuits.
- 5. To study rate equations for chemical reactions e.g. auto catalysis, bistability.
- 6. To study examples from game theory.
- 7. Computational visualization of trajectories in the Sinai Billiard.
- 8. Computational visualization of trajectories Electron motion in mesoscopic conductors as a chaotic billiard problem.
- 9. Computational visualization of fractal formations of Deterministic fractal.
- 10. Computational visualization of fractal formations of self-similar fractal.
- 11. Computational visualization of fractal formations of Fractals in nature trees, coastlines, earthquakes.
- 12. Computational Flow visualization streamlines, pathlines, Streaklines.

Reference Books

- 1. Nonlinear Dynamics and Chaos, Steven H. Strogatz, Levant Books, Kolkata, 2007
- 2. Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer.
- 3. An Introduction to Fluid Dynamics, G.K.Batchelor, Cambridge Univ. Press, 2002
- 4. Fluid Mechanics, 2nd Edn, L.D.Landau & E.M. Lifshitz, Pergamon Press, Oxford, 1987
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- 6. Scilab by example: M. Affouf, 2012, ISBN: 978-1479203444
- 7. Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC PHYSICSCOURSE NAME: CLASSICAL MECHANICS - PRACTICALCOURSE CODE: 16PHU514ABATCH-2016-2019

CALCULATION OF DISTANCE TRAVELLED IN GIVEN TIME , TIME TAKEN TO REACH A PARTICULAR VELOCITY AND DISTANCE COVERED TO REACH A PARTICULAR VELOCITY

Aim:

To write a sci program for calculation of distance travelled in given time. Time taken to reach a particle velocity and distance covered to reach a particular velocity.

Program:

clc; clear; u =2.5; t =2; v =7.5; a =.5; x=(u*t) +((1/2) *a*t*t); t1 =(v-u)/a; x1 =((v*v) -(u*u)) /(2* a); disp (x,'distance (inm) travelled by the particle in the first two seconds is'); disp (t1 ,'time (ins) taken by particle to reach 7.5 m/s velocity is'); disp (x1 , ' distance (inm) covered by particle to reach 7.5 m/s velocity is');

Output:

--->disp (x,'distance (inm) travelled by the particle in the first two seconds is'); distance (inm) travelled by the particle in the first two seconds is

6.

-->disp (t1,'time (ins) taken by particle to reach 7.5 m/s velocity is'); time (ins) taken by particle to reach 7.5 m/s velocity is

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC PHYSICSCOURSE NAME: CLASSICAL MECHANICS - PRACTICALCOURSE CODE: 16PHU514ABATCH-2016-2019

10.

-->disp (x1, 'distance (inm) covered by particle to reach 7.5 m/s velocity is'); distance (inm) covered by particle to reach 7.5 m/s velocity is

50.

Result:

Distance travelled in given time. Time taken to reach a particle velocity and distance covered to reach a particular velocity is calculated using sci program.

COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF POSITION OF PARTICLE

Aim:

Write a sci program for calculation of position of particle.

Program:

clc; clear; m = .01 Fx = 10 Fy = 5 ux = 0 uy = 0 t = 5 ax = Fx/m; x = (ux*t) + ((1/2) *ax*t*t); ay = Fy/m; y = (uy*t) + ((1/2) *ay*t*t);printf ('at t=5s position of the particle is (i%3.2f+j%3.2f)m',x,y)

Output:

at t=5s position of the particle is(i12500.00+j6250.00)m

Result:

Position of particle is calculated using sci program.

COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF VALUES OF CO-EFFICIENT OF STATIC AND KINEMATIC FRICTION

Aim:

Write a sci program for calculation of values of co-efficient of static and kinematic friction.

Program:	
clc;	
clear;	
M =2.5	
F =15	
g =10	
x =10	
t=5	
mus = $F/(M*g)$	
a =(2* x)/(t*t)	
$muk = (F - (M^*a))/(M^*g)$	

printf ('the coefficient of static friction between the block and the surface is%3.2f', mus) printf ('nn the coefficient of kinetic friction between the block and the surface is%3.2f', muk)

Output:

-->printf ('the coefficient of static friction between the block and the surface is%3.2f', mus) the coefficient of static friction between the block and the surface is 0.60

-->printf ('nn the coefficient of kinetic friction between the block and the surface is%3.2f' muk)

nn the coefficient of kinetic friction between the block and the surface is 0.52

Result:

Values of co-efficient of static and kinematic friction is calculated using sci program.

COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF VALUE OF RADIAL AND TANGENTIAL ACCELERATION

Aim:

Write a sci program for calculation of value of radial and tangential acceleration.

Program:

Output:

-->printf ('the value of radial acceleration is%dm/s^2',ar)

the value of radial acceleration is 180m/s^2

-->printf ('nn the value of tangential acceleration is%dm/s^2',at)

nn the value of tangential acceleration is 2m/s^2

Result:

Value of radial and tangential acceleration is calculated using sci program.

COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF WORK DONE BY FORCE OF GRAVITY

Aim:

Write a sci program for calculation of work done by force of gravity.

Program:

clc;

clear;

```
m =20*10^ -3
```

u =10

g =9.8

h=(u*u) /(2* g)

W=-m*g*h

printf('the work done by force by gravity is %3.1fJ',W)

Output:

-->printf ('the work done by force by gravity is %3.1fJ',W)

the work done by force by gravity is -1.0J

Result:

Work done by force of gravity is calculated using sci program.

CLASS: III BSC PHYSICS COURSE NAME: CLASSICAL MECHANICS - PRACTICAL COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF WORK DONE BY GIVEN FORCE

Aim:

Write a sci program for calculation of work done by given force.

Program:

clc;

clear;

function $\mathbf{F} = \underline{f}(\mathbf{x})$

 $\mathbf{F} = (10 + (.50 * \mathbf{x}))$

endfunction

x1 =0

 $x^2 = 2$

W = integrate ('f', 'x', x1, x2)

printf (' the work done by the given force for the given displacement is%dJ',W

Output:

-->printf (' the work done by the given force for the given displacement is%dJ',W)

the work done by the given force for the given displacement is 21J

Result:

Work done by given force is calculated using sci program.

CLASS: III BSC PHYSICS COURSE CODE: 16PHU514A

BATCH-2016-2019

COURSE NAME: CLASSICAL MECHANICS - PRACTICAL

CALCULATION OF ACCLERATION OF CENTRE OF MASS

Aim:

Write a sci program for calculation of acceleration of centre of mass.

Program:

clc; clear;	
M =2.5	
F1 =6	
F2 =5	
F3 =6	
F4 =4	
theta1 =0	
theta $2 = 37$	
theta3 =53	
theta4 =60	

Fx = (-F1* cosd (theta1)) + (F2* cosd (theta2)) + (F3* cosd (theta3)) + (F4* cosd (theta4)) Fy = (F1* sind (theta1)) + (F2* sind (theta2)) + (-F3* sind (theta3)) + (F4* sind (theta4)) F= sqrt ((Fx*Fx) + (Fy*Fy))theta = atand (Fy/Fx)
acm = F/M
printf ('the acceleration of the centre of mass is%3.1fm/s^2 and is in the direction of ther esultant

force',acm)

CLASS: III BSC PHYSICS COURSE NAME: CLASSICAL MECHANICS - PRACTICAL COURSE CODE: 16PHU514A BATCH-2016-2019

Output:

--->printf ('the acceleration of the centre of mass is%3.1fm/s^2 and is in the direction of the resultant force', acm)

the acceleration of the centre of mass is1.6m/s^2 and is in the direction of the resultant force

Result:

Acceleration of centre of mass is calculated using sci program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC PHYSICS COURSE NAME: CLASSICAL MECHANICS - PRACTICAL

COURSE CODE: 16PHU514A

BATCH-2016-2019

CALCULATION OF FRICTIONAL CHANGE IN KINETIC ENERGY

Aim:

Write a sci program for calculation of frictional change in kinetic energy.

Program:

clc;	
clear;	
vb =20	
v1 =30	
M=1	
v =(1/ M) *((M*vb *2) -(M*v1))	
deltake = $(M*v1*v1/(2*2))+(M*v*v/(2*2))$	2*2))-(M*vb*vb/2)
fdeltake = deltake / (M*vb*vb /2)	

printf (' the fractional change in the kinetic energy is %3.2f' ,fdeltake)

Output:

->printf (' the fractional change in the kinetic energy is%3.2f' ,fdeltake)

the fractional change in the kinetic energy is 0.25

Result:

Frictional change in kinetic energy is calculated using sci program.