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Scope: Study of Classical Mechanics gives an idea about how classical physics deal with
matter and energy. Even though classical physics cannot explain many observed phenomena
in the case of microparticles and relativistic velocities, it is still valid in the case of macro
objects at non-relativistic velocities.

Objective: The objective of this course is to give an insight into the classical methods of

physics.

UNIT - |

Conservation laws. Mechanics of a system of particles — Conservation laws: linear
momentum, angular momentum, energy — Constraints, Degrees of freedom — Generalised co-
ordinates — Generalized notations — Brachistocrone problems — Atwood’s machine.

Hamilton’s variational principle — Lagrange’s equation of motion from Hamilton’s principle,
D’Alembert’s principle — Applications of Lagrange’s equation of motion — particle moving
under a central force — particle moving on the surface of earth— Superiority of Langrange’s
approach over Newtonian’s approach.

UNIT =11

Phase space: Hamiltonian — Hamilton’s canonical equations of motion — Physical significance
of H — Advantage of Hamiltonian approach — Hamilton’s canonical equation of motion in
different coordinate systems — Hamilton-Jacobi method — Kepler’s problem solution by
Hamilton-Jacobi method — Action and angle variables — Solution of Harmonic oscillator by
action angle variable method — canonical or contact transformation — Condition for a

transformation to be canonical.
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UNIT =1

General features of central force motion : General features of orbits — Centre of mass and
laboratory coordinates — Virial theorem — Stable and unstable equilibrium — Propertiesof T, V
and w for small oscillations .

Generalized coordinates for rigid body motion : Euler’s angles — Angular velocity,
momentum of rigid body — moment and products of inertia — Principal axis transformation —
rotationa kinetic energy of a rigid body — Moment of inertia of a rigid body — motion of a

symmetric top under action of gravity.

UNIT -1V

Special Theory of Relativity: Introduction — Galilean transformation and invariance of
Newton’s laws of motion — Non variance of Maxwell’s equations — Michelson Morley
experiment and explanation of the null result.

Concept of inertiad frame — Postulates of special theory — simultaneity — Lorentz
transformation along one of the axes — length contraction — time dilatation and velocity
addition theorem — Fizeau’s experiment — Four vectors — Relativistic dynamics — Variation of

mass with velocity — Energy momentum relationship.

UNIT -V

General theory of Relativity: Introduction — Limitation of special theory of relativity and
need for a relativity theory in non-inertial frames of reference Limitation of special theory of
relativity and need for a relativity theory in non-inertial frames of reference. Concept of
gravitational and inertial mass and the basic postulate of GTR, gravitation & acceleration and
their relation to non-inertial frames of reference — principle of equivalence of principle of
genera co-variance — Minkowski space and Lorentz transformation.

TEXT BOOKS:

1. Goldstein.H.A. 2000, Classical Mechanics, 2nd Edition, Wesley Publishing Company,
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London.

2. Gupta S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19" Edition,
Pragati Prakashan, Meerut.

3. Banerji Sriranjan and Asit Banerjee, 2nd Edition 2013, The Special Theory of
Relativity, Printice-Hall of India, New Delhi

4. Aruldhas G.,1% edition, 2008, Classical Mechanics, Printice Hall of India, New Delhi

REFERENCES:

1. Sardesai D.L., 1% edition, 2004, A Primer of Specia Relativity, New Age International
Publishers, New Delhi

2. Hartle B. James, 1% edition ,2009, Gravity, An Introduction to Einstein’s General
Relativity, Dorling Kindersley (India) Pvt. Ltd., Delhi
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S.No | Lecture Topicsto be covered Support
Duration material /Page
(Hr) no.
UNIT -1
111 Mechanics of a system of particles, Conservation laws: T2(5-7)

linear momentum

211 Angular momentum, energy , Constraints, Degrees of T2(8-17)
freedom
3|1 Generalised co-ordinates — Generalized notations T2(17-26)
4|1 Brachistocrone problems — Atwood’s machine T2(34-36)
T2(66-67)
51 Hamilton’s variational principle . T2(37-39)

Lagrange’s equation of motion from Hamilton’s principle | T2(39-41)

6|1 D’Alembert’s principle T2(41-42)
Application of Lagrange eguation of motion T2(60-62)

711 particle moving under a central force, particlemovingon | T2(62), T(60-61)
the surface of earth

81 Superiority of Langrange’s approach over Newtonian’s T2(83-84)
approach

91 Revision
Total no.of Hours planned for unit —I 9
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S.No Lecture Topicsto be covered Support
Duration material/Page
(Hr) no.
UNIT - 11
1 1 Hamiltonian — Hamilton’s canonical equations of motion T2(113-114)
2 1 Physical significance of H T2(114-116)
Advantage of Hamiltonian approach
3 1 Hamilton’s Canonical equation of motion in different systems | T2(117-120)
4 1 Hamilton Jacobi method T2(153)
1 Kepler’s problem solution by Hamilton Jacobi method T2(163-165)
6 1 Action and angle variables T2(171-173)
Solution of Harmonic oscillator by action angle variable T2(173-174)
method
7 1 Canonical or contact transformation T2(137-139)
Condition for atransformation to be canonical T2-147
8 1 Revision
Total no.of Hours planned for unit —I1 8
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S.No | Lecture Topicsto be covered Support
Duration mater ial Page
(Hr) no.
UNIT - 111
1|1 General features of orbits T1(665-672)
Centre of mass and laboratory coordinates T1(673-676)
2 |1 Virial theorem T1(680-683)
3|1 Stable and unstable equilibrium T1(689-697)
4 |1 Propertiesof T, V and w for small oscillations T1(689-697)
T1 (701-702)
5|1 Euler’s angles T1(709)
Angular velocity, momentum of rigid body T1(712-714)
6 |1 moment and products of inertia T2(304)
7 |1 Rindpd axdstrandometion T2(309)
8 |1 rotational kinetic energy of arigid body, Moment of inertia [T2(310)
of arigid body
9 11 motion of asymmetric top under action of gravity T2(312)
101 Revision
Total no.of Hours planned for unit —I11 10
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SNo | Lecture Topicsto be covered Support
Duratio material /Page
n (Hr) no.
UNIT -1V
1 1 Introduction — Galilean transformation T2(337-338)
Invariance of Newton’s laws of motion T2(420-421)
2 |1 Non variance of Maxwell’s equations T2-(422-424)
Michelson Morley experiment and explanation of the null
result
T2(435-437)
3 |1 Concept of inertia frame T2(440-442)
4 |1 Postulates of specia theory simultaneity T2(451-452)
5 |1 Lorentz transformation along one of the axes T2(453-454)
6 |1 length contraction — time dilatation and velocity addition | T2(455-457)
theorem
7 |1 Fizeau’s experiment — Four vectors — T2(457-458)
8 |1 Relativistic dynamics -V ariation of mass with velocity T2(520-525)
9 |1 Energy momentum relationship. T2(526-530)
10| 1 Revision

Total no.of Hours planned for unit -1V

10
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S.No | Lecture Topicsto be covered Support
Duration material Page
(Hr) no.
UNIT -V
1 1 Introduction — Limitation of specia theory of relativity R1(95-96)
2 1 Need for arelativity theory in non-inertial frames of R1(97-99)
reference
3 1 Concept of gravitational and inertial mass R1 (99-102)
4 1 The basic postulate of GTR R1(103-104)
5 1 The basic postulate of gravitation R1(105-106)
6 1 The basic postulate of acceleration R1(107-108)
7 1 Relation to non-inertial frames of reference R1(109-110)
8 1 principle of equivalence R1(111-114)
1|1 principle of general co-variance R1(114-116)
Minkowski space and Lorentz transformation R1(117-120)
10 1 Revision
11 1 Five years question discussion

Total no.of Hours planned for unit -V

11
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TEXT BOOKS:

1. Goldstein.H.A. 2000, Classica Mechanics, 2nd Edition, Wesley Publishing Company,
London.

2. Gupta. S. L., V.Kumar and H.V.Sharma, 2008, Classical Mechanics, 19" Edition,
Pragati Prakashan, Meerut.

3. Banerji Sriranjan and Asit Banerjee, 2nd Edition 2013, The Special Theory of
Relativity, Printice-Hall of India, New Delhi

4. Aruldhas G.,1% edition, 2008, Classical Mechanics, Printice Hall of India, New Delhi

REFERENCES:

1. Sardesai D.L., 1% edition, 2004, A Primer of Special Relativity, New Age International
Publishers, New Delhi

2. Hartle B. James, 1% edition ,2009, Gravity, An Introduction to Einstein’s General
Relativity, Dorling Kindersley (India) Pvt. Ltd., Delhi.
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UNIT-I

SYLLABUS

Conservation laws. Mechanics of a system of particles — Conservation laws:. linear momentum,
angular momentum, energy — Constraints, Degrees of freedom — Generalised co-ordinates —
Generalized notations — Brachistocrone problems — Atwood’s machine.Hamilton’s variational
principle — Lagrange’s equation of motion from Hamilton’s principle, D’Alembert’s principle —
Applications of Lagrange’s equation of motion — particle moving under a central force — particle

moving on the surface of earth— Superiority of Langrange’s approach over Newtonian’s approach.

M echanics of a system of particles

Mechanics is the study of the motion of physical bodies .The possible and actual motions of
physical objects, whether large or small, fall under the domain of mechanics. In the present century the
term “Classical mechanics” has come in to wide to denote this branch of physics in the contradiction to
the newer theories especially quantum mechanics. “Classical mechanics has been customarily used to
denote that part of the mechanics which deals with the description and explanation of the motion of the
objects, neither too big so there exists a close agreement between theory and experiment nor too small
interacting objects, more precisely like the systems on molecular or subatomic scale.” We shall
follow this usage, interpreting theories the name to include the type of mechanics. Classical
mechanics may be classified in to three subsections (i) Kinematics (ii) Dynamics (iii) Statics.

In this unit we deals with the structure and law of mechanics with the applications, starting
from basic fundamental concepts .Having established the essential pre-requisites, the Lagrangian
formulation known for its mathematical elegance.
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CONSTRAINTS

Constraints are the geometrical or kinematical restrictions on the motion of the particle or system of

the particles. Systems with such constraints of motion are called as

Constrained systems and their motion is known as constrained or restricted motion. Some
examples of restricted motions are-
The motion of the rigid body is restricted to the condition that the distance between any two
particles remains unchanged.
The motion of the gas molecules with in the container is restricted by the walls of the vessels.
A particle placed on the surface of a solid sphere is restricted so that it can only move either on

the surface or outside the surface.

Classification of Constraints

The constraints can be classified in to the following categories:

(1) Holonomic and non-holomonic constraints (ii) Scleronomic and rhenomic constraints

Holonomic constraints:-Constraints are said to be holomonic if the conditions of all the constraints
can be expressed as equations connecting the coordinates of the particles and possible timein the form
f(ryrars........ Imt) =0 (1.1

Wiiefe ?1 Bl 8, represent the position vectors of the particles of asystem and t thetime. In
Cartesian coordinates equation (1.1) can be written as,

f (X1, Y1, Z1; X2, Y2, Z2y v eennns Xns Yn, Znt) =0 (1.2)
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Examples of holonomic constraints:-
1. The constraints involved in the motion of rigid bodies. In rigid bodies, the distance between
any two particlesis always constant and the condition of constraints are expressed as-
Vi - 1%% - Ci* =0 (1.3)
2. Condtraintsinvolved in the motion of the point mass of asimple pendulum.
3. The constraints involved when a particle is restricted to move aong any curve (circle or
ellipse) or in agiven surface.
Non-holonomic constraints: - If the conditions of the constraints can not be expressed as equations
connecting the coordinates of particles as in case of holomonic, they are called as non-holomonic
constraints. The conditions of these constraints are expressed in the form of inequalities. The motion of
the particle placed on the surface of sphere under theaction of the gravitational force is bound by non-
holonomic constraints, for it can be expressed as an inequality, r*- a3 0.
Examples of non-holonomic constraints
1. Constraintsinvolved in the motion of a particle placed on the surface of asolid sphere
2. An object rolling on the rough surface without slipping.
3. Constraints involved in the motion of gas moleculesin acontainer.
(if) Scleronomic and Rhenomic Constraints: - The constraints which are independent of time are
caled Scleronomic constraints and the constraints which contain time explicitly, called rhenomic
constraints
Examples. - A bead dliding on a rigid curved wire fixed in space is obviously subjected to
Scleronomic constraints and if the wire is moving is prescribed fashion the constraints become

Rhenomic.

GENERALISED COORDINATES
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Generalised co-ordinates:- These are the coordinates which are used to eliminate the dependent
coordinates and can be expressed in another way by the introduction of (3N-p) independent
coordinates of variables called the Generalised coordinates, where N represent the number of particles
of a system and p represent the holonomic constraints. Thus any ‘q’ quantities which completely
define the configuration of the system having ‘f” degree of freedom are called Generalised co-ordinates
of the system and are denoted by qi, 0y, g3, ... ... gr orjust g (i=1,2,3,4...f)

Principles for the choosing a suitable set of Generalised co-ordinates - For this three principles are
used —
1. They should specify the configuration of the system.
2. They may be varied arbitrarily and independently of each other, with out violating the
constraints on the system.

3. Thereisno uniquenessin the choice of the generalised coordinates

It may be noted that generalised co-ordinates need not to have the dimensions of length or angles.
Generalised co-ordinates need not to be Cartesian co-ordinates of the particles and the condition of the
problem may render some other choice of co-ordinates which may be more convenient.

Generalised Notations

i) Generalised Displacement — A small displacement of an N particle system is defined by
changes dr; in posit(?on co-ordinates r; (i :1,?,3....,N) with time ‘t” held fixed. An arbitrary virtual
displacement dr; remembering th%t r’s are function of generalised co-ordinatesi.e. ri = ri (Q1, Q...

gsn t), can be written %y using Euler’s theorem as,
3N

_ 1Iri
dri -S g % (15)

j=1
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dg; is called the generalised displacement or virtual displacement. If g; is an angle co-ordinate, dg; is

an angular displacement.
(i) Generalised velocity — The time derivative of the generalised g ,is called generalised velocity

associated with particular co-ordinates gx for an unconstrained system,

fi =i (O, G, dan ),

® ®
Then, 3N o .
® Mg In
i = Tl
= (16)

If N-particle system contains k-constraints, the number of generalised co-ordinates are 3N-k=f and,

(1.7)
o T n
p=Q In 4, I
i . 19 i 1t
1=1
(iii) Generalised Acceleration- components of generalised acceleration are obtained by differentiating

equation (1.6) or (1.7) w.r.t. time and finally we obtain the expression

N 3N 3N ,
E R SS Gidk + 2 Y R
o g ok 'ﬂ Ok '”CIJ fit it

j=1 j=1k=

(18)

From the above equation it is clear that the cartesian components are not linear functions of

components of generalised acceletation d,-“al one, but depend quadratically and linearly on generalised

velocity component g; as well. X

®
(iv) Generalised Force — Let us consider the amount of work done dW by the forcie SF during an

®
arbitrary small displacement Sdr; of the system

N N 3N ® N R
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dw = F .dr = Fi . dqj = Fi . dqj

aN
=§ Q .dg; (1.9)

N ®
qri (1.10)
Q- = L
Where, ! S Yo

=1

Here we note that Q; depends on the force acting on the particles and on the co-ordinate g; and possibly
ontimet. Therefore, Q; is called the generalised force.

Advantages of Generalised co-ordinates

The main advantage in the formulating laws of mechanics in terms of generalised co-ordinates and the
associated mechanical quantities is that the equation of motion looks simpler and can be solved
independently of each other since generalised co-ordinates are al independent and constraints have no

effect on them. The equations of motion are then called Lagrange’s equation of motion.
D’ALEMBERT’S PRINCIPLE

This method is based on the principle of virtual work. The system is subjected to an infinitesimal
displacement consistent with the forces and constraints imposed on the system at a given time t. This
change in the configuration of the system is not associated with a change in timei.e., there is no actual
displacement during which forces and constraints may change and hence the displacement is termed
virtual displacement.

From the principle of virtual work

Prepar Dr.ASarBnya, Asst Prof, Department of Physics, KAHE Page 6/20
[




KARPAGAM ACADEMY OF HIGHER EDUCATION
== CLASS: | MSCPHYSICS ~ COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
KARPAGAM COURSECODE: 17PHP103  UNIT: | (CONSERVATION LAWS) BATCH-2018-2020

ACADEMY OF HIGHER EDUCATION
to be,

(1.11)

® ®
Here F® represent the applied force and dr; denote the virtual displacement.

To interpret the equilibrium of the systems, D’Alembert adopted an idea of reverse force. He

conceived that a system will remain in equilibrium under the action of aforce equal to the actual force

F plusreversed effective force pi. Thus ®
o 4 (112)
Fi+(-p)=0
®
or, F-B=0

Thus the principle of virtual work takes the form,
- _B)®
S(FI a).dl’i =0
[

® ® ®
Againwriting F; = 2 + f;

$@i a'®pi).d?i +(E.él®ri =0

Dealing with the systems for which the virtual work of the forces of constraintsis zero, we write

® ® ©®
(Fai' pi)dr; =0

Since force of constraints are no more in picture, it is better to drop the superscript ‘a’. Thus

S((;D:i - (Si)gri =0 (13
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The equation (1.13) is called D’é\lembert princi%Ie. To satisfy the above equation, we can not equalate
the coefficient of dr; to zero since dr; are not independent of each other and
hence it is necessary to transform dr; i to generalised co-ordinates, dg; which are independent of each

other .The coefficient of dg; will then equated to zero.
DERIVATION OF LAGRANGE’S EQUATION

The Lagrange’s equations can be obtained from Hamilton’s variational principle, velocity dependent
potentials and also by Rayleigh’s dissipation function. In the present article we shall discuss the
derivation of Lagrange’s equations from velocity dependent potential and by Rayleigh’s dissipation
function.

Lagrange’s Equations from velocity dependent potential

The co-ordinate transformation equations are

Q?i =(Pi (g1,02... ... Ont)

So that,
df  df do +®dri do | fbﬂﬂ
dt - ﬂql dt ﬂC]Q a ﬂt dt
So that
®
. I
. =9 i Y+
Visp A Gl (1.14)
®
Further infinitesimal displacement dr; can be connected with dg;
®
qIri ®
di =Sqj doj %dt

I
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But the last term is zero since in virtual displacement only co-ordinate displacement is considered and

not that of e. Therefore,

dr =S d
i ﬂq1 0]

Now we write equation (1.13) as,

® ® 'ﬂ%’@'
I (Fi'pi) JSH dq] =O,

® q° ® ®
sFi-%de '$ pu%dq,

(1.15)

=S (.
WedelcineS | fla N =Q & the component of generalised force. So the above equation

® ®
j doj S p. g4y =0 (1.16)
J (R . ' 1 0

Lagrangian Mechanics
The evaluation of second term in equation (1.16) gives the expansion as

S - ﬂr. dqj S[ {“ (S(l/z)mv.}) {%qi(s( Ya) miviﬂ doj

(1.17)

With this substitution equation (1.16) becomes

Spea-Slalwa) ~ T Joa-o

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 9/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

%ﬁ—:ﬁ CLASS: | MSCPHYSICS  COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
KAR P;\G AM COURSE CODE: 17PHP103 UNIT: | (CONSERVATION LAWS) BATCH-2018-2020

IRCADEMY OF HIGHER EDUCATION

[Deemed to be,
(Established Under Sectioliing —

Where S(1/2) mivi? = T, is written since it represents the total kinetic energy of the system, further the
above equation may be

dIm) _ I 5 V-
JS[dt[‘HQJ Toj Q,]dq,_o

Since the constraints are holonomic, g; are independent of each other and hence to satisfy above

equation the coefficient of each dg; should necessary vanish, i.e.
[ d [ﬂ] _ ﬂ] _o
dt {_fig fa) = (1.18)

As j ranges 1 to n, there will be ‘n” such second order equations.

If potential are velocity dependent, called generalised potentials, then through the system is not
conservative, yet the above form Lagrange’s equations can be obtained provided Qj;, the components of
the generalised force, are obtained from afunction U(q;,q;) such that S

— (1.19)

Q. — ﬂ+g[ﬂ]
T g dtlL1g

Hence the from equation (1.18) and equation (1.19) ,we have

d(1T-u) ) _ 1(T-u) _
dt[ 11 ] p[[67 0

If wetake L = T-U, the Lagrangian function, where U is generalised potential, then above equation

becomes
al %) (1.20)
datl  1g; flo; '

Which are the Lagrangian equations for holonomic constraints systems.
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Lagrange’s equations from Rayleigh’s dissipation function

It can be shown that if a system involves frictional forces or dissipative forces, then in suitable
circumstance, such a system can aso be described in terms of extended Lagrangian formulation.
Frictional forces are found to be proportional to the velocity of the particle so that in cartesian co-
ordinates components are,

= ki, (1.21)
Where k; are constants. Such frictional forces are defined in terms of a new quantity called Rayleigh

dissipation function given as,

A =(1/2)Skix’,
Which yields A
Fi=- 1% (1.22)

Writing equation (1.18) in cartesian co-ordinates, assuming that this still holds for such a system,

dt | 1o Tg)
Where L contains the potential of conservative forces as described earlier; Q; represents the forces

which do not arise from a potentid, i.e.
JA

Qi=Fi=- M
(1.23)

Thus equation (1.18) can be written as,

9 [&] — L + j]A =0
dt ﬂXj ﬂXj ﬂxl
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The above equation may be expressed as in terms of generalised co-ordinates g

(4[5~ L. %o
dt { g flo; flai (1.24)

Thus for such a system, to obtain equations of motion, two scalar L and A are to be specified.

VARIATIONAL PRINCIPLE
to

q‘j T-V )dt
This principle state that the integral 11

shall have a stationary value or extremum value, where
T, kinetic energy of the mechanical system, is afunction of co-ordinates and their derivativesand V is
the potential energy of the mechanical system, is a function of co-ordinate only. Such a system for
which V is purely afunction of co-ordinatesis called conservative system.

Statement: The variational principle for the conservative system is stated as follows
“The motion of the system from time t; to time t, is such that the line integral
tz t2
| = q‘jT-V)dt = (‘}dt,
1 1 Is extemum for the path of motion” .Here L=T-V is
the Lagrangian function .

EULER -LAGRANGE EQUATION

Theintegral I, representing a path between the two points 1 and 2 will be written as
to

I :(\P fIy1(X) Yo(X),seeeees veennnt Y10)Y2(X) e X]dx
1
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Now to account for al possible curves between the two pointsl,2,we assign different values of a
parameter a to these curves, so that y; will also be a function of a, i.e. curves being represented by vy;
(x, a).The family of the curves may be represented as

yi(x,a) = y1(x,0) + ah(x)

ya2(X,a) = y2(x,0) + ahz(X)

Where h, and h; etc. are completely arbitrary functions of x,which vanishes at end points and the
curves y1(X,0), y2(x,0) etc. for a=0 are paths for which theintegral | is extemum

Theintegral | will be the function of a and hence its variation can be represented as

@ ga AT 4q + IF W ga Jox
() Q?[ﬂmﬂ(a) ﬂyJ ﬂ()a]

Integrating by parts the second term of the integrand we get

QIICYNAG LI VI ]dx 1t W 4

1(a) Qs[ﬂyjﬂ() + STy T@°

N [lf ] i da dx
Py 0 (a) dx

Ql Ty

(1.26)

Lagrangian and Hamiltonian Mechanics

fyi 17 _
Sinceat end points, which are held fixed, all paths meet,so  fa 1_0 . Therefore equation (1.26)
becomes
T1@) 4, = [ﬂf v, ] 1y 1Yiga d
da = L da |dx— +Jida OX
() 3 LTy 1) QJ dx[ﬂyJ] fa
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qf
%
Let us put
T i ga = qv
ﬂada—dl & o da = dy;
So that

9] d If _
d=Q) $ H“t _Hx[ﬁyjﬂ i o
1 Ty,

For the integral to be extremum

t d ff _
di= (‘l)z_s [_"” _Hx[ﬁyj]] =0
Ty,

Since dy; are independent of each other, coefficient of dy; should separately vanish if above equation is
to be satisfied. Thus. d 1
[Tf" dx[‘ﬂyj

i (1.27)
The set of differential equations represented by equation (1.27)are known as Euler-Lagrange

]] =0,j=1,2,3,...n

differential equations. Thus solutions of Euler-Lagrange equation represent those curves for which the

2
integral assumes an extremum val ue|.=q f(y;, yj, X)dx

1.8 DERIVATION OF LAGRANGE’S EQUATION FROM HAMILTON’S PRINCIPLE
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According to Hamiltonian’s variational principle, motion of a conservative system from timet; to time
t2 is such that the variation of the line integral

E d L [qt), G(t), t]dt , iszero
e a=dQ Lq®, g, gdt=0 (1.28)

Now we shall show that Lagrange’s equations of motion follow directly from Hamilton’s principle. If
we account for all possible paths of motion of the system in configuration space and |abel each with a
value of a parameter a,then since paths are being represented by g;(t,a),l also becomes a function of a

s0 that we can writ,

& (1.29)
I(a)=q L [oi(t, @), q(t, @), fdt

Sothat, fli(a)_ & Lo, L1 L JEEEY
(@) fig Ta g Ta = Tt Ta

Sincein d variation, there is no time variation along any path and aso at end points and hence (11/a)

iszero along all paths. Therefore, on multiplying by da, above equation is

@), qs'”L T e ot + Q s “ql | da ot

EY) g Ta (1.30)

Integrating second term of L.H.S. by parts

_ L% yq at LS9 4
QS.” fa @S e @
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G ['”_L _d [1'-]] TG 4

= (\l)l s (Mo dt \fq JJ Tt (1.31)
J
Since g; are independent of each other, the variations dag; will be independent. Hence 11(a)=0if

and only if the coefficients of do; separately vanish, i.e.
i _d [ﬂ_'—] _ 1.32
&~ alig) ] =0 (32

Which are Lagrange equations of motions for a conservative system. It is obvious that these equations

follow directly from Hamilton’s principle.

Application Of Lagrange’s Equation Of Motion:

Simple Pendulum:

Consider a simple pendulum of mass m which is deflected by an angle 66 from its mean position. Let |
be the length of the pendulum and x beits linear displacement fro equilibrium position.

From fig we have,

X' =16
The kinetic energy of the system is,

T=12mx 2

=12mi%9?

The pendulum gains height AC at extreme position so that its potentia energy is,
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V=mgAC
=mg(OA-0OC)
=mg(l-Icosb)

V=mgl(1-cosB)
The Lagrangian of the pendulum is,

L=T-V=1/2ml?0"*~-mgl(1-cosb)

The equation of motion is given by,

d/dt(dL/56")-dL/66=0
Here, 3L/36"=ml%8" and 5L/36=—mglsin®
So, equation of motion becomes,

ddt(ml26°)+mglsin6=0
ml28”+mglsin6=0
167+gsing6=0
87+glsingb=0
For small angle 6 , sin6=0

0"+w26=0

where, w*=glw’=g/l
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and T=2m/w=2nv1/g,which is the equation of motion of simple pendulum.

Compound Pendulum:
Compound pendulum is arigid object capable of oscillating in avertical plane about horizontal axis.

Consider a compound pendulum of mass m oscillating in xy plane. In the figure the point '0' is the

point of suspension through which the horizontal axis passes and C is the center of mass.
Now the kinetic energy of systemis

T=12l0
=1/216'%.--(1)
Where 8 isthe generalized co-ordinate for the system.
and potential energy (v)=—mglcos8:--(2)
So Lagrangian of systemis
L=T-V
=1/216" %+mglcosd

We have, lagrangian equation of motion is

didt(3L/3q j)-3L/3qj=0

Inthis case, d/dt(6L/66")-5L/686=0

SO,

dL/d38=-mglsin®

and

d/dt(5L/88")=18"
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Now the Lagrangian equation of motion reduces to

107 +mglsin6=018"+mglsin6=0
10"+mgl6=0 [-For smallf]]

6"+mgl81=0---(3)
IN equation (3) mgl/I refers to w?
w’=mgl/|

T=2nvI/mgl———=V---(4)

Equation (4) gives the time period of compound pendulum.

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 19/20




KARPAGAM ACADEMY OF HIGHER EDUCATION
= CLASS: | MSCPHYSICS  COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
K A ﬁ'p"‘;‘;"é AM COURSE CODE: 17PHP103 UNIT: | (CONSERVATION LAWS) BATCH-2018-2020

BCADEMY OF HIGHER EDUCATION

{Deemed to be Link
(Estabiished Under Sectic

POSSIBLE QUESTIONS:

PART B: (6 MARK)
What are Constraints? Explain its various types of Constraints.
Explain about the Degrees of freedom.

What are the Generalized co-ordinates? Derive the various notation for the momentum, force
,potential.

Explain the concept of D’ Alembert’s principle.
Derive the lagrangian differential equation from D’Alembert’s principle

Describe the application of Lagrangian equation of motion to linear harmonic oscillator.
Simple pendulum.

Compound pendulum.
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Total energy of Kinetic potential
1 | body is sum of energies energies. forces. both aand b. both aand b.
Energy can neither
be created nor be
destroyed, but it
can be changed
from one form to
another. Thislaw potential conservation conservation
2 | isknown as Kinetic energy. | energies. of energy principle. conservation of energy
An artificial
Satellite revolves
round the Earth in
circular orbit,
which quantity Angular Linear Angular
3 | remains constant? | Momentum Momentum Displacement | None of these Angular Momentum
A man presses
more weight on Sitting Standing
4| earthat: position Position Lying Position | None of these Standing Position
Therotationa
effect of aforceon
a body about an
axis of rotationis
described interms | Centre of Centripetal Centrifugal
5 | of the gravity force force Moment of force | Moment of force
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If no external
force actson a

the total linear

system of bodies,

momentum of the
system of bodies
remains constant.

Principle of

Which law states | Newton'sfirst | Newton's Newton's conservation of Principle of conservation of
6 | that ? law Second Law Third Law linear momentum | linear momentum
Which law isaso
called the law of Newton'sfirst | Newton's Newton's
7 | inertia? law Second Law Third Law All of these Newton'sfirst law
Energy possessed
by abody in Kinetic potential conservation conservation
8 | motioniscalled energy. energies. of energy principle. kinetic energy.
9| LagrangianL = T-V T+V (T-V)2 (T+V)1/2 T-V
The path adopted
by the system
during its motion
can be represented
by a space of
10 | dimensions. 3N 6N ON N 6N
Co-ordinate
transformation
11 | equations should time position momentum velocity time
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not involve

explicitly.

Harmonic

12 | by

The frequency of

oscillator is given

[1/2p(k/m)5/2]

[1/2p(k/m)3/2]

[1/2p(k/m)1/2]

[1/2p(k/m)]

[1/2p(k/m)1/2]

If the total
energy of the
particleis

13 | conserved then,

T+V
=constant

b. T-V=0

c. T-V
=constant

None of these

T+V =constant

Constraint

relations do not
14 | depend ontimeis

scleronomic

b. rheonomic

C. unilateral

None of these

scleronomic

Constraint

15 | ontimeis

relations depend

scleronomic

b. rheonomic

C. unilateral

None of these

rheonomic

Constraint

16 | of velocities

relations can be
made independent

scleronomic

b. rheonomic

C. unilateral

.d holonomic

unilateral

The

Branchistochrone
17 | problemisto find

shape of a
curve

blength of a
curvec.

elasticity of a
curve
electrons

None of these

shape of a curve
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18

1 "I-f no externa

torqueis applied
on a body, then
total angular
momentum
remains constant”
stated law is called

A. law of
conservation
of angular
velocity.

A. law of
conservation
of angular
acceleration.

A. law of
conservation
of angular
momentum.

A. law of
conservation of
angular speed.

A. law of conservation of
angular momentum.

19

Which one of the
following choices
isan example of a
non-conservative
force?

elastic spring
force

kinetic
frictional
force

torque

gravitational force

kinetic frictional force

20

Which one of the
following choices
isan example of a
conservative
force?

elastic spring
force

kinetic
frictional
force

torque

gravitational force

elastic spring force

21

A man of mass
50 kg jumpsto a
height of 1 m. His
potential energy at
the highest point is
(g=10m/s2)

50J

500J

12]

30J

500J

22

The type of
energy possessed
by asimple
pendulum, when it
isat the mean

KE

PE

KE+PE

KE-PE

KE
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positionis

If air resistanceis
negligible, the sum
total of potential
and kinetic
energies of afredly
23 | faling body

increases increases

becomes zero

remains the same

remains the same

Name the
physical quantity
whichisequal to
the product of

force and velocity.

24 WORK ENERGY

POWER

ACCELERATION

POWER

The P.E. of abody
at acertain height
iIs200J. The
Kinetic energy
possessed by it
when it just
touches the surface
25 | of theearthis

>PE <PE

P.E

Not Known

>PE

The point, through
which the whole
weight of the body
acts, irrespective
of itsposition, is
26 | known as

centre of
percussion

centre of mass

moment of
inertia

centre of gravity

centre of gravity
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the algebraic
sum of their
moments
According to the about any
law of moments, if | thealgebraic | point isequal
anumber of sum of their to the moment
coplaner forces moments of their their lines of
acting on a particle | about any resultant force | action are at the algebraic sum of their
arein equilibrium, | pointintheir | about the equal their algebraic sum | moments about any point in
27 | then planeiszero | same point. distances iISzero their planeis zero
The motion of a
particle round a trandatory as
28 | fixed axisis well asrotatry | translatory rotary circular circular
The principle of
transmissibility of maximum, if | minimum, if it
forces statesthat, | different at it acts at the acts at the
when aforceacts | different centre of centre of same at every
upon abody, its points on its gravity of the | gravity of the | pointonitslineof | minimum, if it acts at the
29 | effectis line of action | body body action centre of gravity of the body
The centre of
gravity of asemi-
circleliesat a
distance of
from
its base measured
along the vertica
30 | radius. 3r/4n 4r/ 3n 3r/ 8 8r/3 4r/ 3n
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31

are those forces
whose lines of
action

meet on the
same plane

lieonthe
same line

meet at one
point

none of these

meet at one point

32

The velocity ratio
in case of an
inclined plane
inclined at angle 6
to the horizontal
and weight being
pulled up the
inclined plane by
vertical effort is

cos B

sin @

tan ©

cot 6

sin @

33

One complete
round trip of a
vibrating body
about it's mean
positionis

frequency

time period

amplitude

vibration

vibration

34

Potential energy of
mass attached to
spring at mean
positionis

maximum

moderate

Z€Ero

minimum

Z€ero

35

Velocity of bob in
SHM becomes
zero at

mean position

inar

extreme
position

middle of mean
and extreme
position

extreme position
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36

] .Ii‘ potential

energies and
kinetic energies
are equal then
displacement of an
object in SHM is

37

Kinetic energy of
mass attached to
spring at extreme
positionis

maximum

moderate

ZEro

minimum

Z€ero

38

Potential energy of
mass attached to
spring at extreme
positionis

maximum

moderate

ZEro

minimum

maximum

39

Hamiltonian H =

T-Vv

T+V

(T-V)2

(T+V)1/2

T+V

40

Advantage of
Action and Angle
variable isthat one
can obtain the
frequencies of

Vibratory
motion

periodic
motion

circular
motion

al the above

periodic motion

41

For non-interacting
particleina
guantum state the
energy E isgiven
by

p/2m

p2/m

p/m

p2/2m

p2/2m

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE

Page 8/10




KARPAGAM ACADEMY OF HIGHER EDUCATION

& CLASS: | MSc PHY SICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
‘-:-"“‘V”/—:-I-’ COURSE CODE: 17PHP103 UNIT: | (CONSERVATION LAWYS)

KARPAGAM

ACADEMY OF HIGHER EDUCATION

{Deamed to be Univarsity)
{Evtmblshed Linder Section 3 of UGL Act, 1985

BATCH-2018-2020

Co-ordinate
transformation
eguations should
not involve

42 | explicity. position momentum

time

force

time

Generating
function have

43 | forms. four two

three

five

four

Hamilton’s
principal function
is denoted by

Hamilton’s
characteristic
function W is
identified as potential
45 . Kinetic energy | energy

work

action A

action A

Hamilton’s
characteristic
function is denoted
by

46 .S K

The number of
independent ways
inwhich a action-angle | generalized
47 | mechanical system | variables variables

degrees of
freedom

co-ordinates

degrees of freedom
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can move without
violating any
constraint which
may be imposed is
caled the

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 10/10




\.&/ KARPAGAM ACADEMY OF HIGHER EDUCATION

K KE’#%‘%?M MSC PHYSICS  COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
ieioior wenaovcao\ COURSE CODE: 17PHP103  UNIT: Il (Phase Space) BATCH-2018-2020
UNIT-II
SYLLABUS

Phase space: Hamiltonian — Hamilton’s canonical equations of motion - Physical
significance of H — Advantage of Hamiltonian approach — Hamilton’s canonical equation of
motion in different coordinate systems — Hamilton-Jacobi method — Kepler’s problem solution

by Hamilton-Jacobi method — Action and angle variables — Solution of Harmonic oscillator by
action angle variable method — canonical or contact transformation — Condition for a
transformation to be canonical

PHASE SPACE:

The origin of the term phase space is somewhat murky. For the purpose of this explanation
let's just say that in 1872 the term was used in the context of classical and statistical mechanics. It
refers to to the positions and momenta as the Bewegungsphase in German - phase motion. It is often
erroneously  cited that the term was first used by Liouville in  1838.

In classical mechanics, the phase space is the space of all possible states of a system; the
state of a mechanical system is defined by the constituent positions p and momenta q. p and g
together determine the future behavior of that system. In other words if you know p and q at time t
you will be able to calculate the p and g at time t+1 using the theorems of classica mechanics -
Hamilton's equations.

To describe the motion of a single particle you will need 6 variables, 3 positions and 3
momenta. Y ou can imagine a 6 dimensional space; three positions and three momenta. Each point in
this 6 dimensional space is a possible description of the particles' possible states, of course constraint
by the laws of classica mechanics.
If you have N particles to describe the system, you have a 6N-dimensiona phase space.

Let's make a ssimple example. The Pendulum. The Pendulum consists of a single particle mass
that swings in a plane. The pendulum is thus fully described by one position and one momentum. Its

momentum is zero at the top and maximum at bottom. The position perhaps is denoted by angle and
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varies between plus/minus a. If you draw states p and a in a Cartesian plane coordinate system you
will get an elipsoid (or if chose adequate coordinates a circle) that fully describes all possible states
of the pendulum.
In quantum mechanics the term phase re-appeared: it refers to the complex phase of the complex
numbers that wave functions take values in.
In quantum mechanics, the coordinates p and q of phase space normally become operators in a
Hilbert space.

A guantum mechanical state does not necessarily have awell-defined position or awell-defined
momentum (and never can have both according to Heisenberg's uncertainty principle). The notion of
phase space and of a Hamiltonian H, can be viewed as a crucia link between what otherwise looks
like two very different theories. A state is now not a point in phase space, but is instead a complex
valued wave function. The Hamiltonian H becomes an operator and describes the observable

quantity.
HAMILTONIAN FUNCTION:

Hamiltonian function, also called Hamiltonian, mathematical definition introduced in 1835
by Sir William Rowan Hamiltonto express the rate of change in time of the condition of a
dynamic physical system—one regarded as a set of moving particles. The Hamiltonian of a system
specifies its total energy—i.e., the sum of itskinetic energy (that of motion) and its potentia
energy (that of position)—in terms of thelLagrangian functionderived in earlier studies
of dynamics and of the position and momentum of each of the particles.
The Hamiltonian function originated as a generalized statement of the tendency of physical systems
to undergo changes only by those processes that either minimize or maximize the abstract quantity
called action. This principleistraceable to Euclid and the Aristotelian philosophers.
When, early in the 20th century, perplexing discoveries about atoms and subatomic particles forced
physicists to search anew for the fundamental laws of nature, most of the old formulas became
obsolete. The Hamiltonian function, athough it had been derived from the obsolete formulas,
nevertheless proved to be a more correct description of physical reality. With modifications, it
survives to make the connection between energy and rates of change one of the centres of the

new science.
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HAMILTON’S VARIATIONAL PRINCIPLE:

Lagrange’s equations have been shown to be the consequence of a variational principle, namely, the
Hamilton’s principle. Indeed the variational method has often proved to be the preferable method of
deriving equations, for it is applicable to types of systems not usually comprised with in the scope of
mechanics. It would be similarly advantageous if a variational principle could be found that leads

directly to the Hamilton’s equation of motion.

Hamilton’s principle is stated as

ol=9d E Ldt

Expressing L in terms of Hamiltonian by the expression by the expression

H:ZPIQi._ LI
1
Wefind,
t
5|:5J' o 9% H(gpt)  |at
ty )
tz tZ
8f S pi dg; - SfH (a Py t)dt =0
t i t;

The above equation is some times is referred as the modified Hamilton’s principle. Although it will
be used most frequently in connection with transformation theory ,the main interest is to show that
the principle leads to the Hamilton’s canonical equations of motions.
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The modified Hamilton’s principle is exactly of the form of the variational problems in a space of 2n

dimensions as
|5}

dl=3 f(aq,q,p p t)dt=0
ty

For which the 2n Euler-Lagrange equations are

d [6]‘] of
dt oa; oa; J=1,2,3....n

d [ﬁ] _ g
J=1,23...n

dt op; op;

Theintegrand f as given as (2.29) contains g; only through the pig; term, g; only in H. Hence equation

(2.30) leadsto

. OH
p+ — =0

oa;

On the other hand there is no explicit dependence of the integrand in equation (2.30) on p;. The

above equation therefore reduce simply to

. OH
G- —=0

oD;
The above two eguations are exactly Hamilton’s equations of motion .The Euler —Lagrange equations

of the modified Hamilton’s principle are thus the desired canonical equations of motion .From the
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above derivation of Hamilton’s equations we can consider that Hamiltonian and Lagrangian

formulation and therefore their respective variational principles, have the same physical content.

Hamilton's Equations:

The equations defined by

: 1

i3 (1)
JH

. 9B 2

b= -2 @

where p=dp/dt agnd 9=dqg/d 1 jsfluxion notation and H is the so-called Hamiltonian, are called

Hamilton's equations. These equations frequently arise in problems of celestial mechanics.

The vector form of these equationsis

‘;}l: HPr (f-q-P} (3)
Pr = _H‘!.' ['-' q-' p} (4)
(Zwillinger 1997, p. 136; lyanaga and Kawada 1980, p. 1005).

Another formulation related to Hamilton's equation is

JL
= 5
=g ©)

where L isthe so-called Lagrangian.
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Theorem 6 : Define the Hamiltonian and hence derive the Hamilton's canonical
equations of motion.

Proof : We know the Hamiltonian H is defined as

H=H(q;,p,1)=Y.pd;-L. ..
/

Consider ~ H=H(q,p,.t). .- (2)

We find from equation (2) that

dJH JH JH
dH = —d— _—d-+.—dr. R
;dp}. P Zr)qE g ot ©)

Now consider H=Y) pq,-L.
i
Similarly we find
dH = qdp; +) dg;p;-dL,
j j

T
> dH=Ngqdp.+N di.p.-N —dg -N —dj. —dt. ... (d)
LA+ L2 Ly iy “

We know the generalized momentum is defined as
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dH = q.dp, _Za_dq i~ ... (5)
f .

Now comparing the coefficients of dp,dq; and dt in equations (3) and (5) we get

OH oL _ oH o H

T —— e 0
g dp, dq; dg; At ot
However, from Lagrange’s equations of motion we have
L
pP; 9,
Hence equations (6) reduce to
. _dH . _ oH _
94=5— PiT—5— o+ (7)
dp, dq,

These are the required Hamilton's canonical equations of motion. These are the set of
2n first order differential equations of motion and replace the n Lagrange’s second

order equations of motion.
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PHYSICAL SIGNIFICANCE OF H:

L For conservative scleronomic system the Hamiltonian H represents both a

constant of motion and total energy.

12

For conservative rheonomic system the Hamiltonian H may represent a
constant of motion but does not represent the total energy.

Proof : The Hamiltonian H is defined by

H=Ypq,—L. e iB)
J
where L is the Lagrangian of the system and
L
!]j:_r' -‘.(2)
9,

is the generalized momentum. This implies from Lagrange s equation of motion that

_d[oL)_aL
= e, e ... (3)
dt|dq; | dq,

P

Differentiating equation (1) w. r. . time t, we get

dH JL JlL oL
— = P P~ ——F — B —— -1
& S T o *
On using equations (2) and (3) in equation (4) we readily obtain
dH dL
Tt «£J)
dt ot
Now if L does not contain time t explicitly, then from equation (5), we have
dH _
di
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This shows that H represents a constant of motion.

However, the condition L does not contain time t explicitly will be satisfied by
neither the kinetic energy nor the potential energy involves time t explicitly.

Now there are two cases that the kinetic energy T does not involve time t ex plicitly.

L. For the conservative and scleronomic system :

In the case of conservative system when the constraints are scleronomic, the
kinetic energy T is independent of time t and the potential energy V is only function
of co-ordinates. Consequently, the Lagrangian L does not involve time t explicitly
and hence from equation (5) the Hamiltonian H represents a constant of motion.
Further, for scleronomic system, we know the Kinetic energy is a homogeneous

quadratic function of generalized velocities.

T=>a,4q. ... (6)
jk

Hence by using Euler’s theorem for the homogeneous quadratic function of

generalized velocities we have

. dT _
24,5 —=2T. vn o 1)
j dq,;
For conservative system we have
JL _ IT
TR e PR 8
7l dg. dg, (8)

i 7
Using (7) and (8) in the Hamiltonian H we get

H=2F—{T =¥V,

H=T+V =E. - .. (9)
where E is the total energy of the system. Equation (9) shows that for conservative

scleronomic system the Hamiltonian H represents the total energy of the system.
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2. For conservative and rheonomic system :

In the case of conservative rheonomic system, the transformation equations
do involve time t explicitly, though some times the kinetic energy may not involve
time t explicitly. Consequently, neither T nor V involves t, and hence L does not
involve . Hence in such cases the Hamiltonian may represent the constant of motion.
However, in general if the system is conservative and rheonomic, the Kinetic energy

is a quadratic function of generalized velocities and is given by

T=)a,q4:+) aq;+a ...Q0)

J.k /
where
1 o, o

B =2 7T 3 a

e o TS
dr, or;

a; = m——=

i dq; or

1 [ _.lz |

=N, ~m,
T2\

We see from equation (10) that each term is a homogeneous function of generalized

dr |

velocities of degree two, one and zero respectively. On applying Euler's theorem for

the homogeneous function to each term on the right hand side, we readily get

3 TR T ...(2)

Py )
where

= za_.ii-(?j{}k'
Tk

= Z_aj(_jlj_
7
I,=a

are homogeneous function of generalized velocities of degree two, one and zero

respectively. Substituting equation (12) in the Hamiltonian (1) we cbtain
H=T,-T,+V

showing that the Hamiltonian H does not represent total ernergy. Thus for the

conservative rheonomic systems H may represent the constant of motion but does not

represent total energy.
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APPLICATION OF HAMILTONIAN EQUATION OF MOTION TO

(I))SIMPLE PENDULUM:

L=?m."9‘—mg.-'(]—co:‘-:@), Y b

where the generalized momentum is given by

J < 3 =
Po = L =ml'd=> H= P"", o wen )

de ml” ‘

The Hamiltonian of the system is given by
H=p,6-L,

=5 = pﬁ,g—%mﬁef +mgl(1—cosé).

Eliminating & we obtain

H= pé},—:mg!(l—cos&). : sk}

2ml”

Hamilton’s canonical equations of motion are

. _OH . oH

4,

K2
These equations give
6=Le p, =—mglsiné . ... (4)
mi”

Now eliminating p, from these equations we get
- g 3 i )
€+Tsm6‘—0. : wxi3)

Now we claim that H represents the constant of motion.
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Thus differentiating equation (3) with respect to t we get

d—H—M—mgfsinQé.

2

di mi
=ml“60 | mglsin 6,

=ml*0| 9 %siné}',
dt

This proves that H is a constant of motion. Now to see whether H represents total
energy or not, we consider

l s Iy y \
T'iV=_m0" | mglll cosB).

Using equation (4) we eliminate & from the above equation, we obtain

7

T+V = p‘;q—%mg:‘{]—msﬁ}. ... (6)
2ml”

This is as same as the Hamiltonian H from equation (3). Thus Hamiltonian H

represents the total energy of the pendulum.
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(IMLINEAR HARMONIC OSCILLATOR:

Solution: 1The one dimansional harmonic oscillalor ConsisSis Of S i e iid 144

a mass attached to one end of a spring and other end of the 5:,='
=
spring is fixed. If the spring is pressed and released then on =
l)—"—_-l
e

account ol the elastic property of the spring, the spring exerts a
force F on the body in the opposite dircction. This is called r|

restoring force. It is found that this force is propaortional

=
o

to the displacement of the body from its equilibrium position.

fFe X
F=-kx

where k is the spring constant and negative sign indicates the force is opposite to the

displacement. Hence the potential energy of the particle is given by

Vv =—[Fd.t’.
V = [ kedx+c,
V :E+c.

$)

where ¢ is the constant of integration. By choosing the horizontal plane passing
through the position of equilibrium as the reference level, then V=0 at x=0. This

gives ¢=0. Hence potential energy of the particle is

1 + 3
Vi=_Fkx".
21\1 (1)

The kinetic energy of the one dimensional harmonic oscillator is
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Hence the Lagrangian of the system is
1. .5 1.5
L=—mi"——kx’. )
2 2
The Lagrange’s equation motion gives

itwx=0, @ =—. (@)
m

This is the equation of motion. @ is the frequency of oscillation.
The Hamiltonian H of the oscillator is defined as

H=zxp —L,

H=ip,— %mﬁ‘z + %chz.

where
dl ) . p
P,=—=mMr= X=—,
T ox m

Substituting this in the above equation we get the Hamiltonian

freds  lya .. (5)

2m 2

Solving the Hamilton’s canonical equations of motion we readily get the equation (4)

as the equation of motion.

POSSIBLE QUESTIONS:
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PART B: (6 MARK)

e Define Phase Space. Explain?

e Derive an expression for Hamilton’s variational principle.

e Describe the Hamilton’s canonical equations of motion.

e What are the physical significance of H.

e Give any two application of Hamiltonian equation of motion.
e Discuss about the simple pendulum.

e Linear harmonic oscillator.
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S.No | QUESTIONS Option A Option B Option C Option D ANSWER
Canonical transformations are Minkowski
1 | the transformations of Phase space Hillbert space space Space phase Phase space
The Hamilton’s principle
function is agenerating
function, which giveriseto both constant constant both constant
canonical transformation momentsand | constant co-ordinates | momenta and moments and co-
2 | involving co-ordinates moments only only co-ordinates ordinates
All function whose Poisson
bracket with the Hamiltonian constant of constant of constant of
3 | vanishes will be motion momentum co-ordinates | al the above constant of motion
Let L and P represent the
matrices of Lagrange and
Poisson brackets respectively,
4 | then LP=1 LP=-1 LP=-1/2 LP=1/2 LP=-1
The given transformation is
6 | not canonical when [QP =1 [QP =-1 [QP] =12 [QP =0 [QP =0
Thefunction p=1/Qand q=
7 | PQ2is conjugate canonical identical hyrebolic canonical
In point transformation one set
8 | of co-ordinatesgj toanewset | Qj=Qj(q,t) |Q=-Qj(g,t) [Q =P (a,t) |Q=-Pi(a,t) |Q=0qi(at)
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Qj can be expressed as
The problem consists on finding
the path of acharged particle
under the action if a central cononical Kepler Poission
9 | forceis Jacobi problem | problem problem problem Kepler problem
Hamilton — Jacobi method is
used to find the solution of Vibratory circular
10 | problemin motion periodic motion | mation all the above periodic motion
11 | Hamilton equation of motion is | convergent divergent variant invariant invariant
Poisson and Lagrange brackets
are under Canonical
12 | Transformation convergent divergent invariant variant invariant
Equation of motion in Poisson
13 | bracket from depends on position momentum time al the three al the three
In Kepler problem, the path of
15 | the particleis circular parabolic eliptical Zig-zag eliptical
[X,Y] = [X,Y] =-
16 | In Poisson bracket [X,Y] = [Y.X] | [X,)Y]=-[Y.,X] | 2[Y,X] 2[Y,X] [X,Y]=-1Y,X]
17 | In Poisson bracket [X,X] =0 [X,X] =1 [X,X] =2 [X,X] =-2 [X,X] =0
[X,Y+Z] =
[X,Y+Z] = [X,Y+Z] = [X,Y] + [X,Y+Z] = [X,Y+Z] =[X,Y] +
18 | In Poisson bracket [X,Y]-[X,Z] |[X,Y]*[X,Z] [X,Z] [X,Y]/[X,Z] [X,Z]
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[X,YZ] = [X,YZ] = [X,YZ] = [X,YZ] =
Y[X,Z] * Y[X,Z] - Y[X,Z] / Y[X,Z] + [X,YZ] =Y[X,Z] +
19 | In Poisson bracket [X.,Y]Z [X.,Y]Z [X.,Y]Z [X,Y]Z [X,Y]Z
[X,q]QP=- | [X,q]QP= [X,q]QP=2 | 2[X,q]QP=- | 2[X,q]QP=-
20 | In Lagrange bracket [qj, X]Q,P [qj,X]Q,P [ai,.X]Q,P [qi,.X]Q,P [4i,X]Q,P
[X.YIQP=- | [X,Y]QP= [X,Y]IQP= | [X,Y]QP=- [X,Y]IQP=
21 | In of Lagrange bracket [X,Y]q,p [X,Y]q,p 2[X,Y]q,p 2[X,Y]q,p [X,Y]a,p
[X.X]a,p = [X.X]a,p = [X.X]ap = | [XX]gp = [X.X]a,p =
22 | In of Lagrange bracket [XX]Q,P=1 | [XX]QP=-1 [X,X]Q,P=0 | [X.X]QP=1/2 |[X,X]QP=0
Poisson bracket of two operator
X and'Y in quantum mechanics | [X,Y] =- [X,Y] =- [X,Y] =- [X,Y] = [X,Y] =- 2p/h[XY-
23 | isgiven by 2p/h[XY-YX] | 2p/h[XY+YX] | p/h[XY-YX] | 2p/h[XY-YX] Y X]
If the Lagrangian of the system
does not contain a paricular co- | cyclic co- cylindrical co- polar co- spherical polar
24 | ordinate q, then ordinates ordinates ordinates co-ordinates cyclic co-ordinates
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Hamilton-Jacobi is a partia
differential equationin
25 variables. n n+1 n-1 n+2 n+1
iIsapartial Hamilton-
differential equation in (n+1) Jacobi Hamilton-Jacobi
26 | variables. equation Lagrangian Hamiltonian | Jacobian equation
Hamilton’s characteristic
function W isidentified as
27 . Kinetic energy | potential energy | work action A action A
Hamilton’s characteristic
function is denoted by
28 . S K W H W
The number of independent
ways in which a mechanical
system can move without
violating any constraint which
may be imposed is called the action-angle generalized degrees of
29 . variables variables freedom co-ordinates degrees of freedom
Path in phase space almost
refersto actual
32 path. statistical N 3N dynamical dynamical
The one way of obtaining the
solution of mechanical problem
isto transform set of
co-ordinatesto set
33 | of co-ordinates that are all old to new new to old new to new old to old old to new
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cyclic.

If the operators X, Y commulte,

34 | then[X, Y] = : 1 -1 0 -2 0
If [X,Y]=0,then X and Y
behavelike inversely

35 | variables of classical mechanics. | statistical dynamical proportional | proportional dynamical

If Poisson bracket of two
variablesin classical mechanics
IS zero, then the operators which
represent these variablesin

guantum theory should be multiplied
36 . vanish twice proportional | commute commute
The Lagrange’s bracket is
under canonical exponentially
37 | transformation. invariant variant not applicable | variant invariant

Lagrange’s equation of motion

are second order equations with
degrees of

38 | freedom. n+1 n 2n+1 3n 2n+1
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The greatest advantage of action
and angle variableisthat we can
obtain the of
periodic motion without finding
a complete solution for the

39 | motion of the system. displacement frequencies total time accelerations frequencies
The generalized co-ordinate
conjugate to Jj are called dynamic statistical
40 . action variable | variable variable angle variable angle variable
Jj has the dimension of angular linear
41 . momentum angular velocity | momentum linear velocity angular momentum

If F does not involvetime
explicitly, then the Poisson

bracket of Fwith H isproportional | is proportional
42 . with F with K Vanishes exist Vanishes
If the Poisson bracket of Fwith
H vanishes then F will bea constant of negative
43 positive value | motion value same value constant of motion

If Poisson bracket of

momentum with H vanishes,
then is angular linear
44 | conserved. linear velocity | energy momentum momentum l[inear momentum
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If Poisson bracket of
momentum with H vanishes,
then the co-ordinate momentais
45 cyclic rotational irrotational spherical cyclic
Lagrange’s bracket does not Hamilton's
46 | obey the law. associative kepler’s commutative | variational law | commutative
47 |H= T-V T+V T Y T+V
48 | L = : T+V T V T-V T-V
In case of either of the set of
conjugate variables with (g, p)
or with (Q, P), the value of the
Poisson bracket remains inversely exponentially
49 . same proportional proportional | proportional same
In new set of co-ordinates all Qj
50 | are . rotational irrotational cyclic variable cyclic
In new set of co-ordiantes all Pj
51 | are . cyclic constant rotational irrotational constant
If H is conserved then the new constant of
52 | Hamiltonian K is . | same variable different motion constant of motion
An assembly of particleswith
inter-particle
53 | distanceiscalled asrigid body | fixed different 1 mm 2mm fixed

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE

Page 7/9




KARPAGAM ACADEMY OF HIGHER EDUCATION

& CLASS: | MSCPHYSICS  COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
== COURSE CODE: 17PHP201  UNIT: Il (Phase Space) BATCH-2017-2019

KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deamed to be Univarsity)
(Extablished Under Section 3 of UGE Act, 1956

Degree of freedom to fix the

54 | configuration of arigid body is 3 6 5 0 6
These are most useful set of
generalised co-ordinates for a Lagrangian Larmor's

55 | rigid body and are angles angle azimuthal angle | Euler’s angle | precession angle | Euler’s angle
Angular momentum of arigid

56 | body is L =1Iw/2 L =2lw L =1Iw2 L=Iw L=Iw

A mathematical structure having
nine componentsin 3-D is

57 | termed as tensor of rank 2 3 4 0 2
The rotation about space z-axis (
58 | anglef ) iscalled trandation precession nutation spin. precession

Rotation about intermediate X1
axis (angleq) or line of nodes

59 | iscaled trandlation precession nutation spin. nutation
The rotation about z’ axis (

60 | angleY )iscalled trandlation precession nutation spin. spin.
The variation of angleqis
referred as of the

61 | symmetry axis of thetop andis | trandation precession nutation spin. nutation

neither fast nor
62 | Precession can be slow or fast always slow always fast slow aways slow
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isordinarily observed
63 | with arapidly spinning top. fast precession | slow precession | slow nutation | fast nutation slow precession
In case of top

amplitude of nutation is small,

64 | nutation is sinusoidal, slow rotating fast botha& b fast
The minimum spin angular
velocity below which top cannot | wmin = wmin = wmin = wmin = wmin =

65 | spin stably about vertical (4mgl11/132) (4mgl11/132)3/2 | (4mgl11/132)2 | (Amgl11/132)1/2 | (4mgl11/132)1/2
When wz <wmin then the top

66 | beginsto wobble precesse nutate spin. wobble
Angular velocity of arigid body

67 | isgiven by Vi=w2Xri Vi=(wxri)l/2 | Vi=wxri Vi=w3XTri Vi=wxri
Angular momentum of arigid Sm2(ri x Vi

68 | bodyisL = Sm2(ri xVi) | Sm(ri xVi)2 |)2 Sm(ri x Vi) Sm(ri x Vi)
The diagona elements Ixx, lyy,
|zz of inertia | are

69 | moments of inertia tensor vector scalar donar tensor
Tensor | is to

70 | principal axes symmetric antisymmetric parallel perpendicul ar symmetric
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General features of central force motion : Genera features of orbits — Centre of mass and
laboratory coordinates — Viria theorem — Stable and unstable equilibrium — Properties of T, V
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Generalized coordinatesfor rigid body motion : Euler’s angles — Angular velocity,

momentum of rigid body — moment and products of inertia— Principal axis transformation —
rotational kinetic energy of arigid body — Moment of inertia of arigid body — motion of a
symmetric top under action of gravity.

General featuresof central force motion
In classical mechanics, a central forceis aforce whose magnitude only depends on the distance r of the

object from the origin and is directed along the line joining them: [

F = F(x) = F(||r|));

where F is the force, Fis avector valued force function, Fis a scalar valued force function, r is
the position vector, ||r|| isitslength, and & = r/||r|| is the corresponding unit vector.

Equivaently, aforcefield is central if and only if it is spherically symmetric.

A central force is aconservative field, that is, it can always be expressed as the negative gradient of
apotential:

+=a
F(r) = —VV(r), where V(r) = / F(r)dr

u !l‘;
(the upper bound of integration is arbitrary, as the potentia is defined up to an additive constant).
In aconservative field, the total mechanical energy (kinetic and potential) is conserved:

1 :
E= §m|i‘|2 + V(r) = constant

(where r denotes the derivative of r with respect to time, that is the velocity), and in a central force field,

so isthe angular momentum:

L =r x mr = constant
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'because the torque exerted by the force is zero. As a consequence, the body moves on the plane
perpendicular to the angular momentum vector and containing the origin, and obeysKepler's second law.
(If the angular momentum is zero, the body moves along the line joining it with the origin.)

As a consequence of being conservative, a central force field is irrotational, that is, itscurl is
zero, except at the origin:

V xF(r)=

General features of orbit

The essential elements of the object are described by aset, and the symmetries of the object are
described by the symmetry group of this set, which consists of bijectivetransformations of the set. In this
case, the group is aso caled apermutation group (especiadly if the set isfinite or not avector space)
or transformation group (especially if the set is avector spaceand the group acts likelinear
transformations of the set).

A group action is an extension to the definition of a symmetry group in which every element of the
group "acts' like abijective transformation (or "symmetry") of some set, without being identified with
that transformation. This alows for a more comprehensive description of the symmetries of an object,
such as a polyhedron, by alowing the same group to act on severa different sets of features, such as the
set of vertices, the set of edges and the set of faces of the polyhedron.

If Gisagroup and X is a set then a group action may be defined as a group homomorphism from G to
the symmetric group of X. The action assigns a permutation of X to each element of the group in such a
way that the permutation of X assigned to:

= Theidentity element of G istheidentity transformation of X;

= A product gh of two elements of G is the composite of the permutations assigned to g and h.

Since each element of G isrepresented as a permutation, a group action is also known as a per mutation
representation.

The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be
applied to more abstract objects. Many objects in mathematics have natural group actions defined on
them. In particular, groups can act on other groups, or even on themselves. Despite this generality, the
theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, which can
be used to prove deep resultsin several fields.

Laboratory Frame and the Center-of-M ass Frame

When the potentia is central, the problem can be reduced to the one we have just studied; this can be

achieved through the separation of the motion of the center of mass.
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Let us assume that we have two particles with masses m; and m, at coordinates 1 and T2, interacting

through a central potential. The equations for the motion can be written as

mfi = —ViV (i — 7al),

mafy = —VaV (| - 72),

where \Y isthe gradient operator, which has the following form in spherical coordinates

G_p 2 00 & 0

= f; — i =1,2.
i ﬁr; 2 Ti ﬁf?. : T{Hi]‘lﬂi 3@‘51 » !

Since the potential energy depends only on the relative separation of the two particles, let us define the
variables:
F =T — 13,

e -

= miry =+ Mal2

Ry = ———,
My + Mo

where 7 denotes the coordinate of m; relative to m », and Rem defines the coordinate of the center-of-

mass of the system (see Fig. 1.5). From Egs. (1.42) and (1.44) we can easily obtain the following:

u = v = - 2400

mymg

r"'

My + Ma
(rmy + mz]é(rm = Jll'fﬁ[:}.l =0, or E{«-.,{ = constant x R,
where we have used the fact that V( 7) =V(r) depends only on the radial coordinater, and not on the

angular variables associated with 7, and where we have defined

M = mj; + ms = total mass of the system,

Ty o
= ——— = “reduced” mass of the system.
my + mo

;1 =rnn
- .ﬁ
Fa= Ty Ta
- M
re=rr

)
Fou=Rew Rew

Origin of
Coordinates

Virial theorem
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A theorem in classical mechanics which relates the kinetic energy of a system to the viria of
Clausius, as defined below. The theorem can be generalized to quantum mechanics and has widespread
application. It connects the average kinetic and potential energies for systems in which the potential is a
power of the radius. Since the theorem involves integral quantities such as the total kinetic energy,
rather than the kinetic energies of the individual particles that may be involved, it gives vauable
information on the behavior of complex systems. For example, in statistical mechanics the viria
theorem is intimately connected to the equipartition theorem; in astrophysicsit may be used to connect
the internal temperature, mass, and radius of a star and to discuss stellar stability.

The viria theorem makes possible a very easy derivation of the counterintuitive result that as a
star radiates energy and contracts it heats up rather than cooling down. The viriatheorem states that the
time-averaged value of the kinetic energy in a confined system (that is, a system in which the velocities
and position vectors of all the particles remain finite) is equal to the viria of Clausius. The virial of
Clausius is defined to equal %2 times the time-averaged value of a sum over al the particles in the
system. The term in this sum associated with a particular particle is the dot product of the particle's
position vector and the force acting on the particle. Alternatively, this term is the product of the
distance, r, of the particle from the origin of coordinates and the radial component of the force acting on
the particle.

In the common case that the forces are derivable from a power-law potential, V, proportiona to X,
wherek is a constant, the virial is just —k/2 times the potential energy. Thus, in this case the virial
theorem simply states that the kinetic energy is k/2 times the potential energy. For a system connected
by Hooke's-law springs, k = 2, and the average kinetic and potential energies are equal. For k = 1, that
is, for gravitational or Coulomb forces, the potential energy is minus twice the kinetic energy.

Stable and unstable equilibrium

Equilibrium is a state of a system in which the variables which describe the system are not changing
(note that a system can be in adynamic equilibrium where things might be moving or changing, but
some variable(s) which describe the system as awhole is(are) constant). One example you are dll
familiar with isamechanical system in equilibium where positions of objects are not changing (ie. no
net forces acting).

In a Stable equilibrium if asmall perturbation away from equilibrium is applied, the system will return
itself to the equilibrium state. A good example of thisis a pendulum hanging straight down. If you
nudge the pendulum dlightly, it will experience a force back towards the equilibrium position. It may

oscillate around the equilibrium position for a bit, but it will
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'wreturn toits equmbrl um position.

In an Unstable equilibrium if asmall perturbation away from equilibrium is applied, the system will
move farther away from its equilibrium state. A good example of thisis apencil balanced onit's end. If
you nudge the pencil dlightly, it will experience aforce moving it away from equilibrium. It will simply

fall to lying flat on asurface.

stable unstable
S

t

g
\& /Y

Properties of T, V and w for small oscillations

Consider asmall mass on the free end of a spring. If we displace the mass slightly away from
equilibrium, the elastic force will accelerate it back toward its equilibrium position. When it reaches
equilibrium, however, it has a nonzero momentum and overshoots that position. The elastic force now
accelerates the mass in the opposite direction, back toward the equilibrium position. This periodic
motion is called oscillation.

If we combine Hooke's Law with Newton's Law, we find that

ma=-Kkx,
or
a=(-k/m)jx.
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I n words, thIS means that the rate of change of the rate of change of position is proportional to the
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position. Graphically, we can try to picture the position as an oscillatory function of time: perhaps asine

function:

At each point on that graph, the slope gives us the velocity of the mass at that time. The velocity graph

must also be an oscillatory function of time:

and the slope at any point on this graph gives us the acceleration of the mass. Clearly, the graph of
acceleration versus time must also be oscillatory, and to satisfy our equation, every point on it must be
proportional to the value of the position at that time, but reflected about the x axis because of the minus

sign:
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Both the sine and cosine functions have this property: the slope of the slope of the function at any point
is proportional to the negative of the function. To be specific, our simple harmonic oscillator could be
described by either

X(t) = sin (@ t)
or

x(t) = cos (@ t),
where

= (k/m)1/2.

In this case, we choose the cosine function, because at timet = 0 the mass was displaced a small

distance from the origin; since sin (t) is zero at time zero, only the cosine can describe these oscillations.

When we plot the position in black, the square of the velocity, which is proportional to the mass kinetic
energy, in red, and the square of the position, which is proportional to its potential energy, in blue:
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The kinetic energy is aways a maximum at the equilibrium position, where the potentia energy is zero,
and the potential energy is aways a maximum at the extremes of the oscillation, where the velocity (and
kinetic energy) is zero. Conservation of energy then tells us that the total energy of the oscillator isjust
the potential energy at the maximum displacement from equilibrium. This displacement is called the

amplitude A, and the total energy is

kA2/2.

In fact, the position and velocity of this oscillator are
A cos (w t) and

-A wsin (wt),

so that the sum of the kinetic and potential energiesis
m(-Awsin(wt)2/2+k (Acos (wt)2/2,

=mw2 A2sin (wt)2/2+k A2 cos (wt)2/2

=k A2 (sin (0 t)2 + cos (w 1)2) / 2

=kA2/2

at every point along its trajectory.

The arguments of trigonometric functions must always be unitless. The variable w (which in rotational
motion was used to denote the angular velocity) is called the angular frequency and hasunitsof 1/ s, so
that the argument of the cosine function is indeed unitless. Dividing w by 21 we find the frequency v
(the Greek letter nu) which is the number of oscillations or cycles per second from the maximum
amplitude through zero to the minimum amplitude and back to the maximum again (each of the graphs
above was one cycle). The inverse of the frequency isthe period T, which is the time in seconds for one

oscillation (and is therefore always positive).
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" In general, the argument of an oscillatory function is called the phase. The phase can also be a function
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of x: k x. Thisk is called the wave number and has units of 1/ m. The wavelength A (the Greek letter

lambda) is 2n / k and is analogous to the period. Like the period, the wavelength is always positive.

The phase can aso include aterm which is a unitless number (denoted by the Greek letter delta), soin

its most general form the phase is written

k x +- w t +- 3.9 is called the phase angle, and effectively alows usto specify the relative starting point
of the oscillator at time zero. By experimenting with various values of 6 (ie., 0, /2, i, 31/2, 21m), we see
that we can produce oscillations which have any given initial value (between -A and A)attimezero.
Parallel pendula

k .
118
R tee - g

This shows a parallel pendula of lengths f1,02 and masses 71,12 are not equal and/or the
equilibrium length of the spring is not equal to the horizontal distance between the pendulum supports.
S0 let's make the ssimplifying assumptions that by =F0 =1, my =mz =m, and the relaxed

spring length Xo = d thedistance between the supports. Then the small oscillations Lagrangian is

1 (e s\ 1 -
L= sms (r—:ﬂf 4 95) ~ Smgl (63 + 63) — k2 (61 — 62)°

and the force and mass matrices are

—e ke
K = mg{ Lk : , M = mf? 0 ; E=E—
: —€ 1+¢ 0 1 1M
This system has two normal modes with frequencies
: {q q .
.:ufz;. LLJ%:E{I—FQE}

Double pendulum
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mz2

Although the double pendulum is often introduced in many textbooks of the classical mechanics, its
dynamics are seldom analyzed in them. Actually, it is known that it easily exhibits chaotic behaviors.

In the double pendulum, the effect of the friction around the axis of rotation is not considered.
Therefore, the energy of the system is conserved, and such a system is called a Hamiltonian system or a
conservative system.

The energy E of the system is a sum of the kinetic energy K and the potential energy U written as

B = %(ml — mq}flﬂ‘z ;mgf%ég + migly 126165 cos(fy — 03),
U = (mi3+ma)gli(1—cosbi)—magla(1l —cosby),
E = K+U.
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| -USI ng the Lagrange differential equation, a set of differential equations which governs the dynamics of
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the double pendulum is obtained, and it is written as
61 + MIfs cos AO + M163 sin A + w?sinf; =0,
91 cos AO + 16, — 9% sin Af 4 w? sin 65 =,
Ab =6y — 6,
M = my/(mq + mo)
=1/l
w? = g/ly
From the above equations, the second derivatives of angles are obtained as follows.
w?l(—sinf; + M cos Afsin fy) — MI(6? cos A + 103) sin Af
[ — Mlcos? A# '

w? cos Afsinf; — w?sin Oy + (67 + M163 cos Af) sin Af
[ — Mlcos® Ad '

Regarding the above differential equations as a differential equation &= f ("l} for a

vector £ = (61,02,61,02) , behaviors of adouble pendulum can be analyzed.
Because the double pendulum is a Hamiltonian system (a conservative system) where the energy of the
system is conserved, one must use numerical integration methods which conserve the energy.
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| Here we used thefourth order implicit Gaussian method written as

.L’l = dtfl':;lfg + {111.&1 =+ algkg}.

ko = dtf(zo+ agk; + axks),
x1 = mo+ (k1+ka)/2,

gy, = 14,

a;s = 1/4—+/3/86,

as; = 1/44+/3/6,

axy = 1/4.

Triatomic Molecule
Consider the simple model of alinear triatomic molecule (e.g., carbon dioxide) illustrated in Figure. The
molecule consists of a centra atom of mass M flanked by two identical atoms of mass ™. The

atomic bonds are represented as springs of spring constant K. The linear displacements of the flanking

0 dz qs

atoms are and , whilst that of the central atom is . Let us investigate the linear modes of

oscillation our model molecule.
m k M k T

L AVAVAVAV: SAVAVAVAVE
a1 q3 g2

Figure 38: A model triatomic molecule.

The kinetic energy of the molecule is written

m. . . M
=7[q$+q§]+7q§,

whereas the potential energy takes the form

k k
U=3(ds— )"+ 5 (g2 — g3}
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Clearly, we have a three degree of freedom dynamical system. However, we can reduce this to a two
degree of freedom system by only considering oscillatory modes of motion, and, hence,
neglectingtransational modes. We can achieve this by demanding that the center of mass of the system
remains stationary. In other words, we require that

m(di+dz)+Mgz=10

This constraint can be rearranged to give
m
g3z = M (g1 + qz)-

qs
Eliminating from Equations, we obtain

K—z[[1+cﬂq1+2wq1qz+[1+w]q ,

and

HIT

=5 |0 +2a+20?)qf+4a(l +x)q g+ (1 +2a+20%) g7,

a=m/M
respectively, where

A comparison of the above expressions with the standard forms and yields the following expressions for

G
the mass matrix, M, and the force matrix,

m]-l-lxvc
M = @ l4+w /!

_k( T+2a+2a?2 2a(l +a) )

G = 2a(1+a) 1+2x+20?

Now, the equation of motion of the system takes the form

(G—AM)x =0,
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q qz
where X is the column vector of the and values. The solubility condition for the above
eguation is
IG—AM| =0

which yields the following quadratic equation for the eigenvalue A:

(1+2«) [m?A%+2mk(1+a) A+ k(1 + 2a)| =0.

The two roots of the above equation are

_k
7\] = 'ITI.,

k(1 +2a)
Az = m .

The fact that the roots are negative implies that both normal modes are indeed oscillatory in nature. The

characteristic oscillation frequencies are

k
- yE,

(48] = ] m
I (1+2x)
w0, _ V—Az2 = —

Equation can now be solved, subject to the normalization condition to give the two eigenvectors:

x = (@m)773(1,-1),

x, = (2m)]72(1+2x)772(1, 1).

Thus, we conclude from Equations that our model molecule possesses two norma modes of oscillation.

w 41 =—q2
The first mode oscillates at the frequency , and is an anti-symmetric mode in which

qs =0

and . In other words, in this mode of oscillation, the two end atoms move in opposite
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w3
directions whilst the central atom remains stationary. The second mode oscillates at the frequency :

di =402 qgz3=—20d;y
and is a mixed symmetry mode in which but . In other words, in this mode

of oscillation, the two end atoms move in the same direction whilst the central atom moves in the
opposite direction.

Finally, it is easily demonstrated that the normal coordinates of the system are

o = \/?[ﬂh—qu],
\/M(qqu]-

When expressed in terms of these coordinates, K and U reduceto

Tz =

1 .5 .
PO Y (b Fo
1
u _ E[UH Th +(U21'|zn
respectively.
Rigid Body

A macroscopic object can often be approximated by a "particle”, which has a mass and
position in space. A particle has one physical parameter, its mass, and three translational degress of
freedom because it can move in 3-dimensiona space.

The equations of motion of a particle can be generalized to asystem of N particles. Such
a system is defined by N mass parameters, and has 3N trandational degrees of freedom. Its
configuration at any time can be represented by N points in 3-dimensiona space, or by asingle
pointin 3N dimensional configuration space.

When the size and shape of a macroscopic object matters, it can often be approximated by a "rigid
body". A rigid body is a system of particles in which every pair of particles has fixed relative

displacement. This is an approximation because the smallest parts of objects are atoms which do
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'ﬂnot have deflnlte positions according to quantum theory. It is also an approximation because a
change in position of one particle cannot affect the position of another particle instantaneously
according to the theory of relativity.

Suppose that the rigid body is made of N particles or "atoms', how many degrees of
freedom does it have, and how many physical parameters are needed to describe it? Its location and
orientation are completely fixed by specifying the positions in space of any three non-collinear
particles. A rigid triatomic molecule, which can trandate and rotate but not vibrate, has 6 degrees
of freedom, 3 trandationa and 3 rotational. Therefore arigid body also has 6 degrees of freedom.
The configuration space of arigid body is the product space of a 3-dimensiona Euclidean space of
translational motion with a 3-dimensional closed ball of radius 7 with antipodal points identified.
The rotations of arigid body belong to the rotation group SO(3), which is an extremely important
concept in physics.

The number of physical parameters required to describe a rigid body approximated by N
particlesis N massesplus 3N — 6 parameters to specify the fixed relative locations of al the

particles.

Generalized coordinates
Eulerian Anglesand Euler's Equations

The description of arigid body is simplest in the body-fixed reference frame which uses the
principal axes coordinate system. The moment of inertia tensor is diagonal and constant. The
eguations of motion are easily expressed in terms of the angular velocity components «'1, &2, LWz

along the principal axes directions.

Rigid bodies are usualy observed from a space-fixed inertial reference frame. The moment of
inertia tensor is not diagonal in general, and its components change with time. We would like to
write the equations of motion in terms of vector componentsin the inertial reference frame.

Euler introduced a very convenient notation for relating quantities in the two frames in
terms of Euler angles.

To focus on rotational motion, suppose that the origin of coordinates in the inertial frameis
chosen to coincide with the origin in the body-fixed frame at a particular instant of time ¢, and
that the inertial frame is moving with the same instantaneous velocity as the rigid body at this time

1 . Of course this will change with time if the body is accelerating, but we just want to obtain the
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form of the equatlons in the fixed frame at this instant: by Galilean invariance, this form will hold

inal inertial frames.

Figure shows a standard definition of the Euler angles ®, 6,1 The intersection of the
inertial and body-fixed x - ¥ planesis caled the line of nodes. The coordinate systems are both

right-handed,  isapolar anglein the range [017'T] ,and ®, 1 are azimuthal anglesin the range

[0,2m]
The figure aso shows the instantaneous angular velocity . of the rigid body about the

origin. As the body rotates, the Euler angles will change with rates @, 8,1 about the space-fixed
z axis, theline of nodes, and the body-fixed z' axis, respectively:

W=wl+w?+wsd3=¢z+0h+ 3

where 1 23 are principal axes unit vectors, and 1 isthe unit vector along the line of nodes.
b= c:J 1z+61n+ tf-':' 1-3= qzlhsinr? sin i + 6 cos {1

o = cDEz +62n + b23 = qfﬁsinﬁ cos 1l — 6 sin W

W3 = @324— 63h L33 = qf:::c:s§—|- W

x’ (line of nodes)

The dot products above are most easily evaluated by noting that the =z axis direction has
polar angle f and azimuthal angle 90° — 1 with respect to the principal axes
z = cos(90° — ¢/)sinf 1+ sin(90° — 1) sin# 2+ cosf 3
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and e

fh=cos®1l —sint 2
Moment and products of Inertia

The symmetric rank-2 tensor

o .

5 yi® + 2 —T;Y; —T; 2

— E - . S oo - E _— 2 ,n" 12 12 i .l'__’.l'
, . i) o ' '

' : —Z;T; —Z;¥; T T Y

where 1 isthe unit 3 x 3 matrix, represents the moment of inertia tensor of the rigid body
relative to the body-fixed coordinate system. The kinetic energy of the rigid body, which is a
scalar, is compactly represented in tensor notation:

Lo 1
1= aﬂfv,:mvt.m + §£UILU

An important theorem of linear algebra states that a real symmetric matrix can be diagonalized by

an orthogonal transformation:

Ly 0 0
I=0|0 I, 0]O!
0 0 I

where the orthogonal matrix (? transforms from the body-fixed coordinate system to a "principal
axes' coordinate system. The constants I1.12, I3 are caled the "principal moments of inertia’
of therigid body.

The moment of inertia tensor is defined relative to a point in space. A very simple and useful
formula relates the moment of inertiatensor I about the origin of coordinates defined above to

the moment of inertiatensor I“™ defined relative to the center of mass of the rigid bodly.

CITl ! ~
I_ I + 1'{( CITl rl’.‘lllrtlli)
where
!
r.r - Z.i m;I;
CITh JTL'.{

isthe position of the center of mass relative to the body-fixed coordinate system.

To prove this result write

gt ! Py '
L= {ri - rcm) A Fem = T G Fem

=/
where T'i isthe position of "7i relative to the center of mass. Then

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 18/41




gh KARPAGAM ACADEMY OF HIGHER EDUCATION
=" CLASS |MSCPHYSICS COURSE NAME: CLASSICAL MECHANICS AND
‘Qﬁcﬁfjgﬁgjﬁl\/&mw% CODE: 17PHP103 UNIT: 11 (General features of central force motion) BATCH-2018-2020

E‘-iehtﬂ ﬁbﬂllﬂhe S-T\'I

E m; ?‘2 = E Ty 4 2rf - E T, el 2 E m;

i i i

— Z ?ﬂ'ifefz & ﬂjfr_::mﬂ
i
because
Z m;T, = Z M3 (T — T ) = Uzii — Tom Z m; =
i i
and

' e S =f :
E m;r;r; = E mtrr +rl E m;T; + E m; T, +rL T E m;

(3 i t
24 ~/ ! ~
= E n;r.r. + ﬂirr.:n-n Fem

Rotational Kinetic Energy of therigid body
The equations of motion can be derived from the Lagrangian of thesysem L =T — V' . The
Kinetic energy is given by

TZ—va Zm;[\frn—kwxr"—}z
:—ZmV“ﬁ—Vn wa?mr + = Zm! (w x r})°

The middletermis zero if we choose the body-flxed origin at the center of mass of the rigid body

E RIS /

i i o E =F

RU - I rc:ln L] ?ﬂtrt p— D
E ; g :

The third term can ssimplified using

(w x1})? = — (w-r})°

to obtain
1
T— —MvZ, + = Zrm[ oy {w-r’i)z}

Angular Momentum of arigid body
The angular momentum of the system of particles comprising the rigid body about the origin

of theinertial space-fixed coordinate system is
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L Zr,xm Vt—Z?r!il[Ru-i—r}‘x{Vn-l—w,*xr}

! !
= Z m;Rg x Vo +Rg x | W x E nur; | + Z m;r; X Vo
i i i
+ E m;r. X (W x 1)
i
! g2 ! !
— R RN E M [ré w —r1;(r; Lu}]

= LI:l'lI + I'LU
where the location of the body-fixed origin at the center of mass, and the vector triple product
identity
Y mir,=0, Ax(BxC)=B(A-C)-C(A-B)
i
have been used. The angular momentum of the rigid body is the sum of an "orbital" angular
momentum of a equivalent particle of mass A , and an interna "spin" angular momentum
about its center of mass
I;:;’;::’ jr;r.’;;’ I:J:’:’ Lot
L‘:E-]Ji]l =Iw = I;;’;::’ jry’;;’ I:J:’:’ ‘r-‘-;y’
It’m’ I:’y’ I.:’:’ Llor
Using Lagrange's equations of motion we see that orbital and spin angular momentum of a

rigid body are separately conserved in the absence of external forces:

%Lcm = M (Tem X Vem + Tem XVem) =0, gLﬁpm =Tr={
Moment of inertia of rigid body

Consider arigid body rotating with angular velocity w around a certain axis. The body
consists of N point masses m whose distances to the axis of rotation are denoted r;. Each point mass will

have the speed v; = wrj, so that the total kinetic energy T of the body can be calculated as

Lo 1 Loafew o2
T_Zi”"'i”z‘ _ZQHLI(U.J) e ( e g TR )
=1

=1
In this expression the quantity in parentheses is called the moment of inertia of the body (with respect
to the specified axis of rotation). It is a purely geometric characteristic of the object, as it depends only
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" on its shape and the position of the rotation axis. The moment of inertia is usually denoted with the

capital letter I:
N

I= Z'mi?‘;
g=1

It is worth emphasizing that r; here is the distance from a point to the axis of rotation, not to the origin.
As such, the moment of inertiawill be different when considering rotations about different axes.
Similarly, the moment of inertiaof a continuous solid body rotating about a known axis can be
calculated by replacing the summation with the integral :

= /‘ p(r) d(r)2dV(r),

wherer isthe radius vector of a point within the body, p(r) is the mass density at point r, and d(r) is the
distance from point r to the axis of rotation. The integration is evaluated over the volume V of the body.
Motion of Symmetric Top under action of gravity

Consider a symmetric top spinning about atip of its symmetric axis as shown in Figure

M

mg

x" (line of nodes)

Note that its center of massisadistance £ from thetip. The moments of inertia about the tip are

Il — jr2 — Jem 1 ?ﬂ-t‘?z : I:% — j’;ul — Is
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“The rotatlonal klnetlc energy of arigid body with axis of symmetry L=0L=11;=1Iin
terms of Euler anglesis

1 .
Tmt = 51{""’12 +"""§) + 51‘?""’%

1 "o . . 1 2
= §I (@2 sin” § + 6‘2) -+ QI (mcosﬁ -+ p)
The gravitational potential energy relative to the level of thetipis
V = mgfsint

and the Lagrangian function is

1 . ) 1 2
L=T-V=:I (c:rz si112r9+6‘2) + 51, (Gcosﬁ—l—t ) — mgf cosf

Note that the Lagrange function does not depend on ® and 6 The Lagrange equations of motion

for @ and ¥

d [ JL i AL
_(L) e d_::]

dt \ 9¢ dt = o
d (I d dL
R - < hiLl® 34 —L.. W LR - e {]
dt (fjw) at =t o

show that the angular momentum components along the vertical and symmetric directions are

conserved
L. = (Isin® 8+ I, cos® ﬁ}m + Ltu cos = constant
= I,g{r;:f: cos f + L} = constant

These equations can be solved for

_L.— L3zcosf
B Isin? 6
. Ly L.— Lzcost
¥= I, Isin’@ cost
The equation of motion for f is
d oL  OLC
dt o~ 90

I6 = I¢%sinfcosf — I (pcost + t.".}‘}gfl‘fﬂin f + mgf sinf

General featuresof central force motion
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| In classcal mechanlcs acentral forceis aforce whose magnitude only depends on the distance r of the
object from the origin and is directed along the line joining them: [

F =F(r)=F(||r])

where F is the force, Fis avector valued force function, Fis a scalar valued force function, r is
the position vector, ||r|| isitslength, and ¢ = r/||r|| is the corresponding unit vector.

Equivaently, aforcefield iscentral if and only if it is spherically symmetric.

A central force is aconservative field, that is, it can always be expressed as the negative gradient of

apotential:
—+oa

F(r) = —=VV/(r). where V(r) = [ F(r)dr

u ;l‘
(the upper bound of integration is arbitrary, as the potentia is defined up to an additive constant).
In aconservative field, the total mechanical energy (kinetic and potential) is conserved:

1 :
E = §'m|i'|2 + V(r) = constant

(where r denotes the derivative of r with respect to time, that is the velocity), and in a central force field,
so isthe angular momentum:

L =r X mr = constant

because thetorque exerted by the force is zero. As a consequence, the body moves on the plane
perpendicular to the angular momentum vector and containing the origin, and obeysKepler's second law.
(If the angular momentum is zero, the body moves along the line joining it with the origin.)

As a consegquence of being conservative, a central force field is irrotational, that is, itscurl is
zero, except at the origin:

V x F(r) =

General features of orbit

The essential elements of the object are described by aset, and the symmetries of the object are
described by the symmetry group of this set, which consists of bijectivetransformations of the set. In this
case, the group is also called a permutation group (especidly if the set isfinite or not avector space)
ortransformation group (especialy if the set is avector spaceand the group acts likelinear
transformations of the set).

A group action is an extension to the definition of a symmetry group in which every element of the

group "acts' like a bijective transformation (or "symmetry") of some set, without being identified with
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ﬂthat transformatl on. This allows for a more comprehensive description of the symmetries of an object,

such as a polyhedron, by alowing the same group to act on several different sets of features, such as the
set of vertices, the set of edges and the set of faces of the polyhedron.

If Gisagroup and X is a set then a group action may be defined as a group homomorphism from G to
the symmetric group of X. The action assigns a permutation of X to each element of the group in such a
way that the permutation of X assigned to:

= Theidentity element of G istheidentity transformation of X;

= A product gh of two elements of G isthe composite of the permutations assigned to g and h.

Since each element of G is represented as a permutation, a group action is al'so known as a per mutation
representation.

The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be
applied to more abstract objects. Many objects in mathematics have natural group actions defined on
them. In particular, groups can act on other groups, or even on themselves. Despite this generality, the
theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, which can
be used to prove deep resultsin several fields.

Laboratory Frame and the Center-of-M ass Frame

When the potentia is central, the problem can be reduced to the one we have just studied; this can be

achieved through the separation of the motion of the center of mass.

Let us assume that we have two particles with masses m; and m, at coordinates 71 and 72, interacting

through a central potential. The equations for the motion can be written as

mfy = =V V(|7 = ),
mafy = —VaV (|fy - 72l),
where V isthe gradient operator, which has the following form in spherical coordinates

IS
o 60 & o

vi = c?r;- Ti 69; : ?‘i!iiﬂﬂg qu,

i=1,2.

Since the potential energy depends only on the relative separation of the two particles, let us define the

variables;

& =

.
=7 — Ty,

= i =

= 1Ty =— MaTg

Rcm = —
My + s
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where T denot&s the coordinate of m relative to m», and Hewm defines the coordinate of the center-of -
mass of the system (see Fig. 1.5). From Egs. (1.42) and (1.44) we can easily obtain the following:

pF = —BV () = _W;lﬂ:' p

mymg

r"'

My + Ma
(rmy + mu]ﬁcm = Moy =0, or Kom= constant x R,
where we have used the fact that V( ) =V(r) depends only on the radial coordinater, and not on the

angular variables associated with 7, and where we have defined

M = m; + ms = total mass of the system,

Mg
= ——— = “reduced” mass of the system.
iy + s
- A
Fij=ry rg
- A
'rz‘: r2 ?‘2
- M
r=srr
M
Rew=Reu Rew

QOrigin of
Coordinates

Virial theorem

A theorem in classical mechanics which relates the kinetic energy of a system to the viria of
Clausius, as defined below. The theorem can be generalized to quantum mechanics and has widespread
application. It connects the average kinetic and potential energies for systems in which the potential is a
power of the radius. Since the theorem involves integral quantities such as the total kinetic energy,
rather than the kinetic energies of the individual particles that may be involved, it gives vauable
information on the behavior of complex systems. For example, in statistical mechanics the viria
theorem is intimately connected to the equipartition theorem; in astrophysicsit may be used to connect
the internal temperature, mass, and radius of a star and to discuss stellar stability.

The viria theorem makes possible a very easy derivation of the counterintuitive result that as a
star radiates energy and contracts it heats up rather than cooling down. The viriatheorem states that the
time-averaged value of the kinetic energy in a confined system (that is, a system in which the velocities
and position vectors of all the particles remain finite) is equa to the virial of Clausius. The viria of
Clausius is defined to equal —Y% times the time-averaged value of a sum over al the particles in the

system. The term in this sum associated with a particular particle is the dot product of the particle's
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'--'Tpostlon vector and the force acting on the particle. Alternatively, this term is the product of the
distance, r, of the particle from the origin of coordinates and the radial component of the force acting on
the particle.

In the common case that the forces are derivable from a power-law potential, V, proportional to r,
wherek is a constant, the virial is just —k/2 times the potential energy. Thus, in this case the virial
theorem simply states that the kinetic energy is k/2 times the potential energy. For a system connected
by Hooke's-law springs, k = 2, and the average kinetic and potential energies are equal. For k = 1, that
is, for gravitational or Coulomb forces, the potential energy is minus twice the kinetic energy.

Stable and unstable equilibrium

Equilibrium is a state of a system in which the variables which describe the system are not changing
(note that a system can be in adynamic equilibrium where things might be moving or changing, but
some variable(s) which describe the system as awhole is(are) constant). One example you are all
familiar with is a mechanical system in equilibium where positions of objects are not changing (ie. no
net forces acting).

In a Stable equilibrium if asmall perturbation away from equilibrium is applied, the system will return
itself to the equilibrium state. A good example of thisis a pendulum hanging straight down. If you
nudge the pendulum dlightly, it will experience a force back towards the equilibrium position. It may
oscillate around the equilibrium position for a bit, but it will

return to its equilibrium position.

In an Unstable equilibrium if asmall perturbation away from equilibrium is applied, the system will
move farther away from its equilibrium state. A good example of thisis apencil balanced onit'send. If
you nudge the pencil dlightly, it will experience aforce moving it away from equilibrium. It will ssmply

fall to lying flat on asurface.
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Parallel pendula

Hﬂ 1l 13 .

This shows a paralel pendula of lengths {1,062 and masses 71,72 are not equal and/or the
equilibrium length of the spring is not equal to the horizontal distance between the pendulum supports.
So let's make the simplifying assumptions that €1 = f2 = €| mq = ma = m  and the relaxed

spring length X = d the distance between the supports. Then the small oscillations Lagrangian is

]. v s o ]. v ].
L= ms (ﬁf i 33) — Smgt (63 +63) — Ske* (6, — 6o)°

and the force and mass matrices are

l+e —¢ af1 0 kf
K mg,( . 1+£) _, M=m/ (D 1) _. € g
This system has two norma modes with frequencies
g g,
Luf:E. L:.JE;ZFI[I—FQE)
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Double pendulum

Let us consider a double pendulum a shown in a below figure

2

Although the double pendulum is often introduced in many textbooks of the classical mechanics, its
dynamics are seldom analyzed in them. Actually, it is known that it easily exhibits chaotic behaviors.

In the double pendulum, the effect of the friction around the axis of rotation is not considered.
Therefore, the energy of the system is conserved, and such a system is called a Hamiltonian system or a
conservative system.

The energy E of the system is a sum of the kinetic energy K and the potential energy U written as

K = %(m] + mq}flﬁ'z %mgf%ég + migly o665 cos(fy —0a),
U = (m1+ma)gli(1—cosbi)—magla(l —cosbs),
E = K+1U
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| USI ng the Légrange differential equation, a set of differential equations which governs the dynamics of

the double pendulum is obtained, and it is written as
61 + MIfs cos AO + M163 sin A + w?sinf; =0,
91 cos AO + 16, — 9% sin Af 4 w? sin 65 =,
Ab =6y — 6,
M = my/(mq + mo)
=1/l
w? = g/ly
From the above equations, the second derivatives of angles are obtained as follows.
w?l(—sinf; + M cos Afsin fy) — MI(6? cos A + 103) sin Af
[ — Mlcos? A# '

w? cos Afsinf; — w?sin Oy + (67 + M163 cos Af) sin Af
[ — Mlcos® Ad '

Regarding the above differential equations as a differential equation &= f ("l} for a

vector £ = (61,02,61,02) , behaviors of adouble pendulum can be analyzed.
Because the double pendulum is a Hamiltonian system (a conservative system) where the energy of the
system is conserved, one must use numerical integration methods which conserve the energy.
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Here we used thefourth order implicit Gaussian method written as

.L’l = dtfl':;lfg + {111.&1 =+ algkg}.

ko = dtf(zo+ agk; + axks),
x1 = mo+ (k1+ka)/2,

gy, = 14,

a;s = 1/4—+/3/86,

as; = 1/44+/3/6,

axy = 1/4.

Triatomic Molecule
Consider the simple model of alinear triatomic molecule (e.g., carbon dioxide) illustrated in Figure. The
molecule consists of a centra atom of mass M flanked by two identical atoms of mass ™. The

atomic bonds are represented as springs of spring constant K. The linear displacements of the flanking

0 dz qs

atoms are and , whilst that of the central atom is . Let us investigate the linear modes of

oscillation our model molecule.
m k M k T

L AVAVAVAV: SAVAVAVAVE
a1 q3 g2

Figure 38: A model triatomic molecule.

The kinetic energy of the molecule is written

m. . . M
=7[q$+q§]+7q§,

whereas the potential energy takes the form

k k
U=3(ds— )"+ 5 (g2 — g3}

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 30/41




& KARPAGAM ACADEMY OF HIGHER EDUCATION
==~ =  CLASS |MSCPHYSICS COURSE NAME: CLASSICAL MECHANICS AND
mﬁ@gﬁﬁﬂl\@ow% CODE: 17PHP103 UNIT: 111 (General features of central force motion) BATCH-2018-2020

Dﬂll‘d beUhN! ﬂ!’l

sTablnhed Unde 0 of L 1, 1956 |

Clearly, we have a three degree of freedom dynamical system. However, we can reduce this to a two
degree of freedom system by only considering oscillatory modes of motion, and, hence,
neglectingtransational modes. We can achieve this by demanding that the center of mass of the system
remains stationary. In other words, we require that

m(di+dz)+Mgz=10

This constraint can be rearranged to give
m
g3z = M (g1 + qz)-

qs
Eliminating from Equations, we obtain

K—z[[1+cﬂq1+2wq1qz+[1+w]q ,

and

HIT

=5 |0 +2a+20?)qf+4a(l +x)q g+ (1 +2a+20%) g7,

a=m/M
respectively, where

A comparison of the above expressions with the standard forms and yields the following expressions for

G
the mass matrix, M, and the force matrix,

m]-l-lxvc
M = @ l4+w /!

_k( T+2a+2a?2 2a(l +a) )

G = 2a(1+a) 1+2x+20?

Now, the equation of motion of the system takes the form

(G—AM)x =0,

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 31/41




& KARPAGAM ACADEMY OF HIGHER EDUCATION
S= "= CLASS |MSCPHYSICS COURSE NAME: CLASSICAL MECHANICSAND

Q@Rfaﬁﬂ“ﬁ:oumz CODE: 17PHP103 UNIT: 111 (General features of central force motion) BATCH-2018-2020

q qz
where X is the column vector of the and values. The solubility condition for the above
eguation is
IG—AM| =0

which yields the following quadratic equation for the eigenvalue A:

(1+2«) [m?A%+2mk(1+a) A+ k(1 + 2a)| =0.

The two roots of the above equation are

_k
7\] = 'ITI.,

k(1 +2a)
Az = m .

The fact that the roots are negative implies that both normal modes are indeed oscillatory in nature. The

characteristic oscillation frequencies are

k
- yE,

(48] = ] m
I (1+2x)
w0, _ V—Az2 = —

Equation can now be solved, subject to the normalization condition to give the two eigenvectors:

x = (@m)773(1,-1),

x, = (2m)]72(1+2x)772(1, 1).

Thus, we conclude from Equations that our model molecule possesses two norma modes of oscillation.

w 41 =—q2
The first mode oscillates at the frequency , and is an anti-symmetric mode in which

qs =0

and . In other words, in this mode of oscillation, the two end atoms move in opposite
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w3
directions whilst the central atom remains stationary. The second mode oscillates at the frequency

di =402 qgz3=—20d;y
and is a mixed symmetry mode in which but . In other words, in this mode

of oscillation, the two end atoms move in the same direction whilst the central atom moves in the
opposite direction.

Finally, it is easily demonstrated that the normal coordinates of the system are

o = \/?[ﬂh—qu],
\/M(qqu]-

When expressed in terms of these coordinates, K and U reduceto

Tz =

1 .5 .
PO Y (b Fo
1
u _ E[UH Th +(U21'|zn
respectively.
Rigid Body

A macroscopic object can often be approximated by a "particle”, which has a mass and
position in space. A particle has one physical parameter, its mass, and three translational degress of
freedom because it can move in 3-dimensiona space.

The equations of motion of a particle can be generalized to asystem of N particles. Such
a system is defined by N mass parameters, and has 3N trandational degrees of freedom. Its
configuration at any time can be represented by N points in 3-dimensional space, or by asingle
pointin 3N dimensional configuration space.

When the size and shape of a macroscopic object matters, it can often be approximated by a"rigid

body". A rigid body is a system of particles in which every pair of particles has fixed relative
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'ﬂdlsplacement This is an approximation because the smallest parts of objects are atoms which do
not have definite positions according to quantum theory. It is also an approximation because a
change in position of one particle cannot affect the position of another particle instantaneously
according to the theory of relativity.

Suppose that the rigid body is made of N particles or "atoms’, how many degrees of
freedom does it have, and how many physical parameters are needed to describe it? Its location and
orientation are completely fixed by specifying the positions in space of any three non-collinear
particles. A rigid triatomic molecule, which can trandate and rotate but not vibrate, has 6 degrees
of freedom, 3 trandlational and 3 rotational. Therefore a rigid body also has 6 degrees of freedom.
The configuration space of arigid body is the product space of a 3-dimensiona Euclidean space of
trandational motion with a 3-dimensional closed ball of radius 7 with antipoda points identified.
The rotations of arigid body belong to the rotation group SO(3), which is an extremely important
concept in physics.

The number of physical parameters required to describe a rigid body approximated by /N
particlesis /N massesplus 3N — 6 parameters to specify the fixed relative locations of all the

particles.

Generalized coordinates
Eulerian Anglesand Euler's Equations

The description of arigid body is simplest in the body-fixed reference frame which uses the
principal axes coordinate system. The moment of inertia tensor is diagonal and constant. The
equations of motion are easily expressed in terms of the angular velocity components &1, &Wa, Wa

along the principal axes directions.

Rigid bodies are usualy observed from a space-fixed inertial reference frame. The moment of
inertia tensor is not diagonal in general, and its components change with time. We would like to
write the equations of motion in terms of vector componentsin the inertial reference frame.

Euler introduced a very convenient notation for relating quantities in the two frames in

terms of Euler angles.
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To focus on rotational motion, suppose that the origin of coordinates in the inertial frameis

\&h/ KARPAGAM ACADEMY OF HIGHER EDUCATION

chosen to coincide with the origin in the body-fixed frame at a particular instant of time £ , and
that the inertial frame is moving with the same instantaneous velocity as the rigid body at this time

t . Of course thiswill change with time if the body is accelerating, but we just want to obtain the
form of the equations in the fixed frame at this instant: by Galilean invariance, this form will hold

indl inertial frames.

x’ (line of nodes)

Figure shows a standard definition of the Euler angles @, 6.1 The intersection of the
inertial and body-fixed - 4 planesis called the line of nodes. The coordinate systems are both
right-handed, ! isapolar anglein the range [Onﬂ] , and ®, % are azimuthal anglesin the range
0,2r].

The figure aso shows the instantaneous angular velocity v of the rigid body about the
origin. As the body rotates, the Euler angles will change with rates @, 0,1 about the space-fixed

z axis, theline of nodes, and the body-fixed z' axis, respectively:
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where 1 2 3 are principal axes unit vectors, and 1N isthe unit vector along the line of nodes.
Wy = r:j 1z4+601ln+41-8= qiu sinf sinyr + 6 cos ]
Wy = cD 2.7+ 620 + b23 = qf)sinﬁ cos 1 — 6 sin U
Wy = @33 +603n+133= qz.)t:osﬁ + b
The dot products above are most easily evaluated by noting that the =z axis direction has
polar angle f and azimuthal angle 90% — 10 with respect to the principal axes
7z = cos(90° — 1) sinf 1 + sin(90° — ) sinf 2+ cosf 3
and that
n=costyl—siny 2
Moment and products of Inertia

The symmetric rank-2 tensor

12 12 o el

s g Wy En o, E

. ' ~f\ A ¢ ' rr

= E M (?a 1 - rér,-_) = E m; —UY;x; T;” + %; —Ji* L
- - 5 T ot +2

t i —Z;X; —Z;Y; i ye

where 1 isthe unit 3 x 3 matrix, represents the moment of inertia tensor of the rigid body
relative to the body-fixed coordinate system. The kinetic energy of the rigid body, which is a
scalar, is compactly represented in tensor notation:

 S— |
T - aﬂl{vm“vmn —I— iwILU

An important theorem of linear algebra states that a real symmetric matrix can be diagonalized by

an orthogonal transformation:

Iy 0 0
=800 Iy U]
0 0 I

where the orthogonal matrix (@ transforms from the body-fixed coordinate system to a "principal
axes' coordinate system. The constants I, 13, I3 are cdled the "principal moments of inertia’
of therigid body.

The moment of inertia tensor is defined relative to a point in space. A very simple and useful
formula relates the moment of inertiatensor I about the origin of coordinates defined above to

the moment of inertiatensor I“™ defined relative to the center of mass of the rigid bodly.
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I=IR M (Pl )

ClI1 CITL ™ CIT1

where
!
P Za m;T;
rcm == nlj’

isthe position of the center of mass relative to the body-fixed coordinate system.

To prove thisresult write

ot ' Iy '
Ty (ri - rcm) G Fem = L -+ rem

=/
where T'; istheposition of ™1; relative to the center of mass. Then

! —/ !
E mri = E m;F> + 2! - E m; v, + 1l 2 E m;

i i i i

— 1!'2 [ ! 2
- E mgr; o ﬂ"[L'r—-uz:m
i

because
, L i MiT;
E m;T; = E M3 (T — T ) = 1!1— — Tom E m; =
i i &
and
fed. ~f :
E LYY, = E m;T, T S E m;T, + E T, + T T E m;
i i i

o —t ~ ! ~ f
— E ny;r.r, . i ﬂ-'[rrc:n'i Lem

Rotational Kinetic Energy of therigid body
The equations of motion can be derived from the Lagrangian of thesystem L =T — V' . The
kinetic energy is given by

T:—va Zm.i[vn—l—wxr’-}z
=—van+vn wa?mr + = Z’m, Luxr)

The middletermis zero if we choose the body-flxed origin at the center of mass of the rigid body
% 17 %3 o,
RU — Li Ut Z ?n_ir: =1
: i

The third term can ssimplified using
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to obtain
1
T—— u:'m+ th[ 2y rz [m.rri}z}

Angular Momentum of arigid body
The angular momentum of the system of particles comprising the rigid body about the origin

of theinertial space-fixed coordinate system is

L= Zr,xm Vt—Zmil[Ru-i—r}‘x{Vn-l—wx:'}

! !
= Z m;Rg x Vo +Rg x | W x E nur; | + Z m;r; X Vo
i i i
+ E m;r. X (W x 1)
i
iz 42 ! !
= Mr.y, X Vo + E m; [H w —r1;(r; w}]

= L.m + I
where the location of the body-fixed origin at the center of mass, and the vector triple product
identity
» mri=0, Ax(BxC)=B(A-C)-C(A-B)
i

have been used. The angular momentum of the rigid body is the sum of an "orbital" angular
momentum of a equivalent particle of mass A{ , and an internal "spin" angular momentum
about its center of mass

jr;::’;::’ I‘"IHI Imr
Lopin =l = | Tywr Lyryr Lo Byt

I:,’.T.’ Iﬁ:!}': I“’:’ o

i w.’l‘-:

el

Using Lagrange's equations of motion we see that orbital and spin angular momentum of a

rigid body are separately conserved in the absence of external forces:

d ; ; d .
ELcm - ﬂ'f{rt'mxvrm + Tem >":1""rn:'11|} =0, ELspin =Iw =10

Moment of inertia of rigid body
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Cons der arigid body rotating with angular velocity w around a certain axis. The body
consists of N point masses m whose distances to the axis of rotation are denoted r;. Each point mass will
have the speed v; = wrj, so that the total kinetic energy T of the body can be calculated as

ol | N1 1 .

T = Z Smui =) = 5 m;(wr;)’ = 5 —w’ (Z_;N:l -m.;rf).

=1
In this expression the quantity in parentheses is called the moment of inertia of the body (with respect
to the specified axis of rotation). It is a purely geometric characteristic of the object, as it depends only
on its shape and the position of the rotation axis. The moment of inertia is usually denoted with the

capital letter I:

N
_ .2
I= Zm,-ri .
=1

It is worth emphasizing that r; here is the distance from a point to the axis of rotation, not to the origin.
As such, the moment of inertiawill be different when considering rotations about different axes.
Similarly, the moment of inertiaof a continuous solid body rotating about a known axis can be
calculated by replacing the summation with the integral:
= / p(r) d(r)2dV(r),

JV
wherer isthe radius vector of a point within the body, p(r) is the mass density at point r, and d(r) is the
distance from point r to the axis of rotation. The integration is evaluated over the volume V of the body.
Motion of Symmetric Top under action of gravity
Consider a symmetric top spinning about atip of its symmetric axis as shown in Figure
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-
e

T
By

x" (line of nodes)

Note that its center of massisadistance £ from the tip. The moments of inertia about the tip are
Il — Iz — Jem 18 m_gz : J;rd — I:Em — -'-TS
The rotational kinetic energy of arigid body with axis of symmetry L=L=11I3=1Iin

terms of Euler anglesis

Trc-t - %I{wlz —|—|'.r.:'-i':} + ijs'wg

1 - : 1 2
= 51 (@2 sin® § + 6‘2) - QI (mcosﬁ - p)
The gravitational potential energy relative to the level of thetipis
V = mgfsint

and the Lagrangian function is

-y S ST 32 1 : o
,{Z—T—P—if(@ sin ﬁ—i—&)—l—gf (mcobﬁ—|—t) — mgf cost/

Note that the Lagrange function does not depend on @ and 6 The Lagrange equations of motion

for @ and ¥
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2 (5)- et

d (0C\ d oL
Y e Fao i mEy
dt (E}:-;':) at " oy

show that the angular momentum components along the vertical and symmetric directions are
conserved

L. = (Isin® 8- 1 cos? E—‘}cﬁ: + I, cos# = constant

L= I,g{r;:f: cos  + 'L'.z} = constant

These equations can be solved for

_L.— L3zcosf
B Isin? 6
. Ly L.— Lzcost
A f_s - [sin® 6 cos
The equation of motion for f is
d oL  OLC
dt9f 00

I6 = I¢%sinfcosf — I (pcost + t,.-'}}qf.}sin f + mgf sinf
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S.NO

Question

Option A

Option B

Option C

Option D

Answer

Rotational kinetic energy of
arigid body is

LLw212

w2 |

Yow2 |

2w2 I.

LLow2 |

In certain system of body
axes with respect to which
the off-diagonal elements

symmetric

antisymmetric

principal

perpendicular

principal

If wz =wz’ >wmin, atop
will spin with its axis
vertical continuously ,
thereforeit is

sleeping top

Spinning top

rotating top

symmetric top

sleeping top

A rigid body with N
particles have
degrees of

freedom.

2N

3N

AN

3N

The configuration of arigid
body with respect to some
cartesian co-ordinate system
in space

momentum

inertia

orientation

angular
momentum

orientation
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The most useful set of
generalised co-ordinates for
arigid body are

angles.
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rotation

specified

auxillary

euler’s

euler’s

The transformation worked
out through three
rotations performed only in a

successive

different

independent

dependent

successive

The distance between any
two points of arigid body is

varied

fixed

proportiona

exponentially
proportiona

fixed

A rigid body can possesses
simultaneously the
trandational and

motion

arbitrary

circular

rotationa

orhital

rotationa

10

A mathematical structure
having nine components in
three dimensions is termed
asa

tensor

matrix

covariant tensor

contra variant
tensor

tensor

11

The products of inertia of all
vanish when one of the axes
of the body lies along the
axis

rotation

vibration

motion

symmetry

symmetry
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If the symmetry axis of the
body istaken as axis of
rotation and the origin of
body axeslies
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unsymmetry

rotational

symmetry

bandc

symmetry

13

The motion of arigid body
with one point fixed will
take place under the action
of torque N in

displacement

torque

time

rotationa
motion

torque

14

The assembly of particles
with fixed inter-particle
distanceis called

fluid

vapor

colloidal

rigid body

rigid body

15

The orientation of the body
by locating a cartesian set of
co-ordinates fixed in the
rigid

body set of axes

Space set of axes

bothaand b

rotational set of
axes

body set of
axes

16

The fixed point in the body
which registers its translation
and coincident with the
center of

body set of axes

space or external
Set of axes

rotational set of
axis

vibrational set of
axes

Space or
external set of
axes

17

The generation of body set
of axes from the space set of
axes through three
successive

direction
cosines

successive angles

rotational
angles

Euler’s angles

Euler’s angles
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The system of body axesin
which off-diagonal elements
disappear and the diagonal

18 | elements principle axes | secondary axes primary axes catesian axes secondary axes
The system of body axesin
which off-diagona elements | principle secondary
disappear, and thediagonal | moment of moment of moments of

19 | elements inertia inertia inertia inertia inertia
The secular equation of
inertiatensor and its solution | constant of tensor of rank

20 | iscaled motion two covariant tensor | eigen values eigen values
A rigid body can possesses
simulataneous the trandationand | linear and periodic and symmetrical tranglation and

21 | and motion. rotational harmonic non-harmonic around rotational
Rigid body possessing
rotational and translationa
motion simulataneously will | polar and generalised and | trandation and trandlation and

22 | have cartesian canonical rotational bothaand b rotationa
If we consider three non-
collinear pointsin arigid
body, then each particle will

23 | have four three SiX nine three
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Three non-collinear pointsin
arigid body will have the
total of degrees of
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SiX

three

nine

twelve

nine

25

All the space set of axisif
rotated wbout the space z-
axis, then the yz plane takes

same

dternate

orthogonal

new

new

26

The inverse transformation
matrix from body set of axes
to space set of axesis given

AT

adj (A)

co-factor of A

determinant of A

AT

27

The position vector of any
point p relative to the origin
O of the body set of axesis

Different

constant

proportional

bothaand c

constant

28

The configuration of arigid
body is completely specified
by degrees of
freedom.

two

three

SiX

nine

SiX

29

If aisthe column matrix
representing the co-ordinates
having single frequency and
aris
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If aisthe column matrix
representing the co-ordinates
30 | having single frequency and 0] I 1]a2

The generalised co-ordinate

in which each one of them normal co- cartesain co- polar co- rectangular co- | normal co-
31 | executing oscillations of one | ordinate ordinate ordinate ordinate ordinate
In parallel pendulathe two
pendula oscillatesin undamped
32 out or phase phase damped motion | motion phase

In parallel pendular, if the
two pendula are independent

33 | i.e, thereisno unstretching rarefying transiting stretching stretching
In paralle pendula
forcedueto
34 | spring will come into action. | impulsive repulsive restoring attractive restoring

If the system possesses two
identical frequencies, then it
istherefore said to be in harmonic
35 degenerate generate distorted motion degenerate

A continuous string has
infinite number of normal
36 | modes and velocities frequencies vibrations motion frequencies
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The use of nomal co-
ordinate in the coupled
system reducesit to one of a

37 | system of

dependent single independent double independent

A continuous string has a

38 | linear

velocity acceleration displacement mass density mass density

If the systemisin stable
equilibrium, then the
frequency wi2 should be a

39 quantity.

real imaginary complex integer real

If wi2 arereal and positive,
then all co-ordinate always
remain for any

40 | time.

infinite same different finite finite

If wl2 are not real and
positive, then all the co-
ordinate becomes
any time.

for
41

infinite finite exponential infinite

The system issaid to be
unstable if the frequency wi2

42 | are not

equal finite real infinite rea
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UNIT-1V

SYLLABUS

Special Theory of Relativity: Introduction — Galilean transformation and invariance of Newton’s
laws of motion — Non variance of Maxwell’s equations — Michelson Morley experiment and
explanation of the null result.

Concept of inertial frame — Postul ates of special theory — simultaneity — Lorentz transformation

along one of the axes — length contraction — time dilatation and vel ocity addition theorem —
Fizeau’s experiment — Four vectors — Relativistic dynamics — Variation of mass with velocity —
Energy momentum relationship.

Special theory of relativity — Introduction

The Specia Theory of Relativity was the result of developments in physics at the end of the
nineteenth century and the beginning of the twentieth century. It changed our understanding of
older physica theories such as Newtonian Physics and led to early Quantum Theory and General
Relativity.

Specia Relativity does not just apply to fast moving objects, it affects the everyday world
directly through "relativistic* effects such as magnetism and the relativistic inertia that underlies
kinetic energy and hence the whole of dynamics.

Specia Relativity is now one of the foundation blocks of physics. It is in no sense a
provisional theory and is largely compatible with quantum theory; it not only led to the idea of
matter waves but is the origin of guantum 'spin' and underlies the existence of the antiparticles.
Specia Relativity is a theory of exceptional elegance, Einstein crafted the theory from simple
postulates about the constancy of physical laws and of the speed of light and his work has been
refined further so that the laws of physics themselves and even the constancy of the speed of light

are now understood in terms of the most basic symmetries in space and time.
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The Galilean Transformation Invariance of Newton’s law of motion
Suppose there are two reference frames (systems) designated by S and S' such that the co-

{z,y, 21t}

ordinate axes are paralel (asinfigure 1). In S, we have the co-ordinates andin S we

{«!, o, 2, ¢}

have the co-ordinates . S ismoving with respect to Swith velocity ¥ (as measured
inS) inthe x direction. The clocks in both systems were synchronised at time £ = () and they run

at the samerate.

y
']

Figure 1. Reference frame S moves with velocity » (in the x direction) relative to reference frame

S.
We have the intuitive rel ationships

2 = z — vt
y = Y
7 = z
v = t

This set of equations is known as the Galilean Transformation. They enable us to relate a
measurement in one inertial reference frame to another. For example, suppose we measure the
velocity of a vehicle moving in the in Z-direction in system S, and we want to know what would

be the velocity of thevehiclein S.
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g _de _dz—vt) _
T

Up — U

The laws of physics to be the same in al inertia reference frames, as this is indeed our experience
of nature. Physically, we should be able to perform the same experiments in different reference
frames, and find always the same physical laws. Mathematically, these laws are expressed by
equations. So, we should be able to ““transform” our equations from one inertial reference frame to
the other inertia reference frame, and always find the same answer.

Suppose we wanted to check that Newton's Second Law is the same in two different
reference frames. We put one observer in the un-primed frame, and the other in the primed frame,
moving with velocity w relative to the un-primed frame. Consider the vehicle of the previous case
undergoing a constant acceleration in the z -direction,

e

ff= md = L ar?

3(%)
= dt' \ dt'

L s

d(vz . 'U)
M

m3
= dt

= ﬂm:f

Indeed, it does not matter which inertial frame we observe from, we recover the same Second Law
of Motion each time. In the parlance of physics, we say the Second Law of Motion is invariant
under the Galilean Transformation.

Non-variance of Maxwell’s equation
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Experiments on electric and magnetic fields, as well as induction of one type of field from changes
in the other, lead to the collection of a set of equations, describing all these phenomena, known as

Maxwell's Equations.

VB = 0,
Maxwells Equations VE = 0,
in vacuo VxB = emZ,
VxE = —%.

Now, these equations are considered to be rock solid, arising from and verified by many
experiments. Amazingly, they imply the existence of a previously not guessed at phenomenon. This
is the electromagnetic wave. To see this in detail, take the time derivative of the second last

eguation and the curl of the last.

E X — Eﬂ.lu‘ﬂ atg 7
0B

Vx(VxE) = &3
Now note that space and time derivatives commute
J 0B
e B = i
Btv % V X o
SO

*E

V x (V X E) = —Egﬂuﬁ.
Now, we use the identity

V x (V x E) = VV.E - V’E.
The second term of the above equation drops out due to the vanishing of the divergence of the
electric field (the second of Maxwell's Equations). So, we finally have the three dimensiona wave

eguation

O°E
VEE = €gly ?
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To seethisis awave equation, note the analogy in one dimension

Fy_ 1y
0z 2 ot

which is solved by the wave function

y(:r; t) = Sin('x - Ct):

which represents awave traveling along the x axis with velocity c.
It is clear therefore that Maxwell's Equations are highly predictive.

. A diversity isunified in a simplicity. The various phenomena of radiowaves, microwaves, infrared,
visible and ultra-violet light, X-rays and gamma rays are all electromagnetic waves, differing only
in their frequency.

. They al travel at the same speed.

c= 1/ /ety = 2.997 x 10
Even that speed is specified : m/s.

4. The speed appears independent of the source and the observer.

Michelson Morley experiment and explanation of the null result.

After the development of Maxwell's theory of electromagnetism, several experiments were
performed to prove the existence of ether and its motion relative to the Earth. The most famous and
successful was the one now known as the Michelson-Morley experiment, performed by Albert
Michelson (1852-1931) and Edward Morley (1838-1923) in 1887.
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Michelson and Morley built aMichelson interferometer, which essentially consists of a light

source, a half-silvered glass plate, two mirrors, and atelescope. The mirrors are placed at right
angles to each other and at equal distance from the glass plate, which is obliquely oriented at an
angle of 45° relative to the two mirrors. In the original device, the mirrors were mounted on arigid
base that rotates freely on abasin filled with liquid mercury in order to reduce friction.

Prevailing theories held that ether formed an absolute reference frame with respect to which
the rest of the universe was stationary. It would therefore follow that it should appear to be moving
from the perspective of an observer on the sun-orbiting Earth. As a result, light would sometimes
travel in the same direction of the ether, and others times in the opposite direction. Thus, the idea
was to measure the speed of light in different directions in order to measure speed of
the ether relative to Earth, thus establishing its existence.

Michelson and Morley were able to measure the speed of light by looking for interference
fringes between the light which had passed through the two perpendicular arms of their apparatus.
These would occur since the light would travel faster along an arm if oriented in the "same"
direction as the ether was moving, and slower if oriented in the opposite direction. Since the two
arms were perpendicular, the only way that light would travel at the same speed in both arms and
therefore arrive simultaneous at the telescope would be if the instrument were motionless with
respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive
and interfere dlightly out of synchronization, producing a diminution of intensity. (Of course, the

same effect would be achieved if the arms of the interferometer were not of the same length, but
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these could be adjusted accurately by looking for the intensity peak as one arm was moved.
Changing the orientation of the instrument should then show fringes.)

Although Michelson and Morley were expecting measuring different speeds of light in each
direction, they found no discernible fringes indicating a different speed in any orientation or at any
position of the Earth in its annual orbit around the Sun.

In 1895, Lorentz concluded that the "null” result obtained by Michelson and Morley was caused by
a effect of contraction made by the ether on their apparatus and introduced the length contraction

eguation

L=anl—ﬁ

@’
where L is the contracted length, . is the rest length, v is the velocity of the frame of reference,
and cisthe speed of light.
Concept of inertial frame of reference

A “frame of reference” is a standard relative to which motion and rest may be measured;
any set of points or objects that are at rest relative to one another enables us, in principle, to
describe the relative motions of bodies. A frame of reference is therefore a purely kinematical
device, for the geometrical description of motion without regard to the masses or forcesinvolved. A
dynamical account of motion leads to the idea of an “inertial frame,” or a reference frame relative
to which motions have distinguished dynamical properties. For that reason an inertial frame has to
be understood as a spatial reference frame together with some means of measuring time, so that
uniform motions can be distinguished from accel erated motions.

The laws of Newtonian dynamics provide a ssimple definition: an inertial frame is a
reference-frame with a time-scale, relative to which the motion of a body not subject to forces is
always rectilinear and uniform, accelerations are always proportional to and in the direction of
applied forces, and applied forces are always met with equal and opposite reactions. It follows that,
in an inertial frame, the center of mass of a system of bodies is always at rest or in uniform motion.
It also follows that any other frame of reference moving uniformly relative to an inertial frame is
also an inertial frame. For example, in Newtonian celestial mechanics, taking the “fixed stars” as a
frame of reference, we can determine an (approximately) inertial frame whose center is the center

of mass of the solar system; relative to this frame, every acceleration of every planet can be
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accounted for (approximately) as a gravitationa interaction with some other planet in accord with
Newton's laws of motion.
Postulates of special theory of relativity

() Statement: "The laws of physics are the same in any inertia frame, regardless of

position or velocity".

Physicaly, this means that there is no absolute spacetime, no absolute frame of reference with
respect to which position and velocity are defined. Only relative positions and velocities between
objects are meaningful.

(i) Statement: "The speed of light c isauniversal constant, the samein any inertial frame".
Simultaneity

Consider a rocket traveling at speed v, as shown in Fig. 4. There is an observer O at rest with
respect to the rocket and an observer O' riding with the rocket. Two lightbulbs at the ends of the
rocket were timed such that their flashes arrive at the observers at the same time. Light from the
bulbs traveled towards the observers at the speed of light, ¢, in the reference frames of both

observers. The figure shows how O andO' are lined up when the light arrives.

—i-
[y 0 Y
—_—j -
C ] C
Fig. 4

For O' (on the rocket), the bulbs must have flashed simultaneously because O' is right in the
middle. The bulbs are a rest in the frame of O'.

The other observer, O, draws a different conclusion. When the flashes were emitted, the rocket was
not centered on O; it was to the left. The pulse from the bulb on the left must have been emitted
first; it had farther to travel. Likewise, the pulse from the bulb on the right had a shorter distance to
travel. Observer O concludes that the bulbs were not flashed simultaneously.

S0, observer O' thinks the events (flashing of the bulbs) were simultaneous while observer O does

not. Simultaneity is not independent of reference frame.

L ength contraction
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Moving rod contracts in length by factor of <

ie, lengthofarodin = lengthofthesamerod

2
moticninagiven — whenat rest x ¥
frarme ofreference  inthe gven ffameof o2

reference

2
— v Y
or I = I 1—?—

Timedilation

Moving clock dilates in time interval measured by factor of

ie Titneinterval meaared = Timeinterval measured y 1
bya clockinmotionin thE_SE'mECEIUCkWhEﬂ 5
agiven frame of reference atrestinthegiven frame  j1-—

by reference. B

= (5

T .
T2
c?

Relativistic Law of Velocity Addition

_}
If an object is in motion with velocity ' (U, Uy, u’,components) in frame S and the velocity of

the object measured in Sis bt (uy, uy, u,components) then ,

B = uy + V
2

w = wyyV1-vIc? gy e

1+ uyV
2

v o= ug¥ 1- W0 D)

T+ uy W
o —

Relativistic Mass
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The concept of 'Absolute Mass of Newtonian Mechanics is no longer tenable in special Relativity;
the requirement that Law of Conservation of momentum is a fundamental Law of nature imposes
therelation

m = Mo T

then only consistency between the Lorentz-Transformations and Law of Conservation of
momentum can be obtained. This expression given relativistic mass m in motion with Velocity V in
agiven frame of reference; in terms of the mass mO called rest mass of the object when at rest in the
given frame of reference.

The Experiment of Fizeau

In 1851, Fizeau carried out an experiment which tested for the aether convection coefficient.
This was the first such test of Fresnel’s formula, derived without experimental evidence, over
twenty years earlier. Fresnel, in fact, had died more than twenty years before this experiment took
place, a point of interest only because many texts derive Fresnel’s formula based on the results of
experiment, rather than the other way around. Experimental results, within the level of error
available in the mid-1800’s, are not sufficient to derive Fresnel’s formula. These results can only
confirm that, within error limits, the formula provides answers consistent with experiment. In fact,
Fizeau’s experimental results were so course that the only conclusion he could draw was that the
displacement was less than should have been produced by the motion of the liquid if light were
completely convected by the medium. From this, he assumed the validity of Fresnel’s formula on
the partial convection of the aether.

Fizeau’s experiment involved passing light two ways through moving water (v ~ 7 m/s) and
observing the interference pattern obtained, as illustrated in figure 1. The experiment was repeated
by Michelson in 1886 with much more rigor, and quantitative results were obtained. Working
backwards from the observed fringe shift, Michelson was able to calculate an apparent convection
coefficient equivalent to Fresnel’s formula. Varying the velocity and direction of the flow allowed
for avariety of test points. By observing the change in interference pattern, the effective velocity of
light through the moving medium, as measured in the lab frame, was caculated. Within

experimental limits, the results obtained by measuring the fringe shift agreed with the results

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 10/17




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS. | MSCPHYSICS  COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
== COURSE CODE: 17PHP103 UNIT: 1V (Special Theory of Rleativity) BATCH-2018-2020
KARPAGAM

ACADEMY OF HIGHER EDUCATION

[Deemed to be Unbversity)

predicted by Fresnel’s formula. However, Michelson neglected to take into account the Doppler
effect of light from a stationary source interacting with moving water, and therefore concluded that

the aether convection concept of Fresnel was essentially correct.

SCTREN Iitj

T s

il
I

1
|l

Figure 1. The experiment of Fizeau.

We now examine this experiment in a purely Galilean environment, taking into account the
Doppler shift (change in wavelength) experienced by each beam of light. Michelson’s paper gives
an excellent analysis whereby the retarded velocity, b, seen in the water may be considered as due
to the number of collisions with atoms, the "velocity of light through the atoms," and the width of
the atoms. Since there will likely be objections to that analysis based on current understandings of
the microscopic world, we present a more general approach. In what follows, the retarded velocity
is again considered as due to the "collisions' (absorptions and re-emissions) of the photons in the
medium, as it must be, but we do not require any assumptions as to "atom width,” or "velocity
through the atom."

For light traveling through a medium, the effective wavelength changes:

_
S

The phase shift for light in such amediumiis:
o [ In

2w A A @
The optical path length is defined from (2) as |h. The optical path difference between the medium

and air isthen:
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1
5[??—1]—57?[1—5]

©)
The phase difference compared with the same path in air is:
o¢ In
2 A
(4)

In the Fizeau experiment we must consider Doppler effects. Since the water is moving with respect
to the source, the two paths of light will experience Doppler shifts upon entering the water. Light
moving in the opposite direction to the flow of water will be blue-shift (I;). Light moving with the
flow will be red shifted (I,):

A =({1-v/c)d

A, =(1+v/ic)d )

L E—
= my 5
i s
'/I
rd
| T
L el ———— e -

—— =1 =V

To see why the Doppler shift cannot be ignored in Fizeau’s experiment, imagine the apparatus
depicted in figure 2. All mirrors, the source and the observing screen are sealed in water filled
containers. The water is not flowing, but is stationary in the containers. Alternatively, the containers
could be made of solid glass, so long as the refractive index is different than air. The entire
apparatus, with the exception of mirror (detector) M1 moves through the lab frame at a velocity
of v. Thus, air is moving through the gap, |, at a velocity of v in the equipment frame. To first order
in vic, the wavelengths of the light detected at M, is given by equation (8).

We now fill the apparatus containers with air and pass the entire apparatus through water. In
the equipment frame, water is moving through the gap at a velocity v. The motion induced Doppler
in the water, experienced by M1, remains unchanged. If we, the observers, move along with the
apparatus, this setup is indistinguishable from the actual Fizeau experiment. From our frame of

reference, the equipment is at rest, water is moving through the gap at a velocity v, and the image
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on the screen reflects the fringe shift due to that motion. Thus we can replace the gap with a tube of

flowing water, hold the rest of the apparatus stationary in the lab frame, and obtain a one-sided

Fizeau experiment. Clearly, whatever analysis one uses to derive the formulas for the observed

fringe shift, one must take into account the fact that the wavelength of the light in the moving

medium is different from that of the source due to the motion induced Doppler effect of (8).
Substituting (8) into (2), we see that the phase shift including Doppler effects becomes:

og 1 in e

2 A4 (I+vic)ldy, (c+v)q )

The optical path length is defined from the above as:

/e

fols Y (10)

The optical path difference between the medium and air is then:
o

—[??‘ 1]= —[1——]

o+ o+ n (11)

The phase difference compared with the same path in air is:

6 _ e 1

2z (o +v}ﬂﬂ[ ;r}'] (12)

For light traveling different paths and experiencing different Doppler effects, the total phase shift is
given by:

o _ S, _ e [l—l]— Lo 2" __]

2m 2@ (c+w)h (o)A T (13)

In the Fizeau experiment, |; and |, are given by (8). The path lengths |, and |, are respectively given
below, where the factor of two is included because the light travels through two tubes of length |,

and b isthe velocity of light in the reference frame of the liquid.

2{
bty =2l +vt, or Il:b—v
| = by 2ib - 2ib
D pey 2 by (19
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Substituting these values into (13) for each path gives the following results:
@ -¢ o 2 1

1w 2z o) ATYT
Zib_ o ) 1
) @-va ™ty
b-¢ o4 UL )
2 2m (b+v) Z[??_l]—
Z.E.E:'_ o r;[l—l]
G+ R ™ 7 g
gr= 28 _9%
2o 2

2berfl-1n]  2berfl-Yn]
[£-v][c —v]2 [H+v][c+v]A

2inl1 - 1f7]
o [2ve + 2vh]
4 v[1- 1] +1/7] i} Ay - 1 ]

Notice how these results were obtained without invoking "aether" drag, or relativistic velocity
addition.

In the specia relativistic analysis of this experiment, the velocity of light in the moving
liquid as measured in the lab frame is no longer b + v, but is given by the relativistic velocity

addition formula:

b-v  b-v
b= vh v
__2 1__
# ne (17)
As aresult, the path lengths derived in (14) become:
2Bl - — 2B(1 +—
M) EMe)
L b—v i 2 b+y (18)
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The derivation of the total phase shift then becomes:

)
6-0 s w1
27 2z (B-v) AT
2b(1- -
o

& 1
TTev oty

2b(1+ —)
??C

652—435‘_%_—__[ 1]
2z 2z (B+v) AT
IB(1+—
:2 (1+E . T,[l_l]
(A+v) (c+v)d ] (19)
_%% %%
N = ix  2m
_ 3
M[Zvc+2v£}+zﬁ+zv—]m
bed by ne
41y 5 Aty 1
1-1/n][1+1/n+1 & 1-—
oo -yl + 1/ )= — 7 oo

The two results, (16) and (20), differ in the exponent of the last h term. When Michelson
and Morley performed the experiment, they obtained sixty one trias, using three different
combinations of water velocity and tube length. The graph below shows the distribution of these
results, normalized to a tube length of ten meters and a water velocity of one meter per second. The
line marked RCM represents the value obtained from equation (16). The line marked SRT reflects
the value obtained from (20). While there is a distribution of results, owing to experimenta error,
Michelson claimed an overall shift of 0.184 + 0.02 fringe. This is completely consistent with (16),
but eliminates the special relativistic result, with avalue of 0.247, from consideration.

Summary

It is very difficult to find adequate tests between specia relativity and other competing theories.
Most theories overlap with SRT on avast mgjority of the prediction made by each, yet are based on
different underlying physical principles. Ultimately one must find a test that checks not only the
results of the application of the mathematical theory, but also the underlying assumptions. The
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major conceptua difference between SRT and most competing theories is the idea of relative
simultaneity—that distant events that are simultaneous for one observer will not be simultaneous
for and observer in motion relative to the first. The relativistic velocity addition rule is a direct
consequence of relativistic simultaneity, and the Fizeau experiment represents a direct test of the
velocity addition formula. Regardless of what the correct theory is or may be, it is clear that SRT
failsto give predictions consistent with results in this experiment—an experiment performed almost
ten years before the development of SRT.

Four-vectors

Although the use of 4-vectorsis not necessary for afull understanding of Special Relativity,
they are a most powerful and useful tool for attacking many problems. A 4-vectors is just a 4-
tuplet A = (Ao, A 1, A2 A g)that transforms under a Lorentz Transformation in the same way
as (cdt, dx, dy, dz) does. That is:
Ao=Y(A o+ (VIOA )
A1=Y(A 1+ (VIOA o)
A=A
Az=Aj3

Lorentz transformations are very much like rotations in 4-dimensional spacetime. 4-vectors,
then, generalize the concept of rotations in 3-space to rotations in 4-dimensions. Clearly, any
constant  multiple  of (cdt, dx,dy,dz)is a  4-vector, but  something likeA =
(cdt,mdx, dy, dz) (where mis just a constant) is not a 4-vector because the second component has
to transform like mdxaE&aA 1 = y(A ' + (V/C)A ¢)aE&y((mdx’) +vdt') from the definition of a 4-
vector, but also like mdx = my(dx’ + (v/c)dt’) ; these two expression are inconsistent. Thus we can
transform a 4-vector either according to the 4- vector definition given above, or using what we
know about how the dx ; transform to transform each A j independently. There are only a few
specia vectors for which these two methods yield the same result. Several different 4-vectors are
now discussed:

Velocity 4-vector

We can define a quantity T = Vdt? —dr? — dy? — d=% \yhichis called the proper time, and

isinvariant between frames. Dividing out origina 4-vector ( (cdt, dx, dx, dz) ) bydt gives:
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: (
V = dr (cdt, dx, dy, dz) =y \ c, dt, dt, dt

dt
This arisesbecause @ =vy.

Energy-momentum 4-vector

If we multiply the velocity 4-vector by m we get:
P=mV =m(yc,y ¥)= (yme,ymv)= (E/c,p)
Thisis an extremely important 4-vector in Special Relativity.
Relation between momentum and kinetic energy

Sometimes it's desirable to express the kinetic energy of a particle in terms of the momentum.

= K = imy*
That's easy enough. Since v p/m and the kinetic energy :
4
K = im(&) = 2 (1.4)
2 m 2m

Note that if a massive particle and alight particle have the same momentum, the light one will have
alot more kinetic energy. If alight particle and a heavy one have the same velocity, the heavy one
has more kinetic energy.
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UNIT-1V

SYLLABUS

Special Theory of Relativity: Introduction — Galilean transformation and invariance of Newton’s
laws of motion — Non variance of Maxwell’s equations — Michelson Morley experiment and
explanation of the null result.

Concept of inertial frame — Postul ates of special theory — simultaneity — Lorentz transformation

along one of the axes — length contraction — time dilatation and vel ocity addition theorem —
Fizeau’s experiment — Four vectors — Relativistic dynamics — Variation of mass with velocity —
Energy momentum relationship.

Special theory of relativity — Introduction

The Specia Theory of Relativity was the result of developments in physics at the end of the
nineteenth century and the beginning of the twentieth century. It changed our understanding of
older physica theories such as Newtonian Physics and led to early Quantum Theory and General
Relativity.

Specia Relativity does not just apply to fast moving objects, it affects the everyday world
directly through "relativistic* effects such as magnetism and the relativistic inertia that underlies
kinetic energy and hence the whole of dynamics.

Specia Relativity is now one of the foundation blocks of physics. It is in no sense a
provisional theory and is largely compatible with quantum theory; it not only led to the idea of
matter waves but is the origin of guantum 'spin' and underlies the existence of the antiparticles.
Specia Relativity is a theory of exceptional elegance, Einstein crafted the theory from simple
postulates about the constancy of physical laws and of the speed of light and his work has been
refined further so that the laws of physics themselves and even the constancy of the speed of light

are now understood in terms of the most basic symmetries in space and time.
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The Galilean Transformation Invariance of Newton’s law of motion
Suppose there are two reference frames (systems) designated by S and S' such that the co-

{z,y, 21t}

ordinate axes are paralel (asinfigure 1). In S, we have the co-ordinates andin S we

{«!, o, 2, ¢}

have the co-ordinates . S ismoving with respect to Swith velocity ¥ (as measured
inS) inthe x direction. The clocks in both systems were synchronised at time £ = () and they run

at the samerate.

y
']

Figure 1. Reference frame S moves with velocity » (in the x direction) relative to reference frame

S.
We have the intuitive rel ationships

2 = z — vt
y = Y
7 = z
v = t

This set of equations is known as the Galilean Transformation. They enable us to relate a
measurement in one inertial reference frame to another. For example, suppose we measure the
velocity of a vehicle moving in the in Z-direction in system S, and we want to know what would

be the velocity of thevehiclein S.
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g _de _dz—vt) _
T

Up — U

The laws of physics to be the same in al inertia reference frames, as this is indeed our experience
of nature. Physically, we should be able to perform the same experiments in different reference
frames, and find always the same physical laws. Mathematically, these laws are expressed by
equations. So, we should be able to ““transform” our equations from one inertial reference frame to
the other inertia reference frame, and always find the same answer.

Suppose we wanted to check that Newton's Second Law is the same in two different
reference frames. We put one observer in the un-primed frame, and the other in the primed frame,
moving with velocity w relative to the un-primed frame. Consider the vehicle of the previous case
undergoing a constant acceleration in the z -direction,

e

ff= md = L ar?

3(%)
= dt' \ dt'

L s

d(vz . 'U)
M

m3
= dt

= ﬂm:f

Indeed, it does not matter which inertial frame we observe from, we recover the same Second Law
of Motion each time. In the parlance of physics, we say the Second Law of Motion is invariant
under the Galilean Transformation.

Non-variance of Maxwell’s equation
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Experiments on electric and magnetic fields, as well as induction of one type of field from changes
in the other, lead to the collection of a set of equations, describing all these phenomena, known as

Maxwell's Equations.

VB = 0,
Maxwells Equations VE = 0,
in vacuo VxB = emZ,
VxE = —%.

Now, these equations are considered to be rock solid, arising from and verified by many
experiments. Amazingly, they imply the existence of a previously not guessed at phenomenon. This
is the electromagnetic wave. To see this in detail, take the time derivative of the second last

eguation and the curl of the last.

E X — Eﬂ.lu‘ﬂ atg 7
0B

Vx(VxE) = &3
Now note that space and time derivatives commute
J 0B
e B = i
Btv % V X o
SO

*E

V x (V X E) = —Egﬂuﬁ.
Now, we use the identity

V x (V x E) = VV.E - V’E.
The second term of the above equation drops out due to the vanishing of the divergence of the
electric field (the second of Maxwell's Equations). So, we finally have the three dimensiona wave

eguation

O°E
VEE = €gly ?
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To seethisis awave equation, note the analogy in one dimension

Fy_ 1y
0z 2 ot

which is solved by the wave function

y(:r; t) = Sin('x - Ct):

which represents awave traveling along the x axis with velocity c.
It is clear therefore that Maxwell's Equations are highly predictive.

. A diversity isunified in a simplicity. The various phenomena of radiowaves, microwaves, infrared,
visible and ultra-violet light, X-rays and gamma rays are all electromagnetic waves, differing only
in their frequency.

. They al travel at the same speed.

c= 1/ /ety = 2.997 x 10
Even that speed is specified : m/s.

4. The speed appears independent of the source and the observer.

Michelson Morley experiment and explanation of the null result.

After the development of Maxwell's theory of electromagnetism, several experiments were
performed to prove the existence of ether and its motion relative to the Earth. The most famous and
successful was the one now known as the Michelson-Morley experiment, performed by Albert
Michelson (1852-1931) and Edward Morley (1838-1923) in 1887.
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Michelson and Morley built aMichelson interferometer, which essentially consists of a light

source, a half-silvered glass plate, two mirrors, and atelescope. The mirrors are placed at right
angles to each other and at equal distance from the glass plate, which is obliquely oriented at an
angle of 45° relative to the two mirrors. In the original device, the mirrors were mounted on arigid
base that rotates freely on abasin filled with liquid mercury in order to reduce friction.

Prevailing theories held that ether formed an absolute reference frame with respect to which
the rest of the universe was stationary. It would therefore follow that it should appear to be moving
from the perspective of an observer on the sun-orbiting Earth. As a result, light would sometimes
travel in the same direction of the ether, and others times in the opposite direction. Thus, the idea
was to measure the speed of light in different directions in order to measure speed of
the ether relative to Earth, thus establishing its existence.

Michelson and Morley were able to measure the speed of light by looking for interference
fringes between the light which had passed through the two perpendicular arms of their apparatus.
These would occur since the light would travel faster along an arm if oriented in the "same"
direction as the ether was moving, and slower if oriented in the opposite direction. Since the two
arms were perpendicular, the only way that light would travel at the same speed in both arms and
therefore arrive simultaneous at the telescope would be if the instrument were motionless with
respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive
and interfere dlightly out of synchronization, producing a diminution of intensity. (Of course, the

same effect would be achieved if the arms of the interferometer were not of the same length, but
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these could be adjusted accurately by looking for the intensity peak as one arm was moved.
Changing the orientation of the instrument should then show fringes.)

Although Michelson and Morley were expecting measuring different speeds of light in each
direction, they found no discernible fringes indicating a different speed in any orientation or at any
position of the Earth in its annual orbit around the Sun.

In 1895, Lorentz concluded that the "null” result obtained by Michelson and Morley was caused by
a effect of contraction made by the ether on their apparatus and introduced the length contraction

eguation

L=anl—ﬁ

@’
where L is the contracted length, . is the rest length, v is the velocity of the frame of reference,
and cisthe speed of light.
Concept of inertial frame of reference

A “frame of reference” is a standard relative to which motion and rest may be measured;
any set of points or objects that are at rest relative to one another enables us, in principle, to
describe the relative motions of bodies. A frame of reference is therefore a purely kinematical
device, for the geometrical description of motion without regard to the masses or forcesinvolved. A
dynamical account of motion leads to the idea of an “inertial frame,” or a reference frame relative
to which motions have distinguished dynamical properties. For that reason an inertial frame has to
be understood as a spatial reference frame together with some means of measuring time, so that
uniform motions can be distinguished from accel erated motions.

The laws of Newtonian dynamics provide a ssimple definition: an inertial frame is a
reference-frame with a time-scale, relative to which the motion of a body not subject to forces is
always rectilinear and uniform, accelerations are always proportional to and in the direction of
applied forces, and applied forces are always met with equal and opposite reactions. It follows that,
in an inertial frame, the center of mass of a system of bodies is always at rest or in uniform motion.
It also follows that any other frame of reference moving uniformly relative to an inertial frame is
also an inertial frame. For example, in Newtonian celestial mechanics, taking the “fixed stars” as a
frame of reference, we can determine an (approximately) inertial frame whose center is the center

of mass of the solar system; relative to this frame, every acceleration of every planet can be
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accounted for (approximately) as a gravitationa interaction with some other planet in accord with
Newton's laws of motion.
Postulates of special theory of relativity

() Statement: "The laws of physics are the same in any inertia frame, regardless of

position or velocity".

Physicaly, this means that there is no absolute spacetime, no absolute frame of reference with
respect to which position and velocity are defined. Only relative positions and velocities between
objects are meaningful.

(i) Statement: "The speed of light c isauniversal constant, the samein any inertial frame".
Simultaneity

Consider a rocket traveling at speed v, as shown in Fig. 4. There is an observer O at rest with
respect to the rocket and an observer O' riding with the rocket. Two lightbulbs at the ends of the
rocket were timed such that their flashes arrive at the observers at the same time. Light from the
bulbs traveled towards the observers at the speed of light, ¢, in the reference frames of both

observers. The figure shows how O andO' are lined up when the light arrives.

—i-
[y 0 Y
—_—j -
C ] C
Fig. 4

For O' (on the rocket), the bulbs must have flashed simultaneously because O' is right in the
middle. The bulbs are a rest in the frame of O'.

The other observer, O, draws a different conclusion. When the flashes were emitted, the rocket was
not centered on O; it was to the left. The pulse from the bulb on the left must have been emitted
first; it had farther to travel. Likewise, the pulse from the bulb on the right had a shorter distance to
travel. Observer O concludes that the bulbs were not flashed simultaneously.

S0, observer O' thinks the events (flashing of the bulbs) were simultaneous while observer O does

not. Simultaneity is not independent of reference frame.

L ength contraction
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Moving rod contracts in length by factor of <

ie, lengthofarodin = lengthofthesamerod

2
moticninagiven — whenat rest x ¥
frarme ofreference  inthe gven ffameof o2

reference

2
— v Y
or I = I 1—?—

Timedilation

Moving clock dilates in time interval measured by factor of

ie Titneinterval meaared = Timeinterval measured y 1
bya clockinmotionin thE_SE'mECEIUCkWhEﬂ 5
agiven frame of reference atrestinthegiven frame  j1-—

by reference. B

= (5

T .
T2
c?

Relativistic Law of Velocity Addition

_}
If an object is in motion with velocity ' (U, Uy, u’,components) in frame S and the velocity of

the object measured in Sis bt (uy, uy, u,components) then ,

B = uy + V
2

w = wyyV1-vIc? gy e

1+ uyV
2

v o= ug¥ 1- W0 D)

T+ uy W
o —

Relativistic Mass
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The concept of 'Absolute Mass of Newtonian Mechanics is no longer tenable in special Relativity;
the requirement that Law of Conservation of momentum is a fundamental Law of nature imposes
therelation

m = Mo T

then only consistency between the Lorentz-Transformations and Law of Conservation of
momentum can be obtained. This expression given relativistic mass m in motion with Velocity V in
agiven frame of reference; in terms of the mass mO called rest mass of the object when at rest in the
given frame of reference.

The Experiment of Fizeau

In 1851, Fizeau carried out an experiment which tested for the aether convection coefficient.
This was the first such test of Fresnel’s formula, derived without experimental evidence, over
twenty years earlier. Fresnel, in fact, had died more than twenty years before this experiment took
place, a point of interest only because many texts derive Fresnel’s formula based on the results of
experiment, rather than the other way around. Experimental results, within the level of error
available in the mid-1800’s, are not sufficient to derive Fresnel’s formula. These results can only
confirm that, within error limits, the formula provides answers consistent with experiment. In fact,
Fizeau’s experimental results were so course that the only conclusion he could draw was that the
displacement was less than should have been produced by the motion of the liquid if light were
completely convected by the medium. From this, he assumed the validity of Fresnel’s formula on
the partial convection of the aether.

Fizeau’s experiment involved passing light two ways through moving water (v ~ 7 m/s) and
observing the interference pattern obtained, as illustrated in figure 1. The experiment was repeated
by Michelson in 1886 with much more rigor, and quantitative results were obtained. Working
backwards from the observed fringe shift, Michelson was able to calculate an apparent convection
coefficient equivalent to Fresnel’s formula. Varying the velocity and direction of the flow allowed
for avariety of test points. By observing the change in interference pattern, the effective velocity of
light through the moving medium, as measured in the lab frame, was caculated. Within

experimental limits, the results obtained by measuring the fringe shift agreed with the results
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predicted by Fresnel’s formula. However, Michelson neglected to take into account the Doppler
effect of light from a stationary source interacting with moving water, and therefore concluded that

the aether convection concept of Fresnel was essentially correct.

SCTREN Iitj

T s

il
I

1
|l

Figure 1. The experiment of Fizeau.

We now examine this experiment in a purely Galilean environment, taking into account the
Doppler shift (change in wavelength) experienced by each beam of light. Michelson’s paper gives
an excellent analysis whereby the retarded velocity, b, seen in the water may be considered as due
to the number of collisions with atoms, the "velocity of light through the atoms," and the width of
the atoms. Since there will likely be objections to that analysis based on current understandings of
the microscopic world, we present a more general approach. In what follows, the retarded velocity
is again considered as due to the "collisions' (absorptions and re-emissions) of the photons in the
medium, as it must be, but we do not require any assumptions as to "atom width,” or "velocity
through the atom."

For light traveling through a medium, the effective wavelength changes:

_
S

The phase shift for light in such amediumiis:
o [ In

2w A A @
The optical path length is defined from (2) as |h. The optical path difference between the medium

and air isthen:
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1
5[??—1]—57?[1—5]

©)
The phase difference compared with the same path in air is:
o¢ In
2 A
(4)

In the Fizeau experiment we must consider Doppler effects. Since the water is moving with respect
to the source, the two paths of light will experience Doppler shifts upon entering the water. Light
moving in the opposite direction to the flow of water will be blue-shift (I;). Light moving with the
flow will be red shifted (I,):

A =({1-v/c)d

A, =(1+v/ic)d )

L E—
= my 5
i s
'/I
rd
| T
L el ———— e -

—— =1 =V

To see why the Doppler shift cannot be ignored in Fizeau’s experiment, imagine the apparatus
depicted in figure 2. All mirrors, the source and the observing screen are sealed in water filled
containers. The water is not flowing, but is stationary in the containers. Alternatively, the containers
could be made of solid glass, so long as the refractive index is different than air. The entire
apparatus, with the exception of mirror (detector) M1 moves through the lab frame at a velocity
of v. Thus, air is moving through the gap, |, at a velocity of v in the equipment frame. To first order
in vic, the wavelengths of the light detected at M, is given by equation (8).

We now fill the apparatus containers with air and pass the entire apparatus through water. In
the equipment frame, water is moving through the gap at a velocity v. The motion induced Doppler
in the water, experienced by M1, remains unchanged. If we, the observers, move along with the
apparatus, this setup is indistinguishable from the actual Fizeau experiment. From our frame of

reference, the equipment is at rest, water is moving through the gap at a velocity v, and the image
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on the screen reflects the fringe shift due to that motion. Thus we can replace the gap with a tube of

flowing water, hold the rest of the apparatus stationary in the lab frame, and obtain a one-sided

Fizeau experiment. Clearly, whatever analysis one uses to derive the formulas for the observed

fringe shift, one must take into account the fact that the wavelength of the light in the moving

medium is different from that of the source due to the motion induced Doppler effect of (8).
Substituting (8) into (2), we see that the phase shift including Doppler effects becomes:

og 1 in e

2 A4 (I+vic)ldy, (c+v)q )

The optical path length is defined from the above as:

/e

fols Y (10)

The optical path difference between the medium and air is then:
o

—[??‘ 1]= —[1——]

o+ o+ n (11)

The phase difference compared with the same path in air is:

6 _ e 1

2z (o +v}ﬂﬂ[ ;r}'] (12)

For light traveling different paths and experiencing different Doppler effects, the total phase shift is
given by:

o _ S, _ e [l—l]— Lo 2" __]

2m 2@ (c+w)h (o)A T (13)

In the Fizeau experiment, |; and |, are given by (8). The path lengths |, and |, are respectively given
below, where the factor of two is included because the light travels through two tubes of length |,

and b isthe velocity of light in the reference frame of the liquid.

2{
bty =2l +vt, or Il:b—v
| = by 2ib - 2ib
D pey 2 by (19
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Substituting these values into (13) for each path gives the following results:
@ -¢ o 2 1

1w 2z o) ATYT
Zib_ o ) 1
) @-va ™ty
b-¢ o4 UL )
2 2m (b+v) Z[??_l]—
Z.E.E:'_ o r;[l—l]
G+ R ™ 7 g
gr= 28 _9%
2o 2

2berfl-1n]  2berfl-Yn]
[£-v][c —v]2 [H+v][c+v]A

2inl1 - 1f7]
o [2ve + 2vh]
4 v[1- 1] +1/7] i} Ay - 1 ]

Notice how these results were obtained without invoking "aether" drag, or relativistic velocity
addition.

In the specia relativistic analysis of this experiment, the velocity of light in the moving
liquid as measured in the lab frame is no longer b + v, but is given by the relativistic velocity

addition formula:

b-v  b-v
b= vh v
__2 1__
# ne (17)
As aresult, the path lengths derived in (14) become:
2Bl - — 2B(1 +—
M) EMe)
L b—v i 2 b+y (18)
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The derivation of the total phase shift then becomes:

)
6-0 s w1
27 2z (B-v) AT
2b(1- -
o

& 1
TTev oty

2b(1+ —)
??C

652—435‘_%_—__[ 1]
2z 2z (B+v) AT
IB(1+—
:2 (1+E . T,[l_l]
(A+v) (c+v)d ] (19)
_%% %%
N = ix  2m
_ 3
M[Zvc+2v£}+zﬁ+zv—]m
bed by ne
41y 5 Aty 1
1-1/n][1+1/n+1 & 1-—
oo -yl + 1/ )= — 7 oo

The two results, (16) and (20), differ in the exponent of the last h term. When Michelson
and Morley performed the experiment, they obtained sixty one trias, using three different
combinations of water velocity and tube length. The graph below shows the distribution of these
results, normalized to a tube length of ten meters and a water velocity of one meter per second. The
line marked RCM represents the value obtained from equation (16). The line marked SRT reflects
the value obtained from (20). While there is a distribution of results, owing to experimenta error,
Michelson claimed an overall shift of 0.184 + 0.02 fringe. This is completely consistent with (16),
but eliminates the special relativistic result, with avalue of 0.247, from consideration.

Summary

It is very difficult to find adequate tests between specia relativity and other competing theories.
Most theories overlap with SRT on avast mgjority of the prediction made by each, yet are based on
different underlying physical principles. Ultimately one must find a test that checks not only the
results of the application of the mathematical theory, but also the underlying assumptions. The
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major conceptua difference between SRT and most competing theories is the idea of relative
simultaneity—that distant events that are simultaneous for one observer will not be simultaneous
for and observer in motion relative to the first. The relativistic velocity addition rule is a direct
consequence of relativistic simultaneity, and the Fizeau experiment represents a direct test of the
velocity addition formula. Regardless of what the correct theory is or may be, it is clear that SRT
failsto give predictions consistent with results in this experiment—an experiment performed almost
ten years before the development of SRT.

Four-vectors

Although the use of 4-vectorsis not necessary for afull understanding of Special Relativity,
they are a most powerful and useful tool for attacking many problems. A 4-vectors is just a 4-
tuplet A = (Ao, A 1, A2 A g)that transforms under a Lorentz Transformation in the same way
as (cdt, dx, dy, dz) does. That is:
Ao=Y(A o+ (VIOA )
A1=Y(A 1+ (VIOA o)
A=A
Az=Aj3

Lorentz transformations are very much like rotations in 4-dimensional spacetime. 4-vectors,
then, generalize the concept of rotations in 3-space to rotations in 4-dimensions. Clearly, any
constant  multiple  of (cdt, dx,dy,dz)is a  4-vector, but  something likeA =
(cdt,mdx, dy, dz) (where mis just a constant) is not a 4-vector because the second component has
to transform like mdxaE&aA 1 = y(A ' + (V/C)A ¢)aE&y((mdx’) +vdt') from the definition of a 4-
vector, but also like mdx = my(dx’ + (v/c)dt’) ; these two expression are inconsistent. Thus we can
transform a 4-vector either according to the 4- vector definition given above, or using what we
know about how the dx ; transform to transform each A j independently. There are only a few
specia vectors for which these two methods yield the same result. Several different 4-vectors are
now discussed:

Velocity 4-vector

We can define a quantity T = Vdt? —dr? — dy? — d=% \yhichis called the proper time, and

isinvariant between frames. Dividing out origina 4-vector ( (cdt, dx, dx, dz) ) bydt gives:
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: (
V = dr (cdt, dx, dy, dz) =y \ c, dt, dt, dt

dt
This arisesbecause @ =vy.

Energy-momentum 4-vector

If we multiply the velocity 4-vector by m we get:
P=mV =m(yc,y ¥)= (yme,ymv)= (E/c,p)
Thisis an extremely important 4-vector in Special Relativity.
Relation between momentum and kinetic energy

Sometimes it's desirable to express the kinetic energy of a particle in terms of the momentum.

= K = imy*
That's easy enough. Since v p/m and the kinetic energy :
4
K = im(&) = 2 (1.4)
2 m 2m

Note that if a massive particle and alight particle have the same momentum, the light one will have
alot more kinetic energy. If alight particle and a heavy one have the same velocity, the heavy one
has more kinetic energy.
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SYLLABUS

General theory of Relativity: Introduction — Limitation of specia theory of relativity and
need for arelativity theory in non-inertial frames of reference. Concept of gravitational and
inertial mass and the basic postulate of GTR, gravitation & acceleration and their relation to

non-inertial frames of reference — principle of equivaence of principle of general co-variance
— Minkowski space and Lorentz transformation

General rélativity - Introduction

Prior to the 20™ century all physics theories assumed space and time to be absolutes.
Together they formed a background within which matter moved. The role of a physical theory
was to describe how different kinds of matter would interact with each other and, by doing so,
predict their motions. With the development of special and later genera relativity theory in the
early 20" century, the role of space and time in our theories of physics changed dramatically.
Instead of being a passive background, space and time came to be viewed as dynamic actors in
physics, capable of being changed by the matter within them and in turn changing the way that
matter behaves.

In GR, spacetime becomes curved in response to the effects of matter. | will discuss below
what it means for spacetime to be curved, but just to give aflavor of thisidea |l can note here that
in a curved spacetime the laws of Euclidean geometry no longer hold: the angles of atriangle do
not in general add up to 180, the ratio of the circumference of acircle to its diameter isin general
not p, and so on. This curvature in turn affects the behavior of matter. In Newtonian physics a
particle with nothing pushing or pulling it (no forces acting on it) will move in astraight line. In a
curved spacetime what used to be straight lines are now twisted and bent, and particles with no
forces acting on them are seen to move along curved paths.

Limitations of special theory of relativity
2
y can be expanded into a Taylor series or binomial seriesfor {‘_3 < 1, obtaining:
> ,Zk - 1]1' _q 11.12 3 vt 5 v

n=0k=1

]

and consequently

Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 1/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | MSCPHYSICS ~ COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
= 7—=" COURSE CODE: 17PHP103 UNIT: V (General theory of Relativity) BATCH-2018-2020

KARPAGAM ,

Acae 1 Imv* 5 ma®

o T — i — g g 2 .
E - me o +8 2 +1(:i = +...3

B N 1 muvv N 3 mutv N 5 muv
P=MVTo57 2 T8 a4 T16 &

For velocities much smaller than that of light, one can neglect the terms with ¢ and higher in the

denominator. These formulas then reduce to the standard definitions of Newtoniankinetic
energy and momentum. This is as it should be, for specia relativity must agree with Newtonian

mechanics at low velocities.

Inertial and Gravitational Mass

Mass, from the traditional physics viewpoint, arises from two sources, its inertia and the
gravitational attraction of other masses. This has led in physics to a distinction between inertia
mass and gravitationa mass -- a distinction which can be easily demonstrated in a
simple Experiment. One can be thought of as resistive force to change in motion (speed and/or
direction), while the other stems from an attractive force between masses.
According to Newton's second law of motion (F = ma), the mass of a body can be determined by
measuring the acceleration produced in it by a constant force. (i.e) m = F/a. Intertial mass of a
body is a measure of the ability of a body to oppose the production of acceleration in it by an

external force.

I nertial mass

According to Newton's second law of motion (F = ma), the mass of a body can be determined by
measuring the acceleration produced in it by a constant force. (i.€) m = F/a. Intertial mass of a
body is a measure of the ability of a body to oppose the production of acceleration in it by an
external force.

If a constant force acts on two masses mp and mg and produces
accelerations ay and ag respectively, then, F= maaa = mgag

Ma; MB =3a /8B

The ratio of two masses is independent of the constant force. If the same force is applied on
two different bodies, the inertial mass of the body is more in which the acceleration produced is
less.

If one of the two masses is a standard kilogram, the unknown mass can be determined by
comparing their accelerations.
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According to Newton's law of gravitation, the gravitational force on a body is proportional
to its mass. We can measure the mass of a body by measuring the gravitational force exerted on it
by a massive body like Earth. Gravitational mass is the mass of a body which determines
the magnitude of gravitational pull between the body and the Earth. This is determined with the
help of abeam balance.

If Fa and Fg are the gravitational forces of attraction on the two bodies of masses my and mg due
to the Earth, then

Fa = GmaM /R?

Fg = GmgM /R?

where M is mass of the Earth, R isthe radius of the Earth and G is the gravitational constant.
mas Mg =Fa/Fs

If one of the two masses is a standard kilogram, the unknown mass can be determined by
comparing the gravitational forces.

Gravitation seems a simple concept, wherein two objects with mass are attracted to each other,
dependent upon the inverse square of the distance between them, their respective masses, and a
Gravitational Constant. These masses are attracted to each other is never really addressed, while
the means by which a force connects them -- what physics thinks of as “action-at-a-distance” --
has been under debate since Galileo. Or longer. Thus gravity, while experientialy easy to dea
with -- i.e. no support, one fall down! -- the physicsitself is still in flux. (To add insult to injury,
there is evidence from such a diverse field as Hyperdimensional Physicsto suggest that the

Gravitational Constant... is not a constant, and has changed notably over the eons. Even some
0.06% in the last twenty years or so! It may be just a matter of time before “what goes up...
stays”, i.e. Levitation and/or the worst fears of the Anti-Gravity Defamation League come true.)
Inertia’s case, on the other hand, is even more difficult. Galileo’s attempt was to define
inertia as a property of matter that kept an object in uniform motion, unless acted upon by aforce
external to the object. Sir Isaac Newton formalized this in his Principia, and in his first and
second laws. Hisfirst law is actually a special case of the second, the latter which states that the
acceleration (a) -- change in velocity (speed and direction) is proportional to the force (F) applied
on the object, and that the constant of proportionality is the mass (m). I.e. F = ma. Inertia mass
can thus be viewed as the resistance of an object to being accelerated by an external force. When
there is no force, or when the force ceases, the acceleration is zero, and the object moves in
uniform motion (maintaining the same speed and same direction). Massive objects are

therefore assumed to resist accel eration because such resistance is an innate property of matter.
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Postulates of a general theory

The general theory is based on a seemingly common observation about gravity and accelerations.
The two postulates of Einstein's general theory of relativity are:
= All the laws of nature have the same form for observers in any frame of reference, whether
accelerated or not.
= In the vicinity of any point, a gravitationa field is equivalent to an accelerated frame of
reference in the absence of gravitational effects. This is the principle of equivalence, which
forms the basis of the general theory of relativity.
Mass have seemingly different properties. a gravitationa attraction and an inertial property that
resists acceleration. To designate these two attributes, we use the subscripts g and i and write:
Gravitational property Fg=mgg

> F=mya

The second postulate implies that gravitationa mass and inertiadl mass are completely

Inertial property

equivalent, not just proportional .
Gravitation and acceleration

It is easy to verify that, if air resistence is negligable, all objects accelerate towards the
earth at the same rate. This mystery, first verified experimentally by Galileo, is at least partially
explained by Newton's law of gravity. The ""reason" is that the gravitational force on an object is
proportional to its inertial mass. According to Newton's second law, in order to calculate the
acceleration of an object caused by gravity, we must take the gravitational force on that object and
divide by the inertial mass. Thus, the inertiadl mass of the object cancels out of the resulting
expression for the acceleration. In fact the acceleration of any object at the Earth's surface is
determined by the distance of the object form the center of the Earth (Rg), Newton's constant (G)
and the mass of the Earth:

GMg
RE

g=
If you put the value of Newton's constant, the radius of the Earth ( 6 x 10° meters) and the
mass of the Earth (6 x 10**kg) into the above expression you will get approximately 9.8m/s?,
which isthe rate at which all objects accelerate downwards at the surface of the Earth.
Although the magnitude of the acceleration due to gravity, g, is the same everywhere on

the Earth's surface, its direction changes depending on where you are. It is a vector that always
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Pole than at the South Pole. This effect is not very relevant to us because the Earth is so big. If we
move from one end of the room to another, or even one end of the city to another, we are only
moving across a very small fraction of the total circumference of the Earth, so the direction of the
gravitational acceleration changes very little. Our notion of ““down™ only changes significantly
when we travel very large distances. However, as we will see later, if you happen to be near a
very massive, but small object, such as a black hole, the fact that gravitational acceleration
changes direction depending on your location becomes very significant indeed: it gives rise to so-
called tidal gravitational forces that can tear a spaceship apart in microseconds.
L orentz transfor mation

In flat space in three dimensions, the distance between two pointsis given by ds where
dsh2 = dx"2 + dy"2 + dx”2
This expression tells us how we measure distances and is called the "metric”. If we can write the
metric in the form above, we say that space if Euclidean (or "flat"). Let's say you want to change
to another coordinate system (X,Y,Z) where you can make the same combination of dX and dY
and dZ and come up with the same distance (this will be useful since distances are invariant in
Newtonian physics)
Then dsh2 = dX”2 + dY/2 + dZ"2
If you calculate the transformations allowed from {x,y,z} to { X,Y,Z} you find that they're the

orthogonal transformations, which just describe rotationsin R*3.

Now suppose you're not interested in keeping how you measure distances constant, but you want

the speed of light, c, constant. Then it's not difficult to show that you want a system of coordinates

inwhich
ds"2 = -cM dt"2 + dx2 + dy*2 + dz*2 =0
and

ds'2 = -cMt dt"2 + dx"2 + dy”2 + dz"2 is a constant between two events.

This describes a space (space-time really) which is obvioudly different from Euclidean space, and
we call the space-time Minkowski space-time. So Minkowski space-time is a space-time where
we can set up coordinates (t,X,y,z) so that light travels along lines where

-CN2 dt"2 + dx"2 + dy*2 + dz*2 = 0.

Now you can ask yourself, if | have a set of coordinates {t,x,y,z}, what transformations am |
allowed from {t,x,y,z} to{T,X,Y,Z} that keep the form of the Minkowski metric. Those
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So Lorentz transformations describe how we can change coordinates systems between two inertial
frames
Minkowski Diagrams

A Minkowski diagram or spacetime diagram is a convenient way of graphicaly
representing the lorentz transformations between frames as a transformation of coordinates. They
are especially useful for gaining a qualitative understanding of relativistic problems. We make a
spacetime diagram by representing frame F as the coordinate axes x (horizontal) and ct(vertical).
We are ignoring they and z directions, since they are uninteresting. The plot of an object's x -
position versus time on the Minkowski diagram is called its worldline. Notice that light, traveling

one unit of ct for every unit of xwill follow thelinex = ct , inclined at a45 °angle.

Ix'ct'} = (0,1)
(x.cth = lyv/c.yY)
(1,0}
(yyvic)

Figure %: Minkowski or spacetime diagram.

What do the axes of F', moving with velocity v dong thex -axis of Flook like? Take the
point (X', ct) = (0, 1) . From the lorentz transformations we can find that this point transforms
to(x,ct) = (yv/c,y). As shown in the angle between thect andctaxes is given

by: tanf 1 =x/ct =v/c. Actudly, thect axis is just the worldline of the origin of F. The
point (x, ct) = (yv/c,y) is a distance V7 + gamma®v?/e? - y V1 +22/¢? from the origin, so
the ratio of units on the ct' axis to those on the ct axisisjust thisvalue, namely:

1422/
! 1-12/&

ct =
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is an equal angle from the x -axis and that the ratio of units I?‘is also equal (see ). Thus, the
faster F' relative to F , the more its coordinates are squished towards the x = ct line.

The advantage of a Minkowski diagram is that the same worldline applies to both sets of
coordinate axes (that is, to x and ct, aswell asto x' and ct'). The Lorentz transformation is made
by changing the coordinate system underneath the worldline rather than the worldline itself. In
many situations this allows us to visualize the perspectives of the different observers more easily.
If we had a very detailed and accurate Minkowski diagram we could use it to read off the values
for Ax , Act, Ax’, and Act’ . To find the spacetime coordinates of an event in F, one can read the
value off thex andctaxes; to find the coordinates in a moving frame the x' and ct' axes
corresponding to the appropriate velocity can be constructed (using the angle formulas explained

above), and the value read off using the units derived for x' and ct', above.
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S.No | Questions Option A Option B Option C Option D Answer
The mass of 70 kg man
moving in car at 66kmh
1]is 70 kg 100 kg infinite zero 70 kg
non-
Special theory of non-inertial accelerated accelerated
relativity treats inertial frame | frame of frame of frame of inertial frame
2 | problems involving of reference reference reference reference of reference
According to specid
theory of relativity
which oneisnot an
3 | absolute quantity time mass height bothaand b bothaand b
Conversion of solar
energy into
carbohydrates and
starch by leaf of aplant | energy into massin to momentum velocity into energy into
4 | isan example for mass energy into velocity momentum mass
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iIsaninertia Cannot bean | Cannot be an
frame because | inertial frame | inertia frame
Newton’s because the because the
isaninertial laws are earth is earthisrotating | isaninertial
A reference frame frame by applicablein | revolving about its own frame by
attached to the earth: definition the frame round thesun | axis. definition
Two photons approach
each other, their
relative velocity will be | ¢/2 Zexo c/8 C C
May be
accelerated,
Moving with decelerated or Moving with
uniform moving with uniform
velocity or at | constant velocity or at
Aninertial frameis Accelerated decelarated rest. velocity rest.
All the inertial frames
are equivalent” this
statement iscalled the | relative relative
principle of ----------- motion equivalence inertia Correspondence. | motion
According to relativity, may be more or
the length of arod in iSssameasits | ismore than islessthanits | lessthan or islessthanits
motion: rest length itsrest length | rest length equal to rest rest length
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length
depending on
the speed of rod.
If v =c, thelength of a equal to less than more than
10 | rod in motioniis: zero proper length | proper length | proper length. zero
speed of light speed of light
According to special speed of light | issameinal issamein all
11 | theory of relativity: isrelative inertial frames | timeisrelative | massisrelative | inertia frames
Jamestravels Alpha
to Alpha AlphaCentauri | Centauri
James travels at high thetriptakes | Centauri over | clockson travelsto James | travelsto
speed from the Earthto | more time alength that is | Earth and on over alength James over a
the star Alpha Centauri, | than it doesin | shorter than Alpha Centauri | that is shorter length that is
four light yearsaway. | the Earth’s four light are than four light shorter than
12 | In James’s frame frame. years. synchronized. | years. four light
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years.
Relativity mechanicsis
applicable for a particle
which ismoving with a | Greater than Lessthan that | Comparableto | equal to velocity | Comparable
13 | velocitya that of light of light that of light of light to that of light
The state of
motion of the
observer as
well as upon
Thereativistic the quality The state of The quantity The quantity
measurement depends | that isbeing motion of the | that isbeing that is being
14 | upona measured. observer only | measured absolute motion | measured
A framewhichis
moving with zero Non-inertial decelerated
15 | acceleration is called frame Inertial frame | rest frame frame Inertial frame
When we specific the
place of occurrence of
a phenomenon as well
as the time of
occurrenceit is
16 | considered as apoint an event an incident an accident an event
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Under Under
Newton’s law’s remain | Galilean under lorentz | cartesean new Gdlilean

17 | unchanged or invariant | transformation | transformation | transformation | transformation | transformation

The laws of mechanics
in al initial frame of
18 | reference are same different none variable same

The acceleration of a
particle under Galilean

19 | transformation is invariant non-variant none variable invariant
The mass energy
relation was proposed

20 | by Newton Einstein Kepler Michelson Einstein
The Lorentz

transformation will
converted to Galilean
transformation when
the relative velocity v
between two inertial
frames will satisfy the
21 | condition V>>C V=C v<<C v=0 v<<C
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the length of an object
ismaximumin a
reference framein neither rest nor
22 | whichitis at rest in motion in motion varying speed at rest
appearsto be | appearsto be appearsto be
shortened lengthened shortened
the length of arod in whenitat rest | whenitisat when it at rest
uniform motion relative | w.r.t. to the rest w.r.t. to equal to w.r.t. to the
23 | to an observer observer the observer aboslute length | invariant length | observer
Thetimeinterval
between two event in a
reference in areference
framewhichisin
24 | motion is Maximum minimum zero varying speed Maximum
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Runs slower Runs slower
thana Runsthan a than a
stationary stationary neither slow stationary
25 | A moving clock identical clock | identical clock | nor fast very fast identical clock
If the velocity of a
moving particleis
comparable to velocity Smaller than
of light thenthemass | Greater than | whenitisat Greater than
26 | of themoving objectis | whenitisrest | rest Equal very smaller when it isrest
Energy Mass All the above All the above
Einistein’s mass disappearsto | disappears to | statements are statements are
energy eguation reappear as reappear as correct except | nothing canbe | correct except
27 | E=mc2 implies that mass energy d done d
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How fast aparticle
must travel so that its
mass becomes twice its

28 | rest mass? 05c 2cC 0.866 c 0.9c

0.866 c

Relative velocity of
two particles moving
with velocity of light of
light in opposite
directionis 0 3c

29 2c (o

For a photon particle
which ismoving with a
velocity of light, the
30

rest massis 0 1 2 3

Thefictitious force,
which acts on particle
in motion relativeto a
rotating frame of
referenceiscalled

Newtonian

31 Coriolisforce | force Pseudo force centripetal force

Coriolisforce

If the particleisat rest
relative to the rotating
frame of reference the

32 | coriolisforceis 0 1

10 2
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When the particleis at
anon-rotating of
reference the Coriolis
33 | force 2 3 0
The Coriolis
acceleration on afreely
falling body under the | Directed Directed Directed
action of gravitational | towardsthe towards the directed directed towards | towards the
34 | forceis east west towards north | south east
According to theory of
relative mass of an dependson speed of volume of speed of
35 | object is particles. light. object. areaof object. | light.
Radiation with energy
that is easily detected
36 | as quanta lev. 1keV. 1 MeV. .10-10 eV. 1 MeV.
If the kinetic energy of
a body becomes four
timesitsinitial value, Three times Four times
the new momentum theinitia theinitia Two times the Two times the
37 | will be value value initial value unchanged initial value
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All
velocities:
Non- . All velocities: relativistic &
Lorentz transformation | relativistic Relativistic relativistic & non-
38 | equations hold for velocitiesonly | velocitiesonly | non-relativistic | Photons only relativistic
If the kinetic energy of
a body becomes four
timesitsinitia value, Threetimes . Two times
the new momentum theinitia Four timesthe | theinitial Two timesthe
39 | will be value initial value value unchanged initial value
If the radius of the
earth were to shrink, its
mass remaining the
same, the value of
acceleration dueto Increase and Decrease and
gravity at the poleand | decrease increase Increase at Decrease at Increase at
40 | at the equator will respectively respectively both places both places both places
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What do we mean by
the straightest possible | apath that apath that
path between two actually isa follows a apath that the shortest path | the shortest
points on Earth's perfectly circle of followsacircle | between thetwo | path between
41 | surface? straight line longitude of latitude points the two points
Timeruns Different
dightly Different observers can
Which of thefollowing | slower on the The curvature | observers can disagree about
statementsisnot a surface of the | The Universe | of spacetime disagree about | the
prediction of the Sun than on has no can distort the | thefundamental | fundamental
genera theory of the surface of | boundaries appearance of | structure of structure of
42 | relativity? Earth. and no center. | distant objects. | spacetime. spacetime.
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T
All observers
must always The effects of
The effects of | measure the relativity are The effects of
gravity are same exactly gravity are
Gravity isthe | exactly (equivalent) equivaent to exactly
What does the samethingas | equivalentto | weightsfor those predicted | equivalent to
equivaenceprinciple | curvature of the effectsof | moving by Newton's the effects of
43 | say? Spacetime. acceleration. | objects. laws of motion. | acceleration.
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Each of the following | If you observe
isaprediction of the someone
theory of relativity. moving by Timeruns
Which oneiscrucia to | you, you'll see slower on the
understanding how the | their time Gravity is surface of the
Sun provideslight and | running curvature of Sun than on
44 | heat to Earth? slowly. spacetime. E =mc2 Earth. E =mc2
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Timeis Timeruns Timeruns
stopped by slower in Timeisstopped | slowerin
According to genera Timeisnot any stronger by any stronger
relativity, how istime | affected by gravitational gravitational gravitational gravitational
45 | affected by gravity? gravity. field. fields. field. fields.
aplace where
light travels
According to general anobjectthat | aholeinthe | aplacewhere | faster thanthe aholeinthe
relativity, ablack hole | cannot be observable thereisno normal speed of | observable
46 | IS seen. universe gravity. light universe
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Earthis Earthis Earthis
following the | following the following the
straightest straightest straightest
path possible, | path possible, path possible,
but spacetime | but spacetime | The The mysterious | but spacetime
iscurved in iscurvedin mysterious force that we iscurvedin
such away such away forcethat we | call such away
According to genera that thispath | that thispath | call gravity centripetalforce | that this path
relativity, why does goes around goes around holds Earthin | holds Earthiin goes around
47 | Earth orbit the Sun? the Sun the Sun orbit. orbit. the Sun
If you draw a
spacetime diagram, the
worldline of an object
48 | that is accelerating vertical. curved. horizontal. slanted. curved.
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away fromyou is
If you draw a
spacetime diagram, the
worldline of an object
that istraveling by you
49 | at constant speed is vertical. curved. horizontal. danted. slanted.
If you draw a
spacetime diagram, the
worldline of an object
that is stationary in
50 | your reference frameis | vertical. curved. horizontal. slanted. vertical.
the number of the number of
independent independent
directionsin | theletter used directionsin
What do we mean by which to represent which
dimension in the thesizeof an | movementis | length the height of an | movement is
51 | context of relativity? object possible mathematically | object possible
Prepared by Dr.A.Saranya, Asst Prof, Department of Physics, KAHE Page 16/20




CLASS: | MSC PHYSICS

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY

%;’::—-f/ COURSE CODE: 17PHP103 UNIT: | (CONSERVATION LAWS) BATCH-2018-2020
KARPAGAM
ACADEMY OF HIGHER EDUCATION
Suppose you claim that
you are feeling the Sheis
effectsof a weightless Sheis If youareina
gravitational field. because sheis | weightless Sheis gravitational Sheis
How can you explain moving at because sheis | weightless field, then she weightless
thefact that Al is constant inafreefloat | becausesheis | cannot be because sheis
52 | weightless? velocity. frame. in free-fall. weightless in free-fall.
physics for
accelerated physics for
and nonmoving and
Einstein's Theory of gravity and the speed of nonaccelerated | moving frames | gravity and
Genera Relativity acceleration lightis framesarenot | are not the acceleration
53 | states that are equivalent. | constant. the same. same. are equivalent.
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light moves
massive massive randomly massive
Einstein said that objectswarp | objectsattract | throughout the | of the existence | objectswarp
54 | gravity exists because | space. one another. universe of black holes. | space
According to Einstein,
what is considered the | horizontal curled
55 | fourth dimension? dimension dimension me dimension | space dimension | me dimension
Einstein's famous massis energy and energy and the | mass and the energy and
eguation E = mc2 states | always greater | mass are speed of light | speed of light mass are
56 | that than energy. equivalent. are equivalent. | are equivalent. equivalent.
A personisriding a
moped that istraveling 3.00 x 3.00 x 108 m/s
57 | a 20.0 m/s. What isthe | 20.0 m/s 108 m/s 24.0m/s +20.0m/s 24.0 m/s
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speed of aball if the
moped rider throws a
ball forward at 4.00
m/s while riding the
moped?

A beam of light travels
at 3.00 x 108 m/s. If a

moped moving at 20.0

m/sturnson its

headlight, how fast 3.00 x 3.00x 108 m/s | 3.00 x 108 m/s | 3.00 x
58 | doesthelight travel? 20.0 m/s 108 m/s +20.0 m/s —20.0m/s 108 m/s
is constant is constant
regardlessof | canincreaseif randomly regardless of
Einstein's Second the speed of the speed of can decreaseif | changes the speed of
Postul ate of Special the observer the light the speed of depending upon | the observer
Relativity states that or thelight source the observer itsoriginal light | or thelight
59 | the speed of light source. INCreases. decreases. source. source.
A particular task
requires 3.46 J of
energy. Using E=mc2, | 3.11 x 3.84 x 10~ 3.84 x 10~
60 | how much massis 1017 kg 17 kg 3.46 x 10-8kg | 1.15x 10-8kg | ** kg
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needed to accomplish
this task?

Mass of 700 N man
moving in car at 66

61 | kmh'is 70 kg. 100K g 10Kg 70 kg.
non-
Special theory of non-inertial accelerated accelerated
relativity treats inertial frame | frame of frame of frame of inertial frame
62 | problemsinvolving of reference. | reference. reference. reference. of reference.
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