

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Coimbatore - 641021.
(For the candidates admitted from 2018 onwards)

SUBJECT: ELECTRONIC DEVICES AND CIRCUITS

SEMESTER: I SUBJECT CODE: 18PHP102

CLASS: I M.Sc.PHYSICS

Scope: This paper contains details of basic electronic components, their characteristics and applications in the construction of different electronic instruments. Other than ordinary transistors and diodes special devices are also explained.

Objectives: To give an idea about the basics of electronics and electronic devices, which is very important for knowing the basics of any modern instrument.

UNIT-I

Electronic Devices: Transistor Biasing and Stabilization with design problems, h-parameters and their applications in transistor circuit analysis for CE, CB and CC configurations; FET and MOSFETs: Characteristics and Biasing, Design of biasing circuits, Design and analysis of amplifiers, SCR, UJT, DIAC, TRIAC (construction & working).

UNIT-II

Analog Devices: Frequency response of amplifiers General concepts; bode plot; low frequency response: BJT and FET amplifiers; miller effect capacitance; high frequency response of BIT amplifiers; hybrid pie model: short circuit current gain, cut off frequency, and current gain with resistive load; high frequency response of FET amplifiers; frequency response of multistage amplifiers; square wave testing, Numerical problems.

UNIT-III

Analog Circuits: Analysis of compound configurations Cascade connection; Cascade connection; Darlington connection; Bootstrapping principle; Bootstrapped Emitter Follower; Bootstrapped Darlington Emitter Follower; Feedback pair; . CMOS circuits; Current source circuits; Current mirror circuits; Differential amplifier circuits; Numerical problems.

UNIT-IV

Power Amplifiers: Introduction, Series-fed Class A amplifier, Transformer coupled class A amplifier, Class B amplifier operation, Class B amplifier distortion, Power transistor heat sinking, Class C and Class D amplifiers, Numerical problems.

UNIT-V

Network Theory: mesh and node analysis Kirchhoff's voltage and current law, Network Theorems- Thevein's theorem, Norton's theorem, Superposition Theorem, Maximum power transfer theorem, Problems based on network theorems

Suggested Readings

- 1. Boyle L. stad and Louis Nashelsky, 10th edition, 2013, Electronic devices and circuit theory, Prentice-Hall of India, Delhi.
- 2. Millman and Halkias, 48th reprint, 2008, Integrated electronics, Tata McGraw-Hill, New Delhi.
- 3. Malvino A.P., Electronics Principles, 10th edition, 2013, Tata McGraw Hill, New Delhi
- 4. Mottershed, 1st edition, 2002, Electronic devices and circuits: An introduction, Prentice-HallofIndia, New Delhi.
- 5. M. S. Ghausi1st edition, 2013, Electronic devices and circuits, CBS.
- 6. Donald L. Schilling, Charles Belove, 3rd edition, 2009, Electronic circuits discrete and integrated, Tata McGraw-Hill, New Delhi.
- 7. Millman and Grabel, 2nd edition, 2001, Microelectronics; Tata McGraw-Hill, New Delhi.
- 8. T.F. Bogart and J.S. beasely and G. Rico, 5th edition, 2000, Electronic devices and circuits, Prentice hall; New Delhi.Hall of India.
- 9. A.Nagoor Kani, 1st edition, 2014, Circuit theory, RBA publications.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

SYLLABUS

Electronic Devices: Transistor Biasing and Stabilization with design problems, h-parameters and their applications in transistor circuit analysis for CE, CB and CC configurations; FET and MOSFETs: Characteristics and Biasing, Design of biasing circuits, Design and analysis of amplifiers, SCR, UJT, DIAC, TRIAC (construction & working).

TRANSISTOR BIASING

The proper flow of zero signal collector current and the maintenance of proper collector emitter voltage during the passage of signal is known as Transistor Biasing. The circuit which provides transistor biasing is called as Biasing Circuit.

Need for DC biasing

If a signal of very small voltage is given to the input of BJT, it cannot be amplified. Because, for a BJT, to amplify a signal, two conditions have to be met.

- The input voltage should exceed cut-in voltage for the transistor to be ON.
- The BJT should be in the active region, to be operated as an amplifier.

If appropriate DC voltages and currents are given through BJT by external sources, so that BJT operates in active region and superimpose the AC signals to be amplified, then this

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

problem can be avoided. The given DC voltage and currents are so chosen that the transistor

remains in active region for entire input AC cycle. Hence DC biasing is needed.

For a transistor to be operated as a faithful amplifier, the operating point should be stabilized.

Factors affecting the operating point

The main factor that affect the operating point is the temperature. The operating point shifts due

to change in temperature.

As temperature increases, the values of I_{CE} , β , V_{BE} gets affected.

• I_{CBO} gets doubled (for every 10° rise)

• V_{BE} decreases by 2.5mv (for every 1° rise)

So the main problem which affects the operating point is temperature. Hence operating point

should be made independent of the temperature so as to achieve stability. To achieve this,

biasing circuits are introduced.

STABILIZATION

The process of making the operating point independent of temperature changes or variations in

transistor parameters is known as Stabilization.

Once the stabilization is achieved, the values of I_C and V_{CE} become independent of

temperature variations or replacement of transistor. A good biasing circuit helps in the

stabilization of operating point.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

Need for Stabilization

Stabilization of the operating point has to be achieved due to the following reasons.

Temperature dependence of I_C

Individual variations

Thermal runaway

Let us understand these concepts in detail.

Temperature Dependence of I_C

As the expression for collector current I_C is

IC=βIB+ICEOIC=βIB+ICEO

 $=\beta IB+(\beta+1)ICBO=\beta IB+(\beta+1)ICBO$

The collector leakage current I_{CBO} is greatly influenced by temperature variations. To

come out of this, the biasing conditions are set so that zero signal collector current $I_C = 1$ mA.

Therefore, the operating point needs to be stabilized i.e. it is necessary to keep I_C constant.

Individual Variations

As the value of β and the value of V_{BE} are not same for every transistor, whenever a

transistor is replaced, the operating point tends to change. Hence it is necessary to stabilize the

operating point.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

THERMAL RUNAWAY

As the expression for collector current I_C is

IC=βIB+ICEOIC=βIB+ICEO

 $=\beta IB+(\beta+1)ICBO=\beta IB+(\beta+1)ICBO$

The flow of collector current and also the collector leakage current causes heat

dissipation. If the operating point is not stabilized, there occurs a cumulative effect which

increases this heat dissipation. The self-destruction of such an unstabilized transistor is known

as Thermal run away.

In order to avoid thermal runaway and the destruction of transistor, it is necessary to stabilize

the operating point, i.e., to keep I_C constant.

STABILITY FACTOR

To maintain Stability in the output of the transistor, I_C should be kept constant in spite of

variations of I_{CBO} or I_{CO}. The extent to which a biasing circuit is successful in maintaining this

is measured by Stability factor. It denoted by S.

By definition, the rate of change of collector current I_C with respect to the collector leakage

current I_{CO} at constant β and I_B is called Stability factor.

S=dICdICOS=dICdICO at constant I_B and β

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

Hence we can understand that any change in collector leakage current changes the collector current to a great extent. The stability factor should be as low as possible so that the collector current doesn't get affected. S=1 is the ideal value.

The general expression of stability factor for a CE configuration can be obtained as under.

$$IC=\beta IB+(\beta+1)ICOIC=\beta IB+(\beta+1)ICO$$

Differentiating above expression with respect to I_C, we get

$$1=\beta dIBdIC+(\beta+1)dICOdIC1=\beta dIBdIC+(\beta+1)dICOdIC$$

Or

 $1=\beta dIBdIC+(\beta+1)S1=\beta dIBdIC+(\beta+1)S$

Since dICOdIC=1SdICOdIC=1S

Or

$$S=\beta+11-\beta(dIBdIC)S=\beta+11-\beta(dIBdIC)$$

Hence the stability factor S depends on β , I_B and I_C .

HYBRID PARAMETERS

The hybrid parameters are generally used to determine amplifier characteristic parameters such as voltage gain, input and output resistance etc. Usually amplifier characteristic parameters may be determined by using current $gain(\beta)$ and values of other circuit components. But hybrid methods had the following advantages:

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

1. Value of circuit components are easily available, and

2. The procedure followed is quite simple and easy to understand.

H-PARAMETERS OF LINEAR CIRCUIT

Every linear circuit having input and output can be analyzed as two port

networks. In these networks there are four parameters called hybrid or h-parameters.

Out of these four parameters, one is measured in ohm, one in mho and other two are

dimension less. Since these parameters have mixed dimension, so they are called

hybrid parameters.

Consider a linear circuit shown in Figure (a). in this circuit when input voltage 1 is applied,

input current i₁ flows. Then output voltage V₂ and current i₂ appears. Both currents i₁ and i₂ are

assumed to flow inside the box of the linear circuit. Both voltages V₁ and V₂ are assumed to be

positive from the upper to lower terminals.

The linear circuit may be replaced by an equivalent circuit as shown in Figure (a). the

equivalent circuit is called hybrid model of a linear circuit. In such as circuit, the input and

the output voltages and currents (called variables) may be related by the set of the

following two equations:

 $V_1 = h_{11}.i_1 + h_{12}.$

 $V_2 I_2 = h_{21}.i + h_{22}.V_2$

 V_1 = input voltage V_2 = Output voltage I_1 = input current

Enable | Enighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Unifor Section 3 of UGC Act, 1956)

CLASS: I MSc PHYSICS

COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

I₂ = output current

And h₁₁, h₁₂, h₂₁ and h₂₂ are hybrid

parameters

DETERMINATION OF H-PARAMETERS

The parameters h₁₁ and h₂₁ may be determined by short circuiting the output terminals

of a given circuit. On the other hand, h₁₂ and h₂₂ may be determined by open

circuiting the input terminals of the given circuit.

Determination of h₁₁ and h₂₁

These are determined by short circuiting the output terminals of a given circuit as shown in

Figure (b). a shot circuit at the output terminal makes the voltage v2 equal to zero. Input voltage

is given by relation,

 $VI = h_{11}.i_1 + h_{12}.V_2$

Putting the value of V₂ (equal to zero) in the above equation, the input voltage,

 $V_1 = h_{11}.i_1$ or $h_{11}=V_1/i_1$

Thus h_{11} may be determined from the ratio V_1/i_1 . The value of i_1 obtained by applying a voltage

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

at the input and then measuring the value of input current (i₁). Since h₁₁ is the ratio of voltage to

current, therefore it has the units of ohms i.e. the same unit as that of a resistance. Because of

this fact, h₁₁ is called input resistance of the circuit with output short circuited. Similarly, output

current is given by the relation.

$$I_2 = h_{21}.i_1 + h_{22}.V_2$$

Again putting the value of V₂ the output current,

$$I_2 = h_{21}$$
. i1 or $h_{21} = i_2/i_1$

Thus h_{21} may be determined from the ratio i_2/i_1 , the values of i_2 and i_1 may be obtained by

applying a voltage at the input and then measuring the input current (i₁) and output current (i₂).

Since h₂₁ is the ratio of currents, therefore it has no units. The parameter h₂₁ is called the

forward current gain of the circuit with output short circuited.

Determination of h₁₂ and h₂₂

These are determined by open circuiting the input terminals of the given circuit as shown in

Figure (b). an open circuit at the input terminals, makes the current (i₁) equal to zero. We also

know that the input voltage is given by the relation.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

 $V_1 = h_{11}.i_1 + h_{12}.V_2$

Putting the value of i₁ in this equation, the output voltage will be

 $V_1 = h_{12}$. V_2 or $h_{12} = V_1/V_2$

Thus h_{12} may be determined from the ratio V_1/V_2 . The value of V_1 may be obtained by applying a voltage (V₂) and the measuring the input voltage (V₁). Since, h₁₂ is a ratio of voltages, therefore it has no units. As h₁₂ is the ratio of input voltage (V₁) to the output voltage (V_2) , therefore, its value known as the reverse voltage gain.

Similarly, the output current is given by the relation.

 $I_2 = h_{21}.i_1 + h_{22}.V_2$

Again putting the value of i₁ (equal to zero) in this equation. The output currents will be,

 $I_2 = h_{22}$. V_2 or $h_{22} = i_2/V_2$

The h Parameters of a Transistor

Every linear circuit is associated with h parameters. When this linear circuit is terminated by load

r_L, we can find input impedance, current gain, voltage gain, etc. in terms of h parameters.

Fortunately, for small a.c. signals, the transistor behaves as a linear device because the output

a.c. signal is directly proportional to the input a.c. signal. Under such circumstances, the a.c.

operation of the transistor can be described in terms of h parameters. The expressions derived for

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

input impedance, voltage gain etc. in the previous section shall hold good for transistor amplifier

except that here r_L is the a.c. load seen by the transistor.

There are four quantities required to describe the external behavior of the transistor amplifier.

These are v₁, i₁, v₂ and i₂ shown on the diagram of Fig. These voltages and currents can be

related by the following sets of equations:

$$v_1 = h_{11} i_1 + h_{12} v_2$$

$$i_2 = h_{21} i_1 + h_{22} v_2$$

The following points are worth noting while considering the behavior of transistor in terms of h parameters:

(i) For small a.c. signals, a transistor behaves as a linear circuit. Therefore, its a.c. operation can

be described in terms of h parameters.

(ii) The value of h parameters of a transistor will depend upon the transistor connection (i.e. CB,

CE or CC) used. For instance, a transistor used in CB arrangement may have $h_{11} = 20 \Omega$. If we

use the same transistor in CE arrangement, h₁₁ will have a different value. Same is the case with

other h parameters.

(iii) The expressions for input impedance, .

$$r_L = R_C \parallel R_L$$

(iv) The values of h parameters depend upon the operating point. If the operating point is

changed, parameter values are also changed.

CLASS: I MSc PHYSICS

COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

(v) The notations v_1 , i_1 , v_2 and i_2 are used for general circuit analysis. In a transistor amplifier,

we use the notation depending upon the configuration in which transistor is used. Thus for CE

arrangement,

 $v_1 = V_{be}$; $i_1 = I_b$; $v_2 = V_{ce}$; $i_2 = I_c$

Here V_{be} , I_b , V_{ce} and I_c are the R.M.S. values.

The numerical subscript notation for h parameters (viz. h_{11} , h_{21} , h_{12} and h_{22}) is used in general

circuit analysis.

FIELD EFFECT TRANSISTOR

The field-effect transistor (FET) was first patented by Julius Edgar Lilienfeld in 1926 and

by Oskar Heil in 1934. Field-Effect Transistors (FETs) are unipolar devices, and have two big

advantages over bipolar transistors: one is that they have a near-infinite input resistance and thus

offer near-infinite current and power gain

Working Principle

In normal use, the drain terminal is connected to a positive supply and the gate is biased at a

value that is negative (or equal) to the source voltage, thus reverse-biasing the JFET's internal p-

n junction, and accounting for its very high input impedance.

With zero gate bias applied, a current flow from drain to source via a conductive 'channel' in the

n-type bar is formed. When negative gate bias is applied, a high resistance region is formed

within the junction, and reduces the width of the n-type conduction channel and thus reduces the

magnitude of the drain-to-source current. As the gate bias is increased, the 'depletion' region

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

spreads deeper into the n-type channel, until eventually, at some 'pinch-off' voltage value, the

depletion layer becomes so deep that conduction ceases.

Thus, the basic JFET passes maximum current when its gate bias is zero, and its current is

reduced or 'depleted' when the gate bias is increased. It is thus known as a 'depletion-type' n-

channel JFET. A p-channel version of the device can (in principle) be made by simply

transposing the p and n materials.

Types of Field Effect Transistors

Field Effect transistor's are of mainly of two types based on construction features of the device

1. Junction Field Effect Transistor

2. Metal oxide semiconductor Field Effect Transistor.

JFET's are again subdivided into two types based on the type of channel namely p channel JFET

and n- channel JFET. Similarly MOSFET's are divided into two types a) Enhancement mode

MOSFET 2) Depletion mode MOSFET. In Enhancement mode MOSFET channel is induced by

applying gate voltage contrary to the depletion mode MOSFET in which already existing

channel is modulated by applying gate voltage like JFET.

Types of JFET

There are two types of JFET based on the type of channel i.e. based on the majority carrries

flow.

N- channel JFET

CLASS: I MSc PHYSICS

COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

P- channel JFET

The circuit symbol of P channel JFET and N channel JFET is as shown in the figure (a), (b) with

the arrow on gate terminal shows the device polarity. Since JFET is a symmetric device either

ends of N-channel can be used as source or drain. It is useful for the circuit design to show either

of two terminals as source and other as drain. It is achieved here by placing gate terminal close to

source.

N-channel JFET consists of a p+ type semiconductors grown by doping acceptor impurities on

either side of N-type semiconductor as shown in the figure.

Current is allowed to flow through the length of the N-channel between the two p+

semiconductors. FET is a three terminal device with the terminals being source, gate and drain.

Source

It is there terminal where the majority carriers enter in to JFET bar. As for the FET bar concern

this terminal is the source of majority carriers so it is called as source terminal and the current

flow in this terminal is Is.

Drain

This terminal is the end terminal which collects the majority carriers sourced by the source. I.e. it

is draining the majority carriers from FET bar and giving to the output terminal so it is called as

drain terminal and the current in drain is I_d.

Enable | Enighten | Enrich

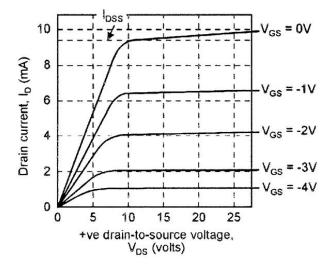
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

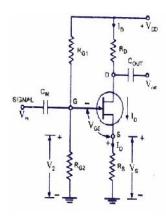

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

Gate

This important control element in FET as it acts like gate to the majority carriers flow. i.e. by operating the gate terminal voltage opening or closing of majority carries can be obtained, so this terminal called Gate terminal and the current in gate is I_g.

Practically FET is manufactured by doping donor impurities in p-type substrate. So along with these three terminals there exists substrate terminal which is often shorted to source. Both terminals of p+ type semiconductor are joined to form gate terminal. Metal contacts are provided for all the three terminals. Electrons flow from source to drain hence the conventional current of positive charge carriers flows from drain to source.

Characteristics


Ttransfer characteristics of an n-channel JFET.

Potential-Divider Biasing.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

A slightly modified form of dc bias is provided by the circuit shown in figure. The resistors R_{Gl} and R_{G2} form a potential divider across drain supply V_{DD} . The voltage V_2 across R_{G2} provides the necessary bias. The additional gate resistor R_{Gl} from gate to supply voltage facilitates in larger adjustment of the dc bias point and permits use of larger valued R_S .

The gate is reverse biased so that $I_G = 0$ and gate voltage

$$V_G = V_2 = (V_{DD}/R_{G1} + R_{G2}) *R_{G2}$$

And

$$V_{GS} = v_G - v_s = V_G - I_D R_s$$

The circuit is so designed that ID Rs is greater than VG so that VGS is negative. This provides correct bias voltage.

The operating point can be determined as

$$I_D = (V_2 - V_{GS})/R_S$$

And

$$V_{DS} = V_{DD} - I_D (R_D + R_S)$$

MOSFET

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a

semiconductor device which is widely used for switching and amplifying electronic signals in

the electronic devices. The MOSFET is a core of integrated circuit and it can be designed and

fabricated in a single chip because of these very small sizes. The MOSFET is a four terminal

device with source(S), gate (G), drain (D) and body (B) terminals. The body of the MOSFET is

frequently connected to the source terminal so making it a three terminal device like field effect

transistor. The MOSFET is very far the most common transistor and can be used in both analog

and digital circuits.

The MOSFET works by electronically varying the width of a channel along which charge

carriers flow (electrons or holes). The charge carriers enter the channel at source and exit via the

drain. The width of the channel is controlled by the voltage on an electrode is called gate which

is located between source and drain. It is insulated from the channel near an extremely thin layer

of metal oxide. The MOS capacity present in the device is the main part.

The MOSFET can function in two ways

1. Depletion Mode

2. Enhancement Mode

Depletion Mode: When there is no voltage on the gate, the channel shows its maximum

conductance. As the voltage on the gate is either positive or negative, the channel conductivity

decreases.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

Enhancement mode: When there is no voltage on the gate the device does not conduct. More is

the voltage on the gate, the better the device can conduct.

Working Principle of MOSFET:

The aim of the MOSFET is to be able to control the voltage and current flow between the source

and drain. It works almost as a switch. The working of MOSFET depends upon the MOS

capacitor. The MOS capacitor is the main part of MOSFET. The semiconductor surface at the

below oxide layer which is located between source and drain terminal. It can be inverted from p-

type to n-type by applying positive or negative gate voltages respectively. When we apply the

positive gate voltage the holes present under the oxide layer with a repulsive force and holes are

pushed downward with the substrate. The depletion region populated by the bound negative

charges which are associated with the acceptor atoms. The electrons reach channel is formed.

The positive voltage also attracts electrons from the n+ source and drain regions into the channel.

Now, if a voltage is applied between the drain and source, the current flows freely between the

source and drain and the gate voltage controls the electrons in the channel. Instead of positive

voltage if we apply negative voltage, a hole channel will be formed under the oxide layer.

P-Channel MOSFET:

The P- Channel MOSFET has a P- Channel region between source and drain. It is a four terminal

device such as gate, drain, source, body. The drain and source are heavily doped p+ region and

the body or substrate is n-type. The flow of current is positively charged holes. When we apply

the negative gate voltage, the electrons present under the oxide layer with are pushed downward

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

into the substrate with a repulsive force. The depletion region populated by the bound positive

charges which are associated with the donor atoms. The negative gate voltage also attracts holes

from p+ source and drain region into the channel region.

N- Channel MOSFET:

The N-Channel MOSFET has a N- channel region between source and drain It is a four terminal

device such as gate, drain, source, body. This type of MOSFET the drain and source are heavily

doped n+ region and the substrate or body is P- type. The current flows due to the negatively

charged electrons. When we apply the positive gate voltage the holes present under the oxide

layer pushed downward into the substrate with a repulsive force. The depletion region is

populated by the bound negative charges which are associated with the acceptor atoms. The

electrons reach channel is formed. The positive voltage also attracts electrons from the n+ source

and drain regions into the channel. Now, if a voltage is applied between the drain and sources the

current flows freely between the source and drain and the gate voltage controls the electrons in

the channel. Instead of positive voltage if we apply negative voltage a hole channel will be

formed under the oxide layer.

It is a multi-layer semiconductor device, hence the "silicon" part of its name. It requires a gate

signal to turn it "ON", the "controlled" part of the name and once "ON" it behaves like a

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

rectifying diode, the "rectifier" part of the name. In fact the circuit symbol for the *thyristor* suggests that this device acts like a controlled rectifying diode.

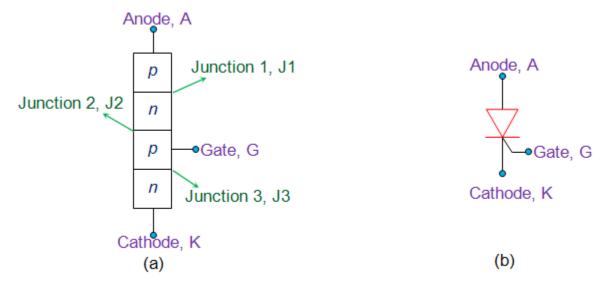


Figure 1 Silicon Controlled Rectifier (a) Layered Structure (b) Symbol

However, unlike the junction diode which is a two layer (P-N) semiconductor device, or the commonly used bipolar transistor which is a three layer (P-N-P, or N-P-N) switching device, the **Thyristor** is a four layer (P-N-P-N) semiconductor device that contains three PN junctions in series, and is represented by the symbol as shown.

Like the diode, the Thyristor is a unidirectional device, that is it will only conduct current in one direction only, but unlike a diode, the thyristor can be made to operate as either an open-circuit switch or as a rectifying diode depending upon how the thyristors gate is triggered. In other words, thyristors can operate only in the switching mode and cannot be used for amplification.

CLASS: I MSc PHYSICS

COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

The thyristor is a three-terminal device labelled: "Anode", "Cathode" and "Gate" and consisting

of three PN junctions which can be switched "ON" and "OFF" at an extremely fast rate, or it can

be switched "ON" for variable lengths of time during half cycles to deliver a selected amount of

power to a load. The operation of the thyristor can be best explained by assuming it to be made

up of two transistors connected back-to-back as a pair of complementary regenerative switches

as shown.

The two transistor equivalent circuit shows that the collector current of the NPN

transistor TR₂ feeds directly into the base of the PNP transistor TR₁, while the collector current

of TR₁ feeds into the base of TR₂. These two inter-connected transistors rely upon each other for

conduction as each transistor gets its base-emitter current from the other's collector-emitter

current. So until one of the transistors is given some base current nothing can happen even if an

Anode-to-Cathode voltage is present.

When the thyristors Anode terminal is negative with respect to the Cathode, the centre N-

P junction is forward biased, but the two outer P-N junctions are reversed biased and it behaves

very much like an ordinary diode. Therefore a thyristor blocks the flow of reverse current until at

some high voltage level the breakdown voltage point of the two outer junctions is exceeded and

the thyristor conducts without the application of a Gate signal.

This is an important negative characteristic of the thyristor, as **Thyristors**can be unintentionally

triggered into conduction by a reverse over-voltage as well as high temperature or a rapidly

rising dv/dt voltage such as a spike.

If the Anode terminal is made positive with respect to the Cathode, the two outer P-N junctions

are now forward biased but the centre N-P junction is reverse biased. Therefore forward current

is also blocked. If a positive current is injected into the base of the NPN transistor TR₂, the

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

resulting collector current flows in the base of transistor TR₁. This in turn causes a collector

current to flow in the PNP transistor, TR₁ which increases the base current of TR₂ and so on.

Very rapidly the two transistors force each other to conduct to saturation as they are connected in

a regenerative feedback loop that can not stop. Once triggered into conduction, the current

flowing through the device between the Anode and the Cathode is limited only by the resistance

of the external circuit as the forward resistance of the device when conducting can be very low at

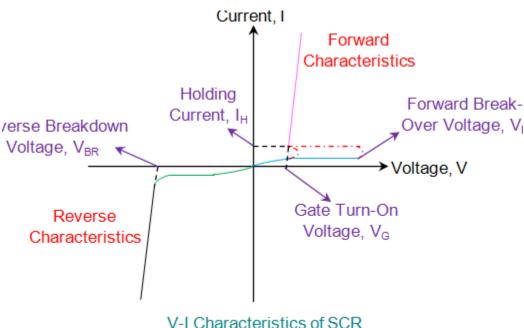
less than 1Ω so the voltage drop across it and power loss is also low.

Then we can see that a thyristor blocks current in both directions of an AC supply in its "OFF"

state and can be turned "ON" and made to act like a normal rectifying diode by the application of

a positive current to the base of transistor, TR2 which for a silicon controlled rectifier is called

the "Gate" terminal.


The operating voltage-current I-V characteristics curves for the operation of a Silicon

Controlled Rectifier are given as:

Thyristor I-V Characteristics Curves

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND **CIRCUITS**

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

Once the thyristor has been turned "ON" and is passing current in the forward direction (anode positive), the gate signal looses all control due to the regenerative latching action of the two internal transistors. The application of any gate signals or pulses after regeneration is initiated will have no effect at all because the thyristor is already conducting and fully-ON.

Unlike the transistor, the SCR can not be biased to stay within some active region along a load line between its blocking and saturation states. The magnitude and duration of the gate "turn-on" pulse has little effect on the operation of the device since conduction is controlled internally. Then applying a momentary gate pulse to the device is enough to cause it to conduct and will remain permanently "ON" even if the gate signal is completely removed.

Therefore the thyristor can also be thought of as a *Bistable Latch* having two stable states "OFF" or "ON". This is because with no gate signal applied, a silicon controlled rectifier blocks current

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

in both directions of an AC waveform, and once it is triggered into conduction, the regenerative

latching action means that it cannot be turned "OFF" again just by using its Gate.

Once the thyristor has self-latched into its "ON" state and passing a current, it can only be turned

"OFF" again by either removing the supply voltage and therefore the Anode (IA) current

completely, or by reducing its Anode to Cathode current by some external means (the opening of

a switch for example) to below a value commonly called the "minimum holding current", IH.

The Anode current must therefore be reduced below this minimum holding level long enough for

the thyristors internally latched pn-junctions to recover their blocking state before a forward

voltage is again applied to the device without it automatically self-conducting. Obviously then

for a thyristor to conduct in the first place, its Anode current, which is also its load

current, I_L must be greater than its holding current value. That is $I_L > I_H$.

Since the thyristor has the ability to turn "OFF" whenever the Anode current is reduced below

this minimum holding value, it follows then that when used on a sinusoidal AC supply the SCR

will automatically turn itself "OFF" at some value near to the cross over point of each half cycle,

and as we now know, will remain "OFF" until the application of the next Gate trigger pulse.

Since an AC sinusoidal voltage continually reverses in polarity from positive to negative on

every half-cycle, this allows the thyristor to turn "OFF" at the 180° zero point of the positive

waveform. This effect is known as "natural commutation" and is a very important characteristic

of the silicon controlled rectifier.

Thyristors used in circuits fed from DC supplies, this natural commutation condition cannot

occur as the DC supply voltage is continuous so some other way to turn "OFF" the thyristor must

be provided at the appropriate time because once triggered it will remain conducting.

However in AC sinusoidal circuits natural commutation occurs every half cycle. Then during the

positive half cycle of an AC sinusoidal waveform, the thyristor is forward biased (anode

CLASS: I MSc PHYSICS

COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

positive) and a can be triggered "ON" using a Gate signal or pulse. During the negative half

cycle, the Anode becomes negative while the Cathode is positive. The thyristor is reverse biased

by this voltage and cannot conduct even if a Gate signal is present.

So by applying a Gate signal at the appropriate time during the positive half of an AC waveform,

the thyristor can be triggered into conduction until the end of the positive half cycle. Thus phase

control (as it is called) can be used to trigger the thyristor at any point along the positive half of

the AC waveform and one of the many uses of a Silicon Controlled Rectifier is in the power

control of AC systems as shown

Static Characteristics of a Thyristor

• Thyristors are semiconductor devices that can operate only in the switching mode.

Thyristor are current operated devices, a small Gate current controls a larger Anode

current.

• Conducts current only when forward biased and triggering current applied to the Gate.

• The thyristor acts like a rectifying diode once it is triggered "ON".

Anode current must be greater than holding current to maintain conduction.

• Blocks current flow when reverse biased, no matter if Gate current is applied.

• Once triggered "ON", will be latched "ON" conducting even when a gate current is no

longer applied providing Anode current is above latching current.

The Unijunction Transistor

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

The Unijunction Transistor or UJT for short, is another solid state three terminal device that

can be used in gate pulse, timing circuits and trigger generator applications to switch and control

either thyristors and triac's for AC power control type applications.

Like diodes, unijunction transistors are constructed from separate P-type and N-type

semiconductor materials forming a single (hence its name Uni-Junction) PN-junction within the

main conducting N-type channel of the device.

Although the *Unijunction Transistor* has the name of a transistor, its switching characteristics are

very different from those of a conventional bipolar or field effect transistor as it can not be used

to amplify a signal but instead is used as a ON-OFF switching transistor. UJT's have

unidirectional conductivity and negative impedance characteristics acting more like a variable

voltage divider during breakdown.

Like N-channel FET's, the UJT consists of a single solid piece of N-type semiconductor material

forming the main current carrying channel with its two outer connections marked as *Base 2* (B₂)

and Base 1 (B₁). The third connection, confusingly marked as the Emitter (E) is located along

the channel. The emitter terminal is represented by an arrow pointing from the P-type emitter to

the N-type base.

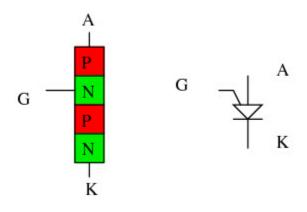
The Emitter rectifying p-n junction of the unijunction transistor is formed by fusing the P-type

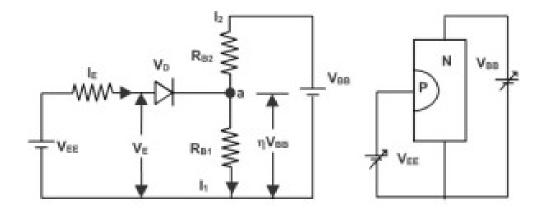
material into the N-type silicon channel. However, P-channel UJT's with an N-type Emitter

terminal are also available but these are little used.

The Emitter junction is positioned along the channel so that it is closer to terminal B₂ than B₁.

An arrow is used in the UJT symbol which points towards the base indicating that the Emitter


terminal is positive and the silicon bar is negative material. Below shows the symbol,


construction, and equivalent circuit of the UJT.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

Notice that the symbol for the unijunction transistor looks very similar to that of the junction

field effect transistor or JFET, except that it has a bent arrow representing the Emitter(E) input.

While similar in respect of their ohmic channels, JFET's and UJT's operate very differently and

should not be confused.

So how does it work? We can see from the equivalent circuit above, that the N-type channel

basically consists of two resistors R_{B2} and R_{B1} in series with an equivalent (ideal)

diode, D representing the p-n junction connected to their center point. This Emitter p-n junction

is fixed in position along the ohmic channel during manufacture and can therefore not be

changed.

Resistance R_{B1} is given between the Emitter, E and terminal B₁, while resistance R_{B2} is given

between the Emitter, E and terminal B₂. As the physical position of the p-n junction is closer to

terminal B₂ than B₁ the resistive value of R_{B2} will be less than R_{B1}.

The total resistance of the silicon bar (its Ohmic resistance) will be dependent upon the

semiconductors actual doping level as well as the physical dimensions of the N-type silicon

channel but can be represented by R_{BB}. If measured with an ohmmeter, this static resistance

would typically measure somewhere between about $4k\Omega$ and $10k\Omega$'s for most common UJT's

such as the 2N1671, 2N2646 or the 2N2647.

These two series resistances produce a voltage divider network between the two base terminals

of the unijunction transistor and since this channel stretches from B₂ to B₁, when a voltage is

applied across the device, the potential at any point along the channel will be in proportion to its

position between terminals B₂ and B₁. The level of the voltage gradient therefore depends upon

the amount of supply voltage.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

When used in a circuit, terminal B₁ is connected to ground and the Emitter serves as the input to

the device. Suppose a voltage V_{BB} is applied across the UJT between B₂ and B₁ so that B₂ is

biased positive relative to B₁. With zero Emitter input applied, the voltage developed

across R_{B1} (the lower resistance) of the resistive voltage divider can be calculated as:

Unijunction Transistor R_{B1} Voltage

For a unijunction transistor, the resistive ratio of R_{B1} to R_{BB} shown above is called the **intrinsic**

stand-off ratio and is given the Greek symbol: η (eta). Typical standard values of η range from

0.5 to 0.8 for most common UJT's.

If a small positive input voltage which is less than the voltage developed across

resistance, R_{B1} (ηV_{BB}) is now applied to the Emitter input terminal, the diode p-n junction is

reverse biased, thus offering a very high impedance and the device does not conduct. The UJT is

switched "OFF" and zero current flows.

the Emitter input voltage is increased and becomes However, when

than V_{RB1} (or $\eta V_{BB} + 0.7V$, where 0.7V equals the p-n junction diode volt drop) the p-n junction

becomes forward biased and the unijunction transistor begins to conduct. The result is that

Emitter current, ηI_E now flows from the Emitter into the Base region.

The effect of the additional Emitter current flowing into the Base reduces the resistive portion of

the channel between the Emitter junction and the B₁terminal. This reduction in the value

of R_{B1} resistance to a very low value means that the Emitter junction becomes even more

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND

CIRCUITS

COURSE CODE: 18PHP102

UNIT: I (Electronic Devices)

BATCH-2018-2020

forward biased resulting in a larger current flow. The effect of this results in a negative resistance

at the Emitter terminal.

Likewise, if the input voltage applied between the Emitter and B₁ terminal decreases to a value

below breakdown, the resistive value of R_{B1} increases to a high value. Then the Unijunction

Transistor can be thought of as a voltage breakdown device.

So we can see that the resistance presented by R_{B1} is variable and is dependant on the value of

Emitter current, I_E. Then forward biasing the Emitter junction with respect to B₁ causes more

current to flow which reduces the resistance between the Emitter, E and B₁.

In other words, the flow of current into the UJT's Emitter causes the resistive value of R_{B1} to

decrease and the voltage drop across it, V_{RB1} must also decrease, allowing more current to flow

producing a negative resistance condition.

DIAC and TRIAC

here are several applications where it is preferred to regulate the power fed to a load. For

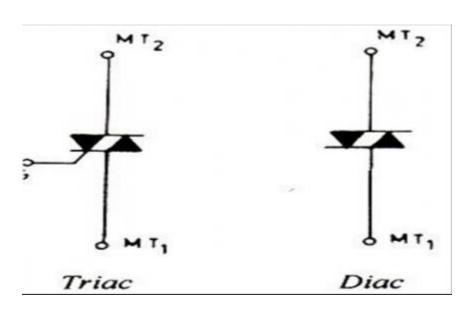
instance: using electrical methods controlling the speed of a motor or fan. But, these methods do

not allow a fine control over the flow of power in a system additionally; there is an extensive

wastage of power. In the present days, such devices have been developed which can allow a fine

control over the flow of large blocks of power in a system. These devices perform as controlled

switches and can complete the duties of controlled rectification, regulation and inversion of

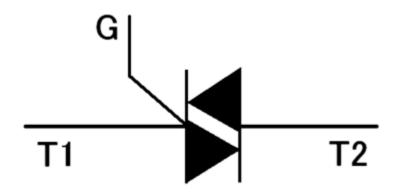

power in a load. The essential semiconductor switching devices are UJT, SCR, DIAC and

TRIAC.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

Difference between Diac and Triac


The differences between diac and triac mainly include what are a diac and triac, construction of triac and diac, working, characteristics and applications

A Triac device comprises of <u>two thyristors</u> that are connected in opposite direction but in parallel but, it is controlled by the same gate. Triac is a 2-dimensional thyristor which is activated on both halves of the i/p AC cycle using + Ve or -Ve gate pulses. The three terminals of the Triac are MT1; MT2 & gate terminal (G). Generating pulses are applied between MT1 and gate terminals. The 'G' current to switch 100A from triac is not more than 50mA or so.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

TRIAC

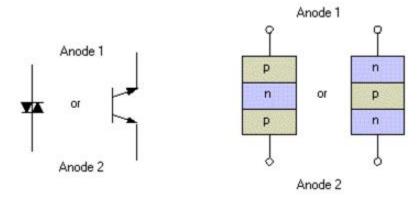
The DIAC is a bi-directional semiconductor switch that can be switched on in both polarities. The full form of the name DIAC is diode alternating current. Diac is connected back to back using two zener diodes and the main application of this DIAC is, it is widely used to help even activating of a TRIAC when used in AC switches, dimmer applications and starter circuits for florescent lamps

DIAC

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

Construction and Operation of DIAC


Basically, the DIAC is a two terminal device; it is a combination of parallel semiconductor layers that allows activating in one direction. This device is used to activating device for the triac. The basic construction of diac consist of two terminals namely MT1 and MT2. When the MT1 terminal is designed +Ve with respect to the terminal MT2, the transmission will take place to the p-n-p-n structure that is another four layer diaode. The diac can be performing for both the direction. Then symbol of the diac look like a transistor.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

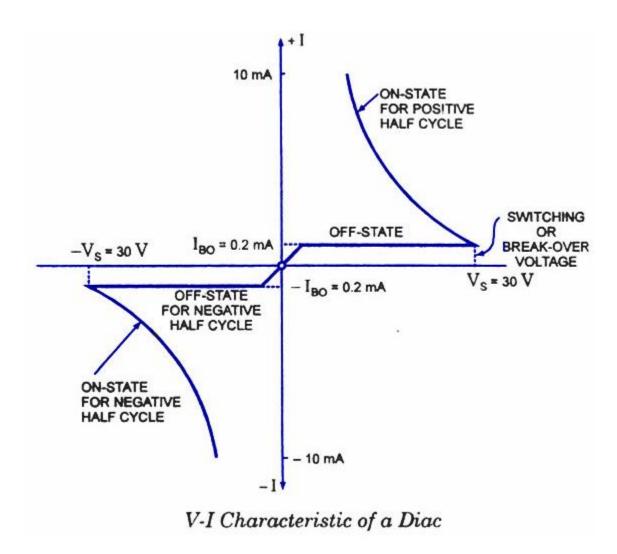
The DIAC is basically a diode that conducts after a 'break-over' voltage, selected VBO, and is exceeded. When the diode surpasses the break-over voltage, then it goes into the negative dynamic resistance of region. This causes in a reduce in the voltage drop across the diode with rising voltage. So there is a quick increase in the current level that is mannered by the device.

The diode leftovers in its transmission state until the current through it falls below, what is termed the holding current, which is usually chosen by the letters IH. The holding current, the DIAC reverts to its non-conducting state. Its behavior is bidirectional and thus its function takes place on both halves of an alternating cycle.

Characteristics of DIAC

V-I characteristics of a diac is shown below

Volt-ampere characteristic of a diac is shown in figure. Its looks like a letter Z due to symmetrical switching characteristics for each polarity of the applied voltage.

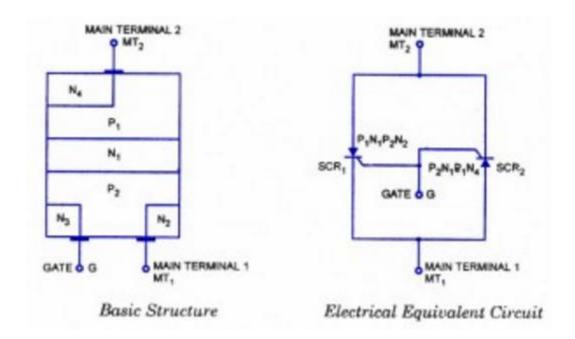

The diac performs like an open-circuit until its switching is exceeded. At that position the diac performs until its current decreases toward zero. Because of its abnormal construction, doesn't switch sharply into a low voltage condition at a low current level like the triac or SCR, once it

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

goes into transmission, the diac preserves an almost continuous –Ve resistance characteristic, that means, voltage reduces with the enlarge in current. This means that, unlike the triac and the SCR, the diac cannot be estimated to maintain a low voltage drop until its current falls below the level of holding current.

Enable | Enlighten | Enrich KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University)


KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

Construction and Operation of TRIAC

Traic is a three terminal device and the terminals of the triac are MT1, MT2 and Gate. Here the gate terminal is the control terminal. The flow of current in the triac is bi directional that means current can flow in both the directions. The structure of triac is shown in the below figure. Here, in the structure of triac, two SCRs are connected in the anti parallel and it will acts like a switch for both the directions. In the above structure, the MT1 and gate terminals are near to each other. When the gate terminal is open, the triac will obstruct the both the polarities of the voltage across the MT1 & MT2.

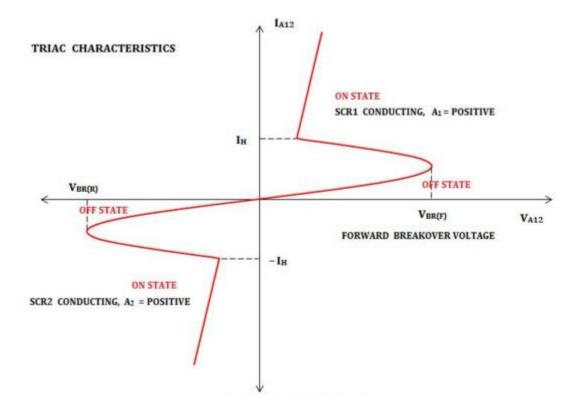
haracteristics of TRIAC

The V-I characteristics of TRIAC are discussed below

KARPAGAM ACADEMYO F HIGHER EDUCATION (Decembed to be University)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS


COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

The triac is designed with two SCRs which are fabricated in the opposite direction in a crystal. Operating characteristics of triac in the 1st and 3rd quadrants are similar but for the direction of flow of current and applied voltage.

The V-I characteristics of triac in the first and third quadrants are basically equal to those of an SCR in the first quadrant.

It can be functioned with either +Ve or -Ve gate control voltage but in typical operation generally the gate voltage is +Ve in first quadrant and -Ve in third quadrant.

The supply voltage of the triac to switch ON depends upon the gate current. This allows utilizing a triac to regulate AC power in a load from zero to full power in a smooth and permanent manner with no loss in the device control.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

POSSIBLE QUESTIONS

PART-B (2 marks)

- 1.define h parameters
- 2. Define stabilization of transistor.
- 3. Define transconductance
- 4. What are the difference between BJT and FET?
- 5. What are the different mode of operation of MOSFET?
- 6. What is enhanced mode of operation?
- 7. What is the need of transistor biasing?
- 8. Define PIV.
- 9. What do you mean by thermal runway?
- 10. What are the difference between MOSFET and FET?

PART-C (6 marks)

- 1. Explain the basic construction and operation of a transistor.
- 2. Explain the basic construction and operation of a SCR
- 3. Explain the basic construction and operation of a UJT
- 4. Explain the basic construction and operation of a DIAC
- 5. Explain the basic construction and operation of a TRIAC
- 6. Define h-parameters of a CE amplifier. How can these parameters be determined from the characteristic curve?

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: I (Electronic Devices) BATCH-2018-2020

- 7. What is the condition for thermal stability? Explain.
- 8. Explain how a MOSFET is used as a load. Obtain the Volt-Ampere characteristic of this load graphically
- 9. List the three sources of instability of collector current. Define the three stability factors.
- 10. Explain r_d , g_m and μ of a FET and how they are determined from the static characteristic?
- 11. Draw a typical common emitter amplifier and explain the function of each component in it.
- 12. Explain, how h-parameter can be obtained from the transistor characteristics.
- 13. Discuss the benefits of h-parameters.
- 14. Explain how a MOSFET is used as a load. Obtain the Volt-Ampere characteristic of this load graphically.
- 15. What specific capacitance has the greatest effect on the high frequency response of a cascade of FET amplifiers? Explain

QUESTIONS	CHOICE1	CHOICE2	CHOICE3	CHOICE4	ANSWER
UNIT I					
A transistor has how many pn junctions?	1	2	3	4	2
In an npn transistor, the majority carriers in the emitter are	free electrons	holes	neither	both	free electrons
The barrier potential across each silicon depletion layer is	0V	0.3V	0.7V	1V	0.7V
The base of an npn transistor is thin and	Heavily doped	Lightly doped	Metallic	Doped by a pentavalent material	Lightly doped
The emitter of a transistor is generally doped the heaviest because it	has to dissipate maximum power	has to supply the charge carriers	is the first region of the transistor	must possess low resistance	has to dissipate maximum power
When a transistor is fully switched ON, it is said to be	shorted	saturated	open	cut-off	saturated
A FET consists of a	source	drain	gate	all the above	all the above
The extremely high input impedance of a MOSFET is primarily due to the	absence of its channel	negative gate-source voltage	depletion of current carriers	extremely small leakage current of its gate capacitor	extremely small leakage current of its gate capacitor
When a transistor is used as a switch, it is stable in which two distinct regions?	saturation and active	active and cutoff	saturation and cutoff	none of the above	saturation and cutoff

	T	ı	ı	Г	1
	base junction	binary junction	both junction	bipolar junction	bipolar junction
The term BJT is short for	transistor	transistor	transistor	transistor	transistor
What are the two types of bipolar					
junction transistors?	npn and pnp	pnn and nnp	ppn and nnp	pts and stp	npn and pnp
The magnitude of dark current in a phototransistor usually falls in what	A	A	A	A	Δ
range?	mA	mA	nA	pA	nA
Junction Field Effect Transistors (JFET) contain how many diodes?	4	3	2	1	1
When not in use, MOSFET pins are kept at the same potential through the		nonconducti	conductive		conductive
use of:	shipping foil	ve foam	foam	a wrist strap	foam
A MOSFET has how many terminals?	2 or 3	3	4	3 or 4	3 or 4
A very simple bias for a D-MOSFET is called:	self biasing	gate biasing	zero biasing	voltage- divider biasing	zero biasing
Hybrid means	mixed	single	iunique	none of the above	mixed
There are h- parameters of a transistor.	two	form	thus	none of the	four
a transistor.	two	four	three	above	lour
The h- parameter approach gives correct results for	large signals only	small signals only	both small and large signals	none of the above	small signals only
If the operating point changes, the h-parameters of transistor	also change	do not change	may or may not change	none of above	also change
The dc load line on a family of collector characteristic curves of a transistor shows the	saturation region.	cutoff region.	active region.	all of the above	all of the above
A transistor data sheet usually identifies β_{DC} as	h _{re} .	h _{fe} .	I _C .	V _{CE} .	h_{fe}

	Τ	1	1	1	1
When a transistor is used as a switch, it is stable in which two distinct regions?	saturation and active	active and cutoff	saturation and cutoff	none of the above	saturation and cutoff
For a silicon transistor, when a base- emitter junction is forward-biased, it					
has a nominal voltage drop of	0.7 V.	0.3 V.	0.2 V.	V_{CC} .	0.7 V
The value of β_{DC}	is fixed for any particular transistor.	varies with temperature.	varies with $I_{\rm C}$.	varies with temperature and $I_{\rm C}$.	varies with temperature and $I_{\rm C}$.
The town DIT is also at form	base junction	binary junction	both junction	bipolar junction	bipolar junction
The term BJT is short for	transistor.	transistor.	transistor.	transistor.	transistor
A BJT has an I_B of 50 μ A and a β DC of	275 m A	27.5 1	2.75 4	0.275 4	2.75 1
75; I _C is:	375 mA	37.5 mA	3.75 mA	0.375 mA	3.75 mA
A certain transistor has $I_C = 15$ mA and $I_B = 167$ μ A; β_{DC} is:	15	167	0.011	90	90
For normal operation of a pnp BJT, the base must be with respect to the emitter and with respect to the collector.	positive, negative	positive,	negative,	negative,	negative, positive
A transistor amplifier has a voltage gain of 100. If the input voltage is 75 mV, the output voltage is:	1.33 V	7.5 V	13.3 V	15 V	7.5 V
A 35 mV signal is applied to the base of a properly biased transistor with an $r'_e = 8 \Omega$ and $R_C = 1 k\Omega$. The output signal voltage at the collector is:	3.5 V	28.57 V	4.375 V	4.375 mV	4.375 V
What is the order of doping, from heavily to lightly doped, for each region?	base, collector, emitter	emitter, collector, base	emitter, base, collector	collector, emitter, base	emitter, collector, base

What are the two types of bipolar					
junction transistors?	npn and pnp	pnn and nnp	ppn and nnp	pts and stp	npn and pnp
Which of the following is true for an				none of the	
npn or pnp transistor?	$I_{E} = I_{B} + I_{C}$	$I_B = I_C + I_E$	$I_{\rm C} = I_{\rm B} + I_{\rm E}$	above	$I_E = I_B + I_C$
				either β_{DC} or	either β_{DC} or
				h _{FE} , but not	h _{FE} , but not
What is the ratio of I _C to I _B ?	β_{DC}	h _{FE}	α_{DC}	$\alpha_{ m DC}$	$\alpha_{ m DC}$
				either β_{DC} /	either β_{DC} /
		$\beta_{\rm DC}$ / $(\beta_{\rm DC}$ +		$(\beta_{DC} + 1)$ or α_{DC} , but not	$(\beta_{DC} + 1)$ or α_{DC} , but not
What is the ratio of I _C to I _E ?	β_{DC}	1)	$\alpha_{ m DC}$	β_{DC}	β_{DC}
	1,500	-/	S.D.C	PEC	PEC
In what range of voltages is the				6.1	0.5
transistor in the linear region of its operation?	$0 < V_{CE}$	$0.7 < V_{CE} < V_{CE} < V_{CE}$	$V_{\text{CE(max)}} > V_{\text{CE}}$	none of the above	$0.7 < V_{CE} < V_{CE}$
operation:	U < V CE	V _{CE(max)}	V CE	above	V _{CE(max)}
W7 1 DG 210	,		both I _C and	I _C , but not	both I _C and
What does DC vary with?	Ic	°C	°C external	°C	°C
	pens or		opens and		
	shorts		shorts on		
What is (are) common fault(s) in a	internal to	open bias	the circuit	all of the	all of the
BJT-based circuit?	the transistor	resistor(s)	board	above	above
What is (are) general-purpose/small-				all of the	all of the
signal transistors case type(s)?	TO-18	TO-92	TO-39	above	above
The magnitude of dark current in a					
phototransistor usually falls in what	mA	μΑ	nA	pA	nA

range?					
On the drain characteristic curve of a JFET for $V_{GS}=0$, the pinch-off voltage is	below the ohmic area.	between the ohmic area and the constant current area.	between the constant current area and the breakdown region.	above the breakdown region.	between the ohmic area and the constant current area
For a JFET, the value of V_{DS} at which I_D becomes essentially constant is the	pinch-off voltage.	cutoff voltage.	breakdown voltage.	ohmic voltage.	pinch-off voltage
The value of V_{GS} that makes I_D approximately zero is the For a JFET, the change in drain current for a given change in gate-to-source voltage, with the drain-to-source	pinch-off voltage.	cutoff voltage. reverse transconduc	breakdown voltage. forward transconduc	ohmic voltage.	cutoff voltage forward transconduct
Voltage constant, is High input resistance for a JFET is due to	a metal oxide layer.	a large input resistor to the device.	an intrinsic layer.	the gate- source junction being reverse- biased.	the gate- source junction being reverse- biased
A dual-gated MOSFET is	a depletion MOSFET.	an enhancemen t MOSFET.	a VMOSFET.	either a depletion or an enhancement MOSFET.	either a depletion or an enhancement MOSFET

				bipolar	
Which of the following devices has the				junction	
highest input resistance?	diode	JFET	MOSFET	transistor	MOSFET
A self-biased n-channel JFET has a	diode	J1121	MOSITEI	transistor	WOSIEI
$V_D = 6 \text{ V. } V_{GS} = -3 \text{ V. Find the value}$					
of V_{DS} .	-3 V	-6 V	3 V	6 V	_6 V
A JFET data sheet specifies $V_{GS(off)} = -$	3 1	0 1	3 1	0 1	0 1
6 V and $I_{DSS} = 8$ mA. Find the value of				none of the	
I_D when $V_{GS} = -3$ V.	2 mA	4 mA	8 mA	above	2 mA
A JFET data sheet specifies $V_{GS(off)} = -$	2 1111 1	1 1111 1	O IIII I	usove	2 1111 1
10 V and $I_{DSS} = 8$ mA. Find the value					
of I_D when $V_{GS} = -3$ V.	2 mA	1.4 mA	4.8 mA	3.92 mA	3.92 mA
The JFET is always operated with the			all of the	none of the	
gate-source pn junctionbiased.	forward	reverse	above	above	reverse
gate source prijunction orased.	101 ward	Teverse	doove	ubove	Teverse
	ohmic,	pinch-off,	ohmic,		ohmic,
What three areas are the drain	constant-	constant-	constant-		constant-
characteristics of a JFET ($V_{GS} = 0$)	current,	current,	voltage,	none of the	current,
divided into?	breakdown	avalanche	breakdown	above	breakdown
What type(s) of gate-to-source					
voltage(s) can a depletion MOSFET				any of the	any of the
(D-MOSFET) operate with?	zero	positive	negative	above	above
(B WOSI ET) operate with.	2010	positive	negutive	usove	above
				C .1	
The has a physical channel	D MOGETE	E MOGEEE	VACCEE	none of the	D MOGEET
between the drain and source.	D-MOSFET	E-MOSFET	V-MOSFET	above	D-MOSFET
All MOSFETs are subject to damage					
from electrostatic discharge (ESD).	TRUE	FALSE			TRUE
Midmoint higg for a D MOSEET is I					
Midpoint bias for a D-MOSFET is $I_D =$, obtained by setting $V_{GS} = 0$.	1 / 2	1 / 2 /	T		T
. Oblained by selling $v_{GS} = 0$.	I_{DSS} / 2	I_{DSS} / 3.4	I_{DSS}		I_{DSS}

In a self-biased JFET circuit, if $V_D = V_{DD}$ then $ID = $	0	cannot be determined from information above			0
If V_D is less than expected (normal) for a self-biased JFET circuit, then it could be caused by $a(n)$	open R_G .	open gate lead.	FET internally open at gate.	all of the above	all of the above
The resistance of a JFET biased in the ohmic region is controlled by	V _D .	V _{GS} .	V _S .	V _{DS} .	
Prepared By-Ambili Vipin,Assistant Professor,Department of Physics					

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

<u>UNIT-II</u> SYLLABUS

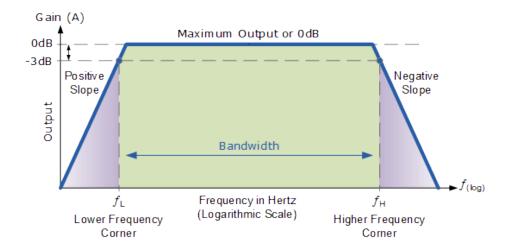
Frequency response of amplifiers General concepts; bode plot; low frequency response: BJT and FET amplifiers; miller effect capacitance; high frequency response of BIT amplifiers; hybrid pie model: short circuit current gain, cut off frequency, and current gain with resistive load; high frequency response of FET amplifiers; frequency response of multistage amplifiers; square wave testing. Numerical problems.

FREQUENCY RESPONSE OF AMPLIFIERS - GENERAL CONCEPTS

Frequency Response of an electric or electronics circuit allows us to see exactly how the output gain (known as the magnitude response) and the phase (known as the phase response) changes at a particular single frequency, or over a whole range of different frequencies from 0Hz, to many thousands of mega-hertz, (MHz) depending upon the design characteristics of the circuit.

Generally, the frequency response analysis of a circuit or system is shown by plotting its gain, that is the size of its output signal to its input signal, Output/Input against a frequency scale over which the circuit or system is expected to operate. Then by knowing the circuits gain, (or loss) at each frequency point helps us to understand how well (or badly) the circuit can distinguish between signals of different frequencies.

The frequency response of a given frequency dependent circuit can be displayed as a graphical sketch of magnitude (gain) against frequency (f). The horizontal frequency axis is usually plotted on a logarithmic scale while the vertical axis representing the voltage output or gain, is usually drawn as a linear scale in decimal divisions. Since a systems gain can be both positive and negative, the y-axis can therefore have both positive and negative values.



CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

Graphical representations of frequency response curves are called Bode Plots and as such Bode plots are generally said to be a semi-logarithmic graphs because one scale (x-axis) is logarithmic and the other (y-axis) is linear (log-lin plot) as shown.

Frequency Response Curve

Frequency response of any given circuit is the variation in its behavior with changes in the input signal frequency as it shows the band of frequencies over which the output (and the gain) remains fairly constant. The range of frequencies either big or small between f_L and f_H is called the circuit's bandwidth. So from this we are able to determine the voltage gain (in dB) for any sinusoidal input within a given frequency range.

As mentioned above, the Bode diagram is a logarithmic presentation of the frequency response. For example most modern audio amplifiers have a flat frequency response as shown above over the whole audio range of frequencies from 20 Hz to 20 kHz. This range of frequencies, for an audio amplifier is called its Bandwidth, (BW) and is primarily determined by the frequency response of the circuit.

Frequency points f_L and f_H relate to the lower corner or cut-off frequency and the upper corner or cut-off frequency points respectively were the circuits gain falls off at high and low frequencies. These points on a frequency response curve are known commonly as the -3dB (decibel) points. So the bandwidth is simply given as:

KARPAGAM
ACADEMYOF HIGHER EDUCATION
(Deemed to be University)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

Bandwidth, $(BW) = f_H - f_L$

The decibel, (dB) which is $1/10^{th}$ of a bel (B), is a common non-linear unit for measuring gain and is defined as $20\log_{10}(A)$ where A is the decimal gain, being plotted on the y-axis. Zero decibels, (0dB) corresponds to a magnitude function of unity giving the maximum output. In other words, 0dB occurs when Vout = Vin as there is no attenuation at this frequency level and is given as:

 $V_{OUT/VIN} = 1$

Therefore

 $20 \log(1) = 0 dB$

From the Bode plot above that at the two corner or cut-off frequency points, the output drops from 0dB to -3dB and continues to fall at a fixed rate. This fall or reduction in gain is known commonly as the roll-off region of the frequency response curve. In all basic single order amplifier and filter circuits this roll-off rate is defined as 20dB/decade, which is an equivalent to a rate of 6dB/octave. These values are multiplied by the order of the circuit.

These -3dB corner frequency points define the frequency at which the output gain is reduced to 70.71% of its maximum value. Then we can correctly say that the -3dB point is also the frequency at which the systems gain has reduced to 0.707 of its maximum value.

Frequency Response -3dB Point

 $-3dB = 20\log_{10}(0.7071)$

The -3dB point is also known as the half-power points since the output power at this corner frequencies will be half that of its maximum 0dB value

$$P = V^2 / R = I^2 xR$$

inlighten | Errich

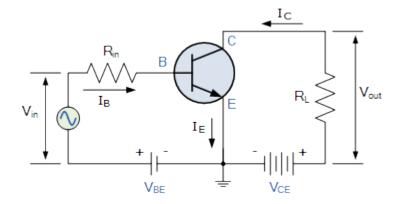
KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

At f_{L or} f_H

V or I =70.71% maximum or 0.7071 max


Therefore the amount of output power delivered to the load is effectively "halved" at the cut-off frequency and as such the bandwidth (BW) of the frequency response curve can also be defined as the range of frequencies between these two half-power points.

While for voltage gain we use $20\log_{10}$ (Av), and for current gain $20\log_{10}$ (Ai), for power gain we use $10\log_{10}(Ap)$. Note that the multiplying factor of 20 does not mean that it is twice as much as 10 as the decibel is a unit of the power ratio and not a measure of the actual power level. Also gain in dB can be either positive or negative with a positive value indicating gain and a negative value attenuation.

BJT AND FET AMPLIFIERS;

An amplifier is one of the most commonly used electronic devices in the world. It's a basic building block of a vast number of circuits, and comes in various forms. Amplifiers can be defined simply as an electronic device that increases the power of a signal. In other words, it increases the amplitude of a signal, and makes it stronger than the given input. An amplifier is an electronic device that increases the voltage, current, or power of a signal.

BJT AMPLIFIERS

Croable | Errighten | Errich |
KARPAGAM |
ACADEMY OF HIGHER EDUCATION |
(Deemed to be University) |
(Established blook service a) of UEF per 1965.)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

In this type of configuration, the current flowing out of the transistor must be equal to the currents flowing into the transistor as the emitter current is given as Ie = Ic + Ib.

As the load resistance (RL) is connected in series with the collector, the current gain of the common emitter transistor configuration is quite large as it is the ratio of Ic/Ib. A transistors current gain is given the Greek symbol of Beta, (β).

As the emitter current for a common emitter configuration is defined as Ie = Ic + Ib, the ratio of Ic/Ie is called Alpha, given the Greek symbol of α . Note: that the value of Alpha will always be less than unity.

Since the electrical relationship between these three currents, Ib, Ic and Ieis determined by the physical construction of the transistor itself, any small change in the base current (Ib), will result in a much larger change in the collector current (Ic).

Then, small changes in current flowing in the base will thus control the current in the emitter-collector circuit. Typically, Beta has a value between 20 and 200 for most general purpose transistors. So if a transistor has a Beta value of say 100, then one electron will flow from the base terminal for every 100 electrons flowing between the emitter-collector terminal.

By combining the expressions for both Alpha, α and Beta, β the mathematical relationship between these parameters and therefore the current gain of the transistor can be given as:

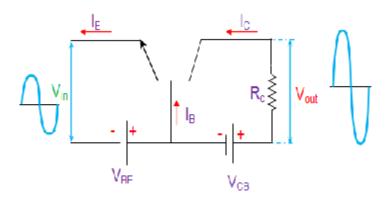
Alpha
$$\alpha = Ic/Ie$$
 and $\beta = Ic/Ib$

Therefore
$$Ic=\alpha.Ie=\beta.Ib$$

As
$$\alpha = \beta/\beta + 1$$

$$B=\alpha/\alpha-1$$

$$I_E = I_C + I_B$$


CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

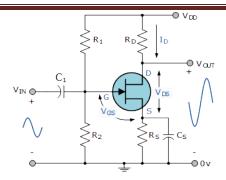
COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

Where: "Ic" is the current flowing into the collector terminal, "Ib" is the current flowing into the base terminal and "Ie" is the current flowing out of the emitter terminal.

This type of bipolar transistor configuration has greater input impedance, current and power gain than that of the common base configuration but its voltage gain is much lower. The common emitter configuration is an inverting amplifier circuit. This means that the resulting output signal is 180° "out-of-phase" with the input voltage signal.

Now consider the npn transistor with the input signal applied between its base and emitter terminals, while the output being collected across the load resistor RC, connected across the collector and the base terminals,

Make sure that the transistor is always operating in its active region by using appropriate voltage supplies, V_{EE} and V_{BC} . Here a small change in the input voltage V_{in} is seen to change the emitter current I_E appreciably as the resistance of the input circuit is low (due to the forward bias condition). This in turn changes the collector current almost in the same range due to the fact that the magnitude of the base current is quite less for the case under consideration. This large change in I_C causes a large voltage drop across the load resistor R_C which is nothing but the output voltage. Hence one gets the amplified version of the input voltage across the output terminals of the device which leads to the conclusion that the circuit acts like a voltage amplifier.


FET AMPLIFIER

KARPAGAM

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

The input signal, (Vin) of the common source JFET amplifier is applied between the Gate terminal and the zero volts rail, (0v). With a constant value of gate voltage Vg applied the JFET operates within its "Ohmic region" acting like a linear resistive device. The drain circuit contains the load resistor, Rd. The output voltage, Vout is developed across this load resistance.

The efficiency of the common source JFET amplifier can be improved by the addition of a resistor, Rs included in the source lead with the same drain current flowing through this resistor. Resistor, Rs is also used to set the JFET amplifiers "Q-point".

When the JFET is switched fully "ON" a voltage drop equal to Rs x Id is developed across this resistor raising the potential of the source terminal above 0v or ground level. This voltage drop across Rs due to the drain current provides the necessary reverse biasing condition across the gate resistor, R2 effectively generating negative feedback.

So in order to keep the gate-source junction reverse biased, the source voltage, Vs needs to be higher than the gate voltage, Vg. This source voltage is therefore given as:

$$V_S=I_D \times R_S = V_G - V_{GS}$$

Then the Drain current, Id is also equal to the Source current, Is as "No Current" enters the Gate terminal and this can be given as:

$$I_{D} = V_{S}/R_{s} = V_{DD}/RD + Rs$$

Enable | Enlighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established bladged scarles a) 40 (LEC) for 1955.)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

This potential divider biasing circuit improves the stability of the common source JFET amplifier circuit when being fed from a single DC supply compared to that of a fixed voltage biasing circuit. Both resistor, Rs and the source by-pass capacitor, Cs serve basically the same function as the emitter resistor and capacitor in the common emitter bipolar transistor amplifier circuit, namely to provide good stability and prevent a reduction in the loss of the voltage gain. However, the price paid for a stabilized quiescent gate voltage is that more of the supply voltage is dropped acrossRs.

Miller Effect Capacitance

The Miller effect was named after John Milton Miller. When Miller published his work in 1920, he was working on vacuum tube triodes, however the same theory applies to more modern devices such as bipolar and MOS transistors.

In electronics, the Miller effect accounts for an increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of capacitance between the input and output terminals. Although Miller effect normally refers to capacitance, any impedance connected between the input and another node exhibiting high gain can modify the amplifier input impedance via the Miller effect.

This increase in input capacitance is given by

$$C_M = C(1 - A_v)$$

where A_V is the gain of the amplifier and C is the feedback capacitance.

The Miller effect is a special case of Miller's theorem.

Derivation

Consider an ideal voltage amplifier of gain A_V with an impedance Z connected between its input and output nodes. The output voltage is therefore $V_0 = A_V V_i$ and the input current is

$$I_i = \frac{V_i - V_o}{Z} = \frac{V_i(1 - A_v)}{Z}.$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

As this current flows through the impedance Z, this equation shows that because of the gain of the amplifier a huge current flows in Z; in effect Z behaves as though it were much smaller than it is. The input impedance of the circuit is

$$Z_{in} = \frac{V_i}{I_i} = \frac{V_i Z}{V_i (1 - A_v)} = \frac{Z}{1 - A_v}.$$

If Z represents a capacitor, then

$$Z = \frac{1}{j\omega C}$$

and the resulting input impedance is

$$Z_{in} = \frac{1}{j\omega C(1 - A_v)} = \frac{1}{j\omega C_M} \quad \text{where} \quad C_M = C(1 - A_v).$$

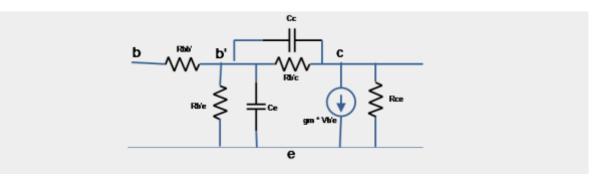
Thus the effective or Miller capacitance C_M is the physical C multiplied by the factor $(1-A_V)$.

HYBRID PIE MODEL:

The low frequency small signal model of bipolar junction transistor holds for frequencies below 1 MHz. For frequencies greater than 1 MHz the response of the transistor will be limited by internal and parasitic capacitances of the bipolar junction transistor. Hence at high frequencies, the low frequency small signal model of transistor has to be modified to include the effects of internal and parasitic capacitance's of bipolar junction transistor. These capacitances limit the usage of BJT at higher frequencies. Thus in order to estimate the gain and switching on and off times of BJT at higher frequencies the high frequency model of BJT has to be used to get reasonably accurate estimates. The high frequency hybrid pi model is also called as Giacoletto model named after L.J.Giacoletto who introduced it in 1969.

High frequency effects on BJT

• The gain decreases at high frequencies due to internal feedback capacitances. The highest frequency of operation of BJT will be limited by internal capacitance's of BJT.


CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

 The on and off switching times of BJT will be high and speed will be limited due to internal charge storage effects.

High frequency model of BJT

The high frequency parameters of BJT may vary with operating point but the variation is negligible for small signal variations around the operating point. Following is the high frequency model of a transistor.

Where

B' = internal node in base

 $R_{bb'}$ = Base spreading resistance

 $R_{b'e}$ = Internal base node to emitter resistance

 R_{ce} = collector to emitter resistance

C_e = Diffusion capacitance of emitter base junction

 $R_{b^{\prime}c}$ = Feedback resistance from internal base node to collector node

 $g_m = Transconductance$

C_C= transition or space charge capacitance of base collector junction.

 \mathbf{R}_{bb} , is the base spreading resistance of BJT which represents the bulk resistance of the material between the base terminal and the physical inaccessible internal node of BJT. Typically it is of the order of 100's of ohms.

 $\mathbf{R}_{b^{\prime}e}$ is the internal base node to emitter resistance. It accounts for the increase recombination base current as emitter current increases. It is in parallel with the collector circuit and hence reduces the collector current value from emitter current. This resistance will be high order of kilo

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

ohms as the decrease in the collector current due to base recombination currents will be very less.

 \mathbf{R}_{b^*c} is the Feedback resistance from internal base node to collector node. It is included in the model to take in to account early effect. As collector to base reverse bias is increased (action) the effective width increases and collector current increases (feedback response). This feedback effect (early effect) is accounted for by R_{b^*c} .

 \mathbf{R}_{ce} represents the bulk resistance of the material between collector to emitter.

 C_e is the Diffusion capacitance of emitter base junction. Diffusion capacitance of emitter base junction is directly proportional to emitter bias current and forward base transit time. Forward transit time is defined as the average time the minority carrier spends in base. The Diffusion capacitance of emitter base junction accounts for the minority charge stored in base and is given as

$$C_e = \tau_F * I_F / V_T$$

where I_E is emitter bias current

 V_T is voltage equivalent of temperature = k*T/e = 26 mV at 27 Deg C

 τ_F is forward base transit time given as $\tau_F = W^2/(2*D_B)$

W is effective base width

 \mathbf{D}_{B} is diffusion constant for minority carriers in base holes in PNP transistor and electrons in NPN transistor.

 C_e is a function of temperature as $D_B = V_T^* \mu$ (μ varies as T^{-m}) is a function of temperature. C_e can be found theoretically from unit gain frequency and Transconductance as follows

$$C_e = g_m/(2*pi*f_T)$$

Unity gain frequency is defined as frequency at which the current gain of transistor reduces to unity. The 3 db higher cutoff frequency of BJT is termed as beta frequency of BJT denoted by f_{β} . The beta frequency and Unity gain frequency are related as

$$f_T = h_{fe} * f_{\beta}$$

KARPAGAM ACADEMYOF HIGHER EDUCATION (Deemed to be University)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

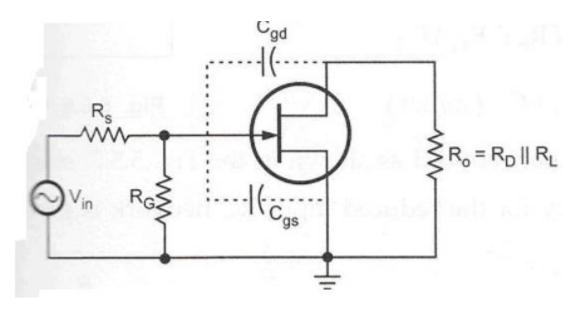
COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

where h_{fe} is current gain of BJT in CE configuration.

 C_C represents the transition or space charge capacitance of base collector junction. The transition capacitance of base collector junction is given as

$$C_j = C_o/(1 + V_{CB}/V_{BV})^n$$

where C_o is the transition capacitance for zero collector to base bias


V_{CB} is collector to base bias

 $V_{\mbox{\footnotesize{BV}}}$ is the built in voltage across base collector junction

n is a constant called as grading coefficient varies form 0.25 to 0.5.

The high frequency hybrid Pi or Giacoletto model of BJT is valid for frequencies less than the unit gain frequency.

High Frequency Response Of Fet Amplifiers

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

From above figure, it shows the high frequency equivalent circuit for the given amplifier circuit. It shows that at high frequencies coupling and bypass capacitors act as short circuits and do not affect the amplifier high frequency response. The equivalent circuit shows internal capacitances which affect the high frequency response.

Using Miller theorem, this high frequency equivalent circuit can be further simplified as follows:

The internal capacitance C_{gd} can be splitted into $C_{in(miller)}$ and $C_{out(miller)}$ as shown in the following figure.

$$C_{\text{in (miller)}} = C_{\text{gd}} (A_{\text{v}} + 1)$$

$$C_{\text{out (miller)}} = C_{\text{gd}} \frac{(A_{\text{v}} + 1)}{(A_{\text{v}})}$$
Where
$$C_{\text{gd}} = C_{\text{rss}}$$

$$C_{\text{gs}} = C_{\text{iss}} - C_{\text{rss}}$$

There is a measurable amount of capacitance between each terminal pair of the FET. These capacitances each have a reactance that decreases as frequency increases. As the reactance of a given terminal capacitance decreases, more and more of the signal at the terminal is bypassed through the capacitance.

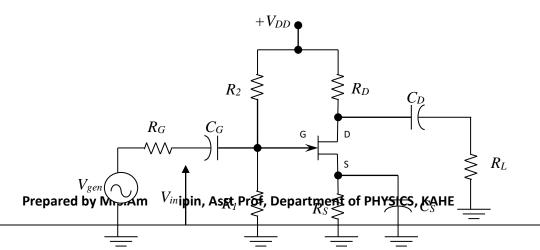
The high cutoff frequencies for the gate and drain circuits are then given by

$$f_{HG} = \frac{1}{2\pi R'_{in}C'_{G}}$$
 and $f_{HD} = \frac{1}{2\pi R'_{L}C'_{D}}$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

where $R'_{in} = R_G \parallel R_{in}$ and $R'_L = R_D \parallel R_L$. At very high frequencies, the effect of C'_G is to reduce the total impedance of the parallel combination of R_1 , R_2 and C'_G in Figure 3(b). The result is a reduced level of voltage across the gate-source terminals. Similarly, for the drain circuit, the capacitive reactance of C'_D will decrease with frequency and consequently reduces the total impedance of the output parallel branches of Figure 3(b). It causes the output voltage to decrease as the reactance becomes smaller.


Low Frequency Response of FET Amplifier

In the low frequency region of a single stage FET amplifier as shown in Figure. It is the RC combinations formed by the network capacitors and the network resistive parameters that determine the cutoff frequency. There are three capacitors – two coupling capacitor C_G and C_D , and one bypass capacitor, C_S . Let us assume that C_G , C_D and C_S are arbitrarily large and can be represented by short-circuit. The total resistance in series with C_G is given by

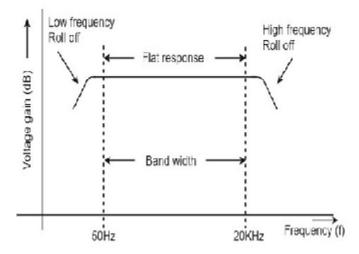
$$R_{CG} = R_G + R_{in}$$

where $R_{in} = R_1 \parallel R_2$ is the input impedance of the amplifier circuit. The power supplied by the signal generator is $P_{in} = V_{gen}^2/(R_G + R_{in})$. However, the reactance X_{CG} of capacitance C_G is not negligible at very low frequencies. The frequency at which P_{in} is cut in half is when $X_{CG} = R_G + R_{in}$. Thus the lower half-power point for gate circuit occurs at frequency

$$f_{LG} = \frac{1}{2\pi R_{CG} C_G} = \frac{1}{2\pi (R_G + R_{in}) C_G}$$

Page 14 of 18

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS


COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

When C_G and C_S are arbitrarily large and can be represented by short-circuit, the drain circuit of the JFET amplifier is as shown in Figure 2(c). At high frequency where C_D can also be represented by a short-circuit, the output power to load resistor R_L is $P_{out} = V_D^2/R_L$. At low frequencies where the reactance X_{CD} of capacitance C_D is not negligible, P_{out} is cut in half when $X_{CD} = R_L$. Thus the lower half-power point for drain circuit occurs at frequency

$$f_{LD} = \frac{1}{2\pi R_L C_D}$$

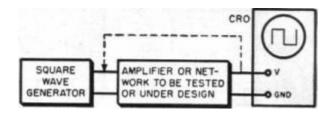
At the half-power point, the output voltage reduces to 0.707 times its midband value. The actual lower cutoff frequency is the higher value between f_{LG} (determined by C_G) and f_{LD} (determined by C_D).

Frequency Response Of Multistage Amplifiers

The voltage gain of an amplifier varies with signal frequency. It is because reactance of the capacitors in the circuit changes with signal frequency and hence affects the output voltage.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020


The curve between voltage gain and signal frequency of an amplifier is known as frequency response. The gain of the amplifier increases as the frequency increases from zero till it becomes maximum at $f\,r$, called resonant frequency. If the frequency of signal increases beyond $f\,r$, the gain decreases. The performance of an amplifier depends to a considerable extent upon its frequency response. While designing an amplifier, appropriate steps must be taken to ensure that gain is essentially uniform over some specified frequency range. For instance, in case of an audio amplifier, which is used to amplify speech or music, it is necessary that all the frequencies in the sound spectrum (i.e. 20 Hz to 20 kHz) should be uniformly amplified otherwise speaker will give a distorted sound output.

Although the gain of an amplifier can be expressed as a number, yet it is of great practical importance to assign it a unit. The unit assigned is below decibel (db). The common logarithm (log to the base 10) of power gain is known as bel power gain i.e.

Power gain = log 10 P out/P in

Square Wave Testing

Square waves are rich in odd numbered harmonics and have a very simple shape that makes it easy to observe frequency response limitations in amplifiers. Amplifiers generally have AC coupled sections that limit the low frequency response and have shunt capacitances either parasitic or intentional that limit high frequency response.

Set-Up for Square Wave Testing

Square-wave signal is applied to the input of an electrical circuit, whether a filter network, amplifier, or other system, and the system does not respond equally well to the fundamental and all higher harmonics, then the output signal obtained will be distorted in a fashion indicative of the response characteristics of the system under test. This is the basis of the square-wave test

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

technique. Square-wave testing provides an extremely rapid method for checking such network characteristics as frequency response, phase shift, transient response, etc. Because of the speed with which the square-wave test technique can be applied and information obtained, this method becomes quite valuable not only as an aid in the production testing and servicing of electronic equipment, but can be applied with equal, if not greater, value to the requirements of the practical design engineer.

POSSIBLE QUESTIONS

PART-B(2 Marks)

- 1. What is the significance of square wave testing?
- 2. Explain miller effect capacitance.
- 3. Define cut off frequency.
- 4. Define current gain.
- 5. Define bandwidth.
- 6. What are the advantages of hybrid pie model?
- 7. Define short circuit current gain.
- **8.** How to plot frequency response for an amplifier?
- 9. What is the application of square wave testing?
- 10. What is the significance of -3dB frequency?

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: II (ANALOG DEVICES) BATCH-2018-2020

PART-C(6 Marks)

- 1. Discuss the frequency response of an amplifier.
- 2. Discuss the effect of emitter bypass capacitor on low frequency response of BJT amplifiers.
- 3. What specific capacitance has the greatest effect on the high frequency response of a cascade of FET amplifiers? Explain.
- 4. Discuss the different methods of coupling of amplifier stages and bring out the relative merits and demerits
- 5. Explain why current gain is not computed in FET amplifiers?
- 6. Explain why the frequency response of amplifiers is plotted on a semilog scale?
- 7. Explain the selection of configuration for multistage amplifier.
- 8. Discuss high frequency response of multistage amplifiers
- 9. Explain the principle of hybrid pie model
- **10.** Explain the miller effect capacitance

Coimbatore - 641021.

(For the candidates admitted from 2018onwards)

DEPARTMENT OF PHYSICS

UNIT II :(Objective Type/Multiple choice Questions each Question carries one Mark)
PART-A (Online Examination)

ELECTRONIC DEVICES AND CIRCUITS

QUESTIONS	CHOICE1	CHOICE2	CHOICE3	CHOICE4	ANSWE R
UNIT-II	CHOICEI	CHOICE2	CHOICES	CHOICE4	K
UNIT-II					
A coupling capacitor is	A dc short	An ac open	A dc open and an ac short	A dc short and an ac open	A dc open and an ac short
In a bypass circuit, the top of a capacitor is	An open	A short	An ac ground	A mechanical ground	An ac ground
The capacitor that produces an ac ground is called a	Bypass capacitor	Coupling capacitor	DC open	AC open	Bypass capacitor
The output voltage of a CE amplifier is	Amplified	Inverted	180° out of phase with the input	All of the above	All of the above
A common-gate amplifier is similar in configuration to which BJT amplifier?	common-emitter	common- collector	common-base	emitter- follower	common- base
A common-source amplifier is similar in configuration to which BJT amplifier?	common-base	common- collector	common-emitter	emitter- follower	common- emitter
An emitter-follower is also known as a	common-emitter amplifier	common-base amplifier	common- collector amplifier	Darlington pair	common- collector amplifier
When transistors are used in digital circuits they usually operate in the	active region	breakdown region	saturation and cutoff regions	linear region	saturation and cutoff regions
Which of the following elements are important in determining the gain of the system in the high-frequency region? For audio systems, the reference	Interelectrode capacitances	Wiring capacitances	Miller effect capacitance	All of the above	All of the above
level is generally accepted as	1 mW	1 W	10 mW	100 mW	1 mW

What is the normalized gain					
expressed in dB for the cutoff frequencies?	_3 dB	+3 dB	_6 dB	−20 dB	−3 dB
Which of the following	-3 ub	+3 UD	-0 ub	-20 ub	-3 UB
configurations does not involve			Common-	All of the	Common-
the Miller effect capacitance?	Common-emitter	Common-base	collector	above	base
the Miner effect capacitance.		Common case	Concetor	usove	ouse
When transistors are used in digital circuits they usually operate in the	Active region	Saturation and cutoff regions	Breakdown region	Linear region	Saturation and cutoff regions
A current ratio of IC/IE is usually less than one and is called	Omega	Beta	Theta	Alpha	Alpha
A transistor may be used as a				Variable	Variable
switching device or as a:	Tuning device	Rectifier	Fixed resistor	resistor	resistor
Most of the electrons in the base of		Into the	Out of the base	Into the base	Into the
an NPN transistor flow:	Into the collector	emitter	lead	supply	collector
The BJT is a device.		Bipolar,		Unipolar,	Bipolar,
The FET is a device.	Bipolar, bipolar	unipolar	Unipolar, bipolar	unipolar	unipolar
The Bode plot is applicable to	All phase network	Minimum phase network	Maximum phase network	Lag lead network	Minimum phase network
For any inverting amplifier, the impedance capacitance will be by a Miller effect capacitance sensitive to the gain of the amplifier and the interelectrode				None of the	
capacitance.	Unaffected	Increased	Decreased	above	Decreased
Which of the following configurations does not involve the Miller effect capacitance?	Common-emitter	Common-base	Common- collector	All of the above	Common- base
For the common-emitter amplifier ac equivalent circuit, all capacitors are	effectively shorts.	effectively open circuits.	not connected to ground.	connected to ground.	effectively shorts
For a common-emitter amplifier, the purpose of the emitter bypass capacitor is	no purpose, since it is shorted out by R _E .	to reduce noise.	to despike the supply voltage.	to maximize amplifier gain.	to maximize amplifier gain
For a common-emitter amplifier, the purpose of swamping is	to minimize gain.	to reduce the effects of r'e	to maximize gain.	no purpose.	to reduce the effects of r'e

An emitter-follower is also known	common-emitter	common-base	common- collector	Darlington	common- collector
as a	amplifier.	amplifier.	amplifier.	pair.	amplifier
In a common-base amplifier, the					
input signal is connected to the	base.	collector.	emitter.	output.	emitter
The differential amplifier produces outputs that are	common mode.	in-phase with the input voltages.	the sum of the two input voltages.	the difference of the two input voltages.	the difference of the two input voltages
The differential amplifier has	one input and one output.	two inputs and two outputs.	two inputs and one output.	one input and two outputs.	two inputs and two outputs
The dc emitter current of a transistor is 8 mA. What is the value of r _e ?	320 Ω	13.3 kΩ	3.125 Ω	5.75 Ω	3.125 Ω
An emitter-follower amplifier has an input impedance of $107 \text{ k}\Omega$. The input signal is 12 mV . The approximate output voltage is					
(common-collector)	8.92 V	112 mV	12 mV	8.9 mV	12 mV
A Darlington pair amplifier has	high input impedance and high voltage gain.	low input impedance and low voltage gain.	a voltage gain of about 1 and a low input impedance.	a low voltage gain and a high input impedance.	a low voltage gain and a high input impedance
You have a need to apply an amplifier with a very high power gain. Which of the following would you choose?	common- collector	common-base	common-emitter	emitter- follower	common- emitter
What is the most important r parameter for amplifier analysis?	r _b '	r _c '	re'	none of the above	r _e '
A common-emitter amplifier has voltage gain, current gain, power gain, and	high, low, high,	high, high,	high, high, high,	low, low,	high, high,
input impedance.	low	high, low	high	low, high	high, low

	T	1	T		1 1
To analyze the common-emitter amplifier, what must be done to determine the dc equivalent circuit?	leave circuit unchanged	replace coupling and bypass capacitors with opens	replace coupling and bypass capacitors with shorts	replace V _{CC} with ground	replace coupling and bypass capacitors with opens
When the bypass capacitor is removed from a common-emitter amplifier, the voltage gain	increases.	decreases.	has very little effect.		decreases
A common-collector amplifier has input resistance, current gain, and voltage gain.	high, high, low	high, low, low	high, low, high		high, high, low
A Darlington pair provides beta for input resistance.	multiplication, decreased	multiplication , increased	division, decreased		multiplicat ion, increased
The total gain of a multistage amplifier is the What is r _e equal to in terms	sum of individual voltage gains	sum of dB voltage gains	none of the above $h_{ie} - (h_{re} / h_{oe})(1$		sum of dB voltage gains
of h parameters?	h_{re} / h_{oe}	$(h_{re} + 1) / h_{oe}$	$+ h_{fe}$	h_{fe}	h _{re} / h _{oe}
The advantage that a Sziklai pair has over a Darlington pair is	higher current gain.	less input voltage is needed to turn it on.	higher input impedance.	higher voltage gain.	less input voltage is needed to turn it on.
What is the device in a transistor oscillator?	LC tank circuit	Biasing circuit	Transistor	Feedback circuit	Transistor
When the collector supply is 5V, then collector cut off voltage under dc condition is	20 V	10 V	2.5 V	5 V	5 V
The common base (CB) amplifier has a compared to CE and CC amplifier.	Lower input resistance	Larger current gain	Larger voltage gain	Higher input resistance	Lower input resistance

When a FET with a lower transconductance is substituted into a FET amplifier circuit, what happens?	The current gain does not change	The voltage gain decreases	The circuit disamplifies	The input resistance decreases	The voltage gain decreases
At zero signal condition, a transistor sees load.	dc	ac	both dc and ac	resistive	dc
What is the gain of an amplifier with negative feedback if the feedback factor is 0.01?	10	1,000	100	500	100
The current gain of an emitter follower is	Equal to 1	Greater than 1	Less than 1	Zero	Less than
The current in any branch of a transistor amplifier that is operating is	ac only	the sum of ac and dc	the difference of ac and dc	dc only	the sum of ac and dc
An ideal differential amplifiers common mode rejection ratio is	Infinite	Zero	Unity	Undetermine d	Infinite
An open fuse circuit has a resistance equal to	Zero	Unity	At least 100Ω at standard	Infinity	Infinity
What is the purpose of dc conditions in a transistor?	To reverse bias the emitter	To forward bias the emitter	To set up operating point	To turn on the transistor	To set up operating point
The ac variations at the output side of power supply circuits are called	Ripples	Pulses	Waves	Filters	Ripples
What is the purpose of the emitter capacitor?	To forward bias the emitter	To reduce noise in the amplifier	To avoid drop in gain	To stabilize emitter voltage	To avoid drop in gain
A common emitter circuit is also called circuit.	Grounded emitter	Grounded collector	Grounded base	Emitter follower	Grounded emitter
The output signal of a common-collector amplifier is always	Larger than the input signal	In phase with the input signal	Out of phase with the input signal	Exactly equal to the input signal	In phase with the input signal
Calculate the ripples of the filter output if a dc and ac voltmeter is used and measures the output signal from a filter circuit of 25 VDC and 1.5 V _{rms}	5%	10%	50%	6%	6%
What is the ideal maximum voltage gain of a common collector amplifier?	Unity	Infinite	Indeterminate	Zero	Unity

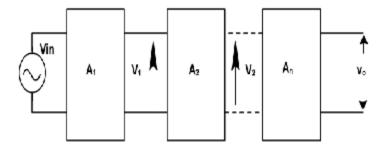
The output power of a transistor					
amplifier is more than the input					
power due to additional power		Collector			Collector
supplied by	Transistor		Emitter supply	Base supply	supply
When a transistor amplifier feeds a	11411515101	supply	Ellitter suppry	base suppry	suppry
load of low resistance, its voltage					
gain will be	Low	Very high	High	Moderate	Low
The capacitors are considered	LOW	very mgn	Iligii	Moderate	LOW
in the ac equivalent				Partially	
circuit of a transistor amplifier.	Open	Partially open	Short	short	Short
For highest power gain, what	Орсп	Tartiany open	Short	SHOT	SHOIT
configuration is used?	CC	СВ	CE	CS	CE
configuration is used:		СБ	CL	CS	CL
What is the most important				Its being an	
characteristic of a common	High input	High input	High output	amplifier	High input
collector amplifier?	voltage	resistance	resistance	circuit	resistance
Which of the item below does not					
describe a common emitter	High voltage	High current	Very high power	High input	High input
amplifier?	gain	gain	gain	resistance	resistance
ampimer:	gam	gam	gam	Tesistance	Tesistance
					Input
		Input	Output	Output	impedance
CC configuration is used for	Input impedance	impedance is	impedance is	impedance is	is very
impedance matching because its	is very high	very low	very low	zero	high
Which of the following is the other					
name of the output stage in an					Power
amplifier?	Load stage	Audio stage	Power stage	RF stage	stage
		A lower			The
	The gain of each			Each	overall
	amplifier is	supply voltage is	The overall gain	amplifier has	gain is
When amplifiers are cascaded	increased	required	is increased	to work less	increased
Ina common emitter amplifier, the	mereasea	required	15 mereasea	to work iess	mereasea
capacitor from emitter to ground is	Coupling	Bypass	Decoupling	Tuning	Bypass
called the	capacitor	capacitor	capacitor	capacitor	capacitor
A class A power amplifier uses	cupucitor	capacitor	capacitor	capacitor	cupacitor
transistor(s).	Two	One	Three	Four	One
` '			111100	2 0 01	
,	50%	78.50%	25%	30%	25%
1 1	/ -		2.74		/ -
	30%	80%	45%	50%	50%
What is the maximum collector efficiency of a resistance loaded class A power amplifier? What is the maximum collector efficiency of a transformer coupled class A power amplifier?	50%	78.50%	25% 45%	30%	25%

		Small signal			RF
Class C amplifiers are used as	AF amplifiers	amplifiers	RF amplifiers	IF amplifiers	amplifiers
Find the voltage drop developed across a D' Arsonval meter movement having an internal resistance of $1 \text{ k}\Omega$ and a full					
deflection current of 150uA.	150 μV	150 mV	150 V	200 mV	150 mV
If the capacitor from emitter to ground in a common emitter amplifier is removed, the voltage gain	Increases	Decreases	Becomes erratic	Remains the same	Decreases
Comparatively, power amplifier has β .	Large	Very large	Small	Very small	Small
The driver stage usually employs amplifier. The push-pull circuit must use	Class A power	Class C	Push-pull	Class AB	Class A power
operation.	Class A	Class B	Class C	Class AB	Class B
A complementary-symmetry amplifier has	One PNP and one NPN transistor	Two PNP transistors	Two NPN transistors	Two PNP and two NPN transistors	One PNP and one NPN transistor
Power amplifiers generally use transformer coupling because transformer coupling provides	Cooling of the circuit	Distortionless output	Impedance matching	Good frequency response	Impedanc e matching
The output transformer used in a power amplifier is a/an transformer	1:1 ratio	Step-down	Step-up	Isolation	Step-down
Prepared By-Ambili Vipin,Assistant Professor,Department of Physics					

DEPARTMENT OF PHYSICS UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark) UNIT II :(

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020


UNIT-III

SYLLABUS

Analog Circuits: Analysis of compound configurations Cascade connection; Cascade connection; Darlington connection; Bootstrapping principle; Bootstrapped Emitter Follower; Bootstrapped Darlington Emitter Follower; Feedback pair; . CMOS circuits; Current source circuits; Current mirror circuits; Differential amplifier circuits; Numerical problems.

MULTIPLE AMPLIFIER - Analysis of compound configurations

To increases the voltage gain of the amplifier, multiple amplifier are connects in cascade. The output of one amplifier is the input to another stage. In this way the overall voltage gain can be increased, when number of amplifier stages are used in succession it is called a multistage amplifier or cascade amplifier. The load on the first amplifier is the input resistance of the second amplifier. The various stages need not have the same voltage and current gain. In practice, the earlier stages are often voltage amplifiers and the last one or two stages are current amplifiers. The voltage amplifier stages assure that the current stages have the proper input swing. The amount of gain in a stage is determined by the load on the amplifier stage, which is governed by the input resistance to the next stage. Therefore, in designing or analyzing multistage amplifier, we start at the output and proceed toward the input.

The overall voltage gain of cascade amplifier is the product of the voltage gain of each stage. That is, the overall voltage gain is A1 A2A3.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

To represent the gain of the cascade amplifier, the voltage gains are represents in dB. The two power levels of input and output of an amplifier are compared on a logarithmic scale rather than linear scale. The number of bels by which the output power P_2 exceeds the input power P_1 is defined as

No of bels =
$$\log_{10} \left(\frac{P_2}{P_1} \right)$$

or No of dB = $10 * No$, of bels
= $10 \log_{10} \left(\frac{P_2}{P_1} \right)$

Since.

$$P_1 = \frac{{v_1}^2}{R_{in}} \& P_2 = \frac{{v_2}^2}{R_0}$$

where R_{in} is the input resistance of the amplifier and R_o is the load resistance

$$dB = 10 \log_{10} \left(\frac{{v_2}^2 / R_0}{{v_1}^2 / R_{in}} \right)$$

In case R_{in} and R_{0} are equal, then power gain is given by

$$dB = 10 \log_{10} \left(\frac{v_2}{v_1} \right)^2 = 20 \log_{10} \left(-\frac{v_2}{v_1} \right)$$

$$\therefore A_{dB} = A_{dB1} + A_{dB2} + \dots$$

Because of dB scale the gain can be directly added when a number of stages are cascaded.

Coupling:

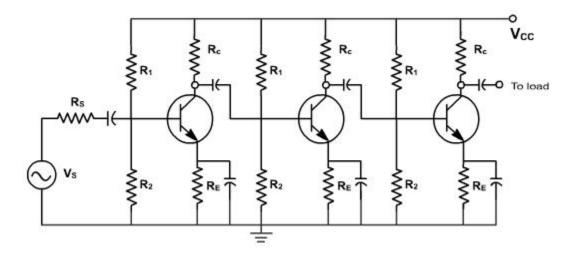
In a multistage amplifier the output of one stage makes the input of the next stage. Normally a network is used between two stages so that a minimum loss of voltage occurs when the signal passes through this network to the next stage. Also the dc voltage at the output of one stage should not be permitted to go to the input of the next. Otherwise, the biasing of the next stage are disturbed.

The three couplings generally used are.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

1. RC coupling


2. Impedance coupling

3. Transformer coupling.

RC coupling

RC coupling the most commonly used method of coupling from one stage to the next. An ac source with a source resistance Rs drives the input of an amplifier. The grounded emitter stage amplifies the signal, which is then coupled to next CE stage the signal is further amplified to get larger output.

In this case the signal developed across the collector resistor of each stage is coupled into the base of the next stage. The cascaded stages amplify the signal and the overall gain equals the product of the individual gains.

The coupling capacitors pass ac but block dc. Because of this, the stages are isolated as for as dc is concerned. This is necessary to avoid shifting of Q-points. The drawback of this approach is the lower frequency limit imposed by the coupling capacitor.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

The bypass capacitors are needed because they bypass the emitters to ground. Without them, the voltage gain of each stage would be lost. These bypass capacitors also place a lower limit on the frequency response. As the frequency keeps decreasing, a point is reached at which capacitors no longer look like a.c. shorts. At this frequency the voltage gain starts to decrease because of the local feedback and the overall gain of the amplifier drops significantly. These amplifiers are suitable for frequencies above 10 Hz.

Darlington Pair

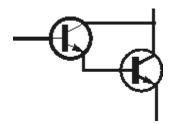
The Darlington Pair is a useful circuit configuration for many applications within electronic circuits. This circuit configuration provides a number of advantages that other forms of transistor circuit are not able to offer and as a result it is used in many areas of electronics design. The Darlington Pair also occasionally referred to as a super-alpha pair is renowned as a method for obtaining a very high level of current gain, using just two transistors. It is able to provide levels of gain that are not possible using single transistors on their own, but it may not be used in all circumstances because it does have a number of limitations.

The circuit may be used in the form of discrete components, but there are also very many integrated circuit versions often termed a Darlington transistor that may also be used. These Darlington transistor components may be obtained in a variety of forms including those for high power applications where current levels of many amps may be required. The Darlington Pair has been in use for very many years. It was invented in 1953 by Sidney Darlington who was working at Bell Laboratories. He developed the idea of having two or three transistors in a single semiconductor chip, where the emitter of one transistor was connected directly to the base of the next, and all the transistors shared the same collector connection.

Basics

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020


When using an emitter follower in a circuit, the level of current gain, and the input impedance of the circuit is limited by the current gain that can be achieved using a single transistor. The gain of the Darlington transistor pair is that gain of the two individual transistors multiplied together.

$$\beta = \beta 1 + \beta 2 + \beta 3$$

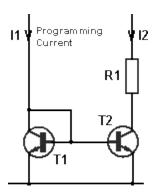
In view of the fact that the terms $\beta1$ and $\beta2$ on their own can be neglected, we obtain the more familiar equation.

$$\beta=\beta 1.\beta 2$$

The basic circuit is formed by taking the emitter of the input transistor and connecting it such that its emitter drives the base of the second and then connecting both collectors together. This circuit can be used as any single transistor would be in a variety of circuits, but particularly as an emitter follower.

CURRENT MIRROR

Current mirror circuits are widely used, especially within integrated circuit technology. The mirror circuit generally consists of two transistors, although other devices such


CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

as FETs can be used, and some configurations do use more than two devices in the overall circuit to obtain better performance. The current mirror circuit gains its name because it copies or mirrors the current flowing in one active device in another, keeping the output current constant regardless of loading.

The current being mirrored can be a constant current, or it can be a varying signal dependent upon the requirement and hence the circuit. Conceptually, an ideal current mirror is simply an ideal inverting current amplifier that reverses the current direction as well or it is a current-controlled current source (CCCS). The current mirror is used to provide bias currents and active loads to circuits.

The basic circuit is shown in the diagram below. It comprises two transistors, one of which has the base and collector connected together. The base connections of both transistors are then linked, as are the emitters.

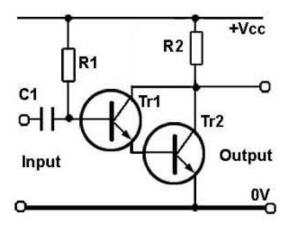
Current Mirror Transistor Circuit

In terms of the operation of the circuit, the base emitter junction of T1 acts like a diode because the collector and base are connected together.

The current into TI is set externally by other components, and as a result there is a given voltage built up across the base emitter junction of T1. As the base emitter voltage on both transistors is the same, the current in one transistor will exactly mirror that of the second, assuming that both transistors are accurately matched. Therefore the current flowing into T1 will be mirrored into T2 and hence into the load R1.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020


Circuit limitations

The circuit shown above is often quite adequate for most applications. However the circuit has some noticeable limitations under many circumstances:

- *Current matching dependent on transistor matching:* The current mirroring is dependent upon the matching of the transistors. Often the transistors need to be on the same substrate if they are to accurately mirror the current.
- Current varies with change in output voltage: This effect occurs because the output impedance is not infinite. This is because there is a slight variation of Vbe with the collector voltage at a given current in T2. Often the current may vary by about 25% the output compliance range.

The Darlington Pair using Common Emitter Amplifiers

The Darlington pair can also be used in common emitter mode, as shown in Fig.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

Darlington transistors are also available as <u>combined packages</u> in both PNP and NPN types, complete with <u>back emf protection diodes</u> typically required when the Darlington configuration is used as a high current gain output device for switching high current inductive loads.

Darlington amplifiers are also available in integrated circuit form, such as the <u>ULN2803</u>, which contains eight high current, Darlington amplifiers with open collector outputs, for interfacing between TTL (5V) logic circuits and high current/high voltage (up to 500mA and 50V) devices. When pin 10 is connected to +V each output is diode protected for driving inductive loads against back e.m.f.

Bootstrapping

Bootstrapping is a technique used in the design of transistor amplifier circuits to increase the input impedance and thereby reduce the loading effects on the input source. It typically involves the use of a bootstrap capacitor, which provides positive feedback of ac signals to the base junction of a transistor in an emitter follower circuit. Application of this feedback increases the effective value of the base resistance. The amount of increase is a factor determined by the voltage gain of the circuit.

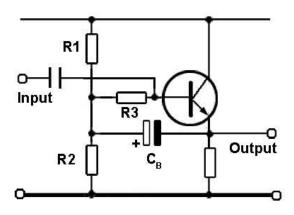
Bootstrapping (Using positive feedback to feed part of the output back to the input, but without causing oscillation) is a method of apparently increasing the value of a fixed resistor as it appears to A.C. signals, and thereby increasing input impedance. A basic bootstrap amplifier is shown in Fig.where capacitor C_B is the 'Bootstrap Capacitor', which provides A.C. feedback to a resistor in series with the base. The value of C_B will be large, about 10 x the lowest frequency handled x the value of the series resistor ($10f_{min}R3$).

Although positive feedback is being used, which would normally cause an amplifier to oscillate, the voltage gain of the emitter follower is less than 1, which prevents oscillation.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

The base of the emitter follower is biased from a potential divider via R3. By feeding the output waveform back to the left hand side of R3 the voltage at this end of R3 is made to rise and fall in phase with the input signal at the base end of R3.


Because the output waveform of the emitter follower is a slightly less amplitude than the base waveform (due to the less than 1 gain of the transistor) there will be a very small signal current waveform across R3. Such a small current waveform suggests a very small current is flowing; therefore the resistance of R3 must be very high, much higher than in fact it is. The input impedance of the amplifier has therefore been increased.

The effective A.C. value of R3 is increased by R3 \div (1 $-A_o$) where A_o is the open loop gain of the amplifier.

For example a $47K\Omega$ resistor with bootstrapping would appear to be:

The bootstrap value of R3, = R3_B =
$$\frac{R3}{(1 - A_0)}$$

The main drawback of this method of increasing input impedance compared with other methods is that the use of positive feedback is likely to increase noise and distortion.

Bootstrapping applied to an Emitter Follower CMOS

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

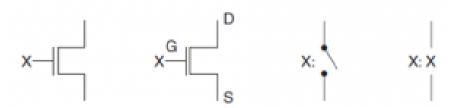
HIGHER EDUCATION TO DURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

Modern digital circuits (logic gates, memories, processors and other composite circuits) are currently being implemented with a complementary metal-oxide semiconductor (CMOS) technology (> 75% of all digital circuits). This technology combines complementary p-type (pMOS) and n-type (nMOS) metal-oxide semiconductor field effect transistors (MOSFETs) for the construction of various logic circuits.

CMOS technology was developed later than that of bipolar transistors. In the early years of its commercial application (1970s) it was an alternative to low power systems due to the particularly low energy consumption of logic circuits with bipolar transistors. On the other hand, the main disadvantage of CMOS circuits was their slow operation.

In the next decades ('80 -'90), both CMOS technology and bipolar technology followed the manufacturing tendency to shrink transistor dimensions and increase operating speeds. Bipolar technology has remained faster, but has not achieved a significant reduction in power consumption. CMOS technology, however, was ideal for logic circuits of great integration and low power consumption.

In the early 1990s, the construction dimensions of the integrated circuits reached 0.5µm. This allowed the construction of very large CMOS circuits, the performance of which at system level exceeded the individual efficiency of the bipolar transistors. Since then, CMOS technology has been dominant in the field of digital circuits.

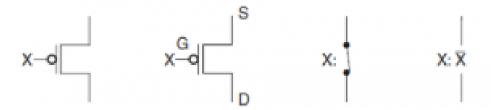

CMOS (complementary metal-oxide-semiconductor) technology is used predominantly to create digital circuitry. The fundamental building blocks of CMOS circuits are P-type and N-type MOSFET transistors. A P-type MOSFET can be modeled as a switch that is closed when the input voltage is low (0 V) and open when the input voltage is high (5 V). A N-type MOSFET can be modeled as a switch that is closed when the input voltage is high (5 V) and open when the input voltage is low (0 V). The basic idea for CMOS technology is to combine P-type and N-type MOSFETs such that there is never a conducting path from the supply voltage (5 V) to ground. As a consequence, CMOS circuits consume very little energy. CMOS technology

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

employs two types of transistor: n-channel and p-channel. The two differ in the characteristics of the semiconductor materials used in their implementation and in the mechanism governing the conduction of a current through them.

The transistor has three terminals: the gate (G), the source (S), and the drain (D). The voltage applied between G and S determines whether a path for current to flow exists between D and S. If a path exists, we say that the transistor is ON, and if a path does not exist, we say that the transistor is OFF. The n-channel transistor is ON if the applied gate-to-source voltage is H and OFF if the applied voltage is L. Here we will make the usual assumption that a 1 represents the H voltage range and a 0 represents the L voltage range. The notion of whether a path for current to flow exists is easily modeled by a switch. The switch consists of two fixed terminals corresponding to the S and D terminals of the transistor. In addition, there is a movable contact that, depending on its position, determines whether the switch is open or closed. The position of the contact is controlled by the voltage applied to the gate terminal G. Since we are looking at logic behavior, this control voltage is represented on the symbol by the input variable X on the gate terminal. For an n-channel transistor, the contact is open (no path exists) for the input variable X equal to 0 and closed (a path exists) for the input variable X equal to 1. Such a contact is traditionally referred to as being normally open, that is, open without a positive voltage applied to activate or close it.


The symbol for a p-channel transistor is shown in Figure bolow. The positions of the source S and drain D are seen to be interchanged relative to their positions in the n-channel transistor. The voltage applied between the gate G and the source S determines whether a path exists between the drain and source. The negation indicator

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

or bubble appears as a part of the symbol. This is because, in contrast to the behavior of an n-channel transistor, a path exists between S and D in the p-channel transistor for input variable X equal to 0 (at value L) and does not exist for input variable X equal to 1 (at value H).

This behavior is represented by the model which has a normally closed contact through which a path exists for X equal to 0. No path exists through the contact for X equal to 1.

The popular CMOS family include,

4000A,

4000B,

4000UB,

54/74C.

54/74HC,

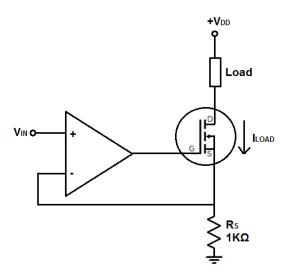
54/74HCT,

54/74AC

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

HIGHER EDUCATION TO DURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

54/74ACT


The 4000A CMOS family has been replaced by its high-voltage versions in the 4000B and 4000UB CMOS families, with the former having buffered and the latter having unbuffered outputs. 54/74C, 54/74HCT, 54/74HCT, 54/74AC and 54/74ACT are CMOS logic

families with pin-compatible 54/74 TTL series logic functions.

CURRENT SOURCE CIRCUIT

A current source circuit is a circuit which can output a stable, steady current, without fluctuating much. For example, we may want a steady source of 10mA, in that case we need a current source of 10mA.

There are many reasons to want a steady flow of current. It may be for accuracy where a different current may cause some loss of precision. It may be component protection, in which too little current and the circuit doesn't work or too much current and circuit components are damaged.

The inverting input of the op amp samples the voltage across resistor Rs and then compares it with the voltage applied to the noinverting input.

This op amp circuit is basically wired to function as a voltage follower. A voltage follower is a circuit in which the output voltage is the same as the input voltage. It's called a voltage follower because the output voltage follows, or mimics, the input voltage.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OF HIGHER EDUCATION COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

When the noninverting terminal receives an input voltage and the inverting terminal is connected to the output of the op amp, this is the setup of a voltage follower. When the circuit is connected as a voltage follower, the output voltage resists changes unless the input voltage changes. So if the input voltage is steady at a certain value, the output voltage does everything possible to maintain the same voltage as the input. It strongly resists urges to voltage change. Therefore, if the load current going through the drain and source of the transistor changes, the voltage output by the op amp changes to adjust for this change in current, so that the output voltage (voltage across the resistor Rs) is constant, which ends up bringing the load current back to its baseline value. Since the output of the op amp is connected to the gate of the MOSFET, the voltage at the gate of the MOSFET changes if there are changes in the load current. If there is an increase in load current, the op amp outputs a higher voltage (remember this is a depletion-type MOSFET). This, in turn, lowers the current so that it goes back to its baseline value. If there is a decrease in load current, the op amp outputs a lower voltage. This, in turns, increases the current so that it goes back to its baseline value.

The chief formula for this circuit is, ILOAD= VIN/Rs

So whatever voltage you feed into the noninverting terminal of the op amp over the resistor Rs determines the load current, ILOAD

Differential Amplifier is a device which is used to amplify the difference between the <u>voltages</u> applied at its inputs. Such circuits can be of two types viz.,

- 1. Differential amplifiers built using transistors, either <u>Bipolar</u>

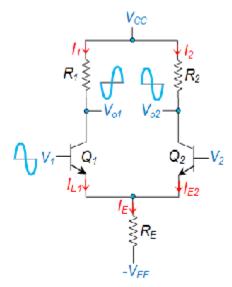

 <u>Junction Transistors</u>(BJTs) or <u>Field Effect Transistors</u> (FETs)
- 2. Differential amplifiers built using Op-Amps.

Figure 1 shows such a circuit made of two BJTs (Q_1 and Q_2) and two power supplies of opposite polarity viz., V_{CC} and $-V_{EE}$ which uses three <u>resistors</u> among which two are the collector resistors, R_{C1} and R_{C2} (one for each transistor) while one is the emitter resistor R_{E} common to both <u>transistors</u>. Here the input signals (V_1 and V_2)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

ON COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

are applied to the base of the transistors while the output is collected across their collector terminals (V_{o1} and V_{o2}).

A BJT Differential Amplifler

In this case, if the V_1 at Q_1 is sinusoidal, then as V_1 goes on increasing, the transistor starts to conduct and this results in a heavy collector <u>current</u> I_{C1} increasing the <u>voltage drop</u> across R_{C1} , causing a decrease in V_{O1} . Due to the same effect, even I_{E1} increases which increases the common emitter current, I_E resulting in an increase of voltage drop across R_E .

This means that the emitters of both transistors are driven towards positive which inturn implies that the base of Q_2 would start to become more and more negative. This results in a decrease of collector current, I_{C2} which inturn decreases the voltage drop across the collector resistor R_{C2} , resulting in an increase in the output

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

voltage V_{02} . This indicates that the changes in the sinusoidal signal observed at the input of transistor Q_1 is reflected as such across the collector terminal of Q_2 and appear with a phase difference of 180° across the collector terminal of Q_1 . The differential amplification can be driven by considering the output in-between the collector terminals of the transistors, Q_1 and Q_2 .

On the other hand, an Op-Amp operating in differential mode can readily act as a **differential amplifier** as it results in an output voltage given by

$$V_0 = A_d(V_1 - V_2)$$

Where V_1 and V_2 represent the voltages applied at its inverting and non-inverting input terminals (can be taken in any order) and A_d refers to its differential gain. As per this equation, the output of the OpAmp must be zero when the voltages applied at its terminals are equal to each other. However practically it will not be so as the gain will not be same for both of the inputs. Thus, in real scenario, the mathematical expression for the output of the differential amplifier can be given as

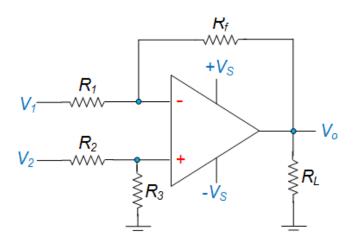
$$V_0 = A_d(V_1 - V_2) + A_C\left(rac{V_1 + V_2}{2}
ight)$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

Where A_C is called the common mode gain of the amplifier. Thus, functionally-good difference amplifiers are expected to exhibit a high common mode rejection ratio (CMRR) and high impedance.

However, it is to be noted that an Op-Amp can be suitably configured to result in a much practical **differential amplifier**, as shown by Figure 2. If closely observed, one can note that this circuit is just a combination of inverting and non-inverting amplifier. Hence its output voltage will be equal to the sum of the output voltages produced by the Op-Amp circuit operating as an <u>inverting</u> <u>amplifier</u> and the Op-Amp circuit operating as a non-inverting amplifier. Thus, one gets,


$$V_0 = -rac{R_f}{R_1}V_1 + V_2rac{R_f}{R_2 + R_3}igg(1 + rac{R_f}{R_1}igg)$$

Now, if $R_1 = R_2$ and $R_3 = R_f$, then

$$V_0 = -rac{R_f}{R_1}V_1 + V_2rac{R_f}{R_1 + R_f}igg(rac{R_1 + R_f}{R_1}igg)$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: III (ANALOG CIRCUITS) BATCH-2018-2020

Differential Amplifier Using an Op-Amp

$$V_0 = -rac{R_f}{R_1}V_1 + V_2rac{R_f}{R_1}$$
 $V_0 = -rac{R_f}{R_1}(V_1 - V_2)$

Coimbatore - 641021.

(For the candidates admitted from 2018onwards) DEPARTMENT OF PHYSICS

UNIT III :(Objective Type/Multiple choice Questions each Question carries one Mark)
PART-A (Online Examination)

ELECTRONIC DEVICES AND CIRCUITS

QUESTIONS	CHOICE1	CHOICE2	CHOICE3	CHOICE4	ANSWE R
QCESTIONS	CHOICEI	CHOICE	CHOICE		
An emitter follower has a voltage gain that is	Much less than one	Approximately equal to one	Greater than one	Zero	Approxi mately equal to one
The input impedance of the base of an emitter follower is usually	Low	High	Shorted to ground	Open	High
The ac base voltage of an emitter follower is across the	Emitter diode	DC emitter resistor	Load resistor	Emitter diode and external ac emitter resistance	Emitter diode and external ac emitter resistanc e
The output voltage of an emitter follower is across the	Emitter diode	DC collector resistor	Load resistor	Emitter diode and external ac emitter resistance	Load resistor
The differential amplifier has	one input and one output	two inputs and two outputs	two inputs and one output	one input and two outputs	two inputs and one output
The differential amplifier produces outputs that are	common mode	in-phase with the input voltages	the sum of the two input voltages	the difference of the two input voltages	the differenc e of the two input voltages

Which factor does not affect CMOS loading?	Charging time associated with the output resistance of the driving gate	Discharging time associated with the output resistance of the driving gate	Output capacitance of the load gates	Input capacitance of the load gates	Output capacitan ce of the load gates
Which transistor element is used in CMOS logic?	FET	MOSFET	Bipolar	Unijunction	MOSFE T
A Darlington pair is used for	low distortion	high frequency range	high power	high current	high current gain
What is the effect of cascading amplifier stages?	increase in the voltage gain and increase in the bandwidth	increase in the voltage gain and reduction in the bandwidth	decrease in the voltage gain and increase in the bandwidth	increase in the voltage gain and reduction in the bandwidth	increase in the voltage gain and reduction in the bandwidt h
An open-drain gate is the CMOS counterpart of	an open- collector TTL gate	a tristate TTL gate	a bipolar junction transistor	an emitter- coupled logic gate	an open- collector TTL gate
Which factor does not affect CMOS loading?	Charging time associated with the output resistance of the driving gate	Discharging time associated with the output resistance of the driving gate	Output capacitance of the load gates	Input capacitance of the load gates	Output capacitan ce of the load gates
The decibel gain of a cascaded amplifier equals to	product of individual gains	sum of individual gains	ration of stage gains	product of voltage and current gains	sum of individua 1 gains
The most desirable feature of transformer coupling is its	higher voltage gain	wide frequency range	ability to provide impedance matching between stages	ability to eliminate hum from the output	ability to provide impedan ce matching between stages
A transformer coupled amplifier would give	maximum voltage gain	impedance matching	maximum current gain	larger bandwidth	impedan ce matching

One of the advantages of a					
Darlington pair is that it has					المعادمة الم
enormous transformation capacity.	Voltage	current	impedance	power	impedan ce
transformation capacity.	Voltage	Current	Impedance	power	CE
Bootstrapping is used in emitter follower configurations to	stabilize the voltage gain against process variations	increase current gain	reduce the output resistance	increase the input resistance	increase the input resistanc e
Cascading amplifier stages to obtain a high gain is best done with Which of the following is a	common emitter stages	common base stages	common collector stages	a combination of successive common base and common emitter stages	
concern when using CMOS type devices?	mechanical shock	electrostatic discharge	fan out	under voltage	
The original CMOS line of circuits is the	5400 series	4000 series	74C00 series	74HCOO series	
Which of the following is a concern when using CMOS type devices?	mechanical shock	electrostatic discharge	fan out	under voltage	electrosta tic discharge
Which of the following is not a solution to interface problems between CMOS and TTL?	pull-up resistor	pull-down resistor	level-shifter	buffer	pull- down resistor
Which of the following is not a common logic family used today?	RTL	ECL	TTL	CMOS	RTL
The output current for a LOW output is called a(n)	exit current.	sink current.	ground current.	fan-out.	sink current.
Which of the following are not characteristics of TTL logic gates?	Totem-pole output	Bipolar transistors	CMOS transistors	Multiemitter transistors	CMOS transistor s
A family of logic devices designed for extremely high speed applications is called	NMOS.	ECL.	PMOS.	TTL.	ECL.
Unused inputs on TTL, AND, and NAND gates	degrade the gate's noise immunity.	if left open will have the same effect as HIGH inputs.	should be tied HIGH.	All of the above are correct.	All of the above are correct.
The lower transistor of a totempole output is OFF when the gate output is	HIGH.	malfunctioning.	LOW.	over driven.	HIGH.

The input transistor on a TTL				multiple	multiple
circuit is unusual in that it has	multiple bases.	no collector.	no base.	emitters.	emitters.
	r				
The difference between WOU and					:
The difference between VOH and			output	:	noise
VIH voltages is known as	input margin.	noise margin.	differential.	input level.	margin.
Te maximum output voltage recognized as a LOW by a TTL					
gate is	2.0 V.	0.8 V.	2.4 V.		
The upper transistor of a totem-	2.0 V.	0.0 V.	2.4 V.		
pole output is OFF when the gate					
output is	logic 1.	malfunctioning.	HIGH.	LOW.	LOW.
output is			mon.	LO W.	
	lower	the ability to			lower .
The major advantage of TTL	propagation	output higher	more modern	very low power	propagati
logic circuits over CMOS is	delay.	voltages.	design.	consumption	on delay.
The maximum current for a					
HIGH output on a standard TTL	10 4	400 4	1 4	10 4	4004
gate is	-10 μΑ.	-400 μΑ.	-1 μA.	-10 mA.	-400 μΑ.
The maximum current for a LOW					
output on a standard TTL gate is	16 μΑ.	40 mA.	100 μΑ.	16 mA.	16 mA.
		the ability to			very low
		produce several	lower	much higher	power
The major advantage of CMOS	very low power	output voltage	propagation	propagation	consump
logic circuits over TTL is	consumption.	levels.	delay.	delay.	tion.
The abbreviated designation for	1				
input current with a LOW input is	VIH.	IIH.	IIL.	IOL.	IIL.
Fan-out for a typical TTL gate is	V 111.	1111.	IIL.	IOL.	IIL.
Tan-out for a typical TTE gate is	10	4	54	100	10
In order to interface an FPGA	10	1	34	100	10
with an external device, you must		external power			all of the
set the value of the	sink current.	*	source current.	all of the above	
The abbreviated designator for a	SHIR CUITCH:	suppiy.	source current.	un or the doore	usove
LOW output voltage is	VOH.	VIL.	VOL.	VIH.	VOL.
The lower transistor of a totem-		,		,	
pole output is saturated when the					
gate output is	HIGH.	LOW.	malfunctioning.	over driven.	LOW.
			- S-		
					transistor
	transistor-				-
	transceiver	three-transistor	two-transistor	transistor-	transistor
The abbreviation TTL means	latch.	logic.	logic.	transistor logic.	logic.
Typical TTL HIGH level output					
voltage is	0.3 V.	5.0 V.	3.4 V.	4.8 V.	3.4 V.

The standard 74XX TTL IC					
family was originally developed in the	1970s.	1960s.	1950s.	1940s.	1960s.
The minimum output voltage	19708.	19008.	19308.	19408.	19008.
recognized as a HIGH by a TTL					
gate is	0.8 V.	2.4 V.	5.0 V.	2.0 V.	2.4 V.
gate is	0.0 V.	2.4 V.	3.0 V.	2.0 V.	2.4 V.
An open-collector TTL gate	can sink current but cannot source current.	can source current but cannot sink current.	cannot source or sink current.	can sink more current than a standard TTL gate.	can sink current but cannot source current.
The minimum input voltage					
recognized as a HIGH by a TTL					
gate is	0.8 V.	2.4 V.	2.0 V.	5.0 V	2.0 V.
Which of the following digital IC					
logic families is most susceptible					
to static discharge?	RTL	ECL	MOS	TTL	MOS
Each input on a TTL gate is					
connected to the transistor's	base.	collector.	gate.	emitter.	emitter.
The time it takes for an input signal to pass through internal circuitry and generate the appropriate output effect is known as	propagation delay.	rise time.	fan-out.	fall time	propagati on delay.
			Negative		voltage
In a common emitter, unbypassed	voltage shunt	current series	voltage	positive current	shunt
resister provides	feedback	feedback	feedback	feedback	feedback
The bandwidth of an RF tuned amplifier is dependent on		Q –factor of the tuned i/p circuit	Quiescent operating point	Q-factor of the o/p and i/p circuits as well as quiescent operating point	Q –factor of the tuned o/p circuit
Negative feedback in an amplifier	Reduces gain	Increase frequency &phase distortion	Reduces bandwidth	Increases noise	Reduces gain
An amplifier without feedback has a voltage gain of 50, input resistance is $1 \text{ K}\Omega$ & Output resistance of $2.5\text{K}\Omega$. The input resistance of the current-shunt negative feedback amplifier using					
the above amplifier with a	1/11ΚΩ	1/5ΚΩ	5ΚΩ	11ΚΩ	1/5ΚΩ

feedback factor of 0.2 is					
The fan out of a MOS logic gate is higher than that of TTL gates because of its	Low input impedance	high output impedance	Low output impedance	High input impedance	High input impedan ce
Transformer coupling can be used in amplifiers	Only power	Only voltage	Either power or voltage	Neither power nor voltage	Either power or voltage
When negative current feedback is applied to an amplifier, its output impedance	increases	remains unchanged	decreases	becomes zero	increases
The quiescent current of a FET amplifier is	IDS	id	ID	Id	ID
The total decibel voltage gain of two cascaded voltage amplifier where individual voltage gains are 10 and 100 is	20	60	800	1000	60
The frequency response of the combined amplifier can be compared with	An OR gate	A negative feedback amplifier	A positive filter	An AND gate	An AND gate
Minimum interference with frequency response can be given by	Direct coupling	RC coupling	Transformer coupling	Instrumentation and control	Direct coupling
The impedance of a load must match the impedance of the amplifier so that The ratio output rms power in	Minimum power is transferred to the load	The efficiency can be maintained at low level	The signal-to- noise ratio is maximized	Maximum power is transferred to the load	Maximu m power is transferre d to the load
watts to the input dc power in watts in the different amplifier class is called	Gain	Amplification factor	Efficiency	Phase power	Efficienc y
Consider a zener diode with a slope resistance of $10~\Omega$ in series with a $90~\Omega$ resistor fed from a dc supply containing a ripple voltage of 20mV peak-to-peak. Compute for the ripple voltage in load	1 mV p-p	2 mV p-p	1 V p-p	6mV p-p	2 mV p-p

The of a common collector configuration is unity	Voltage gain	Current gain	Power gain	Input impedance	Voltage gain
Transmit time is the time taken by the electrons on holes to pass from	Emitter to collector	Collector to emitter	Base to emitter	Base to collector	Emitter to collector
For BJT power transistors, the collector terminal is always connected to the transistor's case	for easy circuit connection.	to prevent shorts.	because the collector terminal is the critical terminal for heat dissipation.	because the collector terminal is located nearest the case.	because the collector terminal is the critical terminal for heat dissipatio n
Quiescent power is the power dissipation of a transistor	with no signal input.	with no load.	under full load.	along the dc load line.	with no signal input
A class B amplifier operates in the linear region for	slightly more than 180° of the input cycle.	360° of the input cycle.	slightly less than 180° of the input cycle.	much less than 180° of the input cycle.	slightly less than 180° of the input cycle
In a class AB amplifier, if the V _{BE} drops are not matched to the diode drops or if the diodes are not in thermal equilibrium with the transistors, this can result in	a current mirror.	diode separation.	crossover distortion.	thermal runaway.	thermal runaway
Which amplifier is commonly used as a frequency multiplier?	class A	class B	class C	all of the above	class C
The least efficient amplifier among all classes is A class A amplifier has a voltage	class B.	class A.	class AB.	class C.	class B
gain of 30 and a current gain of 25. What is the power gain?	30	25	1.2	750	750
You have an application for a power amplifier to operate on FM radio frequencies. The most likely choice would be a amplifier.	class A	class B	class C	class AB	class C

A class A amplifier with $R_C = 3.3$					
$k\Omega$ and R_E = 1.2 $k\Omega$ has a V_{CC} =					
$20 \text{ V. Find } I_{C(\text{sat})}$.	4.4 mA	6.1 mA	16.7 mA	20 mA	4.4 mA
				a square wave	
A class C amplifier has a tank				with a	
circuit in the output. The				frequency	
amplifier is conducting only 28°.		a dc value		determined by	a sine
The output voltage is	0 V.	equal to V _{CC} .	a sine wave.	the tank.	wave.
In practice, the efficiency of a					
capacitively coupled class A					
amplifier is about%.	25	40	70	10	10
The Q-point is at cutoff for class					
operation.	A	В	C	AB	В
Class amplifiers are					
normally operated in a push-pull					
configuration in order to produce					
an output that is a replica of the					
input.	A	В	C	AB	AB
The maximum efficiency of a					
class B amplifier is					
percent.	50	25	70	79	79
A class amplifier is biased					
slightly above cutoff and operates					
in the linear region for slightly					
more than 180° of the input cycle.	A	В	C	AB	AB
Which class of amplifier operates					
in the linear region for only a					
small part of the input cycle?	A	В	C	AB	C
			they can be		
			connected in		
	their biasing	their drive	parallel for		
The principal advantage(s) of	networks are	requirements	added drive		all of the
MOSFETs over BJTs is (are)	simpler.	are simpler.	capability.	all of the above	above
	voltage drop	•	<u> </u>		
	across the				
The principal advantage(s) of	transistor is	they are not as	both of the	none of the	both of
BJTs over MOSFETs is (are) that	important.	prone to ESD.	above	above	the above
The class amplifier is	*	-			
biased below cutoff.	A	AB	В	C	В

Prepared By-Ambili			
Vipin, Assistant			
Professor, Department of Physics			

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

UNIT-IV

SYLLABUS

Power Amplifiers: Introduction, Series-fed Class A amplifier, Transformer coupled class A amplifier, Class B amplifier operation, Class B amplifier distortion, Power transistor heat sinking, Class C and Class D amplifiers, Numerical problems

INTRODUCTION TO POWER AMPLIFIERS:

Power amplifier is an output stage of amplifier optimized to provide high output power gain.

An amplifier receives a signal from some pickup transducer or other input source and provides a larger version of the signal to some output device or to another amplifier stage. An input transducer signal is generally small and needs to be amplified sufficiently to operate an output device. In small-signal amplifiers the main factors are usually amplification linearity and magnitude of gain. Since signal voltage and current are small in a small-signal amplifier, the amount of power-handling capacity and power efficiency are of little concern. A voltage amplifier provides voltage amplification primarily to increase the voltage of the input signal. Large-signal or power amplifiers, on the other hand, primarily provide sufficient power to an output load to drive a speaker or other power device, typically a few watts to tens of watts. The main features of a large-signal amplifier are the circuit's power efficiency, the maximum amount of power that the circuit is capable of handling, and the impedance matching to the output device.

Classification of Power Amplifier

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

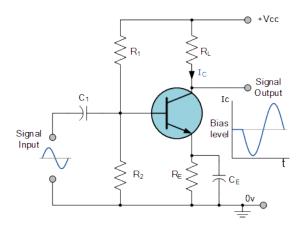
One method used to categorize amplifiers is by class. Basically, amplifier classes represent the amount the output signal varies over one cycle of operation for a full cycle of input signal.

There are mainly four types of amplifiers based on conduction angle. They are

- a) Class A amplifiers
- b) Class B amplifiers
- c) Class AB amplifiers
- d) Class C amplifiers

Class A amplifier: In class-A amplifiers the collector is biased at a value greater than the amplitude of AC signal current. Hence the conduction angle is 360 Degrees i.e. the Class A stage conducts for the entire cycle for the input signal.

Class B amplifier: Class B amplifiers are biased at zero DC bias collector current. Hence it conducts only for half of the input signal cycle, so the conduction angle for class B amplifier is 180 Degrees.


Class AB amplifier: In class AB amplifiers the biasing current is non zero but much smaller than the peak current of the sine wave signal. As a result the transistor conducts for interval slightly greater than half a cycle. The conduction angle is slightly greater than 180 Degrees.

Class C amplifier: In class C amplifier the transistor conducts for an interval less than the half cycle. Hence the conduction angle is less than 180 Degrees.

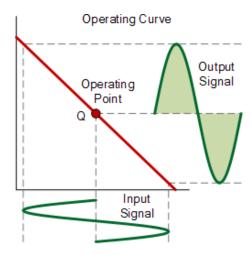
Class A amplifier:

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

The main function of the power amplifier, which are also known as a "large signal amplifier" is to deliver power, which is the product of voltage and current to the load. Basically a power amplifier is also a voltage amplifier the difference being that the load resistance connected to the output is relatively low.

The most commonly used type of power amplifier configuration is the Class A Amplifier. The Class A amplifier is the simplest form of power amplifier that uses a single switching transistor in the standard common emitter circuit configuration as seen previously to produce an inverted output. The transistor is always biased "ON" so that it conducts during one complete cycle of the input signal waveform producing minimum distortion and maximum amplitude of the output signal.


This means then that the Class A Amplifier configuration is the ideal operating mode, because there can be no crossover or switch-off distortion to the output waveform even during the negative half of the cycle. Class A power amplifier output stages may use a single power transistor or pairs of transistors connected together to share the high load current.

It uses a single-ended transistor for its output stage with the resistive load connected directly to the Collector terminal. When the transistor switches "ON" it sinks the output current through the Collector resulting in an inevitable voltage drop across the Emitter resistance thereby limiting the negative output capability.

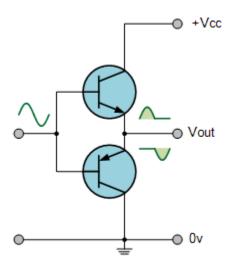
CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

DURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

The efficiency of this type of circuit is very low (less than 30%) and delivers small power outputs for a large drain on the DC power supply. A Class A amplifier stage passes the same load current even when no input signal is applied so large heat sinks are needed for the output transistors.

To achieve high linearity and gain, the output stage of a class A amplifier is biased "ON" (conducting) all the time. Then for an amplifier to be classified as "Class A" the zero signal idle current in the output stage must be equal to or greater than the maximum load current (usually a loudspeaker) required to produce the largest output signal.

As a class A amplifier operates in the linear portion of its characteristic curves, the single output device conducts through a full 360 degrees of the output waveform. Then the class A amplifier is equivalent to a current source. Since a class A amplifier operates in the linear region, the transistors base (or gate) DC biasing voltage should by chosen properly to ensure correct operation and low distortion. However, as the output device is "ON" at all times, it is constantly carrying current, which represents a continuous loss of power in the amplifier.


Due to this continuous loss of power class A amplifiers create tremendous amounts of heat adding to their very low efficiency at around 30%, making them impractical for high-power

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

amplifications. Also due to the high idling current of the amplifier, the power supply must be sized accordingly and be well filtered to avoid any amplifier hum and noise. Therefore, due to the low efficiency and overheating problems of Class A amplifiers, more efficient amplifier classes have been developed.

Class B Amplifier

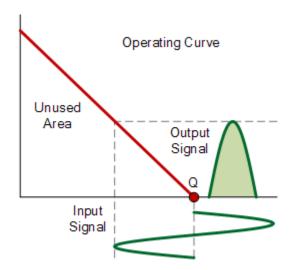
Class B amplifiers were invented as a solution to the efficiency and heating problems associated with the previous class A amplifier. The basic class B amplifier uses two complimentary transistors either bipolar of FET for each half of the waveform with its output stage configured in a "push-pull" type arrangement, so that each transistor device amplifies only half of the output waveform.

In the case of class B amplifier, there is no DC base bias current as its quiescent current is zero, so that the dc power is small and therefore its efficiency is much higher than that of the class A amplifier.

When the input signal goes positive, the positive biased transistor conducts while the negative transistor is switched "OFF". Likewise, when the input signal goes negative, the

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

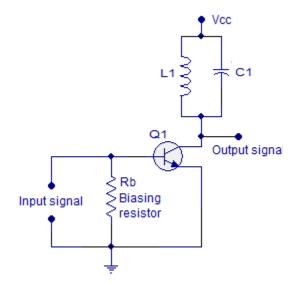
emed to be University)


OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS)

BATCH-2018-2020

positive transistor switches "OFF" while the negative biased transistor turns "ON" and conducts the negative portion of the signal. Thus the transistor conducts only half of the time, either on positive or negative half cycle of the input signal.

Then we can see that each transistor device of the class B amplifier only conducts through one half or 180 degrees of the output waveform in strict time alternation, but as the output stage has devices for both halves of the signal waveform the two halves are combined together to produce the full linear output waveform.

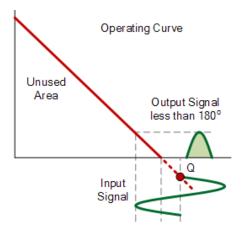

This push-pull design of amplifier is obviously more efficient than Class A, at about 50%, but the problem with the class B amplifier design is that it can create distortion at the zero-crossing point of the waveform due to the transistors dead band of input base voltages from -0.7V to +0.7.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

Class C Amplifier

The Class C Amplifier design has the greatest efficiency but the poorest linearity of the classes of amplifiers.


The class C amplifier is heavily biased so that the output current is zero for more than one half of an input sinusoidal signal cycle with the transistor idling at its cut-off point. In other words, the conduction angle for the transistor is significantly less than 180 degrees, and is generally around the 90 degrees area. While this form of transistor biasing gives a much improved efficiency of around 80% to the amplifier, it introduces a very heavy distortion of the output signal. Therefore, class C amplifiers are not suitable for use as audio amplifiers. Due to its heavy audio distortion, class C amplifiers are commonly used in high frequency sine wave oscillators and certain types of radio frequency amplifiers, where the pulses of current produced at the amplifiers output can be converted to complete sine waves of a particular frequency by the use of LC resonant circuits in its collector circuit.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

Biasing resistor Rb pulls the base of Q1 further downwards and the Q-point will be set some way below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by Rb. That is the reason why the major portion of the input signal is absent in the output signal.

Inductor L1 and capacitor C1 forms a tank circuit which aids in the extraction of the required signal from the pulsed output of the transistor. Actual job of the active element (transistor) here is to produce a series of current pulses according to the input and make it flow through the resonant circuit. Values of L1 and C1 are so selected that the resonant circuit oscillates in the frequency of the input signal. Since the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated and the required frequency can be squeezed out using a suitably tuned load. Harmonics or noise present in the output signal can be eliminated using additional filters. A coupling transformer can be used for transferring the power to the load.

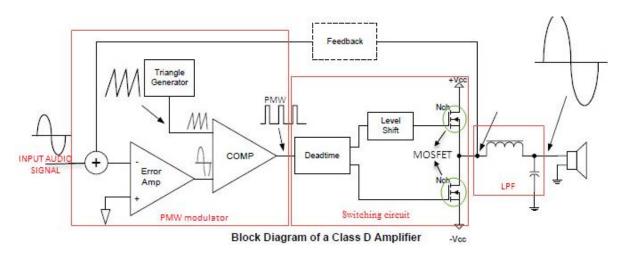
CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

Power transistor heat sinking

A heat-sink is designed to remove heat from a transistor and dissipate it into the surrounding air as efficiently as possible. Heat-sinks take many different forms, such as finned aluminium or copper sheets or blocks, often painted or anodised matt black to help dissipate heat more quickly. Good physical contact between the transistor and heat-sink is essential, and a heat transmitting grease (heat-sink compound) is smeared on the contact area before clamping the transistor to the heat-sink.

The heat-sink chosen must be able to dissipate heat from the transistor to the surrounding air, quickly enough to prevent the junction temperature of the transistor exceeding its maximum permitted typically 100 to 150° C.Each heat-sink has a parameter called its Thermal Resistance (R_{th}) measured in $^{\circ}$ C/Watt and the lower the value of R_{th} the faster heat is dissipated. Other factors affecting heat dissipation include the power (in Watts) being dissipated by the transistor, the efficiency of heat transfer between the internal transistor junction and the transistor case, and the case to the heat-sink.


The difference between the temperature of the heat-sink and the air temperature surrounding the heat-sink (the ambient temperature) must also be taken into account. Therefore any heat-sink with a thermal resistance lower or equal to the calculated value should be considered, but to avoid continually running the transistor at, or close to the maximum permitted temperature, which is almost guaranteed to shorten the life of the transistor, it is advisable to use a heat-sink with a lower thermal resistance where possible.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

Class-D Amplifier

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. Class-D amplifiers work by generating a train of square pulses of fixed amplitude but varying width and separation, or varying number per unit time, representing the amplitude variations of the analog audio input signal. When it is in the "ON" state it will conduct current but have almost zero voltage across the switches, therefore no heat is dissipated due to power consumption.

PMW Modulator

A comparator has two inputs, namely Input A and Input B. When Input A is higher in voltage than Input B, the output of the comparator will go to its maximum positive voltage(+Vcc). When Input A is lower in voltage than Input B, the output of the comparator will go to its maximum negative voltage(-Vcc). One input (Input A) is supplied with the signal to be amplified. The other input (Input B) is supplied with a precisely generated triangle wave. When the signal is instantaneously higher in level than the triangle wave, the output goes negative. The result is a chain of pulses where the pulse width is proportional to the instantaneous signal level. This is known as 'pulse width modulation', or PWM.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

OURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

Switching Circuit

Even though, the output of the comparator is a digital representation of the input audio signal, it doesn't have the power to drive the load (speaker). The task of this switching circuit is to provide enough power gain, which is essential for an amplifier. The switching circuit is generally designed by using MOSFETs. It is very crucial to design that the switching circuits produce signals that do not overlap or else you run into the problem of shorting your supply straight to ground or if using a split supply shorting the supplies. This is known as shoot through, but it can be prevented by introducing non-overlapping gate signals to the MOSFETs. The non-overlapping time is known as Dead time. In designing these signals we must keep the dead time as short as possible to maintain an accurate low-distortion output signal, but must be long enough to maintain both MOSFETs from conducting at the same time. The time that the MOSFETs are in linear mode must also be reduced which will help insure that the MOSFETs are working synchronously rather than both conducting at the same time.

Output Low Pass Filter

The final stage of a Class D amplifier is the output filter which attenuates and removes the harmonics of the switching signal frequency. This can be done with a common low passfilter arrangement, but the most common is an inductor and capacitor combination. A 2ndorderfilter is desired so that we have a -40dB/Decade roll-off. The range of cutoff frequencies is between 20 kHz to about 50 kHz due to the fact that humans cannot hear anything above 20 kHz. Below figure shows the second order Butterworth filter. The main reason we choose a Butterworth filter is because it requires the least amount of components and has a flat response with a sharp cut off frequency.

POSSIBLE QUESTIONS

PART-B (2 Marks)

1. What are the advantages of Multistage amplifiers?

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

DURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS) BATCH-2018-2020

- 2. How can we classify multi stage amplifier?
- 3. What do you mean by heat sinking?
- 4. Define PWM.
- 5. What is called low pass filter?
- 6. Define collector efficiency.
- 7. What is called Class –A amplifier?
- 8. What is called Class –B amplifier?
- 9. What is called Class –C amplifier?
- 10. What is called Class –D amplifier?

PART-C (6 marks)

- 1. Explain the terms: (i) collector efficiency, (ii) power dissipation capability and (iii) overall gain.
- 2. State clearly the meaning of class A, B and C as applied to power amplifiers. What is meant by the angle of flow?
- 3. Discuss class A transformer coupled amplifier.
- 4. Explain class A power amplifier. How power is distributed in it?
- 5. Explain about heat sinks in power amplifiers.
- 6. Derive the working principle of class B power amplifiers.
- 7. What do you understand by cross-over distortion? How can it be eliminated in Class B-operation?
- 8. What is the basis for the classification of power amplifiers? Mention the different types of power amplifiers.
- 9. Draw a circuit for class C amplifier and discuss its working.
- 10. Draw a circuit for class D amplifier and discuss its working.

(Deemed to be University)

DURSE CODE: 18PHP102 UNIT: IV(POWER AMPLIFIERS)

BATCH-2018-2020

Coimbatore - 641021.

(For the candidates admitted from 2018onwards)
DEPARTMENT OF PHYSICS

UNIT IV :(Objective Type/Multiple choice Questions each Question carries one Mark)
PART-A (Online Examination)
ELECTRONIC DEVICES AND CIRCUITS

QUESTIONS	CHOICE1	CHOICE2	CHOICE3	CHOICE4	ANSWER
For Class-B operation, the collector current flows for	The whole cycle	Half the cycle	Less than half a cycle	Less than a quarter of a cycle	Half the cycle
Transformer coupling is an example of	Direct coupling	AC coupling	DC coupling	Impedance coupling	AC coupling
Class-C amplifiers are almost always	Transformer- coupled between stages	Operated at audio frequencies	Tuned RF amplifiers	Wideband	Tuned RF amplifiers
Heat sinks reduce the	Transistor power	Ambient temperature	Junction temperature	Collector current	Junction temperature
Which type of power amplifier is biased for operation at less than 180° of the cycle?	Class A	Class B or AB	Class C	Class D	Class C
What is the maximum efficiency of a class A circuit with a direct or series-fed load connection?	90%	78.50%	50%	25%	25%
The Q-point is at cutoff for class operation.	A	В	С	AB	В
Which of the following is (are) power amplifiers?	Class A	Class B or AB	Class C or D	All of the above	All of the above
The output of a class-B amplifier	is distortion free	consists of positive half cycle only	is like the output of a full wave rectifier	comprises short duration current pulses	consists of positive half cycle only

Crossover distortion occurs in					
amplifiers.	push-pull	class A	class B	class AB	push-pull
	Fases Fases		in communicati		F mass F mss
The main use of a class C	as an RF	as stereo	on sound	as distortion	as an RF
amplifier is	amplifier	amplifier	equipment	generator	amplifier
The decibel is a measure of	power	voltage	current	sound level	sound level
The output stage of a multistage			Detector		
amplifier is also called	Mixer stage	Power stage	stage	F stage	Power stage
coupling is					
generally employed in power					
amplifiers	Transformer	RC	direct	Impedance	Transformer
The maximum efficiency of resistance loaded class A power					
amplifier is	5%	50%	30%	25%	25%
Class power amplifier					
has the highest collector					
efficiency	C	A	В	AB	В
Power amplifiers handle					
signals compare to				None of the	
voltage amplifiers.	Small	Very small	Large	above	Large
In class B operation, at what		, ,	B		8
fraction of VCC should the level					
of VL(p) be to achieve the					
maximum power dissipated by					
the output transistor?	0.5	0.636	0.707	1	0.636
In class A operation, the		0.000	01707		0.000
operating point is generally					
located of the d.c. load			At saturation	None of the	At the
line.	At cut off point	At the middle	point	above	middle
The output transformer used in a	The control point	110 0110 11110010	Pomi	u.ss, c	11110010
power amplifier is a				None of the	
transformer.	1:1 ratio	Step-up	Step-down	above	Step-down
tunisionner.	1.11440	Бер ир	Step down	usove	Step down
			because the		because the
			collector	because the	collector
			terminal is	collector	terminal is
			the critical	terminal is	the critical
For BJT power transistors, the			terminal for	located	terminal for
collector terminal is always	for easy circuit	to prevent	heat	nearest the	heat
connected to the transistor's case	connection.	shorts.	dissipation.	case.	dissipation

Quiescent power is the power	with no signal		under full	along the dc	with no
dissipation of a transistor	input.	with no load.	load.	load line.	signal input
A class B amplifier operates in the linear region for	slightly more than 180° of the input cycle.	360° of the input cycle.	slightly less than 180° of the input cycle.	much less than 180° of the input cycle.	slightly less than 180° of the input cycle
In a class AB amplifier, if the V_{BE} drops are not matched to the diode drops or if the diodes are not in thermal equilibrium with the transistors, this can result in	a current mirror.	diode separation.	crossover distortion.	thermal runaway.	thermal runaway
Which amplifier is commonly used as a frequency multiplier?	class A	class B	class C	all of the above	class C
The least efficient amplifier among all classes is	class B.	class A.	class AB.	class C.	class B
A class A amplifier has a voltage gain of 30 and a current gain of 25. What is the power gain? You have an application for a power amplifier to operate on FM radio frequencies. The most likely choice would be a	30	25	1.2	750	750
amplifier.	class A	class B	class C	class AB	class C
A class A amplifier with $R_C = 3.3$ $k\Omega$ and $R_E = 1.2$ $k\Omega$ has a $V_{CC} = 20$ V. Find $I_{C(sat)}$.	4.4 mA	6.1 mA	16.7 mA	20 mA	4.4 mA
A class C amplifier has a tank circuit in the output. The amplifier is conducting only 28°. The output voltage is	0 V.	a dc value equal to V _{CC} .	a sine wave.	a square wave with a frequency determined by the tank.	a sine wave.
In practice, the efficiency of a capacitively coupled class A amplifier is about%. The Q-point is at cutoff for class	25	40	70	10	10
operation.	A	В	С	AB	В
Class amplifiers are normally operated in a push-pull configuration in order to produce an output that is a replica of the					
input.	A	В	С	AB	AB

The maximum efficiency of a					
class B amplifier is					
percent.	50	25	70	79	79
A class amplifier is biased					
slightly above cutoff and operates					
in the linear region for slightly					
more than 180° of the input cycle.	A	В	C	AB	AB
Which class of amplifier operates					
in the linear region for only a					
small part of the input cycle?	A	В	C	AB	C
			they can be		
			connected in		
	their biasing	their drive	parallel for		
The principal advantage(s) of	networks are	requirements	added drive	all of the	all of the
MOSFETs over BJTs is (are)	simpler.	are simpler.	capability.	above	above
	voltage drop				
	across the				
The principal advantage(s) of	transistor is	they are not as	both of the	none of the	both of the
BJTs over MOSFETs is (are) that	important.	prone to ESD.	above	above	above
The class amplifier is					
biased below cutoff.	A	AB	В	С	В
Power amplifiers primarily					
provide sufficient power to an				_	
output load, typically from	a few kW, tens		100 W, 500	a few W,	a few W,
to	of kW	500 W, 1 kW	W	tens of W	tens of W
		maximum			
		amount of			
		power that the			
The main feature(s) of a large-	• • • • •	circuit is	impedance	A 11 C . 1	A 11 C .1
signal amplifier is (are) the	circuit's power	capable of	matching to	All of the	All of the
	efficiency	handling	the output	above	above
In power amplifiers, the					
output signal varies for a full 360°	aloga A	alogg D on AD	along C	aloga D	aloga A
of the cycle.	class A	class B or AB	class C	class D	class A
In class B power amplifiers, the output signal varies for of			between 180°	less than	
1 0	360°	180°			180°
the cycle amplifiers have the highest	300	100	and 360°	180°	100
	Class A	Class B or AB	Class C	Class D	Class D
overall efficiency.	Class A	Class D 01 AD	Class C	Class D	Class D
Class D operation can achieve	0.00		70		0.00
power efficiency of over	90%	78.50%	50%	25%	90%
The beta of a power transistor is					less than
generally	more than 200	100 to 200	less than 100	0	100

A form of class A amplifier					
having maximum efficiency of					
uses a transformer to					
couple the output signal to the					
load.	90%	78.50%	50%	25%	50%
The reflected impedance seen					
from one side of the transformer			1/2		
to the other side is	N_1/N_2	$(N_1/N_2)^2$	$(N_1/N_2)^{1/3}$	$N_1 \times N_2$	$(N_1/N_2)^2$
In a class A transformer-coupled					
power amplifier, winding					
resistance of the transformer					
determine(s) the dc load line for			both the ac	neither the ac	
the circuit.	the ac	the dc	and dc	nor dc	the dc
The slope of the ac load line in					
the class A transformer-coupled	-1/R _L (load		_		_
transistor is	resistor)	$1/(a^2R_L)$	$-1/(a^2R_L)$	$1/R_L$	$-1/(a^2R_L)$
The amount of power dissipated					
by the transistor is the of					
that drawn from the dc supply (set					
by the bias point) and the amount					
delivered to the ac load.	product	difference	average		difference
A class A amplifier dissipates					
power when the load is					
drawing maximum power from				None of the	
the circuit.	the least	about the same	the most	above	the least
In a class A transformer-coupled					
amplifier, the the value of					
V_{CEmax} and the the value of					
V_{CEmin} , the the efficiency					larger,
to (from) the theoretical limit of	larger, smaller,	larger, smaller,	smaller,	None of the	smaller,
50%.	farther	closer	larger, closer	above	closer
In class B operation, the current					
drawn from a single power supply			both a full-		
has the form of rectified			wave and a	None of the	
signal.	a full-wave	a half-wave	half-wave	above	a full-wave
The high set officer and in the in-					
The highest efficiency is obtained					
in class B operation when the	0.2537	0.5017	7.7	27/	7.7
level of $V_L(p)$ is equal to	0.25V _{CC}	$0.50V_{\rm CC}$	V_{CC}	2V _{CC}	V_{CC}
			Both npn and		Both npn
			-		-
transistors can be used to		nMOS and	pnp or nMOS and	None of the	and pnp or nMOS and
	nnn and nnn			above	
build a class B amplifier.	npn and pnp	pMOS	pMOS	above	pMOS

The complementary Darlington- connected transistor for a class B amplifier provides output					
current and output resistance.	higher, higher	higher, lower	lower, lower	lower, higher	higher, lower
The fundamental component is	ingher, ingher	inglier, lower	lower, lower	lower, mgner	10 W C1
typically any harmonic component.	larger than	the same as	smaller than	None of the above	larger than
In Fourier technique, any periodic distorted waveform can be represented by the fundamental and all harmonic					
components.	multiplying	subtracting	dividing	adding	adding
components.	шашртушд	increased the	provided	adding	udding
	produced higher	maximum	faster-		
Improvement in production	power ratings in	transistor	switching		
techniques of power transistors	small-sized	breakdown	power	All of the	All of the
have	packaging cases	voltage	transistors	above	above
The greater the power handled by the power transistor, the			there is no	None of the	
case temperature.	the higher	the lower	change in	above	the higher
The has the hottest temperature in a power transistor.	heat sink	case	junction	None of the above	junction
A heat sink provides thermal resistance between case				None of the	
and air.	a high	a low	the same	above	a low
A power amplifier is limited to use at one fixed					
frequency.	class A	class B or AB	class C	class D	class C
Which of the following is (are) power amplifiers?	Class A	Class B or AB	Class C or D	All of the above	All of the above
By how much does the output signal vary for a class AB power amplifier?	360°	180°	Between 180° and 360°	Less than 180°	Between 180° and 360°
Which type of power amplifier is biased for operation at less than 180° of the cycle?	Class A	Class B or AB	Class C	Class D	Class C
Which type of amplifier uses pulse (digital) signals in its operation?	Class A	Class B or AB	Class C	Class D	Class D
Which of the power amplifiers has the lowest overall efficiency?	Class A	Class B or AB	Class C	Class D	Class A
Which of the following describe(s) a power amplifier?	It can handle large power.	It can handle large current.	It does not provide much voltage	All of the above	All of the above

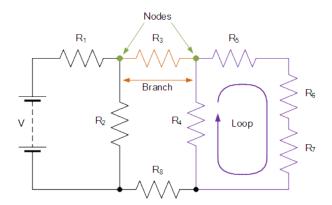
			gain.		
amplifiers primarily					
provide sufficient power to an					
output load to drive a speaker			None of the	All of the	
from a few watts to tens of watts.	Small-signal	Power	above	above	Power
	8		impedance		
The main features of a large-		maximum	matching to		
signal amplifier is the circuit's		power	the output	All of the	All of the
	power efficiency	limitations	device	above	above
Class AB operation is		similar to class	similar to	d. None of	None of the
operation.	similar to class A	B	class C	the above	above
Which operation class is			010 55 0		
generally used in radio or					
communications?	A	В	AB	C	Class C
Categorize the power efficiency					
of each class of amplifier, from					
worst to best.	A, B, AB, D	A, AB, D, B	A, AB, B, D		A, AB, B, D
What is the maximum efficiency					
of a class A circuit with a direct					
or series-fed load connection?	90%	78.50%	50%	25%	25%
What is the ratio of the secondary					
voltage to the primary voltage					
with the turn ratio in the winding	N_2/N_1	$(N_1/N_2)2$	$(N_1/N_2)1/3$	$N_1 \times N_2$	N_2/N_1
Calculate the effective resistance					
seen looking into the primary of a					
20:1 transformer connected to an					
8- Ω load.	3.2 kΩ	3.0 kΩ	2.8 kΩ	1.8 kΩ	3.2 kΩ
What transformer turns ratio is					
required to match an 8-speaker					
load so that the effective load					
resistance seen at the primary is	20.01	40.01.00	50:01:00	60.01.00	40.01.00
12.8 k?	20:01	40:01:00	30:01:00	60:01:00	40:01:00
Calculate the efficiency of a transformer-coupled class A					
amplifier for a supply of 15 V and					
an output of $V(p) = 10 \text{ V}$.	25%	33.30%	50%	78.50%	33.30%
The maximum efficiency of a	23 /0	33.3070	3070	70.5070	33.3070
transformer-coupled class A					
amplifier is	a. 25%	b. 50%	c. 78.5%	d. 63.6%	50%
What is the maximum efficiency	20 /0	2.2070	2. 70.070	3. 02.070	2070
	a. 90%	b. 78.5%	c. 50%	d. 25%	78.50%
of a class B circuit?	a. 90%	b. 78.5%	c. 50%	d. 25%	78.50%

			1		
How many transistors must be					
used in a class B power amplifier					
to obtain the output for the full					
cycle of the signal?	0	1	2	3	2
In class B operation, at what					
fraction of V _{CC} should the level of					
$V_L(p)$ be to achieve the maximum					
power dissipated by the output					
transistor?	0.5	0.636	0.707	1	0.636
Class B operation is provided	0.2	0.050	0.707	_	0.020
when the dc bias leaves the					
transistor biased just off, the					
transistor turning on when the ac					
	TRUE	FALSE			TRUE
signal is applied.	TRUE	TALSE			TRUE
Calculate the efficiency of a class					
B amplifier for a supply voltage					
of $V_{CC} = 20 \text{ V}$ with peak output					
voltage of $V_L(p) = 18 \text{ V. Assume}$	7 0 7 404	5.5 04	70.6004	7 00/	70.6004
$R_L = 16 \Omega$.	78.54%	75%	70.69%	50%	70.69%
			It does not		
			provide exact		
			switching of		
			one transistor		
		There is	off and the		
Which of the following is (are)		crossover	other on at		
the disadvantage(s) of a class B	It needs two	distortion in	the zero-		
complementary-symmetry	separate voltage	the output	voltage	All of the	All of the
circuit?	sources.	signal.	condition.	above	above
Which of the push-pull amplifiers					
is presently the most popular			Complement		Quasi-
form of the class B power	Quasi-	Transformer-	ary-	None of the	complement
amplifier?	complementary	coupled	symmetry	above	ary
<u> </u>	- simpromonium y			333,2	
nMOS and pMOS transistors can	TDIE	EALCE			TDIE
be used for class B.	TRUE	FALSE			TRUE
Calculate the harmonic distortion					
component for an output signal					
having fundamental amplitude of					
3 V and a second harmonic					
amplitude of 0.25 V.	a. 3.83%	b. 38.3%	c. 83.3%	d. 8.33%	8.33%
Which of the following					
instruments displays the	Digital	Spectrum		Wave	Spectrum
harmonics of a distorted signal?	multimeter	analyzer	Oscilloscope	analyzer	analyzer
	11101011110101	anary 201	эзептовеоре	anary 201	anary 201
Which of the following					
instruments allows more precise	a. Digital	b. Spectrum	c.	d. Wave	Wave
measurement of the harmonic	multimeter	analyzer	Oscilloscope	analyzer	analyzer
					

components of a distorted signal?					
What is the maximum					
temperature rating for silicon	700	1000 : 1100	1500 . 2000	2500 . 2000	1500 . 2000
power transistors?	50° to 80°	100° to 110°	150° to 200°	250° to 300°	150° to 200°
Which of the power amplifiers is					
not intended primarily for large-	C1		GI G	CI D	GI G
signal or power amplification?	Class A	Class B or AB	Class C	Class D	Class C
Determine what maximum					
dissipation will be allowed for a					
70-W silicon transistor (rated at					
25°C) if derating is required					
above 25°C by a derating factor					
of 0.6 W/°C at a case temperature					
of 100°.	25 W	30 W	35 W	40 W	25 W
A silicon power transistor is					
operated with a heat sink (θ_{SA} =					
1.5°C/W). The transistor, rated at					
150 W (25°C), has $\theta_{JC} = 0.5^{\circ}$					
C/W, and the mounting insulation					
has $\theta_{CS} = 0.6$ °C/W. What is the					
maximum power that can be					
dissipated if the ambient					
temperature is 50°C and $T_{Jmax} =$					
200 °C?	61.5 W	60.0 W	57.7 W	55.5 W	57.7 W
Which of the following transistors					
has been quite popular as the					
driver device for class D					
amplification?	BJT	FET	UJT	MOSFET	MOSFET
Prepared By-Ambili					
Vipin, Assistant					
Professor, Department of					
Physics					

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020


UNIT-V

SYLLABUS

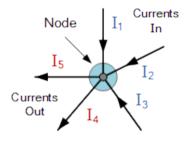
Network Theory: mesh and node analysis Kirchhoff's voltage and current law, Network Theorems- Thevein's theorem, Norton's theorem, Superposition Theorem, Maximum power transfer theorem, Problems based on network theorems

NETWORK THEORY

Network analysis is any structured technique used to mathematically analyze a circuit (a "network" of interconnected components).

Simple circuits are using Ohm's law alone to find the voltages or currents circulating within the circuit. But sometimes in complex circuits such as bridge or T networks, we cannot simply use Ohm's Law alone to find the voltages or currents circulating within the circuit. For these types of calculations we need certain rules which allow us to obtain the circuit equations and for this we can use Kirchhoffs Circuit Law.

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020


In 1845, a German physicist, Gustav Kirchhoff developed a pair or set of rules or laws which deal with the conservation of current and energy within electrical circuits. These two rules are commonly known as: Kirchhoffs Circuit Laws with one of Kirchhoffs laws dealing with the current flowing around a closed circuit, Kirchhoffs Current Law, (KCL) while the other law deals with the voltage sources present in a closed circuit, Kirchhoffs Voltage Law, (KVL).

Kirchhoffs First Law – The Current Law, (KCL)

Kirchhoffs Current Law or KCL, states that the "total current or charge entering a junction or node is exactly equal to the charge leaving the node as it has no other place to go except to leave, as no charge is lost within the node". In other words the algebraic sum of ALL the currents entering and leaving a node must be equal to zero, $I_{(exiting)} + I_{(entering)} = 0$. This idea by Kirchhoff is commonly known as the Conservation of Charge.

Kirchhoffs Current Law

Currents Entering the Node Equals Currents Leaving the Node

$$I_1 + I_2 + I_3 + (-I_4 + -I_5) = 0$$

Here, the 3 currents entering the node, I_1 , I_2 , I_3 are all positive in value and the 2 currents leaving the node, I_4 and I_5 are negative in value. Then this means we can also rewrite the equation as;

$$I_1 + I_2 + I_3 - I_4 - I_5 = 0$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

The term Node in an electrical circuit generally refers to a connection or junction of two or more

current carrying paths or elements such as cables and components. Also for current to flow either

in or out of a node a closed circuit path must exist. We can use Kirchhoff's current law when

analysing parallel circuits.

Kirchhoffs Second Law – The Voltage Law, (KVL)

Kirchhoffs Voltage Law or KVL, states that "in any closed loop network, the total voltage

around the loop is equal to the sum of all the voltage drops within the same loop" which is also

equal to zero. In other words the algebraic sum of all voltages within the loop must be equal to

zero. This idea by Kirchhoff is known as the Conservation of Energy.

Common DC Circuit Theory Terms:

• Circuit – a circuit is a closed loop conducting path in which an electrical current flows.

• Path – a single line of connecting elements or sources.

• Node – a node is a junction, connection or terminal within a circuit were two or more

circuit elements are connected or joined together giving a connection point between two

or more branches. A node is indicated by a dot.

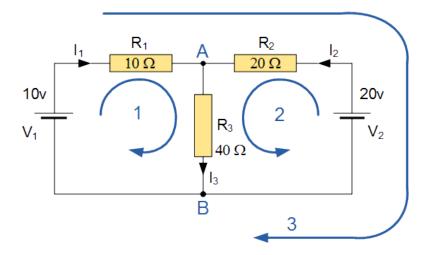
• Branch – a branch is a single or group of components such as resistors or a source which

are connected between two nodes.

• Loop – a loop is a simple closed path in a circuit in which no circuit element or node is

encountered more than once.

• Mesh – a mesh is a single open loop that does not have a closed path. There are no


components inside a mesh.

Problem

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Find the current flowing in the 40Ω Resistor, R_3

The circuit has 3 branches, 2 nodes (A and B) and 2 independent loops.

Using Kirchhoffs Current Law, KCL the equations are given as;

At node A :
$$I_1 + I_2 = I_3$$

At node B:
$$I_3 = I_1 + I_2$$

Using Kirchhoffs Voltage Law, KVL the equations are given as;

Loop 1 is given as :
$$10 = R_1 I_1 + R_3 I_3 = 10I_1 + 40I_3$$

Loop 2 is given as :
$$20 = R_2 I_2 + R_3 I_3 = 20I_2 + 40I_3$$

Loop 3 is given as :
$$10-20 = 10I_1 - 20I_2$$

As I_3 is the sum of $I_1 + I_2$ we can rewrite the equations as;

Eq. No 1:
$$10 = 10I_1 + 40(I_1 + I_2) = 50I_1 + 40I_2$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Eq. No 2:
$$20 = 20I_2 + 40(I_1 + I_2) = 40I_1 + 60I_2$$

We now have two "Simultaneous Equations" that can be reduced to give us the values of I_1 and I_2

Substitution of I_1 in terms of I_2 gives us the value of I_1 as -0.143 Amps

Substitution of I_2 in terms of I_1 gives us the value of I_2 as +0.429 Amps

As:
$$I_3 = I_1 + I_2$$

The current flowing in resistor R_3 is given as : -0.143 + 0.429 = 0.286 Amps

and the voltage across the resistor R_3 is given as : $0.286 \times 40 = 11.44 \text{ volts}$

The negative sign for I_1 means that the direction of current flow initially chosen was wrong, but never the less still valid. In fact, the 20v battery is charging the 10v battery.

MESH ANALYSIS

An easier method of solving the above circuit is by using Mesh Current Analysis or Loop Analysis which is also sometimes called Maxwell's Circulating Currents method. Instead of labelling the branch currents we need to label each "closed loop" with a circulating current.

As a general rule of thumb, only label inside loops in a clockwise direction with circulating currents as the aim is to cover all the elements of the circuit at least once. Any required branch current may be found from the appropriate loop or mesh currents as before using Kirchhoff's method.

For example: $i_1 = I_1$, $i_2 = -I_2$ and $I_3 = I_1 - I_2$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Steps to solve problems using Mesh analysis

- Label all the internal loops with circulating currents. $(I_1, I_2, ... I_L \text{ etc})$
- Write the [L x 1] column matrix [V] giving the sum of all voltage sources in each loop.
- Write the [L x L] matrix, [R] for all the resistances in the circuit as follows;
 - \circ R₁₁ = the total resistance in the first loop.
 - \circ R_{nn} = the total resistance in the Nth loop.
 - \circ R_{JK} = the resistance which directly joins loop J to Loop K.
- Write the matrix or vector equation [V] = [R] x [I] where [I] is the list of currents to be found.

NODAL VOLTAGE ANALYSIS

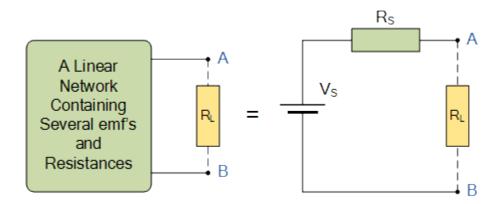
Nodal Voltage Analysis uses the "Nodal" equations of Kirchhoff's first law to find the voltage potentials around the circuit. So by adding together all these nodal voltages the net result will be equal to zero. Then, if there are "n" nodes in the circuit there will be "n-1" independent nodal equations and these alone are sufficient to describe and hence solve the circuit.

At each node point write down Kirchhoff's first law equation, that is: "the currents entering a node are exactly equal in value to the currents leaving the node" then express each current in terms of the voltage across the branch. For "n" nodes, one node will be used as the reference node and all the other voltages will be referenced or measured with respect to this common node.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

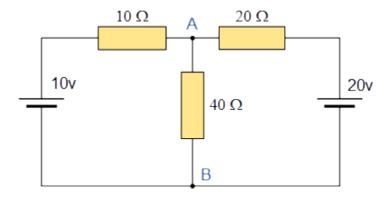
The basic procedure for solving Nodal Analysis equations is as follows:


- Write down the current vectors, assuming currents into a node are positive. ie, a (N x 1) matrices for "N" independent nodes.
- Write the admittance matrix [Y] of the network where:
 - \circ Y₁₁ = the total admittance of the first node.
 - \circ Y₂₂ = the total admittance of the second node.
 - \circ R_{JK} = the total admittance joining node J to node K.
- For a network with "N" independent nodes, [Y] will be an (N x N) matrix and that Ynn will be positive and Yjk will be negative or zero value.
- The voltage vector will be (N x L) and will list the "N" voltages to be found.

THEVENIN'S THEOREM

Thevenin's Theorem states that "Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load". In other words, it is possible to simplify any electrical circuit, no matter how complex, to an equivalent two-terminal circuit with just a single constant voltage source in series with a resistance (or impedance) connected to a load as shown below. Thevenin's Theorem is especially useful in the circuit analysis of power or battery systems and other interconnected resistive circuits where it will have an effect on the adjoining part of the circuit.

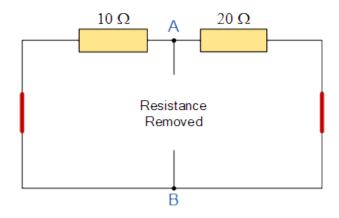
CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS


COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

The basic procedure for solving a circuit using Thevenin's Theorem is as follows:

- Remove the load resistor R_L or component concerned.
- Find R_S by shorting all voltage sources or by open circuiting all the current sources.
- Find V_S by the usual circuit analysis methods.
- Find the current flowing through the load resistor R_L.

Example


we have to remove the centre 40Ω load resistor connected across the terminals A-B, and remove any internal resistance associated with the voltage source(s). This is done by shorting out all the

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

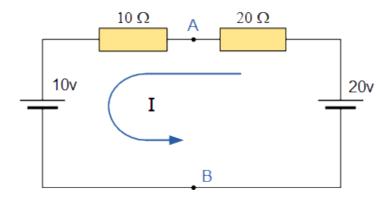
COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

voltage sources connected to the circuit, that is v = 0, or open circuit any connected current sources making i = 0. The reason for this is that we want to have an ideal voltage source or an ideal current source for the circuit analysis.

The value of the equivalent resistance, Rs is found by calculating the total resistance looking back from the terminals A and B with all the voltage sources shorted. We then get the following circuit.

Find the Equivalent Resistance (Rs)

 10Ω Resistor in Parallel with the 20Ω Resistor


$$Rt = R1xR2/R1 + R2 = \Omega6.67$$

The voltage Vs is defined as the total voltage across the terminals A and B when there is an open circuit between them. That is without the load resistor R_L connected.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Find the Equivalent Voltage (Vs)

We now need to reconnect the two voltages back into the circuit, and $asV_S = V_{AB}$ the current flowing around the loop is calculated as:

$$I=V/R = 20v-10v/20\Omega+10\Omega = 0.33 \text{ amps}$$

This current of 0.33 amperes (330mA) is common to both resistors so the voltage drop across the 20Ω resistor or the 10Ω resistor can be calculated as:

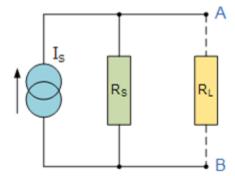
$$V_{AB} \,=\, 20 \,-\, (20\Omega \;x\; 0.33 amps) \,=\, 13.33 \;volts.$$
 or
$$V_{AB} \,=\, 10 \,+\, (10\Omega \;x\; 0.33 amps) \,=\, 13.33 \;volts, \,the \;same.$$

Then the Thevenin's Equivalent circuit would consist or a series resistance of 6.67Ω 's and a voltage source of 13.33v.

and from this the current flowing around the circuit is given as:

$$I=V/R = 13.33 \text{ V}/6.67\Omega + 40\Omega = 0.286 \text{ amps}$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS


COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

which again, is the same value of 0.286 amps, we found using Krichoff's circuit law

NORTONS THEOREM

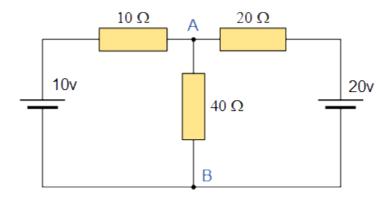
Nortons Theorem states that "Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor".

As far as the load resistance, R_L is concerned this single resistance, R_S is the value of the resistance looking back into the network with all the current sources open circuited and I_S is the short circuit current at the output terminals

The value of this "constant current" is one which would flow if the two output terminals where shorted together while the source resistance would be measured looking back into the terminals.

The basic procedure for solving a circuit using Nortons Theorem is as follows:

- Remove the load resistor R_L or component concerned.
- Find R_S by shorting all voltage sources or by open circuiting all the current sources.
- Find I_S by placing a shorting link on the output terminals A and B.

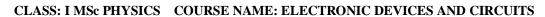


CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

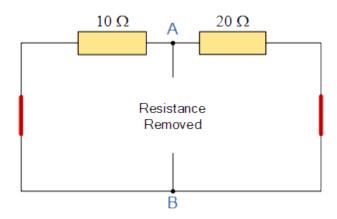
COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Find the current flowing through the load resistor R_L.

EXAMPLE


To find the Norton equivalent of the above circuit we firstly have to remove the centre 40Ω load resistor and short out the terminals A and B to give us the following circuit.

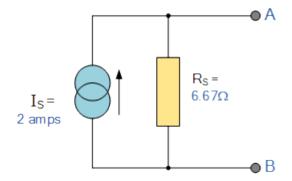
When the terminals A and B are shorted together the two resistors are connected in parallel across their two respective voltage sources and the currents flowing through each resistor as well as the total short circuit current can now be calculated as:


with A-B Shorted Out

$$I1=10v/10\Omega=1 \text{ amp}, I2=20V/20\Omega$$

If we short-out the two voltage sources and open circuit terminals A and B, the two resistors are now effectively connected together in parallel. The value of the internal resistor Rs is found by calculating the total resistance at the terminals A and B giving us the following circuit.

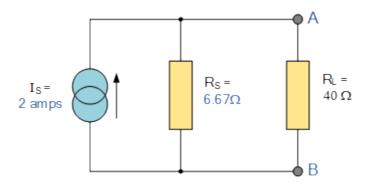
COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020


Find the Equivalent Resistance (Rs)

 10Ω Resistor in parallel with the 20Ω Resistor

$$R_T = R1xR2/R1+R2=20x10/20+10=6.67\Omega$$

Having found both the short circuit current, Is and equivalent internal resistance, Rs this then gives us the following Nortons equivalent circuit.


Nortons equivalent circuit.

To solve with the original 40Ω load resistor connected across terminals A and B as shown below.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Again, the two resistors are connected in parallel across the terminals A and B which gives us a total resistance of:

$$R_T = R1xR2/R1+R2 = 6.67x40/6.67+40=5.72\Omega$$

The voltage across the terminals A and B with the load resistor connected is given as:

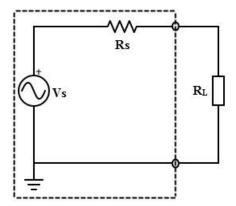
$$V_{A-B} = IxR = 2x5.72 = 11.44v$$

Then the current flowing in the 40Ω load resistor can be found as:

$$I=V/R = 11.4/40 = 0.286$$
 amps

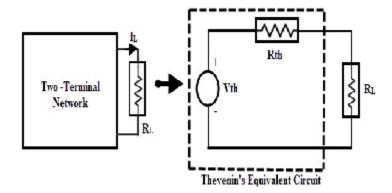
which again, is the same value of 0.286 amps, we found using Krichoff's circuit law

MAXIMUM POWER TRANSFER THEOREM


The maximum power transfer theorem states that in a linear, bilateral DC network, maximum power is delivered to the load when the load resistance is equal to the internal resistance of a source.

CI M

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS


COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

If it is an independent voltage source, then its series resistance (internal resistance Rs) or if it is independent current source, then its parallel resistance (internal resistance Rs) must equal to the load resistance RL to deliver maximum power to the load.

The maximum power transfer theorem ensures the value of the load resistance, at which the maximum power is transferred to the load.

Consider the below two terminal network to which the condition for maximum power is determined, by obtaining the expression of power absorbed by load with use of mesh or nodal current methods and then derive the resulting expression with respect to load resistance RL.

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

The original two terminal circuit is replaced with a Thevenin's equivalent circuit across the variable load resistance. The current through the load for any value of load resistance is

$$I_L = \frac{V_{Th}}{R_{Th} + R_L}$$

The power absorbed by the load is

$$P_{L} = I_{L}^{2} \times R_{L}$$

$$= \left[\frac{V_{Th}}{R_{Th} + R_{L}} \right]^{2} \times R_{L}$$

Form the above expression the power delivered depends on the values of R_{TH} and R_L . However the Thevenin's equivalent is constant, the power delivered from this equivalent source to the load entirely depends on the load resistance R_L . To find the exact value of R_L , we apply differentiation to P_L with respect to R_L and equating it to zero as

$$\frac{dP(R_L)}{dR_L} = V_{Th}^2 \left[\frac{(R_{Th} + R_L)^2 - 2R_L \times (R_{Th} + R_L)}{(R_{Th} + R_L)^4} \right] = 0$$

$$\Rightarrow (R_{Th} + R_L) - 2R_L = 0$$

$$\Rightarrow R_L = R_{Th}$$

Therefore, this is the condition of matching the load where the maximum power transfer occurs when the load resistance is equal to the Thevenin's resistance of the circuit. By substituting the $R_{th}=R_{L}$ in equation 1 we get

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

The maximum power delivered to the load is,

$$P_{\text{max}} = \left[\frac{V_{Th}}{R_{Th} + R_L}\right]^2 \times R_L$$

$$= \frac{V_{Th}^2}{4 R_{Th}}$$

Total power transferred from source is

$$P_T = I_L^2 (R_{TH} + R_L)$$

$$= 2 I_L^2 R_L \dots (2)$$

Hence, the maximum power transfer theorem expresses the state at which maximum power is delivered to the load, that is, when the load resistance is equal to the Thevenin's equivalent resistance of the circuit. Below figure shows a curve of power delivered to the load with respect to the load resistance.

SUPERPOSITION THEOREM

For analyzing the linear electric circuits that consists of two or more independent sources (Voltage or current or both), superposition theorem is extremely used (particularly for time domain circuits with elements operated at different frequencies). If a linear DC circuit has more than one independent source, we can find the current (through a resistance) and voltage (across the resistance) by using nodal or mesh analysis methods. Alternatively, we can use the superposition theorem that adds each individual source effect on the value of the variable to be determined. This means superposition theorem considers the each source in a given circuit

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

(OF HIGHER EDUCATION COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

separately for finding the value of the variable (whether current or voltage) and finally produce

the resultant variable by adding all the variables caused by each source effect. Even though it is

of complex procedure, but still can be applied for any linear circuit.

The superposition theorem states that in any linear bilateral network that consisting of two or

more independent sources, current through (or voltage across) an element is the algebraic sum of

the currents through (voltages across) that element caused by each independent source acting

alone with all other sources is replaced by their internal resistances.

Steps to Analyze Superposition Theorem

1. Consider the various independent sources in a given circuit.

2. Select and retain one of the independent sources and replace all other sources with their

internal resistances or else replace the current sources with open circuits and voltage sources

with short circuits.

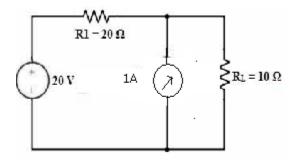
3. To avoid confusion re-label the voltage and current notations suitably.

4. Find out the desired voltage/currents due to the one source acting alone using various circuit

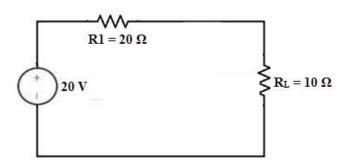
reduction techniques.

5. Repeat the steps 2 to 4 for each independent source in the given circuit.

6. Algebraically add all the voltages/currents that are obtained from each individual source


(Consider the voltage signs and current directions while adding).

Example:

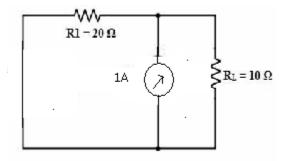


COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Let us consider the below simple DC circuit to apply the superposition theorem such that we will obtain the voltage across the resistance 10 Ohms (load terminals). Consider that in a given circuit there are two independent sources as voltage and current sources as shown in figure.

First, we retain one source at a time that means, only voltage source is acting in the circuit and the current source is replaced with internal resistance (infinite) so it becomes open circuited as shown in figure.

Consider V_{L1} is the voltage across the load terminals with voltage source acting alone, then


$$V_{L1} = Vs \times R_L / \left(R_L + R_1 \right)$$

$$=20 \times 10 / (10 + 20)$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

Retain the current source alone and replace the voltage source with its internal resistance (zero) so it becomes a short circuited as shown in figure

Consider that V_{L2} is the voltage across the load terminals when current source acting alone. Then

$$V_{L2} = I_L \times R_L$$

$$I_L = I \times R_1 / (R_1 + R_L)$$

$$=1x20/20+30$$

= 0.4 Amps

$$V_{L2} = 0.4 \times 10$$

= 4 Volts

Therefore, according the superposition theorem, the voltage across the load is the sum of $$V_{\rm L1}$$ and $$V_{\rm L2}$$

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

$$V_L = V_{L1} + V_{L2} \label{eq:VL}$$

$$= 6.66 + 4$$

= 10.66 Volts

POSSIBLE QUESTIONS

PART-B(2 Marks)

- 1. Define Kirchhoff's voltage law.
- 2. Define Kirchhoff's current law.
- 3. State Thevein's theorem.
- 4. State Norton's theorem.
- 5. State Superposition Theorem.
- 6. State Maximum power transfer theorem.
- 7. State Ohm's law.
- 8. What are the advantages of Network analysis?
- 9. What is called linear network?
- 10. What is called linear bilateral network?

PART-C (6 Marks)

CLASS: I MSc PHYSICS COURSE NAME: ELECTRONIC DEVICES AND CIRCUITS

COURSE CODE: 18PHP102 UNIT: V(NETWORK THEORY) BATCH-2018-2020

- 1. State and explain Kirchhoff's laws using neat diagrams.
- **2.** State superposition theorem. Prove this theorem in a case of general network.
- **3.** State Thevenin's theorem and prove it in the case of two terminal network.
- **4.** What is the maximum power transfer theorem? Show that power lost in the internal generator is equal to the power delivered to the load, and the power efficiency is only 50%.
- 5. State and explain Norton's theorem.
- **6.** Give the statement of Norton's theorem. Prove that the interchange of voltage and current sources with the help of Thevenin's and Norton's theorems and give a method of circuit analysis.
- **7.** What is called Mesh analysis? Discuss the steps to solve problems using Mesh analysis with an example.
- **8.** What is called Nodal analysis? Discuss the steps to solve problems using Nodal analysis with an example.

Coimbatore - 641021.

(For the candidates admitted from 2018onwards)

DEPARTMENT OF PHYSICS

UNIT V :(Objective Type/Multiple choice Questions each Question carries one Mark)
PART-A (Online Examination)

ELECTRONIC DEVICES AND CIRCUITS

QUESTIONS	CHOICE1	CHOICE2	CHOICE3	CHOICE4	ANSWER
UNIT V					
Kirchhoff's Voltage Law states that					
the total voltage around a closed					
loop must be	0	1/2	1	2	0
The algebraic sum of in a					
network of conductors meeting at a					
point is zero.	Voltages	currents	Resistances	Inductances	currents
Maximum power transfer theorem is		Thompson's			
also known as	Jacobi's law	law	Phillips law	Jackson's law	Jacobi's law
The theorem is a way to			•		
determine the currents and voltages					
present in a circuit that has multiple				Maximum	Super
sources.	Norton	Super position	Thevenin	power transfer	position
The concept on which Superposition					
theorem is based is	reciprocity	duality	non-linearity	linearity	linearity
dieorem is based is	reciprocity	duanty	non inicarity		inicarity
				both a.c. as	both a.c. as
	passive	a.c. circuits	d.c. circuits	well d.c.	well d.c.
Kirchhoff's law is applicable to	networks only	only	only	circuits	circuits
For maximum transfer of power,			greater than		
internal resistance of the source	equal to load	less than the	the load	none of the	equal to load
should be	resistance	load resistance	resistance	above	resistance
V:1.1 CC		.1	-14	-1	
Kirchhoffs current law is applicable	junction in a	closed loops in	electric	electronic	junction in a
to only	network	a network	circuits	circuits	network
	junction				
Kirchhoff's voltage law is related to	currents	battery emfs	IR drops	both b & c	both b & c
					linear
Superposition theorem can be	resistive	passive	non-linear	linear bilateral	bilateral
applied only to circuits having	elements	elements	elements	elements	elements

	Т		1	1	<u> </u>
The concept on which superposition					
theorem is based on	reciprocity	duality	non-linearity	linearity	linearity
Which of the following is non-linear			wire wound		
circuit parameter?	Inductance	condenser	resistor	transistor	Inductance
	planar	Non-planar		electric	
Node analysis can be applied for	networks	networks	Both a & b	networks	Both a & b
	planar	Non-planar		electric	planar
Mesh analysis is applicable for	networks	networks	Both a & b	networks	networks
				current,	current,
The superposition theorem is			current and	voltage and	voltage and
applicable to	voltage only	current only	voltage	power	power
Kirchhoff's current law is applicable	junction in a	closed loops in	electric	electronic	junction in a
only to	network	a network	circuits	circuits	network
Maximum power output is obtained					
from a network when the load					
resistance is equal to the output					Maximum
resistance of the network as seen	N 4'11 1	7D1 : 1	g :	Maximum	power
from the terminals of the load". The	Millman's theorem	Thevenin's	Superposition theorem	power transfer theorem	transfer
above statement is associated with	meorem	theorem	theorem	theorem	theorem
77: 11 66					
Kirchhoffs current law is applicable	junction in a	closed loops in	electric	electronic	junction in a
to only	network	a network	circuits	circuits	network
Superposition theorem is based on	Reciprocity	duality	non-linearity	Linearity	Linearity
The Norton current is sometimes	shorted-load	open-load	Thevenin	Thevenin	shorted-load
called the	current	current	current	voltage	current
			no curreht can		Hebraic sum
			leave the		of the
	net current	Hebraic sum of	junction	total sum of	currents
	flow at the	the currents	without some	currents	meeting at
	junction is	meeting at the	current	meeting at the	the junction
Kirchhoff's current law states that	positive	junction is zero	entering it.	junction is zero	is zero
According to Kirchhoffs voltage					
law, the algebraic sum of all IR					
drops and e.m.fs. in any closed loop		•,•	determined by		
of a network is always	negative	ositive	battery e.m.fs.	zero	zero

	-	I	1		
Kirchhoffs current law is applicable	junction in a	closed loops in	electric	electronic	junction in a
to only	network	a network	circuits	circuits	network
	junction			both (b) and	both (b) and
Kirchhoffs voltage law is related to	currents	battery e.m.fs.	IR drops	(c)	(c)
					linear
Superposition theorem can be	resistive	passive	non-linear	linear bilateral	bilateral
applied only to circuits having	elements	elements	elements	elements	elements
The concept on which Superposition theorem is based is	eciprocity	duality	non-linearity	linearity	linearity
theorem is based is	cerprocity	duanty	non-inicarity	imearity	inicarity
	by removing				
	voltage	hy short			between
	sources along with their	by short- circuiting the	between any	between same	same open
	internal	given two	two 'open'	open terminals	terminals as
Thevenin resistance Rth is found	resistances	terminals	terminals	as for Etk	for Etk
A midded welfte ee convers about dibour	large value of	small value of	zero source	infinite source	zero source
An ideal voltage source should have	e.m.f.	e.m.f.	resistance	resistance	resistance
	terminal	terminal	the source e.m.f. and		terminal
	voltage is always lower	voltage cannot	terminal		voltage cannot be
	than source	be higher than	voltage are		higher than
For a voltage source	e.m.f.	source e.m.f.	equal		source e.m.f.
	value of				direction of
To determine the polarity of the	current	direction of	1 6	C	current
voltage drop across a resistor, it is necessary to know	through the resistor	current through the resistor	value of resistor	e.m.fs. in the circuit	through the resistor
"Maximum power output is obtained	10313101	the resistor	10313101	Circuit	10313101
from a network when the load					
resistance is equal to the output					Maximum
resistance of the network as seen	Millmania	Thomasis	Cymannasitian	Maximum	power
from the terminals of the load". The above statement is associated with	Millman's theorem	Thevenin's theorem	Superposition theorem	power transfer theorem	transfer theorem
accide statement is associated with	theorem.		LICOTOIII	ancoroni .	

1 6 · ·	1		1		
"Any number of current sources in					
parallel may be replaced by a single					
current source whose current is the					
algebraic sum of individual source					
currents and source resistance is the			3.6		
parallel combination of individual			Maximum		
source resistances". The above	Thevenin's	Millman's	power transfer	None of the	Millman's
statement is associated with	theorem	theorem	theorem	above	theorem
"In any linear bilateral network, if a					
source of e.m.f. E in any branch					
produces a current I in any other					
branch, then same e.m.f. acting in					
the second branch would produce					
the same current / in the first					
branch".The above statement is	compensation	superposition	reciprocity	none of the	reciprocity
associated with	theorem	theorem	theorem	above	theorem
Which of the following is non-linear			Wire wound		
circuit parameter ?	Inductance	Condenser	resistor	Transistor	Inductance
	1.11 . 1 . 1	active, passive,	1. 1	11	1. 1
	bilateral and	linear and	linear and	non-linear and	linear and
	active	nonlinear	bilateral	active	bilateral
A capacitor is generally a	component	component	component	component	component
"In any network containing more					
than one sources of e.m.f. the					
current in any branch is the					
algebraic sum of a number of					
individual fictitious currents (the					
number being equal to the number					
of sources of e.m.f.), each of which					
is due to separate action of each					
source of e.m.f., taken in order,					
when the remaining sources of e.m.f.					
are replaced by conductors, the					
resistances of which are equal to the					
internal resistances of the respective	Thomasiala	Nonton!-	C	None of the	C
sources". The above statement is	Thevenin's	Norton's	Superposition	None of the	Superposition
associated with	theorem	theorem	theorem	above	theorem
				both a.c. as	both a.c. as
	passive	a.c. circuits	d.c. circuits	well d.c.	well d.c.
Kirchhoff s law is applicable to	networks only	only	only	circuits	circuits

			т	·T	
Kirchhoff s law is not applicable to circuits with	lumped parameters	passive elements	distributed parameters	non-linear resistances	distributed parameters
Kirchhoff's voltage law applies to circuits with	nonlinear elements only	linear elements only	linear, non- linear, active and passive elements	linear, non- linear, active, passive, time varying as wells as time- in-variant elements	linear, non- linear, active, passive, time varying as wells as time- in-variant elements
The resistance LM will be	6.66 Q	12 Q	18Q	20Q	6.66 Q
For high efficiency of transfer of power, internal resistance of the source should be	equal to the load resistance	less than the load resistance	more than the load resistance	none of the above	less than the load resistance
Efficiency of power transfer when maximum transfer of power c xurs is	100%	80%	75%	50%	50%
If resistance across LM in Fig. 2.30 is 15 ohms, the value of R is	10 Q	20 Q	30 Q	40 Q	30 Q
For maximum transfer of power, internal resistance of the source should be	equal to load resistance	less than the load resistance	greater than the load resistance	none of the above	equal to load resistance
If the energy is supplied from a source, whose resistance is 1 ohm, to a load of 100 ohms the source will be	a voltage source	a current source	both of above	none of the above	a voltage source
The circuit whose properties are same in either direction is known as	unilateral circuit	bilateral circuit	irreversible circuit	reversible circuit	bilateral circuit
In a series parallel circuit, any two resistances in the same current path must be in	series with each other	parallel with each other	series with the voltage source.'	parallel with the voltage source	series with each other
The circuit has resistors, capacitors and semi-conductor diodes. The circuit will be known as	non-linear circuit	linear circuit	bilateral circuit	none of the above	non-linear

	т	т		т —	Т
	'	1			
A non-linear network does not satisfy	superposition condition	homogeneity condition	both homogeneity as well as superposition condition	homogeneity, superposition and associative condition	both homogeneity as well as superposition condition
Sallory	Condition	open circuit	terminal	terminal	0010101
An ideal voltage source has	zero internal resistance	voltage equal to the voltage on full load	voltage in proportion to current	voltage in proportion to load	zero internal resistance
A network which contains one or more than one source of e.m.f. is known as	linear network	non-linear network	passive network	active network	passive network
The superposition theorem is applicable to	linear, non- linear and time variant responses	linear and non-linear resistors only	linear responses only	none of the above	linear responses only
Which of the following is not a nonlinear element?	Gas diode	Heater coil	Tunnel diode	Electric arc	
Application of Norton's theorem to a circuit yields	equivalent current source and impedance in series	equivalent current source and impedance in parallel	equivalent impedance	equivalent current source	equivalent current source and impedance in series
Millman's theorem yields	equivalent resistance	equivalent impedance	equivalent voltage source	equivalent voltage or current source	equivalent voltage or current source
The superposition theorem is			both current	current voltage	current voltage and
applicable to	voltage only	current "only	and voltage	and power	power
Between the branch voltages of a loop the Kirchhoff's voltage law	non-linear	linear		none of the	linear
imposes	constraints	constraints	no constraints	above	constraints

			1		
A passive network is one which contains	only variable resistances	only some sources of e.m.f. in it	only two sources of e.m.f. in it	no source of e.m.f. in it	no source of e.m.f. in it
A terminal where three on more branches meet is known as	node	terminus	combination	anode	node
Which of the following is the passive element?	Capacitance	Ideal current source	Ideal voltage source	All of the above	Capacitance
Which of the following is a bilateral element ?	Constant current source	Constant voltage source	Capacitance	None of the above	Capacitance
A closed path made by several branches of the network is known as	branch	loop	circuit	junction	loop
A linear resistor having $0 < R < ^{\circ}o$ is	current controlled resistor	voltage controlled resistor	both current controlled and voltage controlled resistor	none of the above	both current controlled and voltage controlled resistor
A star circuit has element of resistance R/2. The equivalent delta elements will be	R/6	fi?	2R	4R	fi?
A delta circuit has each element of value R/2. The equivalent elements of star circuit with be	RIG	R/3	2R	3R	RIG
In Thevenin's theorem, to find Z	all independent current sources are short circuited and independent voltage sources are open circuited	all independent voltage sources are open circuited and all independent current sources are short circuited	all independent voltage and current sources are short circuited	all independent voltage sources are short circuited and all independent current sources are open circuited	all independent voltage sources are short circuited and all independent current sources are open circuited

	all				all
	independent	only current	only voltage	all voltage and	independent
While calculating Rth in Thevenin's	sources are	sources are	sources are	current sources	sources are
theorem and Norton equivalent	made dead	made dead	made dead	are made dead	made dead
			sum of the	sum of number	
The number of independent			number of	of branches,	
equations to solve a network is equal	the number of	the number of	branches and	chords and	the number
to	chords	branches	chords	nodes	of chords
The superposition theorem requires					
as many circuits to be solved as	sources, nodes	sources and			
there are	and meshes	nodes	sources	nodes	sources
Prepared By-Ambili					
Vipin, Assistant					
Professor, Department of Physics					