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Cauchy’s integral theorem and integral formula – derivatives of an analytic function – 
Liouville’s theorem - Taylor’s series – Laurent’s series - Residues and their evaluation -
Cauchy’s residue theorem – application to the evaluation of definite integrals. 
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S.No Lecture 
Duration 
Hour 

                           

  UNIT - I 
1 1 Definition of vector space 

independence 
 

2 1 Representation of Vectors and linear operators with 
respect to basis 
 

3 1 Schmidt orthogonalization process 
 

4 1 Tensors : Transformation of coordinates 
convention – Contravariant Tensor 
 

5 1 Mixed Tensor 
 

6 1 Kronecker delta symbol 
tensors 
 

7 1 Invariant tensors.
 

8  1 Revision 
 

9 1 Possible big mark 
10 1 Possible multiple choice questions discussion
11 1 Unit test 
12 1 Semester question discussion on particular unit
                                              Total no.of Hours planned for unit 
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LECTURE PLAN  

  

                           Topics to be covered Support 
material

 
Definition of vector space – Linear dependence – Linear 
independence – Basis – Dimension of a vector space   

T1(75

Representation of Vectors and linear operators with 
respect to basis  

T1(67

Schmidt orthogonalization process – Inner product T1(78

Tensors : Transformation of coordinates – Summation 
Contravariant Tensor – Covariant Tensor 

T1(188
T1(191

Mixed Tensor – Rank of a Tensor T1(193

Kronecker delta symbol – symmetric and antisymmetric T1(189
T1(204

Invariant tensors. T1(210

 

Possible big mark questions discussion  
Possible multiple choice questions discussion  

 
Semester question discussion on particular unit  

Total no.of Hours planned for unit –I-12 hrs   
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UCATION 

M.Sc.Physics 

Support 
material/Page.Nos 

 
T1(75-76) 

T1(67-69) 

T1(78-79) T1(80) 

T1(188-189) 
T1(191-192) 

T1(193-194) 

T1(189-190) 
T1(204-205) 

T1(210-211) 
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S.No Lecture 
Duration 
(Hr) 

                         Topics to be covered Support 
material/Page.Nos 

  UNIT-II  
1 1 Functions of a complex variable – single and multivalued 

functions 
 

T1(293-294) 

2 1 Cauchy-Riemann differential equation – analytical – line 
integrals of complex function 
 

T1(269-297) 
T1(305-306) 

3 1 Cauchy’s integral theorem and integral formula 
 

T1(309-310) 
T1(318-319) 

4 1 derivatives of an analytic function 
 

T1(319-320) 
T1(323-324) 

5 1 Liouville’s theorem - Taylor’s series 
 

T1(323-324) 

6 1 Laurent’s series - Residues and their evaluation 
 

T1(324-326) 

7 1 Cauchy’s residue theorem – application to the evaluation 
of definite integrals 
 

T1(340-341) 

8  1 Revision 
 

 

9 1 Possible big mark questions discussion  
10 1 Possible multiple choice questions discussion  
11 1 Unit test  
12 1 Semester question discussion on particular unit  
                                      Total no.of Hours planned for unit –II-12hrs 
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S.No Lecture 
Duration 
(Hr) 

                           Topics to be covered Support 
material/Page.Nos 

  UNIT -III  
1 1 Fourier Transform – Properties of Fourier transform – 

Fourier transform of derivatives  
 

T1(665-672) 

2 1 Fourier sine and cosine transforms of derivatives – Fourier 
transform of functions of two or three variables 
 

T1(673-676) 
T1(680) 

3 1 Finite Fourier transforms – Simple Applications of FT 
 

T1(680-683) 

4 1 Laplace transform – Properties of Laplace transforms – 
Laplace Transform of derivative of a function 
 

T1(689-697) 

5 1 Laplace transform of integral – Laplace transform of 
periodic functions - Inverse Laplace Transform 
 

T1(689-697) 
T1 (701-702) 

6 1 Fourier Mellin Theorem - Properties of inverse Laplace 
Transform 
 

T1(709-710) 

7 1 Convolution theorem – Evaluation of Laplace Transform 
using Convolution theorem 
 

T1(712-714) 

8  1 Revision 
 

 

9 1 Possible big mark questions discussion  
10 1 Possible multiple choice questions discussion  
11 1 Unit test  
12 1 Semester question discussion on particular unit  
                                      Total no.of Hours planned for unit –III-12hrs 
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S.No Lecture 
Duration 
(Hr) 

                           Topics to be covered Support 
material/Page.Nos 

  UNIT-IV  
1 1 Dirichlet’s theorem – change of interval – complex form 

recurrence relations  
 

T1(527-531) 

2 1 Fourier series in the interval (0, T) 
 

T1(541-543) 

3 1 Uses of Fourier series - Legendre’s polynomials and 
functions 
 

T1(543) 
T1(411-415) 
 

4 1 Differential equations and solutions 
 

T1(411-415) 

5 1 Rodrigues formula – Orthogonality 
 

T1(418-419) 

6 1 Relation between Legendre polynomial and their 
derivatives 
 

T1(421-422) 

7 1 Lagurae Polynomials – recurrence relations  
 

T1(485-491) 

8  1 Revision 
 

 

9 1 Possible big mark questions discussion  
10 1 Possible multiple choice questions discussion  
11 1 Unit test  
12 1 Semester question discussion on particular unit  
                                      Total no.of Hours planned for unit –IV-12hrs 
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TEXT BOOK: 
1. Satya Prakash., 2002. Mathematical Physics, 4th edition, S.Chand & Co, New Delhi. 

 
REFERENCES: 
1. Gupta.B.D., 2002, .Mathematical Physics, 2nd edition, Vikas publishing company, New 
Delhi. 
2. Singaravelu.V., 2008. Numerical methods, 2nd edition, Meenakshi publications, Sirkali. 
3. Rajput.B.S., 2003. Mathematical Physics, 16th edition, Pragati Prakashan, Meerut. 
4. Gupta. P.P., Yadav., and Malik.,2012. Mathematical Physics, Kedar Nath & Ram Nath, 
Meerut. 
5. Venkataraman.M.K., 2003. Numerical methods in Science & Engineering, 5th edition, The 
National Publishing Company, Chennai. 
6. Butkov, 2007, Mathematical Physics, Addison Wesley, New York 

S.No Lecture 
Duration 
(Hr) 

                           Topics to be covered Support 
material/Page.Nos 

  UNIT - V  
1 1 Bessel’s functions – differential equation and solution  

 
T1(444-445) 

2 1 Generating functions – recurrence relations – Bessel 
function of second order 
 

T1(457-458) 
446-447 

3 1 Spherical Bessel function 
 

T1 (472) 

4 1 Hermite differential equation and Hermite polynomials 
 

T1(475-477) 

5 1 Generating function of Hermite polynomials – Recurrence 
formulae for Hermite polynomials 
 

T1(480-481) 

6 1 Rodrigue’s formula for Hermite Polynomials 
 

T1(482-483) 

7 1 Orthogonality of Hermite Polynomials – Dirac’s Delta 
Function 
 

T1(735-736) 

8  1 Revision 
 

 

9 1 Possible big mark questions discussion  
10 1 Possible multiple choice questions discussion  
11 1 Unit test  
12 1 Semester question discussion on particular unit  
                                      Total no.of Hours planned for unit –V-12hrs 
 

 



Lecture Plan  Batch 2018-2020 

 

Prepared by Dr.S.Esakki Muthu, Department of Physics, KAHE Page 6/6 
 

7. A.W. Joshi, 2008, Tensors and Matrices, reprint, Wiley Interscience, New York. 
 
 
 
Websites:  

1. https://aip.scitation.org/journal/jmp 
2. https://www.springer.com/physics/theoretical%2C+mathematical+%26+computationa

l+physics/journal/220 

Journals:  

1. Advances in Theoretical and Mathematical Physics 
2. Communications in Mathematical Physics 
3. Journal of Mathematical Physics 
4. Journal of Nonlinear Mathematical Physics 
5. Journal of Physics A: Mathematical and Theoretical 
6. Letters in Mathematical Physics 
7. Reports on Mathematical Physics 
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UNIT-I 
 

SYLLABUS 
 
 
 
 
 
 
 
 
 
Definition of Vector Space 
 
A vector space  is a set that is closed under finite vector addition and scalar multiplication. The 

basic example is -dimensional Euclidean space , where every element is represented by a list 

of  real numbers, scalars are real numbers, addition is component wise, and scalar 

multiplication is multiplication on each term separately. 

For a general vector space, the scalars are members of a field , in which case  is called a 

vector space over . 

Euclidean -space  is called a real vector space, and  is called a complex vector space. 

In order for  to be a vector space, the following conditions must hold for all 

elements  and any scalars : 

1. Commutativity: 

 

(1)
2. Associativity of vector addition: 

 

(2)
3. Additive identity: For all , 

 

(3)
4. Existence of additive inverse: For any , there exists a  such that 

 

(4)
5. Associativity of scalar multiplication: 

 

(5)
6. Distributivity of scalar sums: 

 

(6)
7. Distributivity of vector sums: 

 

(7)
8. Scalar multiplication identity: 

 

Vector Space - Definition of vector space – Linear dependence – Linear independence – 
Basis – Dimension of a vector space – Representation of Vectors and linear operators with 
respect to basis – Schmidt orthogonalization process – Inner product. Tensors : 
Transformation of coordinates – Summation convention – Contravariant Tensor – Covariant 
Tensor – Mixed Tensor – Rank of a Tensor – Kronecker delta symbol – symmetric and 
antisymmetric tensors – Invariant tensors.  



       KARPAGAM ACADEMY OF HIGHER EDUCATION 
                             CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS 
                           COURSE CODE: 18PHP104  UNIT: I (VECTOR SPACE)   BATCH-2018-2020     
 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE  Page 2of 25 

 
 
Linear Independence and dependence 
 

Let  kvvvS ,,, 21   and WSspan )( . Is it possible to find a smaller (or even smallest) set, 

for example,  121 ,,, 
  kvvvS  , such that  

)span(SWspan(S)   

To answer this question, we need to introduce the concept of linear independence and linear 
dependence. 
 
Definition of linear dependence and linear independence: 

The vectors  in a vector space V are said to linearly dependent if there exist 

constants, kccc ,,, 21  , not all 0, such that  

02211  kkvcvcvc  . 

 are linearly independent if  

0   0 212211  kkk cccvcvcvc  . 

 

The procedure to determine if  are linearly dependent or linearly independent: 

 

1. Form equation 02211  kkvcvcvc  , which lead to a homogeneous system. 

2. If the homogeneous system has only the trivial solution, then the given vectors are linearly 
independent; if it has a nontrivial solution, then the vectors are linearly dependent.  

 
 
Example: 
 

 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 

















































 . Are 21 ,ee  and 3e  linearly 

independent? 
 
[solution:] 

kvvv ,,, 21 

kvvv ,,, 21 

kvvv ,,, 21 
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0

100

010

001

1

0

0

0

1

0

0

0

1

3

2

1

321332211 




















































































c

c

c

cccececec  



































0

0

0

  

3

2

1

c

c

c

. 

Therefore, 21 ,ee  and 3e  are linearly independent. 

 
 
 
Example: 

 

.

10

6

8

  ,

1

1

2

  ,

3

2

1

321


















































 vvv . Are 21,vv  and 3v  linearly independent? 

 
[Solution:] 
 

0

1013

612

821

10

6

8

1

1

2

3

2

1

3

2

1

321332211 






























 





















































c

c

c

cccvcvcvc  

Rtt

c

c

c




































  ,

1

2

4

  

3

2

1

. 

Therefore, 21 ,vv  and 3v  are linearly dependent. 

Example: 

 
Determine whether the following set of vectors in the vector space consisting of all 22  
matrices is linearly independent or linearly dependent. 

 


































02

01
,

12

03
,

10

12
,, 321 vvvS . 

 
[solution:] 
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. 

Thus, 

0                     

022               

        0                           

          0   32      

21

32

1

321







cc

cc

c

ccc

      















































































0

0

0

0

0

2

0

1

1

2

0

3

1

0

1

2

321 ccc . 

 
The homogeneous system is  






















































0

0

0

0

011

220

001

132

3

2

1

c

c

c

. 

The associated homogeneous system has only the trivial solution  


































0

0

0

3

2

1

c

c

c

.  

Therefore, 21,vv  and 3v  are linearly independent. 

 
Example: 
 
Determine whether the following set of vectors in the vector space consisting of all polynomials 
of degree n  is linearly independent or linearly dependent. 

. 

[solution:] 
 

      022322 2
3

2
2

2
1332211  xxcxxcxxcvcvcvc . 

Thus, 

02        2

02     

032  

31

321

321





cc

ccc

ccc

      



































































0

0

0

2

2

3

0

1

2

2

1

1

321 ccc . 

The associated homogeneous system is  




































00

00

02

01

12

03

10

12
321332211 cccvcvcvc



   223 ,2 ,2,, 222
321  xxxxxxvvvS
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
















































0

0

0

202

211

321

3

2

1

c

c

c

. 

The homogeneous system has infinite number of solutions,  

.  ,

1

1

1

3

2

1

Rtt

c

c

c





































 

Therefore, 21,vv  and 3v  are linearly dependent since  

Rttvtvtv    ,0321 . 

 
Note: 

In the examples with ,

10

6

8

  ,

1

1

2

  ,

3

2

1

321


















































 vvv  or with 

, 21 ,vv  and  are linearly 

dependent. Observe that 3v  in both examples are linear combinations of 21 ,vv , 

 

233 24

1

1

2

2

3

2

1

4

10

6

8

vvv 

















































  

and  

    21
222

3 22223 vvxxxxxxv  .  

As a matter of fact, we have the following general result. 
 
Important result: 

The nonzero vectors  in a vector space V are linearly dependent if and only if one of 

the vectors 2 , jv j , is a linear combination of the preceding vectors 121 ,,, jvvv  . 

Note: 

Every set of vectors containing the zero vector is linearly dependent. That is, kvvv ,,, 21   are k 

vectors in any vector space and iv  is the zero vector, then kvvv ,,, 21   are linearly dependent. 

 
Basis and Dimension 

   223 ,2 ,2,, 222
321  xxxxxxvvvS

3v

kvvv ,,, 21 
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Definition of basis: 

The vectors kvvv ,,, 21   in a vector space V are said to form a basis of V if  

(a) kvvv ,,, 21   span V (i.e., Vvvvspan k ),,,( 21  ). 

(b) kvvv ,,, 21   are linearly independent. 

Example: 

 

 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 

















































 . Are 21 ,ee  and 3e  a basis in 3R ? 

[solution:] 

21 ,ee  and 3e  form a basis in 3R  since  

(a) 
3

321 ),,()( ReeespanSspan   (see the example in the previous section). 

(b) 21 ,ee  and 3e  are linearly independent (also see the example in the previous section). 

Example: 





























4

3
  ,

1

0
  ,

0

1
321 vvv . Are 21 ,vv  and 3v  a basis in 2R ? 

[solution:] 

21 ,vv  and 3v  are not a basis of 2R  since 21 ,vv  and 3v  are linearly dependent,  

043 321  vvv . 

Note that 2
321 ),,( Rvvvspan  .  

Example: 
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.

10

6

8

  ,

1

1

2

  ,

3

2

1

321


















































 vvv . Are 21 ,vv  and 3v  a basis in 3R ? 

[solution:] 

21 ,vv  and 3v  are not a basis in 3R  since 21 ,vv  and 3v  are linearly independent,  

233 24

1

1

2

2

3

2

1

4

10

6

8

vvv 

















































 .  

Example: 

Let  

 321321 ,,  and  ,

0

1

1

  ,

2

0

1

  ,

1

2

1

vvvSvvv 

















































 . 

Are S a basis in 3R ? 

[solution:] 

(a) 

3)( RSspan      For any vector 3R

c

b

a

v 















 , there exist real numbers 321 ,, ccc  such that  

332211321

0

1

1

2

0

1

1

2

1

vcvcvcccc

c

b

a

v 


































































 . 

  we need to solve for the linear system  


















































c

b

a

c

c

c

3

2

1

021

102

111

. 
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The solution is  

3

24
  ,

3
  ,

3

22
321

cba
c

cba
c

cba
c








 . 

Thus, 

 

321 3

24

33

22
v

cba
v

cba
v

cba
v 






 







 







 

 . 

That is, every vector in 3R  can be a linear combination of 321 ,, vvv  and  
3)( RSspan  . 

(b) Since  

0    

0

0

0

2

2 321

21

31

321

332211 





































 ccc

cc

cc

ccc

vcvcvc
, 

321  , , vvv  are linearly independent.  

By (a) and (b), 321  , , vvv  are a basis of 3R .  

Important result: 

If  kvvvS ,,, 21   is a basis for a vector space V, then every vector in V can be written in an 

unique way as a linear combination of the vectors in S.  

 

Example: 
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 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 

















































 . S is a basis of 3R . Then, for any 

vector 


















c

b

a

v , 

321

1

0

0

0

1

0

0

0

1

cebeaecba

c

b

a

v 


































































   

is uniquely determined.  

Important result: 

Let  kvvvS ,,, 21   be a set of nonzero vectors in a vector space V and let  

 kvvvspanW ,,, 21  . Then, some subset of S is a basis of W.  

How to find a basis (subset of S) of W: 

There are two methods: 

Method 1: 

The procedure based on the proof of the above important result. 

Method 2: 

Step 1: Form equation 

02211  kk vcvcvc  . 

Step 2: Construct the augmented matrix associated with the equation in step 1 and transform this 
augmented matrix to the reduced row echelon form. 

 

Step 3: The vectors corresponding to the columns containing the leading 1’s form a basis. For 

example, if 6k  and the reduced row echelon matrix is  
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





























0000000

0000000

01000

0100

01



, 

then the 1’st, the 3’nd, and the 4’th columns contain a leading 1 and thus  

431 ,, vvv  are a basis of  621 ,,, vvvspanW  . 

Example: 

 

Let 

 

































































































2

3

1

,

1

0

0

,

0

3

2

,

0

1

0

,

0

0

1

,,,, 23121 aeaeeS
 

and   3RSspan  . Please find subsets of S which form a basis of 3R . 

[solution:] 

Method1:  

We first check if 1e  and 2e  are linearly independent. Since they are linearly independent, we 

continue to check if 1e , 2e  and 1a  are linearly independent. Since 

032 121  aee , 

we delete 1a  from S and form a new set 1S ,  23211 ,,, aeeeS  . Then, we continue to check if 1e

, 2e  and 3e  are linearly independent. They are linearly independent. Thus, we finally check if 1e

, 2e  3e  and 2a   are linearly independent. Since  

023 2321  aeee , 
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we delete 1a  from 1S  and form a new set 2S ,  3212 ,, eeeS  . Therefore,  

 3212 ,, eeeS   

is the subset of S which form a basis of form a basis of 3R . 

Method 2: 

Step 1: 

The equation is  

0

3

2

1

1

0

0

0

3

2

0

1

0

0

0

1

54321 



















































































ccccc

. 

Step 2: 

The augmented matrix and its reduced row echelon matrix is   

















031000

020310

010201

. 

The 1’st, the 2’nd and 4’th columns contain the leading 1’s. Thus,  

 321 ,, eee  forms a basis.  

 

Representation of Vectors and linear operators with respect to basis  

Let  nvvvS ,,, 21   be a basis for a vector space V and let   rwwwT ,,, 21   is a 

linear independent set of vectors in V. Then, nr  . 

Corollary: 

Let  nvvvS ,,, 21   and  mwwwT ,,, 21   be two bases for a vector space V. 

Then, mn  . 
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Note:  

For a vector space V, there are infinite bases. But the number of vectors in two different bases 
are the same.  

Example: 

For the vector space 3R ,  

 321321 ,,  ,

0

1

1

  ,

2

0

1

  ,

1

2

1

vvvSvvv 

















































  is a basis for 3R  (see the previous 

example). Also, 

 321321 ,,  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeTeee 

















































  is basis for 3R .  

   There are 3 vectors in both S and T. 

Schmidt orthogonalization process 

Gram-Schmidt orthogonalization, also called the Gram-Schmidt process, is a procedure which 
takes a nonorthogonal set of linearly independent functions and constructs an orthogonal 
basis over an arbitrary interval with respect to an arbitrary weighting function . 

Applying the Gram-Schmidt process to the functions 1, , , ... on the interval  with the 
usual  inner product gives the Legendre polynomials (up to constant multiples; Reed and 
Simon 1972, p. 47). 

Given an original set of linearly independent functions , let  denote the 
orthogonalized (but not normalized) functions,  denote the orthonormalized functions, and 
define 

  

(1)

  

 

(2)

Then take 
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(3)

where we require 

 

 

(4)

   

(5)

By definition, 

 

(6)

so 

 

(7)

The first orthogonalized function is therefore 

 

(8)

and the corresponding normalized function is 

 

(9)

By mathematical induction, it follows that 

 

(10)

where 

 

(11)

and 
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(12)

If the functions are normalized to  instead of 1, then 

 

(13)

 

(14)

 

(15)

Orthogonal polynomials are especially easy to generate using Gram-Schmidt orthonormalization. 
Use the notation 

 

 

(16)

  

 

(17)

where  is a weighting function, and define the first few polynomials, 

   

(18)

  

 

(19)

As defined,  and  are orthogonal polynomials, as can be seen from 

 

 

 

(20)

  

 

(21)

   

(22)

   

(23)

Now use the recurrence relation 
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(24)

to construct all higher order polynomials. 

To verify that this procedure does indeed produce orthogonal polynomials, examine 

 

 

(25)

  

 

(26)

  

 

(27)

  

 

(28)

   

(29)

  

 

(30)

   

(31)

since . Therefore, all the polynomials  are orthogonal. 

Inner product 

An inner product is a generalization of the dot product. In a vector space, it is a way to 
multiply vectors together, with the result of this multiplication being a scalar. 

More precisely, for a real vector space, an inner product  satisfies the following four 
properties. Let , , and  be vectors and  be a scalar, then: 

1. . 

2. . 

3. . 

4.  and equal if and only if . 

The fourth condition in the list above is known as the positive-definite condition. Related thereto, 
note that some authors define an inner product to be a function  satisfying only the first 
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three of the above conditions with the added (weaker) condition of being (weakly) non-
degenerate (i.e., if for all , then ). In such literature, functions satisfying all four 
such conditions are typically referred to as positive-definite inner products (Ratcliffe 2006), 
though inner products which fail to be positive-definite are sometimes called indefinite to avoid 
confusion. This difference, though subtle, introduces a number of noteworthy phenomena: For 
example, inner products which fail to be positive-definite may give rise to "norms" which yield 
an imaginary magnitude for certain vectors (such vectors are called spacelike) and which induce 
"metrics" which fail to be actual metrics. The Lorentzian inner product is an example of an 
indefinite inner product. 

A vector space together with an inner product on it is called an inner product space. This 
definition also applies to an abstract vector space over any field. 

Examples of inner product spaces include: 

1. The real numbers , where the inner product is given by 

 

(1)

2. The Euclidean space , where the inner product is given by the dot product 

 

(2)

3. The vector space of real functions whose domain is an closed interval  with inner product 

 

(3)

When given a complex vector space, the third property above is usually replaced by 

 

(4)

where  refers to complex conjugation. With this property, the inner product is called 
a Hermitian inner product and a complex vector space with a Hermitian inner product is called 
a Hermitian inner product space. 

Every inner product space is a metric space. The metric is given by 

 

(5)

If this process results in a complete metric space, it is called a Hilbert space. What's more, every 
inner product naturally induces a norm of the form 
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(6)

whereby it follows that every inner product space is also naturally a normed space. As noted 
above, inner products which fail to be positive-definite yield "metrics" - and hence, "norms" - 
which are actually something different due to the possibility of failing their respective positivity 
conditions. For example, -dimensional Lorentzian Space (i.e., the inner product space 
consisting of  with the Lorentzian inner product) comes equipped with a metric tensor of the 
form 

 

(7)

and a squared norm of the form 

 

(8)

for all vectors . In particular, one can have negative infinitesimal distances and 
squared norms, as well as nonzero vectors whose vector norm is always zero. As such, the metric 
(respectively, the norm) fails to actually be a metric (respectively, a norm), though they usually 
are still called such when no confusion may arise. 

 

 

 

Tensor  

Introduction and definitions 

 

In n-dimensional space Vn  (called a "manifold" in mathematics), points are specified by 

assigning values to a set of n continuous real variables     x
1, x2... ..x n  called the coordinates. In 

many cases these will run from -∞ to +∞, but the range of some or all of these can be finite. 

 

Examples: In Euclidean space in three dimensions, we can use cartesian coordinates x, y and z, 
each of which runs from -∞ to +∞. For a two dimensional Euclidean plane, Cartesians may again 
be employed, or we can use plane polar coordinates r,  whose ranges are 0 to ∞ and 0 to 2 
respectively.  
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Coordinate transformations. The coordinates of points in the manifold may be assigned in a 

number of different ways. If we select two different sets of coordinates,     x
1, x2 . .. ..x n  and 

    x 1 , x 2 , .. ... x n , there will obviously be a connection between them  of the form  

 

       x r  f r (x 1, x 2.. ..x n )
  r = 1, 2........n. (1) 

where the f's are assumed here to be well behaved functions. Another way of expressing the 
same relationship is  

       x r  x r (x 1, x 2.. ..x n )  r = 1, 2........n. (2) 

where     x r (x1 ,x 2. .. .xn ) denotes the n functions     f
r (x1 ,x 2. ...xn ) , r = 1, 2......n. 

 

Recall that if a variable z is a function of two variables x and y,  i.e. z = f (x, y), then the 
connection between the differentials dx, dy and dz is  

 

      
dz 

 f

x
dx 

 f

y
dy

.     (3) 

Extending this to several variables therefore, for each one of the new coordinates we have 

 

        
d x r 

 x r

x ss 1

n
 dx s

.  r=1, 2........n.  (4) 

The transformation of the differentials of the coordinates is therefore linear and 
homogeneous, which is not necessarily the case for the transformation of the coordinates  
themselves. 

Range and Summation Conventions.   Equations such as (4) may be simplified by the use 
of two conventions: 

Range Convention: When a suffix is unrepeated in a term, it is understood to take all values 
in the range 1, 2, 3.....n. 

Summation Convention: When a suffix is repeated in a term, summation with respect to 
that suffix is understood, the range of summation being  1, 2, 3.....n. 
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With these two conventions applying, equation (4) may be written as  

      
d x r 

 x r

x s dxs

.     (5) 

Note that a repeated suffix is a "dummy" suffix, and can be replaced by any convenient 
alternative. For example, equation (5) could have been written as  

      
d x r 

 x r

x m dxm

.     (6) 

where the summation with respect to s has been replaced by the summation with respect to 
m. 

Contravariant vectors and tensors. Consider two neighbouring points P and Q in the 

manifold whose coordinates are xr and xr + dxr respectively. The vector   

P Q  

is then described by the quantities dxr which are the components of the vector in this 

coordinate system. In the dashed coordinates, the vector   

P Q  is described by the components  

  d x r which are related to dxr by equation (5), the differential coefficients being evaluated at 

P. The infinitesimal displacement represented by dxr or   d x r is an example of a contravariant 
vector. 

 

Defn. A set of n quantities T r associated with a point P are said to be the components of  a 
contravariant vector if they transform, on change of coordinates, according to the equation 

      
T r 

 x r

xs Ts

.     (7) 

where the partial derivatives are evaluated at the point P. (Note that there is no requirement 
that the components of a contravariant tensor should be infinitesimal.) 

Defn. A set of n 2 quantities T rs associated with a point P are said to be the components of  a 
contravariant tensor of the second order if they transform, on change of coordinates, 
according to the equation 

      
T rs 

 x r

x m
 x s

x n T mn

.    (8) 
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Obviously the definition can be extended to tensors of higher  order. A contravariant vector is 
the same as a contravariant tensor of first order.  

Defn. A contravariant tensor of zero order transforms, on change of coordinates, according to 
the equation 

      T  T ,      (9) 

i.e. it is an invariant whose value is independent of the coordinate system used. 

Covariant vectors and tensors. Let  be an invariant function of the coordinates, i.e. its 
value may depend on position P in the manifold but is independent of the coordinate system 
used. Then the partial derivatives of   transform according to  

 

      



 x r 


xs
xs

 x r
     (10) 

Here the transformation is similar to equation (7) except that the partial derivative involving 
the two sets of coordinates is  the other way up. The partial derivatives of an invariant 
function provide an example of the  components of a covariant  vector.  

Defn. A set of n quantities   T r  associated with a point P are said to be the components of  a 
covariant vector if they transform, on change of coordinates, according to the equation 

      
T r 

x s

 x r Ts
.     (11) 

By convention, suffices indicating contravariant character are placed as superscripts, and 
those indicating covariant character as subscripts. Hence the reason for writing the 

coordinates as xr.  (Note however that it is only the differentials of the coordinates, not the 

coordinates themselves, that always have tensor character. The latter may be tensors, but this 
is not always the case.) 

Extending the definition as before, a covariant tensor of the second order is defined by the 
transformation  

      
T rs 

xm

 x r
x n

 x s Tmn
    (12) 

and similarly for higher orders. 
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Rank of Tensor 

The total number of contravariant and covariant indices of a tensor. The rank  of a tensor is 
independent of the number of dimensions  of the underlyingspace. 

An intuitive way to think of the rank of a tensor is as follows: First, consider intuitively that a 
tensor represents a physical entity which may be characterized by magnitude and multiple 
directions simultaneously (Fleisch 2012). Therefore, the number of simultaneous directions is 
denoted  and is called the rank of the tensor in question. In -dimensional space, it follows that 
a rank-0 tensor (i.e., a scalar) can be represented by  number since scalars represent 
quantities with magnitude and no direction; similarly, a rank-1 tensor (i.e., a vector) in -
dimensional space can be represented by numbers and a general tensor by  numbers. 
From this perspective, a rank-2 tensor (one that requires  numbers to describe) is equivalent, 
mathematically, to an  matrix. 

rank object 

0 scalar 

1 vector 

2  matrix 

 

tensor 

The above table gives the most common nomenclature associated to tensors of various rank. 
Some care must be exhibited, however, because the above nomenclature is hardly uniform across 
the literature. For example, some authors refer to tensors of rank 2 as dyads, a term used 
completely independently of the related term dyadic used to describe vector direct 
products (Kolecki 2002). Following such convention, authors also use the terms triad, tetrad, 
etc., to refer to tensors of rank 3, rank 4, etc. 

Some authors refer to the rank of a tensor as its order or its degree. When defining tensors 
abstractly by way of tensor products, however, some authors exhibit great care to maintain the 
separation and distinction of these terms. 

 

Mixed tensors and Kroneckar Delta.  These are tensors with at least one covariant suffix 

and one contravariant suffix. An example is the third order tensor   
Tst

r
 which transforms 

according to  
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T st
r 

 x r

xm
x n

 x s
x

p

 x t Tnp
m

    (13) 

Another example is the Kronecker delta defined by 

        s
r  1, r  s

 

              
 0, r  s

     (14) 

It is a tensor of the type indicated because (a) in an expression such as     
Bpq..

mn..m
t

, which 

involves summation with respect to m, there is only one non-zero contribution from the 

Kronecker delta, that for which m = t, and so     
Bpq..

mn ..m
t  Bpq..

tn ..
; (b) the coordinates in any 

coordinate system are  necessarily independent of each other, so that
  

xr

x s  s
r

  and 

  

 x r

 x s  s
r

; so these two properties taken together imply that  

      
s
r 

 x r

x m
xn

 x s n
m

.    (15) 

Notes.  1. The importance of tensors is that if a tensor equation is true in one set of 

coordinates it is also true in any other coordinates. e.g. if     
Tmn  0 (which, since m and n are 

unrepeated, implies that the equation is true for all m and n, not just for some particular choice 

of these  suffices), then     
T rs  0  also, from the transformation law. This illustrates the fact that 

any tensor equation is covariant, which means that it has the same form in all coordinate 
systems. 

 2. A tensor may be defined at a single point P within the manifold, or along a curve, or 
throughout a subspace, or throughout the manifold itself. In the latter cases we speak of a 
tensor field. 

Tensor algebra 

Addition of tensors.  Two tensors of the same type may be added together to give another 

tensor of the same type, e.g. if   
Ast

r
 and   

Bst
r

 are tensors of the type indicated, then we can 

define  

      
Cst

r  Ast
r  Bst

r
.     (16) 
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It is easy to show that the quantities   
Cst

r
 form the components of a tensor. 

Symmetric and antisymmetric tensors.    A
rs

  is a symmetric contravariant tensor if 

  A
rs  A sr

 and antisymmetric if   A
rs  A sr

. Similarly for covariant tensors. Symmetry 

properties are conserved under transformation of coordinates, e.g. if   A
rs  A sr

, then 

     
A mn 

 x m

xr
 x n

x s A rs 
 x m

x r
 x n

x s A sr  A nm

.  (17) 

Note however that for a mixed tensor, a relation such as   Ar
s  As

r
 does not transform to give 

the equivalent relation in the dashed coordinates. The concept of symmetry (with respect to a 
pair of suffices which are either both subscripts or both superscripts) can obviously be 
extended to tensors of higher order. 

Any covariant or contravariant tensor of  second order may be expressed as the sum of a 
symmetric tensor and an antisymmetric tensor, e.g. 

      
A rs 

1

2
(A rs  A sr )

1

2
(A rs  A sr)

.    (18) 

Multiplication of tensors.  In the addition of tensors we are restricted to tensors of a single 
type, with the same suffices (though they need not occur in the same order). In the 
multiplication of tensors there is no such restriction. The only condition is that we never 
multiply two components with the same suffix at the same level in each. (This would imply 
summation with respect to the repeated suffix, but the resulting object  would not have tensor 
character - see later.)  

To multiply two tensors e.g.    
Ars  and   

Bn
m

 we simply write  

      Crsn
m  ArsBn

m
.     (19) 

It follows immediately from their transformation properties that the quantities   Crsn
m

 form a 
tensor of the type indicated. This tensor, in which the symbols for the suffices are all different, 

is called the outer product of   Ars  and   Bn
m

.  

Contraction of tensors.  Given a tensor   
Tnp

m

, then 

     
T np
m 

 x m

xr
x s

 x n
xt

 x p Tst
r

.    (20) 
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Hence replacing n by m (and therefore implying summation with respect to m) 

     
T mp
m 

 x m

xr
x s

 x m
xt

 x p Tst
r

 

              

x s

xr
x t

 x p Tst
r

 

              
 r

s xt

 x p Tst
r

 

              

xt

 x p Tst
s

      (21) 

 

 

so we see that   
T mp

m
 behaves like a tensor   

Ap . The upshot is that contraction of a tensor (i.e. 

writing the same letter as a subscript and a superscript) reduces the order of the tensor by 2 
and yields a tensor whose type is indicated by the remaining suffices. 

Note that contraction can only be applied successfully to suffices at different levels. We may 

of course construct, starting with a tensor 
  
Aqrs

p
  say, a new set of quantities 

  
Aqrr

p
; but these do 

not have tensor character (as one can easily check) so are of little interest. 

Having constructed the outer product   
Crsn

m  ArsBn
m

 in the example above, we can form the 

corresponding inner products   Cmsn
m  AmsBn

m
 and   Crmn

m  ArmBn
m

. Each of these forms a 
covariant tensor of second order. 

 

 

Possible questions –(Part –B- 6 Marks) 

1. Explain the properties of Kronecker delta.  Prove that Kronecker delta is a mixed     

tensor of rank 2, and is invariant. 

2. Explain Schmidt’s orthogonalization method 

3. Show that the symmetry properties of a tensor are invariant         

4. Describe the operations of outer product and inner product of tensors     



       KARPAGAM ACADEMY OF HIGHER EDUCATION 
                             CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS 
                           COURSE CODE: 18PHP104  UNIT: I (VECTOR SPACE)   BATCH-2018-2020     
 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 25of 25 
 

5. Show that the set of vectors r1, r2, r3 given by 

 r1= j-2k, r2= i-j+K, r3 = i+2j+K is linearly independent 

6. Show that vectors (u+v), (u –v) and (u-2v+w) are linearly independent provided (u,v,w) 

are linearly dependent. 

7. Show that Kronecker delta is an invariant mixed tensor of rank 2. 

8. Show that in Cartesian coordinate system the contravariant and covariant components of 

a vector are identical. 

9. Explain about the symmetric and antisymmetric tensors. 

10. Explain orthogonal and orthonormal vectors.  Explain Schmidt’s orthogonalization 

procedure. 

11. Explain Einstein’s summation convention of tensors 

 

 

Possible questions –(Part –C- 10 Marks) 

1. Explain Schmidt’s orthogonalization process and give their properties 

2. Show that the symmetry properties of a tensor are invariant        

3. Describe the operations of outer product and inner product of tensors     

4. Show that the set of vectors r1, r2, r3 given by 

 r1= i+j-5k, r2= 2i-j+K, r3 = 8i+2j+K is linearly independent 

5. Show that vectors (u+v), (u –v) and (u-2v+w) are linearly independent provided (u,v,w) 

are linearly dependent. 

6. Show that in Cartesian coordinate system the contravariant and covariant components of 

a vector are identical. 

7. Explain about the symmetric and antisymmetric tensors with few examples 

8. Explain orthogonal and orthonormal vectors with orthogonolization process. 

9. Explain covariant and contravariant tensors and einstein’s summation convention of 

tensors 
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Key 

1 
The union of two subspaces 
of a vector space need not be a sub space cyclic an abelian an invariant 

a sub space 

2 
If { Vi} is an orthonormal set, 
then the vectors {Vi} are 

linearly 
dependent commutative 

linearly 
independent distributive 

linearly 
independent 

3 

Kronecker delta symbol is covariant tensor 
a contravariant 
tensor an invariant 

a mixed 
tensor 

a mixed tensor 

4 

The rank of the tensor Aij
klm is 4 5 3 6 

5 

5 
The rank of the outer product 
of the tensors Cij and Dk is 1 3 2 0 

3 

6 In an n-dimensional vector 
space, the number of  linearly 
dependent vectors is n 2n n + 1 2n + 3 

n + 1 

7 
The rank of the outer product 
of the tensors Cij and Dk

lm is 3 5 2 6 

5 

8 The dimension of vector 
space is always 

greater than 
number of 
linearly 
independent 
vectors. 

Equal to 
linearly 
independent 
vectors 

Less than  
linearly 
independent 
vectors 

Equal to 
linearly 
dependent 
vectors 

Equal to 
linearly 
independent 
vectors 
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9 The vectors are said to be 

orthogonal when the scalar 
product of 

two null vector is 
one 

two null vector 
is zero 

two non-null 
vector is zero 

two non-null 
vector is one 

two non-null 
vector is zero 

10 
The set of all position vectors 
forms an abelian group vector space sub space cyclic 

an abelian 
group 

11 
Example of real vector space 
is 

4 – dimensional 
space 

3 – 
dimensional 
space 

n – dimensional 
space 

none of the 
above 

3 – 
dimensional 
space 

12 
An important example of 
mixed tensor of rank two is covariant 

Kronecker 
delts Invariant Contravariant 

Kronecker 
delta 

13 
 If f = f, the function of f is 
said to be a scalar invariant tensor of rank two all the above 

invariant 

14 

 The tensors of rank zero are scalars invariant either (a) or (b) vectors 

either (a) or 
(b) 

15 

 The tensors of rank one are scalars vectors invariant covariant vectors 
16 If Al

mns = - Al
msn, then tensor 

Al
mns is antisymmetric with 

respect to indices n and s m and s m and n m and l 

n and s 

17 
If Aij is antisymmetric tensor, 
then the component A11 is 1 0 2 3 

0 

18 If aik is a tensor of rank two, 
its independent components in 
4-dimensional space are 4 2 8 6 

6 
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19 The total number of 

components aik tensor of rank 
two in 4-dimensional space 
are 4 16 2 8 

16 

20 The total number of 
components aik tensor of rank 
two in n-dimensional space 
are n n2 (n-1) (n+1) 

n2 

21  As aijkl is a tensor of rank 4, 
the number of components in 
in 4-dimensional space is 1 0 4 16 

1 

22  If Aij is antisymmetric tensor, 
of second order and Ui is a 
tensor of rank one, then AijU

i 
Uj is equal to 1 0 2 4 

0 

23 
 The sum of one contravariant 
and one covariant AmBm is invariant contravariant  covariant mixed 

invariant 

24 
Kronecker delta is the best 
example for covariant mixed invariant contravariant 

mixed 

25  A tensor of rank ‘r’ in n-
dimensional space has 
components nr rn n / r r / n 

nr 

26 
 Al

mns are the components of a 
mixed tensor of rank 1 3 4 0 

4 
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27 In an n-dimensional vector 

space, the number of  linearly 
dependent vectors is n 2n n+1 2n+3 

n+1 

28 
The rank of the outer product 
of the tensors Cij and Dklm is 3 5 2 6 

5 

29 

The dimension of vector 
space is always 

     greater than 
number of 
linearly 
independent 
vectors. 

     Equal to 
linearly 
independent 
vectors 

     Less than  
linearly 
independent 
vectors 

     Less than  
linearly 
independent 
vectors 

     Equal to 
linearly 
independent 
vectors 

30 The vectors are said to be 
orthogonal when the scalar 
product of  

     two null vector 
is one 

     two null 
vector is zero 

     two non-null 
vector is zero 

     two non-
null vector is 
one 

two non-null 
vector is zero 

31 
The set of all position vectors 
forms 

     an abelian 
group      vector space      sub space      cyclic 

     an abelian 
group 

32 
 Example of real vector space 
is 

     4 – 
dimensional 
space 

     3 – 
dimensional 
space 

     n – 
dimensional 
space none 

     3 – 
dimensional 
space 

33 
 An important example of 
mixed tensor of rank two is      covariant 

     Kronecker 
delts      Invariant 

     
Contravariant 

Kronecker 
delts 

34 
 If f = f, the function of f is 
said to be      a scalar      invariant 

     tensor of rank 
two 

     all the 
above 

     all the 
above 

35 

The tensors of rank zero are      scalars      invariant vectors none 

     scalars 
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The tensors of rank one are      scalars      vectors      invariant      covariant 

vectors 

37 

Kronecker delta symbol is 
     a covariant 
tensor 

a contravariant 
tensor an invariant 

   a mixed 
tensor 

   a mixed 
tensor 

38 
The rank of the tensor Aijklm 
is 2      4 3 6 

4 

39 
 The rank of the outer product 
of the tensors Cij and Dk is 1 3 2 0 3 

40 In an n-dimensional vector 
space, the number of  linearly 
dependent vectors is n 2n n+1 2n+3 

n+1 

41 
The rank of the outer product 
of the tensors Cij and Dklm is 3 5 2 6 

5 

42 

The dimension of vector 
space is always 

     greater than 
number of 
linearly 
independent 
vectors. 

     Equal to 
linearly 
independent 
vectors 

     Less than  
linearly 
independent 
vectors 

 Less than  
linearly 
independent 
vectors 

     Equal to 
linearly 
independent 
vectors 

43 The vectors are said to be 
orthogonal when the scalar 
product of  

     two null vector 
is one 

     two null 
vector is zero 

     two non-null 
vector is zero 

two non-null 
vector is one 

     two non-
null vector is 
zero 

44 
The set of all position vectors 
forms 

     an abelian 
group      vector space      sub space  cyclic 

an abelian 
group 
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45 

 Example of real vector space 
is 

     4 – 
dimensional 
space 

 
     3 – 
dimensional 
space 
 

     n – 
dimensional 
space none 

     3 – 
dimensional 
space 
 

46 A symmetrictensor of rank 2 
is n-dimensional space  
independent components 

 

n/2 n+1 none 

 

47 
 If Aij is antisymmetric tensor, 
then the component A11 is 1 0 2 3 

 

48  If aik is a tensor of rank two, 
its independent components  
are 4 2 8 6 

6 

49 
 Kronecker delta is the best 
example for      covariant      mixed      invariant 

     
contravariant 

mixed 

50 
 The sum of one contravariant 
and one covariant AmBm is      mixed 

     
contravariant      covariant      mixed 

mixed 

2

1n
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UNIT-II 
 

SYLLABUS 
 
Functions of a complex variable – single and multivalued functions – Cauchy-Riemann 
differential equation – analytical – line integrals of complex function – Cauchy’s integral theorem 
and integral formula – derivatives of an analytic function – Liouville’s theorem - Taylor’s series – 
Laurent’s series - Residues and their evaluation - Cauchy’s residue theorem – application to the 
evaluation of definite integrals. 
 
Complex Algebra 
 
Formally, the set of complex numbers can be de¯ned as the set of two-dimensional real 
vectors, f(x; y)g, with one extra operation, complex multiplication: 
 

(x1; y1) ¢ (x2; y2) = (x1 x2 ¡ y1 y2; x1 y2 + x2 y1) : (1)
 
Together with generic vector addition 
 

(x1; y1) + (x2; y2) = (x1 + x2; y1 + y2) ; (2)
. 
 
With the rules (1)-(2), complex numbers include the real numbers as a subset f(x; 0)g with 
usual real number algebra. This suggests short-hand notation (x; 0) ´ x; in particular: (1; 0) ´  
 
Complex algebra features commutatively, distributive and associa-tivity. 
 
The two numbers, 1 = (1; 0) and i = (0; 1) play a special role. They form a basis in the 
vector space, so that each complex number can be represented in a unique way as [we start 
using the notation (x; 0) ´ x] 

(x; y) = x + iy : (3)
 
Terminology: The number i is called imaginary unity. For the complex number z = (x; y), 
the real umbers x and y are called real and imaginary parts, respectively; corresponding 
notation is: x = Re z and y = Im z. 
 
The following remarkable property of the number i, 
 

i2  = -1  (4)
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renders the representation (3) most convenient for practical algebraic ma-nipulations with 
complex numbers.|One treats x, y, and i the same way as the real numbers. 
 
Single and Multi valued function 
 

In a multi-valued function every input is associated with one or more outputs. Strictly speaking, a 

"well-defined" function associates one, and only one, output to any particular input. The term 

"multi-valued function" is, therefore, a misnomer: usually true functions are single-valued. 

If only one value of corresponds to each value of z then is of z.single valued function 

If more than one values of correspond to each value of z then is of z. i.e. A multi-valued function 

assumes two or more distinct values in its range for at least one point in its domain. 

 
Cauchy Riemann Differential Eqution 
 
Let 

 

(1)
 
Where 

 

(2)
 
So 

 

(3)
 
The total derivative of  with respect to  is then 

 

 

 

(4)

  

 

(5)

 
In terms of  and , (5) becomes 

 

 

 

(6)

  

 

(7)

 
Along the real, or x-axis, , so 

 

(8)
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Along the imaginary, or y-axis, , so 

 

(9)

 
If  is complex differentiable, then the value of the derivative must be the same for a given , 
regardless of its orientation. Therefore, (8) must equal (9), which requires that 

 

(10)

and 

 

(11)

 
These are known as the Cauchy-Riemann equations. 
They lead to the conditions 

 

 

(12)

 

 

(13)

 
The Cauchy-Riemann equations may be concisely written as 
 

 

 

 

(14)

  

 

(15)

  

 

(16)

   

(17)
 
where  is the complex conjugate. 

If , then the Cauchy-Riemann equations become 

 

 

 

(18)

 

 

(19)
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Cauchy Integral Formula 
 

 

Cauchy's integral formula states that 

 

(1)

where the integral is a contour integral along the contour  enclosing the point . 

It can be derived by considering the contour integral 

 

(2)

defining a path  as an infinitesimal counterclockwise circle around the point , and defining the 
path  as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel 
each other out) so as to go around . The total path is then 

 

(3)

so 

 

(4)

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. 
Therefore, the first term in the above equation is 0 since  does not enclose the pole, and we are 
left with 

 

(5)

Now, let , so . Then 

 

 

(6)
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(7)

But we are free to allow the radius  to shrink to 0, so 

 

 

(8)

 

 

(9)

 

 

(10)

  

(11)

giving (1). 

If multiple loops are made around the point , then equation (11) becomes 

 

(12)

where  is the contour winding number. 

A similar formula holds for the derivatives of , 

 

 

(13)

 

 

(14)

 

 

(15)

 

 

(16)

 

 

(17)

Iterating again, 

 

(18)

Continuing the process and adding the contour winding number , 

 

 
 
Cauchy Integral Theorem 
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If  is analytic in some simply connected region , then 
 

 

(1)

for any closed contour  completely contained in . Writing  as 

 

(2)

and  as 

 

(3)

then gives 

 

 

(4)

  

 

(5)

From Green's theorem, 

 

 

 

(6)

 

 

 

(7)

so (◇) becomes 

 

(8)

But the Cauchy-Riemann equations require that 

 

 

 

(9) 

 

 

 

(10)

so 
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Liouville's theorem 
 
Liouville's theorem from complex analysis states that a holomorphic function f(z)f(z) on the plane 

that is bounded in magnitude is constant. The usual proof uses the Cauchy integral formula 

 

Assume that f(z) is nonconstant. The fact that)f(z) is holomorphic at every point implies that at any 

given point, there is a direction such that moving in that direction makes |f(z)| larger. But this 

doesn't prove that |f(z)| is unbounded, because a priori its magnitude could behave like 5−1|z| or 

some such thing. 

In the case of f(z)=1P(z) where P(z) is a polynomial, one knows that |f(z)| tends toward 0 as |z|→∞ 

so that there's some closed disk such that if |f(z)||f(z)| is bounded, then it has a maximum in the 

interior of the disk, which contradicts the fact that one can always make f(z) larger by moving in a 

suitable direction. But for general f(z), one doesn't have this argument. 

One can try to reason based on the power series expansion of a holomorphic function f(z) that is not 

a polynomial. Because polynomials are unbounded as |z|→∞ and grow in magnitude in a way that's 

proportional to their degree, one might think that a power series, which can be regarded as an 

infinite degree polynomial, would also be unbounded as |z|→∞. This is of course false: 

take f(z)=sin(z), then as |z|→∞ along the real axis, f(z) remains bounded. The point is that the 

dominant term in the partial sums of the power series varies with |z|, and that the relevant 

coefficients change, alternating in sign and tending toward zero rapidly, so that the gain in size 

corresponding to moving to the next power of z is counterbalanced by the change in coefficient. But 

there's some direction that one can move in for which f(z) is unbounded: in particular, 

for f(z)=sin(z), f(z) is unbounded along the imaginary axis. 

Taylor’s Series 

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is 
an expansion of a real function  about a point  is given by 

 

(1)

If , the expansion is known as a Maclaurin series. 
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Taylor's theorem (actually discovered first by Gregory) states that any function satisfying certain 
conditions can be expressed as a Taylor series. 

The Taylor (or more general) series of a function  about a point  up to order  may be found 
using Series[f, x, a, n ]. The th term of a Taylor series of a function  can be computed in 
the Wolfram Language using SeriesCoefficient[f, x, a, n ] and is given by the inverse Z-transform 

 

(2)

Taylor series of some common functions include 

 

 

(3)

 

 

(4)

 

 

(5)

 

 

(6)

 

 

(7)

 

 

(8)

To derive the Taylor series of a function , note that the integral of the st derivative 
 of  from the point  to an arbitrary point  is given by 

 

(9)

where  is the th derivative of  evaluated at , and is therefore simply a constant. Now 
integrate a second time to obtain 

 

(10)

where  is again a constant. Integrating a third time, 

 

(11)
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and continuing up to  integrations then gives 

 

(12)

Rearranging then gives the one-dimensional Taylor series 

 

 

(13)

 

 

(14)

Here,  is a remainder term known as the Lagrange remainder, which is given by 

 

(15)

Rewriting the repeated integral then gives 

 

(16)

Now, from the mean-value theorem for a function , it must be true that 

 

(17)

for some . Therefore, integrating  times gives the result 

 

(18)

so the maximum error after  terms of the Taylor series is the maximum value of (18) running 
through all . Note that the Lagrange remainder  is also sometimes taken to refer to the 
remainder when terms up to the st power are taken in the Taylor series  

Taylor series can also be defined for functions of a complex variable. By the Cauchy integral 
formula, 

 

 

(19)
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(20)

 

 

(21)

In the interior of , 

 

(22)

so, using 

 

(23)

it follows that 

 

 

(24)

 

 

(25)

Using the Cauchy integral formula for derivatives, 

 

(26)

An alternative form of the one-dimensional Taylor series may be obtained by letting 

 

(27)

so that 

 

(28)

Substitute this result into (◇) to give 

 

(29)

A Taylor series of a real function in two variables  is given by 

 

(30)
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This can be further generalized for a real function in  variables, 

 

(31)

Rewriting, 

 

 
 
Laurent’s Series 

If  is analytic throughout the annular region between and on the concentric circles  and 
 centered at  and of radii  and respectively, then there exists a unique series expansion 
in terms of positive and negative powers of , 

 

(1)

where 

 

 

(2)

 

 

(3)

 

 

 

 

 

  

 

 

Let there be two circular contours  and , with the radius of  larger than that of . Let  be 
at the center of  and , and  be between  and . Now create a cut line  between 
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and , and integrate around the path , so that the plus and minus contributions 
of cancel one another, as illustrated above. From the Cauchy integral formula, 

 

 

(4)

 

 

(5)

 

 

(6)

Now, since contributions from the cut line in opposite directions cancel out, 

 

 

(7)

 

 

(8)

 

 

(9)

For the first integral, . For the second, . Now use the Taylor 
series (valid for ) 

 

(10)

to obtain 

 

 

(11)

 

 

(12)

 

 

(13)

where the second term has been re-indexed. Re-indexing again, 

 

(14)
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Since the integrands, including the function , are analytic in the annular region defined by 
 and , the integrals are independent of the path of integration in that region. If we replace paths of 
integration  and  by a circle  of radius  with , then 

 

 

(15)

 

 

(16)

 

 

(17)

Generally, the path of integration can be any path  that lies in the annular region and encircles 
 once in the positive (counterclockwise) direction. 

The complex residues  are therefore defined by 

 

Cauchy Residue Theorem 

An analytic function  whose Laurent series is given by 

 

(1)

can be integrated term by term using a closed contour  encircling , 

 

 

 

(2)

  

 

(3)

The Cauchy integral theorem requires that the first and last terms vanish, so we have 

 

(4)

where  is the complex residue. Using the contour  gives 

 

(5)

so we have 
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(6)

If the contour  encloses multiple poles, then the theorem gives the general result 

 

(7)

where  is the set of poles contained inside the contour. This amazing theorem therefore says that 
the value of a contour integral for any contour in the complex plane depends only on the properties 
of a few very special points inside the contour. 

 

 

 

 

 

 

The diagram above shows an example of the residue theorem applied to the illustrated contour 
 and the function 

 

(8)

Only the poles at 1 and  are contained in the contour, which have residues of 0 and 2, respectively. 
The values of the contour integral is therefore given by 
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Application to evaluation of definite integral 
 

Definite Integrals 

We now know how to integrate simple polynomials, but if we want to use this technique to 
calculate areas, we need to know the limits of integration. If we specify the limits x = a to x = b, 
we call the integral a definite integral.  

To solve a definite integral, we first integrate the function as before, then feed in the 2 values of the 
limits. Subtracting one from the other gives the area. 

Example 

1. What is the area under the curve y(x) = 2x2 between x=1 and x=3? (Note: this is the same 
problem we did graphically earlier). 

Area =  we write the limits at the top and bottom of the integration sign 

=  we use square brackets to indicate we've calculated the indefinite integral 

= (18 + k) - (2/3 + k) feed in the larger value, then the smaller, and subtract the two. 

= 18 - 2/3 

= 17.33 sq. unit 
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Possible questions (Part B- 6 Marks) 

1. State and prove Cauchy Residue theorem.       

2. Define and derive Cauchy’s integral formula. 

3. Derive Cauchy-Riemann equation. 

4. Derive and prove Taylor’s series.  

5. Define and prove Laurent’s series 

6. Use Cauchy’s integral theorem to evaluate 

∮௖

𝑑𝑧

𝑧
. 

7. Find the Laplace transform of the following functions. 

(i) Sin2t, (ii) Cos2t, (iii) eatcosωt and (iv) eatsinωt. 

       8. Explain the complex form of Fourier series 

       9. State and Explain Dirichlet conditions. 

     10. Define  Laplace Transform. Explain the linearity and change in scale property of   

           Laplace transform. 

 

Possible questions (Part B- 10 Marks) 

1. State and prove Cauchy Residue theorem.  Explain how it is extended for the case of an 

isolated first order pole lying on the contour of integration. Using this   

 theorem.  show that  

∫
𝒆𝒂𝒙

𝟏ା𝒆𝒙 𝒅𝒙 =
𝝅

𝒔𝒊𝒏𝝅𝒂

ାஶ

ିஶ
  where 0 <  a < 1. 

  

2. Derive Cauchy-Riemann equation and deduce the same in polar form. 

3. Derive and prove Taylor’s series.  

4. Use Cauchy’s integral theorem to evaluate 

∮
௖

𝑑𝑧

𝑧
. 

5. Find the Laplace transform of the following functions. 

(i) Sin2t, (ii) Cos2t, (iii) eatcosωt and (iv) eatsinωt. 

       8. Explain the complex form of Fourier series 

       9. Explain how the Dirichlet conditions used to find the functions in physics. 
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S.No Questions Option 1 Option 2 Option 3 Option 4 Key 

1 
For a unit circle around the origin, 
the value of sin q is 

     

2 
 If a given number is wholly real, 
it is found in/on a real axis imaginary axis x-y plane space x-y plane 

3 
 A set which entirely consists of 
interior points is known as an open set a closed set a banded set domain an open set 

4 
If a contour is a unit circle around 
the origin, then  |z| is 1 0 eiq eiq 1 

5 A connected open set is called an open set a closed set a banded set domain an open set 

iz

z

2

12 
iz

z

2

12 
z

z

2

12 
z

z

2

12 
z

z

2

12 
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6 
Which is the analytic function of 
complex variable z = x + iy |Z| Re Z Z-1 Log Z Z-1 

7 
Which is the analytic function of 
complex variable  Z=x +iy | Z | Sin Z Log z Re Z Sin Z 

8 
Which is the analytic function of 
complex variable z=X+iY |Z| e sinz     log Z Re Z e sinz   

9 
Which is not the analytic function 
of complex variable z=X+iY z –1 Z e sinz Sin Z Z 

10 
 Which is not the analytic function 
of complex variable z=X+iY Z –1 e Sin Z Re Z SinZ    Re Z 



 KAR

 (For t
 

UNIT II :( Objective Ty
 

                              
 

11 
Which is not the analytic function 
of complex variable z=X+iY 

12 

 

The function                       
has 
 

13 
The symbol i  with the property i 
2=1 was introduced by 

14 arg (Z1 / Z2) is equal to 

15 

A single valued function f(z) 
which is differentiable at z = zo it 
is said to be 

16 

 

The function                          
is analytic 
 

)1)(1(

1

 zz
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Which is not the analytic function 
Z –1 log Z e Sin Z SinZ 

a simple pole 
at  Z= a 

a simple pole 
at  Z=_ a 

a pole at z=a 
of order  2 

apole at z=a of 
order  3

The symbol i  with the property i 
  Euler Gauss    Cauchy Reimann

arg Z1+ arg Z2 arg Z1 - arg Z2 real imaginary

which is differentiable at z = zo it 

irregular 
function 

analytic 
function 

periodic 
function all the above

at all points y 
= x 

at all points, 
except z = 1 

at all points, 
except z = -1 

at all points, 
except z = ± 1

Mark) 

 log Z 

apole at z=a of 
order  3 

apole at z=a of 
order  3 

Reimann   Euler 

imaginary arg Z1 - arg Z2 

all the above analytic function 

at all points, 
except z = ± 1 

at all points, 
except z = ± 1 
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17 

In order that the function f(z) = |Z|2 
/ Z, Z ¹ 0, be continuous at z = 0. 
we should define f(0) equal to 2 –1 0 1 0 

18 
Any function which satisfies the 
Laplace equation is known as 

harmonic 
function 

analytic 
function 

periodic 
function 

conjugate 
function harmonic function 

19 

If f(z) is analytic within and on a 
closed curve C, and if ‘a’ is any 
point within ‘C’ then, f(a) is 

 

    

20 
The value of                            , C : 
|Z| = 1 is 

 

2pi 
 

-2pi 4pi 0 0 
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21 

If f(z) is analytic in a closed curve 
‘C’ except at a finite number of 
poles within C, then  2pi 2p p ip 2pi 

22 The conjugate of 1/1+i is 1–i        1-i/√ 2      1-i/2          1+i 1-i/√ 2      

23 The conjugate of (1+i) (3+4i) is 1+7i         1-7i          7-i        -1-7i -1-7i 

24 The Conjugate of 1/i   is –i             i               1 -1 –i             

25 The value of i2 + i3 + i4 is i          –i           1 0 –i           

26 
If Z= a+ib, then real part of Z-1 is -
--- a/ a2+b2    –b/ a2+b2    a/ √a2+b2    –b/√a2+b2   a/ a2+b2    

27 If Z= a+ib, then Im( Z-1) is ---- b/ a2+b2    b/√ a2+b2   -b/ a2+b2   –b/√a2+b2   -b/ a2+b2   

28 
The modulus and argument of √ 3  
- i   are 2,  ∏/6      2, -∏/6       4, ∏/3        4, -∏/3 2, -∏/6       
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29 

If Z1 = r1(cos θ1 + isin θ1)  and   
Z2= r2(cos θ2 + isin θ2), then arg Z1 
Z2 is ---- θ1 +  θ2              θ1 -  θ2            θ1  θ2         θ1 /  θ2 θ1 +  θ2              

30 The argument of -1 + I is --- - ∏/4       3∏/4     ∏/4     ∏/2    3∏/4     

31  (1+ e-i θ ) / (1+ ei θ )    = ------- cos θ + isin θ      sin θ -icos θ       cos θ - isin θ         sin θ + icos θ cos θ - isin θ          

32 
If X =  cos θ + isin θ  then the 
value of Xn + 1/Xn is ----   2 cos nθ    2i sin nθ    2 sin nθ     2i cos nθ 2 cos nθ    

33 
The value of  (cos θ + isin θ )-1 is -
------ cos θ - sin θ      sin θ -  icos θ     cos θ + sin θ     

sin θ/2 +  icos 
θ/2 sin θ -  icos θ     

34  ( sin ∏ /3+ i cos ∏ /3)3 is equal to -1 1 –i        i   i   
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35 (cos ∏ /4+ i sin ∏ /4)4  is ------ 1/√2  + 1i/√2         b)1           -1 i -1 

36 
In the Argand diagram, the fourth 
roots of unity forms a ------- Straight line   circle     rectangle     square square 

37 
 The sum of nth roots of unity are --
---- 0 1 2 3 0 

38 
If z1 = 2 + ι, z2 = 1 + 3ι, then ι Re ( 
z1 - z2 ) = 1 i 2i 2 1 

39 Polar form of a complex number is 
r ( tanθ + ιcotθ 
) 

r(secθ + 
ιcosecθ ) 

 r(cosθ + ιsinθ 
) 

r (sinθ + 
ιcosθ) r (sinθ + ιcosθ) 

40 |z1 + z2 | = |Z1| + |Z2 ≤|Z1| + |Z2| ≤ Z1 + Z2 > Z1 + Z2 ≤|Z1| + |Z2| 

41 
The exponential form of a 
complex number is z = reiq  z = eiq  z = cos q / r z = r / cos q z = reiq  
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42 
For a unit circle around the origin, 
the value of sin q is 

 

(Z^2+1)/ 2iZ 
 

(Z^2-1)/ 2iZ (Z^2+1)/ 2Z (Z^2-1)/ 2Z sin nx     

43 
 If a given number is wholly real, 
it is found in/on a real axis imaginary axis x-y plane space p/2 

44 
 A set which entirely consists of 
interior points is known as an open set a closed set a banded set domain an open set 

45 
If a contour is a unit circle around 
the origin, then  |z| is 1 0 eiq eiq 1 

46 A connected open set is called an open set a closed set a banded set domain an open set 
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47 
Which is the analytic function of 
complex variable z = x + iy |Z| Re Z Z-1 Log Z Z-1 

48 
Which is the analytic function of 
complex variable  Z=x +iy | Z | Sin Z Log z Re Z Sin Z 

49 
Which is the analytic function of 
complex variable z=X+iY |Z| e sinz     log Z Re Z e sinz   

50 
Which is not the analytic function 
of complex variable z=X+iY z –1 Z e sinz Sin Z Z 

51 
 Which is not the analytic function 
of complex variable z=X+iY Z –1 e Sin Z Re Z SinZ    Re Z 



 KAR

 (For t
 

UNIT II :( Objective Ty
 

                              
 

52 
Which is not the analytic function 
of complex variable z=X+iY 

53 

 

The function                       
has 
 

54 
The symbol i  with the property i 
2=1 was introduced by 

55 arg (Z1 / Z2) is equal to 

56 

A single valued function f(z) 
which is differentiable at z = zo it 
is said to be 

57 
The function 1/(Z-1) (Z+1) is 
analytic 
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Which is not the analytic function 
Z –1 log Z e Sin Z SinZ 

a simple pole 
at  Z= a 

a simple pole 
at  Z=_ a 

a pole at z=a 
of order  2 

apole at z=a of 
order  3

with the property i 
  Euler Gauss    Cauchy Reimann

arg Z1+ arg Z2 arg Z1 - arg Z2 real imaginary

which is differentiable at z = zo it irregular 
function 

analytic 
function 

periodic 
function all the above

at all points y 
= x 

at all points, 
except z = 1 

at all points, 
except z = -1 

at all points, 
except z = ± 1

Mark) 

 log Z 

apole at z=a of 
order  3 

apole at z=a of 
order  3 

Reimann   Euler 

imaginary arg Z1 - arg Z2 

all the above analytic function 

at all points, 
except z = ± 1 

at all points, 
except z = ± 1 
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58 

In order that the function f(z) = |Z|2 
/ Z, Z ¹ 0, be continuous at z = 0. 
we should define f(0) equal to 2 –1 0 1 0 

59 
Any function which satisfies the 
Laplace equation is known as 

harmonic 
function 

analytic 
function 

periodic 
function 

conjugate 
function harmonic function 
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UNIT-III 
 

SYLLABUS 

Fourier Transform – Properties of Fourier transform – Fourier transform of derivatives – 
Fourier sine and cosine transforms of derivatives – Fourier transform of functions of two or three 
variables – Finite Fourier transforms – Simple Applications of FT Laplace transform – Properties 
of Laplace transforms – Laplace Transform of derivative of a function – Laplace transform of 
integral – Laplace transform of periodic functions - Inverse Laplace Transform – Fourier Mellin 
Theorem - Properties of inverse Laplace Transform – Convolution theorem – Evaluation of 
Laplace Transform using Convolution theorem. 

Fourier Transform  

The Fourier transform is a generalization of the complex Fourier series in the limit as . 
Replace the discrete  with the continuous  while letting . Then change the sum 
to an integral, and the equations become 

 

 

(1)

 

 

(2)

Here, 

  

(3)

  

 

(4)

is called the forward ( ) Fourier transform, and 

 

 

(5)

  

 

(6)

is called the inverse ( ) Fourier transform. The notation  is introduced and 

 and  are sometimes also used to denote the Fourier transform and inverse Fourier transform, 
respectively. 

Properties of Fourier Transform 

The properties of the Fourier transform are summarized below. The properties of the Fourier 
expansion of periodic functions discussed above are special cases of those listed here. In the 
following,  

Linearity  
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Time shift  

 

 
 

  
 

Frequency shift  

 

 
 

 

 

  
 

 

Time reversal  

 

 
Proof:  

Replacing  by , we get

and  
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Fourier Sine and cosine transform of derivative 

The Fourier cosine transform of a real function is the
transform, 

  

 

The Fourier cosine transform
Transform[f, x, k], and different choices of
Parameters -> a, b  option. In this work,

Derivative 

This formula shows that the Fourier cosine transform of an even
product of the power function with the Fourier cosine transform plus some even polynomial.

This formula shows that the Fourier cosine transform of an odd
product of a power function with the Fourier sine transform plus some even polynomial.
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cosine transform of derivative  

The Fourier cosine transform of a real function is the real part of the full complex

 

The Fourier cosine transform  of a function  is implemented as
], and different choices of  and  can be used by passing the optional

option. In this work,  and . 

 

This formula shows that the Fourier cosine transform of an even-order derivative gives the 
product of the power function with the Fourier cosine transform plus some even polynomial.

This formula shows that the Fourier cosine transform of an odd-order derivative gives the 
product of a power function with the Fourier sine transform plus some even polynomial.
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BATCH-2018-2020     
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of the full complex Fourier 

(1)

(2)

as Fourier Cosine 
can be used by passing the optional Fourier 

order derivative gives the 
product of the power function with the Fourier cosine transform plus some even polynomial. 

 

derivative gives the 
product of a power function with the Fourier sine transform plus some even polynomial. 
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Laplace Transform  

The Laplace transform is an integral transform perhaps second only to the Fourier transform in its 
utility in solving physical problems. The Laplace transform is particularly useful in solving 
linear ordinary differential equations such as those arising in the analysis of electronic circuits. 

The (unilateral) Laplace transform  (not to be confused with the Lie derivative, also commonly 
denoted ) is defined by 



      KARPAGAM ACADEMY OF HIGHER EDUCATION 
                      CLASS: I MSC PHYSICS      COURSE NAME: MATHEMATICAL PHYSICS 
                    COURSE CODE: 18PHP104  UNIT: III (FOURIER TRANSFORM) BATCH-2018-2020     
 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE  Page 6of 12 

 

(1)

where  is defined for  (Abramowitz and Stegun 1972). The unilateral Laplace transform is 
almost always what is meant by "the" Laplace transform, although a bilateral Laplace transform is 
sometimes also defined as 

 

 

Properties of Laplace transform 

The properties of Laplace transform are: 

Linearity Property 

If x(t)⟷L.T X(s)x(t)⟷L.TX(s) 
 
& y(t)⟷L.T Y(s)y(t)⟷L.TY(s) 
 
Then linearity property states that 

ax(t)+by(t)⟷L.T aX(s)+bY(s)ax(t)+by(t)⟷L.T aX(s)+bY(s) 
 
Time Shifting Property 

If x(t)⟷L.T X(s)x(t)⟷L.TX(s) 
 
Then time shifting property states that 

x(t−t0)⟷L.T e−st0X(s)x(t−t0)⟷L.Te−st0X(s) 
 
Frequency Shifting Property 

If x(t)⟷L.T X(s)x(t)⟷L.T X(s) 
 
Then frequency shifting property states that 

es0t.x(t)⟷L.T X(s−s0)es0t.x(t)⟷L.T X(s−s0) 
 
Time Reversal Property 

If x(t)⟷L.TX(s)x(t)⟷L.TX(s) 
 
Then time reversal property states that 
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x(−t)⟷L.TX(−s)x(−t)⟷L.TX(−s) 
 
Time Scaling Property 

If x(t)⟷L.TX(s)x(t)⟷L.TX(s) 
 
Then time scaling property states that 

x(at)⟷L.T1|a|X(sa) 
 

Laplace Transform of periodic function 
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Convolution theorem 
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Evaluation of Laplace Transform using Convolution theorem 

 

 

 

 

 

 

 

Laplace transform of integral 

The Laplace transform satisfied a number of useful properties. Consider exponentiation. 

If  for  (i.e.,  is the Laplace transform of ), then 
 for . This follows from 
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The Laplace transform also has nice properties when applied to integrals of functions. If 
 is piecewise continuous. 

 

 

 

Fourier Mellin theorem 
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Possible questions (Part B- 6 marks) 

1. Define Laplace Transform and explain their property. 

2. Explain the linearity and change in scale property of Laplace transform. 

3. State and explain shifting property of Fourier Transform. 

4. Find the Fourier transforms of the following functions, and in each case draw graphs for 

the function and its transform 



      KARPAGAM ACADEMY OF HIGHER EDUCATION 
                      CLASS: I MSC PHYSICS      COURSE NAME: MATHEMATICAL PHYSICS 
                    COURSE CODE: 18PHP104  UNIT: III (FOURIER TRANSFORM) BATCH-2018-2020     
 

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE  Page 12of 12 

f(x) = 1; │x│ │< a 

f(x) = 0; │x│ │> a 

5. Define Inverse Laplace Transform. Find the inverse Laplace transform of 

)134)(1(

1
2 


SSS

S
         

6. Discuss about the change of interval from (-π,π) to (-l, l) in Fourier expansion. 

7. Derive  any two properties of Fourier transform.  

8. State and prove Cauchy’s Integral theorem. 

Use Cauchy’s integral theorem to evaluate 

∮
௖

𝑑𝑧

𝑧
. 

9. Explain the Taylor’s Series with proof. 

Possible questions (Part C- 10 marks) 

1. Derive four properties of Laplace Transform 

2. State and explain shifting property of Fourier Transform. 

3. Find the Fourier transforms of the following functions, and in each case draw graphs for 

the function and its transform 

f(x) = x; │x│ │< a 

f(x) = x2; │x│ │> a 

4. Define Inverse Laplace Transform. Find the inverse Laplace transform of 

)134)(1(

1
3 


SSS

S
         

5. Discuss about the change of interval from (-π,π) to (-k, k) in Fourier expansion. 

6. Derive all properties of Fourier transform.  

7. Explain the Taylor’s Series with proof.  
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S.No Questions Option 1 Option 2 Option 3 Option 4 Key 

1 

Which of the following 
functions has the period 
2p? cos nx sin nx     tan nx       tan x sin nx     

2 

If f(x) = -x for -p< x£ 
0then its Fourier 
coefficient a0 is π  p/4         p/3             p/2 

p/2 

3 
Which of the following is 
an odd function? sin x        cos x        x2        sin2x 

sin x        

4 
Which of the following is 
an even function? x3        cos x       sin x       tan X 

cos x       

5 
The function f(x) is said to 
be an odd function of x if f(-x) = f( x)      b)f(x) = - f( x)   f(-x) = - f( x)    None f(-x) = - f( x)    

6 
 The function f(x) is said to 
be an even function of x if f(-x) = f( x)      b)f(x) = - f( x)   f(-x) = - f( x)    None 

f(-x) = f( x)      
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7 

 If a periodic function f(x) 
is odd, it’s Fourier 
expansion contains no -----
- terms. coefficient an      sine                   coefficient a0         cosine 

sine    

8 

If a periodic function f(x) 
is even, it’s Fourier 
expansion contains no -----
- terms. cosine       sine                   coefficient a0         coefficient an 

cosine 

9 

 In Fourier series, the 
function f(x) has only a 
finite number of maxima 
and minima. This 
condition is known as -----
-- Dirichlet           Kuhn Tucker     Laplace        None 

Dirichlet 

10 

 In dirichlet condition, the 
function f(x) has only a 
finite number of finite dis 
continuities and no ------- 
discontinuities         semi finite         continuous           infinite          finite 

infinite 

11 

 If  f(x) is even, then it’s 
Fourier co- efficient -------
- is zero. a0                         an                               bn                       none 

bn   

12 

 If the periodic function 
f(x) is odd, then it’s 
Fourier co- efficient ------- a0                        an                               bn                          none 

an 
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- is zero. 

13 

 The period of cos nx 
where n is the positive 
integer is  π/n             π/2n               2π             nπ 

2π 

14 
The Fourier co efficient  a0   
in f(x) = x for 0< x£ π is π                π/2                2π              0 

π/2                

15 

If the function f (x) = -π  in 
the interval -π x< 0, the 
coefficient a0 is π2/3           2π2/3              2π/3             (- π/2 )   

(- π/2 )   

16 
If the function  f(x) = x sin 
x, the Fourier coefficient bn = 0        a0 = 1            a0 = π2/3      a0 = -1 

bn = 0        

17 

For the cosine series, 
which of the Fourier 
coefficient variables will 
be vanish? an              bn                 a0               

Both a0 and 
an 

bn 
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18 
For a function f(x) =  x3, 
the Fourier coefficient bn  = 0           an  = 0               a0  = 0             an = bn = 0 

an  = 0               

19 
The function x sin x be a   
------- function. even        odd       continuous     None 

even 

20 
The function x cos x be a   
------- function. even        odd        continuous     None 

odd 

21 Lt         F(s) = ------    s® ¥ 0 1 ¥        None 

0 

22 
The Laplace transform of 
f(t) is denoted by L { F(s) }       L { f (t) }       L { F(t) }      L { f(s) } 

L { f (t) }       

23 L (e-at) = --- 1/s+a             1/s-a                 1/s * a                1/s 

1/s+a            

24 L (cos h at) = ---- a/s2 - a2                s/s2 *a2                    s/s2 - a2                     a/s2 +a2 

s/s2 - a2                      
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25 L (sinh at) = ---- a/s2 -a2                s/s2 - a2                     a/s2 + a2                     s/s2 +a2 

a/s2 -a2                

26 L (cosat) = ---- s/s2 -a2               a/s2 +a2                     a/s2 - a2                     s/s2 +a2 

s/s2 +a2 

27 L (sinat) = ---- s/s2 +a2               a/s2 +a2                     a/s2 - a2                     s/s2 -a2 

a/s2 +a2                     

28 L (tn) =  ---- é(n+1)/sn+1             é(n-1)/sn+1             é(n+1)/sn-1       None 

é(n+1)/sn+1              

29 é(n+1) = ---- (n-1)!               n!                     (n+1)!            None 

(n+1)!            

30 L(1) = ---- 1 s                        1/s                 0 

1/s                 

31 L(t) = ----- 1/s                    1/s2                    t                                1/t2 

1/s2                    
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32 L(t2) = ----- 2/s3                   1/t2                   2/t3                  1/s2 

2/s3                   

33 é1/2 = --- ÖP/2   ÖP/4   ÖP ÖP/8 

ÖP 

34 L (eat) = ---- 1/s+a       1/s-a     1/s*a None 

1/s-a     

35 L (t sinat) = ----- 2as/ (s2-a2)       2as/ (s2a2)           2as/ (s2+a2)          None 

2as/ (s2+a2)          

36 L (tcos at ) = ----- s2-a2/(s2+a2)2         s2 +a2/(s2+a2)2        s2-a2/(s2+a2)2      None 

s2-a2/(s2+a2)2      

37 If L-1{1/(s+a)2 }= ------ t e at                             t e -at                   e a t                          None t e -at                   

38 L-1 (1 /(s2 + 4) ) is equal to e-4t           cos2t/2                  sin2t/2                 e4t 

sin2t/2                 
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39 L-1 (1/s) = -------- 1 0 t                    none. 

1 

40 L-1 [ 1/(s+a) ] =   ---------- e s  t                 e a t                               e-s t                  e- a t 

e s  t                 

41 
The function x sin x be a   
------- function. even        odd       continuous      None 

even   

42 
The function x cos x be a   
------- function. even        odd        continuous      None 

odd 

43 
Which of the following is 
an odd function?   sin x         cos x           x2         sin2x 

sin x         

44 
Which of the following is 
an even function x3 cos x        sin x sin2x 

cos x        

45 
The function f(x) is said to 
be an odd function of x if f(-x) = f( x) f(x) = - f( x)  f(-x) = - f( x) 3 

f(-x) = - f( x) 
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46 

The function f(x) is said to 
be an EVEN function of x 
if f(-x) = f( x) f(x) = - f( x)  f(-x) = - f( x) 1 

f(-x) = f( x) 

47 

 If a periodic function f(x) 
is odd,  Fourier expansion 
contains no ------ terms  cosine       sine   coefficient a0         coefficient an sine   

48 

 If a periodic function f(x) 
is even,  Fourier expansion 
contains no ------ terms  cosine       sine   coefficient a0         coefficient an 

cosine 

49 

In Fourier series, the 
function f(x) has only a 
finite number of maxima 
and minima  Dirichlet          Kuhn Tucker     Laplace       None 

Dirichlet 

50 

In dirichlet condition, the 
function f(x) has  no -------
-discontinuities semi finite         continuous   infinite  finite 

infinite 

51 

If  f(x) is even, then it’s 
Fourier co- efficient -------
- is zero.  a0                         an   bn                                    none 

bn                                    
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52 

If  f(x) is odd, then it’s 
Fourier co- efficient -------
- is zero.  a0                         an   bn                                    none 

an 

53 

The period of cos nx 
where n is the positive 
integer is π/n             π/2n                 2π             nπ 

2π             

54 
The Fourier co efficient  a0   
in f(x) = x for 0< x£ π is π  π/2                2π 2 

π/2                

55 

 If the function f (x) = -π  

in the interval -π x< 0, the 
coefficient a0 is π2/3           2π2/3              2π/3              π/2    

π/2    

56 
 If the function  f(x) = x sin 
x, the Fourier coefficient  bn = 0        a0 = 1            a0 = π2/3      a0 = -1 

bn = 0        

57 
 For a function f(x) =  x3, 
the Fourier coefficient bn  = 0            an  = 0               a0  = 0             None 

bn  = 0            

58 
The Laplace transform of 
f(t) is denoted by  L { F(s) }   L { f (t) }  L { F(t)  L { f(s) } 

L { f (t) } 
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59 .L (e-at) = --- 1/s+a 1/s-a                 1/s * a                1/s 1/s+a 

60 .L (cos h at) = ----  a/s2 - a2 s/s2 - a2                     a/s2 + a2                     s/s2 +a2 

s/s2 - a2                     

61 L (sinh at) = ----  a/s2 - a2 s/s2 - a2                     a/s2 + a2                     s/s2 +a2 

a/s2 - a2 

63 .L (cosat) = ---- s/s2 -a2                 a/s2 +a2                     a/s2 - a2                       s/s2 +a2 

s/s2 +a2 

64 .L (sinat) = ---- s/s2 -a2                 a/s2 +a2                    a/s2 - a2                       s/s2 +a2 

a/s2 +a2                     

65 L (tn) =  ----  é(n+1)/sn+1  é(n-1)/sn+1  é(n+1)/sn-1 none 

é(n+1)/sn+1 

66 

L(1) = ---- 1 s  1/s  0 1/s 
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67 

L(t) = ----- 1/s 1/s2     t  1/t2 1/s2     

68 

L(t2) = ----- 2/s3   1/t2      2/t3    1/s2 2/s3   

69 

é1/2 = --- ÖP/2  ÖP/4  ÖP ÖP/8 ÖP 

70 

L (eat) = ---- 1/s+a      1/s-a    1/s*a None 1/s-a    

71 

L (t sinat) = ----- 2as/ (s2-a2)   2as/ (s2a2)  2as/ (s2+a2)   None 2as/ (s2+a2) 

72 

L (tcos at ) = ----- s2-a2/(s2+a2)2    s2 +a2/(s2+a2)2   s2-a2/(s2+a2)2     None s2-a2/(s2+a2)2    

73 

If L-1{1/(s+a)2 }= ------ t e at     t e -at       e a t              None t e -at       



KARPAGA ACADEMY OF HIGHER EDUCATION  

Coimbatore - 641021. 
 (For the candidates admitted from 2018 onwards) 

 
DEPARTMENT OF PHYSICS 

UNIT III :( Objective Type/Multiple choice Questions each Question carries one Mark) 
 

                              PART-A (Online Examination) 
 

74 

L-1 (1 /(s2 + 4) ) is equal to e-4t  cos2t/2   sin2t/2   e4t sin2t/2   

75 

L-1 (1/s) = -------- 1 0 t      none. 1 

76 

L-1 [ 1/(s+a) ] =   ---------- e s  t   e a t          e-s t     e- a t e s  t   

77 

The exponential form of a 
complex number is 

z = reiq  z = eiq  continuous  z = r / cos q z = reiq 

78 

L(1) = ---- 1 s  1/s  0 1/s 

79 

L(t) = ----- 1/s 1/s2     t  1/t2 1/s2     

80 

L(t2) = ----- 2/s3   1/t2      2/t3    1/s2 2/s3   
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82 

L (eat) = ---- 1/s+a      1/s-a    1/s*a None 1/s-a    

83 

L (t sinat) = ----- 2as/ (s2-a2)   2as/ (s2a2)  2as/ (s2+a2)   None 2as/ (s2+a2) 

84 

L (tcos at ) = ----- s2-a2/(s2+a2)2    s2 +a2/(s2+a2)2   s2-a2/(s2+a2)2     None s2-a2/(s2+a2)2    

85 

If L-1{1/(s+a)2 }= ------ t e at     t e -at       e a t              None t e -at       

86 

L-1 (1 /(s2 + 4) ) is equal to e-4t  cos2t/2   sin2t/2   e4t sin2t/2   

87 

L-1 (1/s) = -------- 1 0 t      none. 1 

88 

L-1 [ 1/(s+a) ] =   ---------- e s  t   e a t          e-s t     e- a t e s  t   
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89 

The function x sin x be a   
------- function. 

even  odd continuous None even 

90 

The function x cos x be a   
------- function. 

even  odd    continuous   None odd   

91 

A Laplace Transform 
exists when ______ 
 
A. The function is piece-
wise continuous 
B. The function is of 
exponential order 
C. The function is 
piecewise discrete 
D. The function is of 
differential order 

A & B C & D A & D B & C A & B 

92 

What should be the value 
of laplace transform for the 
time-domain signal 
equation e-at cos ωt.u(t) 

1 / s + a with 
ROC σ > - a 

ω / (s + a) 2 + 
ω2 with ROC 
σ > - a 

s + a / (s + 
a)2 + ω2 with 
ROC σ > - a  

Aω / s2 + ω2 
with ROC σ 
> 0 

1 / s + a with 
ROC σ > - a 

93 

 Which kind of frequency 
spectrum/spectra is/are 
obtained from the line 
spectrum of a continuous 

Continuous in 
nature 

Discrete in 
nature 

Sampled in 
nature 

All of the 
above 

Discrete in 
nature 
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signal on the basis of Polar 
Fourier Series Method 

94 

Which type/s of Fourier 
Series allow/s to represent 
the negative frequencies 
by plotting the double-
sided spectrum for the 
analysis of periodic signals 
? 

 
Trigonometric 
Fourier Series 

 Polar Fourier 
Series 

Exponential 
Fourier Series 

All of the 
above 

Exponential 
Fourier Series 

95 

Which property of fourier 
transform gives rise to an 
additional phase shift of -
2π ftd for the generated 
time delay in the 
communication system 
without affecting an 
amplitude spectrum ? Time Scaling Linearity 

Time 
Shifting  Duality 

Time Shifting 
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UNIT-IV 

 
SYLLABUS 

 
Fourier series – Dirichlet’s theorem – change of interval – complex form – Fourier series in the 
interval (0, T) – Uses of Fourier series - Legendre’s polynomials and functions – Differential 
equations and solutions – Rodrigues formula – Orthogonality – relation between Legendre 
polynomial and their derivatives – recurrence relations – Lagurae Polynomials – recurrence relations  

Fourier series 

A Fourier series is an expansion of a periodic function  in terms of an infinite sum 
of sines and cosines. Fourier series make use of the orthogonality relationships of 
the sine and cosine functions. The computation and study of Fourier series is known as harmonic 
analysis and is extremely useful as a way to break up an arbitrary periodic function into a set of 
simple terms that can be plugged in, solved individually, and then recombined to obtain the solution 
to the original problem or an approximation to it to whatever accuracy is desired or practical. 
Examples of successive approximations to common functions using Fourier series are illustrated 
above. 

In particular, since the superposition principle holds for solutions of a linear homogeneous ordinary 
differential equation, if such an equation can be solved in the case of a single sinusoid, the solution 
for an arbitrary function is immediately available by expressing the original function as a Fourier 
series and then plugging in the solution for each sinusoidal component. In some special cases where 
the Fourier series can be summed in closed form, this technique can even yield analytic solutions. 

Any set of functions that form a complete orthogonal system have a corresponding generalized 
Fourier series analogous to the Fourier series. For example, using orthogonality of the roots of 
a Bessel function of the first kind gives a so-called Fourier-Bessel series. 

The computation of the (usual) Fourier series is based on the integral identities 

 

  

(1)

 

  

(2)

 

  

(3)

 

  

(4)

 

  

(5)

for , where  is the Kronecker delta. 
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Using the method for a generalized Fourier series, the usual Fourier series involving sines and 
cosines is obtained by taking  and . Since these functions form a complete 
orthogonal system over , the Fourier series of a function  is given by 

 

(6)

where 

 

 

(7)

 

 

(8)

 

 

(9)

and , 2, 3, .... Note that the coefficient of the constant term  has been written in a special form 
compared to the general form for a generalized Fourier series in order to preserve symmetry with the 
definitions of  and . 

Dirichlet conditions 

A piecewise regular function that 

1. Has a finite number of finite discontinuities and 

2. Has a finite number of extrema 

can be expanded in a Fourier series which converges to the function at continuous points and the 
mean of the positive and negative limits at points of discontinuity. 

 

 

 

 

 

 

Def. Sectionally continuous (or piecewise continuous) function. A function f (x) is said to 

be sectionally continuous (or piecewise continuous) on an interval a  x  b if the interval can 
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be subdivided into a finite number of intervals in each of which the function is continuous and has 
finite right and left hand limits. See Figure The requirement that a function be sectionally continuous 
on some interval [a, b] is equivalent to the requirement that it meet theDirichlet conditions on the 
interval. 

Fourier series. Let f (x) be a sectionally continuous function defined on an interval c < x < c + 2L. It 
can then be represented by the Fourier series 
 
 
 

 
 
 
Where 

 
 

 
 
At a point of discontinuity f (x) is given a value equal to its mean value at the discontinuity 

i.e. if x = a is a point of discontinuity, f (x) is given the value 

 
 

                

 

Complex form of Fouries series 

  We show how a Fourier series can be expressed more concisely if we introduce 

the complex number i  where i2 = −1. By utilising the Euler relation: 

e iθ ≡ cos θ + i sin θ 

We can replace the trigonometric functions by complex exponential functions. By also combining 

the 
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Fourier coefficients an and bn into a complex coefficient cn through 

Cn = (an-ibn) 

 

We find that, for a given periodic signal, both sets of constants can be found in one operation. We 

also obtain Parseval’s theorem which has important applications in electrical engineering. The 

complex formulation of a Fourier series is an important precursor of the Fourier transforms which 

attempts to Fourier analyse non-periodic functions. 

 

 

So far we have discussed the trigonometric form of a Fourier series i.e. we have represented 
functions of period T in the terms of sinusoids, and possibly a constant term, using 

 
 

 

If we use the angular frequency 
 

 

 

 

We obtain the more concise form 

 

 

 

 
We have seen that the Fourier coefficients are calculated using the following integrals.  
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An alternative, more concise form, of a Fourier series is available using complex q u a n t i t i e s . 
This form is quite widely used by engineers, for example in Circuit Theory and Control Theory, and 
leads naturally into the Fourier Transform which is the subject of            

 

Fourier series in the interval (0, T) 

We assume that the function f(x) is piecewise continuous on the interval [0,T]. Using the 
substitution x= Lyπ (−π≤x≤π), we can transform it into the function 

 

F(y)=f(Ly/π) 

 

which is defined and integrable on [−π,π]. Fourier series expansion of this function F(y) can be 
written as 

F(y)=f(Ly/π)=a0/2+ ∑ (ancosny+bnsinny). 

 

Uses of Fourier series 

Fourier series and frequencies 

The basic idea of Fourier series is that we try to express the given function as a combination of 
oscillations, starting with one whose frequency is given by the given function (either its periodicity 
or the length of the bounded interval on which it is given) and then taking multiples of this 
frequency, that is, using fractional periods. When we look at coefficients of the resulting "infinite 
linear combination", we can expect that if some of them are markedly larger then the rest, then this 
frequency plays an important role in the phenomenon described by the given function. This detection 
of hidden periodicity can be very useful in analysis, since not every periodicity can be readily seen 
by looking at a function. In particular, this is true if there are several periods that interact. 

Imagine that a function f describes temperatures at time t over many many years. There is one period 
that should be easily visible, namely seasonal changes with period one year. We also expect another 
period going over this basic yearly period, namely 1-day period of cold nights and warm days. Now 
the interesting question is whether there are also other periods. This is very useful to know, since 
such knowledge would tell us something important about what is happening with weather and 
climate. Frequency analysis offers a useful tool for such an investigation, looking over long data 
sequences it may point out cold ages and other long term changes in climate. 
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There are areas where decomposition into waves comes naturally, for instance storage of sound. 
When we are given a sound sample, Fourier transform allows us to decompose it into basic waves 
and store it in this way. Apart from data compression we also get furt
ignoring coefficients that correspond to frequencies that a typical human ear does not hear. This is 
the basis of the mp3 format (it uses transform that is something like a fourth generation offspring of 
cosine Fourier series). 

Fourier decomposition can be also generalized to more dimensions and then it can be quite powerful 
in storing visual information - it is for instance the heart of the system used by F.B.I. to store their 
fingerprint database. Since this decomposition is s
which we can find the coefficients. This inspired further development and today we do not usually 
use the standard Fourier series but its more powerful offspring, for instance something called Fast 
Fourier Transform (FFT). Here also hardware helps, there are devices (integrators) that have this 
wired in, roughly speaking one feeds it a function and the device spits out a Fourier coefficient.

Legendre Polynomial and differential equation

The Legendre differential equation is the

which can be rewritten 

 

The above form is a special case of the so
corresponding to the case . The Legendre differential
, 1, and . 

If the variable  is replaced by 

 

Derived below for the associated (

Since the Legendre differential equation is a
linearly independent solutions. A solution
function of the first kind, while a solution
of the second kind. If  is an integer, the function of the first kind reduces to a polynomial known as 
the Legendre polynomial. 
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e are areas where decomposition into waves comes naturally, for instance storage of sound. 
When we are given a sound sample, Fourier transform allows us to decompose it into basic waves 
and store it in this way. Apart from data compression we also get further memory savings by simply 
ignoring coefficients that correspond to frequencies that a typical human ear does not hear. This is 
the basis of the mp3 format (it uses transform that is something like a fourth generation offspring of 

Fourier decomposition can be also generalized to more dimensions and then it can be quite powerful 
it is for instance the heart of the system used by F.B.I. to store their 

fingerprint database. Since this decomposition is so useful, one important aspect is the speed at 
which we can find the coefficients. This inspired further development and today we do not usually 
use the standard Fourier series but its more powerful offspring, for instance something called Fast 

nsform (FFT). Here also hardware helps, there are devices (integrators) that have this 
wired in, roughly speaking one feeds it a function and the device spits out a Fourier coefficient.

Legendre Polynomial and differential equation 

differential equation is the second-order ordinary differential equation

 

 

The above form is a special case of the so-called "associated Legendre differential equation" 
. The Legendre differential equation has regular singular points

, then the Legendre differential equation becomes

 

Derived below for the associated ( ) case. 

Since the Legendre differential equation is a second-order ordinary differential equation, it has two 
linearly independent solutions. A solution  which is regular at finite points is called a
function of the first kind, while a solution  which is singular at  is called a

is an integer, the function of the first kind reduces to a polynomial known as 
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e are areas where decomposition into waves comes naturally, for instance storage of sound. 
When we are given a sound sample, Fourier transform allows us to decompose it into basic waves 

her memory savings by simply 
ignoring coefficients that correspond to frequencies that a typical human ear does not hear. This is 
the basis of the mp3 format (it uses transform that is something like a fourth generation offspring of 

Fourier decomposition can be also generalized to more dimensions and then it can be quite powerful 
it is for instance the heart of the system used by F.B.I. to store their 

o useful, one important aspect is the speed at 
which we can find the coefficients. This inspired further development and today we do not usually 
use the standard Fourier series but its more powerful offspring, for instance something called Fast 

nsform (FFT). Here also hardware helps, there are devices (integrators) that have this 
wired in, roughly speaking one feeds it a function and the device spits out a Fourier coefficient. 

order ordinary differential equation 

 (1) 

 (2) 

called "associated Legendre differential equation" 
regular singular points at 

, then the Legendre differential equation becomes 

 (3) 

ifferential equation, it has two 
which is regular at finite points is called a Legendre 

is called a Legendre function 
is an integer, the function of the first kind reduces to a polynomial known as 
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The Legendre differential equation can be solved using the
expansion with , 

   

   

 

  

Plugging in, 

so each term must vanish and 
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The Legendre differential equation can be solved using the Frobenius method
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Frobenius method by making a series 

 (4) 

 (5) 

 (6) 

  (7) 

  (8) 

  (9) 

          (10) 

         (11) 

         (12) 

        (13) 

 (14) 

 (15) 
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Therefore, 

      (18) 

   

  

  

  

so the even solution is 

Similarly, the odd solution is 

If  is an even integer, the series
only even powers of  and the series
a polynomial of degree  with only
solution for an integer  is then given by the
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integer, the series  reduces to a polynomial
and the series  diverges. If  is an odd integer, the series

with only odd powers of  and the series  diverges. The general 
is then given by the Legendre polynomials 
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 (16) 

 (17) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

polynomial of degree  with 
integer, the series  reduces to 

diverges. The general 

 (25) 

 (26) 
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where  is chosen so as to yield the normalization
function. 

The associated Legendre differential equation is

which can be written 

(Abramowitz and Stegun 1972; Zwillinger 1997, p.
called the associated Legendre polynomials (if
the first kind (if  is not an integer). The complete solution is

 

where  is a Legendre function of the second kind.

The associated Legendre differential equation is often written in a form obtained by setting
Plugging the identities 

   

   

   

   

into (◇) then gives 
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is chosen so as to yield the normalization  and 

Legendre differential equation is 

 

 

(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions 
called the associated Legendre polynomials (if  is an integer), or associated Legendre functions of 

is not an integer). The complete solution is 

 

Legendre function of the second kind. 

The associated Legendre differential equation is often written in a form obtained by setting
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 is a hypergeometric 

 (27) 

 (28) 

 to this equation are 
Legendre functions of 

 (29) 

The associated Legendre differential equation is often written in a form obtained by setting . 

 (30) 

 (31) 

 (32) 

 (33) 

 (34) 
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Lagurae Polynomials: Definition

Laguerre's Differential Equation

 

where  is a real number. When

Laguerre's Differential Equation are often referred to as

Important Properties 

Rodrigues' Formula: The Laguerre Polynomials

 where

Generating Function: The generating function of a 

 

Orthogonality: Laguerre Polynomials

the interval  with respect to the weighting function

By using this orthogonality, a piecewise continuous function
Laguerre Polynomials: 

Where: 
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Lagurae Polynomials: Definition 

Laguerre's Differential Equation is defined as: 

is a real number. When  is a non-negative integer, i.e., 

Laguerre's Differential Equation are often referred to as Laguerre Polynomials 

: The Laguerre Polynomials  can be expressed by Rodrigues' formula:

where  

: The generating function of a Laguerre Polynomial is: 

: Laguerre Polynomials , , form a complete orthogonal set

with respect to the weighting function . It can be shown that

 

By using this orthogonality, a piecewise continuous function  can be expressed in terms of 
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, the solutions of 

 . 

can be expressed by Rodrigues' formula: 

complete orthogonal set on 

. It can be shown that: 

expressed in terms of 
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This orthogonal series expansion is also known as a
a Generalized Fourier Series expansion.

Recurrence Relation: A Laguerre Polynomial at one point can be 
Laguerre Polynomials at the same point.

• 

• 

•  

Special Rsults 

 

 

 

Where  is 0 order Bessel function of the first kind

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I MSC PHYSICS    COURSE NAME: MATHEMATICAL PHYSICS

18PHP104  UNIT: IV (FOURIER SERIES)     BATCH

This orthogonal series expansion is also known as a Fourier-Laguerre Series 
expansion. 

: A Laguerre Polynomial at one point can be expressed in terms of neighboring 
Laguerre Polynomials at the same point. 

 

 

 

 

 

 

 

 

is 0 order Bessel function of the first kind 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
MATHEMATICAL PHYSICS 

BATCH-2018-2020     

Laguerre Series expansion or 

expressed in terms of neighboring 
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Possible questions (Part-B-6 Marks) 

1. State and Explain Dirichlet conditions. 

2. Show that 



 


1

1
21 14

2
)()(

n

n
dxxPxxP nn  using Legendre polynomials 

3. Show that the Legendre function Pn(x) is the coefficient of zn in the expansion of [1 –  2xz + 

z2]-1/2. 

From above, deduce the values of Pn(1).  Also, show that Pn(-x)=(-1)nPn(x) 

4. Explain what is Fourier series. Find the Fourier series of the function in the interval –π < x < 

π 

5. Derive Rodrigue’s Formula. State and Explain Dirichlet conditions. 

6. Explain orthogonal properties of Legendre’s polynomials. 

7. Explain about the Cauchy Residue theorem 

8. Explain orthogonal properties of Legendre’s polynomials. 

9. Derive recurrence relation for Lagurae formula. 

 

Possible questions (Part-C-10 Marks) 

1. Show that 



 


1

1
21 14

2
)()(

n

n
dxxPxxP nn  using Legendre polynomials 

2. Show that the Legendre function Pn(x) is the coefficient of zn in the expansion of [1 –  2xz + 

z2]-1/2. 

From above, deduce the values of Pn(1).  Also, show that Pn(-x)=(-1)nPn(x) 

3. Explain what is Fourier series. Find the Fourier series of the function in the interval –2π < x 

<2 π 

4. Derive Rodrigue’s Formula for legendre polynomial. 

5. Explain orthogonal properties of Legendre’s polynomials. 

6. Derive Rodrigue’s Formula for lagurae polynomial  

7. Derive the recurrence relation for Legendre formula. 
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S.no Questions Option 1 Option 2 Option 3 Option 4 Key  
1 

The value of J-1/2 (x) is 

 

 

 

 

 

 

2 
The Rodrigue formula 
for Pn(x), the Legendre 
polynomial of degree ‘n’ 
is  

 

 

 

  

3 

The value of Jo(x) at the 
origin is 1 0 –1 x 1 

4 

The value of P1(x) is x 1 x 2 / 2 ½ (x 2 –1) x 
5 

The identical roots of the 
Legendre’s functions are m = ± n m = ± 1  m = 0 or m = 1 m = 0 or m = -1 m = ± 1 
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6 

The value of J1/2 (x) is 

 

 

  

 

7 
If Jo and J1 are Bessel’s 
functions then J1’(x) is 
given by Jo(x) – 1/x J1(x) – Jo Jo(x) + 1/x J1(x) Jo(x) – 1/x2 J1(x) 

Jo(x) – 1/x 
J1(x) 

8 The value of the integral 
where Jn(x) is the Bessel 
function of the first kind 
of order n, is equal to 0 -2 2 1 0 

9  

The integral                           
is equal to 
 

xJ1(x) – Jo(x) xJ1(x) J1(x) x 2Jn(x) xJ1(x) 
10 If Jn+1(x) = (2/x) Jn(x) – 

Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then ‘n’ 
is 0 2 –1 1 1 

11 

The value of [J1/2 (x)]2 + 
[J-1/2 (x)]2 is 
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12 

The value of Po(x) is 1 x 0 –1 –1 
13  

The value of the                                                  
if 

 

n = m n ¹ m n > m n < m n ¹ m 
14 

The polynomial 2x2+x+3 
interms of Legendre 
polynomial is 

 

 

 

 

15 
Let Pn(x) be the 
Legendre polynomial, 
then Pn(-x) is equal to (-1)n+1  Pn’(x) (-1)n  Pn’(x) (-1)n  Pn(x) Pn”(x) (-1)n  Pn(x) 

16 If Pn(x) is the Legendre 
polynomial of order ‘n’, 
then 3x2 + 3x + 1 can be 
expressed as 3P2 + 3P1 4P2+2P1 + Po 3P2+3P1 + Po 2P2+3P1 + 2Po 2P2+3P1 + 2Po 

17  

If                                         
then ‘n’ is 
 

1 0 –1 µ 0 

0)()(
1

1






dxxPmxPn

 012 1134
3

1
PPP  012 1134

3
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18 

Legendre polynomial is                                           
where K is equal to 

 

63/2 
 

63/5 63/10 63/8 63/8 
19 Let Pn(x) be Legendre 

polynomial of degree 
n>1, then                                   
is equal to 0 1 / (2n+1) 2 / (2n+1) n / (2n+1) #REF! 

20  
The value of                           
is the third degree 
Legendre polynomial 
is 
 

1 –1 2 0 0 
21 

The Legendre 
polynomial Pn(x) has 

n real zeros 
between 0 and 1 

n zeros of which 
only one is between 
–1 and +1 

2n-1 real zeros 
between –1 and 1 none of these 

n real zeros 
between 0 and 
1 

22 

The incorrect equation 
among the following is Po(x) = 1 P1(x) = x 

Pn (-x) = (-1)n+1 Pn 

(x) 
 Pn (x) = (-1)n+1 Pn 

(x) 
Pn (-x) = (-1)n+1 
Pn (x) 

23 

The value of Pn(-x) is - Pn (x) Pn (x) (-1)n Pn (x) (-1)n Pn (-x) (-1)n Pn (x) 

dxxPx n





1

1

)()12(
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24 

The value of 2Jn’ is Jn-1 – Jn+1 Jn-1 + Jn+1 Jn+1 – Jn+1 2 Jn+1 Jn+1 – Jn+1 
25 

The root of x3 – 6x + 4 
lies between –1 and 0 1 and 2 –2 and 1 0 and 1 –1 and 0 
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UNIT-V 
 

SYLLABUS 
 

Bessel’s functions – differential equation and solution – generating functions – recurrence 
relations – Bessel function of second order – Spherical Bessel function - Hermite differential 
equation and Hermite polynomials – Generating function of Hermite polynomials – Recurrence 
formulae for Hermite polynomials – Rodrigue’s formula for Hermite Polynomials – 
Orthogonality of Hermite Polynomials – Dirac’s Delta Function 

Bessel functions differential equations and solution 

The Bessel functions of the first kind  are defined as the solutions to the Bessel differential 
equation 

  

 

 

 

 

 

 

 

 

 

 

 

Which are nonsingular at the origin. They are sometimes also called cylinder functions or 

cylindrical harmonics. The above plot shows  for 1, 2, ..., 5. The notation  was first used 
by Hansen (1843) and subsequently by Schlömilch (1857) to denote what is now written 
 (Watson 1966, p. 14). However, Hansen's definition of the function itself in terms of 
the generating function 
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(2)

is the same as the modern one (Watson 1966, p. 14). Bessel used the notation  to denote what 
is now called the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279). 

The Bessel function  can also be defined by the contour integral 

 

(3)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 
1985, p. 416). 

The Bessel function of the first kind is implemented in the Wolfram Language as BesselJ[nu, z]. 

To solve the differential equation, apply Frobenius method using a series solution of the form 

 

(4)

Plugging into (1) yields 

 

(5)

 

(6)

The indicial equation, obtained by setting , is 

 

(7)

Since  is defined as the first nonzero term, , so . Now, if , 

 

(8)
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(9)

 

(10)

 

(11)

First, look at the special case , then (11) becomes 

 

(12)

so 

 

(13)

Now let , where , 2, .... 

 

 

(14)

  

 

(15)

  

 

(16)

which, using the identity , gives 

 

(17)

Similarly, letting , 

 

(18)

which, using the identity , gives 

 

(19)

Plugging back into (◇) with  gives 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 
                               COURSE CODE: 18PHP104  UNIT: V (BESSEL FUNCTION) BATCH-2018-2020     

 
 

 

 

 

(20)

 

 

(21)

 

 

(22)

 

 

(23)

 

 

(24)

The Bessel functions of order  are therefore defined as 

 

 

 

(25)

 
 

 

(26)

so the general solution for  is 

 

(27)

Now, consider a general . Equation (◇) requires 

 

(28)

 

(29)

for , 3, ..., so 

  

(30)

 

 

(31)

for , 3, .... Let , where , 2, ..., then 

 

 

(32)

   

(33)

where  is the function of  and  obtained by iterating the recursion relationship down 
to . Now let , where , 2, ..., so 
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(34)

  

 

(35)

  

 

(36)

Plugging back into (◇), 

  

 

(37)

 

 

(38)

 

 

(39)

 

 

(40)

 

 

(41)

Now define 

 

(42)

where the factorials can be generalized to gamma functions for nonintegral . The above 
equation then becomes 

 

(43)

Returning to equation (◇) and examining the case , 

 

(44)

However, the sign of  is arbitrary, so the solutions must be the same for  and . We are 
therefore free to replace  with , so 

 

(45)
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and we obtain the same solutions as before, but with  replaced by . 

 

(46)

We can relate  and  (when  is an integer) by writing 

 

(47)

Now let . Then 

 

 

(48)

  

 

(49)

But  for , so the denominator is infinite and the terms on the left are zero. 
We therefore have 

 

 

(50)

   

(51)

Note that the Bessel differential equation is second-order, so there must be two linearly 
independent solutions. We have found both only for . For a general nonintegral order, 
the independent solutions are  and . When  is an integer, the general (real) solution is of 
the form 

 

(52)

where  is a Bessel function of the first kind,  (a.k.a. ) is the Bessel function of the second 
kind (a.k.a. Neumann function or Weber function), and  and  are constants. Complex 
solutions are given by the Hankel functions (a.k.a. Bessel functions of the third kind). 

The Bessel functions are orthogonal in  according to 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 
                               COURSE CODE: 18PHP104  UNIT: V (BESSEL FUNCTION) BATCH-2018-2020     

 
 

 

(53)

where  is the th zero of  and  is the Kronecker delta (Arfken 1985, p. 592). 

Except when  is a negative integer, 

 

(54)

where  is the gamma function and  is a Whittaker function. 

In terms of a confluent hypergeometric function of the first kind, the Bessel function is written 

 

(55)

A derivative identity for expressing higher order Bessel functions in terms of  is 

 

(56)

where  is a Chebyshev polynomial of the first kind. Asymptotic forms for the Bessel 
functions are 

 

(57)

for  and 

 

(58)

for  (correcting the condition of Abramowitz and Stegun 1972, p. 364). 

A derivative identity is 

 

(59)

An integral identity is 

 

(60)
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Some sum identities are 

 

(61)

(which follows from the generating function (◇) with ), 

 

(62)

(Abramowitz and Stegun 1972, p. 363), 

 

(63)

(Abramowitz and Stegun 1972, p. 361), 

 

(64)

for  (Abramowitz and Stegun 1972, p. 361), 

 

(65)

(Abramowitz and Stegun 1972, p. 361), and the Jacobi-Anger expansion 

 

(66)

which can also be written 

 

(67)

The Bessel function addition theorem states 

 

(68)

Various integrals can be expressed in terms of Bessel functions 
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(69)

which is Bessel's first integral, 

 

 

(70)

 

 

(71)

for , 2, ..., 

 

(72)

for , 2, ..., 

 

(73)

for . The Bessel functions are normalized so that 

 

(74)

for positive integral (and real) . Integrals involving  include 

 

                                                   (75) 

 

                                                   (76) 

 

Bessel function of second order 

A Bessel function of the second kind  (e.g, Gradshteyn and Ryzhik 2000, p. 703, 
eqn. 6.649.1), sometimes also denoted  (e.g, Gradshteyn and Ryzhik 2000, p. 657, 
eqn. 6.518), is a solution to the Bessel differential equation which is singular at the origin. Bessel 
functions of the second kind are also called Neumann functions or Weber functions. The above 
plot shows  for , 1, 2, ..., 5. The Bessel function of the second kind is implemented in 
the Wolfram Language as BesselY[nu, z]. 
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Let  be the first solution and  be the other one (since the Bessel differential 
equation is second-order, there are two linearly independentsolutions). Then 

   

(1)

   

(2)

Take  (1) minus  (2), 

 

(3)

 

(4)

so , where  is a constant. Divide by , 

 

(5)

 

(6)

Rearranging and using  gives 

  

 

(7)

  

(8)

where  is the so-called Bessel function of the second kind. 

 can be defined by 
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(9)

(Abramowitz and Stegun 1972, p. 358), where  is a Bessel function of the first kind and, 
for  an integer  by the series 

 

(10)

where  is the digamma function (Abramowitz and Stegun 1972, p. 360). 

The function has the integral representations 

  

 

(11)

  

 

(12)

(Abramowitz and Stegun 1972, p. 360). 

Asymptotic series are 

 

 

(13) 

 

 

 
 

For the special case ,  is given by the series 

 

Take the Helmholtz differential equation 

 

(1)
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in spherical coordinates. This is just Laplace's equation in spherical coordinates with an 
additional term, 

 

(2)

Multiply through by , 

 

(3)

This equation is separable in . Call the separation constant , 

 

(4)

Now multiply through by , 

 

(5)

This is the spherical Bessel differential equation. It can be transformed by letting , then 

 

(6)

Similarly, 

 

(7)

so the equation becomes 

 

(8)

Now look for a solution of the form , denoting a derivative with respect to  by a 
prime, 

  

 

(9) 
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(10)

  

 

(11)

so 

 

(12)

 

(13)

 

(14)

 

(15)

 

(16)

But the solutions to this equation are Bessel functions of half integral order, so the normalized 
solutions to the original equation are 

 

(17)

which are known as spherical Bessel functions. The two types of solutions are denoted 
 (spherical Bessel function of the first kind) or (spherical Bessel function of the second 
kind), and the general solution is written 

 

(18)

where 

 

 

(19) 

 

 

 

 

 

Spherical Bessel function 

The second-order ordinary differential equation 

 

(1)
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This differential equation has an irregular singularity at . It can be solved using the series 
method 

 

(2)

 

(3)

Therefore, 

 

(4)

and 

 

(5)

for , 2, .... Since (4) is just a special case of (5), 

 

(6)

for , 1, .... 

The linearly independent solutions are then 

 

 

(7)

 

 

(8)

These can be done in closed form as 

  

 

(9) 

 

 

(10)

where  is a confluent hypergeometric function of the first kind and  is a Hermite 
polynomial. In particular, for , 2, 4, ..., the solutions can be written 

 

 

(11)

 

 

(12)

 

 

(13)
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where  is the erfi function. 

If , then Hermite's differential equation becomes 

 

(14)

which is of the form  and so has solution 

  

 

(15)

 

 

(16)

 

 

(17)

 

Hermite Polynomial 

The Hermite polynomials  are set of orthogonal polynomials over the domain 

 with weighting function , illustrated above for , 2, 3, and 4. Hermite polynomials are 
implemented in the Wolfram Language as HermiteH[n, x]. 

The Hermite polynomial  can be defined by the contour integral 

 

(1)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 
1985, p. 416). 

The first few Hermite polynomials are 

   

(2) 

   

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 

  

 

(7) 

  

 

(8) 

  

 

(9) 

  

 

(10)

 
 

 

(11)
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(12)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2, 4; -
12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343). 

The values  may be called Hermite numbers. 

The Hermite polynomials are a Sheffer sequence with 

  

 

(13)

  

 

(14)

(Roman 1984, p. 30), giving the exponential generating function 

 

(15)

Using a Taylor series shows that 

  

 

(16)

  

 

(17)

Since , 

  

 

(18)

  

 

(19)

Now define operators 

 

 

 

(20)

 

 

 

(21)

It follows that 

 

 

(22)

  

 

(23)
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(24)

  

 

(25)

  

 

(26)

so 

 

(27)

and 

 

(28)

(Arfken 1985, p. 720), which means the following definitions are equivalent: 

 

 

 

(29)

  

 

(30)

  

 

(31)

(Arfken 1985, pp. 712-713 and 720). 

The Hermite polynomials may be written as 

 

 

(32)

  

 

(33)

(Koekoek and Swarttouw 1998), where  is a confluent hypergeometric function of the 
second kind, which can be simplified to 

 

(34)

in the right half-plane . 

The Hermite polynomials are related to the derivative of erf by 

 

(35)
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They have a contour integral representation 

 

(36)

They are orthogonal in the range  with respect to the weighting function  

 

(37)

The Hermite polynomials satisfy the symmetry condition 

 

(38)

They also obey the recurrence relations 

 

(39)

 

(40)

By solving the Hermite differential equation, the series 

  

 

(41)

  

 

(42)

  

 

(43)

  

 

(44)

are obtained, where the products in the numerators are equal to 

 

(45)

with  the Pochhammer symbol. 

Let a set of associated functions be defined by 

 

(46)

then the  satisfy the orthogonality conditions 
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(47)

 

  

(48)

 

 

 

(49)

 

 

 

(50)

 

 

 

(51)

if  is even and , , and . Otherwise, the last integral is 0 (Szegö 1975, 
p. 390). Another integral is 

 

(52)

where  and  is a binomial coefficient (T. Drane, pers. comm., Feb. 14, 2006). 

The polynomial discriminant is 

 

(53)
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(Szegö 1975, p. 143), a normalized form of the hyperfactorial, the first few values of which are 
1, 32, 55296, 7247757312, 92771293593600000, ... (OEIS A054374). The table of resultants is 
given by , , , , ... (OEIS A054373). 

Two interesting identities involving  are given by 

 

(54)

and 

 

(55)

(G. Colomer, pers. comm.). A very pretty identity is 

 

(56)

where  (T. Drane, pers. comm., Feb. 14, 2006). 

They also obey the sum 

 

(57)

as well as the more complicated 

 

(58)

where  is a Hermite number,  is a Stirling number of the second kind, and  is 
a Pochhammer symbol (T. Drane, pers. comm., Feb. 14, 2006). 

A class of generalized Hermite polynomials  satisfying 

 

(59)

was studied by Subramanyan (1990). A class of related polynomials defined by 

 

(60)
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and with generating function 

 

(61)

was studied by Djordjević (1996). They satisfy 

 
 
 

(62)

Roman (1984, pp. 87-93) defines a generalized Hermite polynomial  with variance . 

A modified version of the Hermite polynomial is sometimes (but rarely) defined by 

 

(63)

(Jörgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and Stegun 
1972, p. 778). The first few of these polynomials are given by 

   

(64)

  

 

(65)

  

 

(66)

  

 

(67)

  

 

(68)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1; , 
1; , 1; 3, , 1; 15, , 1; ... (OEIS A096713). The polynomial  is the independence 
polynomial of the complete graph . 

Generating function 
 

 
 
 
 

 
Recurrence formulas 
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Orthogonality of Hermite polynomials 
 

 
 
 

 

 

 

Rodrigue’s formula of 
Hermite polynomial 

 

 

The first few Hermite polynomials are 

H0 (t)  1 H1 (t)  2 t , H2 (t)  4t2-2 H3 (t)  8t 12 t , H4 (t)  16 - 48t  12 t,   

H5 (t)  32 t5  160 t3   120 t, etc 

 

Dirac delta function  

1. Definition as limit.  The Dirac delta function can be thought of as a rectangular pulse that 
grows narrower and narrower while simultaneously growing larger and larger.  

 

 

 

 

rect(x, b) =  

(x) = lim(b→0)  rect(x, b) 

Note that the integral of the delta function is the area under the curve, and has been held constant 
at 1 throughout the limit process. 

x 

y 

width = b 

height = 1/b 

(so total area = 1) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 
                               COURSE CODE: 18PHP104  UNIT: V (BESSEL FUNCTION) BATCH-2018-2020     

 
 

1)( 




x  

Shifting the origin.  Just as a parabola can be shifted away from the origin by writing y = (x – 
x0)

2 instead of just y = x2, any function can be shifted by plugging in x – x0 in place of its usual 
argument x.  

 

(x - x0) =   

1)( 0 




xx  

 

Shifting the position of the peak doesn’t affect the total area if the integral is taken from – to . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

y 
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Possible questions – (Part B- 6 marks) 

 

1. State and prove the recurrence relations of Bessel’s function. 

2. Obtain the solution for Hermite Differential equation  

3. Write down Hermite differential equation and obtain Hermite polynomial from that.   

   (ii) Show that 𝐻௡(−𝑥) = (−1)௡𝐻௡(𝑥) 

4. Derive the Recurrence relations for spherical Bessel functions. 

5. Derive Rodrigue’s Formula for Hermite polynomial.  

6. Discuss about the Dirac – Delta function. 

7. Discuss about the Spherical bessal function of zeroth order. 

8. Derive the recurrence formula for Hermite polynomial.  

9. Discuss about the Bessel’s differential equation for Bessel’s function of first kind. 

 

Possible questions – (Part C- 10 marks) 

 
1. State and prove the recurrence relations of Bessel’s function. 

2. Write down the Hermite Differential equation and obtain Hermite polynomial    

from that. 

3. Show that when n is integer,  

a. Jn(x) = 
ଵ

గ
∫ cos(𝑛𝜃 − 𝑥𝑠𝑖𝑛𝜃) 𝑑𝜃
గ

଴
 

b. J0(x) = 
ଵ

గ
∫ cos(𝑥𝑐𝑜𝑠𝜑) 𝑑𝜑
గ

଴
 

4. Derive the Recurrence relations for spherical Bessel functions. 

5. Derive Rodrigue’s Formula for Hermite polynomial.  

6. Discuss about the Dirac – Delta function. 

7. Derive the Rodrique’s formula for Hermite polynomial.  

8. Discuss about the Bessel’s differential equation for Bessel’s function of second kind. 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION  

Coimbatore - 641021. 
 (For the candidates admitted from 2018 onwards) 

 
DEPARTMENT OF PHYSICS 

UNIT V :( Objective Type/Multiple choice Questions each Question carries one Mark) 
 

                              PART-A (Online Examination) 
 

S.No Questions Option 1 Option 2 Option 3 Option 4 Key 
1 

The value of J-1/2 (x) is 
 

 

 

 

 

 

2 The Rodrigue formula 
for Pn(x), the Legendre 
polynomial of degree 
‘n’ is  

 

 

 

   

3 The value of Jo(x) at the 
origin is 1 0 –1 x 1 

4 The value of P1(x) is x 1 x 2 / 2 ½ (x 2 –1) x 
5 The identical roots of 

the Legendre’s 
functions are m = ± n m = ± 1  m = 0 or m = 1 m = 0 or m = -1 m = ± 1 

6 

The value of J1/2 (x) is 
     

7 
If Jo and J1 are Bessel’s 
functions then J1’(x) is 
given by Jo(x) – 1/x J1(x) – Jo Jo(x) + 1/x J1(x) Jo(x) – 1/x2 J1(x) 

Jo(x) – 1/x 
J1(x) 

!

2

n
K

n



x
x

sin
2

x
x

sin
2 x

x
sin

2



!

2

n
K

n



x
x

cos
2



!2

1

n
K

n


x
x

cos
2

n

n
K

2

!


2)!(2

1

n
K

n


x
x

sin
2

x
x

sin
2


x

x
cos

2


x

x
cos

2
x

x
sin

2


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8 The value of the integral 
where Jn(x) is the 
Bessel function of the 
first kind of order n, is 
equal to 0 -2 2 1 0 

9  

The integral                           
is equal to 
 

xJ1(x) – Jo(x) xJ1(x) J1(x) x 2Jn(x) xJ1(x) 
10 If Jn+1(x) = (2/x) Jn(x) – 

Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then ‘n’ 
is 0 2 –1 1 1 

11 
The value of [J1/2 (x)]2 + 
[J-1/2 (x)]2 is 

 

  

 

 

12 The value of Po(x) is 1 x 0 –1 –1 
13  

The value of the                                                  
if 
 

n = m n ¹ m n > m n < m n ¹ m 
14 

The polynomial 
2x2+x+3 interms of 
Legendre polynomial is 

 

 

 

 

 

 dxxxJo )(

x
2

x
2


2


2

x
2

0)()(
1

1






dxxPmxPn

 012 1134
3

1
PPP   012 1134

3

1
PPP   012 1134

3

1
PPP   012 1134

3

1
PPP   012 1134

3

1
PPP 
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15 
Let Pn(x) be the 
Legendre polynomial, 
then Pn(-x) is equal to (-1)n+1  Pn’(x) (-1)n  Pn’(x) (-1)n  Pn(x) Pn”(x) (-1)n  Pn(x) 

16 
If Pn(x) is the Legendre 
polynomial of order ‘n’, 
then 3x2 + 3x + 1 can be 
expressed as 3P2 + 3P1 4P2+2P1 + Po 3P2+3P1 + Po 2P2+3P1 + 2Po 

2P2+3P1 + 
2Po 

17  

If                                         
then ‘n’ is 
 

1 0 –1 µ 0 
18  

Legendre polynomial is                                                  
where K is equal to 
 
 
 
 
 
 

63/2 63/5 63/10 63/8 63/8 
19 

Let Pn(x) be Legendre 
polynomial of degree 
n>1, then                                   
is equal to 0 1 / (2n+1) 2 / (2n+1) n / (2n+1) n / (2n+1) 

,2)(
1

1






dxxPn





  xxxKxP

63

15

63

70
)( 35

5

dxxPx n





1

1

)()12(
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20 The value of                           
is the third degree 
Legendre polynomial is 1 –1 2 0 0 

21 
The Legendre 
polynomial Pn(x) has 

n real zeros between 
0 and 1 

n zeros of which 
only one is between 
–1 and +1 

2n-1 real zeros 
between –1 and 1 none of these 

n real zeros 
between 0 
and 1 

22 The incorrect equation 
among the following is Po(x) = 1 P1(x) = x 

Pn (-x) = (-1)n+1 Pn 

(x)  Pn (x) = (-1)n+1 Pn (x) 
Pn (-x) = (-
1)n+1 Pn (x) 

23 The value of Pn(-x) is - Pn (x) Pn (x) (-1)n Pn (x) (-1)n Pn (-x) (-1)n Pn (x) 
24 The value of 2Jn’ is Jn-1 – Jn+1 Jn-1 + Jn+1 Jn+1 – Jn+1 2 Jn+1 Jn+1 – Jn+1 
25 

The root of x3 – 6x + 4 
lies between –1 and 0 1 and 2 –2 and 1 0 and 1 –1 and 0 

26 Bessel’s functions also 
called cylindrical circular square linear cylindrical 

27 From Bessel’s 
functions, the value of 
Jn+1(x) is nJn(x) + Jn’(x) (n / x) Jn(x) - Jn’(x) nJn(x) - Jn’(x) (n / x) Jn(x) + Jn’(x) 

(n / x) Jn(x) 
- Jn’(x) 

28 
The value of J-1/2 (x) is (2/x) sinx (2/x) sinx (2/x) cosx (2/x) cosx

(2/x) 
cosx

29 

If Jn(x) is the Bessel 
function of the first 
kind, then  

 

x-2J2(x) + C 
 

x2J2(x) + C - x2J3(x) + C - x-1J3(x) + C2 x-2J2(x) + C 
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30 
When ‘n’ is an integer, 
Jn(x) and J-n(x) are harmonic linearly independent orthonormal linearly dependent 

harmonic 
function 

31 
Bessel’s functions are 

 
indeterminate 
 

simple harmonic 
oscillatory 
functions critically damped 

oscillatory 
functions 

32 If Jn+1(x) = (2/x) Jn(x) – 
Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then ‘n’ 
is 0 2 –1 1 1 

33 
Let f, g be polynomials 
of degrees a, b 
respectively. Let h(x) = 
f(g(x)). The degree of h 
is: ab a + b a*b*c a/b ab 

34 
Let f, g, h be nonzero 
polynomials such that 
f(x) − g(x) = h(x) and 
deg f = deg h. Pick the 
true statement:  deg g ≤ deg f deg g > deg f 

deg g has no 
relation to deg f deg g = deg f 

 deg g ≤ deg 
f 

35 Let f, g, h be 
polynomials such that 
f(x) = g(x) + x3 h(x). 
Then f(j)(0) = g(j)(0) 
for j = 0. j = 1 j = 2 all the above all of above 
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36 what is the value of 
d/dx[(x−nJn(x)] −x-nJn+1(x). Jn-1 + Jn+1 jn+1 jn 

−x-
nJn+1(x). 

37 In hermite polynomial 
what is value for H2(x)  4x2 −2 0 x2        x3 4x2 −2 
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