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LECTURE PLAN
S.No | Lecture Topics to be covered Support
Duration material/Page.Nos
Hour
UNIT -1
1 1 Definition of vector space — Linear dependence — Linear | T1(75-76)
independence — Basis — Dimension of a vector space
2 1 Representation of Vectors and linear operators with T1(67-69)
respect to basis
3 1 Schmidt orthogonalization process — Inner product T1(78-79) T1(80)
4 1 Tensors : Transformation of coordinates — Summation T1(188-189)
convention — Contravariant Tensor — Covariant Tensor T1(191-192)
5 1 Mixed Tensor — Rank of a Tensor T1(193-194)
6 1 Kronecker delta symbol — symmetric and antisymmetric T1(189-190)
tensors T1(204-205)
7 1 Invariant tensors. T1(210-211)
8 1 Revision
9 1 Possible big mark questions discussion
10 1 Possible multiple choice questions discussion
11 1 Unit test
12 1 Semester question discussion on particular unit
Total no.of Hours planned for unit —I-12 hrs
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S.No | Lecture Topics to be covered Support
Duration material/Page.Nos
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UNIT-II

1 1 Functions of a complex variable — single and multivalued | T1(293-294)
functions

2 1 Cauchy-Riemann differential equation — analytical — line | T1(269-297)
integrals of complex function T1(305-306)

3 1 Cauchy’s integral theorem and integral formula T1(309-310)

T1(318-319)
4 1 derivatives of an analytic function T1(319-320)
T1(323-324)

5 1 Liouville’s theorem - Taylor’s series T1(323-324)

6 1 Laurent’s series - Residues and their evaluation T1(324-326)

7 1 Cauchy’s residue theorem — application to the evaluation | T1(340-341)
of definite integrals

8 1 Revision

9 1 Possible big mark questions discussion

10 1 Possible multiple choice questions discussion

11 1 Unit test

12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit —II-12hrs
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S.No | Lecture Topics to be covered Support
Duration material/Page.Nos
(Hr)

UNIT -II1

1 1 Fourier Transform — Properties of Fourier transform — T1(665-672)
Fourier transform of derivatives

2 1 Fourier sine and cosine transforms of derivatives — Fourier | T1(673-676)
transform of functions of two or three variables T1(680)

3 1 Finite Fourier transforms — Simple Applications of FT T1(680-683)

4 1 Laplace transform — Properties of Laplace transforms — T1(689-697)
Laplace Transform of derivative of a function

5 1 Laplace transform of integral — Laplace transform of T1(689-697)
periodic functions - Inverse Laplace Transform T1 (701-702)

6 1 Fourier Mellin Theorem - Properties of inverse Laplace T1(709-710)
Transform

7 1 Convolution theorem — Evaluation of Laplace Transform | T1(712-714)
using Convolution theorem

8 1 Revision

9 1 Possible big mark questions discussion

10 1 Possible multiple choice questions discussion

11 1 Unit test

12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit —III-12hrs

Prepared by Dr.S.Esakki Muthu, Department of Physics, KAHE

Page 3/6

Batch 2018-2020




Lecture Plan

Batch 2018-2020

S.No | Lecture Topics to be covered Support
Duration material/Page.Nos
(Hr)
UNIT-1V
1 1 Dirichlet’s theorem — change of interval — complex form | T1(527-531)
recurrence relations
2 1 Fourier series in the interval (0, T) T1(541-543)
3 1 Uses of Fourier series - Legendre’s polynomials and T1(543)
functions T1(411-415)
4 1 Differential equations and solutions T1(411-415)
5 1 Rodrigues formula — Orthogonality T1(418-419)
6 1 Relation between Legendre polynomial and their T1(421-422)
derivatives
7 1 Lagurae Polynomials — recurrence relations T1(485-491)
8 1 Revision
9 1 Possible big mark questions discussion
10 1 Possible multiple choice questions discussion
11 1 Unit test
12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit —IV-12hrs
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S.No | Lecture Topics to be covered Support
Duration material/Page.Nos
(Hr)
UNIT -V
1 1 Bessel’s functions — differential equation and solution T1(444-445)
2 1 Generating functions — recurrence relations — Bessel T1(457-458)
function of second order 446-447
3 1 Spherical Bessel function T1 (472)
4 1 Hermite differential equation and Hermite polynomials T1(475-477)
5 1 Generating function of Hermite polynomials — Recurrence | T1(480-481)
formulae for Hermite polynomials
6 1 Rodrigue’s formula for Hermite Polynomials T1(482-483)
7 1 Orthogonality of Hermite Polynomials — Dirac’s Delta T1(735-736)
Function
8 1 Revision
9 1 Possible big mark questions discussion
10 1 Possible multiple choice questions discussion
11 1 Unit test
12 1 Semester question discussion on particular unit
Total no.of Hours planned for unit —V-12hrs
TEXT BOOK:

1. Satya Prakash., 2002. Mathematical Physics, 4th edition, S.Chand & Co, New Delhi.

REFERENCES:

1. Gupta.B.D., 2002, .Mathematical Physics, 2nd edition, Vikas publishing company, New
Delhi.

2. Singaravelu.V., 2008. Numerical methods, 2nd edition, Meenakshi publications, Sirkali.

3. Rajput.B.S., 2003. Mathematical Physics, 16th edition, Pragati Prakashan, Meerut.

4. Gupta. P.P., Yadav., and Malik.,2012. Mathematical Physics, Kedar Nath & Ram Nath,
Meerut.

5. Venkataraman.M.K., 2003. Numerical methods in Science & Engineering, 5th edition, The
National Publishing Company, Chennai.

6. Butkov, 2007, Mathematical Physics, Addison Wesley, New York
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UNIT-I

SYLLABUS

Vector Space - Definition of vector space — Linear dependence — Linear independence —
Basis — Dimension of a vector space — Representation of Vectors and linear operators with
respect to basis — Schmidt orthogonalization process — Inner product. Tensors

Transformation of coordinates — Summation convention — Contravariant Tensor — Covariant
Tensor — Mixed Tensor — Rank of a Tensor — Kronecker delta symbol — symmetric and

antisymmetric tensors — Invariant tensors.

Definition of Vector Space

A vector space V is a set that is closed under finite vector addition and scalar multiplication. The

basic example is #-dimensional Euclidean space R", where every element is represented by a list

of nreal numbers, scalars are real numbers, addition is component wise, and scalar

multiplication is multiplication on each term separately.

For a general vector space, the scalars are members of a field ¥, in which case V is called a

vector space over F.

Euclidean n-space R" is called a real vector space, and C" is called a complex vector space.

In order for ¥to be a vector space, the following conditions must hold for all

elements X. Y. Z €V and any scalars . € F:

1. Commutativity:

X+¥=Y+X

2. Associativity of vector addition:
X+Y)+Z=X+ (Y + Z).

3. Additive identity: For all X,
04+X=X+0=X

4. Existence of additive inverse: For any X, there exists a =X such that
X+(=-X)=0

5. Associativity of scalar multiplication:
risX)=(rs) X.

6. Distributivity of scalar sums:
r+X=rX+sX.

7. Distributivity of vector sums:
rX+Y)=rX+r¥Y.

8. Scalar multiplication identity:
X=X,

(1
2
3)
“)
)
(6)
(7
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Linear Independence and dependence

Let S={VI,V2,- . ,Vk} and span (§) = W .1Isitpossible to find a smaller (or even smallest) set,

for example, S Z{Vl,VZ,- . ,Vk_l}, such that

*
span(S) = W =span(S )
To answer this question, we need to introduce the concept of linear independence and linear
dependence.

Definition of linear dependence and linear independence:
The vectors Vsz:- . 9Vk in a vector space V are said to linearly dependent if there exist
constants, Cpczr . 9Ck , not all 0, such that

e+, e+, =0

VisVase e oV are linearly independent if

e+, oty =0 =¢ =¢,=---=¢, =0,
The procedure to determine if V;,Vs,.. .V, are linearly dependent or linearly independent:

1. Form equation €V toV, + GV = O, which lead to a homogeneous system.

2. If the homogeneous system has only the trivial solution, then the given vectors are linearly
independent; if it has a nontrivial solution, then the vectors are linearly dependent.

1 0 0

e, =|0],e,=1], e =0} and §= {61362963}. Are e,e, and e, linearly
0 0 1

independent?

[solution:]
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1 0 0 1 0 O0fc
ce +ce,+ce;=¢|0|+c,|1|[+c|0|=|0 1 0fc,|=0
0 0 1 0 0 1|c
¢, 0
= c, = 0
c, 0
Therefore, e, e, and e, are linearly independent.
1 -2 8
vi=|2|,v,=| 1 |, v;=] 6 | Arev,v, and v, linearly independent?
3 1 10
[Solution:]
1 -2 8 1 -2 8 |¢
e te,v, ey =c| 2|+ 1 |+el 61=|2 1 6 |c,|=0
3 1 10 3 1 10| c
C, 4
= c, | = t| - 2 |,te R
c, = |

Therefore, v,,v, and v, are linearly dependent.

Determine whether the following set of vectors in the vector space consisting of all 2x2
matrices is linearly independent or linearly dependent.

-]

[solution:]

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 3of 25
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211 301 [1 0] oo
oV, +6,v, Heyv; =¢ 0 1 +c, - +c, 5 ol7lo ol

Thus,
2¢,+3¢c,+ ¢, =0 2 3 1| |0
c =0 1 0 0| |0
! o Gl [t |t =
2¢, +2¢, =0 0 2 21 |10}
¢+ =0 1 1 0] |0
The homogeneous system is
(2 3 1] 0]
¢y
I 0 O 0
c, | =
0o 2 2 0
Cs
11 0 ] 1 0 ]
The associated homogeneous system has only the trivial solution
¢, 0
c, |=10
KE 0

Therefore, v,,v, and v, are linearly independent.

Determine whether the following set of vectors in the vector space consisting of all polynomials
of degree< n is linearly independent or linearly dependent.

S = {vl,vz,v3}= {x2 +x+2,2x" 4+ x,3x° +2x+2}_

[solution:]

oV oV, +C, =c1(x2 +x+2)+c2(2x2 +x)+c3(3x2 +2x+2)=0,

Thus,

¢, +2¢c,+3¢c, =0 1 2 3 0
e+ ¢, +2¢;,=0 o ol l|+a|2|=0]
2¢, + +2¢, =0 2 0 2 0

The associated homogeneous system is
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1 2 37, 0
1 1 2c,|=|0
2 0 2| c, 0

The homogeneous system has infinite number of solutions,
¢, 1
c,|=t 1| teR.

K -1
Therefore, v,,v, and v, are linearly dependent since

tv,+tv, —tv; =0, teR.

Note:
1 -2

In the examples with vi=|2v,=| 1 |vi=]6] or with
3 1 10

2 2 2
Sz{vl,vz,v3}:{x +x+2,2x" +x,3x +2x+2}, vi,v, and v, are linearly

dependent. Observe that v, in both examples are linear combinations of v,,v,,

8 1 -2
vi=|6|=42|-2] 1 |=4v,-2v,
10 3 1

and
v, =3x +2>c+2:(x2 +x+2)+(2x2 +x) =V +V.

As a matter of fact, we have the following general result.
Important result:
The nonzero vectors Vj,V,,-- 5V in a vector space V are linearly dependent if and only if one of

the vectorsV; jz2 , is a linear combination of the preceding vectors V>V2s- - 5V, 1.

Note:

Every set of vectors containing the zero vector is linearly dependent. That is, V,V5,...V; are k

vectors in any vector space and V; is the zero vector, then V;,V,,..,V, are linearly dependent.

Basis and Dimension

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 5Sof 25
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Definition of basis:

The vectors V,V,,..,V, in a vector space V are said to form a basis of V if
(@) WisVaoe oV, span V (ie., SPAN(Vy,v,,...,v, ) =V,

(b) V1»V55- -5V, are linearly independent.

0
,e;=[0|, and §= {31962363}.Are e,,e, and e, abasisin R*?
1

o

I
(=

Q

[\

I
(= =)

[solution:]
e,,e, and e, form a basis in R’ since
3
(a) span(S) = Span(€1 »€5, 63) =R (see the example in the previous section).

(b) e,,e, and e, are linearly independent (also see the example in the previous section).

1 0 3
vV, = , Vo = , V3 = . Are v,,v, and v, abasisin R*?

[solution:]

v,,v, and v, are not a basis of R* since v,,v, and v, are linearly dependent,
3vi+4v, —v, =0,

Note that span (v,,v,,v;) = R* .
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1 -2 8
=2, vy= 1 |, vy={ 61| Arev,v, and v, abasisin R*?
3 1 10

[solution:]

v,,v, and v, are not a basis in R’ since v,,v, and v, are linearly independent,

8 1 -2
v,=|6|=42|-2] 1 |=4v,-2v,
10 3 1
Let
1 1 1
vi=|2,v,=|0], v;=[1]|, and Sz{vl,vz,v3}.
1 2 0

Are S abasis in R*?
[solution:]
(@)

a

3 .
span(S) = R” < Forany vector v=|b | € R*, there exist real numbers ¢,,¢,,c, such that

Cc
a 1 1 1
v=|b|=c/|2|+c,|0|+c| 1 |=cy +c,v, +c3vy
c 1 2 0

< we need to solve for the linear system

1 1 1j¢ a
2.0 1 |=|b
1 2 0le| |e]|

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 7of 25
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The solution is

—2a+2b+c a—b+c da—b—2c
G=—"F———",6= , = 3 .

3 3

Thus,

-2a+2b+c a—b+c da—-b-2c
ve| ————— W | ———— | ——— ;.
3 3 3

. . . . . 3
That is, every vector in R® can be a linear combination of v,,v,,v; and Span (S ) =R,
(b) Since

¢ +c,+c | |0
oV, te,v, oy, = 20, +c; |=|0] < ¢ =c,=¢;=0

b

¢, +2c¢, 0
Vl s Vz ) V3 are linearly independent.

By (a) and (b), V15>V, V3 are a basis of R®.

Important result:

If S :{vaza- . 9Vk} is a basis for a vector space V, then every vector in V can be written in an

unique way as a linear combination of the vectors in S.
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1 0 0
e, =0, e,=|1],e=|0] and §= {61962963}. S is a basis of R’. Then, for any
0 0 1
a

vector v=|b|,

C

a 1 0 0
v=|b|=a|l0|+b|1|+c|0|=ae +Dbe, +ce,
c 0 0 1

is uniquely determined.

Important result:
Let S I{VI,VZ,- . ,Vk} be a set of nonzero vectors in a vector space V and let
W = span {Vl sVaseees Vi } Then, some subset of S is a basis of W.

How to find a basis (subset of S) of W:

There are two methods:

Method 1:

The procedure based on the proof of the above important result.
Method 2:

Step 1: Form equation
cv, ey, +otcv, =0

Step 2: Construct the augmented matrix associated with the equation in step 1 and transform this
augmented matrix to the reduced row echelon form.

Step 3: The vectors corresponding to the columns containing the leading 1’s form a basis. For

example, if k=6 and the reduced row echelon matrix is
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I x x x x x |0

0 0 1 x x x 1|0

0 0 O 0

0O 0 0 O 0]

0O 0 0 0O 0 010

then the 1°st, the 3’nd, and the 4°th columns contain a leading 1 and thus

V15V3,V4 are abasis of W = Span{vl,vz,...,v6}.

Let

S:{elaezaalae3aaz}:

S O =
S = O
S W N
—_—o O
) \.U.) —

and span (S ) = R’ Please find subsets of S which form a basis of R’.

[solution:]
Methodl:

We first check if e, and e, are linearly independent. Since they are linearly independent, we

continue to check if e,, e, and a, are linearly independent. Since
2e, +3e, —a, =0,

we delete @, from S and form a new set S, S, = {¢,,e,,e;,a, }. Then, we continue to check if e,
, e, and e, are linearly independent. They are linearly independent. Thus, we finally check if e,

, e, e; and a, are linearly independent. Since

e, +3e,+2e,—a, =0,
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we delete @, from S, and form a new set S,, S, = {el,ez,e3}. Therefore,

S, = {81932783}

is the subset of S which form a basis of form a basis of R’ .
Method 2:

Step 1:

The equation is

1 0 2 0 1
¢l 0|+c|1|+e|3|+c|0|+c|2|=0
0 0 0 1 3
Step 2:

The augmented matrix and its reduced row echelon matrix is

(1 0 2 0 1]0]
01 3 0 2|0
0 0 0 1 3[0]

The 1°st, the 2’nd and 4’th columns contain the leading 1’s. Thus,

{81 »€,,6€5 } forms a basis.

Representation of Vectors and linear operators with respect to basis

Let S:{vaza- . 9Vn} be a basis for a vector space V and let T = {Wl cWoseo s W, } is a
<

linear independent set of vectors in V. Then, r >~ n

Corollary:

Let S:{vaza- . ,Vn} and T = {prza- ) Wm} be two bases for a vector space V.
Then, n = m
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Note:

For a vector space V, there are infinite bases. But the number of vectors in two different bases
are the same.

For the vector space R,

1
V=2 v, =0, vy=|1} §= {vl,vz,v3} is a basis for R’ (see the previous
1] 12 0
example). Also,
1] 0 0
e,=|0],e,=|1] e=]0|,T= {e1aezae3} is basis for R”.
10| 0 1

= There are 3 vectors in both S and T.

Schmidt orthogonalization process

Gram-Schmidt orthogonalization, also called the Gram-Schmidt process, is a procedure which
takes a nonorthogonal set of linearly independent functions and constructs an orthogonal
basis over an arbitrary interval with respect to an arbitrary weighting function w(xJ.

Applying the Gram-Schmidt process to the functions 1, ¥, ¥*, ... on the interval [-1. 1] with the

usual L* inner product gives the Legendre polynomials (up to constant multiples; Reed and
Simon 1972, p. 47).

Given an original set of linearly independent functions {ulizo, let Walizs denote the
orthogonalized (but not normalized) functions, {#alizo denote the orthonormalized functions, and
define

Wo (x) = ug (x) (1)
o (x)
V ¥o? 6w ) dx

g0 () = )

Then take
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R J.f-"l (1}' = Iul () + e dy (2, (3)

where we require

f{ﬁl ﬁﬁﬁde=J-uI¢ﬁde+alﬂ‘J¢ﬁq wdx @)
= 0. Q)

By definition,

J;ﬁ}qwa‘le, (6)

)

a|u=—Ju|¢lﬁwa‘x. (7)

The first orthogonalized function is therefore

Ui = [X}—[fm ¢ﬁwdx]¢'ﬁ.- (®)

and the corresponding normalized function is

i (x)

\Il'fllﬂhzwdx | ©)

By mathematical induction, it follows that

¢ =

¢II I:fv} = & * (10)
jl,.'}fl?' wd x

where

J||!:r| [I}=u,+a||}¢||}+a||¢|| '"+au—|¢'|—| (11)

and
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a,_,-E—Ju, diwdx. (12)

If the functions are normalized to Vi instead of 1, then

f[qﬂ'_.' @) wdx =N} (13)
‘|ll’lr| I:x}
i) =N ———— 14
v fl,.!:r,2 wd x (14)
_fu, diwdx
a._.'=—T- (15)

Orthogonal polynomials are especially easy to generate using Gram-Schmidt orthonormalization.
Use the notation

(o )= (| w ) (16)
= fx, )z, ) wlxhdx, (17)

where w (x) is a weighting function, and define the first few polynomials,

=1 (18)

{x po | po)
(g | Bod

p1(x)= |2r lm- (19)

As defined, po and p1 are orthogonal polynomials, as can be seen from

~ {x po | po)
ol = (e = 70 | ) 0)
x po | o
{x po) P {po) (21
= {x py) = {x po) (22)
= 0. (23)

Now use the recurrence relation
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stablshed Und :_.r-ii..".l"‘li--l {xpllpl {Pllpl
_P,H[X}—X |D‘_':| {P ||P |.':' (24)
to construct all higher order polynomials.
To verify that this procedure does indeed produce orthogonal polynomials, examine
II x.pl .PI PI PI
{pisl |P‘|:'= x= | an‘Pn)_( | Pi-1 ‘Pl) (25)
i Pllpl Pi-1 |P|—|
x pi | pid Lo | pid
::X i |:'_—{| |:'_—{|— |:' 26
pi|P {pi|pid PP {pi-1 | Pic1) pit|P (26)
i | pild
= =P | P 27
Fis oy P 1P 27)

ey [ Apet|pi)
P 17 | (pra o) P21 (28)

= ... (29)

= =1y (7|4 {po | 1) (30)
(P | Po?

=10, (31)

since Po [P} =0 Therefore, all the polynomials pi (x) are orthogonal.
Inner product

An inner product is a generalization of the dot product. In a vector space, it is a way to
multiply vectors together, with the result of this multiplication being a scalar.

More precisely, for areal vector space, an inner product (-. -} satisfies the following four
properties. Let #, v, and w be vectors and ™ be a scalar, then:

1. Gt v, wiy = (uy w) + (v, W),

2. lev, wi=a v, w),

3. (rawd={w, v},

4. (v, v) 20 and equal if and only if v=10.

The fourth condition in the list above is known as the positive-definite condition. Related thereto,
note that some authors define an inner product to be a function i*. -} satisfying only the first
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three 'cl)'f ‘the above conditions with the added (weaker) condition of being (weakly) non-
degenerate (i.e., if (v, w) =Ufor all w, then v=0). In such literature, functions satisfying all four
such conditions are typically referred to as positive-definite inner products (Ratcliffe 2006),
though inner products which fail to be positive-definite are sometimes called indefinite to avoid
confusion. This difference, though subtle, introduces a number of noteworthy phenomena: For
example, inner products which fail to be positive-definite may give rise to "norms" which yield
an imaginary magnitude for certain vectors (such vectors are called spacelike) and which induce
"metrics" which fail to be actual metrics. The Lorentzian inner productis an example of an
indefinite inner product.

A vector space together with an inner product on it is called aninner product space. This
definition also applies to an abstract vector space over any field.

Examples of inner product spaces include:

1. The real numbers R, where the inner product is given by

(x,3) =xy. (D

2. The Euclidean space R", where the inner product is given by the dot product

{I:x|rx2.~'"rx.rr}r(}'h}'z.*'"r}'n}} (2)

=xm y1tary:t-ag ya
3. The vector space of real functions whose domain is an closed interval [a. b1 with inner product

0= [ rad= ©)

When given a complex vector space, the third property above is usually replaced by

(v, wh = {w, v}, “4)

where Z refers to complex conjugation. With this property, the inner product is called
a Hermitian inner product and a complex vector space with a Hermitian inner product is called
a Hermitian inner product space.

Every inner product space is a metric space. The metric is given by

glvyw)={v—w,v—w %)

If this process results in a complete metric space, it is called a Hilbert space. What's more, every
inner product naturally induces a norm of the form
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TUGC Act,_1956 |

= Vix, . (6)

whereby it follows that every inner product space is also naturally a normed space. As noted
above, inner products which fail to be positive-definite yield "metrics" - and hence, "norms" -
which are actually something different due to the possibility of failing their respective positivity
conditions. For example, #»-dimensional Lorentzian Space (i.e., the inner product space
consisting of K" with the Lorentzian inner product) comes equipped with a metric tensor of the
form

(dsf =—dxi +dxi +- +dx (7)

and a squared norm of the form

V] = =vG + v + o v ®)

for all vectors ¥ = (¥, vi. .... ¥a-1). In particular, one can have negative infinitesimal distances and
squared norms, as well as nonzero vectors whose vector norm is always zero. As such, the metric
(respectively, the norm) fails to actually be a metric (respectively, a norm), though they usually
are still called such when no confusion may arise.

Tensor

Introduction and definitions

In n-dimensional space V; (called a "manifold" in mathematics), points are specified by

assigning values to a set of #n continuous real variables x l,xz.....xn called the coordinates. In

many cases these will run from -co to +oo, but the range of some or all of these can be finite.

Examples: In Euclidean space in three dimensions, we can use cartesian coordinates x, y and z,
each of which runs from -c to +oo. For a two dimensional Euclidean plane, Cartesians may again
be employed, or we can use plane polar coordinates », [1 whose ranges are 0 to oo and 0 to 2]
respectively.
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Coordinate transformations. The coordinates of points in the manifold may be assigned in a

number of different ways. If we select two different sets of coordinates, xl,xz.....xn and

I1 l2 In . . .
XX ,.....x", there will obviously be a connection between them of the form

o 12 n
= e r=1, 2. (1)
where the f's are assumed here to be well behaved functions. Another way of expressing the
same relationship is

7 ) n
xT=x" (L xTx ) r=1,2.n Q)

Recall that if a variable z is a function of two variables x and y, i.e. z = f (x, y), then the
connection between the differentials dx, dy and dz is

dz = ﬁdx + ﬁ[dy
Q ©)

S5

Extending this to several variables therefore, for each one of the new coordinates we have

n r
O"))C!
dx'” =Z des
S=raxt =1, 2eree. (4)
The transformation of the differentials of the coordinates is therefore linear and

homogeneous, which is not necessarily the case for the transformation of the coordinates
themselves.

Range and Summation Conventions. Equations such as (4) may be simplified by the use
of two conventions:

Range Convention: When a suffix is unrepeated in a term, it is understood to take all values
in the range 1, 2, 3.....n.

Summation Convention: When a suffix is repeated in a term, summation with respect to
that suffix is understood, the range of summation being 1, 2, 3.....n.

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 18of 25



& ' KARPAGAM ACADEMY OF HIGHER EDUCATION

_— N
K A RMPAtéh A M CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS

(Deemed to be University)

|Establish&d Under Section 3 of UGL AT, 1955

With these two conventions applying, equation (4) may be written as

24
x " ax®
& (5)

e =

Note that a repeated suffix is a "dummy" suffix, and can be replaced by any convenient
alternative. For example, equation (5) could have been written as

24
é’xm dax™
& . (6)

dx'’ =

where the summation with respect to s has been replaced by the summation with respect to
m.

Contravariant vectors and tensors. Consider two neighbouring points P and Q in the

manifold whose coordinates are x” and x” + dx respectively. The vector 0

is then described by the quantities dx’ which are the components of the vector in this

coordinate system. In the dashed coordinates, the vector PO is described by the components

e
dx" \which are related to dx” by equation (5), the differential coefficients being evaluated at

e’

P. The infinitesimal displacement represented by dx’ or is an example of a contravariant

vector.

Defin. A set of n quantities 7" associated with a point P are said to be the components of a
contravariant vector if they transform, on change of coordinates, according to the equation

&C,r TS
S
x (7)

"=

where the partial derivatives are evaluated at the point P. (Note that there is no requirement
that the components of a contravariant tensor should be infinitesimal.)

Defn. A set of n 2 quantities 7" associated with a point P are said to be the components of a

contravariant tensor of the second order if they transform, on change of coordinates,
according to the equation

o™ s ‘ )
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Obviously the definition can be extended to tensors of higher order. A contravariant vector is
the same as a contravariant tensor of first order.

Defn. A contravariant tensor of zero order transforms, on change of coordinates, according to
the equation

T'=T 9)

b

i.e. it is an invariant whose value is independent of the coordinate system used.

Covariant vectors and tensors. Let [| be an invariant function of the coordinates, i.e. its
value may depend on position P in the manifold but is independent of the coordinate system
used. Then the partial derivatives of [] transform according to

op P oxs
A8 AT
ox ox® Ox (10)

Here the transformation is similar to equation (7) except that the partial derivative involving
the two sets of coordinates is the other way up. The partial derivatives of an invariant
function provide an example of the components of a covariant vector.

Defn. A set of n quantities 7, associated with a point P are said to be the components of a
covariant vector if they transform, on change of coordinates, according to the equation

S
r -2,
ox' " (11)

By convention, suffices indicating contravariant character are placed as superscripts, and
those indicating covariant character as subscripts. Hence the reason for writing the

coordinates as X. (Note however that it is only the differentials of the coordinates, not the

coordinates themselves, that always have tensor character. The latter may be tensors, but this
is not always the case.)

Extending the definition as before, a covariant tensor of the second order is defined by the
transformation

™ &
rszdc,r &S mn

!

(12)

and similarly for higher orders.
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Rank of Tensor

The total number of contravariant and covariant indices of a tensor. The rank E of a tensor is
independent of the number of dimensions ¥ of the underlyingspace.

An intuitive way to think of the rank of a tensor is as follows: First, consider intuitively that a
tensor represents a physical entity which may be characterized by magnitude and multiple
directions simultaneously (Fleisch 2012). Therefore, the number of simultaneous directions is
denoted & and is called the rank of the tensor in question. In ¥-dimensional space, it follows that
a rank-0 tensor (i.c., ascalar) can be represented by ¥ =1 number since scalars represent
quantities with magnitude and no direction; similarly, a rank-1 tensor (i.e., a vector) in ¥-
dimensional space can be represented by N' =Nnumbers and a general tensor by N* numbers.

From this perspective, a rank-2 tensor (one that requires N* numbers to describe) is equivalent,
mathematically, to an N XN matrix.

rank object
0 scalar
1 vector
2 NXN matrix

=3 tensor

The above table gives the most common nomenclature associated to tensors of various rank.
Some care must be exhibited, however, because the above nomenclature is hardly uniform across
the literature. For example, some authors refer to tensors of rank 2 as dyads, a term used
completely independently of the related term dyadicused to describe vector direct
products (Kolecki 2002). Following such convention, authors also use the terms triad, tetrad,
etc., to refer to tensors of rank 3, rank 4, etc.

Some authors refer to the rank of a tensor as its order or its degree. When defining tensors
abstractly by way of tensor products, however, some authors exhibit great care to maintain the
separation and distinction of these terms.

Mixed tensors and Kroneckar Delta. These are tensors with at least one covariant suffix

. . . r .
and one contravariant suffix. An example is the third order tensor I’ st Which transforms

according to
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St Am A, A, t°n
o g ot P (13)

T'r é}c'r @Cn é}cp Tm

Another example is the Kronecker delta defined by

§§= 1, r=s

(14)

It is a tensor of the type indicated because (a) in an expression such as ngﬁ Om, which

involves summation with respect to m, there is only one non-zero contribution from the

Kronecker delta, that for which m = ¢, and so 317217,"551 =Blt;nq:; (b) the coordinates in any

r
coordinate system are necessarily independent of each other, so that;= 5§ and
O’ler _ 5/7” . .

P = 0g ; so these two properties taken together imply that
5,?‘ _ dx/l" dxl’l
s m 5,8 n
A& ox . (15)

Notes. 1. The importance of tensors is that if a tensor equation is true in one set of

coordinates it is also true in any other coordinates. e.g. if T mn 0 (which, since m and n are

n
unrepeated, implies that the equation is true for a/l m and n, not just for some particular choice
of these suffices), then 7' ;,S =0 also, from the transformation law. This illustrates the fact that

any tensor equation is covariant, which means that it has the same form in all coordinate
systems.

2. A tensor may be defined at a single point P within the manifold, or along a curve, or
throughout a subspace, or throughout the manifold itself. In the latter cases we speak of a
tensor field.

Tensor algebra

Addition of tensors. Two tensors of the same type may be added together to give another

gt r o
tensor of the same type, e.g. if 4 s and Bst are tensors of the type indicated, then we can

define

T r
Cor =Age * By (16)
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It is easy to show that the quantities C:t form the components of a tensor.

. . . A"

Symmetric and antisymmetric tensors.

4TS = 45T . e ATS = gt L .
= and antisymmetric if = . Similarly for covariant tensors. Symmetry

is a symmetric contravariant tensor if

rs sr
=4

properties are conserved under transformation of coordinates, e.g. if 4 , then

A,mn — @C’T &C,:AVS :ax’:/l &,:ASF:AJ’ZWI
' o &' ox . (17)

Note however that for a mixed tensor, a relation such as 4 » =4y does not transform to give
the equivalent relation in the dashed coordinates. The concept of symmetry (with respect to a
pair of suffices which are either both subscripts or both superscripts) can obviously be
extended to tensors of higher order.

Any covariant or contravariant tensor of second order may be expressed as the sum of a
symmetric tensor and an antisymmetric tensor, e.g.

1 1
Ars:_(Ars+Asr)+_(Ars_Asr)
2 2 (18)

Multiplication of tensors. In the addition of tensors we are restricted to tensors of a single
type, with the same suffices (though they need not occur in the same order). In the
multiplication of tensors there is no such restriction. The only condition is that we never
multiply two components with the same suffix at the same level in each. (This would imply
summation with respect to the repeated suffix, but the resulting object would not have tensor
character - see later.)

m
To multiply two tensors e.g. Ars and Bn we simply write

C:’T;n :ArsBiT_ (19)

It follows immediately from their transformation properties that the quantities Crsn form a

tensor of the type indicated. This tensor, in which the symbols for the suffices are all different,

is called the outer product of Ays and By, .

m

Contraction of tensors. Given a tensor 7, then

T’m B dc/m Ofyxs Ofyxt ,

_ T
np 7 N D st
o' At A& (20)
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Hence replacing n by m (and therefore implying summation with respect to )

T,m B @C/m &S Ofyxt Tr
mp — 7 ,m @C,p st
ox

as ot -
é,xr O’Jxlp st

, St
ox'P @)

so we see that T}, behaves like a tensor 4, . The upshot is that contraction of a tensor (i.e.

writing the same letter as a subscript and a superscript) reduces the order of the tensor by 2
and yields a tensor whose type is indicated by the remaining suffices.

Note that contraction can only be applied successfully to suffices at different levels. We may

. . p .. p
of course construct, starting with a tensor Aqrs say, a new set of quantities Aqrr; but these do

not have tensor character (as one can easily check) so are of little interest.

X C;’j;n = A}"SBIT
Having constructed the outer product

m m
g ; Crsn = AmsBy
corresponding inner products ~"™ :

covariant tensor of second order.

in the example above, we can form the

C%m = ArmB};n

and . Each of these forms a

Possible questions —(Part —B- 6 Marks)
1. Explain the properties of Kronecker delta. Prove that Kronecker delta is a mixed
tensor of rank 2, and is invariant.
2. Explain Schmidt’s orthogonalization method
3. Show that the symmetry properties of a tensor are invariant

4. Describe the operations of outer product and inner product of tensors
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10.

11.

Show that the set of vectors 1y, 12, 13 given by

r1=j-2k, ;= i-j+K, r; = i+2j+K is linearly independent

Show that vectors (u+v), (u —v) and (u-2v+w) are linearly independent provided (u,v,w)
are linearly dependent.

Show that Kronecker delta is an invariant mixed tensor of rank 2.

Show that in Cartesian coordinate system the contravariant and covariant components of
a vector are identical.

Explain about the symmetric and antisymmetric tensors.

Explain orthogonal and orthonormal vectors. Explain Schmidt’s orthogonalization
procedure.

Explain Einstein’s summation convention of tensors

Possible questions —(Part —C- 10 Marks)

1.
2.
3.

Explain Schmidt’s orthogonalization process and give their properties

Show that the symmetry properties of a tensor are invariant

Describe the operations of outer product and inner product of tensors

Show that the set of vectors 1y, 12, 13 given by

1= i+j-5k, r,= 2i-j+K, r3 = 8i+2j+K is linearly independent

Show that vectors (u+v), (u —v) and (u-2v+w) are linearly independent provided (u,v,w)
are linearly dependent.

Show that in Cartesian coordinate system the contravariant and covariant components of
a vector are identical.

Explain about the symmetric and antisymmetric tensors with few examples

Explain orthogonal and orthonormal vectors with orthogonolization process.

Explain covariant and contravariant tensors and einstein’s summation convention of

tensors
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S.No Questions Option 1 Option 2 Option 3 Option 4 Key
! The union of two subspaces a sub space
of a vector space need not be | a sub space cyclic an abelian an invariant
2 If { Vi} is an orthonormal set, | linearly linearly ¥1near1y
. . . e independent
then the vectors {Vi} are dependent commutative independent distributive
3 . . a mixed tensor
a contravariant a mixed
Kronecker delta symbol is covariant tensor tensor an invariant tensor
4 5
The rank of the tensor Aijklm is | 4 5 3 6
> The rank of the outer product 3
of the tensors C” and Dy is 1 3 2 0
6 In an n-dimensional vector n+1
space, the number of linearly
dependent vectors is n 2n n+1 2n+3
/ The rank of the outer product >
of the tensors C and DY, is 3 5 2 6
8 The dimension of vector greater than Equal to
space is always number of Equal to Less than Equal to linearly
linearly linearly linearly linearly independent
independent independent independent dependent vectors
vectors. vectors vectors vectors
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9 The vectors are said to be
orthogonal when the scalar two null vector is | two null vector | two non-null two non-null | two non-null
product of one is zero vector is zero vector is one | vector is zero
10 The set of all position vectors an abelian
. . group
forms an abelian group | vector space sub space cyclic
11 3- 3-
Example of real vector space | 4 — dimensional dimensional n — dimensional none of the dimensional
1S space space space above space
12 An important example of Kronecker Id(ronecker
. . . . . elta
mixed tensor of rank two is covariant delts Invariant Contravariant
13 If £= f, the function of fis mvariant
said to be a scalar invariant tensor of rank two | all the above
14 either (a) or
The tensors of rank zero are | scalars invariant either (a) or (b) vectors (®)
15
The tensors of rank one are scalars vectors invariant covariant vectors
16 If A™ =- A/™", then tensor nands
A™ is antisymmetric with
respect to indices nands m and s m and n m and 1
17 If A 1s antisymmetric tensor, 0
then the component Ay is 1 0 2 3
18 If aj is a tensor of rank two, 6
its independent components in
4-dimensional space are 4 2 8 6
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19

The total number of
components ajx tensor of rank
two in 4-dimensional space
are

16

16

20

The total number of
components ajx tensor of rank
two in n-dimensional space
are

(n+1)

21

As ajjl is a tensor of rank 4,
the number of components in
in 4-dimensional space is

16

22

If Aj; is antisymmetric tensor,
of second order and U'isa
tensor of rank one, then Aile
U is equal to

23

The sum of one contravariant
and one covariant A"B,, is

invariant

contravariant

covariant

mixed

invariant

24

Kronecker delta is the best
example for

covariant

mixed

invariant

contravariant

mixed

25

A tensor of rank ‘r’ in n-
dimensional space has
components

In

n/r

26

A™™ are the components of a
mixed tensor of rank
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27 In an n-dimensional vector n+1
space, the number of linearly
dependent vectors is n 2n n+l 2n+3

28 The rank of the outer product >
of the tensors Cij and Dklm is | 3 5 2 6

29 greater than Equal to

number of Equal to Less than Less than | linearly
linearly linearly linearly linearly independent

The dimension of vector independent independent independent independent | vectors
space is always vectors. vectors vectors vectors

30 The vectors are said to be two non- | two non-null
orthogonal when the scalar two null vector two null two non-null null vector is | vector is zero
product of is one vector is zero | vector is zero one

31 The set of all position vectors an abelian an abelian
forms group vector space sub space cyclic Eroup

32 4— 3- n-— 3-
Example of real vector space | dimensional dimensional dimensional dimensional
is space space space none space

33 An important example of Kronecker Id(ronecker

. . . . . elts

mixed tensor of rank two is covariant delts Invariant Contravariant

34 If £ = f, the function of f is tensor of rank all the all the

. . . above

said to be a scalar invariant two above

35 scalars
The tensors of rank zero are scalars invariant vectors none
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36 vectors
The tensors of rank one are scalars vectors invariant covariant
37 . . ) a mixed
a covarlant a contravariant a mixed
. . . tensor
Kronecker delta symbol is tensor tensor an invariant tensor
38 The rank of the tensor Aijklm 4
is 2 4 3 6
39
The rank of the outer product
of the tensors Cij and DKk is 1 3 2 0 3
40 In an n-dimensional vector n+1
space, the number of linearly
dependent vectors is n 2n n+l 2n+3
4 The rank of the outer product >
of the tensors Cij and Dklm is | 3 5 2 6
42 greater than Equal to
number of Equal to Less than Less than linearly
linearly linearly linearly linearly independent
The dimension of vector independent independent independent independent | vectors
space is always vectors. vectors vectors vectors
43 The vectors are said to be two non-
orthogonal when the scalar two null vector two null two non-null two non-null | null vector is
product of is one vector is zero | vector is zero vector is one | zero
44 The set of all position vectors an abelian an abelian
forms group vector space sub space cyclic Eroup
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45 3-
4 — 3-— n-— dimensional

Example of real vector space | dimensional dimensional dimensional space
is space space space none

46 A symmetrictensor of rank 2
is n-dimensional space n_+1
independent components 2 n/2 n+l none

47 If Aj; 1s antisymmetric tensor,
then the component Ay is 1 0 2 3

48 If a; is a tensor of rank two, 6
its independent components
are 4 2 8 6

49 Kronecker delta is the best mixed
example for covariant mixed invariant contravariant

50 ) mixed
The sum of one contravariant
and one covariant A"B,, is mixed contravariant covariant mixed
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UNIT-1I

SYLLABUS

Functions of a complex variable — single and multivalued functions — Cauchy-Riemann
differential equation — analytical — line integrals of complex function — Cauchy’s integral theorem
and integral formula — derivatives of an analytic function — Liouville’s theorem - Taylor’s series —
Laurent’s series - Residues and their evaluation - Cauchy’s residue theorem — application to the
evaluation of definite integrals.

Complex Algebra

Formally, the set of complex numbers can be de ned as the set of two-dimensional real
vectors, f{x, y)g, with one extra operation, complex multiplication:

(i y) ¢ ) =@ X2/ yiyy Xiyatxa ) (L

Together with generic vector addition

(1, 1) + (o2 2) = (1 T x27 Y1 +y2) S ()
With the rules (1)-(2), complex numbers include the real numbers as a subset f{x, 0)g with
usual real number algebra. This suggests short-hand notation (x; 0) "x; in particular: (1, 0) ’
Complex algebra features commutatively, distributive and associa-tivity.
The two numbers, 1 = (1, 0) and i = (0; 1) play a special role. They form a basis in the
vector space, so that each complex number can be represented in a unique way as [we start
using the notation (x; 0) "x]

(e y)=x+iy: 3)

Terminology: The number i is called imaginary unity. For the complex number z = (x; y),
the real umbers x and y are called real and imaginary parts, respectively; corresponding

notation is: x =Rezand y =Im z.

The following remarkable property of the number i,

P =-1 (4)
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renders the representation (3) most convenient for practical algebraic ma-nipulations with
complex numbers.|One treats x, y, and i the same way as the real numbers.

Single and Multi valued function

In a multi-valued function every input is associated with one or more outputs. Strictly speaking, a
"well-defined" function associates one, and only one, output to any particular input. The term

"multi-valued function” is, therefore, a misnomer: usually true functions are single-valued.

If only one value of corresponds to each value of z then is of z.single valued function

If more than one values of correspond to each value of z then is of z. i.e. A multi-valued function

assumes two or more distinct values in its range for at least one point in its domain.

Cauchy Riemann Differential Eqution

Let
floy)=ule, ) +ivi,y), (1
Where
z=Ex+iy, ()
So
dz=dx+idy. 3)
The total derivative of [/ with respect to z is then
df df dx df dy
dz  dx dz Oy Oz 4)
1(9f of
-2 (E.‘i'.r Uy J (5)
In terms of # and ¥, (5) becomes
df 1 [fdu _dv du v
Zzi[ﬂ“ax]_i[ay“d}] ©
| Ei'u+_i.'i'1' N _E.‘i'u+i.'i'uJ .
) [ax Ei:i'x] (_‘a}- av )| )
Along the real, or x-axis, 4f/dy =0 so
df 1 ¢de dv
dz_2[3x+iiix]' 3
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Along the imaginary, or y-axis, df /dx =1 5o
a'f_l _Ii:i'u+i.'ivJ .
dz_z("'ay ay | 9)

If f is complex differentiable, then the value of the derivative must be the same for a given 4z,
regardless of its orientation. Therefore, (8) must equal (9), which requires that

du B dv

ax " ay (10)
and

dv B du

i ay (11)

These are known as the Cauchy-Riemann equations.
They lead to the conditions

& u Fu
= e — 12
At ay (12)
s (13)
dx’ dy
The Cauchy-Riemann equations may be concisely written as
df 1[df _af
dz = 2|ax " ay (1
1 Ei'u+ v +_ﬂu+ de 15
_Z[Ei'x Edv] E[m Loy ()
L[fdu i.'h'J_l__ i.‘iu+£.'h'J 16
_Z(Ei'x_i:i'y ‘(a} ax (16)
=0, 7
where Z is the complex conjugate.
If z=re"” then the Cauchy-Riemann equations become
Ju 1 dv
T 1o
1 du v
T > (19)
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Cauchy Integral Formula

Y Yo Y

Cauchy's integral formula states that

1 fladz

f(zn}=m P , (D

where the integral is a contour integral along the contour ¥ enclosing the point zc.

It can be derived by considering the contour integral

flzldz
e L= I '

2)

defining a path ¥ as an infinitesimal counterclockwise circle around the point 2o, and defining the
path M as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel
each other out) so as to go around zo. The total path is then

Y= +%, 3)

SO

flzddz _ flzldz Ig;f[z}dzl

L= In

4)

e £ dp o <7 o ¥

i

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0.
Therefore, the first term in the above equation is 0 since # does not enclose the pole, and we are
left with

fleddz [ fl2)dz
z-z9 J, z-129 ()
Now, let z=z0+re” so dz=ire'df Then

F =)o i &
é, (z)dz =f§f(m+” }irf'adﬂ ©

2= n relt
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:§f:za+rr."a}:'ﬂ'ﬂ. (7)
But we are free to allow the radius r to shrink to 0, so
Fla)dz
=1 df
éz_Zﬁ 1m§f ZI}+?’€S]E (8)
= éf[m}idﬁ' )}
- z'ftmggae (10)
=2mif(zo) (11)
giving (1).

If multiple loops are made around the point 2o, then equation (11) becomes

1 [rfG)dz
n[?rzﬁ}f[m}_ ERE. z-129 * (12)
where n (¥ zo) is the contour winding number.

A similar formula holds for the derivatives of f (z),
. . flzg +h) = Flzo)
£ @) = lim = (13)
1 FlRdz flz)dz
_ﬁﬁznih ‘z-z9—h v Z=Ip (14
&gflfz} (z-z0)-(z—z-h)ldz s
n—\(‘?.}fih (z=zp=Rhlz-24) ( )
- hflz)dz
_n—\ﬁznih ,[z—zﬁ—h}[z—zr-.‘i (16)
L fflz)d: 17
C2midiz -zl 17
Iterating again,
w, +_ 2 fflz)dz
Fe)= s Py (18)

Continuing the process and adding the contour winding number *#,

flzidz

(2 =zl

1y, z0) f7 (zo) =

Cauchy Integral Theorem
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If f(z) is analytic in some simply connected region &, then

éﬂz}dzﬂ} (1)

for any closed contour ¥ completely contained in K. Writing 2 as

zex4iy ()
and f(2) as
flRi=u+iv A3)
then gives
éf{z}ldz:i‘(u+i'v}llfa'x+i'd}'} 4)

=Iudx—va'}'+i'-[vdx+ud}'. %)

From Green's theorem,

Iflix Y)dx-glx,v)dy= - ﬂ-[—+ —IJﬂ'xd}' (6)
Iflix,}'}dx+glixr;~'}d}'= ff j—f— a—y}«’xdyr (7

s0 (<) becomes

éf[z}dz—— [_x+f:_:]d”}“fr[%_%_]d”}“ (8)

But the Cauchy-Riemann equations require that

Ju v

dx Oy )
du v

3= "ox' (10)
SO

éf(z}dz =|:|':-
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Liouville's theorem

Liouville's theorem from complex analysis states that a holomorphic function f(z)f(z) on the plane

that is bounded in magnitude is constant. The usual proof uses the Cauchy integral formula

Assume that f(z) is nonconstant. The fact that)f(z) is holomorphic at every point implies that at any
given point, there is a direction such that moving in that direction makes [f(z)| larger. But this
doesn't prove that [f(z)| is unbounded, because a priori its magnitude could behave like 5—1|z| or
some such thing.

In the case of f(z)=1P(z) where P(z) is a polynomial, one knows that |f(z)| tends toward 0 as |z| >0
so that there's some closed disk such that if [f(z)||f(z)| is bounded, then it has a maximum in the
interior of the disk, which contradicts the fact that one can always make f(z) larger by moving in a
suitable direction. But for general f(z), one doesn't have this argument.

One can try to reason based on the power series expansion of a holomorphic function f(z) that is not
a polynomial. Because polynomials are unbounded as |z|—o0 and grow in magnitude in a way that's
proportional to their degree, one might think that a power series, which can be regarded as an
infinite degree polynomial, would also be unbounded as|z|—co. This is of course false:
take f(z)=sin(z), then as |z] - along the real axis, f(z) remains bounded. The point is that the
dominant term in the partial sums of the power series varies with |z|, and that the relevant
coefficients change, alternating in sign and tending toward zero rapidly, so that the gain in size
corresponding to moving to the next power of z is counterbalanced by the change in coefficient. But
there's some direction that one can move in for which f(z) is unbounded: in particular,

for f(z)=sin(z), f(z) is unbounded along the imaginary axis.

Taylor’s Series

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is
an expansion of a real function f (x) about a pointx = a is given by

flx)=
; " (a)

+ o *

(1

= =)™+ ...

" 3]
f(u}+ff(u}(1_u,+f () }2+f{3|[a}

21 (x =

n!

If 2=0, the expansion is known as a Maclaurin series.

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 70f 16




A=

— KARPAGAM ACADEMY OF HIGHER EDUCATION

KA RPAG AM CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS
acibevy oF HeHEr nucaioy COURSE CODE: 18PHP104 UNIT: II (COMPLEX VARIABLE) BATCH-2018-2020

(Deemed to be University]

(Established Under Section 3 of UGC Act, 19!

of UGC Act, 1956 | R R R . |
Taylor's theorem (actually discovered first by Gregory) states that any function satisfying certain
conditions can be expressed as a Taylor series.

The Taylor (or more general) series of a function f (x) about a point @ up to order » may be found

using Series[f, Ix, a, n}]. The nth term of a Taylor series of a function f can be computed in
the Wolfram Language using SeriesCoefficient[f, {x, a, n}] and is given by the inverse Z-transform

(n) (2)

Taylor series of some common functions include

1 _ 1 N x-a _l_lf.\r—a}l2 3)

l-x l-a (l-af (l-af

ms,rzmsa—sina(x—a}l—;—msalfx—a}lz+::Jsinalfx—a}]+... 4
f"=f"[1+|:x—a}l+;—(x—a}lz+:-_1|:x—a}1+...] (5)

x—a (x-af (x-af

Inx=Ina+ - _Ezaz} +|:3a3?II - (6)
Sir.xzslna+msa(x—a}—;—Slna(x—af—émsa(x—a}]+... (7)
T.a.nx=T.a.na+Secza(x—a}+seczata.na(x—a}lz+5:3|:2a|:5!::2a—%:(x—a}l3+.... (8)

To derive the Taylor series of a function f (x), note that the integral of the (n + l)st derivative Fry
of f (x) from the point X to an arbitrary point ¥ is given by

[ @ae=[#2 0L, =72 01 o). )

(1]

where f* () is the nth derivative of f (x) evaluated at %, and is therefore simply a constant. Now
integrate a second time to obtain

[l

= .[\[f”r” () = " x0)] dx (10)

Wiy

dx

= [ o, - -0 £ o)
=S @ = Y w0) = = x0) S (),

where [ () is again a constant. Integrating a third time,

fffﬁﬁl] (x) (d x¥ =f'r"_2] I:x}—f'r”_h (xa )
0 v L

(x — xq )
21

(an

=l =x0) F7 () = £ (z0),
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and continuing up to integrations then gives
n+l
f f 0 @ )™ = )= f ) = =) f ()
(x — xn ) [ ¥
S ) = = S o).

Rearranging then gives the one-dimensional Taylor series

o -
& ;” il |jx[>}|+...+E mr

Ry. (14)

FE=Flo)+(x =) f (o) + £ (ko) + Ry (13)

(x —Xr:-)"‘ AR ()
_Z ¥

Here, Ex is a remainder term known as the Lagrange remainder, which is given by

R. = M (n+l) +1
.rr—f _In I:x}llfdxf .
\JL(,

(15)
A+l
Rewriting the repeated integral then gives
Ry = ff’ - (16)
(1]
Now, from the mean-value theorem for a function £ (x), it must be true that
fglfx}ldx=lfx—m}lg(x'} (17)
(1]
for some x" € [xa. x|, Therefore, integrating 7+ 1 times gives the result
R. = I:x_x[:'}rﬁl j.;'_rr-fl]I:x--::I (18)
T (n+ D)

so the maximum error after n terms of the Taylor series is the maximum value of (18) running
through all x" € [x0, x]. Note that the Lagrange remainder R. is also sometimes taken to refer to the
remainder when terms up to the (n= 1)st power are taken in the Taylor series

Taylor series can also be defined for functions of a complex variable. By the Cauchy integral
formula,

1 flz'dz
frz’_?.m' - -z

(19)
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- Jledz 2 dz’

Zm ~ (2" =zp) = [z = zp)

L flzNdz
= 2mi (z' —zﬁ}[l - —“]

(]

In the interior of €,

lz = zol

|z’ —Zﬁ|

$0, using

it follows

fl=30 im

Using the
fla= Z
n=0

<1

that
Lz z=zo) fl2dz
i [Z _zﬁ}ﬂ‘+|
flzNdz
Z[Z—’HF"I pomed

Cauchy integral formula for derivatives,

ﬁ”] I'm}

(z—zo)"

An alternative form of the one-dimensional Taylor series may be obtained by letting

r=1 =4

so that

x=x + A

X

X

Substitute this result into () to give

Flw+Ax)=F (o) +Axf (o) + 5 (AxP F7 (o) + ...

A Taylor series of a real function in two variables f (+: ¥) is given by

flx+hx

yHAY)=F )+ [ ) Ax 4 ) Ay]+

@Y fra e y) +28x Ay fiy (e )+ @) fiy ey 5 [B2) frax (e 0)
3AX Ay fouy (o +3Ax AP fiyy (e HAYY firyy ()] +

(20)

e2y)

(22)

(23)

24

(25)

(26)

27

(28)

(29)

(30)

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 100f 16




\-:__\,_-{. KARPAGAM ACADEMY OF HIGHER EDUCATION

ghten | Ensich

K A R P A G A M CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS
acapemy or Hichereoucanion  COURSE CODE: 18PHP104 UNIT: II (COMPLEX VARIABLE) BATCH-2018-2020

(Deemed to he U iversity]

(Established Unds of UGC Act,

" This can be further generalized for a real function in  variables,
[

Ll

fl:xl"'""x"}_Z{jl z':xk a.'c}_

=0

f(x| e X }I} . 31

J.'i =dj _...1_f| =iy

Rewriting,

(1 (e oY
f|:X| +a|r"~rxn+an}=2.{ﬁ [Z.a-i: E?If(xir'"rx:r}} .
k= k J.Ii=l|_...1_.|=l_.|

J=0

Laurent’s Series

If f(z) is analytic throughout the annular region between and on the concentric circles Ki and Kz
centered at 2 = and of radii 1 and 2 < rirespectively, then there exists a unique series expansion
in terms of positive and negative powers of (z = a),

f(z!=z_aa Iiz—a}f'-‘+z.bs< z-a)™", (1)
k=0 k=1

where
1 flff}'ﬂ'f

ag = T él (I:' a-rk.ll (2)
1

by = Egg(f a) ™ fidL (3)

Let there be two circular contours €z and ¢i, with the radius of €1 larger than that of €z. Let 2o be
at the center of ©1 and =, and = be between 1 and €. Now create a cut line C: between €l
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and & , and integrate around the path € =G + C. = & = G| so that the plus and minus contributions
of & cancel one another, as illustrated above. From the Cauchy integral formula,

[z 1 fe
REETR Lt )
1 f[z} 1 FiEh o, Lf ) , 1 2,
T 2mide, 2 -z +2nifc;z'—zdz_2ni czz'—zdz_?.nz'L:z'—zdz ®)
1 f[z} 1 fin o,
= 2xi 3 —z Enifczz'—zdz' ©)

Now, since contributions from the cut line in opposite directions cancel out,

1 Fz , 1 [z .
—_—— g - — .4
f= 2mi L2 = zp) = (z-zq) 2mi Jey (2 = 2p) =z = 20} ‘ )
1 ‘L f&) , |l f&) :
=53 9T 5 - dz
2rider @ - gg)(1- 22) T 27 e gy (S ) ®
1 ‘ 1 '
-5 /&) — d2'+—.f f[z}_f. dz’. (9)
2ride @ -2 (1- ) 2RI g (1- 220

For the first integral, lz" =zl >lz=zol. For the second, lz" =zl <lz=20. Now use the Taylor
series (valid for lfl <1)

| =
i 1o
n=0
to obtain
1 fizh z-12p ff[z'} (-}
; d
R | N e EER I Y (g P v
B Z[_r}n f[z} f+1_i[_ .I—.rr—|f[r_ }rf[f}df
= Z=1In 2 = zg) dz 2mi & ra Ca e e (12
_ Z[z - rn}f"L S e i[z —za'l'"f (z' - zo)" fl2)dZ, (13)
= 2mi 1 (2 = zg)™! 2wt e |
where the second term has been re-indexed. Re-indexing again,
- fE)
@=7— Y -2 }”‘L Z
fla Z fma 1 kZ —Zr;..\-’f'-+I
(14)

,J[Z} 2
+3 Z Ifz—za}”L o —zﬁ}r’”' ,

A=—
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"Since the integrands, including the function , are analytic in the annular region defined by
and €z, the integrals are independent of the pafkdof integration in that region. If we replace paths €if
integration €1 and €2 by a circle © of radius r with r1 £r=r2, then

- Fiz" R fiz" /
fla= - z; - r:J"IL e }H, z (z zn}f"f(z —Zr:-?“' (15)
1 - Fizh ,
=5 Z lfz—znl]frr mﬂ'z (16)
= Z an @ - ). (17)

Generally, the path of integration can be any path ¥ that lies in the annular region and encircles o
once in the positive (counterclockwise) direction.

The complex residues @ are therefore defined by

fliz, y
z.ﬂ'i.[(z

Cauchy Residue Theorem

dp

An analytic function [ (z) whose Laurent series is given by

Lt

fla= Z s (2 = )", (D

R=—
can be integrated term by term using a closed contour ¥ encircling 2o,

[f(z}dz— Z an [Iiz—zr:-}f"dz 2)

I‘I‘— —ix1

= an[(z—zn}f"dz+a |‘[ +ZanI(z—zn}r"dz. 3)
=i Z=In .

n=0

The Cauchy integral theorem requires that the first and last terms vanish, so we have

[f.:m—a lL_zn 4)

where -1 is the complex residue. Using the contour 2= ¥()=¢""+zo gives

dz Tie'de
I - =21, (5)
v 2= In e’

so we have
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‘If(z}dz=2?r:'a_|. (6)

If the contour ¥ encloses multiple poles, then the theorem gives the general result

Iflfz}dz =2mi ZRES fia, 7

GEA

where 4 is the set of poles contained inside the contour. This amazing theorem therefore says that
the value of a contour integral for any contour in the complex plane depends only on the properties
of a few very special points inside the contour.

Res fiz)=2
. z=i
Res =1 - 1\) Res f(z)=0
=347 fey=i [/ N ! @
. —\
“.—’\“"--—I-\\ . '
N4
[ ]
Res fiz)=-2
L ] h
Res  fiz)=5

I=-1-2

The diagram above shows an example of the residue theorem applied to the illustrated contour ¥
and the function

3 2 2 i 3
flal= + - — + ®)

(z_l}z =i z4i z4+3I-2i za+l+2i

Only the poles at 1 and  are contained in the contour, which have residues of 0 and 2, respectively.
The values of the contour integral is therefore given by

If{z}dz=2ni(ﬂ+2}=4ﬁ.
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Application to evaluation of definite integral

Definite Integrals

We now know how to integrate simple polynomials, but if we want to use this technique to
calculate areas, we need to know the /imits of integration. If we specify the limitsx = atox = b,
we call the integral a definite integral.

To solve a definite integral, we first integrate the function as before, then feed in the 2 values of the
limits. Subtracting one from the other gives the area.

Example

1. What is the area under the curve y(x) = 2x* between x=1 and x=3? (Note: this is the same
problem we did graphically earlier).

¥=3
I 2x° dx
Area = #-1 we write the limits at the top and bottom of the integration sign

3 H=3
L3 »=1 we use square brackets to indicate we've calculated the indefinite integral
= (18 + k) - (2/3 + k) feed in the larger value, then the smaller, and subtract the two.
=18-2/3

=17.33 sq. unit
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Possible questions (Part B- 6 Marks)
1. State and prove Cauchy Residue theorem.
Define and derive Cauchy’s integral formula.
Derive Cauchy-Riemann equation.

2
3
4. Derive and prove Taylor’s series.
5. Define and prove Laurent’s series
6

. Use Cauchy’s integral theorem to evaluate

7. Find the Laplace transform of the following functions.
(i) Sin’t, (ii) Cost, (iii) e"coswmt and (iv) e"sinot.
8. Explain the complex form of Fourier series
9. State and Explain Dirichlet conditions.
10. Define Laplace Transform. Explain the linearity and change in scale property of

Laplace transform.

Possible questions (Part B- 10 Marks)
1. State and prove Cauchy Residue theorem. Explain how it is extended for the case of an

isolated first order pole lying on the contour of integration. Using this

theorem. show that

f+00 e

4
X =——where0< a<1.
—00 1+e* sinma

2. Derive Cauchy-Riemann equation and deduce the same in polar form.
3. Derive and prove Taylor’s series.

4. Use Cauchy’s integral theorem to evaluate

5. Find the Laplace transform of the following functions.
(i) Sin’, (ii) Cos’t, (iii) e*cosot and (iv) e“sinwt.
8. Explain the complex form of Fourier series

9. Explain how the Dirichlet conditions used to find the functions in physics.
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2 2 2 2
z°+1 z2_-1 z°+1 z2=1] z= +1

For a unit circle around the origin, . ] |

1 the value of sin q is 2iz 2iz 2z 2z 2z
If a given number is wholly real,

2 it is found in/on a real axis imaginary axis | x-y plane space x-y plane
A set which entirely consists of

3 interior points is known as an open set a closed set a banded set domain an open set
If a contour is a unit circle around . .

4 the origin, then |z| is 1 0 e e 1

5 A connected open set is called an open set a closed set a banded set domain an open set




KARPAGA ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.
(For the candidates admitted from 2018 onwards)

A ——g

Enlighten | Enrich

KARPAGAM DEPARTMENT OF PHYSICS
ACADENYOF HIgHER ERUCATON UNIT I :( Objective Type/Multiple choice Questions each Question carries one Mark)

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 )

PART-A (Online Examination)

Which is the analytic function of
complex variable z=x + 1y |Z|] Re Z z! Log Z z!

Which is the analytic function of
complex variable Z=x +iy | Z | Sin Z Logz ReZ Sin Z

Which is the analytic function of . .
complex variable z=X+HY |Z| e log Z Re Z e "

Which is not the analytic function _
of complex variable z=X+Y z Z e " Sin Z Z

Which is not the analytic function _
10 of complex variable z=X-+1Y 7z e SNz Re Z SinZ Re Z
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Which is not the analytic function

11 of complex variable z=X+iY 7z log Z e Sin? SinZ log Z
The function a simple pole | a simple pole | apole at z=a apole at z=a of | apole at z=a of
12 has at Z=a at Z= a of order 2 order 3 order 3
The symbol 1 with the property i
13 ’=1 was introduced by Euler Gauss Cauchy Reimann Euler
14 arg (Z,/ Z,) 1s equal to arg Z\+arg Z, | argZ, -argZ, | real imaginary arg Z, - arg Z»
A single valued function f(z)
which is differentiable at z = zo it
is said to be
irregular analytic periodic
15 function function function all the above analytic function
1
The function e at all points y | at all points, at all points, at all points, at all points,
16 is analytic =X except z=1 except z = -1 exceptz=+1 |exceptz==1
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In order that the function f(z) =

/Z,Z "0, be continuous at z = 0.

1z

17 we should define f(0) equal to 2 -1 0 1 0
Any function which satisfies the harmonic analytic periodic conjugate
18 Laplace equation is known as function function function function harmonic function
J /@ If(Z) If(z) - j(f(z)) J' f(z) ,
e (z—a
w(z—a) ‘(z—a) c(z- a) 27 (z - a)
If f(z) 1s analytic within and on a
closed curve C, and if ‘a’ is any
19 point within ‘C’ then, f(a) is
The value of ,C:
20 IZ|=11s 2pi -2pi 4pi 0 0
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If f(z) is analytic in a closed curve
‘C’ except at a finite number of
21 poles within C, then 2pi 2p p ip 2pi
22 The conjugate of 1/1+i is 1-i 1-iN 2 1-i/2 1+i 1-iN 2
23 The conjugate of (1+1) (3+41) is 1+71 1-7i 7-1 -1-71 -1-71
24 The Conjugate of 1/i is —i i 1 -1 —i
25 The value of i* +i° +i* is i —i 1 0 —i
If Z= a+ib, then real part of Z™' is -
26 a/ a’+b’ b/ a*+b’ a/ Ja’+b’ ~b/a’+b’ a/ a’+b’
27 If Z= a+ib, then Im( Z") is ---- b/ a*+b’ b/ a*+b’ -b/ a’+b’ —b/Na*+b’ -b/ a*+b”
The modulus and argument of V 3
28 -1 are 2, T1/6 2, -[]/6 4,113 4, -11/3 2, -[1/6
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If Z;=r(cos 0; + isin 6;) and
Z>,=r1(cos 0, + isin 6;), then arg Z,;
29 Z2 18 -—-- 61 + 92 91 - 92 91 92 61 / 92 61 + 62
30 The argument of -1 + [ is --- - [1/4 3[]/4 [1/4 [12 3[]/4
31 (1+ e'ie)/(l+ eie) = - cosO+isinO | sin 6 -icos 0 cos 0 - 1isin O sin® +icos O | cos O -1isin O
If X= cos O +isin O then the
32 value of X"+ 1/X"is ---- 2 cos nf 21 sin n0 2 sin nf 2i cos nO 2 cos no
The value of (cos 0 + isin 0 ) is - sin 0/2 + icos
33| - cos 0 -sin 6 sin - icos® | cosO+sinb 0/2 sin 0 - icos 6
34 (sin [T /3+1cos []/3)’ is equal to | -1 1 —1 1 1
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35 (cos [] /4+ i sin [] /4)* is ------ 1N2 +1iN2 | b)l -1 i -1
In the Argand diagram, the fourth

36 roots of unity forms a ------- Straight line circle rectangle square square
The sum of n roots of unity are --

37 — 0 1 2 3 0
Ifzy=2+1,z=1+3i then1Re (

38 Z1-2y)= 1 i 2i 2 1

r (tan® + icotd | r(sech + r(cosf + 1sinf | r (sinb +

39 Polar form of a complex numberis | ) Icosech ) ) 1cos0) r (sinB + 1cos0)

40 |21+ 2| = |Z4] + |25 <[Z4] + |2y  WARES) >2Z1+ 2, <[Z4] + |2y
The exponential form of a _ _

41 complex number is z=re" z=¢" z=cosq/r z=r1/C0s q Z = reiq
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For a unit circle around the origin,

42 the value of sin q is (Z™2+1)/ 212 | (Z"2-1)/ 217 (Z™2+1)/ 27 (Z"2-1)/ 27 sin nx
If a given number is wholly real,

43 it is found in/on a real axis imaginary axis | Xx-y plane space p/2
A set which entirely consists of

44 interior points is known as an open set a closed set a banded set domain an open set
If a contour is a unit circle around . .

45 the origin, then |z| is 1 0 e e 1

46 A connected open set is called an open set a closed set a banded set domain an open set
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Which is the analytic function of
47 complex variable z=x + 1y |Z|] Re Z z! Log Z z!

Which is the analytic function of
48 complex variable Z=x +iy | Z | Sin Z Logz ReZ Sin Z

Which is the analytic function of . .
49 complex variable z=X+HY |Z| e log Z Re Z e "

Which is not the analytic function _
50 of complex variable z=X+Y z”! Z e " Sin Z Z

Which is not the analytic function _
51 of complex variable z=X-+1Y 7z e SNz Re Z SinZ Re Z
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Which is not the analytic function

52 of complex variable z=X+iY 7z log Z e Sin? SinZ log Z
The function a simple pole | a simple pole | apole at z=a apole at z=a of | apole at z=a of
53 has at Z=a at Z= a of order 2 order 3 order 3
The symbol 1 with the property i
54 ’=1 was introduced by Euler Gauss Cauchy Reimann Euler
55 arg (Z,/ Z,) 1s equal to arg Z\+arg Z, | argZ, -argZ, | real imaginary arg Z, - arg Z»
A single valued function (z)
which is differentiable at z=zo it | irregular analytic periodic
56 is said to be function function function all the above | analytic function
The function 1/(Z-1) (Z+1) 1s at all points y | at all points, at all points, at all points, at all points,
57 analytic =X exceptz=1 exceptz=-1 |exceptz=+1 |exceptz==+1
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In order that the function f(z) = |Z[*
/Z,Z "0, be continuous at z = 0.
58 we should define f(0) equal to 2 —1 0 1

Any function which satisfies the harmonic analytic periodic conjugate
59 Laplace equation is known as function function function function

harmonic function




é/_gJ KARPAGAM ACADEMY OF HIGHER EDUCATION

—d
CLASS: IMSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS
KARPAGAM

A A T I oy COURSE CODE: 18PHP104 UNIT: III (FOURIER TRANSFORM) BATCH-2018-2020

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 )

UNIT-111

SYLLABUS

Fourier Transform — Properties of Fourier transform — Fourier transform of derivatives —
Fourier sine and cosine transforms of derivatives — Fourier transform of functions of two or three
variables — Finite Fourier transforms — Simple Applications of FT Laplace transform — Properties
of Laplace transforms — Laplace Transform of derivative of a function — Laplace transform of
integral — Laplace transform of periodic functions - Inverse Laplace Transform — Fourier Mellin
Theorem - Properties of inverse Laplace Transform — Convolution theorem — Evaluation of
Laplace Transform using Convolution theorem.

Fourier Transform

The Fourier transform is a generalization of the complex Fourier series in the limit as L - ea,
Replace the discrete 4x with the continuous F (k)dk while letting »/L - k. Then change the sum
to an integral, and the equations become

f(_ﬂ: J.NFI:k}fzﬂlﬁldk (1)

F k= fmf (x)e” " dx. )

Here,

Fk=F [f ()] (®) (3)
= f _flix}f_zmhdx “4)

is called the forward (—i) Fourier transform, and

f = F ' F W] () (5)
=IFUc}IeZ”'“dk (6)

o

is called the inverse (+i) Fourier transform. The notation Fi [f (x)] (k) is introduced and f®

and  (x) are sometimes also used to denote the Fourier transform and inverse Fourier transform,
respectively.

Properties of Fourier Transform

The properties of the Fourier transform are summarized below. The properties of the Fourier
expansion of periodic functions discussed above are special cases of those listed here. In the
following,

Linearity
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Flazit) + by(t)] = aF[z(t)] + bF[y(t)]
Time shift

Flz(t+ ta)] = X (jw)edeto

.F[J:(t + fu)] : f r(t+ t,;,)t’._j“'*d:' = f I[f]e_—jw(? Fto) 4!

— O —0

=swtn e oy —dwt gt g *iwa
= f (e di! = X(jw)e

— O

Frequency shift

F X (jw £ wg)] = z(t)eT

]' X fratt ]' R A ! TR A==" !
L[ b= B e

—
FAE

FAX(ilw £ wn))]

1 w ooy .
g Towet b fm X(ju')e™ dw' = z(t) et
2T o —oo

Time reversal

Proof:

and
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Fourier Sine and cosine transform of derivative

The Fourier cosine transform of a real function is the real partof the full complex Fourier
transform,

T ] @ = R[F [f 18] v

= fmms 2mix) f (x)dx. (2)

The Fourier cosine transform Fe (k) of a function f@)is implemented as Fourier Cosine
Transform([f, x, k], and different choices of @ and & can be used by passing the optional Fourier
Parameters -> {a, b} option. In this work, a=0 and b= -2x,

Derivative

=1

[ 2 2 =2 b=1hrran 1
| @ = (- 1" 2" Falfinl (2) - ‘u'l = D1 2 gy g

¥ =0

Ty

tim 9 =0Mosks2n-1 fAnew

This formula shows that the Fourier cosine transform of an even-order derivative gives the
product of the power function with the Fourier cosine transform plus some even polynomial.

[2 =]

. [ FA2Za+1) o Ly L W S ) . | k 2k f20-2k) fe s kb ey c -
Pl V0] @= 12 A0 - >0 220y ftim (=0 Nosk=2nf\nen

k=0

This formula shows that the Fourier cosine transform of an odd-order derivative gives the
product of a power function with the Fourier sine transform plus some even polynomial.
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The Finite Fourier Transforms

When solving a PDE on a finite interval 0 < o < L, whether it be the heat equation or wave
equation, it can be very helpful to use a finite Fourier transform. In particular, we have the finite
sine transform

I
S, =S[f]= %A fla)sin(nmrx/L)dz, n=1,2,...,

with its inverse sine transform
S7YS] = f(x) = Y _ Spsin(nwz/L).
n=1

This transform should be used with Dirichlet houndary conditions, that specify the value of u at
z=0and x = L.

When Neumann boundary conditions are used, that specify the value of u, at t =0 and z = L,
it is best to use the finite cosine transform

L
Cr,=C[f]= %A f(z)cos(nwz/L)dz, n=0,1,2,...,

with its inverse sine transform

G=1 [Ch] = f(z) = (;0 + ;Cﬂ cos(nmz/L).

Both of these transforms can be used to reduce a PDE to an ODE.

Examples of the Sine Transform

Consider the function f(x) =1 on (0,1). If we apply the finite sine transtform to this function, we
obtain

1
Sn 2/ sin(nwz) dz
0

1

2
= - cos(nmz)

0
4
— 7 odd
= nmw .
0 n even

Applying the inverse sine transform yields

4 1
ik ;;Zl — sin[(2n — 1)mz].
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Solving Problems via Finite Transforms
We illustrate the use of finite Fourier transforms by solving the IBVP
U = Ugy +sin(mz), O0<2z<1, t>0,
w(0,t) =0, wu(l,t)=0, t>0,
u(z,0) =1, w(z,0)=0, 0<zxr<l.

Because this problem has Dirichlet boundary conditions, we use the finite sine transform. Fron
the preceding example, the transform of the initial conditions are

4
5,1(0)2{ ar PO ey,

0 n even

Using the definition and aforementioned properties, we obtain the transform of the PDE,

S1(t) = —mSy(t) +1,
S't) = —(nm)?Sa(t), n=2,3,....

The ODE for Si(t) is nonhomogeneous, and can be solved using either the method of undetermines
coefficients or variation of parameters. The general solution is

S1(t) = Acos(nt) + Bsin(pit) + C,

where A, B and C are constants. Substituting this form of the solution into the ODE and initia
conditions yields

4 1 1
Si(t) = (— - ﬁ—z) cos(mt) + =g

m

The ODEs for S,,(t), n > 1, are homogeneous and can easily be solved to obtain

4

— t =88 T ey
ol B cos(nmt) n BTy

0 =i 2 B

Applying the inverse sine transform, we conclude that the solution is

| 1 4 1
u(z,t) = [(; - ﬁ) cos(mt) + F] sin(mzx) + = Z 1 cos[(2n + 1)mt]sin[(2n + 1)mx].
n=1

Laplace Transform

The Laplace transform is an integral transform perhaps second only to the Fourier transform in its
utility in solving physical problems. The Laplace transform is particularly useful in solving
linear ordinary differential equations such as those arising in the analysis of electronic circuits.

The (unilateral) Laplace transform £ (not to be confused with the Lie derivative, also commonly
denoted L) is defined by
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where f (1) is defined for =0 (Abramowitz and Stegun 1972). The unilateral Laplace transform is
almost always what is meant by "the" Laplace transform, although a bilateral Laplace transform is
sometimes also defined as

LU @@= f i et dr

Properties of Laplace transform

The properties of Laplace transform are:

Linearity Property
If x(t)e=L.T X(s)x(t)«>L.TX(s)

& y(t)y—=L. T Y(s)y(t)e=L.TY(s)

Then linearity property states that
ax(t)tby(t)—L.T aX(s)+bY(s)ax(t)+by(t)«>L.T aX(s)+b¥(s)

Time Shifting Property

If x()—>L.T X(s)x(t)—L.TX(s)

Then time shifting property states that
x(t—t0)e=L.T e—st0X(s)x(t—t0)«>L.Te—st0X(s)

Frequency Shifting Property

If x(t)—=L.T X(s)x()—L.T X(s)

Then frequency shifting property states that
esOt.x(t)—L.T X(s—s0)es0t.x(t)«=>L.T X(s—s0)

Time Reversal Property

If x(t)e=L. TX(s)x(t)«=L.TX(s)

Then time reversal property states that
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)<—>L TX(—s)x(—t)e=L.TX(—s)

Time Scaling Property

If x(t)—L. TX(s)x(t)«=>L.TX(s)
Then time scaling property states that
x(at)e—L.T1la|X(sa)

Laplace Transform of periodic function

Theorem 1. Suppose that f : [0,00) — R is a periodic function of period T > 0, i.e.
f&+T)= f(t) for allt > 0. If the Laplace transform of f exists, then

/ f(t)e—tdt

E‘_ST

Proof: We have
F(s) = / f(t)e ™t dt
0

o a(nt1)T
= ¥ / f(t)e=tdt
n=0%v"

T

= Z / f(u+nT)e T dy wi=t—nT
n=0"0
0o T

= Z e_S”’T/ flu)e ™" du

_ (/ Flu)e" du) ;} o—snT
/ flu)e=™ du

E‘_ST

The last line follows from the fact that

is a geometric series with common ration e=*7 < 1 for s > 0.
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Convolutlon theorem

Suppose we know that a Laplace transform H(s) can be written as H(s) = F'(s)G(s),
where E(f(t)) = F(s) and E(g(t)) = G(s). We need to know the relation of h(t) =

E—l(H(sj) to £(t) and g(t).

Definition 1. (Convolution) Let f and g be two functions defined in [0,00). Then
the convolution of f and g, denoted by f * g, is defined by

) = / f(r)glt — ) dr (2)

Note: It can be shown (easily) that f* g = g * f. Hence,

(f*9)(t) = ] ()t —7)dr (3)

We use either (2) or (3) depending on which is easier to evaluate.

Theorem 2. (Convolution theorem) The convolution f % g has the Laplace trans-
form property

£((f*9)®)) = F(s)G(s). 4)

OR conversely

£ (F(9)G(s)) = (f * 0)(®)

Proof: Using definition, we find

£((ra0) = [ (7ramear

:/ (]f t—’rdr)e_“dt

The region of integration is the area in the first quadrant bounded by the t-axis and

T =t
@
AR
£
¢ t
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the line 7 = ¢. The variable limit of integration is applied on 7 which varies from 7 = 0
toT =1.

Let us change the order of integration, thus apply variable limit on ¢. Then t would
vary from ¢ = 7 to t = 0o and 7 would vary from 7 = 0 to 7 = co. Hence, we have

£(rr0®) = [ ( | eate-n) d-t) f(r)dr
= /m(/me_su( )du)f()_”d'r, t—T=u
0 0
= (/Dooe_su (u )du) (/:oe_”f('r)d'r>

= F(s)G(s)

Evaluation of Laplace Transform using Convolution theorem

find inverse Laplace transform of 1/s(s + 1)2.

Solution: We write H(s) = F(s)G(s), where F(s) = 1/s and G(s) = 1/(s+1)% Thus
f(t) =1 and g(t) = te~*. Hence, using convo]utlon theorem, we ﬁnd

t
/ft—r d’r—/re_"rdr:l—(t+1)e_ﬂ.
0

Note: We have used f(t—7)g(7) in the convolution formula since f(t) = 1. This helps
a little bit in the evaluation of the integration.
Laplace transform of integral

The Laplace transform satisfied a number of useful properties. Consider exponentiation.
If L [f 01 () =F (s) for s> @ (i.e.,, F(5) is the Laplace transform of f), then £ [ fli)=F(s-a)
for s> a+a, This follows from

Fls—a)= Pnfr—{.i—mrﬂ.f
(il

Pn[f[r}-f”'] e 'dr
]

L[ fin)] ).
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I T he :szlffﬁace transform also has nice properties when applied to integrals of functions. If
is piecewise continuous. flo

1
L | J: F()d r'] =~ LI @16

Fourier Mellin theorem

Mellin'’s transformation is closely related to an extended form of Laplace’s. The change of variables defined

by:

transforms the integral (11.1) into:

After the change of function:

s=1()

one recognizes in (11.13) the two-sided Laplace transform of g usually defined by:

E[g; s] =-[_:g(t) e dx

This can be written symbolically as:

el
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The occurrence of a strip of holomorphy for Mellin's transform can be deduced directly from this
relation. The usual right-sided Laplace transform is analytic in a half-plane Re(s) > ;. In the same way,
one can define a left-sided Laplace transform analytic in the region Re(s) < &, . If the two half-planes
overlap, the region of holomorphy of the two-sided transform is thus the strip ; < Re(s) < &, obtained
as their intersection.

To obtain Fourier’s transform, write now s = a + 2mj in (11.13):

F(s] :J:f(e‘*) ko

The result 1s

,-t{[ £t} a+ jzsrﬁ] = E[f(f“) € »3}

where ¥ represents the Fourier transformation defined by:

R‘[ﬁ ﬁ] . J:f(,c) o~ 2BE g,

Thus, for a given value of Re(s) = a belonging to the definition strip, the Mellin transform of a function
can be expressed as a Fourier transform.

Possible questions (Part B- 6 marks)

1. Define Laplace Transform and explain their property.

2. Explain the linearity and change in scale property of Laplace transform.

3. State and explain shifting property of Fourier Transform.

4. Find the Fourier transforms of the following functions, and in each case draw graphs for

the function and its transform
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fx)=1; | x| |<a
f(x) =0; |x| |>a
5. Define Inverse Laplace Transform. Find the inverse Laplace transform of
1-S
(S+1)(S*+45 +13)

6. Discuss about the change of interval from (-m,m) to (-1, 1) in Fourier expansion.
7. Derive any two properties of Fourier transform.
8. State and prove Cauchy’s Integral theorem.

Use Cauchy’s integral theorem to evaluate

9. Explain the Taylor’s Series with proof.
Possible questions (Part C- 10 marks)

1. Derive four properties of Laplace Transform
2. State and explain shifting property of Fourier Transform.
3. Find the Fourier transforms of the following functions, and in each case draw graphs for
the function and its transform
f(x) =x; |x| |<a
f(x) = x*; |x| |>a
4. Define Inverse Laplace Transform. Find the inverse Laplace transform of
1-8
(S+I1)(S’ +4S +13)

5. Discuss about the change of interval from (-m,) to (-k, k) in Fourier expansion.
6. Derive all properties of Fourier transform.

7. Explain the Taylor’s Series with proof.
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S.No Questions Option 1 Option 2 Option 3 Option 4 Key
Which of the following
functions has the period
1 2p? COS NX sin nx tan nx tan X sin nx
p/2

If f(x) = -x for -p<x£
Othen its Fourier

2 coefficient ay is T p/4 p/3 p/2
sin X
Which of the following is
3 an odd function? sin X COS X X sin’x
COS X
Which of the following is
4 an even function? X’ COS X sin X tan X
The function f(x) is said to
5 be an odd function of x if | f(-x) = f( x) b)f(x) =-f(x) | f(-x) =-f(x) | None f(-x) = - f( x)
f(-x) =f(x)

The function f(x) is said to
6 be an even function of x if | f(-x) = f( x) b)f(x) =-f( x) | f(-x) =-f(x) | None
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If a periodic function f(x)
is odd, it’s Fourier
expansion contains no -----
- terms.

coefficient a,

sine

coefficient ay

cosine

sine

If a periodic function f(x)
is even, it’s Fourier
expansion contains no -----
- terms.

cosine

sine

coefficient ay

coefficient a,

cosine

In Fourier series, the
function f(x) has only a
finite number of maxima
and minima. This
condition is known as -----

Dirichlet

Kuhn Tucker

Laplace

None

Dirichlet

10

In dirichlet condition, the
function f(x) has only a
finite number of finite dis
continuities and no -------
discontinuities

semi finite

continuous

infinite

finite

infinite

11

If f(x) is even, then it’s
Fourier co- efficient -------
-1s zero.

Ao

an

nonec

12

If the periodic function
f(x) is odd, then it’s
Fourier co- efficient -------

an

none

dn
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- 18 zero.

) 2n
The period of cos nx

where n is the positive
13 integer is n/n n/2n 2n nn

/2

The Fourier co efficient ag
14 in f(x) = x for 0<x£ mis T /2 21 0

. ) (-m2)
If the function f (x) =-m in
the interval -m x< 0, the

15 coefficient ay is /3 21%/3 2n/3 (-7/2)

bn

Il
S

If the function f(x)=x sin
16 x, the Fourier coefficient bn ap=1/3 ap=-1

[

S

e
I

For the cosine series, b,
which of the Fourier
coefficient variables will Both ay and
17 be vanish? an bn ag a,
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a, =0
For a function f(x) = x°,
18 the Fourier coefficient b, =0 a, =0 ag =0 a,=b,=0
even
The function x sin x be a
19 | cee- function. even odd continuous None
odd
The function x cos x be a
20 | mmeeee- function. even odd continuous None
0
21 Lt F(s) = ------ s®¥ | 0 1 ¥ None
L{f()}
The Laplace transform of
22 f(t) is denoted by L { F(s) } L{f(t)} L {F(t)} L {f(s)}
1/s+a
23 L(e™)=-- 1/s+a 1/s-a /s * a 1/s
s/s” - a*
24 L (cos h at) = ---- a/s’ - a* s/s” *a’ s/s® - a’ a/s’+a’
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a/s”-a’
25 L (sinh at) = ---- a/s® -a’ s/s? - a’ a/s’+a’ s/s”+a’

s/s”+a’”
26 L (cosat) = ---- s/s® -a’ a/s’ +a’* a/s® - a’ s/s” +a’

a/s”+a’
27 L (sinat) = ---- s/s® +a’ a/s’+a’ a/s’ - a’ s/s® -a’

é(n+1)/s™"
28 L(t")= ---- &(n+1)/s™"! &(n-1)/s""! &(n+1)/s™" None

(n+1)!
29 é(ntl) = ---- (n-1)! n! (n+1)! None

/s
30 L(l)=--—-- 1 S 1/s 0

1/s
31 L(t) = ----- 1/s 1/s t g
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2/s°
32 L(t%) = ----- 2/s> 1/t 2/t 1/s
OP
33 €12 = - OP/2 OP/4 OP OP/8
1/s-a
34 L (e")=---- 1/s+a 1/s-a 1/s*a None
2as/ (s™+a’)
35 L (t sinat) = ----- 2as/ (sz-az) 2as/ (s%a%) 2as/ (sz+a2) None
SZ_aZ/(SZ+a2)2
36 L (tcos at) = ----- sh-a’/(s™+a?)? | s*+a%/(s*+a®)’ | s”-a%/(s’+a?)’ | None
37 If L' {1/(s+a)’ }= ------ te™ te™ e None te™
sin2t/2
38 L' (1/(s*+4))isequalto |e™ cos2t/2 sin2t/2 e
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1
39 L' (1/8) = ------ 1 0 t none.
e st
40 L'[1/(sta)]= -----mmm- e’ e e ¢!
even
The function x sin x be a
41 | - function. even odd continuous None
odd
The function x cos X be a
42 | - function. even odd continuous None
sin X
Which of the following is
43 an odd function? sin X COS X x> sin’x
COoS X
Which of the following is
44 an even function x° CoSs X sin X sin’x
f(-x) =- f( x)
The function f(x) is said to
45 be an odd function of x if | f(-x) = f( x) f(x) = - f( x) f((x)=-1f(x) |3




KARPAGA ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.
(For the candidates admitted from 2018 onwards)

an

bi

e | Enlighten | Enrich

Enabl
KARPAGAM
ACADEMY OF HIGHER EDUCATION

[Deemed to be University)
{Established Under Section 3 of UGC Act, 1956 )

DEPARTMENT OF PHYSICS
UNIT III :( Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

46

The function f(x) is said to
be an EVEN function of x
if

f(-x) = f(x)

f(x) = - f( x)

f(-x) = - f(%)

f(-x) = f( x)

47

If a periodic function f(x)
is odd, Fourier expansion
contains no ------ terms

cosine

sine

coefficient ag

coefficient a,

sine

48

If a periodic function f(x)
is even, Fourier expansion
contains no ------ terms

cosine

sine

coefficient ay

coefficient a,

cosine

49

In Fourier series, the
function f(x) has only a
finite number of maxima
and minima

Dirichlet

Kuhn Tucker

Laplace

None

Dirichlet

50

In dirichlet condition, the
function f(x) has no -------
-discontinuities

semi finite

continuous

infinite

finite

infinite

51

If f(x) is even, then it’s
Fourier co- efficient -------
- 18 zero.

Ao

an

nonec




KARPAGA ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.

_— N (For the candidates admitted from 2018 onwards)

e | Enlighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION DEPARTMENT OF PHYSICS

UNIT III :( Objective Type/Multiple choice Questions each Question carries one Mark)

[Deemed to be University)
{Established Under Section 3 of UGC Act, 1956 )

PART-A (Online Examination)

52

If f(x) is odd, then it’s
Fourier co- efficient -------
- 18 zero.

Ao

an

nonec

dn

53

The period of cos nx
where n is the positive
integer is

/n

/2n

21

nm

2n

54

The Fourier co efficient ag
in f(x) = x for 0<x£ mis

/2

2

/2

55

If the function f (x) =-n
in the interval -w x< 0, the
coefficient agis

21°/3

21/3

/2

/2

56

If the function f(x) = x sin
x, the Fourier coefficient

ap = n2/3

a0=-1

57

For a function f(x) = x°,
the Fourier coefficient

a, =0

a0=0

None

58

The Laplace transform of
f(t) is denoted by

L{F@©)}

L{f();}

L { F(H

L { f(s) }

L{f®}
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59 L(e™)=-- 1/s+a 1/s-a 1/s*a 1/s 1/s+a
s/s”- a”
60 .L (cos h at) = ---- a/s’ - a’ s/s? - a2 a/s’ + a’ s/s”+a’
a/s”-a’
61 L (sinh at) = ---- a/s’ - a’ s/s” - a’ a/s’+a’ s/s® +a’
s/s”+a’
63 .L (cosat) = ---- s/s? -a’ a/s® +a’ a/s’ - a’ s/s”+a’
a/s” +a
64 .L (sinat) = ---- s/s” -a’ a/s® +a’ als’- a’ s/s”+a’
é(n+1)/s"""
65 L({")= - &(n+1)/s™! &(n-1)/s"" &(nt+1)/s""! none
L(1)=---- 1 s /s 0 1/s
66
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L(t) = ----- 1/s 1/s° t e 1/s
67
L(t") = - 2/8° e 28 1/s 2/s’
68
€1/2 = --- OP/2 OP/4 OP OP/8 OP
69
L (") =--- 1/s+a 1/s-a 1/s*a None 1/s-a
70
L (t sinat) = ----- 2as/ (s™-a” 2as/ (s’a’) 2as/ (s™+a’) None 2as/ (s"+a’)
71
L (tcos at ) = ----- s-a’/(s™+a’)” | s*+a’/(s+a’)’ | s-a’/(s™+a”)” | None s™-a’/(s*+a’)’
72
If L' {1/(st+a)’ }= ------ te™ te™ e None te™
73
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LT(1/(s*+4))isequalto | e™ cos2t/2 sin2t/2 e sin2t/2
74
L' (1/s) = —---=—-- 1 0 t none. 1
75
L[ l/(sta)]= -—---mmm- e’ e’ e e ! e’
76
The exponential form ofa | z=re" z=¢" continuous z=r/cosq |z=re"
complex number is
77
L(1)=--—-- 1 s /s 0 1/s
78
L(t) = - 1/s 1/s” t e 1/s
79
L(t)) = ----- 2/s’ 1t 28 1/s 2/s°
80




bi

e | Enlighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION

[Deemed to be University)

Coimbatore - 641021.

DEPARTMENT OF PHYSICS

KARPAGA ACADEMY OF HIGHER EDUCATION

(For the candidates admitted from 2018 onwards)

UNIT III :( Objective Type/Multiple choice Questions each Question carries one Mark)

(Established Under Section 3 of UGC Act, 1956
PART-A (Online Examination)
L (") =--- 1/s+a 1/s-a 1/s*a None 1/s-a
82
L (t sinat) = ----- 2as/ (s™-a°) 2as/ (s°a) 2as/ (s™+a) None 2as/ (s™+a”)
83
L (tcos at ) = ----- s-a’/(s™+a’)” | s*+a’/(s+a’)’ | s-a’/(s™+a”)” | None s™-a’/(s*+a’)’
84
If L' {1/(st+a)’ }= ------ te™ te™ e None te™
85
L'(1/(s*+4))isequalto | e™ cos2t/2 sin2t/2 e sin2t/2
86
L' (1/s) = —---=-- 1 0 t none. 1
87
L[ 1/(sta)]= ----m-mm- e’! e e’ e ! e’!
88
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89

The function x sin x be a
------- function.

cven

odd

continuous

None

cven

90

The function x cos X be a
------- function.

cven

odd

continuous

None

odd

91

A Laplace Transform
exists when

A. The function is piece-
wise continuous

B. The function is of
exponential order

C. The function is
piecewise discrete

D. The function is of
differential order

A&B

C&D

A&D

B&C

A&B

92

What should be the value
of laplace transform for the
time-domain signal
equation e-at cos wt.u(t)

1/s+awith
ROCoc>-a

o/(sta)2+
2 with ROC
c>-a

st+a/(s+
a)2 + ®2 with
ROCo>-a

Aw/s2+ w2
with ROC o
>0

1/s+awith
ROCoc>-a

93

Which kind of frequency
spectrum/spectra is/are
obtained from the line
spectrum of a continuous

Continuous in
nature

Discrete in
nature

Sampled in
nature

All of the
above

Discrete in
nature




an

bi

e | Enlighten | Enrich

KARPAGAM

ACADEMY OF HIGHER EDUCATION

[Deemed to be University)

{Established Under Section 3 of UGC Act, 1956 )

KARPAGA ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.
(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS
UNIT III :( Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

signal on the basis of Polar
Fourier Series Method

94

Which type/s of Fourier
Series allow/s to represent
the negative frequencies
by plotting the double-
sided spectrum for the

analysis of periodic signal
4’)

wn

Trigonometric
Fourier Series

Polar Fourier
Series

Exponential
Fourier Series

All of the
above

Exponential
Fourier Series

95

Which property of fourier
transform gives rise to an
additional phase shift of -
2w ftq for the generated
time delay in the
communication system
without affecting an
amplitude spectrum ?

Time Scaling

Linearity

Time
Shifting

Duality

Time Shifting
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UNIT-1V

SYLLABUS

Fourier series — Dirichlet’s theorem — change of interval — complex form — Fourier series in the
interval (0, T) — Uses of Fourier series - Legendre’s polynomials and functions — Differential
equations and solutions — Rodrigues formula — Orthogonality — relation between Legendre
polynomial and their derivatives — recurrence relations — Lagurae Polynomials — recurrence relations

Fourier series

A Fourier series is an expansion of aperiodic function f(x)in terms of an infinite sum
of sines and cosines.  Fourier series make wuse of the orthogonality relationships of
the sine and cosine functions. The computation and study of Fourier series is known as harmonic
analysis and is extremely useful as a way to break up an arbitrary periodic function into a set of
simple terms that can be plugged in, solved individually, and then recombined to obtain the solution
to the original problem or an approximation to it to whatever accuracy is desired or practical.
Examples of successive approximations to common functions using Fourier series are illustrated
above.

In particular, since the superposition principle holds for solutions of a linear homogeneous ordinary
differential equation, if such an equation can be solved in the case of a single sinusoid, the solution
for an arbitrary function is immediately available by expressing the original function as a Fourier
series and then plugging in the solution for each sinusoidal component. In some special cases where
the Fourier series can be summed in closed form, this technique can even yield analytic solutions.

Any set of functions that form a complete orthogonal system have a corresponding generalized
Fourier series analogous to the Fourier series. For example, using orthogonality of the roots of

a Bessel function of the first kind gives a so-called Fourier-Bessel series.

The computation of the (usual) Fourier series is based on the integral identities

ﬂ;m (mx)sin(nx)dx = Ady, (D)
fcos (mx)oos (nx)dx= My, 2)
fsin (mxjoos(nx)dx =0 3)
[fsnmnax =0 4)

Tcos (mx)dx =10 (5)

for m, n =0 where 9mnx is the Kronecker delta.
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Using the method for a generalized Fourier series, the usual Fourier series involving sines and
cosines is obtained by taking fi (x)=c0sx and f (x) =sinx, Since these functions form a complete
orthogonal system over [=7. @], the Fourier series of a function f (x) is given by

fix)= ;— an + Z_an cos (nx)+ Z‘b” sin (r x). (6)
n=1 =1
where
s

W= ) f@dx (7)
1

an = Fflx)cos(mx)dx ®)
1

by, = ; flx)sin(nx)dx 9)

and n=1,2 3, ... Note that the coefficient of the constant term @ has been written in a special form
compared to the general form for a generalized Fourier series in order to preserve symmetry with the
definitions of @« and &x.

Dirichlet conditions

A piecewise regular function that

1. Has a finite number of finite discontinuities and
2. Has a finite number of extrema

can be expanded in a Fourier series which converges to the function at continuous points and the
mean of the positive and negative limits at points of discontinuity.

y = fix}

Def. Sectionally continuous (or piecewise continuous) function. A function f(x) is said to

be sectionally continuous (or piecewise continuous) on an interval a = x = b if the interval can
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be subdivided into a finite number of intervals in each of which the function is continuous and has
finite right and left hand limits. See Figure The requirement that a function be sectionally continuous
on some interval [a, b] is equivalent to the requirement that it meet theDirichlet conditions on the
interval.

Fourier series. Let /(x) be a sectionally continuous function defined on an interval ¢ <x <c + 2L. It
can then be represented by the Fourier series

: i, oS 2mx 3mx
) fi{x) = — + a,c08— + a,c08— + 4,C05— + ...
2 L B L ' L
3 . 2 "
+ b, sin e s g b, sin LT
L - L ’
Where
] petiL 7
a, = j fix) Cmn"ur dx n=01273, .
2) L L
Z 1 pes2e . HTX
h = — x)sin— dx n=12713,
=7l f@sin=

At a point of discontinuity f(x) is given a value equal to its mean value at the discontinuity
i.e. if x = a is a point of discontinuity, £ (x) is given the value

lim f(x) + lim f(x)

T—a X—ha,

2

f(x) =

Complex form of Fouries series

We show how a Fourier series can be expressed more concisely if we introduce

2:

the complex number i where i~ —1. By utilising the Euler relation:

e10 =cos0+ isin@
We can replace the trigonometric functions by complex exponential functions. By also combining

the
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Fourier coefficients an and bn into a complex coefficient ¢n through

Ch = (an-iby)

We find that, for a given periodic signal, both sets of constants can be found in one operation. We
also obtain Parseval’s theorem which has important applications in electrical engineering. The
complex formulation of a Fourier series is an important precursor of the Fourier transforms which

attempts to Fourier analyse non-periodic functions.

So far we have discussed the trigonometric form of a Fourier series i.e. we have represented
functions of period T in the terms of sinusoids, and possibly a constant term, using

_ag = [ 2nmt . 2nmt
il = 54—;{%(.%( T ) —l—bnsm( T )}

If we use the angular frequency

27
W — —

T

We obtain the more concise form

o
ey

Flit)= 5 Z(aﬂ_ cos nwot + by, sin nwot ).

n=1

We have seen that the Fourier coefficients are calculated using the following integrals.

2
an—?'[ f(t) cos nwgt dt 7 S 1P e

f f(t) sin nwot dt =S L o
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An alternative, more concise form, of a Fourier series is available using complex quantities.
This form is quite widely used by engineers, for example in Circuit Theory and Control Theory, and
leads naturally into the Fourier Transform which is the subject of

Fourier series in the interval (0, T)

We assume that the function f(x)is piecewise continuous on the interval [0,T]. Using the
substitution x= Lyn (—n<x<m), we can transform it into the function

F(y)=f(Ly/m)

which is defined and integrable on [—r,nt]. Fourier series expansion of this function F(y) can be
written as

F(y)=f(Ly/m)=a0/2+ ) (a,cosny+b,sinny).

Uses of Fourier series

Fourier series and frequencies

The basic idea of Fourier series is that we try to express the given function as a combination of
oscillations, starting with one whose frequency is given by the given function (either its periodicity
or the length of the bounded interval on which it is given) and then taking multiples of this
frequency, that is, using fractional periods. When we look at coefficients of the resulting "infinite
linear combination", we can expect that if some of them are markedly larger then the rest, then this
frequency plays an important role in the phenomenon described by the given function. This detection
of hidden periodicity can be very useful in analysis, since not every periodicity can be readily seen
by looking at a function. In particular, this is true if there are several periods that interact.

Imagine that a function f'describes temperatures at time ¢ over many many years. There is one period
that should be easily visible, namely seasonal changes with period one year. We also expect another
period going over this basic yearly period, namely 1-day period of cold nights and warm days. Now
the interesting question is whether there are also other periods. This is very useful to know, since
such knowledge would tell us something important about what is happening with weather and
climate. Frequency analysis offers a useful tool for such an investigation, looking over long data
sequences it may point out cold ages and other long term changes in climate.
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There are areas where decomposition into waves comes naturally, for instance storage of sound.

When we are given a sound sample, Fourier transform allows us to decompose it into basic waves
and store it in this way. Apart from data compression we also get further memory savings by simply
ignoring coefficients that correspond to frequencies that a typical human ear does not hear. This is
the basis of the mp3 format (it uses transform that is something like a fourth generation offspring of
cosine Fourier series).

Fourier decomposition can be also generalized to more dimensions and then it can be quite powerful
in storing visual information - it is for instance the heart of the system used by F.B.I. to store their
fingerprint database. Since this decomposition is so useful, one important aspect is the speed at
which we can find the coefficients. This inspired further development and today we do not usually
use the standard Fourier series but its more powerful offspring, for instance something called Fast
Fourier Transform (FFT). Here also hardware helps, there are devices (integrators) that have this
wired in, roughly speaking one feeds it a function and the device spits out a Fourier coefficient.

Legendre Polynomial and differential equation

The Legendre differential equation is the second-order ordinary differential equation

d v dy
(1-22) 52 —2x 2 410+ Dy =0,
dx* dx (1)
which can be rewritten
d dv
< [1—.¥2:—}‘+!(I+1}}'=l}.
dx dx (2)

The above form is a special case of the so-called "associated Legendre differential equation"
corresponding to the case m=0. The Legendre differential equation has regular singular points at =1
, 1, and o9,

If the variable * is replaced by ©0s 8, then the Legendre differential equation becomes

Fy  osbdy L ilyy=0
4@ sind do o 3)

Derived below for the associated (™ # 0) case.

Since the Legendre differential equation is a second-order ordinary differential equation, it has two
linearly independent solutions. A solution 1 (x) which is regular at finite points is called a Legendre
function of the first kind, while a solution @ (x) which is singular at *1 is called a Legendre function
of the second kind. If { is an integer, the function of the first kind reduces to a polynomial known as
the Legendre polynomial.
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The Legendre differential equation can be solved using the Frobenius method by making a series
expansion with k=0,

¥y = = (4)
z_nanx” !
¥ = =0 %)
}l” =
Z_n[n— 1a, x".
=0 (6)
Plugging in,
[1 —xz;l Z_n (n—1a, x> -2x Z_n ap " I+ I}Z_an M=
A=l =0 e (7)
Z_n n—1)a, x" 7 - Z_n[n— Da, x"
n=l =0 (8)
—2x Z_n ay gy i+ 1) Z_a,r =0
=0 =i &)
Z_n[n— IEE Z_n[n— Da, x"
n=2 n=0 (10)
—?.Z_nanx” + 100+ I}Z_a,x” =0
a=0 L (11)
Z_[n+2} (n+ Dap x™ - Z_n[n— Da, x"
n=(} =) (12)
—Zz_nanx" + L0+ I}Z_a,x" =0
a=0 n=0 (13)
Z_-'[n+ Die+Daga+[-nn-1-2n+1+ 1] a}=0,
n=( (14)

so each term must vanish and

(n+1iin+Dawa +l-nn+1+i+ 1N a. =0 (15)
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nin+ 1)=-1(1+1)

aa = (+Dm+2) " (16)
[f+in+1=mn)
———————— .
= n+1in+2) (17)
Therefore,
i+ 1)
m = 12 “ (g
=247
@ = 3.4 (19)
=1y [E=2) [+ 1)+ 3)]
- 1234 “ (20)
(=41 +5)
a5 = 5.6 1)

1y = DE=DATA+ DE+H @+ 9]
_ = 1.2.3.4.5-6 o (22)

so the even solution is

— [(=2n+2)---(I=-DNE+DE+3)--@+2n-1)] ,,
y@=1+) (-1 o X

a=l

(23)
Similarly, the odd solution is

(=2041) (=)= DI+ +d) - (+2m)] .,
Cnt D)l !

y2@)=x+ ) (=1F [

a=l

24)

If Iis  aneveninteger, the  series ¥1(x) reduces to  apolynomial of  degree { with
only even powers of * and the series ¥2 (v} diverges. If ! is an odd integer, the series ¥2 (x) reduces to
a polynomial of degree ! with only odd powers of ¥ and the series ¥1 (x) diverges. The general
solution for an integer ! is then given by the Legendre polynomials

Py [x} =
vy (x) forieven
"lya(x) foriodd 05
2 Fl [‘gl' EI‘UH}:E'-_-XE] tor I even
Cn
_ |r2FA(Ju+2. b -1 327 fortodd o6
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where ¢, is chosen so as to yield the normalization p, (1)=1 and , F| (a, b; ¢; z) 1S @ hypergeometric
function.

The associated Legendre differential equation is

d dv 2
= [1—x2]f‘+ 1+ 1)- —— |y =0,
x * - (27)
which can be written
£y dy :
(1-x) 52 2222y rge - y=0
o x? dx — it (28)

(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions F7' &) to this equation are
called the associated Legendre polynomials (if { is an integer), or associated Legendre functions of
the first kind (if ! is not an integer). The complete solution is

y=0C F{ )+ G & (x), (29)
where &' @) is a Legendre function of the second kind.

The associated Legendre differential equation is often written in a form obtained by setting x = cos 8,
Plugging the identities

dy dy
dx — dlcos ) (30)
1 dy
= sind d €1y
£y Ld(1ld
dx = sin@ dﬂ[smﬂ H] (32)
1 (d*y cos@ dy
= ginzﬂ[d:}? sinf 48 (33)
into (¢ ) then gives
d'y  cos@ dy 2(:059-:2'}' W+ 1 m _0
ae smgao |t smeae YD T Gee T (34)
@y osbdy oy ] 20
a¢ “smoae [T e ™Y
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Lagurae Polynomials: Definition

Laguerre's Differential Equation is defined as:
o 1= +ay=0

n= U:1=2=3’---, the solutions of
f.”[x:l.

where # is a real number. When # is a non-negative integer, i.e.,

Laguerre's Differential Equation are often referred to as Laguerre Polynomials
Important Properties
Rodrigues' Formula: The Laguerre Polynomials in () can be expressed by Rodrigues' formula:

Inlz)= !

d"
e

alz b where # = 0,123, .

Generating Function: The generating function of a Laguerre Polynomial is:

(x) »=01273,.

Orthogonality: Laguerre Polynomials In , form a complete orthogonal set on

. . A . —X
the interval ! < <o with respect to the weighting function € "~ . It can be shown that:
0 mes=a
1

mM=x

f e (x:lfﬂ(x:ldp{

By using this orthogonality, a piecewise continuous function F1x) can be expressed in terms of
Laguerre Polynomials:

"y Fin where £ 13 nontimions
Culn(m =1 ;(x— +
nz=::| " Jx ) —:f(x ) at discontinuous peints
Where:

Co= [ (i
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This orthogonal series expansion is also known as a Fourier-Laguerre Series expansion or
a Generalized Fourier Series expansion.

Recurrence Relation: A Laguerre Polynomial at one point can be expressed in terms of neighboring
Laguerre Polynomials at the same point.

N gy (x) =(2n 1= 2) Ly (x) = nlpp_y [x,
. Lnf {x) = Ln—lf {x)— Ly {x)

 xly' (z)=nLy (x)= Ly (x)

Special Rsults

Ly 10)=1

L bj:%[%l_ 1;1{:1—_11)! i
E%%%;nﬁkw]

[ )t =L )L ()

0 ifp<n

J-:G e L, {x) dx =[

(—1l ifp —x

! Ly (21 Dyt (V)= Dyt (x) 1 ()
Z Ly (x) Ly ()= [:z+1)|[x—y1)

i zk_.gk [x) =e=:r.f|:| (2\&—?)

k!

Lyix)= lll_’-l‘]mu”ex_u Jo (2«.-"'.7?&) clid

Ml

Where “0 is 0 order Bessel function of the first kind
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Possible questions (Part-B-6 Marks)

1. State and Explain Dirichlet conditions.
+1 2)’1
2. Show that j xP (x)P,_(x)dx = R using Legendre polynomials
n —
-1

3. Show that the Legendre function P,(x) is the coefficient of z" in the expansion of [1 — 2xz +
211
From above, deduce the values of P,(1). Also, show that P,(-x)=(-1)"P,(x)

4. Explain what is Fourier series. Find the Fourier series of the function in the interval -t < x <

T

Derive Rodrigue’s Formula. State and Explain Dirichlet conditions.

Explain orthogonal properties of Legendre’s polynomials.

Explain about the Cauchy Residue theorem

Explain orthogonal properties of Legendre’s polynomials.

o ® =N N

Derive recurrence relation for Lagurae formula.

Possible questions (Part-C-10 Marks)
+1 21’1
1. Show that ijn (x)P,_,(x)dx = Y using Legendre polynomials
n AN
-1

2. Show that the Legendre function Py(x) is the coefficient of z" in the expansion of [1 — 2xz +
2112
From above, deduce the values of P,(1). Also, show that P,(-x)=(-1)"P,(x)
3. Explain what is Fourier series. Find the Fourier series of the function in the interval —2m < x
2n
Derive Rodrigue’s Formula for legendre polynomial.
Explain orthogonal properties of Legendre’s polynomials.

Derive Rodrigue’s Formula for lagurae polynomial

NS e

Derive the recurrence relation for Legendre formula.
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S.no Questions Option 1 Option 2 Option 3 Option 4 Key
1
2 . 2
—sInx — COS X 2
. stin X X X chos X —_Sinx
The value of .1/, (x) is X X 7tX
2 I
The Rodrigue formula | 2" 1 [ - 2
for Pn(x), the Legendre o n K =— 1 K= . 5 } 7
polynomial of degree ‘n’ K = N n! K = " 2 (n') I
is 2 2"n!
3
The value of Jo(x) at the
origin is 1 0 —1 X 1
4
The value of P(x) is X 1 x?/2 15 (x 2 1) X
5
The identical roots of the
Legendre’s functions are | m==+n m==1 m=0orm=1 m=0orm=-1 m==1
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1[2—sin X 2 Gn ,[icos x 1fz—cos x
The value of J;, (X) is X \ 7x X x

sin

T X

If Jo and J; are Bessel’s
functions then J;’(x) is
given by Jo(x) — 1/x J1(x) —Jo Jo(x) + 1/x J1(x) Jo(x) — 1/x* J1(X)

Jo(x) — 1/x
Ji(x)

8 The value of the integral
where Jn(x) is the Bessel
function of the first kind
of order n, is equal to 0 -2 2 1

The integral XJO (x)dx

is equal to xJ1(x) — Jo(x) xJ1(x) Ji(x) X 2Ju(X)

xJ1(x)

10 If Jor1(X) = (2/%) Ju(x) —
Jo(x) where Jn is the
Bessel function of first
kind order ‘n’. Then ‘n’
is 0 2 -1 1

11

The value of [J;, (x)]* + 2 2 2 2
[J-10 (0] i T X T X 7 7
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12

The value of Po(x) is 1 X 0 -1

13
The value of the
ifn

n=m n'm n>m n<m

[PryPrix)dx=0

14
The polynomial 2x*+x+3

1
interms of Legendre —(4@ —3}1) +1 ]lg) 7(4134-3]134-1 }8) 1(4@_,_3}1)4_1 113) ,(41;_3]13_1 ]g)
polynomial is 3 3 3

15
Let Pn(x) be the

Legendre polynomial,
then Pn(-x) is equal to D™ Py (x) -D" P, (x) (-1)" Py(x) P,”(x)

(-D)" Po(x)

16 If P,(x) is the Legendre
polynomial of order ‘n’,
then 3x”+ 3x + 1 can be
expressed as 3P, + 3P, 4P,+2P; + Po 3P,+3P; + Po 2P,+3P; + 2Po

2P,+3P; + 2Po

17

+1

an (x)dx =2,
If 5
then ‘n’ is 1 0 —1 u




v‘d

KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
{Established Under Section 3 of UGC Act, 1956 )

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.

(For the candidates admitted from 2018 onwards)

DEPARTMENT OF PHYSICS

PART-A (Online Examination)

UNIT IV :( Objective Type/Multiple choice Questions each Question carries one Mark)

18
Legendre polynomial is
where K is equal to 63/2 63/5 63/10 63/8 63/8
19 Let Pn(x) be Legendre
polynomial of degree
n>1, then
is equal to 0 1/(2n+1) 2/ (2n+1) n/(2nt+1) #REF!
20 +
The value of I(2x +DE (X
is the third debree
Legendre polynomial
is 1 —1 2 0 0
21
n zeros of which n real zeros
The Legendre n real zeros only one is between | 2n-1 real zeros between 0 and
polynomial Pn(x) has between 0 and 1 —1 and +1 between —1 and 1 | none of these 1
22
The incorrect equation Py(x)=(-D""P, | Pa(x)=(-1)""Py |Pa(x)=(-D)""
among the following is P,(x)=1 Pi(x)=x (%) (x) P, (x)
23
The value of Py(-x) is - Py (x) P, (x) -D" P, (x) (-1)" P, (x) (-D" P, (x)
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24

The value of 2Jn’ 1S Jn_1 — Jn+1 Jn_1 + Jn+1 Jn+1 — Jn+1 2 Jn+1 Jn+1 — Jn+1

25

The root of x> — 6x + 4
lies between —land 0 land 2 —2and 1 Oand 1 —land 0
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UNIT-V

SYLLABUS

Bessel’s functions — differential equation and solution — generating functions — recurrence
relations — Bessel function of second order — Spherical Bessel function - Hermite differential
equation and Hermite polynomials — Generating function of Hermite polynomials — Recurrence
formulae for Hermite polynomials — Rodrigue’s formula for Hermite Polynomials —
Orthogonality of Hermite Polynomials — Dirac’s Delta Function

Bessel functions differential equations and solution

The Bessel functions of the first kind 7x (x) are defined as the solutions to the Bessel differential

equation
d* v dy

X ——4+x — +(x2—n2]l} =0
dx* dx

=-0.2

=0.4 S~

Which are nonsingular at the origin. They are sometimes also called cylinder functions or
cylindrical harmonics. The above plot shows J: (x) for 1, 2, ..., 5. The notation T:n was first used
by Hansen (1843) and subsequently by Schlomilch (1857) to denote what is now written 7. (2 z)
(Watson 1966, p. 14). However, Hansen's definition of the function itself in terms of
the generating function
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& =102 = Z ?;I J-n [z}- (2)

fi=—a

is the same as the modern one (Watson 1966, p. 14). Bessel used the notation K to denote what
is now called the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279).

The Bessel function Jx (z) can also be defined by the contour integral

| P
()= =— ggf-*-”-f-'-” " dr, 3)

2mi

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken
1985, p. 416).

The Bessel function of the first kind is implemented in the Wolfram Language as BesselJ[nu, z].

To solve the differential equation, apply Frobenius method using a series solution of the form

y :x.ic i.an 2= i.an xn+.icl (4)

Plugging into (1) yields

el
X Z_[Jc+nj[k+n—1;anx""' 24
n=({)

S < x &)
X Z_[k tm)a, 2 Z‘a’* e — Z‘a‘* S
. n=ll n_=|} n=0
z_ ik + ) (et — 1ay, 25 = z (k + 1) ay 25
LE] =l
3 < (©)
+ S s " Sy =0,
n=1 a=(
The indicial equation, obtained by setting # =0 is
ao [ktk= 1)+ k—m?| = ao (¥ = m?)=0. -
Since 4o is defined as the first nonzero term, K -m'= 0, s0 k=+m_ Now, if k=m,
3[4 m b= 1)+ () = ] g 7 4 Yy =0 "

il =
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Z_ [[m +n) - mz] ap x4 Z_an_g =0 9)
=l =2
z_n(?'.m-l-n}a,, xm'"r-l-z_a,, 1 ™ =) (10)
a=( . n=2
a; 2m+ 1™ +E_[ann[.?.m+n}+an_2]xm+”=l}. (11)

n=2

First, look at the special case ™= =1/2_then (11) becomes

D lann(n-1)+a,2]x™" =0, (12)
=2
SO

= : 13
= (13)

Now let #=21 where =1, 2, ...

T e (14)

- [2ii2i-1)] [2(!’—[_1:;!'—3}]-“[244]aﬁ (15)

_1y

lﬁaﬁ (16)

which, using the identity 2't 1= =12D! gives
(-1)
Y T {17
Similarly, letting n =21+ 1,
1 (-1

“HT ey T T i@+ IRE-DE- D - 2131 (1%
which, using the identity 2' 1! 21+ D!!= 21+ 1)!, gives
ari = C (19)

rneienn T 2 ”

Plugging back into () with k=m=—1/2 gjyes
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Y =x ' Z_an x" (20)
=l
= x_l 2 Z anx” | Z g P (21)
n=1335... R=024,...
= 12 Z_agrx”+ Z-a?”' L2141 (22)
=0 =0
o (—1) o (=1)
_ -l 21 2141
B ;'rzn! ot ;'rzu o @3)
= v ' (ag cos x +a sinx). (24)
The Bessel functions of order +1/2 are therefore defined as
Mo
Joip (x) = I|I — Q08X (25)
Vorx
M2
Jiplx) = I|I — s&inx, (26)
Vorx )
so the general solution for m=£1/2 ig
y=ayJoiz x) +ap Jiz (x). (27)
Now, consider a general m # =1/2, Equation (<) requires
a 2m+1)=0 (28)
[a,n(2m+na)+a,a] ™" =0 (29)
forn=2 3, .. so
a =0 (30)
fdy = = m e N (31)
forn=23 ... Letn=2I+1 where I=1 2, .. then
= l 32
=T D Rmen+1] (32)
=...=finma =10, (33)

where f (n.m) is the function of ! and m obtained by iterating the recursion relationship down
to a1. Now let n =21 where I=1,2, ..., so
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2 L4 E'[m+£}'

daj 1
T T 2iCme2n (34)
L
YT Y A (35)
(-1
= 36
[4[[!?‘]4—[}][4:[—1}[!?’:4-[—1}"“[4‘[."?‘14-1}]6& (36)
Plugging back into (),
y :Z-aﬂ £ — Z g £y Z 2y £ (37)
a=() n=l35 a=024__.
= Z.az R s Z.azr e (38)
= i=0
N ':_l}r 2 i+
:m;[#![m+ﬁl[4[f—l}[m+f—lj]--~[4[m+lj]x (39)
2 l[—l}'m[m—l}-“ ] 2hfn
:aﬁ;[d-!(m-l-ﬂl[d-(!—l}(m-l-!'—1}] Jd (a4 Dy 1] (40)
- (-1fm!
=) (41)
MY (4 D))
Now define
T () = Z 2 (42)
I=

where the factorials can be generalized to gamma functions for nonintegral m. The above
equation then becomes

y=ap 2" m' J (x)=aj J, (). (43)

Returning to equation (<) and examining the case k= ~m

a (1 —2m}+Z_[ann[n—?.m}+an_g]x”_m=l}. (44)
n=2

However, the sign of = is arbitrary, so the solutions must be the same for +m and —m. We are

therefore free to replace = with =l=l, so

ar (L+2m)+ D [ayn (n+2|m]) + @y 2] ™ =0, (45)
=2




an

\'—"

Enlighten | Enrich

KARPAGAM

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IMSC PHYSICS  COURSE NAME: MATHEMATICAL PHYSICS
COURSE CODE: 18PHP104 UNIT: V (BESSEL FUNCTION) BATCH-2018-2020

ACADEMY OF HIGHER EDUCATION

{Deemed to be University)

(Established Under Section 3 of UGC Act, 136 |

and we obtain the same solutions as before, but with  replaced by
m ||
- -1
SV g
S22 (lm] + D! :
Inw=1[2 ! (46)
m — COSX form=-=:
mx 2
[ 2 !
— sinx form=-.
mx 2
We can relate Jm (x) and J-w (x) (when m is an integer) by writing
- [_ l}I' 21—
I — —i
e (X) ;'er_”‘[![f—m}! (47)
Now let { =1 +m, Then
‘:JT‘ (- l}f'-wr.- 21 4m
I lx)= x 48
- rfnzzf” @ +m! 1! (48)
I 2 ) 1y - (= 1)+ m
Z 2T +m Z L2 (49)
LN 4 m)! o 22T+ m)!
But ! = for I'=-m, ..., =1, so the denominator is infinite and the terms on the left are zero.

We therefore have

3 (= 1y 2 i+
T ;;22 e 1 (1 + ) (59)
= (= 1" T (x). (51)

Note that the Bessel differential equation is second-order, so there must be two linearly
independent solutions. We have found both only for Iml=1/2 For a general nonintegral order,
the independent solutions are /= and /-=. When m is an integer, the general (real) solution is of
the form

Zn=Ci Jn () + G Fu (), (52)
where 7w is a Bessel function of the first kind, ¥» (a.k.a. M) is the Bessel function of the second

kind (a.k.a. Neumann function or Weber function), and®i and ©: are constants.
solutions are given by the Hankel functions (a.k.a. Bessel functions of the third kind).

Complex

The Bessel functions are orthogonal in [0. a] according to
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fﬁ' [U';.-r.- E] Jy [U'M aE] pap= ;' a [Frs1 (‘-f';.-r.-}lj s (53)

a

where 2vm is the mth zero of /¥ and @« is the Kronecker delta (Arfken 1985, p. 592).

Except when 2m is a negative integer,

212
In )= Mo, 2i2), 54
O i gt L1y 0 21 54

where T (x) is the gamma function and Mo is a Whittaker function.

In terms of a confluent hypergeometric function of the first kind, the Bessel function is written

(L

R L1
T (3= Tt 1}[;F| |:1r'+ 1.—_1 zj]l. (55)

A derivative identity for expressing higher order Bessel functions in terms of /o (2} is

d
].rn (@), (56)

Jnlfz}l=i‘"T,1[z'd—z

where Tx (z) is a Chebyshev polynomial of the first kind. Asymptotic forms for the Bessel
functions are

%m=rw+”GF (57)

for z =1 and

f 2 mI N
e | — o — 58
T (2) 1\ iz Cos [4 5 4] ( )

2
for ¢ m* = 1/4] (correcting the condition of Abramowitz and Stegun 1972, p. 364).

A derivative identity is

d
—_— [x"" T (;;'] =x" T I:x}' (59)
dx

An integral identity is

'['u' Jo ' Vdu =uly (). (60)
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Some sum identities are

D=1 (61)
(which follows from the generating function (&) with #=1),

=0 G +2 ) Wi )1 (62)

k=1

(Abramowitz and Stegun 1972, p. 363),

L=Jo (2)+2 ) Jax (x) (63)

k=1

(Abramowitz and Stegun 1972, p. 361),

2h )
0= Z[;.[— 1) i (2) oy (2) 42 Z.J'& (2) Janek (2) (64)

for n=1 (Abramowitz and Stegun 1972, p. 361),
52 = ) L @Ik @+2 ) (-1 Ji @) et @) (65)
k=0 k=1

(Abramowitz and Stegun 1972, p. 361), and the Jacobi-Anger expansion

L)

I‘?|_;-C':I.‘«-\'.l'= Z E-\.I‘I‘Jn I:z::l I‘?I.l‘"\'.ll.l (66)

fi=—x

which can also be written

EI.;\‘:I.‘«-S — ..rl} |:Z}| 42 Zfﬂ -r_rr (zJCOS |:.?'i| E}- (67)

a=1

The Bessel function addition theorem states

TG 42= D Jn ) Jnom @), (68)

n=—x

Various integrals can be expressed in terms of Bessel functions
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Jy (2)= }T foos (zsind—-nt)dd, (69)

which is Bessel's first integral,

Je (@)= E? f"e'**‘”-‘?oos (nf)d B (70)
]
1 T fzousd  §ma

Je (2= ﬁf € e dd (71)
forn=12 ..,

I ( 27 J;m'z" ( d 72
"‘}_H(En—lj!! Sin”" wcos (z cos u)d u (72)
forn=12 ..,

. 1= L r.’:l"q]:':_l"":]z_“_l ds (73)
" 20y

for n>=1/2 The Bessel functions are normalized so that

VLNJH X)dx=1 (74)

for positive integral (and real) . Integrals involving /i (x) include

var 7y (x) 2 4

'L‘ . dx = o (75)
wr 7 (X) P 1

I D = (76)
x 2

Bessel function of second order

A Bessel function of the second kind ¥: (x) (e.g, Gradshteyn and Ryzhik 2000, p. 703,
eqn. 6.649.1), sometimes also denoted Nx (x) (e.g, Gradshteyn and Ryzhik 2000, p. 657,
eqn. 6.518), is a solution to the Bessel differential equation which is singular at the origin. Bessel
functions of the second kind are also called Neumann functions or Weber functions. The above
plot shows ¥: (x) for =0, 1, 2, ..., 5. The Bessel function of the second kind is implemented in
the Wolfram Language as BesselY[nu, z].
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Let v=J.(x) be the first solution and # be the other one (since the Bessel differential
equation is second-order, there are two linearly independentsolutions). Then

xu' +u +xu=0 1

"

v v b xw =0, (2)
Take v* (1) minus u* (2),
' v—wv' )t v—uv' =0 (3)

d ' Y
H [ (e v=nuv)] =0, (4)

so x (' v=uv)=B_ where B is a constant. Divide by *+*,

wv=uv d [u-. B (5)
v Cdx vl !

u dx

-—=A+B | —. 6

. o2 (6)

Rearranging and using v =Ji (x) gives

dx
x J (x) ™
= A" Ty (x) 4+ B’ ¥y (1), (®)

= A..rm [X}-l‘B.fm [.T}J1

where ¥ is the so-called Bessel function of the second kind.

¥, (z) can be defined by
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Jy (z)cos (vr) = J_, (2)

k@)= sin () ©)

(Abramowitz and Stegun 1972, p. 358), where /v (z) is a Bessel function of the first kind and,
for v an integer 7 by the series

("
z F- 1
Y ()= - 2 Z[ﬂ ! (¢ 2+
k=0
. (10)
%In['- € (IZT —[—'—zzj"
- 3 2] d g Z} - "+ k}l
where o (x] is the digamma function (Abramowitz and Stegun 1972, p. 360).
The function has the integral representations
T 1 e .
¥ ()= - L sin(z sinf - v dd - E [ [EW+ g [_”w] pisinhr g (11)
2 I:;' z}--,- fﬂ cos(z)dr (12)
- ‘u"'; l—-lf;_ _ ]I r?g _ I]IHI.-'Z

(Abramowitz and Stegun 1972, p. 360).

Asymptotic series are

2lin(tg)+y] m=0,x<1

A T (13)

—[—] med, x el
¥l X

2 mu n
o x)~ | == g — )
i \ sm[.r > 4] x= 1,

For the special case # =0, ¥ (x] is given by the series

@ (32
| 4 4
In (3 z)+7] %o &H;:.'[_w e

2
¥ (2= -
T

Take the Helmholtz differential equation

VF+EEF=0 (1)
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in spherical coordinates. This is just Laplace's equation in spherical coordinates with an

additional term,

d?.iaeri dR o+ 1 40

dr rdr Fsint g 48

; @)
cosgd 4P 1 & ¢ 3
—— — @R+ — —OR+KF RO =0.
Fsing dé F dd?

Multiply through by /R ®©,

# @R 2rdR 1 d?E: cosg dP 1 & @
— =+ — — &+ —
R 42 R dr

Psin’d dF  Dsing do B ag>

3)
This equation is separable in R. Call the separation constant 7 (n + 1)

# @R 2rdR

E—rz E;-I—k rq—n[n+1}

)
Now multiply through by £,

#ﬁu;ﬂqkﬂﬁ_nmny]n—ﬂ. (5)
dr
This is the spherical Bessel differential equation. It can be transformed by letting x =k, then
dR(r) dR [r} -:2' Rir
F =kr

dR(r)
dr kdr dkn

dx

(6)
Similarly,

PRIn A Rir
e L , 7
dr * dxt )

so the equation becomes

ﬂR d R

—+2r—+x -n

x - - (a+ 1)) R=0.
X

®)

Now look for a solution of the form R (#)

=Zx)x'"
prime,

, denoting a derivative with respect to ¥ by a

R =Zx"_lz"
1 Z;

)
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e T I l i = l = | 3 =
R =7z e g 7B g 2l = 5 (-5) 20 (10)
=2/ x -z Py 220 (11)
SO
X (Z” P A L } Zx_m]l +12 .
r :zr x_—|_-"2 _ ;_ 7 x—]_-?} + [3’1 —n |:?‘i| + 1}] 7 x—|_-"2 =0 ( )
¥ (Z” -z } Zx_q}l+1x (Z' - EI- Zx_l;l+ [x2 —nln+ 1}]Z=l} (13)
2"+ (-x+2x)Z +[3 =142 —n(+D|Z=0 (14)
JEZ”+JZ'+[12—|:HE+H-I:_I;}]Z—G (15)
xEZ”+x2"'+[xq—|:n+2|-jll2 Z=10. (16)

But the solutions to this equation are Bessel functions of half integral order, so the normalized
solutions to the original equation are

J_,r4_|_.v2 [k.?’} B Y.rrd-|_-'2 [k.?’}

Vir Vir

Rin=

(17)

which are known as spherical Bessel functions. The two types of solutions are denoted J- (x)
(spherical Bessel function of the first kind) or n« (x)(spherical Bessel function of the second
kind), and the general solution is written
Rin=A"j, (kr)+ B ny, (kr),

(18)

where

i [z = 'E
Je (2)= \E

n
ny ()= \E

(19)

Spherical Bessel function
The second-order ordinary differential equation

£y

dx*

ﬂl'
2x = Ay =0. (1)
dx
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This differential equation has an irregular singularity at . It can be solved using the series

method ea
Z_[n+2}[n+l}a“;x”—z_?.nanx”+2_}.anx”=ﬂ' )
=l =l n=(
(2ay +dao)+ ) [(n+2)(n - Dana—2na,+da,]x" =0. 3)
=]
Therefore,
Aap
a=-0 4)
and
2n-1
A T T Q)

for n=1 2 .. Since (4) is just a special case of (5),

B 2n=-4 6
T medmen (6)

Apil

forn=01, ...

The linearly independent solutions are then
A

4 -2 B-AE-A

¥1 =y 1—;x2— T x* Txﬁ_'"l (7)
2-4 6-)2-1
Y= x+[ }x3+[ ) }x5+.-.l- ()
3! 51
These can be done in closed form as
y=ao 1 Fi (=& Sxt)barx B (- Q-2 3507 9)
_12]';|F| |—_|1.|1:.;:.1.2}+1.T‘ Jrf_i."g (1'}_. (10)

where 1 #1 [ 8, x) is a confluent hypergeometric function of the first kind and #« [x) is a Hermite
polynomial. In particular, for A=0_2, 4, ..., the solutions can be written

}'.1=e=ﬂﬁ+;"a"?a|ﬂl'ﬁ[x? (11)
Yi=1= dp [f*z - v’;x'-‘:rﬂ[ﬂ] +xa (12)
Vied = _I;{Efl_lxm —[2x2—1][4aﬁ+v";a ﬂrﬁ[x}]]_. (13)
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where is the erfi function.
erfi (x)
If A=0_then Hermite's differential equation becomes

yv'=2xy =0, (14)

which is of the form Pz &x)»" + Pi (x)»" =0 and so has solution

dx
= —
“ fex_’_'- f[—?.x}dx & (16)
dx
= £ j|f2=f|ﬂ'ﬂfx}|f2. (17)

e

Hermite Polynomial

The Hermite polynomials Hx (x) are set of orthogonal polynomials over the domain (=9, e0)

with weighting function f_lz, illustrated above for =1, 2, 3, and 4. Hermite polynomials are
implemented in the Wolfram Language as HermiteH[#n, x].

The Hermite polynomial #x (z) can be defined by the contour integral

n! 2
Hy [z} = 'ﬁ §r_’_r 21z F_n_l dr, (1)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken
1985, p. 416).

The first few Hermite polynomials are

Hylx) =1 (2)
H (x) =2x 3)
Hy(x) =4x* -2 4)
5 () = 8x° — 12x (%)
Hi(x) = 162" 482 412 (6)
Hs(x) = 32x° =160 x" + 120x (7)
Hs (x) = 64x° — 480 x" + 720 x% - 120 (8)
Hylx) = 128 x = 1344 x° + 3360x° — 1680 x )
Hg (x) = 256" — 3584 % + 13440 % — 13440 %% + 1680 (10)

Hy (x) = 512x% =9216x" + 48384 x° = 80640 7 + 30240 x (11)
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Hyp (x)= 1024 %' - 23040x% + 161280 x® — 403200 x* + 302400 +* — 30240, (12)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2, 4; -
12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343).

The values Hx (1) may be called Hermite numbers.
The Hermite polynomials are a Sheffer sequence with

g)= g/ (13)
F@= 3 (14)

= H,(x)
expizﬂ—’Z}E; nl (12)
Using a Taylor series shows that
ad .
I 3 2
H, ()= |[m] exp(xr-)| (16)
2l
— | —{x=y
- |f* L,jr] | (17)
Since df (x —t)/dr=—df (x — 1)/ dx,
el a i . 3
H. [’;}: [_l}n I._v’l- |[_] f—m—r] (18)
ix =0
el ﬂm el
= (=1 et e (19)
dx"
Now define operators
- o d 2
0 =~ o e (20)
. 2 d 27
by= ¢/ x- —]f-l 2, @1)
- dx
It follows that
- : d _d
Ooif=-¢ —[re| (22)
=2af-d 23)

ax
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E)g f: EJE_."J [x _ di ] [f E_,E__."J“ (24)
x
d
=xf4xf- a'_-xf (25)
i
=2xf_gg, (26)
SO
0y = 04, 27)
and
20 d 2 a2 dy _apn
e =[x et (28)

(Artken 1985, p. 720), which means the following definitions are equivalent:

= H, (x)1"
exp2xt-1)= Z j} (29)
=} ’
: &
H, (x) = (-1 ¢ o et (30)
3 d o
me = (e e (31)

(Artken 1985, pp. 712-713 and 720).
The Hermite polynomials may be written as

(n=15: -2 (32)
n, I_-_.zE] (33)

(Koekoek and Swarttouw 1998), where U (a. b, z) is a confluent hypergeometric function of the
second kind, which can be simplified to

Hy@)=2"U(-;n, 3,2 (34)

1
2
in the right half-plane R [z] >0,

The Hermite polynomials are related to the derivative of erf by

+1

ert (z). (35)

2 i
Hy\z)= EI_ =17 Vi e s

a“
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They have a contour integral representation

I -
Hy [x) R §€'—|:”F"|ﬂ'?. (36)

= 2ai
They are orthogonal in the range (~=2. =) with respect to the weighting function e
fom () Hy (x)e™ dx =0ma 2" 0! VT . (37)

The Hermite polynomials satisfy the symmetry condition
Hy (-x) = (-1)" H, x). (38)
They also obey the recurrence relations

Hyn (x)=21xH,(x)=-2nH, (x) (39)
Hj () =2nH, | (x). (40)

By solving the Hermite differential equation, the series

o (AR (~dk4A) - (~d k4 -4
Ha () = i-1F 2 @k- 1! 1+E[ | } _IE =8 2 (41)
= 20
= -2 @ic- DI Fy (ks 3307 (42)
y (4R (-dk ) (-Ak+di-4)
k+1 2+l
Hypy (x)= (10277 (2k+ 11 x+.‘=|' 2+ X ‘ (43)
= -2 @ xRy (ks 53 (44)
are obtained, where the products in the numerators are equal to
(~4K) (4 k+4) - (~4k+4j-4)=4 (k) (45)
with (x): the Pochhammer symbol.
Let a set of associated functions be defined by
4y (¥) = Hylax)e® * 2, (46)

nlnter

then the #» satisfy the orthogonality conditions




ga—-v— ' KARPAGAM ACADEMY OF HIGHER EDUCATION

A=—u ~—
KA RP A G AM CLASS: I MSC PHYSICS  COURSE NAME: MATHEMATICAL PHYSICS
e A T oy COURSE CODE: 18PHP104 UNIT: V (BESSEL FUNCTION) BATCH-2018-2020

{Deemed to be University)

(Established Under Section 3 of UGC Act, 136 |

fmun [x}ﬂﬁdx n+l
s dx a m=n+l

1‘ 2
) 47)
—cx1H|I 2 m=n-1
0 otherwiss
f e () 24y (x) dl x = S (48)
1 n+1 —ntl
2\ 2 m=n
[ 0510 01 y F (49)
o - [ = m=n-1
aly 2
0 otherwise
-1
van-=1) m—n2
2a?
2n+1 B
f Uy (X)x% 0, (x)d x =1 24 m=n (50)
- Vot D +2)
—_— m=n-2
2a
0 mtnzntl
2 , B 2! Byl
L:" Ho W) Hy (9 Hy @) dx= Va -l (5= B is-n! Gl

ife+B+y=2sjsevenand sz e, s=B and r=7. Otherwise, the last integral is 0 (Szegd 1975,
p- 390). Another integral is

j\mun (x)x" iy (x)dx=

0 if r—n—misodd

! A minfma) " m o!
—_— " .
2ay \ m!n! Z |P][P]2—*’[s+p}! otherwise

p=max {—5)

(52)

n

k

where s=(r—n-m)/2 and [ ) is a binomial coefficient (T. Drane, pers. comm., Feb. 14, 2006).

The polynomial discriminant is

D, = 23nin-0i2 Hk& (53)
k=1
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(Szegd 1975, p. 143), a normalized form of the hyperfactorial, the first few values of which are
1, 32, 55296, 7247757312, 92771293593600000, ... (OEIS A054374). The table of resultants is
given by {0}, {-8,0} {0, -2048, 0} {192, 16384, 28311552, 0} . (OEIS A054373).

Two interesting identities involving Hx (x + ¥) are given by

Sk - e -1 ;

Z[k]ﬁr,-( () Hog () =2 H, (27 (x +3)) (54)
k=0

and

I n "

P ]H,-( ) @V = H, (x ~3) (55)
k=0

(G. Colomer, pers. comm.). A very pretty identity is
Hylx +y)=(H+2y)", (56)
where H* = Hi (x) (T. Drane, pers. comm., Feb. 14, 2006).

They also obey the sum
PGV W EACES (57)
- ’
as well as the more complicated
2]

Hy(x)=H,+ )

m=0

n=2m 1y -2
D=1 S (= 2m, B (~x) | A

=1

(58)

n=2mlm! "’

where Hix = H; (0) is a Hermite number, S (#. k) is a Stirling number of the second kind, and (x)x is
a Pochhammer symbol (T. Drane, pers. comm., Feb. 14, 2006).

A class of generalized Hermite polynomials W (x) satisfying

e =N e (59)

=0
was studied by Subramanyan (1990). A class of related polynomials defined by

= () (60)

m
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Lt

E2 ar-r" Zhnm (:r}l £ (61)

n=il

was studied by Djordjevié¢ (1996). They satisfy

H, l-lx::':n! iy 2 |:X}|.

(62)
Roman (1984, pp. 87-93) defines a generalized Hermite polynomial H,” () with variance V.
A modified version of the Hermite polynomial is sometimes (but rarely) defined by
He, (x) =272 H, | —
e (x) = H, "._"E (63)

(Jorgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and Stegun
1972, p. 778). The first few of these polynomials are given by

Hey (x)= ¢ (64)
Hey (x) = x% - 1 (65)
Hes (x)= »* = 3% (66)
Hey (x)= x*'-6x* 43 (67)
Hes (x)= x° = 10x° + 15x. (68)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1; =1,
1; =3, 1; 3, =6, 1; 15, =10, 1; ... (OEIS A096713). The polynomial Hex (x} is the independence
polynomial of the complete graph ..

Generating function

o H”{-x_}r”

a=0 n!

Recurrence formulas

H, (x) = 2xH (x)-2nH__ (x)
H'(x) = 2nH _ (x)
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Orthogonality of Hermite polynomials

= 2
-x
_I- - € Hm

(x) H (x)dx = 0 m#n

[T [H,0] ax = 2"t

Rodrigue’s formula of
Hermite polynomial

bl
n _—t°

H(6)=(-1)"¢e"

n=012, —co< <o
d{”

The first few Hermite polynomials are

Ho (t)=1Hj (t)=2t, Hy (t) =4*-2 H3 (t) = 8t— 12, Hy () = 16— 48t + 121,
Hs () =321 —160t3 +120t, etc

Dirac delta function

1. Definition as limit. The Dirac delta function can be thought of as a rectangular pulse that
grows narrower and narrower while simultaneously growing larger and larger.

y .
A height=1/b

(so total area =1)

X

»
»

A

width=b
rect(x, b) = 1

|8x) = lim(b=0) rect(x, b)

Note that the integral of the delta function is the area under the curve, and has been held constant
at 1 throughout the limit process.
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Té'(x)zl

Shifting the origin. Just as a parabola can be shifted away from the origin by writing y = (x —
Xo)” instead of justy = X%, any function can be shifted by plugging in x — x¢ in place of its usual

argument X.

y
A

Ax - Xo) =

A
v

T5(x—x0) =1

Shifting the position of the peak doesn’t affect the total area if the integral is taken from —oo to o.
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Possible questions — (Part B- 6 marks)

1. State and prove the recurrence relations of Bessel’s function.

2. Obtain the solution for Hermite Differential equation

[98)

Write down Hermite differential equation and obtain Hermite polynomial from that.
(ii) Show that H,(—x) = (—1)"H,(x)

4. Derive the Recurrence relations for spherical Bessel functions.

5. Derive Rodrigue’s Formula for Hermite polynomial.

6. Discuss about the Dirac — Delta function.

7. Discuss about the Spherical bessal function of zeroth order.

8. Derive the recurrence formula for Hermite polynomial.

9. Discuss about the Bessel’s differential equation for Bessel’s function of first kind.

Possible questions — (Part C- 10 marks)

1. State and prove the recurrence relations of Bessel’s function.
2. Write down the Hermite Differential equation and obtain Hermite polynomial
from that.

3. Show that when n is integer,

a. Ju(x) =%f; cos(nf — xsind) do

b. Jo(x) =%f: cos(xcosg) do
4. Derive the Recurrence relations for spherical Bessel functions.
5. Derive Rodrigue’s Formula for Hermite polynomial.
6. Discuss about the Dirac — Delta function.
7. Derive the Rodrique’s formula for Hermite polynomial.

8. Discuss about the Bessel’s differential equation for Bessel’s function of second kind.
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S.No Questions Option 1 Option 2 Option 3 Option 4 Key
1 2 2
2 . e x 2 P sin X
The value of I (x) is AV T e N 7
2 The Rodrigue formula
for Pn(x), the Legendre I 2" 1 2"
polynomial of degree K = n: K = 'l K = _ 1 . K= m
‘n’ is 2" ) 2" n! 2"(nl) '
3 The value of Jo(x) at the
origin is 1 0 —1 X 1
4 The value of P;(x) is X 1 x2/2 15 (x 2 1) X
5 The identical roots of
the Legendre’s
functions are m==+n m==1 m=0orm=1 m=0orm=-1 m==1
6
A /i— sin X sin X A [;—x cos x A li— cos X ﬂ2 sin x
The value of J» (x) is Y
7
If Jo and J; are Bessel’s
functions then J;’(x) is Jo(x) —1/x
given by Jo(x) — 1/x J1(x) —Jo Jo(x) + 1/x Ji(x) | Jo(x) — 1/x* J1(x) J1(%)
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The value of the integral
where Jn(x) is the
Bessel function of the
first kind of order n, is

equal to 0 -2 2 1
The integral j xJo (x)dx
is equal to xJ1(x) — Jo(x) X Ju(X)

xJ1(x) J1(x)

xJ1(x)

10

If Jor1(X) = (2/%) Ju(x) —
Jo(x) where Jn is the
Bessel function of first
kind order ‘n’. Then ‘n’
is 0 2 -1 1

11

The value of [J1 (x)]* + 2 2 2 2
[-12 ()] is T X T X P 7

12

The value of Po(x) is 1 X 0 —1

13

The value of the

if IPn (x)Pm (x)dx =0

n'm n>m

14

The polynomial

2Cdintemsof | (4R -3R+11) | S(4R+3R+1IR) | @RRHE) | lazaran
Legendre polynomial is | 3 3 3 3
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15

Let Pn(x) be the
Legendre polynomial,
then Pn(-x) is equal to

D™ Py(x)

(D" Pr’(x)

(-D" Po(x)

P,”(x)

(-1)" Pn(x)

16

If P,(x) is the Legendre
polynomial of order ‘n’,
then 3x*+ 3x + 1 can be
expressed as

3P, + 3P,

4P,+2P; + Po

3P,+3P; + Po

2P,+3P; + 2Po

2P,+3P; +
2Po

17

+1
[ P, Goyax =2,
-1

If
then ‘n’ is

18

Legendre polynomial is

where K is equal to
P(x)=K|x - Ex“ + Er
i 03 03

63/2

63/5

63/10

63/8

63/8

19

Let Pn(x) be Legendre
polynomial of degree

n>1, then o np(d
is equal to 5

1/(@2n+1)

2/ (2n+1)

n/(2n+1)

n/(2n+1)
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20 The value of
is the third degree
Legendre polynomial is | 1 —1 2 0 0
21 n zeros of which n real zeros
The Legendre n real zeros between | only one is between | 2n-1 real zeros between 0
polynomial Pn(x) has 0and 1 —1 and +1 between —1 and 1 | none of these and 1
22 The incorrect equation P, (x)=(-1)*' P, P,(-x)=(-
among the followingis | Po(x) = 1 Pi(x) =X (x) P,(x)=(C-D""P,(x) | D" P,(x)
23 The value of Py(-x) is | - Pa (x) Py (x) (1" P, (x) (1" P, (x) -1y P, (x)
24 The value of 2], is Tot = Tt Joa + Tt Tt = Tt 2 I Tt = Tt
25 The root of x° — 6x + 4
lies between —1 and 0 1 and 2 —2 and 1 0and 1 —l and 0
26 Bessel’s functions also
called cylindrical circular square linear cylindrical
27 From Bessel’s
functions, the value of (n/ x) Ju(x)
Jl’l+1(X) is an(X) + Jn’(X) (1’1 / X) Jn(x) - Jn’(X) an(X) - Jn’(x) (1’1 / X) Jn(X) + Jn’(x) - Jn’(X)
28 \(2/7x)
The value of J. 15 (x)is | V(2/x) sinx \(2/7x) sinx (2/7x) cosx V(2/x) cosx CcOsX
29
If Ja(x) is the Bessel
function of the first
kind, then x1(x) + C x*J(x) + C -xJ3(x) + C X' (x)+ C, XJh(x) + C
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30

When ‘n’ is an integer,
Ja(x) and J 4(x) are harmonic linearly independent | orthonormal linearly dependent

harmonic
function

31

oscillatory
Bessel’s functions are indeterminate simple harmonic functions critically damped

oscillatory
functions

32

If Jpn1(X) = (2/%) Ju(x) —
Jo(x) where Jn is the
Bessel function of first
kind order ‘n’. Then ‘n’
is 0 2 -1 1

33

Let f, g be polynomials
of degrees a, b

respectively. Let h(x) =
f(g(x)). The degree of h
is: ab a+b a*b*c a/b

ab

34

Let £, g, h be nonzero
polynomials such that
f(x) — g(x) = h(x) and
deg f = deg h. Pick the deg g has no
true statement: degg<degf degg>degf relation to deg f degg=degf

deg g < deg
f

35

Let f, g, hbe
polynomials such that
f(x) = g(x) + x3 h(x).
Then f(7)(0) = g()(0)
for j=0. j=1 ]j=2 all the above

all of above
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36 what is the value of —X-
d/dx[(x—nJn(x)] —x-nJn+1(x). IJn-1+Jn+1 jn+1 jn nJn+1(x).
37 In hermite polynomial
what is value for H2(x) | 4x2 —2 0 x2 x3 4x2 -2
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