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STAFF NAME : Dr. S. KARUPPUSAMY SUBJECT NAME: MATHEMATICAL PHYSICS-II
SUB.CODE: 18PHU203 SEMESTER: II
CLASS: I B.Sc., (PHYSICS)

Sl.No.
Lecture

Duration
Period

Topics to be covered
Support

Material/Page Nos.

UNIT I

1. 1 hr Fourier series, Periodic functions T1(527-528)

2. 1 hr Orthogonality of sine and cosine functions,
Dirichlet Conditions

T1(527-530)

3. 1 hr Expansion of periodic functions in a series of
sine and cosine functions and determination of
Fourier coefficients

T1(527-529)

4. 1 hr Complex representation of Fourier series T1(540)

5. 1 hr Expansion of functions with arbitrary period. T1(541)

6. 1 hr Expansion of non-periodic functions over an
interval

T1(544)

7. 1 hr Even and odd functions and their Fourier
expansions ,Application

T1(528)

8. 1 hr Application T1(528)

9. 1 hr Revision

Total Number of  Hours Planned  For Unit I = 9hr
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UNIT II

10. 1 hr Bisection method T2(69-72)

11. 1 hr Method of successive approximations T2(75-80)

12. 1 hr RegulaFalsi method T2(81-88)

13. 1 hr Newton-Raphson method T2(88-98)

14. 1 hr Horner's method T2(98-101)

15. 1 hr Euler's method T2(369-370)

16. 1 hr Modified Euler's method T2(371-375)

17. 1 hr RungeKutta method (II & IV) T2(379-395)

18. 1 hr Revision

Total Number of  Hours Planned  For Unit II = 9hr

UNIT III

19. 1 hr Gauss elimination method T2(112-114)

20. 1 hr Gauss-Jordan method T2(114-120)

21. 1 hr Gauss-Seidel method T2(147-158)

22. 1 hr Computation of inverse of a matrix using Gauss
elimination method

T2(122-126)

23. 1 hr Method of triangularisation T2(126-132)

24. 1 hr Trapezoidal rule T2(300-306)

25. 1 hr Simpson's 1/3 rule T2(303-305)

26. 1 hr Simpson's 3/8 rule T2(305-307)

27. 1 hr Revision

Total Number of  Hours Planned  For Unit III = 9hr

UNIT IV
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28. 1 hr Arithmetic mean, Median T1(766-768)

29. 1 hr Quartiles, Deciles , Percentiles, Mode T1(768-769)

30. 1 hr Empirical relation between mean T1(773-774)

31. 1 hr Empirical relation between median and mode T1(774-775)

32. 1 hr Geometric mean, harmonic mean T1(767)

33. 1 hr Relation between arithmetic mean, geometric
mean and harmonic mean

T1(769-770)

34. 1 hr Range, Range meanor average deviation T1(770-771)

35. 1 hr Standard deviation T1(771-772)

36. 1 hr Variance and mean square deviation T1(776)

37. 1 hr Revision

Total Number of  Hours Planned  For Unit IV = 10hr

UNIT V

38. 1 hr Solutions to partial differential equations, using
separation of variables

T1(566-567)

39. 1 hr Laplace's Equation in problems of rectangular T1(573)

40. 1 hr Cylindrical symmetry T1(576)

41. 1 hr Spherical symmetry T1(574)

42. 1 hr Wave equation T1(575)

43. 1 hr Solution for vibrational modes of a stretched
string

T1(624-627)

44. 1 hr Rectangular membranes T1(602)

45. 1 hr Circular membranes T1(608-617)

46. 1 hr Diffusion Equation T1(582)

47. 1 hr Revision
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48. 1 hr Old Question Paper Revision

49. 1 hr Old Question Paper Revision

50. 1 hr Old Question Paper Revision

Total Number of  Hours Planned  For Unit V = 13hr

Suggested Reading Books

T1 : Mathematical Physics by Sathya prakash, S.Chand & company, New Delhi.

T2 : Numerical Methods by Dr.P.Kandasamy, Dr.K.Thilagavathy, Dr.K.Gunavathi, S.Chand &
company, New Delhi.
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SYLLABUS

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet

Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine

functions and determination of Fourier coefficients. Complex representation of Fourier series.

Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval.

Even and odd functions and their Fourier expansions. Application.

Fourier series

Periodic functions

A Fourier series is an expansion of a periodic function in terms of an infinite sum

of sines and cosines. Fourier series make use of the orthogonality relationships of

the sine and cosine functions. The computation and study of Fourier series is known as harmonic

analysis and is extremely useful as a way to break up an arbitrary periodic function into a set of

simple terms that can be plugged in, solved individually, and then recombined to obtain the

solution to the original problem or an approximation to it to whatever accuracy is desired or

practical. Examples of successive approximations to common functions using Fourier series are

illustrated above.

In particular, since the superposition principle holds for solutions of a linear

homogeneous ordinary differential equation, if such an equation can be solved in the case of a

single sinusoid, the solution for an arbitrary function is immediately available by expressing the

original function as a Fourier series and then plugging in the solution for each sinusoidal

component. In some special cases where the Fourier series can be summed in closed form, this

technique can even yield analytic solutions.

Any set of functions that form a complete orthogonal system have a

corresponding generalized Fourier series analogous to the Fourier series. For example, using
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orthogonality of the roots of a Bessel function of the first kind gives a so-called Fourier-Bessel

series.

The computation of the (usual) Fourier series is based on the integral identities

(1)

(2)

(3)

(4)

(5)

for , where is the Kronecker delta.

Using the method for a generalized Fourier series, the usual Fourier series involving sines

and cosines is obtained by taking and . Since these functions form

a complete orthogonal system over , the Fourier series of a function is given by

(6)

where

(7)

(8)

(9)

and , 2, 3, .... Note that the coefficient of the constant term has been written in a

special form compared to the general form for a generalized Fourier series in order to preserve

symmetry with the definitions of and .
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Orthogonal Series Expansion

Let {n (x)} be an infinite orthonormal set of functions on interval [a,b]. and f(x)

be a function defined on [a,b]. Then f(x) can be written as f(x)=coo(x)+c12(x)+c22(x)+- - - -

+cnn(x)+ - - - - (6.22)

where 1
dx|)x(|

dx)x()x(f
c

2b

a n

b

a n
n 








(6.23)

n=0, 1,2,3 …

The series on the right hand side of (6.22) is called orthogonal expansion of f(x) defined

on [a,b] in terms of the orthonormal set of functions {n(x)} defined on [a,b]. cn's given by (6.23)

are called coefficients of orthogonal expansion of f. If orthonormal set of Example 6.6 is

considered we get cosine Fourier expansion of f(x), that is, (6.22) will be cosine Fourier series and

(6.23) will give cosine Fourier coefficients. One can consider expansion of a function in terms of

Bessel's orthonormal set of functions and Legendre's orthonormal set of functions.

Dirichlet conditions

A piecewise regular function that

1. Has a finite number of finite discontinuities and

2. Has a finite number of extrema can be expanded in a Fourier series which converges to

the function at continuous points and the mean of the positive and negative limits at points

of discontinuity.
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Def. Sectionally continuous (or piecewise continuous) function. A function f (x) is said

to be sectionally continuous (or piecewise continuous) on an interval a x b if the interval

can be subdivided into a finite number of intervals in each of which the function is continuous and

has finite right and left hand limits. See Figure The requirement that a function be sectionally

continuous on some interval [a, b] is equivalent to the requirement that it meet the Dirichlet

conditions on the interval.

Fourier series. Let f (x) be a sectionally continuous function defined on an interval c < x

< c + 2L. It can then be represented by the Fourier series

Where

At a point of discontinuity f (x) is given a value equal to its mean value at the discontinuity

i.e. if x = a is a point of discontinuity, f (x) is given the value

Complex form of Fourier series

We show how a Fourier series can be expressed more concisely if we introduce

the complex number i where i2 = −1. By utilising the Euler relation:

e iθ ≡ cos θ + i sin θ

We can replace the trigonometric functions by complex exponential functions. By also
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combining the Fourier coefficients an and bn into a complex coefficient cn through

Cn = (an-ibn)

We find that, for a given periodic signal, both sets of constants can be found in one

operation. We also obtain Parseval’s theorem which has important applications in electrical

engineering. The complex formulation of a Fourier series is an important precursor of the Fourier

transforms which attempts to Fourier analyse non-periodic functions.

So far we have discussed the trigonometric form of a Fourier series i.e. we have represented

functions of period T in the terms of sinusoids, and possibly a constant term, using

If we use the angular frequency

We obtain the more concise form

We have seen that the Fourier coefficients are calculated using the following integrals.
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An alternative, more concise form, of a Fourier series is available using complex

q u a n t i t i e s . This form is quite widely used by engineers, for example in Circuit Theory and

Control Theory, and leads naturally into the Fourier Transform which is the subject of

Fourier series in the interval (0, T)

We assume that the function f(x) is piecewise continuous on the interval [0,T]. Using the

substitution x= Lyπ (−π≤x≤π), we can transform it into the function

F(y)=f(Ly/π)

which is defined and integrable on [−π,π]. Fourier series expansion of this function F(y) can

be written as

F(y)=f(Ly/π)=a0/2+ ∑ (ancosny+bnsinny).

Even functions

ƒ(x) = x2 is an example of an even function.

Let f(x) be a real-valued function of a real variable. Then f is even if the following equation

holds for all x and -x in the domain of f:[1]

or

Geometrically speaking, the graph face of an even function is symmetric with respect to

the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.

Examples of even functions are |x|, x2, x4, cos(x), cosh(x), or any linear combination of

these.



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: I                      BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE Page 7 of 11

Odd functions

ƒ(x) = x3 is an example of an odd function.

Again, let f(x) be a real-valued function of a real variable. Then f is odd if the following

equation holds for all x and -x in the domain of f. or Geometrically, the graph of an odd function

has rotational symmetry with respect to the origin, meaning that its graph remains unchanged

after rotation of 180 degrees about the origin.

Examples of odd functions are x, x3, sin(x), sinh(x), erf(x), or any linear combination of

these.
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Orthogonality of sines and cosines.

In this section we shall show that certain sequences of sine and cosine functions are

orthogonal on certain intervals.  The resulting expansions

f = 
j = 1


cjj

using these sines and cosines become the Fourier series expansions of the function

f.  First, we just consider the functionsn(x) = cos nx.  These are orthogonal on the interval 0 < x

< .  The resulting expansion (1) is called the Fourier cosine series expansion of f and will be

considered in more detail in section 1.5.

Proposition 1. The functions0(x) = 1,1(x) = cos x,2(x) = cos 2x,3(x) = cos 3x, …,n(x)

= cos nx, … are orthogonal on the interval 0 < x < .  Furthermore |0 |2 =  and |n |2 =

2 for n

= 1, 2, … .
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Proof. Using the first identity in (8) of section 1.3 one has (n(x),m(x)) = 
0


cos(nx) cos(mx) dx

= 
0


[
1
2 cos(n+m)x +

1
2 cos(n-m)x] dx = Error! = 0 so then are orthogonal.  The fact that |0 |2 =

 is an easy verification. |n |2 = 
0


cos2(nx) dx = 

0

 1
2[1 + cos 2nx] dx = 

1
2[x +

1
2n sin 2nx] 0

 =

2.

//

Next, we just consider the functions n(x) = sin nx.  These are also orthogonal on the interval 0 < x

< .  The resulting expansion (1) is called the Fourier sine series expansion of f and will be

considered.

Proposition 2. The functions 1(x) = sin x, 2(x) = sin 2x, 3(x) = sin 3x, …, n(x) = sin nx, …

are orthogonal on the interval 0 < x < .  Furthermore, | n |2 =

2 for n = 1, 2, … .

Proof. Using the second identity in (8) of section 1.3 one has (n(x), m(x)) = 
0


sin(nx) sin(mx)

dx = 
0


[
1
2 cos(n+m)x -

1
2 cos(n-m)x] dx = 

[
1

2(n+m) sin(n+m)x -
1

2(n-m) sin(n-m)x] 0
 = 0 so then

are orthogonal. | n |2 = 
0


sin2(nx) dx = 

0

 1
2[1 - cos 2nx] dx = 

1
2[x -

1
2n sin 2nx] 0

 =

2.  //

Finally, we consider the functionsn(x) = cos nx and n(x) = sin nx.  These are orthogonal on the

interval -  < x < .

Uses of Fourier series
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Fourier series and frequencies

The basic idea of Fourier series is that we try to express the given function as a combination

of oscillations, starting with one whose frequency is given by the given function (either its

periodicity or the length of the bounded interval on which it is given) and then taking multiples of

this frequency, that is, using fractional periods. When we look at coefficients of the resulting

"infinite linear combination", we can expect that if some of them are markedly larger then the rest,

then this frequency plays an important role in the phenomenon described by the given function.

This detection of hidden periodicity can be very useful in analysis, since not every periodicity can

be readily seen by looking at a function. In particular, this is true if there are several periods that

interact.

Imagine that a function f describes temperatures at time t over many many years. There is

one period that should be easily visible, namely seasonal changes with period one year. We also

expect another period going over this basic yearly period, namely 1-day period of cold nights and

warm days. Now the interesting question is whether there are also other periods. This is very useful

to know, since such knowledge would tell us something important about what is happening with

weather and climate. Frequency analysis offers a useful tool for such an investigation, looking

over long data sequences it may point out cold ages and other long term changes in climate.

There are areas where decomposition into waves comes naturally, for instance storage of sound.

When we are given a sound sample, Fourier transform allows us to decompose it into basic waves

and store it in this way. Apart from data compression we also get further memory savings by

simply ignoring coefficients that correspond to frequencies that a typical human ear does not hear.

This is the basis of the mp3 format (it uses transform that is something like a fourth generation

offspring of cosine Fourier series).

Fourier decomposition can be also generalized to more dimensions and then it can be quite

powerful in storing visual information - it is for instance the heart of the system used by F.B.I. to

store their fingerprint database. Since this decomposition is so useful, one important aspect is the

speed at which we can find the coefficients. This inspired further development and today we do
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not usually use the standard Fourier series but its more powerful offspring, for instance something

called Fast Fourier Transform (FFT). Here also hardware helps, there are devices (integrators) that

have this wired in, roughly speaking one feeds it a function and the device spits out a Fourier

coefficient.



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

Which of the following is an even function? x3 cos x sin x tan X cos x

The function f(x) is said to be an odd function of x if f(-x) = f( x) b)f(x) = - f( x) f(-x) = - f( x) None f(-x) = - f( x)

 The function f(x) is said to be an even function of x if f(-x) = f( x) b)f(x) = - f( x) f(-x) = - f( x) None f(-x) = f( x)

 If a periodic function f(x) is odd, it’s Fourier expansion contains no ------
terms.

coefficient an sine coefficient a0 cosine sine

If a periodic function f(x) is even, it’s Fourier expansion contains no ------
terms.

cosine sine coefficient a0 coefficient an cosine

 In Fourier series, the function f(x) has only a finite number of maxima and
minima. This condition is known as -------

Dirichlet Kuhn Tucker Laplace None Dirichlet

 In dirichlet condition, the function f(x) has only a finite number of finite dis
continuities and no ------- discontinuities

semi finite continuous infinite finite  infinite

 If  f(x) is even, then it’s Fourier co- efficient --------is zero. a0 an bn none  bn

 If the periodic function f(x) is odd, then it’s Fourier co- efficient --------is
zero.

a0 an bn none   an

 The period of cos nx where n is the positive integer is π/n π/2n 2π nπ  2π
The Fourier co efficient  a0   in f(x) = x for 0< x£ π is π π/2 2π 0  π/2

If the function f (x) = -π in the interval -π x< 0, the coefficient a0 is π2/3 2π2/3 2π/3 (- π/2 )    (- π/2 )

If the function  f(x) = x sin x, the Fourier coefficient bn = 0 a0 = 1 a0 = π2/3 a0 = -1  bn = 0

For a function f(x) =  x3, the Fourier coefficient bn  = 0 an  = 0 a0  = 0 an = bn = 0  an  = 0

The function x sin x be a   ------- function. even odd continuous None even

The function x cos x be a   ------- function. even odd continuous None odd

Which of the following is an odd function?   sin x cos x    x2  sin2x   sin x

Which of the following is an even function x3 cos x sin x sin2x cos x

The function f(x) is said to be an odd function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) 3 f(-x) = - f( x)

The function f(x) is said to be an EVEN function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) 1 f(-x) = f( x)

 If a periodic function f(x) is odd,  Fourier expansion contains no ------ terms cosine sine coefficient a0 coefficient an sine

 If a periodic function f(x) is even,  Fourier expansion contains no ------
terms

 cosine sine coefficient a0 coefficient an cosine

In Fourier series, the function f(x) has only a finite number of maxima and
minima

 Dirichlet Kuhn Tucker Laplace None    Dirichlet

In dirichlet condition, the function f(x) has  no --------discontinuities semi finite continuous infinite finite infinite

If  f(x) is even, then it’s Fourier co- efficient --------is zero.  a0 an  bn none  bn

If  f(x) is odd, then it’s Fourier co- efficient --------is zero.  a0 an  bn none  an

The period of cos nx where n is the positive integer is π/n π/2n   2π nπ 2π
The Fourier co efficient  a0   in f(x) = x for 0< x£ π is π π/2 2π 2    π/2

 If the function f (x) = -π in the interval -π x< 0, the coefficient a0 is π2/3 2π2/3 2π/3  (-π/2)  (-π/2 )

 If the function  f(x) = x sin x, the Fourier coefficient  bn = 0 a0 = 1 a0 = π2/3 a0 = -1  bn = 0

 For a function f(x) =  x3, the Fourier coefficient bn  = 0 an  = 0 a0  = 0 None  bn =0

 Which kind of frequency spectrum/spectra is/are obtained from the line
spectrum of a continuous signal on the basis of Polar Fourier Series Method

Continuous in nature Discrete in nature Sampled in nature All of the above Discrete in nature

UNIT I

KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE-21
DEPARTMENT OF PHYSICS

CLASS : I B.SC PHYSICS
BATCH: 2018-2021

PART A : MULTIPLE CHOICE QUESTIONS (ONLINE EXAMINATIONS)
SUBJECT : MATHEMATICAL PHYSICS - II

SUBJECT CODE : 18PHU203



Which type/s of Fourier Series allow/s to represent the negative frequencies
by plotting the double-sided spectrum for the analysis of periodic signals ?

 Trigonometric Fourier
Series

 Polar Fourier Series Exponential Fourier
Series

All of the above Exponential Fourier
Series

 Duality Theorem / Property of Fourier Transform states that _________ Shape of signal in time
domain & shape of
spectrum can be
interchangeable

Shape of signal in
frequency domain &
shape of spectrum can
be interchangeable

Shape of signal in
time domain &
shape of spectrum
can never be
interchangeable

Shape of signal in
time domain & shape
of spectrum can
never be
interchangeable

Shape of signal in time
domain & shape of
spectrum can be
interchangeable

Which property of fourier transform gives rise to an additional phase shift of
-2π ftd for the generated time delay in the communication system without
affecting an amplitude spectrum ?

Time Scaling Linearity Time Shifting  Duality Time Shifting

The exponential form of a complex number is z = reiq z = eiq z = cos q / r z = r / cos q z = reiq

Which is the analytic function of complex variable z = x + iy |Z| Re Z Z-1 Log Z Z-1

Which is the analytic function of complex variable  Z=x +iy | Z | Sin Z Log z Re Z Sin Z

Which is the analytic function of complex variable z=X+iY |Z| e sinz   log Z Re Z e sinz

Which is not the analytic function of complex variable z=X+iY z –1 Z e sinz Sin Z Z

 Which is not the analytic function of complex variable z=X+iY Z –1 e Sin Z Re Z SinZ Re Z

Which is not the analytic function of complex variable z=X+iY Z –1 log Z e Sin Z SinZ log Z

Which of the following functions has the period 2p? cos nx sin nx tan nx tan x sinnx

If f(x) = -x for -p< x£ 0then its Fourier coefficient a0 is p2/2 p/4  p/3 p/2 p/2

The function f(x) is said to be an EVEN function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) 1 f(-x) = f( x)

If  f(x) is even, then it’s Fourier co- efficient --------is zero.  a0 an  bn none  bn

The Fourier co efficient  a0   in f(x) = x for 0< x£ π is π π/2 2π 0  π/2

The period of cos nx where n is the positive integer is π/n π/2n   2π nπ 2π
In dirichlet condition, the function f(x) has  no --------discontinuities semi finite continuous infinite finite infinite

Which is the analytic function of complex variable z=X+iY |Z| e sinz   log Z Re Z e sinz

Which of the following is an odd function? sin x cos x x2 sin2x   sin x
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UNIT-II

SYLLABUS

Bisection method - method of successive approximations - RegulaFalsi method - Newton-
Raphson method - Horner's method - Euler's method - modified Euler's method - RungeKutta
method (II & IV).

BISECTION METHOD:
Let us suppose we have an equation of the form f(x) = 0 in which solution lies between in

the range (a,b).
Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are

opposite signs, then there existatleast one real root between a and b.Let f(a) be positive and f(b)
negative. Which implies atleast  one root exits between a and b. We assume that root to be  xo=
(a+b)/2. Check the sign of f(xo). If f(x0)is negative , the root lies between a and xo. If f(x0)is
positive , the root lies between  xo and b. Subsequently any one of this case occur.

X1= X0+a /2     (or)          x0+b/2
When f(x1) is negative , the root lies between xo  and x1  and let the root be  x2=(x0 +x1) / 2 .

Again f(x2) negative then the root lies between xo and x2, let x3 = (x0+x2)/2 and so on.

Repeat the process xo, x1,x2, ….  Whose limit of convergence is the exact  root.

Steps:
1. Find  a and b in which f(a) and f(b) are opposite signs for the given equation using trial and

error method.
2. Assume initial root as xo= (a+b)/2.
3. If f(x0)is negative , the root lies between a and xo and take the root as x1 = (xo+a)/2.
4. If f(xo) is positive , then the root lies between  xo and b and take the root as x1= ( xo +b)/ 2.
5. If f(x1) is negative , the root lies between xo and x1and let the root be x2= (x0 +x1) / 2 .
6. If f(x2) is negative , the root lies between xo and x1and let the root be x3= (x0 +x2) / 2 .
7. Repeat the process until any two consecutive values are equal and hence the root.

Advantages of bisection method:
 The bisection method is always convergent.  Since the method brackets the root, the

method is guaranteed to converge.
 As iterations are conducted, the interval gets halved.   So one can guarantee the error in

the solution of the equation.
Drawbacks of bisection method:

 The convergence of the bisection method is slow as it is simply based on halving the
interval.
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 If one of the initial guesses is closer to the root, it will take larger number of iterations to
reach the root.

Example 1:
Find the positive root of x3 – x = 1 correct to four decimal places by bisection method.
Solution:
Let f(x) = x3– x – 1
f(0)  =  03- 0 -1 = -1   = -ve
f(1)  =  13- 1 -1  = -1   = -ve
f(2)  =  23- 2 -1 = 5   =   +ve

So root lies between 1 and  2 , we can take (1+2) /2 as initial root and proceed.
i.e.,      f(1.5)  =  0.8750  = +ve
and     f(1) = -1         = -ve
So  root lies between 1 and  1.5 ,
Let  xo   = (1+1.5) /2 as initial root and proceed.
f(1.25)  = - 0.2969
So  root lies between x1 between 1.25  and  1.5

Now    x1 = (1.25  +  1.5) /2    =   1.3750
f(1.375) =  0.2246  = +ve
So  root lies between  x2 between 1.25  and  1.375

Now    x2 =( 1.25 + 1.375)/2  =      1.3125
f(1.3125)  = -0.051514  = -ve
Therefore, root lies between 1.375and 1.3125

Now x3 = (1.375 + 1.3125) / 2  =   1.3438
f(1.3438)  = 0.082832  = +ve
So root lies between 1.3125 and 1.3438
Now               x4 = (1.3125 + 1.3438) / 2  =   1.3282
f(1.3282)  = 0.014898  = +ve

So  root lies between 1.3125 and 1.3282
Now               x5 = (1.3125 + 1.3282) / 2  =   1.3204
f(1.3204)  = - 0.018340  = -ve
So  root lies between 1.3204 and 1.3282
Now               x6 = (1.3204 + 1.3282) / 2  =   1.3243
f(1.3243)  = -ve
So  root lies between 1.3243 and 1.3282
Now    x7 = (1.3243 + 1.3282) / 2  =   1.3263
f(1.3263)  =  +ve
So  root lies between 1.3243 and 1.3263
Now    x8 = (1.3243 + 1.3263) / 2  =   1.3253
f(1.3253)  =  +ve
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So  root lies between 1.3243 and 1.3253
Now    x9 = (1.3243 + 1.3253) / 2  =   1.3248
f(1.3248)  = +ve
So  root lies between 1.3243 and 1.3248
Now    x10 = ( 1.3243 + 1.3248) / 2  =   1.3246

f(1.3246)  = -ve
So  root lies between 1.3248 and 1.3246
Now    x11 = ( 1.3248 + 1.3246) / 2  =   1.3247
f(1.3247)  = -ve
So  root lies between 1.3247 and 1.3248
Now    x12 = ( 1.3247 + 1.3247) / 2  =   1.32475
Therefore , the approximate root is  1.32475

Example 2:
Find the positive root of x – cos x = 0  by bisection method.
Solution :
Let f(x) =  x – cos x
f(0)  =  0 -cos (0) = 0 -1 = -1   = -ve
f(0.5)  = 0.5 –cos (0.5) = -0.37758 = -ve
f(1)  =  1 –cos (1) =  0.42970 = +ve
So root lies between 0.5 and 1
Let  xo   = (0.5 +1) /2 as initial root and proceed.
f(0.75)  =     0.75 – cos (0.75) = 0.018311 = +ve
So root lies between 0.5 and 0.75
x1= (0.5 +0.75) /2 =0.625
f(0.625)  =     0.625 – cos (0.625)   = - 0.18596
So root lies between 0.625 and 0.750
x2=  (0.625 +0.750) /2 = 0.6875
f(0.6875)  = - 0.085335
So root lies between 0.6875 and 0.750
x3=  (0.6875 +0.750) /2 = 0.71875
f(0.71875)  = 0.71875-cos(0.71875) = - 0.033879
So root lies between 0.71875 and 0.750
x4=  (0.71875 +0.750) /2 = 0.73438
f(0.73438)  = -0.0078664 = -ve
So root lies between 0.73438 and 0.750
x5= 0.742190
f(0.742190)  = 0.0051999 =  + ve
x6=  (0.73438 +0.742190) /2 = 0.73829
f(0.73829)  = -0.0013305
So root lies between 0.73829 and 0.74219
x7= (0.73829+0.74219) = 0.7402
f(0.7402)  = 0.7402-cos(0.7402) = 0.0018663
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So root lies between 0.73829 and 0.7402
x8= 0.73925
f(0.73925)  = 0.00027593
x9= 0.7388
The root is 0.7388.

Example 3:
You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes.
The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You are asked to find
the depth to which the ball is submerged when floating in water.
The equation that gives the depth x to which the ball is submerged under water is given by

010993.3165.0 423  xx
Use the bisection method of finding roots of equations to find the depth x to which the ball is
submerged under water.  Conduct three iterations to estimate the root of the above equation. Find
the absolute relative approximate error at the end of each iteration, and the number of significant
digits at least correct at the end of each iteration.
Solution:
From the physics of the problem, the ball would be submerged between 0x and Rx 2 ,
where

ball, theofradiusR
that is

Rx 20 
)055.0(20  x

11.00  x

Figure : Floating ball problem
Lets us assume

11.0,0  uxx

Check if the function changes sign between x and ux .



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: II BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 5/22

4423 10993.310993.3)0(165.0)0()0()(   fxf 

4423 10662.210993.3)11.0(165.0)11.0()11.0()(   fxf u

Hence
0)10662.2)(10993.3()11.0()0()()( 44  ffxfxf u

So there is at least one root between x and ux , that is between 0 and 0.11.
Iteration 1
The estimate of the root is

2
u

m

xx
x


 

2

11.00 


055.0

   010655.610993.3)055.0()0()()( 44  ffxfxf m

Hence the root is bracketed between mx and ux , that is, between 0.055 and 0.11.  So, the lower
and upper limit of the new bracket is

11.0,055.0  uxx

At this point, the absolute relative approximate error a
cannot be calculated as we do not have

a previous approximation.
Iteration 2
The estimate of the root is

2
u

m

xx
x


 

2

11.0055.0 


0825.0
4423 10622.110993.3)0825.0(165.0)0825.0()0825.0()(   fxf m

            010622.110655.60825.0055.0 45  ffxfxf m

Hence, the root is bracketed between x and mx , that is, between 0.055 and 0.0825.  So the
lower and upper limit of the new bracket is

0825.0,055.0  uxx

The absolute relative approximate error a
at the end of Iteration 2 is

100
new

oldnew





m

mm
a x

xx

        5423 10655.610993.3055.0165.0055.0055.0   fxf m
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100
0825.0

055.00825.0





%33.33

None of the significant digits are at least correct in the estimated root of 0825.0mx because the
absolute relative approximate error is greater than 5%.
Iteration 3

2
u

m

xx
x


 

2

0825.0055.0 


06875.0
5423 10563.510993.3)06875.0(165.0)06875.0()06875.0()(   fxf m

0)105.563()10655.6()06875.0()055.0()()( 55  ffxfxf m

Hence, the root is bracketed between x and mx , that is, between 0.055 and 0.06875.  So the
lower and upper limit of the new bracket is

06875.0,055.0  uxx

The absolute relative approximate error a
at the ends of Iteration 3 is

100
new

oldnew





m

mm
a x

xx

100
06875.0

0825.006875.0





%20
Still none of the significant digits are at least correct in the estimated root of the equation as the
absolute relative approximate error is greater than 5%.
Seven more iterations were conducted and these iterations are shown in Table 1.

Table 1   Root of 0)( xf as function of number of iterations for bisection method.

Iteration x ux mx a % )( mxf

1 0.00000 0.11 0.055 ---------- 510655.6 
2 0.055 0.11 0.0825 33.33 410622.1 
3 0.055 0.0825 0.06875 20.00 510563.5 
4 0.055 0.06875 0.06188 11.11 610484.4 
5 0.06188 0.06875 0.06531 5.263 510593.2 
6 0.06188 0.06531 0.06359 2.702 5100804.1 
7 0.06188 0.06359 0.06273 1.370 610176.3 
8 0.06188 0.06273 0.0623 0.6897 710497.6 
9 0.0623 0.06273 0.06252 0.3436 610265.1 
10 0.0623 0.06252 0.06241 0.1721 7100768.3 
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At the end of 10th iteration,
%1721.0a

Hence the number of significant digits at least correct is given by the largest value of m for
which

m
a

 2105.0
m 2105.01721.0

m 2103442.0
m 2)3442.0log(

463.2)3442.0log(2 m
So

2m

The number of significant digits at least correct in the estimated root of 06241.0 at the end of the
th10 iteration is 2.

REGULAFALSI  METHOD OR METHOD OF FALSE POSITION:
Consider the equation f(x)  = 0 and f(a) and f(b) are of opposite signs. Also let  a< b.
The graph y = f(x) will Meet the  x-axis at some point between  A(a, f(a)) and
B (b,f(b)). The equation of the chord joining the two points  A(a, f(a)) and

B (b,f(b)) is
y – f(a)                          f(a) - f(b)

=
x - a                               a- b

The  x- Coordinate of the point of intersection of this chord with the x-axis gives an
approximate value for the of f(x) = 0.  Taking y = 0 in the chord equation, we get

– f(a)                          f(a) - f(b)
=

x - a                               a- b
x[f(a) - f(b)] - a f(a)  + a  f(b) = -a f(a)  + b  f(b)

x[f(a) - f(b)]   = b f(a) - a f(b)
This x1gives an approximate value of the root f(x) = 0.   (a < x1 < b)
Now  f(x1) and f(a)are of opposite signs or f(x1) and f(b) are opposite signs.

If f(x1 ), f(a) <0 . then x2 lies between x1 and a.

Therefore              x2=  a f(x1) – x1 f(b) / f(x1) - f(a)
This process of calculation of ( x3, x4, x5, ….)  is continued till any two successive

values are equal and subsequently we get the solution of the given equation.

Steps:
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1. Find a and b in which f(a) and f(b) are opposite signs for the given equation
using trial and error method.
2. Therefore root lies between a and bif f(a)is very close to zero select and
compute x1 by using the  following formula:

x1= a f(b) - b f(a)/ f(b) - f(a)
3.If f(x1 ), f(a) <0 . then root lies between x1 and a. Compute x2 by using the
following formula:

x2= a f(x1) – x1 f(b) / f(x1) - f(a)
4. Calculate the values  of ( x3, x4, x5, ….)  by using the above formula until  any two successive
values are equal and subsequently we get the solution of the given equation.

Example:
Solve for a positive root of x3-4x+1=0 by and RegulaFalsi  method
Solution :
Let f(x) = x3-4x+1 = 0
f(0) = 03-4 (0)+1 =  1    = +ve

f(1) = 13-4(1)+1  = -2  = -ve
So a root lies between 0 and 1
We shall find the root that lies between 0 and 1.
Here a=0, b=1

a f(b) - b f(a)
x1=

f(b) - f(a)
(0xf(1) – 1 xf(0))

=
( f(1) –f(0))
- 1

=
(-2 - 1)

=  0.333333
f(x1) = f(1/3) = (1/27)-(4/3) +1 = -0.2963
Now f(0) and f(1/3) are opposite in sign.

Hence the root lies between 0 and 1/3.
(0 x  f(1/3) – 1/3  x f(0) )

x2 =
( f(1/3) –f(0))

x2 =(-1/3)/ (-1.2963) = 0.25714
Now f(x2) = f(0.25714) = - 0.011558 = -ve
So the root lies between 0 and 0.25714

x3= (0xf(0.25714) - 0.25714 xf(0))/ (f(0.25714) – f(0))
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= -0.25714/-1.011558  = 0.25420
f(x3) = f(0.25420) = -0.0003742

So the root lies between 0 and 0.25420
x4= (0xf(0.25420)- 0.25420 xf(0))/ (f(0.25420) – f(0))

= -0.25420 / -1.0003742 = 0.25410
f(x4) = f(0.25410) = - 0.000012936

The root lies between 0 and 0.25410
x5= (0xf(0.25410) - 0.25410 xf(0))/ (f(0.25410) – f(0))

= -0.25410 / -1.000012936 = 0.25410
Hence the root is 0.25410.

NEWTON-RAPSON METHOD:
Let us suppose we have an equation of the form f(x) = 0 in which solution is lies between in the
range (a,b). Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are
opposite signs, then there exist
atleast one real root between a and b.

Let f(a) be positive and f(b) negative. Which implies at least one root exits between
a and b. We assume that root to be either a or b, in which the value of f(a) or  f(b) is  very close
to zero.  That number is assumed to be initial root. Then we iterate the process by using the
following formula until the value is converges.

f(Xn)
Xn+1 = Xn-

f’(Xn)
Steps:
1. Find  a and b in which f(a) and f(b) are opposite signs for the given equation using trial and
error method.
2. Assume initial root as Xo= ai.e., if f(a)is very close to zero or  Xo = b if f(a)is very close to
zero
3.  Find  X1   by using the formula                       f(Xo)

X1  = Xo -
f’(Xo)

4. Find  X2    by using the following formula
f(X1)

X2  = X1 -
f’(X1)

5. Find X3,X4, …Xn until any two successive values are equal.

Example 1 :
Find the positive root of f(x) = 2x3- 3x-6 =0 by Newton – Raphson method correct to five
decimal places.
Solution:
Let f(x) = 2x3-3x – 6 ;   f ’(x) = 6x2 – 3
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f(1) =   2-3-6         = -7       = -ve
f(2) = 16 – 6-6       = 4 = +ve

So,  a root between 1 and  2 . In which 4 is closer to 0 Hence we assume initial root as 2.
Consider   x0 =2
So X1= X0 – f(X0)/f’(X0)
= X0- ((2X03 - 3X0 - 6) / 6α0 -3)  =  (4X03 +6)/(6X02-3)

Xi+1= (4Xi3 + 6)/(6Xi2-3)

X1 =  (4(2)2+6)/(6(2)2- 3) = 38/21 = 1.809524

X2=  (4(1.809524)3+6)/(6(1.809524)2- 3) = 29.700256/16.646263 = 1.784200

X3=  (4(1.784200)3+6)/(6(1.784200)2- 3) = 28.719072/16.100218 = 1.783769

X4=  (4(1.783769)3+6)/(6(1.783769)2- 3) = 28.702612/16.090991 = 1.783769

Example 2:

Using Newton’s method, find the root between 0 and 1 of  x3 = 6x – 4 correct to 5 decimal places.
Solution :
Let   f(x) = x3 -6x+4;  f(0) = 4 = +ve;  f(1) = -1 = -ve
So a root lies between 0 and 1

f(1) is  nearer to 0. Therefore we take initial root as  X0= 1
f’(x) = 3x2- 6

= x – f(x)
f’(x)

= x - (3x3 -6x+4)/(3x2-6)
= (2x3 -4)/(3x2 -6)
X1 =(2X0 3 – 4 )/(3X0 2-6) = (2-4)/(3-6) = 2/3 = 0.

X2 =(2(2/3)3 – 4 )/(3(2/3)2-6) = 0.73016
X3= (2(0.73015873)3 – 4 )/(3(0.73015873)2-6)

=  (3.22145837/ 4.40060469)
= 0.73205

X4= (2(0.73204903)3 – 4 )/(3(0.73204903)2-6)
= (3.21539602/ 4.439231265)
= 0.73205

The root is 0.73205 correct to 5 decimal places.

HORNER’S METHOD:
This numerical methods is employed to determine both the commensurable and the

incommensurable real roots of a numerical polynomial equation. Firstly, we find the integral part
of the root and then by every iteration. We find each decimal place value in succession.
Suppose a positive root of f(x) = 0 lies between a and a+1.

Let that root be a,a1a2a3….
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First diminish the root of f(x)-0 by the integral part a and let 1(x) = 0 possess the root
0.a1a2a3…
Secondly , multiply the roots of 1(x) = 0 by 10 and let 2(x) = 0 possess the root a1.a2a3…as a
root.

Thirdly, find the value od a1 and then diminish the roots by a1 and let 3(x) = 0 possess
a root 0.a2a3…

Now repeating the process we find a2,a3,a4…. each time.

Example:
Find the positive root of x3 +3x -1 = 0 , correct to two decimal places by Horner’s method.
Solution:
Let f(x) = x3 +3x -1 = 0
f(0) = -ve f(1) = * ve
The positive root lies between 0 and 1.
Let it be 0.a1a2a3….

Since the integral part is zero, diminishing the root by the integral part is not necessary.
Therefore multiply the roots by 10.
Therefore 1(x) = x3 +300x -1000 =0 has root a1.a2a3…
1(3) = -ve, 1(4) = +ve
Therefore a1=3

Now, the root is 3.a2a3…
Therefore, diminish root of 1(x) = 0 by 3
By synthetic division method, we get
2(x) = x3 +9x2 + 327x -73 =0 has root 0.a2a3…
Multiply the roots of 2(x) = 0 by 10.
3(x) = x3 +90x2 + 32700x -73000 =0 has root a2.a3a4…
Now, 3(2) = -ve, 3(3)  = +ve

Therefore a2=2
Now diminish the roots of 3(x) by 2.
By synthetic division method, we get
4(x) = x3 +96x2 + 33072x -7232 =0 has root 0.a3a4…
Multiply the roots of 4(x) = 0 by 10.
5(x) = x3 +960x2 + 3307200x -7232000 =0 has root a3.a4…
Now, 5(2) = -ve, 5(3)  = +ve

Therefore a3=2

Hence the root is 0.322.
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EULER’S METHOD:
Take the Taylor series to 1st order, and let the interval 01 xxh  , then

  2
0001 2

)(''
,)( h

y
hyxfxyy


 .

The error for a time step (the local error) is  2hO .  The global error, after many steps, is  hO .
Then

hyxfyy ),( 0001  where )( 00 xyy  ,

hyxfyy ),( 1112  where hxx  01 ,

…

hyxfyy NNNN ),(1  where hxx NN 1 .

Example:

1)0(,  yyx
dx

dy

The exact solution can be found from

xy
dx

dy
 .

Let pc yyy  where 0 c
c y

dx

dy
, or rx

c Cey  .  Then 0 rxrx CerCe for all x ,

or 1r , and x
c Cey  .  Since the right hand side is linear in x try BAxy p  .  Then

A
dx

dy p  and xy
dx

dy
p

p  becomes xBAxA  which must hold for all x.  Hence

1A , and B=-1, making  1 xy p , and since pc yyy  then

 1 xCey x .

But @ 0x , 1y or 11 C , and 2C .  Making the complete solution
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 12  xey x .
Using Euler’s method and taking 02.0h

1.020.0211,02.00,1 1100  yxxy , since 1'0 y .  In general,

hxxhyyy nnnnn   11 ;'

n xn yn yexact

0 0.00 1.0000 1.0000
1 0.02 1.0200 1.0204
2 0.04 1.0408 1.0416
3 0.06 1.0624 1.0637
4 0.08 1.0848 1.0866
5 0.10 1.1081 1.1103

For the error, 1081.005  yyyEuler , 1103.005  yyyExact , can be defined as

 
%2

1092.0

0022.0

2

1







ExactEuler

ExactEuler

yy

yy
ErrorlativeRe

The results plot as
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It would be better to use the slope at the beginning and end of the increment (e.g., the average at
each end), and although we don’t know the slope at the end we can approximate it.

MODIFIED EULER’S METHOD:
Let ),(' nnn yxfy  .  Then an approximation for y at the end of the increment is

hyyy nnn '~
1 

and an estimate for the slope at the end of the increment is )~,(~
11

'
1   nnn yxfy .

We can now set

 hyyyy nnnn
'

11
~'

2

1
  .

The error can be found from

 32'''
1 2

1
hOhyhyyy nnnn 

and since

   32
''

1'
1 2

1
hOhhO

h

yy
hyyy nn

nnn 














 



or

 3
''

1
1 2

hOh
yy

yy nn
nn 













 
 

 .

Hence the local error is  3hO and the global error is  2hO .  Another way to write our results is

 211

12

1

2

1

),(

),(

kkyy

kyhxhfk

yxhfk

nn

nn

nn








The previous example now can include modified Euler

n xn yeuler ymodified yexact

0 0.00 1.0000 1.0000 1.0000
1 0.02 1.0200 1.0204 1.0204
2 0.04 1.0408 1.0416 1.0416
3 0.06 1.0624 1.0637 1.0637
4 0.08 1.0848 1.0866 1.0866
5 0.10 1.1081 1.1104 1.1103
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which is much better.

RUNGE KUTTA II ORDER:
Working Rule :
To solve dy/dx = f(x,y), y(x0)=y0

Calculate k1=hf(x0,y0)
K2=hf(x0+1/2h,y0+1/2k1)
K3= hf(x0+1/2h,y0+1/2k2)
K4=hf(x0+h, y0+k3)
and y= 1/6 (k1+2k2+2k3+k4)
where x=h
Now y1=y0+ y
Now starting from (x1,y1) and repeating the process, we get (x2,y2) etc.,

Example
Obtain the values of y at x=0.1, 0.2 using R.K method of second order for the differential
equation y'=-y, given y(0)=1.
Solution :Here f(x,y)=-y,x0=0, y0=1, x1=0.1, x2=0.2

k1=hf(x0,y0)=(0.1)(-y0)= - 0.1
k2=hf(x0+ ½ h, y0+ ½ k1) = (0.1) f(0.05,0.95)

= -0.1(x0.95)= - 0.095= y
y1=y0+y=1-0.095=0.905
y1=y(0.1)=0.905

Again starting from (0.1, 0.905) replacing (x0,y0) by (x1,y1)we get
k1=(0.1) f(x1,y1)=(0.1) (-0.905)= - 0.0905
k2=hf(x1+ ½ h, y1+ ½ k1)
=(0.1)[f(0.15,0.85975)]=(0.1)(-0.85975)=-0.085975
y=k2 y2=y(0.2)=y1+y=0.819025

RUNGE KUTTA IV ORDER:
What is the Runge-Kutta 4th order method?
Runge-Kutta 4th order method is a numerical technique used to solve ordinary differential
equation of the form

    00,, yyyxf
dx

dy


So only first order ordinary differential equations can be solved by using the Runge-Kutta 4th

order method.  In other sections, we have discussed how Euler and Runge-Kutta methods are
used to solve higher order ordinary differential equations or coupled (simultaneous) differential
equations.
How does one write a first order differential equation in the above form?
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Example 1:
Rewrite

  50,3.12   yey
dx

dy x

in

0)0(),,( yyyxf
dx

dy
 form.

Solution

  50,3.12   yey
dx

dy x

  50,23.1   yye
dx

dy x

In this case
  yeyxf x 23.1,  

Example 2:
Rewrite

  50),3sin(222  yxyx
dx

dy
e y

in

0)0(),,( yyyxf
dx

dy
 form.

Solution

  50),3sin(222  yxyx
dx

dy
e y

  50,
)3sin(2 22




 y
e

yxx

dx

dy
y

In this case

 
ye

yxx
yxf

22)3sin(2
,




The Runge-Kutta 4th order method is based on the following
 hkakakakayy ii 443322111  (1)

where knowing the value of iyy  at ix , we can find the value of 1 iyy at 1ix , and

ii xxh  1

Equation (1) is equated to the first five terms of Taylor series

     

 4
1,4

4

3

1,3

3
2

1,2

2

1,1

!4

1

!3

1

!2

1

iiyx

iiyxiiyxiiyxii

xx
dx

yd

xx
dx

yd
xx

dx

yd
xx

dx

dy
yy

ii

iiiiii









(2)
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Knowing that  yxf
dx

dy
, and hxx ii 1

        4'''3''2'
1 ,

!4

1
,

!3

1
,

!2

1
, hyxfhyxfhyxfhyxfyy iiiiiiiiii  (3)

Based on equating Equation (2) and Equation (3), one of the popular solutions used is

 hkkkkyy ii 43211 22
6

1
 (4)

 ii yxfk ,1  (5a)







  hkyhxfk ii 12 2

1
,

2
1

(5b)







  hkyhxfk ii 23 2

1
,

2

1
(5c)

 hkyhxfk ii 34 ,  (5d)

Example 3:
A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K.  Assuming
heat is lost only due to radiation, the differential equation for the temperature of the ball is given
by

    K12000,1081102067.2 8412   


dt

d

where  is in K and t in seconds.  Find the temperature at 480t seconds using Runge-Kutta
4th order method.  Assume a step size of 240h seconds.
Solution:

 8412 1081102067.2   


dt

d

   8412 1081102067.2,   tf

 hkkkkii 43211 22
6

1
 

For 0i , 00 t , K12000 
 001 ,tfk 
 1200,0f

 8412 10811200102067.2  

5579.4







  hkhtfk 1002 2

1
,

2

1


    





  2405579.4

2

1
1200,240

2

1
0f
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 05.653,120f
 8412 108105.653102067.2  

38347.0







  hkhtfk 2003 2

1
,

2

1


    





  24038347.0

2

1
1200,240

2

1
0f

 0.1154,120f
 8412 10810.1154102067.2  

8954.3
 hkhtfk 3004 ,  

  240894.31200,2400  f

 10.265,240f
 8412 108110.265102067.2  

0069750.0

hkkkk )22(
6

1
432101  

      240069750.08954.3238347.025579.4
6

1
1200 

  2401848.21200 
K65.675

1 is the approximate temperature at

1tt 
ht  0

2400 
240

 2401  
K65.675

For K65.675,240,1 11  ti

 111 ,tfk 
 65.675,240f

 8412 108165.675102067.2  

44199.0







  hkhtfk 1112 2

1
,

2

1

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    





  24044199.0

2
1

65.675,240
2
1

240f

 61.622,360f
 8412 108161.622102067.2  

31372.0







  hkhtfk 2113 2

1
,

2

1


    





  24031372.0

2

1
65.675,240

2

1
240f

 00.638,360f
 8412 108100.638102067.2  

34775.0
 hkhtfk 3114 ,  

  24034775.065.675,240240  f

 19.592,480f
 8412 108119.592102067.2  

25351.0

hkkkk )22(
6

1
432112  

       24025351.034775.0231372.0244199.0
6

1
65.675 

  2400184.2
6

1
65.675 

K91.594

2 is the approximate temperature at

2tt 
ht  1

240240
480

 4802  
K91.594

Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th
order method with different step sizes.
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Figure 1: Comparison of Runge-Kutta 4th order method  with exact solution for different step
sizes.
Table 1 and Figure 2 show the effect of step size on the value of the calculated temperature at

480t seconds.

TABLE 1 Value of temperature at time, 480t s for different step sizes

Figure 2: Effect of step size in Runge-Kutta 4th order method.
In Figure 3, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order
method), Heun’s method (Runge-Kutta 2nd order method), and Runge-Kutta 4th order method.
The formula described in this chapter was developed by Runge.  This formula is same as
Simpson’s 1/3 rule, if  yxf , were only a function of x .  There are other versions of the 4th order
method just like there are several versions of the second order methods.  The formula developed
by Kutta is
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 hkkkkyy ii 43211 33
8

1
 (6)

where
 ii yxfk ,1  (7a)







  12 3

1
,

3

1
hkyhxfk ii (7b)







  213 3

1
,

3

2
hkhkyhxfk ii (7c)

 3214 , hkhkhkyhxfk ii  (7d)

This formula is the same as the Simpson’s 3/8 rule, if  yxf , is only a function of x .

Figure 3: Comparison of Runge-Kutta methods of 1st (Euler), 2nd, and 4th order.
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OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
The ------------ Method is based on the repeated application of the
intermediate value theorem.

Gauss Seidal Secant Bisection Chebyshev Bisection

The formula for Newton Raphson method is ------------------. xn+1 =   f (xn)/f'(xn)  xn+1 = xn +  f (xn)/f
’(xn)

xn+1 = xn – f (xn)/    f
’(xn)

xn+1 = xn – f ’(xn)/f
(xn)

xn+1 = xn – f
(xn)/    f ’(xn)

The order of convergence of Newton Raphson method is ----------. 4 2 1 A 2
Graffees root squaring method is useful to find -----------------. Complex roots single root unequal roots polynomial roots polynomial

roots
The approximate value of the root of f(x) given by the bisection method is ----
-.

x0 = a + b  x0 = f(a) + f(b)  x0 = (a + b)/ 2  x0 = (f(a) + f(b))/2  x0 = (a + b)/ 2

In Newton Raphson method, the error at any stage is proportional to the -------
of the error in the previous stage.

 Cubic square square root same as that square

In case of bisection method, the convergence is -------------. Linear quadratic  very rapid h2  very rapid

The order of convergence of Regula falsi method may be assumed to ----------
.

1 1.618 0 0.5 1.618

The formula for Regula falsi method is ----------------------. xn + xn+1 = 1  x = af(b) – bf(a) /f(b) –
f(a)

x = af(a) – bf(b) /
f(a) – f(b)

xn - xn+1 = 1  x = af(b) –
bf(a) /f(b) –
f(a)

The ------------- Method is also called as Method of tangents. Gauss Seidal Secant Bisection Newton Rapson Newton
Rapson

If f (x) contains some functions like exponential, trigonometric, logarithmic
etc., then f (x) is called -------------- equation.

Algebraic  transcendental  numerical  polynomial  transcendental

A polynomial in x of degree n is called an algebraic equation of degree n if ---
--

 f (x) = 0 f (x) = 1 f (x) < 1 f (x) > 1  f (x) = 0

The method of false position is also known as ------------- method.  Gauss Seidal  Secant  Bisection  Regula falsi  Regula falsi
The Newton Rapson method fails if ---------------.  f '(x) = 0  f (x) = 0  f (x) = 1  f '(x) = 1  f '(x) = 0
The bisection method is simple but ------------------.  Slowly convergent  fast convergent  slowly divergent  fastly divergent  Slowly

convergent
________ method is also called as Bolzano's method  Bisection  False position Newton Rapson  Euler  Bisection
If the initial approximation to the root is not given, choose two values of x
say ‘a’ and ‘b’, such that f(a) and f(b) are of opposite signs. If |f(a)| < |f(b)|
then take ---- as the initial approximation.

 ‘a’  ‘b’ 0 1  ‘a’

Graeffe’s root squaring method has a great advantage over other methods in
that it does not require prior information about the ---------------------.

 Initial value approximate values  final value mid value  Initial value

If we choose the initial approximation x0 ------------ to the root then we get the root of the equation very quickly. Close  far average very far Close

In Newton Rapson method when f ’(x) is very large and the interval h will be
--- then the root can be calculated in even less time.

 Small large average of the roots negative  Small

The order of convergence in --------------- method is two.  Bisection  Regula falsi False position   Newton Rapson   Newton
Rapson

The approximate value x0 = (a + b)/ 2 of the root of f (x) is given by the --------- method.  Bisection  Regula falsi   Newton Rapson Graffes root squaring  Bisection

If f (x1) and f (a) are of opposite signs, then the actual roots of the equation
f(x)=0 in False position method lie between ------------------.

‘a’ and ‘b’ ‘b’ and ‘x1’ ‘a’ and ‘x1’ ‘x1’ and ‘x2’ ‘a’ and ‘x1’

The iterative procedure is repeated till the --------- is found to the desired
degree of accuracy.

 Initial value approximate value  root 0  root

The ----------- Method is the method to find the root of algebraic or
transcendental equation.

 Graffe’s method  Regula falsi  Root squaring  Bisection  Regula falsi

If we equate a function f(x) to zero, then f(x) = 0 will represent an -----
equation

polynomial  transcedental  algebraic cubic  algebraic

The equation 3x – cosx – 1 = 0 is known as ------------- equation. polynomial  transcedental algebraic cubic  transcedental
If f(a) and f(b) have opposite signs then the root of f(x) = 0 lies between ------
-.

 0 and a a and b b and 0 1 and –1 a and b

The error at any stage is proportional to the square of the ------------------.  error in the previous stage  error in the next stage error in the last
stage

 error in the first
stage

 error in the
previous stage

The convergence of iteration method is ----------------.  zero  polynomial  quadratic  linear  linear
The method of successive Approximation is also called as -----------.  Bisection method  Iteration method  Regula falsi method  Root squaring  Iteration

method
The sufficient condition for convergence of iterations is ----------------.  |Φ ’(x) | = 1  |Φ’(x) | > 1  |Φ’(x) | < 1  |Φ’(x) | < 0  |Φ’(x) | < 1
Solution of an equation f(x) = 0 means we have to find its -----------. roots or zeros  initial values  final values  approximate values roots or zeros

Assuming that a root of x3 – 9x + 1 = 0 lies between 2 and 4. Find the initial
approximation root value of bisection method.

2 3 4 3.5 3

In Newton Rapson method if -----------, then ‘a’ is taken as the initial
approximation to the root.

 | f(a) | ≠| f(b) |  | f(a) | = | f(b) |  | f(a) | > | f(b) |  | f(a) | < | f(b) |  | f(a) | < | f(b) |

In iteration method the given equation is taken in the form of -------------.  y = Φ(x)  x = Φ(x)  x = Φ(y) Φ  x = Φ(x)
 The convergence of the sequence is not guaranteed always unless the choice
of ---------------- is properly chosen.

 x0 y0  x2  y2  x0

The sequence will converge rapidly in Iteration method, if |Φ’(x)| is ------------
-.

 zero  very large  very small  one  very small

 In Iteration method if the convergence is linear then the convergence is of
order ------------------.

four  three  two  one  one

By Regula Falsi method, the positive root of first approximation of x3– 4x +1=0 lies between ---------------.  0 and 1  1 and 2  –1 and 2  0 and –1  1 and 2
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The values of x which makes f(x) as ----------- are known as roots or zeros of
the function f(x).

 Zero  one  f ’(x)  f ’’(x)  Zero

In Iteration method if the convergence is ---------- then the convergence is of
order one.

 Cubic  quadratic  linear  zero  linear

The order of convergence of --------------- method may be assumed to 1.618.  Bisection  Regula falsi  Newton Raphson  Graeffe  Regula falsi

In Newton Raphson method the choice of --------------- is very impartant for
the convergence.

 initial value  final value  intermediate value  approximate value  initial value

 If f(a) and f(b) are of opposite signs, a root of f(x) = 0 lies between ------------
--.

 ‘0’ and ‘b’  ‘a’ and ‘0’  ‘a’ and ‘b’  ‘0’ and ‘1’  ‘a’ and ‘b’

If f(a) and f(b) are of opposite signs, a root of f(x) = 0 lies between ‘a’ and
‘b’. This idea can be used to fix an ---------------------.

 Approximate root  actual root intermediate root  none  none

If f (–1) and f (–2) are of opposite signs, then the negative roots of the
equation f(x)=0 in False position method lie between ------------------.

 –1 and –2  –1 and 1  1 and –2  1 and 2  –1 and –2

The -------------------- method fails if f ’(x) = 0. Bisection  False Position  Newton Raphson Gauss seidal method  Newton
Raphson

In which of the following method, we approximate the curve of solution by
the tangent in each interval.

Picard’s method Euler’s method Newton’s method  Runge Kutta
method

Euler’s method

The convergence of which of the following method is sensitive to starting
value?

False position Gauss seidal method  Newton-Raphson
method

regula falsi  Newton-
Raphson
method
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UNIT-III

SYLLABUS

Gauss elimination method - Gauss-Jordan method - Gauss-Seidel method - computation of
inverse of a matrix using Gauss elimination method - method of triangularisation.
Trapezoidal rule - Simpson's 1/3 rule and 3/8 rule

GAUSS ELIMINATION:
Gaussian elimination is one popular method of solving linear equations.  We illustrate this
technique by means of an example.
How is a set of equations solved numerically?
One of the most popular techniques for solving simultaneous linear equations is the Gaussian
elimination method.  The approach is designed to solve a general set of n equations and n
unknowns

11313212111 ... bxaxaxaxa nn 

22323222121 ... bxaxaxaxa nn 
.                 .
.                 .
.                 .

nnnnnnn bxaxaxaxa  ...332211

Gaussian elimination consists of two steps
Forward Elimination of Unknowns: In this step, the unknown is eliminated in each equation
starting with the first equation.  This way, the equations are reduced to one equation and one
unknown in each equation.
Back Substitution:  In this step, starting from the last equation, each of the unknowns is found.

Forward Elimination of Unknowns:

In the first step of forward elimination, the first unknown, 1x is eliminated from all rows below

the first row.  The first equation is selected as the pivot equation to eliminate 1x .  So, to eliminate

1x in the second equation, one divides the first equation by 11a (hence called the pivot element)

and then multiplies it by 21a .  This is the same as multiplying the first equation by 1121 / aa to
give

1
11

21
1

11

21
212

11

21
121 ... b

a

a
xa

a

a
xa

a

a
xa nn 

Now, this equation can be subtracted from the second equation to give

1
11

21
21

11

21
2212

11

21
22 ... b

a

a
bxa

a

a
axa

a

a
a nnn 


















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or

22222 ... bxaxa nn 
where

nnn a
a

a
aa

a
a

a
aa

1
11

21
22

12
11

21
2222







This procedure of eliminating 1x , is now repeated for the third equation to the
thn equation to

reduce the set of equations as

11313212111 ... bxaxaxaxa nn 

22323222 ... bxaxaxa nn 

33333232 ... bxaxaxa nn 
.                 . .
.                 . .
.                 . .

nnnnnn bxaxaxa  ...3322

This is the end of the first step of forward elimination. Now for the second step of forward

elimination, we start with the second equation as the pivot equation and 22a as the pivot element.

So, to eliminate 2x in the third equation, one divides the second equation by 22a (the pivot

element) and then multiply it by 32a .  This is the same as multiplying the second equation by

2232 / aa 
and subtracting it from the third equation.  This makes the coefficient of 2x zero in the

third equation.  The same procedure is now repeated for the fourth equation till the
thn equation

to give

11313212111 ... bxaxaxaxa nn 

22323222 ... bxaxaxa nn 

33333 ... bxaxa nn 
.               .
.               .
.               .

nnnnn bxaxa  ...33

The next steps of forward elimination are conducted by using the third equation as a pivot

equation and so on.  That is, there will be a total of 1n steps of forward elimination.  At the

end of 1n steps of forward elimination, we get a set of equations that look like
 212111 xaxa 11313 ... bxaxa nn 

22323222 ... bxaxaxa nn 
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33333 ... bxaxa nn 
.             .
.             .
.             .

   11   n
nn

n
nn bxa

Back Substitution:
Now the equations are solved starting from the last equation as it has only one unknown.

)1(

)1(






n

nn

n
n

n a

b
x

Then the second last equation, that is the
th)1( n equation, has two unknowns: nx and 1nx , but

nx is already known.  This reduces the
th)1( n equation also to one unknown.  Back

substitution hence can be represented for all equations by the formula
   

 1
1

11




 


i
ii

n

ij
j

i
ij

i
i

i a

xab
x

for 1,,2,1  nni

and

)1(

)1(






n

nn

n
n

n a

b
x

Example 1:
Solve the system

1223

12

53

321

32

321





xxx

xx

xxx

Solution: Now applying the operation 133 3rrR  we have the following

16115

12

53

32

32

321





xx

xx

xxx

Applying 22 2/1 rR  we have

16115

5.5.

53

32

32

321





xx

xx

xxx

And by 233 5rrR 
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5.135.13

5.5.

53

3

32

321





x

xx

xxx

Finally we the following by applying 5.13/23 rR 

1

5.5.

53

3

32

321





x

xx

xxx

We now have that 13 x , and other unknowns can easily be found by backward substitution into

second and first equations. We have the solution )1,1,1(),,( 321 xxx . This method is called the

Gaussian Elimination method.

Example 2. Find x, y and z that satisfy the following three equations at the same time.

x - y +   3z =   4
(1) 2x - y +   2z =   6

3x + y - 2z =   9

Before discussing the details of Gaussian elimination, let's look at two ways to reformulate a
system of linear equations.  Both ways begin by putting the equations in vector form.  For the
equations above this is the following.

(2)








x - y + 3z

2x - y +   2z
3x + y - 2z

=








4

6
9

The left side we can write as the matrix of coefficients times the vector of unknowns.









1 - 1     3

2 - 1     2
3     1 - 2 








x

y
z

=








4

6
9

or

(3) Au = b

where

A =








1 - 1     3

2 - 1     2
3     1 - 2

u =








x

y
z

b =








4

6
9
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So the original equations (1) are equivalent to (3).  In general the problem of solving a system of
linear equations is equivalent to solving Au = b where A is the matrix of coefficients, b is the
vector of numbers on the right side and u is the vector of unknowns.
The second reformulation of the equations starts with (2) and writes the vector on the left as the
sum of three vectors where each term contains the terms with one of the variables.  We get









x

2x
3x

+








- y

- y
y

+








3z

2z
- 2z

=








4

6
9

Now we factor the variables out of each of the vectors on the left to get

x








1

2
3

+ y








- 1

- 1
1

+ z








3

2
- 2

=








4

6
9

or
xv1 + yv2 + zv3 = b

where

v1 =








1

2
3

v2 =








- 1

- 1
1

v3 =








3

2
- 2

So the original equations (1) are equivalent to writing b as a linear combination of v1, v2 and v3.
In general the problem of solving a system of linear equations is equivalent to writing b as a
linear combination of the vectors that are the coefficients of each of the variables.

Now let's look at solving linear equations using Gaussian elimination.  We shall look at two
methods to keep track of our calculations.  One is with the equations themselves.  The other is by
means of another matrix which is just the coefficient matrix A and right hand side b of the
equation combined.  It is called the augmented matrix.  For the equations in Example 1 it is.

M =








1 - 1     3   |   4

2 - 1     2   |   6
3     1 - 2   |   9

Note that we draw a line separating the last column which contains b from the rest which
contains A.  To start out we have the original equations and the corresponding M.

Equations Augmented matrix

Error! M = Error!
The idea behind Gaussian elimination is to add or subtract multiples of the first equation from the
other two in order to eliminate x from the second and third equations.  In this case we can
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subtract two times the first equation from the second and three times the first equation from the
third.  In terms of the augmented matrix we subtract two times the first row from the second and
three times the first row from the third.  This gives us the following.

Equations Augmented matrix

(2) Error! M1 = Error!

Note that the new set of equations have the same solutions as the original equatons.  It is clear
that any solution to the equations is a solution to the new set because we obtained the equations
in the new set by adding multiples of the original equations.  However, the original equations can
be obtained from the new set by adding two time the first equation to the second and three times
the first equation to the third.  Therefore any solution to the new equations is also a solution to
the original equations.

There is another way of looking at the process of going from the original augmented matrix to
the new augmented matrix that will be useful as we go along.  One has

M1 = E1M
where

E1 =








1   0   0

- 2   1   0
- 3   0   1

The reason this is true is because when we multiply M on the right by E1 the rows of the product
E1M are linear combinations of the rows of M using the entries of the corresponding row of E1 as
the multipliers.  So, in particular, the second row of E1M is -2 times the first row of M plus the
second row of M which is how the second row of M1 is formed.  By a similar argument one can
see that

M = F1M1

where

F1 =








1   0   0

2   1   0
3   0   1

and

I = F1E1 I = E1F1

A pair of matrices A and B satisfying AB = I and BA = I are said to be inverse to each other and
we write B = A-1 and A = B-1.  So F1 = (E1)-1.
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Note that in the new set of equations (2) the second and third equations only involve y and z.  So
we concentrate on them.  Now we eliminate z from the third equation by adding or subtracting a
multiple of the second equation.  In this case we can subtract 4 times the second equation from
the third.  In terms of the augmented matrix we subtract 4 times the second row from the third.
We get

Equations Augmented matrix

(3) Error! M2 = Error!

Again this set of equations has the same solution as the original set.  Also, note that

M2 = E2M1 = E2E1M
where

E2 =








1     0   0

0     1   0
0 - 2   1

In (3) the third equation only involves z.  All we have to do is divide this equation by 5 to get z.
In terms of the augmented matrix we divide the third row by 5.  This gives

Equations Augmented matrix

(4) Error! M3 = Error!

Also note that

M3 = E3M2 = E3E2E1M
where

E3 =







1   0   0

0   1   0

0   0
1
5

At this point we could substitute z = 1 in the second equation and solve for y.  However, an
equivalent thing to do is add 4 times the third equation to the second to eliminate z.  At the same
time we can subtract 3 times the third equation from the first to eliminate z from it also.  In terms
of the augmented matrix we are subtracting 3 times the third row from the first and adding 4
times the third row to the second.  We get
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Equations Augmented matrix

(5) Error! M4 = Error!

Also
M4 = E4M3 = E4E3E2E1M

where

E4 =








1   0 - 3

0   1     4
0   0     1

The last step is to add equation 2 to equation 1 to eliminate y from equation 1.  In terms of the
augmented matrix we add row 2 to row 1.  This gives

Equations Augmented matrix

(6) Error! M5 = Error!

Also

(7) M5 = E5M4 = E5E4E3E2E1M

where

E5 =








1 - 1   0

0     1   0
0     0   1

When we reach the point (6) we have the solution.  In terms of the augmented matrix the solution
is the last column.  The part of the augmented matrix to the left of the vertical line is the identity
matrix.  If we were to ignore the last column of the augmented matrix, then the relation (7) says

(8) I = E5E4E3E2E1A

It turns out that A-1 = (E5E4E3E2E1)-1.  We shall show that in the next chapter.

There is one other operation on the equations that we sometimes need to use or want to use.  That
is interchanging two equations.  This corresponds to interchanging two rows of the augmented
matrix. For example, suppose the original equations were

Equations Augmented matrix
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y - 4z = - 2
x - y +   3z =     4

3x + y - 2z =     9
M =









0     1 - 4   | - 2

1 - 1     3   |     4
3     1 - 2   |     9

Remark. These equations are equivalent to








0     1 - 4

1 - 1     3
3     1 - 2 








x

y
z

=








- 2

4
9

or Au = b where A =









0     1 - 4

1 - 1     3
3     1 - 2

, u =








x

y
z

and b =








- 2

4
9

.  They are also equivalent to

x








0

1
3

+ y








1

- 1
1

+ z








- 4

3
- 2

=








- 2

4
9

or xv1 + yv2 + zv3 = b where v1 =








0

1
3

, v2 =








1

- 1
1

and

v3 =








- 4

3
- 2

.  In other words we are trying to write b as a superposition of v1, v2 and v3.

The first step would be to interchange the first equation with either the second or the third.  If we
interchange the first and second equations we get

Equations Augmented matrix

(9)
x - y +   3z =     4

y - 4z = - 2
3x + y - 2z =     9

M1 =








1 - 1     3   |     4

0     1 - 4   | - 2
3     1 - 2   |     9

Note that

M1 = E1M

where

E1 =








0   1   0

1   0   0
0   0   1

The rest of the solution is similar to Example 1.  Subtract 3 times the first equation from the third
giving

Equations Augmented matrix

Error! M2 = Error!
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One has M2 = E2M1 = E2E1M where E2 =








1   0   0

0   1   0
- 3   0   1

.  Subtract 4 times the second equation from

the third giving

Equations Augmented matrix

Error! M3 = Error!

One has M3 = E3M2 = E3E2E1M where E3 =








1     0   0

0     1   0
0 - 2   1

.  Divide equation 3 by 5 giving

Equations Augmented matrix

Error! M4 = Error!

One has M4 = E4M3 = E4E3E2E1M where E4 =







1   0   0

0   1   0

0   0
1
5

.  Add 4 times the third equation to the

second and subtract 3 times the third equation from the first.  We get

Equations Augmented matrix

Error! M5 = Error!

Also M5 = E5M4 = E5E4E3E2E1M where E5 =








1   0 - 3

0   1     4
0   0     1

.  Finally, add equation 2 to equation 1

giving

Equations Augmented matrix

Error! M6 = Error!

Also M6 = E6M5 = E6E5E4E3E2E1M where E6 =








1 - 1   0

0     1   0
0     0   1

.  One has I = E5E4E3E2E1A so A-1 =

(E5E4E3E2E1)-1.
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To summarize, to solve a set of n equations and n unknowns

a11 x1 + a12 x2 + + a1n xn = b1

a21 x1 + a22 x2 + + a2n xn = b2

(10) 


an1 x1 + an2 x2 + + ann xn = bn

We form the augmented matrix

M =









a11 a12  a1n | b1

a21 a22  a2n | b2

…
an1 an2  ann | bn

Using the following operations

(11)                 Add or subtract multiples of one row to another
(12) Multiply or divide a row by a non-zero constant
(13) Interchange two rows

we transform M to the form

(14) M '   =









1 0  0 | c1

0 1  0 | c2

…
0 0  1 | cm

i.e. we have the identity matrix to the left of the vertical line.  The solution is the last column, i.e.

x1 = c1

x2 = c2

(15) 
xn = cn

The row operations (11), (12) and (13) are called elementary row operations.  If it is possible to
transform M to the form (14) by elementary row operations then the system of equations (10) has
one and only one solution which is (15).  This is equivalent to being able to transform A to the
identity I by the elementary row operations.  If it is not possible to transform M to the form (14)
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by elementary row operations, then either there is no solution, or if there is a solution then there
is more than one.

GAUSS-JORDAN METHOD:
Step 1: Form the augmented matrix corresponding to the system of linear equations.
Step 2: Transform the augmented matrix to the matrix in reduced row echelon form via
elementary row operations.
Step 3: Solve the linear system corresponding to the matrix in reduced row echelon form. The
solution(s) are also for the system of linear equations in step 1.

Example 1:
Solve for the following linear system:

5723

-1132

-3952

352

4321

4321

4321

4321






xxxx

xxxx

xxxx

xxxx

Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is




























 5

11

3

3

7

3

9

5

2

1

1

2

3

1

5

1

1

2

2

1

.
Step 2:
After elementary row operations, the matrix in reduced row echelon form is

















 




0

3

2

5

0

2

3

2

0

1

0

0

0

0

1

0

0

0

0

1

.
Step 3:
The linear system corresponding to the matrix in reduced row echelon form is
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32

23

52

43

42

41





xx

xx

xx

The solutions are

Rttxtxtxtx  ,,23,32,25 4321

t

t

t

t

t

x

x

x

x

x





















































































1

2

3

2

0

3

2

5

23

32

25

4

3

2

1

Number of solutions of a system of linear equations:
 For any system of linear equations, precisely one of the following is true.
 The system has exactly one solution.
 The system has an infinite number of solutions.
 The system has no solution.

Note: the linear system with at least one solution is called consistent and the linear system with
no solution is called inconsistent.

Example 2:
Exactly one solution:
Solve for the following system:

33

82

932

31

321

321





xx

xxx

xxx

Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is
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


















3

8

9

1

1

3

0

1

2

3

2

1

.
Step 2:
The matrix in reduced row echelon form is

















3

1

2

1

0

0

0

1

0

0

0

1

Step 3:
The solution is

3,1,2 321  xxx
Example 3:
Infinite number of solutions:
Solve for the following system:

153

0242

21

321




xx

xxx

Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is








 
1

0

0

2

5

4

3

2

Step 2:
The matrix in reduced row echelon form is









 1

2

3

5

1

0

0

1

Step 3:
The linear system corresponding to the matrix in reduced row echelon form is

13

25

32

31




xx

xx

The solutions are
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Rttxtxtx  ,,31,52 321

t

t

t

t

x

x

x

x






































































1

3

5

0

1

2

31

52

3

2

1

Example 4:
No solution:
Solve for the following system:

62

1753

5422

431

4321

4321





xxx

xxxx

xxxx

Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is

















 6

11

5

2

7

4

1

5

3

0

3

2

1

1

1

Step 2:
The matrix in reduced row echelon form is















 

1

0

0

0

3

2

0

2

1

0

1

0

0

0

1

Step 3:
The linear system corresponding to the matrix in reduced row echelon form is

10

032

02

432

431





xxx

xxx

Since ,10  there is no solution.

GAUSS-SEIDAL METHOD:
Why do we need another method to solve a set of simultaneous linear equations?
In certain cases, such as when a system of equations is large, iterative methods of solving
equations are more advantageous.  Elimination methods, such as Gaussian elimination, are prone
to large round-off errors for a large set of equations.  Iterative methods, such as the Gauss-Seidel
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method, give the user control of the round-off error.  Also, if the physics of the problem are well
known, initial guesses needed in iterative methods can be made more judiciously leading to faster
convergence.
What is the algorithm for the Gauss-Seidel method?  Given a general set of n equations and n
unknowns, we have

11313212111 ... cxaxaxaxa nn 

22323222121 ... cxaxaxaxa nn 
.                 .
.                 .
.                 .

nnnnnnn cxaxaxaxa  ...332211

If the diagonal elements are non-zero, each equation is rewritten for the corresponding unknown,
that is, the first equation is rewritten with 1x on the left hand side, the second equation is

rewritten with 2x on the left hand side and so on as follows

nn

nnnnnn
n

nn

nnnnnnnnn
n

nn

nn

a

xaxaxac
x

a

xaxaxaxac
x

a

xaxaxac
x

a

xaxaxac
x

11,2211

1,1

,122,122,111,11
1

22

23231212
2

11

13132121
1
































These equations can be rewritten in a summation form as

11

1
1

11

1 a

xac

x

n

j
j

jj







22

2
1

22

2 a

xac

x

j

n

j
j

j







.

.

.
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1,1

1
1

,11

1












nn

n

nj
j

jjnn

n a

xac

x

nn

n

nj
j

jnjn

n a

xac

x








1

Hence for any row i ,

.,,2,1,
1

ni
a

xac

x
ii

n

ij
j

jiji

i 









Now to find ix ’s, one assumes an initial guess for the ix ’s and then uses the rewritten equations
to calculate the new estimates.  Remember, one always uses the most recent estimates to
calculate the next estimates, ix .  At the end of each iteration, one calculates the absolute relative

approximate error for each ix as

100
new

oldnew





i

ii

ia
x

xx

where new
ix is the recently obtained value of ix , and old

ix is the previous value of ix .

When the absolute relative approximate error for each xi is less than the pre-specified tolerance,
the iterations are stopped.
Example 1:
The upward velocity of a rocket is given at three different times in the following table

TABLE 1 Velocity vs. time data.

Time, t (s) Velocity, v (m/s)

5 106.8
8 177.2

12 279.2

The velocity data is approximated by a polynomial as
  125,32

2
1  tatatatv

Find the values of 321 and,, aaa using the Gauss-Seidel method.  Assume an initial guess of the

solution as
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































5

2

1

3

2

1

a

a

a

and conduct two iterations.
Solution:
The polynomial is going through three data points      332211 ,and,,,, vtvtvt where from the

above table
8.106,5 11  vt

2.177,8 22  vt

2.279,12 33  vt

Requiring that   32
2

1 atatatv  passes through the three data points gives

  312
2
1111 atatavtv 

  322
2
2122 atatavtv 

  332
2
3133 atatavtv 

Substituting the data      332211 ,and,,,, vtvtvt gives

    8.10655 32
2

1  aaa

    2.17788 32
2

1  aaa

    2.2791212 32
2

1  aaa

Or
8.106525 321  aaa

2.177864 321  aaa

2.27912144 321  aaa

The coefficients 321 and,, aaa for the above expression are given by

















































2.279

2.177

8.106

112144

1864

1525

3

2

1

a

a

a

Rewriting the equations gives

25

58.106 32
1

aa
a




8

642.177 31
2

aa
a




1

121442.279 21
3

aa
a




Iteration #1
Given the initial guess of the solution vector as



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: III                      BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 19/55

































5

2

1

3

2

1

a

a

a

we get

25

)5()2(58.106
1


a

6720.3
   
8

56720.3642.177
2


a

8150.7
   

1

8510.7126720.31442.279
3


a

36.155
The absolute relative approximate error for each ix then is

100
6720.3

16720.3
1




a

%76.72

100
8510.7

28510.7
2





a

%47.125

100
36.155

536.155
3





a

%22.103
At the end of the first iteration, the estimate of the solution vector is




































36.155

8510.7

6720.3

3

2

1

a

a

a

and the maximum absolute relative approximate error is 125.47%.

ITERATION #2
The estimate of the solution vector at the end of Iteration #1 is




































36.155

8510.7

6720.3

3

2

1

a

a

a

Now we get
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 
25

)36.155(8510.758.106
1


a

056.12
 

8

)36.155(056.12642.177
2


a

882.54
   

1

882.5412056.121442.279
3


a

= 34.798
The absolute relative approximate error for each ix then is

100
056.12

6720.3056.12
1




a

%543.69
 

100
882.54

8510.7882.54
2





a

%695.85
 

100
34.798

36.15534.798
3





a

%540.80
At the end of the second iteration the estimate of the solution vector is




































54.798

882.54

056.12

3

2

1

a

a

a

and the maximum absolute relative approximate error is 85.695%.
Conducting more iterations gives the following values for the solution vector and the
corresponding absolute relative approximate errors.

Iteration 1a %
1a 2a %

2a 3a %
3a

1
2
3
4
5
6

3.6720
12.056
47.182
193.33
800.53
3322.6

72.767
69.543
74.447
75.595
75.850
75.906

–7.8510
–54.882
–255.51
–1093.4
–4577.2
–19049

125.47
85.695
78.521
76.632
76.112
75.972

–155.36
–798.34
–3448.9
–14440
–60072
–249580

103.22
80.540
76.852
76.116
75.963
75.931

As seen in the above table, the solution estimates are not converging to the true solution of
29048.01 a

690.192 a

0857.13 a
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Example 2:
Find the solution to the following system of equations using the Gauss-Seidel method.

15312 321 xxx 
2835 321 xxx 

761373 321  xxx

Use

































1

0

1

3

2

1

x

x

x

as the initial guess and conduct two iterations.
Solution:
The coefficient matrix

 














 


1373

351

5312

A

is diagonally dominant as
8531212 131211  aaa

43155 232122  aaa

10731313 323133  aaa

and the inequality is strictly greater than for at least one row.  Hence, the solution should
converge using the Gauss-Seidel method.
Rewriting the equations, we get

12

531 32
1

xx
x




5

328 31
2

xx
x




13

7376 21
3

xx
x




Assuming an initial guess of

































1

0

1

3

2

1

x

x

x

Iteration #1
   
12

15031
1


x

50000.0
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   
5

1350000.028
2


x

9000.4
   

13

9000.4750000.0376
3


x

0923.3
The absolute relative approximate error at the end of the first iteration is

100
50000.0

150000.0
1




a

%00.100

100
9000.4

09000.4
2




a

%00.100

100
0923.3

10923.3
3




a

%662.67
The maximum absolute relative approximate error is 100.00%

ITERATION #2
   

12

0923.359000.431
1


x

14679.0
   

5

0923.3314679.028
2


x

7153.3
   

13

7153.3714679.0376
3


x

8118.3
At the end of second iteration, the absolute relative approximate error is

100
14679.0

50000.014679.0
1




a

%61.240

100
7153.3

9000.47153.3
2




a

%889.31

100
8118.3

0923.38118.3
3




a

%874.18
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The maximum absolute relative approximate error is 240.61%.  This is greater than the value of
100.00% we obtained in the first iteration.  Is the solution diverging?  No, as you conduct more
iterations, the solution converges as follows.

Iteration 1x %
1a 2x %

2a 3x %
3a

1
2
3
4
5
6

0.50000
0.14679
0.74275
0.94675
0.99177
0.99919

100.00
240.61
80.236
21.546
4.5391
0.74307

4.9000
3.7153
3.1644
3.0281
3.0034
3.0001

100.00
31.889
17.408
4.4996
0.82499
0.10856

3.0923
3.8118
3.9708
3.9971
4.0001
4.0001

67.662
18.874
4.0064
0.65772
0.074383
0.00101

This is close to the exact solution vector of

































4

3

1

3

2

1

x

x

x

Example 3:
Given the system of equations

761373 321 xxx 
2835 321 xxx 
15312 321 x -xx 

find the solution using the Gauss-Seidel method.  Use

































1

0

1

3

2

1

x

x

x

as the initial guess.
Solution
Rewriting the equations, we get

3

13776 32
1

xx
x




5

328 31
2

xx
x




5

3121 21
3 




xx
x

Assuming an initial guess of

































1

0

1

3

2

1

x

x

x
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the next six iterative values are given in the table below.

Iteration 1x %
1a 2x %

2a 3x %
3a

1
2
3
4
5
6

21.000
–196.15
1995.0
–20149
2.0364105

–2.0579106

95.238
110.71
109.83
109.90
109.89
109.89

0.80000
14.421
–116.02
1204.6
–12140
1.2272105

100.00
94.453
112.43
109.63
109.92
109.89

50.680
–462.30
4718.1
–47636
4.8144105

–4.8653106

98.027
110.96
109.80
109.90
109.89
109.89

You can see that this solution is not converging and the coefficient matrix is not diagonally
dominant.  The coefficient matrix

 



















5312

351

1373

A

is not diagonally dominant as
2013733 131211  aaa

Hence, the Gauss-Seidel method may or may not converge.
However, it is the same set of equations as the previous example and that converged.  The only
difference is that we exchanged first and the third equation with each other and that made the
coefficient matrix not diagonally dominant.
Therefore, it is possible that a system of equations can be made diagonally dominant if one
exchanges the equations with each other.  However, it is not possible for all cases.  For example,
the following set of equations

3321  xxx

9432 321  xxx

97 321  xxx

cannot be rewritten to make the coefficient matrix diagonally dominant.
In this method, we can write the iterative scheme of the system of equations
Ax = b as follows:

)1(
111
kxa = – )(

313
)(

212
kk xaxa  – … – 1

)( bxa k
nn 

)1(
222

)1(
121

  kk xaxa = )(
323

kxa – … 2
)(

2 bxa k
nn 

.

.
)1(

22
)1(

11
  k

n
k

n xaxa … + )1( k
nnn xa = + bn
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In matrix form, this system can be written as (D + L) )1( kx = – U bx )(k with the same notation

as adopted in Jacobi method.

From the above, we get

b1L)(D(k)Ux1L)(D1)(kx 

=  Tx(k) + cn

i.e. T = – (D+L) n1 U and c =  (D + L )–1b

This iteration method is also known as the method of successive displacement.

For computation point of view, we rewrite (A x) as












 









i

)k(
jij

x

1ij

)1k(
jij

1i

1jii

)1k(
i bxaxa

a

1
x

i = 1, 2, …, n
Also in this case, if A is diagonally dominant, then iteration method always converges.  In
general Gauss-Seidel method will converge if the Jacobi method converges and will converge at
a faster rate.  You can observe this in the following example.  We have not considered the
problem: How many iterations are needed to have a reasonably good approximation to x?  This
needs the concept of matrix norm.

Example 6: Solve the linear system Ax = b given in Example 4 by Gauss-Seidel method
rounded to four decimal places.  The equations can be written as follows:

(k)
2x

10

11)(k
1x  (k)

3x
3

1


5

3


1)(k
1

1)(k
2 x

11

1
x  

11

25
x

11

3
x

11

1 (k)
4

k
3 

1)(k
2

1)(k
1

1)(k
3 x

10

1
x

3

1
x  

10

11
x

10

1 (k)
4 

1)(k
4x  = – 1)(k

3
1)(k

2 x
8

1
x

8

3   +
8

15
.

Letting )0(x = (0, 0, 0, 0)T we have from first equation

0.6000x(1)
1 
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2.3273
11

25

3

0.6000
x(1)

2 

0.98731.10000.23270.1200
10

11
(2.3273)

10

1

3

0.6000
x(1)

3 

8

15
0.9873)(

8

1
(2.3273)

8

3
x(1)

4 

= – 0.8727 – 0.1234 + 1.8750

= 0.8789

Using )1(x we get

)2(x  (1.0300, 2.037, – 1.014, 0.9844)T

and we can check that

)5(x  (1.0001, 2.0000, – 1.0000, 1.0000) T

Note that )5(x is a good approximation to the exact solution.  Here are a few exercises for you to

solve.

COMPUTATION OF INVERSE OF A MATRIX USING GAUSS ELIMINATION
METHOD:
For a given non-singular matrix A, the inverse matrix 1B A exists such that AB BA I  ,
where I is an identity matrix of order same as A or B.
A matrix A is non-singular iff det( ) | | 0A A 
To find inverse of a nonsingular matrix using calculator:
Step 1. Input the matrix say A
Step 2. Call matrix A and hit 1x in your calculator then hit MATH and select 1 : Frac to get
the matrix along with determinant value.

Example 1. Find the inverse of a two by two matrix by hand:

a b
A

c d

 
  
 

then 1 1
d b

d b ad bc ad bcA
c a c aad bc

ad bc ad bc



                
Now verify that 1 1AA A A I  
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Example 2. Show that 1 1 1( )AB B A  

Solution: We can consider that
1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

( )

( ) , multiplying by

( ) , using and multiplying by

( )

( )

AB AB I

A AB AB A I A A

B IB AB B A A A I B

B B AB B A

AB B A



    

     

   

  



 

 




Example 3. Show that 1 1 1 1( )ABC C B A    using 1 1 1( )AB B A  
Example 4. Solve the following system of equations by matrix inverse:

12

2 2 3

2 6

x y z

x y z

x y z

  
    
   

Solution: We have the following matrix system

1

1 1 1 12 1 1 1

2 1 2 3 , check for det 2 1 2 4

1 2 1 6 1 2 1

27
1 1 1 12 3 1 1 12 4

1
2 1 2 3 4 0 4 3 6

4
1 2 1 6 5 1 3 6 45

4

x

y

z

x

y

z



       
                
             

 
          
                       

                   
 






METHOD OF TRIANGULARIZATION (OR METHOD OF FACTORIZATION)
(DIRECT METHOD) :

This method is also called as decomposition method.  In this method, the coefficient
matrix A of  the system AX = B, decomposed or factorized into theproduct of a lower triangular
matrix L and an upper triangular matrixU.  we will explain this method in the case of three
equations in three unknowns.
Consider the system of equations

a11x1+ a12x2+ a13x3 = b1
a21x1+ a22x2+ a23x3 = b2
a31x1+ a32x2+ a33x3 = b3

This system is equivalent to AX = B

Where  A = ,   X = ,  B =
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Now we will factorize A as the product of lower triangular matrix

L =
And an upper triangular matrix

U  = so that
LUX = B  Let UX =Y  And  hence LY = B

That is, =
y1 = b,  l21y1+y2 = b2,  l31y1+l32y2+y3 = b3

By forward substitution,    y1, y2, y3can be found out if L is known.

From (4), =
u11x1 + u12x2 + u13x3 = y1 , u22x2 + u23x3 = y2 and u33x3 = y3
From these, x1, x2, x3can be solved by back substitution, since y1, y2, y3 are known if U is
known.Now L and U can be found from LU = A

i.e.,
i.e.,

u11       u12                           u13

l21u11 l21u12+u22     l21u13+u23                  =

l31u11  l31u12+l32u22 l31u13+l32u23+u33

Equating corresponding coefficients we get nine equations in nine unknowns.  From these 9
equations, we can solve for 3 l’s and 6 u’s.
That is, L and U re known.  Hence X is found out.  Going into details, we get u11 = u12
= u13 = .  That is the elements in the first rows of U are same as the elements in the
first of A.
Also,    l21u11 = l21u12+u22 = l21u13+u23 =

l21 = ,  u22 = - . and   u23 = . a13
again,   l31u11   = ,  l31u12+l32u22 = and l31u13+l32u23+u33 =
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solving,   l31 = , l32 =

u33 = - . a13 - - . a13

Therefore  L and U are known.

Example 2
By the method of triangularization, solve the following system.

5x – 2y + z = 4,   7x + y – 5z = 8,  3x + 7y + 4z = 10.
Solution.The system is equivalent to

=
A        X   =    B
Now, let LU = A

That is,
Multiplying and equating coefficients,

u11 = u12 = u13 =
l21u11 = l21u12+u22 = l21u13+u23 =

l21 = ,  u22 = - . and

u23 = . (1)=
Again equating elements in the third row,

l31u11   = l31u12+l32u22 = and l31u13+l32u23+u33 =

l31  = ,   l32 = =

u33 = - = +

= =

Now L and U are known.Since    LUX = B, LY = B  where UX =Y.
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From  LY = B,

=

y1 = 4, y1+y2 = , y1+ y2+y3 =

y2 = 8 - =

y3 = 10 - - X = 10 - - =

UX =Y  gives =
5x – 2y + z = 4

y - z =

z =

z =

y = +

y =

5x = 4+2y - z = 4 + 2 -

x =

x = ,   y = ,  z =

TRAPEZOIDAL RULE:
What is the trapezoidal rule?



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: III                      BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 31/55

The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the
integrand by an thn order polynomial, then the integral of the function is approximated by the
integral of that thn order polynomial.  Integrating polynomials is simple and is based on the
calculus formula.

1,
1

11















 n
n

ab
dxx

nnb

a

n (1)

So if we want to approximate the integral


b

a

dxxfI )( (2)

to find the value of the above integral, one assumes
)()( xfxf n (3)

where
n

n
n

nn xaxaxaaxf  


1
110 ...)( . (4)

where )(xf n is a thn order polynomial.  The trapezoidal rule assumes 1n , that is,

approximating the integral by a linear polynomial (straight line),

Derivation of the Trapezoidal Rule
Method 1: Derived from Calculus

 
b

a

b

a

dxxfdxxf )()( 1

 
b

a

dxxaa )( 10

 
b

a

b

a

dxxfdxxf )()( 1
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






 


2
)(

22

10

ab
aaba (5)

But what is 0a and 1a ?  Now if one chooses, ))(,( afa and ))(,( bfb as the two points to

approximate )(xf by a straight line from a to b ,

aaaafaf 101 )()(  (6)

baabfbf 101 )()(  (7)

Solving the above two equations for 1a and 0a ,

ab

afbf
a





)()(

1

ab

abfbaf
a





)()(

0 (8a)

Hence from Equation (5),

2

)()(
)(

)()(
)(

22 ab

ab

afbf
ab

ab

abfbaf
dxxf

b

a









 (8b)





 


2

)()(
)(

bfaf
ab (9)

Method 2: Also Derived from Calculus
)(1 xf can also be approximated by using Newton’s divided difference polynomial as

)(
)()(

)()(1 ax
ab

afbf
afxf 




 (10)

Hence

 
b

a

b

a

dxxfdxxf )()( 1

 



 





b

a

dxax
ab

afbf
af )(

)()(
)(

b

a

ax
x

ab

afbf
xaf 






















2

)()(
)(

2





















 2
22

22

)()(
)()( a

a
ab

b

ab

afbf
aafbaf






















22

)()(
)()(

22 a
ab

b

ab

afbf
aafbaf
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 2
2

1)()(
)()( ab

ab

afbf
aafbaf 













  abafbfaafbaf  )()(
2

1
)()(

aafbafabfbbfaafbaf )(
2

1
)(

2

1
)(

2

1
)(

2

1
)()( 

abfbbfaafbaf )(
2

1
)(

2

1
)(

2

1
)(

2

1






 


2

)()(
)(

bfaf
ab (11)

This gives the same result as Equation (10) because they are just different forms of writing the
same polynomial.

Method 3: Derived from Geometry
The trapezoidal rule can also be derived from geometry. Look at Figure 2.  The area under the
curve )(1 xf is the area of a trapezoid.  The integral

trapezoidofArea)( 
b

a

dxxf

2

1
 (Sum of length of parallel sides)(Perpendicular distance between parallel sides)

  )()()(
2

1
abafbf 





 


2

)()(
)(

bfaf
ab (12)

FIGURE 2 Geometric representation of trapezoidal rule.

Method 4: Derived from Method of Coefficients
The trapezoidal rule can also be derived by the method of coefficients.  The formula
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)(
2

)(
2

)( bf
ab

af
ab

dxxf
b

a





 (13)





2

1

)(
i

ii xfc

where

FIGURE 3 Area by method of coefficients.
The interpretation is that )(xf is evaluated at points a and b , and each function evaluation is

given a weight of
2

ab 
.  Geometrically, Equation (12) is looked at as the area of a trapezoid,

while Equation (13) is viewed as the sum of the area of two rectangles, as shown in Figure 3.
How can one derive the trapezoidal rule by the method of coefficients?

Assume

)()()( 21 bfcafcdxxf
b

a

 (14)

Let the right hand side be an exact expression for integrals of 
b

a

dx1 and 
b

a

xdx , that is, the

formula will then also be exact for linear combinations of 1)( xf and xxf )( , that is, for

)()1()( 10 xaaxf  .

21

ab
c




22

ab
c




ax 1

bx 2
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211 ccabdx
b

a

 (15)

bcac
ab

xdx
b

a

21

22

2



 (16)

Solving the above two equations gives

21

ab
c




22

ab
c


 (17)

Hence

)(
2

)(
2

)( bf
ab

af
ab

dxxf
b

a





 (18)

Method 5: Another approach on the Method of Coefficients
The trapezoidal rule can also be derived by the method of coefficients by another approach

)(
2

)(
2

)( bf
ab

af
ab

dxxf
b

a







Assume

)()()( 21 bfcafcdxxf
b

a

 (19)

Let the right hand side be exact for integrals of the form

  
b

a

dxxaa 10

So

 
b

a

b

a

x
axadxxaa 








 2

2

1010

  






 


2

22

10

ab
aaba (20)

But we want

  )()( 2110 bfcafcdxxaa
b

a

 (21)

to give the same result as Equation (20) for xaaxf 10)(  .

     baacaaacdxxaa
b

a

10210110 
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   bcacacca 211210  (22)

Hence from Equations (20) and (22),

     bcacacca
ab

aaba 211210

22

10 2








 


Since 0a and 1a are arbitrary for a general straight line

abcc  21

2

22

21

ab
bcac


 (23)

Again, solving the above two equations (23) gives

21

ab
c




22

ab
c


 (24)

Therefore

)()()( 21 bfcafcdxxf
b

a



)(
2

)(
2

bf
ab

af
ab 




 (25)

Example 1
The vertical distance covered by a rocket from 8t to 30t seconds is given by

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

Use the single segment trapezoidal rule to find the distance covered for 8t to 30t seconds.
Find the true error, tE for part (a).

Find the absolute relative true error for part (a).
Solution

a) 



 


2

)()(
)(

bfaf
abI , where

8a
30b

t
t

tf 8.9
2100140000

140000
ln2000)( 








)8(8.9
)8(2100140000

140000
ln2000)8( 










f

27.177 m/s
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)30(8.9
)30(2100140000

140000
ln2000)30( 










f

67.901 m/s





 


2

67.90127.177
)830(I

11868 m

b) The exact value of the above integral is

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

11061 m
so the true error is
tE True Value – Approximate Value

1186811061
807 m

c) The absolute relative true error, t , would then be

100
ValueTrue

ErrorTrue
t

100
11061

1186811061





%2958.7

Multiple-Segment Trapezoidal Rule
In Example 1, the true error using a single segment trapezoidal rule was large.  We can divide the
interval ]30,8[ into ]19,8[ and ]30,19[ intervals and apply the trapezoidal rule over each
segment.

t
t

tf 8.9
2100140000

140000
ln2000)( 











 
30

19

19

8

30

8

)()()( dttfdttfdttf





 





 


2

)30()19(
)1930(

2

)19()8(
)819(

ffff

27.177)8( f m/s

75.484)19(8.9
)19(2100140000

140000
ln2000)19( 










f m/s

67.901)30( f m/s
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Hence





 





 

 2

67.90175.484
)1930(

2

75.48427.177
)819()(

30

8

dttf

11266 m
The true error, tE is

1126611061tE

205 m
The true error now is reduced from 807 m to 205 m.  Extending this procedure to dividing ],[ ba
into n equal segments and applying the trapezoidal rule over each segment, the sum of the
results obtained for each segment is the approximate value of the integral.
Divide )( ab  into n equal segments as shown in Figure 4.  Then the width of each segment is

n

ab
h


 (26)

The integral I can be broken into h integrals as


b

a

dxxfI )(















b

hna

hna

hna

ha

ha

ha

a

dxxfdxxfdxxfdxxf
)1(

)1(

)2(

2

)()(...)()( (27)

FIGURE 4 Multiple ( 4n ) segment trapezoidal rule

Applying trapezoidal rule Equation (27) on each segment gives

  



 

 2

)()(
)()(

hafaf
ahadxxf

b

a
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  



 


2

)2()(
)()2(

hafhaf
haha

……………      



 


2

))1(())2((
)2()1(

hnafhnaf
hnahna

   



 


2

)())1((
)1(

bfhnaf
hnab





 


2

)()( hafaf
h 



 


2

)2()( hafhaf
h ...................





 


2

))1(())2(( hnafhnaf
h 



 


2

)())1(( bfhnaf
h





 


2

)())1((2...)2(2)(2)( bfhnafhafhafaf
h


















 




)()(2)(
2

1

1

bfihafaf
h n

i





















 




)()(2)(
2

1

1

bfihafaf
n

ab n

i

(28)

Example 2
The vertical distance covered by a rocket from 8t to 30t seconds is given by

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

Use the two-segment trapezoidal rule to find the distance covered from 8t to 30t seconds.
Find the true error, tE for part (a).

Find the absolute relative true error for part (a).
Solution
a) The solution using 2-segment Trapezoidal rule is





















 




)()(2)(
2

1

1

bfihafaf
n

ab
I

n

i

2n
8a
30b

n

ab
h




2

830 




KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: III                      BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 40/55

11





















 




)30()118(2)8(
)2(2

830 12

1

fiffI
i

 )30()19(2)8(
4

22
fff 

 67.901)75.484(227.177
4

22


11266 m

b) The exact value of the above integral is

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

11061 m
so the true error is

 ValueTruetE Approximate Value

1126611061
m205

c) The absolute relative true error, t , would then be

100
ValueTrue

ErrorTrue
t

100
11061

1126611061





%8537.1

TABLE 1 Values obtained using multiple-segment trapezoidal rule for

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x

n Approximate
Value tE %t %a

1 11868 -807 7.296 ---
2 11266 -205 1.853 5.343
3 11153 -91.4 0.8265 1.019
4 11113 -51.5 0.4655 0.3594
5 11094 -33.0 0.2981 0.1669
6 11084 -22.9 0.2070 0.09082
7 11078 -16.8 0.1521 0.05482
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8 11074 -12.9 0.1165 0.03560

Example 3
Use the multiple-segment trapezoidal rule to find the area under the curve

xe

x
xf




1

300
)(

from 0x to 10x .
Solution
Using two segments, we get

5
2

010



h

0
1

)0(300
)0(

0





e
f

039.10
1

)5(300
)5(

5





e
f

136.0
1

)10(300
)10(

10





e
f





















 




)()(2)(
2

1

1

bfihafaf
n

ab
I

n

i





















 




)10()50(2)0(
)2(2

010 12

1

fff
i

 )10()5(2)0(
4

10
fff 

 136.0)039.10(20
4

10
 537.50

So what is the true value of this integral?

59.246
1

30010

0


 dx

e

x
x

Making the absolute relative true error

100
59.246

535.5059.246



t

%506.79
Why is the true value so far away from the approximate values?  Just take a look at Figure 5.  As
you can see, the area under the “trapezoids” (yeah, they really look like triangles now) covers a
small portion of the area under the curve.  As we add more segments, the approximated value
quickly approaches the true value.



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: III                      BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 42/55

FIGURE 5 2-segment trapezoidal rule approximation.

TABLE 2 Values obtained using multiple-segment trapezoidal rule for  
10

0 1

300
dx

e

x
x

.

n Approximate
Value tE t

1 0.681 245.91 99.724%

2 50.535 196.05 79.505%

4 170.61 75.978 30.812%

8 227.04 19.546 7.927%

16 241.70 4.887 1.982%

32 245.37 1.222 0.495%

64 246.28 0.305 0.124%

Example 4:
Use multiple-segment trapezoidal rule to find


2

0

1
dx

x
I

Solution
We cannot use the trapezoidal rule for this integral, as the value of the integrand at 0x is
infinite.  However, it is known that a discontinuity in a curve will not change the area under it.
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We can assume any value for the function at 0x .  The algorithm to define the function so that
we can use the multiple-segment trapezoidal rule is given below.

Function )(xf
If 0x Then 0f
If 0x Then )5.0(^  xf
End Function

Basically, we are just assigning the function a value of zero at 0x .  Everywhere else, the
function is continuous.  This means the true value of our integral will be just that—true.  Let’s
see what happens using the multiple-segment trapezoidal rule.
Using two segments, we get

1
2

02



h

0)0( f

1
1

1
)1( f

70711.0
2

1
)2( f





















 




)()(2)(
2

1

1

bfihafaf
n

ab
I

n

i





















 




)2()10(2)0(
)2(2

02 12

1

fff
i

 )2()1(2)0(
4

2
fff 

 70711.0)1(20
4

2


3536.1
So what is the true value of this integral?

8284.2
12

0

 dx
x

Thus making the absolute relative true error

100
8284.2

3536.18284.2



t

%145.52

TABLE 3 Values obtained using multiple-segment trapezoidal rule for 
2

0

1
dx

x
.
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n Approximate
Value tE t

2 1.354 1.474 52.14%
4 1.792 1.036 36.64%
8 2.097 0.731 25.85%
16 2.312 0.516 18.26%
32 2.463 0.365 12.91%
64 2.570 0.258 9.128%
128 2.646 0.182 6.454%
256 2.699 0.129 4.564%
512 2.737 0.091 3.227%
1024 2.764 0.064 2.282%
2048 2.783 0.045 1.613%
4096 2.796 0.032 1.141%

Error in Multiple-segment Trapezoidal Rule
The true error for a single segment Trapezoidal rule is given by

baf
ab

Et 


  ),("
12

)( 3

Where  is some point in  ba, .
What is the error then in the multiple-segment trapezoidal rule?  It will be simply the sum of the
errors from each segment, where the error in each segment is that of the single segment
trapezoidal rule.  The error in each segment is

 
haaf

aha
E 


 11

3

1 ),("
12

)(


)("
12 1

3

f
h


 
hahaf

haha
E 2),("

12

)()2(
22

3

2 


 

)("
12 2

3

f
h


.

.

.
 

ihahiaf
hiaiha

E iii 


  )1(),("
12

))1(()( 3

)("
12

3

if
h



.
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.

.
    

hnahnaf
hnahna

E nnn )1()2(),("
12

)2()1(
11

3

1 


  

)("
12 1

3

 nf
h



  
bhnaf

hnab
E nnn 


  )1(),("

12

)1( 3

)("
12

3

nf
h



Hence the total error in the multiple-segment trapezoidal rule is





n

i
it EE

1





n

i
if

h

1

3

)("
12









n

i
if

n

ab

1
3

3

)("
12

)(


n

f

n

ab

n

i
i


 1

2

3 )("

12

)(


The term
n

f
n

i
i

1

)(" 
is an approximate average value of the second derivative bxaxf ),(" .

Hence

n

f

n

ab
E

n

i
i

t




 1
2

3 )("

12

)(


In Table 4, the approximate value of the integral

 















30

8

8.9
2100140000

140000
ln2000 dtt

t

is given as a function of the number of segments.  You can visualize that as the number of
segments are doubled, the true error gets approximately quartered.
TABLE 4 Values obtained using multiple-segment trapezoidal rule for

 
















30

8

8.9
2100140000

140000
ln2000 dtt

t
x .
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n Approximate
Value tE %t %a

2 11266 -205 1.853 5.343
4 11113 -52 0.4701 0.3594
8 11074 -13 0.1175 0.03560
16 11065 -4 0.03616 0.00401

For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that error
is -51.25.  That is close to the true error of -48 for the 4-segment trapezoidal rule.

SIMPSON’S 1/3 RULE:
Simpson’s 1/3rd Rule/Formula

In this case the integral is evaluated over two intervals at a time, say [x0, x1] and [x1, x2].
The function f(x) is approximated by a quadratic passing through the points (x0, y0) and (x1,
y1) and
(x2, y2).  From Lagrange’s formula we may write the quadratic as,

0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

(x x )(x x ) (x x )(x x )(x x ) (x x )
y(x) y y y

(x x )(x x ) (x x ) (x x ) (x x ) (x x )

    
  

     
Integrating term by term we get,

22

0 0

xx 2 3
1 2 2 2

12
x x

(x x ) (x x ) (x x ) (x x )1 h
dx (x x )

( h) ( 2h) 2h 2 6 3

    
       


22

0 0

xx 2 3
0 2 2 2

02
x x

(x x ) (x x ) (x x ) (x x )1 4
dx (x x ) h

h ( h) h 2 6 3

    
      


22

0 0

xx 2 3
0 1 1 1

02
2 0 2 1x x

(x x ) (x x ) (x x ) (x x )1 h
dx (x x )

(x x ) (x x ) 2h 2 6 3

    
       


Hence we get,

2 2

0 0

x x

0 1 2

x x

h 4h h
f (x) dx y(x) dx y y y

3 3 3
    

0 1 2

h
(y 4y y )

3
  

Applying this formula over next two intervals and then next two and so on for
n

2
times and

adding we get
n 2 4 n

0 0 2 n 2

x x x xb

a x x x x

f (x) dx y(x) dx y(x) dx y(x) dx . . . y(x) dx


        

0 1 2 2 3 4 n 2 n 1 n

h
[(y 4y y ) (y 4y y ) . . . (y 4y y )]

3           
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0 n 1 3 n 1 2 4 n 2

h
[y y 4(y y . . . y ) 2(y y . . . y )]

3           

Obviously n should be chosen as a multiple of 2 i.e. an even number for applying this
formula.

Example 1:

Evaluate the integral
1

2
0

dx
I

1 x



 by trapezoidal rule dividing the interval [0, 1] into five

equal parts. Compute upto five decimals.
Solution

1 0
n 5; h 0.2

5


  

i 0 1 2 3 4 5

x 0 0.2 0.4 0.6 0.8 1.0

2

1
y=

1+x

1.0 0.98058 0.92848 0.85749 0.78087 0.70711

From Trapezoidal Rule;

0 5 1 2 3 4

h
I [y y 2 (y y y y )]

2
     

0.2
[1.0 0.70711 2(0.98058 0.92848 0.85749 0.78087)]

2
     

0.1 [1.70711 2 3.54742]  
= 0.88016

Example 2:

Evaluate the integral
0.8

0

dx
I

1 x


 by Simpson’s 1/3rd rule dividing the interval [0, 0.8] to

4 equal sub-intervals. Compute up to five places of decimal only.
Solution

0.8 0
n 4; h 0.2

4


  

i 0 1 2 3 4

x 0 0.2 0.4 0.6 0.8

2

1
y=

1+x

1.0 0.91287 0.84515 0.79057 0.74536

From Simpson’s 1/3rd Rule
0.8

0 1 2 2 3 4

0

h
I ydx [(y 4y y ) (y 4y y )]

3
      
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0 4 1 3 2

h
[y y 4 (y y ) 2 y )]

3
     

0.2
[1.0 0.74536 4(0.91287 0.79051) 2 0.84515)]

3
     

0.2
[1.74536 4 1.70344 1.69030]

3
   

= 0.68329
Note : The maximum error in various integration formulas in the evaluation of the integral

b

a

I f (x) dx  is

(i) Rectangular Rule :
(b a)

f ( )
2

  

(ii) Trapezoidal Rule :
2(b a) h

f ( )
12

  

(iii) Simpson’s 1/3rd Rule :
4

iv(b a) h
f ( )

180


 

where x =  is some point in [a, b] for which f (x) or f (x) or (iv)f (x) has maximum
numerical value.

Example 3:
All electrical components, especially off-the-shelf components do not match their nominal value.
Variations in materials and manufacturing as well as operating conditions can affect their value.
Suppose a circuit is designed such that it requires a specific component value, how confident can
we be that the variation in the component value will result in acceptable circuit behavior? To
solve this problem a probability density function is needed to be integrated to determine the
confidence interval.  For an oscillator to have its frequency within 5% of the target of 1 kHz, the
likelihood of this happening can then be determined by finding the total area under the normal
distribution for the range in question:

  dxe
x

2

9.2

15.2

2

2

1
1









a) Use Simpson’s 1/3 Rule to find the frequency.
b) Find the true error, tE , for part (a).

c) Find the absolute relative true error, t , for part (a).

SOLUTION

a)   













 


 )(

2
4)(

6
1 bf

ba
faf

ab


15.2a
9.2b
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37500.0
2


 ba

2

2

2

1
)(

x

exf





 
 

2

15.2 2

2

1
15.2




 ef


039550.0

 
 

2

9.2 2

2

1
9.2


 ef


0059525.0

 
 

2

375.0 2

2

1
375.0


 ef


37186.0

  













 


 )(

2
4)(

6
1 bf

ba
faf

ab


        9.237500.0415.2
6

15.29.2(
fff 






 


  0059525.037186.04039550.0
6

05.5









2902.1
b)  The exact value of the above integral cannot be found. For calculating the true error and
relative true error, we assume the value obtained by adaptive numerical integration using Maple
as the exact value.

  dxe
x

2

9.2

15.2

2

2

1
1









98236.0
So the true error is

ValueeApproximatValueTrueEt 
2902.198236.0 

30785.0
Absolute Relative true error,

%100
ValueTrue

ErrorTrue
t

%100
98236.0

30785.0





%338.31
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Example 4:
All electrical components, especially off-the-shelf components do not match their nominal value.
Variations in materials and manufacturing as well as operating conditions can affect their value.
Suppose a circuit is designed such that it requires a specific component value, how confident can
we be that the variation in the component value will result in acceptable circuit behavior? To
solve this problem a probability density function is needed to be integrated to determine the
confidence interval.  For an oscillator to have its frequency within 5% of the target of 1 kHz, the
likelihood of this happening can then be determined by finding the total area under the normal
distribution for the range in question:
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a) Use four segment Simpson’s 1/3 Rule to find the frequency.
b) Find the true error, tE , for part (a).

c) Find the absolute relative true error for part (a).
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  0059525.0)37186.0(2)10439.0(4)26907.0(403955.0
12

05.5


96079.0

b)  The exact value of the above integral cannot be found. For calculating the true error and
relative true error, we assume the value obtained by adaptive numerical integration using Maple
as the exact value.
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98236.0
So the true error is

ValueeApproximatValueTrueEt 
96079.098236.0 

021568.0
c) The absolute relative true error, t , would then be

%100
ValueTrue

ErrorTrue
t

%100
98236.0

021568.0


%1955.2

TABLE 1 Values of Simpson’s 1/3 Rule for Example 2 with multiple segments.
n Approximate Value

tE
t %

2
4
6
8

10

1.2902
0.96079
0.98168
0.98212
0.98226

0.30785
0.021568

0.00068166
0.00023561

0.000092440

31.338
2.1955

0.069391
0.023984

0.0094101

SIMPSON’S 3/8 RULE:
Putting n = 3 in Newton – cotes formula

= (y0+yn) + 3(y1+ y2+y4+y5+….+yn-1)+2(y3+

y6+y9+….+yn)        …..(2)

Equation (2) is called Simpson’s three – eighths rule which is applicable only when n is a
multiple of 3.Truncation error in simpson’s rule is of the order h

Example:
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Evaluate ∫ dx by using (1) trapezoidal rule (2)simpson’s rule. Verify your results by
actual integration.

Solution.

Here y(x) = x4. Interval length(b – a) = 6. So, we divide 6 equal intervals with h = = 1.

We form below the table
x -3 -2 -1 0 1 2 3

y 81 16 1 0 1 16 81

(i) By trapezoidal rule:∫ = [(sum of the first and the last ordinates) +

2(sum of the remaining ordinates)]

= [(81+81)+2(16+1+0+1+16)]

=115
(ii) By simpson’s one - third rule (since number of ordinates is odd):∫ = [(81+81) + 2(1+1) + 4(16+0+16)]

= 98.
(iii) Since n = 6, (multiple of three), we can also use simpson’s  three - eighths rule. By this
rule,∫ = [(81+81) + 3(16+1+1+16) + 2(0)]

= 99
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OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
By putting n = 3 in Newton cote’s formula we get ----------- rule.  Simpson’s 1/3 rule Simpson’s ⅜ rule  Trapezoidal rule weddles Simpson’s ⅜ rule
By putting n = 2 in Newton cote’s formula we get ----------- rule. Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles Simpson’s 1/3 rule
I = h/2 [y0 + 2(y1 + y2 + y3 +……….+ yn – 1) + yn] is known as ------------- rule.  Simpson’s 1/3 Simpson’s ⅜ Trapezoidal Romberg Trapezoidal

By putting n = 1 in Newton cote’s formula we get ----------- rule.  Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles Trapezoidal rule
I = (3h / 8) { (y0 + yn) + 3 (y1 + y2 + y4 + y5 + .….)+2(y3 + y6 + y9 + ..…) } is
known as ------------------.

 Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles Simpson’s ⅜ rule

I = (h / 3) { (y0 + yn) + 2 (y2+ y4 + y6 + y8 + .….)+ 4(y1 + y3 + y5 + ..…) } is known as ------------------.  Simpson’s 1/3 rule  Simpson’s ⅜ rule  Trapezoidal rule weddles  Simpson’s 1/3 rule

If the given integral is approximated by the sum of ‘n’ trapezoids, then the
rule is called as ----------------.

Newton’s method Trapezoidal rule Simpson’s rule weddles Trapezoidal rule

Simpson’s rule is exact for a ----------------- even though it was derived for a Cubic less than cubic  linear  quadratic  linear

Simpson’s ⅜ rule can be applied only if the number of sub interval is in ------
.

 Equal  even multiple of three  unequal. multiple of three

 Simpson’s one-third rule on numerical integration is called a ---------
formula.

 Closed open  semi closed  semi opened  Closed

While evaluating the definite integral by Trapezoidal rule, the accuracy can
be increased by taking

large number of sub-
intervals

even number of sub
intervals

h=4 has a multiple of 3 large number of
sub-intervals

In application of Simpson's 1/3 rule the interval for closer approximation
should be

even small odd even and small even

Numerical integration when applied to a function of a single variable, it is
known as

maxima minima quadrature quadrant quadrature

Two point Gaussian Quadrature formula is exact for polynomial uo to degree 3 5 2 4 3

Three point Gaussian quadrature formula is exact for polynomial up to
degree

1 4 3 5 5

The two-segment trapezoidal rule of integration is exact for integrating at
most _____ order polynomials

first second third fourth first

The highest order of polynomial integrand for which simpson's 1/3 rule of
integration is exact is ___

first second third fourth third

While applying Simpsons 3/8 rule the number of subintervals should be odd 8 even multiple of 3 multiple of 3
Trapezoidal and simpson's rules can be used to evaluate double integrals differentiation multiple integrals divided difference multiple integrals
The value of integral ex is evaluated from 0 to 0.4 by the following formula.
Which method will give the least error?

Trapezoidal rule with
h=0.2

Trapezoidal rule with
h=0.1

Simpson’s 1/3 rule
with h=0.1

Simpson’s 1/3 rule
with h=0.2

Simpson’s 1/3 rule
with h=0.1

The results obtained by using Simpsons rule will be greater than those
obtained by using the trapezoidal rule

in all the cases provided the intervals
are small

provided the
boundary is concave
towards the base lin

provided the
boundary is convex
towards the base line

provided the
boundary is convex
towards the base
line

If the determinant of coefficients is not very small, Gaussian elimination gives no solution gives incorrect solution gives solution sometime give
solution

gives solution

Using the trapezoidal rule, what is the area under the curve y =√x from x = 1
to x = 3, using 4 subintervals

2.61 2.793 2.797 2.8 2.793

If four equal subdivisions of [– 2, 6] are used, what is the trapezoidal
approximation of ∫ln( x2+1)dx  ?

4ln5 + 2 ln17 2ln5 + 2 ln 17 + 2 ln 37 3 ln 5 + 2 ln 17 + ln
37

6 ln 5 + 3 ln 17 + 2
ln 37

3 ln 5 + 2 ln 17 + ln
37

Using the trapezoidal rule, what is the area under the curve  y= 2x- x2 from x
= 1 to x = 2, using 4 subintervals?

0.53125 0.65625 0.66667 0.67187 0.65625

Using the trapezoidal rule, what is the area under the curve y = sinx from x =
0 to x = π , using 4 subintervals?

1.896 1.948 2 2.052 1.896

Using the trapezoidal rule, what is the area under the curve  y=x2+ x  from x
= 0 to x = 3, using 6 subintervals?

10.625 13.4375 13.5 13.625 13.625

What is an approximation for the area under the curve y =3/1+x2 on the
interval [0, 3] using the trapezoidal rule with 5 subintervals?

2.932 3.742 3.747 3.75 3.742

What is an approximation for the area under the curve  y =1/x on the interval
[2, 5] using the trapezoidal rule with 9 subintervals?

0.868 0.915 0.916 0.918 0.918

The formula using (2n) coefficients polynomial of degree (2n-1) is called as Gauss-Legendre
quadrature formula

trapexoidal formul weddle's rule taylor's rule Gauss-Legendre
quadrature formula

In simpson's one third rule y(x) is a polynomial of degree 1 2 3 4 2
In simpson's one third rule the number of ordinates must be even odd even or odd 0 odd

In simpson's three-eigth rule y(x) is a polynomial of degree 1 2 3 4 3

In Weddle's rule y(x) is a polynomial of degree 2 4 6 8 6
In Weddle's rule the number of ordinates must be 2 4 6 7 7
While applying Weddle's rule the number of intervals should be even multiple of 6 multiple of three odd multiple of 6
If there are only 7 ordinatesin weddle's rule the coefficients are 1,5,1,6,1,5,1 1,6,1,5,1,5,1 5,1,6,1,5,1 1,5,1,6,1 1,5,1,6,1,5,1
The coefficients of first group in weddle's rule is 1,5,1,6,1,5 5,1,6,1,5 1,5,1,5 1,1,6,1,5 1,5,1,6,1,5
In weddle's rule the coefficients may be remembered in groups of 2 3 6 9 6
h2 is the order of error in _____ Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles Trapezoidal rule
The order of error in simpsons 1/3 rule is h h2 h3 h4 h4
The accuracy of the result can be increased by ___ repetition number of intervals step-by step 0 number of intervals
The accuracy of the result can be increased by ___ decreasing the value of h increasing the value of

h
repetition step-by step decreasing the

value of h

UNIT III
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Though y2 has suffix evven, it is _________ ordinate first second third fourth third
Which rule is applicable only when n is a multiple of 3?  Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles Simpson’s ⅜ rule
By putting n = 6 in Newton cote’s formula we get ----------- rule.  Simpson’s 1/3 rule Simpson’s ⅜ rule Trapezoidal rule weddles weddles
The approximate value of ∫0^1=dx/1+x^2 loge2 π e log102 π
Interpolating polynomial is also called as _______ collocation polynomial smoothing function extrpolation interpolating formula collocation

polynomial
In Newton’s forward interpolation formula, the first _________ terms will
give the linear interpolation

2 3 4 5 2

In Newton’s forward interpolation formula, the ________terms will give the
parabolic interpolation

2 3 4 5 3

The elimination of the unknowns is done not only in the equations below, but
also in the equations above the leading diagonal is called ------------.

 Gauss elimination Gauss Jordan  Gauss Jacobi Gauss Seidal Gauss Jordan

In Gauss Jordan method, we get the solution ---------------------. without using back
substitution method

by using back
substitution method

by using forward
substitution method

without using
forward substitution
method

without using back
substitution method

If the coefficient matrix is diagonally dominant, then ---------- method
converges quickly.

 Gauss elimination Gauss Jordan  direct  Gauss Seidal  Gauss Seidal

Which is the condition to apply Jocobi’s method to solve a system of
equations.

 First row is dominant  First column is
dominant

 Diagonally
dominant

upper triangular
matrix

 Diagonally
dominant

Iterative method is a ------------ method.  Direct indirect step by step difficult indirect
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UNIT-IV

SYLLABUS

Arithmetic mean - Median - Quartiles - Deciles - Percentiles - Mode - Empirical relation between
mean, median and mode - Geometric mean, harmonic mean - Relation between arithmetic mean,
geometric mean and harmonic mean - Range - Range meanor average deviation - Standard
deviation - Variance and mean square deviation.

ARITHMETIC MEAN:
The arithmetic mean of a set of values is the quantity commonly called "the" mean or the
average. Given a set of samples , the arithmetic mean is

(1)

It can be computed in the Wolfram Language using Mean[list].
The arithmetic mean is the special case of the power mean and is one of the Pythagorean
means.
When viewed as an estimator for the mean of the underlying distribution (known as
the population mean), the arithmetic mean of a sample is called the sample mean.
For a continuous distribution function, the arithmetic mean of the population, denoted , , ,
or and called the population mean of the distribution, is given by

(2)

where is the expectation value. Similarly, for a discrete distribution,

(3)

The arithmetic mean satisfies
(4)
(5)

and
(6)

if and are independent statistics. The "sample mean," which is the mean estimated from a
statistical sample, is an unbiased estimator for the population mean.
Hoehn and Niven (1985) show that

(7)
for any constant . For positive arguments, the arithmetic mean satisfies

(8)
where is the geometric mean and is the harmonic mean (Hardy et al. 1952, Mitrinović 1970,
Beckenbach and Bellman 1983, Bullen et al. 1988, Mitrinović et al. 1993, Alzer 1996). This can
be shown as follows. For ,
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(9)

(10)

(11)

(12)

(13)
with equality iff . To show the second part of the inequality,

(14)

(15)

(16)
with equality iff . Combining (◇) and (◇) then gives (◇).
Given independent random normally distributed variates , each with population

mean and variance ,

(17)

(18)

(19)

(20)

(21)

(22)
so the sample mean is an unbiased estimator of the population mean. However, the distribution
of depends on the sample size. For large samples, is approximately normal. For small
samples, Student's t-distribution should be used.
The variance of the sample mean is independent of the distribution, and is given by

(23)
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(24)

(25)

(26)

(27)

For small samples, the sample mean is a more efficient estimator of the population mean than
the statistical median, and approximately less (Kenney and Keeping 1962, p. 211). Here, an
estimator of a parameter of a probability distribution is said to be more efficient than another one
if it has a smaller variance. In this case, the variance of the sample mean is generally less than the
variance of the sample median. The relative efficiency of two estimators is the ratio of this
variance.
A general expression that often holds approximately is

(28)

MEAN, MEDIAN, MODE AND RANGE:
Mean, median, and mode are three kinds of "averages". There are many "averages" in statistics,
but these are, I think, the three most common, and are certainly the three you are most likely to
encounter in your pre-statistics courses, if the topic comes up at all.
The "mean" is the "average" you're used to, where you add up all the numbers and then divide by
the number of numbers. The "median" is the "middle" value in the list of numbers. To find the
median, your numbers have to be listed in numerical order from smallest to largest, so you may
have to rewrite your list before you can find the median. The "mode" is the value that occurs
most often. If no number in the list is repeated, then there is no mode for the list.
The "range" of a list a numbers is just the difference between the largest and smallest values.

Example:
Find the mean, median, mode, and range for the following list of values:
13, 18, 13, 14, 13, 16, 14, 21, 13
The mean is the usual average, so I'll add and then divide:
(13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) ÷ 9 = 15
Note that the mean, in this case, isn't a value from the original list. This is a common result. You
should not assume that your mean will be one of your original numbers.
The median is the middle value, so first I'll have to rewrite the list in numerical order:
13, 13, 13, 13, 14, 14, 16, 18, 21
There are nine numbers in the list, so the middle one will be the (9 + 1) ÷ 2 = 10 ÷ 2 = 5th
number:
13, 13, 13, 13, 14, 14, 16, 18, 21
So the median is 14.
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The mode is the number that is repeated more often than any other, so 13 is the mode.
The largest value in the list is 21, and the smallest is 13, so the range is 21 – 13 = 8.
mean: 15
median: 14
mode: 13
range: 8

Note: The formula for the place to find the median is "([the number of data points] + 1) ÷ 2", but
you don't have to use this formula. You can just count in from both ends of the list until you meet
in the middle, if you prefer, especially if your list is short. Either way will work.

Example:
Find the mean, median, mode, and range for the following list of values:
1, 2, 4, 7
The mean is the usual average:
(1 + 2 + 4 + 7) ÷ 4 = 14 ÷ 4 = 3.5
The median is the middle number. In this example, the numbers are already listed in numerical
order, so I don't have to rewrite the list. But there is no "middle" number, because there are an
even number of numbers. Because of this, the median of the list will be the mean (that is, the
usual average) of the middle two values within the list. The middle two numbers are 2 and 4, so:
(2 + 4) ÷ 2 = 6 ÷ 2 = 3
So the median of this list is 3, a value that isn't in the list at all.
The mode is the number that is repeated most often, but all the numbers in this list appear only
once, so there is no mode.
The largest value in the list is 7, the smallest is 1, and their difference is 6, so the range is 6.
mean: 3.5
median: 3
mode: none
range: 6
The values in the list above were all whole numbers, but the mean of the list was a decimal value.
Getting a decimal value for the mean (or for the median, if you have an even number of data
points) is perfectly okay; don't round your answers to try to match the format of the other
numbers.

Example:
Find the mean, median, mode, and range for the following list of values:
8, 9, 10, 10, 10, 11, 11, 11, 12, 13
The mean is the usual average, so I'll add up and then divide:
(8 + 9 + 10 + 10 + 10 + 11 + 11 + 11 + 12 + 13) ÷ 10 = 105 ÷ 10 = 10.5
The median is the middle value. In a list of ten values, that will be the (10 + 1) ÷ 2 = 5.5-th value;
the formula is reminding me, with that "point-five", that I'll need to average the fifth and sixth
numbers to find the median. The fifth and sixth numbers are the last 10 and the first 11, so:
(10 + 11) ÷ 2 = 21 ÷ 2 = 10.5
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The mode is the number repeated most often. This list has two values that are repeated three
times; namely, 10 and 11, each repeated three times.
The largest value is 13 and the smallest is 8, so the range is 13 – 8 = 5.
mean: 10.5
median: 10.5
modes: 10 and 11
range: 5
As you can see, it is possible for two of the averages (the mean and the median, in this case) to
have the same value. But this is not usual, and you should not expect it.

Example:
A student has gotten the following grades on his tests: 87, 95, 76, and 88. He wants an 85 or
better overall. What is the minimum grade he must get on the last test in order to achieve that
average?
The minimum grade is what I need to find. To find the average of all his grades (the known ones,
plus the unknown one), I have to add up all the grades, and then divide by the number of grades.
Since I don't have a score for the last test yet, I'll use a variable to stand for this unknown value:
"x". Then computation to find the desired average is:
(87 + 95 + 76 + 88 + x) ÷ 5 = 85
Multiplying through by 5 and simplifying, I get:
87 + 95 + 76 + 88 + x = 425
346 + x = 425
x = 79
He needs to get at least a 79 on the last test.

QUARTILES:
Quartiles are values that divide a sample of data into four equal parts. With them you can quickly
evaluate a data set's spread and central tendency, which are important first steps in understanding
your data.

Quartile Description

1st quartile (Q1) 25% of the data are less than or equal to this value.

2nd quartile
(Q2)

The median. 50% of the data are less than or equal to this value.

3rd quartile
(Q3)

75% of the data are less than or equal to this value.

Interquartile
range

The distance between the 1st and 3rd quartiles (Q3-Q1); thus, it spans
the middle 50% of the data.

For example, for the following data: 7, 9, 16, 36, 39, 45, 45, 46, 48, 51
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Q1 = 14.25
Q2 (median) = 42
Q3 = 46.50
Interquartile range = 14.25 to 46.50, or 32.25
Note:
Quartiles are calculated values, not observations in the data. It is often necessary to interpolate
between two observations to calculate a quartile accurately.
Because they are not affected by extreme observations, the median and interquartile range are a
better measure of central tendency and spread for highly skewed data than are the mean and
standard deviation.

DECILES:
Deciles are the partition values which divide the set of observations into ten equal parts. There
are nine deciles: D1,D2,D3,…,D9D1,D2,D3,…,D9. The first decile is D1D1, which is a point
which has 10% of the observations below it.

D1=Value of (n+110)thitem
D2=Value of 2(n+110)thitem
D3=Value of 3(n+110)thitem⋮
D9=Value of 9(n+110)thitem
Quartile for a Frequency Distribution (Discrete Data)

D1=Value of (n+110)thitem(n=∑f)
D2=Value of 2(n+110)thitem
D3=Value of 3(n+110)thitem⋮
D9=Value of 9(n+110)thitem
Quartile for Grouped Frequency Distribution
D1 = l+hf(n10−c) (n=∑f)
D2=l+hf(2n10−c)
D3=l+hf(3n10−c)⋮
D9=l+hf(9n10−c)D1 = l+hf(n10−c) (n=∑f)D2=l+hf(2n10−c)D3=l+hf(3n10−c)⋮D9=l+hf(9n10−c)

PERCENTILES:
Percentiles are the points which divide the set of observations into one hundred equal parts.
These points are denoted by P1,P2,P3,…,P99P1,P2,P3,…,P99, and are called the first, second,
third... ninety ninth percentile. The percentiles are calculated for a very large number of
observations like workers in factories and the populations in provinces or countries. Percentiles
are usually calculated for grouped data. The first percentile denoted by P1P1 is calculated
as P1=Value of (n100)thitemP1=Value of (n100)thitem. We find the group in which
the (n100)th(n100)th item lies and then P1P1 is interpolated from the formula.
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P1 = l+hf(n100−c) (n=∑f)
P2=l+hf(2n100−c)
P3=l+hf(3n100−c)⋮
P99=l+hf(99n100−c)

GEOMETRIC MEAN:
The geometric mean of a sequence is defined by

(1)

Thus,
(2)
(3)

and so on.
The geometric mean of a list of numbers may be computed using GeometricMean[list] in
the Wolfram Languagepackage DescriptiveStatistics` .
For , the geometric mean is related to the arithmetic mean and harmonic mean by

(4)
(Havil 2003, p. 120).
The geometric mean is the special case of the power mean and is one of the Pythagorean
means.
Hoehn and Niven (1985) show that

(5)
for any positive constant .

HARMONIC MEAN:
The harmonic mean of numbers (where , ..., ) is the number defined
by

(1)

The harmonic mean of a list of numbers may be computed in the Wolfram
Language using HarmonicMean[list].
The special cases of and are therefore given by

(2)

(3)

and so on.
The harmonic means of the integers from 1 to for , 2, ... are 1, 4/3, 18/11, 48/25, 300/137,
120/49, 980/363, ... (OEIS A102928 and A001008).
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For , the harmonic mean is related to the arithmetic mean and geometric mean by

(4)

The harmonic mean is the special case of the power mean and is one of the Pythagorean
means. In older literature, it is sometimes called the subcontrary mean.
The volume-to-surface area ratio for a cylindrical container with height and radius and
the mean curvature of a general surface are related to the harmonic mean.
Hoehn and Niven (1985) show that

(5)
for any positive constant c .

RELATION BETWEEN ARITHMETIC MEAN, GEOMETRIC MEAN AND
HARMONIC MEAN:
For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic
progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is
called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship
between the three is given by the formula

AM×HM=GM2AM×HM=GM2

Below is the derivation of this relationship.
Derivation of AM × HM = GM2
Arithmetic mean:
x,AM,yx,AM,y → arithmetic progression

Taking the common difference of arithmetic progression,
AM−x=y−AMAM−x=y−AM
x+y=2AMx+y=2AM → Equation (1)

Geometric Progression
x,GM,yx,GM,y → geometric progression

The common ratio of this geometric progression is
GMx=yGMGMx=yGM
xy=GM2xy=GM2 → Equation (2)

Harmonic Progression
x,HM,yx,HM,y → harmonic progression
1x,1HM,1y1x,1HM,1y → the reciprocal of each term will form an arithmetic progression

The common difference is
1HM−1x=1y−1HM1HM−1x=1y−1HM



KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS IICOURSE CODE: 18PHU203 UNIT: IV BATCH-2018-2021

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHYSICS, KAHE. Page 9/10

2HM=1y+1x2HM=1y+1x
2HM=x+yxy2HM=x+yxy → Equation (3)

Substitute x + y = 2AM from Equation (1) and xy = GM2 from Equation (2) to Equation (3)
2HM=2AMGM22HM=2AMGM2
GM2=AM×HMGM2=AM×HM

Range mean or average deviation , Standard deviation , Variance and mean square deviation:
Mean is a measure of central tendency. It measures what the majority of the data are doing
toward the middle of a set. The mean is often referred to as the average of a data set. As an
example, an algebra class has 10 students. Their grades on the last test were 85, 90, 87, 93, 100,
53, 78, 85, 99 and 82. What is the average grade for the students? To find mean, simply add all
the numbers in a data set and divide by the number of items in the set:
85 + 90 + 87 + 93 + 100 + 53 + 78 + 85 + 99 + 82 = 852 852 / 10 = 85.2
The average, or mean, test grade in the class is 85.2.
Mode Occurs Most
Mode is another measure of central tendency. The mode is just the number that occurs most
frequently. It's easy to remember because mode and most sound alike. Using the algebra class
example, what grade occurred most frequently among the students? To answer, put the values in
order:
53, 78, 82, 85, 85, 87, 90, 93, 99, 100
The only grade that occurred more than once is 85. Since 85 occurred most, the mode is 85.
Median Is the Middle, Range Is the Spread
Median is another measure of central tendency. The median is simply the middlenumber of a set.
Put the numbers in order and look for one in the middle. If there is no middle number, add the
two in the center and divide by 2. In the algebra class example, what is the median grade? To
answer, put the values in order:
53, 78, 82, 85, 85, 87, 90, 93, 99, 100
Since there are an even number of test grades, there is no middle number. The two test grades in
the middle are 85 and 87. Add them and divide by 2:
85 + 87 = 172 172 / 2 = 86
The median, or middle grade, is 86.
Range is a quick calculation. Range is simply the largest value minus the smallest. It shows you
how spread out the numbers are. For these grades, subtract 53 from 100 to get the range of 47.

STANDARD DEVIATION:
Standard deviation is the square root of the variance, so you must find the variance
first. Variance is the average of the squared difference of each number from the mean. That may
sound confusing, but it's pretty simple to do. Take each number in the set and subtract if from the
mean. Then square it. Add those values together, and divide by the number of items in your set.
Working with the algebra class grades again, subtract each one from the mean:
85.2 - 53 = 32.2 85.2 - 78 = 7.2 85.2 - 82 = 3.2 85.2 - 85 = 0.2 85.2 - 85 = 0.2 85.2 - 87 = -1.8
85.2 - 90 = -4.8 85.2 - 93 = -7.8 85.2 - 99 = -13.8 85.2 - 100 = 14.8
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Square each of those values, then add them together:
1,036.84 + 51.84 + 10.24 + 0.04 + 0.04 + 3.24 + 23.04 + 60.84 + 190.44 + 219.04 = 1,595.6
Finally, divide that sum by the number of items in the set, in this case 10:
1,595.6 / 10 = 159.56
The variance for this data set is 159.56.
Standard Deviation Measures Spread
Standard deviation is the measure of how spread out the numbers are from the center of a data
set. A small standard deviation means a lot of the numbers are grouped around the middle of the
set. A large standard deviation means that the number are spread out with some very high and
low numbers. With the algebra grades, use this equation:
square root (159.56) = 12.63
The standard deviation for this data set is 12.63.



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
Arithmetic mean between a and 10 is 30, value of ‘a’ should be 60 34 56 50 50
hree arithmetic means between 11 and 19 are 12, 14, 15 13, 15, 17 13, 14, 15 14, 15, 17 13, 15, 17
Arithmetic mean between √5 and 3√5 is 2√5 4√5 √5 5 2√5
rithmetic mean between −4 and 12 is 5 4 -4 3 -4
Arithmetic mean between x -1 and x + 7 is X+4 X-3 X+3 X-4 X+3
he mean of eight numbers is 25. If five is subtracted from each number, what
will be the new mean? 

30 29 67 20 20

The mean of 14 numbers is 6. If 3 is added to every number, what will be the
new mean?

8 9 7 6 9

The heights of five runners are 160 cm, 137 cm, 149 cm, 153 cm and 161
cm respectively. Find the mean height per runner.

152 153 156 123 152

Find the mean of the first five prime numbers.  8.9 6.5 5.6 3.7 5.6
 Find the arithmetic mean of the first 7 natural numbers. 5 6 7 4 4
Find the mean of the first six multiples of 4. 12 13 14 15 14
If the mean of 9, 8, 10, x, 12 is 15, find the value of x. 23 36 45 63 36
he mean of 40 numbers was found to be 38. Later on, it was detected that a
number 56 was misread as 36. Find the correct mean of given numbers.

45 36 38.5 43 38.5

Median of 7, 6, 4, 8, 2, 5, 11 is 6 12 11 4 6
Number which occurs most frequently in a set of numbers is mean median mode none of the above mode
Mode of 12, 17, 16, 14, 13, 16, 11, 14 is 13 11 14 14 and 16 14 and 16
 If mean of 6 numbers is 41 then sum of these numbers is 250 246 134 456 246
If mean of 6 numbers is 17 then sum of numbers is 102 103 150 120 102
Difference of mode and mean is equal to 3(mean-median) 2(mean-median) 3(mean-mode) 2(mode mean) 3(mean-median)
If mean is 11 and median is 13 then value of mode is 15 13 11 17 17
Distribution in which values of median, mean and mode are not equal is
considered as

experimental distribution asymmetrical
distribution

symmetrical
distribution

exploratory
distribution

asymmetrical
distribution

If value of three measures of central tendencies median, mean and mode then
distribution is considered as

negatively skewed modal triangular model unimodel bimodel unimodel

If value of mode is 14 and value of arithmetic mean is 5 then value of median
is

12 18 8 14 8

The mean of a distribution is 14 and the standard deviation is 5. What is the
value of the coecient of variation?

60.40% 48.30% 35.70% 27.80% 35.70%

Most frequent observation in a data set is called mode median mode range mode
Summary statistics which measure middle or center of data are called logarithms measures of central

tendency
measures of
dispersion

proportions measures of central
tendency

Sum of deviations of values from their mean is always 0 1 2 3 0
Average of all observations in a set of data is known as mean mode range median mean
Median in set 6, 4, 2, 3, 4, 5, 5, 4 would be 3 4 5 6 4
 Find the median of the set of numbers: 1,2,3,4,5,6,7,8,9 and 10. 55 10 1 5.5 5.5
Find the median of the set of numbers:  21, 3, 7, 17, 19, 31, 46, 20 and 43. 19 20 3 167 20

Find the median of the set of numbers:  100, 200, 450, 29, 1029, 300 and
2001.

300 29 7 4080 300

The following represents age distribution of students in an elementary class.
Find the mode of the values: 7, 9, 10, 13, 11, 7, 9, 19, 12, 11, 9, 7, 9, 10, 11.

7 9 10 11 9

Find the mode from these test results: 90, 80, 77, 86, 90, 91, 77, 66, 69, 65,
43, 65, 75, 43, 90.

43 77 65 90 90

 Find the mode from these test results: 17, 19, 18, 17, 18, 19, 11, 17, 16, 19,
15, 15, 15, 17, 13, 11.

15 11 17 19 17

 Find the mean of these set of numbers: 100, 1050, 320, 600 and 150. 333 444 440 320 444
The following numbers represent the ages of people on a bus: 3, 6, 27, 13, 6,
8, 12, 20, 5, 10. Calculate their mean of their ages.

11 6 9 110 11

These numbers are taken from the number of people that attended a
particular church every Friday for 7 weeks: 62, 18, 39, 13, 16, 37, 25. Find
the mean.

25 210 62 30 30

Median, mode, deciles and percentiles are all considered as measures of mathematical averages population averages sample averages averages of position averages of
position

Quartiles, median, percentiles and deciles are measures of central tendency
classified as

paired average deviation averages positioned averages central averages positioned averages

According to percentiles, median to be measured must lie in 80th 40th 50th 100th 50th

Percentile and moment system are two groups of skewness measures central tendencies
measures

quartile measures percentile measures central tendencies
measures

Harmonic mean, arithmetic mean and geometric mean are all considered as mathematical averages population averages sample averages averages of position mathematical
averages

If arithmetic mean is 25 and harmonic mean is 15 then geometric mean is 17.36 16.36 15.36 19.36 19.36
Manner in which geometric mean, harmonic mean and arithmetic mean are
related is as

A.M>G.M>H.M A.M>G.M<H.M A.M<G.M<H.M A.M<G.M>H.M A.M>G.M>H.M

For individual observations, reciprocal of arithmetic mean is called geometric mean harmonic mean deviation square
mean

paired mean harmonic mean

If arithmetic mean is 20 and harmonic mean is 30 then geometric mean is 14.94 24.94 34.94 44.94 24.94
Value of Σfd is 250, A= 25, number of observations are 12 and width of
class interval is 6 then arithmetic mean is

25 250 150 275 150

In measures of skewness, absolute skewness is equal to mean+mode mean-mode mean+median mean-median mean-mode
 In a negative skewed distribution, order of mean, median and mode is as mean<median>mode mean>median>mode mean<median<mod

e
mean>median<mode mean<median<mo

de
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SYLLABUS

Partial Differential Equations: Solutions to partial differential equations, using separation of

variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry.

Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular

membranes. Diffusion Equation.

An Introduction

A partial differential equation (PDE) is an equation involving an unknown function u of

two or more variables and some or all of its partial derivatives. The partial differential equation is

usually a mathematical representation of problems arising in nature, around us. The process of

understanding physical systems can be divided in to three stages:

(i) Modelling the problem or deriving the mathematical equation (in our case it would be

formulating PDE). The derivation process is usually a result of conservation laws or balancing

forces.

(ii) Solving the equation (PDE). What do we mean by a solution of the PDE?

(iii) Studying properties of the solution. Usually, we do not end up with a definite formula

for the solution. Thus, how much information about the solution can one extract without any

knowledge of the formula?

Definitions

Recall that the ordinary differential equations (ODE) dealt with functions of one variable,

u : Ω ⊂ R → R. The subset Ω could have the interval form (a, b). The derivative of u at x ∈ Ω is

defined as
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provided the limit exists. The derivative gives the slope of the tangent line at x ∈ Ω. How to

generalise this notion of derivative to a function u : Ω ⊂ R n → R These concepts are introduced

in a course on multi-variable calculus. However, we shall jump directly to concepts necessary for

us to begin this course.

Let Ω be an open subset of R n and let u : Ω → R be a given function. We denote the

directional derivative of u at x ∈ Ω, along a vector ξ ∈ R n , as

provided the limit exists. The directional derivative of u at x ∈ Ω, along the standard basis vectors

ei = (0, 0, . . . , 1, 0, . . . , 0) is called the i-th partial derivative of u at x and is given as

The order of the PDE is the order of the highest (partial) differential coefficient in the

equation.

As with ordinary differential equations (ODEs) it is important to be able to distinguish

between linear and nonlinear equations.

A linear equation is one in which the equation and any boundary or initial conditions do

not include any product of the dependent variables or their derivatives; an equation that is not

linear is a nonlinear equation.
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A nonlinear equation is semilinear if the coefficients of the highest derivative are functions

of the independent variables only.

A nonlinear PDE of order m is quasilinear if it is linear in the derivatives of order m with

coefficients depending only on x, y, . . . and derivatives of order < m.

Principle of superposition:

A linear equation has the useful property that if u1 and u2 both satisfy the equation then so

does αu1 + βu2 for any α, β ∈ R. This is often used in constructing solutions to linear equations (for

example, so as to satisfy boundary or initial conditions; c.f. Fourier series methods). This is not

true for nonlinear equations, which helps to make this sort of equations more interesting, but much

more difficult to deal with.
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Wave Equations

Waves on a string, sound waves, waves on stretch membranes, electromagnetic waves, etc.,

or more generally

where c is a constant (wave speed).

PARTIAL DIFFERENTIAL EQUATIONS:

Method of Separation of Variables for Solving partial Differential Equations

Method of separation of variables is a powerful method for solving partial differential

equations of the type

GFu
y
uE

x
uD

y
uC

yx
uB

x
uA 2

22

2

2





















(1)

under certain situations.

The basic idea of this method is to transform a partial differential equation into as many

differential equations as the  number of independent variables in the partial differential equation

by representing the solution as a product of functions of each independent variable. After these

ordinary differential equations are solved, the method reduces to solving eigenvalue problems and

constructing the general solution as an eigenfunction expansion, where the coefficients are

evaluated by using the boundary and initial conditions.

Let u (x,y) = X(x) Y(y)

(2) be a solution of (1) then (1) may be written in the form

YDg
yY

XDf
xX yx )(

)(

1
)(

)(

1
 (3)
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where f(Dx), g(Dy)  are quadratic functions of Dx=
x


and Dy =
y


respectively. In this

situation we say that (1) is separable in the variables x,y. The derivation  of a solution of the

equation is straight forward. For the left hand side of (3) is a function of x alone, and right-hand is

a function of y-alone, and the two can be equal only if each is equal to a constant,  say . The

problem of finding solutions of the form (2) of (1) therefore reduces to solving the pair of second

order linear ordinary differential equations

f(D) X =  X(x),  g(D) Y=  Y(y) (4)

Application to Heat Equation

2

2

x
uk

t
u








Let u(x,t)  = X(x) T(t)

be a solution of the heat equation. Then the last equation can be written as

2

2

dx
Xd

X
k

dt
dT

T
1

 (5)

)t(T
dx

Xd)t(T)x("X
x
u,)t(T)x('X

x
uhavewe),t(T)x(XuSince 2

22






















and
dt
dT)x(X)t('T)x(X

t
u





Putting these values in the heat equation we get equation 5]. The pair of ordinary

differential equations corresponding to (4) is

Tk
dt
dT,X

dx
Xd
2

2


or Tk
dt
dTand0X

dx
Xd
2

2

 =0 (6)

Let  = - n2 then by the method discussed in 2.1 we find that T(t)=
t2kn-Ke is a general

solution of the second equation of (6), where K is a constant of integration which can be determined
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by given initial and boundary conditions. The general solution of the first equation of (6) is given

in Section 6.7.

Application to Wave Equation

2

2
2

2

2

dx
uc

dt
u 




Let u(x,t) = X(x) T(t), then

)t("T)x(X
t
u,)t('T)x(X

t
u

2

2









)t(T)x("X
x
u,)t(T)x('X

x
u

2

2









Putting these values in the equation we get

X(x) T"(t)  = c2X"(x) T(t)

or  -
)x(X
)x("X,-

)t(T
)t("T

c
1
2

or T"(t)  + c2  T = 0, X"(x) + X = 0

Application to Laplace Equation

0
y
u

x
u

2

2

2

2









Let u(x,y) = X(x) Y(y) be a solution of the equation. Then

)y("Y)x("X
x
u,)y(Y)x('X

x
u
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y
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Putting these values in the equation we get

X"(x) Y(y)  + X(x) Y"(y)  = 0

or 2n--
)y(Y
)y("Y

)x(X
)x("X


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or X"(x) + n2X=0, Y"(y) -n2Y+0

Solutions of Partial Differential Equations with Boundary Conditions

In this section we present solutions of the wave, heat and Laplace equations with boundary

and initial conditions. We briefly discuss how a physical situation can be written in the form of the

wave equation.

The Wave Equation with Initial and Boundary Conditions

Modeling of a Physical Situation

Vibrations in a membrane or drumhead, or oscillations induced in a guitar or violin string,

are governed by a partial differential equation called the wave equation. We will derive this

equation in a simple setting.

Consider an elastic string stretched between two pegs, as on a guitar. We want to describe

the motion of the string if it is given a small displacement and released to vibrate in a plane.

Place the string along the x axis from 0 to l and assume that it vibrates in the x, y plane.

We want a function u(x,t) such that at any time t>0, the graph of the function u=u(x,t) of x is the

shape of the string at that time. Thus, u (x,t) allows us to take a snapshot of the string at any time,

showing it as a curve in the plane. For this reason u(x,t) is called the position function for the

string. Figure 12.1 shows a typical configuration.

To begin with a simple case, neglect damping forces such as air resistance and the weight

of the string and assume that the tension T(x,t) in the string always acts tangentially to the string

and that individual particles of the string move only vertically. Also assume that the mass  per

unit length is constant.

Now consider a typical segment of string between x and x+x and apply  Newton's second

law of motion to write

Net force on this segment due to the tension

= acceleration of the center of mass of the segment times its mass.

This is a vector equation. For x small, the vertical component of this equation (Figure

12.2) gives us approximately.
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T(x+x,t) sin ( +)-T(x,t) sin () = x ),t,x(
t
u
2

2




where x is the center of mass of the segment and T(x,t) =||T(x,t)||=magnitude of T.

String Profile at  time =t.

Then

).t,.x(
t
u

x
)(sin)t,x(T)sin()t,xx(T

2

2








Now v(x,t)= T(x,t) sin () is the vertical component of the tension, so the last equation

becomes

).tx(
t
u

x
)t,x(v)t,xx(v

2

2








In the limit as x 0, we also have x  x and the last equation becomes

.
t
u

x
v

2

2








(7)

The horizontal component of the tension is h(x,t) =T(x,t) cos(), so

v(x,t)=h(x,t)tan ()=h(x,t)
x
u



Substitute this into equation (7) to get














x
uh

x
).t,x(

t
u
2

2



 (8)

To compute the left side of this equation, use the fact that the horizontal component of the

tension of the segment is zero, so

h(x+x,t)-h(x,t)=0.

Thus h is independent of x and equation 8 can be written

2

2

x
uh




= 2

2

t
u




Letting c2 = h/, this equation is often written

2

2

t
u



= .
x
uc 2

2
2



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This is the one-dimensional (1-space dimension) wave equation.

In order to model the string's motion, we need more than just the wave equation. We must

also incorporate information about constraints on the ends of the string and about the initial

velocity and position of the string, which will obviously influence the motion.

If the ends of the string are fixed, then

u(0,t)=u(l,t)=0    for t  0.

These are the boundary conditions.

The initial conditions specify the initial (at time zero) position

u(x,0)=f(x)  for 0  x  l

and the initial velocity

t
u



(x,0) = g(x) for 0 < x < l,

in which f and g are given functions satisfying certain compatibility conditions. For example, if

the string is fixed at its ends, then the initial position function must reflect this by satisfying

f(0)=f(l)=0.

If the initial velocity is zero (the string is released from rest), then g(x)=0.

The wave equation, together with the boundary and initial conditions, constitute a boundary

value problem for the position function u(x,t) of the string. These provide enough information to

uniquely determine the solution u(x,t).

If there is an external force of magnitude F units of force per unit length acting on the string

in the vertical direction, then this derivation can be modified to obtain

2

2

t
u



=c2





 1
x
u
2

2

F.

Again, the boundary value problem consists of this wave equation and the boundary and

initial conditions.

In 2-space dimensions the wave equation is





















2

2

2

2
2

2

2

y
u

x
uc

t
u

(9)
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This equation governs vertical displacements u(x,y,t) of a membrane covering a specified

region of the plane (for example, vibrations of a drum surface).

Again, boundary and initial conditions must be given to determine a unique solution.

Typically, the frame is fixed on a boundary (the rim of the drum surface), so we would have no

displacement of points on the boundary:

u(x,y,t)= 0    for (x,y) on the boundary of the region and t>0.

Further, the initial displacement and initial velocity must be given. These initial conditions

have the form

u(x,y,0) = f(x,y),
t
u



(x,y,0) = g(x,y)

with f and g given.

Sometimes polar coordinates formulation is more convenient. We present below this form.

Let

x=r cos(),   y=r sin().

Then

r= 22 yx  and  = tan -1 (y/x).

Let

u(x,y)= u (r cos(), r sin ()) = v (r, ).

Compute

x
v

x
r

r
v

x
u


















=











v
yx

y
r
v

yx
x

2222

=





 v

r
y

rr
vx

2

Then
























































 v

xr
y

r
v

xr
x

r
y

x
v

r
x

xr
v

x
u

222

2
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= .v
r
y

r
v

r
xy2

rr
vxv

r
xy2

r
v

r
y

2

2

4

22

322

22

43

2





















By a similar calculation, we get










 v

r
x

r
v

r
y

y
u

2

and

.
v

r
x

r
v

r
xy2

rr
vyv

r
xy2

r
v

r
x

y
u

2

2

4

22

322

22

43

2

2

2

























Then

.v
r
1

rr
v1

r
v

y
u

x
u

2

2

22

2

2

2

2

2




















Therefore, in polar coordinates, the two-dimensional wave equation (9) is

.v
r
1

r
v

r
1

r
vc

t
v

2

2

22

2
2

2

2
























(10)

in which v(r,,t) is the vertical displacement of the membrane from the x, y plane at point (r, )

and time t.

LAPLACE EQUATION IN PROBLEMS OF RECTANGULAR, CYLINDRICAL AND

SPHERICAL SYMMETRY:

Laplace's Equation--Spherical Coordinates

In spherical coordinates, the scale factors are , , , and the separation

functions are , , , giving a Stäckel determinant of .

The Laplacian is

(1)

To solve Laplace's equation in spherical coordinates, attempt separation of variables by writing

(2)

Then the Helmholtz differential equation becomes
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(3)

Now divide by ,

(4)

(5)

The solution to the second part of (5) must be sinusoidal, so the differential equation is

(6)

which has solutions which may be defined either as a complex function with , ...,

(7)

or as a sum of real sine and cosine functions with , ...,

(8)

Plugging (6) back into (7),

(9)

The radial part must be equal to a constant

(10)

(11)

But this is the Euler differential equation, so we try a series solution of the form

(12)

Then
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(13)

(14)

(15)

This must hold true for all powers of . For the term (with ),

(16)

which is true only if and all other terms vanish. So for , .

Therefore, the solution of the component is given by

(17)

Plugging (17) back into (◇),

(18)

(19)

which is the associated Legendre differential equation for and , ..., . The

general complex solution is therefore

where

are the (complex) spherical harmonics. The general real solution is

Some of the normalization constants of can be absorbed by and , so this equation may

appear in the form
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(23)

where

(24)

(25)

are the even and odd (real) spherical harmonics. If azimuthal symmetry is present, then is

constant and the solution of the component is a Legendre polynomial . The general

solution is then

(26)



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
The Laplace transform of f(t) is denoted by  L { F(s) }   L { f (t) }  L { F(t) L { f(s) }    L { f (t) }

.L (e-at) = --- a)1/s+a 1/s-a 1/s * a 1/s
 1/s+a

.L (cos h at) = ----  a/s2 - a2 s/s2 - a2 a/s2 + a2 s/s2 +a2 s/s2 - a2

L (sinh at) = ----  a/s2 - a2 s/s2 - a2 a/s2 + a2 s/s2 +a2  a/s2 - a2

.L (cosat) = ---- s/s2 -a2  a/s2 +a2  a/s2 - a2   s/s2 +a2   s/s2 +a2

.L (sinat) = ---- s/s2 -a2  a/s2 +a2 a/s2 - a2   s/s2 +a2  a/s2 +a2

L (tn) =  ----  é(n+1)/sn+1  é(n-1)/sn+1  é(n+1)/sn-1 none  é(n+1)/sn+1
L(1) = ---- 1 s 1/s 0 1/s
L(t) = ----- 1/s 1/s2 t 1/t2 1/s2

L(t2) = ----- 2/s3 1/t2 2/t3 1/s2 2/s3
é1/2 = --- ÖP/2 ÖP/4 ÖP ÖP/8 ÖP

L (eat) = ---- 1/s+a 1/s-a 1/s*a None 1/s-a
L (t sinat) = ----- 2as/ (s2-a2) 2as/ (s2a2) 2as/ (s2+a2)  None 2as/ (s2+a2)
L (tcos at ) = ----- s2-a2/(s2+a2)2 s2 +a2/(s2+a2)2 s2-a2/(s2+a2)2 None s2-a2/(s2+a2)2

If L-1{1/(s+a)2 }= ------ t e at t e -at e a t None t e -at

L-1 (1 /(s2 + 4) ) is equal to e-4t cos2t/2 sin2t/2 e4t sin2t/2

L-1 (1/s) = -------- 1 0 t none. 1

L-1 [ 1/(s+a) ] =   ---------- e s  t e a t e-s t e- a t e s  t
The function x sin x be a   ------- function. even odd continuous None 0
The function x cos x be a   ------- function. even odd continuous None x
The exponential form of a complex number is z = reiq z = eiq continuous z = r / cos q z = reiq
L(1) = ---- 1 s 1/s 0 1/s
L(t) = ----- 1/s 1/s2 t 1/t2 1/s2

L(t2) = ----- 2/s3 1/t2 2/t3 1/s2 2/s3
é1/2 = --- ÖP/2 ÖP/4 ÖP ÖP/8 ÖP

L (eat) = ---- 1/s+a 1/s-a 1/s*a None 1/s-a
L (t sinat) = ----- 2as/ (s2-a2) 2as/ (s2a2) 2as/ (s2+a2)  None 2as/ (s2+a2)
L (tcos at ) = ----- s2-a2/(s2+a2)2 s2 +a2/(s2+a2)2 s2-a2/(s2+a2)2 None s2-a2/(s2+a2)2

If L-1{1/(s+a)2 }= ------ t e at t e -at e a t None t e -at

L-1 (1 /(s2 + 4) ) is equal to e-4t cos2t/2 sin2t/2 e4t sin2t/2

L-1 (1/s) = -------- 1 0 t none. 1

L-1 [ 1/(s+a) ] =   ---------- e s  t e a t e-s t e- a t e s  t

L (cosat) = ---- s/s2 -a2 a/s2 +a2 a/s2 - a2 s/s2 +a2     s/s2 +a2

L (sinat) = ---- s/s2 +a2 a/s2 +a2 a/s2 - a2 s/s2 -a2    a/s2 +a2

L (tn) =  ---- é(n+1)/sn+1 é(n-1)/sn+1 é(n+1)/sn-1 None  é(n+1)/sn+1
é(n+1) = ---- (n-1)! n! (n+1)! None (n+1)!
L(1) = ---- 1 s 1/s 0 1/s

 The sum of nth roots of unity are ------ 0 1 2 3 0
Singular points are of __________ types 1 2 3 4 2

 ( sin ∏ /3+ i cos ∏ /3)3 is equal to -1 1 –i i i
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