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Lecture Subport
SI.No. | Duration Topicsto be covered . PP
. Material/Page Nos.
Period
UNIT |
1. 1hr Fourier series, Periodic functions T1(527-528)
2. 1hr Orthogonality of sine and cosine functions, T1(527-530)

Dirichlet Conditions

3. 1hr Expansion of periodic functionsin a series of T1(527-529)
sine and cosine functions and determination of
Fourier coefficients

4, 1hr Complex representation of Fourier series T1(540)
5. 1hr Expansion of functions with arbitrary period. T1(541)
6. 1hr Expansion of non-periodic functions over an T1(544)
interval
7. 1hr Even and odd functions and their Fourier T1(528)
expansions ,Application
8. 1hr Application T1(528)
0. 1hr Revision
Total Number of HoursPlanned For Unitl = Shr
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UNIT 11

10. 1lhr Bisection method T2(69-72)
11. 1hr Method of successive approximations T2(75-80)
12. 1hr RegulaFalsi method T2(81-88)
13. 1hr Newton-Raphson method T2(88-98)
14. 1lhr Horner's method T2(98-101)
15. lhr Euler's method T2(369-370)
16. lhr Modified Euler's method T2(371-375)
17. lhr RungeKutta method (11 & V) T2(379-395)
18. 1hr Revision

Total Number of HoursPlanned For UnitIl = Shr

UNIT Il

19. 1hr Gauss elimination method T2(112-114)
20. 1hr Gauss-Jordan method T2(114-120)
21. lhr Gauss-Seidel method T2(147-158)
22. lhr Computation of inverse of amatrix using Gauss | T2(122-126)

elimination method
23. 1lhr Method of triangularisation T2(126-132)
24. lhr Trapezoidal rule T2(300-306)
25. 1hr Simpson's 1/3 rule T2(303-305)
26. 1hr Simpson's 3/8 rule T2(305-307)
27. 1hr Revision

Total Number of HoursPlanned For Unit |11

= Shr

UNIT IV
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28. lhr Arithmetic mean, Median T1(766-768)
29. lhr Quartiles, Deciles, Percentiles, Mode T1(768-769)
30. lhr Empirical relation between mean T1(773-774)

31 1hr Empirical relation between median and mode T1(774-775)

32. 1hr Geometric mean, harmonic mean T1(767)

33. 1hr Relation between arithmetic mean, geometric T1(769-770)
mean and harmonic mean

34. 1hr Range, Range meanor average deviation T1(770-771)
35. 1hr Standard deviation T1(771-772)
36. 1lhr Variance and mean square deviation T1(776)

37. lhr Revision

Total Number of HoursPlanned For Unit IV = 10hr

UNIT V

38. 1hr Solutions to partial differential equations, using | T1(566-567)
separation of variables

39. 1hr Laplace's Equation in problems of rectangular T1(573)

40. 1hr Cylindrical symmetry T1(576)

41. 1hr Spherical symmetry T1(574)

42. 1hr Wave equation T1(575)

43. 1lhr Solution for vibrational modes of a stretched T1(624-627)
string

44, lhr Rectangular membranes T1(602)

45, lhr Circular membranes T1(608-617)

46. 1lhr Diffusion Equation T1(582)

47. 1hr Revision
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48. 1lhr Old Question Paper Revision

49, 1hr Old Question Paper Revision

50. 1hr Old Question Paper Revision

Total Number of HoursPlanned For UnitV = 13hr

Suggested Reading Books

T1: Mathematical Physics by Sathya prakash, S.Chand & company, New Delhi.

T2 : Numerical Methods by Dr.P.Kandasamy, Dr.K.Thilagavathy, Dr.K.Gunavathi, S.Chand &
company, New Delhi.
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7 N
SYLLABUS

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet
Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine
functions and determination of Fourier coefficients. Complex representation of Fourier series.

Expansion of functionswith arbitrary period. Expansion of non-periodic functionsover aninterval.

Even and odd functions and their Fourier expansions. Application.

\ J

Fourier series
Periodic functions

A Fourier series is an expansion of a periodic function /) in terms of an infinite sum
of sines and cosines. Fourier series make use of the orthogonality relationships of
the sine and cosine functions. The computation and study of Fourier series is known as harmonic
analysis and is extremely useful as a way to break up an arbitrary periodic function into a set of
simple terms that can be plugged in, solved individually, and then recombined to obtain the
solution to the original problem or an approximation to it to whatever accuracy is desired or
practical. Examples of successive approximations to common functions using Fourier series are
illustrated above.

In particular, since the superposition principle holds for solutions of a linear
homogeneous ordinary differential equation, if such an equation can be solved in the case of a
single sinusoid, the solution for an arbitrary function is immediately available by expressing the
original function as a Fourier series and then plugging in the solution for each sinusoidal
component. In some specia cases where the Fourier series can be summed in closed form, this
technique can even yield anal ytic solutions.

Any set of functions that form a complete orthogona system have a

corresponding generalized Fourier series analogous to the Fourier series. For example, using
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orthogonality of the roots of a Bessel function of the first kind gives a so-called Fourier-Bessel
series.

The computation of the (usual) Fourier seriesis based on the integral identities

fsin (mx)sin(nx)dx = gg,,, (1)
[ cos (mx)cos (nx)dx = gé,,, (2)
f sin(mx)cos(nx)dx = () (3)
f sin(mx)dx =0 (4)
f cos(mx)dx =0 (5)

for m.n#0 where 9» is the Kronecker delta.
Using the method for a generalized Fourier series, the usual Fourier series involving sines
and cosines is obtained by taking /i (x)=cosx and £ (x)=sinx_Since these functions form

a complete orthogonal system over [=%. %l the Fourier series of a function / &) is given by

fx)= I ao + Zah cos (nx) + z by sin (n x), (6)
n=| n=|
where
ag = 1; j?f (x)dx (7)
a, = - ff[xjcos (nx)dx (8)
[ snmads
b, = z _.-1f (x)smm(nx)dx (9)

and n=1,2, 3, .... Note that the coefficient of the constant term @ has been written in a
specia form compared to the general form for a generalized Fourier series in order to preserve

symmetry with the definitions of @» and x.
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Orthogonal Series Expansion

Let {on (X)} be an infinite orthonormal set of functions on interval [a,b]. and f(x)
be a function defined on [a,b]. Then f(x) can be written as f(X)=Co@o(X)+C1p2(X)+Cop2(X)+- - - -
+Cnpn(X)+ - - - - (6.22)

[ 1090,09dx
[[To,001 dx

where ¢, = (6.23)

n=0,1,2,3 ...

The series on the right hand side of (6.22) is called orthogonal expansion of f(x) defined
on [a,b] in terms of the orthonormal set of functions{ ¢n(X)} defined on [a,b]. cy's given by (6.23)
are called coefficients of orthogona expansion of f. If orthonorma set of Example 6.6 is
considered we get cosine Fourier expansion of f(x), that is, (6.22) will be cosine Fourier series and
(6.23) will give cosine Fourier coefficients. One can consider expansion of a function in terms of

Bessdl's orthonormal set of functions and Legendre's orthonormal set of functions.

Dirichlet conditions

A piecewise regular function that

1. Has afinite number of finite discontinuities and

2. Has afinite number of extrema can be expanded in a Fourier series which converges to
the function at continuous points and the mean of the positive and negative limits a points
of discontinuity.

a b
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Def. Sectionally continuous (or piecewise continuous) function. A function f (x) issaid
to be sectionally continuous (or piecewise continuous) on aninterval a = x = bif the interval
can be subdivided into afinite number of intervalsin each of which the function is continuous and
has finite right and left hand limits. See Figure The requirement that a function be sectionally
continuous on some interva [a, b] is equivalent to the requirement that it meet the Dirichlet

conditions on theinterval.
Fourier series. Let f (X) be asectionally continuous function defined on an interval ¢ < x

<c+ 2L. It can then be represented by the Fourier series

i a, X 2mx 3nx
) f(x) = — + a,cos— + , COS ¢ a,cos— + ...
. TX , 2mx 3mx
+ b,sin— + b,sin— + b,sin— 4
L - L L
Where
1 per2t nmx -
a. = -—-J f(x) cos—— dx n=0,1273
b, = —I f(\)xln—(h =423 .

At apoint of discontinuity f (x) isgiven avalue equal to its mean value at the discontinuity

i.e. if x =aisapoint of discontinuity, f (x) isgiven the value

lim f(x) + lim f(x)

e T | X h‘fl

2

f(x) =

Complex form of Fourier series
We show how a Fourier series can be expressed more conciselyif weintroduce

the complex number i whereiZ = —1. By utilising the Euler relation:

eie =cosO+ isin®

We can replace the trigonometric functions by complex exponential functions. By also
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combining the Fourier coefficients an and bn into a complex coefficient cn through
Cn = (an-ibn)
We find that, for a given periodic signal, both sets of constants can be found in one
operation. We aso obtain Parseval’s theorem which has important applications in electrical
engineering. The complex formulation of a Fourier seriesis an important precursor of the Fourier

transforms which attempts to Fourier analyse non-periodicfunctions.

So far we have discussed the trigonometric form of aFourier seriesi.e. we have represented

functions of period T in the terms of sinusoids, and possibly a constant term, using

- 2 -‘hf 9 ,ﬂuf'
f(t) = Z {an cos ( ?_? ) + b, sin ( nl )}
If we use the angular ﬂeque,rl@i /i T

24t
o =
_ i4
We obtain the more concisetorm
i oo ‘
f(t) = —D - a,, cos nwot + b, sin nwot).
o ,)

n=1

We have seen that the Fourier coefficients are calculated using the following integrals.
9 (7 .
. = / f(t) cosnwqt dt m=0,1,2,.
TJ-g

by -7 / ) sin nwot dit n—1,2,...
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An dternative, more concise form, of a Fourier series is available using complex
guantities. Thisform is quite widely used by engineers, for examplein Circuit Theory and

Control Theory, and leads naturally into the Fourier Transform whichis the subject of

Fourier seriesin theinterval (O, T)
We assume that the function f(x) is piecewise continuous on the interval [0,T]. Using the

substitution x= Lym (-M<X<M), we can transform it into the function

F(y)=f(Ly/m)

whichisdefined and integrable on [T, . Fourier series expansion of thisfunction F(y) can
be written as
F(y)=f(Ly/m)=a0/2+ 3 (ancosny+bnsinny).

Even functions
f(x) = x2is an example of an even function.

Let f(x) be areal-valued function of areal variable. Then fiseven if the following equation
holds for all x and -x in the domain of f:[1

or

Geometrically speaking, the graph face of an even function is symmetric with respect to
the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.

Examples of even functions are |x|, x?, x* cos(X), cosh(X), or any linear combination of

these.
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Odd functions
f(x) = x3is an example of an odd function.
Again, let f(X) be a rea-valued function of area variable. Then f is odd if the following

equation holds for all x and -x in the domain of f. or Geometrically, the graph of an odd function
has rotational symmetry with respect to the origin, meaning that its graph remains unchanged
after rotation of 180 degrees about the origin.

Examples of odd functions are x, X3, sin(x), sinh(x), erf(x), or any linear combination of

these.
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Orthogonality of sines and cosines.
In this section we shall show that certain sequences of sine and cosine functions are

orthogonal on certain intervals. The resulting expansions
f = z CJfJ
j =
using these sines and cosines become the Fourier series expansions of the function
f. First, we just consider the functions [1n(X) = cosnx. These are orthogonal on the interval 0 < x

< p. The resulting expansion (1) is called the Fourier cosine series expansion of f and will be
i Dn(X)

considered in more detail in section 1.5
Proposition 1. The functions [To(X) = 1, [11(X) = cos X, [12(X) = cos 2x, [13(X) = cos 3x
are orthogonal on theinterval 0 < x < p. Furthermore| [lo P =.pand | [In = B forn

=Ccosnx ...
=12, ...
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P
Proof. Using thefirst identity in (8) of section 1.3 one has ([ 1n(X), [1m(X)) = f cos(nx) cos(mx) dx
0

1 1
= f [E cos(n+m)x + 5 cos(n-m)x] dx = Error! = 0 s0 the [ 1, are orthogonal. Thefact that | [1o |* =
0

Y Y
p is an easy verification. | [1n = | cos¥(nx) dx:f%[1+0052nx] dx=%[x+2—1nsin 2nx]‘8:g-.
0 0

1
Next, we just consider the functionsy n(X) = sin nx. These are also orthogonal on theinterval 0 < x
< p. The resulting expansion (1) is caled the Fourier sine series expansion of f and will be

considered.

Proposition 2. The functionsy 1(X) = sin X, y 2(X) = sin 2x, y 3(X) =sin 3x, ..., yn(X) = sinnx, ...

are orthogonal on theinterval 0 < x < p. Furthermore, |y n [ :% forn=1,2, ....

p
Proof. Using the second identity in (8) of section 1.3 one has (y n(X), ¥y m(X)) = f sin(nx) sin(mx)

0
a= [ e dx = ()X - 5 S B=owth
x—g[2 cos(n m)x—2cos(n-m)x] x—[z(n+m)sn(n m)x-z(n_m)sn(n-m)x] 8— so the [y
. . P1 101 p
areorthogondl. |yn = J sin*(nx) dx= f 5[1 - cos 2n] dx = 5[x- 5~ sin 2nx] 8:2. Il
0 0

Finally, we consider the functions [1n(X) = cos nx and y n(X) = sin nx. These are orthogonal on the

interva - p<x<p.

Uses of Fourier series
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Fourier seriesand frequencies

Thebasicideaof Fourier seriesisthat wetry to expressthe given function asacombination
of oscillations, starting with one whose frequency is given by the given function (either its
periodicity or the length of the bounded interval on which it is given) and then taking multiples of
this frequency, that is, using fractional periods. When we look at coefficients of the resulting
"infinite linear combination”, we can expect that if some of them are markedly larger then therest,
then this frequency plays an important role in the phenomenon described by the given function.
This detection of hidden periodicity can be very useful in analysis, since not every periodicity can
be readily seen by looking at a function. In particular, thisis true if there are several periods that
interact.

Imagine that a function f describes temperatures at time t over many many years. Thereis
one period that should be easily visible, namely seasonal changes with period one year. We also
expect another period going over this basic yearly period, namely 1-day period of cold nights and
warm days. Now theinteresting question iswhether there are also other periods. Thisisvery useful
to know, since such knowledge would tell us something important about what is happening with
weather and climate. Frequency analysis offers a useful tool for such an investigation, looking
over long data sequences it may point out cold ages and other long term changes in climate.
There are areas where decomposition into waves comes naturally, for instance storage of sound.
When we are given a sound sample, Fourier transform allows us to decompose it into basic waves
and store it in this way. Apart from data compression we also get further memory savings by
simply ignoring coefficients that correspond to frequencies that atypical human ear does not hear.
This is the basis of the mp3 format (it uses transform that is something like a fourth generation
offspring of cosine Fourier series).

Fourier decomposition can be also generalized to more dimensions and then it can be quite
powerful in storing visual information - it is for instance the heart of the system used by F.B.1. to
store their fingerprint database. Since this decomposition is so useful, one important aspect is the

speed at which we can find the coefficients. This inspired further development and today we do
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not usually use the standard Fourier series but its more powerful offspring, for instance something
called Fast Fourier Transform (FFT). Here aso hardware helps, there are devices (integrators) that
have this wired in, roughly speaking one feeds it a function and the device spits out a Fourier

coefficient.
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DEPARTMENT OF PHYSICS
CLASS: | B.SCPHYSICS
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SUBJECT CODE : 18PHU203

KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE-21

PART A : MULTIPLE CHOICE QUESTIONS (ONLINE EXAMINATIONS)
SUBJECT : MATHEMATICAL PHYSICS- I

UNIT |
OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

Which of the following is an even function? X3 COoSX sinx tan X COS X
Thefunction f(x) is said to be an odd function of x if f(-x) = f(x) b)f(x) =- f( x) f(-x) =-f(x) None f(-x) =-f(x)
The function f(x) is said to be an even function of x if f(-x) = f(x) b)f(x) =- f(x) f(-x) =-f(x) None f(-x) =f(x)
If a periodic function f(x) is odd, it’s Fourier expansion contains no ------ coefficient g, sine coefficient g cosine sine
terms.

If a periodic function f(x) is even, it’s Fourier expansion contains no cosine sine coefficient g coefficient g, cosine
terms.

In Fourier series, the function f(x) has only afinite number of maximaand |Dirichlet Kuhn Tucker Laplace None Dirichlet
minima. This condition is known as -------

In dirichlet condition, the function f(x) has only afinite number of finite di§semi finite continuous infinite finite infinite
continuities and no ------- discontinuities

If f(x) is even, then it’s Fourier co- efficient ------- is zero. a a, b, none bn

If the periodic function f(x) is odd, then it’s Fourier co- efficient -------i s |a a, b, none an
zero.

The period of cos nx where n is the positive integer is m/n m/2n 2n nn 2n
The Fourier co efficient g in f(x) = x for 0< xE mis i n2 2n 0 n/2

If the function f (x) = -t in the interval - x< 0, the coefficient g is /3 %3 2m/3 (-m2) (-m2)

If the function f(x) = x sin x, the Fourier coefficient bn=0 a=1 2= /3 g=-1 bn=0
For afunction f(x) = x°, the Fourier coefficient b, =0 a, =0 3 =0 a,=b,=0 an =0
Thefunctionx sinx bea ------- function. even odd continuous None even
Thefunctionx cosx bea ------- function. even odd continuous None odd
Which of the following is an odd function? sinx COS X X2 sin’ sinx
Which of the following is an even function X3 COS X sinx sin’ COS X

The function f(x) is said to be an odd function of x if f(-x) = f(x) f(x) =-f(x) f(-x) =-f(x) 3 f(-x) =-f(x)
Thefunction f(x) is said to be an EVEN function of x if f(-x) = f(x) f(x) =-f(x) f(-x) =-f(x) 1 f(-x) =f(x)
If aperiodic function f(x) isodd, Fourier expansion contains no ------ termscosine sine coefficient g coefficient g, sine

If aperiodic function f(x) is even, Fourier expansion contains no ------ cosine sine coefficient g coefficient g cosine
terms

In Fourier series, the function f(x) has only afinite number of maximaand | Dirichlet Kuhn Tucker Laplace None Dirichlet
minima

In dirichlet condition, the function f(x) has no -------- discontinuities semi finite continuous infinite finite infinite

If f(x) is even, then it’s Fourier co- efficient ------- is zero. EY a, b, none bn

If f(x) is odd, then it’s Fourier co- efficient -------- s zero. a a, b, none an

The period of cos nx where n isthe positive integer is m/n m/2n 2n nn 2n

The Fourier co efficient g in f(x) = x for 0< xE mis i n2 2n 2 /2

If the function f (x) = - in the interval - x< 0, the coefficient g is /3 %3 2m/3 (-n/2) (-mi2)

If thefunction f(x) = x sin x, the Fourier coefficient bn=0 a=1 2= /3 g=-1 bn=0
For afunction f(x) = x°, the Fourier coefficient b, =0 a, =0 3 =0 None bn =0
Which kind of frequency spectrum/spectrais/are obtained from theline | Continuous in nature Discrete in nature Sampled in nature |All of the above Discretein nature

spectrum of a continuous signal on the basis of Polar Fourier Series Method




Which type/s of Fourier Series allow/s to represent the negative frequencies| Trigonometric Fourier Polar Fourier Series  |Exponential Fourier |All of the above Exponential Fourier
by plotting the double-sided spectrum for the analysis of periodic signals ? |Series Series Series
Duality Theorem / Property of Fourier Transform states that Shape of signal intime  |Shape of signal in Shape of signal in  |Shape of signa in  |Shape of signal intime

domain & shape of frequency domain &  |time domain & time domain & shapgdomain & shape of
spectrum can be shape of spectrum can |shape of spectrum |of spectrum can spectrum can be
interchangeable be interchangeable can never be never be interchangeable

Which property of fourier transform gives rise to an additional phase shift o Time Scaling Linearity Time Shifting Duality Time Shifting

-2 ft4 for the generated time delay in the communication system without

affecting an amplitude spectrum ?

The exponential form of acomplex number is z=rdd z=¢g9 z=cosq/r z=r/cosq z=réd

Which isthe analytic function of complex variablez = x + iy 1Z| ReZ 71 LogZ 7zt

Which is the analytic function of complex variable Z=x +iy 1Z] Sinz Logz ReZ Sinz

Which is the analytic function of complex variable z=X+Y 12| e logZ RezZ esn

Which is not the analytic function of complex variable z=X+iY 2zt z e Sinz z

Which is not the analytic function of complex variable z=X+Y 7zt eSnz ReZ Sinz ReZ

Which is not the analytic function of complex variable z=X+Y z1 logZ eSnz Sinz logZ

Which of the following functions has the period 2p? €os NX sinnx tan nx tan x sinnx

If f(x) = -x for -p< x£ Othen its Fourier coefficient g is p2/2 pl4 p/3 pl2 pl2

The function f(x) is said to be an EVEN function of x if f(-x) = f(x) f(x) =-f(x) f(-x) =-f(x) 1 f(-x) =f(x)

If f(x) is even, then it’s Fourier co- efficient ------- is zero. EY a, b, none bn

The Fourier co efficient g in f(x) = x for 0< xE mis i 2 2n 0 2

The period of cos nx where n is the positive integer is m/n m/2n 2n nn 2n

In dirichlet condition, the function f(x) has no -------- discontinuities semi finite continuous infinite finite infinite

Which is the analytic function of complex variable z=X+Y 12| e logZ RezZ esSn

Which of the following is an odd function? sinx COS X X2 sin’ sinx
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UNIT-II
SYLLABUS

Bisection method - method of successive approximations - RegulaFalsi method - Newton-
Raphson method - Horner's method - Euler's method - modified Euler's method - RungeK utta
method (11 & 1V).

BISECTION METHOD:

L et us suppose we have an equation of the form f(x) = 0 in which solution lies between in
therange (a,b).

Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are
opposite signs, then there existatleast one real root between aand b.Let f(a) be positive and f(b)
negative. Which implies atleast one root exits between aand b. We assume that root to be xo=
(at+b)/2. Check the sign of f(xo). If f(Xo)is negative, the root lies between aand Xo. If f(Xo)is
positive , the root lies between x,and b. Subsequently any one of this case occur.

X1= Xotal2 (or) Xot+b/2
When f(x1) is negative, the root lies between xo and x1 and let the root be X2=(xo +x1) /2.
Again f(x2) negative then the root lies between xo, and X2, let X3 = (Xo+x2)/2 and so on.

Repeat the process Xo, X1,X2, .... Whose limit of convergence is the exact root.

Steps:
1. Find aand b in which f(a) and f(b) are opposite signs for the given equation using trial and

error method.

2. Assume initial root as Xo= (a+h)/2.

3. If f(xo)is negative , the root lies between a and x, and take the root as x1 = (Xot+a)/2.

4.1f f(xo) Is positive, then the root lies between xo and b and take the root as x1= ( X0 +b)/ 2.
5.1f f(x1) isnegative, the root lies between x, and x1and let the root be x2= (Xo +x1)/ 2.

6. If f(x2) isnegative, the root lies between X, and x1and let the root be xz= (X0 +x2) / 2.

7. Repeat the process until any two consecutive values are equal and hence the root.

Advantages of bisection method:
The bisection method is always convergent. Since the method brackets the root, the
method is guaranteed to converge.
As iterations are conducted, the interval gets halved. So one can guarantee the error in
the solution of the equation.

Drawbacks of bisection method:
The convergence of the bisection method is slow asit is simply based on halving the
interval.
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If one of theinitial guessesis closer to therooat, it will take larger number of iterations to
reach the root.

Example 1:
Find the positive root of x° - x = 1 correct to four decimal places by bisection method.
Solution:
Let f(x) = X—x—1
f(0) = 0>-0-1=-1 = -ve
f(1) = 1>1-1 = -1 = -ve
f(2) = 2>-2 -1=5 = +ve
So root liesbetween 1 and 2, we can take (1+2) /2 asinitia root and proceed.
i.e, f(15) = 0.8750 = +ve
and f(1) =-1 =-ve
So root liesbetween 1and 1.5,
Let xo =(1+1.5) /2 asinitia root and proceed.
f(1.25) = -0.2969
So root lies between x1 between 1.25 and 1.5
Now x1 =(1.25 + 15)/2 = 1.3750
f(1.375) = 0.2246 =+ve
So root lies between x> between 1.25 and 1.375
Now x2 =(1.25+1.375)/2 = 13125
f(1.3125) =-0.051514 =-ve
Therefore, root lies between 1.375and 1.3125
Now x3 =(1.375+1.3125)/2 = 1.3438
f(1.3438) =0.082832 = +ve
So root lies between 1.3125 and 1.3438

Now Xsa =(1.3125+1.3438) /2 = 1.3282
f(1.3282) =0.014898 = +ve

So root lies between 1.3125 and 1.3282

Now xs =(1.3125+1.3282)/2 = 1.3204
f(1.3204) =-0.018340 =-ve

So root lies between 1.3204 and 1.3282

Now Xe =(1.3204+1.3282)/2 = 1.3243
f(1.3243) = -ve

So root lies between 1.3243 and 1.3282

Now x7 =(1.3243+1.3282)/2 = 1.3263
f(1.3263) = +ve

So root lies between 1.3243 and 1.3263

Now xg =(1.3243+1.3263)/2 = 1.3253
f(1.3253) = +ve
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So root lies between 1.3243 and 1.3253

Now X9 =(1.3243+1.3253)/2 = 1.3248
f(1.3248) = +ve

So root lies between 1.3243 and 1.3248

Now X0 =(13243+1.3248)/2 = 1.3246
f(1.3246) = -ve

So root lies between 1.3248 and 1.3246

Now x11 =(13248+1.3246)/2 = 1.3247
f(1.3247) = -ve

So root lies between 1.3247 and 1.3248

Now x12 =(1.3247+1.3247)/2 = 1.32475
Therefore, the approximate root is 1.32475

Example 2:

Find the positive root of x —cosx = 0 by bisection method.
Solution :

Let f(x) = X —cosx

f(0) = 0 -cos(0)=0-1=-1 = -ve

f(0.5) =0.5-cos(0.5) = -0.37758 =-ve

f(1) = 1 —cos (1) = 0.42970 = +ve

So root lies between 0.5 and 1

Let xo =(0.5+1) /2 asinitial root and proceed.
f(0.75) = 0.75-cos(0.75) = 0.018311 = +ve
So root lies between 0.5 and 0.75

x1= (0.5 +0.75) /2 =0.625

f(0.625) = 0.625- cos(0.625) =-0.18596
So root lies between 0.625 and 0.750

x2= (0.625 +0.750) /2 = 0.6875

f(0.6875) = - 0.085335

So root lies between 0.6875 and 0.750

x3= (0.6875 +0.750) /2 = 0.71875

f(0.71875) = 0.71875-c0s(0.71875) = - 0.033879
So root lies between 0.71875 and 0.750

x4= (0.71875 +0.750) /2 = 0.73438

f(0.73438) =-0.0078664 = -ve

So root lies between 0.73438 and 0.750
x5=0.742190

f(0.742190) =0.0051999 = + ve

x6=(0.73438 +0.742190) /2 = 0.73829
f(0.73829) =-0.0013305

So root lies between 0.73829 and 0.74219
x7=(0.73829+0.74219) = 0.7402

f(0.7402) = 0.7402-co0s(0.7402) = 0.0018663
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So root lies between 0.73829 and 0.7402
x8=0.73925

f(0.73925) =0.00027593

x9=0.7388

Theroot is0.7388.

Example 3:
You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes.
The floating ball has a specific gravity of 0.6 and has aradius of 5.5 cm. You are asked to find
the depth to which the ball is submerged when floating in water.
The equation that gives the depth X to which the ball is submerged under water is given by

x® - 0.165x* +3.993" 10* =0
Use the bisection method of finding roots of equations to find the depth X to which the ball is
submerged under water. Conduct three iterations to estimate the root of the above equation. Find
the absol ute relative approximate error at the end of each iteration, and the number of significant
digits at least correct at the end of each iteration.
Solution:
From the physics of the problem, the ball would be submerged between X =0 andX=2R,
where
R =radiusof thebal,
that is
O£ X£2R
0 £ x £ 2(0.055)
O£x£0.11

Figure: Floating ball problem
Lets us assume

X, =0,%x,=0.11

Check if the function changes sign between X and .
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f(x,)=f(0)=(0)%- 0.165(0)> +3.993" 10 * =3.993" 10°*
f(x,) = f(0.11) =(0.12)° - 0.165(0.11)* +3.993" 10™* =-2.662" 10™*
Hence

f(x,)f(x,)=f(0)f(0.11)=(3.993" 10*)(- 2.662" 10*) <0

So thereis at least one root between ¢ and *u , that is between 0 and 0.11.
Iteration 1
The estimate of theroot is
X = X, +X,
2
_0+0.11
2

=0.055

f(x,)= f(0.055) = (0.055)° - 0.165(0.055)" +3.993" 10* = 6.655" 10°°

f(x,)f(x,) = f(0)f(0.055)=(3.993" 10"*)6.655" 10°*)>0

Hence the root is bracketed between *m and *u , that is, between 0.055 and 0.11. So, the lower
and upper limit of the new bracket is
x, =0.055, x, =0.11

At this point, the absolute relative approximate error IT a| cannot be calculated as we do not have
a previous approximation.
Iteration 2
The estimate of theroot is
_X X

2
_ 0.055+0.11

2

=0.0825

f(x,) = f(0.0825) = (0.0825)° - 0.165(0.0825)* +3.993" 10°* =-1.622" 10°*

f(x,)f(x,)= f(0.055)f (0.0825) = (6.655" 10°)" (- 1.622" 10*)<0

Xm

Hence, the root is bracketed between X and Xm, that is, between 0.055 and 0.0825. So the
lower and upper limit of the new bracket is
x, =0.055, x, =0.0825

The absol ute relative approximate error |T a| at the end of Iteration 2 is

I" |_ old

" |- 100
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_[0.0825- 0.055|. ,
| 00825 |
= 33.33%

None of the significant digits are at least correct in the estimated root of X = 0.0825 because the
absolute relative approximate error is greater than 5%.
Iteration 3
X = X, +X,
2
_0.055+0.0825
2
=0.06875
f(x,) = f(0.06875) = (0.06875)° - 0.165(0.06875) +3.993" 10"* =-5563" 10°°

f(x,)f(x,) = f(0.055)f(0.06875) = (6.655" 10°)" (-5.563" 10°°) <0

Hence, the root is bracketed between X and Xm, that is, between 0.055 and 0.06875. So the
lower and upper limit of the new bracket is
x, =0.055, x, =0.06875

The absolute relative approximate error |T a| at the ends of Iteration 3is

old
Ial=

new
Xy = Xm
X

0.06875- 0.0825|,

0.06875 |
=20%
Still none of the significant digits are at least correct in the estimated root of the equation as the
absol ute relative approximate error is greater than 5%.
Seven more iterations were conducted and these iterations are shown in Table 1.

Table1l Rootof f(¥)=0 asfunction of number of iterations for bisection method.

~100

100

lteration | X, X, X Il % f(Xy)

1 0.00000 | 0.11 0.055 | ---------- 6.655" 10°°
2 0.055 0.11 0.0825 | 33.33 -1.622° 10
3 0.055 0.0825 | 0.06875 | 20.00 - 5563 10°
4 0.055 0.06875 | 0.06188 | 11.11 4.484° 10°°
5 0.06188 | 0.06875 | 0.06531 | 5.263 - 2503 10°
6 0.06188 | 0.06531 | 0.06359 | 2.702 -1.0804" 10°°
7 0.06188 | 0.06359 | 0.06273 | 1.370 -3176" 10°
8 0.06188 | 0.06273 | 0.0623 | 0.6897 6.497" 10’
9 0.0623 | 0.06273 | 0.06252 | 0.3436 | -1.265" 10°°
10 0.0623 | 0.06252 | 0.06241 | 0.1721 | - 3.0768 10"

Prepared by Dr. S. KARUPPUSAMY,, Asst. Prof, Dept. of PHY SICS, KAHE.




—_—— KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II
0 - COURSE CODE: 18PHU203 UNIT: I BATCH-2018-2021

At the end of 10th iteration,

I .]=0.1721%

Hence the number of significant digits at least correct is given by the largest value of M for
which

I.]£05 10%"

0.1721£0.5° 10* ™

0.3442 £10* ™
0g(0.3442) £2- m

m£ 2- 10g(0.3442) = 2.463

So

m=2

The number of significant digits at least correct in the estimated root of 0-06241 5t the end of the
10" jteration is 2.

REGULAFALSI METHOD OR METHOD OF FALSE POSITION:
Consider the equation f(x) = Oand f(a) and f(b) are of opposite signs. Also let a<b.
The graph y = f(x) will Meet the x-axis at some point between A(a, f(a)) and

B (b,f(b)). The equation of the chord joining the two points A(a, f(a)) and

B (b,f(b)) is
y-f(a) f(a) - f(b)

X - a a-b

The x- Coordinate of the point of intersection of this chord with the x-axis gives an
approximate value for the of f(x) = 0. Taking y = 0 in the chord equation, we get
-f(a) f(a) - f(b)

X -a a-b
X[f(a) -f(b)] -af(a) +a f(b)=-af(a) +b f(b)
x[f(@) -f(b)] = bf(a)-af(b)
This x1gives an approximate value of theroot f(x) =0. (a<xi1<Db)
Now f(x1) and f(a)are of opposite signs or f(x1) and f(b) are opposite signs.
If f(x1), f(a) <O . then x2 liesbetween x1 and a.

Therefore xo= af(xd) —x1 f(b) / f(x0) - f(a)
This process of calculation of ( x3, x4, Xs, ....) is continued till any two successive
values are equal and subsequently we get the solution of the given equation.

Steps:
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1. Find a and b in which f(a) and f(b) are opposite signs for the given equation
using trial and error method.
2. Thereforeroot lies between aand bif f(a)is very close to zero select and
compute X1 by using the following formula:
x1= af(b) - bf(a)/ f(b) - f(a)

3.Iff(x1), f(a) <0 . thenroot lies between x; and a. Compute x2 by using the
following formula:

x2= af(xy) — x1 f(b) / f(x2) - f(a)
4. Calculatethe values of ( x3 X4, X5, ....) by using the above formula until any two successive
values are equal and subsequently we get the solution of the given equation.

Example:

Solve for a positive root of x>-4x+1=0 by and RegulaFals method
Solution :

Let f(x) = x>-4x+1=0

f(0)=0>-4(0)+1= 1 =+ve

f(1) = 1°-4(1)+1 =-2 =-ve

So aroot lies between 0 and 1
We shall find the root that lies between 0 and 1.

Here a&=0, b=1

af(b) - bf(a)

f(b) - f(a)
(Oxf(1) - 1 xf(0))

(f(1) -£(0))
-1

(-2-1)

= 0.333333
f(x1) = f(1/3) = (1/27)-(4/3) +1 = -0.2963
Now f(0) and f(1/3) are opposite in sign.
Hence the root lies between 0 and 1/3.
(Ox f(1U3)-1/3 xf(0))
X2 =

(f(1/3) -f(0))
x2=(-1/3)/ (-1.2963) = 0.25714
Now f(x2) = f(0.25714) = - 0.011558 = -ve
So the root lies between 0 and 0.25714
x3= (0xf(0.25714) - 0.25714 xf(0))/ (f(0.25714) - f(0))

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 8,22




—— KARPAGAM ACADEMY OF HIGHER EDUCATION
Kf\‘R PAHG AM CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II

COURSE CODE: 18PHU203 UNIT: II BATCH-2018-2021

=-0.25714/-1.011558 = 0.25420
f(x3) = f(0.25420) = -0.0003742
So the root lies between 0 and 0.25420
Xa= (0xf(0.25420)- 0.25420 xf(0))/ (f(0.25420) - f(0))
=-0.25420/ -1.0003742 = 0.25410
f(x4) = f(0.25410) = - 0.000012936
Theroot lies between 0 and 0.25410
xs= (0xf(0.25410) - 0.25410 xf(0))/ (f(0.25410) — f(0))
=-0.25410/ -1.000012936 = 0.25410
Hence theroot is 0.25410.

NEWTON-RAPSON METHOD:

Let us suppose we have an equation of the form f(x) = 0 in which solution is lies between in the
range (a,b). Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are
opposite signs, then there exist

atleast one real root between aand b.

Let f(a) be positive and f(b) negative. Which implies at |east one root exits between
aand b. We assume that root to be either aor b, in which the value of f(a) or f(b) is very close
to zero. That number is assumed to beinitia root. Then we iterate the process by using the
following formula until the value is converges.

f(Xn)

Xn+1 = Xn-

7(Xn)
Steps:
1. Find aand b in which f(a) and f(b) are opposite signs for the given equation using trial and
error method.
2. Assumeinitial root as Xo= ai.e., if f(a)is very closeto zero or Xo =bif f(a)isvery closeto
zero

3. Find X1 by usingtheformula f(X0)
X1 =Xo -
f’(Xo)
4. Find X2 by using the following formula
f(X1)
X2 =X1 -
F(X1)

5. Find X3,X4, ...Xn until any two successive values are equal.

Example1:
Find the positive root of f(x) = 2x3- 3x-6 =0 by Newton — Raphson method correct to five

decimal places.
Solution:

Let f(X)= 2-3x—6; f’(X)=6x" -
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(1) = 236 =-7 =-ve
f2) =16-6-6 =4  =+ve

So, aroot between1 and 2. In which 4 iscloser to O Hence we assume initia root as 2.
Consider xo=2

S0 Xi1= Xo— f(Xo)/f’ (Xo)
= Xo- ((2X03 - 3Xo-6) / 6ao -3) = (4X03 +6)/(6X02-3)

Xi+1= (4Xi3 + 6)/(6Xi2-3)

X1= (4(2)°+6)/(6(2)*- 3) = 38/21 = 1.809524

X2= (4(1.809524)°+6)/(6(1.809524)° 3) = 29.700256/16.646263 = 1.784200
Xa= (4(1.784200)°+6)/(6(1.784200)° 3) = 28.719072/16.100218 = 1.783769
X4= (4(1.783769)°+6)/(6(1.783769)° 3) = 28.702612/16.090991 = 1.783769

Example 2:

Using Newton’s method, find the root between 0 and 1 of x> = 6x — 4 correct to 5 decimal places.
Solution :

Let f(x) =x>-6x+4; f(0)=4=+ve f(1)=-1=-ve

So aroot lies between 0 and 1

f(1) is nearer to 0. Therefore we take initial root as Xo= 1
(x) = 3x*- 6
=x - f(X)
)
= X - (3 -6x+4)/(3x°-6)
= (2x°-4)/(3x* -6)
X1=(2X03 - 4)/(3X02-6) = (2-4)/(3-6) = 2/3 = 0.
X2=(2(2/3)% - 4)/(3(2/3)>-6) = 0.73016
X3= (2(0.73015873)° - 4)/(3(0.73015873)%-6)
= (3.22145837/ 4.40060469)
=0.73205
X4= (2(0.73204903)° - 4)/(3(0.73204903)°-6)
= (3.21539602/ 4.439231265)
= 0.73205
Theroot is 0.73205 correct to 5 decimal places.

HORNER’S METHOD:

This numerical methods is employed to determine both the commensurable and the
incommensurable real roots of a numerical polynomial equation. Firstly, we find the integral part
of the root and then by every iteration. We find each decimal place value in succession.

Suppose a positive root of f(x) = 0 lies between aand a+1.

Let that root be a,ala2a3....
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First diminish the root of f(x)-0 by the integral part aand let f 1(x) = O possess the root
0.ala2a3...

Secondly , multiply the roots of f 1(x) = 0 by 10 and let f 2(x) = 0 possess the root al.a2a3...as a
root.

Thirdly, find the value od al and then diminish the roots by al and let f 3(x) = 0 possess
a root 0.a2a3...
Now repeating the process we find a2,a3,a4.... each time.

Example:

Find the positive root of x3+3x -1 =0, correct to two decimal places by Horner’s method.
Solution:

Let f(x) =x3+3x-1=0

f(0) = -vef(l) =* ve

The positive root lies between 0 and 1.

Let it be 0.ala2a3....

Since the integral part is zero, diminishing the root by the integral part is not necessary.
Therefore multiply the roots by 10.
Therefore f 1(x) = x® +300x -1000 =0 has root al.a2a3...
f1(3) =-ve, f1(4) = +ve
Therefore al=3

Now, the root is 3.a2a3...

Therefore, diminish root of f 1(x) =0 by 3

By synthetic division method, we get

f 2(x) = x3 +9x2 + 327x -73 =0 has root 0.a2a3...
Multiply the roots of f 2(x) = 0 by 10.

f 3(x) = x3 +90x2 + 32700x -73000 =0 has root a2.a3a4...
Now, f 3(2) = -ve, f 3(3) = +ve

Therefore a2=2

Now diminish theroots of f 3(x) by 2.

By synthetic division method, we get

f 4(x) = x3 +96x2 + 33072x -7232 =0 has root 0.a3a4...
Multiply the roots of f 4(x) = 0 by 10.

f5(x) = x® +960x?2 + 3307200x -7232000 =0 has root a3.a4...
Now, f5(2) =-ve, f5(3) = +ve

Therefore a3=2

Hence theroot is 0.322.
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EULER’S METHOD:
Take the Taylor seriesto 1% order, and let theinterval h = xq - xg, then

"(x
y1 = Y(%o) + f (X0, yo)h + y 2( )n2,

The error for atime step (the local error) is O(hz). The global error, after many steps, is O(h).
Then

¥1 = Yo + f(X0, Yo)h where yg = y(Xo).,

yo =y + f (X, y1)h where x; = xg +h,

Yn+1 = YN + F (XN, YN)D where Xy 4 = Xy +h.

Example:

ﬂ=x+y, y(0) =1
dx

The exact solution can be found from

dy
dx y=x

Let y=y;+yp Where C:ji ye =0, 0r y. =Ce™. Then rce™ - ce”™ =0 foral x,

orr=1,and y. =Ce*. Sincetheright hand sideislinear in x try Yp = Ax+B. Then

dyp _ dyp R .
= A and Yp = X becomes A- Ax- B =x which must hold for all x. Hence

ax ax
A=-1,and B=-1, making yp, =- (x+1), andsince y = y; +y, then
y=Ce* - (x+1).

But@ x=0, y=1or C-1=1,and C=2. Making the complete solution
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y =2e*- (x+1).

Using Euler’s method and taking h=0.02

Yo =1L Xp=0P X =0.02,y; =1+1x0.02=1.02, since yp'=1. Ingeneral,

Yn+1 = Yn * Yn'h Xp41 = Xp +h

n Xn Yn Yexact

0 0.00 1.0000 1.0000
1 0.02 1.0200 1.0204
2 0.04 1.0408 1.0416
3 0.06 1.0624 1.0637
4 0.08 1.0848 1.0866
5 0.10 1.1081 1.1103

For the error, Dygyjer = Y5 - Yo =0.1081, Dygyact = Y5 - Yo = 0.1103, can be defined as

DyEuer - DYExact 828;2 » 2%
(DYEuIer = DYExact) '

Relative Error =

1
2
The results plot as

¥ Exact
Euler
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It would be better to use the slope at the beginning and end of the increment (e.g., the average at
each end), and although we don’t know the slope at the end we can approximate it.

MODIFIED EULER’S METHOD:
Let yn'= f(Xn,Yn) - Thenan approximation for y at the end of the increment is

Yn+1 =Yn * ¥n'h
and an estimate for the slope at the end of theincrementis Y41 = f (Xp+1, Ypa1) -
We can now set

1,
Yn+1 = Yn +§(Yn +Yn+1)"-
The error can be found from
: T
Ynt1=Yn * Ynh"'EYnh2 +O(h3)
and since
: u
Yn+1 = Yn + Ynh+ ze—”yn+l 4 0(h)th? +o(h3)

g N §
or

' 0
Yn+1 = Yn +gyn+1 “n - +O(h3)'
& %2 5

Hence the local error is O(h3) and the global error is O(hz). Another way to write our resultsis

kg = hf (Xn, Yn)
ko =hf (xn +h,y, +kg)

1
Yn+1 = Yn "'E(kl + kz)

The previous example now can include modified Euler

n Xn Yeuler Ymodified Yexact

0 0.00 1.0000 1.0000 1.0000
1 0.02 1.0200 1.0204 1.0204
2 0.04 1.0408 1.0416 1.0416
3 0.06 1.0624 1.0637 1.0637
4 0.08 1.0848 1.0866 1.0866
5 0.10 1.1081 1.1104 1.1103
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which is much better.

RUNGE KUTTA |l ORDER:
Working Rule:

To solve dy/dx = f(X,y), y(Xo)=Yo
Calculate ki=hf(xo,Y0)
K2=hf(xo+1/2h,yo+1/2K1)

K= hf(Xo+1/2h,yo+1/2k>)
Ks=hf(Xo+h, yot+ka)

and Dy= 1/6 (k1+2ko+2ks+ka)
where Dx=h

Now y1=yo+ Dy

Now starting from (x1,y1) and repeating the process, we get (x2,y2) €tc.,

Example
Obtain the values of y at x=0.1, 0.2 using R.K method of second order for the differential
equation y'=-y, given y(0)=1.
Solution :Here f(X,y)=-y,x0=0, yo=1, X1=0.1, x2=0.2
ki1=hf(Xo0,y0)=(0.1)(-yo)=- 0.1
ko=hf(xot+ %2 h, yot %2 k1) = (0.1) f(0.05,0.95)
=-0.1(x0.95)= - 0.095= Dy
y1=Yo+Dy=1-0.095=0.905
y1=y(0.1)=0.905
Again starting from (0.1, 0.905) replacing (Xo,Yo) by (X1,y1)we get
k1=(0.1) f(x1,y1)=(0.1) (-0.905)= - 0.0905
ko=hf(x1+ ¥2 h, y1+ %2 k1)
=(0.1)[f(0.15,0.85975)]=(0.1)(-0.85975)=-0.085975
Dy=k>  y>=y(0.2)=y1+Dy=0.819025

RUNGE KUTTA IV ORDER:

What isthe Runge-Kutta 4th order method?

Runge-K utta 4" order method is a numerical technique used to solve ordinary differential
eguation of the form

d

o= 1(¥)y0)=y,

So only first order ordinary differential equations can be solved by using the Runge-K utta 4™
order method. In other sections, we have discussed how Euler and Runge-K utta methods are
used to solve higher order ordinary differential equations or coupled (simultaneous) differential
equations.

How doesonewriteafirst order differential equation in the above form?
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Example 1:
Rewrite

dy x
Y ooy=13* y(0)=5
) ,y(0)

in

d

o= fxy), y(0) =y, form.
Solution

dy x
Y ooy =136 y(0)=
) ,y(0)

dy _
=1.3¢* - 2y, y(0) =
- y, ¥(0)

In this case

f(x,y)=1.3¢"- 2y
Example 2:
Rewrite

e’ % +x2y? = 2sin(3x), y(0)=
X

in

d

g £(x,y), y(0) = y, form.
Solution

e”%* x2y? = 2sin(3x), y(0)=
X
dy 2sin(3x) - x*y?

- > , ¥(0)=5

In this case
] 2,,2

¢ (x, y) _2s n(3>;)y- Xy
The Runge-K utta 4™ order method is based on the following

Y=Yt (alkl +a,k, +agk, + a4k4)h 1)
where knowing thevalueof y=1vy, a x ,wecanfindthevalueof y=vy,, a x,,, and

h=X%.-X%

Equation (1) is equated to the first five terms of Taylor series

d 142 1d°
Yia =Y, + dy\xy(ml X)+ Zdzw(m x ) +3d§/w(>9+1 x) o
d'y
4de =y e %)
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. dy _ _
Knowing that o f(x,y)and x,, - x =h
X
Yia = y|+f(x|’y|)h+zf (Xl'yl)h2+§f (X|1y|)h3+_f (X|1y|)h4 (3)
Based on equating Equatlon (2) and Equation (3), one of the popular solutions used is
Yia = Y, + g(kl +2k, + 2k, +k, )h (4)
k, = f(xi , Yi) (5a)
1 1,.06
k, = fe% +=h,y, +=kh2
e 2 2 0 (5b)
e 1 1.0
ky=f¢gx +=hy +=k,h= (5¢)
e 2 2" g
k, = f(x +hy, +kh) (50)

Example 3:
A ball at 1200 K isallowed to cool down in air at an ambient temperature of 300 K. Assuming
heat islost only due to radiation, the differential equation for the temperature of the ball is given

by
dqg - “10°12(v4 _ @17 108 —
= 22067 10°(g* - 81" 10°)q(0) =1200K
where q isinK and t in seconds. Find the temperature at t = 480 seconds using Runge-Kutta

4th order method. Assume astep sizeof h =240 seconds.
Solution:

‘i—‘;‘ =-22067" 102" - 81" 10°)

f(t q):-22067' 102(q* - 81" 10°)
qi+1 ql (k +2k +2k +k )h

For i =0, t0 =0, g, =1200K

k =1 (tmqo)
= £(0,1200)
=-2.2067" 10" (1200* - 81" 10°)
=-4.5579

k, = f§o+1h’qo+lk1h9
e 2 2 g

= &+ 2 (240)1200+ 1 (- 4.5579)" 2402
e 2 2 a
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= £(120,653.05)
=-2.2067" 10 *(653.05* - 81" 10°)
=-0.38347

ko = {8, +2h,g, +2k,h?
e 2 2 g

= 18+ 2 (240)1200+ = (- 0.38347)" 2402
e 2 2 p

= (1201154.0)

=-2.2067" 10 (1154.0° - 81" 10°)
=-3.8954

k,=f (to +h,q, + ksh)

= (0+2401200+(- 3.894)" 240)
= f(240,265.10)
=-2.2067" 10'2(265.10* - 81" 10°)
= 0.0069750

0, =0 + ¢ (K +2k,+ 26 +k,)h

=1200+ %(- 45579+ 2(- 0.38347) + 2(- 3.8954)+ (0.069750))240

=1200+ (- 2.1848)" 240
= 675.65K
g, isthe approximate temperature at
t=t,
=t,+h
=0+240
= 240
q, =q(240)
» 675.65K
For i =1, = 240,g, = 675.65K
kl = f(tl’ql)
= f(240,675.65)
=-2.2067" 10?(675.65" - 81" 10°)
= - 0.44199

k, = fg?1+1h’q1+1k1h9
e 2 2 g
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= 840+ 1(240),675.65+ L (- 0.44199)240%
e 2 2 o

= (360,622.61)
=-2.2067" 10 (622,61 - 81" 10°)
=-0.31372

k=& +Ihg, +kn
e 2 2" g

= 18240+ 1 (240)675.65+ = (- 0.31372) 2402
e 2 2 2

= £(360,638.00)

=-2.2067" 10 *(638.00* - 81" 10°)
=-0.34775

k,=f (tl +h,q, + ksh)

= f(240+240,675.65+ (- 0.34775)" 240)

= £(480,592.19)

=2.2067" 10'*2(592.19* - 81" 10°)

=-0.25351

a4, =0, +%(k1 + 2k, + 2k, +K,)h

= 675.65+ %(- 0.44199 + 2(- 0.31372) + 2(- 0.34775)+ (- 0.25351))" 240

= 675.65 + %(- 2.0184)" 240

=594.91K
g, isthe approximate temperature at
t=t,

=t,+h

=240+ 240

=480
d, =q(480)

» 594.91K

Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th
order method with different step sizes.
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1600
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h=240
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Temperature, 8(K)

h=480

T T ~a
D 200 400 600

-400

Time,t(sec)

Figure 1: Comparison of Runge-Kutta 4th order method with exact solution for different step
Sizes.

Table 1 and Figure 2 show the effect of step size on the value of the calculated temperature at
t =480 seconds.

TABLE 1 Vaue of temperature at time, t = 480sfor different step sizes

Stepsize, h | q(480) | E le, |%
480 -90.278 | 737.85 113.94
240 594.91 | 52.660 8.1319
120 646.16 | 1.4122 0.21807
60 647.54 | 0.033626 | 0.0051926
30 647.57 | 0.00086900 | 0.00013419

800 1

600 -
400 A

200 A

Temperature, 6(480)

(o]

D 100 200 300 400 \6 0[0]

-200

Step size, h

Figure 2: Effect of step size in Runge-K utta 4th order method.

In Figure 3, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order
method), Heun’s method (Runge-Kutta 2nd order method), and Runge-K utta 4th order method.
The formula described in this chapter was developed by Runge. Thisformulais same as
Simpson’s 1/3 rule, if f (x, y) were only afunction of X. There are other versions of the 4" order

method just like there are several versions of the second order methods. The formula developed
by Kuttais
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1
Yia =Y +§(k1 +3k, +3K; + k4)h (6)
where
k= f(x,v) (72)
k, = & +Zh,y, +hk,2 (7h)
e 3 3 g
®e 2 1 0
ky = fEX, +=h,y, - =hk, +hk, (7¢)
e 3 3 %)
k, = f(x +h,y, +hk, - hk, +hk,) (70)

This formula is the same as the Simpson’s 3/8 rule, if f(x, y) isonly afunction of X.

1400

< 1200
@ 4th order
_ 1000 |
g
=]
3 800 | . -
2 600 | . "'7‘—- - —a
E 400 | MR Heun
200 | T, Euler
K 3
O T T T T
0 100 200 300 400 500
Time, t(sec)

Figure 3: Comparison of Runge-K utta methods of 1% (Euler), 2", and 4™ order.
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DEPARTMENT OF PHYSICS

PART A : MULTIPLE CHOICE QUESTIONS (ONLINE EXAMINATIONS)
SUBJECT : MATHEMATICAL PHYSICS-II

UNIT 11
OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
The ------------ Method is based on the repeated application of the Gauss Seidal Secant Bisection Chebyshev Bisection
intermediate value theorem.
The formulafor Newton Raphson method is ------------------ Xpe1 = T (X)/F'(xn) xntl=xn+ f (XN (X = X0 = F (X F{Xpu = X0 = F 7O [Xper = X — F
*(xn) (xn) (xn) (x)/ f’(xn)
The order of convergence of Newton Raphson method is 4 2 1 A 2
Graffees root squaring method is useful to find Complex roots single root unequal roots polynomial roots polynomial
roots
The approximate value of the root of f(x) given by the bisection method is-{x,=a+b x0=f(a) + f(b) x0=(a+h)/2 x0=(f(a) +f(b))/2 |x0=(a+h)/2
In Newton Raphson method, the error at any stage is proportional to the ----{ Cubic square square root same as that square
of the error in the previous stage.
In case of bisection method, the convergence is ------------- . Linear quadratic very rapid h2 very rapid
The order of convergence of Regulafalsi method may be assumed to --------| 1 1.618 0 05 1.618
The formulafor Regulafalsi method is ---------------------- X+ Xnep = 1 x = af(b) - bf(a) /f(b) —|x = af(a) - bf(b) /  |X,-Xpe1 =1 x = af(b) -
f(a) f(a) - f(b) bf(a) /() —
f(a)
The ------------- Method is also called as Method of tangents. Gauss Seidal Secant Bisection Newton Rapson Newton
Rapson
If f (x) contains some functions like exponential, trigonometric, logarithmic|Algebraic transcendental numerical polynomial transcendental
etc., thenf (x) iscalled -------------- equation.
A polynomial in x of degree niscalled an algebraic equation of degreeniif { f (x) =0 f(x)=1 f(x)<1 f(x)>1 f(x)=0
The method of false position is also known as ------------- method. Gauss Seidal Secant Bisection Regulafalsi Regulafals
The Newton Rapson method fails if f'(x)=0 f(x)=0 f(x)=1 f'(x)=1 f'(x)=0
The bisection method is simple but ---- Slowly convergent fast convergent slowly divergent | fastly divergent Slowly
convergent
method is also called as Bolzano's method Bisection False position Newton Rapson Euler Bisection
If theinitial approximation to the root is not given, choose two valuesof x | ‘a’ ‘b’ 0 1 ‘a’
say ‘a” and ‘b, such that f(a) and f(b) are of opposite signs. If [f(a)| < [f(b)|
then take ---- asthe initial approximation.
Graeffe’s root squaring method has a great advantage over other methods in| Initial value approximate values final value mid value Initial value
that it does not require prior information about the ---------------------
If i {0 the root then we get the root of the equation very quickly. | C1 0S8 far average very far Close
In Newton Rapson method when f *(x) is very large and the interval h will bf Small large average of the roots |negative Small
--- then the root can be calculated in even lesstime.
The order of convergencein --------------- method is two. Bisection Regulafalsi False position Newton Rapson Newton
Rapson
The approximate value x0 = (a-+ b)/ 2 of the foot of f (x) isgiven by the -------- method Bisection Regulafasi Newton Rapson | Graffes root squaring Bisection
If f (x1) and f () are of opposite signs, then the actual roots of the equation |‘a” and ‘b’ ‘b”and ‘x1’ ‘a’and ‘x1” ‘x1” and ‘x2’ ‘a’and ‘x1”
f(x)=0 in False position method lie between -- .
The iterative procedure is repeated till the - -- isfound to the desired Initial value approximate value root 0 root
degree of accuracy.
The ----------- Method is the method to find the root of algebraic or Graffe’s method Regulafalsi Root squaring Bisection Regulafalsi
transcendental equation.
If we equate a function f(x) to zero, then f(x) = O will represent an ----- polynomial transcedental algebraic cubic algebraic
equation
The equation 3x — cosx — 1 = 0 is known as ------------- equation. polynomial transcedental algebraic cubic transcedental
If f(a) and f(b) have opposite signs then the root of f(x) = O lies between ----{ 0 and a aandb band0 land-1 aandb
The error at any stage is proportional to the square of the ------------------ error in the previous stage| error in the next stage |error in the last error in thefirst error in the
stage stage previous stage
The convergence of iteration method is ---------------- L zero polynomial quadratic linear linear
The method of successive Approximation is aso called as ----------- Bisection method Iteration method Regulafalsi method Root squaring Iteration
method
The sufficient condition for convergence of iterationsis ---- [®’(x)|=1 [®*(x) [>1 [P°'(x)[ <1 [®*(x) [ <0 [P°'(x)[ <1
Solution of an equation f(x) = 0 means we have to find its - roots Or Zeros initial values final values approximate values [roots or zeros
Assuming that aroot of X — 9x + 1 = 0 lies between 2 and 4. Find the initial |2 3 4 35 3
approximation root value of bisection method.
In Newton Rapson method if ----------- , then “a’ is taken as the initial |f(a) [# f(b) | (@ [=1f(b) | [f@ |>|f(b) | (@ [<|f(b) | [f@ |<|f(b) |
approximation to the root.
In iteration method the given equation is taken in the form of ------------- y = ®(x) X = P(X) X = d(y) 9] X = D(x)
The convergence of the sequence is not guaranteed always unless the choicq o yo x2 y2 X0
[ — is properly chosen.
The sequence will converge rapidly in Iteration method, if [®*(x)] is - 1{ zero very large very small one very small
In Iteration method if the convergence s linear then the convergenceisof |four three two one one
[ e ——— .
By Regula Falsi method, the positive root of first approximation of x3— 4x +1=0 lies between ---------------, Oand1 land2 —1and2 0and -1 land?2




The values of x which makes f(x) as ----------- are known as roots or zeros o Zero one f'(x) f7(x) Zero
the function f(x).

In Iteration method if the convergenceis ---------- then the convergence is off Cubic quadratic linear zero linear

order one.
The order of convergence of --------------- method may be assumed to 1.618, Bisection Regulafasi Newton Raphson | Graeffe Regulafalsi
In Newton Raphson method the choice of -- -- isvery impartant for| initial value final value intermediate value | approximate value | initial value
the convergence.

If f(a) and f(b) are of opposite signs, aroot of f(x) = 0 lies between ---------1 ‘0”and ‘b’ a’and ‘0’ a’and ‘b’ ‘0”and ‘1’ a’and ‘b’
If f(a) and f(b) are of opposite signs, a root of f(x) = 0 lies between ‘a’ and | Approximate root actual root intermediate root none none

‘b’. This idea can be used to fix an --- .

If f (-1) and f (-2) are of opposite signs, then the negative roots of the —-land -2 —land 1 land-2 land2 —1land -2
equation f(x)=0 in False position method lie between ------------------ )

The -------mmemmmmeeeee method fails if f *(x) = 0. Bisection False Position Newton Raphson  |Gauss seidal method | Newton

Raphson

In which of the following method, we approximate the curve of solution by [Picard’s method Euler’s method Newton’s method | Runge Kutta Euler’s method
the tangent in each interval. method

The convergence of which of the following method is sensitive to starting  |False position Gauss seidal method Newton-Raphson |regulafalsi Newton-
value? method Raphson

method
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Gauss elimination method - Gauss-Jordan method - Gauss-Seidel method - computation of
inverse of amatrix using Gauss elimination method - method of triangularisation.
Trapezoidal rule - Simpson's 1/3 rule and 3/8 rule

GAUSSELIMINATION:

Gaussian elimination is one popular method of solving linear equations. We illustrate this
technique by means of an example.

How isa set of equations solved numerically?

One of the most popular techniques for solving simultaneous linear equationsis the Gaussian
elimination method. The approach is designed to solve ageneral set of N equationsand N
unknowns

By X + 8%, + By .+ B X, = by

By X + BpX, + BgXg o+ By X, = b,

A X + 8% + 8% + .+ 3 X, = b,

Gaussian elimination consists of two steps

Forward Elimination of Unknowns: In this step, the unknown is eliminated in each equation
starting with the first equation. Thisway, the equations are reduced to one equation and one
unknown in each equation.

Back Substitution: In this step, starting from the last equation, each of the unknowns is found.
Forward Elimination of Unknowns:

In the first step of forward elimination, the first unknown, % is eliminated from all rows below
the first row. The first equation is selected as the pivot equation to eiminate *1. So, to eliminate
%1 in the second equation, one divides the first equation by S (hence called the pivot element)

and then multipliesit by &, Thisisthe same as multiplying the first equation by anlay, to
give
Ay _ 8y
a, X + al Xo +ot—a, X, = bl
ey, ¢ 2y, 2y,

Now, this equation can be subtracted from the second equation to give

3, 3y 3y
(aZZ__a12jX2+"'+(a2n__a1n X, =0, ———
a, a, a,
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Xy + ot Ay X, =0,
where
' a21
Ay = Ap——"a,
ay
' a21
a2n = a2n - a:I.n
a

This procedure of eliminating %X is now repeated for the third equation to the n" equation to
reduce the set of equations as

A X+ A X, +aXs ot a4 X, :bl
a;2X2+a;3X3+"'+aén n:bé
aé2X2+aé3X3+"'+aén n:b:;

aT'12X2 + a1’13x3 ot aT’an = br’1
Thisisthe end of the first step of forward elimination. Now for the second step of forward

elimination, we start with the second equation as the pivot equation and az asthe pivot element.
So, to eliminate %2 in the third equation, one divides the second equation by 8z (the pivot
element) and then multiply it by %2 . Thisisthe same as multi plying the second equation by

A/ 8z and subtracting it from the third equation. This makes the coefficient of X2 zerointhe

third equation. The same procedure is now repeated for the fourth equation till the n" equation
to give

X + 8% + 83X o+ By X, =By

aézxz + aésxs ot aén n = bé

BggXy + ...+ 8y X, = b

Ao Xy + . an X, =h
The next steps of forward elimination are conducted by using the third equation as a pivot
equation and so on. That is, therewill be atotal of N—1 steps of forward elimination. At the
end of N—1 steps of forward elimination, we get a set of equations that look like
By X + 8 X, + BugXg FoF A X, = by

QX + ApXs .+ X, = 1)
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aly x, =i

Back Substitution:
Now the equations are solved starting from the last equation as it has only one unknown.

B b'gn_l)

X =
(n-1)
A

n

th
Then the second last equation, that isthe (n-1) equation, has two unknowns: *n and %1, but

h
n s already known. This reducesthe (n-1) equation a so to one unknown. Back
substitution hence can be represented for all equations by the formula

bl(i—l) _ i ai(ji—l) X,

j=i+1

X =

ali for i=N-Ln-2,...1

and
b(n—l)
_~n

X =
(n-1)
ann

n

Example 1:
Solve the system
X+ X +3X;,=5

2%, — X3, =1
-3X +2X, +2X; =1
Solution: Now applying the operation R, = r, + 3r, we have the following
X+ X+ 3%, =5
2%, — X3 =1
5x, +11x, =16
Applying R, =1/2r, we have
X+ X+ 3% =5
X, —.5X%X; =.5
5x, +11x, =16
Andby R;=r,-5r,
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X+ X, + 3%, =5
X, —.5%; =.5
13.5x, =135
Finally we the following by applying R, =r,/13.5
X+ X, + 3%, =5
X, —.5%; =.5
X;=1
We now havethat x, =1, and other unknowns can easily be found by backward substitution into
second and first equations. We have the solution (X, X,,%;) = (1, 1, 1) . This method is called the
Gaussian Elimination method.

Example 2. Find x, y and z that satisfy the following three equations at the same time.
X -y + 3 =4

(D) 2X -y + 22 =6
X +y - 2z 9

Before discussing the details of Gaussian elimination, let's ook at two ways to reformulate a
system of linear equations. Both ways begin by putting the equations in vector form. For the
equations above thisis the following.

X -y + 3z 4
2 2x -y + 22| = |6
X +y - 2z 9

The left side we can write as the matrix of coefficients times the vector of unknowns.

et EH

3) Au = b

eI (I

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 4/55

or

where

A




—— KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM ~ CLASS: IB.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS I1
o COURSE CODE: 18PHU203 UNIT: 111 BATCH-2018-2021

So the original equations (1) are equivalent to (3). In general the problem of solving a system of
linear equations is equivalent to solving Au = b where A is the matrix of coefficients, b isthe
vector of numbers on the right side and u is the vector of unknowns.

The second reformulation of the equations starts with (2) and writes the vector on the left as the
sum of three vectors where each term contains the terms with one of the variables. We get

HEERENH

Now we factor the variables out of each of the vectors on the left to get

{3) 1) {348

(- ING

So the original equations (1) are equivalent to writing b as alinear combination of vi, v» and vs.
In general the problem of solving a system of linear equationsis equivalent to writing b asa
linear combination of the vectors that are the coefficients of each of the variables.

or

where

Now let'slook at solving linear equations using Gaussian elimination. We shall look at two
methods to keep track of our calculations. Oneiswith the equations themselves. The other is by
means of another matrix which isjust the coefficient matrix A and right hand side b of the
equation combined. It is called the augmented matrix. For the equationsin Example 1 it is.

1-1 3|4
M=1[2-1 216
3 1-21]09

Note that we draw aline separating the last column which contains b from the rest which
contains A. To start out we have the origina equations and the corresponding M.

Equations Augmented matrix
Error! M = Error!

The idea behind Gaussian elimination isto add or subtract multiples of the first equation from the
other two in order to eliminate x from the second and third equations. In this case we can
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subtract two times the first equation from the second and three times the first equation from the
third. Interms of the augmented matrix we subtract two times the first row from the second and
three times the first row from the third. This gives us the following.

Equations Augmented matrix
2 Error! M1 = Error!

Note that the new set of equations have the same solutions as the original equatons. Itisclear
that any solution to the equations is a solution to the new set because we obtained the equations
in the new set by adding multiples of the original equations. However, the original equations can
be obtained from the new set by adding two time the first equation to the second and three times
the first equation to the third. Therefore any solution to the new equations is also a solution to
the original equations.

There is another way of looking at the process of going from the origina augmented matrix to
the new augmented matrix that will be useful as we go along. One has

My = EM
where
100
Es = (-210
-301

The reason thisistrue is because when we multiply M on the right by E; the rows of the product
E1M are linear combinations of the rows of M using the entries of the corresponding row of E; as
the multipliers. So, in particular, the second row of E:M is -2 timesthe first row of M plusthe
second row of M which is how the second row of M1 isformed. By asimilar argument one can

see that
M = FiM:
where
100
Fr =210
301
and
| = FiE& | = EiF

A pair of matrices A and B satisfying AB = | and BA = | are said to be inverse to each other and
wewriteB=Aland A=B'. SoF;=(E)™
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Note that in the new set of equations (2) the second and third equations only involvey and z. So
we concentrate on them. Now we eliminate z from the third equation by adding or subtracting a
multiple of the second equation. In this case we can subtract 4 times the second equation from
thethird. Interms of the augmented matrix we subtract 4 times the second row from the third.
We get
Equations Augmented matrix
(©)) Error! M2 = Error!
Again this set of equations has the same solution as the original set. Also, note that
M2 = BEoM1 = BEoEiM
1 00O

0-21

where

In (3) the third equation only involves z. All we haveto do is divide this equation by 5 to get z.
In terms of the augmented matrix we divide the third row by 5. This gives

Equations Augmented matrix
(4) Error! M3 = Error!
Also note that

Mz = EsM2> = EEoEaM
where

oS OF
o L O
gl O O

At this point we could substitute z = 1 in the second equation and solve for y. However, an
equivalent thing to do is add 4 times the third equation to the second to eliminate z. At the same
time we can subtract 3 times the third equation from the first to eliminate z from it also. Interms
of the augmented matrix we are subtracting 3 times the third row from the first and adding 4
times the third row to the second. We get
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Equations Augmented matrix
5 Error! M4 = Error!
Also
Ms = EsM3 = EsEsE2EIM
where
10-3
Es = 01 4
00 1

The last step isto add equation 2 to equation 1 to eliminate y from equation 1. In terms of the
augmented matrix we add row 2 torow 1. Thisgives

Equations Augmented matrix
(6) Error! Ms = Error!
Also
(7) Ms = EsMs = EsE4EsE2EdM
where
1-10
Es =0 10
0 01

When we reach the point (6) we have the solution. In terms of the augmented matrix the solution
isthelast column. The part of the augmented matrix to the left of the vertical line is the identity
matrix. If we were to ignore the last column of the augmented matrix, then the relation (7) says

8) | = EsBE4EsE2E1A

It turns out that A = (EsE4E3E2E1)2. We shall show that in the next chapter.

There is one other operation on the equations that we sometimes need to use or want to use. That
isinterchanging two equations. This corresponds to interchanging two rows of the augmented

matrix. For example, suppose the origina equations were

Equations Augmented matrix
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y - 4z = -2 0O 1-4]|-2
X -y + 3= 4 M=1|1-1 3] 4
X + vy - 22 =9 3 1-2] 9

0O 1 -4 -2
Remark. Th%eequationsareequivalentto{l -1 3J{yJ = [ 4JorAu=bWhereA=
3 1-2 9

0 1 -4 X -2
1 -1 3|, u=|Yy|andb=| 4| Theyareasoequivalentto

3 1-2 z 9
0 1 -4 -2 0 1
x[1]+y[-1J+z[ 3]:{ 4} or xvi+ Y2+ 2v3=bwherev; = [1] Vo = {-1Jand
3 1 -2 9 3 1

-4
V3 = { 3 ] In other words we are trying to write b as a superposition of vi, v2 and va.
-2

The first step would be to interchange the first equation with either the second or the third. If we
interchange the first and second equations we get

Equations Augmented matrix
X -y + 3= 4 1-1 3| 4
9) y - 4z = -2 My = |0 1-4]-2
X + y - 22 =9 3 1-21] 9
Note that
M1 = EM
where
010
E;: =100
001
Therest of the solution is similar to Example 1. Subtract 3 times the first equation from the third
giving
Equations Augmented matrix
Error! M2 = Error!
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100
One has M2 = EoM1 = E2EiM where Ez = { 010 ] Subtract 4 times the second equation from
-3 01
the third giving
Equations Augmented matrix
Error! Mz = Error!
1 00
Onehas Mz =EsM2= EsE:E:MwhereEz=| 0 1 O | Divide equation 3 by 5 giving
0-21
Equations Augmented matrix
Error! Ma = Error!
100
010 . : :
One has M4 = E4M3 = E4E3E2EaM where E4 = 1 |- Add 4 timesthe third equation to the
00 5
second and subtract 3 times the third equation from the first. We get
Equations Augmented matrix
Error! Ms = Error!
10-3
Also Ms = EsMy = EsE4sEsE2EsM whereEs=| 0 1 4 |, Finally, add equation 2 to equation 1
00 1
giving
Equations Augmented matrix
Error! Ms = Error!
1-10
Also Mg = E¢Ms = EsEsE4E3E.EiM whereEg=| O 1 0 |. Onehas| = EsE4E3E:E1A SO AL =
0 01
(EsE4EsE2Er) ™.
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To summarize, to solve a set of n equations and n unknowns

aXy + aeXe - +amxn = b
Q1X1 + ApXz o +ta@nXn = b
(10)
8 X1 + @Xz2 +--+anXn = bn
We form the augmented matrix
ain ar - am | bt
M = | @& @2 @n | b2
@1 @2 - @n | bn
Using the following operations
(11) Add or subtract multiples of one row to another
(12 Multiply or divide arow by a non-zero constant

(13) Interchange two rows

we transform M to the form

100 |a
(14) M= 010 |c
00 -1 |cm

i.e. we have the identity matrix to the left of the vertical line. The solution isthe last column, i.e.

X1 = C

X2 = C
(15) :

Xn = Cn

The row operations (11), (12) and (13) are called elementary row operations. If it ispossibleto
transform M to the form (14) by elementary row operations then the system of equations (10) has
one and only one solution which is (15). Thisisequivaent to being able to transform A to the
identity | by the elementary row operations. If it isnot possible to transform M to the form (14)
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by elementary row operations, then either there is no solution, or if there is a solution then there
is more than one.

GAUSS-JORDAN METHOD:

Step 1: Form the augmented matrix corresponding to the system of linear equations.

Step 2: Transform the augmented matrix to the matrix in reduced row echelon form via
elementary row operations.

Step 3: Solve the linear system corresponding to the matrix in reduced row echelon form. The
solution(s) are aso for the system of linear equations in step 1.

Example 1:
Solve for the following linear system:

X + X, +2X;—5X, =3
2% +5X, — X3 —9X, =-3
2% + X, — X;+3x, =-11

X, —3X, +2X,+ X, = =5
Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is

1 1 2 -5 3]
2 5 -1 -9 -3
2 1 -1 3 -1
1 -3 2 7 -5|

Step 2:
After elementary row operations, the matrix in reduced row echelon form s

(1 0 0 2 -5]
010 -3 2
001 -2 3

000 0 O

Step 3:
The linear system corresponding to the matrix in reduced row echelon form s
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X, +2X, =-5
X, -3X, =2

The solutions are

X =—D-2A, X, =2+3, X, =3+2, X, =t,teR
—5-2t] [-5] [-2]

X, |

2+3 2 3
X, | | 3+2t 3|1 |2
X, t 0 1

Number of solutions of a system of linear equations:
e For any system of linear equations, precisely one of the following is true.
e The system has exactly one solution.
e The system has an infinite number of solutions.
e The system has no solution.

Note: the linear system with at least one solution is called consistent and the linear system with
no solution is called inconsistent.

Example 2:
Exactly one solution:
Solve for the following system:

X, + 2X, +3X; =9
2X, — X, + X3 =8

3X,; - X; =3

Solution:

The Gauss-Jordan reduction is as follows:
Step 1:

The augmented matrix is
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1 2 3 9
2 -1 1 8
3 0 -1 3

Step 2: .

The matrix in reduced row echelon formis
1 0 0 2
O 1 0 -1
O 01 3

Step 3:

The solution is
X =2, X, =-1 X;=3

Example 3:
Infinite number of solutions:
Solve for the following system:

2X, + 4%, - 2%, =0

3X, + 5X, =1
Solution:
The Gauss-Jordan reduction is as follows:
Step 1:
The augmented matrix is
2 4 -2 0
3 5 0 1
Step 2:

The matrix in reduced row echelon formis

1 0 5 2
0 1 -3 -1

Step 3:
The linear system corresponding to the matrix in reduced row echelon formis
X, +5X, =2

The solutions are
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X =2-9 X, =-1+3, X, =t, teR

X, 25t 27 [-5
= X=X, |=|-1+3t|=|-1|+| 3 |t
X, t 0 1
Example 4:
No solution:

Solve for the following system:
X, +2X,+ 2%, +4X, =5

X, +3X,+5X;+ 7X, =1

X, - Xy —2X%X, =—-6
Solution:

The Gauss-Jordan reduction is as follows:
Step 1:

The augmented matrix is
12 3 4 5

13 5 7 1

10 -1 -2 -6
Step 2:
The matrix in reduced row echelon formis
1 0 -1 -220

01 2 3 O

OO0 0O 0 1
Step 3:
The linear system corresponding to the matrix in reduced row echelon form s
X, —X;—2%, =0

X, +2X%3+3X, =0

0=1

Since 9% L thereisno solution.

GAUSS-SEIDAL METHOD:

Why do we need another method to solve a set of smultaneous linear equations?

In certain cases, such as when a system of equationsis large, iterative methods of solving
equations are more advantageous. Elimination methods, such as Gaussian elimination, are prone
to large round-off errors for alarge set of equations. lterative methods, such as the Gauss-Seidel
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method, give the user control of the round-off error. Also, if the physics of the problem are well
known, initial guesses needed in iterative methods can be made more judiciously leading to faster
convergence.

What isthe algorithm for the Gauss-Seidel method? Given ageneral set of n equationsand n
unknowns, we have

A X +a,X, + X .+ X, =06

Ay X +8yX, + Xy +..o+8,, X, =C,

2n’*n

A X A, X, + X +...+a,, X, =C,

If the diagonal elements are non-zero, each equation is rewritten for the corresponding unknown,
that is, the first equation is rewritten with x; on theleft hand side, the second equation is

rewritten with x, onthe left hand side and so on as follows
_ G @,X — 8% —a, X,

X
ay
C, — 8y X —AxnXg...... a, X,
2
a'22
X = Crt m 11X — @y 1% 0 e — Ay n2Xn2 ~ g0 X,
n-1
a'n—l n-1
LGy @yX X, —ee a, 1%
X, =
ann
These equations can be rewritten in a summation form as
n
C =D aX,
j=1
j#1
X =
ay,
n
C, = 2,8y,
j=1
J#2
X, =
a22
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n
Coa— z an—l,j Xj
j=1

j#n-1

X1 =
an—l,n—l
n
Co— D 3y X,
j=1
X = j#n
n
aI"Iﬂ
Hence for any row i,
n
G~
j=1
X =—"——i=12...,n

ii
Now to find x ’s, one assumes an initial guess for the x ’s and then uses the rewritten equations
to calculate the new estimates. Remember, one always uses the most recent estimates to
calculate the next estimates, x . At the end of each iteration, one calcul ates the absolute relative

approximate error for each x as

ina/v —X ioId
Xinew

X «100

<l =

where x™" isthe recently obtained value of x , and x™ isthe previous value of ;.

When the absol ute relative approximate error for each x; is less than the pre-specified tolerance,
the iterations are stopped.

Example 1:

The upward velocity of arocket is given at three different timesin the following table

TABLE 1 Velocity vs. time data.

Time, t (s) | Velocity, v (m/s)

5 106.8
8 177.2
12 279.2
The velocity datais approximated by a polynomial as
v(t)=at’ +at+a,, 5<t<12
Find the values of a,, a,,and a, using the Gauss-Seidel method. Assume an initial guess of the
solution as
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a 1
a,|=|2
a, 5

and conduct two iterations.

Solution:

The polynomial is going through three data points (t,, v, ), (t,,V, ), and (t,, v, ) where from the

above table

t,=5 v, =106.8
t,=8, v,=177.2
t, =12, v, = 279.2
Requiring that v(t)= ajt® + a,t + a, passesthrough the three data points gives
v(t)=v, = atf +at +a,
vt)=v, =a; +a,t, +a,
V(ts) = Vs = at] +ats + &
Substituting the data (t,,v, ), (t,,V, ), and (t,, v, ) gives
a,(5*)+a,(5)+ a, =106.8
3,(8%)+a,(8)+a, =177.2
a,(12?)+ a,(12)+ a, = 279.2
Or
253, + 53, +a, =106.8
64a, +8a, +a, =177.2
1443, +12a, + a, = 279.2
The coefficients a;, a,, and a, for the above expression are given by
25 5 1][a] [106.8
64 8 1jla,|=|17/2
144 12 1||a,| |279.2
Rewriting the equations gives
a, = 106.8—-5a, —a,

25
177.2—-64a, - a,
a, = 8
| 279.2-144a, -12a,
1

Iteration #1
Given theinitial guess of the solution vector as

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 18/55




f

= KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II
o COURSE CODE: 18PHU203 UNIT: III BATCH-2018-2021

a N

a,

a2 =
a,
we get

o - 1068- 5(2) - (5)
25
=3.6720
o _1772- 64(3.6720)— (5)
=
8

=-7.8150
= 279.2-144(3.6720)-12(- 7.8510)
1

=-155.36
The absol ute rel ative approximate error for each x; thenis

) = ‘3.6720—1‘ 100

3.6720
=72.76%
|€ | _ —7.8510-2
a2 —7.8510
=125.47%
_|-155.36-5
N B TR
=103.22%
At the end of thefirst iteration, the estimate of the solution vector is
a 3.6720

a, |=|—7.8510
a, —155.36
and the maximum absol ute rel ative approximate error is 125.47%.

‘xlOO

‘xlOO

I TERATION #2

The estimate of the solution vector at the end of Iteration #1 is
a, 3.6720
a, |=|-7.8510
a, —155.36

Now we get
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o - 106.8—5(— 7.8510)— (—155.36)

25
=12.056
177.2—-64(12.056) - (-155.36)

%= 8

= -54.882
o - 279.2 - 144(12.056) - 12(— 54.882)

1
=—798.34

The absolute rel ative approximate error for each x thenis
[12.056-3.6720| , .o

2l = 12056 |
= 69.543%
el =7 54.882 (- 7.8510)| 100
2 —54.882 |
= 85.695%
e, =7 798.34—(~155.36)| 100
—798.34 |
= 80.540%
At the end of the second iteration the estimate of the solution vector is
a 12.056
a, | =| —54.882
a,| |-79854

and the maximum absol ute rel ative approximate error is 85.695%.
Conducting more iterations gives the following values for the solution vector and the

corresponding absol ute relative approximate errors.
lteration | & €.|,% a, €.|,% a, €./, %0
1 3.6720 72.767 -7.8510 | 125.47 -155.36 | 103.22
2 12.056 69.543 -54.882 | 85.695 —-798.34 | 80.540
3 47.182 74.447 -255,51 | 78.521 -3448.9 | 76.852
4 193.33 75.595 -1093.4 | 76.632 -14440 | 76.116
5 800.53 75.850 -4577.2 | 76.112 -60072 | 75.963
6 3322.6 75.906 -19049 | 75.972 —249580 | 75.931

As seen in the above table, the solution estimates are not converging to the true solution of
a, =0.29048
a, =19.690

a, =1.0857
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Example 2:

Find the solution to the following system of equations using the Gauss-Seidel method.
12x, + 3X,-5%; =1
X + 95X, + 3%, = 28
3X + 7X, + 13X, =76

Use

astheinitial guess and conduct two iterations.
Solution:
The coefficient matrix

12 3 -5
[A]l=|1 5 3
3 7 13
isdiagonally dominant as
8| =[12 =122 [, | +[as| = 3 +|-5 =8
[az| =[5/ =52 [a,| + || =[1 +[3 =4
8| =13 = 13> [y | +[a| = [3+[7] = 10
and the inequality is strictly greater than for at least one row. Hence, the solution should
converge using the Gauss-Seidel method.
Rewriting the equations, we get
~1-3x, +5x,
12
X, 3 28— X, — 3%,
5
76—3X, — 7X,
Xy = =
13
Assuming an initial guess of
X 1
X, =10
X3 1
Iteration #1

1-3(0)+50)

12
= 0.50000
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, =

28—(0.50000)—3(1)

5
= 4.9000
76— 3(0.50000) — 7(4.9000)
Xg =
13
=3.0923
The absolute relative approximate error at the end of thefirst iteration is
0.50000-1
R e B
! 0.50000
=100.00%
|€a| _ 4.9000-0 <100
2 4.9000
=100.00%
|€a| _ 3.0923 -1 <100
3 3.0923
= 67.662%
The maximum absolute relative approximate error is 100.00%
ITERATION #2
1—3(4.9000)+ 5(3.0923)
X, =
12
=0.14679
. - 28- (0.14679) - 3(3.0923)
’ 5
=3.7153
76—3(0.14679)— 7(3.7153)
X3 =
13
=3.8118

At the end of second iteration, the absolute relative approximate error is
0.14679 — 0.50000|
|ea| = =x100
1| 014679 |
= 240.61%
.| _[3.7153-4.9000|
2| 37153 |
= 31.889%
el = 3.8118-3.0923
| 38118 |
=18.874%
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The maximum absolute relative approximate error is 240.61%. Thisis greater than the value of
100.00% we obtained in the first iteration. Isthe solution diverging? No, as you conduct more
iterations, the solution converges as follows.

teaion | % [[el% % [lel% [x  |[el%
1 0.50000 | 100.00 4.9000 100.00 3.0923 67.662
2 0.14679 | 240.61 3.7153 31.889 3.8118 18.874
3 0.74275 | 80.236 3.1644 17.408 3.9708 4.0064
4 0.94675 | 21.546 3.0281 4.4996 3.9971 0.65772
5 0.99177 | 45391 3.0034 0.82499 | 4.0001 0.074383
6 0.99919 | 0.74307 | 3.0001 0.10856 | 4.0001 0.00101
Thisis close to the exact solution vector of
X, 1
X, [=]3
X, 4
Example 3:
Given the system of equations
3 + 7%, + 13x, = 76
X + 5%, + 3%, = 28
12x, + 3%, -5% =1
find the solution using the Gauss-Seidel method. Use
X 1
X, =0
X3 1
astheinitial guess.
Solution
Rewriting the equations, we get
76— 7x, — 13X,
X, =
3
X, = 28— x, —3X,
5
X, = 1-12x, —3X,
-5
Assuming an initial guess of
X, 1
X, |=|0
X5 1
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the next six iterative values are given in the table below.

Iteration | X, [€h% | % €% | % [€al,%
1 21.000 95.238 | 0.80000 100.00 | 50.680 98.027
2 -196.15 110.71 | 14.421 94.453 | -462.30 110.96
3 1995.0 109.83 | -116.02 11243 | 4718.1 109.80
4 —-20149 109.90 | 1204.6 109.63 | -47636 109.90
5 2.0364x10° | 109.89 |-12140 109.92 | 4.8144x10° | 109.89
6 —2.0579x 10° | 109.89 | 1.2272x10° | 109.89 | -4.8653x 10° | 109.89

Y ou can see that this solution is not converging and the coefficient matrix is not diagonally
dominant. The coefficient matrix
3 7 13
[A]l=|1 5 3
12 3 -5
is not diagonally dominant as
80| =[3 =3 fau, | + || =[7+[13 = 20
Hence, the Gauss-Seidel method may or may not converge.
However, it is the same set of equations as the previous example and that converged. The only

difference is that we exchanged first and the third equation with each other and that made the
coefficient matrix not diagonally dominant.
Therefore, it is possible that a system of equations can be made diagonally dominant if one
exchanges the equations with each other. However, it is not possible for all cases. For example,
the following set of equations

X + X, +X =3

2%, +3X, +4X; =9

X + 77X, + % =9
cannot be rewritten to make the coefficient matrix diagonally dominant.
In this method, we can write the iterative scheme of the system of equations
Ax =Db asfollows:

(k+1) — (k) (k) (k)
a; X ST X T —aAgXg Tt~ - a,X, +b1

2n”*n

2, X! + a,, x{ = —ax¥ - .. —a,x% +b,

anlx("+1) +a, x5+ a, x, Y=+

nn
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In matrix form, this system can be written as (D + L) x**® =-Ux™ + b with the same notation
as adopted in Jacobi method.

From the above, we get

KD — o ) ux® o+ Lo

= ™x®+ ¢,
ie T=—-(D+L) ™Uandc= (D+L )b

Thisiteration method is also known as the method of successive displacement.

For computation point of view, we rewrite (A X) as

k+1 k+1) k
x, D = Za”f*)JrZa”xf) ,

j=i+l
i=1,2,...,n
Alsointhiscase, if A isdiagonally dominant, then iteration method aways converges. In
general Gauss-Seidel method will converge if the Jacobi method converges and will converge at
afaster rate. You can observethisin the following example. We have not considered the
problem: How many iterations are needed to have a reasonably good approximation to x? This
needs the concept of matrix norm.

Example 6: Solve the linear system Ax = b given in Example 4 by Gauss-Seidel method
rounded to four decimal places. The equations can be written as follows:

(k1) _ 1 (K EN () 3
1) _ lil e N % X - 1% X9 +§
Xék+1) __ 1 X§k+1) + 1 X(2k+l) +ix§k) _u

3 10 10 10
ng+1) - — 3 (k+1) + 1X(k+l) +E.
8 8 8

Letting x© = (0, 0, 0, 0)" we have from first equation

x" =0.6000
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L _ 06000 25 .
273 1

X =— 06000 —(2 3273)- 1—; =-0.1200+0.2327 —1.1000 = —0.9873

XY =—§(2.3273)+—( -0.9873) + E

=-0.8727-0.1234 + 1.8750

=0.8789

Using x® we get

x® = (1.0300, 2.037, — 1.014, 0.9844)"
and we can check that

x® = (1.0001, 2.0000, - 1.0000, 1.0000)

Note that x*® isagood approximation to the exact solution. Here are afew exercises for you to
solve.

COMPUTATION OF INVERSE OF AMATRIX USING GAUSSELIMINATION
METHOD:

For a given non-singular matrix A, theinverse matrix B= A" exists such that AB=BA=1,
where | isan identity matrix of order same as A or B.

A matrix A isnon-singular iff det(A)=| A}~ 0

Tofind inverse of a nonsingular matrix using calculator:

Step 1. Input the matrix say A

Step 2. Call matrix A and hit x™* in your calculator then hit MATH and select 1 : > Frac to get
the matrix along with determinant value.

Example 1. Find the inverse of atwo by two matrix by hand:
d b

Ac(® P pen At L (d D) | ad-bc  ad-hc
c d ad-bc\-c a C a

- ad-bc ad-bc
Now verify that AA™ = A A=
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Example 2. Show that (AB) " =B'A™

Solution: We can consider that
AB(AB)™ = |
ATAB(AB) ™ = Al = A7, multiplying by A™
B'IB(AB)'=B"A™", using A"A=1 andmultiplying by B™
B'B(AB)'=B*A™
(AB)!=BA™
Example 3. Show that (ABC)*=C'B*A™" using (AB)*=B'A™
Example 4. Solve the following system of equations by matrix inverse:
X+y-2=12
2X—-y+2z2=-3
X+2y—-2=6

Solution: We have the following matrix system

1 1 -1)(x) (12 1 1 9
2 -1 2| y|=|-3]| checkfordet|2 -1 2 |=4
1 2 -1)\lz) (6 1 2 -1
27
x) (1 1 -1)7(12 3 1 -1\(12) | 4
yl={2 -1 2| |=3|=Y -4 0 4|l-3|-| -6
z12—164—5136_§
4

METHOD OF TRIANGULARIZATION (OR METHOD OF FACTORIZATION)
(DIRECT METHOD) :

This method is also called as decomposition method. In this method, the coefficient
matrix A of the system AX = B, decomposed or factorized into theproduct of alower triangular
matrix L and an upper triangular matrixU. we will explain this method in the case of three
equationsin three unknowns.

Consider the system of equations
allx1+ al2x2+ al3x3=bhl
a21x1+ a22x2+ a23x3 = b2
a31x1+ a32x2+ a33x3 =h3
This system isequivalent to AX =B

i, Q3; Ay, Xy e
Ap, Qz; Az, x:) b:
Where A= \@3, G3; Q33/, X=\%/ B= \D;

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 27/55




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II
COURSE CODE: 18PHU203 UNIT: 111 BATCH-2018-2021

Now we will factorize A as the product of lower triangular matrix
1 0 0
( boi: O n)
L= l31 13: 1
And an upper triangular matrix
Uy, Uyz Uy,
( 0 U, U 23)
U=\0 0 U3;z/ sothat
LUX=B Let UX=Y And hence LY=B
1 0 0\/y, b,
( 121 1 0)(}-’:) b,
Thatis, \l3: I3z 1/\Va/ = \b,

“yl=b, 21yl+y2 =b2, 131y1+132y2+y3 =b3
By forward substitution, yl, y2, y3can be found out if L is known.

Uy, Uy Ugg\ /X, Vi
0 Uy, Uzg | Xs Vi
From (4), 0 0 Uz, /\Xa/=\V;

ullxl +ul2x2 +ul3x3 =yl , u22x2 + u23x3 =y2and u33x3=y3
From these, x1, x2, x3can be solved by back substitution, since y1, y2, y3 are known if U is
known.Now L and U can be found from LU=A

1 0 0 Uy, Upz Uy, Ay, @y Qg

(121 1 0)( 0 Uz u;‘z)= (a.‘-.'x A2z a."-.’:)
i.e., l3, l3; 1 0 0 Uz, Az, G3; QA3z;
I.€.,
- N
ull ul2 ul3

[21ull 121ul2+u22 121ul3+u23

@ lull 131ul2+132u22 13Tul3+132u23+u33

Equating corresponding coefficients we get nine equations in nine unknowns. From these 9

equations, we can solve for 3 I’s and 6 u’s.
Thatis, L and U re known. Hence X is found out. Going into details, we get ull= @13» ul2
= @13, ul3= @1z, Thatis the clements in the first rows of U are same as the elementsin the

first of A.
Also, 121ull=Q2; 121ul2+u22= 42z 121ul3+u23=4a2;
ar, ar, _ ajz,

—<1 s Seif' 5 4
21=CQ1y, u22=0Q2; - A1y Qyzand w23= “° Qy,. al3
again, 131ull = @31, 131u12+132u22 = @3z and 131u13+132u23+u33 = @33
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a 22 __gh .a 12
a31 ﬂ“
solving, 131 =01, ,132= %327 ay, -%1a
a.» i -
as, 2~ ai; 0] as,

a . G'EI. a
ul3 a3z - A1, |al3 - |¥327 ay, - 1ﬂ A3;-01, . al3
Therefore L and U are known.

Example 2

By the method of triangularization, solve the following system.
5x-2y+z=4, Tx+y-5z=38, 3x+ 7y +4z = 10.
Solution.The system is equivalent to

N

A X = B
Now, let LU=A

1 0 0\ /uy, Uy, Uy, 5 -2 1
l,, 1 o0 ( 0 Uy, 113=)= (7 1 —5)
That is I3, l3; 1 . R oy T

Multiplying and equating coefficients,

ull = 9 ul2='=2, yl3=1
121ull =7 121ul2+u22= 1 121ul3+u23 = -5
7 7 19
121=75,u2=1 -5.2= T ad
gr _ ? _32
u23 = S.Hl)= 5
Again equating elementsin the third row,

131ull = 3. 131u12+32u22 = 7 and 131u13+132u23+u33 = 4

3
7 —g.(—Z)
; 9 4
131 =5, 132= b = 19
44 , 33
3 el e s 1312
3= 3'(1) ] 19( 5 ):4 ~ 35+ Os
163s 327
= 95 = 19
Now L and U are known.Since LUX =B, LY =B where ux =Y.
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From LY =B,

1 0 o

2 1 0})/)s

5 ¥Va s

34,1 (s)

5 1 = \1o

7 3 4 _

yl =4, 5 yl+y2=8  S5yl+ 19 y2+y3 = Lo
28 B

y2=8- 5 = 5
12 41 1, 12 492 4s
y3=10- 5 - 19 X5 =10- "5 - 95 = 19
5 -2 1 4
1o 32,y 12
T (\) 5
327 |\z de
0 0

UX =Y gives 19 -\ 1o

SX-2y+z=4
lo 32 12

(563) 46
Bx=4+2y- z=4+2\ 327/. 327
366

x= 327
366 284 46
x= 327, y= 327, z= 327

TRAPEZOIDAL RULE:
What isthetrapezoidal rule?
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Thetrapezoidal ruleis based on the Newton-Cotes formulathat if one approximates the
integrand by an n™ order polynomial, then the integral of the function is approximated by the

integral of that n™ order polynomial. Integrating polynomialsissimple and is based on the
calculusformulaj_ﬁ

Yy o [ %)

a1 b X

b ntl  on+d

Ix”dx = (b—aJ n=-1 (1)
A n+1

So if we want to approximate the integral

b

| = j f (x)dx )
to find the value of the above integral, one assumes

f(x) = f,(x) 3
where

f.(X)=a,+aX+..+a, X" +ax". (4)

where f_(x) isa n™ order polynomial. The trapezoidal rule assumes n=1, that is,

approximating the integral by alinear polynomial (straight line),
b

[ f(9dx~ T f, (x)dx

Derivation of the Trapezoidal Rule

Method 1: Derived from Calculus
b

j f (X)dx ~ T f,(X)dx

a

= j(aO +a,X)dx
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b? — a2
e araft )

But what is a, and &, ? Now if one chooses, (a, f (a)) and (b, f (b)) asthetwo pointsto
approximate f(x) by astraight linefrom ato b,

f(a)=f,(a)=a, +aa (6)
f(b)=f,(b)=a,+ab (7)
Solving the above two equationsfor a, and a,,

_fb)-1(@)
ATl

_ f(@)b-f(b)a (8a)

b-a
Hence from Equation (5),
If(x)dXzM(b—a)+ T @b -2 (8b)
A b-a b-a 2
~(b- a)[w} 9)

Method 2: Also Derived from Calculus
f,(X) can also be approximated by using Newton’s divided difference polynomial as

LX) =f(a)+ M( a) (10)

Hence

_T f(X)dx ~ _T f,(x)dx

[f() f(b) f(a)( )}

a

{f(a)x+ fb)- f(a)( ﬂ

=f(a)b—f(a)a f(b) f(a)( 2]

:f(a)b—f(a)a f(b) f(a) (bzz j

‘—.
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et [fO @)1
= f(a)b f(a)a+[ . jz(b a)

==H®b—ﬂma+%ﬁdn—fw»®—®
:f(@b—f(@a+%¢(@b—%¢(@a—%¢(@b+%f(ma

1 1 1 1
= > t@b- f(@a+ > f(b)b— f(b)a

~(b- a)[—f @1 (b)} (1)

This gives the same result as Equation (10) because they are just different forms of writing the
same polynomial.

Method 3: Derived from Geometry
The trapezoidal rule can aso be derived from geometry. Look at Figure 2. The area under the

curve f,(x) istheareaof atrapezoid. Theintegral
b

I f (X)dx ~ Area of trapezoid

a

= %(Sum of length of parallel sides)(Perpendicular distance between parallel sides)
= 2(t®)+ f@)b-2)
=(b- a)[w} (12

Yy o freax o,

FIGURE 2 Geometric representation of trapezoidal rule.

Method 4: Derived from Method of Coefficients
The trapezoidal rule can aso be derived by the method of coefficients. The formula
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b
[ f(9dx= b-a ¢ 1223 (13)
J 2 2
2
=36 f(x)
i=1
where
o b-a
o2
- b-a
202
X, = a
X, =D
y )

Area ¢ fia)

Area o fib)

FIGURE 3 Area by method of coefficients.
The interpretationisthat f (x) isevauated at points a and b, and each function evaluation is

given aweight of b;za . Geometrically, Equation (12) islooked at as the area of atrapezoid,

while Equation (13) is viewed as the sum of the area of two rectangles, as shown in Figure 3.
How can one derive the trapezoidal rule by the method of coefficients?

Assume

T f(x)dx=c,f(a)+c, f (b) (14)

b b
Let the right hand side be an exact expression for integrals of I 1dx and dex, that is, the

formulawill then also be exact for linear combinationsof f(x) =1 and f(x) = x, that is, for
f(X) =2a,(1)+a,(x).
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b
Jlldx:b—a:cl+c2 (15)
b 2 2
dex _b-a ca+c,b (16)
Solving the above two equations gives
b-a
C ==
b-a
C,=—— (17)
Hence
b
jf(x)dXzb af(a)+b—2af(b) (18)

a

Method 5: Another approach on the Method of Coefficients
The trapezoidal rule can aso be derived by the method of coefficients by another approach

jb.f(x)dx~ f() —f(b)
;\ssume
T f(x)dx=c, f(a)+c,f(b) (19)
Eet the right hand side be exact for integrals of the form
_T(ao +a,X)dx
So
_T(ao +a,x)dx = (aox+ aix—zzjb
=ao(b—a)+a1(b2;a2] (20)
But we want
T(a0 +a,x)dx=c, f(a)+c, f (b) (21)

to give the same result as Equation (20) for f(X) =a, + a,X.
b

[ (2 +a,x)dx = c,(a + &)+ ¢, (8, +ab)

a
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=8,(C, +C,)+ay(ca+ cb) (22)

Hence from Equations (20) and (22),
b*-a’
3,(b—a)+ ai(T] =ay(c, +¢,)+a(ca+c;b)

Since a, and a, are arbitrary for ageneral straight line

c,+C,=b-a
b* -a’

ca+c,b= (23)
Again, solving the above two equations (23) gives
. b-a
o2

-a
C=—— (24)
Therefore
b
jummzqu@+gum

:—f() —f(b) (25)

Example 1
The vertical distance covered by arocket from t =8 to t =30 secondsis given by

30
X = j (ZOOOIn{ 140000 } - 9.8tjdt
! 140000 — 2100t

Use the single segment trapezoidal rule to find the distance covered for t =8 to t = 30 seconds.
Find thetrue error, E, for part (a).

Find the absolute relative true error for part (a).
Solution

a) | ~(b— a)[w} , Where

a=8
b=30

f(t) = 2000In[

140000 7
140000 — 2100t

140000 }_ 89

140000 — 2100(8)
=177.27 m/s

f (8) = 2000 n{

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 36/55




=—r= KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II

| Do COURSE CODE: 18PHU203 UNIT: 11 BATCH-2018-2021

f (30) = 2000In 140000 —9.8(30)

140000 — 2100(30)
=901.67 m/s
| ~ (30— 8)[177.27 + 901.67}
=11868 m

b) The exact value of the above integral is

30
X = j (ZOOOIn[ 140000 } _ 9.8tjdt
! 140000 — 2100t

=11061 m
so thetrue error is
E, = True Value— Approximate Vaue

—~11061-11868
=-807 m
c) The absolute relative true error, |e,|, would then be
|E |= True Error
" |TrueValue
_[11061-11868)
11061 |

= 7.2958%

=x 100

Multiple-Segment Trapezoidal Rule
In Example 1, the true error using a single segment trapezoidal rule was large. We can divide the
interval [8,30] into [8,19] and [19,30] intervals and apply the trapezoidal rule over each

segment.
f(t) = 2000In(

140000 )
140000 — 2100t

30 19 30

j f (t)dt = j f(t)dt + j f (t)dt

(19— 8)[ f (8) +2f (19)} (30— 19)[ f(19) ; f (30)}

f(8) =177.27 m/s
140000
140000 — 2100(19)

f (30) =901.67 m/s

f (19) = 2000 n( J— 9.8(19) = 484.75 m/s
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Hence
30
J~ f(t)dt ~ (19_8)[177.27;484.75} N (30_19){484.75; 901.67}
8

=11266 m
Thetrueerror, E, is
E, =11061-11266
=-205m
Thetrue error now isreduced from 807 mto 205m. Extending this procedure to dividing [a,b]

into n equal segments and applying the trapezoidal rule over each segment, the sum of the
results obtained for each segment is the approximate value of the integral.
Divide (b—a) into n equal segments as shown in Figure 4. Then the width of each segment is

b-a

h:T (26)
Theintegral | can be broken into h integrals as

b
| = j f (x)dx

: a+h a+2h a+(n-1)h b

= jf(x)dx+ jf(x)dx+ ot jf(x)dx+ jf(x)dx (27)
a a+h a+(n-2)h a+(n-1)h
y fix)

FIGURE 4 Multiple (n=4) segment trapezoidal rule

Applying trapezoidal rule Equation (27) on each segment gives

T f(x)dx =[(a+ h)—a{ f(a)+ ;(a+ h)}

a
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f(a+h)+ f(a+2h)}
2

+[(a+2h) - (a+ h)][

o, +[(a+(n—1)h)—(a+(n—2)h)][f(a+(n_2)h);f(a+(n_1)h)}
+[b_(a+(n_1)h)][f(a+(n—21)h)+ f(b)}
e e i
. hr(aw(n—z)h);r f(a+(n—1)h)} p h{f(a+(n—21)h)+ f(b)}
:h[f(a)+2f(a+h)+2f(a+2h)+...+2f(a+(n—1)h)+f(b)}
2
{f(a)+2{2f(a+|h)}+f(b)}
_b-a
- {f(a)+2{2f(a+|h)}+f(b)} (28)

Example 2
The vertical distance covered by arocket from t =8 to t =30 secondsis given by

30
x:j(zooom{ 140000 }—9&)0&
8

140000 — 2100t
Use the two-segment trapezoidal rule to find the distance covered from t =8 to t = 30 seconds.
Find thetrue error, E, for part (a).
Find the absolute relative true error for part (a).

Solution
a) The solution using 2-segment Trapezoidal ruleis

| ~ bz_na{f(a)+2{§f(a+ih)}+ f(b)}
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=11
| ~ 32( )8[f(8) 2{2 f (8+1JJ)}+ f(SO)}
=1

:I[f(8)+2f(19)+ f(30)]

= 2742 [177.27 + 2(484.75) + 901.67]
=11266 m

b) The exact value of the above integral is
30

x=| (2000| n[ 140000 } = 9.8tjdt
8

140000 — 2100t

=11061 m
so thetrue error is
E, = True Vaue— Approximate Value

=11061-11266
=-205m

c) The absolute relative true error, |&, |, would then be
|E | _ True Error
" |TrueValue
_[11061-11266| o
| 11061 |
=1.8537%

x100

TABLE 1 Values obtained using multiple-segment trapezoidal rule for

30
X = j (ZOOOIn{ L0000 } _ 9.8tjdt
! 140000 — 2100t

n Cgpljgx'mate E | el ||el%

1 | 11868 -807 | 7.296 | ---

2 | 11266 -205 | 1.853 | 5.343

3 | 11153 -91.4 | 0.8265 | 1.019

4 | 11113 -51.5| 0.4655 | 0.3594
5 | 11094 -33.0 | 0.2981 | 0.1669
6 | 11084 -22.9 | 0.2070 | 0.09082
7 | 11078 -16.8 | 0.1521 | 0.05482
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| 8 | 11074 | -12.9 0.1165 | 0.03560 |

Example 3
Use the multiple-segment trapezoidal rule to find the area under the curve
300x
f(x) =
1+e”
from x=0 to x=10.
Solution
Using two segments, we get
he 10-0 _ 5
2
300(0)
1+ ¢€°
300(5)
1+¢€°

f (10) = 310320)

| ~ b2 a{f(a)+2{2f(a+|h)}+ f(b)}

=0

f(0) =

f(5) = =10.039

0.136

i=1

_10-0
=20 {f(O) 2{21f(0+5)}+ f(lO)}

—[f(0)+2f(5)+ f (10)]

12 [0+ 2(10.039) + 0.136] =50.537

So what isthe true value of thisintegral ?
'? 300x
£1+e
Making the absolute relative true error
el = 246.59-50.535|

| 24659 |

= 79.506%

Why isthe true value so far away from the approximate values? Just take alook at Figure 5. As
you can see, the area under the “trapezoids” (yeah, they really look like triangles now) coversa

small portion of the area under the curve. Aswe add more segments, the approximated value
quickly approaches the true value.

dx = 246.59
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23539, e J F ! T

fix)

FIGURE 5 2-segment trapezoidal rule approximation.

OOx
dx

TABLE 2 Vaues obtained using multiple-segment trapezoidal rule for I

N Cgﬁjrgm mate E, |et |

1 | 0681 245.91 | 99.724%
2 | 50.535 196.05 | 79.505%
4 |170.61 75.978 | 30.812%
8 | 227.04 19.546 | 7.927%
16 | 241.70 4.887 | 1.982%
32 | 245.37 1.222 | 0.495%
64 | 246.28 0.305 | 0.124%

Example 4:
Use multi ple-segment trapezoidal ruleto find

I —I—dx

Sal utlon
We cannot use the trapezoidal rule for thisintegral, asthe value of theintegrand at x=0 is
infinite. However, it isknown that a discontinuity in a curve will not change the area under it.
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We can assume any value for the function at x=0. The agorithm to define the function so that
we can use the multiple-segment trapezoidal ruleis given below.

Function f (x)

If X=0Then f =0

If X0 Then f = x*(-0.5)
End Function

Basically, we are just assigning the function avalue of zero at X=0. Everywhere else, the
function is continuous. This means the true value of our integral will bejust that—true. Let’s
see what happens using the multiple-segment trapezoidal rule.
Using two segments, we get
h= 2-0 =1

2
f(0) =

f)=—=1

ﬁ

f(2) = ——=0.70711

{f(a)+2{z f (a+|h)}+ f(b)}

i=1

_2-0
=20 { f (0) + 2{2 f (0+1)} 14 (2)}

i=1

IS

:Z[f(0)+2f(1)+f(2)]

3 %[o +2(1) + 0.70711]

=1.3536
So what is the true value of thisintegral ?

j—dx 2.8284

Thus making the absol ute relative true error
el = 2.8284-1.3536| .
| os84 |
=52.145%

TABLE 3 Vaues obtained using multiple-segment trapezoidal rule for J' —dx.

17X
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n C glrfjrgm mate E, |et |

2 1.354 1.474 | 52.14%
4 1.792 1.036 | 36.64%
8 2.097 0.731 | 25.85%
16 2.312 0.516 | 18.26%
32 2.463 0.365 | 12.91%
64 2.570 0.258 | 9.128%
128 | 2.646 0.182 | 6.454%
256 | 2.699 0.129 | 4.564%
512 | 2.737 0.091 | 3.227%
1024 | 2.764 0.064 | 2.282%
2048 | 2.783 0.045 | 1.613%
4096 | 2.796 0.032 | 1.141%

Error in Multiple-segment Trapezoidal Rule
Thetrue error for a single segment Trapezoidal ruleis given by
3

Et :_(b_a) £
12

Where z issome point in [a,b].

What is the error then in the multiple-segment trapezoidal rule? It will be simply the sum of the

errors from each segment, where the error in each segment is that of the single segment

trapezoidal rule. The error in each segment is

(z), a<z <b

El:—wf"(zl), a<z,<a+h
12
he ..
__Ef (21)
Ezz—[(a“h)l_z(a*h)] f"(z,), a+h<z,<a+2h
he ..
:_Ef (Zz)
E :—[(a”h)_(f;(i_l)h)]g f"(z)), a+(i-Dh<z, <a+ih
he .,
__Ef ()
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__[fa+(n-nhj—fa+(n-2)hff

f"(z,,), a+(n-2h<z ,<a+(n-2Dh

Hence the total error in the multiple-segment trapezoidal ruleis

5=ia
i=1
3 n
:_Eizﬂ:f (Zi)

BRCED
- 123 ;f (Zi)

ey @)
12n? n

> f(z,)

Theterm 'ﬂT IS an approximate average value of the second derivative f"(x), a< x<b.

Hence

_ (b— )3 Zf"(z )

' 12n? n
In Table 4, the approximate value of the integral

30
j (2000| n[ 140008 } - 9.8tjdt
! 140000 — 2100t

isgiven as afunction of the number of segments. Y ou can visualize that as the number of
segments are doubled, the true error gets approximately quartered.
TABLE 4 Vaues obtained using multiple-segment trapezoidal rule for

30
X = j (ZOOOIn{ 140000 } - 9.8tjdt .
! 140000 — 2100t
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n | aeproimael e Tic s | [e,fo
2 | 11266 -205 | 1.853 5.343
4 | 11113 -52 | 0.4701 | 0.3594
8 | 11074 -13 | 0.1175 | 0.03560
16 | 11065 -4 0.03616 | 0.00401

For example, for the 2-segment trapezoidal rule, the true error is -205, and a quarter of that error
is-51.25. That is closeto the true error of -48 for the 4-segment trapezoidal rule.

SIMPSON’S 1/3 RULE:
Simpson’s 1/3'9 Rule/Formula
In this case the integral is evaluated over two intervals at atime, say [Xo, X1] and [X1, X2].
The function f(x) is approximated by a quadratic passing through the points (xo, Yo) and (X1,
y1) and
(X2, y2). From Lagrange’s formula we may write the quadratic as,
(X Xl) (X Xz) (X =3 Xo)(x — Xz) (X 3 Xo) (X — Xl)
y(x) = Yo + Y1+ y
( 1) (X 2) (Xl - Xo) (Xl - Xz) y (Xz B Xo) (Xz - Xl) ’
Integrating term by term we get,

X2

(X=%) (X=X%,) (x-x)°* (x-%)]" _h
! g (0 .-

(- h) (- 2h) 2 6 3
T (x _Xo) (x - Xz) dx :i2|:(x _Xo) (X — Xz)2 A (X — )(2)3:|X2 :ﬂ h
s h(=h h 2 6 L 3
]? (X =%o) (X=%) oo (X_X)(x—xl)Z_(x—xl)a XZZD
Xo (Xz - Xo) (Xz - X1) 2h2 ° 2 6 Xo 3
Hence we get,
f f(x)dx=.|.2 y(x)dx=%y0+4—;y1+%y2

h
:E (yo + 4y1 + yz)

Applying this formulaover next two intervals and then next two and so on for 2 times and

adding we get

X Xy X4 X

jf(x)dx:j y(x)dx:j y(x)dx:j y(X) dX +...+ j y(X) dx

a Xg Xg X5 Xn_2

h
25[(y0 Ay, +Y) (Yo + YY) e+ (Y YY)
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h
:g[Yoern +A4(Y, + Y+ Y, )2V, Y+ Y, )]
Obvioudly n should be chosen as amultiple of 2 i.e. an even number for applying this

formula.
Example 1:
Evauate theintegral | =j o by trapezoidal rule dividing the interval [0, 1] into five
o 1+ X2
equal parts. Compute upto five decimals.
Solution
n=5 h= ﬁ =0.2
5
[ 0 1 2 3 4 5
X 0 0.2 0.4 0.6 0.8 1.0
ve—r 1 : 1.0 | 0.98058 | 0.92848 | 0.85749 | 0.78087 | 0.70711
+ X

From Trapezoidal Rule;
h
I :E[yo +Ys +2(y1+y2 +Y; +y4)]

_ O;ZZ [1.0 + 0.70711+ 2(0.98058 + 0.92848 + 0.85749 + 0.78087)]

=0.1]1.70711 + 2 x 3.54742]
=0.88016
Example 2:

0.8
Evaluate theintegral | = | d
0

X . .y .
by Simpson’s 1/3" rule dividing the interval [0, 0.8] to
4 equal sub-intervals. Compute up to five places of decimal only.
Solution

o

1

3

o

0.2

04

0.6

0.8

1.0

0.91287

0.84515

0.79057

0.74536

From Simpson’s 1/3" Rule

0.8

0

h
= [ yax =210 + 4: + Y2) + (Y + 4y + o))
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h
=3 o +Ya+ 40+ ¥a) + 2 ¥,)]
- 0;32 [LO+ 0.74536 + 4(0.91287 + 0.79051) + 2x 0.84515)]

- 0;32 [1.74536 + 4 x 1.70344 + 1.69030]

= 0.68329
Note: The maximum error in various integration formulas in the evaluation of the integral

f (x) dxis

m-—,g

(i) Rectangular Rule: Mf’(é)

SE=A g

(b—a)h v
w | ©

where x = £ issome point in [a, b] for which f'(x) or f”(x)or f™ (x) has maximum
numerical vaue.

(i) Trapezoida Rule:

(iii) Simpson’s 1/3" Rule: —

Example 3:

All electrical components, especially off-the-shelf components do not match their nominal value.
Variations in materials and manufacturing as well as operating conditions can affect their value.
Suppose acircuit is designed such that it requires a specific component value, how confident can
we be that the variation in the component value will result in acceptable circuit behavior? To
solve this problem a probability density function is needed to be integrated to determine the
confidence interval. For an oscillator to have its frequency within 5% of the target of 1 kHz, the
likelihood of this happening can then be determined by finding the total area under the normal
distribution for the range in questl on:

1 X
(1-a) ——e 2dx
é|.15 2p
a) Use Simpson’s 1/3 Rule to find the frequency.
b) Findthetrueerror, E,, for part (a).

c) Find the absolute relative true error, e |, for part (a).

SOLUTION

8  (1-a)~— [f() 4f(a;bj f(b)}
a=-215
b=29
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a%b — 0.37500

1 X
f(X)=—=—e 2
V2p
( ) 1 (215
f(-215)=—e ?
v2p
= 0.039550
29— Lot
f(29)=—e ?
2p
= 0.0059525
( ) 1 _(0.375)%
f(0.375)=—e ?2
vp

—0.37186
(1-a)~ bga[f(a)+4f(a%bj+ f(b)}

~ (M)[f (= 2.15)+ 4 (0.37500)+ f (2.9)]

~ (5'_?)[0.039550 +4(0.37186) + 0.0059525]

~1.2902
b) The exact value of the above integral cannot be found. For calculating the true error and
relative true error, we assume the val ue obtained by adaptive numerical integration using Maple

as the exact value.
29 1 x*
1-a)= | —=—e 2dx
-2.15 2p
=0.98236

So thetrueerror is
E, = True Value— Approximate Value
=0.98236-1.2902
=-0.30785
Absolute Relative true error,
True Error
TrueValue
—0.30785
0.98236
=31.338%
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Example 4:

All electrical components, especially off-the-shelf components do not match their nominal value.
Variations in materials and manufacturing as well as operating conditions can affect their value.
Suppose acircuit is designed such that it requires a specific component value, how confident can
we be that the variation in the component value will result in acceptable circuit behavior? To
solve this problem a probability density function is needed to be integrated to determine the
confidenceinterval. For an oscillator to have its frequency within 5% of the target of 1 kHz, the
likelihood of this happening can then be determined by finding the total area under the normal
distribution for the range in question:

2

29 1 ¢
(1-a)= .[—e 2 dx

-215°V 2p

a) Usefour segment Simpson’s 1/3 Rule to find the frequency.
b) Findthetrueerror, E,, for part (a).

¢) Find the absolute relative true error for part (a).

SOLUTION
a) Using n segment Simpson’s 1/3 Rule,
b-—

3n

(1-a)~>2 f(xo)+4_ni f(xi)+2lnz_%‘f(xi)+f(xn)

i=odd i=even
n=4
a=-215
b=29
h_b-a
n

~ 29-(-215)

- 4

=1.2625
f(x) :ie 2

N

f(x,) = f(~2.15)

( ) 1 (215

f(-215)=—e ?
v2p
=0.03955
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f(x)= f(-2.15+1.265)
= f(~0.8875)
_ 1 e7(—0.8;375)

J2p

=0.26907

f(x,)= f(-0.8875+1.2625)
= (0.375)

(0375
2

1
=—¢e
v2p
=0.37186

f(x,) = f(0.375+1.2625)
= 1(1.6375)

1 _(1.6375)

=—8e 2
V2
=0.10439

F(x,) = f(x,)

= (2.9)
4 1 e_(zg)
V2p
= 0.0059525
b—a n-1 n-2
l-a)= = f(x0)+4z f(xi)+22f(xi)+ f(x,)
| odd |=aven
( 21 ) 3 2
f(-215)+4> f(x Z )+ £(2.9)
BECHE
i=odd
5

05[f( 2.15)+ 4f (x,)+ 4F ( )+2f(x2)+f(2.9)]

5 05 [f (-2.15)+ 4 (~0.8875)+ 4 (1.6375)+ 2 (0.375) + f(2.9)]
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5 05

[o 03955 + 4(0.26907) + 4(0.10439) + 2((0.37186)) + 0.0059525]
~ 0.96079

b) The exact value of the above integral cannot be found. For calculating the true error and
relative true error, we assume the value obtained by adaptive numerical integration using Maple
as the exact value.

XZ

(1-a)= .[iezdx

-215°V 2p

=0.98236
So thetrue error is
E, = True Value— Approximate Value

=0.98236-0.96079
=0.021568

c) The absolute relative true error, |e,|, would then be

True Error
TrueValue
0.021568
0.98236
=2.1955%

le| = x 100 %

x100 %

TABLE 1 Values of Simpson’s 1/3 Rule for Example 2 with multiple segments.

n | Approximate Vaue E, |€t| %
2 1.2902 0.30785 31.338
4 0.96079 0.021568 2.1955
6 0.98168 0.00068166 | 0.069391
8 0.98212 0.00023561 | 0.023984
10 0.98226 0.000092440 | 0.0094101

SIMPSON’S 3/8 RULE:
Putting n = 3 in Newton — cotes formula

= % (votyn) + 3(yr+ Yot yatys+....+yn1)+2(ys+
Yot Yot....+Yn) ee(2)

Equation (2) is caled Simpson’s three — eighthsjule which is applicable only when nis a
multiple of 3.Truncation error in simpson’s rule is of the order h

Example:
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Evaluate J‘_"’B X*tds, by using (1) trapezoidal rule (2)simpson’s rule. Verify your results by
actual integration.

Solution.

Herey(x) = x*. Interval length(b — a) = 6. So, we divide 6 equal intervalswith h= g =1

We form below the table
X -3 -2 -1 0 1 2 3
y 31 16 1 0 1 16 81

(i) By trapezeaidal rule:
f_33 y dx :% [(sum of the first and the last ordinates) +

2(sum of the remaining ordinates)]
== [(81+81)+2(16+1+0+1+16)]

=115
(if) By simpson’s one - third rule (since number of ordinatesis odd):

[2,y dx = 3 [(81+81) + 2(1+1) + 4(16+0+16)]

=98.
(iii) Since n = 6, (multiple of three), we can also use simpson’s three - eighthsrule. By this
rule,
2,y dx = 3 [(81+81) + 3(16+1+1+16) + 2(0)]
=99
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DEPARTMENT OF PHYSICS
CLASS: | B.SCPHYSICS
BATCH: 2018-2021

SUBJECT CODE : 18PHU203

KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE-21

PART A : MULTIPLE CHOICE QUESTIONS (ONLINE EXAMINATIONS)
SUBJECT : MATHEMATICAL PHYSICS- 11

UNIT 11
OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

By putting n = 3 in Newton cote’s formula we get - Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles Simpson’s % rule
By putting n = 2 in Newton cote’s formula we get - Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles Simpson’s 1/3 rule
1= W2 [Y0 + 2L +y2 + Y3 +....cco.. by 1) + yn]iS KOOW 25 —orecrrre e Simpson’s 1/3 Simpson’s % Trapezoidal Romberg Trapezoidal
By putting n = 1 in Newton cote’s formula we get ----------- rule. Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles Trapezoidal rule
1=@Bn/8){ (Yo+VYn) *3(Y1+Ya+Ya+Ys+....)+2(y3+Ys+ Yo+ .....) } is | Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  (weddles Simpson’s % rule
known as -- .
1= (1/3) { (O + ym) + 2 (Y24 y& +y6 + B+ ... )4 A(yL +y3 +y5 + ...) } is KNOWN 85 wrreerrrrerrre Simpson’s 1/3 rule Simpson’s % rule Trapezoida rule  |weddles Simpson’s 1/3 rule
If the given integral is approximated by the sum of ‘n” trapezoids, then the ~ |Newton’s method Trapezoidal rule Simpson’s rule weddles Trapezoidal rule
ruleis called as ---------------- .
Simpson’s rule is exact for @ ----------------- even though it was derived for a |Cubic less than cubic linear quadratic linear
Simpson’s % rule can be applied only if the number of sub interval is in ------ Equal even multiple of three unequal. multiple of three
Simpson’s one-third rule on numerical integration is called a --------- Closed open semi closed semi opened Closed
formula
While evaluating the definite integral by Trapezoidal rule, the accuracy can  (large number of sub- even number of sub h=4 hasamultipleof 3  |large number of
beincreased by taking intervals intervals sub-intervals
In application of Simpson's 1/3 rule the interval for closer approximation even small odd even and small even
should be
Numerical integration when applied to afunction of asinglevariable, itis  [maxima minima quadrature quadrant quadrature
Two point Gaussian Quadrature formulais exact for polynomial uo to degree|3 5 2 4 3
Three point Gaussian quadrature formulais exact for polynomial up to 1 4 3 5 5
degree
The two-segment trapezoidal rule of integration is exact for integrating at first second third fourth first
most order polynomials
The highest order of polynomial integrand for which simpson's 1/3 ruleof  [first second third fourth third
integrationisexactis___
While applying Simpsons 3/8 rule the number of subintervals should be odd 8 even multiple of 3 multiple of 3
Trapezoidal and simpson's rules can be used to evaluate doubleintegrals differentiation multipleintegrals  |divided difference  |multipleintegrals
The value of integral ex is evaluated from 0 to 0.4 by the following formula. [Trapezoidal rule with Trapezoidal rulewith |Simpson’s 1/3 rule [Simpson’s 1/3 rule |Simpson’s 1/3 rule
Which method will give the least error? h=0.2 h=0.1 with h=0.1 with h=0.2 with h=0.1
The results obtained by using Simpsons rule will be greater than those inall the cases provided theintervals |provided the provided the provided the
obtained by using the trapezoidal rule aresmall boundary is concave|boundary isconvex |boundary is convex

towards the base lin |towards the base line |towards the base

line
If the determinant of coefficientsis not very small, Gaussian elimination gives no solution givesincorrect solution |gives solution sometime give gives solution
solution

Using the trapezoidal rule, what is the area under the curvey =vx from x = 1 [2.61 2.793 2.797 2.8 2.793
to x = 3, using 4 subintervals
If four equal subdivisions of [~ 2, 6] are used, what is the trapezoidal 4In5 + 2 In17 2In5+2In17+2In37(3In5+2In17+1In [6In5+3In17+2 (3In5+2In17+In

approximation of fIn( x2+1)dx ? 37 In37 37
Using the trapezoidal rule, what is the area under the curve y= 2x- x2 from x|0.53125 0.65625 0.66667 0.67187 0.65625
=1tox = 2, using 4 subintervals?
Using the trapezoidal rule, what is the area under the curvey = sinx from x = [1.896 1.948 2 2.052 1.896
0to x =, using 4 subintervals?
Using the trapezoidal rule, what is the area under the curve y=x2+ x from x |10.625 13.4375 135 13.625 13.625
=0tox = 3, using 6 subintervals?
What is an approximation for the area under the curve y =3/1+x2 on the 2932 3.742 3.747 3.75 3.742
interval [0, 3] using the trapezoidal rule with 5 subintervals?
What is an approximation for the area under the curve y =1/x on theinterval [0.868 0.915 0.916 0.918 0.918
[2, 5] using the trapezoidal rule with 9 subintervals?
The formula using (2n) coefficients polynomial of degree (2n-1) iscalled as |Gauss-Legendre trapexoidal formul weddle'srule taylor'srule Gauss-Legendre
quadrature formula quadrature formula
In simpson's one third rule y(x) is a polynomial of degree 1 2 3 4 2
In simpson's one third rule the number of ordinates must be even odd even or odd 0 odd
In simpson's three-eigth rule y(x) is a polynomial of degree 1 2 3 4 3
In Weddl€'s rule y(x) is a polynomial of degree 2 4 6 8 6
In Weddle's rule the number of ordinates must be 2 4 6 7 7
While applying Weddl€e's rule the number of intervals should be even multiple of 6 multipleof three  |odd multiple of 6
If there are only 7 ordinatesin weddl€'s rule the coefficients are 1,516,151 1,6,1,51,5,1 51,6,1,51 151,61 151,6,1,51
The coefficients of first group in weddle'sruleis 1,5,1,6,1,5 516,15 1515 1,16,15 151,6,15
In weddl€'s rule the coefficients may be remembered in groups of 2 3 6 9 6
h2 isthe order of error in Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles Trapezoidal rule
The order of error in simpsons 1/3 ruleis h h2 h3 h4 h4
The accuracy of the result can beincreased by repetition number of intervals step-by step 0 number of intervals
The accuracy of the result can beincreased by decreasing thevalue of h  |increasing the value of ~ |repetition step-by step decreasing the
h vaueof h




Though y2 has suffix evven, itis ordinate first second third fourth third

Which ruleis applicable only when nisamultiple of 3? Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles Simpson’s % rule
By putting n = 6 in Newton cote’s formula we get ----------- rule. Simpson’s 1/3 rule Simpson’s % rule Trapezoidal rule  |weddles weddles

The approximate value of J0"1=dx/1+x"2 loge2 m e log;p2 s

Interpolating polynomial isalso called as collocation polynomial smoothing function extrpolation interpolating formula|collocation
polynomial

In Newton’s forward interpolation formula, the first terms will 2 3 4 5 2

give the linear interpolation

In Newton’s forward interpolation formula, the terms will give the |2 3 4 5 3

parabolic interpolation

The elimination of the unknowns is done not only in the equations below, but| Gauss elimination Gauss Jordan Gauiss Jacobi Gauss Seidal Gauss Jordan

also in the equations above the leading diagonal is called ------------ )

In Gauss Jordan method, we get the solution --------------------- X without using back by using back by using forward  |without using without using back
substitution method substitution method substitution method |forward substitution |substitution method

method

If the coefficient matrix is diagonally dominant, then ---------- method Gauss elimination Gauss Jordan direct Gauss Seidal Gauss Seidal

converges quickly.

Which is the condition to apply Jocobi’s method to solve a system of First row is dominant First columnis Diagonally upper triangular Diagonally

equations. dominant dominant matrix dominant

Iterative method isa-- -- method. Direct indirect step by step difficult indirect
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CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II
COURSE CODE: 18PHU203 UNIT: IV BATCH-2018-2021
UNIT-IV
SYLLABUS

Arithmetic mean - Median - Quartiles - Deciles - Percentiles - Mode - Empirical relation between
mean, median and mode - Geometric mean, harmonic mean - Relation between arithmetic mean,
geometric mean and harmonic mean - Range - Range meanor average deviation - Standard
deviation - Variance and mean square deviation.

ARITHMETIC MEAN:
The arithmetic mean of a set of valuesis the quantity commonly called "the" mean or the

average. Given a set of samples {x}, the arithmetic meanis
N

1
T ®

fe=|
It can be computed in the Wolfram Language using Mean[list].
The arithmetic mean is the special case M1 of the power mean and is one of the Pythagorean
means.
When viewed as an estimator for the mean of the underlying distribution (known as
the population mean), the arithmetic mean of a sampleis called the sample mean.
For a continuous distribution function, the arithmetic mean of the population, denoted ¥, ¥, (x),
or A (¥) and called the population mean of the distribution, is given by

U= f‘ Px)f(x)dx, (2)
where (¥} is the expectation value. Similarly, for a discrete distribution,
N
u= Z P (xz) f (xs). (3)
=1
The arithmetic mean satisfies
(f (1) + g () = (f () + (g (X)) (4)
(e f @) =c{f (), ®)
and
(f ) g )= (f N (g () (6)

if ¥ and ¥ are independent statistics. The "sample mean," which is the mean estimated from a
statistical sample, is an unbiased estimator for the population mean.
Hoehn and Niven (1985) show that

Al +c,ar+¢,...,ap+c)=c+Ala,az, ..., an) (7)
for any constant ¢. For positive arguments, the arithmetic mean satisfies
AzGzH, (8)

where € is the geometric mean and # is the harmonic mean (Hardy et al. 1952, Mitrinovic¢ 1970,
Beckenbach and Bellman 1983, Bullen et al. 1988, Mitrinovic et al. 1993, Alzer 1996). This can
be shown as follows. For @ >0,

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 1/10




=_ KARPAGAM ACADEMY OF HIGHER EDUCATION

Ef\‘RfﬂtGﬁ M CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS 11
TNy COURSE CODE: 18PHU203 UNIT: IV BATCH-2018-2021
L LY. ©)
va Vb
| 2 . 1 0 10
a \"a b b B ( )
1 . 1 2
a b Vab (11)
— 2
Vab =z [ | (12)
GzH, (13)
with equahty iff #=a_To show the second part of the inequality,
{\"a—\b)—a—2Vab +b20 (14)
a+ b
-2vVab (15)
2
AzG, (16)

with equality iff @ = #_ Combining (<) and (<>) then gives ().
Given 7 independent random normally distributed variates X:, each with population
mean # = M and variance 7 =7,

l N
== ;1 (17)
1 N .
® = 3 (Zr) (18)
LI
= f.\" ;{.\';) (19)
1 N
= N2H (20)
o i W (21)
= W (22)

so the sample mean is an unbiased estimator of the population mean. However, the distribution
of * depends on the sample size. For large samples, ¥ is approximately normal. For small

samples, Student's t-distribution should be used.

The variance of the sample mean is independent of the distribution, and is given by

- er ] (23)

var (x)= var
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1 . |
- v 2] (24)
N~ =l }
l n
- r.{ Zvar l-ts) (25)
l\ i}
} N
- ( ‘er ] ‘hzlcrﬁ (26)
G - (27)

N
For small samples, the sample mean is a more efficient estimator of the population mean than
the statistical median, and approximately 7/2 less (Kenney and Keeping 1962, p. 211). Here, an
estimator of a parameter of a probability distribution is said to be more efficient than another one
if it hasasmaller variance. In this case, the variance of the sample mean is generally less than the
variance of the sample median. The relative efficiency of two estimatorsis the ratio of this
variance.
A genera expression that often holds approximately is
mean - mode = 3 (mean - median) (28)

MEAN, MEDIAN, MODE AND RANGE:

Mean, median, and mode are three kinds of "averages'. There are many "averages" in statistics,
but these are, | think, the three most common, and are certainly the three you are most likely to
encounter in your pre-statistics courses, if the topic comesup at all.

The"mean" isthe "average" you're used to, where you add up all the numbers and then divide by
the number of numbers. The "median” isthe "middle"’ valuein the list of numbers. To find the
median, your numbers have to be listed in numerical order from smallest to largest, so you may
have to rewrite your list before you can find the median. The "mode"” is the value that occurs
most often. If no number in thelist is repeated, then there is no mode for the list.

The"range" of alist anumbersisjust the difference between the largest and smallest values.

Example:

Find the mean, median, mode, and range for the following list of values:

13, 18, 13, 14, 13, 16, 14, 21, 13

The mean is the usual average, so I'll add and then divide:
(13+18+13+14+13+16+14+21+13)+9=15

Note that the mean, in this case, isn't avalue from the origina list. Thisisacommon result. You
should not assume that your mean will be one of your original numbers.

The median isthe middle value, so first I'll have to rewrite the list in numerical order:

13, 13,13, 13, 14, 14, 16, 18, 21

There are nine numbersin the list, so the middle one will bethe (9 + 1) + 2 =10+ 2 =5th
number:

13,13, 13,13, 14, 14, 16, 18, 21

So the median is 14.
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The mode is the number that is repeated more often than any other, so 13 is the mode.
Thelargest valuein thelist is 21, and the smallest is 13, so therangeis 21 — 13 = 8.
mean: 15

median: 14

mode: 13

range: 8

Note: The formulafor the place to find the median is " ([the number of data points] + 1) + 2", but
you don't have to use this formula. Y ou can just count in from both ends of the list until you meet
inthemiddle, if you prefer, especialy if your list is short. Either way will work.

Example:

Find the mean, median, mode, and range for the following list of values:

1,2,4,7

The mean is the usual average:

(1+2+4+7)+4=14+4=35

The median is the middle number. In this example, the numbers are already listed in numerical
order, so | don't have to rewrite the list. But thereisno "middle" number, because there are an
even number of numbers. Because of this, the median of the list will be the mean (that is, the
usual average) of the middle two values within the list. The middle two numbers are 2 and 4, so:
2+4)+2=6+2=3

So the median of thislist is 3, avalue that isn't inthelist at all.

The mode is the number that is repeated most often, but all the numbersin thislist appear only
once, so there is no mode.

Thelargest valuein thelistis 7, the smallest is 1, and their differenceis 6, so the rangeis 6.
mean: 3.5

median: 3

mode: none

range: 6

The valuesin thelist above were all whole numbers, but the mean of the list was a decimal value.
Getting adecimal value for the mean (or for the median, if you have an even number of data
points) is perfectly okay; don't round your answersto try to match the format of the other
numbers.

Example:

Find the mean, median, mode, and range for the following list of values:

8,09, 10, 10, 10, 11, 11, 11, 12,13

The mean is the usual average, so I'll add up and then divide:
8+9+10+10+10+11+11+11+12+13)+10=105+10=105

The median isthe middie value. In alist of ten values, that will be the (10 + 1) + 2 = 5.5-th value;
the formulais reminding me, with that "point-five", that I'll need to average the fifth and sixth
numbers to find the median. The fifth and sixth numbers are the last 10 and the first 11, so:
(10+11)+2=21+2=105
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The mode is the number repeated most often. Thislist has two values that are repeated three
times, namely, 10 and 11, each repeated three times.

Thelargest value is 13 and the smallest is 8, so therangeis 13- 8 =5.

mean: 10.5

median: 10.5

modes: 10 and 11

range: 5

Asyou can seg, it is possible for two of the averages (the mean and the median, in this case) to
have the same value. But thisis not usual, and you should not expect it.

Example:

A student has gotten the following grades on histests: 87, 95, 76, and 88. He wants an 85 or
better overall. What is the minimum grade he must get on the last test in order to achieve that
average?

The minimum grade iswhat | need to find. To find the average of all his grades (the known ones,
plus the unknown one), | have to add up al the grades, and then divide by the number of grades.
Since | don't have a score for the last test yet, I'll use avariable to stand for this unknown value:
"x". Then computation to find the desired average is.

(87+95+76+88+x)+5=85

Multiplying through by 5 and simplifying, | get:

87+95+76+88+x =425

346 + x =425

X=79

He needs to get at least a 79 on the | ast test.

QUARTILES:

Quartiles are values that divide a sample of datainto four equal parts. With them you can quickly
evaluate a data set's spread and central tendency, which are important first stepsin understanding
your data.

Quartile Description

1st quartile (Q1) 25% of the data are less than or equal to this value.

2nd quartile The median. 50% of the data are less than or equal to this value.

(Q2)

3rd quartile 75% of the data are less than or equal to this value.

(Q3)

Interquartile The distance between the 1st and 3rd quartiles (Q3-Q1); thus, it spans
range the middle 50% of the data.

For example, for the following data: 7, 9, 16, 36, 39, 45, 45, 46, 48, 51

Prepared by Dr. S. KARUPPUSAMY, Asst. Prof, Dept. of PHY SICS, KAHE. Page 5/10




—— KARPAGAM ACADEMY OF HIGHER EDUCATION

KARPAGAM CLASS: I B.Sc.PHYSICS COURSE NAME: MATHEMATICAL PHYSICS II
T COURSE CODE: 18PHU203 UNIT: IV BATCH-2018-2021
Q1=14.25
Q2 (median) =42
Q3 = 46.50
Interquartile range = 14.25 to 46.50, or 32.25
Note:

Quartiles are calculated values, not observations in the data. It is often necessary to interpolate
between two observations to calculate a quartile accurately.

Because they are not affected by extreme observations, the median and interquartile range are a
better measure of central tendency and spread for highly skewed data than are the mean and
standard deviation.

DECILES:

Deciles are the partition values which divide the set of observations into ten equal parts. There
areninedeciles: D1,D2,D3,...,D9D1,D2,D3,...,D9. The first decile is D1D1, which is a point
which has 10% of the observations below it.

D1=Value of (n+110)thitem
D2=Value of 2(n+110)thitem
D3=Value of 3(n+110)thitem

D9=Value of 9(n+110)thitem

Quartile for a Frequency Distribution (Discrete Data)
D1=Vaue of (n+110)thitem(n=}f)

D2=Value of 2(n+110)thitem

D3=Value of 3(n+110)thitem

D9=Value of 9(n+110)thitem

Quartile for Grouped Frequency Distribution
D1 = I+hf(n10-c) (n=3f)

D2=I+hf(2n10-c)

D3=I+hf(3n10-c)

D9=I+hf(9n10~c)D1 = |+hf(n10~c) (n=3 )D2=I+hf(2n10~c)D3=I+hf(3n10~c):D9=I+hf(9n10~c)

PERCENTILES:

Percentiles are the points which divide the set of observations into one hundred equal parts.
These points are denoted by P1,P2,P3,...,P99P1,P2,P3,...,P99, and are called the first, second,
third... ninety ninth percentile. The percentiles are calculated for avery large number of
observations like workers in factories and the populations in provinces or countries. Percentiles
are usually calculated for grouped data. The first percentile denoted by P1P1 is calculated

as P1=Value of (n100)thitemP1=Vaue of (n100)thitem. We find the group in which

the (n100)th(n100)th item lies and then P1P1 isinterpolated from the formula.
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P1 = [+hf(n100-c) (n=>T1)
P2=1+hf(2n100-c)
P3=I+hf(3n100-c)

P99=I+hf(99n100~c)

GEOMETRIC MEAN:
The geometric mean of a sequence {4}i=1 is defined by

" I/n
Gy, ...,an) = l—[a] : 1)
j=|
Thus,
Ga.a) =Vaa (2
Glay, ax, a3)= (a) a2 a;}ll". (3)
and so on.

The geometric mean of a list of numbers may be computed using GeometricMean[list] in

the Wolfram Languagepackage DescriptiveStatistics” .

For n =2 the geometric mean is related to the arithmetic mean A and harmonic mean H by
G=VAH (4
(Havil 2003, p. 120).

The geometric mean is the special case Mo of the power mean and is one of the Pythagorean

means.
Hoehn and Niven (1985) show that
Glay +c,ar+e,....an+0)>c+Glay,az, ..., as) 5)

for any positive constant €.

HARMONIC MEAN:
The harmonic mean H (¥, .... X2) of 7 numbers % (where i =1, ., n)is the number # defined
by
1 1l
S ®

n X
=1
The harmonic mean of alist of numbers may be computed in the Wolfram
Language using HarmonicMean[list].
The special casesof =2 and n = 3 are therefore given by

2x X2
o) = oo @
3Ixyox
He o m)= e ot 5 ©)
and so on.

The harmonic means of theintegersfrom 1to # for n=1, 2, ... are 1, 4/3, 18/11, 48/25, 300/137,
120/49, 980/363, ... (OEIS A102928 and A001008).
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For » =2, the harmonic mean is related to the arithmetic mean A and geometric mean & by

G? 4
B = (4)
The harmonic mean is the special case M-1 of the power mean and is one of the Pythagorean
means. In older literature, it is sometimes called the subcontrary mean.
The volume-to-surface arearatio for acylindrical container with height # and radius * and
the mean curvature of a general surface are related to the harmonic mean.
Hoehn and Niven (1985) show that
H( +c,ar+c,....an+c)>c+H(a,a, ..., a) 5)
for any positive constant c .

RELATION BETWEEN ARITHMETIC MEAN, GEOMETRIC MEAN AND
HARMONIC MEAN:

For two numbers x and y, let X, a, y be a sequence of three numbers. If X, a, y is an arithmetic
progression then 'a is called arithmetic mean. If X, a, y is a geometric progression then 'a’ is
called geometric mean. If X, a, y form aharmonic progression then 'a' is called harmonic mean.

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship
between the three is given by the formula

AM*xHM=GM2AMXxHM=GM2

Below isthe derivation of this relationship.
Derivation of AM x HM = GM2
Arithmetic mean:

X, AM,yx,AM,y - arithmetic progression

Taking the common difference of arithmetic progression,
AM-x=y-AMAM-x=y-AM
x+y=2AMx+y=2AM - Equation (1)

Geometric Progression
x,GM,yx,GM,y - geometric progression

The common ratio of this geometric progression is
GMx=yGMGMx=yGM
xy=GM2xy=GM2 - Equation (2)
Harmonic Progression
X,HM,yx,HMy - harmonic progression
1x,1HM,1y1x,A1HM,ly - thereciprocal of each term will form an arithmetic progression

The common differenceis
IHM-1x=1y-1HM1HM-1x=1y-1HM
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2HM=1y+1x2HM=1y+1x
2HM=x+yxy2HM=x+yxy - Equation (3)

Substitute x + y = 2AM from Equation (1) and xy = GM2 from Equation (2) to Equation (3)
2HM=2AMGM22HM=2AMGM2
GM2=AMxHMGM2=AMxHM

Range mean or average deviation , Standard deviation , Variance and mean square deviation:
Mean is ameasure of central tendency. It measures what the majority of the data are doing
toward the middle of a set. The mean is often referred to as the average of adata set. Asan
example, an algebra class has 10 students. Their grades on the last test were 85, 90, 87, 93, 100,
53, 78, 85, 99 and 82. What is the average grade for the students? To find mean, simply add all
the numbersin a data set and divide by the number of itemsin the set:
85+90+87+93+100+53+78+85+99+82=852852/10=85.2

The average, or mean, test grade in the classis 85.2.

Mode Occurs Most

Mode is another measure of central tendency. The modeis just the number that occurs most
frequently. It's easy to remember because mode and most sound alike. Using the algebra class
example, what grade occurred most frequently among the students? To answer, put the valuesin
order:

53, 78, 82, 85, 85, 87, 90, 93, 99, 100

The only grade that occurred more than onceis 85. Since 85 occurred most, the mode is 85.
Median Isthe Middle, Range Is the Spread

Median is another measure of central tendency. The median is simply the middlenumber of a set.
Put the numbers in order and look for one in the middle. If there is no middle number, add the
two in the center and divide by 2. In the algebra class example, what is the median grade? To
answer, put the valuesin order:

53, 78, 82, 85, 85, 87, 90, 93, 99, 100

Since there are an even number of test grades, there is no middle number. The two test gradesin
the middle are 85 and 87. Add them and divide by 2:

85+87=172172/2 =86

The median, or middle grade, is 86.

Rangeisaquick calculation. Range is ssimply the largest value minus the smallest. It shows you
how spread out the numbers are. For these grades, subtract 53 from 100 to get the range of 47.

STANDARD DEVIATION:

Standard deviation is the square root of the variance, so you must find the variance

first. Variance is the average of the squared difference of each number from the mean. That may
sound confusing, but it's pretty ssimple to do. Take each number in the set and subtract if from the
mean. Then square it. Add those values together, and divide by the number of itemsin your set.
Working with the algebra class grades again, subtract each one from the mean:
85.2-53=32285.2-78=7.285.2-82=3.285.2-85=0.2852-85=0.2852-87=-18
85.2-90=-4.885.2-93=-7.885.2-99=-13.885.2- 100 = 14.8
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Square each of those values, then add them together:

1,036.84 + 51.84 + 10.24 + 0.04 + 0.04 + 3.24 + 23.04 + 60.84 + 190.44 + 219.04 = 1,595.6
Finally, divide that sum by the number of itemsin the set, in this case 10:

1,595.6 / 10 = 159.56

The variance for this data set is 159.56.

Standard Deviation Measures Spread

Standard deviation is the measure of how spread out the numbers are from the center of adata
set. A small standard deviation means alot of the numbers are grouped around the middle of the
set. A large standard deviation means that the number are spread out with some very high and
low numbers. With the algebra grades, use this equation:

square root (159.56) = 12.63

The standard deviation for this data set is 12.63.
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KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE-21

PART A : MULTIPLE CHOICE QUESTIONS (ONLINE EXAMINATIONS)
SUBJECT : MATHEMATICAL PHYSICS- 11

UNIT IV
OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

Arithmetic mean between a and 10 is 30, value of ‘a’ should be 60 34 56 50 50

hree arithmetic means between 11 and 19 are 12, 14,15 13, 15,17 13, 14,15 14, 15,17 13, 15,17
Arithmetic mean between V5 and 3V5 is 2V5 45 V5 5 2V5
rithmetic mean between -4 and 12 is 5 4 -4 3 -4
Arithmetic mean between x -1 and x + 7 is X+4 X-3 X+3 X-4 X+3

he mean of eight numbersis 25. If fiveis subtracted from each number, what |30 29 67 20 20
will be the new mean?
The mean of 14 numbersis 6. If 3 isadded to every number, what will be the |8 9 7 6 9

new mean?
The heights of five runners are 160 cm, 137 cm, 149 cm, 153 cm and 161 152 153 156 123 152

cm respectively. Find the mean height per runner.

Find the mean of thefirst five prime numbers. 89 6.5 5.6 37 5.6

Find the arithmetic mean of the first 7 natural numbers. 5 6 7 4 4

Find the mean of thefirst six multiples of 4. 12 13 14 15 14

If themean of 9, 8, 10, X, 12is 15, find the vaue of x. 23 36 45 63 36

he mean of 40 numbers was found to be 38. Later on, it was detected that a |45 36 385 43 385

number 56 was misread as 36. Find the correct mean of given numbers.

Medianof 7,6,4,8,2,5,11is 6 12 11 4 6

Number which occurs most frequently in a set of numbersis mean median mode none of theabove  |mode

Mode of 12, 17, 16, 14, 13, 16, 11, 14 is 13 11 14 14 and 16 14 and 16

If mean of 6 numbersis 41 then sum of these numbersis 250 246 134 456 246

If mean of 6 numbersis 17 then sum of numbersis 102 103 150 120 102
Difference of mode and mean is equal to 3(mean-median) 2(mean-median) 3(mean-mode) 2(mode mean) 3(mean-median)
I1f mean is 11 and median is 13 then value of modeis 15 13 1 17 17
Distribution in which values of median, mean and mode are not equal is experimental distribution  |asymmetrical symmetrical exploratory asymmetrical
considered as distribution distribution distribution distribution
If value of three measures of central tendencies median, mean and mode then |negatively skewed modal  |triangular model unimode! bimodel unimode!
distribution is considered as

If value of modeis 14 and value of arithmetic mean is 5 then value of median|12 18 8 14 8

is
The mean of adistribution is 14 and the standard deviation is 5. What isthe |60.40% 48.30% 35.70% 27.80% 35.70%
value of the coecient of variation?

Most frequent observation in adata set is called mode median mode range mode
Summary statistics which measure middle or center of data are called logarithms measures of central measures of proportions measures of central
tendency dispersion tendency

Sum of deviations of values from their mean is always 0 1 2 3 0

Average of all observationsin a set of datais known as mean mode range median mean
Medianinset 6,4, 2, 3, 4, 5, 5, 4 would be 3 4 5 6 4

Find the median of the set of numbers: 1,2,3,4,5,6,7,8,9 and 10. 55 10 1 55 55

Find the median of the set of numbers: 21, 3, 7, 17, 19, 31, 46, 20 and 43. 19 20 3 167 20

Find the median of the set of numbers: 100, 200, 450, 29, 1029, 300 and 300 29 7 4080 300

2001.

The following represents age distribution of studentsin an elementary class. |7 9 10 11 9

Find the mode of thevalues: 7, 9, 10, 13, 11, 7, 9, 19, 12, 11, 9, 7, 9, 10, 11.

Find the mode from these test results: 90, 80, 77, 86, 90, 91, 77, 66, 69, 65, |43 77 65 0 90

43, 65, 75, 43, 90.

Find the mode from these test results: 17, 19, 18, 17, 18, 19, 11, 17, 16, 19, (15 11 17 19 17

15, 15, 15, 17, 13, 11.

Find the mean of these set of numbers: 100, 1050, 320, 600 and 150. 333 444 440 320 444

The following numbers represent the ages of people on abus: 3, 6, 27, 13, 6, |11 6 9 110 11

8, 12, 20, 5, 10. Calculate their mean of their ages.

These numbers are taken from the number of people that attended a 25 210 62 30 30

particular church every Friday for 7 weeks: 62, 18, 39, 13, 16, 37, 25. Find

the mean.

Median, mode, deciles and percentiles are all considered as measures of mathematical averages population averages sample averages averages of position |averages of

position

Quartiles, median, percentiles and deciles are measures of central tendency |paired average deviation averages positioned averages |central averages positioned averages
classified as

According to percentiles, median to be measured must liein 80" 401 50" 100" 50
Percentile and moment system are two groups of skewness measures central tendencies quartile measures | percentile measures |central tendencies

measures measures
Harmonic mean, arithmetic mean and geometric mean are al considered as |mathematical averages population averages sample averages averages of position |mathematical
averages

If arithmetic mean is 25 and harmonic mean is 15 then geometric mean is 17.36 16.36 15.36 19.36 19.36
Manner in which geometric mean, harmonic mean and arithmetic meanare  |A.M>G.M>H.M AM>G.M<H.M A.M<G.M<H.M AM<G.M>HM A.M>G.M>H.M
related isas

For individual observations, reciprocal of arithmetic mean is called geometric mean harmonic mean deviation square paired mean harmonic mean

mean

If arithmetic mean is 20 and harmonic mean is 30 then geometric mean is 14.94 24.94 34.94 44.94 24.94

Value of Zfd is 250, A= 25, number of observations are 12 and width of 25 250 150 275 150
classinterval is 6 then arithmetic mean is

In measures of skewness, absolute skewnessis equal to mean+mode mean-mode mean+median mean-median mean-mode

In anegative skewed distribution, order of mean, median and mode is as

mean<median>mode

mean>median>mode

mean<median<mod
e

mean>median<mode

mean<median<mo
de
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SYLLABUS

Partial Differential Equations: Solutions to partial differential equations, using separation of
variables: Laplace's Equation in problems of rectangular, cylindrical and spherica symmetry.
Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular

membranes. Diffusion Equation.

An Introduction

A partia differential equation (PDE) is an equation involving an unknown function u of
two or more variables and some or all of its partial derivatives. The partial differential equationis
usually a mathematical representation of problems arising in nature, around us. The process of
understanding physical systems can be divided in to three stages:

(i) Modelling the problem or deriving the mathematical equation (in our case it would be
formulating PDE). The derivation process is usually a result of conservation laws or balancing
forces.

(ii) Solving the equation (PDE). What do we mean by a solution of the PDE?

(iii) Studying properties of the solution. Usually, we do not end up with a definite formula
for the solution. Thus, how much information about the solution can one extract without any

knowledge of the formula?

Definitions

Recall that the ordinary differential equations (ODE) dealt with functions of one variable,
u:Q cR - R. Thesubset Q could have the interval form (a, b). The derivative of uat x € Q is
defined as
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u'(z) := lim s ”f"ﬂ.

h—0 h

provided the limit exists. The derivative gives the slope of the tangent line at x € Q. How to
generalise this notion of derivativeto afunctionu: Q € Rn - R These concepts are introduced
in a course on multi-variable calculus. However, we shall jump directly to concepts necessary for
us to begin this course.

Let Q be an open subset of R nand let u : Q — R be a given function. We denote the

directional derivativeof uat x € Q, along a vector§ € Rn, as

chi o u(z+hf) =ulz)
—(z) = lim _
dE" " k-0 h

provided the limit exists. The directional derivative of u at x € Q, along the standard basis vectors
e =(0,0,...,1,0,...,0)iscaled thei-th partial derivative of u a x and isgiven as

5 ﬂlﬁ.r'} o u(x + fe;) = ulx) _
CT; fe—) h

The order of the PDE is the order of the highest (partial) differential coefficient in the
eguation.

As with ordinary differential equations (ODEs) it is important to be able to distinguish
between linear and nonlinear equations.

A linear equation is one in which the equation and any boundary or initial conditions do
not include any product of the dependent variables or their derivatives, an equation that is not

linear isanonlinear equation.
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du  du : , ) ,
Tl +c = . 0, first order linear PDE (simplest wave equation ),
( dr

Pu  Pu : ,
— + —=®(x,y). second order linear PDE (Poisson).
dr? oy’
A nonlinear equation is semilinear if the coefficients of the highest derivative are functions

of the independent variables only.

u ) riu ]
r+d)=— 4ty —=u
| }f}.: rh;
J*u ; Fu chi F,.fj'n.
: Iy + 1 =4,
oz? 2y +y ;Irj y? o chy

A nonlinear PDE of order m is quasilinear if it islinear in the derivatives of order m with

coefficients depending only on x, y, . . . and derivatives of order < m.
14 oM Pu L du du Pu o | o 3 u o
i iy i dr dy driy dr r)g_,r '

Principle of superposition:

A linear equation has the useful property that if ul and u2 both satisfy the equation then so
does aus + Buz for any a, f € R. Thisisoften used in constructing solutionsto linear equations (for
example, so as to satisfy boundary or initial conditions; c.f. Fourier series methods). This is not
true for nonlinear equations, which helpsto make this sort of equations more interesting, but much
more difficult to deal with.
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Wave Equations

Waves on a string, sound waves, waves on stretch membranes, el ectromagnetic waves, etc.,

or more generally

where c is a constant (wave speed).
PARTIAL DIFFERENTIAL EQUATIONS:
Method of Separation of Variablesfor Solving partial Differential Equations
Method of separation of variables is a powerful method for solving partial differential

eguations of the type
2 2
AU g U O U N g g 0
ox%  oxoy oy? oxX oy

under certain situations.

The basic idea of this method is to transform a partia differential equation into as many
differential equations as the number of independent variables in the partial differential equation
by representing the solution as a product of functions of each independent variable. After these
ordinary differential equations are solved, the method reduces to solving eigenval ue problems and
constructing the general solution as an eigenfunction expansion, where the coefficients are
evaluated by using the boundary and initial conditions.

Let u (x,y) = X(x) Y(y)
(2) be asolution of (1) then (1) may be written in the form
1 1

— X=——9g([D 3
X(X)( x) Y()g( V)Y ©)
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where f(Dx), g(Dy) are quadratic functions of Dx= ai and Dy = ai respectively. In this
X y

situation we say that (1) is separable in the variables x,y. The derivation of a solution of the
equation is straight forward. For the left hand side of (3) isafunction of x alone, and right-hand is
a function of y-alone, and the two can be equal only if each is equal to a constant, say A. The
problem of finding solutions of the form (2) of (1) therefore reduces to solving the pair of second
order linear ordinary differential equations

f(D) X =21 X(x), 9(D) Y=2Y(y) (4)

Application to Heat Equation
2
ou_,ou
ot ox?
Let u(x,t) = X(x) T(t)
be a solution of the heat equation. Then the last equation can be written as

1dT k d?X
Td X a P
{Since u =X(x)T(t), we have M_ e (X) T(1), —82 = X"(x) T(t) {dZ)z(] T()
OX dx

ou . dr
and = 1 X(x) T' (t) = X(x) i

Putting these values in the heat equation we get equation 5]. The pair of ordinary
differential equations corresponding to (4) is

2
X I T
dx? dt
o 94X LI (6)
dx? dt

n2 .
Let A = - n then by the method discussed in 2.1 we find that T(t)= Ke " ' is a generdl

solution of the second equation of (6), whereK isaconstant of integration which can be determined
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by giveninitial and boundary conditions. The general solution of the first equation of (6) is given
in Section 6.7.

Application to Wave Equation
dt? dx?
Let u(x,t) = X(x) T(t), then

ou : o%u "

SX00 T S = X0 T )

W %0 70, LX) T (0
X OX

Putting these values in the equation we get
X(X) T"(t) =c2X"(x) T(t)
ATM_, X&) _
c? T() X(X)
or T'() +EAT=0,X"(X)+AX =0

-

Application to Laplace Equation

°u  d%u
—+—=0
ox2 6y2
Let u(x,y) = X(x) Y (y) be asolution of the equation. Then
U ) L. "
— =XX)Y(),—5 =X"(x) Y'(y)
X oX
o u

5 = KRV T =X Y)

Putting these values in the equation we get
X"(x) Y(y) +X(x)Y"(y) =0

X)) __Y'0) _ 2
X(x) Y(y)
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or X"(X) + n?X=0, Y"(y) -n?Y+0
Solutions of Partial Differential Equationswith Boundary Conditions

In this section we present solutions of the wave, heat and L aplace equations with boundary
and initial conditions. We briefly discuss how aphysical situation can be written in the form of the

wave equation.

The Wave Equation with Initial and Boundary Conditions
Modeling of a Physical Situation

Vibrations in amembrane or drumhead, or oscillations induced in a guitar or violin string,
are governed by a partial differential equation called the wave equation. We will derive this
equation in asimple setting.

Consider an elastic string stretched between two pegs, as on a guitar. We want to describe
the motion of the string if it is given asmall displacement and released to vibrate in a plane.

Place the string along the x axis from 0 to | and assume that it vibrates in the x, y plane.
We want a function u(x,t) such that at any time t>0, the graph of the function u=u(x,t) of x isthe
shape of the string at that time. Thus, u (X,t) allows us to take a snapshot of the string at any time,
showing it as a curve in the plane. For this reason u(x,t) is called the position function for the
string. Figure 12.1 shows atypical configuration.

To begin with a simple case, neglect damping forces such as air resistance and the weight
of the string and assume that the tension T(x,t) in the string always acts tangentially to the string
and that individual particles of the string move only verticaly. Also assume that the mass p per
unit length is constant.

Now consider atypical segment of string between x and x+Ax and apply Newton's second
law of motion to write

Net force on this segment due to the tension

= acceleration of the center of mass of the segment times its mass.

This is a vector equation. For Ax small, the vertical component of this equation (Figure

12.2) gives us approximately.
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2
T(x+AX.t) Sin (0 +AB)-T(x,t) sin (8) = pAX %(z ),
where X isthe center of mass of the segment and T(x,t) =|[T (x,t)||=magnitude of T.
String Profileat time =t.
Then

O+ A8 +80)-TO4) sin (0)_ 0% e
AX 8'[

Now v(x,t)= T(x,t) sin (0) is the vertical component of the tension, so the last equation

becomes

V(X + AX, 1) — v(X,t o%u —
( )—V(Xt) 2 Y (k).
AX

In the limit as Ax— 0, we also have x — x and the last equation becomes

ov d%u
x Par N

The horizontal component of the tension is h(x,t) =T(x,t) cos(6), so
v(x.t)=h(x,t)tan (8)=h(x.1) %
X

Substitute thisinto equation (7) to get
aix(h g)fj pZ Y (x) ®)
To compute the |eft side of this equation, use the fact that the horizontal component of the
tension of the segment is zero, so
h(x+Ax,t)-h(x,t)=0.
Thus h isindependent of x and equation 8 can be written
o%u _ 0%
e ox? 2 ot?
Letting ¢ = h/p, this equation is often written
o°u e d%u

ot? ox2’
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Thisisthe one-dimensional (1-space dimension) wave equation.

In order to model the string's motion, we need more than just the wave equation. We must
also incorporate information about constraints on the ends of the string and about the initial
velocity and position of the string, which will obviously influence the motion.

If the ends of the string are fixed, then

u(0,t)=u(l,t)=0 fort>0.

These are the boundary conditions.

Theinitial conditions specify theinitia (at time zero) position

u(x,0)=f(x) for0O<x<lI

and theinitial velocity

i—l:(x,O) =g(x) for0O<x <,

in which f and g are given functions satisfying certain compatibility conditions. For example, if
the string isfixed at its ends, then the initial position function must reflect this by satisfying
f(0)=f(1)=0.

If theinitial velocity is zero (the string is released from rest), then g(x)=0.

Thewave equation, together with the boundary and initial conditions, constitute aboundary
value problem for the position function u(x,t) of the string. These provide enough information to
uniquely determine the solution u(x,t).

If thereis an external force of magnitude F units of force per unit length acting on the string
in the vertical direction, then this derivation can be modified to obtain

Again, the boundary value problem consists of this wave equation and the boundary and
initial conditions.
In 2-space dimensions the wave equation is

d%u d%u  d%u
ot :Cz(axz "oy J ®
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This equation governs vertical displacements u(x,y,t) of amembrane covering a specified
region of the plane (for example, vibrations of a drum surface).

Again, boundary and initial conditions must be given to determine a unique solution.
Typicaly, the frame is fixed on a boundary (the rim of the drum surface), so we would have no
displacement of points on the boundary:

u(x,y,t)=0 for (x,y) on the boundary of the region and t>0.

Further, theinitial displacement and initial velocity must be given. Theseinitial conditions

have theform
u(x,y,0) = f(x, y) (x y,0) = g(x,y)

with f and g given.

Sometimes polar coordinates formulation is more convenient. We present below thisform.
Let

X=r cos(0), y=rsin(0).
Then
r=yx?+y? and 0 =tan 2 (y/x).
Let
u(x,y)=u (r cos(0), r sin (6)) = v (r, 0).
Compute
ou ovor ov oo

OX Or 0X 00 ox

XV _y oV
ror r? o0
Then

o°u _ﬂi( j_ﬂi[y}ii AN
ox%  or ox 00 Ox r ox
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y_@ 2xy8v+x26v 2xy 0%v
o r* 00 r?or?

Yo
3 4

r 8r69

aez
By asimilar calculation, we get

du_x*ov _2xyov y*or
6y2 re or rt 00
Then

v 2xy d%v +ﬁ d%v
r2or? 3 oro0 r* 69°.

0°u  0°u_0° 1ov 120°%
x> oy? o ror r? 09%

Therefore, in polar coordinates, the two-dimensional wave equation (9) is

0%v o°v 1lov 1 6%v
=c? +—— +— A
ot? o2 ror  r? ool

r< oo (10)

in which v(r,0,t) is the vertical displacement of the membrane from the x, y plane at point (r, 6)
and timet.

LAPLACE EQUATION IN PROBLEMS OF RECTANGULAR, CYLINDRICAL AND
SPHERICAL SYMMETRY:

Laplace's Equation--Spherical Coordinates

In spherical coordinates, the scale factors are i = 1, ks =rsind, s =7 and the separation

functionsare i (N=r L@ =1 fi (@) =sind givinga Stackel determinant of S =1
The Laplacianis

- 1 r‘)rlr'J]Jr 1 E)3+ 1 ()"éf)' 1
= sin .
Zorl” or)* Zae of * Psing 90 "¢ 30 ()
To solve Laplace's equation in spherical coordinates, attempt separation of variables by writing
F(r,0,8)=R(r)® 6 (9).

@)
Then the Helmholtz differential equation becomes
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d* R 2 dR 1 40 cos¢ dd | &
~ PO+ - — PO+ ——— — PR+ —— — OR+ - — OR=0. (3)
dr rdr rsinfd d&? rsing dé r deo*
Now divide by R &,
rlsin:dvmle+2r35in3¢¢@dR+ 1 rlsin:drq)Rdz@
®RO 42 r ORO ~dr Psm¢ ®RO - 4@ |
4
cos ¢ r—‘sin3é¢£)OR+lr35in3¢d3¢0R_0 )
Psing POR do 2 ®RO g4¢*
rsin’ ¢ d* R N 2rsin® ¢ dR N 1 &*©
' R dr R dr] [(-9 d P ]
. . I (5
i cosdsing dP ; sin“ ¢ 4~ ¢ —0
® dé O g4
The solution to the second part of (5) must be sinusoidal, so the differential equation is
& ol . "
—_—=—-m,
i¢ o " (6)
which has solutions which may be defined either as a complex function with ey 00
OO =A™, (7)
or asasum of real sine and cosine functions with m = —eo e
(8
Plugging (6) back into (7),
r &R L2rdR 1 (cosésing d® sif ¢ &£® ap
RdF R dr sig| © do © a¢ ) ©)
Theradial part must be equal to a constant
Hd3R+2rdR_”+” 10
R 42 R dr. { (10)
rld:R+2 aR 1@ DR 11
77 Skl i s (11)
But thisisthe Euler differential equation, so wetry a series solution of the form
R= Zaﬂ o, (12)
n=0

Then
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rlz_(n+c](n+c_ 1)a, Sie-2 "‘2"2.(""'-‘-‘)0.-. el

n=0 n=(0

(13)
~141) ) a7 =0
Z_{n +e)n+ec-Da, " +2 z_[n +e)a, '™
n=0 n=0

(14)
S+ 1) ) a7 =0
Dttt =10+ Dla, 7 =0. (15)

This must hold true for all powers of 7. For the ' term (with n =0),

cle+ )=1(1+1), (16)

which is true only if ¢=14 -~ 1land al other terms vanish. So @ =0for n#!{ ~1-1
Therefore, the solution of the Rcomponent is given by
R(N=A " +Br'. (17)
Plugging (17) back into (),
m  cosd 1 d® 1 &

LU+ 1D - — 4 —— — N 4 — —Eh
e sin® ¢ " sing @ do Yo de? (18)
s S . [i0s1)- 2 Ta=o0
i@ sin @ . { )_ sin2 @ Tt (19)
which is the associated Legendre differential equation for x = cos dand o L The

general complex solution istherefore

where

are the (complex) spherical harmonics. The general real solutionis

Some of the normalization constants of  can be absorbed by and G« so this equation may

appear in the form
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Z Z (Ar 7 + B r"') P (cos 6) [S]" sin (m ) + C" cos (m 6)]

=0 m=0

=) D A7 4B X[ Y 0.0+ G 1 0. 9)],
i=0 m=0
where
¥ (0, 8) = PT* (cos @) sin (m ) o
an: (&) (0. é} = P:" (cos dj) Cos (m 0) (25)

are the even and odd (real) spherical harmonics. If azimuthal symmetry is present, then @ )is
constant and the solution of the ®component is a Legendre polynomial i (¢os @), The general
solution isthen

F(r.d)= Z[A,- 7 + B r') Py (cos @). (26)

i=0
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UNIT V
OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER
The Laplace transform of f(t) is denoted by L{Fs} L{f(O)} L { F(t) L{f(s)} L{f(t)}
L (e%) = a)l/sta Usa Us* a Us Ysra
L (coshat) = - als’ - & §i-a as+a s/ +al §¢-d
L (sinhat) = ---- als’ - & §i-a as+a S/ +al as’-a
L (cosat) = ---- S - als’ +a as’-a s/ +al S +a’
o¢-& als’ +a as-a s/ +al als’ +a
&n+1)/s™* &n-1)/s™* &n+1)/s™ none &n+1)/sn+1
1 s s 0 s
Us s t e Us2
28 ue 28 i 2s3
OPI2 OPI4 oP OPI8 OP
L (%) = - lsta lUsa lUsa None 1/s-a
L (tsina) = ----- 2ad/ (&) 2ad/ (5% 2as/ ($+2) None 2as/ (s2+a2)
L (tcosat) = ----- S-a)(+ad)? & +a’l(F+al)’ L-Y(P+ad)? None s2-a2/(s2+a2)2
If L 1(s+8)°} = - te® te?® e None te-a
L (1/(s° + 4) ) isequal to e cos2t/2 sin2u'2 et sin2u'2
IV o — 1 0 t none. 1
R Y T — es! et et et est
Thefunctionx sinx bea ------- function. even odd continuous None 0
Thefunctionx cosx bea ------- function. even odd continuous None X
The exponential form of a complex number is z=re" z=¢" continuous z=r/cosq z=reiq
L(1)=--- 1 s s 0 s
L= Us e t e U2
L(t) = 28 ue 28 i 2s3
é1/2= OPI2 OPI4 oP OPI8 OP
L (%) = - lsta lUsa lUsta None 1/s-a
L (tsina) = ----- 2ad/ (&) 2ad/ (5% 2as/ ($+a) None 2as/ (s2+a2)
L (tcosat) = ----- S-a)(+ad)? & +a’l(F+al)’ L-Y(P+ad)? None s2-a2/(s2+a2)2
If L 1(s+8)°} = - te® te?® e None te-a
L (1/(s + 4) ) isequal to et cos2t/2 sin2/2 e sin2/2
T o — 1 0 t none. 1
R R T E— est e et et est
L (cosat) = ---- s - als’ +a as-a s/ +al S/s2 +a2
i S/ +al als’ +a as-a o¢-& als2 +a2
&nt+1)/s™ &n-1)/s™* &n+1)/s™ None &n+1)/sn+1
(n-1)! n! (n+1)! None (n+1)!
1 s s 0 s
The sum of n™ roots of unity are ------ 0 1 2 3 0
Singular points are of types 2
(sin [1/3+icos [1/3isequal to -1 1 i i i




	1.pdf (p.1-4)
	2.pdf (p.5-15)
	3.pdf (p.16-17)
	4.pdf (p.18-39)
	5.pdf (p.40-41)
	6.pdf (p.42-95)
	7.pdf (p.96-97)
	8.pdf (p.98-107)
	9.pdf (p.108)
	10.pdf (p.109-122)
	11.pdf (p.123)

