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Objective: Digital signal processing has lot of applications in different fields of life. This objective
of this paper is to give knowledge to students about the theory of signal processing and the different
methods involved in it.

UNIT- |

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent
Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals,
Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical
Method; Analytical Method, Properties of Convolution; Commutative; Associative; Distributive;
Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI System
Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step Response.

UNIT- 11

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time
Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing
in Time Domain; Differentiation in Frequency Domain; Convolution Property.

UNIT-111

The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship Between
z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence; Properties of
ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series Expansion Method
(or Long Division Method); Analysis and Characterization of LTI Systems; Transfer Function and
Difference-Equation System. Solving Difference Equations.

UNIT-1V

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR
Digital Filters, Simple 1IR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete
Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity;
Linearity; Circular Time Shifting; Circular Frequency Shifting.
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Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity, Properties of
the Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm;
Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms. Realization
of Digital Filters: Non Recursive and Recursive Structures, Canonic and Non Canonic Structures,
Equivalent Structures (Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form;
Basic structures for IR systems; Direct-Form 1.
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UNIT I
Lecture Topics to be covered Support
Duration materials
(hr.)
1 lhr Classification of Signals, Transformations of the T1(1.3-1.9),
Independent Variable, Periodic and Aperiodic T1(1.36-1.41)
Signals, Energy and Power Signals
2 lhr Even and Odd Signals, Discrete-Time Systems, T1(1.36-1.48),
System Properties. Impulse Response, Convolution T1(1.52-1.56)
Sum
3 lhr Graphical Method; Analytical Method, Properties of | T1(1.58-1.61)
Convolution; Commutative
4 lhr Associative; Distributive; Shift T1(1.62)
5 1hr Sum Property System Response to Periodic Inputs T1(1.63)
6 lhr Relationship Between LTI System Properties and the | T1(1.71-1.75)
Impulse Response
7 lhr Causality; Stability; Inevitability, Unit Step Response | T1(1.61-1.63),
T1(1.80),
T1(1.99)
8 1hr Revision
Total no. of hours 8 hr
planned for unit —I
UNIT I
S.No Lecture Topics to be covered Support
Duration Materials
(hr.)
1 1hr Fourier Transform Representation of Aperiodic T1(1.107)
Discrete-Time Signals
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2 1hr Periodicity of DTFT, Properties; Linearity T1(1.100-1.102)

3 1hr Time Shifting; Frequency Shifting T1(1.111-1.112)

4 lhr Differencing in Time Domain; Differentiation in T1(1.112-1.113)
Frequency Domain

5 1hr Convolution Property T1(1.114)

6 lhr Revision

Total no. of hours 6 hr

planned for unit —I11

UNIT 11
S.No Lecture Topics to be covered Support
Duration Materials
(hr.)

1 lhr Bilateral (Two-Sided) z-Transform, Inverse z- T1(2.1-2.3)
Transform

2 1hr Relationship Between z-Transform and Discrete- T1(2.30-2.35)
Time Fourier Transform, z-plane

3 1hr Region-of-Convergence; Properties of ROC, T1(2.3-2.36)
Properties; Time Reversal

4 1hr Differentiation in the z-Domain; Power Series T1(2.17-2.32)
Expansion Method

5 1hr Analysis and Characterization of LTI Systems T1(2.3-2.45)

6 lhr Transfer Function and Difference-Equation System. | T1(2.23-2.52),
Solving Difference Equations T1(2.58)

7 lhr Revision

Total no. of hours 7 hr

planned for unit —I1I

UNIT IV
Si.No Lecture Topics to be covered Support
Duration Materials
(hr.)
1 1hr Phase Delay and Group delay, Zero-Phase Filter T1(1.139)
2 lhr Linear-Phase Filter, Simple FIR Digital Filters T1(1.145-
1.147)
3 lhr Simple IIR Digital Filters, All pass Filters T1(1.153)
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4 1hr Averaging Filters, Notch Filters T1(1.156-
1.181)

5 1hr Frequency Domain Sampling (Sampling of DTFT), | T1(3.06),
The Discrete Fourier Transform (DFT) and its T1(3.1)
Inverse

6 1hr DFT as a Linear transformation, Properties; T1(3.2)
Periodicity

7 1hr Linearity; Circular Time Shifting; Circular T1(3.2-3.5)
Frequency Shifting

8 1hr Revision

Total no. of hours 8 hr

planned for unit -1V

UNIT V
Si.No Lecture Topics to be covered Support
Duration Materials
(hr.)
1 1hr Direct Computation of the DFT, Symmetry and T1(4.1-4.3)
Periodicity
2 1hr Properties of the Twiddle factor (WN), Radix-2 T1(4.3-4.14)
FFT Algorithms; Decimation-In-Time (DIT)
3 1hr FFT Algorithm; Decimation-In-Frequency (DIF) T1(4.19-4.30)
FFT Algorithm
4 1hr Inverse DFT Using FFT Algorithms; Non T1(5.54)
Recursive and Recursive Structures
5 1hr Canonic and Non Canonic Structures, Equivalent T1(5.50-5.55)
Structures
6 1hr FIR Filter structures; Direct-Form; Cascade-Form | T1(5.55-5.58)
7 1hr Basic structures for IR systems; Direct-Form I. T1(5.58-5.65)
8 1hr Revision
9 lhr Old question paper discussion
10 1hr Old question Paper discussion
11 lhr Old question Paper discussion
Total no. of hours 11 hr
planned for unit —v
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Suggested Reading Books:
T1: Digital Signal Processing, 4™ edition , Ramesh Babu, Sci.Tech

T2: Digital Signal Processing, Turun Kumar Rawat,2015, Oxford University Press, India.
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(Discrete-Time Signals and systems)

UNIT-I
SYLLABUS

/ Discrete-Time Signals and Systems: Classification of Signals, Transformations of the\
Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd
Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum;
Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative;
Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI
System Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step

\__ Response.

Definition
Anything that carries information can be called as signal. It can also be defined as a physical

quantity that varies with time, temperature, pressure or with any independent variables such as
speech signal or video signal.

The process of operation in which the characteristics of a signal (Amplitude, shape, phase,
frequency, etc.) undergoes a change is known as signal processing.

Note — Any unwanted signal interfering with the main signal is termed as noise. So, noise is
also a signal but unwanted.

According to their representation and processing, signals can be classified into various
categories details of which are discussed below.

CONTINUOUS TIME SIGNALS

Continuous-time signals are defined along a continuum of time and are thus, represented by a
continuous independent variable. Continuous-time signals are often referred to as analog
signals.

This type of signal shows continuity both in amplitude and time. These will have values at each
instant of time. Sine and cosine functions are the best example of Continuous time signal.

x(t

Continuous Time signal
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The signal shown above is an example of continuous time signal because we can get value of
signal at each instant of time.

DISCRETE TIME SIGNALS

The signals, which are defined at discrete times are known as discrete signals. Therefore, every
independent variable has distinct value. Thus, they are represented as sequence of numbers.

Although speech and video signals have the privilege to be represented in both continuous and
discrete time format; under certain circumstances, they are identical. Amplitudes also show

discrete characteristics. Perfect example of this is a digital signal; whose amplitude and time
both are discrete.

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of

time. Mathematically, these types of signals can be formularized as;
x={x[n]},—co<n<co
Where, n is an integer.

It is a sequence of numbers x, where n™ number in the sequence is represented as x[n].

(Y)

-4 -3 -2-10 1 2 3 45
UNIT IMPULSE OR DELTA FUNCTION

A signal, which satisfies the condition, d(t)=lime—oox(t)d(t)=lime—oox(t) is known as unit
impulse signal. This signal tends to infinity when t = 0 and tends to zero when t # 0 such that the

area under its curve is always equals to one. The delta function has zero amplitude everywhere
excunit_impulse.jpgept at t = 0.

8(O

t
€ >
0
impulse signal

PROPERTIES OF UNIT IMPULSE SIGNAL
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e 9(t) is an even signal.

e O(t) is an example of neither energy nor power (NENP) signal.

« Area of unit impulse signal can be written as;
A=[o0—00d(t)dt=[oco—colime—0x(t)dt=lime—0Joo—oo[x(t)dt]=1

o Weight or strength of the signal can be written as;
y(1)=A3(t)
Area of the weighted impulse signal can be written as

y(t)=Joo—ooy(t)dt=loo—00AS(t)=A[Joo—o0d(t)dt]=A=1=Wigthedimpulse
UNIT STEP SIGNAL

A signal, which satisfies the following two conditions

U(t)=1(whent>0)and

U(t)=0(whent<0)

is known as a unit step signal.

It has the property of showing discontinuity at t = 0. At the point of discontinuity, the signal

value is given by the average of signal value. This signal has been taken just before and after the
point of discontinuity (according to Gibb’s Phenomena).

u(t)

< >

unit Step Signal

If we add a step signal to another step signal that is time scaled, then the result will be unity. It is
a power type signal and the value of power is 0.5. The RMS (Root mean square) value is 0.707
and its average value is also 0.5

RAMP SIGNAL
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Integration of step signal results in a Ramp signal. It is represented by r(t). Ramp signal also
satisfies the condition r(t)=/t—oU(t)dt=tU(t)r(t)=[—cotU(t)dt=tU(t). It is neither energy nor power
(NENP) type signal.

r{t)

< >

Ramp Type Signal

PARABOLIC SIGNAL

Integration of Ramp signal leads to parabolic signal. It is represented by p(t). Parabolic signal
also satisfies he condition p(t)=/t—cor(t)dt=(t2/2) U (t)p(t)=]—ootr(t)dt=(t2/2)U(t) . It is neither
energy nor Power (NENP) type signal.

P(t)

> t

Parabolic Signal
SIGNUM FUNCTION
This function is represented as
sgn(t)={1fort>0

—1 fort<0

It is a power type signal. Its power value and RMS (Root mean square) values, both are 1.
Average value of signum function is zero.
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sgn(t) 1
& >
t
-1
signum function
SINC FUNCTION

t is also a function of sine and is written as

SinC(t)=SinITtITT=Sa(ITt)
PROPERTIES OF SINC FUNCTION

It is an energy type signal.
Sinc(O) Iimt—>0sinHth 1

to +1 but anything divided by |nf|n|ty is equal to zero)

If sinc(t)=0=>sinI1t=0

IIt=nII

t=n(n+£0)

SINUSOIDAL SIGNAL

A signal, which is continuous in nature is known as continuous signal. General format of a
sinusoidal signal is

X(t)=Asin(ot+¢)

Here,

A = amplitude of the signal
o = Angular frequency of the signal (Measured in radians)
¢ = Phase angle of the signal (Measured in radians)

The tendency of this signal is to repeat itself after certain period of time, thus is called periodic
signal. The time period of signal is given as;

T=2n0T=2nw®
The diagrammatic view of sinusoidal signal is shown below.
RECTANGULAR FUNCTION

A signal is said to be rectangular function type if it satisfies the following condition
n(t/t)={1, fort<t/2
0, Otherwise
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Being symmetrlcal about Y-axis, this signal is termed as even signal.
TRIANGULAR PULSE SIGNAL

Any signal, which satisfies the following condition, is known as triangular signal.
Transformation of the Independent Variable
Signal Operation
Time Shifting

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or
subtracting the amount of the shift to the time variable in the function. Subtracting a fixed
amount from the time variable will shift the signal to the right (delay) that amount, while adding
to the time variable will shift the signal to the left (advance).

y(t) = x(t - to)

Here, the original signal x(t) is shifted by an amount t.

Rule: set t - tp=0 and move the origin of x(t) to to.

Example 1-2-1: Given x(t) = u(t+2) - u(t-2), find x(t-to) and x(t+to).

Time Scaling

Time scaling compresses and dilates a signal by multiplying the time variable by some amount.
If that amount is greater than one, the signal becomes narrower and the operation is
called compression, while if the amount is less than one, the signal becomes wider and is
called dilation. It often takes people quite a while to get comfortable with these operations, as
people's intuition is often for the multiplication by an amount greater than one to dilate and less
than one to compress.

The signal y(t) = x(at) is a time-scaled version of x(t).

If |a] > 1, we are SPEEDING UP x(t) by a factor of a.
If |a] < 1, we are SLOWING DOWN x(t) by a factor of a.
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Combinations of Scale and Shift

Find x(2t+1) where x(t) is:

x(£)

AN

-1 G 1 2 t

i

Method 1: Shift then scale: x(at+b)
(i) v(t)=x(t+b);
(i) y(t) =v(at)= x(at+b).

V(t)=x(t+1)
y(t)=v(21)

Time Reversal

A natural question to consider when learning about time scaling is: What happens when the time
variable is multiplied by a negative number? The answer to this is time reversal. This operation is
the reversal of the time axis, or flipping the signal over the y-axis.

We reverse a signal x(t) by flipping it over the vertical-axis to form a new signal y(t) = x(-t).
Signal Characteristics

Periodic Functions
How can we tell if a continuous- time signal x(t) is periodic? That is, given t and T, is there some
period T >0 such that

X(t) =x(t+T).

If x(t) is periodic with period T, it is also periodic with period nT, that is:
X(t) =x(t +nT)

The minimum value of T that satisfies x(t) = x(t + T) is called the fundamental period of the
signal and we denote it as To.

The fundamental frequency of the signal in hertz (cycles/second) is
and in radians/second, it is
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If x1(t) is periodic with period Ty and X»(t) is periodic with period T, then the sum of the two
signals xy(t) + Xo(t) is periodic with period equal to the least common multiple(T;, Ty) if the ratio
of the two periods is a rational number, i.e.:
LetT'=k; Ty =k,T,, and Z(t) = Xl(t) + Xz(t),

Z(t+T") = Xa(t+ kiTy) + Xt + KoTo) = Xq(t) + Xo(t) = z(1)
Even and Odd Functions

Any continuous time signal can be expressed as the sum of an even signal and an odd signal:
X() = Xe(t) + Xo(t)

Even: Xe(t)= Xe(-t)

0dd: Xo(t)=- Xo(-t)

An even signal is symmetric across the vertical axis.
An odd signal is anti-symmetric across the vertical axis.

Xe()=(X(t)+x(-1))/2
Xo(D)=(X(t)-X(-1))/2

Examplel-2-10: given the unit step function (a discontinuous continuous-time signal),
find ue(t) and uo(t)
Signals are classified into the following categories:

e Continuous Time and Discrete Time Signals

o Deterministic and Non-deterministic Signals

o Even and Odd Signals

o Periodic and Aperiodic Signals

« Energy and Power Signals

o Real and Imaginary Signals

CONTINUOUS TIME AND DISCRETE TIME SIGNALS
A signal is said to be continuous when it is defined for all instants of time.
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A signal is said to be discrete when it is defined at only discrete instants of time
DETERMINISTIC AND NON-DETERMINISTIC SIGNALS

A signal is said to be deterministic if there is no uncertainty with respect to its value at any

instant of time. Or, signals which can be defined exactly by a mathematical formula are known
as deterministic signals.

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some
instant of time. Non-deterministic signals are random in nature hence they are called random

signals. Random signals cannot be described by a mathematical equation. They are modelled in
probabilistic terms.

EVEN AND ODD SIGNALS

A signal is said to be even when it satisfies the condition x(t) = x(-t)
Example 1: t2, t4... cost etc.

Let x(t) = t2
X(-t) = (-2 = 12 = x(t)

~,, t2 is even function
Example: t, t3 ... And sin t

Let x(t) =sint
X(-t) = sin(-t) = -sin t = -x(t)
~,~, sin t is odd function.
Any function f(t) can be expressed as the sum of its even function fe(t) and odd function f(t)

J) = fe(t) + folt)

where

Prepared by Mrs.A. Sahana Fathima, Asst Prof, Department of Physics, KAHE. Page 9/24




ff

== KARPAGAM ACADEMY OF HIGHER EDUCATION
RPAGAM CLASS: I1 B.Sc.PHYSICS

COURSE NAME: DIGITAL SIGNAL PROCESSING
" COURSE CODE: 17PHU403

UNIT: 11 BATCH-2017-2020
(Discrete-Time Signals and systems)

fe(t) ="a[f(t) +/(-1)]

PERIODIC AND APERIODIC SIGNALS

KA

'l“;n-

A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N)
Where

T = fundamental time period,

1/T =f = fundamental frequency.

>
=

TO

The above signal will repeat for every time interval Ty hence it is periodic with period Ty
ENERGY AND POWER SIGNALS

A signal is said to be energy signal when it has finite energy

o0
Energy E = / z® (t)dt
=00
A signal is said to be power signal when it has finite power

1 T
Power P = Iim — f
T 7

z®(t)dt

A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy
nor power signal.

Power of energy signal =0
Energy of power signal =

REAL AND IMAGINARY SIGNALS
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A signal is said to be real when it satisfies the condition x(t) = x*(t)
A signal is said to be odd when it satisfies the condition x(t) = -x*(t)
Example:

If x(t)= 3 then x*(t)=3*=3 here x(t) is a real signal.

If x(t)= 3j then x*(t)=3j* = -3j = -x(t) hence x(t) is a odd signal.

Discrete-time systems

Discrete-time systems, “A set of connected parts or models which takes discrete-time signals
as input, known as excitation, processes it under certain set of rules and algorithms to have a
desired output of another discrete-time signal, known as response”. In general, if a there is
excitation x(n) and the response of the system is y(n), the we express the system as,

y(n) =T [x(n]] or

T
x(m) — v(u)

Where, T is the general rule or algorithm which is implemented on x(n) or the excitation to get
the response y(n). For example, a few systems are represented as,

yin) = -2x(n)

or, ¥in) = x{n-1) + x(n) + x{n+1)

Block Diagram representation of Discrete-time systems
Digital Systems are represented with blocks of different elements or entities connected with
arrows which also fulfills the purpose of showing the direction of signal flow,

Excitation = QREE==S = byl =  Response

Some common elements of Discrete-time systems are:-

Adder: It performs the addition or summation of two signals or excitation to have a
response. An adder is represented as,
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—*‘ 5 y{n) = xa(n)+x2(n)

Constant Multiplier: This entity multiplies the signal with a constant integer or
fraction. And is represented as, in this example the signal x(n) is multiplied with a
constant “a” to have the response of the system as y(n).

Signal Multiplier: This element multiplies two signals to obtain one.

Unit-delay element: This element delays the signal by one sample i.e. the response of
the system is the excitation of previous sample. This can element is said to have a
memory which stores the excitation at time n-1 and recalls this excitation at the time n
form the memory. This element is represented as,

o) = v(n) = =x(n-1)

Unit-advance element: This element advances the signal by one sample i.e. the
response of the current excitation is the excitation of future sample. Although, as we can
see this element is not physically realizable unless the response and the excitation are
already in stored or recorded form.

Discrete-time systems are classified on different principles to have a better idea about a
particular system, their behavior and ultimately to study the response of the system.

Relaxed system: If y(n,-1) is the initial condition of a system with response y(n) and
y(n,-1)=0 , then the system is said to be initially relaxed i.e. if the system has no
excitation prior to n, .

Static and Dynamic systems: A system is said to be a Static discrete-time system if the
response of the system depends at most on the current or present excitation and not on
the past or future excitation. If there is any other scenario then the system is said to be a
Dynamic discrete-time system. The static systems are also said to be memory-less
systems and on the other hand dynamic systems have either finite or infinite memory
depending on the nature of the system. Examples below will clear any arising doubts
regarding static and dynamic systems.

Static System
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y(n) = 2x(n) + nx}(n)
y(n) = ax(n)

Dynamic system with finite memory

y(n) = ax(n) + bx(n-1) + cx{n+1)

ym) = Xy_ox(n—k)

Dynamic system with in -finite memory

yin) = Zox(n—k)

Time-variant and Time-invariant system: A discrete-time system is said to be time
invariant if the input-output characteristics do not change with time, i.e. if the excitation
is delayed by k units then the response of the system is also delayed by k units. Let there
be a system,

x(n) —=T  y(n) ¥ x(n)
Then the relaxed system T is time-invariant if and only if,
x(n-k) —=T  yink) ¥ x(n)and k.

Otherwise, the system is said to be time-variant system if it does not follows the above
specified set of rules. For example,

yin) = axin)

time-invariant }

yin) = ®(n) + x(n-3)

time-invarant }

Linear and non-Linear systems: A system is said to be a linear system if it follows the
superposition principle i.e. the sum of responses (output) of weighted individual
excitations (input) is equal to the response of sum of the weighted excitations. Pay
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attention to the above specified rule, according to the rule the following condition must
be fulfilled by the system in order to be classified as a Linear system,

If, wq(n) = TT ax4(n} ]
ya(n) = T[ bxa(n) ]
and, vyin) = T[ax,(n} + bxo(n)]
Then, the system is said to be linear if ,

T axq(n) + bxo(n)] = TT axy(n) ] + T bxan) ]

x:(n) ———— Y'(n)

x2(n) ’

So, iff y’(n) = y’’(n) then the system is said to be linear. I the system does not fulfills
this property then the system is a non-Linear system

Causal and non-Causal systems: A discrete-time system is said to be a causal system if
the response or the output of the system at any time depends only on the present or past
excitation or input and not on the future inputs. If the system T follows the following
relation then the system is said to be causal otherwise it is a non-causal system.

y)= T x(n- k) { Causal }
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z

vin) = x(n) + =x(n+1) {non-Causal }

Stable and Unstable systems: A system is said to be stable if the bounded input
produces a bounded output i.e. the system is BIBO stable. If,

) =M ¥ -w<M=z=m

vo)=N ¥  wo<N<m

Then the system is said to be bounded system and if this is not the case then the system
IS unbounded or unstable.

The Basics of the Convolution Sum

Consider a DT LTI system, L.
2(n) — [L]— y(n)
DT convolution is based on an earlier result where we showed that any signal x(n) can be

expressed as a sum of impulses.

o0

z(n) = > z(k)s(n — k)

k=—n0c

So let us consider x(n) written in this form to be our input to the LTI system.

y(n) =L[z(n)]=L [ i z(k)d(n — k}]

k=—oc

This looks like our general linear form with a scalar (k) and a signal in n, §(n — k). Recall
that for an LTT system:

e Linearity (L): ari(n) + bra2(n) — . — ayr(n) + bya(n)
e Time Invariance (TI): z(n — n,) . —y(n —mn,)

We can use the property of linearity to distribute the system L over our input.

o0 oo

y(n) =L [Z z(k)s(n — k}} = > z(k)L[5(n— k)]

k=—nc k=—o0c

So now we wonder, what is L [§(n — k)]? Well, we can figure it out. Suppose we know how
L acts on one impulse §(n), and we call it

h(n) =L[§(n)]
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then by time invariance we get our answer.
hin — k) = L[d(n — k)]
d(n —k) — [L] — h(n — k)

This means that if we know one input-output pair for this system, namely

§(n) — [L]— h(n)
then we can infer

z(n) — [L] — y(n)
which gives us the following.

o0

y(n) = Y z(k)h(n k)

k=—nc

This is the convolution sum for DT LTT systems.

The convolution sum for z(n) and h(n) is usually written as shown here.

o0

y(n) =x(n)* h(n) = Z z(k)h(n — k)

k=—o0
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Example 2.1: DT Convolution: Step Response

Say we are given the following signal z(n) and system impulse response h(n).

z(n) =u(n) and h(n)= (—) u(n)

' h(n)= (%)Tj(n}

1 0,5

A 1 T 0 K & 1

=
—_—
3
—
1
o
—
3
—

We wish to find the step response s(n) of the system (i.e. the response of the
system to the unit step input x(n) = u(n). This is shown below.

s(n) = x(n) * h(n) = Z z(k)h(n — k)

k=—oc

Thus the step response is as follows, found by substituting our actual signals into
the general convolution sum.

s(n) = i u(k) (é)_k u(n — k)

k=—na

Let’s look at this step response in smaller ranges to see what happens.

e First, consider the case where n < 0.
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s(n) = iﬂ u(k) (é)_k u(n — k)

k=

B mn 1 (1 ) n—k 1
B 2
k=0

We can pull out any terms only in n

since that is not the summation variable.
oy (B (L
N 2 2
k=0
(2 — 2
1" —
o 1 K
- (3) X
k=0

Now we have a form consistent with a geometric series. We can use that to

solve.
_ 211+1

T
1
Recall Z ok — — gntl _
k=0 =

So we have s(n) as follows.

s(n) =

[ I L B e

[I
e e N

o - ()

Prepare( Ve can visualize this, say for n = 2, as shown below. Note how the system 4
output comes from the overlap of the input signal and the shifted and flipped
impulse response.
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So, overall, we have the following step response.

s(n) = {2 - (%)”] u(n)

) s(n) =[2~(0.5)"T u(n)
1¢
—e—6—6—6—6— n

The u(n) comes from our first case above since s(n) = 0 for n < 0, and obviously
the other part comes from the expression found in the second case above.
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3 Basic Properties of DT Convolution

Discrete-time convolution has several useful properties that allows us to solve systems more
easily.

3.1 Commutativity
Convolution is a commutative operation, meaning signals can be convolved in any order.
z(n) * h(n) = h(n) * z(n)

This quite naturally is true of the convolution sums themselves, as well.

s ul

> z(k)h(n — k) = Z h(k)x(n — k)

k=—o0 k=—oc

3.2 Associativity

Convolution is associative, meaning that convolution operations in series can be done in any
order.

(z(n) * h(n)) * g(n) = z(n) « (h(n) = g(n))
This is significant because it means systems in series can be reordered.

Thus we have

z(n) — [h(n)] — [9(n)| — y(n)

is the same as
z(n) — |h(n) = g(n) | — y(n)

is the same as
r(n) — |g(n) * hin) | — y(n)

is the same as

(n) — |g(n)| —[h(n)| — y(n)

and so the systems in series can be reordered.
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3.3 Distributivity

Convolution is distributive over addition.
z(n) * [h(n) + g(n)] = z(n) * h(n) + z(n) * g(n)

This is significant to all parallel connections because it means the following two arrangements
are equivalent.

2(n) — —y(n)

is the same as

h(n)

x(n)
e y(n)
g(n)

3.4 Identity

‘We have previously established that §(n) is the identity with respect to discrete-time convo-
Tution.
o
Recall z(n)= Y z(k)d(n — k) =z(n) =d(n)
k=—no

So x(n)*d(n) = z(n).

This concept is quite easily extended, so z(n) * d(n — n,) = z(n —n,) for n, € Z and
z(n —ng)*d(n —ny) = z(n — (n, +ny)) for n,,ny € Z.

Impulse Response of Discrete Time System:

Discrete Time System is an algorithm, which operates on a discrete time signal called as input signal
according to some well-defined rules/operation. Impulse Response of a system is the reaction to any
discrete time system in response to some external changes. Impulse Response is generally denoted as
h(t) or h[n]. The output y[n] of any discrete LTI system is depended on the input (i.e. x(n)) and system’s

response to unit impulse (i.e. h[n]).
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System output

x[n] y[n]
— H —

Figure 1

To find Impulse Response

5 [n] h[n]
— H |——

We can determine the systems output y[n], if we know system’s impulse response, h[n], and the input,

x[n]. To find the impulse response of the system we provide a Unit impulse to the input x[n].
Systems with memory

In a memoryless systemy the output 1(7) 5 a fimetion of the mput x(7) at the time mstant ¢ alone. It does not depend on either
past or future mputs.

An LTI system that s memoryless can only have this form:
vty = x(r) * h(r) = Kx(r)

Here. X i the system gam and it must be constant or else the system would vary with time.

x(1) h(e) Kx()
LTI

For v(r)= Kx(r). the mpulse response 1(r) nmst be of the form of a wnit mpulse weighted by a constant K-

h(r)= Kalr)
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Invertible Systems

*@) o |20 x(®)

» f)  p————-

h(z)* hir)= é&(n)

A system is mvertible if we can find /147) so that the original nput x(r) can be recovered from the output y(r). For this to

hold, the system nmist be one-ro-one.
We will see how to do this when we study transforns.
Causality
We know that for a causal system, the output depends only on past or present mputs and not on fisre mputs.
Equmvalently, a causal system does not respond to an mput until it occurs (the output s not based on the future).

In other words, a response to an mput at f = #. would ocewr only for r Z 75 and not before .

We know that 7(r) is the system response to 4(r), and that (1) occurs at 7 = 0.

8 b A(E)
) ()
0] b 0f £

A system 15 causal, if k{f)=0, t=<0

Another way to look at the causality condition: Tet's exanme the convolution equation. flippmg h(r) mstead of x(r):

yiE)= Tk(z -r)x(ridr

Causality: if h(t) s causal then i(r - 1) =0, r-t<0orr<rt

So,
ity = jh(é -r)x(r)dr

which shows us that the output 1(f) depends only on values of the mput x(7) for t = 1. ie. it only depends on the past and
present.

Prepared by Mrs.A. Sahana Fathima, Asst Prof, Department of Physics, KAHE. Page 23/24




ff

== KARPAGAM ACADEMY OF HIGHER EDUCATION

RPAGAM CLASS: I B.SC.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
e COURSE CODE: 17PHU403 UNIT: II BATCH-2017-2020
(Discrete-Time Signals and systems)

KAl

'l“;n-

Stability
We can tell if an LTI system is BIBO stable from its mpulse response.
Pe(r)| £ By forallr. to determme if the system is BIBO stable, we need to determine if its output remains bounded for all time:

Tx(z -r)hit)dr| <

=0

“x(ﬁ -T)h(r)dr Why 7

=0

b)) =

= [ |5t -o)pdr < [Bp@p = B, [|ao)s

Therefore, V&)< B ”h(f [z < o if “h(f ldr <

-0

That is. the system is BIBO stable iff the impulse response /i(r) 1s absohitely mtegrable:

IPZ(%’)'G’T =G

In this case, the output will be bounded by a second constant: [y(r)| = ByG = B, and tlus. the system is BIBO stable.
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QUESTIONS CHOICE
UNIT-I
An LTI system is said to be causal if and only if Impulse 1
The impulse response of a LTI system is h(n)={1,1,1}. What is the response of tl {1 3,6,3,1
The system described by the equatlon y(n) ay(n-1)+b X(n) is
VLI U Gie TUIIUTVTIIg is a1coursive rorm of a non-recursive System described y(n) y(n-
.If x(n) is a discrete-time signal, then the value of x(n) at non integer value of “ 0

The discrete time function defined as u(n)=n for n=0;=0 for n<0 is an: Unit samy
The phase function of a discrete time signal x(n)=a", where a=r.e’” is: tan(n0)
A real valued signal x(n) is called as anti-symmetric if: x(n)=x(-n
The odd part of a signal x(t) is: x(t)+x(-t)
Time scaling operation is also known as: Down-sar
What is the condition for a signal x(n)=Br"” where r=e"" to be called as an deca O<r<co
The function given by the equation x(n)=1, for n=0;=0, for n#0 is a: Step funct

The output signal when a signal x(n)=(0,1,2,3) is processed through an ‘Identic(3,2,1,0)
If a signal x(n) is passed through a system to get an output signal of y(n)=x(n+ Delayed
What is the output y(n) when a signal x(n)=n*u(n)is passed through a accumu (n“+n+1),
The output signal when a signal x(n)=(0,1,2,3) is processed through an ‘Delay’ (3,2,1,0)
The system described by the input-output equation y(n)=nx(n)+bx”(n)isa: Static sys!
Whether the system described by the input-output equations y(n)=x(n)-x(n-1’ time

The system described by the input-output equations y(n)=x"(n) is Linear
If the output of the system of the system at any ‘n’ depends only the present or Linear
The system described by the input-output equations y(n)=x(-n) Linear

. If a system do not have a bounded output for bounded input, then the system Causal

The impulse response of a LTI system is h(n)={1,1,1}. What is the response of 1{1,3,6,3,1
Determine the output y(n) of a LTI system with impulse response h(n)=a"u(n) (1-a** ™),
Determine the impulse response for the cascade of two LTI systems having im (1/2)"|2-|

An LTI system is said to be causal if and only if Impulse r
X(n)*o(n-ny)= X(n+ng)
The discrete impulse function is defined by 6(n)=1,r1
The computational procedure for Decimation in frequency algorithm takes  Log2 N st
The anti causal sequences have components in the left hand sequences. Positive
The IIR filter designing involves Designing
Which among the following represent/s the characteristic/s of an ideal filter? Constant
FIR filters .are non-
In tapped delay line filter, the tapped line is also known as Pick-on n
How is the sensitivity of filter coefficient quantization for FIR filters? Low

[ I R digital filters are of the following nature Recursive
In I I R digital filter the present output depends on Present :

Which of the following is best suited for I [ R filter when compared with the FII Lower si
In the case of I I R filter which of the following is true if the phase distortion is . More pa

A causal and stable I [ R filter has Linear p.
Neither the Impulse response nor the phase response of the analog filter is Pre The met]
Out of the given I I R filters the following filter is the efficient one Circular
What is the disadvantage of impulse invariant method Aliasing

. Which of the I I R Filter design method is antialiasing method? a. The me

The nonlinear relation between the analog and digital frequencies is called a. aliasing
The most common technique for the design of I I R Digital filter is a. Direct .



The I I R filter design method thatovercomes the limitation of applicability to ca. Appro

The Fourier transform of a real valued time signal has odd

A signal x(t) has a Fourier transform X(w). If x(t) is a real and odd function of t a real
The amplitude spectrum of a Gaussian pulse is uniform
If a signal f(t) has energy E, the energy of the signal f(2t) is equal to E

The trigonometric Fourier series of an even function does not have the dc term
The Fourier series of an odd periodic function, contains only odd
The trigonometric Fourier series of a periodic time function can have only cosine

The trigonometric Fourier series of an even function of time does not have cosine
A system with an input x(t) and output y(t) is described by the relation: y(t) = linear
The input and output of a continuous time system are respectively denoted by y(t)=x(t

A discrete-time signal x[n]=sin(m2 n),n being an integer, is Periodic
Convolution of x(t+5) with impulse function §(t-7)is equal to x(t-12)
Two systems with impulse responses h1(t) and h2(t) are connected in product
UNIT-II
DTFT is the representation of Periodic
The transforming relations performed by DTFT are Linearity
The transforming relations performed by DTFT are Modulati
The transforming relations performed by DTFT are Shifting
The transforming relations performed by DTFT are Convolut
DFT is preferred for Removal
The DFT is preferred for [ts ability
As compared to the analog systems, the digital processing of signals allow Programi
As compared to the analog systems, the digital processing of signals allow Flexibility
As compared to the analog systems, the digital processing of signals allow Cheaper
As compared to the analog systems, the digital processing of signals allow More
The Nyquist theorem for sampling Relates th
The Nyquist theorem for sampling Gives
Roll-off factor is The band
Frequency selectivity characteristics of DFT refers to Ability to
Which term applies to the maintaining of a given signal level until the next ~ Holding
For a 4-bit DAC. the least significant bit (LSB)is . ] o 6.25%
The DTFT transforms an infinite-length discrete signal in the time domain intc an finite-
As with continuous-time, convolution is represented by the symbol *, and can y[n|=x|n
Let f and g be two tunctions with convolution f*g .. Let F be the Fourier F(t*g)=F
Let f and g be two tunctions with convolution f*g .. Let F be the Fourier F(f-g)=F
Inverse Fourier transform F-1, we can writ txg=F-1(
The Fourier transform of a convolution is the pointwise product of Fouriertr
convolution in one domain corresponds to point-wise ..... in the other multiplic

Symmetry property deals with the effect on the frequency-domain representa altered
a unit pulse with a very small duration, in time that becomes an infinite-length c delta

Time shifting shows that a shift in time is equivalent to a linear
. frequency content depends only on the shape of a signal, which is unchanged i phasesp
convolution in time becomes......... in frequency

convolution property is also another excellent example of ..... between time ancsymmetr
Convolution property is also another excellent example of symmetry between time

the
Continuous tunctions are sampled to form a Fourier
2D Fourier transform and its inverse are intinitely aperiodi

Which property of delta function indicates the equality between the area under Replicatii
Which among the below specified conditions/cases of discrete time in terms of a>1

A system is said to be shift invariant only if a shiftin
Which condition determines the causality of the LTI system in terms of its impu a. Only if 1
An equalizer used to compensate the distortion in the communication system b static



Which block of the discrete time systems requires memory in order to store the adder
Which type/s of discrete-time system do/does not exhibit the necessity of any { recursiv
Which type of system response to its input represents the zero value of its initia Zero
Which among the following operations is/are not involved /associated with the Folding O

A LTI system is said to be initially relaxed system only if ___ zero inpt
What are the number of samples present in an impulse response called as? string
Duality Theorem / Property of Fourier Transform states that a. Shape ¢

Which property ot tourier transtorm gives rise to an additional phase shitt ot -21. Time Sce
What is/are the crucial purposes of using the Fourier Transform while analyzin Transforr
What is the possible range of frequency spectrum for discrete time fourier serie 0 to 2m

Which among the following assertions represents a necessary condition for the Discrete’
What is the nature of Fourier representation of a discrete & aperiodic signal? Continuon
Which property ot periodic signal in DTFS gets completely claritied / identitied Conjugati
Which are the only waves that correspond/ support the measurement of phase Sine wav
What does the signalling rate in the digital communication system imply ? Number «
As the signalling rate increases, Width of ¢
Which phenomenon occurs due to an increase in the channel bandwidth during Compress
What does the term y(-1) indicate especially in an equation that represents the initial con
Damped sinusoids are sinusoid



CHOICE CHOICE3 CHOICE4

ANSWER

Impulse r Impulse r Impulse response i: Impulse response is zero for negative values of n

{1,2,3,2,1 {1,3,6,5,3{1,1,1,0,0}
causal  non-caus:superpostion

{1,3,6,5,3}
a

) y(n)=y(ty(n)=y(n-y(n)=y(n-1)+ 1/(M1y(n)=y(n-1)+ 1/(M+1)[x(n)-x(n-1-M)].

positive negative not defined

not defined

Unit step Unit ramf None of the mentior Unit ramp signal

no tan “(nO) cos6
x(n)=-x(-1x(n)=-x(n x(n)=y(n)
x()x(-t) (1/2)*(x( (1/2)*(x()x(-t))
Up-sampl Sampling zer0 sampling
O<r<1 r>1 r<0

Ramp fun Triangula Impulse function
(1,2,3,0) (0,1,2,3) (0,2)

tan *(no)
x(n)=-x(-n)
(1/2)*x(t)x(-1))
Down-sampling
O<r<1

Impulse function
(1,2,3,0)

Advanced No operat None of the mentiot None of the mentioned

(n(n+1))/ (n+1) (n+1)/2
(1,2,3,0) (2,3,0) (32,1,3)
Dynamic :Identical :ideal system

timein delay non-delay
non exponent delay
Causal Non-Line:Non-causal
Causal Non-Line:Non-causal

Non-caus Stable Non-stable
{1,2,3,2,1 {1,3,6,5,3 {1,1,1,0,0}
(1-a* 7))/ (1+a™ ) (1-a)

(n(n+1))/2
(3,2,1,3)

Static system
time in

non

Causal
Non-causal
Non-stable
{1,3,6,5,3}
(1-a""~)/(1-a)

(1/2)°|2-1(1/2)"|2+ (1/2)"[2+(1/2)"], n: (1/2)"]2-(1/2)"], n>0

Impulse r Impulse r Impulse response is Impulse response is zero for negative values of n

x(nno)  X(-n-ng) X(-n+ng)

X(n-ng)

o(n)=1, 6(n)=1,16(n)=1,n<0,=0,n06(n) =1,

2Log2 N sLog2 N” s Log2 N/2 stages
negative not define 0

Log2 N stages
Positive

Designing Designing Designing of digital Designing of digital filter in analog domain and tra

Zero gain Linear Ph All of the above
.are recui use feedb linear
Pick-off n Pick-up n Pick-down node

Moderate High Unpredictable
Non Rec' Reversiv Non Reversive
Present i

Higher S

More me

No Linea Linear aiNo Amplitude

All of the above
are non-recursive
Pick-off node
Low

Recursive

Presenti Present Input, Prev Present Input, Previous input and output
Lower si No sidelobes in sto Lower sidelobes in stopband
Lower cc Higher computatio Lower computational Complexity

No Linear phase

Impulse Bilineart Matched Z - transfo Bilinear transformation

Elliptical
one to on anti alias d warping

Rectang Chebyshev filter

Elliptical filter
Aliasing

b. Impuls c. Bilinea d. Matched Z - transc. Bilinear transformation

b. warpirc. prewa d. antialiasing

b. warping

b. In dire c. Recursd. non recursive meb. In direct method



b. Impulsc. Bilinecd. Frequency samplb. Impulse Invariance
conjugat even sym no symmetry conjugat

an an imagin a real and odd funct an
Gaussian a sine fun An impulse functior Gaussian
2E E/2 4E E/2
cosine sine term odd harmonic term: sine terms
cosine sine term even harmonic termn sine terms

even harmonic tern cosine
even harmonic tern cosine

sine term dc term
sine term dc term

linear non-linea non-linear and time linear

y(t)=(t- y(O)=(t+4 y(t)=(t+5) x(t+5) y(t)=(t+4) x(t-1)

Periodic Periodic v Not periodic Not periodic

x(t-2)  x(t+12) x(t+2) x(t-2)

sumof  convolutiisubtraction of h2(t) convolution of h1(t) and h2(t)

Aperiodic Aperiodit Periodic continuou Aperiodic Discrete time signals

nonlinea demodule periodicity Linearity
nonlinea demodule periodicity Modulation
nonlinea demodule periodicity Shifting
nonlinea demodule periodicity Convolution
Filter des demodule periodicity Filter design

Quantizat demodule periodicity

Quantization of signal

non costly not reliable Programmable operations

non costly not reliable Flexibility in the system design
non costly not reliable Cheaper systems

non costly not reliable More

Helps in « Gives

calculate bndwidth Relates the conditions in time domain and frequen

Limits th Helps in (calculate bndwidth Limits the bandwidth requirement

The perfc Aliasing ¢ sampling

The bandwidth occupied beyond the Nyquist Band

b. Ability c. Ability 1 Ability to convert cc Ability to resolve different frequency components

Aliasing Shannon "Stair- Holding
0.625% 12%of 1.2% of 6.25%
an finite- anin an an finite-
yIn|=x(n y[n|=x|n y|n|=x|n yln|=xn
F(t*+g)= F(tg)=F(t F(t*+g)= F(t*g)=F
F(f-g)=F F(f*g)=iF(f-g)=F (})/F(g) F(f-g)=F (})*F(g)
txg=F(F(f tg=F-1(F f*xg=F-1( txg=F-1(
Fourier infinite FFT Fouriertr
addition subtracti integrati multiplic
constant added subtract altered
impulse ramp step delta
Non- linear fre linear frequency st linear
amplitud time frequenc phasesp
addition subtracti integrati

antisym periodici aperiodi symmetr
time phase phase time

the the energ the power of its Z t1 the
fourierse Ztransfo digital digital
periodic linear nonlinea periodic
sampling scaling alising sampling
a<l 0 than a than a

a shiftin c. a shiftir d. a shifting at input a shift in the input signal also results in the corres
b. Only if i c. Only if t d. Only if the value ca. Only if the value of an impulse response is zero f

dynamic invertible non-

invertible system



multplie unit delay unit unit delay

nonrecur linear nonlinea nonrecur

b. Zero in c. Total re d. Natural response Zero

b. Shifting c. Multipli d. Integration Opere d. Integration Operation

b. zero injc. zero iny d. none of the above zero input produces zero output

b.array c.length d.element c. length

b. Shape cc. Shape ad. Shape of signal in a. Shape of signal in time domain & shape of spectt
Linearity Time Shil Duality ‘I'ime Shitting

Plotting o Both a & Transformation froiBotha & b

-mto +m Botha &10 Botha &b
Discrete " Discrete ' Discrete Time Signa Discrete Time Signal should be absolutely summa

Discrete : Continuo Discrete & periodic Continuous & periodic

‘I'ime Shi! FrequencTime Reversal ‘I'ime Shitting

Cosine w Triangul: Square wave Cosine waves

Number « Number (Number of digital pr Number of digital pulses transmitted per second
Width of Width of None of the above Width of each pulse decreases

Expansiol Expansior Compression in fre: Expansion in frequency domain

negative i negative response of the syst initial condition of the system

sinusoid sinusoid ¢ sinusoid signals div sinusoid signals multiplied by decaying exponenti:



nsforming into digital domain



icy domain

lwidth of the filter
from input signal

ponding shift in the output
or all negative values of time



‘um can be interchangeable

ble
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R p G AM CLASS: Il BSCPHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
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(Discrete-Time Fourier Transform)
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UNIT-I1I
SYLLABUS

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-
Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting;
Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property

DISCRETE TIME FOURIER TRANSFORM

r(t
A discrete-time signal can be considered as a continuous signal ( ) sampled at a
F=1/ty Q=2n/tg tq
rate or , where s the sampling period (time interval between two
consecutive samples). The corresponding sampling function (comb function) is:

combl(t Z 6(t — mtq)
IM=—000
The sampling process can be represented by
OO
r.(t) = z(t) comb(t Z §(t — mtg) = Z z[m]d(t — mty)
ImM=—000 mM=—000
z[m] = z(miy) r(t) ¢t =mi,
where is the value of at . The Fourier transform of this
discrete signal (treated as a special case of continuous signal) is:
o0 ) oo 20
X(jw) f r (t)e ¥ dt = f [ Y z[m]d(t — mitqy)] e dt
ca eo ME=—00
[ 4]
m]f (t — mtg) e” It = Z z[m] g TIwT
?TT_—OC‘ =00
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z,(2)
This is the forward Fourier transform (analysis) of a discrete signal . The

X(ju..-') D_QJLF_L.JLIIIIItD
spectrum is periodic with period

X(j(cu'—l-ﬂ)): Z J:[m]e:_j':"”""m:””*”: Z r[m]e‘j"”"”e_jﬂm*“:X(jw)

as

E—jﬂm%u — E—jim: — ].

z[m]
To get back the time signal from its spectrum:
o0

}L(jm:l = Z z[m| g Jwmitn

IM=—00
Eju‘ni'uf-'ﬂ
we multiply the equation by and integrate both sides with respect to ' over the
Q=2nF = L..u.lll"tg
period to obtain the inverse Fourier transform (synthesis):

Df}L juJ -“’””*”dm— E_?f r[m]e_j“'m*”]ejw”*”dw

2 =00

o0

> r[rn]%f}e_m{m_”ﬁ”dw = Y z[mld[m —n] = z[n]

= —i0 - - M= —i>
Note that here we used

1 il e 1 i frrr—r ) 2ot 1 m=n
= Jul me—m )ty g, . - . Flme—m ) 2=w /0 — . —
QLE diw QLE dw = d[m—n] { 0 mn

which can be compared this with

1 (m—T2) 1 (re—r2) 27t/ 1 m=n
_ Flm—m gt — : (e—m )27t /T — _ —
T LE dt T LE’J dt = d[m —n] { D m+#n
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To summarize, the spectrum of a given discrete signal

20
r(t)= 3 z[m]é(t— mto)
M=—00
can be found by forward Fourier transform to be:
[ ] . oo .
Xo(jw) = Fla[ml] = Y afmle™ = 3" z[m]e i
Mm=—00 T=—00

and the signal can be expressed by inverse Fourier transform:

_}j‘[}‘n] = ?:_ [X (jw' ] — /}LQ __}u..-':] _?um%ndm A f }LF :m%.;.df

It is interesting to compare this dlscrete time Fourier transform pair with the Fourier series
expansion - the Fourier transform of a periodic signal:

rr(t) = F 7 [X[n]] Z X [n]e™eet = Z X [n]eZ et
X[n] = Flzr(t)] = lf rr(t) o inwet gy if Ir(tje—jszﬂdﬁ
T It T Jr

with discrete spectrum:

X(jw) =27 Z X[nld(w—nwy) or X(f)= Z X[n]é(f—nfq)

n=—C0 n=—100
We see symmetry between these two different forms of Fourier transform. If the
£(t) = z(t +7) X (jw)
signal is periodic, its spectrum is discrete, the coefficients of the
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wg = 2w/T z(t)
Fourier series with interval . On the other hand, if is discrete with
t.j:27r;"ﬂ X(jwj :X(jm—l—ﬂ)
interval , Its spectrum IS periodic.

ﬁg — ]_
In particular, if the unit of time is so chosen that the sampling period is :
Q= L.Jlllllltl:l = 27
then , and the forward Fourier transform of a discrete signal becomes:

o0 o0

X(Gw)= Y zlmle7™ = Y zlm]e !

m=—00 I=—00

The inverse transform becomes:

X(jw) = X(jw + 27)
The spectrum is periodic.

a _ _ X(w)  X(f)
he spectrum of a time signal (continuous or discrete) can be denoted by or to
emphasize the fact that the spectrum represents how the energy contained in the signal is
N _ f ~X(f) L/2x
distributed as a function of frequency « or . Moreover, if is used, the factor in
front of the inverse transform is dropped so that the transform pair takes a more symmetric form.
On the other hand, as Fourier transform of discrete signal can be considered as a special case of Z

s=0 4+ jw .
transform when the real part of is zero, i.e, = = e = e
0 0 ) )
X(:) |:=c—"“*' = Z I[?]] :_n|;=c-"“*' = Z I[H]E_an = X(ij)
=00 nn=—00
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r[n]  X(e")
it is also natural to denote the spectrum of by

DTFT Analysis of Discrete LTI Systems

The input-output relationship of an LTI system is governed by a convolution process: y[n] = X[n]
* h[n] where h[n] is the discrete time impulse response of the system

Then the frequency-response is simply the DTFT of h[n]:
Properties of Discrete Fourier Transform
DFT

x(n) > x(k)
N

As a special case of general Fourier transform, the discrete time transform shares all properties
(and their proofs) of the Fourier transform discussed above, except now some of these properties
may take different forms. In the following, we always

Flalm]] = X(e*)  Flym]] = Y (e*)
assume and .
Periodicity
Let x(n) and x(k) be the DFT pair then if
x(n+N) = x(n) for all n then
X(k+N) = X(Kk) for all k
Thus periodic sequence xp(n) can be given as

o0
xp(n) =3 x(n-IN)

l:_ o0
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Linearity
Flaz[m] + by[m]] = aX (&™) + bY (')

The linearity property states that if
DFT

xl(n) = > X1(k) And
N
DFT
x2(n) > X2(k) Then
N
Then DFT
al x1(n) + a2 x2(n) < » al X1(k)+a2 X2(k) N

DFT of linear combination of two or more signals is equal to the same linear combination
of DFT of individual signals.

Time Shifting

Flz[m — mg]] = e ™ X (&)
Proof:

g B

Floelm—mg]] = > z[m— mgle™ ™
mM=—00
m' = m — mg
If we let , the above becomes
=0 . ! . .
.F[I[?ﬂ _ ?nlil]] — Z I[?n!] g Jwim tma) E—_‘rwmnX(ij)
TE=—
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Time Reversal

Flz[-m]] = X (™)
Frequency Shifting

Flz[m]e®™] = X(\wn))
Differencing

Differencing is the discrete-time counterpart of differentiation.

- Flz[m] —z[m — 1] = (1 — %)X (')
Flz[m] — z[m — 1]] = Flz[m]] — Flz[m — 1]]

X(e™) - X(e¥)e ™ = (1 — e ) X (&)

Differentiation in frequency
.?:_l[jijf(ejw)] = m z[m]
div

proof: Differentiating the definition of discrete Fourier transform with respect to &/, we get
d : _ d & : 0 d

— X i . Tl - —juhme
= (e7) oy mzz_:m z[m]e m:Z_m z[m] 7€
Y —jmz[m]e” ™

Convolution Theorems

The convolution theorem states that convolution in time domain corresponds to multiplication in
frequency domain and vice versa:
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Flz[n] # y[n]] = X () V(™) (a)
Flz[n] yln]] = X(&) « Y (™) (b)
_ o II(f) y.’r(f) )
Recall that the convolution of periodic signals and is

rT(t) * yr(t] '

!
— T t— 7)dr
= | zr@ur(t—7)
X(f) Y(f)
Here the convolution of periodic spectra

Il

and

is similarly defined as
o 1 o o . 1
X ()Y (™) = ﬁ[ X ()Y (&) dw
2Ja

- TR E N ((AEAy !
= I X(e?™ )Y (e ) diw
Proof of (a):

Flz[n] * y[n]] 3

o0

n=—00 m=—00

SIS eyl —m] e

o0

o0

> almil 3 vl —mlem e

TE=— 00

X(jw) Y (jw)
Proof of (b):

Flz[n]y[n]] : i I[n]y[ﬂ]e_j”“’

n—=—00

S
= 2. I3z

n—=—00

P

. s r .
Al Jw e w|ynle
X(ju )™ duy[ne ™
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D o0

]- s —y — T !

Q—,Tﬁ X(Go')[ Y. ™ y[n]e™™]dw

1 o r ! - — i —w’ !

‘T"—"TL X (70 Z y[n|e™ ( ) du

]- e r ' i/ k4 ' [ Ea

— [ XY (o - ))de! = X (ju) +Y (o)

Parseval’s Relation

Parseval’sTheorem

The Parseval s theorem states

N-1 i N-1 "
> X(n)y (n) =I/N ¥ x(k) y (k)
n=(0 n=0

This equation give energy of finite duration sequence in terms of its frequency components.

Example 1. The spectrum of

r[n] = a"un] (|a| < 1)
X(e™) = Flz[n]] = i a"uln|e ™™ = i(ae‘“)” =1z ig_m
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If the signal is two-sided:

zln] = al = a™uln] + a"u[-n] — §[n],  (|a] < 1)

Due to the time reversal property, its spectrum is

. 1 1 1 - a?
X(e) = _ 4 L= -

l— age % 1 — gei¥ 1 — 2a cosw + a?

Example 2. Consider an LTI system with impulse response

hn] = a™uln], (la| < 1)

and input

z[n] = b*u[n], (|5 < 1)

y[n]
The output can be found in either time domain by convolution or in frequency domain by

multiplication. In time domain, we have

y[n] © h[n] *z[n] = Z a"""u[n — m]b"u[m| = o™ Z a” "p"
TE=— 00 =0

n ]‘ - (b.l'fllﬂ’)n-'-l ]‘ 41

1 —(b/a) uln] = a— b(a

a

— b”’"’l) u[n|

When @ = b, we have
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yln] =a™ > a7 = (n 4 1)a"uln]
=0
z[n] h{n]
In frequency domain, we first find the spectra of both and to be:
. 1 - 1
Xe)=——— He¥) = —+—
(=) 1 — qe—3%" () 1 — be—
and the spectrum of the output is:
1

Y(e™) = H(e™) X(e) =

(l — be—i‘*’) (l — ae—iw]

y(n) Y (e?)
To find in time domain by inverse transform of , We use partial fraction
expansion to rewrite the above as

A " E Q A— Abe 7Y + B — qBe ¥
1 — age—7w 1 — be—iw (l — be—-f“')(l — ae—i‘*‘)

Y (&) =

By equating the coefficients of € 7* and the constants, we get

A+B=1, aB+bA=0

which can be solved to get
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Y (jw)
In this form, can be easily inverse transformed to yield
a b 1
hin| = a’ — b uln| = a™tt — p*tun
[n] = [——a" — —=5"uln] = —( Juln]

same as the result from convolution. Again when @ = &, we have

L 1 e d 1
-1? Eju. = = T
() (1 — ae—iv)2 o 7 dw (l — ae:—i“':]

But since

by the frequency differentiation property, we have

, 1
[‘;a{mj] = na"u[n|

and the output in time domain is obtained as:

| R |
C FIY(e) = P (————
yln) ()] = F e (e

)

1
—(n + l]a”+1 uln+ 1] = (n + l]a”u[n + 1]

)

(n + 1)a™u[n]
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Note that the time-shifting property is used due to the factor e?% | Also note
uln + 1] n=—1 uln]
that (starting at ) is replaced by (startingat . = 0)
n+1=10 n=-—1
as when

Example 4. The impulse response of a discrete LTI system is

hlm] = a™u[m]

la| <1 y[m]
where so that the system is stable. The output of the system with an input
2rm Eji::'nl."'f'-'_ + E—_T'Ex:'n.."'f"-'_
z[m] = cos( N ) = 5
can be found in three different ways.
z[m] h[m|
e Time domain convolution: The output is the convolution of and :
. F _ s} E,_T_.. I::'ﬂ—k:ll."'f"-'_ _|_ E—ji:l::ln—k:ll."';"'-'_
y[m] © h[m] * zfm] = Y _ a* 5
k=0 =
SO l o0
""—:'71 & —_T"" L"“‘- - —_T”—:'n Iz ":kl."'f"-'_
S€ Da
k=0 = k=0
EE_T'E:m.."'P'-" L + lg—jimn;"h’ 1
2 1 — gqe—i2=/N = D 1 — qei?=/N

h{m]
e The eigenequation method: We first get the frequency response function from
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oo
1
_m, E : f — gk __ E : AL
E k=—co 1 E F;:D(ae ) 1 —ae™

which is the eigenvalue of the system when the input is a complex exponential el
Now the system's response to

B VT B E_fﬁxml."'f"-'_ + E—_T'Emnl."'ﬁ'_
z[m] = cos( N ) = 5
can be found to be
. - j2x /Ny 32w/ N —jiw /Ny _—i2xm/N
ylm] - SlH (& M) N g H (e N ez
E 2w /N 1 . _ 4 EE_J"Tm;'“." ]-
2 1 — ge=i23=/N = 2 1 — aes2={N
h{m] z[m)]
e Frequency domain multiplication: If we find the spectra of both and in
_ y[m] o
the frequency domain, the spectrum of can be found by multiplication. We already
know
1

H(e™) = Flh[m]] =

— ge—

z[m)|

We next find the spectrum of
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- oo Eji:m.."'ﬁ'_ + E—_T'Exml."'f\'_ o

r i ) _ = Jiri
X(e™) + Flz[m]] = Z 5 e
mM=—000
[ 0
i Z [6(w — 2km — 27 /N ) + §(w — 2k7 — 27 /N )]
k=—co
y[m]
Now the spectrum of the output can be found

= L_Z:m[fﬁ(m — 2kw — Q:'r;"ﬂ-'_) + fflim — 2kw — Q:'r,.fﬂ_)]
y[m]
and the output IS obtained by inverse Fourier transform:
1 %= T o 27 27
y[m] : o []_—_-7”’ Z [ﬁ(m — 2kw — —_) + LSIC-,L.J — 2km — ?jl]]t"j 'diw
Lk - ﬂE k:—ﬂﬂ 4 4

Prepared by Mrs.A. Sahana Fathima, Asst Prof, Department of Physics, KAHE. Page 15/16




ff

== KARPAGAM ACADEMY OF HIGHER EDUCATION

R pAG AM CLASS: I1 B.Sc.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
e COURSE CODE: 17PHU403 UNIT: 11 BATCH-2017-2020
(Discrete-Time Fourier Transform)

KAl

'l“;n-

1 27m/N 1 | -i2em/N 1
e e ——
) [ — e ) | — gerslt
H(27/N)
The physical meaning of this result will be clear if we write in polar form:
H(Ejz:,m-') _ 1 — rei?
' 1 — qei2=/N '

and the output becomes

AT

N

m + 5’)

y[m] = r cos(

That is, the output of the system is also a sinusoidal signal of the same frequency as the input, but
with different magnitude 7 and a phase angle £. For example, if N = 4, we have

Ao Lo L e
l4+j7a  +/14a?
and the output is
m] = ———cos("% — tan"}(a))
M| = (k) — Tamn L
Y v 14 a? 2
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UNIT-II

DTEFT is the representation of Periodic = Aperiodic Aperiodit
The transforming relations performed by DTFT are Linearity nonlinea demodule
The transforming relations performed by DTFT are Modulati nonlinea demodulz
The transforming relations performed by DTFT are Shifting nonlinea demodule
The transforming relations performed by DTFT are Convolut nonlinea demodulz
DFT is preferred for Removal Filter des demodule
The DFT is preferred for [ts ability Quantizat demodule
As compared to the analog systems, the digital processing of sign: Programinon costly
As compared to the analog systems, the digital processing of sign: Flexibility non costly
As compared to the analog systems, the digital processing of sign: Cheaper :non costly
As compared to the analog systems, the digital processing of sign: More non costly
The Nyquist theorem for sampling Relates th Helpsin « Gives
The Nyquist theorem for sampling Gives Limits th Helpsin «
Roll-oft factor is The band The perfc Aliasing ¢
Frequency selectivity characteristics of DFT refers to Ability to b. Ability c. Ability 1
Which term aoplies to the maintaining of a given signal level Holding Aliasing Shannon
For a 4-bit DAC. the least significant bit (LSB) is 6.25%  0.625% 12% of
The DTFT transforms an infinite- length discrete signal in the time¢an finite- an finite- anin

As with continuous-time, convolution is represented by the symb y|n|=x|n y|n|=X|n y[n|=x|n
Let f and g be two tunctions with convolution f*g .. Let F be the F(f*g)=F F(t*xg)= F(tg)=F(f
Letf and g be two tunctions with convolution f*g .. Let F be the F(f-g)=FF(f-g)=F F(f-*g )=

Inverse Fourier transform F-1, we can writ txg=F-1( t+xg=F(F(t tg=F-1(F

The Fourier transform of a convolution is the pointwise product ¢ Fouriertr Fourier infinite

convolution in one domain corresponds to point-wise ...... in multiplic addition subtracti

Symmetry property deals with the effect on the frequency-domaialtered constant added
a unit pulse with a very small duration, in time that becomes an inf delta impulse ramp
Time shifting shows that a shift in time is equivalent to a linear  Non- linear fre
. frequency content depends only on the shape of a signal, which is phasesp amplitud time

convolution in time becomes......... in frequency addition subtracti
convolution property is also another excellent example of ..... betw symmetr antisym periodici

Convolution property is also another excellent example of symm: time time phase

the the the energ

Continuous tunctions are sampled to form a Fourier fourierse Ztransto
2D Fourier transform and its inverse are intinitely aperiodi periodic linear
Which property of delta function indicates the equality between th Replicatiisampling scaling
Which among the below specified conditions/cases of discrete tim a>1 a<1 0
A system is said to be shift invariant only if a shiftin ashiftin c. a shiftir
Which condition determines the causality of the LTI system in terr a. Only if tb. Only if i c. Only if t
An equalizer used to compensate the distortion in the communicat static dynamic invertible

Which block of the discrete time systems requires memory in orde adder multplie unit delay
Which type/s of discrete-time system do/does not exhibit the nece¢recursiv. nonrecur linear
Which type of system response to its input represents the zero vali Zero b. Zeroin c. Total re
Which among the following operations is/are not involved /associ Foldlng Ob. Shlftlng C. Multlph
A LTI system is said to be initially relaxed system only if ___ zero inpu b. zero injc. zero ing
What are the number of samples present in an impulse response c string b.array c.length
Duality Theorem / Property of Fourier Transform states that a. Shape c¢b. Shape cc. Shape o
Which property ot tourier transtorm gives rise to an additional pha. Time Sce Linearity Time Shif
What is/are the crucial purposes of using the Fourier Transform w Transforr Plotting o Both a &
What is the possible range of frequency spectrum for discrete time0O to 2Zm  -mto +m Botha &'
Which among the following assertions represents a necessary con: Discrete ' Discrete ' Discrete’
What is the nature of Fourier representation of a discrete & aperic Continuor Discrete : Continuo
Which property ot periodic signal in DTFS gets completely claritiec Conjugati ‘I'ime Shi! Frequenc
Which are the only waves that correspond/ support the measuren Sine wav Cosine w Triangul:
What does the signalling rate in the digital communication system Number « Number « Number «



As the signalling rate increases, Width of ¢ Width of Width of
Which phenomenon occurs due to an increase in the channel band' Compress Expansiol Expansioi
What does the term y(-1) indicate especially in an equation that re initial cor negative i negative
Damped sinusoids are sinusoid sinusoid sinusoid ¢



Periodic continuou Aperiodic Discrete time signals

periodicity Linearity

periodicity Modulation

periodicity Shifting

periodicity Convolution

periodicity Filter design

periodicity Quantization of signal

not reliable Programmable operations

not reliable Flexibility in the system design
not reliable Cheaper systems

not reliable More

calculate bndwidth Relates the conditions in time domain and frequency domain
calculate bndwidth Limits the bandwidth requirement

sampling The bandwidth occupied beyond the Nyquist Bandwidth of the filter
Ability to convert cc Ability to resolve different frequency components from input signal
"Stair- Holding

1.2% of 6.25%

an an finite-

yln|=xn y[n|=xn

F(*+g)= F(t*g)=F
F(f-g)=F(})/F(g) F(f-g)=F (})*F (g)
fxg=F-1( fxg=F-1(

FFT Fouriertr

integrati multiplic

subtract altered

step delta

linear frequency st linear

frequenc phasesp

integrati

aperiodi symmetr

phase time

the power of its Z t1 the

digital digital

nonlinea periodic

alising sampling

than a than a

d. a shifting at input a shift in the input signal also results in the corresponding shift in the
d. Only if the value ca. Only if the value of an impulse response is zero for all negative value

non- invertible system
unit unit delay
nonlinea nonrecur

d. Natural response Zero

d. Integration Operc d. Integration Operation

d. none of the above zero input produces zero output

d. element c. length

d. Shape of signal in a. Shape of signal in time domain & shape of spectrum can be interchar
Duality ‘I'ime Shitting

Transformation fro1Botha & b

0 Botha &b

Discrete Time Signa Discrete Time Signal should be absolutely summable
Discrete & periodic Continuous & periodic

‘I'ime Reversal ‘I'ime Shitting

Square wave Cosine waves

Number of digital pr Number of digital pulses transmitted per second



None of the above Width of each pulse decreases

Compression in frer Expansion in frequency domain

response of the syst initial condition of the system

sinusoid signals div sinusoid signals multiplied by decaying exponentials



output
s of time

1geable
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AR pAGAM CLASS: 11 B.Sc.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
S eiiiew  COURSE CODE: 17PHU403 UNIT: 111 BATCH-2017-2020
(Z Transform)
UNIT-111
SYLLABUS

The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship
Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence;
Properties of ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series
Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems;
Transfer Function and Difference-Equation System. Solving Difference Equations.

Z-TRANSFORM
Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful
mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as
—T
Z.T(z(n)] = X(Z) = £2°___z(n)z

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

Z.Tla(n)] = X(Z) = =2 2(n)z"

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT)
does not exist.

Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as
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{
&

RP

B
‘_:El'
ﬁ:“'

X(Z)y=22 __z(n)z™"...... (1)

If Z = re™ then equation 1 becomes

X(re®) =5 a(n)lre®] "
O L

X(re) = X(Z) = F.T[z(n)r™"]... ... (2)

The above equation represents the relation between Fourier transform and Z-
transform.

X(Z)| ;e = F'. Tfa(n)].
INVERSE Z TRANSFORM

X(re™) = F.T[z(n)r "]
z(n)r " = F.T ' X(re*]
z(n) = F.T [ X(re)]
=1" = [ X(re’w)e’" dw
=+ [X(réw)[re®"dw. .. ... (3)

2T

g

Substitute re’ = z.

dz = jre®dw = jzdw
dw = Fl.z_ldz
Substitute in equation 3.

3 — z(n) =5 [ X(2)2" 2 dz = zij [ X(2)z" 'dz
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o0

X(2)= Y a(n)z"

L——00

z(n) = %jf}{(z)z”_ldz

Z-Transform has following properties:
Linearity Property

¥ 2(n) < X(2)

Z.T
and y(n) +— Y(2)
Then linearity property states that

a z(n) + by(n) £ a X(Z) +bY(Z)

Time Shifting Property
¥ 2(n) ¢ X(Z)
Then Time shifting property states that

z(n —m) 2L 2™ X(2)
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Multiplication by Exponential Sequence Property

Z.T
If z(n) +— X(2)
Then multiplication by an exponential sequence property states that

a . z(n) &5 X(Z/a)

Time Reversal Property
Z.T
If 2(n) +— X(Z)

Then time reversal property states that

2(—n) <5 X(1/2)
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Differentiation in Z-Domain OR Multiplication by n Property
Z.T

If z(n) +— X(Z)

Then multiplication by n or differentiation in z-domain property states that

Z.T k
nfz(n) < [—l]kzk%f)

Convolution Property
Z.T
If z(n) +— X(Z)

and y(n) & Y(Z)

Then convolution property states that

2(n) x y(n) ¢ X(2).Y(Z)

Correlation Property
If 2(n) s X(2)
and y(n) P Y(Z)

Then correlation property states that

2(n) ® y(n) < X(2).Y(Z)
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Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.
Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

z(0) = lim, ., X(2)
This is used to find the initial value of the signal without taking inverse z-transform
“inal Value Theorem
For a causal signal x(n), the final value theorem states that
z(oo) = lim, , [z — 1] X(2)

This is used to find the final value of the signal without taking inverse z-transform.

Prepared by Mrs.A. Sahana Fathima, Asst Prof, Department of Physics, KAHE. Page 6/20




== KARPAGAM ACADEMY OF HIGHER EDUCATION
RPAGAM CLASS: Il B.Sc.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING

-~ COURSE CODE: 17PHU403 UNIT: 11 BATCH-2017-2020
(Z Transform)

ff

KAl

'l“;n-

Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of
convergence of z-transform.

Properties of ROC of Z-Transforms

ROC of z-transform is indicated with circle in z-plane.
ROC does not contain any poles.

If x(n) is a finite duration causal sequence or right sided sequence, then the
ROC is entire z-plane except at z = 0.

If x(n) is a finite duration anti-causal sequence or left sided sequence, then the
ROC is entire z-plane except at z = oo,

If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with

radius a. i.e. |z| > a.

If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle
with radius a. i.e. |z] < a.

If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane
exceptatz=0&z =

The concept of ROC can be explained by the following example:
Example 1: Find z-transform and ROC of a"u[n] + a nu[—n — 1]

Z.Tla"uln]] + 2.Tla "u[-n — 1] = 75 + 5

a

1
ROC : |2 > a ROC:|2|<CE

The plot of ROC has two conditionsasa > 1 anda < 1,
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e A A o
unit circle \ unit circle

a>1

=
KJ a a
In this case, there is no combination ROC.
i i A
unit circle unit circle
>
a

Here, the combination of ROC is from a < |z| < %

Hence for this problem, z-transform is possible when a < 1.
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Causality and Stability

Causality condition for discrete time LTI systems is as follows:

A discrete time LTI system is causal when
ROC is outside the outermost pole.
In The transfer function H[Z], the order of numerator cannot be grater than

the order of denominator.

Stability Condition for Discrete Time LTI Systems

A discrete time LTI system is stable when

its system function H[Z] include unit circle [z|=1

all poles of the transfer function lay inside the unit circle |z|=1

Power series expansion

[f the z-transform is given as a power series in the form

X(z) = Z x[n]z™"

n=—oc

= ... +x[-2]2% + z[-1)z! + 2[0] + 2[1]z 7! + z[2]2 2

then any value in the sequence can be found by identifying the coefficient of

the appropriate power of 2!
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Example: finite-length sequence

The z-transform

X(z) = 22(1 - éz_l)(l — z_l){l — z_l)

can be multiplied out to give

5 1 1
X(z)=22—z—1+ =271
(2) > + 5
By inspection, the corresponding sequence 1s therefore
8
1 n=-—2
—% n=-—1
zn] =< —1 n —
% n=1
0 otherwise

or equivalently

x[n] = 16[n + 2] — %5[?1 + 1] — 15[n] + %é[n —1].
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Example: power series expansion by long division

Consider the transform

X(z):m= 2| > |al.

Since the ROC i1s the exterior of a circle, the sequence 1s right-sided. We

therefore divide to get a power series in powers of 2+

1+az 1 4+a?27%+---

l—az"1)1
l1—az~1!
az"1!
az '—a%272
2,724 ...
or
1_1?:1+a-z_l+a-22_2+---
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i

Therefore z[n] = a™uln].

Example: power series expansion for left-sided sequence
Consider instead the z-transform

X(z) = 2| < |al.

1—az1’
Because of the ROC, the sequence is now a left-sided one. Thus we divide to
obtain a series in powers of z:

—a.+z)z

Thus z[n] = —a™u[—n — 1].
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Z-Transform of Basic Signals

x(t) X[Z]

4 1

u(n) pany
u(—n — 1) —%
d(n —m) z~m
a™u|n| Zz_ -
a"u|-n — 1] —_ ziz
n a™uln| | ;—iﬁ
na"ul-n — 1] — |;_i|2

Z2_aZ cosw

Z?—2aZ cosw+a?

a" cos wnuln|

aZsinw
Z2_2aZ cosw+a?

a” sinwnun|

The z-Plane and the Unit Circle
» If we consider the z-plane, we see that H(?) corresponds to
evaluatineg H(z) on the unit circle
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Im g = =J
==
z-Plane o -e—_ 2 Jo
P - . L =
4
/ ~
/

' A
@ s
| ' e

= =+ ¢ |~
@ - _lnl ‘o =10
< = - \ = 1
\ J,.I
unit circle™ y
™
N B _ -
- = = _-_I/f
I - - T
2

» From this interpretation we also can see why H(?) is peri-
odic with period 27w
— As o increases it continues to sweep around the unit circle
over and over again
The Zeros and Poles of H(z)

« (Consider
-1 _2 _3
H(z) = 1+bl- +bz- +53-
where we have assumed that bD =1

» Factoring H(z) results in

H(z) = (1 —:1:_1 (1 —:2:_1][1 —:3:_1]
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- 3,3 : : :
e Multiplying by z7/z7 allows to write H(z) in terms of posi-
tive powers of =

2 1 0
o+ b,z +b,z 4+ b,
H(z) = 1 3.2 3

(z—z =2,z —23)
3

* The zeros are the locations where H(z) = 0.1.e..Z{,2,, 23
* The poles are where H(z) > =, 1.e.,z— 0

» A pole-zero plot displays the pole and zero locations in the z-

plane
Im
B - - '\--.@ :2
z-Plane % N
;/ /;;Three polesatz=0
3 "
—o : © Re
S | !
\ !
'\._.\‘ /
£
\ - S
- | o
3
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The Significance of the Zeros of H(7)
» The difference equation is the actual time domain means for

calculating the filter output for a given filter input

» The difference equation coefficients are the polynomial coef-
ficients in H(z)

For x[n] = :E we know that
v[n] = H[:ﬂ}:g.

so in particular if z is one of the zeros of H(z). H(z,) = 0

and the output y[n] = 0
Differentation in Z —-Domain

Znz[n|| = -2 f—{\'{';]. ROC = R,

T dz
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Proof:
ie.,
Z[nz[n]] = —z%i’(':)

Example: Taking derivative with respect to = of the right side of

1
ZIGRH-[TIH — m |:| = |ﬂ|
we get
d [ 1 ] B —az ?
dz |1 —az'] (1 —az"')?

Due to the property of differentiation m z-domam, we have

-1

Za"ulnl] = r—o 1+l > lal
Note that for a different ROC .:| < \rz , we have
az"!
Z[—na"u|-n—1]] = TP |z| < |a

Analysis and Characterization of LTI Systems Using z-Transform
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The z-transform plays a particularly important role in the analysis and representation of discrete-
time LTI systems. Many properties of a system can be tied directly to characteristics of the poles,
zeros, and region of convergence of the system function.

Due to its convolution property, the z-transform is a powerful tool to analyze LTI systems

y[n] = kn| * z[n| Z, Y(z) = H(z)X(z)

when the nput is the eigenfimction of all LTI system, ie., T|n| = e = 2™ the

operation on this input by the system can be found by multiplying the syster's eigenvalne / (z) to the mput:

y|n] = O[z"] = h|n| % 2" = H(z)z"

Causality

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior
of a circle, include infinity.

A discrete-time LTI system with rational system function H(z) is causal if and only if:

(a) the ROC is the exterior of a circle outside the outmost pole;

(b) with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot be
greater than the order of the denominator.

Stability

An LTI system is stable if and only if the ROC of the system function H(z) includes the unit
circle, |z|=1.

A causal LTI system with rational system function H(z) is stable if and only if all of the poles of
H(2) lie inside the unit circle -i.e., they must all have magnitude smaller that 1.

The Transfer Function in the Z-domain
A LTI system is completely characterized by its impulse response h[n] or equivalently the
Z-transform of the impulse response H(z) which is called the transfer function.

zln] * hin] — X(2)H(2).
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In case the impulse response is given to define the LTI system we can simply calculate the Z-
transform to obtain :math: H(z).

In case the system is defined with a difference equation we could first calculate the impulse
response and then calculating the Z-transform. But it is far easier to calculate the Z-

transform of both sides of the difference equation.
As an example consider the following difference equation:

y|ln] = L.5y[n — 1] — 0.5y[n — 2| + 0.5z[n|.

Remember that "x[n-n_OJztarrow z*{-n_0}X(z)$ and knowing that the Z-transform s a linear
transform we can apply the Z-transform to both sides of the above equation and obtain:

Y(z) = 1.53_1}"(3) — 0.53_2}"(3) + 0.5X(2)

This can be rewritten as:

Y(z) 0.5 B 22
X(z) 1-15214052"2 222-32+1

H(z) =

DIFFERENCE EQUATION
A difference equation is an equation which expresses a relation between an independent variable
and the successive values of the dependent variable or the successive differences of the
dependent variable.
Difference equations arise in the situations in which the discrete values of the independent
variable
involve. Many practical phenomena are modelled with the help of difference equations.
Example

Viez3 +2Vp2 = 3Vpn +5¥: = x’

Ol‘d:er of a Di.'lr'!i‘erence Equation :

The difference between the largest and smallest arguments appearing in the difference equation is called
its order.
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Solution of a Difference Equation :
A solution of a difference equation is a relation between the independent vanable and the dependent
variable satisfying the equation.
e.g., The relation y(x) = ea” 1s a solution of the difference equation y(x + 1) — ap(x) =0, a # 1 where c 1s
an arbitrary constant.

The solution of a difference equation of order » shall generally contain n arbitrary constants.

A solution involving as many arbitrary constants as is the order of the equation, is called the
general solution.

Any solution obtained from the general solution by assigning particular values to the arbitrary
constants is called a particular solution.

In the above example, y(x) = ca™ 1s the general solution and y(x) = 3a" is a particular solution.

A difference equation is formed by eliminating the arbitrary constants from a relation giving the order of
the equation 1s equal to the number of arbitrary constants. The following examples illustrate the formation
of difference equations :

Example: For the difference equation y[n| — fyln — 1| = uln| find yn| for n = 0.
Assume rest [C y[—1] = 0.

(Here u|n| 15 the umt step function. )
answer: Hewrite the equation as y|n| = uln| 4 %y|n —1].
Make a table: = -1 001 2 3 4
ur| 0 1 1 1 1 1
y| O 1 3/2 7/ 15/8 31/16

We have already seen difference equations with Euler's formula. For example the [IVP

y' = ky; y(0) = 1 becomes the difference equation

Untl = ¥ + Ehy, = (1 + Eh)lyn < Yort — (14 ER)y, = 0.
Here instead of y[n| we wrote y,

Z-transform (analog of Laplace transform)

Let xin| be a sequence. Its z-transform s X{z) E xln|z"

n
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UNIT-III  OPT1 OPT 2 OPT 3 OPT 4

i z/z-aT z/-a-T z/z+aT Z/aT
The reglon of |z|>1 (Real partof |z|<1 (Real partofz) <0
Two discrete o|n-1|+d|n d|n - 4] o[n-3] 6[n-1]6[n- 2]
For a system f The zeros lie in The zeros lie in The poles lie in The poles lie in right half of the
The s plane arz =e™ z=¢e"" z=2e"’ z=¢"/2

The similarity Both convert fri. Both convert d. Both convert a Both convert digital signal to a
The ROC of a ¢ range of z for w range of freque range of freque range in which the signal is fre:
For an expand Inverse seque Original seque Negative valu Positive values only

Which of the folx(n)+y(n) ©X(z x(n)+y(n) «X( x(n)y(n) «X(z x(n)y(n) <X(z)Y(z)

What is the z-tr 3/(1-2z-1)-4/( 3/(1+2z-1)-4/( 3/(1-2z)-4/(1- None of the mentioned

According to Ti zkX(z) z-kX(z) X(z-k) X(z+Kk)

If X(z) is the z-t X(az) X(az-1) X(a-1z) None of the mentioned

If the ROC of X( |a|rl<|z|<|a|r2 |a|rl>|z|>|a|r2 |a|rl<]|z|>|a|r2 |a|r1>|z|<|a|r2

IfX(z) is the z-t X(-z) X(z-1) X-1(z)

X(z) is the z-tre -z(dX(z))/dz zdX(z)/dz Z d) z-1(dX(z))/dz

What is the set Radius of convi Radius of diver Feasible solutic None of the mentioned
What is the RO( z=0 Z=00 Entire z-plane, Entire z-plane, except at z=co
What is the la]<|z|<|b] |a|>|z|>|b| |a|>|z|<|b] |a|<|z|>|b]

What is the RO z=0 Z=00 Entire z-plane, ( Entire z-plane, except at z=co
What is the |z|>rl |z|]<rl r2<|z|<rl z=1

What is the RO( Entire z-plane, Entire z-plane, Contain unit cir contain ellipse

The ROC of z-tr: poles Zeros ones infinites

What is the |z|<rl |z|>r1 r2<|z|<rl Z=0

If Z{x1(n)}=X1( X1(z).X2(2) X1(z)+X2(z) X1(z)*X2(z) X1(Z)-X2(Z)
What is the cor {1,1,0,0,0,0,1,1 {-1,-1,0,0,0,0,-1{-1,1,0,0,0,0,1,-- {1,-1,0,0,0,0,-1,1}
If Z{x1(n)}=X1( X1(z).X2(z-1) X1(z).X2(z-1) X1(z).X2(z) X1(z).X2(-z)

If x(n) is causalx(-1) x(1) x(0) Cannot be determined
What is the z-tr zn0 z-n0 zn-n0 zn+n0
If X(z) is the z-t X(z*) X*(z) X*(-z) X*(z*

If x(n) is an im: 1/2[X(z)+X*(z* 1/2[X(z)-X*(z* 1/2[X(-z)-X*(z* 1/2[X(-z)+X*(z*)].
Ifx1(n)={1,2,3.{1,2,3,1,1} {1,2,3,4,5} {1,3,5,6,2} {1,2,6,5,3}

What are the va Poles Zeros Solutions None of the mentioned

What are the vi Poles Zeros Solutions None of the mentioned

If X(z) has M fi1 |[N-M| poles at« [N+M| zeros at |[N+M| poles at [N-M| zeros at origin(if N>M)
If X(z) has M fi1 [N-M| poles at ¢ [N+M| zeros at |[N+M| poles at |N-M| zeros at origin(if N < M)
The z-transforn One pole at z=0 One pole at z=0 One pole at z=a One pole at z=a and one zero at
What are the vi Poles Zeros Solutions None of the mentioned

IfY(z) isthe z-1 (Y(z))/(X(z)) (X(2))/(Y(z)) Y(z2)X(z) None of the mentioned

What is the unit 0.5(2)nu(n)  2(0.5)nu(n) 0.5(2)nu(-n) 2(0.5)nu(-n)

Which of the fol Counter integrz Expansion into Partial fraction All of the mentioned

For what kind c All signals Anti-causal sigi Causal signal non-causal signal

What is the one z2+2z+5+72z-14 5+7z+z3 z-2+27-1+5+77- 5+72-1+2-3

What is the one z-k zk 0 1

What is the on¢ z-k zk 0 1

The impulse res1/(1+a) 1/(1-a) a/(1+a) a/(1-a)

If all the poles (Only causal Only BIBO stabl BIBO stable anc neither BIBO stable and neither
If all the poles ] Slow Rapid Constant 0

If one or more Slow Rapid Constant 0

If the ROC of th stable Anti-causal sigi Causal signal non-causal signal

Alinear time in Includes unit c¢i Excludes unit c Is an unit circle circle

If all the poles « Only causal =~ Only BIBO stabl BIBO stable anc BIBO stable and non causal
If x(n) is a disc1 Zero Positive Negative Not defined

If the system is Zero-state resy Zero-input resp Zero-condition None of the mentioned
Zero-state resp Zero-state resg Forced respons Natural respon None of the mentioned



The solution ol General solutic Particular solut Homogenous scc) Complete solution
The total solutiyp(n)-yh(n) yp(n)+yh(n)  yh(n)-yp(n) y[n]=x|n]h[n]

What is the par 1/(1+a) u(n) 1/(1+a) 1/(1-a)u(n) 1/(1-a)

The impulse re« {1,3,6,3,1} {1,2,3,2,1} {1,3,6,5,3} {1,1,1,0,0}



Answer
z/z-aT

1z[>1
o[n - 3]
The poles lie in left half of the s plane
z=e

Both convert discrete time domain to frequency spectrum domain
range of z for which the z transform converges

Inverse sequence values

x(n)+y(n) ©X(2)+Y(2)
3/(1-2z-1)-4/(1-3z-1)

z-kX(z)

X(a-1z)

|alrl<|z|<]a|r2

X(z-1)

-z(dX(z))/dz

Radius of convergence

Entire z-plane, except at z=0
lal<|z|<|b]

Entire z-plane, except at z=00
|z]|>r1

Contain unit circle

poles

r2<|z|<rl

X1(z).X2(z)

{1,-1,0,0,0,0,-1,1}
X1(z).X2(z-1)

x(0)

z-n0

dX*(z*)

1/2[X(z)+X*(z*)].

{1,2,6,5,3}

Zeros

Poles

IN-M| zeros at origin(if N>M)

IN-M| poles at origin(if N < M)
One pole at z=a and one zero at z=0
Zeros

(Y(2))/(X(2)

2(0.5)nu(n)

All of the mentioned

Causal signal

5+7z-1+z-3

z-k

0

1/(1-a)

neither BIBO stable and neither causal
Rapid

Slow

Causal signal

Includes unit circle

BIBO stable and causal

Not defined

Zero-state response

Forced response



Homogenous solution
yp(n)+yh(n)

1/(1+a) u(n)
{1,3,6,5,3}
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UNIT-IV
SYLLABUS

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple
FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.
Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete
Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties;
Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting.

Unit IV
Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple
FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.
Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete
Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties;
Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting.

DIGITAL FILTER

A digital filter is just a filter that operates on digital signals, such as sound represented inside a
computer. It is a computation which takes one sequence of numbers (the input signal) and
produces a new sequence of numbers (the filtered output signal). The filters mentioned in the
previous paragraph are not digital only because they operate on signals that are not digital. It is
important to realize that a digital filter can do anything that a real-world filter can do. That is, all
the filters alluded to above can be simulated to an arbitrary degree of precision digitally. Thus, a
digital filter is only a formula for going from one digital signal to another. Digital filters are
defined by their impulse response, h[n], or the filter output given a unit sample impulse input
signal. A discrete-time unit impulse signal is defined by:

. Digital filters are often best described in terms of their frequency response. That is, how
is a sinusoidal signal of a given frequency affected by the filter.

« The frequency response of a filter consists of its magnitude and phase responses. The
magnitude response indicates the ratio of a filtered sine wave's output amplitude to its
input amplitude. The phase reponse describes the phase "offset" or time delay
experienced by a sine wave passing through a filter.

A linear-phase filter is typically used when a causal filter is needed to modify
a signal'smagnitude-spectrum while preserving the signal's time-domain waveform as much as
possible. Linear-phase filters have a symmetric impulse response, e.g.,
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hin)=h{N—-1-n), n=01.2...,] N — 1.

The symmetric-impulse-response constraint means that linear-phase filters must be FIR filters,
because a causal recursive filter cannot have a symmetric impulse response. Every real
symmetric impulse response corresponds to a real frequency response times a linear phase

N a=(N-1)/2

term e <! where ' is the slope of the linear phase. Linear phase is often ideal
& w) = —awTl

because a filter phase of the form corresponds to phase delay

P{b_‘::l é E‘}I{?:::I — I"Ih'-j-:'T = ruT — —{:‘III 5 I}T

and group delay

D(w) 2~ L ow) = _{ o) = o = VUL

' f.}u_ r wr :2
) _ ) (N —-1)/2
That is, both the phase and group delay of a linear-phase filter are equal to samples of

plain delay at every frequency.

ZERO-PHASE FILTERS

A zero-phase filter is a special case of a linear-phase filter in which the phase slope is o« =1
hin)

. The real impulse response  of a zero-phase filter is even. That is, it satisfies

hin) =h{-n), neclZ

Every even signal is symmetric, but not every symmetric signal is even. To be even, it must be
symmetric about time 0. A zero-phase filter cannot be causal.
PHASE DELAY
O{w) N : :

The phase response of an LTI filter gives the radian phase shift added to the phase of
each sinusoidal component of the input signal. It is often more intuitive to consider instead
the phase delay, defined as

BN w
Pw) = { }. {Phase Delay)

')

The phase delay gives the time delay in seconds experienced by each sinusoidal component of
the input signal.

& w) = —wT/2
For example the phase response was which corresponds to a phase
P{:J_r} = T.-'E
delay or one-half sample. Thus, we can say precisely that
) y{n) =x(n) + xin—1) o )
the filter exhibits half a sample of time delay at every frequency.
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From a sinewave-analysis point of view, if the input to a filter with frequency response is
H{.I_.?_i ;._..-j-::l _ (_,T{..'_A_?‘::If’."i{_':“: 3

x{n) = cos{wnT')

Is
then the output is
y(in) = Gw)cosfwnT + {w)]

= (}{..:;_r}{:{}};{.;_r [”T P{u_}]}
and it can be clearly seen in this form that the phase delay expresses the phase response as a time

delay in seconds.
GROUP DELAY

A more commonly encountered representation of filter phase response is called the group delay,

defined by
{
Dfw) = ;—H{_o_r}. {Group Delay)
(1L
_ - Bw) =—aw
For linear phase responses, i.e., for some constant « he group delay and thephase

delay are identical, and each may be interpreted as time delay. If the phase response is nonlinear,
then the relative phases of thesinusoidal signal components are generally altered by the filter. A
nonlinear phase response normally causes a = “smearing" of attack transients such as in percussive
sounds. Another term for this type of phase distortion is phase dispersion.

An example of a linear phase response is that of the simplest lowpass filter,

HNw) =—-wT/2 = Plw)=D(w)=T/2

Thus, both the phase delay and the group delay of the simplest lowpass filter are equal to half a
sample at every frequency.

LINEAR-PHASE FILTER

Linear phase is a property of a filter, where the phase response of the filter is a linear

function of frequency. The result is that all frequency components of the input signal are shifted
in time (usually delayed) by the same constant amount (the slope of the linear function), which is
referred to as the phase delay. And consequently, there is no phase distortion due to the time
delay of frequencies relative to one another.

For discrete-time signals, perfect linear phase is easily achieved with a finite impulse
response (FIR) filter. Approximations can be achieved with infinite impulse response (1IR)
designs, which are more computationally efficient. Several techniques are:

o aBessel transfer function which has a maximally flat group delay
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o amaximally flat group delay approximation function
o aphase equalizer

If a discrete-time cosine signal
z1(n) = cos(win + @)

is processed through a discrete-time filter with frequency response
H (w) = A(w) - &%)

then the output signal is given by

y1(n) = A(w,) cos(wyn+ ¢y + 0(wy))

y1(n) = Afwn) cos (Lu ( ; 9?%"“) + @) |

or

wq
The LTI system has the effect of scaling the cosine signal and de-

laying it by —0(wq)/w;.

O(w)
— —— = constant

w

—  fw) =Kuw

— The phase is linear

The function f(w)/w is called the phase delay. A linear phase filter

therefore has constant phase delay.
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Linear-phase FIR filter can be divided into four basic types.

Type impulse response
| symmetric length is odd
| symmetric length is even

1l anti-symmetric | length is odd

A% anti-symmetric | length is even

DISCRETE FOURIER TRANSFORM-DFT

Like continuous time signal Fourier transform, discrete time Fourier Transform can be used to
represent a discrete sequence into its equivalent frequency domain representation and LTI
discrete time system and develop various computational algorithms.

X (jo) in continuous F.T, is a continuous function of x(n). However, DFT deals with representing
x(n) with samples of its spectrum X(w). Hence, this mathematical tool carries much importance
computationally in convenient representation. Both, periodic and non-periodic sequences can be
processed through this tool. The periodic sequences need to be sampled by extending the period
to infinity.

Frequency Domain Sampling

From the introduction, it is clear that we need to know how to proceed through frequency domain
sampling i.e. sampling X(w). Hence, the relationship between sampled Fourier transform and
DFT is established in the following manner. Similarly, periodic sequences can fit to this tool by
extending the period N to infinity.

Let an Non periodic sequence be

X(n) =limpy_,o n(n)
Defining its Fourier transform

X(w) =202 o T(n)e ™" X(Kdw)

=

Here, X(®) is sampled periodically, at every dm radian interval.
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As X() is periodic in 2z radians, we require samples only in fundamental range. The samples
are taken after equidistant intervals in the frequency range 0<w<2n. Spacing between equivalent

dw = 2T

intervals is

W
Now evaluating, N

X(37K) = 02 a(n)e Pk,
where k=0,1,.....N-1

After subdividing the above, and interchanging the order of summation
iﬁlh' 1 o0

ETk Z Z m(n NE)] —2mnk/ N

n=0 l=—no

S z(n— Nl) =z,(n)=a periodic function of
pertiod N and its fourier series
where, n =0,1,.....,,N-1; 'p’- stands for periodic entity or function

The Fourier coefficients are,
Cr =+ 300 ap(n)e 2™V k=0,1,.,N-1
Comparing equations 3 and 4, we get ;

NCj, = X(37 k) k=0,1,..,N-1

NCy = X(k) = X() = Y ay(n)e ™/

n—=——00
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From Fourier series expansion,

N-1 N-1
1 i2mnk/ N i2monk/ N
zp(n) =« E NCye*™" E X k)el=mm"
k=0

Where n=0,1,...,N-1

Here, we got the periodic signal from X(w). z(n) can be extracted from z,(n) only, if
there is no aliasing in the time domain. N > L

N = period of z,(n) L= period of z(n)

_Jzyn), 0<n<N-1
z(n) = {0, Otherwise

The mapping is achieved in this manner.

The inverse DFT is given by:

N-1

1
- 3 X

v(n) = i Z Z x(m) RS SNPEELS
" k=0 (m=0
N-1 | N2 I
= Z r(m) ~ Z e IR r(n)
m=>0 T k=0
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Properties of DFT

Linearity

It states that the DFT of a combination of signals is equal to the sum of DFT of

individual signals. Let us take two signals x;(n) and x5(n), whose DFT s are X;(w) and
X5(w) respectively. So, if
z1(n) - X1(w) and z3(n) = Xz (w)
Then azi(n) + bxa(n) — aX;(w) + bXs(w)
where a and b are constants.

Symmetry

The symmetry properties of DFT can be derived in a similar way as we derived DTFT
symmetry properties. We know that DFT of sequence x(n) is denoted by X(K). Now, if
x(n) and X(K) are complex valued sequence, then it can be represented as under

z(n) = zg(n) + jr1(n),0 <n< N -1
And  X(K)=Xgp(K)+jX.(K),0< K <N-1
Duality Property

Let us consider a signal x(n), whose DFT is given as X(K). Let the finite duration
sequence be X(N). Then according to duality theorem,

If, z(n) +— X(K)
Then,  X(N) «— Nz[((—k))wn]

So, by using this theorem if we know DFT, we can easily find the finite duration

sequence.
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Complex Conjugate Properties

Suppose, there is a signal x(n), whose DFT is also known to us as X(K). Now, if the
complex conjugate of the signal is given as x*(n), then we can easily find the DFT
without doing much calculation by using the theorem shown below.

If, z(n) «+— X(K)

Then, z*(n) «— X ((K))y =X=*(N—K)

Circular Frequency Shift

The multiplication of the sequence x(n) with the complex exponential sequence
el21kn/N is aquivalent to the circular shift of the DFT by L units in frequency. This is the
dual to the circular time shifting property.

If, z(n) +— X(K)

Then,  z(n)eMEN X((K — L))n
Multiplication of Two Sequence
If there are two signal x1(n) and x5(n) and their respective DFTs are X;(k) and X5(K),

then multiplication of signals in time sequence corresponds to circular convolution of
their DFTs.

If, z1(n) +— X1 (K) & =z3(n) +— X3(K)
Then, z1(n) X z3(n) +— X; (K)0X3(K)
Parseval’s Theorem

For complex valued sequences x(n) and y(n), in general
If, z(n) +— X(K) & y(n) +— Y(K)
Then, SN0 z(n)y*(n) = v o X(K)Y*(K)
DFT Circular Convolution
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Let us take two finite duration sequences x;(n) and x5(n), having integer length as N.

Their DFTs are X;(K) and X>(K) respectively, which is shown below —

N- j2Ilkn
X (K)=>Y zi(n)e ™ k=0,1,2.N-1

n=0
N- j2llkn
Xy(K)=> wzs(n)e ™ k=0,1,2.N-1
n=0
Now, we will try to find the DFT of another sequence x5(n), which is given as X3(K)
X, (K) = X; (K) x X, (K)
By taking the IDFT of the above we get

z3(n) = + sz K)e N

After solving the above equation, finally, we get

N-1
z3(n) = Y @1(m)zs[((n — m))n]

m=0

m=0,1,2..N — 1
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Methods of Circular Convolution

Generally, there are two methods, which are adopted to perform circular convolution
and they are —

Concentric circle method,

Matrix multiplication method.

Concentric Circle Method

Let z,(n) and z3(n) be two given sequences. The steps followed for circular
convolution of z1(n) and z5(n) are

Take two concentric circles. Plot N samples of z;(n) on the circumference of

the outer circle (maintaining equal distance successive points) in anti-clockwise
direction.

For plotting z3(n), plot N samples of z5(n) in clockwise direction on the inner

circle, starting sample placed at the same point as 0t sample of z1(n)
Multiply corresponding samples on the two circles and add them to get output.
Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method

Matrix method represents the two given sequence x(n) and z3(n) in matrix form.

One of the given sequences is repeated via circular shift of one sample at a
time to form a N X N matrix.

The other sequence is represented as column matrix.

The multiplication of two matrices give the result of circular convolution.
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DFT: Circular Shift

conventional shift circular shift
L d i- i. . R
s ® { -i -i [
o . ® . ™ n
- WETHEATHT
: - mn
EO EN n
N-1
Z z((n — m)mod N )W
n=0
N-1
= Wkm Z x((n — -m)modﬁ*")I-”[-f‘rk("'l_"'”)
n=>0
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N-1
= Whm Z x((n — -m.)nlo(m.-")I'V'!"(”*m)m(’dN

n=~0

= WFrX (k).

where we use the facts that TWHmodN) — 17k 3nd that the
order of summation in DFT does not change its result.

Similarly, if X (k) =DFT{x(n)}, then

X((k—m)modN) = DFT {x(n)e?>™ ¥ }.
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If

Glk] .= Wy™ - X[k]
then

gln] = al(n — m)y).
Derivation:

Begin with the Inverse DFT.

1 v
gln| = . Z G| 1:..1_;}:_:;

=0
N—1

.

1
N

Wy X k] Wit

I
[

.

;‘r‘-i

=0

:_3:
—_

1 rk(n—m)
p— E { X [ﬁl] I:{'I_I\;"

;‘r‘-i
|

= z[n — m]

= z[(n — m)y].
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Given an N-point signal {z[n], n € Zy}, the signal
gln) := w(n — m)n]

represents a circular shift of z[n] by m samples to the right. For example, if
gln] == «[(n — 1)n]

then

gIN — 1] = z[(N — 2)5] = [N — 2]

For example, if z[n] is the 4-point signal

then

x[(n—1)n] =(2,1,3,5).

x[(n — m)y] represents a circular shift by m samples.

circular shift in frequency
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gln| .= Wy - x[n]
then

Gk = X[(k —m)y].
Derivation:

Begin with the DFT.

N-1
Glk] = Z g[n] Wy

n=I()

N—-1
— Z {_,L?Em LL[H] IF{”L

n=I(
N—1

= Z x|n] 1—'1!"_.,?1“"'_”“}

Xk
= X[(k —m)n].
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Verify Parseval’s theorem of the sequence z(n) = L u(n)

Z
00 1 [7 o2
Solution — = X
olution ;\ml(n)\ o /_‘T| 1(e")|" dw
LH.S PN
= e’ ()
= 1 2n 1 16
=N (G = — =2
L4 1-5 15
N 1 _ 1
R.H.S. X(EJW) - 1—%&—_‘,@ T 1-0.25 cosw+j0.25 sinw

®( oWy 1
==X (8 )_ 1-0.25 cos w—30.25 sinw

Calculating, X(e™). X *(e*)
1 1

- (1-0.25 cosw)®+(0.25 sinw)? ~ 1.0625-0.5 cosw

1
—r T.0625-05cos s

1 ™ 1 o
2 J-m 1.0625—0.5coswdw - 16/15

We can see that, LHS = RHS. (Hence Proved)
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Compute the N-point DFT of z(n) = 34(n)

Solution — We know that,

X(K) = NZI 2(n)e
n—0
N-1 lhe
= ; 3d(n)e v
=36(0) xe’ =1
So, z(k)=3,0<k<N-1 . Ans.

Compute the N-point DFT of z(n) = 7(n — ng)

Solution — We know that,

X(K) =Y a(n)e

Substituting the value of x(n),

N-1

F21lkn
Z 70(n—mngle "~

m=(}

e —kjldllkng/ N

CIRCULAR TIME SHIFTING
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I

gln] = z[(—n)n]
then

GIk] = X[(=k)x].
Derivation:

N-1

G[}l] — Z ;13[(_71>N]I__{;_FF-!I;

n=>0

N-1
S o . e
= E a[m]Wy "

m=0

N-1
= Z x[m] 1-1-"'_,{?;‘

_ X[-H]
= X[(~k)]

where we used the change of variables . = (—n)n (in which case n = (—m)n
for0 <n<N-—-1).
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UNIT-IV
OPT1  OPT2
In the Frequency Transformations of the analog domain the transformat Low Pass Lowpass
In the Frequency Transformations of the analog domain the transformat Low Pass Lowpass
The magnitude response of the following filter decreases monotonically Butterwo Chebyshe

The transition band is more in Butterwo Chebyshe
. The poles of Butterworth filter lies on sphere circle

[ I R digital filters are of the following nature Recursive Non Recu
In I I R digital filter the present output depends on Present a Present ir

Which of the following is best suited for I I R filter when compared with 1 Lower sid Higher Sic
In the case of I I R filter which of the following is true if the phase distort More pariMore mer

A causal and stable I I R filter has Linear ph No Linear
Neither the Impulse response nor the phase response of the analog filte: The meth Impulse i
Out of the given I I R filters the following filter is the efficient one Circular { Elliptical -
What is the disadvantage of impulse invariant method Aliasing ne to one
Which of the I I R Filter design method is antialiasing method? The meth Impulse i
The nonlinear relation between the analog and digital frequencies is call aliasing warping

The most common technique for the design of I I R Digital filter is Direct M In direct 1

In the design a IIR Digital filter for the conversion of analog filter in to Di The axis i The Leftt
The I [ R filter design method thatovercomes the limitation of applicabili Approximr Impulse I

The direct form Il for realisation involves The realis Realisatic
The direct form Il for realisation involves The realis Realisatic
The direct form Il for realisation involves The realis Realisatic
The direct form Il for realisation involves The realis Realisatic
The cascade realisation of IIR systems involves The trans The trans
The cascade realisation of IIR systems involves The trans The trans
The advantage of using the cascade form of realisation is [t has sar The num
The advantage of using the cascade form of realisation is [t hasdiffe The num

Which among the following represent/s the characteristic/s of an ideal f Constant infinite ge
Which among the following represent/s the characteristic/s of an ideal f zero gain zero gain
Which among the following represent/s the characteristic/s of an ideal f zero gain constant

FIR filters are non-1 causal
FIR filters causal do not ad
In tapped delay line filter, the tapped line is also known as Pick-on n' Pick-offr
How is the sensitivity of filter coefficient quantization for FIR filters? Low Moderate
Decimation is a process in which the sampling rate is enhanced stable
Anti-imaging filter with cut-ott trequency w. = 1/ | is specitically used __ Betore At the tin
The IIR filter designing involves designing Designin;
[IR filter design by approximation of derivatives has the limitations Used only Used for |
[IR filter design by approximation of derivatives has the limitations Used only Used for

The filter that may not be realized by approximation of derivatives techr Band pas: #NAME?
The filter that may not be realized by approximation of derivatives techr Band pas: Band

In direct form for realisation of IIR filters, Denomin: Multiplier
In direct form for realisation of IIR filters, Denomin: Multiplier
Roll-off factor is The band The perfc
The DFT is preferred for [ts ability Removal
The DFT is preferred for Filter des Removal «
Frequency selectivity characteristics of DFT refers to Ability to Ability to
DIT algorithm divides the sequence into Positive a Even and
The transformations are required for Analysis Quantizat
The transformations are required for Easier op Quantiza
The computational procedure for Decimation in frequency algorithm tak Log2 N st 2Log2 N .
Product of one even and one odd function is even odd

If f(x,y) is imaginary, then its Fourier transform is conjuga

f(0,0) is sometimes called ac dc



Even functions are said to be

Linear functions possesses property of
Continuous functions are sampled to form a

2D Fourier transform and its inverse are infinitely
0dd functions are said to be

Gradient computation equation is

symme

Fourier
aperiod
symme

antisy
homog
Fourier
periodi
antisy
|Gx|-



OPT 3 OPT 4 ANSWER
Lowpass t Lowpass to Bandrej Lowpass to Highpass
Lowpass { Lowpass to Bandrej Lowpass to Bandreject

Chebyshev type - 2 Butterworth Filter
Chebyshe FIR Filter Butterworth Filter
ellipse  parabola circle

Reversive Non Reversive Recursive

Present ir Present Input, Previ Present Input, Previous input and output
Lower sid No sidelobes in stof Lower sidelobes in stopband

Lower co1 Higher computatior Lower computational Complexity

Linear air No Amplitude No Linear phase

Bilinear ti Matched Z - transfo Bilinear transformation

Rectangu! Chebyshev filter  Elliptical filter

anti aliasi warping Aliasing
Bilinear t Matched Z - transfo: Bilinear transformation
prewarpil antialiasing warping

Recursive non recursive meth In direct method
The Left I The Right Half Plan¢ The Left Half Plane(LHP) of the s - plane should map in to th«
Bilinear T Frequency sampling Impulse Invariance
division o subtraction of two 1 The realisation of transfer function into two parts
division o subtraction of two 1 Realisation after fraction
Product ¢ subtraction of two i Product of two transfer functions
division o sum of two transfer sum of two transfer functions
Factoring integral of the trans The transfer function broken into product of transfer functio
Factoring integral of the trans The transfer function divided into addition of transfer functi
The numlt Over all transfer fui It has same number of poles and zeros as that of individual ¢
The num Over all transfer fur Over all transfer function may be determined
Non linea finite band width ~ Constant gain in passband
Non linea finite band width  zero gain in stop band
linear ph finite band width  linear phase response
are recur use feedback are non-recursive
use feedt are recursive do not adopt any feedback
Pick-up n Pick-down node  Pick-off node
High Unpredictable Low
reduced unpredictable reduced
Atter All ot the above Atter
Designing Designing of digital Designing of digital filter in analog domain and transforming
band pass filters having smalle Used only for transforming analog high pass filters
Used only Used for band pass Used only for transforming analog low pass filters

Low pass All pass filter Band pass filters

Low pass All pass filter Band

Multiplier all the above Multipliers in the feedback paths are the negatives of the der
Numeratcall the above Numerator coefficients are the multipliers in the feed forwar
Aliasing ¢ None of the above The bandwidth occupied beyond the Nyquist Bandwidth of t
Quantizat filter analysis [ts ability to determine the frequency component of the sign:
Quantiza sampling Filter design

Ability to None of the above Ability to resolve different frequency components from inpt
Upper hig Small and large san Even and odd samples

Modulati sampling Analysis in time or frequency domain
Modulati sampling Easier operations
Log2 N” s Log2 N/2 stages  Log2 N stages

prime aliasing odd

antiher symme antiher

jaggy dc



periodi
multipl
fast
linear
periodi
|Gx|/1G

aperiod
Both A
digital
non
aperiod
|Gx|x|G

symme
Both A
digital
periodi
antisy
|Gx|+|G



2 unit circle in the Z -plane
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UNIT-V
SYLLABUS

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity, Properties
of the Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT
Algorithm; Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT
Algorithms. Realization of Digital Filters: Non Recursive and Recursive Structures, Canonic
and Non Canonic Structures, Equivalent Structures (Transposed Structure), FIR Filter structures;
Direct-Form; Cascade-Form; Basic structures for 1IR systems; Direct-Form 1.
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(Fast Fourier Transform)

A fast Fourier transform (FFT) is any fast algorithm for computi
the DFT. The development of FFT algorithms had a tremendc
impact on computational aspects of signal processing and appl

science. The DFT of an N-point signal
{z[n],0<n <N -1}

is defined as

N-1
X[k =) zp]Wyr, — 0<k<N-1

n=()

-2 2 rll
Wy = e = cos (Df:’r) + j sin (2,:)

is the principal N-th root of unity.

where

DIRECT DFT COMPUTATION

Prepared by Mrs.A. Sahana Fathima, Asst Prof , Department of Physics, KAHE. Page 2/17




\;éva;/ KARPAGAM ACADEMY OF HIGHER EDUCATION

ARPAGAM CLASS: II B.Sc.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING
“LLLL=.” " COURSE CODE: 17PHU403 UNIT: V BATCH-2017-2020
(Fast Fourier Transform)

Direct computation of X[k] for 0 < k& < N — 1 requires
(N — 1)* complex multiplications

N(N — 1) complex additions
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DFET as a Linear Transformation

e Matrix representation of DFT

Definition of DFT:
N-1 .
X(k)y=>x(mWy . k=01...N-1
n={
] N )
x(m)=—Y X(kWg™. n=0l..N-1
Nig )
where
x(0) X(0)
Let x(1) XQ)
x‘?\r = : ", = .
(N 1) X(N-1)
and
1 1 1 1 T
L Wy Wy Wy
Wy=[1 omE o omE  me
1 W‘E'.‘v'—lj W‘\?'(-\r_l} W‘E'N—n.:_v—n
Thus,
Xy =Wyxy N -point DFT

X, =W, X,  N-pointIDFT
1
=—W,; X,
N

Because the matrix (transformation) yy,, has a specific structure and because W,’:; has par-

ticular values (for some & and #). we can reduce the number of arithmetic operations for

computing this transform.
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Example  x[n]=[01 2 3]

wy w) owl w1 1 1 1
“'4 _ W;J W; TV; Wf _ 1 W41 W’f FP’;

PF;—;] W; -ﬁ‘-,—j Wf 1 W_f W:D Wf
PP;{I Wf Wf Wf 1 H‘_’f -W;_- W41

-1 1 -1
g -1 —J

Only additions are needed to compute this specific transform.
(This 1s a well-known radix-4 FFT)

Thus. the DFT of :t:[_:}] 1
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Fast Fourier Transform

-- Highly efficient algorithms for computing DFT
e General principle: Divide-and-conguer
e Specific properties of Wf
B Complex conjugate symmetry: ;™ = (W)
B Symmetry: W‘:_% -k
B Perodicity: w}*V =}
B Particular values of k and »: e.g.. radix-4 FFT (no multiplications)

* Direct computation of DFT

X[k] = _Ex[n] W k=0l..N-1
n=0 . .
_ "El |'[Re{x[n]} Re(; ) Tm(x[n])- Tm(w; )]+ [

"=01_ Ja‘[P.ue(.ar[r';r])- (" )+ Im(x{n])Re(7y" J] J

For each 4. we need V complex multiplications and N-1 complex additions. = 4V real

multiplications and 4N-2 real additions.

. . rk .
We will show how to use the properties of I/ y to reduce computations.

Radix-2 algorithms: Decimation-in-time: Decimation-in-frequency

* Composite NV algorithms: Cooley-Tukey: Prime factor

Winograd algorithm

Chirp transform algorithm

RADIX-2 FFT
The radix-2 FFT algorithms are used for data vectors of lengths

N = 2K They proceed by dividing the DFT into two DFTs of
length N /2 each, and iterating. There are several types of radix-
2 FFT algorithms, the most common being the decimation-in-time

(DIT) and the decimation-in-frequency (DIF).

Prepared by Mrs.A. Sahana Fathima, Asst Prof, Department of Physics, KAHE. Page 6/17




\;éva;/ KARPAGAM ACADEMY OF HIGHER EDUCATION

‘=~ COURSE CODE: 17PHU403 UNIT: V BATCH-2017-2020
(Fast Fourier Transform)

PAGAM CLASS: Il B.Sc.PHYSICS COURSE NAME: DIGITAL SIGNAL PROCESSING

The development of the FFT will call on two properties of Wy.

The first property is:

WR = Wy

which is derived as

I"{":%r = E’_j_'Tl_;lz

- Qar
—InE

[~

= €

= Wy
More generally, we have
77 2nk _ yrnk
I'i N — Ur-' _.r\*rl j2-

The second property is:

N _
Wi'? =Wk
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KAl

'l“;n-

which is derived as
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(Fast Fourier Transform)

Radix-2 Decimation-in-time Algorithms
— Assume N-point DFT and N = 2"

B Idea: N-point DFT = 3\% -point DFT = 3% -pomnt DFT
f\y -point DFT
4
% -point DFT = 3% -point DFT

i% -point DFT

B Sequence: x[0] x[1] ¥[2] x[3] -+ a[%4] -+ A[N-1]
Evenindex: x[0] x[2] -+ x[N —2]
Odd index: x[1] x[3] -+ x[N —1]

NA
X[k]=S «[n]7. k=0L...N-1
n=0
= Y anwy + Y xn]y
neven nodd
n=2r - n=2r+1
¥ ¥,
2 2
= S a2 + S af2r £ TR
=0 =0
2(Z) 2z
N N

=1 =1

3

X[kl S 2P )3, + 5 Z A 2r + 1E,
r=0

— ™
'?-pm'.ut DET ?—pomt DFT

= Glk]+ W H[k]
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(Fast Fourier Transform)

a
"
DIl e WD~ \
> = 7
- Pt 2 \
> e 7

T

B Comparison:
(a) Direct computation of N-point DFT (N frequency samples):
2 L 2
~ N~ complex multiplications and N~ complex adds

(b) Direct computation of ’\% -point DFT:

’) 2

- -

2 e \2
~ [ N J complex multiplications and [E ] complex adds

. e T .
+ additional N complex multis and N complex adds

)

~ (Total:) . >

\2 2 .
N ‘ — N+ N” complex multis and adds
2 ) 2

(c) log, N -stage FFT

Since N =2". we can further break f‘% -point DFT into two % -point DFT and

50 011
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(Fast Fourier Transform)

’

T .
At each stage: ~ N complex multis and adds

Total: ~ N log, N complex multis and adds ("3“£1022 N)

4 =
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(Fast Fourier Transform)

Butterfly: Basic unit in FFT

Two multiplications:

slage

One multiplication:

8-Point DFT
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-
- -

-

> y -

B In-place computations

Only two registers are needed for computing a butterfly unit.

Xm [p] = Xm—l[p] + Wr_-\:-;‘rm—l [g]
Xm[qzl: Xm—l[p]_Wi‘::Xm—l[Q]

'll_ |.-|| -
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Radix-2 Decimation-in-frequency Algorithms
B Dividing the output sequence X[k] into smaller pieces.

N-1

X(k)=Y x(mwy". k=0l1...N-1
n=0
Ifkiseven, kK = 2r.
N-1 N
X[2r]= Xxlny,  r=01--,—-1
n=l 2
N
B N-1
= Y x[nvy™ + Tx[n]ﬁﬁ;”' ne (n+ %)
n—‘CI n_'
2 T 2 N 2r n— |
= > x[n]F,;" + Zx[n+ } Wy 2
J:ﬂ \ i n=0 2
IF,}}"[""' /] WS;WW‘:W _ W{m
U
1 Voo
= Y| xn]+ .1“:}? +—] |-
n=0" ./
e
37 \
= > 1[n]+1{n +—jl 1 L
ri 21
Similarly. if Fisodd. K = 2r +1.
N .
2 N
X[2r+1]= > | x[n]- x[n + ?} ]W{" -W_{i;z
n=0" L/

¥
1.

Al2r]= E[x[n]#x[n +E] ] Wyt
J = b 2
il 1 “I.T \
X[Er +1]= "9_'[ x[n]- x[ j}]W{' W.f}

n=l

Let [glr]=ln] x|+

Hnl = x{r] x| n+ 3
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(Fast Fourier Transform)
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DF]

D

Yo

We can further break Y[27] into even and odd groups ...

Again. we can reduce the two-multiplication butterfly into one multiplication. Hence. the

computational complexity 1s bout g log, N* The in-place computation property holds if the

-

outputs are in bit-reversed order (when inputs are in the normal order).

Flow chart of decimation —in-frequency decomposition of an 8 -point DFT in to four 2-point DFT computations

\ I . -
P,
1] o
£
'_‘_I y ¥ — ———t
4
] §-—X :>< -
4
W
|4I . ¥ N
X 1 |
\ W,
|{ ] ¥ »-l >
N\ W
l[lvl o ———
\ W,
v|7] i

» > \ 2 X'1()
p : Pomt
— > I)I ‘ !,. ey '\
W,
- - - -
point
W .

- D I)l I >~ |
| |
- - \ - \ I]
po

" 4
gl D1 - Y5
«
o Wy
§!~- - \ - ‘.‘ I
l po
4 “ \
e D
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ff

Ko

'l“;n-

llHI > - - - - - - \.,'
v
4 ~
.
‘| ] - » - — - - lk;
4 ¥ ‘
- W
L l . ——- VAR - > > \
v
| X d L - oy
/ - A - - LA RN
\ | 2 ¥ e » - - . e S \
“
1« |
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.
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Flow graph of complete decimation —in- frequency decomposition of an 8 point DFT computation
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Inverse FFT

) NA1 "
e e DI R
Nio
. N-1
DFT: X[k = 3 x[n]-w2*
n={

Hence. take the conjugate of (*):

*

/N-1 Y
X[k] -y |
J

-t
—
=
el

Il

| —

15

[
=
=]

X[K]- W™

=
L
s

14
Nﬂ'
>
o
=)

5
Il
(=]

Take the conjugate of the above equation:
1 % *
<[] = — (DFT[x" ()]
1 % *
-~ (FFT[x" (b))

Thus. we can use the FFT algorithm to compute the inverse DFT.

Realization of Digital Filters:

In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-
time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic
filter, the analog filter, which is an electronic circuit operating on continuous-time analog signals.

Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed
Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form 1.
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UNIT-V
opT1 OPT2 OPT3 OPT4

Which of the following is true regarding the numb N2 comp N2 comp N2 compl N2 compl!
Which of the following is true regarding the numb 4N-2 real 4N real n 4N-2 real 4N real ir
WNk+N/2= WNk -WNk WN-k 0
The computation of XR(k) for a complex valued x( 2N2 eval 4N2 real1 4N(N-1) All of the
If the arrangement is of the form in which the first n=1+mL n=Ml+m n=ML+l n=0
If N=LM, then what is the value of WNmqL? WMmq WLmgq WNmq W
How many complex multiplications are performe N(L+M+z N(L+M-2 N(L+M-1 N(L+M+1
How many complex additions are performed in ¢« N(L+M+zN(L+M-2] N(L+M-1 N(L+M+1
If we store the signal row wise and compute the L. WNIq WNpg WNIqg WNpm
If X(k) is the N/2 point DFT of the sequence x(n), F1(k)+F2 F1(k)-W F1(k)+W F1(k)/W}
How many complex multiplications are required - N(N+1) N(N-1)/2N2/2 N(N+1)/:
The total number of complex multiplications requ (N/2)logz Nlog2N (N/2)log! (N/2)InN
The total number of complex additions required t (N/2)log Nlog2N (N/2)log! (N/2)InN
For a decimation-in-time FFT algorithm, which of Both inp1 Both inpuInputis sl Inputis i1
. For a decimation-in-time FFT algorithm, which o Both inp1 Both inpt Inputis s Inputis in
If x1(n) and x2(n) are two real valued sequences ¢ (x(n)-x*( (x(n)+x*( (x(n)+x*( (x(n)-x*(r
. If X(k) is the DFT of x(n) which is defined as x(n): 1/2 [X*(k ) 1/2 [X*( 1/2j [X*(} 1/2j [X*(k
If X(k) is the DFT of x(n) which is defined as x(n)=(1/2) [X*((1/2) [X*| (1/2)) [X (1/2j) [X*
If g(n) is a real valued sequence of 2N points and X1(k)-W2 X1(k)+W X1(k)+W X1(k)-W2
If g(n) is a real valued sequence of 2N points and X1(k)-W2 X1(k)+W X1(k)+W: X1(k)-W-=
How many complex multiplications are need to b (N/2)log Nlog2N (N/2)logz(N/2)In2?!
How many complex additions are required to be p (N/2)log 2Nlog2N (N/2)log Nlog2N
How many complex multiplication are required p [(N/2)log [Nlog22DM [(N/2)log [(N/2)log
Which of the following is used in the realization of Delay ele Multiplier Adders All of the
Computational complexity refers to the number ¢ Addition: Arithmet Multiplice division
Which of the following refers the number of mem«Computat Finite wc Memory r bandwidt
Which of the following are called as finite word le; Paramete Computa Whether 1 All of the
Which of the following is an method for implemei Direct for Cascade fi Lattice st1 All of the
How many memory locations are used for storage M+1 M M-1 M/N
By combining two pairs of poles to form a fourth ¢ 25% 30% 40% 50%
The desired frequency response is specified at a s« m/2M(k+ nt/M(k+a 2n/M(k+ 2m/M(k-c
The zeros of the system function of comb filter are Inside un On unit ci Outside t circle
If M and N are the orders of numerator and denon M+N-1 ~ M+N M+N+1 M+N+2
If M and N are the orders of numerator and denor M+N-1 ~ M+N M+N+1 M+N+2
If M and N are the orders of numerator and denor M+N+1 M+N M+N-1  M+N-2
If M and N are the orders of numerator and denor M+N+1 M+N Min [M,N Max [M,N
What are the nodes that replace the adders in the Source n¢ Sink nodc Branch n Summing
If we reverse the directions of all branch transmit Direct fo1 Transpos' Direct forsampling
In IIR Filter design by the Bilinear Transformatio: Z-plane tc S-plane tc S-plane tc J-plane to
The state space or the internal description of the < System ve Location State var variables
3. Which of the following gives the complete defin Amount o Input sigr Input sigi Amount ¢
. If we interchange the rows and columns of the m Identity s Transpos' Diagonal system
A closed form solution of the state space equation Transpos Symmetri Identity Diagonal

Which of the tollowing is true regarding the N* compl N* compl

Which of the following is true regarding the numt 4N-2 real 4N real n 4N-2 real 4N real m
WNk+N/2= WNk -WNk  WN-k w

The computation of XR(k) for a complex valued x| 2N2 eval 4N2 real 14N(N-1) r All of the
If N=LM, then what is the value of WNmqL? WMmq WLmq WNmq W

What is the highest frequency that is contained in 2Fs Fs/2 Fs F

If {x(n)} is the signal to be analyzed, limiting the ¢ Kaiser wi Hamming Hanning v Rectangul
Which of the following is the advantage of Hannir More sid(Less side More wic width of1
Which of the following is the disadvantage of Han More sid« Less side More wic width of n
If the input analog signal falls outside the range of Granular Overload Particulat Heavy no



What is the abbreviation of SQNR? Signal-to- Signal-to Signal-to Signal-to-
What is the scale used for the measurement of SQ! DB db dB All of the
In Overlap save method of long sequence filtering L+M+1 L+M L+M-1 L

Which of the following is true in case of Overlap aiM zeros a M zeros ¢ M-1 zeros M-1 zeros
What is the model that has been adopt for charact Multiplic Subtracti Additive noise moc
How many quantization errors are present in one One Two Three Four
What is the total number of quantization errors i1 2N 4N 8N 12N

How is the variance of the quantization error relai Equal Inversely Square pr Proportic



ANSWER
lex additic N2 complex multiplications and N(N-1) complex additions
wltiplicati 4N real multiplications and 4N-2 real additions
WNK
mentionec All of the mentioned
n=Ml+m
WMmgq
) N(L+M+1)
) N(L+M-2)
WNpm
\kF2(k) F1(k)- WNkF2(k)
2 N(N+1)/2
(N/2)log2N
Nlog2N
1 order an Input is shuffled and output is in order
Lorder anc¢ Inputis in order and output is shuffled
0)/2j  (x(n)-x*(n))/2j
J+X*(N-Kk] 1/2 [X*(k)+X*(N-k)].
(k)+X*(N- (1/2)) [X*(K)-X*(N-K)].
kX2(k)  X1(k)+W2kNX2(k)
'kNX2(k) X1(k)-W2kNX2(k)
\ (N/2)log2N
2Nlog2N
12N]/L [Nlog22N]/L
mentione All of the mentioned
Arithmetic operations
h requirer Memory requirements
mentione All of the mentioned
mentionec All of the mentioned
M-1
50%
x) 2t/ M(k+a)
On unit circle
M+N+1
M+N
M+N+1
1. Max [M,N].
rnode Summing node
Transposed form
Z-plane S-plane to Z-plane
State variables
)f informa Amount of information at n0+input signal x(n) for n=n0 determines output sign:
Transposed system
Diagonal

ultiplicatic 4N real multiplications and 4N-2 real additions
-WNk

mentionec All of the mentioned
WMmq
Fs/2

ar windov Rectangular window

main lobe Less side lobes

nain lobe More width of main lobe

ise Overload noise



Quantizati Signal-to-Quantization Noise Ratio
mentione dB

L+M-1
are apper M-1 zeros are appended at last of each data block
lel Additive white noise model

Four

4N

mal Proportional



1l for n=n0
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