SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) **COIMBATORE-21** (For the candidates admitted from 2016 onwards) **DEPARTMENT OF PHYSICS**

SUBJECT: NANOMATERIALS AND APPLICATIONS

SEMESTER: VI

SUB.CODE:16PHU603A

CLASS: III B.Sc PHYSICS

Objective: The aim of this paper is to give information to students about nano technology, nano materials, their preparation and characterization techniques.

UNIT - I

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation-Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1Dnanostructures and its consequences.

UNIT - II

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD).Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

UNIT - III

CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy.Scanning Tunneling Microscopy. Fourier Transform Infrared spectroscopy, UV-visible spectroscopy

UNIT – IV

OPTICAL PROPERTIES: Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostructures and nanostructures.

UNIT - V ELECTRON TRANSPORT: Carrier transport in nanostrutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects.

APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots -magnetic data storage. Micro Electro Mechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).

Reference books:

- 1. C.P.Poole, Jr. Frank J.Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- 3. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- 4. Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, 2011, Cambridge University Press.
- 5. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

Department of Physics, Karpagam Academy of Higher Education,

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021 (For the candidates admitted from 2016 onwards) DEPARTMENT OF PHYSICS

SUBJECT NAME: NANO MATERIALS AND APPLICATIONS SUB.CODE:16PHU603A SEMESTER: VI

CLASS: III B.Sc (PHY)

1

Serial No.	Lecture Duration Period (hr)	Topics to be covered	Support Material & Page No.
1	1	Length scales in physics	T1- 11,
2	1	W1	
3	1	Band structure and density of states of materials at	T2- 22-24
		nanoscale, Size Effects in nano systems	T3- 231
4	1	T2-20-23	
5	1	quantum confinement of carriers in 3D, 2D	W2
6	1	1D nanostructures and its consequences	
7	1	Revision	
		Total No. of Hours planned for Unit-I = 7	
	1	UNIT-II	
1	1	Top down and Bottom up approach, Photolithography	T2-241-244
2	1	Ball milling, Gas phase condensation. Vacuum deposition.	T2-55-57
3	1	Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition.	T2-61-64
4	1	Chemical vapor deposition (CVD)	T2- 71-73,

5	1	Sol-Gel	T2-103-104							
6	1	Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.	T2-105, 91-94							
7	7 1 Revision									
	Total No. of hours planned for Unit-II – 7									
		Unitt-III								
1	1	X-Ray Diffraction	T2-160-166							
2	1	Optical Microscopy	T2- 135-140							
3	1	Scanning Electron Microscopy. Transmission Electron Microscopy.	T2- 143-147							
4	1	Atomic Force Microscopy	T2- 152-155							
5	1	Scanning Tunneling Microscopy	T2-149-152							
6	1	Fourier Transform Infrared spectroscopy	T2-179-181							
7	1	UV-visible spectroscopy	T2-173-176							
8	1	Revision								
		Total No. of hours planned for Unit-III – 8								
		Unit-IV								
1	1	Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure.	T2-366							
2	1	Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals.	T2-204-206,							
3	1	Quantitative treatment of quasi-particles and excitons, charging effects.								
4	1	Radiative processes: General formalization-absorption, emission and luminescence.	T2-184-185							
5	1	Continuation								

6	1	Optical properties of heterostrctures and nanostructures	T2-208-213
7	1	Continuation	
8	1	Revision	
		Total No. of hours planned for Unit-IV – 8	
		Unit-V	
1	1	Carrier transport in nanostrutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects.	T2-260-263
2	1	Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells).	T4-95, T5-239
3	1	Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers	
4	1	optical switching and optical data storage. Magnetic quantum well; magnetic dots -magnetic data storage.	T5- 241
5	1	Micro Electromechanical Systems (MEMS),	T3-332-339
6	1	Nano Electromechanical Systems (NEMS).	T3-335-339
7	1	Revision	
8	1	Old Question Paper Discussion	
9	1	Old Question Paper Discussion	
10	1	Old Question Paper Discussion	
		Total No. of hours planned for Unit-IV – 10	
		Total No. of hours planned for this paper $= 40$	

Suggested Books

T1- Nanotechnology-Richard Booker, Earl Boysen – John Wiley & Sons

- T2- Nanotechnology principle practices- Sulabha K Kulkarni, Springer
- T3-Introduction to Nanotechnology-Charles P.Poole, Jr Frank J.Owens, John Wiley

T4- Nanotechnology 101 – John Mongillo, Greenwood Press, London

T5- NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities,

European Commission

CLASS: IIIB.Sc Physics COURSE CODE: 16PHU603A **COURSE NAME:**Nanomaterials and Applications

UNIT: I

BATCH-2016-2019

UNIT-I

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1Dnanostructures and its consequences.

Nanostructured material

Nanomaterial— condensed material, in whole or in part composed of structural elements (particles, grains, crystallites, fibres, rods, layers) with the characteristic dimensions from several nanometers to several tens of nanometers; the long-range order in the structural elements is highly disturbed and therefore the short-range order determines multiparticle correlations in the arrangement of atoms in these elements; all macroscopic properties of the material are determined by the size and/or mutual arrangement of structural elements.

Description

The main types of nanostructured materials based on the dimensions of their structural elements are: zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and threedimensional (3D) nanomaterials. Zero-dimensional nanomaterials include nanocluster materials and nanodispersions, i.e. materials in which nanoparticles are isolated from each other. Onedimensional nanomaterials are nanofibre (nanorod) and nanotubular materials with fibre (rod, tube) length from 100 nm to tens of microns. Two-dimensional nanomaterials are films (coatings) with nanometer thickness. Structural elements in 0D, 1D and 2D nanomaterials can be distributed in a liquid or solid macroscopic matrix or be applied on a substrate. Threedimensional nanomaterials include powders, fibrous, multilayer and polycrystalline materials in which the 0D, 1D and 2D structural elements are in close contact with each other and form interfaces. An important type of three-dimensional nanostructured materials is a compact or consolidated (bulk) polycrystal with nanosize grains, whose entire volume is filled with those nanograins, free surface of the grains is practically absent, and there are only grain interfaces. The formation of such interfaces and "disappearance" of the nanoparticle (nanograin) surface is between three-dimensional compact the fundamental difference nanomaterials and nanocrystalline powders with various degrees of agglomeration that consist of particles of the same size as the compact nanostructured materials.

In the past two decades, hundreds of novel NSMs have been obtained; therefore, the need in their classification is ripened. NSMs as a subject of nanotechnology are low dimensional materials comprising of building units of a submicron or nanoscale size at least in one direction and exhibiting size effects. The first classification idea of NSMs was given by Gleiter in 1995 and further was explained by Skorokhod in 2000. However, Gleiter and Skorokhod scheme was

not fully considered because of 0D, 1D, 2D, and 3D structures such as fullerenes, nanotubes, and nanoflowers were not taken into account. Therefore, Pokropivny and Skorokhod reported a modified classification scheme for NSMs, in which 0D, 1D, 2D and 3D NSMs are included. Herein we classified the NSMs based on the scheme of Pokropivny et al. scheme.

0D NSMs

A major feature that discriminates various types of nanostructures is their dimensionality. The word "nano" stems from the Greek word "nanos", which means dwarf. This word "nano" has been assigned to indicate the number 109, i.e., one billionth of any unit. In the past 10 years, significant progress has been made in the field of 0D NSMs. A rich variety of physical and chemical methods have been developed for fabricating 0D NMSs with well-controlled dimensions. Recently, 0D NSMs such as uniform particles arrays (quantum dots), heterogeneous particles arrays, core–shell quantum dots, onions, hollow spheres and nanolenses have been synthesized by several research groups. Moreover, 0D NSMs, such as quantum dots has been extensively studied in light emitting diodes (LEDs), solar cells, single-electron transistors, and lasers.

1D NSMs

In the last decade, 1D NSMs have stimulated an increasing interest due to their importance in research and developments and have a wide range of potential applications. It is generally accepted that 1D NSMs are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating the size and dimensionality dependence of functional properties. They are also expected to play an important role as both interconnects and the key units in fabricating electronic, optoelectronic, and EEDs with nanoscale dimensions. The field of 1D NSMs such as nanotubes has attained a significant attention after the pioneering work by Iijima. 1D NSMs have a profound impact in nanoelectronics, nanodevices and systems, nanocomposite materials, alternative energy resources and national security.

2D NSMs

2D nanostructures have two dimensions outside of the nanometric size range. In recent years, a synthesis 2D NSMs have become a focal area in materials research, owing to their many low dimensional characteristics different from the bulk properties. In the quest of 2D NSMs,

considerable research attention has been focused over the past few years on the development of 2D NSMs. 2D NSMs with certain geometries exhibit unique shape-dependent characteristics and subsequent utilization as building blocks for the key components of nanodevices [47–49]. In addition, a 2D NSMs are particularly interesting not only for basic understanding of the mechanism of nanostructure growth, but also for investigation and developing novel applications in sensors, photocatalysts, nanocontainers, nanoreactors, and templates for 2D structures of other materials.

3D NSMs

Owing to the large specific surface area and other superior properties over their bulk counterparts arising from quantum size effect, 3D NSMs have attracted considerable research interest and many 3D NSMs have been synthesized in the past 10 years. It is well known that the behaviors of NSMs strongly depend on the sizes, shapes, dimensionality and morphologies, which are thus the key factors to their ultimate performance and applications. Therefore it is of great interest to synthesize 3D NSMs with a controlled structure and morphology. In addition, 3D nanostructures are an important material due to its wide range of applications in the area of catalysis, magnetic material and electrode material for batteries. Moreover, the 3D NSMs have recently attracted intensive research interests because the nanostructures have higher surface area and supply enough absorption sites for all involved molecules in a small space. On the other hand, such materials with porosity in three dimensions could lead to a better transport of the molecules.

POTENTIAL BOX

Consider a box of length 'a' such that

Potential

And $V = \alpha$ if x < 0 or x > a

as illustrated

Energy states of the particle of mass m can be obtained using time independent

Schrödinger equation for one dimension as

$$\frac{-\mathfrak{h}}{2M} + \frac{\partial}{\partial X^2}^2 \varphi(x) + v(x)\varphi(x) = E\varphi(x)$$

Let $\varphi(x)$ have a general form as

V=0 if 0 < x < a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CARPAGAM ADEMIT OF HIGHER EDUCATION Demated to Workinghi tablahed Under Section 3 of UGC Act, 1956) COURSE CODE: 16PHU603A

CLASS: IIIB.Sc Physics E CODE: 16PHU603A COURSE NAME:Nanomaterials and Applications UNIT: I BAT

BATCH-2016-2019

$$\varphi(x) = \text{Asin}(2\text{mE}/\text{h})^{1/2} + B\cos(\frac{2\text{mE}}{2})^{1/2} x$$

As the particle exists only inside the box, wave function should not exist outside

The box and should be zero at the boundaries.

At x=0, boundary condition $\varphi(x)$ leads to B=0. Therefore,

 $\varphi(x) = \operatorname{Asin}(2\mathrm{mE}/\hbar)^{1/2x}$

At x = a, boundary condition

$$\varphi(x) = 0 = \operatorname{Asin}(2\mathrm{mE}/\mathrm{h})^{1/2x}$$

But 'a' is not zero, therefore

 $sin(2mE/\hbar)^{1/2a=0}$ or, $sin(2mE/\hbar)^{1/2a=n\pi}$

Where *n*D0, 1, 2, 3, : : :

Therefore

$$En = \frac{n^2 h^2 \pi^2}{2ma^2}$$

i.e...,En α n2 Putting *En*in Eq

$$\varphi(x) = Asin\left(\frac{n\pi}{a}\right)x$$

Although *n* can take any integer value according to Eq, in practice *n*=0and are not allowed inside the box, because, if allowed, would be $\varphi(x) = 0$ and Probability of finding the particle inside the box would be zero. For the same reason σ cannot be zero inside the box. Therefore *n* takes the values *n*D1, 2, 3, :::. This shows that energies of particle in a one dimensional potential box are quantized.

Corresponding wave functions and probabilities of different states of particle in the box would look like those in b, c respectively.

A0 are not allowed inside the box, because, if allowed, $\varphi(x)$ would be 0 andProbability of finding the particle inside the box would be zero. For the same reason $\varphi(x)$ Cannot be zero inside the box. Therefore *n* takes the values *n*D1, 2, 3, : : :. This shows that energies of particle in a one dimensional potential box are quantized. Corresponding wave functions and probabilities of different states of particle in the box would look like those in b, c respectively.

a =0 are not allowed inside the box, because, if allowed, $\varphi(x)$ would be 0 and Probability of finding the particle inside the box would be zero. For the same reason $\varphi(x)$ Cannot be zero inside

the box. Therefore *n* takes the values nD1, 2, 3, : : :. This shows that energies of particle in a one dimensional potential box are quantized.

POTENTIAL STEP

In quantum mechanics, the **particle in a box** model (also known as the **infinite potential well** or the **infinite square well**) describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a ball trapped inside a large box, the particle can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow (on the scale of a few nanometres), quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.

The particle in a box model is one of the very few problems in quantum mechanics which can be solved analytically, without approximations. Due to its simplicity, the model allows insight into quantum effects without the need for complicated mathematics. It serves as a simple illustration of how energy quantization (energy levels), which are found in more complicated quantum systems such as atoms and molecules, come about.

APPLICATIONS OF SCHRODINGER EQUATION

Consider one dimensional closed box of width L. A particle of mass 'm' is moving in a one-dimensional region along X-axis specified by the limits x=0 and x=L as shown in fig. The potential energy of particle inside the box is zero and infinity elsewhere.

I.e Potential energy V(x) is of the form

 $V(x) = \{0; if o \le x \le L\infty: elsewhere$

The one-dimensional time independent Schrodinger wave equation is given by

$$d2\psi/dx^{2} + 2m/h^{2} [E-V] \psi = 0$$
 (1)

Here we have changed partial derivatives in to exact because equation now contains only one variable i.e x-Co-ordinate. Inside the box V(x) = 0

Therefore the Schrodinger equation in this region becomes

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc Physics COU COURSE CODE: 16PHU603A

COURSE NAME:Nanomaterials and Applications UNIT: I BAT

BATCH-2016-2019

Or
$$d^{2}/\psi/dx^{2}+ 2m/\hbar^{2}E\psi=0$$

Where $k= 2mE/\hbar^{2}(3)$ (2)

K is called the Propagation constant of the wave associated with particle and it has dimensions reciprocal of length.

The general solution of eq (2) is

(i)
$$\Psi = A \sin Kx + B \cos K x$$
 (4)

Where A and B are arbitrary conditions and these will be determined by the boundary conditions.

(ii) **Boundary Conditions**

The particle will always remain inside the box because of infinite potential barrier at the walls. So the probability of finding the particle outside the box is zero i.e. =0 outside the box. We know that the wave function must be continuous at the boundaries of potential well at x=0 and x=L, i.e.

$$\Psi(x) = 0 \text{ at } x = 0$$
 (5)

$$\Psi(\mathbf{x}) = 0 \text{ at } \mathbf{x} = \mathbf{L} \tag{6}$$

These equations are known as Boundary conditions.

(iii) Determination of Energy of Particle

Apply Boundary condition of eq. (5) to eq. (4)

$$0=A \sin (X*0) + B \cos (K*0)$$

 $0=0+B*1$
B=0 (7)

Therefore eq. (4) becomes

$$\Psi(\mathbf{x}) = \mathbf{A} \sin \mathbf{K} \mathbf{x} \tag{8}$$

Applying the boundary condition of eq. (6) to eq. (8), we have

$$0=A \sin KL$$

Sin KL=0
KL=n π
K=n π /L (9)
Where n= 1, 2, 3 - - -

A Cannot be zero in eq. (9) because then both A and B would be zero. This will give a zero wave function everywhere which means particle is not inside the box.

QUANTUM CONFINEMENTS OF CARRIERS IN 2D AND 3D

The most popular term in the nano world is *quantum confinement effect* which is essentially due to changes in the atomic structure as a result of direct influence of ultra-small length scale on the energy band structure (Takagahara and Takeda 1992a, Wise 2000, Zhao et al. 2004). The length scale corresponds to the regime of quantum confinement ranges from 1 to 25 nm for typical semiconductor groups of IV, III-V and II-VI. In which the spatial extent of the electronic wave function is comparable with the particle size. As a result of these "geometrical" constraints, electrons "feel" the presence of the particle boundaries and respond to changes in particle size by adjusting their energy. This phenomenon is known as the quantum-size effect. Quantization effects become most important when the particle dimension of a semiconductor near to and below the bulk semiconductor Bohr exciton radius which makes materials properties size dependent. In general, the Bohr radius of a particle is defined as (Yoffe 1993),

$$a_B = \varepsilon \frac{m}{m^*} a_o$$

where ε is the dielectric constant of the material, m* is the mass of the particle, m is the rest mass of the electron, and ao is the Bohr radius of the hydrogen atom. When the particle size approaches Bohr exciton radius, the quantum confinement effect causes increasing of the excitonic transition energy and blue shift in the absorption and luminescence band gap energy (Yoffe 1993). For example, 4.8 nm diameter PbSe NCs show an effective band gap of approximately 0.82 eV, exhibiting a strong confinement induced blue shift of >500 meV compared to the bulk PbSe band gap of 0.28 eV (the Bohr exciton radius in PbSe is 46 nm) (Wise 2000). In addition, quantum confinement leads to a collapse of the continuous energy bands of a bulk material into discrete, atomic like energy levels.

A schematic of the discrete energy level of a semiconductor.

Energy states leads to a discrete absorption spectrum, which is in contrast to the continuous absorption spectrum of a bulk semiconductor as shown in Fig. 1.1. A quantum confined structure is one in which the motion of the carriers (electron and hole) are confined in one or more directions by potential barriers (Miller et al. 1984). Based on the confinement

direction, a quantum confined structure will be classified into three categories as quantum well, quantum wire and quantum dots or nanocrystals.

Classification of quantum confined structures.

In QDs, the charge carriers are confined in all three dimensions which the electrons exhibit a discrete atomic-like energy spectrum. Quantum wires are formed when two dimensions of the system are confined. In quantum well, charge carriers (electrons and holes) are confined to move in a plane and are free to move in a two-dimensional. Also the energy level of one of the quantum numbers changes from continuous to discrete. Compared with bulk semiconductors, the quantum well has a higher density of electronic states near the edges of the conduction and valence bands, and therefore a higher concentration of carriers can contribute to the band-edge emission (Chen et al. 2012). As more number of the dimension is confined, more discrete energy levels can be found, in other words, carrier movement is strongly confined in a given dimension. Density of electron states in bulk, 2D, 1D and 0D semiconductor structure. 0D structures has very well defined and quantized energy levels. The quantum confinement effect corresponding to the size of the nanostructure can be estimated via a simple effective-mass approximation model

g(E) = Density of states

Density of electron states of a semiconductor as a function of dimension. The optical absorption spectrum is roughly proportional to the density of states.

This method can predict the confined energy levels of nanostructures by solving Schrodinger equation assuming the barriers have an infinite confining potential. The "effective mass" solutions of the Schrödinger equation for electrons confined in a quantum dot or NCs, quantum wire and quantum well are,

Quantum dot or Nanocrystals:

$$E_{n,m,l} = \frac{\pi^2 \hbar^2}{2m^*} \left(\frac{n^2}{L_z^2} + \frac{m^2}{L_y^2} + \frac{l^2}{L_x^2} \right), \psi = \phi(z)\phi(y)\phi(x)$$
(2)

Quantum wire:

$$E_{n,m}(k_x) = \frac{\pi^2 \hbar^2}{2m^*} \left(\frac{n^2}{L_z^2} + \frac{m^2}{L_y^2} \right) + \frac{\hbar^2 k_x^2}{2m^*}, \psi = \phi(z)\phi(y)\exp(ik_x x) - \dots$$
(3)

Quantum well:

$$E_n(k_x k_y) = \frac{\pi^2 \hbar^2 n^2}{2m^* L_z^2} + \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2), \psi = \phi(z) \exp(ik_x x + ik_y y) - \dots$$
(4)

where n, m, l = 1, 2 ... the quantum confinement numbers, Lx, Ly and Lz are the confining dimensions, is the wave function describing the electronic motion in x and y direction, similar to free electron wave functions. A brief reference to quantum wells and its properties follows in the next section.

1D NANOSTRUCTURE AND THEIR CONSEQUENCES

One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. Worldwide efforts in both the theory and the experimental investigation of growth, characterization and applications of 1D nanostructures have resulted in a mature, multidisciplinary field. In this book, a wealth of state-of-the-art information offers the opportunity to uncover the underlying science from diverse perspectives. Leading researchers elucidate the synthesis and properties of 1D nanostructures for various morphologies and compositions (semiconductor, metal, carbon, etc.) as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.

The smallest possible crystalline wires with cross-section as small as a single atom can be engineered in cylindrical confinement. Carbon nanotubes, a natural semi-1D nanostructure, can be used as a template for synthesis. Confinement provides mechanical stabilization and prevents linear atomic chains from disintegration; other structures of 1D nanowires are predicted to be mechanically stable even upon isolation from the templates.

Nano materials are used in a variety of, manufacturing processes, products and healthcare including paints, filters, and insulation and lubricant additives. In healthcare Nanozymes are nanomaterials with enzyme-like characteristics. They are an emerging type of artificial enzyme, which have been used for wide applications in such as bio sensing, bio imaging, tumour diagnosis, antibiofouling and more. In paints nanomaterials are used to improve UV protection and improve ease of cleaning. High quality filters may be produced using nanostructures, these filters are capable of removing particulate as small as a virus as seen in a water filter created by Seldom Technologies. In the air purification field, Nano technology was used to combat the spread of MERS in Saudi Arabian hospitals in 2012. Nanomaterials are being used in modern and human-safe insulation technologies, in the past they were found in Asbestos-based insulation. As a lubricant additive, Nano materials have the ability to reduce friction in moving parts. Worn and corroded parts can also be repaired with self-assembling anisotropic nanoparticles called TriboTEX.Nanomaterials can also be used in three-way-catalyst (TWC) applications. TWC converters have the advantage of controlling the emission of nitrogen oxides (NOx), which are precursors to acid rain and smog. In core-shell structure, nanomaterials form shell as the catalyst support to protect the noble metals such as palladium and rhodium. The primary function is that the supports can be used for carrying catalysts active components, making them highly dispersed, reducing the use of noble metals, enhancing catalysts activity, and improving the mechanical strength.

Enble | Engleten | Enrich Enble | Engleten | Enrich EAGER PAGEAE ACAENCY (Edel to be University) (Established Under Section 3 of UCC Act, 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore-641021. (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

UNIT I (Objective Type/Multiple choice Questions each Questions carry one Mark)

NANOMATERIALS AND APPLICATIONS

PART –A(Online Examination)

S.No.	QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
	Nanotechnology was brought into day light by					
1	delivering lectures by:	Feymann	Einstein	Newton	Max Planck	Feymann
		French word		Spanish word	Latin word	
		meaning	Greek word	meaning	meaning	
2	The prefix "nano" comes from a	billion	meaning dwarf	particle	invisible	Greek word meaning dwarf
	Who first used the term nanotechnology and	Richard	Norio	Eric Drexler,	Sumio Iijima,	
3	when?	Feynman, 1959	Taniguchi, 1974	1986	1991	Norio Taniguchi, 1974
					Concrete	
					nanoparticle	
			Nickname for		with a	
			Mercedes-	Plastic	compressive	
			Benz's futuristic	explosives	strength of 20	
		A carbon	concept car	nanoparticle	nanonewtons	
4	What is a buckyball?	molecule (C60)	(C111)	(C4)	(C20)	A carbon molecule (C60)
	Richard Feynman is often credited with					
	predicting the potential of nanotechnology.	There is a tiny	Things get	Bottom?	There is plenty	
	What was the title of his famous speech given	room at the	nanoscopic at	What	of room at the	There is plenty of room at
5	on December 29, 1959?	bottom	the bottom	bottom?	bottom	the bottom
	Which of these consumer products is already			Sunscreen		
6	being made using nanotechnology methods?	Fishing lure	Golf ball	lotion	All of the above	All of the above

					A software tool	
		A new material			to measure and	
		made from	A one-atom	Thin film	graphically	
		carbon	thick sheet of	made from	represent	A one-atom thick sheet of
7	What is graphene?	nanotubes	carbon	fullerenes	nanoparticles	carbon
	What is the 2017 budget for the U.S. National					
8	Nanotechnology Initiative?	\$587 million	\$917 million	\$1.4 billion	\$2.1 billion	\$1.4 billion
	In which of the following the atoms do not	Shape memory				
9	move from each other?	alloys	Nano materials	Dielectrics	Static materials	Nano materials
10	$10 \text{ nm} = ___ \text{m}$	10-8	10 ⁻⁷	10-9	10-10	10 ⁻⁸
11	The diameter of hydrogen atom is	1	10	0.1	0.01	0.1
	Carbon atoms make type of bond with					
12	other carbon atoms.	covalent	ionic	metallic	hydrogen	covalent
	Fullerene or bucky ball is made up of					
13	carbon atoms.	100	20	75	60	60
14	$1 m = \ nm.$	10-9	10-8	109	108	109
	"There is plenty of room at the bottom."		Richard	Sumio	Richard	
15	This was stated by	Eric Drexler	Feynmann	Tijima	Smalley	Richard Feynmann
			Richard	Sumio	Richard	
16	Who coined the word 'nanotechnology'?	Eric Drexler	Feynmann	Tijima	Smalley	Eric Drexler
	According to the definition by CRN,	mechanical	atomic	Newtonian	micro-	
17	nanotechnology is	engineering	engineering	mechanics	electronics	atomic engineering
	Nanoscience can be studied with the help	quantum	Newtonian	macro-		
18	of	mechanics	mechanics	dynamics	geophysics	quantum mechanics
	Greeks and Romans had used nanoparticles	cosmetics				
19	in the manufacture of	for eyes	medicines	metal articles	hair-dye	hair-dye
	Egyptians were using to prepare	nanoalumini				
20	make-up for eyes.	um	nanocopper	nanosteel	nanolead	nanolead
				Damascus		
21	The sword of Tipu Sultan was made of	nanolead	nanoaluminium	steel	Pure iron	Damascus steel
	contains nanoparticles prepared by	Homeopathi	Modern	Ayurvedic	Modern	
22	using biologically processed metal ores.	c medicines	antibiotics	'Bhasmas'	cosmetics	Ayurvedic 'Bhasmas'
23	The diameter of human hair is nm.	50,000	75,000	90,000	1,00,000	50,000

24	The diameter of human hair is m.	5 x 10 ⁻⁸	5 x 10-7	5 x 10-6	5 x 10-5	5 x 10-5
25	The cut-off limit of human eye is nm.	2,000	5,000	10,000	50,000	10,000
26	The size of E.Coli bacteria is nm.	2,000	5,000	50	90	2,000
27	The size of RBC isnm.	50	90	2,000	5,000	5,000
28	The thickness of a transistor is nm.	50	90	2,000	5,000	90
29	The size of a virus is nm.	2	20	50	2000	50
30	The diameter of a bucky ball isnm.	1,000	100	10	1	1
31	The width of a typical DNA molecule is nm.	1	2	5	10	2
32	1 micrometer (micron) = m.	10-9	10-8	10-7	10-6	10-6
33	1 micrometer (micron) = nm.	1,000	100	10	0.01	1,000
	The surface area to volume ratio of a sphere with radius 1 cm is R_1 and that of a sphere					
34	with radius 5 cm is R_2 . Then $R_1 = R_2$.	3	0.3	5	1/5	5
	The surface area to volume ratio of a cube with side 1 unit is R_1 and that of a cube with					
35	side 10 units is R_2 . Then $R_2 = \R_1$.	0.1	10	1/100	100	0.1
36	The two important properties of nanosubstances are	pressure and friction	sticking and friction	sticking and temperature	temperature and friction	sticking and friction
37	With the help of, Robert F. Curl and others discovered fullerene.	electron microscope	magnetic resonance	condensation technique	mass spectrograph	mass spectrograph
20	In the structure of fullerene each carbon atom forms covalent bonds with other	•		.1		
	carbon atoms.	one	two Decelored in sets	three Distance	Iour	three
30	who had invented the famous 'Geodesic'	Fric Drevler	Buckminster Fuller	Smalley	Faraday	Buckminster Fuller
	The largest cluster of carbon atoms in Bucky balls known till today consists of			Smancy		
40	carbon atoms.	60	75	180	540	540
41	The smallest cluster of carbon atoms in	75	60	20	15	20

	Bucky balls known till today consists of					
	carbon atoms.					
	The tensile strength of an MWNT is					
42	Pa.	63 x 10 ⁶	63 x 107	63 x 108	63 x 109	63 x 109
	The compressive strength of a nanotube				may be greater	
43	its tensile strength.	is less than	is greater than	is equal to	than	is less than
	The hardness of a standard SWNT is					
44	Pa.	63×10^6	25 x 106	25 x 109	25 x 10-9	25 x 109
	The bulk modulus of a standard SWNT is				less than or	
45	that of diamond.	less than	greater than	equal to	equal to	greater than
	How much current can be passed through 1					
46	cm ² cross-section of a metal nanotube?	10 ⁻⁹ A	109 A	1000 A	0.001 A	109 A
47	The size of a quantum dot is nm.	5	10	50	100	5
	The capacity of a normal human eye to see the					
48	smallest object is µm.	10000	1000	100	10	10
	Nanoparticles of which substance were found					
49	on the surface of the sword of Tipu Sultan?	Gold	Lead	Carbon	Silicon	Carbon
50	Quantum dots are particles	semiconductor	conductor	insulator	optical	semiconductor
	Larger QDs emit longer wavelengths resulting					
51	in emission colors such as	yellow	orange or red	brown	black	orange or red
	Smaller QDs emit shorter wavelengths			blue and	green and	
52	resulting in colors like	brown	red and orange	green	yellow	blue and green
		Carbon	Atomic	Small		
53	Nanotechnology, in other words, is	engineering	engineering	technology	Microphysics	Atomic engineering
	The diameter of the nano wire is about					
54		10-6m	10-3m	10-8m	10-9m	10-9m
	A suspended nano wire is a wire that is			Low vaccum	High vaccum	
55	produced in the	Air medium	Vaccum	chamber	chamber	High vaccum chamber
56	Nano wires are used in	Transistors	Resistors	Capacitors	Transducers	Transistors
	Nano cones are the predominant structures					
57	made with	Carbon	Nitrogen	Hydrogen	Silicon	Carbon

UNIT: I

UNIT-II

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD).Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

UNIT: I

Top-down approach

The most common top-down approach to fabrication involves lithographic patterning techniques using short-wavelength optical sources. A key advantage of the top-down approach—as developed in the fabrication of integrated circuits—is that the parts are both patterned and built in place, so that no assembly step is needed. Optical lithography is a relatively mature field because of the high degree of refinement in microelectronic chip manufacturing, with current short-wavelength optical lithography techniques reaching dimensions just below 100 nanometres (the traditional threshold definition of the nanoscale). Shorter-wavelength sources, such as extreme ultraviolet and X-ray, are being developed to allow lithographic printing techniques to reach dimensions from 10 to 100 nanometres. Scanning beam techniques such as electron-beam lithography provide patterns down to about 20 nanometres. Here the pattern is written by sweeping a finely focused electron beam across the surface. Focused ion beams are also used for direct processing and patterning of wafers, although with somewhat less resolution than in electron-beam lithography. Still-smaller features are obtained by using scanning probes to deposit or remove thin layers.

Mechanical printing techniques—nanoscale imprinting, stamping, and molding—have been extended to the surprisingly small dimensions of about 20 to 40 nanometres. The details of these techniques vary, but they are all based on making a master "stamp" by a highresolution technique such as electron-beam lithography and then applying this stamp, or subsequent generations of it, to a surface to create the pattern. In one variation a stamp's surface is coated with a very thin layer of material (the "ink") that can then be deposited ("inked") directly onto the surface to reproduce the stamp's pattern. For example, the controlled patterning of a molecular monolayer on a surface can be achieved by stamping an ink of thiol functionalized organic molecules directly onto a gold-coated surface (molecules that contain a sulfur end group, called a thiol, bond strongly to gold). In another approach the stamp is used mechanically to press the pattern into a thin layer of material. This surface layer is typically a polymeric material that has been made pliable for the molding process by being heated during the stamping procedure. Plasma etching can then be used to remove the thin layer of the masking material under the stamped regions; any residual polymeris thus removed, and a nanoscale lithographic pattern is left on the surface. Still another variation is to make the relief pattern out of photoresist on a silicon wafer by optical or electron-beam lithography and then pour a liquid precursor-for example, polydimethylsiloxane, a form of silicone—over the pattern and then cure it. The result is a rubbery solid that can be peeled

CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications

COURSE CODE: 16PHU603A

off and used as a stamp. These stamps can be inked and printed as described above, or they can be pressed to the surface and a liquid polymer allowed to flow into the raised regions of the mask by capillary action and cured in place. A distinction for this latter approach is that the stamp is flexible and can thus be used to print nanoscale features on curved surfaces.

These nanoscale printing techniques offer several advantages beyond the ability to use a wider variety of materials with curved surfaces. In particular, such approaches can be carried out in ordinary laboratories with far-less-expensive equipment than that needed for conventional submicron lithography. The challenge for all top-down techniques is that, while they work well at the microscale (at millionths of a metre), it becomes increasingly difficult to apply them at nanoscale dimensions. A second disadvantage is that they involve planar techniques, which means that structures are created by the addition and subtraction of patterned layers (deposition and etching), so arbitrary three-dimensional objects are difficult to construct.

Bottom-up approach

Bottom-up, or self-assembly, approaches to nanofabrication use chemical or physical forces operating at the nanoscale to assemble basic units into larger structures. As component size decreases in nanofabrication, bottom-up approaches provide an increasingly important complement to top-down techniques. Inspiration for bottom-up approaches comes from biological systems, where nature has harnessed chemical forces to create essentially all the structures needed by life. Researchers hope to replicate nature's ability to produce small clusters of specific atoms, which can then self-assemble into more-elaborate structures.

A number of bottom-up approaches have been developed for producing nanoparticles, ranging from condensation of atomic vapours on surfaces to coalescence of atoms in liquids. For example, liquid-phase techniques based on inverse micelles (globules of lipid molecules floating in a nonaqueous solution in which their polar, or hydrophilic, ends point inward to form a hollow core, as shown in the figure) have been developed to produce size-selected nanoparticles of semiconductor, magnetic, and other materials. An example of self-assembly that achieves a limited degree of control over both formation and organization is the growth of quantum dots. Indium gallium arsenide (InGaAs) dots can be formed by growing thin layers of InGaAs on GaAs in such a manner that repulsive forces caused by compressive strain in the InGaAs layer results in the formation of isolated quantum dots. After the growth of multiple layer pairs, a fairly uniform spacing of the dots can be achieved. Another example

CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications

 COURSE CODE: 16PHU603A
 UNIT: I

 of self-assembly of an intricate structure is the formation of carbon nanotubes under the right
 set of chemical and temperature conditions.

Lithography

Lithography is the key technology to realize very small feature size for nano components. Optical lithography, the main technology used today is predicted to be applicable beyond 100nm and 70nm with the use of respectively 193nm wavelength and 157nm wavelength tools. The reduction of feature sizes down to 50nm and below will require more advanced lithography tools. As the candidate for the next generation for the microelectronics industry, *Extreme Ultraviolet Lithography* is being strongly supported. EUV lithography, at the wavelength of 13nm, will achieve feature size at 45nm and below.

Photolithography

Photolithography is the selective process that allows the patterning of a desired design onto the material we want to fabricate with (the wafer in the semiconductor industry). Photo resist is applied as the first step in applying a pattern in a uniform film. The mask is a metal sheet that holds the actual pattern that will be etched into the photo resist. The mask is cut so that when a UV light is shined from behind the exposed parts of the photo resist will be the actual pattern. These exposed parts can then be cleaned away (positive resist) or will stay on to the fabricated device (negative resist). As a result of photolithography being the number one limiting factor on the size of wafer production this is the field where most of the research has gone. Contact printing was the very first form of photolithography. In this form the mask was placed directly on top of the photo resist during the exposure process. This process gave a good resolution but sometimes resulted in slight damage to the wafer and the mask. In order to defeat the problems the next innovation, projection printing, separated the mask from the photo resist.

High Energy Ball Milling

It is one of the simplest ways of making nanoparticles of some metals and alloys in the form of powder. There are many types of mills such as planetary, vibratory, rod, tumbler etc. Usually one or more containers are used at a time to make large quantities of fine particles. Size of container, of course, depends upon the quantity of interest. Hardened steel or tungsten carbide balls are put in containers along with powder or flakes be of arbitrary size and shape. Container is closed with tight lids. Usually 2:1 mass ratio of balls to material is advisable. If the container is more than half filled, the efficiency of milling is reduced. Heavy milling balls increase the impact energy on collision. Larger balls used for milling produce

CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications

COURSE CODE: 16PHU603A

UNIT: I

smaller grain size but larger defects in the particles. The process, however, may add some impurities from balls. The container may be filled with air or inert gas. However this can be an additional source of impurity, if proper precaution to use high purity gases is not taken. A temperature rise in the range of 100–1,100 iC is expected to take place during the collisions. Lower temperatures favour amorphous particle formation. The gases like O2, N2 etc. can be the source of impurities as constantly new, active surfaces are generated. Cryo-cooling is used sometimes to dissipate the heat generated. During the milling, liquids also can be used. The containers are rotated at high speed (a few hundreds of rpm) around their own axis. Additionally they may rotate around some central axis and are therefore called as 'planetary ball mill'.

When the containers are rotating around the central axis as well as their own axis, the material is forced to the walls and is pressed against the walls as illustrated in Fig. 3.2. By controlling the speed of rotation of the central axis and container as well as duration of milling it is possible to ground the material to fine powder (few nm to few tens of nm) whose size can be quite uniform. Some of the materials like Co, Cr, W, Ni-Ti, Al-Fe and Ag-Fe are made nanocrystalline using ball mill. Few milligrams to several kilograms of nanoparticles can be synthesized in a short time of a few minutes to a few hours.

Chemical Vapour Deposition (CVD)

Chemical vapour deposition, a hybrid method using chemicals in vapour phase isconventionally used to obtain coatings of a variety of inorganic or organic materials. It is widely used in industry because of relatively simple instrumentation, ease ofrocessing, possibility of depositing different types of materials and economical viability. Under certain deposition conditions nanocrystalline films or single crystallinefilms are possible. There are many variants of CVD like Metallo Organic CVD(MOCVD), Atomic Layer Epitaxy (ALE), Vapour Phase Epitaxy (VPE), PlasmaEnhanced CVD (PECVD). They differ in source gas

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications

COURSE CODE: 16PHU603A

UNIT: I

pressure, geometrical layoutand temperature used. Basic CVD process, however, can be considered as a transport of reactant vapour or reactant gas towards the substrate kept at some high temperature where the reactant cracks into different products which diffuse on he surface, undergo some chemical reaction at appropriate site, nucleate and growto form the desired material film. The by-products created on the substrate have tobe transported back to the gaseous phase removing them from substrate. Vapours of desired material may be often pumped into reaction chamber usingsome carrier gas. In some cases the reactions may occur through aerosol formationin gas phase. There are various processes such as reduction of gas, chemical reactionbetween different source gases, oxidation or some disproportionate reaction by which CVD can proceed. However it is preferable that the reaction occurs at the substrate rather than in the gas phase. Usually _300–1,200 1C temperature is used atthe substrate. There are two ways viz. 'hot wall' and 'cold wall' by which substrates are heated. In hot wall set up the deposition can take place even on reactor walls. This isavoided in cold wall design. Besides this, the reactions can take place in gas phasewith hot wall design which is suppressed in cold wall set up. Further, coupling of plasma with chemical reaction in cold wall set up is feasible.

Usually gas pressures in the range of 100–105 Pa are used. Growth rate andfilm quality depend upon the gas pressure and the substrate temperature. When the growth takes place at low temperature, it is limited by the kinetics of surfacereaction. At intermediate temperature it is limited by mass transport i.e. supply of reacting gases to the substrate. Here the reaction is faster and supply of reactants slower. At high temperature, growth rate reduces due to desorption of precursors from the substrate.

When two types of atoms or molecules say P and Q are involved in the desired film, there are two ways in which growth can take place. In what is known as Langmuir-Hinshelwood mechanism, both P and Q type of atoms/molecules are adsorbed on the substrate surface and interact there to produce the product PQ. When one species is adsorbed in excess of the other, the growth depends on the availability of adsorption sites for both Pand Q.

However it is also possible to have another way in which reaction can occuri.e. one species say P adsorbs on the substrate and the species Q from gas phase interacts with P. Thus there is no sharing of sites. This type of mechanism is knownas Elay–Riedel mechanism.

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Nanomaterials and Applications

Elay-Riedel mechanism

Colloids and Colloids in Solutions

CLASS: III B.Sc Physics

Colloids are known since very long time. A class of materials, in which two ormore phases (solid, liquid or gas) of same or different materials co-exist with the dimensions of at least one of the phases less than a micrometre is known as colloids. Colloids may be particles, plates or fibres. Nanomaterials are a subclassof colloids, in which one of the dimensions of colloids is in nanometre range. There are several examples around us, having different combinations of phases, in the form of colloids like liquid in gas (fog), liquid in liquid (fat droplets in milk), solid in liquid (tooth paste), solid in solid (tinted glass), gas in liquid (foam). Therecan be multiple existing colloids like water and oil bubbles in porous mineral rocks. Organic and inorganic materials can be dispersed into each other to form colloids. Several examples exist even of bio-colloids. Blood and bones are good examples of bio-colloids. Blood has corpuscles dispersed in serum and bone has colloids of calcium phosphate embedded in collagen. Colloids may even form networks. For example aerogels are a network of silica colloidal particles, pores of which arefilled with air.

Interactions of Colloids and Medium

Colloids are particles with large surface to volume ratio. Correspondingly thereare large number of atoms/molecules on the surface of a colloidal particle, do not have as many neighbours as those for an atom/molecule inside the interior. Therefore atoms on the surface are in a highly reactive state, which easily interaction form bigger particles or tend to coagulate. It is thus necessary to understandthe stability of colloids i.e. how the colloids dispersed in a medium can remain separated particles. In general there are a number of interactions involved. For the sake of understanding these interactions, we consider the inorganic spherical

colloids of equal size, dispersed in a liquid medium. When fine particles are dispersed in a liquid medium, it is known that they undergo *Brownian motion*. If we are able to tag a

UNIT: I

particle in the solution, it would appear as if it is making a random motion. All other particles also executerandom motion, hitting each other and changing direction of motion in solution.Distance travelled between successive collisions is random too. However an averagedistance travelled by a colloidal particle can be found as

_R2 D_kT3 r~_t (4.1)

Different shapesof colloids

where _R is distance travelled by a particle from its original position in time $_t, k$ – Boltzmann's constant, T – temperature of liquid, r – particle radius and \sim isviscosity of the liquid.

Interactions of such constantly and randomly moving particles with each otherand with liquid in general would be quite complex. Consider for example the vander Waals interaction (see Chap. 2) between two atoms or molecules. There are twoparts in the interaction viz. attractive and repulsive parts, irrespective of whether there exist permanent dipoles or not. The interaction is given as

where dG1 is the interaction energy, A and B are constants and R is the distance between two particles.

Brownian motion of colloidal particles

UNIT: I

Van der Waalsinteraction: (a) Resultingenergy,

(b) Repulsive energy and (c) Attractive energy

Here the first term is repulsive interaction (Born repulsive interaction) effectiveonly at short distance and second term represents long range attractive interaction(van der Waals attraction). Repulsive part arises due to repulsion between electronclouds in each atom and attractive part is due to interaction between fluctuatingor permanent dipoles of atoms/molecules. Equation is known as Lennard-Jones equation

Colloids in Vacuum

Lennard-Jones equation is sufficient to describe an interaction between twoatoms or molecules. When we consider colloids with large number of atoms, weneed to take into account all the atoms and their interactions with each other. This isquite a complex situation. To describe the interaction betweencolloidal particles Derjaguin, Landau, Verwey and Overbeek proposed a theoryknown as DLVO theory. In order to reduce the complexity of the problem, they assumed two interacting spherical particles of equal size. Let the radius of each particle be 'r' and let two particles be separated by a distance 'R'. It was shown that for two similar spherical particles in vacuum the attractive interaction is given by

where AH is known as Hamaker constant and is given by

$A_{\rm H} = A_0^2 n^2$

where A0 is a constant related to A in the Lennard-Jones equation and n is thenumber of atoms/molecules per unit volume in a colloid.

Interaction evenbetween two spherical particles of same material and same size is complex due topresence of large number of atoms in each particle

Colloids in a Medium

Consider now a situation, inwhich inorganic spherical colloids are immersed in a liquid (and do not dissolve). The attractive interactions between the colloids get modified through the change of Hamaker constant as *A*H, which can be written now as

AH D_pA1v _pA2v

where A_{1v} is the Hamaker constant for particle of inorganic solid under consideration, in vacuum and A_{2v} is Hamaker constant of colloid of medium in vacuum. It can be seen from above equation that in general the effect of liquid medium is to reduce the Hamaker constant of colloid particle. Hence the attractive force between colloid particles will in general reduce.

Molecular Beam Epitaxy (MBE)

This technique can be used to deposit elemental or compound quantum dots, quantum wells as well as quantum wires in a very controlled manner. High degree of purity is achievable using ultra highvacuum (better than 10_8 Pa). Special sources of deposition known as Knudsen cell (K-cell) or effusion cell are employed to obtain molecular beams of the constituent elements. The rate of deposition is kept very low and substrate temperature is ratherhigh in order to achieve sufficient mobility of the elements on the substrate and layerby layer growth to obtain nanostructures or high purity thin films. Technique likeReflected High Energy Electron Diffraction (RHEED) is incorporated to monitor high crystallinity of the growing film.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics

COURSE NAME: Nanomaterials and Applications

Synthesis of Metal Nanoparticles by Colloidal Route

Colloidal metal nanoparticles are often synthesized by reduction of some metalsalt or acid. For example highly stable gold particles can be obtained by reducingehloroauric acid (HAuCl4) with tri sodium citrate (Na3C6H5O7).

The reaction can be carried out in water. Metal gold nanoparticles exhibit intense red, magenta and other colours, dependingupon the particle size. Gold nanoparticles discussed above are stabilized by repulsive Coulombic interactions. It is also possible to stabilize gold nanoparticlesusing thiol or some other capping molecules.

In a similar manner, silver, palladium, copper and other metal nanoparticles canbe synthesized using appropriate precursors, temperature, pH, duration of synthesisetc. Particle size, size distribution and shape strongly depend on the reactionparameters and can be controlled to achieve desired results. It is also possible tosynthesize alloy nanoparticles using appropriate precursors.

Sol-Gel Method

As the name suggests sol gel involves two types of materials or components, 'sol'and 'gel'. Sol gels are known since the time when M. Ebelman synthesized themin 1845. However it is only since the last one or two decades that considerableinterest in it, both in scientific and industrial field, has generated due to realization of the several advantages one gets as compared to some other techniques. First ofall sol gel formation is usually a low temperature process. This means less energy consumption and less pollution too. It is therefore not surprising that in the nuclearfuel synthesis it is a desired process. Although sol-gel process generates highly pure, well controlled ceramics it competes with other processes like CVD or metalloorganicvapours derived ceramics. The choice of course depends upon the product ofinterest, its size, instrumentation available and ease of processing. In some cases solgelcan be an economical route, provided precursors are not very expensive. Someof the benefits like

COURSE NAME: Nanomaterials and Applications

CLASS: III B.Sc Physics

UNIT: I

getting unique materials such as aerogels, zeolites, and orderedporous solids by organicinorganic hybridization are unique to sol-gel process. Itis also possible to synthesize nanoparticles, nanorods or nanotubes using sol-geltechnique.

Sols are solid particles in a liquid. They are thus a subclass of colloids. Gels are nothing but a continuous network of particles with pores filled with liquid (or polymers containing liquid). A sol gel process involves formation of 'sols' in a liquid and then connecting the sol particles (or some subunits capableof forming a porous network) to form a network. By evaporating the liquid, it is possible to obtain powders, thin films or even monolithic solid. Sol gel methodis particularly useful to synthesize ceramics or metal oxides although sulphides, borides and nitrides also are possible.

Synthesis of sol-gel in general involves hydrolysis of precursors, condensationfollowed by polycondensation to form particles, gelation and drying process by various routes. Precursors (starting chemicals) are to be chosenso that they have a tendency to form gels. Bothalkoxides or metal salts can be used. Alkoxides have a general formulaM(ROH)n, where Mis a cation and R is an alcoholgroup, *n* is the number of (ROH) groups with each cation. For example (ROH) canbe methanol (CH3OH), ethanol (C2H5OH), propanol (C3H7OH) etc. bonded to acation like Al or Si. Salts are denoted as MX, in which M is a cation and X is an

anion like in CdCl2, CdCis a cation and Cl_ is an anion.Although it is not mandatory that only oxides be formed by a sol-gel process,often oxide ceramics are best synthesized by a sol-gel route. For example insilica, SiO4 group with Si at the centre and four oxygen atoms at the apexes of tetrahedron are very ideal for forming sols with interconnectivity through thecorners of tetrahedrons, creating some cavities or pores.

Due to its higher electronegativity as compared to metal cations, Si is lesssusceptible to nucleophilic attacks.By polycondensation process (i.e. many hydrolyzed units coming together byremoval of some atoms from small molecules like OH), sols are nucleated andultimately sol-gel is formed.

Hydrothermal Synthesis

This synthesis method is useful to make a large scale production of nano to microsize particles. In this technique adequate chemical precursors are dissolved in waterand placed in vessel made of steel or any other suitable metal which can withstandhigh temperature typically upto 300^oC and high pressure above 100 bars. Thevessel, known as *autoclave*, is usually provided with temperature and pressure control as well as measuring gauges. It is a very old technique, probably first used by the German scientist RobertBunsen, way back in 1839 to synthesize crystals of strontium and barium carbonates. He used a thick glass tube and used temperature above 200°C and pressuremore than 100 bars. The technique was later used mostly by geologists and hasbecome popular amongst nanotechnologists due to the advantages like large yieldand novel shapes and sizes that can be obtained using this technique.The technique becomes useful when it is difficult to dissolve the precursors atlow temperatures or room temperature. It is also advantageous to use the techniqueto grow nanoparticles if the material has a high vapour pressure near its meltingpoint or crystalline phases are not stable at melting point. The uniformity of shapes and sizes of the nanoparticles also can be achieved by this technique. Variousoxide, sulphide, carbonate and tungstate nanoparticles have been synthesized by the hydrothermal synthesis. Another variation of hydrothermal synthesis technique is known as forcedhydrolysis. In this case usually dilute solutions (10_2 to 10_4 M) of inorganic metalsalts are used and hydrolysis is carried out at rather higher temperatures than 150° C.

Physical Vapour Deposition with Consolidation

This technique basically involves use of materials of interest as sources of evaporation, an inert gas or reactive gas for collisions with material vapour, a cold finger onwhich clusters or nanoparticles can condense, a scraper to scrape the nanoparticles and piston-anvil (an arrangement in which nanoparticle powder can be compacted). All the processes are carried out in a vacuum chamber so that the desired purity of the end product can be obtained. Figure schematically illustrates a set upfor carrying out physical vapour deposition and compressing the powder in a pelletform.

Usually metals or high vapour pressure metal oxides are evaporated or sublimated from filaments or boats of refractory metals like W, Ta and Mo in which thematerials to be evaporated are held. The density of the evaporated material closeto the source is quite high and particle size is small (<5 nm). Such particles would prefer to acquire a stable lower surface energy state. Due to small particle or cluster interaction bigger particles

CLASS: III B.Sc Physics

COURSE NAME: Nanomaterials and Applications UNIT: I

 COURSE CODE: 16PHU603A
 UNI

 get formed. Therefore, they should be removedaway as fast as possible from the source. This
 is done by forcing an inert gas nearthe source, which removes the particles from the vicinity

 of the source. In general
 Image: Course of the source of the sour

the rate of evaporation and the pressure of gases inside the chamber determine theparticle size and their distribution. Distance of the source from the cold finger isalso important. Evaporated atoms and clusters tend to collide with gas moleculesand make bigger particles, which condense on cold finger. While moving awayfrom the source to cold finger the clusters grow. If clusters have been formed oninert gas molecules or atoms, on reaching the cold finger, gas atoms or moleculesmay leave the particles there and then escape to the gas phase. If reactive gases likeO2, H2 and NH3 are used in the system, evaporated material can interact with these

gases forming oxide, nitride or hydride particles. Alternatively one can first makemetal nanoparticles and later make appropriate post-treatment to achieve desiredmetal compound etc. Size, shape and even the phase of the evaporated material can depend upon the gas pressure in deposition chamber. For example using gaspressure of H2 more than 500 kPa, TiH2 particles of _12 nm size were produced.By annealing them in O2 atmosphere, they could be converted into titania (TiO2)having rutile phase. However if titanium nanoparticles were produced in H2 gaspressure less than 500 kPa, they could not be converted into any crystalline oxidephase of titanium but always remained amorphous.

Clusters or nanoparticles condensed on the cold finger (water or liquid nitrogencooled) can be scraped off inside the vacuum system. The process of evaporation and condensation can be repeated several times until enough quantity of the materialfalls through a funnel in which a piston-anvil arrangement has been provided. Onecan even have separate low and high pressure presses. A pressure of few mega pascal(MPa) to gigapascal (GPa) is usually applied depending upon the material. Lowporosity pellets are easily obtained. Density of the material thus can be _70 to 90 % of the bulk material.

UNIT: I

Ionized Cluster Beam Deposition

This method was first developed by Takagi and Yamada around 1985 and is alsouseful to obtain adherent and high quality single crystalline thin films. The set upconsists of a source of evaporation, a nozzle through which material can expand into the chamber, an electron beam to ionize the clusters, an arrangement to accelerate the clusters and a substrate on which nanoparticle film can be deposited, all housedin a suitable vacuum chamber. Small clusters from molten material are expanded through the fine nozzle. Theyapour pressure _1 Pa to 1 kPa needs to be created in the source and the nozzleneeds to have a diameter larger than the mean free path of atoms or molecules. vapour form in the source to form the clusters. On collision with electron beam, clusters get ionized. Due to applied accelerating voltage, the clusters are directed towards the substrate. By controlling the accelerating voltage, it is possible tocontrol the energy with which the clusters hit the substrate. Stable clusters of somematerials would require considerable energy to break their bonds and would ratherprefer to remain as small clusters of particles. Thus it is possible to obtain the filmsof nanocrystalline material using ionized cluster beam. However it is not unlikelythat some neutral atoms also get incorporated in the film. Besides, the clusters arenot mass selected. Therefore they can have wide distribution of particle sizes. In factarything that can cross the accelerating voltage can get incorporated in the film.

Laser Vapourization (Ablation)

In this method, vapourization of the material is effected using pulses of laser beamof high power. The set up is an Ultra High Vacuum (UHV) or high vacuum system equipped with inert or reactive gas introduction facility, laser beam, solid target and cooled substrate. Clusters of any material of which solid target can be made are possible synthesize. Usually laser operating in the UV range such as excimer (excited monomers) laser is necessary because other wavelengths like IR orisible are often reflected by surfaces of some metals.

A powerful beam of laser evaporates the atoms from a solid source an atomscollide with inert gas atoms (or reactive gases) and cool on them forming clusters. They condense on the cooled substrate. The method is often known as laser ablation. Gas pressure is very critical in determining the particle size and distribution. Simultaneous evaporation of another material and mixing the two evaporatedmaterials in inert gas leads to the formation of alloys or compounds. This methodcan produce some novel phases of the materials which are not normally formed. For example Single Wall Carbon Nanotubes (SWNT) are mostly synthesized by this method.

Coimbatore-641021. (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

UNIT II (Objective Type/Multiple choice Questions each Questions carry one Mark)

NANOMATERIALS AND APPLICATIONS

PART –A(Online Examination)

S.No.	QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
			Chemical			
	Which of the following uses radio frequency		vapour	Sol-gel	Electro	
1	to produce nano-particles?	Plasma arching	deposition	technique	deposition	Plasma arching
				Chemical		
	Which of the following methods can be used		Sol-gel	vapour	Mechanical	Chemical vapour
2	to produce nano-powders of oxides?	Plasma arching	technique	deposition	crushing	deposition
		Chemical				
	Which of the following is used to make both	vapour	Sol-gel		Electro	
3	nano-particles and nano-powders?	deposition	technique	Plasma arching	deposition	Sol-gel technique
	Which method can be used to prepare iron	Pulsed laser	Sol-gel	Electro-	Mechanical	
4	nitriles nano-crystals using ammonia gas?	deposition	technique	deposition	crushing	Mechanical crushing
	Which of the following is used to modify the					
5	optical properties of a material system?	Electricity	Magnetic field	Pressure	Light	Light
	Which of the following is used in electro optic	Lithium	Barium sodium	Lithium	Lithium	
6	modulators?	tantalite	niobate	niobate	sodium niobate	Lithium niobate
7	Sol-gel method is approach	Bottom up	Up bottom	Top down	Down top	Bottom up
8	Sol-gel method is known since	1970	1960	1980	1990	1980
	Which ratio decides the efficiency of		Surface			
9	nanosubstances?	Weight/volume	area/volume	Volume/weight	Pressure/volume	Surface area/volume

10 temperature is above 1000oC 1500oC 2000oC 2500oC 200 11 The set get is a set of set id particle Sublimation Malting Get down Colloidal	2000oC Colloidal suspension
11 The sel cellis a statistic Sublimation Melting Cool down Cool	Colloidal suspension
11 The sel gal is a final of solid particle Sublimation Malting Supersion Coal down	Colloidal suspension
<u>11 The sol-get is a</u> of some particle. Submination Micruing Suspension Cool down Co	
Heavy	
12 The gel is a mass. molecular Semi regid Regid Light molecular Sem	Semi regid
13 Sol-gel method is chemical process. Dry Wet Semi liquid Semi solid We	Wet
undergo hydrolysis and poly	
14 condensation reactions. Metal ions Metal carbonates Metal nitrates Metal oxides	Metal oxides
The solvent evolves towards the formation of	
an inorganic continuous network containing a Semi solid	
15 Gaseous phase Gel Solid phase phase Ge	Gel
Formation of an inorganic continuous network	
16containing the metal centres withAzoOxoNitroHydroOz	Oxo
After drying process the liquid phase is	
removed from the gel and is	
17 performed. Calcination De-oxygenation Oxygenation Hydrogenation Ca	Calcination
One of the advantages of sol-gel method is	~
18 able to get uniform andpowder. Micro size Large size Nano size Small size Sm	Small size
Non uniform	
Sol-gel method can produce Uniform multi Non uniform Multi multi	Uniform multi
19 systems. component multi-component component component component	component
Metal nano particularly	
20 Institute a frequencies are prepared	0.11
20 by the chemical reduction method. Silver Gold Platnum Tungsten Sil	Silver
and citrate solution are used	
21 method Somi corbozono Hudrozino Hudrozono Somi corbozono H	Undrazina hudrata
Z1 Incurod. Inyurazine Inyurazine Inyurazine What is range of temperature at Hydro thermal	Tryutazine nyutate
22 reservoirs? 350°C 210°C 50°C 1900°C 35	35000
ZZ Reservents: Stoce Zroce Stoce Stoce Stoce When the When the When the area is When water When With the stoce	When water has
movement of prone to volcanic has access to temperature on acc	access to high
23 When do hydrothermal resources arise? tectonic plates eruntions high earth surface is ter	temperature

		occurs		temperature	very high	
	Fabrics are extensively made out of nano	Carbon nano				
24	materials like	tubes	Fullerenes	Mega tubes	Polymers	Fullerenes
		DC and very	DC and high	AC and very	AC and high	C and very low
25	The power required for electro-deposition is	low voltage	voltage	low voltage	voltage	voltage
	The energy required for refining of gold in					
26	kWh / tone is about	100 to 150	250 to 350	300 to 350	350 to 400	300 to 350
	On industrial scale sodium metal is prepared					
27	by electrolysis of fused	NaOH	NaCl	NaO	NH3	NaCl
					5	
			stannous	hydrogen	sodium	
28	Electrolyte used for tin plating is	sulphide ore	sulphate	sulphate	chloride	stannous sulphate
	When zinc is plated on steel, anode is made up					
29	of	steel	oxygen	zinc	carbon	zinc
	If the container of ball mill is more than half					
30	filled, the efficiency of milling is	increased	reduced	same	zero	reduced
	mass ratio of balls to material					
31	is advisable	3:01	4:01	2:01	1:01	2:01
	If surface area of liquid is large then				none of	
32	evaporation will be	small	large	moderate	above	large
	Changing of a liquid into vapours from					
33	surface of liquid without heating it is called	expansion	contraction	evaporation	fusion	evaporation
24	Evaporation from surface of any liquid	4 4		nature of	- 11 - 6 - 1	- 11 - f - 1,
34	depends on	temperature	Wind	nquia	all of above	all of above
				increase in	increase in	
35	Evaporation causes	cooling	heating effect	weight	density	cooling

				In between		
				freezing point		
		freezing	1 1 1	and boiling	at all	. 11
36	Evaporation takes place at	point	boiling point	point	temperatures	at all temperatures
	Lithography was invented by in	Alois				
37	1/98.	Senetelder	John Denver	Manuel Neuer	Billy Armstrong	Alois Senefelder
	The surface is treated with a that					
20	is soaked into the image area, but avoided the	D 1 1		C'11	D	
38	H2O treated, non-image area.	Polar ink	Non-polar ink	Silk screen	Pressure screen	Non-polar ink
		Process used to	D 1.			
		transfer a	Process used to	Process used		D 1.
		pattern to a	develop an	to develop a	D 1.	Process used to
20	T table of the last last	layer on the	oxidation layer	metal layer on	Process used to	transfer a pattern to a
39	Litnography is:	Discontinution	on the chip	the chip	produce the chip	layer on the chip
40	The system utilised to apply the H2O solution	Dissociating	Dampening	H2O hating	T 144 autor	
40	to the plate surface is called the	system	system	system	Littering	H2O hating system
	Dot gain in the mid tones is said to be about					
41	lower than with conventional	1.00/	200/	200/	400/	100/
41	ntnography.	1070	20%	SU70	40%	1070
12	Silicon ovide is not torned on a substrate using:	lithography	Dhotolithography	lithography	lithography	Dhotolithography
42	The chamical used for chielding the active	пшодгарну	Filotofftilography	Hydrofluoria	nnograpny	rnotonulography
13	areas to achieve selective oxide growth is:	Silver Nitride	Silicon Nitride	acid	Polycilicon	Silicon Nitride
	An is a sol with the continuous		Sincon Mulde	aciu		
	nhase a gas. Fog is an of water					
44	dronlets.	Aerosol	Emulsion	Agglomerate	Electrophoresis	Aerosol
	An is a sol in which the suspended	11010001	Linubion			
	particles are liquid droplets and the continuous					
45	phase is also a liquid. The 2 phases are	Aerosol	Emulsion	Agglomerate	Electrophoresis	Emulsion

	immiscible, otherwise a solution would form.					
46	A is a sol of solid particles scattered in a liquid. Foam is a colloidal system in which gas bubbles dispersed in a liquid or solid.	Colloidal suspension	Streaming potential	Sedimentation potential	Electrophoresis	Colloidal suspension
47	The of colloids are of maximum importance since the interaction of the particles with each other and the principal phase is of primary concern.	Magnitude	Shape	Surface	Size	Surface
48	As the concentration increases to the critical micelle concentration(C.M.C.) soap particles abruptly collected into spherical structures called	Ball	Sphere of ions	Micelles	Dirt particle	Micelles
49	is the charged field generated by charged particles moving in a stationary liquid.	Colloidal suspension	Emulsion	Sedimentation potential	Electrophoresis	Sedimentation potential
50	When tiny particles of a substance are dispersed through medium then mixture is called	alloys	amalgams	suspension	colloid	colloid
51	Particle size in suspension is	less than 10^3 nm	10 ² nm	greater than 10^3	10 nm	less than 10 ³ nm
52	What is the best description of blood?	sol	foam	solution	aerosol	sol
		Agitation is provided only by bubbles leaving the	The tube bundle is arranged vertically, with the solution inside the tubes	To handle viscous solution a pump is used	Also called	Agitation is provided only by bubbles
53	Which of the following is a characteristic of a horizontal tube evaporator?	evaporator as	condensing	to force liquid	short vertical	leaving the evanorator as vapor
54	Which of the following is not an assumption in the evaporator model?	The feed has only one volatile	Only the latent heat of vaporization is	Boiling action in heat exchanger	Overall temperature driving force is	Overall temperature driving force is the temperature that of

	components	available for	ensures perfect	the temperature	saturated steam
		heating the	mixing	that of saturated	
		solution		steam	

UNIT-III

CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy.Scanning Tunneling Microscopy. Fourier Transform Infrared spectroscopy, UV-visible spectroscopy

X-Ray Diffraction

X-ray diffraction (XRD) is an effective method for determining the crystal structure of materials. It detects crystalline materials having crystal domains greater than 3-5 nm. It is used to characterize bulk crystal structure and chemical phase composition.

Crystalline & Amorphous materials

Materials can be classified as

- Crystalline material: Crystalline material can be single crystal or polycrystalline
- Amorphous material

Crystalline material

Crystalline materials are composed of atoms arranged in a regular ordered pattern in three dimensions. This periodic arrangement is known as crystal structure. It extends over distance much larger than the inter atomic separations. In single crystal this order extends through out the entire volume of the material. There are seven crystal system: cubic, tetragonal, orthorhombic, rhombohedral, hexagonal, monoclinic and triclinic. Different crystal structures are based on framework of one of the 14 Bravais lattice.

Parallel planes of atoms intersecting the unit cell are used to define directions and distances in the crystal. The '*d* spacing' is defined as the distance between adjacent planes. The orientation and interplaner spacing (d) of these lattice planes are defined by three integers h,k,l called Miller Indices. The (hkl) designate a crystal face or family planes throughout a crystal lattice.

Polycrystalline materials consist of many small single crystal regions called grains. Grains are separated by grain boundaries. The grains can have different shape and size and are disoriented with respect to each other.

Amorphous materials: When the atoms are not arranged in a regular periodic manner the material is called amorphous. Such material posses only short range order, distance less than a nanometer.

X-Ray Diffraction:

X-ray is a form of electromagnetic radiation having range of wavelength from 0.01-0.7 nm which is comparable with the pacings between lattice planes in the crystal. Spacing between atoms in metals ranges from 0.2-0.3 nm. When an incident beam of X-rays interacts with the

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

target atom, X-ray photons are scattered in different directions. Scattering is elastic when there is no change in energy between the incident photon and the scattered photon. In inelastic scattering the scattered photon loses energy. These scattered waves may super impose and when the waves are in phase then the interference is constructive and if out of phase then destructive interference occurs. Atoms in crystal planes form a periodic array of coherent scatterers. Diffraction from different planes of atoms produces a diffraction pattern, which contains information about the atomic arrangement within the crystal.

Bragg's law

CLASS: III B.Sc Physics

The X-ray beams incident on a crystalline solid will be diffracted by the crystallographic planes. Bragg's law is a simple model explaining the conditions required for diffraction. It is given as $n\lambda = 2d \sin\theta$, where n is an integer and λ is wavelength. For parallel planes of atoms, with a spacing d_{hkl} between the planes, constructive interference occurs only when Bragg's law is satisfied. In diffractometers, the X-ray wavelength is fixed. Consequently, a family of planes produces a diffraction peak only at a specific angle θ . The spacing between diffracting planes of the atoms determinses the peak positions. The peak intensity is determined by the atoms are in the diffracting plane. The Fig. 1 explains the Bragg's law. Two in-phase incident waves, beam 1 and beam 2, are deflected by two crystal planes (Z and Z_1). The diffracted waves will be in phase when the Bragg's Law, $n\lambda = 2d \sin \theta$, is satisfied. In order to keep these beams in phase, their path difference (SQ + QT) has to equal one or multiple X-ray wavelengths (n λ) i.e SQ + QT = n λ or SQ + QT = 2PQ sin θ = 2d sin θ = n λ . Hence the path difference depends on the incident angle (θ) and spacing between the parallel crystal planes (d).

Fig. 1. Braggs analysis for X-ray diffraction by crystal planes

CLASS: III B.Sc Physics **COURSE CODE: 16PHU603A**

UNIT: III

COURSE NAME: Nanomaterials and Applications BATCH-2016-2019

Working principle and Instrumentation

The instrument is called an X-ray diffractometer. In the diffractometer, an X-ray beam of a single wavelength is used to examine the specimens. By continuously changing the incident angle of the X-ray beam, a spectrum of diffraction intensity versus the angle between incident and diffraction beam is recorded.

The main components of diffractometer are

- X-ray Tube: the source of X Rays.
- Incident-beam optics: to condition the X-ray beam before it hits the sample
- Goniometer: the platform that holds and moves the sample, optics, detector, and/or tube
- Sample holder
- Receiving-side optics: to condition the X-ray beam after it has encountered the sample
- Detector: to count the number of X Rays scattered by the sample

The ' θ ' is the angle between the X-ray source and the sample, whereas 2θ is the angle between the incident beam and the detector. The incident angle θ is always half of the detector angle 20. The basic function of a diffractometer is to detect X-ray diffraction from materials and to record the diffraction intensity as a function of the diffraction angle (2 θ). The X-ray radiation generated by an X-ray tube passes through Soller slits which collimate the X-ray beam. The Xray beam passing through the slits strikes the specimen. X-rays are diffracted by the specimen and form a convergent beam at the receiving slits before they enter a detector.

Fig. 2. Basic components of X-ray diffractometers

The diffracted X-ray beam passes through a monochromatic filter to suppress wavelengths other than K_a radiation and decrease any background radiation, before being received by the detector. The K_a radiation is generated by bombarding of target surface (Cu, Fe,

COURSE NAME: Nanomaterials and Applications

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

UNIT: III

BATCH-2016-2019

Cr) by accelerated electrons. Most commonly a copper target is used generating K_a wave length of 0.154 nm.

Relative movements among the X-ray tube, specimen and the detector ensure the recording of diffraction intensity in a range of 2θ .

An instrument can be operated in two ways:

- tube is fixed, the sample and the detector rotates
- sample is fixed and the tube and the detector rotates

Powder diffraction

A single crystal produces only one family of peaks in the diffraction pattern. A polycrystalline sample contains thousands of crystallites. Therefore, all possible diffraction peaks are observed. Powder diffraction is used for characterization of polycrystalline materials. The basic assumption of powder diffraction is that for every set of planes, there are statistically relevant number of crystallites that are properly oriented to diffract the incident beam. The diffraction pattern is the fingerprint of any crystalline phase. The position, intensity, shape and width of the diffraction lines give s information on the samples. Powder diffraction data consists of a record of photon intensity versus detector angle 2 Θ . Diffraction data can be reduced to a list of peak positions and intensities. Each d_{hkl} corresponds to a family of atomic planes (*hkl*). However, individual planes cannot be resolved by this method; this is a limitation of powder diffraction versus single crystal diffraction

Applications

Catalysts are extensively characterized by XRD technique. The major applications of XRD are discussed below.

1. Phase Identification

The catalysts are generally composed of mixture of several phases. The diffraction pattern for each phase is as unique as a fingerprint. Phases with the same chemical composition can have drastically different diffraction patterns. Phase identification is based on the comparison of the diffraction pattern of the specimen with that of pure reference phases or with a database. Databases such as the Powder Diffraction File (PDF) contain lists for thousands of crystalline phases. The PDF contains over 200,000 diffraction patterns. Modern computer programs can determine the phases present in a sample by quickly comparing the diffraction data to all of the patterns in the database. Various crystalline phases can be quantified based on the

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

fact that each phase of the mixture gives its characteristic diffractogram independently of the others and the intensity depends on the amount present in the mixture.

Determination of average crystallite size

CLASS: III B.Sc Physics

Ideally, a Bragg diffraction peak is a line without width. In reality, diffraction from a crystal specimen produces a peak with a certain width. This is known as peak broadening. The peak width depends on the size of the crystals. Peak width is inversely related to crystal size; that is, peak width increases with decreasing crystal particle size.

The average crystallite size can be determined by Scherrer formula using elementary line broadening analysis. The Scherrer formula assumes that the breadth of the diffraction peak of crystallites (small single crystals) mainly depends on the characteristics of crystallites (size and the defect in the lattice). Elementary analysis of the broadening assumes that lattice deformation is negligible. According to Scherrer, the thickness of crystallite, L, can be determined by

$$L = \frac{k\lambda}{\beta\cos\theta} \qquad \qquad k = \text{constant} \quad ; \quad \lambda = \text{wavelength of X-ray source} \; ; \\ \beta = \text{breadth of diffraction profile} = \text{Full width at half maxima} \\ \theta = \text{half of the diffraction angle/Bragg angle} \end{cases}$$

The diffraction corresponding to the most intense peak is selected to calculate the average crystallite size using Scherrer relation. The Scherrer formula assumes that crystallite size is the major source leading to line broadening effects of the diffractions peaks, but there is always a broadening can also be due to instrumental factors such as slit width, sample size, imperfect focusing or misalignment of diffractometers.

3. Spacing between atomic planes of a crystal

Based on Bragg's Law, information on spacing between atomic planes can be obtained when constructive interference occurs. Knowing the spacing of crystallographic planes by diffraction methods, the crystal structure of materials can be determined. The plane spacing of cubic crystal is related to the lattice parameter (a) by the following equation.

$$d_{hkl} = a/\sqrt{(h^2 + k^2 + l^2)}$$

Optical Microscopes

Human eye perceives an object when visible light reflected from an object enters the eye. Size of an object observed by an eye depends upon the arc subtended by the object at the lens and image on the retina of the eye. smaller the distance from the eye, bigger is the image of the object in the eye. There are, however, two limitations. An object kept at a distance smaller than _25 cm (this

distance is known as the distance of distinct vision) from the eye cannot produce a sharp image of the object and other is that a human eye cannot detect an object smaller than_100 _mas a distinct object if placed close to another object. However, by placing a convex lens close to an eye, a magnified virtual image can be formed at a larger distance so as to form an image with larger angle. Such a magnifying lens forms the simplest kind of microscope. where 25 in the numerator is the distance of distinct vision in cm and 'f' is the focal length of magnifying lens in cm.

(a) Size of the image depends on the distance from the eye. (b) By keeping a convex lens close to the eye, image of an object can be magnified

An object would appear ten times larger with lens having f = 2.5 cm (M = 25/2.5) and is written as '10_'. When an image is 100 times bigger than the object, it is written as '100_' and so on.

With the magnifying ability of lenses in mind, Galileo invented in the year 1610 the simplest optical microscope. Currently used microscopes make use of at least two lenses viz. objective and eyepiece. Objective lens is the lens close to the object and eyepiece is close to the eye The objective lens (from a distance larger than its focal distance) forms the real image of an object, which in turn gets magnified as a virtual image due to eyepiece.

Overall magnification M = -x/f1. 25/f2 where $_x/f1$ is magnification due to objective lens and 25/f2 is the magnification due to eyepiece. Here 'x' is the distance of image from the focal point of the lens. Negative sign indicates that the image is inverted In a commercial optical microscope more than two lenses, apertures, sample

CLASS: III B.Sc Physics

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

stage and light source are present in order to improve the quality of the observed image (lenses produce various defects in images like distortion, astigmatism etc. which can be partially corrected). Magnification of an optical microscope cannot be increased indefinitely as all the microscopes are limited by their ability to resolve the images to some limit. This is limited by the diffraction of the scattered light from an object. Two close-by areas on a sample can be considered as two apertures, the light passing through which can interfere to form a combined image. The closest distance between two points (or two areas), which can be seen as separate or resolved $NA = n \sin \theta$ is the numerical aperture of a lens with n as the refractive index of the lens. Approximating NA=1, $R=\lambda/2$ which is often referred to as $\lambda/2$ limit or diffraction limited resolution. $\lambda/2$ limit is common to all microscopes based on the principle of scattering of waves, may be electromagnetic or those associated with particles.

Ray diagram of the simplest kind of an optical microscope using just two convex lenses

Optical microscopes in general can resolve up to ~ 0.2 mm as visible light ranges from 400 to 700 nm and the smallest wavelength, which can be used is 400 nm. In order to observe the images of objects, additionally, it is necessary to obtain sufficient contrast between the image of interest and its surrounding. This depends upon the method of illumination, absorption of light

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

due to sample and some other factors like polarization of light etc. When a beam of light is incident on a perfectly flat solid surface, it is known, following Snell's law, that it can get partly reflected and partly refracted. However, if we consider a beam of light falling on a rough surface, then depending upon the surface roughness or morphology the intensity of the reflected beam can vary in different directions (Snell's law is obeyed but one needs to consider local normal to the surface) or the reflected beam would diverge. This would mean that there would be an intensity variation from the sample surface. If the sample is having some grains or different optical properties (refractive index or reflecting power) for different parts of the sample surface, then intensity variations would occur and can be detected. The optical microscopes in the current use are equipped with a set of lenses to improve the sample illumination, sample movement stage, lenses with different magnification, camera with various apertures and other facilities to obtain high quality images as well as ease of operation.

Scanning Electron Microscope

CLASS: III B.Sc Physics

The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. In most applications, data are collected over a selected area of the surface of the sample, and a 2-dimensional image is generated that displays spatial variations in these properties. Areas ranging from approximately 1 cm to 5 microns in width can be imaged in a scanning mode using conventional SEM techniques (magnification ranging from 20X to approximately 30,000X, spatial resolution of 50 to 100 nm). The SEM is also capable of performing analyses of selected point locations on the sample; this approach is especially useful in qualitatively or semi-quantitatively determining chemical compositions, crystalline structure, and crystal orientations. The design and function of the SEM is very similar to the and considerable overlap in capabilities exists between the two instruments.

Principles of Scanning Electron Microscopy (SEM)

Accelerated electrons in an SEM carry significant amounts of kinetic energy, and this energy is dissipated as a variety of signals produced by electron-sample interactions when the incident electrons are decelerated in the solid sample. These signals include secondary electrons (that produce SEM images), backscattered electrons (BSE), diffracted backscattered electrons

COURSE NAME: Nanomaterials and Applications

COURSE CODE: 16PHU603A UNIT: III **BATCH-2016-2019** (EBSD that are used to determine crystal structures and orientations of minerals), photons (characteristic X-rays that are used for elemental analysis and continuum X-rays), visible light (cathodoluminescence--CL), and heat. Secondary electrons and backscattered electrons are commonly used for imaging samples: secondary electrons are most valuable for showing morphology and topography on samples and backscattered electrons are most valuable for illustrating contrasts in composition in multiphase samples (i.e. for rapid phase discrimination). X-ray generation is produced by inelastic collisions of the incident electrons with electrons in discrete ortitals (shells) of atoms in the sample. As the excited electrons return to lower energy states, they yield X-rays that are of a fixed wavelength (that is related to the difference in energy levels of electrons in different shells for a given element). Thus, characteristic X-rays are produced for each element in a mineral that is "excited" by the electron beam. SEM analysis is considered to be "non-destructive"; that is, x-rays generated by electron interactions do not lead to volume loss of the sample, so it is possible to analyze the same materials repeatedly.

Essential components of all SEMs include the following:

- Electron Source ("Gun")
- Electron Lenses
- Sample Stage
- Detectors for all signals of interest

CLASS: III B.Sc Physics

- Display / Data output devices
- Infrastructure Requirements:
- Power Supply
- Vacuum System
- Cooling system
- Vibration-free floor
- Room free of ambient magnetic and electric fields

SEMs always have at least one detector (usually a secondary electron detector), and most have additional detectors. The specific capabilities of a particular instrument are critically dependent on which detectors it accommodates.

In an electron microscope, electrons emitted from a hot filament are usually used. However, sometimes cold cathode (a cathode that emits electrons without heating it) is also used.

CLASS: III B.Sc Physics

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

A cold cathode emits electrons under the application of a very high electric field. It is also known as a field emitter. Such SEMs are known as FE-SEM and are able to give better images than hot filament SEM. However, such FE-SEM is less common than hot cathode SEM. In a scanning electron microscope, backscattered electrons or secondary electrons are detected

Due to interaction of focussed beam with solid, the backscattered electrons are somewhat defocussed resulting into lowered resolution than one would expect. In an electron microscope, the electron beam can be focussed to a very small spot_size using electrostatic or magnetic lenses. Usually the electrostatic lenses are used for a SEM. The fine beam is scanned or rastered on the sample surface using a scan generator and back scattered electrons are collected by an appropriate detector. Signal from scan generator along with amplified signal from the electron collector generates the image of sample surface. In order to avoid the oxidation and contamination of filament as well as reduce the collisions between air molecules and electrons, filament and sample have to be housed in a vacuum chamber. Usually vacuum 102–103 Pa or better is necessary for a normal operation of scanning electron microscope. This makes electron microscopes rather inconvenient. However some manufacturers have been successful in marketing electron microscopes known as environmental microscopes, in which samples can be at rather high pressure of few hundreds of Pa (100-500 Pa). Sample preparation is therefore minimized and sample in biological conditions can be investigated. For this the electrons are accelerated as usual in a high vacuum system but they enter the sample chamber through a thin foil or aperture so that a large pressure difference can be maintained One disadvantage of electron microscopes is that insulating samples cannot be analyzed directly as they get charged due to incident electrons and images become blurred/faulty. Therefore insulating solids are coated with a very thin metal film like gold or platinum making them conducting without altering any essential details of the sample. The metal film is usually sputter coated on the sample to be investigated prior to the introduction into the electron microscope. This enables even biological samples to be analyzed using an electron microscope. Additionally, some microscopes provide with a low energy electron flood gun to reduce the sample charging effect by providing more electrons to an insulating sample.

Electron microscopes can also be used to obtain the composition of sample using a technique known as Energy Dispersive Analysis of X-rays (EDAX). The high energy electrons striking the sample produce characteristic X-rays of atoms with which they interact. When

COURSE NAME: Nanomaterials and Applications

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

UNIT: III

BATCH-2016-2019

analysis of the energies and intensities of such characteristic X-rays are compared one can obtain the composition analysis of the sample under investigation.

Transmission Electron Microscope (TEM)

Transmission electron microscope is ideal for investigating the nanomaterials, as very high resolution is possible (better than 0.5 nm) using it. As the name suggests the electrons are transmitted through the specimen in this microscope. Electrons of very high energy (typically >50 keV) are used which pass through a series of magnetic lenses, as in an optical or SEM discussed earlier. The basic components of TEM are electron source, condenser lens, specimen, objective lens, diffraction lens, intermediate lens, projector lens and a fluorescent screen in the given order. There may be some additional lenses in different microscopes in order to improve the image quality and resolution. The lenses are electromagnetic whose focal lengths are varied to obtain optimized images rather than moving the lenses themselves as is done in an optical microscope. Similar to SEM, the components (and specimen) of a TEM also have to be housed in a chamber having high vacuum 103–104 Pa for its proper functioning. As illustrated in Fig. 7.8, TEM has the advantage that one can not only obtain the images of the specimen but also diffraction patterns, which enable to understand the detailed crystal structure analysis of the sample. Using diffraction analysis one can find out size dependent changes in the lattice parameters as well as defects in the sample. Moreover it is also possible to analyze single particles of very small (nanometre) dimension. In some microscopes, it is possible to vary the sample temperature. This enables to investigate the problems such as size dependent melting point variation of nanoparticles

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications COURSE CODE: 16PHU603A UNIT: III BATCH-2016-2019 Electron source -Condenser lens Sample Objective lens Direct Back focal plane beam of objective lens Diffracted

Image

Scanning Tunnelling Microscope

beam

The scanning tunnelling microscope is based on the tunneling principle. When two metals say M1 and M2 are brought at small distance (but larger than 10 nm) as even though their Fermi levels do not coincide, transfer of electrons from one metal to the other is not possible. To transfer electrons from one metal to the other, it is necessary for the electrons in the vicinity of the Fermi level to overcome the potential barrier known as the work function of the material. Typically, the work functions of metals are few electron volts (2–5 eV) and transfer of electrons at room temperature is forbidden. However, the metals brought in extremely close distance of the order of a few nanometres (usually less than 10 nm) behave differently. Electrons can be transferred from one metal to the other to establish a common Fermi level without going over the potential barrier, set by the work function. At short distance of few nanometres, the wavefunctions of electrons from either side decay into the other metal. In other words, electrons can 'tunnel' from one metal to the other to occupy state of lower energy. This causes Fermi levels of the two metals to coincide with a small 'contact potential'. This reduces the barrier heights but changes are still small and barriers are sufficiently large for electrons to overcome them. Once the Fermi levels coincide, the electrons cannot flow from one metal to the other. However, by raising the Fermi level of one metal with respect to the other, electrons can tunnel from one metal to the other.

The energy required by electrons to overcome the energy barrier is still very high and not obtained by applying the potential, but electrons can tunnel. The tunneling probability or current

COURSE NAME: Nanomaterials and Applications

UNIT: III

CLASS: III B.Sc Physics

BATCH-2016-2019

depends upon the availability of the empty states in metal in which electrons flow (density of empty states) and distance between the two metals. Fermi level positions can be altered by applying a small voltage between the two metals. The metal (M1) which is connected to the negative terminal of the power supply has raised Fermi level with respect to the other metal (M2) whose Fermi level is lowered. The tip potential is made negative, therefore its Fermi level is raised and current flows from tip to the sample. Indeed it is possible to raise Fermi level of sample higher than the tip, so that electrons flow from sample to the tip. It is then quite obvious that by lowering the sample with respect to the tip and measuring the current flowing towards the sample, we are able to probe unoccupied states or empty energy levels of the sample. If the sample Fermi level is at higher level, electrons below Fermi level flow to the tip. Therefore, one can know about occupied states in the sample. Thus, STM is capable of performing even spectroscopy of occupied and unoccupied levels.

Fig. Tunnelling of electrons from one metal to other. (a) Metals are at small distance, but not less than 10 nm. (b) Metals are in close contact with each other, at a distance less than 10 nm. (c) Potential is applied between two metals

An STM can be operated in two different modes viz.

- 1. Constant current mode
- 2. Constant height mode

Constant current mode: Probe in the form of a sharp metal tip is moved slowly on the sample surface so that the current between the tip and the sample remains constant. In order to maintain the constant current between the tip and the sample, distance between the tip and the atomic corrugations also needs to be kept constant. Thus the tip will have to follow the atom contours.

By successively scanning the desired sample area in a raster mode, profile of surface atoms can be generated as an image, which is really the movement of the tip or the probe in an attempt to keep constant current between the sample and the tip, controlled by a proper feed-back loop. This is known as constant current mode.

Constant height mode: Alternatively, the tip can be moved on the sample surface at a constant height (typically >0.5 nm), between current and the distance, a surface profile can be generated from the variations observed in the tunnel current. Thus the image is the replica of the variation of current as the tip scans the desired area of the sample surface. Advantage of the constant height mode as compared to the constant current mode is that the tip can be moved faster on the sample surface, as there is no necessity of the feed-back circuit. Besides it is dangerous to move the tip close to the sample in constant current mode, as that can occasionally hit some rough hillocks of the sample and get destroyed. This is avoided in the constant height

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

mode and tip can be moved faster. However this would be at the cost of better sensitivity in the constant current mode.

Major limitation of STM is that the tunnelling current has to flow between the sample and the probe. Although the current is very small (of pico ampere order), it can be detected. However, in case of insulating samples, even this much current is not possible.

Atomic force microscopy

CLASS: III B.Sc Physics

Atomic force microscopy is arguably the most versatile and powerful microscopy technology for studying samples at nanoscale. It is versatile because an atomic force microscope can not only image in three-dimensional topography, but it also provides various types of surface measurements to the needs of scientists and engineers. It is powerful because an AFM can generate images at atomic resolution with angstrom scale resolution height information, with minimum sample preparation.

Surface Sensing

An AFM uses a cantilever with a very sharp tip to scan over a sample surface. As the tip approaches the surface, the close-range, attractive force between the surface and the tip cause the cantilever to deflect towards the surface. However, as the cantilever is brought even closer to the surface, such that the tip makes contact with it, increasingly repulsive force takes over and causes the cantilever to deflect away from the surface.

Detection Method

A laser beam is used to detect cantilever deflections towards or away from the surface. By reflecting an incident beam off the flat top of the cantilever, any cantilever deflection will cause slight changes in the direction of the reflected beam. A position-sensitive photo diode (PSPD) can be used to track these changes. Thus, if an AFM tip passes over a raised surface

feature, the resulting cantilever deflection (and the subsequent change in direction of reflected beam) is recorded by the PSPD.

Imaging

An AFM images the topography of a sample surface by scanning the cantilever over a region of interest. The raised and lowered features on the sample surface influence the deflection of the cantilever, which is monitored by the PSPD. By using a feedback loop to control the

COURSE NAME: Nanomaterials and Applications

UNIT: III

BATCH-2016-2019

height of the tip above the surface-thus maintaining constant laser position-the AFM can generate an accurate topographic map of the surface features.

An AFM can be operated in three different modes viz. (1) Contact mode, (2) Noncontact mode and (3) Tapping mode.

Contact mode: In this case, the tip is in contact with the sample surface and is almost forced into it. However due to repulsive interaction between electron charge cloud of the tip atom and that of the surface atom, the tip is repelled back which bends the cantilever and deviates athe direction of the laser beam. In this mode the interaction due to the first term on right hand side of Eq. (7.7)is dominant due to very small value of 'R', the distance between two atoms. The main disadvantage of this mode is that the tip or sample can get damaged due to forcing of the tip into sample, especially, polymers or other organic materials like biological samples which can get damaged by this method.

Non-contact mode: In non-contact mode, the tip or the probe moves at some small distance away from the sample surface. Therefore, it cannot damage the sample. This term arises due to polarization of interacting atoms and is due to dipole-dipole.

Tapping mode: Tapping mode is a combination of contact and non-contact modes. The resolution in contact mode is higher than that due to non-contact mode, because in contact mode the interaction between tip and surface atoms is much more sensitive to the distance as compared to that in non-contact mode. With tapping mode, high resolution advantage of contact mode and non-destructiveness of noncontact mode are achieved. The tip is oscillated in the vicinity of the surface at a distance of _50 nm in such a way that it nearly touches the sample during its cycle of oscillation. Tapping mode is simple and robust to use.

Fourier Transform Infra Red Spectrometer

CLASS: III B.Sc Physics

Fourier Transform Infra Red (FTIR) spectrometer makes use of the Michelson interferometer for recording the spectra. Infra red rays falls on the beam splitter BS.

IR source and detector are similar to those used in dispersive type IR spectrometer. Part of the beam falls on a movable (0-1 cm) mirror M1 and a fixed mirror M2.

The rays are reflected back from both the mirrors along the same path and interfere at BS. A part of this combined beam falls on the sample and the detector. Constructive and destructive interference occurring at BS depends upon the path length of the rays. A white beam i.e. the

COURSE NAME: Nanomaterials and Applications BATCH-2016-2019

beam containing a broad continuous spectrum of wavelengths produces constructive and destructive interference pattern of every wavelength with all others.

UNIT: III

The recombined beam passing through the sample produces absorption spectrum in which certain characteristic frequencies are absorbed by molecules present in the sample. With modern computers, it is quite an easy job to carry out a Fourier Transform. Detector collects, for example, signal from sample every millisecond and stores each spectrum in different locations. Spectra are then Fourier transformed and resultant spectra are obtained as an output. Thus, spectra can be generated very fast and Fourier Transform also is very fast. Thus better and fast data acquisition is possible using an FTIR spectrometer. Hence most of the modern commercial infrared spectrometers are FTIR spectrometers.

Sample Preparation

CLASS: III B.Sc Physics

Sample preparation is a difficult task in IR range as there is no transparent material for cuvettes. Alkali halides (such as NaCl, KBr) are usually used which are transparent even at longer wavelengths. Powder samples are mixed with alkali halides and pressed in the sample holder. For liquid samples, there are single crystals of KBr or NaCl and liquid is sandwiched between the two. But in this case one cannot use aqueous solutions because alkali halides are soluble in water. For such samples silver chloride is used. One can use Teflon also but it shows absorption bands for C-C and C-F. For frequencies less than 600 cm⁻¹ one can use polyethylene cell also.

FTIR of TiO₂, suggesting vibrations due to TiO₆ octahedron and adsorbed hydroxyl group (3,568

Coimbatore-641021. (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

UNIT III (Objective Type/Multiple choice Questions each Questions carry one Mark)

NANOMATERIALS AND APPLICATIONS

PART –A(Online Examination)

S.No.	QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
		Scanning	Scientific	Systematic		Scanning
		Tunneling	Technical	Technical	Super Tensile	Tunneling
1	The full form of STM is	Microscope	Microscope	Microscope	Microscope	Microscope
2	What does 'F' stand for in AFM?	Fine	Front	Force	Flux	Force
	X-rays have larger wavelengths than which of the					
3	following?	Gamma rays	Beta rays	Microwave	Visible light	Gamma rays
			They are			
			electromagnetic	Their		Their
		They have very high	radiation, and	wavelengths are	Their high	wavelengths
		energy, hence they	hence do not	comparable to	frequency	are comparable
	X-ray diffraction patterns are used for studying	can penetrate through	interact with	inter-atomic	enables rapid	to inter-atomic
4	crystal structure of solids because	solids	matter (crystals)	distances	analysis	distances
	For destructive interference to take place, the path					
5	difference between the two waves should be:	nλ	2nλ	$(n+1/2)\lambda$	$(2n+1)\lambda$	nλ
	Minimum interplanar spacing required for Bragg's					
6	diffraction is:	λ/4	$\lambda/2$	λ	2λ	$\lambda/2$
			normal to	parallel lattice	normal to	parallel lattice
	In Bragg's equation $[n\lambda = 2.d.\sin\theta]$, θ is the angle	specimen surface	specimen surface	surfaces d	parallel lattice	surfaces d
7	between:	and incident rays	and incident rays	distance apart	surfaces d	distance apart

				and incident rays	distance apart and incident rays	and incident rays
	In the powder method of XRD, the intensities of					
	various bright lines are compared to determine the					
	crystal structure. For simple cubic lattice the ratio					
8	of intensities at first two maxima are:	1/2	3/4	1/4	1	1/2
	X-ray diffractometers are not used to identify the			Polymeric		
9	physical properties of which of the following?	Metals	Liquids	materials	Solids	Liquids
	X-ray diffractometers provide				Either	
	information about the compounds present in a			Quantitative and	quantitative or	Quantitative
10	solid sample.	Quantitative	Qualitative	qualitative	qualitative	and qualitative
	Using powder method of diffractometers, which of		Percentage of Na+	Percentage of	Percentage of	Percentage of
11	the following can be determined?	Percentage of K+	and Cl-	KBr and NaCl	Br-	KBr and NaCl
						Thin walled
	In powder method, the powder sample is	Thin walled glass	Thin walled test	Thin walled	Thin walled	glass capillary
12	contained in which of the following?	capillary tubes	tube	curvettes	flask	tubes
	Which of the following is the most common					
	instrument for photographic recording of	Debye-Scherrer			Scintillation	Debye-Scherre
13	diffraction patterns?	powder camera	Gamma camera	Geiger tube	counter	powder camera
	With the help of which of the following equations					
	is the distance calculated from known wavelength				Scherrer	Bragg's
14	of the source and measured angle?	Coolidge equation	Bragg's equation	Debye equation	equation	equation
	In Diffractometer, the identification of a					
	component of the sample from its powder					
	diffraction pattern is based upon the of				Position,	Position,
15	lines and their relative	Number, length	Number, intensity	Position, length	intensity	intensity
	Diffractometers are similar to which of the	Optical grating	Prism		Photovoltaic	Optical grating
16	following?	spectrometer	spectrometer	Photo multiplier	cell	spectrometer
	In Diffractometers, line intensities depend on					
	and kind of atomic reflection centres in				Distance	
17	each set of plates.	Number	Position	Length	between lines	Number
	In powder diffractometer, the sharpness of the	Quality of the	Quality of the slit,	Thickness of the	Number of	Quality of the
18	lines is greatly determined by which of the	sample, size of the	size of the sample	slit, amount of	slits,	slit, size of the

following? slit the sample composition of the sample sample X-Rays are magnetic radiation radiation electroir radiations chemical radiations chemical radiations chemical radiations electromagnetic radiations chemical radiations electromagnetic radiations chemical radiations electromagnetic radiations electromagnetic radiations compound microscope electron microscope transmissio electron microscope compound microscope transmissio electron microscope 20 Electrons of Seanning Electron Microscope are 21 glass funnel specimen metal-coate surfaces vacuum ehamber metal-coate surfaces 22 Magnification of light microscope is 1500X 2000X 1000X 2500X 1500X 23 known as 0bject can be magnified under electron microscope about 350, 000 times 250, 000 times 300, 000 450, 000 300, 000 25 Flectron Microscope can give a magnification up to o 400,000X 100,000X 1500X 100X 400,000X 26 Icetron beams imagnetic fields imagnetic fields inght vspass through	 						
X-Rays aremagnetic radiationclectric radiationelectromagnetic radiationshermical radiationsclectromagnetic radiations19Kind of clectron microscope which is used to study internal structure of cells isscanning clectron microscopetransmission electron microscopelight microscopecompound microscopetransmission electron microscope20Electrons of Scanning Electron Microscope are reflected throughglass funnelspecimenmetal-coated surfacesvacuum chambermetal-coate surfaces21Magnification of light microscope is known as1500X2000X1000X2500X1500X20Photograph which is taken from microscope is known as1500X2000X1000X2500X1500X24Microscope about350, 000 times250, 000 times250, 000timeselectron heams and magnetic fields25microscope?electron beams electron beamsmagnetic fieldslight wavesspecimen should be thin and dry, image is obtained on phosphorescent screen and electron beamspecimen should be thin and dry, image is obtained on o hposphorescent screen and electron beamspecimen should be thin and dry, image is obtained on phosphorescent screen and electron beam must pass throughspecimen should be thin and dry, image is obtained on phosphorescent screen and electron beams must pass throughspecimen should be thin and dry, image is obtained on phosphorescent screen and electron beams must pass th		following?	slit		the sample	composition of the sample	sample
Kind of electron microscope which is used to study internal structure of cells isscanning electron microscopetransmission electron 	19	X-Rays are	magnetic radiation	electric radiation	electromagnetic radiations	chemical radiations	electromagnetic radiations
Electrons of Scanning Electron Microscope are reflected throughglass funnelspecimenmetal-coated surfacesvacuum chambermetal-coate surfaces21Magnification of light microscope is Nnown as1500X2000X1000X2500X1500XPhotograph which is taken from microscope is ancorgaphmacrographmonographmicrographpictographmicrograph0bject can be magnified under electron 	20	Kind of electron microscope which is used to study internal structure of cells is	scanning electron microscope	transmission electron microscope	light microscope	compound microscope	transmissior electron microscope
22Magnification of light microscope is Photograph which is taken from microscope is known as1500X2000X1000X2500X1500X23Photograph which is taken from microscope is known asmacrographmonographmicrographpictographmicrograph24Object can be magnified under electron microscope about350, 000 times250, 000 times300, 000 times450, 000 times300, 000 times25microscope aboutelectron beams and magnetic fieldselectron beams and magnetic fieldselectron beams and magnetic fieldselectron beams and magnetic fieldselectron beams and magnetic fieldselectron beams and magnetic 	21	Electrons of Scanning Electron Microscope are reflected through	glass funnel	specimen	metal-coated surfaces	vacuum chamber	metal-coated surfaces
23Photograph which is taken from microscope is known asmacrographmonographmicrographpictographmicrograph0Object can be magnified under electron aricroscope about350,000 times250,000 times300,000 times450,000300,000 	22	Magnification of light microscope is	1500X	2000X	1000X	2500X	1500X
24Object can be magnified under electron microscope about350,000 times250,000 times300,000 times450,000 times300,000 times24microscope aboutwhich of the following is used in electron microscope?electron beams electron beamselectron beams and magnetic fields25microscope?electron beamsmagnetic fieldslight waveselectron beams fields26to400,000X100,000X15000X100X400,000X26to400,000X100,000X15000Xspecimen should be thin and dry, image is obtained on a phosphorescent screen and clectron beamspecimen should be thin and dry, image is obtained on a phosphorescent screen and evacuated evacuatedelectron beam evacuated evacuated evacuated evacuatedspecimen streen and evacuated evacuated chamberspecimen should be thin and dry, image is obtained on a phosphorescent screen and evacuated evacuatedmicroscope is a function ofmicroscope is a function ofmicroscope is a function of28microscope is a function ofelectron beam used that lie in the mass of atomsnumber of atoms that lie in themass of atoms that lie in the	23	Photograph which is taken from microscope is known as	macrograph	monograph	micrograph	pictograph	micrograph
Which of the following is used in electron microscope?electron beams electron beamsmagnetic fieldselectron beams and magnetic fieldselectron beams and magnetic fields26toElectron Microscope can give a magnification up 26400,000X100,000X15000X100X400,000X26to400,000X100,000X15000X100X400,000X27microscop?specimen specimen stould be thin and dry specimen screen andspecimen screen and electron beam screen and electron beam screen and electron beam screen and electron beamspecimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam27microscopy?specimen thin and dry wavelength of microscopy is a function ofspecimen should be thin and drymicroscope is a function ofnumber and mass of atomsmass of atomsnumber and mass of atoms	24	Object can be magnified under electron microscope about	350, 000 times	250, 000 times	300, 000 times	450, 000 times	300, 000 times
26 to	25	Which of the following is used in electron microscope?	electron beams	magnetic fields	light waves	electron beams and magnetic fields	electron beams and magnetic fields
Image is obtained is obtained on a phosphorescent microscopy?specimen should be thin should be thin and dry, image is obtained on a is obtained on phosphorescent phosphorescent phosphorescent phosphorescentspecimen should be thin and dry, image is obtained on a is obtained on phosphorescent phosphorescent phosphorescentspecimen should be thin and dry, image 	26	Electron Microscope can give a magnification up to	400,000X	100,000X	15000X	100X	400,000X
28 microscope is a function of electron beam used that lie in the mass of atoms that lie in the mass of atoms	27	Which of the following are true for electron microscopy?	specimen should be thin and dry wavelength of	image is obtained on a phosphorescent screen	electron beam must pass through evacuated chamber number and	specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber mass of atoms	specimen should be thin and dry, image is obtained on a phosphorescent screen and electron beam must pass through evacuated chamber
	28	microscope is a function of	electron beam used	that lie in the	mass of atoms	that lie in the	mass of atoms

			electron path	that lie in the	electron path	that lie in the
				electron path		electron path
						Scanning
	Which among the following helps us in getting a	Transmission	Scanning Electron	Compound	Simple	Electron
29	three-dimensional picture of the specimen?	Electron Microscope	Microscope	Microscope	Microscope	Microscope
	The secondary electrons radiated back in scanning			vacuum		
30	microscope is collected by?	specimen	anode	chamber	cathode	anode
					size and	size and
					chemical	chemical
					composition of	composition of
					the irradiated	the irradiated
					object, number	object, number
					of electrons	of electrons
					ejected and on	ejected and on
					the number of	the number of
			chemical		electrons	electrons
	On what factors do the intensity of secondary	shape of the	composition of the	number of	reabsorbed by	reabsorbed by
31	electrons depends upon?	irradiated object	irradiated object	electrons ejected	surrounding	surrounding
	Where do we obtain the magnified image of the		phosphorescent		scanning	cathode ray
32	specimen in SEM?	cathode ray tube	screen	anode	generator	tube
					Negative-	Negative-
					Staining,	Staining,
					Shadow	Shadow
					Casting,	Casting,
	Which of the following techniques are used in				Ultrathin	Ultrathin
	Transmission Electron Microscopy (TEM) for			Ultrathin	Sectioning,	Sectioning,
33	examining cellular structure?	Negative-Staining	Shadow Casting	Sectioning	Freeze-Etching	Freeze-Etching
	In Electron microscope, light source is replaced by	electron	neutron	nroton	nhoton	electron
34	a beam of very fast moving	electron	neution	proton	photon	ciccuon
	Electrons are sub-atomic particles that rule outer	photon	narticle	atom	molecule	atom
35	part of the	Photon	Particle	atom		
	When maintaining the microscope what is used to					
36	clean the lenses?	Oil	Water	Alcohol	Detergent	Alcohol
37	What device is used to test the optics of the high	Stage magnometer	Stage micrometer		Glass slide	Stage

	power lens			Haemocytometer		micrometer
				Oil the		
	When maintaining the microscope, which is NOT	Clean off grease and		mechanics and	Wash the base	Wash the base
38	an essential step?	spills	Blow away dust	moving parts	and arm	and arm
	Which of the following components on a light				Revolving	The two eye
39	microscope should be focused first?	The two eye pieces	Objective lenses	Condenser	nosepiece	pieces
	Which of these objectives should be used to first					
40	view the specimen?	X10	X40	X4	X100	X4
	What is the correct name for the main microscope					
41	lens that focuses the image?	Ocular	Binocular	Objective	Condenser	Objective
	What is the correct name for the microscope lens					
42	located in the eyepiece?	Ocular	Binocular	Objective	Condenser	Ocular
	If the eyepiece magnification on light microscope					
	is $x10$ and the objective is $x40$, what is the overall					
43	magnification?	x10	x40	x400	x4	x400
			transmission			transmission
	Kind of electron microscope which is used to	scanning electron	electron	light	compound	electron
44	study internal structure of cells is	microscope	microscope	microscope	microscope	microscope
	Electrons of Scanning Electron Microscone are			metal-coated	Vacuum	metal-
45	reflected through	glass funnel	specimen	surfaces	chamber	coated surfaces
	Object can be magnified under electron		specificit	300,000	450,000	300,000
46	microscope about	350, 000 times	250_000 times	times	times	times
10			250,000 times		By calibration	
	How is the wavelength controlled in an FTIR	By a Michelson			with a standard	
47	spectrometer?	Interferometer	By a computer	By a laser	sample	By a laser
		A dispersive	An emission	An absorbance	A UV-Vis	An absorbance
48	What type of technique is FTIR spectroscopy?	technique?	technique	technique	technique	technique
			I I	The same as that		
	What does the spectrum of Nitrogen(N2) look	The same as that of	It has only p- and	of carbon	It doesn't have	It doesn't have
49	like?	air	r-branches	monoxide	one!	one!
	What occurs when the moving mirror in an FTIR					
	spectrometer is the same distance from the	Constructive	Destructive	Radio	The spectrum	Constructive
50	beamsplitter as the static mirror?	interference	interference	interference	is measured	interference

Γ					Between the		Between the
				Between the	visible and	Between the	visible and
		In what region of the spectrum does infrared	At the low-energy	visible and	microwave	visible and x-	microwave
	51	radiation occur?	end	ultraviolet regions	regions	ray regions	regions
		What occurs when a molecule absorbs infrared				It vibrates	It vibrates
	52	radiation?	It warms up	It flies around	It spins faster	faster	faster
			•	It is useful where	Size has been	Size has	Size has
		Which of the following is not true about Fourier	It is of non-	repetitive analysis	reduced over the	increased over	increased over
	53	Transform Infrared (FTIR) spectrometer?	dispersive type	is required	years	the years	the years
ſ				Information could			
		Which of the following is not the advantage of	Signal to noise ratio	be obtained on all	Retrieval of data	Easy to	Easy to
	54	Fourier Transform Spectrometers?	is high	frequencies	is possible	maintain	maintain
ſ		In which region of the electromagnetic spectrum		•			
	55	does an absorption at 600 nm come?	Vacuum-UV	Visible	near UV	infrared	Visible
			The shifting of an				
			absorption towards				
			the blue end of the			The shifting of	
			spectrum	The shifting of an	The shifting of	an absorption	The shifting of
				absorption to	an absorption to	to shorter	an absorption
	56	What is a red shift?		higher energy.	lower energy	wavelength	to lower energy
		Why is the computer necessary in Fourier	To display the	To process the	To determine the	To determine	To process the
	57	Transform Spectrometer?	detector output	detector output	amplitude	the frequency	detector output
		What is the wavelength range for UV spectrum of			0.01 nm to 10	10 nm to 400	10 nm to 400
	58	light?	400 nm - 700 nm	700 nm to 1 mm	nm	nm	nm
ſ		Which of the following has to be computed to		Ratio of sample			Ratio of sample
		determine transmittance and absorbance at various	Ratio of signal and	and reference		Reference	and reference
	59	frequencies?	noise	spectra	Sample spectra	spectra	spectra

Letter Longierer (Erect CACEPTOR CACEPTOR CACEPTOR Star Constraints) (Statabard Understand Star Category (Statabard Understand Statabard U

UNIT-IV

Optical Properties: Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Quantitative treatment of quasi-particles and excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostructures and nanostructures.

COULOMB INTERACTION IN NANOSTRUCTURES

Coulomb Interactions in a Dielectric Quantum Well

Consider A charge q is at point O, at a distance z from the planar interface between two dielectrics 1 and 2, with relative dielectric constants ε_1 and ε_2 , respectively. The charge q is in region 1. The discontinuity of the dielectric constant induces polarization charges at the interface.

Fig 1: Charge q at distance z from the interface between two dielectrics

Following a well-known approach, the potential in region 1 can be written as the potential created by two charges in an homogeneous medium of dielectric constant ε_1 the charge q, and a fictitious charge q' sitting at the point O', the image of the point O with respect to the interface. Thus, we have

where r and r' are the respective distances from the points O and O'. The potential in region 2 is written as the potential due to a fictitious charge q" at the point O, in an homogeneous medium of dielectric constant ε_2 :

Using the boundary conditions on the electric field at the interface, we have

$$q' = q \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2}$$
$$q'' = q \frac{2\epsilon_2}{\epsilon_1 + \epsilon_2}$$
(3)

From these expressions and the electrostatic self-energy of the charge q is:
Figure 2 shows the self-energy of an electron as function of the distance z, in the case $\varepsilon_1 = 10$ and $\varepsilon_2 = 1$. The self-energy is quite substantial at distances in the nanometre range. The electrostatic self-energy of particles cannot be neglected in nanostructures with large dielectric mismatch.

Image Charge Method for a Dielectric Quantum Well

Consider the problem of a charge q located at the point $(r_{ll} = 0, z_0)$, in a semiconductor quantum well. L is the thickness of the well, and the z axis is perpendicular to the interfaces. A schematic structure is shown in Fig 3. The well, with a dielectric constant ε_1 , is sandwiched by barrier layers having a different dielectric constant ε_2 . The potential is calculated using the image charge method, following closely. Due to the presence of the two interfaces, there is an infinite series of image charges. The potential in the well is given by regarding the whole structure as having a common dielectric constant ε_1 , and by placing image charges q_n at the positions:

$$z_n = nL + (-1)^n z_0, \ n = \pm 1, \pm 2...$$
 (5)

The potential in the left-hand-side barrier layer is given by placing image charges q'_n at Z_n , n = 0, 1, 2 ... and the potential in the right-hand-side barrier layer by placing image charges q''_n at Zn, n = 0, -1, -2 In both cases, the whole structure is seen as having a common dielectric constant ε_2 . Using the boundary conditions on the electric field at the interfaces, we have:

$$q_n = q\gamma^{|n|} , \quad \gamma = \left(\frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2}\right)$$
$$q'_n = q''_n = q_n \frac{2\epsilon_2}{\epsilon_1 + \epsilon_2} . \tag{6}$$

Thus, the potential in the well, at a position (r_{ll}, z) , is given by:

$$\varphi(\mathbf{r}_{\parallel}, z) = \sum_{n=-\infty}^{\infty} \frac{q\gamma^{|n|}}{4\pi\epsilon_0\epsilon_1 \{r_{\parallel}^2 + [z - (-1)^n z_0 - nL]^2\}^{1/2}}$$
(7)

A physically interesting limit is obtained when $r_{ll} \gg (\epsilon_1 / \epsilon_2)L$:

Schematic structure of dielectric quantum well

Thus, if the semiconductor quantum well is sandwiched between insulators or semiconductors with a small dielectric constant ε_2 , the long-range Coulomb interactions are strongly enhanced compared to the bulk case. This effect, first pointed out by Keldysh, is due to the penetration of the electric field into the barrier with a small dielectric constant. This effect has important consequences, such as the enhancement of the exciton binding energy of the excitonic oscillator strength, and of the electron-electron interactions.

The self-energy of a charge q located at the point (r_{ll}, z) does not depend on r_{ll} :

$$\Sigma(z) = \frac{1}{2} \sum_{n=\pm 1,\pm 2...} \frac{q^2 \gamma^{|n|}}{4\pi\epsilon_0\epsilon_1 |z - (-1)^n z - nL|}$$
(9)

This self-energy diverges at the interface. To remedy this divergence, shifted mirror faces are sometimes employed for the lowest order ($n = \pm 1$) image charges.

Coulomb Interactions in Dielectric Quantum Dots

We consider Coulomb interactions in a spherical semiconductor quantum dot, where simple analytical results can be obtained. A schematic structure is shown in Fig. 4. The dot, of radius R and dielectric constant ε_{in} , is surrounded by a medium of dielectric constant ε_{out} . The potential energy V(r, r') of a charge q located at r induced by a charge q' at r' is given by

$$V(\boldsymbol{r}, \boldsymbol{r}') = V_{\rm b}(\boldsymbol{r}, \boldsymbol{r}') + \delta V(\boldsymbol{r}, \boldsymbol{r}')$$
(10)

Where

$$V_{\rm b}(\boldsymbol{r}, \boldsymbol{r}') = \frac{qq'}{4\pi\epsilon_{\rm in}\epsilon_0|\boldsymbol{r} - \boldsymbol{r}'|},$$

$$\delta V(\boldsymbol{r}, \boldsymbol{r}') = qq' \sum_{n=0}^{\infty} \frac{(\epsilon_{\rm in} - \epsilon_{\rm out})(n+1)r^n r'^n P_n(\cos(\theta))}{4\pi\epsilon_0\epsilon_{\rm in}[\epsilon_{\rm out} + n(\epsilon_{\rm in} + \epsilon_{\rm out})]R^{2n+1}}.$$
(11)

 θ is the angle between the two vectors r and r ', and P_n the nth Legendre polynomial. In the particular case where a charge q is at the center of the dot, the electrostatic potential in the dot is given by

$$\varphi(\mathbf{r}) = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{\epsilon_{\rm in}r} - \frac{1}{R} \left(\frac{1}{\epsilon_{\rm in}} - \frac{1}{\epsilon_{\rm out}} \right) \right]$$
(12)

The second term in the bracket is due to the polarization charge at the surface of the quantum dot. When $\epsilon_{out} ~ \ast \epsilon_{in}$, this constant term becomes the main contribution of the potential in a large part of the dot. We know that it explains the large binding energy of donor and acceptor impurities in quantum dots.

The self-energy of a charge q in the dot is given by

$$\Sigma(\mathbf{r}) = \frac{1}{2}\delta V(\mathbf{r}, \mathbf{r})$$
(13)

with q' = q.

At the end of the chapter, we will use this formula to calculate the charging energy of an electron or a hole in a quantum dot.

CONCEPT OF DIELECTRIC CONSTANT FOR NANOSTRUCTURES:

The dielectric properties of a system are described by $\varepsilon^{-1}(\mathbf{r},\mathbf{r}')$. From this, in a bulk semiconductor, we can deduce directly the macroscopic dielectric constant $\varepsilon_{M}(q)$ which contains most of the useful information on the dielectric screening. We can wonder if this macroscopic treatment is possible in semiconductor nanostructures and if it remains meaningful. This important question was addressed in different works. In this section, we explain why macroscopic quantities for nanostructures cannot be deduced from $\varepsilon^{-1}(r,r')$ as simply as in the bulk case. We show that a physically meaningful macroscopic dielectric constant must be derived taking into account explicitly the polarization charges at the surfaces or interfaces. Using this prescription, we demonstrate that the macroscopic response is the bulk one a few Fermi wavelengths away from the surface and that the bulk response function $\varepsilon_M(q)$ provides most of the needed information even for very small nanostructures. We also show that the average dielectric constant ε_{ave} in spherical clusters decreases when going to small radius R and we discuss the origin of this size dependence. At the end of this section, we prove that all these conclusions mostly based on microscopic tight binding calculations of the dielectric response in Si quantum wells and dots are in fact completely general for semiconductor nanostructures.

General Arguments on the Dielectric Response in Nanostructures:

An important issue is to know how the previous results can be generalized. We have seen that the dielectric response is the bulk one at typically a few interatomic distance from boundaries. This seems to contradict the general belief that screening becomes less effective in nanocrystals due to the opening of the gap. Indeed, the independent particle polarization χ^0 and is given by a sum of terms which behave like $1/(\epsilon_i - \epsilon_j)$ where ϵ_i and ϵ_j are the energies of the unoccupied and occupied states, respectively. Thus, we have calculated the matrix element χ^0_{nm} of the polarization between two firstnearest neighbour atoms at the center of Si nanocrystals. We plot in Fig. χ^0_{nm}/χ^0_{nm} (bulk) and $E_g/E_g(bulk)$ versus size,, $E_g(bulk)$ and χ^0_{nm} (bulk) being the bulk values. The main result is that the polarization is almost independent of the size, and is not at all related to the variation of the gap E_g . Similar results are obtained for InAs nanocrystals and for Si quantum wells as shown on the same figure. χ^0_{nm} is not sensitive to the shift of the band edges induced by the confinement but to the average distance in energy between filled and empty states which remains constant versus size.

Therefore bulk parameters are still pertinent even for very small nanostructures. The decrease of ε_{ave} with size is due to a surface contribution, i.e. to the breaking of polarizable

bonds at the surface. Thus we can now generalize the results by applying the important theorem due to von Laue. This one states that the electron density recovers its bulk value at distances from boundaries of the order of a few Fermi wave-lengths $\lambda_{\rm F}$ i.e. typically the interatomic distance. This means that the response function is the bulk one inside a nanocrystal as long as its characteristic size exceeds a

few $\lambda_{\rm F}$.

Ratio of the nearest neighbor inter-atomic polarization χ^0_{nm} and of the Fig. bulk value χ^0_{nm} (bulk) at the center of Si layers (square), Si spheres (circle) and InAs spheres (triangle) versus size compared to the ratio of the nanostructure gap and the bulk value

The previous results also apply to the electronic part of the dielectric screening in nanostructures of polar materials (e.g. III- V and II- VI semiconductors). For example, the same kind of calculations have been performed on InAs nanocrystals. Because InAs is a slightly ionic material, the dielectric constant is the sum of two contributions, electronic and ionic:

$\varepsilon_{ave} = \varepsilon_{ave}^{el} + \varepsilon_{ave}^{ion}$

Since the ionic contribution comes from the displacement of the ions with respect to their equilibrium position under the application of an external field, it is assumed to be weakly dependent on the crystallite size. The size dependence of the average ε_{ave}^{el} in InAs nanocrystals is shown in Fig.

The screening properties of semiconductor nanostructures:

- a physically meaningful definition of the local macroscopic dielectric constant in a nanostructure must incorporate the effect of the polarization charges at the boundaries
- the macroscopic dielectric response is the bulk one a few Fermi wavelengths away from the boundaries
- > the dielectric response of a semiconductor nanostructure can be fairly well described using the macroscopic wave-vector dependent dielectric constant $E_M(q)$
- the local dielectric constant decreases near the boundaries due to the breaking of polarizable bonds
- the average dielectric constant decreases with decreasing size of the nanostructure due to the increasing contribution of the surfaces
- the opening of the bandgap due to the quantum confinement plays no role in these problems.

CHARING OF A NANOSTRUCTURE:

Case of a Quantum Dot

The level structure of crystallites has been obtained from semi-empirical calculations. Thus, we need to determine the corrections brought by the dielectric effects, due to the finite size of the system. We do this within a macroscopic electrostatic formulation. The self-energy of particles and Coulomb charging effects can be measured experimentally using tunnelling spectroscopy experiments, corresponding to the so-called Coulomb blockade effects.

Consider a spherical quantum dot of radius R and of macroscopic dielectric constant ,we will argue that the best value for ϵ_{in} is the bulk macroscopic dielectric constant ϵ_M in that case.

In the case of a strong confinement, we can obtain a fairly good estimation of the selfenergy \sum of an electron or a hole (q = ±e) injected in the quantum dot, using in a first-order perturbation theory. In the limit of an infinite potential barrier, the one-particle state is wellgiven by the effective mass solution:

$$\phi(\mathbf{r}) = \frac{1}{\sqrt{2\pi R}} \frac{\sin(\pi r/R)}{r}$$
(1)

The self-energy \sum is calculated .We show that a good approximation of \sum is given by

$$\Sigma \approx \frac{e^2}{8\pi\epsilon_0 R} \frac{\epsilon_{\rm in} - \epsilon_{\rm out}}{\epsilon_{\rm in} \left[\epsilon_{\rm in} + \epsilon_{\rm out}\right]} \left(\frac{1}{\eta} + 0.933 - 0.376\eta\right) \tag{2}$$

Where $\eta = \epsilon_{out}/(\epsilon_{in} + \epsilon_{out})$. When $\eta \ll 1$, which is the usual situation when the quantum dot is embedded in an oxide matrix or in a semiconductor with a large gap, the self-energy becomes

$$\Sigma = \frac{1}{2} \left(\frac{1}{\epsilon_{\rm out}} - \frac{1}{\epsilon_{\rm in}} \right) \frac{e^2}{4\pi\epsilon_0 R} + \delta\Sigma \qquad (3)$$

Where

$$\delta \Sigma \approx 0.466 \frac{e^2}{4\pi\epsilon_0\epsilon_{\rm in}R} \left(\frac{\epsilon_{\rm in} - \epsilon_{\rm out}}{\epsilon_{\rm in} + \epsilon_{\rm out}}\right) \tag{4}$$

Where \sum is gives the shift in energy of the extra electron (hole) in the lowest conduction (highest valence) state (Fig 1). The injection of a second electron (hole) leads to an additional upwards (downwards) shift U given by the screened repulsion with the other electron (hole) (Fig 1). With the same approximations as for \sum , U is given by

$$U = \int \phi(\mathbf{r})^2 \phi(\mathbf{r'})^2 V(\mathbf{r}, \mathbf{r'}) d\mathbf{r} d\mathbf{r'}$$
(5)

COURSE NAME:Nanomaterials and Applications UNIT: IV BATC

CLASS: IIIB.Sc Physics

COURSE CODE: 16PHU603A

BATCH-2016-2019

Using the expression of V(r, r') with q = q' = e, U is the sum of two terms. The first one is given by the average repulsion with the other particle

$$e^{2} \int \frac{\phi(\boldsymbol{r})^{2} \phi(\boldsymbol{r}')^{2}}{4\pi\epsilon_{\rm in}\epsilon_{0} |\boldsymbol{r} - \boldsymbol{r}'|} \mathrm{d}\boldsymbol{r} \mathrm{d}\boldsymbol{r}' \approx 1.79 \frac{e^{2}}{4\pi\epsilon_{0}\epsilon_{\rm in}R}$$
(6)

and the second one by the average repulsion with the surface polarization charge induced by the other particle:

$$\int \phi(\boldsymbol{r})^2 \phi(\boldsymbol{r'})^2 \delta V(\boldsymbol{r}, \boldsymbol{r'}) \mathrm{d}\boldsymbol{r} \mathrm{d}\boldsymbol{r'} \qquad (7)$$

The coefficient 1.79 in (6) was obtained numerically . In (7), only the term $\eta = 0$ in the expression of δV given and makes a nonzero contribution to the integral. Thus, we obtain:

$$U = \left(\frac{1}{\epsilon_{\rm out}} + \frac{0.79}{\epsilon_{\rm in}}\right) \frac{e^2}{4\pi\epsilon_0 R} \quad \dots \tag{8}$$

In many situations, the surrounding of the quantum dots is not an homogeneous dielectric medium. Then, Poisson's and Schrodinger equations must be solved self-consistently to calculate the charging energy U. However, U must be necessarily between two bounds, corresponding to $\varepsilon_{out} = 1$ and $\varepsilon_{out} \rightarrow \infty$ in (8).

$$\frac{0.79}{\epsilon_{\rm in}} \frac{e^2}{4\pi\epsilon_0 R} < U < \left(1 + \frac{0.79}{\epsilon_{\rm in}}\right) \frac{e^2}{4\pi\epsilon_0 R} \tag{9}$$

These relations are very useful, for example to interpret the I(V) characteristics of devices based on semiconductor quantum dots. Figure 2 shows the evolution of these two bounds for U in a Si nanocrystal, as function of its diameter. We see that the values of U can be very large when $\varepsilon_{out} = 1$, such that the injection of more than one carrier becomes difficult.

Each time another electron is injected in the nanocrystal, the conduction states exhibit an energy shift U which can be calculated according to (5), using the corresponding wave function. When $\varepsilon_{out} \ll \varepsilon_{in} U$ does not depend too much on the details of the wave function because the dominant term in U

is the Coulomb interaction between the electron and its polarization charge at the surface. In that case, (8) remains a good approximation for a wide range of charge states.

In the case of a metallic nanostructure $(\varepsilon_{in} \rightarrow \infty)$,(3),(4) and (7) give U = e^e/C and $\Sigma = U/2$ as it must be for the charging of a metallic sphere of self-capacitance C = $4\pi\varepsilon_0\varepsilon_{out}$ R. Note that this capacitive model is often extended to the case of semiconductor quantum dots, even if it is not perfectly justified.

Case of a Quantum Well

In the case of quantum wells, the charging energy U is vanishingly small, due to the infinite size of the system. Thus it remains to calculate the self-energy, following the same method as for the dots. For a quantum well of thickness L, the effective mass solution for the one-particle state is:

Where γ is defined and we have replaced $|z - (-1)^n z - nL|$ by |n|L when $|n| \ge 3$, which is justified numerically. Calculating the integral numerically, we obtain:

$$\Sigma \approx \frac{q^2}{4\pi\epsilon_0\epsilon_1 L} \left[0.219 \ \gamma - \ln(1-\gamma) \right] \tag{3}$$

EXCITONS IN DIRECT BAND GAP SEMICONDUCTOR NANOCRYSTALS

Size-selective spectroscopic techniques such as resonant photoluminescence and photoluminescence excitation allow to get extremely detailed information on the lowest excitonic states of quantum dots or nanocrystals. This fine electronic structure is governed by the relative importance of different terms which constitute the Hamiltonian: confinement potential, spin orbit interaction, Coulomb and exchange interactions. Each of these termsdepends on quantum dot size in a different way. Two limiting situations can be considered: the weak confinement regime, when the dot size is larger than a few exciton radii and the strong confinement regime, when the quantum dot size is smaller than the exciton Bohr radius. In the latter regime, the confinement energy is much larger than the Coulomb interaction and both carriers are independently confined. However, even in this case, the Coulomb interaction exists since the electron and the hole are in a finite volume.

Tight binding configuration interaction calculations have been applied to the electronic structure of the lowest excitonic states in CdS nanocrystals with cubic lattice. Here, the nature of the predictions will be analysed in a simplified effective mass picture in order to identify clearly the evolution from bulk to quantum dots. Figure 1 summarizes this simple description fexcitons in CdS quantum dots. Apart from the confinement effect, there are two terms in the Hamiltonian of a quantum dot which mainly determine the size dependence of its excitonic structure: the spin--orbit interaction and the electron-hole exchange interaction. Matrix elements of the spin-orbit interaction are constant. However the matrix elements of the spienter of the splitting's between lowest exciton levels, one first considers two opposite limits: large and small dots.

Fig. 1 Right and left: energy level diagrams describing the fine structure of the excitonic spectrum; middle: splitting between lowest energy levels of the exciton as a function of the electron-hole exchange interaction Δ_x which itself depends on quantum dot size. All the energies are in units of the spin-orbit coupling parameter λ

For large dots, the lowest states converge to the classical situation of the bulk CdS, namely light and heavy-hole excitons and the spin-orbit split exciton. In this situation, the electronhole exchange interaction is negligible with respect to the spin-orbit interaction. In this limit, the effective mass approximation becomes a powerful tool to calculate the electronic structure of spherical nanocrystals. The first electron level is the lS_e state with twofold spin degeneracy and the first level of holes is the $IS_{3/2}$ state which is fourfold degenerate with respect to the hole angular momentum. The next hole level is $IS_{1/2}$ and its distance in energy from the $IS_{3/2}$ level is equal to $3\lambda/2$ where λ is the spin-orbit coupling parameter. Thus the lowest exciton state $lS_e \otimes 1S_3$ is eightfold degenerate and the next higher state $lS_e \otimes lS_{1/2}$ is fourfold degenerate. The introduction in a perturbation scheme of the electron-hole exchange interaction splits the $IS_e \otimes IS_{3/2}$ level into two groups of states. Since the total angular momentum J remains a good quantum number, the lowest exciton state, fivefold degenerate, is characterized by a momentum J = 2 and will be denoted hereafter $\Gamma 2$. The upper exciton state, threefold degenerate, corresponds to a momentum J = 1 and will be denoted Γ_{11} . In the effective mass approximation, the value of the splitting is related to the electron-hole exchange energy in the bulk ($\Delta_x^{\text{bulk}} = 0.23 \text{ meV}$ in CdS) and is given by the following expression

$$\varDelta_{\rm x} = A \left(\frac{a}{R}\right)^3 \varDelta_{\rm x}^{\rm bulk}$$

where a is the Bohr radius (~ 30 A^0 in CdS) and A is a constant which depends on the nature of the semiconductor. The 1/ R^3 scaling of Δ_x is a consequence of the effective mass approximation: more elaborate calculations based on empirical pseudopotentials predict exponents between 2 and 3 for InP and CdSe quantum dots (similar trends are obtained in

tight binding for Si nanocrystals; see next section).

The higher exciton state $|S_e \otimes |S_{1/2}|$ is also split by the electron-hole exchange interaction into two groups of levels with J = O and J = 1, denoted Γ_0 and Γ_{1u} , respectively. In the opposite limit of small quantum dots (right side of Fig.1), the electron-hole exchange energy is larger than the spin-orbit interaction. The lowest exciton level, formed by an electron in s-like states and a hole in p-like states, is split by the exchange interaction into a lower triplet state (S = 1), ninefold degenerate, and an upper singlet state (S = 0), threefold degenerate. The introduction of the spin-orbit interaction in perturbation leads to thesplitting of the triplet exciton state into three states with J = 2, J = 1 and J = 0 (Γ_2 , Γ_{11} and Γ_0 , respectively). The singlet state gives another J = 1 state (Γ_{1u}).

The intermediate case, when the electron-hole exchange interaction is comparable with the spin-orbit interaction, can be described by atomistic calculations like tight binding. In the simplified model described above, the Hamiltonian including exchange and spin-orbit interactions can be diagonalized in the basis of exciton states formed by the product of the s states for the electron and of the p states for the hole. It leads to the following expressions for the energy splitting's between the exciton states and the lowest state Γ_2 .

$$\begin{split} E(\Gamma_{11}) - E(\Gamma_2) &= \frac{3\lambda}{4} + \frac{\Delta_x}{2} - \sqrt{\left(\frac{\Delta_x}{6} - \frac{3\lambda}{4}\right)^2 + \frac{2\Delta_x^2}{9}},\\ E(\Gamma_{1u}) - E(\Gamma_2) &= \frac{3\lambda}{4} + \frac{\Delta_x}{2} + \sqrt{\left(\frac{\Delta_x}{6} - \frac{3\lambda}{4}\right)^2 + \frac{2\Delta_x^2}{9}},\\ E(\Gamma_0) - E(\Gamma_2) &= \frac{3\lambda}{2}, \end{split}$$

where Δ_x , the exchange term, is a function of the nanocrystal radius. Figure 1 (middle) shows the energy splitting's given by the above equation with respect to Δ_x / λ , i.e. as a function of size. The model explains qualitatively the evolution of the excitonic levels predicted by tight binding calculations that describe the photoluminescence excitation spectra measured on CdS nanocrystals. However, one must note that the excitonic structure is in fact more complex due the presence of hole states with slightly higher energy which are not included in the model.

This simple model also explains the probabilities of optical transitions. In the limit of small quantum dots where the exchange interaction is larger than the spin-orbit coupling, the optical transitions from the triplet (S = 1) derived states, i.e. Γ_2 , Γ_{11} and Γ_0 , to the ground state are forbidden in the dipoleapproximation while those from the singlet state Γ_{1u} are allowed

(because thespin must be conserved in the transition). At increasing size, the exchange interaction decreases and the spin-orbit coupling mixes S = 0 and S = 1 states, with the important consequence that the transition from r u becomes optically allowed.

QUANTITATIVE TREATMENT OF QUASI-PARTICLES:

General arguments are developed based on the GW approach which are then substantiated numerically by a tight binding version of this theory. The gap correction is shown to be dominated by the macroscopic surface self-polarization term and exhibits a nonmonotonic behaviour versus dimensionality. In the literature, most quantitative calculations deal with the eigenvalue gap ε_g^0 determined from the difference in one-particle eigenvalues ε_c^0 - ε_v^0 for the neutral system. ε_g^0 is obtained from empirical techniques (tight binding, pseudopotentials) or from ab initio calculations in LDA and, as we have seen, differs from ε_g^{qp} by large amounts $\delta \Sigma$ corresponding to self energy corrections. These can be estimated via the GW method derived but the corresponding computations are very time consuming and can be only applied to small systems]. Therefore simpler methods such as one-particle calculations are highly desirable but, as discussed above, their accuracy is a matter of controversies. In principle, the quasi-particle gap ε_g^{qp} can be calculated exactly in density functional theory (DFT) as

$$\varepsilon_{\rm g}^{\rm qp} = E(n+1) + E(n-1) - 2E(n)$$
(1)

where E(n) is the total energy of the n-electrons neutral system obtained by solving the oneparticle Kohn-Sham equations are written in terms of an effective exchange correlation potentialVxc . In LDA, $V_{xc}(r)$ is approximated locally by the corresponding expression of the homogeneous gas of the same electron density n(r). We discuss in the following why the quasi-particle gap ε_g^{qp} LDA obtained from (1) in LDA differs from the true ε_g^{qp} and, in finite systems, from the LDA eigenvalue gap ε_g^0 LDA. We write

$$\varepsilon_{\rm g}^{\rm qp} = (\varepsilon_{\rm g}^{\rm qp})_{\rm LDA} + \Delta = (\varepsilon_{\rm g}^{\rm 0})_{\rm LDA} + \delta \Sigma$$
(2)

Here, we want to clarify the dependence of $\delta \sum$ and Δ upon the dimensionality of the nanostructure. This is important since Δ reflects a discontinuity of the exact V_{xc} of DFT (not contained in LDA) upon addition of one-electron or hole to the neutral system. We shall find that $\delta \Sigma$ exhibits a smooth decreasing behaviour with increasing dimensionality. On the

contrary Δ presents a peak between QD and 3D, demonstrating the highly non-local nature of V_{xc}. This behaviour can be explained in terms of general arguments based on the GW approximation in which one can isolate a surface long range (macroscopic) contribution to the self-energy. These arguments are then confirmed via a tight binding GW calculation, well adapted to quantitatively treat this macroscopic part.

QUANTITATIVE TREATMENT OF EXCITONS

Consider numerical calculations of the excitonic gap performed via direct resolution. Again, we consider silicon crystallites as a test case. We start to express the excitonic gap ε_g^{exc} as the difference between the quasi-particle gap ε_g^{qp} and E_{coul} , attractive interaction between these two quasi-particles. We have

$$\varepsilon_{\rm g}^{\rm exc} = \varepsilon_{\rm g}^{\rm qp} - E_{\rm coul} = \varepsilon_{\rm g}^0 + \delta \varSigma - E_{\rm coul}$$

Where $E_{coul} = -\langle H_{eh} \rangle$ and ϵ_g^{qp} is written as the sum of the independent particle value ϵ_g^0 and the self-energy correction $\delta \Sigma$. We shall see that there is strong cancellation between the two large quantities $\delta \Sigma - \delta \Sigma$ bulk = $\delta \Sigma$ surf and E_{coul} , such that $\epsilon_g^{exc} \approx \epsilon_g^0 \delta \Sigma$ bulk. This justifies why the single particle calculations yield accurate results for ϵ_g^{exc} We also show that E_{coul} like $\delta \Sigma$.

is dominated to a large extent by surface polarization charges, and we discuss on this basis the amount of cancellation between $\delta \sum$ surf and $\delta \sum$ bulk.

CHARGING EFFECT

Single Particle Tunnelling Through Semiconductor Quantum Dots

Consider the tunnelling spectroscopy experiments on InAs nanocrystals performed by Banin et al. Using a scanning tunnelling microscope. They reveal rich features due to the interplay between quantum confinement and charging effects. In this context, we start by describing the calculations which allow a detailed understanding of the experimental data.

Fig. 1 . Typical double barrier tunnel junction. (a) It consists of two metallic electrodes E1 and E2 (e.g. a substrate and the tip of a scanning tunneling microscope) coupled to a nanostructure by tunnel junctions J1 and J2 with capacitances C_1 and C_2 and tunneling rates Γ^1 and Γ^2 . (b) E1 and E2 are characterized by Fermi energies ε_f^1 and ε_f^2

In, the energy levels ϵ_i^e and ϵ_i^h of spherical InAs nanocrystals have been calculated with a Sp³ tight binding model with second nearest neighbours interactions. The lowest conduction level (lS_e) is s-like, twofold degenerate, and the next level (lP_e) is p-like, a six fold degenerate. The highest two valence levels are found fourfold degenerate. The calculations of the transport properties use an extension of the theory of Averin et al.

The system consists of two metallic electrodes El and E2 weakly coupled to a semiconductor quantum dot by two tunnel junctions J1 and J2 with capacitances C_1 and C_2 . The metallic electrodes El and E2 are characterized by their Fermi energies $\epsilon_f^1 = \epsilon_f - e\phi$ where ϕ is the bias voltage. The total energy of the quantum dot charged with n electrons and p holes with respect to the neutral state can be approximated by

$$E(\{n_i\},\{p_i\},\varphi) = \sum_i n_i \varepsilon_i^{\rm e} - \sum_i p_i \varepsilon_i^{\rm h} + \eta e \varphi q + \frac{1}{2} U q^2$$

 ε_i^e and ε_i^h are the conduction and valence energy levels in the quantum dot, n_i and P_i are electron and hole occupation numbers ($n=\sum_i n_i$, $p = \sum_i p_i$), and q = p-n. In terms of the junction capacitances C_1 and C_2 , $U = e^2/(C1+C2)$ is the charging energy and $\eta = C_1/(C1+C2)$ is the part of the bias voltage φ that drops across junction J2 in the neutral quantum dot. Tunnelling of an electron via the energy level ε_i^e occurs at transition energy

$$\begin{split} \varepsilon_i^{\mathbf{e}}(q|q-1,\varphi) &= E(n_i = 1, \{p_j\}, \varphi) - E(n_i = 0, \{p_j\}, \varphi) ,\\ &= \varepsilon_i^{\mathbf{e}} - \eta e \varphi + U(-q + \frac{1}{2}) . \end{split}$$

Symmetrically, hole tunnelling occurs at ε_i^h (q + l|q, ϕ). The current is calculated using the orthodox theory presented. Where one defines tunnelling rates through the junctions (Fig. 1). Both electrons and holes are treated at the same time incorporating the electron-hole recombinant ion rate R(n, p) from the charge state (n, p) to the charge state (n - 1, p - 1) into the master equations. At T $\rightarrow 0$ K, the I(i φ) curve looks like a staircase. It exhibits a step each time ϵ_f^1 or ϵ_f^2 crosses a transition energy. A new charge state then becomes available in the quantum dot (addition step) or a new channel ε_i^e or ε_i^h is opened for tunnelling to a given, already available charge state (excitation step).

This behaviour is apparent in the results of Banin et al. The differential conductance $G(\phi) = dI(\phi)/d\phi$ p is shown in Fig. 2 for an InAs nanocrystal 6.4 nm in diameter. The tip was retracted from the quantum dot so that C1/C2 is maximum and 17 is close to unity. A zero-current gap is observed around $\varphi = 0$, followed by a series of conductance peaks for $\varphi <$ 0

and $\phi > 0$.

To compare with the interpretation of Banin et al, two types of calculations have been performed:

- using the capacitive model of with the calculated tight binding level structure, U and η being considered as fitting parameters chosen to optimize the agreement with the position of the peaks in the $G(\phi)$ curve

- a full self-consistent treatment on a system with a realistic geometry described in Fig. 3. The ground state energy E_0 (n, p, ϕ) is self-consistently computed for a set of charge states (n,p) and several voltages φ_i . This is done in the Hartree approximation corrected from the unphysical self-interaction term. The electrostatic potential inside the quantum dot is computed with a finite difference method. The tunnelling rates are takenas adjustable parameters but the position of the calculated conductance peaks does not depend on their value.

The calculated $G(\phi)$ curves are compared to the experimental one on Fig. 2. The agreement with experiment is extremely good with practically a one to one correspondence between the calculated and experimental peaks over a range of 3.5 V. The negative bias voltages side is clearly improved in the self-consistent calculation.

Fig. 2 . Comparison between calculated [138, 173] and experimental [249] differential conductance $G(\varphi)$ curves for a 6.4 nm diameter InAs nanocrystal. The optimized parameters for the capacitive model are U = 100 meV and $\eta = 0.9$ ($C_1 = 1.44$ aF, $C_2 = 0.16$ aF). The calculated peaks are broadened with a Gaussian of width $\sigma = 15$ meV

For $\phi > 0$, the first group of two peaks is assigned to the tunnelling of electrons filling the $1S_e$ level, the splitting between the two peaks corresponding to the charging energy. Similarly, the next group of six peaks mainly corresponds to the tunnelling of electrons through the IP_e level, and there is some contributions from the tunnelling of holes. There are also two excitation peaks X_1 and X_2 on Fig. 2 (tunnelling through the $1P_e$ level in the charge states n = 0 and n = 1) that are hardly visible on the experimental $G(\phi)$ curve.

For ϕ < 0, the first two peaks can be unambiguously assigned to the tunnelling of holes filling the highest valence level. However, the next group of peaks is a very intricate structure involving single-hole charging peaks and tunnelling of electrons through the lS_e level. This disagrees with the interpretation of Banin et al, based on single-hole transitions. In particular,

the strong increase of the current below -1.25 V is mainly related to the tunnelling of electrons through the 1P $_{e}$ level.

The experimental spectra have been measured for different nanocrystal sizes allowing to deduce the one-particle bandgap $\varepsilon_g^0 = \varepsilon_1^e - \varepsilon_1^h$ and the charging energy U. Figures 4 and 5 show that the self-consistent tight binding values agree extremely well with experimental ones in the whole range of sizes. This result strongly supports the above interpretation of the tunnelling spectra and validates the predictions of the tight binding

calculations even for large confinement energies.

Fig. 5 Comparison between the calculated (tight binding) and experimental (STM = scanning tunneling microscopy results of [249]) charging energies U versus the bandgap energy for the geometry shown in Fig. 4.17. The dielectric constant of the hexane dithiol layer is either $\varepsilon_{\rm DT} = 2.6$ or $\varepsilon_{\rm DT} = 7.5$. Charging energy U given by (3.72) with $\epsilon_{\rm out} = 6$ (straight line)

Such calculations point to the importance of the medium surrounding the nanocrystal for an accurate determination of the charging energies. This is dearly apparent in the analytical expressions obtained for spherical nanocrystals of dielectric constant ε_{in} embedded in an external medium of dielectric constant ϵ_{out} and calculated with simple effective mass envelope functions. One finds that the self-energy of a carrier directly depends on ϵ_{in} - ϵ_{out} and can thus reverse sign with this quantity. This is not quite the case of the electronic Coulomb repulsion which is always positive but which is proportional to $e^2/(\epsilon_{out}/R)$ which can vary between $0(\epsilon_{out} \rightarrow +\infty)$ and $e^2 / R \epsilon_{out} \rightarrow 0$). Such conclusions have been confirmed by more refined calculations. In these works, the charging energies was calculated with single particle wave functions obtained from an empirical pseudopotential method. The results are completely in line with the simple formula. As with the tight binding approach just described, the authors have calculated the single particle energies of neutral and chargeddusters for InAs nanocrystals. They have also compared their results with those of Banin et al, and they have shown that the best agreement with experiments occurs for $\epsilon_{out} =$ 6. However care should be taken when comparing the predictions of idealized situations (like spherical quantum dots embedded in an homogeneous medium) with the experimental geometry, as done in, which is equivalent to calculating the corresponding capacitances for each particular population of the quantum dot.

LUMINESCENCE

The optical absorption and the stimulated emission are induced by the electromagnetic field. Incontrast, the spontaneous emission occurs even when there is no photon in the system. It is not described in the previous calculation because the electromagnetic field is treated classically. In the following, we shall relate the spontaneous emission to the absorption through the Einstein relationships, which will allow to take into account the local-field effects in a simple manner. Consider the composite material as a system of two levels in thermal equilibrium in an optical cavity of volume V. The number of photons per unit of energy $\hbar\omega$ in the cavity is given by the Planck formula for the black body:

 $N = \frac{8\pi (\hbar\omega)^2 n_{\rm op}^3 V}{h^3 c^3} \frac{1}{\exp\left(\frac{\hbar\omega}{kT}\right) - 1} \tag{1}$

The effective rate of transition $|1\rangle \rightarrow |2\rangle$ per photon and per unit time, i.e. the balance between the absorption and the stimulated emission, is given by the product of the absorption coefficient by the velocity of the light

$$P_{12} = \alpha(\omega) \frac{c}{n_{\rm op}} \tag{2}$$

The effective number of transitions $|1\rangle \rightarrow |2\rangle$ in the cavity per unit of energy is N P₁₂. At equilibrium, they must be compensated by spontaneous transitions $|2\rangle \rightarrow |1\rangle$ whose number per unit of energy is proportional to the mean occupancy f₂ of the level $|2\rangle$

$$NP_{12} = Af_2$$
(3)

This relation must be verified at any temperature. At equilibrium, we have $f_2/f_1 = \exp(-\hbar\omega/kT)$. Using (1) and (2), we obtain

$$A = \frac{8\pi\hbar^2\omega^2 n_{\rm op}^2 V}{\hbar^3 c^2} C(\hbar\omega) \tag{4}$$

To calculate the spontaneous recombination rate $\Gamma_{sp} = l/\tau_{sp}$, we must divide A by the number of nanocrystals in the volume $V (= pV/\Omega)$ and we must integrate over the energy

$$\Gamma_{\rm sp} = \frac{1}{\tau_{\rm sp}} = \frac{\Omega}{pV} \int A d(\hbar\omega)$$
(5)

leading to

$$\Gamma_{\rm sp} = \frac{1}{\tau_{\rm sp}} = \frac{\omega_{21}^3 F^2 e^2 |\langle 1 | \boldsymbol{r} \cdot \boldsymbol{e} | 2 \rangle|^2 n_{\rm op}}{\pi c^3 \epsilon_0 \hbar}$$
(6)

In this calculation, we have implicitly assumed that the absorption is isotropic. Thus, one usually prefers the following expression

$$\Gamma_{\rm sp} = \frac{1}{\tau_{\rm sp}} = \frac{\omega_{21}^3 F^2 e^2 r_{12}^2 n_{\rm op}}{3\pi c^3 \epsilon_0 \hbar} \qquad(7)$$

Where $r_{12}^2 = |\langle 1|x|2 \rangle|^2 + |\langle 1|y|2 \rangle|^2 + |\langle 1|z|2 \rangle|^2$.

We note the presence of the square of the local-field factor F in the spontaneous emission rate.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc Physics COURSE CODE: 16PHU603A

OPTICAL PROPERTIES OF HETEROSTRUCTURES AND NANOSTRUCTURES

The optical absorption of systems with reduced dimensionality based on direct gap semiconductors, going from the bulk to quantum wells and quantum dots. We mainly describe the systems in the effective mass approximation for the envelope functions, considering one-particle and excitonic transitions. We only consider the effects of the electronic structure, discarding all the proportionality constants such as the local-field factor. We write the absorption coefficient

$$\alpha(\omega) \propto \frac{1}{\omega} \sum_{i,f} |\langle i| \boldsymbol{e} \cdot \boldsymbol{p} | f \rangle|^2 \delta(\varepsilon_f - \varepsilon_i - \hbar \omega)$$
(1)

where the sum is over the (final) empty states $|f\rangle$ and the (initial) occupied states $|i\rangle$ (T \rightarrow 0K). Following, the wave function of the initial state has the following form

$$\Psi_i(\boldsymbol{r}) = u_{b_i}(\boldsymbol{r})\phi_i(\boldsymbol{r}) \tag{2}$$

where U_{bi} (r) is the periodic part of the Bloch functions at the zone center for the band b_i and ϕ_i (r) is the envelope function. A similar expression holds for the final state. The optical matrix element is

$$\langle i | \boldsymbol{e} \cdot \boldsymbol{p} | f \rangle \approx \boldsymbol{e} \cdot \langle u_{b_i} | \boldsymbol{p} | u_{b_f} \rangle \int_{\Omega} \phi_i^* \phi_f \mathrm{d}\boldsymbol{r} + \delta_{b_i b_f} \boldsymbol{e} \cdot \int_{\Omega} \phi_i^* \boldsymbol{p} \phi_f \mathrm{d}\boldsymbol{r} \tag{3}$$

With

$$\langle u_{b_i} | \boldsymbol{p} | u_{b_f} \rangle = \int_{\Omega_0} u_{b_i} \boldsymbol{p} u_{b_f} \mathrm{d} \boldsymbol{r}$$
 (4)

where Ω_0 denotes the volume of the elementary cell of the semiconductor. In (3), we have used the fact that the envelope functions are slowly variable functions on the length-scale of the unit cell. In the following, we consider two categories of optical transitions:

- interband transitions that occur between states originating from different bands ($b_i ==$ valence, $b_J ==$ conduction) where the optical matrix element reduces to the first term in eqn. 2.
- intraband transitions ($b_J = b_i$) involving the dipole matrix elements between envelope functions, the second term in (3).

Endle | Engleten | Enrich Endle | Engleten | Enrich EAGRAPAGAAN ACADEMA DE HIGHER EDUCATION (Established Under Section 3 of Udiversity) (Established Under Section 3 of Udiversity)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore-641021. (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

UNIT IV (Objective Type/Multiple choice Questions each Questions carry one Mark)

NANOMATERIALS AND APPLICATIONS

PART –A(Online Examination)

S.No.	QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
	When the size of the material decreases, the					
1	band gap energy	increases	decreases	remains constant	zero	increases
	The Fermi energy of the metal are in the order					
2	of	5 MeV	5 eV	5 KeV	5 meV	5 eV
				Metal or		Metal or
	Quantum effects mainly occurs at			Semiconductors		Semiconductors
3		conductor	metal	Nanocrystal	insulator	Nanocrystal
	This Coulomb blockade behaviour is also	maxwell			Coulombic	
4	called as	staircase	quantized	ballistic	staircase	Coulombic staircase
	The dimension of the nanomaterials reduced			Metal or		
	to de-Broglie wavelength, the semiconductor			Semiconductors		
5	nanomaterials changes to	conductor	metal	Nanocrystal	insulator	insulator
	The size of the nanocrystal					
	than the de-Broglie wavelength,			Smaller,	Larger,	
6	energy levels formed	Smaller, Discrete	Larger, Discrete	continuous	continuous	Smaller, Discrete
	How does a semiconductor behave at absolute		protection			
7	zero?	conductor	device	Semiconductors	insulator	insulator
			Positive	Negative		Negative
	How is the resistance of semiconductor		temperature co-	temperature co-		temperature co-
8	classified?	High resistance	efficient	efficient	Low resistance	efficient

	The threshold for indirect absorption occurs at					
9	wavelength	3.01 µm	2.09 µm	0.92 μm	1.09 µm	1.09 µm
	The semiconductor material for which the					
10	lowest energy absorption takes place is :	GaAs	Silicon	GaSb	Germanium	Germanium
	materials are potentially					
11	superior to germanium.	GaAs	Silicon	GaSb	III – V alloys	III – V alloys
	If the absorption of electromagnetic radiation					
	by matter results in the emission of radiation					
	of same or longer wavelengths for a long or a					
	short time, the phenomenon is termed as				Spontaneous	
12	which of the following?	Luminescence	Fluorescence	Phosphorescence	emission	Luminescence
	Prompt emission of X-ray by an atom ionised					
	by a higher energy X-ray is a type of which of				Spontaneous	
13	the following phenomena?	Luminescence	Fluorescence	Phosphorescence	emission	Fluorescence
	In X-ray fluorescence spectrometer, the					
	relationship between the excitation intensity	Spectrum of the				
	and the intensity of fluorescence does not	incident	Angle of			
14	depend on which of the following?	radiation	radiance	Molecular weight	Incident angle	Incident angle
15	Fluorescence occurs within	10-5 s	10-5 ms	10-5 μs	10-5ns.	10-5 ms
	alloys can be fabricated					
16	in hetero-junction structures.	InGaSb	III – V alloys	InGaAsP	GaAsSb	III – V alloys
	The alloys lattice matched to InP responds to					
17	wavelengths up to $1.7\mu m$.	InAsSb	III – V alloys	InGaSb	InGaAs	InGaAs
	Which phenomenon is related to the term	magnetic		electromagnetic	none of the	
18	radiation?	phenomenon	gravity	phenomenon	above	
			the magnetic			
	Thermal radiation takes place from a body by	the weight of the	power of the	the temperature	none of the	electromagnetic
19	electromagnetic waves as a result of	body	body	of the body	above	phenomenon
				using shiny		
				white surfaces		
		increasing the		instead of dull	decreasing the	
	Rate of transfer of energy by radiation can be	surface	decreasing the	and black	atmospheric	the temperature of
20	increased by	temperature	surface area	surfaces	pressure	the body
21	Thermal energy that reaches surface of earth	Conduction	Convection	Radiation	Conduction and	increasing the

	from sun, is transferred through process of				convection	surface temperature
22	Which of the following is not an example of	Hydrophobic surface of a lotus	Hydrophylic surface of a	Sticky pads on the bottom of an	Gold that can stretch to form flexibile	Gold that can stretch to form
		plain			Scanning	
23	Which of the following is used to observe the unseen?	Hydrophobocity Microscopes	Magnetos	Atomic Force Tunnelers	Tunneling Microscopes	Scanning Tunneling Microscopes
24	Nano wires are used in	Transistors	Resistors	Capacitors	Transducers	Transistors
25	Nano cones are the predominant structures made with	Carbon	Nitrogen	Hydrogen	Silicon	Carbon
26	As per Coulomb's law, force of attraction or repulsion between two point charges is directly proportional to	sum of the magnitude of charges	square of the distance between them	product of the magnitude of charges	cube of the distance	product of the magnitude of charges
	Electric charges under action of electric forces	U		U	electric field	6
27	is called	electrostatic	electric flux	electric field	lines	electrostatic
28	The absorption of photons in a photodiode is dependent on:	Absorption Coefficient α0	Properties of material	Charge carrier at junction	Amount of light	Absorption Coefficient α0
29	The absorption coefficient of semiconductor materials is strongly dependent on	Properties of material	Wavelength	Amount of light	Amplitude	Wavelength
30	In optical fiber communication, the only weakly absorbing material over wavelength band required is:	GaAs	Silicon	GaSb	Germanium	GaSb
31	The threshold for indirect absorption occurs at wavelength	3.01 µm	2.09 µm	0.92 μm	1.09 µm	1.09 µm
32	The semiconductor material for which the lowest energy absorption takes place is :	GaAs	Silicon	GaSb	Germanium	Germanium
33	photodiodes have large dark currents.	GaAs	Silicon	GaSb	Germanium	GaSb
34	A photodiode should be chosen with a less than photon energy.	Direct absorption	Band gap energy	Wavelength range	Absorption coefficient	Absorption coefficient
35	materials are potentially superior to germanium.	GaAs	Silicon	GaSb	III – V alloys	III – V alloys

	alloys can be fabricated					
36	in hetero-junction structures.	InGaSb	III - V alloys	InGaAsP	GaAsSb	III – V alloys
	alloys such as InGaAsP and					
37	GaAsSb deposited on InP and GaSb substrate.	Ternary	Quaternary	Gain-guided	III – V alloys	Ternary
	The alloys lattice matched to InP responds to					
38	wavelengths up to 1.7µm.	InAsSb	III – V alloys	InGaSb	InGaAs	InGaAs

EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A COURSE NAME: Nanomaterials and Applications UNIT: V BATCH-2016-2019

Electron Transport: Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunneling and hoping conductivity. Defects and impurities: Deep level and surface defects.

APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots -magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).

EDUCATION

UNIT: V

CLASS: III B.Sc Physics **COURSE CODE: 16PHU603A**

CARRIER TRANSPORT IN NANO STRUCTURES

Consider the problem of electron (or hole) transport in networks of nanostructures weakly coupled by tunnel junctions. First, we consider the tunnelling between two neighbouring sites and, second, we present a method to calculate the conductivity of the network.

COULOMB BLOCKADE EFFECT

Materials are often classified as metals, semiconductors and insulators, according to their ability to let current flow through them. Conductivity is defined in terms of the properties of electrons (their number, effective mass, scattering etc.) in the solids and is given by

$$\sigma = \frac{\mathrm{N}\mathrm{e}^2\tau}{\mathrm{m}^*}$$

where σ is electrical conductivity, N – number of electrons per cm³, e – electron charge, τ – relaxation time and m* is effective mass of electron.

Resistivity is the inverse of conductivity. Metals are characterized by very low resistivity (~10⁻⁶ Ω cm). Semiconductors have medium resistivity (few Ω cm) and insulators have large resistance (>10³ Ω cm). The resistivity (or conductivity) in solids can be measured in principle by connecting electrically conducting wires to solid material of known geometry, applying a voltage difference across it and measuring the current flowing through it.

If we reduce now the dimensions of metal piece (or introduce a semiconductor nanoparticles or quantum dot) to ~ 100 nm or less and wish to measure its conductivity, then it is useful to put metal electrodes (capacitors) on either side so that direct contact between electrodes and metal particle is avoided. This enables to deduce the correct details of electronic structure. There appears then a region around zero voltage for which there is no current flow. This phenomenon is known as Coulomb blockade. This can be understood as follows.

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE

EDUCATION

CLASS: III B.Sc PhysicsCOURSE NAME: Nanomaterials and ApplicationsCOURSE CODE: 16PHU603AUNIT: VBATCH-2016-2019

The electrostatic energy E (charging energy) of a parallel plate capacitor having capacitance 'C' is given by

$$E = e^{2}/2C$$

For small value of the capacitance and low thermal motion of electrons ($kT \ll e^2/2C$) the charging energy E will be significant. The small metal island connected to electron source and drain by tunnel barriers can be charged in such a way that only a single electron is transferred to it when voltage 'e/2C is applied. Below this voltage electron cannot be transferred. Therefore the region of no current of low bias voltage is known as Coulomb Blockade region. Repeated tunnelling of single electrons produces what is known as Coulomb Staircase.

There are many examples now in which phenomenon of Coulomb Staircase has been demonstrated using quantum dots or metal islands. The Coulomb blockade can also be very well understood from Fig.4. When the Fermi levels on both the sides are at the same level, no current flows but the moment one of the electrodes as shown in the figure receives higher potential with respect to the quantum dot, the current can flow between the metal electrodes and the quantum dot. Similarly if the cluster is at higher potential compared to the electrode then the electrons from the cluster tunnel towards the electrode. The single electron transistor is based on the phenomenon of Coulomb blockade.

EDUCATION

TUNNELLING

In the case of metallic islands in which the density of states is high, Coulomb blockade effects dominate the transport properties of the networks. In the case of semiconductor nanocrystals, the conductivity is also determined by the discretize at ion of the energy levels induced by the quantum confinement. In both cases, the disorder arising for example from the dispersion in size and shape of the nanostructures plays an essential role. Therefore, elastic tunnelling between neighbour nanostructures is rather unlikely and one must consider inelastic tunnelling between non resonant states, which requires to take into account the electron-phonon coupling. We assume that an injected electron only couples to phonons localized in the nanostructures. Atomic vibrations in the barrier may lead to a modulation of the barrier height but we do not consider this effect here. When an electron is transferred from one site to another, there is an emission or an absorption of phonons as required by the conservation of the total energy.

EDUCATION

When an extra carrier is introduced into a nanostructure, there is a relaxation of the atoms toward a new equilibrium situation. The relaxation energy is defined as the Franck-Condon shift (e.g. $df^{(1)}$) for site 1). In order to simplify the problem, we assume as usual that the total energy is a quadratic function of $3N_1 + 3N_2$ configuration coordinates where N_1 and N_2 are the numbers of atoms in the nanostructures 1 and 2, respectively. The probability per unit time for the transfer of an electron from a site 1 to a site 2 is obtained from the Fermi golden rule

$$W_{1\to2} = \frac{2\pi}{\hbar} \sum_{i,n_1,n_2} p(i,n_1,n_2) \left[\sum_{f,n_1',n_2'} |\langle f, n_1', n_2'| V | i, n_1, n_2 \rangle |^2 \delta(E_{f,n_1',n_2'} - E_{i,n_1,n_2}) \right]$$
(1)

where $|i, n_1, n_2\rangle$ and $|f, n'_1, n'_2\rangle$ denote the initial and final states of energy E $_{i, n_1}$, n_2 and E $_{f, n'_1}$, n'_2 respectively, and p(i, nI, n2) is the probability to find the system in the state $|i, n_1, n_2\rangle$ The integers n_1 , n_2 , n'_1 , n'_2 label the vibronic configurations on each site. Since we assume that the vibrations of the two sites are uncoupled, we write

$$|i, n_1, n_2\rangle = |\phi_i^{(1)}\rangle |\chi_{n_1}(Q_1 - Q_1^0)\rangle |\chi_{n_2}(Q_2)\rangle |f, n'_1, n'_2\rangle = |\phi_f^{(2)}\rangle |\chi_{n'_1}(Q_1)\rangle |\chi_{n'_2}(Q_2 - Q_2^0)\rangle$$
(2)

where Q_1^0 denotes the equilibrium configuration of the site 1 with one extra electron, $Q_1 = O$ being the equilibrium configuration for the neutral nanostructure. $|\varphi_1^{(1)}\rangle$ and $|\varphi_f^{(2)}\rangle$ are the electronic states. The vibronic states χ_{n1} and χ_{n2} are given by the product of $3N_1$ and $3N_2$ harmonic oscillators. We suppose that the matrix element of the tunnelling operator V

EDUCATION

CLASS: III B.Sc Physics	
COURSE CODE: 16PHU603A	

between the electronic states does not depend on the phonon quantum numbers. Thus we can factorize in (1) the terms $\langle \chi_{n'_1}(Q_1)|\chi_{n_1}(Q_1-Q_1^0)\rangle$ and $\langle \chi_{n'_2}(Q_2-Q_2^0)|\chi_{n_2}(Q_2)\rangle$ which are given by products of overlaps between displaced harmonic oscillators. Since the coupling to anyone mode is of the order of $1/N_1$ or $1/N_2$, that one can keep only first-order

terms corresponding to change in phonon quantum numbers equal to 0, +1 and -1, all the other terms being of higher order. In that case, the probability of the transition can be obtained exactly if all the electron-phonon coupling coefficients are calculated.

Simpler expressions can be obtained when all phonons frequencies in a nanostructure can be approximated by a single one (here ω_1 and ω_2) Then one can sum the intensity of all possible transitions corresponding to the same difference in total energies between the final and initial states, for example differing by P₁ phonons of energy $\hbar\omega_1$ and P₂ phonons of energy $\hbar\omega_2$. Then we have

$$E_{f,n_1',n_2'} - E_{i,n_1,n_2} = \varepsilon_f - d_{\rm FC}^{(2)} - \varepsilon_i + d_{\rm FC}^{(1)} + p_1\hbar\omega_1 + p_2\hbar\omega_2$$
(3)

where the Franck-Condon shifts correspond to the relaxation energy when the nanostructure is occupied by one electron. The total intensity of these transitions is equal to $WP_1 X WP_2$ where W_p is injecting this in (1), we obtain

$$W_{1\to2} = \frac{2\pi}{\hbar} \sum_{i,f} p(i) |\langle \phi_f^{(2)} | V | \phi_i^{(1)} \rangle|^2 \\ \times \left[\sum_{p_1, p_2} W_{p_1} W_{p_2} \delta(\varepsilon_f - d_{\rm FC}^{(2)} - \varepsilon_i + d_{\rm FC}^{(1)} + p_1 \hbar \omega_1 + p_2 \hbar \omega_2) \right]$$
(4)

which can be written as a convolution of two phonon line-shapes.

In the case of strong electron-phonon coupling $(S_1 = d_{FC}^{(1)}/\hbar\omega_1 \gg 1 \text{ and } S_2 = d_{FC}^{(2)}/\hbar\omega_2 \gg 1)$, Considering P₁ and P₂ as continuous variables (i.e. $\sum_{p1,p2} \rightarrow \int dp_1 dp_2$), the probability per unit time becomes

$$W_{1\to 2} = \frac{2\pi}{\hbar} \sum_{i,f} p(i) |\langle \phi_f^{(2)} | V | \phi_i^{(1)} \rangle|^2 \frac{1}{\pi \mu} \exp\left[-\frac{(\Delta - d_{\rm FC}^{(1)} - d_{\rm FC}^{(2)})^2}{\mu^2}\right]$$
(5)

Where

$$\mu = \sqrt{2S_1(\hbar\omega_1)^2 \coth\left(\frac{\hbar\omega_1}{2kT}\right) + 2S_2(\hbar\omega_2)^2 \coth\left(\frac{\hbar\omega_2}{2kT}\right)} \tag{6}$$

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE

EDUCATION

And $\Delta = \varepsilon_f - d_{FC}^{(2)} - \varepsilon_i + d_{FC}^{(1)}$ is the energy required to transfer the electron from the site 1 to the site 2. An example of variation of W_{1→2} with respect to Δ is presented in Fig. 2.

Fig. 2 Probability per unit time for the transition between two nanostructures as a function of the energy Δ $(S_1 = S_2 = 2, \ \hbar\omega_1 = \hbar\omega_2 =$ $50 \text{ meV}, \ \langle \phi_f^{(2)} | V | \phi_i^{(1)} \rangle = 1$ meV, T = 300K)

As a final remark, we point out that in the limit of strong electron phonon coupling, it is not necessary to assume a single phonon frequency in each nanostructure. It can be shown, using the method of moments, that the expression (5) can be recovered in the general case using the first and second moments of the phonon line-shape, at the condition to write

$$d_{\rm FC}^{(1)} + d_{\rm FC}^{(2)} = \sum_{i} S_i^{(1)} \hbar \omega_i^{(1)} + \sum_{j} S_j^{(2)} \hbar \omega_j^{(2)}$$
(7)

where the sums run over all the phonon modes of energy $\hbar \omega_i^{(1)}$ and $\hbar \omega_j^{(2)}$ in nanostructures 1 and 2, respectively, and at the condition to replace (6) by

$$\mu = \sqrt{M^{(1)} + M^{(2)}} \quad \dots \qquad (8)$$

Where

with $\bar{n}_i^{(1)}$ for the phonon frequency $\omega_i^{(1)}$ (a similar expression holds for $M^{(2)}).$

HOPING CONDUCTIVITY

Consider now a network of nanostructures. Our aim is to present a computational method to calculate the conductivity. We consider systems where the degree of randomness is sufficiently large that the transport of carriers takes place by hopping between neighbouring nanostructures. The disorder may arise under different forms such as the topological or cellular

EDUCATION

	EDUCATION	
CLASS: III B.Sc Physics	COURSE NAME: Nanomat	erials and Applications
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

disorder. It was shown that a fixed array of sites can serve as a useful model for topologically disordered systems. Therefore, in the following, we assume a fixed array of sites in which the activated hopping between neighbouring sites i and j is defined by the probability per unit time $W_{i\rightarrow j}$ that was calculated in the previous section and from which we want to determine the dynamic conductivity $\sigma(\omega)$.

The combination of the disorder and of a particular topology of the array may dramatically influence the electrical transport, in particular when the system is close to the percolation limit. Due to these constraints, the diffusion of the electron is anomalous at the microscopic scale, in the sense that the diffusion coefficient D depends on time (note that the same theory obviously applies to the holes). However, at the mesoscopic scale, when the mean displacement of the electron becomes larger than the correlation length which characterizes the system, a constant diffusion coefficient can be defined, and the diffusion becomes normal. Here we give a simplified presentation of this theory.

Diffusion Coefficient. The diffusion of electrons of density n(r, t) at a position r and at time t is given by the Fick law and the charge conservation equation

$$\frac{\partial n(\boldsymbol{r},t)}{\partial t} = \frac{1}{e} \boldsymbol{\nabla} \cdot \boldsymbol{J} ,$$

$$\boldsymbol{J} = eD \ \boldsymbol{\nabla} n(\boldsymbol{r},t) , \qquad (1)$$

where J is the current density. To solve these equations, we define the following Laplace transform of a function f(t) as

$$F(\omega) = \mathcal{L}[f(t)] = \int_0^\infty e^{-(\alpha + i\omega)t} f(t) dt , \quad \alpha \to 0^+$$
(2)

Applying this to (1) in the case of a 1D system, we obtain

$$i\omega N(x,\omega) = D \frac{\partial^2 N(x,\omega)}{\partial x^2} \qquad (3)$$

which leads to

$$N(x,\omega) = \frac{1+\mathrm{i}}{2} \sqrt{\frac{\omega}{2D}} \frac{n_0}{\mathrm{i}\omega} \exp\left(-\sqrt{\frac{\omega}{2D}} |x| (1+\mathrm{i})\right) \tag{4}$$

The coefficient in front of the exponential has been obtained by the Laplace transform of the normalization condition for n_0 electrons in the system

EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

COURSE NAME: Nanomaterials and Applications UNIT: V BATC

BATCH-2016-2019

$$\int_{-\infty}^{+\infty} n(x,t) \mathrm{d}x = n_0 \Rightarrow \int_{-\infty}^{+\infty} N(x,\omega) \mathrm{d}x = \frac{n_0}{\mathrm{i}\omega} \tag{5}$$

In order to characterize the diffusion of the electrons, we calculate the mean square displacement of the electrons $\overline{x^2(t)}$ at time t defined by

$$\overline{x^{2}(t)} = \frac{1}{n_{0}} \int_{-\infty}^{+\infty} x^{2} n(x,t) \mathrm{d}x$$
(6)

Using (4), we obtain that the Laplace transform of $\overline{x^2(t)}$ is related to the generalized diffusion coefficient D (ω) by

$$\mathcal{L}\left[\overline{x^2(t)}\right] = \frac{1}{n_0} \int_{-\infty}^{+\infty} x^2 N(x,\omega) \mathrm{d}x = \frac{2D(\omega)}{(\mathrm{i}\omega)^2}$$
(7)

which can be generalized to a system of dimension d (=1,2,3) as

$$D(\omega) = -\frac{\omega^2}{2d} \int_0^{+\infty} e^{-i\omega t} \overline{r^2(t)} dt$$
(8)

In the case of a normal diffusion, D is a constant and we recover the linear dependence of $\overline{x^2(t)}$ with time t

$$\overline{r^2(t)} = 2dDt \qquad (9)$$

The expression (8) is particularly interesting in the case of the hopping transport on an array of localized sites defined by vectors s. Let us define the probability $p(s,t|s_0)$ to find an electron on the site s at time t whereas it was on the site s_0 at time t = 0. Then we can write

$$\overline{r^2(t)} = \sum_{\boldsymbol{s}} (\boldsymbol{s} - \boldsymbol{s}_0)^2 \left\langle p(\boldsymbol{s}, t | \boldsymbol{s}_0) \right\rangle \tag{10}$$

where the brackets denote the average on the sites S_0 . Note that this average is required when the system is disordered. From (8), we deduce the diffusion coefficient

$$D(\omega) = -\frac{\omega^2}{2d} \sum_{\boldsymbol{s}} (\boldsymbol{s} - \boldsymbol{s}_0)^2 \left\langle P(\boldsymbol{s}, \omega | \boldsymbol{s}_0) \right\rangle$$
 (11)

The conductivity $\sigma(\omega)$ is related to the diffusion coefficient by the Einstein relation

COURSE NAME: Nanomaterials and Applications

BATCH-2016-2019

EDUCATION

UNIT: V

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

$$\sigma(\omega) = \frac{ne^2}{kT} D(\omega) \tag{12}$$

where n is the carrier density. We deduce that

$$\sigma(\omega) = -\frac{ne^2}{kT} \frac{\omega^2}{2d} \sum_{\boldsymbol{s}} (\boldsymbol{s} - \boldsymbol{s}_0)^2 \left\langle P(\boldsymbol{s}, \omega | \boldsymbol{s}_0) \right\rangle$$
(13)

One can wonder if the Einstein relationship holds for hopping transport. Actuality, (13) can be obtained from the Kubo formula

DEEP LEVEL DEFECTS:

Deep level defects are characterized by a strongly localized wave function. One then expects that, a few screening lengths away from the boundary, the wave function of the neutral defect will experience the same local potential as in the corresponding bulk material. This means that the neutral deep level itself remains invariant on an absolute scale at the same position as in the bulk material. It will thus not experience a confinement effect as it is the case for the nanostructure bandgap. Such a property has been extensively used to discuss the Stokes shift of ten observed between luminescence and optical absorption in semiconductor nanocrystals. However this view is too naive and cannot be directly applied to the so-called occupancy or ionization levels E(n + 1, n) where E(n) is the total energy of the system with n electrons on the defect (when the corresponding charge state is stable). These ionization levels are the true observable quantities in capture or emission experiments. To illustrate the situation, we choose the basic example of a non-degenerate level for which one can have n ε {0, 1, 2} with the neutral state corresponding to n = 1. Then one has, if they exist, two ionization levels $\varepsilon(2, 1)$ and $\varepsilon(I, 0)$ which correspond to the addition of an electron or a hole on the defect, respectively (Fig. 1). Such quantities are naturally obtained via the resolution of the GW equations of Sect. 1.2.4 which also gives information about the distribution of all other excited quasi-particle states and especially the bandgap limits ϵ_c and ϵ_v of the nanostructure which are affected by the confinement effects. To get simple but accurate conclusions we proceed and split the single-particle GW equations into a bulk-like contribution and a surface polarization term due to the finite size of the system. The resolution of this problem should then proceed in three steps:

EDUCATION

CLASS: III B.Sc Physics	COURSE NAME: Nanomaterials and Applications	
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

- solve a set of single particle equations, using ab initio or semi-empirical techniques. This will provide us with the single particle energies and wave functions of the system containing the neutral defect: ϵ_d for the deep level, ϵ_c and ϵ_v for the band limits which will include the confinement effect in the presence of the defect. Note that the presence of the defect is not likely to affect seriously the confinement energies since it is an effect of order 1/N (N being the number of atoms) while the confinement effect is of order (N_s/N)" where N_s is the number of surface atoms and the exponent v is typically between 1 and 2 (the confinement energy in a spherical quantum dot varies like d^{-v} where d is the diameter, and N_s/N \propto d⁻¹)
- add to these single particle energies a bulk contribution δ∑b calculated in the presence of the defect. This problem has not been solved yet. However one might anticipate some elements of solution. There, one considers that the local density approximation (LDA) for instance correctly treats the short-range part of the self-energy. δ∑b is then totally determined by the long range part screened by the bulk dielectric constant. This would end up with the bulk δ∑b for the band limits and an intermediate value for the gap state. In any case δ∑b, even calculated exactly, would be state dependent. As shown for ideal crystallites, this δ∑b should not give rise to appreciable confinement effects
- finally add the surface contributions $\delta \sum$ surf.

surface contribution $\delta \sum$ surf takes the general form with W_{surf} being the contribution to arising from the surface polarization Now, for a deep defect, we can obtain the shift $(\delta \epsilon_d)_{surf}$ of the level by perturbation theory under the form

SURFACE DEFECTS:

A puzzling problem concerning the optical properties of semiconductor nanostructures is that there is sometimes a large difference between luminescence energies and optical absorption energies. For example, in oxidized porous silicon, there is a huge Stokes shift ($\approx 1 \text{ eV}$ for a crystallite diameter $\approx 1.5 \text{ nm}$), much larger than predicted values « 100 me V.In fact, optical absorption energy gaps are in agreement with calculated values for crystallites. Only the luminescence energies differ greatly and, for small crystallites, are practically independent of the size. Such behaviours are more consistent with the existence of deep luminescent centers.

EDUCATION

CLASS: III B.Sc Physics	COURSE NAME: Nanomater	ials and Applications
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

The problem is that little is known regarding their nature and origin. We discuss here the possibility investigated in of the existence of intrinsic localized states which might behave as luminescent systems. Such states correspond to self-trapped excitons and are stabilized because of the widening of the gap induced by the confinement. This possibility is not restricted to the case of silicon crystallites but is likely to be valid for all types of semiconductor crystallites. To illustrate the physical basis of such self-trapped excitons let us consider an isolated single covalent bond characterized by a σ bonding state filled with two electrons and an empty σ^* anti-bonding state. The origin of the binding is the gain in energy resulting from having the two electrons in the lower bonding state. Optical absorption in this system leads to the excitation of One electron in the σ * state. In such a case there is essentially no binding and the repulsive force between the atoms dominates so that the molecule eventually dissociates. If, on the other hand, the molecule is embedded in an elastic medium then it cannot dissociate but One ends up with a large distance between the constituent atoms and a reduced separation between the σ and σ * states. The resulting luminescence energy is thus much smaller than the optical absorption energy, corresponding to a Stokes shift of the order of the binding energy, i.e. $\approx 1 \text{ eV}$.

The applicability of this model to a nanocrystal essentially depends On the possibility of localizing the electron-hole excitation On a particular covalent bond, i.e. of creating a self-trapped exciton. For this, One must be able to draw a configuration coordinate diagram like the One shown in Fig. 1 where the configuration coordinate Q corresponds to the stretching of the covalent bond. For small Q, the ground and first excited states are delocalized over the crystallite and show a normal parabolic behaviour. However, for Q larger than a critical value Q_c , the system localizes the electron-hole pair On One particular single bond, leading to a larger bond length Q_e and a smaller luminescence energy. This self-trapped state can be stable or metastable. An interesting point is that it may exist only for small enough crystallites, in view of the important blue shift as pictured in Fig. 1. Such a self-trapped exciton is likely to be favoured at surfaces of crystallites where the elastic response of the environment is weaker than in the bulk.

EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A COURSE NAME: Nanomaterials and Applications UNIT: V BATCH-2016-2019

Fig. 1 Schematic configuration coordinate diagram showing the energies of the ground state (G), the free exciton state (E) and the self-trapped exciton state (STE). The curve (E_{∞}) corresponds to a very large crystallite with no blue shift, showing that the STE state might not exist for very large crystallites

In , two different techniques have been used for the calculations. The first one is a total energy semi-empirical tight binding technique which allows the treatment of relatively large crystallites (\approx 180 atoms). The second one is based on an ab initio technique in the local density approximation (LDA) which has already been applied to silicon clusters. Because of computation limits, the clusters studied in LDA are restricted to a maximum of \approx 30 Si atoms which is not a severe restriction since we are interested in localized surface states. With the two techniques, the total energy is minimized with respect to all the atom positions to get the stable atomic configuration for the ground and first excited states. Only spherical crystallites centered on a silicon atom with the dangling bonds saturated by hydrogen atoms are considered. When needed, one surface dimer is created by removing the two closest hydrogen atoms of the second neighbour silicon atoms at the surface (see schematic side views in Fig. 2). We present here the results for two crystallites: one with 29 silicon and 36 saturating hydrogen atoms (diameter = 1 nm, tight binding energy gap = 3.4 eV, LDA gap = 3.5 e V) where tight binding and LDA techniques predict similar behaviour. Then one can use with confidence tight binding for a much bigger crystallites (123 silicon atoms, 1.7 nm, tight binding gap = 2.63 eV).

EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

COURSE NAME: Nanomaterials and Applications UNIT: V BATC

BATCH-2016-2019

Fig. 2 Total energy (• = tight binding, • = LDA) of a spherical crystallite with 29 Si atoms in the ground state and in the excitonic state as a function of the dimer inter-atomic distance d (a = 0.54 nm). Schematic side views of the cluster surface dimer in the ground (G) and in the self-trapped state (STE) are also shown

If one first minimizes the total energy of excited crystallites starting from the atomic positions corresponding to the ground state situation, one obtains for very small crystallites <100 atoms) that the system in its excited state relaxes in highly distorted configurations with low symmetry. But, for large enough crystallites, the exciton remains delocalized, and there is a small lattice relaxation. The situation gets different when considering the case of Si-H surface bonds. One finds that it is possible to trap an exciton when these are sufficiently stretched. Then the minimum of energy corresponds to the broken bond, i.e. to hydrogen desorption. In the same spirit, one can get SiH₃ desorption by breaking the Si-Si back-bond in a process similar to polysilanes. A more interesting situation is obtained when stretching the Si-Si bond of a surface dimer. Then the stable atomic configuration for the excited state corresponds to the surface Si atoms returned to their original lattice sites (Fig.2). The electron and the hole are localized on the weakly interacting Si dangling bonds (second nearest neighbours) which form bonding and antibonding states separated by 0.72 e V in the tight binding calculation for the 1 nm crystallite (0.80 eV in LDA). Figure 6.9 fully corresponds to the general schematic picture of Fig. 1. As expected for a localized state, the self trapped exciton bandgap only slightly depends on the crystallite size with a value of 0.52 eV for the 1.7 nm crystallite. We see in Fig. 3 that for this larger crystallite the self-trapped exciton becomes metastable because the free exciton bandgap has decreased in energy. Figure 3 also gives the radiative lifetime in the excited state. In the free exciton state (E), the lifetime is long because of the indirect nature of the silicon bandgap. Increasing the dimer bond length, the lifetime in the self-trapped state first decreases because the localization of the exciton on one bond relaxes the selection rules.

EDUCATION

CLASS: III B.Sc Physics COURSE NAME: Nanomaterials and Applications					
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019			

Finally, the lifetime increases because the optical matrix element between the two silicon atoms of the dimer decreases with the bond length. From this, one can conclude that light emission is possible in the self-trapped state. At high temperature, the recombination could be at some intermediate coordinate Q with a smaller lifetime and a larger emission energy. More details concerning the calculation can be found.

General statements about the conditions favouring the existence of such self-trapped states for a given bond are the following:

- the elastic response of the environment must be as weak as possible, which is best realized near surfaces

- the size of the nanocrystal must be small, favouring a large blue shift and the stabilization of locally distorted excited states

- the capture of the exciton must allow the release of local stresses. This is the case of the Si-Si dimer where the stresses correspond to the bending of the back-bonds in the free exciton state. Such self-trapped states are likely to be metastable in most cases. The question then arises if and how they can be excited. One answer is provided by the well documented example of the EL_2 defect in GaAIAs which can be optically excited with a long lifetime.

Fig. 3 Total energy of a spherical crystallite with 123 silicon atoms (diameter = 1.67 nm) in the ground state (\circ) and in the excitonic state (\bullet) as a function of the dimer inter-atomic distance d (a = 0.54 nm). The crosses represent the radiative lifetime in the excitonic state

In conclusion of this section, total energy calculations demonstrate the existence of selftrapped excitons at some surface bonds of Si crystallites. These give a luminescence energy almost independent of size and can explain the Stokes shift observed for small crystallites. On the experimental side, self-trapped excitons have been invoked in Si- SiO₂ multi-layers and in

EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A COURSE NAME: Nanomaterials and Applications UNIT: V BATCH-2016-2019

small Si particles . Such self-trapped excitons are not specific to Si nanostructures but should also manifest themselves in crystallites obtained from other semiconductors.

SINGLE ELECTRON TRANSFER DEVICES:

Before analyzing examples of the devices based on single-electron transport, we shall overview briefly a relatively simple technique for the formation of structures with low-dimensional electron gas.

The split-gate technique

Having a two-dimensional electron gas on an interface, or in a quantum well, one can further lower the electron-gas dimensionality by various methods. One such method is the so-called split-gate technique. The principles of this technique can be explained as follows. Typically, two-dimensional electrons are separated from the surface of the sample by a wide-bandgap dielectric layer. It can be a SiO2 layer on Si, an AlGaAs barrier layer on GaAs, etc. Figure 1(a) illustrates such a structure. Amodulation-doped barrier layer decreases electron scattering by the donors and results in high electron mobility. A thin GaAs layer grown on the top of this structure is used as additional electrical isolation from the metal gates. Let a metal strip – a gate – be deposited onto the top of this structure. The distribution of the potential energy for the case of a negative applied gate voltage is presented in Fig. 1(b).

EDUCATION

Figure 1 (a) Two-dimensional electron gas (2DEG, denoted by dashed lines) at the interface of a modulation-doped GaAs/AlGaAs heterostructure with a depletion region under the negatively biased narrow metal strip (gate). (b) The band diagram of the AlGaAs/GaAs heterostructure in the gate region. The lowest subband is shown by the ε_1 line. Φ_b is the built-in Schottky voltage and Φ_G is the gate voltage.

According to this energy scheme, two-dimensional electrons are repelled from the region beneath the metal strip; their Fermi energy, E_F , is below the lowest subband energy. As a result, the region under the gate becomes completely depleted, as depicted in Fig. 1. Now it is clear that, by using several gates, possibly of different forms, one can create various configurations of regions occupied by the electrons. It is possible to form wires, dots, rings, cavities, etc. for the two-dimensional electrons. For example, if two closely placed parallel metal strips are fabricated on the top of the heterostructure, then, by applying negative voltage to these two gates, we can form two side barriers for the electrons and confine them into a channel. If the channel is narrow enough, the two-dimensional electrons can be quantized in the second direction and we obtain a quantum wire; such a wire is shown in Fig.2 The confinement of the electrons to the dots, wires, rings, etc. can be accomplished by a heterojunction on one side and electrostatics on all other sides. The split-gate technique has successfully been exploited for measurements of transport regimes in various quantum structures, for example, in quantum point contacts and electron waveguides.

EDUCATION

Figure 2 A quantum wire at the interface of a GaAs/AlGaAs heterostructure with two depletion regions under the negatively biased metal strips.

A considerably more sophisticated design of patterning of a two-dimensional gas to a shape desirable for single-electron applications is presented in Fig. 3. The main features of the design shown in Fig. 3(a) are the following: (i) the Ohmic contacts (OC) to the two-dimensional electron gas (contacts to two electron reservoirs (R)) and (ii) a system of gates, which create electrostatic tunnel barriers (TB) and confine electrons into a quantum dot (QD). The tunnel barriers are formed when the voltages applied to the gates are negative with respect to the voltages applied to the contacts. The barriers should be high enough to decouple the quantum dot and the reservoirs. In Fig. 3(b), the resulting potential profile is depicted schematically. Split-gate techniques and resulting structures are used to observe single-electron effects. Indeed, if the quantum-dot-like structure is small enough, it can be considered to be a single-electron box. A voltage applied to the contacts (the source and the drain) induces transfer of electrons through the structure one by one.In general, the flexible split-gate technique is a powerful method to realize single-electron-transport devices.

EDUCATION

COURSE NAME: Nanomaterials and Applications UNIT: V BATCH-2016-2019

Figure. '3 (a) Design patterning of two-dimensional gas to a shape desirable for single-electron applications: OC, ohmic contacts; R, reservoir of electrons; QD, quantum dot; and TB, tunnel barrier. (b) The potential profile, V(z), along the line A–B. Ohmic contacts, OC, are not shown since they are outside of the depicted region.

MIICRO ELECTROMECHANICAL SYSYTEMS (MEMS):

Although microelectromechanical systems do not technically fall under the subject of nanotechnology, it is useful to briefly discuss them at the beginning of the chapter because they represent a more mature technology, and many of the differences in behaviour observed in the micromechanical world could well apply to the Nano regime, thereby providing a basis for the design of Nano machines.

The extensive fabrication infrastructure developed for the manufacture of silicon integrated circuits has made possible the development of machines and devices having components of micrometre dimensions. Lithographic techniques, described in previous chapters, combined with metal deposition processes, are used to make MEMS devices. Microelectromechanical systems involve a mechanical response to deformation.

The major advantages of MEMS devices are miniaturization, multiplicity, and the ability to directly integrate the devices into microelectronics. *Multiplicity* refers to the large number of devices and designs that can be rapidly manufactured, lowering the price per unit item. For example, *miniaturization* has enabled the development of micrometre-sized accelerometers for activating airbags in cars. Previously an electromechanical device the size of a soda can, weighing several pounds and costing about \$15, triggered airbags. Presently used accelerometers based on MEMS devices are the size of a dime, and cost only a few dollars. The size of MEMS devices, which is comparable to electronic chips, allows their integration

EDUCATION

CLASS: III B.Sc Physics	COURSE NAME: Nanomater	ials and Applications
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

directly on the chip. In the following paragraphs we present a few examples of MEMS devices and describe how they work. But before we do this, let us examine what has been learned about the difference between the mechanical behaviour of machines in the macro- and micro worlds.

Figure 1. Illustration of a MEMS device (a) used to sense impact and initiate expansion of airbags in cars. The automobile is moving from left to right. On impact (b) the horizontal cantilever bar **is** accelerated to the right and changes the separation of the capacitor plates, thereby triggering a pulse of electric current that activates the bag expansion mechanism.

In the micro world the ratio of the surface area to the volume of a component is much larger than in conventional-sized devices. This makes friction more important than inertia. In the macroworld a pool ball continues to roll after being struck because friction between the ball and the table is less important than the inertia of its forward motion. In the microregime the surface area : volume ratio is so large that surface effects are very important. In the microworld mechanical behavior can be altered by a thin coating of a material on the surface of a component. We shall describe MEMS sensors that take advantage of this propedy. Another characteristic of the microworld is that molecular attractions between microscale objects can exceed mechanical restoring forces. Thus the elements of a microscale device, such as an array of cantilevers, microsized boards fixed at one end, could become stuck together when deflected. To prevent this, the elements of micromachines may have to be coated with special nonstick coatings. In the case of large motors and machines electromagnetic forces are utilized, and electrostatic forces have little impact. In contrast to this, electromagnetic forces become too small when the elements of the motors have micrometer-range dimensions, while electrostatic forces become large. Electrostatic actuation is often used in micromachines, which means that the elements are charged, and the repulsive electrostatic force between the elements causes them to move. We will describe below an actuator, which uses the electrostatic interaction between charged carbon nanotubes. Many of these differences between micromachines, and macromachines become more pronounced in the nanoregime. There are many devices and machines that have micrometer-sized elements. Since this book is concerned primarily with nanotechnology, we give only a few examples of the microscale analogs.

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE

EDUCATION

CLASS: III B.Sc Physics	COURSE NAME: Nanomateri	als and Applications
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

Figure 1 illustrates the principle behind a MEMS accelerometer used to activate airbags in automobiles. Figure 1 a shows the device, which consists of a horizontal bar of silicon a few micrometers in length attached to two vertical hollow bars, having flexible inner surfaces. The automobile is moving from left to right in the figure. When the car suddenly comes to a halt because of impact, the horizontal bar is accelerated to the right in the figure, which causes a change in the separation between the plates of the capacitor, as shown in Fig. 1 b. This changes the value of the electrical capacitance of the capacitor, which in turn electronically triggers a pulse of current through a heating coil embedded in sodium azide, NaN₃. The instantaneous heating causes a rapid decomposition of the azide material, thereby

producing nitrogen gas N₂ through the reaction $2NaN_3 \rightarrow 2Na + 3N_2$, which inflates the airbag. Coated cantilever beams are the basis of a number of sensing devices employing MEMS. A cantilever is a small supported beam. The simplest of such devices consist of arrays of singly supported polysilicon cantilevers having various length to width ratios in the micrometer range. The beams can be made to vibrate by electrical or thermal stimuli. Optical reflection techniques are used to measure the vibrational frequency. As shown in Fig. 2, the vibrational frequency is very sensitive to the length of the beam. Thermal sensors have been developed using these supported micrometer-sized cantilevers by depositing on the beams a layer of a material that has a coefficient of thermal expansion different from that of the polysilicon cantilever itself. When the beam is heated, it bends because of the different coefficients of expansion of the coating and the silicon, and the resonant frequency of the beam changes. The sensitivity of the device is in the micro degree range, and it can be used as an infrared (IR) sensor. A similar design can be used to make a sensitive detector of DC magnetic fields.

Figure 2 : Plot of the resonance frequency of a MEMS cantilever versus the square c the

EDUCATION

UNIT: V

CLASS: III B.Sc Physics COURSE CODE: 16PHU603A

COURSE NAME: Nanomaterials and Applications BATCH-2016-2019

reciprocal of the length of the beam

In this case the beam is coated with a material that displays *magnetorestrictive effects*, meaning that the material changes its dimensions when a DC magnetic field is applied. This causes the beam to bend and change its resonance frequency. These devices can detect magnetic fields as small as 10^{-5} G (gauss) [10^{-9} T (tesla)].

NANO ELECTROMECHANICAL SYSTEMS (NEMS):

Nano mechanical machines and devices are in the early stages of development, and many are still in conceptual stages. Numerous computer simulations of possibilities and ideas have been proposed. It turns out that nature is far ahead of us in its ability to produce nano sized machines. Nano motors exist in biological systems such as the flagellar motor of bacteria. Flagellae are long, thin, blade-like structures that extend from the bacteria. The motion of these flagellae propel the bacteria through water. These whip-like structures are made to move by a biological Nano motor consisting of a highly structured conglomerate of protein molecules anchored in the membrane of the bacterium. The motor has a shaft and a structure about the shaft resembling an armature. However, the motor is not driven by electromagnetic forces, but rather by the breakdown of adenosine triphosphate (ATP) energy-rich molecules, which causes a change in the shape of the molecules. Applying the energy gained from ATP to a molecular ratchet enables the protein shaft to rotate. Perhaps the study of biological nanomachines will provide insights that will enable us to improve the design of mechanical nanomachines.

Optical lithography is an important manufacturing tool in the semiconductor industry. However, to fabricate semiconductor devices smaller than 100 nm, ultraviolet light of short wavelengths (193 nm) is required, but this will not work because the materials are not transparent at these wavelengths. Electron-beam and X-ray lithography, discussed in earlier chapters, can be used to make nanostructures, but these processes are not amenable to the high rate of production that is necessary for large-scale manufacturing. Electron-beam lithography uses a finely focused beam of electrons, which is scanned in a specific pattern over the surface of a material. It can produce a patterned structure on a surface having 10-nm resolution. Because it requires the beam to hit the surface point by point in a serial manner, it cannot produce structures at sufficiently high rates to be used in assembly-line manufacturing

EDUCATION

CLASS: III B.Sc PhysicsCOURSE NAME: Nanomaterials and ApplicationsCOURSE CODE: 16PHU603AUNIT: VBATCH-2016-2019

processes. X-ray lithography can produce patterns on surfaces having 20-nm resolution, but its mask technology and exposure systems are complex and expensive for practical applications. More recently, a technique called *nanoimprint lithography* has been developed that may provide a low-cost, high-production rate manufacturing technology. Nanoimprint lithography patterns a resist by physically deforming the resist shape with a mold having a nanostructure pattern on it, rather than by modifying the resist surface by radiation, as in conventional lithography. A resist is a coating material that is sufficiently soft that an impression can be made on it by a harder material. A schematic of the process is illustrated in Fig. 1. A mold having a nanoscale structured pattern on it is pressed into a thin resist coating on a substrate (Fig. 1 a), creating a contrast pattern in the resist. After the mold is lifted off (Fig. 1 b), an etching process is used to remove the remaining resist material in the compressed regions (Fig. 1 c). The resist is a thermoplastic polymer, which is a material that softens on heating. It is heated during the molding process to soften the polymer relative to the mold. The polymer is generally heated above its glass transition temperature, thereby allowing it to flow and conform to the mold pattern. The mold can be a metal, insulator, or semiconductor fabricated by conventional lithographic methods. Nanoimprint lithography can produce patterns on a surface having 10-nm resolution at low cost and high rates because it does not require the use of a sophisticated radiation beam generating patterns for the production of each structure.

The scanning tunnelling microscope (STM), uses a narrow tip to scan across the surface of the material about a nanometer above it. When a voltage is applied to the tip, electrons tunnel from the surface of the material and a current can be detected. If the tip is kept at a constant distance above the surface, then the current will vary as the tip scans the surface. The amount of detected current depends on the electron density at the surface of the material, and this will be higher were the atoms are located. Thus, mapping the current by scanning the tip over the surface produces an image of the atomic or molecular structure of the surface.

An alternate mode of operation of the STM is to keep the current constant, and monitor the deflection of the cantilever on which the tip is held. In this mode the recorded cantilever deflections provide a map the atomic structure of the surface.

The scanning tunnelling microscope has been used to build nanosized structures atom by atom on the surface of materials. An adsorbed atom is held on the surface by chemical bonds with the atoms of the surface. When such an atom is imaged in an STM, the tip has a trajectory of the type shown in Fig. 2 a. The separation between the tip and the adsorbed atom is such that

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE

EDUCATION

CLASS: III B.Sc Physics	COURSE NAME: Nanomateri	als and Applications
COURSE CODE: 16PHU603A	UNIT: V	BATCH-2016-2019

any forces between them are small compared to the forces binding the atom to the surface, and the adsorbed atom will not be disturbed by the passage of the tip over it. If the tip is moved closer to the adsorbed atom (Fig. 2 b) such that the interaction of the tip and the atom is greater than that between the atom and the surface, the atom can be dragged along by the tip. At any point in the scan the atom can be reattached to the surface by increasing the separation between the tip and the surface. In this way adsorbed atoms can be rearranged on the surfaces of materials, and structures can be built on the surfaces atom by atom. The surface of the material has to be cooled to liquid helium temperatures in order to reduce thermal vibrations, which may cause the atoms to diffuse thermally, thereby disturbing the arrangement of atoms being assembled. Thermal diffusion is a problem because this method of construction can be carried out only on materials in which the lateral or in-plane interaction between the adsorbed atom and the atoms of the surface is not excessive. The manipulation also has to be done under ultrahigh-vacuum conditions in order to keep the surface of the material clean.

Figure 3 depicts a circular array of iron atoms on a copper surface, called a "quantum corral", assembled by STM manipulation. The wavelike structure inside the corral is the surface electron density distribution inside the well corresponding to three quantum states of this twodimensional circular potential well, in effect providing a visual affirmation of the electron density predicted by quantum theory. This image is taken using an STM with the tip at such a separation that it does not move any of the atoms. The adsorbed atoms in this structure are not bonded to each other. The atoms will have to be assembled in three-dimensional arrays and be bonded to each other to use this technique to build nanostructures. Because the building of three-dimensional structures has not yet been achieved, the slowness of the technique together with the need for liquid helium cooling and high vacuum all indicate that STM manipulation is a long way from becoming a large-scale fabrication technique for nanostructures. It is important, however, in that it demonstrates that building nanostructures atom by atom is feasible, and it can be used to build interesting structures such as the quantum corral in order to study their physics.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore-641021. (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

UNIT V (Objective Type/Multiple choice Questions each Questions carry one Mark)

NANOMATERIALS AND APPLICATIONS

PART –A(Online Examination)

S.No.	QUESTIONS	opt1	opt2	opt3	opt4	ANSWER
	Process of emission of electrons from hot metal	plastic	thermionic		current	thermionic
1	surfaces is called	emission	emission	static emission	emission	emission
		attractive		repulsive		
	At room temperature, electron cannot escape	forces of	repulsive forces	forces of	pulling force of	attractive forces of
2	metal surface due to	nucleus	of electrons	nucleus	protons	nucleus
	One of the applications of Bulk micromachining			Temperature		
3	is :	SAW sensor	Resonant sensor	sensor	Pressure sensor	Resonant sensor
				Micro-electro		Micro-electro
	method removes material through erosive	Diamond		discharge		discharge
4	action:	milling	Soft lithography	machining	Powder blasting	machining
	Which of the following are the three most widely	Bulk, surface,	Surface, bulk,	PMMA, LIGA,	LIGA, CMP,	
5	used micromachining processes	PMMA	LIGA	surface	surface	Surface, bulk, LIGA
	Which of the following MEMS components					
	would LEAST likely be fabricated using bulk		Microfluidic			
6	micromachining processes?	Cantilevers	channels	Probes	Gear trains	Gear trains
	Photoresist is to surface micromachining as				Plexiglas or	
7	is to LIGA.	Beryllium	Gold	КОН	PMMA	Plexiglas or PMMA
		To improve	Aid the FBI for	Improve the		To improve
	Which choice below best describes the goal for	technology for	investigative	application of	Increase food	technology for
8	nanotechnology advances in medicine?	finding cures	methods	cosmetics	production	finding cures

					Larger and	
	What can nanotechnology best help with for	Produce	Reduce the size	Make stuff	stronger	Reduce the size of
9	consumer products?	floating devices	of devices	light up	materials	devices
	Why are nanoelectronic devices a less expensive		They require		They are more	
	alternative to the design of current electronic	They are slower	less parts and	They are less	vulnerable to	They require less
10	devices?	operating	materials	reliable	viral software	parts and materials
	The components fabricated using surface					
	micromachining are aspect ratio					
	components relative to other micromachining					
11	processes.	Low	medium	high	ultra high	Low
12	Particles emitted from hot cathode surface are	negative ions	positive ions	protons	electrons	electrons
	One of the most used kinds of lasers in		Diamond	Bulk		
13	microfabrication is:	Excimer	milling	micromachining	Pressure sensor	Excimer
	Which of then following is example of direct					
14	access?	magnetic disc	floppy disc	program tape	plain disc	magnetic disc
				To produce		
		The price of a		more silicon		To produce more
	Interest of increasing wafer diameter from 200	300 mm wafer	It is easier to	devices from a	To increase the	silicon devices from
15	mm to 300 mm	is lower	fabricate	single wafer	size of a die	a single wafer
				the reciprocal	the reciprocal	
	If a single walled CNT is semiconducting, the	the value of	the square value	value of	square value of	the reciprocal value
16	bandgap scales with	diameter, d	of diameter, d2	diameter, 1/d	diameter, 1/d2	of diameter, 1/d
17	The term photo voltaic comes from	spanish	greek	german	english	greek
18	The term photo voltaic is in use since	1840	1844	1849	1850	1849
	When the source of light is not sun light then the		Photo voltaic		Photo	
19	photo voltaic cell is used as	Photo diode	cell	Photo detector	transmitter	Photo detector
	Solar cells are made from bulk materials that are					
20	cut into wafer of thickness	120-180µm	120-220µm	180-220µm	180-240µm	180-240µm
	photo voltaic devices in the form of	Cadmium		Cadmium	Cadmium	Cadmium
21	thin films.	Telluroide	Cadmium oxide	sulphide	sulphate	Telluroide
		Copper Indium			Copper Indium	
		Gallium		Copper Gallium	Gallium	Copper Indium
22	is a direct band gap material	Selenide	Copper Selenide	Telluride	Diselenide	Gallium Selenide

	Dye-sensitized solar cells are made from	Ruthium				
23	organic dye.	melallo	Aniline	Safranine	Induline	Ruthium melallo
24	Quantum dot solar cells are based on	Gratzel cell	Solar cell	Voltaic cell	Galvanic cell	Gratzel cell
25	The quantum dot used are	CdS	CdTe	PbO	GaAs	CdTe
	the cathode and the anode of the diode are	emitter and				emitter and
26	referred to as	collector	electrode	terminals	connections	collector
	entering the structure from the					
27	emitter is described by the wavefunction	proton	electron	neutron	photon	electron
28	the lifetime of an electron in the well equals	5 x 10-12s	5 x 10-12μs	5 x 10-12ms	5 x 10-12ns	5 x 10-12s
29	The widths of the quantum wells are equal to	36 Å	46 Å	56 Å	66 Å	46 Å
	The heights of the barriers vary from			0.3 eV to 1.2	0.3 eV to 1.2	
30		0.3 eV to 1.2 V	0.3 eV to 1.2 eV	mV	MeV	0.3 eV to 1.2 eV
	For asymmetric barriers, the maximum					
31	transmission at $E \perp = \epsilon n$ is	positive	unity	less than unity	negative	less than unity
		sequential	quantum		1:00	
	The process responsible for the resonant-	tunneling	tunneling	tunneling	differential	sequential tunneling
32	tunneling effect is the so-called	process	process	process	process	process
22	For the lower temperature, there is			: 4	-1	-1
33	current at finite voltage blases	positive	negative	unit	almost zero	almost zero
	As of public record at the end of 2002, which					
	investment in melecular penetechnology					
3/	research?	Russia	Ianan	China	India	Ianan
54	What is the term used in the field of	Russia	Japan	China	India	Japan
	nanotechnology to describe an as-vet theoretical					
	device that "will be able to bond atoms together					
35	in virtually any stable pattern?"	Stacker	Replicator	Assembler	Constructor	Assembler
	What is the general name for the class of		•			
36	structures made of rolled up carbon lattices?	Nanorods	Nanotubes	Nanosheets	Fullerrods	Nanotubes
37	The efficiency of the solar cell is about	25%	15%	40%	60%	15%
38	The output of the solar cell is of the order	0.1W	1W	10W	100W	1W
	What is the maximum possible output of a solar					
39	array?	300 W/m2	100 W/m2	250 W/m2	500 W/m2	250 W/m2

	The current density of a photo voltaic cell ranges	10 - 20	40 - 50	20 - 40	60 - 100	
40	from	mA/cm2	mA/cm2	mA/cm2	mA/cm2	40 - 50 mA/cm2
	Optical switching can be classified into					
41	categories.	Two	Three	Four	One	Two
	are the array of switches		Optical cross		Optical	Optical cross
42	which forms circuit switching fabrics.	Packet arrays	connects	Circuit arrays	networks	connects
					Disability to	
		Regenerating			handle burst	Disability to handle
43	What is the main disadvantage of OCS?	mechanism	Optical session	Time permit	traffic	burst traffic
	How many functions are performed by an optical					
44	packet switch?	4	3	2	1	4
	provides data storage for packets					
45	to resolve contention problems.	Switching	Routing	Buffering	Reversing	Buffering
	provides efficient designation,					
	routing, forwarding, switching of traffic through	Label	Multiprotocol	Optical		Multiprotocol label
46	an optical packet-switched network.	correlation	label switching	correlation	Routing	switching
	mode is temporary, selective and				Circuit	
47	continuous.	Cell switching	Buffer switching	Cache	switching	Circuit switching
	refers to the process whereby a					
	node finds one or more paths to possible					
48	destinations in a network.	Routing	Framing	Lightning	Cloning	Routing