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Objectives: This paper explains the shortcomings of classical physics in explaining different subatomic
physics and the evolution of quantum mechanics.

UNIT I

Time dependent Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of
a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and
probability current densities in three dimensions; Conditions for Physical Acceptability of Wave
Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions.
Position, momentum & Energy operators; commutator of position and momentum operators; Expectation
values of position & momentum. Wave Function of a Free Particle.

UNIT II

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigenvalues; expansion
of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the
time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to
the spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms
and momentum space wavefunction; Position-momentum uncertainty principle.

UNIT III

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary
condition and emergence of discrete energy levels; application to one-dimensional problem- square well
potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions
using Frobenius method.

UNIT 1V

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar
coordinates; separation of variables for the second order partial differential equation; angular momentum
operator and quantum numbers; Radial wavefunctions from Frobenius method; Orbital angular
momentum quantum numbers | and m; s, p, d,.. shells (idea only)

UNIT V

Atoms in Electric and Magnetic Fields:- Electron Angular Momentum. Space Quantization. Electron Spin
and Spin Angular Momentum. Larmor’s Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment.
Normal Zeeman Effect: Electron Magnetic Moment and Magnetic Energy. Many electron atoms: Pauli’s
Exclusion Principle. Symmetric and Antisymmetric Wave Functions. Spin orbit coupling. Spectral
Notations for Atomic States. Total Angular Momentum. Spin-orbit coupling in atoms-L-S and J-J
couplings.
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Time dependent Schrodinger equation:

Although we were able to derive the single-particle time-independent Schrodinger
equation starting from the classical wave equation and the de Broglie relation, the time-
dependent Schrodinger equation cannot be derived using elementary methods and is
generally given as a postulate of quantum mechanics. It is possible to show that the time-
dependent equation is at least reasonable if not derivable, but the arguments are rather
involved

The single-particle three-dimensional time-dependent Schrédinger equation is

z'ha"'*"é’;’t) = —;‘ V2(r, t) + V() (r, t) (M

where V' is assumed to be a real function and represents the potential energy of the system
Wave Mechanics is the branch of quantum mechanics with equation (1) as its dynamical law.
Note that equation (1) does not yet account for spin or relativistic effects.

Of course the time-dependent equation can be used to derive the time-independent equation.

If we write the wavefunction as a product of spatial and temporal

Y(r,t) = ¥(r)f(2)

terms, , then equation (1) becomes

s < 1) |3+ v )| wio o

or

th df 1 R,
() dt m!‘_v +V(r)]z+(r) 3)

2m

Since the left-hand side is a function of £ only and the right hand side is a function of £

only, the two sides must equal a constant. If we tentatively designate this constant £ (since
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the right-hand side clearly must have the dimensions of energy), then we extract two ordinary

differential equations, namely

L 4@ _ _iE @
ft) d& &

and

V() + V() = BY() ®

The latter equation is once again the time-independent Schrédinger equation. The former

equation is easily solved to yield

f(t) — e—iEt/ﬁ (6)

The Hamiltonian in equation (5) is a Hermitian operator, and the eigenvalues of a Hermitian

f(¢)

operator must be real, so E is real. This means that the solutions are purely
f(2)
oscillatory, since never changes in magnitude (recall Euler's
et'® = cosf -1 sind
formula ). Thus if
) . —iEt/
Y(r,t) = 9(r)e =" (M
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Y(r, t) Y(r)
then the total wave function differs from only by a phase factor of constant

magnitude. There are some interesting consequences of this. First of all, the

[ (x,)|?

quantity is time independent, as we can easily show:

[, £)[? = 9, )0, 2) = 2Py (1) By (e) = " (1)) ®

Secondly, the expectation value for any time-independent operator is also time-independent,

d'(rv t)

if satisfies equation (7). By the same reasoning applied above,

<A>= / *(r, 8) Au(r, t) = / o* (r) Ay (r) 9)

For these reasons, wave functions of the form (7) are called stationary states. The

U(r,t)

state is 'stationary," but the particle it describes is not!
Of course equation (7) represents a particular solution to equation (1). The general solution to

equation (1) will be a linear combination of these particular solutions, i.e.

t) = Zcie_iE‘t/ﬁl;",-(r) (10)

Properties of wave functions

The quantity with which quantum mechanics is concerned is the wave function Y(z, t).
Properties:

1. ¥(r, t) is complex. It can be written in the form ¥(r, t) = A(r, t) + 1 B(r, t) where A and B
are real functions.

2. Complex conjugate of ¥ is defined as W* = A - iB

3.]P|2=Y *¥Y=A 2+B 2 Therefore | ¥| 2 =¥ * ¥ is always positive and real.
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4. While ¥ itself has no physical interpretation, | | 2 evaluated at a particular place at a
particular time equals to the probability of finding the body there at that time.

5. Normalization If a wavefunction is not normalized, we can make it so by dividing it with a

[O 1e@)Pdv=1

normalization constant. .Eg

{a(l-x) x>0
f(x)=
a(l+x) x<0

27 16)P dx =2 [a(1-x)Pdx

=2az[_(1-x)3}
3 0

=222 41
3

~. f(x) 1s not normalixed, but y(x) = —-

5. Mathematical properties of ¥: a. ¥ must be continuous and single-valued everywhere. b.
oY / 0x, 0¥ / oy, 0¥ / 0z must be continuous and single-valued everywhere. (There may be
exception in some special situations, we will discuss this later.) c. ¥ must be normalizable. |

¥| 2 must go 0 fast enough as X, y, or z —=0 so that | [¥| 2 dV remains finite.

Probability Interpretation of Wavefunction
After many false starts, physicists in the early 20th century eventually came to the conclusion
that the only physical interpretation of a particle wavefunction that is consistent with

experimental observations is probabilistic in nature (Dirac 1982). To be more exact,

Y(x,1)
if

is the complex wavefunction of a given particle, moving in one dimension along

x X x+dx t
the  -axis, then the probability of finding the particle between  and at time is

P(x,t) = |y(x, 1)|* dx. (1105)
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Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
==

\—‘/

CLASS: III B.Sc PHYSICS COURSE NAME: Quantum Mechanics
KA R PA G A M COURSE CODE:16PHU602A UNIT-1 : Schroedinger equation
ACADEMY OF HIGHER EDUCATION
(Dcemedtobe University) BATCH: 2016 — 2019

(Establ -k etrorr3-of-

A probability is a real number lying in the range 0 to 1 . An event that has a probability 0 is

impossible. On the other hand, an event that has a probability 1 is certain to occur. An event

1/2

that has an probability (say) is such that in a very large number of identical trials the

event occurs in half of the trials. We can interpret

P(t) = f lr(x, )| dx (1106)
X =—00 X = +00
as the probability of the particle being found anywhere between and at
t

time . This follows, via induction, from the fundamental result in probability theory that the
probability of the occurrence of one or other of two mutually exclusive events (such as the
particle being found in two non-overlapping regions) is the sum (or integral) of the

probabilities of the individual events (Reif 2008). (For example, the probability of throwing
1/6 1/6

a lon a six-sided die is . Likewise, the probability of throwing a 2 is . Hence, the

1/6+1/6 =1/3
probability of throwing a 1 or a 2 is .) Assuming that the particle

X =-—00 X = 400
exists, it is certain that it will be found somewhere between and at

t
time . Because a certain event has probability 1 , our probability interpretation of the

wavefunction is only tenable provided

f W (x, 0)]* dx = 1 (1107)

-0
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at all times. A wavefunction that satisfies the previous condition--which is known as

the normalization condition--is said to be properly normalized.

Y(x,1)

Suppose that we have a wavefunction, , which is such that it satisfies the

t=0

normalization condition (1107) at time . Furthermore, let the wavefunction evolve in
time according to Schrodinger's equation, (1102). Our probability interpretation of the
wavefunction only makes sense if the normalization condition remains satisfied at all

subsequent times. This follows because if the particle is certain to be found somewhere on

X t=0
the -axis (which is the interpretation put on the normalization condition) at time

X
then it is equally certain to be found somewhere on the -axis at a later time (because we

are not considering any physical process by which particles can be created or destroyed).
Thus, it is necessary for us to demonstrate that Schrodinger's equation preserves the

normalization of the wavefunction.

Taking Schrodinger's equation, and multiplying it by (the complex conjugate of the

wavefunction), we obtain

(M n* 0‘:,[1
1108
6 " Y= “m (1108)
The complex conjugate of the previous expression yields
o 0” ¢
A h=— — 1109
ot (1109)

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 7/17



Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
g;‘_J

VV

CLASS: III B.Sc PHYSICS COURSE NAME: Quantum Mechanics
KA R P AG A M COURSE CODE:16PHU602A UNIT-1 : Schroedinger equation
ACADEMY OF HIGHER EDUCATION
(Deemed tobe Universty) BATCH: 2016 — 2019
wy=y ,
Here, use has been made of the readily demonstrated results and 1" = —1 , as
U(x)
well as the fact that is real. Taking the difference between the previous two

expressions, we obtain

(o, oyt \ B Py, FY
lh(Ew +7 )"_2m(ax2¢ - ox V) (1110)

which can be written

alyl* R0 (g o
h = ——y __w (1111)
ot 2m 0x\ 0x
X
Integrating in ~ , we get
d R [ oy o*
ih— dx=—-—|—¥" - 1112
. _wltlfl , [ d (1112)
Finally, assuming that the wavefunction is localized in space: that is,
W(x, ) >0 x| - oo, (1113)
as
we obtain
4 yrdx=0 1114
— Ix = 0.
dt J_., (1114)
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It follows, from the preceding analysis, that if a localized wavefunction is properly
t=0 Lo w(x,0)2 dx = 1

normalized at (ie., if ) then it will remain properly

normalized as it evolves in time according to Schrodinger's equation. Incidentally, a

wavefunction that is not localized cannot be properly normalized, because its normalization

[ w1 dx W(x, 1)) dx

integral is necessarily infinite. For such a wavefunction, gives
X
the relative, rather than the absolute, probability of finding the particle between
x+dx t
and attime . In other words, [cf., Equation (1105)]

P(x,1) o< |Y(x, 1) dx.

Conditions for physical acceptability of wave functions:
1. The wave function y must be continuous. All its partial derivatives must also be

oy oy

o

‘1' . .
continuous (partial derivatives are oy ). This makes the wave function “smooth”.

2. The wave function y must be quadraticallyintegrable. This means that the integral

w o dr )
I v ¥ must exist.

3. Sincef ppae is the probability density, it must be single valued.

4. The wave functions must form an orthonormal set. This means that

» the wave functions must be normalized.

j'.f".-. w, dr =1

* the wave functions must be orthogonal.
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I;ul.' w.dr =0
OR ‘.Wr‘ w.dr= 0; whered; =1 wheni=jand &; =0 wheni=)

=

dijcalledKronecker delta

5. The wave function must be finite everywhere.

6. The wave function must satisfy the boundary conditions of the quantum mechanical
system it represents.

Linearity and The Superposition Principle

Though it is customary to view the superposition principle within the mathematical
framework of Hilbert Spaces, it is in-structive to recall its purely operational meaning as
elaborated by Dirac. He gives a very broad characterization of states as the embodiment of
the collection of all possible measurement outcomes. Then superposition of states according
to him is as follows: if A is a superpositionof two or more states, say, B,C,.., every outcome
of a measurement on A must also be a possible outcome of the same measurement on any of
B, CThough this characterization of superposition may seem adhoc, the customary, Hilbert
Space based view is completely equivalent to it. but the Dirac characterization has the
advantage of being purely operational and applicable even if there is no underlying Hilbert
space structure. Being about superposition of states, it is like no other superposition principle
in either physics or mathematics. Examples of the latter are superposition of sound waves, of
electromagnetic waves, of vectors etc.. This was most emphatically stated by Dirac himself:
’It is important to remember, however, that the superposition that occurs in quantum
mechanics is of an essentially different nature from any occurring in the classical theory’
(The italics are Dirac’s). He further stated that The analogies are thus liable to be
misleading(p.11 §3of [1], and p.14 §4of [2]). In the current formulation of quantum theory,
this principle is givena precise mathematical meaning through the Hilbert Space
formalism(actually one needs the density matrix formalism for a more satisfactory
description, but that discussion is somewhat beyond the scope of this presentation).
According to this, every physical state is representable by a family of vectors in a Hilbert

space. A typical such vector is symbolically denoted by |i. Vectors belonging to a given
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family differ only in phase. This is the so called ray representation of states. If P1, P2are two
distinct physical states meaning their rays are distinct, and if |11 belongs to the ray of Pland
|2ibelongs to the ray of P2, the principle of superposition of states states that the complex

linear superposition
) = |1} + 5|2

also represent quantum states of the system.

Eigenfunctions and Eigenvalues

An eigenfunction of an operator Ais a function such that the application of Aon

f

gives  again, times a constant.

Af = kf “9)

where k is a constant called the eigenvalue. It is easy to show that if A is a linear operator

with an eigenfunction , then any multiple of is also an eigenfunction of A

When a system is in an eigenstate of observable A (i.e., when the wavefunction is an

eigenfunction of the operator A) then the expectation value of A is the eigenvalue of the

wavefunction. Thus if

Ay (r) = ar(r) (50)

then

<A> (51)

I
—
.{?:<

*
~
<

S
e
g
oo B
au
H
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= a / Y*(r)y(r)dr

- a

assuming that the wavefunction is normalized to 1, as is generally the case. In the event

¥(r)

that is not or cannot be normalized (free particle, etc.) then we may use the formula

< A>= f’r* (rC)ZAL(r) r/ L*(r)u(r)dr (52)

What if the wavefunction is a combination of eigenstates? Let us assume that we have a

wavefunction which is a linear combination of two eigenstates of A with eigenvalues &

and b

; 53

Y = Ca¥a + Cetlh (53)
Apo=av.  Ady=bi,

where and . Then what is the expectation value of A?

<A>= [vdy (54

- f [Catha + cots]” Acatia + coly)

- ./ [catla + o] [acatia + eyt

= a|ca|2/u*ua+bc:cb/ Dy + acgc, / Vit + blcg|? /z,*z,‘b
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= alc,|* + blcy|?

l.vi'a ub
assuming that and are orthonormal (shortly we will show that eigenvectors of

Hermitian operators are orthogonal). Thus the average value of A is a weighted average of
eigenvalues, with the weights being the squares of the coefficients of the eigenvectors in the

overall wavefunction.

1. In the "position representation" or "position basis", the position operator is

represented by the variable x:

X=X

2. In the "position representation" or "position basis", the momentum operator is

represented by the derivative with respect to x:

. d
=i ®
=

3. This follows if you accept (2). The energy operator is:

LR ——h—d—+V(x)

2m 2m dx’

Now think about eigenfunctions of these operators

H=

Commutator of position and momentum operators:
Operators (or variables in quantum mechanics) do not necessarily commute. We can see our

first example of that now that we have a few operators. We define the commutator to be

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 13/17



& KARPAGAM ACADEMY OF HIGHER EDUCATION

vﬂ’;
CLASS: III B.Sc PHYSICS COURSE NAME: Quantum Mechanics
KA R PA G A M COURSE CODE:16PHU602A UNIT-1 : Schroedinger equation

ACADEMY OF HIGHER EDUCATION

(Deemed tobe Universty) BATCH: 2016 — 2019

(Establ -t etrorr3-of-o

[p, x| = pxr — xp

p

(using and L as examples.)

p p

We will now compute the commutator between and L . Because is represented by

a differential operator, we must do this carefully. Lets think of the commutator as a

9
ox
(differential) operator too, as generally it will be. To make sure that we keep all the
p, z] () ()
that we need, we will compute then remove the at the end to
see only the commutator.
, , h O h 0
[p,zld(x) = prd(z) —zpd(z) = - —2Y(x) — z-=(z)
1 Ox 1 Ox
h oY(x oY(x h
palu@) = 2 (@) +o22E _ 20N Ry
) Ox oz 7
U ()
So, removing the we used for computational purposes, we get the commutator.
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[p,:l:'] —

Later we will learn to derive the uncertainty relation for two variables from their commutator.
Physical variable with zero commutator have no uncertainty principle and we can know both
of them at the same time.

We will also use commutators to solve several important problems.

We can compute the same commutator in momentum space.

L d , d d , h
lp,z]p = [P,Zﬁd—pw =1h (P@d’ = %]W) = ih(—¢) = 74’
h
[pa x] = ?

Expectation Values

To relate a quantum mechanical calculation to something you can observe in the laboratory,
the "expectation value" of the measurable parameter is calculated. For the position x, the
expectation value is defined as

(x)= jy/ *(x,t)xy(x,t)dx

This integral can be interpreted as the average value of x that we would expect to obtain from
a large number of measurements. Alternatively it could be viewed as the average value of
position for a large number of particles which are described by the same wavefunction. For
example, the expectation value of the radius of the electron in the ground state of the
hydrogen atom is the average value you expect to obtain from making the measurement for a
large number of hydrogen atoms.
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While the expectation value of a function of position has the appearance of an average of the
function, the expectation value of momentum involves the representation of momentum as

a quantum mechanical operator.
T oo h O
(p)= [w* ()= =—w(x.ndx
— i 0x

where

_h d
p

operate r a 'S

is the operator for the x component of momentum.

Since the energy of a free particle is given by

P’ (P’)
E=—the E)y="—*=
2m en < ) 2m

and the expectation value for energy becomes

y A 2
(E) = [y+ D2
free particle 2m ox*

ydx

for a particle in one dimension.

In general, the expectation value for any observable quantity is found by putting the quantum
mechanical operator for that observable in the integral of the wavefunction over space:

(0)= j VO, VY

u['a raior
integral over

all space
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Multiple Choice Questions

Question Choicel Choice2 Choice3 Choice4 Choice5 Choice6
Equation (P=mv  P=dv P=md P=m’v
Torquet.rx F r’xF r’x rx F?

Angular m moment o torque x v acceleratic force x mass
Total angu orbital ang. spin angt linear angi torque

Angular mh(r xA) h/IrxA h(r2 xA) h/irx A

LxL=.... ihL ihL ihL? ih’L

Total angt J* = I 411> = J2 41,02 =1 43, T = 1241243
Commutat ihJ,. ihJ, ihJ, h,ihy

193, 5,1:1 2 0 3

Jo=L L+, J-in, 12+ 5 0-1)

J =, LA, Je-ily T2+ 12-i)
PARAEIRIN A ENN L4 0
[J,,1.]1=h. hJ, hJ, hyJ,

IR NES! 2 4 0

[J.,).]ish hJ, hy? hJ

Torque is moment o moment o rate of charate of change of distance
Momentu vector  scalar dimension product of vector and scalar

In quanturh/irx A h/i A h/ir h/i(rx A)2

The opera . Hamiltor Ladder op Hermitian angular momentum operator
[3000=1 2 4 0

The opera iho/ot -tho/ot  iho/ox  —ihv

Operation Another ki A bra vect Another o Phase vector

Operation A ket vect Another o Another b- Phase vector

When an ¢ box norme plane norr total norm any of the above

The orbitas orbital p orbital d orbital f orbital
The orbita s orbital p orbital d orbital f orbital
The orbitas orbital p orbital d orbital f orbital
The orbitas orbital p orbital d orbital f orbital
The quantnandl landm n,land m nand m

The value 0,1,2,3,...1,2,34, ... +£1,+2,£30,+1,+2, £3,+4 ...

Which of 1A linear cc A linear c( A linear cc A linear combination of degene

The correc lh Ih [I(1+Dh] [1(1+1)]" h.
The quant angular mi spin angul orbital ang any of the above
An energy 2-fold 3-fold (21+1) folc1-fold

Answer
P=mv
rxF

moment of inertia x a
orbital angular mome

h/irx A

ihL

P sz +Jy2 +Jzz
ihJ,

0
T+ il
Iy - il

Tl Je 1+ [ Je 1y
hl,
0

hJ
moment of force
vector

h/irx A

Ladder operator

0

iho/ot

Another ket vector
Another bra vector
box normalization

s orbital

p orbital

d orbital

f orbital

n,l and m
0,+1,£2,43, +4 ...
A linear combination
[1(1+1)]"* .

orbital angular mome
(21+1) fold



The poten' gravitatior electromajnuclear  Coulombic
The proba probability probability radial prot any of the above
For the grP,,= 2a, wdP,,/dr = dP,,/dr = none of the above

For the grcthe Bohr r twice the 1half the B(No relation with Bohr radius.

The bindir 2.226 Me‘2.226 eV 2.226 keV Zero

The eigen 13.5eV  2.75eV  12.75¢eV 3.5¢eV

The energ 2Z°Ey,  2ZEy - 2ZEy; —27°Ey

Forn =1, (Z/nay)"? «(Z/may))"" (Z/may)* e (Z/may) 2 ™?

The secule principal ¢ lower diag upper diag lower and upper diagonal
The pertuteEr cos® ercosd  —eEr cos8— er cos

The groun (1/ma,” )" (1/may’ )" (1/ma,” ) (1/may’ )" exp(t/a)

The behav electric qu electric dij Zeeman el Magnetic dipole moment
The Bohr 5.267 A 0.05267 A0.5267 A 52.67 A

v=0 v=vy, VvFY
perpendici anti-parall none of the above

By expansy =1
The orient parallel

Coulombic

radial probability den
dP,,/dr=0

the Bohr radius
2.226 MeV

13.5eV

—27°Ey

(Z%/ma )" ¢
principal diagonal
—eEr cosb

(1/may’ )" exp(-r/ay)

electric dipole mome
0.5267 A

YV # VY
anti-parallel
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UNIT - 11

Time independent Schrodinger equation-Hamiltonian, stationary states and energy
eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions;
General solution of the time dependent Schrodinger equation in terms of linear combinations of
stationary states; Application to the spread of Gaussian wavepacket for a free particle in one

dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-
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Time Dependent Schrodinger Equation

The time dependent Schrodinger equation for one spatial dimension is of the form

—h* *W(x,1)
2m  ox’

+U(x)¥(x,t)=ih

For a free particle where U(x) =0 the wavefunction solution can be put in the form of a plane

wave

‘P(x,t) - Aeik\'—i(m

For other problems, the potential U(x) serves to set boundary conditions on the spatial part of
p pelent S ) IyACORCIIY patial p
the wavefunction and it is helpful to separate the equation into the time-independent
h. N

- A
Schrodinger equation and the relationship for time evolution of the wavefunction

Hamiltonian, stationary nd energy eigen values:

In quantum mechanics, a Hamil&nian is an operator corresponding to the total energy of the
system in most of the cases. It is usually denoted by H, also H or H. Its spectrum is the set of
possible outcomes when one measures the total energy of a system. Because of its close
relation to the time-evolution of a system, it is of fundamental importance in most
formulations of quantum theory.

A stationary stateis a quantum state with all observables independent of time. It is

an eigenvector of the Hamiltonian.!!! This corresponds to a state with a single definite energy
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(instead of a quantum superposition of different energies). It is also called energy
eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket.

The wavefunction for a given physical system contains the measurable information about the
system. To obtain specific values for physical parameters, for example energy, you operate
on the wavefunction with the quantum mechanical operator associated with that parameter.
The operator associated with energy is the Hamiltonian, and the operation on the

wavefunction is the Schrodinger equation. Solutionfl exist for the time independent

Schrodinger equation only for certain values o and these values are called
"eigenvalues*" of energy.

Corresponding to each eigenvalue is an

that energy state. The solution of t
Hupv,l' = Ei Vi

The eigenvalue concept d imi i operator Q, it can

take the form

Qup Vi
/

operator

if the fun ' i i . The eigenvalues qi may be discrete,
sical variable is "quantized" and that the index i

haracterizes that state.

&gy eigenvalues'

erman "Eigenwert" which means proper or characteristic

plays the role of a

*"Eigenvalue" comes from
value. "Eigenfunction" is from "Eigenfunktion" meaning "proper or characteristic function".
Linear combination of separable solutions:

The general solution is a linear combination of separable solutions. As the timeindependent
Schrodinger equation yields an infinite collection of solutions y1 (x), y2 (x), ¥3 (), .... ,
each with its associated value of energy eigenvalue s E 1 , E 2 , E 3 .... ; thus there is a

different wave function for each allowed energy:
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Wy (x, 1) = Y (x)e B Wn(x, 1) = Y (x)e B

Now the (time-dependent) Schrodinger equation has the property that any linear
combinations combinations of solutions solutions is itself a solution solution. Once we have
found the separable separable solutions, then, we can immediately construct a much more

general solution, of the form

V@, 1) =) epu@e
n=1
It so happens that every solution to the (time-depen inger equation can be written

in this form--it is simply a matter of finding ,C2,..) s0 as to fit the

initial conditions for the problem at hand.

at sum to form a quantum Gaussian wave packet
ing. Blue dots follow each plane wave's phase

ral group velocity.
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VARV

Position space probability density of an initially

ian state trapped in an infinite potential
well experiencing periodic Quantum Tunn
The above dispersive Gaussian wave packet, i ust centered at the origin,

instead, at =0, can now be writtend
B(r,0) = e T2
where a is a positive ream, the squa

a=2(r -r)/3(1) = 2(Ax)®

The Fourier tra

inverse w,

1/a = 2(k - X)/3(1) = 2(p, /h)?

is also i venumber, =0, the k-vector, (with

so that

AzAp, = k)2
i.e., it saturates the uncertainty tion),

¥(k,0) = (2ma)* e~ 2K

Each separate wave only phase-rotates in time, so that the time dependent Fourier-

transformed solution is
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Uik, t) = {zm)ﬁfﬂe—uk-k;zﬁ_imm
= {Zﬂa}:‘mg_—"k'kr'?—fiﬁ"’k-k,-’zmjs,.*h

. (2#{1)3" ZE—{u—t'M,'m]lk-k,fZ i

The inverse Fourier transform is still a Gaussian, but now the parameter a has become

complex, and there is an overall normalization factor.

3."12 r-r
11'- [r, t) — (L) e_ lat+aht/m)
a + iht/m

roduct of ¥ with the state
ant function of space. For

any energy eigenstate 7(x), the inner
() = [ n(eybe)a’e

only changes in time in a es with a frequency determined by the

energy of 7. n has zero infini elength wave, it doesn't change at
all.
The inte PP also invaria i t of the conservation of probability.
Explicitly,
3 arr
P(r) = |9 = ' ¥ = ( “"‘ ) e iimm?
v/a* + (ht/m)

in which Va is the width o t = 0; ris the distance from the origin; the speed of the
particle is zero; and the time origin # = 0 can be chosen arbitrarily.
The width of the Gaussian is the interesting quantity which can be read off from the

probability density, |,

a? + (ht/m)?
=
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This width eventually grows linearly in time, as /it/(mVa), indicating wave-packet spreading.
For example, if an electron wave packet is initially localized in a region of atomic dimensions
(i.e., 1071 m) then the width of the packet doubles in about 107! s. Clearly, particle wave
packets spread out very rapidly indeed (in free space):!® For instance, after 1 ms, the width
will have grown to about a kilometer.

This linear growth is a reflection of the (time-invariant) momentum uncertainty: the wave

packet is confined to a narrowa=, and so hag®a momentum which is uncertain

(according to the uncertainty principle) by the amg , a spread in velocity of h/m,

and thus in the future position by #¢ /m. ncertainty_relation is then a strict

inequality, very far from saturation, ind nty AxAp = h/2 has now

increased by a factor of /it/ma (for large ).

Fourier transformations:
. .
o0 = (=) [ v ear
v@?? T Apace

for momentum space and \

o= (L) [ ol

N\

sform as the Fourier transform and the other as the inverse

for position space.
1

The identification of on
transform is a matter of defini The Fourier transform predates quantum mechanics so the
reason for the assignment has nothing to do with QM and everything to do with mathematics
history.

In 1807 Fourier submitted a manuscript to the Institut de France containing, among other
things, what we now call the Fourier cosine transform and its inverse. These are his

transforms:

Fe(u)=2njoo0f(x)cos(ux)dxFe(u)=2n]0cof(x)cos (ux)dx
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f(x)=JOOOFc(u)cos(ux)du.f(x)=f000Fc(u)cos (ux)du.

Cauchy's 1827 generalization of Fourier's relations entailed complex-valued functions, and an
ineluctable sign asymmetry in form of the transforms. Trying to preserve symmetry does not
help. As the article below notes, it may be shown that if the same sign is taken for both the
forward and inverse formulae, "one formula is not exactly the inverse of the other one."

It is a long and helpful exercise to verify that f*f" and ff inhabit dual spaces with a high

degree of symmetry. For example, a function co the same "energy" as its FT

(Plancherel). Whether physics would be equally w. ed had a different convention been

chosen is moot, even if we find particular instance seem to point to the road not taken.
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Multiple Choice Questions

Question Choice1 Choice2 Choice3 Choice4 Choice5 Choice 6
Time dependent theory is nuclear crystallog mechanic

mostly used in physics  raphy optics S

Oscillating  electric  and time

magnetic  field associated independ harmonic WKB

with  light can induce ent variation perturbati approxim

transition is an example of  theory  theory  on ation

Transition probability per
unit time when transitions are ) ) (27[/ ?) | H
extended to continuum is 27 |Hy i [ Hy | | Hp | p( ot | *P(Emm

given by T, where Tis equal to |’p(E,) ’p(E,)  Ep) )

The time dependent theory Schrédin

was developed by Einstein ger Pauli Dirac
density of

The transition probability per final

unit time is proportional to  states | H,, | Time‘t t
smallness large
of smallness large value of
(CH/At)  of value of (OH/0t)

but E,, —(aH/6t) (oH/ot) but En —
The wvalidity of adiabatic E not too but E,, — but E, — E not too

approximation requires small Elarge E,small small
at rapid
at slowrate in aat rapidat slow
rate at very rate  inrate in
narrow  small large large
In sudden approximation, interval interval interval interval
perturbation changes oftime oftime oftime oftime
Frequency  of  radiation
emitted during transition (Em — En (En — Eq (Ey — Ep
from m level to n level is E —-E. )h )/h )/h

m n

While calculating the first
order perturbation the
constant of integration is
taken as zero in order that
dm(t) to be zero at t=o0 t=-00 t=0 t=2n

Answer
nuclear
physics

harmonic
perturbati
on

(2n/h) | H
mlr | 2p(Em
)

Dirac

t2

smallness
of
(oH/ot)
but E,, —
E, not too
small

at rapid
rate in a
very
small
interval
of time

(Em - En
)h



Height of the main curve in
time dependent perturbation
theory increase in proportion

to

) .2
The maximum value of Sin

[(®0n/2)/ (umlz] occurs when

O 1S

The

example

for time

dependent perturbation is

Example for

approximation is
Before the perturbation is

applied to the system the first

order transition constant a,,

be zero at

adiabatic

(1

In adiabatic approximation
the Hamiltonian varies slowly

with

t2

infinity

particle
in a box

collision
of  gas

molecule
S

t=o0

position

.. 6
The molecular velocities and 107 m/s
electron velocities in atoms and  10°
are respectively

A most common way of

m/s

inducing transitions between sudden
stationary states of quantum perturbati
system is by applying

The transition probability per
unit time is proportional to

on

| Hml' |

harmonic

Time dependent perturbation perturbati
theory is often called
In case of time dependent

perturbation theory, H" might

be zero except during the

period

In time dependent theory,
perturbation  is
during the period

effective

on

t,<t<t,

0<t<o

negative

nuclear
reactions
and
disintegra
tion

harmonic
oscillator

time
10° m/s

and 10°
m/s

constant
perturbati
on

| Hml' | ?
constant

perturbati
on

0<t<ow

t<t<t,

Z€1ro

harmonic
oscillator

spectral
analysis

t = -o0

position
and time
10 m/s

and 10°
m/s

harmonic
perturbati
on

-

variation
of
constants

t,<t<t,

t<t<t,

one

Stark
effect
interactio
n of
electroma
gnetic
waves

t=t

none of
the above

10°  m/s

and 10°
m/s

adiabatic
perturbati
on

t2

sudden
approxim
ation

t,<t<t,

t<t<t,

Z€10

harmonic
oscillator

collision
of  gas
molecule

harmonic
perturbati
on

| Hml' | ?
harmonic

perturbati
on

t,<t<t,

t<t<t,



In time dependent theory,

perturbation is  effective,

when H” might be negative zero one infinite
The Schrédinger tme (H+ H) H+H)H + H)(H + H)
equation for the system, in y =y =y = -y = -
case of time dependent (h/2mi)dw (h/2mi)ow (h/2ni)dw (h/2wi)ow
perturbation theory /ot /ot /ot /ot

Breadth of the main curve in

time dependent perturbation

theory decreases inversely as £ —t —t t
oscillatin
g electric

Example  for  transition and

between stationary states in magnetic electric  magnetic harmonic

atoms is fields field field oscillator
The energy is transferred transform
from the perturbing source to ation

the system, this process is absorptio approxim probabilit
known as n emission ation y

The energy is transferred to
the perturbing source from

the system, this process is absorptio approxim transmiss
known as n emission ation ion

In adiabatic approximation very

the perturbation is turned on  fast slowly  slowly  very fast

During the collision of gas
molecules, the molecular

velocities are low about 10m/s  10°m/s  1m/s 10° m/s
The gas molecules collide or sudden

approach each other, the isotherma approxim perturbati
process may be regarded as  adiabatic 1 ation on

The condition of sudden

approximation, by the help of

uncertainty relation A E. AT AxXAp =h/ A E

=h, is expressed as h >>t, Ax.At=h Ap.At=h

2
In sudden approximation the |af| , -

probability of transition from |<§H2|k |3f|2 - |af|2 = |af|2 -
state k to state f will be given ~ | /h g | <flHk | <flH'|k | <flH'k
by ’ > | Moy’ >| /oy > | /hog
There is no transition

between the states of the <fl[H(t)k> <f|H(t)k> <flH(t)k> <k[H(t)f>
system then, =00 =1 =0 =0

one
(H+ H)

\l[ = -
(h/2i) 00
/ot

harmonic
oscillator

emission

emission

very
slowly

10° m/s

adiabatic

W A E
>>‘[O
|3‘f|2 =
| <fiH'[k
> | o
2

<fIH(H)k>
=0



The velocity of electrons in

atoms are about 10°m/s  10'm/s  10°m/s  10°m/s 10° m/s
A particle executes a

harmonic motion along x-axis

and possesses a charge +e,

dipole moment is —ex Ex eE —¢cE eE
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General discussion of bound states in an arbitrary potential- continuity of wave function,
boundary condition and emergence of discrete energy levels; application to one-dimensional
problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy
levels and energy eigenfunctions using Frobenius method.

N
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GENERAL DISCUSSION OF BOUND STATES IN AN ARBITRARY POTENTIAL:

In quantum physics, abound stateis a special quantum state of a particle subject to
a potential such that the particle has a tendency to remain localised in one or more regions of
space. The potential may be external or it may be the result of the presence of another
particle; in the latter case, one can equivalently define a bound state as a state representing
two or more particles whose interaction energy exceeds the total energy of each separate
particle. One consequence is that, given a potential vanishing at infinity, negative-energy
states must be bound. In general, the energy spectru e set of bound states is discrete,
unlike free particles, which have a continuous spe

Although not bound states in the strict sense, metas
energy, but long decay time, are often cons
"quasi-bound states".!!) Examples include cert

Let H be a complex separable Hilb ce,
: p = plto
group of unitary operaﬁrs on H and

e-parameter

on H. Let A be

an observable on H and -”‘{A* distribution of 4 with

P } be the
\ R en the

respect to p on (i Borel o-

ion of p induced by U is bound with
R*,R:{m&R|$}H}

respect tguA if t=ty \
More info und state 1M within a bounded portion of the spectrum of 4.

F%lm sup u( A, p(t))(B.g) =

For a concre H Ii and letA4 be position. Given compactly-
p=p0)e H and [—l, 1] € Supp(p).

supported -

If the state evolution o oves this wave package constantly to the right", e.g.

if [t — 1, +1] € Supp(p(t)) for all =0, , then p is not bound state with respect to

position.

If p does not change in time, i.e. p(¢)= p for all t>=0, then p is bound with respect to position.

More generally: If the state evolution of p "just moves p inside a bounded domain", then p is
bound with respect to position.
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Continuity of wavefunction
Time-independent Schrodinger equation:

i 7
2m &x°

w(x)+ V(x)p(x) = Ey(x)
1. The wave function has to be continuous at all points, no exception.

p(x)

0
x”

2. The first derivative of the wave function ontinuous, only if V(x) is finite.

3. If V(x) is not finite at x=a:

a y
n d’ ;
"5 VO Ve () = Ep(x)
e —ﬁ—diw(x)+‘u’ Xy (x)dx = By (x)dx
2m dx
*ﬁ—zm-di wi(x)+ j V(x)p(x)dx = I E y(x)dx
2m | dx )

= ~2ﬁ—r;]h(/'{a+£}-w*{a-£}]+ J‘.V{x)w(a)dJ{:U

a-g

= [w‘{a+£}—¢r (a- 5}]- 4myf{a) I V(x)dx

‘

Boundary conditions for the w nctions:
The main equation of the non-relativistic quantum mechanics is the Schr'odinger equation

h!

Hi = —
2m

Ay + V(z) = Ev. (1)

Eq. (1) is not sufficient for the construction of the physically meaningful solutions. For bound
states one uses the Hilbert space condition
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[ [(x)|Pdr < oc, (2)

which leads to the real eigenvalues of the Hamiltonian. Gamow solutions on the other hand
are obtained if one assumes that the asymptotic behavior of the wave function y(x) is a
purely outgoing wave. Such a boundary conditionleads to complex eigenvalues [1] of the
Hamiltonian and the corresponding discrete solutions are interpreted as wave functions of
unstable states. The other kind of the continuity conditions for the wave function y(x) is
related to the form of the potential V (x). The wave function and its first derivative are
assumed to be continuous at finite jumps of the potenti e only notable exception is when
the potential becomes infinite and at such a point t ¢ function is assumed to vanish and
its first derivative is not assumed to be continu n this paper we consider the potential
wall in the form of the Dirac delta function

Q4(x) (3)

arbitrary form
the case of the

chapter we will concern ourselves with obtaining
stationary state solution o e independent Schr odinger Equation:

R
—f——L Nx)+ Vixlwle) = Ed(x)

:'I'J'I' I!-.}J e
(1)

for particles (such as electrons) bound in one dimensional potential wells. In general these
solutions can be chosen to be real rather than complex functions which can often be
considerable simplification. To see this lets take the complex conjugate of the time
independent SE given in Eq. (1):
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i ) + Viz)* (z) = By (x) [2)

T Ima2"

Because all the factors which operate on y(x) are real, they don’t change under complex
conjugation and hence y(x) and y*(x) are equally valid solutions of the same potential V (x)
with the same energy E. Since the SE is a homogenous linear differential equation, we can
always form new valid solutions by taking linear combinations of valid solutions. In
particular, the solution yr(x) which is constructed out of a general solutions y(x) and y*(x)
according to

L":-[J':l e L'fJ'] i \'.."[J.':l

alid solution with any
choose real bound state
solutions to the problems posed in ghi . ms which we will address

illustrated below in hopeii familiar cla:

Classically Allowed
ri-——v 55 4 W —Z'l'-|

n \

tential well”

Clussically
Forhidden

Classically
Forhidden

F#: i = X

By a potential well, we mean a graph of potential energy as a function of coordinate x. In this
well picture, we indicate a constant energy level (total potential plus kinetic energy) for the
particle of mass m by the horizontal “dotted line”. The picture is meant to evoke conservation
of energy ie the particle has the same total energy E = KE +PE independent of x. As a
particle of mass m slides back and forth in x along the well much like a mass sliding down a
frictionless valley, it constantly exchanges potential energy for kinetic energy while keeping
a constant E. The (energy) distance between the energy level and the potential curve
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represents the kinetic energy since KE = E — V (x). Classically the kinetic energy is an
intrinsically positive quantity because KE = mv2/2. The classical turning points are the two
intersections of the energy level and the potential well where the particle has zero kinetic
energy. In the region between the turning points E>V (x) and KE = E — V > 0. Since the
kinetic energy is positive this is a perfectly reasonable or “allowed” region for the particle to
exist. In the reason outside of the turning points, E< 0 which is a classically “forbidden”
condition. Classically the particle can never be found outside of the interval between the
classical turning points.

turning point on the frictionless
e picks up maximum speed at the
ght turning point. It stops at the right
ell valley. Turning points where the

Think of the particle as released from rest down at th
gravitational valley represented by th potential, the
bottom of the well, slows down as it approaches
turning point, turns around and heads back down
particle turns around and reverses are aptly

Square Potential Well

well

V(z) = - (372)

where

E>0
Now, if then t

it is either reflected or tra
probabilities are given by Eqs:

nded. Thus, when the particle encounters the well
ed. As is easily demonstrated, the reflection and transmission
7) and (328), respectively, where

2m E

k? = roa (373)
, 2m (E + Vi)
q E =3 : (374)
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E<D [|2 — 0
Suppose, however, that . In this case, the particle is bounded (i.e.,
|z| — o0
as ). Is is possible to find bounded solutions of Schrddinger's equation in the
finite square potential well (372)?

Now, it is easily seen that independent solutions of Schrdodinger's equation (301) in the
V(-z)=V(z)

symmetric [i.e., ] potential

¥(-2) = ¥(z)

[i.e., ], or totally anti-

must be either totally symmetric

= ()

]. Moreover,

(375)

(376)

(377)
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>af2
By symmetry, the solution in the region to the right of the well (i.e., ) is
U(z) = Ae”*=, (378)
|z| < a/2
The solution inside the well (ie., hich satisfies the symmetry
¥(~2) = ¥()
constraint is
Y(z) = B cos(gz), (379)
where
o 2m (Vp + E) (350)

Here, we have a: and its first derivative be

continuous at the edges

k = q tan(ga/2). (381)
y=gqa/2

Let . It follows that

E = Ey’ -V, (382)
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where

2k

ma?

Moreover, Eq. (381) becomes

A—1y?

Y

= tany,

Y

Here, must

W< FE

range

(383)
% (384)
(385)
D<y< VA
ran cie, Emust lie in the
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= -
0 SN—
-2
—4
0

r )\ = 1.57‘(2.

Figure: The curves

VA—92/y

tion of the curve

In this case, t icg,indicating the existence of two totally symmetric

bound states in the it is evident, from the figure, that as A increases (i.e., as
the well becomes dee nd more bound states. However, it is also evident

that there is always at | ne totally symmetric bound state, no matter how small A

A1
becomes (i.e., no matter how shallow the well becomes). In the limit (i.e., the limit
in which the well becomes very deep), the solutions to Eq. (384) asymptote to the roots
tany = 00 y=(2j-1)=/2 J
of . This gives , where 1is a positive integer, or
g= (2.7_1)'”' (386)
a
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These solutions are equivalent to the odd-7 infinite square well solutions specified by
Eq. (307).

Figure: (dashed), calculated

(387)

tany
The solutions of this equation correspond to the intersection of the curve with the

—y/VA—y?
curve . Figure 17 shows these two curves plotted for the same value of A as
that used in Fig. 16. In this case, the curves intersect once, indicating the existence of a single

totally anti-symmetric bound state in the well. It is, again, evident, from the figure, that as A
increases (i.e., as the well becomes deeper) there are more and more bound states. However,
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A< (w/2)?
it is also evident that when A becomes sufficiently small [i.e., ] then there is

no totally anti-symmetric bound state. In other words, a very shallow potential well always
possesses a totally symmetric bound state, but does not generally possess a totally anti-
A1
symmetric bound state. In the limit (i.e., the limit in which the well becomes very
tany = 0 y=3j=x
deep), the solutions to Eq. (387) asymptote to the roots of . This gives ,
J

where is a positive integer, or

g= 2jm (388)
a
These solutions are equivalent to ecified by

Eq. (307).

Quantum Harmonic Oscillak

be obtained by using the

angular frequency

W= 27 - frequency

The Schrodinger equation withighis form of potential is

32 72
a0 L et W) = E¥()
2m  dx* 2

Since the derivative of the wavefunction must give back the square of x plus a constant times
the original function, the following form is suggested:
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W(x) = Ce %2

Note that this form (a Gaussian function) satisfies the requirement of going to zero at infinity,
making it possible to normalize the wavefunction.

Substituting this function into the Schrodinger equation and fitting the boundary conditions
leads to the ground state energy for the quantum harmonic oscillator:

er equation, it does not
demonstrate that it is the lowest energy. One i i show that is to demonstrate

Schrodinger eq
a sequence of

Internuclear separation

The wavefunctions for th tum harmonic oscillator contain the Gaussian form which
allows them to satisfy the neegssary boundary conditions at infinity. In the wavefunction
associated with a given value of the quantum number n, the Gaussian is multiplied by a
polynomial of order n called a Hermite polynomial. The expressions are simplified by
making the substitution

y=+or x where azmTa)

The general formula for the normalized wavefunctions is

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 13/16



ga KARPAGAM ACADEMY OF HIGHER EDUCATION

VV

Eraie | Engh CLASS: III B.Sc PHYSICS COURSE NAME: Quantum Mechanics
KAR PA G A M COURSE CODE:16PHU602A UNIT-II : Boundary conditions
ACADEMY OF HIGHER EDUCATION
(Esabishd underScion 1 0GE At 195) BATCH: 2016 - 2019
1/4

o |
Y.=[=| —
Y T V2" n!

The quantum harmonic oscillator is one of the foundation problems of quantum mechanics. It
can be applied rather directly to the explanation of the vibration spectra of diatomic
molecules, but has implications far beyond such simple systems. It is the foundation for the
understanding of complex modes of vibration in larger molecules, the motion of atoms in a
solid lattice, the theory of heat capacity, etc. In real s s, energy spacings are equal only

Hn(y)e—y. ”

H,(y) = Hermite polynomial

n

The exact solution of t r a few particular
formsofpotentials,ing ationsornumeric

altechniques,Manyapp been developed for solving problems
in one-dimensi e Schriodinger equation have
also mmetricpotentials in D-
dimen othbymeth ne-dimensionalspace, e.g., the

variational” approach [2], and by methods

Hill det i ethod [1],
i , the shifted 1/D

ly accurate solutions to the Schr “"odinger
ustypes of spherically symmetric potentials
with the use of the F nius method (FM). Themethod consists in expanding
the solution of a differe equation into power series [5],and was originally
applied by Barakat and ROsner [6] to compute the spectrum of a one-
dimensional quartic oscillator confined by impenetrable walls at

expansion [3, 4].
equation can be de

x==x=R

. The energy eigenvalues of the system have been obtained numerically as zeros of a
function,

calculatedfromitspowerseriesrepresentation. Moreover,ithasbeenshownthat
thebound-stateenergiesof the confined system approach rapidly those of the unconfined
oscillator for increasingR.
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Low-lying eigenvalues for other one-dimensional potentials [7] have also been
successfullycalculated in a similar way. Recently, a modified treatment
of unconfined systems allowedfor a very accurate determination of the ground-state
energy for the quartic oscillator [8].Inall the cases studied the potential was a finite
function, and a solution was expanded aroundan ordinary point of the differential
equation. Here we study the application of the FM for solving the radial
Schrodinger equation, which requires that an expansion around a regular singular
point be used.The outline of the present work is as follows. In section 2 the
solution of the radialSchr”odinger equation in the form of a generalized power
series is discussed. The case of a spherically s tric potential bounded by an
impenetrable wall at

r=R

is studied insection 3. In this case, the i ¢ easily determined by
finding the roots of'the polynomial, which i e example of the confined
harmonic and anharmonicoscillat case of amunconfined
system is studied in section 4, arge set of
bound-state energies is developed.A fte the method
in the exactly solva i or the unconfined

oscillator are presented
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Quantum Mechanics (16PHU602A)
Multiple Choice Questions

Question Choice 1 Choice2 Choice3 Choice4 Choice5
Hermitian operators have eigen real imaginary complex infinity

If two Hermitian operators operators (unitary inverse Hermitian ldentity

The commutation relation [x,H] yields —ihp ihp (=ih/m)p  (ih/m)p

The commutation relation [p,H] yields — ihk, ihk, (=ih/m)k,  (ih/m)k,

If ais lowering operator and a' raising H/hw, — % H/hw, +% 1 0

If a is lowering operator and a' raising H/hw, — % H/hw, +% 1 0

If |a>and |b> are arbitrary kets then |<a|b> |b><al| [la><b]| I |a><b|

If A and B are unitary operators, then Hermitian Unitary Hamiltonia Inverse

The expectation value of observable p<p> = NJ*leJdr <p> = [PpyY<p> = NJ*qJ <p>=JY qu*dr
In bra and ket space, any complete brivector number  operator space

In bra and ket space, any incomplete I vector number  operator space

The development of classical mechani Planck’s radiation Bohr’s quaiNewton’s t Kepler’s laws
Classical mechanics could not explain Spectrum of black Stability of Intensity of All the above

Old quantum theory explains __ particleina box Pauli’s excl Spectral lin Spin of the electrons
The quantum concept was introduced Schrodinger Bohr Planck Einstein

The idea of dual nature of light was pr Plank De Broglie Einstein ~ Maxwell

The value of Plank’s constant is 6.62X10>*)S°  6.62X1076.62 X 10™6.62 X 10™" JS*
Wave mechanics described the behav atomic system interaction electromag all the above

The wave equation for a moving partic N2y + (1/v?) &*y/c NPy — (I Ry + (vY) NPy — (v2) &w/ot* = 0
The equation which describes the molHY + E) =0 HY=EY HY =-ihoyHY = (1/ih)o/ot

The state functions in the Hilbert spac linear vectors state vecto basis vecto complex vectors

The state functions in the Hilbert spac column vector basis vecto linear vectcall the above

The change of basis from one ortho-ni<p| =<n|<n|p> <p| =<n|p |p>=|n>< [p>=<n]|p>

If the condition pc = cp is satisfied the Hermitian Unitary Inverse Linear

The eigen functions of Hermitian oper orthogonal normalized orthogonal neither orthogonal nor
The eigen functions corresponding to odd function even functi can be evelnone of the above

The eigen function corresponding to t odd function even functican be evelnone of the above

The eigen value of the even function cA=0 A=1 A==1 A=-1

The eigen value of the odd function oA =0 A=1 A=#1 A=-1

The expectation value of operator in S0/0t <A>=0 0/0t <A>:0/0t <A>=9/0t <A>=-1
In harmonic oscillator problem, the m only upper diagon only lower only diagor both upper and lower ¢

In harmonic oscillator problem, the m only upper diagon only lower only diagor both upper and lower «
In harmonic oscillator problem, the m only upper diagon only lower only diagor both upper and lower ¢
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Choice 6 Answer
real
Hermitian
(ih/m)p
— ihk,
H/hw, + %
H/hw, - %

|b><al|

Unitary

<p> = [ pdr

number

vector

Newton’s three laws of motion
All the above

particle in a box

Planck

Einstein

6.62 X 10> JS

all the above

N2y + (1) 8*y/ot =0

Hy = EY

basis vectors

column vector

|p>=|n><n|p>

Hermitian
"normalizec orthogonal

can be even or odd

odd function

A=1
A=-1
0/0t<A>=0

diagonal ele only upper diagonal elements

diagonal ele only lower diagonal elements
diagonal ele only diagonal elements
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UNIT -1V
Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical
polar coordinates; separation of variables for the second order partial differential equation;
angular momentum operator and quantum numbers; Radial wavefunctions from Frobenius

method; Orbital angular momentum quantum numbers | and m; s, p, d... shells (idea only)

Quantum theory of Hydrogen-like atoms:
Introduction
By now you're probably familiar with the Bohr model of the atom, which was a great help in
classifying the position of fundamental atomic specta lines. However, Bohr lucked out in
more ways than one. The hydrogen atom turns out to be one of the few systems in Quantum
Mechanics that we are able to solve almost precisely. This has made it tremendously useful as
a model for other Quantum Mechanical systems, and as a model for the behavior of atoms
themselves.
Fundamentals
We can assume that the hydrogen atom is governed by the Coulomb potential, namely:

e i
d7rey r

V(r) = -

R 42w 2 1
suchthat, AV = — — —— — e
2m dz? dmey v

Obviously, simply by inspection, we can see that the Hydrogen Atom is a spherical system.
Hence it makes more sense to deal with the Hydrogen atom in spherical coordinates. One
should remember at this point that, via Separation of variables, you can obtain the solution to
the spherical Laplacian in three-dimensional space:

18 (,0f 1 af 1 8
v? 27 il g &
= 2 or (? or ) % r2 sinf O (sm ) 2 gin® @ O¢*

the solutions to this function when we use separation of variables inside a Hamiltonian gives

us two different functions, the Radial Wave functions (not useful now, but good to know):

Prepared by Dr. B. Janarthanan, Associate Professor, Dep. Of Physics, KAHE 1/12



& KARPAGAM ACADEMY OF HIGHER EDUCATION

O’;
CLASS: III B.Sc PHYSICS COURSE NAME: Quantum Mechanics
KARPAGAM COURSE CODE:16PHUG02A UNIT-II : Quantum Theory

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 )

BATCH: 2016 — 2019

A J (Zﬂxg)

[ er[ i

i are the spherical Bessel functions of type 1, and are the zeroes of said Bessel

where

functions.

The other component, the angular component are the Spherical harmonics which are explored

in detail on Wikipedia.

Schrodinger Equation, Spherical Coordinates

If the potential of the physical system to be exan%d is spherically symmetric, then the

Schrodinger equation in spherical polar coordinatescan be used to advantage. For a three-
AN Ay

dimensional problem, the Laplacianin spherical polar coordinates is used to express the

Schrodinger equation in the condensed form
AN

y N
L VY + U(r.0,0)¥(r.6.¢) = E¥(r,6,0)

2m

Expanded, it takes the forr\\
-n* 1 L ( d‘l‘)+i( 9_) | Y
24 rsin® dr dr ) d@ d60 ) sin6 do”

+U(r)\V(r.0.¢)= EY¥Y(r.0.9)

separation of vari WI differential equations:
Classification of 2nd o DEs in variables Most physical systems are governed by

second order partial differ

equations, or PDEs. Such equations fall into three basic
types. Consider the equation for t(x, y) auxx + buxy + cuyy = f, (1) where the functions a, b,
c and f do not depend on uxx, uxy or uyy. They may, however, depend on X, y, u, ux and uy.
The Characteristic Equation of (1) isdy dx =b + \b2 — 4ac 2a . (2) Equation (1) is classified
as hyperbolic, parabolic or elliptic according to: If [1 [1[1 [J[1 b2 — 4ac > 0 2 real roots, (1) is
hyperbolic b2 — 4ac =0 1 real root, (1) is parabolic b2 — 4ac < 0 0 real roots, (1) is elliptic. [
00 00 . (3) For hyperbolic equations, (2) is an ODE for y(x) which can be integrated to
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define two sets of curves (one for the + sign, one for the —), called the characteristics of (1).
Characteristics are curves along which information travels at a finite speed. They are
associated with “time-like” behaviour, and a characteristic speed. In contrast elliptic
problems have no “time-like” variable; x and y behave like space coordinates. Hyperbolic
Equations: A typical example is the one-dimensional wave equation for u(x, t), utt = c2uxx
where c is the constant wave speed. (4) Hyperbolic equations should be solved with two

initial conditions (at t = 0, say). Elliptic Equations: T have no characteristics; no lines

along which information travels. A typical elliptic on is Laplace’s equation for u(x, y)

diffusivity. (6) Parabolic equatio i i iti it is vi at we move

“forwards in time.” Physically, para

TO T =X00 . function of t only, while X00/X is a function of x
only, both functio ich we take to be negative. Then the functions
to obey the boundary condi in (7), namely X(0) = X(1) =0, we obtain non-zero solutions
only if A =0 and ® = mm, for e integer m, so that u = Bm sin(mnx) e-m2n2t , for some
constant Bm. As (7) is a linear problem, we may combine solutions to obtain a more general
solution in the form u(x, t) = Xoo m=1 Bmsin(mznx) e—m2n2t . (10) The initial condition will

be satisfied if u(x, 0) = Xoo m=1 Bmsin(mnx) = u0(x) . (11) Thus all we need do to obtain the

solution of (7) is to expand the initial condition u = u0(x) in a Fourier series, and substitute
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the appropriate values of the constants Bm into (10). Using the orthogonality relations, we
find Bn =2 Z 1 0 u0(x) sin(nmx)dx .
Angular Momentum Operators

In classical mechanics, the vector angular momentum, L, of a particle of position vector r

and linear momentum  is defined as

L=rxp. (326)
It follows that

L = (527)
I = (528)
L, = (529)
Let us, first of all, con pressions as the
definitions of the operatQrs 5 i angular momentum in

=T pL =Pz I2=Y

> 2

, efc.) cokLespon ani sition and momentum operators.
are unambiguous with respect to the
tors, since the various position and momentum

operators appeari one another [see Eqs. (483)]. Moreover, given

L;

ermitian operators, it is easily seen that the are

I;
that the andthe
also Hermitian. This is imp , since only Hermitian operators can represent physical
variables in quantum mechanics (see Sect. 4.6). We, thus, conclude that Eqs. (527)-(529) are
plausible definitions for the quantum mechanical operators which represent the components

of angular momentum.

L;

Let us now derive the commutation relations for the . For instance,
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[Lti Ly] = [ypz — ZPy, 2Pz — Ipz] =YP: [Pz: z] +zpy [Z,Pz]

= ih(zp, —yp:) =1k L., (530)
L;
where use has been made of the definitions of the [see Egs. (527)-(529)], and
I; Pi

commutation relations (481)-(483) for the  and re are two similar commutation

E, L, L.

relations: one for and , and one for . Collecting all of these commutation

relations together, we obtain

[Lz, L] (531)
[Ly, L.] (532)
(L, L.] (533)

By analogy with classica resents the magnitude

squared of the
2 = (534)
Now, it is vo general operators then
[A%,B] = A| (535)
Hence,
(L%, L] = [L],
= Ly[Ly,Ls] + Ly, L] Ly + L. [L;, L] + [Lz, L;] L.
=ik(-LyL,— L, Ly+L.,L,+L,L,)=0, (536)
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L,
where use has been made of Egs. (531)-(533). In other words, L? commutes with
B E
Likewise, it is easily demonstrated that L? also commutes with , and with . Thus,
[L? L, =[L? L, =[L?L.]=0. (337)

Recall, from Sect.4.10, that in order for tw; sical quantities to be (exactly)

measured simultaneously, the operators which esent them in quantum mechanics

must commute with one another. Hence, (531)-(533) and (537)

imply that we can only simultaneously m

momentum vector, L2, togethe

(538)

the Hermitian conjugates of one

(539)

(540
)
Likewise,
L. L, =L*-L2-hL,, (541)
giving
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[Ly,L_]=2hKL,. (542)

We also have

(L4, L] = (L., L) +i[Ly, L)) =—-ikhL,—KL,=—hL,, (543)

and, similarly,
[L_,L.)=hL_. (544)
Quantum numbers 2

A number which occurs in the theoretical expressmn for the value of some quantized property
of a subatomic particle, atom, or molecule and can only have certain integral or half-integral
s QA AN
A quantum number is a value that is used when describing the energy levels available
to atoms and molecules. An electron in an atom or ion has four quantum numbers to describe
its state and yield solutions to the Schrodinger wave equation for the hydrogen atom.
There are four quantum numbers:
e n - principal quantum number - describes the energy level
e [ - azimuthal or angular momentum quantum number - describes the subshell
e mg or m - magnetic quantum number - describes the orbital of the subshell
e m;or s - spin quantum number - describes the spin
Quantum Number Values
According to the Pauli exclusion principle, no two electrons in an atom can have the same set
of quantum numbers. Each quantum number is represented by either a half-integer or integer
value.
o The principal quantum number is an integer that is the number of the electron's shell.
The value is 1 or higher (never 0 or negative).
e The angular momentum quantum number is an integer that is the value of the
electron's orbital (e.g., s=0, p=1). £ is greater than or equal to zero and less than or

equal to n-1.
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e The magnetic quantum number is the orientation of the orbital with integer values
ranging from -£ to £. So, for the p orbital, where {=1, m could have values of -1, 0, 1.
e The spin quantum number is a half-integer value that is either -1/2 (called "spin
down") or 1/2 (called "spin up").
Quantum Number Example
For the outer valence electrons of a carbon atom, the electrons are found in the 2p orbital.
The four quantum numbers used to describe the electrons are n=2, {=1, m=1, 0, or -1, and
s=1/2 (the electrons have parallel spins).
Not Just for Electrons
While quantum numbers are commonly used to describe electrons, they may be used to
describe the nucleons (protons and neutrons) of an atom or elementary particles.

Radial Wavefunction

The potential, in this case, represe cleus of the

Hydrogen atom, as felt bygthe electron:

R 8

- E] u=»_0 (24.2)

)
£

Ulr) = — ;
(r) dwepr

This goes into t‘sual (Witl\=

W d*u B e +1)
Ufr e
Zm dr? [ (r)+

2m r2

where we are with the of the electron. We just made a pretty dramatic
approximation. We arficle problem canbe reduced to a stationary center,
provided we use the re system. On the one had, that is fine — but on the
other: What do we mean b wo-particle problem in quantum mechanics? For now, just
imagine the nucleus doesn’t haveé much “kinetic” energy, so that it remains pretty much fixed
(what about the energy associated with having it around at all? Its relativistic “rest energy” is
still there, but we are not doing relativistic quantum mechanics yet). If we write the above
out, we have:
R du et h® £(6+1)

P s e = i Sl —FE| u=10. 24.3
D odr? T dwegr  2m r2 i |: ]
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As with the infinite square well, it makes sense to let k = V-2mE ~ (negative inside the
square root, now — bound states will have E < 0 and we want to make « real). We want to
define a new “coordinate” p = k r. The advantage is to render the coordinate variable itself
unitless. Whenever we want to consider limiting cases of an equation or more generally, a
physical setting, we need a point of comparison. What does it mean to be “far away” from a
distribution of charge, for example? That clearly depends on how large the distribution itself

is. By re-parametrizing using a fundamental length infithe problem, we have allowed for

easier classification of limits. For example, on t side, suppose we have a dipole

moment with a certain length d. Then “far away” that a field point at a distance r from

the origin is large compared to d: r d. No thing in our problem in

point is, k¥ has units of 1/length and Wwn) energy
scale, it is a natural choi i i ity. e above, we just
replace r —— p/k, and

multiplying by 2‘1 ~2 in th

fji' I 2 Flf+1
fI(':J'J + [_ e { ] i1
dp?

i{p) = 0. 24.4
2rephtrp o ulp) f )

A 4

We have a defined by p& m e2 2 n 0 ~2 « (there are, evidently, two energy

scales of interes ence two ths — we could have writtenp in terms of p = (p0

K) 1), and with this,

g> fE+1 .
el |p=B0 B H 00, (24.5)
dp? i) i

As for limiting cases, we can take p —— oo, which gives us growing and decaying

exponentials as solutions:

{Z
o —u—sulp)=Ae* (24.6)
dp?
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where we have thrown out the growing exponential, that will not be normalizable. On the
other hand, when the barrier-term dominates, for small p, we have (using u to distinguish
from the actual solution)

Pa  £(f+1
ﬁ = EiE+1) ii. (24.7)
dp? e

and we can solve this by consider a generic polynomial (always a good ansatz for ODE’s of

o

ap(p—1)p* 2=alb{f+ 1) p 2ap” (24.8)

the above flavor): u(p) =a pp , then

and then we have a solution forp(p—1)="(C +1)

1s a linear combination: \

=_+ 1. The general solution

i(p) =ap +bpH (24.9)
and we set a = 0, for p near zero, this will blow up. '
Finally, we will use these two regimes to factor the full solution - take

u(p) = p™*t e~ v(p), (24.10)

this is naturally dominated by the polyvnomial near p ~ (), and the exponen-
tial will help with integration at infinity. If we input this into our differential
equation, we get

d*v

Fpo—2(6+1))v=0. (24.11)
o
Let & = 2 p, then in terms of x. the above is
v dt 1
J%ﬁ[? (€+1) —+( P — {f+1:|) v =0. (24.12)

G
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Now, the differential equation:

1J]+[L—1—nﬂfJ—HL*m_n (24.13)
.

has solutions L':"r[.r}, the “associated Laguerre polynomials”, for integer n.
This is almost the above, if weset k4+1=2({+1) and n = {% Po—104+1))
antd we assume that n is an integer. In that case, the solution to our problem
is just:

v(z) _L-";‘l iy (@) (24.14)

This pre-supposes that £ py = 7 is an integer, but we can return to that
later on. For now. this is the source of the quantization of energy, since we
have:
me’ ) me’ £ - me’
2rephin 22ephv—Emm T __H?fﬁh??rznr
(24.15)
or in more standard form, labelled using n the “principal guantum number™:

m ol E}y ’
5= —\| o35 = 0 ]
. (*zhf (4'.|r.|=n) = (24.16)

This is the energy spectrum of Hydrogen — we shall return to it in a moment.,

- N\ \"V

Angular Momentum Quantum Number

25 = =

|

=l

There are four quantum numbers that make up the address for an electron. Of the four
quantum numbers, our focus for this lesson is the angular momentum quantum number,
which is also known as the secondary quantum number or azimuthal quantum number.

The angular momentum quantum number is a quantum number that describes the 'shape' of
an orbital and tells us which subshells are present in the principal shell. We can think about it
this way: each of our homes has its own architecture. In the subatomic level, the 'home' of
electrons is an orbital, and each orbital has its own shape. The symbol that is used when we

refer to the angular momentum quantum number looks like this:

Symbol

/
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Electrons occupy a region called 'shells' in an atom. The angular momentum quantum
number, /, divides the shells into subshells, which are further divided into orbitals. Each value
of [ corresponds to a particular subshell. The lowest possible value for /is 0. This following

table shows which subshells correspond to the angular momentum quantum number:

Angular Momentum Quantum
Number, / Name of Subshell
0 3
1 p
2 d
3 f

The angular momentum quantum number can also tell us how many nodes there are in an
orbital. A node is an area in an orbital where there is 0 probability of finding electrons. The
value of /is equal to the number of nodes. For example, for an orbital with an angular

momentum of / = 3, there are 3 nodes.
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Multiple Choice Questions

Choice2 Choice3 Choice4 Choice5 Choice6
positional phase-space
Surface

Question Choice 1
A system o momentun space
The field la Lagrangian Hamiltonia Volume

The Har a. dF/dta. dF/dta. dF/dta. dF/dt = 0F/ox + {F, H}
In the eq total partial kinetic none of the above
The Lagran y(t) dy/dt qi(t) none of the above
The field Iz Ny dy/dt q(r,t) y(r,t)
The appear finite infinite constant aandc
ThevariatidfLdt=0 dfLdt=1 dfLdt=-1 dfLdt=y(rt)

The momely L Ny dy
The functictime momentun space co-ol none of the above
The dF/dt -0F/ot + {F,-0F/dt — {F, oF/ot + {F, oF/ot—{F, H}
If H does requation constant lagrangian Hamiltonian equation
According tquantum classical skew herm Heisenberg
According t 1 -1 0 2
The functic [ f(r) d(r, r)-J f(r) d(r, r - f(r) d(r, r [ f(r) d(r, r) d°r
The equatitdF/dt = -OF dF/dt = 0F/ dF/dt = aF/ dF/dt = -dF/dt - 1/ih [F, H]
The field q wave quan second que wave funct none of the above
If the comr ak*ak3 ak*ak2 ak*ak

-I'ng, Ny, leee. Nigeeer> vereeNpgy 0>

.
di Ak
The sates «........ Ny o>

number destruction
aandb

destructior none of the above

* . .
The ay isci none of tl creation

The ayicreation  number destruction

The Ny is cenumber  creation
The numbe equation o constant of lagrangian Hamiltonian motion

The rate cdN,/dt = ih dN,/dt = -it dN,/dt = [a ih AN, /dt = [ak*, a, H]
0-1
IfU,and H=5N, E’H=5N, E H=5N, E, H=5N, E’

Accordira,a; + 3,3 :aca +a,ac:aga + 3,333 -3,3,=0

The neces: 1 none of the above

If the eige variational lagrangian Hamiltonia Exclusion

The eigen spherical polarized plane circular

H is formalharmonic simple harrsinusoidal none of the above
The mome —(c/4p) E(r, (c/p) E(r,t) —(c/p) E(r,t (c/4p) E(r,t) X H(r,t)
According t—hkc and h hkc and hK —hkc and -t hkc and —hK
According thK —hK hn h

The quanticlassical quantum aandb none of the above
The Hamilt -p p Op

A physical «finite infinite none of the above
A transitior doubly triply none of the above

constant
singly

Answer
positional
Lagrangian
a. dF/dt = OF/ot + {I
total
ai(t)
y(r,t)
infinite
dfLdt=0
dy
none of the above
oF/ot + {F, H}
constant
Heisenberg
0
FEr) d(r, r) d’r
dF/dt = oF/ot + 1/ih [F,
second quantisation

*
A A

number
destruction
number
constant of motion
ih dN/dt = [a,, a, H]

0

H=2%N,E
aa +3a,=0
Exclusion

plane

harmonic

(c/4p) E(r,t) X H(r,1)
hkc and hK

hn

classical

p

infinite

doubly



The electrc sound ultrasonic \ ultrasonic \ infrasonic wave ultrasonic wave
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UNIT-V
Atoms in Electric and Magnetic Fields:- Electron Angular Momentum. Space Quantization. Electron
Spin and Spin Angular Momentum. Larmor’s Theorem. Spin Magnetic Moment. Stern-Gerlach
Experiment. Normal Zeeman Effect: Electron Magnetic Moment and Magnetic Energy. Many
electron atoms: Pauli’s Exclusion Principle. Symmetric and Antisymmetric Wave Functions. Spin

orbit coupling. Spectral Notations for Atomic States. Total Angular Momentum. Spin-orbit coupling
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Atoms in Electromagnetic Fields

Our goal in this chapter is to understand how atoms interact with electromagnetic fields.
There will be several stages to our understanding. We start by looking at atoms in constant,
background electromagnetic fields. Because these fields break various symmetries of the

problem, we expect to see a splitting in the degeneracies of states. The splitting of the atomic

spectrum due to an electric field is called the Stark The splitting due to a magnetic

field is called the Zeeman e<ect. We deal with ea m. We then move on to look at what

quantum framework.

8.1 The Stark E<ect

be accelerated by th Y However, we know from our WKB analysis in
Section 6.2.5 that the probability rate for tunnelling is exponentially suppressed by the height
of the barrier (see, for exam .30)). This means that the lowest lying energy levels will

have an extremely long lifetime.
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Figure 81:
If you want some numbers, the strength of a typical elegtsic field is around E «- 10 eV cml.

We know that the ground state of hydrogen is EO .6 eV and the Bohr radius is a0 «-

of a magnetic field results o extra terms in the Hamiltonian. The first arises because the

electron is charged and so, as ained in more detail in Section 1, the kinetic terms in the
Hamiltonian become H=12m(p + eA) 2 1 47=0 Ze2 r (8.9) where A is the vector potential
and the magnetic field is given by B = r - A. We take the magnetic field to lie in the z-
direction: B = Bz" and work in symmetric gauge A = B 2 (y, x, 0) We can now expand out
the square in (8.9). The cross terms are p -+ A = A - p = B(xpyypx)/2. Note that, even when

viewed as quantum operators, there is no ordering ambiguity. Moreover, we recognise the
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combination in brackets as the component of the angular momentum in the z-direction: Lz =
xpyypx. We can then write the Hamiltonian as H=12m p2 +eB - L+e2 B2 (x2 +y2) 1
47=0 Ze2 r (8.10)

Note that the B - L term takes the characteristic form of the energy of a magnetic dipole
moment | in a magnetic field. Here pL. = e 2m L is the dipole moment that arises from the

orbital angular momentum of the electron. The second term that arises from a magnetic field

is the coupling to the spin. We already saw this in Se .5 and again in Section 7.1.3 H =

g e 2m B - S where the g-factor is very close to Y Combining the two terms linear in B
(8.11) Note that it’s not
gnetic field. There is an

extra factor of g = 2 for the spin. This means tha ipole moment is ptotal = e

the characteristic size of the atom. In

Quantization in re pacethe space quantization of an atom in a

magnetic field whose q m states correspond to a limited number of possible angles
between the directions of th lar momentum and the magnetic intensity.

Electron Spin
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An electron spin s = 1/2 is an intrinsic property of electrons.

Electrons have intrinsic angular momentum characterized by

S .
4 t. quantum number 1/2. In the pattern of other quantized angular
1 “\ momenta, this gives total angular momentum
+’2—h -------- E“
(L,
Gnh o se =L
: 2 2 .
- %h -------- d The resulting fine structure which is observed corresponds to
_,,"’ two possibilities for the z-component of the angular
momentum.

|
Spin "up" and "down" allows § , = iE h

This causes an energy splitting because of the magnetic

two electrons for each set

of spatial quantum numbers.
moment of the electron

— g5

»

nt, m,

Hs = 2m

Two types of experimental evidence which arose in the 1920s suggested an additional
property of the electron. One was the closely spaced splitting of the hydrogen spectral lines,
called fine structure. The other was the Stern-Gerlach experiment which showed in 1922 that
a beam of silver atoms directed through an inhomogeneous magnetic field would be forced
into two beams. Both of these experimental situations were consistent with the possession of
an intrinsic angular momentumand a magnetic moment by individual electrons. Classically
this could occur if the electron were a spinning ball of charge, and this property was called

electron spin.
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Quantization of angular momentum had already arisen for orbital angular momentum, and if
this electron spin behaved the same way, an angular momentum quantum number s = 1/2 was

required to give just two states. This intrinsic electron property gives:

1
Z- t of I tum: = — O
component of angular momentum Sz =m.h , Mg - = 5
Magneticmoment: L. = z —gS
ST 2m

Pin Angular Momemtum: (

Spin angular momentum is a specific type of angular momentum possessed by some
nuclei. As such, it obeys all the relations given for angular momentum under the
quantum mechanics of rotation, here. i.e. there are two quantum numbers associated
with the spin angular momentum momentum that determine its properties.

All nuclei have a spin quantum number, I, which may be integral (including zero) or
half-integral, but never negative. The value of I is characteristic of a given nucleus,
and may vary between isotopes. Thus all '"H hydrogen nuclei have 1 = % , but
all ’H deuterium nuclei have I = 1.

The magnitude of the spin angular momentum is determined by the quantum number I,

and is given by:
Magnitude of spin angular momentum = 7% [I (I +1))

Thus all nuclei with [> 0 have spin angular momentum.

Further, all nuclei with a spin angular momentum (i.e. all nuclei with nonzero I) have
a magnetic moment with constant magnitude and an orientation determined by a
second quantum number, mi. (To say that a nucleus has a magnetic moment means
that in some ways it behaves like a small bar magnet.)

The quantum number mj properly determines the component of the spin angular
momentum on an arbitrary axis, normally termed the z axis (The arbitrary axis may be

defined, for example, by the field direction of an external electric or magnetic field.):
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z-component of spin angular momentum = m,%

wherem; can take values from [ to -I. (mi=L1-1,1-2 ... -)

This property indicates that for a given I, the spin (and thus the magnetic moment) of
a nucleus can adopt 21 + 1 different orientations relative to a defined axis. A proton
("H hydrogen nucleus) has I = % , and thus its spin may adopt 2 different orientations
(mp = -%2 or my = +%).

A large number of the nuclei that are studied by nuclear magnetic
resonance (NMR) spectroscopy have I = 2, as they give rise simpler spectra than
nuclei with I >4 ,butany nucleus with nonzero I may be studied by NMR. Spin 2
nuclei that are commonly studied include 'H (the most popular nucleus for NMR
studies), °C, '°F and 3'P.

The state with m; = +% is denoted o , while the state with m; = -% is denoted .

Note that two very common isotopes, '2C and '°O, have I = 0, so have no spin angular

momentum, no magnetic moment, and hence are invisible in NMR studies.

N\

Larmor Precession
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When a magnetic momentp is placed in
amagnetic field B, it experiences
a torque which can be expressed in the form

of a vector product
T=u x B

For a static magnetic moment or a classical

current loop, this torque tends to line up the

magnetic moment with the magnetic field B,
|L]=Jll+1)h so this represents its lowest energy

| = orbital quantum configuration. But if the magnetic moment

number arises from the motion of an electron in orbit

',:.'E . around a nucleus, the magnetic moment is

,."," E L proportional to the angular momentum of the

',,’I ':,'U — __e L electron. The torque exerted then produces a

',’ . ) 2n1‘, . change in angular momentum which is
"',/K g RETEE » =3 perpendicular to that angular momentum,

______________________ causing the magnetic moment to precess

-
~

around the direction of the magnetic field
rather than settle down in the direction of the
magnetic field. This is called Larmor

precession.

When a torque is exerted perpendicular to the angular momentum L, it produces a change in
angular momentum AL which is perpendicular to L, causing it to precess about the z axis.

Labeling the precession angle as @, we can describe the effect of the torque as follows:

= AL = M - ‘“lene — L LBsin@
At At - 2m,

€

The precession angular velocity (Larmor frequency) is
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do e

wl,arm()r = dt = 2m B

e

These relationships for a finite current loop extend to the magnetic dipoles of electron
orbits and to the intrinsic magnetic moment associated with electron spin. There is also a
characteristic Larmor frequency for nuclear spins.

In the case of the electron spin precession, the angular frequency associated with the spin
transition is usually written in the general form

o=01B

where [ is called the gyromagetic ratio (sometimes the magnetogyric ratio). This angular
frequency is associated with the "spin flip" or spin transition, involving an energy change of

2uB. An example for magnetic field 1 Tesla follows.

2 ; (5.79x10eV / T)(IT)

Dlectron \pin= 2#‘8 - 16 =1.7608 x lOl l S—I
' h 6.58x107 "¢V s
V= 2(0 =28.025GHz  Larmor frequency
/4
_2u1,B _2(2.79)G. Huo*‘evn)(n) »
(0] £ =2.6753x10%s
proton \pm h 6.58x10 l()

()
v=-—=425781 MHz Larmor frequency
2r
The characteristic frequencies associated with electron spin are employed in electron spin
resonance (ESR) experiments, and those associated with the nuclear spin in nuclear magnetic
resonance (NMR) experiments.

Spin magnetic moment
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In physics, mainly quantum mechanics and particle physics, a spin magnetic moment is

the magnetic moment caused by the spin of elementary particles. For example, the electron is

an elementary spin-1/2 fermion.Quantum electrodynamics gives the most accurate prediction

of the anomalous magnetic moment of the electron.

"Spin" is a non-classical property of elementary particles, since classically the "spin angular

momentum" of a material object is really just the total orbital angular momenta of the object's

constituents about the rotation axis. Elementary particles are conceived as concepts which

have no axis to "spin" around (see wave—particle duality).

In general, a magnetic moment can be defined in terms of an electric current and the area

enclosed by the current loop. Since angular momentum corresponds to rotational motion, the
magnetic moment can be related to the orbital angular momentum of the charge carriers in

the constituting current. However, in magnetic materials, the atomic and molecular dipoles

have magnetic moments not just because of their quantized orbital angular momentum, but,

due to the spin of elementary particles constituting them (electrons, and the quarks in

the protons and neutrons of the atomic nuclei). A particle may have a spin magnetic moment

without having an electric charge. For example, the neutron is electrically neutral but has a
non-zero magnetic moment because of its internal quark structure.

Stern-Gerlach experiment:

From the time of Ampere onward, molecular currents were regarded as giving rise to
magnetic moments. In the nuclear model of the atom the electron orbits the nucleus. This
circular current results in a magnetic moment. The atom behaves as if it were a tiny magnet.
In the Stern-Gerlach experiment a beam of silver atoms passed through an inhomogeneous
magnetic field (Figure 12). In Larmor’s classical theory there was no preferential direction
for the direction of the magnetic moment and so one predicted that the beam of silver atoms
would show a maximum in the center of the beam. In Sommerfeld’s quantum theory an atom
in a state with angular momentum equal to one (L=1)(L=1) would have a magnetic moment
with two components relative to the direction of the magnetic field, +eh/4me+eh/4me. (Bohr
had argued that only two spatial components were allowed). In an inhomogeneous magnetic

field, HH, the force on the magnetic moment pp will be pzxpzx (Gradient of the magnetic
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field in the zz direction), where pz=teh/4meuz=+eh/4me, where ee is the charge of the
clectron, meme is its mass, hhis Planck’s constant, and zzis the field direction. Thus,
depending on the orientation of the magnetic moment relative to the magnetic field there will
be either an attractive or repulsive force and the beam will split into two components,
exhibiting spatial quantization. There will be a minimum at the center of the beam.
“According to quantum theory pzpz can only be £(e/2me)(h/2m)+(e/2me)(h/2x). In this case
the spot on the receiving plate will therefore be split into two, each of them having the same
size but half the intensity of the original spot” (Stern 1921, p. 252, JM) This difference in
prediction between the Larmor and Sommerfeld theories was what Stern and Gerlach planned
to use to distinguish between the two theories. Stern remarked that “the experiment, if it can
be carried out, (will result) in a clear-cut decision between the quantum-theoretical and the

classical view” (Stern 1921, FW).

Oven
,../ Uniform
> narrow slit
S,
Beam of
silver 1f'|
atoms 7
\\\ b Inhomogeneous
- Magnet magnetic field 4
é S pole 2
Field Spin can take
Zero field on only two orientations
Photographic pattern <@ Classical expectation
a <> Experimental result After Beiser

Sommerfeld’s theory also acted as an enabling theory for the experiment. It provided an

estimate of the size of the magnetic moment of the atoms so that Stern could begin
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calculations to see if the experiment was feasible. Stern calculated, for example, that a
magnetic field gradient of 10% Gauss per centimeter would be sufficient to produce
deflections that would give detectable separations of the beam components. He asked Gerlach
if he could produce such a gradient. Gerlach responded affirmatively, and said he could do
even better. The experiment seemed feasible. A sketch of the apparatus is shown in Figure
12. The silver atoms pass through the inhomogeneous magnetic field. If the beam is spatially
quantized, as Sommerfeld predicted, two spots should be observed on the screen. (The sketch
shows the beam splitting into three components, which would be expected in modern
quantum theory for an atom with angular momentum equal to one). I note that Sommerfeld’s
theory was incorrect, illustrating the point that an enabling theory need not be correct to be
useful.

A preliminary result reported by Stern and Gerlach did not show splitting of the beam into
components. It did, however, show a broadened beam spot. They concluded that although
they had not demonstrated spatial quantization, they had provided “evidence that the silver
atom possesses a magnetic moment.” Stern and Gerlach made improvements in the apparatus,
particularly in replacing a round beam slit by a rectangular one that gave a much higher
intensity. The results are shown in Figure 13 (Gerlach and Stern 1922a). There is an intensity
minimum in the center of the pattern, and the separation of the beam into two components is
clearly seen. This result seemed to confirm Sommerfeld’s quantum-theoretical prediction of
spatial quantization. Pauli, a notoriously skeptical physicist, remarked, “Hopefully now even
the incredulous Stern will be convinced about directional quantization” (in a letter from Pauli
to Gerlach 17 February 1922). Pauli’s view was shared by the physics community.
Nevertheless the Stern-Gerlach result posed a problem for the Bohr-Sommerfeld theory of the
atom. Stern and Gerlach had assumed that the silver atoms were in an angular momentum
state with angular momentum equal to one (L=1)(L=1). In fact, the atoms are in
an L=0L=0 state, for which no splitting of the beam would be expected in either the classical
or the quantum theory. Stern and Gerlach had not considered this possibility. Had they done
so they might not have done the experiment. The later, or new, quantum theory developed by

Heisenberg, Schrodinger, and others, predicted that for an L=1L=1state the beam should split
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into three components as shown in Figure 12. The magnetic moment of the atom would be
either 0 or +eh/(4mxm)+eh/(4nxm). Thus, if the silver atoms were in an L=1L=1 state as Stern
and Gerlach had assumed, their result, showing two beam components, also posed a problem
for the new quantum theory. This was solved when Uhlenbeck and Goudsmit (1925, 1926)
proposed that the electron had an intrinsic angular momentum or spin equal to h/4rwh/4x. This
is analogous to the earth having orbital angular momentum about the sun and also an intrinsic
angular momentum due to its rotation on its own axis. In an atom the electron will have a
total angular momentum J=L+SJ=L+S, where LLis the orbital angular momentum and SS is
the spin of the electron. For silver atoms in an L=0L=0 state the electron would have only its
spin angular momentum and one would expect the beam to split into two components.
Goudsmit and Uhlenbeck suggested the idea of electron spin to explain features in atomic
spectra such as the anomalous Zeeman effect, the splitting of spectral lines in a magnetic field
into more components than could be accommodated by the Bohr-Sommerfeld theory of the
atom. Although the Stern-Gerlach results were known, and would certainly have provided
strong support for the idea of electron spin, Goudsmit and Uhlenbeck made no mention of the
result.

The Stern-Gerlach experiment was initially regarded as a crucial test between the classical
theory of the atom and the Bohr-Sommerfeld theory. In a sense it was, because it showed
clearly that spatial quantization existed, a phenomenon that could be accommodated only
within a quantum mechanical theory. It decided between the two classes of theories, the
classical and the quantum mechanical. With respect to the particular quantum theory of Bohr
and Sommerfeld, however, it wasn’t crucial, although it was regarded as such at the time,
because that theory predicted no splitting for a beam of silver atoms in the ground
state (L=0)(L=0). The theory had been wrongly applied. The two-component result was also
problematic for the new quantum theory, which also predicts no splitting for an angular
momentum zero state and three components for an L=1L=1 state. Only after the suggestion of
electron spin did the Stern-Gerlach result confirm the new theory.

Although the interpretation of the experimental result was incorrect for a time, the result itself

remained quite robust through the theory change from the old to the new quantum theory. It
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is important to remember that experimental results do not change when accepted theory
changes, although certainly, as we have seen, their interpretation may change. Gerlach and
Stern emphasized this point themselves.

Apart from any theory, it can be stated, as a pure result of the experiment, and as far as the
exactitude of our experiments allows us to say so, that silver atoms in a magnetic field have
only two discrete values of the component of the magnetic moment in the direction of the
field strength; both have the same absolute value with each half of the atoms having a
positive and a negative sign respectively (Gerlach and Stern 1924, pp. 690-691, FW)
Experimental results, as well as experiments, also have a life of their own, independent of
theory.

Normal Zeeman effect

In an experiment performed by t
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e give rise to a magnetic

U
L and the

Now if the ¢ an external manetic field (along the z direction (say)),

EFg = —u-B

According to quantum mechanics L, = mi i. Therefore the total energy is
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F = Eys+Eg
Eo + ——mAB
zm
= Ey+mugpB

c
.

Eo is the energy in the absence of the field and g R is called the Bohr magneton,

having dimensions the same as the dipole moment
Thus each energy level splits into 2/ + 1 levels, sin -1 to +1 in integral steps.
The emission spectrum of the atom placed in th rnal magnetic field B will however
show only two additional lines apart from t ause the selection rules

for electric dipole transitions are

Al = #1
Amy; = Zlor0
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The magnetic dipole mch of the electron is antiparallel to the orbital angular
momentum L. Both precess around the constant magnetic field B with an angular

frequency of precession proportional to the field-strength and given by

l'.;:p = _B
Gm )
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This precession is called Larmor precession. ? is also equal to the frequency shift of the
Zeeman lines originating from the external field from the field-free line.

Note that for (2/ + 1) different values of m we have (2/ + 1) different values of the projection
of L, viz., L,=m h or (2] + 1) different values of &. This aspect is referred to as space
quantization of the orbital angular momentum in the presence of an external field.

Many electron atoms:

Pauli’s Exclusion Principle:

The Pauli Exclusion Principle states that, in an atom or molecule, no two electrons can have
the same four . As an orbital can contain a maximum of only two
electrons, the two electrons must have opposing spins. This means if one is assigned an up-
spin ( +1/2), the other must be down-spin (-1/2).

Electrons in the same orbital have the same first three quantum numbers,
e.g., n=In=1, 1=01=0, mI=0m1=0 for the 1s subshell. Only two electrons can have these
numbers, so that their spin moments must be either ms=—1/2ms=—1/2 or ms=+1/2ms=+1/2. If
the 1s orbital contains only one electron, we have one msms value and the electron
configuration is written as 1s' (corresponding to hydrogen). If it is fully occupied, we have
two msms values, and the electron configuration is 1s*(corresponding to helium). Visually

these two cases can be represented as

XL

1s 2s 20

Symmetric / antisymmetric wave functions
We have to construct the wave function for a system of identical particles so that it reflects
the requirement that the particles are indistinguishable from each other. Mathematically, this

means interchanging the particles occupying any pair of states should not change the
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probability density ( ) of the system. This simple statement has the enormous
consequence of dividing all particles in nature into one of two classes.

An example for two non-interacting identical particles will illustrate the point. The

¥(ry,rz)
probability density of the the two particle wave function must be identical to that

U(ry,ry)

of the the wave function where the parti

ve been interchanged.

¥ (rs,r2)[* = |U(rz, 1) 43

We can achieve this in two ways.

Symmetric case :  ¥(ry,r)) (56)
(57)

Anti-symmetric case :

‘I’(l']_, l'z) = —\Il(r%rl)

It turns out that nctions which are symmetric under particle

interchange have integr. spin, and are termed bosons. Particles whose wave
functions which are anti-s tric under particle interchange have half-integral intrinsic
spin, and are termed fermions. EXperiment and quantum theory place electrons in the fermion
category. Any number of bosons may occupy the same state, while no two fermions may
occupy the same state. This result, which establishes the behaviour of many-electron atoms,

is proved below.
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Spin Orbit Coupling

The spin angular momentum of electron can interact with its orbital angular momentum. This
lead to splitting of different energy levels which can lead to different transition energies. This
effect is known as spin orbit coupling. In simple words we can explain it as how a particles

spin and orbital angular momentum interact together.

The total angular momentum is obtained due to the interaction between spin and orbital
angular momentum. The value of this total momentum is maximum when both the spin and
orbital momentum is parallel. We can get the total angular momentum due to the following
coupling equation

T =(L+5),(L+5-1),...(L—5)

Here, J represents the total angular quantum number, L gives the orbital quantum number

and S represents spin quantum number.

We can observe splitting in hydrogen atom emission spectra due to the spin orbit coupling.

The electron here has an intrinsic spin given as

S =%

Both the spin and orbital momentum couple together and the total angular momentum can be
obtained in hydrogen atom. This lead to the splitting in its emission spectra. Spin orbital
coupling also has many other application. The magneto crystalline anisotropy caused due to

this interaction.

The spin orbit coupling of electrons in semiconductor is found have variety of technological
applications. The neutrons and protons spin orbital coupling in atom is of great importance as

it gives a great contribution towards the total interaction energy
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The neutral particles can also show spin orbit coupling since it has both the spin and orbital
angular momenta.

Spectroscopic Notation

The absorption spectrum of hydrogen consists of those transitions whereby electrons in the

ground state of the atom absorb energy from the incident light’s continuous spectrum and are

raised to certain of the various hydrogen excited state mission these are the lines of the

Lyman series (see Figure SN-1). In the early da tomic spectroscopy the spectrum of
hydrogen, the simplest of the atoms, was muc ied and its spectrum served as a

ms were compared and

e wave numbers (=1>wavelengths) of the spectral
lines of each series were de ined empirically from differences between a series-specific
limiting term and a running term, the latter proportional to 1 divided by the square of an
integer in a way similar to the Rydberg formula. Quantum theory subsequently associated
each of the spectroscopic terms with an allowed energy state of the atom. For the spectra of
the alkali elements the principal series in absorption corresponded to transitions from the

ground energy state (the lowest S term) to the various
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Energy, eV
n
= .00
4 -0.85
3 -1.51
| -m %
1 - =13.6 eV
SN-1 Energy-level diagram for the hydrogen atom. The
hydrogen absorption spectruim, the principal series, consists
of those lines originating on the 15 state. In emission these

are the spectral lines of the Lyman series.
-k WA

589593 D,
5689.96 O,
3302.06
28529
26804
25939

B5 36
s g

SN-2 A portion of the emission spectrum of sodium. The delineating marks above the

spectrum identify the lines of the principal series. Below the spectrum the shorter marks
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indicate the lines of the sharp series, the longer marks the lines of the diffuse series. The
several wavelength values shown are in angstroms. Note that the very intense Na D lines are
part of the principal series. [Adapted from G. Hertzberg, Atomic Spectra and Atomic
Structure (New York: Prentice-Hall, 1937).]

principal (P term) energy states and just the reverse for the principal emission spectrum. The

sharp series corresponded to transitions from the higher sharp (S terms) energy states—the

running terms—to the lowest principal (P term) stat limiting term for the sharp series

(see Figure SN-3). Similarly, the diffuse emissio m was the result of transitions from

the higher diffuse (D terms) energy states to the t principal (P term) state, the same

discover, convenient to use. single electrons we have 1. For single-electron states the

letter code spd fgh ... is used in one-to-one correspondence with the values of the orbital
angular momentum quantum number /: 0 1 23 4 5. . . . For example, an electron with / =2 is
said to be a d electron or in a d state. 2. The single-electron (Bohr) energy levels are called
shells, labeled KL M N O . . . in one-to-one correspondence with the values of the principal
quantum number n: 1 23 4 5. ... For example, an electron with n 7 3 in an atom is said to be

in the M shell. (This notation is less commonly used.) For atomic states that may contain one
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or more electrons the notation includes the principal quantum number and the angular
momenta quantum numbers. The total orbital angular momentum quantum number is denoted
by a capital letter in the same sequence as in rule 1 above; thatis, SP D F . .. correspond to /

values0123....

SN-3 Energy-level diagram for sodinm (Naj. The

spectroscopic series notation was related by quantum theory

to the principal and angolar momentum quanfum aumbers.
Wavelengths of the ransitions shown are in nanometers.

-2
]
]
-3
~4
-5 =
sS4z L
The value of n i value of the total angular momentum quantum
number j by a subscr e total spin quantum number s appears as a left

superscript in the form 2s hus, a state with / = 1, a P state, would be written as n2s+1 Pj

For example, the ground state e hydrogen atom (n (1 1,/=0, s = 1>2) is written 12 S1 2,
read “one doublet S one-half.” The n [1 2 state can have / = 0 or / = 1, so the spectroscopic
notation for these states is 22 S1 2, 22 P3>2, and 22 P1 2. (The principal quantum number
and spin superscript are sometimes not included if they are not needed in specific situations.)
Appropriate versions of the notation are used to describe the quantum states of molecular
constituents, the protons and neutrons in nuclei, and the states of fundamental particles.
LS-coupling and jj-coupling
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Spin-orbit interaction in multi-electron atoms

* We now have two effects to consider:

* 1: Interaction between ~s and ~1 for every electron = ~j = ~1 + ~s

* 2: Angular part of the electrostatic interaction between the electrons =( ~I1 +~12 +~13 + ---
=L~~sl+~s2+~83 +:-- =S~

* Both these effects have to be included in a total Hamiltonian H = HCF + Hres + HSO The

parts of the Hamiltonian

* The central field Hamiltonian HCF = X N i=1 Ni=1 012r2ri+ VCF(i)=XN
i=1 [J12r2ri Zri+ S(ri) - kinetic eng ulomb attraction to the
nucleus for all electrons - the central (radi b repulsion between all

electrons LectureNotesPh

interactions
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Multiple Choice Questions

Question Choice1l Choice2 Choice3
The basis of all molecular approximation is the large ratio of ~  electrc electron  electrc
The energy associated with the motion of then nuclei is much  larger smaller  varied
The period of nuclear motion is of the order of divid b e -b
The nuclear periods are than the electronic periods smaller  stable longer
The nuclear motion are classified into translation and rotational quasi-rigic stable unstable
Molecular energy levels are classified into vibrat static rigid translation

. . : . 2, 2 2, 2 2, 2
The energy E, associated with the motion of a valence is of order -h/ma” —h7/ma” —h”/ma” +

The only nuclear coordinates R; of the hydrogen molecule is thiR r —-R
The linear combination of unperturbed degenerate wave function heteropola nuclei homopola:
The property of degeneracy is known as . resonance doublet se doublet in
An interaction between two resonant (degenerate) states in quant eigen func eigen valu wave
The wave function based on a simple product of two ground state alkali aton helium atc hydrogen
In case of hydrogen molecule, the equilibrium value for r,p is the0.74 A° 0.8 A° 1.06 A°

The ground state of a hydrogen molecule is a triplet st:a mixture neither a s
The interaction between valence electrons give rise to fobonding electrostat coloumbic
Heitler and London theory of hydrogen molecule helps us to deve covalent chemical ionic

The spin functions of two electrons are a(1) and a(2), then the totz either one wavelengta and b
The complete wavefunction of an electron is the product of  unperturbe perturbed orbital
The symmetric orbital functions of an electron will be associated - skew symisymmetric a and b
The antisymmetric orbital function will be associated with symmetric skew symi antisymmi

If r}, is the distance between two electrons, then the interaction be —ez/rlz2 —ez/rlz —262/1‘122
If the system consists of two hydrogen nuclei ‘a’ and ‘b’ and two ez/rab +e% ez/rab +e% ez/rab +e%

theory is also an approximation method for explair vander wa valence bc scattering

The attraction of two hydrogen atom give rise to the formation of stable unstable colloidal
If we assume both the hydrogen atom are in ground state, then bot imaginary integer  real

The schroedinger equation for hydrogen molecule is given by N’y + Ny N2y + N, N2y + N,

If the co-ordinates of 1* electron is (x;,y,2;) and of 2" electron \/(xz-xl)2 - (xz-xl)2 + \/(xz-xl)2 -

The SP’ hybridisation leads to equivalent bo 3 4 6

The ground state of a hydrogen atom is . atriplet a mixture neither sin
If the spins of electron in two atoms are parallel then the atoms _ singlet  a. attra coagulate
If the spins of the electrons in two atoms are antiparallel, then twc repel a. attra coagulate

If two spins S; and S, of the electron combine to give a resultant s doublet  triplet multiplet
If two spins S; and S, of the electron combine to give a resultant triplet doublet  singlet

Hartree-Fock method incorporates the effect of symm skew anti exchange
The molecular wave function as a linear combination of atomic 01 LCAO  Exchange MO



The effect of exchange symmetry has been incorporated in Hartree-FcHartree’s « Thomas —

The effect of exchange symmetry has been incorporated in 109°28” 180° 0°

In case of hydrogen molecule ion, the minimum potential energy 2.78 eV = 4.72eV  3.14 eV
Resonance is the property of degenerac doublet  singlet
The symmetric spin function will be associated with skew symrhermitian antisymmix
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Choice4 Choice5 Choice6 Answer
nuclear mass to electron mas nuclear mass to electron mass

none of the above smaller

e b

aand b longer

neutral quasi-rigid
electronic electronic
ljz/ma2 +1 —ljz/ma2

R’ R

atomic homopolar
none of the above resonance
wave function eigen value
hydrogen atom. hydrogen atom.
1.32 A° 0.8 A°

a singlet state a singlet state
a.  repulsive bonding

a. none of the above chemical

two two

none of the above. orbital
antisymmetric antisymmetric
bandc symmetric
—3ez/r122 —ez/rlz

2 2 2 2 2, 2 2 2 2 2 2
€ /1y, T €7/1 5- €7/1,- €7/ - €7/1, €7 /1y, T €7/r 5- €7/1,- €7/ - €7 /T- €7/

partial wave. valence bond
suspension stable
none of the above real

Ny + NPy - 2o/ %) (B-V) y =N’y + NPy + 2m/ ) (E-V) y =0
VX% + (V1) - (221} Vxox)) - (Va1 - (2-21)

2 3

singlet singlet

none of the above singlet

none of the above a. attract
singlet singlet
multiplet triplet

none of the above exchange

none of the above LCAO



None of the above
120°

1.76 eV

triplet

triplet

Hartree’s self consistent method
109°28’

1.76 eV

degeneracy

antisymmetric
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