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S.No Lecture 
Duration 

Period 

Topics to be Covered Support 
Material/Page Nos 

  UNIT-I  

1 1 hr Introduction, Limitations of 
classical physics 

T1 (1) 

2 1 hr Origin of quantum theory-
Planck’s quantum hypothesis 

T1 (4-5) T1 (5-6) 

3 1 hr Einstein’s theory of photoelectric 
effect, Bohr model of hydrogen 
atom, Inadequacy of quantum 
theory 

T1 (7-8) T1 (16-17) 

4 1 hr Matter waves-Uncertainty 
principle, Wave packet 

T1 (24-26) 

5 1 hr Group and phase velocity T1 (28-31) 

6 1 hr Time-dependent Schrodinger 
equation 

T1 (31) 

7 1 hr Time independent Schrodinger 
equations for a free particle and 
particle in a potential 

T1 (31-33) T1 (38-39) 

8 1 hr REVISION - 

 Total No of  Hours Planned  For  Unit 1=8  

  UNIT-II  

1 1 hr Square-well potential with rigid 
walls 

T1 (81-83) 

2 1 hr Square-well potential with finite 
walls 

T1 (83-86) 

3 1 hr Square-well potential barrier T2 (87-89) 

4 1 hr Alpha emission T1 (90) 
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5 1 hr Bloch waves in a periodic 
potential 

T2 (92) 

6 1 hr Linear harmonic 
oscillator(Schrodinger method -
operator method) Free particle 

T1 (95-100) T1 (100-
103) 

7 1 hr REVISION  

  
Total No of  Hours Planned  For  Unit II=7 

 

  UNIT-III  

1 1 hr Particle owing in a spherically 
symmetric potential 

T1 (114-119) 

2 1 hr System of two interacting 
particles, Rigid rotator 

T1 (119-122) 

3 1 hr Hydrogen atom- Three-
dimensional square-well potential 

T1 (122) T1 (211) 

4 1 hr Deuterons-Properties of matrix 
elements 

T2 (133-135) T1 (134-
135) 

5 1 hr Schrodinger equation in matrix 
form 

T1 (144) 

6 1 hr Unitary transformations T1 (144) T1 (145) 

7 1 hr Linear harmonic oscillator T1 (145) T1 (148-150) 

8 1 hr REVISION  

 Total No of  Hours Planned  For  Unit III=8  

  UNIT-IV  

1 1 hr Basic concepts-Non-degenerate 
energy levels 

T1 (195-196) 

2 1 hr First order corrections for energy 
Second order corrections for 
energy and wave functions 

T1 (196-198) 

3 1 hr Ground state of helium atoms T1 (198)T1 (199) 

4 1 hr Effect of electric field on the 
ground state of hydrogen 
atom(stark effect) 

T1 (199-201) T1 (201-
204) 

5 1 hr Degenerate energy levels, Effects 
of electric field on the n=2 state 
of hydrogen atom 

T1 (204-205) T1 (205-
207) 

6 1 hr REVISION  

 Total No of  Hours Planned  For  Unit IV=6  
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  UNIT-V  

1 1 hr Variational principle  T1 (215-216) 

2 1 hr Variation method for excited state  

3 1 hr Application of variation method 
to ground state of helium 

T1 (216) 

4 1 hr The WKB method T1 (217) 

5 1 hr Introduction-first order 
perturbation -Harmonic 
perturbation 

T1 (229-231) 

6 1 hr Transition to continuum 
states(Fermi Golden rule) 

TI (243-244) 

7 1 hr Absorption of radiation and 
Emission of radiation  

T1 (244-246) T1 (246-
247) 

8 1 hr Transition probability -Selection 
rule 

T1(252) T1 (247-251) 

9 1 hr REVISION  

10 1 hr Question Paper discussion  

11 1 hr Question Paper discussion  

 Total no. of Hours planned for unit- V 11 

 
 
SUGGESTED READING : 
 
1. Aruldhas. G, 2009, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, New 
Delhi. 
2. Leonard I. Schiff, 2000, Quantum Mechanics, 3rd Edition, McGraw Hill 
International, Auckland 
3. Gupta, Kumar and Sharma, 2002 – 2003, Quantum Mechanics, 22nd Edition, Jai 
Prakash Nath & Co, Meerut. 
4. Satya Prakash, New Edition, 2003, Quantum Mechanics, Kedar Nath & Ram 
Nath & Co, Meerut. 
5. Eugen Merzbacher,2013, Quantum Mechanics, 3rd Edition, Wiley, Weinheim 
6. Mathews. P.M. and K. Venkatesan, 2nd Edition, 2013, Textbooks of Quantum 
Mechanics, McGraw Hill International, Weinheim. 
7. Chatwal R.G. and Sk. Anand, 4th edition, 2004, Quantum Mechanics, Himalaya 
Publishing House, New Delhi 
8. Thangappan. V. K., 2nd Edition,2013, Quantum Mechanics, Tata McGraw Hill, 
New Delhi 
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UNIT-I 
 

SYLLABUS 
 

 

Quantum Theory: Introduction – Limitation of classical physics – Origin of quantum 
theory – Planck’s quantum hypothesis – Einstein’s theory of Photoelectric effect –Bohr 
model of hydrogen atom – Inadequacy of quantum theory. 

 
Wave Mechanics Matter waves – Uncertainty principle –Wave packet – Group and 
phase velocity – Time-dependent and Time-independent Schrodinger equations for a 
free particle and particle in a potential . 

 
Limitation of Classical Physics 

 

Classical mechanics describe the motion of the macroscopic particle, such as 

star, planet, moon, lump of clay as well as microscopic particle such as motion of a 

bacteria, virus. It describes the motion of a particle in non-relativistic limit. i.e. V<<C 

Newtonian mechanics is based on concept of 

1.   Absolute Space 
 

2.   Absolute Time 
 

3.   Absolute mass and it's contained 

In Newton's law of motion (F⃗ =ma⃗ F→=ma→). Due to certain limitation of classical
 

mechanics and it's wrong assumption could not explain following physical phenomena. 
 

1. It could not explain the spectrum of black body radiation. 
 

The total energy density at temperature T comes out to be infinity but experimentally T 
 

total energy should be finite and measurable. 
 

2. It could not explain the stability of atoms. 
 

According to classical theory electron accelerate around nucleus of an atom less it's 

energy  in  the  form  of  radiation  ad  it's  energy  continuously  decreases.  Radius  of 

electronic orbit also decreases and electron jump inside nucleus and atom becomes 

unstable. 

But in real atom is stable. 
 

3. It could not explain discrete atomic spectrum: 
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According to classical theory of radiation, energy exchange between atom and radiation 

field must be continuous. But atoms absorbs and emits discrete energy in unit of (hνhν). 

4. It could not explain photoelectric effect: 
 

According  to  classical  theory  of  radiation  the  kinetic  energy  of  emitted  electron  ( 
 

photoelectron ) depends upon the intensity of radiation, independent of frequency. 
 

5. It could not explain the phenomena of pair production (E=mc2E=mc2). 
 

6. It could not explain the phenomena of Compton scattering. 
 

According to classical theory of radiation the frequency of scattered radiation should be 

equal  to  frequency of  oscillating  charge  (electron),  which  is  equal  to  frequency of 

incident radiation. There should be no change in frequency. 

7. It could not explain variation of electric conductivity of solid ( supper conductivity ). 
 

8.  Classical  mechanics  could  not  explain  the  phenomena  associated  with  spinning 

motion of electron. ( Ferromagnetism, Poulies exclusion principle ). 

9. Classical mechanics could not explain Zeeman effect, Stark effect, Raman effect. 
 

10. It could not explain phenomena of radioactivity (ββ-decay, αα- decay ) 
 

11.Classical mechanics is based on the exact measurement of physical quantity but in 

real we can not measure a physical quantity exactly and preciously with out any error ( 

uncertainity principle ). 

12. According to classical mechanics total energy of particles is always positive. But in 

Dirac theory negative energy state is also exit. ( Existance of positron, antiparticle of 

electron).  The energy of positron is negative before it's formation. So this can not 

explain by classical theory. 

To sole above physically observable problem Scientists purposed, a new field of physics 

based on uncertainity principle and wave-matter duality of particles. This new field of 

physics is known as quantum mechanics. 

Planck’s Quantum hypothesis 
 

Planck’s  formula  for the  distribution of energy in the  radiation from a black 

body was the  starting point of the  quantum theory,  which has been developed during 

the last 20 years and has borne a wealth of fruit in energy domain of physics.  Since its 
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publication in 1901 many methods   for deriving this law have been proposed.   It is 

recognized that basic assumptions of the quantum theory are irreconcilable with the laws 

of classical electrodynamics. All derivations up to now use the relation 

 
 
 
 
that is, the   relation   between   the   radiation density   and   the   mean energy of an 

oscillator,  and  they  make  assumptions about  the  number  of degrees of freedom  of 

the  ether,  which  appear  in the  above  formula  (the  first  factor on the  right–  hand 

side).   This  factor,  however,  can  be derived  only from classical theory.   This  is the 

unsatisfactory feature  in all derivations and  it is therefore  no wonder that attempts are 

being made to obtain  a derivation that is free of this logical flaw. 

Einstein  has given a remarkably elegant derivation.  He recognized  the logical defect 

of all previous  derivations and  tried  to  deduce  the  formula independently of classical 

theory.  From  very simple assumptions about  the 

energy exchange between  molecules and a radiation field he found the relation. 
 

Matter waves 
 

Photons are the particles of light.  Matter is made of atoms, and atoms are made 

protons, neutrons and electrons.  These are not macroscopic particles.  Typical atomic 

dimensions are on the order of 10-10 m, nuclear dimensions are on the order of 10-15 m, 

and the electron seems to be a point particle with no size at all. 

If a wave equation describes the behavior of photons, maybe a wave equation 

also describes the behavior of other microscopic particles. 

In 1924, Luis deBroglie (Nobel Prize in Physics in 1929) proposed that a wave function 

is associated with all particles.  Where this wave function has nonzero amplitude, we are 

likely to find the particle.  The standard interpretation is that the intensity of the wave 

function of a particle at any point is proportional to the probability of finding the particle 

at that point.  The wavelengths of the harmonic waves used to build the wave function 
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let us calculate the most likely momentum of the particle and the uncertainty in the 

momentum.  The wave function for a material particle is often called a matter wave. 

 
 
Bohr model of hydrogen atom 

 

To   overcome   the   difficulty associated   with   the   classical collapse of the 

electron  into  the  nucleus,  Bohr  proposed  that the  orbiting  electron  could only exist 

in certain   special   states   of motion   - called stationary states,   in which no 

electromagnetic radiation was emitted. In these states,   the angular momentum of the 

electron  L takes  on integer  values  of Planck’s  constant divided by 2π, denoted by ~ = 

h/2π (pronounced h-bar).  In these stationary states,  the  electron  angular  momentum 

can  take  on values  ~, 2~, 3~, ..., but  never  non-integer   values.    This  is known  as 

quantization of angular momentum,   and  was  one  of Bohr’s key  hypotheses. 

For circular orbits,  the position vector of the electron r is always perpen- dicular  to its 

linear  momentum p.  The angular  momentum L = r × p has magnitude L = rp = me vr 

in this case.  Thus Bohr’s postulate of quantized angular momentum is equivalent to 

me vr = n~, 
 

The  energy  levels are  indicated   schematically.   The  electron  energy  is  quantized, 

with  only  certain   discrete  values  allowed.    In the  lowest  energy  level,  known  as 

the  ground  state,   the  electron  has  en- ergy  E1    = 13.6  eV.    The  higher  states,   n 

= 2, 3, 4,   with  energies −3.6 eV, −1.5 eV, −0.85 eV,  are  called excited  states.   The 

integer,  n that labels both the allowed radius and energy level, is known as the principle 

quantum  number of the atom.  It tells us what  energy level the electron occupies. 

When  the  electron  and  nucleus  are  separated by  an  infinite  distance (n  → 
 

∞) we have  E  = 0.  By bringing  the  electron  in from infinity  to  a particular state  n, 

we release energy  E  = −(Efinal − Einitial ) = |En | (note the minus sign comes from the 

energy being released).  Similarly, if we start with an atom  in state  n, we must  supply 

at  least  |En | to free the  electron. This energy is known as the binding energy of the 

state n.  If we supply more energy than  |En | to the electron,  then the excess beyond the 

binding energy will appear as kinetic energy of the freed electron. 
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The excitation energy of an excited state n is the energy above the ground state,  En − E1 

 

. For the first excited state,  n = 2, the excitation energy is 
 
 

∆E = E2  − E1  = −3.4 eV − (−13.6 eV) = 10.2 eV. 
 

Once Bohr had worked out that the energy levels of hydrogen were quantized, 

i.e.   only allowed to take   on discrete   values, he was able to easily de- scribe the 

spectral    lines  observed    for  hydrogen    if he  were  to  posit    a second  postulate: 

radiation can only be emitted   when the atom   makes a transition from one energy 

level, say n,  to  another   with   lower energy,   m  < n.    The energy of the emitted 

photon  will thus  be given by the difference in energy between  these two levels 

 
 
 
 
 
 

Comparison  of  this  with  Rydberg’s  empirical  formula,  ,  Bohr  identified  his 

ground  state  energy  value,  E1    =  13.6  eV  with  the  experimentally  determined 

Rydberg constant, R = 13.6 eV. These two agreed well within experimental errors of 

the time. 

Note that Bohr’s second postulate, i.e. the energy of an emitted  photon from an 

atom  is given by the difference in energy level, contradicts the concepts  of classical 

physics    in  which  an  oscillating    charge    emits    radiation  at  its  frequency    of 

oscillation. For  an electron  in state  n with  energy En , its oscillation  frequency is 

just  νn = En /h. 
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Schematic  representation of the discrete allowed energy levels in the hydrogen  atom. 
 
 
 
Bohr’s postulates 

 
•  Quantized angular  momentum:  L = me vr = n~. 

 

•  Radiation is  only  emitted   when   an   atom   makes   transitions 
between stationary states:  Eph = Em − En . 

As we will see when we discuss the wave nature  of matter and the de Broglie 
 

wavelength, the quantization of angular momentum, which leads to allowed orbits  with 

radii  rn  = a0 n2   and  momenta  pn  =  ~/a0n  = ~n/rn   implies that the circumference 

of the allowed states  is an integer multiple of the de Broglie wavelength  λdB  = h/p 

nλdB = 2πrn 
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Uncertainty  relations 
 

A central  aspect of the dual wave-particle  nature  of quantum systems is the 

indeterminism  associated  with  measurement  outcomes.   This  wave-particle  duality 

is  most   pronounced     when   discussing   the    uncertainties  associated  with   the 

simultaneous  measurement  of the  position  and  momentum  of a quantum particle. 

In   classical   physics,   we  think   of  uncertainty   as  a  flaw in  our   measurement 

devices.    For  example,   if we attempt to  measure   the position  of a particle  with 

respect  to another  particle  using a ruler with millimeter  scale divisions, we can at 

best quote the position  to say the nearest half millimeter.   The  uncertainty in the 

position,   which  we denote   by  ∆x, is  limited   by  our   measurement  device.    A 

further   source  of uncertainty  in measurements  arises from statistical   fluctuations 

in the  measurement  pro- cess, for example,  we might not  quite  line up  the  

ruler origin at exactly  the same point  for repeated  measurements.   This  type of 

random error  can  be eliminated   by repeating  the measurement many times and 

using the average  value  of  the  measurement  outcomes   and  their   standard  

deviation    to estimate  the  true  value  of the  position.    Furthermore, if the  

particle   is moving and  we wanted  to  measure  the  position  and  momentum  of the  

particle,   there  is nothing  to stop us from doing both  simultaneously to any level of 

precision. 

However,  in  quantum physics  there are inherent uncertainties associ- ated 

with the values of measurements performed  on quantum systems.  The uncertainty 

principle (or Heisenberg uncertainty principle  named  after its discoverer)  tells us 

that the product  of uncertainties associated  with  posi- tion and momentum must  be 

greater than or equal to the Planck  constant divided by 4 π, i.e., 

 
 

∆x∆px  ≥ ~ ,  ħ 
 
 
where  ~  = h/2π  as  usual.    We  interpret this  inequality   by  stating that the  if we try 

to  measure    both    position    and  momentum  simultaneously,  the  product    of  their 

uncertainties must  be larger  than  a very small,  but  finite value.   In  other  words,  it 
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is not   possible   to   simultaneously determine   the position   and   momentum of a 

quantum system  with  unlimited   precision. This uncertainty principle in x and px can 

be extended to other measurement outcomes   including   the two   other   spatial- 

momentum directions  (y, py  and z, pz ) as well as other  complementary   observables, 

that is quantities that cannot  be simultaneously determined to arbitrary precision (many, 

but  not all, complementary observables turn  out to be Fourier-transform pairs).   For 

example, there is an uncertainty relation  between  energy and time. 

Wave packets 
 

A pure sine wave has a well-defined wavelength   and thus frequency (energy) 

and momentum, but  is completely delocalized in space, spreading  infinitely throughout 

space.   The same holds for plane waves as discussed in the pre- vious section.   A 

classical particle,  on the other hand is completely localized in space,  has a well-defined 

position   and   therefore   trajectory.   An electron bound   to an atom   is localized in 

position  to within  an uncertainty  on the order of the atomic  diameter  (given by twice 

the Bohr radius  for example), but  its  precise  position  within  the  atom  is not  well 

defined.   To  describe such “quasi-localized”  waves, physicists  have at  their  disposal 

the   concept of wave packets.   A wave packet can be considered to the be the 

superposition  of many    waves  that  interfere    constructively in  the  vicinity   of the 

particle, giving a large  amplitude where  the  particle  is expected  to  be found,  and 

interfere destructively far from where the particle  is predicted  to be found. 
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Two  cosine waves  with  slightly different  wavelengths  (top) add  constructively in 

superposition near zero displacement  (bottom), but destructively further  away.  This 

leads to a beat  pattern. 

In one dimension, we can add two sine waves with different,  but  nearly equal, wave 

vectors,  k1  and k2, which leads to a beat  pattern with a spatial localization  for part  of 

the wave depicted. The associated  wave is given by 

 
 

ψ2(x) = A(sin(k1x) + sin(k2 x)), 
 
 
 
where we have assumed equal amplitudes for both wave vector components. By adding 

more waves to this superposition, say N in total,  with appropriate wave  vectors  and 

relative phases,  we can  create an  increasingly localized wave packet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wave packet  constructed from ten different cosines, each with slightly different 

wavelengths. 
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Time dependent Schrodinger equation 

 

According to Planck and Einstein the energy and frequency of light are related by 
 

E = ~ω. De Broglie extended this dualism to massive particles by relating in addition the 

momentum to the wave vector p = ~k. It was Erwin Schr¨odinger who reconsidered de 

Broglie’s matter waves and discovered in 1926 a wave equation, the equation of motion 

corresponding to the wave nature of particles, which fits the physical observations. This 

differential equation is a fundamental equation and cannot be derived from first principles but 

we can make its form plausible. Let us consider plane waves or rather wave packets which 

are of the form 

 
 
 
 
 
 
 
 
We differentiate these waves with respect to t and x and recall the relations of wave and 

particle properties, 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The nonrelativistic energy–momentum relation for massive particles, where we assume for 

simplicity that the potential V = V (x) is independent of time 

 
 
 
 
then  provides  a  differential  equation  for  ψ  which  Schr¨odinger  assumed  to  hold  quite 

 

generally for massive particles in an external potential V (x) 1 . 
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The operator H = − ~ 2 2m ∆ + V (x) is called the Hamiltonian of the system, ~ is Planck’s 

constant and m is the mass of the particle. The solution ψ(t, x) of the Schrodinger equation is 

called the wave function. It contains all the information about a physical system. 

Time independent equation 
 

The time dependence entered into the wave function via a complex exponential factor 

exp[−iEt/ħ]. This suggests that to ‘extract’ this time dependence we guess a solution to the 

Schr¨odinger wave equation of the form Ψ(x,t) = ψ(x)e−iEt/ ħ  i.e. where the space and the 

time dependence of the complete wave function are contained in separate factors1. The idea 

now is to see if this guess enables us to derive an equation for ψ(x), the spatial part of the 

wave function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
which is the time independent Schr¨odinger equation. We note here that the quantity E, which 

we have identified as the energy of the particle, is a free parameter in this equation. In other 

words, at no stage has any restriction been placed on the possible values for E. Thus, if we 

want to determine the wave function for a particle with some specific value of E that is 

moving in the presence of a potential V (x), all we have to do is to insert this value of E into 

the equation with the appropriate V (x), and solve for the corresponding wave function. In 

doing so, we find, perhaps not surprisingly, that for different choices of E we get different 

solutions for ψ(x). We can emphasize this fact by writing ψE(x) as the solution associated 

with a particular value of E. But it turns out that it is not all quite as simple as this. To be 

physically acceptable, the wave function ψE(x) must satisfy two conditions, one of which we 

have seen before namely that the wave function must be normalizable, and a second, that the 

wave function and its derivative must be continuous. Together, these two requirements, the 
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first founded in the probability interpretation of the wave function, the second in more 

esoteric  mathematical  necessities  which  we  will  not  go  into  here  and  usually  only 

encountered in somewhat artificial problems, lead to a rather remarkable property of physical 

systems described by this equation that has enormous physical significance: the quantization 

of energy. 

 
 
Possible 4 mark question 

 

1.   Explain the postulates of Bohr with regard to hydrogen atom. 
 

2.   Obtain Eigen values and Eigen functions. 
 

3.   Give a note on (i) Planck quantum hypothesis 
 

4.   Write a note on Einstein’s theory of photoelectric effect. 
 

5.   Derive Schrödinger’s time –dependent equation for matter waves. 
 

6.    Derive Schrödinger’s time-independent equation for matter waves. 
 

7.   Give an informative account of dual nature of matter. 
 

8.   List out the limitations of classical mechanics and inadequacy of quantum mechanics. 
 
 
 
Possible 10 mark question 

 

1.    Calculate the maximum wavelength that hydrogen in its ground state can absorb. 
 

What would be the next maximum wavelength? 
 

2.  Calculate  the  velocity  and  frequency  of  revolution  of  the  electron  of  the  Bohr 

hydrogen atom in its ground state? 

3.   Derive an expression for dependent equation of Schrödinger’s. 
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MULTIPLE CHOICE QUESTIONS

QUESTION
UNIT I

The operator for energy is ____

Operation on a ket vector from left with an operator A produces 

Operation on a bra vector from right with an operator A produces 

If |P> = |A> + |B> then <P| is given by 
The sum of the two bras is defined by its scalar product with any ket vector, as {<R|+<S|}|Q> which is
given by 
A state function can be expressed by a ____ in an infinite dimensional space by imagining an axis for
each function ψi 

If the vector A and B are orthogonal, <A|B> =

If C is a complex number, and if |R> = C|A> then <R| is given by

The set of eigen kets {|ψ1>, |ψ2>, |ψ3> ….|ψn>….|ψm>} will be an orthonormal set of eigen kets if 

An operator A, which represents a dynamic variable, is said to be Hermitian, if, for two square integrable
functions ψ and φ we have < φ | Aψ> equal to 

In Schrodinger picture, the state vector and operator are respectively

In Heisenberg picture, the state vector and operator are



In interaction picture the state vector and operator are 

The value of [a, a†] is 

ket vectors are

Multiplying |Q><R| by an arbitrary |A> on the right, we get

Every operator representing a dynamical variable must be a 
The operator for velocity is

The Hamiltonian operator in one dimension for the harmonic oscillator is

The zero point energy of a linear harmonic oscillator is 

Discrete energy values of harmonic oscillator is given by 

In Hilbert space, all infinite series occurring are 

<A|B> is equal to 

A ket vector |A> is said to be ____ if <A|A> =1
The commutation relation [x,Px] yields

The operator is Hermitian if ____
The quantum mechanical operator for momentum is 

The operator for kinetic energy is 
A bra and a ket vector are said to be orthogonal if their scalar product is
The relation for parity operator πψ(x) is
Hermitian operators have ____ eigen values

If two Hermitian operators operators commute, then their product is 
The commutation relation [x,H] yields
The commutation relation [p,H] yields



If a is lowering operator and a† raising operator then aa† is

If a is lowering operator and a† raising operator then a†a is

If |a> and |b> are arbitrary kets then [|a><b|]* is 

If A and B are unitary operators, then the product is 

The expectation value of observable p in state ψ is
In bra and ket space, any complete bracket expression denotes a 
In bra and ket space, any incomplete bracket expression denotes a 

The development of classical mechanics is mainly based on 

Classical mechanics could not explain

Old quantum theory explains _____

The quantum concept was introduced by ____

The idea of dual nature of light was proposed by 

The value of Plank’s constant is 

Wave mechanics described the behaviour of

The wave equation for a moving particle is represented by



The equation which describes the motion of a non-relativistic material particle is

The state functions in the Hilbert space are called as 

The state functions in the Hilbert space are represented by

The change of basis from one ortho-normal set to another in Dirac notation is expressed as

If the condition pc = cp is satisfied then the operator p is said to be 

The eigen functions of Hermitian operators belonging to different eigen values are 

The expectation value of operator in Schrödinger picture is such that

In harmonic oscillator problem, the matrix for ‘a’ contains

In harmonic oscillator problem, the matrix for ‘a†’ contains

In harmonic oscillator problem, the matrix for H contains



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

iħ∂/∂t -iħ∂/∂t iħ∂/∂x –iħv iħ∂/∂t

Another
ket vector

A bra
vector
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operator

Phase
vector

Another
ket vector

A ket
vector
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operator
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bra
vector

Phase
vector
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bra
vector
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<R|Q|S>
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<R|Q> +
<S|Q>

row
vector

state
vector

column
vector ket vector
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vector

0 1 -1 Infinity 0
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= 0

<ψn|ψm>
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= 1

|ψm><ψn|
= 0

<ψn|ψm>
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time
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t and
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independ
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ent and
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dependen
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both
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independ
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independ
ent and
time
dependen
t
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dependen
t and
time
independ
ent

time
independ
ent and
time
dependen
t

both
time
independ
ent both time dependentboth time dependent



time
dependen
t and
time
independ
ent
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independ
ent and
time
dependen
t

both
time
independ
ent

both
time
dependen
t

time
independ
ent and
time
dependen
t

zero 1 ħw i ħ zero

column
vectors

row
vectors

rectangul
ar vectors

square
vectors

row
vectors

<Q|R><A
| 

|Q><R|A
> <Q|R|A>

|Q><A|R
>

|Q><A|R
>

column
matrix

unit
matrix unitary

Hermitia
n unitary

i ħ/m -i ħm -i ħ/m i ħm -i ħm

H =
p/2m +

½ kx
2

H =

p2/2m +

½ kx
2

H =
p/2m +
½ kx

H =
p/2m –

½ kx
2

H =
p/2m +
½ kx

¼ ħw 1/3 ħw ½ ħw ħw 1/3 ħw

En = (n –

½ ) ħw0

En = (n +

½ ) ħw0

En =
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mal linear
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∫upv*dτ
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m
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real y complex infinity complex
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½ 
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½ 1 0
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½ 
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½ 
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n Unitary

Hamilton
ian Inverse

Hermitia
n

<p> =

∫ψ*pψdτ

<p> =

∫ψpψ*dτ

<p> =

∫ψ*ψdτ

<p> =

∫ψpψ*dτ

<p> =

∫ψpψ*dτ
vector number operator space vector
vector number operator space operator

Planck’s
radiation
law
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quantum
theory of
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Newton’s 
three

laws of
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electrons
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molecule
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De
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6.62 X
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(v2)

∂2ψ/∂t2 =
0

2ψ –
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Hψ + Eψ
= 0 Hψ = Eψ 
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complex
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diagonal
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diagonal
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both
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diagonal
elements

only
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diagonal
elements
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UNIT-II

SYLLABUS

One dimensional potential well: Square-well potential with finite walls – Square-well
potential with rigid walls- Square-well potential barrier – Alpha emission – Bloch waves in a
periodic potential – Linear harmonic oscillator (Schrodinger method and operator method) – Free
particle.

The Finite Potential Well

The infinite potential well is a valuable model since, with the minimum amount of

fuss, it shows immediately the way that energy quantization as potentials do not occur in nature.

However, for electrons trapped in a block of metal, or gas molecules contained in a bottle, this

model serves to describe very accurately the quantum character of such systems. In such cases the

potential experienced by an electron as it approaches the edges of a block of metal, or as

experienced by a gas molecule as it approaches the walls of its container are effectively infinite as

far as these particles are concerned, at least if the particles have sufficently low kinetic energy

compared to the height of these potential barriers. But, of course, any potential well is of finite

depth, and if a particle in such a well has an energy comparable to the height of the potential

barriers that define the well, there is the prospect of the particle escaping from the well. This is true

both classically and quantum mechanically, though, as you might expect, the behaviour in the

quantum mechanical case is not necessarily consistent with our classical physics based

expectations. Thus we now proceed to look at the quantum properties of a particle in a finite

potential well.
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Square-well potential with rigid walls

In quatum mechanics, the particle in a box model (also known as the infinite

potential well or the infinite square well) describes a particle free to move in a small space

surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to

illustrate the differences between classical and quantum systems. In classical systems, for example,

a ball trapped inside a large box, the particle can move at any speed within the box and it is no more

likely to be found at one position than another. However, when the well becomes very narrow (on

the scale of a few nanometers), quantum effects become important. The particle may only occupy

certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle

can never "sit still". Additionally, it is more likely to be found at certain positions than at others,

depending on its energy level. The particle may never be detected at certain positions, known as

spatial nodes.

The particle in a box model is one of the very few problems in quantum mechanics

which can be solved analytically, without approximations. Due to its simplicity, the model allows

insight into quantum effects without the need for complicated mathematics. It serves as a simple

illustration of how energy quantization, which are found in more complicated quantum systems

such as atoms and molecules, come about. It is one of the first quantum mechanics problems taught

in undergraduate physics courses, and it is commonly used as an approximation for more

complicated quantum systems.

The simplest form of the particle in a box model considers a one-dimensional

system. Here, the particle may only move backwards and forwards along a straight line with

COURSE CODE: 18PHP202 UNIT: II (one dimensional potential well) BATCH-2018-2020
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impenetrable barriers at either end. The walls of a one-dimensional box may be visualised as

regions of space with an infinitely large potential energy. Conversely, the interior of the box has a

constant, zero potential energy. This means that no forces act upon the particle inside the box and it

can move freely in that region. However, infinitely large forces repel the particle if it touches the

walls of the box, preventing it from escaping. The potential energy in this model is given as

where L is the length of the box, xc is the location of the center of the box and x is the

position of the particle within the box. Simple cases include the centered box (xc = 0 ) and the

shifted box (xc = L/2 ).

Position wave function

In quantum mechanics, the wavefunction gives the most fundamental description of the

behavior of a particle; the measurable properties of the particle (such as its position, momentum and

energy) may all be derived from the wavefunctionThe wavefunction can be found by solving

the Schrödinger equation for the system

where is the reduced Planck constant, is the mass of the particle, is the imaginary

unit and is time.

Inside the box, no forces act upon the particle, which means that the part of the

wavefunction inside the box oscillates through space and time with the same form as a free particle
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where and are arbitrary complex numbers. The frequency of the oscillations through space

and time is given by the wavenumber and the angular frequency respectively. These are both

related to the total energy of the particle by the expression

which is known as the dispersion relation for a free particle.[1] Here one must notice that

now, since the particle is not entirely free but under the influence of a potential (the

potential V described above), the energy of the particle given above is not the same thing

as where p is the momentum of the particle, and thus the wavenumber k above actually describes

the energy states of the particle, not the momentum states (i.e. it turns out that the momentum of the

particle is not given) In this sense, it is quite dangerous to call the number k a wavenumber, since it

is not related to momentum like "wavenumber" usually is. The rationale for calling k the

wavenumber is that it enumerates the number of crests that the wavefunction has inside the box,

and in this sense it is a wavenumber. This discrepancy can be seen more clearly below, when we

find out that the energy spectrum of the particle is discrete (only discrete values of energy are

allowed) but the momentum spectrum is continuous (momentum can vary continuously) and in

particular, the relation for the energy and momentum of the particle does not hold. As said above,

the reason this relation between energy and momentum does not hold is that the particle is not free,

but there is a potential V in the system, and the energy of the particle is E=T+V where T is the

kinetic and V the potential energy.

Particle Scattering by a Barrier
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It is manifestly an eigenvalue problem since the solution can be found only at discrete

values of E. The electron is trapped inside the box. However, in an open region problem where the

electron is free to roam, the energy of the electron E can be arbitrary. We can assume that the

potential pro_le is such that V (x) = 0 for x < 0 while

V (x) = Vo

for x > 0. The energy of the electron is such that 0 < E < V. On the left side, we assume an

electron coming in from  with the wavefunction described by Aexp(ik1x). When this wavefunction

hits the potential barrier, a reected wave will be present, and the general solution on the left side of

the barrier is given by

E is the kinetic energy of the incident electron. On the right side, however, the Schrodinger

equation to be satisfied is

The solution of the transmitted wave on the right is

Given the known incident wave amplitude A1,we can match the boundary conditions at x =

0 to find the reacted wave amplitude B1 and the transmitted wave amplitude A1, By eyeballing the

Schrodinger equation  we can arrive at the requisite boundary conditions, continuous at x = 0.is

pure imaginary, and the wave is evanescent and decays when x .This effect is known as tunneling.
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The electron as a nonzero probability of being found inside the barrier, albeit with decreasing

probability into the barrier. The larger V, Since E < V0, k2 is compared to E, the more rapidly

decaying is the wavefunction into the barrier. However, if the electron is energetic enough so that

E > Vo,k2 becomes real, and then the wavefunction is no more evanescent. It penetrates into

the barrier; it can be found even long way from the boundary. It is to be noted that the wavefunction

in this case cannot be normalized as the above represents  situation of an electron roaming over

infinite space. The above example illustrates the wave physics at the barrier., k becomes real, and

then the wavefunction is no more evanescent. It penetrates into the barrier; it can be found even a

long way from the boundary.

Square-well potential with finite walls

As a first application of the Schrödinger equation, we use it to redeliver the allowed

energies of a particle in a rigid box and check that we get the same answers as before. We start by

identifying the potential energy function U(x). Inside the box the potential energy is zero, and

outside the box it is infinite. Thus

This potential energy function is often described as an infinitely deep square well because a

graph of U(x) looks like a well with infinitely high sides and square corners

Since U(x) = ∞ outside the box, the particle can never be found there, so ψ(x) must be zero

outside the box, i.e., when x < 0 and when x > a. The continuity of ψ(x) requires

COURSE CODE: 18PHP202 UNIT: II (one dimensional potential well) BATCH-2018-2020

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE                           Page 6 / 17



KARPAGAM ACADEMY OF HIGHER EDUCATI0N
CLASS: I MSC  PHYSICS COURSE NAME: QUANTUM MECHANICS I

This is a second order differential equation which has the solutions exp(αx) and exp(−αx) or

any combination of these:

is also a solution for any constants A and B. In addition, given 2 independent solutions,

ψ1(x) and ψ2(x), every solution can be expressed as a linear combination of the form . So, if by any
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means, we can spot 2 independent solutions, we are assured that every solution is a linear

combination of these two. Having 2 arbitrary constants, A and B, comes from the following

consideration. The differential equation has a second derivative ψ ′′(x). To find ψ(x), one has to

effectively do 2 integrations which produces 2 constants of integration. The 2 arbitrary constants

correspond to these 2 constants of integration. Since e αx and e −αx are independent solutions of , it

follows that the most general

while ψ(a) = 0 implies that

The only way to satisfy these 2 conditions is A = B = 0. So if E < 0, then the only solution

of the Schroedinger equation is ψ = 0. So if E < 0, then there can be no standing waves and so

negative values of the energy E are not allowed. A similar argument gives the same conclusion for

E = 0.

Alpha emission

In a series of seminal experiments  Ernest  Rutherford and  his collaborators

established the important features of alpha decay. The behavior of the radiations natural

sources of uranium and thorium and their daughters was studied in magnetic and electric

fields. The least penetrating particles, labeled "α-‐rays" because they were the first to be

absorbed, were found to be positively charged and quite massive in comparison to the more
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penetrating egatively charged "β-‐rays" and the most penetrating neutral "γ-‐rays." In a

subsequent experiment the α-‐rays from a needle-‐like source were collected in a very small

concentric discharge tube and the emission spectrum of helium was observed in the trapped

volume. Thus, alpha rays were proven to be energetic helium nuclei. The α particles are the

most ionizing radiation emitted by natural sources (with the extremely rare exception of the

spontaneous fission of uranium) and are stopped by as little as a sheet of paper or a few

centimeters of air. The particles are quite energetic, (Eo =4-9MeV), but interact very strongly with

electrons as they penetrate into material and stop within 100 μm in most materials.

Understanding these features of α decay allowed early researchers to use the

emitted α-‐particles to probe the structure of nuclei in scattering experiments and later, by

reaction with beryllium, to produce neutrons. In an interesting dichotomy, the α-‐particles

from the decay of natural isotopes of uranium, radium and their daughters have sufficient

kinetic energies to overcome the Coulomb barriers of light elements and induce nuclear

reactions but are not energetic enough to induce reactions in the heaviest elements.

where we have chosen  to write out all of the superscripts and subscripts.

Thus the α-decay of 238U can be written

The  Qα‐value is positive (exothermic) for spontaneous alpha decay. The

helium nucleus emerges with a substantial velocity and is fully ionized, and
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the atomic electrons on the daughter are disrupted by the sudden change

but the whole process conserves electrical charge. We can rewrite the equation

in terms of the masses of the neutral atoms: and then calculate the Qα-

‐value because the net change in the atomic binding energies (~65.3 Z7/5

-‐ 80 Z2/5 eV) is very small compared to the nuclear decay energy.

The semi-empirical mass equation, the emission of an α-‐particle lowers the

Coulomb energy of the nucleus, which increases the stability of heavy nuclei

while not affecting the overall binding energy per nucleon because the tightly

bound α-‐particle has approximately the same binding energy/nucleon as the

original nucleus.

Two important features of alpha decay are that the energies of the alpha

particles known to generally increase with the atomic number of the parent but

energy of the emitted particle is less than that of the Coulomb

barrier in the reverse reaction between the α-‐particle and the daughter

nucleus. In addition, all nuclei with mass numbers greater than A»150 are

thermodynamically unstable against alpha emission (Qα is positive) but alpha

emission is the dominant decay process only for the heaviest nuclei, A>210.

The energies of the emitted α-‐particles can range from 1.8 MeV (144Nd)

to 11.6 MeV (212Pom) with the half-‐life of 144Nd being 5x1029 times

as long as that of 212Pom. Typical heavy element alpha decay energies are

in the range from 4-‐9 MeV, as noted earlier.

In general, alpha decay leads to the ground state of the daughter
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nucleus so that the emitted particle carries away as much energy as possible

and as little angular momentum as possible. The ground state spins of

even-‐even parents and daughters (including the alpha particle, of course) are

zero which makes alpha particle emission the most likely process for

these nuclei. Small branches are seen to higher excited states

but such processes are strongly suppressed. Some decays of odd-‐A heavy

nuclei populate low-‐lying excited states that match the spin of the parent so

that the orbital angular momentum of the α particle can be zero. For example,

the strongest branch (83%) of the alpha decay of

249Cf goes to the 9th excited state of 245Cm because this is the

lowest lying state with the same spin and parity as that of the parent.

Alpha decay to several different excited states of a daughter nucleus is

called fine structure; α-‐decay from an excited state of a parent

nucleus to the ground state of the daughter nucleus is said to be long range

alpha emission because these α-‐particles are more energetic and thus have

longer ranges in matter. The most famous case of long range α-‐emission is

that of 212Pom where a 45 s isomeric level at  2.922 MeV decays to the

ground state of 208Pb by emitting a 11.65 MeV α-particle.

We   will   consider   the   general   features   of   alpha emission   and   then   we   will

describe    them     in    terms    of    a    simple    quantum     mechanical    model.    It    turns    out

that    α    emission    is    a    beautiful    example    of    the    quantum    mechanical    process of

tunneling    through    a    barrier    that    is    forbidden    in    classical    mechanics.    Alpha
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particles   played   an   important   role   in   nuclear   physics   before   the   invention   of    charged

particle     accelerators     and    were    extensively     used     in     research.        Therefore,   the

basic    features     of   alpha   decay   have   been   known   for   some   time.
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Bloch waves in a periodic potential:

The eigenstates ψ of the Hamitonian Hˆ above can be chosen to have the form

of a plane wave times a function with the periodicity of the Bravais lattice

ψnk (r) = eik·runk (r)

unk (r + R) = unk (r)

The quantum number n is called the band index and takes numbers n = 1, 2, 3, . . .

This quantum number corresponds to the appearance of independent eigenstates of different

energies but with the same k, as will be shown later.

An alternative formulation of Bloch’s theorem is that the eigenstates of Hˆ can be

chosen so that associated with each ψ is a wave vector k such that

ψ(r + R) = eik·R ψ(r)

Born – von Karman boundary condition

Apply boundary condition of macroscopic periodicity. Generalize to volume

commensurate with underly- ing Bravais lattice:

ψ(r + Ni ai ) = ψ(r), i = 1, 2, 3

where ai are the primitive vectors and Ni are integers of order N1/3 where N = N1 N2

N3 is the total number of primitive cells in the crystal. The quantum number k can be

composed from the reciprocal lattice vectors with (non-integer) coefficients

xi ,k = x1 b1 + x2 b2 + x3 b3

Since ai · b j = 2πδi j the Bloch theorem then gives ei/2xiNi = 1. Thus, xi = mi /Ni

and the allowed Bloch wave vectors are given by

with mi integers. For a simple cubic Bravais lattice, the allowed wave vector
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components reduce to the earlier kx = 2πmx /L etc., since Ni = L/a and bx = (2π/a)x̂ etc.

Linear Harmonic Oscillator

The linear harmonic oscillator is described by the Schrodinger equation

for the Hamiltonian

It comprises one of the most important examples of elementary Quantum Mechanics.

There are several reasons for its pivotal role. The linear harmonic oscillator describes

vibrations in molecules and their counterparts in solids, the phonons. Many more physical

systems can, at least approximately, be described in terms of linear harmonic oscillator

models. However, the most eminent role of this oscillator is its linkage to the boson, one of

the conceptual building blocks of microscopic physics. For example, bosons describe the

modes of the electromagnetic field, providing the basis for its quantization. The linear

harmonic oscillator, even though it may represent rather non-elementary objects like a solid

and a molecule, provides a window into the most elementary structure of the physical world.

The most likely reason for this connection with fundamental properties of matter is that the

harmonic oscillator Hamiltonian.

Its propagator, the motion of coherent states, and its stationary states. In the present

the approach the harmonic oscillator in the framework of the Schrodinger equation. The

important role of the harmonic oscillator certainly justifies an approach from two

perspectives, i.e., from the path integral (propagotor) perspective and from the Schrodinger
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equation perspective. The path integral approach gave us a direct route to study time-

dependent properties, the Schrodinger equation approach is suited particularly for stationary

state properties. Both approaches, however, yield the same stationary states and the same

propagator, as we will demonstrate below. The Schrodinger equation approach will allow us

to emphasize the algebraic aspects of quantum theory. This Section will be the first in which

an algebraic formulation will assume center stage. In this respect the material presented

provides an important introduction to later Sections using Lie algebra methods to describe

more elementary physical systems. Due to the pedagodical nature of this Section we will link

carefully the algebraic treatment with the differential equation methods used so far in

studying the Schrodinger equation description of quantum systems. In the following we

consider first the stationary states of the linear harmonic oscillator and later consider the

propagator which describes the time evolution of any initial state. The stationary states of the

harmonic oscillator have been considered already in Chapter 2 where the corresponding wave

functions

H φ ˆ E(x) = E φE(x)

Due to the nature of the harmonic potential which does not allow a particle with finite

energy to move to arbitrary large distances, all stationary states of the harmonic oscillator

must be bound states and, therefore, the natural boundary conditions apply

can be solved for any E ∈ R however, only for a discrete set of E values can the

boundary conditions, be satisfied.

Free particle
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Free particle is a particle that, in some sense, is not bound by an external force, or

equivalently not in a region where its potential energy varies. In classical physics, this means

the particle is present in a "field-free" space. In quantum mechanics, it means a region of

uniform potential, usually set to zero in the region of interest since potential can be arbitrarily

set to zero at any point (or surface in three dimensions) in space.

A free particle in non-relativistic quantum mechanics is described by the

free Schrödinger equation

where ψ is the wavefunction of the particle at position r and time t. The solution for a

particle with momentum p or wave vector k, at angular frequency ω or energy E, is given by

the complex plane wave

with amplitude A. As for all quantum particles free or bound, the Heisenberg

uncertainty principles

Since the potential energy is (set to) zero, the total energy E is equal to the kinetic
energy, which has the same form as in classical physics
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Possible 6 marks

1. Explain alpha emission in detail.

2. Derive the Schrödinger relation for a linear harmonic oscillator. Discuss the

significance of zero Point energy.

3. Obtain the solution of wave equation in one dimension for a particle moving in a constant

potential field with finite walls.

4. Explain the concept free particle.

5. Explain square well potential barrier.

6. Explain the Bloch waves in a periodic potential.

Possible 10 marks

1. Calculate the maximum wavelength that hydrogen in its ground state can absorb. What would

be the next maximum wavelength?

2. Solve the time-independent Schrödinger equation for a three dimensional harmonic

oscillator whose potential energy is V= ½ (k1x
2 + k2y

2+ k3z
2).

3. Write the Schrödinger equation and the form of the wave function in the different regions of a

square well with rigid rotator.

4. Briefly discuss how the particles are interacting in a system.
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MULTIPLE CHOICE QUESTIONS

QUESTION

UNIT II

The eigen value of a Hamiltonian is important because it gives ____ of the system

The Hamiltonian is a _____

Which of the following statement is not true?

In a one dimensional square well potential, the wave function of the particle in the level n has ----

According to classical theory, a particle confined in a box _____

According to quantum mechanics, a particle confined in a box _____



Zero point energy is the energy of the particle -----

The wave function of particle in a square potential well with infinite wall is ____ at the boundary

The wave function of a particle in a square potential well with finite wall is ____ at the boundary

Non-zero wave function in the boundary means ____

The probability of finding the particle inside the potential barrier, when the particle is in a potential well
with finite barrier is called



For a given particle in a square potential well, the number of bound states depend on the 

The probability that a particle may penetrate through a potential barrier, which is higher than its energy
E, is called __

Quantum mechanical tunneling can be explained only with ____

Emission of alpha particle from the nucleus is explained using

It is estimated that the alpha particle moves inside a nucleus with velocity of the order of ____

Bloch theory gives explanation of ____

The approximation of a periodic potential well to that of a series of square potential barrier is called ___

The potential energy of a linear harmonic oscillator is ___

In the case of linear harmonic oscillator the potential is ___

The energy eigen value of a linear harmonic oscillator, according to quantum mechanics is ____



The energy of a linear harmonic oscillator according to quantum theory is ___

The difference between the energy of the linear harmonic oscillator, in the case of quantum theory and
quantum mechanics, is _____
The zero point energy of a linear harmonic oscillator is given by 

If y2 = (mω/ћ2).x2, the Hermite polynomial for n=0, for a linear harmonic oscillator is ---

If y2 = (mω/ћ2).x2, the Hermite polynomial for n=1, for a linear harmonic oscillator is ---

If y2 = (mω/ћ2).x2, the Hermite polynomial for n=2, for a linear harmonic oscillator is ---

If y2 = (mω/ћ2).x2, the Hermite polynomial for n=3, for a linear harmonic oscillator is ---
The commutation relation between the position coordinate x and the momentum p is given by

An annihilation operator a  ______ the energy of the particle by ___

A creation operator a †  _____ the energy of the particle by ___
An electron is in the ground state (lowest energy level) of an infinite well where its energy is 5.00 eV. In the next higher level, its energy would be closest to
An electron is in an infinite square well that is 9.6-nm wide. The electron makes the transition from then = 14 to then = 11 state. The wavelength of the emitted photon is closest to

An electron is in an infinite square well that is 8.9-nm wide. The ground state energy of the electron is closest to
The wave function for a particle must be normalizable because
Which of the following terms refers to the molecular modelling computational method that uses equations obeying the laws of classical physics
Which of the following terms refers to the molecular modelling computational method that uses quantum physics?
Which of the following statements is true?
Which of the following is a limitation of the Bohr Model of the atom?
The Compton Effect supports which of the following theories?
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the particle’s charge must be conservedthe particle’s momentum must be conservedthe particle cannot be in two places at the same timethe particle must be somewherethe particle must be somewhere
Quantum mechanicsMolecular calculationsMolecular mechanicsQuantum theoryMolecular mechanics
Quantum mechanicsMolecular calculationsMolecular mechanicsQuantum theoryQuantum mechanics
Energy minimisation is carried out using quantum mechanics.Energy minimisation is used to find a stable conformation for a molecule.Energy minimisation is carried out by varying only bond angles and bond lengthsEnergy minimisation stops when a structure is formed with a much greater stability than the previous one in the processEnergy minimisation is used to find a stable conformation for a molecule.
It does not explain atomic spectraIt successfully predicts the intensity of the photons emitted when electrons change energy levelsThe model only applies to Hydrogen like atomsThe model only applies to light atomsThe model only applies to Hydrogen like atoms
Special Theory of RelativityLight is a waveThomson model of the atomLight is a particleLight is a particle









Energy minimisation is used to find a stable conformation for a molecule.
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UNIT-III

SYLLABUS

Three dimensional potential Well: Particle moving in a spherically symmetric potential –

System of two interacting particles – Rigid rotator – Hydrogen atom –– Three-dimensional

square-well potential - Deutron

Matrix mechanics: Matrix representation of wave function – Matrix representation of

operator – Properties of matrix elements – Schroedinger equation in matrix form –Unitary

Transformations – Linear harmonic oscillator.

Particle moving in a spherically symmetric potential – System of two interacting

particles

An important problem in quantum mechanics is that of a particle in a spherically

symmetric potential, i.e., a potential that depends only on the distance between the particle

and a defined center point. In particular, if the particle in question is an electron and the

potential is derived from Coulomb's law, then the problem can be used to describe a

hydrogen-like (one-electron) atom (or ion).

In the general case, the dynamics of a particle in a spherically symmetric potential are

governed by a Hamiltonian of the following form:

where is the mass of the particle, is the momentum operator, and the potential depends only

on, the modulus of the radius vector r. The quantum mechanical wavefunctions and energies

(eigenvalues) are found by solving the Schrödinger equation with this Hamiltonian. Due to

the spherical symmetry of the system, it is natural to use spherical coordinates and When this

is done, the time-independent Schrödinger equation for the system is separable, allowing the
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angular problems to be dealt with easily, and leaving an ordinary differential equation in to

determine the energies for the particular potential

Hydrogen Atom

The simplest of all atoms is the Hydrogen atom, which is made up of a positively charged

proton with rest mass mp = 1.6726231 × 10−27 kg, and a negatively charged electron with

rest mass me = 9.1093897 × 10−31 kg. Therefore, the hydrogen atom is the only atom which

consists of only two particles. This makes an analytical solution of both the classical as well

as the quantum mechanical dynamics of the hydrogen atom possible. All other atomes are

composed of a nucleus and more than one electron. According

to the Bohr-Somerfeld model of hydrogen, the electron circles the proton on a planetary like

orbit, see Figure 4.8.The stationary Schroedinger Equation for the Hydrogen atom is

The potential is a Coulomb potential between the proton and the electron such that

and the mass is actually the reduced mass

that arises when we transform the two body problem between electron and proton into a

problem for the center of mass and relative coordinate motion. Due to the large, but finite,

mass of the proton, i.e. the proton mass is 1836 times the electron mass, both bodies circle
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around a common center of mass. The center of mass is very close to the position of the

proton and the reduced mass is almost identical to the proton mass. Due to the spherical

symmetry of the potential the use of spherical coordinates is advantageous

We will derive separate equations for the radial and angular coordinates by assuming trial

solutions which are products of functions only depending on one of the coordinates r , ϑ , or ϕ

the azimuthal equation

and the polar equation

where α and m are constants yet to be determined. The polar equation has the complex

solutions

because of the symmetry of the problem in the polar angle ϕ, i.e. the wavefunction must be

periodic in ϕ with period 2π.

Rigid Rotor

The rigid rotor is a mechanical model that is used to explain rotating systems. An

arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in

space, three angles known as Euler angles, are required. A special rigid rotor is the linear

rotor which requires only two angles to describe its orientation. An example of a linear rotor

is a diatomic molecule. More general molecules like water (asymmetric rotor), ammonia
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(symmetric rotor), or methane (spherical rotor) are 3-dimensional, see classification of

molecules.

Particle in an infinite-wall box.

* useful insights into “valence states” of diatomic and conjugated polyatomic

molecules. The system size is related to the energy of the HOMO→LUMO

electronic transition.

Harmonic Oscillator

* all molecular vibrations for diatomic molecules and “normal modes” in

polyatomic molecules

* almost all particle-in-a-well situations are harmonic near equilibrium

* perturbation theory used to account for diagonal and inter-mode effects

(anharmonicity in the energy level spacing and Intramolecular Vibrational

Redistribution) of anharmonicity in the potential energy function To deal with

the rigid rotor.

*    All molecules have rotational energy levels that are rigid-rotor like.

All central force systems (electronic structure of atoms, rotational structure of

molecules, nuclear spins) may be separated into a universal spherical problem, described by

angular momenta, and a system-specific radial problem.

The properties of angular momenta are universally described by spherical

harmonics and by a set of commutation rules by which an angular momentum

may be defined, even when the angular momentum cannot be defined by the usual vector

equation

IA = rˆ × pˆ.

The electron spin is an example of an angular momentum that must be defined by

commutation rules because there is no spatial coordinate associated with spin.

The Hydrogen atom. This provides a different (from particle-in-a-box) and more

useful template for understanding “electronic structure” and is directly relevant to the
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“Rydberg” electronic states of all molecules. * Many-electron systems. We will use LCAO-

MO to provide a qualitative picture of molecular “valence states”, the evil 1 rij inter-electron

repulsion (that spoils all of the individual electron angular momentum, quantum numbers),

and the necessity to “anti-symmetrise” many-electron wavefunctions (the Pauli Exclusion

Principle) because electrons are “fermions”. There are two quite different approaches to

angular momentum.

Three-dimensional square-well potential

In quantum mechanics, the particle in a box model (also known as the infinite

potential well or the infinite square well) describes a particle free to move in a small space

surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to

illustrate the differences between classical and quantum systems. In classical systems, for

example, a ball trapped inside a large box, the particle can move at any speed within the box

and it is no more likely to be found at one position than another. However, when the well

becomes very narrow (on the scale of a few nanometers), quantum effects become important.

The particle may only occupy certain positive energy levels. Likewise, it can never have zero

energy, meaning that the particle can never "sit still". Additionally, it is more likely to be

found at certain positions than at others, depending on its energy level. The particle may

never be detected at certain positions, known as spatial nodes.

The particle in a box model is one of the very few problems in quantum mechanics which can

be solved analytically, without approximations.  Due to its simplicity, the model allows

insight into quantum effects without the need for complicated mathematics. It serves as a

simple illustration of how energy quantization (energy levels), which are found in more

complicated quantum systems such as atoms and molecules, come about. It is one of the first

quantum mechanics problems taught in undergraduate physics courses, and it is commonly

used as an approximation for more complicated quantum systems.

Deutron

The nucleus of the hydrogen atom isotope deuterium; mass number, 2. It is designate

D, or d. A deuteron consists ofone proton and one neutron. Its mass is 2.014102 atomic mass
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units; its nucleon binding energy, 2.22452 ± 0.00010 MeV; itsspin, 1 (in ħ units); its magneti

c moment, 0.857411 ± 0.000019 nuclear magnetons; and its nuclear electrical quadrupolemo

ment, (2.738 ± 0.014)10-27 cm2.

Since the deuteron is the simplest nucleus containing more than one nucleon, the study of its

properties has made it possibleto determine the action radius of nuclear forces and to conclud

e that the interaction between a proton and a neutron in thenucleus does not have the characte

r of a central force but depends on the mutual orientation of their spins. The nucleonspins in t

he deuteron are parallel. Deuterons (in contrast to protons) absorb neutrons poorly and, at the

same time, owing tothe closeness in their respective masses, strongly decelerate them. Deuter

ons are widely used in experimental nuclearphysics as bombarding particles and as targets (fo

r example, in the studies of nuclear reactions).

The large difference between the masses of D and ‘H leads to significant differences in their

properties (forexample, the boiling point of normal hydrogen is 20.39°K, whereas the boiling

point of deuterium is 23.57°K; the rates ofsome chemical reactions differ by a factor of 5–

10 for substances containing D and 1H).

In industry deuterium is isolated by using isotopic exchange between water and hydrogen sulf

ide (deuterium is distributedunevenly between these compounds, concentrating in H2O), by th

e distillation of liquid hydrogen, and by the multistepelectrolysis of water. Deuterium is used

as a component of the hydrogen bomb, and in the future it may become athermonuclear fuel i

n energetics. In scientific research it is used as an isotope tracer. Heavy water D2O serves as a

neutronmoderator in atomic reactors. Deuterium was discovered spectrally in 1932 by the A

merican scientist H. Urey and his co-workers.

Matrix representation of wave function

A function is actually an equivalence of a vector. In linear algebra, we

denote a vector as v = [v1 , v2 , v3 , . . . vN ]t . A short-hand notation for this

vector is vj where j = 1, . . . , N . But for a function f (x), the countably finite

index j in vj is now replaced by an uncountably infinite (nondenumerable)

set of indices denoted by x. Hence, we can think of f (x) as a vector in an

CLASS: I MSC PHYSICS COURSE NAME: QUANTUM MECHANICS I
COURSE CODE: 18PHP202 UNIT:III (Three dimensional potential Well) BATCH-2018-2020

Prepared by Dr.S.Esakki muthu, Asst Prof, Department of Physics, KAHE Page 6/13



KARPAGAM ACADEMY OF HIGHER EDUCATI0N

infinite dimensional vector space. An inner product in linear algebra is written

as

The analogue of the above for functions is

The above is the inner product between two functions which are actually

vectors.1 The left- hand   side  is the compact notation for the inner product

between two state vectors known

as Dirac’s bra-ket notation. The <f | is the “bra” while |g> is the “ket”. The

“bra” can be

thought of as the conjugate transpose of a vector, while the “ket” is analogous to

an ordinary

vector.

Matrix representation of operator

An operator equation can be written as

We can convert the above into   a matrix equation by inserting an identity

operator on the

right-hand side to give
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Furthermore, we can multiply the above from the left by the basis vector hψm |, m =

1, . . . , ∞

The above is an infinite dimensional matrix equation which can be written as

The matrix equation can be solved approximately by truncating its size to N ×N

, or without truncation, it can be solved iteratively.

The matrix denoted by

|

is the matrix representation of the operator Â. By the same token, hψm |gi

and hψn |f i are the vector representations of the functions g and f respectively.

In the above, we have assumed that the range space and the domain space of

the operator are the same, and hence, they can be spanned by the same basis set.

For a Hermitian operator, this  is usually the case. However, for some operators

where the range space and the domain space are different, we may choose to

with a different set of basis functions.

Properties of matrix elements

Property Example

CLASS: I MSC PHYSICS COURSE NAME: QUANTUM MECHANICS I
COURSE CODE: 18PHP202 UNIT:III (Three dimensional potential Well) BATCH-2018-2020

Prepared by Dr.S.Esakki Muthu, Asst Prof, Department of Physics, KAHE Page 8/13



KARPAGAM ACADEMY OF HIGHER EDUCATI0N

Commutativity of Addition A + B = B + A

Associativity of Addition A + ( B + C ) = ( A + B ) + C

Associativity of Scalar Multiplication (cd) A = c (dA)

Scalar Identity 1A = A(1) = A

Distributive c (A + B) = cA + cB

Distributive                                                   (c + d) A = cA + dA

Additive Identity A + O = O + A = A

Associativity of Multiplication A (BC) = (AB) C

Left Distributive A (B + C) = AB + AC

Right Distributive ( A + B ) C = AC + BC

Scalar Associativity / Commutativity c (AB) = (cA) B = A (cB) = (AB) c

Multiplicative Identity IA = AI = A

Schroedinger equation in matrix form

Linear harmonic oscillator

The pendulum, a particle attached to a spring,  or many vibrations in atoms and

molecules

can be described as a harmonic oscillator. Hence, the harmonic oscillator is one of the most

important examples in quantum mechanics. Its quantum mechanical version can be described

by the 1D Schrodinger equation.

The classical equation for a harmonic oscillator is given by
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where K is  the spring constant, and m is the mass of the particle. The

potential energy of a particle attached to a spring is given by

Consequently, the above potential energy can be used in the Schrodinger equation   to

describe the trapping of wave modes. The kinetic energy of the particle is described by a

term propor- tional to the square of the momentum operator. Hence, the corresponding

1D Schrodinger equation  is

with a parabolic potential well. It turns out that this equation has closed-form solutions,

yielding the wavefunction for an eigenstate given by

where Hn (x) is a Hermite   polynomial, and the wavefunction is Gaussian tapered. The

energy of the eigenstate is given by
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The energy levels are equally spaced ~ω apart. Even the lowest energy state,   the

ground state, has a nonzero energy of ~ω/2. The higher energy states correspond to larger

amplitudes of oscillation, and vice versa for the lower energy states. In order to kick the

quantum harmonic oscillator from the low energy state to a level above, it needs a packet

of energy of ~ω, the quantization energy of a photon. The physics of quantized

electromagnetic oscillations (pho- tons) and quantized mechanical oscillations (phonons)

is intimately related  to the quantum harmonic oscillator.

Unitary Transformations
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Possible 4 Marks

1.   Obtain the radial equation, energy Eigen value and radial wave function of hydrogen

atom.

2.   Obtain the Schrödinger equation in matrix from.

3.   Describe the concept of deuteron.

4. What is a unitary transformation? Show that (i) the operator equation remains

unchanged (ii) the Hermition operator is unchanged.

5.   How a particle moving with a spherically symmetrical potential? Explain it.

6. What are the properties of Matrix elements? How to represent the matrix of operator

and wave function?

Possible 10 Marks

1. Solve the time-independent Schrödinger equation for a three dimensional

harmonic oscillator whose potential energy is V= ½ (k1x
2 + k2y2+ k3z

2).

2.   A rigid rotator is constrained to rotate about a fixed axis. Find out its

normalized eigen function and eigen values.

3. Show that the three 2-p eigen function of hydrogen atom are orthogonal to each

other.
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MULTIPLE CHOICE QUESTIONS

QUESTION

UNIT III

The value of the magnetic quantum number can be 

Which of the following statements is correct?

The correct form of the angular momentum for quantum number l is ____

The quantum number l is referred to as _____

An energy level with orbital angular momentum quantum number l, is _____ fold degenerate.

The potential involved outside the nucleus is ____



The probability of finding the electron of the hydrogen atom at a distance r from the nucleus is
called as ____

For the ground state of the hydrogen atom, a maximum probability density P10 exists at a radial
position given by

For the ground state of the hydrogen atom, a maximum probability density occurs at a radial
distance from the origin, equal to ___

The binding energy of deuteron is ____
The electron’s probability density distribution for the ____ state of a Hydrogen atom remains
spherically symmetric

When an eigen function is not normalizable in a free domain, we can resort to _____
The orbital corresponding to l = 0 is called
The orbital corresponding to l = 1 is called
The orbital corresponding to l = 2 is called
The orbital corresponding to l = 3 is called
The eigen value of the even function of the parity operator is
The eigen value of the odd function of the parity operator is

The eigen functions corresponding to the eigen value λ = ±1 of the parity operator are the

The eigen function corresponding to the eigen value λ = - 1 of the parity operator are the
Hydrogen atom as a system of ________ interacting point charges

In quantum mechanics, the infinite square well can be regarded as the prototype of
In the infinite square well problem, the wave function and its first spatial derivative are:

Meeting the boundary conditions of bound quantum mechanical systems imposes:
At energies higher than the bound stationary states there



How does the probability of an electron tunneling through a potential barrier vary with the thickness of the barrier?
Reduced mass of the system is represented as
Which term represent radial quantum number?
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0,1,2,3,
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…
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±5 ….
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±2, ±3,
±4 …

1,2,3,4,
…

A linear
combinat
ion of
degenerat
e
eigenfunc
tions of a
degenerat
e level is
no an
eigen
function

A linear
combinat
ion of
degenerat
e
eigenfunc
tions of a
degenerat
e level is
also an
eigen
function,
with the
same
eigen
value.

A linear
combinat
ion of
degenerat
e eigen
functions
of a
degenerat
e level is
also an
eigen
function
but with
different
eigen
value

A linear
combinat
ion of
degenerat
e eigen
functions
of a
degenerat
e level is
not an
eigen
function,
but the
eigen
values
are the
same.

A linear
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ion of
degenerat
e
eigenfunc
tions of a
degenerat
e level is
also an
eigen
function,
with the
same
eigen
value.
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 ћ.
[l(l+1)]1/2 

 ћ.

angular
momentu
m
quantum
number

spin
angular
momentu
m
quantum
number

orbital
angular
momentu
m
quantum
number

momentu
m

orbital
angular
momentu
m
quantum
number

2-fold 3-fold
(2l+1)
fold l-fold

(2l+1)
fold

gravitatio
nal

electroma
gnetic nuclear

Coulomb
ic

Coulomb
ic



probabilit
y
function

probabilit
y density

radial
probabilit
y density

radial
probabilit
y
function

radial
probabilit
y density

P10 = 2a,
where a
is the
radius of
the first
shell

dP10-/dr
= 0

dP10-/dr
= a
constant

dP10-/dr
= θ

dP10-/dr
= 0

the Bohr
radius

twice the
Bohr
radius

half the
Bohr
radius

No
relation
with
Bohr
radius.

the Bohr
radius

2.226
MeV 2.226 eV

2.226
keV Zero

2.226
MeV

nth 1st 2nd 10th 1st

box
normaliz
ation

plane
normalisa
tion

total
normalisa
tion

any of
the above

box
normaliz
ation

s orbital p orbital d orbital f orbital s orbital
s orbital p orbital d orbital f orbital p orbital
s orbital p orbital d orbital f orbital d orbital
s orbital p orbital d orbital f orbital f orbital
λ = 0 λ = 1 λ = ±1 λ = - 1 λ = - 1
λ = 0 λ = 1 λ = ±1 λ = -1 λ = 0

odd
function

even
function

can be
even or
odd

neither
even nor
odd

odd
function

odd
function

even
function

can be
even or
odd

neither
even nor
odd

even
function

single two three no two

all
bound
system

all
unbound
system

promethe
us
unbound

neither
bound
nor
unbound

all
bound
system

both continuous at the boundariescontinuous and discontinuous at the boundaries, respectivelyboth discontinuous at the boundaries.discontinuous and continuous at the boundaries, respectivelycontinuous and discontinuous at the boundaries, respectively

 Heisenberg’s uncertainty principle.Schr¨odinger’s equation
quantizati
on a vector potential.

quantizati
on

are between one and several tens of unbound statesare only two unbound statesis a continuum of unbound statesis a single unbound stateis a continuum of unbound states



It decreases inversely with thicknessIt decreases sinusoidally with thicknessIt decreases linearly with thicknessIt decreases exponentially with thicknessIt decreases exponentially with thickness
θ μ ν γ μ
k μ ν γ k





continuous and discontinuous at the boundaries, respectively



KARPAGAM ACADEMY OF HIGHER EDUCATI0N

CLASS: I MSC PHYSICS COURSE NAME: QUANTUM MECHANICS I

UNIT-IV

SYLLABUS

Time-independent Perturbation theory: Basic concepts – Non-degenerate energy levels –

First and Second order corrections for energy and wave functions – Ground state of Helium

atom – Effect of electric field on the ground state of hydrogen atom (Stark effect) –

Degenerate energy levels – Effect of electric field on the n=2 state of hydrogen atom

Non-degenerate energy levels

In quantum physics, the quantum state of a given system is described by probability

wavefunction, which depends on a set of quantum coordinates. The absolute square of the

wavefunction determines the probability of finding the particle in the given quantum state.

Each quantum state has a specific energy. For example, if we look at the particle in a box of

width L, problem the particle energy can be expressed as

For the ground state we have n=1

There are three quantum states here ((100), (010), (001)) which are having same

energy and these states are commonly referred as degenerate states. But each level is
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described by a specific wave function. In quantum mechanical words if two or more eigen

functions correspond to the same eigen value they are said to be degenerate.

First and Second order corrections for energy and wave functions

Time-independent perturbation theory is one of two categories of perturbation theory,

the other being time-dependent perturbation (see next section). In time-independent

perturbation theory the perturbation Hamiltonian is static (i.e., possesses no time

dependence). Time-independent perturbation theory was presented by Erwin Schrödinger in a

1926 paper,[2] shortly after he produced his theories in wave mechanics. In this paper

Schrödinger referred to earlier work of Lord Rayleigh, who investigated harmonic vibrations

of a string perturbed by small inhomogeneities. This is why this perturbation theory is often

referred to as Rayleigh–Schrödinger perturbation theory.

First order corrections

Unperturbed Hamiltonian H0, which is also assumed to have no time dependence. It

has known energy levels and eigenstates, arising from the time-independent Schrödinger

equation:

For simplicity, we have assumed that the energies are discrete. The (0) superscripts denote

that these quantities are associated with the unperturbed system. Note the use of bra–ket

notation.

Let V be a Hamiltonian representing a weak physical disturbance, such as a potential energy

produced by an external field. (Thus, V is formally a Hermitian operator.) Let λ be a

dimensionless parameter that can take on values ranging continuously from 0 (no

perturbation) to 1 (the full perturbation). The perturbed Hamiltonian is

The energy levels and eigenstates of the perturbed Hamiltonian are again given by the

Schrödinger equation
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Our goal is to express in terms of the energy levels and eigenstates of the old Hamiltonian. If

the perturbation is sufficiently weak, we can write them as a (Maclaurin) power series in λ

When k = 0, these reduce to the unperturbed values, which are the first term in each series.

Since the perturbation is weak, the energy levels and eigenstates should not deviate too much

from their unperturbed values, and the terms should rapidly become smaller as we go to

higher order.

Substituting the power series expansion into the Schrödinger equation, we obtain

Expanding this equation and comparing coefficients of each power of λ results in an infinite

series of simultaneous equations. The zeroth-order equation is simply the Schrödinger

equation for the unperturbed system. The first-order equation is

Second -order and higher corrections

The higher-order deviations by a similar procedure, though the calculations become

quite tedious with our current formulation. Our normalization prescription gives that

Up to second order, the expressions for the energies and (normalized) eigenstates are
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Extending the process further, the third-order energy correction can be shown to be

Ground state of Helium atom

One important application of quantum mechanics is to explain the structure of

atoms. Here we will look at two simple approaches to understand an atom with two

electrons. This atom is helium.

The Hamiltonian for two electrons, each of charge e, orbiting a nucleus of charge

Ze is

If we ignore the final term, then this Hamiltonian is easy to solve: it simply consists

of two independent copies of the hydrogen atom. The eigenstates would be

(x1, x2) = n1 ,l1 ,m1 (x1) n2 ,l2 ,m2 (x2)

where n,l,m (r) are the usual energy eigenstates of the hydrogen atom. We should

remember that the electrons are fermions so we can’t put them in the same state.

However, electrons also have a spin degree of freedom which we have neglected above.

This means that two electrons can have the same spatial wavefunction as long as one

is spin up and the other spin down.
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Effect of electric field on the ground state of hydrogen atom (Stark effect)

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules

due to presence of an external electric field. The amount of splitting or shifting is called the

Stark splitting or Stark shift. In general, one distinguishes first- and second-order Stark

effects. The first-order effect is linear in the applied electric field, while the second-order

effect is quadratic in the field.

The Stark effect is responsible for the pressure broadening (Stark broadening) of spectral

lines by charged particles. When the split/shifted lines appear in absorption, the effect is

called the inverse Stark effect.

The Stark effect is the electric analogue of the Zeeman effect where a spectral line is split

into several components due to the presence of a magnetic field.

The Stark effect can be explained with fully quantum-mechanical approaches, but it has also

been a fertile testing ground for semiclassical methods.

The Stark effect originates from the interaction between a charge distribution (atom or

molecule) and an external electric field. Before turning to quantum mechanics we describe

the interaction classically and consider a continuous charge distribution ρ(r). If this charge

distribution is non-polarizable its interaction energy with an external electrostatic

potential V(r) is

If the electric field is of macroscopic origin and the charge distribution is microscopic, it is

reasonable to assume that the electric field is uniform over the charge distribution. That

is, Vis given by a two-term Taylor expansion,
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where we took the origin 0 somewhere within ρ. Setting V(0) as the zero energy, the

interaction becomes

Here we have introduced the dipole moment μ of ρ as an integral over the charge distribution.

In case ρ consists of N point charges qj this definition becomes a sum

Degenerate energy levels

In quantum mechanics, an energy level is degenerate if it corresponds to two or more

different measurable states of a quantum system. Conversely, two or more different states of

a quantum mechanical system are said to be degenerate if they give the same value of energy

upon measurement. The number of different states corresponding to a particular energy level

is known as the degree of degeneracy of the level. It is represented mathematically by

the Hamiltonian for the system having more than one linearly independent eigenstate with the

same energy eigenvalue. In classical mechanics, this can be understood in terms of different

possible trajectories corresponding to the same energy.

Degeneracy plays a fundamental role in quantum statistical mechanics. For an N-particle

system in three dimensions, a single energy level may correspond to several different wave

functions or energy states. These degenerate states at the same level are all equally probable

of being filled. The number of such states gives the degeneracy of a particular energy level.

Particle in a rectangular plane

Consider a free particle in a plane of dimensions Lx and Ly in a plane of impenetrable

walls. The time-independent Schrödinger equation for this system with wave function , can

be written as
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The permitted energy values are

The normalized wave function is

where nx, ny=1,2,3...

So, quantum numbers nx, ny are required to describe the energy eigenvalues and the lowest

energy of the system is given by

Effect of electric field on the n=2 state of hydrogen atom

Electric field in a hydrogen atom is a sum of electric field produced by the charge of

electron and electric field produced by the charge of proton, E = Ee + Ep. The energy of this

field is the energy of the field produced by electron plus the energy of the field produced by

proton plus interaction energy. As was mentioned before, in quantum mechanics the energy

of any electron and any proton are equal to zero. So the energy of the electric field in a

hydrogen atom in quantum mechanics consists of the interaction energy only. This interaction

energy is negative, because the two particles have charges of the opposite signs. The value of

the electrostatic (meenergy of the electric field in a hydrogen atom in the ground state is

U0 =  me4 /ћ2 . Anyway, the energy of the electric field is negative in any stationary state of a

hydrogen atom
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Possible 4 marks

1. Write the second-order correction to wave function on non-degenerate energy levels.

2. What is quadratic Stark-effect

3. Discuss in detail non degenerate energy levels.

4. Explain the basic concepts of time-independent perturbation theory.

5. Explain the effect of electric field on the n=2 state of hydrogen atom

6. Discuss the ground state of helium atom.

7. Describe the effect of electric field on the ground state of hydrogen atom.

Possible 10 marks

1. Based on non-degenerate energy level, explain the first-order correction for energy

and wave function.

2. Calculate the maximum wavelength that hydrogen in its ground state can absorb.

What would be the next maximum wavelength?

3. Calculate the velocity and frequency of revolution of the electron of the Bohr

hydrogen atom in its ground state?
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QUESTION OPTION 1 OPTION 2

UNIT IV

The value of second order perturbed energy En
(2) is

(En
0 –

Em
0)/

Σm<m|H(1

)|n>

Σm

[<m|H(1)|

n>]2/(En
0  

– Em
0)]

Total energy of helium atom, (if EH is ground state energy of H atom) is 
– (2Z2 +
(5/4)Z)EH

– (2Z2 –
(5/4)Z)EH

The perturbation term in normal helium atom is e/r e2/r

The method of molecular wave functions as a linear combination of atomic
orbitals is called as

combinat
ion
method

LCAO
method

The first order time independent perturbed energy for the non-degenerate
case is 

∫ψn
(1)H(2)

ψn
(1)dτ

∫ψn
(1)H(1)

ψn
(1)dτ

The value of the perturbation parameter λ is 0 to 0.5 0.5 to 1
If En is the ground state energy of hydrogen atom, the first order perturbed
energy of helium atoms is given by (5/4)ZEH  (5/4)EH

The first excited state of hydrogen will have total degenerate level of 3 2
First order perturbed energy Ek` is ћHkk` Hkk`

The potential energy of helium atom V is

–Ze2/r1 –

Ze2/r2 +

e2/r12

Ze2/r1 +

Ze2/r2

Unperturbed Hamiltonian for hydrogen atom is

(ћ2/2µ)2 

 + e2/r

(ћ2/2µ)2 

 – e2/r
For a ground state of hydrogen atom, the first order perturbation energy
correction due to stark effect is positive negative

The wave mechanical perturbation theory was developed by Dirac
Heisenbe
rg

First order stark effect for the ground state of hydrogen atom is finite infinite



The first order perturbation energy En
` given by

∑m  

[<Hmn
`>ψ

m
o]/(En

0  

– Em
0)

∑m  

[<Hmm
`>

ψm
o]/(En

0 

– Em
0)

The effective nuclear charge Z` and the nuclear charge Z for helium atom
are related due to time independent perturbation theory by

Z` = Z –
5/16

Z` = Z +
5/16

If the function ψ is not normalized, the expectation value of energy <E> is ∫ψ*Hψdτ ∫ψ*ψdτ 

The de Broglie wave length associated with a particle moving with energy
E in a region of potential V is 

h/[2m(E

– V)]1/2

h/[2m(E

– V)]-1/2

Assuming that nucleus is at rest, the Hamiltonian for H atom is

p2/2m +

e2/r

p2/2m +

e2/r2

Eigen value of hydrogen atom in ground state is – e2/2 ao  e2/2 ao

Eigen function of hydrogen atom in ground state is

ψ1s =

[1/√(πao
3)

]exp(r/ao)

ψ1s =

[1/√(πao
3)

]exp(-
r/ao)

The energy of Helium atom by perturbation method is 2.75 e2/ao 2.75 e2

The energy of Helium atom without perturbation in ground state is – 4e2/ao  4e2/ao

The application for first order perturbation theory for a non-degenerate
system is

Zeeman
effect

Stark
effect

First order Stark effect in first excited state of H atom has the wave
function ψnlm is

Zero-
fold
degenerat
e

Four-
fold
degenerat
e

The equation H = L + T represents the total energy system in motion stationary



Equation of motion of a wave particle is

– iћ
∂ψ/∂t = (-

ћ2/2m)/
ψ

iћ ∂ψ/∂t
= (-

ћ2/2m)/

2ψ

The Schrodinger equation can be solved exactly for which the Hamiltonian
is small large

If the ____ energy of the system is disturbed by the influence of additional
forces, the energy levels are shifted total kinetic

In non-degenerate system there is one eigen function corresponding to

one
eigen
value

many
eigen
values

Ortho-normalization condition is given by
∫ψi

(0)*ψj
(0)

dτ = 0
∫ψi

(0)*ψj
(0)

dτ = 1

The second order perturbation energy eigen value for non-degenerate case
is

∑mCmψm
(

0)H(1)ψn
(0)

*dτ

∑mCmψn
(0

)

*H(1)ψm
(0) 

 dτ

The first order time independent perturbed wave function for the non-
degenerate case is

{[∫ψm
(0)*

H(1)ψn
(0)d

τ]/(Em
0 –

En
0)}ψm

(0

)

–

{[∫ψm
(0)*

H(1)ψn
(0)d

τ]/(Em
0 –

En
0)}ψm

(0

)

In ground state of Helium atom, to make approximate solution the nucleus
is considered as at

random
motion

uniform
motion

The eigen value of ground state of helium atom is Z2EH/n2 in which EH is 13.5 eV 2.75 eV

The energy value of two electrons relative to axes with the nucleus at the
origin, in ground state of helium atom is 2Z2EH 2ZEH

For n = 1, l = 0, m = 0, the wave function for He atom becomes

(Z/πa0)
1/2

e-ρ/2

(Z3/πa0
3)1

/2 e-ρ/2

The secular equation in which all the elements are zero, except
principal
diagonal

lower
diagonal



The perturbation H(1) which is the extra energy of nucleus and electron due
to external field in H atom is eEr cosθ er cosθ

The ground state for H atom is non-degenerate state, the wave function
ψ100 is given by

(1/πa0
3

 

)1/2 exp(-
r/a0)

(1/πa0
3

 

)1/2

exp(r/a0)

The behaviour of hydrogen atom in first excited state is like a 

electric
quadrupo
le
moment

electric
dipole
moment

The Bohr radius of the first orbit is 5.267 Å
0.05267
Å

By expansion theorem ψ may be expanded in terms of a complete set of
ortho-normal functions φo, φ1, φ2, …… if ψ = 1 ψ = 0

The orientation of the splitting of energy levels in first excited state of
hydrogen atoms, with external electric field is parallel

perpendic
ular

Non-degenerate perturbation method was developed by Dirac
Schrödin
ger

The final type of approximation method is WKB Variation

When a small disturbance is applied to a system, there may be change in 
eigen
values

eigen
functions

Problems of one dimension and also of three dimension reducible to one
dimension are solved by

variation
method

WKB
method

Mathematically slowly varying potential can be expressed by

│(1/k2)d
k/dx│ <
1

│(1/k2)d
k/dx│ >
1

The ionization energy for hydrogen atom is 13.6 eV. The ionization energy for the ground state of Li++ is approximately13.6 eV 27.2 eV
The lowest excited state of the helium atom has the term symbol 1S0 3S1
The quantum numbers required to explain the position of an electron in
hydrogen atom are ____ n and l l and m
A hydrogen atom radiates a photon as it falls from a 2p level to the 1s level. The wavelength of the emitted radiation equals22.8 91.2

For the hydrogen atom, which of the following orbitals has the lowest energy4s 4p
The orbital degeneracy (excluding spin) of hydrogen atom energy levels equalsn-1 n^2
For real atomic orbitals with quantum numbers n, `, the total number of nodal surfaces, radial plus angular, equalsn n-1
Which of the following statements about the hydrogen atom ground state is INCORRECTIt is described by the quantum numbers n = 1, ` = 0, m = 0The electron’s angular momentum equals ¯h.



OPTION 3 OPTION 4 ANSWER

Σn

[<n|H(1)|n

>/(En
0 –

Em
0)]

Σm

[<m|H(1)|
n>]

Σm

[<m|H(1)|

n>]2/(En
0  

– Em
0)]

(2Z2 +
(3/2)Z)EH

(2Z2 –
(3/2)Z)EH

– (2Z2 –
(5/4)Z)EH

e2/r12 Ze2/r e2/r12

Bohr
method

Dirac
method

LCAO
method

∫ψn
(0)H(1)

ψn
(0)dτ

∫ψn
(0)H(0)

ψn
(0)dτ

∫ψn
(0)H(1)

ψn
(0)dτ

0 to 1
0 to
infinity 0 to 1

(5/3)Z (5/3)EH (5/4)ZEH

4 1 4
– Hkk` i ћHkk` ћHkk`

Ze2/r1 +

Ze2/r2 +

e2/r12

Ze2/r1 +

Ze2/r2 –

e2/r12

–Ze2/r1 –

Ze2/r2 +

e2/r12

–

(ћ2/2µ)2 

 – e2/r

–

(ћ2/2µ)2 

 + e2/r

–

(ћ2/2µ)2 

 – e2/r

zero infinity negative
Schrodin
ger

De
Broglie

Schrodin
ger

zero positive zero



∑m  

[<Hmn
`>]/ 

ψm
o (En

0 

– Em
0)

∑m [ψm
o  

(En
0 –

Em
0)]/<H

mn
`>

∑m [ψm
o  

(En
0 –

Em
0)]/<H

mn
`>

Z` =
(5/16)Z

Z` = 1.1
Z

Z` =
(5/16)Z

{∫ψ*Hψdτ 

 }/∫ψ*ψdτ 

{∫ψ*ψdτ

}/∫ψ*Hψd
τ 

{∫ψ*Hψdτ 

 }/∫ψ*ψdτ 

(E – V)1/2

(E – V)-

1/2

h/[2m(E

– V)]1/2

p2/2m –

e2/r

p2/2m –

e2/r2

p2/2m +

e2/r

– e/2 ao  e/2 ao – e/2 ao

ψ1s = [-

1/√(πao
3)]

exp(r/ao)

ψ1s = [-

1/√(πao
3)]

exp(-r/ao)

ψ1s =

[1/√(πao
3)

]exp(-
r/ao)

- 2.75

e2/ao - 2.75 e2
- 2.75

e2/ao

e2/ao

–

2.75e2/ao – 4e2/ao

Particle
in a box

Stationar
y
Harmoni
c
oscillator

Stark
effect

Three-
fold
degenerat
e

Two-
fold
degenerat
e

Four-
fold
degenerat
e

motion
or
stationary

motion
with
respect
to time

motion
with
respect
to time



iћ ∂ψ/∂t
=

(ћ2/2m)/
ψ

iћ ∂ψ/∂t
= (-

ћ2/2m)/
ψ

iћ ∂ψ/∂t
= (-

ћ2/2m)/

2ψ
both
small
and large

unperturb
ed

unperturb
ed

potential

either
potential
or kinetic potential

two
eigen
values

three
eigen
values

one
eigen
value

∫ψi
(0)*ψj

(0)

dτ = δij

∫ψi
(0)*ψi

(0)

dτ = 0
∫ψi

(0)*ψj
(0)

dτ = δij

∑mCmψn
(0

)H(1)ψm
(0)

dτ

∫Cmψn
(0)H

(1)ψm
(0)dτ

∑mCmψn
(0

)

*H(1)ψm
(0) 

 dτ

{[∫ψn
(0)*H

(1)ψm
(0)dτ]

/(Em
0 –

En
0)}ψm

(0

)

–

{[∫ψn
(0)*H

(1)ψm
(0)dτ]

/(Em
0 –

En
0)}ψm

(0

)

–

{[∫ψm
(0)*

H(1)ψn
(0)d

τ]/(Em
0 –

En
0)}ψm

(0

)

rest

either
uniform
or rest rest

12.75 eV 3.5 eV 13.5 eV

–  2ZEH – 2Z2EH – 2Z2EH

(Z/πa0)
3/2

e-ρ/2

(Z/πa0
3)1/

2e-ρ/2

(Z3/πa0
3)1

/2 e-ρ/2

upper
diagonal

lower
and
upper
diagonal

principal
diagonal



– eEr
cosθ – er cosθ

– eEr
cosθ

(1/πa0
3

 

)3/2 exp(-
r/a0)

(1/πa0
3

 

)3/2

exp(r/a0)

(1/πa0
3

 

)1/2 exp(-
r/a0)

Zeeman
effect

Magnetic 
dipole

moment

electric
dipole
moment

0.5267 Å 52.67 Å 0.5267 Å

ψ = ψ0 ψ ≠ ψ0 ψ ≠ ψ0

anti-
parallel zero

anti-
parallel

WKB Bohr
Schrödin
ger

Perturbati
on
degenerat
e

Perturbati
on non-
degenerat
e WKB

either a
or b

both a
and b

eigen
functions

Perturbati
on
degenerat
e method

Perturbati
on non-
degenerat
e method

WKB
method

│(k2)dk/
dx│ < 1

│(k2)dk/
dx│ > 1

│(1/k2)d
k/dx│ <
1

40.8 eV 122.4eV 122.4eV
He+ 1S2 3S1
n, l and
m n and m

n, l and
m

121.6 182.4 121.6

4f

all have
same
energy

all have
same
energy

n+1 2n+1 n^2
n+1 2l+1 n-1
The wavefunction is spherically symmetricalThe wavefunction decreases exponentially as a function of rThe electron’s angular momentum equals ¯h.
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UNIT-V

SYLLABUS

Variational method &WKB Approximation: Variational principle – Variation method for
excited states – Application of variation method to ground state of helium – The WKB method

Time dependent perturbation theory: Introduction – First-order perturbation – Harmonic
perturbation – Transition to continuum states (Fermi’s Golden rule) – Absorption and emission
of radiation – Transition probability – Selection rules

Variational principle

The variational method provides a simple way to place an upper  bound  on the ground

state  energy of any quantum system  and is particularly useful when trying to demonstrate that

bound  states exist.  In some cases, it can also be used to estimate higher energy levels too.

The  variational method  does not  tell us how far above the ground  state E0 lies. It  would  be

much  better if we could  also get  a lower bound  for E0   so that we can say  for sure  that

ground  state energy  sits  within a  particular range.    However,  for particles  moving in a

general  potential V (x),  the  only lower bound  that is known  is E0   > min V (x).   Since we’re

often  interested in potentials like V (x) ⇠ 1/r,  which have no lower bound  this is not

particularly useful.

Variation method for excited states

For our trial wavefunction we pick (x1, x2) = (x1) (x2) where

There’s one last  bit of physics hidden  in this calculation.  The  optimum trial wave- function

that we ended up using was that of an electron orbiting a nucleus with charge (Z     5/16)e, rather

than charge Ze.  This has a nice interpretation: the charge of the nucleus is screened by the

presence of the other electron.

Application of variation method to ground state of helium

The hydrogen atom wavefunctions and energies, we have seen, are determined as a

combination of the various quantum ”dynamical” analogues of classical motions (translation,

vibration, rotation) and a central-force interaction (i.e, the Coulomb interaction between an
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electron and a nucleus). Now, we consider the Helium atom and will see that due to the attendant

3-body problem for which we cannot determine a closed-form, first-principles analytic solution,

we will have to find recourse in approximate methods. The Helium atom has 2 electrons with

coordinates r1 and r2 as well as a single nucleus with coordinate R. The nucleus carries a Z =

+2e charge.

The Schrodinger equation is

where the symbol ”nabla”, when squared, is given by

Keep in mind that the R, r1, and r2 represent the Cartesian coordinates of each paticle. This is a

3-body problem and such problems are not solved exactly. Thus, the problem will be

reformulated in terms of coordinates of two particles, the electrons. The first approximation: M

>> me , fix the nucleus at the origin (R) = 0. This is more rigorously shown by transforming the

origin to the center of mass of the system. For the two electron-nucleus coordinates, this is much

like what we have seen for the hydrogen atom electron-nucleus formulation from earlier

discussion. Thus, the Schrodinger equation in relative variables is

The ∇2 terms represent the kinetic energy of the two electrons. The and terms represent the

nucleus-electron Coulomb interaction. The last term on the left hand side of the equation

represents the electron-electron repulsion taken as a Coulomb interaction based on the absolute

value of the electron-electron separation.

The WKB method

The WKB approximation is a method for solving  the one-dimensional  Schro¨dinger

equation. The approximation is valid in situations where the potential changes slowly compared
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to the de Broglie wavelength = 2ħ/p of the particle.  The basic idea is that the wavefunction will

be approximately that of a free particle,  but  with an amplitude and phase that vary to

compensate the changes in the potential.

The  method is named  after the physicists Wentzel, Kramers  and  Brillouin.   It is sometimes

called  the WKBJ approximation,  with  Harold  Je↵reys’  name  tagged  on the  end  to

recognise the  fact  that he discovered  before any  of the  other  three.   The main applications of

the method  are in estimating bound state  energies and computing tunnelling  rates.

First-order perturbation – Harmonic perturbation

First-order perturbation

Time-dependent Hamiltonian for which an analytical solution  is unavailable – sadly  the

typical  situation. In this  case, we must  turn  to a perturbative analysis,  looking for an

expansion  of the basis coefficients cn (t) in powers of the interaction,

Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a time-

dependent perturbation V(t) applied to a time-independent Hamiltonian H0.

Since the perturbed Hamiltonian is time-dependent, so are its energy levels and eigenstates.

Thus, the goals of time-dependent perturbation theory are slightly different from time-

independent perturbation theory. One is interested in the following quantities:

 The time-dependent expectation value of some observable A, for a given initial state.

 The time-dependent amplitudes of those quantum states that are energy eigenkets

(eigenvectors) in the unperturbed system.

The first quantity is important because it gives rise to the classical result of an A measurement

performed on a macroscopic number of copies of the perturbed system. For example, we could

take A to be the displacement in the x-direction of the electron in a hydrogen atom, in which case

the expected value, when multiplied by an appropriate coefficient, gives the time-
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dependent dielectric polarization of a hydrogen gas. With an appropriate choice of perturbation

(i.e. an oscillating electric potential), this allows one to calculate the AC permittivity of the gas.

The second quantity looks at the time-dependent probability of occupation for each eigenstate.

This is particularly useful in laser physics, where one is interested in the populations of different

atomic states in a gas when a time-dependent electric field is applied. These probabilities are

also useful for calculating the "quantum broadening" of spectral lines (see line broadening)

and particle decay in particle physics and nuclear physics

Harmonic perturbation – Transition to continuum states (Fermi’s Golden rule)

In quantum physics, Fermi's golden rule is a formula that describes the transition rate

(probability of transition per unit time) from one energy eigen state of a quantum system into

other energy eigen states in a continuum, affected by a weak perturbation.

One of the prominent failures of the Bohr model for atomic spectra was that it couldn't

predict that one spectral line would be brighter than another. From the quantum theory came an

explanation in terms of wavefunctions, and for situations where the transition probability is

constant in time, it is usually expressed in a relationship called Fermi's golden rule.

In general conceptual terms, a transition rate depends upon the strength of the coupling between

the initial and final state of a system and upon the number of ways the transition can happen

(i.e., the density of the final states). In many physical situations the transition probability is of

the form

The transition probability l is also called the decay probability and is related to the mean

lifetime t of the state by l = 1/t. The general form of Fermi's golden rule can apply to atomic

transitions, nuclear decay, scattering ... a large variety of physical transitions.

A transition will proceed more rapidly if the coupling between the initial and final states is

stronger. This coupling term is traditionally called the "matrix element" for the transition: this

term comes from an alternative formulation of quantum mechanics in terms of matrices rather
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than the differential equations of the Schrodinger approach. The matrix element can be placed in

the form of an integral where the interaction which causes the transition is expressed as a

potential V which operates on the initial state wavefunction. The transition probability is

proportional to the square of the integral of this interaction over all of the space appropriate to

the problem.

This kind of integral approach using the wavefunctions is of the same general form as that used

to find the "expectation value" or expected average value of any physical variable in quantum

mechanics. But in the case of an expectation value for a property like the system energy, the

integral has the wavefunction representing the eigenstate of the system in both places in the

integral.

The transition probability is also proportional to the density of final states rf. It is

reasonably common for the final state to be composed of several states with the same energy

such states are said to be "degenerate" states. This degeneracy is sometimes expressed as a

"statistical weight" which will appear as a factor in the transition probability. In many cases

there will be a continuum of final states, so that this density of final states is expressed as a

function of energy.

Absorption and emission of radiation

Every object in the universe is made up of atoms. Atoms are made up of extremely

small particles such as electrons, protons, and neutrons. Electrons are the negatively charged

particles and protons are the positively charged particles. Neutrons have no charge. Hence,

neutrons are referred as neutral particles.
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The strong nuclear force between the protons and neutrons makes them stick together to form

the nucleus. Neutrons have no charge. so the overall charge of the nucleus is positive because of

the protons.

The electrostatic force of attraction between the nucleus and electrons causes electrons to

revolve around the nucleus.

The electrons revolving around the nucleus have different energy levels based on the distance

from the nucleus.

The electrons revolving very close to the nucleus have lowest energy level whereas the electrons

revolving at the farthest distance from nucleus have highest energy level.

The electrons in the lower energy state (E1) needs extra energy to jump into next higher energy

state (E2). This energy can be supplied in the form of the electric field, heat or light.

When the electrons in the lower energy state (E1) gains sufficient energy from photons, they

jump into next higher energy state (E2).
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The electrons in the higher energy state do not stay for long period. After a short period, they

again fall back to the lower energy level by losing their energy. The electrons in the higher

energy level or higher energy state lose energy in the form of light before they fall back to the

lower energy state.

The electrons in the higher energy state are known as excited electrons whereas the electrons in

the lower energy state are known as ground electrons.

In lasers, the way light or photons interact with atoms plays an important role in its operation.

The photons interact in three ways with the atoms:

 Absorption of radiation or light

 Spontaneous emission

 Stimulated emission

Absorption of radiation or light

The process of absorbing energy from photons is called absorption of radiation.

It is well known that there are different energy levels in an atom. The electrons that are very

close to the nucleus have lowest energy level. These electrons are also known as ground state

electrons.

Let us consider that the energy level of ground state electrons or lower energy state electrons is

E1 and the next higher energy level or higher energy state is E2.
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When ground state electrons or lower energy state electrons (E1) absorbs sufficient energy from

photons, they jump into the next higher energy level or higher energy state (E2). In other words,

when the ground state electrons absorb energy which is equal to the energy difference between

the two energy states (E2 – E1), the electrons jumps from ground state (E1) to the excited state or

higher energy level (E2). The electrons in the higher energy level are called excited electrons.

The light or photons energy applied to excite the electrons can be mathematically written as

hv = E2 – E1

Where h = Planck’s constant

V = Frequency of photon

E1 = Lower energy level electrons or ground state electrons

E2 = Higher energy level electrons or excited state electrons

Absorption occurs only if the energy of photon exactly matches the difference in energy between

the two electron shells or orbits.

Spontaneous emission
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The process by which excited electrons emit photons while falling to the ground level or lower

energy level is called spontaneous emission.

Electrons in the atom absorb energy from various sources such as heat, electric field, or light.

When the electrons in the ground state or lower energy state (E1) absorb sufficient energy from

photons, they jump to the excited state or next higher energy state (E2).

The electrons in the excited state do not stay for a long period because the lifetime of electrons

in the higher energy state or excited state is very small, of the order of 10-8 sec. Hence, after a

short period, they fall back to the ground state by releasing energy in the form of photons or

light.

The energy of the emitted photon is directed proportional to the energy gap of the material. The

materials with large energy gap will emit high-energy photons or high-intensity light whereas

the materials with small energy gap will emit low energy photons or low-intensity light.

The energy of released photon is equal to the difference in energies between the two electron

shells or orbits.

The energy of the excited electrons can also be released in other forms such as heat. If

the excited state electrons release energy in the form of photons or light while falling to the

ground state, the process is called spontaneous emission.
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In spontaneous emission, the electrons changing from one state (higher energy state) to

another state (lower energy state) occurs naturally. So the photon emission also occurs naturally

or spontaneously.

The photons emitted due to spontaneous emission do not flow exactly in the same direction of

incident photons. They flow in the random direction.

Stimulated emission

The process by which electrons in the excited state are stimulated to emit photons while

falling to the ground state or lower energy state is called stimulated emission.

Unlike the spontaneous emission, in this process, the light energy or photon energy is supplied to

the excited electrons instead of supplying energy to the ground state electrons.

The stimulated emission is not a natural process it is an artificial process. In stimulated emission,

the electrons in the excited state need not wait for natural spontaneous emission to occur. An

alternative method is used to stimulate excited electron to emit photons and fall back to ground

state.
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The incident photon stimulates or forces the excited electron to emit a photon and fall into a

lower state or ground state.

The energy of a stimulating or incident photon must be equal to the energy difference

between the two electron shells.

In this process, the excited electron releases an additional photon of same energy (same

frequency, same phase, and in the same direction) while falling into the lower energy state.

Thus, two photons of same energy are released while electrons falling into the ground state.

In stimulated emission process, each incident photon generates two photons.

The photons emitted in the stimulated emission process will travel in the same direction of the

incident photon.

Many ways exist to produce light, but the stimulated emission is the only method known to

produce coherent light (beam of photons with the same frequency).

All the photons in the stimulated emission have the same frequency and travel in the same

direction.

Selection rules

Selection rule or transition rule, formally constrains the possible transitions of a system

from one quantum state to another. Selection rules have been derived

for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection

rules may differ according to the technique used to observe the transition. The selection rule also

plays a role in chemical reactions, where some are formally spin forbidden reactions, that is,

reactions where the spin state changes at least once from reactants to products.
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Possible 4 marks

1. What is called WKB approximation?

2. State and briefly explain Fermi’s golden rule?
3. Discuss in detail the absorption and emission of radiation.

4. Explain the variational principle.

5. Explain the application of variation method of helium.

6. Write short notes on absorption of radiation.

7. Write short notes on emission of radiation.

8. Discuss the ground state of heluim atom.

Possible 10 marks

1. Explain (i) The variation principle (ii) variation method for excited states

2. Explain the Harmonic perturbation.
3. Evaluate〈x2〉,〈p2〉,〈V〉and〈T〉for the states of a harmonic oscillator.

4. A rotator having a moment of inertia I and an electric dipole moment µ executes

rotational motion in a plane. Estimate the first-and second-order corrections to the energy

levels when the rotator is acted on by an electric field ε in the plane of rotation.

5. A system in an unperturbed state n is suddenly subjected to a constant perturbation H’(r)

which exist during time 0 to t. Find the probability for transition from state n to state k

and show that it varies simple harmonically with,

Angular frequency = and amplitude = 4
| ′ |( ) .

6. Obtain the selection rule for electric dipole transition of a linear harmonic oscillator.
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MULTIPLE CHOICE QUESTIONS

QUESTION

UNIT-V

The expectation value of 1/r in the ground state of the hydrogen atom equals

Oscillating electric and magnetic field associated with light can induce transition is an example
of 

Transition probability per unit time when transitions are extended to continuum is given by τ,
where τ is equal to

The time dependent theory was developed by

The transition probability per unit time is proportional to

The validity of adiabatic approximation requires

In sudden approximation, perturbation changes 

Frequency of radiation emitted during transition from m level to n level is

While calculating the first order perturbation the constant of integration is taken as zero in
order that dm(t) to be zero at

Height of the main curve in time dependent perturbation theory increase in proportion to 

The maximum value of Sin2 [(ωml/2)/ ωml
2] occurs when ωml is



The example for time dependent perturbation is

Example for adiabatic approximation is 

Before the perturbation is applied to the system the first order transition constant am
(1) be zero at

In adiabatic approximation the Hamiltonian varies slowly with

The molecular velocities and electron velocities in atoms are respectively

A most common way of inducing transitions between stationary states of quantum system is by
applying
The transition probability per unit time is proportional to 

Time dependent perturbation theory is often called

In case of time dependent perturbation theory, H΄ might be zero except during the period

In time dependent theory, perturbation is effective during the period

In time dependent theory, perturbation is effective, when H΄ might be

The Schrödinger time equation for the system, in case of time dependent perturbation theory 

Breadth of the main curve in time dependent perturbation theory decreases inversely as



Example for transition between stationary states in atoms is 

The energy is transferred from the perturbing source to the system, this process is known as 

The energy is transferred to the perturbing source from the system, this process is known as 

In adiabatic approximation the perturbation is turned on 

During the collision of gas molecules, the molecular velocities are low about

The gas molecules collide or approach each other, the process may be regarded as 
The condition of sudden approximation, by the help of uncertainty relation Δ E. ΔT = ћ, is
expressed as

In sudden approximation the probability of transition from state k to state f will be given by

There is no transition between the states of the system then,

The velocity of electrons in atoms are about
A particle executes a harmonic motion along x-axis and possesses a charge +e, dipole moment
is

In WKB approximation, when V(x) is a constant, then the waves become

In WKB approximation, the value of propagation constant k is

The variation method is applicable for the system of 

The validity of WKB approximation is



WKB approximation is applied to only situation in which the potential energy is slowly
varying function of
In time dependent perturbation theory Hamiltonian is divided into
Which term represent simple unperturbed hamiltonian?
Which term represent small time dependent perturbed hamiltonian?

In adiabatic approximation H contains the parameter change
In sudden approximation H is ______________ in time

Hamiltonian of the system is ________
The adiabatic approximation occurs in the collision of ____________ molecules

The molecular velocities are usually low about

The transition probability of emission per unit time is proportional to 
The transition probability of absorption and emission between any pair of states are
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