
 SYLLABUS 2018-2020 
BATCH 

 

Karpagam Academy of Higher Education (Deemed to be University), Coimbatore – 641 021 

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established Under Section 3 of UGC Act 1956) 
 COIMBATORE-21 

(For the candidates admitted from 2018 onwards) 

DEPARTMENT OF PHYSICS 
 

SUBJECT: Thermodynamics And Statistical Mechanics              SEMESTER: II  

SUB.CODE:18PHP201      CLASS:  I M.Sc PHYSICS 

Instruction Hours / week: L: 4 T: 0 P: 0  Marks: Internal: 40 External: 60 Total: 100 

End Semester Exam: 3 Hours 

 
Course Objectives 

 Thermodynamics is an important branch of physics, which helps us to understand the 

different phenomena in the evolution of the universe.   

 This paper gives a basic idea about the laws of thermodynamics and statistical processes. 
Course Outcomes (COs)  

1. Identify and describe the statistical nature of concepts and laws in thermodynamics, in 

particular: entropy, temperature, chemical potential, Free energies, partition functions. 

2. Use the statistical physics methods, such as Boltzmann distribution, Fermi-Dirac and 

Bose-Einstein distributions to solve problems in physical systems.  

3. Apply the concepts and laws of thermodynamics to solve problems in thermodynamic 

systems such as gases, heat engines and refrigerators etc. 

 

UNITI- LAWS OF THERMODYNAMICS 

Some consequences of the laws of thermodynamics − Entropy − Calculation of entropy changes 

in reversible processes.  The principle of increase of entropy − Thermodynamic potentials − 

Ehthalpy, Helmholtz and the Gibbs functions − Phase transitions − The Clausius-Clayperon 

equation − Van der Waals equation of state. 

 

UNIT II- KINETIC THEORY 

Distribution function and its evolution − Boltzmann transport equation and its validity − 

Boltzmann’s H-theorem − Maxwell-Boltzmann distribution − Transport phenomena − Mean free 

path- Conservation laws − Hydrodynamics (No derivation). 

 

UNIT III- CLASSICAL STATISTICAL MECHANICS  

Maxwell Boltzmann distribution law: Evaluation of constants - Maxwell’s law of distribution of 

velocities - Most probable speed, Average speed, Root mean square speed - Principle of 

equipartition of energy - Partition function - Condition for applicability of M.B statistics - Non 

degenerate and degenerate systems - Maxwell velocity distribution in a given direction - Total 

internal energy of an ideal gas - Molar heat capacity of a gas at constant volume – Entropy - 
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Helmholtz free energy - Pressure and equation of state of an ideal gas - Limitation of M.B 

method. 

 

UNIT IV- QUANTUM STATISTICAL MECHANICS  

B.E energy distribution for energies in the range E to E + dE – Condition for B.E distribution to 

approach classical M.B distribution - Bose temperature - Bose Einstein condensation - Planck’s 

law from B.E law - Fermi Dirac distribution law (no derivation) - FD law for the energies in the 

range E to E+dE  – Fermi energy - Effect of temperature - Energy distribution curve - Free 

electron in a metal - Fermi temperature and Thermionic emission - Richardson Dushmann 

Equation - Comparison of MB,BE and FD statistics. 

 

UNIT V- APPLICATIONS OF QUANTUM STATISTICAL MECHANICS 

Ideal Bose gas : Photons − Black body and Planck radiation − Photons − Specific heat of solids − 

Liquid Helium. 

Ideal Fermi gas : Properties − Degeneracy − Electron gas − Pauli paramagnetism 

Ferromagnetism : Ising and Heisenberg models. 
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1 1 Some consequences of the laws of thermodynamics T1 – 3-5 

2 1 Entropy, Calculation of entropy changes in reversible 

processes 

T 1- 12 

T 1- 15-18 

3 1 The principle of increase of entropy T 1- 18-19 

4 1 Thermodynamic potentials− Enthalpy T 1- 21 , 24 

T 1- 23 - 27 

T 1- 27-29 5 1 Helmholtz and the Gibbs function 

6 1 Phase transitions, The Clausius-Clayperon equation 
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2 1 Boltzmann transport equation and its validity   T 1 – 456 - 459 
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UNIT-I 

Laws of Thermodynamics: Some consequences of the laws of thermodynamics − Entropy − 

Calculation of entropy changes in reversible processes.  The principle of increase of entropy − 

Thermodynamic potentials − Ehthalpy, Helmholtz and the Gibbs functions − Phase transitions − 

The Clausius-Clayperon equation − Van der Waals equation of state. 
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THERMODYNAMICS 

 Thermodynamics is the science of studying the changes that occur within a system in 

relation to its interaction with its surroundings according to a series of laws formulated that are 

considered valid for all systems. Thermodynamics allows scientists to study the potential 

reactions and interactions of systems that exist only in theory, or be such that they cannot be 

recreated or contained in a laboratory for study. 

The empirical facts of thermodynamics are comprehended in its four laws. The first law 

specifies that energy can be exchanged between physical systems as heat and thermodynamic 

work. The second law concerns a quantity called entropy, expresses limitations, arising from 

what is known as irreversibility, on the amount of thermodynamic work that can be delivered to 

an external system by a thermodynamic process.  

THERMODYNAMIC SYSTEMS 

An important concept in thermodynamics is the “system”. A physical system is the region of 

the universe under study. A system is separated from the remainder of the universe by a 

boundary which may be imaginary or not, but which by convention delimits a finite region. The 

possible exchanges of work, heat, or matter between the system and the surroundings take place 

across this boundary. There are five dominant classes of systems: 

1. Isolated Systems – matter and energy may not cross the boundary. 

2. Adiabatic Systems – heat may not cross the boundary. 

3. Diathermic Systems - heat may cross boundary. 

4. Closed Systems – matter may not cross the boundary. 

Open Systems – heat, work, and matter may cross the boundary. 

LAWS OF THERMODYNAMICS 

The four main laws of Thermodynamics are, 

Zeroth Law - if two systems each are in equilibrium with a third system, then they must are also 

be in thermal equilibrium with each other. 

First Law - if heat is added to a system, some of that energy stays in the system and some leaves 

http://en.wikipedia.org/wiki/Laws_of_thermodynamics
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Work_(thermodynamics)
http://en.wikipedia.org/wiki/Work_(thermodynamics)
http://en.wikipedia.org/wiki/Work_(thermodynamics)
http://en.wikipedia.org/wiki/Entropy
http://en.citizendium.org/wiki/Physical_system
http://en.citizendium.org/wiki?title=Work_(thermodynamics)&action=edit&redlink=1
http://en.citizendium.org/wiki/Heat
http://en.citizendium.org/wiki/Matter
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the system. 

 Second Law - no reaction is 100% efficient and all energy wants to flow and spread to areas 

with less energy. 

Third Law - it is impossible to cool an object to absolute zero because all processes will cease 

before absolute zero is reached, this is commonly called the state of entropy. 

ENTROPY: 

 Entropy is a defined function of the thermal state of a body and is not affected in any way 

by the manner in which a particular state is reached. The change in entropy passing from one 

state A to another state B is given by SB –SA =  
dQ

T

𝐵

𝐴
 

where dQ is the quantity of heat absorbed or rejected at a temperature T in going from state A to 

state B. 

(i) Entropy of a system remains constant during an adiabatic change,  

(ii) Entropy of a system remains constant in all reversible processes. 

(iii) Entropy of a system increases in all irreversible processes. 

CALCULATION OF ENTROPY: 

(i) Entropy of an ideal gas 

 Consider n gram molecules of an ideal gas occupying a volume V at a pressure P and 

temperature T. Let quantity of heat dQ be given to the gas, then I law of thermodynamics is 

dQ=dU+dW. If Cv is the heat capacity of gas at constant volume, dT is rise in temperature and 

dV represents change in volume.  

Then, dU = CvdT and dW = pdV 

dQ = Cv+pdV 

From second law of thermodynamics, the change in entropy is 

dS = dQ/T = (CvdT)/T + pdV / T  ------------ (1) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: I M.Sc Physics               COURSE NAME: Thermodynamics And Statistical Mechanics 

   COURSE CODE: 18PHP201         UNIT: I       BATCH-2018-2020 

 

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE  4 | 1 5  
 

 If select some arbitrary state1 at temperature T0, pressure P0 and volume v0 in which the 

entropy of the gas is change in entropy during state1 to state2 at temperature T, pressure  P and 

volume V is given by, 

∆𝑠 = 𝑠 − 𝑠0= 
𝐶𝑣𝑑𝑇

𝑇

2

1
 +  

𝑃 𝑑𝑉

𝑇

2

1
   ------------ (2) 

(a) Value of S terms of temperature and volume 

 From the equation of state of an ideal gas 

PV=nRT 

P =nRT / V 

 Sub. value of P in eqn (2). 

∆𝑆 =   
𝐶𝑣𝑑𝑇

𝑇

2

1
 + nR 

𝑑𝑉 .𝑇

𝑉.𝑇

2

1
      ------------- (3) 

If Cv be assumed to constant, equ. 

∆𝑆 = 𝐶𝑣 𝑙𝑜𝑔e  𝑇/T0 + nR 𝑙𝑜𝑔e  𝑉/V0   (state 1 and 2)    --------------- (4) 

For a case of isothermal expansion, T = T0 

 The change in entropy of gas in the case becomes 

∆𝑆 = 𝑛𝑅 𝑙𝑜𝑔e
𝑉

𝑉0
             --------------- (5) 

(b) Value of S in terms of temperature and pressure: 

PV = nRT 

V = nRT/P 

and PdV + VdP = nRdT   -------- (5a) 

So that PdV = nRdT – VdP = nRdT - 
𝑛𝑅𝑇𝑑𝑃

𝑃
 using (5a) 

Sub. the value PdV in eq. (2) 

∆𝑆 =   𝐶𝑣 
𝑑𝑇

𝑇
+  𝑛𝑅 (

𝑑𝑇

𝑇
−
𝑑𝑃

𝑃
)

2

1

2

1
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= CV loge 
𝑇

𝑇𝑜
 + nR (loge 

𝑇

𝑇𝑜
−  𝑙𝑜𝑔e

𝑃

𝑃𝑜
) 

For an ideal gas, CP – CV =nR 

∆𝑆 = 𝐶P log e
𝑇

𝑇𝑜
 + (CP - CV) 𝑙𝑜𝑔e

𝑃

𝑃𝑜
  

For isothermal change T=T0, therefore change in entropy of the gas, 

∆𝑆 = (𝐶P -CV) 𝑙𝑜𝑔e
𝑃

𝑃𝑜
 = 𝑛𝑅𝑙𝑜𝑔e

𝑃

𝑃𝑜
           ---------- (7) 

(c) Value of S in terms of pressure and volume 

PV = nRT 

So that, 𝑇 =
𝑃𝑉

𝑛𝑅
   𝑎𝑛𝑑 𝑑𝑇 =

𝑃𝑑𝑉+𝑉𝑑𝑃

𝑛𝑅
 

Sub. these value in equ. 2,  

∆𝑆 =   𝐶𝑣 
𝑃𝑑𝑉 + 𝑉𝑑𝑃

𝑑𝑉
+  𝑛𝑅 

𝑃𝑑𝑉

𝑃𝑉

2

1

2

1
 

=  𝐶𝑣  
𝑑𝑉

𝑉
+

𝑑𝑃

𝑃
 + (𝐶𝑝 − 𝐶𝑣) 

𝑑𝑉

𝑉

2

1

2

1  

=  (𝐶𝑣
𝑑𝑃

𝑃
+ 

2

1
𝐶𝑝

𝑑𝑉

𝑉
) 

∆𝑆 =  𝐶𝑣 𝑙𝑜𝑔e P/Po +CP loge V/Vo        ----------- (8) 

 

(ii) Entropy of steam 

 Let consider mass m of ice at absolute temp. T1, find the total gain in entropy when ice 

changes into steam at absolute temperature T2. 

 If small amount of heat dQ is given to a substance at temperature T, the change in 

entropy is dS =dQ/T. 

 To convert mass m of ice at T1K into water at same temperature, the amount of heat 

required = mLi, where Li is the latent heat of ice. 

 Change in entropy during this process = mLi/T       -------- (i) 

 When mass m of water at T1 K is heated to T2 K, the change in entropy, 
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∆𝑆 =   
𝑑𝑄

𝑇

𝑇2

𝑇1    =  
𝑚𝐶𝑑𝑇

𝑇

𝑇2

𝑇1   = mC logcT2/T1         -------- (ii) 

 To convert mass m of water at T2C into steam at same temperature, the amount of heat 

required = mLs, where Ls is latent heat of steam. 

Change in entropy during this process = mLs/T2      ------- (iii) 

Total gain in entropy = 
𝑚𝐿𝑖

𝑇1
+  𝑚𝐶𝑙𝑜𝑔𝑒  

𝑇2

𝑇1
 + mLs/T2  

PRINCIPLE OF INCREASE OF ENERGY OR DEGRADATION OF ENERGY    

The entropy of a system remains constant in reversible cyclic process but increased 

inevitably in all irreversible process. Since a reversible process represents a limiting ideal case, 

all actual process are inherently irreversible. It means that as cycle after cycle of operation is 

performed, the entropy of the system increase and tends to a maximum value. This is the 

principal of increase of entropy and may be   stated as " The entropy of an isolated or self 

contained system either increase or remains  constant according  as the process it undergoes are 

irreversible or reversible". Analytically it may be expressed as greater than 0; where the equality 

sign refers to reversible processes and the inequality sign to irreversible processes. Therefore the 

necessary and sufficient conditions of equal brim of a self contained system is that it's entropy 

should be maximum and it cannot be greater than zero. 

Since all physical operation in the universe are irreversible for every such operations 

performed, a certain amount of energy become unavailable for useful  work and is added to the 

universe in the form of heat through friction, conduction or radiation. In this way in a distant 

future on account of irreversibly all energies existing in different forms will be converted into 

heat energy and will not be available for conversion into mechanical work i.e " The available 

energy of the universe is tending toward zero " it will correspond to a state of maximum entropy 

and all temperature difference between various bodies of the universe will be equalized due to 

convection etc. No heat engine will then be able to work in this state because no heat flow would 

be possible due to the uniformity of the temperature  throughout the universe .This is called the 

principal of degradation of energy is conserved it is transformed into a form which is unavailable 
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for work . Thus the energy is "running down hill" and the universe is marching toward stage of 

die a "head - death". 

With an increase in entropy, the thermal agitation and hence disorder of molecules of a 

substance increase, i.e increase of entropy implies a transition from order to discord. Thus the 

principal of increase of entropy is intimately connected with the less ordered state of affairs. 

According to it, a system posing high entropy should be in great disorder or chaos. Thus the 

entropy of a substance in gaseous state is more than in liquid state, because the molecules are 

free to move about in great disorder in a gas than in a liquid. Moreover the entropy is more in a 

liquid state than in the solid state, as the molecules are more free to move in a liquid than in a 

solid. Hence when ice is converted into water and then into steam, the entropy and disorder of 

molecules increase. On the other hand when the steam is converted into water and then in to ice, 

the entropy and disorder of molecules continually decreased. Thus when the temperature of a 

system is decreased, the amount of entropy and disorder in it decreased. Entropy of the substance 

is therefore said to be a measure of the degree of disorder prevailing among it's molecules just as 

the temperature is a measure of the degree of hotness of a substance at the absolute zero of 

temperature the thermal motion completely disappears so that the disorder and hence the entropy 

tends to zero and the molecules of a substance are in perfect order i.e well arranged. 

By summarizing the above arguments, say that the entropy of any isolated system 

increase and approaches more or less rapidly to the inert state of maximum entropy. We may 

recognize this fundamental law of physics to be an inherent tendency of nature to be processed 

from a more ordered state to a less ordered one or from a less disordered to a more disordered 

state or other words that the ultimate destiny of universe is not order but chaos. 

THERMODYNAMIC POTENTIALS: 

The thermodynamics variables such as pressure P, Volume V, temperature T and entropy 

S, define the stole of thermo dynamical system.   A relation b/n them exists because of the two 

thermodynamic laws. 

dQ = dU+PdV 

dQ = TdS 
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Combining  

TdS= dU+PdV 

dU = TdS – PdV 

 Any two of above variables are independent and with the help of above relation 

remaining variables be determined.  These relations are termed as thermodynamic potentials of 

thermodynamic fn. 

Enthalpy or Heat content H 

Thermodynamical phenomena at constant pressure are expressed in terms of another 

function called enthalpy or heat content of the system. 

  H = U + PV                        ---- (1) 

diff. dH=dU+PdV+VdP 

  = (TdS-PdV) + PdV+VdP 

  = TdS+VdP 

  dH = Tds                            ------ (2) 

because process is carried at constant pressure.  Since Tds = dQ, we find dH=dQ enthalpy  

represents the quantity of heat given to the system from an external source & hence the name 

heat content. 

Let Hi and Hf be the initial and final enthalpy,  

Hf-Hi = Q 

The change in enthalpy during an isobaric process equal too the heat transferred. 

H has an important property in porous plug exp let Pi and Vi be the initial pressure & volume of a 

gas before passing through porous plug. Similarly pf and vf be the similar quantities of the gas 

after passing thro’ the porous plug. 
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 External work done by gas = PfVf-PiVi 

This work done at the cost of internal energy of the because no heat exchanges b/n gas 

and surrounding, suppose Ui and Uf be the initial and final internal energy. 

Ui -Uf = Pf Vf-Pi Vi 

Ui+PiVi = Pf Vf + Uf 

(or)  Hi = Hf 

 Thus in throttling process, the initial and final enthalpy remain same. 

Taking partial diff. of H w.r. to independent variables S and P, 

  (
𝜕𝐻

𝜕𝑃
)S= V and (

𝜕𝐻

𝜕𝑆
)P = T   ------ (3) 

 As dH is perfect diff. 

𝜕

𝜕𝑆
 (
𝜕𝐻

𝜕𝑃
) = 

𝜕

𝜕𝑃
 (
𝜕𝐻

𝜕𝑆
)                   

 Using (3), we get 

(
𝜕𝑉

𝜕𝑃
)V =( 

𝜕𝑇

𝜕𝑃
)S   ------- (4) 

Which is third thermodynamical relation. 

Helmholtz Function F 

 On combining I & II law of thermodynamics, 

 dU = Tds – dW 

suppose the temp  of the system remain constant, then  

 d(TS) = Tds 

  dU=d(TS)-dW 
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 d(U-TS) = –dW 

 where the fn. F=U-TS 

dF=-dW                                      --------- (1) 

is called Helmholtz fn.  Or Helmholtz free energy, which represents that in revisable 

isotheral process, the work done by the system is equal to decrease in Helmholtz Fn. F is also 

called as work fn. 

on diff. Eqn. (1), we pet 

dF=dU-TdS-SdT 

sub. dU=TdS-PdV 

dF=TdS-PdV-TdS-SdT 

     = -PdV-SdT    -  (2) 

On partial diff. Of F w.r.to independent variables T & V. 

(
𝜕𝐹

𝜕𝑇
)v = -S and (

𝜕𝐹

𝜕𝑉
)T = -P                                          ------- (3) 

As dF is a perfect diff, 

𝜕

𝜕𝑉
(
𝜕𝐹

𝜕𝑇
) =  

𝜕

𝜕𝑉
 (
𝜕𝐹

𝜕𝑉
) 

using eq. (3) we get 

(
𝜕𝑆

𝜕𝑉
)T = (

𝜕𝑃

𝜕𝑇
)V 

This eqn. given a relation b/n 4 thermo dynamical variable P,V,S and T. This is second 

thermodynamical relation  

Gibbs potential (G) 

 If thermodynamic process is isothermal and isobaric (dp=0) then from qn.(2) we get  



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: I M.Sc Physics               COURSE NAME: Thermodynamics And Statistical Mechanics 

   COURSE CODE: 18PHP201         UNIT: I       BATCH-2018-2020 

 

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE  11 | 1 5  
 

dH=T(ds) 

= d (TS)  [from Helmholtz fn.] 

d(H-TS) = 0 

dG = 0 

Where G = H – TS 

G = U+PV-TS 

is called gibb’s fn. or free energy. On diff. (5), we get 

dG = dU+PdV+VdP – TdS –SdT 

= (TdS – pdv) + pdV+VdP-TdS-SdT 

dG = VdP-SdT                    ----- (6) 

Talking partial derivatives of a w.r. to independent variable P and T, we get 

(
𝜕𝐺

𝜕𝑃
)T = V and ( 

𝜕𝐺

𝜕𝑇
)P  = -S                  ------- (7) 

As dG is perfect diff ., 
𝜕

𝜕𝑇
 (
𝜕𝐺

𝜕𝑃
) =  

𝜕

𝜕𝑃
 ( 

𝜕𝐺

𝜕𝑇
) 

This is called fourth thermodynamical relation. 

PHASE TRANSITIONS 

 Simple substances are capable of existing in phases of three types: solid, liquid and gas. 

The three lines, in phase diagram separating these planes are called phase equilibrium lines. The 

common point A where three lines meet is called triple point; at this unique temperature and 

pressure all three phases can coexist in equilibrium with each other. Point C is the critical point 

at which liquid gas equilibrium line ends. The volume change ∆V between liquid and gas then 

approached zero; beyond C there is no further phase transition since only one fluid phase exist. 
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CLASUSIS CLAYPERON EQUATION 

 Maxwell second thermo dynamical relation is   

(
𝜕𝑆

𝜕𝑉
)P = -(

𝜕𝑃

𝜕𝑇
)V 

Multiply both sides by T, 

T(
𝜕𝑆

𝜕𝑉
)T = T(

𝜕𝑃

𝜕𝑇
)V 

From II law of thermodynamics,  

TdS = dQ 

(
𝜕𝑄

𝜕𝑉
)T = T(

𝜕𝑃

𝜕𝑇
)V 

 (
𝜕𝑄

𝜕𝑉
)T represent the quantity of heat absorbed or liberated per unit charge in volume at 

constant temp.  This means that at constant temp.  The heat absorbed or liberated bring out 

simply a change in the volume of the substance.  Therefore this amount of heat absorbed or 

liberated at constant temp must be the latent heat and change in volume must be due to change of 

state.  Considering a unit mass of the substance let L be the latent heat when the substance 

change in volume from V1 to V2 at constant temp. then,  

𝛿Q =L and 𝛿V = V2-V1 

 
𝐿

𝑉2− 𝑉1
  = T (

𝜕𝑃

𝜕𝑇
)v 

𝐿

𝑉2− 𝑉1
 = T

𝜕𝑃

𝜕𝑇
 

dP/ dT = 
𝐿

𝑇(𝑉2− 𝑉1)
 

which is called Clausius Clapyeron latest heat equation. 
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VAN DER WAAL’S EQUATION OF STATE 

 Consider the volume occupied by the gas molecules negligible compared with the total 

volume of gas and the molecules exert no appreciable forces on one another.  It is evident that 

both these assumptions cannot be exactly true for actual gases particularly at high pressure.  In 

driving van der waals eqn. Of state the effect both these factor is taken into account. 

 Due to the finite size of molecules, the free space available for their movement is less 

than the actual measured volume of the gas.  Also the number of collisions with the walls of 

containing vessel, and the pressure will be greater than the calculated by simple theory.  The 

actual volume can be brought about by subtracting a career  term b from the measured volume 

and using (v-b) in place of V in ideal gas equation. 

 Let XY be the portion of boundary wall.  Consider a molecule A in the interior far from 

the boundary wall.  It is surrounded by other molecules equally distributed in all directions.  

Those molecules exert attractive force on molecule A, when averaged out , over a sufficient 

interval of time they cancel out and net cohesion force will be zero.  On the other hand the 

molecule B is as rear the boundary as it can go. In this case the molecular distribution is only 

along one side.  The adhesive force between the gas molecules and the boundary walls are 

always must smaller than the cohesive force, between the gas molecules.  The force on B due to 

each adjacent molecule can be resolved into components to the boundary wall. The parallel 

components cancel out on the average but the perpendicular components will result a field of 

force acting inwards on the molecules   near the boundary wall.  Thus whenever a molecule will 

strike the walls of the containing vessel at B to contribute its share towards the total gas pressure, 

the measured pressure P is loss than the ideal pressure calculate on the assumption that the 

cohesive force is P, the add a correction term P, to the measured pressure P and use (P+P1) in 

place of P in ideal gas. 

 On using both corrections in ideal gas equation, we get for a gram molecule of a gas. 

(P+P1) (V-b) = RT   (1) 

 The value of P1 is to the number of molecules striking in area of the wall in unit time & to 

the intensity of the field of force. Both of these factors are proportional to the density of the gas.  
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p1=aρ
2
 

C->constant 

ρ α 1/V 

            Hence p1=a/V
2
, where a is constant. 

    Sub. this value of p1, in equation (1), 

(p+a/V
2
)(v-b)=RT         (2) 

This is van der waal’s equation of state. This is the simplest and the most well known equation of 

stove for real gas. 

Another useful form of the equation of state of a real gas is 

PV=A+B/V+C/V
2
+........    (3) 

A,B,C,... are from of temp and are called virial coeff. 

For an ideal gas it is evident that A=RT and all other viral coeff. are  zero. 

Van der walls equation can be but in virial form as, 

Equation (2) rewritten as, 

1=RT/((P+a/V
2
)(v-b)) 

                        (or)                            PV=RT(l-a/PV
2
)

-1
  (l-b/v)

-1                        
(4) 

 The correction terms a/PV
2 

& b/V are both small composed with unity provided the gas is 

not too much compressed. Using binomial theorem & neglecting the terms of higher power a l/V, 

equation V1, becomes, 

PV=RT(l-A/PV
2
) (l+B/V)+b

2
/v

2
 

=RT-RT/PV.a/v+RT.b/v+RTb
2
/v

2
 

   Since PV=RT approx, 
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PV=RT+(RTb-a)/v+RTb
2
/v

2
   (5) 

  This is van der waal’s equation in virial form having only three virial coeff., A,B,&C 

A=RT, B=RTb-a, C=RTb
2
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THERMODYNAMICS AND STATISTICAL MECHANICS 

 

PART –A(Online Examination) 

S.No. QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER 

1 

The term “thermodynamics” comes from 

Greek. words “therme” and “dynamis” which 

means _______. Heat power  Heat transfer Heat energy Heat motion Heat power 

2 
The term “thermodynamics” was first used in 

1849 in the publication of a 

Rudolph 

Clausius 

 William 

Rankine Lord Kelvin  Thomas Savery Lord Kelvin  

3 

The macroscopic approach to the study of 

thermodynamics does not require a 

knowledge of the behavior of individual 

particles is called _____. 

Dynamic 

thermodynamics 

Static 

thermodynamics 

Statistical 

thermodynamics 

Classical 

thermodynamics 

Classical 

thermodynamics 

4 
What law asserts that energy is a 

thermodynamic property? 

First law of 

Thermodynamics 

Second law of 

Thermodynamics  

Third law of 

Thermodynamics  

Zeroth law of 

Thermodynamics 

First law of 

Thermodynamics 

5 
What law asserts that energy has quality as 

well as quantity? 

First law of 

Thermodynamics 

Second law of 

Thermodynamics 

Third law of 

Thermodynamics 

 Zeroth law of 

Thermodynamics 

Second law of 

Thermodynamics 

6 

The first law of thermodynamics is based on 

which of the following principles? mass of energy 

Conservation of 

energy 

Conservation of 

MOMENTUM 

The entropy-

temperature 

relationship 

Conservation of 

energy 

7 Thermodynamics is applicable to 

microscopic 

systems only 

 macroscopic 

systems only  

homogeneous 

systems only 

heterogeneous 

systems only. 

 macroscopic 

systems only  

8 Which is not true about thermodynamics ? it ignores the it involves the it is concerned it is not it is not applicable 



 

 

internal structure 

of atoms and 

molecules 

matter in bulk only with the 

initial and final 

states of the 

system 

applicable to 

macroscopic 

systems. 

to macroscopic 

systems. 

9 
A system that can transfer neither matter nor 

energy to and from its surroundings is called  closed system 

an isolated 

system an open system 

a homogeneous 

system an isolated system 

10 
Which of the following is incorrect, for an 

ideal gas ?  PV= nRT V= nRT/P P=nRT/V  P =RT  PV= nRT 

11 

The heat capacity at constant pressure is 

related to heat capacity at constant volume by 

the relation Cp-R =Cv  Cv-R =Cp Cp-Cv =R  R-Cp =Cv Cp-Cv =R  

12 

A system is in ______ equilibrium if the 

temperature is the same throughout the entire 

system. Static  Thermal Mechanical Phase  Thermal 

13 

A system is in ______ equilibrium if there is 

no change in pressure at any point of the 

system with time. Pressure  Thermal  Mechanical  Phase  Mechanical  

14 

If a system involves two phases, it is in 

______ equilibrium when the mass of each 

phase reaches an equilibrium level and stays 

there. Chemical  Thermal  Mechanical phase Phase 

15 

A system is in ______ equilibrium of its 

chemical composition does not change with 

time, i.e., no chemical reaction occurs. Chemical  Thermal  Mechanical Phase Chemical  

16 

A system is said to be in thermodynamic 

equilibrium if it maintains ______ 

equilibrium. 

Mechanical and 

phase  

Thermal and 

chemical  

Thermal, 

mechanical and 

chemical 

Thermal, phase, 

mechanical and 

chemical 

Thermal, phase, 

mechanical and 

chemical 

17 

What is a process with identical end states 

called? Cycle Path Phase 

Either path or 

phase Cycle 

18 

What is a process during which the 

temperature remains constant? Isobaric process 

 Isothermal 

process Isochoric process 

Isometric 

process 

 Isothermal 

process 

19 

What is a process during which the pressure 

remains constant? Isobaric process 

Isothermal 

process  Isochoric process 

Isometric 

process Isobaric process 



 

 

20 

What is a process during which the specific 

volume remains constant?  Isobaric process 

Isothermal 

process 

Isochoric or 

isometric process 

 Isovolumetric 

process 

Isochoric or 

isometric process 

21 

What states that if two bodies are in thermal 

equilibrium with a third body, they are also in 

equilibrium with each other? 

Zeroth law of 

thermodynamics 

First law of 

thermodynamics 

Second law of 

thermodynamics 

Third law of 

thermodynamics 

Zeroth law of 

thermodynamics 

22 

What is the study of energy and its 

transformations?  Thermostatics  Thermophysics Thermochemistry 

 

Thermodynamics  Thermodynamics 

23 

What is considered as the heat content of a 

system? Enthalpy Entropy  Internal heat Molar heat Enthalpy 

24 

What refers to the amount of heat needed to 

raise the temperature of an object by one 

degree Celsius or 1K? Heat capacity Specific heat Latent heat  Molar heat Heat capacity 

25 

What is the heat capacity of one mole of 

substance? Molecular heat Specific heat Latent heat Molar heat Specific heat 

26 

What refers to the measure of the disorder 

present in a given substance or system? Enthalpy Entropy Heat capacity Molar heat Entropy 

27 Entropy is measured in ______.  Joule/Kelvin 

Joule-

Meter/Kelvin Meter/Kelvin  Newton/Kelvin  Joule/Kelvin 

28 
What is the energy absorbed during chemical 

reaction under constant volume conditions? Entropy  Ion exchange  Enthalpy 

Enthalpy of 

reaction  Enthalpy 

29 

Which of the following equation is used to 

calculate the heats of reaction when ΔG at 

two temperatutes are given? 

Gibbs Helmholtz 

equatioin 

Clapeyron 

equation 

Kirchoffs 

equation Nernst equation 

Gibbs Helmholtz 

equatioin 

30 
____________ is applicable to macroscopic 

systems only. thermochemistry thermokinetics thermodynamics 

thermochemical 

studies. thermodynamics 

31 ∆E =q-w for an isochoric process 

first law of 

thermodynamics 

second law of 

thermodynamics zeroth’s law 

third law of 

thermodynamics 

first law of 

thermodynamics 

32 Who proposed the Carnot cycle?  Sammy Carnot  Sonny Carnot Sadi Carnot  Suri Carnot Sadi Carnot 

33 Entropy is transferred by ______.  Work  Heat Energy  Work and heat  Heat 

34 Gibb’s function is expressed as, G = H + TS G = H / TS G=H-TS G = H * TS G=H-TS 

35 Average kinetic energy of molecules is 

Directly 

proportional to 

Directly 

proportional to 

Independent of 

absolute 

Inversely 

proportional to 

Directly 

proportional to 



 

 

square root of 

temperature 

absolute 

temperature  

temperature absolute 

temperature 

absolute 

temperature  

36 
The specific heat of a gas in isothermal 

process is Zero Negative  

 Remains 

constant Infinite Infinite 

37 Latent heat of ice is 

Less than 

external latent 

heat of fusion 

Equal to external 

latent heat of 

fusion 

More then 

external latent 

heat of fusion 

Twice the 

external latent 

heat of fusion 

Twice the external 

latent heat of 

fusion 

38 

The difference between the principal specific 

heats of nitrogen is 300 J/kg °K and ratio of 

the two specific heats is 1.4. then the CP is 1050 J/kg °K 650 J/kg °K 750 J/kg °K 150 J/kg °K 650 J/kg °K 

39 
The mean kinetic energy of one gram-mole 

of a perfect gas at absolute temperature T is 1/2 KT 1/2 RT 3/2 KT 3/2 RT 3/2 RT 

40 
The specific heat of a substance at its boiling 

point or melting point Is zero Is infinity Is negative 

Lies between 0 

and 1 Is infinity 

41 
Which of the following variables controls the 

physical properties of a perfect gas? Pressure  Temperature  Volume Atomic mass Atomic mass 

42 

A system in which state variables have 

constant values throughout the system is 

called in a state of equilibrium non- equilibrium  

isothermal 

equilibrium none of these. equilibrium 

43 
In an adiabatic process ______ can flow in to 

or out of the system. no heat heat matter no matter.. no heat 

44 
The mathematical relation for the first law of 

thermodynamics is ∆E =q+w 

 ∆E = 0 for a 

cyclic process 

 ∆E =-q for an 

isochoric process  ∆E =W-q. ∆E =q+w 

45 
For an adiabatic process according to first 

law of thermodynamics,  ∆E = -w  ∆E = w  ∆E =q-w  ∆ q = E-w  ∆E = -w 

46 
The enthalpy change, ∆H of a process is 

given by the relation  ∆H =∆E +p∆v  ∆H =∆E +∆nRT  ∆H =∆E +w   ∆H =∆E -∆nRT  ∆H =∆E +p∆v 

47 

The amount of heat required to raise the 

temperature of one mole of the substance by 

1 K is called heat capacity 

molar heat 

capacity molar heat molar capacity. 

molar heat 

capacity 

48 Which of the following is not correct ? H=E+PV H-E=PV  H-E-PV=0  H=E-PV H=E-PV 

49 
The enthalpy of a system is defined by the 

relation H=E+PV H=E-Pv E=H+PV PV+E-H H=E+PV 



 

 

50 
Which of the following law is applicable for 

the behavior of a perfect gas Boyle’s law Charles law Gay-lussac law Joules law Joules law 

51 
An ideal gas as compared to a real gas at very 

high pressure occupies  More volume  Less volume Same volume 

Unpredictable 

behavior  More volume  

52 The unit of pressure in SI unit is  Kg/cm2  

Mm of water 

column  Pascal  Bars Pascal  

53 Temperature of a gas is produced due to Its heating value 

Kinetic energy of 

molecules 

 Repulsion of 

molecules 

Surface tension 

of molecules 

Kinetic energy of 

molecules 

54 
According to kinetic theory of gases, the 

absolute zero temperature is attained when 

Volume of the 

gas is zero 

Pressure of the 

gas is zero 

Kinetic energy of 

the molecules is 

zero Mass is zero 

Kinetic energy of 

the molecules is 

zero 

55 
Kinetic theory of gases assumes that the 

collisions between the molecules are  Perfectly elastic 

Perfectly 

inelastic Partly elastic  Partly inelastic  Perfectly elastic 

56 
The behavior of gases can be fully 

determined by 1 law    2 law 3 law 4 law 4 law 

57 
Boyle’s law ie, PV = constant is applicable to 

gases under 

All ranges of 

pressures  

Only small range 

of pressures  

Steady change of 

pressures  

Atmospheric 

conditions 

Only small range 

of pressures  

58 
The same volume of all gases would 

represent their Densities Specific weights  

Molecular 

weights  

Gas 

characteristic 

constants Molecular weights  

59 Gases have 

Only one value 

of specific heat  

Two value of 

specific heat  

Three value of 

specific heat 

No value of 

specific heat 

No value of 

specific heat 

60 
Which of the following quantities is not the 

property of the system Pressure temperature heat density density 
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UNIT-II 

Kinetic Theory: Distribution function and its evolution − Boltzmann transport equation and its 

validity − Boltzmann’s H-theorem − Maxwell-Boltzmann distribution − Transport phenomena − 

Mean free path- Conservation laws − Hydrodynamics (No derivation). 
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Distribution function 

 Consider a six dimensional phase space. The coordinate of a po8int in this space is 

represented by (x,y,z,vx,vy,vz) where x,y,z are the position co-ordinates and may be denoted by r 

while (vx,vy,vz) are velocity co-ordinate and may be denoted by v. Hence co-ordinate of a point  

in six dimensional phase space may be denoted by (r,v). The differential volume element about 

the point (r,v) in this phase space will be represented by 

     dΓ=dx dy dz dvxdvydvz =drdv. 

 If dn represents the number of particles which are in the differential volume d=drdv then 

the distribution function f(r,v,t) is defined by 

dn=f(r,v,t)drdv. 

 The different lengths dr and velocities dv must be small composed with the macroscopic 

distances and viscosity intervals over which there are significant changes in the gross properties 

of the gas.  On the other hand they must be sufficiently large so that there are a large number of 

particles contained in the differential volume element of phase space. 

Boltzman Transport Equation: 

 Consider a system of particles acted upon by external forces.  For example the system 

may consists of electrons in a metal that is acted upon by electric and magnetic fields.  In order 

to device the Boltyman transport equation  consider a region of six dimensional space about the 

point (x,y,z,vx,vy,vz)i.e.(r,v). An element of volume in this six dimensional space is written as 

dxdydzdvxdvydvz or drdv. The number of particles having coordinates within ranges r to r+dr and 

v to v+dv can be represented as 

dn=f(r,v,t)drdv        (1) 

   Where f(r,v,t)is the distribution function. 

 At point (r,v) the variation of distribution function  of with time may be caused by two 

independent ways: 
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(i) Drift-variation: The function f may vary because of the drift particles from one region of 

space to another. This variation pep time is represented by (𝜕f/𝜕t) drift. 

(ii) Collision or scattering Interactions: The function f may vary because of collision among the 

particles. The variation per time is represented by (𝜕f/𝜕t) collisions. 

 Hence the rate of change of the function for may be expressed as 

𝜕f/𝜕t=(𝜕f/𝜕t)drift+(𝜕f/𝜕t)collision 

 assumed that the number of particles in the system is conserved.  If it is not so, then the 

term represent the generation and recombination of particles to the right hand side of 

equation(2).such additional terms are required in the theory of nuclear and function transistor. 

 To derive the Botlzman transport equation, let the particles in the differential phase space 

volume drdv around (r,v) move to a new position by virtue of their velocity in  a short time 

interval dt.  The velocity of the particles may change due to the external force acting upon them 

and the collision among themselves.  Let the new position be represented by (r
1

, v
1
 )such that  

                  r
'
  =r+vdt,  v

’
 =v+adt 

     Where a is the acceleration of the particle. 

   Consider that no collision oceans diving the time Interval dt, then all of particles will move to 

the new volume 
  
dr’dv’ and write as 

f(r+v dt, v+a dt, t+dt)dr’dv’=f(r,v,t)drdv   (3) 

According to Lioville’s theorem, 

dr
'
dv

’
=drdv         (4) 

then equation (3)gives 

f(r+vdt, v+adt, t+dt)=f(r,v,t)    (5) 

 Using Taylor series expansion on L.H.S and retaining terms linear in dt the time dt0, 

above equation 
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f(r,v,t)+vdt. grandr f + a dt. gradv f+𝜕f/𝜕i dt=f(r,v,t) 

v.gradr f + a.gradv f+ 𝜕f/𝜕t=0     6 

 This is Botlzman’s transport equation when no collision.  

In this equation gradr=∆r is the usual del operator and gradv= ∆v is the del operator in velocity 

space. 

∆ r = i 
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+  𝑘

𝜕

𝜕𝑧
 

∆ v = i 
𝜕

𝜕𝑣𝑥
+ 𝑗

𝜕

𝜕𝑣𝑦
+  𝑘

𝜕

𝜕𝑣𝑧
                    ------- (7) 

v. grad r f = 𝑣𝑥  
𝜕

𝜕𝑥
+ 𝑣𝑦

𝜕

𝜕𝑦
+  𝑣𝑧

𝜕

𝜕𝑧
 

and a. grad r f = 𝑎𝑥  
𝜕

𝜕𝑥
+ 𝑎𝑦

𝜕

𝜕𝑦
+  𝑎𝑧

𝜕

𝜕𝑧
        ----------- (8)   

 However, collisions are taken into account, then due to collisions among the particles 

some particles leave the volume element drdv and some ways from dr, dv, to drdv. This is 

equivalent to a loss or gain in the number of particles in volume element drdv.  Now the change 

in number of particles in volume element drdv during the time interval from t to t+dt, using 

Liouvelle’s  theorem,    

f(r+vdt, v+adt, t+dt)drdv - f(r,v,t)drdv=( 𝜕 f/ 𝜕 t)collision dtdrdv     (9) 

i.e. 𝜕 f/ 𝜕 t+vgradrf+a.gradvf=( 𝜕 f/ 𝜕 t)collision 

This is Botlzman transport equation. 

Comparing equation (2) &(9), 

(𝜕 f/ 𝜕 t)drift=-v.gradrf-a.gradvf         (10) 

If Jgain & Jloss represents the number of particles gained and lost per unit volume element per unit 

time as a consequence collisions, then Botlzman’s transport equation (9) may be written as 

 𝜕 f/ 𝜕 t+v.gradrf+a.gradvf=Jgain-Jloss     (11) 
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The collision term {f/t}collision in equation (9) or (Jgain-Jloss) in equation (11) may require special 

treatment.  But the problem is possible to justify approximately the introduction of a parameter 

vc called the relax time him or mean free time defined by the equation 

{ 𝜕 f/ 𝜕 t}collision=-f-f0/𝜏c     (12) 

Where f0 is the distribution function in thermal equilibrium. 

By definition 𝜕 f0/ 𝜕 f=0,equation(12) may be 

(𝜕 f-f0)/ 𝜕 t=f-f0/𝜏c            (13) 

This equation represents the rate at which distribution function approaches the equilibrium 

condition as being proportional to the deviation from equilibrium  condition at a given time. 

Eqn. (13) soln. Is 

(f-fe)f =    (f-f)i=o                             ------ (14) 

Which indicates that (f-fo)i proportional to the distribution towards equilibrium  decays 

exponentially . 

Using eqn (12) the Boltzmann’s transport eqn (9)  in reaction  time approximately is written as 

In the steady state  
𝜕𝑓

𝜕𝑡
= 3 

Transport phenomena 

                The equilibrium state of a gas is the most probable  state : but  if the gas is not in a 

state of  equilibrium , may  have any of the following three cases: 

                The different parts of the ga may be have different velocities . If so these will  be a 

relative motion of the layers of the gas with respect to one another . In such a case the layers 

moving faster impart momentum to the slower moving layers thro’ a long chain of collisions to 

bring the equilibrium state. This gives rise to the phenomenon of viscosity. 
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2. The different parts of the gas may have diff.If so the molecules of the gas will carry kiretic 

energy from regions of higher temperature to the region of lower temperature to bring the 

eqiulilrium state. This gives rise to the phenomenon of conduction. 

3. Diff parts of the gas may have diff molecular concentrations i.e . the number of molecules per 

unit volume. If so, the molecules of the gas will carry the mass from regions of higher 

concentration. Those of lower concentration of bring equilibrium state. This gives rise to the 

phenomenon of diffusion. 

       Viscosity, conduction and diffusion represent the transport of momentum, energy and mass 

respectively. These phenomena are called themodynamical transport phenomena.  

Mean free path 

 According to kinetic theory, the molecules of a gas are moving with very large velocities, 

even at ordinary temp .There is no force to restrain their motion &hence the gaseous mass 

contained in a vessel should disappear in no time. But it is contrary to actual observations as 

hence there must be some factor which prevents the free escape of particles. The difficulty was 

solved by clausuis by ascribing to the molecules a finite small size and by introducing the idea of 

collisions between the molecules. If molecules were truly geometrical points, no collision would 

take b/n them. Actual molecules are of finite sign, rigid, perfectly elastic sphere free from mutual 

force action. They make frequent collision with each other and charge the magnitude and 

direction of their velocities. As the molecules exert no force on one another except, during 

collision, they move in straight lines with uniform velocity b/n two successive collisions, this str. 

line path being called the free path. Thus the path of the centre of mass of a small field molecule 

must be an irregular zig-zag having at each corner a collision with another molecule and 

consisting of str. line b/n them. 

 Thus a molecule starting from A moves along AB, suffers a collision at B with another 

molecule when the direction as well as magnitude  of its velocity is changes and is moves along 

BC. After travelling a distance BC, it again suffers a collision at C and moves along CD and so 

on. AB, CD, DE etc., are all known as free paths and their individual length vary widely. If we 

follow a molecule it has traversed a great many free paths, the average of their lengths will has a 

definite value which is called the mean free path &is denoted by λ 
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 Thus the mean free path is the average distances tho’ with a molecule can travel though a 

gas without colliding with another molecule. It may be called the average free rim b/n 2 

collisions. It is then a statistical quantity and the value to some extent, will depend upon the 

method employed in striking an average. Thus there is a certain arbitariness in on standard in 

defining a mean free path. However if a reference is made to a group of molecules instead to a 

single one and a mean value of all the free paths that  are executed in a given time by all the 

molecules in a given volume is taken as shall get a definite quantity provided the time & volume 

are not too small. Thus if λ1, λ2, ------ λN are the successive free path traversed in the total time t, 

then 

  λ 1+ λ 2 + λ 3+ …-λ N= ṽt, 

 where ṽ is the total distance speed of molecule and N the number of collisions suffered 

i.e the free path traversed in time . If the mean free path, we must have 

    λ = 
λ  1+ λ  2 + λ  3+ …−λ  N

𝑁
 = 

 ṽt,

𝑁
 = 

𝑆

𝑁
 

where S is the total distance travelled in N collisions  

Expression for mean free path: 

         Let us consider a gas possessing n molecule per a let us assume only a single molecule 

traversing the gas with velocity and suppose other molecules to be at rest. The moving molecule 

will collide with all such molecules whose centres lie within distance from its centre being the 

molecules diameter. The space thus traversed in a second is a cylinder of base and height and 

hence of volume. The interior of the cylinder will enclose on the average molecules suffering 

impact. This expression also represents the number of collision N made by the molecule ser unit 

time    

N=𝜋𝜎2𝜈𝑛 

     As the distance traversed by the molecule in on second is its velocity the mean free path is 

given by 

    λ = 
𝑆 

𝑁
= 

𝜈

𝜋𝜎 2𝜈𝑛
 = 

1

𝜋𝜎 2𝜈𝑛
                                               ------------------(1) 
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 This expression, does not represent the actual state of affairs and is generally in euro 

numerically because it assume that only one molecule under consideration is moving while all 

the other molecules standstill total await its coming. The molecules possess all possible 

velocities, the distribution of velocities among them being given by maxwells distribution law. 

Hence if a molecule moves with a absolute velocity in moving this distance it will collide with 

other molecule where r represents the mean relative velocity of the molecules with respect to the 

others. Therefore, the mean free path of that molecule is give by 

  λ =
𝑡𝑜𝑡𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑  𝑖𝑛  𝑜𝑛𝑒  𝑠𝑒𝑐 .

𝑁𝑜  𝑜𝑓  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠  𝑠𝑢𝑓𝑓𝑒𝑟𝑒𝑑  𝑏𝑦  𝑡ℎ𝑒  𝑚𝑜𝑙𝑒 .𝑖𝑛  𝑜𝑛𝑒  𝑠𝑒𝑐
=

1

𝜋𝜎 2𝑟𝑛
 

 But according to Maxwell’s law the particular molecule under consideration may have all 

possible velocities and hence if is the average velocity of    velocity of the molecule r the mean 

relative velocity of all molecules will respect to all other, the mean free path averaged over 

molecule of all velocities is  

    λ =
1

𝜋𝜎 2𝑟𝑛
 

 Let us now suppose that the particular molecule under consideration moves with velocity 

V1.  Its relative velocity with respect to another molecule of velocity V2  making on angle with it 

or the relative velocity approach b/n 2 molecules is give by 

r2=(ν1 –ν2 cos0)i-(0-ν2 sin 𝜃)j 

Now all the direction for velocity ν2 are equally probable.  The probability that it has within the 

solid angle lying b/n  𝜃 and𝜃 +d 𝜃 is ½ sin 𝜃  d 𝜃*.  

CONSERVATION LAWS 

 If a system does not interact with its environment in any way, then certain mechanical 

properties of the system cannot change. They are sometimes called "constants of the motion". 

These quantities are said to be "conserved" and the conservation laws which result can be 

considered to be the most fundamental principles of mechanics. In mechanics, examples of 

conserved quantities are energy, momentum, and angular momentum. 

CONSERVATION OF MOMENTUM 
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 The momentum of an isolated system is constant. The vector sum of the momenta mv of 

all the objects of a system cannot be changed by interactions within the system. This puts a 

strong constraint on the types of motions which can occur in an isolated system. If one part of the 

system is given a momentum in a given direction, then some other part or parts of the system 

must simultaneously be given exactly the same momentum in the opposite direction. 

 

CONSERVATION OF ENERGY 

Energy can be defined as the capacity for doing work. It may exist in a variety of forms 

and may be transformed from one type of energy to another. However, these energy 

transformations are constrained by a fundamental principle, the Conservation of Energy 

principle. One way to state this principle is "Energy can neither be created nor destroyed". 

Another approach is to say that the total energy of an isolated system remains constant. 

http://hyperphysics.phy-astr.gsu.edu/hbase/wcon.html
http://hyperphysics.phy-astr.gsu.edu/hbase/conser.html#isosys
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HYDRODYNAMICS 

Hydrodynamics is the study of fluid flow, which was also developed prior to the 

conclusion of the atom vs. continuum debate. It is sufficient to treat a fluid as a continuous 

substance. Let fluids are made of particles, can explain some fluid phenomena in terms of more 

fundamental physics, for instance can predict the viscosity of a gas (a macroscopic quantity) by 

consideration of particles, mean-free paths and so on. The state of a fluid can be described in 

terms of a number of ‘functions of state’, which in a simple fluid is two, for instance pressure 

and temperature; all other variables, for instance density or entropy, can be found from the 

equation of state. To include more complex fluids in terms of the mean molecular weight is not 

fixed, or the salinity in an ocean or water vapour concentration in the atmosphere, for example. 

These quantities are called intensive variables as they can be defined and measured at any 

particular point in space, as opposed to extensive variables such as volume or mass which are 

properties of a whole system. The velocity and the thermodynamic variables are functions of 

position r and time t. 
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PART –A(Online Examination) 

S.No. QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER 

1 

Which of the following statements is 

TRUE for an ideal gas, but not for a real 

gas? 

PV = nRT  

An increase in 

temperature 

causes an increase 

in the kinetic 

energy of the gas 

The total volume 

of molecules on 

a gas is nearly 

the same as the 

volume of the 

gas as a whole 

No attractive 

forces exists 

between the 

molecule of a 

gas 

PV = nRT  

2 

  The molecules of a gas moving through 

space with some velocity possesses what 

kind of energy? 

Translational 

energy 
Spin energy 

Rotational 

kinetic energy 

Sensible 

energy 

Translational energy 

3 
Molar specific heat at constant volume is 

Cv for a monoatomic gas is. 3/2 R 5/2 R 3R 2R 3/2 R 

4 

If the pressure in a closed vessel is 

reduced by drawing out some gas, the 

mean free path of the molecules. Is decreased 

Remains 

unchanged Is increased 

Increases or 

decreases 

according to 

the nature of 

the gas Is increased 

5 

 Cooking gas containers are kept in a lorry 

moving with uniform speed. The 

temperature of the gas molecules inside Increase Remain same Decrease 

Decrease for 

some, while 

increase for Remain same 



 

 

will.  others 

6 Volume of gas become four times if.  

Temperature 

become four 

times at 

constant 

pressure 

Temperature 

becomes two 

times at constant 

pressure 

Temperature 

become one 

fourth at 

constant pressure 

Temperature 

becomes half at 

constant 

pressure 

Temperature become four 

times at constant pressure 

7 Molecules of a gas behave like.  

Inelastic rigid 

sphere 

Perfectly elastic 

rigid sphere 

Perfectly elastic 

non-rigid sphere 

Inelastic non-

rigid sphere 

Perfectly elastic rigid 

sphere 

8 
At absolute zero temperature, pressure of 

a gas will be Zero Po * 273 

One atmospheric 

pressure Po * 76 Zero 

9 Boyle's law holds for an ideal gas during 

Isobaric 

changes Isochoric changes 

Isothermal 

changes 

Isotonic 

changes Isothermal changes 

10 Kinetic theory of gases provide a base for Charle’s law 

Charle’s law and 

Boyle’s law Boyle’s law stefans law 

Charle’s law and Boyle’s 

law 

11 In Boyle's law what remains constant. PV TV V/T V/T PV 

12 S.I. unit of universal gas constant is cal/°C J/molK J/mol J/kg J/molK 

13 
 At constant volume, temperature is 

increased. Then. 

Collision on 

walls will be 

less 

Collisions will be 

in straight lines 

Number of 

collisions per 

unit time will 

increase 

Collisions will 

not change 

Number of collisions per 

unit time will increase 

14 The specific heat of a gas 

Has only two 

values Cp and 

Cv 

Can have any 

value between 0 

and ∞ 

Has a unique 

value at a given 

temperature 

Depends upon 

the mass of the 

gas 

Has only two values 

Cp and Cv 

15 For Boyle's law to hold the gas should be. 

Perfect and of 

constant mass 

and temperature 

Perfect and at 

constant 

temperature but 

variable mass 

Real and of 

constant mass 

and temperature 

Real and at 

constant 

temperature 

but variable 

mass 

Perfect and of constant 

mass and temperature 

16 

Every gas (real gas) behaves as an ideal 

gas. 

At high 

temperature and 

low pressure 

At normal 

temperature and 

pressure 

At low 

temperature and 

high pressure low pressure 

At high temperature and 

low pressure 

17 According to kinetic theory of gasses at Water freezes Liquid helium Molecules Liquid Molecules motion stops 



 

 

absolute zero temperature freezes motion stops hydrogen 

freezes 

18 For an ideal gas Cp and Cv is grater than one less than one equal to one 

not equal to 

one less than one 

19 An ideal gas is that which can  Be solidified Liquefied Not be liquefied 

Not be 

solidified Not be liquefied 

20 Average kinetic energy of molecules is 

Directly 

proportional to 

square root of 

temperature 

Directly 

proportional to 

absolute 

temperature 

Independent of 

absolute 

temperature 

Inversely 

proportional to 

absolute 

temperature 

Directly proportional to 

absolute temperature 

21 Latent heat of ice is  

Less than 

external latent 

heat of fusion 

Equal to external 

latent heat of 

fusion 

More then 

external latent 

heat of fusion 

Twice the 

external latent 

heat of fusion 

More then external latent 

heat of fusion 

22 

The specific heat of a substance at its 

boiling point or melting point Is zero Is infinity Is negative 

Lies between 0 

and 1 Is infinity 

23 

Which of the following properties of gas 

molecule the one that is same for all ideal 

gases at a particular temperature is  Mass velocity momentum kinetic energy Mass 

24 Mean kinetic energy of perfect gas is 

Proportional to 

T 

Inverse 

proportional to T
2
 

Inverse 

proportional to 

T
-2

 

Inverse 

proportional to 

T
1/2

 Proportional to T 

25 

The motion of fluids and the forces acting 

on solid bodies immersed in fluids and in 

motion relative to them is called dynamics hydrodynamics statitics mechanics hydrodynamics 

26 

Temperature of a gas can be related to the 

…………….motion of the molecules external  boundary internal closed  internal 

27 Boltzmann's constant is  1.38 x 10-23 j/k 1.38 x 10-31 j/k 1.38 x 10-32 j/k 

1.38 x 10-19 

j/k 1.38 x 10-23 j/k 

28 The word kinetic refers to locomotion vibration  motion resonance motion 



 

 

29 In gases the particles are 

closely 

packed 

not free to 

move 

regularly 

packed far apart far apart 

30 Gases have 

low density and 

mass 

high density and 

mass 

high density but 

low mass 

low density but 

high mass low density and mass 

31 

what does the Kinetic theory of gases 

describe?  

small no of 

small particles 

in constant 

randam motion 

large no of small 

particles in 

constant randam 

motion 

large no of small 

particles in 

accelerating 

randam motion 

large no of 

large particles 

in constant 

randam motion 

large no of small particles 

in constant randam 

motion 

32 

which experiment shows how kinetic 

theory works? g by freefall brownian motion pin hole camera 

refration of 

light brownian motion 

33 

what forces are assumed to exist between 

particles in a gas attractive repulsive both no force no force 

34 Kinetic is a / an latin word roman word greek word arabic word greek word 

35 

Which one of the following have the 

highest volume? solid  

Liquid helium 

freezes gas Gel gas 

36 Gases are 

very 

compressible 

very little 

compressible incompressible not possible very compressible 

37 The three states of matter depend on 

Temperature 

become four 

times at 

constant 

pressure force potential energy biomass Temperature  

38 The term fluids is used for liquid only gases only liquid and gass gel only liquid and gas 

39 
Why are liquids and gases termed as 

fluids? Because they can flow 

they have 

irregular shape 

they have 

randomly 

moving  

they are 

compressible they can flow 

40 
The Brownian Motion was discovered by 

the scientist albert brown John brown robert brown issac brown John brown 

41 
If the car tires are hot, the pressure of gas 

molecules in them would be high low 

same as before 

heating 

may be high or 

low high 

42 Gas can exert pressure on wall force on the base pressure in solid force in liquid pressure on wall 



 

 

43 
The random motion of smoke or gas 

particles in the air is termed as brueian motion brownian motion radom motion static brownian motion 

44 
All of the following are basic assumptions 

of the kinetic theory except: 

matter is 

composed of 

very tiny 

particles 

when individual 

particles collide, 

they undergo no 

exchange of 

kinetic energy 

the total kinetic 

energy of 

colliding 

particles remains 

constant 

the particles of 

matter are in 

continual 

motion 

when individual particles 

collide, they undergo no 

exchange of kinetic 

energy 

45 

For a gas, which pair of variables are 

inversely proportional to each other (if all 

other conditions remain constant)? P,T P,V V,T n,V P,T 

46 
The behavior of gases can be fully 

determined by 1 law 2 law 3 law 4 law 4 law 

47 Solid and liquids have 

Only one value 

of specific heat  

Two value of 

specific heat  

Three value of 

specific heat 

No value of 

specific heat 

Only one value of specific 

heat  

48 The term N.T.P stands for 

Nominal 

temperature and 

pressurre 

Natural 

temperature and 

pressure 

Normal 

temperatuere and 

pressure 

Normal 

thermodynamic 

pressure 

Normal temperatuere and 

pressure 

49 
Boyle’s law ie, PV = constant is 

applicable to gases under 

All ranges of 

pressures  

Only small range 

of pressures  

Steady change of 

pressures  

Atmospheric 

conditions 

Only small range of 

pressures  

50 The term N.T.P stands for 

Nominal 

temperature and 

pressure  

Natural 

temperature and 

pressure  

Normal 

temperature and 

pressure 

Normal 

thermodynamic 

pressure 

Normal temperature and 

pressure 

51 
M.B. distribution can be applicable to 

_________ 

identical 

molecule 

indistinguishable 

molecule gas liquid identical molecule 
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UNIT-III 

Classical Statistical Mechanics: Maxwell Boltzmann distribution law: Evaluation of constants - 

Maxwell’s law of distribution of velocities - Most probable speed, Average speed, Root mean 

square speed - Principle of equipartition of energy - Partition function - Condition for applicability 

of M.B statistics - Non degenerate and degenerate systems - Maxwell velocity distribution in a 

given direction - Total internal energy of an ideal gas - Molar heat capacity of a gas at constant 

volume – Entropy - Helmholtz free energy - Pressure and equation of state of an ideal gas - 

Limitation of M.B method. 
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Maxwell –Boltzmann Momentum Distribution Law for an Ideal Gas 

The Maxwell –Boltzmann equation for distribution of energy among the molecules of an 

ideal gas is 

n(E)dE=
2𝜋𝑁

(𝜋𝐾𝑇 )3/2Ee 
1/2

e
-E/KT

dE                                --------------------(1) 

All the energy of the gas in the form of  K E of its molecules .Therefore 

    E=
1

2
mv

2
=(

(𝑚𝑣 )2

2𝑚
=

𝑝2

2𝑚
                                         -----------------------(2) 

Taking differential of this eqn.. 

  dE=
𝑝

𝑚
dp                                                              -----------------------(3) 

sub..the expression for E and dE in eq(1), the number of molecules n(p)dp  whose momentum lie 

between p and p+dp is  

  n(p)dp=
2𝜋𝑁

(𝜋𝐾𝑇 )3/2.(
𝑝2

2𝑚
)

1/2.
e

-p2/2mKT.(
𝑝

𝑚
)dp 

   =
4𝜋𝑁

(2𝜋𝑚𝐾𝑇 )3/2.p
2
e

-p2/2mKT.
dp                    ---------------------(4) 

 This eq. is known as Maxwell –Boltzmann law of distribution of momenta among the 

molecules of an Ideal Gas. 

Evaluation of constant 

 The total number N of the particles in the system is given by  

N = Σrnr =  𝑒−𝛼
𝑟 gre

-Er/kT 

=
 𝑒−𝛼Σr gre

-Er/kT 

=A Σr gre
-Er/kT

                         -------- (1) 

Where      A=𝑒−𝛼  
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From eq. (1)    A = 
𝑁

 gr   e
−Er
kTr

 

For continuous variation of energy of free particles of an ideal gas, gr is replaced by g(E) dE, Er 

is replaced by E and the sign of summation is replaced by the sign of integration.  

A = 
𝑁

g E dEe
−Er
kT

∞

0
                                ----------- (2) 

 The limits of integration are taken from 0 to ∞ because energy of the particles of an ideal 

gas is entirely kinetic and so they can have any K.E. The value of g(E) dE for particles with no 

spin is given by  

g(E) dE = 2πV  
2𝑚

ℎ2  
3/2

𝐸1/2dE 

The integral in eq. (2) is evaluated as follows: 

I =  𝑔(𝐸)
∞

0
𝑒−𝐸/𝑘𝑇𝑑𝐸 

= 2πV  
2𝑚

ℎ2  
3/2

 𝐸1/2∞

0
𝑒−𝐸/𝑘𝑇𝑑𝐸 

Let E/kT = x, then E=kTx 

Therefore dE = kTdx 

I = 2πV  
2𝑚

ℎ2  

3

2
  𝑘𝑇𝑥 

1

2
∞

0
𝑒−

𝑥

𝑘𝑇 (𝑘𝑇)𝑑𝑥 

= 2πV  
2𝑚𝑘𝑇

ℎ2  

3

2
  𝑥 

1

2
∞

0
𝑒−𝑥𝑑𝑥 

= 2πV  
2𝑚𝑘𝑇

ℎ2  

3

2
  𝑥 

3

2
−1∞

0
𝑒−𝑥𝑑𝑥 

The integral on the R.H.S of this equation is a gamma-function defined as  

  𝑥 𝑛−1∞

0
𝑒−𝑥𝑑𝑥 = Γ (n) 

Therefore   𝑥 
3

2
−1∞

0
𝑒−𝑥𝑑𝑥 = Γ(3/2) = ½ √π 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: I M.Sc Physics               COURSE NAME: Thermodynamics And Statistical Mechanics 

   COURSE CODE: 18PHP201        UNIT: III      BATCH-2018-2020 
 

Prepared by Dr.S.Sharmila, Asst Prof, Department of Physics, KAHE  4 | 22 

I = 2πV  
2𝑚𝑘𝑇

ℎ2  

3

2
 x ½ √π  = V  

2𝜋𝑚𝑘𝑇

ℎ2  

3

2
 

Sub. the value of this integral in eq. (2), 

A =e
-α

= 
𝑁

𝑉
  

ℎ2

2𝜋𝑚𝑘𝑇
 

3/2

            -------- (3) 

The constant A i.e., e
-α 

is called degeneracy parameter 

Taking log on both sides, -α = log  
𝑁

𝑉
  

ℎ2

2𝜋𝑚𝑘𝑇
 

3/2

         ------------ (4) 

Maxwell –Boltzmann speed Distribution Law 

The Maxwell –Boltzmann equation for distribution of energy among the molecules of an 

ideal gas is  

  n(E)dE=
2𝜋𝑁

(𝜋𝐾𝑇 )3/2E
1/2

e
-E/KT

dE            -----------------------(1) 

A classical ideal gas is defined as an assembly of non-interacting molecules, each 

distinguishable from the other. Therefore, the molecules have no internal degrees of freedom, all 

the energy of the gas in the form of kinetic Energy of the molecules. 

  E=
1

2
mv

2
=

1

2
m(v

2
x+v

2
y+vz

2
)                --------------------------(2) 

  dE=mvdV                                        --------------------------(3) 

Substitute the expression for E and dE in eq(1), the number of molecules n(v)dv whose 

speeds lie in between v and v + dv is given by 

  n(v)dv=
2𝜋𝑁

(𝜋𝐾𝑇 )3/2 (
1

2
mv

2
)

1/2
e

-mv2/2KT
mv dv 

                                   =4𝜋𝑁(
𝑚

2𝜋𝐾𝑇
)

3/2
 v

2
e

-mv2/2KT
dv             -------------------(4) 

This eq. is known as the Maxwell of Maxwell –Boltsmann law of distribution speeds 

among the molecules of a gas .In this equation n(v) is the number of molecules per unit speed 

range .Therefore , the unit of n(v) is molecules /(m/sec). 
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Discussion of the law: 

 The curves for n(v) plotted against v at three different temperatures T1,T2,T3 where 

T1<T2<T3 

From the distribution curves we get the following conclusions. 

(1)At any temperature there is no molecules having zero speed. 

(2) As the speed increases the no of molecules in a given speed interval ∆𝜈 increases upto a 

certain maximum value. 

(3)  As the speed further increases beyond vp , n(p) decreases exponentially towards zero. It 

means according to classical physical a molecules can have a infinite speed. 

(4) As the temperature increases, vp increases, and the range of speed is greater .Hence the curve 

become broad. 

(5) At the given temperature the area under the distribution curves is equal to the total number of 

molecules in the gas .Thus 

               N= 𝑛 𝑣 𝑑𝑣
∞

0
 

Since the area must be same at all the temperature, the distributive curve must flatten as 

the temperature rises. 

Most Probable, Average and root mean square speed 

Most Probable speed, vp: 

 The most probable speed of the molecules is that speed at which the number of molecules 

per unit range of speed is maximum. 

 From the M-B distribution law for the molecular speeds the number of molecules per unit 

range of speed is given by  

n (v) = 4πN  
𝑚

2𝜋𝑘𝑇
 

3/2

 v
2𝑒

−𝑚𝑣 2

2𝑘𝑇                                 --------- (1) 
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Taking logarithm of both sides of this equation 

log n (v) = log  4𝜋𝑁  
𝑚

2𝜋𝑘𝑇
 

3/2

  + 2 log v - 
𝑚𝑣 2

2𝑘𝑇
 

by dif.this equation with the respect v, 

1

n v 

dn  v 

dv
=0+

2

v
  -

mv

KT
 

                                              
𝑑𝑛  𝑣 

𝑑𝑣
 = -n (v)  

𝑚𝑣

𝑘𝑇
−

2

𝑣
                    --------- (2) 

At the most probable speed v=vp the number of molecules n(v) is maximum 

 
𝑑𝑛 𝑣 

𝑑𝑣
 
𝑣𝑝

= 0 

From eq. (2) 

𝑚𝑣𝑝

𝑘𝑇
 - 

2

𝑣𝑝
 = 0 

From this eq.      vp =  
2𝑘𝑇

𝑚
                  ----------- (3) 

= 1.414  
𝑘𝑇

𝑚
 

Average speed: 

 The number of molecules whose speeds lie between v and v+dv is n (v) dv. The total 

speeds of these molecules is v n (v)dv, and the total number the molecules is N. Since the 

molecules is distributed among all velocities from 0 to ∞, the average speed is given by  

ṽ =
1

𝑁
 𝑣 𝑛  𝑣  𝑑𝑣

∞

0

                            − − − − −  4  

= 
1

𝑁
 𝑣 4𝜋𝑁  

𝑚

2𝜋𝑘𝑇
 

3/2

 𝑣2  𝑒
−𝑚𝑣 2

2𝑘𝑇 𝑑𝑣
∞

0
 

= 4π  
𝑚

2𝜋𝑘𝑇
 

3/2

 𝑣3  𝑒
−𝑚𝑣 2

2𝑘𝑇 𝑑𝑣
∞

0
                      ----------- (5) 
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Let mv
2
 / 2kT  = x 

Then                v =  
2𝑘𝑇

𝑚
 

1/2

x
1/2  

dv =  
2𝑘𝑇

𝑚
 

1

2
(

1

2
)x

-1/2 
dx 

Sub. these values in eq. (5),  

ṽ =   4π  
𝑚

2𝜋𝑘𝑇
 

3/2

  
2𝑘𝑇

𝑚
 

3/2∞

0
x

3/2
 e

-x
  

2𝑘𝑇

𝑚
 

1

2
 (

1

2
)x

-1/2 
dx 

= 2/√π 
2𝑘𝑇

𝑚
 

1

2
 𝑥 𝑒−𝑥𝑑𝑥

∞

0
 

=  
8𝑘𝑇

𝑚
 

1

2
 𝑥2−1  𝑒−𝑥𝑑𝑥

∞

0
                       ----------- (6) 

The integral term in gamma function defined by 

 𝑥𝑛−1  𝑒−𝑥𝑑𝑥
∞

0
 = Γ (n) 

 𝑥2−1  𝑒−𝑥𝑑𝑥
∞

0
 = Γ (2) = 1.Γ (1) =1.1 = 1 

Hence, ṽ =   
8𝑘𝑇

𝜋𝑚
                                -------- (7) 

= 1.596 
𝑘𝑇

𝑚
 

Root mean square 

 The number of molecules whose speed is between ν and ν + dν is n (ν) dν. The sum of the 

squares of the speeds of these molecules is ν
2
 n (ν) dν, and the total number of molecules is N. 

Since the total number of molecules is distributed among all these from 0 to ∞, the mean square 

speed is given by 

ṽ
2=

1

𝑁
 𝑣 𝑛  𝑣  𝑑𝑣

∞

0
                              --------- (8) 
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= 
1

𝑁
 𝑣2  4𝜋𝑁  

𝑚

2𝜋𝑘𝑇
 

3/2

 𝑣2  𝑒
−𝑚𝑣 2

2𝑘𝑇 𝑑𝑣
∞

0
 

= 4π  
𝑚

2𝜋𝑘𝑇
 

3/2

 𝑣4  𝑒
−𝑚𝑣 2

2𝑘𝑇 𝑑𝑣
∞

0
                      ----------- (9) 

Let mv
2
 / 2kT  = x 

Then                v =  
2𝑘𝑇

𝑚
 

1/2

x
1/2  

dv =  
2𝑘𝑇

𝑚
 

1

2
(

1

2
)x

-1/2 
dx 

Sub. these values in eq. (5),  

ṽ
2=   4π  

𝑚

2𝜋𝑘𝑇
 

3/2

  
2𝑘𝑇

𝑚
 

2∞

0
x

2
 e

-x
  

2𝑘𝑇

𝑚
 

1

2
 (

1

2
)x

-1/2 
dx 

= 
4

√𝜋
(
𝑘𝑇

𝑚
)  𝑥

5

2
−1  𝑒−𝑥𝑑𝑥

∞

0
                                 ----------- (10) 

The integral term in gamma function defined by 

 𝑥
5

2
−1 𝑒−𝑥𝑑𝑥

∞

0
 = Γ (5/2) = 3/2 x ½  x √𝜋  = 

3√𝜋

4
 

Hence, ṽ
2
 = 

4

√𝜋
(
𝑘𝑇

𝑚
) 

3√π  

4
= 

3𝑘𝑇

𝑚
 

𝜈𝑟𝑚𝑠 = √ṽ2 =   
3𝑘𝑇

𝑚
                                  -------- (11) 

= 1.732 
𝑘𝑇

𝑚
 

Thus νp < ṽ <𝜈𝑟𝑚𝑠  

Principles of Equipartition of Energy: 

 The total energy of a particle of a system in thermodynamic equilibrium can be expressed 

as the sum of independent squared terms in position and momentum coordinates. For example, 
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the K.E. E of a free particle of mass , m which has velocity v and momentum p can be expressed 

as  

E = 
𝑝𝑥

2+ 𝑝𝑦
2+𝑝𝑧

2

2𝑚
                   ------------ (1) 

 For a particle of mass m moving with simple harmonic motion along the x-axis, the total 

energy  

E = 
𝑝𝑥

2

2𝑚
+

1

2
𝐶𝑥2

             ---------------- (2) 

where C is the force constant per unit displacement from the mean position. Each independent 

squared term in the expression for the energy of a particle is said to give rise to one degrees of 

freedom of the particles. Thus a free particle has three degrees of freedom, and a particle moving 

with a linear simple harmonic motion has two degrees of freedom. 

The principle of equipartition of energy is stated as follows: 

 When a system in a thermodynamic equilibrium at absolute temperature  T, the mean 

value of each quadratic term in either a position or a momentum coordinate, which occurs in the 

total energy of the particle is (1/2)kT. 

The principle may also be stated as follows: 

 When a system is in thermodynamic equilibrium at absolute temperature  T, the mean 

energy of a particle in the system is distributed equally among its various degrees of freedom and 

for each of them it is (1/2)kT. 

 The principle was first deduced by Maxwell in 1959 for the energy of translational 

motion of a free particle. Boltzmann later showed that the principle is true for the energies of the 

rotation and vibration also. Rigorous proof’s from statistical mechanics were given later by other 

workers. 

Proof of the Principles: 

 We will prove the principle by finding the mean value of the term 
𝑝𝑥

2𝑚
 in the expression 

for the energy of a particle in a linear S.H.M. along the X-axis. 
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The mean value of 
𝑝2

2𝑚
 at equilibrium is given by 

     
𝑝2

2𝑚
   = 

      
𝑝2

2𝑚
 𝑒

−
𝐸

𝑘𝑇  
 
𝑑𝑥𝑑𝑦𝑑𝑧𝑑 𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧

      𝑒
−

𝐸
𝑘𝑇  

 
𝑑𝑥𝑑𝑦𝑑𝑧𝑑 𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧

  

Where E is the total energy. 

Writing the exponential term as 

𝑒−
𝐸

𝑘𝑇  
 
 = 𝑒− (

𝑝𝑥
2

2𝑚
+ 𝐸𝑜)/𝑘𝑇  

 

= 𝑒− 
𝑝𝑥

2

2𝑚𝑘𝑇
 +   𝑒−𝐸𝑜/𝑘𝑇  

Where E0 is the contribution to the total energy due to all the coordinates and momenta expect 

Px, we get 

  
𝑝𝑥

2

2𝑚
  =  

 
𝑝𝑥

2

2𝑚 𝑒− 
𝑝𝑥

2

2𝑚𝑘𝑇
    𝑑𝑝𝑥       𝑒−

𝐸𝑜
𝑘𝑇  

 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑦𝑑𝑝𝑧

 𝑒− 
𝑝𝑥

2

2𝑚𝑘𝑇
    𝑑𝑝𝑥      𝑒−

𝐸𝑜
𝑘𝑇  

 𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑦𝑑𝑝𝑧

 

Cancelling the five –fold integral in the numerator and denominator, we obtain 

  
𝑝𝑥

2

2𝑚
  =

1

2𝑚

 𝑝𝑥
2𝑒

− 
𝑝𝑥

2

2𝑚𝑘𝑇
    

𝑑𝑝𝑥
∞
−∞

 𝑒
− 

𝑝𝑥
2

2𝑚𝑘𝑇
    

𝑑𝑝𝑥
∞
−∞

                    -------- (3) 

Let, 
𝑝𝑥

2

2𝑚𝑘𝑇
=u

2
 

So that px = √(2mkT) u  

dpx = √(2mkT) du 

hence,   
𝑝𝑥

2

2𝑚
  =

1

2𝑚

 (2mkT ) u2𝑒−𝑢2     √(2mkT ) du
∞
−∞

 𝑒−𝑢2     √(2mkT ) du
∞
−∞

 

= kT . 
 u2𝑒−𝑢2      du
∞
−∞

 𝑒−𝑢2      du
∞
−∞

                         ----------- (4) 

now evaluate the integral in the numerator. 
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I=  u2𝑒−𝑢2      du
∞

−∞
=   𝑢. (𝑢𝑒−𝑢)2      du

∞

−∞
 

Integrating by parts, we obtain 

I= u  𝑢 𝑒−𝑢2     𝑑𝑢 −   
𝑑𝑢

𝑑𝑢
.  𝑢 𝑒−𝑢2      𝑑𝑢 𝑑𝑢 

= - ½  𝑢𝑒−𝑢2       +1/2  𝑒−𝑢2     𝑑𝑢
∞

−∞
 

It can be shown that the first term is zero at both the limits. Hence  u2𝑒−𝑢2      𝑑𝑢
∞

−∞
 = ½ 

 𝑒−𝑢2      𝑑𝑢
∞

−∞
. Sub this in eq. 4,   

𝑝𝑥
2

2𝑚
  =

1

2
𝑘𝑇                              --------- (5) 

By a similar proof we can shoe that the mean value (1/2)C x
2
 is (1/2) kT. Thus the mean 

energy of one- dimension harmonic oscillator is 

  
𝑝𝑥

2

2𝑚
  +  

1

2
𝐶  𝑥2  = ½ kT + ½ kT = kT 

In the case of a free particle of the total K E 

E = 
𝑝𝑥

2+𝑝𝑦
2+𝑝𝑧

2

2𝑚
 

The mean energy is 

  
𝑝𝑥

2

2𝑚
  +   

𝑝𝑦
2

2𝑚
  +   

𝑝𝑧
2

2𝑚
  =

1

2
𝑘𝑇 +

1

2
𝑘𝑇 +

1

2
𝑘𝑇 =

3

2
𝑘𝑇 

Limitation of the principle of equipartition of Energy: 

  Theoretical values of the specific heat capacities of substances calculated from the 

equipartition of energy show that they should be independent of the temp. But the experimental 

result shows that the conclusion is not true. The effect of temperature on the specific heat 

capacity is considerable. The specific heat capacity increases with increase in temperature, and it 

decreases when the temperature is lowered. At low temperatures its rate of decrease with 

decrease of temperature is large both for solids and gases. The effect cannot be explained in any 

way by classical mechanics and the equipartition principle. 
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Partition function Z 

N = e
-α

Σrgre
-E/kT

 

                                                                  =A gre−E/kT
𝑟                                   --------- (1) 

Where A = e
-α

 

The summation in eq. (1) is taken over all integrals of r corresponding to all possible 

energy states of the particles. The summation term is called the partition function or the sum over 

states and is denoted by the symbol Z. Thus  

Z =  gre−E/kT
𝑟                          ------------- (2) 

Now in terms of Z, eq. (1) is written as N = AZ = e
-α

Z                      ------------ (3) 

Using this relation the Maxwell-Boltzmann distribution law nr = e
-αgre−E/kT

 

Is written in the form  

nr = N/Z x gre−Er /kT
                                  ----------- (4) 

the multiplier α can be expressed as follows 

e
-α

 = N/Z  

-α = log (N/Z) = -log (Z/N)                      ----------------- (5a) 

α = -log (N/Z) = log (Z/N)                              ------------------ (5b) 

Evaluation of Z 

Z = N/A = 
𝑁

𝑁

𝑉
  

ℎ2

2𝜋𝑚𝑘𝑇
 

3/2  

= V   
2𝜋𝑚𝑘𝑇

ℎ2  
3/2

                      ------------ (6) 

This equation gives the value of the partition function for an ideal gas consisting of mono 

atomic having no spin 
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Condition for applicability of the Maxwell-Boltzmann statistics 

 The M-B statistics is applicable to a system of identical particles which do not interact 

with each other directly except during their collisions. The condition whether neutral particles in 

a system will interact with each other or not determined by calculating their de Broglie 

wavelength.  

If the wavelength is smaller than the mean distance between the particles, then the 

particles will not interact. Thus if λ is the de Broglie wavelength and d the mean distance 

between the particles, the condition for application of M-B statistics is λ < d                   ------- (1) 

 To express this condition in terms of the degeneracy parameter e
-α

 the expression for d 

and λ. 

The volume per particle = V/N 

Therefore the mean distance d between the particles is  

d=(V/N)
1/3

          -------- (2) 

The mean K.E. of the particles is (3/2) kT. Therefore, the corresponding momentum p is given 

by  

𝑝2

2𝑚
=

3

2
𝑘𝑇 

p = √(3mkT) 

and λ = h/p = h / √ (3mkT) 

=  
ℎ2

3𝑚𝑘𝑇
 

1/2

          -------- (3) 

Sub. the values of d and λ in condition (1), 

 
ℎ2

3𝑚𝑘𝑇
 

1/2

<   
𝑉

𝑁
 

1/3

  

Or     
ℎ2

3𝑚𝑘𝑇
 

3/2

< (𝑉/𝑁) 
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Or  
ℎ2

3𝑚𝑘𝑇
 

3

2
(𝑁/𝑉) <  1 

Multiplying by (3/2π)
3/2

, 

(3/2π)
3/2

 x  
ℎ2

3𝑚𝑘𝑇
 

3

2
 
𝑁

𝑉
 <(3/2π)

3/2 

 
ℎ2

3𝑚𝑘𝑇
 

3
2

 
𝑁

𝑉
 < 0.33 

Or                    e
-α 

<< 1 

Or                     A<<1
 

Non –degenerate and degenerate systems 

 If the number of particles, nr in an energy level Er is much less than the number of 

quantum states, gr available in the same energy  level i.e,, if nr<<grthe system of particles is said 

to be non degenerate. 

 If nr is greater than gr i.e, if nr>gr the system is said to be degenerate. 

 If nr is much greater than gr,i.e,, if nr>> gr the system is said to be strongly  degenerate. 

The degeneracy parameter A(𝑒−𝛼 ) is given by 

                                                  A=𝑒−𝛼 =
𝑛𝑟

𝑔𝑟
𝑒−𝛽𝐸  

If we consider the ground state as a zero, then 

   A=𝑒−𝛼=
𝑛0

𝑔0
 

Therefore in terms of A is foregoing conditions are as follows: 

1. If A<<1, the system is non-degenerate. 

2. If A>1, the system is degenerate. 

3. If A >>1, the system is strongly degenerate. 
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Maxwell velocity distribution in a given direction 

In a system of an ideal gas the number of molecules having velocity components in the 

range between vxand vx+dvx, vy and vy+dvy and vz and vz+dvz is given by  

n (vx, vy, vz) dvx dvy dvz = [f (vx, vy, vz)] [g(vx, vy, vz) dvx dvy dvz]                 ------- (1) 

  The first term on the R.H.S of this equation is the distributed function for the velocity 

components, i.e., it is the number of molecules each having the velocity components vx vy vz per 

quantum state in the energy level E. The second term is the number of quantum states within the 

velocity space dvx dvy dvz. These terms are obtained as follows.  

f (E) = 
𝑁

𝑉
 (

ℎ2

2𝜋𝑚𝐾𝑇
)3/2 e

-E/kT     
               ------- (2) 

Assuming that each molecule has only three degrees of freedom due to its motion of 

translation, the K.E of each molecule is given by  

E = ½ mv
2
 

= ½ m (vx
2
 + vy

2
 + vz

2
)       ------- (3) 

From eq. (2), f (vx, vy, vz) = 
𝑁

𝑉
 (

ℎ2

2𝜋𝑚𝐾𝑇
)3/2 e

- m (v
x
2 + v

y
2 + v

z
2)/kT 

         ----------- (4)
    

                

The volume of one quantum state in the momentum space is h
3
/V, where V is the 

physical volume of the system. 

Therefore the number of quantum states in volume dpx dpy dpz of momentum space. 

 = V/h
3
 dpx dpy dpz 

= m
3
V/h

3
 dvx dvy dvz 

Hence g (vx, vy, vz) dvx dvy dvz = m
3
V/h

3
 dvx dvy dvz             --------- (5) 

Sub. Eq. (4) and (5) into (1) 

n (vx, vy, vz) dvx dvy dvz = 
𝑁

𝑉
 (

ℎ2

2𝜋𝑚𝐾𝑇
)3/2 m

3
V/h

3
 e

- m (v
x
2 + v

y
2 + v

z
2)/kT

 dvx dvy dvz 
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Simplifying this equation,  

n (vx, vy, vz) dvx dvy dvz = 𝑁 (
𝑚

2𝜋𝐾𝑇
)3/2 x e

- m (v
x
2 + v

y
2 + v

z
2)/kT

 dvx dvy dvz                         -------- (6) 

Now the number n (vx) dvx of molecules, having x component of velocity in the range 

between vx and vx+dvx is obtained by integrating eq. (6) over all possible values of vy and vz. 

n (vx) dvx =  [𝑛 (
∞

−∞

∞

−∞
 vx, vy, vz)dvx] dvy dvz 

 = 𝑁 (
𝑚

2𝜋𝐾𝑇
)3/2 e

-mv
x
2
/
2kT e

∞

−∞

−mv y2/2kT
 e
∞

−∞

−mv y2/2kT
 

The definite integrals are standard integrals, the value of each being  

[(2πkT)/m]
1/2

 

Sub. this value in above equation , 

n (vx) dvx = 𝑁 (
𝑚

2𝜋𝐾𝑇
)3/2(

2𝜋𝐾𝑇

𝑚
) e

-mv
x
2
/
2kT 

dvx 

= 𝑁 (
𝑚

2𝜋𝐾𝑇
)1/2 e

-mv
x
2
/
2kT 

dvx            ---------- (7) 

This equation gives the number of molecules having x component of velocity in the range 

between vx and vx+dvx. Eq. (7) shows that the velocity component vx is distributed 

symmetrically about the value vx = 0. 

Total internal energy of an ideal gas 

 The total internal energy of an ideal gas is given by  

U =  𝐸 𝑛(𝐸)𝑑𝐸
∞

0
             -------- (1) 

=  𝐸  
2𝜋𝑁

 𝜋𝑘𝑇  3/2  𝐸
1

2𝑒−
𝐸

𝑘𝑇𝑑𝐸 
∞

0
 

=
2𝜋𝑁

 𝜋𝑘𝑇  3/2      𝐸
3

2𝑒−
𝐸

𝑘𝑇𝑑𝐸 
∞

0
         ----------- (2) 

Let E/kT = x, so that E = kTx 
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Therefore dE = kTdx 

Sub. These values in eq. (2) get 

=
2𝜋𝑁

 𝜋𝑘𝑇  3/2
 𝑘𝑇 3/2𝑘𝑇   𝑥3/2∞

0
 e

-x
 dx 

=   
2𝑁𝑘𝑇

√𝜋
       𝑥

5

2
−1  

∞

0
 e

-x
dx                          ------- (3) 

The integral is the gamma function 

Γ (5/2) = 3/2 Γ (3/2) = 3/2 x ½ x √π = 3√π / 4 

Sub. This value in eq. (3) ,  

U = 
2𝑁𝑘𝑇

√𝜋
 ×  

3√𝜋

4
 = 

3

2
 NkT                     ----------- (4) 

From this equation, the average internal energy per molecule is given by U / N = 
3

2
 kT     ------ (5) 

 For 1 mole of an ideal gas, N is Avagadro‘s number and the value of U is given by eq. (4) 

is the total internal energy of one mole of an ideal gas. 

Molar Heat Capacity of a gas at Constant Volume 

 The molar heat capacity Cv, of a gas at constant volume is defined as the quantity of heat 

required to raise the temperature of 1 mole of the gas through 1 degree, at constant volume. 

According to the definition  

  Cv=(
𝜕𝑈

𝜕𝑇
)V 

                                =
𝜕

𝜕𝑇
(

3

2
NKT)=

3

2
NK                                                      -------------------(1) 

                           Cv=
3

2
 N(

𝑁

𝑅
)= 

3

2
R                                                            --------------------(2) 

Where R is the gas constant for one mole. 
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Entropy 

 According to Boltzmann’s relation, the entropy S of an isolated system of non-interacting 

particles in equilibrium is given by  

S = k log Wmax                      ------- (1) 

Where Wmax is the maximum number of statistically independent ways of distributing the 

particles among the quantum states. From the M-B count,  

log W = N log N –N + Σr nr (log gr – log nr +1) 

= N log N – N + Σr nr log (gr/nr) + N 

= N log N - Σr nr log (nr/gr) 

For maximum value of W 

nr/gr = e
-(α+βE

i
) 

Therefore,       log Wmax = N log N + Σr nr (α+βEr) 

= N log N +α Σr nr +β Σr nrEr 

= N log N + αN + βU                             ----------- (2) 

Where U is the total internal energy  

Sub. β = 1/kT and α = log (Z/N) 

Where Z is the partition function, 

log Wmax = N log N + N log 
𝑍

𝑁
+  

𝑈

𝑘𝑇
 

= 
𝑈

𝑘𝑇
+  𝑁 log𝑍    ---------- (3) 

Sub. this value of log Wmax in eq. (1), 

S = U/T + Nk log Z             ----------(4) 
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For an ideal gas,     U = 
3

2
 NkT  and Z = V  

2𝜋𝑚𝐾𝑇

ℎ2  

3

2
 

According to M-B count, the entropy of an ideal gas is  

S = 
3

2
 Nk + Nk log 𝑉   

2𝜋𝑚𝐾𝑇

ℎ2  

3

2
                -------- (5) 

Helmholtz Free Energy 

The Helmholtz Free Energy F of a system of particles is defined by  

   F=U-TS                                                   ----------------(1) 

The entropy of a system is given by  

   S=
𝑈

𝑇
+NK+NK log

𝑍

𝑁
 

Subs this value in eq (1)  

   F=U-T[
𝑈

𝑇
+NK+NK log

𝑍

𝑁
] 

      =-NKT(𝑙𝑜𝑔
𝑍

𝑁
 +1)                                 ----------(2) 

                                              =-NKT[log𝑍 − log𝑁+1]               ----------- (3) 

Eq(3) can be expressed in  

    F=- NKTlog𝑍 + NKT log 𝑁 − 𝑁𝐾𝑇        

     =-NKT log𝑍+KT(N log𝑁 − 𝑁) 

                                              =-NKT log𝑍+KT log𝑁! 

Pressure and Equation of State of an Ideal gas                              

                              The Helmholtz free energy F is  

   F=U-TS 

Taking differential 
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   dF=dU-TdS-SdT                         --------------------(1) 

from the first and second law of thermodynamics for a reversible process we get 

   dU=TdS-PdV 

                                             or dU-TdS=-pdV                     -----------------(2) 

Therefore eq (1)  

                                      dF=-pdV-SdT                                   -----------------(3) 

This equation shows that F is a function of the independent variable V and T  

   F=f(V,T) 

Therefore 

                                        dF=(
𝜕𝐹

𝜕𝑉
)T dV + (

𝜕𝐹

𝜕𝑉
)V dT               ---------------------(4) 

Equating the co efficient of dV in eq(3) and (4) we get  

                                        P=-(
𝜕𝐹

𝜕𝑉
)T                                                      ------------------------(5) 

An expression for F is  

                                         F=-NKT [log𝑍 − log𝑁 + 1] 

From eq(5) we get  

                                          P=NKT (
𝜕 log 𝑍

𝜕𝑉
)T                             ----------------------(6)      

For an ideal monatomic gas the partition function z is given by 

  Z=V(
2𝜋𝑚𝐾𝑇

ℎ2 )
3/2 

By taking log to base e  

                                                           log𝑍 = log𝑉+
3

2
log(

2𝜋𝑚𝐾𝑇

ℎ2 ) 
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By diff. partially we get  

  
𝜕 log 𝑍

𝜕𝑉
=

1

𝑉
 

subs this value  in eq(6) 

   P=
𝑁𝐾𝑇

𝑉
                                                     ----------------------(7) 

In this equation K is Boltzmann’s constant (1.38x10
-23

J/K),and for 1 mole of a gas N is 

Avogardro’s number(6.023 x10
23

/mol).Therefore, for one mole the product NK is the same for 

all gases. This constant is called molar gas constant denoted by the symbol R. So for 1 mole of a 

gas eq(7) in the form 

   PV=RT                                          ---------------------(8) 

 This equation for one mole of an ideal gas is called the equation of state for the gas. The 

numerical value of R is 

   R=Nk=(6.023 X10
23

/mol)(1.38 x10
-23 

J/K) 

   =8.31 J/mol K 

Limitations of Maxwell-Boltzmann Method 

The method has several limitations, some of them are 

1. It is applicable to only isolated gas of identical molecules in equilibrium, for which the 

following conditions are satisfied. 

i. The mean potential energy due to interaction b/w the molecules are very small 

compared to their mean K E. 

ii. The gas is dilute i.e, the number of molecules per unit volume is small, so the 

average separation between the molecules is large and hence individual 

molecules can be distinguished. 

Therefore, important results, such as the expression for u, cv and p, obtained by this method 

are the same as those delivered by applying a simple kinetic theory. 
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2. The expression for the Maxwell-Boltzmann count does not give the correct expression for 

the entropy of an ideal gas, and leads to Gibbs’paradox. To resolve the Paradox the 

expression must be divided by N!. 

3. In the expression for the entropy of an ideal gas 

S=NKlog[(
2𝜋𝑚𝐾𝑇

ℎ2 )𝑒5/2] 

if we put  T=0, we get 

                                          S=NKlog 0=-∞. 

Thus the expression for S does not satisfy the third law of thermodynamics which may be 

started as follows: Every substance has a finite positive entropy, but an absolute zero of 

temperature the entropy may become zero, and it becomes zero in case of perfectly crystalline 

solid. 

4. It cannot be applied to a system of indistinguishable particle. If we apply the Maxwell –

Boltzmann distribution law of thermionic emission, we get the following expression for 

the emission current density 

J=𝐴0𝑇
1/2𝑒−

𝛷

𝐾𝑇  

which is not correct .The correct Expression which has been verified as 

                                             J=AcT
2𝑒−

𝛷

𝐾𝑇  
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S.No. QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER 

1 Which is called as degeneracy parameter? e
α
  e

β
 ce

-α
 e

+β
  e

-α
 

2 Partition function is denoted by the symbol____ Z A M N  Z 

3 Mean distance d between the particles is _____ (N/V)
1/3

 (V/N)
1/3

 (N/V)
3
 (V/N)

3
 (V/N)

1/3
 

4 
If A<<1, the system is _________ non- degenerate degenerate 

strongly 

degenerate 

weekly 

degenerate 
non- degenerate 

5 
If A>1, the system is _________ non- degenerate degenerate 

strongly 

degenerate 

weekly 

degenerate 
degenerate 

6 
If A>>1, the system is _______ non- degenerate degenerate 

strongly 

degenerate 

weekly 

degenerate 

 strongly 

degenerate 

7 

The number of quantum states is represented by 

_____ 
nr gr Er N  gr 

8 The degeneracy parameter A = _________ Z e
α
 e

-α
  e

β
  e

-α
 

9 In M.B. distribution, the unit of n(v) is ______ m/ sec mol/sec mol/m/sec sec mol/m/sec 

10 vp = ___ √ (2kT/m) 1.414√ kT 1.732√(kT/m) 3.414√kT √ (2kT/m) 

11 Average speed is represented by ___ vp v Av vrms vp 

12 Which of the following is correct for a perfect gas? v<vp<vrms vp<v <vrms v <vrms < vp v>vp>vrms vp<v <vrms 



 

 

13 Root mean square = ________ √ (2kT/m) 1.414√ kT 1.732√(kT/m) 3.414√kT 1.732√(kT/m) 

14 Average speed = _________ 1.596√(kT/m) 1.414√ kT 1.732√(kT/m) 3.414√kT 1.596√(kT/m) 

15 
The equation for total internal energy of one mole 

of an ideal gas is _______ 
U/N = 3/2 kT U/N = 3/2 U/N =  kT U/N = 2/3 kT U/N = 3/2 kT 

16 The value of β = ______ kT k T 1/kT 1/kT 

17 

At absolute zero temperature the entropy may 

become __________ 
Infinity positive Zero Negative Zero 

18 

The value of entropy becomes zero in perfectly 

_______ 
liquid crystalline solid gas inert gas crystalline solid 

19 M.B. law cannot be applicable to ______ particles. distinguishable  Indistinguishable isolated Isobaric Indistinguishable 

20 

In dilute gas, the number of molecules per unit 

volume is _____ 
large very small infinity  small small 

21 

In dilute gas, the average separation between the 

molecules is ______ 
large very small Infinity small large 

22 

The mean energy of principle of equipartition of 

energy is ______ 
 kT 3/2 kT 2/3 kT ½ kT 3/2 kT 

23 

A free particle has ___________ degrees of 

freedom. 
1 2 3 4 3 

24 

A particle moving with a linear simple harmonic 

motion has ___ degrees of freedom. 
1 2 3 4 2 

25 

Helmhotz free energy F of a system of particles is 

defined by _______. 
F=U-TS F=U/TS F=U+TS F=UTS F=U-TS 

26 

The specific heat at constant volume is 

the amount of 

heat required to 

raise the 

temperature of 

unit mass of gas 

through one 

degree, at 

constant 

pressure 

 the amount of 

heat required to 

raise the 

temperature of 1 

kg of water 

through one 

degree 

the amount of 

heat required to 

raise the 

temperature of 

unit mass of 

gas through 

one degree, at 

constant 

volume 

any one of the 

above 

the amount of 

heat required to 

raise the 

temperature of 

unit mass of gas 

through one 

degree, at 

constant volume 

27 The gas constant (R) is equal to the __________ of sum difference product ratio difference 



 

 

two specific heats. 

28 
The quantum statistics reduces to classical statistics 

under the following condition 
ρλ

3
 =1 ρλ

3
>> 1 ρλ

3 
<< 1 ρλ

3
 = 0 ρλ

3
>> 1 

29 Specific heat of metals can be expressed as ___ T
3
 AT + BT

2
 AT

2
+BT

3
 AT + BT

3
 AT + BT

3
 

30 
Boltzmann entropy probability relation is given by 

_______ 
S=k logeω S = k/logeω S = k+logeω S = k-logeω S=k logeω 

31 Enthalpy and internal energy have relation ______ H= U –PV H= U/PV H=U+PV H=UPV H=U+PV 

32 
In quantum physics identical particles are ______ 

a) 

indistinguishable 
distinguishable symmetric anti-symmetric indistinguishable 

33 
The zero point energy of one dimensional oscillator 

is _____ 
 2h  ½ h 1/3 h 3h  ½ h 

34 In classical physics identical particles are ______ indistinguishable distinguishable  symmetric anti-symmetric  distinguishable 

35 
The dimensions of the phase space depends upon 

the ____ of the system. 
entropy heat content 

degrees of 

freedom 
enthalpy 

degrees of 

freedom 

36 
_________of a system of particles is given by  F = 

U – TS 

Helmholtz free 

energy 
free energy 

helmholtz 

function 

Gibb’s free 

energy 

Helmholtz free 

energy 

37 For non-degenerate system A= 1 A<< 1 A> 1 A>= 1 A<< 1 

38 The spin of the photon is 0 1 2  ½ 1 

39 
B.E distribution function is given by  {1/( e

a + bE
) }  {1/( e

a + bE
) + 1}  {( e

a + bE
) – 1}     

{1/( ea + bE) – 

1} 
 {( e

a + bE
) – 1}     

40 
The degeneracy parameter e

-a
 = 

N/V ( h
2
 / 

2pmkT )
1/2

 

N/V ( h
2
 / 

2pmkT )
3/4

 

 N/V ( h
2
 / 

2pmkT )
3/2

 

N/V ( h
2
 / 

2pmkT)
3
 

N/V ( h
2
 / 

2pmkT )
3/2

 

41 Maxwell first developed ____________theory  Equipartition  partition classical quantum classical 

42 
According to classical mechanics a molecule can 

have 
finite speed infinite speed variable speed constant speed infinite speed 

43 
As temperature increases, the most probable 

__________also increases 
 frequency wavelength energy velocity velocity 

44 
B.E distribution law is used to derive 

___________of radiation 
Plank’s law  Weiss law 

Widemann- 

Franz law 
All the above Plank’s law 

45 Wave function of the system of identical Bosons is  Asymmetric  linear non-linear symmetric symmetric 

46 M.B. distribution can be applicable to _________  identical indistinguishable gas liquid  identical 



 

 

molecule molecule molecule 

47 
In M.B. distribution the mean P.E. is ______ than/ 

to K.E. of ideal gas. 
larger very large small equal small 

48 
When T=0, the value of entropy S = ______ in 

M.B. distribution. 
infinity negative infinity zero one negative infinity 

49 The correct expression for J = __________ ACT
2
e

-φ/kT
 ACTe

-φ/kT  
 ACT

1/2
e

-φ/kT
 T

2
e

-φ/kT
 ACT

2
e

-φ/kT
 

50 The value of gas constant R= _____ 8.13K/mol 7.013 mol/K 8.31 mol/JK 8.31 J/mol K 8.31 J/mol K 

51 Partition function is denoted by the symbol____ Z A M N Z 

52 Mean distance d between the particles is _____ (N/V)
1/3

 (V/N)
1/3

 (N/V)
3
 (V/N)

3
 (V/N)

1/3
 

53 In M.B. distribution, the unit of n(v) is ______  m/ sec  mol/sec  mol/m/sec sec  mol/m/sec 

54 vp = ___ √ (2kT/m) 1.414√ kT 1.732√(kT/m) 3.414√kT √ (2kT/m) 

55 Root mean square = ________ √ (2kT/m) 1.414√ kT 1.732√(kT/m) 3.414√kT 1.732√(kT/m) 

56 
The equation for total internal energy of one mole 

of an ideal gas is _______ 
U/N = 3/2 kT U/N = 3/2 U/N =  kT U/N = 2/3 kT U/N = 3/2 kT 

57 M.B. law cannot be applicable to ______ particles. distinguishable  Indistinguishable isolated Isobaric Indistinguishable 

58 
The mean energy of principle of equipartition of 

energy is ______ 
kT 3/2 kT 2/3 kT  ½ kT 3/2 kT 
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UNIT-IV 

Quantum Statistical Mechanics: B.E energy distribution for energies in the range E to E + dE – 

Condition for B.E distribution to approach classical M.B distribution - Bose temperature - Bose 

Einstein condensation - Planck’s law from B.E law - Fermi Dirac distribution law (no derivation) - 

FD law for the energies in the range E to E+dE  – Fermi energy - Effect of temperature - Energy 

distribution curve - Free electron in a metal - Fermi temperature and Thermionic emission - 

Richardson Dushmann Equation - Comparison of MB,BE and FD statistics. 
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Bose Einstein energy distribution for energies in the range E to E + dE 

 The molecules of an ordinary gas have spin angular momentum equal to an integral 

multiple of ћ. It means that the molecules are bosons and they will obey the Bose-Einstein 

statistics. The energy distribution law for a system of identical molecules is obtained as follows. 

 The number n (E) dE of the molecules having energies in the range from E to E+dE is 

given by  

n(E) dE = f(E) g(E) dE        ---------------  (1) 

where f(E) is the energy distribution function, and g (E)dE is the number of quantum states 

available in the energy range. 

 Substituting the expression for f (E) in equation (1), obtained  

𝑛  𝐸 𝑑𝐸 =  
𝑔   𝐸 𝑑𝐸

𝑒𝛼𝑒𝐸/𝑘𝑇 − 1
       ----------- (2) 

g (E) dE is given by, g (E) dE = 2πV (
2𝑚

2 )
3/2 

E
1/2 

dE 

Substituting this equ. in (2) 

n(E) dE = 2πV (
2𝑚

2 )
3/2 

. 
𝐸

1
2𝑑𝐸

𝑒𝛼 𝑒𝐸/𝑘𝑇 − 1
     ------- (3) 

This is Bose Einstein energy distribution law given by the number of particles with energies 

between E and E +dE. 

The constant 𝑒𝛼  appears in the distribution law cannot be less than or equal to 1 because  

(i) if 𝑒𝛼  is <1, then for E = 0 

𝑛  𝐸 𝑑𝐸 =  
𝑔  𝐸 𝑑𝐸

𝑒𝛼𝑒𝐸/𝑘𝑇 −  1
 

𝑛  0 𝑑𝐸 =  
𝑔   0 𝑑𝐸

𝑒𝛼− 1
 = negative quantity 

𝑤𝑖𝑐 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 

(ii) if 𝑒𝛼  = 1, then for E = 0 

𝑛  0 𝑑𝐸 =  
𝑔   0 𝑑𝐸

1− 1
 =∞ 
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 Which is also impossible. Therefore 𝑒𝛼  must be greater than 1. 

Condition for B-E distribution to approach classical M-B distribution: 

The B-E distribution is given by  

n(E) dE = 2πV (
2𝑚

2 )
3/2 

. 
𝐸

1
2𝑑𝐸

1

𝐴
 𝑒𝐸/𝑘𝑇 − 1

   ----------- (1) 

If 1 in the denominator is neglected in comparison with the first term, this distribution 

will approach the M-B distribution: 

n(E) dE = 2πV (
2𝑚

2 )
3/2

 AE
1/2

e
-E/kT

 dE 

= 2πV (
2𝑚

2 )
3/2

 
𝑁

𝑉
  

2

2𝜋𝑚𝑘𝑇
 3/2

E
1/2 

e
-E/kT

 dE 

=
2𝜋𝑁

 𝜋𝑘𝑇  3/2
 E1/2 

e
-E/kT

 dE 

The condition for this is that 

1

𝐴
 e

E/kT
 >> 1 

i.e. 
𝐴

eE/kT  
 e

E/kT
 << 1 

For all values of the energy, e
E/kT

 is greater than or equal to 1. Therefore the condition is 

A<<1. 

Limiting Case of Bose-Einstein Statistics 

For an ideal Bose-Einstein distribution the degeneracy parameter A(=𝑒𝛼 )cannot be 

greater than 1;its maximum value can be 1.If the temperature of the gas is decreased, the value of 

A  increases from a low value towards 1.At a certain temperature TB, the value of A becomes just 

less than 1,and then there is no change  in the value below  TB .At TB some proportion of the 

molecules start reaching the zero-energy state. This critical temperature is called the Bose 

temperature. 
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Expression for the Bose Temperature: 

In the ideal Bose-Einstein gas of spin less molecules in the thermal equilibrium at the 

temperature T, the tot al number of N molecules is given by  

  N= 2πV(
2𝑚𝑘𝑇

2 )
3/2 

𝑥1/2

𝑒𝛼 𝑒𝑥−1

2

0
 dx

 

Where  

  x=E/kT 

The value of integral 

   N= 2πV(
2𝑚𝑘𝑇

2 )
3/2√𝜋

2
  

1

𝑒𝛼 +
1

2
3
2𝑒2𝛼

+
1

3
3
2𝑒3𝛼

+  ……   

Substituting the value e
1/A

 = e
-α

 = A 

   N= V(
2𝜋𝑚𝑘𝑇

2 )
3/2   

𝐴

1
+

𝐴2

2
3
2

+
𝐴3

3
3
2

+  ……   

At Bose Temperature T=TB, 

   N=V(
2𝜋𝑚𝑘𝑇𝐵

2 )
3/2   1 +

1

2
3
2

+
1

3
3
2

+  ……   

    The series in the square bracket is the Riemann Zeta function whose value is 2.612.  

 N=V (
2𝜋𝑚𝑘𝑇𝐵

2 )
3/2  x 2.612 

   =2.612 V(
2𝜋𝑚𝑘𝑇𝐵

2 )
3/2                                                      --------(1) 
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     Where 

  TB=(
2

2𝜋𝑚𝑘
)  (N / 2.612 V)

3/2
                                     ---------(2) 

For all known Bose-Einstein gas, the Bose temperature TB is very low. For ex, for helium 

(2He
4
)TB= 3.15 K 

 Bose-Einstein condensation: 

 At the Bose temperature molecules TB, molecules just start reaching the zero-energy state 

(E=0) from the higher energy state (E>0). If the temperature of the gas is lowered below TB, the 

number of molecules in the zero-energy state will increase, and the number in the higher energy 

states will decrease. Suppose that in thermal equilibrium at the temperature T< TB, n0 is the 

number of molecules in the non zero- energy state and Ne is the number in the higher energy 

states. Then 

   Ne=N- n0                                                                         -------------------- (3) 

The zero –energy state occupation number is given by  

   n0=
𝑔0

1

𝐴
−1

                                                                                    -------------------- (4) 

where g0 is the number of allowed states at energy E=0 

  Ne is given by,Ne=2.612V(
2𝜋𝑚𝐾𝑇

2
)

3/2
                            -------------------- (5) 

and N is given by N=2.612V(
2𝜋𝑚𝐾𝑇

2
)

3/2                                                  

div. eq. (5) by eq. (1) 

   
𝑁𝑒

𝑁
=(

𝑇

𝑇𝐵
)

 3/2  

Or                 Ne = N (T/TB)
 3/2

      --------------- (6) 

where T<TB  

From eq.(3) & eq.(6) n0=N-Ne 
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    =N[1-(
𝑇

𝑇𝐵
)3/2

]                   -------------------- (7) 

This eq. shows that as T approaches absolute zero of temperature Ne→0 and n0→N 

Thus all the molecules of B-E gas tend to condense into the zero energy states of the gas 

at absolute zero this phenomenon is called Bose- Einstein condensation. The temperature at 

which n0= Ne=N/2 obtained by sub. Ne= N/2 in eq. (6). 

  
𝑁

2
=N(

𝑇

𝑇𝐵
) 3/2

 

  T=(
1

2
)

 2/3
 TB 

                            =0.63 TB 

The molecules of an ideal B-E gas exist in two phases at T<TB 

i. a  gaseous phase consisting of Ne molecules distributed among the energy states higher 

than the ground state, and 

ii. a condensed phase consisting of n0 molecules occupying the ground state. 

The molecules in the condensed phase do not contribute to the internal energy, specific heat 

capacity, entropy, etc. 

The transition of the molecules at TB to the ground state is a sudden of phenomenon. In this 

phenomenon there is a decrease in volume of the momentum space by the volume of the space 

which n0 molecules had occupied before their transition to the zero-energy state. This differs 

from the usual type of vapor condensation process in which there is a decrease in the physical 

volume. 

 The transition of liquid 2He
4
-I to superfluid liquid 2He

4
-II at the observed temperature 2.18K 

can be expanded by Bose- Einstein condensation process. 
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Planck’s law of radiation from Bose-Einstein distribution law 

 According to planck’s radiation law the energy of radiation of wavelength in the range  

between λ and λ+dλ emitted per unit volume by a perfectly black body at absolute temperature T 

is given by U (λ)d λ = 
8𝜋𝑐

λ5  
𝑑λ

𝑒
𝑐
𝑘𝑇

− 1
 

Derivation of law 

According to the Bose- Einstein distribution law the number of Bosons having energies 

between E and E+dE is  

𝑛  𝐸 𝑑𝐸 =
𝑔(𝐸)𝑑𝐸

𝑒𝛼𝑒
𝐸
𝑘𝑇 − 1

   -------- (1) 

where g(E) dE is the number of quantum stage of energies E and E +dE. 

Let T be the absolute temperature of a black body chamber of volume v. The chamber is 

supposed to be filled with photons each having energy h𝜈 .They move in all possible directions 

with the speed of light C. Each photon has unit spin angular momentum equal to h(h/2π).Hence 

photons are bosons and use B.E distribution law to derive Planck’s law of radiation. 

1. Constant α: 

Photons of different energies are absorbed and re-emitted by the walls of the chamber at 

constant temp. 

In this process a higher energy photon is converted into a number of low energy photons and 

vice-versa. Though the total energy of the photons remain constant, the total no of photons 

present in enclosure is not constant. Therefore the condition  𝑛𝑟 𝑟
 = N or  𝑑𝑛𝑟 r = 0 is not 

applicable for the distribution and hence the multiplier α is zero, i.e e
-α

 
 
is equal to 1. 

2. Expression for g(E)dE: 

The number of quantum states corresponding to the momenta in the range between p and 

p+dp for particles with no spin is given by  

g(p) dp = 
4𝜋𝑉𝑝2𝑑𝑝

3  



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: I M.Sc Physics               COURSE NAME: Thermodynamics And Statistical Mechanics 

   COURSE CODE: 18PHP201        UNIT: IV      BATCH-2018-2020 
 

Prepared by Dr.S.Sharmila, Asst. Prof., Department of Physics, KAHE  8 | 17 

each photon has unit spin angular momentum, there are two allowed quantum states for each 

photon. Hence photons of the same energy can have the two different directions of polarization 

circularly clockwise and circularly anti-clockwise. Taking the spin in to account for photons we 

have  

g(p) dp = 
2 𝑥  4𝜋𝑉𝑝2𝑑𝑝

3  

= 
8𝜋𝑉𝑝2𝑑𝑝

3      --------- (2) 

For photons of frequency ν. 

Energy, E = mc
2
 = hν and momentum p = mc= mc

2
/2 = hν/c 

By sub these values in equ. (2), g(ν) dν = 
8𝜋𝑉𝜈2𝑑𝜈

𝐶3         -------- (3) 

Sub. the values of α and g(E) dE in eq. (1 ) 

n(ν) dν = n (E)dE 

= 
8𝜋𝑉

𝑐3   𝜈2𝑑𝜈/e
hν/kT

 -1                   -------- (4)      

 This equ. Gives the number of photons of frequencies between ν and ν + dν in the 

enclosure of volume v at temp T. 

 Now the energy per unit volume of the enclosure,of the photons of frequencies between ν 

and ν + dν is  

U(ν)d ν=
νn ν dν

ν
 

== 
8𝜋

𝑐3 𝑣3   𝑑𝜈/e
hν/kT

 -1                           ------------------(5) 

This is this the plancks law of radiation in terms of frequency ν                 

Eqn(5) can be transformed in terms of the wavelength λ by using the relations 

  ν=
𝑐

𝜆
, dν=-

𝑐

𝜆2dλ 
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The energy u(ν)d ν  contained in a frequency interval between ν and ν + dν is equal to the 

contained in a corresponding wavelength interval b/n λ and λ+ d λ. 

 U(λ)d λ=u(ν)dν 

 = 
8𝜋

𝑐3  
 
𝑐

λ
 3  −

𝑐

𝜆2dλ 

ehν/kT  −1
 

Omitting the negative sign we get,  

U(λ)d λ=
8𝜋𝑐

𝜆5  dλ / e
hν/kT

 -1   -------------------------------- (6) 

This is the planck’s law of radiation in terms of wavelength λ 

Fermi –Dirac distribution law 

In F-D statistics, the condition are: 

(i) The particles are indistinguishable from each other i.e., there is no restriction between 

different ways in which ni particles are chosen. 

(ii) Each sublevel or cell may contain 0 or one particle. Obviously gi must be greater than 

or equal to ni. 

(iii) The sum of energies of all particles in the different quantum groups taken constitutes 

the total energy of the system. 

The Fermi – Dirac statistics is given by 

ni=
𝑔𝑖

𝑒 (𝛼+𝛽𝜖𝑖 )+1
 

Fermi-Dirac energy distribution for energies in the range E to E + dE 

 The number of particles having energies in the range between E and E+dE is given by 

n(E) dE = f(E) g(E) dE                  ---------- (1) 

where g(E) dE is the number of quantum states of energy between E and E +dE. 

 Sub. The expression for f(E) in eq. (1), then  

𝑛  𝐸 𝑑𝐸 =
𝑔(𝐸)𝑑𝐸

𝑒
𝐸𝑟−𝐸𝑓

𝑘𝑇
+1

        ---------- (2) 
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For particles like electrons of spin angular momentum ±1/2 ћ, there are two possible spin 

orientation. For a system of such particles g(E) dE is given by 

g (E) dE = 2 x 2πV  
2𝑚

2  
3/2

E
1/2

 dE 

sub. the value of g (E) dE in eq. (2), get 

n (E) dE = 4πV  
2𝑚

2  
3/2 𝐸

1
2

 
𝑑𝐸

𝑒  𝐸− 𝐸𝐹 /𝑘𝑇 +1
         ------------- (3) 

 This is Fermi-Dirac distribution law giving the number of particles with energies between 

E and E+dE. 

Fermi Energy 

 The Fermi energy at absolute zero of temperature is denoted by EFo and this is considered 

as a constant over a large range of temperature. 

The Fermi function is,     f(E) = 
1

𝑒
 𝐸− 𝐸𝐹0

 /𝑘𝑇
+ 1

 

At T=0, when E <EFo, 

f(E) = 
1

𝑒−∞ + 1
  = 

1

0+ 1
= 1              ----------- (1) 

and at T = 0, when E> EFo,  

f(E) = 
1

𝑒∞ + 1
  = 

1

∞+ 1
= 1              ----------- (2) 

Equ. 1 and 2 shows that at T=0, the function f (E) is constant equal to 1 for all values of energies 

upto EFo it falls to zero. That is at T=0, it is a step function. 

 Thus at absolute zero of temperature all possible quantum states of energy less than EFo re 

occupied and all those of energy more than EFo are empty. 

 Accordingly the Fermi energy EFo  is defined as the energy of the highest occupied level 

at absolute zero. At any other temperature T>0, when E= EFo, the Fermi energy is  
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f(E) = 
1

𝑒
 𝐸− 𝐸𝐹0

 /𝑘𝑇
+ 1

  = 
1

𝑒0/𝑘𝑇 + 1
 = 1/2 

 This means that at temperature T>0, the probability for occupation of a quantum states at 

the Fermi level is ½. At temperature T>0, 50% of the quantum states at the Fermi level are 

occupied and 50% are empty. 

Effect of temperature on Fermi Energy 

 The Fermi energy EF of an electron gas at temperature T is related to the value EFo at T=0 

by the equation 

𝐸𝐹 =  𝐸𝐹0
 1 −  

𝜋2

12
 
𝑘𝑇

𝐸𝐹0

 2  

 It is seen that as T is increased EF decreases. But the rate of decrease with temperature is 

very small over a large range of temperature. The temperature at which EF becomes zero is very 

large. For free electrons in metallic copper this temperature is of the order of 90 x 30
3
K. So the 

temperature dependence of EF over practical range of temperature be neglected and EF at 

temperature T may be considered as constant equal to EF. 

Energy distribution curve 

 The Fermi –Dirac energy distribution law is  

n (E)dE = 4πV  
2𝑚

2  
3/2 𝐸

1
2

 
𝑑𝐸

𝑒 𝐸− 𝐸𝐹𝑜  /𝑘𝑇 +1
            ---------- (1) 

(1) Curve at T = 0. At T = 0, when E<EFo, then 

𝑒 𝐸− 𝐸𝐹𝑜  /𝑘𝑇  = e
-∞

 = 0 

From eq. (1) 

n (E)dE = 4πV  
2𝑚

2  
3/2

E
1/2

dE 

or    n(E) = CE
1/2

          ---------- (2) 

where C is constant. 

At T = 0, when E=EFo, then 

𝑒 𝐸− 𝐸𝐹𝑜  /𝑘𝑇  = e
∞
 =∞ 
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 Therefore under this condition n(E) = 0.Thus the curve representing eq. (2) is a parabola 

which ends abruptly at E = EFo. 

(2) Curve at T>0: 

 At T>0, when E<<EFo the exponential term in the denominator of equ. (1) can be 

neglected in comparison with 1. So the region (E<<EFo) is the same parabola. Then as E 

approaches EFo, the curves falls towards the axis of E and intersects the line E=EFo at the point P. 

When E>EFo the curve approaches the axis asymptotically showing that at a higher temperature a 

few electrons have energy greater than EFo 

Fermi energy EFo for free electrons in a metal 

The total number N of the free electrons in a metal of volume V is given by  

N =  𝑛(𝐸)
∞

0
𝑑𝐸 

=  𝑓 𝐸 
∞

0
𝑔 𝐸 𝑑𝐸 

=  𝑓 𝐸 𝑔(𝐸)
𝐸𝐹0

0
𝑑𝐸 +  𝑓 𝐸 𝑔(𝐸)

0

𝐸𝐹0
𝑑𝐸  -------- (1) 

 At T = 0, when E≤𝐸𝐹0
, then f (E) =1 and at T=0, when E≥𝐸𝐹0

 then f(E) = 0. Hence in equ. 

(1) the second integral is zero and in the first integral f (E) = 1.  

N =  𝑔(𝐸)
𝐸𝐹0

0
𝑑𝐸 

= 4πV (2m/h
2
)

3/2
  𝐸1/2𝐸𝐹0

0
𝑑𝐸 

= 4πV (2m/h
2
)

3/2
  2/3 EFo

3/2 

= 
8𝜋

3
𝑉  

2𝑚𝐸𝐹0

2  3/2
 

From this equation,  

 
2𝑚𝐸𝐹0

2  3/2
 = 3N / 8πV 

𝐸𝐹0
 = 

2

2𝑚
  

3𝑁

8𝜋𝑉
 2/3  

    -------- (2) 

𝐸𝐹0
 = 

2

2𝑚
  

3𝑛

8𝜋
 2/3  

    -------- (3) 

When n= N/V = no.of free electrons per unit volume, i.e.., the free electron density. 
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 The values of EFo calculated from eq. (3) for a number of metals are of the order of 

several electron volts. This fact is a very important difference between classical statistics and 

Fermi-Dirac statistics. According to classical statistics all electron in a metal at absolute zero 

would have zero energy. 

Fermi Temperature 

 The Fermi temperature Th is defined as the ratio of the Fermi energy EFo at absolute zero 

to Boltzmann’s constant k. Thus  

TF = EF0/k           ------ (1) 

Relation between TF and the density of the free electron in a metal  

TF = EF0/k 

= 
2

2𝑚𝑘
  

3𝑛

8𝜋
 2/3

  

= 
2

2𝑚𝑘
  

3

8𝜋
 2/3

 (n)
2/3

 

Sub. the numerical value of h, m and k 

TF =  
 6.63 𝑥  10−34 2

2 𝑥  9.11×10−31  ×1.38 ×10−23  x  
3

8𝜋
 2/3

 (n)
2/3

  

= 4.23 x 10
-15

 (n)
2/3

   ------ (3) 

Relation between the degeneracy parameter A and TF 

 The degeneracy parameter A is A = N/V(
2

2𝜋𝑚𝑘𝑇
)

3/2
               ---------- (4) 

From eq. 2 the density n = N/V of the free electron is given by  

n = N/V = 8π/3  
2𝑚𝑘𝑇

2  3/2
           ----------- (5) 

Sub. this value in eq. (4)  

A = 
8𝜋

3
 

2𝑚𝑘𝑇

2  3/2  
2

2𝑚𝑘𝑇𝜋
 3/2

 

= 
8

3√𝜋
 (TF / T)

3/2
   = 1.5 (TF / T)

3/2 

Therefore TF / T = (A/1.5)
2/3   

----------------- (6) 

This equation shows that the degeneracy condition that A>1 is equivalent to TF>1 

 The value of TF for the free electrons in metal is very large. For the free electrons in 

copper TF 8.15x10
4
K. This value is much higher than room temperature so that the free electrons 

gas in copper is highly degenerate. 
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Interpretation of the Fermi Temperature 

 The temp. T of an ideal gas whose mean molecular K E is equal to the mean energy of 

the free electron in a metal at absolute zero is given by  

3/2 kT = U0 = 3/5 EFo 

Or T = 2/5 (EFo/k) = 2/5TF 

 It means that if free electron gas is considered to obey the classical statistics a piece of 

copper would have to be heated to a temp. 2/5 times the Fermi temperature for the metal is  

2/5x8.15x10
4
=4.07x10

4
k 

Thermionic Emission 

 According to the Fermi-Dirac statistics the free electrons in the highest energy level in a 

metal at absolute zero have the Fermi energy EFo. But they are not emitted spontaneously from 

the metal because of attractive forces of other charges at the surface. Therefore, to enable an 

electron having maximum energy EFo in the metal at zero K to escape from the surface to 

vacuum a certain minimum amount of energy Φo must be important to it. This energy is called 

the work function of the metal at 0K. At a higher temperature these energies are denoted by EF 

and Φ.  

 On heating a metal to a high temperature T a free electron with energy EFo may acquire 

an additional kinetic energy equal to the work function Φ of the metal. Then its total kinetic 

energy inside the metal is (EF0 +Φ). The electron with this K.E inside the metal will just escape 

into vacuum from the metal surface, and will have 0K.E. on emergence. Hence this energy is the 

P.E. of the electron at rest outside the metal. This P.E. is called surface barrier of the metal. It is 

denoted by ES. Thus ES = EFo + Φ. 

 

 

 

 

 The Fermi-Dirac shows that if a metal is heated to a high temperature only those electron 

in the shaded portion of the curve will have K.E. > than Es and hence they can escape from the 
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metal surface. Thus when a metal is heated to a high temperature T a free electron will occur 

total K.E. > surface barrier potential energy Es will be emitted from the metal. This phenomenon 

is called thermionic emission.  

Richardson – Dushmann Equation 

 Let Ex be the total K.E of an electron at temperature T in the positive x-direction. An 

electron having x-components of its velocity in the range between νx and νx +dνx will escape 

from the metal surface in the positive x-direction if ½ mνx
2
≥Es. 

If Ex≥Es 

 

 

 

 

 

 

 

Or Ex≥EFo + Φ       ---------------- (2) 

 The number of electrons per unit volume with the x-component of their velocity in the 

range νx and νx+d νx is 
𝑛   ν𝑥  𝑑ν𝑥

𝑉
 

 The number of such electrons escaping from the metal surface per unit area per second is  

ν𝑥𝑛  ν𝑥 𝑑ν𝑥

𝑉
 

 The current density dJ due to these electrons that is the current per unit area i.e., the 

charge passing normally through unit area per second is given by  

dJ = 
q ν𝑥𝑛   ν𝑥  𝑑ν𝑥

𝑉
   --------(3) 

where q – electronic charge. The total current density J is given by 

J = 
𝑞

𝑉
  ν𝑥𝑛  ν𝑥 𝑑ν𝑥

∞

𝐸𝑥=𝐸𝑠
        ----------- (4) 

 The function 𝑛  ν𝑥 𝑑ν𝑥  is given by Fermi-Dirac law of distribution of velocity in the x-

direction  

𝑛  ν𝑥 𝑑ν𝑥  = V 
4𝜋𝑚2𝑘𝑇

3  𝑒𝐸𝐹0/𝑘𝑇 . 𝑒
−𝑚ν𝑥

2

2𝑘𝑇  𝑑ν𝑥  
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In this equation, we sub. ½ mνx
2
 = Ex 

m ν𝑥 𝑑ν𝑥  = dEx 

𝑑ν𝑥  = 1/mν𝑥  dEx 

Hence, 𝑛  ν𝑥 𝑑ν𝑥  = V 
4𝜋𝑚2𝑘𝑇

3  𝑒𝐸𝐹0/𝑘𝑇 . 𝑒
−𝐸

𝑘𝑇   (1/𝑚ν𝑥)𝑑𝐸𝑥  

Or                               ν𝑥𝑛  ν𝑥 𝑑ν𝑥  = V 
4𝜋𝑚𝑘𝑇

3  𝑒
𝐸𝐹0
𝑘𝑇 . 𝑒

−𝐸

𝑘𝑇   𝑑𝐸𝑥  

Sub. this equation in equ. (4) 

J= q  
4𝜋𝑚𝑘𝑇

3  𝑒
𝐸𝐹0
𝑘𝑇   𝑒

−𝐸𝑥

𝑘𝑇
∞

𝐸𝑠
dEx     -------- (6) 

The value of the integral is  

 𝑒
−𝐸𝑥

𝑘𝑇
∞

𝐸𝑠
dEx  =  −𝑘𝑇𝑒

−𝐸𝑥

𝑘𝑇  ∞
Es 

 = kT𝑒
−𝐸𝑠

𝑘𝑇  

      = kTe
-(EFo + Φ)/kT   

       -------- (7) 

Sub. this value in eq. (6) and simplifying  

    J=  
4𝜋𝑘2𝑚𝑞

3  T
2
 e

-Φ/kT                                   
-------- (8) 

  which is written as J = A0T2
2
e

-Φ/kT
                                       -------- (9) 

Where A0 =  
4𝜋𝑘2𝑚𝑞

3   = universal constant = 1.204 x 10
6
 A/m

2
K

2
 

 Eq.(9) is known as Richardson’s or Dushman’s or the Richardson- Dushmann equation. It 

was first derived by O.W.  Richardson in 1901 and later the theory of its derivation were 

perfected by S.Dushman in 1923. 

 The eq. is based on the assumption that all the electrons having energy equal to or greater 

than the surface potential barrier or emitted but quantum mechanical theory shows that an 

electron having energy Ex≥Es may not escape from the metal surface it may be reflected back, 

and that the probability of escape for such an electron is (1-r) where r is the reflection coefficient 

which is a function of ν𝑥 . But in thermionic emission velocity range of the emitted electron is 

not large, in this process r can be considered as constant over the small velocity range. 

J=A0(1-r)T
2
e

-Φ/kT                      
----------------------(10) 
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Comparison of M-B, B-E and F-D Statistics 

Quantity M-B B-E F-D 

Particles Distinguishable Indistinguishable called 

bosons 

Indistinguishable called 

Fermions 

Spin - 0,1,2,------- ½, 3/2, 5/2, ------ 

Wave 

function 

- Symmetric under 

interchange of two bosons 

Antisymmetric under 

interchange of two bosons 

 

Number of 

particles per 

energy state 

No upper limit Bosons don’t obey Pauli 

exclusion principle: No 

upper limit to the no. of 

particles per quantum 

state. 

Fermions obey Pauli 

exclusion principle: Max. 

of one particles per 

quantum state. 

Distribution 

function f(E) 

𝑁

𝑉
  

2

2𝜋𝑚𝑘𝑇
 3/2

 e
-E/kT 1

𝑒𝛼𝑒
𝐸
𝑘𝑇

 −  1
 

1

𝑒
(𝐸−𝐸𝑓)

𝑘𝑇
 +  1
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PART –A(Online Examination) 

S.No. QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER 

1 
B.E distribution law is used 

to derive ___________of radiation Planck's law Weiss law 

Widemann 

Franz law Rayleigh's law Planck's law 

2 
Wave function of the 

system of identical Bosons is asymmetric linear non-linear symmetric symmetric 

3 

The variable W in an equilibrium stands 

for  

minimum 

probability 

distribution 

 probability 

distribution         

maximum 

probability 

distribution  

constant 

probability 

distribution 

maximum 

probability 

distribution  

4 
Which of the following obey Pauli 

exclusion principle? 
M.B. statistics B.E. statistics F.D. statistics 

Einstein’s 

equation 
F.D. statistics 

5 
Which of the following do not obey 

Pauli exclusion principle? 
M.B. statistics B.E. statistics F.D. statistics 

Einstein’s 

equation 
B.E. statistics 

6 
In B.E. distribution, the constant e

α
 

must be _________ 
greater than 1 smaller than 1 equal to 1 zero greater than 1 

7 

The molecule of an ordinary gas have 

spin angular momentum equal to an 

integral multiple of ________ 

 h ћ/2π Ћ h/2π ћ 

8 
The molecules obey B.E. statistics are 

___________ 
photons phonons fermions bosons bosons 

9   ________ is the energy distribution f(E) g(E) n(E) f f(E) 



 

 

function. 

10 
 ____________ is the number of 

quantum states 
f(E) g(E) n(E) f g(E) 

11 
  In B.E. energy distribution, if e

α
 =1, 

for E=0, then n(0) dE =  
postive infinity 

negative 

infinitive 
1 0 postive infinity 

12 

 In B.E. energy distribution, if e
α
 <1, for 

E=0, then n(0) dE =  
postive infinity 

negative 

infinitive 
1 0 negative infinitive 

13 

For an ideal B.E. distribution the 

degeneracy parameter A cannot be 

___________- 

greater than 1 smaller than 1 equal to 1  zero greater than 1 

14 

 For all known B.E. gases, TB is very 

_______ 
high low small 0 low 

15 
 The value of Reimann Zeta function is 

______ 
6.212 1.612 2.126 2.612 2.612 

16 

 A gaseous phase consisting of Ne 

molecules distributed among the energy 

states ____ than the ground state. 

higher lower equal to very smaller higher 

17 

The transition of liquid 2He
4
-I to 

superfluid liquid 2He
4
-II is observed at 

_________ 

8.12 K 2.18 K 1.82 K 1.28 K 2.18 K 

18 

 For an ideal B.E. gas the condensation 

temperature is TB. Find the temperature 

at which the number of molecules in the 

zero energy state (E=0) is 7/8 times the 

total number of molecules in the gas. 

T=TB T=4TB T=1/4 TB T=4/3 TB T=1/4 TB 

19 

E.Fermi developed the statistics for 

_______ 
photons bosons phonons electrons electrons 

20 

At T=0, when E<EF0, the Fermi energy 

is given by ________ 
one infinity negative infity zero one 

21 

 At T=0, when E<EF0, the Fermi energy 

is given by ________ 
one infinity negative infity zero zero 

22 

 For free electrons in metallic copper 

the temperature is of the order of 
90 x 10

3
 K 90 x 10

-3
 K 90 x 30

3
 K 90 x 30

-3
 K 90 x 30

3
 K 



 

 

_________ 

23 

 For free electrons in copper, TF = 

________ 
8.15 x 10

2
K 8.15 x 10

-2
 K 8.15 x 10

-4
 K 8.15 x 10

4
K 8.15 x 10

4
K 

24 

The value of TF free electrons in a 

metal is _____ 
very large very small  zero infinity very large 

25 

The free electron gas in copper is 

_______ 
highly degenerate degenerate 

weekly 

degenerate 
non-degenerate highly degenerate 

26 

Surface potential barrier energy of the 

metal is denoted by ________________ 
EP ES S SE ES 

27 

Richardson explain his theory in the 

year ______ 
1801 1701 1901 1921 1901 

28 
Spin value of bosons are in the order of 

_________ 
0,1,2,……. 

0, 

2,4,6,……….. 

½, 3/2, 

5/2,…… 

1/3, 3/3, 

5/3,…………. 
0,1,2,……. 

29 
S.Dushmann explained his theory in the 

year _______ 
1801 1701 1923 1921 1923 

30 
Spin value of fermions are in the order 

of _________ 
0,1,2,……. 

0, 

2,4,6,……….. 

½, 3/2, 

5/2,…… 

1/3, 3/3, 

5/3,…………. 
½, 3/2, 5/2,…… 

31 The value of b is given by 3 KT   KT  1/KT 4KT 1/KT 

32 

  In B.E statistics the particles are 

identical and indistinguishable. These 

particles  are called as    

Bosons fermions leptons baryons Bosons 

33 
Particles with half-integral spin are 

called as 
Bosons fermions leptons baryons fermions 

34 
 Fermions obey 

______________principle 
Heisenberg Le-chatlier Pauli Haber Pauli 

35 

Condition for B.E distribution to 

approach M.B distribution is 1/A(e
 bE

) 

>> 1 i.e  

A<=1 A<<1 A>>1  A>>1 A<<1 

36 

In B.E statistics the particles are 

identical and indistinguishable. These 

particles Bosons  fermions  leptons   baryons Bosons 

37 The Bosons has  spin 1  zero or half-  zero or whole  zero  zero or half-



 

 

integral spin number integral spin 

38 The examples for Bosons photons   electrons  neutrons   protons photons  

39 
Particles with half-integral spin are 

called as  bosons   Fermions   leptons  electrons  leptons 

40 The examples for Fermions Photons   phonons  electrons  antiparitcles  electrons 

41 The spin of the photon is 0 1 2  ½ 1 

42 

In F.D statistics the particles are 

identical and indistinguishable. These 

particles  Fermions   bosons   photons  kryptons  Fermions  

43 B.E distribution function is given by  {1/( ea + bE) } 

 {1/( ea + bE) 

+ 1} 

 {( ea + bE) – 

1} 

 {1/( ea + bE) 

– 1} 

 {1/( ea + bE) – 

1} 

44 Fermi energy Ef =  - aKT   aKT   –1/ aKT   1/ aKT  - aKT  

45 
Fermi-Dirac distribution function 

FD(E) =  {1/( ea + bE) + 1} 

 {1/( ea + bE) - 

1} 

 {1( ea + bE) - 

1} 

 {-1/( ea + bE) 

+ 1} 

 {1/( ea + bE) + 

1} 

46 
In terms of Fermi energy F.D 

distribution function is fFD(E) = {-1/( eE + EF) + 1} 

 {1/( eE - EF) 

+ 1} 

 {1/( eE + EF) 

+ 1} 

 {1/( eE + EF) 

- 1} 

 {1/( eE + EF) + 

1} 

47 When T = 0 and E < Ef , then fFD(E) = 0 1  ½  3 1 

48 The degeneracy parameter e-a = 

N/V ( h2 / 2pmkt 

)1/2  

 N/V ( h2 / 

2pmkt )3/4  

 N/V ( h2 / 

2pmkt )  

 N/V ( h2 / 

2pmkt )3 

 N/V ( h2 / 2pmkt 

)3 

49 
The maximum value of degeneracy 

parameter in B.E statistics is One two  three  Four One 

50 
B.E statistics is used to find the 

__________among identical energy distribution 

 frequency 

distribution  both a and b 

 mass 

distribution 

energy 

distribution 

51 
According to B.E distribution law the 

number of Bosons having energies 

g(E)dE/{( ea + bE) + 

1} 

g(E)dE/{( ea + 

bE) – 1} 

 g(E)dE/{( ea + 

bE) – 1} 

 g(E)dE/{( ea + 

bE) – 1}1/2 

 g(E)dE/{( ea + 

bE) – 1}1/2 

52 

According to Plank’s law of radiation, 

the energy of the photon is  Constant   same  not distinct Vary  Constant  

53 

For an isolated system the total energy 

in a B.E. distribution law is used to 

derive _______ of radiation  A<=1  A<<1   A>>1   A=1  A<<1  

54 
Wave function of the system of 

identical Bosons is  Unsymmetric  linear  symmetric 

Anti 

symmetric symmetric 



 

 

55 
The molecule of an ideal B.E gas in two 

phases at  T = TB T > TB  T < TB  T <= TB T < TB  

56 
The __________consists of no 

molecules occupying ground state  condensed phase  liquid phase  gaseous phase  inert gas  gaseous phase 

57 
__________of same energy can have 

two different directions of polarization  Planck’s law  Weiss law   Franz law Newtons law  Planck’s law 

58 
At ___________the molecule just reach 

the zero energy state  Bohr temperature  

 Kelvin 

temperature 

 Neel 

temperature 

 Curie 

temperature  Bohr temperature  
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Ferromagnetism: Ising and Heisenberg models. 
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EMISSIVE POWER 

                     The emissive power eλ of a body at a given temperature for radiant energy of 

wavelength λ is defined as the energy emitted per unit area per seconds per unit range of 

wavelength 
𝑏

𝑛
 λ & λ+d λ at the given temperature. 

unit→1 Walt per square meter per Angstrom. 

ABSORPTIVE POWER (aλ) 

     The absorptive power aλ of a body at a given temperature for radiant energy of 

wavelength λ is the ratio of radiant energy of wavelength λ is absorbed per unit area per second, 

by the body at the given temperature to the radiant energy of the same wavelength incident on 

unit area per second at the temperature. 

 For perfectly black body aλ=1. 

Kirchoff”s law of Radiation 

 The law states that the ratio of the emissive power eλ of a body for any wavelength at a 

given temperature to its absorptive power aλ   for the wavelength at the temperature is constant 

and is equal to the emissive power Eλ of a perfectly black body at that temperature. 

     =Eλ 

Black Body Radiation 

 A body which completely absorbs radiation of all wavelength incident on it is called 

perfectly black body. Since a good absorber of radiation is also a good emitter of radiation , a 

perfectly black body is the best possible  emitter at any given temperature .The radiation emitted 

by such kind of body is called black body radiation, or full radiation or temperature radiation. 

 A perfectly black body is an ideal conception. There is no known surface which can be 

regarded as perfectly black. Lamp black or platinum black is the nearest approach to the 

perfectly black body. Lamp black can absorb about 96% of the radiant energy incident on it, 

&platinum black absorbs about 98%. In practice almost perfectly black body consist of a double-

walled hollow metal sphere. The sphere has a small hole O. There is conical projection P 
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opposite the hole. The inner surface of the sphere is coated with lamp  black .The space between 

the wall is evacuated to prevent loss of heat by conduction or convention .when any radiant 

energy enters the space through the hole, it suffers multiple reflections. At each reflection about 

96% of the incident radiant energy is absorbed .hence after few reflections all the radiant energy 

is absorbed by the sphere. The function of the conical projection is to prevent direct reflection of 

the radiant energy from the surface opposite to the hole. The hole O in the sphere acts as a 

perfectly black body because it absorbs all the radiant energy incident on it. When the sphere is 

heated black body radiation is emitted from the hole. 

Liquid Helium 

  As an application of B-E. statistics, the qualitative nature of the superfluid transition of 

liquid helium at 2.2 K were investigated.  Ordinary helium consists almost entirely of neutral 

atoms of the isotope 2He
4
. As the total angular momentum of this atom is 0. 

 Helium exhibits peculiar properties at low temperatures. 

(i) Helium gas at atmospheric pressure condenses at 4.3 K into a liquid of very low 

density about 0.124 gm / cm
3
 

(ii) Further cooling about 0.82 K doesnot freeze it and its believed that it remains all the 

way down to absolute 0. The solid state of helium does not form unless it is subjected 

to an external pressure of atleast 23 atm.  

(iii) For He
1
 in liquid phase there is another phase transition called λ transition which 

divides the liquid state into two phases He I and II. K. Onnes while liquefying helium 

noted that about 2.2 K, density appeared to pass through abrupt maximum and then 

decreasing slightly. Investigations also revealed that critical temperature at 2.186 K. It 

represents a transition to a new state of matter known as liquid He II. 

a) Heat conductivity is very large in the order of 3.10
6
 times greater. 

b) Co-efficient of velocity gradually diminishes as the temperature is lowered and 

appears to be approaching 0 at absolute 0 temp.  

c) Specific heat measurements by Kessom show that specific heat curve is 

discontinuous at 2.186 K. The shape of the specific heat curve resembles the 

shape of the letter λ and this peculiar transition is called λ transition and the 
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discontinuity temp. 2.186 K is called λ point. Kesson concluded that transition He 

I →He II at Tλ is second order transition. The transition temp. decreases as the 

pressure is increased. 

Degeneracy  

(i) Weak degeneracy: At T > TF (i.e., at intermediate temperatures) the Fermi gas is said to 

be slightly degenerate. In this case kT >∈F (0), then ∈F is negative or α is positive and A 

< 1. 

For A < 1, we can write  

1
1

𝐴
𝑒𝛼+1

 = 
1

𝐴
𝑒𝛼 + 1 

−1

 = Ae
x
 (1+Ae

-x
)

-1 

=Ae
-x

 (1-Ae
-x

+a
2
e

-2x
 - .......) 

Therefore, f1(x) = 
2

 𝜋
   𝑥1/2∞

0
𝑑𝑥/

1

𝐴
𝑒𝛼 + 1  

= 
2

 𝜋
 [𝐴 e−x𝑥1/2𝑑𝑥 −  𝐴2  e−x𝑥1/2𝑑𝑥 −  𝐴3  e−x𝑥1/2𝑑𝑥

∞
0

− ……..∞

0

∞

0
] 

=A-A
2
/2

3/2
 +A

3
/3

3/2
 -.................    (1) 

Similarly, f2(𝛼)= A = A
2
/2

5/2
 +A

3
/3

5/2
 -.................    (2) 

Using these values of f1(α) and f2 (α), equations (10) and (12) take the form  

n = gs . V/h
3
 (2πmkT)

3/2
 [A-A

2
/2

3/2
 +A

3
/3

3/2
]     ----------- (3) 

E = 3/2 gs . V/h
3
 (2πmkT)

3/2
 [A-A

2
/2

3/2
 +A

3
/3

3/2
]  ----------- (4) 

Dividing eq. (4) by (3),  

E/n = 3/2 kT [1+ A
2
/2

5/2
 -A

3
/3

5/2
]   ------------- (5) 

      To the first approximation We can write 

n = gs . V/h
3
 (2πmkT)

3/2
 A 

E = 3/2 gs . V/h
3
 (2πmkT)

3/2
 kT.A 

E/n = 3/2 kT or E = 3/2 nkT          ------------- (6) 

 

which is well known relation for a perfect gas in classical statistics. 

         A comparison of equations (5) and (6) shows that ideal Fermi-Dirac gas deviates from 

perfect gas behaviour and this derivation is called degeneracy. It is obvious that degeneracy is 

the function of A. Greater is the value of A, more marked will be the degeneracy. Hence for 

A<1or T>TF, the Fermi gas slightly degenerate. 
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Case (ii) strong degeneracy. When α is large and negative A=e
-α

  > >1. As degeneration 

increases will increases of A, therefore in this case degeneracy becomes more prominent. Further 

to the first approximation; from en. (3)  

A ≈1/gs . n/V h
3
/(2πmkT)

3/2
 

This eqn. shows that the gas will be strongly degenerate at low temperature and high 

particles densities n/v. The evaluation of integrals f1(α) and f2(α) under these conditions is 

complicated. 

This case of strong degenerate at low temperature ranges: 

(a) At absolute zero i.e when T= 0 

(b) When T is above absolute zero, but A>> 1. 

Case (a) At absolute zero i.e. when T=0. When T →0 A→0. In this case the Fermi-dirac 

gas is completely degenerate. 

       At T=0,  

f(∈) = 
1

1

𝐴
𝑒𝜖/𝑘𝑇 +1

 = 
1

𝑒
(𝜖−𝜖𝐹 )
𝑘𝑇 +1

 =1 for 0≤ 𝜖≤ 𝜖F(0) 

=0 for 𝜖 > 𝜖F(0) 

where 𝜖F(0) is given by eqn. (18) 

     Now the total internal energy of perfect Fermi- dirac gas at T=0 i.e. zero point 

energy of Fermi gas is   

E0 = 3nh
2
/10m [3n/4πVgs]

2/3
 = 3/5 n 𝜖F (0)      ---------- (8) 

Now the pressure at T=0 is given by  

P0 = 1/3 E0/V 

 = 1/5nh
2
/Vm (3n/4πgsV)

2/3 
        --------- (9) 

Form equations (8) and (9) it is obvious that a strongly degenerate Fermi-dirac gas 

possesses energy and exerts a pressure even at 0K, quite unlike a Bose Einstien and classical 

gases where the energy and pressure at absolute zero are zero. 

Case (b) At temperature above absolute zero :but A> >1or T<<Tf 

In this case the Fermi –gas is strongly degenerate at low temperature and 𝜖 is still positive. 

From equation (17) the number of particles lying in the energy range between 𝜖 and 𝜖+d𝜖 is 

given by 

dn (𝜖) =f(𝜖)d(𝜖) = 3/2 n/[ 𝜖F (0)]
3/2

. 𝜖1/2
d 𝜖/𝑒(𝜖−𝜖𝐹 )/𝑘𝑇 + 1     -------(10)

 

Therefore, the total number of particles is  

n =  𝑑𝑛(𝜖)
∞

0
 = 3/2 n/[ 𝜖F(0)]

3/2   
∞

0
 𝜖1/2

d 𝜖/𝑒(𝜖−𝜖𝐹 )/𝑘𝑇 + 1     ----------- (11) 
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and the total integral energy is  

E =  𝜖dn (𝜖)
∞

0
 = 3/2 n/[ 𝜖F(0)]

3/2  
 
∞

0
 𝜖1/2

d 𝜖/𝑒(𝜖−𝜖𝐹 )/𝑘𝑇 + 1     ------------ (12) 

To solve the integrals in equations (31) and (32), let us consider the general integral of the type 

I =  ∅
 𝜖 𝑑𝜖

𝑒
𝜖−𝜖𝐹
𝑘𝑇

+ 1
∞

0
                              ----------- (13) 

 

Where Ø(𝜖) is a simple function of    such that Ø( ) =0 when  =0. 

The integral of eqn. (33) can be expanded using the method of taylor’s series expansion, 

Where Ø’, Ø’’’ etc. denote the first, third etc. differentials of the function Ø. 

Now for Φ(𝜖) = 𝜖1/2         
                     --------- (15) 

𝜖F / 𝜖F (0) = [1+1/8(πkT/ 𝜖F)
2
 + 7/640 (πkT/ 𝜖F)

4
 + ]

-2/3
        ---------- (16) 

Remembering that kT < <  f,we can take into account only the first two terms in the 

bracketed expression and write  

𝜖F/ 𝜖F (0) = [1+1/8(πkT/ 𝜖F)
2
]

2≈1-1/12 (πkT/ 𝜖F)
2 
      --------- (17) 

This gives  

1/ 𝜖F
2
 ≈ 

1/[ 𝜖F (0)]
2
 [1+1/6 (πkT/ 𝜖F)

2
]            ------------ (18) 

Now make the crude approximation by putting f= f(0) in the second term of above 

expression 

1/ 𝜖F
2
 ≈ 

1/[ 𝜖F (0)]
2
 [1+1/6 (πkT/ 𝜖F(0)

2
]         ----------- (19) 

Now using equation (19), equation (17) gives  

𝜖F ≈ 𝜖F (0) [1-1/12 (πkT/ 𝜖F(0))
2
]        ------------ (20) 

 

E≈ n 𝜖F (0) (𝜖F /𝜖F (0)
5/2

   [1+5/8 (πkT/ 𝜖F)
2
] 

Now using equations (39) and (40),we get  

E≈ 3/5 n 𝜖F (0) [1+5/12(πkT/ 𝜖F (0)]     ----------- (22) 

The corresponding pressure is  
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P = 2/3 E/V ≅2/5 (n 𝜖F (0)/V) [1+5/12 (πkT/ 𝜖F (0)
2
]      ------------- (23) 

Equations (22) and (23) represent the approximate energy and pressure of a strongly 

degenerate gas. 

Electron Gas 

 A metal can be considered to be composed of a system of fixed positive nuclei and a no. 

of mobile electrons referred to us the electron gas. 

To study the properties of an electron gas at low temperature in the region. For electrons s=1/2 so 

gz = 2s+1 =2. 

εf = h
2
/2m  

3𝑛

4𝜋  .𝑉 .2
 

2/3

 

     = h
2
/8m  

3𝑛

𝜋  .2
 

2/3

                                           ----- (1) 

Ea = 3/5 n εf                                                                          ----------- (2) 

In the limit T → 0 Which means that in the limit every one of the states is occupied fully up to 

the energy level εf whereas all the states above this energy level are empty. For electrons m = 9.1 

x 10
-28

gm, and g =2. 

1

𝐷
=  

ℎ2

2 𝑥 9.1 𝑥 10−28 𝑘𝑇
  

3𝑛

8𝜋𝑉
 

2/3

 

A typical metal atomic weight 100 and density 10 so that the volume of gm. atom of 

10cc. and the number of electrons assuming one free electron from atom is 6.02 x 10
23

. Then 

 

1

𝐷
=  

 6.62 𝑥 10−27 2

2 𝑥 9.1 𝑥 10−28 𝑥 1.38 𝑥 10−18 𝑥 𝑇 
  

3𝑥 6.02 𝑥 1023

8 𝑥 3.14 𝑥 10
 

2/3

 

= 105/ 1.5T 

 

Which means degeneracy is sufficiently high. It shows clearly that for electron gas, a 

classical statistics is not valid and can be applied only at temperature of the order of 10 
5
K. 

Therefore at low and other ordinary working temperatures, it is necessary to use Fermi- Dirac 

statistics to study the electron gas in the metals. At low temperature electronic contribution to the 

specific heat of metals is given by the equ.  

Cv = ½ nk π
2
 (kT/ εf) 

D = (kT/ εf) 
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Cv = ½ nk π
2 
D 

Using this value find the value of 1/D,  

Cv = ½ nk π
2
 x 1.5 x 10

-5
 x T 

Sub. nk = R 

= 1.987 cal deg
-1

 mol
-1 

= 2 cal deg
-1

 mol
-1

 

π
2
 = 10 

Cv = ½ x 1.5 x 10
-5

 x 2 x 10 x T 

= 1.5 x 10
-4

 x T cal/gm. atom 

Pressure of the electron gas can be obtained by, 

Po = 
2

5
 
𝑛εf

𝑉
 

 = 
2

5𝑉
 
ℎ2

2𝑚
 

3𝑛

4𝜋𝑉𝑔𝑠
 

2/3

 

=  
𝑛ℎ2

20𝑚𝑉
 

3𝑛

𝜋𝑉
 

2/3

 using 𝑔𝑠 =2 

For a metal of atomic weight 100 and density 10  

Po ͂ 10
5 
atoms 

Which means at normal temperature the pressure of gas is sufficiently high. 

Ising and Heisenberg Model 

 Transition of non-ferromagnetic state into ferromagnetic state is called phase transition, 

in this transition, the state of the body changes continuously. 

Consider a ferromagnetic substance, like iron and nickel. Without any external field 

being applied, some of the spins of the atoms become spontaneously polarized in the same 

direction, below curie temperature Tc. This create a macroscopic magnetic field. The 

spontaneous magnetization, created vanishes if temperature is greater than Tc, because thermal 

energy makes some of the aligned spin to flip over. Thus spins get oriented at random no net 

magnetic field is produced. As the curie temperature approached both sides of the specific heat 

of the metal approaches infinity. The transition from non-ferromagnetic to the ferromagnetic 

state, called the phase transition, is associated with some kind of change in the symmetry of the 
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lattice; For example the ferromagnetism symmetry of the spins is involved. In Ising model the 

system considered is the array of N fixed points called lattice sites that from an n-dimensional 

periodic lattice (n=1,2,3). Associated with each lattice site is a spin variable, si, i =1 to n, It is a 

number that either +1 or -1. There is no other variable. If si = +1 the ith state is said to have spin 

up and si =-1, it is said to have spin down. A given set of {si}specifies a configuration of the 

whole system, whose energy is defined to be  

E1{si}= -  ∈𝑖𝑗  𝑠𝑖  𝑖 ,𝑗   𝑠𝑖 𝑠𝑗 − 𝜇𝐻  𝑠𝑖𝑁
𝑖=1                           ------------- (1) 

Where the subscript I stands for Ising and the symbol   𝑖, 𝑗   denotes a nearest-neighbour 

pari of spins. There is no distinction between   𝑖, 𝑗   and   𝑗, 𝑖   is the interaction energy H 

interaction is associated with the external magnetic field H. For spontaneous magnetization H= 

0. ∈ij  and H are given constants. Applied the model to the case is isotopic interaction so that all 

∈ij have the same value ∈. For energy 

E1{si}= -∈    𝑖 ,𝑗   𝑠𝑖 𝑠𝑗 − 𝜇𝐻  𝑠𝑖𝑖                                           --------- (2) 

The case ∈ > 0 corresponds to ferromagnetism and the case ∈< 0 to antiferromagnetism. 

In the former case neighbor spins tend to be parallel while in the latter case they tend to be 

antiparallel. In eq. (2) the sum over   𝑖, 𝑗   contains N/2 terms where is the number of nearest 

neighbors of any given site. In the Ising model eq. 2, geometry of the lattice enters through and 

interaction energy ∈ij 

Consider only these case ∈ > o. The partition function is  

Z =   𝑒−𝛽𝐸1 {𝑆𝑖}
𝑆𝑁𝑆2𝑆1  
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S.No. QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER 

1 In solid heat is transferred by _________ Conduction  convection  radiation   Irradiation Conduction  

2 In liquid heat is transferred by _________ Conduction  convection  radiation   Irradiation convection  

3 
Conduction and convection cannot take 

place in __________ solid   liquid  inert gas  empty space empty space 

4 
______________ does not require any 

material medium. Conduction  convection  radiation   Irradiation radiation  

5 Radiant energy is also called as ____ latent heat  radiant heat  entropy   enthalpy radiant heat  

6 
The wavelength of infrared ranges from 

________ 

7500Å to 

1000000Å  

750Å to 

100000Å  

7500Å to 

10000Å  

 750Å to 

1000000Å 

7500Å to 

1000000Å  

7 ____________ travels with speed of light. Conduction  convection  radiation   Irradiation radiation  

8 
The nature of radiant energy is same as 

that of _______ sound  heat  light  electricity light  

9 
The radiant energy emitted depends on 

_________ temperature  material  volume   height temperature  

10 
For a black body the emissive power is 

denoted by __________  E   λ   λE  Eλ  E  

11 Unit of emissive power is ________ 1 W/m  1WmÅ   1WÅ  1W/m2Å 1W/m2Å 

12 For a perfectly black body aλ = ________ 0  ∞  1  -∞ 0 



 

 

13 Absorptive power is represented by _____ a   λ   λa  aλ aλ 

14 Kirchoff’s law of radiation = eλ/aλ = Eλ  eλ/aλ = λ   aλ/eλ = Eλ   eλ/Eλ = aλ eλ/aλ = Eλ  

15 
___________ black is nearest approach to 

a perfectly black body. gold   platinum   diamond  silver gold  

16 

Which is considered as a perfect absorber 

as well as a perfect emitter? Gray body  Black body  Real body  White body Black body  

17 

Which body that emits a constant 

emissivity regardless of the wavelength? Gray body  Black body  Real body  White body Gray body  

18 

At same temperatures, the radiation 

emitted by all real surfaces is ______ the 

radiation emitted by a black body. Less than   Greater than  Equal to  

Either less than or 

greater than Less than  

19 

Which is NOT a characteristic of 

emissivity? 

It is high with 

most nonmetals  

It is directly 

proportional to 

temperature  

It is 

independent 

with the surface 

condition of the 

material  

It is low with 

highly polished 

metals 

It is low with 

highly polished 

metals 

20 What is the emissivity of a black body? 0 1 0.5 0.25 1 

21 What is the absorptive of a black body? 0 1 0.5 0.25 0 

22 Above Curie point 

A ferromagnetic 

material becomes 

paramagnetic  

a ferrite becomes 

an insulator  

a insulating 

material 

becomes a 

ferrite  

a diamagnetic 

material becomes 

a paramagnetic 

material 

A ferromagnetic 

material becomes 

paramagnetic  

23 

Which of the following is a paramagnetic 

material? Palladium  Lead   Pure Iron  Bismuth Lead  

24 

Which of the following is a ferromagnetic 

material? Palladium  Lead    Iron  Bismuth   Iron  

25 

All of the following materials are 

Ferromagnet except Nickel  Bismuth  Silicon   Mild steel  Mild steel 

26 

By adding silicon to ferromagnetic , 

materials 

 electrical 

resistivity 

increases and also 

magnetic 

electrical 

resistivity 

decreases and 

also magnetic 

electrical 

resistivity 

decreases and 

magnetic 

electrical 

resistivity 

increases and 

magnetic 

electrical resistivity 

decreases and 

magnetic 

permeability 



 

 

permeability 

increases  

permeability 

decreases  

permeability 

increases  

permeability 

decreases. 

increases  

27 

The specific heat capacity of a substance 

is equal to 

mass of the 

substance × heat 

capacity 

heat capacity ⁄ 

mass of the 

substance 

mass of the 

substance ⁄ heat 

capacity 

mass of the 

substance 

heat capacity ⁄ mass 

of the substance 

28 Specific heat capacity of glass is 635 J kg
-1

 °C
-1

 670 J kg
-1

 °C
-1

 705 J kg
-1

 °C
-1

 740 J kg
-1

 °C
-1

 670 J kg
-1

 °C
-1

 

29 
The specific heat capacity of a substance 

is equal to 

the amount of heat 

required to raise 

the temperature of 

a 1 kg of a 

substance by 1 K 

the amount of 

heat required to 

raise the 

temperature of a 

substance by 1 K 

the amount of 

heat required to 

change the 

phase of a 

substance from 

solid to liquid 

without any 

chan 

the amount of 

heat required to 

change the phase 

of a substance 

from liquid to gas 

without any 

change 

the amount of heat 

required to raise the 

temperature of a 1 

kg of a substance 

by 1 K 

30 Specific heat capacity of mercury is 120 J kg
-1

 °C
-1

 140 J kg
-1

 °C
-1

 160 J kg
-1

 °C
-1

 180 J kg
-1

 °C
-1

 140 J kg
-1

 °C
-1

 

31 

The amount of heat required to raise 

temperature of a substance by 1°C is 

called as: work capcaity heat capacity energy capacity 

specific heat 

capacity heat capacity 

32 Heat capcity  does not depends on  

change in 

temperature mass of body 

nature of 

substance 

height of 

substance height of substance 

33 Heat brings _______ change physical chemical reversible periodic chemical 

34 
The amount of heat required to raise the 

temperature of 1 kg by 1°C is called as: work capcaity heat capacity energy capacity 

specific heat 

capacity 

specific heat 

capacity 

35 SI unit of specific heat capacity is: kg°C j/kg°C j/kg°  j/g°C j/kg°C 

36 
Which of the following has highest heat 

capacity? water air soil wood water 

37 
The temperature at which liquid changes 

into vapour is called as  Melting point boiling point expansion point phase transition boiling point 

38 
In Conduction process the molecules of 

the solid pass the heat from one to another 

without 

themselves 

moving from their 

positions No movement 

themselves 

move from one 

place to another 

without 

themselves 

moving from one 

place to another 

without themselves 

moving from their 

positions 



 

 

39 
The process of transfer of heat in liquids & 

gases is called as Conduction Radiation Convection absorption Convection 

40 
Solids are not heated by convection 

because 

solid are not free 

to move from one 

place to another 

 molecules only 

vibrate about 

fixed position both A and B 

they are loosely 

packed both A and B 

41 

It is the process of heat transfer from a hot 

body to a colder body without heating the 

space between the two is called as Conduction Radiation Convection absorption Radiation 

42 The transfer of heat by radiation 

 does not require 

any medium. 

require any 

medium 

does not require 

any space require any space 

 does not require 

any medium. 

43 Heat of sun reach the earth by Conduction Radiation Convection absorption Radiation 

44 

A cold steel spoon is dipped in a cup of 

hot milk. It transfers heat to its other end 

by the process of……………. Conduction Radiation Convection absorption Conduction 

45 Why conduction is only possible in solids 

 particles of solids 

are closely packed 

heat is 

transferred from 

the hotter end to 

the colder end of 

an object 

heat is 

transferred from 

the colder end 

to the hotter end 

of an object both A and B both A and B 

46 
The water is poor conductors of heat so do 

not heated by Conduction Radiation Convection absorption Conduction 

47 
Which of the following are the examples 

of conductors? plastic Iron wood silicon iron 

48 
Which of the following are the examples 

of insulators ? copper Iron wood silicon wood 

49 
Radiation is the transfer of heat by means 

of magnetic wave 

electromagnetic 

waves electrical wave radio waves 

electromagnetic 

waves 

50 

Materials which lack permanent magnetic 

dipoles are called dia magnet ferro magnet semi-magnet para magnet dia magnet 

51 

Materials having a high dielectric 

constant, which is non-linear, are known 

as elastomers 

ferroelectric 

materials 

super die-

electrics hard die-electrics 

ferroelectric 

materials 

52 In ferromagnetic materials the atomic the atomic the constituents one of the the atomic 



 

 

magnetic moments 

are antiparallel and 

unequal 

magnetic 

moments are 

parallel 

is iron only constituent is iron magnetic moments 

are parallel 

53 

The temperature beyond which substances 

lose their ferroelectric properties, is known 

as curie temperature 

critical 

temperature 

inversion 

temperature 

conversion 

temperature curie temperature 

54 

What is the degeneracy of the rotational 

energy level with J = 4 for a heteronuclear 

diatomic molecule? 1 2 3 9 9 

55 
Which type of statistics is used to describe 

the electron contribution to specific heat? MB statistics BE statistics FD statistics Classical statistics FD statistics 
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