B.Sc	Physi	cs
------	-------	----

2019-2020

24

SEMESTER-I 4H-2C

19PHU113

MATHEMATICS PRACTICAL – I

Instruction Hours / week: L: 0 T: 0 P: 4

Marks: Internal: 40

External: 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives

This course enables the students

- To develop skills for quantitative estimation using computer language.
- To code various differentiation and integration methods in a modern computer language.
- To plot the graphs of function

Course Outcomes (COs)

On successful completion of this course, the student will be able to

- Solve complicated matrix related problems like matrix inverse and matrix multiplication.
- Acquire problem-solving skills through computer programming.
 Plot various functions and parametric curves.

List of Practical

- 1. Matrix addition.
- 2. Matrix multiplication.
- 3. Inverse of a matrix.
- 4. Transpose of a matrix
- 5. Plotting of graphs of function e^{ax+b} , log(ax + b), 1/(ax + b), sin(ax + b), cos(ax + b), |ax +b| and to illustrate the effect of a and b on the graph.
- 6. Plotting the graphs of polynomial of degree 4 and 5 and the derivative graph.
- 7. Sketching parametric curves. (Eg. Circle, Ellipse, Cycloid and Asteroid).
- 8. Evaluating definite integrals.(Line integral)

Karpagam Academy of Higher Education (Deemed to be University), Coimbatore-641021, India

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021

CLASS: I B.Sc Physics

COURSENAME: Mathematics Practical-I

COURSE CODE: 19PHU113

BATCH-2019-2022

LAB MANUAL

CONTENTS

EX.NO	NAME OF THE EXPERIMENT	PAGE NO
1	Matrix Addition	2
2	Matrix Multiplication	4
3	Transpose of Matrix	6
4	Inverse of a Matrix	8
5	Plotting the graphs of the functions e^{ax+b} , $log(ax + b)$ $sin(ax + b)$, $cos(ax + b)$, $\frac{1}{ax+b}$, $ ax + b $	10
6	Plotting the graphs of polynomials of degree 4 and 5 and its derivative graph	17
7	Sketching Parametric Curves	19
8	Evaluating Definite Integrals	24

MATRIX ADDITION

Question:

Add any two matrices of order three using Scilab.

Aim:

To add the two matrices of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrices A and B of order three.

Step 3: Add the matrices A and B and store the value in matrix C.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

Coding:

// Matrix Addition
clc
A = [1 2 3; 4 5 6 ; 7 8 9];
B= [0 4 5; 7 6 8 ; 1 2 3];
C = A+B

-->C

C =

- 1.
 6.
 8.

 11.
 11.
 14.
- 8. 10. 12.

Result:

MATRIX MULTIPLICATION

Question:

Multiply any two matrices of order three using Scilab.

Aim:

To multiply the two matrices of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrices A and B of order three.

Step 3: Multiply the matrices A and B and store the value in matrix C.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

Coding:

// Matrix Multiplication

clc

A = [123;456;789];

B= [0 4 5; 7 6 8; 1 2 3];

C = A * B

-->C

C =

17.22.30.41.58.78.

65. 94. 126.

Result:

TRANSPOSE OF A MATRIX

Question:

Transpose of any matrix of order three using Scilab.

Aim:

To transpose the matrix of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrix A of order three.

Step 3: Transpose the matrix A and store the value in matrix B.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

Coding:

// Transpose of a matrix

clc

A = [123;456;789];

B = A'

-->B

В =

- 1. 4. 7.
- 2. 5. 8.
- 3. 6. 9.

Result:

INVERSE OF A MATRIX

Question:

Find the inverse of a matrix of order three using Scilab.

Aim:

To find the inverse of a matrix of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrix A of order three.

Step 3: Inverse the matrix A and store the value in matrix B.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

Coding:

// Inverse of a matrix

clc

A = [123;456;789];

B = inv(A)

matrix is close to singular or badly scaled. rcond = 1.5420E-18

-->B

B =

-4.504D+15	9.007D+15	-4.504D+15.
9.007D+15	-1.601D+16	9.007D+15
-4.504D+15	9.007D+15	-4.504D+15

Result:

Plotting of graphs of functions e^{ax+b} , $\log(ax+b)$, $\frac{1}{ax+b}$, $\sin(ax+b)$ $\cos(ax+b)$, |ax+b| and to illustrate the effect of a and b on the graph

Question:

Plot exponential, logarithmic, trigonometric functions using Scilab.

Aim:

To plot exponential, logarithmic, trigonometric functions using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Give the values of *a* and *b* by real numbers.

Step 3: Define the domain of the function and store it in x.

Step 4: Store the plotting function in y.

Step 5: Plot the function y and give the title of the graph.

Step 6: Save and execute the programme.

Step 7: Run the programme and view the output in graphic window.

Step 8: Stop the programme.

Coding:

```
// Plotting of e<sup>ax+b</sup>
clf
a = 1;
b = 2;
x = [ 0 : 0.1 : 2];
y = exp(a*x+b);
plot(x, y);
title(" Graph of Exponential Function")
xlabel ("X-axis")
ylabel (" e^(ax+b)" )
```


Graph of Exponential function

```
// Plotting of log (ax + b)
clf
a = 1;
b = 2;
x = [ 0 : 0.1 : 2];
y = log(a*x +b);
plot(x, y);
title(" Graph of Logarithmic Function")
xlabel ("X-axis")
ylabel (" log(ax+b)" )
```


// Plotting of 1 ax+b clf a = 1; b = 2; x = [0 : 0.1 : 2]; y = (a*x+b)^-1; plot(x, y); title(" Graph of Inverse Function") xlabel ("X-axis") ylabel (" 1/ ax+b ")


```
// Plotting of sin (ax + b)
clf
a = 1;
b = 2;
x = [ 0 : 0.1 : 2*%pi];
y = sin(a*x+b);
plot(x, y);
title(" Graph of Sin Function")
xlabel ("angles in radians")
ylabel (" sin(ax+b)" )
```



```
Coding:

// Plotting of cos (ax + b)

clf

a = 1;

b = 2;

x = [ 0 : 0.1 : 2*%pi];

y = cos(a*x+b);

plot(x, y);

title(" Graph of Cos Function")

xlabel ("angles in radians")

ylabel (" cos(ax+b)" )
```



```
// Plotting of |ax + b|
clf
a = 1;
b = 2;
x = [-24 : 0.1 : 20];
y = abs(a*x+b);
plot(x, y);
title(" Graph of Mod Function")
xlabel ("X-axis")
ylabel (" |ax+b|" )
```

Output:

Result:

Plotting of graphs of polynomials of degree 4 and 5 and the derivative graph

Question:

Plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Aim:

To plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Algorithm:

Step 1: Start the programme.

- **Step 2:** Use linspace command to fix the values of x.
- **Step 3:** Define the polynomials p1(x) and p2(x).
- Step 4: Display the values of p1(x) and p2(x)

Step 4: Find derivatives of p1(x) and p2(x) and store it in d1 and d2.

Step 5: Use plot2d command to plot the graphs of polynomials and its derivatives

Step 6: Save and execute the programme.

Step 7: Run the programme and view the output in graphic window.

Step 8: Stop the programme.

Coding:

clf

```
x=linspace(0, 1, 100)';
```

p1= 4*x^4 + 5*x^3 +2*x^2 + 6* x +7;

p2= 7*x^5 -3*x^4 +8*x^3 +2 *x^2 +4*x +9;

disp(p1);

disp(p2);

d1=derivat(p1);

d2=derivat(p2);

plot2d(x, [p1p2d1d2], [59-9-1], leg="p1@p2@d1@d2");

title(" Graphs of polynomials and its derivatives ")

xlabel(" X-axis")

ylabel(" Polynomials and derivatives")

Result:

Sketching Parametric Curves (Eg. Circle, Ellipse, Cycloid and Asteroid)

Question:

Sketch the parametric curves (Eg: Circle, Ellipse, Cyclod and Asteroid)

Aim:

To sketch the parametric curves (Eg: Circle, Ellipse, Cycloid and Asteorid)

Algorithm:

Step 1: Start the programme.

Step 2: Use linspace command to fix the values of t.

Step 3: Define the parametric curves.

Step 4: Use plot command to plot the parametric curves.

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in graphic window.

Step 7: Stop the programme.

Coding:

- a) Circle
 - clf;
 - r = 3;
 - t = linspace(0, 2*%pi, 100);

title("Circle")

b) Ellipse
clf
a = 2;
b = 1;
t = linspace(0, 2*%pi,100);
x = a*cos(t);
y = b*sin(t);
plot(x,y);
title("Ellipse")

c) Asteroid

clf

a = 2;

t = linspace(0, 2*%pi, 100);

x = a*cos(t)^3;

y = a*sin(t)^3;

plot(x,y);

title("Asteroid")

d) Cycloid

clf

a = 2;

t = linspace(0, 4*%pi, 100);

x = a*(t-sin(t));

y = a*(1-cos(t));

plot(x,y);

title("Cycloid")

Output:

Result:

Evaluating definite integral (Line integral)

Question:

Evaluate the given definite integral using Scilab.

Aim:

To evaluate the definite integral using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Enter the lower limit and upper limit in a and b.

Step 3: Use integrate command to evaluate the given definite integral.

Step 4: Display the integral value

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in console.

Step 7: Stop the programme.

Coding:

clc

a = input("Enter the lower limit");

- b = input("Enter the upper limit");
- $I = integrate('6*x^2 7*x + 2', 'x', a, b);$

disp(I)

Enter the lower limit0

Enter the upper limit2

6.

---->