Semester-V

Course Objectives

This course enables the students

- To develop skills for quantitative estimation using computer language.
- To code various differentiation and integration methods in a modern computer language.
- To plot the graphs of function

Course Outcomes (COs)

On successful completion of this course, the student will be able to

• Acquire problem-solving skills through computer programming. Plot various functions and parametric curves.

List of Practical

- 1. Plotting of graphs of function e^{ax+b} , log(ax+b), 1/(ax+b), sin(ax+b), cos(ax+b), |ax+b| and to illustrate the effect of a and b on the graph.
- 2. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph.
- 3. Sketching parametric curves. (Eg. Circle, Ellipse, Cycloid and Asteroid).
- 4. Evaluating definite integrals.(Line integral)
- 5. Evaluating integrals using Reduction formulae.
- 6. Evaluating integration of an expression by Quadrature.
- 7. Plotting the double integral of z = f(x, y) = x + y in 0 < x < 2; 0 < y < 2.
- 8. Plotting area under any curve using line integral

Tradic L'Englaten J Envid Exadic L'Englaten J Envid EXARPESE AUXON ACADEMY OF ILCENTO (Dermet do be University) (Established Under Section 3 of UGC ACT, 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021

CLASS: II B.Sc. Physics

COURSENAME:Mathematics Practical-I

COURSE CODE: 18PHU113

BATCH-2018-2021

LAB MANUAL

CONTENTS

EX.NO	NAME OF THE EXPERIMENT	PAGE NO
1	Plotting the graphs of the functions e^{ax+b} , $log(ax + b)$ $sin(ax + b)$, $cos(ax + b)$, $\frac{1}{ax + b}$, $ ax + b $	2
2	Plotting the graphs of polynomials of degree 4 and 5 and its derivative graph	4
3	Sketching Parametric Curves	6
4	Evaluating Definite Integrals	8
5	Evaluating integrals using Reduction formulae.	10
6	Evaluating integration of an expression by Quadrature	17
7	Plotting the double integral of $z = f(x, y) = x + y$ in 0 < x < 2; 0 < y < 2.	19
8	Plotting area under any curve using line integral	24

Plotting of graphs of functions e^{ax+b} , $\log(ax + b)$, $\frac{1}{ax+b}$, $\sin(ax + b)$ $\cos(ax + b)$, |ax + b| and to illustrate the effect of a and b on the graph

Question:

Plot exponential, logarithmic, trigonometric functions using Scilab.

Aim:

To plot exponential, logarithmic, trigonometric functions using Scilab. Algorithm:

Step 1: Start the programme.

Step 2: Give the values of *a* and *b* by real numbers.

Step 3: Define the domain of the function and store it in x.

Step 4: Store the plotting function in y.

Step 5: Plot the function y and give the title of the graph.

Step 6: Save and execute the programme.

Step 7: Run the programme and view the output in graphic window.

Step 8: Stop the programme.

Coding:

// Plotting of e^{ax+b}

clf

```
a = 1;
```

b = 2;

x = [0:0.1:2];

y = exp(a*x+b);

plot(x, y);

```
title(" Graph of Exponential Function")
xlabel ("X-axis")
ylabel (" e^(ax+b)" )
```


Graph of Exponential function

// Plotting of $\log(ax + b)$

clf

a = 1; b = 2; x = [0:0.1:2]; y = log(a*x+b); plot(x, y); title(" Graph of Logarithmic Function") xlabel ("X-axis")

ylabel (" log(ax+b)")

// Plotting of $\frac{1}{ax+b}$

clf

a = 1; b = 2; x = [0:0.1:2]; y = (a*x+b)^-1; plot(x, y);

title(" Graph of Inverse Function") xlabel ("X-axis") ylabel (" 1/ ax+b")

// Plotting of sin (ax + b)

clf

a = 1; b = 2; x = [0 : 0.1 : 2*%pi]; y = sin(a*x+b); plot(x, y); title(" Graph of Sin Function")

xlabel ("angles in radians") ylabel (" sin(ax+b)")

// Plotting of $\cos(ax + b)$

clf

a = 1; b = 2; x = [0 : 0.1 : 2*%pi]; y = cos(a*x+b); plot(x, y); title(" Graph of Cos Function")

xlabel ("angles in radians") ylabel (" cos(ax+b)")

// Plotting of |ax + b|

clf

a = 1; b = 2; x = [-24 : 0.1 : 20]; y = abs(a*x+b); plot(x, y); title(" Graph of Mod Function") xlabel ("X-axis") ylabel (" |ax+b|")

Output:

Result:

Plotting of graphs of polynomials of degree 4 and 5 and the derivative graph

Question:

Plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Aim:

To plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Algorithm:

Step 1: Start the programme.

- **Step 2:** Use linspace command to fix the values of x.
- **Step 3:** Define the polynomials p1(x) and p2(x).
- Step 4: Display the values of p1(x) and p2(x)

Step 4: Find derivatives of p1(x) and p2(x) and store it in d1 and d2.

Step 5: Use plot2d command to plot the graphs of polynomials and its derivatives

Step 6: Save and execute the programme.

Step 7: Run the programme and view the output in graphic window.

Step 8: Stop the programme.

Coding:

clf

```
x=linspace(0, 1, 100)';
```

p1= 4*x^4 + 5*x^3 +2*x^2 + 6* x +7;

p2= 7*x^5 -3*x^4 +8*x^3 +2 *x^2 +4*x +9;

disp(p1);

disp(p2);

d1=derivat(p1);

d2=derivat(p2);

plot2d(x, [p1 p2 d1 d2], [59 -9 -1], leg="p1@p2@d1@d2");

title(" Graphs of polynomials and its derivatives ")

xlabel(" X-axis")

ylabel(" Polynomials and derivatives")

Result:

Sketching Parametric Curves (Eg. Circle, Ellipse, Cycloid and Asteroid)

Question:

Sketch the parametric curves (Eg: Circle, Ellipse, Cycloid and Asteroid)

Aim:

To sketch the parametric curves (Eg: Circle, Ellipse, Cycloid and Asteorid)

Algorithm:

Step 1: Start the programme.

Step 2 : Use linspace command to fix the values of t.

Step 3: Define the parametric curves.

Step 4: Use plot command to plot the parametric curves.

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in graphic window.

Step 7: Stop the programme.

Coding:

- a) Circle
 - clf;
 - r = 3;
 - t = linspace(0, 2*%pi, 100);

plot(x,y);

title("Circle")

b) Ellipse
clf
a = 2;
b = 1;
t = linspace(0, 2*%pi,100);
$x = a^* cos(t);$
y = b*sin(t);
plot(x,y);
title("Ellipse")

c) Asteroid

clf

a = 2;

t = linspace(0, 2*%pi, 100);

x = a*cos(t)^3;

y = a*sin(t)^3;

plot(x,y);

title("Asteroid")

d) Cycloid

clf

a = 2;

t = linspace(0, 4*%pi, 100);

x = a*(t-sin(t));

y = a*(1-cos(t));

plot(x,y);

title("Cycloid")

Output:

Result:

Evaluating definite integral (Line integral)

Question:

Evaluate the given definite integral using Scilab.

Aim:

To evaluate the definite integral using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2:Enter the lower limit and upper limit in a and b.

Step 3: Use integrate command to evaluate the given definite integral.

Step 4: Display the integral value

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in console.

Step 7: Stop the programme.

Coding:

clc

a = input("Enter the lower limit");

- b = input("Enter the upper limit");
- I = integrate('6*x^2 -7*x +2', 'x', a, b);

disp(I)

Enter the lower limit0

Enter the upper limit2

6.

--->

Result:

Evaluating integrals using Reduction formulae

Question:

Evaluating integrals using Reduction formulae using Scilab.

Aim:

To evaluate integrals using Reduction formulae using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Enter the lower limit and upper limit in a,b and also n value.

Step 3: Use integrate command to evaluate the given Reduction formulae.

Step 4: Display the integral value

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in console.

Step 7: Stop the programme.

Coding:

```
clc
a=0;b=%pi;n=5
l=integrate('sin(x)^n','x',a,b);
x=[0:0.01:100]
xgrid()
plot2d(x,sin(x)^n,5)
```

-->|

I = 1.0666667

Result:

Evaluating integration of an expression by Quadrature

Question:

Evaluating integration of an expression by Quadrature using Scilab.

Aim:

To evaluate integration of an expression by Quadrature using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the domain of the function and store it in x.

Step 3: Use integrate command to evaluate the given formulae.

Step 4: Display the integral value

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in console.

Step 7: Stop the programme.

Coding:

i) x0=0;x1=0:0.1:2*%pi; l=<u>integrate('sin(x)','x',x0,x1);</u> clc; ii)x1=-1:0.1:1; l=<u>integrate(['if x==0 then 1,';'else sin(x)/x,end'],'x',0,x1)</u>

I = column 1 to 6

-0.9460831 -0.8604707 -0.7720958 -0.6812222 -0.5881288 -0.4931074

column 7 to 12

-0.3964615 -0.298504 -0.1995561 -0.0999445 0. 0.0999445

column 13 to 18

0.1995561 0.298504 0.3964615 0.4931074 0.5881288 0.6812222

column 19 to 21

0.7720958 0.8604707 0.9460831

Result:

Plotting the double integral of z = f(x, y) = x + y in 0 < x < 2; 0 < y < 2.

Question:

Plotting the double integral of z = f(x, y) = x + y in 0 < x < 2; 0 < y < 2. using Scilab.

Aim:

To evaluate double integration curve and region by using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the domain of the function in f(x,y).

Step 3: Define the domain of the function and store it in xx and yy values.

Step 4: Use plot command to plot the curve.

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output.

Step 7: Stop the programme.

Coding:

```
clc;
deff('[x]=f(x,y)','z=x+y');
xx=[0:0.2:2];
yy=[0:0.2:2];
zz=feval(xx,yy,f);
plot3d(xx,yy,zz)
```


Result:

Plotting area under any curve using line integral

Question:

Plotting area under any curve using line integralusing Scilab. Aim:

To Plotting area under any curve by using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the domain of the function value.

Step 3: Define the domain of the function and store it in xvvand yvvvalues.

Step 4: Use plot command to plot the curve.

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output.

Step 7: Stop the programme.

Coding:

```
clc;
x=[0:0.1;6];
y=log(x+1);
xvv=[2:0.1:4];
yvv=log(xvv+1);
xva=[2 2 xvv 4 4];
yva=[0 log(3) yvv log(5) 0];
plot(x,y,'x''y','Integral example')
xfpoly(xva,yva,2)
```


Result: