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19PHP103 CLASSICAL MECHANICS AND RELATIVITY 4H-4C

Instruction Hours /week: L:4T:0P: 0 Marks: Internal: 40 External: 60 Total: 100
End Semester Exam: 3 Hours
Course objective
e Studying Classical Mechanics will gives an idea about how classical physics deal with

matter and energy.

e Have a deep understanding of Newton’s laws

e Be able to solve the Newton equations for simple configurations using various
methods,

e To give an insight into the classical methods of physics.

Course Outcomes (Cos)
1. Students can understand the classical laws of motion.
2. Competency in using the essential mathematical skills needed for describing
mechanics and special relativity

3. They can develop problem solving skills.

Unit I: Lagrangian Dynamics

Mechanics of a system of particles - Generalized Co-ordinates - Constraints - D' Alembert’s
Principle and Lagrange's Equations - Velocity-Dependent Potentials and the Dissipation
Function — Simple applications of Lagrangian Formulation - Hamilton's Principle -
Derivation of Lagrange's Equations from Hamilton's Principle - Conservation Theorems and

Symmetry Properties - Energy Function and the Conservation of Energy.

Unit 11: Central Force Problem and Classical Scattering

Reduction to the Equivalent One-Body Problem - The Equations of Motion and First
Integrals — Classification of Orbits — The Viral Theorem — Kepler’s Problem: Inverse Square
Law of Force —The Motion in time in the Kepler’s problem - Scattering in a Central Force
Field - Transformation of the Scattering Problem to Laboratory Coordinates- Three body

problem.



Unit I11: Rigid body Dynamics and Small Oscillations

The Independent coordinates of a Rigid Body - Orthogonal Transformations - The Euler
Angles - Angular Momentum and Kinetic Energy of Motion about a Point — Tensors - the
Inertia Tensor and the Moment of Inertia - The Eigen values of the Inertia Tensor and the
Principal Axis Transformation - Solving Rigid Body Problems and the Euler Equations of
Motion. Small Oscillations - Frequencies of Free Vibration, and Normal Coordinates, Linear

Tri atomic Molecule.

Unit IV: Hamiltonian dynamics and Canonical Transformations

Legendre Transformations and the Hamilton Equations of Motion - Cyclic Coordinates and
Conservation Theorems — Derivation of Hamilton’s Equation from Variational principle —
Principle of Least Action - Equations of Canonical Transformation - Examples of Canonical
Transformations - The Harmonic Oscillator - The Symplectic Approach to Canonical
Transformations - Poisson Brackets and Other Canonical Invariants - The Angular

Momentum Poisson Bracket Relations.

Unit V: The Special Theory of Relativity

Basic Postulates of the Special Theory — Newton’s Law of Motion — Non-Variance
Maxwell’s Equation - Michelson Morley Experiment — Null results - Lorentz
Transformations — Concept of Inertial frame — Velocity Addition and Thomas Precession —
Length Contraction — Vectors and Metric Tensor — Relativistic Kinematics — Relativistic
Angular Momentum — Introduction to the General theory of Relativity — Gravitation and
acceleration and their relation to non-inertial frames of reference — Minkowski space and

Lorenz transformation.

SUGGESTED READINGS
1. Goldstein, Poole and Safko, Classical Mechanics, 3 edition, Pearson Publication (2001)

2. Hartle B. James, 1% edition, 2009, Gravity, An Introduction to FEinstein’s General
Relativity, Darling Kindersley (India) Pvt.Ltd., Delhi.

3. John R. Taylor, Classical Mechanics, University Science Books, (2004)

4. Louis N. Hand and Janet D. Finch, Analytical mechanics, Cambridge University Press,

(1998)
J.C. Upadyaya, Classical Mechanics, Himalayan Publishing House, New Delhi (2009)
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Lagrangian Dynamics

Mechanics of a system of particles - Generalized Co-ordinates - Constraints - D' Alembert’s
Principle and Lagrange's Equations - Velocity-Dependent Potentials and the Dissipation
Function — Simple applications of Lagrangian Formulation - Hamilton's Principle - Derivation of
Lagrange's Equations from Hamilton's Principle - Conservation Theorems and Symmetry

Properties - Energy Function and the Conservation of Energy.

MECHANICS OF A PARTICLE

Let r be the radius vector of a particle from some given origin and v its vector
velocity:
dr
V= —, (1.1
dt
The linear momentum p of the particle is defined as the product of the particle
mass and its velocity:

p = myv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newron's second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

I~

Pl
dt

Il

P, (1.3)
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Preg

or

F= ‘%(mv). (1.4)

In most instances. the mass of the particle is constant and Eq. (1.4) reduces to

d -
F=m < = ma, (1.5)
dr

where a is the vector acceleration of the particle defined by

& d*r
T de?

(1.6)

The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system”™) is
a sufficient approximation to an inertial system, while for some astronomical pur-
poses it may be necessary to construct an inertial system by reference to distant
galaxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems, which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these, the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momentum, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp. (1.7)

where r is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

rxF=N=rx i(mv). (1.9)
dt
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Equation (1.9) can be written in a different form by using the vector identity:
d d
E(rxmv):vxmvﬁ-rx E—I-(mv). (1.10)

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

dL

d :
N=—(@xmv)= = L. (1.11)
dt I3

Note that both N and L depend on the point Q. about which the moments are
taken.

As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem jor the Angular Momentum of a Particle: If the total
torque, N, is zero then 1. = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
Wiz = [ F . ds. (1.12)
‘l

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

T dv _m d -
'/‘E'dS:-”lfz'Vdf—?/E(U )df.

Wiz = 23 = v]). (1.13)

and therefore

The scalar quantity mv?/2 is called the kinetic energy of the particle and is de-
noted by 7', so that the work done is equal to the change in the kinetic energy:

Wia =15 — 1. (1.14)

If the force field is such that the work Wj> is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system is obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of Wj> on
the particular path implies that the work done around such a closed circuit is zero,
1.€.:

fF-ds=O. (1.15)

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 3/36



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IMSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: I (Lagrangian Dynamics) = BATCH-2017-2019

Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F - ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, Wj». be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV(), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intuitively by a simple argument. If W), is independent of the path of
integration between the end points 1 and 2, it should be possible to express W2
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by —V, so that for a differential path length we
have the relation

F-.ds=—-dV
or
aVv
I:S = -av

which is equivalent to Eq. (1.16). Note that in Eq. (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

W=V - V. (1.17)
Combining Eq. (1.17) with Eq. (1.14), we have the result
N+ V=T 4+ V,, (1.18)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the total energy of the particle, T + V, is conserved.
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MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the system, and internal forces on, say, some particle i due to all
other particles in the system. Thus, the equation of motion (Newton’s second law)
for the ith particle is written as

Y Fu+F =, (1.19)
j

where F*’ stands for an external force, and Fj; is the internal force on the ith
particle due to the jth particle (F;;, naturally, is zero). We shall assume that the
F;; (like the Ff.‘" ) obey Newton’s third law of motion in its original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weak
law of action and reaction.

Summed over all particles, Eq. (1.19) takes the form

dZ
- (e) :
(ﬁzm,r, - ZF,. + > Fj. (1.20)
I ! i}
i%)
The first sum on the right is simply the total external force F'*), while the second
term vanishes, since the law of action and reaction states that each pair F;; + F;

is zero. To reduce the left-hand side, we define a vector R as the average of the
radii vectors of the particles, weighted in proportion to their mass:

m;r; m;r;

R=z "=Z — (1.21)
Z m; M

The vector R defines a point known as the center of mass, or more loosely as the

center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

d’R

M
dr®

=3 K u¥Fo, (1.22)

- Which states that the center of mass moves as if the total external force were .

Prer acting on the entire mass of the system concentrated at the center of mass. Purely 5/36
internal forces, if the obey Newton's third law, therefore have no effect on the
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FIGURE 1.1 The center of mass of a system of particles.

motion of the center of mass. An oft-quoted example is the motion of an exploding
shell—the center of mass of the fragments traveling as if the shell were still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the ejection of the exhaust gases at high velocity must be counterbalanced by the
forward motion of the vehicle at a slower velocity.

By Eq. (1.21) the total linear momentum of the system,

d | ¥ dR
P= mi—=M—, (1.23
Z " dt dt :
is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated as
the

Conservation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved.
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We obtain the total angular momentum of the system by forming the cross
product r; x p; and summing over ;. If this operation is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

. d o :
Z(l‘,‘ Xpi)= Zz(l‘i X p;i) =L = Zl‘,’ X F: '+Zr,- X F,’,‘. (1.24)
l;’j

i

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

r,~xF,-,~+r,—xFijz(r;—r_,_)xF,-,. (1.25)

using the equality of action and reaction. But r; — r; is identical with the vector
r;j from j toi (cf. Fig. 1.2), so that the right-hand side of Eq. (1.25) can be written
as

rij x Fj;.

If the internal forces between two particles, in addition to being equal and oppo-
site, also lie along the line joining the particles—a condition known as the strong
law of action and reaction—then all of these cross products vanish. The sum over
pairs is zero under this assumption and Eq. (1.24) may be written in the form

dL
dt

The time derivative of the total angular momentum is thus equal to the moment
of the external force about the given point. Corresponding to Eq. (1.26) is the

= N@©, (1.26)

Conservation Theorem for Total Angular Momentum: L is constant in time if the
applied (external) torque is zero.
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CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

m,'l‘,- = F'(e) + ZF,‘,’.
j

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take into account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances r;;
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

Tl I B5vunyl) =0 (1.37)

then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

2

,j=0.

(ri—r)* —c
A particle constrained to move along any curve or on a given surface is another
obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a constraint.

Constraints not expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

9 2
r<—a“>0
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In the case of holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates, A system of N particles, free from constraints,
has 3N independent coordinates or degrees of freedom. Tf there exist holonomic
constraints, expressed in k equations in the form (1.37). then we may use these
equations to eliminate k of the 3N coordinates, and we are left with 3N — k inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom.
This elimination of the dependent coordinates can be expressed in another way,

by the introduction of new, 3N - k, independent variables ¢, 42, ..., 3Nk 10
terms of which the old coordinates ry, ra, ..., ry are expressed by equations of
the form

r=riq1.492,....qiN-k. 1)

(1.38)
ry =rn(q1, 42, ...  @3N—k: 1)

containing the constraints in them implicitly. These are rransformation equations
from the set of (r;) variables to the (g;) set, or alternatively Eqgs. (1.38) can be con-
sidered as parametric representations of the (r;) variables. It is always assumed
that we can also transform back from the (g;) to the (r;) sel, i.e., that Egs. (1.38)
combined with the k equations of constraint can be inverted to obtain any ¢; as a
function of the (r;) variable and time.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A virtual (infinitesimal) displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates dr;, consistent with the forces and constraints imposed on the system
at the given instant . The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢. during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
1.e., the total force on each particle vanishes, F; = 0. Then clearly the dot product
F; « ér;, which is the virtual work of the force F; in the displacement ér;, also
vanishes. The sum of these vanishing products over all particles must likewise be
zero:

ZF,- . or; = 0. (1.40)
i

As yet nothing has been said that has any new physical content. Decompose F;
into the applied force, Ff“). and the force of constraint, f;,

F; =F° +1. (1.41)
so that Eq. (1.40) becomes

Y F?.ori+) Fi-or; =0. (1.42)
i

i

We now restrict ourselves to systems for which the net virtual work of the
forces of constraint is zero. We have seen that this condition holds true for rigid
bodies and it is valid for a large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This is no longer true if sliding friction forces are present, and
we must exclude such systems from our formulation. The restriction is not un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

Y F® .8 =0. (1.43)

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of dr; can no longer be set equal to zero; i.e., in general F ;a) # 0, since
the ér; are not completely independent but are connected by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the ¢;, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

Fi =pi,
can be written as
Fi —pi =0,

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force™ —p;. Instead of (1.40),
we can immediately write

> (Fi —py) - ér; =0, (1.44)

and, making the same resolution into applied forces and forces of constraint, there
results

Z(F;m — Pi) + Or; + Z:f,’ Or; = 0.
i i

We again restrict ourselves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

Y (F —py) -8 =0, (1.45)
i

which is often called D’Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear, and the superscript ‘) can now be
dropped without ambiguity. Tt is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
dqi can be set separately equal to zero.

The translation from r; to ¢; language starts from the transformation equations
(1.38),

ri=ri(q1.q92,....qn. t) (1.45")
(assuming n independent coordinates), and is carried out by means of the usual

“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the ¢; by the formula

Prepare _dr; Z ar; . 81’, e11/36

maiiad. - 1.46
Tt T+ ( )

dqy
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Similarly, the arbitrary virtual displacement dr; can be connected with the virtual
displacements d¢; by

o=y —8q;. (1.47)

Note that no variation of time, 4z, is involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates, the virtual work of the F; becomes

Ul‘,‘
) Frodn = ZF,« . 57,7&;,,
i i)
=2Qjaq,~. (1.48)
j
where the Q; are called the components of the generalized force, defined as
or;
Qj=) Fi-—. (1.49)
i 9g;

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but Q ;d¢g; must always have the
dimensions of work. For example, Q ; might be a torque N; and dq; a differential
angle df;, which makes N; df; a differential of work.

We turn now to the other other term involved in Eq. (1.45), which may be
written as

Z[.),' -5!",' = Zm,—i‘; -5!','.
i i

Expressing ér; by (1.47), this becomes
a »
Zm;i‘; . _i&qj.
ivj 9q;

Consider now the relation

Prep: Lor d . ar . d [or; 2/36
f J fi J V1)

In the last term of Eq. (1.50) we can interchange the differentiation with respect



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IMSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: I (Lagrangian Dynamics) = BATCH-2017-2019

d [ or; oF; r; . a%r;
— — = — = e qk + .
di \ 9q; dq; — 999Gk dqjdt
3\,
aq]

by Eq. (1.46). Further, we also see from Eq. (1.46) that
av; B ar;

u _ i (1.51)
dq; dq;

Substitution of these changes in (1.50) leads to the result that
.. Or; d av; av;
Zm,-r; . — — Z l:— (m,‘V, . ,L) - MmiV| —XL] .
,- dq; S Ldt g g
and the second term on the left-hand side of Eq. (1.45) can be expanded into

Zl [aq, (i ;’"'”12)]";7}.(2%%&'3)—le&u-

[dentifying >, %m,vf with the system kinetic energy T, D' Alembert’s principle
(cf. Eq. (1.45)) becomes

aT
e P
Zl[dr ﬁq/ 34] Q,laq,_o. el
d (9T 4T
Ly ik AP 5
a (.34;') aq; O =5

There are n such equations in all.
When the forces are derivable from a scalar potential function V',

Fi: — _V]' '.’;,
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Then the generalized forces can be written as

o 3 o N Yy, B
0= R . I

4

which is exactly the same expression for the partial derivative of a function

-V(ry, r2,...,ry, 1) with respect to g
av
Qj=——. (1.54)
J dqi
Equations (1.53) can then be rewritten as
d (aT (T —-V)
_< .)_‘ 2 =0, (1.55)
dr \ 9q; 3qi

The equations of motion in the form (1.55) are not necessarily restricted to conser-
vative systems: only if V' is not an explicit function of time is the system conserva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term in V' in the partial derivative with respect

t0g;:

d (o(T — V)) T —=V)
= : — =0
d!( Bq,- ()(]j

Or, defining a new function, the Lagrangian L, as

L=T-=-YV, (1.56)
the Eqgs. (1.53) become
d [ dL al
_(77)_L_=o, (1.57)
dt \ dq; g,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Egs. (1.57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 it is shown that if L(q, g, t)
is an approximate Lagrangian and F(q, t) is any differentiable function of the
generalized coordinates and time, then

g . dF ,
L(g,49,t)=0L(g,q,t)+ (1.57)

dr
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VELOCITY-DEPENDENT POTENTIALS AND
THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V, in the usual sense, providing the generalized forces are obtained from
a function U(q;. ¢;) by the prescription

oU d (U
= e | — ], 1.58
Qj 34; . 2 T (f’q,) ( )

In such case, Egs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by

L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely, the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while.

Consider an electric charge, ¢, of mass m moving at a velocity, v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field,
B, which may depend upon time and position. The charge experiences a force,
called the Lorentz force, given by

F=g¢g[E+ (vxB)]. (1.60)
Both E(z, x, v, z) and B(z, x, v, z) are continuous functions of time and position

derivable from a scalar potential ¢(z, x, y, z) and a vector potential A(r, x, v, z)
by

E=-V¢—— (1.61a)

and
B=V xA. (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qp—qgA-v, (1.62)

so the Lagrangian, L =7 — U, is

15/36



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY

COURSE CODE: 19PHU103

UNIT: I (Lagrangian Dynamics) BATCH-2017-2019

Considering just the x-component of Lagrange’s equations gives

A" ag dA,)
+v:8.r) q(8x+d1 ;

The total time derivative of A, is related to the particle time derivative through

dA

" ; dA,
mx =q | vy rye Uy

dx

(1.64)

dA, 9A,
= — .V
dt g TV VA
DA,  dA. . BA. DA
-— + X . . - ) . ]-65
5 gy TWgy THg (1:62)

Equation (1.61b) gives

A, 09A, dA, dA;
B ==y | et - 'z = .

Combining these expressions gives the equation of motion in the x-direction

mi = q [Ex + (v x B)«]. (1.66)

On a component-by-component comparison, Eqs. (1.66) and (1.60) are identical,
showing that the Lorentz force equation is derivable from Egs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

ey
dt an

where L contains the potential of the conservative forces as before, and Q; rep-
resents the forces not arising from a potential. Such a situation often occurs when
frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

aL

-@—QJ-

1{[1 = =Ky Uy.

Frictional forces of this type may be derived in terms of a function F, known as
Rayleigh'’s dissipation function, and defined as

F= % b (k, v + kyvd, + k;v,?:) ] (1.67)

i

Prepar Where the summation is over the particles of the system. From this definition it is

clear that
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or, symbolically,
F;=-V,F. (1.68)

We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

AWy =—Ff-dr=—Fy-vdt = (k,-u_f + k)-v_‘z, + k; vf) dt.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
generalized force resulting from the force of friction is then given by

i d i
o= Y g ==X Vg

ar;
S8 ZVL.}"- — by (1.51),
dg,
oF
= e, (1.69)
dq;
An example is Stokes' law, whereby a sphere of radius @ moving at a speed
v, in a medium of viscosity n experiences the frictional drag force F s = 6 nav.
The Lagrange equations with dissipation become

d(al)_aL oF

o =0, 1.70
dt \ 3q; g +8éj | et

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.
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SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION
Let us now consider Sixnple examples of this procedure:

I. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

!J

Atwood’s machine
bead sliding on rotating wire

1. (a) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.53) are obviously F;, F. and F-. Then
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aT 0T 9T _ 0
ox 8y 8z
aT S aT ; aT ’
— =mXx, —_— =my, — =mz,
ox av “ az
and the equations of motion are
d . d R d o b
E(nz.\') = s d—r(m)') = Fy, Zlm:) = F,. (1.74)

We are thus led back to the original Newton’s equations of motion.
(b) Mortion of one particle: using plane polar coordinates. Here we must ex-

press T in terms of 7 and #. The equations of transformation. i.e., Egs. (1.38), in
this case are simply
X =rcosf

y = rsiné.
By analogy to (1.46), the velocities are given by

X =rcosf —résiné,

¥ =7sinf + ré cosh.
The kinetic energy T = $m(i? + y2) then reduces formally to
T = %m [f2 - ()9)2] ! (1.75)

An alternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are 7 along r, and @ along the direction per-
pendicular to r, denoted by the unit vector n. Hence, the square of the velocity
expressed in polar coordinates is simply 72+ (r6)2. With the aid of the expression

dr = tdr +r0do +kdz

for the differential position vector, dr, in cylindrical coordinates, where I and
6 are unit vectors in the r and #-directions, respectively, the components of the
generalized force can be obtained from the definition, Eq. (1.49),

0 A
0 =W o PP B,
ar
o OF P
Q(,a =l‘-a—9=F-r0=ng.
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FIGURE 1.6 Derivative of » with respect to &.

since the derivative of r with respect to # is, by the definition of a derivative, a
vector in the direction of & (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the r equation
are

aT 9 JoT ; d GT) e
— = mre*, — =mr. — | — ) =mr,
ar ar dr \ or

and the equation itself is
> 2.
mr — mré° = F,

the second term being the centripetal acceleration term. For the # equation, we

have the derivatives
ar . oT 24 d . o B
— =0, — = mro, — (mrzt?) = mr*é + 2mrif,
06 a6 dt J

so that the equation becomes

i ’ - .
2l (mr2 ) = mr?8 +2mrif = rF;.
dt
Note that the left side of the equation is just the time derivative of the angular
momentum, and the right side is exactly the applied torque, so that we have simply
rederived the torque equation (1.26), where L = mr?6 and N'© = r Fp.

2. Amwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic. scleronomous constraint (the pulley is assumed frictionless and
massless). Clearly there is only one independent coordinate x, the position of
the other weight being determined by the constraint that the length of the rope
between them is /. The potential energy is
Preparec ge 20/36
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M,

1%
FIGURE 1.7 Atwood’s machine.

while the kinetic energy is
T =1(M + M)
Combining the two, the Lagrangian has the form
L=T-V=21(M +M)i*+ Mgx + Mag(l —x).

There is only one equation of motion, involving the derivatives

SL
— =M —M)g,
ox
aL
— = (M) + M>) x,
ox

so that we have
My +M)x =(M — M) g,

or

- My — M,

X = ———g
M, + AI:S
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3. A bead (or ring) sliding on a uniformly rotating wire in a force-free space.
The wire is straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint

being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X =rcoswl. (v = angular velocity of rotation)

y =rsinwt. (r = distance along wire from rotation axis)

While we could then find 7 (here the same as L) by the same procedure used to
obtain (1.71), it is simpler to take over (1.75) directly, expressing the constraint
by the relation 8 = w:

-7 : By
T = 1';m (r‘ -+ r‘.::.r) :

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now an additional term not involving r. The equation of motion is
then

mi = mra’ =0
or
F=rw",

which is the familiar simple harmonic oscillator equation with a change of sign.
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HAMILTON'’S PRINCIPLE

The integral Hamilton's principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilton’s principle can be stated as

The motion of the system from time t) to time ty is such that the line
integral (called the action or the action integral),

5]
I=/ Ld:, (2.1)
n

where L = T — V, has a stationary value for the actual path of the
motion.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral / for fixed 1, and 1> is zero:

n
5/=aj Eiyssillistgsoes Gn, 1) dt = 0. (2.2)
n

Where the system constraints are holonomic, Hamilton’s principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Egs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton’s principle, as being the more important theorem.
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x

FIGURE 2.1 Path of the system point in configuration space.

3. The brachistochrone problem. (See Fig. 2.4a.) This well-known problem is
to find the curve joining two points, along which a particle falling from rest under
the influence of gravity travels from the higher to the lower point in the least time.

If v is the speed along the curve, then the time required to fall an arc length ds
i$ ds /v, and the problem is to find a minimum of the integral

2 ds
ha2= —
T ¥

l 2

FIGURE 2.4a The brachistochrone problem.
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If vy is measured down from the initial point of release, the conservation theorem
for the energy of the particle can be written as

I a
MU~ = mgy

or

Then the expression for 712 becomes

I
2 V1 _‘.2
2=
1

V2gy

dx,

and f is identified as

1+ 757

= |

TN 2y

The integration of Eq. (2.11) with this form for / is straightforward and is left as
an exercise.

The solution in terms of its one parameter, a, given by
y [.\- + /y(2a — y)}

=~ =1-=cos
a a

is sketched in Fig. 2.4b for the first cycle (0 < x < 2ma) and the beginning of the
second cycle. Three cases of solutions are indicated. A power-series expansion of
the solution for the limit y < a gives
2
22
y= ?G.
The brachistochrone problem is famous in the history of mathematics, for it
was the analysis of this problem by John Bernoulli that led to the formal founda-
tion of the calculus of variations.

X na 27a

QT

2a +

2
2Qa =+

¥

FIGURE 2.4b Catenary solution to the brachistochrone problem showing positions on
the curve for the three cases xy < y2, X2 = %— ¥2, and x9 3> y9.
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DERIVATION OF LAGRANGE’S EQUATIONS
FROM HAMILTON’S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables y;, and their derivatives
Vi (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

8J = 8f- fon(x): ya(x), ..., 510 9 -G ] ) IR x)dx, (2.14)
1

is obtained, as before, by considering J as a function of parameter « that labels a
possible set of curves y; (x, @). Thus, we may introduce « by setting

yi(x, @) = yi(x, 0) + an(x),
’\72(‘\'_(1) ::\'2(X.0)+a7’2(-r)o (2.15)

where y;(x, 0), y2(x, 0), etc., are the solutions of the extremum problem (to be
obtained) and 7). n2, etc., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The variation of J is given in terms of

af 8\, af dy;
—d(x—/ Z(av 5—8—d ) (2.16)

Again we integrate by parts the integral involved in the second sum of Eq. (2.16):

f 8f 3%y By af a), 29y; d (af)
x' — — —
L 1 da dx dy,

3y dadx 9y da
where the first term vanishes because all curves pass through the fixed end points.
Substituting in (2.16), §J becomes

d of
8 = b ; 47
/ Z(a\, dla")évdx (2.17)

where, in analogy with (2.12), the variation dy; is

Ay
dyi=|— | dua.
o (3“)0 “

Since the y variables are independent, the variations dy; are independent (e.g.,
the functions #;(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that 8/ is zero
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requires that the coefficients of the 8y; separately vanish:
= S =i i=12.....n (2.18)

Equations (2.18) represent the appropriate generalization of (2.11) to several
variables and are known as the Euler-Lagrange differential equations. Their so-

For present purposes, what we have derived here suffices, for the integral in
Hamilton’s principle,

L= f L(qi, ¢i. 1) dt, (2.19)
1

has just the form stipulated in (2.14) with the transformation
X —>t
Yi =* qi
iy Yivx) = L(gi, gis 1)

In deriving Egs. (2.18), we assumed that the y; variables are independent. The
corresponding condition in connection with Hamilton’s principle is that the gen-
eralized coordinates g; be independent, which requires that the constraints be
holonomic. The Euler-Lagrange equations corresponding to the integral / then
become the Lagrange equations of motion,

and we have accomplished our original aim, to show that Lagrange’s equations
follow from Hamilton’s principle—for monogenic systems with holonomic con-
straints,
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CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

In many problems a number of first integrals of the equations of motion can be
obtained immediately; by this we mean relations of the type

T Qioisi 41,42, ---» 1) = constant, (2.43)
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which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

aL ar av aT a 1 T o0 i i
BL_OT 0V 0T 8 e oy
daX; dx;  0X; 0x; a.x; 2

=mjXi = Pix.

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate g; shall be defined as

aL

= —, (2.44)
aq;

Pj

The terms canonical momenium and conjugate momentum are often also used for
p;- Notice that if g; is not a Cartesian coordinate, p; does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g; the associated generalized
momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

I o L .
L= Z imiriz = Zqi‘b(-ﬁ) -+ Z({;A(xi) . T
i i i

(g; here denotes charge) and the generalized momentum conjugate to x; is

pix = 6_1 =m;X; + gi Ay, (2.45)
ax;
i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g; (although
it may contain the corresponding velocity ¢;), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,

reduces, for a cyclic coordinate, to
d aL 0
dt l)q_’ -
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or

d Pj
dt

which mean that
p; = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized mo-
mentum conjugate to a cyclic coordinate is conserved.
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We first consider a generalized coordinate ¢;, for which a change dg; repre-
sents a translation of the system as a whole in some given direction. An example
would be one of the Cartesian coordinates of the center of mass of the system.
Then clearly ¢; cannot appear in T, for velocities are not affected by a shift in the
origin, and therefore the partial derivative of 7' with respect to ¢; must be zero.
Further. we will assume conservative systems for which V is not 4 function of the
velocities, so as to eliminate such complications as electromagnetic forces. The
Lagrange equation of motion for a coordinate so defined then reduces to

d oT av
—— P ——m ;. (2.48)
dt dq; ! 0q;

We will now show that (2.48) is the equation of motion for the total linear
momentum, i.e., that Q; represents the component of the total force along the di-
rection of translation of g;. and p; is the component of the total linear momentum
along this direction. In general, the generalized force Q; is given by Eq. (1.49):

3!‘,‘
0i=Y F.—.
A Z,: ' g,

Since dg; corresponds to a translation of the system along some axis, the vectors
ri(g;) and r;(g; + dg;) are related as shown in Fig. 2.7. By the definition of a
derivative, we have

By _ g, FGr o) —Brle) _da o (2.49)
dqj '21(/]—’0 dqj dq_/

where n is the unit vector along the direction of the translation. Hence,

Q,»:ZF;-n:n-F.

which (as was stated) is the component of the total force in the direction of n. To
prove the other half of the statement, note that with the kinetic energy in the form

riq)

f,'(.q,' +d‘l, )

FIGURE 2.7 Change in a position vector under translation of the system.
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the conjugate momentum is

aT . OF;
17'}' =—= Z"lirj . '(;—_—"

using Eq. (1.51). Then from Eq. (2.49)
I)j =nN- Zm,v,‘.
i

which again, as predicted, is the component of the total system linear momentum
along n.

Suppose now that the translation coordinate ¢ ; that we have been discussing is
cyclic. Then g; cannot appear in V and therefore

But this is simply the familiar conservation theorem for linear momentum—that
if a given component of the total applied force vanishes, the corresponding com-
ponent of the linear momentum is conserved.

The generalized force Q; is again given by
Jar,
=) Fjo—,
Q=2 Fi g,

only the derivative now has a different meaning. Here the change in ¢; must cor-
respond to an infinitesimal rotation of the vector r;, keeping the magnitude of
the vector constant. From Fig. 2.8, the magnitude of the derivative can easily be
obtained:

|dr;| = risinfdg;
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FIGURE 2.8 Change of a position vector under rotation of the system.

and
dr;

— | =r;sinég,
9g;

and its direction is perpendicular to both r; and n. Clearly, the derivative can be
written in vector form as

—'=nxr,-. (2.50)

With this result, the generalized force becomes
Q,’ = ZF, «NXT;
i
= Z n-r; x F;,
i

reducing to

Qj:n-ZN/:n-N.

which proves the first part. A similar manipulation of p; with the aid of Eq. (2.50)
provides proof of the second part of the statement:

?)r;
pj:%-'= )rl,-vi-W:Zn-r,‘Xm,wy:n-ZL;:n-L.
J i J i
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ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangian for-
mulation is the conservation of total energy for systems where the forces are
derivable from potentials dependent only upon position. Indeed. it is possible to
demonstrate a conservation theorem for which conservation of total energy repre-
sents only a special case. Consider a general Lagrangian, which will be a function
of the coordinates ¢; and the velocities ¢; and may also depend explicitly on the
time. (The explicit time dependence may arise from the time variation of external

potentials, or from time-dependent constraints.) Then the total time derivative of
L is

i i oL dg; 9L
- —f —_— 24) + —. (2.51)
aqg; dit at

and (2.51) can be rewritten as

dL d
I_Zd:( ) 3g; dr ' ar

or

It therefore follows that

d aL oL
= 2t B oS =T
dr (—Zq, 3q; ) at

The quantity in parentheses is oftentimes called the energy funcrion® and will be
denoted by A:

(2.52)

5 2 . O
B(Qlvcres@ny Qlso-vsqns !)=Zq,,——.———L (2.53)
el i
and Eq. (2.52) can be looked on as giving the total time derivative of A:
a
ﬂ — _i_ (2.54)
dt at

If the Lagrangian is not an explicit function of time, i.e., if ¢ does not appear
in L explicitly but only implicitly through the time variation of ¢ and ¢, then
Eq. (2.54) says that 4 is conserved. It is one of the first integrals of the motion and
is sometimes referred to as Jacobi’s integral.’
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Under certain circumstances, the function 4 is the total energy of the system.
To determine what these circumstances are, we recall that the total Kinetic energy
of a system can always be written as

T=T0+T1T) + T2, (1.73)

where Ty is a function of the generalized coordinates only, T} (g, ¢) is linear in the
generalized velocities, and 7>(g. ¢) is a quadratic function of the ¢'s. For a very
wide range of systems and sets of generalized coordinates, the Lagrangian can be
similarly decomposed as regards its functional behavior in the ¢ variables:

L(g.q.t) = Lo(q,t)+ L(q,q,1) + L2(q.q.1). (2.55)

Zx,-i = nf. (2.56)
i Eu-;

Applied to the function h, Eq. (2.53), for the Lagrangians of the form (2.55), this
theorem implies that

h=2L>+Ly—L=L>-Ly. (2.57)

If the transformation equations defining the generalized coordinates, Eqs. (1.38),
do not involve the time explicitly, then by Eqs. (1.73) T = T3. If, further, the
potential does not depend on the generalized velocities, then L, = T and Lo =
-V, so that

h=T+V=E, (2.58)

and the energy function is indeed the total energy. Under these circumstances,
if V does not involve the time explicitly, neither will L. Thus, by Eq. (2.54), k
{which is here the total energy), will be conserved.
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Finally, note that where the system is not conservative, but there are frictional
forces derivable from a dissipation function J, it can be easily shown that F is re-
lated to the decay rate of 4. When the equations of motion are given by Eq. (1.70),
including dissipation, then Eq. (2.52) has the form

dh | AL _ <~ OF
dr " or ~ £=3q i

By the definition of F, Eq. (1.67), it is a homogeneous function of the ¢'s of
degree 2. Hence, applying Euler’s theorem again, we have

dh dL
—_—=—2F - —, 2.59
dt 3 At ( )

If L is not an explicit function of time, and the system is such that 4 is the same
as the energy. then Eq. (2.59) says that 2 is the rate of energy dissipation,

— = =2F, (2.60
= F (2.60)

a statement proved above (cf. Sec. 1.5) in less general circumstances.

3k %k %k % 3k %k %k %k %k %k %k %k %k k
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Unit 11: Central Force Problem and Classical Scattering

Central Force Problem and Classical Scattering

Reduction to the Equivalent One-Body Problem - The Equations of Motion and First Integrals —
Classification of Orbits — The Viral Theorem — Kepler’s Problem: Inverse Square Law of Force
—The Motion in time in the Kepler’s problem - Scattering in a Central Force Field -

Transformation of the Scattering Problem to Laboratory Coordinates- Three body problem.

REDUCTION TO THE EQUIVALENT ONE-BODY PROBLEM

Consider a monogenic system of two mass points, m and m> (cf. Fig. 3.1), where
the only forces are those due to an interaction potential U/, We will assume at first
that U is any function of the vector between the two particles, ry — ry, or of their
relative velocity, ¥» — ¥y, or of any higher derivatives of r, — ry. Such a system
has six degrees of freedom and hence six independent generalized coordinates.
We choose these to be the three components of the radius vector to the center of
mass, R, plus the three components of the difference vector r = r; — ry. The
Lagrangian will then have the form

L=T(R,F)—U(r.¥T,...). (3.1)

Inl

m,

FIGURE 3.1 Coordinates for the two-body problem.
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The kinetic energy 7" can be written as the sum of the kinetic energy of the
motion of the center of mass, plus the kinetic energy of motion about the center
of mass, 7'":

F== % (m +mz)R2+ T
with
T = %mll";z - %mzi‘"zz.

Here r} and r’, are the radii vectors of the two particles relative to the center of
mass and are related to r by

ma

—T,
my +m

’ m
I, = ————T 32
2 my +my R
Expressed in terms of r by means of Eq. (3.2), 7’ takes on the form
|
1o 1 _muma
my +m3
and the total Lagrangian (3.1) is
. 1 2
O s U M L B T R (3.3)
2 2my + my

It is seen that the three coordinates R are cyclic, so that the center of mass
is either at rest or moving uniformly. None of the equations of motion for r will
contain terms involving R or R. Consequently, the process of integration is par-
ticularly simple here. We merely drop the first term from the Lagrangian in all
subsequent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of force with a single particle at a distance r from it, having a mass

mym
L e (3.4)
my -+ m

where j is known as the reduced mass. Frequently, Eq. (3.4) is written in the form

1 1 1
- = — 4 —. (3.5)
M ni mj

Thus, the central force motion of two bodies about their center of mass can always
be reduced to an equivalent one-body problem.
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THE EQUATIONS OF MOTION AND FIRST INTEGRALS

Since the problem is spherically symmetric, the total angular momentum vec-
tor,

L=rxp,

is conserved. It therefore follows that r is always perpendicular to the fixed direc-
tion of L in space. This can be true only if r always lies in a plane whose normal
is parallel to L. While this reasoning breaks down if L is zero, the motion in that
case must be along a straight line going through the center of force, for L = 0
requires r to be parallel to r, which can be satisfied only in straight-line motion.*
Thus, central force motion is always motion in a plane.

Expressed now in plane polar coordinates, the Lagrangian is

L=T-V

Ym(i +r28%) — v(r). (3.6)

As was forseen, @ is a cyclic coordinate, whose corresponding canonical momen-
tum is the angular momentum of the system:

alL 25
g = — = mr-o.
Pea Y
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rdf

df

FIGURE 3.2 The area swept out by the radius vector in a ime dt.
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One of the two equations of motion is then simply

n d 24
with the immediate integral
mrio =1, (3.8)

where [ is the constant magnitude of the angular momentum. From (3.7) is also

follows that
g (1r39) = (. (3.9)

The factor 5 is inserted because %rzé' is just the areal velociry—the area swept
out by the radius vector per unit time. This interpretation follows from Fig. 3.2,
the differential area swept out in time dt being

| b

dA = 3r(rde),

and hence

The conservation of angular momentum is thus equivalent to saying the areal
velocity is constant. Here we have the proof of the well-known Kepler's second
law of planetary motion: The radius vector sweeps out equal areas in equal times.
It should be emphasized however that the conservation of the areal velocity is a
general property of central force motion and is not restricted to an inverse-square
law of force.
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The remaining Lagrange equation, for the coordinate r. is

D ) g Y i (3.10)
—\nr)—mrg" +— — = U. .

dt ar

Designating the value of the force along r, —dV /dr. by f(r) the equation can be
rewritten as

mi — mré* = f(r). (3.11)

By making use of the first integral, Eq. (3.8), 6 can be eliminated from the equa-
tion of motion, yielding a second-order ditferential equation involving r only:

2

!
mF — = f(r). (3.12)

mr3

There 1s another first integral of motion available, namely the total energy,
since the forces are conservative. On the basis of the general energy conservation
theorem. we can immediately state that a constant of the motion is

E=1im(i*+r%*) + v, (3.13)

where E is the energy of the system. Alternatively, this first integral could be
derived again directly from the equations of motion (3.7) and (3.12). The latter

can be written as
- d =, 112 (3.14)
mr = —— / | J.
dr 2 mr?

If both sides of Eq. (3.14) arc multiplied by # the left side becomes

v Y3
ﬂ?lr—m 57717 3

The right side similarly can be written as a total time derivative, for if g(r) is any
function of r, then the total time derivative of g has the form

d dg dr
2 etr) = —‘f—.

Hence, Eq. (3.14) is equivalent to

d 11 .4 d ‘v+] 12
— —mr- —_—— Y
dt 2m dt 2 mr?

g {1 .z . X FF
L AR R B ) ()
dt (2"” L 2 mr? )

or
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and therefore

T .
—mr® + —— + V = constant. (3.15)
2 2mr*

Equation (3.15) is the statement of the conservation of total energy, for by us-
ing (3.8) for /, the middle term can be written

y Sy
1= | 5 429 mMro6-

|
. M ¢
2mr:  2mr? 2

|2 12
;= ,’—(E—v— - (3.16)
\ m 2mr+
or
dt=— a . (3.17)
{2 - P
- (E -V -3ts)

Attime r = 0, let r have the initial value ry. Then the integral of both sides of the
equation from the initial state to the state at time 7 takes the form

r d
t =/ ‘ E : (3.18)

l\‘;".i_(E—V——Iz—r)

2mr-

As it stands, Eq. (3.18) gives ¢ as a function of r and the constants of integration
E, 1, and ry. However, it may be inverted. at least formally, to give r as a function
of r and the constants. Once the solution for r is found, the solution # follows
immediately from Eq. (3.8), which can be written as

ldt
df = —. (3.19)
mr=
[f the initial value of 4 is 6y, then the integral of (3.19) is simply
¥ dt :
8 =1 = =+ 0. (3.20)
o mr=(1)
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THE EQUIVALENT ONE-DIMENSIONAL PROBLEM,
AND CLASSIFICATION OF ORBITS

For example, with a system of known energy and angular momentum. the mag-
nitude and direction of the velocity of the particle can be immediately determined

in terms of the distance r. The magnitude v follows at once from the conservation
of energy in the form

Bo= %m v+ Vir)

or

V=

2
V"; (E-=V(r)). (3.21)

The radial velocity—the component of r along the radius vector—has been given
in Eq. (3.16). Combined with the magnitude v, this is sufficient information to
furnish the direction of the velocity.* These results, and much more, can also be
obtained from consideration of an equivalent one-dimensional problem.

The equation of motion in r, with o expressed in terms of /, Eq. (3.12), involves
only r and its derivatives. It is the same equation as would be obtained for a
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fictitious one-dimensional problem in which a particle of mass m is subject to a
force

!rﬁ

T (3.22)
mr-

ff=r+

The significance of the additional term is clear if it is written as mré> = mv2/r,
which is the familiar centrifugal force. An equivalent statement can be obtained
from the conservation theorem for energy. By Eq. (3.15) the motion of the particle
in r 1§ that of a one-dimensional problem with a fictitious potential energy:

, { P
Vi=eV4-——s:. (3.22)
2mr=
As a check, note that
IR Ly e
B e e, R & %
3 ar ' mr3

which agrees with Eq. (3.22). The energy conservation theorem (3.15) can thus
also be written as

E=V +im (3.15)

As an illustration of this method of examining the motion, consider a plot of
V' against r for the specific case of an attractive inverse-square law of force:

(For positive k, the minus sign ensures that the force is toward the center of force.)
The potential energy for this force is

and the corresponding fictitious potential is

X 2
T 2mr?

Such a plot is shown in Fig. 3.3; the two dashed lines represent the separate com-
ponents

k I
- and '
r %0 2mr?

and the solid line is the sum V.
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FIGURE 3.3 The equivalent one-dimensional potential for attractive inverse-square law
of force.
THE VIRIAL THEOREM

Another property of central force motion can be derived as a special case of a
general theorem valid for a large variety of systems—the virial theorem. It differs
in character from the theorems previously discussed in being statistical in nature;
i.e., it is concerned with the time averages of various mechanical quantities.

Consider a general system of mass points with position vectors r; and applied
forces F; (including any forces of constraint). The fundamental equations of mo-
tion are then

b =F}: (1.3)

We are interested in the quantity
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G=Zp,'~l‘,'.

where the summation is over all particles in the system. The total time derivative
of this quantity is

dG . .
TI’.:zn-p;-kpr-ri- (3.23)

The first term can be transformed to
Zi‘, pi = Zm,—i’,- = Zm,-v,-2 =27,
i i i
while the second term by (1.3) is
Zf)i ‘T = ZF,' - T;.
i i
Equation (3.23) therefore reduces to

d
Ezpi-r;=2T+ZF;-ri. (3.24)
i i

The time average of Eq. (3.24) over a time interval t is obtained by integrating
both sides with respect to ¢ from 0 to 7, and dividing by 7:

1 [TdG, @6 = =
- —dt = =2 F;-r
' [) dr dt . Z‘: 5

or

e = 1
2T+ZF,--r,-=;[G(r)—G(O)J. (3.25)

If the motion is periodic, i.e., all coordinates repeat after a certain time, and if 7
is chosen to be the period, then the right-hand side of (3.25) vanishes. A similar
conclusion can be reached even if the motion is not periodic, provided that the
coordinates and velocities for all particles remain finite so that there is an upper
bound to G. By choosing 7 sufficiently long, the right-hand side of Eq. (3.25) can
be made as small as desired. In both cases, it then follows that

— le=——
T=—SZF,~-r,-. (3.26)

Equation (3.26) is known as the virial theorem, and the right-hand side is called
the virial of Clausius. In this form the theorem is imporant in the kinetic theory
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of gases since it can be used to derive ideal gas law for perfect gases by means of
the following brief argument.

dF; = —PndA.

or
1 P
EZFI'rf=——2-fn-rd.4.
!

But, by Gauss's theorem,

/n-rd.-\ :/V-rdv =3V.

The virial theorem, Eq. (3.26), for the system representing a perfect gas can there-
fore be written

3NkgT =3PV,

o)

which, cancelling the common factor of 2 on both sides. is the familiar ideal
gas law. Where the interparticle forces contribute to the virial, the perfect gas
law of course no longer holds. The virial theorem is then the principal tool, in
classical kinetic theory, for calculating the equation of state corresponding to such
imperfect gases.
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If the forces are derivable from a potential, then the theorem becomes

= -
Tazzz:vv-n. (3.27)

and for a single particle moving under a central force it reduces to

19V
(

T
If V is a power-law function of r,
V=ar

where the exponent is chosen so that the force law goes as r”, then

aVv
—r=m+1V.
ar

and Eq. (3.28) becomes

n+1

VvV )
5 V. (3.29)

T=

By an application of Euler’s theorem for homogeneous functions (cf. p. 62), it is
clear that Eq. (3.29) also holds whenever V is a homogeneous function in r of
degree n + 1. For the further special case of inverse-square law forces, n is —2,
and the virial theorem takes on a well-known form:

T=-1V. (3.30)

+I|=—

THE DIFFERENTIAL EQUATION FOR THE ORBIT,
AND INTEGRABLE POWER-LAW POTENTIALS

In treating specific details of actual central force problems, a change in the orien-
tation of our discussion is desirable. Hitherto solving a problem has meant finding
r and @ as functions of time with E, [, etc., as constants of integration. But most
often what we really seek is the equation of the orbit, i.e., the dependence of r
upon 4, eliminating the parameter /. For central force problems, the elimination is
particularly simple, since ¢ occurs in the equations of motion only as a variable of
differentiation. Indeed, one equation of motion, (3.8), simply provides a definite

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 13/34



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: I (Central Force Problem and Classical Scattering) BATCH-2017-2019

relation between a differential change dr and the corresponding change d6:
ldt =mr® dé. (3.31)

The corresponding relation between derivatives with respect to f and 6 is

- (3:32)
dt  mr-df
These relations may be used to convert the equation of motion (3.12) or (3.16) to
a differential equation for the orbit. A substitution into Eq. (3.12) gives a second-
order differential equation, while a substitution into Eq. (3.17) gives a simpler
first-order differential equation.

The substitution into Eq. (3.12) yields

1d ( 1 dr 1
S e | i £ (333
r2dé \ mr? dG) mr? Ay )
which upon substituting ¥ = 1/r and expressing the results in terms of the poten-
tial gives
d’u m d 1
i =V =-]. 3.34
df? o 12 du (u) (3.3%)

d
u = u(0), (l) = (), foré =0,
de /,

will likewise be unaffected. Hence, the orbit equation must be the same whether
expressed in terms of 6 or —8, which is the desired conclusion. The orbit is there-
fore invariant under reflection about the apsidal vectors. In effect, this means that

THE KEPLER PROBLEM: INVERSE-SQUARE LAW OF FORCE

The inverse-square law is the most important of all the central force laws, and it
deserves detailed treatment. For this case, the force and potential can be written
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X k : k
j —_ Y " _ . (3.49)
Z r

>

There are several ways to integrate the equation for the orbit, the simplest being to
substitute (3.49) in the differential equation for the orbit (3.33). Another approach
is to start with Eq. (3.39) with n set equal to —2 for the gravitational force

¥ g du ,
0=0"— ] : : (3.50)
/ 21;;[? s 2mhku _ u2

y

/=

where the integral is now taken as indefinite. The quantity 8" appearing in (3.50)
is a constant of integration determined by the initial conditions and will not nec-
essarily be the same as the initial angle f; at time ¢ = 0. The indefinite integral is
of the standard form,

[ dx | B+2yx (A5
——— e — arc cos ————, 3.
J Ja+Bx+yx? VTV NL]
where
g =p*—4day.
To apply this to (3.50), we must set
2mE 2mk
o = /2 ' [3=—2 }/=—.l. (3.52)
and the discriminant ¢ is therefore
2mk \* 2EI?
= 1 ; 3.53)
4 (/2>(+mk2) s
With these substitutes, Eq. (3.50) becomes
Ly 7
0 =0 —arccos —BE . (3.54)
\"/ | + 2E2
me=

Finally, by solving for u, = 1/r, the equation of the orbit is found to be

1 mk / 2E]2
S L1+

7 cos(@ —6") |. (3.55)
r &

k2
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mr> dé =l dt,

by means of (3.55), we must additionally specify the initial angle &.
Now, the general equation of a conic with one focus at the origin is

]
= =C[1+ ecos(® — 8], (3.56)
=

where e is the eccentricity of the conic section. By comparison with Eq. (3.55), it
follows that the orbit is always a conic section, with the eccentricity

"':l - 2El (3.57
=,/ =, 3.97)
. \ mk-=
The nature of the orbit depends upon the magnitude of ¢ according to the follow-
ing scheme:

e>1, E>0: hyperbola,

e=1, E=0: parabola,

e <1, E<Q: ellipse,

mk? ;
e=0, E=- ET R circle.

This classification agrees with the qualitative discussion of the orbits on the
energy diagram of the equivalent one-dimensional potential V’. The condition for
circular motion appears here in a somewhat different form, but it can easily be
derived as a consequence of the previous conditions for circularity. For a circular
orbit, 7 and V are constant in time, and from the virial theorem

E=T+V= V+V— ¥
= — e
Hence
k
E=——0m-!. 3.58)
2rg {

But from Eq. (3.41), the statement of equilibrium between the central force and
the “effective force,” we can write

k
= S
o
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or
IZ
ro = —. 3.59
. mk ( )
With this formula for the orbital radius, Eq. (3.58) becomes
- mk?
- — 3,_2" )
the above condition for circular motion.
12 k
- = - =0,
2mrs r
or
24 $ i 0 (3.60
r —r — = 3
E 2mE )

Now, the coefficient of the linear term in a quadratic equation is the negative of
the sum of the roots. Hence, the semimajor axis is given by

ry+nr k
a= =

3 —3F5" (3.61)

Note that in the circular limit, Eq. (3.61) agrees with Eq. (3.58). In terms of the
semimajor axis, the eccentricity of the ellipse can be written

f 1’
=1 - —, 3.62
. y mka : )

(a relation we will have use for in a later chapter). Further, from Eq. (3.62) we
have the expression

/2 ”
— =qa(l — e°), (3.63)
mk

in terms of which the elliptical orbit equation (3.55) can be written

a(l — e2)

r= - S (3.64)
1 4+ ecos(@ — 8"
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FIGURE 3.14 Ellipses with the same major axes and eccentricities from 0.0 t0 0.9.

THE MOTION IN TIME IN THE KEPLER PROBLEM

The orbital equation for motion in a central inverse-square force law can thus be
solved in a fairly straightforward manner with results that can be stated in simple
closed expressions. Describing the motion of the particle in time as it traverses the
orbit is however a much more involved matter. In principle, the relation between
the radial distance of the particle r and the time (relative to some starting point)
is given by Eq. (3.18), which here takes on the form

’m
(3.65)

/—
N

2mr?
Similarly, the polar angle # and the time are connected through the conserva-

tion of angular momentum,

dt = '"#do.

which combined with the orbit equation (3.51) leads to

2 16
.l / g . (3.66)
mk= Jg, [1 +ecos(@ —6")]°
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passage. Using the trigonometric identity

g
1 +cosf = 2cos® —,

Eq. (3.66) then reduces for parabolic motion to the form

' e 0
g = f sect — de.
dmk= Jo 2

The integration is easily performed by a change of variable to x = tan(6/2),
leading to the integral

13 tan(4/2) 5
= / (] + X") dx.
0

2mk?
or
P B . L. il
— tan— + —tan” — ). 3.67
! 2ml\'z(anz+3an 2)) ( )

In this equation, —7r < € < m, where for t — —oc the particle starts ap-
proaching from infinitely far away located at & = —x. The time ¢t = 0 corre-
sponds to 8 = 0. where the particle is at perihelion. Finally + — +-o¢ corresponds
to @ — m as the particle moves infinitely far away. This is a straightforward rela-
tion for r as a function of #: inversion to obtain # at a given time requires solving
a cubic equation for tan(6/2), then finding the corresponding arctan. The radial
distance at a given time is given through the orbital equation.

For elliptical motion, Eq. (3.65) is most conveniently integrated through an
auxiliary variable ¥, denoted as the eccentric anomaly,* and defined by the rela-
tion

r=a(l —ecosyr). (3.68)

By comparison with the orbit equation, (3.64), it is clear that ¥ also covers the
interval O to 2 as 6 goes through a complete revolution, and that the perihelion
occurs at ¥ = 0 (where # = 0 by convention) and the aphelion at ¥ = 71 = 6.
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Expressing £ and € in terms of a, e. and k, Eq. (3.65) can be rewritten for
elliptic motion as

F="IBp
| m rdr
1=—/— ) (3.69)
\' 2k o) /’r _ i ol a(l-e?)
V 2a 2

where, by the convention on the starting time, rq is the perihelion distance. Substi-
tution of r in terms of ¥ from Eq. (3.68) reduces this integral, after some algebra,
to the simple form

!ma3

b 4
1=, — [ (1 —ecosy)dv. (3.70)
Y & Jo
First, we may note that Eq. (3.70) provides an expression for the period, 7, of
elliptical motion, if the integral is carried over the full range in ¢ of 2x:

R
v=2Ra" — (3.71)

This important result can also be obtained directly from the properties of an el-
lipse. From the conservation of angular momentum, the areal velocity is constant
and is given by

dA 1 , [
— - — 3-7
dt 2r . 2m (@39
The area of the orbit, A, is to be found by integrating (3.72) over a complete
period t:
TdA l
S haAs 2
o dt 2m
Now, the area of an ellipse is
A = mab,

where, by the definition of eccentricity, the semiminor axis b is related to a ac-
cording to the formula

b=ay1 —e.

By (3.62), the semiminor axis can also be written as

[ 1
1/2 zl_

b=a ;
g \ mk
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and the period is therefore

[ e
2m 4 | 12 3y M
T=—na'"|— =2mwa"’" | —,
[ \/mk Yk

as was found previously. Equation (3.71) states that, other things being equal,
the square of the period is proportional to the cube of the major axis, and this
conclusion is often referred to as the third of Kepler's laws.* Actually, Kepler
was concerned with the specific problem of planetary motion in the gravitational
field of the Sun. A more precise statement of this third law would therefore be:
The square of the periods of the various planets are proportional to the cube of
their major axes. In this form, the law is only approximately true. Recall that the
motion of a planet about the Sun is a two-body problem and m in (3.71) must be
replaced by the reduced mass: (cf. Eq. (3.4))

mymsj

m1+m2’

where 727 may be taken as referring to the planet and m; to the Sun. Further, the
gravitational law of attraction is

fe —G'"—"_Z"E.
so that the constant £ is
k= Gmums. (3.73)
Under these conditions, (3.71) becomes
2ma’’? 2a’?

(3.74)

T = ~ ;
JGimy+my)  JGmy
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p—

27 ¥
e i (3.75)
=7 Y ma3 ;

The integration in Eq. (3.70) is of course easily performed, resulting in the relation
wt =Y —esiny, (3.76)

known as Kepler's equation. The quantity wt goes through the range 0 to 27,
along with ¢ and #, in the course of a complete orbital revolution and is therefore
also denoted as an anomaly, specifically the mean anomaly.

To find the position in orbit at a given time ¢, Kepler's equation, (3.76), would
first be inverted to obtain the corresponding eccentric anomaly ¥. Equation (3.68)
then yields the radial distance, while the polar angle # can be expressed in terms
of ¥ by comparing the defining equation (3.68) with the orbit equation (3.64):

1 —e?
l+ecosf = ————m—.
| —ecosy

With a little algebraic manipulation, this can be simplified. to

(3.77)

By successively adding and subtracting both sides of Eq. (3.77) from unity and
taking the ratio of the resulting two equations, we are led to the alternative form

) /1
tan 3 = \’i l—i_-—: tan % (3.78)
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SCATTERING IN A CENTRAL FORCE FIELD

In its one-body formulation, the scattering problem is concerned with the scat-
tering of particles by a center of force. We consider a uniform beam of particles—
whether electrons, or a-particles, or planets is irrelevant—all of the same mass
and energy incident upon a center of force, It will be assumed that the force falls
off to zero for very large distances. The incident beam is characterized by speci-
fying its intensity I (also called flux density), which gives the number of particles
crossing unit area normal to the beam in unit time. As a particle approaches the
center of force, it will be either attracted or repelled, and its orbit will deviate
from the incident straight-line trajectory. After passing the center of force, the
force acting on the particle will eventually diminish so that the orbit once again
approaches a straight line. In general, the final direction of motion is not the same
as the incident direction, and the particle is said to be scattered. The cross section
for scattering in a given direction, o (£1), is defined by

number of particles scattered into solid angle d<2 per unit time

0)dQ =
a(£2) incident intensity

(3.88)
where d2 is an element of solid angle in the direction £2. Often o (£2) is also des-
ignated as the differeniial scattering cross section. With central forces there must
be complete symmelry around the axis of the incident beam; hence the element
of solid angle can be written

dQ =27 sin®doO, (3.89)

FIGURE 3.19 Scattering of an incident beam of particles by a center of force.
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where @ is the angle between the scattered and incident directions, known as the
scattering angle (ctf. Fig. 3.19, where repulsive scattering is illustrated). Note that
the name “cross section” is deserved in that o (£2) has the dimensions of an area.

FIGURE 3.20 Reclation of orbit parameters and scattering angle in an example of repul-
sive scattering.

then the dependence of the differential cross section on © is given by

ds
de

§

ag(@) = ——
) sin@®

; (3.93)

A formal expression for the scattering angle @ as a function of s can be di-
rectly obtained from the orbit equation, Eq. (3.36). Again. for simplicity, we will
consider the case of purely repulsive scattering (cf. Fig. 3.20). As the orbit must
be symmetric about the direction of the periapsis, the scattering angle is given by

O=r-2Y¥, (3.94)
where W is the angle between the direction of the incoming asymptote and the
periapsis (closest approach) direction. In turn, W can be obtained from Eq. (3.36)

by setting rg = oo when 6y = =z (the incoming direction), whence § = 7 — W
when r = r,,, the distance of closest approach. A trivial rearrangement then leads

to
oc .{.
= [ W S (3.95)

Expressing / in terms of the impact parameter s (Eq. (3.90)). the resultant expres-
sion for ©(s) is

(> & !.
(-)(.v):rr—l/ i . (3.96)
tmo a1 ¥0)_ 2
r\.;r (l E) K

or, changing r to 1 /u

Uy K d

(:)(c):rr—Z/ . S (3.97)
0o /1YW

" s ~

2.2
—SU=
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Equations (3.96) and (3.97) are rarely used except for direct numerical compu-
tation of the scattering angle. However, when an analytic expression is available
for the orbits, the relation between ® and s can often be obtained almost by in-
spection. An historically important illustration of such a procedure is the repulsive
scattering of charged particles by a Coulomb field. The scattering force field is that
produced by a fixed charge —Ze acting on the incident particles having a charge
—Z'e so that the force can be written as

ZZ'é?
f=—

r-

i.e., a repulsive inverse-square law. The results of Section 3.7 can be taken over
here with no more change that writing the force constant as

k=-ZZ'e (3.98)

The energy E is greater than zero, and the orbit is a hyperbola with the eccentricity

given by*
,r"l 2E2 o L IBEN -
=1+ ——ms= . 99)
% V i m(ZZ'e?)? o (ZZ’(‘) (

where use has been made of Eq. (3.90). If " in Eq. (3.55) is chosen to be 7,
periapsis corresponds to € = 0 and the orbit equation becomes

1 mZZ'e

=7

(ecosf — 1). (3.100)

This hyperbolic orbit equation has the same form as the elliptic orbit equa-
tion (3.56) except for a change in sign. The direction of the incoming asymptote,
W, is then determined by the condition r — oc:

cosV¥ = —
€
or, by Eq. (3.94),
. 0 ]
sin — = —.
2 ‘
Hence,
39 _a3_;
cot ? =€ — 1,

and using Eq. (3.99)
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® 2Es
Col—= g
2 ZZ'e

The desired functional relationship between the impact parameter and the scatter-
ing angle is therefore

ZZ'¢2 O _
5= °F cotE. (3.101)

so that on carrying through the manipulation required by Eq. (3.93), we find that
o (®) is given by

SN2
1 {ZZ% 4 © ;
o(®) = 4_1( SE ) Cse EX (3.102)

Equation (3.102) gives the famous Rutherford scattering cross section, orig-
inally derived by Rutherford for the scattering of « particles by atomic nuclei.
Quantum mechanics in the nonrelativistic limit yields a cross section identical
with this classical result.

In atomic physics, the concept of a total scattering cross section or, defined
as

n
ar = f o()dQ = 27r/ o0(®)sin® dO,
4 0

1s of considerable importance. However, if we attempt to calculate the total cross
section for Coulomb scattering by substituting Eq. (3.102) in this definition, we
obtain an infinite result! The physical reason behind this behavior is not diffi-
cult to discern. From its definition the total cross section is the number of parti-
cles scattered in all directions per unit time for unit incident intensity. Now, the
Coulomb field is an example of a “long-range” force; its effects extend to infinity.
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TRANSFORMATION OF THE SCATTERING PROBLEM
TO LABORATORY COORDINATES

In the previous section we were concerned with the one-body problem of the
scattering of a particle by a fixed center of force. In practice, the scattering always
involved two bodies; e.g., in Rutherford scattering we have the « particle and the
atomic nucleus. The second particle, m3, 1s not fixed but recoils from its initial
position as a result of the scattering. Since it has been shown that any two-body

FIGURE 3.24 Scattering of two particles as viewed in the laboratory system.
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FIGURE 3.25 Scattering of two particles as viewed in the center of mass system.

It is convenient here to use the terminology of Section 3.1, with slight modifi-
cations:

r; and v; are the position and velocity, after scattering, of the incident particle,
mjy, in the laboratory system,

ry and v) are the position and velocity, after scattering, of particle m, in the
center of mass system, and

RandV  are the position and (constant) velocity in the center of mass in the
laboratory system.

At any instant, by definition
rn=R+ l"],
and consequently
vi=V+v,. (3.104)

Figure 3.26 graphically portrays this vector relation evaluated after the scattering
has taken place; at which time v; and v make the angles ¢ and ©, respectively,

FIGURE 3.26 The relations between the velocities in the center of mass and laboratory
coordinates.
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with the vector V lying along the initial direction. Since the target is initially sta-
tionary in the laboratory system, the incident velocity of particle 1 in that system,
vo. is the same as the initial relative velocity of the particles. By conservation of
total linear momentum, the constant velocity of the center of mass is therefore

given by
(my + m2)V = mvy.
or
R (3.105)
m2

where i = mymy/(m; + m»). From Fig. 3.26, it is readily seen that
vy sind = v)sin®
and
vicos# = vjcos® + V. (3.106)

The ratio of these two equations gives a relation between ¢ and ©:

sin ©
tan = —, (3.107)
cos@+ p
where p is defined as
gz B A (3.108)
ma v

An alternative relation can be obtained by expressing vy in terms of the other
speeds through the cosine law as applied to the triangle of Fig, 3.26:

v? = v 4+ V2 4+ 20]V cos . (3.109)

When this is used to eliminate v; from Eq. (3.106) and V is expressed in terms of
vp by Eq. (3.105), we find

cos @
cos i} = bl ; (3.110)

\//l +2pcos® 4+ p2

Both these relations still involve a ratio of speeds through p. By the definition
of center of mass, the speed of particle 1 in the center-of-mass system, v}, is con-
nected with the relative speed v after the collision, by the equation (cf. Eq. (3.2)),
where v = |F|:

M

V) = —u.
m)
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Hence, p can also be written as

s LTl (3.108")

my v

where v, it should be emphasized. is the relative speed after the collision. When
the collision is elastic, the total kinetic energy of the two particles remains unal-
tered and v must equal vy so that p is simply

m —
p= —I. (elastic collision) (3.111)
m3

independent of energies or speeds. If the collision is inelastic, the total kinetic
energy of the two particles is altered (e.g., some of the kinetic energy goes into
the form of internal excitation energy of the target). Since the total energy is con-
served and momentum is conserved, the energy change resulting from'the colli-
sion can be expressed as

2 2
pu- Bl .
T—'T'FQ. (3.112)

The so-called Q value of the inelastic collision is clearly negative in magnitude,
but the sign convention is chosen to conform to that used in general for atomic
and nuclear reactions. From Eq. (3.112) the ratio of relative speeds before and
after collision can be written

¥y Eesg (3.113)
v m; E

where £ = ‘%m‘ vg is l.llc energy of the incoming particle (in the laboratory sys-
tem). Thus, for inelastic scattering p becomes

p= it : (inelastic scattering) (3.114)

{ mi+my QO
mg\/l-i- M E

Not only are the scattering angles # and © in general different in magnitude,
but the values of the differential scattering cross section depend upon which of
the two angles is used as the argument of o. The connection between the two
functional forms is obtained from the observation that in a particular experiment
the number of particles scattered into a given element of solid angle must be the
same whether we measure the event in terms of ¥ or ®. As an equation, this
statement can be written

2nlo(®)sin®|d®| =270’ (V) sin? | dP?|,
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or

sin® |dO

‘) =0(@® —_—
a(?) =0(0) 70

. (3.115)

- ‘d(cos(-))
d(cos )

sin

where o’(1?) is the differential scattering cross section expressed in terms of the
scattering angle in the laboratory system. The derivative can easily be evaluated
from Eq. (3.110), leading to the result

2 (14 2pcos ® + p2)*/?2
?) =0(® A 3.116
FR)=ad 1 4+ pcos® (2,162

Note that o(©) is nor the cross section an observer would measure in the
center-of-mass system. Both ¢ (©) and o'(#) are cross sections measured in the
laboratory system; they are merely expressed in terms of different coordinates. An

The two scattering angles have a particularly simple relation for elastic scat-
tering when the two masses of particles are equal. It then follows that p = 1, and
from Eq. (3.110) we have

e /‘1+cos@_ )
COS 1 —V'T-—COS'E.
or
©
19:;. {p:=1).

Thus, with equal masses, scattering angles greater than 90° cannot occur in the
laboratory system; all the scattering is in the forward hemisphere. Correspond-
ingly, the scattering cross section is given in terms of ® from Eq. (3.116) as

ri 3

—‘
2

o' (#) =4cos? - 0(0), P < (p=1).
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particle. The degree of slowing down can be obtained from Eq. (3.109) if v| and
V' are expressed in terms of vy by Eqs. (3.108) and (3.105), respectively:

-

1y 1 2 ) S
— = ( f ) (14 2pcos® + p°). (3.117)
vl myp

For elastic collisions p = m/m3, and Eq. (3.117) can be simplified to

E | + 2pcos © + p?

= . (elastic collision) (3.117")
Eo (1 + P

where £y is the initial kinetic energy of the incident particle in the laboratory
system and £ the corresponding energy after scattering. When the particles are
of equal mass, this relation becomes

E, |l +cos® N

— = ———— =cos .

E.() 2
Thus, at the maximum scattering angle (® = 7, § = m/2), the incident particle
loses all its energy and is completely stopped in the laboratory system,
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THE THREE-BODY PROBLEM

The Newtonian three-body problem involves three masses m . m2, and mj at
the respective positions rj, r2, and r3, interacting with each other via gravitational
forces. We assume that the position vectors ry, rz, and r3 are expressed in the
center of mass system. It is easy to write the equation of motion of the first mass
since by Newton’s second law m T equals the gravitational forces that the other
twoO masses exert on mp:

K} =—F3 r]y —X3

- Gmy———— (3.118)

i:| = —Gmg
ey — )3 Iry — 133

and analogously for the other two masses. If we make use of the relative-position
vectors defined by

Si =Tj — Tk (3.119)
in Fig. 3.27, then clearly

s1+s2+s3=0. (3.120)

my

m,

m,

FIGURE 3.27 Position vectors s; = rj — ry for the three-body problem. Adapted from
Hestenes, New Foundations for Classical Mechanics, 1999, Fig. 5.1.
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After a little algebra, the equations of motion assume the symmetrical form

. S
§i=-mG— +mG (3.121)
S '

T

where i = 1, 2, 3, the quantity m is the sum of the three masses

m=m) +msy+mj (3.122)
and the vector G is given by
S S S
G=¢G —;+—2;+—f ; (3.123)
s; 8 sy,

The three coupled equations in the symmetrical form, (3.121), cannot be solved in
general, but they do provide solutions to the three-body problem for some simple
cases,

There is a solution due to Euler in which mass m» always lies on the straight
line between the other two masses so that ry, rs, r3, s, $2, 83, and G are all
collinear. Figure 3.28 shows Euler’s negative-energy (i.e., bound-state) solution
for the mass ratio m; < m» < mj3 in which the masses move along confocal
ellipses with the same period 7. During each period, the masses pass through
both a perihelion configuration, in which they lie close together along the axis of
the ellipses, and an aphelion configuration, in which they lie along this same axis
but far apart. The aphelion positions in the orbits are indicated in Figure 3.28.

If the vector G = 0, the equations of motion decouple, and Eq. (3.121) reduces
to the two-body form of the Kepler problem,

(3.124)

with each mass moving along an elliptical orbit lying in the same plane with the
same focal point and the same period. This decoupling occurs when the three

m,

/

1“3

FIGURE 3.28 Euler’s collinear solution to the three-body problem for the mass ra
tio m; < my < mj. Three of the dots show aphelion positions. Adapted from Hes
tenes, New Foundations for Classical Mechanics, 1999, Fig. 5.2.
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Unit I11: Rigid body Dynamics and Small Oscillations
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Transformation - Solving Rigid Body Problems and the Euler Equations of Motion. Small
Oscillations - Frequencies of Free Vibration, and Normal Coordinates, Linear Tri atomic

Molecule.

B THE INDEPENDENT COORDINATES OF A RIGID BODY

Before discussing the motion of a rigid body, we must first establish how many
independent coordinates are necessary to specify its configuration. From experi-
ence, we expect that there should be six independent coordinates. Three external
coordinates are needed to specify the position of some reference point in the body
and three more to specify how the body is oriented with respect to the external
coordinates. In this section we show that these intuitive expectations are correct.

A rigid body with N particles can at most have 3N degrees of freedom, but
these are greatly reduced by the constraints, which can be expressed as equations
of the form

rij = Cij. (4.1)

Here r;; is the distance between the ith and jth particles and the ¢’s are constants.
The actual number of degrees of freedom cannot be obtained simply by subtract-
ing the number of constraint equations from 3N, for there are %N (N —1) possible
equations of the form of Eq. (4.1), which is far greater than 3N for large N. In
truth, the Egs. (4.1) are not all independent.
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The location of a point in a rigid body by its distances from three reference

To fix a point in the rigid body, it is not necessary to specify its distances to
all other points in the body; we need only state the distances to any three other
noncollinear points (cf. Fig. 4.1). Thus, once the positions of three of the particles
of the rigid body are determined, the constraints fix the positions of all remaining
particles. The number of degrees of freedom therefore cannot be more than nine.
But the three reference points are themselves not independent; there are in fact
three equations of rigid constraint imposed on them,

riz =12, 123 =€28; ri3 =C13.

that reduce the number of degrees of freedom to six. That only six coordinates
are needed can also be seen from the following considerations. To establish the
position of one of the reference points, three coordinates must be supplied. But
once point 1 is fixed, point 2 can be specified by only two coordinates, since it is
constrained to move on the surface of a sphere centered at point 1. With these two
points determined, point 3 has only one degree of freedom, for it can only rotate
about the axis joining the other two points. Hence, a total of six coordinates is
sufficient.

A rigid body in space thus needs six independent generalized coordinates to
specify its configuration, no matter how many particles it may contain—even in
the limit of a continuous body. Of course, there may be additional constraints on
the body besides the constraint of rigidity. For example, the body may be con-
strained to move on a surface, or with one point fixed. In such case. the additional
constraints will further reduce the number of degrees of freedom, and hence the
number of independent coordinates.

How shall these coordinates be assigned? Note that the set of configuration
of a rigid body is completely specified by locating a Cartesian set of coordinates
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FIGURE 4.2 Unprimed axes represent an external reference set of axes; the primed axes
are fixed in the rigid body.

fixed in the rigid body (the primed axes shown in Fig. 4.2) relative to the coor-
dinate axes of the external space. Clearly three of the coordinates are needed to
specify the coordinates of the origin of this “body” set of axes. The remaining
three coordinates must then specify the orientation of the primed axes relative to
a coordinate system parallel to the external axes, but with the same origin as the
primed axes.

There are many ways of specifying the orientation of a Cartesian set of axes
relative to another set with common origin. One fruitful procedure is to state the
direction cosines of the primed axes relative to the unprimed. Thus, the x” axis
could be specified by its three direction cosines «, &2, a3, with respect to the x,
v, z axes. If, as customary. i, j. K are three unit vectors along x, vy, z, and i, j', K’
perform the same function in the primed system (cf. Fig. 4.3). then these direction
cosines are defined as

X:,l'l

FIGURE 4.3 Direction cosines of the body set of axes relative to an external set of axes.
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costy =cos(i i) =1 -i=i-i
cosfBip =cos(i - j)=i-j=j-1
cos@r =cos(f ) =f -i=i-j

j/

cosOp =cos(j -j)=j§-j=]j- (4.2)
and similarly for cos i3, cos #3), etc. Note that the angle 6;; is defined so that
the first index refers to the primed system and the second index to the unprimed
system. These direction cosines can also be used to express the unit vector in the
primed system in terms of the unit vectors of the unprimed system giving

i’ = cos @i+ cosbyaj + cos B3k

st

J = cos 82,1 + cos B22j + cos O3k
k' = cos 6311 + cos f32j + cos A33k. (4.3)

These sets of nine directions cosines then completely specify the orientation of
the x’, y’, z’ axes relative to the x, y, z set. We can equally well invert the process,
and use the direction cosines to express the i, j. k unit vectors in terms of their
components along the primed axes. Thus, we can write

r=xi+yj+zk=xT+yj+z7K 4.4)
by

x'=(r-i) =cosfi1x +cosb2y + cos 93z
y = (r-j) = cosfx + cosBry + cos 63z

7 = (r-K') = cosf31x + cos G2y + cos 613z 4.5)

with analogous equations for i, j and k.

The direction cosines also furnish directly the relations between the coordi-
nates of a given point in one system and the coordinates in the other system.
Thus, the coordinates of a point in a given reference frame are the components of
the position vector, r, along the primed and unprimed axes of the system, respec-
tively. The primed coordinates are then given in terms of x. y, and z, as shown in
Eqg. (4.5). What has been done here for the components of the r vector can obvi-
ously be done for any arbitrary vector. If G is some vector, then the component of
G along the x’ axis will be related to its x-, y-, z-components by

Gy =G-i =co0s611G +cosb12Gy + cos 913G, (4.6)

and so on. The set of nine direction cosines thus completely spells out the trans-
formation between the two coordinate systems.

If the primed axes are taken as fixed in the body, then the nine direction cosines
will be functions of time as the body changes its orientation in the course of the
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motion. In this sense, the direction cosines can be considered as coordinates de-
scribing the instantaneous orientation of the body, relative to a coordinate system
fixed in space but with origin in common with the body system. But, clearly. they
are not independent coordinates, for there are nine of them and it has been shown
that only three coordinates are needed to specify an orientation.

The connections between the direction cosines arise from the fact that the basis
vectors in both coordinate systems are orthogonal to each other and have unit
magnitude: in symbols,

i-j=j-k=k-i=0,
and 4.7)
i-i=j-j=k-k=1,

with similar relations for i’, j’, and k’. We can obtain the conditions satisfied by the
nine coefficients by forming all possible dot products among the three equations
fori, j, and k in terms of i’, j’, and Kk’ (as in Eq. (4.4)), making use of the Eqgs. (4.7):

3

E COS Gy’ €OS Oy = 0 m % m'
=1
(4.8)
3

Z cos? Oraii—"1

I1=1

These two sets of three equations each are exactly sufficient to reduce the number
of independent quantities from nine to three. Formally, the six equations can be
combined into one by using the Kronecker §-symbol §;,,, defined by

Slm:l { =m
=0 L #= m.

Equations (4.8) can then be written as

WE

COS Gy COS Otm = S (4.9)
=1

It is therefore not possible to set up a Lagrangian and subsequent equations
of motion with the nine direction cosines as generalized coordinates. For this
purpose. we must use some set of three independent functions of the direction
cosines. A number of such sets of independent variables will be described later,
the most important being the Euler angles. The use of direction cosines to de-
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B ORTHOGONAL TRANSFORMATIONS

To study the properties of the nine direction cosines with greater ease, it is con-
venient to change the notation and denote all coordinates by x, distinguishing the
axes by subscripts:

D, el Y |
y — x2 (4.10)

Z—> x3
as shown in Fig. 4.3. We also change the notation for the direction cosines to
a;; = cosbf;; 4.11)

Equations (4.5) and (4.6) constitute a group of transformation equations from
a set of coordinates xi, x2, X3 to a new set x}, x5, x3. In particular, they form an
example of a linear or vecror transformation, defined by transformation equations
of the form

x'{ =a)1x) +aj2x2 + a)axs

x5 = az1x1 + az2x2 + az3xs (4.12)

x3 = az1x) + az2x2 + az3xa,
where the a1, @12, ..., are any set of constant (independent of x, x’) coeffi-
cients.* To simplify the appearance of many of the expressions, we will also make
use of the summation convention first introduced by Einstein: Whenever an index
occurs two Or more times in a term, it is implied, without any further symbols, that

the terms are to be summed over all possible values of the index. Thus, Egs. (4.12)
can be written most compactly in accordance with this convention as

x| =aix;, =123 (4.12")

The repeated appearance of the index ; indicates that the left-hand side of
Eq. (4.12°) is a sum over the dummy index j for all possible values (here, j = 1,
2, 3). Some ambiguity is possible where powers of an indexed quantity occur, and
for that reason, an expression such as

2
D_xi
i
appears under the summation convention as

XiXg.
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For the rest of the book the summation convention should be automatically
assumed in reading the equations unless otherwise explicitly indicated. Where
convenient, or to remove ambiguity, the summation sign may be occasionally
displayed explicitly, e.g., when certain values of the index are to be excluded
from the summation.

The transformation represented by Eqs. (4.11) is only a special case of the gen-
eral linear transformation, Egs. (4.12), since the direction cosines are not all inde-
pendent. The connections between the coefficients, Eqgs. (4.8) are rederived here
in terms of the newer notation. Since both coordinate systems are Cartesian, the
magnitude of a vector is given in terms of the sum of squares of the components.
Further, since the actual vector remains unchanged no matter which coordinate
system is used, the magnitude of the vector must be the same in both systems. In
symbols, we can state the invariance of the magnitude as

xi'x,-' =N (4.13)
The left-hand side of Eq. (4.13) is therefore
Qi j Ak X j XKy
and it will reduce to the right-hand side of Eq. (4.13), if, and only if
aijaixr =1 i=k
=0 &k, 4.14)
or, in a more compact form, if
ajjaix = &k, Fode="1,2. 3 (4.15)

When the a;; coefficients are expressed in terms of the direction cosines, the six
equations contained in Eq. (4.15) become identical with the Egs. (4.9).

Any linear transformation, Eq. (4.12), that has the properties required by
Eq. (4.15) is called an orthogonal transformation, and Eq. (4.15) itself is known
as the orthogonaliry condition. Thus, the transition from coordinates fixed in
space to coordinates fixed in the rigid body (with common origin) is accom-
plished by means of an orthogonal transformation. The array of transformation
quantities (the direction cosines). written as

ay)y a2z d4is
azy a2 a3 |, (4.16)
aizi asz2 asiz

is called the matrix of transformation, and will be denoted by a capital letter A.
The quantities a;; are correspondingly known as the mairix elements of the trans-
formation.

To make these formal considerations more meaningful, consider the simple ex-
ample of motion in a plane, so that we are restricted to two-dimensional rotations,
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and the transformation matrix reduces to the form

ayp ap 0
a ax» 0
0 0 1

The four matrix elements, «;;, are connected by three orthogonality conditions:
aijaik = 8k, ol 2

and therefore only one independent parameter is needed to specify the transfor-
mation. But this conclusion is not surprising. A two-dimensional transformation
from one Cartesian coordinate system Lo another corresponds to a rotation of the
axes in the plane (cf. Fig. 4.4), and such a rotation can be specified completely by
only one quantity, the rotation angle ¢. Expressed in terms of this single parame-
ter, the transformation equations become

x| = x1cos¢ + x2sing
xé = —x;sing 4+ x2cos ¢

.
Ay = X3,

The matrix elements are therefore

ay] = cosg 12 = sing a3 =10
az) = —sing sz = cos¢ ax»3 =0 4.17)
a1 =0 asz =0 ass = 1,

so that the matrix A can be written

FIGURE 4.4 Rotation of the coordinate axes, as equivalent to two-dimensional orthog-
onal transformation.
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cos¢ sing O
A= | —sing cos¢ 0O 4.17)
0 0 1

The three nontrivial orthogonality conditions expand into the equations

anan +aziaz =1
apzaiy +axaz =1

ayaiz +aziaz = 0.

These conditions are obviously satistied by the matrix (4-17), for in terms of the
matrix elements (4.17) they reduce to the identities

cos’¢p +sin’¢p =1
sin2¢> +cosp =1
cos¢sing — singcos ¢ = 0.

The transformation matrix A can be thought of as an operator that, acting
on the unprimed system, transforms it into the primed system. Symbolically, the
process might be written

(r) = Ar, (4.18)

which is to be read: The matrix A operating on the components of a vector in the
unprimed system yields the components of the vector in the primed system. Note
that in the development of the subject so far, A acts on the coordinate system only,
the vector is unchanged, and we ask merely for its components in two different
coordinate frames. Parentheses have therefore been placed around r on the left in
Eq. (4.18) to make clear that the same vector is involved on both sides on the equa-
tion. Only the components have changed. In three dimensions, the transformation
of coordinates, as shown earlier, is simply a rotation, and A is then identical with
the roration operator in a plane.

Despite this, note that without changing the formal mathematics, A can also be
thought of as an operator acting on the vector r, changing it to a different vector r’:

r = Ar, (4.19)

with both vectors expressed in the same coordinate system. Thus, in two dimen-
sions, instead of rotating the coordinate system counterclockwise, we can rotate
the vector r clockwise by an angle ¢ to a new vector r', as shown in Fig. 4.5. The
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*3

FIGURE 4.5 Interpretation of an orthogonal transformation as a rotation of the vector,
leaving the coordinate system unchanged.

which of these two points of view is followed. The interpretation as an operator
acting on the coordinates is the more pertinent one when using the orthogonal
transformation to specify the orientation of a rigid body. On the other hand, the
notion of an operator changing one vector into another has the more widespread
application. In the mathematical discussion either interpretation will be freely
used, as suits the convenience of the situation. Of course, note that the nature
of the operation represented by A will change according to which interpretation
is selected. Thus, if A corresponds to a counterclockwise rotation by an angle ¢
when applied to the coordinate system, it will correspond to a clockwise rotation
when applied to the vector.
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B THE EULER ANGLES

We have noted (cf. p. 137) that the nine elements a;; are not suitable as generalized
coordinates because they are not independent quantities. The six relations that
express the orthogonality conditions, Egs. (4.9) or Egs. (4.15), of course reduce
the number of independent elements to three. But in order to characterize the
motion of a rigid body, there is an additional requirement the matrix elements
must satisfy, beyond those implied by orthogonality. In the previous section we
pointed out that the determinant of a real orthogonal matrix could have the value
+1 or —1. The following argument shows however that an orthogonal matrix
whose determinant is —1 cannot represent a physical displacement of a rigid body.
Consider the simplest 3 x 3 matrix with the determinant —1:

—1 0 0
S = 0 -1 0| =-1.
0 0 —1

The transformation S has the effect of changing the sign of each of the components
or coordinate axes (cf. Fig. 4.6). Such an operation transforms a right-handed
coordinate system into a left-handed one and is known as an inversion of the
coordinate axes.

One method of performing an inversion is to rotate about a coordinate axis by
180° and then reflect in that coordinate axis direction. For the z-direction, this

gives
rotate reflect
by 180° in the = inversion.

about z xy plane

z

’

X

-4

FIGURE 4.6 Inversion of the coordinate axes.
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In matrix notation, this has the form

=1 0 0 1 0 0 —1 0 0
0O -1 0 0 1 0| = 0 -1 0
0 0 1 0 0 =1 0 0 -1

where the 180° rotation is obtained by setting ¢ = 180° in Eq. (4.17).

From the nature of this operation, it is clear that an inversion of a right-handed
system into a left-handed one cannot be accomplished by any rigid change in the
orientation of the coordinate axes. An inversion therefore never corresponds to a
physical displacement of a rigid body. What is true for the inversion S is equally
valid for any matrix whose determinant is —1, for any such matrix can be writ-
ten as the product of § with a matrix whose determinant is +1, and thus includes
the inversion operation. Consequently, it cannot describe a rigid change in ori-
entation. Therefore, the transformations representing rigid body motion must be
restricted to matrices having the determinant 4 1. Another method of reaching this
conclusion starts from the fact that the matrix of transformation must evolve con-
tinuously from the unit matrix. which of course has the determinant +1. It would
be incompatible with the continuity of the motion to have the matrix determinant
suddenly change from its initial value +1 to —1 at some given time. Orthogonal
transformations with determinant 41 are said to be proper, and those with the
determinant —1 are called improper.

In order to describe the motion of rigid bodies in the Lagrangian formulation
of mechanics, it will therefore be necessary to seek three independent parameters
that specify the orientation of a rigid body in such a manner that the correspond-
ing orthogonal matrix of transformation has the determinant +1. Only when such
generalized coordinates have been found can we write a Lagrangian for the sys-
tem and obtain the Lagrangian equations of motion. A number of such sets of
parameters have been described in the literature, but the most common and useful
are the Euler or Eulerian angles. We shall therefore define these angles at this
point, and show how the elements of the orthogonal transformation matrix can be
expressed in terms of them.
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FIGURE 4.7 The rotations defining the Eulerian angles.

terclockwise by an angle ¥ about the ¢’ axis to produce the desired x'y'z’ system
of axes. Figure 4.7 illustrates the various stages of the sequence. The Euler angles
0, ¢, and ¥ thus completely specify the orientation of the x"y’z’ system relative
Lo the xyz and can therefore act as the three needed generalized coordinates, ™

The elements of the complete transformation A can be obtained by writing the
matrix as the triple product of the separate rotations, each of which has a relatively
simple matrix form. Thus, the initial rotation about z can be described by a matrix
D:

& = Dx,

where & and x stand for column matrices. Similarly, the transformation from &n¢
to £'n¢’ can be described by a matrix C,
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=G,
and the last rotation to x’y’z" by a matrix B,
X = BE'.
Hence, the matrix of the complete transformation,
F
X = AX,
is the product of the successive matrices,

A = BCD.

Now the D transformation is a rotation about z. and hence has a matrix of the

form (cf. Eq. (4.17))

[ cos¢ sing O
D= | —sing cos¢ O
0 0 1

.

(4.43)

The C transtormation corresponds to a rotation about £, with the matrix

[ 1 0 0
C=|0 cos@ sin &
| O —sin® cos@

(4.44)

and finally B is a rotation about ¢’ and therefore has the same form as D:

cosyr  sinyr 0
B=| —sinv¥ cosy¥ 0
0 0 1

The product matrix A = BCD then follows as

COS ¥ COs¢p — cos A sin g sin cos i sing + cos# cos ¢ sin
A = | —sinyrcosg —cos@singcosy®yr —sinysing + cosé cos¢ cosyr
sinf sin ¢ —sin# cos ¢

The inverse transformation from body coordinates to space axes
—1,7
Xx=AT"x

is then given immediately by the transposed matrix A:

ATl =
~ coswrcos¢p —cosfsingsiny — sin i cos @ — cos 8 sin ¢ cos
A = | cosvrsing + cosf@ cosgsinyy  — sin i sin ¢ + cos # cos ¢ cos ¥r
sin @ sin sin & cos ¥

(4.45)

sin ¥ siné
cosyrsing | .
cosé

(4.46)

sind sin @
—sinfcosg¢ |.
cos

(4.47)

Verification of the multiplication, and demonstration that A represents a proper,

orthogonal matrix will be left to the exercises.
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B ANGULAR MOMENTUM AND KINETIC ENERGY

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE

OF MOTION ABOUT A POINT

Chasles’ theorem states that any general displacement of a rigid body can be rep-
resented by a translation plus a rotation. The theorem suggests that it ought to
be possible to split the problem of rigid body motion into two separate phases,
one concerned solely with the translational motion of the body, the other, with its
rotational motion. Of course, if one point of the body is fixed. the separation is
obvious, for then there is only a rotational motion about the fixed point, without
any translation. But even for a general type of motion such a separation is often
possible. The six coordinates needed to describe the motion have already been
formed into two sets in accordance with such a division: the three Cartesian coor-
dinates of a point fixed in the rigid body to describe the translational motion and.
say. the three Euler angles for the motion about the point. If, further, the origin of
the body system is chosen to be the center of mass, then by Eq. (1.28) the total
angular momentum divides naturally into contributions from the translation of the
center of mass and from the rotation about the center of mass. The former term
will involve only the Cartesian coordinates of the center of mass, the latter only
the angle coordinates. By Eq. (1.31), a similar division holds for the total kinetic
energy 7', which can be written in the form

T =MV +T'(¢.0. %),

ANGULAR MOMENTUM AND KINETIC ENERGY
OF MOTION ABOUT A POINT

Chasles’ theorem states that any general displacement of a rigid body can be rep-
resented by a translation plus a rotation. The theorem suggests that it ought to
be possible to split the problem of rigid body motion into two separate phases,
one concerned solely with the translational motion of the body, the other, with its
rotational motion. Of course, if one point of the body is fixed, the separation is
obvious, for then there is only a rotational motion about the fixed point, without
any translation. But even for a general type of motion such a separation is often
possible. The six coordinates needed to describe the motion have already been
formed into two sets in accordance with such a division: the three Cartesian coor-
dinates of a point fixed in the rigid body to describe the translational motion and.
say. the three Euler angles for the motion about the point. If, further, the origin of
the body system is chosen to be the center of mass, then by Eq. (1.28) the total
angular momentum divides naturally into contributions from the translation of the
center of mass and from the rotation about the center of mass. The former term
will involve only the Cartesian coordinates of the center of mass, the latter only
the angle coordinates. By Eq. (1.31), a similar division holds for the total kinetic
energy 7, which can be written in the form

T =M +T'(9.0,¥),
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Let R and R3 be the position vectors, relative to a fixed set of coordinates, of
the origins of two sets of body coordinates (cf. Fig. 5.1). The difference vector is
denoted by R:

R> =R, +R.

~

FIGURE 5.1 Vectorial relation between sets of rigid body coordinates with different
origins.
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If the origin of the second set of axes is considered as a point defined relative to
the first, then the time derivative of R relative to the space axes is given by

(ng (dR.) +(dR) (de) 2 =
s — ) == w; x R,
dr ). at ). \odi ] qE 1.

The last step follows from Eq. (4.86), recalling that the derivatives of R relative
to any rigid body axes must vanish, and with w; as being the angular velocity
vector appropriate to the first coordinate system. Alternatively, the origin of the
first coordinate system can be considered as fixed in the second system with the
position vector —R. In the same manner, then, the derivative of the position vector
R; to this origin relative to the fixed-space axes can be written as

dRi) _ (dR2) _ (dR) _ (dRz) <R
dt)s_ &) Nt ), Adp j, A

A comparison of these two expressions shows (@) — ;) x R = 0. Any differ-
ence in the angular velocity vectors at two arbitrary points must lie along the line
joining the two points. Assuming the e vector field is continuous, the only possi-
ble solution for all pairs of points is that the two angular velocity vectors must be
equal:

) = n.*

The angular velocity vector is the same for all coordinate systems fixed in the
rigid body.

When a rigid body moves with one point stationary, the total angular momen-
tum about that point is

L =mi(r: x Vi), (5.1

(employing the summation convention) where r; and v; are the radius vector and
velocity, respectively, of the /th particle relative to the given point. Since r; is a
fixed vector relative to the body, the velocity v; with respect to the space set of
axes arises solely from the rotational motion of the rigid body about the fixed
point. From Eq. (4.86), v; is then

Vi = X TIj. (5.2)
Hence, Eq. (5.1) can be written as
L =m;[r; x (w X 1;)],
or, expanding the triple cross product,

L= m; I:wriz —ri(r; -« w)] = (53)
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Again expanding, the x-component of the angular momentum becomes
2
Loy = a)xm,'(r,-2 — X[) — WyMiX;yi — W;M;XiZi, (5.4)

with similar equations for the other components of L. Thus, each component of
the angular momentum is a linear function of all the components of the angular
velocity. The angular momentum vector is related to the angular velocity by a
linear rransformation. To emphasize the similarity of (5.4) with the equations of
a linear transformation, (4.12), we may write L, as

Ly = Ixxwx + Iiywy + Iyz;.
Analogously, for L, and L. we have

Ly = Iyywy + Iyywy + Iy 0, (5.5)
L. =TI ywy+ I;ywy + I;;0;.
The nine coefficients Ix. Iy, etc., are the nine elements of the transformation

matrix. The diagonal elements are known as moment of inertia coefficients, and
have the following form

Iex = m; (r,'z = x'z), (5.6)

1

while the off-diagonal elements are designated as products of inertia, a typical
one being

ey = —mixiyi. 6D
In Egs. (5.6) and (5.7), the matrix elements appear in the form suitable if the
rigid body is composed of discrete particles. For continuous bodies the summa-

tion is replaced by a volume integration, with the particle mass becoming a mass
density. Thus, the diagonal element /., appears as

Iex =/ o> —x?)dv. (5.6")
-

With a slight change in notation, an expression for all matrix elements can be
stated for continuous bodies. If the coordinate axes are denoted by x;. j = 1, 2, 3,
then the matrix element /;; can be written

Ly = f p(r)(rza.,»k —xjxx)dV. (5.8)
14
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Thus far, the coordinate system used in resolving the components of L has not
been specified. From now on, we will take it to be a system fixed in the body.*
The various distances x;, y;, z; are then constant in time, so that the matrix el-
ements are likewise constants, peculiar to the body involved, and dependent on
the origin and orientation of the particular boady set of axes in which they are
expressed.

Equations (5.5) relating the components of L and « can be summarized by a
single operator equation,

L = lw. (5.9

where the symbol | stands for the operator whose matrix elements are the in-
ertia coefficients appearing in (5.5), and w and L are column matrices. Of the
two interpretations that have been given to the operator of a linear transformation
(ct. Section 4.2), it is clear that here | must be thought of as acting upon the vector
. and not upon the coordinate system. The vectors L and e are two physically
different vectors, having different dimensions, and are not merely the same vector
expressed in two different coordinate systems. Unlike the operator of rotation, |
will have dimensions—mass times length squared—and it is not restricted by any
orthogonality conditions. Equation (5.9) is to be read as the operator | acting upon
the vector  results in the physically new vector L,

B TENSORS

The quantity I may be considered as defining the quotient of L and @ for the prod-
uct of I and @ gives L. Now, the quotient of two quantities is often not a member
of the same class as the dividing factors, but may belong to a more complicated
class. Thus, the quotient of two integers is in general not an integer but rather a
rational number. Similarly, the quotient of two vectors, as is well known, cannot
be defined consistently within the class of vectors. It is not surprising, therefore

to find that I is a new type of quantity, a tensor of the second rank.

In a Cartesian three-dimensional space, a tensor T of the Nth rank may be de-
fined for our purposes as a quantity having 3V components T} (with N indices)
that transform under an orthogonal transformation of coordinates, A, according to
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the following scheme:*
! / =
Ti]'k_“(x ) = ailadjmQin - - - Timan...(X). (5.10)

By this definition, a tensor of the zero rank has one component, which is invariant
under an orthogonal transformation. Hence, a scalar is a tensor of zero rank. A
tensor of the first rank has three components transforming as
/
T{ = ayTj.

Comparison with the transformation equations for a vector, (4.12"), shows that
a tensor of the first rank is completely equivalent to a vector.” Finally, the nine
components of a tensor of the second rank transform as

T, = aixajiTu. (5.11)

B THE INERTIA TENSOR AND THE MOMENT OF INERTIA

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE

Considered as a linear operator that transforms  into L, the matrix | has elements
that behave as the elements of a second-rank tensor. The quantity I is therefore
identified as a second-rank tensor and is usually called the moment of inertia
tensor or briefly the inertia tensor.

The kinetic energy of motion about a point is

.,
= %m,'v.“.

where v; is the velocity of the ith particle relative to the fixed point as measured
in the space axes. By Eq. (5.2), T may also be written as

Ti= %m,-v,— (@ X 1)
which, upon permuting the vectors in the triple dot product, becomes

w
T = — -m;(r; x v;).
2
The quantity summed over i/ will be recognized as the angular momentum of the
body about the origin, and in consequence the kinetic energy can be written in the
form
w-L w-l-w

= = . 5.16
2 2 ¢ )

Let n be a unit vector in the direction of @ so that & = wn. Then an alternative
form for the kinetic energy is
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@? | - <
T=—n-l-n=-Jw", (5.17)
2 2

where [/ is a scalar, defined by

2 _ (x; -n)z], (5.18)

I=n:1-n=m; [”:
and known as the moment of inertia abour the axis of rotation.

In the usual elementary discussions, the moment of inertia about an axis is
defined as the sum, over the particles of the body, of the product of the particle
mass and the square of the perpendicular distance from the axis. It must be shown
that this definition is in accord with the expression given in Eq. (5.18). The per-
pendicular distance is equal to the magnitude of the vector r; x n (cf. Fig. 5.2).
Therefore, the customary definition of / may be written as

I =mi(r; xn) - (r; x n). (5.19)

Multiplying and dividing by ?, this definition of 7 may also be written as

m;
] = —Z(wxri)- (@ X ;).
w*

But each vector in the dot product is exactly the relative velocity v; as measured
in the space system of axes. Hence, / so defined is related to the kinetic energy
by

2T

1 = 75,

w*
which is the same as Eq. (5.17), and therefore 7 must be identical with the scalar
defined by Eq. (5.19).

The value of the moment of inertia depends upon the direction of the axis of

rotation. As w usually changes its direction with respect to the body in the course

FIGURE 5.2 The definition of the moment of inertia.
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Center
of mass

FIGURE 5.3 The vectors involved in the relauon between moments of inertia about
parallel axes.

of time, the moment of inertia must also be considered a function of time. When
the body is constrained so as to rotate only about a fixed axis, then the moment
of inertia is a constant. In such a case, the kinetic energy (5.16) is almost in the
form required to fashion the Lagrangian and the equations of motion. The one
further step needed is to express w as the time derivative of some angle, which
can usually be done without difficulty.

Along with the inertia tensor, the moment of inertia also depends upon the
choice of origin of the body set of axes. However, the moment of inertia about
some given axis is related simply to the moment about a parallel axis through the
center of mass. Let the vector from the given origin O to the center of mass be
R. and let the radii vectors from O and the center of mass to the ith particle be
r; and r}, respectively. The three vectors so defined are connected by the relation
(cf. Fig. 5.3)

ri=R+r. (5.20)
The moment of inertia aboul the axis a is therefore
Iy =m;(r; x )% = m;[(r) + R) x n]*
or
I, = MR x n)% + m;i(r; x n)> + 2m;(R x n) - (r} x n),

where M is the total mass of the body. The last term in this expression can be
rearranged as

—2(R x n) - (m x m;r;).
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By the definition of center of mass, the summation m;r; vanishes. Hence, /, can
be expressed in terms of the moment about the parallel axis b as

I, = I, + M(R x n)* (5.21)
= I, + MR?sin®6.

The magnitude of R xn, which has the value R sin &, where 6 is the angle between
R and n, is the perpendicular distance of the center of mass from the axis passing
through O. Consequently, the moment of inertia about a given axis is equal to the
moment of inertia about a parallel axis through the center of mass plus the moment
of inertia of the body, as if concentrated at the center of mass, with respect to the
original axis.

The inertia tensor is defined in general from the kinetic energy of rotation about
an axis, and is written as

1, 2 _ 1 2 .
Trotation = 5:?1,-((0 XTI = jwﬂiwﬁmf(éaﬂrf - rr’{!?iﬂ).

where Greek letters indicate the components of @ and r;. In an inertial frame, the
sum is over the particles in the body, and r, is the ath component of the position
of the ith particle. Because Tyation 18 @ bilinear form in the components of @, it
can be written as

Trotation = %faﬂwa wa,
where
Lng = m; (8apr? — riarip) (5.22)

is the moment of inertia tensor. To get the moment of inertia about an axis through
the center of mass, choose the rotation about this axis. For a body with a contin-
uous distribution of density o(r), the sums in the components of the moment of
inertia tensor in Eq. (5.22) reduce to

Iﬂfﬂ = f p(r)(&dﬁrz - ra,rﬁ) av. (523)
v
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I THE EIGENVALUES OF THE INERTIA TENSOR AND
THE PRINCIPAL AXIS TRANSFORMATION

The preceding discussion emphasizes the important role the inertia tensor plays in
the discussion of the motion of rigid bodies. An examination, at this point, of the
properties of this tensor and its associated matrix will therefore prove of consid-
erable interest. From the defining equation, (5.7), it is seen that the components
of the tensor are symmetrical; that is

Ix,\' = Iy,\'- (5.24)
This means that, while the inertia tensor will in general have nine components,
only six of them will be independent—the three along the diagonal plus three of
the off-diagonal elements.

The inertia coefficients depend both upon the location of the origin of the body
set of axes and upon the orientation of these axes with respect to the body. This
symmetry suggests that there exists a set of coordinates in which the tensor is
diagonal with the three principal values 7}, I5, and /3. In this system, the compo-
nents of L would involve only the corresponding component of e, thus*

Ly = hw, Ly = hwn, Ly = Lws. (5.25)
A similar simplification would also occur in the form of the kinetic energy:

w'l-wo 1 ,
T=—=§I]wl+

1 1 :
5 «w% + —I3w§. (5.26)

2 h 2
We can show that it is always possible to find such axes, and the proof is based
essentially on the symmetric nature of the inertia tensor.

There are several ways to understand vectors and tensors. For example, a vector
is a quantity defined by its transformation properties. In any set of coordinates, a
vector is specified by its three components, e.g.,

V = Vii+ V,j + Vik, (5.27)

or by its magnitude and direction. In any frame, the magnitude is given by

V'/ VZ+ V_‘,2 + Vf. and the direction is given by the polar angles ¢ and ¢. An
alternative is to use the first two Euler angles to specify a new z axis chosen such
that the vector’s direction is along that axis. Since the vector lies along that z axis,
the third Euler angle is not needed.

An approach similar to this latter method can be used for the symmetric mo-
ment of inertia tensor. Consider the moment of inertia of a body about an axis

passing through the center of mass of the body. A similarity transformation per-
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formed by a rotation matrix R can be chosen such that
Ip = RIR. (5.28)

This rotation can be expressed in terms of the Euler angles ¢, €, and i as shown
in Eqs. (4.46) and (4.47). A proper choice of these angles will transform | into its
diagonal form

I, 0 O
Ip=10 5L, 0 (5.29)
0 0 I

where /1, I, and I3, which are the eigenvalues of |, are referred to as the com-
ponents of the principal moment of inertia tensor. The directions of x’, y’, and
Z’ defined by the rotation matrix in Eq. (5.28) are called the principal axes, or
eigenvectors of the inertia tensor. These eigenvectors lie along the directions x”,
y',and 7.

Once the principal moments and their directions relative to the surface of a
body are known, the inertia tensor relative to any other set of axis through the
center of mass can be found by a similarity transformation defined by the Euler
angles relating the two coordinate systems. If S is that transformation, then

I =SIpS, (5.30)

gives the moment of inertia in that frame. Equation (5.21) can then be used to
transform the rotation center to any desired location. The principal values of | can
be determined by the methods of matrix algebra.

The three principal values of the moment of inertia tensor in Eq. (5.29) can be
found by solving the cubic equation for | that arises from the determinant

I.\'.\' ==} IX)" I:x
Ix.)' I,V}' =4 I_\‘: =0, (5.31)
1:_\' 1):: IZZ — [

where the symmetry of I has been displayed explicitly. Equation (5.31) is the sec-
ular equation, whose three roots are the desired principal moments. For each of
these roots, Egs. (5.28) can be solved to obtain the direction of the corresponding
principal axis. In most of the easily soluble problems in rigid dynamics, the prin-
cipal axes can be determined by inspection. For example, we often have to deal
with rigid bodies that are solids of revolution about some axis, with the origin of
the body system on the symmetry axis. All directions perpendicular to the axis of
symmetry are then alike, which is the mark of a double root to the secular equa-
tion. The principal axes are then the symmetry axis and any two perpendicular
axes in the plane normal to the symmetry axis.

The principal moments of inertia cannot be negative, because as the diagonal
elements in the principal axes system they have the form of sums of squares. Thus.
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I;x is given by (ct. Eq. (5.6))
Inx = mi(yiz o ‘-,2)

For one of the principal moments to vanish, all points of the body must be such
that two coordinates of each particle are zero. Clearly this can happen only if all
points of the body are collinear with the principal axis corresponding to the zero
principal moment. Any two axes perpendicular to the line of the body will then
be the other principal axes. Indeed, this is clearly a limiting case of a body with
an axis of symmetry passing through the origin.

We can also understand the concept of principal axes through some geometri-
cal considerations that historically formed the first approach to the subject. The
moment of inertia about a given axis has been defined as 7 = n « | - n. Let the
direction cosines of the axis be «, . and y so that

n=cai+ 8j+ yvk;

I then can be written as

I = Ixa? + 1B + I.y? + 2Lyaf + 21, By + 21xya, (5.32)
using the symmetry of | explicitly. It is convenient to define a vector p by the
equation

n
p=—. (5.33)
Vi

The magnitude of p is thus related to the moment of inertia about the axis whose
direction is given by n. In terms of the components of this new vector, Eq. (5.32)
takes on the form

= L Pt + Lyyp3 + I p3 + 2100102 + 2Ly, 0203 + 21 p3p1. (5.34)

Considered as a function of the three variables p), p2, p3. Eq. (5.34) is the
equation of some surface in p space. In particular, Eq. (5.34) is the equation of an
ellipsoid designated as the inertial ellipsoid. We can always transform to a set of
Cartesian axes in which the equation of an ellipsoid takes on its normal form:

1 =110 + hp'2 + B2, (5.35)

with the principal axes of the ellipsoid along the new coordinate axes. But (5.35)
is simply the form Eq. (5.34) has in a system of coordinates in which the inertia
tensor 1 is diagonal. Hence, the coordinate transformation that puts the equation
of ellipsoid into its normal form is exactly the principal axis transformation pre-
viously discussed. The principal moments of inertia determine the lengths of the
axes of the inertia ellipsoid. If two of the roots of the secular equation are equal,
the inertia ellipsoid thus has two equal axes and is an ellipsoid of revolution. If all
three principal moments are equal, the inertia ellipsoid is a sphere.
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A quantity closely related to the moment of inertia is the radius of gyration,
Ry, defined by the equation

I = MR} (5.36)

In terms of the radius of gyration, the vector p can be written as
n

p_Rom.

The radius vector to a point on the inertia ellipsoid is thus inversely proportional
to the radius of gyration about the direction of the vector.

H SOLVING RIGID BODY PROBLEMS AND
THE EULER EQUATIONS OF MOTION

For bodies without a fixed point, the most useful reference point is almost
always the center of mass. We have already seen that the total kinetic energy and
angular momentum then split neatly into one term relating to the translational
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motion of the center of mass and another involving rotation about the center of
mass. Thus, Eq. (1.31) can now be written

& = %Mv2 - %la)z.

For many problems (certainly all those that will be considered here), a similar
sort of division can be made for the potential energy. We can then solve individu-
ally for the translational motion of the center of mass and for the rotational motion
about the center of mass. For example, the Newtonian equations of motion can be
used directly: Eq. (1.22) for the motion of the center of mass and Eq. (1.26) for
the motion about that point.

With holonomic conservative systems, the Lagrangian formulation is available,
with the Lagrangian taking the form

L(g, ‘I) = L.(gc, ‘I() + Ly(gp, Qb)

Here L, is that part of the Lagrangian involving the generalized coordinates g,
(and velocities g.) of the center of mass, and L, the part relating to the orienta-
tion of the body about the center of mass, as described by gp. ¢g». In effect then,
there are two distinct problems, one with Lagrangian L. and the other with La-
grangian Lp.

In both the Newtonian and Lagrangian formulations, it is convenient to work
in terms of the principal axes system of the point of reference, so that the kinetic
energy of rotation takes the simple form given in Eq. (5.26). So far, the only
suitable generalized coordinates we have for the rotational motion of the rigid
body are the Euler angles. Of course, the motion is often effectively confined to
two dimensions, as in the motion of a rigid lamina in a plane. The axis of rotation
is then fixed in the direction perpendicular to the plane: only one angle of rotation
is necessary and we may dispense with the cumbersome machinery of the Euler
angles.

For the rotational motion about a fixed point or the center of mass, the direct
Newtonian approach leads to a set of equations known as Euler’s equations of
motion. We consider either an inertial frame whose origin is at the fixed point of
the rigid body, or a system of space axes with origin at the center of mass. In these
two situations, Eq. (1.26) holds, which here appears simply as

(%),

The subscript s is used because the time derivative is with respect to axes that do
not share the rotation of the body. However, Eq. (4.86) can be used to obtain the
derivatives with respect to axes fixed in the body:

"dL) (dL)
—_— = | — +w x L.
(dr % dr /,
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or, by dropping the “body™ subscript:

dL
— +wxL=N. (5.37)
dt

Equation (5.37) is thus the appropriate form of the Newtonian equation of motion

relative to body axes. The ith component of Eq. (5.37) can be written

dL;
4+ €jkwily = N;. (5.38)

dt
If now the body axes are taken as the principal axes relative to the reference
point, then the angular momentum components are L; = /;w;. By Eq. (5.25),

Eq. (5.38) takes the form (no summation on i *)

dw;
L— + €ijkwjorly = Ny, (5.39)
dt ’
since the principal moments of inertia are of course time independent. In expanded

form, the three equations making up Eq. (5.39) look like

l]d)| o 0)2(1)3(]2 = [3) = N[
hin —wmw (I3 — 1)) = N2 (539

Lws —wywa(I) — ) = N3.

Equations (5.39) or (5.39") are Euler’s equations of motion for a rigid body
with one point fixed. They can also be derived from Lagrange’s equations in
the form of Eq. (1.53) where the generalized forces Q; are the torques, N,
corresponding to the Euler angles of rotation. However, only one of the Euler
angles has its associated torque along one of the body axes, and the remaining
two Euler’s equations must be obtained by cyclic permutation (cf. Derivation 4).

Consider the case where I) = I # I35. A torque with components Ny or N>
will cause both w; and @, to change without affecting w3. We shall return to a
discussion of this in Section 5.7 when we consider the heavy symmetric top with
one point fixed. Let us first consider the torque-free motion of a rigid body.
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I THE HEAVY SYMMETRICAL TOP WITH ONE POINT FIXED

As a further and more complicated example of the application of the methods
of rigid dynamics, let us consider the motion of a symmetrical body in a uni-
form gravitational field when one point on the symmetry axis is fixed in space. A
wide variety of physical systems, ranging from a child’s top to complicated gyro-
scopic navigational instruments, are approximated by such a heavy symmetrical
top. Both for its practical applications and as an illustration of many of the tech-

Vertical

@
I Line of nodes

FIGURE 5.7 Euler's angles specifying the orientation of a symmetrical top.

niques previously developed, the motion of the heavy symmetrical top deserves a
detailed exposition.

The symmetry axis is of course one of the principal axes and will be chosen as
the z axis of the coordinate system fixed in the body.* Since one point is stationary,
the configuration of the top is completely specified by the three Euler angles: 6
gives the inclination of the z axis from the vertical, ¢ measures the azimuth of the
top about the vertical, while ¥ is the rotation angle of the top about its own z axis
(cf. Fig. 5.7). The distance of the center of gravity (located on the symmetry axis)
from the fixed point will be denoted by 7.

The rate of change of these three angles give the characteristic motions of the
top as

¥ = rotation of the top about its own figure axis, z
¢ = precession or rotation of the figure axis z about the vertical axis z’

£ = nutation or bobbing up and down of the z figure axis relative to the verti-
cal space axis z'.

For many cases of interest such as the top and the gyroscope, we have ¥ >0 >
¢. Since I} = I> # I3, Euler’s equations (5.39") become
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o + ew3(f3 — ) = Ny,
hay +ww3(l) — I3) = N2,

and
I3z = Ni.

Let us consider the case where initially N3 = 0 = N2, N7 # 0, and w) =
@y = 0, w3 # 0, then w3 will be constant. The torque N will cause w; to change
since @) # 0. Since w; is no longer zero, the second equation requires that w;
begin to change also. What this means in terms of an observation is not obvious.
We observe the changes in the Euler angles v/, ¢, 6 and their associated angles
in the x'. y’, z’ laboratory frame rather than the @;, w», @3 and their associated
angles in the principal axis system. This suggests that the Euler equations may
not provide the most useful description of the motion.

The Lagrangian procedure, rather than Euler’s equations, will be used to obtain
a solution for the motion of the top. Since the body is symmetrical, the kinetic
energy can be written as

T = 41 (0] + ©d) + 3303,
or, in terms of Euler’s angles, and using Eqgs. (4.87), as

- . L & .
P 3'(9- + $2sin? @) + 5> @+ @ cos )2, (5.50)

where the ¢, € cross terms in w]z and w% cancel.

It is a well-known elementary theorem that in a constant gravitational field the
potential energy is the same as if the body were concentrated at the center of mass.
We will however give a brief formal proof here. The potential energy of the body
is the sum over all the particles:

V=—mr-g,

where g is the constant vector for the acceleration of gravity. By Eq. (1.21), defin-
ing the center of mass, this is equivalent to

V=—-MR-g, (5.51)
which proves the theorem. In terms of the Euler angles,
V = Mglcos#, (5.51%)

so that the Lagrangian is

B s - s I .. |
- 5’(92 + @2 sin? ) + 33(30 + ¢ cos@)? — Mgl cosb. (5.52)

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 31/36



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: III (Rigid body) BATCH-2017-2019

we therefore have two immediate first integrals of the motion:

aL : .
Py = ﬁ = B(Y +¢cost) = oy = la (3.53)
and
aL .9 2 n ; ;
R “BE = ([18in° 0 + Iscos” 0)¢p + I3y cos 8 = 11b, (5.54)

Here the two constants of the motion are expressed in terms of new constants a
and b. There is one further first integral available; since the system is conservative,
the total energy E 1s constant in time:

I ' . 1 ! v -
E=T+V=>(6"+¢sin’0) + —-2§w§ + Mgl cos . (5.55)

Only three additional quadratures are needed to solve the problem, and they are
easily obtained from these three first integrals without directly using the Lagrange
equations. From Eq. (5.53), i is given in terms of ¢ by

I3 = La — Iz cos b, (5.56)
and this result can be substituted in (5.54) to eliminate y:
Lisin? + Lacosd = b,

or

. b—acosf
= — (5.57)
¢ sin’ @
Thus, if # were known as a function of time, Eq. (5.57) could be integrated to
furnish the dependence of ¢ on time. Sut?stituting Eq. (5.57) back in Eq. (5.56)
results in a corresponding expression for v:
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La b —acost
L TN citiiinidini 5.5
v I3 = sinZ @ (538

which furnishes v if ¢ is known. Finally, Egs. (5.57) and (5.58) can be used to
eliminate ¢ and ¥ from the energy equation, resulting in a differential equation
involving @ alone.

First notice that Eq. (5.53) says w3 is constant in time and equal to (/,/73)a.
Therefore, E—I_;u)%/z is a constant of the motion, which we shall designate as E'.
Making use of Eq. (5.57), the energy equation can thus be written as

o 1,67 i I (b —fl;‘()sf?)z
2 2 sin“ @

+ Mglcosf. (5.59)

Equation (5.59) has the form of an equivalent one-dimensional problem in the
variable #, with the effective potential V'(€) given by

(5.60)

b—acosf\?
sin @ '

i
V'(9) = Mgl cos 6 + 5‘ (

Thus, we have four constants associated with the motion, the two angular mo-
menta py and pg, the energy term E — %I_«,cu_:,". and the potential energy term
Mgl. It is common to define four normalized constants of the motion as

2E — I3a)§
g= 2
2Mgl
el (5.61)
I
A= &J_’_
1
b= &
1

In terms of these constants, the energy equation (5.55) can be written as

-5 (b — acosf)?

o =67+ + B cosf. (5.62)

o v
sin~ @

We will use this one-dimensional problem to discuss the motion in &, very
similarly to what was done in Section 3.3 in describing the radial motion for the
central force problem. It is more convenient to change variables as we did for the
central force problem. Using the variable u = cos #, rewrite Eq. (5.62) as

@ =(1— uz)(a — Bu) — (b — au)?, (5.62")

which can be reduced immediately to a quadrature:
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u(t) d
r= / = . (5.63)
w(©@ (1 —u)(a— pu) — (b — au)?

With this result, and Egs. (5.57) and (5.58), ¢ and ¥ can also be reduced to
quadratures. However, the polynomial in the radical is a cubic so that we have to
deal with elliptic integrals. These solutions can be generated on current desk-top
computers. In the case of the force-free motion, the physics tends to be obscured
in the profusion of mathematics. Fortunately, the general nature of the motion can
be discovered without actually performing the integrations.

It is convenient to designate the right-hand side of Eq. (5.62") as a function
f(u) and discuss the behavior of the cubic equation

i) = ﬂ113 — (@ + az)u2 + (2ab — B)u + (@ — b?).

For the gyroscope, f () is only a quadratic equation since 8 = 0, while for the top
the full cubic equation must be considered. Since many of the applications of the
gyroscope use torque-free mountings, precession and nutations are suppressed so
the gyroscope motions are trivial. To understand the general motions of a spinning
body, we will consider only cases where § > 0.
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The extent of the nutation under these given initial conditions is given by
u) — up, where u; is the other physical root of f(x). The initial conditions
E' = Mgl cos 6y is equivalent to the equality

a = PBug.
With this relation, and the conditions of Eq. (5.65), f () can be rewritten more
simply as

P = g — i [ﬂ(l Y- u)] ; (5.67)

The roots of f(u) other than ug are given by the roots of the quadratic expression
in the brackets, and the desired root u, therefore satisfies the equation

2

(1 — u%) - %(uo —uy) =0. (5.68)

Denoting ug — u# by x and ug — u; by x), Eq. (5.68) can be rewritten as
x4+ px; —g =0, (5.69)

where

~

a” .
p=-—5—2co88y, q= sin® Ag.

P

The condition for a “fast™ top, Eq. (5.66), implies that p is much larger than g.
This can be seen by writing the ratio a®/8 as

a2 - ]3 1360%
B~ \I,/2Mgl’
Except in the case that 73 <« [; (which would correspond to a top in the unusual

shape of a cigar). the ratio is much greater than unity, and p > ¢g. To first order
in the small quantity ¢/ p, the only physically realizable root of Eq. (5.68) is then

q
Xy = —.

Neglecting 2 cos 8y compared to a*/ 8, this result can be written

sinZ & I 2M gl
W £ sin® 6. (5.70)
' [3 13(()3

X1

Thus, the extent of the nutation, as measured by x; = ug — u;, goes down as
1/w3. The faster the top is spun, the less is the nutation.
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The frequency of nutation likewise can easily be found for the “fast” top. Since
the amount of nutation is small, the term (1 — «2) in Eq. (5.67) can be replaced by
its initial value, sin” 8y. Equation (5.67) then reads, with the help of Eq. (5.70).

= 2 = a’x(x; — x).

If we shift the origin of x to the midpoint of its range, by changing variable to
X1
s
¥ 2

then the differential equation becomes

x2
=2 2 1 2
§e =i e v
) (4 i )

which on differentiation again reduces to the familiar equation for simple har-
monic motion

.. 2
y = —a“y.
In view of the initial condition x = 0 at ¢t = 0, the complete solution is

g %(1 —EORTLY, (5.71)

where x; is given by (5.70). The angular frequency of nutation of the figure axis
between &y and 7, is therefore
I3

a = —w3, (5.72)
I

which increases the faster the top is spun initially.
Finally, the angular velocity of precession, from (5.57), is given by

. a(ug —u ax
& (1o L.

sinZ @ sin? (2] A

or, substituting Eqgs. (5.72) and (5.70),

¢ = ﬁ(l — cosat). (5.73)
2a
The rate of precession is therefore not uniform but varies harmonically with time,
with the same frequency as the nutation. The average precession frequency how-
ever is
- 3 Mgl
T B o M2 (5.74)

2a Iyems

which indicates that the rate of precession decreases as the initial rotational ve-
locity of the top is increased.

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 36/36



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: III (Rigid body) BATCH-2017-2019

It is of interest to determine exactly what initial conditions will result in a tru
regular precession. In such a case, the angle 6 remains constant at its initial valu
o, which means that 8| = ¢, = fg. In other words, f(«) must have a double roc
at up (cf. Fig. 5.10), or

-

0; u = u.
du

flu) =u* =0,
The first of these conditions, from Eq. (5.62") with & = 0, implies

lor =~ Bugh = Q’g—) (5.75

Su)

e | u=+1
|
1

.,
N

FIGURE 5.10 Appearance of f () for a regular precession.

B FORMULATION OF THE PROBLEM

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE

We consider conservative systems in which the potential energy is a function of
position only. It will be assumed that the transformation equations defining the
generalized coordinates of the system, qy, ..., g, do not involve the time explic-
itly. Thus, time-dependent constraints are to be excluded. The system is said to be
in equilibrium when the generalized forces acting on the system vanish:

Qi=— (ﬂ) =if); (6.1)
9gi /¢

The potential energy therefore has an extremum at the equilibrium configuration
of the system, go1. go2, .. .. qon. If the configuration is initially at the equilib-
rium position, with zero initial velocities ¢, then the system will continue in
equilibrium indefinitely. Examples of the equilibrium of mechanical systems are
legion—a pendulum at rest, a suspension galvanometer at its zero position, an egg

cace [ . T L T i .o
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We shall be interested in the motion of the system within the immediate neigh-
borhood of a configuration of stable equilibrium. Since the departures from equi-
librium are too small, all functions may be expanded in a Taylor series about the
equilibrium, retaining only the lowest-order terms. The deviations of the general-
ized coordinates from equilibrium will be denoted by »;:

qi = qoi + ni, (6.2)

and these may be taken as the new generalized coordinates of the motion. Ex-
panding the potential energy about ggp;, we obtain

" vV 1 { a%v
Vi,-...qn) =V (g01.....90n) + a%‘,nni+_ ﬁ_; Mgyt

EO +th?0
Ey

9;— gy —

(a) Stable (b) Unstable

FIGURE 6.1 Shape of the potential energy curve at equilibrium.
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where the summation convention has been invoked, as usual. The terms linear in
n; vanish automatically in consequence of the equilibrium conditions (6.1). The
first term in the series is the potential energy of the equilibrium position, and by
shifting the arbitrary zero of potential to coincide with the equilibrium potential,
this term may also be made to vanish. We are therefore left with the quadratic
terms as the first approximation to V:

1 [ 82V 1
V==—— i = =Viinini, 6.4
> (aQiaq;')Orhn" 5 ignin; (6.4)

where the second derivatives of V' have been designated by the constants V;; de-
pending only upon the equilibrium values of the ¢;’s. It is obvious from their
definition that the V;;’s are symmeltrical, that is, that V;; = V};. The V}; coeffi-
cients can vanish under a variety of circumstances. Thus, the potential can simply
be independent of a particular coordinate, so that equilibrium occurs at any ar-
bitrary value of that coordinate. We speak of such cases as neutral or indifferent
equilibrium. Tt may also happen, for example, that the potential behaves like a
quadratic at that point, again causing one or more of the V;;’s to vanish. Either
situation calls for special treatment in the mathematical discussion that follows.

A similar series expansion can be obtained for the kinetic energy. Since the
generalized coordinates do not involve the time explicitly, the kinetic energy is a
homogeneous quadratic function of the velocities (ct. Eq. (1.71)):

L= %miféféj = %mufnﬁj. (6.5)

The coefficients m;; are in general functions of the coordinates g. but they may
be expanded in a Taylor series about the equilibrium configuration:

am;;
mij(gi. - .-, Gn) = m;ij(qo1. ....4on) + nk +
NI
As Eq. (6.5) is already quadratic in the 7; s, the lowest nonvanishing approxima-
tion to 7 is obtained by dropping all but the first term in the expansions of m;;.

Denoting the constant values of the m;; functions at equilibrium by 7;;, we can
therefore write the kinetic energy as

T = 37;5:9;. (6.6)

It is again obvious that the constants 7;; must be symmetric, since the individ-
ual terms in Eq. (6.6) are unaffected by an interchange of indices. From Eqs. (6.4)
and (6.6), the Lagrangian is given by

L = 3(Tijnin; — Vijming). (6.7)

Taking the n’s as the general coordinates, the Lagrangian of Eq. (6.7) leads to the
following n equations of motion:

T;jtiij + Vijn; = 0, (6.8)
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where explicit use has been made of the symmetry property of the V;; and T;;
coefficients. Each of Egs. (6.8) will involve, in general, all of the coordinates 7;,
and it is this set of simultaneous differential equations that must be solved to
obtain the motion near the equilibrium.

In almost all cases of interest, the kinetic energy term can be easily written so
as to have no cross terms.* This corresponds to the Lagrangian

L = X(Tin? — Vijnin)), (6.9)
which generates the following equations of motion

Tiiji + Vijnj = 0. (no sum over i) (6.10)

FREQUENCIES OF FREE VIBRATION, AND NORMAL COORDINATES

The somewhat lengthy arguments of the preceding section demonstrate that the
equations of motion will be satisfied by an oscillatory solution of the form (6.11),
not merely for one frequency but in general for a set of n frequencies wy. A com-
plete solution of the equations of motion therefore involves a superposition of
oscillations with all the allowed frequencies. Thus, if the system is displaced
slightly from equilibrium and then released, the system performs small oscilla-
tions about the equilibrium with the frequencies wy, ..., @,. The solutions of the
secular equation are therefore often designated as the frequencies of free vibration
or as the resonant frequencies of the system.

The general solution of the equations of motion may now be written as a sum-
mation over an index k:

ni = Crajpe "9k, (6.35)

there being a complex scale factor Cp for each resonant frequency. It might be
objected that for each solution A; of the secular equation there are two resonant
frequencies +w; and —eay. The eigenvector ag would be the same for the two
frequencies. but the scale factors C;c" and Cy could conceivably be different. On
this basis. the general solution should appear as

n = a(Cire™ ™ + Cp e, (6.35")

Recall however that the actual motion is the real part of the complex solution, and
the real part of either (6.35) or (6.35") can be written in the form

i = frair cos{wgt + 8¢), (6.36)

where the amplitude f; and the phase §; are determined form the initial condi-
tions. Either of the solutions ((6.35) and (6.36)) will therefore represent the actual
motion, and the former of course is the more convenient.

The orthogonality properties of A greatly facilitate the determination of the
scale factors C; in terms of the initial conditions. At ¢+ = O, the real part of
Eq. (6.35) reduces to

1ni(0) = Re Crayy, (6.37)

where Re stands for “‘real part of”” Similarly, the initial value of the velocities is
obtained as

7 (0) = Im Craixwy, (6.38)
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where ITm C;. denotes the imaginary part of C;. From these 2n equations, the real
and imaginary parts of the n constants C; may be evaluated. To solve Eq. (6.37),
for example, let us first write it in terms of column matrices n(0) and C:

7(0) = ARe C. (6.37)

It we multiply by AT from the left and use Eq. (6.23). we immediately obtain a
solution for Re C:

Re C = AT%(0).
or, taking the /th component,
Re C; = ai Tjxne(0). (6.39)

A similar procedure leads to the imaginary part of the scale factors as*
1
ImC=— ) a;Tin(0). 6.40
{ o ]2/; NESLAULS ) ( )

Equations (6.39) and (6.40) thus permit the direct computation of the complex
factors C; (and therefore the amplitudes and phases) in terms of the initial condi-
tions and the matrices T and A.

The solution for each coordinate, Eq. (6.35), is in general a sum of simple
harmonic oscillations in all of the frequencies wy satisfying the secular equation.
Unless it happens that all of the frequencies are commensurable, that is, rational
fractions of each other, #; never repeats its initial value and is therefore not itself a
periodic function of time. However, it is possible to transform from the n; to a new
set of generalized coordinates that are all simple periodic functions of time—a set
of variables known as the normal coordinates.

We define a new set of coordinates

ni = ajj&;j. (6.41)
or, in terms of single-column matrices 1 and £,
1 = AL. (6.41)
The potential energy, Eq. (6.4), is written in matrix notation as

V = 1lqva. (6.42)

1| =

Now, the single-row transpose matrix 7 is related to F by the equation

—~ -

n=AL{={A,
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so that the potential energy can be written also as
) %
V = 5LAVAL.

But A diagonalizes V by a congruence transformation (cf. Eq. (6.26)), and the
potential energy therefore reduces simply to

V =3I = feif. (6.43)

The kinetic energy has an even simpler form in the new coordinates. Since the
velocities transform as the coordinates, 7 as given in Eq. (6.20) transforms to

T = 1LATA{
which by virtue of Eq. (6.23) reduces to
T =1L =14¢ (6.44)

Equations (6.43) and (6.44) state that in the new coordinates both the potential
and kinetic energies are sums of squares only, without any cross terms. Of course,
this result is simply another way of saying that A produces a principal axis trans-
formation. Recall that the principal axis transformation of the inertia tensor was
specifically designed to reduce the moment of inertia to a sum of squares: the new
axes being the principal axes of the inertia ellipsoid. Here the kinetic and potential
energies are also quadratic forms (as was the moment of inertia) and both are di-
agonalized by A. For this reason, the principal axis transformation employed here
is a particular example of the well-known algebraic process of the simultaneous
diagonalization of two quadratic forms.

The equations of motion share in the simplification resulting from their use.
The new Lagrangian is

L = L (Gék — optd) (6.45)
so that the Lagrange equations for ¢ are
&+ @it = 0. (6.46)
Equations (6.47) have the immediate solutions
L= Cre "o, (6.47)

which could have been seen of course directly from Eqs. (6.35) and (6.41). Each
of the new coordinates is thus a simply periodic function involving only one of
the resonant frequencies. As mentioned earlier, it is therefore customary to call
the ¢’'s the normal coordinates of the system.

Each normal coordinate corresponds to a vibration of the system with only one
frequency, and these component oscillations are spoken of as the normal modes
of vibration. All of the particles in each mode vibrate with the same frequency
and with the same phase:* the relative amplitudes being determined by the matrix
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elements a ;. The complete motion is then built up out of the sum of the normal
modes weighted with appropriate amplitude and phase factors contained in the
Cy’s.

Harmonics of the fundamental frequencies are absent in the complete motion
essentially because of the stipulation that the amplitude of oscillation be small.
We are then allowed to represent the potential as a quadratic form, which is char-
acteristic of simple harmonic motion. The normal coordinate transformation em-
phasizes this point, for the Lagrangian in the normal coordinates (6.45) is seen
to be the sum of the Lagrangians for harmonic oscillators of frequencies wy. We
can thus consider the complete motion for small oscillations as being obtained by
exciting the various harmonic oscillators with different intensities and phases.*

B FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE

To illustrate the technique for obtaining the resonant frequencies and normal
modes, we shall consider in detail a model based on a linear symmetrical tri-
atomic molecule. In the equilibrium configuration of the molecule, two atoms
of mass m are symmetrically located on each side of an atom of mass M (cf.
Fig. 6.3). All three atoms are on one straight line, the equilibrium distances apart
being denoted by b. For simplicity, we shall first consider only vibrations along
the line of the molecule, and the actual complicated interatomic potential will be
approximated by two springs of force constant £ joining the three atoms. There
are three obvious coordinates marking the position of the three atoms on the line.
In these coordinates, the potential energy is

k k
V= E(xz —x1—b)?+ §(X3 —x — b (6.48)

We now introduce coordinates relative to the equilibrium positions:
Ni = Xi — X0i,
where
X02 — X01 = 0 = X3 — X02-

m M m
Xl b X2 b x3

FIGURE 6.3 Model of a linear symmeltrical triatomic molecule.
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The potential energy then reduces to
. 2, k_ 2
V= 5(')2 — )"+ 5(7)3 —3)7,
or
T T == 6.49
= 5(m +2n3 +n3 —2mn2 n213). (6.49)

Hence, the V tensor has the form

kK —k O
V=|—-%k 2k —k]|. (6.50)
0 —k k
The kinetic energy has an even simpler form:
m...qg: . M ,
T'=—U+ n3) + - 1 (6.51)

so that the T tensor is diagonal:

m 0 0
T=10 M 0]. (6.52)
0 0 m

Combining these two tensors, the secular equation appears as

k—w*m —k 0
V—a?T|=| —k 2k —w*M —k |=0. (6.53)
0 —k k — w?m

Direct evaluation of the determinant leads to the cubic equation in w?:

w?(k — @*m)(k(M + 2m) — w*Mm) = 0, (6.54)
with the obvious solutions

[k 3 [ k 2m

w1 =0, wo=,/— w=/—|14+— (6.55)
. Y m \/m ( M

The first eigenvalue, w; = 0, may appear somewhat surprising and even alarm-

ing at first sight. Such a solution does not correspond to an oscillatory motion at

all, for the equation of motion for the corresponding normal coordinate is
&1 =0,

which produces a uniform translational motion. But this is precisely the key to
the difficulty. The vanishing frequency arises from the fact that the molecule

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 44/36



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: III (Rigid body) BATCH-2017-2019

Since the zero frequency found here is of no consequence for the vibration
frequencies of interest, it is often desirable to phrase the problem so that the root
is eliminated from the outset. We can do this here most simply by imposing the
condition or constraint that the center of mass remain stationary at the origin:

m(x) +x3) + Mxz =0. (6.56)

The components a;; are determined for each frequency by the equations

(k — winz)au —kaz; = 0
—kayj + (2k — wiM)az; —kaz; = 0 (6.57a)
—kas; + (k — w?m)agj = 1,

along with the normalization condition:
m(ai:j +a§j) - Alagj =1 (6.57b)

For w; = 0, it follows immediately from the first and third of Eqgs. (6.57a) that all
three coefficients are equal: @y = a2 = a3). This of course is exactly what was
expected form the translational nature of the motion (cf. Fig. 6.4a). The normal-
ization condition then fixes the value of a;; so that

1 1 1
= N (6.58a)

= a = — a >
S2m + M W o = om

The factors (kK — wgm) vanish for the second mode, and Eqgs. (6.57a) show imme-
diately that ap2 = O (as predicted) and aj2 = —a32. The numerical value of these
quantities is then determined by Eq. (6.57b):

alg

1 1
apz=——=, a2=0 axn=—

- 2m’

In this mode the center atom is at rest, while the two outer ones vibrate exactly

out of phase (as they must in order to conserve linear momentum) (cf. Fig. 6.4b).

Finally. when w = w3, it can be seen from the first and third of Egs. (6.57a) that

a3 and a3z must be equal. The rest of the calculation for this mode is not quite as
simple as for the others, and it will be sufficient to state the final result:

(6.58b)

1 -2 1
a3 = /——, azi = /‘_—‘7_, a33 — —
V2m (1+3) V2M (2+ 55 V/2m (1+%
(6.58¢)
()
(b)
)

FIGURE 6.4 Longitudinal normal modes of the linear symmetric triatomic molecule
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Here the two outer atoms vibrate with the same amplitude, while the inner one
oscillates out of phase with them and has a different amplitude, (cf. Fig. 6.4¢.)
The normal coordinates may be found by inverting Eq. (6.41) as

1

e — ++Mn, +Vm
& m(\/ﬁm n2 + /mn3)
:T B
£ = V*'E(m — 1) (6.59)
_ I M _
= Im M [\, 5 (m +mn3) — ~ ..mn,,:l .

These normal modes describe each of the behaviors shown on Fig. 6.4. Any gen-
eral longitudinal vibration of the molecule that does not involve a rigid translation
will be some linear combination of the normal modes w; and w3. The amplitudes
of the normal modes, and their phases relative to each other, will of course be
determined by the initial conditions (cf. Exercise 5).

normal to the molecular axis will depend upon the amplitudes and relative phases
of the two degenerate modes. If both are excited. and they are exactly in phase,
then the atoms will move on a straight line passing through the equilibrium con-
figuration. But if they are out of phase, the composite motion is an elliptical Lis-
sajous figure, exactly as in a two-dimensional isotropic oscillator. The two modes
then represent a rotation, rather than a vibration.

It is obvious from the symmetry of the molecules that the amplitudes of the end
atoms must be identical in magnitude. The complete calculation shows that the
end atoms also travel in the same direction along the Lissajous figure. Hence, the
center atom must revolve in the opposite direction, in order to conserve angular
momentum. Figure 6.5 illustrates the motion for the two degenerate modes when
they are 90° out of phase.

% 3k ok ok 3k 5k %k k %k
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UNIT - IV Hamiltonian Dynamics

Legendre Transformations and the Hamilton Equations of Motion - Cyclic Coordinates and
Conservation Theorems — Derivation of Hamilton’s Equation from Variational principle —
Principle of Least Action - Equations of Canonical Transformation - Examples of Canonical
Transformations - The Harmonic Oscillator - The Symplectic Approach to Canonical
Transformations - Poisson Brackets and Other Canonical Invariants - The Angular Momentum

Poisson Bracket Relations.

B LEGENDRE TRANSFORMATIONS AND THE
HAMILTON EQUATIONS OF MOTION

In the Lagrangian formulation (nonrelativistic), a system with n degrees of free-
dom possesses n equations of motion of the form

d (9L dL
—l—])——=0. (8.1)
dt \ 9g; aq;

As the equations are of second order, the motion of the system is determined for
all time only when 2n initial values are specified, for example, the n g;’s and n
¢i’s at a particular time 1y, or then n ¢;’s at two times, t; and f,. We represent
the state of the system by a point in an n-dimensional configuration space whose
coordinates are the n generalized coordinates ¢; and follow the motion of the
system point in time as it traverses its path in configuration space. Physically, in
the Lagrangian viewpoint a system with » independent degrees of freedom is a

problem in n independent variables g;(¢), and g; appears only as a shorthand for
the time derivative of ¢;. All n coordinates must be independent. In the Hamil-
tonian formulation there can be no constraint equations among the coordinates.
If the n coordinates are not independent, a reduced set of m coordinates, with
m < n, must be used for the formulation of the problem before proceeding with
the following steps.
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The Hamiltonian formulation is based on a fundamentally different picture.
We seek to describe the motion in terms of first-order equations of motion. Since
the number of initial conditions determining the motion must of course still be 2n,
there must be 2n independent first-order equations expressed in terms of 2n inde-
pendent variables. Hence, the 2n equations of the motion describe the behavior
of the system point in a phase space whose coordinates are the 2n independent
variables. In thus doubling our set of independent quantities, it is natural (though
not inevitable) to choose half of them to be the n generalized coordinates g;. As
we shall see, the formulation is nearly symmetric if we choose the other half of
the set to be the generalized or conjugate momenta p; already introduced by the
definition (cf. Eq. (2.44)):

5= M (no sum on j) (8.2)

04
where the j index shows the set of ¢'s and ¢’s. The quantities (¢, p) are known
as the canonical variables.*

From the mathematical viewpoint, it can however be claimed that the ¢'s and
¢'s have been treated as distinct variables. In Lagrange’s equations, Eq. (8.1), the
partial derivative of L with respect to ¢; means a derivative taken with all other g’s
and all ¢'s constant, Similarly, in the partial derivatives with respect to g, the g’s
are kept constant. Treated strictly as a mathematical problem, the transition from
Lagrangian to Hamiltonian formulation corresponds to changing the variables in
our mechanical functions from (g, ¢, t) to (g, p. t), where p is related to ¢ and
g by Eqgs. (8.2). The procedure for switching variables in this manner is provided
by the Legendre transformation, which is tailored for just this type of change of

variable.
Consider a function of only two variables f(x, y), so that a differential of f
has the form
df =udx +vdy, (8.3)
where
af af
U = 5:, V= K (84)
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We wish now to change the basis of description from x, y to a new distinct set of
variables u, y, so that differential quantities are expressed in terms of the differ-
entials du and dy. Let g be a function of « and y defined by the equation

g=f—ux. (8.5)
A differential of g is then given as
dg =df —udx —xdu,
or, by (8.3), as
dg =vdy — xdu,

which is exactly in the form desired. The quantities x and v are now functions of
the variables # and y given by the relations

_3_g Y= % (8.6)

du’ y

X =

which are the analogues of Egs. (8.4).

The Legendre transformation so defined is used frequently in thermodynamics.
The first law of thermodynamics relates the differential change in energy, dU, to
the corresponding change in heat content, dQ, and the work done, dW:

dU =dQ —dWw. (8.7)
For a gas undergoing a reversible process, Eq. (8.7) can be written as
dU =TdS — PdV, (8.8)

where U(S, V) is written as a function of the entropy, S, and the volume, V,
where the temperature, 7', and the gas pressure, P. are given by
_aU U

s N 8.9
w . v (8:3)

The enthalpy, H (S, P) is generated by the Legendre transformation

H=U"4-PV, (8.10)
which gives
dH=TdS+VdP, (8.11)
where
= 8—11’ and V= §£
as aP
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Additional Legendre transformations,

F=U-TS
(8.12)
G=H-TS,

generate the Helmholtz free energy, (7. V), and the Gibbs free energy, G(7, P).

The transformation from (g, 4. 1) to (g, p, t) differs from the type considered
in Egs. (8.3) to (8.12) only in that more than one variable is to be transformed.
We begin by writing the differential of the Lagrangian, L(q, ¢, t), as

aL aL aL
1L = —dgi + —dg; + —dt. 8.13
¢ 3 + P Ly (8.13)
The canonical momentum was defined in Eq. (2.44) as p; = 9L /d4;; substituting
this into the Lagrange equation (8.1), we obtain

3 aL
pPi=—, (8.14)
9gi
so Eq. (8.13) can be written as
; : aL '
dL = p;dq; + p; dq; + Edl' (8.13")

The Hamiltonian H (g, p, t) is generated by the Legendre transformation
H(qg,p.t) =qgipi — L(q.4,1), (8.15)

which has the differential

a : aL )
dH = (i dpi — P dq, == W. (816)
where the term p; dg; is removed by the Legendre transformation. Since d H can
also be written as
aH oH aH
dH = —dg; + —dp; + —dt, (8.17)
agi api ot

we obtain the 2. + 1 relations

: oH
gi = —
api
8.18

. 9H ( )
—_p = —
Pi 9
aL OH

—_—— = — (8.19)
ot at
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Equations (8.18) are known as the canonical equations of Hamilton; they consti-
tute the desired set of 2n first-order equations of motion replacing the n second-
order Lagrange equations.*

The first half of Hamilton’s equations give the ¢;’s as functions of (¢, p, ).
They form therefore the inverse of the constitutive equations (8.2), which define
the momenta p; as functions of (g, ¢, f). It may therefore be said that they provide
no new information. In terms of solving mechanical problems by means of the
canonical equations, the statement is correct. But within the framework of the
Hamiltonian picture, where H (g, p.t) is some given function obtained no matter
how, the two halves of the set of Hamiltonian equations are equally independent
and meaningful. The first half says how ¢ depends on g, p, and ¢; the second says
the same thing for p.

Of course, the Hamiltonian H is constructed in the same manner, and has iden-
tically the same value, as h, the energy function defined in Eq. (2.53). But they
are functions of different variables: Like the Lagrangian, 4 is a function of g, ¢
(and possibly £), while H must always be expressed as a function of ¢, p (and
possibly #). It is to emphasize this difference in functional behavior that differ-
ent symbols have been given to the quantities even though they have the same
numerical values.

Nominally, the Hamiltonian for each problem must be constructed via the La-
grangian formulation. The formal procedure calls for a lengthy sequence of steps:

1. With a chosen set of generalized coordinates, g;, the Lagrangian L(g;, gi, t)
= T — V is constructed.

o

. The conjugate momenta are defined as functions of g;, ¢;, and ¢ by
Eqgs. (8.2).

3. Equation (8.15) is used to form the Hamiltonian. At this stage we have some

mixed function of ¢;, g;, pi. and 1.

4. Equations (8.2) are then inverted to obtain ¢; as functions of (g, p, t). Pos-
sible difficulties in the inversion will be discussed below.

5. The results of the previous step are then applied to eliminate ¢ from H so
as to express it solely as a function of (g, p, t).

Now we are ready to use the Hamiltonian in the canonical equations of motion.
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ities of degree 0, 1, and 2, respectively. In that case, H by the prescription of
Eq. (8.15) is given by (cf. Egs. (2.53) and (2.55))

H=¢qipi —L=¢ip;i —[Lolgi, 1)+ L1(g:, gk + L2(qi, Grgm]  (8.20)

(no sum on { in the square brackets) where Ly is the part of the Lagrangian that is
independent of the generalized velocities, L represents the coefficients of the part
of the Lagrangian that is homogeneous in g; in the first degree, and L» is the part
that is homogeneous in g; in the second degree. Further, if the equations defining
the generalized coordinates don’t depend on time explicitly, then Lagigm = T
(the kinetic energy), and if the forces are derivable from a conservative potential
V' (that is, work is independent of the path), then Ly = —V. When both these
conditions are satisfied, the Hamiltonian is automatically the total energy:

H=T+V=E. (8.21)

If either Eq. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 above
is eliminated.

We can at times go further. In large classes of problems, it happens that L; is a
quadratic function of the generalized velocities and L is a linear function of the
same variables with the following specific functional dependencies:

L(gi,gi.1) = Lo(g, ) + ¢iai(q, t) + ¢7Ti(q, 1), (8.22)

where the ¢;’s and the T;’s are functions of the ¢’s and ¢.

The algebraic manipulations required in steps 2-5 can then be carried out, at
least formally, once and for all. To show this, let us form the g;’s into a single
column matrix g. Under the given assumptions the Lagrangian can be written as

L(g.¢.1) = Lo(g.1) + Ga + }qTq, (8.23)

where the single row matrix (} has been written explicitly as the transpose of a
single column matrix, q. Here a is a column matrix, and T is a square » X n matrix
(much like the corresponding matrix introduced in Section 6.2). The elements of
both are in general functions of g and . To illustrate this formalism, let us consider
the special case where g; = {x, y, z} and T is diagonal. We would then write

I I m 0 0]|x -
qTq==Gy) [0 m Of|y|==E+3*+2% (8.24a)
2 el 4 2
O O m g
and
N ax
qa=(xyz) |ey | =axx t+ayy+az=a-t. (8.24b)
a-
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In this notation the Hamiltonian, H = qp — L, becomes
H =q(p —a) — 3qTq — Lo. (8.24c)

The conjugate momenta, considered as a column matrix p, is then, by Eq. (8.2),
given as

which can be inverted (step 4) to the column vector q
q=T"'(p—a). (8.26a)

This step presupposes that T~! exists, which it normally does by virtue of the
positive definite property of kinetic energy.
The corresponding equation for ¢ is

q=p-aT " (8.26b)

To obtain the correct functional form for the Hamiltonian, Egs. (8.26) must be
used to replace ¢ and q, yielding the final form for the Hamiltonian:

H(g.p.t)=3(p—3aT '(p—a) — Lo(q. ). (8.27)

If the Lagrangian can be written in the form of Eq. (8.23), then we can imme-
diately skip the intervening steps and write the Hamiltonian as Eq. (8.27). The
inverse matrix T~! can usually most easily be obtained straightforwardly as

i T

= — 8.28
ik (Bt

where T, is the cofactor matrix whose elements (T.);x are (—1)77* times the
determinant of the matrix obtained by striking out the jth row and the kth column
of T.

In the example Eq. (8.24a), these three matrices are given explicitly by

[m 0 0 L 0 o
T=|® m 0|l T =|0 = 0 and
| 0 0 m 0 0 %
} (mZ 0 0
T.=|0 m? 0|,
RY 0 m?
and the determinant |T| = m?>. It is easy to see that for the usual case when T is

diagonal, then T~ is also diagonal with elements that are just the reciprocals of
the corresponding elements of T.
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B CYCLIC COORDINATES AND CONSERVATION THEOREMS

According to the definition given in Section 2.6, a cyclic coordinate g is one that
does not appear explicitly in the Lagrangian; by virtue of Lagrange’s equations

its conjugate momentum p; is then a constant. But comparison of Eq. (8.14) with
Eq. (8.16) has already told us that

aL dH

]), = ——874..
J

aq

The considerations concerning /4 in Section 2.7 have already shown that if L
(and in consequence of Eq. (8.15), also H) is not an explicit function of 7, then
H is a constant of motion. This can also be seen directly from the equations of
motion (8.18) by writing the total time derivative of the Hamiltonian as

dH 0H 5 oH | 5 0H

dt g o Op; S
In consequence of the equations of motion (8.18), the first two sums on the right
cancel each other, and it therefore follows that

dH _9H _ oL
dt — ot~ ar

(8.41)

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 8/44



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IMSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: IV (Hamiltonian Dynamics) BATCH-2017-2019

Thus if ¢ doesn’t appear explicitly in L, it will also not be present in H, and H
will be constant in time.

Further. it was proved in Section 2.7 that if the equations of transformation that
define the generalized coordinates (1.38),

Em = (g1, ... qgnil),

do not depend explicitly upon the time, and if the potential is velocity indepen-
dent, then A is the total energy, 7+ V. The identification of H as a constant of the
motion and as the total energy are two separate matters, and the conditions suffi-
cient for the one are not enough for the other. It can happen that the Eqgs. (1.38)
do involve time explicitly but that H does not. In this case, H is a constant of
the motion but it is not the total energy. As was also emphasized in Section (2.6),
the Hamiltonian is dependent both in magnitude and in functional form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — V, and a change of generalized coordinates within that
prescription may change the functional appearance of L but cannot alter its mag-
nitude. On the other hand, use of a different set of generalized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different quan-
tity for the Hamiltonian. It may be that for one set of generalized coordinates H
is conserved, but that for another it varies in time.

To illustrate some of these points in a simple example, we may consider a
somewhat artificial one-dimensional system. Suppose a point mass 7 is attached
to a spring, of force constant k, the other end of which is fixed on a massless cart
that is being moved unitormly by an external device with speed vy (cf. Fig. 8.1).
If we take as generalized coordinate the position x of the mass particle in the
stationary system, then the Lagrangian of the system is obviously

D
mx-= k

e vo?)2. (8.42)

Lk, s — V=

(For simplicity, the origin has been chosen so that the cart passes through it at
t = 0.) The corresponding equation of motion is clearly

mxX = —k(x — vor).

—

I;_\—I_J—’
0 OO0
-._X‘-i

FIGURE 8.1 A harmonic oscillator fixed to a uniformly moving cart.

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 9/44



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IMSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: IV (Hamiltonian Dynamics) BATCH-2017-2019

An obvious way of solving this equation is to change the unknown to x'(r)
defined as

x' = x —wpt, (8.43)
and noting that ¥’ = ¥, the equation of motion becomes
mi' = —kx'. (8.44)

From Eq. (8.43), x" is the displacement of the particle relative to the cart;
Eq. (8.44) says that to an observer on the cart the particle exhibits simple har-
monic motion, as would be expected on the principle of equivalence in Galilean
relativity.

Having looked at the nature of the motion, let us consider the Hamiltonian
formulation. Since x is the Cartesian coordinate of the particle, and the potential
does not involve generalized velocities, the Hamiltonian relative to x is the sum
of the kinetic and potential energies, that is, the total energy. In functional form
the Hamiltonian is given by

2
B, pdh T = 2 E(x — ugt)>. (8.45)
2m 2
The Hamiltonian is the total energy of the system, but since it is explicitly a func-
tion of 7, it is not conserved. Physically this is understandable; energy must flow
into and out of the “external physical device” to keep the cart moving uniformly
against the reaction of the oscillating particle.*

Suppose now we formulated the Lagrangian from the start in terms of the rel-

ative coordinate x’. The same prescription gives the Lagrangian as

mx'? mv:  kx'?
L&, #) = —— 4mi vg4 —2 — :
(6. 7) 5 0 > 3

(8.46)

In setting up the corresponding Hamiltonian, we note there is now a term linear
in X', with the single component of a being mvg. The new Hamiltonian is now

o)
(p' — mug)? 4 kx'? mug

2m g 9

H'(x', p") (8.47)
Note that the last term is a constant involving neither x" nor p’; it could, if we
wished. be dropped from H’ without affecting the resultant equations of motion.
Now H' is not the total energy of the system, but it is conserved. Except for the
last term, it can be easily identified as the total energy of motion of the particle
relative to the moving cart. The two Hamiltonian’s are different in magnitude,
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(a) (b)

FIGURE 8.2 Vibrating dumbbell under two conditions: (a) freely oscillating, and (b) os-
cillating with mass m» kept at a constant velocity.

time dependence, and functional behavior. But the reader can easily verify that
both lead to the same motion for the particle.

Additional insight into the problem of the mass cart previously discussed can
be gained by considering a dumbbell of two masses connected by a spring of
constant k. We shall consider the case where the center of mass of the dumbbell
is in constant motion at a speed vy along the direction determined by the spring
and allow oscillations of the masses only along this direction. This is shown in
Fig. 8.2, where C-O-M denotes the center of mass.

The dumbbell is made to vibrate while its center of mass has an initial velocity
vy. It will continue with this velocity with uniform translational motion. This
translational motion will have no effect on the oscillations. The motion of the
center of mass and the motion relative to the center of mass separate as they do
in the Kepler problem. Once the motion is started, energy is conserved and the
Hamiltonian is the total conserved energy. The situation is different if the mass
m2 moves at the constant speed vy since a periodic force is applied. The center
of mass and the mass m then oscillate relative to mj. Since a changing external
force must be applied to the system to keep m> at the constant velocity v, the
Hamiltonian is no longer conserved, nor is the Hamiltonian the total energy.

E DERIVATION OF HAMILTON’S EQUATIONS FROM
A VARIATIONAL PRINCIPLE

Lagrange’s equations have been shown to be the consequence of a variational
principle, namely, the Hamilton’s principle of Section 2.1. Indeed, the variational
method is often the preferable one for deriving Lagrange's equations, for it is
applicable to types of systems not usually included within the scope of mechanics.
It would be similarly advantageous if a variational principle could be found that
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leads directly to the Hamilton’s equations of motion. Hamilton's principle,

2
6l = 3[ Edt =1l (8.64)
5|

n .
81 = 8/ (pigi — H(g, p,1))dt =0. (8.65)
i

As a variational principle in phase space, Eq. (8.65) is sometimes referred to as
the modified Hamilton's principle. Although it will be used most frequently in
connection with transformation theory (see Chapter 9), the main interest in it here
is to show that the principle leads to Hamilton’s canonical equations of motion.
The modified Hamilton's principle is exactly of the form of the variational
problem in a space of 2n dimensions considered in Section 2.3 (cf. Eq. (2.14)):

2
81 = 6/ f(q.q,p.p.t)dt =0, (8.66)
n

for which the 2n Euler-Lagrange equations are

d (9

—(—."f)—if—=0 J=Lovouy 8 (8.67)
dt dq]' 36[.,'

d af) af :

—|—=—)—-——=0 | — ) 8.68
dt (31"/', ap; % " (8.68)

The integrand f as given in Eq. (8.65) contains ¢; only through the p;g; term,
and g; only in H. Hence, Eqgs. (8.67) lead to

pi+=—=0. (8.69)

On the other hand, there is no explicit dependence of the integrand in Eq. (8.65)
on p;. Equations (8.68) therefore reduce simply to

aH
=0

-—= (8.70)
ap;

qj

Equations (8.69) and (8.70) are exactly Hamilton’s equations of motion. Egs.
(8.18). The Euler-Lagrange equations of the modified Hamilton’s principle are
thus the desired canonical equations of motion.

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 12/44



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: IV (Hamiltonian Dynamics) BATCH-2017-2019

B THE PRINCIPLE OF LEAST ACTION

Another variational principle associated with the Hamiltonian formulation is
known as the principle of least action. It involves a new type of variation, which
we shall call the A-variation, requiring detailed explanation. In the §-variation
process used in the discussion of Hamilton’s principle in Chapter 2, the varied
path in configuration space always terminated at end points representing the
system configuration at the same time f; and #; as the correct path. To obtain
Lagrange’s equations of motion, we also required that the varied path return
to the same end points in configuration space, that is, 8¢g;(t;) = d¢i(t2) = 0.
The A-variation is less constrained; in general, the varied path over which an
integral is evaluated may end at different times than the correct path, and there
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may be a variation in the coordinates at the end points. We can however use the
same parameterization of the varied path as in the §-variation. In the notation
of Section 2.3, a family of possible varied paths is defined by functions (cf. Eq.
(2.15))

gi(t,a) =qi(t,0) +an;(t), (8.72)

where « is an infinitesimal parameter that goes to zero for the correct path. Here
the functions n; do not necessarily have to vanish at the end points, either the orig-
inal or the varied. All that is required is that they be continuous and differentiable.
Figure 8.3 illustrates the correct and varied path for a A-variation in configuration

space.
Let us evaluate the A-variation of the action integral:
t 2+An t
Af Ldr = f L{ax)dt — / L) dz, (8.73)
n t1+Ah n

where L («) means the integral is evaluated along the varied path and L(0) corre-
spondingly refers to the actual path of motion. The variation is clearly composed
of two parts. One arises from the change in the limits of the integral: to first-order
infinitesimals, this part is simply the integrand on the actual path times the differ-
ence in the limits in time. The second part is caused by the change in the integrand
on the varied path, but now between the same time limits as the original integral.
We may therefore write the A-variation of the action integral as

153 n
Af Ldt = L(t2)Ars — L(1)) A1y +f 8L dt. (8.74)
f n

Here the variation in the second integral can be carried out through a parame-
terization of the varied path, exactly as for Hamilton’s principle except that the

9

FIGURE 8.3 The A-variation in configuration space.
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variation in ¢g; does not vanish at the end points. The end point terms arising in
the integration by parts must be retained, and the integral term on the right appears

as
2 DT aL d (oL aL
aLdzzf [———(—f)]ajdur‘—,a,-
[] y Lag — ar \ag )" T ag

By Lagrange’s equations the quantities in the square brackets vanish, and the A-
variation therefore takes the form

9

1

Ly
Af Ldt = (LAt + pfﬁq;)ﬁ. (8.75)
1

In Eq. (8.75). 8q; refers to the variation in g, at the original end point times #; and
12. We would like to express the A-variation in terms of the change Ag; between
g; at the end points of the actual path and g; at the end points of the varied path,
including the change in end point times. It is clear from Fig. 8.3 that these two
variations are connected by the relation*®

Ag; = dq; + gi At. (8.76)
Hence, Eq. (8.75) can be rewritten as

]
“

1

fz
A[ Ldt = (LAt — p;ig: At + p; Ag;)
I
or
r 5
Af Ldt = (piAqi — H Ap)|]. (8.77)
f

To obtain the principle of least action, we restrict our further considerations by
three important qualifications:

1. Only systems are considered for which L, and therefore H, are not explicit
functions of time, and in consequence H is conserved.

2. The variation is such that A is conserved on the varied path as well as on
the actual path.

3. The varied paths are further limited by requiring that Ag; vanish at the end
points (but not Ar).
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The nature of the resultant variation may be illustrated by noting that the varied
path satisfying these conditions might very well describe the same curve in con-
figuration space as the actual path. The difference will be the speed with which
the system point traverses this curve; that is, the functions g; () will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at all
points on the varied path, the times of the end points must be changed. With these
three qualifications satisfied, the A-variation of the action integral, Eq. (8.77),
reduces to

n
A [ Ldt = —H({An — Ar). (8.78)
JI

But under the same conditions, the action integral itself becomes

5] {2
f Ldt =f pigidt — H(t — 1),
hn 1

the A-variation of which is
t2 2
Af Ldt = A/ pigidt — H(At — An). (8.79)
n h

Comparison of Eqgs. (8.78) and (8.79) finally gives the principle of least action:*

5]
A f pigi dt =0. (8.80)
n

By way of caution, note that the modified Hamilton’s principle can be written
in a form with a superficial resemblance to Eq. (8.80). If the trajectory of the sys-
tem point is described by a parameter &, as in Sections 7.10 and 8.4, the modified
Hamilton’s principle appears as

o
8 (pigi — H)t'd6 = 0. (8.81)
JB

It will be recalled (cf. footnote on p. 351) that the momenta p; do not change
under the shift from ¢ to &, and that ¢;¢" = ¢,. Further, the momentum conjugate
tor is —H. Hence, Eq. (8.81) can be rewritten as

51 Y pigido=o0, (8.82)

where ¢ has been denoted by ¢,+1. There should however be no confusion be-
tween Eq. (8.82) and the principle of least action. Equations (8.82) involve phase
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space of (2n + 2) dimensions, as is indicated by the explicit summation to i =
n + 1, whereas Eq. (8.80) is in the usual configuration space. But most important,
the principle of least action is in terms of a A-variation for constant H, while
Eq. (8.82) employs the §-variation, and H in principle could be a function of time.
Equation (8.82) is nothing more than the modified Hamilton’s principle, and the
absence of a Hamiltonian merely reflects the phenomenon that the Hamiltonian
vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordinates do
not involve the time explicitly, then the kinetic energy is a quadratic function of
the g;'s (cf. Eq. (1.71)):

T = M i(q)d k- (8.83)

When in addition the potential is not velocity dependent, the canonical momenta
are derived from 7 only, and in consequence

[),'q,‘ = 2T.

The principle of least action for such systems can therefore be written as
n
Af Tdr =10, (8.84)
f

If, further, there are no external forces on the system, as, for example, a rigid body
with no net applied forces, then 7' is conserved along with the total energy H. The
least action principle then takes the special form

Al — 1) =0. (8.85)

Equation (8.85) states that of all paths possible between two points, consistent
with conservation of energy, the system moves along that particular path for which
the time of transit is the least (more strictly, an extremum). In this form the princi-
ple of least action recalls Fermat’s principle in geometrical optics that a light ray
travels between two points along such a path that the time taken is the least. We
discussed these considerations in Section 10-8 of the Second Edition when we
considered the connection between the Hamiltonian formulation and geometrical
optics.
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space will be curvilinear and nonorthogonal. The element of path length in the
space is then defined by (cf. Eq. (7.33'))

(dp)* = M dq; dgk (8.86)

so that the kinetic energy has the form

1 /dp 4
T==(—], (8.87
2 (dr) . ;
or equivalently
dp
dt = —. (8.88)
2T

Equation (8.88) enables us to change the variable in the abbreviated action
integral from ¢ to p, and the principle of least action becomes

vl [ N
A/ T dt :0=A/ VT/2dp,
] 21
or, finally
m —_—
A/ VH—V(g)dp =0. (8.89)
Pl

Equation (8.89) is often called Jacobi's form of the least action principle. It now
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B THE EQUATIONS OF CANONICAL TRANSFORMATION

There is one type of problem for which the solution of the Hamilton's equations is
trivial. Consider a situation in which the Hamiltonian is a constant of the motion,
and where all coordinates ¢; are cyclic. Under these conditions, the conjugate
momenta p; are all constant:

Pi = o,

and since the Hamiltonian cannot be an explicit function of either the time or the
cyclic coordinates, it may be written as

H:H(Cﬂh.“,ﬂ’n).

Consequently, the Hamilton's equations for g; are simply

. OH
g =

- (9.1)
™ w;
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where the w;’s are functions of the «;'s only and therefore are also constant in
time. Equations (9.1) have the immediate solutions

gi = w;it + fi, (9.2)

where the f8;’s are constants of infegration, determined by the initial conditions.

It would seem that the solution to this type of problem, easy as it is, can only
be of academic interest, for it rarely happens that all the generalized coordinates
are cyclic. But a given system can be described by more than one set of general-
ized coordinates. Thus, to discuss motion of a particle in a plane, we may use as
generalized coordinates either the Cartesian coordinates

q1 =x, g2=1y,
or the plane polar coordinates
q1=r, g2 = 6.

Both choices are equally valid, but one of the other set may be more convenient
for the problem under consideration. Note that for central forces neither x nor y
is cyclic, while the second set does contain a cyclic coordinate in the angle 6. The
number of cyclic coordinates can thus depend upon the choice of generalized co-
ordinates, and for each problem there may be one particular choice for which all
coordinates are cyclic. If we can find this set, the remainder of the job is trivial.
Since the obvious generalized coordinates suggested by the problem will not nor-
mally be cyclic, we must first derive a specific procedure for transforming from
one set of variables to some other set that may be more suitable.

The transformations considered in the previous chapters have involved going
from one set of coordinates g; to a new set Q; by transformation equations of the
form

Qi = Qi(q,1). (9.3)

For example, the equations of an orthogonal transformation, or of the change
from Cartesian to plane polar coordinates, have the general form of Eqgs. (9.3).
As has been previously noted in Derivation 10 of Chapter 1, such transformations
are known as point transformations. But in the Hamiltonian formulation the mo-
menta are also independent variables on the same level as the generalized coordi-
nates. The concept of transformation of coordinates must therefore be widened to
include the simultaneous transformation of the independent coordinates and mo-
menla. q;, pi, to anew set Q;. P;, with (invertible) equations of transformation:

Q: = Qilq, p, 1),
Pi=.Li(q, p, t). .4

Thus, the new coordinates will be defined not only in terms of the old coordi-
nates but also in terms of the old momenta. Equations (9.3) may be said to define
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a point transformation of configuration space; correspondingly Eqgs. (9.4) define
a point transformation of phase space.

In developing Hamiltonian mechanics, only those transformations can be of in-
terest for which the new Q, P are canonical coordinates. This requirement will be
satisfied provided there exists some function K(Q, P, 1) such that the equations
of motion in the new set are in the Hamiltonian form
aK 5 dK

Q'_BP," T (9.5)
The function K plays the role of the Hamiltonian in the new coordinate set.*
It is important for future considerations that the transformations considered be
problem-independent. That is to say. (Q. P) must be canonical coordinates not
only for some specific mechanical systems, but for all systems of the same num-
ber of degrees of freedom. Equations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particular initial
form of H. We may indeed be incited to develop a particular transformation from
(g, p) to (Q, P) to handle, say, a plane harmonic oscillator. But the same trans-
formation must then also lead to Hamilton’s equations of motion when applied.
for example, to the two-dimensional Kepler problem.

As was seen in Section 8.5, if Q; and P; are to be canonical coordinates, they
must satisfy a modified Hamilton’s principle that can be put in the form

) 2
5/ (P;Qi — K(Q,P,1)dt =0, 9.6)
|

(where summation over the repeated index i is implied). At the same time the old
canonical coordinates of course satisfy a similar principle:

t
5[ (pigi — H(q, p,1))dt = 0. (9.7)
h

The simultaneous validity of Egs. (9.6) and (9.7) does not mean of course that the
integrands in both expressions are equal. Since the general form of the modified
Hamilton’s principle has zero variation at the end points, both statements will be
satisfied if the integrands are connected by a relation of the form

- : . dF .
}\(p,’([,'—H)=P,'Q,‘—K+-Z. (9.8)
Here F is any function of the phase space coordinates with continuous second
derivatives, and A is a constant independent of the canonical coordinates and the
time. The multiplicative constant A is related to a particularly simple type of trans-
formation of canonical coordinates known as a scale transformation.
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a point transformation of configuration space; correspondingly Eqs. (9.4) define
a point transformation of phase space.

In developing Hamiltonian mechanics, only those transformations can be of in-
terest for which the new Q, P are canonical coordinates. This requirement will be
satisfied provided there exists some function K(Q, P, t) such that the equations
of motion in the new set are in the Hamiltonian form

aK . aK
=—, P=—
3P, 90;

The function K plays the role of the Hamiltonian in the new coordinate set.*
It is important for future considerations that the transformations considered be
problem-independent. That is to say, (Q. P) must be canonical coordinates not
only for some specific mechanical systems, but for all systems of the same num-
ber of degrees of freedom. Equations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particular initial
form of H. We may indeed be incited to develop a particular transformation from
(g, p) to (Q, P) to handle, say, a plane harmonic oscillator. But the same trans-
formation must then also lead to Hamilton’s equations of motion when applied.
for example, to the two-dimensional Kepler problem.

As was seen in Section 8.5, if Q; and P; are to be canonical coordinates, they
must satisfy a modified Hamilton’s principle that can be put in the form

0 (9.5)

5/2(P,-Q',-—K(Q. P.0)dt =0, (9.6)
{

(where summation over the repeated index i is implied). At the same time the old
canonical coordinates of course satisfy a similar principle:

"
5/ (pigi — H(q, p,1))dt = 0. (9.7
h

The simultaneous validity of Egs. (9.6) and (9.7) does not mean of course that the
integrands in both expressions are equal. Since the general form of the modified
Hamilton's principle has zero variation at the end points, both statements will be
satisfied if the integrands are connected by a relation of the form

- : . dF
A.(pi(]i—H)=P,'Q,‘—K+E. (9.8)
Here F is any function of the phase space coordinates with continuous second
derivatives, and A is a constant independent of the canonical coordinates and the
time. The multiplicative constant A is related to a particularly simple type of trans-
formation of canonical coordinates known as a scale transformation.
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Suppose we change the size of the units used to measure the coordinates and
momenta so that in effect we transform them to a set (Q’, P’) defined by

Q: = ugi, P; = vp;. (9.9)

Then it is clear Hamilton’s equations in the form of Egs. (9.5) will be satisfied
for a transformed Hamiltonian K'(Q’, P') = pwvH(q. p). The integrands of the
corresponding modified Hamilton’s principles are, also obviously, related as

wv(pigi — H) = P/Q — K', (9.10)

which is of the form of Eq. (9.8) with & = pv. With the aid of suitable scale trans-
formation, it will always be possible to confine our attention to transformations
of canonical coordinates for which A = 1. Thus, if we have a transformation of
canonical coordinates (g, p) — (Q’, P’) for some A # 1, then we can always
find an intermediate set of canonical coordinates (Q, P) related to (Q’, P') by a
simple scale transformation of the form (9.9) such that z2v also has the same value
A. The transformation between the two sets of canonical coordinates (g, p) and
(@, P) will satisfy Eq. (9.8). but now with A = 1:
pfch—H=P,-Q'.-—K+£. (9.11)
dr
Since the scale transformation is basically trivial, the significant transformations
to be examined are those for which Eq. (9.11) holds.

A transformation of canonical coordinates for which A # 1 will be called an
extended canonical transformation. Where A = 1, and Eq. (9.11) holds, we will
speak simply of a canonical transformation. The conclusion of the previous para-
graph may then be stated as saying that any extended canonical transformation
can be made up of a canonical transformation followed by a scale transforma-
tion. Except where otherwise stated, all future considerations of transformations
between canonical coordinates will involve only canonical transformations. It is
also convenient to give a specific name to canonical transformations for which the
equations of transformation Eqs. (9.4) do not contain the time explicitly; they will
be called restricted canonical transformations.

The last term on the right in Eq. (9.11) contributes to the variation of the ac-
tion integral only at the end points and will therefore vanish if F is a function of
(g, p,t) or (Q, P, 1) or any mixture of the phase space coordinates since these
have zero variation at the end points. Further, through the equations of transfor-
mation, Eqgs. (9.4) and their inverses F' can be expressed partly in terms of the old
set of variables and partly of the new. Indeed, F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside the
time) are from the old set and half are from the new. It then acts, as it were, as
a bridge between the two sets of canonical variables and is called the generating
Sfunction of the transformation.

To show how the generating function specifies the equations of transforma-
tion, suppose F were given as a function of the old and new generalized space
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coordinates:
F = FPilg; O,1). (9.12)

Equation (9.11) then takes the form

; : dF
Piqi—H=PfQi—K+7,—

: d F1 oF . oF - ;
=PQi—K+ - ; - 9.13
i Qi o1 3q; qi + 20, Q; ( )

Since the old and the new coordinates, ¢; and Q;, are separately independent,
Eq. (9.13) can hold identically only if the coefficients of ¢; and Q; each vanish:

AR

pi=—, (9.14a)
dg;
dF
e (9.14b)
20,
leaving finally
aF
K=H+EL (9.14¢)

Equations (9.14a) are n relations defining the p; as functions of g;, Q, and t.
Assuming they can be inverted, they could then be solved for the n Q;’s in terms
of g;, pj, and 7, thus yielding the first half of the transformation equations (9.4).
Once the relations between the Q;’s and the old canonical variables (¢, p) have
been established, they can be substituted into Egs. (9.14b) so that they give the n
P;'s as functions of g;, p;, and ¢, that is, the second half of the transformation
equations (9.4). To complete the story, Eq. (9.14c) provides the connection be-
tween the new Hamiltonian, K, and the old one, H. We must be careful to read
Eq. (9.14c) properly. First ¢ and p in H are expressed as functions of Q and P
through the inverses of Eqgs. (9.4). Then the ¢; in 3 F} /9t are expressed in terms
of Q, P in a similar manner and the two functions are added to yield K(Q, P, 1).
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It sometimes happens that it is not suitable to describe the canonical transfor-
mation by a generating function of the type Fi(g, Q, ¢). For example, the trans-
formation may be such that p; cannot be written as functions of ¢, Q, and ¢, but

rather will be functions of ¢, P, and . We would then seek a generating func-
tion that is a tunction of the old coordinates ¢ and the new momenta P. Clearly
Eq. (9.13) must then be replaced by an equivalent relation involving P; rather than
Q;. This can be accomplished by writing F in Eq. (9.11) as

F = Fx(q,P,1)— Qi P;. (9.15)

Substituting this F in Eq. (9.11) leads to

; . d
Pigi "HZ—Q.‘P.‘—K-I-EFZ(Q,P,I). (9.16)

Again, the total derivative of F; is expanded and the coefficients of ¢; and 7;
collected, leading to the equations

aF
e (9.17a)

aq;

aF
T 9.17b
Q, T ( )

with
IF

K=H+a—t2. 9.17¢)

As before, Eqs. (9.17a) are to be solved for P; as functions of ¢;, p;j, and ¢ to cor-
respond to the second half of the transformation equations (9.4). The remaining
half of the transformation equations is then provided by Egs. (9.17b).

The corresponding procedures for the remaining two basic types of generating
functions are obvious, and the general results are displayed in Table 9.1.

Tt is tempting to look upon the four basic types of generating functions as
being related to each other through Legendre transformations. For example, the

TABLE 9.1 Properties of the Four Basic Canonical Transformations

Generating Function Generating Function Derivatives Trivial Special Case
aF 9F,
F=F(q.Q2.0 Pi= B Pz=—E Fy=¢iQi. Qi=pi. Pi=-q
dF AF
F=F(q.P.1)- 0P g Qi = F=g4P., Qi=gq P =p;
9 0 F;
0F dF3
F=F(p.Q.0+4qipi gi=——7— Pp=——= F3=p;iQi, Qi=-¢i» Pi=-pi
opi aQ;
aFy AFy
F=Falp. P.0)+qipi — Qibi | ;=75 0 = Fy=piP, Qi=pi, Pi=-qi
dpy daP;
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transition from Fj to F> is equivalent to going from the variables g, Q to g, P
with the relation

B J0F

=— 18
30, (9.18)

-P

Ts is just tne form reguired for alegendre ransiormanion of the basis vanavies,
as described in Section 8.1, and in analogy to Eq. (8.5) we would set

F2(q, P.t) = Fi(q, Q.1) + P: Qi, (9.19)

which is equivalent to Eq. (9.15) combined with Eq. (9.12). All the other defining
equations for the generating functions can similarly be looked on, in combina-
tion with Eq. (9.12) as Legendre transformations from Fj, with the last entry in
Table 9.1 describing a double Legendre transformation. The only drawback to
this picture is that it might erroneously lead us to believe that any given canoni-
cal transformation can be expressed in terms of the four basic types of Legendre
transformations listed in Table 9.1. This is not always possible. Some transfor-
mations are just not suitable for description in terms of these or other elementary
forms of generating functions, as has been noted above and as will be illustrated
in the next section with specific examples. If we try to apply the Legendre trans-
formation process, we are then led to generating functions that are identically
zero or are indeterminate. For this reason, we have preferred to define each type
of generating function relative to F, which is some unspecified function of 2n
independent coordinates and momenta,

Finally, note that a suitable generating function doesn’t have to conform to
one of the four basic types for all the degrees of freedom of the system. It is
possible, and for some canonical transformations necessary, to use a generating
function that is a mixture of the four types. To take a simple example, it may be
desirable for a particular canonical transformation with two degrees of freedom
to be defined by a generating function of the form

F'(q1, p2, P1, Q2,1). (9.20)

This generating function would be related to F in Eq. (9.11) by the equation
F =F'(q1, p2, Pr. Q2.1) — Q1 P + @2p2, ®.2h)

and the equations of transformation would be obtained from the relations

_ aF’ By oF'
pl - 36]1 ' g v— apla
aF’ aF
gos=—— Pp=——, 9.22)
ap2 902
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with

aF’

K0 .
+3t

9.23)

Specific illustrations are given in the next section and in the exercises.

B EXAMPLES OF CANONICAL TRANSFORMATIONS

The nature of canonical transformations and the role played by the generating
function can best be illustrated by some simple yet important examples. Let us
consider, first, a generating function of the second type with the particular form

Fr=qF (9.24)
found in column 3 of Table 9.1. From Egs. (9.17), the transformation equations
are

0F
= — =P,
Pi aQi ’
s = dF i
F = P, = qi,
K =H. (9.25)

The new and old coordinates are the same; hence F> merely generates the identity
transformation (cf. Table 9.1). We also note, referring to Table 9.1, that the par-
ticular generating function F3 = p; Q; generates an identity transformation with
negative signs; that is, Q; = —q;, P; = —pi.

A more general type of transformation is described by the generating function

F=fi(gq1,....qn; t)B;, (9.26)

where the f; may be any desired set of independent functions. By Egs. (9.17b),
the new coordinates (; are given by
d F»

Qi=%=ﬁ(4i----v4n: f) (9.27)
Thus, with this generating function the new coordinates depend only upon the
old coordinates and the time and do not involve the old momenta. Such a trans-
formation is therefore an example of the class of point transformations defined
by Egs. (9.3). In order to define a point transformation, the functions f; must be
independent and invertible, so that the g; can be expressed in terms of the Q;.
Since the f; are otherwise completely arbitrary, we may conclude that all point
transformations are canonical. Equation (9.17c) furnishes the new Hamiltonian
in terms of the old and of the time derivatives of the f; functions.
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Note that F3 as given by Eq. (9.26) is not the only generating function leading
to the point transformation specified by the f;. Clearly the same point transfor-
mation is implicit in the more general form

Fr= filgre-.-sqn; DPr+8(q1s---1qn;: 1) (9.28)

where g(g. 1) is any (differentiable) function of the old coordinates and the time.
Equations (9.27), the transformation equations for the coordinates, remain unal-
tered for this generating function. But the transformation equations of the mo-
menta differ for the two forms. From Egs. (9.17a), we have

AR af;
aqj'

9%

—SPyf ==, (9.29)
dgj ' dq;

Pj
using the form of F> given by Eq. (9.28). These equations may be inverted to give
P as a function of (g, p), most easily by writing them in matrix notation:

of d
PPt (9.29)
9q ~ 9q
Here p, P, and dg/0q are n-elements of single-column matrices, and 9f/dq is a
square matrix whose ijth element is 3/; /d¢;. In two dimensions, Eq. (9.29') can
be written as

oh  9h e
pr|_ dg1 9q2 | [Py » 491
P2 af  afs P ag
dq1  09q2 g2
It follows that P is a linear function of p given by
ot ™! )
pelal |aectls (9.30)
aq aq
In two dimensions, (9.30) becomes
afi afq"! og
a ad ad
e B ] 9.31)
P afy af 27} ag
dg1  0q2 0g>

Thus, the transformation equations (9.27) for Q are independent of g and depend
only upon the fi(g, 1), but the transformation equations (9.29) for P do depend
upon the form of g and are in general functions of both the old coordinates and
momenta. The generating function given by Eq. (9.26) is only a special case of
Eq. (9.28) for which ¢ = 0, with correspondingly specialized transformation
equations for P.
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An instructive transformation is provided by the generating function of the first
kind, Fi(g. O, 1), of the form

F1 = qi Q.
The corresponding transformation equations, from (9.14a, b) are
d F;
pi=r =0, (9.32q)
3(}5
aF
Pi=— = —gqj. 9.32b
i 50; qi ( )

In effect, the transformation interchanges the momenta and the coordinates; the
new coordinates are the old momenta and the new momenta are essentially the old
coordinates. Table 9.1 shows that the particular generating function of type Fy =
pi P; produces the same transformation. These simple examples should emphasize
the independent status of generalized coordinates and momenta. They are both
needed to describe the motion of the system in the Hamiltonian formulation. The
distinction between them is basically one of nomenclature. We can shift the names
around with at most no more than a change in sign. There is no longer present in
the theory any lingering remnant of the concept of g; as a spatial coordinate and
pi as a mass times a velocity. Incidentally, we may see directly from Hamilton's
equations,

. 0H , aH

Pi i . di api ,

that this exchange transformation is canonical. If ¢; is substituted for p;, the equa-
tions remain in the canonical form only if — p; is substituted for ¢;.

A transformation that leaves some of the (¢, p) pairs unchanged, and inter-
changes the rest (with a sign change), is obviously a canonical transformation of
a “mixed” form. Thus, in a system of two degrees of freedom. the transformation

Q1 = q1. Py = p1.
Q2 = pa, Py =—q,
is generated by the function
F=qP+q0:, (9.33)

which is a mixture of the Fj and F types.

I THE HARMONIC OSCILLATOR

As a final example, let us consider a canonical transformation that can be used to
solve the problem of the simple harmonic oscillator in one dimension. If the force
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constant is k. the Hamiltonian for this problem in terms of the usual coordinates
1s

p2 k 2
H=—+4+— 9.34a
2m * 2 ( )
Designating the ratio k/m by w?*, H can also be written as
1 5
H = —(p* + m*w?*q?). (9.34b)
2m

This form of the Hamiltonian, as the sum of two squares, suggests a transfor-
mation in which H is cyclic in the new coordinate. If we could find a canonical
transformation of the form

p=f(P)cosQ, (9.35a)
(P

g= ACH) sin Q. (9.35b)
maw

then the Hamiltonian as a function of Q and P would be simply

K=H=

/7(P)(0052 Q+sin2 0) = JFLE)

2m 2m

: (9.36)

so that Q is cyclic. The problem is to find the form of the yet unspecified function
f(P) that makes the transformation canonical. If we use a generating function of
the first kind given by

”
mwq*©
2

F = cot Q, (9.37)

Egs. (9.14) then provide the equations of transformation,

aF ;
pi= ik S8 mwq cot O, (9.38a)
dq
JF 4
. T (9.38b)
00 2sin” Q
Solving for g and p, we have*
2P
g = V;l— sin Q. (9.39a)
maw
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p = 2pmwcos Q, (9.39b)
and comparison with Eq. (9.35a) evaluates f(P):
f(P) =2mwP. (9.40)
It follows then that the Hamiltonian in the transformed variables is
H=wP. (9.41)

Since the Hamiltonian is cyclic in Q, the conjugate momentum P is a constant. It
is seen from Eq. (9.41) that P is in fact equal to the constant energy divided by w:

E
P=—
w

The equation of motion for Q reduces to the simple form

0= dH
T
with the immediate solution
0 =w! +a, (9.42)

where « is a constant of integration fixed by the initial conditions. From Egs.
(9.39), the solutions for ¢ and p are

{ 2E
q= V == sin(wt + «), (9.43a)
p =~2mE cos(wt + ). (9.43b)

It is instructive to plot the time dependence of the old and new variables as is
shown in Fig. 9.1. We see that ¢ and p oscillate (Fig. 9.1a, b) whereas Q and P
are linear plots (Fig. 9.1d, e). The figure also shows the phase space plots for p
versus g (Fig. 9.1c¢) and for P versus Q (Fig. 9.1f). Fig. 9.1c is an ellipse with the
following semimajor axes (for the g and p directions, respectively):

2F

P e and b=+2mE,

Y ma?

where m is the mass of the oscillator, w its frequency, and E the oscillator’s en-
ergy. The area, A, of this ellipse in phase space is
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p

(2mE) 2+
P
E
w
\/ et
!

(d)
q
(2E/ma?) /> ¢
T
2 t
o
nT 27t !
(b) (e)
(2ml_' )1/2 P
E
w
mw T 20t (9]
(c) (f)

FIGURE 9.1 The harmonic oscillator in two canonical coordinate systems. Draw-
ings (a)—(c) show the ¢, p system and (d)~(f) show the P, Q system.

When we invoke quantum mechanics, we write £ = fiw, where i = h /2, and h
is Planck’s constant. The coordinate and momentum ¢ and p can be normalized as

; [ ma? ) p

=i/ q and p = *
¥ Y 2 V2mE

to make the phase space plot of p’ versus ¢’ a circle of area . This normalized
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B THE SYMPLECTIC APPROACH TO CANONICAL TRANSFORMATIONS

Another method of treating canonical transformations, seemingly unrelated to the
generator formalism, can be expressed in terms of the matrix or symplectic for-
mulation of Hamilton’s equations. By way of introduction to this approach, let us
consider a restricted canonical transformation, that is, one in which time does not
appear in the equations of transformation:

Qi = Qilg. p),
P; = Pi(q, p). (9.44)

We know that the Hamiltonian function does not change in such a transformation.
The time derivative of Q;, on the basis of Egs. (9.44). is to be found as

i a0, . a0Q; . 00; 0H dQ; dH
9q; ap; dq; dp;  Opj 9q;

On the other hand, the inverses of Egs. (9.44),

q;j =q;(Q. P),
pj=pj(Q, P), (9.46)
enables us to consider H (g, p. 1) as a function of Q and P and to form the partial
derivative
aH 0Hdp; 0H dg;
i e (9.47)
2P C)pj dP; 3(].]' dP;

Comparing Eqs. (9.45) and (9.47), it can be concluded that
’ oH
Qi = 3P

that is, the transformation is canonical, only if

0; ap; 30; dg;" :
(‘_(.,> Z(JQ) , (_i) =_(ﬂ) . (948)
()({_j q.p aP’ o, F ap/ q.p aP’ Q.pP
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The subscripts on the derivatives are to remind us that on the left-hand side of
these equations Q; is considered as a function of (g, p) (cf. Egs. (9.44)), while
on the right-hand side the derivatives are for ¢; and p; as functions of (Q, P) (cf.
Egs. (9.46)). A similar comparison of P; with the partial of H with respect to Q;
leads to the conditions

aP; d aP; aq;
(_) - ( ”J) ‘ ( ) =<ﬁ> . (9.48b)
39/ 4.p 00i/o.p Pj/ 4.p Qi /o.p

The sets of Eqs. (9.48) together are sometimes known as the “direct conditions™
for a (restricted) canonical transformation.

The algebraic manipulation that leads to Eqs. (9.48) can be performed in a
compact and elegant manner if we make use of the symplectic notation for the
Hamiltonian formulation introduced above at the end of Section 8.1. If i is a
column matrix with the 2n elements ¢;, p;, then Hamilton’s equations can be
written, it will be remembered, as Eq. (8.39)

where ) is the anUSymmetnc matrix defined in Eq. (8 38a). Similarly the new set
45\’5{’{7\3’&\’:"%\\;0’\2‘ ,\ 1 @(ﬁ'f‘(’!\. h"‘\x&(’i’{e‘n\ ETEERE m TR 2 S
canonical transformation the equations of t.ransformauon (9.44) il

{=Lm).

Analogously to Eq. (9.45) we can seek the equations of motion foe
ables by looking at the time derivative of a typical element of {

i'i 7'117 i = s 20

In matrix notation, this time derivative can be written as

L= M.
where M is the Jacobian matrix of the transformation with elemesss
%
ij 3 ’lj .

Making use of the equations of motion for n, Eq. (9.50) becomes
dH
;= Ml — (9.52)
on

Now, by the inverse transformation H can be considered as a function of £, and
the derivative with respect to »; evaluated as

o _ o ot
i 0gj Omi
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or, in matrix notation*®

0H ~0H
—_— =M—. (9.53)
I ag

The combination of Egs. (9.52) and (9.53) leads to the form of the equations
of motion for any set of variables { transforming, independently of time, from the
canonical set n:

f = MIM —. 9.54
£ =M= (9.54)
We have the advantage of knowing from the generator formalism that for a re-

stricted canonical transformation the old Hamiltonian expressed in terms of the
new variables serves as the new Hamiltonian:

: 0H
=)]—. 9.54'
4 T (9.54')
The transformation, Eq. (9.49), will therefore be canonical if M satisfies the con-
dition
MIM = ). (9.55)

That Eq. (9.55) is also a necessary condition for a restricted canonical transforma-
tion is easily shown directly by reversing the order of the steps of the proof. Note
that for an extended time-independent canonical transformation, where K = AH,
the condition of Eq. (9.55) would be replaced by

MM = AJ. (9.56)

Equation (9.55) may be expressed in various forms. Multiplying from the right
by the matrix inverse to M leads to

M) = ML, 9.57)

(since the transpose of the inverse is the inverse of the transpose). The elements
of the matrix equation (9.57) will be found to be identical with Eqs. (9.48a) and
(9.48b). If Eq. (9.57) is multiplied by ] from the left and —] from the right, then
by virtue of Eq. (8.38¢) we have

IM=M",
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or
MIM = . (9.58)

Equation (9.55), or its equivalent version, Eq. (9.58), is spoken of as the sym-
plectic condition for a canonical transformation, and the matrix M satisfying the
condition is said to be a symplectic matrix.

These concepts may become more obvious if we display the details of the J and
M matrices corresponding to the mixed generating function F = F(q1, P1) +
F1(q2, Q2) of Eq. (9.33). The variables g and £ are column vectors given by

q1 Q1
q2 Q>
= and =
. 4 ¢ P
J 2 P

The transformation £ = M%) (cf. Eq. (9.50)) is made by the following M matrix:

] Moo o o)[a] [
Q2| _ (0 0 0 1||g]|_| £
/"’1 10 0 1 0 pil | ;o
Bl Lo -1 0 of[p] [~

in agreement with the expressions obtained by differentiating the results of the
generating function with respect to time (cf. Column 3, Table 9.1). Hamilton’s
equations for the transformed variables ;= ]%fc—f (Eq. (9.54")) are expressed as
follows independent of the generating function F

QI 0 0 1 0][-A
0> |0 O | —Py
BBl |-1 0 0 0| Oy
P g =1 ¢ 8| 0

where —P; = 8H /8¢ for ¢ and & and Q; = dH /3¢ for 3 and Zy. Note
that M depends on F whereas J does not (cf. Eq. (8.38a)). This formalism is not
applicable to all cases. For example, a simple M matrix cannot be written for the
harmonic oscillator example discussed in Section 9.3.
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transformations. For example, either the symplectic or the generator formalisms
can be used to prove that canonical transformations have the four properties that
characterize a group (cf. Appendix B).

1. The identity transformation is canonical.

2. If a transformation is canonical, so is its inverse.

3. Two successive canonical transformations (the group “‘product’” operation)
define a transformation that is also canonical.

4. The product operation is associative.

Bl POISSON BRACKETS AND OTHER CANONICAL INVARIANTS

The Poisson bracket of two functions «, v with respect to the canonical variables
(g, p) is defined as

du dv du dv
dq; dpi  Opi dgi

[, v]g p = (9.67)

In this bilinear expression we have a typical symplectic structure. as in Hamilton’s
equations, where g is coupled with p, and p with —g. The Poisson bracket thus
lends itself readily to being written in matrix form, where it appears as

du , dv
[u, v]ly = 5%] 8:" (9.68)

The transpose sign is used on the first matrix on the right-hand side to indicate
explicitly that this matrix must be treated as a single-row matrix in the multi-
plication. On most occasions this specific reminder will not be needed and the
transpose sign may be omitted.

Suppose we choose the functions «, v out of the set of canonical variables
(g, p) themselves. Then it follows trivially from the definition, either as Eq. (9.67)
or (9.68), that these Poisson brackets have the values

lgj, gxlg,p =0 =[pj, qrly.p

lg). Pely p = 8jk = —[Pj. qklq.p- (9.69)

We can summarize the relations of Egs. (9.69) in one equation by introducing
a square matrix Poisson bracket, [n, n], whose Im element is [n;, n,,]. Equa-
tions (9.69) can then be written as

(n. ml; =) (9.70)

Now let us take for u, v the members of the transformed variables (Q, P), or
£, defined in terms of (g. p) by the transformation equations (9.59). The set of
all the Poisson brackets that can be formed out of (Q, P) comprise the matrix
Poisson bracket defined as

ac . a
£. 8y = % %
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But we recognize the partial derivatives as defining the square Jacobian matrix of
the transformation, so that the Poisson bracket relation is equivalent to

(£, £l = MIM. (9.71)

If the transformation  — ¢ is canonical, then the symplectic condition holds
and Eq. (9.71) reduces to (cf. Eq. (9.58))

(€. &Iy =1, (9.72)

and conversely, if Eq. (9.72) is valid, then the transformation is canonical.

Poisson brackets of the canonical variables themselves, such as Eqgs. (9.70)
or (9.72), are referred to as the fundamental Poisson brackets. Since we have
from Eq. (9.70) that

(£, 81z =), (9.73)

Eq. (9.72) states that the fundamental Poisson brackets of the ¢ variables have the
same value when evaluated with respect to any canonical coordinate set. In other
words, the fundamental Poisson brackets are invariant under canonical transfor-
mation. We have seen from Eq. (9.71) that the invariance is a necessary and suffi-
cient condition for the transformation matrix to be symplectic. The invariance of
the fundamental Poisson brackets is thus in all ways equivalent to the symplectic
condition for a canonical transformation.

It does not take many more steps to show that a// Poisson brackets are invariant
under canonical transformation. Consider the Poisson bracket of two functions
u, v with respect to the 7 set of coordinates, Eq. (9.68). In analogy to Eq. (9.53),
the partial derivative of v with respect to 9 can be expressed in terms of partial
derivatives with respect to & as

dv
on

31’] 3§ d;
Hence the Poisson bracket Eq. (9.68) can be written
du v Bu,, ~du
N L T
e vln = 5n)om = g Mg

If the transformation is canonical, the symplectic condition in the form of
Eq. (9.55) holds, and we then have

[z, v]y = —_} —’ =, vl (9.74)
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Thus, the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables—all Poisson brackets are canonical invariants. In writ-
ing the symbol for the Poisson bracket, we have so far been careful to indicate by
the subscript the set of variables in terms of which the brackets are defined. So
long as we use only canonical variables that practice is now seen to be unneces-
sary, and we shall in general drop the subscript.™

The algebraic properties of the Poisson bracket are therefore of considerable
interest. We have already used the obvious properties

e, u] =0, (9.75a)
[, v] = —[v. ul. (antisymmetry) (9.75b)
Almost equally obvious are the characteristics
lau + bv, w] = alu, w] + blv, w], (linearity) (9.75¢)
where a and b are constants, and
[uv. w] = [u, wlv 4+ ulv, w]. (9.75d)

One other property is far from obvious, but is very important in defining the
nature of the Poisson bracket. It is usually given in the form of Jacobi's iden-
tity, which states that if «, v, and w are three functions with continuous second
derivatives, then

[, [v, w]] + [v, [w, u]] + [w. [, v]] = 0; (9.75e)

that is, the sum of the cyclic permutations of the double Poisson bracket of three
functions is zero. There seems to be no simple way of proving Jacobi’s identity for
the Poisson bracket without lengthy algebra. However, it is possible to mitigate
the complexitv of the manipulations bv introducing a special nomenclature. We
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shall use subscripts on u, v, w (or functions of them) to denote partial derivatives
by the corresponding canonical variable. Thus,

du v
uy = —, and vij = ;
an; ’ an; 37)j

In this notation the Poisson bracket of # and v can be expressed as
[u, v] = ui Jijv;.

Here J;;, as usual, is simply the ijth element of J. In the proof, the only property
of ) that we shall need is its antisymmetry.
Now let us consider the first double Poisson bracket in Eq. (9.75¢):

[, [v, w]] = u; Jijlv, wl; = w; Jij (v Jwy) ;-

Because the elements Ji; are constants, the derivative with resect to n doesn’t act
on them, and we have

[u, [v, w]] = u; Jij (v T wij + vij Jggwy). (9.76)

The other double Poisson brackets can be obtained from Eq. (9.76) by cyclic
permutation of u, v, w. There are thus six terms in all, each being a fourfold sum
over dummy indices 7, j, k, and /. Consider the term in Eq. (9.76) involving a
second derivative of w:

JiiJeuivewy;.
7 J

The only other second derivative of w will appear in evaluating the second double
Poisson bracket in (Eq. 9.75e):

(v, [w, u]] = v S (wj Jjiu)i.
Here the term in the second derivative in w is
Jji Jeiuivew ji -

Since the order of differentiation is immaterial, w;; = wj;, and the sum of the
two terms is given by

(Jij + Jji) Jauivewy; =0,

by virtue of the antisymmetry of /. The remaining four terms are cyclic permuta-
tions and can similarly be divided in two pairs, one involving second derivatives
of u and the other of v. By the same reasoning, each of these pairs sums to zero,
and Jacobi’s identity is thus verified.

If the Poisson bracket of u, v is looked on as defining a “product™ operation
of the two functions, then Jacobi’s identity is the replacement for the associa-
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If two constants of the motion are known, the Jacobi identity provides a possi-
ble way for obtaining further constants. Suppose u and v are two constants of the
motion not explicitly functions of time. Then if w in Eq. (9.75¢) is taken to be H,
the Jacobi identity says

[H, [u,v]] =0;

that is, the Poisson bracket of ¥ and v is also a constant in time. Even when
the conserved quantities depend upon time explicitly, it can be shown with a bit
more algebra (cf. Exercise 30) that the Poisson bracket of any two constants of the
motion is also a constant of the motion (Poisson’s theorem). Repeated application
of the Jacobi identity in this manner can in principle lead to a complete sequence
of constants of the motion. Quite often, however, the process is disappointing.
The Poisson bracket of # and v frequently turns out to be a trivial function of u
and v themselves, or even identically zero. Still, the possibility of generating new
independent constants of motion by Poisson’s theorem should be kept in mind.

I THE ANGULAR MOMENTUM POISSON BRACKET RELATIONS

The identification of the canonical angular momentum as the generator of a rigid
rotation of the system leads to a number of interesting and important Poisson
bracket relations. Equations (9.103) for the change of a function « under an in-
finitesimal canonical transformation (on the “active” view) is also valid if u is
taken as the component of a vector along a fixed axis in ordinary space. Thus, if
F 15 a vector function of the system configuration, then (cf. Eq. (9.116))

dF; =da[F;, G).

Note that the direction along which the component is taken must be fixed, that is,
not affected by the canonical transformation. If the direction itself is determined
in terms of the system variables, then the transformation changes not only the
value of the function but the nature of the function, just as with the Hamiltonian.
With this understanding the change in a vector F under a rotation of the system
about a fixed axis n. generated by L - n. can be written in vector notation (cf. Eq.
(9.115))

oF = do[F,L - n]. (9.121)

To put it in other words, Eq. (9.121) implies that the unit vectors i, j, k that form
the basis set for F are not themselves rotated by L « n.
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The words describing what is meant by Eq. (9.121) must be chosen carefully
for another reason. What is spoken of is the rotation of the system under the I.C.T.,
not necessarily the rotation of the vector F. The generator L - n induces a spatial
rotation of the system variables, not for example of some external vector such as a
magnetic field or the vector of the acceleration of gravity. Under what conditions
then does L - n generate a spatial rotation of ¥? The answer is clear—when F is
a function only of the system variables (¢, p) and does not involve any external
quantities or vectors not affected by the I.C.T. Only under these conditions does a
spatial rotation imply a corresponding rotation of F. We shall designate such vec-
tors as system vectors. The change in a vector under infinitesimal rotation about
an axis n has been given several times before (cf. Eq. (2.50) and Eq. (4.75)):

dF =nd6 x F.

For a system vector F. the change induced under an L.C.T. generated by L - n can
therefore be written as

dF = dO[F,L -n] =ndf x F. (9.122)

Equation (9.122) implies an important Poisson bracket identity obeyed by all sys-
tem vectors:

(F,L:nj=nxF. (9.123)

Note that in Eq. (9.123) there is no longer any reference to a canonical transforma-
tion or even to a spatial rotation. It is simply a statement about the value of certain
Poisson brackets for a specific class of vectors and, as such, can be verified by
direct evaluation in any given case. Suppose, for example, we had a system of an
unconstrained particle and used the Cartesian coordinates as the canonical space
coordinates. Then the Cartesian vector p is certainly a suitable system vector. If n
is taken as a unit vector in the z direction, then by direct evaluation we have

(px, XDy — ypx)l = =Py
[Py, xpy — YPx] = px,
[Pz, xpy — ypx] = 0.

The right-hand sides of these identities is clearly the same as the components of
n x p, as predicted by Eq. (9.123).

On the other hand, suppose that in the same problem we tried to use for F the
vector A = 1(r x B) where B = Bi is a fixed vector along the x axis. The vector
A will be reEognjzed as the vector potential corresponding to a uniforn magnetic
field B in the x-direction. As A depends upon a vector external to the system, we
would expect it not to fit the characteristics of a system vector and Eq. (9.123)
should not hold for it. Indeed, we see that the Poisson brackets involved are here
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[0, xpy — ypx] =0,
[%ZBs Xpy — yp.t] =0,
[—%yB,xpy *)’Px] = —3Bx,

whereas the vector n x A has instead the components (— % Bz, 0, 0).

The relation (9.123) may be expressed in various notations. Perhaps the most
advantageous is a form using the Levi-Civita density to express the cross product
(cf. Eq. (4.77")). The ith component of Eq. (9.123) for arbitrary n then can be
written

[Fi, Lin;) =e,-jknij, (9.124)
which implies the simple result
[F, L] = &jjr Fr. (9.125)

An alternative statement of Eq. (9.125) is to note that if /, m, n are three indices
in cyclic order, then

[Fi, Lyl = Fy. I, m,nincyclic order. (9.125%)

Another consequence of Eq. (9.123) relates to the dot product of two system
vectors: F - G. Being a scalar, such a dot product should be invariant under rota-
tion, and indeed the Poisson bracket of the dot product with L - n is easily shown
to vanish:

[F-G,L:n]=F-[G,L-n]+G-[F,L-n]
=F-nxG+G:-nxF
=F-nxG+F:Gxn
= 0. (9.126)

The magnitude of any system vector therefore has a vanishing Poisson bracket
with any component of L.

Perhaps the most frequent application of these results arises from taking F to
be the vector L itself. We then have

[L,L-nj=nxL, (9.127)
(Li, Lj)=¢ijiLy, (9.128)

and
[L*,L-n] =0. (9.129)
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A number of interesting consequences follow from Eqs. (9.127)

[p,L-n]l=nxp
(pis Lj] = €ijkpk-

If Ly and Ly are constants of the motion, Poisson’s theorem then states that
(Lx. Ly] = L, is also a constant of the motion. Thus, if any two components of
the angular momentum are constant, the total angular momentum vector is con-
served. As a further instance, let us assume that in addition to Ly and L being
conserved there is a Cartesian vector of canonical momentum p with p, a con-
stant of the motion. Not only is L, conserved but we have two further constants
of the motion:

[Pz, Lx] = py
and
(pz, Ly] = —px,
that is, both L and p are conserved. We have here an instance in which Poisson’s

theorem does yield new constants of the motion. Note, however, that if py, py,
and L, were the given constants of the motion. then their Poisson brackets are

[px, py]l =0,
(px, L] = —Py,
[py. L;] = px.

Here no new constants can be obtained from Poisson’s theorem.

Recall from the fundamental Poisson brackets, Egs. (9.69), that the Pois-
son bracket of any two canonical momenta must always be zero. But, from
Eq. (9.128), L; does not have a vanishing Poisson bracket with any of the other
components of L. Thus, while we have described L as the total canonical angular
momentum by virtue of its definition as r; x p; (summed over all particles),
no two components of L can simultaneously be canonical variables. However,
Eq. (9.129) shows that any one of the components of L, and its magnitude L, can
be chosen to be canonical variables at the same time.*

% 3k ok ok 3k 5k %k %k 5k
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Unit V: The Special Theory of Relativity

Basic Postulates of the Special Theory — Newton’s Law of Motion — Non-Variance Maxwell’s
Equation - Michelson Morley Experiment — Null results - Lorentz Transformations — Concept of
Inertial frame — Velocity Addition and Thomas Precession — Length Contraction — Vectors and
Metric Tensor — Relativistic Kinematics — Relativistic Angular Momentum — Introduction to the
General theory of Relativity — Gravitation and acceleration and their relation to non-inertial

frames of reference — Minkowski space and Lorenz transformation.

B BASIC POSTULATES OF THE SPECIAL THEORY
Einstein used two postulates to develop what became known as the special theory:

1. The laws of physics are the same to ail inertial observers.
2. The speed of light is the same to all inertial observers.

A tormulation of physics that explicitly incorporates these two postulates is
said to be covariant. Since the speed of light, ¢, is the same in all coordinate
systems, it is reasonable to consider the numerical value of ¢ as a conversion
factor between the units used in measuring space and the units used in measuring
time. So, cdt is the time interval measured in the same units used to measure
space units. In the SI system of units, ¢ d¢ has dimensions of meters. Many books

and articles on relativity set ¢ = 1 and measure time and space in meters. In the
material that follows, we shall show the explicit dependence upon c.

To satisfy the two postulates, the space and time of the special theory consist
of a single entity that we refer to as spacetime. This spacetime is the geometric
framework within which we perform physics. We cannot assume that all observers
make the same division into time and space in the same way. The separation is
unique o each inertial frame. The square of the distance in that spacetime, As?,
between two points A and B is given by

(As)2 = cz(lime intcrval)2 — (space inlerval)z. (7.4)

where the interval is between the two points A and 5. If the separation of the
interval is assumed to be infinitesimal, the A is replaced by the differential symbol
d. Since a point in spacetime consists of a specification of three spatial coordinate
values and one time value, the usual convention is to refer to a point in spacetime
as an event. The term evenr is used because such a point has a definite location
and a definite time in any frame.
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The choice of opposite signs for the time and space intervals is intrinsic to
the theory; however, the choice of a positive sign for (cdr)? is arbitrary. Some
authors define a (ds)?, which is the negative of the choice given in Eq. (7.4). All
sign choices makes (ds)? = 0 according to the definition in Eq. (7.4) for light,
since the space interval is &=(¢ x time interval). The choice made here for the
relative signs used for space and time is such that real bodies moving at a velocity
less than light have (ds)? = 0. This makes ds real for bodies moving slower than
light speed. If (ds)? > 0, the interval is called timelike. If (ds)*> < 0, the interval
is called spacelike. Intervals for which (ds)? = 0 are called lightlike or null.

Since, to all inertial observers, objects that travel on timelike paths move less
than the speed of light, they are called rardyons. Hypothetical bodies that always
move faster than light are called tachyons, but such bodies will not concern us
here. Objects moving at the speed of light are called null or lightlike.

In the limit of small displacements (differential displacements), Eq. (7.4) be-
comes, in a Cartesian coordinate system,

(dx')2 = (cdt)? — (d.rc2 - dyz +dz?). (7.4)

The four-dimensional space with an interval defined by Eqgs. (7.4) or (7.4"), is
often called Minkowski space to distinguish it from a four-dimensional Euclidean
space for which there would be no minus sign in Egs. (7.4) or (7.4'). The idea
of using ict for the time coordinate to make the space Euclidean is no longer
useful since it obscures the non-Euclidean nature of spacetime and makes the
generalization to noninertial frames more difficult.

Since the interval between two events of spacetime is a geometric quantity,
all inertial observers measure coordinates that preserve the value of the interval
squared, (ds)?. If S and S’ are two different inertial frames, then

ds”? = ds*. (:2.5)

As a special case of Eq. (7.4), consider the relation between the proper time, 7,
measured by an observer at rest with respect to an object in frame S’ with coordi-
nates (7. x', y', z'), which is moving at a velocity, v, with respect to a laboratory
frame S with coordinates (z, x, v, z). In the rest frame of the object, there is no
motion, so Egs. (7.4") and (7.5) give

2 2 2
2 (dr)? = A(d)? — v (d1)* = P (dr)? ( ‘,U )

c2
or

dt
dt = — (7.6)

/ vl
s
\/l -2

Since Eq. (7.6) makes dt < dt, this effect on d1 is called “time dilation”: moving
clocks appear to run slower.
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B LORENTZ TRANSFORMATIONS

The simplest set of transformations that preserve the invariance of the interval,
ds?, are called the Lorentz transformations. These transformations are simplest in
the sense that they are linear in the coordinates and as the relative velocity goes to
zero, the transformations become identity transformations. If we consider parallel
Cartesian coordinate systems, S and §’, whose origins coincide at 1 =t = 0, and
whose relative velocity is v along the x axis as measured by S, and define

v 1
,3 = —. and Yy = ——> (77‘
c V11— p2
then the following four equations relate the two sets of coordinates
, ¢l —fx ,
ct = (—ﬁ— = y(ct — Bx) (7.8a
v1-— g2
, x—Bct \
¥ = —_’3_ = y(x — Pet) (7.8b
/1—B°
V

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 3/38



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY

COURSE CODE: 19PHU103 UNIT: V (Relativity) BATCH-2017-2019
Y=y (7.8¢)
=z (7.8d)

Here we are only interested in transformations for which ' — ¢ and x" — x as
B — 0. As matrices, these transformations appear as

ct’ y —yB 0 0] et
X1 _|-vB v 0 0|]|x /
Y =l o o 10l (.83
z 0 0 0 1]]z

In the limit of 8 <« 1, Egs. (7.8) reduce to the Galilean transformations as ex-
pected.

The generalization to arbitrary orientation of the velocity relative to the axes
is straightforward. Since we are considering spacetime a four-dimensional en-
tity, we would expect to deal with four-dimensional vectors. Using the notation
(ct,x,y,2) = (ct, r) allows the writing of the generalization of Egs. (7.8’) to the
case where v is not parallel to an axis, as

ct' =yt —B-r)
By =1)
gt B )BEV X
ﬁ_
provided the two sets of axes are aligned. Another way to express this arbitrary
velocity is to consider the Lorentz transformation between two inertial coordi-

nate systems with aligned axes, as a matrix transformation relating the two 4-
quantities, x = (c¢t, ) and X’ = (¢t', '), where

Byct, (7.9)

x = Lx (7.10)

We treat x” and x as column matrices and L as the symmetric matrix

A RGP —Vvhy ~vB:
—¥bBx 1+(V—l)£§ (y-—])é# (y_])ﬁ__\%
L= i B 52 B oL
—yBy (V—IQ)B",;—‘;“ L+ =D (y—l)ﬁ‘;:ﬁ :

— s A B: s ﬂ:ﬁ_v _ 5_:2
vB: (r—-1D5F  (-DTF 1+ -Dg

This reduces to the results given in Eqs. (7.8") when 8, = 8. 8, = B; = 0.
These transformations map the origin of § and the origin of ' to (0, 0, 0, 0).

Hence the coordinates of both origins correspond to the same location in space-

time. If this is not desired, there is a more general transformation of the form

X' =Lx+a (7.12)
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where L is a spacetime rotation (boost) and a is a spacetime translation. This is the
Poincaré transformation or the inhomogeneous Lorentz transformation. We shall
consider only homogeneous transformations for which a of Eq. (7.12) is zero.
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12.7.THE MICHELSON-MORLEY EXPERIMENTS

Michelson-Morley experiment was designed to determine the motion of the earth relative to a frame of
reference in which the speed of light is c in all the directions. This frame is the previledge or absolute
frame of reference. The earth itself cannot be the absolute frame of reference because it is moving around
the sun in its orbit with a speed v = 3 x 10* m/sec and therefore at any time if the earth is identified with
the motion of the preferred frame, it will have a speed of 6x10* m/sec after 6 months relative to the
absolute (itfenial) frame of reference. In any case, the earth has a speed at least v = 3 x 10* m/sec relative
to an inertial frame at some instant or the other. during 6 months of the year. Assuming that the absolute
frame is situated at the centre of the sun and the earth is moving with a speed 3 x 10* m/sec relative to it.
Therefore, an observer on earth will measure a speed (c — v) for light moving along the direction of its
motion and (c + v) for light moving in opposite direction. We shall see how this assumption (the change of
velocity of light due to the motion of the observer) was contradicted by the famous experiments of
Michelson and Morley, conducted in the year 1880. .

In principle, in the experiment of Michelson and Morley, a ray of light starts froih a monochromatic
source of light S and falls on a half-silvered glass plate P where a part of light is reﬂected towards the

mirror M,and .part of it is transmitted towards the mirror M, [Flg 12.3(a)]. PM, and PM are mutually

perpendlcular directions and they are nearly equal. Let PM = PM L. The two rays, reﬂected from the
irrors- M and -M,unite again at P and interference fringes are obtamcd These frmges may be seen
through the telescope T. The entire apparatus is floated on mercury, contained in a large vessel so that the
interferometer may be rotated in any desired direction.

@ ()

Fig. 12.3 : Michelson-Morley Experiment

In the experiment the instrument is first set up in such a way that arm PM, is parallel to the motion of
the earth in space. Therefore, the apparatus moves in the direction PM2 with velocity v relative to the
absolute frame. After reflection at P, the ray moves towards the mirror Mr In the time, the ray reaches the
mirror, it moves to the position M|' so that the reflection occurs at this position M,". If ¢, is the time taken
by the ray in traversing the path PM’, P', in this duration plate P will move a distance PP’ = vt;. Hence
from fig 12.3 (b), we have
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PM; = |PN* + M{N? = \[(vt,/2)? +1?

Hence, distance  PM, P'=2PM; = 2‘[12 +vil /4.

This distance - PM, P’ has been traversed by the ray in the absolute frame, in which the velocity of light

is ¢ in all the directions. Hence
: A ’2 279 2,2 2 2 2 4’

ct=2I° +v°e /14 or ¢t = 4] JrvztI or t°=——7
¢t -y

: 2 2 af. »\*

W L [ 1+ i] ' [by Binomial theorem for v—z«l
! C 2c c
- The trans;mitted light ray at P is travelling with velocity (¢ — v) relative to the mirror M,, because the
mirror is moying with the velocity of the earth (v). This ray after reflection at M, -will travel with a velocity
(¢ +v) relative to the plate P, because now the plate is moving opposite to the ray. If t, be the time taken by
the~transmltted ray to travel the distance / to the mirror M and back, then

!

l 1
’——+—— (where PM,= 1)
c-v ¢+

_l 2
’ 2c 2, V) _2Af,, v
. T3 é_[ __zJ % [l+ g J [using Binomial series for-v2/c® << 1]

Hence the differénce in times. t;'aken to traverse bj/’the two paths is -

| 2 2) A VW
A=t = 2’1+v_-2_’,+v2 L
¢ Pl 2c ¢ 2 ¢
Thcrqfore the difference in the distance travelled by the two rays of: light, i.e., the path difference =
cAt = Wct. ™ : A :
Finally, the whole apparatus is turned through 90° so that the other arm PM, becomes coincident with
the earth’s velocity (v) in space [Fig. 12.4]. This causes the difference of path in the opposite direction and

hence the displacement of fringes should correspond to the path difference 2/v%/c%. In experiment, distance

! was taken nearly 11 metres. Hence the displacement of the fringes should correspond to the path
lifference

2x11x(3x10%)?
(3x10%)?
. The shift for yellow colour (A = 5000 A ) is expected to be 0.4 (= 2200 x 1071 5800 x 107°) of a 58

P
nnge-w1dth The expected shift of 0.4 of a fringe could be measured easily in the experiment. However, no

hift of fringes was observed. The experiment was repeated several times, but such displacement was never
een. .

=2200x 107 m.
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_since_then have been repeated several times under ok

- principle of relativity in the fields of elctrodynamics

One may argue that accidently the absolute M.
frame has the same velocity 3 x 10* m /sec with -
respect to sun as does the earth. Therefore, at this
instant, the earth is at rest in the absolute reference
system. However, Michelson and Mor-ley repeated 1
their experiment six months later and a four times )
magnified effect could be expected ; but again T

nothing was observed [Fig. 12.5]. The experiments i ! - O]:O
M <

different circumstances and always the same
negative result was obtained. —>vy

The negative results of Michelson-Morley
suggest that the value of v relative to the absolute .
frame should be zero. In other words, the speed of —
light in vacuum must be the same (c) in all inertial - ) ))r,fc
Sframes. It does not depend upon the motion of the

Flg 124: Mlchelson-Morley apparatus

- observer or-source expected on the basis of Galilean . 2 rotated by 2.

transformations. The negative results of Mechelson-
Morlcy cxpenmcnts show the validity of the

and optics. In fact, the principle of relativity is a
fundamental truth applicable to all areas of physics. .

12.8. ETHER HYPOTHESIS

In the 19th century, physicists .made a false
analogy between light waves and sound waves or
other purely mechanical disturbances. In order to
propagate the sound waves a material medium (e.g.,
air ) is necessary. If we say that the speed of sound
in air is 332 m/sec, it means that this is the speed

which is measured with respect to reference frame fixed in the air. Therefore, these phys1c1sts postulate the -
existence of a hypothetical medium for transmission of light and called it ether. It was supposed to fill all
the space. To explain the very high speed of light, the density of the ether was supposed to be vanishingly
small while its elastic moduli were assumed to be quite large. These workers considered that there is a fixed
frame of reference of ether in which light travels with velocity ¢ (= 3 x 10® m/sec) in all directions. Since the
earth is moving at a speed of v = 3 x 10* m/sec. around the sun in its orbit, the supporters of ether theory

reasoned that there must be times of the year when the earth has a velocity of at least 3 x 10* m/sec with
respect to the ether. The negative results of Michelson-Morley experiments suggest that the effects of ether

are undetectable and therefore; ether theory must be discarded. In fact, what Einstein said that there is no
necessity of any material medium for the propagation of light waves and analogy between the electromagnatic
waves and mechanical waves is not correct.

In conclusion, the Michelson-Morley experiments discard the idea of a priviledged (absolute) frame of :

reference or ether and. suggest that the velo-city of light c is constanit in vaccum in all inertial frames.

The later fact is the root of the relativistic discussion of physical laws.

" Fig.12.5
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12.11. CONSEQUENCES OF LORENTZ TRANSFORMATIONS

Now, let us discuss the consequences of Lorentz transformations regarding the lengths of the bodies
and the time intervals between given events.

(1) Length contraction : In order to measure the length of an object in motion, relative to an
observer, the positions of the two end points must be recorded simultaneously. Consider a frame S relative
to which a rod is moving with velocity v along the X-axis. Let us associate a frame S with the rod so that °
the rod is at rest in S". If in this frame, the x-coordinates of the ends of the rod are x,'and x,', then

=y "' '
Io x, =X,

This length [, has been measured by a
stationary observer relative to the rod and is called
the proper length of the rod. It is not necessary
that the observer O’ should measure the positions
of the end points of the rod simultaneously, because
the rod is at rest relative to him.

If the X-coordinates of the end points of that
rod in frame § are measured to be x andxlatthe
same time ¢, ﬂmenmmlsﬁ'amtl'leobsewedlengmof'
thc rod is )

l=x2—x1

According to Lorentz hmfomﬁom Fig. 12.7 : Contraction of moving rod
x'=y(x-w)and x,'=7y(x-w)
X =x"=y(x,~- Jq)__or =71

C Thus 1=z1/14-?/2 T : (17)'

As the factor1ﬂ1 v / ¢* is smaller than umty we have /< [ . This means that the length of the rod

(I), as measured by an observer relative to whlch the rod is in motion, is smaller than its proper length.
Such a contradiction of length in the direction of motion relative to an observer is called Lorentz-
Fitzgerald contradiction. However, there will be no change in length in the perpendlcular du'cctmn of
motion.

If the rod is at rest in the frame §, then its proper length is

I=x,-x | .
Now the observer of §" at time ¢ measures the end coordinates of the rod as x,'and x', then according

to Lorentz transformations, we have
x=y(x'+tw') andx,=y(x,+v')

Hence, X,—x = y(xz'—x,’) or L=yl brl=lo.‘h~..v2/c2 .

This means that a rod at fest in § appears to be contracted to the observer O". Thus, a length is
contracted, if there is relatwe motion between it and the observer.

(2) Simultaneity : If two cvcnts otcur at the same time in a frame, they are said to be simultaneous.
Suppose that §', ‘frarm: is moving re]atlve to§ along positive direction of X-axis with velocity v. Let two
svents occur sunultane.ously in frame S at the points P, and P, with the coordinates (x,s Ypipt ,) and (x,,
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Y, Z,, 1,) 1€spectively as measured by‘thc'observer O of the S-frame. As the two events are simultancous in
frame S, we have L=t If tl' and tz' are the corresponding times of thc_sam_e two events are measured by
O' of frame §', then the use of Lorentz transformation equations gives

Y _ Y _ P, (xpyp2,1)
AT
5 § -
Py (ypz,t)
' Y z:"'z') .
' X : X
0 .
0
. —>y
z o

Fig. 12.8 : Representation of two events in two inertial frames .

t-vxlct t, - vx,lc?
t'= —— and )=
! Jl -Vt -7 Jl -yt

h- ‘l (W-"Cz )(x; —x,)

Therefore, ‘
1/ 1- \/1 —vi/ct
As_rz= tor t-t= 0, we have
.0 x -x) .(18)

L - L '=
1=
We observc that t,-1'#0: This means that thc two events at two d:ﬂ':rent points P, and P, which arc'

simultaneous for O in frame S are not simultancous for the observer O’ of the frame ', movmg w:th speed
v along X-axis relative to S. Thus the simultaneity is not absolute, but relative.

(3) Time Dilation : Let a frame §* be moving along X-axis with velocity v relative to S. Nomr ifa -

_ciock being at rest in the frame ', mea- sures the time t,"and t,’ of two events occurring ata ﬁxed position -
x' in thisframe, then the interval of time between these events is
Ar'=t 2 - ; _No (Y}
Now, according o Lorentz transformations, we have
' t=y(, +wic) and  t=y(+ vx'/cz)

Therefore L-t=vy( -1') or At=yAL
Asy

Thus A = .(19)
. - ' Jl—-vI /c? :
As LNT=VIE 51, A >,
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(4) Addition of Velocities : Let the coordinates of a particle in frame S be (x, y, z, ¢) and in frame S
(x', y', z', t'), then the components of its velocity in two frames can be written as

- . uEdddt, u=dyldt, u= daldt S

and = dxldf, )= dyldt, u'=dzdd n S

Accordmg to the inverse Lorentz transformations
x=y('+v'),y=y,z=2t=y("+wl?)

Therefore, dx = y(dx' + vdr'), dy = dy', dz = dz' and dt = Y (dt' + vdx'lc?)

& 4y
de _ y(dx' +vdt') gy
di

u .= =
5 . vdxl . - V dxl
e L T L
(dt ¢ ) c*dr
Y @2 a).
Ol' ' u.:_l + Vu,x/cz s
Al dy dy' dy'ldt'
SO u=-—--= =
y Y dt vdx') { "y dx')
dt' + —— 1+
A : @ u _ Y( ¢’ i ) ¢ dt
or u = —— (22 b)
y ‘y(l+vu'x/c) .
| Similarl _ ' - " s 5o (22"<:)
A Y=y : .
T M yaewsdy o |

Th1$ is the relativistic law of addition of velocities whxlc in classical mechanics u =u'+v, v'=u
and u'=u_.We get the later (Galilean) equations, when v is much less than the speed of light c. -

If we take the Lorentz transformations, we can prove that

U, —v Uy . u,

[T ¢ B R

u ok 2d)

Ty w'= 5oy u'= s
¥ l-wulc Yoy =-w /ety oy (1-wulc?)
In case a particle (as photon) is moving with a velocity ¢ in the frame S’ and S’ is moving with velocity -
c relative to S along positive X-axis direction, then from eq. (22 a), we have
i A
u‘—l +eclct
Thus the speed of photon in the second frame is also%, ie., the velocity of light is the same for all
inertial frames whatever their relative speeds may be. This result is in accordance with the Michelson-

Morley experiment. In fact, the Lorentz transformations and hence the law of addition of velocities have been
deduced by assuming the velocity of light constant for all inertial observers.

[ because u'=c, v=c]
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B VELOCITY ADDITION AND THOMAS PRECESSION

The most general homogeneous Lorentz transformation will involve both a veloc-
ity change and a rotation of the coordinates. The velocity transformation is termed
a boost and has the form of Eq. (7.11). Any homogeneous Lorentz transformation,
L, can be written as

L =RLy = LR (7.13)

where R is a rotation matrix as discussed in Chapter 4, and Ly, which is called
a restricted or proper Lorentz transformation, corresponds to a pure boost. The
restricted Lorentz transformations form a representation of the Lorentz group.*
Since R is not symmetric and Lq is symmetric, L will, in general, have no sym-
metry. Also, since Ly and R are matrices, RLy # LoR. There will exist two other
transformations L{, and R’ such that RLy = L{R".

For any Lorentz transformation, L, there is an inverse transformation, L=}, such
that

Ll =L"L=1, (7.14)

where 1 is the diagonal unit 4 x 4 matrix with elements d,g. The existence of
an inverse places four constraints on the diagonal element and six on the off-
diagonal elements for a total of ten constraints on the Lorentz transformation.
There are then only six independent components. Three of these correspond to
the components of the relative velocity vector and three correspond to the Euler
angles of the rotation (see Section 4.4).

Consider three inertial systems, Sy, S;, and S3, with x axes aligned. Let S, be
moving at a velocity v along the common x-direction with respect to S; and let
S3 be moving at velocity v’ along the common x-direction with respect to Sz. The
Lorentz transformation from S, to S3 is given by

y -y 0 0 y -y 0 0
Lsw|=E ¢ 1 Dll=pg » 1 8
=S5l @ 0o 1 0 0 0 1 0

| 0 0 0 1 0 0 0 1

[yy'(L+ 88 —yy'(B+8)
-vv'B+8) yy'(1+88)
0 0
0 0

cC—=0OoC
==
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where Eq. (7.7) defines $ and y for v and 8" and ' for v’. Let 8” be the speed of
S relative to S; and y” the associated factor, then since L;_3 can be written as a
single Lorentz transtormation with a velocity 8” with its associated y” as

}/'” _}////31! O 0

L S —V”ﬂ” y!l 0 0
= 0 0 1 0
0 0 0 1

and, since these two forms of L;_3 must be the same, we have

_E¥g
IR
This is the relativistic addition of velocity formula for parallel velocities.

The product of any two transformations, L) and L is itself a Lorentz trans-
formation, Lz. Such a Lorentz transformation will, in general, involve not only a
boost, but may also include a rotation of coordinate axes. If both Ly and L; are
pure boosts but their two velocities are not parallel, L3 will involve a rotation in
addition to a boost. This rotation is called the Thomas precession rotation. The
usual form for the Thomas precession assumes the second boost, Ly has a ve-
locity small compared to the first boost, L} and also that it is small compared to
the speed of light. For example, the Thomas precession can be observed for a
gyroscope orbiting the Earth or for electrons in atoms.

Consider three inertial frames S;, S», and 3, with $> moving at a velocity 8
with respect to Sy and S3 moving at a velocity of B’ with respect to S>. Without
loss of generality, we can arrange the axes of S so that 8 is along the x axis of
S) and B’ lies in the x'y’ plane of S>; that is, 8, B’ define the x’y’ plane of S5. Let
L represent the transformation from S to S; and L’ the transformation from S5 to
S3 with y and y’ associated with 8 and B'. Then from Eq. (7.11),

B (7.15)

y -—-vB8 0 0
_|-vB Y 0 0
L=|7 5 1 B (7.16)
0 0 0 1
and
Y’ —v'B =y 8y 0
1t / ﬁll‘ ' ﬂx’ﬁ:'
. | =¥By 1+l H—D=5F 0
L= ok o (7.17)
Y P ‘dr'ﬁr" ] B ;'
Py @-D—= 1+ -Dgr 0
0 0 0 1

We assume that the components of 8’ are small and only need be retained to first
order giving via matrix multiplications of Eq. (7.16) and Eq. (7.17)
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vy -vv'8 —y'By, 0
Vieple=| ¥ 2 0 0 7.18
~vv'By, vBY'B, v 0 (Rel)
0 0 0 1

Since L” is not symmetric, it must correspond to a rotation and a boost. We shall
write the velocity of S3 as observed by Sy as ”.

Since the off-diagonal elements corresponding to the z axis are zero. this ro-
tation is about an axis perpendicular to the xy plane. The boost from §; to Sz is
denoted by B”, and we assume that B’ is small compared to B and also small
compared to the speed of light (y’ = 1). Then, to first order, the nonvanishing
components of B” are (Since the velocity perpendicular to x is small we can ig-
nore to first order the distinction among y, y’, and y”)

Bl =8 ﬂ_if=%- Fr=p. amd y'=y, (Al
and Eq. (7.18) becomes
I A
i _5"’;‘_3? VBB 1o Sl
0 0 0 1

In this approximation, a pure Lorentz transformation from Sz to S; (the inverse
transformation) would correspond to a large boost in the x” axis of —8; and a
small boost in the y” axis of —B/. The Lorentz boost for that transformation

y// yl'ﬂ;/ y"ﬁ(,l O
ol 17 " ﬂ”
v" g ; “"— D= 0
Ly =" "" ¥ g 4 B (7.20)
y"ﬂ;_’ (y" — 1‘)13—-}, 1 0
0 0 0 |

Finally. the rotation matrix induced by the rotation from S) to $3, after some
algebraic simplification and the dropping of higher-order terms in B”, is found
to be

1 0 0 0
By
0 1 —HZ o
R=L"L3_; = ” r=0% (7.21)
0 —(r—D3F 1 0
0 0 0 1

Comparison with Eq. (4.44) shows that R implies 3 is rotated with respect to S;
about the z axis through an infinitesimal angle:
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"

“y 7 )’— 1)
AQ=(y — DL =p" ], (7.22
(v 3 ﬂﬂ( i )

The spatial rotation resulting from the successive application of two nonparallel
Lorentz transformations has been declared every bit as paradoxical as the more
frequenty discussed apparent violations of common sense, such as the so-called
“twin paradox.” But the present apparent paradox has important applications, es-
pecially in atomic physics, and therefore has been abundantly verified experimen-
tally.

Suppose now that S is the laboratory system, while S, and S3 are two of the
instantaneous rest systems a time As apart in the particle’s motion. By Eq. (7.22),
the laboratory observer will see a change in the particle’s velocity in this time,
Av, which has only a y-component 8¢ = Av. Since the initial x axis has been
chosen along the direction of v = fc, the vector of the infinitesimal rotation in
this time can be written as

v X Av

AQ = —(V e 1) 1‘2

(7.23)

Hence, if the particle has some specific direction attached to it (such as a spin
vector), it will be observed from the laboratory system that this direction precesses
with an angular velocity

v a

(7.24)

dQ} ( 1 X
0= —=— —

dt & v?
where a is the particle's acceleration as seen from 7. Equation (7.24) is frequency
encountered in the form it takes when v is small enough that y can be approxi-
mated (using y &~ 1 + %/.‘32) as

: (axv). (7.25)

«w =
2¢2

In either form,  is known as the Thomas precession frequency.
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B VECTORS AND THE METRIC TENSOR

We will use the notation that the coordinates, which need not be Cartesian, are
written as x* where x* = ¢t is the time coordinate, and x!, x2. x* are the space
coordinates. This change in notation is needed to be consistent with the develop-
ments in the following sections.

Consider an arbitrary one-dimensional curve in 4-dimensional spacetime, P,
described by a parameter A, where for a given A the coordinates of a point of
the curve can be written as x?(1), x' (1), x2(1), x3(2). In introductory texts a 4-
vector, v, is defined by this curve as an arrow whose tail is located at an event A
on the curve and whose head is at an event 3 on the curve where v 453 = Pg—P4.
However, instead of defining the vector at two points, we can use the parameter
., which is a measure of the length along the curve from A to B, by writing

dP
AB= | — . 26
VAR (d)k )):0 (7.26)

Such a 4-vector is a tangent vector to the curve. We adopt the notation that the
components of vectors are written with superscripts such as v, v/, v2, v, In spite
of the way we draw tangent vectors, they do not have any extension in spacetime.
The arrows we draw simply help us visualize the vector. At each point along the
curve, the tangent vector has a direction and a magnitude. For curves that are
timelike, the proper time, 7, is usually chosen as the parameter A. The laboratory
coordinates are then x? = ¢t (1), x! = x(1), x2 = y(1), X = z(7), and the
tangent to the curve is the four-velociry, u, of a particle traveling along the curve
‘P. Equation (7.26) becomes

o_dcf

u = Y, U = — = yvA (7.27)

e
where v = dx'/dt is the normal three-velocity with vZ = (v*)% 4+ (17)2 + (v?)?.
We shall assume that Greek letters can take on the values 0-3 and Latin letters
the values 1-3. Repeated indices are summed. Since the 4-velocity of a particle is
defined over a range of the parameter A, there is an infinite set of 4-velocities for
the particle, one for each value of A. Such a set of vectors is termed a vecror field.
Some common examples of vector fields are given in Table 7.1.

We assume that the components of any 4-vector can be expressed by the val-
ues of the vector’s projections along a set of basis vectors, ep, €|, €2, €3, and that
the coordinates are measured along the direction given by the basis vectors. Such
a system is called a coordinates basis.* Cartesian, spherical. and cylindrical co-
ordinate systems, among many possible systems, can have such a basis set. The
position of a point on the curve P(7) can be written as

P(r) = x*(7)e,, (7.28)
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TABLE 7.1 Examples of Vector Fields

Time Space
Name Portion Portion (Magnitude)? Type
Coordinate ci r c22 — r2 spacelike, null, or timelike
Velocity ye yv 2 timelike
Momentum % p m2c? timelike
Force zZ %;E— v %',—’ =yF | —(FNewtonian)> spacelike
Current density yoc yJ pzcz timelike

where repeated Greek indices, one raised and one lowered, are summed from 0
to 3. In particular, the 4-velocity given in Eq. (7.27) becomes

dP  dx*
u = =

= b

e, = u'e,.

The magnitude of the 4-velocity is a scalar whose values can vary as we
change A. This set of magnitudes is an example of a scalar field. To convert a
4-vector field to a scalar field, we need what is called a functional,* which can
convert a pair of vectors into a scalar function at each point in spacetime. In other
words, we wish to define the scalar product of two vectors or vector fields. This
conversion of a 4-vector field (or two different vector fields) to a scalar field is
an example of a mapping. It both the vectors are the same, then this scalar would
be the square of the length of the vector, and when the vectors are different, it
is called the scalar product of the vectors. Such a functional is called the met-
ric tensor, g." The metric tensor functional can be considered as a machine with
two slots into which you can insert two vectors to produce a scalar (real-valued
function). That is,

glu,v) =glv,u)=u-v, (7.30)

is the scalar product. In particular if the basis vectors are inserted into the metric,

8up = Blea, €8) =€y - €p. (7.31)
The gqp are the components of the metric tensor associated with the basis vec-
tors e,. For example, consider a two-dimensional Minkowski space with coordi-
nates ¢t and x and a vector v = (a, b). Then g(v,v) = a* — b?* and goo = 1,
g1 =—L

The form of the gqp is defined by the form for the interval. This suggests that
we consider small displacements. If the relative displacement vector between two
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points is small, it can be written as
dr = Ax%ey. (7.32)

Recasting Eq. (7.32) in the language of Eq. (7.4"), we see for Minkowski coordi-
nates

(As)? =d{ - dt = Ax*AxPeq - e = gop Ax* AxP
= (cAr)? — (Ax)? — (Ay)? — (A)%

In the limit of infinitesimal displacements this can be written as

ds? = gu,gd.r“dx-ﬂ, (7.32)
which holds for any metric tensor. The metric tensor for a Minkowski coordinate
system, using the +——— sign convention, has the following tensor representa-
tion*

1 0 0 0
0O -1 0 0

£=lo 0o -1 o R
0 0 0 -1

The scalar product of two vectors in this coordinate system is
y, 2 9 | 2
u-v=u* vﬁgaf; =u%" — ulo! — w?e? — P, (7.34)

It is straightforward to show that in any coordinate system, the square of the
magnitude of the four-velocity is

weu=c’ (7.35)
The 4-momentum can be defined from Eq. (7.27)
p = mu, (7.36)
where the mass, m, is a scalar. So the length squared of the four-momentum is
pep=m-c (7.37)
or from Egs. (7.27) and (7.34),

o) 2 9 EZ
p-p=mc=mcty? —m*?y? = = —p? (7.38)
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where p is the length of the 3-momentum. This last form of Eq. (7.38) is often
written as

E?* =m*c* + p’ct. (7.38")

The relativistic kinetic energy, T . is defined as

T=E—mc*=mc*(y—1) (7.39)
e 4
=/ (mc?)? + p2c2 —mc?. (7.399)

For 8 « 1, a power series expansion gives
T = %mv2 +0(8h. (7.40)

Since p = myv, Eq. (7.39) shows that the kinetic energy of a body with finite rest
mass tends to infinity as the speed approaches that of light (as 8 — 1, y — o).
In other words, it takes an infinite amount of energy to increase the speed of a
mass particle (or a space ship) from any velocity less than ¢ to ¢ itself. This is
another proof that it is impossible to attain or exceed the speed of light starting
from any finite speed less than c.

B FORCES IN THE SPECIAL THEORY; ELECTROMAGNETISM

The preceding material has been concerned with the kinematics of the special
theory. The dynamics of the theory follows from the assumption that Newton’s
laws are correct for objects at rest in the rest frame of the observer, nearly correct
for objects moving slowly relative to the speed of light, and require generaliza-
tions to covariant equations. The correct generalization of the three-velocity to the
four-velocity was given in Eq. (7.27). So we must generalize the force law,

¢ 4

] (7.65)
dt

to a covariant form.

Since Maxwell’s equations are assumed to be a correct description, we shall
briefly consider a covariant reformulation of electromagnetic theory as a guide
for the correct form of the force laws of mechanics. The vector and scalar elec-
tromagnetic potentials form a four-vector A* = (¢/c, A). If the potentials satisfy
the Lorentz condition (in SI units), which is the vanishing of the four-divergence
of the electromagnetic potential 4-vector,

dAH a
= =V-A+ uoeo‘—qb =0, (7.66)

O.-A=V.-A=-
dxh at

they separately satisfy the wave equations of the form (where uogo = 1/c?)

1 %A
O?A = V2A = — — — V2A = uoj (7.67a)
(.2 L);Z
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for the space components and for the time component

0% _wip=L (7.67b)
at- &0

- 1
O%¢ =V =—
C

In terms of ¢ and A, the Lorentz force is F = ¢{—V¢ + ci% + %[v x (V x A)]}.
This suggests that we should generalize the Lorentz force law to

AP o WY, R, (7.68)
dt oxH dt
For the three-momentum, p5, and three-velocity, v, Eq. (7.68) becomes
d
25 —e®+vxB), (7.68")

with E the electric field, B the magnetic field, and e the electric charge. The geo-
metric approach is to define a tensor F, named Faraday, whose components will
be the electromagnetic field tensor and write, with u the 4-velocity,

dy
8P _ eF (). (7.69)
dt
In component notation, this becomes
dp* ;
}”7 = eF*guf. (7.70)
This produces Maxwell’s equations, provided (according to Eq. (7.68)) F“p is

given by

0 E. E, E
Ec. O c¢B. -—cB,
A=|E, —=cB, 0 B
E, c¢By —cBy 0

(7.71)

In Minkowski space, the indices are raised and lowered by the metric tensor
(Eq. (7.33)), so

0 ~Ex B —E;

E 0 —cB. «¢B, "
ol X v e Y
FY% = E, CcB, 0 —¢B, 771
E. —cB, c¢B; 0
and
0 E, E, E,
—E, O —cB, cB, ’
Fap=|_E, B, 0 —cB g

—E. —cBy ¢B, 0

Prepared by Dr. N. Padmanathan, Assistant Professor, Department of Physics, KAHE Page 20/38



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC PHYSICS COURSE NAME: CLASSICAL MECHANICS AND RELATIVITY
COURSE CODE: 19PHU103 UNIT: V (Relativity) BATCH-2017-2019

The Faraday tensor can be written in at least two different ways using either the
tensor product, Eq. (7.58), or the wedge product, Eq. (7.64), as

F = Fypdx® ®dxP = JFpdx® ndxP.

The latter expression explicitly shows the antisymmetry.
We can write Maxwell’s equation in their normal component form using geo-
metric notation:

VF=0 and V.F=J, (1.72)

where J is the 4-current density with components (oc, j), where p is the charge
density and j is the three-current density. The first of these equations produces
(using three-dimensional notation) V- B = 0 and dB/9r + V x E = 0, while the
second gives V- E = p/ep and (1/¢?) BE/3t — V x B = — .

Following the guide provided by the covariant formulation of electromagnetic

theory, the proper generalization of Newton’s second law, Eq. (7.65), is
u 2 =K, (7.73)
dr
where K/ is a 4-vector force, known as the Minkowski force. The spatial compo-
nents of K* are not the components of the force in Eq. (7.65), but rather they are
quantities that reduce to the F' as 8 — 0. The exact form clearly results from
the Lorentz transformation properties of the forces present. Some aspects of the
4-force are listed in Table 7.1.

The general question (which cannot be uniquely resolved) is, How do we find
the proper relativistic expression for force? Electromagnetism is used to justify the
special theory, so we should expect no problem with it. As we saw in the previous
paragraphs, this is trivial for electromagnetic forces because the special theory and
the Lorentz transformations are constructed to make Maxwell’s electromagnetic
theory covariant. For example, the electromagnetic force is given by Eq. (7.68) as

duyAY  dA,
K, =- ( e —7). (7.74)

with g the charge on the particles and A, the components of the four-potential
given by (¢/c,A). Note that ¢ is the scalar potential and A is the three-
dimensional electromagnetic vector potential. So the ordinary force, F;, and
the spatial component of the Minkowski electromagnetic force, K;. are related by

Fi = Ki\/'l <2, (7.75)

‘What about other forces? Two methods are commonly used to deduce acceptable
transformation properties of forces and hence the correct relativistic form of the
forces.

The first method is to argue that there are only four fundamental forces in
nature—gravitational, weak nuclear, electromagnetic, and strong nuclear. A cor-
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The second approach of determining the correct relativistic force is to simply
define force as being the time rate of change of the momentum. Then we write

dp;

= F 7.76
7 i (7.76)

where the p; in Eq. (7.76) is some relativistic generalization of the Newtonian
momentum that reduces to mv; in the limit of small 8. The simplest generalization
is the one given in Eq. (7.36). This second approach has thus far failed to produce
any results other than those predicted by the first approach.

B RELATIVISTIC ANGULAR MOMENTUM

In Chapter 1, it was proven that the nonrelativistic angular momentum obeys an
equation of motion much like that for the linear momentum, but with torques
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replacing forces. It was shown that for an isolated system obeying the law of
action and reaction the total angular momentum is conserved, and that in the
C-O-M system it is independent of the point of reference. All of these statements
have their relativistic counterparts, at times involving some additional restrictions.

For a single particle, let us define an antisymmetric tensor of rank (S) in
Minkowski space using the formalism of Eq. (7.64)

m=xAp (7.119)
whose elements would be
mtY = x“p“ - x"p“, (7.120)

The 3 x 3 subtensor m*/ clearly corresponds, as was seen in Section 5.1, with
the spatial angular momentum of the particle. An equation of motion for m*" can
be found by taking its derivative with respect to the particle’s proper time and
making use of Eq. (7.73) giving

dm .

—=uAp+xAK=xAK, (7.121)
dt

where the first term vanishes by the antisymmetry of the wedge product and K is

the Minkowski force. In component notation, Eq. (7.121) becomes

dm*¥

y =x*K" —=x K", (7.122)
T

This suggests we define the relativistic generalization of the torque by
N=xAK, (7.123)
whose components are
N* = xPKY — xVKH, (7.124)

Thus, m obeys the equations of motion

d
:11"_ =N, (7.125)
T
whose component form is
d':m = N", (7.126
T

with Eq. (1.11) as the nonrelativistic limiting form.
For a system involving a collection of particles, a total angular momentum
4-tensor can be defined (analogously to the total linear momentum 4-vector) as

M:va (7.127
3

or in component form

M®W = Zmi.“". (7.128)

§
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‘I'he relativistic angular momentum obeys the same Kind ot theorem regarding
translation of the reference point as does its nonrelativistic counterpart. In the def-
inition, Eq. (7.120) or Eq. (7.128), the reference point (really reference “event”)
is the arbitrary origin of the Lorentz system. With respect to some other reference
event a;, the total angular momentum is

M(@) =) (X —a) A ps (7.129)
)
=M(©0) —a, AP (7.130)

As in the nonrelativistic case, the change in the angular momentum components
is equal to the angular momentum, relative to the origin, that the whole system
would have if it were located at a; .

In Chapter 1, one particular reference point played an important role—the cen-
ter of mass. We can find something similar here, at least in one Lorentz frame, by
examining the nature of the mixed time and space components of M*", namely,
M% = — M By definition, in some particular Lorentz frame, these components
are given by

M ="l —xipd) (7.131)
5

j
i X5 Es
=£.Z(,,,§— :’) (7.132)

5
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In the C-O-M frame, the total linear momentum p = 3 p, vanishes, and M"/ in
this frame has the form

‘ E,
MY = —cz x"q‘ ; (7.133)

c-

5

If the system is such that the total angular momentum is conserved, as described
above, then along with other components M is conserved and hence

Z x! E; = constant.

¢ ¥

Conservation of total linear momentum means that E = ) E| is also conserved.
It is therefore possible to define a sparial point R},

X x! E;

Ri=-2 ; 7.134
j SE ( )

associated with the system, which is stationary in the C-O-M coordinate frame.
In the nonrelativistic limit, where to first approximation Es; = m.c>, Eq. (7.134)
reduces to the usual definition, Eq. (1.21). Thus, a meaningful center of mass
(sometimes called center of energy) can be defined in special relativity only in
terms of the angular-momentum tensor, and only for a particular frame of refer-
ence. Finally, it should be noted that by Eq. (7.130) the spatial part of the angular
momentum tensor, M, is independent of reference point in the C-O-M system.
exactly as in the nonrelativistic case.

Except for the special case of point collisions, we have so far carefully skirted
the problem of finding the motion of a relativistic particle given the Minkowski
forces. To this more general problem we address ourselves in the next section,
within the nominal framework of the Lagrangian formulation.
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I INTRODUCTION TO THE GENERAL THEORY OF RELATIVITY

Thus far we have been careful to use the term “special theory of relativity” and
not to introduce the term “special relativity,” by which we endeavored to make
clear that it is the theory that is special, not the relativity. The special theory
uses ideal inertial frames that are assumed to exist over all of spacetime. The
general theory not only removes that requirement, but also has a spacetime whose
nature is part of the solution to the question of motion. To paraphrase John A.
Wheeler: “Matter tells space how to bend, and space returns the compliment by
telling matter how to move.” The general theory is often interpreted in terms of
non-Euclidean geometry, so terms like geodesic (paths of shortest distance) and
curvature of spacetime are often used. In this brief section we can only outline the
formalism of the general theory to show how the full tensor notation is used.
Five principles guided Einstein in the development of the general theory:

1. Mach’s principle—the special theory used inertial frames. E. Mach ob-
served that Newtonian inertial frames were not rotating with respect to the
fixed stars. This suggests Mach’s principle, whereby inertial properties are
determined by the presence of other bodies in the universe.

2. Principle of equivalence—whereby the gravitational mass for each body in
the universe can be consistently and universally chosen to equal its inertial
mass. To the best accuracy of all experiments performed to date, the ratio
of the gravitational mass (the mass that appears in Newton’s force law for
gravity) to the inertial mass (the mass that appears in the second law) of
any object is independent of both the total mass and of the composition of
the object. This means that no local experiments can distinguish nonrotat-
ing free fall in a gravitational field from uniform motion in the absence of
any gravitational fields. Likewise, local experiments cannot distinguish be-
tween being at rest in a uniform gravitational field and undergoing uniform
acceleration in the absence of any gravitational field (that is, in a rocket).

3. Principle of covariance—in the special theory, all inertial observers are
equivalent. The general theory extends this idea by postulating the principle
of covariance. This principle is that all observers, inertial or not, observe the
same laws of physics. That means the laws of physics can be expressed in
terms of tensors, since tensors are geometric objects defined independent of
any coordinate system.

4. Correspondence principle—in weak gravitational fields with velocities
small compared to light, the general theory should make predictions that
approximate the predictions of gravitational behavior in Newtonian me-
chanics. As gravitational fields go to zero, the correspondence principle
states the predictions of the general theory should approach those of the
special theory.

5. Principle of minimal gravitational coupling—this principle postulates that
no terms explicitly containing the curvature should be added in making the
transition from the special theory to the general theory.
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FIGURE 7.5 Tangent vector, u, and deviation vector, .

We shall use the proper time at the tail of the deviation vector and have the
head point to where the other test particle is at that time. In general, as the motion
progresses, the proper time of the first test particle will not be the same proper
time for the other test particle. A straightforward calculation, in the Newtonian
limit, for the example of two falling balls, gives for the space components of &
perpendicular to the direction toward Earth’s center,

(Izgl . t"

= KRS, 7.169

where R depends upon the distance to Earth’s center and other physical constants.
Equation (7.169) says the acceleration in the separation of two geodesics is pro-
portional to their separation. A two-dimensional example is the geodesics on the
surface of a sphere. Consider two initially parallel geodesics on a sphere. These
geodesics will meet after they have traveled one-quarter of the circumference of
the sphere. For this case, Eq. (7.169) has R = 1/a?, where a is the radius of the
sphere.
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Riemann produces

VoVué + Riemann(. .., u.&.u) =0, (7.170)
where V, ¥V, = % In component notation, Eq. (7.170) is
d*E” dx? .., dx*
—— 4+ R%,s —&Y — =0. 7171
ds? Pyé dt dt ( )
If we contract Riemann on slots 1 and 3, we produce a tensor called Ricci,
defined as
Ricci(u, v) = Riemann(w®, u. ey. v), (7.172)
whose components are
R,y = R*qy (7.173)

Another critical contraction produces the curvature scalar, called R
R = Ricci(w®, ey) = R%,. (7.174)

Of all these possible contractions of Riemann, only one tensor of rank ((2)) retains
all the differential symmetries of Riemann. That tensor is called Einstein (denoted
by G) and is defined as

G = Ricci — 1&R, (7.175)
with components
Guv = Ruv — 38uR. (7.176)

Using T to denote the stress-energy tensor, Einstein’s field equations make Ein-
stein proportional to 7.

G =kT. (7.177)

These equations for weak gravitational fields and for speeds much less than
light approach Newtonian gravitational theory, and for no gravitational fields pro-
duce the results of the special theory. They also correctly predict all the measured
first- and second-order corrections to the special theory of relativity in experi-
ments thus far performed. In addition, the theory predicts the existence of gravita-
tional waves from moving masses. Although these waves have not, at this writing,
been directly observed, measured changes in the periods of several binary star
systems are consistent with the existence of such radiation existing.
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14.2. MINKOWSKI SPACE AND LORENTZ TRANSFORMATIONS
Minkowski considered a fou_r»t':limenslibnal ca;tesian space in which the pbéitioh is specified by three
coordinates x, y, z and the time is referred by a fourth coordinate ict. If we write x; = x, .xz =Y, x3 =2 and

X4 = ict, then an event is represented by the position vector (x;, Xy, X3, X, ) in this four dimensional space. of
course the fourth dimension, referring to time, is imaginary. This four dimensional space is called Minkowski
or world space. It is also referred as space-time continuum and sometimes briefly as four-space. The square
of the magnitude of the position vector in such a four-space has the form
S=xi e+ +xg=xt 4yt 427 = (1)
Lorentz transformations are designed so that the speed of light remains constant in S and S’ inertial
frames (S’ is moving with constant velocity v relative to S) and this condition is equivalent to require that the
position vector in the four-space is held invariant under the transformations, i.e.,

sh=x?e i -t = vy 4 2 -
|

2 , 0 S S I
i sSt=xteiextextant sl 423 405
: 2_& 2 49
. or S=LX = Lx, ~(2)
=l n=l
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Deduction of Lorentz Tansformations : In order to prove the statement that the Lorentz transformations
can be regarded as orthogonal transformations due to rotation of axes in the Minkowski space, we deduce
these transformations in the four-space.

The frame S’ is moving with constant velocity v along X-axis relative to the inertial frame § and hence
we may have .
y y and Z z or x ) s xz and x 3= XJ ) . .' L .,.(3) 3
Thus from (2), the transformanons should be such thaf

x',2 +x' 4 = xl + x4 ~(4)
In order to keep this requirement, we consider two orthogonal coordinate systems X, X, and X, X'4in

the same plane (plane of the paper) with the same origin O. The axes of X'} X' system correspond to rotation

6 with respect to those of X X, system, i.e., the axes of the former coordinate system are inclined with the
later through an angle 6 . We observe that

2
OP" = x,2 +x;= x',2+ o
where the coordinates in two coordinate systems are related as

x'; =x,cos0 + x s'mé
) = 4 .(5)

X'y ==1x,8in0 + x4cose .....
——In matrix notation

[ - éosﬁ) sind > 5 - ;
= ‘ ) .{6)
S —-sinB  cosB % . _ _ o

Also, - x, = cosb — x'ysind §
- . : ) 7 Y-" x‘
X, = X', sinf + x'; cos6 SURE Y
When x;=0, x; =-x4 sin@
and X4 = x'y cosO \ i
Sothat tam@=-t--2X_-Y -(8) 48 RS o
X4 ict ¢ s Lo |
' ' : . ",--'jb :
where x', = x'=0 corresponds to the coordinate of the point Diecrrin ot > X,
X
|
O’ ( §-frame) relative to O (S-frame); ie., x =yt or X~ Fig. 14.1 : Rotation of orthogonal
t coordinates axes and invariance of

Y 2 _yh2 2
OP, = x? + X% = x"2 + x%
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Therefore from (8),

iv/c

Hence eqgs. (5) can be expressed as

iy 1 ‘
sinf = ———===——"and c0sb = ———=-=¥ sa
\/1-"2/‘32 ¢ \ll—vzlcz e

; LV Y d - Y v
x,=yxl+1y:x4=y —x,+z-c—x4 an x4=—ty;x,+yx4=y —?x1+x4 .

" Ifweadd X';=X,, and x'3= X3, the Mfonﬁaﬁbn equations are

v v
x'l=y(x, +1-C-x4),x'2=x2,x'3= X3, and x'4=y(—t—c-x, +x4j ‘

.9)

In fact, these are the Lorentz transformations. This may be seen by putting x, = x; X, =y,xy =2 and

xy =ictineq.(9),ie.,

- xX'=Y(x-v), Y=y, =2 and.t':y(t—vx/cz) :

In matrix notation, the Lorentz transformations from S-frame to S'-frame can be represented as

' 4 \

X' Y 0 0 iBy

Xy | 0 10 o0

By 0 0 'y

. ; 4
- or X, =>Ya

where B=v/c and y =1 / \/l -p? .and a,, are the elements of the abo\/c‘square matrix .

The inverse Lorentz transformations are

X, (y 0 ~iPy
X, 0 0 0
X, 0 1 0
x4 \iPy 0 Y
— 4
?eq or Xy E:law Xy

because Zavux:, = Zawzav;.x;. = %Zavpdlel - %5 X =Xy,
v v A v

~‘.;.(10' a)
i
X3
% ~(10b)
...(10¢)
x|
x'y
X'3 (lla)
x'y
(11b)
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Remember that for orthogonal transformations

Zau,valv = za\mavl =5u1

Here x, and x', satisfy the condition (2), i.e.,

2
Xu
1

,2
X =
1 1

T Ma
T Ma

The four coordinates x;,x,,xyand x, or x, y, z and ict, define the position vector in the four-space and
may be termed as four-position vector. We shall discuss more about four-vectors later.

15.6. COVARIANCE OF MAXWELL’S FIELD EQUA'HON'S INTERMS OF FOURVECTORS

The covariance (or invariance) of Maxwell’s field equations means that thesc equations have the same
form in any two inertial systems.

The Maxwell’s field equations in terms of electromagnenc potentials A and ¢ are obtained as

DA = - ey

and %% =-pley . ' | (Y

; ST I T S gy
with the Lorentz condition dlvA+—Za—:0 o _ -(33) .
. 2 ot , L -

The electromagnetic four vector potential A, and current four vector J,, are represented as

A, = (A IBIC) or A, = (A, Ay Ar.A) with A= idle | (34
and Ju =(sicp) or ju =UisJ2sJ3Js) with jy =icp (35)
These four vectors transform like Lorentz transformations and the transformation equations are as follows :

A =7 (A —vdlc?) o i=YGi-ve)

Ay = A "I,_lezfz

A'y= Ay .fs'= I

¥=7 (0 -vA) o p=y(p-vide)
In terms of 4, and J,, the Maxwell’s field equauons are represented in the form

0? Ap= ~HoJy .{(36a)
with the Lorentz condition

}4: 0A, 0

um 0%, - : .(36b)
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Let the eq. (36) be in S-frame. The covariance of Maxwell’s field equations requires that in any inertial
frame §', eq. (36) must have the same formie., :

D2 A= ~pofy _ - -.(37a)
- Loy
with Lorentz conditon EI ox, = | .(37b)

“In order that the statement (37) is true, let us consider

o, —DZY[AI_E] B I (Beé-alqseﬂ’?ljz-)

v 3 - v
=y [0%4,-— 0%4] =-T["lloh “—2[‘LH
c* : _ N §
= -‘Y[I-loa'll ‘I‘o""p] =_P~07[j| _"P] =~—poji".
o A'= =0 Az =‘l»10!2 z”l‘oh

D Ay'= 0%A Ay =—Wojs =—HoJs'

) Ly i ’ | o
B ]

0

c
:_IL ﬂi :-—-i—p‘z— ..‘ "
Eoc[p cz] c o
Al A= x'=Ya,: "1’1 0%y ]
‘SO-I p_g;ap.vAv‘s xl‘_val.l'\r’x}f’ -c1.1(:e ax‘)-i?akv \
oA, : aAv ox', oA,
__Z W . :Z L
Therefore, ax' - a, Xy _ax" a’_"p
O0A, - _ 0A
:E A\.IZ"“L
-V axu [ 5x}l
B > G I
t ——_
. m 61 (] a '

Thus eqs. (37) are same as eqgs. (36) This means that the MaxWeH s equations are covariant under
Lor entz i ‘ansformations.
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15.7.THE ELECTROMAGNETIC FIELD TENSOR

The electrromagnetic field v&ctors E and B can be expressed in terms of electromagnetic potential A

and ¢ as

B=VxA and E=—%‘t--v¢ .(38)

\

" The vector B has three components B!, B s B (orB,B,B,)andEhasE ,E » E (orE ,E,, E,) components.
A also has three components A, A, 4 _(or 4,4, 4)). :
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i i i
Now B= i o i
ox, ox, dxy
A A A
Tl'l‘crefdre‘,' B, _—_'% “@l - F2'3 ' s S - (3.%).
’ \.l‘: xz aX3 .
aA] ) 5.4.3 . .
—_—— . = F
Yooy, ox : . ‘ .(39b)
0A, OA
B,=2 -l | .
“Tox, ox, ° - (39¢)
 Also from (38) E, =24 _%%
. ] ot Ox
or E, __10A 09 _ oA _O(ig/c)
¢ ¢ dt cdx 8ty * 0x
iE, 0A, 0A, : :
Thus o ox oxm w6 (40)
~ iE, 5A, 0A | : S .
i l l, _J-‘—'—z——“—:F.,
Similarly ¢ ox, om, e . ...(40b)
iE, 0A B-A‘, _ 7. _
-2 _"_"2% _F, -
“_‘“d ¢  Ox, Ox “ . : . -(40c)
. 0A, OA
there in general f =—"v ¥
’ oox, ox, (41)
We observe that F,, =-F, and F, =0 (42)

Thus we can form an antisymmetric tensor whose components are given by

0 r'Bz "BI.V _EL
Fo Fo Fy Fo) | iE,
F o= By By By By _l T-'f_’z o & o
WO|Fy By By Fy B, -B, 0 _.i_E_’ ...(43)
Fy Fo Fy Fuf |’ ¢
) a iE, iE, iE, 0
¢ ¢« J

This is called the electromagnetic field tensor of rank two.
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15.9. COVARIANT FORM OF MAXWELL’S FIELD EQUATION IN TERMS OF
ELECTROMAGNETIC FIELDTENSOR |
Maxwell’s equations in free space are given by
(i) div E=* (ii) div B =0
EO .
OB

iif) curl E = ~—
(iif) =

Let us consider egs. (i) and (iv)

(v) curl B = ug[eo i—?ﬂ} -(52)

vxB=—~2 i and VE=E2
: ot . €

C

a(tE/c) iE_ip

or VxB +41,j and Ve—=
: c g
or VxB—a(fE/C)=ng and V'!E:“Ujd
0x, -

Writing in component form, the two equations are

B, 0B, i
o+ 2% 0% OEL) = HoJi
- 0x, =~ 0x dx,
08, - 0B,  O(-iElc) .
+ 0 4 =+ ' =Hoh
oy o 0x, (53)
2B, 3B, O(~iE,Jc) _ o
— === 4+ 0 + =HoJ3
ox, Ox, 0xy
O(E lc) O(E.J/c) B(E,/c) .
— p———1+ 0 =
0x, 0x, 0xy - uojd;

i Page 36/38
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Introducing the electromagnetic ficld tensor given by _
. . . £ 0 B, .—By —iE, /c
Ky, F, Fs Fy -B, 0 B, —iE,[fc|

_ Fy Fy Fy Fu | = . ~(54)
WOLR, By Fy o Fy B, -B. 0 -iE/c

-Hence egs. (53) are - . R
dF,
1 +5F‘2+8F,3+6F}5
Ox, 0Ox, 0Ox3 0Ox
OFy ,0Fy 0F,  0F, - ),
axl axz ax; 514 -
anl +"3F31+6P33+5F34
axl ax2 aI3 614
_aEu +‘?F;2+5F43+6F44
Ox;, Ox, 0Ox3 Ox,

= HoJi

= Hols

= HoJs

These equations and hence the Maxwell’s field equations (i) and (iv) are obtained in the compact form
4 OF '

3 nv
v=1 ax\.

= Wody : ..(55)

Maxwell’s equations (ii) and (iii) are written-as

’VxE+‘%§—=O and VB =0
t

First of these equations can be written as

VxE+:‘ca—B_=(_)‘0r-Vx(iE~]+-§£=0 \
ox; - c JOx, -

Thus the two equations can be written as

d(—iE,[c) . O(E,/c) L 9B, _
0x, O0x; é‘x;‘

0

A(E.Jc) , QUE, /c) N 98y - 0
dx, dxy dxy

O(~iEyfc) OGE,/c) , DB,
Ox, Ox, Ox,

=0

dB, 0B,
0B, 0% 9B _,

0x, Ox, O0x;

which can be written as

and
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OF, 0Fy  OF,

0+ =0
aXZ BX3 aX4
0Fy o, Fiu , OF _,
ox, Oxy 0Ox,
8F24+6F4,+0+8F,2 =0
O0x, Ox, Ox4
6[723+6F3| +5E2 ;+0=-0

and Ox; Ox, 0x;
These equations and hence the Maxwell’s equations (if) and (iii) can be written ‘i compact form as
o0F, 3 oF,, & 3F, _
ox,
Equations (55) and (56) represent the Maxwell’s field equations in terms of electromagnetic field tensor

0 ' -
ox, | 9x, : ..(56)

F,, defined by (54). As tensor equations are invariant under coordinate transformations, eqs. (55) and (56)

represent the covariant form of the Maxwell’s field equations.

%k %k %k %k %k %k k k ok
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UNIT -1

QUESTIONS

Total energy of body is sum of

Energy can neither be created nor be destroyed, but it can be changed from one form
An artificial Satellite revolves round the Earth in circular orbit, which quantity remai
A man presses more weight on earth at :

The rotational effect of a force on a body about an axis of rotation is described in terr

If no external force acts on a system of bodies, the total linear momentum of the syst
Which law is also called the law of inertia ?

Energy possessed by a body in motion is called

Lagrangian L =
The path adopted by the system during its motion can be represented by a space of
Co-ordinate transformation equations should not involve explicitly

The frequency of Harmonic oscillator is given by

If the total energy of the particle is conserved then,
Constraint relations do not depend on time is
Constraint relations depend on time is
Constraint relations can be made independent of velocities
The Branchistochrone problem is to find

"If no external torque is applied on a body, then total angular momentum remains co1
Which one of the following choices is an example of a non-conservative force?
Which one of the following choices is an example of a conservative force?
A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest p
The type of energy possessed by a simple pendulum, when it is at the mean position
If air resistance is negligible, the sum total of potential and kinetic energies of a frec
Name the physical quantity which is equal to the product of force and velocity.
The P.E. of a body at a certain height is 200 J. The kinetic energy possessed by it whu
The point, through which the whole weight of the body acts, irrespective of its positi

According to the law of moments, if a number of coplaner forces acting on a particle

The motion of a particle round a fixed axis is

The principle of transmissibility of forces states that, when a force acts upon a body,
The centre of gravity of a semi-circle lies at a distance of from its base 1
Concurrent forces are those forces whose lines of action



The velocity ratio in case of an inclined plane inclined at angle 6 to the horizontal an
One complete round trip of a vibrating body about it's mean position is

Potential energy of mass attached to spring at mean position is

Velocity of bob in SHM becomes zero at

If potential energies and kinetic energies are equal then displacement of an object in |
Kinetic energy of mass attached to spring at extreme position is
Potential energy of mass attached to spring at extreme position is

Hamiltonian H =
Advantage of Action and Angle variable is that one can obtain the frequencies of
For non-interacting particle in a quantum state the energy E is given by

Co-ordinate transformation equations should not involve explicity.
Generating function have forms.

Hamilton’s principal function is denoted by
Hamilton’s characteristic function W is identified as
Hamilton’s characteristic function is denoted by
The number of independent ways in which a mechanical system can move without vi

UNIT-II

Canonical transformations are the transformations of

The Hamilton’s principle function is a generating function, which give rise to canon
All function whose Poisson bracket with the Hamiltonian vanishes will be

Let L and P represent the matrices of Lagrange and Poisson brackets respectively, th

The given transformation is not canonical when

The function p=1/Q and q=PQ2 is

In point transformation one set of co-ordinates qj to a new set Qj can be expressed
The problem consists on finding the path of a charged particle under the action if a cc
Hamilton — Jacobi method is used to find the solution of problem in
Hamilton equation of motion is
Poisson and Lagrange brackets are under Canonical Transformation
Equation of motion in Poisson bracket from depends on

In Kepler problem, the path of the particle is

In Poisson bracket

In Poisson bracket

In Poisson bracket

In Poisson bracket

In Lagrange bracket

In of Lagrange bracket

In of Lagrange bracket

Poisson bracket of two operator X and Y in quantum mechanics is given by

If the Lagrangian of the system does not contain a paricular co-ordinate q, then



Hamilton-Jacobi is a partial differential equation in variables.
is a partial differential equation in (n+1) variables.
Hamilton’s characteristic function W is identified as

Hamilton’s characteristic function is denoted by
The number of independent ways in which a mechanical system can move without vi

Path in phase space almost refers to actual path.

The one way of obtaining the solution of mechanical problem is to transform
If the operators X, Y commute, then [X, Y] = .
If[X, Y] =0, then X and Y behave like variables of classical mechanics
If Poisson bracket of two variables in classical mechanics is zero, then the operators
The Lagrange’s bracket is under canonical transformation.
Lagrange’s equation of motion are second order equations with degrees
The greatest advantage of action and angle variable is that we can obtain the

The generalized co-ordinate conjugate to Jj are called
Jj has the dimension of
If F does not involve time explicitly, then the Poisson bracket of F with H
If the Poisson bracket of F with H vanishes then F will be a

If Poisson bracket of momentum with H vanishes, then 1S conset
If Poisson bracket of momentum with H vanishes, then the co-ordinate momenta is
Lagrange’s bracket does not obey the law.

H=

L=

In case of e1ther of the set of conjugate variables with (q, p) or with (Q, P), the value
In new set of co-ordinates all Qj are
In new set of co-ordiantes all Pj are
If H is conserved then the new Hamiltonian K 1s
An assembly of particles with inter-particle dlstance is called as rigid boc
Degree of freedom to fix the configuration of a rigid body is
These are most useful set of generalised co-ordinates for a rigid body and are angles
Angular momentum of a rigid body is
A mathematical structure having nine components in 3-D is termed as tensor of rank
The rotation about space z-axis ( angle f) is called
Rotation about intermediate X1 axis ( angle q ) or line of nodes is called
The rotation about z’ axis ( angle Y ) is called
The variation of angle q is referred as of the symmetry axis of the top and i
Precession can be
is ordinarily observed with a rapidly spinning top.

In case of top amplitude of nutation is small, nutation is sinusoidal,
The minimum spin angular velocity below which top cannot spin stably about vertice
When wz < wmin then the top begins to




Angular velocity of a rigid body is given by
Angular momentum of a rigid body is L =

The diagonal elements Ixx, lyy, Izz of inertia I are moments of inertia
Tensor I is to principal axes
UNIT - III

Rotational kinetic energy of a rigid body is
In certain system of body axes with respect to which the off-diagonal elements
If wz =wz’ > wmin, atop will spin with its axis vertical continuously , therefore it is

A rigid body with N particles have degrees of freedom.

The configuration of a rigid body with respect to some cartesian co-ordinate system i
The most useful set of generalised co-ordinates for a rigid body are angles
The transformation worked out through three rotations performed only in
The distance between any two points of a rigid body is

A rigid body can possesses simultaneously the translational and motion

A mathematical structure having nine components in three dimensions is termed as «
The products of inertia of all vanish when one of the axes of the body lies along the 2
If the symmetry axis of the body is taken as axis of rotation and the origin of body ax
The motion of a rigid body with one point fixed will take place under the action of to
The assembly of particles with fixed inter-particle distance is called

The orientation of the body by locating a cartesian set of co-ordinates fixed in the rig
The fixed point in the body which registers its translation and coincident with the cer
The generation of body set of axes from the space set of axes through three successiv
The system of body axes in which off-diagonal elements disappear and the diagonal «
The system of body axes in which off-diagonal elements disappear, and the diagonal
The secular equation of inertia tensor and its solution is called
A rigid body can possesses simulataneous the and motion.
Rigid body possessing rotational and translational motion simulataneously will have
If we consider three non-collinear points in a rigid body, then each particle will have
Three non-collinear points in a rigid body will have the total of degrees of
All the space set of axis if rotated wbout the space z-axis, then the yz plane takes
The inverse transformation matrix from body set of axes to space set of axes is given
The position vector of any point p relative to the origin O of the body set of axes is
The configuration of a rigid body is completely specified by degrees of frec
If a is the column matrix representing the co-ordinates having single frequency and a
If a is the column matrix representing the co-ordinates having single frequency and
The generalised co-ordinate in which each one of them executing oscillations of one
In parallel pendula the two pendula oscillates in

In parallel pendular, if the two pendula are independent i.e., there is no

In paralle pendula force due to spring will come into action.

If the system possesses two identical frequencies, then it is therefore said tobe
A continuous string has infinite number of normal modes and
The use of nomal co-ordinate in the coupled system reduces it to one of a system of




A continuous string has a linear

If the system is in stable equilibrium, then the frequency wl2 should be a qua
If w2 are real and positive, then all co-ordinate always remain for any time
If wi2 are not real and positive, then all the co-ordinate becomes for any tim
The system is said to be unstable if the frequency wl2 are not

UNIT - IV

When the forces acting on the particle vanishes, then the particle is said to be in
Potential energy is minimum at stable equilibrium and at unstable

In case of stable equilibrium the system undergoes bounded motion and in case of
When a system at stable equilibrium is disturbed its potential energy increases and k
When a system at unstable equilibrium is disturbed its potential energy decreases an
The example for stable equilibrium.

If a slight displacement of a system from its equilibrium results only in small

If a slight displacement of a system from its equilibrium results only in unbounded
The example for unstable equilibrium.

The two modes of motion involving a single frequency are called modes
The eigen frequency in case of oscillatory motion about the point of stable

The generalised co-ordinates each of them executing oscillations of one single

Two pendula in parallel pendula oscillate in phase with frequency

Two pendula in parallel pendula oscillate out of phase with frequency

Triple pendulum is a

Triple pendulum is a degenerate system, since the two normal modes frequency
Example for linear triatomic molecule is

In case of linear triatomic molecule when w1 = 0, the system undergoes

In case of linear triatomic molecule when w2 = (K/M)1/2 and

In case of linear triatomic molecule when the central atom does not
In linear triatomic molecule when , the end atoms vibrate

The example for continuous system is

A continuous system has number of normal modes of frequency.

If the linear triatomic molecule is stretched symmetrically, the absorption band

A system of mutually interacting particles is called

When the forces acting on a particle vanishes, the particle is said to be

The two modes of motion involving a single frequency are referred to as the

The system of two equal masses joined by identical springs to each other is called
A system of particles is said to be in stable equilibrium if all the particles

The system consists of two identical simple pendula, each of mass m, length 1 and co
All the other co-ordinates except one co-ordinate are zero for all times, then it corres;
If the motion for a given wl2 is completely oscillatory about the position of stable

If the eigenfunctions is imaginary, then the motion is said to be equilibriur
If the solution of equation of motion has one single frequency, then in such a case the
If the parallel pendula move in a vertical plane in equilibrium position, then the two
In the two pendula it can vibrate as if they are independent i.e., there is no stretching



In triple pendulum, if the system possesses two identical frequencies, then it is theref
In linear triatomic molecule, the displacement of all the atoms are in the same directi
The continuous string has infinite number of normal modes and
A continuous string has a linear

The use of normal co-ordinates in the coupled system reduces it to one of a system of
The volume integral of the function of the Lagrangian functions within the braces
Lagrangian density is a function of and derivative of

The system consists of two equal masses joined by identical springs to each other anc
In case of two-coupled oscillators, the potential energy V of the system is the sum of
The force tending to change any generalised co-ordinate depends on the of
If two pendula oscillate in phase, then the frequency of motion is

In case of linear triatomic molecule there exists bond between the central
The system consists of infinite chain of equal mass points spaced equally at a distanc
The continuous system is a function of the continuous variables and to
In discrete system, the continuous variables changes only by

The propagation velocity of the wave in continuous system is similar to that velocity
In linear triatomic molecule if the molecule is assymmetrically stretched, then

For small oscillation, the displacement of the particles are restricted to

The motion with imaginary frequency would give rise to an unbounded exponential r
If the particle oscillates about the equilibrium point performing bound motion, then t
In the conservative force-field, generalised forces acting on each particle must

The displacement of the generalised co-ordinates from their equilibrium value will bx
Michelson-Morley experiment proves

Michelson-Morley experiment proves that

The special theory of relativity was proposed by

If we transform set into another form of n equations, then it involves only a
Michelson-Morley experiment proved that

Special theory of relativity deals with the events in the frames of reference which mo
Michelson-Morley experiment to detect the presence of either is based on the phenor
Michelson and Morley experiment showed that

Length contraction happens only

UNIT -V

The mass of 70 kg man moving in car at 66kmh is

Special theory of relativity treats problems involving

According to special theory of relativity which one is not an absolute quantity

Conversion of solar energy into carbohydrates and starch by leaf of a plant is an exan
A reference frame attached to the earth:

Two photons approach each other, their relative velocity will be

An inertial frame is

All the inertial frames are equivalent” this statement is called the principle of ---------
According to relativity, the length of a rod in motion:



If v = c, the length of a rod in motion is:

According to special theory of relativity:

James travels at high speed from the Earth to the star Alpha Centauri, four light years
Relativity mechanics is applicable for a particle which is moving with a velocitya
The relativistic measurement depends upona

A frame which is moving with zero acceleration is called

When we specific the place of occurrence of a phenomenon as well as the time of oc«
Newton’s law’s remain unchanged or invariant

The laws of mechanics in all initial frame of reference are

The acceleration of a particle under Galilean transformation is

The mass energy relation was proposed by

The Lorentz transformation will converted to Galilean transformation when the relati
the length of an object is maximum in a reference frame in which it is

the length of a rod in uniform motion relative to an observer

The time interval between two event in a reference in a reference frame which is in n
A moving clock

If the velocity of a moving particle is comparable to velocity of light then the mass o
Einistein’s mass energy equation E=mc2 implies that

How fast a particle must travel so that its mass becomes twice its rest mass?
Relative velocity of two particles moving with velocity of light of light in opposite d;
For a photon particle which is moving with a velocity of light, the rest mass is

The fictitious force, which acts on particle in motion relative to a rotating frame of re
If the particle is at rest relative to the rotating frame of reference the coriolis force is
When the particle is at a non-rotating of reference the Coriolis force

The Coriolis acceleration on a freely falling body under the action of gravitational fos

According to theory of relative mass of an object is
Radiation with energy that is easily detected as quanta

If the kinetic energy of a body becomes four times its initial value, the new momentu

Lorentz transformation equations hold for

If the kinetic energy of a body becomes four times its initial value, the new momentu

If the radius of the earth were to shrink, its mass remaining the same, the value of acc

What do we mean by the straightest possible path between two points on Earth's surf

Which of the following statements is not a prediction of the general theory of relativi

What does the equivalence principle say?

Each of the following is a prediction of the theory of relativity. Which one is crucial -



According to general relativity, how is time affected by gravity?
According to general relativity, a black hole is

According to general relativity, why does Earth orbit the Sun?

If you draw a spacetime diagram, the worldline of an object that is accelerating away
If you draw a spacetime diagram, the worldline of an object that is traveling by you a
If you draw a spacetime diagram, the worldline of an object that is stationary in your

What do we mean by dimension in the context of relativity?

Suppose you claim that you are feeling the effects of a gravitational field. How can y

Einstein's Theory of General Relativity states that
Einstein said that gravity exists because
According to Einstein, what is considered the fourth dimension?

Einstein's famous equation E = mc2 states that
A person is riding a moped that is traveling at 20.0 m/s. What is the speed of a ball if
A beam of light travels at 3.00 x 108 m/s. If a moped moving at 20.0 m/s turns on its

Einstein's Second Postulate of Special Relativity states that the speed of light
A particular task requires 3.46 J of energy. Using E = mc2, how much mass is neede:

Mass of 700 N man moving in car at 66 kmh™ is

Special theory of relativity treats problems involving



A
kinetic energies
kinetic energy.

Angular Momentum

Sitting position
Centre of gravity

Newton's first law
Newton's first law

kinetic energy.
T-V

3N

time
[1/2p(k/m)5/2]
T+V =constant
scleronomic
scleronomic
scleronomic
shape of a curve

B

potential energies.
potential energies.
Linear Momentum
Standing Position

Centripetal force

Newton's Second Law
Newton's Second Law

potential energies.
T+V

6N

position
[1/2p(k/m)3/2]

b. T-V=0

b. rheonomic

b. rheonomic

b. rheonomic
blength of a curve c.

C D

forces. both a and b.
conservation of e1 conservation principle.
Angular Displace None of these

Lying Position =~ None of these
Centrifugal force Moment of force

Newton's Third I Principle of conservation of linez
Newton's Third L All of these

conservation of e1 conservation principle.

(T-V)2 (T+V)1/2
ON N
momentum velocity
[12p(k/m)1/2]  [1/2p(k/m)]

¢. T-V =constant None of these
c. unilateral None of these
c. unilateral None of these
c. unilateral .d holonomic

elasticity of a curr None of these

A. law of conservatic A. law of conservation of A. law of conserv A. law of conservation of angula

elastic spring force
elastic spring force
50]

KE

increases

WORK

>PE

centre of mass

kinetic frictional force
kinetic frictional force
500J

PE

increases

ENERGY

<PE

centre of percussion

torque gravitational force
torque gravitational force
12] 30J

KE+PE KE-PE

becomes zero remains the same
POWER ACCELERATION
P.E Not Known

moment of inertia centre of gravity

the algebraic sum of 1 the algebraic sum of thei their lines of actic their algebraic sum is zero

translatory as well as translatory

rotary circular

different at different jmaximum, if it acts at the minimum, if it ac same at every point on its line of

3r/4n

4r/ 37w

meet on the same pla lie on the same line

3r/ 8 81/3
meet at one point none of these



cos 0 sin 0

frequency time period
maximum moderate
mean position in air

4
maximum moderate
maximum moderate
T-V T+V
Vibratory motion  periodic motion
p/2m p2/m
position momentum
four two
H K
kinetic energy potential energy
S K

action-angle variable: generalized variables

Phase space Hillbert space
both constant momern constant moments only
constant of motion  constant of momentum

LP=1 LP=-1
[QP]=1 [QP]=-1
conjugate canonical
Qi =Qj(q, 1) Qi =-Qj (g, 1)
Jacobi problem cononical problem
Vibratory motion  periodic motion
convergent divergent
convergent divergent
position momentum
circular parabolic
X,Y]= [Y.X] [X,Y]=-1Y,X]
X, X]=0 [X,X]=1

Xaq.]]Qap =- [CUaX]C [Xaq_]]QaP = [anX]Qop

[
[
[
[
[
[X,Y]Q,P =-[X,Y]q, [X,Y]Q,P =[X,Y]q,p
[
[

tan 0 cot O
amplitude vibration
Z€ero minimum

extreme position middle of mean and extreme pos

3 1
Zero minimum
ZEero minimum
(T-V)2 (T+V)1/2
circular mation all the above
p/m p2/2m
time force
three five
P S
work action A
W H

degrees of freedor co-ordinates

Minkowski space Space phase

co-ordinates only constant momenta and co-ordina
constant of co-orcall the above

LP=-1/2 LP=1/2

[Q.P]=112 [Q,P]=0
identical hyrebolic

Qi =Pj(q,t) Q=-Pj(q,t)
Kepler problem Poission problem
circular mation all the above

variant invariant
invariant variant

time all the three
elliptical zig-zag
[X,Y]=2[Y.X] [X)Y]=-2[Y.X]
[X,X]=2 [X,X]=-2

XY+Z]=[X, Y] - 2 [X,Y+Z] = [X,Y] * [X,Z] [X,Y+Z] = [X,Y] [X,Y+Z] = [X,Y] / [X,Z]
X,YZ] = Y[X.Z] * [ [X,YZ] = Y[X,Z] - [X,Y].[X,YZ] = Y[X,Z] [X,YZ] = Y[X,Z] + [X,Y]Z
[Xaq.]]Qap =2 [QJ 2[X7qJ]QaP =- [q_]aX]QaP
[
[

X, Y]Q,P =2[X,' [X,Y]Q,P =-2[X,Y]q,p

X.X]g,p =[X.X]QI[XX]q,p = [X.X]Q,P=-[XX]qp =[XX[X.X]qp =[X.X]QP=1/2
X,Y]=-2p/h[XY-Y[X,Y]=-2p/h[XY+YX] [X,Y]=-p/h[XY [X,Y]= 2p/h[XY-YX]
cyclic co-ordinates  cylindrical co-ordinates

polar co-ordinate: spherical polar co-ordinates



n n+1 n-1 n+2

Hamilton-Jacobi equ: Lagrangian Hamiltonian Jacobian
kinetic energy potential energy work action A
S K W H
action-angle variable: generalized variables degrees of freedoi co-ordinates
statistical N 3N dynamical
old to new new to old new to new old to old

1 -1 0 -2
statistical dynamical proportional inversely proportional
vanish be multiplied twice proportional commute
invariant variant not applicable  exponentially variant
nt+1 n 2n+1 3n
displacement frequencies total time accelerations
action variable dynamic variable statistical variable angle variable
angular momentum angular velocity linear momentum linear velocity
is proportional with is proportional with K~ Vanishes exist
positive value constant of motion negative value  same value
linear velocity energy angular momentu linear momentum
cyclic rotational irrotational spherical
associative kepler’s commutative Hamilton's variational law
T-V T+V T \Y
T+V T \Y T-V
same proportional inversely proporti exponentially proportional
rotational irrotational cyclic variable
cyclic constant rotational irrotational
same variable different constant of motion
fixed different I mm 2 mm

3 6 5 0
Lagrangian angle azimuthal angle Euler’s angle Larmor's precession angle
L=1w/2 L=2Iw L=1Iw2 L=1Iw

2 3 4 0
translation precession nutation spin.
translation precession nutation spin.
translation precession nutation spin.
translation precession nutation spin.
slow or fast always slow always fast neither fast nor slow
fast precession slow precession slow nutation fast nutation
slow rotating fast botha & b

wmin = (4mgll1/132) wmin = (4mgll1/132)3/2 wmin = (4mgll1/lwmin = (4mgll1/132)1/2
wobble precesse nutate spin.



Vi=w2xri

S m2(ri x Vi)
tensor
symmetric

Yaw2 12
symmetric
sleeping top
2N
momentum
rotation
successive
varied
arbitrary
tensor
rotation
unsymmetry
displacement
fluid
body set of axes
body set of axes
direction cosines
principle axes

Vi=(wxri)l/2
S m(ri x Vi)2
vector
antisymmetric

w21
antisymmetric
spinning top
3N

inertia
specified
different
fixed

circular
matrix
vibration
rotational
torque

vapor

space set of axes

Vi=wxri

S m2(ri x Vi)2

scalar
parallel

w2l
principal
rotating top
N
orientation
auxillary
independent
proportional
rotational

covariant tensor

motion
symmetry
time
colloidal
bothaandb

Vi=w3xri
Sm(ri x Vi)
donar
perpendicular

2w2 1.
perpendicular
symmetric top

4N

angular momentum
euler’s

dependent
exponentially proportional
orbital

contravariant tensor
symmetry

bandc

rotational motion
rigid body

rotational set of axes

space or external set of ax rotational set of a vibrational set of axes
rotational angles Euler’s angles

successive angles
secondary axes

primary axes

catesian axes

principle moment of secondary moment of inet moments of inerti inertia
covariant tensor eigen values

constant of motion

tensor of rank two

translation and rotatic linear and harmonic

polar and cartesian
four

Six

same

AT

Different

two

normal co-ordinate
out or phase
unstretching
impulsive
degenerate
velocities
dependent

three
three
alternate
adj (A)
constant
three

01
01

cartesain co-ordinate
phase

rarefying

repulsive

generate
frequencies

single

periodic and non- symmetrical around
generalised and canonical translation and ro both a and b

Six
nine
orthogonal
co-factor of A
proportional
Six

a

polar co-ordinate

damped motion
transiting
restoring
distorted
vibrations
independent

1

nine

tweleve

new

determinant of A
bothaand c
nine

a2

rectangular co-ordinate
undamped motion
stretching

attractive

in harmonic motion
motion

double



displacement mass density

complex integer

different finite

equal exponential

real infinite

unstable neutral equilibrium

Zero infinity

harmonic distorted

ZEero constant

constant neither increase nor decrease

Bar pendulum at rest compound pendulum at r¢ simple pendulum pendulum in motion

velocity acceleration

real imaginary
infinite same

infinite finite

equal finite
equilibrium stable equlibrium
maximum minimum

same unbounded
increases decreases
increases decreases
unstable stable

unstable stable

Rod standing on its o rod stretched on two ends rod in motion
abnormal normal
imaginary real

normal co-ordinates genaral co-ordinates
w=(gl)1/2 w=(g/l)1/3
w=(gl+2k/m) w=(g/l+2k/m)1/4
generate system stable system

neither stable nor neutral

neither stable nor neutral

rod in simple harmonic motion
transverse longitudinal

complex whole number

spherical co-ordir polar co-ordinates
w=(g/l)l/4 w=(gl)

w=(g/l+2k/m) w=( g/l +2k/m )1/2
degenerate systen unstable system

wl=w2=(gl+2kkwl=w2=(g/l+2k/m)Iwl = w2=(g/l4iwl= w2=(g/l +2k/m )1/2

HPO3 H2S04

periodic motion non-periodic motion
Oscillatory motion  translatory motion
w=(K/M)1/2 w = (K/M)

HNO3 Cco2
translatory motiot SHM motion
periodic motion SHM motion
w=(K/M)1/3 w=(K/M)l/4

w={ KM+ 2m/M)w = { K/M(1+2m/M)} 1/2 w = { K/M(1+2mw = { K/M(1+2m/M)}4

Continuous string
Finite infinite
Ultra-violet region  Infra-red region
uncoupled system  Translatory system

Equilibrium Stable equilibrium
abnormal normal

Uncoupled single coupled

rest periodic motion
series pendula compound pendula
abnormal standard
imaginary Real

unstable Stable

Cartesian canonical

different identical

rest oscillate infinitely

string stretched at one enc String stretched a String with load at one end

Constant Same

Visible region ~ Microwave region
Coupled system harmonic system
unstable equilibri Neutral equilibrium
Damped undamped
Three-coupled  two-coupled

damped motion simple harmonic motion
paralled pendula complex pendula

variable normal
complex integer
neutral neither stable nor neutral
polar normal

relative to each ot Away from each other
action neither action nor oscillate infini



periodic non-periodic degenerate harmonic

unequal equal infinite finite

vibrations displacement a & b together  frequencies
momentum volume density mass density specific density
dependent harmonic periodic independent
Hamiltonian Lagrangian linear volume

space and time angle and r x and y co-ordian y and z co-ordinates
damped harmonic periodic undamped

kinetic potential rest energy a&b

velocity accelecration displacement momentum

wl =Og/l wl =g/l wl=12p0Og/l  wl=2pOg/l

Inelastic covalent Elastic ionic

Discontinus continuous harmonic linear

w and t X,y and z rand w x and t

twice thrice unity 0
inelastic elastic damped undamped

magnetic quadrapole oscillating dipole botha & b

stable periodic non-periodic small

Uj Vi pj q

unstable stable neutral neither neutral nor stable
finite infinite vanish a constant

Vi W] pj Uj

The existence of ethe The non-existence of ethe None Ether pervades

The speed of light in The speed of light is char None variable light velocity
Einstein newton eigen galileo

Single double triple more than three

speed of light is relat there is no preferred fram«earth is an inertial earth is a non-inertial frame
speed velocity acceleration momentum.
interference diffraction polarization dispersion

Newtonian mechanic There is an absolute ether There is no absoh Velocity of light is relative in all
perpendicular to direcalong the direction of mot parallel to directicboth a and b

70 kg

100 kg

infinite Zero

inertial frame of refe1 non-inertial frame of refer non-accelerated fiaccelerated frame of reference

time

energy into mass

mass

mass in to energy

height bothaand b

momentum into v velocity into momentum

is an inertial frame by is an inertial frame becaus Cannot be an iner Cannot be an inertial frame beca

c/2
Accelerated

relative motion

Zero
decelarated
equivalence

c/8 c
Moving with unif May be accelerated, decelerated «
inertia Correspondence.

1s same as its rest len is more than its rest lengtl is less than its res may be more or less than or equa



Zero equal to proper length  less than proper lc more than proper length.

speed of light is relat speed of light is same in atime is relative  mass is relative

the trip takes more ti1 James travels to Alpha Ce clocks on Earth a1 Alpha Centauri travels to James
Greater than that of li Less than that of light Comparable to th: equal to velocity of light

The state of motion o The state of motion of the The quantity that absolute motion

Non-inertial frame Inertial frame rest frame decelerated frame
a point an event an incident an accident
Under Galilean transiunder lorentz transformati cartesean transfor new transformation
same different none variable
invariant non-variant none variable
Newton Einstein Kepler Michelson
v>>¢ v=¢ v<<c v=0
at rest in motion neither rest nor in varying speed
appears to be shorte appears to be lengthened equal to aboslute invariant length
Maximum minimum Zero varying speed
Runs slower than a st Runs than a stationary ide neither slow nor f very fast
Greater than when it Smaller than when it is at Equal very smaller
Energy disappears to Mass disappears to reapp All the above stat nothing can be done
05¢c 2c¢ 0.866 ¢ 0.9¢c
0 2c c 3c
0 1 2 3
Coriolis force Newtonian force Pseudo force centripetal force
0 1 10 2
1 0 2 3
Directed towards the Directed towards the west directed towards 1directed towards south
depends on particles speed of light. volume of object area of object.
leV. 1 keV. 1 MeV. .10-10 eV.

Three times the initi: Four times the initial valv Two times the in unchanged

Non-relativistic veloc Relativistic velocities onl'. All velocities: r¢ Photons only

Three times the initia Four times the initial valu. Two times the ir unchanged

Increase and decreas Decrease and increase res Increase at both 1 Decrease at both places

a path that actually is a path that follows a circl¢a path that follow the shortest path between the twc

Time runs slightly slc The Universe has no bour The curvature of : Different observers can disagree

Gravity is the same tl The effects of gravity are All observers mu: The effects of relativity are exact

If you observe somec Gravity is curvature of sp: E = mc2 Time runs slower on the surface



Time is not affected t Time is stopped by any gr Time runs slower Time is stopped by any gravitatic
an object that cannot a hole in the observable u:a place where the a place where light travels faster

Earth is following the¢ Earth is following the stra The mysterious fc The mysterious force that we cal

vertical. curved. horizontal. slanted.
vertical. curved. horizontal. slanted.
vertical. curved. horizontal. slanted.

the size of an object the number of independen the letter used to 1the height of an object

She is weightless bec She is weightless because She is weightless If you are in a gravitational field,

gravity and accelerati the speed of light is consti physics for accele physics for nonmoving and movi
massive objects warp massive objects attract on light moves randc of the existence of black holes.
horizontal dimension curled dimension me dimension  space dimension

mass is always greate energy and mass are equiy energy and the sp mass and the speed of light are e

20.0 m/s 3.00 x 108 m/s 24.0 m/s 3.00 x 108 m/s +20.0 m/s
20.0 m/s 3.00 x 108 m/s 3.00 x 108 m/s + 3.00 x 108 m/s —20.0 m/s
1S constant can increase 1f the speed can decrease 1t randomly changes
regardless of the of the light source the speed of the depending upon its
speed of the increases. observer original light source.
3.11 x 1017 kg 3.84 x 10-17 kg 346 x 10-8 kg 1.15x 10-8 kg

70 kg. 100Kg 0 10Kg

HICIUdl 11dllc Ol NOIN-11CIrudl 1rdine oL noI- dcCCICrdicd 1diic

reference. reference. accelerated of reference.



ANSWER

both a and b.
conservation of energy
Angular Momentum
Standing Position
Moment of force

ir moment Principle of conservation of linear momentum
Newton's first law

kinetic energy.
T-V

6N

time
[1/2p(k/m)1/2]
T+V =constant
scleronomic
rheonomic
unilateral

shape of a curve

rspeed. A.law of conservation of angular momentum.
kinetic frictional force
elastic spring force
500J
KE
remains the same
POWER
>PE
centre of gravity

the algebraic sum of their moments about any point in their plane is zero

circular

‘action  minimum, if it acts at the centre of gravity of the body
41/ 3n
meet at one point



ition

tes

sin 0
vibration

Z€1ro

extreme position
0

Zero

maximum

T+V

periodic motion

p2/2m

time

four

S

action A

W

degrees of freedom

Phase space

both constant moments and co-ordinates
constant of motion

LP=-1

[Q.P]=0
canonical
Q=Qj(q), 1)
Kepler problem
periodic motion
invariant
invariant

all the three

elliptical

[XaY] =- [YaX]

[X,X]=0

[X,Y+Z] =[X,Y] + [X,Z]
(X, YZ]=Y[X,Z] + [X,Y]Z
2[X7qJ]QaP =- [q_]aX]QaP
[X,Y]Q,P=[X,Y]q,p
[X.X]q.p =[X,X]Q,P=0
[X,Y] =-2p/h[XY-YX]
cyclic co-ordinates



n+1

Hamilton-Jacobi equation
action A

W

degrees of freedom

dynamical
old to new
0
dynamical
commute
invariant
2n+1
frequencies
angle variable
angular momentum
Vanishes
constant of motion
linear momentum
cyclic
commutative
T+V
T-V
same
cyclic
constant
constant of motion
fixed
6
Euler’s angle
L=1Iw
2
precession
nutation
spin.
nutation
always slow
slow precession
fast
wmin = (4mgll1/132)1/2
wobble



Vi=wxri
Sm(ri x Vi)
tensor
symmetric

aw2l
principal
sleeping top
3N
orientation
euler’s
successive
fixed
rotational
tensor
symmetry
symmetry
torque
rigid body
body set of axes
space or external set of axes
Euler’s angles
secondary axes
inertia
eigen values
translation and rotational
translation and rotational
three
nine
new
AT
constant
Six

1

normal co-ordinate
phase

stretching
restoring
degenerate
frequencies
independent



mass density
real

finite
infinite

real

equilibrium
maximum
unbounded
decreases
increases
Bar pendulum at rest
stable
stable
Rod standing on its one end
normal
real
normal co-ordinates
w=(gl)
w=(g/l+2k/m)1/3
unstable system
wl= w2=(g/l+2k/m)1/3
HNO3
periodic motion
Oscillatory motion
w = (K/M)
w = { K/M(1+2m/M)}
string stretched at one end
infinite
Visible region
uncoupled system
Stable equilibrium
undamped
Uncoupled
damped motion
complex pendula
standard
imaginary
neither stable nor neutral
canonical
relative to each other

tely neither action nor oscillate infinitely



non-periodic
unequal
frequencies
volume density
periodic
Hamiltonian
x and y co-ordiantes
harmonic
a&b
displacement
wl =Og/1
Elastic
continuous
x and t
unity
elastic
oscillating dipole
small
Uj
stable
vanish
Uj
The non-existence of ether medium (i.e. absolute rest frame)
The speed of light in free space in invariant
Einstein
Single
there is no preferred frame like ether
velocity
interference
cases. There is no absolute ether frame, but all frames are relative
along the direction of motion

70 kg
inertial frame of reference
bothaandb

energy into mass

use the ear is an inertial frame by definition
C

or moving Moving with uniform velocity or at rest.
relative motion

1to rest le is less than its rest length



Zero
speed of light is same in all inertial frames

over a leng Alpha Centauri travels to James over a length that is shorter than four light years.

) points

Comparable to that of light
The quantity that is being measured
Inertial frame
an event
Under Galilean transformation
same
invariant
Einstein
v<<¢
at rest
appears to be shortened when it at rest w.r.t. to the observer
Maximum
Runs slower than a stationary identical clock
Greater than when it is rest
All the above statements are correct except d
0.866 ¢
C
0
Coriolis force
0
0
Directed towards the east

speed of light.
1 MeV.

Two times the initial value

All velocities: relativistic & non-relativistic

Two times the initial value

Increase at both places

the shortest path between the two points

about the - Different observers can disagree about the fundamental structure of spacetime.

ly equivali The effects of gravity are exactly equivalent to the effects of acceleration.

of the Sun E = mc2



al field. Time runs slower in stronger gravitational fields.
than the nia hole in the observable universe

| centripet: Earth is following the straightest path possible, but spacetime is curved in such a wa
curved.
slanted.
vertical.

the number of independent directions in which movement is possible

“then she ¢ She is weightless because she is in free-fall.

ng frames gravity and acceleration are equivalent.
massive objects warp space
me dimension

quivalent. energy and mass are equivalent.
24.0 m/s
3.00 x 108 m/s

is constant regardless of the speed of the observer or the light source.
3.84 x 107" kg
70 kg.

inertial
























y that this path goes around the Sun
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